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Introduction

Risk managed investment strategies have emerged as an important topic in practice and in aca-

demics. Especially during adverse market periods, like the global financial crisis or the recent

corona crisis, the demand for tail risk mitigation tools increases. This results since investors are

typically crash-averse and weight losses higher than gains of the same magnitude, i.e. investors

are willing to pay high fees to avoid crashes (Bollerslev and Todorov, 2011, Chabi-Yo et al.,

2018).1 Unfortunately, due to an increase of correlations between different assets in extreme

crash periods, diversification is an insufficient tool to achieve a good downside risk protection.2

In other words, even well-diversified portfolios exhibit extremely high losses during crises and

drawdowns of these portfolios are typically much higher than anticipated by investors. Fur-

thermore, the occurrence of extreme crashes also leads to a portfolio return distribution with

an extremely high left tail risk, indicated by a highly negative skewness and high kurtosis.3

Since investors typically prefer higher levels of skewness and lower levels of kurtosis (Kraus

and Litzenberger, 1976, Scott and Horvath, 1980), non-managed portfolios are unappealing

for these investors, especially in crash periods. In other words, “investors are tail-risk averse”

1This observation is similar to the safety-first theory examined by Arzac and Bawa (1977). This theory “builds
on the assumption that investors maximize the expected return while limiting the probability of suffering a partic-
ularly large loss below a predetermined admissible level” (Van Oordt and Zhou, 2016, p. 688).

2See, for example, Ang and Chen (2002), Ang and Bekaert (2002), Butler and Joaquin (2002), Chabi-Yo et al.
(2018), Guidolin and Timmermann (2008), Karolyi and Stulz (1996), Patton (2004), Poon et al. (2004) and Longin
and Solnik (2001) for studies on the high co-crash risk and increase of correlations of several assets during crash
periods. Similarly, Jondeau and Rockinger (2003) find that an extremely negative skewness of different assets
typically occurs simultaneously. The presence of asymmetric correlations, i.e. higher correlations in crash periods,
leads to a wrong risk assessment of investors. That is, the investors’ equity exposure is typically too high in bear
markets and too low in calm markets (Ang and Chen, 2002).

3Generally, an asset’s skewness is highly linked to an asset’s crash risk. For example, Chen et al. (2001, p. 348)
state: “when we speak of “forecasting crashes” [...], we are adopting a narrow and euphemistic definition of the
word “crashes,” associating it solely with the conditional skewness of the return distribution.” Further, Chen et al.
(2001) state that conditional skewness can be interpreted as a crash expectation measure. Thus, skewness risk
and crash risk are highly linked with each other: a high negative skewness makes crashes more likely and severe,
whereas severe crashes make return distributions more negatively skewed.
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and have a high demand to hedge against this higher moment risk (Dreyer and Hubrich, 2019,

p. 47).4 Consequently, driven by the investors’ demand to hedge against financial tail risks,

tail risk mitigation tools are needed in order to make equity investments appealing for investors.

Furthermore, the reduction of extremely negative returns does not only fit well to most investors’

preferences, but is also a main driver of an investment strategy’s long-term performance. For

example, a drawdown of 50% has to be compensated by a return of 100%, whereas a drawdown

of 20% requires a return of only 25%. Thus, avoiding extreme crash periods eventually results

in a higher long-term performance.

The failure of diversification to hedge against financial tail risks and the importance of

drawdown mitigation for investors has led to numerous portfolio optimization methods that are

frequently examined in the literature and that are also applied by practitioners. However, most

of these portfolio allocation methods, which aim to control a portfolio’s risk, often fail to reduce

drawdowns during crises. For example, the well-known mean-variance approach typically per-

forms bad in practice, since this approach suffers under a high estimation risk (DeMiguel et al.,

2009b, Jagannathan and Ma, 2003).5 This holds particularly during crises where estimation risk

is typically high. Similarly, during the recent corona crisis, the frequently used risk parity ap-

proach suffered losses that were much higher than anticipated by investors. Hence, also the risk

parity approach, which is much more robust to estimation risk, fails as a crash risk mitigation

tool.6 The reason for the failure of these portfolio allocation methods is the above mentioned

4Most investors are willing to accept a lower return potential in order to reduce the probability of extremely
negative returns, i.e. “investors are willing to give up some of the right tail to reduce the left tail” (Harvey et al.,
2018, p. 15).

5See Tu and Zhou (2011), Garlappi et al. (2006), DeMiguel et al. (2009a), Kan and Zhou (2007) and Kirby
and Ostdiek (2012) for further studies on mean-variance portfolios. The high estimation risk of the mean-variance
approach mainly arises since the mean return is hard to estimate (Merton, 1980, Moreira and Muir, 2019). Thus,
the estimation risk of this strategy can be significantly reduced by portfolio allocation approaches that are solely
based on the assets’ covariance matrix or volatilities (Fleming et al., 2001, 2003, Han, 2005, Kim et al., 2016,
Moskowitz et al., 2012, Taylor, 2014, Zakamulin, 2015). Another disadvantage of the mean-variance optimization
is that this approach is implicitly based on the assumption of normally distributed returns or investors with quadratic
preferences. Since these assumptions are typically not fulfilled in practice, investment strategies based on higher
moments or tail risk measures are more appealing (Basak and Shapiro, 2001, Cuoco et al., 2008, Ghysels et al.,
2016, Jarrow and Zhao, 2006, Jondeau and Rockinger, 2006, 2012, Packham et al., 2017, Wang et al., 2012, Xiong
and Idzorek, 2011).

6Risk parity is typically applied to several asset classes and equalizes the risk contribution of each asset in
the portfolio. By doing this, risk parity aims to reduce losses during crises and is frequently applied by practi-
tioners (Asness et al., 2012, Baltas, 2015, Maillard et al., 2010). See, for example, the “S&P Risk Parity Index
- 12% Target Volatility (TR)” index, which “seeks to measure the performance of a multi-asset risk parity strat-
egy that allocates risk equally among equity, fixed income, and commodities futures contracts, while targeting

2



observation that correlations increase in crises and most assets typically crash together. Due to

this increase in correlations, drawdowns cannot be successfully reduced by changing the rela-

tive weights of the assets in the portfolio while the exposure to the portfolio is kept constant.

Thus, these approaches fail to limit a portfolio’s crash risk, especially when a crash protection

is most needed. In contrast, a well performing investment strategy should dynamically reduce

the exposure to the portfolio during a crash period and should then subsequently increase the

portfolio exposure once the risk starts to decline. In other words, a good investment strategy

should time the (short-term) risk of the portfolio, where the exposure to the portfolio should be

inverse to the portfolio’s risk. The benefits of these risk timing strategies have been frequently

examined in the literature.7 Generally, risk based market timing strategies are also frequently

used by practitioners (Christoffersen and Diebold, 2006, Copeland and Copeland, 1999).8 In

particular, timing a portfolio’s short-term risk also fits well to the observation that investors are

risk-averse, i.e. investors dislike an extremely fluctuating and high volatility.9 By managing

a portfolio’s risk on a frequent basis, portfolio returns become more normal and are more in

line with the preferences of risk-averse investors. Interestingly, (short-term) risk timing is also

beneficial for risk-averse investors with a long investment horizon (Moreira and Muir, 2019).10

This PhD thesis comprises three papers that examine several tail risk mitigation approaches.

a volatility level of 12%”. Although this approach should reduce losses during crash periods, the “S&P Risk
Parity Index - 12% Target Volatility (TR)” index suffers a drawdown of 29.14% during the recent corona crisis
(see https://www.spglobal.com/spdji/en/indices/strategy/sp-risk-parity-index-
12-target-volatility for further details and data on this index). Other risk parity funds lost even more than
40% during the corona crisis (https://www.markovprocesses.com/blog/risk-parity-funds-
in-the-coronavirus-market-rout/).

7Volatility timing has been examined by Benson et al. (2014), Bollerslev et al. (2018), Dachraoui (2018),
Dreyer and Hubrich (2019), Gormsen and Jensen (2017), Harvey et al. (2018), Marquering and Verbeek (2004)
and Perchet et al. (2016) for long-only portfolios, whereas Baltas (2015), Barroso and Maio (2018), Barroso and
Santa-Clara (2015), Cederburg et al. (2020), Daniel and Moskowitz (2016), Du Plessis and Hallerbach (2017) and
Moreira and Muir (2017) examine volatility timing for long-short strategies.

8See, for example, the fund offered by Man AHL that targets a constant level of portfolio volatility (https:
//www.man.com/ahltargetrisk) and the research of Morningstar Inc who present a style switching
strategy based on the market’s volatility (https://www.morningstar.com/articles/925094/a-
momentum-and-low-volatility-switching-strategy).

9Risk-averse investors are willing to pay high fees to hedge against high levels of volatility and high volatility
changes (Adrian and Rosenberg, 2008, Ang et al., 2006b). This high demand for a moderate and stable volatility
has led to the invention of new financial instruments, such as variance swaps (Bollerslev and Todorov, 2011,
Footnote 11).

10The investors’ evaluation period is typically much shorter than the investors’ investment horizon (Benartzi
and Thaler, 1995). Thus, even long-term investors are concerned about short-term risk and should therefore time
short-term risk.
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All three papers examine an approach called risk targeting, which is applied to several data sets

in this thesis. The aim of risk targeting is to build a portfolio that includes risky assets and has

a constant level of portfolio risk over time. This goal is achieved by constantly readjusting the

exposure to the portfolio of risky assets based on a forecast of the portfolio’s risk, where the

portfolio’s exposure is chosen inversely to the portfolio’s risk. By timing the portfolio’s risk,

this strategy has the advantage that it fits well to the risk- and loss-averse nature of investors as

summarized above. In particular, this simple approach reduces a portfolio’s crash risk and is

hardly influenced by the increase of correlations during crash periods. This is the case, since

most crashes occur in periods of an increased risk (Ang and Bekaert, 2002, Liu et al., 2003,

Muir, 2017). Thus, the portfolio exposure of risk targeting is reduced during a crash period and

then subsequently increased when the risk starts to decline. In particular, by timing the portfo-

lio’s risk, this strategy enhances the portfolio’s risk-return profile and produces high utility gains

for investors. This arises since there exists a flat or even negative risk-return relation for most

assets, i.e. a higher risk is not related to higher future returns. Hence, periods of an increased

risk are followed by periods with an inferior risk-return profile (Dachraoui, 2018, Dopfel and

Ramkumar, 2013). However, even when risk and future returns are positively related, volatil-

ity targeting can be advantageous (Moreira and Muir, 2017, 2019).11 Due to these advantages

of risk targeting, this strategy has recently emerged as an important and frequently examined

topic in the financial literature, which has been applied to many investment strategies, such as

long-only portfolios, multi-asset portfolios and long-short factor portfolios, like momentum and

“Betting against Beta”. However, so far, the literature focuses on risk targeting strategies that

target a constant level of volatility, which has several drawbacks since volatility is a subopti-

mal risk measure. Furthermore, most financial studies examine risk targeting strategies based

on simple and unconditional risk forecasting models. Since the performance of risk targeting

11For example, Moreira and Muir (2019, p. 509) find that an increase of volatility coincides with a higher future
return, but that “this increase in expected returns is much more persistent than the increase in volatility. Investors
can avoid the short-term increase in volatility by first reducing their exposure to equities when volatility initially
increases and capture the increase in expected returns by coming back to the market as volatility comes down.”
Similarly, Cederburg et al. (2020) state: “Volatility management is likely to be successful if volatility is persistent
and the risk-return relation is flat. [...] If lagged volatility is negatively related to average return for a given strategy,
volatility management becomes even more attractive. A positive risk-return trade-off, in contrast, makes volatility
management less effective.” The risk-return relation for several portfolio strategies has been examined by Barroso
and Maio (2019).
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strongly depends on the accuracy of the portfolio risk forecast, the performance of risk target-

ing can further be improved by using more sophisticated risk models (Bollerslev et al., 2018).

Moreover, risk targeting is typically used as a market timing tool to manage a whole portfolio’s

risk, where the underlying portfolio typically uses simple weighting schemes, such as equal- or

value-weightings. Thus, this approach only regards the whole portfolio’s risk, whereas the risk

profile of the individual assets in the portfolio is not incorporated. In three different papers, this

PhD thesis extends the risk targeting approach in several directions.

In the first paper, we apply risk targeting to long-only equity portfolios with daily rebal-

ancing and show how the volatility targeting strategy can be extended to strategies that target a

constant level of tail risk measured by Value at Risk (VaR) or Conditional Value at Risk (CVaR).

This extension is appealing since volatility managing is, at least implicitly, based on the as-

sumption of normally distributed returns or investors with quadratic preferences. Since return

distributions are typically highly non-normal with a non-zero skewness and fat tails, volatility

underestimates a portfolio’s crash potential and tail risk measures are more suitable to assess

a portfolio’s risk. Furthermore, tail risk based investment strategies are also more suitable for

investors who have preferences for higher moments or investors who are loss-averse. We show

that the tail risk targeting strategies outperform the volatility targeting strategies by achieving

a higher Sharpe Ratio and high utility gains for mean-variance investors, CRRA investors and

loss-averse investors. This result is particularly driven since tail risk targeting is much more

successful in reducing the drawdowns while the upside potential is also captured. In particu-

lar, when forecasting volatility and tail risk, we compare simple forecasting models, which are

mostly used in the financial literature, to more advanced models that dynamically forecast risk.

In line with Bollerslev et al. (2018), we find that more advanced forecasting models are more

accurate and, by achieving high performance and utility gains, are more valuable for investors.

Finally, we develop strategies that switch between volatility and CVaR targeting, where volatil-

ity targeting is used in uptrending periods and CVaR targeting is used in downtrending periods.12

12Generally, different portfolio risk management approaches can perform quite differently in different market
environments, i.e. a strategy that works well in down periods does not necessarily work well in up periods. Conse-
quently, in order to capture the advantages of both risk targeting approaches, combining both strategies is a natural
extension. The combination of different weighting schemes or investment styles has been frequently examined in
the literature (Barberis and Shleifer, 2003, Barroso and Maio, 2019, Daniel et al., 2017, DeMiguel et al., 2009b,

5



These switching strategies further reduce the portfolio’s crash risk and successfully capture the

portfolio’s upside potential and eventually lead to an even higher risk-adjusted return. We fur-

ther show that the returns of this switching strategy cannot be explained by volatility targeting

alone. In contrast, volatility targeting becomes unprofitable once we control for the returns of

the switching strategy.

In the second paper, we apply our volatility and tail risk targeting strategies to the long-

short momentum portfolio that buys past winners and sells past losers. The momentum strategy

is known to produce high returns that are accompanied with a high crash risk and a return

distribution with a fat left tail, which makes the non-managed momentum strategy unappeal-

ing for investors. This especially holds since momentum crashes typically occur in periods

when investors are highly averse to losses (Min and Kim, 2016). For that reason, momen-

tum’s high crash risk and possibilities to mitigate this high crash risk have recently emerged to

a very important topic in the financial literature.13 Applying our risk targeting approaches to

the momentum portfolio extends the research of Barroso and Santa-Clara (2015), Daniel and

Moskowitz (2016), Cederburg et al. (2020) and Moreira and Muir (2017) who apply volatility

targeting based on simple volatility models to the momentum portfolio. In the first step, we

show that applying more sophisticated and more accurate volatility models to the momentum

portfolio leads to significant performance and utility gains. In particular, since the momentum

portfolio is reallocated on a monthly basis, we explicitly show how monthly volatility can be

forecasted based on models that are fitted to daily data. In the second step, we apply our volatil-

ity and CVaR switching approach to the momentum portfolio, where monthly CVaR estimates

are again obtained by fitting the forecasting models to daily data. When estimating momen-

tum’s tail risk, we explicitly account for the extreme and highly time-varying higher moments

of the momentum portfolio (Bali et al., 2008, Jondeau and Rockinger, 2003).14 These volatil-

Garlappi et al., 2006, Kan and Zhou, 2007, Tu and Zhou, 2011, Wang, 2005).
13The risk of the momentum portfolio and approaches to manage momentum’s risk have been examined by

Barroso (2016), Barroso and Maio (2018), Barroso and Santa-Clara (2015), Boguth et al. (2011), Cederburg et al.
(2020), Chabot et al. (2014), Chordia and Shivakumar (2002), Cooper et al. (2004), Daniel et al. (2017), Daniel and
Moskowitz (2016), Du Plessis and Hallerbach (2017), Goyal and Jegadeesh (2017), Griffin et al. (2003), Grobys
et al. (2018), Grobys and Kolari (2020), Grundy and Martin (2001), Jacobs et al. (2015), Kim et al. (2016), Min
and Kim (2016), Moreira and Muir (2017), Ruenzi and Weigert (2018), Stivers and Sun (2010), Wang and Xu
(2015) among others.

14We show that momentum’s conditional skewness and kurtosis are highly time-varying and there exist periods
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ity and CVaR switching strategies significantly outperform the volatility managed momentum

strategy of Barroso and Santa-Clara (2015).15 This result holds in terms of the risk-adjusted

return as well as utility gains for mean-variance investors, CRRA investors and loss-averse in-

vestors. Our findings hold for several momentum crash indicators, subperiods and data sets.

Furthermore, the returns of the switching approach cannot be explained by volatility targeting

alone, whereas volatility targeting becomes unprofitable once we control for the returns of the

switching strategy. In particular, the volatility and CVaR switching approach also works well

to manage the risk of the Betting against Beta portfolio of Frazzini and Pedersen (2014), which

also is an important topic in the financial literature.

The third paper again shows how to manage momentum’s risk, but, in contrast to the second

paper that focuses on momentum’s portfolio risk, this paper focuses on the risk of the assets that

are contained in the momentum portfolio. A similar approach has been examined by Du Plessis

and Hallerbach (2017), Clare et al. (2014) and Goyal and Jegadeesh (2017) who weight assets of

the momentum portfolio inversely to their volatility.16 However, applying the inverse volatility

weighting to the momentum portfolio has two important drawbacks. First, as stated above,

using volatility is only suitable when asset returns are normally distributed or when investors

have quadratic preferences. Both conditions are typically not fulfilled in practice. Second,

and even more important, the momentum portfolio consists of long and short positions and the

risk of a long or short position should be managed differently (Baltas, 2015, Bollerslev et al.,

2020, Giot and Laurent, 2003). In other words, by applying the inverse volatility weighting

to both the winners and losers portfolios, the risk-adjusted performance of both portfolios is

when these higher moments take extreme values or may even not exist. This higher moment risk is not captured
by volatility targeting alone (Daniel et al., 2017, Gormsen and Jensen, 2017). The extreme levels of skewness and
kurtosis occur since the winners’ and losers’ skewness moves in opposite directions, whereas the kurtosis comoves.

15The approach of Barroso and Santa-Clara (2015) is based on the assumption that momentum returns follow
a random walk. We use the test of Lo and MacKinlay (1988) to show that the random walk hypothesis does not
hold for the momentum portfolio. As a consequence, monthly risk cannot be obtained by simply scaling up daily
risk by

?
21. However, since this square root of time rule (SRTR) is frequently applied in practice (Berkowitz

and O’Brien, 2002, Danielsson and Zigrand, 2006), we also use the SRTR combined with our conditional risk
forecasts and find surprisingly good results for this approach. A possible explanation for the good performance of
the SRTR could be that this approach is quite robust against estimation risk, which should be high for the highly
non-normally distributed momentum returns.

16This inverse volatility weighting is also frequently used for the time series momentum (TSMOM) strategy
(Baltas, 2015, Kim et al., 2016, Moskowitz et al., 2012) and long-only portfolios (Asness et al., 2012, Kirby and
Ostdiek, 2012).
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increased. Thus, the benefits of buying the enhanced winners is offset by shorting the enhanced

losers. In contrast, the aim of a weighting scheme applied to a long-short portfolio should

be to enhance the performance of the long leg and to worsen the performance of the short

leg. For these two reasons, we extend this approach by weighting the assets of the momentum

portfolio inversely to their tail risk or systematic risk. Tail risk measures quantify an asset’s

own risk, whereas systematic risk measures quantify an asset’s comovement with the (equally

weighted) momentum portfolio. We then weight winners by their (systematic) left tail risk and

losers by their (systematic) right tail risk.17 Since the systematic tail risk weighting should be

superior in crash periods, but disadvantageous in uptrending markets, we develop a strategy that

switches between both approaches based on several momentum crash indicators. We find that

this (systematic) tail risk switching approach outperforms the equally and volatility weighted

momentum portfolio in terms of significantly higher Sharpe Ratios as well as economically high

and statistically significant utility gains for mean-variance, CRRA and loss-averse investors.

Furthermore, we show how this (systematic) tail risk weighting approach can be combined

with the risk targeting strategy. This combined approach simultaneously manages individual

asset risk and portfolio risk.18 We find that managing portfolio risk is more important than

managing individual asset risk, but that the strategy that simultaneously manages both kinds

of risk provides the best risk-return profile and the highest utility gains.19 These findings are

quite robust against many modifications of this strategy. Finally, we show that the equally

and volatility weightings become unprofitable when we control for the (systematic) tail risk

weighting, whereas the opposite is not true. Furthermore, the different weighting schemes

combined with risk targeting produce returns that cannot be explained by the weighting schemes

17In other words, in the winners portfolio, assets with a higher crash risk or assets with a higher co-crash risk
with the momentum portfolio obtain lower weights. In contrast, in the losers portfolio, assets with a high upside
potential or assets that rise when the momentum portfolio crashes obtain lower weights.

18Du Plessis and Hallerbach (2017) show that both approaches work well for the momentum strategy, but the
authors do not combine both approaches. Moreira and Muir (2017, Sec. II.D) show that managing a portfolio’s
individual constituents’ risk is different to risk targeting that manages the whole portfolio’s risk. Simultaneously
managing individual asset risk and portfolio risk has been examined by Moreira and Muir (2017, Sec. I.E), Harvey
et al. (2018) and Zakamulin (2015). However, the authors only use volatility to manage both kinds of risk and do
not apply this approach to the momentum portfolio.

19The observation that risk targeting is more important than risk weighting is again in line with the observation
of increasing correlations in crash periods, i.e. simply changing the weights of a portfolio does not significantly
reduce drawdowns in crash periods since all assets crash together.
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alone, confirming the finding that risk targeting produces statistically significant performance

gains.

In total, this PhD thesis contributes in several ways to the literature. First, we extend volatil-

ity targeting to tail risk targeting, i.e. we develop strategies that target a constant level of tail risk

measured by Value at Risk (VaR) or Conditional Value at Risk (CVaR). Second, we show how a

constant level of portfolio risk can be obtained based on advanced forecasting models, whereas

the literature so far mainly focuses on simple forecasting models. This holds especially for risk

targeting applied to the momentum strategy where portfolio weights are rebalanced monthly,

but the forecasting models are fitted to daily data. Third, we show how the accuracy of risk

targeting, which is an important driver of the success of risk targeting, can be backtested using

sophisticated backtesting methods. Fourth, by switching between volatility and CVaR target-

ing, we further contribute to the literature that combines different portfolio risk management

approaches. In particular, our switching approach is based on simple tools and could also be

interesting for practitioners. Fifth, we calculate the economic value for loss-averse investors,

whereas the economic value is so far only calculated for mean-variance and CRRA investors.

However, the assumption of loss aversion is more realistic since the portfolio allocation of real

investors is much better described by loss aversion, whereas the equity exposure in the mean-

variance and CRRA framework is much higher than in practice (Ang et al., 2005, Benartzi and

Thaler, 1995). Sixth, we develop a new weighting scheme that can be used to weight assets of a

long-short portfolio. This is important, since “[s]imply inverting the long-only solution for the

assets with a short position is completely incorrect” (Baltas, 2015). Our new weighting scheme

aims to improve the performance of the long leg while the performance of the short leg is wors-

ened. This is achieved by weighting assets in the long leg based on their (systematic) left tail

risk, whereas assets in the short leg are weighted by their (systematic) right tail risk. Seventh,

we develop a portfolio risk management approach that manages the (systematic) tail risk of the

individual assets in the portfolio and simultaneously manages the whole portfolio’s risk. This

combined approach separates the asset allocation decision from the market timing decision and

could also be an appealing approach for practitioners.
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Chapter 1

Tail Risk Targeting: Target VaR and
CVaR Strategies

1.1 Introduction

During extreme market crashes, due to an increase of correlations, diversification fails as a risk

management tool. Especially when financial markets exhibit huge downturn periods, assets typ-

ically crash together, and thus lower the benefit of diversification just when it is most needed

(Ang and Bekaert, 2002, Butler and Joaquin, 2002, Chabi-Yo et al., 2018, Guidolin and Tim-

mermann, 2008, Karolyi and Stulz, 1996, Patton, 2004, Poon et al., 2004). Investors typically

overestimate the benefits of diversification in bear markets and underestimate return potentials

in bull markets. This leads to too high equity exposures in bear markets, whereas the equity

allocation is too low in bull markets (Ang and Chen, 2002, Longin and Solnik, 2001).

For that reason, more tactical tools, such as volatility targeting, have become popular in

the financial industry and academic literature.1 The aim of volatility targeting is to build a

portfolio, consisting of a risky and a riskless asset, that has a (predetermined) constant level of

portfolio volatility over time. In order to achieve this constant level of portfolio volatility, the

target volatility strategy allocates money between the risky and the riskless asset, based on a

forecast of the risky asset’s volatility: if the risky asset’s volatility is expected to be high, the

weight of the risky asset is decreased and vice versa (see Bollerslev et al. (2018) for example).

1For academic research on target volatility strategies see Barroso and Santa-Clara (2015), Bollerslev et al.
(2018), Moreira and Muir (2017), Barroso and Maio (2018), Moreira and Muir (2019), Cederburg et al. (2020)
among others. For research from practitioners see, e.g., Banerjee et al. (2016), Dreyer and Hubrich (2019), Hoc-
quard et al. (2013), Benson et al. (2014) and Perchet et al. (2016).
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By choosing a portfolio’s exposure inversely to the portfolio’s volatility, left tail risk can be

significantly reduced (Dreyer and Hubrich, 2019, Harvey et al., 2018). Generally, the economic

value of volatility timing, measured by significant performance and utility gains for investors

who time volatility in multi-asset portfolios, has been extensively examined by Fleming et al.

(2001), Fleming et al. (2003), Han (2005), Kirby and Ostdiek (2012) and Taylor (2014).2 In a

single asset scenario, using long-only equity portfolios, the economic value of volatility timing

is examined by Dreyer and Hubrich (2019), Marquering and Verbeek (2004), Bollerslev et al.

(2018) and Moreira and Muir (2017). The authors find vast utility gains of volatility timing

and that volatility timing is superior to return timing. Dreyer and Hubrich (2019) find that the

utility gains of volatility targeting mainly come from a reduction of left tail risk. Thus, volatility

targeting works especially well for assets with non-normally distributed returns, like equities or

dynamic trading strategies (Perchet et al., 2016). Barroso and Santa-Clara (2015), Barroso and

Maio (2018), Cederburg et al. (2020) and Moreira and Muir (2017) examine volatility targeting

applied to different long-short factor portfolios and find significant improvements in the risk-

adjusted performance, especially for strategies with a high left tail risk, like momentum or

betting against beta.3 This also highlights a nice characteristic of volatility targeting. Volatility

targeting can be used for any underlying investment strategy, i.e. volatility targeting can be

separated from the fund manager’s asset allocation choice, where the asset allocation is chosen

first and this portfolio is then overlayed by a volatility targeting strategy as market timing tool

(Harvey et al., 2018, Hocquard et al., 2013, Moreira and Muir, 2017, Zakamulin, 2015). Busse

(1999) examines the impact of volatility timing for the institutional fund industry and concludes

2Fleming et al. (2001), Fleming et al. (2003), Han (2005), Kirby and Ostdiek (2012) and Taylor (2014) assess
the economic value of volatility timing in a multivariate setting. This approach is slightly different to volatility
targeting but demonstrates that investment decisions that rely on volatility (or more precisely covariances) solely
work well in empirical applications.

3Barroso and Santa-Clara (2015) successfully use a target volatility strategy to manage the risk of the mo-
mentum portfolio and show that targeting a constant level of volatility extremely reduces the drawdowns of the
momentum portfolio, the so called “momentum crashes”. This high crash risk reduction translates into a superior
risk-adjusted performance compared to the non-managed momentum portfolio (see also Daniel and Moskowitz
(2016) and Rickenberg (2020a)). Moreira and Muir (2017) use a volatility timing strategy for different factor
portfolios and show that the risk-adjusted performance of the volatility managed portfolios is superior to the per-
formance of the non-managed portfolios. This finding is most pronounced for the momentum strategy. Barroso
and Maio (2018) use volatility targeting for several factor strategies and find huge improvements of the volatility
targeting strategies for all strategies except for the size factor. The best results are found for the momentum strategy
and the “betting against beta” strategy of Frazzini and Pedersen (2014). This finding is confirmed by Cederburg
et al. (2020).
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that “funds that reduce systematic risk when conditional market volatility is high earn higher

risk-adjusted returns” and that funds who time volatility the most are associated with higher

Sharpe Ratios (Busse, 1999, p. 1010 and 1027). Generally, volatility is frequently used as a

market timing tool by practitioners (Christoffersen and Diebold, 2006, Copeland and Copeland,

1999). This does not only hold for investors with short investment horizons. Moreira and Muir

(2019) assess the economic value of volatility timing for long-term investors and the authors

find that even long-term investors should time short-term volatility. This supports the finding of

Benartzi and Thaler (1995) that even long-term investors have short evaluation periods and are

concerned about short-term risk.

So far, studies on risk targeting focus on volatility as a risk measure: the weight of the

risky asset is a function of the risky asset’s volatility. However, since asset returns are typically

skewed, fat-tailed and non-normally distributed, the choice of volatility as a measure of market

risk is not appropriate (see Szegö (2002), Poon and Granger (2003), Kuester et al. (2006, p. 56)

and Bali et al. (2009)). Xiong and Idzorek (2011), Guidolin and Timmermann (2008), Jondeau

and Rockinger (2006), Jondeau and Rockinger (2012) and Ghysels et al. (2016) examine the

impact of skewness and fat-tails on the asset allocation and show that incorporating higher mo-

ments, as done by adequately measuring downside risk, is beneficial compared to mean-variance

optimization. Furthermore, most investors have preferences for higher levels of skewness and

lower kurtosis (see Kraus and Litzenberger (1976), Scott and Horvath (1980), Guidolin and

Timmermann (2008) among others). Bali et al. (2009) and Kelly and Jiang (2014) find that

an increase of tail risk predicts higher kurtosis and lower (or more negative) skewness. Hence,

investors who dislike a negative skewness and a high kurtosis should better manage a portfolio’s

downside risk. This also fits well to the observation that investors are more concerned about

downside risks instead of return deviations (Bollerslev et al., 2015, Kelly and Jiang, 2014, Lee

and Rao, 1988).4 Similarly, most investors weight losses higher than gains, which implies that

avoiding huge losses is crucial in order to increase a loss-averse investor’s utility (Aı̈t-Sahalia

and Brandt, 2001, Ang et al., 2005, 2006a, Benartzi and Thaler, 1995). Avoiding crashes is

4See Arzac and Bawa (1977) who examine the portfolio allocation of safety-first investors who are concerned
about financial tail events. See also Van Oordt and Zhou (2016) for an asset pricing study based on this theory.

12



particularly important since most investors are crash-averse and have a demand for portfolio

insurance methods, especially in times of extremely negative returns (Bollerslev and Todorov,

2011, Chabi-Yo et al., 2018). Therefore, timing an asset’s downside risk instead of volatility fits

better to most investors’ preferences. Furthermore, Benson et al. (2014) find that the superior

performance of volatility targeting does result from mitigating drawdowns. Similarly, Dreyer

and Hubrich (2019) and Harvey et al. (2018) find that volatility targeting reduces the likelihood

of extremely negative returns, which is an important source of the outperformance of volatility

targeting. Consequently, if drawdown protection is a main driver of the superior (risk-adjusted)

performance of risk targeting, choosing the risky asset’s weight based on a forecast of the risky

asset’s downside risk should be more successful in mitigating drawdowns and should eventually

result in a superior risk-adjusted performance.

In this paper, we show how the idea of volatility targeting can be extended to tail risk target-

ing, where tail risk is measured by Value at Risk (VaR) or Conditional Value at Risk (CVaR).5

These strategies aim to keep the VaR or CVaR of the portfolio constant over time by shifting

money between the risky and the riskless asset, based on a forecast of the risky asset’s tail risk.

This approach translates into a strategy that increases the weight of the risky asset if the risky

asset’s tail risk is expected to be low and vice versa. Basak and Shapiro (2001), Alexander and

Baptista (2004), Cuoco et al. (2008), Agarwal and Naik (2004) and Wang et al. (2012) demon-

strate the benefits of downside risk timing instead of volatility timing in a portfolio allocation

setting. To compare the economic of volatility and downside risk targeting, we follow the liter-

ature and assess the economic value of risk targeting for a mean-variance investor. Further, to

incorporate preferences for higher moments, like skewness and kurtosis, we additionally assess

the economic value for a CRRA investor (Dreyer and Hubrich, 2019, Jondeau and Rockinger,

2012). Finally, since most investors weight losses higher than gains, we assess the economic

value of risk targeting for loss-averse investors. We find that tail risk targeting strategies deliver

high utility gains compared to a static portfolio allocation. This is in line with Cuoco et al.

(2008) who find that frequently reallocating portfolio weights based on estimates of downside

5These risk measures are frequently used by practitioners and are important for regulators and banks (Berkowitz
et al., 2011, Berkowitz and O’Brien, 2002, Du and Escanciano, 2016). Further, VaR and CVaR are also used in
studies on the cross-section of returns (Atilgan et al., 2020).
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risk is superior to static portfolio allocations. In particular, an investor should manage portfolio

risk based on a conditional risk model using a dynamic volatility model, like the GARCH(1,1)

or EWMA model. Simple risk estimation models like the Historical Standard Deviation, as used

in Moreira and Muir (2017), Barroso and Maio (2018) and Barroso and Santa-Clara (2015), or

Historical Simulation typically fail to significantly increase an investor’s utility and produce

lower Sharpe Ratios than the conditional approaches. Moreover, we find that the economic

value of CVaR timing is significantly higher than the economic value of volatility timing, espe-

cially when investors are highly risk- or loss-averse and in times of bear markets. This finding

also holds during the recent corona crisis. Interestingly, even mean-variance investors should

manage CVaR instead of volatility. For example, we find that a mean-variance investor is will-

ing to pay a fee of about 0.8% per year to have access to a volatility targeting strategy. However,

the same investor would even pay 4.253% per year to have access to the CVaR managed strategy.

In contrast, a loss-averse investor is not willing to pay a positive fee for volatility targeting, but

the same investor would pay up to 18% per year to have access to the CVaR targeting strategy.

Since estimating downside risk is more sophisticated than estimating volatility, we addi-

tionally show how the target VaR and target CVaR strategies can be approximated by a target

volatility strategy. Further, we demonstrate how the accuracy of the target volatility, target VaR

and target CVaR strategies can be backtested. In order to assess the accuracy of volatility target-

ing, we resort to the approaches of Diebold and Mariano (1995), White (2000), Hansen (2005),

Romano and Wolf (2005), Hansen et al. (2003), Hansen et al. (2011), Hsu et al. (2010), Barras

et al. (2010) and Bajgrowicz and Scaillet (2012) that test for equal or superior predictive ability.

In order to assess the accuracy of VaR and CVaR targeting, we use the VaR backtest of Christof-

fersen (1998) and the CVaR backtests of McNeil and Frey (2000) and Embrechts et al. (2005).

With these backtests in hand, we assess the accuracy of approximating a target VaR or target

CVaR strategy by a target volatility strategy, i.e. we answer the question if controlling volatility

is sufficient when downside risk is targeted. We find that for investors who are interested in

targeting a constant VaR or CVaR over time, controlling volatility is not sufficient. Similarly, in

order to target a constant level of volatility, an investor should manage volatility directly instead
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of downside risk. Generally, risk should be managed by a dynamic risk model, based on a dy-

namic volatility model, like the EWMA or GARCH(1,1) model. In contrast, using a static risk

model, like the Historical Standard Deviation or Historical Simulation, fails to target the port-

folio risk at a constant level, achieves a worse risk-adjusted performance and produces lower

utilities for investor. In line with Bollerslev et al. (2018), we find a positive relation between

forecasting accuracy, and hence a more constant portfolio risk, and risk-adjusted performance

and utility gains (see also Perchet et al. (2016) and references therein).

Finally, we develop strategies that switch between volatility and CVaR targeting, based

on an estimate of the expected market regime. If the market is expected to be in a down-

market, CVaR targeting is used, whereas the portfolio’s risk is managed by volatility if an

up-market is expected. To determine up- and down-markets, we use technical trading rules

(Bajgrowicz and Scaillet, 2012, Moskowitz et al., 2012) and the portfolio’s expected volatility.

We find that these switching strategies further increase the risk-adjusted return and the investors’

utility. For example, a mean-variance investor is willing to pay 5.689% per year to switch to

a strategy that dynamically switches between volatility and CVaR targeting. Further, a loss-

averse investor is even willing to pay 21.135% per year to have access to this strategy. The

benefits of this switching approach also hold during the recent corona crisis and in the long-run.

Over the last 88 years, a 100$ investment in the market would result in a portfolio value of

357,591$. By using the volatility targeting strategy, this amount can be raised to 4,420,160$.

However, by switching between volatility and CVaR targeting, the wealth would even increase

to 48,535,249$. Thus, switching between volatility and CVaR targeting is much more profitable

than volatility targeting alone. Similarly, we find that volatility targeting produces a negative

alpha, once we control for CVaR targeting or the switching strategy. In contrast, the returns of

CVaR targeting and the switching strategy cannot be explained by volatility targeting.

This paper is structured as follows. In Section 1.2, we present the target volatility frame-

work and review the literature on volatility targeting. Section 1.3 presents the target VaR and

CVaR strategies and shows how VaR and CVaR are estimated. Furthermore, we show how the

target VaR and CVaR strategies can be approximated by a target volatility strategy. Section 1.4

15



demonstrates how the accuracy of volatility, VaR and CVaR targeting can be tested. Section

1.5 shows the empirical results and Section 1.6 concludes the paper. The Appendix contains

additional results and shows how the strategies have performed in the long-run and during the

recent corona crisis.

1.2 Target Volatility Strategy

Throughout the paper, we consider a risky asset, e.g. an equity index, with price process

tStutPt0,...,T u over the period r0, T s, T P N, and we define the return of the risky asset over

the period rt� 1, ts, representing one day, as

Rt :� St
St�1

� 1. (1.2.1)

Further, we consider a riskless asset with returns tRf
t utPt0,...T u. Rf

t describes the return of the

riskless asset over the period rt� 1, ts and we assume that Rf
t is known at time t� 1.6 The day

t return RP
t of the portfolio that invests a weight wt in the risky asset and 1 � wt in the riskless

asset is then given by

RP
t :� wt �Rt � p1 � wtq �Rf

t . (1.2.2)

The aim of the target volatility strategy is to determine the weight wt for each day t such that

the portfolio volatility is constant over time and equals a predefined value. We denote the port-

folio volatility, i.e. the (conditional) standard deviation of the portfolio return RP
t conditioned

on the information Ft�1 that is available at time t � 1, by σPt :�
a

varpRP
t | Ft�1q, where

var
�
RP
t | Ft�1

�
denotes the (conditional) portfolio variance (see Hansen and Lunde (2005,

p. 875)). In order to achieve a constant volatility level σtarget for σPt over time, the weight

of the risky asset has to be chosen as

wt � σtarget

σt
, (1.2.3)

where σtarget is the desired volatility target and σt :� a
varpRt | Ft�1q is the (conditional)

volatility of the risky asset at day t (see Bollerslev et al. (2018, p. 2757) for example). By

6More formally, we assume that Rft is measurable with respect to Ft�1, where Ft�1 is the σ-algebra generated
by the variables that are observed up to time t � 1 (Hansen and Lunde, 2005, p. 875). Hence, Ft�1 contains all
relevant information available at time t� 1.
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construction, the day t weight wt is known at day t� 1 since σt is Ft�1-measurable. The use of

volatility targeting has several advantages, which are summarized in Appendix A.7

To implement a target volatility strategy, the volatility of the risky asset σt in Equation

(1.2.3) is needed, which is unobservable in practice. Therefore, based on the available informa-

tion at time t� 1, the volatility for day t has to be forecasted.8 We denote this (one-step ahead)

forecast by σ̂t. Based on this volatility forecast, the weight wt of the risky asset is given by

wt � σtarget

σ̂t
. (1.2.4)

Consequently, the success of the target volatility strategy strongly depends on the quality of

the volatility forecast σ̂t.9 Benson et al. (2014) show that a target volatility strategy with per-

fect foresight, i.e. a strategy that knows the next period’s volatility, outperforms the benchmark

by more than 10% per year with a lower volatility and is successful in producing a constant

volatility, indicated by an almost zero volatility of volatility (see also Bollerslev et al. (2018)).

Moreover, Moreira and Muir (2017) and Bollerslev et al. (2018) show that using advanced

volatility forecasting models in a volatility targeting strategy improves the risk-adjusted per-

formance and heightens utility gains compared to simple and less accurate forecasting models.

Taylor (2014) and Fleming et al. (2003) find a similar observation for a multivariate volatility

timing strategy. In particular, Bollerslev et al. (2018) find a positive relation between forecast-

ing accuracy and utility gains for investors who use volatility targeting. Furthermore, Dreyer

and Hubrich (2019) find that a stabilization of portfolio volatility is linked to a lower crash risk

of the portfolio. Thus, a more constant portfolio volatility is rewarded by higher risk-adjusted

returns and utility gains as well as lower drawdowns (see also Perchet et al. (2016) and refer-

ences therein).10 Similarly, Marquering and Verbeek (2004) find that periods where volatility

can be predicted well correspond to periods where volatility timing generates high utility gains.
7Volatility targeting is also quite frequently used by practitioners. See, for example, the fund offered by Man

AHL (https://www.man.com/ahltargetrisk).
8See Bollerslev et al. (1992), Taylor (2005, Sec. 2), Poon and Granger (2003) and Hansen and Lunde (2005)

for surveys on volatility forecasting.
9Obviously, the volatility of the target volatility strategy is only constant over time and equals σtarget if and

only if the volatility forecast σ̂t equals the true (ex-post) realized volatility σt on each day t.
10In a cross-sectional setting, Baltussen et al. (2018) find that assets with a high volatility of volatility (vol-of-

vol) underperform assets with a more constant volatility. This especially holds during down-markets, where high
vol-of-vol assets underperform low vol-of-vol assets by 0.83% per month. Further, high vol-of-vol assets also
exhibit higher downside risk.
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In total, target volatility strategies based on more accurate volatility forecasting models should

obtain better risk-return profiles than strategies that use inaccurate volatility forecasts. In par-

ticular, simply using past volatility, as is it is frequently done in the literature, is not sufficient

for volatility targeting. This is also confirmed by the finding of Dopfel and Ramkumar (2013,

p. 31). The authors find that high volatility regimes concurrently occur with negative returns

and significantly lower Sharpe Ratios compared to regimes with a normal volatility. However,

the authors also show that this result reverses when returns of regimes with a high or normal

volatility in the previous period are compared.11 Similarly, Dachraoui (2018) finds a negative

relation between σt and Rt but no relation between σt�1 and Rt. This result highlights that

accurately forecasting future volatility σt by σ̂t is crucial when portfolio volatility should be

managed, since simply measuring today’s volatility is not sufficient to determine tomorrow’s

weight of the risky asset.12 Due to the importance of accurate forecasting models that achieve a

stable portfolio volatility, we present methods that test the accuracy of different target volatility

strategies in Section 1.4.1.

For practical implementations, simple forecasting methods, like the Historical Standard De-

viation (HSD) or the Exponential Weighted Moving Average (EWMA), which was proposed by

the RiskMetricsTM group, can be used. Nevertheless, as argued above, more advanced – and po-

tentially more accurate – methods, like the GARCH(1,1) model of Bollerslev (1986), could also

be interesting. In this paper, we compare these three volatility models, where the HSD statically

measures today’s volatility, which is used as a forecast for tomorrow’s volatility. Hence, this

model does not consider the aforementioned issue of forecasting next day’s volatility. In con-

trast, the EWMA and GARCH(1,1) models dynamically forecast next day’s volatility, and thus

should result in a more constant portfolio volatility and a higher risk-adjusted performance.13

11Interestingly, although returns of periods following a high volatility period are higher than returns following
a low volatility period, Sharpe Ratios are slightly higher for periods following a low volatility period. Thus, the
higher volatility is not compensated by an adequately higher return and these periods are unappealing for investors
(Moreira and Muir, 2017).

12As mentioned in Appendix A, volatility targeting is still advantageous when there is no negative risk-return
relation between σt�1 and Rt. In other words, volatility targeting is still advantageous even when volatility is
simply measured by past realized volatility up to day t � 1. However, a strategy based on an accurate forecast of
σt further enhances the risk-return profile of volatility targeting.

13In the EWMA and GARCH(1,1) model, past negative and positive returns have the same impact on future
volatility. A well-known stylized fact, the so-called leverage effect, states that past negative returns influence future
volatility more than past positive returns. We also used the GJR-GARCH model of Glosten et al. (1993) and the
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All three models have several advantages and disadvantages. A possible extension could be to

combine several forecasting models as suggested by Taylor (2014).

The day t volatility using the HSD is estimated by

σ̂t �
d

1

m

m̧

i�1

pRt�i � µ̂tq2, (1.2.5)

where µ̂t � 1
m

°m
i�1Rt�i is an estimate of the expected mean return. For the EWMA and the

GARCH(1,1) models, it is assumed that the day t return of the risky asset can be described by

Rt � σt � Zt, (1.2.6)

where Zt is iid with mean zero, variance one and cumulative distribution function FZ (see

McNeil and Frey (2000, p. 275)). As usual, when working with daily returns, we assume that

the expected mean return is zero. This is a quite weak assumption, since (absolute) daily returns

are close to zero. Further, accurately estimating the expected daily return is not feasible (see

Merton (1980), Fleming et al. (2001, p. 332), Fleming et al. (2003, p. 476), Kirby and Ostdiek

(2012) among others). Christoffersen and Diebold (2006) show that the conditional mean is not

forecastable, since returns Rt conditioned on Ft�1 do not fluctuate over time. Further, Hansen

and Lunde (2005) compare different mean specifications and find that all lead to an almost

identical performance of the volatility models.

For the EWMA model, the volatility forecast σ̂t is given by

σ̂t �
b
p1 � λq �R2

t�1 � λ � σ̂2
t�1, (1.2.7)

where λ is typically chosen as 0.94 when working with daily returns (Christoffersen, 2012,

p. 70). The advantage of the EWMA model is that no parameters have to be estimated, what

makes this model interesting for practical applications (Halbleib and Pohlmeier, 2012). How-

ever, frequently re-estimating the model parameters, as it is done for the GARCH(1,1) model,

should also result in a more accurate volatility forecast. The volatility forecast in the GARCH

EGARCH model of Nelson (1991) that account for the leverage effect, but results were quite similar to the results
of the EWMA and GARCH(1,1) model. This is in line with Taylor (2014) who comes to the same conclusion
in a multivariate setting. See also Poon and Granger (2003) and Hansen and Lunde (2005) for a comparison of
different volatility forecasting models.
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model is given by

σ̂t �
b
ω̂ � α̂ R2

t�1 � β̂ σ̂2
t�1, (1.2.8)

where the parameters ω̂, α̂, β̂ are estimated via Quasi Maximum Likelihood, i.e. we assume that

the innovations Zt in Equation (1.2.6) are iid standard normally distributed.14

Another field of current research, that could be of high interest in the context of target

volatility strategies, is forecasting volatility based on the theory of realized volatility that mea-

sures volatility using high-frequency-data (see Andersen et al. (2001) for example). Due to

its simplicity, the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV), pro-

posed by Corsi (2009), fits well to the target volatility framework (see Taylor (2014) who finds

good results of the HAR model in a multivariate setting). Bollerslev et al. (2018) extend the

HAR-RV model in several directions and use these modifications in a volatility targeting frame-

work. The authors find good results of these models compared to models that rely on daily data.

For example, an investor who uses a volatility targeting strategy would pay an annualized fee

of 0.46% to switch from a simple strategy to a high-frequency-data based strategy. Similarly,

Fleming et al. (2003) examine the economic value of high-frequency-data based estimates of

daily volatility. They find that using high-frequency-data based volatility measures instead of

daily data based measures can substantially increase the economic value of volatility timing in

a multivariate mean-variance context (Fleming et al., 2003, p. 495-496).15 This again demon-

strates that the quality of a volatility targeting strategy strongly depends on the accuracy of the

inherent volatility forecasting model.

For the implementation of the target volatility strategy, we follow Barroso and Santa-Clara

(2015) who use an annualized volatility target σtarget of 12%. Typically, target volatility levels

used in the literature range from 5% to 40% as annualized volatility target. Clearly, the higher

14The GARCH(p,q) model is defined for any lag order p and q. Bollerslev et al. (1992, p. 22) state that small
lag orders are sufficient to model the volatility of equity returns in empirical applications (see also Kellner and
Rösch (2016) in the context of VaR and CVaR forecasting). Since target volatility strategies are of high interest for
practical implementations, we restrict ourselves to the lag orders p � 1 and q � 1.

15The authors use a mean-variance framework with a constant mean, which essentially translates into a volatility
timing strategy, i.e. the weights of the assets are determined by estimates of conditional volatility and correlation
solely. Although the authors use a multivariate setting – based on stocks, bonds, gold and cash – their findings that
volatility timing adds economic value and is positively influenced by more accurate models is highly related to our
approach based on stocks and cash.
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the volatility target the higher the exposure to the risky asset. Therefore, risk-averse or loss-

averse investors will prefer a lower target volatility level, whereas risk-seeking investors will

choose a high volatility target.16 Bollerslev et al. (2018) show how the volatility target can be

derived as a function of the investor’s risk aversion. An appealing alternative to choosing a

fixed target volatility level was introduced by Wang et al. (2012) in a slightly different setting.

The authors propose to switch between two target levels, where a high (low) target level is used

when a low (high) risk regime is expected. Another alternative would be to use a time-varying

volatility target that equals the long-term volatility (Dreyer and Hubrich, 2019).

Since the volatility of the risky asset is usually not constant over time, the weight of the risky

asset has to be rebalanced every day, which can lead to high transaction costs. However, Dreyer

and Hubrich (2019), Moreira and Muir (2017) and Bollerslev et al. (2018) find that volatility

targeting is still beneficial, even when realistic transaction costs are considered. Harvey et al.

(2018, Exhibit 8) also find that transaction costs hardly influence the Sharpe Ratio of volatility

targeting. Similarly, Marquering and Verbeek (2004) find that transaction costs only marginally

impact the utility gains of dynamic trading strategies if short sales and leverage in the risky

asset are not allowed. By definition, risk targeting is a long-only strategy and by choosing a

moderate target volatility level, the strategy is seldom leveraged. Thus, in order to better assess

the accuracy of different risk models, we reallocate the weight of the risky asset on a daily

basis as it is also done in Dreyer and Hubrich (2019). Nevertheless, several possibilities can be

used to lower the turnover and, as a consequence, the transaction costs of risk targeting (see for

example Kirby and Ostdiek (2012), Moreira and Muir (2017) and Bollerslev et al. (2018)).17

16By choosing a quite low volatility target, the target volatility strategy usually does not need leverage. Since
some investors are leverage constrained, the weight wt is often capped by a maximum allowed weight. For ex-
ample, Strub (2013), Moreira and Muir (2017) and the S&P Dow Jones Risk Control Indices use a cap of 150%
(Banerjee et al., 2016). Das and Uppal (2004) and Liu et al. (2003) find that investors should face potential jump
risk by not leveraging the risky asset, i.e. they should choose an equity cap of 100% (see also Poon et al. (2004)).
We focus in this paper on uncapped target risk strategies since we are also interested in the accuracy of different
forecasting methods. Using an equity cap would distort this examination. However, we show additional results for
leverage constrained investors in Appendix D.4. See also Moreira and Muir (2017) on how an equity cap of 100%
and 150% affects the utility gains of a mean-variance investor compared to the unconstrained strategy. The authors
find substantial utility gains of volatility timing, even after a tight equity cap is set.

17One possibility to reduce transaction costs is to reallocate the weight less frequently, e.g. monthly or quarterly.
Moreira and Muir (2017, Sec II.F) compare several rebalancing intervals and find a superior performance of the
volatility timing strategy when portfolio weights are adjusted monthly instead of quarterly or annually. Zakamulin
(2015, Exhibit 2) and Perchet et al. (2016) also find better results for strategies with shorter rebalancing intervals.
However, in an earlier version of their paper, Bollerslev et al. (2018) find a trade-off between forecasting accuracy
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We follow the idea of Perchet et al. (2016) and show additional results of risk targeting for three

different reallocation buffers in Section D.3.

1.3 Targeting a Constant Level of Tail Risk: Target VaR and
CVaR Strategies

1.3.1 Managing Volatility versus Managing Tail Risk

As motivated in the previous section, due to the risk-averse nature of most investors, the demand

for risk-managed investment strategies is very high. Risk management emerged as a major topic

within the financial industry and is becoming more important for portfolio managers (Berkowitz

and O’Brien, 2002, Christoffersen and Diebold, 2000). In Appendix A, we have summarized

several justifications and advantages of volatility targeting as a tool to manage a portfolio’s risk.

Thus, dynamically scaling the exposure to a portfolio of risky asset is an appealing portfolio

risk management tool. However, managing volatility does not necessarily mean managing risk

(Poon and Granger, 2003, Szegö, 2002). In this section, we summarize several disadvantages

of volatility as a risk measure and we argue why managing a portfolio’s downside risk is more

appropriate.

Return distributions are typically skewed and fat-tailed (see Farinelli et al. (2008) among

others).18 A negatively skewed return distribution coincides with a higher probability of ex-

tremely negative returns, whereas a positively skewed return distribution coincides with a higher

probability of extremely positive returns. A fat-tailed distribution implies that extreme (positive

or negative) returns are more likely than would be expected if returns were normally distributed

(see Campbell and Hentschel (1992) among others). Hence, a negatively skewed and fat-tailed

distribution makes extremely negative returns much more likely than anticipated by a normal

and transaction costs and conclude that it may be better not to trade every change in the optimal weight. The
authors find better utility gains for the strategies that adjust the weight less frequently, especially when transaction
costs are high and/or when models induce high day-to-day changes in the optimal weight. Kirby and Ostdiek
(2012) also find good results of volatility timing strategies that react less sensitive to volatility changes. In order to
reduce transaction costs, Taylor (2014) presents a method that decreases the changes in the optimal weight.

18Campbell and Hentschel (1992) explain the existence of negatively skewed and fat-tailed return distributions
by the volatility feedback effect and the arrival of news. More precisely, news, both positive and negative, increase
volatility and thus lower stock prices. Negative news additionally cause a stock price decline, whereas positive
news dampen the volatility feedback induced stock price decline. Hence, the combination of these effects produces
a negative skewness and a high excess kurtosis.
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distribution. Interestingly, Gormsen and Jensen (2017) find that skewness becomes more nega-

tive when kurtosis increases, i.e. both moments comove in directions that increase left tail risk.

Furthermore, the authors find that times of a negative skewness and/or high kurtosis are typ-

ically followed by low future returns. Managing volatility, which is at least implicitly based

on the assumption of normally distributed returns, can thus lead to too low weights in times

of huge positive returns and too high weights in times of extremely negative returns. For that

reason, Harvey and Siddique (2000, p. 1293) suggest that instead of a mean-variance frame-

work, a mean-variance-skewness framework should be used in an asset allocation analysis (see

also Ghysels et al. (2016)). Guidolin and Timmermann (2008) also show that accounting for

higher moments, like skewness and kurtosis, strongly affects the investor’s asset allocation.

Thus, higher moments should be incorporated in asset allocation decisions (see also Patton

(2004), Ang et al. (2006a) and Jondeau and Rockinger (2012)). This is also confirmed by

Xiong and Idzorek (2011) who highlight that accounting for skewness and kurtosis is crucial

and superior to mean-variance optimization, especially in times of extremely negative returns.

A simple way to incorporate higher moments in asset allocation decisions is to use downside

risk measures as portfolio risk management tool. Downside risk measures typically increase

when skewness becomes more negative and/or kurtosis increases (Bali et al., 2009). In par-

ticular, managing a portfolio’s risk based on downside risk measures has the advantage that

higher moments are considered, without relying on noisy estimates of skewness and kurtosis

(Ghysels et al., 2016). Downside risk based portfolio allocation methods have been frequently

used in the financial literature and have been compared to mean-variance optimized portfolios.

For example, Farinelli et al. (2008) show that maximizing the Sharpe Ratio, i.e. maximizing

the mean-variance trade-off, leads to a lower portfolio performance than maximizing the mean-

downside risk trade-off. Jarrow and Zhao (2006) compare mean-variance optimized portfolios

with mean-downside risk optimized portfolios and find huge differences in both portfolios when

asset return distributions are non-normally distributed. Similarly, using hedge fund data, Agar-

wal and Naik (2004) compare a mean-downside risk framework with the mean-variance frame-

work. The authors demonstrate that the mean-variance framework significantly underestimates
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the funds’ downside risk and produces much higher losses during downturn periods. Generally,

managing volatility is only suitable if asset returns are normally distributed or if investors have

quadratic utility (see Agarwal and Naik (2004) and Bali et al. (2009) and references therein).

This is confirmed by Jondeau and Rockinger (2006) who show that mean-variance portfolios

and portfolio allocations that account for higher moments are nearly indistinguishable when re-

turns are approximately normally distributed. However, both approaches produce significantly

diverse allocations for non-normally distributed returns. Similarly, Packham et al. (2017) man-

age a portfolio’s risk using the difference between Value at Risk (VaR) forecasts based on a

normality assumption and distributions that account for fat tails and skewness. The authors find

huge improvements of this approach compared to buy-and-hold and other tail risk-protection

strategies. Thus, portfolio allocation methods that incorporate the assets’ non-normalities are

superior to volatility based allocation methods. Furthermore, Campbell and Hentschel (1992),

Jondeau and Rockinger (2003), Harvey and Siddique (1999) and Bali et al. (2008) show that

conditional skewness and kurtosis are highly time-varying. Thus, frequently reallocating the

risky asset’s weight based on an estimate of the current downside risk, and hence incorporat-

ing the time-variation in higher moments, seems crucial. Volatility based portfolios or simple

static portfolio allocations do not incorporate the time-variation in higher moments. Jondeau

and Rockinger (2012) show that incorporating the time-variation in skewness and kurtosis is

crucial in portfolio selection problems and that higher moment timing outperforms volatility

timing. Similarly, Cuoco et al. (2008) demonstrate that portfolio weights should be readjusted

frequently based on estimates of the assets’ tail risk.

Besides the existence of skewed and fat-tailed return distributions and the importance of in-

corporating this observation in asset allocation decisions, Scott and Horvath (1980) theoretically

show that, under some assumptions, investors have preferences for higher (or positive) skew-

ness and lower kurtosis (see also Guidolin and Timmermann (2008) and Bali et al. (2009)).19

19See also Kraus and Litzenberger (1976), Harvey and Siddique (2000) and Patton (2004) on the preference of
positive skewness. Kraus and Litzenberger (1976) extend the traditional CAPM to a three moment CAPM that
includes mean, variance and skewness. Harvey and Siddique (2000) extend this model to a conditional version.
See also Section I.C in Harvey and Siddique (2000) on the geometry of the three moment efficient portfolios, where
investors demand higher expected returns for holding negatively skewed assets. Guidolin and Timmermann (2008)
examine the optimal asset allocation under four-moment preferences and regime switching and demonstrate that
the asset allocation under four-moment preferences differs from the asset allocation of a mean-variance investor.
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More generally, investors have a preference for odd moments, e.g. higher returns and posi-

tive skewness, but dislike even moments like variance and kurtosis. Bali et al. (2009) show

that higher downside risk predicts lower future skewness. Similarly, Kelly and Jiang (2014)

show that an increase of tail risk predicts higher kurtosis and lower skewness of future returns.

Hence, investors with preferences as in Scott and Horvath (1980) should lower the exposure

to the risky asset if tail risk – not necessarily volatility – increases. Generally, downside risk

measures increase if the return distribution is leptokurtic or negatively skewed (Bali et al., 2009,

Ghysels et al., 2016). Consequently, by managing downside risk instead of volatility, a higher

kurtosis and/or a more negative skewness of the risky asset’s return distribution induces a lower

weight of the risky asset and fits well to these investors’ preferences. In a utility based setting,

Bali et al. (2009, p. 892) find that “investors dislike VaR”. Furthermore, investors do not only

have preferences for higher moments, but are also concerned about the occurrence of extreme

crashes. Bollerslev and Todorov (2011, p. 2187) find that the compensation of tail risk – called

“crash-o-phobia” by the authors – is extremely high and much higher than the compensation

for volatility, i.e. investors fear tail risk much more than volatility (see also Bollerslev et al.

(2015) and Chabi-Yo et al. (2018)). This is also confirmed by the earlier work of Lee and

Rao (1988) who find that investors are more concerned about downside risk and that managing

volatility is only sufficient when asset returns follow a symmetric distribution (see also Szegö

(2002) and Strub (2013)).20 Hence, investors are not concerned about return deviations from a

mean but about extremely negative returns, which are described by higher moments and rare tail

events (see Lempérière et al. (2017) and references therein). Furthermore, most investors are

loss-averse, i.e. they weight losses higher than gains (Benartzi and Thaler, 1995). Loss-averse

investors have a high demand for portfolio insurance methods that avoid huge losses and these

investors seek for risk reduction methods, especially in times of high market downturns (Aı̈t-

Sahalia and Brandt, 2001, Ang et al., 2006a, Bollerslev and Todorov, 2011, Chabi-Yo et al.,

2018). Consequently, for loss-averse investors, controlling downside risk instead of volatility,

See also Jondeau and Rockinger (2006), Jondeau and Rockinger (2012) and Lempérière et al. (2017) and references
therein on preferences for higher moments and implications on asset allocation decisions.

20For most investors, “risk” is associated with low or even negative returns. Describing risk by volatility does
not differentiate between positive or negative returns (see Lee and Rao (1988, p. 452) or Poon and Granger (2003,
p. 480)).
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i.e. controlling negative returns instead of return deviations, is crucial in order to increase their

utility (see Aı̈t-Sahalia and Brandt (2001, p. 1298), Ang et al. (2005), Ang et al. (2006a) and

references therein). Aı̈t-Sahalia and Brandt (2001, p. 1315) state that the theory of loss aver-

sion is related to the literature on downside risk-based investment decisions. Similarly, Jarrow

and Zhao (2006) motivate that loss-averse investors should manage downside risk instead of

volatility when asset return distributions are non-normally distributed. Timing downside risk

instead of volatility also fits well to safety-first investors who are concerned about avoiding fi-

nancial disasters (see Arzac and Bawa (1977), Bali et al. (2009), Van Oordt and Zhou (2016)

and references therein).

As summarized in Appendix A, due to the increase of correlations in bear markets, assets

typically crash together. This reduces the benefits of diversification just when it is most needed,

i.e. diversification is an inappropriate portfolio risk management tool (Ang and Chen, 2002,

Butler and Joaquin, 2002, Karolyi and Stulz, 1996, Longin and Solnik, 2001, Poon et al., 2004).

For example, Chabi-Yo et al. (2018) find a stronger asymptotic dependence in the left tail of

stock returns than in the right tail, i.e. stocks tend to crash simultaneously. In particular, the

left tail dependence increases in periods of market crashes (Chabi-Yo et al., 2018, Figure 2).

Therefore, lowering the exposure to the risky asset in bear markets is crucial in order to manage

the risk of the portfolio. However, by using Extreme Value Theory (EVT) and thus measuring

tail risk, Longin and Solnik (2001) show that increases in correlations do not necessarily co-

incide with increases in volatility, but with the occurrence of huge negative returns. Thus, the

portfolio’s exposure in bear markets should be better determined by the portfolio’s tail risk in-

stead of the portfolio’s volatility. This is line with Poon et al. (2004) and Kelly and Jiang (2014)

who find that volatility standardized returns still exhibit significant tail dependency and tail risk.

Additionally to the simultaneous increase of correlations, Jondeau and Rockinger (2003) show

that skewness and kurtosis of different risky assets also comove, i.e. large (negative) returns in

different risky assets tend to occur simultaneously. As a consequence, simply combining several

risky assets or managing volatility does not necessarily reduce the occurrence of extremely neg-

ative returns. Similarly, Gormsen and Jensen (2017) find that skewness and kurtosis of the same

26



asset typically co-move, i.e. kurtosis increases when skewness becomes more negative, which

eventually increases the asset’s crash risk. These periods often occur when market volatility is

low, i.e. in low volatile periods, risk “hides in the tails”. Ghysels et al. (2016) also find that

skewness is typically hidden in the tails and that skewness in the tails has a high impact on

portfolio allocations. Based on this finding, Gormsen and Jensen (2017) show that volatility

targeting strategies still exhibit a high tail risk, i.e. managing volatility does not mean managing

extremely negative returns. Thus, volatility targeting is an inappropriate crash risk mitigation

tool. This especially holds for periods with an extremely high crash risk. For example, Liu

et al. (2003) and Das and Uppal (2004) find that in times of huge price jumps, like the global

financial crisis, negative skewness and kurtosis are higher than in normal times, which is not

captured by volatility targeting. Similarly, Jarrow and Zhao (2006) show that the portfolio allo-

cation of volatility and downside risk managed strategies can be vastly different when returns

exhibit price jumps. These rare tail events are not predictable and cannot be completely avoided

by managing risk dynamically (Bollerslev and Todorov, 2011).21 However, rare events occur

in the tail of the loss distribution and are often accompanied with changes in moments higher

than volatility (Poon et al., 2004, p. 582). To better manage the potential event risk, an estima-

tion method that reflects the current market condition, measured by a dynamic volatility model,

combined with an estimation method that directly models the tail of the distribution, like EVT,

should be used instead of volatility alone (Longin, 2000).

Another advantage of volatility targeting is that choosing the weight of the risky asset in-

versely to the asset’s volatility is a simple tool to reduce left tail risk and drawdowns (Dreyer

and Hubrich, 2019, Harvey et al., 2018). Benson et al. (2014, p. 96) state that, even in the

absence of a negative risk-return relation, the mitigation of drawdowns is a main driver of the

profitability of volatility targeting.22 In order to achieve a high long-term performance, due

to the asymmetric behavior of compounded returns, mitigating highly negative returns is more

21Systematic event risk, like unpredictable jumps, affect the allocation between the risky and the riskless asset
(see Poon et al. (2004, p. 602) and Das and Uppal (2004)). In order to account for the potential of unpredictable
price jumps, Liu et al. (2003) suggest that investors should avoid leveraged positions.

22Benson et al. (2014) compare arithmetic and geometric returns and find that the enhanced risk-return profile
of volatility targeting comes from avoiding huge negative returns and not from a negative relation between risk and
future returns. Dachraoui (2018) theoretically shows that a negative risk-return relation is not needed to provide
an enhanced risk-return profile of risk targeting.
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crucial than achieving highly positive returns.23 This is also confirmed by the results of Bar-

roso and Santa-Clara (2015) who find that the superior performance of the volatility managed

momentum strategy is significantly driven by the huge drawdown reduction (see also Moreira

and Muir (2017) and Barroso and Maio (2018)). Thus, drawdown reduction is a main driver

of the superior performance of the target volatility strategy. Since asset returns are usually

non-elliptically distributed, managing volatility underestimates the potential of extreme losses

(Szegö, 2002, p. 1255). Consequently, managing downside risk instead of volatility should be

more successful in mitigating drawdowns and should eventually result in an even better (risk-

adjusted) performance compared to the target volatility and buy-and-hold strategies.24

As summarized above, the demand for tail risk hedging strategies is high, since these strate-

gies fit well to the preferences of most investors and, by reducing left tail risk and drawdowns,

these approaches deliver an enhanced risk-return profile. The main approaches to reduce the

tail risk of a portfolio are derivative based and cash based strategies (see Strub (2013, p. 1),

Asvanunt et al. (2015) and Happersberger et al. (2019)). Derivative based strategies achieve

downside risk protection by buying or selling derivatives, e.g. options or futures, on the risky

asset. Cash based strategies, as the here presented target risk strategies, dynamically allocate the

wealth invested in the risky and riskless asset, based on the expected risk of the risky asset and

are related to portfolio insurance strategies like CPPI (Happersberger et al., 2019). Asvanunt

et al. (2015, Exhibit 4) find that strategies that dynamically readjust their portfolio allocation

outperform strategies that use options as tail risk hedging instrument. The reason for this find-

ing is that an option-based hedging approach works well during crises, but is too expensive in

periods following a crisis (Asvanunt et al., 2015, Exhibit 9). Thus, cash based tail risk hedg-

ing strategies are appealing for practical implementations. However, so far, almost all studies

on cash based tail risk hedging strategies focused on allocating money based on a forecast of

23For example, a return of �50% has to be compensated by a return of 100% to obtain a compounded return of
zero. In contrast, returns of �25% and 50% produce a compounded return of 12.5%. Thus, avoiding extremely
high negative returns is beneficial for long-term investors, since high losses have to be compensated by even higher
returns. As stated above, this also fits well to the loss aversion of most investors.

24This is confirmed by Strub (2013, p. 6) who finds that “larger than normal tail risk is partly responsible for the
outsized drawdowns experienced in market downturns [...], thus being able to accurately measure and control it is
likely to yield significant improvements in risk adjusted performance” (see also Hocquard et al. (2013)).
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volatility instead of a forecast of tail risk.25 Similarly, there exists a huge literature on the eco-

nomic value of volatility timing, whereas the economic value of downside risk timing is hardly

examined (Basak and Shapiro, 2001). Cuoco et al. (2008) find that dynamically reallocating

the amount invested in several assets based on downside risk is beneficial and superior to static

approaches or approaches that do not account for downside risk. Therefore, we will later assess

the economic value of downside risk timing and compare it to the economic value of volatility

timing.

To account for the above mentioned drawbacks of the target volatility strategy, we next

present the target Value at Risk (target VaR) and target Conditional Value at Risk (target CVaR)

strategies. These strategies aim to achieve a constant VaR or CVaR of the portfolio over time.

VaR is a widely used tool to measure market risk (Alexander and Baptista, 2004, Bali et al.,

2008, Berkowitz et al., 2011, Berkowitz and O’Brien, 2002, Cuoco et al., 2008). However,

CVaR has recently become more important from a regulatory and practical view (Du and Es-

canciano, 2016). By construction, both strategies, the target VaR and target CVaR strategy,

automatically manage the downside risk of the risky asset, and thus correct for the drawbacks

of the target volatility strategy.26

1.3.2 Target VaR Strategy

This section derives the optimal weight for the target VaR strategy and shows how the VaR of

the risky asset can be estimated. We again consider an investor who invests wt in a risky asset

and 1�wt in a riskless asset. The goal of the target VaR strategy is to determine wt such that the

25Strub (2013) and Happersberger et al. (2019) use a cash based tail risk hedging strategy that relies on a similar
weighting as in the target volatility strategy, but replaces the volatility in Equation (1.2.4) by an estimate of the
risky asset’s downside risk. Essentially, as we will see later, these strategies do not aim to target a constant level
of portfolio risk over time, and hence do not belong to the class of risk targeting strategies. See also Basak and
Shapiro (2001), Alexander and Baptista (2004), Cuoco et al. (2008) and Packham et al. (2017) for other tail risk
based investment strategies.

26These tail risk targeting strategies are similar to the approach of Basak and Shapiro (2001, p. 376) and Cuoco
et al. (2008) who incorporate downside risk measures in an asset allocation framework, but instead of targeting
a constant level of tail risk, the authors require the downside risk to be below some prespecified limit (see also
Wang et al. (2012) and Alexander and Baptista (2004)). Similar to our tail risk targeting strategies, this downside
risk managed strategy also allocates wealth between a riskless asset and an (optimal) portfolio of risky assets (see
Cuoco et al. (2008, Remark 3) for example). Basak and Shapiro (2001, p. 376) call this approach a softer form of
portfolio insurance. We will motivate in Section 1.3.4 that the target VaR and target CVaR strategies can be derived
as optimal trading strategies under downside risk limits.
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portfolio achieves a constant Value at Risk over time. By definition, the VaR at a significance

level α is the maximum loss, defined as the negative daily return, that is only exceeded with a

probability of 100 � α% (see Szegö (2002), Yamai and Yoshiba (2005) among others). In order

to achieve a constant Value at Risk level VaRtarget
α , the investor specifies the desired (daily)

Value at Risk level, i.e. the critical loss or loss threshold the investor is willing to accept, as

well as the corresponding significance level α, i.e. the exceedance probability. For example,

a target VaR level VaRtarget
α of 1% with a corresponding significance level α of 5% translates

into a strategy, where daily returns below �1% only occur with a probability of 5%.27 In other

words, daily returns should be higher than �1% with a probability of 95%.28 Hence, the target

VaR strategy has the advantage that it manages extreme losses instead of loss deviations. In

particular, investors can choose a target VaR strategy that fits well to their acceptable loss limit,

where the choice of α and VaRtarget
α strongly depends on the investor’s preferences and degree

of risk aversion (Alexander and Baptista, 2004).

Since tail risk measures are typically defined based on loss variables, we define the daily

portfolio loss at day t as

LPt :� �RP
t . (1.3.1)

Similarly, the day t loss of the risky asset is defined as Lt :� �Rt. Thus, the portfolio loss can

be written as

LPt � wt � Lt � p1 � wtq �Rf
t . (1.3.2)

27By defining the target VaR strategy in terms of a potential loss of wealth, this strategy can be easily interpreted
by retail investors, whereas a given volatility target level should be less clear for most retail investors. VaR based
investment strategies are already available for retail investors. See, for example, the strategies offered by Scalable
Capital (http://www.scalable.capital).

28By choosing low values of VaRtarget
α and α, this strategy can also be used by hedge fund managers as an

alternative to absolute return strategies. These strategies typically have absolute return targets that are indepen-
dent of the current market environment, whereas most mutual fund managers have relative return targets that are
compared to a benchmark asset (see Fung and Hsieh (1997) and Agarwal and Naik (2004)). For example, assum-
ing 250 trading days per year and by choosing VaRtarget

α � 0.5% and α � 0.4%, a daily return below �0.5%
should only occur once a year (see Figure III in Appendix D for a performance chart of this strategy). Thus, the
target VaR strategy aims to constantly produce returns with limited downside risk, regardless of the current mar-
ket environment. This strategy should be advantageous to other hedge funds strategies since some hedge funds
strategies exhibit huge losses during market downturns and bear significant tail risk (Agarwal and Naik, 2004).
Similarly, Agarwal and Naik (2004) find low correlations between hedge funds and the market in up-markets, but
high positive correlations during market downturn periods and that hedge funds often resemble a short put payoff
profile. Investors who are interested in an absolute return strategy should therefore better use a conservative tail
risk targeting strategy.
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The day t VaR of the portfolio for a significance level α, denoted by VaRP,t
α , is defined through

the relation29

P
�
LPt ¤ VaRP,t

α | Ft�1

� � 1 � α. (1.3.3)

Therefore, the portfolio VaR is given by the p1 � αq-quantile of the (conditional) portfolio loss

distribution, denoted by F�1
LPt |Ft�1

p1 � αq , i.e. VaRP,t
α � F�1

LPt |Ft�1
p1 � αq. In Appendix B, we

show that the portfolio VaR is given by

VaRP,t
α � wt � VaRt

α � p1 � wtq �Rf
t , (1.3.4)

where VaRt
α :� F�1

Lt|Ft�1
p1 � αq denotes the day t VaR of the risky asset.30 In order to achieve

a constant portfolio VaR level VaRtarget
α over time, i.e. VaRP,t

α � VaRtarget
α for all t, the weight

of the risky asset has to be chosen as

wt � VaRtarget
α �Rf

t

VaRt
α �Rf

t

. (1.3.5)

By construction, since VaRt
α andRf

t are Ft�1-measurable, the weight wt is known at time t�1.

Furthermore, the weight of the risky asset is increased if the downside risk of the risky asset,

measured by its VaR, is expected to be low and vice versa. Thus, the tail risk of the portfolio

is managed by allocating money between the risky and the riskless asset, based on the risky

asset’s VaR.31 When a market crash becomes more likely, the amount invested in the risky asset

is reduced. When market risk declines, the amount invested in the risky asset is subsequently

increased.32

29Throughout the paper, we assume that the loss variables LPt and Lt are continuously distributed.
30The representation in Equation (1.3.4) can be directly seen by positive homogeneity and translation invariance

of VaR (Szegö, 2002, p. 1259-1260).
31Many tail risk hedging strategies that aim to reduce a portfolio’s tail risk only work well when markets exhibit

huge drawdowns. In up-markets, these tail risk hedging strategies usually perform worse than a simple buy-and-
hold strategy, which translates into a worse overall performance (Hocquard et al., 2013). The target VaR strategy
has the advantage that this strategy increases the weight of the risky asset as downside shrinks, and hence captures
the upside potential while downside risk is managed (Wang et al., 2012, p. 38). Dopfel and Ramkumar (2013) show
that the periods following high risk periods are the most attractive ones (see also Muir (2017)). Hence, similar to
portfolio insurance strategies, risk targeting delivers an option-like return profile (see also Fung and Hsieh (1997)
who found a similar behavior for dynamic trading strategies used by hedge fund managers).

32The target VaR strategy manages a portfolio’s crash risk by dynamically scaling the exposure to the risky asset.
Another approach to manage a portfolio’s crash risk would be to dynamically change the portfolio allocation.
For example, Chabi-Yo et al. (2018) show in a cross-sectional setting that assets with a lower crash sensitivity
outperform during times of market distress but underperform when markets are calm (see also Van Oordt and Zhou
(2016)). Thus, during a crash period, the amount invested in crash-sensitive assets should be decreased and should
then subsequently be increased when the crash risk declines. This strategy could additionally be combined with
the target VaR strategy (see Rickenberg (2020c) who uses a similar approach for long-short strategies).
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Similar to the volatility, the VaR of the risky asset is not observable, and hence a forecast

of the risky asset’s VaR is needed.33 We use again several models to estimate the risky asset’s

VaR. As first approach, we use the unconditional Historical Simulation (HS) based on a rolling

window of n days, i.e. we estimate VaRt
α by the empirical p1 � αq-quantile of the past n daily

losses (see Kuester et al. (2006, p. 56-57) or Halbleib and Pohlmeier (2012)). More formally,

for a sample lt�n, ..., lt�1 of n realized losses, the day t VaR is given by

yVaR
t

α � lprnp1�αqsq,t�1, (1.3.6)

where lp1q,t�1 ¤ ... ¤ lpnq,t�1 denotes the order statistics of the sample lt�n, ..., lt�1. This esti-

mation method is frequently used by banks and practitioners (Berkowitz et al., 2011, Berkowitz

and O’Brien, 2002). Furthermore, Atilgan et al. (2020) also use this VaR estimation method

and find that stocks with a higher VaR underperform stocks with a lower VaR. Thus, in a cross-

sectional setting, there exists a negative VaR-return relation.34

Historical Simulation relies on the assumption that the loss distribution can be estimated by

the empirical distribution of past losses (McNeil and Frey, 2000, p. 273). Hence, Historical

Simulation is based on the assumption that losses are iid. In practice, this assumption does

not hold for losses of most risky assets, since asset returns (or losses respectively) are known

to exhibit a time-varying volatility and volatility clustering (Pritsker, 2006, p. 563). Further,

Pritsker (2006) shows that Historical Simulation does not respond to the 1987 crash. Thus,

Historical Simulation is an inappropriate tool to manage extreme market crashes. Generally,

most VaR estimation models that are frequently used in the financial industry, like Historical

Simulation, work well in calm periods but fail to produce accurate risk forecast in times of high

downside risk, just when reliable forecasts are most needed (Berkowitz et al., 2011, Halbleib

and Pohlmeier, 2012). As a consequence, using such static estimation models as portfolio risk

management tool can translate in high probabilities of extreme losses (Cuoco et al., 2008).

Hence, using Historical Simulation in the context of a target VaR strategy can translate in a

high exposure to the risky asset in times when financial markets are very risky, although a

33See Taylor (2005, Sec. 3) and Kuester et al. (2006) for a survey of VaR estimation models.
34Bali et al. (2009) cannot confirm this finding in a time-series setting. However, as mentioned earlier, a negative

risk-return relation is not needed for the risk targeting strategy.
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good risk-managed investment strategy should exhibit a low weight in the risky asset during

times of high market risk. For that reason, a fast adapting estimation model that reflects the

current market environment is crucial for a good performance of the target VaR strategy (see

also Taylor (2014) and Bollerslev et al. (2018) who find a similar result for volatility managed

portfolios). However, estimating VaR by Historical Simulation is easy, straightforward and is

the current industry standard for estimating VaR (see Berkowitz et al. (2011) and references

therein). Thus, this approach is particularly interesting for index providers and practitioners

who are interested in simple target VaR strategies. Consequently, the target VaR strategy based

on Historical Simulation deals as a benchmark strategy for more complex target VaR strategies.

Due to the disadvantages of the HS approach, we use three other VaR forecasting models

that are based on a volatility forecast of the EWMA or GARCH(1,1) model. When estimat-

ing quantile risk measures, McNeil and Frey (2000, p. 273-274) propose to reflect the current

volatility background, estimated by a dynamic volatility model, and to account for heavy tails

in the conditional loss distribution (see also Longin (2000)). Christoffersen and Diebold (2000)

find that volatility is highly forecastable for short horizons of less than 10 days. Thus, these

volatility forecasts are highly valuable and should be incorporated when short-term risk is man-

aged. In order to incorporate the risky asset’s volatility in the VaR estimation, we assume that

returns are given as in Equation (1.2.6). Under this assumption, the day t VaR of the risky asset

is given by

VaRt
α � σt � F�1

L� p1 � αq, (1.3.7)

where L�t :� �Zt is a random variable representing a standardized loss with expectation zero,

variance one and F�1
L� p1 � αq denotes the p1 � αq-quantile of L�t .35 We also refer to dynamic

risk models that account for the current volatility as conditional models and static models, like

Historical Simulation or HSD, that are based on the assumption that returns are iid as uncondi-

tional models (Longin, 2000). The forecast yVaR
t

α for the day t VaR based on the information

35By assumption, the quantile F�1
L� p1 � αq of the standardized loss L�t :� �Zt � �Rt{σt does not depend on

t (McNeil and Frey, 2000, p. 276). As an extension of this assumption, we follow Jondeau and Rockinger (2003)
and Bali et al. (2008) and use a more sophisticated approach below that does not assume that Zt is iid.
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at time t� 1 is then given by

yVaR
t

α � σ̂t � F̂�1
L�,tp1 � αq, (1.3.8)

where F̂�1
L�,tp1�αq denotes the estimator of F�1

L� p1�αq, given the available information at day

t� 1. yVaR
t

α is then estimated in the following way using a two-stage approach as described by

McNeil and Frey (2000, p. 277). In the first stage, we estimate the volatility σ̂t using the EWMA

or the GARCH(1,1) model given in Equation (1.2.7) or (1.2.8), respectively. The parameters of

the GARCH(1,1) model are estimated using a Quasi Maximum Likelihood (QML) approach,

i.e. assuming a standard normal distribution for the innovations Zt. In the second stage, the

standardized losses, i.e. l�t � �Rt{σ̂t, are calculated, which are used to calculate F̂�1
L�,tp1�αq.36

In this context, VaR is often estimated by assuming a standard normal distribution for Zt, i.e.

F̂�1
L�,tp1�αq is given by the p1�αq-quantile of the standard normal distribution. However, even

after standardizing returns or losses by a time-varying volatility, these observations still exhibit

a non-zero skewness and fatter tails than the normal distribution (see Campbell and Hentschel

(1992), Bollerslev et al. (1992), Glosten et al. (1993), Harvey and Siddique (1999), Ghysels

et al. (2016), Jondeau and Rockinger (2003) and Bali et al. (2008)).37 Similarly, Kelly and Jiang

(2014) find that volatility standardized returns still exhibit significant tail risk. Therefore, we

estimate F̂�1
L�,tp1�αq based on a sample of n past standardized losses, denoted by l�t�n, ..., l

�
t�1,

using three different methods that account for this stylized fact.

First, we use the Filtered Historical Simulation (FHS) approach (Barone-Adesi et al., 2008,

1999), i.e. we estimate F̂�1
L�,tp1�αq by the empirical p1�αq-quantile of the standardized losses

l�t�n, ..., l
�
t�1 (Kuester et al., 2006, p. 57). The estimator for the day t VaR of the risky asset is

then given by

yVaR
t

α � σ̂t � l�prnp1�αqsq,t�1, (1.3.9)

where l�p1q,t�1 ¤ ... ¤ l�pnq,t�1 denotes the order statistics of the sample l�t�n, ..., l
�
t�1.38 The

36The volatility σt, as described in Section 1.2, is calculated using daily returns and represents a forecast for the
return volatility. However, from var pRt|Ft�1q � var p�Rt|Ft�1q it follows that the volatility forecast σ̂t can be
directly used as a forecast for the volatility of the losses.

37This stylized fact holds for standardized equity returns but not for foreign exchange rates (Bollerslev et al.,
1992, p. 38).

38Pritsker (2006) states that the choice of n is not straightforward. However, n � 1000 is frequently used in
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FHS approach easily combines the conditional heteroscedasticity and the non-normality of as-

set returns in a simple estimation method without relying on any distributional assumption (Gi-

annopoulos and Tunaru, 2005, p. 983).

As second estimation method, we use the Extreme Value Theory (EVT) approach of McNeil

and Frey (2000).39 The EVT approach is based on the assumption that the tail of the distribution

of the standardized losses can be described by a Generalized Pareto Distribution (GPD).40 The

tail of this distribution is defined in terms of a threshold u.41 Based on this threshold, the EVT

approach assumes that standardized losses above the threshold u follow a GPD that is defined

as

Gξ,βpyq �
"

1 � p1 � ξy{βq�1{ξ, if ξ � 0
1 � expp�y{βq, if ξ � 0,

(1.3.10)

with β ¡ 0. The support of this distribution is given by y ¥ 0 if ξ ¥ 0 and 0 ¤ y ¤ �β{ξ if ξ  
0 (McNeil and Frey, 2000, p. 280). The parameter ξ is usually called the shape parameter and

β is called the scale parameter (McNeil et al., 2015, p. 147). For the estimation of F̂�1
L�,tp1�αq,

we again assume that the sample contains n standardized losses. The estimator F̂�1
L�,tp1 � αq is

then given by

F̂�1
L�,tp1 � αq � u� β̂

ξ̂

��
αn

Nu


�ξ̂
� 1

�
, (1.3.11)

where β̂ and ξ̂ are the Maximum Likelihood estimates and Nu denotes the number of standard-

ized losses that exceed the threshold u (McNeil et al., 2015, p. 154 and 349). The VaR forecast

applications (see Kuester et al. (2006) or Christoffersen (2012)). See also Halbleib and Pohlmeier (2012) on how
the window size impacts estimation results of VaR forecasts.

39See also McNeil et al. (2015, Section 5.2.6) for a survey on estimating quantile risk measures when a GARCH
volatility model is used in the first stage and Kuester et al. (2006, Section 1.4) for a good summary on how to
estimate VaR using EVT. EVT is also used by Allen et al. (2012), Poon et al. (2004), Longin and Solnik (2001),
Kelly and Jiang (2014), Longin (2000) and Van Oordt and Zhou (2016) in other related financial topics.

40The EVT approach assumes that losses are iid. Hence, when working with short horizons, as done in this
paper, standardizing losses by a time-varying volatility is crucial for the EVT approach. A well-known stylized
fact states that daily losses are far away from iid, whereas the iid assumption fits quite well to standardized losses
(Kuester et al., 2006, p. 62). When working with longer time horizons, the EVT approach can be directly applied
to the non-standardized losses (McNeil and Frey, 2000).

41One drawback of EVT is the choice of the threshold u (Kellner and Rösch, 2016). If u is chosen too high,
the estimation of the parameters is based on only few exceedance observations, making the estimation less precise.
Choosing u too low contradicts the approximation in Equation (1.3.10), since this approximation only holds for
the tails of the distribution (see Longin and Solnik (2001, Sec. II.A), Kuester et al. (2006, p. 62) and Yamai and
Yoshiba (2005, p. 1008)). Longin and Solnik (2001, Appendix 1) show how u can be optimally chosen based on
Monte Carlo Simulations. Packham et al. (2017, p. 740) find that their VaR-based tail risk protection strategy is
robust against changes in u. As in Kellner and Rösch (2016), we choose the threshold u as the 90%-quantile.
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is then given by Equations (1.3.8) and (1.3.11).

We will next use a further extension of the models presented above. The Historical Simu-

lation approach assumes that returns are iid, which is not realistic in practice. In contrast, by

assuming that only volatility standardized returns are iid, the EVT and FHS approaches are more

realistic. However, several studies show that even this assumption is too restrictive, since even

volatility standardized returns exhibit autoregressive patterns in the conditional skewness and

kurtosis (Bali et al., 2008, Harvey and Siddique, 1999, Jondeau and Rockinger, 2003). Thus, we

follow Jondeau and Rockinger (2003) and Bali et al. (2008) and use the EWMA and GARCH

based approach combined with the skewed t distribution of Hansen (1994), where conditional

skewness and kurtosis are modeled autoregressively. Similar to Equation (1.2.6), we assume

that the daily return can be described by

Rt � σt � Zt, Zt � stskpηt, λtq, (1.3.12)

where Zt � stskpηt, λtqmeans that Zt is skewed t distributed with mean zero, variance one and

time-varying parameters ηt and λt. The skewed t distribution of Hansen (1994) is characterized

by the pdf

fstsk pz | ηt, λtq �

$'''&'''%
bc

�
1 � 1

ηt�2

�
bz�a
1�λt

	2

�pηt�1q{2

if z   �a
b

bc

�
1 � 1

ηt�2

�
bz�a
1�λt

	2

�pηt�1q{2

if z ¥ �a
b

, (1.3.13)

where

a :� 4λtc
ηt � 2

ηt � 1
, b2 :� 1 � 3λ2

t � a2, c :� Γ
�
ηt�1

2

�a
πpηt � 2qΓ �

ηt
2

� .
The parameters of this distribution are restricted to ηt ¡ 2 and �1   λt   1 (see Hansen (1994,

p. 710) and Jondeau and Rockinger (2003, p. 1702)). Further, for λt � 0, this distribution is

symmetric and equals the standardized t distribution. For λt ¡ 0 (λt   0), the distribution

is positively (negatively) skewed (Hansen, 1994). Moreover, skewness exists for ηt ¡ 3 and

kurtosis exists for ηt ¡ 4 (Jondeau and Rockinger, 2003). Jondeau and Rockinger (2003) show

that, although ηt is often referred as the parameter that determines kurtosis and λt is referred

as the skewness parameter, both parameters, ηt and λt, affect both moments, skewness and
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kurtosis. In particular, the relation between the parameters and higher moments is highly non-

linear. The parameters of the skewed t distribution are then modeled autoregressively, where

we first model unrestricted parameters by

η̃t � a1 � b1Rt�1 � c1η̃t�1, (1.3.14)

λ̃t � a2 � b2Rt�1 � c2λ̃t�1. (1.3.15)

To guarantee that the standardized skewed t distribution is well defined, the parameters have to

be rescaled to fulfill the conditions ηt ¡ 2 and �1   λt   1. We follow Jondeau and Rockinger

(2003) and Bali et al. (2008) and use a logistic transformation to guarantee that these restrictions

hold. The parameters ηt and λt are then given by

ηt � 2 � exp pη̃tq (1.3.16)

λt � 2

1 � exp
�
�λ̃t

	 � 1. (1.3.17)

The α-quantile of the skewed t distribution is given by

F�1
stsk pα | ηt, λtq �

$&%
1
b

�
p1 � λtq

b
ηt�2
ηt
F�1
t p α

1�λt |ηtq � a
	

if α   1�λt
2

1
b

�
p1 � λtq

b
ηt�2
ηt
F�1
t pα�λt

1�λt |ηtq � a
	

if α ¥ 1�λt
2
,

(1.3.18)

where F�1
t pz|ηtq is the inverse of the t distribution’s cdf Ftpz|ηtq �

³z
�8 ftpu|ηtqdu (Jondeau

and Rockinger, 2003). The t distribution’s pdf with ηt degrees of freedom is given by

ftpz|ηtq �
Γ
�
ηt�1

2

�
Γ
�
ηt
2

�?
πηt

�
1 � z2

ηt


�pηt�1q{2

,

(1.3.19)

where Γp�q denotes the Gamma function. The VaR forecast for day t is then again given by

Equation (1.3.8), where

F̂�1
L�,tp1 � αq � �F�1

stsk

�
α | η̂t, λ̂t

	
, (1.3.20)

and η̂t and λ̂t denote the Maximum Likelihood estimates of ηt and λt.42

Kuester et al. (2006) compare several VaR forecasting approaches and find that the GARCH-

based EVT, FHS and skewed t distribution approaches always belong to the best conditional
42The minus one in front of the quantile and the significance level α results since we fit the skewed t distribution

to standardized returns instead of standardized losses.
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models, where the authors only use the skewed t distribution with constant parameters instead

of time-varying parameters. The authors state that unconditional models, like Historical Simu-

lation, fail to produce accurate VaR forecast and that only conditionally heteroskedastic models

deliver acceptable VaR forecasts. Therefore, the authors prefer a conditional approach that ac-

counts for the volatility dynamics. Furthermore, the authors find that the VaR violations of

dynamic models are reasonably independent over time, which usually does not hold for Histor-

ical Simulation. This demonstrates the importance of a fast adapting model, which is crucial

for the target risk strategies, since wrong risk timing translates into a high exposure to the risky

asset when the market’s downside risk is high and vice versa.43 Moreover, McNeil and Frey

(2000, p. 283) state that using a symmetric distribution, like the normal or the t-distribution,

underestimates the loss potential (see also Szegö (2002)). Similarly, Kellner and Rösch (2016)

find that only models that account for fat tails and/or skewness deliver accurate VaR forecasts.

Since standardized losses typically follow an asymmetric distribution, using an approach like

EVT, FHS or the skewed t distribution is a better choice for modeling the right tail of the stan-

dardized losses (Xiong and Idzorek, 2011). In particular, directly modeling the right tail of

the loss distribution, instead of modeling the whole distribution, usually gives a better fit and

is superior when tail risk is forecasted (Longin, 2000). McNeil and Frey (2000, p. 290-291)

compare the GARCH-EVT approach with the unconditional EVT, the GARCH-normal and

the GARCH-t models and find that, in most cases, the GARCH-EVT model is superior to the

benchmark models and that the GARCH-EVT model is the only model that is not rejected in all

15 cases. Packham et al. (2017) use several alternative generalized distributions for Zt and find

that only the GPD works well for tail risk management. Halbleib and Pohlmeier (2012) also

find convincing results of combining a dynamic volatility model, like the GARCH(1,1) model,

with an estimate of F�1
L� p1�αq that accounts for skewness, like the EVT approach or the skewed

t-distribution. Similarly, Bali et al. (2008) find good results of combining a dynamic volatility

model with the skewed t-distribution. As a consequence, combining a dynamic volatility model

with the EVT, FHS or skewed t approach should result in a portfolio VaR that is closer to the

43We will come back to this point in Section 1.4.2, when we show how the accuracy of the target VaR strategies
can be backtested.
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desired target VaR level than the portfolio VaR of the simple Historical Simulation approach.44

As stated above, since a more stable portfolio risk is typically rewarded by higher performance

gains, we expect a better risk-return profile for the conditional approaches. We answer the ques-

tion which model delivers the most accurate portfolio VaR later, when we assess the accuracy

of several target VaR strategies using the backtesting method described in Section 1.4.2.

Since Rf
t is (typically) small compared to VaRtarget

α and VaRt
α, the weight wt of the target

VaR strategy can be approximated by45

wt � VaRtarget
α

VaRt
α

. (1.3.21)

The structure in Equation (1.3.21) is similar to the weight of the target volatility strategy, given

in Equation (1.2.3), but the volatility of the risky asset is replaced by the VaR of the risky asset.

The weighting in Equation (1.3.21) was also used by Happersberger et al. (2019). By using the

approximation in Equation (1.3.21) and the decomposition of the VaR in Equation (1.3.7), the

weight of the risky asset of the target VaR strategy can be approximated by

wt � VaRtarget
α

VaRt
α

�
F�1
L� p1 � αq � VaRtarget

α

F�1
L� p1 � αq

σt � F�1
L� p1 � αq � σtarget

σt
, (1.3.22)

with σtarget :� VaRtarget
α {F�1

L� p1 � αq. Therefore, the weight of a target VaR strategy can be

approximated by the weight of a target volatility strategy, where the target volatility level is

determined by the target VaR level and the p1 � αq-quantile of the standardized losses. Hence,

one could argue that every target VaR strategy, based on the decomposition in Equation (1.3.7),

can be approximated by a target volatility strategy.46 Further, a constant portfolio volatility can

also be achieved by controlling VaR instead of volatility. Taylor (2005) shows that incorpo-

rating higher moments in volatility forecasts is beneficial. This results since the shape of the

conditional return distribution is not fix over time as shown by Jondeau and Rockinger (2003)
44A possible extension to further improve the accuracy and robustness of VaR targeting in a simple manner

could be to combine several VaR forecasting models as presented in Halbleib and Pohlmeier (2012). Allen et al.
(2012) also use the average of different VaR forecasts made with different forecasting methods.

45For our sample, the mean of Rft and VaRt
α is 0.007% and 4.0766%, respectively. Thus, for our VaRtarget

α

of 1.947% and these averages, the weight based on Equation (1.3.5) would be 0.4785, whereas the approximated
weight would be 0.4776.

46This is a contrarian approach to Taylor (2005) who uses VaR forecasts based on the CAViaR model and
Historical Simulation to obtain estimates of conditional volatility.
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and Bali et al. (2008). However, for several reasons, the approximation in Equation (1.3.22) has

to be regarded carefully. First, Equation (1.3.21) is just an approximation, which is only exact

for Rf
t � 0. Second, to transform a target VaR strategy into the corresponding target volatility

strategy, the distribution of the standardized losses, or at least the quantile F�1
L� p1 � αq, has to

be known. In practice, both are unknown and this transformation is not directly feasible. As a

rough approximation, quantiles of the standard normal distribution can be used. In this case, the

target VaR strategy can be approximated by the target volatility strategy, using a target volatility

level of

σtarget � VaRtarget
α

N1�α
, (1.3.23)

where N1�α denotes the p1 � αq-quantile of the standard normal distribution.47

1.3.3 Target CVaR Strategy

The target VaR strategy, presented in the previous section, has the advantage that the weight

of the risky asset is a function of the expected downside risk instead of expected volatility.

As stated above, focusing on downside risk management instead of volatility management has

several advantages. VaR is the current industry standard when downside risk is measured and

managed (Bali et al., 2008, Berkowitz et al., 2011, Berkowitz and O’Brien, 2002). However,

the Conditional Value at Risk (CVaR) is becoming more important and is establishing as the

more relevant risk measure for managing market risk and from a regulatory perspective (Du

and Escanciano, 2016, Kellner and Rösch, 2016). The reason for this development is that the

CVaR corrects for several drawbacks of VaR and the CVaR is often claimed as the better risk

measure.48 For example, the VaR has been criticized in the academic literature due to its lack

of subadditivity and the disregarding of extreme losses, which are of main interest in risk man-

agement (see Artzner et al. (1999), Giannopoulos and Tunaru (2005, p. 980), McNeil and Frey

(2000, p. 291-292) or Yamai and Yoshiba (2005, p. 998)). More precisely, VaR only contains
47In our notation, the volatility target σtarget is denoted as an annualized volatility, whereas the VaR target is

chosen as a daily loss. Thus, a target VaR strategy with α � 5% and VaRtarget
α � 1% can be approximated by a

target volatility strategy with an (annualized) volatility target of σtarget � p0.01{1.645q � ?252 � 9.6%.
48See Yamai and Yoshiba (2005) for a good comparison of VaR and CVaR. Moreover, see Szegö (2002, p. 1261)

for a list of drawbacks of VaR. See Du and Escanciano (2016) for a good motivation of why CVaR is becoming
the more relevant risk measure for managing downside risk.
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information on a certain quantile, whereas CVaR contains information on the whole right tail

of the loss distribution (Du and Escanciano, 2016, p. 942). Berkowitz and O’Brien (2002) who

examine the VaR models of six commercial banks demonstrate that the size of a VaR violation

can be surprisingly large. This is confirmed by the study of Du and Escanciano (2016) who

find that VaR responds less to extreme losses, such as those experienced during the recent fi-

nancial crisis. Hence, VaR may underestimate risk in times of market stress, i.e. times of high

asset price fluctuations (Yamai and Yoshiba, 2005, p. 998). Similarly, in a portfolio context,

managing VaR means that only the exceedance probability is managed instead of the expected

loss magnitude (see Basak and Shapiro (2001, p. 385) and Aı̈t-Sahalia and Brandt (2001)). In

contrast, by managing CVaR, both the exceedance probability and the size of extreme losses

are managed. Basak and Shapiro (2001) and Alexander and Baptista (2004) find that managing

CVaR is superior to managing VaR in an asset allocation context, especially if a risk-free asset

is available.49 Due the drawbacks of the VaR, we next extend the target VaR strategy to the

target CVaR strategy, that aims to have a constant portfolio CVaR over time. As before, the

weight of the risky asset is then given as a function of the expected CVaR of the risky asset, i.e.

if the CVaR of the risky asset is expected to be low, the weight of the risky asset is increased

and vice versa.

The CVaR is defined as the average loss in the worst 100 � α% cases, i.e. the cases where

the loss exceeds the VaR (see Acerbi and Tasche (2002, p. 1488) or Yamai and Yoshiba (2005,

p. 999)). More formally, we define the portfolio CVaR, denoted by CVaRP,t
α , as

CVaRP,t
α � E

�
LPt |LPt ¥ VaRP,t

α ,Ft�1

�
. (1.3.24)

In Appendix B.2, we show that the portfolio CVaR is given by

CVaRP,t
α � wt � CVaRt

α � p1 � wtq �Rf
t , (1.3.25)

49Basak and Shapiro (2001) demonstrate that, in the context of asset allocation decisions, losses of VaR managed
portfolios can exceed the desired VaR extremely (see also Alexander and Baptista (2004), Berkowitz et al. (2011),
Cuoco et al. (2008) and references therein). However, Cuoco et al. (2008) show that this observation does no longer
hold once risk is managed dynamically, i.e. taking the actual information into account and reevaluating the risk
level dynamically, instead of managing risk by a static model (see also Berkowitz et al. (2011)). This highlights
the importance of managing portfolio risk dynamically, as done by risk targeting.
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where CVaRt
α :� E

�
Lt |Lt ¥ VaRt

α,Ft�1

�
denotes the day t CVaR of the risky asset.50 In

order to achieve a constant portfolio CVaR of CVaRtarget
α over time, i.e. CVaRP,t

α � CVaRtarget
α

for all t, the weight of the risky asset has to be chosen as

wt � CVaRtarget
α �Rf

t

CVaRt
α �Rf

t

. (1.3.26)

Due to the definition of the CVaR, the target CVaR strategy manages expected losses, where

the acceptable loss magnitude can be governed by the investor who chooses the values α and

CVaRtarget
α . For example, a target CVaR level CVaRtarget

α of 2% with a corresponding signifi-

cance level α of 5% translates into a strategy with an average loss of 2% on the 5% worst days.

In other words, the target CVaR strategy’s average return on the worst 5 out of 100 days will

be �2%.51 The choices of α and CVaRtarget
α again strongly depend on the individual investor’s

preferences and risk aversion (Alexander and Baptista, 2004).

As in the previous sections, since the CVaR of the risky asset is not observable, a forecast

of CVaRt
α is needed. We use the same estimation methods that we also use for the VaR of the

risky asset. First, and especially interesting for practical implementations, we use Historical

Simulation. For this method, we again assume that a data set of n realized losses lt�1, .., lt�n

with order statistics lp1q,t�1 ¤ lp2q,t�1 ¤ ... ¤ lpnq,t�1 exists. Based on the ordered losses, we

estimate CVaRt
α by 52

{CVaR
t

α �
1

n� rnp1 � αqs� 1
�

ņ

j�rnp1�αqs
lpjq,t�1. (1.3.27)

This estimator is motivated by Acerbi and Tasche (2002, Proposition 4.1),53 who demonstrate

that the estimator in Equation (1.3.27) is only unbiased for n converging to infinity. For small

n, the estimator in Equation (1.3.27) is biased. Methods that account for this estimation bias

are presented in Ko et al. (2009) among others. As before, the quality of the target CVaR
50The representation in Equation (1.3.25) again follows by positive homogeneity and translation invariance of

CVaR.
51By choosing CVaRtarget

α and α adequately, this strategy can also be an alternative to absolute return or other
hedge fund strategies as examined in Fung and Hsieh (1997) and Agarwal and Naik (2004).

52See Ko et al. (2009, p. 719) or Giannopoulos and Tunaru (2005, p. 985-986).
53In this paper, we assume that losses are continuously distributed. This is confirmed by Giannopoulos and

Tunaru (2005, p. 982) who state that only continuous probability distributions are used in practice. In this case, the
CVaR, defined as Tail Conditional Expectation (TCE) in Acerbi and Tasche (2002, Definition 2.3), is equal to the
Expected Shortfall (ES), defined in Acerbi and Tasche (2002, Corollary 5.3).
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strategy strongly depends on the accuracy of the CVaR estimation.54 However, since Historical

Simulation deals as a benchmark model that is particularly interesting for practitioners, we keep

the estimation as simple as possible.

For the return decomposition of Equation (1.2.6), the CVaR of the risky asset is given by

CVaRt
α � σt � CVaR�

α, (1.3.28)

where we define CVaR�
α :� E

�
L� | L� ¥ F�1

L� p1 � αq� and L� is again a continuously dis-

tributed random variable, representing a standardized loss, with expectation zero, variance one

and F�1
L� p1 � αq denotes the p1 � αq-quantile of L� (see McNeil and Frey (2000, p. 276) for

example). As for the VaR, we next present the estimation of the CVaR based on a two-stage ap-

proach, where the volatility is estimated in a first stage by one of the volatility models presented

in Equation (1.2.7) or (1.2.8). In the second stage, we again consider a sample l�t�n, ..., l
�
t�1

of n standardized losses with order statistics l�p1q,t�1 ¤ ... ¤ l�pnq,t�1. We denote the estimator

for CVaR�
α � E

�
L� | L� ¥ F�1

L� p1 � αq� based on the available information at day t � 1 by{CVaR
t,�
α . Hence, the estimator for the CVaR of the risky asset on day t, denoted by {CVaR

t

α, is

given by

{CVaR
t

α � σ̂t � {CVaR
t,�
α . (1.3.29)

By using the FHS approach, the estimator {CVaR
t,�
α is given by Equation (1.3.27), where the

j-th order statistic lpjq,t�1 of the loss variables is replaced by the j-th order statistic l�pjq,t�1 of

the standardized losses (see Giannopoulos and Tunaru (2005) for example). By using the EVT

approach, the estimator {CVaR
t,�
α is given by

{CVaR
t,�
α � F̂�1

L�,tp1 � αq
1 � ξ̂

� β̂ � ξ̂u

1 � ξ̂
, (1.3.30)

where the estimator F̂�1
L�,tp1 � αq is given in Equation (1.3.11), u denotes the predetermined

threshold and the parameters ξ̂ and β̂ are the QML estimators (see McNeil and Frey (2000,

p. 293) or McNeil et al. (2015, p. 154)).

54This is in line with Yamai and Yoshiba (2005, p. 999) who find that the “effectiveness of expected shortfall,
however, depends on the accuracy of estimation.”
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Finally, we also use the skewed t distribution with time-varying parameters to forecast next

day’s CVaR. Christoffersen (2012) and Rickenberg (2020a, Appendix A) show that, for a ran-

dom variable Zt � stskpηt, λtq, we have

E
�
Zt|Zt   F�1

stsk pα| ηt, λtq
�

�

$''&''%
1
α
p1�λtq2

b

�
fst

�
zp�q|ηt

� � ηt�2�pzp�qq2
1�ηt � a�Fstpzp�q|ηtq

1�λt



for F�1

stsk pα| ηt, λtq   �a
b

1
α
p1�λtq2

b

�
fst

�
zp�q|ηt

� � ηt�2�pzp�qq2
1�ηt � a�p1�Fstpzp�q|ηtqq

1�λt



for F�1

stsk pα| ηt, λtq ¥ �a
b
,

(1.3.31)

where zp�q and zp�q are given by

zp�q � b � F�1
stsk pα| ηt, λtq � a

1 � λt
, zp�q � b � F�1

stsk pα| ηt, λtq � a

1 � λt
.

Further, fstpz|ηtq and Fstpz|ηtq �
³z
�8 fstpu|ηtqdu correspond to the pdf and cdf of the standard-

ized t distribution with mean zero and variance one. The pdf of the standardized t distribution

is given by (see Bollerslev (1987, p. 543) and Hansen (1994, p. 709))

fstpz|ηtq �
Γ
�
ηt�1

2

�
Γ
�
ηt
2

�a
πpηt � 2q

�
1 � z2

ηt � 2


�pηt�1q{2

.

(1.3.32)

For the cdf of the t and standardized t distributions it holds Fst pz|ηtq � Ft

�b
ηt
ηt�2

z|ηt
	

.55

Bollerslev (1987) uses the standardized t distribution in the context of the GARCH(1,1) model

and finds that the GARCH(1,1)-t model is superior to both, the GARCH(1,1)-normal and the

unconditional t distribution. The forecast of day t’s CVaR is then given by Equation (1.3.29).

In this case, {CVaR
t,�
α is given by

{CVaR
t,�
α � �E

�
Zt|Zt   F�1

stsk

�
α| η̂t, λ̂t

		
, (1.3.33)

where η̂t and λ̂t are again the Maximum Likelihood estimates of ηt and λt.56

McNeil and Frey (2000, p. 292) find that the quality of the CVaR estimation strongly de-

pends on the approach that is used to model the tails of the loss distribution. Correctly modeling

55This relation is advantageous since the cdf of the t distribution is often available in most software packages,
whereas the cdf of the standardized t distribution is not available (Jondeau and Rockinger, 2003).

56The minus one in front of the expectation in Equation (1.3.33) again results, since we fit the skewed t dis-
tribution to standardized returns instead of standardized losses. From Equations (1.3.20) and (1.3.33), it directly
follows �E

�
Zt|Zt   F�1

stsk

�
α| η̂t, λ̂t

		
� E
�
L�t | L�t ¥ F�1

L�t
p1 � αq

	
, where L�t � �Zt.
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the tails, which is also crucial for the estimation of the VaR, becomes even more important when

CVaR is estimated (Yamai and Yoshiba, 2005). Therefore, correctly modeling the tails of the

loss distribution is a central issue in achieving a constant portfolio CVaR over time. As for the

VaR, Kellner and Rösch (2016) find that only models that account for fat tails and/or skewness

are able to produce accurate CVaR forecasts. As stated above, a more accurate risk forecast,

and hence a more constant portfolio risk, is typically rewarded with a superior risk-return profile

and high utility gains.

As in Equation (1.3.21), since Rf
t is (typically) small compared to the CVaR values, the

weight of the risky asset can be approximated by

wt � CVaRtarget
α

CVaRt
α

. (1.3.34)

By using Equation (1.3.34), similar to Equation (1.3.22), we can approximate a target CVaR

strategy by a target volatility strategy. The weight of the risky asset for this target volatility

strategy is then given by

wt � CVaRtarget
α

CVaRt
α

�
E
�
L� | L� ¥ F�1

L� p1 � αq� � CVaRtarget
α

E
�
L� | L� ¥ F�1

L� p1 � αq�
E
�
L� | L� ¥ F�1

L� p1 � αq� � σt � σtarget

σt
,

(1.3.35)

with σtarget � CVaRtarget
α {E�L� | L� ¥ F�1

L� p1 � αq�. However, since the distribution of the

standardized losses, or at least E
�
L� | L� ¥ F�1

L� p1 � αq�, is not known in practice, the volatil-

ity target σtarget cannot be directly calculated. An approximation can be done by using a stan-

dard normal distribution for L�. In this case, E
�
L� | L� ¥ F�1

L� p1 � αq� is given by ϕpN1�αq
α

,

where ϕ and N1�α denote the density function and the p1 � αq-quantile of the standard normal

distribution, respectively. The volatility target is then given by

σtarget � CVaRtarget
α

ϕpN1�αq{α. (1.3.36)

For example, a target CVaR strategy with a significance level of α � 5% and desired CVaR

target CVaRtarget
α � 2% can be approximated by a target volatility strategy with an annualized

volatility target of σtarget � 0.02
2.063

�?252 � 15.4%. Further, a constant volatility of 15.4% can be
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achieved by managing the risky asset’s CVaR, and thus incorporating information on the risky

asset’s skewness and kurtosis. Moreover, by Equations (1.3.7) and (1.3.34), we obtain

wt � CVaRtarget
α

CVaRt
α

� CVaRtarget
α

σt � F�1
L� p1 � αq � E

�
L� | L� ¥ F�1

L� p1 � αq�
F�1
L� p1 � αq

� VaRtarget
α

VaRt
α

, (1.3.37)

with VaRtarget
α � F�1

L�
p1�αq

EpL�|L�¥F�1
L�

p1�αqq � CVaRtarget
α . Therefore, a target CVaR strategy can also

be approximated by a target VaR strategy with an adjusted target VaR level.57 However, the

approximation of the target CVaR strategy by a target volatility strategy, given in Equation

(1.3.35), is appealing since forecasting volatility is much easier than forecasting CVaR, but this

argument is only partly valid for the approximation by a target VaR strategy, given in Equation

(1.3.37).58 Nevertheless, Equation (1.3.37) is helpful for comparing target VaR and target CVaR

strategies. By assuming a standard normal distribution for L�, we obtain the comparable target

VaR level

VaRtarget
α � N1�α

ϕpN1�αq{α � CVaRtarget
α . (1.3.38)

A target CVaR strategy with α � 5% and CVaRtarget
α � 2% should then be compared to a target

VaR strategy with α � 5% and VaRtarget
α � 1.645

2.063
� 0.02 � 1.6%, which is again approximated

by a target volatility strategy with σtarget � 0.016
1.645

� ?252 � 15.4%.

This approach of comparing a target CVaR strategy with a target volatility or target VaR

strategy is similar to the approach of Strub (2013). The author starts with a predefined volatility

target and transforms this volatility target to a CVaR target by using a normality assumption.

The weight of the risky asset is then obtained as the ratio of the transformed CVaR target and

the forecast of the risky asset’s CVaR. Strub (2013, p. 16) finds that the volatility and CVaR

managed strategies offer a substantial drawdown protection, especially in the years when the

underlying index suffers the most. By comparing a volatility managed strategy with a CVaR
57This approach is similar to Cuoco et al. (2008) who show how a VaR limit can be transformed in a CVaR limit

and vice versa.
58Yamai and Yoshiba (2005, p. 1012) state that the estimation error for CVaR is larger than for VaR, especially

when the return distribution exhibits fat tails. Similarly, Kellner and Rösch (2016) find that the model risk for
CVaR is higher than for VaR, which is mainly driven by fat tails in the return distribution. Especially in times of
financial market turmoils, like the recent global financial crisis or corona crisis, CVaR forecasts among different
models are more volatile than VaR forecasts. Thus, the approximation of a target CVaR strategy by a target VaR
strategy could be appealing for extremely fat-tailed asset return distributions.
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managed strategy, Strub (2013, p. 17) finds that managing CVaR translates into a better risk-

adjusted performance and lower drawdowns. Moreover, the author finds that, even after trans-

action costs, the risk managed strategies still deliver convincing performances, which makes

the risk managed strategies appealing for practical applications and an interesting alternative

to hedge fund strategies as examined in Fung and Hsieh (1997) and Agarwal and Naik (2004).

Similarly, the CVaR managed strategy of Wang et al. (2012) reduces drawdowns without sac-

rificing returns, and hence captures the upside potential while downside risk is limited (Wang

et al., 2012, p. 38).59 This is in line with Basak and Shapiro (2001) who also find convincing

results of managing expected losses, as done by managing CVaR, and the authors conclude

that managing expected losses is superior to managing exceedance probabilities, as done by

managing VaR (see also Aı̈t-Sahalia and Brandt (2001, p. 1316)).

1.3.4 VaR and CVaR Targeting as Optimal Trading Strategies under Risk
Limits

In this section, we motivate the VaR and CVaR targeting strategies from another perspective as

optimal trading strategies when a trader faces an absolute risk limit. This is similar to the ex-

amination of Basak and Shapiro (2001), Wang et al. (2012), Cuoco et al. (2008) and Alexander

and Baptista (2004).60 We again consider a trader who invests wt in the risky and 1 � wt in the

riskless asset and define the trader’s portfolio value byWt :� Wt�1 � p1�RP
t q, W0 ¡ 0. Further,

we define the absolute loss in t by Labst :� Wt�1 � Wt � �Wt�1 � RP
t . We now consider a

portfolio optimization problem under an absolute risk limit VaRt, given by

max
wt

E
�
RP
t | Ft�1

�
s.t. VaRt,abs

α ¤ VaRt, (1.3.39)

where VaRt,abs
α � Wt�1 � VaRP,t

α denotes the VaR of the absolute loss Labst . The risk limit

VaRt,abs
α ¤ VaRt can then be rewritten as VaRP,t

α ¤ VaRt{Wt�1. From Equation (1.3.4) it

follows that the risk limit holds if

wt ¤ VaRt{Wt�1 �Rf
t

VaRt
α �Rf

t

. (1.3.40)

59Wang et al. (2012) call their strategy a target CVaR strategy. However, the authors do not target a constant
level of risk over time, but allow a maximum level of risk (see also Basak and Shapiro (2001) and Alexander and
Baptista (2004)).

60I thank Peter Albrecht and Markus Huggenberger for this helpful comment.
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Under the assumption EpRt | Ft�1q ¡ Rf
t , which is typically fulfilled in practice (Benartzi and

Thaler, 1995), the expected portfolio return E
�
RP
t | Ft�1

�
is increasing in wt. Hence, the trader

chooses the highest possible equity exposure that still fulfills the risk limit VaRt,abs
α ¤ VaRt.

Thus, wt is given by

wt � VaRt{Wt�1 �Rf
t

VaRt
α �Rf

t

. (1.3.41)

Consequently, by choosing a constant relative risk limit VaRt{Wt�1 � VaRtarget
α , the target VaR

strategy follows as optimal dynamic trading strategy under a downside risk limit. By the same

arguments as above, the weighting for the target CVaR strategy can be obtained if an investor

faces a CVaR limit.

1.4 Assessing the Accuracy of Risk Targeting

In this section, we present methods that can be used to test the accuracy of the target risk strate-

gies, i.e. we present tests that can be used to test if the different risk models are successful

in targeting a constant level of portfolio risk over time. A constant portfolio risk is important

for several reasons. First, a constant risk of the strategies should be achieved by definition of

risk targeting. Second, an investor who chose a fund that targets a volatility level that fits to the

investor’s risk preferences would sell this fund if the fund achieves a significantly higher volatil-

ity than expected. Similarly, an investor who expects only a limited number of days where the

portfolio return is smaller than �VaRtarget
α would also divest if the fund exhibits too many ex-

tremely negative returns. Third, risk-averse investors are willing to pay for hedges against a

changing portfolio volatility (Adrian and Rosenberg, 2008, Ang et al., 2006b, Bollerslev and

Todorov, 2011). These investors are willing to pay higher fees for strategies with a more con-

stant portfolio risk. Fourth, having a constant level of portfolio risk over time is frequently

used by practitioners (Barroso and Santa-Clara, 2015, p. 112). Fifth, several studies show that

a higher forecasting accuracy, and hence a more constant portfolio risk, coincides with higher

(risk-adjusted) performance and utility gains (Bollerslev et al., 2018, Marquering and Verbeek,

2004, Moreira and Muir, 2017, Perchet et al., 2016, Taylor, 2014). Consequently, a fund that

fails to target a constant risk over time typically achieves a suboptimal risk-return profile. For
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example, Bollerslev et al. (2018, p. 2732) write:

“the investor achieves the maximum utility by successfully targeting a constant risk

level, while the utility decreases with the volatility-of-volatility. Hence, risk models

that help the investor achieve more accurate volatility forecasts are associated with

higher levels of utility”

Bollerslev et al. (2018) find that an investor who uses volatility targeting is willing to pay a

fee of 0.48% per year to switch from an inaccurate to a more accurate volatility model. The

authors find that there exists a positive, non-linear relation between forecasting accuracy of

volatility models and utility benefits. Further, they find that a model with perfect foresight,

i.e. a model that produces a totally constant portfolio volatility over time, exhibits the highest

utility benefit (see also Benson et al. (2014)). Moreover, Dreyer and Hubrich (2019) find that a

portfolio volatility stabilization, i.e. a lower volatility of volatility, is linked to a higher tail risk

reduction. Similarly, in a cross-sectional setting, Baltussen et al. (2018) find that assets with

a high volatility of volatility (vol-of-vol) underperform assets with a more constant volatility.

Further, higher vol-of-vol assets also exhibit higher downside risk and the vol-of-vol is linked

to an asset’s kurtosis. This especially holds during down-markets where high vol-of-vol assets

underperform low vol-of-vol assets by 0.83% per month. Consequently, forecasting accuracy

and a stable risk is an important driver of the investor’s benefit from risk targeting and should

therefore be tested. Besides backtesting the accuracy of volatility targeting, we additionally

show how the accuracy of VaR and CVaR targeting can be tested. To assess the accuracy of

several volatility models, Bollerslev et al. (2018) use the R2 as well as the DM-test of Diebold

and Mariano (1995), which tests for equal predictive ability. However, both methods have

several disadvantages. Therefore, in order to assess the accuracy of volatility targeting, we use

more powerful tools that will be presented in the next section.

1.4.1 Assessing the Accuracy of Volatility Targeting

Although several studies on volatility targeting have been made, only a few studies statistically

assess if it is possible to achieve the desired volatility target over time. To assess the accuracy
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of volatility targeting for some set of models M, we measure the portfolio variance of model

k on day t by RV 2
k,t :� w2

k,t � RV 2
t , where wk,t is the weight of strategy k, k P M, on day t

and RVt denotes the Realized Volatility on day t of the risky asset (see Andersen et al. (2001),

Patton (2011) or Bollerslev et al. (2018) for a definition of RVt).61 Motivated by Hansen and

Lunde (2005) and Patton (2011), we define the QLIKE loss function of model k on day t by

Lk,t :� L
�
RV 2

k,t, σ
2
target,d

�
:� RV 2

k,t

σ2
target,d

� ln

�
RV 2

k,t

σ2
target,d

�
� 1, (1.4.1)

where the daily volatility target is given by σtarget,d � σtarget{
?

252 (see Christoffersen (2012,

p. 85) and Taylor (2014, p. 475)). Patton (2011) shows that the QLIKE and the MSE loss

functions are robust against noise in the volatility proxy. The MSE relies on the absolute forecast

error, whereas the QLIKE relies on the relative forecast error. We choose the QLIKE instead

of the MSE since the QLIKE penalizes models that underestimate risk, and hence produce a

portfolio volatility that is too high. We follow Christoffersen (2012) and use a slightly different

representation than the definition used by Hansen and Lunde (2005) and Patton (2011). This

representation has the advantage that L
�
RV 2

k,t, σ
2
target,d

� � L pRV 2
t , σ

2
t q holds, which is the

usual choice in the volatility evaluation literature. Moreover, our loss function is normalized in

the sense thatLk,t � 0 holds if the portfolio volatility on day t equals the desired volatility target,

whereas the representation of Hansen and Lunde (2005) and Patton (2011) is not normalized.

In particular, by choosing Cpzq � 1
z
, C̃pzq � logpzq and Bpzq � � logpzq, our representation

still fulfills Proposition 1 of Patton (2011). Thus, our representation is a robust loss function in

the sense of Patton (2011, Definition 1), and hence is robust against noise in the volatility proxy.

Patton (2011) shows that using squared daily returns instead of Realized Volatility leads to quite

similar conclusions. We also used squared daily returns instead of the Realized Volatility and

found similar results for both methods.

In order to assess the accuracy of the volatility models, we define the relative loss between

61The Realized Volatility data are downloaded from the Oxford Man Realized Library (https://realized.
oxford-man.ox.ac.uk/). We follow Hansen and Lunde (2005) and scale the Realized Volatility to a measure
of the close-to-close volatility of day t. Bollerslev et al. (2018) simply add the squared overnight return to the
Realized Volatility to obtain a measure for the whole day’s variance. However, both methods deliver similar
results.
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model i and j as Xij,t � Li,t � Lj,t and the average relative loss between these models as

X ij � 1

T

Ţ

t�1

Xij,t. (1.4.2)

The basic idea of testing for predictive accuracy is that a positive value of X ij indicates that

model j is more accurate than model i, i.e. model j is more successful in targeting a constant

level of volatility.

To test for the accuracy of the different target volatility strategies, we first use the test for

equal predictive ability (DM-test) of Diebold and Mariano (1995), which was also used by

Patton (2011) and Bollerslev et al. (2018). Further, we use the Reality Check (RC-test) of White

(2000) and Sullivan et al. (1999) and its extension, the test for Superior Predictive Ability (SPA-

test) of Hansen (2005) and Hansen and Lunde (2005). In contrast to the DM-test, both tests,

the RC- and SPA-test, test for superior predictive ability and can also be applied to more than

two models simultaneously. Both tests test the null-hypothesis that a chosen benchmark model

is more accurate than all the remaining models. Moreover, we use the stepwise extensions of

the RC-test and SPA-test that are presented in Romano and Wolf (2005) and Hsu et al. (2010).

We denote these stepwise extensions by Step-RC and Step-SPA. The stepwise approaches can

be used to construct sets of models that are superior to a chosen benchmark model. Similarly,

we also use the algorithm based on the False Discovery Rate (FDR) that is presented in Barras

et al. (2010) and Bajgrowicz and Scaillet (2012). The authors show how the FDR can be used

to identify models that are superior to a chosen benchmark model. The set of superior models,

constructed by the stepwise approaches or the FDR approach, contains the models that produce

a more constant portfolio volatility than the chosen benchmark model. Finally, we use the

Model Confidence Set (MCS) of Hansen et al. (2011) and Hansen et al. (2003), where we

mainly follow Hansen et al. (2003) who also applied this algorithm to assess the accuracy of

volatility models. The MCS also identifies a set of superior models and has the advantage that

no benchmark model is needed. A short summary of the tests can be found in Rickenberg

(2020a, Appendix C).

For the DM-test, the Step-RC, the Step-SPA and the FDR approach, a certain benchmark

model has to be chosen. These tests then compare the accuracy of all other models to this
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benchmark model. As benchmark model we choose the easiest one, which is the HSD. This

model is frequently used in the volatility targeting literature and is similar to the model used

by Barroso and Santa-Clara (2015), Barroso and Maio (2018), Cederburg et al. (2020) and

Moreira and Muir (2017). When applying the RC- and SPA-test, we choose each model once as

the benchmark and test if this benchmark is outperformed by at least one other model. Romano

and Wolf (2005) and Bajgrowicz and Scaillet (2012) argue that applying the RC- and SPA-test

to different benchmarks has several disadvantages that are corrected by the Step-RC, Step-SPA,

the MCS and the FDR approaches.

1.4.2 Assessing the Accuracy of VaR Targeting

In Section 1.3, we have presented several VaR forecasting methods and we have shown how

these VaR forecasting methods can be used to derive the weight wt of the risky asset in a target

VaR strategy. Moreover, we have shown how a target VaR strategy can be approximated by a

target volatility strategy with an adjusted target volatility level given in Equation (1.3.22). Next,

we want to assess the quality of the different forecasting methods and we want to compare

the “true” target VaR strategies, based on a proper VaR forecast for the risky asset, with the

approximated target VaR strategies, based on the risky asset’s volatility solely. In other words,

we want to assess if the different target VaR strategies succeed to produce a constant portfolio

VaR over time and if controlling volatility is sufficient for this task. Similarly, Christoffersen

and Diebold (2000) show how VaR backtesting methods can be used to backtest the accuracy

of volatility models.

To assess the quality of the target VaR strategies, we define the hit variables

HP
t �

#
1, if LPt ¡ VaRtarget

α

0, if LPt ¤ VaRtarget
α ,

(1.4.3)

i.e. HP
t is equal to one if the portfolio loss is higher than the VaR target VaRtarget

α , called a hit,

and zero else. An accurate target VaR strategy should exhibit two abilities. First, the percentage

of days when the portfolio loss is higher than the predefined VaR target, i.e. the proportion of

hits in the hit-series tHP
t uTt�1, should be equal to the desired significance level α. Second, the

days when the portfolio loss is higher than the VaR target should occur randomly over time and
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should not be clustered (see Berkowitz and O’Brien (2002, p. 1101) and Berkowitz et al. (2011,

p. 2217)). Assume that the hits of a target VaR strategy occur clustered on many subsequent

days, i.e. the portfolio losses are higher than the predefined VaR target on every day in a certain

period. As a consequence, investors would remove money from a fund using this strategy, since

this strategy seems to fail in having a constant VaR over time.62

To test these two abilities, we resort to the VaR backtesting method of Christoffersen (1998),

which is one of the most widely used VaR backtests in the academic literature (Du and Escan-

ciano, 2016).63 In Appendix C.1, we show that the variable HP
t is equivalent to

Ht �
#

1, if Lt ¡ VaRt
α

0, if Lt ¤ VaRt
α,

(1.4.4)

i.e. HP
t is equal to the hit variable based on the losses and VaRs of the risky asset solely,

which is used in the backtest of Christoffersen (1998). Consequently, the backtesting approach

of Christoffersen (1998) can be directly adopted for the variables HP
t . Moreover, this result

directly provides critical values which allow us to draw conclusions on the accuracy of the target

VaR strategies.64 The backtest of the target VaR strategy is then formed with the variables

ĤP
t �

#
1, if lPt ¡ VaRtarget

α

0, if lPt ¤ VaRtarget
α ,

(1.4.5)

where lPt is the realized portfolio loss on day t. The first above mentioned ability, i.e. the

correct hit proportion, is then tested with the unconditional coverage test. The second ability,

i.e. the independence of the hits, is tested with the test of independence and both abilities are

simultaneously tested by the conditional coverage test (Christoffersen, 1998).

1.4.3 Assessing the Accuracy of CVaR Targeting

In order to assess the accuracy of the target CVaR strategies, we again use backtesting methods

that were developed for evaluating different CVaR forecasting methods. For backtesting CVaR,
62Besides this economic importance of independent hits, this ability should also hold by definition of VaR.

See, for example, McNeil et al. (2015, Lemma 9.5) who show that the process of hit variables is a process of iid
Bernoulli random variables with probability α (see also Christoffersen (1998), Berkowitz and O’Brien (2002) and
Berkowitz et al. (2011)).

63See also Berkowitz and O’Brien (2002), Berkowitz et al. (2011, p. 2217) and Kuester et al. (2006, Sec. 2) for
a short overview of this backtesting procedure.

64Christoffersen (1998) shows that, under the null hypothesis, the test statistic asymptotically follows a χ2

distribution.
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there does not exist a common backtesting procedure (Du and Escanciano, 2016). Furthermore,

backtesting CVaR is more challenging than backtesting VaR. Therefore, we will use two differ-

ent CVaR backtesting procedures that help us to draw more sound conclusions on the accuracy

of the target CVaR strategies.65 For this purpose, as first CVaR backtest, we use the CVaR back-

testing procedure described in McNeil and Frey (2000, Section 4.3). This backtesting method

compares the loss of the risky asset with the CVaR of the risky asset and is based on the result

that, under the condition that the loss Lt exceeds VaRt
α, the variables

Xt � Lt � CVaRt
α

σt
� L�t � CVaRt,�

α (1.4.6)

are iid with expectation zero. Based on this result, a backtesting procedure using a distribution

free bootstrap is derived. However, in this paper, we are interested in the (normalized) difference

between the portfolio loss and target CVaR level CVaRtarget
α , i.e. we are interested in the ratio

XP
t � LPt � CVaRtarget

αa
varpRP

t | Ft�1q
, (1.4.7)

where we normalize these differences by the portfolio volatility. In Appendix C.2, we show that

XP
t equals Xt and thus, given LPt � VaRt,P

α ¡ 0, XP
t should be iid with expectation zero as

well. Hence, we can adopt the backtesting procedure of McNeil and Frey (2000, Section 4.3)

for the variables XP
t . The backtest is then implemented by using the realizations

xPt �
lPt � CVaRtarget

α

wt � σ̂t , (1.4.8)

where lPt denotes the realized day t portfolio loss based on the weight wt. If the weight wt of

the risky asset is estimated correctly, the sample

!
xPt : t � 1, ..., T, lPt ¡ yVaR

t,P

α

)
(1.4.9)

should behave like an iid sample with mean zero.66

65Both backtests used in this paper are unconditional backtests, which are less powerful than conditional back-
tests (Du and Escanciano, 2016). However, as opposed to the VaR backtesting literature, there does not exist a
widely used conditional CVaR backtesting method.

66We standardize the strategies that rely on the Historical Simulation by the HSD volatility. Moreover, backtest-
ing the target CVaR strategies for which a proper VaR forecast, and hence a portfolio VaR, exists is straightforward.
For the strategies that are only based on a volatility forecast, the time series of the portfolio VaR is not available.
Since we calculate the target volatility level by assuming a normal distribution for Zt in these cases, we solve this
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As second target CVaR backtesting procedure, we use the backtest derived in Embrechts

et al. (2005). We again consider the days where the portfolio loss is higher than the portfolio

VaR, i.e. we consider the days where LPt ¡ VaRt,P
α holds. In these cases, stemming from the

definition of the CVaR, the mean between the portfolio loss and the portfolio CVaR should be

zero. Since the portfolio CVaR should be equal to CVaRtarget
α over time, the measure

V1 �
°T
t�1

�
LPt � CVaRtarget

α

� � 1tLPt ¡VaRt,Pα u°T
t�1 1tLPt ¡VaRt,Pα u

(1.4.10)

should exhibit a low absolute value (Embrechts et al., 2005, p. 72).67 Nevertheless, Embrechts

et al. (2005) argue that the measure V1 has the drawback that it relies on an estimate of the

portfolio VaR. In the definition of the measure V1, the worst cases are defined as the days when

the portfolio loss exceeds the estimated portfolio VaR. If the risky asset’s VaR forecast, and

hence by Equation (1.3.4) the portfolio VaR, is not credible, the validity of the measure V1

is doubtful. To account for this observation, the authors propose a second measure V2 that

does not rely on a VaR forecast. The motivation of this measure stems from the interpretation

that the CVaR is the expected loss in the 100 � α% “worst” cases. Therefore, we denote by

Dt :� LPt � CVaRtarget
α the difference between the portfolio loss and the CVaR target. Based

on these differences, we define the worst cases as the 100 � α% highest differences Dt, i.e. we

define the worst cases as the cases when the target CVaR level is exceeded the most. This has the

advantage that the worst cases do not depend on an estimate of the VaR, where we do not know

if this estimate is credible. We denote the p1 � αq-quantile of tDtuTt�1 by D1�α and calculate

V2 by

V2 �
°T
t�1Dt � 1tDt¡D1�αu°T
t�1 1tDt¡D1�αu

. (1.4.11)

As before, the absolute value of V2 should be low for a successful target CVaR strategy. As a

third measure, denoted by V , Embrechts et al. (2005, p. 72) combine the measures V1 and V2

problem in the following way. If a target CVaR strategy relies on a volatility forecast σ̂t solely, we estimate the
corresponding VaR byzVaR

t

α � σ̂t �N1�α, i.e. again assuming that Zt follows a standard normal distribution. In

this case, the portfolio VaR is given byzVaR
t,P

α � wt � σ̂t �N1�α � p1 � wtq �Rft . An alternative would be to use

the VaR target VaRtarget
α as proxy for the portfolio VaR, i.e.zVaR

t,P

α � VaRtarget
α .

67For the volatility based strategies, we again usezVaR
t,P

α � wt � σ̂t �N1�α � p1 � wtq �Rft as forecast for the
portfolio VaR in this backtest.
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and the authors define

V � |V1| � |V2|
2

, (1.4.12)

which should again be low for a good target CVaR strategy.

1.5 Empirical Results

1.5.1 Data

To evaluate the performance of the different target risk strategies and to backtest the ability of

achieving a constant level of portfolio risk over time, we use data for the DAX Performance

Index as risky asset. As proxy for the risk-free rate, we use the three month Euribor.68 The

data range from 01.01.2000 to 31.12.2018 and are obtained from Datastream. Although many

studies on investment or fund strategies use monthly data, we use daily data, since daily data

better capture the dynamics of the financial markets and are more closely to the manner how

funds are managed (see Busse (1999, p. 1015) and Karolyi and Stulz (1996, p. 952)). Further,

even long-term investors typically have short evaluation horizons (Benartzi and Thaler, 1995)

and should also time short-term volatility (Moreira and Muir, 2019). Moreover, in order to

better manage potential extreme events, focusing on daily return data is also beneficial, since

extreme price changes can occur during short time intervals (Longin, 2000, p. 1104). Most

studies on risk targeting – or more precisely volatility targeting – use data for the S&P 500,

whereas risk targeting for German stocks is so far only rarely examined.69 Some additional

results for US data and small caps, proxied by the S&P 500 and the German small cap index

SDAX, are given in Appendix D.

The chosen period from 2000 to 2018 is marked by changing periods of low and high risk

and contains the collapse of the tech bubble, the global financial crisis and the European debt

68This is similar to Marquering and Verbeek (2004) who use the S&P 500 as risky asset and the three month US
T-bill rate as risk-free asset to examine the economic value of volatility timing in the US market. For risk targeting,
it is crucial to use a highly liquid asset as underlying risky asset since times of increasing volatility, which induce
a portfolio reallocation, typically coincide with times of lower market liquidity (Ang et al., 2006b).

69Packham et al. (2017) examine data for German stocks as well, but in a slightly different setting. Barroso
and Santa-Clara (2015) examine volatility targeting for a momentum portfolio consisting of German stocks. Ang
et al. (2009) examine the (cross-sectional) low volatility anomaly for an international data set that also includes
Germany.
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crisis, but also times of continuously uptrending markets. This illustrates how risk targeting

works in different market environments and whether the models are successful in adapting to

changing market regimes. Dopfel and Ramkumar (2013) demonstrate the importance of port-

folio risk management during in the global financial crisis, where volatility managing delivers

higher returns with lower volatility. However, the authors also show that a good strategy should

increase the equity exposure immediately after the crisis. Thus, a good strategy should adapt

quite fast to the changes in market risk in our sample. In total, a well performing strategy should

limit the downside while the upside potential is captured, as it is found for many hedge fund

strategies (Fung and Hsieh, 1997). Additionally to our main results, Appendix D.6 shows how

risk targeting works for a longer data set that covers about 88 years. Further, Appendix D.7

shows out-of-sample results for the recent corona crisis.

As in Kellner and Rösch (2016), we use an estimation window of n � 1000 days for His-

torical Simulation, FHS, EVT, the skewed t distribution and for estimating the GARCH(1,1)

parameters. The HSD is estimated with an estimation window of m � 30 days. As benchmark

portfolios for the risk targeting strategies, we use two buy-and-hold investment strategies. The

first benchmark strategy is fully invested in the risky asset, i.e. wt � 1 for all t. The second

strategy initially invests w0 � 60% of wealth in the risky asset and the remaining 1�w0 � 40%

in the risk-free asset, without rebalancing the weights over time. Benartzi and Thaler (1995)

state that portfolios that contain approximately 50% stocks and 50% bonds are optimal for loss-

averse investors. Similarly, Ang et al. (2005, Fig. 3) find that such portfolios are also held by

moderately risk-averse investors. Further, 60/40 portfolios are frequently used by pension fund

managers (Benartzi and Thaler, 1995, p. 87) for whom risk targeting can be an interesting alter-

native. In particular, a 60/40 portfolio should also be in line with the risk profile of an average

investor (Asvanunt et al., 2015, Footnote 2).

In order to better manage extreme losses and to reduce drawdowns, we choose a low sig-

nificance level of α � 0.5% for the target VaR and CVaR strategies. Low significance levels

are frequently used in practice and are also important from a regulatory perspective. For ex-

ample, the Bank of International Settlements has set the significance level to 1% for measuring
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market risk and to only 0.1% for credit risk. Further, a significance level of α � 0.5% is also

set to calculate the Solvency Capital Requirement under Solvency II. Bali et al. (2008) also use

a significance level of 0.5% in a VaR forecasting setting. In particular, Happersberger et al.

(2019) find better result for downside risk managed strategies when a lower α is chosen. Fur-

ther, Ghysels et al. (2016) find that skewness information is hidden in the distribution’s tails

and that this “tail skewness” is important to determine the optimal portfolio allocation. Thus,

in order to better capture skewness risk, lower significance levels should be chosen. Additional

results for significance levels of α � 1%, 2.5% and 5% are given in Appendix D.2. Finally,

as in Barroso and Santa-Clara (2015) and Barroso and Maio (2018), we choose an annualized

volatility target of σtarget � 12%. By using Equations (1.3.23) and (1.3.38), we obtain VaR and

CVaR target levels of VaRtarget
α � 1.9471% and CVaRtarget

α � 2.1861% for a significance level

of α � 0.5%.70

1.5.2 Testing the Accuracy of Risk Targeting

We start the empirical part by assessing the accuracy of the different target risk strategies. By

definition, the aim of risk targeting is to achieve a predefined level of portfolio risk constantly

over time. In particular, we are interested in the question if more advanced models produce a

more constant portfolio risk over time and what kind of risk – volatility, VaR or CVaR – an

investor should manage if the investor targets a predefined level of volatility, VaR or CVaR.

Further, we are interested in the question if managing volatility is sufficient or if incorporating

higher moments, as done by managing VaR and CVaR, leads to a higher accuracy as found

by Taylor (2005) in a different setting. Testing the accuracy of the different risk models is

also important from an economical perspective, since previous studies have shown that a higher

forecasting accuracy coincides with a higher economic value in terms of a higher risk-adjusted

performance and high utility gains (Bollerslev et al., 2018, Fleming et al., 2003, Marquering and

70We have chosen the same α for both the target VaR and target CVaR strategies but different target risk levels.
Another possibility would be to choose the same target level, but different significance levels as it is done in
Alexander and Baptista (2004, p. 1262), i.e. VaRtarget

α � CVaRtarget
α̃ with α   α̃. Du and Escanciano (2016)

suggest that the significance level for CVaR should be about twice the significance level of VaR, i.e. 2α � α̃. For
example, to guarantee that both strategies have the same target risk level when Equations (1.3.23) and (1.3.38) are
used, a significance level of α̃ � 5% for the target CVaR strategy requires a significance level of about α � 1.96%
for the target VaR strategy.
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Verbeek, 2004, Moreira and Muir, 2017, Taylor, 2014). Further, a more constant portfolio risk

is also related to a lower tail risk (Dreyer and Hubrich, 2019). Consequently, a high forecasting

accuracy, and hence a more constant portfolio risk, is beneficial for risk targeting investors. We

first test the accuracy of the strategies when the investor’s aim is to target a certain level of

portfolio volatility over time. Whenever a benchmark model is needed, we choose the HSD

model as benchmark, which we denote by model 0. Thus, we assess if more advanced models

are more successful in targeting a constant level of volatility than the model used in Barroso

and Santa-Clara (2015), Moreira and Muir (2017), Dreyer and Hubrich (2019) and Barroso and

Maio (2018). This model is then tested against the remaining models k � 1, ..., 16. Bollerslev

et al. (2018) find that more advanced models produce more accurate forecasts and higher utility

gains than static forecasting models, like the HSD model.

Table I. Testing the Accuracy of Volatility Targeting
This table contains the results of the tests of predictive accuracy presented in Section 1.4.1. L

norm

k � 1
T

°T
t�1 Lk,t

1
T

°T
t�1 L0,t

defines the average loss of model k, normalized by the loss of model 0 and is given in percent. DM-test stands for
the test statistic of the Diebold and Mariano (1995) test. The null-hypothesis of equal predictive ability is rejected
for |DM-test| ¡ 1.64, where positive values indicate that model k is more accurate than the HSD model. Bold
numbers of DM-test indicate that the model is significantly superior to the HSD model. pRC,n and pRC stand for
the naive p-value and p-value of the RC-test (Sullivan et al., 1999, White, 2000). pSPA,n and pSPA,c stand for the
naive p-value and p-value of the SPA-test (Hansen, 2005, Hansen and Lunde, 2005). pSPA,l and pSPA,u give lower
and upper bounds for the p-value of the SPA-test. Bold numbers of these tests indicate that the null-hypothesis that
model k is the best model cannot be rejected at a test level of 10%. All p-values are given in percent.

Model L
norm
k DM-test pRC,n pRC pSPA,n pSPA,l pSPA,c pSPA,u

Vola Hist 100.00 - 0.00 0.32 0.00 0.00 0.00 0.00
Vola EWMA 83.47 6.28 2.73 63.60 2.73 2.73 2.73 12.30
Vola GARCH 80.88 4.32 100.00 100.00 100.00 100.00 100.00 100.00

VaR Hist 278.33 -9.90 0.00 0.00 0.00 0.00 0.00 0.00
VaR EWMA FHS 98.44 0.31 0.00 0.66 0.00 0.00 0.00 0.00
VaR EWMA EVT 108.13 -1.36 0.00 0.00 0.00 0.00 0.00 0.00
VaR EWMA Stsk 111.72 -2.47 0.00 0.00 0.00 0.00 0.00 0.00
VaR GARCH FHS 89.25 2.00 0.00 12.18 0.00 0.00 0.00 0.00
VaR GARCH EVT 98.76 0.20 0.00 0.32 0.00 0.00 0.00 0.00
VaR GARCH Stsk 119.79 -2.88 0.00 0.00 0.00 0.00 0.00 0.00

CVaR Hist 273.18 -10.63 0.00 0.00 0.00 0.00 0.00 0.00
CVaR EWMA FHS 119.44 -2.83 0.00 0.00 0.00 0.00 0.00 0.00
CVaR EWMA EVT 124.49 -3.47 0.00 0.00 0.00 0.00 0.00 0.00
CVaR EWMA Stsk 142.35 -6.71 0.00 0.00 0.00 0.00 0.00 0.00
CVaR GARCH FHS 100.38 -0.06 0.00 0.10 0.00 0.00 0.00 0.00
CVaR GARCH EVT 106.77 -1.03 0.00 0.00 0.00 0.00 0.00 0.00
CVaR GARCH Stsk 149.67 -6.90 0.00 0.00 0.00 0.00 0.00 0.00

Tables I and II show the results for the tests presented in Section 1.4.1, where Table I shows

the results for the DM-, RC- and SPA-test. The first column of Table I contains the average

loss of all models, normalized by the average loss of the HSD model, i.e. L
norm

k � 1
T

°T
t�1 Lk,t

1
T

°T
t�1 L0,t

,
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k � 1, ..., 16. A normalized loss smaller than 100% indicates that model k is (on average) more

accurate than the HSD model, whereas values greater than 100% indicate that the HSD model

is more successful in achieving a constant portfolio volatility. Table I clearly shows that the

dynamic volatility models, i.e. the EWMA and GARCH based target volatility strategies, are

the most accurate models, whereas managing VaR or CVaR typically leads to a less accurate

portfolio volatility. In particular, when the aim is to target a constant level of volatility, the His-

torical Simulation managed strategies (VaR-HS and CVaR-HS) are the least accurate models.

Further, the DM-test indicates that most of the CVaR models are significantly less accurate in

targeting a constant level of volatility, indicated by values of less than �1.64. When using the

RC-test, only three strategies – EWMA, GARCH and VaR-GARCH-FHS – cannot be rejected

at a test level of 10%. The RC-test tests if a chosen benchmark model is at least as accurate as

all the remaining models. If the null-hypothesis of a model cannot be rejected, i.e. the p-value

is higher than the chosen test level of 10%, there is no indication that any other model is more

successful in targeting a constant level of portfolio volatility over time than this model. The

SPA-test, which extends the RC-test by using a studentized test statistic and a sample depen-

dent null distribution, is typically more powerful in determining inferior models (Hansen, 2005,

Hansen and Lunde, 2005). This is confirmed by our results, since more null-hypotheses are

rejected. The SPA-test rejects all null-hypotheses of superior predictive ability, except for the

null-hypothesis when the GARCH model is used as benchmark model. As a conclusion, Table

I shows that the dynamic volatility models produce the most accurate portfolio volatility.

Table II shows the sets of superior models identified by the stepwise RC-test, the stepwise

SPA-test, the MCS and the FDR approach. Whenever a benchmark model is needed, we choose

the HSD model as benchmark strategy. The MCS has the advantage that no benchmark model

has to be chosen. The MCS, which is an extension of the SPA-test, produces similar results

to the SPA-test for all reasonable test levels. For both approaches, only the GARCH model

is indicated as an accurate model. The Step-RC and Step-SPA produce larger sets than the

MCS and these sets contain the EWMA, GARCH and VaR-GARCH-FHS models. This result

is similar to the result of the RC-test. In particular, there are no differences between the sets
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Table II. Sets of Accurate Volatility Targeting Models
This table contains the results of the stepwise RC-test of Romano and Wolf (2005), the stepwise SPA-
test of Hsu et al. (2010), the MCS of Hansen et al. (2003) and Hansen et al. (2011) as well as the FDR
method of Barras et al. (2010) and Bajgrowicz and Scaillet (2012). pR and pSQ stand for the p-values
of the MCS and are given in percent. Bold values indicate that the model is contained in the MCS for
a test level of 10%. Step-RC and Step-RCst show the step in which the model is added to the set of
superior models using the stepwise multiple testing of Romano and Wolf (2005), where Step-RCst uses
a studentized test statistic. Step-SPA and Step-SPAst show the step in which the model is added to the
set of superior models using the stepwise multiple testing of Hsu et al. (2010), where Step-SPAst uses a
studentized test statistic. A value of zero means that the model is not added to the set of superior models.
The tests are performed for a test-level of 10%. The last column contains the step in which the model is
added to the set of superior models targeting an FDR� of 10%. A value of zero indicates that the model
is not contained in the superior set.

Model pR pSQ Step-RC Step-RCst Step-SPA Step-SPAst FDR� � 10%

Vola Hist 0.00 0.00 - - - - -
Vola EWMA 4.90 4.90 1 1 1 1 1
Vola GARCH 100.00 100.00 1 1 1 1 2

VaR Hist 0.00 0.00 0 0 0 0 0
VaR EWMA FHS 0.00 0.00 0 0 0 0 0
VaR EWMA EVT 0.00 0.00 0 0 0 0 0
VaR EWMA Stsk 0.00 0.00 0 0 0 0 0
VaR GARCH FHS 0.00 0.00 1 1 1 1 3
VaR GARCH EVT 0.00 0.00 0 0 0 0 0
VaR GARCH Stsk 0.00 0.00 0 0 0 0 0

CVaR Hist 0.00 0.00 0 0 0 0 0
CVaR EWMA FHS 0.00 0.00 0 0 0 0 0
CVaR EWMA EVT 0.00 0.00 0 0 0 0 0
CVaR EWMA Stsk 0.00 0.00 0 0 0 0 0
CVaR GARCH FHS 0.00 0.00 0 0 0 0 0
CVaR GARCH EVT 0.00 0.00 0 0 0 0 0
CVaR GARCH Stsk 0.00 0.00 0 0 0 0 0

of the Step-RC and Step-SPA test. Further, studentizing does not lead to different results. The

FDR approach, which is known to typically produce sets of superior models that are at least as

large as the sets of the Step-RC and Step-SPA approaches, chooses the same models as superior

models. For this approach, the two volatility models (EWMA and GARCH) are chosen in the

first two steps, which strengthens the earlier findings that the dynamic volatility models produce

the most constant portfolio volatility.

To summarize the results of Tables I and II, we find convincing results of the EWMA,

GARCH and VaR-GARCH-FHS model, where the GARCH model delivers the best results.

Hence, an investor who wants to achieve a constant portfolio volatility over time should man-

age volatility directly by a dynamic risk model. Managing downside risk typically fails to target

a constant level of volatility. Further, unconditional models, i.e. HSD or Historical Simulation,

produce a portfolio volatility that significantly deviates from the desired volatility target. Since
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a higher forecasting accuracy typically coincides with a higher risk-adjusted performance and

high utility gains, we expect better performance results for conditional models. Bollerslev et al.

(2018) also find that static models, like the HSD model, are inaccurate and, due to their inaccu-

racy, produce lower utility gains for an investor who targets a constant level of volatility.

Table III reports results for the VaR backtest of Christoffersen (1998) that is summarized in

Section 1.4.2, where we report p-values for the unconditional and conditional coverage test for

significance levels of α � 0.5%, 1%, 2.5% and 5%. These significance levels are also frequently

used in the literature on VaR forecasting (see Bali et al. (2008) for example). The VaR back-

testing results demonstrate that for all significance levels controlling volatility is not sufficient

when an investor’s aim is to target a constant portfolio VaR over time. In contrast, managing

CVaR is feasible for an investor who targets a constant VaR over time. However, VaR based

strategies are more successful in targeting a constant portfolio VaR over time than strategies that

manage CVaR. Only two of the VaR based strategies that rely on a conditional volatility model

can be rejected for a significance level of α � 0.5% and a test level of 10%. Further, for higher

significance levels of α, unconditional models based on the Historical Simulation also fail to

target a constant VaR, whereas these models cannot be rejected for low significance levels. A

possible explanation for this result is that low significance levels produce only a limited number

of hits. Historical Simulation is known for producing adequate hit ratios, but these hits are usu-

ally clustered over time. Hence, when testing for unconditional coverage, Historical Simulation

usually delivers convincing results. However, due to the failure of producing independent hits,

Historical Simulation is often rejected once the independence or conditional coverage test is ap-

plied (Kuester et al., 2006). Since the independence test of Christoffersen (1998) only regards

successive hits, low significance levels, and hence only very few hits over the whole sample,

imply that the independence test fails to detect the lack of independence. This explains why

Historical Simulation seems to perform well for low levels of α. Pritsker (2006) also finds that

VaR backtests fail to identify inferior models when only few exceedances occurred over the

sample.

Table IV shows the backtesting results for the two CVaR backtests that were summarized in
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Table III. VaR Backtesting Results
The table reports the backtesting results of the Christoffersen (1998) VaR backtest for significance levels
of α � 0.5%, 1%, 2.5% and 5%. puc and pcc denote the p-values for the unconditional coverage and
conditional coverage test and are given in percent. Bold numbers mark the models that are not rejected
at a test level of 10%.

α � 0.5% α � 1% α � 2.5% α � 5%

Model puc pcc puc pcc puc pcc puc pcc

Vola Hist 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Vola EWMA 0.01 0.03 0.00 0.00 0.00 0.01 0.02 0.04
Vola GARCH 1.46 2.90 2.09 6.87 0.10 0.40 5.98 18.22

VaR Hist 82.09 25.17 68.80 27.71 55.22 0.00 51.14 0.00
VaR EWMA FHS 43.75 27.08 41.01 63.71 49.33 25.13 64.51 59.47
VaR EWMA EVT 27.94 10.06 22.13 30.36 67.98 71.83 15.16 8.21
VaR EWMA Stsk 66.34 21.64 79.56 80.76 3.53 5.07 0.17 0.34
VaR GARCH FHS 56.13 29.04 58.70 74.75 61.45 86.73 64.51 90.32
VaR GARCH EVT 19.21 6.95 28.47 37.41 96.32 99.90 39.42 72.83
VaR GARCH Stsk 19.21 6.95 12.52 18.43 74.79 85.83 26.64 50.57

CVaR Hist 19.21 39.97 4.45 1.13 0.61 0.08 0.00 0.00
CVaR EWMA FHS 27.94 10.06 12.52 18.43 6.43 12.41 2.57 4.24
CVaR EWMA EVT 12.57 4.51 1.96 3.17 0.32 1.12 0.99 2.10
CVaR EWMA Stsk 19.21 6.95 12.52 18.43 28.10 52.96 69.05 14.61
CVaR GARCH FHS 27.94 10.06 35.88 44.91 11.92 26.42 8.03 19.06
CVaR GARCH EVT 4.57 1.55 3.00 4.80 1.46 5.08 5.06 12.92
CVaR GARCH Stsk 4.57 1.55 0.15 0.24 0.16 0.68 0.99 2.55

Section 1.4.3. We again choose the four significance levels α � 0.5%, 1%, 2.5% and 5%. The p-

value of the backtest of McNeil and Frey (2000) is denoted by pCV aR. Nearly all target volatility

and target VaR strategies fail to accurately target the portfolio CVaR and are rejected at a test

level of 10%. In contrast, only two of the target CVaR strategies can be rejected for significance

levels of α � 0.5% and α � 5%. This indicates that, by controlling the CVaR of the risky asset,

it is possible to achieve a constant portfolio CVaR over time. This finding is also supported by

the results of the CVaR backtest of Embrechts et al. (2005), which exhibits the lowest values

for the CVaR managed strategies. Further, the values V of the dynamically managed target

CVaR strategies are systematically lower than the values of the remaining models, indicating

that the CVaR of the risky asset should be managed dynamically. Interestingly, the CVaR-HS

approach cannot be rejected by the backtest of McNeil and Frey (2000). However, this backtest

is an unconditional backtest which only tests if the produced CVaR is correct on average (Du

and Escanciano, 2016). As mentioned above, Historical Simulation is typically rejected once a

conditional backtest is applied. The lower values of V of the conditionally managed strategies

indicate a higher accuracy of conditional models.

The backtesting results presented in this section demonstrate two important issues. First,
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Table IV. CVaR Backtesting Results
This table reports the backtesting results of the McNeil and Frey (2000) and Embrechts et al. (2005)
CVaR backtests for significance levels of α � 0.5%, 1%, 2.5% and 5%. V denotes the measure of the
Embrechts et al. (2005) backtest, given in Equation (1.4.12). Bold numbers mark the lowest value of
V . pCV aR denotes the p-value of the backtest of McNeil and Frey (2000) and is given in percent. Bold
numbers mark the models that are not rejected at a test level of 10%.

α � 0.5% α � 1% α � 2.5% α � 5%

Model V pCV aR V pCV aR V pCV aR V pCV aR

Vola Hist 0.5825 1.11 0.4257 0.39 0.2840 0.04 0.2097 0.00
Vola EWMA 0.4934 1.85 0.3164 1.93 0.2068 0.42 0.1527 0.09
Vola GARCH 0.3337 10.03 0.2150 7.84 0.1163 9.48 0.0917 1.66

VaR Hist 0.5699 3.30 0.4179 3.69 0.3849 0.20 0.3169 0.00
VaR EWMA FHS 0.3621 2.30 0.2282 2.62 0.0843 11.46 0.0891 1.05
VaR EWMA EVT 0.3145 3.94 0.1842 3.94 0.0898 8.12 0.0957 1.16
VaR EWMA Stsk 0.3356 5.53 0.2182 3.53 0.1506 1.37 0.1472 0.06
VaR GARCH FHS 0.2825 10.42 0.1369 13.93 0.0681 16.24 0.0688 3.30
VaR GARCH EVT 0.2318 14.41 0.1094 16.87 0.0637 14.92 0.0738 2.50
VaR GARCH Stsk 0.1955 26.53 0.1219 13.24 0.0732 12.96 0.0867 1.60

CVaR Hist 0.3052 12.97 0.1376 51.87 0.0848 77.77 0.0526 15.62
CVaR EWMA FHS 0.1814 28.01 0.0772 63.80 0.0200 93.16 0.0085 90.92
CVaR EWMA EVT 0.2305 5.81 0.0857 17.86 0.0209 35.76 0.0186 14.09
CVaR EWMA Stsk 0.1913 27.28 0.0894 34.94 0.0390 54.87 0.0384 47.23
CVaR GARCH FHS 0.1602 44.38 0.0691 57.07 0.0133 99.67 0.0070 94.12
CVaR GARCH EVT 0.1936 17.85 0.0508 41.94 0.0211 49.32 0.0139 32.10
CVaR GARCH Stsk 0.0634 70.90 0.0387 73.45 0.0455 14.36 0.0315 4.93

if an investor is interested in targeting portfolio risk in terms of volatility, VaR or CVaR, the

investor should directly manage volatility, VaR or CVaR, respectively. In particular, when the

aim is to target a certain level of tail risk, it is not sufficient to manage volatility. Second,

when portfolio risk is managed, the investor should use a fast-adapting dynamic risk model

instead of unconditional models, like HSD or Historical Simulation, as it is done by Barroso

and Santa-Clara (2015), Barroso and Maio (2018) and Moreira and Muir (2017). The next

section examines the performance of risk targeting. Based on the backtesting results from this

section, we expect a superior performance for the strategies that are based on a conditional risk

model.

1.5.3 Performance of Risk Targeting

We next assess the performance of the different risk targeting strategies and the two benchmark

portfolios. Results of this performance analysis over the whole sample are given in Table V.

All target risk strategies, except for the Historical Simulation managed target VaR strategy,

exhibit higher returns than the 60/40 portfolio with a risk, measured by volatility, drawdown,
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VaR or CVaR, that is lower – or comparable in the case of the volatility managed strategies –

than the risk of the 60/40 portfolio. Further, the risk targeting strategies deliver higher returns

with lower risk compared to the DAX. Therefore, dynamically managing portfolio risk can

significantly reduce the portfolio’s risk without simultaneously sacrificing returns (see also Fung

and Hsieh (1997) who found a similar behavior for dynamic trading strategies used by hedge

funds). This is also reflected by higher Sharpe Ratios for the dynamically managed target risk

strategies compared to the Sharpe Ratios of the two benchmark portfolios. Moreover, within the

(dynamically) managed target risk strategies, returns are quite similar. However, the downside

risk managed strategies take significantly less risk than the volatility managed strategies. The

highest Sharpe Ratio is found for the CVaR-EWMA-Stsk strategy, which is about 287.5% higher

than the Sharpe Ratio of the DAX and 51.96% higher than the Sharpe Ratio of the HSD model.

The Sharpe Ratio of the best volatility managed strategy is still 205% higher than the Sharpe

Ratio of the DAX. The Sharpe Ratio of the best CVaR managed strategy is 0.155{0.122 � 1 �
27.05% higher than the Sharpe Ratio of the best volatility managed strategy. In particular,

Sharpe Ratios of the dynamically managed CVaR strategies are all higher than the Sharpe Ratios

of the volatility managed strategies. This can also be seen by the modified Sharpe Ratio, which

measures the risk-adjusted annualized excess return (see Jondeau and Rockinger (2012) for a

definition of the modified Sharpe Ratio). The best results in terms of the Sharpe Ratios are

found for the strategies that are based on the skewed t distribution of Jondeau and Rockinger

(2003) and Bali et al. (2008). Generally, in order to increase the risk-adjusted performance,

risk should be managed by a dynamic risk model and not by a static risk model, like HSD or

Historical Simulation. The Sharpe Ratios of the statically managed strategies are significantly

lower than the Sharpe Ratios of the dynamically managed strategies. This finding is in line with

Bollerslev et al. (2018) since models that produce a more constant portfolio risk over time, as

shown in Section 1.5.2, also yield an enhanced risk-adjusted performance.

Although the differences in the Sharpe Ratio seem small, results of Table V indicate signif-

icant performance gains of portfolio risk management, especially when downside risk is man-

aged. This is the case, since our strategies are highly correlated, which results in very small
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standard errors for the relative Sharpe Ratios as highlighted in Kirby and Ostdiek (2012). For

example, the average correlation between all risk targeting models is 97.34% and the maximum

correlation between two strategies is 99.98%. This high correlation between the risk target-

ing strategies demonstrates that even small differences in the Sharpe Ratios indicate a striking

improvement in the tail risk targeting strategies’ performance. For example, Kirby and Ost-

diek (2012) find Sharpe Ratios for their strategies in the range of 0.47 to 0.49, compared to the

benchmark’s Sharpe Ratio of 0.46, and they conclude that, due to the high correlation of the

strategies, “[t]hese differences translate into significant performance gains”. The performance

gains of CVaR targeting compared to volatility targeting are even higher in magnitude than the

gains found by Kirby and Ostdiek (2012), demonstrating the vast performance gains of CVaR

targeting compared to volatility targeting. To test if any model produces a statistically higher

Sharpe Ratio than the HSD managed model, we use the corrected version of the Sharpe Ratio

test of Jobson and Korkie (1981), which is also used by DeMiguel et al. (2009b, p. 1928) and

Cederburg et al. (2020). This test could also be applied to more than one strategy simultane-

ously as shown by Jobson and Korkie (1981, Sec. II.C). However, in Section 1.5.4, we use more

sophisticated approaches to test for higher performance gains of all portfolios simultaneously.

For that reason, we only test each strategy’s Sharpe Ratio against the Sharpe Ratio of the HSD

model. The test of Jobson and Korkie (1981) indicates that only the VaR-EWMA-Stsk model

exhibits a Sharpe Ratio that is significantly higher than the Sharpe Ratio of the HSD model

when using a test level of 10%.

We now turn to the drawdown protection ability of risk targeting. Several studies demon-

strate that volatility targeting is an easy but successful drawdown and tail risk reduction method

(see, for example, Benson et al. (2014), Barroso and Santa-Clara (2015), Dreyer and Hubrich

(2019), Harvey et al. (2018) and Moreira and Muir (2017)). As expected, all risk targeting

strategies and the 60/40 portfolio are successful in reducing the DAX’s drawdown. The max-

imum drawdown (MDD) of the risk targeting strategies and the 60/40 portfolio is about half

of the maximum drawdown of the DAX. Furthermore, the risk targeting strategies exhibit a

slightly higher drawdown reduction than the 60/40 portfolio. This can be seen by ∆MDD,
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Table V. Performance Results of Risk Targeting
This table shows the performance results of all target risk strategies and the two benchmark portfolios
over the whole period. Return and Vola stand for the annualized return and volatility, respectively. SR
stands for the annualized Sharpe Ratio, zJK stands for the test statistic of the corrected version of the test
of Jobson and Korkie (1981) and mSR is the modified Sharpe Ratio defined in Jondeau and Rockinger
(2012). MDD and ∆MDD stand for the maximum drawdown and the reduction of the maximum draw-
down compared to the maximum drawdown of the DAX. Calmar stands for the drawdown-adjusted
return and is defined as in Farinelli et al. (2008) and Eling and Schuhmacher (2007). VaR and CVaR are
the in-sample VaR and CVaR, which are estimated with Historical Simulation using all data. Min and
Max stand for the minimum and maximum daily return, respectively. Return, Vola, MDD, ∆MDD, Min
and Max are given in percent. Bold numbers of zJK correspond to positive values that are significant at
the 10% level, i.e. zJK ¥ 1.6449.

Model Return Vola SR zJK mSR MDD ∆MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 1.49 41.23 41.46 0.032 1.38 1.82 -5.64 5.14
Vola EWMA 3.34 12.50 0.122 0.96 1.97 40.52 42.46 0.038 1.34 1.76 -5.28 4.98
Vola GARCH 3.19 11.96 0.116 0.39 1.82 39.23 44.29 0.035 1.29 1.67 -5.29 4.03

VaR Hist 2.07 9.69 0.029 -0.68 -0.25 31.62 55.10 0.009 0.97 1.44 -4.99 5.29
VaR EWMA FHS 3.23 11.09 0.128 0.87 2.12 37.09 47.33 0.038 1.19 1.56 -4.33 4.24
VaR EWMA EVT 3.23 10.43 0.136 1.29 2.30 35.28 49.91 0.040 1.11 1.47 -4.24 4.01
VaR EWMA Stsk 3.43 10.83 0.150 1.69 2.63 35.07 50.20 0.046 1.16 1.53 -4.76 4.11
VaR GARCH FHS 3.11 11.33 0.115 0.34 1.81 38.32 45.59 0.034 1.22 1.59 -4.67 3.52
VaR GARCH EVT 3.13 10.63 0.125 0.62 2.04 36.55 48.10 0.036 1.15 1.49 -4.63 3.37
VaR GARCH Stsk 3.34 10.39 0.147 1.10 2.58 34.68 50.75 0.044 1.11 1.46 -4.84 3.32

CVaR Hist 2.43 9.26 0.069 -0.33 0.70 28.51 59.52 0.022 0.95 1.37 -5.12 4.17
CVaR EWMA FHS 3.22 10.16 0.139 1.13 2.38 34.35 51.22 0.041 1.07 1.43 -4.01 3.79
CVaR EWMA EVT 3.23 9.93 0.143 1.32 2.48 33.80 52.00 0.042 1.05 1.40 -3.90 3.74
CVaR EWMA Stsk 3.38 10.14 0.155 1.53 2.77 33.12 52.97 0.048 1.09 1.44 -4.67 3.70
CVaR GARCH FHS 3.23 10.68 0.134 0.79 2.25 37.00 47.47 0.039 1.14 1.49 -4.58 3.26
CVaR GARCH EVT 3.26 10.33 0.141 0.99 2.42 35.51 49.58 0.041 1.10 1.44 -4.41 3.19
CVaR GARCH Stsk 3.21 9.74 0.145 0.94 2.51 33.02 53.11 0.043 1.04 1.38 -4.75 2.98

DAX 2.73 23.46 0.040 -0.57 - 70.42 - 0.013 2.36 3.46 -8.49 11.40
60/40 2.37 11.94 0.048 -0.59 0.21 40.07 43.10 0.014 1.24 1.74 -4.32 5.10

which measures the percentage drawdown reduction compared to the drawdown of the DAX.

Managing downside risk, especially managing CVaR, instead of volatility results in a higher

drawdown reduction without simultaneously sacrificing returns. Interestingly, the Historical

Simulation managed strategies exhibit the highest drawdown reduction. However, this superior

drawdown protection is accompanied with significantly lower returns. This is confirmed by the

Calmar Ratio, which measures the drawdown-adjusted return and takes the highest values for

the dynamically managed target CVaR strategies, whereas the Calmar Ratios of the Historical

Simulation managed strategies are significantly lower.71

71Since asset returns are usually non-normally distributed, performance measurement based on the Sharpe Ratio
solely can lead to wrong conclusions (see Farinelli et al. (2008) or Eling and Schuhmacher (2007) for example).
The Sharpe Ratio is only suitable for elliptical distributions, a class of distributions that contains the normal dis-
tribution (Eling and Schuhmacher, 2007, p. 2633). Therefore, besides the Sharpe Ratio, we additionally use the
Calmar Ratio. This measure replaces the volatility in the Sharpe Ratio by the maximum drawdown. See Eling and
Schuhmacher (2007) for definitions and a motivation of enhanced risk-adjusted performance measures. Further,
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In line with the results of the maximum drawdown, the highest (least negative) minimum

daily return is achieved by the CVaR managed strategies. The minimum return of the VaR

managed strategies is also comparable to the minimum return of the CVaR managed strate-

gies, but slightly lower. In contrast, the minimum return of the volatility managed strategies is

significantly more negative than the minimum return of the downside risk managed strategies.

Further, the minimum daily return of the Historical Simulation based strategies is significantly

more negative than the minimum return of the dynamically managed strategies. This is some-

what surprising, since the Historical Simulation based strategies exhibit the lowest drawdowns,

which indicates that these models are the most conservative. Further, the Historical Simula-

tion based strategies also have the lowest average equity exposure, which is not shown here.

However, the lower average equity exposure of the Historical Simulation managed strategies is

consistent with Berkowitz and O’Brien (2002) who find that banks, who often use Historical

Simulation as risk measurement tool, typically exhibit too conservative, i.e. too high, risk es-

timates that translate in lower equity weights of the strategies that are managed by Historical

Simulation. Further, Berkowitz and O’Brien (2002) find that, although commercial banks’ in-

ternal risk models produce more conservative risk estimates than a GARCH based VaR model,

the banks’ models deliver comparable – or even more – VaR violations than the GARCH based

model. This explains the somewhat surprising result of a lower equity exposure and drawdown,

but a more negative minimum return of the Historical Simulation managed strategies. That is,

the Historical Simulation based strategies are more conservative on average, but fail to cor-

rectly manage downside risk just when downside risk protection is most needed. This result

again highlights the need of a fast adapting risk model when portfolio risk is managed. As

before, a higher forecasting accuracy, as examined in Section 1.5.2, coincides with a superior

performance in terms of higher minimum returns. However, even the dynamically managed

strategies exhibit minimum daily returns that are similar in magnitude to the minimum return

of the 60/40 portfolio. This highlights the fact that unpredictable negative price jumps cannot

Jobson and Korkie (1981, Sec. I) gives an overview on several widely used performance measures. We also used
other performance measures that incorporate the non-normalities of the strategies’ returns. However, results were
quite similar to the Sharpe Ratio and Calmar Ratio and we do not show these measures here. This finding is in
line with Eling and Schuhmacher (2007) who also find a similar ranking order across hedge funds when several
risk-adjusted performance measures are used.
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be completely avoided by risk targeting but, as supposed by Longin (2000), these jumps are

best managed by models using EVT. By comparing the minimum return of the EVT, FHS and

skewed t distribution based approaches that use the same volatility model, the minimum return

of the EVT based models is always higher (less negative) than the minimum return of the other

models. As expected, the results found for the minimum daily return reverse when the max-

imum daily return is compared. In this case, the volatility managed strategies exhibit higher

maximum returns than the downside risk managed strategies. This indicates that downside risk

timing seems superior in crash periods, but volatility timing is superior in bull markets. This

motivates a strategy that switches between downside risk targeting in down-periods and volatil-

ity targeting in up-periods, which will be examined in Section 1.5.5.

The performance evaluation in Table V does not consider transaction costs. However, many

studies demonstrate that volatility managing is still beneficial, even when realistic transaction

costs are considered (see Moreira and Muir (2017), Kirby and Ostdiek (2012), Fleming et al.

(2003), Fleming et al. (2001), Marquering and Verbeek (2004), Harvey et al. (2018) and Boller-

slev et al. (2018)). In unreported results, we find that most downside risk managed strategies

exhibit lower turnovers than the volatility managed strategies (see Kirby and Ostdiek (2012,

p. 442) for a definition of the turnover). Hence, the superiority of downside risk managed

strategies, especially CVaR managed strategies, compared to the volatility managed strategies

would be even more striking if realistic transaction costs were considered. However, the skewed

t distribution based strategy produces a higher turnover compared to the FHS and EVT based

approaches. Hence, the outperformance of the skewed t distribution based strategy over the

FHS and EVT based strategies will be lower after transaction costs. Nevertheless, in Appendix

D.3, we show that risk targeting is also beneficial when a rebalancing buffer is used. Us-

ing a rebalancing buffer lowers the strategies’ turnover, which translates into lower transaction

costs. Thus, risk targeting strategies can also be used in practice and should be superior to

non-managed strategies, even when transaction costs are considered.

In order to better assess how risk targeting works in different market environments and if risk

targeting mitigates extremely negative returns, we next consider the days when the underlying
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Table VI. Lowest and Highest DAX Returns
This table shows the returns for the days when the DAX exhibits the most extreme (positive or negative)
returns. Panel A shows the five days with the lowest DAX returns as well as the corresponding returns
of the target risk strategies and the 60/40 portfolio on these days. Panel B shows the five days with
the highest DAX returns as well as the corresponding returns of the target risk strategies and the 60/40
portfolio on these days. All entries correspond to daily returns and are given in percent.

Model Panel A: Low DAX Returns (%) Panel B: High DAX Returns (%)

Vola Hist -4.125 -5.638 -2.751 -2.134 -1.119 1.425 1.952 1.774 2.180 3.204
Vola EWMA -3.466 -5.279 -2.664 -1.858 -1.229 1.523 1.952 2.100 2.193 2.679
Vola GARCH -3.114 -5.292 -2.622 -1.654 -1.292 1.690 1.912 2.444 2.264 2.301

VaR Hist -3.211 -4.989 -4.108 -3.275 -2.690 2.548 2.680 3.456 4.467 5.291
VaR EWMA FHS -3.157 -4.331 -2.192 -1.368 -0.903 1.126 1.976 1.553 1.625 1.985
VaR EWMA EVT -3.038 -4.235 -2.001 -1.365 -0.901 1.125 1.742 1.547 1.622 1.976
VaR EWMA Stsk -3.072 -4.764 -1.962 -1.610 -0.866 1.528 1.666 1.940 1.863 2.276
VaR GARCH FHS -2.998 -4.668 -2.453 -1.399 -1.101 1.468 1.916 2.082 1.913 1.956
VaR GARCH EVT -2.945 -4.633 -2.145 -1.330 -1.040 1.376 1.809 1.981 1.833 1.855
VaR GARCH Stsk -2.799 -4.838 -2.016 -1.463 -1.076 1.554 1.625 2.170 1.740 1.919

CVaR Hist -3.037 -5.123 -3.415 -2.757 -2.326 2.494 2.691 3.380 3.869 4.165
CVaR EWMA FHS -2.987 -4.006 -1.771 -1.216 -0.802 1.005 1.731 1.385 1.449 1.770
CVaR EWMA EVT -2.998 -3.895 -1.769 -1.214 -0.799 0.999 1.684 1.380 1.444 1.765
CVaR EWMA Stsk -2.969 -4.666 -1.482 -1.558 -0.730 1.510 1.580 1.904 1.788 2.239
CVaR GARCH FHS -2.964 -4.583 -1.986 -1.223 -0.963 1.270 1.836 1.835 1.697 1.718
CVaR GARCH EVT -2.907 -4.407 -1.923 -1.197 -0.943 1.246 1.778 1.799 1.663 1.684
CVaR GARCH Stsk -2.715 -4.749 -1.469 -1.412 -1.006 1.528 1.526 2.100 1.657 1.885

DAX -8.492 -7.164 -7.073 -7.012 -6.838 7.632 7.845 10.344 11.277 11.402
60/40 -4.167 -4.098 -3.575 -3.243 -3.253 3.330 3.290 4.364 4.903 5.097

risky asset, i.e. the DAX, suffers the highest losses or obtains the highest gains. Table VI reports

the five lowest and five highest daily DAX returns in conjunction with the corresponding returns

of the target risk strategies and the 60/40 portfolio. On the days with the worst DAX returns, the

target risk strategies and the 60/40 portfolio deliver significantly higher, i.e. less negative, daily

returns. The highest reduction of the negative returns is achieved by the risk targeting strategies,

especially for the strategies that manage the portfolio’s CVaR. In line with our earlier results,

the highest reduction is again achieved by the dynamically managed strategies. In contrast, the

reduction of the HS managed tail risk targeting strategies is significantly lower. Thus, in order

to mitigate extreme crashes, a fast adapting risk model should be used to manage portfolio risk.

Similarly, the returns of the 60/40 portfolio are typically more negative than the returns of the

risk targeting strategies. One exception is the day with the second lowest DAX return, where the

target risk strategies’ losses are higher than the loss of the 60/40 portfolio. This day indicates a

day with an unpredictable negative price jump in the DAX, as examined in Liu et al. (2003) and

Das and Uppal (2004). In line with Longin (2000), the best results for this day within the risk

targeting strategies is achieved by the EVT based strategies, i.e. (unpredictable) negative price
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jumps are best managed by EVT. In total, Panel A of Table VI show that extremely negative

returns can be significantly reduced by targeting a constant level of portfolio risk, especially

when CVaR is managed.

The aforementioned results reverse when the highest daily DAX returns are regarded. In

this case, the DAX delivers higher returns than all the remaining models.72 The lowest returns

are achieved by the risk targeting strategies, especially when CVaR is used as a risk measure.

The low returns of the risk targeting strategies are in line with the observation that the highest

daily returns typically occur during extreme crash periods, so called “bear market rallies”. As

a consequence, the exposure of the risk targeting strategies to the risky asset on these days is

quite low and the risk targeting strategies fail to capture these extremely high returns. However,

in order to achieve a high long-term performance, avoiding highly negative returns is more cru-

cial than achieving highly positive returns.73 Furthermore, the reduction of extremely negative

returns also fits better to the preferences of investors who treat losses and gains asymmetrically

and weight losses higher than gains. Aı̈t-Sahalia and Brandt (2001) conjecture that loss aver-

sion is highly related to downside risk managed portfolio strategies. This is confirmed by our

results, since CVaR targeting delivers the most convincing mitigation of extreme losses, which

fits well to the preferences of loss-averse investors.

Based on the results of Table VI, we find that volatility and downside risk targeting behave

quite differently in different market environments. In uptrending markets, volatility targeting

delivers higher returns, whereas downside risk targeting is more convincing in crash periods.

This again motivates a strategy that switches between CVaR and volatility targeting as examined

later. To strengthen this observation, we next assess risk targeting in two subsamples, one high

risk and one low risk period. Table VII shows the performance of the strategies in the period

from 15.07.2008 to 15.07.2011, i.e. during the height of the financial crisis and the time fol-

lowing the financial crisis. We split this period in two subsamples. Splitting the sample in two

subsamples is appealing, since Dreyer and Hubrich (2019, Fig. 2) and Dopfel and Ramkumar

72The results of Table VI are also influenced by the chosen volatility target. We have chosen a quite low volatility
target. To better capture the upside potential of high DAX returns and to lower the underperformance on days with
high DAX returns, risk-seeking or less risk-averse investors should use a higher risk target.

73For example, a return of �5% has to be compensated by a return of 5.26%. Thus, high negative returns have
to be compensated by even higher positive returns.
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Table VII. Performance Results During and After the Financial Crisis
Panel A shows the performance of all strategies from 15.07.2008 to 15.07.2009, i.e. during the height of
the financial crisis. Panel B shows the performance of all strategies from 16.07.2009 to 15.07.2011, i.e.
the time following the financial crisis and before the European debt crisis. See Table V for a description
of Return, Volatility, SR, MDD, Min, Max. - marks a negative Sharpe Ratio.

Panel A: 15.07.2008 - 15.07.2009 Panel B: 16.07.2009 - 15.07.2011

Model Return Volatility SR MDD Min Max Return Volatility SR MDD Min Max

Vola Hist -3.51 13.16 - 16.93 -2.75 3.20 9.84 12.46 0.709 12.35 -3.03 3.16
Vola EWMA -3.41 12.83 - 16.91 -2.66 2.93 10.49 12.21 0.776 11.91 -2.85 2.86
Vola GARCH -4.07 13.56 - 17.71 -2.62 2.98 10.22 11.46 0.803 9.97 -2.35 2.45

VaR Hist -8.53 17.20 - 22.38 -4.11 5.29 7.12 6.11 1.003 4.17 -1.10 1.76
VaR EWMA FHS -1.22 10.29 - 12.94 -2.19 2.41 9.09 11.12 0.727 11.52 -2.78 2.60
VaR EWMA EVT -1.53 9.63 - 12.36 -2.00 2.20 8.20 9.49 0.759 9.66 -2.29 2.21
VaR EWMA Stsk -0.16 10.81 - 12.02 -1.96 2.42 8.48 10.10 0.740 10.68 -2.69 2.74
VaR GARCH FHS -2.93 12.23 - 15.71 -2.45 2.76 9.46 10.98 0.770 9.95 -2.39 2.45
VaR GARCH EVT -2.55 11.08 - 14.26 -2.15 2.42 8.70 9.59 0.803 8.48 -1.99 2.05
VaR GARCH Stsk -0.08 11.49 - 12.52 -2.02 3.26 8.70 9.51 0.809 8.96 -2.28 2.47

CVaR Hist -5.92 14.99 - 19.01 -3.42 4.17 6.99 5.98 1.003 4.09 -1.08 1.72
CVaR EWMA FHS -0.96 8.56 - 10.79 -1.77 1.96 7.28 8.76 0.718 9.55 -2.28 2.02
CVaR EWMA EVT -0.93 8.55 - 10.76 -1.77 1.96 7.46 8.62 0.751 8.95 -2.12 2.00
CVaR EWMA Stsk 0.67 9.72 - 10.73 -1.56 2.24 7.49 9.23 0.704 10.08 -2.60 2.70
CVaR GARCH FHS -2.13 10.24 - 13.09 -1.99 2.25 8.09 9.12 0.778 8.52 -2.00 1.94
CVaR GARCH EVT -1.95 10.01 - 12.74 -1.92 2.18 8.04 8.84 0.797 7.97 -1.87 1.88
CVaR GARCH Stsk 0.05 10.13 - 11.52 -1.75 2.10 8.00 8.70 0.805 8.45 -2.20 2.44

DAX -18.36 41.48 - 44.53 -7.07 11.40 19.41 18.43 0.993 12.29 -3.33 5.30
60/40 -8.15 18.80 - 23.13 -3.58 5.10 9.89 9.48 0.936 6.86 -1.72 2.64

(2013) find that the profitability of risk targeting can be highly different for periods that include

the global financial crisis or start after the global financial crisis. The first subperiod, given in

Panel A, covers the financial crisis and ranges from 15.07.2008 to 15.07.2009. This period is

marked by highly negative returns and high risk. During the financial crisis, the dynamically

managed risk targeting strategies have significantly higher (less negative) returns than the two

benchmark portfolios. Furthermore, the higher returns of the risk targeting strategies are ac-

companied by lower risk measured by volatility, drawdown and minimum return. For example,

the DAX and the 60/40 portfolio exhibit an (annualized) return of �18.36% and �8.15% as

well as a volatility of 41.48% and 18.80%, respectively. In contrast, return and volatility of the

EWMA managed target volatility strategy are �3.41% and 12.83%, respectively. However, the

CVaR-EWMA-Stsk strategy is even more convincing and achieves a positive return of 0.67%

with a volatility of only 9.72%. Hence, CVaR targeting significantly outperforms volatility tar-

geting and the two benchmark portfolios, as long as CVaR is managed by a dynamic risk model.

This outperformance is accompanied by a high drawdown reduction. In contrast, the statically

managed target VaR and target CVaR strategies (VaR-HS and CVaR-HS) exhibit significantly
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lower returns with higher risk than the dynamically managed strategies. Furthermore, there

are significant differences between the EWMA and GARCH managed strategies. The EWMA

managed strategies achieve higher returns with lower risk than the GARCH managed strategies.

A possible explanation for the better results of the EWMA model could be the higher estimation

risk for the GARCH model during highly volatile periods.

The second subperiod, ranging from 16.07.2009 to 15.07.2011, covers the time following

the financial crisis, but excludes the European financial debt crisis. This period is marked by a

continuously uptrending market with high returns and low risk. Results for the second subpe-

riod are given in Panel B. For this period, the DAX clearly outperforms the remaining strategies.

This is in line with Dreyer and Hubrich (2019, Fig. 2) who also find that volatility targeting is

outperformed by the non-managed portfolio, once the sample starts after the global financial

crisis. Further, in this period, the different target risk strategies perform significantly diverse.

The unconditional models, VaR-HS and CVaR-HS, perform very well in this calm market and,

by taking less risk, exhibit high Sharpe Ratios. Moreover, the volatility targeting strategies pro-

duce higher returns than the downside risk targeting strategies. This again motivates a strategy

that switches between volatility and CVaR targeting, where volatility targeting is only used in

uptrending markets. However, the higher return of volatility targeting is also accompanied by

higher risk. Consequently, the Sharpe Ratios of the dynamically managed target volatility, VaR

and CVaR strategies are quite similar. In contrast, the Sharpe Ratios of the two benchmark

portfolios are slightly higher than the Sharpe Ratios of the target risk strategies. However, the

differences in the risk-adjusted performance are only small compared to the differences in Panel

A. This demonstrates that risk targeting strategies are able to lower the downside risk in extreme

crashes, but these strategies still (partly) capture the upside potential of the DAX. In particular,

the downside risk managed strategies significantly outperform the remaining strategies in bear

markets, but only slightly underperform the volatility targeting strategies in uptrending markets.

1.5.4 The Economic Value of Risk Targeting

In the previous section, we assessed the (risk-adjusted) performance and drawdown protection

ability of risk targeting and found that CVaR targeting is superior to volatility targeting. How-
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ever, our conclusions are so far based on unconditional risk-adjusted performance measures,

like the Sharpe Ratio and Calmar Ratio. The performance evaluation based on unconditional

risk measures has several disadvantages. First, these measures do not account for a time-varying

volatility (Han, 2005, Marquering and Verbeek, 2004).74 As a consequence, unconditional per-

formance measures are not appropriate for strategies that time volatility (Boguth et al., 2011,

Cederburg and O’Doherty, 2016). Second, the Sharpe Ratio does not account for higher mo-

ments. Hence, this measure is suboptimal for dynamic trading strategies that reduce a portfolio’s

tail risk, such as the strategies examined here (Dreyer and Hubrich, 2019, Sec. 5). In particu-

lar, unconditional performance measures do not incorporate skewness preferences of investors

(Schneider et al., 2020). Third, when using an unconditional performance evaluation measure,

performance evaluation can be biased since the rebalancing interval does not coincide with

the evaluation period (Boguth et al., 2011, Footnote 6). Similarly, Benartzi and Thaler (1995)

show that even long-term investors have quite short evaluation periods. Dreyer and Hubrich

(2019) find that performance measurement is highly influenced by the performance evaluation

frequency. Due to these disadvantages of the Sharpe Ratio, we next assess the economic value

of volatility, VaR and CVaR timing, where we define the economic value as the annualized fee

an investor is willing to pay to switch from a static portfolio allocation to a risk-managed port-

folio. The economic value of volatility timing has been frequently examined in the literature.75

These studies find huge improvements of volatility timing in terms of high utility gains for

mean-variance investors. For example, Fleming et al. (2001), Fleming et al. (2003), Kirby and

Ostdiek (2012), Han (2005) and Taylor (2014) examine utility gains in a multivariate framework

using several asset classes, whereas Marquering and Verbeek (2004), Moreira and Muir (2017),

74Marquering and Verbeek (2004, p. 419-421) write: “It is important to realize that the Sharpe ratio does not ap-
propriately take into account time-varying volatility. The risk of the dynamic strategies is typically overestimated
by the sample standard deviation, particularly in the presence of volatility timing, because the ex post (uncondi-
tional) standard deviation is an inappropriate measure for the (conditional) risk an investor was facing at each point
in time. This indicates a potentially severe disadvantage of the use of Sharpe ratios to evaluate dynamic strategies.”

75See Fleming et al. (2001), Fleming et al. (2003), Kirby and Ostdiek (2012), Marquering and Verbeek (2004),
Taylor (2014), Han (2005), Moreira and Muir (2017) and Bollerslev et al. (2018) for studies on the economic value
of volatility timing for mean-variance investors. Calculating the economic value, defined as the fee an investor
is willing to pay to switch from one strategy to another strategy, is similar to calculating the certainty equivalent
return as done by Ang and Bekaert (2002), Dreyer and Hubrich (2019), Cederburg et al. (2020), Ghysels et al.
(2016), Das and Uppal (2004), Guidolin and Timmermann (2008), DeMiguel et al. (2009b) and Moreira and Muir
(2019).
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Moreira and Muir (2019) and Bollerslev et al. (2018) work with only one risky asset. Further,

Jondeau and Rockinger (2006) examine the economic value of portfolio strategies that incorpo-

rate higher moments and the authors find that the opportunity costs of ignoring higher moments

can become very large when asset returns are non-normally distributed or investors are highly

risk-averse. Similarly, Jondeau and Rockinger (2012) assess the economic value of dynamic

timing strategies that also incorporate higher moments, like skewness and kurtosis, and find a

higher economic value for these strategies compared to strategies that only time volatility. Ghy-

sels et al. (2016) find that investors are willing to pay high fees to switch from a mean-variance

optimization to a mean-variance-skewness optimization. These studies again demonstrate that

portfolio allocations that incorporate information on higher moments are highly valuable for

investors and increase the investors’ utility.

In most studies, the economic value is defined as the maximum fee (in percent) a mean-

variance investor is willing to pay to switch from one strategy to another strategy. However,

as stated in Section 1.3.1, investors typically have preferences for moments higher than volatil-

ity and the mean-variance framework is not very realistic. For that reason, we further fol-

low Jondeau and Rockinger (2012) and Dreyer and Hubrich (2019) and also calculate the

economic value for an investor with constant relative risk aversion (CRRA). CRRA utility is

frequently used in portfolio selection problems.76 Guidolin and Timmermann (2008), Jondeau

and Rockinger (2012) and Bali et al. (2009) show that, for reasonable levels of risk aversion,

CRRA utility implies that investors prefer higher skewness and lower kurtosis, which is in line

with the study of Scott and Horvath (1980).77 In particular, “[t]he CRRA utility function im-

plies that investors are tail-risk averse.” (Dreyer and Hubrich, 2019, p. 47). For that reason,

76See, for example, Ang and Bekaert (2002), Liu et al. (2003), Das and Uppal (2004), Aı̈t-Sahalia and Brandt
(2001), Guidolin and Timmermann (2008), Ghysels et al. (2016) for studies that examine the portfolio allocation
for CRRA investors.

77Several studies show that the CRRA utility framework is mainly driven by the preferences for mean, variance,
skewness and kurtosis. For example, Guidolin and Timmermann (2008) compare the asset allocation under CRRA
preferences with portfolio allocations under four moment preferences and find only minor differences between
both approaches. Hence, portfolio selection under CRRA utility is mainly driven by preferences for the first four
moments. A similar result also holds for investors with constant absolute risk aversion (CARA) as shown by Bali
et al. (2009) and Jondeau and Rockinger (2006). Jondeau and Rockinger (2006) show that portfolio allocations
under CARA utility is mainly driven by preferences for the first four moments and that portfolio allocations under
CARA and CRRA utility produce similar results. For that reason, we do not calculate the economic value for
CARA utility.
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by calculating the economic value of risk targeting for an investor with CRRA utility, we ex-

plicitly take preferences for higher moments into account and consider the tail risk reduction

of the strategies. Finally, in order to regard that investors weight losses higher than gains,

we additionally calculate the economic value for loss-averse investors. The portfolio selection

for loss-averse investors has been examined by Benartzi and Thaler (1995), Aı̈t-Sahalia and

Brandt (2001) and Ang et al. (2005). Aı̈t-Sahalia and Brandt (2001) compare optimal portfo-

lios for mean-variance investors, CRRA investors and loss-averse investors. The authors find

that mean-variance and CRRA preferences produce only slightly different optimal portfolio

selections (see also Guidolin and Timmermann (2008)), but loss aversion leads to a signifi-

cantly different optimal portfolio. Similarly, Ang et al. (2005) examine the portfolio selection

for CRRA investors and investors with disappointment aversion, who also treat gains and losses

asymmetrically. The authors find more realistic asset allocations under disappointment aversion

and that disappointment aversion can resemble portfolio allocations under CRRA preferences,

whereas the opposite does not hold. Furthermore, several studies show that equity holdings of

real investors are typically much lower than predicted for mean-variance or CRRA investors,

whereas loss aversion successfully explains the low equity exposure of real investors (see Be-

nartzi and Thaler (1995) and Ang et al. (2005)). Thus, the loss aversion framework seems to be

more realistic than the mean-variance and CRRA frameworks. In total, we expect quite simi-

lar results for the mean-variance and CRRA investors, but quite different (and more realistic)

results for the loss-averse investor.

As first method to calculate the economic value of risk targeting, we follow Fleming et al.

(2001), Fleming et al. (2003), Han (2005) and Kirby and Ostdiek (2012) and assume that the

investor’s true utility function can be approximated by quadratic utility. For this investor, the

realized day t utility is given by

UMV pRt,aq � Wt�1p1 �Rt,aq � 1

2
γabsW

2
t�1p1 �Rt,aq2, (1.5.1)

where γabs is the investor’s absolute risk aversion, Wt�1 denotes the investor’s wealth on day

t � 1 and Rt,a denotes the day t return of strategy a. We call an investor with preferences as

in Equation (1.5.1) a mean-variance investor, since this approach is highly related to the mean-
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variance theory (Fleming et al., 2001, p. 334). By assuming that this investor has a constant

relative risk aversion γ, Equation (1.5.1) can be rewritten as

UMV pRt,aq � Wt�1

�
p1 �Rt,aq � γ

2p1 � γqp1 �Rt,aq2


. (1.5.2)

The economic value of a strategy a is then given by the percentage fee ∆MV the investor

with utility in Equation (1.5.1) is willing to pay to switch from the 60/40 portfolio to the strategy

a. The fee ∆MV is defined by equating the expected utilities

EpUMV pRt,a � ∆MV qq � EpUMV pRt,bqq , (1.5.3)

where Rt,b denotes the return of the 60/40 portfolio. The expected utility in Equation (1.5.3) is

then estimated by the average realized utility. Hence, the fee ∆MV is calculated by solving

UMV pR1,a � ∆MV , ..., RT,a � ∆MV q � UMV pR1,b, ..., RT,bq , (1.5.4)

where UMV pR1, ..., RT q � 1
T

°T
t�1p1 � Rtq � γ

2p1�γqp1 � Rtq2. We calculate the fee ∆MV for

levels of risk aversion given by γ � 2, 5, 10 and 15, which are in line with previous studies using

this approach (see Marquering and Verbeek (2004), Aı̈t-Sahalia and Brandt (2001), Jondeau and

Rockinger (2006) and Jondeau and Rockinger (2012) for example).

In the case of the CRRA investor, the realized day t utility is given by

UCRRApRt,aq �
#

p1�Rt,aqp1�γq
1�γ , if γ ¡ 1

lnp1 �Rt,aq, if γ � 1.
(1.5.5)

Since we choose the same levels of γ as above, the investor’s utility simplifies to the case

UCRRApRt,aq � p1�Rt,aqp1�γq
1�γ . Following Jondeau and Rockinger (2012), the economic value for

an investor with CRRA utility is defined by equating the expected utilities

EpUCRRApRt,a � ∆CRRAqq � EpUCRRApRt,bqq , (1.5.6)

which is again estimated by the average realized utility. The percentage fee ∆CRRA is then

calculated by solving

UCRRA pR1,a � ∆CRRA, ..., RT,a � ∆CRRAq � UCRRA pR1,b, ..., RT,bq , (1.5.7)
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where UCRRApR1, ..., RT q � 1
T

°T
t�1

p1�Rtqp1�γq
1�γ .

Lastly, to account for the loss aversion of investors, we use a utility function that gives more

weight on negative returns. Following Aı̈t-Sahalia and Brandt (2001) and Benartzi and Thaler

(1995), we define the investor’s day t utility by

ULApRt,aq �
" pRt,aqb, if Rt,a ¥ 0
�lp�Rt,aqb, if Rt,a   0,

(1.5.8)

where l ¡ 1 determines the investor’s loss aversion and b measures the degree of risk seeking

for negative returns and risk aversion for positive returns (see Aı̈t-Sahalia and Brandt (2001,

p. 1314) or Benartzi and Thaler (1995, p. 79)).78 Typical values of l and b are in the range of

l � 2.25 and b � 0.88, which are motivated empirically. Similar to Aı̈t-Sahalia and Brandt

(2001), we choose the four combinations of l � 2.0, 3.0 and b � 0.8, 1. A loss aversion of l � 2

implies that the disutility of a loss is twice as great as the utility of a positive return of the same

magnitude (Benartzi and Thaler, 1995, p. 74).79 The economic value for a loss-averse investor

is then given by equating the expected utilities

EpULApRt,a � ∆LAqq � EpULApRt,bqq . (1.5.9)

As above, we calculate ∆LA by solving

ULA pR1,a � ∆LA, ..., RT,a � ∆LAq � ULA pR1,b, ..., RT,bq , (1.5.10)

where ULApR1, ..., RT q � 1
T

°T
t�1R

b
t � 1tRt¥0u � lp�Rtqb � 1tRt 0u.

Table VIII shows the values ∆i for the three utility functions, i.e. ∆i is defined as the annu-

alized percentage fee a mean-variance, CRRA or loss-averse investor is willing to pay to switch

from the 60/40 strategy to one of the risk timing strategies. In addition, by choosing the same

subperiods as in Table VII, we also examine the economic value of risk timing during and after

the financial crisis. For these subperiods, we only report the results for a risk aversion of γ � 5

78We also used the risk-free rate instead of a zero return to define the cut-off point which determines a loss or a
gain. Results for the economic value were nearly identical for both choices and the risk-free rate based results are
not reported here.

79Another possibility to assess the economic value of an investor with unexpected utility would be to use pref-
erences of an ambiguity-averse investor as in Aı̈t-Sahalia and Brandt (2001) and Jondeau and Rockinger (2012) or
preferences of a disappointment-averse investor as in Ang et al. (2005). See also Jondeau and Rockinger (2012,
Footnote 17) for a list of studies that incorporate ambiguity aversion in asset allocation.
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and γ � 10 in the case of the mean-variance and CRRA investor as well as l � 2 and l � 3

combined with b � 0.8 for the loss-averse investor.

Panel A of Table VIII shows the economic value for a mean-variance investor. The economic

value over the whole sample is positive for almost all risk targeting strategies and levels of risk

aversion. Further, we find that downside risk timing delivers a significantly higher economic

value than volatility timing and that managing CVaR delivers the highest economic value. In

other words, a mean-variance investor should manage CVaR instead of volatility. Interestingly,

as in Marquering and Verbeek (2004), we find that the economic value of volatility timing is

decreasing in the level of risk aversion γ, but this result reverses when the economic value of

downside risk timing is assessed. In this case, the economic value is increasing in the risk aver-

sion, i.e. for highly risk-averse mean-variance investors, CVaR timing becomes more important.

For example, a mean-variance investor with a risk aversion of γ � 15 would pay an annualized

fee of 0.760% to switch from the 60/40 portfolio to the GARCH managed strategy, but the same

investor is not willing to pay a positive fee to switch to the HSD managed strategy. However,

the same investor would even pay an annualized fee of 4.253% to switch from the 60/40 port-

folio to the CVaR-GARCH-Stsk strategy. The differences between volatility and downside risk

timing become even more striking in the crash period. During the financial crisis, an investor

with a risk aversion of γ � 5 would pay an annualized fee of 9.176% to switch from the 60/40

portfolio to the EWMA managed strategy. However, the same investor is even willing to pay

an annualized fee of 15.384% to switch to the CVaR-EWMA-Stsk strategy. Thus, in crash peri-

ods, mean-variance investors are willing to pay extremely high fees to switch to a risk targeting

strategy, where the willingness to pay for CVaR managed strategies is significantly higher than

the willingness to pay for volatility managed strategies. Hence, investors are willing to pay

extremely high fees to mitigate crashes, which is best done by managing CVaR. This is in line

with the results of Bollerslev and Todorov (2011) and Chabi-Yo et al. (2018) that investors are

crash-averse. Furthermore, during the financial crisis, we find that the EWMA model is again

superior to the GARCH model. This result is in line with the results of Table VII and could be

explained by the fact that the EWMA model is not influenced by estimation risk. Further, dur-
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Table VIII. Economic Value of Risk Targeting
This table shows the economic value, given as annualized percentage fee ∆i an investor is willing to pay to switch from the
60/40 portfolio to a risk timing strategy for a given utility function Ui, i P tMV,CRRA,LAu. Panel A shows results for
a mean-variance investor. Panel B shows results for an investor with CRRA utility. Panel C shows results for a loss-averse
investor. γ determines the investor’s risk aversion. l determines the investor’s loss aversion and b measures the investor’s
degree of risk seeking for negative returns and risk aversion for positive returns.

Whole Sample Crash Recovery

Panel A: ∆MV γ � 2 γ � 5 γ � 10 γ � 15 γ � 5 γ � 10 γ � 5 γ � 10

Vola Hist 0.618 0.280 -0.282 -0.841 8.886 13.843 -1.339 -2.948
Vola EWMA 0.878 0.671 0.326 -0.018 9.176 14.387 -0.636 -2.099
Vola GARCH 0.802 0.792 0.776 0.760 8.021 12.644 -0.525 -1.554

VaR Hist -0.049 0.682 1.912 3.158 0.731 2.172 -1.493 -0.186
VaR EWMA FHS 0.940 1.237 1.735 2.236 12.968 20.081 -1.396 -2.227
VaR EWMA EVT 1.009 1.521 2.381 3.248 12.906 20.407 -1.540 -1.542
VaR EWMA Stsk 1.168 1.552 2.194 2.841 13.930 20.780 -1.527 -1.828
VaR GARCH FHS 0.799 1.015 1.375 1.737 10.057 15.743 -0.995 -1.752
VaR GARCH EVT 0.898 1.346 2.098 2.856 11.070 17.580 -1.121 -1.171
VaR GARCH Stsk 1.126 1.653 2.537 3.430 13.672 20.057 -1.099 -1.114

CVaR Hist 0.347 1.206 2.653 4.121 5.073 8.469 -1.581 -0.236
CVaR EWMA FHS 1.031 1.629 2.634 3.648 14.001 22.157 -2.121 -1.798
CVaR EWMA EVT 1.066 1.733 2.856 3.992 14.038 22.200 -1.900 -1.513
CVaR EWMA Stsk 1.196 1.800 2.816 3.841 15.384 22.992 -2.093 -1.977
CVaR GARCH FHS 0.991 1.424 2.150 2.881 11.954 19.037 -1.503 -1.337
CVaR GARCH EVT 1.057 1.602 2.517 3.440 12.253 19.490 -1.453 -1.161
CVaR GARCH Stsk 1.068 1.794 3.016 4.253 14.491 21.799 -1.441 -1.088

Panel B: ∆CRRA γ � 2 γ � 5 γ � 10 γ � 15 γ � 5 γ � 10 γ � 5 γ � 10

Vola Hist 0.731 0.387 -0.196 -0.792 7.883 12.686 -1.018 -2.645
Vola EWMA 0.947 0.735 0.374 0.003 8.122 13.166 -0.344 -1.820
Vola GARCH 0.805 0.792 0.763 0.728 7.079 11.543 -0.320 -1.355

VaR Hist -0.292 0.438 1.668 2.917 0.430 1.810 -1.753 -0.452
VaR EWMA FHS 0.841 1.135 1.625 2.117 11.550 18.457 -1.232 -2.074
VaR EWMA EVT 0.839 1.348 2.202 3.065 11.418 18.707 -1.542 -1.551
VaR EWMA Stsk 1.041 1.422 2.057 2.697 12.566 19.230 -1.469 -1.775
VaR GARCH FHS 0.728 0.940 1.292 1.645 8.910 14.410 -0.845 -1.610
VaR GARCH EVT 0.749 1.194 1.939 2.692 9.768 16.084 -1.112 -1.167
VaR GARCH Stsk 0.952 1.476 2.355 3.247 12.401 18.629 -1.097 -1.115

CVaR Hist 0.062 0.918 2.365 3.837 4.384 7.688 -1.849 -0.510
CVaR EWMA FHS 0.833 1.427 2.426 3.438 12.390 20.322 -2.187 -1.873
CVaR EWMA EVT 0.844 1.509 2.627 3.762 12.426 20.363 -1.979 -1.599
CVaR EWMA Stsk 0.995 1.596 2.606 3.630 13.877 21.285 -2.118 -2.006
CVaR GARCH FHS 0.847 1.277 1.996 2.721 10.543 17.423 -1.538 -1.377
CVaR GARCH EVT 0.876 1.418 2.327 3.248 10.814 17.844 -1.513 -1.226
CVaR GARCH Stsk 0.828 1.550 2.768 4.005 13.040 20.150 -1.512 -1.162

b � 0.8 b � 1 b � 0.8 b � 0.8

Panel C: ∆LA l � 2 l � 3 l � 2 l � 3 l � 2 l � 3 l � 2 l � 3

Vola Hist -4.053 -6.592 -4.703 -7.482 19.580 28.428 -9.136 -13.846
Vola EWMA -3.186 -5.370 -3.601 -5.924 20.476 29.797 -8.288 -12.768
Vola GARCH -1.780 -3.149 -1.858 -3.215 17.199 25.045 -6.375 -9.759

VaR Hist 8.009 12.568 10.125 15.791 6.462 10.148 9.090 15.170
VaR EWMA FHS 1.423 1.749 1.978 2.617 31.116 45.090 -5.690 -8.333
VaR EWMA EVT 3.564 5.064 4.635 6.710 32.736 47.798 -1.133 -1.114
VaR EWMA Stsk 2.641 3.537 3.426 4.733 30.469 43.812 -2.489 -3.272
VaR GARCH FHS 0.251 0.013 0.613 0.591 22.955 33.377 -5.268 -7.836
VaR GARCH EVT 2.574 3.590 3.473 4.971 26.938 39.426 -1.381 -1.666
VaR GARCH Stsk 3.851 5.479 5.013 7.230 28.531 40.709 -0.666 -0.561

CVaR Hist 9.139 14.167 11.688 18.014 13.800 20.473 9.395 15.689
CVaR EWMA FHS 4.589 6.648 5.887 8.645 36.478 53.296 0.674 2.023
CVaR EWMA EVT 5.332 7.800 6.836 10.110 36.525 53.359 1.188 2.758
CVaR EWMA Stsk 5.171 7.479 6.541 9.562 34.719 50.002 -0.055 0.858
CVaR GARCH FHS 2.565 3.526 3.439 4.864 30.050 43.969 -0.239 0.328
CVaR GARCH EVT 3.752 5.352 4.918 7.129 30.919 45.186 0.620 1.669
CVaR GARCH Stsk 6.149 9.106 7.867 11.715 32.692 47.158 1.759 3.466
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ing the crash period, investors are willing to pay much lower fees to switch to the static VaR-HS

and CVaR-HS models. Hence, static models fail to achieve a good downside risk protection just

when it is most needed. This is again in line with our earlier findings that accurate risk models

are superior to static risk models, especially in crash periods. As expected, these results reverse

when we regard the period that starts immediately after the financial crisis. In this period, all

risk targeting strategies exhibit a negative economic value. This is again in line with our earlier

findings. However, the utility gains in the crash period are significantly higher in magnitude

than the utility losses in the calm period. Panel B shows the economic value of risk timing

for an investor with CRRA utility. In this case, we also incorporate preferences for higher mo-

ments and consider that investors dislike left tail risk. However, results are quite similar to the

results of the mean-variance investor shown in Panel A. For CRRA investors, managing CVaR

is superior to managing volatility, especially in times of bear markets and for highly risk-averse

investors. However, results reverse during the uptrending period. As mentioned above, the ob-

servation that results for the mean-variance and CRRA investors are quite similar is in line with

the studies on the optimal portfolio allocation of mean-variance and CRRA investors. These

studies find quite similar portfolios for both investors, whereas the optimal portfolio of loss-

averse investors is highly different and more in line with portfolios in practice. Thus, we expect

different and more realistic results for the economic value of the loss-averse investor.

Panel C shows the economic value of risk targeting for a loss-averse investor. The eco-

nomic value for a loss-averse investor is significantly different to the economic value of a mean-

variance or CRRA investor. As stated above, this result is in line with Aı̈t-Sahalia and Brandt

(2001) who find similar results when mean-variance or CRRA preferences are used in portfo-

lio selection problems, but vastly different allocations for loss-averse investors. Interestingly,

over the whole period, the economic value of the target volatility strategies is negative, regard-

less of the level of loss aversion and volatility model. In other words, a loss-averse investor

would pay a positive fee to switch away from a target volatility strategy to the 60/40 portfo-

lio. In contrast, the economic value of downside risk targeting is always positive and typically

very high. As before, we find that CVaR targeting produces the highest economic value, i.e.

81



a loss-averse investor should time CVaR or at least VaR instead volatility. Somewhat surpris-

ing, we find a higher economic value for the unconditional models (VaR-HS and CVaR-HS).

However, this finding can be explained by the lower average equity exposure of these strategies.

Hence, these strategies are more conservative and should be more appealing for loss-averse in-

vestors who have a preference for conservative strategies. The extremely high economic value

for loss-averse investors who manage downside risk can partly be explained by the daily eval-

uation period used in the economic value calculation. Benartzi and Thaler (1995) show that

loss aversion is more pronounced for shorter evaluation periods, i.e. the shorter the evaluation

period for a loss-averse investor the less attractive are investments with higher risk. Similar

horizon effects have been found by Aı̈t-Sahalia and Brandt (2001) for loss aversion, but not for

mean-variance and CRRA preferences. The authors conclude that loss aversion implies that

short-term investors are extremely risk-averse, whereas long-term investors become more risk-

neutral.80 During the financial crisis, the economic value of risk targeting becomes extremely

high, i.e. a loss-averse investor is willing to pay extremely high fees for downside risk protec-

tion during crash periods. This again confirms the result of Bollerslev and Todorov (2011) and

Chabi-Yo et al. (2018) that investors are crash-averse. For example, a loss-averse investor with

parameters b � 0.8 and l � 3 would pay an annualized fee of 29.797% to switch from the

60/40 portfolio to the EWMA managed target volatility strategy. However, the same investor

would even pay a fee of 53.359% per year to switch to a CVaR managed strategy. Further-

more, during the crash period, we find a significantly higher economic value for dynamically

managed strategies. This again indicates that more accurate risk models are more successful

in managing extremely negative returns in crash periods. Interestingly, opposed to the results

of the mean-variance and CRRA investor, we even find a positive economic value of almost all

80Dreyer and Hubrich (2019) also find that performance evaluation measures can be highly different when dif-
ferent evaluation periods are used. We also calculated the economic value for a loss-averse investor by first aggre-
gating the daily returns to monthly returns. As expected, the economic value for a loss-averse investor calculated
with monthly returns is smaller in magnitude than the economic value calculated with daily data. Nevertheless,
the economic value of volatility targeting is still negative for all combinations and the economic value of down-
side risk targeting is still positive for all combinations, except for the VaR-GARCH-FHS model for b � 0.8. The
highest economic value is again obtained by the strategies that manage CVaR. Furthermore, the economic value
for a CRRA investor is nearly unchanged when monthly returns instead of daily returns are used. This result is
also found by Aı̈t-Sahalia and Brandt (2001) for the optimal portfolio choice under CRRA preferences and loss
aversion.

82



CVaR targeting strategies in the uptrending market, whereas the economic value of volatility

targeting is negative and high in magnitude. In other words, a loss-averse investor should time

CVaR instead of volatility, regardless of whether the market is in a bull or a bear regime.

The fees given in Table VIII are extremely high compared to the fees found by Bollerslev

et al. (2018). The authors argue that even their fees, in the range of 0.5%, are extremely bene-

ficial for investors. This highlights the advantage of risk targeting, especially CVaR targeting,

found for our data set. However, there are several differences between our study and the study

of Bollerslev et al. (2018), which explain the differences in the magnitude of the fees. First,

Bollerslev et al. (2018) calculate utility gains of several volatility targeting strategies, relying

on different volatility models, against a benchmark volatility targeting strategy. In other words,

the authors choose a certain target volatility strategy as benchmark model, whereas we choose

the 60/40 portfolio as benchmark, which is similar to Marquering and Verbeek (2004). Sec-

ond, the authors only compare the differences between several volatility forecasting models,

whereas we also compare the differences between volatility and downside risk targeting. In line

with the results of Bollerslev et al. (2018), differences within the volatility targeting strategies

are only small, whereas the differences between volatility and CVaR targeting are significantly

higher. For example, a mean-variance investor with a risk aversion of γ � 5 would pay a fee

of 0.792% � 0.280% � 0.512% per year to switch from the HSD managed strategy to the

GARCH managed strategy. This result is comparable to the finding of Bollerslev et al. (2018)

and again demonstrates the positive relation between forecasting accuracy – or equivalently a

more constant portfolio volatility – and utility gains. However, the same investor would even

pay 1.800% � 0.280% � 1.52% per year to switch from the HSD managed strategy to the

CVaR-EWMA-Stsk strategy. Third, Bollerslev et al. (2018) rebalance the weight of the volatil-

ity targeting strategy monthly, whereas we use daily rebalancing. Since the authors show that a

higher accuracy typically coincides with higher utility gains, daily rebalancing should also pro-

duce a higher economic value. Since daily rebalancing also induces higher transaction costs,

the extremely high fees of Table VIII should be lower in practice.81 Nevertheless, in Section

D.3, we show that risk targeting is still beneficial when portfolio weights are only rebalanced

81Tail risk targeting for monthly rebalancing is examined in Rickenberg (2020a).
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when the DAX’s risk changes dramatically. Fourth, in addition to mean-variance preferences,

we also calculate the economic value for loss-averse investors, who are willing to pay extremely

high fees for a crash risk reduction that is best done by CVaR targeting.

Finally, we test if the economic value found in Table VIII is also statistically significant.

Bollerslev et al. (2018) use the DM-test to statistically compare the utility benefit of several

volatility models used in a volatility targeting strategy. Taylor (2014, Sec. 2.2) presents a con-

ditional test, that extends the DM-test, to assess if advanced forecasting models produce higher

utility gains than simple forecasting models. Kirby and Ostdiek (2012) use a bootstrap based

test to assess the significance of utility gains. A similar approach is also used by DeMiguel

et al. (2009b) and Cederburg et al. (2020) to test for differences in the certainty equivalent re-

turn for mean-variance investors. We follow these approaches and apply the tests that were

presented in Section 1.4.1 to test if a strategy produces a significantly higher utility. These tests

are also frequently used to test for a superior (risk-adjusted) performance of technical trading

rules or mutual funds (see Sullivan et al. (1999), Hsu et al. (2010), Barras et al. (2010), Baj-

growicz and Scaillet (2012) among others). Results of these tests are shown in Table IX, where

we only show results for γ � 10 for the mean-variance and CRRA investor as well as l � 2

and b � 0.8 for the loss-averse investor. Whenever a benchmark model is needed, we choose

the 60/40 portfolio as benchmark. Panel A shows results for the mean-variance investor. The

DM-test indicates that almost all downside risk targeting strategies produce higher utilities than

the 60/40 portfolio, whereas all target volatility strategies do not produce statistically higher

utilities. The RC-test fails to reject any null hypothesis, which again demonstrates the weak-

nesses of the RC-test. In contrast, the SPA-test rejects the null hypotheses of all target volatility

and target VaR strategies, whereas the null hypotheses of most target CVaR strategies cannot

be rejected. Thus, the SPA-test indicates that the target CVaR strategies are significantly more

valuable for mean-variance investors than volatility and VaR targeting. Results for the MCS are

quite similar to the results of the DM-test. None of the target volatility strategies is contained in

the MCS, which is also confirmed by the stepwise approaches, where we only show results for

the studentized versions. The Step-SPA approach identifies almost all downside risk targeting
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Table IX. Testing the Utility Gain of Risk Targeting
This table shows the results of the tests presented in Section 1.4.1 used to test the significance of the utility gains.
Panel A shows results for a mean-variance investor with γ � 10. Panel B shows results for a CRRA investor with
γ � 10. Panel C shows results for a loss-averse investor with b � 0.8 and l � 2. The description of the columns is
given in Tables I and II.

Panel A: MV DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� � 10%

Vola Hist -0.24 19.69 0.04 0.08 0 0 0
Vola EWMA 0.29 26.15 0.07 0.30 0 0 0
Vola GARCH 0.79 30.32 0.11 0.15 0 0 15

VaR Hist 2.35 55.93 1.75 21.36 1 1 3
VaR EWMA FHS 1.58 47.12 0.62 4.15 0 2 13
VaR EWMA EVT 2.16 64.79 0.97 21.36 1 1 9
VaR EWMA Stsk 1.96 58.15 0.77 16.17 1 1 12
VaR GARCH FHS 1.39 39.00 0.20 0.99 0 0 14
VaR GARCH EVT 2.09 56.18 0.55 7.74 1 1 10
VaR GARCH Stsk 2.46 76.40 3.02 36.14 1 1 5

CVaR Hist 3.16 74.85 42.98 92.67 1 1 1
CVaR EWMA FHS 2.29 75.56 1.18 39.16 1 1 8
CVaR EWMA EVT 2.49 86.18 55.07 92.67 1 1 4
CVaR EWMA Stsk 2.40 85.74 47.75 92.67 1 1 7
CVaR GARCH FHS 2.09 58.51 0.10 10.22 1 1 11
CVaR GARCH EVT 2.41 75.18 21.02 36.14 1 1 6
CVaR GARCH Stsk 2.73 100.00 100.00 100.00 1 1 2

Panel B: CRRA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� � 10%

Vola Hist -0.27 20.49 0.01 0.06 0 0 0
Vola EWMA 0.27 26.74 0.03 0.31 0 0 0
Vola GARCH 0.76 31.12 0.04 0.16 0 0 15

VaR Hist 2.34 56.40 1.87 22.34 1 1 7
VaR EWMA FHS 1.57 47.61 0.66 4.16 0 2 13
VaR EWMA EVT 2.15 65.11 0.70 22.34 1 1 9
VaR EWMA Stsk 1.95 58.54 0.95 16.36 2 1 12
VaR GARCH FHS 1.37 39.83 0.10 0.91 0 0 14
VaR GARCH EVT 2.08 56.38 0.26 7.42 1 1 10
VaR GARCH Stsk 2.45 76.84 3.40 36.21 1 1 6

CVaR Hist 3.14 74.35 42.39 92.73 1 1 1
CVaR EWMA FHS 2.29 76.22 1.20 40.30 1 1 8
CVaR EWMA EVT 2.48 86.93 55.26 92.73 1 1 3
CVaR EWMA Stsk 2.39 85.67 47.91 92.73 1 1 4
CVaR GARCH FHS 2.08 58.86 0.02 10.47 1 1 11
CVaR GARCH EVT 2.41 76.08 21.72 36.21 1 1 5
CVaR GARCH Stsk 2.73 100.00 100.00 100.00 1 1 2

Panel C: LA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� � 10%

Vola Hist -2.72 0.00 0.00 0.00 0 0 0
Vola EWMA -2.25 0.00 0.00 0.00 0 0 0
Vola GARCH -1.45 0.00 0.00 0.00 0 0 0

VaR Hist 9.09 52.46 0.00 0.18 1 1 1
VaR EWMA FHS 0.94 0.21 0.00 0.00 0 0 13
VaR EWMA EVT 2.35 2.54 0.00 0.00 1 1 9
VaR EWMA Stsk 1.79 0.81 0.00 0.00 1 1 12
VaR GARCH FHS 0.20 0.05 0.00 0.00 0 0 0
VaR GARCH EVT 1.96 0.64 0.00 0.00 1 1 10
VaR GARCH Stsk 2.96 2.69 0.00 0.00 1 1 6

CVaR Hist 10.68 100.00 100.00 100.00 1 1 2
CVaR EWMA FHS 2.91 6.05 0.00 0.00 1 1 7
CVaR EWMA EVT 3.39 10.13 0.05 0.18 1 1 5
CVaR EWMA Stsk 3.38 8.81 0.06 0.17 1 1 3
CVaR GARCH FHS 1.90 0.64 0.00 0.00 1 1 11
CVaR GARCH EVT 2.73 2.70 0.00 0.00 1 1 8
CVaR GARCH Stsk 4.49 15.07 0.03 0.18 1 1 4
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strategies as superior, whereas the target volatility strategies are not identified as superior. As

expected, the FDR approach produces the largest set of superior models and picks all models,

except for the HSD and EWMA model. Panel B shows results for the CRRA investor. As in

Table VIII, these results are again quite similar to the results of the mean-variance investor.

Panel C shows results for the loss-averse investor. The DM-test again indicates that almost

all downside risk targeting strategies produce statistically higher utility gains than the 60/40

portfolio. In contrast, the volatility targeting strategies produce lower utilities, where the utilities

of the HSD and EWMA based strategies are even statistically lower with a test statistic that is

lower than �1.64. Results for the RC-test, SPA-test and the MCS approach are very different

to the findings of the DM-test. These tests indicate that the Historical Simulation based target

CVaR strategy clearly outperforms the remaining models. This result is also in line with the

high economic value of this strategy shown in Table VIII. In contrast, the stepwise approaches

and the FDR approach produce large sets of optimal models and pick (almost) all downside

risk targeting strategies, whereas none of the target volatility strategies is chosen. The FDR

approach further shows that the target CVaR strategies are typically picked in the first steps.

The differences between the results of the MCS and the stepwise approaches can be explained

by their construction. The stepwise approaches identify superior models (compared to the 60/40

portfolio) and then test the remaining models in the next steps. In contrast, the MCS eliminates

bad performing models and then tests all the remaining models in the next steps. Hence, in the

MCS approach, a good performing model remains in the test set until the last step. Thus, if one

model clearly outperforms the remaining models, all other models are identified as inferior to

this model. Due to the significantly higher economic value of the CVaR-HS model for a loss-

averse investor, all other models are clearly eliminated in the first steps. In contrast, the stepwise

approaches pick the HS based CVaR model and all other models that also produce a significantly

higher utility than the 60/40 portfolio in the first steps. Thus, the stepwise approach picks all

models that are superior to the 60/40 portfolio, whereas the MCS picks the best model(s) among

all models. This also explains the different findings of the DM-test and SPA-test. The DM-

test tests a models against the 60/40 portfolio, whereas the SPA-test tests a model against all
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remaining models. In total, results of Panel C demonstrate that loss-averse investors should

time downside risk instead of volatility, where CVaR timing produces the best results. This

again confirms the suggestion of Aı̈t-Sahalia and Brandt (2001, p. 1315-1316) that loss aversion

is highly related to CVaR based portfolio constructions, as examined by Basak and Shapiro

(2001).

1.5.5 Switching Strategies

Results so far indicate that volatility targeting produces higher returns in uptrending markets,

whereas CVaR targeting provides a better drawdown protection. However, in uptrending mar-

kets, the CVaR targeting approach is typically too conservative. For that reason, we next ex-

amine strategies that switch between volatility and CVaR targeting, based on indicators that

indicate if the following day is an up- or down-day. Thus, we combine the superiority of the

volatility targeting strategy in calm markets with the superiority of CVaR targeting in crash peri-

ods. Combining different portfolio strategies is frequently examined in the literature (DeMiguel

et al., 2009b, Garlappi et al., 2006, Kan and Zhou, 2007, Tu and Zhou, 2011). Similarly, Wang

et al. (2012) switch between different target risk levels, where a more conservative target is

chosen if a crash regime is expected. This is similar to our approach of switching to a more

conservative strategy when a down-market is expected. Furthermore, Taylor (2014) proposes to

switch between several forecasting models using an estimate of the current market environment,

which is again similar to switching between different target risk strategies. A combined strategy

that manages portfolio risk by the portfolio’s CVaR in times of bear markets, but switches to a

volatility based strategy in bull markets, should be successful in capturing the upside potential

while simultaneously drawdowns are mitigated. Another possibility would be to buy the risky

asset, i.e. wt � 1, in bull markets and use a CVaR based strategy in bear markets. However,

controlling an asset’s risk can even be advantageous in bull markets (Barroso and Santa-Clara,

2015, Table 6). Following Tu and Zhou (2011), we define the weight of day t as

wswitcht � δt � wCV aRt � p1 � δtq � wvolt , (1.5.11)
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where δt P R is the weight placed on the target CVaR strategy, wCV aRt is the day t weight of the

CVaR targeting strategy and wvolt is the day t weight of the volatility targeting strategy. Several

possibilities to define the crash indicator δt are feasible. For example, a regime-switching pro-

cess as in Ang and Bekaert (2002), Guidolin and Timmermann (2008) and Wang et al. (2012)

could be used to determine bull and bear regimes. However, since risk targeting is also rele-

vant for practical implementations, we will rely on simple models to determine δt. Our first

two switching strategies use a crash indicator δt that equals one if a negative return on day t is

expected and zero else, given information up to day t � 1. Hence, these approaches use either

volatility or CVaR targeting. In order to determine δt P t0, 1u, we use methods from the liter-

ature on technical analysis (Bajgrowicz and Scaillet, 2012, Hsu et al., 2010, Moskowitz et al.,

2012, Sullivan et al., 1999), where we use the two most prominent methods, i.e. Moving Aver-

ages (MA) and Time Series Momentum (TSMOM). Based on the MA approach, the indicator

δt is given by

δt �
#

1, if St�1 ¤ MAt�1,n

0, if St�1 ¡ MAt�1,n,
(1.5.12)

where MAt�1,n � 1
n

°n
i�1 St�i denotes the Moving Average with a length of n days. Hence,

if the risky asset is in an uptrend, given by St�1 ¡ MAt�1,n, the portfolio is managed by the

portfolio’s volatility. In contrast, if the risky asset is in a downtrend, given by St�1 ¤ MAt�1,n,

the portfolio is managed by the more conservative CVaR targeting approach.

Based on the TSMOM approach of Moskowitz et al. (2012), the indicator δt is given by

δt �
#

1, if St�1 ¤ St�1�n
0, if St�1 ¡ St�1�n.

(1.5.13)

Hence, the portfolio on day t is managed by volatility if the price of day t � 1 is higher than

the price of day t � 1 � n, i.e. we use volatility targeting when the risky asset is in an uptrend.

In contrast, during a downtrend, i.e. St�1 ¤ St�1�n, the more conservative CVaR targeting

approach is used. We use n � 200 days for the MA and TSMOM approach, which is the most

common choice made by the literature and practitioners.82

82Moskowitz et al. (2012) find good results for the TSMOM strategy for periods between one and 36 months.
This corresponds to a window size between 21 and 756 days. We also used other lengths and found good results
for other choices of n. For example, choosing n � 150 produces even higher risk-adjusted returns compared to
n � 200. However, since n � 200 is the most relevant length, we only show results for this choice.
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Table X. Performance Results of Risk Targeting: Switching Strategies
This table shows performance results of the strategies that switch between the EWMA volatility targeting
strategy and the CVaR targeting strategies for three different indicators δt. Panel A shows results for the
indicator δt based on a 200 day Time Series Momentum (TSMOM) rule. Panel B shows results for the
indicator δt based on a 200 day Moving Average (MA) rule. Panel C shows results for the indicator δt
based on the volatility forecast σ̂t of the EWMA model. The description of the columns is given in Table
V.

Panel A: TSMOM Indicator Return Vola SR zJK MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 41.23 0.032 1.38 1.82 -5.64 5.14
Index 2.73 23.46 0.040 -0.57 70.42 0.013 2.36 3.46 -8.49 11.40
60/40 2.37 11.94 0.048 -0.59 40.07 0.014 1.24 1.74 -4.32 5.10

EWMA/CVaR Hist 4.36 12.33 0.206 1.94 31.65 0.080 1.29 1.75 -5.12 4.98
EWMA/CVaR EWMA FHS 3.92 11.71 0.180 2.22 37.03 0.057 1.24 1.65 -4.01 4.98
EWMA/CVaR EWMA EVT 3.96 11.64 0.184 2.29 36.62 0.059 1.23 1.64 -3.91 4.98
EWMA/CVaR EWMA Stsk 4.24 11.73 0.206 3.00 34.96 0.069 1.24 1.65 -4.67 4.98
EWMA/CVaR GARCH FHS 3.83 12.07 0.167 2.02 38.81 0.052 1.28 1.68 -4.58 4.98
EWMA/CVaR GARCH EVT 3.93 11.93 0.177 2.26 37.68 0.056 1.26 1.67 -4.41 4.98
EWMA/CVaR GARCH Stsk 4.19 11.76 0.202 2.61 35.38 0.067 1.24 1.65 -4.75 4.98

Panel B: MA Indicator Return Vola SR zJK MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 41.23 0.032 1.38 1.82 -5.64 5.14
Index 2.73 23.46 0.040 -0.57 70.42 0.013 2.36 3.46 -8.49 11.40
60/40 2.37 11.94 0.048 -0.59 40.07 0.014 1.24 1.74 -4.32 5.10

EWMA/CVaR Hist 4.28 12.31 0.199 1.75 31.08 0.079 1.29 1.75 -5.12 4.98
EWMA/CVaR EWMA FHS 3.87 11.66 0.176 2.09 36.38 0.056 1.23 1.64 -4.01 4.98
EWMA/CVaR EWMA EVT 3.92 11.58 0.181 2.17 35.98 0.058 1.22 1.63 -3.91 4.98
EWMA/CVaR EWMA Stsk 4.07 11.72 0.192 2.62 34.86 0.064 1.24 1.66 -4.67 4.98
EWMA/CVaR GARCH FHS 3.85 12.00 0.169 2.02 37.97 0.053 1.28 1.67 -4.58 4.98
EWMA/CVaR GARCH EVT 3.94 11.86 0.179 2.23 36.82 0.058 1.26 1.65 -4.41 4.98
EWMA/CVaR GARCH Stsk 4.08 11.71 0.193 2.36 34.48 0.066 1.24 1.65 -4.75 4.98

Panel C: Volatility Indicator Return Vola SR zJK MDD Calmar VaR CVaR Min Max

Vola Hist 3.12 12.84 0.102 - 41.23 0.032 1.38 1.82 -5.64 5.14
Index 2.73 23.46 0.040 -0.57 70.42 0.013 2.36 3.46 -8.49 11.40
60/40 2.37 11.94 0.048 -0.59 40.07 0.014 1.24 1.74 -4.32 5.10

EWMA/CVaR Hist 2.42 12.26 0.051 -0.28 36.28 0.017 0.94 1.85 -7.60 10.87
EWMA/CVaR EWMA FHS 3.17 9.03 0.152 0.57 30.55 0.045 0.95 1.33 -3.55 4.17
EWMA/CVaR EWMA EVT 3.14 8.68 0.154 0.58 29.17 0.046 0.91 1.28 -3.40 4.14
EWMA/CVaR EWMA Stsk 3.80 9.13 0.217 1.30 25.64 0.077 0.96 1.33 -4.45 4.11
EWMA/CVaR GARCH FHS 3.25 10.23 0.141 0.52 36.28 0.040 1.08 1.47 -4.33 3.81
EWMA/CVaR GARCH EVT 3.25 9.58 0.151 0.65 32.89 0.044 1.02 1.38 -4.10 3.77
EWMA/CVaR GARCH Stsk 3.36 8.99 0.173 0.68 28.06 0.055 0.93 1.28 -4.56 8.40

The two indicators defined above are dummy variables, taking a value of δt � 1 if a neg-

ative return is likely and zero else. As a consequence, the weight of day t is either given by

the volatility targeting strategy or the CVaR targeting strategy. We next define a third indicator,

where the weight of day t is given as a combination of the volatility and CVaR targeting strate-

gies. This is similar to the approach of combining different forecasting methods (Allen et al.,

2012, Halbleib and Pohlmeier, 2012, Taylor, 2014). If market risk increases, measured by ex-

pected volatility of day t, we place more weight on the CVaR targeting strategy, whereas CVaR
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targeting becomes less important when market risk decreases.83 More formally, we define δt as

δt � σ̂t
σtarget

, (1.5.14)

where σtarget is the chosen volatility target and σ̂t is the volatility forecast of one of the volatility

models. Generally, market timing strategies based on expected volatility are frequently used by

practitioners (Christoffersen and Diebold, 2006, Copeland and Copeland, 1999). Defining δt

with respect to the chosen volatility target is appealing since more risk-averse investors choose

lower levels of σtarget, which implies higher values of δt. This fits well to our earlier finding

that more risk-averse investors obtain higher utility gains from CVaR targeting compared to

volatility targeting. Hence, by choosing δt as a function of σtarget, more risk-averse investors

place higher weights on CVaR targeting, whereas risk-seeking investors place higher weights

on volatility targeting. Thus, the portfolio of a risk-averse investor is more conservative than

the portfolio of a risk-seeking investor.

The weight of the switching strategy using the indicator given in Equation (1.5.14) can be

rewritten as

wswitcht � wvolt �
�
wCV aRt

wvolt

� 1



. (1.5.15)

Hence, this switching strategy is similar to the volatility targeting strategy with weight wvolt , but

the switching strategy places more (less) weight on the risky asset when the weight of the CVaR

targeting strategy is higher (lower) than the weight of the volatility targeting strategy. This strat-

egy is similar to the approach of Packham et al. (2017) who examine tail risk hedging strategies

based on the difference of VaR forecasts under a normality assumption and forecasting methods

that take non-normalities into account. By definition, the CVaR takes non-normalities into ac-

count and wCV aRt should be higher (lower) than wvolt when the market is in an bull (bear) regime

with lower (higher) left tail risk. Thus, this switching strategy should be similar to the volatility

targeting strategy, but should react more sensitive to changes in the market environment, where

the weight is lowered in a down-market and increased in an up-market, governed by changes in

higher moments, like skewness and kurtosis.
83We also used an indicator based on the two indicators defined above, given by δt � pδMA

t � δTSMOM
t q{2.

Thus, this strategy uses either volatility targeting, CVaR targeting or an equally weighted combination of both
strategies. However, results were quite similar to the previous approaches and are not reported.
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Table XI. Economic Value of Risk Targeting: Switching Strategies
This table shows the economic value, given as annualized percentage fee ∆i an investor is willing to
pay to switch from the 60/40 portfolio to a strategy that switches between volatility and CVaR targeting,
for a given utility function Ui, i P tMV,CRRA,LAu. Panel A shows the economic value for a mean-
variance investor. Panel B shows the economic value for an investor with CRRA utility. Panel C shows
the economic value for a loss-averse investor. γ indicates the investor’s risk aversion. l determines the
investor’s loss aversion and b measures the investor’s degree of risk seeking for negative returns and risk
aversion for positive returns.

Whole Sample Crash Recovery

Panel A: ∆MV γ � 2 γ � 5 γ � 10 γ � 15 γ � 5 γ � 10 γ � 5 γ � 10

EWMA/CVaR Hist 0.013 -0.105 -0.302 -0.498 -16.012 -26.657 -4.204 -2.298
EWMA/CVaR EWMA FHS 1.097 2.026 3.593 5.183 19.340 29.305 -4.034 -3.127
EWMA/CVaR EWMA EVT 1.095 2.119 3.849 5.606 19.426 29.379 -3.844 -2.866
EWMA/CVaR EWMA Stsk 1.697 2.605 4.136 5.689 29.427 39.157 -4.048 -3.429
EWMA/CVaR GARCH FHS 1.056 1.632 2.601 3.578 15.483 24.424 -3.070 -2.366
EWMA/CVaR GARCH EVT 1.120 1.894 3.198 4.517 16.074 25.207 -3.162 -2.312
EWMA/CVaR GARCH Stsk 1.283 2.224 3.812 5.422 25.367 32.485 -3.284 -2.399

Panel B: ∆CRRA γ � 2 γ � 5 γ � 10 γ � 15 γ � 5 γ � 10 γ � 5 γ � 10

EWMA/CVaR Hist 0.054 -0.045 -0.194 -0.381 -13.517 -24.043 -4.581 -2.689
EWMA/CVaR EWMA FHS 0.790 1.714 3.277 4.870 17.388 27.079 -4.216 -3.322
EWMA/CVaR EWMA EVT 0.756 1.776 3.502 5.266 17.476 27.155 -4.040 -3.074
EWMA/CVaR EWMA Stsk 1.396 2.301 3.831 5.391 27.527 37.061 -4.173 -3.560
EWMA/CVaR GARCH FHS 0.865 1.438 2.401 3.376 13.723 22.415 -3.212 -2.517
EWMA/CVaR GARCH EVT 0.864 1.635 2.934 4.256 14.279 23.158 -3.332 -2.491
EWMA/CVaR GARCH Stsk 0.972 1.917 3.530 5.192 24.114 31.687 -3.461 -2.582

b � 0.8 b � 1 b � 0.8 b � 0.8

Panel C: ∆LA l � 2 l � 3 l � 2 l � 3 l � 2 l � 3 l � 2 l � 3

EWMA/CVaR Hist 9.677 14.863 11.314 17.176 -10.945 -15.003 14.550 24.395
EWMA/CVaR EWMA FHS 9.891 14.798 12.402 18.670 49.383 71.451 4.782 9.462
EWMA/CVaR EWMA EVT 11.059 16.621 13.999 21.135 49.497 71.493 5.333 10.248
EWMA/CVaR EWMA Stsk 10.397 15.350 13.112 19.398 52.726 72.999 3.289 7.092
EWMA/CVaR GARCH FHS 5.107 7.432 6.407 9.413 42.252 62.125 3.018 6.225
EWMA/CVaR GARCH EVT 7.255 10.771 9.161 13.674 43.604 64.214 4.131 8.045
EWMA/CVaR GARCH Stsk 10.306 15.553 13.425 20.117 46.414 64.530 5.446 10.048

Results for the three indicators are given in Table X, where we only show results for the

strategies that switch between the EWMA model and the CVaR targeting strategies. For a bet-

ter comparison to our previous results, we also show results for the HSD based target volatility

strategy, the DAX and the 60/40 portfolio. Panel A shows results for the indicator δt based on

the TSMOM strategy. Compared to the HSD model, switching between the EWMA based strat-

egy and the target CVaR strategies successfully heightens the return while simultaneously the

volatility is reduced. The switching strategies provide an enhanced risk-return profile, indicated

by a higher Sharpe Ratio and Calmar Ratio, than the individual strategies given in Table V.

For example, the strategy that switches between the EWMA model and the CVaR-EWMA-Stsk

strategy increases the Sharpe Ratio of the HSD model by 0.206{0.102 � 1 � 101.96%. The
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high increase of the Sharpe Ratio can also be seen by the Sharpe Ratio test of Jobson and Ko-

rkie (1981). All switching strategies provide a statistically higher Sharpe Ratio than the HSD

model, whereas only one model in Table V was able to provide a statistically higher Sharpe

Ratio. Further, the switching strategies also provide a higher drawdown protection, indicated

by the lower MDD and minimum return. Thus, the switching approach seems to capture the

benefits of volatility and CVaR targeting and produces higher returns with lower risk. Panel B

shows results for the indicator based on the 200 day Moving Average, which are quite similar

to the TSMOM based results. As before, all switching strategies produce significantly higher

Sharpe Ratios than the HSD model. Panel C shows results for the volatility based indicator

δt. Interestingly, although some strategies based on this indicator produce the highest Sharpe

Ratios in Table X, none of these strategies produces a significantly higher Sharpe Ratio with

Jobson and Korkie (1981) test statistics lower than 1.64. However, this can be explained by

a lower correlation of these switching strategies with the HSD strategy compared to the other

indicators. Furthermore, the switching strategies based on the volatility based indicator δt ex-

hibit the lowest drawdowns among the three indicators, which is in line with Equation (1.5.15)

that this strategy is similar to the volatility targeting strategy, but more sensitive to up- and

down-markets.

Table XI shows the economic value of the switching strategies that use the volatility based

indicator δt for the mean-variance, CRRA and loss-averse investors. We only show results for

the volatility based indicator δt, since Table X indicates that none of the switching strategies

based on this indicator produces significant performance gains for the test of Jobson and Ko-

rkie (1981). Based on the results of Table XI, we will test in Table XII if these utility gains

are statistically significant. Thus, our results in Table XII are conservative and results for the

TSMOM and MA indicator are superior to the results shown here. The economic value is again

calculated with respect to the 60/40 portfolio, i.e. the numbers in this table correspond to the

annual percentage fee an investor is willing to pay to switch away from the 60/40 portfolio to

one of the switching strategies. Consequently, these numbers can be directly compared to the

results of Table VIII. Results of Panels A and B in Table XI are similar to the results of Table
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VIII, but higher in magnitude. Thus, mean-variance and CRRA investors are willing to pay

higher fees for the switching strategies over the whole sample and the crash period compared

to the individual strategies. However, during the calm period, these investors prefer the 60/40

portfolio. Thus, a possible extension of our switching approach would be to switch between

the CVaR managed strategy and a non-managed static portfolio. Panel C shows results for the

loss-averse investor. Results are again similar to Table VIII, but higher in magnitude for the

whole period and the period capturing the financial crisis. Interestingly, during the crisis pe-

riod, the economic value of the strategy that switches to the Historical Simulation based target

CVaR strategy is negative, although this strategy was quite convincing in Table VIII. However,

this result is in line with our earlier findings that, especially on days with an extremely negative

return, dynamically managed strategies are superior to a statically managed strategies. Since

the switching strategy places higher weights on CVaR targeting when a crash is expected, the

HS based switching strategy should perform worse during extreme crashes. During the calm

period, the economic value of all switching strategies becomes positive and high in magnitude.

This holds especially for the strategy that switches to the Historical Simulation based strategy.

Thus, loss-averse investors are willing to pay high fees to have access to a strategy that switches

between volatility and CVaR targeting, even when the market is trending upwards. In contrast, a

loss-averse investor is not willing to pay a positive fee to use the EWMA based target volatility

strategy as shown in Table VIII. In particular, Table XI again shows that conditional models

produce higher utility gains than unconditional models. This is again in line with our earlier

findings that there is a link between forecasting accuracy and utility gains for risk targeting

investors.

To summarize Table XI, switching between volatility and CVaR targeting heightens utility

gains for all three investors compared to the static 60/40 portfolio. Further, utility gains of the

switching strategies are higher in magnitude compared to the economic value of the individual

risk targeting strategies as shown in Table VIII. This confirms the earlier finding of Table X

that the switching approach further enhances the risk-return profile. We will next test if these

utility increases are also statistically significant. Table XII shows results for the tests that test
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Table XII. Testing the Utility Gain of Risk Targeting: Switching Strategies
This table shows the results of the tests presented in Section 1.4.1 used to test for the significance of the utility
gains. Panel A shows results for a mean-variance investor with γ � 10. Panel B shows results for a CRRA investor
with γ � 10. Panel C shows results for a loss-averse investor with b � 0.8 and l � 2. The description of the
columns is given in Tables I and II.

Panel A: Mean-Variance DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� � 10%

Vola Hist -0.23 3.66 0.30 0.80 0 0 0
Vola EWMA 0.28 5.91 0.57 1.64 0 0 0
Vola GARCH 0.77 7.51 1.21 2.81 0 0 0

EWMA/CVaR Hist -0.14 8.43 11.47 11.39 0 0 0
EWMA/CVaR EWMA FHS 2.17 74.39 9.12 48.84 1 1 5
EWMA/CVaR EWMA EVT 2.27 82.19 45.80 84.39 1 1 2
EWMA/CVaR EWMA Stsk 2.23 100.00 100.00 100.00 1 1 1
EWMA/CVaR GARCH FHS 1.82 41.73 0.69 14.90 1 1 6
EWMA/CVaR GARCH EVT 2.16 64.85 27.44 46.11 1 1 3
EWMA/CVaR GARCH Stsk 2.25 79.42 43.03 84.39 1 1 4

Panel B: CRRA DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� � 10%

Vola Hist -0.26 3.97 0.24 0.76 0 0 0
Vola EWMA 0.26 5.99 0.60 1.45 0 0 0
Vola GARCH 0.75 7.57 1.13 2.57 0 0 0

EWMA/CVaR Hist -0.11 9.01 12.07 11.47 0 0 0
EWMA/CVaR EWMA FHS 2.17 74.66 9.26 48.31 1 1 5
EWMA/CVaR EWMA EVT 2.28 82.64 47.38 87.53 1 1 2
EWMA/CVaR EWMA Stsk 2.23 100.00 100.00 100.00 1 1 1
EWMA/CVaR GARCH FHS 1.82 42.04 0.60 14.00 1 1 6
EWMA/CVaR GARCH EVT 2.16 66.10 28.55 46.16 1 1 3
EWMA/CVaR GARCH Stsk 2.23 80.82 46.72 87.53 1 1 4

Panel C: Loss Aversion DM-test pRC pSPA pSQ Step-RCst Step-SPAst FDR� � 10%

Vola Hist -2.63 0.00 0.00 0.00 0 0 0
Vola EWMA -2.16 0.00 0.00 0.00 0 0 0
Vola GARCH -1.40 0.00 0.00 0.00 0 0 0

EWMA/CVaR Hist 5.03 43.80 36.99 69.53 1 1 1
EWMA/CVaR EWMA FHS 4.33 43.64 0.00 0.22 1 1 2
EWMA/CVaR EWMA EVT 4.76 100.00 100.00 100.00 1 1 3
EWMA/CVaR EWMA Stsk 4.64 64.23 32.40 69.53 1 1 4
EWMA/CVaR GARCH FHS 2.71 0.03 0.00 0.00 1 1 7
EWMA/CVaR GARCH EVT 3.70 2.36 0.00 0.02 1 1 6
EWMA/CVaR GARCH Stsk 5.32 66.24 41.12 69.53 1 1 5

for statistically significant utility gains of the switching strategies. For a better comparison, we

also include the three volatility targeting strategies. Table XII shows that the switching strate-

gies produce statistically significant utility increases, whereas the volatility targeting strategies

do not. For all three investors, most switching strategies produce significantly higher utili-

ties compared to the 60/40 portfolio, whereas the volatility targeting strategies do not exhibit

statistically significant utility increases. In line with our earlier findings, the most convincing

results are again found for the strategies that switch to a conditionally managed CVaR strategy.

Consequently, results of Table XII show that switching between volatility and CVaR targeting

produces statistically significant higher utilities for all three investors, whereas the test of Job-
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son and Korkie (1981) does not indicate that the switching strategies based on the volatility

indicator δt exhibit statistically higher Sharpe Ratios. This again highlights that the Sharpe Ra-

tio is a suboptimal performance measure for dynamic trading strategies (Han, 2005, Marquering

and Verbeek, 2004).

Figure I. One and Five Year Rolling Economic Value for a Mean-Variance Investor. This figure
plots the one and five year rolling economic value measured by ∆MV with respect to the 60/40 portfolio
for a mean-variance investor with a risk aversion of γ � 10. Panel A shows the economic value for
an investor with an investment horizon of one year, whereas Panel B shows the economic value for an
investor with an investment horizon of five years. The dates on the x axes correspond to the end dates of
the one or five year investment horizon.

We have so far focused our analysis on the economic value calculated over the whole sam-

ple. However, most investors typically have short evaluation periods (Benartzi and Thaler,

1995). Further, timing short-term risk is also beneficial for long-term investors (Moreira and

Muir, 2019), i.e. even long-term investors should be concerned about short-term utility gains.

For that reason, similar to Figure 2 of Marquering and Verbeek (2004), we next plot in Figure

I the rolling one and five year economic value for a mean-variance investor who uses our risk

targeting and switching strategies. Thus, this figure plots the rolling annualized fee a mean-

variance investor with an investment horizon of one or five years is willing to pay to switch

from the 60/40 portfolio to the risk targeting strategies. Panel A shows the rolling annualized
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percentage fee for an investor with a risk aversion of γ � 10 and an investment horizon of

one year, whereas Panel B shows the rolling economic value for an investor with an investment

horizon of five years. Figure I demonstrates that a mean-variance investor with an investment

horizon of one year is almost always willing to pay a positive fee to have access to risk target-

ing. This holds especially for the strategies that target a constant level of downside risk and the

switching strategy. In line with our earlier findings, the utility gains in the crises are substan-

tially higher than the utility losses in the low risk periods. Hence, investors are willing to pay

very high fees to avoid crash periods, whereas their utility loss of lower returns in uptrending

markets is significantly lower. In particular, during crash periods, the economic value of down-

side risk timing and the switching strategy is significantly higher than the economic value of

volatility timing, whereas the economic value of volatility targeting, downside risk timing and

the switching strategy is comparable in calm periods. Interestingly, during the crises periods,

we find that the switching strategy outperforms all other strategies. Thus, even during crises,

switching between volatility and CVaR targeting outperforms downside risk targeting. Results

in Panel B are similar to the results in Panel A, but the differences between volatility targeting,

downside risk targeting and the switching strategy become even larger. Thus, for investors with

longer investment horizons, downside risk targeting becomes far more important than volatil-

ity targeting. This again holds especially for the strategy that switches between volatility and

CVaR targeting. In particular, we find that, on average, the switching strategy produces the

highest economic value, followed by CVaR targeting. In contrast, volatility targeting exhibits

the lowest (average) economic value. Results for the CRRA investor are again similar to the

results of Figure I and are not shown here.

Figure II shows the rolling one and five year economic value for a loss-averse investor with

parameters b � 0.8 and l � 3. Panel A shows results for an investor with an investment horizon

of one year. The economic value of downside risk targeting for a loss-averse investor is always

higher than the economic value of volatility targeting. As in Figure I, the economic value

significantly increases for the periods that contain a crisis. Switching between volatility and

CVaR targeting again outperforms all the remaining strategies, especially during crises. Panel B

96



Figure II. One and Five Year Rolling Economic Value for a Loss-Averse Investor. This figure plots
the one and five year rolling economic value measured by ∆LA with respect to the 60/40 portfolio for
a loss-averse investor with parameters b � 0.8 and l � 3. Panel A shows the economic value for an
investor with an investment horizon of one year, whereas Panel B shows the economic value for an
investor with an investment horizon of five years. The dates on the x axes correspond to the end dates of
the one or five year investment horizon.

shows results for a loss-averse investor with an investment horizon of five years. Interestingly,

the economic value of volatility targeting is always negative, i.e. a loss-averse investor with

an investment horizon of five years is never willing to pay a positive fee to switch from the

60/40 portfolio to the HSD managed strategy. This is opposed to the finding of Moreira and

Muir (2019) that even long-term investors should time short-term volatility.84 In contrast, the

economic value of downside risk targeting and the switching strategy is only negative for a short

period. Thus, a loss-averse investor with an investment horizon of five years should almost

always target downside risk or, even more advantageous, this investor should switch between

volatility and CVaR targeting.

Finally, we compare the performance of the different risk targeting strategies by running

time-series regressions of the returns from one strategy on the returns of the other strategies.

Following Moreira and Muir (2017, Table I), we first run regressions of the risk-managed port-
84In contrast to our examination in Figure II, Moreira and Muir (2019) do not assess the economic value for

loss-averse investors.
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folios on the non-managed portfolio. Further, following Daniel and Moskowitz (2016, Table 8),

we additionally regress the risk-managed strategies on the other risk-managed strategies. We

follow the authors and rescale all strategies to the same level of volatility before running the

regressions. Table XIII reports the annualized percentage alphas with the corresponding t-

statistics.85 We calculate the alphas for the switching strategies that use the same indicators as

in Table X.

Table XIII. Spanning Tests: Portfolio Alphas
This table shows results of spanning test for the DAX and the risk targeting strategies. We run time-
series regressions of each portfolio on the remaining strategies, where we use the DAX, the volatility
targeting strategy, the CVaR targeting strategy and the strategy that switches between volatility and CVaR
targeting. Panel A uses the TSMOM based indicator δt for the switching strategy, Panel B uses the MA
based indicator and Panel C uses the volatility based indicator. We report annualized percentage alphas
with corresponding t-statistics in parentheses. Bold numbers mark alphas that are significantly positive
at the 10% level, whereas red numbers mark alphas that are significantly negative at the 10% level.

DAX Volatility CVaR Switching

Panel A: TSMOM Indicator α t�stat α t�stat α t�stat α t�stat

DAX - - -2.005 (-0.397) -5.704 (-1.227) -6.495 (-1.197)
Volatility 5.511 (0.990) - - -3.421 (-1.446) -5.331 (-2.699)
CVaR 9.399 (1.782) 4.285 (1.772) - - -1.539 (-0.690)
Switching 12.063 (1.921) 6.187 (2.924) 2.253 (0.991) - -

Panel B: MA Indicator α t�stat α t�stat α t�stat α t�stat

DAX - - -2.005 (-0.397) -5.704 (-1.227) -6.139 (-1.134)
Volatility 5.511 (0.990) - - -3.421 (-1.446) -4.900 (-2.407)
CVaR 9.399 (1.782) 4.285 (1.772) - - -1.090 (-0.479)
Switching 11.545 (1.860) 5.710 (2.646) 1.796 (0.780) - -

Panel C: Volatility Indicator α t�stat α t�stat α t�stat α t�stat

DAX - - -2.005 (-0.397) -5.704 (-1.227) -4.298 (-0.586)
Volatility 5.511 (0.990) - - -3.421 (-1.446) -3.629 (-0.713)
CVaR 9.399 (1.782) 4.285 (1.772) - - -0.750 (-0.188)
Switching 13.941 (1.578) 8.033 (1.383) 3.464 (0.746) - -

Results in Table XIII show that the DAX always has a negative alpha when it is controlled for

the performance of the risk targeting strategies. In contrast, all risk targeting strategies produce

positive and economically large alphas when it is controlled for the performance of the DAX. In

this case, the volatility targeting strategy produces an economically high alpha of 5.511%, which

is in line with Moreira and Muir (2017, Table I) who find an alpha of 4.86% for the US market.
85Cederburg et al. (2020) state that the approach of Moreira and Muir (2017) has several disadvantages. More-

over, Boguth et al. (2011) and Cederburg and O’Doherty (2016) state that unconditional alphas are not appropriate
to assess the performance of strategies that time volatility. Furthermore, Schneider et al. (2020) show that the
unconditional alpha does not incorporate skewness preferences of investors. However, these regression results can
be seen as a further robustness check of our economic value based findings. The economic value approach corrects
for several disadvantage of the unconditional alpha and is a more powerful tool to compare the performance of
dynamic trading strategies.
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However, the alpha is not statistically significant with a t-statistic of 0.99.86 In contrast, the per-

formance of CVaR targeting and the switching strategies cannot be explained by the DAX with

an alpha of 9.399% for the CVaR targeting strategy and alphas between 11.545% and 13.941%

for the switching strategies. These alphas are statistically significant at the 10% level for the

TSMOM and MA based switching strategies with t-statistics of 1.921 and 1.860. Interestingly,

among the switching strategies, the switching strategy using the volatility based indicator δt

produces the highest alpha but the lowest t-statistic. This can be explained by the lower corre-

lation of this strategy with the DAX. When we control for the volatility targeting strategy, the

CVaR targeting and switching strategies produce economically high and mostly significant al-

phas. For example, with an alpha of 4.285% and a t-statistic of 1.772, CVaR targeting cannot be

explained by volatility targeting. In contrast, when we control for the performance of the CVaR

targeting strategy, the alpha of the volatility targeting strategy becomes negative. Furthermore,

when we control for the switching approach, the volatility targeting strategy’s alpha is even

significantly negative in most cases and economically high in magnitude with values between

�3.629% and �5.331%. Thus, not switching away from volatility targeting in periods when a

negative return is expected produces a significantly inferior performance. Similarly, the CVaR

targeting strategy’s alpha becomes negative, once we control for the switching approach.

In total, when we control for the switching strategy, all other strategies produce negative al-

phas. In contrast, the switching strategy’s performance cannot be explained by volatility target-

ing, i.e. the switching approach produces economically high and statistically significant alphas

in this case. The alphas of the switching strategies with respect to the CVaR targeting strategy

are also positive, but not statistically significant. Thus, switching away from CVaR targeting in

periods when the market is expected to be in an uptrend further improves the strategy’s perfor-

mance, but a huge part of the good performance of the switching strategy can be explained by

CVaR targeting. Altogether, results in Table XIII confirm our earlier findings that risk targeting

outperforms the non-managed portfolio. Furthermore, strategies that account for the DAX’s tail

risk outperform the volatility targeting strategy. However, the strategy that switches between

volatility and CVaR targeting performs the best and produces economically high alphas with

86We show in Appendix D.6 that the alphas are highly significant when a longer data set is used.
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respect to the remaining strategies.

1.6 Conclusion

This paper studies dynamic trading strategies that target a predefined level of risk measured by

volatility, Value at Risk (VaR) or Conditional Value at Risk (CVaR). We derive weights for these

trading strategies and present several methods to estimate volatility, VaR and CVaR. Based on a

data set for the German stock market, we find that risk targeting offers an enhanced risk-return

profile, a better drawdown protection and significant utility gains compared to a buy-and-hold

equity investment and a static portfolio consisting of equities and bonds. Most convincing

results are found for the strategies that target a constant level of portfolio CVaR over time.

In particular, we find that mean-variance investors, CRRA investors and loss-averse investors

should time downside risk, measured by CVaR, instead of volatility. This result especially holds

for highly risk-averse or loss-averse investors and during crises. In particular, a loss-averse

investor is not willing to pay a positive fee for volatility targeting, but the same investor would

pay extremely high fees to have access to CVaR targeting. Generally, we find that risk should

be managed by conditional risk models instead of unconditional models, as done by Barroso

and Santa-Clara (2015), Barroso and Maio (2018) and Moreira and Muir (2017). This is in line

with the result of Bollerslev et al. (2018) that a higher forecasting accuracy, and hence a more

constant portfolio risk of risk targeting, typically coincides with higher performance benefits

compared to static and less accurate forecasting models.

The risk-return profile and utility gains of risk targeting can further be improved by switch-

ing between volatility and CVaR targeting, where CVaR targeting is only used when a nega-

tive market return is expected. Based on three different crash indicators, we show that these

switching strategies produce higher returns with lower risk compared to the volatility targeting

strategies. Further, the mean-variance, CRRA and loss-averse investors are willing to pay high

fees to have access to these switching strategies. When the volatility targeting and switching

strategies are simultaneously compared to the utility of a static portfolio allocation, utility gains

of the switching strategies are statistically significant, whereas the utility gains of volatility tar-
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geting are insignificant. In particular, the returns of the switching strategy cannot be explained

by volatility targeting, whereas volatility targeting becomes unprofitable, once we control for

CVaR targeting or the switching strategies. Furthermore, the superiority of both strategies, the

CVaR managed and switching strategies, holds in the long run and during the recent corona

crisis.
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Appendix to Chapter 1

A Advantages of Volatility Targeting

This section summarizes several reasons why investors should target a constant level of volatil-

ity. See also Dreyer and Hubrich (2019) and references therein for further advantages of volatil-

ity targeting. Most of the advantages that will be summarized here also hold for the target VaR

and target CVaR strategies presented in Section 1.3.

First, using the weight of Equation (1.2.3) implies that the weight of the risky asset is de-

creased in times of high volatility and increased in low volatile times. Since volatility is often

associated with risk and investors are typically risk-averse (Scott and Horvath, 1980), targeting

a constant level of volatility fits well to these investors’ preferences. By choosing an adequate

volatility target σtarget, investors can choose an investment strategy that fits well to their pref-

erences and risk aversion (Bollerslev et al., 2018). Similarly, Zakamulin (2015) and Moreira

and Muir (2017) show that mean-variance investors should, under some assumptions, optimally

choose the weight of the risky asset as wt � pσtarget{σtq2 (see also Dopfel and Ramkumar

(2013)).87 Based on this result, Kirby and Ostdiek (2012) suggest that investors should addi-

tionally decrease the sensitivity of wt to volatility changes, which leads to the weight given in

Equation (1.2.3). Decreasing the sensitivity of wt to volatility changes has the advantage that

transaction costs are lowered and this strategy is more profitable in practice.88

87The mean-variance framework is only suitable for elliptical distributions. Since asset returns usually do not
follow an elliptical distribution, this weighting is not optimal for realistic return distributions (Szegö, 2002, p.1254).
We will revisit this issue in Section 1.3, where we present a similar weighting scheme based on risk measures that
account for non-normalities in the asset return distribution.

88Since volatility can only be estimated with an estimation error, Kirby and Ostdiek (2012) suggest to scale
the weight wt � pσtarget{σtq2 by a parameter η, called tuning parameter, that determines how aggressively the
weight wt reacts to changes in σt. This approach lowers the portfolio’s turnover and, as a consequence, reduces
transaction costs. By choosing η � 0.5, we obtain the weight of the target volatility strategy (see also Zakamulin
(2015, p. 91)). Moreira and Muir (2017) compare the weight of the volatility and variance managed strategies.
The authors find similar results, but less extreme weights and lower transaction costs for the volatility managed
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Second, especially during bear markets, which are associated with increases in volatility

and correlations, investors seek for risk reduction methods (Ang and Bekaert, 2002).89 The

last financial crises were all accompanied by higher than normal volatilities (Liu et al., 2003,

Moreira and Muir, 2017). In particular, times of an extremely high volatility typically coincide

with times of a downward moving market (Campbell and Hentschel, 1992, French et al., 1987).

Similarly, Moreira and Muir (2017) find that the probability of a recession is higher in times of

high a market volatility. This is confirmed by Muir (2017) who shows that asset prices decline

and stock market volatility increases in financial crises and recessions, but these effects reverse

subsequently. Thus, times of a significantly higher volatility coincide with declining asset prices

and these times should be avoided by investors. In contrast, the times following a crisis, which

are marked by a declining volatility, offer an appealing risk-return profile for investors (Dopfel

and Ramkumar, 2013, Moreira and Muir, 2019). Further, since volatilities and correlations

between different equity markets increase simultaneously during bear markets, drawdowns in

crises cannot simply be managed by diversification (Ang and Bekaert, 2002, Ang and Chen,

2002, Butler and Joaquin, 2002, Karolyi and Stulz, 1996, Longin and Solnik, 2001, Patton,

2004). For example, Chabi-Yo et al. (2018) find that extremely negative returns of stocks are

more related than extremely positive returns, i.e. stocks tend to crash simultaneously. In partic-

ular, the authors show that the correlation of extremely negative returns among different stocks

increases in crash periods (Chabi-Yo et al., 2018, Figure 2). Similarly, Bollerslev et al. (2018)

find co-movements, spillover effects and simultaneous spikes of volatilities between equities,

bonds, commodities and currencies. Thus, risk characteristics between assets and asset classes

are quite similar, especially in crash periods. Furthermore, Jondeau and Rockinger (2003) find

that also higher moments, like (negative) skewness and kurtosis, increase simultaneously be-

strategy. Zakamulin (2015, Exhibit 2) also find better results for the volatility managed strategy compared to the
variance managed strategy.

89Liu et al. (2003) find that most events with extremely negative returns are accompanied with high increases
in volatility. Guidolin and Timmermann (2008) find a bear regime with low returns, negative alphas, high volatil-
ities and highly correlated assets and a bull regime with higher returns, positive alphas, lower volatilities and less
correlated returns (see also Wang et al. (2012, p. 27) and Hocquard et al. (2013)). Similarly, Ang and Bekaert
(2002, p. 1139) find “a normal regime with low correlations, low volatilities, and a bear regime with higher corre-
lations, higher volatilities, and lower conditional means.” The bear states occurred during financial crises and/or
global recessions that were accompanied with high market volatilities, indicating that periods of market distress
are associated with high volatilities and low returns (Muir, 2017).
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tween markets during bear regimes. This indicates that the probability of an occurrence of large

(negative) returns cannot be reduced by simply combining several risky assets. As stated above,

these crash periods typically coincide with periods of an increased volatility. As a consequence,

during high risk periods, the portfolio should be managed by simultaneously decreasing the ex-

posure to a portfolio of risky assets and increasing the exposure to the riskless asset, as done by

the target volatility strategy.90 This also solves the problem identified by Ang and Chen (2002)

and Longin and Solnik (2001) that investors incorrectly assess the benefits of diversification, and

thus typically hold too much equities in bear markets, whereas they are underinvested in bull

markets. However, by managing volatility, an investor is not protected against unpredictable

tail events, marked by periods with extreme jumps in asset prices.91

Third, an often proclaimed justification of volatility targeting is the relation between volatil-

ity and future return. Although classical finance models, like the CAPM, indicate that higher

risk should be compensated by higher expected returns (see Merton (1980) for example), many

empirical studies find a negative relation between volatility and returns, i.e. a higher volatility

coincides with lower or negative future returns (Glosten et al., 1993).92 A possible explanation

for the negative volatility-return relation is the volatility feedback effect, which is sometimes

also called time-varying risk premium effect and is opposed to the well-known leverage effect

90This result is also found by Ang and Bekaert (2002) who examine the optimal portfolio allocation when assets’
correlations increase in crash regimes. By incorporating a risk-free asset, they find that, in the normal regime, the
risky asset should be leveraged by being short in the risk-free asset, whereas money should be shifted to the risk-
free asset in the bear regime. Furthermore, the authors find significant drawbacks of ignoring information about
the regime, once the possibility of shifting money to the risk-free asset is introduced (see also Patton (2004)).

91See Liu et al. (2003) for a study on how jump risk, in both equity prices and volatility, affects the dynamic
asset allocation between a risky and a riskless asset. In order to face jump risk, investors should avoid leveraged
positions in the risky asset. Hence, an equity cap of 100% or a low volatility target should be used (see also Das
and Uppal (2004)). Alternatively, investors should manage extreme losses, measured by downside risk, instead
of return deviations. Jarrow and Zhao (2006) show that managing volatility differs from managing downside risk
when asset returns exhibit jump risk.

92A similar observation has also been found in cross-sectional analyses. See, for example, Frazzini and Ped-
ersen (2014) who show that buying low beta assets and selling high beta assets produces high returns. Similarly,
Ang et al. (2006b) and Ang et al. (2009) show that assets with a high past sensitivity to volatility changes, high
idiosyncratic volatility or high total volatility have significantly lower returns than assets with a low past sensitiv-
ity to volatility changes, low idiosyncratic volatility or low total volatility, respectively. Moreira and Muir (2017,
Sec. II.D) show that this effect is different to the time-series volatility effect examined here. Haugen and Heins
(1975) find that the risk-return relation strongly depends on the sample period and whether the sample period is
dominated by a bull or bear regime. Using a long data set, the authors find that “over the long run, stock portfolios
with lesser variance in monthly returns have experienced greater average returns than their “riskier” counterparts”
(Haugen and Heins, 1975, p. 782).
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(see Glosten et al. (1993, p. 1786) for an explanation of the leverage effect).93 Based on this

observation, an increase in volatility induces an immediate stock price decline. In other words,

if tomorrow’s volatility σt�1 is expected to be higher than today’s volatility σt, then tomorrow’s

weight wt�1 should be lower than today’s weight wt.94 However, results in the academic litera-

ture on the relation between volatility and future returns are very mixed and a relation between

volatility and returns is hard to confirm. Lundblad (2007) shows that very long data sets are

needed when the relation of volatility and future returns is examined. The author, using a data

set ranging from 1836 to 2003, finds a positive relation between volatility and return. Bali and

Peng (2006) using high-frequency-data based volatility measures find a significant and positive

relation,95 whereas Bollerslev et al. (2006), using similar volatility measures, find an insignifi-

cant or even negative relation. Bollerslev and Zhou (2006, p. 124-125) state that the risk-return

relation in empirical investigations strongly depends on the volatility measure used in this in-

vestigation, which partly explains the inconsistent results in the academic literature (see also

Glosten et al. (1993), Ghysels et al. (2005) and Bollerslev et al. (2013)). Furthermore, Adrian

and Rosenberg (2008) show that the risk-return relation strongly depends on the examined time

frequency of volatility. In line with the volatility feedback effect, the authors find a negative

volatility-return relation for short-term volatility, but a positive relation for long-term volatility.

To summarize results in the academic literature, the relation between volatility and future

93Bollerslev et al. (2006, p. 354) describe the volatility feedback effect as: “If volatility is priced, an anticipated
increase in volatility would raise the required rate of return, in turn necessitating an immediate stock-price decline
to allow for higher returns. Therefore, the causality underlying the volatility feedback effect runs from volatility
to prices, as opposed to the leverage effect that hinges on the reverse causal relationship” (see also Campbell and
Hentschel (1992), Bekaert and Wu (2000) and Glosten et al. (1993) for an explanation of the leverage and volatility
feedback effect). For additional studies on the relation between volatility and return, see also French et al. (1987),
Bali and Peng (2006), Bollerslev et al. (2006), Bollerslev and Zhou (2006), Ghysels et al. (2005), Lundblad (2007),
Bollerslev et al. (1992) among others. See Muir (2017) for an examination why risk premiums or expected returns
vary over time, rise modestly in recessions and spike in financial crises. See Glosten et al. (1993) and Bekaert and
Wu (2000) on how the leverage effect influences results on the volatility feedback effect. Bekaert and Wu (2000,
p. 7) find that “the leverage effects reinforces the volatility feedback effect” and both effects interact. Both effects
and their interaction are also nicely visualized in Bekaert and Wu (2000, Figure 1).

94The volatility feedback effect is reflected by the construction of the target volatility weighting given in Equa-
tion (1.2.3). More formally, from σt�1 ¡ σt it follows wt�1 � σtarget{σt�1   σtarget{σt � wt, i.e. an increase
in volatility induces a decrease in the weight of the risky asset. Due to this relation, Harvey et al. (2018) find
that, under the leverage effect, volatility targeting induces momentum, i.e negative returns induce higher future
volatilities and lower future weights of the risky asset. The authors find that this observations explains a part of the
increase of the Sharpe Ratio of the volatility targeting strategy.

95Similarly, Ghysels et al. (2005) using daily data to measure monthly volatility by advanced volatility measures
find a positive and significant relation.
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returns is hard to identify and results in the literature are too mixed to draw a distinct conclusion

(see also Harvey and Siddique (1999) and references therein). Backus and Gregory (1993) theo-

retically confirm this observation. Similarly, Glosten et al. (1993) also argue that a positive and

a negative relation would be consistent with theory. However, in order to achieve an enhanced

risk-return profile by volatility targeting, a negative relation between volatility and future return

is not needed. Moreira and Muir (2017) show that the relation between volatility and future

risk-adjusted returns should be of main interest for volatility timing strategies instead of the

risk-return relation (see also Dopfel and Ramkumar (2013)). Moreira and Muir (2017) theo-

retically show that an alpha of zero is obtained if movements of expected returns and volatility

coincide. In particular, the authors find that the positive alpha of the volatility managed strategy

is mainly driven by the negative relation between volatility and volatility-adjusted returns. In

other words, volatility targeting produces positive alphas, since an increase in volatility is not

compensated by an adequate increase in expected return. This is also empirically confirmed by

the authors: although the authors cannot confirm a negative volatility-return relation, they find

that volatility timing increases the Sharpe Ratio. The reason for the increasing Sharpe Ratio is

that “changes in volatility are not offset by proportional changes in expected returns” (Moreira

and Muir, 2017, p. 1611). In total, a high volatility in t � 1 is related to a low Sharpe Ratio

in t. Hence, high volatility periods exhibit an unattractive risk-return profile and should be

avoided by investors. Similarly, Dachraoui (2018, Eq. (2)) shows that the Sharpe Ratio of the

target volatility strategy is given by the Sharpe Ratio of the risky asset and the correlation be-

tween the volatility and the risk-adjusted return of the risky asset. In particular, if volatility and

risk-adjusted returns of the risky asset are negatively correlated, the Sharpe Ratio of the target

volatility strategy is higher than the Sharpe Ratio of the risky asset. A sufficient condition for

this negative correlation is that volatility and return are negatively correlated or uncorrelated.

This is confirmed by Barroso and Maio (2018) who find that volatility targeting works well

since risk and future returns are nearly uncorrelated and risk is highly forecastable due to its

persistent nature. Similarly, Harvey et al. (2018) find no clear pattern between the volatility of

day t � 1 and the return of day t. However, due to the persistence of volatility, they find that a
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high volatility in t�1 is related to a high volatility in t, which translates into a low Sharpe Ratio

in t. Hence, an investor should be higher invested in the risky asset if the risky asset’s volatility

is low and vice versa, i.e. the investor should time volatility. Interestingly, even when volatility

and return are weakly positively correlated, volatility targeting can still be advantageous. For

example, Moreira and Muir (2019) find that an increase of volatility coincides with higher ex-

pected returns, but that the increase in expected return is much more persistent than the increase

in volatility. Thus, investors should reduce the weight of the risky asset if short-term volatility

increases, but the investors should then subsequently increase the exposure to the risky asset

when volatility begins to decline.

The finding that investors should time (short-term) volatility does not fundamentally contra-

dict the assumption that higher risk is compensated by higher expected returns. In the long run,

assets with higher volatility typically earn higher risk premiums, but risk premiums typically

fluctuate over time (Lempérière et al., 2017, Muir, 2017). Thus, long-term investors benefit

from investing in riskier assets like equities, whereas increases of short-term volatility of the

same asset are related to low or negative returns (Adrian and Rosenberg, 2008). Hence, in

the long run, stocks typically have higher long-term returns than bonds and investors with a

long investment horizon should participate in the stock market. Similarly, Blitz et al. (2019)

state that “[t]he relation between risk and return only seems to be positive across entire asset

classes, since stocks have higher returns than bonds, and corporate bond returns are higher than

government bond returns, in the long run”. However, most investors fail to capture the long-

term potential of stocks, due to too short evaluation periods and the higher volatility of stocks

(Benartzi and Thaler, 1995). Benartzi and Thaler (1995) show that the evaluation period of

long-term investors is typically much shorter than their investment horizon. In other words, in-

vestors with an investment horizon of years act like investors with a horizon of several months.

This hinders these investor to fully participate from the long-term performance potential of

stocks, since investors with a short evaluation period are more sensitive to changes in market

volatility (Moreira and Muir, 2019). For these long-term investors, timing short-term volatility

can also be beneficial to capture the long-term potential of stocks and simultaneously manage

107



short-term risk. Ang and Bekaert (2002) show that even for investors with longer horizons it

is possible to act myopically, as done by risk targeting, instead of solving complex long-term

portfolio problems. Consequently, risk targeting is an easy method to make the long-term po-

tential of equity investments available for investors with short evaluation periods. In particular,

even highly risk-averse investors can benefit from the huge long-term return potential of risky

assets, where investors can choose the risk level they are willing to accept. Further, besides

making stock market investments available for all investors, volatility targeting can even en-

hance the risk-adjusted performance for long-term investors by dynamically timing the risky

asset’s short-term risk (Moreira and Muir, 2019).

Fourth, many studies have shown that volatility timing can add substantial economic value in

terms of higher risk-adjusted returns and high utility gains. Fleming et al. (2001), Fleming et al.

(2003), Han (2005), Kirby and Ostdiek (2012) and Taylor (2014) examine the economic value of

volatility timing strategies, i.e. strategies that rely on estimates of the covariance matrix solely,

in a multivariate setting and the authors find that these strategies are superior to non-managed

portfolios, even after transaction costs.96 Although these studies use multivariate data sets, these

studies demonstrate that volatility timing is typically related to higher risk-adjusted returns and

high utility gains for mean-variance investors. Similarly, in a univariate setting, Marquering

and Verbeek (2004) find substantial increases in the Sharpe Ratio and utility if volatility timing

is added to return timing. Moreira and Muir (2019) confirm this finding for investors with a

long investment-horizon. Moreira and Muir (2017) and Bollerslev et al. (2018), using a similar

framework as in our paper, also demonstrate the vast utility gains and Sharpe Ratio increases

of volatility targeting. Furthermore, Busse (1999) examines volatility timing used by mutual

funds and finds higher Sharpe Ratios for funds using volatility timing. Additionally, Daniel

and Moskowitz (2016), Cederburg et al. (2020), Barroso and Santa-Clara (2015), Moreira and

Muir (2017) and Barroso and Maio (2018) demonstrate the vast potential of volatility timing

overlayed on several portfolio strategies, especially in terms of drawdown reduction and an

96These studies examine the economic value of volatility timing for long-only portfolios. Volatility timing can
also be applied to long-short strategies. For example, Moskowitz et al. (2012) and Kim et al. (2016) use volatility
timing to manage the risk of the time series momentum (TSMOM) strategy. Similarly, Asness et al. (2013) and
Goyal and Jegadeesh (2017) use volatility timing to weight the assets of the cross-sectional momentum strategy.
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improvement of risk-adjusted returns. This especially holds for portfolios with a high left tail

risk, such as momentum or betting against beta. Generally, volatility targeting works best for

assets that deviate strongly from normality (Perchet et al., 2016, Exhibit 11). This is shown by

Perchet et al. (2016) in a Monte Carlo Study and the authors find that the gains of volatility

targeting are higher for assets that strongly deviate from normally distributed returns, exhibit

high levels of volatility clustering or have fatter tails. Similarly, Harvey et al. (2018) find that

volatility targeting works well for risky assets, like equities or portfolios that contain equities,

but not for assets with lower risk, like bonds. Applying volatility targeting to equities usually

produces “benchmark-comparable levels of return with lower risk” (Benson et al., 2014, p. 89).

Fifth, the target volatility strategy focuses on the risk, measured by volatility of the risky

asset, and ignores the information about future returns (Bollerslev et al., 2018). Furthermore,

a forecast of the whole return distribution is not needed, which is a tenuous task (Aı̈t-Sahalia

and Brandt, 2001). This is appealing, since future volatility can be estimated much more pre-

cisely than the whole distribution or future returns, which minimizes the estimation risk of this

approach (Merton, 1980). Kirby and Ostdiek (2012) show that portfolio allocations that rely

on estimates of returns and volatilities exhibit very high estimation risk, whereas estimation

risk is only small for volatility based allocations.97 For that reason, portfolio strategies that are

based on a forecast of the asset’s return typically perform bad in practice. For example, Mor-

eira and Muir (2017) find higher utility gains for volatility timing strategies than for expected

return timing strategies. Marquering and Verbeek (2004) examine both, return and volatility

timing, and find that timing returns and volatility is superior to strategies that only time returns.

Similarly, Moreira and Muir (2019) find that return timing strategies are highly influenced by

estimation risk, whereas volatility timing strategies are quite robust against estimation risk. As

a consequence, volatility timing outperforms return timing in practice.

Sixth, investors are typically crash-averse and dislike periods of highly negative returns

(Bollerslev and Todorov, 2011, Chabi-Yo et al., 2018, Van Oordt and Zhou, 2016). Volatil-

ity timing has proven to be a good and easy drawdown protection method, which makes this

97Due to the high estimation risk, especially for mean returns, portfolio allocations under estimation risk are
frequently examined in the financial literature (DeMiguel et al., 2009b, Garlappi et al., 2006, Kan and Zhou, 2007,
Tu and Zhou, 2011).
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approach appealing for investors who typically dislike huge drawdowns (Barroso and Maio,

2018, Barroso and Santa-Clara, 2015, Benson et al., 2014, Moreira and Muir, 2017, Perchet

et al., 2016). Generally, volatility targeting is a simple but effective tail risk hedging instrument

and significantly reduces left tail risk and fits well to investors with higher order preferences

(Dreyer and Hubrich, 2019). Similarly, Harvey et al. (2018) find that volatility targeting suc-

cessfully reduces the likelihood of extremely negative returns. Thus, volatility targeting also fits

well to the loss-aversion of most investors (Aı̈t-Sahalia and Brandt, 2001, Benartzi and Thaler,

1995). In particular, risk targeting is an easy way to manage portfolio risk dynamically. Cuoco

et al. (2008) highlight the importance of managing portfolio risk dynamically, i.e. reevaluating

portfolio weights frequently.

Seventh, risk-averse investors typically want to hedge against changes in volatility (see Ang

et al. (2006b), Adrian and Rosenberg (2008) and references therein).98 Adrian and Rosenberg

(2008) find that investors are willing to pay for methods that protect them from changes in

volatility. Moreover, in a cross-sectional setting, Baltussen et al. (2018) find that assets with

a high volatility of volatility (vol-of-vol) underperform assets with a more constant volatil-

ity. Thus, assets with a more constant volatility produce higher returns than assets that exhibit

higher volatility changes. Furthermore, assets with higher volatility changes also exhibit higher

downside risk. Similarly, a highly fluctuating portfolio volatility is a driver of the portfolio’s

tail risk and a stabilization of the portfolio volatility is rewarded by a lower crash risk (Dreyer

and Hubrich, 2019). Thus, investors strongly benefit from a stabilization of portfolio volatility.

The investors’ demand to hedge against these changes in volatility has led to the introduction

of many new financial instruments, like variance swaps (Bollerslev and Todorov, 2011, Foot-

note 11). Volatility targeting is an easy way to hedge against this volatility risk without using

any financial derivatives.

Eighth, liabilities of institutional investors, like insurance companies or pension funds, are

often less volatile than investments in risky assets. Targeting a constant level of volatility can

help to match the volatility of the investments with the volatility of the liabilities. For example,

98Generally, the variance risk premium, which measures the “compensation for the risk associated with temporal
changes in the variation of the price level” is examined by Bollerslev and Todorov (2011) and Bollerslev et al.
(2015).
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Banerjee et al. (2016, p. 1) write that “a risk control strategy may provide a smoother path

of asset returns and could more closely align the performance of the institution’s assets to the

characteristics of its liabilities.”

Ninth, a skill of a portfolio manager can typically be separated into his ability to time the

market and the ability to pick the right stocks (see Agarwal and Naik (2004) and references

therein). Risk targeting can be used separately as market timing tool, which is independent of

the asset selection process (Zakamulin, 2015). In practice, market timing and volatility timing

are fundamentally related as documented by Christoffersen and Diebold (2006) and Copeland

and Copeland (1999). The authors state that market timing strategies based on measures of

volatility are frequently used by practitioners. Hence, portfolio managers can focus on pick-

ing the right assets without accounting for the current market environment, which is separately

managed by a risk targeting strategy. Similarly, Cederburg et al. (2020), Daniel and Moskowitz

(2016), Barroso and Santa-Clara (2015), Barroso and Maio (2018), Rickenberg (2020a) and

Moreira and Muir (2017) use volatility targeting for several portfolio strategies, where the as-

set allocation is determined in the first step and these portfolios are then managed by volatility

targeting. Moreira and Muir (2017, Sec. I.E), Rickenberg (2020a) and Zakamulin (2015) also

examine volatility targeting applied to volatility weighted portfolios, where the portfolio allo-

cation is chosen first based on the assets’ volatility.

B Portfolio Risk

B.1 Portfolio Value at Risk

In this section, we derive the Value at Risk (VaR) for the portfolio loss given in Equation (1.3.2).

We denote the conditional cumulative distribution function (cdf) of the risky asset’s loss Lt,

based on the information Ft�1 available at time t � 1, by FLt|Ft�1 . Moreover, we assume that

FLt|Ft�1 is continuous and strictly increasing and we denote the corresponding p1�αq-quantile

by F�1
Lt|Ft�1

p1 � αq. For a positive weight wt, the day t VaR of the portfolio loss, denoted by
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VaRP,t
α , is given by

P
�
LPt ¤ VaRP,t

α | Ft�1

� � 1 � α

ô P
�
wt � Lt � p1 � wtq �Rf

t ¤ VaRP,t
α | Ft�1

	
� 1 � α

ô P
�
Lt ¤ pVaRP,t

α � p1 � wtq �Rf
t q{wt | Ft�1

	
� 1 � α

ô FLt|Ft�1

�
pVaRP,t

α � p1 � wtq �Rf
t q{wt

	
� 1 � α

ô pVaRP,t
α � p1 � wtq �Rf

t q{wt � F�1
Lt|Ft�1

p1 � αq

ô VaRP,t
α � wt � F�1

Lt|Ft�1
p1 � αq � p1 � wtq �Rf

t .

(B.1)

Since the VaR of the risky asset, denoted by VaRt
α, is given by the p1�αq-quantile of the risky

asset’s (conditional) loss distribution, i.e. VaRt
α � F�1

Lt|Ft�1
p1 � αq, the VaR of the portfolio is

given by

VaRP,t
α � wt � VaRt

α � p1 � wtq �Rf
t . (B.2)

B.2 Portfolio Conditional Value at Risk

In this section, we derive the Conditional Value at Risk (CVaR) for the portfolio loss given in

Equation (1.3.2). The CVaR of the portfolio loss LPt , denoted by CVaRP,t
α , is given by

CVaRP,t
α � E

�
LPt |LPt ¥ VaRP,t

α ,Ft�1

�
(B.3)

� E
�
wt � Lt � p1 � wtq �Rf

t |wt � Lt � p1 � wtq �Rf
t ¥ VaRP,t

α ,Ft�1

	
(B.4)

From Equation (B.2), i.e. VaRP,t
α � wt �VaRt

α � p1�wtq �Rf
t , and since the weight wt and the

riskless return Rf
t are Ft�1-measurable, it follows

CVaRP,t
α � E

�
wt � Lt � p1 � wtq �Rf

t |Lt ¥ VaRt
α,Ft�1

	
� wt � E

�
Lt |Lt ¥ VaRt

α,Ft�1

�� p1 � wtq �Rf
t

� wt � CVaRt
α � p1 � wtq �Rf

t ,

(B.5)

where CVaRt
α :� E

�
Lt |Lt ¥ VaRt

α,Ft�1

�
denotes the CVaR of the risky asset.
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C Backtesting Target Risk Strategies

C.1 Backtesting Target VaR Strategies

By definition, the variable HP
t is equal to one if LPt � VaRtarget

α ¡ 0 and zero else. From

Equation (1.3.2) it follows that the portfolio loss is given by

LPt � wt � Lt � p1 � wtq �Rf
f . (C.1)

Moreover, given the weight wt, the portfolio VaR equals the predefined VaR level VaRtarget
α ,

and hence from Equation (B.2) we obtain

VaRtarget
α � VaRP,t

α � wt � VaRt
α � p1 � wtq �Rf

t . (C.2)

Consequently, we have

LPt � VaRtarget
α � wt � Lt � wt � VaRt

α � wt � pLt � VaRt
αq. (C.3)

Since the weight wt is strictly positive, it follows

LPt � VaRtarget
α ¡ 0 ô Lt � VaRt

α ¡ 0. (C.4)

Therefore, the variable HP
t is equal to Ht.

C.2 Backtesting Target CVaR Strategies

Given the weightwt, the target CVaR equals the portfolio CVaR, and hence from Equation (B.5)

it follows

CVaRtarget
α � CVaRt,P

α � wt � CVaRt
α � p1 � wtq �Rf

t . (C.5)

Therefore, the difference between the portfolio loss and the target CVaR is given by

LPt � CVaRtarget
α � wt � Lt � wt � CVaRt

α � wt � pLt � CVaRt
αq. (C.6)

Moreover, from Equation (1.2.2) and since wt and Rf
t are Ft�1-measurable, we obtainb

varpRP
t | Ft�1q �

a
varpwt �Rt | Ft�1q � wt �

a
varpRt | Ft�1q � wt � σt. (C.7)

Consequently, from Equations (C.6), (C.7) and (1.3.29) it follows

LPt � CVaRtarget
αa

varpRP
t | Ft�1q

� wt � pLt � CVaRt
αq

wt � σt � Lt � CVaRt
α

σt
� L�t � CVaRt,�

α . (C.8)
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D Additional Results

This section shows additional results for the risk targeting strategies. In Section D.1, we demon-

strate that tail risk targeting can be used as an alternative to absolute return strategies. In Section

D.2, we show results for other significance levels α. Section D.3 examines the profitability of

risk targeting when a rebalancing buffer is used. In Section D.4, we examine risk targeting for

leverage constrained investors. Section D.5 shows results for the US and small caps, proxied by

the S&P 500 and the SDAX. In Section D.6, we examine the profitability of risk targeting in the

long run using almost 100 years of data. Finally, in Section D.7, we conduct an out-of-sample

study and demonstrate the benefits of risk targeting during the recent corona crisis. Throughout

this section, we only show results for the volatility and CVaR targeting strategies as well as the

strategies that switch between the EWMA model and the CVaR targeting strategies based on

the TSMOM indicator. Further, we only show results of the strategies’ return, volatility, Sharpe

Ratio, maximum drawdown and the economic value ∆MV of a mean-variance investor with a

moderate risk aversion of γ � 5. The economic value ∆MV measures the annualized percentage

fee an investor is willing to pay to switch from the 60/40 portfolio to a risk targeting strategy.

Additionally, we use the Jobson and Korkie (1981) and Diebold and Mariano (1995) tests to

test for the significance of the Sharpe Ratio and utility increases.99

D.1 Tail Risk Targeting as Absolute Return Strategy

This section demonstrates that downside risk targeting can be used as an alternative to absolute

return and other hedge fund strategies as examined in Fung and Hsieh (1997) and Agarwal and

Naik (2004). In Figure III, we plot a target VaR strategy with a VaR target of VaRtarget
α � 0.5%

and a significance level of α � 0.4%. Hence, a daily return lower than �0.5% should occur

only once a year. Days with a return lower than �0.5% are marked with a red cross. As

can be seen from the figure, the strategy is successful in mitigating extremely negative returns

99We use the HSD managed strategy as benchmark for both tests. By doing this, we can assess how different
characteristics affect the profitability of risk targeting using volatility or CVaR as risk measure. Thus, the tests show
if a risk targeting strategy outperforms the HSD based volatility targeting strategy. This is opposed to Tables IX and
XII, where we used the 60/40 portfolio as benchmark for the Diebold and Mariano (1995) test. Our conclusions
were similar to the case when the DM-test is calculated with respect to the 60/40 portfolio.
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and produces positive or moderately negative returns with a very high probability. The target

VaR strategy’s long-term return is as high as the return of the 60/40 portfolio and only slightly

lower than the return of the DAX. However, the target risk strategy also takes much less risk

with significantly lower drawdowns. Hence, this strategy is appealing for highly risk-averse or

loss-averse investors who want to benefit from the long-term potential of equity markets. We

only show results for the VaR-EWMA-FHS strategy in Figure III since this strategy is easy to

estimate and implement, and hence could be interesting for practitioners. Other risk targeting

strategies produce similar or even superior performance charts.

Figure III. Cumulative Return of VaR Targeting. This figure plots the cumulative return of the DAX,
the 60/40 portfolio and a target VaR strategy. The target VaR strategy uses the EWMA volatility model
combined with Filtered Historical Simulation (FHS), a VaR target of VaRtarget

α � 0.5% and a signifi-
cance level of α � 0.4%. Days when the portfolio return is lower than �0.5% are marked with a red
cross.

D.2 Tail Risk Targeting for Different Significance Levels

This section examines performance results of the tail risk targeting strategies for different sig-

nificance levels α. In Table XIV, we show additional performance results of volatility and

CVaR targeting for significance levels of 1%, 2.5% and 5%. The chosen significance levels
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are frequently used in the literature on VaR and CVaR forecasting (see Bali et al. (2008) for

example). The target CVaR level is recalculated to match the chosen volatility target by using

Equation (1.3.38). In line with the results of Tables V and VIII, we find that downside risk tar-

geting is superior to volatility targeting in terms of higher Sharpe Ratios, lower drawdowns and

a higher economic value. Further, also in line with the previous results, we find that managing

risk by conditional models outperforms the strategies based on HSD or Historical Simulation.

This result is most pronounced for high significance levels. Generally, downside risk targeting

becomes less attractive if a higher significance level α is chosen. This result is in line with

Ghysels et al. (2016) and Happersberger et al. (2019). We find that tail risk targeting resembles

volatility targeting when higher significance levels are chosen. This finding is quite intuitive,

since a lower α means that extreme losses in the far left tail are managed. In contrast, using a

higher α means that also moderate losses are taken into account. In total, results of Table XIV

highlight that investors should manage extreme losses by using CVaR combined with a low

value of α. A similar results has also been found by Basak and Shapiro (2001). However, even

for a significance level of α � 5%, CVaR targeting is typically superior to volatility targeting.

Interestingly, the strategies based on the skewed t distribution are very stable in terms of the

Sharpe Ratio for different levels of α. However, the drawdown and the economic value indicate

that low levels of α are also superior for these models.

In Table XV, we show results for the strategies that switch between volatility and CVaR

targeting for the same significance levels. Throughout the section, we use the EWMA volatility

model and the TSMOM based indicator δt. In line with our main results, we find that the strate-

gies that switch between volatility and CVaR targeting outperform the non-managed strategy

or the strategies that use either volatility or CVaR targeting. However, in line with Table XIV,

we find better results for the strategies that use lower significance levels α. This is again quite

intuitive, since the switching approach typically uses CVaR targeting only in adverse market

periods. These crash periods are best managed by tail risk measures that use low significance

levels and manage extreme losses instead of moderate losses. Moreover, we again find that

conditional models produce the most convincing results. All switching strategies based on con-
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Table XIV. Performance Results for Different Significance Levels
This table shows additional performance results for the volatility and CVaR targeting strategies using the
DAX and three different significance levels α. Panel A shows results for α � 1%, Panel B shows results
for α � 2.5% and Panel C shows results for α � 5%. Return and Volatility denote the annualized return
and volatility in percent. SR denotes the annualized Sharpe Ratio. zJK denotes the test statistic of the
Jobson and Korkie (1981) test. MDD and ∆MDD denote the maximum drawdown and the reduction
of the maximum drawdown in relation to the drawdown of the risky asset. ∆γ�5

MV denotes the economic
value for a mean-variance investor with risk aversion γ � 5. DM-test denotes the Diebold and Mariano
(1995) test that tests if a strategy produces a significantly higher utility for a mean-variance investor with
risk aversion γ � 5, where we use the HSD strategy as benchmark. Return, Volatility, MDD, ∆MDD
and ∆γ�5

MV are given in percent. Values of zJK and DM-test that are higher than 1.645 are given in bold.

Panel A: Significance Level of α � 1%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.115 12.843 0.102 - 41.228 41.458 0.280 -
Vola EWMA 3.336 12.499 0.122 0.965 40.522 42.459 0.671 1.720
Vola GARCH 3.191 11.965 0.116 0.389 39.233 44.290 0.792 1.123

CVaR Hist 2.316 9.550 0.055 -0.462 30.298 56.978 0.982 0.493
CVaR EWMA FHS 3.193 10.541 0.132 1.006 35.754 49.231 1.443 1.820
CVaR EWMA EVT 3.230 10.232 0.139 1.311 34.685 50.749 1.609 1.891
CVaR EWMA Stsk 3.408 10.529 0.152 1.612 34.268 51.340 1.659 2.110
CVaR GARCH FHS 3.174 10.875 0.126 0.616 37.396 46.898 1.279 1.509
CVaR GARCH EVT 3.191 10.516 0.132 0.789 36.157 48.659 1.452 1.624
CVaR GARCH Stsk 3.273 10.100 0.145 1.015 34.017 51.697 1.707 1.754

Panel B: Significance Level of α � 2.5%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.115 12.843 0.102 - 41.228 41.458 0.280 -
Vola EWMA 3.336 12.499 0.122 0.965 40.522 42.459 0.671 1.720
Vola GARCH 3.191 11.965 0.116 0.389 39.233 44.290 0.792 1.123

CVaR Hist 2.061 10.223 0.027 -0.714 33.217 52.833 0.462 0.130
CVaR EWMA FHS 3.227 10.975 0.129 1.062 37.056 47.382 1.287 1.927
CVaR EWMA EVT 3.230 10.694 0.133 1.239 36.002 48.878 1.413 1.955
CVaR EWMA Stsk 3.438 11.075 0.147 1.671 35.830 49.123 1.449 2.261
CVaR GARCH FHS 3.137 11.082 0.120 0.488 37.919 46.156 1.151 1.437
CVaR GARCH EVT 3.114 10.830 0.121 0.519 37.086 47.338 1.240 1.490
CVaR GARCH Stsk 3.354 10.614 0.146 1.079 35.353 49.800 1.570 1.840

Panel C: Significance Level of α � 5%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.115 12.843 0.102 - 41.228 41.458 0.280 -
Vola EWMA 3.336 12.499 0.122 0.965 40.522 42.459 0.671 1.720
Vola GARCH 3.191 11.965 0.116 0.389 39.233 44.290 0.792 1.123

CVaR Hist 2.027 10.958 0.022 -0.745 35.590 49.464 0.116 -0.119
CVaR EWMA FHS 3.217 11.194 0.126 1.023 37.421 46.864 1.179 1.960
CVaR EWMA EVT 3.231 11.084 0.129 1.136 37.018 47.436 1.242 1.995
CVaR EWMA Stsk 3.461 11.515 0.143 1.622 37.056 47.382 1.270 2.368
CVaR GARCH FHS 3.101 11.237 0.115 0.370 38.026 46.004 1.046 1.350
CVaR GARCH EVT 3.081 11.121 0.115 0.357 37.773 46.363 1.079 1.368
CVaR GARCH Stsk 3.414 11.032 0.145 1.082 36.386 48.332 1.445 1.874

ditional risk models produce statistically higher Sharpe Ratios for significance levels of 1% and

2.5%. In contrast, none of the volatility targeting or HS based strategies produces a signifi-

cantly higher Sharpe Ratio. Similarly, all switching strategies that are based on a conditional

CVaR model produce economically high utility gains for the mean-variance investor for all
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three significance levels, whereas the HS based switching strategy only slightly heightens the

investor’s utility. Furthermore, the utility increases of the conditional models are all statistically

significant for all three significance levels.

Table XV. Performance Results for Different Significance Levels: Switching Strategies
This table shows additional performance results for the strategies that switch between volatility and CVaR
targeting using the DAX and three different significance levels α. Panel A shows results for α � 1%,
Panel B shows results for α � 2.5% and Panel C shows results for α � 5%. The description of the
columns is given in Table XIV.

Panel A: Significance Level of α � 1%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.115 12.843 0.102 - 41.228 41.458 0.280 -
DAX 2.726 23.457 0.040 -0.569 70.424 - -7.523 -2.548

EWMA/CVaR Hist 4.197 12.490 0.190 1.641 32.334 54.086 1.514 1.634
EWMA/CVaR EWMA FHS 3.805 11.842 0.168 2.109 37.938 46.130 1.452 2.720
EWMA/CVaR EWMA EVT 3.875 11.728 0.175 2.233 37.051 47.389 1.575 2.787
EWMA/CVaR EWMA Stsk 4.110 11.845 0.193 2.932 35.823 49.133 1.749 3.160
EWMA/CVaR GARCH FHS 3.741 12.158 0.158 1.844 39.070 44.521 1.236 2.250
EWMA/CVaR GARCH EVT 3.827 12.005 0.167 2.082 38.000 46.042 1.395 2.469
EWMA/CVaR GARCH Stsk 4.104 11.882 0.192 2.535 36.104 48.733 1.724 2.724

Panel B: Significance Level of α � 2.5%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.115 12.843 0.102 - 41.228 41.458 0.280 -
DAX 2.726 23.457 0.040 -0.569 70.424 - -7.523 -2.548

EWMA/CVaR Hist 3.865 12.888 0.159 0.985 34.401 51.151 0.986 0.903
EWMA/CVaR EWMA FHS 3.692 11.974 0.157 1.994 38.565 45.239 1.278 2.711
EWMA/CVaR EWMA EVT 3.746 11.870 0.163 2.096 37.696 46.473 1.381 2.755
EWMA/CVaR EWMA Stsk 3.930 12.022 0.176 2.705 37.008 47.450 1.487 3.083
EWMA/CVaR GARCH FHS 3.669 12.233 0.152 1.691 39.224 44.303 1.129 2.133
EWMA/CVaR GARCH EVT 3.692 12.131 0.155 1.789 38.460 45.387 1.201 2.254
EWMA/CVaR GARCH Stsk 3.979 12.065 0.179 2.315 37.075 47.355 1.513 2.601

Panel C: Significance Level of α � 5%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.115 12.843 0.102 - 41.228 41.458 0.280 -
DAX 2.726 23.457 0.040 -0.569 70.424 - -7.523 -2.548

EWMA/CVaR Hist 3.671 13.301 0.140 0.601 36.618 48.004 0.580 0.361
EWMA/CVaR EWMA FHS 3.607 12.034 0.149 1.839 38.528 45.292 1.166 2.634
EWMA/CVaR EWMA EVT 3.642 11.991 0.152 1.929 38.207 45.747 1.221 2.692
EWMA/CVaR EWMA Stsk 3.789 12.171 0.162 2.355 37.942 46.124 1.276 2.921
EWMA/CVaR GARCH FHS 3.589 12.284 0.145 1.497 39.044 44.559 1.026 1.971
EWMA/CVaR GARCH EVT 3.599 12.240 0.146 1.543 38.787 44.924 1.057 2.040
EWMA/CVaR GARCH Stsk 3.878 12.222 0.169 2.035 37.820 46.297 1.338 2.433

In total, this section confirms our earlier results for other significance levels α. In particular,

switching between volatility and CVaR targeting produces the most convincing risk-return pro-

file for all significance levels. This holds especially when risk is estimated with a conditional

risk model. However, results for lower significance levels are advantageous compared to higher

levels of α. Thus, investors should manage extreme losses instead of moderate losses or return
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deviations.

D.3 Tail Risk Targeting for Different Rebalancing Buffers

This section examines the performance of the risk targeting strategies when a rebalancing buffer

η is used. Our main results rely on strategies where the weight of the risky asset is readjusted

every day. In practice, readjusting the weight of the risky asset every day can lead to high

transaction costs, which makes risk targeting less profitable. However, transaction costs can be

significantly reduced by readjusting the weights less frequently or only in periods when risk

changes dramatically. Bollerslev et al. (2018) find that reallocating portfolio weights less fre-

quently reduces transaction costs without producing an inferior performance. Similarly, Perchet

et al. (2016, Exhibit 5) find that daily, weekly and monthly rebalancing produce similar results.

Further, Perchet et al. (2016, p. 36) suggest that a “reduction of turnover can be achieved with

daily monitoring of volatility and rebalancing only when the volatility changes significantly”.

For that reason, we show in Table XVI results for the volatility and CVaR targeting strategies

for rebalancing buffers η of 5%, 10% and 15%, i.e. we define a corridor of 10%, 20% and 30%

around the current weight where no rebalancing is done. Using a rebalancing buffer means that

portfolio weights are only readjusted when the optimal portfolio weight wt, under a given risk

forecast, lies outside this corridor around the current weight. Thus, portfolio weights are only

readjusted if portfolio risk changes substantially. This has the advantage that portfolio risk is

monitored every day, but transaction costs are significantly lowered by only reacting to extreme

changes. We denote the day t weight under a rebalancing buffer η by wηt and the day t weight

before rebalancing on day t by w̃ηt . Thus, as in Kirby and Ostdiek (2012, Eq. (3)), w̃ηt is defined

by

w̃ηt :� wηt�1p1 �Rt�1q
wηt�1p1 �Rt�1q � p1 � wηt�1qp1 �Rf

t�1q
. (D.1)

The day t weight using a rebalancing buffer of η is then given by

wηt �
#
w̃ηt , if p1 � ηqw̃ηt ¤ wt ¤ p1 � ηqw̃ηt
wt, else

, (D.2)

where wt is the optimal weight for the target volatility, target VaR or target CVaR strategy. The

approach of Equation (D.2) is similar to the approach suggested by Perchet et al. (2016, p. 33).
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Table XVI. Performance Results for Different Rebalancing Buffers
This table shows additional performance results for the volatility and CVaR targeting strategies using
the DAX and rebalancing buffers as in Equation (D.2). Panel A uses a rebalancing buffer of η � 5%,
Panel B uses a rebalancing buffer of η � 10% and Panel C uses a rebalancing buffer of η � 15%. The
description of the columns is given in Table XIV.

Panel A: Rebalancing Buffer of η � 5%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.116 12.849 0.102 - 41.268 41.401 0.278 -
Vola EWMA 3.272 12.394 0.118 0.750 39.915 43.322 0.661 1.565
Vola GARCH 3.073 11.870 0.107 0.138 39.069 44.523 0.723 0.963

CVaR Hist 2.385 9.275 0.064 -0.377 28.870 59.005 1.154 0.607
CVaR EWMA FHS 3.196 10.072 0.138 1.087 33.834 51.957 1.642 1.776
CVaR EWMA EVT 3.179 9.844 0.139 1.180 33.289 52.731 1.717 1.778
CVaR EWMA Stsk 3.376 10.140 0.154 1.476 32.926 53.246 1.791 1.973
CVaR GARCH FHS 3.123 10.595 0.124 0.554 37.003 47.457 1.351 1.478
CVaR GARCH EVT 3.157 10.248 0.132 0.754 35.400 49.733 1.531 1.596
CVaR GARCH Stsk 3.218 9.729 0.145 0.941 32.881 53.309 1.801 1.675

Panel B: Rebalancing Buffer of η � 10%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.158 12.968 0.104 - 41.597 40.933 0.258 -
Vola EWMA 3.177 12.378 0.111 0.274 39.791 43.498 0.576 1.099
Vola GARCH 3.170 11.813 0.115 0.295 37.597 46.613 0.845 1.142

CVaR Hist 2.321 9.293 0.057 -0.467 28.628 59.349 1.085 0.559
CVaR EWMA FHS 3.089 10.036 0.128 0.689 33.869 51.907 1.552 1.614
CVaR EWMA EVT 3.065 9.810 0.129 0.732 33.409 52.560 1.619 1.606
CVaR EWMA Stsk 3.312 10.152 0.148 1.169 33.051 53.069 1.724 1.849
CVaR GARCH FHS 3.262 10.516 0.138 0.799 35.435 49.684 1.522 1.604
CVaR GARCH EVT 3.304 10.178 0.147 1.018 33.863 51.916 1.705 1.705
CVaR GARCH Stsk 3.178 9.750 0.141 0.756 33.303 52.711 1.754 1.582

Panel C: Rebalancing Buffer of η � 15%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.029 13.034 0.094 - 41.222 41.466 0.098 -
Vola EWMA 3.135 12.436 0.107 0.514 40.977 41.814 0.507 1.352
Vola GARCH 3.032 11.787 0.104 0.259 38.728 45.008 0.722 1.163

CVaR Hist 2.380 9.482 0.062 -0.319 29.599 57.971 1.071 0.665
CVaR EWMA FHS 3.141 10.064 0.133 1.117 34.126 51.542 1.591 1.854
CVaR EWMA EVT 3.176 9.857 0.139 1.331 33.570 52.332 1.710 1.886
CVaR EWMA Stsk 3.276 10.101 0.145 1.349 33.537 52.379 1.709 1.913
CVaR GARCH FHS 3.125 10.523 0.125 0.723 35.662 49.361 1.383 1.625
CVaR GARCH EVT 3.143 10.180 0.131 0.870 34.336 51.243 1.546 1.677
CVaR GARCH Stsk 2.964 9.722 0.120 0.527 33.145 52.935 1.554 1.509

Results for the target volatility and target CVaR strategies for the three rebalancing buffers

are shown in Table XVI. These results are similar to our main results that rebalance the weight

on a daily basis. The Sharpe Ratios for the strategies using a rebalancing buffer of η � 5%

and η � 10% are similar to the Sharpe Ratios with daily rebalancing as shown in Table V.

This finding is in line with Perchet et al. (2016, Exhibit 5) who also find nearly identical results

for daily and weekly rebalancing. Similarly, Bollerslev et al. (2018) conclude that it may be

better to not trade every change in the optimal weight. They find better utility gains for the
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strategies that adjust portfolio weights less frequently, especially when transaction costs are

high and/or when models induce high day-to-day changes in the optimal weight. The authors

combine the target volatility strategy with an approach that adjusts the weight only partially.

Kirby and Ostdiek (2012) also find good results of models that are less sensitive to volatility

changes. However, for a high rebalancing buffer of η � 15%, we find that Sharpe Ratios

(before transaction costs) are significantly lower. Nevertheless, risk targeting, especially CVaR

targeting, still provides a convincing risk-return profile compared to the non-managed strategies.

In total, as in Table V, we again find the best results for the CVaR targeting strategies,

regardless of the used rebalancing buffer. This holds especially when risk is managed by a

conditional risk model. Thus, risk targeting, especially CVaR targeting, is still advantageous

even when portfolio weights are readjusted less frequently. However, as expected, the strategies

using a rebalancing buffer are slightly less profitable than the non-constrained strategies, at least

before transaction costs.

In Table XVII, we show results for the switching strategies using the three rebalancing

buffers.100 In line with our previous results, switching between volatility and CVaR targeting

significantly outperforms the non-managed and volatility managed strategies. Nearly all switch-

ing strategies exhibit significantly higher Sharpe Ratios and utilities. The best results are again

found for the strategies that use conditional risk models. All switching strategies that use a con-

ditional CVaR model produce statistically significant utility increases, even for high rebalancing

buffers.

In total, this section shows that risk targeting is still advantageous to non-managed strategies

when a rebalancing buffer is used. This is important since the rebalancing buffer can reduce

transaction costs dramatically, which shows that risk targeting is an appealing tail risk hedging

tool for practitioners. This holds particularly for the strategies that switch between volatility

CVaR targeting, especially when conditional risk models are used.

100We use rebalancing buffers that only determine the weights of the volatility and CVaR targeting strategies,
whereas the switching approach of Equation (1.5.11) is not affected by the rebalancing buffer. Thus, we reallocate
the portfolio weight every time when the indicator δt changes, even when the portfolio weight changes are small.
More formally, the weight of the switching strategy with a rebalancing buffer η is given by wswitch,ηt � δt �
wCV aR,ηt � p1� δtq � wvol,ηt , where wvol,ηt and wCV aR,ηt are given by Equation (D.2). An alternative would be to
apply the rebalancing buffer directly to the weights of the switching strategy.

121



Table XVII. Performance Results for Different Rebalancing Buffers: Switching Strategies
This table shows additional performance results for the strategies that switch between volatility and
CVaR targeting using the DAX and rebalancing buffers as in Equation (D.2). Panel A uses a rebalancing
buffer of η � 5%, Panel B uses a rebalancing buffer of η � 10% and Panel C uses a rebalancing buffer
of η � 15%. The description of the columns is given in Table XIV.

Panel A: Rebalancing Buffer of η � 5%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.116 12.849 0.102 - 41.268 41.401 0.278 -
DAX 2.726 23.457 0.040 -0.570 70.424 - -7.523 -2.557

EWMA/CVaR Hist 4.273 12.263 0.200 1.806 31.468 55.316 1.703 1.863
EWMA/CVaR EWMA FHS 3.867 11.613 0.176 2.112 36.333 48.409 1.621 2.617
EWMA/CVaR EWMA EVT 3.898 11.538 0.180 2.162 35.903 49.019 1.687 2.655
EWMA/CVaR EWMA Stsk 4.188 11.652 0.203 2.917 34.565 50.919 1.918 3.083
EWMA/CVaR GARCH FHS 3.758 11.969 0.162 1.851 38.535 45.281 1.345 2.308
EWMA/CVaR GARCH EVT 3.859 11.829 0.173 2.103 37.309 47.022 1.511 2.505
EWMA/CVaR GARCH Stsk 4.152 11.680 0.199 2.548 35.066 50.207 1.868 2.724

Panel B: Rebalancing Buffer of η � 10%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.158 12.968 0.104 - 41.597 40.933 0.258 -
DAX 2.726 23.457 0.040 -0.587 70.424 - -7.523 -2.564

EWMA/CVaR Hist 4.066 12.237 0.183 1.414 31.378 55.444 1.513 1.495
EWMA/CVaR EWMA FHS 3.740 11.589 0.166 1.698 36.290 48.469 1.509 2.232
EWMA/CVaR EWMA EVT 3.765 11.511 0.169 1.745 35.953 48.949 1.570 2.259
EWMA/CVaR EWMA Stsk 4.026 11.628 0.190 2.398 34.472 51.050 1.770 2.665
EWMA/CVaR GARCH FHS 3.778 11.905 0.165 1.746 36.920 47.574 1.395 2.096
EWMA/CVaR GARCH EVT 3.863 11.766 0.174 1.951 35.751 49.235 1.544 2.235
EWMA/CVaR GARCH Stsk 3.968 11.667 0.184 2.010 35.211 50.001 1.695 2.274

Panel C: Rebalancing Buffer of η � 15%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.029 13.034 0.094 - 41.222 41.466 0.098 -
DAX 2.726 23.457 0.040 -0.495 70.424 - -7.523 -2.524

EWMA/CVaR Hist 4.144 12.373 0.188 1.685 31.792 54.856 1.521 1.780
EWMA/CVaR EWMA FHS 3.703 11.621 0.162 1.836 37.148 47.252 1.457 2.429
EWMA/CVaR EWMA EVT 3.752 11.556 0.168 1.940 36.627 47.991 1.536 2.463
EWMA/CVaR EWMA Stsk 3.952 11.666 0.183 2.431 35.993 48.890 1.680 2.787
EWMA/CVaR GARCH FHS 3.569 11.954 0.147 1.477 38.752 44.974 1.167 2.157
EWMA/CVaR GARCH EVT 3.666 11.819 0.157 1.698 37.517 46.728 1.327 2.273
EWMA/CVaR GARCH Stsk 3.843 11.690 0.173 1.952 36.231 48.554 1.562 2.321

D.4 Tail Risk Targeting for Different Leverage Constraints

This section examines the profitability of risk targeting for investors who are leverage con-

strained. Our main results are based on unconstrained portfolio weights. However, in practice,

many investors have short-sale and leverage constraints (see Frazzini and Pedersen (2014) and

references therein). The portfolio weights wt are positive by construction, but risk targeting in-

vestors could be forced to use leverage in periods with low market risk. Following Perchet et al.

(2016, Exhibit 5) and Moreira and Muir (2017, Table IV), we additionally assess the impact of

leverage constraints on the profitability of risk targeting. The day t weight wct under a leverage
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constraint is given by

wct � min pwt, cq , (D.3)

where wt is the optimal weight without leverage constraint. We choose values c of 1, 1.5 and 2,

i.e. no leverage, a maximum leverage of 50% and a maximum leverage of 100%. This is in line

with the choices of Perchet et al. (2016) who use a cap of c � 1 and c � 2 as well as Moreira

and Muir (2017, Table IV-V) who use c � 1 and c � 1.5. Perchet et al. (2016, Exhibit 5) find

that a cap of c � 2 produces nearly identical results compared to the unconstrained strategy,

whereas a cap of c � 1 reduces the return, volatility and drawdown and produces a slightly lower

Sharpe Ratio. Similarly, Moreira and Muir (2017, Table V) find similar Sharpe Ratios for the

non-constrained and leverage constrained strategies. Results for the leverage constrained target

volatility and target CVaR strategies are shown in Table XVIII. In line with Perchet et al. (2016)

and Moreira and Muir (2017), we find that risk targeting is still advantageous when a maximum

equity exposure is used. Interestingly, we find that CVaR targeting is much less influenced

by the leverage constraints. In particular, CVaR targeting produces identical results for equity

caps of c � 1.5 and c � 2 that are in line with the results of the unconstrained strategies in

Table V. Thus, CVaR targeting needs much lower levels of leverage than the volatility targeting

strategies. As a consequence, the advantages of CVaR targeting are even more pronounced for

leverage constrained investors. Furthermore, as expected, the drawdown reduction ability of all

risk targeting strategies is not influenced by the maximum equity exposure.

In Table XIX, we show results for the switching strategies under the three leverage con-

straints. In line with Table XVIII, we find that the switching approach is less influenced by

the maximum equity exposure than the HSD managed strategy. All switching strategies pro-

duce significantly higher Sharpe Ratios and utilities for all three equity caps and significantly

outperform the non-managed and HSD managed strategies, i.e. all switching strategies produce

statistically significant Sharpe Ratio and utility increases for all three equity caps. Furthermore,

the drawdown reduction ability is again not influenced by leverage constraints.

In total, results in this section show that investors also benefit from risk targeting when they

have (tight) leverage constraints. This holds especially for the strategies that target a constant
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Table XVIII. Performance Results for Different Leverage Constraints
This table shows additional performance results for the volatility and CVaR targeting strategies using
the DAX and leverage constraints as in Equation (D.3). Panel A uses a maximum equity exposure of
c � 100%, Panel B uses a maximum equity exposure of c � 150% and Panel C uses a maximum equity
exposure of c � 200%. The description of the columns is given in Table XIV.

Panel A: Maximum Equity Exposure of c � 100%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 2.954 12.409 0.093 - 41.228 41.458 0.343 -
Vola EWMA 3.102 12.198 0.106 0.761 40.522 42.459 0.592 1.340
Vola GARCH 3.136 11.908 0.112 0.634 39.233 44.290 0.766 1.079

CVaR Hist 2.431 9.260 0.069 -0.254 28.509 59.519 1.206 0.639
CVaR EWMA FHS 3.149 10.080 0.133 1.216 34.351 51.223 1.593 1.806
CVaR EWMA EVT 3.158 9.867 0.137 1.359 33.801 52.004 1.688 1.832
CVaR EWMA Stsk 3.307 10.083 0.149 1.597 33.121 52.970 1.747 2.017
CVaR GARCH FHS 3.237 10.670 0.134 1.160 36.998 47.465 1.430 1.700
CVaR GARCH EVT 3.265 10.324 0.141 1.382 35.505 49.583 1.605 1.806
CVaR GARCH Stsk 3.230 9.733 0.146 1.308 33.020 53.112 1.813 1.783

Panel B: Maximum Equity Exposure of c � 150%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 2.989 12.785 0.093 - 41.228 41.458 0.188 -
Vola EWMA 3.318 12.491 0.121 1.420 40.522 42.459 0.658 2.099
Vola GARCH 3.191 11.965 0.116 0.688 39.233 44.290 0.792 1.366

CVaR Hist 2.431 9.260 0.069 -0.238 28.509 59.519 1.206 0.711
CVaR EWMA FHS 3.219 10.159 0.139 1.447 34.351 51.223 1.629 1.956
CVaR EWMA EVT 3.231 9.932 0.143 1.646 33.801 52.004 1.733 1.980
CVaR EWMA Stsk 3.382 10.141 0.155 1.823 33.121 52.970 1.797 2.146
CVaR GARCH FHS 3.234 10.678 0.134 1.069 36.998 47.465 1.424 1.757
CVaR GARCH EVT 3.263 10.329 0.141 1.289 35.505 49.583 1.602 1.852
CVaR GARCH Stsk 3.214 9.738 0.145 1.190 33.020 53.112 1.794 1.811

Panel C: Maximum Equity Exposure of c � 200%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.085 12.830 0.100 - 41.228 41.458 0.258 -
Vola EWMA 3.336 12.499 0.122 1.091 40.522 42.459 0.671 1.846
Vola GARCH 3.191 11.965 0.116 0.458 39.233 44.290 0.792 1.185

CVaR Hist 2.431 9.260 0.069 -0.305 28.509 59.519 1.206 0.657
CVaR EWMA FHS 3.219 10.159 0.139 1.212 34.351 51.223 1.629 1.849
CVaR EWMA EVT 3.231 9.932 0.143 1.402 33.801 52.004 1.733 1.878
CVaR EWMA Stsk 3.385 10.141 0.155 1.603 33.121 52.970 1.800 2.046
CVaR GARCH FHS 3.234 10.678 0.134 0.855 36.998 47.465 1.424 1.636
CVaR GARCH EVT 3.263 10.329 0.141 1.063 35.505 49.583 1.602 1.740
CVaR GARCH Stsk 3.214 9.738 0.145 1.000 33.020 53.112 1.794 1.716

level of tail risk or the strategies that switch between volatility and CVaR targeting. In contrast,

the strategy that is based on the HSD model is much more influenced by a maximum equity

exposure. Thus, the outperformance of the CVaR targeting and switching strategies is even

more pronounced for investors with leverage constraints.
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Table XIX. Performance Results for Different Leverage Constraints: Switching Strategies
This table shows additional performance results for the strategies that switch between volatility and
CVaR targeting using the DAX and leverage constraints as in Equation (D.3). Panel A uses a maximum
equity exposure of c � 100%, Panel B uses a maximum equity exposure of c � 150% and Panel C uses
a maximum equity exposure of c � 200%. The description of the columns is given in Table XIV.

Panel A: Maximum Equity Exposure of c � 100%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 2.954 12.409 0.093 - 41.228 41.458 0.343 -
DAX 2.726 23.457 0.040 -0.522 70.424 - -7.523 -2.579

EWMA/CVaR Hist 4.121 12.030 0.191 1.835 31.650 55.058 1.669 1.795
EWMA/CVaR EWMA FHS 3.686 11.394 0.164 2.063 37.035 47.412 1.546 2.544
EWMA/CVaR EWMA EVT 3.723 11.318 0.169 2.123 36.619 48.002 1.618 2.600
EWMA/CVaR EWMA Stsk 3.999 11.409 0.191 2.870 34.956 50.363 1.846 3.004
EWMA/CVaR GARCH FHS 3.589 11.758 0.151 1.870 38.808 44.894 1.281 2.172
EWMA/CVaR GARCH EVT 3.687 11.613 0.161 2.113 37.680 46.495 1.446 2.393
EWMA/CVaR GARCH Stsk 3.952 11.443 0.186 2.476 35.379 49.763 1.785 2.608

Panel B: Maximum Equity Exposure of c � 150%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 2.989 12.785 0.093 - 41.228 41.458 0.188 -
DAX 2.726 23.457 0.040 -0.491 70.424 - -7.523 -2.520

EWMA/CVaR Hist 4.345 12.323 0.204 2.095 31.650 55.058 1.742 2.056
EWMA/CVaR EWMA FHS 3.905 11.704 0.178 2.466 37.035 47.412 1.615 2.919
EWMA/CVaR EWMA EVT 3.946 11.629 0.183 2.525 36.619 48.002 1.691 2.962
EWMA/CVaR EWMA Stsk 4.222 11.718 0.205 3.252 34.956 50.363 1.919 3.341
EWMA/CVaR GARCH FHS 3.812 12.058 0.165 2.296 38.808 44.894 1.354 2.570
EWMA/CVaR GARCH EVT 3.910 11.917 0.176 2.524 37.680 46.495 1.518 2.761
EWMA/CVaR GARCH Stsk 4.176 11.750 0.200 2.836 35.379 49.763 1.858 2.924

Panel C: Maximum Equity Exposure of c � 200%

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 3.085 12.830 0.100 - 41.228 41.458 0.258 -
DAX 2.726 23.457 0.040 -0.551 70.424 - -7.523 -2.542

EWMA/CVaR Hist 4.362 12.331 0.206 1.981 31.650 55.058 1.755 1.978
EWMA/CVaR EWMA FHS 3.923 11.713 0.180 2.295 37.035 47.412 1.629 2.798
EWMA/CVaR EWMA EVT 3.964 11.638 0.184 2.361 36.619 48.002 1.705 2.845
EWMA/CVaR EWMA Stsk 4.240 11.726 0.206 3.076 34.956 50.363 1.932 3.224
EWMA/CVaR GARCH FHS 3.830 12.066 0.167 2.098 38.808 44.894 1.367 2.442
EWMA/CVaR GARCH EVT 3.928 11.925 0.177 2.335 37.680 46.495 1.532 2.639
EWMA/CVaR GARCH Stsk 4.194 11.759 0.202 2.678 35.379 49.763 1.872 2.819

D.5 Tail Risk Targeting for US Data and Small Caps

Table XX shows additional performance results for US data and small caps, proxied by the

S&P 500 and the German small cap index SDAX, respectively. The data are also obtained from

Datastream. Following Marquering and Verbeek (2004), we use the three month treasury bill

rate as risk-free rate for the US data. Panel A contains results for the S&P 500, which are

mainly in line with the results of Tables V and VIII for the DAX. The dynamically managed

target risk strategies exhibit higher returns than the 60/40 portfolio with comparable risk. Fur-

ther, returns of the dynamically managed strategies are also comparable to the return of the

125



S&P 500, but with only about half of the volatility. The Historical Simulation based strategy

performs again significantly worse than the dynamically managed strategies. This can also be

seen by the Sharpe Ratios of the strategies. The highest Sharpe Ratios are obtained by the dy-

namically managed CVaR targeting strategies, followed by the volatility managed strategies.

The lowest Sharpe Ratios are obtained by the HS managed strategy, the 60/40 portfolio and

the S&P 500. However, the Sharpe Ratio test of Jobson and Korkie (1981) indicates that only

the strategy based on the EWMA model combined with the skewed t distribution produces a

statistically higher Sharpe Ratio. Similar results also hold for the maximum drawdown. The

highest drawdown reduction, given by ∆MDD, is obtained by the dynamically managed CVaR

strategies, whereas statically or volatility managed strategies are less successful in reducing the

drawdown. Results for the economic value are also in line with the findings for the Sharpe Ra-

tio. The economic value for the volatility managed strategies is low or even negative, whereas

the dynamically managed target CVaR strategies produce high economic values.

In Panel B, we show results for the German small cap index SDAX. Interestingly, the dy-

namically managed CVaR strategies exhibit higher returns with lower risk than the 60/40 port-

folio and the SDAX. The volatility managed strategies produce even higher levels of return but

also exhibit significantly higher risk. Thus, as before, the highest Sharpe Ratios are obtained

by the dynamically managed target CVaR strategies. The Jobson and Korkie (1981) test shows

that four target CVaR strategies, but none of the target volatility strategies, exhibit statistically

significant higher Sharpe Ratios than the HSD managed strategy. Similarly, the drawdown re-

duction is again the highest for the CVaR managed strategies, whereas the drawdown reduction

of the volatility managed strategies is only small. Interestingly, the drawdown of the HSD

managed strategy is even higher than the drawdown of the SDAX. The economic value of risk

targeting is again the highest for the CVaR managed strategies. However, the increase in the in-

vestor’s utility is not statistically significant. Interestingly, we find that the skewed t distribution

does not work well for the SDAX, although this strategy works well for the DAX and the S&P

500. Hence, different estimation methods can perform quite differently when different assets

are used. A possibility to obtain more robust results for different assets would be to combine
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Table XX. Performance Results for the S&P 500 and SDAX
This table shows additional performance results of the volatility and CVaR targeting strategies for the
S&P 500 and the SDAX for the period 01.01.2000 to 31.12.2018. Panel A shows results for the S&P
500, whereas Panel B shows results for the SDAX. The description of the columns is given in Table XIV.

Panel A: Results for the S&P 500

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 4.760 13.091 0.236 - 36.587 36.766 -0.059 -
Vola EWMA 4.920 12.652 0.257 0.894 34.976 39.550 0.321 1.399
Vola GARCH 4.359 11.948 0.226 -0.210 33.524 42.059 0.129 0.325

CVaR Hist 3.083 9.103 0.159 -0.652 33.242 42.546 0.097 0.103
CVaR EWMA FHS 4.471 9.591 0.293 1.225 23.061 60.144 1.260 1.448
CVaR EWMA EVT 4.369 9.248 0.293 1.134 22.515 61.087 1.292 1.357
CVaR EWMA Stsk 5.123 9.934 0.347 2.525 25.619 55.722 1.755 2.150
CVaR GARCH FHS 4.527 10.050 0.285 0.924 26.064 54.953 1.132 1.336
CVaR GARCH EVT 4.404 9.736 0.282 0.863 24.509 57.640 1.138 1.289
CVaR GARCH Stsk 4.550 9.383 0.308 1.222 27.602 52.294 1.417 1.502

S&P 500 4.338 19.220 0.139 -0.751 57.859 - -4.335 -1.585
60/40 3.395 10.139 0.173 -0.570 33.295 42.455 - 0.045

Panel B: Results for the SDAX

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 8.475 13.524 0.486 - 69.219 -2.524 1.658 -
Vola EWMA 8.389 12.655 0.513 1.060 64.101 5.057 2.040 0.593
Vola GARCH 8.572 12.109 0.551 1.190 57.488 14.851 2.490 0.648

CVaR Hist 4.727 8.172 0.354 -1.296 38.189 43.436 0.451 -0.438
CVaR EWMA FHS 6.809 8.667 0.570 2.278 46.291 31.436 2.277 0.299
CVaR EWMA EVT 6.673 8.389 0.573 2.270 45.036 33.296 2.245 0.271
CVaR EWMA Stsk 5.822 9.139 0.434 -1.112 47.413 29.774 1.162 -0.250
CVaR GARCH FHS 7.671 9.204 0.628 2.554 43.768 35.173 2.905 0.588
CVaR GARCH EVT 7.487 8.901 0.630 2.531 42.341 37.286 2.843 0.536
CVaR GARCH Stsk 5.503 8.861 0.413 -1.118 42.852 36.529 0.958 -0.308

SDAX 6.489 15.792 0.293 -1.707 67.515 - -1.523 -1.190
60/40 5.033 10.190 0.313 -1.535 47.612 29.479 - -0.612

several forecasting methods (Allen et al., 2012, Halbleib and Pohlmeier, 2012, Taylor, 2014).

In summary, the additional results for the S&P 500 and the SDAX confirm our earlier results for

the DAX, i.e. portfolio risk is best managed by the portfolio’s CVaR and portfolio risk should

be estimated conditionally.

We next assess if our switching approach also works well for the S&P 500 and the SDAX.

Results of the switching strategies are shown in Table XXI. The switching strategies are again

successful in producing higher returns compared to the individual strategies with lower levels

of volatility and drawdown. As a consequence, these strategies provide an enhanced risk-return

profile with high Sharpe Ratio increases. The increase of the Sharpe Ratio is statistically sig-

nificant for all dynamically managed strategies for the S&P 500. For the SDAX, all switching

strategies exhibit significantly higher Sharpe Ratios. This finding is confirmed by the economic
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Table XXI. Performance Results for the S&P 500 and SDAX: Switching Strategies
This table shows additional performance results for the strategies that switch between volatility and CVaR
targeting using the S&P 500 and the SDAX. Panel A shows results for the S&P 500, whereas Panel B
shows results for the SDAX. The description of the columns is given in Table XX.

Panel A: Results for the S&P 500

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 4.760 13.091 0.236 - 36.587 36.766 -0.059 -
S&P 500 4.338 19.220 0.139 -0.751 57.859 - -4.335 -1.694

EWMA/CVaR Hist 5.189 12.757 0.276 0.774 32.293 44.187 0.524 0.780
EWMA/CVaR EWMA FHS 5.424 11.787 0.318 1.952 26.331 54.492 1.230 2.186
EWMA/CVaR EWMA EVT 5.483 11.731 0.324 1.980 25.862 55.301 1.313 2.189
EWMA/CVaR EWMA Stsk 5.690 12.056 0.332 2.674 27.650 52.212 1.355 2.627
EWMA/CVaR GARCH FHS 5.506 12.123 0.316 2.112 27.504 52.465 1.145 2.249
EWMA/CVaR GARCH EVT 5.508 12.071 0.317 2.114 27.753 52.034 1.173 2.280
EWMA/CVaR GARCH Stsk 5.531 12.146 0.317 2.150 29.165 49.593 1.159 2.155

Panel B: Results for the SDAX

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 8.475 13.524 0.486 - 69.219 -2.524 1.658 -
SDAX 6.489 15.792 0.293 -1.707 67.515 - -1.523 -1.176

EWMA/CVaR Hist 10.282 11.870 0.703 3.616 46.276 31.458 4.224 1.538
EWMA/CVaR EWMA FHS 10.610 11.550 0.751 5.068 51.583 23.598 4.691 1.996
EWMA/CVaR EWMA EVT 10.700 11.501 0.762 5.061 50.807 24.746 4.800 1.997
EWMA/CVaR EWMA Stsk 9.910 11.734 0.680 4.116 51.845 23.210 3.939 1.606
EWMA/CVaR GARCH FHS 10.896 11.802 0.759 5.322 50.495 25.209 4.838 2.104
EWMA/CVaR GARCH EVT 11.004 11.736 0.772 5.381 49.798 26.241 4.972 2.120
EWMA/CVaR GARCH Stsk 10.340 11.772 0.714 4.388 49.516 26.660 4.327 1.723

value. All switching strategies produce economically high economic values and most utility

increases are statistically significant. Hence, our simple switching approach does not only work

well for the DAX, but also for the S&P 500 and the SDAX.

In total, results in this section show that risk targeting does not only work for the DAX, but

also for US data and small caps. This holds especially for strategies that manage a portfolio’s

risk by dynamic risk models, where the best results are found for the strategies that manage

a portfolio’s tail risk. The portfolio’s performance can further be improved by switching be-

tween volatility and CVaR targeting. In particular, mean-variance investors are willing to pay

economically high and statistically significant fees to have access to these switching strategies.

D.6 Tail Risk Targeting in the Long Run

We have so far only examined a period of 18 years, which was marked by several crises. To

assess if risk targeting is also beneficial in the long run, we use data for the US market from 1929

to 2018. Data for the US market and the risk-free rate are obtained from the website of Kenneth
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French.101 This data set is also used by Moreira and Muir (2017) and Dreyer and Hubrich

(2019). Results for the long sample are shown in Table XXII, where we only show results for

the switching strategies. As argued above, although CVaR targeting is superior to volatility

targeting for our main data set, this does not necessarily hold in the long run, since CVaR

targeting could be too conservative in uptrending periods. Furthermore, as before, we only show

results for the switching strategies based on the EWMA model and the TSMOM crash indicator.

Results for the GARCH(1,1) model and the other crash indicators were again quite similar, but

slightly less profitable. In line with Moreira and Muir (2017) and our earlier findings, we

find that volatility targeting significantly enhances the risk-return profile by producing a higher

Sharpe Ratio with lower drawdowns. This finding is also in line with Moreira and Muir (2019)

who show that long-term investors should time short-term volatility. However, in line with our

main results, we find that the performance of risk targeting can further be enhanced by switching

between volatility and CVaR targeting. All switching strategies increase the portfolio’s Sharpe

Ratio and these increases are all statistically significant. Similarly, mean-variance investors are

willing to pay high fees to switch away from volatility targeting to the switching approach.

This improved risk-return profile is also accompanied by significantly lower drawdowns of the

switching strategies. Interestingly, although the skewed t distribution works well for the S&P

500 in the short sample, the same approach does not work well for the long US sample. As

mentioned above, a further extension could be to use an average of several CVaR forecasting

methods (Allen et al., 2012).

Similar to Moreira and Muir (2017, Figure 3), Figure IV shows the cumulative return of the

US market, the 60/40 portfolio, the HSD managed strategy and the strategy that switches be-

tween volatility and CVaR targeting for a 100$ investment. For a better comparison, we rescale

all strategies to the volatility of the US market. We only show results for the switching strat-

egy that switches between the EWMA volatility model and the CVaR-EWMA-FHS model for

the TSMOM indicator. This approach is easy to implement and does not need any estimated

parameters. Thus, this approach could be appealing for practical implementations. Figure IV

shows the clear outperformance of the risk targeting strategies. Both risk targeting strategies,

101http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

129

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Table XXII. Performance Results for the US Market in the Long Run: Switching Strategies
This table shows additional performance results for the strategies that switch between volatility and CVaR
targeting using data of the US market for the period November 1929 to December 2018. The description
of the columns is given in Table XIV.

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist 9.779 13.283 0.481 - 55.886 30.248 1.241 -
US Market 9.215 16.839 0.347 -2.218 80.121 - -1.424 -2.425
60/40 8.620 13.597 0.387 -1.634 54.299 32.229 - -1.465

EWMA/CVaR Hist 10.617 12.259 0.588 3.876 42.971 46.368 2.549 2.871
EWMA/CVaR EWMA FHS 10.580 11.801 0.607 5.918 39.002 51.321 2.740 3.890
EWMA/CVaR EWMA EVT 10.678 11.751 0.618 6.183 38.721 51.672 2.855 4.051
EWMA/CVaR EWMA Stsk 10.046 12.027 0.553 3.785 45.484 43.232 2.133 2.560
EWMA/CVaR GARCH FHS 10.239 12.084 0.566 4.152 44.918 43.938 2.285 2.957
EWMA/CVaR GARCH EVT 10.345 12.023 0.577 4.578 43.646 45.524 2.413 3.215
EWMA/CVaR GARCH Stsk 9.817 12.035 0.534 2.463 50.572 36.881 1.917 1.759

Figure IV. Cumulative Return of Risk Targeting. This figure plots the cumulative return of the US
market, the 60/40 portfolio, the HSD target volatility strategy and a strategy that switches between volatil-
ity and CVaR targeting for the period 1929 to 2018. All strategies are rescaled to the same level of
volatility.

the HSD managed strategy and the switching strategy, successfully capture the upside potential

of the market while downside risk is limited. Nevertheless, the strategy that switches between

volatility and CVaR targeting clearly outperforms the HSD managed strategy. A 100$ invest-

ment in the market portfolio would result in a terminal wealth of 357,591.55$. Invested in the

target volatility strategy, the terminal wealth would increase to 4,420,160.75$. However, the

strategy that switches between volatility and CVaR targeting produces a final wealth of even
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48,535,249.42$. This is in line with the results of Moreira and Muir (2019) that even long-term

investors should time short-term risk. In particular, the outperformance of the switching strategy

is quite steady over time, i.e. switching between volatility and CVaR targeting is advantageous

in bull and bear regimes. Dreyer and Hubrich (2019) also find that risk targeting applied to the

long US data set works well in several sub periods.

Table XXIII. Spanning Tests: Portfolio Alphas
This table shows results of spanning test of the risk targeting strategies for the US market. We run time-
series regressions of each portfolio on the remaining strategies, where we use the US market, the HSD
based volatility targeting strategy, the CVaR targeting strategy and the strategy that switches between
volatility and CVaR targeting based on the TSMOM indicator δt. We report annualized percentage
alphas with corresponding t-statistics in parentheses. Alphas that are significantly positive at the 10%
level are given in bold. Alphas that are significantly negative at the 10% level are given in red.

US Market Volatility CVaR Switching

TSMOM indicator α t�stat α t�stat α t�stat α t�stat

US Market - - -2.204 (-0.697) -3.808 (-1.196) -6.922 (-2.001)
Volatility 15.177 (3.984) - - -1.046 (-0.664) -7.122 (-5.503)
CVaR 18.132 (4.611) 3.571 (2.198) - - -4.586 (-2.899)
Switching 27.088 (6.100) 9.737 (6.822) 7.639 (4.668) - -

Finally, following Daniel and Moskowitz (2016) and Moreira and Muir (2017), we next

repeat the examination of Table XIII and run time-series regressions for the non-managed and

risk-managed portfolios. Results for these spanning tests are shown in Table XXIII. In line with

our main results, we find that the market’s alpha is always negative, once we control for the

returns of the risk targeting strategies. When we control for the switching strategy, the alpha is

even negative and statistically significant with a t-statistic of �2.001. In contrast, all risk target-

ing strategies have positive and statistically significant alphas with respect to the market.102 The

highest alpha of 27.088% with a t-statistic of 6.100 is obtained by the switching strategy. The

alpha of the volatility targeting strategy becomes negative when we control for the returns of

the CVaR targeting or switching strategy. In particular, when we control for the switching ap-

proach, the alpha is even significantly negative with a t-statistic of �5.503. Furthermore, CVaR

targeting cannot be explained by volatility targeting, but exhibits a significantly negative alpha

with respect to the switching approach. In contrast, the performance of the switching strategy
102The alpha for the volatility targeting strategy is higher than the alpha found by Moreira and Muir (2017). A

possible explanation for this finding could be that we use daily rebalancing, whereas Moreira and Muir (2017)
use monthly rebalancing. As shown in Section D.3, increasing the rebalancing interval reduces the profitability of
volatility targeting.
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cannot be explained by any other strategy and the switching strategy’s alphas are economically

high with t-statistics between 4.668 and 6.822. In total, all strategies exhibit significantly neg-

ative alphas when we control for the switching strategy, whereas the switching strategy has

significantly positive alphas in all cases.

D.7 Out-Of-Sample Study: Corona Crisis

Finally, this section examines the performance of risk targeting during the recent corona cri-

sis. This crisis is marked by one of the fastest drawdowns in history. Financial markets all

over the world crashed over 30% within several weeks. For example, between 19.02.2020 and

18.03.2020, the DAX exhibits a maximum drawdown of 38.78%. This fast and severe crash was

not only limited to equities, but nearly all asset classes crashed abruptly and simultaneously.

This high co-crash behavior of nearly all asset classes made an adequate tail risk protection

very changeling during this period. Most widely-used portfolio risk management approaches

that aim to mitigate a portfolio’s crash risk, such as the risk parity approach, failed as portfo-

lio risk management tools. For example, the “S&P Risk Parity Index - 12% Target Volatility

(TR)”, a risk parity index that also targets a volatility of 12%, exhibits a maximum drawdown

of 29.14% during the corona crisis.103 Thus, the recent corona crisis challenges currently used

tail risk hedging strategies and demonstrates the importance of a fast adapting crash risk miti-

gation tool. Consequently, assessing the performance of risk targeting during this challenging

time gives further insights on the ability of risk targeting to mitigate extreme crashes. More-

over, assessing the performance of risk targeting during the recent corona crisis is particularly

interesting, since this examination can be seen as an out-of-sample test of our earlier results.

The first version of this paper was written in the years 2016 to 2018. Thus, applying the same

methods as examined in the main part to data from the recent corona crisis demonstrates the

profitability of risk targeting, without the potential of data mining. Since our main results are

based on data that end in December 2018, we use data for the period that ranges from January

103Further details and data on this index can be obtained from https://www.spglobal.com/spdji/en/
indices/strategy/sp-risk-parity-index-12-target-volatility. The aim of the index is
described as: “The S&P Risk Parity Index – 12% Target Volatility seeks to measure the performance of a multi-
asset risk parity strategy that allocates risk equally among equity, fixed income, and commodities futures contracts,
while targeting a volatility level of 12%”.
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2019 to April 2020. This period is marked by an uptrending market in 2019 and the begin-

ning of 2020. However, this calm and uptrending market ended abruptly by the severe crash

in February and March 2020, initiated by the spread of the corona virus in Europe. Thus, this

period is quite challenging for portfolio risk management approaches, since a good portfolio

risk management tool has to adapt very fast to changing market environments.

Table XXIV. Performance Results for the DAX in the Corona Crisis
This table shows additional performance results for the DAX, the 60/40 portfolio, the volatility target-
ing strategies and the CVaR targeting strategies. The data range from 01.01.2019 to 30.04.2020. The
description of the columns is given in Table XIV.

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist -0.182 14.206 0.013 - 19.983 48.469 -0.598 -
Vola EWMA 2.066 13.422 0.181 1.774 18.673 51.847 2.078 2.155
Vola GARCH 3.507 12.908 0.301 1.908 18.036 53.492 3.799 1.986

CVaR Hist -0.878 11.173 -0.046 -0.166 20.867 46.191 0.234 0.193
CVaR EWMA FHS 2.670 10.726 0.283 2.075 13.742 64.564 4.020 0.904
CVaR EWMA EVT 2.312 10.426 0.257 2.010 13.713 64.638 3.789 0.838
CVaR EWMA Stsk 2.911 9.673 0.339 1.867 13.107 66.202 4.711 0.769
CVaR GARCH FHS 3.578 10.560 0.374 2.301 14.088 63.671 5.014 1.086
CVaR GARCH EVT 3.450 10.200 0.375 2.339 13.684 64.712 5.041 1.008
CVaR GARCH Stsk 5.472 9.588 0.611 1.991 12.506 67.751 7.352 0.937

DAX 2.149 25.640 0.098 0.172 38.779 - -7.093 -0.403
60/40 1.148 15.434 0.098 0.185 25.721 33.675 - 0.140

Table XXIV shows performance results for the DAX, the 60/40 portfolio, the volatility tar-

geting strategies and the CVaR targeting strategies for the period starting in January 2019 and

ending in April 2020. The DAX produces a slightly positive return with a high volatility and a

drawdown of 38.779%. The bad risk-return profile during this period can also be seen by the

low Sharpe Ratio of 0.098. The 60/40 portfolio produces a lower return with a lower volatility.

This results in an equally high Sharpe Ratio of 0.098. Interestingly, the HSD managed strat-

egy exhibits a negative return with a very low Sharpe Ratio.104 In contrast, the EWMA and

GARCH(1,1) managed strategies produce higher returns with lower levels of volatility. Both

strategies exhibit significantly higher Sharpe Ratios than the HSD managed strategy. Simi-

larly, the conditionally managed CVaR targeting strategies also produce statistically significant

Sharpe Ratio increases. However, the HS managed CVaR strategy produces a negative return

and a negative Sharpe Ratio. Thus, as before, more accurate risk models are rewarded with

104The Sharpe Ratio of this strategy is positive since the annualized return of �0.182% is less negative than the
return of the risk-free asset in this period.
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higher performance and utility gains. All risk targeting strategies are successful in reducing the

portfolio’s drawdown. For example, by using a CVaR targeting strategy, the DAX’s drawdown

of 38.779% can be reduced to only 12.506%. This high drawdown reduction of CVaR targeting

is accompanied by a higher return. Furthermore, mean-variance investors are willing to pay

high fees to switch to a conditionally managed target risk strategy. The highest utility gains

are again found for the CVaR targeting strategies. In total, results for the corona crisis indicate

that risk targeting can enhance a portfolio’s return while simultaneously crash risk is signifi-

cantly reduced. In line with our earlier results, conditionally managed strategies outperform

strategies that manage portfolio risk based on unconditional risk models. In particular, the HSD

based target volatility strategy fails to enhance the risk-return profile during the corona crisis

and underperforms the non-managed portfolio.

Table XXV. Performance Results for the DAX in the Corona Crisis: Switching Strategies
This table shows additional performance results for the strategies that switch between volatility and CVaR
targeting using the DAX. The switching strategies use the EWMA volatility model and the TSMOM
based indicator δt. The data range from 01.01.2019 to 30.04.2020. The description of the columns is
given in Table XIV.

Model Return Volatility SR zJK MDD ∆MDD ∆γ�5
MV DM-test

Vola Hist -0.182 14.206 0.013 - 19.983 48.469 -0.598 -
DAX 2.149 25.640 0.098 0.172 38.779 - -7.093 -0.459
60/40 1.148 15.434 0.098 0.185 25.721 33.675 - 0.212

EWMA/CVaR Hist -1.535 13.504 -0.087 -0.419 21.756 43.897 -1.564 -0.384
EWMA/CVaR EWMA FHS 1.553 12.290 0.156 0.915 16.376 57.771 2.155 1.102
EWMA/CVaR EWMA EVT 1.170 12.136 0.126 0.704 16.337 57.872 1.845 0.936
EWMA/CVaR EWMA Stsk 2.399 12.002 0.231 1.089 15.875 59.065 3.149 0.847
EWMA/CVaR GARCH FHS 2.328 12.326 0.219 1.242 16.319 57.918 2.916 1.151
EWMA/CVaR GARCH EVT 2.038 12.170 0.198 1.066 16.192 58.246 2.703 1.025
EWMA/CVaR GARCH Stsk 4.307 12.151 0.385 1.358 15.441 60.183 4.995 0.955

In Table XXV, we show results for the strategies that switch between the EWMA model

and the CVaR targeting strategies based on the TSMOM indicator δt. All strategies that switch

to a conditionally managed CVaR strategy clearly outperform the non-managed and HSD man-

aged strategies. Furthermore, the switching strategies typically have higher Sharpe Ratios than

the EWMA managed strategy. Thus, switching away from volatility targeting when a crash

is expected produces a superior risk-return profile. Nevertheless, the switching strategies have

slightly lower Sharpe Ratios than the CVaR managed strategies.105 This finding is quite intu-

105Results for the GARCH based switching strategies or the strategies that use the volatility based indicator δt
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itive, since CVaR targeting is expected to perform well in an extreme crash period as examined

here. In contrast, as shown in the previous section, the switching approach is beneficial in the

long run, since using CVaR targeting on every day would be too conservative. Thus, results of

Tables XXIV and XXV are in line with our earlier findings.

Figure V. Cumulative Return of Risk Targeting: Corona Crisis. This figure plots the cumulative re-
turn of the DAX, the 60/40 portfolio, the HSD based target volatility strategy and a strategy that switches
between volatility and CVaR targeting for the one year period that ranges from May 2019 to April 2020.

In order to further demonstrate the profitability of the different strategies during the corona

crisis, we show in Figure V the cumulative return of the DAX, the 60/40 portfolio, the HSD

managed strategy and a switching strategy for the one year period from 01.05.2019 to 30.04.2020.

This figure shows that the 60/40 portfolio and the risk targeting strategies successfully reduce

the portfolio’s drawdown, where the best drawdown reduction is found for the switching strat-

egy. The bad performance of the HSD managed strategy during the corona crisis mainly occurs

since this strategy fails to capture the upside potential of the DAX. In contrast, the switching

strategy successfully captures the upside potential in the calm period and significantly reduces

the drawdown in the crash period. This again shows that a conditional risk model that success-

are superior to the results shown here. However, in order to be in line with the results shown before, we only show
results for the EWMA model and the TSMOM indicator.
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fully adapts to changing market environments is needed when portfolio risk in managed.

In summary, results in this section show that our risk targeting strategies also perform well

during the recent corona crisis and successfully reduce the DAX’s crash risk. This holds espe-

cially for dynamically managed strategies. Unconditionally managed strategies can be used as

an adequate tail risk mitigation tool, but these strategies fail to capture the portfolio’s upside

potential in calm markets. The switching strategy also performs well during this crisis but is,

as expected, outperformed by the CVaR targeting strategies. This is in line with the motivation

of the switching strategy that CVaR targeting is advantageous in crises but too conservative in

the long run. However, switching between volatility and CVaR targeting outperforms the strat-

egy that manages volatility on every day. Thus, the switching strategy is optimal for long-term

investors who want to capture an asset’s upside potential while simultaneously downside risk is

limited in crash periods.
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Chapter 2

Risk Managed Momentum

2.1 Introduction

Since the seminal paper of Jegadeesh and Titman (1993) many studies have documented the

huge return potential of the momentum strategy that buys past winners and sells past losers.1

Jegadeesh and Titman (1993) find that stocks which performed well in the past tend to out-

perform stocks with a low previous performance. The academic literature documents that mo-

mentum investing delivers abnormally high returns, Sharpe Ratios and alphas compared to the

market and other factor portfolios.2 This result is not only limited to US stocks, but also holds

internationally and for almost every asset class.3 However, the huge return potential of the

momentum strategy is typically accompanied by high risk, especially in the left tail. For ex-

ample, Barroso and Santa-Clara (2015) find that the momentum strategy exhibits a volatility of

27.53%, whereas the market’s volatility of 18.96% is significantly lower. In particular, momen-

tum’s volatility is highly volatile and sometimes takes extreme values (Barroso and Santa-Clara,

2015, Fig. 2). This high and unstable volatility makes the momentum strategy unappealing for

risk-averse investors who have a preference for a low and stable volatility. Further, besides the

1The definition of the (cross-sectional) momentum strategy examined in this paper is different to the time
series momentum strategy of Moskowitz et al. (2012), which is more related to the field of trend-following (see
also Goyal and Jegadeesh (2017) and Kim et al. (2016) for a comparison of both approaches).

2Several studies show that momentum returns cannot be explained by traditional models, like the CAPM or
three factor model (Fama and French, 1996).

3See Jegadeesh and Titman (1993), Jegadeesh and Titman (2001), Hong et al. (2000) and Lesmond et al.
(2004) for momentum in the US stock market, Rouwenhorst (1998) for momentum in Europe, Griffin et al. (2003)
and Fama and French (2012) for international momentum, Moskowitz and Grinblatt (1999), Lewellen (2002),
Chordia and Shivakumar (2002) and Grobys et al. (2018) for industry momentum, Lewellen (2002) for momentum
of investment styles, Novy-Marx (2012) and Asness et al. (2013) for momentum in different markets and asset
classes, Richards (1997), Chan et al. (2000) and Bhojraj and Swaminathan (2006) for country momentum and
Carhart (1997) for momentum of funds.
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high (average) volatility of momentum investing, several recent studies document a vast crash

risk of this investment strategy.4 Barroso and Santa-Clara (2015) state that momentum investing

translates into a portfolio with an extremely negatively skewed and fat tailed return distribution,

which induces periods with extremely high drawdowns. For example, Barroso and Santa-Clara

(2015, Table 1) find a skewness of �2.47, a kurtosis of 18.24 and a minimum monthly return

of �78.96% for the value-weighted momentum strategy. In contrast, the market portfolio ex-

hibits a positive skewness of 0.17, a kurtosis of only 7.35 and a minimum monthly return of

�29.04%. These values are even more extreme for the equally weighted momentum strategy

examined in this paper. These characteristics of the momentum portfolio imply a fat left tail

of the momentum portfolio’s return distribution, which makes extremely negative returns, so

called “momentum crashes”, more likely and severe than predicted by the normal distribution.

Similarly, Moreira and Muir (2017) and Barroso and Maio (2018) compare several portfolio

strategies and find that the momentum portfolio exhibits the most pronounced risk profile in

terms of volatility, skewness, kurtosis and drawdowns. These “momentum crashes”, which are

extensively examined in Grundy and Martin (2001), Daniel and Moskowitz (2016) and Daniel

et al. (2017), are a big drawback of momentum investing. For example, Barroso and Santa-Clara

(2015) document a two-month-return of the momentum portfolio of �91.59% in 1932. Hence,

a sharp crash can reverse gains that were built over years in only two months. In addition, Bar-

roso and Santa-Clara (2015) show that the recovery from a momentum crash can last up to 31

years. Furthermore, Daniel et al. (2017) find eight months with losses higher than 30% as well

as six months with losses higher than 40%, but no month with gains higher than 30%. Besides

the risk aversion of most investors, investors are typically loss-averse, i.e. they weight losses

much higher than gains of the same magnitude (see Benartzi and Thaler (1995), Aı̈t-Sahalia

and Brandt (2001), Ang et al. (2006a) and Berkelaar et al. (2004)).5 Interestingly, Min and

Kim (2016) find that momentum crashes typically occur in times when investors have a high

4See Grundy and Martin (2001), Daniel et al. (2017), Barroso and Santa-Clara (2015), Daniel and Moskowitz
(2016), Moreira and Muir (2017), Barroso and Maio (2018), Ruenzi and Weigert (2018) and Chabot et al. (2014)
for studies on the huge crash risk of momentum investing.

5Similar to the loss aversion of investors, investors are typically crash-averse and are willing to pay high fees to
avoid crashes (Bollerslev and Todorov, 2011, Chabi-Yo et al., 2018, Van Oordt and Zhou, 2016). This observation
fits well to the safety first theory of Arzac and Bawa (1977).
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marginal value of wealth and weight losses higher than gains. Consequently, due to momen-

tum’s high crash risk, the huge long-term potential of momentum investing is unavailable for

most investors and managing momentum’s risk is crucial in order to make momentum strategies

available for investors who are risk- and/or loss-averse.

Several approaches to manage the risk of the momentum strategy have been presented in the

literature. Grundy and Martin (2001), Martens and Van Oord (2014) and Barroso (2016) show

that the momentum portfolio has a highly time-varying beta, which is negative after market

declines. Grundy and Martin (2001) show that by hedging this time-varying risk, momentum

crashes can be attenuated. However, Daniel and Moskowitz (2016), Martens and Van Oord

(2014), Barroso (2016) show that this approach does not work well out-of-sample, since past

betas hardly predict future betas as also found by Ang et al. (2006a). For that reason, Daniel

and Moskowitz (2016) propose a volatility based approach to manage momentum’s risk. This

approach successfully dampens momentum crashes and significantly enhances the risk-return

profile of the momentum portfolio. Similarly, Barroso and Santa-Clara (2015) scale the amount

invested in the momentum portfolio by its Realized Volatility (RV), which has the advantage

that the volatility of the momentum portfolio is constant over time and equals a predetermined

value.6 By targeting a constant level of volatility, the risk of the momentum strategy is managed

by reducing the exposure to the momentum portfolio when momentum’s volatility is high and

vice versa.7 Barroso and Maio (2019) find that there exists a negative risk-return relation for

the momentum strategy, whereas most other portfolio strategies exhibit a positive relation. In

other words, periods of an increased momentum volatility are related to low momentum returns.

Hence, although a negative risk-return relation is not needed to increase the Sharpe Ratio of the

6This approach is also used by Moreira and Muir (2017) to manage the risk of several factor portfolios. The au-
thors find that volatility managing works best for the momentum strategy. Similarly, Barroso and Maio (2018) and
Cederburg et al. (2020) find that volatility targeting works well for strategies that strongly deviate from normally
distributed returns, like momentum or the Betting against Beta strategy of Frazzini and Pedersen (2014). Grobys
et al. (2018) and Du Plessis and Hallerbach (2017) show that volatility targeting also mitigates the crash risk of the
industry momentum strategy of Moskowitz and Grinblatt (1999) and delivers a higher risk-adjusted performance
compared to the non-managed strategy.

7Since the momentum portfolio is a zero-investment strategy, the weight invested in this portfolio can be scaled
arbitrarily. The amount invested in the winners portfolio is financed by selling the losers portfolio. A non-managed
momentum strategy is usually 1$ long in the winners portfolio and 1$ short in the losers portfolio. For the risk-
managed momentum strategy, the amount invested long and short fluctuates over time and is increased if momen-
tum’s volatility is low and vice versa. See, for example, Figure 4 of Barroso and Santa-Clara (2015) on how the
exposure of the volatility managed strategy fluctuates over time.
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volatility managed portfolio (Cederburg et al., 2020, Dachraoui, 2018, Harvey et al., 2018,

Moreira and Muir, 2017), this observation shows that managing momentum’s volatility is an

appealing approach. Generally, the benefits of volatility targeting have already been shown for

equity portfolios by Marquering and Verbeek (2004), Bollerslev et al. (2018), Harvey et al.

(2018), Moreira and Muir (2019) and Rickenberg (2020b).8 Furthermore, Moreira and Muir

(2019) examine volatility timing for long-term investors.

Although volatility targeting, as done by Barroso and Santa-Clara (2015) using the RV

model, seems to be a promising approach to manage momentum crashes, this method has

several drawbacks that are particularly relevant for the momentum strategy (see Rickenberg

(2020b) for a general discussion of the drawbacks of volatility targeting). For example, the

RV method does not properly forecast next month’s volatility and relies on the assumption

that momentum returns follow a random walk.9 For that reason, we first present advanced

volatility models that are able to accurately forecast risk and are more successful in target-

ing a constant level of risk. Rickenberg (2020b) shows that conditional approaches, like the

GARCH(1,1) model of Bollerslev (1986), are more successful in targeting a constant level of

risk compared to unconditional approaches, like the RV model that is used in Barroso and

Santa-Clara (2015). Since a higher forecasting accuracy, or equivalently a more stable portfolio

volatility, coincides with higher utility gains for risk targeting investors (Bollerslev et al., 2018),

these models should also deliver an enhanced risk-return profile and higher utility gains. Fur-

thermore, a portfolio volatility stabilization is also related to lower left tail risk and drawdowns

8Volatility targeting is used to manage the risk of a whole portfolio. Alternatively, volatility managing can also
be used to weight a portfolio’s constituents inversely to their volatility. The benefits of these volatility managed
portfolios have been shown by Fleming et al. (2001), Fleming et al. (2003), Kirby and Ostdiek (2012), Han (2005)
and Taylor (2014). These studies demonstrate that choosing an asset’s weight inversely to its volatility produces
significant utility gains, higher risk-adjusted returns and lower drawdowns. Goyal and Jegadeesh (2017) show that
volatility managing could also be used to weight the assets within the winners and losers portfolio inversely to their
volatility. The authors find that this approach is superior to traditional weighting schemes that are usually used for
the momentum portfolio. The same weighting scheme was also used by Moskowitz et al. (2012) and Kim et al.
(2016) for the time series momentum strategy. Zakamulin (2015), Moreira and Muir (2017, Sec. I.E) and Harvey
et al. (2018) show that both approaches, managing volatility on an asset-level and portfolio-level, can easily be
combined. The authors find that both approaches add value and that combining both approaches is appealing.
Generally, Moreira and Muir (2017, Sec. II.D) show that the volatility targeting strategy, which is used in our
paper, is different to the inverse volatility weighting. Du Plessis and Hallerbach (2017) and Rickenberg (2020c)
apply both approaches to the industry momentum strategy.

9We use the variance ratio test of Lo and MacKinlay (1988) to show that the random walk hypothesis is clearly
rejected for the momentum portfolio.
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(Dreyer and Hubrich, 2019, Harvey et al., 2018). Based on the Realized Volatility theory, we

use the HAR-RV model of Corsi (2009), which was also successfully used in Bollerslev et al.

(2018). Additionally, we use the EWMA model, the GARCH(1,1) model of Bollerslev (1986)

and the GJR-GARCH model of Glosten et al. (1993) as conditional volatility models. Daniel

and Moskowitz (2016) successfully use the GJR-GARCH model to manage momentum’s risk.

The GARCH(1,1) model was also used in an earlier version of Barroso and Maio (2018) to

manage the monthly risk of the momentum portfolio, but the authors find no improvements of

this model. However, in order to forecast monthly volatility, Barroso and Maio (2018) fit the

GARCH(1,1) model to monthly data. Fitting volatility models to monthly returns requires huge

amounts of data to obtain accurate parameter estimates and ignores important information that

is contained in daily returns. For that reason, we fit the conditional volatility models to daily

data and show how monthly volatility can be estimated by these models. Furthermore, we use

the result of Drost and Nijman (1993) and Meddahi and Renault (2004) on the temporal aggre-

gation of the GARCH(1,1) model, i.e. we model monthly volatility based on the GARCH(1,1)

model fitted to daily data. We find that conditional volatility models are more accurate in target-

ing a constant level of portfolio volatility and that this higher accuracy is rewarded by a higher

risk-adjusted performance, lower drawdowns and high utility gains as also found by Bollerslev

et al. (2018).

A second disadvantage of the volatility targeting approach of Barroso and Santa-Clara

(2015) is that higher moments and the high non-normality of the momentum portfolio are ig-

nored. The high negative skewness combined with the high kurtosis induces a high probability

of extremely negative returns, which is not captured by managing volatility. Generally, man-

aging a portfolio’s volatility is only sufficient if the portfolio’s returns are normally distributed.

To assess the importance of higher moments when momentum’s risk is managed, we examine

the distributional properties, especially conditional skewness and kurtosis, of the momentum

portfolio. The importance of incorporating (conditional) skewness and kurtosis has been shown

in many fields of finance, e.g. asset pricing (Dittmar, 2002, Harvey and Siddique, 2000, Kraus

and Litzenberger, 1976), portfolio selection (see Wang et al. (2012), Guidolin and Timmermann
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(2008), Ghysels et al. (2016) among others), option pricing (Barone-Adesi et al., 2008) and risk

management (Bali et al., 2008). We show that conditional skewness of the momentum portfolio

is highly time-varying, mostly negative and sometimes takes extreme values or may even not

exist. Further, conditional kurtosis is highly time-varying and there are periods when momen-

tum’s kurtosis takes extreme values or may not exist. We show that the extreme skewness of

the momentum portfolio results since the winners’ and losers’ skewness moves in opposite di-

rections, i.e. times of an extremely low skewness of the winners coincide with times of a high

skewness of the losers and vice versa. Hence, buying winners and selling losers produces a

highly time-varying skewness that can be extremely negative during momentum crashes. Fur-

ther, we find that the kurtosis of winners and losers comove, i.e. periods of a high kurtosis of

the winners coincide with periods of a high kurtosis of the losers and vice versa. Due to this

relation of the winners’ and losers’ skewness and kurtosis, the momentum portfolio’s return

distribution is highly non-normal with an extremely fat left tail. This high crash risk of the mo-

mentum portfolio is not incorporated by the volatility targeting portfolio, which makes volatility

targeting an insufficient tail risk mitigation tool for the momentum portfolio.10 To account for

the significant non-normality of momentum returns, we use the target Value at Risk (VaR) and

target Conditional Value at Risk (CVaR) strategies of Rickenberg (2020b) that target a constant

level of VaR and CVaR of the momentum portfolio.11 When forecasting momentum’s down-

side risk, we especially account for time-varying conditional skewness and kurtosis, as shown

by Jondeau and Rockinger (2003) and Bali et al. (2008) based on the skewed t distribution of

Hansen (1994). We estimate VaR and CVaR both unconditionally as in Bali et al. (2009) and

conditionally by combining the time-varying skewed t distribution with the GARCH(1,1) and

GJR-GARCH model. Similar to Wong and So (2003) and So and Wong (2012), we fit the model

10A similar observation also holds for the returns of hedge funds. Since hedge funds’ returns are highly non-
normal, the often used mean-variance approach is insufficient when analyzing hedge funds. As an alternative to the
mean-variance approach, approaches based on downside risk measures that incorporate higher moments should be
used (Agarwal and Naik, 2004).

11A similar approach of incorporating higher moments when momentum’s risk is managed would be to combine
the volatility targeting strategy with the approach of Taylor (2005). The author shows how estimates of volatility
can be obtained from VaR estimates. As a consequence, this approach also incorporates higher moments when
volatility is forecasted. However, combining volatility targeting with this approach is quite similar to the target
VaR strategy used in our paper.
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to daily data and use simulations to obtain forecasts for monthly downside risk.12 Additionally,

we forecast momentum’s downside risk using Filtered Historical Simulation, which is also used

by Barone-Adesi et al. (2008) and Engle (2011). Further, and particularly interesting for prac-

tical implementations, we also use the simple Historical Simulation approach, combined with

the square root of time rule. This approach forecasts next month’s risk by simply scaling up

forecasts of daily downside risk by
?

21 (Danielsson and Zigrand, 2006, Wang et al., 2011).

Rickenberg (2020b) shows that targeting a constant level of downside risk, especially in

terms of CVaR, is typically superior in crash periods, whereas volatility targeting exhibits higher

returns in uptrending markets. Since the momentum portfolio trends upwards most of the time

and momentum crashes are typically severe, short-lived and partly forecastable, we additionally

develop strategies that switch between volatility and CVaR targeting. When there are no signs

of a momentum crash, the portfolio is managed by volatility, whereas CVaR targeting is used

when the probability of a momentum crash is high. Cooper et al. (2004), Daniel and Moskowitz

(2016) and Wang and Xu (2015) show that momentum crashes typically occur when the past

return of the market is negative and/or past market volatility is high. Further, Barroso and Santa-

Clara (2015) and Barroso and Maio (2019) show that momentum’s volatility is also successful

in predicting momentum crashes. For that reason, we use several crash indicators based on the

past market return, past market volatility and expected momentum volatility that indicate if mo-

mentum’s risk is managed by volatility or CVaR. We find that the strategies that switch between

volatility and CVaR targeting further enhance the risk-adjusted performance compared to the

strategies that only manage volatility. In particular, by exhibit higher returns with lower risk,

the RV managed strategy of Barroso and Santa-Clara (2015) is clearly outperformed by these

switching strategies. Especially momentum’s left tail risk, and as a consequence momentum’s

crash risk, is significantly reduced by the switching strategies. These results hold for several

subperiods and data sets.

12Wong and So (2003) and So and Wong (2012) use the skewed generalized t distribution of Theodossiou
(1998), which has one additional parameter compared to the skewed t distribution of Hansen (1994). Nevertheless,
by choosing this parameter adequately, as done in Wong and So (2003) and So and Wong (2012), the distribution of
Theodossiou (1998) simplifies to the distribution of Hansen (1994). Thus, this approach is similar to our approach.
However, Wong and So (2003) and So and Wong (2012) do not account for the autoregressive pattern in conditional
skewness and kurtosis as done by our approach.
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Since unconditional performance measures, like the Sharpe Ratio, have several disadvan-

tages and can only be applied when returns are normally distributed, we use more sophisticated

methods to assess momentum’s performance. In particular, the Sharpe Ratio is an inadequate

performance measure for dynamic trading strategies, like the risk targeting strategies examined

here (Han, 2005, Marquering and Verbeek, 2004).13 For that reason, we assess the economic

value of the switching strategies in a utility based setting, i.e. we calculate the annualized fee an

investor with a given utility function is willing to pay to switch from the RV managed strategy to

one of the strategies that switches between volatility and CVaR targeting. When calculating the

economic value, we regard three different types of investors. First, we follow the approach of

Fleming et al. (2001), Fleming et al. (2003), Han (2005) and Kirby and Ostdiek (2012) and cal-

culate the economic value for an investor with quadratic utility. Second, since investors typically

dislike a negative skewness and high kurtosis (Kraus and Litzenberger, 1976, Scott and Horvath,

1980), we additionally calculate the economic value for an investor with constant relative risk

aversion (CRRA) as also done by Dreyer and Hubrich (2019), Jondeau and Rockinger (2012),

Ghysels et al. (2016) and Guidolin and Timmermann (2008). Third, since investors typically

weight losses higher than gains, we additionally calculate the economic value for loss-averse

investors (Aı̈t-Sahalia and Brandt, 2001, Benartzi and Thaler, 1995, Berkelaar et al., 2004). We

find that the switching strategies deliver economically large and statistically significant utility

gains for all three types of investors. This holds especially for investors that are highly risk- or

loss-averse and during periods of a momentum crash.

This paper is structured as follows. Section 2.2 reviews the literature on momentum’s

high crash risk. Section 2.3 describes the volatility targeting approach of Barroso and Santa-

Clara (2015) and extends this approach by using more advanced volatility models. Section

2.4 presents the VaR and CVaR targeting strategies and presents the models used to forecast

monthly downside risk. Section 2.5 develops the strategies that switch between volatility and

CVaR targeting, based on several momentum crash indicators. Section 2.6 shows the empirical

13This observation also holds for other unconditional performance measures, such as the unconditional alpha.
See Boguth et al. (2011), Cederburg and O’Doherty (2016), Cederburg et al. (2020) and Schneider et al. (2020) for
studies on the drawbacks of unconditional alphas. However, due to the importance of these alphas, we additionally
use alphas as performance evaluation tools.
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results and Section 2.7 concludes the paper.

2.2 Crash Risk of Momentum

This section summarizes the literature and the source of the high crash risk of the momentum

strategy that buys assets with a high past return and sells assets with a low past return. Fur-

ther details on the construction of the momentum portfolio are summarized in Appendix A.

Moreover, Appendix A also reviews the literature on momentum and shows that the momentum

portfolio produces a high return but is typically invested in riskier assets, i.e. assets with a small

market capitalization, high beta and high volatility. Hence, the abnormally high long-term per-

formance of the momentum strategy is accompanied with a high risk and infrequent periods of

extremely high losses, so called “momentum crashes”. For example, Barroso and Santa-Clara

(2015, Table 1) show that the momentum portfolio exhibits an annualized volatility of 27.53%,

whereas the market exhibits a volatility of only 18.96%. Moreover, the volatility of the momen-

tum portfolio is highly unstable over time (Barroso and Santa-Clara, 2015, Fig. 2). This high

and fluctuating volatility of the momentum strategy makes the huge return potential of momen-

tum investing unavailable for highly risk-averse investors. Additionally, Min and Kim (2016)

state that the momentum strategy is unappealing for risk-averse investors, since losses of the

momentum portfolio typically occur in times when investors are highly risk-averse. Further-

more, Barroso and Santa-Clara (2015) find that momentum investing translates into a portfolio

with an extremely negatively skewed and fat tailed return distribution.14 This high left tail risk

translates into a strategy with extremely high drawdowns. For example, Barroso and Santa-

Clara (2015) find that the momentum portfolio exhibits a skewness of �2.47 and a kurtosis of

18.24, whereas the market is positively skewed and significantly less fat-tailed with a skew-

ness of 0.17 and a kurtosis of 7.35. This implies a fat left tail of the momentum portfolio’s

14The high negative skewness of the momentum portfolio results since winners are typically negatively skewed,
whereas losers are typically positively skewed and the momentum portfolio is long the winners and short the losers
(see Harvey and Siddique (2000) and Daniel and Moskowitz (2016, Table 1)). Similarly, Chen et al. (2001) find
that large cap stocks, i.e. stocks that are typically in the winners portfolio, have a lower skewness than stocks
with a low market capitalization. In particular, Jacobs et al. (2015) find that skewness is an important determinant
of momentum returns and that a huge part of the high momentum returns can be explained as compensation for
skewness risk. In other words, winners outperform losers since winners exhibit a lower skewness than losers.
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return distribution, which makes extremely negative returns much more likely than anticipated

by the normal distribution. Daniel and Moskowitz (2016) show that the strong positive aver-

age return and high Sharpe Ratio of momentum is punctuated with occasional crashes.15 For

example, Barroso and Santa-Clara (2015) find that the minimum monthly return of the momen-

tum portfolio is �78.96% compared to �29.04% of the market portfolio. Similarly, Daniel and

Moskowitz (2016, Table 2) list the returns of the 15 worst months of the momentum portfo-

lio, which range from �24.04% to �74.36%.16 Interestingly, the market return was positive

in all of these months. Hence, while a momentum investors suffers an extremely high loss,

an investor who simply invests in the market portfolio simultaneously earns a positive return.

Further, Barroso and Santa-Clara (2015) document a two-month momentum return of �91.59%

in 1932. Hence, a sharp crash of the momentum portfolio can reverse almost all gains that were

built over years in only two months. Furthermore, Daniel et al. (2017) find eight months with

losses higher than 30% as well as six months with losses higher than 40%, but no month with

gains higher than 30%.17 In particular, Barroso and Santa-Clara (2015) show that the recovery

from a momentum crash can last up to 31 years. In total, these results show that momentum

investing, although this strategy produces high average returns, is not applicable in practice un-

less the crash risk of this strategy is significantly reduced. Since most investors are loss-averse

(Benartzi and Thaler, 1995), it is questionable if the high returns of momentum investing com-

pensate for these extreme crashes. Min and Kim (2016) show that momentum crashes typically

occur in times of bad markets, i.e. times when investors require a high risk premium and the

marginal utility of wealth is higher. Thus, momentum crashes occur just when investors weight

losses higher than gains. For that reason, Min and Kim (2016) argue that the momentum strat-

egy bears an extreme downside risk for investors, unless the severity of momentum crashes is

15Daniel and Moskowitz (2016) and Daniel et al. (2017, Sec. 1) examine the drivers of these momentum crashes.
We will come back to this point in Section 2.5.

16Daniel and Moskowitz (2016) find a slightly higher minimum monthly return compared to Barroso and Santa-
Clara (2015), although both studies use the t�12 to t�2 ranking and value-weighted winners and losers portfolios.
However, Daniel and Moskowitz (2016) use slightly different portfolio breakpoints as explained in Section 3 of the
document http://www.kentdaniel.net/data/momentum/mom_data.pdf. Daniel and Moskowitz
(2016) also find a lower skewness of �4.70 compared to the skewness of �2.47 found by Barroso and Santa-Clara
(2015). Thus, the risk characteristics of the momentum portfolio strongly depend on the portfolio’s construction
method. Similarly, we use equally weighted winners and losers portfolios and find a higher risk for this construction
method compared to the value-weighted approach of Barroso and Santa-Clara (2015).

17A similar but less extreme result also holds for stock market returns as shown by Chen et al. (2001).
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reduced. Harvey and Siddique (2000) also show that the momentum strategy is highly related to

(systematic) risk. Furthermore, Ruenzi and Weigert (2018) find that a substantial part of the ab-

normal momentum returns can be explained as compensation for the strategy’s high crash risk.

This results since the momentum strategy loads heavily on crash-sensitive assets. Similarly,

Jacobs et al. (2015) state that the high momentum returns are a compensation for momentum’s

high skewness risk. Consequently, although the momentum portfolio offers an extremely high

long-term performance, this performance cannot be captured by risk- and loss-averse investors.

Therefore, managing the risk of momentum strategies seems crucial in order to make momen-

tum strategies available for investors. For that reason, we next present several possibilities how

the risk of the momentum strategy can be managed.

2.3 Volatility Managed Momentum Strategy

In the previous section, we have argued that the abnormally high return of the momentum

strategy is accompanied with a high volatility, a high left tail risk and a high probability of ex-

tremely negative returns, so called momentum crashes. So far, several approaches to mitigate

these momentum crashes have been proposed in the literature. Barroso and Santa-Clara (2015)

and Daniel and Moskowitz (2016) show that the mitigation of momentum crashes is a main

driver of the performance of risk-managed momentum strategies. Grundy and Martin (2001),

Cooper et al. (2004) and Daniel and Moskowitz (2016) argue that momentum crashes typically

occur when the market suddenly rises after a longer period of negative market returns. The

reason for this finding is that in times of a declining market, the momentum portfolio is long

low beta stocks and short high beta stocks, which produces a highly negative beta of the mo-

mentum portfolio. Thus, a sharp increase of the market induces an extremely negative return

of the momentum portfolio.18 Grundy and Martin (2001) show that the beta of the momen-

tum portfolio is highly time-varying and that hedging against this time-varying beta risk can

significantly improve the performance of the momentum portfolio. However, their approach is

18Daniel and Moskowitz (2016) find that past losers typically outperform past winners when the market rebounds
after a long period of a declining market. Since the momentum portfolio is short the past losers, the portfolio return
becomes highly negative in these periods, which induces a momentum crash.
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based on forward-looking betas and is not implementable in practice. Daniel and Moskowitz

(2016) show that an approach based on ex-ante estimated betas does not significantly improve

the performance of the hedged portfolio (see also Ang et al. (2006a) who find that past betas

hardly predict future betas).19 As a consequence, other tail risk hedging methods are needed in

order to reduce momentum’s crash risk.

Barroso and Santa-Clara (2015) show that the volatility of the momentum portfolio is highly

time-varying and predictable over time (see also Barroso and Maio (2019, Table 1 and 2)). Fur-

thermore, the authors decompose momentum’s risk and find that the momentum specific risk

is far more important than market risk. Therefore, Barroso and Santa-Clara (2015) propose to

manage momentum’s risk by overlaying the momentum strategy with a strategy that targets a

constant level of volatility over time.20 Volatility targeting is an easy but effective approach

to reduce the crash risk of the momentum strategy. In contrast to the traditional momentum

strategy, where each month 1$ is invested long in the winners and short in the losers portfolio,

the dollar exposure of the volatility targeting strategy is time-varying, based on a forecast of

momentum’s volatility (Barroso and Santa-Clara, 2015, Fig. 2). Applying volatility targeting

to the momentum portfolio is advantageous, since Barroso and Santa-Clara (2015) show that

momentum returns are low when the expected volatility of the momentum strategy is high and

vice versa.21 In particular, Barroso and Maio (2019) show that there exists a negative relation

between the momentum portfolio’s volatility and return, whereas the volatility-return relation

is positive for most other factors. Although a negative risk-return relation is not needed to in-

crease the Sharpe Ratio by volatility targeting (Dachraoui, 2018, Harvey et al., 2018, Moreira

19An alternative to the approach of Grundy and Martin (2001) and Daniel and Moskowitz (2016) would be to
use conditional betas as in Bali et al. (2017b).

20A nice characteristics of risk targeting is that this strategy can be overlayed on other portfolio strategies, i.e.
the asset selection process can be separated from the portfolio risk management process (see Harvey et al. (2018),
Zakamulin (2015), Rickenberg (2020b) and references therein). Another possibility of managing the risk of the
momentum portfolio is to manage the risk of each constituent of the momentum portfolio. Goyal and Jegadeesh
(2017) and Du Plessis and Hallerbach (2017) show that weighting each asset by its volatility increases the return,
alpha and Sharpe Ratio of the momentum portfolio. This approach of weighting individual assets inversely to the
assets’ volatility is also used by Moskowitz et al. (2012), Fleming et al. (2001), Fleming et al. (2003), Kirby and
Ostdiek (2012), Kim et al. (2016) and Asness et al. (2013). Moreira and Muir (2017, Sec. I.E) show that both
approaches, volatility targeting and volatility weighting, are different. Rickenberg (2020c) simultaneously applies
both strategies to the momentum portfolio.

21Similarly, Barroso (2016) finds that periods of a high beta typically coincide with periods of high volatility
and low returns. However, since volatility is much more predictable than market beta, the risk-managed approach
based on momentum’s volatility is more appealing.
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and Muir, 2017, 2019),22 this observation shows that managing momentum’s volatility is an

appealing approach to increase momentum’s return while simultaneously controlling momen-

tum’s risk.23 In particular, Barroso and Santa-Clara (2015) find that a high volatility of the

momentum strategy is a better momentum crash predictor than the bear market state variable

examined by Daniel and Moskowitz (2016). In total, if the volatility of the momentum portfo-

lio is expected to be high, the amount invested in the momentum portfolio should be lowered,

whereas the invested amount should be increased if expected volatility is low.24 This volatility

managed momentum portfolio has a significantly improved risk-return profile with lower draw-

downs compared to the non-managed momentum portfolio. A similar observation is also found

by Du Plessis and Hallerbach (2017) and Grobys et al. (2018) who apply the volatility targeting

approach to the industry momentum strategy of Moskowitz and Grinblatt (1999).

In this section, we shortly review the volatility targeting approach used in Daniel and

Moskowitz (2016), Moreira and Muir (2017), Barroso and Santa-Clara (2015) and Barroso and

Maio (2018). Furthermore, we extend this approach by using more advanced and possibly more

accurate volatility models. Bollerslev et al. (2018) show that there exists a positive relation be-

tween forecasting accuracy, or equivalently a more constant portfolio risk, and utility gains for

investors who target a constant level of portfolio volatility. Moreover, a more stable portfolio

volatility is typically related to a lower crash risk (Dreyer and Hubrich, 2019). Consequently,

22Interestingly, volatility targeting can even be advantageous when there exists a positive relation between
volatility and return. For example, Moreira and Muir (2019) find that an increase in volatility coincides with
an increase in expected returns. However, the increase in expected returns is much more persistent than the in-
crease in the volatility. Hence, investors should first decrease their exposure to the portfolio when the volatility
initially starts to increase, but they should then subsequently increase their exposure when the volatility starts to
decline. In other words, even when volatility and return are positively related, investors should time short-term
volatility.

23For example, Cederburg et al. (2020) state: “Volatility management is likely to be successful if volatility is
persistent and the risk-return relation is flat. In this scenario, a portfolio’s conditional Sharpe ratio is negatively
associated with its lagged volatility, and investors can capitalize on these dynamics in the conditional risk-return
trade-off by taking more aggressive investment positions following low-volatility periods. If lagged volatility is
negatively related to average return for a given strategy, volatility management becomes even more attractive. A
positive risk-return trade-off, in contrast, makes volatility management less effective.”

24By timing momentum’s volatility and return, Daniel and Moskowitz (2016) use a slightly different approach
to the approach of Barroso and Santa-Clara (2015). Daniel and Moskowitz (2016) compare this strategy to the
volatility targeting approach and the authors find that the volatility and return timing strategy yields a slightly
higher risk-adjusted performance than the volatility targeting strategy. However, timing volatility and return also
exhibits more extreme and volatile weights as can be seen in Daniel and Moskowitz (2016, Fig. 5). Thus, the
strategy that times return and volatility also produces higher transaction costs. Marquering and Verbeek (2004)
and Moreira and Muir (2019) also find that volatility timing outperforms return timing, since return timing is much
more influenced by estimation risk than volatility timing.
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more advanced and more accurate volatility models should also exhibit higher risk-adjusted

returns, significant utility gains for investors and less severe momentum crashes.

Throughout the paper, we consider the process tStutPr0,T s of prices over the period r0, T s, T P
N. The process tStutPr0,T s represents the prices of the portfolio that is long 1$ in the past winners

and short 1$ in the past losers as described in Appendix A. The process tStutPt0,...,T u represents

the process of monthly prices, where the interval rt� 1, ts represents one month. We define the

(arithmetic) month t return of the momentum portfolio as

Rt :� St
St�1

� 1, t � 1, ..., T. (2.3.1)

Moreover, as in Barroso and Santa-Clara (2015), we assume that each month consists of h � 21

trading days and we consider the daily prices

St,i � St� i
h
, i � 1, ..., h, (2.3.2)

where St,i represents the closing price of day i in month t. Further, we define the daily (arith-

metic) return as

Rt,i � St,i
St,i�1

� 1, i � 1, ..., h, t � 1, ..., T, (2.3.3)

where we define St,0 � St�1,h. Therefore, Rt represents the monthly return of month t, whereas

Rt,i represents the daily return of day i in month t.25

Barroso and Santa-Clara (2015), Moreira and Muir (2017) and Barroso and Maio (2018)

propose to manage the crash risk of the momentum portfolio by targeting a constant level of

portfolio volatility over time. Since buying past winners and selling past losers is a zero-

investment strategy, the weight an investor is long in the winners and short in the losers portfolio

can be scaled arbitrarily. Therefore, the authors propose to scale each month’s weight invested

in the winners and losers portfolio by the inverse of the momentum portfolio’s past realized

volatility. The monthly return R�
t of the volatility managed momentum portfolio is then given

by

R�
t �

σtarget

σt
Rt, (2.3.4)

25Our notation is similar to the notation that is frequently used in the literature on realized volatility, i.e. mea-
suring daily volatility based on high-frequency data (see Patton (2011) for example).
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where σt �
a

varpRt | Ft�1q is the (conditional) volatility of month t.26 The volatility target

σtarget can be chosen by the investor according to the investor’s own risk aversion (Boller-

slev et al., 2018). As in Barroso and Santa-Clara (2015), we target an annualized volatility of

σtarget � 12%. The aim of volatility targeting is to keep the portfolio volatility constant over

time and equal to the chosen volatility target σtarget.27 Generally, volatility targeting has several

advantages compared to static portfolio allocations. For example, accurately targeting a con-

stant level of portfolio risk is important, since a more constant portfolio volatility is typically

rewarded with higher utility gains (Bollerslev et al., 2018). Similarly, a more stable portfo-

lio volatility is linked to a lower tail risk (Dreyer and Hubrich, 2019). Further, investors are

willing to pay high fees for insurance against a time-varying volatility (Adrian and Rosenberg,

2008, Ang et al., 2006b). Moreover, Adrian and Rosenberg (2008) show that bearing long-term

volatility is compensated by a higher return, whereas an increase of short-term volatility typi-

cally coincides with negative returns.28 From a practical view, Barroso and Santa-Clara (2015,

p. 116) argue that “[r]unning a long-short strategy to have constant volatility is closer to what

real investors (such as hedge funds) try to do than keeping a constant amount invested in the long

and short legs of the strategy.” In particular, several studies demonstrate that managing a portfo-

lio’s volatility increases the risk-adjusted performance and heightens utility gains (see Fleming

et al. (2001), Fleming et al. (2003), Kirby and Ostdiek (2012), Moreira and Muir (2017), Boller-

slev et al. (2018) among others). Furthermore, Marquering and Verbeek (2004) and Han (2005)

find that, under realistic transaction costs, strategies that time volatility are superior to buy-and-

26Ft�1 denotes the σ-algebra containing the available information up to the end of month t �
1. In particular, Ft�1 contains all daily returns known at the end of month t � 1, i.e. Ft�1 �
σ ptRj,i : j � 1, ..., t� 1; i � 1, ..., huq, but could possibly contain more information, like information on other
assets (see Meddahi and Renault (2004, p. 359) and Patton (2011)).

27Moreira and Muir (2017) use variance instead of volatility to scale the weight of the momentum portfolio. This
strategy does not target a constant level of volatility over time, but is strongly related to this strategy. By managing
the momentum portfolio’s variance, the weight is adjusted more aggressively compared to the volatility targeting
strategy. Hence, transaction costs are higher for the variance managed strategy (Kirby and Ostdiek, 2012). Kirby
and Ostdiek (2012) and Moreira and Muir (2017) show that both approaches follow – under certain conditions –
from solving for the optimal weight of a mean-variance investor (see also Aı̈t-Sahalia and Brandt (2001)).

28Adrian and Rosenberg (2008) find that short-run and long-run volatility is priced quite differently. Thus, the
relation of future returns with short-run and long-run volatility is different. Adrian and Rosenberg (2008, Table I)
find a negative coefficient for short-run volatility but a positive coefficient for long-run volatility. Therefore, future
returns are positively related to long-run volatility, but negatively to short-run volatility. This result is important
in the context of risk targeting, since the high risk of momentum is rewarded by a huge return potential, but the
performance can additionally be improved by timing short-run volatility. Moreira and Muir (2019) show that even
long-term investors should manage short-term volatility.
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hold portfolios and strategies that contemporaneously time return and volatility.29 Generally,

Rickenberg (2020b, Appendix A) discusses several reasons why investors should dynamically

manage a portfolio’s risk based on a forecast the portfolio’s volatility.

To manage a portfolio’s volatility as shown in Equation (2.3.4), a forecast of next month’s

volatility is needed. That is, based on the available information Ft�1, the month t volatility

σt has to be estimated. Barroso and Santa-Clara (2015) estimate σt by the past six months’

Realized Volatility (RV), i.e. the square root of the sum of the previous six months’ squared

daily returns. Similarly, Moreira and Muir (2017) manage portfolio risk by using the Realized

Variance, measured as the sum of the last month’s squared daily returns. However, Ghysels

et al. (2005) argue that one month of daily data is not sufficient to accurately measure monthly

volatility (see also Bali et al. (2009) and Figlewski (1997)). In a similar setting, Chen et al.

(2001) also use six months of daily data to estimate monthly volatility and skewness and argue

that one month of daily data is not sufficient to provide accurate estimates. In particular, Ang

et al. (2006b, p. 294) find that the negative volatility-return relation is more pronounced when

volatility is measured with longer data sets of more than one month of daily data. Generally,

Engle (2004) show that using too less data to estimate the unconditional volatility produces

a very noisy estimate, whereas estimates based on too long estimation windows fail to adapt

to changing market environments. Grobys et al. (2018) apply the RV estimator of Barroso

and Santa-Clara (2015) to the industry momentum strategy of Moskowitz and Grinblatt (1999).

The authors estimate Realized Volatility based on one, three and six months of data and find

the best results for the estimator that uses only one month of data, as it is used in Moreira

and Muir (2017). However, Grobys et al. (2018) find that the results are quite robust for all

estimators. Thus, the optimal choice of the estimation window for the RV estimator is not

clear. Nevertheless, we follow Barroso and Santa-Clara (2015), Daniel and Moskowitz (2016)

and Barroso and Maio (2018) and use daily data of the past six months to estimate monthly

29Similarly, Moreira and Muir (2019, p. 509) state that “ignoring variation in volatility is very costly, and the
benefits to timing volatility are significantly larger than the benefits to timing expected returns”. Moreira and Muir
(2017) also find higher performance gains of volatility timing compared to return timing.
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volatility.30 The month t volatility σt, used in Equation (2.3.4), is then estimated by

σt �
gffe1

6

6̧

j�1

ḩ

i�1

R2
t�j,i �

gffe1

6

6ḩ

i�1

R̃2
pt�1qh�i�1, (2.3.5)

where we define R̃s :� Rr s
h
s,s�hpr s

h
s�1q.31 The estimator in Equation (2.3.5) assumes that the

autocorrelation between daily returns is zero. A similar estimator that accounts for the autocor-

relation in daily returns is presented in French et al. (1987) and Ghysels et al. (2005). However,

as stated by Barroso and Santa-Clara (2015) and Moreira and Muir (2017), accounting for the

autocorrelation does not significantly improve the performance of the risk-managed momentum

strategy. For that reason, we rely on the estimator that simply estimates monthly volatility using

the sum of squared daily returns. Estimating monthly volatility with daily returns has already

been done by Merton (1980), French et al. (1987) and Ghysels et al. (2005). This approach

of estimating monthly volatility by the sum of squared daily returns is similar to the theory of

realized volatility that estimates daily volatility by the sum of squared intra-day returns (see

Andersen et al. (2001), Patton (2011), Bollerslev et al. (2018) among others). Incorporating

higher frequency data in measuring lower frequency volatility is found to be beneficial in many

studies (see Andersen and Bollerslev (1997) and Andersen et al. (1999) for example).32 In par-

ticular, higher frequency data based volatility estimates are also beneficial in portfolio allocation

problems (see Fleming et al. (2003), Bollerslev et al. (2018) among others).

The estimator in Equation (2.3.5) assumes that volatility of month t can simply be forecasted

by measuring past month’s volatility. Although Barroso and Santa-Clara (2015) show that the

volatility of the momentum portfolio is highly forecastable, the authors do not use a model to

forecast the momentum portfolio’s volatility. In contrast, Moreira and Muir (2017) use a simple

AR(1) specification to forecast next month’s variance and find similar results in terms of Sharpe

Ratios compared to the model using past month’s Realized Variance. However, the authors find

that using a variance forecast instead of ex-post measured variance reduces transaction costs

30We also used other choices but found quite similar results.
31We follow Barroso and Santa-Clara (2015) and use raw daily returns instead of demeaned returns for the

estimator in Equation (2.3.5). For the conditional volatility models presented later, we define R̃s as the demeaned
return.

32See Adrian and Rosenberg (2008, Footnote 6) for a list of studies that use high-frequency data to estimate
low-frequency volatility. The authors also use daily data in order to estimate monthly volatility.
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and produces less extreme weights. Moreover, Moreira and Muir (2017) show (in an internet

appendix) that the performance of the volatility managed portfolio can further be improved by

using more sophisticated forecasting models. In particular, Bollerslev et al. (2018) and Ricken-

berg (2020b) show that volatility estimates of unconditional models are highly inaccurate, fail

to target a constant level of risk over time and produce a worse risk-return profile as well as

lower utility gains for risk targeting investors. Generally, Bollerslev et al. (2018) find a positive

relation between forecasting accuracy and performance gains for volatility targeting investors.

As a consequence, using a forecast of next month’s volatility should produce a superior risk-

adjusted performance compared to the realized estimator of Equation (2.3.5). Nevertheless,

although risk-managed momentum strategies based on advanced volatility forecasting models

should produce superior results, this approach is so far only rarely examined in the momen-

tum literature. Similar to our approach, Daniel and Moskowitz (2016) examine risk-managed

momentum strategies based on the GJR-GARCH model of Glosten et al. (1993). Furthermore,

in an earlier version of their paper, Barroso and Maio (2018) use the GARCH(1,1) model of

Bollerslev (1986) but find no improvements of this model. However, the authors fit the model

to monthly data instead of daily data.33 Fitting conditional volatility models to monthly data if

higher frequency data are available has two important drawbacks (Ederington and Guan, 2010).

First, calibrating the model to monthly returns dismisses all information that is contained in

daily returns. Second, to accurately estimate the parameters of the GARCH(1,1) model, long

data sets are required, which are not available when monthly observations are used. The param-

eters of GARCH models are typically estimated with at least 500 observations (Kuester et al.,

2006). Hence, fitting the GARCH(1,1) model to monthly returns would require more than 40

years of data to obtain accurate estimates, whereas only two years of data are needed when the

model is fitted to daily returns. Figlewski (1997) finds that the GARCH(1,1) model fitted to five

years of monthly data delivers poor results due to bad parameter estimates, but the same model

delivers good results when it is fitted to daily data.34 As a consequence, when next month’s

33Barroso and Maio (2018) use an expanding window approach starting with a window of only 160 observations.
Using 160 observations in the Maximum Likelihood estimation of the GARCH(1,1) model will likely produce
inaccurate parameter estimates (Figlewski, 1997).

34Similarly, by fitting volatility models to daily and monthly returns, Campbell and Hentschel (1992, Sec. 3.2)
find that accurately estimating the model parameters with monthly returns sometimes fails, whereas no problems
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volatility is forecasted, the volatility models should be fitted to daily data.

Generally, when estimating monthly volatility several approaches can be used. First, the

model can be directly fitted to monthly return data in order to forecast monthly volatility. Sec-

ond, daily data can be used to forecast the one-day ahead volatility which can then be scaled

up to obtain a forecast of the monthly volatility. Third, the model can be fitted to daily returns

which can then be used to model monthly volatility by iterating daily forecasts (see Figlewski

(1997), Andersen et al. (1999), Meddahi and Renault (2004) and Kole et al. (2017)). The first

and second approaches have the advantage that forecasts of monthly volatility are typically di-

rectly available, whereas in the third case, information on the temporal aggregation and the term

structure of risk have to be known. However, as mentioned above, fitting models to monthly

data requires huge data sets and discards all information available in daily data. Further, the

second approach dismisses information on the term structure of risk. Consequently, the third

approach, although more challenging, should be more efficient and accurate. Kole et al. (2017)

compare the three approaches and find that iterated forecasts deliver the most accurate fore-

casts. Hence, incorporating information on short-term volatility is beneficial when longer-term

volatility is forecasted.35 The high misspecification of risk obtained by managing portfolio risk

based on static volatility models or models that are fitted to monthly data could also result in a

lower risk-adjusted performance, lower utility gains and higher left tail risk compared to more

sophisticated and probably more accurate volatility models as found by Bollerslev et al. (2018).

For that reason, we next present several alternatives to Equation (2.3.5) that properly forecast

occur when daily data are used (see also Figlewski (1997)). Adrian and Rosenberg (2008, p. 3001) also estimate
monthly volatility and skewness using daily data “in order to improve the estimation precision”. Similarly, Ander-
sen et al. (1999) find that switching to higher frequency data is more accurate when monthly volatility is estimated.
Embrechts et al. (2005) also find that fitting models to higher frequency data is superior when longer-term risk is
estimated. Further, fitting GARCH models to lower frequency returns, like monthly or quarterly returns, typically
leads to parameter estimates that violate the stationary assumption of GARCH models (Embrechts et al., 2005).
Generally, conditional volatility forecasts using daily or monthly data are conditioned on two different informa-
tion sets, where the information set using daily data is much larger (see Wong and So (2003) and Andersen et al.
(1999)).

35In contrast, information on longer-term volatility, like yearly volatility, can also be incorporated in order to
model higher frequency volatility, like daily volatility (Engle and Rangel, 2008). This model could then also
be used to forecast monthly volatility. Similarly, Adrian and Rosenberg (2008) develop a volatility model that
simultaneously models short-run and long-run volatility. The authors fit this model to daily data in order to estimate
monthly volatility. Adrian and Rosenberg (2008) show that short-run volatility captures skewness risk, whereas
long-run volatility captures business cycle risk.
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monthly volatility and are based on daily returns.36

A first and easy extension of the estimator in Equation (2.3.5) is the Heterogeneous Autore-

gressive (HAR) model of Corsi (2009). This model was also used by Bollerslev et al. (2018) to

estimate the one-month ahead volatility based on daily, weekly and monthly volatility estimates.

Taylor (2014) also uses this model in a multivariate volatility timing strategy and finds good re-

sults of this model. Although this model is easy to estimate, it typically delivers convincing

results, what makes this approach interesting for practical implementations. The basic HAR

model estimates next month’s volatility by using several measures of past volatility, aggregated

over different time horizons. The h-day ahead average Realized Volatility is then obtained by

RVt|t�1 � β0 � βDRV
D
t�1 � βWRV

W
t�1 � βMRV

M
t�1 � εt, (2.3.6)

where we defineRV D
t�1 � R2

t�1,h,RV W
t�1 � 1

5

�
R2
t�1,h �R2

t�1,h�1 � ...�R2
t�1,h�4

�
andRV M

t�1 �
1
h

�
R2
t�1,h �R2

t�1,h�1 � ...�R2
t�1,1

�
.37 We estimate the parameters in Equation (2.3.6) by OLS

under the restriction that all parameters are non-negative to guarantee a positive estimate for

RVt|t�1. The estimator for the month t volatility based on the information up to month t � 1 is

then given by σt �
a
h �RVt|t�1.38 A possible extension of this model could be the more com-

plex MIDAS model used in Ghysels et al. (2005) and Ghysels et al. (2016). Further, Bollerslev

et al. (2018) present several extensions of the basic HAR model, including the MIDAS, which

could also be used to manage the risk of the momentum portfolio. A similar model, based on

the range estimator, was also used by Hsieh (1993, p. 53) to forecast volatility. However, since

one advantage of the HAR model is its simplicity, we restrict ourselves to the simplest form.
36Whereas estimating short-term volatility is straightforward and frequently examined in the academic literature,

estimating longer-term volatility is more challenging and only rarely examined (see Christoffersen and Diebold
(2000) and Ederington and Guan (2010)). However, long horizon volatility forecasts are important in many fields of
finance, including risk management, option pricing and portfolio management (see Figlewski (1997), Engle (2004),
Andersen et al. (1999), Ederington and Guan (2010) and Taylor (2005)). Figlewski (1997) gives a nice review
on forecasting (long-term) volatility used for option pricing. Engle (2004) also nicely summarizes (long-term)
volatility forecasting with applications to risk management and option pricing. See also Poon and Granger (2003)
for a review of volatility forecasts, including a list of studies that also examine longer-term volatility forecasting
based on higher frequency data.

37The HAR model is typically estimated with volatility measures RV Dt�1, RV
W
t�1 and RVMt�1 based on intraday-

data. In an earlier version of their paper, Bollerslev et al. (2018) state that the model can also be estimated based
on daily data as done in our paper.

38Bollerslev et al. (2018) propose to directly forecast the volatility measure that is needed. Hence, instead of
forecasting a measure of daily variance, which is then transformed to a measure of monthly volatility, one can also
directly forecast monthly volatility or even the reciprocal of monthly volatility, i.e. 1

σt
, which is needed in Equation

(2.3.4). We also estimated these quantities and found similar results.
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Rickenberg (2020b) shows that risk managed portfolio strategies that use dynamic volatility

models, like the EWMA model and the GARCH model of Bollerslev (1986), produce more con-

vincing results in terms of higher Sharpe Ratios and higher utility gains compared to strategies

based on static volatility models, like the RV model in Equation (2.3.5). Similarly, Christof-

fersen and Diebold (1997) demonstrate the importance of incorporating the conditional volatil-

ity in simulating h-day ahead returns. Generally, Hsieh (1993) finds that unconditional esti-

mates are better suited for long-term applications, e.g. yearly horizons, whereas conditional

estimates work well for short- and medium-term applications. Further, the author finds vast

differences between capital requirements of unconditional and conditional risk forecasts, where

conditional estimates seem better suited than unconditional estimates. We therefore show how

dynamic volatility models can be used to manage the monthly risk of the momentum strategy.

Interestingly, Barroso and Maio (2018) find that the GARCH managed strategy’s Sharpe Ratio

is significantly lower than the Sharpe Ratio of the RV managed strategy. However, as men-

tioned above, the authors fit the GARCH model to monthly data, which has the drawbacks that

information in daily returns are not considered and parameter estimates are highly inaccurate.

For that reason, we next show how conditional volatility models, i.e. the EWMA, GARCH and

GJR-GARCH model, can be fitted to daily data and how estimates of monthly volatility are

obtained for these models.39

For the dynamic volatility models, we assume that daily returns can be described by

Rt,i � µt,i � σt,i � Zt,i, (2.3.7)

where Zt,i is iid with mean zero, variance one and cumulative distribution function FZ (see

McNeil and Frey (2000, p. 275)). In Equation (2.3.7), the parameters µt,i and σt,i represent

the (conditional) mean and volatility of the daily return Rt,i, i.e. µt,i � EpRt,i | Ft,i�1q and

σt,i �
a

varpRt,i | Ft,i�1q, where Ft,i�1 contains all information up to time t� i�1
h

. We follow

39As mentioned above, Figlewski (1997) shows that fitting the GARCH(1,1) model to monthly data fails to
accurately forecast monthly volatility, whereas the GARCH(1,1) model fitted to daily data is superior to the RV
model in forecasting monthly volatility. The problem of inaccurate parameter estimates does not hold for the
EWMA model, since this model’s parameters are typically set to a fixed value. Therefore, we additionally calibrate
the EWMA model to monthly data to obtain a forecast of the monthly volatility. By doing this, we can assess
the importance of incorporating the information in higher frequency data when the momentum strategy’s risk is
managed.
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Bollerslev (1987) and assume a constant mean µt,i � µ and define the demeaned daily return

as Rt,i :� Rt,i � µ. Fitting volatility models to the demeaned returns is frequently done in

the academic literature (see Taylor (2005), Wong and So (2003), Ederington and Guan (2010),

So and Wong (2012) among others).40 Another possibility would be to assume an autoregres-

sive process for the conditional mean.41 However, Christoffersen and Diebold (2006) find that

conditional returns are not forecastable, i.e. returns conditioned on the current information do

not fluctuate over time (see also Merton (1980)). Similarly, Hsieh (1993) finds that the condi-

tional mean is not predictable, whereas volatility is highly predictable. Han (2005) shows that

monthly managed volatility timing strategies are superior to strategies that contemporaneously

time returns and volatility. Furthermore, incorporating a model for the mean return should in-

crease estimation risk and transaction costs (Daniel and Moskowitz, 2016, Moreira and Muir,

2019). Hence, when risk is managed on a monthly basis, modeling returns in a time-varying

manner should result in a worse performance compared to assuming a constant mean, at least

after transaction costs.42 Further, Hansen and Lunde (2005) compare several mean specifica-

tions and find only minor differences between an autoregressive mean specification, a constant

mean and a zero mean (see also Ederington and Guan (2010, Footnote 11)).

A simple and frequently used specification for the volatility in Equation (2.3.7) is the EWMA

model. The EWMA model fitted to daily data is given by

σ̃2
s � p1 � λq � R̃2

s�1 � λ � σ̃2
s�1, s � 2, ..., Th (2.3.8)

where σ̃s :� σr s
h
s,s�hpr s

h
s�1q and R̃s :� Rr s

h
s,s�hpr s

h
s�1q :� Rr s

h
s,s�hpr s

h
s�1q � µ. The parame-

ter λ is typically chosen as λ � 0.94 when the model is fitted to daily data (see Wong and

So (2003) or Christoffersen (2012, p. 70)). Then, the volatility forecast for the first day of

40Instead of fitting volatility models to the demeaned returns, a mean return of zero, i.e. µt,i � 0, could also be
assumed. Assuming a zero mean is frequently done in the literature when volatility models, fitted to daily data, are
used to forecast the one-day ahead volatility. This assumption is sufficient for one-day ahead volatility forecasts.
However, incorporating information on the mean return becomes crucial when longer-term risk is forecasted. This
especially holds when longer-term downside risk is forecasted, as done in the next section.

41See, for example, Baillie and Bollerslev (1992) on more complex assumptions on the mean return to estimate
the h-day ahead volatility. The authors fit an ARMA-GARCH(1,1) model to daily data in order to forecast the
h-day ahead volatility.

42Han (2005) shows that this result does not necessarily hold when risk is managed on a daily basis. In this
case, incorporating an autoregressive process for the mean return could result in a superior strategy, at least before
transaction costs.
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month t, σt,1, is given by σ̃hpt�1q�1 �
b
p1 � λqR̃2

hpt�1q � λ � σ̃2
hpt�1q or equivalently σt,1 �b

p1 � λqR2
t�1,h � λ � σ2

t�1,h. The EWMA model gradually reduces the influence of past data

when future volatility is estimated, whereas the Realized Volatility model in Equation (2.3.5)

weights the past 6h daily returns equally and then radically ignores the older returns (Fan and

Gu, 2003, p. 264). Thus, we expect that the EWMA model adapts faster to a changing market

risk. Similarly, Grobys et al. (2018) suggest that giving more weight to more recent observa-

tions is advantageous when the monthly risk of the industry momentum strategy is managed.

In particular, since this model does not need any parameter estimates, it is interesting for prac-

tical implementations. However, the parameter λ could also be obtained in a data-driven and

time-varying manner as shown by Fan and Gu (2003).

In the EWMA model, returns are typically assumed to be iid normally distributed. Con-

sequently, the volatility of the h-day aggregate return Rt is simply given by scaling up the

one-day ahead volatility forecast by
?
h (see Wong and So (2003) and Christoffersen (2012,

p. 72)). Hence, the forecast for the month t volatility is given by

σt �
?
h � σt,1. (2.3.9)

Scaling up the daily volatility forecast by
?
h to obtain a monthly volatility forecast is known

as the square root of time rule (SRTR). The SRTR is a popular method in the financial indus-

try and is recommended by banking supervisors (Danielsson and Zigrand, 2006). Generally,

scaling up estimates of short-term volatility to obtain long-term volatility forecasts is a com-

mon approach, where the industry practice is the SRTR (Christoffersen and Diebold, 2000).43

Although correct for the EWMA model, the SRTR is also often applied to other estimates of

volatility or downside risk that are not based on an iid assumption. In particular, the SRTR

is also implicitly used by Barroso and Santa-Clara (2015), Moreira and Muir (2017) and Bar-

roso and Maio (2018) to obtain an estimate of monthly volatility based on an estimate of daily

volatility. However, despite the widespread use of the SRTR, simply scaling up daily volatility

by
?
h is highly misleading and only holds under very strict conditions as shown by Diebold

43Instead of scaling one-day ahead estimates by h1{2, other scaling rules can also be used. For example, by
using extreme value theory, the one-day ahead volatility forecast can be scaled by h1{α, where α denotes the tail
index. The exponent 1{α is typically estimated by the Hill estimator fitted to daily data (Embrechts et al., 2005).
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et al. (1998) and Danielsson and Zigrand (2006). Scaling rules imply that the distribution of

daily and monthly returns have the same shape, which is typically not fulfilled for most return

series (Kole et al., 2017, Neuberger, 2012). Further, short-run volatility is much less persistent

than long-run volatility. Hence, simply scaling up daily volatility ignores “the risk that risk will

change” (Engle, 2011, p. 442). Generally, the SRTR can be applied without reservation if asset

returns follow a random walk. However, the random walk hypothesis is typically not true for

financial return time-series, which can be shown by the variance ratio test of Lo and MacKinlay

(1988).44 The variance ratio test of Lo and MacKinlay (1988) is summarized in Appendix C and

applied to the momentum returns in Section 2.6.2. As expected, the random walk hypothesis

is clearly rejected for the momentum portfolio. As a consequence, since momentum returns do

not follow a random walk, the SRTR and particularly the RV model of Barroso and Santa-Clara

(2015), Moreira and Muir (2017) and Barroso and Maio (2018) are not appropriate to manage

the risk of the momentum strategy. Furthermore, Saadi and Rahman (2008) find that the SRTR

underestimates risk and that scaled volatility has a higher standard deviation. Similarly, Diebold

et al. (1998) show that the SRTR typically magnifies volatility fluctuations. Hence, applying

the SRTR in a volatility targeting strategy should lead to a too high (average) equity exposure,

wrong risk timing and high transaction costs. Generally, Embrechts et al. (2005) find that the

SRTR only works well when longer-term volatility, e.g. yearly volatility, is forecasted. Con-

sequently, other approaches to manage monthly risk could be more accurate than the SRTR,

which should result in a superior risk-return profile.

The advantage of the EWMA model is that no parameters have to be estimated, which makes

this model interesting for practical applications (Halbleib and Pohlmeier, 2012). In particular,

the EWMA model is a simple way to manage risk dynamically, which is advantageous for risk

managed portfolios (Rickenberg, 2020b). For example, Grobys et al. (2018) find that volatility

estimators based on more recent data are better in managing momentum’s risk. For that reason,

the authors suggest to use models that emphasize recent observations, like the EWMA model,

44Lo and MacKinlay (1988) statistically test the random walk hypothesis using weekly and monthly returns.
If prices follow a random walk, then monthly variance should be four times greater than weekly variance. This
relation is statistically rejected by Lo and MacKinlay (1988) for equity returns indicating that the random walk
hypothesis does not hold for equity returns. Hsieh (1993) and Saadi and Rahman (2008) also test the random walk
hypothesis and clearly reject this hypothesis.
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when monthly risk is estimated. However, more complex models that reestimate the model

parameters frequently are potentially more accurate. Further, as mentioned above, the random

walk hypothesis is typically rejected for financial returns. Hence, simply scaling up forecasts of

short-term volatility by
?
h, as done in Equation (2.3.9), is insufficient to obtain a forecast for

the monthly volatility. For these reasons, we additionally use the GARCH(1,1) model proposed

by Bollerslev (1986) and the GJR-GARCH model of Glosten et al. (1993) calibrated to daily

data, where the monthly volatility forecasts are obtained by explicitly considering the time series

properties contained in the financial return series. Andersen et al. (1999) and Figlewski (1997)

show that the GARCH(1,1) model fitted to higher frequency data, e.g. daily returns, is able to

accurately forecast lower frequency volatility, e.g. monthly volatility.

The GARCH(1,1) model fitted to daily returns is given by

σ̃2
s � ω � α R̃2

s�1 � β σ̃2
s�1. (2.3.10)

The parameters ω, α, β are estimated by Quasi Maximum Likelihood (QML) under the assump-

tion that the daily innovations Zt,i in Equation (2.3.7) are iid standard normally distributed. The

GARCH(1,1) parameters are restricted to ω ¡ 0, α ¥ 0, β ¥ 0 and α � β   1, where

the last restriction guarantees covariance stationarity (Baillie and Bollerslev, 1992, Bollerslev,

1986). The volatility forecast for the first day of month t, based on the information Ft�1 up

to month t � 1, is then given by σt,1 � σ̃hpt�1q�1. One possibility to obtain a forecast for the

monthly volatility, which is also used in this paper, is to just scale up σt,1 by
?
h as done in the

EWMA model. However, the SRTR does not hold for the GARCH(1,1) model and has several

disadvantages as summarized above. Therefore, longer-term volatility forecasts, based on the

GARCH(1,1) or GJR-GARCH models fitted to daily data, are typically obtained by successive

forward substitution (Ederington and Guan, 2010, Kole et al., 2017). By subsequently using

Equation (2.3.10), the volatility forecast for the month t volatility can be calculated by

σ2
t � h � σ2 � 1 � pα � βqh

1 � α � β
� �σ2

t,1 � σ2
�
, (2.3.11)

where σ2 � ω
1�α�β is the unconditional variance of the GARCH(1,1) process (see Wong and

So (2003, Eq. (4)) or Taylor (2005, Eq. (1))). The formula in Equation (2.3.11) directly follows
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from simply summing up the individual one-day ahead to h-day ahead daily variance forecasts

(see Ghysels et al. (2005), Ederington and Guan (2010), Taylor (2005) or Christoffersen (2012,

p. 72)).45 This approach is similar to the
?
h scaling but explicitly accounts for the time-series

behavior in volatility.46 In particular, the EWMA model ignores the long-run variance σ2, which

is important when longer-term volatility is forecasted.47 If next day’s volatility is estimated to be

high, the EWMA model assumes that all days in this month are highly volatile days. In contrast,

in the GARCH model, future days’ volatility could revert to the long-run volatility (Christof-

fersen, 2012). Incorporating the unconditional variance σ2 is of minor importance for one-day

ahead forecasts, but regarding σ2 becomes more important for longer-term volatility forecasts,

since volatility is typically mean-reverting (Ederington and Guan, 2010, Engle, 2004). The un-

conditional volatility σ can be interpreted “as a trend around which the conditional volatility

fluctuates” (Engle and Rangel, 2008, p. 1191). Furthermore, Engle and Rangel (2008) extend

the GARCH model in a way that σ2 is also modeled and is allowed to slowly fluctuate over time

in order to capture slow moving macroeconomic developments. A similar model is developed

by Adrian and Rosenberg (2008), where short-term volatility captures the market’s skewness

risk and long-term volatility captures business cycle risk.

Both models, the EWMA and the GARCH(1,1) model, are symmetric volatility models, i.e.

they do not incorporate the asymmetric relation between returns and future volatility. Asym-

45Baillie and Bollerslev (1992) show that under the assumption α � β   1, i.e. covariance stationarity of the
GARCH process, the forecast for the variance of day k in month t based on Ft�1 is given by σ2

t,k � σ2 � pα �
βqk�1

�
σ2
t,1 � σ2

�
. The variance forecast for the month t variance is then obtained by summing up the daily

variance forecasts within month t, i.e. σ2
t �
°h
k�1 σ

2
t,k, which is based on the assumption of zero autocorrelations.

The summation of volatility over a certain period, i.e. σ2
t �
°h
k�1 σ

2
t,k, is sometimes called the integrated volatility,

which plays an important role in many fields in the financial literature (see Andersen et al. (1999), Ederington
and Guan (2010) and references therein). Using the geometric sum and the assumption α � β   1, Equation
(2.3.11) follows directly from σ2

t �
°h
k�1 σ

2 � pα � βqk�1
�
σ2
t,1 � σ2

�
. This result can also be extended to the

ARMA(k, l)-GARCH(p, q) model (Baillie and Bollerslev, 1992, p. 99).
46In a similar setting, Neuberger (2012) finds that the time-series behavior should be regarded when monthly

skewness is estimated based on daily data. Instead of scaling up daily skewness to obtain monthly skewness,
the author finds that “[i]f high-frequency returns are to be used to improve the estimate of the skewness of low-
frequency returns, it must be done in a way that reflects the serial dependencies that are manifest in the data.”

47More generally, Baillie and Bollerslev (1992) compare forecasts of the GARCH(1,1) and the IGARCH(1,1)
model, where σ2

t,k is given by ωpk � 1q � σ2
t,1. The monthly variance is then given by σ2

t � °hk�1 σ
2
t,k �

hph�1q
2 ω�hσ2

t,1 (Taylor, 2005, Eq. (2)). The EWMA model is a special case of the IGARCH(1,1) model assuming
ω � 0. In this case, conditioned on Ft�1, it follows σ2

t,k � σ2
t,1 and thus σ2

t � hσ2
t,1. Hence, when using the

EWMA model for estimating the h day volatility, only current information is important, whereas the long-run
variance is not regarded.
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metric volatility, also called leverage effect, corresponds to the observation that past negative

returns typically increase volatility more than past positive returns of the same magnitude (see

Nelson (1991), Campbell and Hentschel (1992) and Glosten et al. (1993) among others). In-

corporating asymmetric volatility becomes crucial when longer-term volatility is forecasted,

whereas the leverage effect is less important for one-day ahead volatility forecasts (Colacito

and Engle, 2010, Ederington and Guan, 2010, Taylor, 2005). Under the leverage effect, even

if one-day ahead returns are symmetrically distributed, longer-term returns can be asymmetric

(see Adrian and Rosenberg (2008), Colacito and Engle (2010, Figure 4), Engle (2011, Sec. 3)

and Neuberger (2012)). Thus, asymmetric volatility models should better capture the nega-

tive skewness of monthly momentum returns. To incorporate the effect that volatility responds

asymmetrically to past returns, we additionally use the GJR-GARCH model of Glosten et al.

(1993). Taylor (2005) finds good results for the GJR-GARCH to forecast monthly volatility (see

also Lönnbark (2016) and references therein). Similarly, Kole et al. (2017) find good results for

the GJR-GARCH model when 10-day downside risk is forecasted. Generally, Rosenberg and

Engle (2002) fit several volatility models to daily returns in order to simulate h-day future price

paths and find that the GJR-GARCH model delivers the most convincing results.48 Harvey and

Siddique (1999) and Lönnbark (2016) also use the GJR-GARCH model for modeling daily and

monthly volatility. Furthermore, similar to our approach, Daniel and Moskowitz (2016) use the

GJR-GARCH model fitted to daily data to manage the momentum portfolio’s monthly risk.49

Following Daniel and Moskowitz (2016, Eq. (8)) and Lönnbark (2016, p. 951), we define

the one-day ahead volatility of the GJR-GARCH model as

σ̃2
s � ω � pα � γδs�1q � R̃2

s�1 � β σ̃2
s�1, (2.3.12)

48Rosenberg and Engle (2002) and Barone-Adesi et al. (2008) show how the GJR-GARCH model, fitted to daily
data, can be used to forecast h-day volatility using draws from historical standardized returns. This approach is
called Filtered Historical Simulation (FHS) and has the advantage that non-normalities, like skewness and kurtosis
in the daily returns, are taken into account when the h-day volatility is estimated. Incorporating non-normalities
in volatility forecasts can increase the forecasting accuracy (Taylor, 2005). Barone-Adesi et al. (2008) show that
the GJR-GARCH-FHS model outperforms other models that do not consider conditional volatility and/or condi-
tional non-normalities. We will use the FHS approach in the next section when we estimate h-day downside risk
measures.

49Daniel and Moskowitz (2016) use a slightly different approach to obtain a forecast of the monthly volatility
based on the GJR-GARCH model’s forecast of the daily volatility, which is similar to the HAR model shown
above. This procedure is shortly summarized in Daniel and Moskowitz (2016, Appendix D).
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where δs�1 :� 1tR̃s�1 0u captures the leverage effect. The parameters ω, α, γ and β are again

obtained by QML. Using similar arguments as for the GARCH(1,1) model and assuming that

Zt,i follows a symmetric distribution, it can be shown that the month t volatility of the GJR-

GARCH model is given by

σ2
t � h � σ2 � 1 � pα � β � γ

2
qh

1 � pα � β � γ
2
q � �σ2

t,1 � σ2
�
, (2.3.13)

where σ2 � ω
1�pα�β� γ

2
q is the unconditional variance of the GJR-GARCH model (Lönnbark,

2016, p. 951).50 Ederington and Guan (2010) find that both models, the GARCH and GJR-

GARCH model, perform nearly equally well when the 20-day volatility is forecasted.51 Taylor

(2005) also compares the GARCH and GJR-GARCH models in the context of longer-term

volatility forecasts and finds better results for the GJR-GARCH model. Similarly, Colacito and

Engle (2010) compare longer-term forecasts of the GARCH and GJR-GARCH model used in an

asset allocation context and find that using the GJR-GARCH delivers sizable gains for investors.

Investors are willing to pay high fees to have access to the GJR-GARCH model instead of the

GARCH model if the investors reallocate the weights of a portfolio of risky assets every 20 days

(see Figure 6 in Colacito and Engle (2010)). Hence, portfolio decisions based on long-horizon

volatility forecasts should take asymmetric volatility into account.

Similar methods as presented above can also be used in a multivariate setting. Volatility

timing of multi-asset portfolios has frequently been examined in the literature. For example,

Fleming et al. (2001), Fleming et al. (2003) and Kirby and Ostdiek (2012) use simple volatility

50See also Colacito and Engle (2010, p. 21) and Ederington and Guan (2010) for a formula for the monthly
volatility of the GJR-GARCH model fitted to daily data. Further, Taylor (2005, p. 714) also uses the GJR-GARCH
fitted to daily data in order to forecast longer-term volatility and finds good results of this approach. However,
the author uses a slightly different definition of the GJR-GARCH model compared to our definition. Ederington
and Guan (2010) additional show how the month t volatility forecast can be obtained for the EGARCH model
of Nelson (1991) fitted to daily data. The EGARCH model also incorporates the leverage effect, but instead of
modeling volatility, the EGARCH model models the logarithm of the volatility. Ederington and Guan (2010) find
that the EGARCH model also successfully forecasts monthly volatility when it is fitted to daily data. In contrast,
Hsieh (1993) finds that the EGARCH model is good for one-day ahead forecasts but does not work well for h-day
forecasts. Adrian and Rosenberg (2008) also use a modified EGARCH model fitted to daily data in order to model
monthly volatility.

51Ederington and Guan (2010) evaluate the forecasting accuracy based on loss functions. However, the authors
do not test if there are statistically significant differences. We will use more advanced backtesting methods, pre-
sented in Appendix D, to assess which of our volatility models is most successful in forecasting next month’s
volatility by testing which model is most successful in targeting a constant level of portfolio volatility over time.
Further, we assess if incorporating higher moments, as it is also examined by Taylor (2005), is beneficial when a
constant portfolio volatility is targeted.

164



estimates, which are similar to the RV estimator in Equation (2.3.5). Han (2005) and Taylor

(2014) extend this examination to more advanced volatility models. Taylor (2014) finds good

results for the HAR model and for conditional volatility models. In particular, Han (2005)

examines multivariate volatility timing strategies for three different types of investors who re-

balance their portfolio on a daily, weekly and monthly basis. All strategies rely on estimates

of the covariance matrix using daily returns. Similar to our approaches, Han (2005, Sec. 3.2)

shows how the weekly and monthly covariance matrix can be estimated by a model fitted to

daily data, where the monthly covariance matrix is estimated by the sum of the daily forecasts

within one month. The author finds that an investor who rebalances portfolio weights on a

monthly basis is willing to pay an annualized fee of 5% to switch from a static portfolio to a

volatility managed portfolio.

Several possible refinements of the models that are presented above could also be used for

the volatility targeting strategy. For example, the spline-GARCH model of Engle and Rangel

(2008) or the model of Adrian and Rosenberg (2008) that incorporate information on higher-

and lower-frequency volatility could be used. Further, the extended versions of the GARCH

and GJR-GARCH model as presented in Ederington and Guan (2010) could also be used. The

authors modify the GARCH and GJR-GARCH model in a way that older observations become

more important. Giving more weight to older information becomes more important if longer-

term volatility is forecasted. For example, when forecasting volatility of day t � 1 based on

information up to day t, due to the persistence of volatility, the observation of day t is more

important than the observation of day t� 1. This is regarded by standard volatility models and

is reasonable for one-day ahead forecasts. However, this result does not generally hold if the

volatility of day t � h, based on information of day t, is forecasted (see also Andersen et al.

(1999)). In this case, if h is large, the return of day t�1 becomes relatively more important and

should obtain a similar weight as the return of day t. However, the authors also find convincing

results of standard volatility models fitted to daily data to forecast monthly volatility. Moreover,

Grobys et al. (2018) find that managing the risk of the industry momentum strategy is best

done when more recent daily return data are used to estimate monthly volatility. Therefore,
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we restrict ourselves to the basic GARCH and GJR-GARCH models presented above. Another

possibility would be to use the method presented in Taylor (2005). The author shows how h-day

ahead volatility forecasts can be made based on forecasts of certain quantiles.52 This approach

has the advantage that information on higher moments is incorporated in the volatility forecasts.

Incorporating higher moments is beneficial since the shape of the conditional return distribution

is typically highly non-normal and time-varying. The author finds good results of incorporating

higher moments in longer-term volatility forecasts. However, we will use a similar approach in

the next section, when we show how the portfolio volatility can be held constant by managing

a portfolio’s downside risk.

A second possibility to exploit the information of daily returns when monthly volatility in

the GARCH(1,1) model is forecasted has been proposed by Drost and Nijman (1993) (see also

Drost and Werker (1996), Diebold et al. (1998), Meddahi and Renault (2004) and Embrechts

et al. (2005, Sec. 5)). The authors show that – under certain conditions – the GARCH(1,1) model

is closed under temporal aggregation.53 In other words, if daily returns follow a GARCH(1,1)

process, then monthly returns also follow a GARCH(1,1) process where the monthly GARCH

parameters can be calculated using the daily parameters (Wong and So, 2003). The month t

volatility can then be estimated by

σ2
t � ωM � αMR

2

t�1 � βMσ
2
t�1, (2.3.14)

where Rt�1 :� Rt�1 � EpRt�1 | Ft�2q � Rt�1 � h � µ defines the demeaned monthly return.

52A similar approach is also used by Ghysels et al. (2016) to obtain conditional skewness forecasts that are more
robust to outliers.

53A model is “closed under temporal aggregation if the model keeps the same structure, with possibly different
parameter values, for any data frequency” (Meddahi and Renault, 2004, p. 356). Drost and Nijman (1993) show
that weak GARCH models are closed under temporal aggregation. Meddahi and Renault (2004) extend the exam-
ination of Drost and Nijman (1993) to a wider class of GARCH processes under milder moment restrictions and
including the well-known leverage effect. Similarly, Drost and Werker (1996) examine the relation between the
discrete GARCH(1,1) model and continuous time models, including models with continuous paths and jumps. In
particular, they show how parameters of the GARCH(1,1) model can be obtained based on parameter estimates
of continuous time models. Although the GARCH(1,1) model, without further assumptions, is not closed under
temporal aggregation, we follow Diebold et al. (1998) and use the results of Drost and Nijman (1993). Meddahi
and Renault (2004) show in a simulation study that using temporal aggregation for the GARCH(1,1) model is
somewhat misleading. However, the authors choose h � 400, whereas previous studies show that using smaller
values of h leads to small biases (see Meddahi and Renault (2004, Sec. 3.4) and a previous version of Drost and
Nijman (1993)).
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The monthly GARCH(1,1) parameters are given by

ωM � hω
1 � pβ � αqh
1 � pβ � αq , αM � pβ � αqh � βM

and |βM |   1 is obtained as the solution of

0 � xpβ, α, κ, hqβ2
M � βM � xpβ, α, κ, hq,

where

xpβ, α, κ, hq � apβ, α, κ, hqpβ � αqh � bpβ, α, hq
apβ, α, κ, hq p1 � pβ � αq2hq � 2bpβ, α, hq

and

apβ, α, κ, hq � hp1 � βq2 � 2hph� 1qp1 � β � αq2p1 � β2 � 2βαq
pκ� 1qp1 � pβ � αq2q

� 4

�
h� 1 � hpβ � αq � pβ � αqh� � pα � βαpβ � αqq

1 � pβ � αq2 ,

bpβ, α, hq � pα � βαpβ � αqq 1 � pβ � αq2h
1 � pβ � αq2 , κ � 3

1 � pβ � αq2
1 � pβ � αq2 � 2α2

.

The kurtosis κ of the daily returns is calculated for conditional normality (Bollerslev, 1986).

However, this assumption can also be relaxed for other distributions (see Embrechts et al. (2005)

for the case of conditionally t distributed returns).

The model presented above highlights that the simple SRTR is highly misleading to obtain

a monthly volatility forecast using daily data. This is confirmed by Diebold et al. (1998) in

a simulation study. Scaling one-day volatility by the SRTR magnifies volatility fluctuations,

whereas the true h-day volatilities are much less volatile, since temporal aggregation should

dampen volatility fluctuations.54 Applied to the target volatility strategy, the SRTR implies

too many weight adjustments, which lead to needless and very high transaction costs. This also

holds for the RV model of Barroso and Santa-Clara (2015) and Moreira and Muir (2017), which

is also implicitly based on the SRTR. Further, although
?
h-scaling could be correct on average,

54Diebold et al. (1998) and Embrechts et al. (2005) argue that αM and βM tend to zero as h Ñ 8, implying
that long-run volatility fluctuations disappear in the Drost and Nijman (1993) model. In other words, long-run
volatility is asymptotically constant, thus, long-term returns follow a random walk under this model (Embrechts
et al., 2005). This is in line with the observation that returns are typically unconditionally normally distributed
as the aggregation interval increases (Diebold et al., 1998). In contrast, by using the SRTR, volatility fluctuations
increase as hÑ8.
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Diebold et al. (1998) find that the SRTR produces times where volatility is too high and times

where volatility is too low. Consequently, used in the volatility targeting context, the SRTR

produces times when the portfolio allocation is too high and times when the portfolio allocation

is lower than desired.

The model given in Equation (2.3.14) explicitly models monthly volatility based on the

monthly return Rt, where the model parameters are estimated based on daily data. As men-

tioned above, this approach is appealing, since in this case information on higher frequency

data are taken into account and more observations are available to obtain accurate parameter

estimates. In contrast, fitting the GARCH model directly to monthly data is problematic, since

this approach requires long data sets to obtain accurate parameter estimates. This problem does

not exist for the EWMA model, since no parameters have to be estimated for this model. Hence,

the EWMA model can directly be used for monthly data as frequently done by practitioners.

The month t variance for the EWMA model fitted to monthly data is then given by

σ2
t � p1 � λq �R2

t�1 � λ � σ2
t�1, t � 1, ..., T, (2.3.15)

where the parameter λ for the monthly EWMA model is usually set to λ � 0.97 (So and Wong,

2012). We use this approach to assess if this model performs equally well as the other models

that are based on daily data.

Although incorporating daily data in estimating monthly volatility and relying on condi-

tional models should increase the forecasting accuracy, the approaches presented above also

have several drawbacks. For example, the model of Drost and Nijman (1993) relies on the as-

sumption of a weak GARCH model. Temporal aggregation only holds under very strict assump-

tions that are unlikely fulfilled in practice. Further, this model assumes that the GARCH(1,1)

model correctly describes the one-day return (Saadi and Rahman, 2008). Hence, if the GARCH

model is wrong in describing daily volatility, monthly volatility is also badly modeled, where

the misspecification increases in h. This drawback also holds for the iterated models given

in Equations (2.3.11) and (2.3.13), but not for the SRTR.55 Further, most models presented

in this section do not provide any information on the distribution of the h-day return. As a
55Thus, the SRTR should be more robust to parameter uncertainty, which should be an issue for the highly

non-normally distributed momentum portfolio.
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consequence, these models cannot directly be used to estimate h-day downside risk measures.

Embrechts et al. (2005) use further assumptions on the conditional return distribution to calcu-

late h-day downside risk based on these models. We will come back to this point in the next

section.

2.4 Tail Risk Managed Momentum Strategy

In Section 2.2, we have argued that the momentum strategy produces abnormally high returns,

which are accompanied with infrequent times of extremely negative returns. In Section 2.3,

we summarized an approach, volatility targeting, that was used by several studies to manage

the crash risk of momentum. Further, we extended the volatility targeting approach of Barroso

and Santa-Clara (2015) by using more advanced and probably more accurate volatility fore-

casting models. By using the volatility targeting approach, the risk of the momentum strategy

can be significantly reduced without sacrificing returns. That is, the volatility managed strategy

has much lower drawdowns, a higher (less negative) skewness, a lower kurtosis and a higher

Sharpe Ratio compared to the non-managed strategy. For example, Barroso and Santa-Clara

(2015) find a significantly higher skewness (�0.42 versus �2.47) and Sharpe Ratio (0.97 versus

0.53) as well as a much lower volatility (16.95% versus 27.53%), kurtosis (2.68 versus 18.24)

and minimum monthly return (�28.40% versus �78.96%) of the volatility managed portfolio

compared to the non-managed strategy. This result highlights that the risk of the momentum

portfolio can be managed by dynamically reallocating the weight invested in the portfolio, based

on momentum’s own risk. However, all studies on managing the crash risk of the momentum

strategy rely on volatility as a risk measure, and hence ignore the momentum portfolio’s higher

moments, like skewness and kurtosis, which can potentially be valuable. For example, Tay-

lor (2005) shows that volatility forecasting models that incorporate higher moments are more

accurate than standard volatility models.56 Furthermore, a huge strand of the financial litera-

ture documents the importance of incorporating moments higher than volatility, like skewness

56Ghysels et al. (2016) use a similar approach based on quantile forecasts to estimate monthly and quarterly
skewness based on daily data, which is then used in a portfolio context. Estimating quantiles is typically much
more robust to outliers than estimating realized moments. Thus, in order to estimate volatility, skewness or kurtosis,
extracting information of certain quantiles can be an appealing and more robust approach.
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and kurtosis, in many fields of finance, like asset pricing (Dittmar, 2002, Harvey and Siddique,

2000, Kraus and Litzenberger, 1976), portfolio selection (Ghysels et al., 2016, Guidolin and

Timmermann, 2008, Wang et al., 2012), option pricing (Barone-Adesi et al., 2008) and risk

management (Bali et al., 2008). In particular, incorporating skewness in a portfolio allocation

context can substantially increase utility gains for investors (Ghysels et al., 2016, Guidolin and

Timmermann, 2008, Jondeau and Rockinger, 2006, 2012).57

As stated above, the momentum portfolio is known to be extremely negatively skewed and

fat-tailed. This highly negative skewness arises since the higher returns of the winners are ac-

companied with a substantially lower skewness compared to the skewness of the losers (Harvey

and Siddique, 2000, p. 1288). Similarly, Chen et al. (2001) find that a high past performance

negatively predicts future skewness. Hence, buying past winners and selling past losers pro-

duces returns that have a high expected mean, but are extremely negatively skewed. That is,

the huge return potential of the momentum strategy occurs jointly with a high probability of

extremely negative returns. Thus, since momentum’s negative skewness is a main driver of

the probability of a momentum crash, information on higher moments should be accounted for

when momentum crashes are managed. For example, Chen et al. (2001, p. 348) associate the

word crash “solely with the conditional skewness of the return distribution”. Hence, when the

authors forecast crashes they mean forecasting conditional skewness and they find that con-

ditional skewness can also be interpreted as a measure of the crash expectation (see also the

references in Chen et al. (2001)). Furthermore, the kurtosis of the winners and losers portfolios

differs widely and is typically quite high (see Table V of Harvey and Siddique (2000)). As a

consequence, the momentum portfolio exhibits a high volatility, highly negative skewness and

high kurtosis (Barroso and Maio, 2019, Table 3). The highly negative skewness and highly

positive kurtosis imply that extremely negative returns are much more likely for the momentum

strategy than anticipated by a normal distribution. Hence, this high probability of extremely

negative returns, i.e. the momentum crashes, is not accounted for by managing volatility, since

57Earlier studies on this field focus on coskewness of an asset with the market (Harvey and Siddique, 2000, Kraus
and Litzenberger, 1976), whereas more recent studies mainly focus on an asset’s own skewness. Both definitions of
skewness lead to improved portfolio allocations and utility gains compared to mean-variance optimized portfolios
(Ghysels et al., 2016).
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managing volatility is, at least implicitly, based on the assumption of normally distributed re-

turns. This is confirmed by Daniel et al. (2017) who show that momentum’s volatility, measured

by Realized Volatility or by a GARCH(1,1) model, is not sufficient to identify turbulent market

periods in which the momentum strategy suffers the highest losses. A possible explanation for

this finding is that “left tail risk is related to left skewness of returns, and there are no a priori

reasons to believe that changes in left skewness move in lock step with changes in the volatil-

ity of momentum strategy returns” (Daniel et al., 2017, p. 21). This has also been shown by

Ghysels et al. (2016) who find that information on skewness is typically hidden in the tails and

that skewness in the tails has a higher impact on portfolio allocations. Similarly, Gormsen and

Jensen (2017, p. 21) find that the “[v]ariance is negatively correlated to the negative of skewness

[and] kurtosis” and that “higher-moment risks are high at times when the market is perceived to

be safe and calm as measured by variance. Said differently, risk doesn’t go away – it hides in

the tails.” Neuberger (2012) also finds that a higher volatility coincides with a less negatively

skewed return distribution. Similarly, Chen et al. (2001) find that a higher volatility does not

necessarily predict a more negative skewness. Moreover, Brooks et al. (2005) find that times of

a high volatility do not necessarily coincide with times of a high kurtosis.58 In particular, Harvey

and Siddique (1999), Harvey and Siddique (2000), Jondeau and Rockinger (2003), Brooks et al.

(2005), Bali et al. (2008) and Ghysels et al. (2016) show that conditional skewness and kurtosis

are highly time-varying, even after standardizing returns with a time-varying volatility. As a

consequence, a higher volatility is not necessarily related to a lower skewness or higher kurtosis

and volatility is not able to capture these higher moment risks. Thus, managing volatility can

produce returns that are more extreme than desired, since high weights of the target volatility

strategy can be chosen in times of a high crash risk. In contrast, Cuoco et al. (2008) show

that dynamically readjusting portfolio weights based on the portfolio’s downside risk is impor-

tant to achieve a good risk-return profile of risk-managed portfolio strategies. Consequently,

momentum’s risk should be better managed based on an estimate of momentum’s downside

risk.59 In particular, when estimating momentum’s downside risk, the time-variation in higher

58A similar result also holds in the cross-section. Brooks et al. (2005) find that assets with a higher conditional
volatility can have a lower conditional kurtosis than assets with a lower conditional volatility.

59See also Alexander and Baptista (2004) and Rickenberg (2020b) for a general discussion of the advantages of
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moments should be taken into account (Bali et al., 2008). For example, Harvey and Siddique

(1999) and Jondeau and Rockinger (2003) show that models that do not account for skewness

and kurtosis fail to accurately fit the true return distribution, which has important consequences

for asset allocation decisions (see also Harvey and Siddique (2000)). Generally, ignoring infor-

mation on higher moments typically underestimates multi-period downside risk (Guidolin and

Timmermann, 2006). This observation is even more pronounced for the momentum strategy,

since momentum returns are extremely negatively skewed and fat-tailed. In total, managing

the volatility of the momentum portfolio ignores the high non-normality of momentum’s re-

turns and is a suboptimal tail risk hedging approach. In contrast, by managing momentum’s

downside risk, the substantial skewness and kurtosis and the time-variation in these moments

is captured and this approach should deliver superior results, especially during periods of a

momentum crash.60

Although the RV managed momentum portfolio is less negatively skewed and fat-tailed than

the non-managed strategy, this portfolio still exhibits a high left tail risk. Investors typically have

preferences for higher (or positive) skewness and lower kurtosis (see Scott and Horvath (1980),

Kraus and Litzenberger (1976), Guidolin and Timmermann (2008) among others). Hence, both

strategies, the non-managed and RV managed momentum portfolios, are unappealing for in-

vestors with preferences for higher moments. In order to better fit to these investors’ prefer-

ences, managing the momentum portfolio’s risk based on other risk measures than volatility is

more appealing. For example, downside risk measures, like Value at Risk (VaR) or Conditional

Value at Risk (CVaR), increase when skewness decreases and/or kurtosis increases (Bali et al.,

2009, Ghysels et al., 2016). Thus, a downside risk managed momentum strategy decreases the

weight invested in the momentum portfolio when left tail risk increases, which is in line with

these investors’ preferences.61 Besides preferences for moments higher than volatility, most in-

managing downside risk instead of managing volatility.
60Similar results have already been shown for hedge fund returns, which are also known to be highly non-

normally distributed. Using volatility as risk measure for hedge funds translates into a high misspecification of
risk and fails in asset allocation decisions involving hedge funds (Agarwal and Naik, 2004).

61Instead of using a downside risk based portfolio strategy, portfolio selection models that directly incorpo-
rate higher moments could also be used. For example, Ghysels et al. (2016) find that an investor who dislikes
negative skewness is willing to pay about 6% per year to switch from a mean-variance optimized portfolio to a
mean-variance-skewness optimized portfolio. Incorporating higher moments in portfolio selections by maximizing
expected utility problems is frequently examined in the literature (see Aı̈t-Sahalia and Brandt (2001) and Guidolin
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vestors are typically averse to losses, i.e. they weight losses higher than gains of the same mag-

nitude (Aı̈t-Sahalia and Brandt, 2001, Ang et al., 2006a, Benartzi and Thaler, 1995, Berkelaar

et al., 2004). Similarly, the results of Bollerslev et al. (2015) indicate that momentum investors

are significantly crash-averse.62 This arises since the momentum strategy is typically invested

in assets with a high crash-sensitivity (Ruenzi and Weigert, 2018). Furthermore, Chabot et al.

(2014) find that momentum investors are typically leveraged and are therefore extremely sensi-

ble to drawdowns. The RV managed strategy of Barroso and Santa-Clara (2015) still exhibits a

minimum monthly return of�28.40% and high probability of extremely negative returns, which

makes the RV managed strategy unappealing for loss- and crash-averse investors. Thus, instead

of managing return deviations, the occurrence of large negative returns should be managed to

better fit to the loss-averse investors’ preferences. Rickenberg (2020b) shows that loss-averse

investors are willing to pay extremely high fees to have access to downside risk managed strate-

gies, whereas loss-averse investors prefer static portfolio allocations over volatility managed

portfolios. For these reasons, we next show how these observations can be used to manage the

monthly risk of the momentum portfolio, which should particularly be an appealing approach

to mitigate momentum crashes.

Rickenberg (2020b) shows how a portfolio’s Value at Risk (VaR) or Conditional Value at

Risk (CVaR) can be targeted at a constant level over time. These strategies have the advantage

that momentum’s downside risk is timed, which has several advantages over volatility timing,

as summarized above.63 In particular, these risk measures are also important for practitioners

in many fields. In practice, VaR has been the standard approach of measuring market risk by

the financial industry and regulators for many years. However, CVaR has recently developed to

and Timmermann (2008) among others). However, these strategies do not target a constant level of portfolio risk
over time and are harder to estimate than our simple downside risk based strategy. Further, skewness is hard to
estimate directly and is extremely influenced by outliers (Ghysels et al., 2016, Kim and White, 2004, Neuberger,
2012). Therefore, portfolio decisions based on quantile risk measures are more robust.

62This result does not only hold for momentum investors. Generally, most investors are crash-averse and are
willing to pay high fees to avoid crash periods (Bollerslev and Todorov, 2011, Chabi-Yo et al., 2018, Van Oordt and
Zhou, 2016). This observation is similar to the theory of safety-first investors, who are concerned about avoiding
financial tail events (Arzac and Bawa, 1977).

63VaR and CVaR cannot only be used as a market timing tool, but also as an asset allocation tool. For example,
in a cross-section setting, Atilgan et al. (2020) find a negative relation between return and downside risk, i.e. assets
with a higher VaR or CVaR obtain lower returns. Thus, VaR and CVaR can also be used to weight the assets in the
momentum portfolio (Rickenberg, 2020c).
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the more relevant risk measure (Du and Escanciano, 2016). In a portfolio context, controlling

a portfolio’s VaR means controlling loss frequencies, whereas controlling a portfolio’s CVaR

means controlling the severity of extremely negative returns, which is more appealing in order

to manage momentum crashes (see Basak and Shapiro (2001) and Giannopoulos and Tunaru

(2005) for example).64

Applied to the momentum strategy, a constant VaR or CVaR can be achieved by scaling the

weight invested each month in the momentum portfolio by the inverse of the monthly VaR or

CVaR denoted by VaRt
α and CVaRt

α, respectively. In this case, α is the significance level which

is chosen by the investor in dependence of the investor’s risk preference. The month t return of

the VaR and CVaR managed momentum portfolio is then given by

R�
t �

VaRtarget
α

VaRt
α

�Rt or R�
t �

CVaRtarget
α

CVaRt
α

�Rt, (2.4.1)

where VaRtarget
α and CVaRtarget

α denote the desired VaR and CVaR target, respectively. The VaR

or CVaR target is simultaneously chosen with the significance level α. For example, the target

VaR and CVaR strategies with a significance level of α � 1% and target levels VaRtarget
α � 3%

and CVaRtarget
α � 5% can be interpreted as follows. For the target VaR strategy, the monthly

return of the portfolio should be higher than �3% with a probability of 99%. In other words,

the monthly momentum return should be lower than �3% in only one out of 100 months. For

the target CVaR strategy, the average return on the 1% worst months should be �5%. Hence, a

loss-averse investor should choose low levels of α and/or VaRtarget
α or CVaRtarget

α .65 Further, an

investor who wants to manage extreme losses should use the target CVaR strategy (Basak and

Shapiro, 2001). An investor who is willing to accept extreme losses on only a limited number

of months, where the loss magnitude is less important, could also use the target VaR strategy.

Rickenberg (2020b) compares the target volatility, target VaR and target CVaR strategies and

finds that the target CVaR strategy delivers the most convincing results, especially during crash

64See Giannopoulos and Tunaru (2005) and Yamai and Yoshiba (2005) and references therein for a discussion of
the superiority of CVaR over VaR. See Basak and Shapiro (2001), Alexander and Baptista (2004) and Rickenberg
(2020b) for a discussion why CVaR is superior to VaR when a portfolio’s risk is managed.

65A low α also fits to the observation of Ghysels et al. (2016) that information on skewness is typically hidden
in the tails and that skewness in the tails has a higher impact on portfolio allocations. Hence, a low significance
level of α should be chosen to capture momentum’s skewness risk. Rickenberg (2020b) also shows that low levels
of α are superior for the target VaR and CVaR strategies.
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periods. Thus, in order to mitigate momentum crashes, managing the portfolio’s CVaR should

be superior to managing VaR, since the VaR is typically too low in periods of extreme move-

ments (see Basak and Shapiro (2001), Giannopoulos and Tunaru (2005) and references therein).

As in Ghysels et al. (2016), the VaR and CVaR targeting approaches directly define portfolio

weights in dependence on quantile risk measures. Hence, these strategies incorporate informa-

tion on higher moments without explicitly estimating these quantities.66 In contrast, standard

portfolio choice approaches obtain portfolio weights through maximizing an expected utility

problem (Aı̈t-Sahalia and Brandt, 2001, Guidolin and Timmermann, 2008). Thus, our approach

is more robust to estimation risk, which is an important determinant of the success of asset

allocation approaches in practice.67

Downside risk measures, like VaR and CVaR, are typically defined for loss variables. There-

fore, we define the month t loss of the momentum strategy by

Lt :� �Rt. (2.4.2)

Similarly, we define the daily loss of day i in month t by

Lt,i :� �Rt,i (2.4.3)

and further L̃s :� Lr s
h
s,s�hpr s

h
s�1q. The month t VaR is then given by the loss distribution’s

p1 � αq-quantile, i.e.

VaRt
α :� F�1

Lt|Ft�1
p1 � αq, (2.4.4)

where F�1
Lt|Ft�1

denotes the inverse of the conditional cdf of Lt and Ft�1 denotes the information

set up to month t� 1 (Guidolin and Timmermann, 2006, p. 293). The month t CVaR is defined

as

CVaRt
α :� E

�
Lt |Lt ¥ VaRt

α,Ft�1

�
. (2.4.5)

66Skewness is hard to estimate directly and skewness estimators are extremely influenced by outliers (Ghysels
et al., 2016, Kim and White, 2004, Neuberger, 2012). One possibility to obtain more accurate estimates of skewness
is to use option prices. Another possibility, as done in Ghysels et al. (2016) and Kim and White (2004), is to use
forecasts of quantile risk measures which can be used to extract information on skewness. Using quantile risk
measures to estimate skewness is far less sensitive to outliers than commonly used skewness estimation methods.

67See, for example, Kirby and Ostdiek (2012), Moreira and Muir (2019) and DeMiguel et al. (2009b) how
estimation risk influences risk based portfolio allocations.
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Most studies examine the estimation of downside risk measures for relatively short horizons,

e.g. one-day ahead forecasts. However, for strategic asset allocation decisions, longer hori-

zons should be considered (Guidolin and Timmermann, 2006).68 Guidolin and Timmermann

(2006) consider the term structure of VaR and CVaR under several econometric specifications.

The authors show that different forecasting horizons and econometric specifications can lead

to significantly different h-period risk forecasts, which translate in vastly different asset alloca-

tion decisions (see Figure 5 in Guidolin and Timmermann (2006)). Similarly, Embrechts et al.

(2005) present several approaches how h-day VaR and CVaR can be estimated by models fitted

to higher frequency data and the authors find that these approaches produce quite different risk

forecasts. Thus, different forecasting models can produce quite different results and accurately

modeling the return distribution seems crucial in order to obtain an accurate h-day downside

risk forecast. In particular, Embrechts et al. (2005) find that fitting models to higher frequency

data is superior when longer-term downside risk is estimated. Ghysels et al. (2016) also find

that using daily data to estimate monthly quantiles is superior, since more data are available and

the forecasting precision is increased. The authors confirm this conjecture in a Monte-Carlo

simulation. Therefore, we present several econometric specifications fitted to daily data and

show how these can be used to forecast monthly downside risk. As stated above, since mo-

mentum returns are known to be extremely negatively skewed and fat-tailed, we will explicitly

take this observation into account. Further, as shown by Harvey and Siddique (1999), Jon-

deau and Rockinger (2003), Brooks et al. (2005) and Bali et al. (2008), higher moments are

typically highly time-varying, which we will also consider by autoregressively modeling higher

moments. In addition, we present simple and easy to implement models that could be of interest

for practical implementations.69 A further extensions could be to combine forecasts of several

68Measuring downside risk over multiple days is important from several perspectives. For example, 10-day VaR
and CVaR are important from a regulatory perspective and are widely used in the financial industry (Berkowitz
et al., 2011, Berkowitz and O’Brien, 2002, Saadi and Rahman, 2008). In practice, these 10-day downside risk
measures are typically obtained using the SRTR, since the SRTR was explicitly advised by the Basel Committee
on Banking Supervision in 1996 (Danielsson and Zigrand, 2006, Kole et al., 2017).

69We restrict ourselves to univariate forecasting models that forecast portfolio risk using past portfolio returns.
As an alternative, portfolio risk could also be estimated based on past returns of the individual assets that belong
to the momentum portfolio, which is then aggregated to a measure of portfolio risk. However, Kole et al. (2017)
find that the degree of portfolio aggregation is not that important, but that using higher frequency data is more
important in order to obtain accurate h-day forecasts of portfolio risk.
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forecasting models (Allen et al., 2012).

We start by presenting two unconditional models that assume that the loss variables are iid.

In this case, conditioning on the information set Ft�1 is not needed and VaR and CVaR are cal-

culated using the unconditional loss distribution. These models are typically easy to implement

and are particularly interesting for practical implementations. The most prominent estimation

model is the Historical Simulation (HS), which is commonly used by banks (Berkowitz et al.,

2011, Berkowitz and O’Brien, 2002). The HS approach assumes that the monthly VaR and

CVaR can be estimated by using the empirical cdf of the loss variables. Following the approach

how HS is typically implemented in the financial industry, we use daily data to estimate monthly

VaR and CVaR.70 The estimates for VaR and CVaR of the momentum portfolio for the first day

of month t, given information up to the end of month t� 1, are then given by

VaRt,1
α � Lprnp1�αqsq,t�1 (2.4.6)

and

CVaRt,1
α � 1

n� rnp1 � αqs� 1
�

ņ

j�rnp1�αqs
Lpjq,t�1, (2.4.7)

where Lp1q,t�1 ¤ ... ¤ Lpnq,t�1 denotes the order statistics of the sample L̃hpt�1q�n�1, ..., L̃hpt�1q

of n daily losses. The month t VaR and CVaR are then simply given by VaRt
α �

?
h � VaRt,1

α

and CVaRt
α � ?

h � CVaRt,1
α .71 This approach estimates monthly VaR and CVaR by first

estimating the one-day ahead VaR or CVaR by the empirical estimator using daily losses, which

is then scaled by the square root of time rule, i.e. multiplying the one-day ahead VaR and CVaR

forecasts by
?
h (Danielsson and Zigrand, 2006).72 Using HS assumes that losses are iid and that

70As for volatility, estimating monthly downside risk with daily data is advantageous since information con-
tained in daily data are taken into account and more data are available (Danielsson and Zigrand, 2006, McNeil
et al., 2015). Estimating monthly VaR or CVaR with 500 observations, a number which is needed to obtain an
accurate estimate, requires only about two years of daily data but more than 40 years of monthly data. Similarly,
Ghysels et al. (2016) estimate monthly quantiles based on daily data in order to estimate monthly skewness. Kole
et al. (2017) find that 10-day downside risk is best estimated based on daily data. This holds in a univariate and a
multivariate setting.

71Another simple extension of the HS to estimate VaR and CVaR could be to use a regression approach, similar
to Bali et al. (2009, Eq. 16). Further, a similar approach as the HAR model from Equation (2.3.6) could also be
used to estimate VaR and CVaR in a simple way. Similarly, Ghysels et al. (2016) use the MIDAS model of Ghysels
et al. (2005) to forecast the monthly VaR based on daily data.

72The one-day ahead VaR and CVaR estimates can also be scaled by h1{α, where 1{α is obtained by the Hill
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the distribution of monthly losses can be described by the distribution of daily losses. Taylor

(2005) shows that the HS estimates of VaR can also be used to forecast monthly volatility.

However, the author finds that this approach does not produce accurate volatility forecasts, but

that volatility forecasts based on VaR estimates that incorporate information on skewness and

kurtosis are highly accurate. The reason for that finding is that the conditional return distribution

is not constant over time (Bali et al., 2008, Jondeau and Rockinger, 2003, Taylor, 2005). Thus,

in order to accurately forecast monthly downside risk, more advanced methods are needed.

Unconditional return distributions of asset returns are typically highly non-normal and can-

not be characterized by mean and variance alone. Using Historical Simulation does not directly

take time-varying higher moments into account. In particular, many downside risk estimation

methods used in the financial industry are based on the assumption of normally distributed

returns. However, this approach is inconsistent with the empirical finding of non-normally dis-

tributed returns and translates into a high underestimation of extremely negative returns, like

momentum crashes (Bali et al., 2008, p. 270). For example, if returns were normally dis-

tributed, a daily return of �5% should occur only once every 1000 years, whereas such a loss

occurs approximately once every two years for stock returns (Brooks et al., 2005, p. 400). For

the momentum portfolio, we find that a daily return lower than �5% occurs (on average) more

than once per year. Therefore, as second unconditional model, we assume that daily returns are

iid skewed t distributed with mean µ and variance σ2, i.e. we assume that the daily return can

be described by

Rt,i � µ� σ � Z,Z � stskpη, λq, (2.4.8)

where Z � stskpη, λq means that Z follows a standardized skewed t distribution with param-

eters η and λ (Bali et al., 2009).73 The standardized skewed t distribution has expectation zero

estimator relying on extreme value theory (Cotter, 2007, Embrechts et al., 2005). By doing this, the scaling rule
takes information of the return distribution’s tail into account. This scaling rule can be applied to raw or standard-
ized returns as shown by Cotter (2007). The second case has the advantage that the current market environment
is taken into account. We will later regard models that consider the current market environment, measured by the
conditional volatility.

73This approach is similar to Theodossiou (1998) who fits the skewed generalized t distribution to the un-
conditional empirical distribution of stock returns. The skewed generalized t distribution is an extension of the
standardized skewed t distribution used in our paper. Theodossiou (1998) finds that the skewed generalized t dis-
tribution, which explicitly models skewness and tail-behavior of the data, fits well to the observed data. However,
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and variance one. This distribution was presented by Hansen (1994) and is characterized by the

pdf

fstsk pz | η, λq �

$'&'% bc
�

1 � 1
η�2

�
bz�a
1�λ

�2
	�pη�1q{2

if z   �a
b

bc
�

1 � 1
η�2

�
bz�a
1�λ

�2
	�pη�1q{2

if z ¥ �a
b
,

(2.4.9)

where

a :� 4λc
η � 2

η � 1
, b2 :� 1 � 3λ2 � a2, c :� Γ

�
η�1

2

�a
πpη � 2qΓ �

η
2

� .
The parameters of this distribution are restricted to η ¡ 2 and �1   λ   1 (see Hansen (1994,

p. 710) and Jondeau and Rockinger (2003, p. 1702)). Further, for λ � 0, this distribution is

symmetric and equals the standardized t distribution presented below. For λ ¡ 0, the distribu-

tion’s mode is to the left of zero and the distribution is positively skewed. In contrast, if λ   0,

the distribution is negatively skewed (Hansen, 1994). Moreover, skewness exists for η ¡ 3 and

kurtosis exists for η ¡ 4 (Jondeau and Rockinger, 2003). Jondeau and Rockinger (2003) show

that although η is often referred as the parameter that determines kurtosis and λ determines

skewness, both parameters, η and λ, affect both moments, skewness and kurtosis. In particular,

the relation between the parameters and higher moments is highly non-linear. Eling (2014) an-

alyzes the goodness-of-fit of several distributions and finds that a skewed t distribution fits the

distribution of asset returns very well in comparison to 12 benchmark distributions. In partic-

ular, Eling (2014) finds that the skewed t distribution is performing well in describing hedge

fund returns and provides good forecasts of VaR and CVaR for hedge fund returns. Further, the

author finds that the normal and skew-normal distribution perform badly when fitted to asset

returns. Hence, skewness and kurtosis should be considered when asset returns are described.74

In the case that daily (unconditional) returns follow a skewed t distribution, VaR for month

t is given by

VaRt
α � �

�
h � µ�

?
h � σ � F�1

stsk pα| η, λq
	
, (2.4.10)

we follow Bali et al. (2009) and fit the standardized skewed t distribution to daily returns in order to calculate
monthly VaR and CVaR.

74Eling (2014) uses a skewed t distribution that is different to the skewed t distribution of Hansen (1994). How-
ever, the results of Eling (2014) demonstrate the importance of modeling skewness and kurtosis when describing
returns and estimating downside risk.
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where F�1
stsk pα| η, λq denotes the α-quantile of the skewed t distribution with parameters η

and λ (see also Danielsson and Zigrand (2006, Eq. 4) for the case of the normal distribution).

Similarly, the CVaR of month t is given by

CVaRt
α � �

�
hµ�

?
h � σ � E�Z|Z   F�1

stsk pα| η, λq
�	
. (2.4.11)

In Equations (2.4.10) and (2.4.11), we again use the SRTR to obtain the monthly VaR and

CVaR based on an estimate of the daily VaR and CVaR.75 Danielsson and Zigrand (2006) call

this rule the “mean-corrected square root of time rule”, since this rule corrects for a non-zero

mean. The parameters µ and σ are simultaneously estimated with the parameters η and λ and

are obtained by Maximum Likelihood estimation, where the parameters are re-estimated every

month. This approach incorporates information on skewness and kurtosis in a parsimonious and

easy to implement way. The shape of the distribution varies over time, since parameters are re-

estimated every month. The Maximum Likelihood approach for the unconditional distribution

is given in Bali et al. (2009) and similarly in Theodossiou (1998) for the skewed generalized

t distribution.76 Bali et al. (2008, Section 3.1) also use a similar approach for the skewed

generalized t distribution of Theodossiou (1998).

The α-quantile F�1
stskpα| η, λq of the standardized skewed t distribution, which is needed in

Equation (2.4.10), is given by

F�1
stsk pα | η, λq �

$&%
1
b

�
p1 � λq

b
η�2
η
F�1
t p α

1�λ |ηq � a
	

if α   1�λ
2

1
b

�
p1 � λq

b
η�2
η
F�1
t pα�λ

1�λ |ηq � a
	

if α ¥ 1�λ
2
,

(2.4.12)

where F�1
t pz|ηq is the inverse of the t distribution’s cdf Ftpz|ηq �

³z
�8 ftpu|ηqdu (Jondeau and

Rockinger, 2003). The t distribution’s pdf with η degrees of freedom is given by

ftpz|ηq �
Γ
�
η�1

2

�
Γ
�
η
2

�?
πη

�
1 � z2

η


�pη�1q{2

,

(2.4.13)

75For the scaling of volatility, the iid assumption is sufficient. However, this result does not translate to the
scaling of downside risk. When scaling the one-day VaR and CVaR by

?
h to obtain the monthly estimates, it

is additionally needed that returns are normally distributed with a mean of zero (Danielsson and Zigrand, 2006,
Embrechts et al., 2005). Hence, scaling VaR and CVaR by

?
h only holds under very restrictive assumptions,

which usually do not hold in practice. However, the SRTR is frequently applied to obtain an estimate of the h-day
VaR and CVaR, even when these conditions are not fulfilled. We follow this convention and also use the SRTR
under the (unconditional) skewed t assumption.

76The log-likelihood in Bali et al. (2009, Footnote 5) contains a small error. The term n ln Γpν� 2q in Bali et al.
(2009) has to be replaced by n

2 lnpν � 2q to provide the correct log-likelihood.
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where Γp�q denotes the Gamma function.77 From Appendix B, it follows78

E
�
Z|Z   F�1

stsk pα| η, λq
�

�

$''&''%
1
α
p1�λq2

b

�
fst

�
zp�q|η� � η�2�pzp�qq2

1�η � a�Fstpzp�q|ηq
1�λ



for F�1

stsk pα| η, λq   �a
b

1
α
p1�λq2

b

�
fst

�
zp�q|η� � η�2�pzp�qq2

1�η � a�p1�Fstpzp�q|ηqq
1�λ



for F�1

stsk pα| η, λq ¥ �a
b
,

(2.4.14)

where we define

zp�q � b � F�1
stsk pα| η, λq � a

1 � λ
, zp�q � b � F�1

stsk pα| η, λq � a

1 � λ
.

Further, fstpz|ηq and Fstpz|ηq �
³z
�8 fstpu|ηqdu correspond to the pdf and cdf of the standard-

ized t distribution with mean zero and variance one. The pdf of the standardized t distribution

is given by (see Bollerslev (1987, p. 543) and Hansen (1994, p. 709))

fstpz|ηq �
Γ
�
η�1

2

�
Γ
�
η
2

�a
πpη � 2q

�
1 � z2

η � 2


�pη�1q{2

.

(2.4.15)

For the cdf of the t and standardized t distributions, it holds Fst pz|ηq � Ft

�b
η
η�2

z|η
	

.79

Rickenberg (2020b) shows that unconditional models fail to accurately target a certain level

of risk and that dynamic models, which rely on a conditional volatility model, produce a more

accurate portfolio risk, an enhanced risk-return profile and higher utility gains.80 Further,

Guidolin and Timmermann (2006) show that unconditional and conditional h-period ahead

VaR and CVaR forecasts can vary substantially, which lead to quite different portfolio allo-

cations. Generally, when a portfolio is reallocated every month, conditional approaches are

needed, whereas for portfolios that are reallocated infrequently, like once a year, unconditional

approaches are typically superior (Cotter, 2007). Similarly, Hansen (1994) argues that if the
77The t distribution is a symmetric distribution where the tail behavior is governed by the parameter η. The

distribution as given in Equation (2.4.13) has a variance of η
η�2 for η ¡ 2. The standardized version of this

distribution with variance one is given in Equation (2.4.15). Bollerslev (1987) introduced the standardized skewed
t distribution in the context of the GARCH model.

78See also Lönnbark (2016, p. 952 and 960) who also derives this result for F�1
stsk pα| η, λq   �a{b. However,

the second case, F�1
stsk pα| η, λq ¥ �a

b , is not shown by the author.
79This relation is advantageous since the cdf of the t distribution is often available in most software packages,

whereas the cdf of the standardized t distribution is not available (Jondeau and Rockinger, 2003).
80Rickenberg (2020b) shows that conditional models are more accurate in forecasting risk, i.e. conditional mod-

els produce a more constant portfolio risk of strategies that target a constant level of risk. Bollerslev et al. (2018)
show that there exists a positive relation between forecasting accuracy and utility gains of risk targeting investors.
Consequently, the more accurate conditional risk models are also more valuable in terms of Sharpe Ratio and utility
increases for investors who target a constant level of risk.
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interest is to predict future values that depend on the conditional return distribution, e.g. next

month’s risk, it is important to correctly model the conditional return distribution. Therefore,

besides the two above presented unconditional approaches – Historical Simulation and skewed

t distribution fitted to daily returns combined with the SRTR – we next present conditional

approaches that are based on a dynamic volatility model. These approaches explicitly model

the conditional return distribution by conditionally modeling volatility, skewness and kurtosis,

which should be more successful than simply managing volatility or managing risk uncondi-

tionally as presented above. Although the GARCH(1,1) model is able to generate fat tails of

the unconditional return distribution, even when conditional normality is assumed as done in

Section 2.3, this approach typically fails to correctly model the tail behavior of the return distri-

bution (Bollerslev, 1987).81 For example, Fan and Gu (2003) and Wong and So (2003, p. 1027)

show that the distribution of the aggregate h-day return based on Ft�1 deviates substantially

from the normal distribution.82 Consequently, momentum’s conditional non-normality should

be incorporated when monthly downside risk is estimated. In particular, Neuberger (2012) ar-

gues that skewness in monthly returns has two different sources. First, skewness coming from

asymmetric volatility, i.e. the leverage effect, which produces skewness of monthly returns even

when daily returns are symmetrically distributed (see also Colacito and Engle (2010) and Chen

et al. (2001, Footnote 2)). Second, skewness of higher frequency returns, like skewness of daily

returns, which also translates into skewness of monthly returns. Hence, although asymmetric

volatility models, like the GJR-GARCH model, are able to model skewness of monthly returns,

skewness in daily returns should also be incorporated. Thus, a conditional distribution that

models skewness and kurtosis of standardized daily returns is needed.

Besides considering the conditional non-normalities of daily returns when monthly risk is

81Bollerslev (1987) uses the standardized t distribution in the context of the GARCH(1,1) model and finds
that the GARCH(1,1)-t model is superior to the GARCH(1,1)-normal model and the unconditional standardized t
distribution.

82Similarly, Baillie and Bollerslev (1992) derive formulas for the h-day ahead higher moments in the
GARCH(1,1) model. The authors show that incorporating higher moments, and hence (conditional) non-normality,
becomes more important when quantiles of the h-day ahead return are estimated for horizons of h ¡ 1. That is,
accounting for higher moments becomes more important when monthly VaR and CVaR are estimated compared
to the case when one-day ahead VaR and CVaR are estimated. This result holds particularly in times of a high
volatility, i.e. in times that typically coincide with momentum crashes. Additionally, Baillie and Bollerslev (1992)
find that unconditional models perform much worse than conditional models in times of a high volatility.
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estimated, the term-structure of risk is also crucial for h-day downside risk forecast. For ex-

ample, Kole et al. (2017, p. 662) find that skewness and kurtosis of daily, weekly and monthly

returns differ and that extreme and negative returns cluster over time, which is not captured

by simple scaling rules. Similarly, Neuberger (2012) finds that skewness increases with the

aggregation period, but does not nicely scale like variance. Ghysels et al. (2016) show that

the term-structure of skewness can be highly different for different assets, and hence simple

scaling rules do not apply for skewness. Moreover, Wong and So (2003, p. 1021) find that the

kurtosis of the aggregate return increases with the holding period h, i.e. monthly returns are

heavier tailed than daily returns. Generally, Harvey and Siddique (1999, p. 466) find that “daily

and monthly returns [...] appear to have quite different properties”. Scaling rules and uncon-

ditional approaches ignore that the return distribution changes over time (Cotter, 2007). For

that reason, besides scaling a one-day ahead risk forecast into an h-day risk forecast by simple

scaling rules like the SRTR, we additionally use simulation methods. Explicitly modeling the

h-day return’s distribution is crucial, since Danielsson and Zigrand (2006) show that the SRTR

typically underestimates risk, which translates into too high weights invested in the momen-

tum portfolio. In particular, the SRTR highly underestimates downside risk if the asset exhibits

jumps, e.g. momentum crashes. Kole et al. (2017) find better results of iterated approaches to

forecast multi-period downside risk compared to forecasts based on scaling rules. Similarly,

McNeil and Frey (2000) and Lönnbark (2016) find that the SRTR performs badly in forecasting

multi-period VaR and CVaR. The SRTR is only suitable when longer-term risk, like yearly risk,

is forecasted. For example, Embrechts et al. (2005) find good results of the SRTR for longer

forecasting horizons, like one year, which corresponds to h � 252 (see also Cotter (2007)).

One drawback of not using simple scaling rules, like the SRTR, is that the h-day VaR and

CVaR forecasts are not directly available in closed form. Although the GARCH(1,1) model can

easily provide a forecast of the h-day cumulative return, the distribution of this return is still

unknown, even if the (conditional) distribution of the daily returns is known (see Christoffersen

(2012, p. 73), Lönnbark (2016) and references therein). This holds particularly due to the

dependence of higher order moments (Baillie and Bollerslev, 1992). Hence, when estimating
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the monthly VaR and CVaR based on the GARCH models fitted to daily data, monthly downside

risk measures are not directly available. This makes the estimation of monthly VaR and CVaR

much more challenging than the estimation of one-day ahead risk measures. To solve this

problem, several approaches have been developed in the academic literature. A common and

often used approach is the Filtered Historical Simulation (FHS), which is used by Rosenberg

and Engle (2002), Pritsker (2006), Giannopoulos and Tunaru (2005), Barone-Adesi et al. (2008)

and Engle (2011). Another possibility is to simulate h-day aggregate returns using a dynamic

parametric model for the daily returns (Christoffersen, 2012, Engle, 2011, Lönnbark, 2016,

So and Wong, 2012, Wong and So, 2003). Both approaches model monthly returns based on

models fitted to daily data. Downside risk measures, like VaR and CVaR, can then simply be

calculated based on simulated future monthly returns. In this paper, we use both approaches,

FHS and the standardized skewed t distribution, combined with a dynamic volatility model,

which is shortly summarized below.

Similar to Wong and So (2003), So and Wong (2012) and Lönnbark (2016), we use a

dynamic volatility model combined with the skewed t-distribution of Hansen (1994), where

we extend this approach by explicitly accounting for autoregressive patterns in the conditional

skewness and kurtosis. By using Equation (2.4.8) – or the conditional version thereof used by

Wong and So (2003) and So and Wong (2012) – skewness and kurtosis can be modeled in a

time-varying way by frequently re-estimating the parameters η and λ (Hansen, 1994). How-

ever, several studies have demonstrated that autoregressively modeling conditional skewness

and kurtosis is possible and typically produces superior results (Bali et al., 2008, Brooks et al.,

2005, Harvey and Siddique, 1999, Jondeau and Rockinger, 2003). We therefore extend the

model used in Wong and So (2003) and So and Wong (2012) by autoregressively modeling the

parameters η and λ as shown in Jondeau and Rockinger (2003) and Bali et al. (2008).83 Similar

to Equation (2.4.8), we start by modeling daily returns based on the skewed t distribution. More

83Bali et al. (2008) also use this approach to forecast the one-day ahead VaR. Wong and So (2003) and So and
Wong (2012) forecast the h-day VaR and CVaR, but the authors do not explicitly account for autoregressive condi-
tional skewness and kurtosis. That is, instead of modeling the shape of the standardized skewed t distribution in a
time-varying way by autoregressively modeling the parameters η and λ, the authors assume that these parameters
are constant. As far as we know, estimating h-day VaR and CVaR under the skewed t distribution that accounts for
autoregressive conditional skewness and kurtosis has not been examined so far.
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formally, we assume that the return of day i in month t is given by

Rt,i � µ� σt,i � Zt,i, Zt,i � stskpηt,i, λt,iq, (2.4.16)

where σt,i � σ̃hpt�1q�i is given by the GARCH(1,1) or GJR-GARCH process from Equation

(2.3.10) or (2.3.12), respectively (Jondeau and Rockinger, 2003).84 We follow Wong and So

(2003) and So and Wong (2012) and again assume a constant mean in Equation (2.4.16).85

The parameters ηt,i and λt,i are then modeled autoregressively by first modeling unrestricted

parameters. The unrestricted parameters are given by

η̃t � a1 � b1R̃t�1 � c1η̃t�1, (2.4.17)

λ̃t � a2 � b2R̃t�1 � c2λ̃t�1, (2.4.18)

where R̃s :� Rr s
h
s,s�hpr s

h
s�1q � µ.86 To guarantee that the standardized skewed t distribution

is well defined, the parameters have to be rescaled to fulfill the conditions ηt,i ¡ 2 and �1  
λt,i   1. We follow Jondeau and Rockinger (2003) and Bali et al. (2008) and use a logistic

transformation to guarantee that these restrictions hold. The parameters ηt,i and λt,i are then

given by

ηt,i � 2 � exp
�
η̃hpt�1q�i

�
(2.4.19)

λt,i � 2

1 � exp
�
�λ̃hpt�1q�i

	 � 1. (2.4.20)

The main difference between Equation (2.4.8) and Equation (2.4.16) is that in Equation

(2.4.8) it is assumed that returns are iid, whereas this assumption is not needed in Equation

(2.4.16). The iid assumption in Equation (2.4.16) is even more relaxed, since Equation (2.4.16)

84Similarly, Bali et al. (2008), Wong and So (2003) and So and Wong (2012) use the skewed generalized t
distribution of Theodossiou (1998). As mentioned above, the skewed generalized t distribution is similar to the
distribution of Hansen (1994) used in this paper, but the skewed generalized t distribution has an additional pa-
rameter κ that governs the peakedness of the distribution. In particular, the skewed t distribution is a special case
of the skewed generalized t distribution by choosing κ � 2. Since Wong and So (2003) and So and Wong (2012)
set κ � 2, the distribution used by the authors reduces to the distribution of Hansen (1994) used in our paper.

85When estimating one-day ahead downside risk, a zero mean is often assumed. For short horizons, incorpo-
rating a non-zero mean return is not that important when downside risk is estimated. However, this task becomes
more important when longer-term downside risk is estimated (Danielsson and Zigrand, 2006, Embrechts et al.,
2005, Engle, 2011).

86Bali et al. (2008) use the standardized return Z̃s instead of the demeaned return R̃s as done by Jondeau and
Rockinger (2003). However, both approaches deliver similar results.
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does not even assume that volatility standardized returns are iid, as it is frequently done when

downside risk is estimated conditionally. That is, Equation (2.4.16) models conditional skew-

ness and kurtosis in a time-varying manner, whereas the shape of the distribution given in Equa-

tion (2.4.8) only varies over time since η and λ are re-estimated every month.

The SRTR is also often combined with models that conditionally forecast risk. In this case,

downside risk of month t can be obtained by scaling up the forecast of day one in month t,

conditioned on Ft�1, with the SRTR.87 More formally, month t VaR and CVaR could simply be

estimated by

VaRt
α � �

?
hσt,1F

�1
stsk pα| ηt,1, λt,1q � hµ (2.4.21)

and

CVaRt
α � �

?
hσt,1E

�
Zt,1|Zt,1   F�1

stsk pα| ηt,1, λt,1q
�� hµ, (2.4.22)

where the parameters ηt,1 and λt,1 are the Maximum Likelihood estimates of Equations (2.4.19)

and (2.4.20) using a sample of volatility standardized returns. By estimating the h-day VaR,

Wong and So (2003) find that combining GARCH-type models with the SRTR produces bad

VaR forecasts, whereas using the true h-day volatility forecast significantly improves the VaR

forecast. Further, Cotter (2007) shows that combining a conditional VaR forecasting approach

with the SRTR typically produces inaccurate results, where downside risk is highly misspecified

for large values of h.88 Consequently, we next present two more powerful simulation based

approaches that are also frequently used in the literature.

As stated above, based on Equation (2.4.16), a closed form solution for the h-day return’s

cdf is typically unavailable in practice, since high-dimension integration would be needed. We

therefore follow Wong and So (2003) and So and Wong (2012) and use the dynamic volatil-

ity models combined with the assumption of conditionally standardized skewed t distributed

daily returns. Based on this assumption, we simulate monthly returns using the model fitted
87See Wong and So (2003, p. 1022) for the case of conditional normality. In practice, the assumption of con-

ditional normality is typically combined with the EWMA model. That is, h-day downside risk is forecasted by
first estimating the one-day ahead volatility and then using the SRTR. The estimates for VaR and CVaR are then
obtained by assuming conditional normality (Fan and Gu, 2003).

88For that reason, the authors propose to scale conditional estimates by h1{α instead of h1{2, where α denotes
the tail index.
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to daily returns. That is, we rely on the assumption that the daily returns can be described

by the GARCH(1,1) or GJR-GARCH process with standardized skewed t distributed innova-

tions, given in Equation (2.4.16). Based on this model, an approximation of the distribution

of monthly returns is obtained by simulating N � 10,000 future realizations in the follow-

ing way, illustrated for the GARCH(1,1) model. The procedure for the GJR-GARCH model

is similar and is not illustrated here. At the end of month t � 1, we use the past 48 months

of daily returns, which corresponds to 1056 daily returns, to estimate the parameters of the

GARCH(1,1) model and the parameters of the standardized skewed t distribution as well as the

unconditional mean µ. At the end of month t � 1, the last daily return of month t � 1, Rt�1,h,

and the demeaned return, Rt�1,h � Rt�1,h � µ, are known. Based on the parameters of the

GARCH(1,1) model, we can therefore estimate the daily variance for the first day of month t

by σ2
t,1 � ω � α � R2

t�1,h � β � σ2
t�1,h. For simulation step i � 1, we simulate a standardized

skewed t distributed random variable Zpiq
t,1 � stskpηt,1, λt,1q.89 Based on σt,1 and Zpiq

t,1 we can

then calculate Rpiq
t,1 � µ � σt,1 � Zpiq

t,1 . Then, using Rpiq
t,1, µ and σt,1, we calculate σt,2 to obtain

R
piq
t,2 � µ � σt,2 � Zpiq

t,2 , where Zpiq
t,2 � stskpηt,2, λt,2q. The parameters ηt,2 and λt,2 are obtained

from Equations (2.4.17)–(2.4.20). By repeating this procedure for the remaining days in month

t, we can simulate h daily returns Rpiq
t,1, ..., R

piq
t,h and we obtain the monthly return Rpiq

t by

R
piq
t �

h¹
j�1

p1 �R
piq
t,jq � 1. (2.4.23)

This procedure is then repeated for i � 2, ..., N to obtain N � 10,000 simulated monthly losses

L
p1q
t � �Rp1q

t , ..., L
p10,000q
t � �Rp10,000q

t . Based on this sample of monthly losses, we can sim-

ply calculate the monthly VaR and CVaR by Equations (2.4.6) and (2.4.7), respectively, where

we replace the daily losses in these equations by the simulated monthly losses Lp1qt , ..., L
pNq
t .

Consequently, by starting from a model fitted to daily data, we obtain a time series of returns

that reflects the term-structure of risk of the momentum returns by explicitly considering autore-
89The standardized skewed t distributed random variable can simply be simulated by first simulating a uniformly

distributed random variable U on the interval r0, 1s. In this case, the random variable F�1
stsk pU | η, λq follows a

standardized skewed t distribution with parameters η and λ (Jondeau and Rockinger, 2003). In Section 2.4 and
Appendix C, Jondeau and Rockinger (2003) show how future price paths can be simulated based on this approach.
Brooks et al. (2005, Sec. 1.5) also suggest that their approach of autoregressively modeling conditional variance
and kurtosis can be used to model future price paths that can be used to calculate downside risk measures. However,
the authors do not use these simulations to calculate longer-term downside risk measures.
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gressive conditional skewness and kurtosis. These return series incorporate that risk can change

over time, an important fact that is not regarded by simply scaling up daily risk by
?
h (Engle,

2011, p. 442). Furthermore, the simulation method does not need any assumptions about the h-

day aggregate return (So and Wong, 2012). In particular, if the number of replicates N tends to

infinity, this estimator converges to the true VaR and CVaR (Wong and So, 2003). Wong and So

(2003), So and Wong (2012) and Lönnbark (2016) find good results of this approach to estimate

VaR and CVaR and show that most other models underestimate risk, especially for low levels

of α. In particular, the authors find that the SRTR is much less precise in estimating monthly

risk than the simulation method. Wong and So (2003), Alexander et al. (2013) and Lönnbark

(2016) additionally propose alternative estimators that produce similar results to the simulation

approach by matching the moments of the data with the moments of the skewed t distribution.

The authors find that the differences between this approach and the simulation approach are

only small and both approaches work very well compared to other specifications. Neverthe-

less, matching moments of the data and the skewed t distribution does not reflect autoregressive

patterns in the conditional skewness and kurtosis as done by our approach. The results of Bali

et al. (2008), Jondeau and Rockinger (2003) and Neuberger (2012) indicate that the serial de-

pendencies in the data, especially in higher moments, should be regarded when monthly risk is

estimated. For that reason, we only use the simulation approach presented above.

As second simulation based method, we estimate monthly VaR and CVaR based on Filtered

Historical Simulation (FHS), which is also used by Engle (2004), Barone-Adesi et al. (2008)

and Engle (2011) to simulate h-day returns based on a dynamic volatility model. The FHS

approach is similar to the approach presented above, but instead of drawing innovations from a

standardized skewed t distribution, the FHS draws innovations (with replacement) from volatil-

ity standardized historical returns.90 Thus, one drawback of the FHS approach compared to the

approach presented above is that higher moments are not modeled autoregressively. Neverthe-

90As in Pritsker (2006), we estimate the GARCH(1,1) and GJR-GARCH parameters by assuming that inno-
vations are normally distributed. The volatilities of these models are then used to calculate standardized returns,
which are used for the FHS approach. An alternative would be to estimate the GARCH(1,1) and GJR-GARCH
parameters based on skewed t distributed returns and then use filtered returns from these volatility models for the
FHS. Kuester et al. (2006) use FHS for standardized returns based on GARCH-normal and GARCH-skewed t
standardized returns and find that both approaches produce different results.
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less, despite its simplicity, the FHS approach typically performs quite well. As above, we again

simulate N � 10,000 realizations to estimate VaR and CVaR.91 The FHS approach is nicely

summarized in Giannopoulos and Tunaru (2005, Sec. 4.2) and Pritsker (2006, Sec. 4) who use

the GARCH-FHS approach to estimate the 10-day downside risk by first modeling 10-day re-

turn paths, which are then used to estimate the empirical VaR and CVaR of these 10-day return

paths.92 Hsieh (1993, Sec. V.B) also uses FHS to simulate future paths, in order to estimate

h-day downside risk used for capital requirements of a trader and the author compares this

to an unconditional simulation method. Moreover, Rosenberg and Engle (2002) and Barone-

Adesi et al. (2008) use the FHS approach to calculate pricing kernels and option prices based

on longer-term volatility forecasts. Rosenberg and Engle (2002) and Barone-Adesi et al. (2008)

combine the FHS with the GJR-GARCH model of Glosten et al. (1993) and find good results

of this method. Generally, Rosenberg and Engle (2002) fit several volatility models to daily

data and find that the FHS approach combined with the GJR-GARCH model provides the most

convincing results when options based on longer-term volatility forecasts are priced. Kole et al.

(2017) also find good results of FHS combined with the GJR-GARCH model to forecast multi-

period downside risk. In particular, Barone-Adesi et al. (2008) show that the FHS approach is

more accurate than other competing models that do not model the volatility dynamically and/or

do not consider non-normalities.

The GARCH-FHS approach easily combines a parametric model for the volatility dynamics

with a non-parametric model for the standardized returns, whereas the GARCH model com-

bined with the skewed t distribution is a fully parametric approach (Pritsker, 2006).93 Although

no distributional assumption is needed, the FHS approach considers the actual market envi-

ronment by relying on a dynamic volatility model (Giannopoulos and Tunaru, 2005). Further,

the FHS approach is an easy method that considers non-normalities in the return distribution

(Barone-Adesi et al., 2008). Generally, the FHS also has the advantage that the CVaR is a co-

91Barone-Adesi et al. (2008) additionally simulate N � 20,000 future price paths, but the authors find only
minor differences between N � 20,000 and N � 10,000 simulations.

92The CVaR could alternatively be estimated as an average of several VaRs over different levels of α (see
Giannopoulos and Tunaru (2005) and references therein).

93By combining a parametric approach for the volatility and a non-parametric approach to model the conditional
distribution, this approach belongs to the class of semi-parametric estimation methods. See Fan and Gu (2003) for
a study on other semi-parametric approaches that can be used to estimate the h-day VaR.
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herent risk measure under the FHS approach (Giannopoulos and Tunaru, 2005). In total, the

FHS approach is an easy but effective alternative to the more complex simulation approach

based on the skewed t distribution.

Besides the FHS and standardized skewed t distribution, other simulation approaches that

are based on a dynamic volatility model are also frequently used in the academic literature. For

example, Engle (2004), Engle (2011) and Christoffersen (2012) assume that innovations are nor-

mally distributed, i.e. Zpiq
t,j � Np0, 1q, j � 1, ..., h. Further, other distributional assumptions on

Z
piq
t,j can be made, such as a standardized t distribution (Christoffersen, 2012). Similarly, Baillie

and Bollerslev (1992, Sec. 7) discusses how quantiles can be obtained by using a GARCH(1,1)

model fitted to daily data and using a Cornish-Fisher approach. This approach explicitly incor-

porates information on higher moments and is also used by Lönnbark (2016). Wang et al. (2012)

use an extreme value theory (EVT) based simulation approach to forecast monthly CVaR based

on daily data. Similarly, in order to forecast the h-day VaR and CVaR, McNeil and Frey (2000)

fit a GARCH model combined with extreme value theory to daily data. The authors show that

their simulation approach is more accurate in forecasting longer-term downside risk compared

to the SRTR.94 One advantage of the EVT approach is that extreme events can be modeled even

if such events are not apparent in the estimation window.95 In contrast, the FHS approach is not

able to account for these extreme events, unless such events occurred in the estimation window

(Cotter, 2007, Pritsker, 2006). Moreover, Guidolin and Timmermann (2006) show how simu-

lation based approaches can be used in a multivariate setting. Further, the authors show how

h-day ahead VaR and CVaR can be calculated by a simulation approach using a regime switch-

ing model (Guidolin and Timmermann, 2006, p. 294-295). Finally, the simulation approaches

used here or in the literature could also be combined with the EWMA model, which could be

interesting for practical implementations, especially when the EWMA model is combined with

FHS (Rickenberg, 2020b). However, Wong and So (2003) find that the GARCH(1,1) model

94When estimating monthly downside risk based on daily data, two approaches exist for EVT. First, a GARCH
based simulation approach similar to the approach presented above (Cotter, 2007, McNeil and Frey, 2000). Second,
a scaling approach where one-day ahead estimates are scaled by h1{α (Cotter, 2007).

95Rickenberg (2020b) uses risk targeting with daily rebalancing and shows that combining the GARCH(1,1)
model with EVT delivers convincing results in a target VaR and target CVaR setting. Nevertheless, the FHS and
the skewed t distribution also perform well in this context, especially in crash periods. In particular, all three
approaches clearly outperform the Historical Simulation based strategies.
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outperforms the EWMA model when the 10-day VaR is forecasted.

Although the simulation based approaches presented above should be superior to the un-

conditional models or the SRTR, these approaches also have several disadvantages. First, since

several thousand paths have to be simulated each month, these approaches are quite time con-

suming. Second, iterative approaches, although typically more accurate, are also more prone to

misspecifications, whereas approaches like the SRTR are quite robust against misspecifications

(see Lönnbark (2016), Kole et al. (2017) and references therein). For the simulation approaches

it is crucial that the model for the one-step ahead forecast is well specified, since “errors in the

specification can be amplified by the forecasting horizon. Small errors in a single-period fore-

cast can build up to a large error in a multi-step forecast” (Kole et al., 2017, p. 650). Hence, if

the model for the daily return is badly suited, simulations of the monthly return, and hence esti-

mates for monthly downside risk, will likely be inaccurate too. Due to the high non-normality

of momentum returns, the more advanced models suffer under high estimation risk, whereas the

simple SRTR should be more robust to errors in the specification.

Following Rickenberg (2020b), the weight of the target VaR and target CVaR strategies can

also be approximated by

VaRtarget
α � σtarget �N1�α?

12
and CVaRtarget

α � σtargetϕpN1�αq?
12α

, (2.4.24)

where N1�α and ϕ denote the p1 � αq-quantile and the pdf of the standard normal distribu-

tion. This result shows that the target VaR and CVaR strategies can also be approximated by

a target volatility strategy, where the volatility target is given by Equation (2.4.24). We use

these equations to derive our target VaR and target CVaR levels based on our chosen volatility

of σtarget � 12%. By choosing a significance level of α � 0.5%, we obtain VaR and CVaR

targets of VaRtarget
α � 8.92% and CVaRtarget

α � 10.02%. Choosing a low α of 0.5% has sev-

eral advantages. For example, Rickenberg (2020b) shows that low levels of α are beneficial in

downside risk targeting strategies. Further, Wong and So (2003) find that incorporating higher

moments becomes more important for lower levels of α, since the non-normality of returns is

more pronounced as we move further into the tails (see also Bali et al. (2008)). This is con-

firmed by Ghysels et al. (2016) who find that conditional skewness is hidden in the tails of the
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distribution. Hence, differences between volatility and downside risk targeting should be more

pronounced for small levels of α. Moreover, managing small exceedance probabilities should

be more successful in managing extreme losses, i.e. momentum crashes, which is a main objec-

tive of this paper.

2.5 Switching between Volatility and Downside Risk Target-
ing

In Sections 2.3 and 2.4, we have shown how the risk of the momentum portfolio can be dynam-

ically managed by targeting a constant level of volatility or downside risk. We next develop an

approach that combines both risk targeting strategies. As mentioned above, the momentum port-

folio exhibits a high volatility, which makes this investment strategy unappealing for risk-averse

investors, unless the momentum portfolio’s risk is targeted at a predefined level. Hence, manag-

ing each month’s risk is crucial for the momentum strategy. Further, we have argued that a main

driver of the superior performance of the risk-managed momentum strategy is the mitigation of

momentum crashes, i.e. periods of large negative returns, as shown by Barroso and Santa-Clara

(2015) and Daniel and Moskowitz (2016). However, the momentum portfolio trends upwards

under a high volatility most of the time, whereas these crash periods are typically extreme but

only short-lived and very infrequently.96 Rickenberg (2020b) shows that downside risk target-

ing, especially CVaR targeting, performs well in turbulent times and is successful in mitigating

drawdowns. In contrast, volatility targeting underestimates the risk in crash periods. However,

in uptrending markets, downside risk targeting is typically too conservative and is outperformed

by volatility targeting. Therefore, solely managing momentum’s volatility should be successful

in capturing the upside potential of momentum with limited and predefined risk, but should

be suboptimal during momentum crashes. In contrast, solely managing momentum’s downside

risk should be successful in mitigating momentum crashes, but should fail to adequately capture

the huge returns of the momentum strategy in calm periods. Hence, since momentum crashes

96Jondeau and Rockinger (2003, p. 1701) find that for equity returns “most of the tail-fatness of financial data
is generated by large repeatedly occurring events of a given sign.” Hence, the huge kurtosis of momentum could
mainly be driven by rare but extreme periods of negative returns, such as the losses that occur during momentum
crashes.
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are extremely rare events, it seems obvious that, over the long-run, the downside risk managed

momentum strategy does not outperform the volatility managed strategy. For that reason, in

order to enhance the risk-return profile of momentum investing, we develop several strategies

that exploit this consideration by switching between both risk targeting strategies based on an

estimate of the market regime, where CVaR targeting is only used when a momentum crash is

likely.

Switching between different investment strategies has frequently been examined in the aca-

demic literature and it has been shown that these switching strategies can increase the perfor-

mance compared to the individual investment styles. For example, Barberis and Shleifer (2003)

and Wang (2005) present strategies that switch between different investment styles based on

the past performance of the individual style portfolios. When one style is expected to under-

perform, measured by the style’s past performance, an investor should switch to another style

that is expected to outperform.97 Barroso and Maio (2019, Sec. 6) use a similar strategy based

on an investment style’s expected future performance, which is estimated using the style’s past

volatility. This strategy is long the factor, e.g. momentum, if the factor’s return is expected to

be positive and short else. Hence, this approach aims to invest in the momentum strategy, but

switches to a contrarian strategy if a negative momentum return, indicated by a high volatility,

is expected.98 Similarly, Min and Kim (2016) propose to switch from momentum to a contrar-

ian strategy when a bad market state, and hence a high probability of a momentum crash, is

expected. Wang and Xu (2015, p. 84) also propose a strategy that switches from momentum

97This approach is based on the assumption that the past performance of an investment strategy is an indicator
for the (short-term) future performance. Moskowitz et al. (2012) show that buying assets with a positive past
performance and selling assets with a negative past performance produces high returns. Hence, an asset’s past
performance is a good indicator for the asset’s short-term future performance as it is also exploited in the trend-
following literature (see Sullivan et al. (1999) and Bajgrowicz and Scaillet (2012) among others). Wang (2005,
p. 351) state that “style rotation is comparable in spirit to many studies on technical trading rules”.

98Barroso and Maio (2019) show that there exists a negative relation between momentum’s past volatility and fu-
ture returns. Therefore, next month’s return is typically negative when momentum’s past volatility is high. Hence,
if momentum’s volatility significantly increases, the strategy switches to a contrarian strategy, whereas the strategy
invests in the momentum portfolio when momentum’s volatility is low. Generally, market timing strategies based
on volatility signals are frequently applied in practice (Christoffersen and Diebold, 2006). For example, Copeland
and Copeland (1999) examine style switching strategies based on signals of volatility. When market volatility
increases, their strategy switches from a risky style to a more conservative style, which serves as a hedge for the
riskier investment style. Furthermore, see the research of Morningstar Inc. (https://www.morningstar.
com/articles/925094/a-momentum-and-low-volatility-switching-strategy), where a
strategy is proposed that switches between a momentum and a low volatility strategy, based on the market’s volatil-
ity.
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to a contrarian strategy when the market volatility is high and past market return is negative,

which the authors call a volatility down market. The authors write: “Given the large negative

payoff in volatility down markets it is natural to reverse the momentum-trading in these volatil-

ity periods.” Similarly, Asness et al. (2013) show that momentum and value investment styles

are negatively correlated. In other words, value is a natural hedge for the momentum strategy.

The authors show that combining value and momentum with fixed weights dampens momen-

tum crashes. Daniel et al. (2017, Sec. 5.2) extend the approach of Asness et al. (2013) to a

strategy that dynamically switches between both investment styles. The momentum portfolio

suffers extreme losses – momentum crashes – in turbulent market regimes, whereas the value

strategy typically performs well in these times. Hence, when the market is expected to be in

a turbulent time, the combined strategy switches from momentum to the value strategy, where

Daniel et al. (2017) use a regime switching approach to determine the probability of a crash

period. If the regime switching model indicates a high probability of a momentum crash, the

dynamic strategy switches to the value style to hedge against a momentum crash.

Besides switching between different investment styles, other switching strategies are also

feasible. For example, Chabot et al. (2014, p. 16) propose to switch between the momentum

portfolio and the risk-free rate based on an estimate of the momentum crash probability. More-

over, the momentum portfolio could also be hedged by other portfolios, like the market or the

size portfolio, based on momentum’s beta with these portfolios (Grundy and Martin, 2001,

Martens and Van Oord, 2014).99 Further, Wang et al. (2012) use a regime switching model

in order to switch between different risk targets: if a crash regime is expected their strategy

switches to a lower risk target, whereas a higher risk target is chosen when a calm regime is

expected. Furthermore, Taylor (2014) finds that volatility models perform differently in differ-

ent market environments, e.g. a model that performs well in a high volatility regime does not

necessarily perform well in a low volatility regime. As a consequence, the author proposes to

switch between different volatility models to manage the portfolio’s risk based on the expected

regime of the portfolio. Moreover, different portfolio allocation methods can also be combined.

99Hedging the momentum portfolio based on unconditional beta estimates does not work well in practice (Daniel
and Moskowitz, 2016). Alternatively, more sophisticated estimation methods of conditional beta could be used
(Bali et al., 2017b).
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For example, Garlappi et al. (2006), Kan and Zhou (2007), DeMiguel et al. (2009b) and Tu

and Zhou (2011) combine different weighting schemes, like the equally weighted, minimum-

variance and mean-variance portfolio. Hence, instead of using the same weighting scheme over

time, an investor could also dynamically switch between different weighting schemes. The

rational behind this approach is that some weighting schemes may be better in crash periods,

whereas other weighting schemes outperform in calm periods. In total, several studies have

shown that switching between different styles, risk targets, forecasting models or weighting

schemes can significantly improve the performance of a portfolio. Inspired by these studies,

we develop a strategy that dynamically switches between volatility and CVaR targeting, where

CVaR targeting is only used when a momentum crash becomes likely. More formally, following

Tu and Zhou (2011), the month t weight of the switching strategy is given by

wswitcht � δt � wCV aRt � p1 � δtq � wvolt , (2.5.1)

where δt P r0, 1s, wCV aRt is the month t weight of the CVaR targeting strategy and wvolt is the

month t weight of the volatility targeting strategy.100

Although this study does not consider transaction costs, we expect that the weighting scheme

in Equation (2.5.1) should be appealing, even after realistic transaction costs. By using a con-

vex combination of the weights of the volatility and CVaR targeting strategies, and since the

weights of the volatility and CVaR targeting strategies should be quite similar, the switching

strategy should exhibit similar transaction costs as the volatility managed momentum strategy.

For example, the correlations between the weights of the switching strategies and the weights

of the corresponding target volatility strategy are always higher than 0.95. For some strategies,

the correlation is even higher than 0.99. Barroso and Santa-Clara (2015, p. 112) find that “the

turnover of the risk-managed strategy is very close to the turnover of the raw momentum strat-

egy, so the transaction costs of both strategies are very similar.” Due to the high correlation

of the weights of the switching strategies and volatility targeting strategies, this result should

100We only switch between the volatility and the CVaR targeting approaches, since Rickenberg (2020b) shows
that within the three risk targeting strategies, volatility targeting works best in calm periods and CVaR targeting
works best in crash periods. Other possibilities would be to switch between volatility and VaR targeting or VaR
and CVaR targeting.
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also hold for the switching strategies, especially for the strategy that switches to the uncondi-

tional CVaR strategies. Hence, the transaction costs of the non-managed, volatility managed

and switching strategies should be quite similar. Hong et al. (2000) and Jegadeesh and Tit-

man (2001) find that the non-managed, and thus also the risk-managed momentum strategies,

are profitable even after transaction costs were considered, whereas Lesmond et al. (2004) find

that the non-managed momentum strategy is not profitable after transaction costs. However,

since the risk-managed momentum strategies, especially the switching strategies, produce sig-

nificantly higher returns than the non-managed strategy, transaction costs are less of a concern

for the risk-managed strategies (Barroso and Santa-Clara, 2015, p. 112).

To implement the strategy given in Equation (2.5.1), the weights δt have to be determined,

where δt should be high when a momentum crash in month t is likely and low when there are no

signs of a momentum crash. Several approaches to determine δt are possible. One possibility

to indicate if a momentum crash in month t is likely or not is to use the past return, volatility or

market beta of the momentum portfolio.101 Christoffersen and Diebold (2006) find that condi-

tional returns are not forecastable, whereas signs of returns and volatility are forecastable (see

also Colacito and Engle (2010, p. 13)). Therefore, market timing strategies based on volatility

changes or the past performance are frequently used by practitioners (Copeland and Copeland,

1999). This approach is particularly appealing for the momentum portfolio, since Barroso and

Maio (2019) show that there exists a negative relation between momentum’s risk, measured

as realized volatility, and future momentum returns, whereas there exists a positive risk-return

relation for most other factor portfolios. Hence, δt should increase if momentum’s volatility

increases, since a momentum crash becomes more likely for a higher volatility. Similarly, Bar-

roso and Santa-Clara (2015) show that momentum’s volatility is more successful in predicting

momentum crashes than other momentum crash indicators based on the past market return and

market volatility, as it is examined in Daniel and Moskowitz (2016). For that reason, as first

possibility, we switch to the CVaR targeting strategy if momentum’s volatility is (expected) to

101As mentioned above, the momentum portfolio’s beta is highly time-varying and momentum crashes typically
occur when the momentum portfolio has a negative beta. Hence, a bear market of the momentum portfolio could
be defined as a month when the momentum portfolio has a negative beta. However, Barroso and Santa-Clara
(2015) show that momentum’s beta captures only a small part of the strategy’s risk and that volatility is a superior
approach to measure momentum’s riskiness.
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be high. In contrast, we use volatility targeting when momentum’s volatility is expected to be

low.

Several possibilities to define high and low volatility regimes are feasible. We define high

and low volatility regimes with respect to the chosen volatility target: if expected volatility σ̂t

is higher (lower) than a chosen threshold, given as a function of the volatility target, month t is

indicated as a high (low) volatility regime. This approach has the advantage that the riskiness

of the switching strategy can be chosen by the investor. A risk-averse investor typically prefers

CVaR managing over volatility managing as shown by Rickenberg (2020b). This investor also

chooses a lower risk target, whereas a risk-seeking investor chooses a high risk target. Hence,

by defining turbulent and calm periods with respect to the volatility target, the portfolio of a risk-

seeking investor is mainly volatility managed, whereas the portfolio of a risk-averse investor is

mainly CVaR managed.102 Since we chose a quite low volatility target, we define δt as

δt �
"

1, if σ̂t ¡ 1.5σtarget

0, if σ̂t ¤ 1.5σtarget,
(2.5.2)

where σ̂t is a forecast of month t’s volatility.103

Another possibility to define a crash regime, i.e. δt � 1, would be to use momentum’s past

performance as done by the time series momentum strategy of Moskowitz et al. (2012) or other

technical trading rules (Bajgrowicz and Scaillet, 2012, Sullivan et al., 1999). For example, if the

past twelve months’ performance of the momentum portfolio is negative, δt could be set to one

and zero else.104 This approach would be similar to the style switching strategies of Barberis and

Shleifer (2003) and Wang (2005). The time series momentum strategy is related to the (cross-

sectional) momentum strategy, but is a different phenomenon as shown by Moskowitz et al.

(2012). Both approaches are based on the assumption that assets move in trends. Nevertheless,

momentum uses the relative performances of several assets, whereas the time series momentum

strategy relies on the past performance of a single asset or portfolio.105 Both strategies, time

102As an alternative, low and high risk periods could also be defined as the relation between short-term and log-
term volatility (Copeland and Copeland, 1999, Rickenberg, 2020c). A high risk regime could be defined when
short-term volatility is higher than long-term volatility.

103We also used σtarget instead of 1.5σtarget. However, both definitions deliver similar results.
104Moskowitz et al. (2012) and Goyal and Jegadeesh (2017, Table 1) find good results of the time series momen-

tum strategy with a 12 months ranking and one month holding period.
105Both strategies use a different threshold to determine buy and sell signals. The (cross-sectional) momentum
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series and cross-sectional momentum, are extensively compared by Moskowitz et al. (2012,

Sec. 5), Kim et al. (2016) and Goyal and Jegadeesh (2017). Due to the different nature of

time series and cross-sectional momentum, both approaches can easily be combined, where the

cross-sectional momentum approach can be used to determine the portfolio composition and

the time series momentum approach, applied to the cross-sectional momentum portfolio, can be

used for managing the momentum portfolio’s risk. Moskowitz et al. (2012) show that time series

momentum is successful in determining downtrending and uptrending periods, where especially

extreme events are well identified. However, this result that holds for equities, commodities

and most style portfolios does not hold for the momentum portfolio. Chabot et al. (2014)

argue that momentum crashes typically occur after periods of a strong momentum performance

and that the probability of a momentum crash increases with past performance. Hence, time

series momentum applied to the momentum portfolio will likely give false signals of momentum

crashes. For that reason, we do not examine this approach here. As an alternative, following

Chabot et al. (2014), a bear market could be defined if the momentum portfolio’s drawdown

exceeds a certain threshold.

Additionally to the past return or volatility of the momentum portfolio, the past return and

past volatility of the market can also be used to identify momentum crashes.106 Daniel and

Moskowitz (2016) use the past market return and past market volatility as signal for a momen-

tum crash. Daniel and Moskowitz (2016) and Cooper et al. (2004) show that momentum crashes

typically occur when the past market return is negative and/or past market volatility is high (see

also Daniel et al. (2017)).107 Similarly, Wang and Xu (2015) show that past market volatility

strategy uses the cross-sectional mean return or a certain quantile of all past returns of all assets, whereas the time
series momentum strategy uses a return of zero (Goyal and Jegadeesh, 2017).

106Instead of the past market volatility, the market’s past return dispersion, measured as the cross-sectional volatil-
ity of individual stock returns could also be used. Stivers and Sun (2010) show that a high return dispersion of
the market indicates future negative momentum returns. In particular, Wang and Xu (2015) show that the return
dispersion of Stivers and Sun (2010) is highly correlated to the market volatility, although both methods are based
on a different calculation methods, i.e. cross-sectional and time series returns, respectively. Further, Wang and Xu
(2015) find that market volatility is a better predictor of future momentum returns than return dispersion. Du Plessis
and Hallerbach (2017) also find that the volatility is superior to the return dispersion for the industry momentum
strategy. Hence, a return dispersion based approach is not examined here.

107Grundy and Martin (2001), Martens and Van Oord (2014) and Daniel and Moskowitz (2016) show that the
momentum strategy has a negative beta when the previous market return is negative. Momentum crashes then occur
when the market rises after a long period of negative returns. Cooper et al. (2004) use the previous one-year, two-
year and three-year return as measure for the previous market return. The authors show that the previous market
return is a better predictor of future momentum returns than several frequently used macroeconomic variables.
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can predict future returns of the momentum portfolio and the authors find a negative relation

between market volatility and momentum returns.108 Stivers and Sun (2010, Table 4) also show

that momentum returns are positively related to the previous market return and negatively to

market uncertainty. Daniel and Moskowitz (2016, Table 2) show that 14 out of the 15 worst

months of the momentum portfolio occurred when the previous (two-year) market return was

negative. Further, Daniel and Moskowitz (2016, Table 5) show that momentum returns decrease

if market volatility increases. Similarly, Daniel et al. (2017, Table 2) show that 12 out of the

13 worst monthly momentum returns occurred when the market’s past twelve months’ return

was negative and past market volatility was high. Further, Daniel et al. (2017, Table 3 and 14)

find that momentum crashes occur and momentum returns are negatively skewed when the past

market return is negative or market volatility is high. In particular, momentum returns are pro-

cyclical (see Stivers and Sun (2010) and references therein), i.e. if the market return is expected

to be negative – which can be forecasted by the time series momentum strategy of Moskowitz

et al. (2012) – the momentum return is also expected to be negative. Chabot et al. (2014) also

find that momentum returns are cyclical and momentum crashes are partly forecastable. Simi-

larly, Chordia and Shivakumar (2002) find that momentum returns are positive during economic

expansions, times that typically coincide with periods of positive market returns and a low mar-

ket volatility, and negative during recessions, times that typically coincide with negative market

returns and a high market volatility (see also Wang and Xu (2015) and Martens and Van Oord

(2014)). This result is confirmed and extended by Min and Kim (2016) who show that momen-

tum yields negative returns in bad markets in which investors require high risk premiums and

have a high marginal value of wealth. Summarized, large losses of the momentum return typ-

ically cluster in subsequent months and occur when markets rebound after long crash periods,

which can be identified by a negative past market return or high market volatility.109

See also Griffin et al. (2003) who find that macroeconomic variables can hardly explain international momentum
returns.

108A similar result has also been shown for market returns, i.e. a high market volatility predicts a low or even
negative future market return (see Campbell and Hentschel (1992), Glosten et al. (1993) among others). This
result does also hold in a cross-sectional setting, i.e. stocks with higher volatility underperform stocks with lower
volatility (Ang et al., 2006b). In the literature, the relation between market volatility and momentum returns is
hardly examined, whereas the relation between market volatility and market returns is widely examined (see the
discussion in Rickenberg (2020b)).

109This observation was initially shown by Jegadeesh and Titman (1993), who find that the momentum “strategy
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Based on the above presented relation between past market return or past market volatility

and future momentum returns, we next develop two additional strategies that switch between

volatility and CVaR targeting. As second crash indicator, we use the past 36 months’ market

return as indicator for a momentum crash.110 If this return is negative, and hence a momentum

crash becomes more likely, we manage the portfolio by targeting a constant level of CVaR.

If the past market return is non-negative, we manage the momentum portfolio’s volatility to

better capture the upside potential of the momentum portfolio. More formally, the weight δt of

Equation (2.5.1) is given by

δt �
"

1, if Rmarket
t�1:t�36   0

0, if Rmarket
t�1:t�36 ¥ 0,

(2.5.3)

where Rmarket
t�1:t�36 is the market return in the months t� 36 to t� 1.

As third indicator to switch between volatility and CVaR targeting, we use the past market

volatility. This approach is similar to Copeland and Copeland (1999) who also use market

volatility to switch between different investment styles. Wang and Xu (2015) also suggest to

switch away from the momentum strategy when market volatility is high. As is Daniel and

Moskowitz (2016), we use the past six months’ Realized Volatility RV market
t�1 as measure for the

past market volatility. RV market
t�1 is defined as in Equation (2.3.5), where the momentum returns

are replaced by market returns. Since a high past market volatility indicates that a momentum

crash is more likely, we switch to CVaR targeting if RV market
t�1 is high, whereas we use volatility

targeting if RV market
t�1 is low. As before, we define a high volatility regime when the market

volatility is higher than 1.5σtarget. The weight δt of Equation (2.5.1) is then given by

δt �
"

1, if RV market
t�1 ¡ 1.5σtarget

0, if RV market
t�1 ¤ 1.5σtarget.

(2.5.4)

tends to select high- (low-) beta stocks following a market increase (decrease) and hence tends to perform poorly
during market reversals” and that “[i]n the 1930s there were four other months in which the [momentum] strategy
lost over 40%. Each occurred when the market increased substantially.”

110Cooper et al. (2004) use the past one-year, two-year and three-year market return to determine up and down
markets. In contrast, Wang and Xu (2015) use the past six months’ performance to indicate up and down periods.
We also used other lengths but found best results for the three-year indicator. However, all lengths are successful in
predicting momentum crashes. Another alternative to define the crash indicator δt would be to use information on
other factors’ recent performance or volatility, such as the size or value factors. Hedging the momentum portfolio
based on the Fama-French factors typically produces more stable returns (Grundy and Martin, 2001, Martens and
Van Oord, 2014).
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Other possibilities to define high volatility regimes based on σ̂t or RV market
t�1 as in Equa-

tion (2.5.2) or (2.5.4) would be to define δt in relation to volatility changes as in Copeland

and Copeland (1999) and Ang et al. (2006b), i.e. instead of using the volatility target as refer-

ence point, the (long-term) average volatility of the past months could be used. For example,

Copeland and Copeland (1999) define a high volatility regime if current volatility is x percent

higher than the past three months’ average volatility, where they find good results of choosing

x by 20% or 30%. Similarly, Wang and Xu (2015, p. 84) define a high volatility regime if

the volatility measured over the last 12 months is higher than the volatility measured over the

last 36 months. This would be similar to Dreyer and Hubrich (2019) who examine volatility

targeting when the volatility target equals the long-term volatility. Rickenberg (2020c) uses a

similar approach for the industry momentum strategy. However, as stated above, defining the

crash indicator in relation to the volatility target is appealing, since this approach fits well to the

risk aversion of investors.

Wang and Xu (2015) find that momentum returns are most negative when the past market

volatility is high and the past market return is negative (see also Daniel and Moskowitz (2016)).

For that reason, we additionally use several crash indicators that combine the crash indicators

above. Hence, a crash regime can also be defined when both crash indicators in Equations

(2.5.3) and (2.5.4) are equal to one. Other possibilities of combining the three crash indicators

are also feasible and will be defined and used in the empirical part.

Several extensions of our approach of switching between volatility and CVaR targeting are

also possible. For example, instead of switching between two different risk targeting strategies,

an investor could also use the non-managed momentum portfolio, where the investor switches

to the downside risk managed strategy when a momentum crash becomes likely. However, Bar-

roso and Santa-Clara (2015, Sec. 7) show that volatility targeting improves the risk-adjusted

performance of the momentum portfolio even in periods when there is no momentum crash.

Further, as argued above, the high and time-varying volatility of the momentum portfolio makes

the non-managed momentum strategy unappealing for risk-averse investors, even in non-crash

periods. Hence, for risk-averse investors, it is advantageous to switch from the downside risk
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managed strategy to the volatility managed strategy when there are no indications of a momen-

tum crash. In this case, momentum’s risk is managed in every month. Moreover, instead of

choosing δt P t0, 1u, the weight δt could also be defined to vary between zero and one as in

Tu and Zhou (2011). For example, similar to Daniel et al. (2017) and Wang et al. (2012), a

regime-switching process could be used. The weight δt could then be chosen as the probability

that there is a crash regime in the next month. Moreover, δt could be chosen by δt � σ̂t
σtarget

or

δt � RVmarkett�1

σtarget
.

Our approach of switching between volatility and CVaR targeting is different to the ap-

proaches of Barroso and Santa-Clara (2015) and Moreira and Muir (2017), who only use in-

formation on momentum’s volatility to manage the momentum portfolio’s risk. Daniel and

Moskowitz (2016) show that the momentum portfolio’s return and volatility are both highly

forecastable, which is used by their dynamic strategy. Our approach also exploits the return

forecastability of the momentum portfolio – but in a different way as in Daniel and Moskowitz

(2016) – by switching to a more conservative risk targeting strategy when a negative momentum

return is expected. Thus, we incorporate information on momentum’s expected mean return,

without relying on a point forecast of the mean. Portfolio allocation methods that incorporate

a forecast of the mean return typically suffer under high estimation risk and perform bad in

practice (Garlappi et al., 2006, Moreira and Muir, 2019, Tu and Zhou, 2011).

To assess if the outperformance of a strategy that switches to CVaR targeting is only influ-

enced by switching away from the volatility managed momentum strategy during a momentum

crash, we additionally define a strategy that switches between the (volatility managed) momen-

tum and contrarian strategies. The month t weight of this strategy is given by

wswitcht � δt � p�wvolt q � p1 � δtq � wvolt . (2.5.5)

Hence, if the crash indicators δt accurately forecast momentum crashes, this strategy should

outperform the strategies that switch between volatility and CVaR targeting. However, the

strategy given in Equation (2.5.5) suffers extremely if δt gives false signals of a momentum

crash. Thus, our CVaR switching approach is more robust against estimation risk.
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2.6 Empirical Results

In this section, we examine the distributional properties of daily and monthly momentum re-

turns. In particular, we examine the time-variation of conditional skewness and kurtosis, which

is a main driver of momentum crashes. Further, we test for the random walk hypothesis, which

underlies the SRTR and the RV model used by Barroso and Santa-Clara (2015) and Moreira

and Muir (2017). We then test the accuracy of the different risk targeting strategies and an-

swer the questions if more advanced models are more successful in targeting a constant level

of volatility than the simple RV model and if incorporating higher moments is beneficial when

a constant level of risk is targeted. Additionally, we assess the accuracy of the strategies that

switch between volatility and CVaR targeting. We then assess the risk-adjusted performance of

the different risk targeting strategies. In particular, we examine which strategy is best in miti-

gating drawdowns and if strategies that switch between volatility and CVaR targeting perform

better than the RV managed strategy of Barroso and Santa-Clara (2015). Furthermore, we assess

if a higher forecasting accuracy translates into a higher risk-adjusted performance as suggested

by Bollerslev et al. (2018). Moreover, we calculate the economic value of risk targeting, i.e. the

annual fee an investor is willing to pay to switch from the RV managed momentum strategy to a

strategy that switches between volatility and CVaR targeting. We calculate the economic value

for mean-variance investors, CRRA investors who dislike negative skewness and high kurtosis

as well as loss-averse investors. Finally, we conduct spanning tests in the manner of Daniel and

Moskowitz (2016) and Moreira and Muir (2017) to assess if the non-managed or risk-managed

strategies can be explained by the returns of the Fama-French three factor model and the other

strategies.

We obtain daily and monthly data for the market and the momentum portfolio from the

website of Kenneth French.111 Our data range from January 1927 to December 2018. Hence,

compared to Barroso and Santa-Clara (2015), we have seven additional years of data to assess

the value of risk targeting applied to the momentum strategy. We use the momentum port-

folio where stocks in the winners and losers portfolios are equally weighted. Compared to

111http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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the value-weighted momentum portfolio used by Barroso and Santa-Clara (2015), the equally

weighted strategy weights smaller stocks relatively higher. This translates into a momentum

strategy where momentum crashes are more pronounced compared to the value-weighted strat-

egy. Hence, this weighting scheme better highlights which risk targeting strategy is best in

mitigating momentum crashes. The equally weighted momentum portfolio is also frequently

examined in the literature (Chordia and Shivakumar, 2002, Grundy and Martin, 2001, Hong

et al., 2000, Jegadeesh and Titman, 1993, 2001, Lesmond et al., 2004). The appendix shows

additional results for the momentum factor portfolio of Fama and French (2012), which is also

used by Ruenzi and Weigert (2018). For this portfolio, the winners and losers portfolios are

constructed using size-return double-sorted portfolios, and thus using stocks with small and big

market capitalizations. Further, we also examine the momentum strategy for German stocks

in the period January 1994 to April 2016. The equally weighted winners and losers portfolios

for Germany are obtained from the Humboldt University.112 Additionally, we show further re-

sults of risk targeting applied to other long-short strategies. For example, Barroso and Maio

(2018), Cederburg et al. (2020) and Moreira and Muir (2017) examine risk targeting for several

portfolio strategies and find that this approach works best for the momentum strategy and the

Betting against Beta (BAB) strategy of Frazzini and Pedersen (2014). For that reason, we also

apply our approach to the BAB portfolio in the US and Germany. Data for the BAB portfolios

are obtained form the website of AQR.113 Furthermore, and particularly interesting for practi-

cal implementations, we apply our risk targeting strategies to the industry momentum strategy

(Grundy and Martin, 2001, Lewellen, 2002, Moskowitz and Grinblatt, 1999), as it has been

done by Du Plessis and Hallerbach (2017), Grobys et al. (2018) and Rickenberg (2020c). In-

dustry data are again obtained from the website of Kenneth French. Finally, since Barroso and

Maio (2018), Cederburg et al. (2020) and Moreira and Muir (2017) find that the RV approach

does not work well for size portfolios, we apply our switching approach to the small minus big

(SMB) factor that buys small stocks and sells big stocks (Fama and French, 1993, 2012). Data

for this strategy are again obtained from the website of Kenneth French.

112https://www.wiwi.hu-berlin.de/de/professuren/bwl/bb/daten/fama-french-
factors-germany.

113https://www.aqr.com/Insights/Datasets.
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2.6.1 Distributional Properties of Momentum Returns

This section starts the empirical part by examining the distributional properties of daily and

monthly momentum returns. Similar to Barroso and Santa-Clara (2015, Table 1), we start by

comparing the descriptive statistics of the returns of the market, winners, losers and momentum

portfolios. Since the momentum strategy is a zero-investment strategy, which does not hold for

the market, winners and losers portfolios, we subtract the risk-free rate from the winners, losers

and market portfolios.114 Table I shows the first four (standardized) moments, the minimum

and maximum monthly return as well as the Jarque-Bera (JB) test that tests if the return series

follow a normal distribution.115 As in Barroso and Santa-Clara (2015), we find that the mo-

mentum strategy produces a higher return than the market portfolio which is accompanied with

significantly higher risk, especially in the left tail. That is, compared to the market, the mo-

mentum portfolio has a significantly higher risk of large negative returns, indicated by the high

negative skewness and high kurtosis. Compared to the value-weighted momentum strategy used

by Barroso and Santa-Clara (2015, Table 1), the equally weighted strategy exhibits significantly

higher left tail risk and a lower return. As a consequence, managing portfolio risk becomes

more important for the equally weighted momentum strategy than for the value-weighted mo-

mentum strategy. Further, as expected, we find a lower mean return of the losers portfolio

compared to the winners portfolio, which is accompanied by a significantly lower skewness of

the winners compared to the skewness of the losers. Hence, buying winners and selling losers

produces a portfolio that is extremely negatively skewed with a skewness of �4.26. Combined

with the high kurtosis of 42.20 this indicates a high crash risk, which can be seen by the mini-

mum monthly return of �89.70%. This minimum monthly return is significantly lower than the

market’s minimum monthly return of �29.13%. As expected, the JB-test strongly rejects the

normality assumption for all return series, indicating that volatility managing is not sufficient

for all four portfolios, especially for the momentum portfolio.

114Alternatively, following Daniel and Moskowitz (2016, Appendix A.1), the momentum portfolio could also be
defined as the portfolio that buys the winners, sells the losers and is invested in the risk-free rate.

115For a better comparison with the results of Barroso and Santa-Clara (2015, Table 1), we also calculate the
mean return as arithmetic mean. In the following tables, we calculate the mean return as geometric mean, which is
more realistic.
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Estimating moments higher than the second based on realized estimates is typically very

sensitive to outliers (Ghysels et al., 2016, Kim and White, 2004, Neuberger, 2012). For that

reason, we additionally use other measures of a distribution’s asymmetry and fat-tailness that

are based on quantiles of the distribution.116 These measures are more robust to outliers than

estimates based on realized moments. This approach of estimating higher moments based on

quantiles is similar to the aforementioned method of Taylor (2005) who estimates volatility

based on quantiles. Following Kim and White (2004) and Ghysels et al. (2016), we estimate

the asymmetry of a distribution by

Skquα � pqαpRtq � q0.5pRtqq � pq0.5pRtq � q1�αpRtqq
qαpRtq � q1�αpRtq , (2.6.1)

where qαpRtq denotes the α-quantile of Rt. The measure Skquα is normalized to values between

-1 and 1, where a negative value indicates a left skewed distribution (Ghysels et al., 2016,

p. 2151).117 Following Kim and White (2004) and Ghysels et al. (2016), we choose α � 0.75.

Further, in order to emphasize extreme realizations, we follow Taylor (2005) and also choose

α � 0.99.118 To quantify a distribution’s fat-tailness, we also use a quantile based risk measure,

which is defined by (Kim and White, 2004)

Kuqu � pq7{8pRtq � q5{8pRtqq � pq3{8pRtq � q1{8pRtqq
q6{8pRtq � q2{8pRtq . (2.6.2)

Kim and White (2004, p. 60) show that the robust kurtosis equals 1.23 for the normal distribu-

tion. Hence, when returns are normally distributed, we expect Skquα � 0 and Kuqu � 1.23.

Results of the robust estimates of skewness and kurtosis in Table I show that the ranking

of the portfolios can be quite different when different estimators are used. Interestingly, when

the skewness estimator with α � 0.75 is used, the momentum portfolio is the least negatively

skewed portfolio. This shows that the high negative skewness of the momentum portfolio is

mainly influenced by extreme return realizations in the left tail, i.e. the momentum crashes.

Hence, the momentum strategy typically produces moderate returns, which are accompanied by

116I thank Peter Albrecht for this suggestion.
117Based on a Cornish-Fisher approximation, Ghysels et al. (2016, Sec. I.B) show how this normalized skewness

measure can be transformed to a measure of the third moment.
118In order to emphasize skewness in the tails, Ghysels et al. (2016) also use α � 0.95 and a weighted measure

using quantiles for α P r0.5, 1s.
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Table I. Descriptive Statistics
This table reports the descriptive statistics of the monthly returns of the market, winners, losers and
momentum portfolios over the full sample. For a better comparison, we subtract the risk-free rate from
the market, winners and losers portfolios. Mean and Vola denote the annualized (arithmetic) mean return
and volatility, respectively. Skew and Kurt denote the realized skewness and (excess) kurtosis. Min and
Max denote the minimum and maximum monthly return. JB denotes the value of the test statistic of the
Jarque-Bera test. Skqu0.75, Skqu0.99 and Kuqu denote quantile-based measures of skewness and kurtosis. The
robust kurtosis of the normal distribution is given by Kuqu � 1.23 (Kim and White, 2004, p. 60). Mean,
Vola, Min and Max are given in percent.

Portfolio Mean Vola Skew Kurt Min Max JB Skqu0.75 Skqu0.99 Kuqu

Market 7.77 18.52 0.19 10.81 -29.13 38.85 2814.99 -0.063 -0.141 1.290
Winners 17.90 25.35 0.12 8.84 -32.92 56.56 1569.47 -0.073 -0.152 1.337
Losers 7.93 38.28 2.85 25.56 -38.91 113.95 24894.65 -0.045 0.215 1.459
Momentum 9.97 26.32 -4.26 42.20 -89.70 22.24 74015.40 -0.012 -0.312 1.461

occasionally extremely negative returns that make this strategy unappealing for investors. As

expected, the skewness estimate using α � 0.99, and thus emphasizing extreme realizations,

indicates that the momentum portfolio is the most negatively skewed portfolio. This estimator

is more in line with the realized skewness estimator. Thus, the high negative skewness of �4.26

is mainly driven by extreme realizations. We also calculated the realized skewness by first

eliminating extreme returns in the lower and upper 1%, 2.5%, 5% and 10% quantile. In these

cases, the realized skewness increases to �1.197,�0.763,�0.334 and �0.115, respectively.

This again shows that momentum’s left tail risk is mainly given by few extreme realizations.

The robust kurtosis estimator is in line with the realized kurtosis estimator, but indicates a higher

kurtosis of the winners compared to the market. Further, the difference between losers and the

momentum portfolio is very small, whereas the realized estimator indicates a high difference.

As expected, all estimates of the fat-tailness are higher than the 1.23 of the normal distribution

and the market’s kurtosis is the closest to this value. Furthermore, the robust kurtosis of the

momentum portfolio is less extreme than the realized kurtosis. However, by eliminating the

highest and lowest 1%, 2.5%, 5% and 10% returns, the realized (excess) kurtosis of the mo-

mentum portfolio reduces to 6.823, 4.81, 3.151 and 2.346, respectively. Thus, similar to the

skewness, the high kurtosis of the momentum portfolio is mainly influenced by few extreme re-

turn realizations.119 Hence, if these few extreme (negative) realizations could be mitigated, the

119This observation is also in line with Kim and White (2004, Table 3) who find that realized (negative) skewness
and kurtosis decrease dramatically if only a few extreme observations are removed. For example, the authors find
that negative skewness and excess kurtosis of the S&P 500 decline from �2.39 and 53.62 to only �0.04 and 3.44
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momentum portfolio would be an appealing investment strategy for most investors with almost

normal returns.

The high non-normality of daily and monthly momentum returns can also be seen in Figure

I, which shows the empirical density of the momentum portfolio. Further, similar to Theo-

dossiou (1998) and Daniel et al. (2017, Fig. 1), we also show the density of the normal and

skewed t distribution fitted to the empirical data. When fitting the skewed t distribution to the

momentum returns as shown in Equation (2.4.8), the parameter λ is negative for both the daily

(λ � �0.0924) and monthly (λ � �0.1108) returns indicating a negatively skewed distribu-

tion. Further, the degree of freedom parameter η is very low for daily (η � 2.3631) and monthly

(η � 2.1753) returns, which coincides with fatter tails of the return distribution (Jondeau and

Rockinger, 2003, Theodossiou, 1998). In particular, the parameters λ and η are statistically

significant for daily and monthly returns. The low values of η   3 indicate that higher mo-

ments may not exist for the skewed t distribution. This is in line with Eling (2014) who also

finds low values for the degree of freedom parameter η of a skewed t distribution, when fit-

ting the distribution to stock returns.120 Nevertheless, the non-existence of higher moments is

mainly influenced by few outliers.121 Obviously, the skewed t distribution gives a very good fit

of the realized return observations, whereas the normal distribution clearly fails to provide an

accurate fit of the observed data. Furthermore, the characteristics of daily data are much better

captured than the characteristics of monthly data. This indicates that directly fitting the skewed

t distribution to monthly returns is suboptimal. In contrast, the skewed t distribution should

be fitted to daily data, which can then be used to measure monthly risk based on the methods

presented before. Moreover, the monthly return distribution is more negatively skewed than the

if only six returns were removed. Jondeau and Rockinger (2003) also find that the kurtosis is mainly influenced by
a few extreme realizations. In contrast, the quantile based measures of skewness and kurtosis are more robust to
the exclusion of outliers.

120Eling (2014) presents several approaches to solve the problem of non-existing higher moments. As mentioned
above, Eling (2014) uses a different version of the skewed t distribution. However, the approaches presented by
Eling (2014) can directly be applied to our distribution. Since we are mainly interested in assessing the goodness-
of-fit in this section, we do not apply these approaches.

121We also fitted the skewed t distribution to monthly returns when the highest and lowest 1%, 2.5%, 5% and
10% returns were eliminated. In these cases, the estimates of η are given by 2.998, 4.865, 340.792 and 341.892.
Thus, the distribution becomes less fat-tailed with an existing skewness and kurtosis for the last three cases. The
parameter λ remains negative in all cases, but becomes smaller in magnitude, indicating a less negatively skewed
distribution when the most extreme realizations are eliminated.
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daily data, demonstrating that daily and monthly returns have quite different properties (Harvey

and Siddique, 1999). That is, simply scaling tail risk measures estimated with daily data by a

constant to obtain estimates of monthly tail risk should fail to capture the differences in both

return distributions. This is in line with Neuberger (2012) and Ghysels et al. (2016) who sug-

gest that skewness cannot simply be scaled with a constant like volatility. Figure I also shows

that the height of the empirical distribution is well fitted by the skewed t distribution, indicating

that an additional parameter to model the height, as in the skewed generalized t distribution of

Theodossiou (1998), is not needed.

Figure I. Unconditional Return Distributions of Daily and Monthly Momentum Returns.
This figure shows the empirical density of momentum returns together with the density of the normal and
skewed t distribution. The density of the normal and skewed t distribution are plotted using maximum
likelihood estimates. Panel A shows results for daily data, whereas Panel B shows results for monthly
data.

Results so far indicate that incorporating skewness and kurtosis gives a significantly better

fit of the observed momentum returns compared to the normal distribution. We also statistically

tested this statement by using the Likelihood Ratio (LR) test, the Akaike information criterion

(AIC), the Bayesian information criterion (BIC) and the Kolmogorov Smirnov (KS) test, which

were also used by Theodossiou (1998), Bali et al. (2008) and Eling (2014). All tests clearly

reject the normality of the momentum returns and demonstrate the importance of incorporating

skewness and kurtosis when describing momentum returns. However, we are not mainly inter-
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ested in reproducing the whole return distribution, but in capturing characteristics of extremely

negative returns. In other words, when managing momentum crashes, we are mainly interested

in adequately fitting the left tail of the return distribution. A simple tool to visualize the ability

of a distribution to capture the characteristics of the tails of an observed sample of returns is the

Quantile-Quantile-plot (QQ-plot), which is nicely explained in Christoffersen (2012, Sec. 6.3).

The QQ-plot plots the quantiles of the realized daily and monthly returns against the quantiles

of the normal or skewed t distribution. This tool is also used by Eling (2014) and Cotter (2007).

The QQ-plots for the unconditional daily and monthly returns are given in Figure II.

Figure II. Quantile-Quantile-Plot.
This figure shows the Quantile-Quantile-plot (QQ-plot) for daily and monthly momentum returns. The
left panels plot the empirical quantiles against the quantiles of a normal distribution. The right panels
plot the empirical quantiles against the quantiles of the skewed t distribution.

The results of Figure II highlight that both unconditional distributions, the normal and the

skewed t distribution, well describe the middle part of the return distribution. This indicates that

periods where returns are small in magnitude can simply be managed by volatility.122 However,

both distributions fail to adequately match the tails of the observed returns. For monthly returns,

the normal distribution gives a quite good fit of the right tail but obviously fails to account for

the high crash risk of the momentum returns, shown by the high deviation in the left tail. The

122This is also in line with our previous results that eliminating only a few extreme returns makes the momentum
returns almost normally distributed.
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skewed t distribution gives a slightly better fit of the left tail but fails to capture the charac-

teristics in the right tail. As a conclusion, results in Figure II show that unconditional return

distributions fail to adequately describe the tails of the momentum return distribution. For that

reason, accounting for a time-varying volatility that captures the actual market environment

seems crucial when portfolio risk is managed. Therefore, we next assess if conditional mod-

els that are based on a dynamic volatility model are more successful in capturing the extreme

momentum returns. Thus, we next examine the conditional return distribution of the daily

and monthly momentum returns based on the model given in Equation (2.4.16). If controlling

volatility by a dynamic volatility model is sufficient to manage momentum crashes, then returns

standardized by a time-varying volatility should be approximately normally distributed. Bar-

roso and Maio (2018) show in an earlier version of their paper that the GARCH(1,1) model is

able to target a certain level of volatility if returns are only modestly skewed and fat-tailed, but

fails when returns are highly non-normal, such as the returns of momentum portfolio. Hence, a

conditional volatility model is able to capture modest deviations from the normal distribution,

but fails to capture extreme skewness and kurtosis. This finding is confirmed by Ghysels et al.

(2016), Brooks et al. (2005) and Bali et al. (2008) who find that returns that are standardized by

conditional volatility still exhibit significant non-normalities. Thus, conditional skewness and

kurtosis should also be regarded when momentum’s risk is managed.

To illustrate this finding, Table II shows the descriptive statistics of mean and volatility stan-

dardized momentum returns, where we use the conditional volatility of the GARCH(1,1) and

GJR-GARCH model to standardize returns. Since we fit our estimation models to daily data,

we additionally show results for daily returns. These standardized returns should be approxi-

mately normally distributed, if controlling momentum’s volatility is sufficient. However, Table

II demonstrates that standardized returns are still highly negatively skewed and fat-tailed. This

result also holds for the robust estimates of skewness and kurtosis. This can also be seen by

the JB-test that clearly rejects the normality assumption. Bali et al. (2008, Table 1) also show

that returns that are standardized by a time-varying volatility are not normally distributed and

that a conditional distribution that accounts for non-normalities is needed. Similarly, Brooks
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et al. (2005), using specification tests, finds that the GARCH(1,1) model is not able to capture

all temporal dependencies in asset returns. Hence, using a distribution that incorporates the

non-normality of standardized returns, as done in Equation (2.4.16), is needed to better manage

momentum crashes. Furthermore, standardized monthly returns deviate much more from the

normal distribution. Consequently, fitting the volatility models directly to monthly data fails to

capture the high non-normality of monthly momentum returns.

Table II. Descriptive Statistics: Standardized Returns
This table reports the descriptive statistics of daily and monthly standardized momentum returns. Panel
A reports results for daily returns, whereas Panel B uses monthly returns. The GARCH(1,1) and GJR-
GARCH models are fitted to all available daily or monthly returns. The description of the columns is
given in Table I.

Model Mean Vola Skew Kurt Min Max JB Skqu0.75 Skqu0.99 Kuqu

Panel A: Standardized Daily Momentum Returns

GARCH 0.00 1.07 -0.68 10.08 -15.97 7.31 52592 -0.032 -0.096 1.359
GJR-GARCH 0.00 1.01 -0.72 9.42 -18.00 5.02 43807 -0.018 -0.104 1.302

Panel B: Standardized Monthly Momentum Returns

GARCH 0.06 1.06 -2.21 21.71 -12.15 3.36 17005 -0.053 -0.189 1.466
GJR-GARCH 0.07 1.09 -2.03 19.84 -12.21 3.66 13808 -0.064 -0.157 1.494

By applying the QQ-plot to the standardized returns, we next assess if the dynamic volatility

models are able to capture the non-normalities of the momentum returns, especially in the tails.

The QQ-plots of standardized daily and monthly returns are given in Figure III, where we

plot the empirical quantiles against the quantiles of the normal and skewed t distribution with

constant parameters η and λ. We only show results for the GARCH(1,1) standardized returns.

Figure III shows that the dynamic volatility model is able to capture a significant part of the non-

normalities in the momentum returns. This can be seen, since standardized returns are much

better described by a normal distribution than the non-standardized returns in Figure II. This is

in line with Theodossiou (1998, p. 1659) who finds that the conditional return distribution is

expected to be less skewed and leptokurtic than the unconditional return distribution. However,

the GARCH(1,1) model alone fails to capture the tail-behavior of the momentum returns, as

already shown by Ghysels et al. (2016) for equity returns. For monthly returns, the right tail

is well fitted by the model, whereas the left tail, i.e. the extremely negative returns, are not

captured by the volatility model alone. Thus, volatility is an appealing method to manage
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momentum’s risk in periods with positive or moderately negative returns, but is an inadequate

risk management tool just when it is most needed, during periods of extremely low returns.

In contrast, the skewed t distribution is very convincing in capturing the tail behavior of the

standardized returns, both daily and monthly. As a conclusion, momentum crashes are not

optimally managed by controlling volatility alone, as also suggested by Daniel et al. (2017). In

contrast, managing conditional volatility as well as conditional skewness and kurtosis should

work well in momentum crash periods.

Figure III. Conditional Quantile-Quantile-Plot.
This figure shows the Quantile-Quantile-plot (QQ-plot) for mean-volatility standardized daily and
monthly momentum returns. The left panels plot the empirical quantiles against the quantiles of a
normal distribution. The right panels plot the empirical quantiles against the quantiles of the skewed
t distribution.

Since risk targeting strategies readjust the exposure to the momentum strategy each month,

information on the time-series behavior of higher moments is also highly important. Manag-

ing volatility assumes that conditional skewness and kurtosis are constant over time, which is

usually not full-filled for asset returns (Bali et al., 2008, Brooks et al., 2005, Ghysels et al.,

2016, Harvey and Siddique, 1999, Jondeau and Rockinger, 2003). For that reason, we follow

Jondeau and Rockinger (2003, Fig. 6-7) and Bali et al. (2008, Fig. 1) and plot the time-series

of the return, conditional volatility, conditional skewness and conditional kurtosis by fitting the

model given in Equation (2.4.16) to daily and monthly returns, where we use the GJR-GARCH
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model as volatility model. Results are quite similar for the GARCH(1,1) model.123 Jondeau

and Rockinger (2003) show that the conditional skewness and conditional (excess) kurtosis are

given by

Skew � m3 � 3am2 � 2a3

b3
and Kurt � m4 � 4am3 � 6a2m2 � 3a4

b4
� 3, (2.6.3)

where

m2 � 1 � 3λ2 (2.6.4)

m3 � 16cλp1 � λ2q pη � 2q2
pη � 1qpη � 3q for η ¡ 3 (2.6.5)

m4 � 3
η � 2

η � 4

�
1 � 10λ2 � 5λ4

�
for η ¡ 4. (2.6.6)

The time-series of the conditional skewness and (excess) kurtosis should be constantly zero if

controlling momentum’s risk by volatility is sufficient. If the conditional skewness and (excess)

kurtosis are time-varying and non-zero, volatility managing alone is insufficient to manage mo-

mentum’s risk. In this case, momentum’s risk should be managed by additionally considering

momentum’s conditional non-normalities, as it is done by the downside risk targeting strategies.

Figure IV shows the time-series of the first four (standardized) moments for the model that

is fitted to daily data. In contrast, Figure V shows results for the model fitted to monthly re-

turns. We follow Jondeau and Rockinger (2003) and mark days when skewness or kurtosis does

not exist with a cross.124 Both figures demonstrate that momentum’s volatility is highly time-

varying and sometimes takes extreme values. Barroso and Santa-Clara (2015, Fig. 2) also find a

highly time-varying and extreme monthly volatility for the value-weighted momentum strategy

ranging between 3.04% and 127.87% on an annualized basis. Hence, controlling volatility of

the portfolio is crucial since these extreme realizations of portfolio volatility make the momen-

tum portfolio unattractive for risk-averse investors.125 Further, Figures IV and V demonstrate
123A similar observation was also found by Bali et al. (2008, Footnote 11).
124See also Jondeau and Rockinger (2003, Table 3 and 4) and Bali et al. (2008) who fit a similar model to several

equity and currency returns. Further, Bali et al. (2008, Table 3 and 4) additionally fit the skewed t distribution
with constant parameters η and λ as well as several other volatility models to equity returns. The authors find
that the model with time-varying skewness and kurtosis parameters gives a better fit than the model with constant
parameters. See also Ghysels et al. (2016, Figure 1), Harvey and Siddique (1999, Figure 1) and Neuberger (2012,
Figure 1) who show that skewness is highly time-varying.

125Many investors are willing to pay for hedges against a changing volatility (Adrian and Rosenberg, 2008, Ang
et al., 2006b, Bollerslev and Todorov, 2011). Hence, these investors strongly benefit from targeting momentum’s
volatility at a constant level.
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Figure IV. Daily Conditional Moments. This figure shows the daily return, conditional volatility, con-
ditional skewness and conditional kurtosis. Conditional volatility, conditional skewness and conditional
kurtosis are calculated for the model in Equation (2.4.16) using the GJR-GARCH model. Days when
skewness or kurtosis do not exist are marked with an x. Days when the previous 36 months’ market
return is negative are shown in red.

that conditional skewness and kurtosis are also highly time-varying, highly non-normal and

there are periods when momentum’s skewness and kurtosis do not exist or take extreme values.

A similar pattern was found by Brooks et al. (2005, Figure 1 and 4), Bali et al. (2008, Fig. 1)

and Jondeau and Rockinger (2003, Figure 6) for stock returns. We additionally mark periods

when the previous 36 months’ market return is negative in red. As discussed in Section 2.5,

these periods typically coincide with periods of extremely negative momentum returns and are

used for our switching approach. Figures IV and V highlight that the volatility is typically very

high in these periods, which is in line with the huge drawdown reduction of volatility targeting

found by Barroso and Santa-Clara (2015). However, volatility alone is not sufficient in manag-

ing momentum crashes, as can be seen by the extreme outcomes of conditional skewness and

conditional kurtosis. During times with a previous negative market return, skewness is typically

extremely negative and kurtosis is typically very high. This high crash risk is not captured by

the RV model of Barroso and Santa-Clara (2015). Interestingly, there even exist several peri-

ods with an extremely high kurtosis although volatility is low in these periods. These periods

are also accompanied with a negative skewness. This highlights that volatility alone does not
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capture the tail risk characteristics of the momentum portfolio and can sometimes even give

false signals. In other words, during periods of a momentum crash, the RV model of Barroso

and Santa-Clara (2015) significantly underestimates momentum’s risk and the RV managed

momentum strategy’s exposure is too high, i.e. simply controlling volatility will likely fail to

mitigate momentum crashes as already found by Daniel et al. (2017). In contrast, frequently

reallocating the weight invested in the momentum portfolio based on risk measures that incor-

porate conditional skewness and kurtosis is crucial, especially in periods with a high probability

of a momentum crash (see also Cuoco et al. (2008)).

Figure V. Monthly Conditional Moments. This figure shows the monthly return, conditional volatility,
conditional skewness and conditional kurtosis. Conditional volatility, conditional skewness and condi-
tional kurtosis are calculated for the model in Equation (2.4.16) using the GJR-GARCH model. Months
when skewness or kurtosis do not exist are marked with an x. Months when the previous 36 months’
market return is negative are shown in red.

The underestimation of momentum’s risk by the RV model does not only hold for the crash

periods. Interestingly, in contrast to the findings of Ghysels et al. (2016, Figure 1), Harvey and

Siddique (1999, Figure 1) and Neuberger (2012, Figure 1) who calculate monthly skewness

of equities using daily data and find that skewness fluctuates between positive and negative

values, we find that the skewness of the momentum portfolio is also highly time-varying but

negative almost always. A negative skewness of momentum in almost every month indicates

that the probability of extremely negative returns is substantially underestimated by managing
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momentum’s volatility. A similar result was also found for hedge fund returns (Agarwal and

Naik, 2004).

To better understand the source of the high fluctuation and extreme values in conditional

skewness and kurtosis, we next assess the winners and losers portfolios’ comovement of skew-

ness and kurtosis. Following the approach of Jondeau and Rockinger (2003, Table 8), we calcu-

late conditional skewness and kurtosis of the winners and losers portfolios for each month and

classify these realizations into quartiles. We use the returns of the winners and losers portfolios

in excess of the risk-free rate. As in Jondeau and Rockinger (2003), we classify months where

skewness and kurtosis do not exist in the highest quartile.126 We then calculate the frequency of

joint realizations of skewness and kurtosis for the winners and losers portfolios. The frequency

matrices are given in Table III. For example, the value of 15.14 for skewness indicates that in

15.14% of the realizations, the winners’ skewness belongs to the lowest quartile, i.e. the win-

ners’ skewness is extremely low, whereas in the same month the losers’ skewness belongs to

the highest quartile, i.e. the losers’ skewness is extremely high.

Table III. Comovements of Conditional Skewness and Kurtosis
This table shows frequency matrices for conditional skewness and conditional kurtosis of the winners
and losers portfolios, where we subtract the risk-free rate from the winners and losers portfolios. The
left matrix shows results for conditional skewness, whereas the right matrix shows results for conditional
kurtosis. Winners(1) (Losers(1)) denotes the quartile when conditional skewness or conditional kurtosis
takes a value in the lowest quartile of the winners (losers) portfolio. Winners(4) (Losers(4)) denotes
the quartile when conditional skewness or conditional kurtosis takes a value in the highest quartile of
the winners (losers) portfolio. Months when conditional skewness and conditional kurtosis do not exist
belong to the highest quartile.

Skewness Kurtosis

Losers(1) Losers(2) Losers(3) Losers(4) Losers(1) Losers(2) Losers(3) Losers(4)

Winners(1) 0.73 2.72 6.44 15.14 17.59 5.80 1.36 0.27
Winners(4) 1.81 6.80 9.34 6.98 5.89 11.51 5.98 1.54
Winners(3) 6.71 10.06 6.71 1.54 1.27 6.17 11.24 6.35
Winners(4) 15.78 5.35 2.54 1.36 0.27 1.45 6.44 16.86

The results of Table III for skewness resemble the result of Jondeau and Rockinger (2003,

Table 8) but with a transposed frequency matrix. That is, we find that periods of a low skewness

of the winners portfolio occur simultaneously with periods of a high skewness of the losers

portfolio, whereas Jondeau and Rockinger (2003) find that periods of a low skewness typically

126We also classified a non-existing skewness in the lowest quartile, but found quite similar results.
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occur simultaneously for different equity indices.127 An investor who is long in the winners

and short in the losers is concerned about a contemporaneous occurrence of a negative skew-

ness of the winners and a positive skewness of the losers portfolio. Similarly, periods of a high

skewness for the winners portfolio occur simultaneously with periods a low skewness for the

losers portfolio. The extremely high elements (1,4) and (4,1) imply that large realizations of the

opposite sign tend to occur simultaneously for the skewness. The off-diagonal elements of the

skewness matrix sum up to 50.32%, which is significantly higher than the 25% that would hold

if there were no correlation between the realizations of the winners’ and losers’ skewness. This

indicates that large negative returns of the winners portfolio coincide with large positive returns

of the losers portfolio. Hence, buying winners and selling losers results in a portfolio with a

highly time-varying and extreme skewness, which is a main driver of the momentum crashes.

In contrast, the diagonal elements sum up to only 15.6%. Thus, extreme realizations in the same

quartile tend to occur only very rarely, i.e. an extremely negative skewness of the winners port-

folio is only rarely compensated by shorting losers with an extremely negative skewness. This

result illustrates the source of the high left tail risk of the momentum portfolio and the momen-

tum crashes. Results for the comovement of the winners’ and losers’ kurtosis are also different

to the findings of Jondeau and Rockinger (2003). We find that the conditional kurtosis of the

winners and losers portfolios is highly related, whereas Jondeau and Rockinger (2003) find only

low comovements of the kurtosis for equity indices. In particular, as indicated by the elements

(1,1) and (4,4), periods of an extremely high or low kurtosis typically occur simultaneously.

The sum of the diagonal elements of 57.2% is significantly higher than the 25%, which would

hold if there were no relation between the kurtosis of the winners and losers. This shows that

the kurtosis of winners and losers typically comoves and that buying winners and selling losers

results in a highly time-varying and extreme kurtosis of the momentum portfolio. In total, the

winners’ and losers’ skewness and kurtosis are highly related and comove in directions that are

highly unfavorable for momentum investors who are long the winners and short the losers. This

high comovement of the winners’ and losers’ higher moments is the source of momentum’s

127The finding of Jondeau and Rockinger (2003) is in line with the observation that different assets typically
crash together. In contrast, our findings indicate that a crash of the winners is typically related to an extremely
positive return of the losers and vice versa.
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high crash risk.128

Figure VI. Monthly Conditional Skewness and Kurtosis of Winners and Losers. This figure shows
the monthly conditional skewness and conditional kurtosis for the winners and losers portfolios. The
returns of the winners and losers portfolios are in excess of the risk-free rate. The upper panels show
the conditional skewness and conditional kurtosis for the winners portfolio. The lower panels show
the conditional skewness and conditional kurtosis for the losers portfolio. Months where skewness or
kurtosis do not exist are marked with an x.

The results of Table III are also visualized in Figure VI that shows the conditional skewness

and kurtosis of the winners and losers portfolios. Both portfolios are again in excess of the risk-

free rate. This figure shows that the conditional skewness of the winners is mostly negative,

whereas the conditional skewness of the losers is mostly positive. Hence, buying winners and

selling losers translates into a portfolio with a highly negative skewness. In line with Table

III, months where the winners’ skewness is extremely negative typically coincide with months

where the losers’ skewness is highly positive. Furthermore, as in Table III, the conditional

kurtosis of winners and losers comoves, especially in periods with extreme realizations, i.e.

periods of an extremely high or extremely low kurtosis of the winners and losers portfolios

typically occur simultaneously. For both portfolios, conditional kurtosis is highly time-varying,

sometimes takes extreme values and sometimes does not exist.
128Due this unfavorable comovement of momentum’s higher moment risk, momentum’s risk could also be man-

aged by separately managing the winners and losers portfolios’ risk. This approach is examined in Rickenberg
(2020c).
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2.6.2 Random Walk Hypothesis

In this section, we test if momentum returns follow a random walk. If the random walk hy-

pothesis holds, monthly volatility can simply be obtained by using the SRTR, i.e. multiplying

daily volatility by
?
h. Similarly, monthly VaR and CVaR can then also be calculated as in

Equations (2.4.10) and (2.4.11). Further, the method used in Moreira and Muir (2017), Barroso

and Santa-Clara (2015) and Barroso and Maio (2018) is also based on the assumption that the

momentum returns follow a random walk. If the random walk hypothesis is rejected, more ad-

vanced models are needed to manage momentum’s risk. We follow Lo and MacKinlay (1988)

and use a variance ratio test to test the random walk hypothesis for the momentum portfolio.

The variance ratio test is shortly summarized in Appendix C. Similar tests of the random walk

hypothesis are also shown in Hsieh (1993) and Saadi and Rahman (2008).129

Table IV. Variance Ratio Test
This table show results for the Variance Ratio test of Lo and MacKinlay (1988). Panel A uses daily
returns as base period, whereas Panel B uses weekly returns as base period. Bold entries mark values
that are higher than 1.96.

Panel A: Daily Returns

Start End nobs Jr � 1 z1 Mr � 1 z2 z3

19261103 20181210 24276 2.424 35.076 2.206 36.841 15.943
19261103 19701027 12138 2.269 22.111 1.930 20.073 9.244
19701028 20181210 12138 2.763 30.702 2.799 38.841 18.240

Panel B: Weekly Returns

Start End nobs Jr � 1 z1 Mr � 1 z2 z3

19261108 20181214 4856 1.645 18.342 1.477 17.783 6.590
19261108 19701029 2428 1.693 13.948 1.428 11.275 4.138
19701105 20181214 2428 1.564 11.355 1.553 14.577 6.371

Results for the variance ratio test are given in Table IV. Panel A uses daily returns as base

period against monthly returns, i.e. it is tested if scaling up daily volatility by
?

21 is suffi-

cient to obtain monthly volatility. As in Lo and MacKinlay (1988), we additionally split the

observed time period into two subperiods. Clearly, both variance ratios are significantly dif-
129Engle (2011, Sec. 4) also presents a similar test that can be applied to test if models that are fitted to daily data

are able to capture the long-term skewness, e.g. skewness of monthly returns. This test compares the skewness of
monthly returns and simulated returns as described in Section 2.4. Engle (2011) finds that asymmetric conditional
volatility models, like the GJR-GARCH model, are able to capture a part of the long-term skewness. This is
similar to the finding of Adrian and Rosenberg (2008) that the short-run volatility of an EGARCH model can
capture skewness risk of monthly returns.
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ferent from one, indicating that the random walk hypothesis does not hold for the momentum

returns. The outcomes of z1, z2 and z3 clearly reject the random walk hypothesis for all tests

and (sub)periods when daily data are used as base period, as done in managing momentum’s

monthly risk. However, we find higher values compared to Lo and MacKinlay (1988). There

are several possible explanations for this finding. First, Lo and MacKinlay (1988) show that the

random walk hypothesis is clearly rejected for smaller firms, whereas the hypothesis cannot be

rejected for all subperiods for larger firms. Thus, the evidence against the random walk hypoth-

esis is much stronger for small-sized firms, and hence also for the momentum portfolio, since

the momentum portfolio is typically invested in small-sized firms as summarized in Appendix

A. For that reason, we should expect higher values for the momentum portfolio compared to the

findings of Lo and MacKinlay (1988). Second, Lo and MacKinlay (1988) find that the values

of the test statistic increase when the base observation period is lowered. Since we use daily

data, opposed to weekly data as in Lo and MacKinlay (1988), we would expect significantly

higher values. For a better comparison and since Lo and MacKinlay (1988) argue that using

daily data results in biased estimates due to effects like non-trading, bid-ask spread and asyn-

chronous prices, we repeat the procedure above by using weekly returns as base period. That is,

we use the variance ratio test based on variances calculated with weekly and monthly returns.

If returns follow a random walk, the variance calculated with monthly data should be h � 4

times higher than the variance calculated with weekly data. Results for this test are given in

Panel B. As expected, the values for z1, z2 and z3 are lower than for the test when daily data

are used as base period. However, the random walk hypothesis is still rejected for all tests and

subperiods. Further, similar to Lo and MacKinlay (1988), we find higher values of z2 compared

to z3 and that the outcomes of the variance ratio test varies when different periods are tested.

As a conclusion, the results of the variance ratio test give strong evidence against the random

walk hypothesis. Consequently, managing momentum’s risk based on the RV model of Barroso

and Santa-Clara (2015) should deliver inferior results compared to more advanced models that

reflect the term-structure of risk.
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2.6.3 Accuracy of Risk Targeting Strategies

We next test if the different estimation models are able to target a certain level of volatility

over time. In particular, we assess if more advanced models are more successful in targeting

a constant volatility than the simple RV model. Further, we examine the importance of incor-

porating higher moments when the portfolio’s volatility is targeted. Taylor (2005) finds that

models that incorporate information on higher moments produce more accurate volatility fore-

casts than standard volatility models. Moreover, we are interested in the question if switching

between volatility and CVaR targeting has any influence on the ability of targeting a constant

level of volatility. Accurately targeting a constant level of portfolio risk over time is impor-

tant for several reasons. For example, Bollerslev et al. (2018) show that a volatility targeting

investor achieves higher utility gains from more accurate volatility models.130 Further, risk-

averse investors are willing to pay high fees for insurance against a changing volatility. Thus,

risk-averse investors benefit from a more constant volatility (Adrian and Rosenberg, 2008, Ang

et al., 2006b, Bollerslev and Todorov, 2011). This holds especially for practitioners who use

long-short strategies. Barroso and Santa-Clara (2015, p. 116) write that “[r]unning a long-short

strategy to have constant volatility is closer to what real investors (as hedge funds) try to do

than keeping a constant amount invested in the long and short legs of the strategy.” Further-

more, a stabilization of the portfolio volatility is typically related to a lower tail risk (Dreyer

and Hubrich, 2019). Rickenberg (2020b, Sec. 4) summarizes further reasons why it is impor-

tant to test for a constant risk of risk targeting strategies.

To test the accuracy of volatility targeting, we use several testing procedures that are fre-

quently used in the academic literature, namely the DM-test of Diebold and Mariano (1995), the

RC-test of White (2000) and Sullivan et al. (1999), the SPA-test of Hansen and Lunde (2005)

and Hansen (2005), the stepwise RC-test of Romano and Wolf (2005), the stepwise SPA-test of

Hsu et al. (2010), the FDR approach of Barras et al. (2010) and Bajgrowicz and Scaillet (2012)

and the MCS of Hansen et al. (2003) and Hansen et al. (2011). The methods to assess the ac-
130Bollerslev et al. (2018) conclude that “the investor’s utility is directly related to the volatility: the investor

achieves the maximum utility by successfully targeting a constant risk level, while the utility decreases with the
volatility-of-volatility. Hence, risk models that help the investor achieve more accurate volatility forecasts are
associated with higher levels of utility.”
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curacy of volatility targeting are summarized in Appendix D. In particular, these tests cannot

only be applied to assess the accuracy of volatility targeting. For example, Hansen (2005, Ex-

ample 2) suggests that the SPA-test can be applied to backtest the accuracy of VaR forecasts.

Kole et al. (2017) use the DM-test and the MCS to assess the accuracy of h-day VaR forecasts.

Further, the methods can also be used to assess the performance of funds (Barras et al., 2010)

and technical trading rules (Bajgrowicz and Scaillet, 2012, Hsu et al., 2010, Hsu and Kuan,

2005, Sullivan et al., 1999). Similarly, Goyal and Wahal (2015) use the test of Romano and

Wolf (2005) to assess the performance of different momentum strategies. Moreover, Kirby and

Ostdiek (2012), Taylor (2014), Bollerslev et al. (2018), DeMiguel et al. (2009b), Cederburg

et al. (2020) and Rickenberg (2020b) use similar approaches to test if trading strategies produce

significant utility gains. We will also use these tests to test for significant utility gains in Section

2.6.5.

Results of the tests are given in Table V, where we only show results for the volatility

models, the CVaR models and the models that switch between volatility and CVaR targeting for

only one crash indicator and the EWMA model. The tests show that more advanced volatility

models, i.e. models based on Equation (2.3.7) and the HAR model, typically achieve a more

constant volatility than the simple RV model. The models that use the past squared monthly

return to forecast next month’s volatility, i.e. the monthly EWMA model and the model of

Drost and Nijman (1993), are the least accurate volatility models. This shows that incorporating

higher frequency data to forecast monthly volatility increases the accuracy of the forecasting

model. The CVaR models are less accurate in targeting a constant level of volatility. This is in

line with Rickenberg (2020b) who also finds that an investor who wants to achieve a constant

volatility over time should directly manage volatility. Interestingly, although managing CVaR is

less successful in targeting a constant level of volatility than managing volatility, the switching

strategies that manage momentum’s CVaR in crash periods also do a good job and are typically

more accurate than the RV model, as long as a conditional CVaR model is used.

As expected, results for the different backtesting procedures are quite robust, but some

tests produce different results. For example, the DM-test favors the strategies that switch be-
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Table V. Testing the Accuracy of Volatility Targeting
This table shows results of the tests of predictive accuracy presented in Appendix D. L

norm

k � 1
n

°n
t�1 Lk,t

1
n

°n
t�1 L0,t

defines
the average loss of model k normalized by the loss of model 0 and is given in percent. zDM stands for the test
statistic of the Diebold and Mariano (1995) test. The null-hypothesis of equal predictive ability at a test level of
10% is rejected for |zDM | ¡ 1.64, where positive values indicate that model k is more accurate than the RV model.
Bold numbers of zDM indicate that the model is significantly superior to the RV model. pRC and pSPA stand for
the p-value of the RC-test of White (2000) and Sullivan et al. (1999) as well as the SPA-test of Hansen (2005) and
Hansen and Lunde (2005). Bold numbers of these tests indicate that the null-hypothesis that model k is the best
model cannot be rejected at a test level of 10%. pR and pSQ stand for the p-values of the MCS of Hansen et al.
(2003) and Hansen et al. (2011). Step-RC, Step-RCst, Step-SPA, Step-SPAst denote the step in which a model
is selected by the stepwise approaches of Romano and Wolf (2005) and Hsu et al. (2010). st indicates that the
studentized version is used. FDR denotes the portfolio that targets an FDR� of 10%. All p-values are given in
percent. switch stands for the switching strategy that switches between the EWMA model and the CVaR models.

Model L
norm
k zDM pRC pSPA pR pSQ Step-

RC
Step-
RCst

Step-
SPA

Step-
SPAst

FDR

RV 100.00 - 35.32 0.42 4.42 5.43 0 0 0 0 -
HAR 94.34 1.08 64.85 12.17 33.27 15.19 0 0 0 0 12
EWMA-SRTR 84.67 3.27 100.00 100.00 100.00 100.00 1 1 1 1 1
GARCH-SRTR 95.12 0.88 49.93 15.74 33.27 15.19 0 0 0 0 13
GJR-SRTR 93.11 1.21 57.08 26.04 33.46 22.52 0 0 0 0 9
GARCH 90.65 1.75 85.98 32.92 33.84 25.78 0 0 0 1 8
GJR 92.92 1.06 69.57 22.81 33.46 22.52 0 0 0 0 10
Drost-Nijman 115.99 -1.74 3.92 0.02 0.49 1.26 0 0 0 0 0
EWMA Monthly 208.14 -5.66 0.00 0.00 0.00 0.00 0 0 0 0 0

CVaR HS 222.33 -6.71 0.00 0.00 0.00 0.00 0 0 0 0 0
CVaR-Skt-unc 227.23 -5.55 0.00 0.00 0.00 0.00 0 0 0 0 0
CVaR-GARCH-SRTR 123.38 -2.53 0.34 0.00 0.00 0.00 0 0 0 0 0
CVaR-GJR-SRTR 129.20 -2.81 1.33 0.00 0.05 0.09 0 0 0 0 0
CVaR-GARCH-Skt 133.58 -2.97 0.00 0.00 0.00 0.00 0 0 0 0 0
CVaR-GJR-Skt 155.42 -4.36 0.00 0.00 0.00 0.00 0 0 0 0 0
CVaR-GARCH-FHS 144.02 -3.21 0.00 0.00 0.00 0.00 0 0 0 0 0
CVaR-GJR-FHS 172.02 -4.51 0.00 0.00 0.00 0.00 0 0 0 0 0

CVaR HS-switch 93.84 0.96 61.27 5.29 33.27 15.19 0 0 0 0 11
CVaR Uncond-switch 101.10 -0.11 33.06 2.98 20.66 9.00 0 0 0 0 0
CVaR GARCH-switch 86.96 2.50 95.18 38.48 35.03 33.24 0 1 1 1 4
CVaR GJR-switch 87.60 2.30 93.01 25.14 33.84 25.78 0 1 1 1 6
CVaR GARCH Skt-switch 87.72 2.51 92.96 12.61 33.84 25.78 0 1 1 1 5
CVaR GJR Skt-switch 89.17 2.17 88.01 7.68 33.46 22.52 0 1 1 1 7
CVaR GARCH FHS-switch 85.98 2.95 97.80 51.83 35.03 34.54 0 1 1 1 2
CVaR GJR FHS-switch 87.34 2.67 94.24 14.07 33.84 25.78 0 1 1 1 3

tween volatility and CVaR targeting over the RV model. Furthermore, the EWMA-SRTR and

GARCH(1,1) model is also successful in targeting a constant level of volatility and clearly out-

performs the RV model. The remaining daily data based volatility models are also more accurate

than the RV model, indicated by a positive value of the test statistic, but the higher accuracy is

not statistically significant for these models. The RC-test also favors advanced volatility mod-

els and the switching strategies, but fails to reject inferior models. In contrast, the SPA-test

and the MCS reject more inferior models, especially the strategies that switch to an uncondi-

tionally managed CVaR strategy and the RV approach. This result is in line with the findings

of Hsu and Kuan (2005), Hansen (2005) and Hansen and Lunde (2005) that these approaches
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have more power in detecting inferior models than the RC-test. The stepwise approaches also

favor the strategies that switch between volatility and CVaR targeting, as long as CVaR is man-

aged by a conditional model. Further, the EWMA and GARCH(1,1) model are also picked by

this approach. As expected, and motivated by the Monte Carlo Simulation of Bajgrowicz and

Scaillet (2012), the FDR approach detects more superior models than the stepwise approach

of Romano and Wolf (2005). The FDR approach chooses all switching strategies, except for

the strategy that switches to the unconditionally managed skewed t distribution. Within the

volatility models, all models that are based on daily returns are picked by the FDR approach.

Interestingly, Table V shows that the SRTR rule’s performance is generally very good, espe-

cially for the EWMA-SRTR model. A possible explanation for this finding could be that, due

to the high non-normality of momentum returns, the advanced volatility models suffer under

high estimation risk. An estimation error in the daily specification magnifies when monthly

volatility is estimated based on an iterative approach. Hence, estimating monthly volatility with

the SRTR is more robust against estimation risk compared to more advanced approaches. This

conjecture also fits well to the good performance of the EWMA, which is much less influenced

by estimation risk than the GARCH or GJR-GARCH model.

The FDR approach additionally provides estimates of the fraction of models that are equally,

less or more accurate than the benchmark RV model. For that reason, we repeat the FDR

approach for the RV model, the volatility models that use daily data and the models that switch

between the EWMA model and the dynamic CVaR managed strategies. For these models, and

by choosing the RV model as benchmark, the estimates of π0, π
�
A and π�A are given by 0, 0

and 1, respectively. This shows that all of these models outperform the benchmark RV model

of Barroso and Santa-Clara (2015) in providing a more accurate portfolio volatility over time.

Thus, as expected, more advanced risk models are more successful in targeting a constant level

of risk for the momentum portfolio. In contrast, the RV model of Barroso and Santa-Clara

(2015), which is based on the random walk hypothesis, is significantly less accurate.

In total, Table V shows that more advanced volatility models are more successful in targeting

a constant level of portfolio volatility. However, managing the momentum portfolio’s CVaR
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over time, and thus incorporating higher moments, does not improve the accuracy. In contrast,

managing CVaR only in times when a momentum crash is more likely additionally improves

the accuracy of the volatility targeting strategy. In the next two sections, we will assess if this

higher forecasting accuracy is also related to a higher performance and utility as it is found by

Bollerslev et al. (2018).

2.6.4 Performance of Risk Targeting Strategies

We next assess the performance of the momentum portfolio and the strategies that target a con-

stant level of volatility, VaR and CVaR. Performance results for all portfolios are given in Table

VI, which shows that risk targeting significantly increases the return while simultaneously risk,

especially in the left tail, is reduced compared to the non-managed momentum strategy. This

can be seen by the Sharpe Ratio that is higher for all risk targeting strategies. Further, risk tar-

geting significantly reduces the vast crash risk of the momentum portfolio. This can be seen by

a significantly higher (less negative) skewness, lower kurtosis, lower drawdown and lower min-

imum monthly return. Thus, the risk-managed momentum strategies are much more appealing

for investors who have preferences for higher moments and/or are loss-averse. For example,

the maximum drawdown of the momentum strategy is 99.31%, i.e. a momentum investor could

loose almost all the invested money in a certain period. However, the drawdown can signifi-

cantly be reduced by risk targeting. For example, the RV managed strategy exhibits a maximum

drawdown of only 63.98%, which can further be lowered to only 34.24% by targeting a constant

level of CVaR.131 Since a high drawdown reduction is a main driver of a strategy’s long-term

performance, all risk targeting strategies significantly increase momentum’s (risk-adjusted) re-

turn. Interestingly, the simple RV model of Barroso and Santa-Clara (2015) and Moreira and

Muir (2017) does a quite good job in increasing momentum’s risk-adjusted performance. This

is in line with Poon and Granger (2003) who review many studies on volatility modeling and

find surprisingly good results for simple volatility models. Similarly, Figlewski (1997, p. 11)

finds that simplified forecasting models can be very successful, especially when longer-term

131As mentioned earlier, mitigating drawdowns is not only important for loss-averse investors, but is also crucial
to achieve a good long-term performance. For example, drawdowns of 99.31%, 63.98% and 34.24% have to be
compensated by returns of 14,392.75%, 177.62% and 52.07%, respectively.
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volatility is forecasted. As a result, the Sharpe Ratio of the RV managed momentum portfolio is

significantly higher than the Sharpe Ratio of the non-managed strategy indicated by a value of

10.08 of the Jobson and Korkie (1981) test statistic.132 However, the risk-adjusted performance

can additionally be increased by using more advanced volatility models. This observation is in

line with the findings of Bollerslev et al. (2018) that a higher forecasting accuracy coincides

with higher performance gains. The highest Sharpe Ratios are typically achieved by the mod-

els that are found to be more accurate in Table V. Three of the conditional volatility models

produce significantly higher Sharpe Ratios than the RV managed strategy, indicated by a Job-

son and Korkie (1981) test statistic higher than 1.64. Interestingly, the iterated GARCH and

GJR-GARCH models, given in Equations (2.3.11) and (2.3.13), produce a lower risk-adjusted

performance than the simple SRTR. Nevertheless, this result is again in line with the findings

of the previous section, where we find that the simple SRTR is also more successful in targeting

a constant level of volatility than the iterated models. This higher forecasting accuracy of the

SRTR compared to the RV model and the iterated models is now related to an enhanced risk-

return profile. As stated above, a possible explanation for the bad performance of the iterated

models could be that the conditional volatility models, although they work well for one-day

ahead forecasts, are not designed to forecast many steps ahead (Figlewski, 1997, p. 13). Hence,

they deliver poor results when portfolio weights are re-adjusted monthly. A similar result was

also found by Han (2005). Furthermore, the iterated models are much more influenced by es-

timation risk, which should be particularly high for portfolios with highly non-normal returns,

such as the momentum portfolio.

As expected, the downside risk targeting strategies produce a significantly lower mean return

than the volatility managed strategies, but, on the other hand, also take less risk in terms of a

lower volatility, lower drawdown and a higher minimum return. This finding is in line with

Rickenberg (2020b) who finds that downside risk targeting is successful in mitigating extremely

negative returns, but is too conservative in uptrending markets. Consequently, since momentum

132The test of Jobson and Korkie (1981) tests if a strategy produces a significantly higher Sharpe Ratio than
a certain benchmark model, where we use the corrected version of the test that is also used by DeMiguel et al.
(2009b, Footnote 16) and Cederburg et al. (2020). We choose the RV managed strategy as benchmark strategy to
test for differences in the Sharpe Ratio.
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Table VI. Performance Results of Risk Targeting
This table shows the performance results of all risk targeting strategies and the momentum portfolio
over the whole period. Return and Vola correspond to the annualized return and volatility, respectively.
Skew and Kurt denote the realized skewness and kurtosis. SR stands for the annualized Sharpe Ratio.
zJK stands for the corrected test statistic of the Jobson and Korkie (1981) test. MDD stands for the
maximum drawdown. VaR and CVaR are the in-sample VaR and CVaR, which are estimated by the
unconditional skewed t distribution as given in Equations (2.4.10) and (2.4.11), respectively. Calmar
denotes the ratio of the annualized return and the maximum drawdown. Min and Max stand for the
minimum and maximum monthly return, respectively. Return, Vola, MDD, VaR, CVaR, Min and Max
are given in percent. Bold numbers mark a Jobson and Korkie (1981) test that is higher than 1.64.

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum 4.11 26.31 -4.38 43.59 0.156 -10.08 99.31 21.34 41.79 0.041 -89.70 22.24

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
HAR 13.28 17.74 -1.31 10.21 0.748 -0.99 62.57 13.96 21.22 0.212 -42.35 18.29
EWMA-SRTR 18.15 19.61 -1.26 11.03 0.925 4.25 65.66 14.13 19.70 0.276 -50.35 21.78
GARCH-SRTR 16.98 19.09 -1.26 11.46 0.890 2.50 57.73 13.84 19.57 0.294 -50.49 18.76
GJR-SRTR 17.79 19.01 -1.25 11.94 0.936 3.56 58.67 13.41 18.75 0.303 -51.14 18.55
GARCH 13.87 17.92 -1.35 11.09 0.774 -0.24 56.56 13.82 20.56 0.245 -45.84 18.36
GJR 14.26 17.17 -1.36 12.22 0.830 1.22 56.09 12.84 18.77 0.254 -45.83 18.16
Drost-Nijman 12.36 17.14 -1.33 11.51 0.721 -1.44 51.89 13.70 21.91 0.238 -41.39 19.92
EWMA Monthly 7.52 12.62 -1.80 14.08 0.596 -3.32 51.70 10.38 18.80 0.145 -28.68 16.65

VaR HS 8.43 13.24 -1.58 12.08 0.636 -3.04 48.04 10.89 18.56 0.175 -29.11 15.20
VaR-Skt-unc 9.13 14.39 -1.64 12.81 0.634 -3.06 43.33 11.66 20.33 0.211 -32.40 14.82
VaR-GARCH-SRTR 13.47 15.64 -1.10 9.54 0.861 1.84 45.02 11.69 17.24 0.299 -37.72 16.75
VaR-GJR-SRTR 14.12 15.93 -1.12 9.82 0.887 2.32 46.39 11.67 17.09 0.304 -38.71 17.09
VaR-GARCH-Skt 11.91 15.40 -1.20 9.56 0.773 -0.07 45.91 12.06 18.62 0.259 -35.26 16.36
VaR-GJR-Skt 11.31 14.35 -1.41 11.90 0.788 0.31 49.56 10.91 16.55 0.228 -36.59 15.90
VaR-GARCH-FHS 11.19 15.39 -1.48 11.56 0.727 -1.14 52.94 12.16 18.77 0.211 -39.40 15.94
VaR-GJR-FHS 10.65 14.36 -1.77 15.04 0.742 -0.68 55.77 10.97 16.75 0.191 -40.34 15.95

CVaR HS 6.81 11.41 -1.84 14.46 0.597 -3.38 45.59 9.47 16.51 0.149 -26.17 14.25
CVaR-Skt-unc 7.62 11.46 -1.53 12.31 0.665 -2.05 34.24 9.27 16.19 0.223 -24.60 13.11
CVaR-GARCH-SRTR 11.87 14.13 -1.22 10.32 0.840 1.45 42.29 10.66 15.72 0.281 -35.48 14.38
CVaR-GJR-SRTR 12.60 14.55 -1.25 10.68 0.866 1.94 44.30 10.74 15.74 0.284 -36.76 14.39
CVaR-GARCH-Skt 10.75 13.61 -1.15 9.32 0.790 0.39 41.40 10.65 16.46 0.260 -30.55 15.28
CVaR-GJR-Skt 9.89 12.71 -1.39 12.03 0.778 0.18 45.59 9.78 15.05 0.217 -32.36 15.36
CVaR-GARCH-FHS 9.53 13.34 -1.56 12.29 0.714 -1.19 48.71 10.55 16.36 0.196 -34.86 15.65
CVaR-GJR-FHS 8.70 12.40 -1.94 17.10 0.701 -1.27 52.22 9.55 14.93 0.167 -36.24 15.36

crashes are very rare and short-lived events, whereas the momentum strategy trends upwards

most of the time, downside risk targeting produces lower returns in the long-run. For that

reason, the Sharpe Ratios of the downside risk targeting strategies are lower than the Sharpe

Ratios of the strategies managed by a conditional volatility model. Generally, by construction,

timing volatility instead of timing downside risk should lead to a higher Sharpe Ratio (Jondeau

and Rockinger, 2012, p. 108). Therefore, other performance evaluation methods that take non-

normalities into account should be considered. We will come back to this point in the next

section.

Table VI also shows that the conditional risk models exhibit higher Sharpe Ratios than the

unconditional models. This result is in line with the findings of Rickenberg (2020b) who also
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finds that conditional models outperform unconditional models when risk targeting is applied to

long-only equity portfolios. Moreover, as stated above, this result is again in line with Boller-

slev et al. (2018) who show that more accurate risk models also produce higher risk-adjusted

returns. Nevertheless, even the conditionally managed VaR and CVaR targeting strategies pro-

duce Sharpe Ratios that are only slightly higher than the Sharpe Ratio of the RV managed

momentum portfolio. As mentioned earlier, a possible explanation for this finding could be that

these strategies are too conservative in the long-run, which can be solved by switching between

volatility and CVaR targeting as presented in Section 2.5.

Table VII. Performance Results of Risk Targeting: 01.01.1938-01.01.1943
This table shows the performance results of the momentum portfolio, the volatility targeting strategies
and the CVaR targeting strategies for the period 01.01.1938-01.01.1943. Return and Vola correspond to
the annualized return and volatility, respectively. Skew and Kurt denote the realized skewness and kurto-
sis. MDD and ∆MDD stand for the maximum drawdown and the reduction of the maximum drawdown
with respect to the momentum portfolio. VaR and CVaR are the in-sample VaR and CVaR, which are
estimated by the unconditional skewed t distribution as given in Equations (2.4.10) and (2.4.11), respec-
tively. Min and Max stand for the minimum and maximum monthly return, respectively. Return, Vola,
MDD, ∆MDD,VaR, CVaR, Min and Max are given in percent.

Model Return Vola Skew Kurt MDD ∆MDD VaR CVaR Min Max

Momentum -34.57 51.38 -3.760 22.430 90.39 - 46.30 95.75 -89.70 22.24

RV -11.64 28.44 -3.705 22.031 49.34 45.42 20.49 42.28 -49.34 15.03
HAR -7.76 23.81 -3.959 24.200 42.35 53.15 18.81 38.82 -42.35 10.70
EWMA-SRTR -10.25 28.93 -3.813 22.471 50.35 44.30 22.13 45.80 -50.35 12.88
GARCH-SRTR -7.71 28.21 -4.091 25.213 50.49 44.14 19.56 40.23 -50.49 12.07
GJR-SRTR -7.50 28.31 -4.199 26.152 51.14 43.42 18.82 38.64 -51.14 11.93
GARCH -7.45 25.29 -4.190 26.200 45.84 49.29 18.17 37.41 -45.84 11.38
GJR -7.13 24.96 -4.360 27.572 45.83 49.30 17.03 35.03 -45.83 10.92
Drost-Nijman -7.32 22.66 -4.212 26.699 41.39 54.21 17.95 37.07 -41.39 10.88
EWMA Monthly -5.10 15.49 -4.406 27.904 28.73 68.21 11.97 24.75 -28.68 7.27

CVaR HS -4.17 12.74 -4.521 28.524 23.73 73.74 9.46 19.57 -23.73 5.51
CVaR-Skt-unc -3.63 11.96 -3.700 21.776 21.18 76.57 10.37 21.45 -20.74 5.67
CVaR-GARCH-SR -5.46 19.04 -4.581 28.961 35.48 60.75 13.00 26.82 -35.48 7.09
CVaR-GJR-SR -5.42 19.41 -4.792 30.829 36.76 59.34 12.68 26.13 -36.76 6.91
CVaR-GARCH-Skt -4.27 16.89 -4.167 25.939 30.55 66.20 12.09 24.91 -30.55 7.67
CVaR-GJR-Skt -4.79 17.14 -4.713 30.473 32.36 64.20 10.82 22.28 -32.36 7.42
CVaR-GARCH-FHS -5.85 18.84 -4.475 28.091 34.86 61.43 13.73 28.35 -34.86 7.29
CVaR-GJR-FHS -6.13 18.95 -4.903 31.812 36.24 59.91 12.42 25.64 -36.24 7.24

Results so far indicate that tail risk targeting is more successful in mitigated momentum

crashes than the volatility managed strategies. To further assess the drawdown protection abil-

ity of tail risk targeting, we next compare the performance of the momentum portfolio, the

volatility managed strategies and the CVaR managed strategies during a momentum crash. Ta-

ble VII shows the performance of these strategies for the period from 01.01.1938 to 01.01.1943,

i.e. a period of five years which is marked by a severe momentum crash. The momentum crash
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can easily be seen by the performance of the non-managed momentum strategy. The momentum

portfolio exhibits an annualized return and volatility of�34.57% and 51.38%, respectively. Fur-

ther, the maximum drawdown of 90.39% and the minimum monthly return of �85.70% shows

that a momentum investor would have lost almost all the invested money during this period. In

contrast, the volatility managed strategies successfully reduce the losses during this period and

also take significantly less risk. Although the simple RV model is again doing a quite good job,

the risk-return profile can additionally be improved by using advanced volatility models. This

shows that the relation between forecasting accuracy, as shown in Table V, and performance

gains particularly holds during adverse market conditions. Nevertheless, the risk-return profile

during a momentum crash can further be improved by using a strategy that manages momen-

tum’s CVaR. The CVaR targeting strategies produce higher returns with significantly lower risk

compared to the RV managed strategy. For example, by using CVaR targeting, the loss can be

reduced to only �3.63% with a volatility of only 11.96%, whereas the RV model exhibits an

annualized return and volatility of �11.64% and 28.44%. This result shows that CVaR targeting

works well in crash periods but does not result in an overall enhanced risk-return profile, since

the CVaR targeting strategy is too conservative in uptrending markets. This observation is also

highlighted in Table VIII, which shows the performance of the momentum portfolio, the volatil-

ity managed portfolios and the CVaR managed portfolios on months when the crash indicator,

described in Section 2.5, indicates a crash (δt � 1) or a calm period (δt � 0). We only present

results for one crash indicator, but results for other crash indicators are quite similar. Results

for the months when a momentum crash is likely are given in Panel A. The crash indicator

is doing a quite good job in indicating crash months, highlighted by an annualized return of

�50.83% of the momentum portfolio. Furthermore, the high negative return is accompanied by

an extremely high volatility of 57.60%. The RV managed strategy again delivers a significantly

less negative performance with lower risk, but the performance can still be improved by using

more advanced volatility models. However, similar to Table VII, the loss can further be reduced

by managing the portfolio’s CVaR, where these strategies additionally take less risk. Panel B

shows results for the months when a momentum crash is less likely (δt � 0). As expected, with
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an annualized return of 14.01%, the non-managed momentum portfolio performs well in these

months. Interestingly, this return can further be increased by managing the portfolio’s risk.

This is in line with Barroso and Santa-Clara (2015) who also find that risk targeting delivers

an enhanced performance not only in crash periods but also in calm periods. The RV managed

strategy increases the annualized return to 20.11% without taking more risk. Further, this strat-

egy significantly reduces left tail risk of the non-managed momentum strategy. However, both

the return and the reduction of risk, especially in the left tail, can further be improved by using a

more advanced volatility model. In contrast, the CVaR targeting strategies produce significantly

lower returns but also take less risk. In terms of the Sharpe Ratio, the CVaR managed strate-

gies perform equally well to the RV managed strategy but slightly worse than the dynamically

managed volatility strategies. That is, only the dynamically managed target volatility strate-

gies produce a statistically higher Sharpe Ratio than the RV managed strategy in the months

with δt � 0. In total, Table VII confirms our earlier finding that CVaR targeting is superior

in months when a momentum crash is likely, but volatility targeting is superior in uptrending

periods, especially if an advanced volatility model is used. For that reason, we next assess the

performance of the strategies that switch between volatility and CVaR targeting as explained in

Section 2.5. We only report results for the strategies that switch between the EWMA model and

the CVaR models. Results for the strategies that use the RV model, the GARCH model or the

GJR-GARCH model as volatility model are quite similar.

Table IX shows the performance results of the strategies that switch between volatility and

CVaR targeting, where we use the three crash indicators based on the past market return, past

market volatility and expected momentum volatility as explained in Section 2.5. Additionally,

we examine the strategy that switches between the RV managed momentum and contrarian

portfolio. Table IX shows that all switching strategies, regardless of the used CVaR model and

crash indicator, significantly improve the risk-return profile by producing higher returns with

lower risk compared to the RV model of Barroso and Santa-Clara (2015). All strategies that

switch between volatility and CVaR targeting produce significantly higher Sharpe Ratios than

the RV managed strategy, indicated by very high values of the Jobson and Korkie (1981) test
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Table VIII. Performance Results of Risk Targeting on Crash and Non-Crash Months
This table shows in Panel A the performance of the momentum portfolio, the volatility managed strate-
gies and the CVaR managed strategies on months when the crash indicator indicates a crash (δt � 1) and
in Panel B the performance on months when the crash indicator does not indicate a crash (δt � 0). The
description of the columns is given in Table VI.

Panel A: Months with δt � 1

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum -50.83 57.60 -2.74 12.97 - - 99.94 70.62 132.60 -0.509 -89.70 18.97

RV -16.50 26.29 -3.04 17.08 - - 87.25 32.85 68.11 -0.189 -49.34 9.52
HAR -14.29 25.62 -2.18 11.03 - - 85.48 29.22 50.29 -0.167 -42.35 12.17
EWMA-SRTR -13.66 25.61 -3.13 19.25 - - 85.06 25.67 40.08 -0.161 -50.35 9.63
GARCH-SRTR -11.33 26.27 -2.84 17.82 - - 81.68 24.39 36.82 -0.139 -50.49 10.77
GJR-SRTR -10.90 26.26 -2.96 18.84 - - 80.58 23.94 36.01 -0.135 -51.14 10.86
GARCH -12.56 25.27 -2.54 14.47 - - 83.40 24.81 38.11 -0.151 -45.84 10.77
GJR -11.26 24.23 -2.81 16.96 - - 80.37 22.71 34.06 -0.140 -45.83 10.81
Drost-Nijman -15.20 24.61 -2.54 12.52 - - 85.76 32.51 66.67 -0.177 -41.39 11.03
EWMA Monthly -13.59 21.39 -1.66 7.62 - - 81.71 24.30 50.14 -0.166 -28.68 16.65

CVaR HS -11.39 17.05 -2.24 9.32 - - 74.58 23.15 47.73 -0.153 -23.73 6.11
CVaR-Skt-unc -9.08 14.69 -2.37 10.93 - - 64.99 17.52 36.19 -0.140 -21.20 7.13
CVaR-GARCH-SR -8.42 19.30 -2.54 15.10 - - 69.45 19.23 30.70 -0.121 -35.48 8.69
CVaR-GJR-SR -9.47 19.93 -2.63 15.34 - - 72.68 20.79 34.83 -0.130 -36.76 8.03
CVaR-GARCH-Skt -8.57 17.82 -2.31 12.14 - - 69.72 18.31 28.86 -0.123 -30.55 7.70
CVaR-GJR-Skt -8.87 17.67 -2.75 15.52 - - 70.03 17.29 26.53 -0.127 -32.36 7.62
CVaR-GARCH-FHS -10.96 20.72 -2.30 11.58 - - 78.18 21.36 32.88 -0.140 -34.86 9.10
CVaR-GJR-FHS -10.65 20.36 -2.70 14.53 - - 76.88 21.09 34.09 -0.139 -36.24 8.94

Panel B: Months with δt � 0

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum 14.01 18.83 -2.02 22.70 0.744 -5.71 59.95 14.59 24.23 0.234 -59.95 22.24

RV 20.11 18.43 -0.79 7.38 1.091 - 35.38 13.05 18.81 0.568 -35.38 19.29
HAR 17.17 16.33 -0.63 5.93 1.051 -0.71 32.44 11.87 17.20 0.529 -21.70 18.29
EWMA-SRTR 22.72 18.51 -0.54 5.19 1.227 3.68 33.75 12.53 16.86 0.673 -25.98 21.78
GARCH-SRTR 20.97 17.85 -0.48 4.91 1.175 1.94 30.65 12.23 16.80 0.684 -21.55 18.76
GJR-SRTR 21.84 17.75 -0.40 4.76 1.231 3.04 28.79 11.84 16.03 0.759 -21.68 18.55
GARCH 17.57 16.63 -0.63 5.59 1.056 -0.58 38.85 12.06 17.33 0.452 -21.39 18.36
GJR 17.81 15.93 -0.52 5.48 1.118 0.84 26.12 11.24 15.94 0.682 -21.17 18.16
Drost-Nijman 16.25 15.78 -0.52 6.65 1.030 -0.95 38.25 11.60 17.54 0.425 -22.58 19.92
EWMA Monthly 10.40 10.90 -1.07 11.13 0.954 -1.64 25.57 7.96 12.80 0.407 -25.57 12.41

CVaR HS 9.25 10.37 -1.26 13.12 0.892 -2.51 26.17 7.75 12.62 0.354 -26.17 14.25
CVaR-Skt-unc 9.84 10.88 -1.19 11.47 0.904 -2.43 24.60 8.03 13.26 0.400 -24.60 13.11
CVaR-GARCH-SR 14.61 13.23 -0.56 5.20 1.104 0.72 21.78 9.40 13.41 0.671 -16.86 14.38
CVaR-GJR-SR 15.61 13.59 -0.54 5.34 1.148 1.44 25.55 9.39 13.23 0.611 -19.72 14.39
CVaR-GARCH-Skt 13.35 12.87 -0.66 6.43 1.037 -0.49 25.20 9.38 14.05 0.530 -18.98 15.28
CVaR-GJR-Skt 12.41 11.84 -0.65 6.68 1.048 -0.16 24.87 8.53 12.68 0.499 -19.06 15.36
CVaR-GARCH-FHS 12.31 11.99 -0.66 5.88 1.026 -0.56 21.86 8.80 12.93 0.563 -17.49 15.65
CVaR-GJR-FHS 11.30 10.91 -0.69 6.64 1.036 -0.26 21.84 7.85 11.58 0.518 -17.57 15.36

statistic. In particular, by achieving a significantly higher (less negative) skewness and lower

kurtosis than the RV managed strategy, the switching strategies are successful in mitigating mo-

mentum’s crash risk. This reduction of left tail risk can also be seen by the maximum drawdown

and minimum monthly return. Thus, switching away from the volatility managed momentum

portfolio when a momentum crash is expected successfully reduces momentum’s crash risk.

Similarly, the RV managed strategy that switches between the momentum and the contrarian

strategy outperforms the RV managed momentum strategy. This holds especially since this ap-
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proach significantly reduces left tail risk. However, the strategy that switches to the contrarian

portfolio produces a higher Sharpe Ratio that is not statistically significant. Hence, switching to

CVaR targeting instead of switching to the contrarian portfolio is even more advantageous. The

reason for this finding can be seen in Figures IV and V. Although the crash indicator is doing

a good job in signaling a momentum crash, there are also many false signals where the mo-

mentum portfolio exhibits a positive return. Thus, the strategy that switches to the RV managed

contrarian portfolio is much more influenced by false signals of δt. Moreover, results of Table

IX indicate that this observation holds for all three crash indicators and not only for the market

return based indicator used in Figures IV and V. Generally, we find that all three crash indi-

cators produce quite similar results, which shows that our simple switching approach is quite

robust to the definition of the crash indicator.

As mentioned in Section 2.5, the crash indicator can also be defined based on more than one

momentum crash predictor. For that reason, Table X shows results for the RV managed strat-

egy and the strategies that switch between volatility and CVaR targeting for three other crash

indicators, that are combinations of the crash indicators used in Table IX. First, as examined

by Daniel and Moskowitz (2016) and Wang and Xu (2015), we use a crash indicator δt that

indicates a crash if previous market volatility is high and previous market returns is negative.

Second, we use an indicator that indicates a crash if previous market volatility is high or pre-

vious market return is negative. As can be seen in Figures IV and V, the past market return

successfully predicts most periods with extremely negative returns, extremely negative or non-

existing skewness and high or non-existing kurtosis. However, there are also momentum crash

periods that are not captured by the past market return alone. Therefore, defining a crash when

market volatility is high or market return is negative increases the probability of capturing all

momentum crashes. Third, we use a crash indicator that uses information from the market and

the momentum portfolio. This indicator indicates a crash if past market return is negative or

expected momentum volatility is high.133 In comparison to Table IX, we find that combining

several indicators delivers slightly better results. In particular, we find that combining informa-

133We also used other combination of the three indicators examined in Table IX. Since all combinations deliver
very similar returns, we only report three combinations. In the following tables and figures we only report results
for one crash indicator, but results are very robust when other crash indicators are chosen.
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Table IX. Performance Results of the Switching Strategies: Single Indicators
This table shows the performance results for the RV managed momentum portfolio and the switching
strategies. Panel A shows results for the crash indicator δt that equals one if past market volatility is
high. Panel B shows results for the crash indicator δt that equals one if past market return is negative.
Panel C shows results for the crash indicator δt that equals one if expected momentum volatility is high.
The description of the columns is given in Table VI.

Panel A: Market Volatility Crash Indicator

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
CVaR HS 17.49 18.39 -0.71 6.16 0.951 4.27 58.40 13.06 18.53 0.299 -26.17 21.78
CVaR-Skt-unc 17.76 18.13 -0.63 5.93 0.979 4.64 49.17 12.58 17.79 0.361 -25.98 21.78
CVaR-GARCH-SRTR 18.83 18.52 -0.76 6.76 1.017 5.71 52.19 12.91 17.71 0.361 -35.48 21.78
CVaR-GJR-SRTR 18.74 18.59 -0.79 7.04 1.008 5.57 53.28 13.03 17.97 0.352 -36.76 21.78
CVaR-GARCH-Skt 18.56 18.45 -0.68 6.01 1.006 5.36 51.59 13.00 17.98 0.360 -30.55 21.78
CVaR-GJR-Skt 18.41 18.28 -0.70 6.46 1.007 5.38 55.38 12.80 17.82 0.332 -32.36 21.78
CVaR-GARCH-FHS 18.29 18.74 -0.80 6.63 0.976 4.94 57.85 13.39 18.55 0.316 -34.86 21.78
CVaR-GJR-FHS 18.24 18.48 -0.84 7.27 0.987 4.93 61.22 13.07 18.25 0.298 -36.24 21.78
RV-Mom/Contrarian 17.04 19.57 0.59 10.46 0.871 0.60 39.52 12.97 18.39 0.431 -22.81 49.34

Panel B: Market Return Crash Indicator

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
CVaR HS 18.37 18.21 -0.65 5.94 1.008 5.56 43.24 12.72 18.07 0.425 -25.98 21.78
CVaR-Skt-unc 18.68 17.97 -0.58 5.81 1.039 5.97 33.94 12.24 17.28 0.550 -25.98 21.78
CVaR-GARCH-SRTR 18.87 18.52 -0.78 6.93 1.019 6.14 39.14 12.92 17.83 0.482 -35.48 21.78
CVaR-GJR-SRTR 18.71 18.61 -0.82 7.18 1.005 5.96 40.93 13.06 18.11 0.457 -36.76 21.78
CVaR-GARCH-Skt 18.77 18.30 -0.69 6.26 1.025 5.95 41.33 12.79 17.81 0.454 -30.55 21.78
CVaR-GJR-Skt 18.70 18.27 -0.73 6.64 1.023 6.06 43.06 12.68 17.73 0.434 -32.36 21.78
CVaR-GARCH-FHS 18.48 18.68 -0.82 6.85 0.989 5.52 47.45 13.29 18.59 0.389 -34.86 21.78
CVaR-GJR-FHS 18.47 18.60 -0.85 7.33 0.993 5.52 50.96 13.10 18.41 0.362 -36.24 21.78
RV-Mom/Contrarian 17.88 19.51 0.19 10.97 0.916 1.08 54.99 13.05 18.72 0.325 -35.38 49.34

Panel C: Momentum Volatility Crash Indicator

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
CVaR HS 18.36 18.57 -0.70 6.03 0.989 5.19 52.42 13.15 18.37 0.350 -26.17 21.78
CVaR-Skt-unc 18.78 18.28 -0.62 5.84 1.027 5.74 40.97 12.62 17.55 0.458 -25.98 21.78
CVaR-GARCH-SRTR 19.24 18.52 -0.74 6.79 1.039 6.18 46.60 12.82 17.55 0.413 -35.48 21.78
CVaR-GJR-SRTR 19.16 18.59 -0.77 7.06 1.031 6.02 47.92 12.90 17.78 0.400 -36.76 21.78
CVaR-GARCH-Skt 19.03 18.52 -0.66 5.97 1.027 5.73 46.10 12.98 17.86 0.413 -30.55 21.78
CVaR-GJR-Skt 19.14 18.40 -0.69 6.37 1.040 6.05 50.34 12.74 17.56 0.380 -32.36 21.78
CVaR-GARCH-FHS 18.80 18.82 -0.77 6.55 0.999 5.44 52.75 13.33 18.34 0.356 -34.86 21.78
CVaR-GJR-FHS 18.96 18.66 -0.81 7.09 1.016 5.57 56.54 13.03 18.00 0.335 -36.24 21.78
RV-Mom/Contrarian 18.81 19.45 0.61 10.59 0.967 1.34 43.30 13.20 19.12 0.434 -22.81 49.34

tion on the market and momentum portfolio delivers the best risk-return profile. Thus, as before,

all strategies that switch between volatility and CVaR targeting exhibit very high values of the

Jobson and Korkie (1981) test statistic, whereas the strategy that switches to the contrarian port-

folio does not exhibit a significantly higher Sharpe Ratio except for one crash indicator. In total,

Tables IX and X show that switching between volatility and CVaR targeting can significantly

enhance the risk-return of the momentum portfolio and our switching approach is surprisingly

robust to the choice of the crash indicator.

To further demonstrate the differences between the different approaches, Figure VII shows
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Table X. Performance Results of the Switching Strategies: Combined Indicators
This table shows performance results for the RV managed momentum portfolio and the switching strate-
gies. Panel A shows results for the crash indicator δt that equals one if past market volatility is high and
past market return is negative. Panel B shows results for the crash indicator δt that equals one if past
market volatility is high or past market return is negative. Panel C shows results for the crash indicator δt
that equals one if expected momentum volatility is high or past market return is negative. The description
of the columns is given in Table VI.

Panel A: Market Volatility and Market Return Crash Indicator

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
CVaR HS 18.48 18.59 -0.65 5.62 0.994 5.45 50.91 13.19 18.33 0.363 -25.98 21.78
CVaR-Skt-unc 18.81 18.34 -0.58 5.50 1.026 5.87 38.92 12.71 17.57 0.483 -25.98 21.78
CVaR-GARCH-SRTR 18.91 18.77 -0.77 6.67 1.007 5.88 46.47 13.22 18.13 0.407 -35.48 21.78
CVaR-GJR-SRTR 18.76 18.86 -0.81 6.92 0.995 5.72 47.69 13.35 18.39 0.393 -36.76 21.78
CVaR-GARCH-Skt 18.88 18.62 -0.69 5.97 1.014 5.77 46.60 13.16 18.11 0.405 -30.55 21.78
CVaR-GJR-Skt 18.84 18.61 -0.72 6.31 1.012 5.94 50.61 13.09 18.04 0.372 -32.36 21.78
CVaR-GARCH-FHS 18.54 18.97 -0.81 6.56 0.978 5.29 53.94 13.64 18.89 0.344 -34.86 21.78
CVaR-GJR-FHS 18.59 18.92 -0.84 6.97 0.983 5.39 57.47 13.49 18.71 0.323 -36.24 21.78
RV-Mom/Contrarian 19.11 19.43 0.17 11.13 0.984 1.76 35.42 13.04 18.88 0.539 -35.38 49.34

Panel B: Market Volatility or Market Return Crash Indicator

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
CVaR HS 17.37 18.01 -0.72 6.54 0.965 4.43 50.35 12.58 18.27 0.345 -26.17 21.78
CVaR-Skt-unc 17.63 17.76 -0.63 6.29 0.993 4.80 39.98 12.10 17.52 0.441 -25.98 21.78
CVaR-GARCH-SRTR 18.79 18.26 -0.77 7.03 1.029 5.98 45.62 12.60 17.39 0.412 -35.48 21.78
CVaR-GJR-SRTR 18.70 18.34 -0.80 7.31 1.019 5.81 47.24 12.73 17.66 0.396 -36.76 21.78
CVaR-GARCH-Skt 18.45 18.13 -0.68 6.30 1.017 5.55 44.25 12.62 17.68 0.417 -30.55 21.78
CVaR-GJR-Skt 18.26 17.93 -0.71 6.82 1.018 5.53 48.12 12.39 17.51 0.380 -32.36 21.78
CVaR-GARCH-FHS 18.22 18.45 -0.81 6.93 0.988 5.18 51.83 13.03 18.24 0.352 -34.86 21.78
CVaR-GJR-FHS 18.12 18.15 -0.85 7.66 0.998 5.10 55.13 12.66 17.90 0.329 -36.24 21.78
RV-Mom/Contrarian 15.83 19.64 0.61 10.36 0.806 0.13 53.41 12.96 18.23 0.296 -22.81 49.34

Panel C: Momentum Volatility or Market Return Crash Indicator

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

RV 15.48 19.65 -1.48 12.38 0.788 - 63.98 14.81 22.29 0.242 -49.34 19.29
CVaR HS 18.18 17.96 -0.67 6.41 1.012 5.52 42.53 12.37 17.69 0.427 -26.17 21.78
CVaR-Skt-unc 18.56 17.66 -0.57 6.18 1.051 6.03 33.94 11.80 16.79 0.547 -25.98 21.78
CVaR-GARCH-SRTR 19.17 18.17 -0.72 6.97 1.055 6.58 39.85 12.42 17.06 0.481 -35.48 21.78
CVaR-GJR-SRTR 19.05 18.26 -0.75 7.26 1.043 6.34 41.83 12.54 17.35 0.455 -36.76 21.78
CVaR-GARCH-Skt 18.95 18.04 -0.63 6.21 1.050 6.24 41.33 12.42 17.26 0.458 -30.55 21.78
CVaR-GJR-Skt 18.95 17.87 -0.65 6.70 1.060 6.43 42.18 12.13 16.94 0.449 -32.36 21.78
CVaR-GARCH-FHS 18.74 18.40 -0.76 6.83 1.018 5.94 45.92 12.87 17.88 0.408 -34.86 21.78
CVaR-GJR-FHS 18.78 18.19 -0.80 7.47 1.032 5.91 49.63 12.52 17.52 0.378 -36.24 21.78
RV-Mom/Contrarian 17.20 19.56 0.67 10.40 0.879 0.64 49.08 13.04 18.53 0.350 -22.81 49.34

the cumulative performance of the momentum portfolio, the RV managed portfolio and a port-

folio that switches between volatility and CVaR targeting for a one dollar investment. As in

Daniel and Moskowitz (2016, Fig. 6), we rescale all strategies to the same annualized volatil-

ity of 19%. Further, since the momentum strategies are zero-investment strategies, we follow

Daniel and Moskowitz (2016, Appendix A.1) and add the risk-free rate to the portfolio return

(see also Jacobs et al. (2015)). Investing one dollar in the momentum portfolio results in a

portfolio value of 1,143.15$ over the whole period. Invested in the RV managed strategy, the

investor would increase the portfolio value to 4,274,327.59$. However, if the investor would
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have invested one dollar in the switching strategy, the portfolio value would increase to even

198,152,426.83$ at the end of the period.134 As can be seen in the performance chart, this out-

performance is mainly driven by mitigating the drawdown periods while capturing the upside

potential.

Figure VII. Performance of Risk Targeting. This figure plots the cumulative return of a one dollar in-
vestment in the momentum portfolio, the RV managed momentum portfolio and a portfolio that switches
between volatility and CVaR targeting over the whole period, where we add the risk-free rate to these
portfolios. All strategies are rescaled to the same volatility.

To further illustrate the drawdown reduction ability of the switching approach, Table XI

shows the performance of the momentum portfolio, the RV managed strategy and the switching

strategies during the crash period 01.01.1938-01.01.1943. Interestingly, compared to the CVaR

targeting strategies examined in Table VII, the switching strategies exhibit an even higher (less

negative) return and are significantly less negatively skewed. Hence, by better mitigating the

crash risk and simultaneously capturing the upside potential, switching between volatility and

CVaR targeting is superior to strategies that manage only volatility or CVaR, even during a

crash period. Interestingly, the skewness and kurtosis of the RV managed strategy is similar to

134Jacobs et al. (2015, Fig. 1) also show that the long-term performance of the momentum portfolio can be in-
creased by buying winners that are highly negatively skewed and selling losers that are less negatively or positively
skewed. This strategy exhibits a significantly higher performance than the standard momentum strategy. How-
ever, this strategy also takes significantly more risk, especially left tail risk. In contrast, our strategy that switches
between volatility and CVaR targeting achieves a higher performance while simultaneously left tail risk is reduced.
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the skewness and kurtosis of the non-managed strategy. Hence, managing volatility does not

provide an adequate downside risk protection during the crash period. In contrast, the strategies

that switch between volatility and CVaR targeting exhibit a higher skewness, lower kurtosis,

lower drawdown and higher minimum return, and thus provide a better drawdown protection

in a crisis. The best result during the momentum crash is found for the strategy that switches

to the contrarian portfolio. However, as seen before, this outperformance is only limited to the

crash period and does not hold over long-run.

Table XI. Performance Results of the Switching Strategies: 01.01.1938-01.01.1943.
This table shows performance results of the momentum portfolio, the RV managed momentum portfolio
and the switching strategies over the period 01.01.1938-01.01.1943. The description of the columns is
given in Table VII.

Model Return Volatility Skew Kurt MDD ∆MDD VaR CVaR Min Max

Momentum -34.57 51.38 -3.760 22.430 90.39 - 46.30 95.75 -89.70 22.24
RV -11.64 28.44 -3.705 22.031 50.27 44.38 20.49 42.28 -49.34 15.03

CVaR HS -1.97 18.29 -2.140 11.346 23.73 73.74 9.93 20.24 -23.73 12.88
CVaR-Skt-unc -1.69 17.54 -1.843 10.013 21.18 76.57 10.61 21.65 -20.74 12.88
CVaR-GARCH-SRTR -4.04 22.32 -3.135 17.420 35.48 60.75 13.03 26.63 -35.48 12.88
CVaR-GJR-SRTR -4.27 22.64 -3.303 18.644 36.76 59.34 12.90 26.38 -36.76 12.88
CVaR-GARCH-Skt -2.63 20.76 -2.644 14.156 30.55 66.20 12.44 25.37 -30.55 12.88
CVaR-GJR-Skt -2.97 21.09 -2.914 15.987 32.36 64.20 11.25 22.92 -32.36 12.88
CVaR-GARCH-FHS -3.91 22.21 -3.036 16.752 34.86 61.43 13.67 27.94 -34.86 12.88
CVaR-GJR-FHS -4.20 22.44 -3.259 18.380 36.24 59.91 12.43 25.37 -36.24 12.88
RV-Mom/Contrarian 12.49 28.17 3.336 21.816 19.41 78.52 12.10 23.42 -19.41 49.34

The findings of Table XI can also be seen in Figure VIII that shows the cumulative perfor-

mance of the momentum strategy, the RV managed strategy and a strategy that switches between

volatility and CVaR targeting during the crash period examined in Table XI. A 1$ dollar invest-

ment in the momentum portfolio would result in a portfolio of only 0.12$ after five years. If

the 1$ would have been invested in the RV managed strategy instead, the investor would have

a portfolio value of at least 0.54$, i.e. the investor would have lost about half of the initially

invested money. However, invested in the switching strategy, the portfolio value at the end of

the crash period would even be 0.82$. That is, an investor who invests in the switching strategy

would have 583.33% more money than the momentum investor and 51.85% more money than

the investor who invests in the RV managed strategy. This result is striking since investors typi-

cally have a higher marginal utility of wealth during these crash periods, i.e. they weight losses

significantly higher than gains (Min and Kim, 2016). More importantly, avoiding drawdowns

237



is a main driver of a strategy’s long-term performance. The momentum investors needs a return

of 733.33% to make up for the loss during this crisis. In contrast, the RV managed strategy

only needs a return of 85.18%, whereas a return of only 21.95% is sufficient for the switching

strategy.

Figure VIII. Performance of Risk Targeting: 01.01.1938-01.01.1943. This figure plots the cumulative
return of a one dollar investment in the momentum portfolio, the RV managed momentum portfolio and
the portfolio that switches between volatility and CVaR targeting over the period 01.01.1938-01.01.1943.

The switching strategies’ ability to mitigate momentum crashes while capturing the upside

potential of the momentum strategy can also be seen in Table XII, which shows the five low-

est and highest monthly momentum returns along with the corresponding returns of the RV

managed and switching strategies in the same months. Since the low momentum returns are

significantly higher in magnitude than the high momentum returns, mitigating the crashes is

far more important than capturing the high positive returns. Furthermore, as stated above, for

achieving a high long-term performance, mitigating negative returns has a higher impact than

capturing the upside potential.135 The RV managed momentum strategy of Barroso and Santa-

Clara (2015) successfully reduces momentum crashes while the upside potential is also partly

135For example, a return of �50% has to be compensated by a return of 100% to obtain a compounded return
of zero. In contrast, returns of �25% and 50% lead to a compounded return of 12.5%. Furthermore, mitigating
extremely negative returns also fits well to the loss aversion of most investors.
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captured. However, in line with the results of Table XI and Figure VIII, the switching strategies

provide a significantly improved crash mitigation. The losses of the switching strategies are all

lower compared to the losses of the non-managed and the RV managed momentum portfolio.

In contrast, on the days with the highest momentum returns, the switching strategies achieve

equally high returns as the RV managed strategy. Hence, the superiority of the switching strate-

gies is mainly influenced by switching to a CVaR managed strategy in a crash period, whereas

the upside potential is equally well captured. However, the superiority of the dynamic volatility

model can also be seen by the third lowest momentum return, which is not captured by the crash

indicator and is managed by volatility. Although both the RV managed strategy and the switch-

ing strategy manage the portfolio’s volatility in this month, the loss of the switching strategy

is about half of the loss of the RV managed strategy. Thus, by using a more accurate volatility

model, momentum crashes can be significantly reduced compared to the non-managed and RV

managed momentum portfolio. This again highlights the relation between forecasting accuracy

and performance gains, especially in down markets. Table XII also demonstrates the good per-

formance of the crash indicator δt, since four of the five worst crash months are identified by this

indicator, whereas all of the months with an extremely high return are marked as a non-crash

month. Thus, despite its simplicity, the crash indicator gives quite reliable indications if next

month will be a crash or non-crash month, at least for the most extreme outcomes.

Table XII. Sorted Returns
This table shows the monthly returns of the momentum portfolio, the RV managed portfolio and the
switching strategies on months when the momentum portfolio exhibits the five lowest and five highest
returns. All entries are given in percent.

Panel A: Low Returns Panel B: High Returns

Momentum -89.700 -83.250 -59.950 -55.740 -40.360 19.140 19.300 19.340 19.770 22.240
RV -49.337 -23.732 -35.382 -17.646 -11.875 14.808 8.090 7.695 9.262 6.824

CVaR HS -23.735 -21.495 -20.222 -14.392 -11.910 12.786 8.066 7.995 8.480 10.211
CVaR-Skt-unc -20.744 -12.993 -20.222 -9.115 -8.719 12.786 8.066 7.995 8.480 10.211
CVaR-GARCH-SRTR -35.475 -10.924 -20.222 -12.363 -7.086 12.786 8.066 7.995 8.480 10.211
CVaR-GJR-SRTR -36.755 -14.859 -20.222 -10.363 -6.433 12.786 8.066 7.995 8.480 10.211
CVaR-GARCH-Skt -30.554 -14.184 -20.222 -12.870 -8.388 12.786 8.066 7.995 8.480 10.211
CVaR-GJR-Skt -32.361 -17.846 -20.222 -13.352 -6.432 12.786 8.066 7.995 8.480 10.211
CVaR-GARCH-FHS -34.864 -17.600 -20.222 -16.076 -9.334 12.786 8.066 7.995 8.480 10.211
CVaR-GJR-FHS -36.238 -21.598 -20.222 -16.549 -7.166 12.786 8.066 7.995 8.480 10.211
RV-Mom/Contrarian 49.337 23.732 -35.382 17.646 11.875 14.808 8.090 7.695 9.262 6.824

Similar to Barroso and Santa-Clara (2015, Fig. 5), who show the empirical pdf of the mo-
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mentum and risk-managed momentum strategy, we show in Figure IX the empirical cumulative

density function (cdf) for returns smaller than �10%. This figure again highlights that the prob-

ability of suffering extreme losses is vastly reduced by the risk targeting strategies. In line with

our previous results, the RV managed strategy significantly reduces the probability of obtaining

extremely low returns. This does not only hold for the extremely negative returns, but also for

moderate negative returns in the range of �10% to �20%. However, this probability can further

be reduced by using the strategy that switches between volatility and CVaR targeting.

Figure IX. Empirical Cumulative Density Function. This figure plots the cumulative density function
(cdf) of the momentum portfolio, RV managed portfolio and the portfolio that switches between volatility
and CVaR targeting for returns smaller than �10%.

To further assess how the switching strategies perform in different market states, we fol-

low Jegadeesh and Titman (2001), Hong et al. (2000, Table VIII) and Barroso and Santa-Clara

(2015, Table 6) and split the whole sample into four subsamples. By doing this, we obtain

different time periods, where the first and last subsamples are dominated by huge momentum

crashes. In contrast, the second and third subsamples are characterized by a momentum port-

folio that mainly trends upwards without any pronounced crash period. Thus, this subsample

analysis points out how the momentum, RV managed and switching strategies behave in differ-

ent market environments. The results of Table XIII demonstrate that risk targeting significantly
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improves the risk-adjusted performance of the momentum strategy in all subsamples. This

confirms the earlier finding of Barroso and Santa-Clara (2015) that managing the momentum

portfolio’s risk is superior in crash and calm periods. However, the risk-adjusted performance

can further be improved by using a strategy that switches between volatility and CVaR target-

ing. We find that for all subsamples, the switching strategies produce the highest risk-adjusted

performance with statistically significant Sharpe Ratio increases, indicated by high values of

the Jobson and Korkie (1981) test statistic. For example, in the first subsample, the momen-

tum portfolio exhibits a negative return. By managing momentum’s volatility, the return can be

enhanced in order to achieve a positive return while simultaneously the risk is reduced. More

precisely, the RV managed strategy achieves a Sharpe Ratio of 0.065, whereas the momentum’s

Sharpe Ratio is negative. However, by using a switching strategy, the performance can further

be enhanced to achieve an even higher return while simultaneously the volatility is reduced. In

total, this translates into significantly higher Sharpe Ratios between 0.196 and 0.255 with values

of the Jobson and Korkie (1981) test statistic higher than 1.74. Further, by producing a higher

skewness, lower kurtosis and higher minimum return, the switching strategies significantly re-

duce the crash risk compared to both the non-managed and RV managed strategies. The results

for the other three subsamples are also in line with this finding. The switching strategies exhibit

higher returns than the non-managed and RV managed strategies for all subsamples. Further,

in three of four subsamples, the switching strategies also exhibit a significantly lower volatil-

ity, whereas left tail risk is massively reduced in all subsamples. Thus, in all subsamples, all

switching strategies exhibit significantly higher Sharpe Ratios with Jobson and Korkie (1981)

test statistics higher than 1.64. In total, results of Table XIII demonstrate that the superiority

of the switching strategies is not only influenced by the momentum crashes but also holds in

periods without severe crashes.

As a conclusion, results of this section show that strategies that switch between volatility

and CVaR targeting are successful in providing an enhanced risk-return profile compared to the

non-managed and RV managed momentum strategy. This holds since switching strategies pro-

vide a superior crash protection while simultaneously the upside potential is captured. Further,
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Table XIII. Performance Results of Risk Targeting in Different Subsamples
This table shows the performance of the momentum portfolio, the RV managed strategy and the switching
strategies in four subsamples. The description of the columns is given in Table VI.

Panel A: 01.03.1930-30.04.1952

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum -13.23 39.47 -4.00 28.83 -0.335 -4.82 99.31 33.71 68.65 -0.133 -89.70 22.24
RV 1.28 19.72 -3.26 25.67 0.065 - 63.98 16.46 27.37 0.020 -49.34 15.03
CVaR HS 3.46 16.92 -1.84 10.64 0.204 1.74 50.35 14.77 27.05 0.069 -25.98 12.88
CVaR-Skt-unc 4.03 15.89 -1.62 10.43 0.253 2.01 39.98 13.82 25.92 0.101 -25.98 12.88
CVaR-GARCH-SRTR 4.23 17.57 -2.31 15.54 0.241 2.65 45.62 13.85 23.39 0.093 -35.48 12.88
CVaR-GJR-SRTR 4.05 17.79 -2.39 16.27 0.228 2.60 47.24 14.05 24.01 0.086 -36.76 12.88
CVaR-GARCH-Skt 4.42 17.29 -1.97 12.24 0.255 2.77 44.25 14.06 23.82 0.100 -30.55 12.88
CVaR-GJR-Skt 4.09 17.58 -2.12 13.17 0.233 2.59 48.12 14.28 24.70 0.085 -32.36 12.88
CVaR-GARCH-FHS 3.99 18.19 -2.19 13.71 0.219 2.65 51.83 14.81 25.01 0.077 -34.86 12.88
CVaR-GJR-FHS 3.62 18.51 -2.33 14.61 0.196 2.32 55.13 15.02 25.89 0.066 -36.24 12.88
RV-Mom/Contrarian 6.45 19.61 2.43 24.35 0.329 0.79 32.35 11.08 16.90 0.199 -19.69 49.34

Panel B: 01.05.1952-30.06.1974

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum 17.02 15.86 -1.10 7.38 1.074 -2.73 25.21 13.68 24.70 0.675 -20.93 17.80
RV 25.18 18.94 -0.73 5.56 1.330 - 23.72 15.17 24.27 1.062 -20.06 19.29
CVaR HS 28.23 19.04 -0.70 4.96 1.483 2.10 22.87 13.98 20.08 1.234 -20.72 18.66
CVaR-Skt-unc 28.16 19.14 -0.72 4.92 1.471 2.00 22.87 14.14 20.28 1.231 -20.72 18.66
CVaR-GARCH-SRTR 28.56 19.22 -0.71 4.84 1.486 2.20 22.87 14.16 20.11 1.249 -20.72 18.66
CVaR-GJR-SRTR 28.71 19.10 -0.71 4.90 1.503 2.41 22.87 14.12 20.14 1.255 -20.72 18.66
CVaR-GARCH-Skt 28.21 19.13 -0.72 4.95 1.475 1.95 22.87 14.09 20.21 1.233 -20.72 18.66
CVaR-GJR-Skt 28.22 18.99 -0.70 4.99 1.486 2.03 22.87 13.92 20.05 1.234 -20.72 18.66
CVaR-GARCH-FHS 28.27 19.04 -0.71 5.00 1.485 2.05 22.87 14.04 20.26 1.236 -20.72 18.66
CVaR-GJR-FHS 28.42 18.87 -0.69 5.05 1.506 2.21 22.87 13.68 19.73 1.243 -20.72 18.66
RV-Mom/Contrarian 25.08 18.95 -0.60 5.36 1.324 -0.04 29.39 14.62 22.56 0.853 -20.06 19.29

Panel C: 01.07.1974-31.08.1996

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum 12.32 15.25 -1.75 11.65 0.808 -3.94 34.47 12.73 20.48 0.357 -27.73 12.74
RV 26.14 20.83 -0.80 6.25 1.255 - 33.35 14.39 20.42 0.784 -26.41 18.60
CVaR HS 28.43 19.27 -0.29 4.47 1.476 2.76 27.80 12.42 16.42 1.023 -18.54 21.78
CVaR-Skt-unc 28.33 19.59 -0.39 4.79 1.446 2.48 30.98 12.88 17.18 0.914 -21.20 21.78
CVaR-GARCH-SRTR 29.52 19.29 -0.22 4.02 1.531 2.96 24.98 12.36 15.89 1.182 -18.54 21.78
CVaR-GJR-SRTR 29.66 19.49 -0.21 4.00 1.522 2.90 28.47 12.51 16.14 1.042 -18.54 21.78
CVaR-GARCH-Skt 29.55 19.19 -0.22 4.18 1.539 2.81 25.37 12.20 15.86 1.165 -18.54 21.78
CVaR-GJR-Skt 29.14 19.16 -0.19 4.16 1.520 2.70 24.98 12.05 15.65 1.166 -18.54 21.78
CVaR-GARCH-FHS 29.10 19.19 -0.21 4.10 1.516 2.94 24.98 12.23 15.81 1.165 -18.54 21.78
CVaR-GJR-FHS 29.17 19.00 -0.17 4.17 1.535 2.88 24.98 11.83 15.29 1.168 -18.54 21.78
RV-Mom/Contrarian 24.69 20.95 -0.13 5.25 1.179 -0.36 29.50 13.41 18.15 0.837 -22.81 26.41

Panel D: 01.09.1996-31.12.2018

Model Return Vola Skew Kurt SR zJK MDD VaR CVaR Calmar Min Max

Momentum 3.01 26.88 -2.83 20.02 0.112 -5.36 82.24 22.62 40.64 0.037 -59.95 19.30
RV 11.23 18.46 -1.35 11.22 0.609 - 42.25 13.41 18.74 0.266 -35.38 17.38
CVaR HS 11.42 15.83 -0.67 7.84 0.721 1.36 37.57 10.85 15.52 0.304 -26.17 14.54
CVaR-Skt-unc 11.91 15.25 -0.49 7.48 0.781 1.94 28.43 9.96 14.17 0.419 -24.60 14.54
CVaR-GARCH-SRTR 14.74 16.11 -0.20 3.90 0.915 3.34 36.29 10.62 13.66 0.406 -13.74 14.54
CVaR-GJR-SRTR 14.33 16.13 -0.24 3.98 0.889 3.02 38.50 10.80 13.97 0.372 -13.96 14.54
CVaR-GARCH-Skt 13.52 16.05 -0.20 4.10 0.842 2.71 41.33 10.95 14.46 0.327 -15.46 14.54
CVaR-GJR-Skt 13.52 15.00 -0.02 4.00 0.901 3.16 33.04 9.89 12.90 0.409 -13.21 14.54
CVaR-GARCH-FHS 13.45 16.60 -0.35 4.17 0.810 2.26 45.59 11.63 15.31 0.295 -15.39 14.54
CVaR-GJR-FHS 13.28 15.27 -0.18 4.10 0.869 2.65 37.29 10.52 13.77 0.356 -14.22 14.54
RV-Mom/Contrarian 8.46 18.59 0.84 9.45 0.455 -0.41 53.41 12.69 17.04 0.158 -17.38 35.38

advanced volatility models also generate a sizeable value for an investor who manages the risk

of the momentum portfolio. This result again demonstrates the relation between forecasting ac-

curacy and performance gains, and thus supports the findings of Bollerslev et al. (2018). In line
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with Table V, the more accurate volatility and switching strategies also provide an enhanced

risk-return profile compared to the less accurate RV model.

2.6.5 The Economic Value of Risk Targeting

The previous section demonstrates that strategies that switch between volatility and CVaR tar-

geting provide an enhanced risk-return profile compared to non-managed and RV managed

momentum portfolios. So far, our main conclusion were made by using the Sharpe Ratio as

measure to assess the risk-adjusted performance. However, the high negative skewness and

high kurtosis of the momentum strategy – of both the non-managed and RV managed strat-

egy – make this strategy unappealing for investors who have preferences for higher moments.

Investors typically prefer portfolios that are less left-skewed and less fat-tailed over portfolio

with a high left tail risk (Harvey and Siddique, 2000, Kraus and Litzenberger, 1976, Scott and

Horvath, 1980). Thus, higher order preferences should be incorporated when a strategy’s per-

formance is evaluated (Schneider et al., 2020). This observation is not regarded by the Sharpe

Ratio, which assumes that returns are normally distributed (Amin and Kat, 2003).136 Further,

standard evaluation models, like the Sharpe Ratio or unconditional alpha, do not capture the

investors’ risk aversion (Chabot et al., 2014).137 In particular, the Sharpe Ratio is an uncondi-

tional performance measure that does not account for the time-varying risk an investor is faced

over time.138 Further, most investors are loss-averse, i.e. they weight losses higher than gains of

the same magnitude (Aı̈t-Sahalia and Brandt, 2001, Benartzi and Thaler, 1995). In particular,

136For that reason, to better assess the performance of hedge funds, Amin and Kat (2003) develop a performance
evaluation measure that does not need any distributional assumptions. The approach of Amin and Kat (2003)
assumes that investors are only interested in the end-of-period wealth and not in the intermediate portfolio value.
This assumption is typically unproblematic for hedge fund investors as argued by the authors, but is not valid for
momentum investors.

137For example, Amin and Kat (2003, p. 253) write: “The fact that an investment offers a superior risk-return
profile does not automatically mean that investors should buy into it as it may not fit their preferences”.

138For example, Han (2005, p. 246) write: “However, the Sharpe Ratio does not take into account time-varying
conditional volatility because the sample [standard deviation] overestimates the conditional risk an investor faces
when she follows dynamic strategies. Consequently, the realized Sharpe ratio underestimates the performance of
dynamic strategies.” Similarly, Marquering and Verbeek (2004, p. 419-421) state: “It is important to realize that the
Sharpe ratio does not appropriately take into account time-varying volatility. The risk of the dynamic strategies is
typically overestimated by the sample standard deviation, particularly in the presence of volatility timing, because
the ex post (unconditional) standard deviation is an inappropriate measure for the (conditional) risk an investor
was facing at each point in time. This indicates a potentially severe disadvantage of the use of Sharpe ratios to
evaluate dynamic strategies.” Generally, unconditional performance measures are not suitable for strategies that
time volatility (Boguth et al., 2011, Cederburg and O’Doherty, 2016).
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loss aversion is much more successful in explaining the low fraction of retail investors’ wealth

invested in stocks, and thus is a more realistic choice than mean-variance preferences, as it is

assumed for the Sharpe Ratio (Benartzi and Thaler, 1995, Berkelaar et al., 2004). Moreover,

momentum investors are typically leveraged and are therefore sensible to drawdowns, which

is also not reflected by the Sharpe Ratio (Chabot et al., 2014). Regarding the loss aversion is

especially important for momentum investors, since momentum crashes typically occur in pe-

riods when investors have a high marginal utility of wealth as shown by Min and Kim (2016).

Hence, a measure that explicitly accounts for the severity of losses, especially in crash peri-

ods, should be used. Further, by construction, timing volatility instead of timing downside risk

should lead to a higher Sharpe Ratio (Jondeau and Rockinger, 2012, p. 108). Therefore, other

performance measures that take non-normalities into account should be considered (Dreyer and

Hubrich, 2019). To account for these facts, we next assess the economic value of the switching

strategies for three different types of investors. The economic value is defined as the annualized

percentage fee an investor is willing to pay to switch from a certain benchmark strategy to an-

other strategy, where we use the RV managed momentum strategy of Barroso and Santa-Clara

(2015) as the benchmark.

As first method to assess the economic value of risk targeting, we follow the approach of

Fleming et al. (2001), Fleming et al. (2003), Han (2005) and Kirby and Ostdiek (2012) and

assume that the investor’s true utility function can be approximated by quadratic utility. Under

this approximation, the investor’s realized utility in month t is given by

UMV pRt,aq � Wt�1p1 �Rt,aq � 1

2
γabsW

2
t�1p1 �Rt,aq2, (2.6.7)

where γabs is the investor’s absolute risk aversion, Wt�1 denotes the investor’s wealth in month

t� 1 and Rt,a denotes the month t return of strategy a. Since this investor only has preferences

for the first two moments, we call an investor with this utility a mean-variance investor.139 By

assuming that the investor’s relative risk aversion γ � γabsWt�1{p1�γabsWt�1q is constant over

139Fleming et al. (2001, p. 334) state that “[t]his measure is based on the close relation between mean-variance
analysis and quadratic utility.” See also Marquering and Verbeek (2004), Aı̈t-Sahalia and Brandt (2001), DeMiguel
et al. (2009b) and Bollerslev et al. (2018) who use a similar performance measure that is solely based on the mean,
variance and risk aversion.
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time, Equation (2.6.7) can be rewritten as

UMV pRt,aq � Wt�1

�
p1 �Rt,aq � γ

2p1 � γqp1 �Rt,aq2


, (2.6.8)

where we choose values for γ of 2, 5, 10 and 15 that are similar to the choices of previous

studies. These choices of risk aversion are also in line with the finding of Rosenberg and Engle

(2002) using options data. The economic value of strategy a is then given by the percentage

fee ∆MV the investor with utility in Equation (2.6.8) is willing to pay to switch from the RV

managed strategy to the strategy a. The fee ∆MV is calculated by equating the expected utilities

EpUMV pRt,a � ∆MV qq � EpUMV pRt,RV qq , (2.6.9)

where Rt,RV denotes the return of the RV managed strategy.140 We estimate the expected utility

in Equation (2.6.9) by the average realized utility and calculate ∆MV by solving

UMV pR1,a � ∆MV , ..., RT,a � ∆MV q � UMV pR1,RV , ..., RT,RV q , (2.6.10)

where UMV pR1, ..., RT q �
°T
t�1p1 �Rtq � γ

2p1�γqp1 �Rtq2.141

As stated above, investors typically have preferences for moments higher than the second

moment. In particular, most investors dislike a negative skewness and high kurtosis. A common

utility that reflects this finding is the constant relative risk aversion (CRRA), which is used by

Aı̈t-Sahalia and Brandt (2001), Ghysels et al. (2016), Bali et al. (2009), Dreyer and Hubrich

(2019) and Guidolin and Timmermann (2008). The authors show that, for γ ¡ 1, a CRRA in-

vestor dislikes a negative skewness and high kurtosis, which is in line with the common finding

of Kraus and Litzenberger (1976) and Scott and Horvath (1980). Furthermore, Guidolin and

Timmermann (2008) find that the portfolio selection under CRRA utility is mainly driven by

140An alternative to calculating the economic value by equating expected utilities would be to use the certainty
equivalent value (CEV), i.e. the sure return that provides the same utility as achieved by the dynamic trading
strategy (Ghysels et al., 2016, Footnote 27). The CEV was used by Ghysels et al. (2016), Aı̈t-Sahalia and Brandt
(2001), Guidolin and Timmermann (2008), Cederburg et al. (2020), Dreyer and Hubrich (2019), Moreira and Muir
(2017) and Moreira and Muir (2019). However, Jondeau and Rockinger (2012) find similar results of calculating
the CEV and the approach used here. Further, another possibility would be to evaluate the performance using the
whole distribution as done by Amin and Kat (2003).

141Aı̈t-Sahalia and Brandt (2001), Marquering and Verbeek (2004) and Bollerslev et al. (2018) use a quite similar
approach for an investor who only has preferences for return and variance. In that case, the investor’s expected util-
ity is given by EpUMV pRtqq � EpWt�1p1 �Rtqq� γabs

2 varpWt�1p1 �Rtqq �Wt�1

�
1 � EpRtq � γ

2 varpRtq
�
,

where γ � γabsWt�1 is the investor’s relative risk aversion.

245



preferences for the first four moments. The CRRA utility is given by

UCRRApRt,aq �
#

p1�Rt,aqp1�γq
1�γ , if γ ¡ 1

lnp1 �Rt,aq, if γ � 1,
(2.6.11)

where we use the same values for γ as above. Thus, the utility in Equation (2.6.11) simplifies

to UCRRApRt,aq � p1�Rt,aqp1�γq
1�γ . Similar to the case above, we follow Jondeau and Rockinger

(2012) and calculate the economic value for an investor with CRRA utility by equating the

expected utilities

EpUCRRApRt,a � ∆CRRAqq � EpUCRRApRt,RV qq , (2.6.12)

which is again estimated by the average realized utility. The percentage fee ∆CRRA is then

calculated by solving

UCRRA pR1,a � ∆CRRA, ..., RT,a � ∆CRRAq � UCRRA pR1,RV , ..., RT,RV q , (2.6.13)

where UCRRApR1, ..., RT q �
°T
t�1

p1�Rtqp1�γq
1�γ .

To account for the loss aversion of investors, we use a third utility function that gives more

weight on negative returns. We follow Aı̈t-Sahalia and Brandt (2001) and Benartzi and Thaler

(1995) and choose the following utility function

ULApRt,aq �
" pRt,aqb, if Rt,a ¥ 0
�lp�Rt,aqb, if Rt,a   0,

(2.6.14)

where we choose values of 0.8 and 1 for b as well as 2 and 3 for l (see Aı̈t-Sahalia and Brandt

(2001) who also use these parameters).142 Benartzi and Thaler (1995) also use similar values of

l and b. In particular, Berkelaar et al. (2004) estimate the investors’ loss aversion based on stock

market returns and confirm these levels of loss aversion. The economic value for a loss-averse

investor with utility given in Equation (2.6.14) is again calculated by equating the expected

utilities

EpULApRt,a � ∆LAqq � EpULApRt,RV qq , (2.6.15)

142The utility function in Equation (2.6.14) could also be modified in several directions. For example, as in
Berkelaar et al. (2004, Eq. (8)), two different values for b could be chosen, depending on the sign of the return.
Further, as in Berkelaar et al. (2004, Eq. (9)), a CRRA like utility function, where investors treat losses and gains
differently, could be used. Moreover, instead of choosing a reference return of zero, a dynamic reference point that
depends on the investor’s current wealth could be used (Berkelaar et al., 2004). Alternatively, the risk-free rate
could be used as reference point. However, since the momentum strategy is a zero-investment strategy, we use a
reference point of zero.

246



which is again estimated by the average realized utility

ULA pR1,a � ∆LA, ..., RT,a � ∆LAq � ULA pR1,RV , ..., RT,RV q , (2.6.16)

whereULApR1, ..., RT q �
°T
t�1pRtqb�1tRt¥0u�lp�Rtqb�1tRt 0u.143 Berkelaar et al. (2004) state

that the optimal portfolio of a loss-averse investor is similar to the portfolio choice of a CRRA

investor with a VaR constraint as examined in Basak and Shapiro (2001). Thus, a loss-averse

investor is typically more conservative than a CRRA investor. Generally, loss aversion seems

to be more realistic, since the asset allocation of real investors are more in line with the asset

allocation found for loss aversion. In contrast, the equity exposure found for the mean-variance

or CRRA framework is typically higher than the equity exposure of real investors.

Table XIV shows the economic value of the different switching strategies in terms of an

annualized fee an investor is willing to pay to switch away from the RV managed strategy of

Barroso and Santa-Clara (2015) to one of the switching strategies. Besides the values of γ, b

and l as stated above, we additionally calculate the economic value for time-varying parameters

γswitcht � 15 � δt�2 � p1� δtq, bswitcht � 1 � δt�0.8 � p1� δtq and lswitcht � 3 � δt�2 � p1� δtq. The

rational behind this is the observation of Min and Kim (2016) who find that momentum crashes,

indicated by δt � 1, typically occur in periods when investors are more risk-averse and more

concerned about losses. Adrian and Rosenberg (2008, Eq. (2)) also use a time-varying risk-

aversion parameter. Further, besides showing the economic value of the switching strategies

over the whole period, we additionally show the economic value for the crash period from

01.01.1938 to 01.01.1943.

Panel A of Table XIV shows the annualized percentage fee a mean-variance investor is will-

ing to pay to switch away from the RV managed strategy to one of the switching strategies.

Regardless of the strategy and risk aversion, a mean-variance investor is always willing to pay

a positive fee to switch away from the RV managed strategy. Further, since the strategies that

switch between volatility and CVaR targeting successfully reduce the volatility without sacrific-

143We calculate the average realized utility in Equation (2.6.16) by using the empirical return distribution. An-
other possibility would be to use distorted probabilities as explained in Benartzi and Thaler (1995) and Aı̈t-Sahalia
and Brandt (2001, Sec. 7). However, Benartzi and Thaler (1995) find that accounting for loss aversion, i.e. a value
of l ¡ 1, is more important than using distorted probabilities. Berkelaar et al. (2004) also do not use distorted
probabilities.

247



ing returns, the percentage fee ∆MV increases with the level of risk aversion γ. In contrast, the

willingness to pay to switch to the strategy that switches between the momentum and contrarian

portfolio is only low. As expected, during the crash period, the willingness of a mean-variance

investor to pay for the switching strategies significantly increases. This holds especially for

the strategy that switches between the momentum and contrarian portfolio. This finding is in

line with Table XI since switching to the contrarian strategy during a momentum crash produces

high returns, whereas the other strategies exhibit negative returns. However, the outperformance

of this strategy only holds in the crash period and not over the whole sample, since switching to

the contrarian strategy suffers from several false signals of the crash indicator δt. Thus, results

of the mean-variance investors are in line with the findings of the Sharpe Ratio and demonstrate

the value of our switching strategy.

Panel B of Table XIV shows the economic value of the switching strategies for an investor

with CRRA utility.144 Over the whole period, the main findings are similar to the case of the

mean-variance investor, but the willingness to pay for the switching strategies becomes higher

for high levels of risk aversion. This results since the switching strategies vastly reduce left

tail risk by exhibiting a higher skewness and lower kurtosis while simultaneously exhibiting a

higher return than the RV managed strategy, as can be seen in Tables IX and X. As stated above,

the CRRA framework considers that investors are left tail risk averse (Dreyer and Hubrich,

2019), which leads to economically high utility gains of our switching strategies. Ghysels et al.

(2016) also find very high utility gains of a CRRA investor with a risk aversion of γ � 5. For

example, the authors find that this investor would pay about 6% per year to switch from a mean-

variance optimized portfolio to a mean-variance-skewness optimized portfolio. The highest

fees in Table XIV are found for the risk aversion parameter that is high in crash periods and

low in non-crash periods. Interestingly, the economic value during the crash period is slightly

lower than the economic value over the whole sample. However, this finding is also in line with

Table XI, since the reduction in the negative skewness and kurtosis of the switching strategies is

only small during the crash period. In contrast, the economic value of the strategy that switches

144To better assess the influence of moments higher than volatility and since the strategies significantly differ in
their achieved level of volatility, we rescale the strategies to an annualized volatility of σtarget before calculating
the economic value for a CRRA investor.
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Table XIV. Economic Value of Risk Targeting
This table shows the economic value of the switching strategies with respect to the RV managed strategy.
Panel A shows the results for a mean variance investor with utility function (2.6.8). Panel B shows the
results for a CRRA investor with utility function (2.6.11). Panel C shows the results for a loss-averse
investor with utility function (2.6.14). The crash period ranges from 01.01.1938 to 01.01.1943. The
entries in the table correspond to the annualized percentage fee an investor is willing to pay to switch
from the RV managed strategy to a switching strategy.

Model Whole Period Crash Period

Panel A: MV γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 2.601 3.682 5.694 7.960 3.881 11.456 19.659 32.268 42.887 30.313
CVaR-Skt-unc 2.986 4.249 6.598 9.228 4.139 11.934 20.537 33.743 44.823 31.713
CVaR-GARCH-SRTR 3.430 4.387 6.170 8.187 3.916 9.080 14.459 22.814 30.068 21.039
CVaR-GJR-SRTR 3.313 4.216 5.900 7.809 3.840 8.888 14.049 22.072 29.055 20.313
CVaR-GARCH-Skt 3.254 4.291 6.221 8.400 3.963 10.601 17.155 27.291 35.975 25.261
CVaR-GJR-Skt 3.288 4.429 6.552 8.939 4.074 10.136 16.481 26.299 34.729 24.380
CVaR-GARCH-FHS 3.015 3.825 5.335 7.053 3.688 9.018 14.459 22.907 30.236 21.166
CVaR-GJR-FHS 3.093 4.037 5.796 7.789 3.838 8.678 13.990 22.243 29.412 20.587
RV-Mom/Contrarian 1.342 1.404 1.521 1.658 0.324 20.420 20.541 20.733 20.915 13.765

Panel B: CRRA γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 2.350 2.657 4.750 13.270 15.818 2.197 2.503 4.516 9.952 15.389
CVaR-Skt-unc 2.734 3.042 5.300 14.113 17.198 2.273 2.734 5.300 12.098 18.945
CVaR-GARCH-SRTR 2.734 3.042 4.907 12.432 14.537 2.044 2.120 2.580 3.970 5.457
CVaR-GJR-SRTR 2.657 2.888 4.672 11.766 13.775 2.044 2.044 2.120 2.580 3.893
CVaR-GARCH-Skt 2.734 3.042 5.142 13.691 16.161 2.427 2.657 3.970 7.523 10.116
CVaR-GJR-Skt 2.811 3.119 5.142 13.270 15.904 2.197 2.350 3.042 5.142 7.362
CVaR-GARCH-FHS 2.350 2.657 4.594 12.265 14.113 1.968 2.120 2.811 4.672 6.247
CVaR-GJR-FHS 2.503 2.811 4.516 11.600 13.606 1.815 1.815 2.044 2.657 4.048
RV-Mom/Contrarian 0.979 1.510 4.516 14.963 15.818 8.569 10.198 17.285 33.508 34.784

Panel C: Loss Aversion b � 0.8 b � 1 bswitcht b � 0.8 b � 1 bswitcht

l � 2 l � 3 l � 2 l � 3 lswitcht l � 2 l � 3 l � 2 l � 3 lswitcht

CVaR HS 2.170 2.658 3.057 3.704 3.320 7.502 9.835 13.051 16.188 15.874
CVaR-Skt-unc 2.573 3.204 3.642 4.466 3.931 7.472 9.847 13.229 16.364 16.040
CVaR-GARCH-SRTR 2.554 2.792 3.496 3.874 3.454 6.271 7.841 9.971 12.138 11.941
CVaR-GJR-SRTR 2.468 2.692 3.377 3.736 3.344 6.359 7.957 9.965 12.153 11.954
CVaR-GARCH-Skt 2.449 2.750 3.398 3.851 3.436 6.886 8.716 11.409 13.828 13.585
CVaR-GJR-Skt 2.623 3.048 3.629 4.231 3.740 7.041 8.993 11.456 14.025 13.777
CVaR-GARCH-FHS 2.156 2.296 2.960 3.218 2.930 5.983 7.482 9.710 11.854 11.664
CVaR-GJR-FHS 2.412 2.712 3.279 3.724 3.334 6.214 7.919 9.945 12.276 12.078
RV-Mom/Contrarian -0.305 -0.317 1.413 1.475 1.173 9.115 8.952 18.741 18.102 17.541

between the momentum and contrarian portfolio becomes significantly higher during the crash

period. This finding is again in line with Table XI since this strategy achieves a high positive

skewness, whereas all other portfolios are highly left skewed.

Panel C of Table XIV shows the results for a loss-averse investor. The economic value for a

loss-averse investor is again positive for all strategies that switch between volatility and CVaR

targeting, regardless of the values of b and l. In contrast, the strategy that switches between

the momentum and the contrarian strategy only provides a positive but low economic value for

b � 1 and bswitcht . Interestingly, the economic value for a loss-averse investor is quite stable

for different values of b and l and different switching strategies. Further, the economic value
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is significantly higher during the crash period and becomes extremely high for the strategy that

switches between the momentum and contrarian portfolio. Interestingly, Table XIV shows that

the economic value for the loss-averse investor is lower than the economic value for the mean-

variance and CRRA investor. This can be explained by the fact that loss aversion is highly

influenced by the evaluation period, whereas the CRRA and mean-variance approach are hardly

influenced by the evaluation period (Aı̈t-Sahalia and Brandt, 2001, Benartzi and Thaler, 1995).

Rickenberg (2020b) finds a higher economic value for loss-averse investors when the portfolio is

evaluated daily. Dreyer and Hubrich (2019) also find that the evaluation period has a high impact

on the risk-adjusted performance of a portfolio. Generally, the evaluation period of investors

is much smaller than the investors’ investment horizon (Benartzi and Thaler, 1995). Thus, in

practice, even long-term investors would evaluate their portfolio more frequently, which would

lead to a higher economic value for the loss-averse investor than stated in Panel C of Table XIV.

To summarize Table XIV, all three types of investors are willing to pay high fees to switch

away from the RV managed strategy of Barroso and Santa-Clara (2015) to a strategy that

switches between volatility and CVaR targeting. The strategy that switches between the mo-

mentum and the contrarian portfolio works well in the crash period, but is less attractive over

the whole sample. In total, results for the economic value further strengthen our earlier findings

and demonstrate the good performance of our simple switching approach, which is an appealing

and superior alternative to the volatility targeting approach.

Similar to Marquering and Verbeek (2004), we next show in Figure X the five and ten

year rolling economic value of a strategy that switches between volatility and CVaR targeting

for the mean-variance, CRRA and loss-averse investor. That is, Figure X shows how much

an investor with a medium investment horizon is willing to pay to switch away from the RV

managed strategy to one of the switching strategies. Using five and ten year rolling windows

is appealing, since even long-term investors typically have relatively short evaluation periods

(Benartzi and Thaler, 1995). Panel A shows the economic value for the three investors, where

we choose values of γ � 10, b � 1 and l � 2 and a rolling window of five years.145 This plot

shows that the economic value of the switching strategy is almost always positive. Furthermore,

145Results for other levels of risk aversion and loss aversion were quite similar and are not shown here.
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in periods when the RV managed strategy is superior to the switching strategy, the economic

loss is only small in magnitude ranging around �2% per year. In contrast, in times when the

RV managed strategy is inferior to the switching strategy, especially in times of a momentum

crash, the economic value is significantly higher in magnitude ranging up to more than 10% per

year. Panel B shows the economic value calculated over an investment horizon of ten years.

The results are quite similar to the findings of Panel A, but the economic loss of the switching

strategies in times when the RV managed strategy outperforms becomes even smaller. Thus, for

investors with an investment horizon of ten years, the switching strategies are superior to the

RV managed strategy in almost every market state. Moreira and Muir (2019) show that even

investors with longer investment horizons should time short-term volatility. However, results

of Figure X show that timing volatility and downside risk is even more appealing for investors

with investment horizons of several years.

Figure X. Five and Ten Year Rolling Economic Value. This figure shows the five and ten year rolling
economic value of a strategy that switches between volatility and CVaR targeting with respect to the
RV managed strategy for a mean-variance investor, a CRRA investor and a loss-averse investor with
parameters γ � 10, b � 1 and l � 2. Panel A plots the rolling utility for a window of five years. Panel B
plots the rolling utility for a window of ten years.

Lastly, we test if the utility gains achieved by the strategies that switch away from the RV
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Table XV. Tests for Statistical Significant Utility Gains
This table shows results for the tests of a statistically significant utility differential of the switching
strategies compared to the RV managed strategy. The tests are based on the utilities for a risk aversion
of γ � 10 as well as parameters of b � 1 and l � 2 for the loss-averse investor. The description of the
columns is given in Table V.

Panel A: MV zDM pRC pSPA pR pSQ Step-
RC

Step-
RCst

Step-
SPA

Step-
SPAst

FDR

RV - 0.61 0.48 1.88 1.31 - - - - -

CVaR HS 2.96 64.12 15.91 46.56 49.51 1 1 1 1 8
CVaR-Skt-unc 3.15 100.00 100.00 100.00 100.00 1 1 1 1 5
CVaR-GARCH-SRTR 3.18 79.17 30.38 71.46 75.63 1 1 1 1 2
CVaR-GJR-SRTR 3.10 67.05 19.10 49.11 53.98 1 1 1 1 3
CVaR-GARCH-Skt 3.04 79.76 40.17 71.46 75.63 1 1 1 1 6
CVaR-GJR-Skt 3.37 98.28 60.87 94.17 94.17 1 1 1 1 1
CVaR-GARCH-FHS 2.85 46.38 4.17 11.35 27.29 1 1 1 1 7
CVaR-GJR-FHS 3.18 63.86 10.19 32.88 48.53 1 1 1 1 4
RV-Mom/Contrarian 1.75 2.51 0.94 7.83 9.13 0 0 0 0 9

Panel B: CRRA zDM pRC pSPA pR pSQ Step-
RC

Step-
RCst

Step-
SPA

Step-
SPAst

FDR

RV - 8.22 3.43 1.42 5.08 - - - - -

CVaR HS 1.79 74.07 21.32 50.31 68.38 1 1 1 1 8
CVaR-Skt-unc 1.91 100.00 100.00 100.00 100.00 1 1 1 1 7
CVaR-GARCH-SRTR 2.30 86.98 40.45 91.76 91.64 1 1 1 1 2
CVaR-GJR-SRTR 2.29 77.75 20.00 50.31 70.56 2 1 2 1 1
CVaR-GARCH-Skt 2.08 95.00 80.94 98.78 98.32 1 1 1 1 6
CVaR-GJR-Skt 2.23 98.28 75.30 98.78 98.32 1 1 1 1 4
CVaR-GARCH-FHS 2.07 73.00 11.17 12.20 45.99 0 1 0 1 5
CVaR-GJR-FHS 2.23 72.73 19.68 33.77 58.02 0 1 0 1 3
RV-Mom/Contrarian 1.58 56.60 39.15 91.76 91.64 0 0 0 0 9

Panel C: Loss Aversion zDM pRC pSPA pR pSQ Step-
RC

Step-
RCst

Step-
SPA

Step-
SPAst

FDR

RV - 4.75 0.04 0.11 0.64 - - - - -

CVaR HS 4.38 61.62 11.76 39.62 54.70 1 1 1 1 7
CVaR-Skt-unc 4.76 100.00 100.00 100.00 100.00 1 1 1 1 4
CVaR-GARCH-SRTR 4.12 87.22 51.99 83.49 86.24 1 1 1 1 1
CVaR-GJR-SRTR 4.00 77.17 40.52 83.49 81.81 1 1 1 1 5
CVaR-GARCH-Skt 4.11 79.82 38.91 83.49 82.81 1 1 1 1 2
CVaR-GJR-Skt 4.86 99.33 73.35 96.26 96.26 1 1 1 1 3
CVaR-GARCH-FHS 3.68 48.52 8.35 24.92 31.45 1 1 1 1 8
CVaR-GJR-FHS 4.46 70.88 11.05 39.62 68.12 1 1 1 1 6
RV-Mom/Contrarian 1.75 18.67 11.99 24.92 31.45 0 0 0 0 9

managed momentum strategy are also statistically significant. To assess the significance, we

apply the tests summarized in Appendix D to the utility differential, as also done by Bollerslev

et al. (2018) who use the DM-test to test for the significance of the utility increase. A similar

approach to test for the statistical significance of utility increases is also used by Kirby and Ost-

diek (2012), DeMiguel et al. (2009b, Footnote 18), Taylor (2014) and Cederburg et al. (2020).

Whenever a benchmark model is needed, we use the RV managed strategy as benchmark. Re-

sults of the tests are given in Table XV, where Panel A shows results for the mean-variance

investor with γ � 10. The DM-test indicates that all models that switch between volatility
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and CVaR targeting exhibit a statistically higher utility for a mean-variance investor. The util-

ity increase of the strategy that switches between the momentum and the contrarian strategy is

also significant at the 10%, but not at the 5% level. By using a test level of 10%, the RC-test

only rejects the null-hypothesis of the RV managed strategy and the strategy that switches to

the contrarian portfolio. The SPA-test, which typically identifies more inferior models than the

RC-tests, rejects one additional model but comes to a similar conclusion. The MCS also only

eliminates the RV managed strategy and the strategy that switches to the contrarian portfolio,

whereas none of the CVaR switching strategies is eliminated. The stepwise approaches identify

all strategies that switch between volatility and CVaR targeting as superior, whereas the strategy

that switches to the contrarian is not picked. The FDR approach that targets an FDR� of 10%

identifies all switching models as superior to the RV managed strategy, where the contrarian

switching strategy is picked in the last step. Thus, results in Panel A clearly show that switch-

ing away from the volatility targeting strategy when a momentum crash is likely significantly

increases an investor’s utility, where the most pronounced utility increases are obtained for the

CVaR switching strategies.

Panel B shows results for the CRRA investor with γ � 10. Results are again similar to

the results of Panel A. The switching strategies typically produce statistically significant utility

gains in comparison to the RV managed strategy. The RC-test, SPA-test and the MCS give

clear evidence against the RV managed strategy. All stepwise tests identify most strategies that

switch between volatility and CVaR targeting as superior, whereas the strategy that switches to

the contrarian portfolio is not contained in the set of superior models. Again, the FDR approach

identifies all switching strategies as superior to the RV managed strategy, where the strategy

that switches to the contrarian portfolio is picked in the last step. In total, all tests clearly show

that an investor’s utility can be significantly increased by using our switching approach instead

of the RV managed strategy. Panel C shows results for a loss-averse investor with parameters

b � 1 and l � 2. Results are again in line with Panels A and B. The strategies that switch

between volatility and CVaR targeting show statistically significant utility gains. The strategy

that switches between the RV managed momentum and contrarian portfolio also performs well,
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but the tests indicate a superior performance of the strategies that switch between volatility and

CVaR targeting. Thus, the findings for the loss-averse investor further strengthen our earlier

findings and show that a loss-averse investor benefits from switching between volatility and

CVaR targeting.

2.6.6 Spanning Tests

Finally, in order to demonstrate how the non-managed and the different risk-managed momen-

tum strategies are related, we next run time-series regressions of one strategy on the returns

of the other strategies. Following Moreira and Muir (2017, Table 1), we regress the returns

of the risk-managed momentum strategies on the non-managed momentum portfolio. Further,

following Daniel and Moskowitz (2016, Table 8), we additionally regress each strategy on the

returns of the other non-managed or risk-managed strategies as well as other factors, like the

market or the Fama and French (1993) three factor model. Following the authors, we rescale all

strategies to the same level of volatility. Results of these time-series regressions are shown in

Table XVI, where we report the annualized alphas with the corresponding t-statistics.146 In line

with earlier studies, we find that the returns of the non-managed momentum portfolio cannot be

explained by the CAPM or the three factor model. However, the alpha of the non-managed strat-

egy becomes highly negative when we control for the risk-managed strategies. These negative

alphas are even statistically significant with t-statistics of �2.404 and �2.523 for the volatility

targeting and switching strategy, respectively. In contrast, confirming the findings of Moreira

and Muir (2017) and Daniel and Moskowitz (2016), the volatility managed momentum strategy

cannot be explained by the CAPM, the three factor model and the non-managed momentum

portfolio. However, when we control for the switching strategy, the alpha of the volatility man-

aged momentum portfolio becomes negative. This alpha is also statistically significant with

a t-statistic of �2.761. In contrast, the returns of the switching strategy cannot be explained

by the remaining strategies. All alphas of this strategy are economically high and statistically

146This time-series regression approach has several disadvantages as shown by Boguth et al. (2011), Cederburg
and O’Doherty (2016), Cederburg et al. (2020) and Schneider et al. (2020). For example, the unconditional alphas
do not account for volatility timing and higher order preferences of investors. These disadvantages are corrected
by the economic value approach examined earlier. Thus, our economic value based findings are more meaningful,
but results of Table XVI can be seen as a further robustness check.
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significant with t-statistics between 5.003 and 11.562. In particular, with an alpha of 4.936%,

the switching strategy cannot be explained by the RV managed strategy. Thus, Table XVI fur-

ther strengthen our earlier findings that a strategy that switches between volatility and CVaR

targeting outperforms the RV managed strategy and is highly valuable for investors.

Table XVI. Spanning Tests: Portfolio Alphas
This table shows portfolio alphas and t-statistics for the non-managed and risk-managed momentum
portfolios. The alphas are the annualized and percentage intercepts of regressions of momentum returns
on several other portfolios. t-statistics are given in parentheses. Returns are regressed on the CAPM and
the Fama and French (1993) three factor model (FF3). The three factor model is further extended by
returns of the non-managed and risk-managed momentum strategies. Mom stands for the non-managed
momentum strategy, RV stands for the volatility managed momentum strategy, Switch stands for the
strategy that switches between volatility and CVaR targeting, whereas Rem means that the remaining
two strategies are included. All strategies are rescaled to the same level of volatility before running the
regressions. An alpha with a corresponding t-statistic that is higher than 1.64 is given in bold. An alpha
with a corresponding t-statistic that is smaller than -1.64 is given in red.

Model CAPM FF3 FF3 + Mom FF3 + RV FF3 + Switch FF3 + Rem

Momentum 9.827 12.350 - -2.931 -3.731 -1.306
(6.240) (7.644) - (-2.404) (-2.523) (-1.178)

RV 18.538 20.569 8.318 - -2.224 -0.884
(9.291) (10.472) (6.310) - (-2.761) (-1.594)

Switching 23.414 25.303 13.846 4.936 - 4.387
(10.517) (11.562) (8.225) (5.003) - (5.081)

To summarize the empirical part, momentum returns do not follow a random walk and

momentum returns are highly non-normal with an extremely high crash risk. Based on these

observations we find that switching between volatility and CVaR targeting is a promising strat-

egy to mitigate momentum crashes and to heighten the utility of most types of investors. These

utility increases are statistically significant and are not limited to certain market environments.

In other words, medium-term investors benefit from the switching approach in bull and bear

markets. Thus, our switching strategies do not only produce significant higher Sharpe Ratios,

as indicated by the Jobson and Korkie (1981) test, but also provide significant utility gains. Fur-

thermore, our switching strategy cannot be explained by the RV managed momentum strategy

of Barroso and Santa-Clara (2015), but the RV managed strategy becomes unprofitable, once

we control for the switching strategy.
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2.7 Conclusion

This paper studies the unconditional and conditional distribution of the momentum strategy

and shows that momentum’s conditional skewness and kurtosis are highly time-varying, take

extreme values and there are periods when these moments may even not exist. We especially

show that momentum’s conditional skewness is negative almost all of the time and most extreme

values or non-existing higher moments occur during momentum crash periods. We further show

that the extreme outcomes of conditional skewness and kurtosis arise since the skewness of the

winners and losers portfolios moves in opposite directions, whereas the kurtosis of both portfo-

lios comoves. We further show that the random walk hypothesis does not hold for the momen-

tum portfolio, which makes portfolio risk management based on the Realized Volatility (RV)

method as done by Barroso and Santa-Clara (2015) and Moreira and Muir (2017) inappropriate.

Based on these observations, we show that momentum’s portfolio risk should be better

managed by advanced volatility models. In line with the findings of Bollerslev et al. (2018), we

show that these advanced volatility models are more accurate than the RV model, which makes

these models highly valuable for investors who target a constant level of momentum’s volatility.

We further show how a constant level of momentum’s downside risk can be targeted. Based on

several crash indicators, we then develop strategies that manage momentum’s volatility in calm

periods and momentum’s downside risk when a momentum crash is likely. Compared to the

RV managed momentum strategy, these strategies exhibit higher returns with less risk, which

leads to statistically higher Sharpe Ratios of the switching strategies compared to the Sharpe

Ratio of the RV managed strategy. In particular, by switching to downside risk targeting when

a momentum crash is likely, these switching strategies significantly reduce momentum’s crash

risk without sacrificing returns. Hence, these strategies vastly reduce momentum’s high left tail

risk while the mass in the right tail is increased, which is highly valuable for investors.

To assess the economic value of the switching strategies, we calculate the annual percent-

age fee an investor is willing to pay to switch from the RV managed strategy to the strategies

that switch between volatility and downside risk targeting. We calculate this fee for mean-

variance investors, investors with preferences for higher skewness and lower kurtosis as well as
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for loss-averse investors. We find that the economic value of these switching strategies is high

and statistically significant for all three types of investors. In particular, the economic value

of switching to a downside risk targeting strategy becomes extremely high during a momen-

tum crash. Finally, we show that our switching strategy cannot be explained by the returns of

the RV managed momentum portfolio. In contrast, the RV managed momentum portfolio is

unprofitable once we control for the returns of the switching strategy.
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Appendix to Chapter 2

A Momentum Strategy: Construction Method and Litera-
ture Review

In this section, we shortly present the momentum strategy and review the literature on momen-

tum investing. Several studies demonstrate that the momentum portfolio, i.e. the portfolio that

buys past winners and sells past losers produces abnormally high returns, which challenge stan-

dard asset pricing models. For the momentum portfolio, assets are pilled into deciles based on

their past J months’ performance. The decile containing the assets with the lowest past return

is called the losers portfolio and the decile containing the assets with the highest past return

is called the winners portfolio.147 The momentum portfolio – also called winner minus losers

(WML) portfolio – is then built by being 1$ long the winners and 1$ short the losers portfolio

(see Jegadeesh and Titman (1993) and Rouwenhorst (1998, p. 269) for example).148 This port-

folio is then held for K months and the process is repeated in the next month. As in Fama and

French (1996), we choose J � 12, K � 1 and use a one month gap in the ranking period, i.e.

assets in month t are ranked based on the performance between months t� 12 to t� 2.149 Fama

147Other definitions of winners and losers are also possible. For example, in order “to place less emphasis on
the tails of the performance distribution” Hong et al. (2000, p. 274) define winners as the 30% best performing
stocks and losers as the 30% worst performing stocks. Further, instead of only buying and selling the extreme
performers, other studies on momentum buy and sell all assets, where an asset is defined as winner (loser) if the
stock’s performance is higher (lower) than the cross-sectional average performance (Chan et al., 2000, Conrad and
Kaul, 1998, Goyal and Jegadeesh, 2017, Lewellen, 2002, Moskowitz and Grinblatt, 1999).

148Momentum investing is based on the observation that stocks that performed well in the past will outperform
stocks that performed poorly in the past. Therefore, momentum investing is related to trend-following rules and
time series momentum, as examined in Moskowitz et al. (2012), Bajgrowicz and Scaillet (2012) and Sullivan et al.
(1999). The similarities and differences between cross-sectional momentum and time series momentum are nicely
presented in Moskowitz et al. (2012), Kim et al. (2016) and Goyal and Jegadeesh (2017).

149The same method is also used by Barroso and Santa-Clara (2015), Carhart (1997), Grundy and Martin (2001)
and Daniel and Moskowitz (2016). Jegadeesh and Titman (1993) examine momentum portfolios where the ranking
and holding period are equal, i.e. J � K, where their most frequently used ranking and holding periods are six
months. The momentum portfolio then consists ofK overlapping portfolios, where each portfolio obtains a weight
of 1{K (see also Rouwenhorst (1998) and Moskowitz and Grinblatt (1999, Sec. III.A)). The different construction
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and French (1996, Tables VI-VII) show that longer ranking periods do not work well for the

momentum strategy. The assets within the winners and losers portfolio can be equally weighted

(Chordia and Shivakumar, 2002, Grundy and Martin, 2001, Hong et al., 2000, Jegadeesh and

Titman, 1993, 2001, Lesmond et al., 2004), value-weighted (Barroso and Santa-Clara, 2015,

Novy-Marx, 2012, Richards, 1997), weighted based on past performance (Chan et al., 2000,

Conrad and Kaul, 1998, Goyal and Jegadeesh, 2017, Lewellen, 2002, Moskowitz and Grinblatt,

1999) and volatility weighted (Asness et al., 2013, Goyal and Jegadeesh, 2017). Further, Fama

and French (2012) construct a momentum factor using double-sorted portfolios based on size

and past return. These momentum strategies have been extensively examined in the academic

literature and it has been shown that momentum investing exhibits abnormally high returns for

medium-term holding periods K between one month and twelve months. For longer holding

periods of more than one year, the momentum effect reverses and the portfolio yields low or

even negative returns (see Jegadeesh and Titman (1993, Table VII), Rouwenhorst (1998, Ta-

ble VI), Jegadeesh and Titman (2001, Fig. 3), Conrad and Kaul (1998) and Richards (1997)).

This result also holds when momentum is applied to mutual funds (Carhart, 1997).

The high performance of the momentum strategy has been first shown for the US market by

Jegadeesh and Titman (1993). This finding has then been confirmed by several other studies (see

Jegadeesh and Titman (2001) for example). Jegadeesh and Titman (1993) find that the momen-

tum strategy earns a highly significant return and the authors show that the high performance

holds for several subperiods and for all months except for January (see also Jegadeesh and Tit-

man (2001, Table. 2)). Jegadeesh and Titman (2001) reexamine the momentum strategy for a

larger time span and the authors confirm the earlier findings of Jegadeesh and Titman (1993).

methods of Jegadeesh and Titman (1993) and Fama and French (1996) are also compared by Min and Kim (2016).
Fama and French (1996) and Min and Kim (2016) show that the performance of both approaches are quite similar.
Novy-Marx (2012) also uses a one month holding period and finds that momentum returns are mainly driven by
the medium-term past performance of months t� 12 to t� 7 and not by the recent past’s performance of months
t � 6 to t � 2 (see also Moskowitz and Grinblatt (1999)). Goyal and Wahal (2015) show that this result holds
for US stocks, but is no international phenomenon. Further, the authors find that the results of Novy-Marx (2012)
are driven by the negative impact of the t � 2 return and the positive impact of the t � 12 return. Hence, the
strategy of Jegadeesh and Titman (1993, 2001) that uses the past six months’ return as ranking criteria does not
capture the valuable medium-term past returns. Similar to Novy-Marx (2012), Grobys et al. (2018) apply different
ranking methods to the industry momentum strategy and the authors also use a month holding period. Interestingly,
Moskowitz and Grinblatt (1999) show that only the momentum strategy using a 12 months ranking period cannot
be explained by industry momentum, whereas momentum strategies based on other ranking periods are explained
by industry momentum.
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Chabot et al. (2014) show that momentum also works for data ranging from 1867 to 1907, i.e.

data that start and end before the data used by Jegadeesh and Titman (1993). More recently,

Barroso and Santa-Clara (2015, Table 1) using data that range from 1927 to 2011 find an annu-

alized return of 14.46% and a Sharpe Ratio of 0.53 for the momentum portfolio, compared to

an annualized return of 7.35% and a Sharpe Ratio of 0.39 achieved by the market. Rouwenhorst

(1998) shows that the high performance of momentum also holds in Europe. Griffin et al. (2003)

examine momentum internationally (see Griffin et al. (2003, Table I) for a summary of the used

data). Fama and French (2012) find that equity momentum is found almost everywhere except

for Japan. Similarly, Asness et al. (2013, Table I) find positive and significant alphas for US,

UK and European equities, but a small and insignificant alpha for Japanese equities. Moskowitz

and Grinblatt (1999), Lewellen (2002), Du Plessis and Hallerbach (2017), Grobys et al. (2018),

Rickenberg (2020c) and Chordia and Shivakumar (2002) show that the momentum strategy also

works for industries. Lewellen (2002) and Rickenberg (2020c) show that momentum can also

be applied to investment styles. Richards (1997), Bhojraj and Swaminathan (2006), Ricken-

berg (2020c) and Chan et al. (2000) find momentum for country indices. Asness et al. (2013)

find momentum effects in different markets and asset classes including international equities,

equity indices, bonds, currencies and commodities. Novy-Marx (2012) finds momentum for

international equities, commodities, currencies, industries and investment styles. Further, mo-

mentum can also be applied to mutual funds, i.e. funds that performed well in the recent past

tend to perform well in subsequent periods (Carhart, 1997). Hence, the momentum effect is

found for almost every market and asset class. In particular, the strong presence and interest in

the momentum effect is not only limited to the academic literature, since fund managers “show

a tendency to buy stocks that have increased in price over the previous quarter” (Jegadeesh and

Titman, 1993, p. 66).

The vast performance of the momentum strategy cannot be explained by standard asset

pricing models. For example, Fama and French (1996) show that momentum returns cannot be

explained by the CAPM or the Fama-French three factor model, whereas many other market

anomalies can be explained by the three factor model (see also Barroso (2016, Sec. 3)). Simi-
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larly, Jegadeesh and Titman (2001, Table IV) find positive and highly significant alphas of the

momentum strategy with respect to the CAPM and the Fama-French three factor model. Fur-

thermore, Barroso and Santa-Clara (2015) find a monthly alpha of 1.75% with respect to the

Fama-French three factor model. This result also holds for several subperiods and market capi-

talizations (see Tables VI–VIII in Jegadeesh and Titman (2001)).150 Hence, momentum returns

cannot be explained by market or factor risk. Fama and French (1996, Sec. VI.D) present sev-

eral explanations why the Fama-French three factor model fails to capture momentum returns.

The observation that momentum returns cannot be explained by standard asset pricing models

has led to the development of a four factor model that includes a factor for momentum (Carhart,

1997). Several other possible explanations for the momentum effect have been made in the lit-

erature, e.g. behavioral explanations, data snooping and compensation for macroeconomic risks

(see Jegadeesh and Titman (1993), Rouwenhorst (1998), Jegadeesh and Titman (2001), Chor-

dia and Shivakumar (2002), Griffin et al. (2003), Hong et al. (2000) and references therein).151

Since momentum investing also works before and after the initial study of Jegadeesh and Tit-

man (1993) and since momentum investing does not only work for US stocks in a certain time

period but is apparent in almost every market, asset class and time-period, data snooping has

been eliminated as a possible explanation (see Jegadeesh and Titman (2001) and Asness et al.

(2013)). Moreover, in contrast to the findings of Chordia and Shivakumar (2002), Griffin et al.

(2003) show that macroeconomic risks fail to explain the high momentum returns (see also As-

ness et al. (2013)). In contrast, Moskowitz and Grinblatt (1999) show that a substantial part

150The alpha of the momentum strategy is not an adequate measure to assess the performance of the momentum
strategy, since this measure does not adequately account for the high crash risk of the momentum strategy. For
example, Chabot et al. (2014, p. 1) write that “investors’ aversion to such large losses may not be adequately
captured by standard asset pricing models and the high historical alpha is due to inadequate risk adjustment, and
is compensation for exposure to such crash risk.” This finding is confirmed by Ruenzi and Weigert (2018) who
find that the high returns of the momentum portfolio can be explained as a compensation for the high crash risk of
the momentum portfolio. Similarly, Jacobs et al. (2015) find that the high returns of the momentum strategy are
compensation for the high negative skewness of the momentum portfolio. Generally, unconditional alphas have
several disadvantages as performance measure (Boguth et al., 2011, Cederburg and O’Doherty, 2016, Cederburg
et al., 2020, Schneider et al., 2020). We will therefore use more sophisticated performance measures that consider
momentum’s crash and skewness risk.

151See Jegadeesh and Titman (2001, Sec. II) and Jacobs et al. (2015, Sec. 3) for a discussion of several expla-
nations and studies of why the momentum effect exists for medium-term holding periods but reverses for longer
holding periods. See Min and Kim (2016, Footnote 2) for a short summary and list of studies on the source of
the profitability of momentum and Ruenzi and Weigert (2018) for a short summary and list of studies on the main
drivers of momentum returns.
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of momentum returns can be explained by industry momentum. Jegadeesh and Titman (2001)

find that behavioral explanations are best in explaining the momentum effect, whereas Jacobs

et al. (2015) and Ruenzi and Weigert (2018) suggest that momentum returns can be explained

by momentum’s skewness and crash risk. In total, there does not exist a common explanation

for the high profitably of momentum and momentum’s returns are still puzzling.

Jegadeesh and Titman (1993), Rouwenhorst (1998) and Jegadeesh and Titman (2001) find

that the momentum portfolio typically contains firms with a smaller market capitalization,

where the stocks in the losers portfolio are typically smaller than the assets in the winners

portfolio. However, the authors show that the momentum effect is not limited to assets with

a low market capitalization, but is also found for medium-sized and large-sized firms (see Je-

gadeesh and Titman (2001, Table 1) for example). Hong et al. (2000, Figure 2) illustrate the

relation between firm size and momentum profits and find that momentum works for almost

all size deciles. Nevertheless, Rouwenhorst (1998) shows that the momentum effect is more

pronounced for small-sized firms (see also Fama and French (2012)). Further, the momentum

portfolio typically has a negative or close to zero market beta on average and the assets in the

winners and losers portfolios typically have high betas (see Jegadeesh and Titman (1993, Ta-

ble II), Rouwenhorst (1998, Table 2) and Jegadeesh and Titman (2001, Table III)). Grundy and

Martin (2001) show that the beta of the momentum strategy is highly time-varying (see also

Barroso (2016) and Martens and Van Oord (2014)). In particular, the beta is positive follow-

ing periods when the market increased and negative following periods with a negative market

return.152 However, Jegadeesh and Titman (1993) and Rouwenhorst (1998) find that momen-

tum also works when assets are first sorted into high, medium and low beta stocks. Moreover,

Rouwenhorst (1998) documents that the average volatility of the assets in the winners and losers

portfolios is typically 30% to 40% higher than the average volatility of the assets in the middle

152Similarly, Barroso (2016) calculate the beta of the momentum portfolio as the weighted beta of the assets in
the momentum portfolio and shows that this beta estimate is highly time-varying and depends on the past market
return. See Barroso (2016, Figure 2) for the relation of momentum’s beta on the past market return. The relation
between the past market return and momentum’s beta follows from the construction of the momentum portfolio.
For example, in periods of a longer market decline, winners will be stocks with a highly negative beta, whereas
loser stocks have a highly positive beta. By buying the winners and selling the losers, momentum’s beta will be
highly negative when the market’s past return is negative. Similarly, when the market trends upwards, momentum’s
beta will be positive, since the winners have high betas, whereas the losers have low betas in these periods.
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part, which are not included in the momentum portfolio. Hence, the momentum strategy typi-

cally picks assets that are riskier – measured by market capitalization, market beta or volatility

– than the average asset. This results in a high risk of the momentum portfolio as summarized

in Section 2.2. The aim of this paper is to manage the high risk of the momentum portfolio.

B Standardized Skewed t Distribution

Christoffersen (2012) shows that for Z � stskpη, λq and z   �a
b

E
�
Z � 1tZ zu

� � c

b
p1 � λq2η � 2

1 � η

�
1 � 1

η � 2

�
zp�q

�2

 1�η

2

� a

b
p1 � λqFst

�
zp�q|η� (B.1)

holds, where zp�q � bz�a
1�λ . This can also be conveniently rewritten as

E
�
Z � 1tZ zu

� � p1 � λq2
b

�
fst

�
zp�q|η� � η � 2 � �

zp�q
�2

1 � η
� a � Fst

�
zp�q|η�

1 � λ

�
, (B.2)

where fst pz|ηq and Fst pz|ηq are the pdf and cdf of the standardized skewed t distribution,

respectively.

We next derive a formula for E
�
Z � 1tZ zu

�
for the case z ¥ �a

b
, which is not shown in

Christoffersen (2012). We use that EpZq � 0, and hence

E
�
Z � 1tZ zu

� � �E�Z � 1tZ¥zu
�

(B.3)

holds. Using similar arguments as in Christoffersen (2012), we obtain

E
�
Z � 1tZ¥zu

� � » �8

z

u � fstskpu|η, λqdu � bc

» �8

z

u

�
1 � 1

η � 2

�
bu� a

1 � λ


2
�� 1�η

2

du.

By a change of variable, x � bz�a
1�λ , we get

E
�
Z � 1tZ¥zu

� � c � p1 � λq
b

» �8

bz�a
1�λ

xp1 � λq
�

1 � x2

η � 2


� 1�η
2

� a

�
1 � x2

η � 2


� 1�η
2

dx,

which yields

E
�
Z � 1tZ¥zu

� � �cp1 � λq2
b

� η � 2

1 � η
�
�

1 �
�
zp�q

�2

η � 2

� 1�η
2

� a

b
p1 � λq � �1 � Fst

�
zp�q

��
,
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where we define zp�q � bz�a
1�λ . From c �

�
1 � pzp�qq2

η�2


 1�η
2

� fst
�
zp�q

� ��1 � pzp�qq2
η�2



we obtain

E
�
Z � 1tZ¥zu

� � �p1 � λq2
b

�
�
fst

�
zp�q

� � η � 2 � �
zp�q

�2

1 � η
� a � �1 � Fst

�
zp�q

��
1 � λ

�
.

Therefore, we get

E
�
Z � 1tZ zu

� � p1 � λq2
b

�
�
fst

�
zp�q

� � η � 2 � �
zp�q

�2

1 � η
� a � �1 � Fst

�
zp�q

��
1 � λ

�
. (B.4)

C Variance Ratio Test

This section shortly reviews the variance ratio test of Lo and MacKinlay (1988) that can be used

to test the random walk hypothesis. For a time series tR̃tut�1,...,nh and tRtut�1,...,n of daily and

monthly returns we define

µ � 1

nh

nḩ

t�1

R̃t, σ2
d �

1

nh

nḩ

t�1

pR̃t � µq2, σ2
m � 1

nh

ņ

t�1

pRt � hµq2 (C.1a)

and

Jr � σ2
m

σ2
s

� 1. (C.1b)

The variance ratio of monthly and daily volatility, Jr � 1 � σ2
m

σ2
s

, should be equal to one, if the

momentum returns follow a random walk. Moreover, Lo and MacKinlay (1988, Theorem 1)

show that z1 :�
?
nhJr?

2ph�1q is asymptotically standard normally distributed, which can be used

to statistically test the random walk hypothesis. Furthermore, Lo and MacKinlay (1988) argue

that using non-overlapping data and unbiased variance estimators can improve the efficiency of

the estimators, which translates into a more powerful test. Therefore, following the authors, we

modify the variance estimators in Equation (C.1) and define

σ2
d �

1

nh� 1

nḩ

t�1

pR̃t � µq2, σ2
m � 1

m

nḩ

t�h
pRt:t�h � hµq2 , (C.2)

where Rt:t�h :� °h�1
k�0 R̃t�k and m :� hpnh� h� 1q �1 � h

nh

�
. The variance ratio test statistic

is then given by

M r � σ2
m

σ2
d

� 1, (C.3)
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which again should be equal to zero if the random walk hypothesis holds. Further, Lo and

MacKinlay (1988, Theorem 2) show that z2 :�
?
nh�Mr?

2p2h�1qph�1q{3h is asymptotically standard

normally distributed, which can be used to test the random walk hypothesis. To guarantee that

the random walk hypothesis is not rejected due to heteroscedasticity, Lo and MacKinlay (1988)

develop another test based on Equation (C.3). Under a slightly modified null hypothesis, Lo

and MacKinlay (1988, Theorem 3) show that z3 :�
?
nh�Mr?
θ

is asymptotically standard normally

distributed, where153

θ �
h�1̧

j�1

�
2ph� jq

h


2

δpjq, (C.4a)

δpjq �
nh

°nh
t�j�1

�
R̃t � µ

	2 �
R̃t�j � µ

	2

�°nh
t�1

�
R̃t � µ

	2

2 . (C.4b)

The three tests are applied to the momentum portfolio in Section 2.6.2.

D Comparing Predictive Accuracy

In this section, we describe several methods that can be used to compare the predictive abil-

ity of several forecasting methods. In the academic literature, there exist several possibilities

how the accuracy of competing forecasting models can be tested. For example, it can be tested

if two or more forecasts are equally accurate. Further, instead of testing for equal predictive

ability, it can also be tested for superior predictive ability, i.e. it can be tested if a chosen bench-

mark is outperformed by any other alternative forecast. When comparing several forecasts, we

can compare two or more competing forecasts simultaneously. Testing several null hypothe-

ses typically increases the probability of rejecting a true null hypothesis. To account for this, a

common method, which is usually used in simultaneously testing several individual hypotheses,

is the Bonferroni correction. The Bonferroni correction simply divides the confidence level by

the number of individual hypotheses that are tested. This guarantees that the confidence level

of the simultaneous test does not exceed the desired confidence level (Bajgrowicz and Scaillet,

2012, p. 475). However, several studies found that this correction is far too conservative and

153Equation (19) in Lo and MacKinlay (1988) contains a small error, which is corrected in Equation (C.4b).
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has less power than more advanced testing approaches. For that reason, we will present several

more advanced testing approaches, which are frequently used in the literature. We will present

methods that compare all alternative models to a chosen benchmark and also methods that are

free of choosing a benchmark model. Finally, we present several algorithms that can be used to

construct a set of superior forecasts.

For an accurate volatility targeting strategy, the portfolio volatility of month t should be

constant and equal to σtarget,m :� σtarget{
?

12 for each month t � 1, ..., n, where n denotes

the number of months used to test the accuracy. We denote the weight that is invested in the

momentum portfolio of strategy k in month t by wk,t, where we consider l � 1 models k �
0, 1, ..., l. We measure the Realized Variance of strategy k in month t by

RV 2
k,t � w2

k,t �
ḩ

i�1

R2
t,i, k � 0, 1, ..., l, t � 1, ..., n. (D.1)

If a forecasting method is accurate, RV 2
k,t should be constant and equal to σ2

target,m in every

month. Models that produce portfolio volatilities that are higher or lower than the volatility

target and/or models that produce a highly volatile portfolio volatility are less favorable and

indicate that this model fails to achieve the aim of targeting a constant level of volatility. Similar

to Hansen and Lunde (2005) and Patton (2011), we define the sequences of losses by

Lk,t :� L
�
RV 2

k,t, σ
2
target,m

�
:� RV 2

k,t

σ2
target,m

� ln

�
RV 2

k,t

σ2
target,m



� 1, (D.2)

where we use the QLIKE loss function. The QLIKE loss function is also frequently used in

the volatility forecasting literature. Hansen and Lunde (2005) and Patton (2011) also use other

loss functions that can be used to test for the forecasting accuracy. However, Patton (2011)

shows that only a certain class of loss functions, including the QLIKE loss function that is used

in our paper, are robust to noise in the volatility proxy. The idea of the backtesting procedures

summarized in this section is that the losses Lk,t should be low for an accurate forecasting model

k. We next present several approaches that can be used to test this hypothesis.

D.1 Diebold-Mariano Test (DM-test)

The DM-test presented in Diebold and Mariano (1995) tests if two competing models’ forecasts

are equally accurate. This test is frequently used when two models are compared. For example,
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this procedure is used by Patton (2011) to compare competing volatility models, by Kole et al.

(2017) to assess the accuracy of h-day VaR forecasts and by Bollerslev et al. (2018) to test

for significant utility increases of volatility targeting strategies. The test relies on the relative

performance of two competing forecasts, which is defined by

Xk,t :� L0,t � Lk,t, k � 1, ..., l, t � 1, ..., n. (D.3)

The variable Xk,t measures the performance – in terms of the chosen loss function – of model

k against the benchmark model 0 in month t (Hansen, 2005, p. 367). A positive value of Xk,t

indicates that model k performed better – in terms of a smaller loss – than the benchmark model

0 in month t, i.e. model k’s portfolio volatility was closer to the desired volatility target than

the benchmark model’s volatility. For a fixed k � 1, ..., l, the DM-test has the null hypothesis

H0 : EpXk,tq � 0 for all t � 1, ..., n. Hence, the DM-test can only be used to simultaneously

compare two models. As the benchmark model 0 we use the Realized Volatility strategy used in

Barroso and Santa-Clara (2015) and Moreira and Muir (2017) and we define M0 � t1, ..., lu.
For a fixed k P M0, we define the average relative performance of model k against the bench-

mark model on the whole sample as

Xk :� 1

n

ņ

t�1

Xk,t. (D.4)

The variables Xk,t and Xk contain all the information that are needed to assess if any model is

statistically equally – or less – accurate compared to the benchmark model. Consequently, all

tests that are presented in the next sections use these variables as starting point.

Diebold and Mariano (1995) show that the average loss differential Xk is asymptotically

normally distributed. In particular, the test statistic

TDMn � Xk

ω̂k
(D.5)

follows asymptotically a normal distribution, where ω̂k is an estimator for the asymptotic vari-

ance. Diebold and Mariano (1995) show that the asymptotic variance can be estimated by

ω̂k �
gffe 1

n

�
γ̂0,k � 2

h�1̧

i�1

γ̂i,k

�
, (D.6)
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where γ̂i,k is an estimator for the i-th autocovariance of the loss differential, which can be

estimated by the sample autocovariance

γ̂i,k � 1

n

ņ

t�i�1

�
Xk,t �Xk

� �
Xk,t�i �Xk

�
. (D.7)

Since the test statistic TDMn is asymptotically normally distributed, the null hypothesis of equal

predictive ability cannot be rejected at a test level of 10% if �1.64   TDMn   1.64. If |TDMn | ¡
1.64, the null hypothesis is rejected at a 10% test level. In particular, a lower average loss of

model 0 compared to model k translates into a negative test statistic TDMn . Thus, a negative

TDMn indicates that the benchmark model is more successful in targeting a constant volatility

of the momentum portfolio than model k. Similarly, a positive test statistic indicates that the

competing model k produces a more accurate portfolio volatility than the benchmark model

(Patton, 2011).

D.2 Reality Check (RC-test)

The test of equal predictive ability of Diebold and Mariano (1995) presented in the previous

section simultaneously compares only two models. White (2000) extends this test to the Re-

ality Check test (RC-test). The RC-test is also nicely summarized in Sullivan et al. (1999,

Appendix B). The RC-test is based on a multiple null hypothesis, i.e. the benchmark model can

be tested simultaneously against several alternative models. Further, the test of White (2000)

does not test for equal predictive ability but for superior predictive ability. Thus, it is tested if

the benchmark model is not outperformed by any alternative model. We follow the notation

of Hansen and Lunde (2005) and define the vector Xt :� pX1,t, ..., Xl,tq1, which contains the

relative performances of the l models against the benchmark model 0 in month t. The null

hypothesis of the RC-test is then formulated as

H0 : λ ¤ 0, (D.8)

whereλλλ :� pλ1, ..., λlq1 is given by λk :� EpXk,tq. Thus, we have a multiple null hypothesis that

is the intersection of l null hypothesesHk
0 : λk ¤ 0 for k � 1, ..., l (White, 2000). Consequently,

it is tested if the chosen benchmark model is at least as good as all the remaining l models. In
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particular, it is tested that even the best alternative model is no better than the chosen benchmark.

The alternative hypothesis is that the best of the l models is superior to the benchmark model

(White, 2000, p. 1101). If at least one λk ¡ 0 exists, there is strong support against the null

hypothesis, since in this case model k is more accurate than the benchmark model (Hansen

and Lunde, 2005, p. 879). In other words, the null hypothesis is rejected if there exists at least

one model that is more accurate than the benchmark model. White (2000) argues that the test

statistic of the RC-test is given by

TRCn :� max
k�1,...,l

?
n Xk, (D.9)

which is asymptotically normally distributed. To obtain p-values for this test, White (2000)

proposes two possibilities, a Monte Carlo or a bootstrap implementation. We follow White

(2000) and use the stationary bootstrap of Politis and Romano (1994) to obtain the p-values

pRC of the RC-test. The stationary bootstrap samples blocks of randomly varying length, where

the average block length has to be chosen in advance. The bootstrap approach is also used

and nicely described in Sullivan et al. (1999, Appendix C), Hansen and Lunde (2005), Hansen

(2005) and Romano and Wolf (2005).154

By using the stationary bootstrap, we draw resamples of X :� �
X1, ..., X l

�1
, i.e. we obtain

resamples of the vector that contains the average relative performances of the l models against

the benchmark. Following Hansen (2005), we first simulate uniformly distributed variables

ub,t and vb,t on p0, 1s for b � 1, ..., B and t � 1, ..., n. For a fixed b and t � 1, we define

τb,1 � rn � ub,1s , where r�s denotes the ceiling function. For t � 2, ..., n, we define

τb,t �
"

rn � ub,ts, if vb,t   q
1tτb,t�1 nuτb,t�1 � 1, if vb,t ¥ q.

(D.10)

Hence, for each b � 1, ..., B we obtain sampled time indices tτb,1, ..., τb,nu. We follow Hansen

and Lunde (2005) and set B � 10,000 and q � 0.1.155 Based on τb,t, we generate pseudo time-

series of Xt by defining X�
b,t :� �

X1,τb,t , ..., Xl,τb,t

�1 for b � 1, ..., B and t � 1, ..., n. These

154Romano and Wolf (2005, Appendix B) give a good overview over several bootstrap methods, including the
stationary bootstrap used in our paper, that are frequently used in the literature on testing for predictive ability.

155Sullivan et al. (1999) and Hsu and Kuan (2005) also use q � 0.1, whereas White (2000) uses q � 0.5.
However, the authors show that the p-values of the RC-test are not very sensitive to the choice of q (see also Hsu
et al. (2010)). Furthermore, Equation (D.10) assumes that the time index 1 follows on the time index n, what is
called “wrap-up” resampling (see Hsu and Kuan (2005, Footnote 2)).
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resamples can be used to define

X�
b :� 1

n

ņ

t�1

X�
b,t �

�
X

�
b,1, ..., X

�
b,l

	1
, (D.11)

where X
�
b,k � 1

n

°n
t�1Xk,τb,t . This provides us with resamples of X � pX1, ..., X lq1, which are

used to calculate p-values of the RC-test. Following Sullivan et al. (1999) and White (2000),

we define

TRC�b,n :� max
k�1,...,l

n1{2
�
X

�
b,k �Xk

	
, b � 1, ..., B, (D.12)

which can then be used to calculate p-values by

pRC :�
°B
b�1 1tTRC�b,n ¡TRCn u

B
. (D.13)

Hence, p-values can simply be calculated by comparing the test statistic TRCn to the quantiles

of the bootstrap observations TRC�b,n , which enables us to approximate the distribution of TRCn

(Sullivan et al., 1999). Since a low test statistic gives no evidence against the null hypothesis,

we set pRC � 1 if TRCn ¤ 0. White (2000, p. 1110) argue that the calculation of the p-value

can be refined by using order statistics and interpolation. However, we follow White (2000),

Hansen (2005) and Hansen and Lunde (2005) and use the method presented above to calculate

p-values. As in Sullivan et al. (1999, p. 1659) and White (2000), we also calculate the naive

p-values pRC,naive. The naive p-value is calculated by applying the bootstrap procedure only

to the best alternative model instead of all alternative models. However, conclusions based

on pRC,naive were similar to conclusions based on pRC , and hence results for pRC,naive are not

reported here. A low value of pRC indicates that the benchmark model is outperformed by

at least one alternative model. Applied to the target volatility strategies, a low value of pRC

indicates that there is at least one risk estimation model that produces a portfolio volatility that

is more closely to the desired volatility target on each month.

D.3 Superior Predictive Ability (SPA-test)

The RC-test of White (2000) has two main disadvantages, which are corrected by Hansen (2005)

in the following way (see also Hansen and Lunde (2005) and Hsu and Kuan (2005)). First, the
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test-statistic of the RC-test is standardized by an estimator of the asymptotic standard devia-

tion. Romano and Wolf (2005) also find that studentizing the RC test statistic of White (2000)

increases the power of the RC-test.156 Second, when using the stationary bootstrap, the boot-

strap variables are re-centered to fulfill the null hypothesis. This is important to avoid that bad

performing alternative models influence the power of the testing procedure. Hansen and Lunde

(2005) call this procedure a test for superior predictive ability (SPA-test). Hansen (2005) and

Hansen and Lunde (2005) show that the SPA-test has more power than the RC-test (see also

Hsu and Kuan (2005) and Hsu et al. (2010)).

Since the SPA-test is an extension of the RC-test, the p-values of the SPA-test can be ob-

tained by a similar approach to the one that is described in the previous section. However,

as stated above, the SPA-test uses two extensions to the RC-test in order to improve its power.

Hansen and Lunde (2005) and Hansen (2005) argue that the test statistic of the SPA-test is given

by

T SPAn :� max
k�1,...,l

?
n Xk

ω̂k
, (D.14)

where ω̂k is an estimator for the asymptotic standard deviation of
?
n Xk. Hansen and Lunde

(2005) argue that the correction for ω̂k is crucial in order to not determine a wrong model,

which makes this test more powerful compared to alternative tests like the RC-test. As for the

RC-test, a high test statistic T SPAn implies that at least one model significantly outperforms the

benchmark model, i.e. if T SPAn is high the null hypothesisH0 : λ ¤ 0 is not plausible. To obtain

an estimate of ω̂k and to calculate p-values for the test, we again use the stationary bootstrap.

Based on the time indices tτb,1, ..., τb,nu, b � 1, ..., B, obtained by the stationary bootstrap, we

156Romano and Wolf (2005, Sec. 4.2) discusses three advantages of studentization and they conclude that “when
the standard deviations of the basic test statistics [...] are different, the [test statistics] live on different scales.
Comparing one basic test statistic to another is then like comparing apples to oranges. If one wants to compare
apples to apples, one should use the studentized test statistics” (Romano and Wolf, 2005, p. 1255). See also Table
VIII of Romano and Wolf (2005) that demonstrates that a studentized and non-studentized test statistic can produce
completely different results.
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estimate ω̂k by157

ω̂k �
gffe n

B

B̧

b�1

�
X

�
b,k �Xk

	2

, k � 1, ..., l. (D.15)

In order to calculate the p-values, Hansen and Lunde (2005) and Hansen (2005) argue that the

bootstrap variables have to be re-centered to satisfy the null hypothesis. This is done by defining

Z
�,c
b,k � X

�
b,k �Xk � 1tXk¡�Ak,nu, (D.16)

where Ak,n :� 1
4
n�1{4ω̂k.158 Since different choices of Ak,n lead to different p-values, Hansen

(2005) proposes to additionally calculate upper and lower bounds for the p-value based on

Z
�,l
b,k � X

�
b,k � max

�
Xk, 0

�
,

Z
�,u
b,k � X

�
b,k �Xk,

(D.17)

where a wide range between these bounds indicates that there exist irrelevant alternative models.

However, Hansen and Lunde (2005) and Hansen (2005) state that main conclusions should be

made with the p-values calculated based on Z
�,c
b,k , which is also supported by Hansen (2005,

Corollary 2). The distribution of T SPAn can then be approximated by the empirical distribution

of

T SPA�,ib,n :� max
k�1,...,l

?
n Z

�,i
b,k

ω̂k
, b � 1, ..., B, i � l, c, u. (D.18)

Similar to the RC-test, the p-values are then given by

pSPA,i :�
°B
b�1 1tTSPA�,ib,n ¡TSPAn u

B
, i � l, c, u, (D.19)

where we set pSPA,i � 1 if T SPAn ¤ 0, since a low test statistic gives no evidence against

the null hypothesis. As in Hansen and Lunde (2005), we also calculate the naive p-values

motivated by Sullivan et al. (1999) and White (2000) as described in the previous section. In

157As an alternative, Hansen (2005, p. 372) proposes to estimate ω̂k by ω̂2
k � γ̂0,k � 2

°n�1
i�1 κpn, iqγ̂i,k, where

γ̂i,k � 1
n

°n�i
j�1

�
Xk,j �Xk

� �
Xk,j�i �Xk

�
and κpn, iq � n�1

n p1 � qqi � i
n p1 � qqn�i for i � 0, 1, ..., n � 1.

(see also Hsu et al. (2010) who also use this estimator). Hansen and Lunde (2005) and Hsu and Kuan (2005) use
the estimator given in Equation (D.15).

158Hansen and Lunde (2005) argue that the choice of Ak,n is not unique, which can lead to different p-values.
However, we follow the authors and choose Ak,n � 1

4n
�1{4ω̂k, which is also used by Hsu and Kuan (2005).

Hansen (2005), for example, chooses Ak,n �
b

2ω̂2
k

n log log n, which is motivated by the law of the iterated
logarithm (see also Hsu et al. (2010) who use this choice). However, both approaches deliver similar results.
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particular, p-values of the RC-test can simply be obtained by setting ω̂k � 1 for k � 1, ..., l

in Equations (D.14) and (D.18) and using the bootstrapped test statistic based on the variable

Z
�,u
b,k � X

�
b,k � Xk. As before, a low value of pSPA,i indicates that the benchmark model is

outperformed by at least one model, and hence there exists at least one method that provides a

more constant portfolio volatility.

D.4 Stepwise Reality Check (Step-RC)

Romano and Wolf (2005) extend the RC-test of White (2000) in two directions. First, similar to

the SPA-test they use a studentized test statistic and find that doing this significantly improves

the power of the test. Second, they subsequently apply the test to determine a set of superior

models by simultaneously controlling the familywise error rate (FWE). The FWE is defined

as the probability that at least one model is incorrectly assessed as superior. The advantage of

this procedure compared to the RC-test and SPA-test is that the two latter tests only state if the

chosen benchmark is outperformed by any other model. However, these tests do not provide

any information on the remaining models, i.e. it is not known if there are any other models

that outperform the benchmark. By subsequently applying the RC- or SPA-test and choosing

each model once as the benchmark, we can construct a set of models that are not statistically

outperformed by any other model. Unfortunately, this procedure totally ignores the FWE. A

common solution for this problem is to adjust the confidence level of the test as done by the

Bonferroni correction. However, Romano and Wolf (2005) show that this procedure has less

power compared to their approach of stepwise multiple testing.159 By applying the stepwise

testing approach, we can identify superior strategies in more than one step and we can produce

a potentially larger set of superior models than the set constructed by the RC-test combined

with the Bonferroni correction. We follow Hsu et al. (2010) and call this approach of stepwise

multiple testing using the RC-test statistic – both non-studentized and studentized – the Step-RC

test.
159Romano and Wolf (2005, Appendix D) show that multiple testing is superior to joint testing as done in the

RC- and SPA-test. In Section 2.3, Romano and Wolf (2005) present several methods for multiple testing that are
frequently used.
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For a set of models M, the Step-RC test tests the null hypotheses

H0,M,k : EpXk,tq   0, k PM. (D.20)

The Step-RC test then tests each individual hypothesis H0,M,k, which is different to testing

a joint hypothesis as done in the RC-test and SPA-test and highlighted in Romano and Wolf

(2005, Appendix D). A rejected null hypothesis H0,M,k indicates that model k is superior to

the benchmark model 0. The aim of the Step-RC test is to reject as many null hypotheses as

possible by simultaneously controlling the FWE. In other words, we want to identify as many

superior models as possible by simultaneously limiting the probability ε that at least one true

null hypothesis is rejected.

Similar to the RC- and SPA-test, the non-studentized and studentized test statistics are given

by

T Step�RCn,k � Xk and T Step�RC,studn,k � Xk

ω̂k
. (D.21)

Romano and Wolf (2005) find that applying the studentized test statistic is more powerful than

applying the non-studentized test statistic (see also Hsu et al. (2010)). The Step-RC test then

identifies superior models in several steps, which is nicely presented in Romano and Wolf

(2005) and Hsu et al. (2010). For a given set of models M � t1, ...,mu, m � |M|, it is

tested for which of the m models the null hypothesis can be rejected. In the first step, we set

M �M0, i.e. m � l and we construct the joint confidence regions

rT Step�RCn,1 � ĉ1�ε,8q � ...� rT Step�RCn,m � ĉ1�ε,8q (D.22)

and

rT Step�RC,studn,1 � d̂1�ε,8q � ...� rT Step�RC,studn,m � d̂1�ε,8q. (D.23)

The parameters ĉ1�ε and d̂1�ε are estimated by using samples tτb,1, ..., τb,nu, b � 1, ..., B, of

the stationary bootstrap, which are again used to construct resamples X�
b �

�
X

�
b,1, ..., X

�
b,l

	1
as

defined in Equation (D.11). These resamples are used to calculate

maxn,b � max
jPM

�
X

�
b,j �Xj

	
and maxstudn,b � max

jPM

�
X

�
b,j �Xj

ω̂j

�
, b � 1, ..., B. (D.24)
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The parameters ĉ1�ε and d̂1�ε are then calculated as the p1�εq-quantile ofmaxn,b andmaxstudn,b ,

respectively.160 The null hypothesis of any model j in M is rejected if 0 R rT Step�RCn,j � ĉ1�ε,8q
for the non-studentized test holds or 0 R rT Step�RC,studn,j � d̂ε,8q for the studentized version

holds. Hence, a model is identified as superior to the chosen benchmark if T Step�RCn,j ¡ ĉ1�ε

or T Step�RC,studn,j ¡ d̂1�ε holds. As long as there is at least one hull-hypothesis that can be

rejected, the testing procedure is subsequently repeated and the rejected models are added to

the set of superior models. In the first step, i.e. M � M0, we denote the sets of supe-

rior models by MStep�RC
1�ε,0 :� tj P M0 : T Step�RCn,j ¡ ĉ1�εu and MStep�RC,stud

1�ε,0 :� tj P
M0 : T Step�RC,studn,j ¡ d̂1�εu and we define the sets of the remaining models by MStep�RC

1 �
M0zMStep�RC

1�ε,0 and MStep�RC,stud
1 � M0zMStep�RC,stud

1�ε,0 , respectively. The above presented

procedure is then repeated by choosing M � MStep�RC
1 or M � MStep�RC,stud

1 . If there

are any superior models in the second step, we add these models to the set of superior models

from the first step and denote these sets by MStep�RC
1�ε,1 and MStep�RC,stud

1�ε,1 , i.e. MStep�RC
1�ε,1 :�

MStep�RC
1�ε,0 Y tj P MStep�RC

1 : T Step�RCn,j ¡ ĉ1�εu and MStep�RC,stud
1�ε,1 :� MStep�RC,stud

1�ε,0 Y tj P
MStep�RC,stud

1 : T Step�RC,studn,j ¡ d̂1�εu, where ĉ1�ε and d̂1�ε are recalculated in every step.

Generally, in the i-th step, as long as there is at least one rejected hypothesis, the test is

repeated for the set of models MStep�RC
i � MStep�RC

i�1 zMStep�RC
1�ε,i�1 and MStep�RC,stud

i �
MStep�RC,stud

i�1 zMStep�RC,stud
1�ε,i�1 , where the set of superior models is given by MStep�RC

1�ε,i :�
MStep�RC

1�ε,i�1 Y tj P MStep�RC
i : T Step�RCn,j ¡ ĉ1�εu and MStep�RC,stud

1�ε,i :� MStep�RC,stud
1�ε,i�1 Y tj P

MStep�RC,stud
i : T Step�RC,studn,j ¡ d̂1�εu. If in any step none of the null hypotheses H0,M,k, k P

M can be rejected, the Step-RC test stops and the current set of superior models is defined as

the output of this approach.

D.5 Stepwise Superior Predictive Ability (Step-SPA)

Hsu et al. (2010) extend the idea of Romano and Wolf (2005) by using a stepwise multiple

testing approach based on the SPA-test of Hansen (2005) instead of the RC-test. The authors

160Romano and Wolf (2005) propose to use two distinct estimators ŵj for the studentized test statistic
TStep�RC,studn,j and in the bootstrap approach to obtain the samples maxstudn,b . However, we follow Hansen (2005)
and use the same estimator for both quantities. Hsu et al. (2010) also use the same estimator for both quantities,
where the authors use the HAC estimator described in Section D.3 instead of the bootstrap based estimator used in
our paper.
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find that the Step-SPA has more power than the Step-RC, which is quite intuitive since the

SPA-test is known to be more powerful than the RC-test. The superiority of the Step-SPA is

theoretically shown by Hsu et al. (2010, Theorem 3) and also confirmed by a Monte-Carlo

Simulation. Since Romano and Wolf (2005) also use a studentized version of the test statistic,

the difference between the Step-RC and Step-SPA test lies in using a sample-dependent null

distribution as explained in Section D.3. Hence, the Step-SPA uses the same algorithm as

described in the previous section, where X
�
b,j �Xj in Equation (D.24) is replaced by

Z
�,c
b,j � X

�
b,j �Xj � 1tXj¡�Aj,nu. (D.25)

Although, we only use the studentized and re-centered version of the SPA-test in Section D.3,

we follow Hsu et al. (2010) and also use the non-studentized but re-centered version in the

Step-SPA test. This allows us to assess if the superiority of the Step-SPA approach comes from

studentizing the test statistic or from using a data-dependent null-distribution.

D.6 False Discovery Rate (FDR)

Barras et al. (2010) and Bajgrowicz and Scaillet (2012) state that the Step-RC approach of

Romano and Wolf (2005), which controls the FWE, is often too restrictive and sometimes fails

to identify superior models, once a model is erroneously detected as superior. Therefore, they

present an easy and straightforward approach based on the False Discovery Rate (FDR), which

is defined as the proportion of models where the null hypothesis of equal predictive ability has

been rejected, although this model is truly null. Barras et al. (2010) and Bajgrowicz and Scaillet

(2012) extend the FDR to the FDR�, which is defined as the proportion of false discoveries,

i.e. models that have been erroneously chosen as superior. Following Barras et al. (2010) and

Bajgrowicz and Scaillet (2012), a model k is called significantly positive if two conditions are

fulfilled. First, the null hypothesis of equal predictability,H0 : EpXk,tq � 0, is rejected. Second,

the test-statistic T FDR,kn � Xk is positive, i.e. the benchmark’s loss is (on average) higher

than the loss of model k, and hence model k is more successful in targeting a constant level

of volatility than the benchmark. Following Barras et al. (2010) and Bajgrowicz and Scaillet

(2012), we denote by R� the number of models that are found to be significantly positive, and
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by F� the number of models that have been chosen as significantly positive, but are not truly

superior to the benchmark. The FDR� is then given by FDR� � F�{R�. In particular, an

FDR� of 10% means that among the models that have been identified as superior 10% have

been erroneously chosen as superior. Barras et al. (2010) and Bajgrowicz and Scaillet (2012)

show how the FDR� can be estimated, where this estimator is denoted by {FDR� � F̂�{R̂�.

An advantage of the FDR approach is that it is easily implemented once the (two-sided) p-values

of the null hypothesis of equal predictability have been calculated. In contrast to the RC-test

of White (2000), which uses one-sided p-values, the FDR method is based on testing for equal

predictive ability instead of superior predictive ability. To calculate the two sided p-values we

again use the stationary bootstrap of Politis and Romano (1994) and we define

T FDR�,kb,n � X
�
b,k �Xk, (D.26)

where we again use resamplesX
�
b,k � 1

n

°n
t�1Xk,τb,t for a given bootstrap sample tτb,1, ..., τb,nu,

b � 1, ..., B. The two-sided p-values are then given by

pFDRi � 2 � min

�
1

B

B̧

b�1

1tTFDR�,ib,n ¡TFDR,in u,
1

B

B̧

b�1

1tTFDR�,ib,n  TFDR,in u

�
, i � 1, .., l, (D.27)

where we use an equal-tailed test, as explained in the Internet Appendix of Barras et al. (2010).

Based on these p-values, a model is called significant if its p-value is smaller than a chosen

threshold. Barras et al. (2010) and Bajgrowicz and Scaillet (2012) then show that an estimate

of FDR� is given by

{FDR� � F̂�

R̂� �
1
2
π̂0lγ

nFDR�
, (D.28)

where γ is the chosen threshold, nFDR� is the number of statistically positive models, i.e.

nFDR� � |tk � 1, ..., l | pk ¤ γ, T FDR,kn ¡ 0u| and π̂0 is an estimate of π0, the proportion

of models that fulfill the null hypothesis of equal predictive ability. We follow Bajgrowicz and

Scaillet (2012) and choose γ � 0.4. Barras et al. (2010) present a simple bootstrap approach

to determine a data-driven value for γ, but they find that values of γ between 0.35 and 0.45

produce quite similar results compared to the value obtained by the bootstrap. Bajgrowicz and

Scaillet (2012) show that π0 can be estimated by

π̂0pλq � nFDR0

lp1 � λq , (D.29)
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where nFDR0 � |tk � 1, ..., l : pk ¡ λu|. We follow Bajgrowicz and Scaillet (2012) and choose

λ � 0.6. Barras et al. (2010) show how the value λ can alternatively be chosen by a simple

bootstrap approach. However, they find that π̂0 is not very sensitive to the choice of λ and

that values of λ between 0.5 and 0.6 typically deliver similar estimates of π0 as the bootstrap

approach. Further, Barras et al. (2010) and Bajgrowicz and Scaillet (2012, Appendix D) show

how the proportion of significantly positive and negative models, π�A and π�A , can be estimated.

The estimators of π�A and π�A are given by

π̂�A � T̂�pγq
l

and π̂�A � T̂�pγq
l

, (D.30)

where T̂�pγq and T̂�pγq are estimators for the number of models with a p-value smaller than

the chosen threshold γ and a positive or negative relative performance, respectively. Bajgrowicz

and Scaillet (2012) show that T̂�pγq and T̂�pγq are given by

T̂�pγq � nFDR� � 1

2
π̂0lγ and T̂�pγq � nFDR� � 1

2
π̂0lγ, (D.31)

where nFDR� � |tk � 1, ..., l | pk ¤ γ, T FDR,kn   0u|.
Bajgrowicz and Scaillet (2012) and Barras et al. (2010) show how the FDR� can be used

to built a set of superior models with limited FDR�. In other words, similar to the Step-RC

and Step-SPA, we want to identify as many superior models as possible, where the amount of

erroneously chosen models is limited by the predetermined FDR�. Following Bajgrowicz and

Scaillet (2012), we choose an FDR� target of 10%. The algorithm to identify the set of superior

models starts by selecting the model with the smallest p-value among the models that have a

positive T FDR,kn . In the next step, among the remaining models that have not been collected by

the algorithm and that have a positive T FDR,kn , again the model with the lowest p-value is chosen.

Then, the FDR� of this set of models is calculated. This process is then repeated as long as

the portfolio FDR� is lower than the desired FDR� target of 10%. Increasing the number

of models that are identified as significantly positive also bears the potential that more non-

significant models are erroneously chosen. However, the algorithm collects the best performing

models and guarantees that the FDR� of these models is limited by the desired FDR� target

of 10%. In other words, this algorithm identifies superior models but guarantees that at least
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90% of the identified models are truly superior and not chosen due to luck. Bajgrowicz and

Scaillet (2012) show in a simulation study that the FDR approach has more power in detecting

outperforming models than the RC-test and the Step-RC test.

D.7 The Model Confidence Set (MCS)

The RC- and SPA-test, presented in Sections D.2 and D.3, simultaneously compare a chosen

benchmark to all remaining models. A drawback of these approaches is that one has to define a

certain benchmark model. This also translates to the stepwise extensions presented in Sections

D.4 and D.5 and also holds for the FDR approach presented above. In addition, the RC- and

SPA-test only test if the benchmark model is not outperformed by the best alternative model.

However, these tests cannot identify the best models of all available models. One possibility, as

done in Section 2.6, is to choose each model once as the benchmark. This provides us with a

set of models where the null hypothesis has not been rejected. Hence, this procedure constructs

a set of good performing models. However, Hansen et al. (2011) argue that in this case, the test

level of the individual SPA-tests has to be adjusted using the Bonferroni correction or similar

approaches. Thus, this approach of subsequently applying the RC- and SPA-test induces a

high loss of power. Instead of choosing each model once as the benchmark model and then

testing this model against the remaining models, the Model Confidence Set (MCS) approach

of Hansen et al. (2003) and Hansen et al. (2011) offers a more elegant way of comparing all

available models. The MCS procedure constructs a set of models, called the Model Confidence

Set, such that the best performing model will be contained in this set with a given level of

confidence. Thus, the MCS approach is analogous to the confidence interval of a parameter.

Hansen et al. (2011, p. 474-475) argue that the MCS approach is similar to the approach of

subsequently choosing each model once as the benchmark and using the SPA-test, but more

powerful. The MCS is then similar to the set of all benchmark models that have not been

identified to be inferior to the remaining models by the SPA-test. An advantage of the MCS

compared to subsequently applying the SPA-test is that no benchmark has to be chosen, and

hence all models are tested simultaneously. Further, the MCS relies on testing equalities instead

of inequalities, which also improves the power of the MCS compared to subsequently testing for
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superior predictive ability. Consequently, the MCS is a similar but more elegant and powerful

way to compare all models simultaneously.

In order to apply the MCS procedure, we define M0 � t0, 1, ..., lu as the set of all possible

models. As stated above, in contrast to the approaches presented before, we now also include

the benchmark model 0 into the models that are tested for superiority. The MCS is then denoted

by M� and contains the best model(s) for a given confidence level. Hansen et al. (2003) and

Hansen et al. (2011) present an approach to estimate the MCS. In particular, the cardinality of

the set M� depends on the quality of the data, since a model is only eliminated if it performs

significantly worse than the remaining models. The cardinality of the MCS will be higher, if

some - or maybe all - models produce portfolio volatilities that are nearly equally accurate. In

contrast, the cardinality will be low, if there are only a few models – or even only one model

– that achieve the desired volatility target more accurately than the remaining models. Hence,

instead of choosing only one model without reflecting the differences in the accuracy between

all models, the MCS takes information on all models into account when the superior models are

identified.

In the first stage, the MCS approach uses an equivalence test, similar to the test of Diebold

and Mariano (1995). If this test is rejected, i.e. not all models in M0 produce equally accurate

forecasts, a bad model is eliminated in the second stage by an elimination rule. This procedure

is then subsequently repeated until the equivalence test cannot be rejected anymore. In this

case, there is no evidence that there exists a bad performing model within the remaining models

and none of the remaining models can be eliminated. The set of remaining model(s) is called

the MCS. By eliminating bad performing models in an early stage, the MCS method is also

robust against adding poor performing models to M0 (Hansen et al., 2003). This is one of the

main drawbacks of the Reality Check of White (2000) and was previously fixed by the SPA-test

of Hansen (2005). Further, the MCS procedure also provides p-values pMCS
i for all i P M�,

where a low p-value makes it unlikely that model i is the best model. Thus, the MCS procedure

eliminates bad performing models and gives us additional information on the remaining models.

In order to determine the MCS, we first define the relative performances for all models of
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M0 by

Xij,t � Li,t � Lj,t, for all i, j PM0, t � 1, ..., n. (D.32)

The aim of the MCS procedure is to determine the set of superior models M�, which is given

by

M� � ti PM0 : EpXij,tq ¤ 0 for all j PM0u . (D.33)

For a given set of models M �M0, the MCS procedure subsequently tests for equal predictive

ability by testing the null hypothesis

H0,M : EpXij,tq � 0, for all i, j PM, (D.34)

which is similar to the test of Diebold and Mariano (1995) presented in Section D.1. If this

null hypothesis is rejected, the worst performing model is eliminated from M. To calculate

p-values for each model in M0 and to assess if the null hypothesis is rejected and which model

is eliminated, we use the following algorithm (Hansen et al., 2003, p. 845).161 First, we define

by

X ij � 1

n

ņ

t�1

Xij,t (D.35)

the average relative performance of model i against model j. For a given set M, we next test

for equal predictive ability, assess which model will be eliminated and calculate the p-value of

the eliminated model. In the first step, we set M �M0 and we denote the number of models in

M by m, i.e. m � |M|. To test if the null hypothesis holds and to calculate the p-value of the

model that is removed in this step, we rely on two test statistics (Hansen et al., 2003, p. 845):

The range statistic TRn and the semi-quadratic statistic T SQn , which are given by

TRn � max
i,jPM

|X ij|byvarpX ijq
and T SQn �

¸
i,jPM
i j

pX ijq2yvarpX ijq
, (D.36)

161A detailed description of the bootstrap approach used in the MCS procedure is given in the online appendix
of Hansen et al. (2011) and in Hansen et al. (2003). We mainly follow Hansen et al. (2003) who also use the MCS
procedure to assess the accuracy of volatility models.
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where TRn is the more conservative test statistic. The estimate yvarpX ijq is again obtained by

using the stationary bootstrap of Politis and Romano (1994). For a given bootstrapped sample

tτb,1, ..., τb,nu, b � 1, ..., B, we define

X
�
b,ij �

1

n

ņ

t�1

X�
b,ij,t, (D.37)

where X�
b,ij,t � Xij,τb,t . These quantities are then used to calculate

yvarpX ijq � 1

B

B̧

b�1

�
X

�
b,ij �X ij

	2

for all i, j PM. (D.38)

The test statistics for the bootstrapped samples are then given by

TR,�b,n � max
i,jPM

|X�
b,ij �X ij|byvarpX ijq

and T SQ,�b,n �
¸
i,jPM
i j

�
X

�
b,ij �X ij

	2

yvarpX ijq
, (D.39)

which are used to estimate the empirical distribution of TRn and T SQn . The p-values for the

hypothesis of testing the equal predictive ability of the models in M are then given by

PR
H0,M

�
°B
b�1 1tTR,�b,n ¡TRn u

B
and P SQ

H0,M
�

°B
b�1 1tTSQ,�b,n ¡TSQn u

B
. (D.40)

Calculating an individual p-value for each null hypothesis is common in testing multiple hy-

potheses (Romano and Wolf, 2005, Sec. 2.3).

In the next step, we eliminate the worst performing model eM in M, which is given by

eM � arg max
iPM

X i�byvarpX i�q
, (D.41)

where X i� � 1
m�1

°
jPMX ij . The estimate yvarpX i�q is given by

yvarpX i�q � 1

B

B̧

b�1

�
X

�
b,i� �X i�

	2

, for i PM, (D.42)

where X
�
b,i� � 1

m�1

°
jPMX

�
b,ij . We then define Mk�1 � MkzteMk

u and repeat the procedure

for Mk�1. Hence, in the first step, i.e. M � Mk � M0, we obtain M1 � M0zteM0u. The

p-values for model eM0 , i.e. the model that is removed in the first step, are given by pReM0
�

PR
H0,M0

and pSQeM0
� P SQ

H0,M0
, respectively. The above presented procedure is then repeated for

M � Mk, k � 1, ..., l, until no more model can be removed. The p-values for the model
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that is eliminated in step k are given by pReMk
� maxj¤k PR

H0,Mj
and pSQeMk

� maxj¤k P
SQ
H0,Mj

,

respectively. In the last step, i.e. for the model that has not been removed in any step, we set

the p-values equal to 1. More formally, we have PR
H0,Ml�1

� 1 and P SQ
H0,Ml�1

� 1, which is

a reasonable choice, since the last surviving model is at least as good as itself (Hansen et al.,

2011, p. 462). The estimate for the model confidence set for a confidence level ε is then given

by

xMR,�
1�ε �

 
j PM0 : pRj ¡ ε

(
and xMSQ,�

1�ε �
!
j PM0 : pSQj ¡ ε

)
, (D.43)

which are estimates of the set of superior models M�. The model confidence sets xMR,�
1�ε andxMSQ,�

1�ε thus contain the best forecasting model with a probability of 1 � ε. Thus, these sets

separate the models in M0 into superior and inferior models. Since the range statistic is more

conservative, we will typically have xMSQ,�
1�ε � xMR,�

1�ε. Hansen et al. (2011) show asymptotically

that the probability that the estimated sets in Equation (D.43) contain the true set of superior

models M� is at least 1 � ε.

Similar to the stepwise multiple tests of Romano and Wolf (2005) and Hsu et al. (2010)

as well as the FDR approach of Bajgrowicz and Scaillet (2012) and Barras et al. (2010), the

MCS approach identifies a set of superior models. However, there are some main differences

between these approaches. First, the approaches of the previous sections identify models that

are superior to a chosen benchmark, whereas the MCS approach does not require a certain

benchmark. Second, the approaches of the previous sections identify the superior models out of

M0 � t1, ..., lu, whereas the MCS approach eliminates bad performing models from M0Yt0u
until all bad performing models are eliminated. The remaining set of models then contains

the good performing models. Romano and Wolf (2005, Footnote 12) call their approach of

identifying superior models instead of eliminating bad performing models a step-down method,

whereas the opposite is a step-up method. In the first case, the set of superior models increases

in every step, whereas in the latter case, the set of models is trimmed until only superior models

are left.
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E Additional Performance Results

In this section, we present additional performance results for six different data sets. First, we

use the momentum factor of Fama and French (2012), which is also used by Ruenzi and Weigert

(2018). By doing this, we show that our main results also hold for different construction meth-

ods of the momentum portfolio. Our main results in Section 2.6 are based on the momentum

portfolio where assets within the winners and losers portfolios are equally weighted. In con-

trast, the momentum factor uses a size-balanced construction method based on size-return dou-

ble sorted portfolios. This construction method makes momentum crashes less severe. Second,

we use the equally weighted momentum strategy for German equities. Ruenzi and Weigert

(2018) find that the crash risk of momentum seems to be the highest in the US. Therefore, the

benefit from switching to CVaR targeting in crash periods should also be more pronounced for

US data. By calculating the strategies for the German market, we can assess if risk targeting

strategies, and in particular the strategies that switch between volatility and CVaR targeting, are

also beneficial for momentum strategies outside the US. Third, we show that our strategy also

works for the US Betting against Beta (BAB) factor of Frazzini and Pedersen (2014). Fourth,

we additionally show results for the BAB factor in Germany. The rational behind examining

the BAB portfolio is that Moreira and Muir (2017), Cederburg et al. (2020) and Barroso and

Maio (2018) examine risk targeting using the RV model for several portfolio strategies and find

the best results for the momentum and BAB portfolios. Fifth, we also use risk targeting for

the industry momentum strategy (Chordia and Shivakumar, 2002, Grundy and Martin, 2001,

Moskowitz and Grinblatt, 1999, Novy-Marx, 2012). Grobys et al. (2018) and Du Plessis and

Hallerbach (2017) show that the RV approach of Barroso and Santa-Clara (2015) applied to

the industry momentum strategy provides an enhanced risk-return profile compared to the non-

managed industry momentum strategy. Industry momentum has the advantage that this strategy

can be easily built based on ETFs, and thus is a more practicable alternative to the stock based

momentum strategy. Sixth, Barroso and Maio (2018), Cederburg et al. (2020) and Moreira and

Muir (2017) find that the RV managed strategy underperforms the non-managed strategy for the

small minus big (SMB) factor that buys small sized firms and sells big sized firms, whereas the
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authors find vast performance gains for most other portfolios. A possible explanation for this

finding could be the high positive skewness of this factor, which is not captured by managing

volatility. We therefore apply our risk targeting strategies that take non-normalities into account

to the SMB factor to assess if our strategy also works for positively skewed strategies where the

RV strategy fails to increase the risk-adjusted performance.

E.1 Additional Performance Results for Momentum: US Momentum Fac-
tor and Germany

Table XVII shows the performance results for the non-managed and RV managed momentum

strategy as well as the switching strategies for the US momentum factor and the German mo-

mentum portfolio. For a better clarity, we only show results for one crash indicator for the US

momentum factor and two crash indicators for the German momentum portfolio. Results for

the other crash indicators are similar. Panel A shows results for the US momentum factor for

the whole period and the crash period that ranges from 01.01.1938 to 01.01.1943.162 As before,

risk targeting significantly increases the risk-adjusted performance by achieving a higher return

while simultaneously the risk is reduced, especially in the left tail. In line with our main results,

all strategies that switch between volatility and CVaR targeting offer the most convincing risk-

return profile by achieving the highest returns with less risk. As a consequence, the switching

strategies significantly increase the Sharpe Ratio compared to the non-managed and RV man-

aged strategy, indicated by high and statistically significant values of the Jobson and Korkie

(1981) test statistic for all switching strategies. This higher Sharpe Ratio is accompanied by

a significant left tail risk reduction. The importance of risk targeting is again highlighted dur-

ing the crash period. The RV managed momentum strategy successfully reduces the loss and

the volatility of the non-managed strategy during the crash period. However, the performance

can be significantly improved by our switching approach. Interestingly, all switching strategies

162Interestingly, during the crash period, the return of the US momentum factor is significantly less negative than
the performance of the equally weighted momentum strategy in Table VII. Thus, as expected, momentum crashes
are much more pronounced for the equally weighted momentum portfolio. This can also be seen by the higher
left tail risk of the equally weighted portfolio, which exhibits a skewness of �4.38. In contrast, the skewness of
the momentum factor is only �3.061. Similarly, Barroso and Santa-Clara (2015) find a lower crash risk for the
momentum strategy using value-weighted winners and losers portfolios. Momentum’s crash risk can further be
reduced by weighting assets within the winners and losers portfolios inversely to their risk (Rickenberg, 2020c).
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exhibit positive returns during the crash period, whereas the non-managed and RV managed

momentum strategies exhibit a negative return. Further, the switching strategies provide a sig-

nificant downside risk protection, whereas the RV managed momentum strategy fails to reduce

the high left tail risk of the non-managed momentum strategy. That is, the switching strategies

significantly reduce momentum’s negative skewness, kurtosis and minimum return, whereas the

RV managed strategy’s left tail risk is comparable to the non-managed strategy’s left tail risk.

Thus, the RV managed strategy fails as tail risk hedging instrument just when it is most needed.

This is in line with Rickenberg (2020b) who also finds that unconditional models do not provide

an adequate tail risk reduction in crash periods. Interestingly, one of the strategies that switches

between volatility and CVaR targeting even produces positively skewed returns. As before, the

strategy that switches to the contrarian strategy delivers the best results during the crash period,

but fails to produce an outperformance in the long-run.

Panel B shows results for the momentum strategy in Germany. In contrast to the US momen-

tum strategy, the German momentum portfolio exhibits a higher return but also produces higher

risk. However, this finding is also driven by the different sample period, which is much shorter

for the German sample. Due to our quite low volatility target of 12%, all risk targeting strategies

produce lower returns but also take significantly less risk. In total, all strategies exhibit higher

Sharpe Ratios, where again the highest Sharpe Ratios are found for the strategies that switch

between volatility and CVaR targeting. Nevertheless, the increase in the Sharpe Ratio is not

statistically significant. This is also in line with the finding of Ruenzi and Weigert (2018) that

the crash risk of the momentum strategy is higher in the US. A lower crash risk in Germany

makes downside risk management less important and decreases the benefit from our switching

strategies for this data set. Interestingly, the RV managed strategy does not reduce momentum’s

left tail risk, whereas the switching strategies exhibit a substantial reduction of left tail risk.

Hence, for the German momentum portfolio, managing volatility does not provide an adequate

tail risk protection. The benefit of the strategies that switch between volatility and CVaR tar-

geting is again highlighted during the crash period ranging from 01.12.2000 to 01.10.2001. As

in Panel A, the non-managed and RV managed momentum strategy produce negative returns,
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Table XVII. Performance Results of Risk Targeting: US Factor and Germany
This table shows performance results for the non-managed momentum portfolio, the RV managed mo-
mentum portfolio and the switching strategies for the US momentum factor and the equally weighted
momentum portfolio for German equities. Panel A shows results for the US momentum factor. Panel B
shows results for Germany, where the sample period is 01.01.1994 to 30.04.2016 and the market return
based crash indicator is used. Panel C shows results for Germany and the one month TSMOM crash in-
dicator. The crash period for Germany is from 01.12.2000 to 01.10.2001. The description of the columns
is given in Table VI.

Whole Period Crash Period

Panel A: US Mom Factor Return Vola Skew Kurt SR zJK Min Return Vola Skew Kurt Min

Momentum 6.16 16.42 -3.061 30.665 0.375 -6.757 -52.26 -7.22 22.15 -2.441 12.724 -30.35
RV 14.95 17.70 -0.457 5.799 0.845 - -28.22 -5.86 18.39 -2.390 13.995 -28.22

CVaR HS 15.64 16.82 -0.210 4.363 0.930 2.379 -19.34 3.44 11.76 -0.237 6.553 -11.48
CVaR-Skt-unc 15.65 16.51 -0.112 4.260 0.948 2.630 -16.57 4.45 10.20 0.796 6.090 -6.84
CVaR-GARCH-SRTR 16.42 17.31 -0.229 4.380 0.948 2.889 -19.83 1.90 14.28 -1.527 11.245 -19.83
CVaR-GJR-SRTR 16.39 17.35 -0.209 4.491 0.945 2.634 -20.45 1.64 14.26 -1.341 9.521 -18.71
CVaR-GARCH-Skt 16.11 17.12 -0.188 4.210 0.941 2.819 -17.92 1.37 13.99 -1.247 8.936 -17.42
CVaR-GJR-Skt 16.18 16.84 -0.165 4.109 0.961 3.210 -16.11 2.66 12.98 -0.733 7.325 -14.68
CVaR-GARCH-FHS 16.05 17.15 -0.203 4.247 0.936 2.633 -17.75 1.24 13.64 -1.128 9.077 -17.30
CVaR-GJR-FHS 16.11 16.84 -0.177 4.183 0.957 3.057 -16.15 2.41 12.75 -0.769 7.822 -14.89
RV-Mom/Contrarian 14.39 17.74 0.237 5.080 0.811 -0.261 -18.04 18.50 17.63 2.607 13.669 -6.26

Panel B: Germany Return Vola Skew Kurt SR zJK Min Return Vola Skew Kurt Min

Momentum 27.20 28.71 -1.189 10.539 0.948 -3.526 -50.01 -9.38 84.83 -1.062 3.004 -50.01
RV 16.37 14.05 -1.163 8.307 1.166 - -23.92 -5.51 32.52 -1.779 4.924 -23.92

CVaR HS 16.30 13.63 -0.464 7.083 1.196 0.396 -19.68 4.66 32.25 -0.931 3.396 -19.68
CVaR-Skt-unc 16.09 13.77 -0.510 7.091 1.168 0.050 -19.68 5.95 32.45 -0.937 3.367 -19.68
CVaR-GARCH-SRTR 17.75 14.09 -0.470 6.399 1.260 1.386 -19.68 3.85 32.20 -0.901 3.406 -19.68
CVaR-GJR-SRTR 17.76 14.08 -0.467 6.393 1.261 1.418 -19.68 3.54 32.17 -0.896 3.408 -19.68
CVaR-GARCH-Skt 17.59 14.42 -0.500 6.245 1.220 0.765 -19.68 7.12 32.86 -0.891 3.299 -19.68
CVaR-GJR-Skt 17.68 14.46 -0.494 6.197 1.222 0.794 -19.68 7.39 32.91 -0.895 3.290 -19.68
CVaR-GARCH-FHS 17.93 14.58 -0.480 6.082 1.229 0.924 -19.68 9.30 33.59 -0.823 3.182 -19.68
CVaR-GJR-FHS 18.02 14.65 -0.469 6.018 1.230 0.917 -19.68 9.88 33.66 -0.831 3.172 -19.68
RV-Mom/Contrarian 8.81 14.55 -0.706 6.773 0.605 -2.206 -23.92 -32.24 30.90 -1.082 4.185 -23.92

Panel C: Germany TSMOM Return Vola Skew Kurt SR zJK Min Return Vola Skew Kurt Min

Momentum 27.20 28.71 -1.189 10.539 0.948 -3.526 -50.01 -9.38 84.83 -1.062 3.004 -50.01
RV 16.37 14.05 -1.163 8.307 1.166 - -23.92 -5.51 32.52 -1.779 4.924 -23.92

CVaR HS 17.30 13.52 -0.517 6.651 1.280 1.401 -19.68 4.04 31.50 -1.122 3.424 -19.68
CVaR-Skt-unc 17.25 13.54 -0.537 6.741 1.274 1.317 -19.68 5.07 31.76 -1.097 3.392 -19.68
CVaR-GARCH-SRTR 17.20 13.69 -0.562 6.357 1.257 1.232 -19.68 -0.23 30.26 -1.228 3.690 -19.68
CVaR-GJR-SRTR 17.49 13.84 -0.511 6.243 1.263 1.359 -19.68 4.38 31.54 -1.122 3.427 -19.68
CVaR-GARCH-Skt 18.19 14.08 -0.553 6.108 1.292 1.681 -19.68 2.34 30.88 -1.195 3.557 -19.68
CVaR-GJR-Skt 18.15 14.17 -0.497 6.142 1.281 1.518 -19.68 6.87 32.51 -0.987 3.282 -19.68
CVaR-GARCH-FHS 18.52 14.28 -0.541 5.895 1.297 1.870 -19.68 4.02 31.40 -1.141 3.454 -19.68
CVaR-GJR-FHS 18.46 14.42 -0.454 6.033 1.280 1.543 -19.68 8.96 33.40 -0.853 3.201 -19.68
RV-Mom/Contrarian 5.15 14.71 -0.796 6.488 0.350 -2.996 -23.92 -23.39 31.89 -1.551 4.033 -23.92

whereas all strategies that switch between volatility and CVaR targeting exhibit positive returns.

Further, the RV managed strategy does not reduce left tail risk during the crash and produces an

even higher negative skewness and higher kurtosis than the non-managed portfolio. In contrast,

the strategies that switch between volatility and CVaR targeting slightly reduce the negative

skewness of the non-managed momentum portfolio and exhibit a lower left tail risk than the RV

managed strategy. Interestingly, the strategy that switches to the contrarian portfolio performs

the worst during the crash period and exhibits an extremely negative return. Hence, switching

to the contrarian strategy during this momentum crash, although this approach is appealing in
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theory, fails due to false signals of the crash indicator for momentum in Germany. Thus, more

research on the drivers of momentum crashes outside the US is needed. This can also be seen

by the low Sharpe Ratio of this approach over the long-run. We therefore use a second crash

indicator for the German momentum portfolio. Panel C contains results for an indicator based

on the momentum portfolio’s own performance using the TSMOM strategy of Moskowitz et al.

(2012) with a lookback period of one month. This approach produces slightly higher Sharpe

Ratios, where two strategies produce statistically higher Sharpe Ratios for a test level of 10%.

Although results for this indicator are slightly better than results of Panel B, both indicators

produce quite similar results and show that momentum crashes in Germany are different to mo-

mentum crashes in the US. Consequently, the crash indicator that works well for our US sample

does not work equally well for the German sample.163 Nevertheless, our CVaR switching strat-

egy is quite robust to these false signals of δt and still produces an enhanced risk-return profile

compared to the non-managed and RV managed momentum strategy.

Table XVIII shows the economic value of the switching strategies for the US momentum

factor. Panel A shows results for the mean-variance investor over the whole period and the crash

period. As before, the economic value of the strategies that switch between volatility and CVaR

targeting is positive regardless of the level of risk aversion and CVaR strategy. In contrast,

the strategy that switches between the RV managed momentum and contrarian portfolio does

not increase the investor’s utility. As expected, the economic value of the switching strategies

significantly increases during the crash period. Hence, during a momentum crash, the investor

significantly benefits from switching away from the volatility managed momentum portfolio.

This especially holds for the strategy that switches to the contrarian portfolio. However, the

willingness to pay for the strategies that switch to the CVaR managed portfolio are also very

high and are not only limited to the crash period. Panel B shows results for the investor with

CRRA utility. Results are again in line with the findings for the mean-variance investor, i.e.

all CVaR switching strategies exhibit positive fees that increase with the level of risk aversion.

Furthermore, the economic value significantly increases during the crash period and takes ex-

163Grobys et al. (2018) also find that the crash indicator that works well for the stock momentum strategy does
not work equally well for industry momentum. Hence, momentum crashes strongly depend on the used data set.
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Table XVIII. Economic Value of Risk Targeting: US Momentum Factor
This table shows the economic value of the switching strategies with respect to the RV managed strategy
for the US momentum factor. Panel A shows results for a mean-variance investor with utility function
(2.6.8). Panel B shows results for a CRRA investor with utility function (2.6.11). Panel C shows results
for a loss-averse investor with utility function (2.6.14).

Model Whole Period Crash Period

Panel A: MV γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 0.746 1.252 2.191 3.259 1.139 10.681 13.833 18.861 23.447 11.615
CVaR-Skt-unc 0.805 1.478 2.725 4.137 1.320 11.925 15.654 21.589 26.956 13.007
CVaR-GARCH-SRTR 1.346 1.572 1.991 2.474 0.975 8.753 10.835 14.174 17.273 9.155
CVaR-GJR-SRTR 1.315 1.521 1.905 2.348 0.950 8.471 10.560 13.909 17.017 8.946
CVaR-GARCH-Skt 1.108 1.441 2.061 2.772 1.037 8.221 10.420 13.945 17.209 8.933
CVaR-GJR-Skt 1.218 1.711 2.627 3.671 1.220 9.708 12.362 16.605 20.505 10.733
CVaR-GARCH-FHS 1.054 1.373 1.966 2.647 1.012 8.130 10.480 14.242 17.717 9.694
CVaR-GJR-FHS 1.159 1.650 2.561 3.600 1.206 9.476 12.216 16.597 20.617 10.972
RV-Mom/Contrarian -0.539 -0.561 -0.603 -0.650 -0.131 25.511 25.999 26.788 27.544 12.055

Panel B: CRRA γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 0.904 0.979 1.282 2.197 2.965 7.202 7.844 10.526 16.679 18.769
CVaR-Skt-unc 1.055 1.131 1.586 2.657 3.660 8.974 9.789 13.354 21.341 24.696
CVaR-GARCH-SRTR 1.055 1.131 1.510 2.350 2.657 5.378 5.614 6.644 8.812 9.707
CVaR-GJR-SRTR 1.055 1.131 1.434 2.273 2.580 5.142 5.457 6.883 10.116 10.938
CVaR-GARCH-Skt 0.979 1.055 1.434 2.427 2.888 4.907 5.221 6.803 10.608 11.600
CVaR-GJR-Skt 1.207 1.282 1.739 2.734 3.428 6.168 6.644 8.812 13.944 15.389
CVaR-GARCH-FHS 0.979 1.055 1.434 2.350 2.734 4.829 5.142 6.803 10.608 11.682
CVaR-GJR-FHS 1.131 1.282 1.663 2.657 3.350 6.009 6.406 8.488 13.438 14.792
RV-Mom/Contrarian -0.374 -0.150 0.451 1.739 1.739 16.765 17.894 22.691 32.923 34.194

Panel C: Loss Aversion b � 0.8 b � 1 bswitcht b � 0.8 b � 1 bswitcht

l � 2 l � 3 l � 2 l � 3 lswitcht l � 2 l � 3 l � 2 l � 3 lswitcht

CVaR HS 0.963 1.335 1.216 1.660 1.441 9.723 11.427 13.292 15.281 14.676
CVaR-Skt-unc 1.201 1.755 1.561 2.222 1.883 10.273 12.161 14.849 16.958 16.323
CVaR-GARCH-SRTR 1.062 1.125 1.369 1.461 1.284 7.960 9.178 10.471 11.875 11.401
CVaR-GJR-SRTR 1.013 1.058 1.321 1.397 1.235 7.686 8.795 9.912 11.205 10.759
CVaR-GARCH-Skt 0.918 1.048 1.208 1.383 1.224 7.759 9.092 10.156 11.707 11.239
CVaR-GJR-Skt 1.116 1.344 1.446 1.748 1.510 8.805 10.268 11.753 13.428 12.900
CVaR-GARCH-FHS 0.882 1.015 1.162 1.336 1.187 7.690 9.103 10.239 11.892 11.421
CVaR-GJR-FHS 1.124 1.386 1.448 1.784 1.538 8.791 10.357 11.802 13.556 13.033
RV-Mom/Contrarian -1.353 -1.404 -0.568 -0.592 -0.462 19.504 19.413 24.613 24.364 22.980

treme values for a highly risk-averse investor during this crash. In contrast, the strategy that

switches to the contrarian portfolio only provides a positive economic value for a highly risk-

averse CRRA investor or during the crash period. Panel C shows results for the loss-averse

investor, which are again in line with our earlier findings. The economic value is again positive

for all strategies that switch between volatility and CVaR targeting, regardless of the level of

loss aversion. In contrast, for the strategy that switches to the contrarian portfolio, the economic

value is negative for all choices of b and l. During the crash period, the economic value of the

switching strategies is again very high and is the highest for the strategy that switches to the

contrarian portfolio.

Table XIX shows the economic value of the switching strategies for the German momentum
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Table XIX. Economic Value of Risk Targeting: Germany
This table shows the economic value of the switching strategies with respect to the RV managed strategy
for the German momentum strategy using the TSMOM indicator. Panel A shows results for a mean-
variance investor with utility function (2.6.8). Panel B shows results for a CRRA investor with utility
function (2.6.11). Panel C shows results for a loss-averse investor with utility function (2.6.14).

Model Whole Period Crash Period

Panel A: MV γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 0.863 1.105 1.558 2.083 2.487 10.076 11.052 12.667 14.241 7.564
CVaR-Skt-unc 0.819 1.050 1.484 1.986 2.467 11.081 11.819 13.043 14.242 8.859
CVaR-GARCH-SRTR 0.754 0.920 1.230 1.590 2.384 5.957 7.993 11.338 14.528 0.619
CVaR-GJR-SRTR 0.979 1.073 1.250 1.456 2.356 10.429 11.368 12.921 14.438 7.680
CVaR-GARCH-Skt 1.559 1.544 1.514 1.480 2.363 8.482 10.009 12.526 14.952 4.607
CVaR-GJR-Skt 1.506 1.447 1.336 1.206 2.306 12.705 12.718 12.739 12.760 11.462
CVaR-GARCH-FHS 1.815 1.703 1.492 1.245 2.315 10.090 11.158 12.924 14.643 7.224
CVaR-GJR-FHS 1.740 1.562 1.227 0.832 2.230 14.576 13.682 12.185 10.659 14.487
RV-Mom/Contrarian -9.851 -10.135 -10.671 -76.333 -2.522 -18.694 -18.231 -17.463 -16.708 -31.838

Panel B: CRRA γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 1.207 1.358 2.197 4.204 2.580 3.505 3.660 4.126 4.907 2.965
CVaR-Skt-unc 1.131 1.282 2.044 4.048 2.427 3.893 4.048 4.516 5.300 3.428
CVaR-GARCH-SRTR 0.979 1.131 1.891 4.048 2.120 1.815 1.891 2.273 2.965 1.055
CVaR-GJR-SRTR 1.055 1.207 2.044 4.282 2.044 3.660 3.738 4.204 4.985 3.119
CVaR-GARCH-Skt 1.358 1.510 2.350 4.594 1.968 2.888 2.965 3.350 4.048 2.197
CVaR-GJR-Skt 1.207 1.434 2.273 4.594 1.815 4.594 4.672 5.221 6.168 4.126
CVaR-GARCH-FHS 1.358 1.586 2.427 4.750 1.815 3.505 3.660 4.048 4.829 2.965
CVaR-GJR-FHS 1.207 1.434 2.350 4.750 1.586 5.300 5.457 6.009 7.122 4.985
RV-Mom/Contrarian -8.500 -8.431 -7.945 -6.616 -8.223 -7.597 -7.527 -7.387 -7.037 -8.292

Panel C: Loss Aversion b � 0.8 b � 1 bswitcht b � 0.8 b � 1 bswitcht

l � 2 l � 3 l � 2 l � 3 lswitcht l � 2 l � 3 l � 2 l � 3 lswitcht

CVaR HS 1.239 1.753 1.686 2.282 1.927 5.973 5.453 8.412 7.884 5.701
CVaR-Skt-unc 1.219 1.738 1.656 2.256 1.907 6.831 6.229 9.380 8.752 6.588
CVaR-GARCH-SRTR 0.884 1.205 1.267 1.644 1.444 3.421 3.592 5.248 5.587 2.806
CVaR-GJR-SRTR 1.017 1.294 1.442 1.760 1.532 6.187 5.625 8.786 8.256 5.824
CVaR-GARCH-Skt 1.407 1.572 1.867 2.049 1.751 5.048 4.837 7.230 7.106 4.569
CVaR-GJR-Skt 1.363 1.537 1.846 2.031 1.737 7.648 6.684 10.705 9.675 7.498
CVaR-GARCH-FHS 1.439 1.465 1.919 1.940 1.668 6.116 5.654 8.538 8.099 5.774
CVaR-GJR-FHS 1.436 1.503 1.938 1.990 1.706 8.985 7.725 12.418 10.998 9.006
RV-Mom/Contrarian -11.040 -11.565 -10.547 -11.076 -8.457 -19.688 -20.850 -20.653 -21.705 -24.414

portfolio using the TSMOM crash indicator. Results for the market return crash indicator are

similar but slightly lower in magnitude. Panel A shows results for the mean-variance investor.

The economic value is again positive for all strategies that switch between the volatility and

CVaR managed strategies. The strategy that switches to the contrarian portfolio provides a neg-

ative economic value that is very high in magnitude, confirming the observation that further

research on momentum crashes outside the US is needed.164 During the crash period, the eco-

nomic value is positive and high in magnitude for all strategies that switch between volatility

and CVaR targeting. In contrast, the economic value of the strategy that switches to the con-

164A possibility could be to use indicators based on other factor portfolios as examined in Grundy and Martin
(2001) and Martens and Van Oord (2014). Alternatively the regime switching approach of Daniel et al. (2017)
could also be used.
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trarian portfolio is again negative and high in magnitude. Panel B shows the economic value

for the CRRA investor which is again positive for all strategies that switch between volatility

and CVaR targeting for all levels of risk aversion. In contrast, the strategy that switches to the

contrarian portfolio has again a negative economic value for all levels of risk aversion. The

benefit of switching to the CVaR managed strategy is again highlighted during the crash period,

where the CVaR switching strategies produce high economic values. Panel C shows results for

the loss-averse investor. These are in line with the results for the mean-variance and CRRA in-

vestor. The economic value for the strategies that switch between volatility and CVaR targeting

are again positive for all levels of loss aversion. This holds for both periods, but the economic

value is again higher for the crash period. In contrast, the strategy that switches to the contrarian

portfolio has again a negative economic value for all levels of loss aversion and both periods.

In total, for all three investors, switching between volatility and CVaR targeting heightens the

investors’ utility regardless of the level of risk or loss aversion. Further, this result holds over

the whole sample and during the crash period. In contrast, switching to the contrarian portfolio

is no adequate tool for managing momentum crashes in Germany, since the momentum crash

indicators give several false signals. Thus, the characteristics of momentum crashes strongly

depend on the used data set.

E.2 Additional Performance Results for Betting against Beta

In this section, we show results for the Betting against Beta (BAB) factor of Frazzini and Ped-

ersen (2014), where we use data for the US and German BAB portfolios. Moreira and Muir

(2017), Cederburg et al. (2020) and Barroso and Maio (2018) show that the risk targeting ap-

proach of Barroso and Santa-Clara (2015) can successfully be applied to the BAB portfolio. The

authors compare the RV approach for several portfolios and find that volatility targeting works

best for the momentum and BAB portfolios. This results since the returns of these portfolios

are highly non-normal with a high left tail risk. Thus, our switching approach should also work

well for this strategy. For that reason, we first start by assessing the distributional properties

of the US BAB portfolio’s monthly returns. Figure XI shows conditional moments of the US

BAB portfolio. As for the momentum portfolio, conditional volatility, skewness and kurtosis of
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the BAB portfolio are highly time-varying. Further, skewness of the BAB portfolio is negative

almost always, but in contrast to the momentum portfolio, there is no month when the skewness

does not exist. In contrast, there are several months when the conditional kurtosis does not

exist or exhibits extreme realizations. Figure XI also shows that times of a high kurtosis do not

necessarily coincide with times of a high volatility. Similarly, times of a high volatility do not

necessarily coincide with times when conditional kurtosis is high. Hence, managing volatility

does not capture all the (tail) risk of the BAB portfolio and our switching strategy that manages

tail risk in crash periods should be more successful in mitigating the BAB portfolio’s left tail

risk.

Since the BAB portfolio of Frazzini and Pedersen (2014) is rescaled to a market beta of

zero, a crash indicator based on past market return or market volatility should not provide

any information on the crash risk of the BAB portfolio.165 For that reason, we use a crash

indicator based on the BAB portfolio’s past return using the TSMOM strategy of Moskowitz

et al. (2012). This indicator indicates a crash, i.e. δt � 1, if the BAB portfolio’s past twelve

months’ performance is negative.166 Figure XI shows that this crash indicator works quite

well for the BAB portfolio. This figure marks months when the past twelve months’ return

of the BAB portfolio is negative in red. This indicator captures most of the months when the

BAB portfolio has a negative return and an increased risk. However, there are also periods

with extremely negative returns and periods of high left tail risk that are not captured by this

indicator. Thus, more research on the drivers of BAB crashes is needed, which would eventually

lead to an improved performance of our switching strategy.

Table XX shows performance results for the US BAB portfolio, the RV managed strategy

used by Moreira and Muir (2017), Cederburg et al. (2020) and Barroso and Maio (2018) as

well as the switching strategies. We show performance results over the whole period and a

165Another possibility would be to use the construction method of the BAB portfolio that is used by Bali et al.
(2017a) who examine a portfolio where stocks are first ranked by their beta. The BAB portfolio is then built by
selling the 10% stocks with the highest beta and buying the 10% stocks with the lowest beta, without rescaling
this portfolio to a beta of zero. For this strategy, the indicator based on the past market return should deliver good
results since this BAB portfolio has a negative beta per construction.

166Moskowitz et al. (2012) and Goyal and Jegadeesh (2017) find good results of TSMOM for look back periods
between one and 36 months. We also used other lengths between one and 36 months and found similar results to
the 12 months look back period. However, the 12 months look back period is the most common choice in the trend
following literature.
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Figure XI. Monthly Conditional Moments: BAB. This figure shows the monthly return, conditional
volatility, conditional skewness and conditional kurtosis of the BAB portfolio. Conditional volatility,
conditional skewness and conditional kurtosis are calculated for the model in Equation (2.4.16) using
the GJR-GARCH model. Months when skewness or kurtosis do not exist are marked with an x. Months
when the previous 12 months’ return of the BAB portfolio is negative are shown in red.

BAB crash period that ranges from 01.06.1941 to 01.06.1943. As for the momentum portfolio,

risk targeting delivers higher Sharpe Ratios while simultaneously left tail risk is reduced. The

RV managed strategy raises the Sharpe Ratio of the non-managed BAB portfolio from 0.808 to

0.954, which is statistically significant with a Jobson and Korkie (1981) test statistic of 1.958.

However, the switching strategies produce even higher Sharpe Ratios that are all higher than one

and significantly higher than the Sharpe Ratio of the RV managed strategy indicated by the test

of Jobson and Korkie (1981). Further, the switching strategies are again successful in reducing

left tail risk. The higher Sharpe Ratio of the switching strategies is also accompanied by a re-

duction of left tail risk. The strategy that switches to the RV managed short BAB portfolio has a

slightly higher Sharpe Ratio than the RV managed BAB portfolio, but the increase is not statisti-

cally significant.167 Thus, this strategy is again outperformed by the CVaR switching strategies.

During the crash period, all risk targeting strategies (except for the strategy that switches to the

short BAB portfolio) produce higher losses compared to the non-managed strategy. However,

this result is mainly influenced by our volatility target of 12% and the low volatility of the BAB

167The short BAB portfolio is long high beta stocks and short low beta stocks.
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portfolio. Thus, the risk targeting strategies are typically leveraged, which results in higher

losses during the crash period. A loss-averse investor should therefore choose a lower risk tar-

get for the BAB portfolio. Nevertheless, results of the crash period highlight the failure of the

RV approach to manage extreme down periods. The RV managed strategy produces an annu-

alized return of only �21.33% with an annualized volatility of 26.74%. Thus, the annualized

loss of this strategy is almost three times higher than the loss of the non-managed strategy. The

loss of the RV managed strategy can be more than halved with a much lower volatility by using

one of the switching strategies. This again shows that the RV managed strategy fails as a tail

risk hedging instrument just when it is most needed. In contrast, our CVaR switching approach

limits the strategy’s tail risk during crash periods and successfully captures the upside potential

in calm markets.

Table XX. Performance Results of Risk Targeting: US Betting against Beta
This table shows the performance results for the non-managed US BAB portfolio, the RV managed
BAB portfolio and the strategies that switch between volatility and CVaR targeting. The sample period
is 01.03.1934 to 31.12.2018 and the crash period is 01.06.1941 to 01.06.1943. The description of the
columns is given in Table VI.

Whole Period Crash Period

Model Return Vola Skew Kurt SR zJK Min Return Vola Skew Kurt Min

US BAB 8.57 10.61 -0.759 9.855 0.808 -1.958 -21.95 -8.34 11.30 -0.542 2.861 -8.31
RV 15.62 16.36 -0.657 5.789 0.954 - -23.59 -21.33 26.74 -1.069 4.183 -23.59

CVaR HS 16.99 15.54 -0.365 6.380 1.093 3.753 -28.41 -9.40 11.46 -1.588 5.470 -11.22
CVaR-Skt-unc 17.00 15.51 -0.382 6.454 1.097 3.901 -28.41 -10.13 12.23 -1.393 4.567 -11.22
CVaR-GARCH-SRTR 17.12 15.66 -0.403 6.328 1.094 4.093 -28.41 -11.20 14.58 -1.105 3.647 -11.22
CVaR-GJR-SRTR 16.66 15.84 -0.454 6.320 1.051 2.873 -28.41 -11.66 14.52 -0.931 3.349 -11.22
CVaR-GARCH-Skt 17.08 15.72 -0.415 6.269 1.087 3.828 -28.41 -9.93 13.55 -1.083 3.696 -11.22
CVaR-GJR-Skt 16.82 15.81 -0.404 6.232 1.064 3.255 -28.41 -11.08 13.17 -1.157 3.828 -11.22
CVaR-GARCH-FHS 17.16 15.73 -0.407 6.228 1.091 3.891 -28.41 -9.43 12.86 -1.287 4.268 -11.22
CVaR-GJR-FHS 16.92 15.84 -0.400 6.195 1.068 3.313 -28.41 -10.39 12.50 -1.329 4.395 -11.22
RV-BAB/Short BAB 16.05 16.34 -0.390 5.516 0.983 0.247 -23.59 -5.83 27.37 -0.801 4.807 -23.59

Figure XII shows the performance of the non-managed BAB portfolio, the RV managed

BAB portfolio and one strategy that switches between volatility and CVaR targeting. We again

rescale all strategies to the same level of volatility. Further, since the BAB portfolio is a zero-

investment strategy, we add the risk-free rate to the portfolio return. As for the momentum

portfolio, the lowest portfolio value of 2,183,853.59$ is achieved by the non-managed BAB

portfolio. The RV managed strategy increases this value to 21,708,629.35$. However, the

strategy that switches between volatility and CVaR targeting produces a portfolio value of even

152,266,771.65$. Interestingly, during the first half, the RV managed strategy underperforms
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the non-managed strategy. Hence, the outperformance of the RV managed strategy compared

to the non-managed strategy is only driven by the second half. Thus, the profitability of the RV

managed portfolio strongly depends on the examined time period, as it is also shown by Dreyer

and Hubrich (2019). In contrast, the switching strategy performs similar to the non-managed

strategy in the first half and then clearly outperforms the other strategies.

Figure XII. Performance of Risk Targeting: Betting against Beta. This figure plots the cumulative
return of a one dollar investment in the BAB portfolio, the RV managed BAB portfolio and a portfolio
that switches between volatility and CVaR targeting over the whole period, where we add the risk-free
rate to these portfolios. All strategies are rescaled to the same volatility.

Table XXI shows the economic value of the switching strategies, measured as the annualized

percentage fee an investor is willing to pay to switch away from the RV managed strategy.

Compared to the momentum strategy, the economic value is lower for the BAB portfolio but

still positive for all strategies that switch between volatility and CVaR targeting and for all

types of investors. In contrast, the economic value of the strategy that switches to the short

BAB portfolio is low in magnitude and even negative for a loss-averse investor with b � 0.8.

During the crash period, the economic value for the mean-variance and loss-averse investor

becomes extremely high for all switching strategies. This is in line with the results of Table

XX and highlights the high misspecification of the RV managed strategy during periods of high

losses. In other words, as stated above, the RV approach is an inappropriate tail risk hedging
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instrument, which gives a wrong risk assessment in crises. In contrast, our switching approach

performs well during crises and over the long-run.

Table XXI. Economic Value of Risk Targeting: US Betting against Beta
This table shows the economic value of the switching strategies with respect to the RV managed strategy
for the US BAB portfolio. Panel A shows the results for a mean-variance investor with utility function
(2.6.8). Panel B shows the results for a CRRA investor with utility function (2.6.11). Panel C shows the
results for a loss-averse investor with utility function (2.6.14). The crash period ranges from 01.06.1941
to 01.06.1943.

Model Whole Period Crash Period

Panel A: MV γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 1.329 1.767 2.584 3.520 1.578 17.527 26.166 38.576 48.404 34.936
CVaR-Skt-unc 1.347 1.804 2.656 3.632 1.599 16.514 24.816 36.750 46.222 33.783
CVaR-GARCH-SRTR 1.426 1.806 2.512 3.324 1.539 14.845 22.132 32.634 41.032 30.994
CVaR-GJR-SRTR 0.988 1.268 1.790 2.393 1.362 14.273 21.549 32.034 40.417 30.681
CVaR-GARCH-Skt 1.382 1.728 2.372 3.113 1.499 16.592 24.401 35.643 44.600 32.876
CVaR-GJR-Skt 1.137 1.436 1.993 2.634 1.408 15.187 23.060 34.389 43.405 32.292
CVaR-GARCH-FHS 1.446 1.784 2.415 3.141 1.504 17.323 25.446 37.129 46.418 33.843
CVaR-GJR-FHS 1.218 1.501 2.030 2.640 1.408 16.148 24.329 36.093 45.436 33.367
RV-BAB/Short BAB 0.376 0.392 0.423 0.458 0.087 18.996 18.477 17.708 17.037 8.053

Panel B: CRRA γ � 2 γ � 5 γ � 10 γ � 15 γswitcht γ � 2 γ � 5 γ � 10 γ � 15 γswitcht

CVaR HS 1.434 1.510 1.586 1.207 2.503 -0.673 -0.747 -1.193 -1.933 1.207
CVaR-Skt-unc 1.510 1.510 1.586 1.207 2.503 -0.673 -0.747 -0.971 -1.342 0.075
CVaR-GARCH-SRTR 1.434 1.510 1.510 1.207 2.273 0.150 0.150 0.150 0.300 -1.193
CVaR-GJR-SRTR 0.979 1.055 1.055 0.753 1.510 -0.300 -0.300 -0.150 0.225 -1.268
CVaR-GARCH-Skt 1.358 1.434 1.434 1.207 2.120 0.602 0.602 0.602 0.753 0.451
CVaR-GJR-Skt 1.131 1.207 1.282 1.055 1.815 -0.896 -0.896 -0.896 -0.896 -0.896
CVaR-GARCH-FHS 1.434 1.434 1.510 1.282 2.197 0.526 0.526 0.376 0.225 0.828
CVaR-GJR-FHS 1.207 1.207 1.282 1.131 1.815 -0.747 -0.822 -0.971 -1.193 -0.225
RV-BAB/Short BAB 0.300 0.376 0.526 0.904 0.979 8.327 8.408 8.488 8.569 9.544

Panel C: Loss Aversion b � 0.8 b � 1 bswitcht b � 0.8 b � 1 bswitcht

l � 2 l � 3 l � 2 l � 3 lswitcht l � 2 l � 3 l � 2 l � 3 lswitcht

CVaR HS 1.475 1.950 2.061 2.644 1.939 16.565 20.921 24.087 29.098 24.382
CVaR-Skt-unc 1.549 2.049 2.121 2.733 2.006 15.848 19.836 22.592 27.524 22.746
CVaR-GARCH-SRTR 1.467 1.847 2.011 2.488 1.819 14.014 17.348 19.465 23.596 19.075
CVaR-GJR-SRTR 1.027 1.326 1.447 1.820 1.317 13.271 16.551 18.681 22.715 18.295
CVaR-GARCH-Skt 1.379 1.718 1.897 2.323 1.695 15.275 18.934 21.592 26.052 21.270
CVaR-GJR-Skt 1.149 1.459 1.612 2.001 1.452 14.337 18.086 20.562 25.060 20.518
CVaR-GARCH-FHS 1.419 1.747 1.945 2.358 1.721 16.159 20.128 22.873 27.676 22.736
CVaR-GJR-FHS 1.178 1.464 1.656 2.016 1.463 15.317 19.360 21.982 26.771 22.062
RV-BAB/Short BAB -0.293 -0.306 0.402 0.423 0.319 18.120 18.203 19.377 19.380 17.701

Table XXII summarizes results for the German BAB portfolio, where we only show the

economic value for γ � 10, b � 1 and l � 2. The sample period for the German BAB portfolio

starts in December 1992. For this data set, the non-managed and RV managed strategies produce

similar Sharpe Ratios, whereas the Sharpe Ratios of the strategies that switch between volatility

and CVaR targeting are higher, but not statistically significant. The strategy that switches to the

short BAB strategy produces the lowest returns. Hence, further research on the drivers of BAB

crashes in Germany is needed. Nevertheless, the strategies that switch between volatility and

CVaR targeting are again very successful in reducing left tail risk. Interestingly, all strategies
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that switch between the volatility and CVaR managed strategies exhibit a positive skewness,

whereas the skewness of the non-managed and RV managed strategies is negative. Thus, as

before, our switching approach is successful in increasing the BAB portfolio’s risk-adjusted

performance while simultaneously left tail risk is reduced. The economic value for the German

BAB portfolio is quite low, but positive for all strategies that switch between volatility and

CVaR targeting. In contrast, the economic value of the strategy that switches to the short BAB

portfolio is negative.

Table XXII. Performance Results of Risk Targeting: Betting against Beta for Germany
This table shows performance results for the non-managed BAB portfolio, the RV managed BAB port-
folio and the switching strategies for the German BAB portfolio. The sample period starts in Decem-
ber 1992. The description of the columns is given in Table VI. The economic value is calculated for
γ � 10, b � 1 and l � 2.

Performance Results Economic Value

Model Return Vola Skew Kurt SR zJK MDD Calmar Min ∆MV ∆CRRA ∆LA

BAB Germany 11.73 17.55 -0.257 4.487 0.668 -0.345 36.46 0.322 -21.48 - - -
RV 8.05 11.88 -0.108 3.946 0.678 - 31.59 0.255 -11.50 - - -

CVaR HS 8.13 10.94 0.194 4.659 0.743 1.028 21.41 0.380 -11.94 1.357 0.979 1.181
CVaR-Skt-unc 8.04 10.94 0.178 4.619 0.734 1.002 22.04 0.365 -11.94 1.266 0.828 0.989
CVaR-GARCH-SRTR 8.32 10.95 0.185 4.580 0.760 1.376 21.53 0.386 -11.94 1.522 1.131 1.280
CVaR-GJR-SRTR 8.43 11.02 0.199 4.565 0.765 1.440 21.57 0.391 -11.94 1.532 1.207 1.326
CVaR-GARCH-Skt 8.40 11.37 0.113 4.289 0.738 1.142 22.98 0.365 -11.94 1.028 0.904 0.893
CVaR-GJR-Skt 8.42 11.54 0.087 4.244 0.730 0.996 23.71 0.355 -11.94 0.818 0.753 0.764
CVaR-GARCH-FHS 8.47 11.36 0.150 4.285 0.746 1.178 23.86 0.355 -11.94 1.115 0.979 1.029
CVaR-GJR-FHS 8.44 11.52 0.104 4.237 0.733 0.997 23.76 0.355 -11.94 0.865 0.828 0.812
RV-BAB/Short BAB 6.66 11.95 0.080 3.781 0.558 -0.541 34.24 0.195 -11.50 -1.400 -1.119 -1.373

In total, results in this section show that our simple switching strategy also works well for the

BAB portfolio, both in Germany and in the US. The outperformance of the switching strategy

compared to the RV managed strategy results since the switching strategy limits the crash risk

during BAB crashes and captures the upside potential in calm periods. In contrast, the RV

managed strategy fails to limit the downside risk during crash periods. As for the momentum

portfolio, we find that the switching strategy is more beneficial when US data are used.

E.3 Additional Performance Results for Industry Momentum

In this section, we apply our risk targeting approaches to the industry momentum strategy (Chor-

dia and Shivakumar, 2002, Grundy and Martin, 2001, Moskowitz and Grinblatt, 1999, Novy-

Marx, 2012). The individual stock momentum strategy has the disadvantage that this strategy

is typically invested in small sized and illiquid stocks, and hence produces high transaction
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costs (Lesmond et al., 2004). In contrast, industries have corresponding and highly liquid ETFs

with low transaction costs (Han, 2005, Sec. 5.7). Further, the individual stock momentum strat-

egy has to buy and sell large numbers of stocks every month, whereas the industry momentum

strategy only contains a small number of industries. Consequently, industry momentum can be

replicated with much lower transaction costs and is more relevant for practical implementations.

Grobys et al. (2018) and Du Plessis and Hallerbach (2017) show that the risk of the industry

momentum strategy can be successfully managed by the RV approach of Barroso and Santa-

Clara (2015). For that reason, we will apply the RV estimator and our switching approach to

the industry momentum portfolio.

Grobys et al. (2018) find that the momentum crash indicators used for the stock based mo-

mentum strategy do not work well for industry momentum. We therefore use a crash indicator

based on the past performance of the industry momentum strategy, where we use the twelve

months TSMOM indicator. Thus, we switch to the CVaR targeting strategy when momentum’s

past twelve months return is negative. Goyal and Jegadeesh (2017, Table 1) and Moskowitz

et al. (2012) find good results for TSMOM with lookback periods between one and 36 months.

For that reason, we also used other lookback periods between one and 36 months and found that

these lookback periods also worked well.168 However, results for other ranking periods are not

shown here.

Results for the non-managed and RV managed industry momentum strategies as well as the

switching strategies are shown in Table XXIII. The industry momentum strategy uses 30 equally

weighted US industries, ranks industries based on their past twelve months’ performance and

assigns the 30% best and worst performing industries as winners and losers. Interestingly, the

RV managed strategy produces a higher volatility than the non-managed strategy. This is in line

with Grobys et al. (2018, Table 4) who also find a higher volatility of the RV managed strategy

compared to the non-managed strategy. This result is driven by the lower volatility of the indus-

try momentum portfolio combined with the volatility target of 12%. Nevertheless, despite the

higher volatility of the risk-managed industry momentum strategy, risk targeting significantly

168Similarly, Moskowitz and Grinblatt (1999), Novy-Marx (2012) and Du Plessis and Hallerbach (2017) show
that industry momentum also works well for other ranking periods between one and twelve months.
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reduces left tail risk and exhibits a positive skewness, whereas the non-managed strategy has a

skewness of �0.904. This finding is again in line with Grobys et al. (2018, Table 4) who also

find that the RV managed industry momentum portfolio exhibits a positive skewness. Further-

more, the higher volatility of risk targeting is also accompanied by a significantly higher re-

turn.169 Consequently, the Sharpe Ratio of the RV managed momentum strategy is significantly

higher than the Sharpe Ratio of the non-managed industry momentum strategy, indicated by a

Jobson and Korkie (1981) test statistic of 5.178. Moreover, the Sharpe Ratios of the switching

strategies are all higher than the Sharpe Ratios of the non-managed and RV managed strategies.

However, the increases of the switching strategies’ Sharpe Ratios are not statistically signif-

icant. A possible explanation for this finding is that the industry momentum portfolio is less

negatively skewed than the stock momentum strategy. As a consequence, momentum crashes of

industry momentum are less severe than momentum crashes of stock momentum (Grobys et al.,

2018, Table 7). Due to the lower crash risk, switching to the CVaR targeting strategy is less

important for the industry momentum portfolio than for the stock momentum portfolio. Never-

theless, the switching strategies produce lower drawdowns and exhibit an improved risk-return

profile compared to the RV managed strategy.

Table XXIII. Performance Results of Risk Targeting: Industry Momentum
This table shows performance results for the non-managed industry momentum portfolio, the RV man-
aged industry momentum portfolio as well as the switching strategies applied to the industry momentum
portfolio. The sample period starts in November 1930. The description of the columns is given in Table
VI. The economic value is calculated for γ � 10, b � 1 and l � 2.

Performance Results Economic Value

Model Return Vola Skew Kurt SR zJK MDD Calmar Min ∆MV ∆CRRA ∆LA

Industry Momentum 9.17 12.11 -0.904 11.364 0.758 -5.178 48.48 0.189 -25.96 - - -
RV 19.50 17.51 0.172 5.574 1.114 - 45.46 0.429 -24.92 - - -

CVaR HS 19.09 16.85 0.221 4.568 1.134 0.713 41.28 0.463 -17.92 0.899 0.376 0.193
CVaR-Skt-unc 19.14 16.86 0.230 4.595 1.135 0.762 41.55 0.461 -18.11 0.912 0.376 0.282
CVaR-GARCH-SRTR 19.71 17.20 0.144 4.278 1.146 1.168 40.81 0.483 -18.44 0.763 0.451 0.092
CVaR-GJR-SRTR 19.77 17.28 0.164 4.288 1.144 1.127 41.49 0.476 -18.21 0.665 0.451 0.118
CVaR-GARCH-Skt 19.62 17.18 0.169 4.477 1.142 1.076 42.69 0.460 -20.30 0.736 0.451 0.162
CVaR-GJR-Skt 19.63 17.35 0.190 4.674 1.131 0.669 43.83 0.448 -21.40 0.412 0.300 0.077
CVaR-GARCH-FHS 19.55 17.28 0.117 4.733 1.131 0.669 45.80 0.427 -24.27 0.478 0.225 0.047
CVaR-GJR-FHS 19.58 17.47 0.124 4.990 1.121 0.265 47.29 0.414 -25.82 0.147 0.075 -0.036
RV-Mom/Contrarian 15.18 17.82 0.237 5.354 0.852 -2.742 50.19 0.302 -24.92 -4.246 -2.594 -3.932

Similar to the findings of the Sharpe Ratio, the economic value of the CVaR switching
169The performance results in Grobys et al. (2018) are different to our results in Table XXIII. The reasons for

these differences are that Grobys et al. (2018) use another industry data set and another cut-off point to determine
winners and losers. Generally, the profitability of industry momentum strongly depends on the data set, cut-off
point and ranking period (see Grundy and Martin (2001) and Rickenberg (2020c)).
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strategies is positive but quite low in magnitude, where the highest fees are found for the mean-

variance investors. The lower economic value for the CRRA and loss-averse investor are in

line with the finding that both approaches, the RV managed strategy and the switching strate-

gies, produce similar levels of skewness, kurtosis and maximum drawdown. In total, switching

between volatility and CVaR targeting slightly enhances the performance of the industry mo-

mentum strategy, but switching to CVaR targeting in (expected) crash periods is less important

for industry momentum than for stock momentum. A more accurate crash indicator for industry

momentum could possibly further enhance the switching strategies’ performance. As shown by

Grobys et al. (2018) and Du Plessis and Hallerbach (2017), industry momentum crashes are

far more difficult to predict than crashes of the stock momentum strategy. This can also be

seen by the bad performance of the strategy that switches to the contrarian portfolio. Thus,

further research beyond the analysis of Grobys et al. (2018) and Du Plessis and Hallerbach

(2017) on industry momentum crashes is needed, which would eventually lead to an improved

performance of our switching approach.170

E.4 Additional Performance Results for the Size Factor

Barroso and Maio (2018), Cederburg et al. (2020) and Moreira and Muir (2017) show that the

RV approach works well for several factor portfolios. However, the authors show that volatility

targeting does not work for the SMB (small minus big) factor. The SMB factor is long assets

with a small market capitalization and short assets with a large market capitalization (Fama

and French, 1993, 2012). The authors show that the RV approach applied to the SMB factor

produces a worse risk-adjusted performance and a negative alpha. A reason for this finding

could be the high positive skewness of the SMB factor portfolio. Generally, Cederburg et al.

(2020) find that the benefits of risk targeting strongly depend on the used data set and that risk

targeting performs well for portfolios that strongly deviate from normality, such as momentum

or the BAB portfolio. Thus, a possible explanation for the bad performance of the RV managed

SMB portfolio could be that the volatility does not distinguish between positive and negative

170One possibility would be to apply the regime switching approach of Daniel et al. (2017) to the industry
momentum portfolio.
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returns. A positive skewness indicates that positive returns are more likely than anticipated by

a normal distribution. Volatility quantifies the positive returns as risk and therefore has a too

low exposure to the SMB portfolio. In contrast, the CVaR targeting approach only quantifies

negative returns as risk and should be superior in capturing the upside potential of the SMB

portfolio. Further, although the SMB portfolio is positively skewed on average, there can still

be periods with a high crash risk and high negative skewness. By switching to CVaR targeting

in these periods, the SMB portfolio’s performance could potentially be enhanced. For these

reasons, we next apply our risk targeting approaches to the the SMB factor.

Table XXIV. Performance Results of Risk Targeting: Size Factor
This table shows performance results for the non-managed SMB factor, the RV managed SMB factor and
the switching strategies for the SMB factor using the 12 months TSMOM crash indicator. The sample
period starts in November 1930. The description of the columns is given in Table VI. The economic
value is calculated for γ � 10, b � 1 and l � 2.

Performance Results Economic Value

Model Return Vola Skew Kurt SR zJK MDD Calmar Min ∆MV ∆CRRA ∆LA

SMB Factor 2.41 11.09 1.996 22.708 0.218 1.601 55.04 0.044 -16.87 - - -
RV 2.35 17.39 0.454 5.319 0.135 - 82.40 0.029 -21.54 - - -

CVaR HS 3.64 16.20 0.364 5.385 0.225 2.864 75.58 0.048 -22.97 3.156 0.828 2.436
CVaR-Skt-unc 3.69 16.00 0.381 5.490 0.231 3.037 73.05 0.051 -22.97 3.500 0.904 2.599
CVaR-GARCH-SRTR 2.85 16.48 0.226 5.348 0.173 1.224 80.83 0.035 -22.97 1.942 0.150 1.373
CVaR-GJR-SRTR 2.86 16.59 0.236 5.266 0.172 1.236 79.83 0.036 -22.97 1.777 0.150 1.285
CVaR-GARCH-Skt 3.28 16.40 0.319 5.231 0.200 2.195 75.06 0.044 -22.97 2.477 0.526 1.751
CVaR-GJR-Skt 3.25 16.29 0.318 5.234 0.199 2.074 73.18 0.044 -22.97 2.624 0.526 1.834
CVaR-GARCH-FHS 3.39 16.20 0.305 5.245 0.209 2.448 73.47 0.046 -22.97 2.896 0.602 1.975
CVaR-GJR-FHS 3.34 16.22 0.326 5.247 0.206 2.250 72.73 0.046 -22.97 2.825 0.602 1.983
RV-SMB/Short SMB 5.02 17.32 0.058 5.446 0.290 1.123 75.77 0.066 -27.48 2.741 1.358 2.659

Results for the SMB factor are shown in Table XXIV, where we use the 12 months TSMOM

crash indicator. In line with the findings of Moreira and Muir (2017), Cederburg et al. (2020)

and Barroso and Maio (2018), we find that increasing the performance of the SMB factor by

risk targeting is challenging. The RV managed strategy clearly underperforms the non-managed

strategy with a Jobson and Korkie (1981) test statistic of 1.601. The RV managed strategy

exhibits a lower return with a significantly higher volatility and drawdown. Thus, as expected,

due to the positive skewness of the SMB factor, the RV managed portfolio does not capture

the upside potential of the SMB factor. Even more important, during crash periods, the RV

managed portfolio increases the SMB factor’s crash risk, which leads to a maximum drawdown

of 82.40%, compared to a drawdown of 55.04% of the non-managed strategy. In contrast, our

switching strategy regards the SMB portfolio’s non-normalities and significantly outperforms
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the RV managed strategy. In terms of the Sharpe Ratio and Calmar Ratio, the RV managed

strategy is clearly outperformed by the switching strategies. This can also be seen by the high

economic values, i.e. investors are willing to pay economically high fees to switch from the

RV managed strategy to the switching approach. Furthermore, the switching strategies produce

even higher returns than the non-managed SMB factor, but these strategies do not outperform

the non-managed strategy in terms of the risk-adjusted return, since the switching strategies

also take higher risk. Thus, as stated by Cederburg et al. (2020), the benefits of risk targeting

strongly depend on the used data set and increasing the SMB portfolio’s performance by risk

targeting is quite challenging. In total, based on our results, our conjecture is that risk targeting,

and especially our CVaR switching approach, works the best for portfolios with high left tail

risk, such as the stock momentum strategy and the BAB portfolio. This is in line with the results

of Harvey et al. (2018) who find that volatility targeting works well for “risk assets (e.g. equity

and credit)”. In contrast, for portfolios with a lower crash risk, risk targeting becomes less

important.

To summarize results in Appendix E, risk targeting, especially strategies that switch between

volatility and CVaR targeting, do not only work well for the equally weighted momentum strat-

egy in the US, but also for other construction methods of the momentum portfolio, momentum

in Germany, the BAB portfolio of Frazzini and Pedersen (2014) in the US and Germany as well

as the industry momentum portfolio. In particular, switching between volatility and CVaR tar-

geting successfully heightens returns and investors’ utility while left tail risk is simultaneously

reduced. Nevertheless, increasing the performance of the SMB factor by risk targeting is still

challenging. However, switching between volatility and CVaR targeting clearly outperforms

the RV approach of Barroso and Maio (2018) and Moreira and Muir (2017), even for the SMB

factor.
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Chapter 3

Tail Risk Weighted Momentum Strategies

3.1 Introduction

Jegadeesh and Titman (1993) find that stocks which performed well in the past tend to out-

perform stocks with a low previous months’ performance. Following the seminal paper of

Jegadeesh and Titman (1993), momentum investing has been extensively examined in the finan-

cial literature. For example, Jegadeesh and Titman (1993), Jegadeesh and Titman (2001), Hong

et al. (2000), Novy-Marx (2012), Boguth et al. (2011), Fama and French (2016) and Lesmond

et al. (2004) examine stock momentum in the US market, Rouwenhorst (1998) and Nijman et al.

(2004) examine stock momentum in Europe, Griffin et al. (2003), Fama and French (2012) and

Goyal and Wahal (2015) examine stock momentum internationally, Clare et al. (2014) examine

commodity momentum and Asness et al. (2013) and Clare et al. (2016) examine momentum

for international stocks, country indices, currencies, bonds and commodities. Moreover, several

studies show that momentum investing also works well for portfolios of stocks instead of in-

dividual stocks. See, for example, Moskowitz and Grinblatt (1999), Lewellen (2002), Chordia

and Shivakumar (2002), Grundy and Martin (2001), Stivers and Sun (2010), Swinkels (2002),

Nijman et al. (2004) and Grobys et al. (2018) for momentum of industry portfolios, Asness et al.

(2013), Richards (1997), Novy-Marx (2012), Goyal and Wahal (2015), Nijman et al. (2004) and

Bhojraj and Swaminathan (2006) for momentum of country indices, Novy-Marx (2012), Stivers

and Sun (2010) and Lewellen (2002) for momentum of investment styles, Carhart (1997) for

momentum of mutual funds and Bali et al. (2012) for momentum of hedge funds. Portfolio

based momentum strategies are appealing from a practical perspective, since individual stock
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momentum strategies are typically highly invested in small sized and illiquid firms. Therefore,

momentum strategies using individual equities are not profitable once realistic transaction costs

are considered (Korajczyk and Sadka, 2004, Lesmond et al., 2004). In contrast, portfolios that

replicate industries and countries typically have corresponding and highly liquid ETFs with

low costs (Han, 2005, O’Neal, 2000, Richards, 1997). Further, individual stock momentum

strategies have to buy large numbers of stocks, whereas only few trades have to be done by mo-

mentum strategies using portfolios. Thus, in practice, momentum strategies based on portfolios

are far less sensitive to transaction costs.1 Moskowitz and Grinblatt (1999, Table 2) and George

and Hwang (2004, Table 1) find that, even before transaction costs were considered, industry

momentum is as profitable as individual momentum. Hence, from a practical view, momentum

strategies based on portfolios are more appealing than momentum strategies using individual

stocks.

One drawback of the momentum strategy is the occurrence of “momentum crashes”, i.e.

periods of extremely large negative returns (Daniel et al., 2017, Daniel and Moskowitz, 2016).

For example, Barroso and Santa-Clara (2015) find a skewness of �2.47 and a kurtosis of 18.24

for the value-weighted individual stock momentum strategy. This high left tail risk implies a

high likelihood of extremely negative returns, e.g. Barroso and Santa-Clara (2015) find a min-

imum monthly return of �78.96%, a minimum two months’ return of �91.59% and that the

recovery from a momentum crash can last up to 31 years. Similarly, using an equally weighted

momentum strategy, Rickenberg (2020a) finds a skewness of �4.38, a kurtosis of 43.59, a min-

imum monthly return of �89.70% and a maximum drawdown of 99.31%. A drawdown of this

size requires a return 14,392.75% to compensate for such a huge loss. Momentum crashes

are typically less severe for the industry momentum strategy, but even this strategy exhibits a

high crash risk. For example, Grobys et al. (2018, Table 4) find a minimum monthly return of

�62.75%, a skewness of �1.50 and a kurtosis of 22.91 for the industry momentum portfolio.

Furthermore, Min and Kim (2016) find that momentum crashes typically occur in periods when

1See, for example, Lesmond et al. (2004, p. 375) who conclude that “returns associated with relative strength
investing strategies (buying past winners and selling past losers) do not exceed trading costs”, but the authors also
state that this result does not necessarily hold for the industry momentum strategy. O’Neal (2000) find that industry
momentum is profitable even after considering high transaction costs.
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investors are highly risk-averse and the authors conclude that “momentum strategies expose

investors to greater downside risk”. This high left tail risk makes momentum investing unap-

pealing for investors who dislike negatively skewed and fat-tailed return distributions (Guidolin

and Timmermann, 2008, Kraus and Litzenberger, 1976, Scott and Horvath, 1980). Further,

most investors are loss-averse, i.e. they weight losses higher than gains of the same magnitude

(Aı̈t-Sahalia and Brandt, 2001, Benartzi and Thaler, 1995) and investors are averse to crashes

(Bollerslev and Todorov, 2011, Chabi-Yo et al., 2018, Van Oordt and Zhou, 2016). This holds

especially for momentum investors since they typically hold leveraged positions (Chabot et al.,

2014). Thus, the momentum strategy is unappealing for most investors unless momentum’s risk

is managed and momentum crashes are attenuated. In order to manage momentum’s crash risk,

several approaches have been used in the literature. Grundy and Martin (2001) and Martens

and Van Oord (2014) use momentum’s beta to hedge momentum’s risk. Further, several studies

suggest to switch to other assets like the value strategy, contrarian strategy or the risk-free rate if

a momentum crash is likely (Barroso and Maio, 2019, Chabot et al., 2014, Daniel et al., 2017).

Moreover, Barroso and Santa-Clara (2015), Moreira and Muir (2017), Barroso and Maio (2018),

Cederburg et al. (2020), Du Plessis and Hallerbach (2017), Grobys et al. (2018), Grobys and Ko-

lari (2020) and Daniel and Moskowitz (2016) use a volatility targeting approach to manage the

risk of the momentum portfolio. Similarly, Rickenberg (2020a) also uses a volatility targeting

approach but switches to a tail risk managed strategy when the probability of a momentum crash

increases. Thus, managing the crash risk of the momentum strategy has recently emerged to an

important topic in the financial literature. However, most approaches examined in the literature

so far manage momentum’s risk on a portfolio level, ignoring information on the assets that are

contained in the momentum portfolio. That is, momentum strategies examined in the literature

are mainly based on simple weighting schemes of the assets in the winners and losers portfolios,

where assets within the winners and losers portfolio are typically equally weighted (Chordia and

Shivakumar, 2002, Grundy and Martin, 2001, Hong et al., 2000, Jegadeesh and Titman, 1993,

2001, Lesmond et al., 2004, Moskowitz and Grinblatt, 1999, Rachev et al., 2007, Rickenberg,

2020a, Swinkels, 2002), value-weighted (Barroso and Santa-Clara, 2015, Novy-Marx, 2012,
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Richards, 1997) or weighted based on past performance (Bhojraj and Swaminathan, 2006, Chan

et al., 2000, Conrad and Kaul, 1998, Lewellen, 2002, Moskowitz and Grinblatt, 1999).

More recently, Clare et al. (2014), Du Plessis and Hallerbach (2017) and Goyal and Je-

gadeesh (2017) show that weighting assets within the winners and losers portfolios inversely

to their risk, measured by their past Realized Volatility, increases the (risk-adjusted) perfor-

mance and lowers left tail risk compared to classical weighting schemes. This simple inverse

risk weighting was also used by Moskowitz et al. (2012), Baltas (2015), Clare et al. (2014),

Clare et al. (2016), Goyal and Jegadeesh (2017), Dudler et al. (2015), Du Plessis and Haller-

bach (2017) and Kim et al. (2016) for the time series momentum (TSMOM) strategy and by

Asness et al. (2013) to weight different momentum portfolios in a global momentum portfolio.

Generally, the economic value of the inverse volatility weighting has been extensively exam-

ined in the literature (Fleming et al., 2001, 2003, Han, 2005, Kirby and Ostdiek, 2012, Taylor,

2014). Frazzini and Pedersen (2014), Asness et al. (2014) and Asness et al. (2020) also use a

weighting scheme where assets with higher risk obtain lower weights than assets with lower

risk, but the authors measure risk by beta and correlation instead of volatility. Inverse risk

weightings are motivated by the “low risk anomaly”, i.e. the finding that assets with lower risk

outperform assets with higher risk (Ang et al., 2006b, 2009, Asness et al., 2020, Atilgan et al.,

2020, Bali et al., 2017a, Baltussen et al., 2018, Cederburg and O’Doherty, 2016, Frazzini and

Pedersen, 2014, Haugen and Heins, 1975, Schmielewski and Stoyanov, 2017, Schneider et al.,

2020). Weighting assets in the momentum portfolio inversely to their volatility is appealing

since the momentum strategy is typically invested in assets with a higher than average volatil-

ity (Rouwenhorst, 1998). Ignoring information on an asset’s risk can lead to a portfolio where

the portfolio’s risk is mainly determined by a few assets. In particular, inverse risk weightings

are similar to the well-known mean-variance and minimum variance approaches.2 However,

the mean-variance approach suffers under high estimation risk of mean returns (Merton, 1980)

2Minimum variance portfolios have recently become popular in the financial industry (Clarke et al., 2006). The
minimum variance portfolio is a special case of the mean-variance portfolio and is the unique portfolio on the
mean-variance efficient frontier that is independent of the mean return (Merton, 1972). A portfolio strategy that
is again similar to the minimum variance portfolio is risk parity. Inverse volatility portfolios then follow from the
risk parity approach by ignoring information on the assets’ correlations or assuming that all correlations are equal
(Baltas, 2015, Maillard et al., 2010).
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and produces an inferior out-of-sample performance (DeMiguel et al., 2009a,b, Garlappi et al.,

2006, Jagannathan and Ma, 2003, Kan and Zhou, 2007, Tu and Zhou, 2011).3 In contrast to the

mean-variance optimization, inverse risk weighting strategies have the advantage that no mean

estimate is needed.4 In particular, combining momentum with inverse risk weightings can also

be seen as an alternative portfolio allocation approach that is far less sensitive to estimation

risk, since no direct mean estimate is needed, but not all the information on the assets’ return is

ignored.5

Although estimating variances is far less prone to estimation risk than estimating mean

returns, weighting assets by their estimated risk is also sensitive to misspecifications, especially

when the number of assets increases (Kan and Zhou, 2007, Table 1). Thus, the inverse risk

weightings are also sensitive to estimation errors of variances and can produce highly volatile

portfolio weights (Kirby and Ostdiek, 2012). For that reason, we extend the inverse volatility

weighting to a rank based weighting scheme that is more robust to estimation risk and also

weights highly volatile assets lower than low volatile assets.6 Forecasting an asset’s cross-

3Alternatives to the classical mean-variance approach are mean-variance portfolios using more robust estimates
of the mean return and the covariance matrix (DeMiguel et al., 2009a,b, Garlappi et al., 2006, Jagannathan and
Ma, 2003, Kan and Zhou, 2007, Tu and Zhou, 2011). These studies mainly use Bayesian and shrinkage estimators.
Furthermore, portfolio strategies that are combinations of different weighting schemes are also frequently used.
For example, Kan and Zhou (2007, Sec. III) switch between the mean-variance and minimum variance portfolio,
where more weight is placed on the minimum variance approach when estimation risk of the mean return increases
(see also Tu and Zhou (2011), DeMiguel et al. (2009b) and Garlappi et al. (2006) for similar switching strategies).

4Other volatility based portfolio allocation methods that are independent of the mean return are “low volatil-
ity strategies” that rank assets by their risk and only buy assets with the lowest risk (Blitz, 2016, Blitz
and Van Vliet, 2007, Blitz et al., 2019, Blitz and Vidojevic, 2017, Chow et al., 2014). These simple low
volatility portfolios are frequently used by practitioners. The good performance of volatility based invest-
ment strategies has led to numerous financial products replicating these strategies. See, for example, the ETFs
offered by iShares (https://www.blackrock.com/us/individual/investment-ideas/what-
is-factor-investing/minimum-volatility) and the funds offered by Robeco (https://www.
robeco.com/en/themes/low-volatility-investing/).

5This strategy selects the assets that are contained in the portfolio based on an estimate of the relative mean
and then weights these assets solely based their risk characteristics. Forecasting relative returns and risk is far
less sensitive to estimation risk than forecasting absolute returns (Christoffersen and Diebold, 2006). A long-only
strategy that only buys the winners portfolio, where the assets in the winners portfolio are inverse risk weighted
can also be interesting for practitioners with short-sale constraints. This strategy is appealing since shorting the
losers portfolio induces high transaction costs (Clare et al., 2016, Korajczyk and Sadka, 2004). We also examine
the long-only risk weighted winners portfolio in Appendix B.13 and compare these strategies to the mean-variance
and minimum variance approach. We find that our two stage approach outperforms the mean-variance approach
in terms of statistically higher Sharpe Ratios and high utility gains for investors. Combining information on an
asset’s return and risk in a long-only asset allocation setting has also been examined by Blitz and van Vliet (2018)
and Clare et al. (2016).

6Although our rank based weighting does not weight assets inversely to their risk, we also subsume this weight-
ing scheme under the inverse risk weighting. Hence, when we write “inverse risk weightings” or “weighting assets
inversely to their risk” we mean either weighting assets according to the “true” inverse risk weighting or according
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sectional risk rank is much easier than forecasting an asset’s risk (Langlois, 2020). Similar rank

based weighting schemes were also used by Asness et al. (2013), Asness et al. (2014), Asness

et al. (2020), Frazzini and Pedersen (2014), Liu et al. (2018) and Schneider et al. (2020).

Applying the inverse volatility weighting to the momentum portfolio slightly improves the

portfolio’s risk-return profile. However, using volatility as a risk measure has several disadvan-

tages and is (at least implicitly) based on the assumption that returns are normally distributed.

In a portfolio setting, managing volatility means managing return deviations, whereas most in-

vestors are concerned about (extremely) negative returns, which should be the main objective

of portfolio risk management (Agarwal and Naik, 2004, Alexander and Baptista, 2004, Basak

and Shapiro, 2001, Lee and Rao, 1988). In particular, by managing an asset’s volatility, higher

moments like skewness and kurtosis are not taken into account. The importance of incorporat-

ing skewness and kurtosis have been shown in many fields of finance, e.g. asset pricing (Bali

et al., 2009, Dittmar, 2002, Harvey and Siddique, 1999, 2000, Jondeau et al., 2019, Kraus and

Litzenberger, 1976, Langlois, 2020, Schneider et al., 2020), portfolio selection (Ghysels et al.,

2016, Guidolin and Timmermann, 2008, Wang et al., 2012), option pricing (Barone-Adesi et al.,

2008) and risk management (Bali et al., 2008). Moreover, since momentum investing is a long-

short strategy that buys winners and sells losers, an asset’s risk should be managed differently

based on the information of whether the asset is in the long or short leg. Thus, for an asset

in the winners portfolio risk should be defined as downside risk, whereas for an asset in the

losers portfolio risk should be defined as upside potential (Bollerslev et al., 2020, 2015, Giot

and Laurent, 2003). This is not regarded by the inverse volatility weighting. The aim of risk

weighting applied to the momentum strategy should be to enhance the performance of the win-

ners portfolio and to worsen the performance of the losers portfolio. Since inverse volatility

weighting typically enhances the performance of a portfolio, the performance gain of buying

the enhanced winners portfolio is (partly) offset by shorting the enhanced losers portfolio.7 We

to the rank based weighting.
7For example, Ang et al. (2006b, p. 292) suggest that “one way to improve the returns to a momentum strategy

is to short past losers with high idiosyncratic volatility.” The inverse volatility weighting approach of Clare et al.
(2014), Du Plessis and Hallerbach (2017) and Goyal and Jegadeesh (2017) obviously does the opposite. In contrast,
Asness et al. (2014), Asness et al. (2020) and Frazzini and Pedersen (2014) use a rank based weighting that regards
if an asset is a long or short position. For example, Frazzini and Pedersen (2014, p. 9) examining a portfolio that
buys low beta assets and sells high beta assets write: “In each portfolio, securities are weighted by the ranked
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therefore extend the inverse volatility weighting to inverse risk weightings that take these dis-

advantages of the volatility weighting into account. Thus, we weight assets inversely to their

risk based on risk measures that take non-normalities into account and that regard if an asset

is a long or short position.8 To measure an asset’s tail risk we rely on several frequently used

univariate risk measures, namely skewness (Amaya et al., 2015, Chen et al., 2001, Jondeau

et al., 2019, Langlois, 2020), kurtosis (Amaya et al., 2015), Lower Partial Moments (Arzac

and Bawa, 1977, Bawa and Lindenberg, 1977, Lee and Rao, 1988), Value at Risk (Allen et al.,

2012, Atilgan et al., 2020, Bali et al., 2009, 2008) and Conditional Value at Risk (Alexander

and Baptista, 2004, Allen et al., 2012, Bali et al., 2009, Basak and Shapiro, 2001). Further,

to account for an asset’s downside risk and upside potential we also examine “reward-to-risk”

timing strategies that are similar to the strategies examined by Kirby and Ostdiek (2012) and

Zakamulin (2017). These strategies weight assets by their difference of up and down semivari-

ance (Bollerslev et al., 2019, Patton and Sheppard, 2015), down-to-up volatility (Chen et al.,

2001), down-to-up skewness and R-Ratio (Rachev et al., 2007). These reward-to-risk timing

strategies have the advantage that information on the assets’ return potential is also regarded

without relying on a noisy estimate of the assets’ mean return.

Additionally to weighting the assets in the momentum portfolio based on estimates of their

own risk using univariate risk measures, we further use weighting schemes based on system-

atic (tail) risk. Our systematic (tail) risk measures quantify an asset’s comovement with the

equally weighted momentum portfolio, where we additionally condition on bad states of the

momentum portfolio and differentiate between long and short positions.9 Thus, our systematic

tail risk measures quantify how much an asset in the winners (losers) portfolio decreases (in-

betas (i.e., lower-beta securities have larger weights in the low-beta portfolio and higher-beta securities have larger
weights in the high-beta portfolio).” Hence, lower risk assets are weighted higher in the long portfolio, whereas
higher risk assets are weighted higher in the short portfolio.

8A long-only strategy that only buys the winners and applies a low risk weighting based on risk measures that
account for non-normalities can also be an appealing alternative to mean-downside risk approaches as examined
by Agarwal and Naik (2004), Cuoco et al. (2008), Basak and Shapiro (2001), Bawa and Lindenberg (1977), Lee
and Rao (1988) and Price et al. (1982). This strategy is examined in Appendix B.13.

9Systematic (tail) risk is typically measured with respect to the market. However, since market crashes and
momentum crashes typically do not occur simultaneously (Daniel and Moskowitz, 2016, Table 2), measuring
systematic tail risk with respect to the momentum portfolio is more reasonable. Acharya et al. (2016), Engle et al.
(2015) and Harvey and Siddique (2000) also measure systematic risk with respect to other benchmarks than the
market portfolio.
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creases) when the momentum portfolio exhibits a negative return. Based on these measures,

assets in the winners (losers) portfolio that perform well (bad) during a momentum crash are

weighted higher than assets that strongly decrease (increase) when the momentum portfolio suf-

fers extremely negative returns. As systematic risk measures we use an asset’s beta (Cederburg

and O’Doherty, 2016, Frazzini and Pedersen, 2014, Lettau et al., 2014), correlation (Asness

et al., 2020), coskewness (Harvey and Siddique, 2000, Kraus and Litzenberger, 1976, Langlois,

2020), cokurtosis (Dittmar, 2002), downside beta (Ang et al., 2006a, Lettau et al., 2014), down-

side correlation (Ang and Chen, 2002, Hong et al., 2007), LPM-beta (Bali et al., 2014, Bawa

and Lindenberg, 1977, Lee and Rao, 1988), HTCR-beta (Bali et al., 2014), Tail-Sens (Agarwal

et al., 2017, Chabi-Yo et al., 2018, Poon et al., 2004, Weigert, 2015), Tail-Risk (Agarwal et al.,

2017), Tail-beta (Van Oordt and Zhou, 2017, 2016) and Marginal Expected Shortfall (Acharya

et al., 2012, 2016, Brownlees and Engle, 2016, Engle et al., 2015).

Since the systematic tail risk measures condition on bad states of the momentum portfolio,

this weighting scheme is expected to perform well in periods of a momentum crash. However, in

calm periods, measuring systematic tail risk should not provide much information on an asset’s

risk. Even more important, a higher comovement of an asset with the momentum portfolio

is desired in calm periods and downweighting these assets is disadvantageous. In contrast,

the univariate risk measures do not condition on the return of the momentum portfolio and

are independent of the state of the momentum portfolio. Therefore, we additionally examine an

approach that switches between the weighting schemes based on univariate and systematic (tail)

risk measures, where the systematic (tail) risk based weighting is only used when a momentum

crash is likely. The benefits of combining several portfolio strategies have been shown by

Kan and Zhou (2007), Garlappi et al. (2006), DeMiguel et al. (2009b), Tu and Zhou (2011),

Rickenberg (2020b) and Rickenberg (2020a). In order to estimate the expected momentum

state, we rely on the equally weighted momentum portfolio’s own volatility, which is a negative

predictor for momentum’s future return (Barroso and Maio, 2019, Barroso and Santa-Clara,

2015, Grobys et al., 2018). Other alternatives to indicate momentum crashes are the simple

time series momentum strategy of Moskowitz et al. (2012), past market return or past market
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volatility.10

Applying low risk weightings to the momentum strategy should provide an enhanced risk-

return profile by incorporating information on each asset’s risk in the momentum portfolio.

However, since correlations between different assets typically increase simultaneously in bad

market states, i.e. assets typically crash together, crash risk cannot completely be mitigated by

different weighting schemes (Ang and Chen, 2002, Chabi-Yo et al., 2018, Poon et al., 2004).

Therefore, the risk weighted momentum strategies still exhibit a high crash risk and other tail

risk protection methods are needed. Barroso and Santa-Clara (2015), Cederburg et al. (2020),

Barroso and Maio (2018), Moreira and Muir (2017) and Rickenberg (2020a) show that the

momentum portfolio’s risk can simply be managed by targeting a constant level of portfolio

volatility. This approach has also been used to target the risk of the industry momentum port-

folio (Du Plessis and Hallerbach, 2017, Grobys, 2018, Grobys and Kolari, 2020, Grobys et al.,

2018). Barroso and Santa-Clara (2015) and Barroso and Maio (2019) show that a higher volatil-

ity of the momentum portfolio is correlated with negative future momentum returns.11 Hence,

in times of a high momentum volatility an investor should decrease the amount invested in the

long and short leg. Thus, by simply reducing the exposure to the momentum portfolio when

momentum’s risk increases, momentum crashes can be attenuated. In particular, this approach

is solely based on information of the whole portfolio and is independent of the portfolio alloca-

tion process. Thus, the low risk weightings and the volatility targeting approach can easily be

combined as shown by Baltas (2015), Zakamulin (2015), Harvey et al. (2018) and Moreira and

Muir (2017, I.E). In a first stage, the portfolio’s composition is determined based on the low risk

weighting. In a second stage, the portfolio’s overall risk is managed based on the portfolio’s

10The drivers of momentum crashes for the individual stock momentum strategy have been frequently examined
in the literature (Cooper et al., 2004, Daniel et al., 2017, Daniel and Moskowitz, 2016, Grundy and Martin, 2001,
Min and Kim, 2016, Wang and Xu, 2015). Momentum crashes typically occur when the past market return is
negative and/or past market volatility is high. Grobys et al. (2018) find that these indicators do not well predict
momentum crashes of the industry momentum strategy. In contrast, Du Plessis and Hallerbach (2017) find that a
higher market volatility predicts negative industry momentum returns. We find that indicators using the equally
weighted momentum portfolio’s past return or volatility and indicators using the market’s past return or volatility all
produce good results. However, we find that the indicator based on the industry momentum’s volatility produces
the most convincing risk-return profile. Grobys et al. (2018) also find that the industry momentum portfolio’s
volatility is a good predictor of industry momentum crashes. Robustness results for alternative definitions of the
crash indicator are shown in the appendix.

11Interestingly, volatility targeting can also be advantageous when volatility and return are unrelated or even
positively related (Dachraoui, 2018, Moreira and Muir, 2017).
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volatility. This approach simply separates the asset allocation process from the portfolio risk

management process (Agarwal and Naik, 2004). Du Plessis and Hallerbach (2017) show that

both approaches, volatility weighting and volatility targeting, enhance the industry momentum

portfolio’s performance. However, the authors do not use both strategies simultaneously. Com-

bining both approaches is appealing since both capture different aspects of risk (Moreira and

Muir, 2017, Sec. II.D).

The paper is structured as follows. Section 3.2 reviews the literature on industry momen-

tum, momentum crashes and presents the equal and volatility weighting schemes used in the

literature so far. Section 3.3 extends the inverse volatility weighting to inverse tail risk weight-

ings using univariate tail risk measures. Section 3.4 develops inverse risk weightings based

on systematic (tail) risk measures that measure the comovement of an asset with the (equally

weighted) momentum portfolio. Section 3.5 presents portfolio strategies that are combina-

tions of the univariate and systematic risk weightings. Section 3.6 shows how these weighting

schemes can be combined with the risk targeting approach. Section 3.7 shows the empirical

results and Section 3.8 concludes the paper. Additional empirical results and robustness checks

are shown in the appendix.

3.2 Momentum Strategy: Equal and Volatility Weighting, In-
dustry Momentum and Momentum Crashes

This section shortly summarizes the literature on momentum investing. We first summarize in

Section 3.2.1 the equally weighted momentum strategy, which received a lot of attention since

the seminal paper of Jegadeesh and Titman (1993). In Section 3.2.2, we summarize the literature

on the industry momentum strategy of Moskowitz and Grinblatt (1999), which is mainly used

in this paper and we compare this strategy to the individual stock based momentum strategy of

Jegadeesh and Titman (1993). Section 3.2.3 summarizes the literature on momentum crashes

and the high left tail risk of the momentum strategy. Finally, in Section 3.2.4 we present the

novel approach introduced by Clare et al. (2014), Du Plessis and Hallerbach (2017) and Goyal

and Jegadeesh (2017) that weights assets in the winners and losers portfolio inversely to their
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volatility.

3.2.1 Equally Weighted Momentum Strategy

This section presents the equally weighted momentum strategy of Jegadeesh and Titman (1993)

and shortly reviews the literature on this strategy. Momentum investing is based on the as-

sumption that stocks which performed well in the past will outperform stocks which performed

poorly in the past.12 As in Jegadeesh and Titman (1993), Rouwenhorst (1998, p. 269) and Je-

gadeesh and Titman (2001), we rank assets by their previous J months’ performance. The top

100 �p%, p P r0, 0.5s, of these ranked assets are assigned as the winners portfolio and the bottom

100 � p% are assigned as the losers portfolio. The assets within both portfolios are then equally

weighted.13 A zero-investment strategy, called the winners minus losers (WML) portfolio, is

then built by buying past winners which is financed by selling past losers.14 This portfolio is

then held for K months, where we choose a holding period K of one month. A holding period

of one month is frequently used in the momentum literature (Barroso and Santa-Clara, 2015,

Daniel and Moskowitz, 2016, Fama and French, 1996, 2012, Novy-Marx, 2012).15 The mo-

12The observation that assets move in trends can be explained by several behavioral characteristics of investors.
See Clare et al. (2016, Sec. 2) for a short summary of some these explanations.

13Equally weighted winners and losers portfolios are frequently used in the momentum literature (Chordia and
Shivakumar, 2002, Fama and French, 1996, Grobys et al., 2018, Grundy and Martin, 2001, Hong et al., 2000,
Jegadeesh and Titman, 1993, 2001, Korajczyk and Sadka, 2004, Lesmond et al., 2004, Moskowitz and Grinblatt,
1999, Rachev et al., 2007, Rickenberg, 2020a, Swinkels, 2002). Alternatives to the equally weighted winners and
losers portfolios, which are also used in the literature, are value-weighted portfolios (Barroso and Santa-Clara,
2015, Novy-Marx, 2012, Richards, 1997), past return based weighted portfolios (Asness et al., 2013, Bhojraj and
Swaminathan, 2006, Chan et al., 2000, Conrad and Kaul, 1998, Jegadeesh and Titman, 2002, Lewellen, 2002,
Moskowitz and Grinblatt, 1999, Pan et al., 2004), weights based on market value and past return (Chan et al.,
2000, Eq. (5)), liquidity weighted portfolios (Korajczyk and Sadka, 2004) or double sorted portfolios based on size
and return (Fama and French, 1996, 2012).

14The (cross-sectional) momentum strategy is by construction similar to the time series momentum strategy
(TSMOM) examined by Moskowitz et al. (2012), Du Plessis and Hallerbach (2017), Goyal and Jegadeesh (2017),
Kim et al. (2016), Baltas (2015), Clare et al. (2014), Clare et al. (2016) and Dudler et al. (2015). Both strate-
gies, cross-sectional momentum and TSMOM, are extensively compared by Du Plessis and Hallerbach (2017),
Moskowitz et al. (2012, Sec. 5), Goyal and Jegadeesh (2017) and Kim et al. (2016). Conrad and Kaul (1998) find
that a huge part of the profitability of momentum investing comes from cross-sectional differences in expected
returns. However, Jegadeesh and Titman (2002) find that this conclusion is due to a bad research design and that
momentum profits are mainly driven by time series momentum of the individual stocks. Moskowitz et al. (2012,
Table 5.B) also find that (cross-sectional) momentum is driven by TSMOM and not by cross-sectional variation in
mean returns. Moskowitz and Grinblatt (1999) and Pan et al. (2004) confirm this finding for momentum strategies
based on industry portfolios.

15Jegadeesh and Titman (1993), Jegadeesh and Titman (2001) and Rouwenhorst (1998) use a ranking and hold-
ing period of six months. In this case, the momentum portfolio invests each month 1{6 of the current wealth in six
different momentum portfolios. The aggregate momentum portfolio’s return is then given as the average return of
six portfolios each starting one month apart (see Rouwenhorst (1998, p. 269) for example).
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mentum effect typically holds for holding periods between one and twelve months, but reverses

for holding periods longer than twelve months (Conrad and Kaul, 1998, Jegadeesh and Titman,

1993, 2001, Richards, 1997, Rouwenhorst, 1998).16 Moskowitz et al. (2012) also find good

results of the one month holding period for the TSMOM strategy and that the TSMOM effect

is weaker for longer holding periods.

More formally, for a basket of m P N assets, the winners and losers portfolios each contain

n � rp �ms assets. We denote the month t return of asset i P t1, ..., nu in the winners and losers

portfolios by RW
i,t and RL

i,t, respectively. The returns RW
t and RL

t of the winners and losers

portfolios in month t using equal weights are then given by

RW
t �

ņ

i�1

wWi,t �RW
i,t �

1

n

ņ

i�1

RW
i,t and RL

t �
ņ

i�1

wLi,t �RL
i,t �

1

n

ņ

i�1

RL
i,t, (3.2.1)

where the weights in month t of asset i in the winners and losers portfolios are given bywWi,t � 1
n

and wLi,t � 1
n

(Goyal and Jegadeesh, 2017, Eq. (1)). The return Rt of the winners minus losers

(WML) portfolio in month t is then given by

RWML
t � RW

t �RL
t �

1

n

ņ

i�1

RW
i,t �RL

i,t. (3.2.2)

Equation (3.2.1) shows that the portfolio weights of the momentum portfolio are solely deter-

mined by the choice of p and the assets’ past performance.17

The profitability of the momentum strategy as presented above has been first shown for

individual stocks in the US (Boguth et al., 2011, Hong et al., 2000, Jegadeesh and Titman,

1993, 2001, Lesmond et al., 2004, Novy-Marx, 2012). However, the momentum effect also
16Similar to the momentum strategy based on the assets’ past return, momentum could also be defined relative

to the assets’ 52 week high. George and Hwang (2004), Grobys (2018) and Gupta et al. (2010) examine a strategy
that buys assets that are close to their 52 week high and sells assets that are far from their 52 week high. George and
Hwang (2004, Table 1) find that this strategy is as profitable as the momentum strategy defined above. Interestingly,
the long-term reversal, which is found for the return based momentum strategy, does not hold for the 52 week high
strategy.

17The weight of an asset in the WML portfolio is 1
n if the asset belongs to the winners portfolio, � 1

n if the asset
belongs to the losers portfolio and zero if the asset belongs to the middle part (see also Bhojraj and Swaminathan
(2006, Footnote 9)). Other possibilities of determining the weights of the assets based on an asset’s past return are
examined by Chan et al. (2000), Conrad and Kaul (1998), Moskowitz and Grinblatt (1999), Bhojraj and Swami-
nathan (2006), Lewellen (2002), Jegadeesh and Titman (2002, p. 145), Moskowitz et al. (2012, p. 241) and Goyal
and Jegadeesh (2017, Eq. (11)). In this case, an asset with a higher past performance is weighted higher in the
winners portfolio. In contrast, an asset with a lower past performance has a higher weight (in absolute values) in
the losers portfolio. Similarly, Asness et al. (2013) use a rank based weighting scheme by ranking assets based on
their past performance. In contrast to our approach, where the momentum portfolio only consists of the extreme
(positive or negative) performers, these approaches assign each asset as either a winner or loser.
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holds for European stocks (Nijman et al., 2004, Rouwenhorst, 1998), for International stocks

(Asness et al., 2013, Fama and French, 2012, Goyal and Wahal, 2015, Griffin et al., 2003), for

currencies, bonds and commodities (Asness et al., 2013, Clare et al., 2014, 2016), for industry

portfolios (Chordia and Shivakumar, 2002, Du Plessis and Hallerbach, 2017, Grobys et al.,

2018, Grundy and Martin, 2001, Lewellen, 2002, Moskowitz and Grinblatt, 1999, Nijman et al.,

2004, Novy-Marx, 2012, Swinkels, 2002), for country indices (Asness et al., 2013, Bhojraj and

Swaminathan, 2006, Goyal and Wahal, 2015, Nijman et al., 2004, Novy-Marx, 2012, Richards,

1997, Stivers and Sun, 2010), for investment styles (Lewellen, 2002, Novy-Marx, 2012, Stivers

and Sun, 2010), for mutual funds (Carhart, 1997) and for hedge funds (Bali et al., 2012).18 Thus,

momentum has frequently been examined in the literature and has been shown internationally

and for almost every asset class. Further, momentum also works well for several choices of

p, where the individual stock momentum strategy typically chooses p between 10% and 30%.

For example, for the stock momentum strategy, Jegadeesh and Titman (1993), Jegadeesh and

Titman (2001) and Rouwenhorst (1998) use p � 10%, Kim et al. (2016), Goyal and Wahal

(2015) and Novy-Marx (2012) use p � 20%, whereas Hong et al. (2000) use p � 30% in order

to “place less emphasis on the tails of the performance distribution.” Moskowitz and Grinblatt

(1999) also use a cut-off point of p � 30% for the individual stock momentum strategy. For

the industry momentum strategy, Moskowitz and Grinblatt (1999) use 20 industries and choose

n � 3. In contrast, Grobys et al. (2018) use 49 industries and a value of p � 1{6, whereas

Du Plessis and Hallerbach (2017) use p � 25% for the 49 industries. For a momentum strategy

using several international asset classes, Kim et al. (2016) use p � 20%, whereas Asness et al.

(2013) and Goyal and Jegadeesh (2017) assign each asset as either a winner or loser. Asness

et al. (2013) define winners and losers based on an asset’s past performance rank, whereas

Goyal and Jegadeesh (2017) define winners (losers) as assets that perform better (worse) than

the cross-sectional mean.

Although momentum works well for several data sets and cut-off points, the chosen data

set and cut-off point p can substantially influence the profitability of momentum investing. For

18See Jegadeesh and Titman (2001), Jegadeesh and Titman (2002), Ruenzi and Weigert (2018) and Hong et al.
(2000) who summarize several explanations for the profitability of momentum strategies. See Moskowitz et al.
(2012, Footnote 1) for a list of further studies on (cross-sectional) momentum.
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example, Hong et al. (2000) find that their momentum strategy performs quite differently com-

pared to the strategy of Jegadeesh and Titman (1993). Korajczyk and Sadka (2004) compare

the momentum strategy for different ranking and holding periods, data sets as well as weight-

ing schemes and also find that the different strategies can perform quite differently. Similarly,

Lesmond et al. (2004, Table 1) compare the impact of different data sets and cut-off points p

on the profitability of the momentum strategy and also find that momentum returns can be quite

different for different data sets and cut-off points p. In the main part of this paper, we use a data

set of 30 equally weighed US industries and a cut-off point of p � 30%. Since different data

sets and cut-off points can lead to very different results, we show additional results in Appendix

B for other data sets and other choices of p.

Equally weighted portfolios are not only used in the momentum literature, but are also rel-

evant as an easy portfolio allocation method that is frequently used by practitioners. DeMiguel

et al. (2009b) compare several portfolio allocation methods and find surprisingly good results of

the equally weighted strategy, especially for large data sets. The advantage of equally weighted

portfolios is that no parameters have to be estimated. However, other studies show that the

performance of the equally weighted portfolio can further be enhanced by using other weight-

ing schemes based on the assets’ risk (see Kirby and Ostdiek (2012) for example). We will

come back to this point in later sections. Nevertheless, DeMiguel et al. (2009b) propose to use

the equally weighted strategy as benchmark for other strategies. In particular, DeMiguel et al.

(2009b) show that the equally weighted portfolio performs well for assets with low idiosyncratic

risk, such as the assets used in our study.

3.2.2 Industry Momentum

As mentioned in the previous section, the momentum strategy does not only work for indi-

vidual stocks, but can also be applied to portfolios of stocks, e.g. industry portfolios, country

indices, investment styles and mutual funds.19 This paper examines these portfolio based mo-

mentum strategies and focuses in the main part on the industry momentum strategy, which

19Momentum has also been shown for non-stock assets, like currencies and commodities (see Asness et al.
(2013), Clare et al. (2014) and references therein).
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was introduced by Moskowitz and Grinblatt (1999).20 The authors show that buying past win-

ning industries and selling past losing industries produces very high returns, which cannot be

explained by the Carhart (1997) four factor model.21 Interestingly, Moskowitz and Grinblatt

(1999) find that industry momentum can explain individual stock momentum, whereas the op-

posite does not hold. Furthermore, Novy-Marx (2012) finds that industry momentum is highly

correlated with conventional stock momentum.22 Grundy and Martin (2001) and Chordia and

Shivakumar (2002) cannot confirm the finding of Moskowitz and Grinblatt (1999) and they

conclude that stock momentum and industry momentum are different phenomena.23 Nijman

et al. (2004) confirm this finding for European momentum. However, Moskowitz and Grin-

blatt (1999) find that industry momentum is as profitable as individual stock momentum. Thus,

industry momentum is an appealing alternative to individual stock momentum, especially for

practitioners. Moskowitz and Grinblatt (1999, p. 1286) write that “if one were to trade on

momentum, industry-based strategies appear to be more profitable and more implementable.”

George and Hwang (2004, Table 1) also find that the profitability of individual stock and in-

20Industry momentum has also been examined by Novy-Marx (2012), Grobys et al. (2018), Grobys (2018),
Grobys and Kolari (2020), George and Hwang (2004), Gupta et al. (2010), Grundy and Martin (2001), Chordia
and Shivakumar (2002), Lewellen (2002), Du Plessis and Hallerbach (2017), Swinkels (2002) and Stivers and
Sun (2010, p. 993). The importance of industry portfolios is not only limited to the momentum literature. In-
dustry portfolios also play an important role in many fields of finance, e.g. portfolio allocation (Behr et al., 2012,
DeMiguel et al., 2009a,b, Garlappi et al., 2006, Harvey et al., 2018, Kirby and Ostdiek, 2012, Kritzman et al.,
2010, Zakamulin, 2015, 2017), risk measurement (Van Oordt and Zhou, 2017) and asset pricing (Baltussen et al.,
2018, Dittmar, 2002, Harvey and Siddique, 2000).

21Earlier studies found that individual stock momentum cannot be explained by the Fama and French (1993)
three factor model (see Fama and French (1996) for example). For that reason, asset pricing models have been
extended to a four factor model by including a factor for momentum (Carhart, 1997). Fama and French (2016)
show that also a five factor model that incorporates a profitability and investment factor has problems in explaining
momentum returns. We confirm this finding in Appendix B.11 for industry momentum.

22A possible explanation for this finding is that the individual stock momentum strategy picks winners and losers
assets that are mainly in the same industries (Grundy and Martin, 2001, Sec. 4.3). A similar behavior is also found
for low risk strategies that buy assets with a low past volatility. These strategies are often criticized by picking
assets that are mainly concentrated in a few industries (Walkshäusl, 2014). However, Asness et al. (2014) show
that low risk strategies also perform well when it is controlled for the industry exposure or when this strategy is
directly built on industries.

23A possible explanation for the different results found by Moskowitz and Grinblatt (1999), Grundy and Martin
(2001) and Chordia and Shivakumar (2002) could be the choice of different cut-off points. For example, Moskowitz
and Grinblatt (1999) use n � 3 for the industry momentum strategy and p � 30% for the stock momentum
strategy. Chordia and Shivakumar (2002) use n � 2 for the industry momentum strategy and p � 10% for the
stock momentum strategy, whereas Grundy and Martin (2001) use n � 3 for industry momentum and p � 10%
for stock momentum. Further, the studies use different ranking and holding periods. Thus, different cut-off points
as well as different ranking and holding periods can lead to quite different conclusions. Grobys and Kolari (2020,
p. 100) also find different results of industry momentum compared to Moskowitz and Grinblatt (1999) and suggest
that a possible explanation is the use of different values of m and n.
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dustry momentum is quite similar. From a practical perspective, portfolio based momentum

strategies have several advantages compared to individual stock momentum strategies. First,

Lesmond et al. (2004) find that momentum profits are not robust to transaction costs due to a

very high number of transactions and since the strategy is mainly invested in small and highly

illiquid assets. Grundy and Martin (2001) also find that momentum profits become statisti-

cally insignificant for quite low levels of transaction costs. Similarly, Korajczyk and Sadka

(2004) find that buying (equally weighted) winners becomes unprofitable once price impact

based transaction costs are considered. This results since the individual stock momentum strat-

egy is typically invested in highly illiquid and small sized firms. Trading these assets on a

monthly basis produces high transaction costs. Further, loser stocks are typically highly volatile

and shorting costs for volatile assets are typically very high (see Blitz et al. (2019) and refer-

ences therein). This especially holds for equally weighted momentum strategies (Korajczyk

and Sadka, 2004). Korajczyk and Sadka (2004) compare equally weighted, value weighted and

illiquidity weighted momentum strategies and find that the equally weighed strategy performs

the best before transaction costs and the worst after transaction costs. In contrast, weighting as-

sets inversely to their illiquidity produces higher returns after transaction costs. Thus, the high

returns of the individual stock momentum strategy are not achievable in practice. In contrast,

non-stock based momentum strategies can typically be built based on highly liquid futures and

ETFs and are much less influenced by high transaction costs of highly illiquid individual stocks

(Asness et al., 2013, Footnote 12). For example, most industry and country indices typically

have corresponding and highly liquid ETFs with low costs (Han, 2005, O’Neal, 2000, Richards,

1997).24 Second, the individual stock momentum strategy reallocates large numbers of assets

each month, which induces a high turnover, and hence high transaction costs. In contrast, the

portfolio based momentum strategy invests in a small number of assets, and hence produces

low transaction costs. For example, Chordia and Shivakumar (2002) use an industry momen-

tum strategy that buys and sells only the two best and worst performing industries. Similarly,

24Other possibilities to lower transaction costs of the individual stock momentum strategy are also possible.
First, small and illiquid stocks can be excluded as explained in Bali and Cakici (2008, p. 43). Second, assets can
be weighted inversely to their illiquidity (Korajczyk and Sadka, 2004). Third, stocks can be weighted inversely to
their (idiosyncratic) volatility, since stocks with high (idiosyncratic) volatility are typically small and illiquid (Bali
and Cakici, 2008). We will come back to the third point in Section 3.2.4.
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Moskowitz and Grinblatt (1999) and Grundy and Martin (2001) use an industry momentum

strategy based on only three industries in the winners and losers portfolio. Stivers and Sun

(2010) define the 12 best and worst performing industries as winners and losers, respectively.

Thus, industry momentum is far more profitable than individual stock momentum, once realistic

transaction costs are considered.25 Third, we will use different weighting schemes based on an

asset’s risk to weight the assets in the momentum portfolio. Small sized and illiquid assets that

are only traded several times per day are prone to market microstructure issues and typically

have large bid-ask spreads. Since we will estimate an asset’s monthly risk based on daily data,

it is likely that risk estimates are influenced by this issue and would lead to suboptimal and

noisy portfolio weights of the individual stock momentum strategy. Bad data quality is less of a

concern for assets that are portfolios themselves, like industry or country indices. Thus, pooling

several assets into a portfolio reduces the impact of estimation risk (Jiang et al., 2020, p. 370).

Further, a larger number of assets n used by the stock momentum strategy also increases the

number of required estimates, and thus heightens estimation risk (Kan and Zhou, 2007). As a

benchmark strategy to the risk weighted momentum strategies, we follow Moskowitz and Grin-

blatt (1999) and weight industries in the winners and losers portfolio equally as shown in the

previous section.26 The equally weighted momentum strategy has the advantage that no risk

estimates are needed.

Moskowitz and Grinblatt (1999) show that industry momentum holds for several ranking

and holding periods between one and twelve months. In particular, the authors find good re-

sults for strategies that use a one month holding period as also used in Stivers and Sun (2010),

25O’Neal (2000) shows that the industry momentum strategy is also profitable under realistic transaction
costs by using industry mutual funds. Due to the rise of ETFs and online brokers, transaction costs are nowa-
days significantly lower than assumed by O’Neal (2000), what makes this strategy nowadays even more prof-
itable. For example, iShares charges an annualized fee of about 0.4% per year for industry ETFs. This
corresponds to a monthly fee of about 0.033%. In particular, ETFs can be bought without front-end load.
Moreover, by using online brokers, like Interactive Brokers, broker fees can be reduced to zero (https:
//www.interactivebrokers.com/en/index.php?f=42773). Similarly, Charles Schwab, one of the
largest brokerage firms in the US, recently removed all commission fees and offers commission free brokerage
(https://www.schwab.com/pricing-page). In contrast, O’Neal (2000) uses an average annualized
fund fee of 1.89%, a front-end load of 3% and broker fees of 7.5$.

26Applying equal weights to the assets in the winners and losers portfolios of the industry momentum strategy
is also done by Gupta et al. (2010), Grobys (2018), Grobys et al. (2018), Novy-Marx (2012), Grundy and Martin
(2001), Stivers and Sun (2010) and Chordia and Shivakumar (2002). In contrast, Lewellen (2002) uses a weighting
based on the industries’ past return.
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Grobys et al. (2018), Novy-Marx (2012) and in our paper.27 Furthermore, Moskowitz and Grin-

blatt (1999) find good results when industries are ranked based on the past twelve months’

performance. Interestingly, the authors find that industry momentum also works well when

industries are ranked by their last month’s performance. This finding for industry momentum

is different to the individual stock momentum strategy, since individual stocks exhibit a short-

term reversal effect. The high performance of industry momentum for different ranking periods

has also been confirmed by several studies on industry momentum. For example, Novy-Marx

(2012, Sec. 5.2) also finds significant momentum in industries for a one month holding period

and several ranking periods. In particular, the author finds good results by ranking industries

based on the performance between months t� 12 and t� 7. Further, Novy-Marx (2012, p. 443)

confirms the finding of Moskowitz and Grinblatt (1999) that “industries do exhibit momentum

at very short (one month) horizons”, i.e. using a one month ranking period. Similarly, Grobys

et al. (2018) also use a one month holding period and find good results for the six and twelve

months ranking period as well as the t� 12 to t� 7 ranking of Novy-Marx (2012). Du Plessis

and Hallerbach (2017) use 49 industry portfolios combined with the one month and 12 months

ranking period and find good results for both ranking periods. Stivers and Sun (2010) find good

results of the six months ranking period. Furthermore, Grundy and Martin (2001, Table 4) com-

pare different ranking periods and find that all rankings deliver good results as long as equally

weighted industries are used.28 Grundy and Martin (2001) find that particularly the ranking

periods that include the last month, i.e. the t � 6 to t � 1 and t � 12 to t � 1 rankings, deliver

good results. Nevertheless, the t � 12 to t � 2 ranking, which was introduced by Fama and

French (1996) for the stock momentum strategy, also performs well. Thus, industry momen-

27In contrast, Chordia and Shivakumar (2002) and Grundy and Martin (2001) use a six months holding period
as used by Jegadeesh and Titman (1993) for the stock momentum strategy. Swinkels (2002) also compares several
ranking and holding periods for international industry momentum strategies.

28Moskowitz and Grinblatt (1999) and Grobys et al. (2018) use value-weighted industry portfolios but equally
weighted winners and losers portfolios. In contrast, Grundy and Martin (2001) compare industry momentum
strategies using equal- and value-weighted industries. These weightings refer to the industry portfolios used for
the momentum strategy and not to the weighting of the winners and losers portfolios. Grundy and Martin (2001)
weight industries in the winners and losers portfolios equally, regardless of whether equal- or value-weighted
industries are used. The authors find that these momentum strategies produce quite different results and that
the momentum strategy using equally weighted industries outperforms the value-weighted based strategy. This
observation is confirmed by Lewellen (2002, Table 2) for industries and other data sets. Hence, the profitability
of portfolio based momentum strategies is quite sensitive to the chosen data sets. Thus, as a robustness check, we
will use several other data sets, including value-weighted industries, in the appendix.
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tum works well for several ranking periods, but the profitability of industry momentum can be

quite different for different ranking periods and data sets. The observation that different ranking

and holding periods can produce very different results was also found for the TSMOM strategy

(Dudler et al., 2015, Goyal and Jegadeesh, 2017, Moskowitz et al., 2012). We will use the t�12

to t � 1 ranking in the main part, but we show additional results for several other ranking peri-

ods in the appendix. An alternative to the past return based ranking would be to apply the 52

week high approach of George and Hwang (2004) to industry portfolios as also done by Grobys

(2018) and Gupta et al. (2010, Sec. 4.5). Ranking industries by the difference to their 52 week

high produces a strategy that is different to the usual industry momentum strategy (Grobys,

2018, Table 2). However, this strategy is not examined here.

3.2.3 Momentum Crashes

The industry momentum strategy presented in the previous section produces high returns by

buying past winning industries and selling past losing industries. However, the high return

of industry momentum is also accompanied by high risk. O’Neal (2000) show that industry

momentum strategies can outperform the market even after transaction costs, but the author

concludes that “[t]hese strategies entailed greater total and systematic risk, however, than the

index.” In particular, momentum investing translates into a strategy with a high left tail risk,

which induces a high likelihood of extremely negative returns, so called “momentum crashes”.

These momentum crashes have been frequently examined for the individual stock momentum

strategy (Barroso and Santa-Clara, 2015, Cooper et al., 2004, Daniel et al., 2017, Daniel and

Moskowitz, 2016, Grundy and Martin, 2001, Min and Kim, 2016, Wang and Xu, 2015). Mo-

mentum crashes are particularly undesirable for investors, since these crashes typically occur

when the market exhibits a longer period of negative returns (Cooper et al., 2004, Daniel and

Moskowitz, 2016, Grundy and Martin, 2001). In these periods, investors are highly averse to

decreasing wealth. Chordia and Shivakumar (2002, p. 993) find that momentum returns of the

stock momentum strategy are positive (negative) when the marginal utility of wealth is lower

(higher). Similarly, Min and Kim (2016) find that momentum crashes of the stock momentum

strategy typically occur in periods when investors have a high marginal utility of wealth, what
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makes momentum investing unappealing for investors. In particular, Chordia and Shivakumar

(2002, p. 993) find that “momentum payoffs are negative during recessions and positive during

expansions”. Further, Chordia and Shivakumar (2002, Sec. II.H) examine the relation between

industry momentum and the business cycle and find that also industry momentum is related to

the macroeconomy. Momentum crashes of the industry momentum strategy have been exam-

ined by Du Plessis and Hallerbach (2017), Grobys et al. (2018), Grobys (2018) and Grobys

and Kolari (2020). Interestingly, Grobys et al. (2018) find that momentum crashes of the in-

dustry momentum portfolio are significantly less severe than momentum crashes of the stock

momentum strategy. Hence, by using portfolios instead of individual stocks for the momen-

tum strategy, left tail risk is significantly reduced. For example, using a value-weighted stock

momentum strategy, Barroso and Santa-Clara (2015) find a volatility of 27.53%, a skewness of

�2.47, a kurtosis of 18.24, a minimum monthly return of �78.96 and a maximum drawdown

of 96.69%. Further, the authors find a return of �91.59% in only two months and that the re-

covery from a momentum crash can last up to 31 years. Daniel and Moskowitz (2016) find ten

months with returns lower than �30% for the value-weighted stock momentum strategy, while

the market has a positive return in these months. Using an equally weighted stock momentum

strategy, Rickenberg (2020a) finds an even higher left tail risk compared to the value-weighted

strategy. Rickenberg (2020a) shows that the stock momentum strategy exhibits a volatility of

26.31%, a skewness of �4.38, a kurtosis of 43.59, a minimum monthly return of �89.70% and

a maximum drawdown of 99.31%. In contrast, the industry momentum strategy using the six

months ranking period has a volatility of 5.98 � ?12 � 20.71%, a skewness of �1.50, a kurtosis

of 22.91 and a minimum monthly return of 62.75% (Grobys et al., 2018, Table 4). Furthermore,

Grobys et al. (2018, Table 7) show that crashes of the industry momentum strategy are less

severe than crashes of the stock momentum strategy. For example, the stock momentum strat-

egy has more than 15 months with returns lower than �20%, whereas the industry momentum

strategy has only five of these months. The average return on the 15 worst months is �41.56%

for the stock momentum strategy and �25.43% for the industry momentum strategy. Further,

stock and industry momentum crashes do not necessarily coincide, i.e. the worst months of the
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stock momentum strategy do not necessarily coincide with high losses of the industry momen-

tum strategy. During some stock momentum crashes, industry momentum earns even positive

returns. Summarized, industry momentum strategies do not only offer similar returns and lower

transaction costs than the stock momentum strategy, they are also far less risky.

Although the industry momentum strategy is less risky than the stock momentum strat-

egy, this strategy is still unattractive for most investors. Grobys et al. (2018, Figure 1) show

that the volatility of the industry momentum strategy is highly volatile and fluctuates between

1.74% and 69.77% with an average of 6.51 � ?12 � 22.55%. This high and volatile volatil-

ity of the industry momentum strategy makes momentum investing unappealing for risk-averse

investors. Risk-averse investors are averse to a high volatility of volatility and are willing to

pay high fees for insurance against volatility fluctuations (Adrian and Rosenberg, 2008, Ang

et al., 2006b, Baltussen et al., 2018, Bollerslev and Todorov, 2011). Thus, the high return of

momentum investing will unlikely be an adequate compensation for the high volatility risk of

this strategy. Further, investors typically have preferences for moments higher than volatility

and prefer a higher skewness and lower kurtosis (Dittmar, 2002, Harvey and Siddique, 2000,

Kraus and Litzenberger, 1976, Scott and Horvath, 1980). Thus, investors are averse to strate-

gies that produce a fat left tail as done by the industry momentum strategy. The high left tail

risk of momentum also increases the likelihood of extreme losses, which is unappealing for

loss-averse investors who weight losses higher than gains of the same magnitude (Aı̈t-Sahalia

and Brandt, 2001, Benartzi and Thaler, 1995). Similarly, investors are averse to crashes and are

willing to pay high fees to hedge against extreme crashes (Arzac and Bawa, 1977, Bollerslev

and Todorov, 2011, Chabi-Yo et al., 2018, Van Oordt and Zhou, 2016, Weigert, 2015). This is

particularly important for “momentum investors who often employ leverage and are therefore

sensitive to even small drawdowns” (Chabot et al., 2014). Further, the momentum strategy is

highly related to left jump tail risk (Bollerslev et al., 2015, Fig. 9). Concluding, the high return

of the industry momentum strategy is unavailable in practice for most investors, since investors

are unlikely willing to accept the high (left tail) risk of the momentum strategy. Thus, in order

to make momentum investing more appealing for investors, methods that reduce this high risk
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are needed.

3.2.4 Volatility Weighted Momentum Strategy

In the previous section, we summarized that the high return of the momentum strategy is accom-

panied with high risk, which makes this strategy unavailable for investors unless the strategy’s

risk is managed. The equally weighted momentum strategy presented in Section 3.2.1 has the

disadvantage that risks of the assets in the winners and losers portfolios are not regarded. The

assets in the momentum portfolio are typically risky in terms of a low market capitalization, a

high market beta and a high volatility (Jegadeesh and Titman, 1993, 2001, Rouwenhorst, 1998).

For example, for the individual stock momentum strategy, Rouwenhorst (1998) finds that the

volatility of the assets in the winners and losers portfolios is on average 30% to 40% higher

than the volatility of the assets that are not included in the momentum portfolio (see also Kirby

and Ostdiek (2012, Figure 1.C)). This finding is quite intuitive, since a high volatility makes

extreme (negative or positive) returns more likely (Jang and Kang, 2019, Table 1). Thus, assets

with a higher volatility tend to appear more frequently in the extreme tails of the performance

distribution. Further, Harvey and Siddique (2000, Table 1) show that different industries have

quite different levels of volatility. For example, annualized volatilities range from 14.15% to

34.36% for different industries. Thus, by weighting each industry with the same cash amount,

the industry momentum portfolio’s volatility can potentially be dominated by only a few as-

sets. In contrast, industries with lower volatility hardly contribute to the portfolio’s risk. One

way to reduce the high volatility of the momentum portfolio and the high risk contribution of

only a few industries is to overweight low volatile industries and underweight high volatile in-

dustries. Interestingly, several studies show that low volatile assets outperform assets with a

higher volatility, which is called the “low volatility anomaly”.29 Ang et al. (2006b, Table XI)

29The low volatility anomaly has been frequently examined in the literature (Ang et al., 2006b, 2009, Asness
et al., 2014, Atilgan et al., 2020, Bali et al., 2017a, Bali and Cakici, 2008, Bali et al., 2011, 2014, 2017b, Blitz
et al., 2019, Blitz and Vidojevic, 2017, Boyer et al., 2009, Chen and Petkova, 2012, Fama and French, 2016, Guo
and Savickas, 2010, Liu et al., 2018, Schneider et al., 2020, Stambaugh et al., 2015). This anomaly contradicts
traditional finance models, like the CAPM, which assume that higher risk is also compensated with higher returns.
Haugen and Heins (1975) find that the risk-return relation strongly depends on the sample period and is different
when the sample period is dominated by a bull or bear regime. Haugen and Heins (1975, p. 782) conclude: “The
results of our empirical effort do not support the conventional hypothesis that risk – systematic or otherwise –
generates a special reward. Indeed, our results indicate that, over the long run, stock portfolios with lesser variance
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find that the low volatility anomaly holds in several subsamples and is apparent in bull and bear

markets, recessions and expansions as well as in volatile and calm markets. This negative re-

lation between volatility and (risk-adjusted) returns also holds for industry portfolios (Harvey

et al., 2018, Kirby and Ostdiek, 2012, Zakamulin, 2017). Similarly, Jordan and Riley (2015)

show that the low volatility anomaly holds for mutual funds, i.e. funds with lower volatility

outperform funds with higher volatility in terms of raw and risk-adjusted returns as well as

portfolio alphas. However, even in the absence of a negative volatility-return relation, volatility

managed portfolios can be superior to equally weighted portfolios. For example, Kirby and

Ostdiek (2012, Figure 1.D) find that volatility sorted portfolios have approximately the same

mean returns, but quite different levels of volatility. In other words, risk-adjusted returns are

much lower for highly volatile assets, since the higher risk is not rewarded by an adequately

higher return.30 Thus, volatility and Sharpe Ratio of different assets are negatively correlated

(Zakamulin, 2017). Based on this observation, Kirby and Ostdiek (2012) show that a strategy

that weights assets inversely to their volatility significantly increases the Sharpe Ratio and util-

ity of mean-variance investors compared to an equally weighted strategy (see also Kritzman

et al. (2010), Zakamulin (2015) and Zakamulin (2017)).

Based on the low volatility anomaly, underweighting highly volatile assets should produce

more stable momentum returns and should reduce the high risk of the momentum portfolio

in terms of a lower volatility and lower drawdowns, without simultaneously producing lower

returns. One easy method to take the low volatility anomaly into account is to weight assets

inversely to their volatility. The inverse volatility weighting is nicely summarized in Asness

et al. (2012, Appendix A), Kirby and Ostdiek (2012) and Zakamulin (2015).31 Applied to the

momentum strategy, month t weights of asset i in the winners and losers portfolio, used in

in monthly returns have experienced greater average returns than their “riskier” counterparts.” Similar to the low
volatility anomaly, Baltussen et al. (2018) show that assets with higher uncertainty, measured by the volatility of
volatility, also underperform assets with lower uncertainty.

30This observation does not only hold in a cross-sectional setting. For example, Moreira and Muir (2017) and
Moreira and Muir (2019) show that a higher volatility of an asset is not rewarded by an adequately higher return of
the same asset. Moreira and Muir (2017, Sec. II.D) compare this effect to the cross-sectional low risk anomaly and
find that both effects are different. The negative relation between an asset’s volatility and future return, also called
volatility feedback effect, has been frequently examined in the literature (see Bekaert and Wu (2000), French et al.
(1987) and Glosten et al. (1993) for example).

31Kirby and Ostdiek (2012) and Zakamulin (2015) show that the inverse volatility weighting follows (under
certain conditions) from the optimal portfolio allocation of a mean-variance investor.
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Equation (3.2.1), are given by

wWi,t �
1{σWi,t°n
j�1

1{σWj,t
and wLi,t �

1{σLi,t°n
j�1

1{σLj,t
, (3.2.3)

where σWi,t and σLi,t denote the month t volatility of asset i in the winners and losers portfolios,

respectively. We follow the common approach and estimate monthly volatility based on daily

returns (Barroso and Santa-Clara, 2015, Fama and French, 2016, French et al., 1987, Jang and

Kang, 2019, Merton, 1980, Moreira and Muir, 2017, 2019), where we use the past six months

of daily data and assume that each month has h � 21 days. Robustness results for estimation

windows between one and six months are shown in Appendix B.1. Ghysels et al. (2005) and

Bali et al. (2009) also use one to six months of daily data to measure monthly volatility. The

estimation of all risk measures used in this paper is summarized in Appendix C.

Besides the simple Realized Volatility (RV) estimator of Equation (C.1), several other possi-

bilities to estimate an asset’s monthly volatility could be used. For example, monthly volatility

could be estimated based on monthly returns. However, Bali and Cakici (2008) find quite differ-

ent results for volatility sorted portfolios that are built on risk estimates using daily or monthly

returns. In particular, the authors find a negative risk-return relation when risk is estimated

with daily data, but no relation when risk is estimated with monthly data. Generally, estimating

monthly volatility with monthly data typically produces inaccurate estimates (Merton, 1980).

Thus, monthly volatility should be estimated based on daily data. An alternative daily data

based estimation method of monthly volatility, which is similar to the method used in Equation

(C.1), would be to account for the daily mean and first-order autocorrelation as shown by French

et al. (1987), Chen and Petkova (2012, Eq. (11)) and Jondeau et al. (2019, Eq.(2)). However,

this approach typically produces similar results to the simple RV estimator (Barroso and Santa-

Clara, 2015, Moreira and Muir, 2017). Similarly, a RV based forecasting model, such as the

HAR model, could be used (Bollerslev et al., 2018, Patton and Sheppard, 2015). Alternatively,

future volatility could also be estimated based on an industry’s lagged characteristics, such as

an industry’s lagged volatility, skewness or momentum (see Ang et al. (2009, Sec. 6.4.2) or

Chen and Petkova (2012)). Another alternative would be to follow Chen and Petkova (2012,

Eq. (6)), Guo and Savickas (2010) and Jondeau et al. (2019) and estimate monthly volatility of a
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portfolio by first estimating each constituent’s volatility. The (average) volatility of the portfolio

is then given as the equal- or value-weighted average of the individual volatilities. Chen and

Petkova (2012, Table 1) find that the average volatility is a negative predictor for future returns

and a positive predictor for future volatility, and hence average volatility predicts periods that

offer an unappealing risk-return profile. Thus, downweighting industries with a high average

volatility could be an appealing approach. Another alternative could be to weight industries by

their cross-sectional dispersion, calculated as the cross-sectional variance of all assets within an

industry (Du Plessis and Hallerbach, 2017, Grobys, 2018, Stivers and Sun, 2010). Further, in-

stead of using simple non-parametric estimation methods, more sophisticated volatility models

that properly forecast an asset’s volatility could be used. However, Fu (2009, p. 30) examines

the risk-return relation for several volatility models and finds a positive relation between return

and volatility of the same month, but a negative risk-return relation between volatility of month

t � 1 and return of month t. Thus, measuring volatility as Realized Volatility is appealing for

the inverse risk weighting. Furthermore, instead of weighting industries based on their Real-

ized Volatility, industries could also be weighted based on their volatility innovation (Adrian

and Rosenberg, 2008, Ang et al., 2006b, Chang et al., 2013). Moreover, instead of using a

(total) volatility based weighting, an alternative weighting based on the idiosyncratic volatility

could be used (Ang et al., 2006b, 2009, Bali and Cakici, 2008, Fu, 2009, Liu et al., 2018, Stam-

baugh et al., 2015). However, Bali and Cakici (2008) find no improvements of portfolios that

are weighted inversely to the assets’ idiosyncratic volatility. Similarly, Asness et al. (2020) find

that the low risk effect is mainly driven by leverage constraints, which gives evidence against

a low idiosyncratic risk effect.32 Finally, instead of weighting assets by their volatility, assets

could also be weighted by their volatility of volatility (vol-of-vol). Baltussen et al. (2018) find

that stocks with a high vol-of-vol underperform assets with a low vol-of-vol. However, the au-

32We also used weightings based on idiosyncratic volatility and find that the weightings based on (total) volatility
outperform the weightings based on idiosyncratic volatility. We estimated idiosyncratic volatility as past idiosyn-
cratic volatility (Ang et al., 2006b, 2009, Liu et al., 2018, Stambaugh et al., 2015) as well as expected idiosyncratic
volatility (Bali and Cakici, 2008, Fu, 2009). Similarly, we find that an approach based on realized skewness
(Amaya et al., 2015, Chang et al., 2013) outperforms a weighting based on idiosyncratic skewness (Boyer et al.,
2009). These observations can also be explained by the findings of Bali and Cakici (2008) and Langlois (2020)
that idiosyncratic risk is less important when portfolios like industry portfolios are used, which exhibit lower
idiosyncratic risk than individual assets.
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thors find that the vol-of-vol measure captures similar risk characteristics as the kurtosis. For

reasons that will be discussed in Sections 3.3 and 3.4, weightings based on symmetric risk

measures have several disadvantages. We also used several alternative estimation methods and

definitions of volatility, but found quite similar results to the RV based weighting. Further, since

risk-managed industry momentum strategies are also relevant for practitioners, we only show

results for the simplest volatility estimation method.

The inverse volatility weighting scheme of Equation (3.2.3) has been frequently used in

the financial literature and it has been shown that this simple weighting scheme produces very

convincing results. We summarize in Appendix A further advantages of portfolio strategies

that overweight low volatile assets. Generally, the economic value of volatility managing for

long-only portfolios has been frequently shown in the literature (Fleming et al., 2001, 2003,

Han, 2005, Kirby and Ostdiek, 2012, Taylor, 2014). Moreover, the inverse volatility weighting

scheme of Equation (3.2.3) has also been applied to long-short strategies. In particular, the

combination of an asset’s momentum and risk is appealing, since both measures capture differ-

ent characteristics. Thus, even after forming portfolios based on the assets’ past performance,

there still is a negative volatility-return relation (see Ang et al. (2006b) and Guo and Savickas

(2010, p. 1643)). For example, Novy-Marx (2012) concludes: “Higher realized volatility is also

associated, even after controlling for past performance, with lower expected returns.” Similarly,

Kirby and Ostdiek (2012, p. 462) apply volatility timing to different momentum portfolios and

find that volatility timing significantly enhances the risk-return profile, even when transaction

costs are considered. Thus, combing information on an asset’s momentum and risk is appeal-

ing. The benefits of combining information on an asset’s past performance and volatility has

also been shown by Blitz and van Vliet (2018).33 Similarly, Moskowitz et al. (2012), Goyal

and Jegadeesh (2017), Du Plessis and Hallerbach (2017), Baltas (2015), Clare et al. (2014),

Clare et al. (2016) and Kim et al. (2016) use the inverse volatility weighting to scale the as-

sets in a multivariate TSMOM strategy. Kim et al. (2016) find that the good performance of

33Blitz and van Vliet (2018) examine a strategy that only buys assets with low volatility, high past return and
high net payout yield. The authors find that combining information on these three characteristics produces high
returns, even after controlling for momentum. This strategy is also investable via mutual funds (https://www.
robeco.com/en/strategies/equity/conservative-equity.html).
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TSMOM is mainly driven by the inverse volatility weighting, i.e. combining information on an

asset’s past return and risk is appealing. Asness et al. (2013) also apply the inverse volatility

weighting to momentum and value portfolios, since different portfolios can have quite different

levels of portfolio volatility. Weighting these portfolios inversely to their volatility reduces the

risk that the portfolio’s volatility is dominated by the volatility of a few portfolios. Further,

the inverse volatility weighting of Equation (3.2.3) has also been used to weight the assets in

the winners and losers portfolios of the (cross-sectional) momentum strategy. Applying the in-

verse volatility weighting to the (cross-sectional) momentum portfolio has been done by Clare

et al. (2014) for commodity momentum, by Goyal and Jegadeesh (2017) for momentum using

several international asset classes and by Du Plessis and Hallerbach (2017) for the industry

momentum strategy. Clare et al. (2014) show that using the inverse volatility weighting in-

stead of the equal-weighting has different impacts on the returns of the momentum portfolio.

First, returns and Sharpe Ratios are slightly higher for the inverse volatility weighted portfo-

lios. Second, volatility and drawdowns are reduced. Third, the returns of the inverse volatility

weighted portfolios are less negatively skewed. However, the authors conclude: “Overall the

results of adding the risk parity overlay to momentum investing have limited impact on the re-

sults but do lead to some overall improvement, especially with regard to maximum drawdowns”

(Clare et al., 2014, p. 7). Similarly, Goyal and Jegadeesh (2017, Table 9 and 10) show that the

volatility weighted momentum portfolio exhibits higher returns and portfolio alphas than the

equally weighted momentum portfolio. Goyal and Jegadeesh (2017, Table 11) find that volatil-

ity weighting increases the Sharpe Ratio from 0.75 to 0.82 for the 12 months ranking period

and that the increase in momentum’s Sharpe Ratio is robust for other ranking periods. More-

over, Goyal and Jegadeesh (2017, Table 12.A) show that volatility weighting also increases

momentum’s return when volatility weighting is used for country momentum.34 Du Plessis and

Hallerbach (2017, Exhibit 6 and Exhibit 8.B) show that volatility weighting applied to industry

momentum produces higher returns and reduces left tail risk. Thus, combining the volatil-

ity weighting with momentum can produce an enhanced risk-return profile, where especially

downside risk is reduced.
34We also show results for country momentum in Appendix B.7.
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The weighting scheme in Equation (3.2.3) has the advantage that no estimate of the assets’

mean returns or correlations are needed.35 By not incorporating an estimate of the assets’ mean

return, estimation risk is significantly reduced. Nevertheless, estimation risk is still an issue

for the inverse volatility weighting since portfolio weights are determined by an estimate of

the assets’ risk. Garlappi et al. (2006, Footnote 4) find that the estimation error is more costly

for mean returns and is less important for (co-)variances. Similarly, Moreira and Muir (2019)

find that strategies that time mean and volatility suffer more under parameter uncertainty than

strategies that only time volatility. However, estimating volatility can also be quite noisy and

can lead to suboptimal portfolio weights (Kan and Zhou, 2007). Weigert (2015, Sec. 3.1) and

Ang et al. (2006a) find that risk measurement is less precise for highly volatile assets due to

higher measurement errors for these assets. Since assets in the winners and losers portfolios

are typically highly volatile (Rouwenhorst, 1998), we expect a high estimation risk for the

weighting scheme in Equation (3.2.3). This is especially the case, since this paper focuses on

simple non-parametric estimation methods. For that reason, we extend the approach of Equation

(3.2.3) and use a second weighting scheme that is less sensitive to estimation risk. Similar to

the weighting scheme used by Asness et al. (2014), Asness et al. (2020), Frazzini and Pedersen

(2014), Schneider et al. (2020) and Liu et al. (2018, Sec. 4) we use a rank based weighting

approach.36 The rank based weighting scheme has also been used to exploit the low volatility

anomaly (Liu et al., 2018, Sec. 4.2). For this weighting scheme, we first measure month t risk

of asset i in the winners and losers portfolio by σWi,t and σLi,t, respectively. We then sort assets in

the winners and losers portfolios in descending order and denote the rank of asset i in month t

in the winners and losers portfolio by rankWi,t and rankLi,t. That is, rankWi,t (rankLi,t) is equal to n

35Other weighting schemes, that are similar to the inverse volatility weighting, are the frequently used mean-
variance, minimum variance and risk parity portfolios. These portfolio strategies are summarized in Appendix
A. The frequently used mean-variance optimization suffers under high estimation risk of mean returns, which
leads to a bad out-of-sample performance (Kirby and Ostdiek, 2012). We show in Appendix B.13 that a strategy
that focuses on the winners portfolio and weights the winners inversely to their volatility clearly outperforms the
mean-variance optimization. The risk-weighted winners portfolio uses an estimate of the assets’ relative mean and
volatility. We therefore call this portfolio a relative mean-risk portfolio.

36The rank based weighting is nicely summarized in Asness et al. (2014, Appendix A). Asness et al. (2013,
Eq. 1) also use a rank based weighting scheme for the momentum portfolio, where an asset’s rank is determined
by the assets’ past performance. Hence, past performance determines both the weight of an asset and if an asset
belongs to the winners or losers portfolio. We use past performance to identify if an asset belongs to the winners
or losers portfolio, but in contrast to Asness et al. (2013), we use a rank weighting based on an asset’s risk instead
of return.
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if asset i exhibits the lowest risk in the winners (losers) portfolio. Similarly, rankWi,t (rankLi,t) is

equal to one if asset i exhibits the highest risk in the winners (losers) portfolio in month t. The

weights of the momentum portfolio used in Equation (3.2.1) are then given by

wWi,t �
rankWi,t°n
j�1 rankWj,t

and wLi,t �
rankLi,t°n
j�1 rankLj,t

. (3.2.4)

Using the rank based weighting is advantageous compared to the inverse risk weighting since

“using ranks [...] as portfolio weights helps to mitigate the influence of outliers” (Asness et al.,

2013, p. 938). Thus, the rank based weighting should also produce lower transaction costs and

should be more suitable for practical implementations.37 Asness et al. (2020, Sec. 6) compare

several weighting methods and find good results of the rank based weighting.

Langlois (2020, Sec. 2.5) theoretically shows that if one is interested in the assets’ order-

ing, forecasting cross-sectional ranks is advantageous compared to forecasting an asset’s risk.

Langlois (2020, Sec. 5) confirms this in a Monte-Carlo Simulation. An alternative to the rank

weighing used in our paper would be to directly forecast an asset’s rank as shown in Langlois

(2020, Eq. (4)). However, due to the high autocorrelation of volatility and other risk measures,

the ranking of past sample estimates should be a quite good indicator for the assets’ future risk

ranking. Furthermore, similar to the inverse volatility weighting, we also considered an inverse

rank weighting, i.e. the month t weight of an asset would be given by wi,t � 1{pn�1�ranki,tq°n
j�1 1{pn�1�rankj,tq .

We only report results for the weighting in Equation (3.2.4) since the inverse rank weighting

would produce more extreme weights than the weighting scheme in Equation (3.2.4).38

Several other alternative weighting schemes to the weightings in Equations (3.2.3) and

(3.2.4) are also possible. For example, a Fama-French type construction method by using dou-

ble sorted portfolios based on past return and volatility could be used (see Asness et al. (2020,

Sec. 6.3) or Chen and Petkova (2012)). However, Asness et al. (2020, Sec. 6.4) find that the rank
37Another alternative to lower the impact of estimation risk and to lower transaction costs of a weighting scheme

would be to partially readjust portfolio weights as done by Bollerslev et al. (2018) and Bollerslev et al. (2020,
Eq. (19)). Interestingly, Bollerslev et al. (2020, Table 11) find that this partially adjustment approach produces an
enhanced risk-return profile, even before transaction costs. A possible explanation for this result is that partially
adjusting portfolio weights reduces the impact of estimation risk as it is also done by the rank weighting.

38For example, consider a portfolio that consists of ten assets. Using the inverse rank weighting would produce
weights between 3.41% and 34.14% with a standard deviation of the weights of 9.47%. Thus, although this
portfolio consists of ten assets, about one third of the money would be concentrated in only one asset and 51.21%
would be invested in only two assets. In contrast, our risk weighting in Equation (3.2.4) produces weights between
1.82% and 18.18% with a standard deviation of the weights of only 5.5%.
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weighting produces higher risk-adjusted returns than the Fama-French type weighting. Further-

more, different weighting schemes for the winners and losers portfolios could be used. One

drawback of the inverse volatility weighting is that overweighting lower volatile assets in the

momentum portfolio should increase the performance of both legs of the momentum portfolio.

Thus, performance gains of buying the enhanced winners portfolio are (partly) offset by short-

ing the enhanced losers portfolio. Ang et al. (2006b, p. 292) state that “one way to improve the

returns to a momentum strategy is to short past losers with high idiosyncratic volatility.” We

also used a strategy where highly volatile losers obtained higher weights. This strategy pro-

duces higher returns than the inverse volatility managed portfolio, but this higher return is also

accompanied with higher risk. In total, this strategy produces a lower Sharpe Ratio, significantly

increases left tail risk and is therefore not further examined here.

The weighting schemes that were presented in this section should lower momentum’s draw-

downs and are therefore an appealing method to manage momentum’s risk. This approach is

different to other portfolio risk management tools that were examined in the literature on mo-

mentum crashes. For example, a frequently applied method to reduce momentum’s left tail risk

is the risk targeting approach that dynamically scales the exposure to the momentum strategy

based on the portfolio’s risk (Barroso and Santa-Clara, 2015, Cederburg et al., 2020, Daniel

and Moskowitz, 2016, Grobys et al., 2018, Moreira and Muir, 2017, Rickenberg, 2020a). This

approach is highly different to our approach since risk targeting only considers the whole port-

folio’s risk. In contrast, our approach considers the risks of the individual assets in the winners

and losers portfolios. Moreira and Muir (2017, Sec. II.D) also find that both approaches, cross-

sectional and time series volatility managing, are different. In particular, both approaches can

also be used simultaneously as shown in Section 3.6. Thus, this combined approach manages

the volatilities of the individual assets and the whole portfolio.

3.3 Tail Risk Weighted Momentum

In Section 3.2, we summarized the literature on (industry) momentum and the inverse volatility

weighting approach used by Clare et al. (2014), Du Plessis and Hallerbach (2017) and Goyal
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and Jegadeesh (2017) to weight assets in the winners and losers portfolios. The authors show

that the volatility weighted momentum portfolio exhibits an enhanced risk-return profile com-

pared to the equally weighted momentum strategy. However, the authors find that the risk-return

profile is only slightly improved by applying the volatility based weighting scheme to the mo-

mentum portfolio. In this section, we will argue that the volatility based weighting scheme has

two important disadvantages and we show how these disadvantages can be corrected to further

enhance momentum’s risk-return profile.

The first disadvantage of the inverse volatility weighting scheme generally holds for all port-

folio allocation methods and is not unique for long-short strategies like momentum. Several

studies show that using volatility as a portfolio risk management tool is disadvantageous, since

using volatility as a risk measure is only suitable when asset returns are normally distributed or

investors have quadratic utility (Agarwal and Naik, 2004, Alexander and Baptista, 2004). Both

assumptions are typically not fulfilled in practice, which makes volatility a suboptimal portfo-

lio risk management tool.39 In particular, volatility does not incorporate higher moments like

skewness and kurtosis. Asset returns are typically skewed and leptokurtic with time-varying

higher moments (Bali et al., 2008, Harvey and Siddique, 1999, Jondeau and Rockinger, 2003).

This holds especially for the returns of the momentum strategy as summarized in Section 3.2.3

and shown by Rickenberg (2020a). Thus, the momentum portfolio usually exhibits a high left

tail and crash risk. So far, although it is well-known that momentum returns are highly non-

normal, momentum strategies that incorporate this high non-normality have not reached much

attention (Rachev et al., 2007). The high crash risk of momentum investing makes an adequate

portfolio risk management crucial in order to make momentum investing available for investors.

Unfortunately, volatility underestimates the probability of extremely low returns for highly left

skewed portfolios like the momentum strategy.40 The high negative skewness of the momentum

portfolio arises since winners exhibit a lower skewness than losers and the winners’ and losers’

39Similarly, the frequently used mean-variance approach is only suitable for quadratic utility or normally dis-
tributed returns, an assumption that typically does not hold in practice (see Bali et al. (2009), Agarwal and Naik
(2004) and references therein).

40In financial data, extreme losses occur much more frequently than expected for normally distributed returns.
These extreme losses are not captured by volatility, whereas downside risk measures are more successful in cap-
turing extremely negative returns (Bali et al., 2009, Footnote 3).
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skewness is highly related and moves in opposite directions (Rickenberg, 2020a). Thus, as fre-

quently shown in the literature and summarized in Appendix A, winners and losers have quite

different risk characteristics, which is a main driver of the high crash risk of the momentum

portfolio. Consequently, the crash risk of the momentum portfolio could be reduced by increas-

ing the skewness of the winners while the losers’ skewness is reduced. The difference in the

winners’ and losers’ skewness and other non-normal characteristics are not regarded by the in-

verse volatility weighting, and hence the inverse volatility weighting is a suboptimal weighting

scheme to reduce momentum crashes. As a consequence, higher moments should be incor-

porated when portfolio weights are readjusted each month (Cuoco et al., 2008, Jondeau and

Rockinger, 2012). Furthermore, most investors’ preferences cannot be described by quadratic

utility, since investors typically have preferences for higher skewness and lower kurtosis (Kraus

and Litzenberger, 1976, Scott and Horvath, 1980). For investors with higher order preferences,

it becomes more important to identify and avoid periods of market downturns (Guidolin and

Timmermann, 2008). Thus, in order to better fit to these investors’ preferences, risk should

be measured by incorporating information on higher moments. Further, investors are typically

loss-averse, i.e. they weight negative returns higher than positive returns of the same magni-

tude (Aı̈t-Sahalia and Brandt, 2001, Benartzi and Thaler, 1995). Similarly, most investors are

crash-averse, i.e. they are willing to pay high fees to avoid crashes (Bollerslev and Todorov,

2011, Chabi-Yo et al., 2018, Van Oordt and Zhou, 2016, Weigert, 2015). This holds especially

for momentum investors, since these investors frequently use leverage (Chabot et al., 2014).

Moreover, Bollerslev et al. (2015, p. 131) show that investors’ fear, measured by left jump

tail risk, is significantly priced for momentum investors. Generally, investors perceive risk as

downside risk, whereas upside risk is seen as upside potential (Lee and Rao, 1988). In contrast,

volatility quantifies both downside risk and upside potential as risk, and hence fails to capture

the risk of suffering high losses. This holds especially for extreme losses such as momentum

crashes. Bollerslev et al. (2015, Fig. 4) also find that a measure that captures left jump tail risk

is highly different to volatility, i.e. measuring (extreme) losses is different to measuring return

deviations. Thus, weighting assets based on volatility does not optimally fit to most investors’
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preferences, whereas weightings that incorporate non-normalities and the assets’ loss potential

are more realistic. Furthermore, weighting schemes based on risk measures that incorporate

higher moments also fit well to preferences of safety-first investors, who are concerned with

avoiding rare disasters (see Bali et al. (2009), Arzac and Bawa (1977), Van Oordt and Zhou

(2016) and references therein).

The second disadvantage arises since momentum is a long-short strategy and volatility is

a symmetric risk measure that does not distinguish between long or short positions. Giot and

Laurent (2003) find that the (tail) risk of an asset can be quite different, depending on whether

the asset is a long or a short position. Similarly, Atilgan et al. (2020, Sec. 5.6) find an asymmetry

between assets’ left and right tail risk. Bollerslev et al. (2015, Fig. 2) show that left jump

tail risk and right jump tail risk are highly different, where left jump tail risk is significantly

higher in magnitude than right jump tail risk. Bollerslev et al. (2020, Sec. 3) also show that

systematic downside risk of long and short positions is not identical. Hence, volatility is not the

adequate measure to quantify risk of the assets in the momentum portfolio, since the momentum

portfolio contains long and short positions. As mentioned above, weighting low volatile assets

higher than highly volatile assets typically improves the risk-adjusted performance and lowers

drawdowns of the volatility managed portfolio compared to the equally weighted portfolio.

However, since the momentum strategy is short the losers portfolio, an enhanced performance

of the losers is not desired. Thus, the superior performance of the volatility weighted winners

portfolio is (partly) offset by a superior performance of the volatility managed losers portfolio.

In particular, simply applying a weighting scheme that works well for long-only portfolios

to a long-short portfolio is insufficient. Similarly, Baltas (2015) state: “Simply inverting the

long-only solution for the assets with a short position is completely incorrect”. In contrast, a

good weighting scheme should produce an inferior performance with higher drawdowns of the

losers. Ang et al. (2006b, p. 292) also state that “one way to improve the returns to a momentum

strategy is to short past losers with high idiosyncratic volatility”. In a similar setting, Frazzini

and Pedersen (2014), Asness et al. (2014), Asness et al. (2020) and Liu et al. (2018) examine

long-short strategies where assets wither higher risk obtain lower (higher) weights in the long

335



(short) portfolio than assets with lower risk. This weighting approach is more realistic and more

in line with the low risk anomaly. Therefore, the performance of the inverse volatility approach

of Clare et al. (2014), Du Plessis and Hallerbach (2017) and Goyal and Jegadeesh (2017) can

further be improved by using a weighting scheme that reflects the information on whether an

asset is a long or short position.41 Instead of overweighting highly volatile losers, as suggested

by Ang et al. (2006b), we use asymmetric risk measures that distinguish between long and

short positions. In order to distinguish between long and short positions, we measure risk as

left (right) tail risk for an asset in the winners (losers) portfolio.

Besides the advantages that a tail risk weighting approach incorporates non-normalities and

information on whether an asset is a long or short position, this weighting approach also con-

siders that winners and losers exhibit quite different tail risk characteristics. For example, Chen

et al. (2001), Harvey and Siddique (2000) and Langlois (2020) find that winners exhibit a lower

skewness than losers. In particular, the winners’ and losers’ skewness is highly time-varying

and moves in opposite directions (Rickenberg, 2020a). Further, Atilgan et al. (2020, Table 1.B)

and Bali et al. (2014, Table 2) find a negative relation between momentum and tail risk, i.e.

losers exhibit a higher tail risk than winners. Bollerslev et al. (2015) find that jump tail risk is

priced differently for winners and losers and investors’ fear is especially priced for the losers

portfolio. Similarly, Jang and Kang (2019) find that the crash risk of the assets in the mo-

mentum portfolio can be quite different, where losers exhibit a higher probability of extreme

crashes. Thus, simply equal or volatility weighting momentum’s assets would lead to a portfo-

lio where the portfolio’s crash risk is influenced by a few assets. Furthermore, weighting the

assets by their tail risk is also advantageous, since the low risk anomaly, that has been shown for

volatility, also holds for tail risk. For example, Jang and Kang (2019, Figure 2) show that stocks

with a higher crash probability underperform stocks with a lower probability of extremely neg-

ative returns. The authors find that their crash probability measure quantifies left tail risk and

41This also holds for the volatility weighted TSMOM strategy examined by Clare et al. (2014), Clare et al.
(2016), Du Plessis and Hallerbach (2017), Goyal and Jegadeesh (2017), Kim et al. (2016) and Moskowitz et al.
(2012). The authors use volatility weighting for both long and short positions, since the assets in the portfolio
have quite different levels of risk. By the same argument as above, the performance of the TSMOM strategy could
potentially be improved by scaling the assets based on their tail risk, since this weighting approach differs between
long and short positions. Baltas (2015) develops a volatility based weighting approach that works for the TSMOM
strategy and is suitable for portfolios that contain long and short positions.
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is related but different to volatility. Thus, assets with higher left tail risk exhibit lower returns

as also shown by Atilgan et al. (2020), Bi and Zhu (2020) and Bali et al. (2014, Table 1), but

this effect is different to the low volatility effect of Ang et al. (2006b). In particular, Bi and

Zhu (2020, Table 5) find that the negative tail risk and return relation holds in periods of high

and low market volatility, i.e. the negative tail risk-return relation holds in low and high risk

regimes.

Based on the observations summarized above, risks of the assets in the winners and losers

portfolios should be managed differently, where especially the assets’ tail risk should be re-

garded. More precisely, in the winners portfolio, assets with a higher left tail risk should obtain

lower weights whereas the opposite holds for the losers portfolio. This important observation is

not captured by the equal and inverse volatility weighting. Furthermore, Jang and Kang (2019,

Table 4) show that the crash probability is not captured by momentum. A similar observation

also holds for momentum and skewness or other tail risk measures. As a consequence, combin-

ing information on an asset’s momentum and tail risk is appealing, since both measures capture

different characteristics. The combined approach that first sorts assets by their momentum and

then weights winners and losers by their tail risk should lower momentum’s crash risk compared

to the equally and volatility weighted momentum strategy. Furthermore, the tail risk managed

momentum portfolio should additionally produce higher returns than the other two weighting

schemes.

To address the before mentioned drawbacks of the volatility weighted momentum portfolio,

we next present several risk measures that incorporate non-normalities of the assets’ return

distribution and consider whether the asset is a long or short position. By adopting the inverse

risk weighting scheme of Equation (3.2.3), month t weight of asset i in the winners and losers

portfolio is given by

wWi,t �
1{RW

i,t°n
j�1

1{RW
j,t

and wLi,t �
1{RL

i,t°n
j�1

1{RL
j,t

, (3.3.1)

where RW
i,t and RL

i,t denote the month t risk of asset i in the winners and losers portfolio, respec-

tively. Using the inverse risk weighting based on risk measures that incorporate non-normalities

means that momentum’s tail risk is timed and this approach is a natural extension of the volatil-
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ity timing strategies frequently examined in the literature. Jang and Kang (2019, Sec. 4.4) find

that institutional investors who time the crash risk of their holdings earn higher returns, which

makes tail risk timing an appealing strategy for the momentum portfolio. Furthermore, since

assets with higher tail risk are typically less liquid (Atilgan et al., 2020, Bali et al., 2014), the

inverse tail risk weighting should also reduce transaction costs. Generally, the benefits of tail

risk timing have also been shown by Agarwal and Naik (2004), Alexander and Baptista (2004),

Basak and Shapiro (2001), Cuoco et al. (2008), Jondeau and Rockinger (2012), Jondeau and

Rockinger (2006), Rickenberg (2020b) and Rickenberg (2020a).

Since some of our risk measures presented below can become negative or zero, we rescale

risk measures that are not strictly positive by definition by a logistic transformation. Hence, if a

risk measure Ri,t can potentially be zero or negative, we use the weighting scheme
1{exppRi,tq°n
j�1

1{exppRj,tq

instead of
1{Ri,t°n
j�1

1{Rj,t .
42 For the rank based weighting in Equation (3.2.4), we rank assets in the

winners and losers portfolios by their estimated risk RW
i,t and RL

i,t.
43 For both weightings, we

define the risk measure in a way that RW
i,t measures an asset’s downside risk, whereas RL

i,t

measures an asset’s upside risk. Thus, in the winners portfolio, assets with a higher left tail risk

obtain lower weights, whereas in the losers portfolio, assets with a higher right tail risk obtain

lower weights. More formally, we define by

R̃L
i,t :� �RL

i,t (3.3.2)

the momentum investor’s return coming from shorting asset i in the losers portfolio. Risk for

an asset in the winners portfolio is then defined as the left tail risk of RL
i,t, whereas risk for a

loser asset is defined as the left tail risk of R̃L
i,t.

One easy and straightforward method to incorporate non-normalities into the volatility

weightings in Equations (3.2.3) and (3.2.4) would be to use volatility forecasts that capture

42Using exp pRi,tq instead of Ri,t is similar to imposing a short-sale constraint in an optimization problem,
which is found beneficial in portfolio allocation problems. A short-sale constraint has a shrinkage like effect, and
thus is particularly important for estimates with high sampling errors (DeMiguel et al., 2009b, Jagannathan and
Ma, 2003). Since we estimate monthly risk using non-parametric estimation methods that are likely to suffer under
estimation risk, a short-sale constraint is appealing for our approach. Further, by imposing a short-sale constraint
in the weighting scheme, buy and sell signals are solely made using the assets’ momentum.

43Another alternative to the tail risk based inverse risk and rank weightings would be to use a Fama-French type
weighting that sorts assets based on size and tail risk (Atilgan et al., 2020, Sec. 5.2).
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non-normalities in the return distribution. Taylor (2005) presents several approaches how infor-

mation on higher moments can be incorporated in volatility forecasts. These approaches exploit

information on certain quantiles to forecast volatility. However, since we use other quantile

based risk measures, this approach is not presented here. We also used the approach of Taylor

(2005) and found quite similar results to the methods present later in this section.

Another easy method to incorporate non-normalities of the return distribution is to use

weighting schemes that are directly based on higher moments like skewness and kurtosis. As

for volatility, kurtosis has the disadvantage that risk is measured symmetrically, and thus the

kurtosis does not distinguish between long and short positions. However, due to the impor-

tance of kurtosis in many fields of finance, we also use kurtosis based weighting schemes.

In particular, portfolio allocations based on skewness and kurtosis are frequently examined in

the literature (Ghysels et al., 2016, Guidolin and Timmermann, 2008, Jondeau and Rockinger,

2006, 2012, Jondeau et al., 2019, Langlois, 2020).44 A high negative (positive) skewness and

a high kurtosis make extremely negative (positive) returns more likely. Moreover, Jiang et al.

(2020, Table 4) find that assets with a higher skewness also exhibit slightly higher returns.

Hence, since investors have preferences for higher levels of skewness, assets with a lower (or

negative) skewness offer an unattractive risk-return profile for investors. Thus, an asset with a

high negative (positive) skewness and high kurtosis should be weighted lower in the winners

(losers) portfolio. Following Ang and Chen (2002, Eq. 28), month t skewness for an asset i in

the winners and losers portfolio is then defined by

SkewW
i,t �

E
��
RW
i,t � E

�
RW
i,t

��3
	

varpRW
i,t q3{2

and SkewL
i,t �

�E
��
RL
i,t � E

�
RL
i,t

��3
	

varpRL
i,tq3{2

. (3.3.3)

To define a skewness based risk measure that downweights stocks wither higher risk, we multi-

44Skewness and kurtosis are also important for asset pricing (Bali et al., 2009, Dittmar, 2002, Harvey and
Siddique, 2000, Kraus and Litzenberger, 1976), modeling return distributions (Hansen, 1994, Harvey and Siddique,
1999, Jondeau and Rockinger, 2003) and risk management (Bali et al., 2008). Further, skewness preferences can
partly explain the (idiosyncratic) volatility puzzle mentioned in the previous section (see Boyer et al. (2009, p. 198),
Schneider et al. (2020) and Amaya et al. (2015)).
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ply skewness by �1 and define the risk measure as45

RW
i,t � exp

��SkewW
i,t

�
and RL

i,t � exp
��SkewL

i,t

�
. (3.3.4)

Since the skewness of RL
i,t equals the skewness of R̃L

i,t multiplied by �1, higher risk for asset

i in the winners portfolio is measured by a lower (or negative) skewness, whereas higher risk

for asset i in the losers portfolio is measured by a higher (or positive) skewness. Thus, in the

winners (losers) portfolio, more negatively (positively) skewed assets are weighted lower. As

for volatility, we estimate monthly skewness by the realized counterpart using daily data.46 We

follow Jang and Kang (2019) and estimate realized skewness using the past six months of daily

data. The estimation of realized skewness is given in Equation (C.3) in Appendix C. However,

other estimation lengths are also frequently used in the literature. For example, Kelly and Jiang

(2014, p. 2861) estimate monthly skewness and kurtosis based on daily data of one month,

Langlois (2020) estimate realized skewness using 12 months of daily data, Bali et al. (2012)

estimate monthly skewness using the last 36 months of monthly returns, whereas Amaya et al.

(2015) use several estimation windows between five days and 60 months of daily data. Using

different estimation lengths to estimate realized skewness can lead to quite different conclusions

(Amaya et al., 2015, Table 15). As a robustness check, we also use other lengths to measure

skewness and kurtosis. These robustness results are shown in Table XVI in Appendix B.1.

Although Amaya et al. (2015, Table 1) and Langlois (2020) find that realized volatility cap-

tures some of the skewness and other risks, i.e. a higher realized volatility is related to lower

skewness, higher kurtosis and higher systematic risk, measured by a lower coskewness and

higher beta, Amaya et al. (2015, Table 4) find that realized skewness captures other information

than volatility, beta and coskewness. Similarly, Boyer et al. (2009) and Stambaugh et al. (2015)

also find a relation between idiosyncratic volatility and skewness, but they also state that both

45Chen et al. (2001, p. 353) also multiply skewness by �1 because “[b]y putting a minus sign in front of the
third moment, we are adopting the convention that an increase in [the skewness measure] corresponds to a stock
being more “crash prone”, i.e. having a more left-skewed distribution.”

46Calculating monthly skewness based on daily returns is similar to the concept of realized skewness used by
Amaya et al. (2015) who estimate weekly moments based on high-frequency data. See also Neuberger (2012)
on the estimation of skewness using high-frequency data. Amaya et al. (2015) find that these estimates capture a
different kind of information than measures estimated with daily data. For example, realized skewness measured
with high-frequency data captures price jumps. This does not (necessarily) hold for the measures calculated with
daily data.
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risks are different. Furthermore, Harvey and Siddique (2000, p. 1290) cannot find statistical

differences between volatilities in the winners and losers portfolios, but between the skewness

of both portfolios. This indicates that the volatility weighting presented in Section 3.2.4 is

not suitable to manage the higher moment risks of the winners and losers. Managing the mo-

mentum portfolio’s skewness risk is important for several reasons. First, Harvey and Siddique

(2000, Table I) show that different industries have quite different levels of skewness. Some in-

dustries are negatively skewed, whereas others are positively skewed. Similarly, Ang and Chen

(2002, Table 5) find that industries are typically negatively skewed and that skewness between

different industries can vary extremely. Boyer et al. (2009) find that the industry affiliation is

an important determinant of skewness. Atilgan et al. (2019, Table 1.B) confirm this finding for

country indices and the authors find that some countries are negatively skewed, whereas others

are positively skewed. Amaya et al. (2015) also find that realized skewness and kurtosis are

highly different for different assets and that these higher moments are highly time-varying. The

time-variation of skewness is also examined by Jondeau and Rockinger (2012), Jondeau and

Rockinger (2003), Harvey and Siddique (1999), Rickenberg (2020a) and Bali et al. (2008), and

thus portfolio weights should be readjusted frequently, as done by the inverse skewness weight-

ing. Consequently, simply equal or volatility weighting industries implies that the portfolio’s

skewness risk is dominated by the skewness of a few industries. Second, momentum is related

to skewness, i.e. winners are more negatively skewed than losers (Amaya et al., 2015, Chen

et al., 2001, Harvey and Siddique, 2000, Langlois, 2020). This produces a high negative skew-

ness of the momentum portfolio, which increases left tail risk and the probability of momentum

crashes. By weighting assets in the momentum portfolio inversely to their skewness, winners

should be more positively skewed and losers should be more negatively skewed. By buying

the skewness weighted winners and shorting the skewness weighted losers, the high crash risk

of the momentum portfolio can be reduced. Thus, combining information on the assets’ mo-

mentum and skewness is an appealing approach to produce high returns with limited crash risk.

Amaya et al. (2015, Sec. 5.2.3) also combine a skewness and a return based strategy and find

that the combined strategy outperforms the individual strategies.47 Third, investors typically

47Jacobs et al. (2015) also incorporate information on an asset’s skewness into the momentum portfolio building
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have preferences for higher skewness (Harvey and Siddique, 2000, Kraus and Litzenberger,

1976, Scott and Horvath, 1980), i.e. most investors “are willing to give up some of the right tail

to reduce the left tail” (Harvey et al., 2018, Footnote 3). By downweighting negatively (pos-

itively) skewed assets in the winners (losers) portfolio, the momentum portfolio’s risk-return

profile is more in line with investors’ preferences. Fourth, Chen et al. (2001) state that skew-

ness is an easy method to measure an asset’s crash probability.48 Since investors are typically

crash-averse and are willing to pay high fees to hedge against extreme crashes (Bollerslev and

Todorov, 2011, Chabi-Yo et al., 2018), investors highly benefit from the crash risk mitigation

of the skewness weighted momentum portfolio. Similarly, a higher negative skewness indicates

that (extremely) high negative returns are more likely than (extremely) high positive returns.

Since investors weight losses higher than gains (Aı̈t-Sahalia and Brandt, 2001, Benartzi and

Thaler, 1995), skewness weighted portfolios better fit to investors being loss-averse. For the

reasons summarized above, Jondeau et al. (2019, p. 29) conclude that “investor decisions are

likely to be highly sensitive to the level of skewness”.

We restrict the estimation of skewness to the easy realized sample estimator as shown in

Appendix C. Using the simple realized estimator makes this approach appealing for practical

implementations. However, several extensions of this approach are also feasible. For example,

Amaya et al. (2015) present several alternative estimation methods based on high-frequency

and daily data to estimate realized skewness. Moreover, instead of estimating an industry’s

skewness based on past returns of the industry, skewness could also be estimated by first esti-

mating the skewness of each asset in that industry. The industry’s skewness can then be cal-

culated as the (equally or value-weighted) average of the skewness of each asset (see Boyer

et al. (2009, p. 184), Langlois (2020) and Jondeau et al. (2019)).49 Further, instead of using

past realized skewness, a forecast of next month’s expected skewness could be used. However,

Boyer et al. (2009) find that past skewness is an important determinant of future skewness, and

process. However, their approach increases left tail risk, whereas our aim is to reduce momentum’s left tail risk.
48Jang and Kang (2019) also find that skewness is similar to a risk measure that captures the probability of

extreme losses.
49Jondeau et al. (2019, Fig. 2) show that both measures of skewness, realized skewness and average skewness,

capture quite different characteristics of risk. Atilgan et al. (2019, Table 1) also find that average skewness and
skewness of countries can be quite different.
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hence past skewness is a good indicator of future skewness. This especially holds when we

are only interested in an asset’s skewness rank as done by the rank weighting. Nevertheless,

other variables like past momentum are also successful in forecasting skewness and could also

be included when next month’s skewness is estimated (Boyer et al., 2009, Chen et al., 2001,

Langlois, 2020). Alternatively, approaches that model skewness autoregressively as in Harvey

and Siddique (1999), Jondeau and Rockinger (2012), Jondeau and Rockinger (2003) and Bali

et al. (2008) could also be used to forecast next month’s skewness. Furthermore, since skewness

estimates are very sensitive to few extreme realizations, quantile based estimates of skewness

that are more robust to outliers could be used (Amaya et al., 2015, Ghysels et al., 2016, Jiang

et al., 2020, Kim and White, 2004, Langlois, 2020).50 However, by using our rank based weight-

ing, portfolio weights are less sensitive to noisy estimates of skewness. We also used skewness

estimates based on quantiles, but found better performance results for the weightings based

on realized skewness. A possible explanation for this finding could be that realized moments

emphasize observations in the far tails of the return distribution, and hence a realized skewness

based asset allocation is more successful in managing momentum crashes. Ghysels et al. (2016)

also find that emphasizing realizations in the tails of the distribution are superior to measures

that focus on less extreme realizations in portfolio allocations. Similarly, an alternative measure

of an asset’s crash risk that emphasizes observations in the tails is the crash probability of Jang

and Kang (2019, Eq. (1)). Jang and Kang (2019) show that this measure also captures left tail

risk and is similar to skewness. To weight assets in the losers portfolio, the jackpot probabil-

ity that measures the probability of extremely high returns could be used (see Jang and Kang

(2019) and referenced therein). Jang and Kang (2019) find that institutional investors who time

the crash probability of their holdings produce higher returns, which demonstrates the impor-

tance of tail risk timing. However, since this paper focuses on measures that can be estimated by

simple non-parametric approaches and since skewness is highly related to the crash probability,

50See also Jondeau et al. (2019, Footnote 5) for several possibilities how the influence of outliers can be reduced
when skewness is estimated. Another alternative that is less influenced by outliers would be to directly forecast
the cross-sectional skewness rank as shown by Langlois (2020). The author finds that an asset’s skewness rank is
easier to predict than an asset’s skewness and that an asset’s past skewness rank is a good predictor for an asset’s
future rank. Thus, our simple non-parametric sample estimator should also be a good predictor for an asset’s future
skewness rank.
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we leave this examination for future research. Moreover, information on skewness could also be

extracted from option prices (Chang et al., 2013, Neuberger, 2012, Schneider et al., 2020). Fur-

thermore, industries could also be weighted based on their skewness innovations (Chang et al.,

2013) or their (expected) idiosyncratic skewness (Bali et al., 2011, Boyer et al., 2009, Jacobs

et al., 2015, Langlois, 2020). However, as for the case of volatility and idiosyncratic volatil-

ity, we found better results for the realized measures of total skewness instead of idiosyncratic

skewness. A possible explanation could again be that we use assets that are portfolios them-

selves instead of individual assets.51 Finally, the maximum (or minimum) return, a measure that

also captures idiosyncratic risk, could be used as a skewness measure (Bali et al., 2011, Boyer

et al., 2009, Jacobs et al., 2015). Bali et al. (2011) find that the maximum return is also related

to realized skewness, but both measures capture different characteristics.52

Due to the importance of kurtosis for many financial fields, we also use a kurtosis based

weighting. The kurtosis is defined by

KurtWi,t �
E
��
RW
i,t � E

�
RW
i,t

��4
	

varpRW
i,t q2

and KurtLi,t �
E
��
RL
i,t � E

�
RL
i,t

��4
	

varpRL
i,tq2

. (3.3.5)

The month t risk for asset i in the winners and losers portfolio is then given by RW
i,t � KurtWi,t

and RL
i,t � KurtLi,t. We again estimate kurtosis as realized kurtosis (Amaya et al., 2015) using

the past six months of daily data as shown in Equation (C.5) in Appendix C. An alternative to

this estimation method is a again a quantile based estimation method (Kim and White, 2004).

However, as for skewness, we find better results for the realized estimator, which emphasizes

observations in the far tails. The quantile based estimation of kurtosis is similar to the quantile
51Using idiosyncratic skewness measures does not work well for assets that are portfolios of stocks. For exam-

ple, Langlois (2020, Footnote 11) state that “[e]stimating idiosyncratic skewness using portfolios is not possible
because portfolio aggregation diversifies idiosyncratic risk.” Similarly, Goyal and Jegadeesh (2017, Footnote 1)
write: “Empirical regularities documented for indexes and asset classes need not carry over to individual stocks
and vice versa because indexes diversify away firm-specific returns”. Generally, total skewness and idiosyncratic
skewness are typically quite similar (see Boyer et al. (2009, p. 187) and Langlois (2020)).

52Bali et al. (2011, Table 5) find that a high MAX is a proxy for high (idiosyncratic) volatility, high beta and low
momentum. Hence, weighting assets by their MAX seems appealing. Following Asness et al. (2020) we also used
a MAX and volatility standardized MAX (SMAX) weighting, but found that weighing assets in this way does not
work as well as our remaining models. This finding is quite intuitive, since MAX is a measure of a certain stock’s
idiosyncratic risk based on lottery demands of investors. Thus, as expected, the MAX theory cannot directly be
translated to industry portfolios. Asness et al. (2020, Footnote 8) also find that MAX does not work well for
industries, whereas systematic risk measures work well for industries as shown by Asness et al. (2014). Therefore,
it is better to measure an industry’s risk as total or systematic risk instead of idiosyncratic risk. Weighting assets
by their systematic risk is examined in the next section.
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based estimation of volatility used by Taylor (2005).

Kurtosis measures the “extremes of the return distribution” (Amaya et al., 2015, p. 139), and

hence the kurtosis based weighting should dampen momentum crashes. However, as for volatil-

ity, kurtosis is a symmetric risk measure. Thus, the kurtosis based weighting also reduces the

likelihood of extremely positive returns, which is a disadvantage of symmetric risk measures.

For example, Amaya et al. (2015) show that realized skewness and kurtosis, measured with

high-frequency data, capture jumps of the assets. Realized skewness differs between positive

and negative jumps, whereas realized kurtosis measures negative and positive jumps as risk.53

Thus, skewness captures only the risk a momentum investor is concerned of, whereas kurtosis

also captures an asset’s upside potential as risk and does not distinguish between long and short

positions.

The before presented skewness and kurtosis measures are hard to estimate directly, since

realized estimates of higher moments are highly influenced by outliers and few extreme real-

izations (Ghysels et al., 2016, Kim and White, 2004). For that reason, we next present several

other risk measures that incorporate information on skewness and kurtosis without explicitly

relying on estimates of these quantities. In particular, the interaction of both moments is also

important, e.g. investors are more concerned about a high kurtosis combined with a negative

skewness, since this combination makes extremely negative returns more likely. In contrast, a

high kurtosis combined with a positive skewness is less problematic. Similarly, a given level

of negative skewness is more concerning for high levels of kurtosis than for low levels. A fre-

quently used class of risk measures that incorporates information on higher moments and also

distinguishes between long and short positions is the class of Lower Partial Moments (LPM).

Lower Partial Moments have been frequently used to expand the well-known mean-variance

approach to a mean-LPM optimization (Bawa and Lindenberg, 1977, Lee and Rao, 1988, Price

et al., 1982).54 Further, Atilgan et al. (2019) and Bali et al. (2014) use LPM based measures in

53This statement has to be regarded carefully, since we measure monthly realized moments based on daily data,
whereas Amaya et al. (2015) use high-frequency data. Amaya et al. (2015, p. 141-142) state that “[s]kewness esti-
mates from moving windows of daily or weekly data are likely to have different averages than skewness measures
constructed from intraday data” and “skewness (and kurtosis) measures computed from high-frequency data are
likely to contain different information from those computed from daily data or from options”. However, this result
shows that skewness captures left tail risk, whereas kurtosis captures the risk in both tails.

54Bawa and Lindenberg (1977, Theorem 3) examine the optimal portfolio selection in a mean-LPM model and
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a cross-sectional analysis. Bali et al. (2014, Table 1) and Atilgan et al. (2019, Table 3) show

that stocks with higher tail risk, measured by LPM, underperform assets with lower tail risk.

This result does not only hold for individual stocks but also for style portfolios and country

indices of developed markets, where the negative LPM-return relation is especially pronounced

and statistically significant for style portfolios (Atilgan et al., 2019, Tables 5 and 6). Thus, the

low risk anomaly does not only hold for volatility but also for tail risk measured by LPM. This

low LPM anomaly makes an inverse LPM weighting scheme appealing in order to enhance mo-

mentum’s risk-return profile. In particular, Bali et al. (2014, Table 2) find a negative relation

between an asset’s momentum and LPM, which shows that assets in the momentum portfolio

have quite different levels of tail risk. Thus, by using a simple equal or volatility weighting

scheme, momentum’s tail risk may be dominated by a few assets.

The LPM of order k for asset i in the winners and losers portfolio is defined by

LPMW
i,t,k � E

�
maxpq �RW

i,t , 0qk
�

and LPML
i,t,k � E

�
maxpq �RL

i,t, 0qk
�
, (3.3.6)

where q is a chosen threshold (see Lee and Rao (1988, Eq. (1)), Price et al. (1982, Eq. (1))

and Bali et al. (2014, Eq. (1))).55 To better capture changes in the risk of the assets, we use a

quite short estimation window of six months of daily data and a threshold of q � 0 in the main

part. Furthermore, as in Atilgan et al. (2019) and Bali et al. (2014), we also used quantile based

definitions of the threshold q and other estimation lengths. Another alternative would be to use

the risk-free rate as cut-off point q (Bawa and Lindenberg, 1977). Bali et al. (2014, Table 4)

find that LPM negatively predicts future returns for several cut-off points, where the negative

relation is stronger for cut-off points in the center instead of the tail of the distribution. Results

for other cut-off points were quite similar and are not shown here, but robustness results for

other estimation lengths are shown in Appendix B.1. As choices for the order k, we follow the

literature and choose orders of k � 0, 1 and 2. The LPM of order k � 0 is also called shortfall

probability, the LPM of order k � 1 is called shortfall expectation and the LPM of order k � 2

show that this model reduces, under certain conditions like normally distributed returns, to the mean-variance
portfolio selection rule. However, for non-normal and skewed distributions, both approaches can be quite different
(Price et al., 1982).

55The LPM for asset i in the losers portfolio can be rewritten as E
�
maxpRLi,t � p�qq, 0qk�. Thus, risk for the

losers portfolio is measured by only regarding returns that are higher than �q, which corresponds to the Upper
Partial Moment (UPM) with a threshold of �q.
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is also known as shortfall variance. The shortfall variance is essentially identical to the well-

known semivariance (Ang et al., 2006a, Bollerslev et al., 2019, Patton and Sheppard, 2015).56

Bali et al. (2009, Eq. (18)) also use a risk measure that measures the variance of extremely

negative returns, which is similar to the LPM of order 2. Using a semivariance based weight-

ing is a natural extension of the volatility based weighting presented in the previous section.

The semivariance measures the volatility of losses, and thus contains information on (extreme)

losses without regarding high positive returns as risk. In contrast, symmetric risk measures like

volatility “eliminate any information that may be contained in the sign of these returns” (Patton

and Sheppard, 2015, p. 683). In particular, by measuring the volatility of losses, a higher tail

risk also translates into a higher semivariance, and hence this approach is appealing to manage

momentum crashes. Further, by defining the volatility only for losses, the semivariance also

distinguishes between long and short positions. For an asset in the winners portfolio, risk is

defined as the volatility of negative returns, whereas for an asset in the losers portfolio, risk is

defined as the volatility of positive returns. Patton and Sheppard (2015) show that the volatil-

ity of positive and negative returns contains quite different information, thus the winners’ and

losers’ risk should be managed differently. In particular, volatility of positive and negative re-

turns contain other information than the normal RV measure. Hence, we expect different results

of the volatility and semivariance based weightings and the semivariance weighting should be

advantageous for long-short portfolios like momentum. As an alternative, positive and nega-

tive semivariance can also be used to forecast an industry’s volatility in an HAR model (Patton

and Sheppard, 2015, Eq. (16)). The winners and losers portfolio could then be weighted based

on this volatility forecast. This approach is not examined here but, following Bollerslev et al.

(2019) and Patton and Sheppard (2015), we also use two additional risk measures that are based

on the semivariance and will be presented later.

Besides LPMs we also use two other quantile based risk measures, Value at Risk (VaR)

and Conditional Value at Risk (CVaR), that are similar to LPMs but capture different aspects

of risk as shown by Atilgan et al. (2020, Sec. 5.5). VaR and CVaR are frequently used in the

56Price et al. (1982, Footnote 1) state that “semivariance and lower partial moments are interchangeable terms.
However, [...] the literature does distinguish between the two in terms of their theoretical origins”. See also Price
et al. (1982, Footnote 3) for a note on the different theoretical origins.
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financial literature but these risk measures are also important from a practical view. VaR has

been the most prominent risk measure in recent years and is important for portfolio managers

(Agarwal and Naik, 2004, Alexander and Baptista, 2004, Cuoco et al., 2008, Schmielewski and

Stoyanov, 2017) as well as for banks and regulators (Bali et al., 2009, 2008). However, CVaR

now emerges as the more relevant risk measure for portfolio managers (Basak and Shapiro,

2001, Rickenberg, 2020b) as well as for banks and regulators (Du and Escanciano, 2016). The

reason for this finding is that CVaR corrects for several disadvantages of VaR. For example,

CVaR is a coherent risk measure, whereas VaR is only coherent for certain assumptions (Acerbi

and Tasche, 2002). Further, the VaR, which is defined as a certain quantile, does not provide

information on extreme losses (Basak and Shapiro, 2001, Yamai and Yoshiba, 2005). In con-

trast, the CVaR measures risk by incorporating information on the losses higher than the VaR,

and thus captures information on the whole tail and is a good tool to quantify the severity of

extreme losses.

Assuming that returns are continuously distributed, month tVaR for an asset i in the winners

and losers portfolio is defined through the relation

P
�
�RW

i,t ¡ VaRW,α
i,t

	
� α and P

�
RL
i,t ¡ VaRL,α

i,t

	
� α, (3.3.7)

where α is the chosen significance level. Thus, the VaR is defined as the maximum loss that is

exceeded with a probability of 100α%, where typically low levels of α are chosen. For asset

i in the winners portfolio, we define a loss as LWi,t :� �RW
i,t , whereas a loss for the losers

portfolio is defined as the return of the asset, i.e. LLi,t :� RL
i,t. Thus, the VaR for asset i in the

winners and losers portfolio is simply given as the p1�αq�quantile of the distribution of �RW
i,t

and RL
i,t, respectively. Hence, the VaR can also be written as VaRW,α

i,t � F�1
�RWi,t

p1 � αq and

VaRL,α
i,t � F�1

RLi,t
p1 � αq, where F�1

�RWi,t
and F�1

RLi,t
denote the inverse of the cdf of �RW

i,t and RL
i,t,

respectively. Consequently, risk for the winners portfolio is defined as left tail risk, whereas risk

for the losers portfolio is defined as right tail risk. Giot and Laurent (2003) find that the VaR of

long and short positions can differ extremely. For example, Giot and Laurent (2003, Fig.1-6)

show that stocks typically have fat tails that are not symmetric. Atilgan et al. (2020, Sec. 5.6)

also find that left and right tail risk are quite different. Hence, regarding the right or left tail
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is different and long and short positions should be managed differently. This important point

is not regarded by weighting assets inversely to their volatility. Defining risk asymmetrically

for winner and loser assets is more realistic, since investors are concerned about left tail risk

for long position and right tail risk for short positions (Giot and Laurent, 2003). Thus, the VaR

based weighting is more in line with the preferences of momentum investors.

As mentioned above, since VaR only captures the probability of extreme returns but not

their severity, VaR has several disadvantages in a portfolio context (Alexander and Baptista,

2004, Basak and Shapiro, 2001, Rickenberg, 2020b). We therefore use the CVaR as alternative

quantile based risk measure that corrects the drawbacks of VaR. The CVaR is defined as the

average loss for months when the loss is higher than VaR. More formally, following Acharya

et al. (2016, Eq. (1)), Bali et al. (2009, p. 901) and Rachev et al. (2007, p. 2329), month t CVaR

for asset i in the winners and losers is defined by

CVaRW,α
i,t � �E

�
RW
i,t | �RW

i,t ¡ VaRW,α
i,t

	
and CVaRL,α

i,t � E
�
RL
i,t | RL

i,t ¡ VaRL,α
i,t

	
.

(3.3.8)

Therefore, for an asset in the winners portfolio, risk is defined as the average return of the

100 � α% lowest returns multiplied by minus one. In contrast, risk for an asset in the losers

portfolio is defined as the average return of the 100 �α% highest returns. The CVaR for an asset

in the losers portfolio, estimated non-parametrically, is similar to the MAX measure of Bali

et al. (2017a, 2011).

We estimate VaR and CVaR non-parametrically as shown in Equations (C.7) and (C.8) us-

ing an α of 5% and the last 12 months of daily data. Bali et al. (2009) also estimate VaR

non-parametrically using the last one to six months of daily data. We also used other estimation

lengths and significance levels and found quite similar results to our main results. Furthermore,

we also used several other alternative estimation methods of VaR and CVaR that are frequently

used in the literature, but found no significantly better results of these models. For example,

a simple alternative method that properly forecasts VaR and CVaR is presented in Bali et al.

(2009, Eq. (14)). This approach is similar to the RV based volatility forecasting model used

by Bollerslev et al. (2018). However, Bali et al. (2009) find similar results of this method to

the simple approach of using month t � 1 VaR as measure for next month’s VaR. A reason for
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this finding is that Bali et al. (2009, Table 1.C) and Atilgan et al. (2020, Table 7) show that

the non-parametric VaR is persistent, i.e. VaR measured in month t � 1 is a good predictor for

VaR in month t. Another simple non-parametric alternative would be to define risk as the as

the difference between VaR of month t � 1 and t � 2, where higher values of this DeltaVaR

measure indicate that an extreme loss occurred recently (Atilgan et al., 2020, Sec. 4.1). Further

alternatives to the non-parametric estimator would be to use more sophisticated unconditional

approaches or approaches that rely on a dynamic volatility model (see Rickenberg (2020b) and

Rickenberg (2020a) and references therein). We also used downside risk estimates based on

Extreme Value Theory (Allen et al., 2012, Schmielewski and Stoyanov, 2017) and the skewed

t distribution of Hansen (1994), both unconditionally (Bali et al., 2009, Sec.II.A.3) and con-

ditionally with time-varying parameters (Bali et al., 2008, Jondeau and Rockinger, 2003), but

did not find significantly better results compared to the simple non-parametric approach. Allen

et al. (2012) also use VaR and CVaR estimates based on a non-parametric approach, an EVT

approach and an approach using a skewed distribution and the authors find quite similar results

for all three methods. Further extensions would be to use VaR and CVaR forecasts that are

estimated as averages of different VaR and CVaR forecasts using different estimation methods

(Allen et al., 2012). Moreover, as in Allen et al. (2012) and Kelly and Jiang (2014), downside

risk of industry i could also be estimated by using cross-sectional returns of all assets contained

in industry i within month t� 1.

The advantages of VaR and CVaR based trading strategies have been shown in several stud-

ies. For example, Rickenberg (2020b) and Rickenberg (2020a) uses VaR and CVaR targeting

strategies that time a portfolio’s tail risk and the author finds that these strategies outperform the

volatility targeting strategies of Cederburg et al. (2020), Moreira and Muir (2017) and Barroso

and Santa-Clara (2015). Alexander and Baptista (2004), Agarwal and Naik (2004), Basak and

Shapiro (2001) and Cuoco et al. (2008) use mean-VaR and mean-CVaR optimization and show

that these approaches are superior to mean-variance optimization. Similarly, Schmielewski and

Stoyanov (2017) find good results for portfolios that invest in assets with a low VaR. An expla-

nation of the advantages of the VaR and CVaR based approaches is that Atilgan et al. (2020)
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find “a significantly negative cross-sectional relation between left-tail risk and future returns on

individual stocks trading in the US and international countries” (see also Bi and Zhu (2020)).

Atilgan et al. (2020) further show that the low VaR and low CVaR anomaly is different to the

low volatility and low beta anomaly. In particular, Atilgan et al. (2020, Sec. 5.12) show that the

low tail risk anomaly also holds for mutual funds, i.e. funds with higher left tail risk underper-

form funds with lower left tail risk. Moreover, Atilgan et al. (2019) find a negative risk-return

relation for VaR and CVaR for international stocks, style portfolios and country indices of devel-

oped countries. This low tail risk anomaly is important for our inverse tail risk timing strategies

and should lead to a superior risk-return profile of the tail risk managed momentum strategy.

In particular, Atilgan et al. (2020, Table 2) show that the low tail risk anomaly cannot be ex-

plained by asset pricing models that include momentum. Further, Atilgan et al. (2020, Table 5)

find that even after controlling for momentum in bivariate portfolio sorts, there is still a strong

negative relation between tail risk and future return. Similarly, Bi and Zhu (2020, Table 6) find

that the negative tail risk-return relation cannot be explained by momentum. Thus, an asset’s

momentum and tail risk quantify different characteristics and even after sorting assets based

on their momentum, weighting assets inversely to their VaR and CVaR should produce higher

(risk-adjusted) returns with lower crash risk.

The weighting schemes based on quantile risk measures as presented above have the ad-

vantage that information on extreme losses is taken into account, which should lower the high

crash risk of momentum investing. Further, this weighting scheme also fits well to most in-

vestors’ preferences, since risk measures like VaR and CVaR increase if negative skewness or

kurtosis increases (Bali et al., 2009). Bali et al. (2009) find that investors who care about higher

moments dislike higher values of VaR. In particular, Bali et al. (2009) find that VaR predicts

negative future skewness and is a better predictor of future skewness than past skewness. Hence,

industries that are undesired by investors obtain lower weights by the VaR and CVaR weight-

ing. Moreover, due to the construction of quantile risk measures, non-normalities are regarded

without explicitly relying on estimates of higher moments. Thus, portfolio weights obtained by

these risk measures are more robust than portfolio weights that rely directly on higher moments
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(Ghysels et al., 2016).57 In particular, quantile risk measures quantify risk differently for assets

in the winners and losers portfolio. For an asset in the winners portfolio, risk is defined as left

tail risk, i.e. downside risk, whereas for an asset in the losers portfolio, risk is defined as right

tail risk, i.e. upside potential. However, these approaches have the disadvantage that only a

small part of the return distribution’s information is used. For example, consider two assets in

the winners portfolio that have the same level of downside risk, but different levels of upside

potential. By weighting these assets inversely to their quantile risk, both assets obtain the same

weight in the winners portfolio. However, the asset with higher upside potential should obtain a

higher weight. Similarly, in the losers portfolio, assets with higher downside risk should obtain

higher weights than assets with lower downside risk. To take this information into account,

we next use weightings that exploit information on both tails of the return distribution. This

approach is similar to the reward-to-risk timing strategy examined by Kirby and Ostdiek (2012)

and Zakamulin (2017). Kirby and Ostdiek (2012, Eq. (12)) use a weighting scheme that is based

on the ratio of the expected mean return and volatility. This approach is similar to a weighting

scheme that weights assets by their (expected) Sharpe Ratio.58 However, instead of using an

estimate of the assets’ mean return, we measure upside potential for an asset in the winners

(losers) portfolio by right (left) tail risk. Kirby and Ostdiek (2012) also find that reward-to-

risk timing strategies that rely on an indirect mean estimate are more robust than strategies that

directly forecast an asset’s mean return.59

As first measure that takes information on both tails into account, we use a measure exam-

ined by Bollerslev et al. (2019) and Patton and Sheppard (2015) that is based on the semivari-

ance. Following Bollerslev et al. (2019) and Patton and Sheppard (2015, Eq. (6)), we define the

up and down semivariance of asset i in the winners portfolio as

varW,�i,t � E
�

max
�
RW
i,t , 0

�2
	

and varW,�i,t � E
�

min
�
RW
i,t , 0

�2
	
. (3.3.9)

57Ghysels et al. (2016) argue that a classical portfolio optimization that relies on mean, variance and skewness
can produce quite noisy and time-varying portfolio weights. For that reason, Ghysels et al. (2016) use a quantile
based estimation method to estimate skewness, which is more robust to outliers and produces more stable portfolio
weights.

58Since portfolio weights for this approach can become negative, Kirby and Ostdiek (2012, Eq. (13) and (14))
use a similar weighting scheme where portfolio weights are defined to be non-negative.

59See also Appendix A where we summarize several arguments why portfolio allocations based on estimates of
the absolute mean return are suboptimal.
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Similarly, for asset i in the losers portfolio, up and down semivariance are given by

varL,�i,t � E
�

min
�
RL
i,t, 0

�2
	

and varL,�i,t � E
�

max
�
RL
i,t, 0

�2
	
. (3.3.10)

In particular, we have varL,�i,t � E
�

max
��RL

i,t, 0
�2
	

and varL,�i,t � E
�

min
��RL

i,t, 0
�2
	

.

Hence, the down and up semivariance decomposes the variance, used in the previous section,

into “bad” and “good” variance, where bad variance for the winners (losers) is defined as the

variance of negative (positive) returns. In order to define a risk measure that captures informa-

tion on downside risk and upside potential, we follow Bollerslev et al. (2019) and Patton and

Sheppard (2015, Eq. (8)) and use the spread of down and up semivariance, which the authors

call a measure of signed jumps (SJ).60 Calculating the spread between downside and upside risk

measures is frequently done in the literature (Ang et al., 2006a, Van Oordt and Zhou, 2016).

The SJ measure for the assets in the winners and losers portfolios is then given by

SJWi,t � varW,�i,t � varW,�i,t and SJLi,t � varL,�i,t � varL,�i,t . (3.3.11)

Hence, the SJ measure indicates higher risk if down semivariance increases and/or up semivari-

ance decreases. A positive SJ measure for an asset in the winners (losers) portfolio indicates

that the asset’s risk is dominated by downward (upward) jumps.61 Thus, assets with a higher

SJ risk should be weighted lower.62 An alternative to define the spread between “bad volatil-

ity” and “good volatility” for winners and losers could be to define the spread only for periods

when bad volatility is higher than good volatility, i.e. only for periods when risk is dominated

by negative jumps (Patton and Sheppard, 2015, Eq. (19)). Further, the SJ measure could also

60When calculating this measure based on high-frequency data, the spread of down and up semivariance is a
measure for signed jumps (SJ) that captures the risk of downside jumps. We multiply the SJ measure of Bollerslev
et al. (2019) and Patton and Sheppard (2015) by -1 in order to guarantee that a higher value of this measure also
corresponds to higher downside risk. Similarly, Bollerslev et al. (2015, p. 118) also develop a risk measure that
is defined as the difference between left tail jumps and right tail jumps, and thus is defined in the way as our risk
measure. Bollerslev et al. (2015, p. 118) argue that this jump tail measure quantifies investors’ fear.

61The ability of the SJ to capture jump risk is mainly fulfilled when SJ is estimated with high-frequency data.
We estimate the SJ with daily data where price jumps are less likely. However, the distinction between positive
and negative jumps helps to demonstrate the ability of SJ to capture left and right tail risk. Bollerslev and Todorov
(2011) and Bollerslev et al. (2015) also examine left jump tail risk and find that left jump tail risk captures investors’
fear. However, the left jump tail risk measure examined by Bollerslev and Todorov (2011) and Bollerslev et al.
(2015) is based on options data and not market data as the measure examined here.

62Patton and Sheppard (2015, p. 696) suggest: “Assessing the usefulness of realized semivariance and signed
jump variation in concrete financial applications, such as portfolio management [...] represents an interesting area
for future research.”
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be used to forecast an asset’s volatility in an HAR model, since periods with negative jumps

increase future volatility, whereas periods with positive jumps decrease future volatility (Patton

and Sheppard, 2015, Eq. (18)). However, these approaches are not examined here.

The SJ measure can be interpreted as a measure of an asset’s skewness (Bollerslev et al.,

2019, Footnote 1), but has the advantage that this measure is more robust to outliers.63 A nega-

tive value of SJ indicates that the distribution is negatively skewed. Since the SJ measure can be

negative or zero, we define the risk measure used in Equation (3.3.1) by RW
i,t � exp

�
SJWi,t

�
and

RL
i,t � exp

�
SJLi,t

�
. Further, to account for different levels of variance of the different industries,

we follow Bollerslev et al. (2019) and define by

RSJWi,t �
SJWi,t

E
�pRW

i,t q2
� and RSJLi,t �

SJLi,t

E
�pRL

i,tq2
� (3.3.12)

a normalized signed jump measure. By normalizing the SJ measure, the relative signed jump

(RSJ) measures lies between -1 and 1. Bollerslev et al. (2019, Table 1.B) find that the RSJ mea-

sure is highly correlated with the realized skewness measure. However, the authors find that

both measures capture different aspects of risk. Further, RSJ risk captures other information

than momentum, which makes the combination of an asset’s momentum and RSJ appealing.

The risk measures used to weight the industries within the momentum portfolio are again de-

fined by RW
i,t � exp

�
RSJWi,t

�
and RL

i,t � exp
�
RSJLi,t

�
.

Following Chen et al. (2001, p. 354), we use another risk measure that is based on the

relation between “good” and “bad” volatility. Chen et al. (2001) state that this measure, similar

to the skewness, quantifies the asymmetry in the return distribution but does not incorporate an

estimate of the third moment. This is advantageous since estimates of the third moment can be

quite noisy (Ghysels et al., 2016, Kim and White, 2004). The measure of Chen et al. (2001),

named down-to-up volatility (DuVol), is defined as the ratio of the down and up variance. In

63Jiang et al. (2020, Eq. (1)) also define a similar measure that captures the asymmetry of the return distribution,
which is an alternative to the realized skewness but has the advantage that no estimate of the third moment is
needed. This measure of Jiang et al. (2020) is defined as the difference between the probability of positive and
negative returns. Thus, similar to the SJ measure, this skewness measure can be written as the difference of two
LPMs of order k � 0 and measures the difference between information in the left and right tail. In our case, risk
for an asset in the winners (losers) portfolio can be defined as the probability of negative (positive) returns minus
the probability of positive (negative) returns. Jiang et al. (2020, Eq. (4)) additionally define a second entropy based
asymmetry measure. Jiang et al. (2020) find that these measures capture other aspects of risk than the realized
skewness measure.
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contrast to the SJ and RSJ measure, the DuVol is a conditional risk measure.64 Further, in

contrast to the SJ measure and the measure used by Chen et al. (2001), we additionally extend

the DuVol measure by only regarding observations in the far tails. Bali et al. (2009, Eq. (18))

also use a conditional measure of an asset’s down variance by conditioning on returns in the far

left tail. The DuVol measure for an asset i in the winners and losers portfolios is given by

DuVolWi,t �
var

�
RW
i,t |RW

i,t   qd
�

var
�
RW
i,t |RW

i,t ¡ qu
� and DuVolLi,t �

var
��RL

i,t| �RL
i,t   qd

�
var

��RL
i,t| �RL

i,t ¡ qu
� , (3.3.13)

where qd and qu define the cut-off points that define down and up days. Thus, for an asset in the

winners portfolio, higher values of DuVol correspond to a higher crash risk in relation to upside

potential. In contrast, for an asset in the losers portfolio, higher values of DuVol correspond

to a higher upside potential in relation to downside risk. In particular, higher values of DuVol

indicate a left (right) skewed distribution for an asset in the winners (losers) portfolio, i.e. higher

values of DuVol indicate that these assets contribute negatively to the momentum portfolio and

should be weighted lower. To provide a sufficient amount of data, we use the past 12 months of

daily returns to estimate DuVol. Further, we choose qd as the 30% and qu as the 70% quantile.

In contrast, Chen et al. (2001) and the SJ measure presented above separate all days in down

and up days based on the sign of the return, i.e. qd � qu � 0. We also used other estimation

windows and cut-off points and found quite similar results.

We further extend the DuVol measure of Chen et al. (2001) presented above to a measure

that captures the ratio of “good” and “bad” skewness. Thus, as the DuVol measure, this measure

also captures the asymmetries of the return distribution but uses the third moment instead of the

second. This measure, named down-to-up skewness (DuSkew), is defined as

DuSkewW
i,t � �

E
��

RWi,t � E
�
RWi,t | R

W
i,t   qd

		3
| RWi,t   qd




E
��

RWi,t � E
�
RWi,t | R

W
i,t ¡ qu

		3
| RWi,t ¡ qu


 (3.3.14)

64Consider an estimation sample of 250 observations for an asset and assume that this asset exhibits negative
returns on only ten days. The down semivariance used for the SJ measure would then be estimated based on all
250 observation, where 240 observations would be set to zero. Thus, this measure is sensitive to the percentage of
negative returns and the down semivariance increases with the percentage of negative returns. In contrast, assuming
a cut-off point of zero, the DuVol measure would use a measure of down variance that would only be calculated
based on the ten negative returns. Thus, the down variance is only determined by the magnitude of the negative
returns and not by the percentage of negative returns. Hence, although both measure capture the asymmetry of the
return distribution, they should capture other aspects of risk.
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DuSkewL
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E
��
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�
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E
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�RLi,t � E
�
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L
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 , (3.3.15)

where the multiplication with minus one guarantees that a higher DuSkew coincides with higher

risk. The DuSkew of the losers portfolio can again be rewritten as

DuSkewL
i,t � �

E
��

RLi,t � E
�
RLi,t | R

L
i,t ¡ �qd

		3
| RLi,t ¡ �qd




E
��

RLi,t � E
�
RLi,t | R

L
i,t   �qu

		3
| RLi,t   �qu


 . (3.3.16)

Thus, the DuSkew measure quantifies a higher risk for an asset in the winners (losers) portfolio

when the skewness in the left (right) tail is higher in magnitude than the skewness in the right

(left) tail. Although the DuSkew should be positive for most asset return distributions, it can

potentially be zero or negative. Thus, we also use the risk measures RW
i,t � exp

�
DuSkewW

i,t

�
and RL

i,t � exp
�
DuSkewL

i,t

�
for the DuSkew based weighting. An alternative to the weighting

based on DuSkew would be to weight assets directly based on the skewness of the relevant tail.

Schneider et al. (2020, Footnote 7) state that up and down skewness captures other information

than total skewness.65 Schneider et al. (2020, Figure 4 and 5) find that assets with a lower

(more negative) down skewness underperform assets with higher (less negative) down skewness,

where the authors estimate skewness based on options data. This result also holds when it is

controlled for momentum. Thus, an inverse down skewness weighting could also be appealing

for momentum investors.

Lastly, we use a reward-to-risk measure that is based on the CVaR. However, instead of

weighting assets in the winners (losers) portfolio solely based on left (right) tail risk, we also

incorporate information on the assets’ other tail. As before, an asset with a higher right (left)

tail risk should obtain a higher weight in the winners (losers) portfolio. A CVaR based measure

that takes information on both tails into account is used by Rachev et al. (2007). We call this

measure the Rachev-Ratio (R-Ratio). In order to guarantee that a higher value corresponds to

higher risk, we define an asset’s risk as the inverse of the measure used by Rachev et al. (2007,

65Consider an asset with a total skewness of zero. Assuming a cut-off point of zero, this zero skewness arises
since up and down skewness are equally high in magnitude. However, loss-averse would prefer assets with a
higher (less negative) down skewness, since this asset has a lower probability of extremely negative returns. This
observation is not captured by total skewness.
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Eq. (4)),66 i.e.

RRW
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E
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�RWi,t | �R

W
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i,t

	 and RRL
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E
�
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L
i,t ¡ VaRL,α

i,t

	

E
�
�RLi,t | �R

L
i,t ¡ VaRL,1�α

i,t

	 . (3.3.17)

Hence, for an asset in the winners (losers) portfolio risk is defined as the average return in the

far left (right) tail, whereas reward is defined as the average return in the far right (left) tail.

The weighting based on the R-Ratio downweights assets with higher risk and/or lower reward

potential for a momentum investor. The R-Ratio focuses on extreme returns, both positive and

negative, whereas the middle part of the return distribution is not regarded.

Rachev et al. (2007) find good results of a momentum strategy that ranks assets based on

their past R-Ratio instead of their past raw return. This approach is similar to Dudler et al.

(2015) who rank assets by their volatility-standardized returns, which is similar to rankings

based on the Sharpe Ratio. The authors find that these strategies exhibit lower tail risk and

higher risk-adjusted returns than the strategy that ranks assets based on their past cumulative

return. Nevertheless, Rachev et al. (2007) find that ranking assets based on performance mea-

sures using an estimate of the past mean return, like the Sharpe Ratio, perform significantly

worse than the strategies that rank assets by their R-Ratio. Thus, using quantile based measures

to quantify return potential is a promising reward measure and less noisy than estimates of the

mean return. This result again demonstrates the importance of incorporating non-normalities in

portfolio decisions and that portfolio decisions based on estimates of the absolute mean return

are suboptimal in practice.

3.4 Systematic Tail Risk Weighted Momentum

The previous section shows how the constituents of the winners and losers portfolios can be

weighted inversely to their tail risk. Weighting assets by their tail risk instead of volatility

has the advantage that non-normalities are taken into account and the tail risk weighting also

distinguishes between long and short positions. The inverse risk weightings used so far are

based on the observation that higher risk is typically not compensated by an adequately higher

66Rachev et al. (2007) use the R-Ratio as a measure of an asset’s risk-adjusted performance. Thus, the authors
define the measure as the CVaR of the right tail (reward) divided by the CVaR of the left tail (risk).
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return. This low risk anomaly has been shown for volatility (Ang et al., 2006b, 2009, Asness

et al., 2012, Bali and Cakici, 2008, Blitz and Van Vliet, 2007, Fama and French, 2016) and

tail risk (Atilgan et al., 2019, 2020, Bali et al., 2014, Bi and Zhu, 2020, Schmielewski and

Stoyanov, 2017). Thus, by downweighting assets with higher downside (upside) risk in the

winners (losers) portfolio, momentum crashes should be mitigated without producing lower

returns. Nevertheless, the low risk anomaly does not only hold for univariate risk measures

but also for systematic risk measures as frequently shown in the literature and summarized

below. As in Agarwal et al. (2017), we refer to measures that quantify an asset’s own risk as

univariate risk measures and to measures that quantify the comovement between an asset and

the momentum portfolio as systematic (tail) risk measures.67 Similarly, Atilgan et al. (2019)

and Atilgan et al. (2020) refer to measures like VaR and CVaR as downside risk or tail risk

measures and to measures like downside beta as systematic downside risk or systematic tail risk

measures. Agarwal et al. (2017) find that systematic tail risk captures other information than

univariate risk measures, like skewness, kurtosis, VaR and CVaR (see also Atilgan et al. (2019,

Table 2.B)).68 Similarly, Acharya et al. (2016, Table 4 and Fig. 2) find that higher systematic

risk indicates low returns in a crisis, whereas this observation does not necessarily hold for

univariate risk measures. Adrian and Brunnermeier (2016, Sec. III.E) show that a VaR based

systematic risk measure captures other characteristics than the univariate VaR. Bali et al. (2012)

also show that univariate and systematic risk measures capture very different aspects of risk.

67Systematic risk measures are also important to quantify risks of financial institutions (Acharya et al., 2012,
2016, Adrian and Brunnermeier, 2016, Allen et al., 2012, Engle et al., 2015). See Brownlees and Engle (2016),
Engle et al. (2015, Footnote 1), Adrian and Brunnermeier (2016, Sec. I) and Acharya et al. (2016, Footnote 4)
for an overview on other studies on systematic risk that focus on the financial sector. Allen et al. (2012) show
that systematic risk of the financial sector can forecast economic downturns, i.e. a sector’s systematic risk contains
valuable information for other assets. However, the authors find that this observation is only limited to the financial
sector.

68In the literature, systematic (tail) risk measures are typically defined to measure the comovement with the mar-
ket portfolio. However, since market and momentum crashes typically do not happen simultaneously (Daniel and
Moskowitz, 2016, Table 2), we measure an asset’s comovement with the (equally weighted) momentum portfolio.
Harvey and Siddique (2000, p. 1278), Atilgan et al. (2018, p. 50) and Atilgan et al. (2019, Footnote 6) also calcu-
late systematic risk with alternative benchmarks. Similarly, Acharya et al. (2016, p. 27) estimate banks’ systematic
risk as comovement risk with the the financial sector or the market portfolio. Engle et al. (2015) also estimate
systematic (tail) risk with respect to different benchmarks. In particular, Engle et al. (2015, Figure 4 and 5) show
that systematic risk can be different when measured with respect to different benchmarks. When measuring asset
i’s comovement with the momentum portfolio, we do not eliminate asset i from the momentum portfolio. This is
opposed to Weigert (2015, Footnote 10) and Chabi-Yo et al. (2018) who remove asset i from the market portfolio
when the comovement of asset i and the market is measured.
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The authors show that systematic risk helps to explain hedge fund returns, whereas univariate

tail risk measures, like skewness and kurtosis, as well as idiosyncratic risk measures are not

successful in explaining hedge fund returns. Furthermore, Asness et al. (2020, Footnote 8) find

that managing industries’ idiosyncratic risk, measured by the MAX return (Bali et al., 2017a,

2011), does not work well, whereas managing the industries’ beta works well. Concluding,

it is better to measure an industry’s risk as systematic risk (or univariate total risk) instead of

idiosyncratic risk. Moreover, systematic risk captures other characteristics than the univariate

risk measures presented in the previous section.

The low risk anomaly for systematic risk measures means that assets that co-vary more with

the benchmark portfolio underperform assets with a lower sensitivity to the benchmark portfo-

lio. For example, Frazzini and Pedersen (2014) show that a strategy that buys low beta assets,

sells high beta assets and weights assets inversely to their beta produces high returns. This

strategy is also called the “Betting against Beta (BAB)” strategy and its performance is fre-

quently examined in the literature (Barroso and Maio, 2018, Bollerslev et al., 2020, Cederburg

and O’Doherty, 2016, Cederburg et al., 2020, Fama and French, 2016, Liu et al., 2018, Moreira

and Muir, 2017, Schneider et al., 2020).69 Asness et al. (2014) find that the BAB strategy also

works for industries, i.e. a strategy that buys low risk industries, sells high risk industries and

weights industries by their beta produces high returns. Bali et al. (2017a, p. 2369-2370) state

that the BAB anomaly “is one of the most persistent and widely studied anomalies in empirical

research of security returns”.70 Bali et al. (2017a) and Liu et al. (2018, Table 2) confirm the beta

69Frazzini and Pedersen (2014) suggest that the beta anomaly results due to leverage constraints of investors
(see also Asness et al. (2012)). Bali et al. (2017a) suggest that the beta anomaly is generated by lottery demands
of investors. Schneider et al. (2020) find that the low beta anomaly can be explained by (co)skewness risk. Fama
and French (2016) find that, similar to the low volatility anomaly, the betting against beta strategy overweights
conservative and profitable firms that exhibit high returns. Fama and French (2016, p. 85) state that “the returns on
low β stocks behave like those of profitable firms that invest conservatively, whereas the returns on high β stocks
track those of less profitable firms that invest a lot.” This finding is confirmed by Asness et al. (2020, Table 8). Liu
et al. (2018) find that the beta anomaly arises due to the positive correlation of beta and (idiosyncratic) volatility
combined with a negative risk-return relation for overpriced stocks as shown by Stambaugh et al. (2015). Thus,
the low beta anomaly is related to the low volatility anomaly of Ang et al. (2006b) and Ang et al. (2009). Liu et al.
(2018, p. 8) find that “there is little evidence of a beta anomaly once one controls for [idiosyncratic volatility]”.
However, Asness et al. (2020) cannot confirm the finding of Liu et al. (2018). See also Blitz et al. (2019) and Liu
et al. (2018) and references therein for several other possible explanations of the beta anomaly.

70Cederburg and O’Doherty (2016) show that the low beta anomaly only holds when portfolio performance
is evaluated unconditionally using unconditional performance measures such as the unconditional CAPM alpha.
However, the authors cannot confirm a statistically significant outperformance of low beta stocks when portfolio
performance is measured conditionally using the conditional approach of Boguth et al. (2011). This results since

359



anomaly by sorting stocks on past beta and shorting the 10% stocks with the highest beta and

buying the 10% stocks with the lowest beta. This strategy is different to the BAB strategy of

Frazzini and Pedersen (2014), since the BAB strategy has an additional levered net-long expo-

sure (Liu et al., 2018, Eq. (9)). Jagannathan and Ma (2003) state that shorting high beta stocks

and buying low beta stocks is similar to an unconstrained minimum variance strategy, a strategy

that typically produces high (risk-adjusted) returns. Moreover, Asvanunt et al. (2015), Blitz and

Van Vliet (2007), Blitz and Vidojevic (2017) and Blitz et al. (2019) find that simple low beta

portfolios that only buy assets with the lowest beta perform well. Furthermore, Asness et al.

(2020) show that the low risk anomaly also holds for correlation instead of beta, i.e. assets with

a higher correlation with a benchmark portfolio underperform assets with a lower correlation. In

particular, Bali et al. (2017b) and Bali et al. (2017a) find that the momentum effect and the low

systematic risk effect are two distinct characteristics. Hence, even after forming the momen-

tum portfolio, the assets’ systematic tail risk contains additional information. Thus, weighting

assets in the momentum portfolio by their systematic risk is appealing and should reduce the

portfolio’s risk without producing lower returns. Interestingly, Asness et al. (2020) find that

exploiting the low systematic risk anomaly is more profitable in terms of higher risk-adjusted

returns than exploiting the (idiosyncratic) risk anomaly like the low volatility anomaly.

As in the previous section, when measuring systematic risk, we define losses for the assets in

the winners and losers portfolios asymmetrically, i.e. a loss for an asset in the winners portfolio

is defined as a negative return, whereas a loss for an asset in the losers portfolio is defined as a

positive return. Measuring systematic risk for the relevant tail, i.e. left systematic (tail) risk for

the winners and right systematic (tail) risk for the losers, is important since systematic risks in

both tails can be highly different. For example, Longin and Solnik (2001) reject the multivariate

normality for the left tail but not for the right tail. In particular, they find higher systematic left

tail risk than systematic right tail risk. Similarly, Ang and Chen (2002) and Hong et al. (2007)

find that correlations in the left tail are higher than in the right tail. This holds especially for

unconditional performance measures are not suitable for strategies that time volatility. This shows that dynamic
trading strategies, as examined in our paper, cannot be compared solely based on unconditional performance
measures. For that reason, we will also assess the performance of our strategies using conditional approaches that
also incorporate that strategies time volatility.
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portfolios that are sorted based on their momentum (Hong et al., 2007, Table 3). Chabi-Yo

et al. (2018) find that systematic tail risk for both tails can be highly different and systematic

left tail risk is more pronounced than systematic right tail risk. Ang et al. (2006a, p. 1209) find

that systematic “downside risk and upside risk are priced asymmetrically” and that “aversion

to downside risk is priced more strongly, and more robustly, in the cross section than investors’

attraction to upside potential” (Ang et al., 2006a, p. 1211). Bollerslev et al. (2020, Eq. (11)) also

show that systematic risk should be defined differently for long and short positions. Similarly,

Baltas (2015) suggests that correlation measures of long and short positions should have the

opposite sign. The difference between left and right systematic tail risk is not regarded by the

volatility weighting that is based on a normality assumption (Hong et al., 2007, p. 1563).

Weighting assets by their systematic risk means that assets in the winners (losers) portfolio

that exhibit low (high) returns during momentum crashes are weighted lower. Thus, this ap-

proach should be especially successful in managing momentum crashes. However, weighting

assets by their comovement risk should be inferior to other weighting schemes in periods when

the momentum portfolio exhibits positive returns, since assets in the winners (losers) portfo-

lio that produce high (low) returns in up-periods are weighted lower. Thus, comovement risk

should be measured asymmetrically depending on the state of the momentum portfolio. For

that reason, when measuring the comovement of an asset with the momentum portfolio, we

further condition on the return of the momentum portfolio. Since we are mainly interested in

mitigated (extremely) low returns of the momentum portfolio, we condition on (extremely) bad

states of the momentum portfolio.71 These measures, which we call systematic tail risk mea-

sures, quantify the crash-sensitivity of an asset with the momentum portfolio. Thus, in our case,

these measures quantify how much industry i in the winners (losers) portfolio falls (rises) when

the momentum portfolio suffers a momentum crash. Chabi-Yo et al. (2018) and Van Oordt and

Zhou (2016) show that assets with a higher crash-sensitivity, i.e. assets that exhibit high negative

returns when the market crashes, produce very low returns during market crashes. Van Oordt

71We will present in Section 3.5 another approach that manages momentum’s risk by incorporating information
on the momentum portfolio’s expected state. This approach uses systematic (tail) risk measures only in periods
when a momentum crash is likely. When a positive momentum return is likely, momentum’s risk is managed by
univariate risk measures.
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and Zhou (2016) additionally show that assets with a higher crash-sensitivity do not outper-

form the less crash-sensitive assets over the whole sample. Similarly, Agarwal et al. (2017) find

that funds who time crash risk, i.e. funds who reduce their position in crash-sensitive assets in

crises, outperform funds who are bad systematic tail risk timers.72 Thus, in order to mitigate

momentum crashes, assets that strongly co-crash with the momentum portfolio should obtain

lower weights, especially in times of a momentum crash.

Based on the systematic risk measures that will be defined below, we again use the inverse

risk weighting in Equation (3.2.3) and the rank weighting in Equation (3.2.4). Weighting indus-

tries in the momentum portfolio by their systematic (tail) risk is important for several reasons.

First, by weighting assets inversely to their systematic (tail) risk, the severity of momentum

crashes should be significantly lowered. Inverse systematic risk weighting gives assets that pro-

vide a hedge against momentum crashes higher weights than assets that contribute negatively

to the momentum return when the momentum portfolio crashes. Assets with a lower sensitivity

to market declines typically outperform in bad market states, which should lower momentum

crashes (Chabi-Yo et al., 2018, Van Oordt and Zhou, 2016). Second, weighting assets inversely

to their systematic risk also fits well to most investors’ preferences, since risk-averse investors

prefer to invest in assets that perform well while the market is in a downturn period (Guidolin

and Timmermann, 2008, p. 910). This is confirmed by Chabi-Yo et al. (2018), Bollerslev and

Todorov (2011) and Van Oordt and Zhou (2016) who find that investors are willing to pay high

fees for assets that hedge against extremely negative returns, i.e. investors are crash-averse.

Third, different industries can have quite different levels of systematic risk. Hence, simply

equal or volatility weighting the industries means that the momentum portfolio’s systematic

risk can be dominated by a few industries. For example, Asness et al. (2014) and Harvey and

Siddique (2000, Table 1) find that different industries have quite different levels of beta and

coskewness.73 Similarly, Van Oordt and Zhou (2017) find that industries have different levels

72This is similar to the finding of Jang and Kang (2019) that assets with a high crash probability produce lower
returns and that institutional investors who time the crash probability of their holdings produce higher returns.
However, the crash probability measure of Jang and Kang (2019) is a univariate risk measure, whereas Agarwal
et al. (2017) use a co-crash risk measure.

73As mentioned before, systematic risk in the literature is typically measured as comovement with the market
and not with the momentum portfolio. However, if different industries have different levels of systematic risk with
the market portfolio, it is likely that systematic risk of the industries with the momentum portfolio is also different.
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of systematic tail risk measured by the tail beta, which will be defined below. Fourth, timing

systematic risk typically produces high returns (Agarwal et al., 2017, Asness et al., 2020, 2014,

Bali et al., 2017a, Frazzini and Pedersen, 2014).

As first measure to quantify an asset’s systematic risk, we follow Frazzini and Pedersen

(2014) and Asness et al. (2014) and use an asset’s beta, which is the most frequently used

measure to quantify systematic risk in the financial literature. In order to quantify the co-

movement between an industry and the momentum portfolio, we measure an industry’s beta

with respect to the equally weighted momentum portfolio. The month t beta for asset i in the

winners and losers portfolio is then defined by

βWi,t �
covpRW

i,t , R
M
t q

varpRM
t q

and βLi,t �
covp�RL

i,t, R
M
t q

varpRM
t q

, (3.4.1)

where RM
t denotes the month t return of the equally weighted momentum portfolio. Thus, a

high beta for an asset in the winners (losers) portfolio means that the asset moves in the same

(opposite) direction as the momentum portfolio. For example, if the momentum portfolio suf-

fers an extremely high loss, a high beta means that an asset in the winners (losers) portfolio

exhibits a highly negative (positive) return. Thus, by weighting high beta stocks lower, the win-

ners (losers) portfolio should perform well (bad) during a momentum crash. This finding is in

line with Levi and Welch (2019, Table 2) who find that beta is good measure to quantify an

asset’s hedging ability in crash periods.74 This finding is most pronounced in extreme crash pe-

riods (Levi and Welch, 2019, Fig. 2). Thus, by weighting the assets of the momentum portfolio

inversely to their beta, momentum crashes should be attenuated. Moreover, Bali et al. (2017a,

Table 12) and Bali et al. (2017b) find that high beta assets typically have lower skewness, higher

(idiosyncratic) volatility and higher systematic risk measured by other systematic risk measures.

Thus, managing the momentum portfolio’s beta also means managing the portfolio’s (system-

atic) tail risk. Thus, the beta weighting is an appealing approach to manage momentum crashes

and fits well to most investors’ preferences.

74See also Figure 1 in Levi and Welch (2019). Further, Levi and Welch (2019) state that the beta “can predict
subsequent stock returns quite well also in bear, extreme bear, and crashing markets. In such conditions, low-beta
stocks outperformed high-beta stocks, just as predicted. This is good news for the usefulness of market beta as
a measure of stocks’ hedging abilities against market crashes. Low-beta stocks make portfolios “safer” in bear
markets”.
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As in Ang et al. (2006a), Bali et al. (2017b) and Frazzini and Pedersen (2014), we estimate

beta non-parametrically using the last 12 months of daily returns. The beta estimator is given

in Equation (C.14). Several alternatives to the simple non-parametric beta estimator were also

used in the literature. For example, different betas could be estimated based on several lagged

momentum returns. Industry i’s beta could then be defined as the sum of the different beta

estimates as shown in Boguth et al. (2011, Footnote 23) and Cederburg and O’Doherty (2016,

Eq. (5) and (6)). Liu et al. (2018, p. 3-4) also use this approach and several other estimation

methods of an asset’s beta (see Table A.1 in Liu et al. (2018)). Similarly, beta could also be

measured with respect to several factor portfolios, e.g. the Carhart (1997) four factor model.

The beta used for weighting the assets could then be estimated as the average of the four betas.

This approach was used by Kirby and Ostdiek (2012, Eq. (17)) and the authors find good results

of the averaged four factor beta. Further, instead of measuring beta with respect to the return of

the momentum portfolio, beta could also be calculated with respect to volatility innovations as

in Adrian and Rosenberg (2008), Ang et al. (2006b, Eq. (3)), Chang et al. (2013) and Chen and

Petkova (2012). Assets with a higher sensitivity to volatility innovations produce lower returns

than assets with a lower sensitivity to volatility innovations. This result also holds for industry

portfolios (Chen and Petkova, 2012, Table 6). We also used a weighting based on this approach

but found no significant better results compared to the simple beta in Equation (3.4.1). Further,

beta could also be calculated with respect to innovations of higher moments, like skewness or

kurtosis (Chang et al., 2013). Chang et al. (2013, Fig. 5) show that a strategy that buys (sells)

assets with a low (high) sensitivity to skewness innovations produces high returns. The sensi-

tivity to skewness innovations can be interpreted as a measure of jump tail risk and this effect

is not captured by momentum or the sensitivity to volatility innovations. Another alternative to

our approach would be to estimate beta conditionally as presented in Bali et al. (2017b, Eq. (3))

and Engle et al. (2015).75 Further, Bali et al. (2017b, Sec. 2) present several alternative esti-

mates of an asset’s beta. Another possibility to estimate an asset’s conditional beta would be to

75Interestingly, Bali et al. (2017b) find that the beta anomaly does not hold, once beta is estimated conditionally.
In contrast, they find that the anomaly holds when beta is estimated unconditionally, where this finding is not
statistically significant. However, when forming long-short portfolios, they do not downweight stocks with high
betas as done by Frazzini and Pedersen (2014). This could be a possible explanation for the finding of Bali et al.
(2017b).
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estimate future beta based on lagged variables, like lagged volatility, lagged beta or past mo-

mentum (Boguth et al., 2011, Cederburg and O’Doherty, 2016). This approach could also be

used to directly forecast an asset’s beta rank as shown by Langlois (2020). However, Cederburg

and O’Doherty (2016, p. 748) find that an asset’s past beta rank is a good predictor for the as-

set’s future beta rank, i.e. combining our rank weighting with the non-parametric estimation of

beta should produce reliable portfolio weights without using complex estimation methods. To

obtain more robust portfolio weights of the inverse risk weighting, shrinked betas as in Frazzini

and Pedersen (2014), Asness et al. (2014, p. 27) and Schneider et al. (2020) could also be used.

Finally, instead of estimating industry i’s beta using past industry returns, beta could also be

estimated as the average beta of all assets that are contained in industry i (see Boguth et al.

(2011, Sec. 4.1) and Cederburg and O’Doherty (2016, p. 750)).

Generally, when estimating systematic risk, we use quite short estimation windows that

are, however, not too short. Similarly, Ang et al. (2006a) and Chabi-Yo et al. (2018, p. 1074)

also use 12 months of daily data to estimate systematic risk for two reasons. First, too short

estimation windows, and thus too less data provide less accurate estimates of systematic risk.

Second, since systematic risk is typically highly time-varying, short estimation windows should

be used to capture the time-variation in systematic risk. Thus, 12 months of daily data is a good

balance between estimation error and capturing time-varying systematic risk. Langlois (2020,

p. 405) also use a 12 months estimation period to estimate systematic risk “because it provides

a reasonable trade-off between having enough returns while allowing for variations over time.”

The time-variation of systematic risk is not taken into account by simple weighting schemes,

such as the equal or volatility weighting schemes. As robustness check, we show in Appendix

B.1 that our weighting schemes are also robust for different estimation windows between six

and 60 months of daily data. Bali et al. (2017a, Footnote 6) also find that the beta anomaly is

robust to alternative beta estimators.

Bali et al. (2017a, Table 3) find that the low beta anomaly still holds when assets are sorted

first on momentum and then on beta. Similarly, Bali et al. (2017b) find that the momentum

and beta effect are two different characteristics. Thus, weighting stocks within the winners and
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losers portfolio inversely to their beta should capture characteristics that are not captured by

sorting stocks based on past performance and should further enhance the performance of the

momentum portfolio. Beta weighted portfolios have also been used in the literature but, as far

as we know, this weighting scheme has not been applied to momentum. The rank based beta

weighting was successfully used by Frazzini and Pedersen (2014), Asness et al. (2014) and

Asness et al. (2020) for long-short portfolios. The inverse beta weighting was used by Chow

et al. (2014), but the authors do not rescale the beta to positive values. As mentioned above,

this means that a low risk asset with a negative beta, i.e. an asset that actually should obtain a

high weight in the portfolio, will be a short position. For that reason, since beta can be zero

or negative, we again use risk measures defined by RW
i,t � exp

�
βWi,t

�
and RL

i,t � exp
�
βLi,t

�
to guarantee non-negative portfolio weights for the inverse risk weighting. In particular, the

inverse beta weighting is similar to the volatility based risk parity approach. Maillard et al.

(2010, Eq. (5)) show that the weights of the risk parity approach are given by an inverse beta

weighting scheme. The difference between our weighting scheme and risk parity is that we

measure beta with respect to the equally weighted momentum portfolio. In contrast, risk parity

measures beta with respect to the portfolio that again depends on the weight of asset i. Thus,

the risk parity weighting does not have a closed form solution and is much harder to estimate

than our simple inverse beta weighting.

Similar to the low beta anomaly of Frazzini and Pedersen (2014) and Asness et al. (2014),

Asness et al. (2020) show that also a “low correlation anomaly” holds. The month t correlation

of asset i in the winners and losers portfolio with the momentum portfolio is given by

ρWi,t � corrpRW
i,t , R

M
t q and ρLi,t � corrp�RL

i,t, R
M
t q, (3.4.2)

where we again define correlations for an asset in the winners and losers portfolios asymmet-

rically. This is in line with Baltas (2015) who state: “The correlation structure of a long-only

universe is very different to the correlation structure on a long-short universe.” The author also

states that the correlation of a short position has to switch the sign as done in Equation (3.4.2).

The correlation weighting is appealing since Ang and Chen (2002) find that correlations are

higher in down-periods, especially in extreme down-markets. That is, most stocks typically
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crash together and equally or volatility weighted portfolios do not provide an adequate crash

protection. In contrast, weighting assets inversely to their correlations means that assets that

provide a hedge against a momentum crash obtain higher weights. We again estimate correla-

tions by the simple sample estimator given in Equation (C.15) using the past 12 months of daily

data. Alternatively, following Jondeau et al. (2019, Footnote 11) and Chen and Petkova (2012,

Eq. (7)) industry i’s correlation could also be estimated by first estimating each constituent’s

correlation with the momentum portfolio and then calculating the average correlation of the

individual correlations. Maillard et al. (2010, Eq (4)) use a similar inverse correlation weight-

ing, where correlation of asset i is measured as the average correlation to all the remaining

assets. However, we focus on the simple correlation of industry i with the momentum portfolio

estimated as in Equation (C.15).

The correlation measure of Equation (3.4.2) is also linked to the beta measure of Equation

(3.4.1). Using an asset’s correlation, the beta can be written as

βWi,t � ρWi,t �
σWi,t
σMt

and βLi,t � ρLi,t �
σLi,t
σMt

, (3.4.3)

where σMt denotes the month t volatility of the equally weighted momentum portfolio (Asness

et al., 2020, Frazzini and Pedersen, 2014). Hence, weightings based on beta and correlation

should produce quite similar results, but beta also captures the observation that different in-

dustries have quite different levels of volatility. Thus, we expect that both approaches perform

differently as also shown by Asness et al. (2020).

Besides beta and correlation other systematic risk measures that are also frequently used

in the financial literature are the coskewness (Harvey and Siddique, 1999, 2000, Kraus and

Litzenberger, 1976, Langlois, 2020) and cokurtosis (Dittmar, 2002). The month t coskewness

for an asset in the winners and losers portfolio is defined by (see Harvey and Siddique (2000,

Eq. (11)), Guidolin and Timmermann (2008, p.914), Ang et al. (2006a, p. (6)), Ang and Chen

(2002, Eq. (29)) and Kraus and Litzenberger (1976))

βW,Skewi,t �
E
��
RWi,t � E

�
RWi,t
�� �

RMt � E
�
RMt
��2	

b
varpRWi,tqvarpRMt q

(3.4.4)

βL,Skewi,t �
E
���RLi,t � E

��RLi,t�� �RMt � E
�
RMt
��2	

b
varpRLi,tqvarpRMt q

. (3.4.5)
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As for the skewness, in order to guarantee that higher values of RW
i,t and RL

i,t correspond to

higher risk for a momentum investor, our coskewness based risk measure is given by RW
i,t :�

exp
�
�βW,Skewi,t

	
and RW

i,t :� exp
�
�βL,Skewi,t

	
.76 For an asset in the winners (losers) portfo-

lio, the coskewness measures the covariance of industry i’s positive (negative) return with the

squared momentum return. Hence, a high risk measure RW
i,t or RL

i,t indicates that industry i

contributes negatively to the momentum portfolio’s return in times of a high momentum volatil-

ity (Ang et al., 2006a, p. 1212). Barroso and Santa-Clara (2015), Barroso and Maio (2019)

and Grobys et al. (2018) show that a high volatility of the momentum portfolio is typically

related to a negative momentum return and is a good indicator for a momentum crash. Thus,

by giving assets with a higher coskewness risk RW
i,t or RL

i,t lower weights, momentum crashes

should be attenuated. Further, Harvey and Siddique (2000, Table I) show that winners have

lower coskewness than losers, and thus, the momentum portfolio exhibits a negative coskew-

ness which is undesired by investors. Langlois (2020) confirm that past momentum negatively

predicts future coskewness, which leads to a high negative coskewness of the momentum port-

folio. Schneider et al. (2020) also find that momentum is highly related to coskewness risk.

Furthermore, Harvey and Siddique (2000, Table I) find that industries have quite different lev-

els of coskewness. Similarly, Ang and Chen (2002, Table 5) find that industries are negatively

coskewed and coskewness varies across industries. Thus, by simply equal or volatility weight-

ing industries of the momentum portfolio, the momentum portfolio’s high negative coskewness

could be mainly influenced by only a few constituents. Hence, the high negative coskewness

of the momentum portfolio, which is a driver of momentum crashes and is undesired by in-

vestors (Kraus and Litzenberger, 1976), can be reduced by weighting assets inversely to their

coskewness risk.

We again estimate the coskewness with past daily returns of industry i and the equally

weighted momentum portfolio using the simple sample estimator that is frequently applied in

the literature and shown in Equation (C.16). An alternative to this approach would be to estimate

76We again define the risk measure used in our weighting scheme as the negative coskewness, such that assets
with a higher coskewness also obtain higher weights. This is important since assets with a higher coskewness
“are appealing because they offer defensive returns during bad times; these stocks provide downside risk protec-
tion” (Langlois, 2020, p. 399). Thus, weighting assets by their negative coskewness should successfully dampen
momentum crashes.
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the coskewness based on residuals from a regression on a constant and the market return (Harvey

and Siddique, 2000, Langlois, 2020). Moreover, coskewness could also be estimated condition-

ally using lagged risk measures, such as an asset’s lagged coskewness, beta or volatility as well

as other information, such as an asset’s momentum (Harvey and Siddique, 2000). Further, since

we are mainly interested in an asset’s cross-sectional rank, it would also be sufficient to forecast

an asset’s coskewness rank (Langlois, 2020, Eq. (4)). Langlois (2020) show that forecasting an

asset’s coskewness rank is more precise than directly forecasting an asset’s coskewness. The

author confirms this in a Monte-Carlo Simulation. However, since non-parametric estimators

of systematic risk are typically highly persistent, past coskewness should be a good predictor

for the future coskewness rank.

Besides coskewness, cokurtosis is also frequently used in the financial literature (see Harvey

and Siddique (2000, Eq. (11)), Guidolin and Timmermann (2008, p.914), Ang et al. (2006a,

Eq. (10)) and Dittmar (2002)). The cokurtosis for an asset in the winners and losers portfolio is

defined by

βW,Kurti,t �
E
��
RWi,t � E

�
RWi,t

��
�
�
RMt � E

�
RMt

��3	
b
varpRWi,tqvarpR

M
t q3{2

(3.4.6)

βL,Kurti,t �
E
��

�RLi,t � E
�
�RLi,t

��
�
�
RMt � E

�
RMt

��3	
b
varpRLi,tqvarpR

M
t q3{2

. (3.4.7)

Since the cokurtosis can potentially be negative, we again define the risk measures used for the

inverse weighting approach by RW
i,t :� exp

�
βW,Kurti,t

	
and RL

i,t :� exp
�
βL,Kurti,t

	
. The cokur-

tosis based risk measure of an asset in the winners (losers) portfolio measures the comovement

of the positive (negative) return with the third moment of the market. Hence, a high cokurto-

sis risk means that industry i’s return contributes negatively to the momentum portfolio when

the momentum portfolio is negatively skewed. As mentioned above, a negative skewness is a

good crash probability measure (Chen et al., 2001). Thus, weighting assets inversely to their

cokurtosis risk should reduce the severity of momentum crashes.

The systematic risk measures presented above measure the comovement of an asset with the

momentum portfolio. However, during periods of an uptrending momentum portfolio, a higher

systematic risk of an asset in the winners portfolio means that this asset rises with the momen-
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tum portfolio. Similarly, a higher systematic risk as defined above means that an asset in the

losers portfolio decreases when the momentum portfolio increases. Thus, a higher systematic

risk of assets in the winners and losers portfolios is appealing on days with a positive momen-

tum return. This important point is not regarded by our weighting approaches, since assets that

contribute positively to the momentum investor’s return are weighted lower in uptrending pe-

riods. One way to deal with this state dependence is to define systematic risk by conditioning

on bad states of the momentum portfolio. Conditioning on the state of the benchmark asset

when systematic risk is measured is frequently done in the literature.77 Measuring systematic

risk by conditioning on bad states of the momentum portfolio also fits well to the finding that

investors are loss- and crash-averse. Ang et al. (2006a), Lettau et al. (2014) and Farago and

Tédongap (2018) find that besides beta other downside risk factors are priced when investors

trade losses and gains asymmetrically. Similarly, Chabi-Yo et al. (2018), Van Oordt and Zhou

(2016) and Weigert (2015) demonstrate the importance of systematic tail risk for crash-averse

investors. Hence, weighting assets in the momentum portfolio based on systematic downside

risk measures should be an appealing approach for loss-averse investors. In particular, this ap-

proach should be successful in reducing extreme losses, and thus should produce an enhanced

risk-return profile by mitigating momentum crashes.

One frequently used systematic risk measure that conditions on the state of the benchmark

portfolio is the downside beta (Ang et al., 2006a, Atilgan et al., 2018, 2019, Bawa and Linden-

berg, 1977, Farago and Tédongap, 2018, Lettau et al., 2014). The downside beta is defined as

the beta of asset i with the momentum portfolio, conditioned on bad states of the momentum

portfolio. Conditioning on bad states is important since assets typically have higher sensitivities

to unfavorable periods than to favorable periods (Atilgan et al., 2018, 2019, Bollerslev et al.,

2020). More formally, the month t downside beta of asset i in the winners and losers portfolio

is given by

βW,�i,t � covpRW
i,t , R

M
t |RM

t   0q
varpRM

t |RM
t   0q and βL,�i,t � covp�RL

i,t, R
M
t |RM

t   0q
varpRM

t |RM
t   0q , (3.4.8)

where we use a cut-off point of zero to determine bad states of the momentum portfolio (Ang
77We also use other weighting schemes that take the state of the momentum portfolio into account. These

approaches will be presented in the next section.
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et al., 2006a, Eq. (12)). Ang et al. (2006a) and Atilgan et al. (2018) additionally use cut-off

points that are equal to the mean return of the market or the risk-free rate instead of a zero

return. However, the authors find similar results for different cut-off points (see also Atilgan

et al. (2019, Footnote 7)). Alternatively, down-states could be defined as periods when mo-

mentum’s return is more than one standard deviation lower than its mean return (Lettau et al.,

2014, p. 203). Further, to emphasize the comovement in the tails, quantile based cut-off points

can also be used (see Atilgan et al. (2018), Atilgan et al. (2019, Eq. (2)), Bali et al. (2014) and

Chabi-Yo et al. (2018, Sec. III.D.1)). We will later present systematic tail risk measures that

measure the comovement behavior for extremely negative outcomes. For that reason, we will

not further examine the quantile based downside beta. We also used quantile based downside

betas and found similar results to the remaining quantile based systematic risk measures and the

usual downside beta. As in Ang et al. (2006a) and Atilgan et al. (2018), we estimate downside

beta using the past 12 months of daily data. As mentioned above, too short estimation windows

produce inaccurate estimates. Too long estimation windows produce noisy estimates since sys-

tematic risk is time-varying (Ang et al., 2006a, p. 1202). We show in Appendix B.1 that our

results also hold for different estimation windows.

Another alternative to our weighting approach in Equation (3.4.8) could be to use a weight-

ing scheme that uses upside beta for an industry in the losers portfolio, i.e. the sensitivity of

positive industry returns conditioned on a positive momentum return. We also used this weight-

ing scheme, but as expected, we found better results of our weighting scheme that conditions on

negative momentum returns for the winners and losers portfolios. This is in line with Bollerslev

et al. (2020) who find that the beta measures that condition on bad states of the benchmark port-

folio contain more information than the measures that condition on positive benchmark returns.

Alternatively, downside beta could also be defined as in Ang and Chen (2002, p. 461), Boller-

slev et al. (2020), Longin and Solnik (2001) and Hong et al. (2007, p. 1554) by conditioning

on bad states of industry i and the momentum portfolio. Risk for the winners is then defined

by conditioning on negative returns of the momentum portfolio and industry i, whereas risk

for the losers is defined by conditioning on positive returns of industry i and negative returns
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of the momentum portfolio.78 Further, similar to the downside beta, downside volatility that

conditions on bad states of the momentum portfolio could be used (Ang et al., 2006a, p. 1228).

However, this measure would again not distinguish between long and short positions. In con-

trast, Ang and Chen (2002, p. 461) and Hong et al. (2007, p. 1554) define downside volatility

by conditioning on bad states of asset i and the momentum portfolio. Applied to our approach,

this measure would define downside volatility for an asset in the winners portfolio as volatility

on days when industry i and the momentum portfolio co-crash. In contrast, for an asset in the

losers portfolio, downside volatility would be defined as volatility on days when the momentum

portfolio crashes and industry i rises. Since we use other systematic risk measures that are based

on simultaneous crashes of an industry with the momentum portfolio, we do not report results

for the downside volatility. Furthermore, to capture information on the whole distribution or

at least on both tails, risk could also be measured as the spread between downside beta and

the unconditional beta or upside beta (Ang et al., 2006a, Lettau et al., 2014). The beta spread

measures upside potential relative to downside risk, and hence is similar to the reward-to-risk

timing strategies presented in the previous section. Ang et al. (2006a, Table 4) show that both

measures, upside and downside beta, capture different aspects of risk and are priced quite dif-

ferently. We also used weightings based on the beta spread but we did not find significantly

superior results compared to the downside beta weighting. Since the next section examines

strategies that use systematic risk measures as a tool to manage momentum crashes, whereas

in up-periods momentum’s risk is managed by univariate risk measures, we concentrate on sys-

tematic risk measures that only capture the relevant tail’s risk, since these measure are more

valuable in momentum crash periods.

Farago and Tédongap (2018) develop three alternative systematic downside risk measures

that are similar to the downside beta and that could also be used to weight assets of the winners

and losers portfolios. One main difference between the measures of Farago and Tédongap

78These “semibetas” are also examined by Bollerslev et al. (2020) who decompose the usual beta into four
semibetas. In the notation of Bollerslev et al. (2020, Eq. (2)), winners would be weighted by β̂N and losers by
β̂M�. Bollerslev et al. (2020) find that these semibetas, which condition on the returns of asset i and the benchmark
portfolio, capture quite different information than downside beta and upside beta. Moreover, the authors find that
the semibetas that condition on bad states of the benchmark portfolio contain more information than the betas that
condition on positive benchmark returns.
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(2018) and the downside beta of Ang et al. (2006a), Bawa and Lindenberg (1977) and Lettau

et al. (2014) is the definition of down-days. Farago and Tédongap (2018) define down-days

on both return and volatility of the benchmark portfolio, whereas the downside beta used here

defines down-days solely based on a low return of the benchmark portfolio. The definition used

by Farago and Tédongap (2018) is motivated by the theory of disappointment aversion. Farago

and Tédongap (2018, Fig. 2) compare the definition of down-days based on return (Panel A) and

down-days based on return and volatility (Panel B) and find that both definitions of down-days

produce quite similar results. This can be explained since a decreasing return typically coincides

with an increasing volatility (see Bekaert and Wu (2000), French et al. (1987), Glosten et al.

(1993) and references therein). For that reason, we will not use the risk measures of Farago and

Tédongap (2018), but we will later present an approach that manages the momentum portfolio’s

risk by incorporating information on the momentum portfolio’s volatility.

Ang et al. (2006a) state that investors weight losses higher than gains and that investors

are downside risk averse. Thus, investors are concerned about downside risks, such as the risk

measured by downside beta. These downside risks are not captured by other risk measures

that rely on the whole return distribution. For example, Ang et al. (2006a, p. 1224) find that

a high downside beta is related but different to a negative coskewness, high volatility or high

cokurtosis. Ang et al. (2006a, p. 1199) state that “skewness and other centered moments may

not effectively capture aversion to risk across upside and downside movements in all situations.

This is because they are based on unconditional approximations to a nonsmooth function. In

contrast, the downside beta [...] conditions directly on a downside event that the market is less

than [a certain threshold].” Lettau et al. (2014) find that a downside beta based CAPM model is

more successful in explaining the returns of several asset classes compared to the usual CAPM.

This finding holds for currencies, size and value sorted style portfolios, beta sorted portfolios,

the BAB portfolio and industry portfolios. However, both models have difficulties in explaining

momentum returns (Lettau et al., 2014, Sec. 6.5). Thus, momentum and (downside) beta seem

to capture different characteristics. Nevertheless, Ang et al. (2006a, p. 1221) find that past

winners typically exhibit higher downside risk, which translates into a momentum portfolio
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with high systematic downside risk. Thus, the equally weighted momentum portfolio can be

highly exposed to systematic downside risk. Moreover, Ang et al. (2006a) find that portfolios

of stocks, like the 25 size and value sorted portfolios (Fama and French, 1993), are exposed to

downside market risk and can have quite different levels of downside risk. An equally weighted

portfolio’s downside risk could therefore be dominated by the downside risk of a few assets.

In contrast, our rank and inverse risk weighting should produce a momentum portfolio that

is better diversified with lower systematic downside risk and less severe momentum crashes.

Furthermore, the downside beta weighted portfolio is also appealing since Bali et al. (2014,

Table 3.B) find that downside beta negatively predicts future returns. Similarly, Atilgan et al.

(2018, Exhibit 2) and Atilgan et al. (2019, Table 3) find that stocks with higher downside beta

underperform stocks with lower downside beta. This result also holds even after stocks are

sorted by their past return, i.e. the underperformance of high downside beta stocks also holds for

the momentum portfolio (Atilgan et al., 2018, Exhibit 4). Further, Atilgan et al. (2019, Table 5-

6) find a high and statistically significant negative relation between downside beta and return for

portfolios sorted on size and value as well as country indices, i.e. the negative downside beta-

return relation also holds for portfolios of stocks. Thus, the downside beta weighted momentum

portfolio based on industries, style portfolios and country indices should obtain an enhanced

risk-return profile.

One disadvantage of using simple non-parametric estimates of downside beta is that risk is

not properly forecasted. Ang et al. (2006a, p. 1225) find that past downside beta alone does not

accurately predict future downside beta, and hence the sample estimator provides a noisy esti-

mate of industry i’s future downside beta. However, Ang et al. (2006a) find that assets with low

(high) past downside betas typically have low (high) future downside betas.79 Bollerslev et al.

(2020, Fig. 3.B) confirm this finding for the semibetas that condition on returns of asset i and

the benchmark portfolio.80 We therefore expect better results of the rank weighting in Equation

79Interestingly, Levi and Welch (2019, Sec. 3) find that the usual beta is a better predictor of future downside beta
than past downside beta. Thus, downside beta could also be predicted based on past betas and other observations
like an industry’s momentum.

80The main results of Bollerslev et al. (2020) rely on semibetas estimated with high frequency data. However,
the authors show in Section 4 that results for monthly semibetas estimated with daily data are very similar to the
high frequency data based estimates.
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(3.2.4) compared to the inverse risk weighting in Equation (3.2.3), since the inverse risk weight-

ing is based on a point estimate of future downside beta, whereas the rank weighting is only

based on the assets’ risk order. An alternative would be to use more sophisticated estimation

models for downside beta. However, due to the relevance of risk-managed industry momentum

strategies for practitioners, we restrict ourselves on simple non-parametric estimation methods

and leave the examination of dynamically managed strategies for future research.

Similar to the downside beta, correlation can also be estimated by conditioning on differ-

ent states of the momentum portfolio. Longin and Solnik (2001) find that correlations behave

differently in different market environments. Similarly, Ang and Chen (2002) and Hong et al.

(2007) find that correlations are higher in down-markets, especially in extreme down-markets,

i.e. most stocks typically crash together. This result also holds for momentum portfolios (Hong

et al., 2007, Table 3). Since we are more concerned about high correlations with the momentum

portfolio in momentum crash periods, we next measure the correlation of industry i and the

momentum portfolio, conditioned on negative momentum returns (Ang et al., 2006a, p. 1228).

The downside correlation is defined by

ρW,�i,t � corrpRW
i,t , R

M
t |RM

t   0q and ρL,�i,t � corrp�RL
i,t, R

M
t |RM

t   0q, (3.4.9)

where we again define correlations differently for an asset in the winners and losers portfolio.

Weighting assets by their downside correlation means that assets with a good crash protection

obtain higher weights. In particular, Ang and Chen (2002) find that different assets, like industry

and style portfolios, have quite different levels of downside correlation. Further, correlations for

these assets behave differently in up- and down-markets. Lettau et al. (2014, Table 4) confirm

this fining for currencies and show that correlations are higher in down-markets. Interestingly,

Ang and Chen (2002, p. 472) find that past performance is also related to different asymmet-

ric correlations. Thus, assets in the momentum portfolio typically have high asymmetries in

their correlation structure and weighting stocks with respect to their correlation helps to in-

crease diversification and drawdown protection benefits, especially in extreme down-markets.

In contrast, simply equal or volatility weighting industries lowers the diversification benefits,

especially in down-markets like momentum crashes.
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Ang and Chen (2002) and Longin and Solnik (2001) find that downside correlations capture

different risk characteristics than the unconditional correlations, beta, skewness and coskew-

ness. Hence, weightings based on downside correlations should produce different results to

other weightings that do not measure systematic downside risk. Ang and Chen (2002, Sec. 2)

demonstrate the importance of incorporating asymmetric correlations in the portfolio alloca-

tion of a CRRA investor who maximizes expected utility. Generally, Ang and Chen (2002,

p. 485) suggest that asymmetric correlations should be incorporated in portfolio allocations and

risk management since this information is highly valuable for investors who are very averse

to losses and downside risk. This result is also confirmed by Hong et al. (2007) for investors

who treat losses and gains asymmetrically. Hong et al. (2007, Table 8) find that disappointment

averse investors are willing to pay high fees for asset allocations that incorporate asymmetric

correlations. Hong et al. (2007, p. 1575) conclude: “incorporating assets’ asymmetric charac-

teristics can add substantial economic value in portfolio decisions”.

Instead of using the downside correlation of Equation (3.4.9), several other possibilities to

measure correlations in down-periods could be used. For example, downside correlations could

be defined by conditioning on momentum’s volatility instead of momentum’s return. Moreover,

downside correlation could be calculated as the spread between correlations in high and low

volatile periods (Moreira and Muir, 2019, Eq. (20)). Further, exceedance correlations that con-

dition on simultaneous crashes of industry i and the momentum portfolio could be used (see

Ang and Chen (2002, Eq. (2)) and Hong et al. (2007, p. 1550)). We also used this definition and

found similar results to the downside correlation that only conditions on bad states of the mo-

mentum portfolio. Another alternative would be to weight industries based on the H-statistics,

which summarizes information on exceedance correlations for different cut-off points (see Ang

and Chen (2002, Eq. (15) and (17)) and (Hong et al., 2007, Eq. (7))). A disadvantage of ex-

ceedance correlations compared to downside correlations is that risk estimates become quite

noisy by conditioning on simultaneous crashes of industry i and the momentum portfolio, es-

pecially when the non-parametric sample estimator is used. For that reason, Longin and Solnik

(2001) estimate exceedance correlations based on extreme value theory (EVT). Ang and Chen
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(2002) and Hong et al. (2007) use non-parametrically estimated exceedance correlations, but

the authors do not use a rolling window approach as done in our paper.

Similar to the downside beta, another frequently used systematic tail risk measure is the

LPM-beta (Bali et al., 2014, Bawa and Lindenberg, 1977, Lee and Rao, 1988, Price et al.,

1982). The LPM-beta for an asset in the winners and losers portfolio is defined by

βW,LPMi,t �
E
�
pRWi,t � qq � pRMt � qq | RMt   q

�

E
�
pRMt � qq2 | RMt   q

� and βL,LPMi,t �
E
�
p�RLi,t � qq � pRMt � qq | RMt   q

�

E
�
pRMt � qq2 | RMt   q

� , (3.4.10)

where q is a threshold that defines bad states of the momentum portfolio. We choose q � 0

and use the past 12 months of daily data to estimate LPM-beta. In Appendix B.1, we show

further results for other estimation windows. We also estimated LPM-beta by choosing q as

the 5%, 10%, 20% and 30% quantile, but found similar results to q � 0.81 Choosing a quantile

based cut-off point of q for the LPM-beta is similar to the quantile based downside beta used

by Chabi-Yo et al. (2018, Sec.III.D.1). Thus, by construction, downside beta and LPM-beta are

quite similar as also shown by Bali et al. (2014, Table 2). The authors find that the LPM-beta is

highly correlated with downside beta, and hence both measures capture quite similar character-

istics. Furthermore, the LPM-beta is also related to the usual beta, but measures other aspects of

risk. Lee and Rao (1988) and Bawa and Lindenberg (1977) show that, under certain conditions,

the LPM-beta simplifies to the traditional beta. However, these conditions are typically not

fulfilled in practice. Especially when returns are non-normally distributed and exhibit a non-

zero skewness, LPM-beta and the normal beta are different (Price et al., 1982, Table II). Bali

et al. (2014, Table 2) find a positive correlation between beta and LPM-beta but this correlation

is significantly lower than the correlation between LPM-beta and downside beta.82 Thus, we

expect that the beta and the LPM-beta capture different characteristics of risk and lead to differ-

ent weightings, whereas LPM-beta and downside beta should produce quite similar results. In
81By choosing q � 0, the LPM-beta becomes similar to the downside beta where the difference between both

measures is that downside beta uses demeaned returns, whereas LPM-beta uses raw returns. For quantile based
cut-off points, the difference between both measures is that downside beta is standardized by the mean of extremely
negative returns, whereas LPM-beta is standardized by the cut-off point. We find that results for both measures
deliver similar results for different cut-off points and we focus on the simplest measures using q � 0.

82Bali et al. (2014, Table 2) also find a weak and negative correlation between LPM-beta and coskewness as
well as a positive relation between LPM-beta and an asset’s idiosyncratic volatility or univariate tail risk measured
by the asset’s LPM. Thus, many weighting schemes presented in this paper should produce similar results since
the correlations found by Bali et al. (2014) have the expected sign. However, correlations are typically far away
from one or minus one.
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particular, weighting momentum’s constituents by their LPM-beta is important, since an asset’s

past return is negatively correlated with an asset’s LPM-beta (Bali et al., 2014, Table 2). This

negative correlation translates to quite different levels of LPM-beta for the assets in the mo-

mentum portfolio. Further, Bali et al. (2014) find a slightly negative relation between LPM-beta

and future returns, which should produce an enhanced risk-return profile of LPM-beta weighted

portfolios.

The term in the numerator of the LPM-beta in Equation (3.4.10) is also known as the co-

LPM that measures the co-semivariance of industry i and the momentum portfolio. The LPM-

beta measures systematic risk as the ratio of the co-LPM and the LPM of the momentum portfo-

lio. Bawa and Lindenberg (1977) and Lee and Rao (1988) note that this definition is similar to

the usual beta, but industry i only contributes to systematic tail risk when the return of the mo-

mentum portfolio is lower than the chosen threshold q. In this case, systematic risk is increased

if an industry’s return in the winners (losers) portfolio is lower (higher) than the (negative)

threshold, whereas systematic risk is lowered when the industry’s return is higher (lower) than

the (negative) threshold (Lee and Rao, 1988, p. 450). Thus, the LPM-beta measures the co-

movement of asset i and the momentum portfolio based on the condition that the momentum

portfolio suffers a loss. The LPM-beta in Equation (3.4.10) could also be defined for other or-

ders. However, we follow Bali et al. (2014) and use the LPM-beta only for order k � 2 (Bawa

and Lindenberg, 1977, Eq. (5)). The LPM-beta for other orders is given in Lee and Rao (1988,

Theorem 4). The LPM-beta of orders k � 3 and k � 4 would be similar to the coskewness and

cokurtosis if these measures additionally condition on bad states of the momentum portfolio.

We also used weightings on downside coskewness and downside cokurtosis, i.e. coskewness

and cokurtosis by additionally conditioning on low momentum returns, but again found quite

similar results to other systematic risk measures. Interestingly, the downside coskewness pro-

duces slightly better results than the coskewness as shown in Table XVIII in Appendix B.1.

The systematic tail risk measures presented so far condition on bad states of the momentum

portfolio. This is appealing since one aim of our weightings is to reduce momentum crashes.

However, systematic risk measures are directional., i.e. these measures quantify quite different
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aspects of risk when the conditioning is switched. Adrian and Brunnermeier (2016, p. 1713)

state that “conditioning radically changes the interpretation of the systemic risk measure”. Bali

et al. (2014, Eq. (13)) modify the LPM-beta by conditioning on bad states of asset i instead of

bad states of the benchmark portfolio. The authors call this measure the Hybrid Tail Covariance

Risk-beta (HTCR-beta), which is defined by

βW,HTCRi,t �
E
�
pRWi,t � qq � pRMt � qq | RWi,t   q

	
E
�
pRMt � qq2 | RWi,t   q

	 and βL,HTCRi,t �
E
�
p�RLi,t � qq � pRMt � qq | �RLi,t   q

	
E
�
pRMt � qq2 | �RLi,t   q

	 . (3.4.11)

Thus, the HTCR-beta is similar to the quantile based univariate risk measures presented in

Section 3.3, but measures risk as comovement risk of industry i and the momentum portfolio

instead of univariate risk of industry i. Higher values of HTCR-beta for an asset in the win-

ners (losers) portfolio indicate that the momentum portfolio exhibits lower returns in states with

negative (positive) returns of industry i. Thus, industries with a high HTCR-beta should be

weighted lower. This is important for the assets in the momentum portfolio, since momentum

and HTCR-beta are highly related. Bali et al. (2014, p. 222) state: “Stocks with high H-TCR

(low H-TCR) are generally past winners (losers)”. Furthermore, the HTCR-beta, although con-

ditioned on low industry returns instead of low returns of the benchmark, also captures system-

atic tail risk. Bali et al. (2014) find that a high HTCR risk coincides with higher beta, downside

beta, LPM-beta and lower coskewness.83 The HTCR-beta is again estimated using the past 12

months of daily data and a cut-off point of q � 0. Robustness results for different estimation

windows are shown in Appendix B.1. As before, we also estimated the HTCR-beta for quantile

based cut-off points q and found quite similar results.

The systematic risk measures presented so far measure the comovement of an asset with

the momentum portfolio without conditioning on the state of the momentum portfolio or by

additionally conditioning on a negative momentum return. Nevertheless, we are mainly inter-

ested in managing momentum crashes, i.e. periods of extremely negative momentum returns.

Avoiding crashes is important since investors are crash-averse and have a demand for assets

that provide some kind of crash protection (Bollerslev and Todorov, 2011, Chabi-Yo et al.,
83For their main results, Bali et al. (2014) use a different measure of an asset’s hybrid tail covariance risk, which

is the non-standardized version of the HTCR-beta. However, Bali et al. (2014, Table 6) show that both measures
produce quite similar results, and hence the findings of Bali et al. (2014) should also hold for the HTCR-beta. We
also used the non-standardized HTCR measure and also found similar results to the HTCR-beta.
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2018, Van Oordt and Zhou, 2016). Hence, instead of conditioning on below zero returns of the

momentum portfolio, conditioning on extremely negative returns is more appealing in order to

manage momentum crashes. Poon et al. (2004, p. 583) find that risk measures like the corre-

lation underestimate extremely risky events, such as momentum crashes. Thus, these measures

are bad in quantifying the dependence in the far tails. Similarly, Chabi-Yo et al. (2018) state

that the beta measures the comovement with the market but does not regard tail events, such as

momentum crashes. Thus, we next present several systematic tail risk measures that condition

on extremely low momentum returns.

One systematic tail risk measure that quantifies the sensitivity of asset i to extreme down-

periods of the benchmark portfolio was presented by Van Oordt and Zhou (2016) and Van Oordt

and Zhou (2017) and is called Tail-beta by the authors. This measure is motivated by the

safety-first theory of Arzac and Bawa (1977).84 The Tail-beta measures to what extinct an

industry looses with the momentum portfolio, i.e. a Tail-beta of 0.5 (2) means that industry i

looses 5% (20%) when the momentum portfolio exhibits a loss of 10% (Van Oordt and Zhou,

2016, p. 687). As before, we define losses asymmetrically for an asset in the winners and

losers portfolio. Following Van Oordt and Zhou (2016, Eq (1)) and Van Oordt and Zhou (2017,

Eq. (1)), the Tail-beta is given by

RW
i,t � βW,Taili,t �RM

t � εWi,t , for RM
t   �VaRM,α

t (3.4.12)

�RL
i,t � βL,Taili,t �RM

t � εLi,t, for RM
t   �VaRM,α

t , (3.4.13)

where εWi,t and εLi,t is an idiosyncratic error term of asset i in the winners and losers portfolio,

respectively. VaRM,α
t denotes the month t VaR of the momentum portfolio for a significance

level of α. Van Oordt and Zhou (2016) and Van Oordt and Zhou (2017) state that the Tail-

beta can be estimated by a regression using only observations when the momentum portfolio

suffers the most extreme losses. Alternatively, the authors develop an estimation method based

on EVT that produces more reliable estimates. We apply the EVT based estimation of Tail-beta

which is summarized in Appendix C. This estimation procedure provides an easy to implement
84The safety-first theory “builds on the assumption that investors maximize the expected return while limiting

the probability of suffering a particularly large loss below a predetermined admissible level” (Van Oordt and Zhou,
2016, p. 688).
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and non-parametric estimate of Tail-beta. Van Oordt and Zhou (2016, Table 2) find that non-

parametric estimates of beta and Tail-beta are quite persistent. Similarly, Kelly and Jiang (2014)

who use a similar risk measure find that systematic tail risk is quite stable over time with an

AR(1) coefficient higher than 0.97.85 Hence, past systematic tail risk is a good predictor for

future systematic tail risk and Kelly and Jiang (2014, p. 2850) conclude that “the severity of

extreme returns is highly predictable.” Thus, simple non-parametric estimates of systematic tail

risk also contain information on future systematic tail risk and can be used for our weighting

schemes. We again use the last 12 months of daily data and a cut-off point of α � 10% to

estimate Tail-beta. Van Oordt and Zhou (2016, Footnote 8) use 60 months of daily data in their

estimation, but find similar results for 12 months of daily data. Further, the authors find similar

results for different cut-off points. We show additional results for other estimation lengths and

cut-off points in Appendix B.1.

The Tail-beta is again similar in nature to the usual beta. Equation (C.24) in the appendix

demonstrates that the Tail-beta can be decomposed into a measure for the comovement of both

assets and the ratio of the risks of both assets. Thus, this decomposition is similar to the decom-

position of the usual beta given in Equation (3.4.3). The difference to the usual beta is that risk

is measured by tail risk instead of risk using the whole distribution and the dependency is mea-

sured as tail dependency using the Hill estimator instead of the linear correlation coefficient.

Hence, weighting assets based on their Tail-beta should be superior in mitigating momentum

crashes compared to the weighting schemes based on the usual beta.

Van Oordt and Zhou (2016) find in a cross-sectional setting that assets with high systematic

tail risk suffer losses that are 2-3 times higher than the benchmark’s losses when the benchmark

portfolio is in a crash period (see Table 3 in Van Oordt and Zhou (2016) for example). Thus,

high Tail-beta assets exhibit significantly higher losses in adverse market periods and should be

weighted lower in order to mitigate momentum crashes. The authors write that “estimated tail

betas help predict losses in future stock market crashes” (Van Oordt and Zhou, 2016, p. 696).

In contrast, in calm periods, assets with higher Tail-beta do not significantly underperform. In

85Kelly and Jiang (2014) and Karagiannis and Tolikas (2019) also use an EVT based systematic tail risk measure,
called Tail risk, that is similar to the Tail-beta. This measures is also used by Allen et al. (2012) and Chabi-Yo et al.
(2018).
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total, Van Oordt and Zhou (2016, p. 693) find that “shorting the high-tail-beta portfolio while

taking a long position in the low-tail-beta portfolio would have provided significant protection

against systematic tail risk, without bearing a cost in the long run. In fact, such a strategy would

have led to a positive, albeit insignificant, average return.” Further, Van Oordt and Zhou (2017,

Table 2) find that Tail-beta highly varies among industries. Thus, some industries loose only

half of the benchmark during a crash, whereas others loose twice as much as the benchmark.

Similarly, Kelly and Jiang (2014, Table 8) find that systematic tail risk of different industries

is correlated but differs among industries. Hence, in order to mitigate momentum crashes and

to avoid that the momentum portfolio’s crash risk is dominated by a few industries, a Tail-beta

weighting is appealing. An alternative to the Tail-beta presented in Equation (3.4.12) would

be to use the Tail-beta spread, defined as the difference of the Tail-beta and the usual beta

(Van Oordt and Zhou, 2016, p. 690). However, results for the Tail-beta spread were quite

similar and are not presented here. Moreover, as already stated above, the next section develops

a strategy that uses the systematic tail risk measures as a tool to manage momentum crashes,

where systematic tail risk is only used in periods when a momentum crash is likely. As a

consequence, focusing on measures that quantify systematic risk in the tails is more beneficial

for this approach.

Another frequently used measure that quantifies the co-crash risk of two assets is the Tail-

Sens (TS) or Lower Tail Dependency (LTD). The TS is used by Chabi-Yo et al. (2018), Poon

et al. (2004), Agarwal et al. (2017) and Weigert (2015) and is defined by

TSWi,t � lim
αÑ0

P
�
RW
i,t   �VaRW,α

i,t | RM
t   �VaRM,α

t

	
(3.4.14)

TSLi,t � lim
αÑ0

P
�
�RL

i,t   �VaRL,α
i,t | RM

t   �VaRM,α
t

	
. (3.4.15)

The Tail-Sens in our case is defined as the probability that industry i suffers an extreme loss at

the same time the momentum portfolio suffers an extreme loss, where we define extreme losses

as losses higher than the VaR. Weigert (2015, p. 136) find that “a quintile portfolio consisting of

stocks with the strongest LTD underperforms a quintile portfolio consisting of stocks with the

weakest LTD by more than 9% on a monthly basis during periods of heavy market downturns

worldwide.” Hence, low LTD assets offer a hedge against crashes and should be weighted
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higher in crash periods (Chabi-Yo et al., 2018, p. 1074).

Chabi-Yo et al. (2018, Sec. III.D.3) find that different industries exhibit different levels of

LTD. Similarly, Weigert (2015, Table 1) find that also different countries exhibit quite different

levels of LTD. Thus, different portfolios can have quite different levels of crash-sensitivity and

an equally or volatility weighted portfolio’s crash risk can be dominated by a few assets with

high crash-sensitivity. Chabi-Yo et al. (2018, Table 1-2) find that the LTD is correlated but dif-

ferent to beta, downside beta, Tail-beta, coskewness and cokurtosis. Thus, LTD captures other

characteristics of risk and should produce different results to the approaches presented above.

We follow Agarwal et al. (2017) and estimate LTD non-parametrically as given in Equation

(C.27). When estimating LTD, short estimation windows should be used. For example, Chabi-

Yo et al. (2018, Sec.III.D.2) find better results of 12 months of daily data instead of 24 or 36

months.86 This results since the authors show that LTD is highly time-varying. Thus, simply

using equal-weights or too long estimation windows does not regard the time-varying crash-

sensitivity of the assets in the momentum portfolio. For our main results, we use an estimation

window of 12 month and a cut-off point q that equals the 30% quantile. Alternatively, the cut-

off point q could also be estimated using a bootstrap approach (Poon et al., 2004). Additional

results for other cut-off points and other estimation windows are again shown in Appendix B.1.

Measuring and using extreme tail dependency is an important determinant in portfolio risk

management and other fields of finance as shown by Poon et al. (2004, Sec. 5-6). However,

Agarwal et al. (2017, p. 615) argue that the TS only measures how likely it is that industry

i suffers the most extreme losses at the same time the momentum portfolio suffers the most

extreme losses. A disadvantage of this measure is that the severity of these extreme losses is

not taken into account. To take the severity of extreme loss into account, Agarwal et al. (2017,

86Chabi-Yo et al. (2018) estimate the LTD using a copula approach. In contrast, Poon et al. (2004) and Agarwal
et al. (2017) use simple to implement non-parametric approaches to estimate LTD. We used both estimation ap-
proaches, the non-parametric approach of Agarwal et al. (2017) and the copula-based approach of Chabi-Yo et al.
(2018) and found that the simple non-parametric approach performs surprisingly well and is not outperformed by
the copula approach. Poon et al. (2004) present several alternative approaches to estimate extreme tail dependency.
For example, the authors present in Section 2 a non-parametric approach to estimate extreme tail dependency using
the Hill estimator. Moreover, in Section 3, the authors show how extreme tail dependency can be estimated using
parametric approaches. Furthermore, Chabi-Yo et al. (2018) state that the copula approach can also be imple-
mented on volatility adjusted returns. However, Chabi-Yo et al. (2018, Footnote 13) conclude that both approaches
deliver similar results.
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p. 611) scale the lower tail dependency by the ratio of the CVaR of asset i and the benchmark

portfolio. This approach is an extension of the usual beta in Equation (3.4.3). The TS based

measure of Agarwal et al. (2017, Eq. (2)), which the authors call Tail-Risk (TR), is defined by

TRW
i,t � TSWi,t �

CVaRW,α
i,t

CVaRM,α
t

and TRL
i,t � TSLi,t �

CVaRL,α
i,t

CVaRM,α
t

, (3.4.16)

where CVaRM,α
t :� E

�
�RM

t | �RM
t ¡ VaRM,α

t

	
denotes the month t CVaR of the momentum

portfolio. Agarwal et al. (2017) also estimate the Tail-Risk measure by replacing the CVaR

with VaR. This measure is then similar to the Tail-beta estimated as in Equation (C.24), which

is also given by a measure of the tail dependency and the ratio of the VaR of industry i and

the momentum portfolio. However, since CVaR is typically superior to VaR, we only use the

CVaR based Tail-Risk measure. Agarwal et al. (2017, p. 627) find that the Tail-Risk measure

is related to other systematic risk measures like the downside beta. However, the authors find

that their systematic tail risk measure captures other information than univariate risk measures,

like skewness, kurtosis, VaR and CVaR. We follow Agarwal et al. (2017) and estimate Tail-Risk

non-parametrically using α � 30% and the last 12 months of daily data as shown in Equation

(C.28). Agarwal et al. (2017) show that their estimation approach is robust to other estimation

lengths, other values of α and a definition based on VaR instead of CVaR.87 Robustness results

for other estimation windows and cut-off points are again shown in Appendix B.1.

Agarwal et al. (2017, p. 630) find that also hedge funds time systematic tail risk by invest-

ing less in assets with a high systematic tail risk exposure before the financial crisis. Further,

Agarwal et al. (2017, p. 632-633) find that hedge funds that time systematic tail risk outperform

hedge funds that are bad systematic tail risk timers. Thus, timing systematic tail risk, especially

in crises, is related to a higher performance. Similarly, Agarwal et al. (2017, Figure 1) find that

the Tail-Risk measure is successful in predicting down-periods and that aggregate Tail-Risk

is negatively correlated with the market return, i.e. higher aggregated Tail-Risk predicts lower

market returns. Thus, systematic tail risk timing plays an important role in mitigating crashes.

Finally, we use another CVaR based systematic tail risk measure which is frequently exam-
87Agarwal et al. (2017) use α � 5% and 24 monthly returns for their main results. Using 24 monthly returns

corresponds to about one month of daily data. The authors show that their approach is robust to estimation lengths
of 36 and 48 months as well as using the 10% and 20% quantile as cut-off point (see Agarwal et al. (2017, Sec. 4.2)).
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ined in the literature. Brownlees and Engle (2016), Acharya et al. (2012), Engle et al. (2015),

Allen et al. (2012) and Acharya et al. (2016) use a CVaR based systematic tail risk measure that

measures the comovement of an asset with the benchmark portfolio and is a natural extension

of the univariate CVaR defined in Equation (3.3.8). The CVaR presented in the previous section

measures the average loss of industry i conditioned on the information that industry i suffers

an extreme loss. Calculating the average loss of industry i conditioned on extreme losses of

the momentum portfolio leads to the Marginal Expected Shortfall (MES). Acharya et al. (2016)

find that MES is different to the CVaR that is solely based on asset i’s distribution and to other

systematic risk measures like beta. The MES is given by

MESW,αi,t � �E
�
RW
i,t | �RM

t ¡ VaRM,α
t

	
and MESL,αi,t � E

�
RL
i,t | �RM

t ¡ VaRM,α
t

	
.

(3.4.17)

By definition, the MES measures industry i’s sensitivity to declines of the momentum portfolio,

and hence the MES measures how exposed an industry is to tail events of the benchmark index

(Acharya et al., 2016, p. 4). Weighting industries based on their MES should be particularly

appealing during momentum crash periods. For example, Acharya et al. (2016, p. 22) find that

“a higher MES is associated with a more negative return during the crisis”.

Acharya et al. (2016, Table 5) show that using more recent data is beneficial when MES is

estimated. Thus, we follow Acharya et al. (2016) and estimate MES non-parametrically using

the last 12 months of daily data and α � 30%. Alternatively, instead of using a quantile based

cut-off point, a fixed percentage loss, e.g. a return of �40% as in Engle et al. (2015), could be

used. Further, as in Adrian and Brunnermeier (2016) who use a similar VaR based systematic

risk measure, risk could also be defined as the difference between the MES for low levels of

α and the MES using a higher value of α � 50%. Robustness results for other cut-off points

and estimation lengths are again shown in Appendix B.1. As in Brownlees and Engle (2016,

Table 8) we find that other cut-off points and other estimation procedures of MES produce quite

similar results.

Following Acharya et al. (2016, Eq.(2) and (3)), the MES in Equation (3.4.17) can also be

derived as the contribution of industry i to the portfolio CVaR. From Equation (3.2.2) we see
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that the momentum return is given by

RM
t �

ņ

i�1

wWi,t �RW
i,t � wLi,t �RL

i,t. (3.4.18)

Based onRM
t and the momentum portfolio’s CVaR, the MES of asset i in the winners and losers

portfolio is given by

MESW,αi,t � BCVaRM,α
t

BwWi,t
and MESL,αi,t � BCVaRM,α

t

BwLi,t
. (3.4.19)

Thus, the MES is defined as the sensitivity of portfolio risk to the weight of asset i. A high MES

indicates that portfolio risk significantly increases if the weight of asset i is increased. Thus, in

order to reduce momentum’s risk, assets with a high MES should be weighted lower.

A possible refinement of our approach would be to estimate MES based on more advanced

(conditional) models. Acharya et al. (2016, Table 5) show that using more advanced models is

beneficial when MES is estimated. For example, Acharya et al. (2012) and Brownlees and Engle

(2016) present an alternative estimation method by first fitting a multivariate GARCH model to

the daily returns of asset i and the benchmark. This model is then used to simulate future price

paths of both assets. MES is then calculated by applying the sample estimator to the simulated

returns (see Appendix A of Brownlees and Engle (2016) for a more detailed description). This

approach is more complex and time consuming but has the advantage that systematic tail risk

is forecasted. Brownlees and Engle (2016) also show how MES can be calculated under a

normality assumption and based on copulas (see Equation (4) and Appendix B of Brownlees

and Engle (2016) for more details on the normal and copula approach, respectively). However,

using the MES estimator based on the bivariate normal distribution would produce the same

results as the inverse beta weighting presented above. We therefore do not examine this method

here. The more complex methods based on the copula and multivariate GARCH models are

appealing to manage momentum crashes. However, due to the importance of risk-managed

momentum portfolios for practitioners, we rely on the simple non-parametric estimator used

by Acharya et al. (2016) and leave the examination of more advanced estimation methods for

future research.

A measure that is similar to the MES and that could also be used to weight the industries in

the momentum portfolio is the CoVaR that also measures extreme tail dependency (see Acharya
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et al. (2012, p. 62) and Adrian and Brunnermeier (2016) for example). The CoVaR measures

the VaR of the benchmark portfolio by conditioning on the state of industry i. Thus, using

CoVaR would condition on bad outcomes of industry i instead of bad outcomes of the momen-

tum portfolio. However, Adrian and Brunnermeier (2016, Sec.II.D) show that the CoVaR can

also be defined when the conditioning is reversed, i.e. CoVaR could also be defined as the VaR

of industry i conditioned on low momentum returns. Nevertheless, we do not use the CoVaR

measure, since CVaR based risk measures are typically superior to VaR based risk measures

in portfolio allocations (Basak and Shapiro, 2001, Rickenberg, 2020b). Additionally, Acharya

et al. (2012, Eq. (12)) derive a simple closed form expression for CoVaR under a normality

assumption which shows that this measure only depends on the correlation between the asset

and the benchmark portfolio, whereas MES also considers asset i’s volatility. Since different

industries typically have different levels of volatility, these different levels of volatility should

be reflected when industries in the momentum portfolio are weighted by their systematic risk.

Due to the advantages of MES compared to CoVaR we only examine results for MES.88 Fur-

thermore, accurately estimating CoVaR non-parametrically would be quite challenging. Adrian

and Brunnermeier (2016) show how CoVaR can be estimated using quantile regressions, mul-

tivariate dynamic volatility models, copulas, distributional assumptions or Bayesian methods.

We again leave the examination of these advanced estimation methods for future research.

Although all of the measures defined in this and the previous section quantify an asset’s

(systematic tail) risk and are sometimes highly correlated, many of them capture different as-

pects of risk. For example, Bali et al. (2017a) find that the beta anomaly still holds when assets

are first sorted on their skewness, downside beta, tail risk and (idiosyncratic) volatility. Bali

et al. (2017b) find that assets with a higher beta typically have a lower coskewness, but that

both measures capture different aspects of risk (Bali et al., 2017b, Table 4). Langlois (2020)

finds that past momentum and (idiosyncratic) volatility negatively predict an asset’s coskew-

ness, but that volatility and coskewness are highly different. In particular, the author finds that

skewness and coskewness capture different aspects of risk. Ang et al. (2006a, Table 3) find

88Adrian and Brunnermeier (2016, p. 1711) state that CoVaR can also be extended to a Co Expected Shortfall
measure that is based on the CVaR. This measure would then again be quite similar to the MES presented above.
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that downside beta and coskewness are similar but capture different characteristics. The au-

thors conclude that “[i]n summary, downside beta risk and coskewness risk are different” (Ang

et al., 2006a, p. 1213). This result is confirmed by Bollerslev et al. (2020, p. 24) who find that

coskewness and cokurtosis “do contain additional information not accounted for by semibetas”.

Similarly, Atilgan et al. (2018) find that downside beta is different to beta, upside beta, (id-

iosyncratic) volatility, momentum, skewness and coskewness. Chabi-Yo et al. (2018, p. 1081)

conclude that “the risk associated with LTD is related but clearly different from risks associated

with regular market beta, downside beta, coskewness, cokurtosis, and tail risk.” Van Oordt and

Zhou (2016, Table 5) show that Tail-beta captures other information than volatility, skewness,

kurtosis, downside beta, coskewness, cokurtosis and past return. Bali et al. (2014) find that

idiosyncratic volatility, LPM, beta, coskewness, HTCR-beta and LPM-beta capture different

aspects of risk. Atilgan et al. (2020) find a positive relation between tail risk and idiosyncratic

volatility, beta and downside beta as well as a negative relation between tail risk and momentum

and coskewness. However, the authors find that the low tail risk anomaly is different to the low

volatility and low beta anomaly and they conclude that “left-tail risk has distinct, significant

information orthogonal to market beta, downside beta, idiosyncratic volatility, lottery demand,

co-skewness [...] and past return characteristics and it is a strong and robust [negative] predictor

of future returns” (Atilgan et al., 2020, p. 734). Hence, all these measures, although somewhat

related, capture different characteristics of risk and should also lead to different weightings. In

particular, all these measures should contain additional information even when assets are first

sorted on momentum.

3.5 Switching Strategies

The previous two sections show how the assets in the winners and losers portfolios can be

weighted based on their (systematic) tail risk. These weighting schemes should produce higher

returns while simultaneously momentum crashes are reduced. Section 3.3 develops weighting

schemes based on univariate risk measures that quantify an asset’s own tail risk. In contrast,

Section 3.4 uses weighting schemes based on systematic (tail) risk measures that measure an
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asset’s comovement and co-crash risk with the (equally weighted) momentum portfolio. As

mentioned above, both classes of risk measures typically capture different aspects of risk. For

example, Agarwal et al. (2017, p. 627) find that systematic tail risk captures other information

than univariate risk measures, like skewness, kurtosis, VaR and CVaR. Similarly, Van Oordt

and Zhou (2016, Table 5) find that systematic tail risk captures other information than volatility,

skewness and kurtosis. Bali et al. (2012) show that systematic risk can explain hedge fund re-

turns, whereas tail risk measures, like skewness and kurtosis, fail to explain hedge fund returns.

Adrian and Brunnermeier (2016) find that a VaR based systematic risk measure captures other

information than the univariate VaR.

Timing the assets’ univariate or systematic crash risk is important to reduce momentum

crashes and to enhance the risk-return profile of the momentum portfolio. For example, Jang

and Kang (2019) find that financial institutions that time the (univariate) crash probability of

their holdings obtain higher returns. Similarly, Agarwal et al. (2017) find that funds that time

their constituents’ systematic crash risk during crises outperform funds that are bad crash risk

timers. However, the benefits of systematic tail risk timing are mainly limited to down-periods.

More importantly, a higher comovement risk of the assets in the momentum portfolio is desired

during uptrending periods, and hence weighting assets inversely to their comovement risk is

disadvantageous in these periods. Thus, the performance of the systematic tail risk weighting

strongly depends on the state of the momentum portfolio and incorporating this state depen-

dence can potentially increase momentum’s performance. For example, Acharya et al. (2016,

Table 4 and Fig. 2) find that systematic tail risk is a negative return predictor during crises,

which does not necessarily hold for univariate risk measures and for non-crises periods. Agar-

wal et al. (2017, p. 620) state that “the impact of [systematic tail risk] on future returns is

strongly positive in periods of positive market returns and negative when the market returns

are negative”. Weigert (2015) and Chabi-Yo et al. (2018) find that assets with lower tail de-

pendency outperform assets with higher tail dependency in crash periods, i.e. assets with lower

co-crash risk offer a good protection against extremely negative returns and should be weighted

higher during momentum crashes. In contrast, assets with a higher tail dependency outperform

389



less crash-sensitive assets in uptrending markets.89 Similarly, Levi and Welch (2019, Fig. 1)

and Asvanunt et al. (2015, Exhibit 1) show that low beta assets provide a good hedge against

crashes. This observation holds especially in extreme crash periods (Levi and Welch, 2019,

Fig. 2). However, Levi and Welch (2019) state that “in periods in which the [benchmark portfo-

lio] appreciates, assets with high (all-days or down-days) beta should offer higher average rates

of return”. Hence, assets with high systematic risk perform well (bad) in bull (bear) periods,

whereas assets with low systematic risk perform well (bad) in bear (bull) periods (see Asness

et al. (2020, Fig. 1) and Levi and Welch (2019, Table 2)). Thus, although downweighting stocks

with higher systematic tail risk should mitigate momentum crashes, this approach should per-

form worse in uptrending periods. Thus, using the systematic risk weighting in every month is

not optimal over the long run. Generally, many studies show that different portfolio weighting

methods can perform quite differently in different market environments. For example, Blitz and

Van Vliet (2007, Exhibit 1) and Chow et al. (2014) find that low risk portfolios perform well in

down-markets but bad in up-markets. Behr et al. (2012) confirm this finding for the minimum

variance portfolio.

Based on the findings summarized above, the weighting schemes that use systematic risk

measures should provide a good downside risk protection when the momentum portfolio suffers

extreme losses. However, in uptrending markets, assets with a low sensitivity to the momen-

tum portfolio should perform worse. In contrast, the weighting schemes based on univariate

risk measures should be less successful in crash periods than the systematic risk weightings,

but should successfully capture the upside potential in calm periods. This should especially

hold for risk measures that capture information on both tails of the return distribution, like the

skewness or reward-to-risk measures. For that reason, we next develop strategies that switch

between both approaches, where the systematic risk weighting is only used when a momentum

crash is likely. In periods when a positive momentum return is expected, we use a weighting

scheme based on a univariate risk measure. Switching between different portfolio weightings or

investment styles has been frequently examined in the literature (Chow et al., 1999, Copeland

89Van Oordt and Zhou (2016) also find that assets with a higher systematic tail risk significantly underperform
in crash periods, but the authors do not find an outperformance in uptrending periods. However, their results are
only significant in the crash period.
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and Copeland, 1999, Daniel et al., 2017, DeMiguel et al., 2009b, Garlappi et al., 2006, Kan and

Zhou, 2007, Rickenberg, 2020a,b, Tu and Zhou, 2011, Wang et al., 2012).90 Similarly, Chow

et al. (1999) argues that regarding risk characteristics of turbulent and calm periods separately is

advantageous compared to strategies that use either risk characteristics of the calm or turbulent

period. Using only the risk characteristics of turbulent times would be too conservative over the

long run. In contrast, investors who only consider risk characteristics of calm periods and dis-

regard information on extreme crash risk “may not survive to generate long-term performance

if the portfolios cannot withstand exceptional periods of market turbulence” (Chow et al., 1999,

p. 67).91 Rickenberg (2020a) also uses a risk-managed momentum strategy that switches be-

tween two weighting schemes, where the conservative weighting scheme is only used when a

momentum crash is likely. However, Rickenberg (2020a) only manages the momentum portfo-

lio’s risk using equally weighted winners and losers portfolios.

To take the momentum state dependence of the univariate and systematic (tail) risk weight-

ings into account, we next develop a combined strategy that switches between both weighting

schemes, where we rely on simple estimates of the expected momentum state to decide which

weighting scheme is used.92 More formally, following DeMiguel et al. (2009b, Eq. (9)) and Tu

and Zhou (2011, Eq. (1)), the month t weight of asset i in the winners and losers portfolio is

90See, for example, DeMiguel et al. (2009b, Sec. 1.6) for a short summary on strategies that combine different
weighting schemes. For example, Kan and Zhou (2007, Sec. III) and Garlappi et al. (2006) combine the minimum
variance and the mean-variance portfolio, where the relative weights invested in both portfolios depend on the
estimation error of the mean return. Similarly, DeMiguel et al. (2009b, Sec. 1.6.2) combine the equally weighted
and minimum variance portfolio, whereas Tu and Zhou (2011) combine the equally weighted portfolio with four
other portfolio strategies including the mean-variance portfolio.

91Chow et al. (1999) present a mean-variance approach based on two different covariance matrices, one es-
timated with “normal” observations and one estimated with outliers that capture risk characteristics in turbulent
times. Chow et al. (1999, p. 70) summarize the disadvantage of the usual mean-variance approach or the approach
of using either the normal or stressed covariance matrix as follows: “If we optimize based on the full-sample co-
variance matrix, the portfolio will be significantly suboptimal in a period of financial stress and, indeed, may not
survive such a period without unpropitious adjustments. If we optimize based on the outlier covariance matrix, the
portfolio’s expected return for the full horizon will be lower than desired. What to do? As with many choices, the
best solution is to compromise.”

92An alternative would be to use different weighting schemes for both portfolios. For example, based on the
finding of Blitz and Van Vliet (2007), Chow et al. (2014) and Behr et al. (2012) that volatility managed portfolios
perform well in down-markets and bad in up-markets, winners (losers) could be volatility (equally) weighted
in down-markets and equally (volatility) weighted in up-markets. However, we restrict ourselves on weighting
schemes that use the same risk measure for both legs.

391



given by

wj,switchi,t � δt � wj,sysi,t � p1 � δtq � wj,unii,t , j P tW,Lu, (3.5.1)

where wj,unii,t and wj,sysi,t denote the month tweight using a univariate or systematic risk measure,

respectively. The indicator δt P t0, 1u indicates if a momentum crash in month t is likely or

not, where δt is equal to one when the momentum crash probability is high and zero else. This

approach is similar to the weighting presented in Chow et al. (1999, Eq. (B-1)) that weights risk

characteristics of calm and crash periods by the probability that a calm or crash regime occurs.93

As mentioned above, to better capture the upside potential in up-markets (δt � 0), we focus

on univariate risk measures that capture information on both tails of the return distribution. In

contrast, the quantile based risk measures, like LPM, VaR or CVaR, only capture information on

downside (upside) risk for the winners (losers). Hence, these weighting schemes should perform

well in down-periods, but should not contain much information in uptrending periods. For that

reason, we focus on strategies using skewness or RSJ to determine wj,unii,t . For example, in an

uptrending market, winners with higher skewness, i.e. higher upside potential, are weighted

higher. Similarly, using the RSJ measure, winner (loser) industries with a higher weight are

typically industries where positive (negative) jumps are more likely than negative (positive)

jumps. Jondeau et al. (2019, Figure 5) find that a skewness based trading strategy performs well

in uptrending periods but still exhibits a high crash risk in crises. However, the high crash risk

of a skewness based momentum portfolio is not a concern for our switching strategy. Even more

important, Jiang et al. (2020, Sec. V.B) find that skewness is a positive return predictor in periods

of low market volatility. Thus, the skewness weighting should work well in periods when

market volatility is low, since assets with a higher skewness, which also obtain higher weights,

exhibit higher returns in these periods. This is appealing for investors, since most investors

would even accept lower returns in order to obtain higher levels of skewness. Since periods of
93Another alternative to our switching strategy in Equation (3.5.1) that switches between univariate and system-

atic tail risk would be to follow the approach of Chow et al. (1999) and define each risk measure for calm and
crash periods. Thus, when estimating an industry’s univariate and systematic tail risk all observations could be
separated into normal observations and multivariate outliers (see Chow et al. (1999, Fig. 2-4) for an illustration of
this separation process). Each risk measure could then be estimated based on these two samples and the portfolio
risk could then be defined as a weighted average of these measures (Chow et al., 1999, Eq. (B-1)). Hence, instead
of switching between univariate and systematic tail risk, one could also switch between normal and stressed risk,
e.g. skewness in calm periods and skewness in crash periods.
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a low market volatility typically coincide with periods of a low momentum crash probability

(Daniel and Moskowitz, 2016, Du Plessis and Hallerbach, 2017, Wang and Xu, 2015), our

switching strategy would switch to the skewness weighting, just when this approach offers an

appealing risk-return profile. In contrast, in periods of a high market volatility, Jiang et al. (2020,

Sec. V.B) find that skewness is a negative return predictor, i.e. assets with a higher skewness

exhibit lower returns. Since periods with higher market volatility typically coincide with an

increased momentum crash probability, our switching approach would use a systematic risk

based weighting in these times. Thus, the switching approach would use the skewness weighting

only when this weighting scheme produces an enhanced risk-return profile, but switches to a

systematic tail risk weighting in times when the skewness weighting becomes unappealing.

Since the measure of Jiang et al. (2020) is also quite similar to the RSJ measure, switching

between an RSJ and systematic tail risk weighting, based on a momentum crash indicator,

should also be very appealing. In total, our switching approach should produce higher returns

than the equally weighted portfolio in calm periods (δt � 0) while simultaneously momentum

crashes are reduced in high risk periods (δt � 1).

To determine whether a momentum crash – or a negative momentum return – is likely in the

next month, several approaches have been presented in the financial literature. Generally, the

drivers of momentum crashes for the individual stock momentum strategy have been examined

by Grundy and Martin (2001), Daniel and Moskowitz (2016), Min and Kim (2016), Wang and

Xu (2015) and Cooper et al. (2004). The authors show that momentum crashes typically occur

when the market rebounds after a period of negative market returns or high market volatility.

Hence, momentum crashes of the individual stock momentum strategy can be (partly) predicted

by the past return and/or volatility of the market. However, Grobys et al. (2018, Table 7) find

that industry momentum and stock momentum crashes are quite different and that these crash

indicators do not work as well for industry momentum as for individual stock momentum. In

contrast, Du Plessis and Hallerbach (2017) find that a high market volatility negatively predicts

industry momentum returns. This finding is similar to the earlier finding of Wang and Xu (2015)

and Daniel and Moskowitz (2016) that negative returns of the individual stock momentum strat-
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egy typically occur after periods of a high market volatility.

Instead of predicting momentum crashes based on past market volatility, the momentum

crash indicator can also be defined based on the volatility of the (equally weighted) momen-

tum strategy. Barroso and Santa-Clara (2015) and Barroso and Maio (2019) show that a high

volatility of the individual stock based momentum portfolio predicts negative returns of the

momentum portfolio. Du Plessis and Hallerbach (2017), Grobys et al. (2018) and Grobys and

Kolari (2020) find a similar result for industry momentum and Grobys (2018) confirm this find-

ing for the 52 week high momentum strategy. Based on this observation, we define a crash

indicator that indicates a momentum crash in the next month if momentum’s volatility is ex-

pected to be high, where we define “high” as a volatility that is higher than the chosen volatility

target σtarget that will be used in the next section. Defining the crash indicator based on the

volatility target σtarget has the advantage that an investor’s portfolio allocation is directly influ-

enced by the investor’s risk-aversion, which should be incorporated in the portfolio allocation

process (Chow et al., 1999).94 For our main results we choose σtarget � 8%, but we show results

for other choices in Appendix B.8. We additionally show results for a time-varying threshold

σtarget that is determined by the long run volatility. The crash indicator is then given by

δt �
"

1 if RV WML
t�1 ¡ σtarget

0 if RV WML
t�1 ¤ σtarget,

(3.5.2)

where RV WML
t�1 �

b
1
T

°T
k�1

°21
j�1prWML,eq

t�k,j q2 denotes the Realized Volatility of the equally

weighted momentum portfolio, rWML,eq
t,j denotes the daily return of the equally weighted mo-

mentum portfolio on day j in month t and T denotes the number of months used to estimate

RV WML
t�1 . We use T � 1 for our main results but find that results are quite robust for different

choices of T , which are shown in Appendix B.8. The appendix additionally shows results when

past market volatility instead of past momentum volatility is used.

As an alternative to the volatility based crash indicator in Equation (3.5.2), momentum

crashes could also be predicted based on the equally weighted momentum strategy’s past per-
94A risk-averse investor would choose a lower volatility target (see Bollerslev et al. (2018, p. 2757) who derive

the volatility target as a function of an investor’s risk aversion), which would lead to a portfolio that is mainly
managed by systematic tail risk. In contrast, a less risk-averse investor chooses a higher volatility target which
leads to a more aggressive and mainly univariate tail risk managed portfolio. Thus, the portfolio of a more risk-
averse investor will be more conservatively than the portfolio of a less risk-averse investor.
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formance using the TSMOM strategy of Moskowitz et al. (2012). Moskowitz et al. (2012,

p. 241) find that “TSMOM and [cross-sectional momentum] are related, but are not the same”.

Thus, applying TSMOM to the momentum portfolio should contain additional information on

the expected state of the momentum portfolio. Moskowitz et al. (2012) find that an asset’s own

past performance is a positive predictor of its future return. Further, Moskowitz et al. (2012,

Figure 4) and Asvanunt et al. (2015, Exhibit 3) show that TSMOM works best in extreme

markets and is successful in determining crash periods. Harvey et al. (2018) also argue that

trend-following rules, such as the TSMOM strategy, well forecast crashes. Thus, “time series

momentum may be a hedge for extreme events” (Moskowitz et al., 2012, p. 230) and should be

an adequate tool to predict momentum crash periods. However, instead of switching to a con-

trarian strategy, as suggested by TSMOM, TSMOM signals could be used to switch between

univariate and systematic risk based weightings. Moskowitz et al. (2012, Table 2) find good re-

sults for the 12 months lookback and one month holding TSMOM strategy, but the authors show

that other lookback periods also work well. Similarly, Goyal and Jegadeesh (2017, Table 1) find

good results of TSMOM for a one month holding period and lookback periods between one and

60 months. The impact of the lookback period on the profitability of TSMOM has also been ex-

amined by Dudler et al. (2015) and Du Plessis and Hallerbach (2017). In particular, Moskowitz

and Grinblatt (1999) and Novy-Marx (2012) find that an industry’s past month’s return contains

valuable information on the industry’s future return. Moreover, Goyal and Jegadeesh (2017,

Table 1) find that the short-term reversal effect does not hold for the TSMOM strategy but for

the individual stock based cross-sectional momentum strategy. Thus, short look back periods

should work well for the TSMOM strategy applied to the industry momentum portfolio. We

used several TSMOM strategies based on lookback periods between one month and 36 months

to determine δt and found quite similar results for these lookback periods. Additional robustness

results for the TSMOM based crash indicators are again shown in the appendix.

In total, to rule out that the switching approach only works for one definition of the crash in-

dicator δt, we also used several other definitions of the crash indicator. These robustness results

are shown in Appendix B.8. In Table LIII, we show results for the crash indicator in Equation
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(3.5.2) when Realized Volatility is estimated based on the past six months of daily data as well

as two other levels of σtarget. In Table LIV, we define the crash indicator of Equation (3.5.2)

based on the past volatility of the market for three levels of σtarget.95 This indicator is motivated

by the finding of Daniel and Moskowitz (2016), Du Plessis and Hallerbach (2017) and Wang

and Xu (2015) that a high market volatility is good indicator for a momentum crash. In Table

LV, we define the momentum crash indicator when momentum’s short-term volatility is higher

than momentum’s long-term volatility, where we use three different combinations of short- and

long-term volatility. Finally, in Table LVI, we define the crash indicator based on three dif-

ferent TSMOM strategies applied to the equally weighted momentum strategy. Furthermore,

combining information on several crash indicators also produces very good results. For exam-

ple, combining information on momentum’s volatility and the market’s volatility or combining

information on momentum’s performance with information on volatility is also an appealing ap-

proach to predict industry momentum crashes. This is in line with Rickenberg (2020a) who also

finds that combining several crash indicators produces good results. However, results for these

combinations are not shown since these indicators produce very similar results to the remaining

crash indicators.

3.6 Managing Individual and Portfolio Risk

The previous sections show how the momentum portfolio’s risk can be managed by weighting

the individual assets of the momentum portfolio inversely to their risk. However, several studies

show that correlations between different assets significantly increase during crash periods, i.e.

assets typically crash together (Ang and Chen, 2002, Chabi-Yo et al., 2018, Hong et al., 2007,

Longin and Solnik, 2001, Poon et al., 2004, Weigert, 2015). Hence, diversification fails as a

risk management tool in times when it is most needed. Momentum crashes can be attenuated by

weighting assets inversely to their risk, but these crash periods can still be severe. Alternatively,

95Switching strategies based on the market’s volatility are also frequently used by practitioners (Copeland
and Copeland, 1999). See, for example, the research of Morningstar Inc. (https://www.morningstar.
com/articles/925094/a-momentum-and-low-volatility-switching-strategy). The au-
thor proposes a market volatility based strategy that switches between a momentum and a low volatility strategy.
In periods of a low market volatility, this switching strategy invests in a momentum portfolio and switches to a low
volatility portfolio when market volatility increases.
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the momentum portfolio’s risk can also be managed by dynamically adjusting the exposure to

the momentum strategy.96 An easy method to manage a portfolio’s overall risk is the volatility

targeting strategy. The aim of volatility targeting is to frequently adjust the exposure to a strat-

egy in order to achieve a constant level of portfolio volatility σtarget over time. Risk targeting

is an appealing method to reduce left tail risk and drawdowns (Barroso and Santa-Clara, 2015,

Harvey et al., 2018, Rickenberg, 2020a,b).97 In particular, risk targeting has the advantage that

portfolio risk management can be separated from the portfolio allocation process.98 Hence,

the risk targeting approach can easily be combined with the momentum strategy as frequently

done in the literature (Barroso and Maio, 2018, Barroso and Santa-Clara, 2015, Daniel and

Moskowitz, 2016, Du Plessis and Hallerbach, 2017, Grobys, 2018, Grobys and Kolari, 2020,

Grobys et al., 2018, Moreira and Muir, 2017, Rickenberg, 2020a). Barroso and Santa-Clara

(2015) and Barroso and Maio (2019) show that a higher volatility of the individual stock based

momentum portfolio predicts a higher future volatility and lower future return of the momen-

tum portfolio.99 Thus, periods with a high volatility of the momentum portfolio are unappealing

for investors since these periods coincide with significantly lower Sharpe Ratios and should be

96The momentum strategy is typically 1$ long the winners and 1$ short the losers. Since momentum is a
zero investment strategy, the exposure to the strategy can be scaled arbitrarily. In order to manage momentum
crashes, the dollar exposure should be reduced in periods of high risk and increased in periods of low risk. Another
alternative to this approach is to hedge momentum’s risk with other factor portfolios, like the market or size factor
(Grundy and Martin, 2001, Martens and Van Oord, 2014) or the value factor that is negatively correlated with
momentum (Asness et al., 2013).

97See Rickenberg (2020b, Appendix A) for a list of further advantages of risk targeting applied to equity portfo-
lios. In particular, volatility targeting is highly related to the optimal portfolio choice of a mean-variance investor.
For example, Zakamulin (2015, p. 91) state that “under some conditions, the volatility targeting strategy might
present the optimal implementation of risk control over time”.

98Agarwal and Naik (2004) show that the skill of a portfolio manager can be separated into his market timing
and stock picking ability. Targeting the risk weighted momentum strategy’s volatility means that the overall risk
is managed by scaling the exposure to the portfolio, whereas the asset allocation is chosen based on the assets’
individual past performance and risk.

99A similar observation also holds for long-only equity portfolios. In contrast to the risk-return relation of
the momentum portfolio, the risk-return relation for equities has been frequently examined (see Bekaert and Wu
(2000), French et al. (1987), Glosten et al. (1993) among others). See also Rickenberg (2020b) for further refer-
ences on the risk-return relation for equities. A possible explanation for the negative relation between volatility and
future return is the volatility feedback effect or time-varying risk premium effect. Bekaert and Wu (2000, p. 1-2)
state: “If volatility is priced, an anticipated increase in volatility raises the required return on equity, leading to an
immediate stock price decline.” This effect is different to the well-known leverage effect that describes a negative
relation between return and future volatility. Bekaert and Wu (2000) state that both effects interact and that the
leverage effect strengthens the volatility feedback effect. See also Bekaert and Wu (2000, Fig. 1) for an illustration
of both effects.
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avoided by momentum investors.100 Based on this observation, Cederburg et al. (2020), Daniel

and Moskowitz (2016), Barroso and Maio (2018), Barroso and Santa-Clara (2015), Rickenberg

(2020a) and Moreira and Muir (2017) show that volatility targeting works well for the individ-

ual stock momentum strategy and significantly increases momentum’s (risk-adjusted) return.

Du Plessis and Hallerbach (2017), Grobys et al. (2018, Table 2) and Grobys and Kolari (2020,

Table 5) show that this result also holds for industry momentum, which makes volatility tar-

geting an appealing approach to manage the industry momentum portfolio’s portfolio risk. For

example, Grobys and Kolari (2020) find that volatility targeting increases the return of the in-

dustry momentum strategy by 87% while simultaneously left tail risk is reduced. Similar results

also hold when volatility targeting is applied to the 52 week high industry momentum strategy

as done by Cederburg et al. (2020) and Grobys (2018), where again especially left tail risk

is reduced by volatility targeting (Grobys, 2018, Table 1). However, these studies target the

risk of equally or value-weighted momentum portfolios, and hence only manage momentum’s

portfolio risk without regarding individual asset risk.

Du Plessis and Hallerbach (2017) apply volatility targeting and volatility weighting to time

series and cross-sectional industry momentum strategies. The authors find that both approaches,

volatility targeting and inverse volatility weighting, add value by producing a higher Sharpe

Ratio with lower downside risk. However, the authors do not apply both approaches simultane-

ously. Similarly, Kim et al. (2016) highlight the importance of volatility weighting for the time

series momentum strategy and volatility targeting for the cross-sectional momentum strategy.

Nonetheless, the authors do not apply both approaches to the momentum strategy. Generally,

100Volatility targeting does not only add value when risk and return are negatively correlated, as it is found for
momentum. More generally, volatility targeting can even be advantageous when risk and return are uncorrelated.
For example, when risk and return are unrelated, but volatility is persistent, periods with high volatilities are unap-
pealing for investors since these periods offer an unattractive risk-return profile (Cederburg et al., 2020, Du Plessis
and Hallerbach, 2017, Moreira and Muir, 2017, 2019). This result has been theoretically shown by Du Plessis and
Hallerbach (2017) and also holds empirically as shown by Du Plessis and Hallerbach (2017), Moreira and Muir
(2017) and Moreira and Muir (2019). Further, volatility targeting can even be advantageous when risk and return
are positively related. For example, Moreira and Muir (2019, p. 509) find for their data set that an increase of
volatility coincides with an increase of expected returns, but that “this increase in expected returns is much more
persistent than the increase in volatility. Investors can avoid the short-term increase in volatility by first reducing
their exposure to equities when volatility initially increases and capture the increase in expected returns by coming
back to the market as volatility comes down.” Nevertheless, due to the negative risk-return relation for momentum
“volatility management becomes even more attractive” (Cederburg et al., 2020). The good results of volatility
targeting applied to momentum can bee seen in Table 1, Table 2 and Table 4 of Cederburg et al. (2020).
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simultaneously managing a portfolio’s individual and portfolio risk has already been examined

in the literature, but has not been applied to the momentum strategy. For example, Harvey

et al. (2018) state that volatility managing can be used in a portfolio context on the asset level

as done by Fleming et al. (2001), Fleming et al. (2003), Han (2005) and Kirby and Ostdiek

(2012), the portfolio level as done by Barroso and Santa-Clara (2015), Daniel and Moskowitz

(2016) and Moreira and Muir (2017) or both approaches can be used simultaneously as done by

Baltas (2015), Moreira and Muir (2017, Sec. I.E) and Zakamulin (2015). Harvey et al. (2018,

Exhibit 16) show that all three approaches outperform the non-managed portfolio and that the

strategy that manages risk on an asset and portfolio level performs best. Similarly, Zakamulin

(2015, Exhibit 3) shows that strategies that simultaneously manage a portfolio’s individual as-

set risk and portfolio risk produce higher risk-adjusted returns than non-managed strategies or

strategies that only manage a portfolio’s individual asset risk. In particular, Zakamulin (2015,

p. 86) state that “in a world in which the mean return and covariance matrix vary with time, it is

insufficient to revise the composition of the optimal risky portfolio. In addition, as time passes,

one must also revise the capital allocation”. Moreira and Muir (2017, Sec. I.E) apply volatility

targeting to mean-variance efficient factor portfolios by first calculating portfolio weights that

maximize the portfolio’s Sharpe Ratio. The risk of the mean-variance efficient portfolio is then

managed by the portfolio’s volatility. Moreira and Muir (2017, Table II) find that this strat-

egy outperforms the strategy that only uses mean-variance efficient portfolio weights. Further,

Moreira and Muir (2017, p. 1621) find that “[t]his finding is robust to including the momentum

factor as well”. Moreover, Cederburg et al. (2020), Barroso and Maio (2018) and Moreira and

Muir (2017) find that volatility targeting also works well for the low beta and low volatility

portfolio. This approach also regards an asset’s individual risk and the whole portfolio’s risk.

Moreover, an approach that is very similar to the approach examined here is also presented

in Baltas (2015). The author applies the inverse volatility and risk parity weighting scheme

to the TSMOM strategy and then uses the volatility targeting approach to manage the whole

portfolio’s risk. The combination of risk targeting and risk weighting is appealing since both

approaches capture different aspects. For example, Moreira and Muir (2017, Sec. II.D) compare
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both strategies and find that volatility targeting is “very different from strategies that explore a

weak risk-return trade-off in the cross-section of stocks, which are often attributed to lever-

age constraints” and that “one can volatility time the cross-sectional anomaly.” In particular,

“time-series volatility managed portfolios are distinct from the low-beta anomaly documented

in the cross-section.” Thus, combining portfolio risk management in the time-series and the

cross-section, as done by applying volatility targeting to our risk weightings, seems appealing.

The risk weightings presented in the previous sections do not change the amount invested

long in the winners portfolio and short in the losers portfolio. From
°n
i�1w

W
i,t �

°n
i�1w

L
i,t � 1

it follows that the strategies examined so far invest each month 1$ long in the winners portfolio

and 1$ short in the losers portfolio. Thus, the risk weighted momentum portfolio is still a zero-

investment strategy. Therefore, the exposure to the momentum strategy can be scaled arbitrarily

using the volatility targeting strategy of Barroso and Santa-Clara (2015, Eq. (6)). The month t

return of this strategy is then given by

RWML�

t � σtarget
σ̂t

�RWML
t � γt �RWML

t , (3.6.1)

where σtarget is the chosen volatility target, RWML
t is the month t return of the momentum port-

folio using one of our weighting schemes, σ̂t is an estimate of the strategy’s month t volatility

and γt � σtarget{σ̂t is the month t exposure to this strategy. Hence, by combining risk weighting

with risk targeting, the month t portfolio weight of asset i in the winners and losers portfolio is

given by wW�

i,t � γt �wWi,t and wL�i,t � γt �wLi,t, respectively. Thus, an asset’s weight in the winners

and losers portfolio is given by the relation of the asset’s risk to the risks of the remaining assets

in the portfolio (wWi,t or wLi,t) as well as the exposure to the whole portfolio (γt). This approach

is similar to the approach used by Baltas (2015, Eq. (4)) for the TSMOM strategy. In particular,

from
°n
i�1w

W
i,t �

°n
i�1w

L
i,t � 1 we obtain

°n
i�1w

W�

i,t � °n
i�1w

L�

i,t � γt. Thus, as shown in

Barroso and Santa-Clara (2015, Fig. 4), the amount invested in the long and short leg of the

momentum portfolio varies over time. As mentioned above, momentum’s risk and return are

negatively correlated and momentum’s volatility is a good momentum crash indicator. Hence,

by targeting a constant level of volatility, the exposure to the momentum strategy is typically

increased when a positive momentum return is expected and decreased when a negative mo-
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mentum return or a momentum crash is likely. Du Plessis and Hallerbach (2017) and Grobys

et al. (2018) also apply the approach of Equation (3.6.1) to the industry momentum strategy

and find that this approach produces a higher risk-adjusted return and reduces the portfolio’s

crash risk compared to the strategy with a fixed exposure (Grobys et al., 2018, Table 4). In

particular, the authors find that the volatility managed industry momentum strategy has a sig-

nificantly higher skewness, which can sometimes be even positive. Thus, the volatility targeted

momentum strategy is much more appealing for investors who dislike lower levels of skewness

and are crash-averse.

In order to forecast next month’s volatility σ̂t, we first construct “pseudo” daily returns based

on the weights that have materialized in the past. For a given weighting scheme, we define the

“pseudo” return for asset i in the winners and losers portfolio on day j of month t as

r̃Wi,t,j � wWi,t � rWi,t,j and r̃Li,t,j � wLi,t � rLi,t,j, j � 1, ..., 21, (3.6.2)

where rWi,t,j and rLi,t,j denote the return of asset i in the winners and losers portfolio on day j

in month t. Hence, “pseudo” daily returns are calculated by assuming fixed portfolio weights

within one month. The momentum portfolio’s “pseudo” return on day j of month t is then given

by

r̃t,j �
ņ

i�1

r̃Wi,t,j � r̃Li,t,j �
ņ

i�1

wWi,t � rWi,t,j � wLi,t � rLi,t,j. (3.6.3)

To forecast month t’s volatility, we use the Realized Volatility (RV) estimator of month t � 1

that is also used by Barroso and Santa-Clara (2015), Moreira and Muir (2017) and Grobys et al.

(2018).101 The volatility forecast used in Equation (3.6.1) is then given by

σ̂t �
gffe 1

T

Ţ

k�1

21̧

j�1

r̃2
t�k,j, (3.6.4)

where we follow Barroso and Santa-Clara (2015) and choose T � 6 months for our main

results. However, our results are also robust to choices between one and twelve months.
101Rickenberg (2020a) shows that targeting momentum’s volatility based on advanced volatility models is su-

perior to the simple RV model. However, since this paper focuses on simple non-parametric risk estimates, we
rely on the simple RV estimator. We show in Appendix B.9 robustness results for the EWMA volatility model.
Rickenberg (2020a,b) shows that this model performs well in a volatility targeting context.
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Several alternatives to this approach are also feasible. For example, following the approach

of Christoffersen (2012, p. 22) “pseudo” returns could also be defined as the returns “that would

have materialized if today’s portfolio allocation had been used through time”. The “pseudo”

returns for asset i in the winners and losers portfolio on day j of month t would then be given

by

r̃Wi,t�k,j � wWi,t � rWi,t�k,j for k � 1, ..., T and j � 1, ..., 21, (3.6.5)

r̃Li,t�k,j � wLi,t � rLi,t�k,j for k � 1, ..., T and j � 1, ..., 21. (3.6.6)

Further, following Zakamulin (2015, p. 94), month t’s volatility could also be estimated in two

steps. First, month t’s covariance matrix of all asset could be estimated. Second, based on

this covariance matrix, portfolio volatility of month t could be estimated using the covariance

matrix from the first step and the month t vector of all weights as shown in Zakamulin (2015,

Eq. (28)). Furthermore, instead of using pseudo returns, the exposure to each strategy could also

be calculated based on the equally weighted momentum portfolio’s volatility (see also Moreira

and Muir (2017, Sec. II.E), Cederburg et al. (2020, Footnote 7) and references therein on scaling

a strategy’s exposure by the volatility of another strategy). Another alternative to the volatility

targeting strategy based on Realized Volatility would be to scale the exposure by the cross-

sectional dispersion, which is also a measure for market uncertainty and is negatively correlated

with the momentum portfolio’s return (Grobys, 2018, Stivers and Sun, 2010, Wang and Xu,

2015). However, Du Plessis and Hallerbach (2017) find that a dispersion based approach applied

to the industry momentum strategy is less effective than the volatility based approach.

As a robustness check, we show in Section B.9 several alternatives to the volatility targeting

approach presented here. In Table LVII, we show results for other levels of σtarget and for the

EWMA volatility model. Further, since Rickenberg (2020a,b) shows that portfolio risk can also

be managed by targeting a constant level of tail risk, measured by CVaR, we show in Tables

LVIII and LIX results for the strategy that manages momentum’s CVaR as well as results for

the strategy that switches between volatility and CVaR targeting. For the switching strategy, we

use the same crash indicator that is also used to switch between the univariate and systematic

risk weightings. Thus, an asset’s weight is given by the asset’s univariate tail risk and the
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portfolio’s volatility in times when a momentum crash is unlikely, whereas the asset’s weight

is given by the asset’s systematic risk and the portfolio’s tail risk when a momentum crash is

likely. We estimate CVaR based on the simple Historical Simulation and the more advanced

EWMA-FHS model combined with the SRTR rule (see Rickenberg (2020a) for more details on

these methods).

3.7 Empirical Results

3.7.1 Data

We now examine the performance of the different weighting schemes applied to the industry

momentum strategy. For our main results, we use daily and monthly returns of 30 equally

weighted US industries obtained from the website of Kenneth French. We use equally weighted

industries, since Grundy and Martin (2001, Table 4) and Moskowitz and Grinblatt (1999, Foot-

note 12) find better results for the momentum strategy using equally weighted industries instead

of value-weighted industries. In Appendix B.4, we show additional results for value-weighted

industries and confirm the finding of Grundy and Martin (2001) that industry momentum based

on equally weighted industries is more profitable. To determine winners and losers, we rank

industries based on their past performance between months t� 12 and t� 1 and we define win-

ners and losers as the best and worst p � 30% performers. Appendix B shows additional results

for other ranking periods, other US industry data sets, other cut-off points as well as Global and

European industry portfolios. The reason for this robustness check is that several studies show

that the performance of the industry momentum strategy can be quite different for different

data sets, ranking periods and cut-off points. We further show in Appendix B additional results

for other portfolio based momentum strategies using investment styles and country indices.

Lewellen (2002) and Novy-Marx (2012) apply the momentum strategy to investment style port-

folios. We show results for 25 and 100 double sorted portfolios based on size and value using

US, European and International stocks (Fama and French, 1993, 2012). Further, we use several

style portfolios based on profitability and investment (Fama and French, 2016). Generally, style

portfolios are frequently used in portfolio allocation studies (DeMiguel et al., 2009a,b, Kan and
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Zhou, 2007, Kirby and Ostdiek, 2012, Zakamulin, 2015).102 Additionally, we show results for

our momentum strategies applied to 25 and 61 country indices. Novy-Marx (2012), Asness

et al. (2013), Richards (1997), Bhojraj and Swaminathan (2006) and Chan et al. (2000) show

that momentum strategies also work for different country equity indices. Country indices are

also frequently used in studies on portfolio allocation and asset pricing (Asness et al., 2020,

Atilgan et al., 2019, DeMiguel et al., 2009b, Garlappi et al., 2006, Kirby and Ostdiek, 2012).103

The next sections show our main results for the 30 equally weighted US Industry portfolios

using the t�12 to t�1 ranking period and a cut-off point of p � 30%. Our data set ranges from

November 1930 to December 2018. Section 3.7.2 starts by examining results of the inverse

risk and rank weighting schemes using a single risk measure. Results for the strategies that

switch between a univariate and systematic risk measure are shown in Section 3.7.3. Finally,

in Section 3.7.4 we show results for the strategies that simultaneously manage the momentum

portfolio’s constituents’ individual risk and the momentum portfolio’s portfolio risk. Additional

performance results are shown in Appendix B.

3.7.2 Tail Risk Weighted Momentum Strategies: Single Measures

In this section, we show results for the momentum strategies that are weighted by a single risk

measure as shown in Section 3.2.4, Section 3.3 and Section 3.4. We compare these risk weighted

momentum strategies to the strategy where industries in the winners and losers portfolios are

equally weighted. Table I shows results for the strategies using the inverse risk weighting of

Equation (3.3.1). This table shows that the inverse volatility weighting reduces the volatility

of the momentum portfolio, but also produces a lower return. In contrast, the (systematic) tail

risk weighted portfolios produce higher returns without producing higher levels of volatility.

This can also be seen by the higher Sharpe Ratio of most (systematic) tail risk weighted strate-

gies. To assess if the increase in the Sharpe Ratio is statistically significant, we use the testing

102For example, Kan and Zhou (2007, p. 646) state: “Because Fama and French’s (1993) 25 portfolios, formed
based on size- and book-to-market ratio, are the standard test assets in recent empirical asset pricing studies, we
assume that the investor invests in these 25 portfolios.”

103We obtain US industries and style portfolios from Kenneth French’s website (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html). International and European
industry data as well as country indices are obtained from Datastream.
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procedure of Jobson and Korkie (1981).104 The inverse volatility weighted momentum strategy

produces a slightly higher Sharpe Ratio than the equally weighted strategy which is, however,

not statistically significant. This result is in line with Clare et al. (2014) who also find only

minor improvements of the volatility weighted momentum strategy. In contrast, the tail risk

weighted strategies using univariate risk measures, except for the kurtosis and DuSkew based

strategies, all produce higher Sharpe Ratios, where five strategies produce statistically higher

Sharpe Ratios. As mentioned in earlier sections, the finding that the kurtosis based strategy does

not enhance the risk-return profile is not surprising, since kurtosis measures risk symmetrically

and is a bad measure to weight assets of a portfolio consisting of long and short positions. Best

results among the univariate risk measures are found for the skewness and the RSJ measure that

measure a distribution’s asymmetry and incorporate information on both tails.

The systematic tail risk weighted strategies, except for the coskewness based strategy, also

produce higher Sharpe Ratios. We show in Appendix B.1 that one possibility to improve the

performance of the coskewness based weighting is to condition on negative returns of the mo-

mentum portfolio when coskewness risk is measured. We call this measure the Downside

Coskewness, which is similar to the LPM-beta of order k � 3. The remaining systematic

risk weighted strategies produce higher Sharpe Ratios, where most increases are also statisti-

cally significant. The increase of the MES managed strategy is only significant at a test level

of 10%, i.e. zJK ¡ 1.64. In particular, Sharpe Ratios of the systematic risk weighted strate-

gies are slightly higher than the Sharpe Ratios of the univariate risk weighted strategies. Thus,

measuring an asset’s comovement with the momentum portfolio and downweighting assets that

strongly co-crash with the momentum portfolio is an appealing portfolio allocation approach.

This finding is also interesting for practitioners since most portfolio allocation methods used in

practice focus on univariate risk measures, where especially volatility is frequently used. Thus,

practitioners should also pay attention to systematic risk based weightings as examined by As-

ness et al. (2014), Asness et al. (2020) and Frazzini and Pedersen (2014). Asness et al. (2020)
104The Jobson and Korkie (1981) approach is used to test for a significantly higher Sharpe Ratio and has been

frequently applied in the literature (Blitz and Van Vliet, 2007, DeMiguel et al., 2009b, Jondeau et al., 2019, Zaka-
mulin, 2015, 2017). Since the original test of Jobson and Korkie (1981) contains a small error, we use a modified
version that corrects for this error (see Cederburg et al. (2020, Footnote 8), DeMiguel et al. (2009b, p. 1928) and
Jondeau et al. (2019, p. 41) for a short summary of this testing procedure).
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Table I. Performance Results: Inverse Risk Weighting
This table shows performance results of the equally and inverse risk weighted industry momentum strate-
gies using 30 equally weighted US industries, the t � 12 to t � 1 ranking period and a cut-off point of
p � 30%. Return and Volatility correspond to the annualized return and volatility, respectively. Skew
and Kurt denote the realized skewness and kurtosis. SR stands for the annualized Sharpe Ratio. zJK
denotes the test statistic of the Jobson and Korkie (1981) test. MDD stands for the maximum drawdown.
Calmar denotes the ratio of the annualized return and the maximum drawdown. Min and Max stand for
the minimum and maximum monthly return, respectively. Return, Volatility, MDD, Min and Max are
given in percent. Bold numbers of zJK mark strategies that produce a statistically higher Sharpe Ratio
than the equally weighted strategy for a test level of 5%, i.e. zJK ¡ 1.96.

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.17 12.11 -0.904 11.364 0.758 - 48.48 0.189 -25.96 18.61
RV 8.91 11.33 -1.065 11.484 0.787 1.22 47.60 0.187 -23.75 15.94

LPM0 9.32 12.20 -0.845 11.026 0.764 1.96 48.30 0.193 -24.78 19.34
LPM1 9.18 12.10 -0.902 11.340 0.758 0.99 48.45 0.189 -25.88 18.61
LPM2 9.17 12.11 -0.904 11.363 0.758 0.21 48.48 0.189 -25.95 18.61
Skew 10.17 12.33 -0.369 9.743 0.825 2.64 37.84 0.269 -27.37 19.12
Kurt 8.45 11.53 -1.031 10.645 0.733 -0.47 50.47 0.167 -24.45 13.25
DuVol 9.62 12.29 -0.463 9.992 0.783 0.90 43.92 0.219 -25.32 18.72
DuSkew 9.31 12.91 -0.308 9.539 0.721 -0.77 44.66 0.208 -24.80 19.63
SJ 9.19 12.10 -0.895 11.328 0.759 1.39 48.32 0.190 -25.81 18.62
RSJ 10.69 12.32 -0.626 9.551 0.868 4.84 41.56 0.257 -25.72 18.42
VaR HS 9.26 11.42 -0.917 11.309 0.811 2.21 48.61 0.190 -24.13 17.43
CVaR HS 9.16 11.33 -0.941 11.146 0.808 2.04 48.24 0.190 -23.14 16.75
Rachev HS 9.40 12.11 -0.639 10.128 0.776 1.30 46.91 0.200 -24.70 18.52

Corr 9.36 11.35 -0.977 11.504 0.825 4.86 46.97 0.199 -25.09 17.20
Down Corr 9.27 11.56 -1.029 12.501 0.801 3.39 49.87 0.186 -27.38 17.84
Beta 9.55 10.13 -0.950 10.780 0.943 4.29 41.29 0.231 -20.32 15.53
Down Beta 9.55 10.60 -0.964 12.627 0.901 2.82 47.16 0.203 -26.10 15.21
CoSkew 9.29 12.33 -0.645 10.710 0.753 -0.20 50.53 0.184 -25.95 19.56
CoKurt 9.68 10.92 -1.298 14.356 0.887 2.16 51.56 0.188 -28.59 13.17
LPM Beta 10.00 10.16 -0.606 9.423 0.984 4.47 42.01 0.238 -18.21 16.14
HTCR Beta 9.32 10.29 -0.938 10.772 0.906 3.57 41.44 0.225 -20.46 14.59
Tail Beta 9.57 10.54 -0.715 10.119 0.907 3.44 41.97 0.228 -19.19 16.56
Tail Sens 9.23 11.77 -0.936 11.480 0.784 3.85 47.99 0.192 -25.54 17.98
Tail Risk 9.52 10.56 -0.815 10.356 0.901 3.84 43.90 0.217 -19.38 16.46
MES 9.18 12.08 -0.899 11.322 0.760 1.95 48.37 0.190 -25.82 18.61

also find that systematic risk based trading strategies produce higher returns than strategies that

are based on (idiosyncratic) risk.

The inverse risk weighting used in Table I relies on point estimates of the industries’ risk.

Since we focus on non-parametric estimates, the inverse risk weighting is prone to estimation

risk, and hence portfolio weights could potentially be influenced by estimation errors, which

lead to highly variable portfolio weights and needless transaction costs. Therefore, we next ex-

amine results of the rank weighting that is less sensitive to estimation errors and should produce

more robust portfolio weights. Results of the rank weighted industry momentum strategies are

shown in Table II. As for the inverse risk weighting, the volatility weighted strategy produces a

higher Sharpe Ratio than the equally weighted strategy, but this increase is not statistically sig-
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nificant. In contrast, most of the (systematic) tail risk weighted strategies exhibit an enhanced

risk-return profile. Among the univariate risk measures, we again find the best results for the

skewness and RSJ measures. Weightings based on these risk measures particularly reduce left

tail risk while simultaneously a higher return is obtained. Further, weightings based on system-

atic risk measures produce the most convincing risk-return profile. All systematic risk based

weightings, except for the coskewness based weighting, produce higher Sharpe Ratios. The

increase in the Sharpe Ratio is statistically significant for all systematic risk measures, except

for the downside correlation based weighting. Weightings based on systematic risk measures

are again successful in reducing left tail risk while simultaneously increasing return potential.

Interestingly, we find that the highest Sharpe Ratio is obtained for the MES weighting, which is

the model that did not produce a statistically higher Sharpe Ratio when used for the inverse risk

weighting. Thus, although the inverse risk and rank weightings produce an enhanced risk-return

profile compared to the equally weighted strategy, both weighting schemes can sometimes pro-

duce quite different results.

In total, results of Table I and Table II demonstrate the importance of incorporating the

assets’ (systematic) tail risk and that symmetric risk measures, like volatility and kurtosis, do

not work well for long-short strategies. In particular, weightings based on skewness, RSJ or

systematic risk measures successfully reduce momentum’s high negative skewness while si-

multaneously the strategies’ return is increased. This finding is striking since most “investors

are willing to give up some of the right tail to reduce the left tail” (Harvey et al., 2018, p. 15).

Our weighting schemes do not only reduce the mass in the left tail, they also increase the mass in

the right tail, i.e. these strategies are highly valuable for most investors. In contrast, the volatil-

ity weighted strategy increases left tail risk while simultaneously a lower return is obtained.

This finding again highlights the disadvantage of using volatility as risk measure and that using

volatility as a portfolio risk management tool does not necessarily manage a portfolio’s loss

potential, especially for long-short portfolios.

Since the rank weighting is more successful in reducing left tail risk and since these strate-

gies are also less prone to estimation risk, the rank weighted strategies are more convincing and
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Table II. Performance Results: Rank Weighting
This table shows performance results of the equally and rank weighted industry momentum strategies
using 30 equally weighted US industries, the t � 12 to t � 1 ranking period and a cut-off point of
p � 30%. The description of the columns is given in Table I.

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.17 12.11 -0.904 11.364 0.758 - 48.48 0.189 -25.96 18.61
RV 8.44 10.87 -1.192 11.828 0.776 0.48 45.89 0.184 -21.59 13.57

LPM0 10.58 13.62 -0.563 10.720 0.777 0.41 53.79 0.197 -30.24 22.73
LPM1 9.57 11.21 -0.750 10.769 0.853 2.13 47.34 0.202 -22.92 19.97
LPM2 8.97 10.97 -0.982 10.902 0.818 1.43 47.22 0.190 -22.04 15.90
Skew 10.80 12.65 -0.263 9.869 0.854 2.31 40.19 0.269 -29.32 20.11
Kurt 7.90 11.16 -1.051 10.707 0.708 -1.17 53.06 0.149 -22.93 13.49
DuVol 10.09 12.32 -0.386 9.187 0.819 1.47 37.96 0.266 -26.61 18.74
DuSkew 9.63 12.38 -0.481 9.811 0.778 0.49 42.69 0.226 -26.41 18.00
SJ 11.70 13.03 -0.436 9.894 0.898 3.23 37.95 0.308 -26.75 21.00
RSJ 12.02 12.83 -0.604 9.920 0.937 4.08 37.09 0.324 -27.89 18.04
VaR HS 9.18 11.04 -0.771 10.911 0.832 1.73 46.87 0.196 -21.91 17.97
CVaR HS 8.92 11.02 -1.138 12.414 0.810 1.25 49.26 0.181 -22.48 15.27
Rachev HS 9.88 12.41 -0.247 8.577 0.796 0.89 42.56 0.232 -25.25 18.18

Corr 9.33 9.88 -0.905 11.482 0.944 3.53 40.20 0.232 -20.22 16.07
Down Corr 9.15 10.94 -1.953 24.802 0.836 1.58 56.15 0.163 -36.45 16.00
Beta 9.46 9.74 -0.851 10.789 0.971 4.11 40.28 0.235 -19.80 14.10
Down Beta 9.38 10.40 -1.322 16.785 0.902 2.91 48.02 0.195 -29.48 15.94
CoSkew 8.91 12.35 -0.785 14.159 0.721 -0.84 56.03 0.159 -32.18 22.98
CoKurt 9.58 10.60 -1.685 18.225 0.904 2.95 50.84 0.188 -30.88 12.43
LPM Beta 9.84 9.92 -0.690 10.407 0.991 4.52 42.12 0.233 -19.75 15.81
HTCR Beta 9.31 9.80 -0.790 9.681 0.949 3.90 38.97 0.239 -17.45 14.78
Tail Beta 9.65 10.65 -0.630 10.203 0.906 3.19 44.28 0.218 -19.40 19.12
Tail Sens 9.62 10.10 -0.704 9.093 0.952 4.02 37.38 0.257 -19.81 14.00
Tail Risk 9.47 10.39 -0.626 10.394 0.912 3.33 43.79 0.216 -20.12 16.89
MES 10.06 9.95 -0.457 9.048 1.011 4.83 38.95 0.258 -16.58 17.20

seem more relevant for practitioners. For that reason, we further concentrate on this weight-

ing scheme and only present results for the rank weighted strategies. Results for the inverse

risk weighted strategies were quite similar, albeit slightly worse. As a robustness check of the

results presented in this section, we further show in Appendix B.1 additional results for the

rank weighted strategy using other estimation windows and cut-off points to determine extreme

returns when (systematic) tail risk is estimated. Results in the appendix show that the risk

weighted momentum strategies are also beneficial when estimation lengths between one month

and 60 months of daily data are used. Further, cut-off points of 10%, 20% and 30% can be

used when systematic risk is estimated. We find that our simple weighting approach is hardly

influenced by the choice of the estimation window and cut-off point. In particular, our approach

works well for all reasonable choices, but works best for short- and medium term estimation

windows as well as cut-off points that emphasize observations in the far tail. Nevertheless, in

the next sections we will only show results for the estimation windows and cut-off points used
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in this section.

3.7.3 Switching Between Univariate and Systematic Risk Measures

Results in Tables I and II highlight that the (systematic) tail risk weighted portfolios produce

an enhanced risk-return profile compared to the equally and volatility weighted momentum

strategies, where especially the systematic risk weighted strategies perform well by reducing

momentum’s risk while simultaneously a higher return is achieved. As mentioned in Section

3.5, the systematic risk weighted strategies should perform especially well in down-periods,

but should not adequately capture momentum’s upside potential in up-periods. In contrast, the

weightings based on univariate risk measures should be less successful in mitigating extreme

losses in extreme down-periods, but should be more successful in capturing the upside poten-

tial. For that reason, we next examine the performance of the switching strategies presented in

Section 3.5 that weight industries based on a univariate risk measure when an up-period is ex-

pected and weight industries based on systematic tail risk measures in expected down-periods.

To better capture the return potential in up-periods, risk measures that quantify risk based on the

whole distribution or at least on both tails should be used. For that reason, we only show results

for the switching strategies that use the skewness or RSJ measure as univariate risk measure.

Furthermore, these risk measures work particularly well as shown in Tables I and II.

Table III shows results for the strategies that switch between the skewness or RSJ measure

and the systematic risk measures, where we use the equally weighted momentum portfolio’s

volatility to determine if a down- or up-period is expected.105 Panel A shows results for the

strategies that switch between skewness and the systematic tail risk measures, whereas Panel B

shows results for the strategies that use the RSJ measure as univariate risk measure. Compared

to the results of Table II, switching between univariate and systematic risk measures typically

produces higher returns and higher Sharpe Ratios than the strategies that rely on either the

univariate or systematic risk based weightings. Furthermore, by switching between the two

risk measures, left tail risk can further be reduced. Thus, using univariate risk measures in up-

105We show additional results for several other crash indicators in Appendix B.8. We find that the switching
strategy also works well for several other definitions of δt. This finding is in line with Rickenberg (2020a) who
also finds that switching strategies based on several momentum crash indicators produce quite similar results.
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Table III. Performance Results: Switching Strategies
This table shows performance results of the strategies that switch between a univariate and systematic
risk based weighting scheme using 30 equally weighted US industries, the t� 12 to t� 1 ranking period
and a cut-off point of p � 30%. Panel A shows results for the strategies that use skewness as univariate
risk measure, whereas Panel B shows results for the strategies that use the RSJ measure as univariate risk
measure. The description of the columns is given in Table I.

Panel A: Switching Based on Skewness Measure

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.17 12.11 -0.904 11.364 0.758 - 48.48 0.189 -25.96 18.61
RV 8.44 10.87 -1.192 11.828 0.776 0.48 45.89 0.184 -21.59 13.57

Skew/Corr 10.85 11.19 -0.493 8.685 0.969 4.16 40.28 0.269 -20.22 16.07
Skew/Down Corr 10.34 11.94 -1.427 18.755 0.866 2.26 56.61 0.183 -36.45 16.00
Skew/Beta 10.92 11.09 -0.442 8.175 0.985 4.57 39.56 0.276 -19.80 14.80
Skew/Down Beta 10.75 11.49 -0.885 12.690 0.935 3.75 47.82 0.225 -29.48 15.94
Skew/CoSkew 10.00 12.51 -0.803 13.624 0.799 0.94 55.96 0.179 -32.18 22.98
Skew/CoKurt 10.48 11.69 -1.155 13.701 0.897 2.96 51.39 0.204 -30.88 14.80
Skew/LPM Beta 11.11 11.12 -0.379 8.214 0.999 4.89 40.63 0.273 -19.75 15.81
Skew/HTCR Beta 10.74 11.05 -0.441 7.648 0.972 4.50 39.05 0.275 -17.45 14.80
Skew/Tail Beta 10.80 11.62 -0.405 8.469 0.929 3.69 42.61 0.253 -19.40 19.12
Skew/Tail Sens 10.91 11.16 -0.459 7.463 0.978 4.63 37.37 0.292 -19.81 14.80
Skew/Tail Risk 10.75 11.42 -0.392 8.507 0.942 3.93 41.16 0.261 -20.12 16.89
Skew/MES 11.12 11.08 -0.226 7.400 1.003 4.91 37.69 0.295 -16.58 17.20

Panel B: Switching Based on RSJ Measure

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.17 12.11 -0.904 11.364 0.758 - 48.48 0.189 -25.96 18.61
RV 8.44 10.87 -1.192 11.828 0.776 0.48 45.89 0.184 -21.59 13.57

RSJ/Corr 11.91 11.12 -0.495 8.650 1.072 6.10 38.26 0.311 -20.22 16.07
RSJ/Down Corr 11.40 11.87 -1.453 19.070 0.960 4.18 55.09 0.207 -36.45 16.00
RSJ/Beta 11.99 11.01 -0.441 8.114 1.089 6.58 38.61 0.310 -19.80 14.57
RSJ/Down Beta 11.82 11.42 -0.898 12.811 1.034 5.78 47.84 0.247 -29.48 15.94
RSJ/CoSkew 11.05 12.45 -0.823 13.770 0.888 2.98 54.31 0.204 -32.18 22.98
RSJ/CoKurt 11.55 11.62 -1.174 13.874 0.994 4.96 50.27 0.230 -30.88 14.57
RSJ/LPM Beta 12.18 11.04 -0.377 8.152 1.103 6.92 39.26 0.310 -19.75 15.81
RSJ/HTCR Beta 11.81 10.98 -0.439 7.568 1.076 6.59 38.88 0.304 -17.45 14.78
RSJ/Tail Beta 11.87 11.55 -0.411 8.446 1.027 5.74 42.31 0.280 -19.40 19.12
RSJ/Tail Sens 11.98 11.09 -0.459 7.390 1.080 6.72 36.97 0.324 -19.81 14.57
RSJ/Tail Risk 11.82 11.35 -0.395 8.471 1.042 6.00 40.77 0.290 -20.12 16.89
RSJ/MES 12.19 11.01 -0.220 7.297 1.107 6.92 35.63 0.342 -16.58 17.20

periods and systematic risk measures in down-periods successfully captures the upside potential

while simultaneously left tail risk is reduced. In line with Table II, we find slightly better results

for the switching strategies using the RSJ measure compared to the skewness based strategies.

All switching strategies that use the RSJ measure exhibit a significantly higher Sharpe Ratio and

the values of the Jobson and Korkie (1981) test statistic are significantly higher than the values

of the strategies that do not switch between univariate and systematic risk based weightings. For

example, the values of the Jobson and Korkie (1981) test statistic for the strategies using the

RSJ or MES measure in every month are 4.08 and 4.83, respectively. In contrast, the strategy

that switches between these two measures produces a higher Sharpe Ratio with a Jobson and
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Korkie (1981) value of 6.92. Interestingly, even the strategy that switches to the coskewness

based strategy produces a significantly higher Sharpe Ratio with a Jobson and Korkie (1981)

value of 2.98. In contrast, using the coskewness based weighting in every month produces a

lower Sharpe Ratio with a Jobson and Korkie (1981) value of �0.84.

To visualize the differences between different weighting schemes, we show in Figure I the

cumulative return of three momentum strategies using equal weights, volatility based weights

and weights based on our switching approach. We follow Daniel and Moskowitz (2016), Jacobs

et al. (2015) and Bollerslev et al. (2019, p. 15) and show the long-term performance for the port-

folios that initially invest 1$ the risk-free rate combined with the zero-investment momentum

portfolio. For a better comparison, we rescale all strategies to the same level of volatility. Figure

I shows that the equally and volatility weighted strategies perform nearly identical. The volatil-

ity weighted strategy produces are slightly higher terminal wealth, which is mainly driven by

the middle part of the sample. The equally and volatility weighted strategies produce a terminal

wealth of 1,690,351$ and 2,085,431$, respectively. In contrast, the strategy that is based on the

switching approach clearly outperforms the other strategies. This outperformance is achieved

by mitigating crash periods and simultaneously capturing the upside potential. The switching

approach produces a terminal wealth of 323,124,537$, which is about 191 times the terminal

wealth of the volatility managed momentum portfolio. Thus, a long-term investor significantly

benefits from timing short-term tail risk. Moreira and Muir (2019) find that a similar obser-

vation holds for long-only investors who time portfolio volatility. We will come back to the

benefits of portfolio volatility timing in the next section.

To assess how our switching strategies perform in good and bad momentum regimes, we

examine in Table IV the strategies’ performance in the months with the most extreme positive

and negative momentum returns. Table IV shows the five months where the equally weighted

momentum portfolio exhibits the lowest returns as well as the five months with the highest re-

turns. For each of these months, we additionally show returns of the volatility weighted strategy

and the switching strategies. Panel A shows results for the skewness based strategies and Panel

B shows results for the RSJ based strategies. Results in Table IV demonstrate that volatility
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Figure I. Cumulative Return. This figure plots the cumulative return of the equally weighted, volatility
weighted or switching based weighted momentum strategy combined with a one dollar investment in the
risk-free rate. As in Daniel and Moskowitz (2016), we rescale all strategies to an annualized volatility of
19%.

weighting reduces the extremely negative returns, but produces higher losses in the fourth and

fifth worst months. Further, the volatility weighted strategy produces significantly lower re-

turns when the equally weighted strategy produces very high returns. In contrast, the switching

strategies significantly reduce the losses on the worst months, but also successfully capture the

upside potential in the months when the momentum portfolio performs well. Interestingly, we

find that both the skewness and RSJ based strategies perform almost equally well in extreme

periods. In the months with an extremely negative return both strategies perform the same, i.e.

the five worst months are all captured by our momentum crash indicator. This again shows

that momentum’s own volatility is a good predictor of the momentum crash probability as also

shown by Barroso and Santa-Clara (2015), Barroso and Maio (2019) and Rickenberg (2020a)

for the individual stock momentum strategy and by Du Plessis and Hallerbach (2017), Grobys

et al. (2018) and Grobys and Kolari (2020) for the industry momentum strategy. During the

months with an extremely high return, all switching strategies also produce quite similar re-

turns. Thus, the outperformance of the RSJ based strategies over the skewness based strategies
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is mainly influenced by the months with a mediocre performance.

Table IV. Sorted Returns
This table shows monthly returns of the equally weighted momentum portfolio, the volatility managed
portfolio and the switching strategies on months when the momentum portfolio exhibits the five lowest
and five highest returns. All entries are given in percent.

Panel A: Skewness Low Returns High Returns

Equal -25.96 -24.01 -20.34 -15.59 -12.76 11.25 11.66 12.35 14.57 18.61
RV -18.02 -20.43 -17.23 -20.26 -21.59 8.43 7.80 8.39 12.00 13.57

Skew/Corr -20.22 -15.83 -10.50 -19.16 -14.70 12.35 14.80 7.20 11.08 12.26
Skew/Down Corr -36.45 -16.47 -10.70 -16.22 -16.98 12.35 14.80 7.59 11.81 16.00
Skew/Beta -19.80 -16.68 -11.16 -16.58 -14.71 12.35 14.80 6.81 10.68 14.10
Skew/Down Beta -29.48 -16.98 -13.05 -15.82 -15.04 12.35 14.80 7.05 9.84 15.94
Skew/CoSkew -32.18 -22.13 -13.79 -10.02 -13.94 12.35 14.80 12.26 15.83 22.98
Skew/CoKurt -30.88 -16.80 -11.66 -16.55 -18.75 12.35 14.80 8.17 12.43 11.17
Skew/LPM Beta -19.75 -16.85 -11.03 -16.18 -14.50 12.35 14.80 6.87 10.28 15.81
Skew/HTCR Beta -17.45 -16.55 -15.77 -15.85 -12.28 12.35 14.80 6.89 9.47 14.78
Skew/Tail Beta -15.58 -19.08 -14.30 -19.40 -14.57 12.35 14.80 8.02 10.10 15.94
Skew/Tail Sens -15.23 -15.57 -13.69 -19.81 -12.51 12.35 14.80 7.27 9.49 14.00
Skew/Tail Risk -15.70 -18.29 -11.44 -20.12 -15.97 12.35 14.80 8.02 10.25 16.89
Skew/MES -14.18 -16.42 -11.00 -16.58 -15.01 12.35 14.80 6.87 10.29 17.20

Panel B: RSJ Low Returns High Returns

Equal -25.96 -24.01 -20.34 -15.59 -12.76 11.25 11.66 12.35 14.57 18.61
RV -18.02 -20.43 -17.23 -20.26 -21.59 8.43 7.80 8.39 12.00 13.57

RSJ/Corr -20.22 -15.83 -10.50 -19.16 -14.70 11.80 14.57 7.20 11.08 12.26
RSJ/Down Corr -36.45 -16.47 -10.70 -16.22 -16.98 11.80 14.57 7.59 11.81 16.00
RSJ/Beta -19.80 -16.68 -11.16 -16.58 -14.71 11.80 14.57 6.81 10.68 14.10
RSJ/Down Beta -29.48 -16.98 -13.05 -15.82 -15.04 11.80 14.57 7.05 9.84 15.94
RSJ/CoSkew -32.18 -22.13 -13.79 -10.02 -13.94 11.80 14.57 12.26 15.83 22.98
RSJ/CoKurt -30.88 -16.80 -11.66 -16.55 -18.75 11.80 14.57 8.17 12.43 11.17
RSJ/LPM Beta -19.75 -16.85 -11.03 -16.18 -14.50 11.80 14.57 6.87 10.28 15.81
RSJ/HTCR Beta -17.45 -16.55 -15.77 -15.85 -12.28 11.80 14.57 6.89 9.47 14.78
RSJ/Tail Beta -15.58 -19.08 -14.30 -19.40 -14.57 11.80 14.57 8.02 10.10 15.94
RSJ/Tail Sens -15.23 -15.57 -13.69 -19.81 -12.51 11.80 14.57 7.27 9.49 14.00
RSJ/Tail Risk -15.70 -18.29 -11.44 -20.12 -15.97 11.80 14.57 8.02 10.25 16.89
RSJ/MES -14.18 -16.42 -11.00 -16.58 -15.01 11.80 14.57 6.87 10.29 17.20

To further assess how the different weighting schemes perform in different market environ-

ments, Table V shows the performance in the two 15 years periods with the best and worst

performance of the equally weighted momentum strategy. The 15 years period with the best

performance ranges from November 1967 to October 1982, whereas the 15 years period with

the worst performance ranges from June 1932 to May 1947. In the best 15 years, the momentum

investor would have earned an annualized return of 15.54%, whereas the annualized return in

the worst 15 years would only be 1.14% per year.106 In line with Table II, the performance in

these periods cannot be significantly improved by volatility weighting. Interestingly, although

106This result again demonstrates that industry momentum is less risky than stock momentum. Even in the worst
case, an industry momentum investor achieves a positive return after 15 years, whereas Barroso and Santa-Clara
(2015) show that a recovery from a momentum crash can last up to 31 years for the individual stock momentum
strategy.
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volatility weighting typically performs well in down-periods, the volatility weighted strategy

even underperforms the equally weighted momentum portfolio in the worst 15 years. A possi-

ble explanation for this finding could be that the losers portfolio performs particularly bad in the

down-period. Thus, volatility weighting applied to the losers portfolio should dampen the bad

performance of the losers, which is disadvantageous for a momentum investor. We come back

to this point in Table VII. In contrast, the switching strategies perform well in both regimes

and clearly outperform the equally weighted strategy in up- and down-markets. The Jobson

and Korkie (1981) values are typically higher than 1.96 in both periods. In particular, the good

performance of the switching strategies is driven by mitigating drawdowns and simultaneously

enhancing the performance in up-periods. Interestingly, we find that the beta and correlation

based weightings are superior to the weightings based on downside correlation and downside

beta when the 15 worst years are regarded. This is somewhat surprising since the downside risk

measures condition on bad momentum states and should work well in down-periods. However,

this result is in line with Levi and Welch (2019) who find that the usual beta is a better hedging

instrument during crash periods than the downside beta.

Similar to Asness et al. (2013, Table VII), Barroso and Santa-Clara (2015, Table 6), Je-

gadeesh and Titman (1993, Table VI) and Jegadeesh and Titman (2001), we next examine the

performance of the momentum strategies in different sub-samples.107 We only show results

for the RSJ based weightings, but results for the skewness based strategies are quite similar.

Examining the profitability in different sub-samples is important since the profitability of long-

short strategies can be quite different in different sample periods (see Grobys and Kolari (2020,

p. 111) and references therein). Table VI shows results for the different momentum strategies

where we split the whole sample into three equally spaced sub-samples. Splitting the whole

sample into three sub-samples is appealing since the first and last sub-sample contain a momen-

tum crash, whereas the second sub-sample is characterized by a calm and mainly uptrending

period. This further demonstrates how the different weighting schemes perform in different

market environments. Moreover, splitting the whole sample into three smaller samples is more

107Ang et al. (2006b, Table XI) also examine the low volatility anomaly in different sub-samples and find that
the low volatility puzzle holds in bull and bear markets, recessions and expansions as well as volatile and calm
markets.
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Table V. Best and Worst 15 Years
This table shows performance results of the equally weighted momentum portfolio, the volatility man-
aged portfolio and the switching strategies in the two 15 years periods where the equally weighted mo-
mentum strategy exhibits the best and worst performance. The description of the columns is given in
Table I.

Best 15 Years: 01.11.1967 - 31.10.1982 Worst 15 Years: 01.06.1932 - 31.05.1947

Panel A: Skew Return Volatility Skew SR zJK Return Volatility Skew SR zJK

Equal 15.54 11.32 -0.015 1.373 - 1.14 14.29 -2.074 0.080 -
RV 14.07 9.84 -0.228 1.429 0.71 1.03 13.69 -1.782 0.076 -0.04

Skew/Corr 18.26 11.73 0.106 1.557 1.92 5.27 13.24 -0.795 0.398 2.47
Skew/Down Corr 18.31 11.81 0.059 1.551 1.92 2.39 15.83 -3.101 0.151 0.63
Skew/Beta 18.54 11.72 0.146 1.582 2.22 4.65 13.00 -0.966 0.358 2.35
Skew/Down Beta 18.80 11.83 0.131 1.588 2.33 3.27 14.40 -2.224 0.227 1.44
Skew/CoSkew 18.50 12.22 0.064 1.514 1.60 0.23 15.81 -2.125 0.015 -0.71
Skew/CoKurt 18.41 11.73 0.083 1.570 2.09 3.95 15.04 -2.491 0.263 1.67
Skew/LPM Beta 18.74 11.81 0.154 1.587 2.35 4.93 12.94 -0.937 0.381 2.61
Skew/HTCR Beta 18.53 11.87 0.150 1.561 2.05 4.01 12.83 -1.141 0.312 2.37
Skew/Tail Beta 18.42 12.15 0.038 1.516 1.64 4.37 13.66 -0.368 0.320 1.96
Skew/Tail Sens 17.83 11.92 0.082 1.496 1.34 4.59 12.39 -0.872 0.370 2.76
Skew/Tail Risk 18.29 11.90 0.093 1.537 1.85 4.24 13.01 -0.465 0.326 2.02
Skew/MES 18.78 11.83 0.145 1.588 2.41 4.69 12.35 -0.604 0.379 2.38

Best 15 Years: 01.11.1967 - 31.10.1982 Worst 15 Years: 01.06.1932 - 31.05.1947

Panel B: RSJ Return Volatility Skew SR zJK Return Volatility Skew SR zJK

Equal 15.54 11.32 -0.015 1.373 - 1.14 14.29 -2.074 0.080 -
RV 14.07 9.84 -0.228 1.429 0.71 1.03 13.69 -1.782 0.076 -0.04

RSJ/Corr 19.15 11.49 0.066 1.667 3.12 5.11 13.07 -0.843 0.391 2.47
RSJ/Down Corr 19.20 11.57 0.016 1.660 3.16 2.23 15.69 -3.196 0.142 0.56
RSJ/Beta 19.44 11.48 0.109 1.693 3.46 4.49 12.82 -1.025 0.350 2.35
RSJ/Down Beta 19.69 11.59 0.094 1.699 3.59 3.12 14.25 -2.312 0.219 1.39
RSJ/CoSkew 19.40 11.99 0.022 1.618 2.87 0.08 15.67 -2.197 0.005 -0.83
RSJ/CoKurt 19.30 11.49 0.042 1.680 3.32 3.79 14.89 -2.577 0.255 1.63
RSJ/LPM Beta 19.64 11.57 0.118 1.697 3.63 4.77 12.76 -0.994 0.374 2.62
RSJ/HTCR Beta 19.42 11.63 0.114 1.670 3.30 3.85 12.65 -1.210 0.304 2.38
RSJ/Tail Beta 19.31 11.92 -0.006 1.621 2.94 4.21 13.49 -0.397 0.312 1.93
RSJ/Tail Sens 18.72 11.68 0.040 1.602 2.57 4.43 12.21 -0.935 0.363 2.80
RSJ/Tail Risk 19.18 11.67 0.052 1.644 3.15 4.09 12.84 -0.504 0.318 2.00
RSJ/MES 19.67 11.59 0.109 1.698 3.72 4.53 12.17 -0.655 0.372 2.38

realistic since investors typically have short evaluation periods (Benartzi and Thaler, 1995).

Table VI shows that the volatility weighted momentum portfolio does not significantly outper-

form the equally weighted momentum portfolio in any sub-period. In the third sub-sample, the

volatility weighted portfolio does even underperform the equally weighted momentum strategy.

Further, the volatility weighted strategy does not reduce momentum’s left tail risk. In the second

and third sub-sample, weighting assets by their volatility does even increase momentum’s left

tail risk and maximum drawdown. In contrast, the switching strategies generate higher Sharpe

Ratios in all three sub-samples. This higher Sharpe Ratio is typically obtained by achieving

higher returns with similar levels of volatility. The increase in the Sharpe Ratio is also statisti-

cally significant for most strategies and sub-samples. Further, the switching strategies typically
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reduce the portfolio’s left tail risk by producing a higher skewness and lower drawdowns. In

total, Table VI shows that our switching approach does not only outperform the other weighting

schemes over the long run, but is also very robust in different sub-samples marked by either a

crash period or a calm and uptrending period.

We have so far shown that the momentum strategies using the weighting schemes based

on (systematic) tail risk measures outperform the equally and volatility weighted momentum

strategies. We next assess if the outperformance of the switching strategies is driven by the long

or short leg of the momentum portfolio. Several studies have shown that the profitability of the

(equally weighted) momentum strategy is either driven by the long or short leg of the portfolio,

where this finding strongly depends on the examined data set. For example, Hong et al. (2000)

and Lesmond et al. (2004) find that the high returns of the individual stock based momentum

strategy are mainly generated by shorting the losers portfolio. This holds especially when the

least liquid loser stocks are shorted (Moskowitz and Grinblatt, 1999). Generally, the profits of

equity based long-short anomalies are mainly driven by the short side (see Jang and Kang (2019)

and references therein). In contrast, the profitability of portfolio based momentum strategies is

mainly driven by the long side. For example, Moskowitz and Grinblatt (1999) find that the

profitability of industry momentum is mainly driven by the winners portfolio. This observation

is confirmed by Chan et al. (2000, Table 1) and Bhojraj and Swaminathan (2006) for the coun-

try momentum strategy. For that reason, we next examine the performance of the winners and

losers portfolios separately. Obviously, the aim of a weighting scheme should be to improve

the performance of the winners portfolio and to worsen the performance of the losers portfolio.

Results for the winners and losers portfolios, both equally and risk weighted, are given in Ta-

ble VII. Volatility weighting reduces the volatility of both portfolios without sacrificing returns.

This reduction of volatility produces a higher Sharpe Ratio for the winners and losers portfolios.

In particular, for the losers portfolio, volatility weighting reduces the portfolio’s volatility and

improves the portfolio’s return. This leads to a high increase of the losers portfolio’s Sharpe Ra-

tio which is highly significant, given by a Jobson and Korkie (1981) value of 2.88. In contrast,

the increase of the winners’ Sharpe Ratio is not significant. In total, the benefits of buying the
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Table VI. Performance Results in Different Sub-Samples
This table shows performance results of the equally weighted momentum portfolio, the volatility man-
aged strategy and the switching strategies in three sub-samples. The description of the columns is given
in Table I.

Panel A: 01.11.1930 – 28.02.1960

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 5.24 12.36 -1.732 15.531 0.424 - 48.48 0.108 -25.96 14.57
RV 5.09 11.91 -1.526 12.316 0.428 0.06 45.89 0.111 -21.59 12.00

RSJ/Corr 7.58 11.49 -0.683 10.270 0.660 2.78 38.26 0.198 -20.22 16.07
RSJ/Down Corr 6.24 13.04 -2.938 30.741 0.479 0.69 55.09 0.113 -36.45 13.49
RSJ/Beta 7.58 11.32 -0.830 9.746 0.670 3.13 38.61 0.196 -19.80 12.88
RSJ/Down Beta 6.82 12.13 -1.983 19.982 0.562 1.91 47.84 0.143 -29.48 14.86
RSJ/CoSkew 5.12 13.11 -2.005 20.346 0.390 -0.51 54.31 0.094 -32.18 15.83
RSJ/CoKurt 6.84 12.67 -2.215 20.978 0.540 1.57 50.27 0.136 -30.88 12.43
RSJ/LPM Beta 7.72 11.24 -0.786 9.885 0.686 3.38 39.26 0.197 -19.75 14.79
RSJ/HTCR Beta 7.02 11.12 -0.985 8.709 0.631 2.95 38.88 0.180 -17.45 12.27
RSJ/Tail Beta 7.26 11.79 -0.461 8.867 0.615 2.35 42.31 0.172 -15.58 19.12
RSJ/Tail Sens 7.41 11.02 -0.733 7.020 0.672 3.42 36.97 0.200 -15.23 11.27
RSJ/Tail Risk 7.18 11.46 -0.490 8.331 0.627 2.53 40.77 0.176 -15.97 16.43
RSJ/MES 7.59 10.90 -0.545 7.404 0.696 3.30 35.63 0.213 -15.01 13.77

Panel B: 01.03.1960 – 30.06.1989

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 12.78 9.97 -0.058 4.613 1.282 - 13.20 0.968 -9.73 11.25
RV 12.31 8.78 -0.200 4.610 1.403 1.71 13.38 0.920 -9.02 9.12

RSJ/Corr 15.31 10.22 0.101 4.798 1.498 2.93 13.88 1.103 -10.62 11.80
RSJ/Down Corr 15.37 10.27 0.064 4.841 1.497 3.00 14.14 1.087 -10.62 11.80
RSJ/Beta 15.39 10.21 0.134 4.749 1.508 3.07 13.90 1.107 -10.62 11.80
RSJ/Down Beta 15.50 10.29 0.126 4.763 1.506 3.07 14.25 1.087 -10.62 11.80
RSJ/CoSkew 15.51 10.57 0.064 4.694 1.467 2.66 15.80 0.982 -10.62 11.80
RSJ/CoKurt 15.27 10.24 0.089 4.754 1.492 2.86 14.41 1.060 -10.62 11.80
RSJ/LPM Beta 15.53 10.27 0.143 4.740 1.512 3.17 13.65 1.137 -10.62 11.80
RSJ/HTCR Beta 15.29 10.30 0.144 4.767 1.485 2.80 14.52 1.054 -10.62 11.80
RSJ/Tail Beta 15.50 10.46 0.051 4.972 1.483 2.91 12.97 1.195 -10.62 11.80
RSJ/Tail Sens 15.15 10.35 0.077 4.789 1.464 2.58 13.76 1.101 -10.62 11.80
RSJ/Tail Risk 15.49 10.36 0.080 4.761 1.496 3.13 13.81 1.122 -10.62 11.80
RSJ/MES 15.57 10.27 0.139 4.732 1.516 3.27 13.04 1.194 -10.62 11.80

Panel C: 01.07.1989 – 31.12.2018

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.63 13.65 -0.547 9.007 0.705 - 33.86 0.284 -24.01 18.61
RV 8.02 11.59 -1.103 11.709 0.692 -0.11 37.97 0.211 -20.43 13.57

RSJ/Corr 12.99 11.53 -0.687 9.124 1.127 4.32 33.82 0.384 -19.16 14.57
RSJ/Down Corr 12.78 12.05 -0.387 7.684 1.060 3.93 31.43 0.407 -16.48 16.00
RSJ/Beta 13.13 11.40 -0.443 8.342 1.151 4.57 30.19 0.435 -16.68 14.57
RSJ/Down Beta 13.31 11.68 -0.318 8.079 1.140 4.62 30.01 0.443 -16.98 15.94
RSJ/CoSkew 12.80 13.36 -0.070 9.594 0.958 2.99 28.25 0.453 -22.13 22.98
RSJ/CoKurt 12.70 11.74 -0.600 7.648 1.081 4.11 32.52 0.391 -16.80 14.57
RSJ/LPM Beta 13.42 11.51 -0.341 8.417 1.167 4.74 29.80 0.451 -16.85 15.81
RSJ/HTCR Beta 13.28 11.39 -0.348 8.042 1.166 4.78 29.21 0.455 -16.55 14.78
RSJ/Tail Beta 12.99 12.26 -0.619 9.634 1.060 4.18 32.87 0.395 -19.40 15.94
RSJ/Tail Sens 13.53 11.78 -0.600 8.974 1.148 4.68 33.53 0.403 -19.81 14.57
RSJ/Tail Risk 12.93 12.07 -0.588 10.332 1.072 4.18 34.87 0.371 -20.12 16.89
RSJ/MES 13.56 11.73 -0.197 8.473 1.156 4.68 30.67 0.442 -16.58 17.20

enhanced winners is offset by shorting the enhanced losers. Thus, although volatility weighting

produces an enhanced risk-return profile, this advantage does not translate into a better perfor-

mance of long-short strategies. This finding is opposed to the finding of Clare et al. (2014)
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for commodity momentum, where inverse volatility weighting worsens the performance of the

losers. In contrast to the volatility weighting, the skewness based switching strategies signifi-

cantly improve the performance of the winners portfolio, whereas the performance of the losers

is only slightly improved. More strikingly, the RSJ based switching strategies significantly in-

crease the winners’ Sharpe Ratio, while the losers’ Sharpe Ratio is decreased. Thus, an investor

who is long the winners and short the losers strongly benefits from weighting the winners’ and

losers’ constituents by their risk estimated with the RSJ based switching strategy. In total, re-

sults of Table VII show that the bad performance of the volatility managed strategy and the

good performance of the switching strategies found in Table III is driven by the long and the

short leg of the momentum strategy. Interestingly, although Table VII indicates that volatility

weighting only slightly improves the performance of the winners, whereas the performance of

the losers is significantly improved, we find in Table III that volatility weighting still slightly

improves momentum’s Sharpe Ratio. This shows that the performance of a long-short strategy

does not only depend on the average performance of the long and short leg, but also on the

timing of the realized returns of both portfolios.108 Nevertheless, Table VII highlights that the

weights of long-short portfolios should not be determined based on symmetric risk measures

like volatility. Instead, asymmetric tail risk measures that differentiate between long and short

positions should be used as suggested by Giot and Laurent (2003).

So far, conclusions on the long and short leg of the momentum portfolio were only made

by regarding the winners’ and losers’ Sharpe Ratios. Besides mean and variance other risk

characteristics are also important for long-short investors. Several studies show that winners

and losers typically have quite different risk characteristics. For example, Harvey and Sid-

dique (2000) find that winners typically have a lower skewness than losers. Further, Bollerslev

108Consider, for example, three portfolios A, B and C with returns in the first year of RA1 � �50%, RB1 � 25%
and RC1 � �20%, respectively. In the second year, portfolios A, B and C generate returns of RA2 � 100%, RB2 �
�20% and RC2 � 25%, respectively. Thus, all three portfolios have a compounded return of zero. However,
buying one of the portfolios and selling another portfolio does not automatically produce a return of zero. For
example, the strategy that buys portfolio A and sells portfolio B earns a compounded return of �45%, whereas the
strategy that buys portfolio A and sells portfolio C earns a compounded return of 22.5%. Even more interesting,
the investor who buys portfolio B and sells portfolio A would even loose more than 100%. Thus, the performance
of a long-short strategy can vary extremely and strongly depends on whether positive and negative returns of the
long and short leg occur simultaneously or oppositely. Simply comparing average returns of the long and short
side can lead to false conclusions.
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Table VII. Winners and Losers Portfolios
This table shows the performance of the equally and risk weighted winners and losers portfolios. The
description of the columns is given in Table I.

Winners Portfolio Losers Portfolio

Panel A: Skew Return Volatility Skew SR zJK Return Volatility Skew SR zJK

Equal 18.79 23.57 1.102 0.797 - 7.44 26.26 1.709 0.283 -
RV 18.44 22.67 1.203 0.813 1.03 8.12 24.99 1.809 0.325 2.88

Skew/Corr 20.22 23.59 1.234 0.857 3.46 7.43 25.31 1.491 0.294 0.70
Skew/Down Corr 20.24 23.53 1.229 0.860 3.80 7.73 25.82 1.754 0.299 1.10
Skew/Beta 20.10 23.59 1.135 0.852 3.21 7.27 25.35 1.483 0.287 0.25
Skew/Down Beta 20.27 23.50 1.163 0.863 3.86 7.46 25.59 1.662 0.292 0.60
Skew/CoSkew 19.91 23.71 1.282 0.839 2.58 7.60 26.42 2.003 0.288 0.31
Skew/CoKurt 20.18 23.47 1.067 0.860 3.72 7.58 25.75 1.679 0.294 0.79
Skew/LPM Beta 20.30 23.59 1.149 0.860 3.72 7.28 25.29 1.516 0.288 0.34
Skew/HTCR Beta 20.03 23.54 1.074 0.851 3.16 7.34 25.53 1.585 0.288 0.32
Skew/Tail Beta 20.13 23.25 1.126 0.866 4.11 7.32 25.10 1.480 0.292 0.57
Skew/Tail Sens 20.08 23.34 1.095 0.860 3.77 7.19 25.35 1.509 0.284 0.04
Skew/Tail Risk 20.03 23.28 1.115 0.860 3.79 7.33 25.04 1.462 0.293 0.63
Skew/MES 20.32 23.62 1.102 0.860 3.69 7.31 25.23 1.446 0.290 0.43

Winners Portfolio Losers Portfolio

Panel B: RSJ Return Volatility Skew SR zJK Return Volatility Skew SR zJK

Equal 18.79 23.57 1.102 0.797 - 7.44 26.26 1.709 0.283 -
RV 18.44 22.67 1.203 0.813 1.03 8.12 24.99 1.809 0.325 2.88

RSJ/Corr 20.64 23.56 1.228 0.876 4.56 6.79 25.29 1.489 0.268 -0.98
RSJ/Down Corr 20.67 23.50 1.223 0.880 4.93 7.08 25.80 1.754 0.275 -0.60
RSJ/Beta 20.53 23.55 1.128 0.872 4.32 6.63 25.33 1.481 0.262 -1.45
RSJ/Down Beta 20.70 23.46 1.157 0.882 4.97 6.82 25.57 1.661 0.267 -1.18
RSJ/CoSkew 20.33 23.68 1.276 0.859 3.74 6.96 26.41 2.004 0.264 -1.47
RSJ/CoKurt 20.61 23.44 1.061 0.879 4.84 6.94 25.73 1.678 0.270 -0.97
RSJ/LPM Beta 20.73 23.56 1.143 0.880 4.83 6.64 25.27 1.513 0.263 -1.38
RSJ/HTCR Beta 20.46 23.51 1.067 0.870 4.28 6.70 25.51 1.583 0.263 -1.43
RSJ/Tail Beta 20.56 23.22 1.119 0.885 5.25 6.68 25.08 1.477 0.266 -1.09
RSJ/Tail Sens 20.50 23.31 1.089 0.880 4.91 6.55 25.33 1.507 0.259 -1.63
RSJ/Tail Risk 20.46 23.25 1.108 0.880 4.92 6.69 25.02 1.459 0.267 -1.00
RSJ/MES 20.75 23.59 1.096 0.879 4.80 6.67 25.21 1.443 0.264 -1.23

et al. (2015, p. 131) find that fear, measured as jump tail risk, is priced quite differently for

the winners and losers portfolio. For that reason, we next examine how the different weight-

ing schemes influence the skewness risk of the winners and losers, which is a main driver of

momentum crashes. Results examined so far indicate that the switching strategies successfully

reduce the momentum portfolio’s left tail risk, whereas the volatility weighting does not reduce

the portfolio’s left tail risk. By examining the distributional properties of winners and losers

separately, we can identify the source of this finding. First of all, we confirm the earlier findings

of Harvey and Siddique (2000) and also find a lower skewness of the winners. Thus, buying

winners and shorting losers produces a high negative skewness of the momentum portfolio,

which is a main driver of momentum’s high crash risk. Table VII shows that volatility weight-

ing hardly affects the winners’ and losers’ skewness. This is quite intuitive, since volatility does
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not account for non-normalities in the return distribution. Thus, managing the winners’ and

losers’ individual volatilities does not reduce the high left tail risk of the momentum strategy.

This makes volatility weighting an inappropriate tool to manage momentum crashes. In con-

trast, the switching strategies hardly affect the winners’ skewness but significantly reduce the

losers’ skewness. This reduction of the losers’ skewness is appealing for a momentum investor

who is short the losers portfolio. This shows that the left tail risk reduction of the switching

approach is mainly driven by making the losers portfolio less positively skewed. This is in line

with the construction of our weighting scheme, since losers with a lower skewness, i.e. higher

crash risk, obtain higher weights.

We have so far shown that our switching approach based on (systematic) tail risk measures

produces significantly higher returns and reduces left tail risk of the momentum strategy. Con-

clusions so far are mainly based on the strategies’ Sharpe Ratio and skewness. By incorporating

the investors’ preferences for mean and variance as well as higher moments like skewness and

kurtosis, we next assess how valuable the (systematic) tail risk switching approach is for in-

vestors. Schneider et al. (2020) show that incorporating investors’ skewness preferences is

important when a strategy’s (risk-adjusted) performance is assessed. Further, we will especially

regard the finding that investors are averse to losses and weight losses higher than gains. Assess-

ing the economic value of different trading strategies, i.e. calculating the annualized percentage

fee investors are willing to pay to switch from a benchmark strategy to a dynamic trading strat-

egy, has frequently been done in the financial literature. For example, Fleming et al. (2001),

Fleming et al. (2003), Han (2005), Kirby and Ostdiek (2012), Marquering and Verbeek (2004)

and Bollerslev et al. (2018) examine the value of volatility timing strategies for mean-variance

investors. Ang and Chen (2002, p. 449) and Hong et al. (2007, Eq. (48)) estimate the utility

loss for a CRRA and disappointment averse investor who ignores information on asymmetric

correlations. Jondeau and Rockinger (2012) and Ghysels et al. (2016) show the importance of

incorporating skewness in the portfolio optimization for CRRA investors. Rickenberg (2020b)

and Rickenberg (2020a) examines the economic value of tail risk targeting strategies for mean-

variance, CRRA and loss-averse investors. We follow Rickenberg (2020b) and Rickenberg
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(2020a) and estimate the economic value of our risk weighted momentum strategies for these

three investors. The economic value is defined as the annualized percentage fee an investor

is willing to pay to switch from the equally weighted momentum strategy to one of the risk

weighted strategies. We use a risk aversion of γ � 5 for the mean-variance and CRRA investor

as well as a loss aversion of l � 2 for the loss-averse investor. A loss aversion of two means that

an investor’s disutility of a loss is twice as great as the utility of a positive return (Aı̈t-Sahalia

and Brandt, 2001, Benartzi and Thaler, 1995). These levels of risk aversion and loss aversion

are in line with the literature. We also used other levels of risk aversion and loss aversion and

found quite similar results, which are not shown here.109

Assessing the performance based on an investor’s utility has the advantage that the perfor-

mance is evaluated conditionally. Cederburg and O’Doherty (2016) and Boguth et al. (2011)

show that assessing a strategy’s performance based on an unconditional measure, such as the

strategy’s CAPM alpha, can lead to wrong conclusions.110 This holds especially for dynamic

strategies that time volatility, such as the strategies examined in our paper. Boguth et al. (2011,

p. 367) state that “volatility timing should be taken into account whenever evaluating investment

performance”. For example, Cederburg and O’Doherty (2016) find that performance evaluation

based on the betting against beta’s unconditional alpha is highly misleading and overstates the

strategy’s performance. Similarly, Boguth et al. (2011) find that the performance of momen-

tum strategies should not be assessed based on unconditional risk measures. In contrast to the

Sharpe Ratio, the economic value approach considers the risk an investor was faced each month

and regards that risk is timed by our strategies.111 Further, the economic value approach has the

109Instead of choosing fixed values of γ and l, these values can also be derived empirically. For example, Rosen-
berg and Engle (2002) derive the level of γ using options data. Kritzman et al. (2010, Appendix A) show how the
risk aversion γ of a mean-variance investor can be calculated based on stock and bond return data. Benartzi and
Thaler (1995) and Berkelaar et al. (2004) also derive the level of loss aversion using market data.

110We show in Section B.11 additional results based on the strategies’ alpha. Since performance evaluation
based on the alpha has several disadvantages as shown by Boguth et al. (2011), Cederburg and O’Doherty (2016),
Cederburg et al. (2020) and Schneider et al. (2020), we focus in the main part on the economic value that corrects
for the drawbacks of the portfolio alpha.

111For example, Han (2005, p. 246) state that “the Sharpe Ratio does not take into account time-varying condi-
tional volatility because the sample [standard deviation] overestimates the conditional risk an investor faces when
she follows dynamic strategies. Consequently, the realized Sharpe ratio underestimates the performance of dy-
namic strategies.” Similarly, Marquering and Verbeek (2004, p. 419-421) write that “[i]t is important to realize that
the Sharpe ratio does not appropriately take into account time-varying volatility. The risk of the dynamic strate-
gies is typically overestimated by the sample standard deviation, particularly in the presence of volatility timing,
because the ex post (unconditional) standard deviation is an inappropriate measure for the (conditional) risk an
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Table VIII. Economic Value
This table shows the annualized percentage fee an investor is willing to pay to switch from the equally
weighted momentum strategy to a risk weighted strategy. The fee is calculated for a mean-variance
investor with risk aversion γ � 5, a CRRA investor with γ � 5 and a loss-averse investor with a loss
aversion of l � 2. The fee is calculated over the whole period, the first half and the second half. Panel
A shows results for the switching strategies based on skewness. Panel B shows results for the switching
strategies using the RSJ measure. All strategies are rescaled to the same level of volatility.

Whole Period First Half Second Half

Panel A: Switching Based on Skewness Measure

Model ∆γ�5
MV ∆γ�5

CRRA ∆l�2
LA ∆γ�5

MV ∆γ�5
CRRA ∆l�2

LA ∆γ�5
MV ∆γ�5

CRRA ∆l�2
LA

RV 0.168 0.075 0.186 -0.043 0.000 -0.125 0.407 0.225 0.528

Skew/Corr 2.341 2.503 2.275 2.524 2.888 2.304 2.127 2.120 2.230
Skew/Down Corr 1.217 0.753 1.399 0.801 0.150 1.060 1.706 1.815 1.775
Skew/Beta 2.514 2.734 2.446 2.638 2.965 2.398 2.362 2.427 2.485
Skew/Down Beta 1.972 1.891 2.007 1.682 1.586 1.622 2.285 2.427 2.422
Skew/CoSkew 0.473 0.451 0.562 0.121 0.000 0.245 0.849 0.979 0.900
Skew/CoKurt 1.553 1.358 1.643 1.353 1.131 1.557 1.782 1.815 1.728
Skew/LPM Beta 2.671 2.888 2.567 2.794 3.119 2.454 2.521 2.657 2.675
Skew/HTCR Beta 2.370 2.580 2.196 2.320 2.657 1.885 2.406 2.503 2.516
Skew/Tail Beta 1.896 2.120 1.869 1.900 2.350 1.626 1.877 1.891 2.117
Skew/Tail Sens 2.430 2.657 2.188 2.591 2.965 2.070 2.251 2.273 2.302
Skew/Tail Risk 2.032 2.273 1.991 2.180 2.580 1.848 1.862 1.891 2.133
Skew/MES 2.715 2.965 2.594 2.918 3.350 2.455 2.495 2.657 2.730

Panel B: Switching Based on RSJ Measure

Model ∆γ�5
MV ∆γ�5

CRRA ∆l�2
LA ∆γ�5

MV ∆γ�5
CRRA ∆l�2

LA ∆γ�5
MV ∆γ�5

CRRA ∆l�2
LA

RV 0.168 0.075 0.186 -0.043 0.000 -0.125 0.407 0.225 0.528

RSJ/Corr 3.491 3.660 3.360 3.073 3.428 2.869 3.919 3.970 3.867
RSJ/Down Corr 2.270 1.815 2.403 1.271 0.602 1.557 3.431 3.505 3.357
RSJ/Beta 3.679 3.893 3.548 3.195 3.505 2.972 4.178 4.282 4.146
RSJ/Down Beta 3.083 3.042 3.063 2.193 2.044 2.152 4.067 4.204 4.066
RSJ/CoSkew 1.461 1.434 1.502 0.576 0.451 0.726 2.418 2.580 2.341
RSJ/CoKurt 2.636 2.427 2.673 1.844 1.586 2.074 3.538 3.583 3.331
RSJ/LPM Beta 3.837 4.048 3.667 3.355 3.738 3.027 4.331 4.438 4.335
RSJ/HTCR Beta 3.535 3.738 3.296 2.876 3.196 2.454 4.224 4.360 4.183
RSJ/Tail Beta 2.993 3.196 2.909 2.421 2.811 2.165 3.588 3.583 3.687
RSJ/Tail Sens 3.586 3.815 3.273 3.156 3.583 2.645 4.021 4.048 3.913
RSJ/Tail Risk 3.151 3.350 3.048 2.720 3.119 2.402 3.591 3.583 3.710
RSJ/MES 3.886 4.204 3.699 3.495 3.970 3.043 4.280 4.438 4.368

advantage that the portfolio evaluation period coincides with the portfolio reallocation period,

which gives a more realistic assessment of a strategy’s performance (Boguth et al., 2011). Eval-

uating the strategies’ performance monthly is also more realistic since investors typically have

short evaluation periods (Benartzi and Thaler, 1995).

Table VIII shows the economic value for the three investors, where we calculate the eco-

nomic value over the whole period as well as over the first and second half. As expected, the

economic value of the volatility managed strategy is only small for all three investors. This is

investor was facing at each point in time. This indicates a potentially severe disadvantage of the use of Sharpe
ratios to evaluate dynamic strategies.”
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in line with our earlier findings that volatility weighting does not produce an enhanced risk-

return profile for long-short strategies like momentum. In contrast, the economic value of the

weighting schemes based on the (systematic) tail risk switching approach is typically high in

magnitude. Interestingly, the fees are quite similar for all three types of investors, where the

highest fees of the switching approach are typically found for the CRRA investor. This comes

from the reduction of left tail risk as shown in Table III. We further find that the economic value

is quite similar for the different samples. This is again in line with Table VI that the switching

approach does work well in different sub-periods.

Figure II. Rolling Economic Value. This figure plots the rolling economic value for a mean-variance
investor with risk aversion γ � 5 who invests in four different risk weighted momentum portfolios using
volatility, RSJ and MES as risk measures or the approach that switches between RSJ and MES. Panel A
shows the rolling economic value for an investor who invests for five years in these portfolios. Panel B
shows the economic value for an investor who invests for 20 years in these portfolios.

Since investors typically have quite short evaluation periods (Benartzi and Thaler, 1995),

we next show in Figure II the rolling economic value for a mean-variance investor who in-

vests for five or 20 years in the risk weighted momentum strategies. The economic value is

again defined as the annualized percentage fee an investor is willing to pay to switch from the
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equally weighted momentum portfolio to the risk weighted portfolios. The dates on the x-axis

in Figure II mark the date when the investment period ends. Results for the CRRA and loss-

averse investor are quite similar and are not shown here. Figure II compares the economic value

of the volatility managed momentum strategy to the strategies using the RSJ and MES based

weightings. To further assess if switching between these two risk measures is advantageous to

using these risk measures directly, we also show the rolling economic value of the strategy that

switches between the RSJ and MES weightings. Panel A of Figure II shows the rolling eco-

nomic value for a mean-variance investor who invest for five years in these portfolios. Among

the four strategies, the economic value of the volatility weighted strategy is the lowest and

sometimes becomes even negative. In contrast, the (systematic) tail risk weighted strategies

constantly produce a higher and mostly positive economic value. Interestingly, the switching

approach is typically quite successful in capturing the advantages of the univariate and system-

atic risk weighted strategies. Panel B shows the rolling economic value for an investor who

invest for 20 years in the different risk weighted strategies. The differences between the dif-

ferent weighting approaches become now more evident. The economic value of the volatility

managed strategy is again quite low and becomes again negative in some periods. In contrast,

the economic value of the (systematic) tail risk weighted strategies is always higher than the

economic value of the volatility managed strategy and is positive most of the times. The switch-

ing approach is again successful in capturing the advantages of the univariate and systematic

risk measures. However, there are still periods when the switching approach underperforms the

RSJ and MES weighted portfolios. Thus, further research on the drivers of industry momentum

crashes is needed, which could improve the switching strategy’s performance.

Table VIII shows that the economic value of our switching strategies is quite high and Fig-

ure II shows that the economic value also holds for shorter investment periods. We next test if

the utility increases found in Table VIII are also statistically significant. Testing for the signifi-

cance of utility increases is frequently done in the financial literature. For example, Cederburg

et al. (2020, Footnote 19), DeMiguel et al. (2009b), Kirby and Ostdiek (2012), Bollerslev et al.

(2018) and Jondeau et al. (2019, p. 41) statistically test for differences in the utility of a mean-
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Table IX. Test for Significant Utility Increases
This table shows results of the tests that test for statistically significant utility increases of the risk
weighted strategies compared to the equally weighted momentum portfolio. DM-test stands for the
test statistic of the Diebold and Mariano (1995) test. pRC and pSPA stand for the p-values of the RC-
and SPA-test of Sullivan et al. (1999), White (2000), Hansen (2005) and Hansen and Lunde (2005). pSQ

stands for the p-value of the MCS (Hansen et al., 2003, 2011). Step-SPA and Step-SPAst stand for the
set of optimal models of the non-studentized and studentized stepwise SPA approach (Hsu et al., 2010,
Romano and Wolf, 2005). FDR� � 5% stands for the portfolio that targets an FDR� of 5% (Bajgrow-
icz and Scaillet, 2012, Barras et al., 2010). Bold numbers mark models that are superior to the equally
weighted strategy or models that cannot be rejected by the RC- or SPA-test.

Panel A: MV DM-test pRC pSPA pSQ Step-SPA Step-SPAst FDR� � 5%

Equal - 0.00 0.00 0.01 - - -
RV 0.36 0.00 0.00 0.11 0 0 0

RSJ/Corr 5.50 64.63 14.10 28.96 1 1 6
RSJ/Down Corr 3.20 4.89 2.20 1.92 1 1 11
RSJ/Beta 6.00 86.28 19.38 39.32 1 1 3
RSJ/Down Beta 4.90 24.96 4.27 17.31 1 1 8
RSJ/CoSkew 2.64 0.27 0.10 0.83 1 1 12
RSJ/CoKurt 3.94 7.49 1.57 2.11 1 1 10
RSJ/LPM Beta 6.11 97.29 42.43 79.62 1 1 2
RSJ/HTCR Beta 5.74 68.93 16.71 33.27 1 1 5
RSJ/Tail Beta 6.06 19.65 0.23 2.30 1 1 9
RSJ/Tail Sens 5.93 71.28 20.72 39.32 1 1 4
RSJ/Tail Risk 5.94 31.45 0.34 6.39 1 1 7
RSJ/MES 6.32 100.00 100.00 100.00 1 1 1

Panel B: CRRA DM-test pRC pSPA pSQ Step-SPA Step-SPAst FDR� � 5%

Equal - 0.00 0.00 0.14 - - -
RV 0.16 0.03 0.00 0.68 0 0 0

RSJ/Corr 5.15 68.16 13.69 26.24 1 1 6
RSJ/Down Corr 1.53 9.07 7.54 5.15 1 2 12
RSJ/Beta 5.72 84.54 15.39 31.57 1 1 3
RSJ/Down Beta 4.05 18.69 8.42 18.78 1 1 9
RSJ/CoSkew 2.02 1.26 0.50 2.47 2 1 11
RSJ/CoKurt 2.98 8.53 4.60 5.15 1 1 10
RSJ/LPM Beta 5.87 96.07 33.75 65.03 1 1 2
RSJ/HTCR Beta 5.50 70.21 12.49 30.31 1 1 5
RSJ/Tail Beta 5.69 38.27 0.25 5.15 1 1 8
RSJ/Tail Sens 5.41 69.35 14.47 31.57 1 1 4
RSJ/Tail Risk 5.45 45.62 0.66 9.09 1 1 7
RSJ/MES 5.77 100.00 100.00 100.00 1 1 1

Panel C: Loss Aversion DM-test pRC pSPA pSQ Step-SPA Step-SPAst FDR� � 5%

Equal - 0.00 0.00 0.00 - - -
RV 0.41 0.00 0.00 0.01 0 0 0

RSJ/Corr 5.20 68.41 18.91 37.37 1 1 4
RSJ/Down Corr 3.87 6.91 1.30 1.59 1 1 11
RSJ/Beta 5.47 90.52 38.50 71.50 1 1 3
RSJ/Down Beta 4.71 43.35 5.12 19.66 1 1 8
RSJ/CoSkew 2.86 0.34 0.13 0.26 1 1 12
RSJ/CoKurt 4.18 17.03 1.81 2.84 1 1 10
RSJ/LPM Beta 5.55 97.62 58.05 96.62 1 1 2
RSJ/HTCR Beta 5.02 61.69 11.77 24.85 1 1 5
RSJ/Tail Beta 5.32 26.30 1.58 4.56 1 1 9
RSJ/Tail Sens 5.43 56.90 14.36 24.85 1 1 6
RSJ/Tail Risk 5.33 30.30 1.45 8.44 1 1 7
RSJ/MES 5.76 100.00 100.00 100.00 1 1 1

variance investor using volatility based investment strategies compared to the equally weighted

portfolio. Rickenberg (2020b) and Rickenberg (2020a) tests for differences in the utility of
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mean-variance, CRRA and loss-averse investors who use volatility and tail risk managed port-

folio strategies. We follow the approach of Rickenberg (2020b) and Rickenberg (2020a) and

use several testing procedures to test for the significance of the differences in the utility of the

three investors. Results of these tests are shown in Table IX, where we only show results for the

RSJ based switching strategies. Results for the skewness based switching strategies were again

quite similar. Panel A shows results for the mean-variance investor. The DM-test of Diebold

and Mariano (1995), which is also used by Bollerslev et al. (2018), shows that all switching

strategies produce a significantly higher utility for the mean-variance investor. Interestingly,

although the volatility managed portfolio should fit well to the preferences of a mean-variance

investor, the increase in the investor’s utility is not significant. As mentioned earlier, a possible

explanation for this finding is that volatility weighting is not appropriate for long-short strate-

gies. The RC- and SPA-test of White (2000), Sullivan et al. (1999), Hansen (2005) and Hansen

and Lunde (2005) also clearly reject the equally weighted and volatility weighted portfolio.

This is confirmed by the MCS (Hansen et al., 2003, 2011) and step-SPA approach (Hsu et al.,

2010, Romano and Wolf, 2005).112 The FDR approach of Bajgrowicz and Scaillet (2012) and

Barras et al. (2010) using an FDR target of 5% is also in line with the remaining tests and picks

all switching strategies, whereas the volatility weighted strategy is not picked.113 Panels B and

C show results for the CRRA and loss-averse investor, respectively. Results for these investors

are similar to the results of the mean-variance investor and show that the switching strategies

clearly outperform the volatility and equally weighted strategy.

To summarize this section, we have shown that equally and volatility weighted momentum

portfolios are suboptimal. In contrast, weighting assets based on their (systematic) tail risk does

not only reduce the momentum portfolio’s left tail risk, but also produces higher returns. This

enhanced risk-return profile can be seen by higher Sharpe Ratios and that investors are willing

to pay high fees to switch to a (systematic) tail risk weighted strategy. Both the increase in the

strategies’ Sharpe Ratio and the utility increases are statistically significant and robust among

112Goyal and Wahal (2015) also use the stepwise approach of Romano and Wolf (2005) to test the differences of
momentum’s profitability when different ranking periods are used.

113We also calculated the FDR approach for an FDR target of FDR� � 10%. This approach additionally picks
the volatility weighted strategy as superior to the equally weighted strategy for the loss-averse investor. Results for
the mean-variance and CRRA investor were the same for both FDR targets.
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sub-samples as well as bull and bear markets.

3.7.4 Volatility Targeting

In the previous section, we examined strategies that manage momentum’s individual asset risk

without regarding the overall portfolio risk. In this section, we assess the performance of mo-

mentum portfolios that are overlayed by a strategy that targets a constant level of portfolio

volatility. Volatility targeting is an easy but appealing method to manage a portfolio’s risk by

reducing the portfolio’s left tail risk and drawdowns (Barroso and Maio, 2018, Barroso and

Santa-Clara, 2015, Du Plessis and Hallerbach, 2017, Grobys and Kolari, 2020, Grobys et al.,

2018, Rickenberg, 2020a,b). One advantage of volatility targeting is that this approach can eas-

ily be combined with other portfolio strategies that manage a portfolio’s individual asset risk.114

For example, Moreira and Muir (2017), Harvey et al. (2018) and Zakamulin (2015) target the

volatility of volatility weighted portfolios and find that managing individual and portfolio risk

typically outperforms non-managed strategies as well as strategies that manage either individ-

ual or portfolio risk. Harvey et al. (2018, p. 27) compare the following three portfolio risk

management approaches: “unscaled at both the asset and portfolio level”, “[v]olatility scaling

at the asset level only” and “[v]olatility scaling at both the asset and portfolio level”. Harvey

et al. (2018, Exhibit 16) find that the last approach that accounts for risk at both levels, the asset

and portfolio level, performs best, whereas the approach that does not account for any kind of

risk performs the worst. To assess the benefits of individual and portfolio risk management

applied to the momentum portfolio, we now examine four different approaches. First, we use

the equally weighted momentum strategy that does not account for any kind of risk. Second,

we use the volatility weighted momentum strategy presented in Section 3.2.4 that accounts for

individual asset risk without accounting for portfolio risk. Third, we use the equally weighted

momentum strategy overlayed by the volatility targeting strategy. This approach manages port-

folio risk but not individual asset risk. Fourth, we combine the volatility and (systematic) tail

114Portfolio risk management can be separated in two parts: asset allocation and market timing (Agarwal and
Naik, 2004). Our approach chooses the assets based on their performance and risk, whereas market timing is done
by scaling the exposure to that portfolio using volatility targeting. See Rickenberg (2020b, Appendix A) for a list
of further advantages of volatility targeting.
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risk weighted strategies with the volatility targeting approach as presented in Section 3.6. These

approaches account for individual asset and portfolio risk. In particular, this last approach is

similar to the strategy of Baltas (2015). The author combines the TSMOM strategy with the

risk parity weighting and the volatility targeting strategy.

Table X. Performance Results: Volatility Targeting
This table shows performance results of the equally weighted and volatility weighted momentum strate-
gies without volatility targeting as well as the equally weighted and risk weighted momentum strategies
that are overlayed by the target volatility (TV) strategy. The description of the columns is given in Table
I.

Panel A: Switching Based on Skewness Measure

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.13 11.98 -0.934 11.729 0.763 - 48.48 0.188 -25.96 18.61
RV 8.37 10.70 -1.241 12.339 0.782 0.49 45.89 0.182 -21.59 13.57

Equal (TV) 13.35 11.79 0.184 5.462 1.133 6.27 32.31 0.413 -16.61 15.95
RV (TV) 15.28 12.64 0.275 5.483 1.209 5.95 36.25 0.422 -17.46 17.87

Skew/Corr (TV) 14.49 11.36 0.315 5.045 1.276 6.89 31.39 0.462 -14.62 14.61
Skew/Down Corr (TV) 14.11 11.56 0.048 6.776 1.221 6.39 40.09 0.352 -22.54 14.61
Skew/Beta (TV) 14.49 11.49 0.282 5.237 1.261 6.78 32.42 0.447 -16.21 14.61
Skew/Down Beta (TV) 14.37 11.50 0.163 6.019 1.250 6.69 34.90 0.412 -20.16 14.61
Skew/CoSkew (TV) 13.58 11.51 0.361 5.623 1.179 5.73 33.48 0.406 -15.83 17.77
Skew/CoKurt (TV) 14.13 11.51 0.069 6.404 1.227 6.48 37.61 0.376 -21.56 14.61
Skew/LPM Beta (TV) 14.65 11.38 0.354 4.971 1.287 7.02 31.34 0.468 -13.27 14.61
Skew/HTCR Beta (TV) 14.32 11.36 0.364 4.815 1.260 6.64 29.70 0.482 -11.21 14.61
Skew/Tail Beta (TV) 14.38 11.59 0.328 4.929 1.242 6.74 33.02 0.436 -12.69 14.61
Skew/Tail Sens (TV) 14.53 11.30 0.416 4.745 1.285 6.92 27.58 0.527 -11.16 14.61
Skew/Tail Risk (TV) 14.45 11.54 0.385 4.940 1.252 6.80 32.60 0.443 -11.79 14.61
Skew/MES (TV) 14.70 11.41 0.433 4.856 1.288 6.95 29.68 0.495 -11.17 14.61

Panel B: Switching Based on RSJ Measure

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.13 11.98 -0.934 11.729 0.763 - 48.48 0.188 -25.96 18.61
RV 8.37 10.70 -1.241 12.339 0.782 0.49 45.89 0.182 -21.59 13.57

Equal (TV) 13.35 11.79 0.184 5.462 1.133 6.27 32.31 0.413 -16.61 15.95
RV (TV) 15.28 12.64 0.275 5.483 1.209 5.95 36.25 0.422 -17.46 17.87

RSJ/Corr (TV) 15.56 11.29 0.293 4.832 1.378 8.12 28.48 0.546 -14.62 13.49
RSJ/Down Corr (TV) 15.12 11.50 0.009 6.635 1.315 7.60 37.91 0.399 -22.54 13.49
RSJ/Beta (TV) 15.57 11.41 0.255 5.028 1.364 8.06 30.61 0.509 -16.21 13.49
RSJ/Down Beta (TV) 15.41 11.43 0.131 5.850 1.348 7.93 34.67 0.444 -20.16 13.49
RSJ/CoSkew (TV) 14.52 11.46 0.305 5.412 1.267 6.85 31.80 0.457 -15.83 17.39
RSJ/CoKurt (TV) 15.14 11.46 0.031 6.248 1.322 7.68 35.81 0.423 -21.56 13.49
RSJ/LPM Beta (TV) 15.72 11.31 0.331 4.745 1.390 8.27 29.12 0.540 -13.27 13.49
RSJ/HTCR Beta (TV) 15.40 11.29 0.342 4.589 1.364 7.90 28.16 0.547 -11.76 13.49
RSJ/Tail Beta (TV) 15.43 11.52 0.288 4.735 1.339 7.99 32.09 0.481 -12.69 13.49
RSJ/Tail Sens (TV) 15.56 11.24 0.384 4.512 1.385 8.11 25.89 0.601 -11.73 13.49
RSJ/Tail Risk (TV) 15.50 11.47 0.345 4.722 1.351 8.05 31.25 0.496 -11.80 13.49
RSJ/MES (TV) 15.77 11.33 0.408 4.604 1.392 8.21 26.55 0.594 -11.74 13.82

Table X shows performance results of the strategies that use volatility targeting as well as

the equally and volatility weighted momentum strategies without volatility targeting.115 Table
115Results for the equally and volatility weighted strategies without volatility targeting are slightly different to the

results shown in Table II, since the volatility targeting approach needs six months to estimate portfolio volatility.
Thus, the sample examined in this section is six months shorter than the sample examined in the previous section.
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X confirms the finding of earlier studies that volatility targeting enhances the risk-return profile

of a given portfolio. Volatility targeting significantly increases the Sharpe Ratio of the equally

weighted momentum strategy with an extremely high Jobson and Korkie (1981) value of 6.27.

Thus, accounting for portfolio risk produces an enhanced risk-return profile compared to the

strategy that does not account for any kind of risk. Further, volatility targeting significantly re-

duces left tail risk as can be seen by the higher skewness, lower kurtosis and lower drawdown.

Interestingly, all strategies that use the target volatility overlay exhibit a positive skewness. This

result is in line with Grobys et al. (2018) and Grobys and Kolari (2020). Volatility targeting

more than doubles the equally weighted momentum portfolio’s Calmar Ratio that quantifies the

drawdown-adjusted return. In particular, accounting for portfolio risk is more beneficial than

accounting for individual asset risk. The equally weighted strategy that targets a constant level

of portfolio volatility significantly outperforms the strategy that manages the individual assets’

volatility. Further, the strategy that manages individual asset and portfolio volatility produces

a slightly higher Sharpe Ratio and skewness than the equally weighted strategy overlayed by

the volatility targeting approach. Thus, simultaneously managing individual asset and portfolio

risk outperforms the strategies that manage either individual or portfolio risk as found by Har-

vey et al. (2018) and Zakamulin (2015). However, the performance can further be enhanced

by simultaneously managing the individual assets’ (systematic) tail risk and portfolio volatil-

ity. This especially holds for the strategies using the RSJ based weighting approach. These

strategies further increase the Sharpe Ratio and skewness and further decrease the kurtosis and

maximum drawdown. The Sharpe Ratio of this approach is nearly twice the Sharpe of the

equally or volatility weighted momentum portfolio. The Jobson and Korkie (1981) values for

the RSJ based strategies lie between 6.85 and 8.27 and indicate a highly significant increase in

momentum’s Sharpe Ratio.

To further illustrate the differences between the four approaches, Figure III shows the cu-

mulative return of five different strategies. The first two strategies are the equally and volatility

weighted strategies without volatility targeting. Additionally, we show the cumulative return

of three strategies using volatility targeting combined with either equally, volatility or (system-
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Figure III. Cumulative Return: Volatility Targeting. This figure plots the cumulative return of five
momentum strategies combined with a one dollar investment in the risk-free rate. The five momentum
strategies are the equally weighted and volatility weighted momentum strategy without volatility target-
ing as well as the equally, volatility and (systematic) tail risk weighted strategies combined with the target
volatility (TV) approach. As in Daniel and Moskowitz (2016), we rescale all strategies to an annualized
volatility of 19%.

atic) tail risk weighted industries. Since the different strategies have quite different levels of

volatility, we rescale the strategies to the same level of volatility. The figure shows that the

equally and volatility weighted strategies without volatility targeting are clearly outperformed

by the strategies using volatility targeting. This outperformance is driven by mitigating crash

periods and capturing the upside potential. Among the strategies with volatility targeting, the

equally weighted strategy is outperformed by the risk weighted strategies, where the strategy

based on the (systematic) tail risk weighting clearly outperforms the remaining strategies. Over

the whole period, an investor who would have invested 1$ in the the risk-free rate combined

with the equally weighted momentum strategy, would possess a terminal wealth of 1,681,476$.

If the investor would have weighted industries by their volatility, this amount would increase to

2,088,269$. If the investor would have applied the volatility targeting approach to the equally

weighted momentum portfolio, the investor’s terminal wealth would increase to 430,849,793$.

If the investor would additionally weight industries of the momentum portfolio by their volatil-

ity or (systematic) tail risk, the terminal wealth would even increase to 1,295,814,822$ or even
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18,420,365,747$. Thus, the terminal wealth of an investor who accounts for individual asset

risk and portfolio risk is about 10,955 times higher than the terminal wealth of an investor who

ignores all kinds of risk.

Table XI. Sorted Returns: Volatility Targeting
This table shows monthly returns of the equally weighted and volatility weighted momentum strategies
without volatility targeting as well as the equally weighted and risk weighted momentum strategies that
are overlayed by the target volatility (TV) strategy for the months when the momentum portfolio exhibits
the five lowest and five highest returns. All entries are given in percent.

Model Low Returns High Returns

Equal -25.96 -24.01 -20.34 -15.59 -12.76 11.25 11.66 12.35 14.57 18.61
RV -18.02 -20.43 -17.23 -20.26 -21.59 8.43 7.80 8.39 12.00 13.57

Equal (TV) -16.27 -16.61 -7.62 -4.64 -4.57 15.95 9.91 8.40 4.08 15.14
RV (TV) -13.65 -17.46 -7.28 -5.95 -8.46 16.53 7.68 8.38 4.19 12.54

RSJ/Corr (TV) -14.62 -9.48 -4.04 -5.96 -5.33 13.49 11.44 8.56 4.25 10.44
RSJ/Down Corr (TV) -22.54 -9.77 -4.08 -4.96 -6.24 13.49 11.16 7.86 4.24 12.20
RSJ/Beta (TV) -16.21 -10.37 -4.58 -6.10 -5.58 13.49 12.16 8.02 4.20 11.82
RSJ/Down Beta (TV) -20.16 -10.05 -4.84 -5.73 -5.44 13.49 11.02 7.52 3.57 12.22
RSJ/CoSkew (TV) -15.83 -13.28 -4.79 -2.84 -4.73 13.49 11.20 7.20 3.12 17.39
RSJ/CoKurt (TV) -21.56 -10.01 -4.82 -5.30 -7.18 13.49 11.29 8.86 4.50 9.38
RSJ/LPM Beta (TV) -13.27 -10.08 -4.31 -5.92 -5.39 13.49 11.27 7.95 3.65 12.90
RSJ/HTCR Beta (TV) -11.21 -9.96 -6.16 -5.73 -4.56 13.49 11.46 7.87 2.92 11.84
RSJ/Tail Beta (TV) -12.69 -12.09 -5.78 -6.12 -5.62 13.49 12.50 9.00 3.55 12.59
RSJ/Tail Sens (TV) -8.60 -9.74 -5.15 -5.76 -4.79 13.49 12.25 7.92 2.93 11.72
RSJ/Tail Risk (TV) -11.79 -11.80 -4.65 -6.62 -6.10 13.49 13.03 8.62 3.87 13.46
RSJ/MES (TV) -9.19 -10.19 -4.22 -6.12 -5.52 13.49 12.07 7.89 3.45 13.82

To assess how the volatility targeting approach performs in extremely good and bad market

environments, Table XI shows the performance of the different strategies for the five months

with the highest and lowest return of the equally weighted momentum strategy. From now

on, we only show results for the RSJ based switching strategies. Results for the skewness

based switching strategies were similar but slightly worse. Nevertheless, the strategies that use

skewness as univariate risk measure also clearly outperform the equally and volatility weighted

strategies. Table XI shows that volatility targeting successfully reduces the extremely low re-

turns of the momentum portfolio. This finding is in line with Barroso and Santa-Clara (2015),

Daniel and Moskowitz (2016) and Rickenberg (2020a) who show that volatility targeting is

an appealing drawdown protection method for momentum investors. The highest reduction

of extremely low returns is typically found for the switching based strategies combined with

volatility targeting. Thus, simultaneously managing the individual assets’ (systematic) tail risk

and the momentum portfolio’s volatility is a good approach to reduce momentum’s loss poten-
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tial.116 Furthermore, periods with an extremely high momentum return are quite good captured

by volatility targeting. Thus, the good performance of the target volatility approach is driven

by reducing left tail risk without sacrificing much of the return potential. This makes volatility

targeting appealing for investors, since most investors are willing to give up some of the right

tail in order to reduce left tail risk (Harvey et al., 2018).

Table XII. Best and Worst 15 Years: Volatility Targeting
This table shows performance results of the equally and volatility weighted momentum portfolio without
volatility targeting as well as the strategies that use the target volatility (TV) overlay in the two 15 years
periods where the equally weighted momentum strategy exhibits the best and worst performance. The
description of the columns is given in Table I.

Best Months: 01.11.1967 – 31.10.1982 Worst Months: 01.06.1932 – 01.05.1947

Model Return Volatility Skew SR zJK Return Volatility Skew SR zJK

Equal 15.54 11.32 -0.015 1.373 - 1.14 14.29 -2.074 0.080 -
RV 14.07 9.84 -0.228 1.429 0.71 1.03 13.69 -1.782 0.076 -0.04

Equal (TV) 25.12 15.50 0.265 1.621 2.75 3.59 9.20 -1.320 0.391 2.77
RV (TV) 28.00 16.12 0.272 1.738 2.60 4.23 9.99 -0.597 0.424 2.25

RSJ/Corr (TV) 27.78 14.65 0.275 1.896 3.82 5.88 9.32 -0.557 0.631 3.48
RSJ/Down Corr (TV) 27.55 14.63 0.252 1.884 3.79 4.84 10.33 -2.312 0.469 2.62
RSJ/Beta (TV) 28.01 14.64 0.288 1.913 3.98 5.39 9.66 -0.825 0.558 3.18
RSJ/Down Beta (TV) 28.16 14.63 0.278 1.925 4.15 5.17 9.98 -1.722 0.518 2.98
RSJ/CoSkew (TV) 27.62 14.70 0.298 1.878 3.90 3.09 8.99 -1.057 0.343 1.73
RSJ/CoKurt (TV) 27.66 14.55 0.268 1.901 3.84 5.19 10.28 -2.066 0.505 2.93
RSJ/LPM Beta (TV) 28.13 14.65 0.289 1.920 4.13 5.85 9.17 -0.371 0.638 3.53
RSJ/HTCR Beta (TV) 27.84 14.68 0.294 1.897 3.96 5.05 9.16 -0.192 0.552 2.97
RSJ/Tail Beta (TV) 27.75 14.83 0.235 1.872 3.98 5.26 9.46 -0.293 0.556 3.10
RSJ/Tail Sens (TV) 27.29 14.76 0.271 1.849 3.59 5.52 8.60 0.164 0.642 3.29
RSJ/Tail Risk (TV) 27.74 14.74 0.262 1.882 3.91 5.26 9.25 -0.123 0.568 3.12
RSJ/MES (TV) 28.19 14.67 0.282 1.921 4.20 5.59 8.81 0.106 0.634 3.22

Similar to Table V, we next show in Table XII results for the momentum strategies that are

overlayed by volatility targeting in the two 15 years periods where the equally weighted mo-

mentum portfolio exhibits the highest and lowest average return. This table shows that volatil-

ity targeting is advantageous regardless of whether the momentum portfolio is in a bull or bear

regime. During the bull period, all volatility targeting strategies produce a higher Sharpe Ratio

and this increase is also statistically significant. The highest Sharpe Ratios are obtained by the

strategies using the (systematic) tail risk weighting. Further, all volatility targeting strategies

116A possible extension of this approach would be to manage the portfolio’s tail risk instead of volatility. Doing
this should further reduce extremely high losses. Rickenberg (2020b) and Rickenberg (2020a) presents portfolio
risk targeting strategies that manage the portfolio’s volatility in up-markets and the portfolio’s tail risk in down-
markets. Rickenberg (2020a) applies this approach to the equally weighted momentum portfolio and finds that
this approach outperforms volatility targeting by further reducing left tail risk without sacrificing return potential.
However, in order to not combine too many different strategies, we only show results for the volatility targeting
approach in the main part. Results for the tail risk targeting strategy are shown in Appendix B.10.
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exhibit a positive skewness, whereas the skewness of the strategies without volatility target-

ing is negative. During the bear period, the strategies without volatility targeting have positive

Sharpe Ratios, which are, however, very low. This low Sharpe Ratio can be massively increased

by the volatility targeting approach. All portfolios that are overlayed with volatility targeting

exhibit a statistically higher Sharpe Ratio than the equally weighted momentum portfolio with-

out volatility targeting. The highest Sharpe Ratios are again achieved by the strategies using the

(systematic) tail risk weighting. Further, left tail risk is again significantly reduced by volatility

targeting. In particular, strategies that use the (systematic) tail risk weighting combined with

volatility targeting provide the best left tail risk reduction. Interestingly, two of these strate-

gies even obtain a positive skewness, whereas the skewness of the equally weighted momentum

strategy is�2.074. The strategy that applies volatility targeting to the equally weighted momen-

tum portfolio still has a skewness of �1.320. Thus, although volatility targeting is an appealing

method to reduce the probability of momentum crashes, left tail risk can further be reduced by

additionally weighting assets of the momentum portfolio by their (systematic) tail risk.

As in Table VI, we next examine in Table XIII the performance of the volatility targeting

strategies in different sub-samples. Since the sample for the volatility targeting strategies is six

months shorter, sub-samples are also slightly different to the sub-samples in Table VI. Table

XIII shows that volatility targeting increases the Sharpe Ratio in all three sub-samples and that

these increases are statistically significant for every weighting scheme and sub-sample. This is

in line with Barroso and Santa-Clara (2015) and Rickenberg (2020a) who also find that volatil-

ity targeting is beneficial in different sub-samples. Further, in all sub-samples, Sharpe Ratios

are the highest for the strategies that combine volatility targeting with the (systematic) tail risk

weightings. As in Table X, volatility targeting significantly reduces left tail risk in all three sub-

samples by producing a higher skewness, lower kurtosis and lower drawdowns. In two of the

three sub-samples, volatility targeting even produces a positive skewness, whereas the skewness

of the strategies without volatility targeting is negative. The crash risk reduction is again the

highest for the models using the (systematic) tail risk weightings combined with volatility tar-

geting. In particular, the drawdown reduction is most pronounced in the last sub-sample, where
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Table XIII. Performance Results in Different Sub-Samples: Volatility Targeting
This table shows performance results of the equally weighted and volatility weighted momentum strate-
gies without volatility targeting as well as the equally weighted and risk weighted momentum strategies
that are overlayed by the target volatility (TV) strategy in three sub-samples. The description of the
columns is given in Table I.

Panel A: 01.05.1931 – 30.06.1960

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 5.22 11.93 -1.948 17.402 0.438 - 48.48 0.108 -25.96 14.57
RV 5.01 11.41 -1.737 13.998 0.440 0.03 45.89 0.109 -21.59 12.00

Equal (TV) 8.50 9.61 -0.557 6.974 0.885 4.24 32.31 0.263 -16.27 9.88
RV (TV) 9.51 10.45 -0.125 5.070 0.910 3.63 36.25 0.262 -13.65 11.13

RSJ/Corr (TV) 9.82 9.59 -0.195 6.143 1.023 4.54 28.48 0.345 -14.62 11.51
RSJ/Down Corr (TV) 9.30 10.14 -1.232 14.409 0.917 3.98 37.91 0.245 -22.54 11.51
RSJ/Beta (TV) 9.72 9.81 -0.368 6.971 0.991 4.47 30.61 0.318 -16.21 11.51
RSJ/Down Beta (TV) 9.45 9.96 -0.865 11.012 0.948 4.20 34.67 0.272 -20.16 11.51
RSJ/CoSkew (TV) 8.23 9.43 -0.382 7.457 0.873 3.37 31.80 0.259 -15.83 11.51
RSJ/CoKurt (TV) 9.37 10.09 -1.102 12.879 0.929 4.12 35.81 0.262 -21.56 11.51
RSJ/LPM Beta (TV) 9.93 9.53 -0.110 5.436 1.042 4.68 29.12 0.341 -13.27 11.51
RSJ/HTCR Beta (TV) 9.45 9.54 -0.020 4.705 0.990 4.23 28.16 0.336 -11.21 11.51
RSJ/Tail Beta (TV) 9.59 9.72 -0.098 5.025 0.986 4.36 32.09 0.299 -12.69 11.51
RSJ/Tail Sens (TV) 9.77 9.24 0.154 4.223 1.057 4.53 25.89 0.377 -8.60 11.51
RSJ/Tail Risk (TV) 9.61 9.60 0.005 4.772 1.000 4.41 31.25 0.307 -11.79 11.51
RSJ/MES (TV) 9.88 9.34 0.130 4.329 1.059 4.55 26.55 0.372 -9.19 11.51

Panel B: 01.07.1960 – 31.08.1989

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 12.53 9.99 -0.043 4.599 1.254 - 13.20 0.949 -9.73 11.25
RV 12.04 8.81 -0.183 4.574 1.368 1.63 13.38 0.900 -9.02 9.12

Equal (TV) 20.86 14.16 0.235 3.773 1.473 3.60 19.14 1.090 -10.90 15.95
RV (TV) 24.03 14.90 0.166 4.327 1.613 3.43 19.08 1.259 -14.02 17.87

RSJ/Corr (TV) 22.35 13.52 0.264 3.900 1.653 4.00 17.27 1.294 -11.83 13.49
RSJ/Down Corr (TV) 22.22 13.50 0.251 3.912 1.646 3.98 17.56 1.265 -11.83 13.49
RSJ/Beta (TV) 22.39 13.52 0.274 3.886 1.656 4.03 17.32 1.292 -11.83 13.49
RSJ/Down Beta (TV) 22.39 13.51 0.268 3.896 1.657 4.09 17.63 1.270 -11.84 13.49
RSJ/CoSkew (TV) 22.34 13.56 0.279 3.715 1.647 4.08 18.95 1.179 -10.36 13.49
RSJ/CoKurt (TV) 22.12 13.46 0.265 3.898 1.643 3.88 17.77 1.245 -11.81 13.49
RSJ/LPM Beta (TV) 22.48 13.52 0.274 3.870 1.663 4.15 17.10 1.315 -11.77 13.49
RSJ/HTCR Beta (TV) 22.21 13.54 0.281 3.874 1.640 3.93 17.96 1.237 -11.76 13.49
RSJ/Tail Beta (TV) 22.42 13.61 0.235 3.893 1.647 4.16 16.48 1.361 -11.76 13.49
RSJ/Tail Sens (TV) 22.14 13.59 0.259 3.867 1.630 3.87 17.24 1.284 -11.73 13.49
RSJ/Tail Risk (TV) 22.47 13.59 0.244 3.860 1.653 4.21 17.32 1.298 -11.80 13.49
RSJ/MES (TV) 22.54 13.53 0.272 3.860 1.666 4.23 16.52 1.365 -11.74 13.49

Panel C: 01.09.1989 – 31.12.2018

Model Return Volatility Skew Kurt SR zJK MDD Calmar Min Max

Equal 9.78 13.68 -0.554 8.989 0.715 - 33.86 0.289 -24.01 18.61
RV 8.15 11.61 -1.111 11.700 0.702 -0.10 37.97 0.215 -20.43 13.57

Equal (TV) 11.07 10.91 0.111 6.591 1.015 3.56 17.14 0.646 -16.61 15.14
RV (TV) 12.81 11.88 0.339 6.768 1.079 2.95 17.46 0.734 -17.46 16.67

RSJ/Corr (TV) 14.85 10.15 0.305 4.169 1.463 5.79 11.60 1.280 -9.48 11.44
RSJ/Down Corr (TV) 14.21 10.32 0.249 4.395 1.377 5.28 16.29 0.873 -9.77 12.20
RSJ/Beta (TV) 14.95 10.35 0.328 4.475 1.444 5.60 12.22 1.223 -10.37 12.16
RSJ/Down Beta (TV) 14.75 10.25 0.314 4.302 1.439 5.62 13.33 1.107 -10.05 12.22
RSJ/CoSkew (TV) 13.43 10.72 0.369 6.301 1.253 4.42 18.59 0.722 -13.28 17.39
RSJ/CoKurt (TV) 14.30 10.29 0.181 4.132 1.390 5.37 13.34 1.072 -10.01 11.29
RSJ/LPM Beta (TV) 15.09 10.27 0.358 4.498 1.470 5.78 11.78 1.281 -10.07 12.90
RSJ/HTCR Beta (TV) 14.91 10.17 0.308 4.315 1.465 5.75 13.30 1.121 -9.96 11.84
RSJ/Tail Beta (TV) 14.64 10.65 0.287 4.909 1.374 5.52 13.96 1.049 -12.09 12.59
RSJ/Tail Sens (TV) 15.09 10.21 0.349 4.256 1.479 5.96 10.82 1.395 -9.74 12.25
RSJ/Tail Risk (TV) 14.78 10.61 0.387 5.103 1.392 5.56 12.60 1.173 -11.80 13.46
RSJ/MES (TV) 15.24 10.49 0.447 4.780 1.453 5.71 12.15 1.254 -10.19 13.82
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the drawdown of the switching strategies with volatility targeting is only about one third of the

drawdown of the equally weighted momentum strategy without volatility targeting. This high

drawdown reduction is also accompanied with higher returns. This can be seen by the Calmar

Ratio of the switching strategies, which is about four times the Calmar Ratio of the equally

weighted momentum strategy. In total, Table XI, Table XII and Table XIII show that simulta-

neously accounting for individual asset and portfolio risk is beneficial in different sub-samples

and market environments. In particular, strategies that simultaneously manage the individual

assets’ (systematic) tail risk and the momentum portfolio’s portfolio risk outperform strategies

that ignore any kind of risk, strategies that account only for individual asset risk or strategies

that only manage portfolio risk.

Table XIV. Economic Value: Volatility Targeting
This table shows the annualized percentage fee an investor is willing to pay to switch from the equally
weighted momentum strategy to the volatility weighted strategy or a strategy that uses the target volatility
(TV) approach. The fee is calculated for a mean-variance investor with risk aversion γ � 5, a CRRA
investor with γ � 5 and a loss-averse investor with a loss aversion of l � 2. The fee is calculated over the
whole period, the first half and the second half. All strategies are rescaled to the same level of volatility.

Whole Period First Half Second Half

Model ∆γ�5
MV ∆γ�5

CRRA ∆l�2
LA ∆γ�5

MV ∆γ�5
CRRA ∆l�2

LA ∆γ�5
MV ∆γ�5

CRRA ∆l�2
LA

RV 0.173 0.075 0.180 -0.031 0.000 -0.131 0.430 0.225 0.553

Equal (TV) 4.067 4.516 3.469 4.912 5.457 4.018 3.227 3.583 2.926
RV (TV) 4.904 5.378 4.275 5.101 5.614 4.055 4.757 5.142 4.494

RSJ/Corr (TV) 6.792 7.282 6.203 6.708 7.282 5.945 6.849 7.202 6.459
RSJ/Down Corr (TV) 6.097 6.485 5.622 5.859 6.247 5.290 6.328 6.724 5.968
RSJ/Beta (TV) 6.639 7.122 6.108 6.464 7.043 5.742 6.796 7.202 6.482
RSJ/Down Beta (TV) 6.462 6.883 5.966 6.140 6.644 5.462 6.780 7.202 6.494
RSJ/CoSkew (TV) 5.556 6.009 5.030 5.681 6.247 5.011 5.411 5.772 5.043
RSJ/CoKurt (TV) 6.172 6.565 5.667 5.978 6.406 5.439 6.351 6.724 5.898
RSJ/LPM Beta (TV) 6.927 7.442 6.355 6.823 7.442 5.996 7.007 7.442 6.719
RSJ/HTCR Beta (TV) 6.636 7.122 6.048 6.404 7.043 5.573 6.853 7.282 6.537
RSJ/Tail Beta (TV) 6.355 6.803 5.787 6.204 6.803 5.387 6.489 6.883 6.195
RSJ/Tail Sens (TV) 6.868 7.362 6.218 6.780 7.442 5.910 6.936 7.362 6.526
RSJ/Tail Risk (TV) 6.493 6.963 5.915 6.448 7.043 5.599 6.516 6.883 6.234
RSJ/MES (TV) 6.950 7.442 6.396 6.943 7.603 6.097 6.939 7.362 6.696

We next assess how valuable the combination of managing individual asset and portfolio risk

is for investors. To determine the economic value of this combined strategy, we again calculate

the annualized percentage fee a mean-variance, CRRA or loss-averse investor is willing to pay

to switch from the equally weighted momentum strategy to one of our risk-managed strategies.

Since the strategies with and without volatility targeting have quite different levels of volatility,

we first rescale all strategies to the same level of volatility. The economic value for the three
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investors is given in Table XIV, where we again calculate the economic value over the whole

period, the first half and the second half. For comparison, we again show the economic value

of the volatility weighted strategy, which is almost zero and even negative for the first half. In

contrast, volatility targeting significantly increases the economic value, where the results are

quite robust for the three samples. This is again in line with previous studies that the benefits

of volatility targeting are not much influenced by the sample period (Barroso and Santa-Clara,

2015, Rickenberg, 2020a). Further, the economic value among the three investors is again quite

similar, where the highest fees are found for the CRRA investor. This is line with the high left

tail risk reduction of volatility targeting, which makes this approach highly valuable for CRRA

investors who dislike negative skewness and high kurtosis (Guidolin and Timmermann, 2008).

Moreover, in line with our previous findings, we again find the highest fees for the strategies

that combine the (systematic) tail risk weighting with volatility targeting. Among the strategies

that use volatility targeting, an investor is typically willing to pay an almost 50% higher fee

for the strategies that use the (systematic) tail risk weighting approach compared to the equally

or volatility weightings. In particular, fees are quite similar among the (systematic) tail risk

weighted strategies.

As in Figure II, we next show in Figure IV the rolling economic value for a mean-variance

investor who invests for five or 20 years in four different risk-managed momentum portfolios.

The four risk-managed strategies are the volatility weighted portfolio without volatility targeting

as well as the equally weighted, volatility weighted and (systematic) tail risk weighted strate-

gies with volatility targeting. Panel A shows the economic value for the five years investment

horizon, whereas Panel B shows results for the 20 years investment horizon. Figure IV shows

that the rolling economic value of the strategies that manage the whole portfolio’s risk is always

higher than the economic value of the strategy that only manages the individual assets’ volatili-

ties. This especially holds for Panel B where the investor has a twenty years investment horizon.

The highest economic value is typically achieved by the strategy that combines the (systematic)

tail risk weighting with the volatility targeting approach. Panel B also shows that the economic

value of the volatility weighted momentum strategy can become negative, whereas the eco-
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Figure IV. Rolling Economic Value: Volatility Targeting. This figure plots the rolling economic
value for a mean-variance investor with risk aversion γ � 5 who invests in the volatility weighted
momentum portfolio without volatility targeting as well as the equally weighted, volatility weighted and
(systematic) tail risk weighted momentum portfolio with target volatility (TV) overlay. Panel A shows
the rolling economic value for an investor who invests for five years in these portfolios. Panel B shows
the economic value for an investor who invests for 20 years in these portfolios.

nomic value of the strategies that use volatility targeting is always positive. Thus, a long-term

investor should time monthly portfolio volatility as also found by Moreira and Muir (2019).

Finally, to test if the economic value found in Table XIV is also statistically significant, we

repeat the testing approach of Table IX for the volatility targeting strategies, where we rescale

the strategies to the same level of volatility. Results for these tests are shown in Table XV.

The DM-test, the stepwise SPA-test and the FDR approach indicate that all strategies that use

volatility targeting produce statistically significant utility increases. However, the RC-test, the

SPA-test and the MCS indicate that only the strategies that weight assets by their (systematic)

tail risk combined with volatility targeting generate significant utility increases. This highlights

that different testing approaches can lead to different results. The DM-test, the stepwise-SPA

test and the FDR approach each test all strategies against the equally weighted momentum port-

folio. Since the equally and volatility weighted portfolios combined with volatility targeting
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Table XV. Test for Significant Utility Increases: Volatility Targeting
This table shows results of the tests that test for statistically significant utility increases of the risk man-
aged strategies compared to the equally weighted momentum portfolio. The description of the columns
is given in Table IX.

Panel A: MV DM-test pRC pSPA pSQ Step-SPA Step-SPAst FDR� � 5%

Equal - 0.00 0.00 0.00 - - -
RV 0.37 0.00 0.00 0.00 0 0 0

Equal (TV) 5.82 0.11 0.00 0.08 1 1 14
RV (TV) 5.14 1.68 0.39 1.37 1 1 13

RSJ/Corr (TV) 7.94 90.94 35.00 79.57 1 1 4
RSJ/Down Corr (TV) 7.90 34.17 3.17 3.44 1 1 11
RSJ/Beta (TV) 8.05 75.50 2.91 19.69 1 1 5
RSJ/Down Beta (TV) 8.08 59.01 4.53 14.54 1 1 8
RSJ/CoSkew (TV) 6.65 13.07 0.30 0.68 1 1 12
RSJ/CoKurt (TV) 7.60 38.50 2.78 3.89 1 1 10
RSJ/LPM Beta (TV) 8.26 98.39 58.06 90.48 1 1 2
RSJ/HTCR Beta (TV) 7.61 72.27 10.23 36.99 1 1 6
RSJ/Tail Beta (TV) 8.06 50.42 1.73 5.16 1 1 9
RSJ/Tail Sens (TV) 7.91 89.90 45.33 90.48 1 1 3
RSJ/Tail Risk (TV) 7.94 63.00 4.26 9.84 1 1 7
RSJ/MES (TV) 8.28 100.00 100.00 100.00 1 1 1

Panel B: CRRA DM-test pRC pSPA pSQ Step-SPA Step-SPAst FDR� � 5%

Equal - 0.00 0.00 0.00 - - -
RV 0.16 0.00 0.00 0.04 0 0 0

Equal (TV) 5.62 0.25 0.00 0.23 1 1 14
RV (TV) 5.16 3.30 0.56 1.99 1 1 13

RSJ/Corr (TV) 7.50 89.83 32.35 72.81 1 1 4
RSJ/Down Corr (TV) 7.70 32.30 4.81 4.01 1 1 11
RSJ/Beta (TV) 7.65 74.19 2.98 17.83 1 1 6
RSJ/Down Beta (TV) 7.84 55.09 6.64 13.09 1 1 8
RSJ/CoSkew (TV) 6.50 16.20 0.20 0.88 1 1 12
RSJ/CoKurt (TV) 7.43 35.99 3.97 4.24 1 1 10
RSJ/LPM Beta (TV) 7.78 97.86 50.26 88.76 1 1 2
RSJ/HTCR Beta (TV) 7.21 72.65 9.37 34.04 1 1 5
RSJ/Tail Beta (TV) 7.58 51.86 1.76 5.29 1 1 9
RSJ/Tail Sens (TV) 7.41 90.16 44.84 88.76 1 1 3
RSJ/Tail Risk (TV) 7.47 64.49 3.76 9.45 1 1 7
RSJ/MES (TV) 7.66 100.00 100.00 100.00 1 1 1

Panel C: Loss Aversion DM-test pRC pSPA pSQ Step-SPA Step-SPAst FDR� � 5%

Equal - 0.00 0.00 0.00 - - -
RV 0.39 0.00 0.00 0.00 0 0 0

Equal (TV) 5.12 0.00 0.00 0.00 1 1 14
RV (TV) 4.73 0.38 0.18 0.19 1 1 13

RSJ/Corr (TV) 7.09 87.27 30.88 55.58 1 1 3
RSJ/Down Corr (TV) 7.15 37.93 2.94 4.10 1 1 11
RSJ/Beta (TV) 7.17 80.37 11.02 39.75 1 1 5
RSJ/Down Beta (TV) 7.12 66.79 5.66 28.52 1 1 7
RSJ/CoSkew (TV) 6.09 9.08 0.55 0.78 1 1 12
RSJ/CoKurt (TV) 6.70 40.49 2.74 5.22 1 1 10
RSJ/LPM Beta (TV) 7.31 98.07 55.11 92.38 1 1 2
RSJ/HTCR Beta (TV) 6.76 67.01 11.48 26.72 1 1 6
RSJ/Tail Beta (TV) 7.07 49.62 3.99 8.75 1 1 9
RSJ/Tail Sens (TV) 7.05 80.37 27.86 55.58 1 1 4
RSJ/Tail Risk (TV) 7.03 55.98 3.95 14.14 1 1 8
RSJ/MES (TV) 7.43 100.00 100.00 100.00 1 1 1

produce a significantly higher utility than the equally weighted strategy without volatility tar-

geting, these three tests mark the two models with volatility targeting as superior. In contrast,

the RC-test, the SPA-test and the MCS test each model against all remaining models. Since the
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(systematic) tail risk weighted strategies outperform the equally and volatility weighted strate-

gies, the two strategies are not identified as superior for these tests. In total, results of Table XV

again demonstrate the advantages of weighting momentum’s constituents by their (systematic)

tail risk, even when the whole portfolio’s risk in managed. Among the (systematic) tail risk

weighted strategies, the strategy using MES as systematic tail risk measure produces the most

convincing results. In line with our earlier findings, results are again quite similar for the three

investors.

To summarize this section, we find that managing a portfolio’s risk is typically more impor-

tant than managing the portfolio’s individual asset risk. This is in line with the observation that

correlations increase in bear markets, i.e. assets typically co-crash (Ang and Chen, 2002, Chabi-

Yo et al., 2018, Poon et al., 2004). Hence, downturn periods are best managed by reducing the

exposure to the portfolio and not by diversification. However, we find that simultaneously man-

aging individual asset and portfolio risk significantly outperforms strategies that ignore all kinds

of risk, only manage individual asset risk or only account for portfolio risk but ignore individual

asset risk. Additionally, we find that the (systematic) tail risk weightings are advantageous to

equal or volatility weightings, even when the different weighting schemes are combined with

the volatility targeting strategy.

3.7.5 Robustness Checks

We have so far shown that our (systematic) tail risk weighted momentum strategies significantly

outperform the equally and volatility weighted strategies, especially when these weightings are

combined with the target volatility approach. However, we have so far only examined one

momentum strategy using 30 equally weighted US industry portfolios, the t � 12 to t � 1

months ranking period and a cut-off point of p � 30%. Several studies show that the prof-

itability of momentum investing can be quite different when different data sets are used, assets

are ranked based on other ranking periods or winners and losers are defined based on other

cut-off points. Similarly, risk based portfolio allocation methods are also highly influenced

by different data set characteristics (Kirby and Ostdiek, 2012). Moreover, besides industry

momentum, other portfolio based momentum strategies are also frequently examined. For ex-
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ample, Lewellen (2002), Stivers and Sun (2010) and Novy-Marx (2012) examine momentum of

investment styles, whereas Chan et al. (2000), Asness et al. (2013), Bhojraj and Swaminathan

(2006), Novy-Marx (2012), Nijman et al. (2004) and Richards (1997) examine momentum of

country indices. Further, momentum also works for assets outside the US (Asness et al., 2013,

Fama and French, 2012, Griffin et al., 2003, Nijman et al., 2004, Rouwenhorst, 1998, Swinkels,

2002). Besides using only one certain momentum strategy and data set, we have also shown

results for one certain estimation method for each risk measure. Risk measures estimated with

other estimation methods can sometimes produce quite different estimates of an asset’s risk.

Thus, different estimation methods can also produce quite different performance results for risk

weighted portfolios. To rule out the possibility that our (systematic) tail risk based approach

does only work for a certain momentum strategy and estimation method, we also examined

several robustness results. These robustness results are shown in Appendix B and are shortly

summarized here. A more detailed description of the robustness results can be found in Ap-

pendix B.

In Section B.1, we show that our (systematic) tail risk weightings also work well when risk

is estimated based on alternative estimation windows and cut-off points, whereas the volatility

weighted strategy does not significantly outperform the equally weighted strategy for differ-

ent volatility estimates. Section B.2 shows that industry momentum also works well when

four other other ranking periods are used. In particular, we find that the (systematic) tail risk

weighted momentum strategies clearly outperform the equally weighted and volatility weighted

strategies for all ranking periods. Section B.3 shows that industry momentum also works well

for alternative cut-off points to determine winners and losers. We find that the (systematic)

tail risk weighted momentum strategies significantly outperform the non-managed momentum

strategy for all cut-off points. In Section B.4, we apply our approaches to the industry momen-

tum strategy using different industry classifications. Instead of using 30 equally weighted US

industries, we also use smaller and bigger sets of US industry portfolios between 5 and 49 US

industries. Further, we show that our results are also robust to using value-weighted industries

instead of equally weighted industries. In Section B.5, we show that industry momentum also
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performs well for industries outside the US by applying the strategies to International and Euro-

pean industries. We again find that the risk-managed momentum strategies significantly outper-

form the equally weighted momentum strategy. Section B.6 shows results for the momentum

strategies applied to several style portfolios in the US, Internationally and in Europe. Confirm-

ing the finding of Stivers and Sun (2010), Lewellen (2002) and Novy-Marx (2012), we find that

momentum also works well for investment styles. In line with our earlier findings, we show that

accounting for the individual styles’ risk and the momentum portfolio’s risk significantly out-

performs the equally weighted style momentum strategy. This holds especially when individual

asset risk is managed by our (systematic) tail risk switching approach. Section B.7 applies mo-

mentum to two data sets consisting of country indices. Confirming the earlier results of Chan

et al. (2000), Asness et al. (2013), Bhojraj and Swaminathan (2006), Novy-Marx (2012) and

Richards (1997), we find that past winning countries outperform past losing countries. How-

ever, the performance of the country momentum strategy can again significantly be increased

by accounting for the countries’ individual risk. In Section B.8, we show that the switching ap-

proach presented in Section 3.5 is also robust to several other definitions of the crash indicator δt

based on momentum’s past volatility and past return as well as past market volatility. In Section

B.9, we show additional results for the volatility targeting approach presented in Section 3.6 for

other definitions of σtarget and other volatility models. Section B.10 shows that our results are

robust to using the tail risk targeting strategy of Rickenberg (2020a,b) instead of the volatility

targeting strategy of Barroso and Santa-Clara (2015) to manage portfolio risk. In Section B.11,

we assess the profitability of the non-managed and risk-managed momentum strategies based on

the strategies’ alpha using the CAPM, the Fama and French (1993) three factor model and the

Carhart (1997) four factor model. Moreover, we conduct spanning tests in the manner of Daniel

and Moskowitz (2016, Sec. 4.4) and Moreira and Muir (2017) to control for the performance of

the strategies that use other weighting schemes. Results in this section show that the profitabil-

ity of the (systematic) tail risk weighted strategy cannot be explained by the factor models or

the equally and volatility weighted momentum strategies. This finding is confirmed in Section

B.12, where we assess the significance of our findings when other benchmarks that also use the
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target volatility overlay are chosen for the Diebold and Mariano (1995) and Jobson and Korkie

(1981) tests. Results in this section confirm that the (systematic) tail risk weighting is superior

to the remaining weighting schemes, even when the different weighting schemes are combined

with volatility targeting. Finally, Appendix B.13 shows that the (systematic) tail risk weighting

is also superior to the equal and volatility weightings when only the winners are regarded. In

particular, this strategy clearly outperforms other portfolio methods, like the equally weighted,

minimum variance and mean-variance portfolios, that are based on all available assets.

In total, our robustness results show that our simple (systematic) risk weighting approach

also works well for several other portfolio based momentum strategies based on other data sets,

other ranking periods and other cut-off points. Further, other estimation windows can also be

used to estimate the assets’ (systematic) tail risk. In particular, our weighting approach works

best when it is combined with a risk targeting strategy that manages portfolio risk, measured

by volatility or tail risk. The robustness of our results is striking, since DeMiguel et al. (2009b)

find that portfolio allocation methods perform quite differently when other data sets are used.

Further, Kirby and Ostdiek (2012) and Zakamulin (2015) find that risk based portfolio allocation

methods based on industries typically do not outperform equally weighted portfolios. Similarly,

Clare et al. (2016) find that risk based asset allocation methods do not outperform the equally

weighted portfolio when only assets of the same asset class, in our paper equities, are used.

Thus, in view of these earlier findings, the significant outperformance of our approach and the

robustness of our results are striking. This is especially the case since our (systematic) tail risk

approach is easy to understand and implement, and thus can be an appealing alternative for

practitioners.

3.8 Conclusion

This paper studies different weighting schemes applied to industry, style and country momen-

tum. Momentum strategies examined in the literature so far typically use simple weighting

schemes that do not incorporate different risk levels of the assets that are contained in the mo-

mentum portfolio. Momentum strategies based on these simple weightings, like the equally
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weighted momentum strategy, exhibit a suboptimal risk-return profile, a fat left tail and a

high crash risk. More recently, in order to improve momentum’s risk-return profile, volatil-

ity weighted momentum strategies have been examined in the financial literature. However, we

find that using volatility to determine portfolio weights is suboptimal for long-short strategies

like momentum. The reason for this finding is that volatility weighting improves the perfor-

mance of the long and short portfolio, i.e. the benefits of buying the enhanced winners portfolio

is offset by shorting the enhanced losers portfolio. For that reason, we develop several weight-

ing schemes based on univariate and systematic tail risk measures. These weighting schemes

incorporate the assets’ non-normalities and distinguish between long and short positions. In

particular, we develop a strategy that manages momentum’s univariate risk in low risk periods

and switches to a systematic tail risk weighting when a momentum crash becomes likely. We

find that this approach significantly outperforms the equally and volatility weighted momen-

tum strategies. The good performance of this strategy results since the winners’ performance

is improved, whereas the losers performance is worsened. In total, the (systematic) tail risk

weighted momentum strategies exhibit higher returns while simultaneously left tail risk is re-

duced. Furthermore, these weighting schemes are highly valuable for mean-variance, CRRA

and loss-averse investors who are willing to pay high and statistically significant fees to have ac-

cess to these weightings. In particular, the outperformance of the (systematic) tail risk weighted

momentum strategy holds in different sub-samples as well as in bull and bear markets.

Since the weighting schemes examined in this paper only change the allocation among the

assets in the winners and losers portfolios, the amount invested long in the winners and short

in the losers is not changed and can be scaled arbitrarily. Thus, these risk weighted momentum

portfolios can be overlayed by a target risk strategy that targets a constant level of portfolio

risk. By doing this, this combined strategy simultaneously manages individual asset risk and

portfolio risk. We find that accounting for both types of risk outperforms strategies that do

not manage any kind of risk, only manage individual asset risk or only manage portfolio risk.

In particular, the best risk-return profile is obtained by the strategies that manage individual

(systematic) tail risk combined with the target risk approach.
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Future research could employ our risk management approach to other long-short strategies.

Further, similar to the BAB and BAC strategy of Frazzini and Pedersen (2014) and Asness et al.

(2020), long-short strategies that bet against skewness, RSJ or other systematic tail risk mea-

sures, combined with the rank weighting, could also be examined in future research. Finally,

our (systematic) tail risk weighting combined with the risk targeting approach could also be a

promising method to reduce the high crash risk of the individual stock momentum strategy that

is frequently examined in the financial literature.
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Appendix to Chapter 3

A Advantages of Volatility Weighted Portfolios

This section summarizes several advantages of portfolio strategies that overweight low volatile

assets. We further summarize studies that have used these strategies and how different portfolio

allocation methods are connected. We also motivate why combining a volatility based portfolio

allocation with momentum is appealing and why this approach can be an alternative to other

portfolio optimization methods. As stated in Section 3.2.4, volatility based portfolio allocation

methods are motivated by the low volatility anomaly that has been examined quite frequently

and that states that low volatile assets obtain higher (risk-adjusted) returns than highly volatile

assets.

Several explanations for the low volatility anomaly have been examined in the literature so

far. For example, a possible explanation for the improved risk-return profile of low risk assets

is leverage aversion of investors as examined by Asness et al. (2012), Frazzini and Pedersen

(2014) and Asness et al. (2020) in a similar setting.117 Another explanation is that low volatility

investing heavily loads on other firm characteristics that are related to higher returns. Jordan

and Riley (2015) use volatility as a new factor and extend the Carhart (1997) four factor model

to a five factor model that incorporates a low volatility factor. Jordan and Riley (2015) find

that the low volatility factor, applied to mutual funds, captures similar characteristics as the

profitability and investment factors (Fama and French, 2016), i.e. “low volatility funds hold

stocks in companies that are more profitable and invest more conservatively than companies

whose stock is held by high volatility funds”. Similarly, Fama and French (2016, p. 92) state that

117Asness et al. (2012, p. 50) state: “Because some investors choose to overweight riskier assets in order to avoid
leverage, the price of riskier assets is elevated or, equivalently, the expected return on riskier assets is reduced. In
contrast, the safer assets are underweighted by these investors and thus trade at low prices (i.e., offer high expected
returns).”
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“returns of low volatility stocks behave like those of firms that are profitable but conservative

in terms of investment, whereas the returns of high volatility stocks behave like those of firms

that are relatively unprofitable but nevertheless invest aggressively”. This result is confirmed by

Asness et al. (2020, Table 7). Similarly, low volatility portfolios typically load on value stocks

(see Blitz (2016) and references therein). Further, Walkshäusl (2014, Exhibit 2) finds that low

risk strategies heavily load on stocks of conservative industries, such as consumer staples, health

care and utilities. Nevertheless, these loadings cannot completely explain the low risk anomaly

and the relation between risk and return is still negative or flat even when it is controlled for

profitability, investment, value or industry classification (Asness et al., 2014, Blitz, 2016, Blitz

and Vidojevic, 2017). For example, Blitz (2016, p. 99) concludes “that the low-volatility effect

is a distinct phenomenon that cannot be explained by the value effect”. Other studies explain the

finding of a low volatility anomaly by a bad research design of these studies, loadings on other

risks or investors’ preferences.118 For example, Bali and Cakici (2008) examine the impact

of several characteristics, like different data frequencies and weighting schemes, on the cross-

sectional relation of return and volatility. The authors find that the relation between volatility

and return can be highly different for these modifications. Fu (2009) state that using more

advanced volatility forecasting models can solve the low volatility puzzle. Chen and Petkova

(2012) show that the low volatility anomaly can be explained by exposure to changes of average

market volatility. Amaya et al. (2015), Boyer et al. (2009) and Schneider et al. (2020) state that

the low volatility anomaly can be explained by investors’ (co)skewness preferences. Similarly,

Bali et al. (2011) and Bali et al. (2017a) state that low risk anomalies can be explained by

investors’ lottery demand. See also Asness et al. (2012, Footnote 3), Asness et al. (2020), Blitz

et al. (2019) and Chen and Petkova (2012, Sec. 6) for a review of further explanations of the low

volatility anomaly. In total, many explanations have been made for the low volatility anomaly.

However, the outperformance of low risk assets is still puzzling and exploiting this effect is

118This is also the case for other risk based anomalies. For example, Cederburg et al. (2020) state that the (time-
series) volatility anomaly of Moreira and Muir (2017) can be explained by a bad performance evaluation measure
that relies on unconditional portfolio alphas. Similarly, the low beta anomaly of Frazzini and Pedersen (2014) can
also be solved by changing the research design. For example, Cederburg and O’Doherty (2016) and Schneider
et al. (2020) solve the low beta anomaly by advanced performance evaluation methods, Bali et al. (2017a) explain
the low beta anomaly by investors’ lottery demand and Bali et al. (2017b) find that the low beta anomaly disappears
once beta is estimated conditionally.
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advantageous for investors.

The low volatility anomaly can easily be exploited by so called “low volatility portfolios”

that only buy the least volatile assets from a given universe. These strategies typically produce

convincing risk-adjusted returns and are frequently used by practitioners (Blitz and Van Vliet,

2007, Chow et al., 2014).119 Further, Blitz and Van Vliet (2007) find that assets with lower

volatility also have lower drawdowns. Similarly, Jang and Kang (2019, Table 1) find that an

increase of volatility also increases the probability of extremely positive and negative returns,

where the impact for extremely negative returns is higher. In total, buying the least volatile as-

sets should produce an enhanced risk-return profile where especially drawdowns are attenuated.

Nevertheless, the aim of this paper is to apply different weighting schemes to the winners and

losers portfolio. Thus, the idea of low volatility portfolios cannot be applied directly to the mo-

mentum portfolio, but these findings demonstrate the advantage of overweighting low volatile

assets.120

Besides the inverse volatility and rank weighting schemes presented in Section 3.2.4, other

weighting schemes that exploit the low volatility anomaly are also frequently used in the aca-

demic literature and financial industry. The most frequently used portfolio allocation method

that incorporates the assets’ volatilities is the well-known mean-variance optimization. The

mean-variance approach determines portfolio weights based on the assets’ mean returns and

covariance matrix. Although this optimization method is frequently applied, most studies state

that mean-variance optimization does not perform well in out-of-sample applications. The rea-

son for this finding is that mean returns are hard to estimate (Merton, 1980), which leads to

119Low volatility portfolios have the advantage that no portfolio optimization is needed. Chow et al. (2014) find a
similar risk-adjusted performance for mean-variance optimized portfolios and low volatility portfolios. Similarly,
Walkshäusl (2014, p. 55) “conclude that minimum-volatility, low-volatility and low-beta strategies seem to perform
rather equally around the world”. Moreover, Chow et al. (2014) find that the mean-variance optimization typically
has a higher turnover and thus produces higher transaction costs than the strategy that only buys the least volatile
assets. In contrast, low risk portfolios can be implemented in practice with quite low transaction costs (Blitz et al.,
2019). Zakamulin (2017) find that the profitability of the minimum variance portfolio is mainly driven by the
low volatility effect. Thus, simple low volatility portfolios are an appealing alternative to more complex portfolio
strategies and again highlight the advantage of overweighting low volatile assets.

120One way to adapt the idea of low volatility portfolios in the context of momentum portfolios would be to only
buy assets with a high past return and a low volatility (Blitz and van Vliet, 2018). Similarly, the losers portfolio
could contain assets with a low past return and high volatility as suggested by Ang et al. (2006b). This would be
similar to the approach of Jacobs et al. (2015) who buy and sell assets based on their momentum and (skewness)
risk.
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suboptimal portfolio weights and high transaction costs.121

Due to the finding that mean-variance portfolios do not perform well in out-of-sample ex-

aminations, several alternatives that do not incorporate an estimate of mean returns have been

developed in the financial literature. One frequently used portfolio optimization method that

is directly linked to the mean-variance optimization and does not rely on an estimate of the

assets’ mean return is the minimum variance optimization. The minimum variance portfolio

is the unique portfolio on the mean-variance efficient frontier that is independent of the mean-

return (Merton, 1972). Thus, the minimum variance portfolio follows from the mean-variance

portfolio by ignoring the mean return. This portfolio optimization typically outperforms the

mean-variance approach since no mean return estimate is needed.

A third volatility based weighting scheme that is also examined in the literature and is fre-

quently applied by practitioners is the risk parity approach (Asness et al., 2012, Asvanunt et al.,

2015, Baltas, 2015, Maillard et al., 2010).122 Risk parity is similar in nature to the frequently

used minimum variance portfolio strategy and is a compromise of the equally weighted portfo-

lio and the minimum variance optimization. Maillard et al. (2010, p. 60) state that the equally

weighted portfolio has a limited diversification if risks of the assets are highly different and

that minimum variance portfolios suffer under a high portfolio concentration and are typically

invested in a limited number of assets. In contrast, risk parity aims to equalize the portfolio risk

contribution of each asset. Hence, risk parity is a middle ground between the equally weighted

portfolio and the minimum variance portfolio. As a consequence, risk parity portfolios are typ-

ically better diversified than equally weighted or minimum variance portfolios (Maillard et al.,

2010). In particular, the inverse volatility weighting in Equation (3.2.3) is a special case of the

risk parity approach.123 Thus, the inverse risk weighting is expected to be better diversified than

121Merton (1980) state that the estimation accuracy of volatilities can be increased by using finer data frequencies.
However, this result does not hold for mean returns, which makes the estimation of mean returns more challeng-
ing. Kritzman et al. (2010) state that the estimation accuracy of mean returns can be increased by expanding the
estimation window and using long data samples.

122See Jagannathan and Ma (2003), DeMiguel et al. (2009a), DeMiguel et al. (2009b), Kan and Zhou (2007), Tu
and Zhou (2011), Garlappi et al. (2006), Kritzman et al. (2010), Zakamulin (2015), Fleming et al. (2003), Fleming
et al. (2001), Han (2005), Chow et al. (1999) and Behr et al. (2012) for studies on risk parity, minimum variance
and mean-variance portfolios in the financial literature.

123Maillard et al. (2010) show that the inverse volatility weighting is a special case of the risk parity portfolio
under the assumption that the correlations of the assets are equal (but not necessarily zero). Similarly, Kirby and
Ostdiek (2012) and Zakamulin (2015, p. 90) show that an inverse variance weighting follows from the minimum
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the minimum variance portfolio and this approach is also less sensitive to estimation risk and

transaction costs. Due to the high importance of risk-managed industry momentum for practi-

tioners, we concentrate in this paper on the two easiest portfolio allocation methods, i.e. equally

weighted and inverse volatility weighted portfolios. Nevertheless, applying more complex port-

folio optimization methods that also incorporate information on the assets’ correlations could

also be appealing. For example, Baltas (2015) applies the risk parity approach to long-short

trend-following strategies and finds that incorporating the assets’ correlations is advantageous

when the portfolio’s risk is managed. Similarly, the mean-variance and minimum variance port-

folios could also be applied to the winners and losers portfolios. However, as stated in Sections

3.3 and 3.4, these approaches are based on volatility and have the disadvantage that it is not dis-

tinguished between long and short positions.124 Therefore, another appealing alternative would

be to apply downside risk based portfolio optimization methods to the winners and losers (see

Alexander and Baptista (2004), Basak and Shapiro (2001) and Agarwal and Naik (2004) for fur-

ther details on these approaches). These approaches would consider correlations as proposed

by Baltas (2015) and would distinguish between long and short positions since risk could be

defined as left (right) tail risk for an asset in the winners (losers) portfolio. We leave the ex-

amination of applying downside risk based portfolio optimization methods to the winners and

losers portfolios for future research.

The portfolio optimization methods presented above and in Section 3.2.4 are frequently

used in the literature and are compared to the equally weighted portfolio that is also used in this

paper. For example, DeMiguel et al. (2009b) compare several portfolio allocation methods and

find surprisingly good results of the equally weighted strategy and that the equally weighted

portfolio is not statistically outperformed by the mean-variance portfolio and other risk based

strategies. The authors claim that huge amounts of data are needed to provide accurate estimates

of the assets’ monthly risk. However, one drawback of the authors’ examination is the use of

monthly returns to estimate monthly risk. As stated above, the estimation precision can signifi-

variance strategy when all correlations are zero. The inverse volatility weighting of Equation (3.2.3) then follows
if the sensitivity to volatility changes is reduced by a tuning parameter. By using a tuning parameter, the inverse
volatility weighting typically produces lower transaction costs than the inverse variance weighting and minimum
variance portfolio.

124Baltas (2015) extends the risk parity approach in a way that it can be applied to long-short portfolios.
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cantly be increased by using daily data. For example, Jagannathan and Ma (2003, Table V) find

good performance results of models that estimate monthly covariances by daily data and that

this approach works equally well as several other more complex estimation methods. Flem-

ing et al. (2001), Fleming et al. (2003), Han (2005) and Taylor (2014) also find good results

of volatility based trading strategies that estimate the covariance matrix with higher frequency

data. Thus, the bad performance of the volatility weighted strategies found by DeMiguel et al.

(2009b) is mainly driven by a bad research design as extensively shown by Kirby and Ostdiek

(2012) and Kritzman et al. (2010). For example, Clarke et al. (2006) find that minimum vari-

ance portfolios deliver equally high returns with significantly lower risk compared to the market

portfolio. Zakamulin (2015) also finds good results of minimum variance portfolios with short

sale constraints. Similarly, Maillard et al. (2010) find that the equally weighted portfolio is out-

performed by the minimum variance and risk parity portfolio. In particular, Kirby and Ostdiek

(2012) and Zakamulin (2015, Exhibit 3) find that simple inverse volatility weighting strategies

that do not rely on portfolio optimization outperform the equally weighted portfolio and more

complex strategies like the mean-variance approach. Similarly, Walkshäusl (2014, Exhibit 1)

finds that low volatility, low beta and minimum variance portfolios outperform the market port-

folio by producing higher returns with lower levels of volatility than the market. In total, volatil-

ity managed portfolios typically produce higher Sharpe Ratios compared to other static portfolio

allocations and investors are willing to pay high fees to have access to a volatility managed port-

folio (Fleming et al., 2001, 2003, Kirby and Ostdiek, 2012, Moreira and Muir, 2017, Taylor,

2014). Interestingly, this result does not only hold for short-term investors, but even long-term

investors should time (short-term) volatility (Moreira and Muir, 2019, Table 4). The benefits

of volatility managed portfolios also hold when these strategies are applied to portfolios, such

as industry and style portfolios. For example, Kirby and Ostdiek (2012, Sec. V.B) examine

the inverse volatility weighting applied to 10 US industry portfolios and find that the volatility

managed portfolio outperforms the equally weighted portfolio without producing higher trans-

action costs. Applying the inverse volatility weighting to industries is appealing, since Harvey

et al. (2018, Exhibit 18) show that volatility and return of the 10 US industries are negatively
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correlated, i.e. industries with a higher volatility produce lower returns and should be weighted

lower (see also Zakamulin (2017)). Nevertheless, Zakamulin (2015, 2017) applies the inverse

volatility weighting to industry and style portfolios and finds that this approach works well for

style portfolios, but has difficulties with industry portfolios. Kirby and Ostdiek (2012) also find

a weaker benefit of applying the inverse volatility weighting to industries compared to other

assets and that the “data set that poses the biggest challenge to the timing strategies contains

10 industry portfolios”. This results since different industries have quite similar mean returns.

Thus, weighting industries inversely to their volatility outperforms the strategy that weights in-

dustries equally in terms of higher risk-adjusted returns, but industry portfolios are “notorious

for being very difficult to use in portfolio optimization” (Zakamulin, 2015, p. 96).

The volatility based weighting schemes are typically applied to long-only portfolios. How-

ever, the inverse volatility weighting has not only been used as a simple asset allocation tool

for long-only portfolios, but has also been used in many other areas. For example, Harvey and

Siddique (2000, Table IV) use volatility weighting in an asset pricing context. Bali and Cakici

(2008, Sec. V) examine the low volatility puzzle by additionally weighting assets inversely to

their volatility. The authors find that different weighting schemes, including equal weighting

and inverse risk weighting, can lead to quite different portfolio returns. Asness et al. (2014,

p. 28) use the inverse volatility weighting to weight the assets in the betting against beta (BAB)

portfolio.125 Moskowitz et al. (2012), Kim et al. (2016), Du Plessis and Hallerbach (2017),

Dudler et al. (2015), Baltas (2015), Clare et al. (2016) and Goyal and Jegadeesh (2017) apply

the inverse volatility weighting to the time series momentum (TSMOM) strategy, which is a

similar approach to applying the inverse volatility weighting to the (cross-sectional) momen-

tum strategy.126 Clare et al. (2016), Kim et al. (2016) and Goyal and Jegadeesh (2017) show

125The betting against beta strategy is long low beta assets and short high beta assets (Asness et al., 2014, Bali
et al., 2017a, Cederburg and O’Doherty, 2016, Fama and French, 2016, Frazzini and Pedersen, 2014, Lettau et al.,
2014, Schneider et al., 2020). This strategy is further examined in Section 3.4.

126The TSMOM strategy is similar to the cross-sectional momentum strategy that is examined in our paper and
also relies on the assumption that a high past performance predicts a good future performance. However, TSMOM
relies on an asset’s own past performance to determine buy and sell signals, whereas the cross-sectional momentum
strategy defines buy and sell signals relative to the performance of other assets. Thus, TSMOM is more related to
the field of trend-following (Bajgrowicz and Scaillet, 2012, Sullivan et al., 1999). Both strategies, TSMOM and
cross-sectional momentum, are extensively compared by Moskowitz et al. (2012), Goyal and Jegadeesh (2017)
and Kim et al. (2016). Jegadeesh and Titman (2002) show that TSMOM and not cross-sectional differences in
expected returns, as suggested by Conrad and Kaul (1998), is a main driver of the profitability of the cross-sectional
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that the good performance of the time series momentum strategy of Moskowitz et al. (2012)

is also driven by the use of the inverse volatility weighting.127 Thus, these studies show that

combining information on an asset’s past performance and volatility works well in a portfolio

context and outperforms a strategy that only incorporates information on the assets’ past perfor-

mance.128 The benefits of combining information on an asset’s past performance and volatility

has also been shown by Blitz and van Vliet (2018). Similarly, Ang et al. (2006b) combine the

low volatility effect with the momentum effect by first sorting assets into quintiles based on

their past return and then sorting assets within each quintile by their (idiosyncratic) volatility.

The results of Ang et al. (2006b) indicate that both effects, the momentum effect and the low

volatility effect, capture different characteristics, and thus both effects can be combined.129 In

a similar way, Novy-Marx (2012, Table 16) shows that the low volatility anomaly also holds

after controlling for momentum and the author concludes that “[h]igher realized volatility is

also associated, even after controlling for past performance, with lower expected returns.” Guo

and Savickas (2010, p. 1643) also find that both effects are different and that the low volatil-

ity effect does not explain momentum returns. Thus, even after choosing assets based on their

momentum, volatility contains additional information and highly volatile assets underperform

assets with a lower volatility. This is also shown by Kirby and Ostdiek (2012, p. 462) who

momentum strategy. Goyal and Jegadeesh (2017) show that differences between TSMOM and momentum mainly
occur since momentum is a zero-investment strategy, whereas TSMOM typically has a positive average market
exposure.

127Clare et al. (2016, Table 1) compare four different strategies applied to several asset classes. The four strategies
are the equally weighted strategy applied to all assets, TSMOM using equal weights, inverse volatility weighting
applied to all assets and the combination of TSMOM with the inverse volatility weighting. The authors find that
the equally weighted portfolio is clearly outperformed by the remaining strategies. Further, the two TSMOM ap-
proaches outperform the inverse volatility weighting applied to all assets. The strategy with the highest Sharpe
Ratio and lowest drawdown is the strategy that combines the inverse volatility weighting with the TSMOM ap-
proach.

128Dudler et al. (2015) and Clare et al. (2016, Sec. 3.6) also use volatility weighting applied to the TSMOM
strategy, but additionally examine buy and sell signals based on volatility adjusted past returns instead of raw
returns. The authors find superior results and lower transaction costs for the strategy that uses volatility adjusted
returns. Similarly, Rachev et al. (2007) examine momentum strategies by ranking assets based on their risk-
adjusted performance.

129The approach of Ang et al. (2006b) is different to our approach since Ang et al. (2006b) use past return and
volatility to determine in which quintile an asset belongs, where the assets within a quintile are value-weighted.
We use past return to determine in which portfolio an asset belongs and use volatility to determine the asset’s
weight. Another approach would be to use an asset’s risk for both, ranking and weighting the asset. For example,
Frazzini and Pedersen (2014), Asness et al. (2020) and Asness et al. (2014) use past risk, measured by an assets’
beta, correlation or volatility to determine both, the belonging to the long or short portfolio and the weighting of
each asset within these portfolios.
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apply volatility timing to 10 momentum portfolios and find that volatility timing significantly

enhances the risk-return profile, even when transaction costs are considered. Although the ap-

proach of Kirby and Ostdiek (2012) is different to our approach, this result again shows that

combing information on an asset’s momentum and risk is appealing.130 Furthermore, the in-

verse volatility weighting applied to an individual stock based momentum strategy also has two

additional advantages. First, highly volatile stocks are typically small and illiquid, and thus

suffer under high transaction costs (Bali and Cakici, 2008). The inverse risk weighting lowers

the weight invested in these stocks, and thus lowers transaction costs of the momentum strategy

that is typically highly invested in these stocks. This holds especially for the losers portfolio

since shorting highly volatile losers produces high transaction costs (see Blitz et al. (2019) and

references therein). Second, Bali and Cakici (2008, Table 6) find a negative risk-return relation

for small stocks but no relation for large sized stocks. Thus, the negative risk-return relation

is more pronounced for the momentum strategy, since this strategy is highly invested in small

sized firms. This finding is confirmed by Barroso and Maio (2019) who test the risk-return

relation for several factor portfolios and show that the negative risk-return relation is most pro-

nounced for the momentum portfolio. However, these two reasons are not that important for

the industry momentum strategy, but again show the benefits of combining information on past

return and volatility.

For the reasons that were discussed above, the inverse volatility weighting is an appealing

approach to manage momentum crashes. In particular, this approach is different to the risk tar-

geting approach that is frequently used in the literature to manage momentum crashes (Barroso

and Maio, 2018, Barroso and Santa-Clara, 2015, Cederburg et al., 2020, Daniel and Moskowitz,

2016, Grobys, 2018, Grobys and Kolari, 2020, Grobys et al., 2018, Moreira and Muir, 2017,

Rickenberg, 2020a). Risk targeting manages momentum’s risk on a portfolio level, whereas

the inverse volatility weighting manages risk on an individual asset level. Thus, risk target-

ing totally ignores information on each asset in the momentum portfolio. Several studies show

130Kirby and Ostdiek (2012) divide their dataset in 10 momentum portfolios and weight these portfolios inversely
to their volatility. This approach is similar to Asness et al. (2013) who also weight different momentum portfolios
by their volatility to construct a global momentum portfolio. In contrast, we use information on an asset’s mo-
mentum to form a winners and a losers portfolio. Assets within these two portfolios are then weighted by their
volatility.
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that risks of the assets in the winners and losers portfolio can be quite different. For exam-

ple, winners and losers portfolios have quite different levels of volatility, skewness and kurtosis

(Harvey and Siddique, 2000). In particular, Rickenberg (2020a) shows that the skewness of

winners and losers moves in opposite directions. Further, Bollerslev et al. (2015, p. 131) find

that investors’ fear is priced differently for winners and losers. Generally, past performance is

an important determinant of an asset’s risk, which makes risk characteristics of winners and

losers very different (Amaya et al., 2015, Chen et al., 2001, Harvey and Siddique, 2000, Lan-

glois, 2020). In particular, momentum crashes mainly occur when the losers portfolio sharply

rises which is not upset by an adequate rise of the winners portfolio (Daniel et al., 2017, Daniel

and Moskowitz, 2016).131 Hence, instead of managing the whole momentum portfolio’s risk,

the winners and losers portfolios’ risk should be managed separately, as done by the inverse

volatility weighting. Moreira and Muir (2017, Sec. II.D) show that accounting for risk in the

cross-section, as done by inverse risk weighting, and accounting for risk on a portfolio level,

as done by risk targeting, are two different empirical phenomena. This observation is also con-

firmed by Du Plessis and Hallerbach (2017) for the industry momentum strategy. The authors

show that both approaches work well in order to manage the industry momentum portfolio’s

risk, but both approaches deliver different results. Additionally, both approaches can easily be

combined as done by Baltas (2015), Moreira and Muir (2017), Zakamulin (2015) and Harvey

et al. (2018). The authors show that managing both kinds of risk, i.e. individual asset risk and

portfolio risk, is superior to strategies that manage either individual asset risk or portfolio risk.

This is also confirmed by the results of Cederburg et al. (2020), Moreira and Muir (2017), Bar-

roso and Maio (2018) and Rickenberg (2020a) who show that targeting the risk of the betting

against beta (BAB) anomaly, i.e. the portfolio that buys low risk assets, sells high risk assets

and weights assets inversely to their risk, substantially improves the risk-adjusted performance

of the BAB portfolio.132 Combing both approaches means managing the portfolio’s risk by first

131Daniel and Moskowitz (2016) show that these periods can be predicted based on past market return and
volatility. However, Wang and Xu (2015) find that market volatility predicts returns of the winners and losers
portfolio asymmetrically. This again shows that winners and losers behave quite differently.

132By weighting assets with a higher beta lower than assets with a lower beta, the betting against beta portfolio of
Frazzini and Pedersen (2014) is similar to the inverse volatility portfolio. However, Asness et al. (2020) compare
the beta anomaly to the volatility anomaly and find that both capture different aspects of risk and that exploiting
the low beta anomaly produces higher risk-adjusted returns.
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managing the portfolio’s constituents’ individual risk and then managing the whole portfolio’s

risk. This approach is further examined in Section 3.6.

The approach of combining the momentum strategy with the inverse risk weighting is impor-

tant for two strands in the financial literature. First, by weighting the assets of the momentum

portfolio inversely to their risk, the risk-weighted portfolio should exhibit an enhanced risk-

return profile, where especially momentum crashes should be attenuated. Hence, this approach

fits well to the literature on momentum crash management (Barroso and Santa-Clara, 2015,

Daniel and Moskowitz, 2016, Grundy and Martin, 2001, Moreira and Muir, 2017, Rickenberg,

2020a). Second, choosing the assets in the long and short portfolio based on their past rela-

tive performance and then applying the inverse risk weighting to these assets is an appealing

and simple asset allocation tool based on the assets’ relative mean and risk. Portfolio alloca-

tion methods examined in the literature mainly focus on models that incorporate an estimate

of the assets’ absolute mean and risk or approaches that only focus on the assets’ risk. The

approaches that are solely based on the assets’ risk totally ignore information on the assets’ per-

formance. In contrast, the approaches based on an estimate of the assets’ absolute mean, like

the mean-variance approach, incorporate more information, but these approaches perform bad

in out-of-sample studies and usually take extreme weights in the individual assets (Behr et al.,

2012, DeMiguel et al., 2009a,b, Garlappi et al., 2006, Jagannathan and Ma, 2003, Kan and

Zhou, 2007, Kirby and Ostdiek, 2012, Kritzman et al., 2010). The bad performance of these ap-

proaches results due to the high estimation risk of the mean return (Merton, 1980). For example,

Garlappi et al. (2006) find that the mean-variance portfolio is outperformed by the minimum

variance approach since the mean is hard to estimate.133 DeMiguel et al. (2009b) find that ig-

noring the mean return in a portfolio optimization setting leads to less extreme weights. Kirby

and Ostdiek (2012) also find that portfolio methods that incorporate an estimate of the absolute

133The high estimation risk of the mean-variance approach has led to several studies examining alternative esti-
mation methods for the mean return and covariance matrix. Frequently used approaches to reduce estimation risk
are shrinkage estimators and other Bayesian approaches (Garlappi et al., 2006, Kan and Zhou, 2007, Kirby and
Ostdiek, 2012). See the appendix of Clarke et al. (2006) for a short summary of both approaches. Shrinkage es-
timators are also frequently applied to the covariance matrix of the minimum variance approach (DeMiguel et al.,
2009a, Kan and Zhou, 2007). Further, imposing a short-sale constraint, which has a similar effect as using shrink-
age estimators, can also reduce the extreme weights of the unconstrained mean-variance approach (Jagannathan
and Ma, 2003).
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mean produce high transaction costs. This result also holds for portfolio methods based on in-

dustry portfolios (Kirby and Ostdiek, 2012, Table 1). However, although the minimum variance

approach produces less extreme weights than the mean-variance approach, Kirby and Ostdiek

(2012) show that the minimum variance portfolio can still exhibit extreme weights. The au-

thors find that the high misspecification of the mean-variance and minimum variance approach

can be further reduced by the inverse volatility weighting, since this approach is more robust

against estimation risk and eventually outperforms more complex portfolio optimization meth-

ods.134 Similarly, Moreira and Muir (2019) find that parameter uncertainty is less important for

volatility managed portfolios but has a higher impact on mean-volatility managed portfolios.

Moreira and Muir (2019, p. 509) conclude that “ignoring variation in volatility is very costly,

and the benefits to timing volatility are significantly larger than the benefits to timing expected

returns”.135

Based on the arguments summarized above, portfolio allocations based on estimates of the

absolute mean return are suboptimal in practice. In contrast, the approaches that only focus on

the assets’ risk, mainly measured by variance, typically perform well out-of-sample (Fleming

et al., 2001, 2003, Han, 2005, Kirby and Ostdiek, 2012), but discard information on the assets’

performance that can potentially be valuable. Our approach, which could be called a relative

mean-risk approach, is a middle ground between a mean-variance based portfolio allocation and

a portfolio allocation that is solely based on the assets’ volatility.136 Christoffersen and Diebold

134Kirby and Ostdiek (2012, p. 456-457) compare the volatility timing strategy with a strategy that relies on an
estimate of volatility and expected mean and find that volatility timing is superior for inaccurate estimates of the
expected mean. Nevertheless, both strategies perform similar (at least before transaction costs) when the expected
mean is estimated with a more complex model or more data (see also Kritzman et al. (2010)). This again highlights
that mean-variance optimization strongly depends on the mean estimation method and that incorporating a mean
estimate does not significantly enhance the portfolio’s performance.

135Generally, estimation uncertainty is more of a concern for expected return timing strategies than for volatility
timing strategies. Moreira and Muir (2019, Sec. 5.2) show that investors’ utility gains of expected return timing
strategies are highly influenced by estimation uncertainty, whereas the investors’ utility gains of volatility timing
strategies are less sensitive to estimation uncertainty. In particular, investors that use expected return timing strate-
gies can have high utility losses when noisy mean estimates are used. In contrast, volatility timing increases the
investors’ utility even when volatility estimates are noisy. Moreira and Muir (2019, p. 524) conclude that “the
benefits of timing expected returns are very sensitive to parameter uncertainty. [...] However, this result is not true
with volatility. [...] Hence, the utility gains from volatility timing are far more robust to parameter uncertainty”.

136Behr et al. (2012) also show how information on the relative performance of industries can be incorporated in
portfolio allocation decisions. The authors start from a given portfolio optimization, like the mean-variance alloca-
tion, and modify portfolio weights based on the past relative performance of several industry portfolios. For a given
portfolio allocation, they modify only the weights for the industries in the winners and losers portfolios, whereas
the weights of the industries in the middle part are unchanged. The authors find that combining information on the
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(2006) find that conditional (absolute) returns are not forecastable, whereas signs of returns and

volatility are forecastable. This makes a relative mean-risk approach appealing for practical

implementations, since this approach uses more information than the simple inverse volatility

portfolio while simultaneously estimation risk is limited. In particular, this simple approach

does not need an estimate of a large covariance matrix, which also reduces estimation risk.137

Moreover, estimation risk can further be reduced by focusing on the risk-weighted winners

portfolio. Moskowitz and Grinblatt (1999), Chan et al. (2000) and Bhojraj and Swaminathan

(2006) find that the profitability of portfolio based momentum strategies is mainly driven by the

returns of the winners portfolio.138 This is also advantageous from a practical view, since short-

ing losers also produces higher transaction costs than buying winners (Korajczyk and Sadka,

2004, Lesmond et al., 2004). For that reasons, Korajczyk and Sadka (2004) and Clare et al.

(2016) examine only the winners portfolio instead of the winners minus losers portfolio. Thus,

for practical implementations, a strategy that only buys the winner industries and weights assets

in the winners portfolio inversely to their risk could be an appealing alternative to more com-

plex portfolio allocations. In particular, this strategy is only based on market data and does not

need shorting of assets or any accounting data, which is important from a practical view (Blitz

and van Vliet, 2018). Moreover, this approach is similar to the reward-to-risk timing strategies

examined by Kirby and Ostdiek (2012). Kirby and Ostdiek (2012, p. 438) state that such simple

portfolio allocation methods are advantageous since they “retain the most appealing features of

the [equally weighted] strategy (no optimization, no covariance matrix inversion, and no short

sales) while exploiting sample information about the reward and risk characteristics of the assets

industries’ risk and momentum produces an enhanced portfolio allocation.
137For the mean-variance approach, an asset’s weight is a function of the asset’s mean return and the covariance

matrix of all assets. For our approach, an asset’s weight is only based on an estimate of whether the asset performs
better or worse than a certain percentage, e.g. 90%, of all other assets. Further, only a limited number of risk
forecasts for the assets in the winners and losers portfolios are needed. For example, the mean-variance approach
applied to the 49 industry data set requires 49 � p49 � 1q{2 � 1225 parameter estimates for the covariance matrix
and 49 estimates for the mean returns. In contrast, our approach with p � 10% requires only the estimates of
the relative performance and ten risk estimates (five estimates for the winners and five for the losers portfolio). A
long-only strategy that only buys the winners reduces the required risk estimates to only five. Kan and Zhou (2007)
find that estimation risk of the covariance matrix can also lead to suboptimal portfolio weights, especially for large
data sets.

138This contradicts the finding of the individual stock momentum strategy, where the profitability is mainly driven
by shorting (illiquid and small sized) loser stocks (Hong et al., 2000, Lesmond et al., 2004). Generally, the profits
of individual stock based long-short anomalies are mainly driven by the short side (see Jang and Kang (2019) and
references therein).
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under consideration.” The strategy that buys the risk-managed winners portfolio is examined in

Appendix B.13 and compared to the mean-variance and minimum variance portfolios as well

as the strategy that weights all assets equally.

B Robustness Results

This section shows additional performance results for different momentum strategies using

alternative estimation windows and/or cut-off points to quantify (systematic) risk, alternative

ranking periods, alternative cut-off points to determine winners and losers as well as alternative

data sets of US industries. Additionally, we show results for European and International indus-

try momentum, results for several US, European and International style momentum strategies

and results for country momentum. We further show results for other definitions of the momen-

tum crash indicator δt, other risk targeting strategies including the tail risk targeting approach

of Rickenberg (2020a,b) and results for long-only portfolios. Throughout this section, we only

show results for the strategies’ return, volatility, Sharpe Ratio and Jobson and Korkie (1981)

test as well as the economic value for mean-variance, CRRA and loss-averse investors with the

corresponding DM-test of Diebold and Mariano (1995). The Jobson and Korkie (1981) test and

the DM-test are calculated with respect to the equally weighted momentum strategy. In Section

B.11, we show additional results for portfolio alphas and in Section B.12 we show results for

the Diebold and Mariano (1995) and Jobson and Korkie (1981) tests calculated with respect to

other benchmark strategies that also use volatility targeting.

B.1 Alternative Estimators

In this section, we show results for the risk weighted momentum strategies using risk measures

estimated with alternative estimation windows and/or cut-off points to define down days. Sev-

eral estimation windows are frequently used in the financial literature to estimate (systematic)

tail risk, which can sometimes lead to quite different results. Univariate risk measures, like

Realized Volatility, are typically estimated using the last one to six months of daily data. For

example, Ang et al. (2006b) and Ang et al. (2009) estimate volatility using the last month of

daily data for their main results. Furthermore, the authors also check their results for other es-
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timation lengths and find that the low volatility effect also holds for longer estimation periods

and a one month gap (Ang et al., 2006b, Sec. II.F). A one month estimation window to estimate

monthly volatility is also used by French et al. (1987), Moreira and Muir (2017) and Farago and

Tédongap (2018). Grobys et al. (2018) compare results for realized volatility estimates using

the last one to six months of daily data in a portfolio risk management setting and find that re-

sults are slightly different. The authors find that volatility managed portfolios perform the best

when short estimation windows are used. Similarly, Ang et al. (2006b) and Ang et al. (2009,

Table 5) find that the low risk effect is more pronounced when (idiosyncratic) volatility is es-

timated with short estimation windows, where the effect is most pronounced for one and three

months. However, Ghysels et al. (2005) find that the risk-return relation can be quite different

when different estimation windows are used and the authors suggest that “there is an optimal

window size to estimate the risk-return trade-off” and that “[o]ne month’s worth of daily data

simply is not enough to reliably estimate the conditional variance” (Ghysels et al., 2005, p. 522).

For that reason, longer estimation windows, like the six months period used in our paper, are

frequently applied in the literature. For example, Barroso and Santa-Clara (2015) also use the

past six months of daily data to estimate realized volatility. Fama and French (2016) find that the

low volatility anomaly holds when volatility is estimated using the last 60 days of returns, i.e.

they use about three months of data. Moreover, the low risk effect is also apparent when risk is

estimated with longer samples such as 12 months. Furthermore, Blitz and Van Vliet (2007) and

Blitz (2016) show that low volatility portfolios also perform well when volatility is estimated

using data of the past three years. Using longer estimation windows to estimate monthly risk

has the advantage that turnover and transaction costs of low risk portfolios are reduced (Blitz

et al., 2019). In total, results in the literature suggest that it is not a priori clear which esti-

mation window should be used to quantify volatility. Similarly, other univariate risk measures,

like realized skewness, VaR, CVaR and LPM, are also frequently estimated based on alternative

estimation windows. For example, Bali et al. (2009) estimate skewness, VaR, CVaR and LPM

using the last one to six months of daily data. Bali et al. (2014) estimate LPM using the past

six and twelve months of daily data. Amaya et al. (2015, Sec. 5.5) estimate realized skewness
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using the past week’s, the past month’s, the past six months’, the past 12 months’ and the past

60 months’ daily returns and conclude that “results for historical skewness critically depend on

the estimation window used”. Chang et al. (2013, Sec. 4.7) also find that conclusions based on

skewness and kurtosis estimates using different estimation windows can be highly different.

To rule out that results presented in Section 3.7 only hold for certain estimation windows of

univariate risk measures, we next examine the performance of risk weighted momentum strate-

gies using alternative estimation windows. In order to better assess how different estimation

windows influence results of our weighting schemes, we only show results for the strategies that

do not switch between univariate and systematic tail risk. However, the switching approach is

also robust against using different estimation windows. Table XVI shows results for the volatil-

ity, skewness, LPM of order 1 and RSJ based momentum strategies estimated using the last one

to six months of daily data. We focus on short- and medium-term estimation windows, since

univariate risk is highly time-varying (Fu, 2009). Other estimation windows up to 60 months

also work well but are not shown here. Further, similar results also hold for VaR, CVaR, LPM

of other orders, down-to-up volatility, down-to-up skewness and R-Ratio. Additionally, weight-

ings based on VaR, CVaR, LPM, down-to-up volatility, down-to-up skewness and R-Ratio also

work well when other cut-off points are used to define down days or extreme realizations. For

example, as in Bali et al. (2014) we also estimated LPM, down-to-up volatility and down-to-up

skewness where down and up days are defined as returns in certain lower and upper quantiles.

Atilgan et al. (2020) also show that the low tail risk anomaly holds when several cut-off points

are used to define extreme losses.

Table XVI. Robustness Results: Univariate Risk Measures
This table shows performance results for the equally and risk weighted industry momentum strategies
using 30 equally weighted US industries, the t�12 to t�1 ranking period and a cut-off point of p � 30%.
Risk measures are estimated with daily data of the past one to six months. SR denotes the Sharpe Ratio
and zJK denotes the Jobson and Korkie (1981) test statistic.

Weighting Equal RV LPM (k � 1) Skew RSJ

Lengths SR zJK SR zJK SR zJK SR zJK SR zJK

1 Month 0.758 - 0.764 0.215 0.934 3.796 0.844 2.105 0.937 4.076
2 Months 0.758 - 0.723 -0.709 0.873 2.519 0.826 1.843 0.871 2.602
3 Months 0.758 - 0.746 -0.198 0.871 2.486 0.841 2.219 0.865 2.514
4 Months 0.758 - 0.761 0.144 0.865 2.385 0.883 3.222 0.887 3.127
5 Months 0.758 - 0.773 0.405 0.865 2.395 0.852 2.326 0.865 2.434
6 Months 0.758 - 0.776 0.478 0.853 2.128 0.854 2.310 0.832 1.653
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Table XVI highlights that managing the winners’ and losers’ volatility does not significantly

enhance momentum’s risk-return profile, regardless of the chosen estimation length. The strate-

gies that use volatility estimated with daily data of the last two or three months do even have

a lower Sharpe Ratio than the equally weighted momentum strategy. In contrast, for the re-

maining risk measures, i.e. LPM, skewness and RSJ, the Sharpe Ratio is always higher than

the Sharpe Ratio of the equally weighted strategy and this increase is statistically significant in

most cases. Thus, results in Table XVI are mainly in line with our previous results and show

that volatility weighting does not significantly enhance momentum’s risk-return profile. In con-

trast, weightings based on tail risk measures produce statistically higher Sharpe Ratios for all

risk measures and estimation windows except for two cases. In these two cases, the increases

are only significant at the 10% level, i.e. zJK ¡ 1.64.

Similar to univariate risk measures, systematic risk measures used in the financial literature

are also estimated using alternative estimation lengths. Since systematic risk measures quantify

an asset’s comovement with a benchmark portfolio, these risk measures are typically estimated

based on longer estimation windows. This holds especially for the systematic tail risk measures

that condition on a bad state of the benchmark portfolio. Frequently chosen window lengths

to obtain systematic (tail) risk measures range from one to 60 months. For example, Ang

et al. (2006a) estimate beta, downside beta, correlation, downside correlation, coskewness and

cokurtosis using daily data of the past 12 months. Ang et al. (2006a, Sec. 2.4) show that their

results also hold when they use the last two years of weekly data and other cut-off points to

define down days for downside beta. Bali et al. (2014) use the past six and twelve months of

daily data to estimate beta, coskewness, downside beta, LPM-beta and HTCR-beta. Similarly,

Chabi-Yo et al. (2018) use the past 12 months of daily data to estimate beta, downside beta,

coskewness, cokurtosis and lower tail dependency. In contrast, Van Oordt and Zhou (2016)

estimate beta, downside beta, coskewness, cokurtosis and tail dependency using the past 60

months of daily data. Thus, several estimation windows to estimate systematic risk are used in

the financial literature. Ang et al. (2006a, p. 1202) argue that using medium-term estimation

windows, like the past 12 months, has two advantages over too short or too long estimation
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windows. First, the estimation of systematic (tail) risk needs a sufficient amount of data to

provide reliable estimates. Second, since systematic tail risk is highly time-varying, too long

estimation windows may cause the estimates to be noisy (see also Chabi-Yo et al. (2018)).

Similarly, Langlois (2020, p. 405) use “a period of 12 months to measure risk measures such

as coskewness because it provides a reasonable trade-off between having enough returns while

allowing for variations over time.” To assess the influence of the chosen estimation window on

the results of the risk weighted momentum strategies, we next show results for systematic risk

weighted strategies using estimation windows between six and 60 months.

Table XVII. Robustness Results: Correlation, Downside Correlation, Beta and Downside Beta
This table shows performance results for the equally and risk weighted industry momentum strategies
using 30 equally weighted US industries, the t�12 to t�1 ranking period and a cut-off point of p � 30%.
Risk measures are estimated with daily data of the past six to 60 months. SR denotes the Sharpe Ratio
and zJK denotes the Jobson and Korkie (1981) test statistic.

Model Equal Correlation Downside Correlation Beta Downside Beta

Lengths SR zJK SR zJK SR zJK SR zJK SR zJK

6 Months 0.758 - 0.897 2.794 0.863 2.393 0.924 3.217 0.947 3.790
9 Months 0.758 - 0.942 3.720 0.848 1.928 0.961 3.909 0.943 3.808
12 Months 0.758 - 0.944 3.532 0.836 1.582 0.971 4.107 0.902 2.914
24 Months 0.758 - 0.913 3.092 0.898 2.693 0.959 3.956 0.949 3.665
36 Months 0.758 - 0.890 2.625 0.917 3.087 0.918 3.179 0.956 3.793
48 Months 0.758 - 0.855 1.951 0.897 2.691 0.901 2.928 0.925 3.218
60 Months 0.758 - 0.849 1.864 0.888 2.569 0.896 2.848 0.919 3.175

Table XVII shows results for correlation, downside correlation, beta and downside beta

using the past six to 60 months of daily data. Results of our systematic risk weighted strategies

are again quite robust for different estimation lengths. The Sharpe Ratio is again higher in

all cases and the increases in the Sharpe Ratios are significant in most cases. Nevertheless,

the Sharpe Ratio is higher when systematic risk is estimated based on short- or medium-term

estimation windows. Using the past four or five years of daily data also increases the Sharpe

Ratio compared to the equally weighted strategy but the increase is only significant in three of

four cases. This is in line with the finding of Ang et al. (2006a) that systematic tail risk is time-

varying and should be estimated with short estimation windows. Table XVII also shows that

weightings based on beta and downside beta are superior to the weightings based on correlation

and downside correlation. As shown in Equation (3.4.3), the beta also considers the volatilities

of industry i and the momentum portfolio. A similar decomposition also holds for downside
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beta (Ang et al., 2006a, Eq. (15)). Thus, additionally regarding the differences in the industries’

univariate risk seems advantageous when industries are weighted by their systematic risk. Hong

et al. (2007) also find that beta asymmetry is more pronounced than correlation asymmetry for

portfolios that are sorted by their momentum. Thus, weighting assets by their downside beta,

and hence also incorporating information on downside volatility, seems advantageous when

industries are weighted by their risk.

Table XVIII shows further results for coskewness, cokurtosis, LPM-beta and HTCR-beta

using the last six to 60 months of daily data. In particular, since Section 3.7 shows that

the coskewness based weighting does not work well, we examine an alternative definition of

coskewness by conditioning on negative momentum returns. We call this measure the downside

coskewness and find that weighting industries by their downside coskewness performs very well

compared to the usual definition of coskewness. Weighting industries based on their downside

coskewness produces an enhanced risk-return profile, whereas the coskewness based weighted

portfolio underperforms the equally weighted portfolio. However, although the Sharpe Ratio

of the downside coskewness weighted momentum strategy is higher than the Sharpe Ratio of

the equally weighted strategy in all cases, the increase is only statistically significant for the 24

months estimation window. In contrast, results for cokurtosis, LPM-beta and HTCR-beta are

again quite robust for different estimation windows. The Sharpe Ratio is again higher than the

Sharpe Ratio of the equally weighted strategy in all cases and the increases are statistically sig-

nificant in all cases, except for the cokurtosis based weighting using the last 60 months of daily

data. In total, Table XVIII again shows that our weighting approach works well for other esti-

mation windows, where again short- and medium-term estimation windows outperform longer

estimation windows.

Finally, besides choosing alternative estimation windows, alternative cut-off points to define

extreme returns are also frequently applied in the financial literature on systematic tail risk. For

example, Van Oordt and Zhou (2016) estimate Tail-beta using the past 60 months of daily data

in order to provide enough data to obtain reliable estimates of systematic tail risk and the authors

combine this estimation window with alternative cut-off points to determine extreme returns.
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Table XVIII. Robustness Results: Coskewness, Cokurtosis, LPM-beta and HTCR-beta
This table shows performance results for the equally and risk weighted industry momentum strategies
using 30 equally weighted US industries, the t�12 to t�1 ranking period and a cut-off point of p � 30%.
Risk measures are estimated with daily data of the past six to 60 months. SR denotes the Sharpe Ratio
and zJK denotes the Jobson and Korkie (1981) test statistic.

Model Equal Down Coskewness Cokurtosis LPM-beta HTCR-beta

Lengths SR zJK SR zJK SR zJK SR zJK SR zJK

6 Months 0.758 - 0.758 0.058 0.903 3.006 1.008 4.897 0.934 3.606
9 Months 0.758 - 0.840 1.905 0.905 3.107 0.998 4.743 0.923 3.409
12 Months 0.758 - 0.792 0.734 0.904 2.952 0.991 4.522 0.949 3.902
24 Months 0.758 - 0.894 2.731 0.898 2.803 0.965 4.049 0.964 4.208
36 Months 0.758 - 0.851 1.840 0.892 2.680 0.933 3.525 0.954 4.015
48 Months 0.758 - 0.826 1.389 0.866 2.219 0.909 3.022 0.921 3.408
60 Months 0.758 - 0.814 1.167 0.845 1.797 0.910 3.058 0.926 3.503

Agarwal et al. (2017) estimate Tail-Sens and Tail-Risk using the past 24, 36 and 48 months

of monthly data combined with cut-off points of 5%, 10% and 20%.139 Chabi-Yo et al. (2018,

Section III.D.1) extend the downside beta of Ang et al. (2006a) by conditioning on extremely

low market returns in the lower 1%, 2%, 5% and 10% quantile. Bali et al. (2014) estimate LPM-

beta and HTCR-beta by conditioning on the lowest 5%, 10% and 20% observations and the

authors combine the different cut-off points with different estimation windows. Acharya et al.

(2016) use the past 12 months of daily returns and a cut-off of 5% to estimate MES. Kelly and

Jiang (2014) estimate systematic tail risk based on the Hill estimator using a threshold of 5%.

In particular, the choice of the cut-off point is important when systematic tail risk is estimated.

For example, Farago and Tédongap (2018, p. 84) find that systematic tail risk highly depends

on the chosen cut-off point and the authors find that cut-off points to define down days should

be far in the left tail.140

To assess the influence of different estimation windows and cut-off points on the profitabil-

ity of the systematic tail risk weighted strategies, Table XIX shows results for the strategies

based on Tail-beta, Tail-Sens, Tail-Risk and MES using the past twelve to 60 months of daily

data combined with cut-off points that equal the 10%, 20% and 30% quantile. As before, all

139In contrast to Agarwal et al. (2017), who use monthly returns to estimate systematic tail risk, we use daily
returns. Estimating Tail-Sens and Tail-Risk based on their approach produces quite noisy estimates. For example,
Agarwal et al. (2017, p. 615) argue that their systematic tail risk measures are calculated based on only two
observations. Thus, their Tail-Sens measure is either zero, 0.5 or 1.

140See also Kelly and Jiang (2014, Footnote 11) on the choice of the threshold. Too low values of the threshold
lead to noisy estimates, whereas too high values do not capture returns in the tails but also in the center of the
distribution.
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Table XIX. Robustness Results: Tail-beta, Tail-Sens, Tail-Risk and MES
This table shows performance results for the equally and risk weighted industry momentum strategies
using 30 equally weighted US industries, the t�12 to t�1 ranking period and a cut-off point of p � 30%.
Risk measures are estimated with daily data of the past twelve to 60 months with cut-off points between
10% and 30%. SR denotes the Sharpe Ratio and zJK denotes the Jobson and Korkie (1981) test statistic.

Model Equal Tail-beta Tail-Sens Tail-Risk MES

Lengths/ Cut-Off SR zJK SR zJK SR zJK SR zJK SR zJK

12 Months/ 10qu 0.758 - 0.906 3.190 0.839 1.831 0.898 3.032 0.964 4.090
12 Months/ 20qu 0.758 - 0.886 2.697 0.873 2.573 0.903 3.147 0.990 4.488
12 Months/ 30qu 0.758 - 0.869 2.331 0.952 4.020 0.912 3.331 1.011 4.828

24 Months/ 10qu 0.758 - 0.881 2.645 0.912 3.381 0.908 3.280 0.952 3.883
24 Months/ 20qu 0.758 - 0.862 2.261 0.872 2.551 0.898 3.040 0.946 3.807
24 Months/ 30qu 0.758 - 0.838 1.741 0.858 2.181 0.859 2.239 0.956 3.926

36 Months/ 10qu 0.758 - 0.863 2.207 0.900 3.013 0.892 2.924 0.929 3.502
36 Months/ 20qu 0.758 - 0.848 1.953 0.848 1.991 0.877 2.592 0.932 3.507
36 Months/ 30qu 0.758 - 0.843 1.760 0.859 2.208 0.823 1.500 0.943 3.686

48 Months/ 10qu 0.758 - 0.848 1.968 0.873 2.409 0.865 2.350 0.922 3.277
48 Months/ 20qu 0.758 - 0.823 1.433 0.853 2.059 0.846 1.988 0.915 3.203
48 Months/ 30qu 0.758 - 0.808 1.067 0.816 1.292 0.810 1.202 0.911 3.135

60 Months/ 10qu 0.758 - 0.862 2.276 0.859 2.172 0.881 2.706 0.890 2.712
60 Months/ 20qu 0.758 - 0.814 1.242 0.817 1.323 0.850 2.063 0.906 3.074
60 Months/ 30qu 0.758 - 0.782 0.580 0.789 0.748 0.815 1.318 0.902 2.960

strategies produce higher Sharpe Ratios than the equally weighted momentum strategy. Fur-

ther, the increases in the Sharpe Ratios are statistically significant in most cases. Nevertheless,

results of Table XIX show that emphasizing return observations in the far tail produces an en-

hanced risk-return profile compared to models that also incorporate non-extreme observations.

The worst results are found for the models that use a cut-off point of 30%, especially when

this choice is combined with an estimation window of 60 months. In contrast, choosing a 10%

cut-off point typically produces the highest Sharpe Ratios. The advantage of low cut-off points

in a portfolio allocation setting has also been shown by Rickenberg (2020b). Similarly, Farago

and Tédongap (2018, p. 84) also find that cut-off points to define down days should be far in the

left tail. Moreover, as for the other risk measures, we find that short- and medium-term estima-

tion windows typically produce higher Sharpe Ratios. Acharya et al. (2016, Table 5) also find

that using more recent data is beneficial when MES is estimated, and thus shorter estimation

windows should be used.

Concluding, results in this section demonstrate that the results shown in the main part also

hold when risk is estimated using different estimation windows and cut-off points. In particular,

weighting momentum’s constituents based on their volatility does not significantly improve
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the performance of the momentum portfolio. In contrast, weighting momentum’s constituents

based on tail risk measures and systematic risk measures produces a statistically higher risk-

adjusted performance.

B.2 Alternative Ranking Periods

In this section, we show additional performance results for alternative ranking periods. For

our main results, we rank assets based on their performance between month t � 12 and t � 1.

However, several studies show that momentum strategies also work well for several other rank-

ing periods, but momentum’s performance can be quite different when other ranking periods are

used. Momentum strategies examined in the literature typically use several variations of the past

one to twelve months’ performance. For example, Jegadeesh and Titman (1993), Jegadeesh and

Titman (2001), Boguth et al. (2011) and Rouwenhorst (1998) rank individual stocks based on

their performance in the past six months. Jegadeesh and Titman (1993) and Rouwenhorst (1998)

show additional results for rankings based on the past three, nine and twelve months. In con-

trast, Fama and French (1996), Fama and French (2012), Fama and French (2016), Rickenberg

(2020a) and Barroso and Santa-Clara (2015) rank individual stocks based on the performance

between month t� 12 and t� 2. Novy-Marx (2012) examines momentum for ranking periods

of months t � 12 to t � 7 and t � 6 to t � 2 and shows that the profitability of the individual

stock momentum strategy is mainly driven by the performance of months t � 12 to t � 7.141

Similarly, several ranking periods are frequently used for the industry momentum strategy. For

example, Moskowitz and Grinblatt (1999) rank industries based on the past six months’ perfor-

mance but the authors show that industry momentum also performs well when industries are

ranked based on their past month’s performance. This finding is interesting, since individual

stocks exhibit a short-term reversal effect, i.e. the momentum effect reverses when individual

stocks are ranked based on their past month’s performance (see Goyal and Jegadeesh (2017,

Table 1.B) and Moskowitz and Grinblatt (1999, Table VI)).142 Novy-Marx (2012, p. 443) con-

141Goyal and Wahal (2015) confirm this finding for US stocks but not for stocks outside the US. Further, Goyal
and Wahal (2015) show that the results of Novy-Marx (2012) are mainly driven by the negative impact of the
month t� 2 return and the positive impact of the month t� 12 return.

142Goyal and Wahal (2015, Table 2) show that the return reversal of individual stocks also holds for the t � 2
return. A possible explanation for the observation that the short-term reversal holds for individual stocks but not
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firm the finding of Moskowitz and Grinblatt (1999) that “industries do exhibit momentum at

very short (one month) horizons”. Pan et al. (2004, Table 2) also find high autocorrelations of

industries for short lags, which is a main driver of industry momentum. Bali et al. (2012) find a

similar pattern for hedge funds, i.e. hedge funds exhibit momentum when they are ranked based

on their past month’s performance. Moreover, Novy-Marx (2012) finds that industry momen-

tum also performs well when industries are ranked based on their t�12 to t�7 or t�6 to t�1

performance. Grundy and Martin (2001) examine industry momentum for the t � 7 to t � 2,

t� 6 to t� 1, t� 12 to t� 2 and t� 12 to t� 1 ranking periods and find that the profitability of

industry momentum can be quite different for these ranking periods. Chordia and Shivakumar

(2002) and Stivers and Sun (2010) follow the approach of Moskowitz and Grinblatt (1999) and

examine industry momentum for the past six months ranking period. Du Plessis and Haller-

bach (2017) examine industry momentum using the past twelve months and past month ranking

period. Grobys et al. (2018) and Grobys and Kolari (2020) also use different ranking periods

and find that different rankings can produce quite different results of the industry momentum

strategy. In particular, Grobys and Kolari (2020, Table 3) show that the correlation of industry

momentum strategies based on different ranking periods is very low. Further, the crash risk

of industry momentum using different ranking periods is also quite different and momentum

crashes do not happen simultaneously (Grobys and Kolari, 2020, Table 7). The varying perfor-

mance of different ranking periods can also nicely be seen in Grobys and Kolari (2020, Fig. II).

Swinkels (2002) also find that different ranking periods can lead to quite different performance

results of international momentum strategies. Thus, there is no common ranking period used

for industry momentum and the profitability of industry momentum is highly influenced by the

chosen ranking period.

To assess how different ranking periods affect the profitability of the non-managed and risk-

managed momentum strategies, we next show results for four additional ranking periods. Table

for industries is that “the one-month return reversal for individual stocks is generated by microstructure effects
(such as bid-ask bounce and liquidity effects), which are alleviated by forming industry portfolios” (Moskowitz
and Grinblatt, 1999, p. 1274). Similarly, the January effect, i.e. the observation that momentum performs bad
in January, also holds for the individual stock momentum strategy, but not for industry momentum (George and
Hwang, 2004, Table 2). A possible explanation for this finding is that the January effect can be explained by tax
loss selling which “is associated with capital losses of individual stocks, not the loss of the industry” (George and
Hwang, 2004, Footnote 5).
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Table XX. Robustness Results: t� 6 to t� 1 Ranking
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t � 6 to t � 1 ranking period and a cut-off point of p � 30%.
Return and Volatility correspond to the annualized return and volatility, respectively. SR stands for the
annualized Sharpe Ratio and zJK denotes the corresponding value of the Jobson and Korkie (1981)
test. ∆γ�5

MV , ∆γ�5
CRRA and ∆l�2

LA denote the economic value for a mean-variance, CRRA and loss-averse
investor, respectively. DM-test stands for the corresponding DM-test of Diebold and Mariano (1995).
Panel A shows results for the strategies without volatility targeting, whereas Panel B shows results for
the strategies that use the target volatility (TV) overlay. The Jobson and Korkie (1981) test and DM-test
are calculated with respect to the equally weighted momentum strategy. Values for these tests that are
higher than 1.96 are given in bold, whereas values smaller than -1.96 are given in red.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.56 11.46 0.747 - - - - - - -
RV 7.26 10.39 0.699 -1.02 -0.547 -1.13 -0.673 -1.18 -0.659 -1.34

RSJ/Corr 9.76 10.61 0.919 3.36 1.813 2.87 1.815 2.64 1.417 2.15
RSJ/Down Corr 10.01 10.78 0.929 3.54 1.922 3.65 1.968 3.35 1.541 2.87
RSJ/Beta 9.72 10.36 0.938 3.70 2.010 3.58 2.044 3.42 1.515 2.60
RSJ/Down Beta 10.08 10.41 0.969 4.26 2.335 4.55 2.427 4.40 1.811 3.35
RSJ/CoSkew 10.56 11.56 0.914 3.57 1.769 3.20 1.968 3.11 1.485 2.60
RSJ/CoKurt 9.84 10.74 0.916 3.39 1.782 3.17 1.815 3.04 1.387 2.28
RSJ/LPM Beta 10.21 10.40 0.981 4.43 2.470 4.51 2.503 4.49 2.013 3.39
RSJ/HTCR Beta 9.91 10.57 0.937 3.77 2.004 3.79 2.044 3.60 1.566 2.77
RSJ/Tail Beta 9.89 10.87 0.909 3.37 1.712 3.00 1.739 2.81 1.307 2.24
RSJ/Tail Sens 9.91 10.84 0.914 3.44 1.765 3.25 1.739 2.88 1.423 2.52
RSJ/Tail Risk 9.93 10.81 0.919 3.52 1.810 3.36 1.815 3.21 1.461 2.57
RSJ/MES 10.08 10.57 0.954 4.08 2.182 3.91 2.197 3.85 1.776 3.02

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.57 11.39 0.753 - - - - - - -
RV 7.28 10.28 0.708 -1.08 -0.509 -1.06 -0.598 -1.13 -0.638 -1.30

Equal (TV) 12.72 11.04 1.152 6.39 4.200 5.74 4.516 5.79 3.523 4.57
RV (TV) 13.41 11.76 1.140 5.17 4.076 4.81 4.360 4.92 3.297 3.71

RSJ/Corr (TV) 13.35 10.70 1.248 6.41 5.221 6.20 5.536 6.31 4.462 4.79
RSJ/Down Corr (TV) 13.41 10.66 1.258 6.53 5.330 6.12 5.693 6.18 4.581 4.79
RSJ/Beta (TV) 13.32 10.74 1.240 6.26 5.136 6.53 5.457 6.61 4.378 5.11
RSJ/Down Beta (TV) 13.52 10.65 1.269 6.59 5.451 6.43 5.772 6.43 4.678 5.06
RSJ/CoSkew (TV) 13.49 10.71 1.259 6.50 5.333 6.36 5.693 6.27 4.678 5.00
RSJ/CoKurt (TV) 13.27 10.64 1.247 6.45 5.214 5.85 5.536 5.99 4.418 4.49
RSJ/LPM Beta (TV) 13.64 10.71 1.274 6.66 5.504 6.50 5.851 6.57 4.766 5.09
RSJ/HTCR Beta (TV) 13.41 10.74 1.249 6.41 5.236 6.71 5.536 6.71 4.458 5.27
RSJ/Tail Beta (TV) 13.37 10.84 1.233 6.40 5.067 5.61 5.378 5.72 4.273 4.37
RSJ/Tail Sens (TV) 13.39 10.73 1.248 6.51 5.223 6.35 5.536 6.46 4.463 4.92
RSJ/Tail Risk (TV) 13.40 10.88 1.232 6.38 5.049 5.95 5.378 6.05 4.314 4.67
RSJ/MES (TV) 13.58 10.83 1.254 6.53 5.284 6.51 5.614 6.64 4.574 5.16

XX shows results for the t � 6 to t � 1 ranking period, Table XXI shows results for the t � 12

to t � 7 ranking period, Table XXII shows results for the t � 12 to t � 2 ranking period and

Table XXIII shows results for the t � 6 to t � 2 ranking period. All tables show results for

the strategies where only individual asset risk is managed as well as results for the strategies

that additionally use the target volatility (TV) overlay. For the t � 6 to t � 1 ranking, the t � 6
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to t � 2 ranking and the t � 12 to t � 2 ranking, we find that the volatility managed strategy

underperforms the equally weighted strategy. In contrast, the (systematic) tail risk weighted

strategies clearly outperform the equally and volatility weighted strategies. These increases

in the Sharpe Ratio and utility are highly significant. For the t � 12 to t � 7 ranking, the

volatility weighted strategy exhibits a higher Sharpe Ratio than the equally weighted strategy

and a positive economic value. However, the increases in the Sharpe Ratio and utility are

not statistically significant. In contrast, the (systematic) tail risk weighted strategies produce

statistically significant Sharpe Ratio and utility increases. For all four ranking periods, we

find that volatility targeting highly improves the risk-return profile for all weighting schemes

by significantly increasing the strategies’ Sharpe Ratio and economic value. Thus, accounting

for portfolio risk is beneficial regardless of the chosen ranking period and weighting scheme.

The highest Sharpe Ratios and economic values are again found for the (systematic) tail risk

weighted strategies that are overlayed by volatility targeting.

In line with earlier studies, results in this section show that the profitability of momentum

can be quite different when different ranking periods are used. In particular, we find that indus-

try momentum works best when industries are ranked based on the most recent performance.

This confirms the earlier finding of Novy-Marx (2012) and Moskowitz and Grinblatt (1999)

who also find that industry momentum is mainly driven by the recent past’s performance. This

is opposed to the individual stock based momentum strategy where the profitability is mainly

driven by the t� 12 to t� 7 performance (Novy-Marx, 2012).

To conclude this section, we find that the tail risk weighting and volatility targeting approach

work well for all four additional ranking periods. In contrast, the profitability of the volatility

weighted strategy strongly depends on the chosen ranking period and is less robust than the tail

risk weighted strategies. These results confirm our findings of Section 3.7 that momentum’s

risk is best managed by simultaneously managing individual asset risk and portfolio risk, where

individual asset risk is best managed based on (systematic) tail risk measures.
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Table XXI. Robustness Results: t� 12 to t� 7 Ranking
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t� 12 to t� 7 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.75 11.60 0.496 - - - - - - -
RV 5.62 10.51 0.534 0.93 0.371 0.70 0.451 0.89 0.449 0.83

RSJ/Corr 7.82 11.40 0.686 4.17 2.080 3.31 2.197 3.45 1.936 2.91
RSJ/Down Corr 8.13 11.34 0.717 4.92 2.420 4.01 2.580 4.05 2.116 3.37
RSJ/Beta 8.15 11.29 0.722 4.90 2.472 4.09 2.657 4.08 2.333 3.77
RSJ/Down Beta 8.09 11.17 0.724 5.00 2.501 4.13 2.657 4.16 2.208 3.57
RSJ/CoSkew 8.16 11.58 0.705 4.69 2.295 3.71 2.503 3.66 1.887 3.10
RSJ/CoKurt 7.84 11.40 0.687 4.24 2.098 3.29 2.273 3.40 1.867 2.74
RSJ/LPM Beta 8.26 11.27 0.732 5.20 2.591 4.22 2.734 4.20 2.391 3.87
RSJ/HTCR Beta 8.13 11.25 0.723 4.97 2.478 3.79 2.657 3.77 2.352 3.43
RSJ/Tail Beta 8.16 11.73 0.695 4.67 2.196 3.44 2.350 3.66 2.136 3.29
RSJ/Tail Sens 8.17 11.49 0.711 4.94 2.362 4.29 2.503 4.41 2.168 3.75
RSJ/Tail Risk 8.20 11.50 0.713 5.26 2.385 3.61 2.503 3.73 2.182 3.21
RSJ/MES 8.36 11.43 0.731 5.26 2.581 4.32 2.657 4.43 2.425 4.01

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.67 11.58 0.490 - - - - - - -
RV 5.56 10.47 0.531 0.84 0.396 0.75 0.526 0.94 0.478 0.89

Equal (TV) 7.43 11.41 0.651 2.66 1.751 3.46 2.044 3.64 0.750 1.15
RV (TV) 8.45 12.42 0.681 2.62 2.114 2.63 2.427 2.90 1.220 1.37

RSJ/Corr (TV) 9.39 11.49 0.817 4.41 3.588 4.62 3.893 4.82 2.563 2.99
RSJ/Down Corr (TV) 9.56 11.43 0.837 4.60 3.798 5.25 4.126 5.35 2.730 3.37
RSJ/Beta (TV) 9.69 11.55 0.838 4.73 3.822 5.06 4.126 5.15 2.830 3.40
RSJ/Down Beta (TV) 9.64 11.43 0.843 4.67 3.871 5.04 4.126 5.08 2.848 3.34
RSJ/CoSkew (TV) 9.39 11.31 0.830 4.43 3.719 4.57 4.048 4.69 2.625 2.93
RSJ/CoKurt (TV) 9.38 11.44 0.820 4.45 3.612 4.77 3.893 4.96 2.568 3.06
RSJ/LPM Beta (TV) 9.81 11.55 0.849 4.80 3.939 5.25 4.204 5.33 2.965 3.57
RSJ/HTCR Beta (TV) 9.55 11.48 0.832 4.57 3.746 4.78 4.048 4.85 2.780 3.19
RSJ/Tail Beta (TV) 9.81 11.59 0.847 4.90 3.918 4.98 4.204 5.04 2.886 3.38
RSJ/Tail Sens (TV) 9.71 11.46 0.848 4.82 3.923 5.35 4.204 5.47 2.841 3.37
RSJ/Tail Risk (TV) 9.77 11.63 0.840 4.86 3.844 4.83 4.126 4.97 2.818 3.18
RSJ/MES (TV) 9.88 11.57 0.854 4.89 3.998 5.17 4.282 5.28 3.011 3.45

B.3 Alternative Cut-Off Points

We next examine the impact of the chosen cut-off point to determine winners and losers on

the profitability of the non-managed and risk-managed momentum strategies. Several cut-off

points are frequently used in the momentum literature. For example, for the individual stock

momentum strategy, Jegadeesh and Titman (1993), Jegadeesh and Titman (2001) and Rouwen-

horst (1998) define winners and losers as the 10% best and worst performing stocks. In contrast,

in order to “place less emphasis on the tails of the performance distribution”, Hong et al. (2000,

p. 274) use the 30% quantile as cut-off point to determine winners and losers. The authors

also show that different cut-off points can produce quite different results. Generally, different
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Table XXII. Robustness Results: t� 12 to t� 2 Ranking
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t� 12 to t� 2 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.14 11.83 0.688 - - - - - - -
RV 7.34 10.70 0.686 0.00 -0.066 -0.13 -0.075 -0.20 -0.042 -0.08

RSJ/Corr 10.41 10.87 0.957 5.47 2.938 5.05 3.042 4.87 2.700 4.54
RSJ/Down Corr 10.05 11.05 0.910 4.62 2.417 4.33 2.503 4.09 2.104 3.71
RSJ/Beta 10.37 10.87 0.954 5.41 2.904 5.07 3.042 4.75 2.690 4.57
RSJ/Down Beta 10.29 10.93 0.941 5.26 2.759 5.24 2.888 4.94 2.456 4.49
RSJ/CoSkew 10.22 11.53 0.887 4.17 2.162 4.85 2.427 5.26 1.816 3.80
RSJ/CoKurt 10.41 11.09 0.939 5.30 2.733 5.21 2.888 4.91 2.479 4.73
RSJ/LPM Beta 10.55 10.79 0.978 5.93 3.158 6.10 3.350 5.97 2.845 5.13
RSJ/HTCR Beta 10.41 10.80 0.964 5.75 3.011 5.74 3.119 5.57 2.629 4.77
RSJ/Tail Beta 10.58 11.30 0.936 5.29 2.707 5.43 2.888 5.14 2.485 4.68
RSJ/Tail Sens 10.57 10.97 0.964 5.57 3.008 5.00 3.196 4.64 2.607 4.54
RSJ/Tail Risk 10.37 11.08 0.935 5.43 2.697 5.54 2.888 5.32 2.456 4.85
RSJ/MES 10.72 10.90 0.984 6.06 3.227 5.58 3.428 5.36 2.945 4.80

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.08 11.73 0.688 - - - - - - -
RV 7.26 10.54 0.689 -0.07 -0.034 -0.07 -0.075 -0.16 -0.035 -0.07

Equal (TV) 11.70 11.67 1.002 5.36 3.404 5.17 3.815 5.27 2.826 4.29
RV (TV) 13.13 12.63 1.040 4.70 3.818 3.81 4.282 4.02 3.260 3.33

RSJ/Corr (TV) 13.58 11.23 1.209 6.99 5.674 7.10 6.089 7.10 4.988 6.02
RSJ/Down Corr (TV) 13.23 11.26 1.175 6.57 5.299 6.80 5.693 6.94 4.615 5.77
RSJ/Beta (TV) 13.44 11.37 1.182 6.69 5.371 7.13 5.772 7.18 4.726 6.07
RSJ/Down Beta (TV) 13.41 11.28 1.189 6.68 5.446 7.10 5.851 7.21 4.765 5.99
RSJ/CoSkew (TV) 13.04 11.22 1.162 6.19 5.149 6.16 5.614 6.23 4.506 5.50
RSJ/CoKurt (TV) 13.35 11.26 1.186 6.74 5.412 7.00 5.851 6.89 4.704 6.01
RSJ/LPM Beta (TV) 13.55 11.24 1.205 6.84 5.625 7.51 6.089 7.51 4.917 6.30
RSJ/HTCR Beta (TV) 13.49 11.23 1.201 6.77 5.582 6.87 6.009 6.89 4.842 5.81
RSJ/Tail Beta (TV) 13.44 11.44 1.175 6.74 5.292 6.71 5.693 6.64 4.592 5.60
RSJ/Tail Sens (TV) 13.62 11.21 1.215 6.98 5.735 7.01 6.168 6.91 4.939 6.01
RSJ/Tail Risk (TV) 13.44 11.44 1.175 6.76 5.299 7.05 5.772 7.04 4.641 5.98
RSJ/MES (TV) 13.67 11.32 1.208 6.93 5.653 7.72 6.089 7.68 4.963 6.46

cut-off points can lead to quite different portfolios for long-short strategies. For example, Bali

and Cakici (2008) find quite different results for risk-sorted long-short portfolios when different

cut-off points are used. To assess the influence of the chosen cut-off point on the profitability

of the non-managed and risk-managed momentum strategies, we next choose three additional

cut-off points between 10% and 40%. This range fits well to the cut-off points that are fre-

quently used in the literature on industry momentum. For example, Grundy and Martin (2001)

and Moskowitz and Grinblatt (1999) use 20 US industries and define winners and losers as the

three best and worst performing industries, i.e. they choose p � 15%. In contrast, Chordia

and Shivakumar (2002) also use 20 industries but define winners and losers as the two best and
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Table XXIII. Robustness Results: t� 6 to t� 2 Ranking
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t � 6 to t � 2 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.38 11.32 0.564 - - - - - - -
RV 5.13 10.16 0.505 -1.20 -0.684 -1.21 -0.673 -0.94 -0.905 -1.91

RSJ/Corr 8.62 10.48 0.822 4.98 2.730 4.39 2.888 3.98 2.308 3.99
RSJ/Down Corr 8.23 10.77 0.764 4.16 2.113 3.63 2.197 3.33 1.760 3.06
RSJ/Beta 8.71 10.33 0.843 5.36 2.951 5.07 3.119 4.43 2.554 4.78
RSJ/Down Beta 8.87 10.29 0.862 5.73 3.153 5.58 3.428 4.93 2.658 4.89
RSJ/CoSkew 8.59 11.33 0.759 4.20 2.068 4.23 2.350 4.10 1.733 3.55
RSJ/CoKurt 8.31 10.79 0.770 4.24 2.182 3.83 2.273 3.50 1.849 3.42
RSJ/LPM Beta 9.07 10.30 0.881 6.07 3.351 5.66 3.583 5.21 2.906 5.03
RSJ/HTCR Beta 8.60 10.35 0.831 5.41 2.819 4.89 3.042 4.44 2.441 4.48
RSJ/Tail Beta 8.24 10.93 0.754 3.94 2.009 3.68 2.120 3.18 1.759 3.42
RSJ/Tail Sens 8.52 10.73 0.794 4.80 2.434 4.38 2.580 3.98 2.142 4.07
RSJ/Tail Risk 8.22 10.67 0.770 4.24 2.175 4.26 2.350 3.87 1.807 3.65
RSJ/MES 9.01 10.52 0.856 5.63 3.089 5.17 3.273 4.91 2.772 4.52

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.39 11.24 0.568 - - - - - - -
RV 5.16 10.06 0.513 -1.25 -0.637 -1.16 -0.673 -0.90 -0.868 -1.88

Equal (TV) 10.25 11.10 0.924 6.06 3.749 4.56 4.204 4.49 3.039 3.38
RV (TV) 10.33 11.81 0.875 4.13 3.247 3.29 3.660 3.27 2.333 2.24

RSJ/Corr (TV) 12.30 10.87 1.132 7.46 5.966 6.91 6.485 6.52 5.143 5.70
RSJ/Down Corr (TV) 11.96 10.90 1.097 7.19 5.590 6.86 6.009 6.57 4.817 5.52
RSJ/Beta (TV) 12.33 10.92 1.129 7.47 5.933 6.98 6.406 6.58 5.136 5.76
RSJ/Down Beta (TV) 12.39 10.81 1.146 7.56 6.111 7.02 6.644 6.53 5.316 5.73
RSJ/CoSkew (TV) 11.91 10.67 1.117 7.23 5.799 6.54 6.326 6.22 4.982 5.19
RSJ/CoKurt (TV) 12.00 10.90 1.101 7.31 5.638 6.79 6.089 6.56 4.863 5.51
RSJ/LPM Beta (TV) 12.54 10.88 1.153 7.72 6.186 6.95 6.644 6.60 5.392 5.65
RSJ/HTCR (TV) 12.24 10.90 1.124 7.46 5.876 6.86 6.326 6.46 5.125 5.74
RSJ/Tail Beta (TV) 11.96 11.06 1.082 7.20 5.433 6.55 5.930 6.28 4.675 5.32
RSJ/Tail Sens (TV) 12.11 10.93 1.108 7.39 5.706 6.88 6.168 6.56 4.951 5.66
RSJ/Tail Risk (TV) 11.85 11.04 1.074 6.98 5.344 6.25 5.851 6.07 4.556 5.03
RSJ/MES (TV) 12.50 10.96 1.140 7.72 6.053 6.78 6.565 6.56 5.286 5.47

worst performing industries, i.e. p � 10%. Swinkels (2002) uses 40 industries and p � 10% as

well as p � 20%. Novy-Marx (2012) uses 49 industries and chooses a cut-off point of p � 1{3,

whereas Grobys et al. (2018) and Du Plessis and Hallerbach (2017) use p � 1{6 and p � 25%

for the 49 industries. Similarly, Stivers and Sun (2010) use 48 industries and a cut-off point of

p � 25%, whereas Grobys and Kolari (2020) use p � 20% for the 48 US industries.

Table XXIV shows results for the momentum strategy that uses a cut-off point of p � 10%.

Due to the higher volatility of this strategy, we use a volatility target of σtarget � 12% for this

data set. Table XXV defines winners and losers as the p � 20% best and worst performers.

Finally, Table XXVI uses a cut-off point of p � 40%. Our main results of Section 3.7 are based
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Table XXIV. Robustness Results: p � 10%
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t � 12 to t � 1 ranking period, a cut-off point of p � 10% and a
volatility target of 12%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 13.15 21.59 0.609 - - - - - - -
RV 13.74 20.02 0.686 2.22 1.317 1.88 2.811 1.27 1.206 2.14

RSJ/Corr 14.88 20.49 0.726 3.22 2.117 2.52 3.970 1.71 1.686 2.55
RSJ/Down Corr 15.08 20.51 0.735 3.24 2.275 2.32 4.516 1.75 1.915 2.75
RSJ/Beta 14.86 20.34 0.731 3.30 2.197 2.35 3.970 1.64 1.767 2.47
RSJ/Down Beta 15.14 20.33 0.745 3.63 2.456 3.24 4.516 2.01 2.084 3.69
RSJ/CoSkew 14.40 21.27 0.677 1.76 1.194 1.11 3.815 1.34 0.887 1.18
RSJ/CoKurt 14.17 21.25 0.667 1.72 1.116 1.54 -0.896 -0.33 1.136 1.76
RSJ/LPM Beta 15.13 20.39 0.742 3.49 2.400 3.00 4.516 1.98 2.049 3.39
RSJ/HTCR Beta 15.46 20.40 0.758 4.03 2.718 3.02 4.750 1.97 2.379 3.43
RSJ/Tail Beta 14.99 20.57 0.729 3.21 2.180 2.96 3.815 1.68 1.884 3.33
RSJ/Tail Sens 14.93 20.81 0.717 2.97 1.983 2.34 3.273 1.32 1.727 2.96
RSJ/Tail Risk 14.71 20.62 0.713 2.80 1.873 2.61 3.893 1.76 1.549 2.86
RSJ/MES 14.91 20.52 0.726 3.13 2.120 2.36 4.048 1.70 1.741 2.49

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 13.10 21.55 0.608 - - - - - - -
RV 13.72 19.98 0.687 1.95 1.344 1.91 2.888 1.29 1.250 2.22

Equal (TV) 15.48 16.58 0.934 4.92 5.921 3.22 10.362 2.94 4.581 3.54
RV (TV) 17.57 17.24 1.019 5.45 7.622 4.03 12.348 3.39 6.480 4.65

RSJ/Corr (TV) 16.99 16.81 1.011 5.48 7.469 4.00 11.849 3.25 6.095 4.81
RSJ/Down Corr (TV) 16.93 16.62 1.018 5.47 7.613 3.87 12.015 3.20 6.299 4.52
RSJ/Beta (TV) 17.04 16.75 1.017 5.53 7.592 4.00 11.932 3.25 6.223 4.85
RSJ/Down Beta (TV) 17.10 16.59 1.031 5.67 7.859 4.26 12.265 3.41 6.509 5.02
RSJ/CoSkew (TV) 16.06 16.43 0.978 4.65 6.782 3.16 11.517 2.82 5.623 3.65
RSJ/CoKurt (TV) 16.35 16.97 0.964 5.03 6.567 3.89 9.625 3.66 5.400 4.38
RSJ/LPM Beta (TV) 17.15 16.74 1.025 5.60 7.743 4.15 12.181 3.38 6.436 5.06
RSJ/HTCR Beta (TV) 17.32 16.68 1.038 5.83 8.012 4.19 12.432 3.39 6.711 5.07
RSJ/Tail Beta (TV) 17.05 16.83 1.013 5.47 7.519 4.08 11.849 3.32 6.205 5.06
RSJ/Tail Sens (TV) 16.90 16.74 1.009 5.43 7.446 3.75 11.517 3.08 6.091 4.40
RSJ/Tail Risk (TV) 16.87 16.82 1.002 5.29 7.306 3.86 11.600 3.16 5.954 4.75
RSJ/MES (TV) 17.07 16.84 1.013 5.45 7.521 3.80 11.849 3.15 6.172 4.62

on a cut-off point of 30%, i.e. winners and losers consist of the 9 best and worst performing

industries. Choosing p equal to 10%, 20% and 40% means that winners and losers are defined

as the 3, 6 and 12 best and worst performing industries, respectively. For the strategy using

p � 10%, we find that all risk weighted strategies produce higher Sharpe Ratios and higher

utilities except for one case. The highest Sharpe Ratios and economic values are again found for

the (systematic) tail risk weightings. The increase in the Sharpe Ratio and utility is statistically

significant for most risk weighted strategies, including the volatility weighted strategy. For the

strategies using p � 20% and p � 40%, we find that the volatility managed strategy does

not outperform the equally weighted strategy. In contrast, the (systematic) tail risk weighted
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Table XXV. Robustness Results: p � 20%
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 20%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 11.02 15.37 0.717 - - - - - - -
RV 10.16 14.11 0.720 0.12 -0.019 -0.03 -0.374 -0.32 0.171 0.37

RSJ/Corr 12.10 13.82 0.876 3.80 2.154 3.75 2.197 3.03 1.919 3.53
RSJ/Down Corr 12.62 14.12 0.894 4.43 2.415 3.85 2.657 4.29 2.218 3.34
RSJ/Beta 12.15 13.68 0.888 4.11 2.326 4.24 2.427 3.21 2.102 3.90
RSJ/Down Beta 12.73 14.01 0.908 4.65 2.613 4.61 2.888 4.55 2.397 4.17
RSJ/CoSkew 12.17 14.85 0.820 2.56 1.381 2.17 2.044 2.12 1.136 1.86
RSJ/CoKurt 12.12 14.26 0.850 3.33 1.828 2.60 1.358 1.41 1.681 2.65
RSJ/LPM Beta 12.66 13.84 0.915 4.65 2.697 4.80 2.965 3.41 2.494 4.56
RSJ/HTCR Beta 12.24 13.76 0.889 4.13 2.340 4.16 2.503 3.46 2.072 3.67
RSJ/Tail Beta 12.35 14.21 0.869 3.50 2.067 4.09 2.273 2.53 1.969 3.89
RSJ/Tail Sens 12.08 13.96 0.865 3.52 2.004 2.89 2.273 2.25 1.740 2.67
RSJ/Tail Risk 12.01 14.15 0.848 3.01 1.770 3.08 2.120 2.12 1.644 3.24
RSJ/MES 12.35 13.77 0.897 4.13 2.443 4.88 2.811 3.01 2.194 4.72

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 11.06 15.28 0.724 - - - - - - -
RV 10.20 13.97 0.730 0.04 0.029 0.05 -0.374 -0.30 0.210 0.46

Equal (TV) 12.30 11.67 1.054 5.48 4.483 4.98 5.693 4.17 3.633 4.43
RV (TV) 13.83 12.51 1.105 5.22 5.219 4.68 6.406 4.17 4.502 4.57

RSJ/Corr (TV) 13.35 11.24 1.187 6.59 6.398 6.17 7.523 5.25 5.303 5.63
RSJ/Down Corr (TV) 13.32 11.16 1.193 6.65 6.486 6.37 7.603 5.50 5.395 5.68
RSJ/Beta (TV) 13.37 11.27 1.186 6.57 6.385 6.63 7.523 5.48 5.290 6.05
RSJ/Down Beta (TV) 13.55 11.18 1.213 6.85 6.765 7.09 7.924 5.98 5.663 6.41
RSJ/CoSkew (TV) 12.49 11.06 1.129 5.41 5.549 4.44 6.963 3.95 4.667 3.98
RSJ/CoKurt (TV) 13.13 11.35 1.157 6.32 5.965 6.14 6.803 5.51 4.901 5.32
RSJ/LPM Beta (TV) 13.69 11.17 1.225 7.05 6.944 6.89 8.166 5.59 5.817 6.37
RSJ/HTCR Beta (TV) 13.31 11.16 1.193 6.54 6.477 6.48 7.683 5.46 5.343 5.73
RSJ/Tail Beta (TV) 13.44 11.37 1.183 6.49 6.327 5.94 7.523 4.89 5.278 5.45
RSJ/Tail Sens (TV) 13.23 11.19 1.182 6.32 6.325 5.72 7.603 4.81 5.218 5.37
RSJ/Tail Risk (TV) 13.32 11.40 1.168 6.25 6.119 5.88 7.362 4.84 5.070 5.61
RSJ/MES (TV) 13.49 11.22 1.203 6.66 6.621 6.76 7.924 5.39 5.514 6.35

strategies produce very high and statistically significant Sharpe Ratio and utility increases. In

particular, we find that the (systematic) tail risk weightings perform the best for higher cut-

off points. This is quite intuitive, since the winners and losers portfolios consist of only three

industries for the p � 10% cut-off. Thus, differences between the weighting schemes are only

small. In contrast, when higher values of p are chosen, winners and losers contain more assets

and differences between different weighting schemes are higher. However, the (systematic)

tail risk weighting approach outperforms the other weighting schemes, even for low cut-off

points. Finally, the volatility targeting approach works well for all three cut-off points and

significantly increases the Sharpe Ratio and the investors’ utility. The highest Sharpe Ratios are
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again obtained for the strategies that combine volatility targeting with the (systematic) tail risk

weightings.

Table XXVI. Robustness Results: p � 40%
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 40%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.71 10.06 0.766 - - - - - - -
RV 6.81 9.06 0.751 -0.26 -0.163 -0.35 -0.225 -0.46 -0.038 -0.09

RSJ/Corr 10.10 9.46 1.068 5.81 2.831 5.80 2.888 5.58 2.644 5.37
RSJ/Down Corr 9.83 10.09 0.974 4.11 1.959 3.69 1.891 3.02 2.026 3.99
RSJ/Beta 10.05 9.23 1.089 5.98 3.025 5.80 3.119 5.64 2.752 5.21
RSJ/Down Beta 10.15 9.51 1.067 5.80 2.827 5.53 2.888 5.40 2.615 4.93
RSJ/CoSkew 10.10 10.28 0.982 4.77 2.032 3.88 2.120 3.84 1.989 3.62
RSJ/CoKurt 9.82 9.69 1.013 4.93 2.322 4.78 2.350 4.55 2.179 4.55
RSJ/LPM Beta 10.31 9.38 1.100 6.19 3.128 6.09 3.273 5.91 2.884 5.49
RSJ/HTCR Beta 10.11 9.30 1.087 6.17 3.011 5.18 3.119 5.06 2.707 4.62
RSJ/Tail Beta 9.98 9.94 1.004 4.85 2.231 4.76 2.273 4.62 2.154 4.55
RSJ/Tail Sens 10.22 9.44 1.082 6.12 2.967 5.60 3.119 5.33 2.679 5.19
RSJ/Tail Risk 10.00 9.69 1.032 5.39 2.493 5.54 2.580 5.36 2.332 5.07
RSJ/MES 10.43 9.30 1.121 6.61 3.332 5.97 3.505 5.80 3.025 5.44

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.60 9.98 0.761 - - - - - - -
RV 6.70 8.93 0.750 -0.30 -0.130 -0.28 -0.225 -0.41 -0.019 -0.04

Equal (TV) 13.11 11.77 1.114 5.96 3.278 5.68 3.505 5.73 2.784 4.92
RV (TV) 14.85 12.45 1.192 5.72 3.990 5.11 4.204 5.22 3.449 4.55

RSJ/Corr (TV) 15.18 11.26 1.348 7.43 5.435 7.09 5.693 7.01 4.973 6.16
RSJ/Down Corr (TV) 14.84 11.43 1.298 7.05 4.969 6.89 5.142 6.92 4.535 6.05
RSJ/Beta (TV) 15.00 11.33 1.324 7.12 5.206 6.93 5.457 6.91 4.743 6.04
RSJ/Down Beta (TV) 15.03 11.31 1.329 7.21 5.257 6.95 5.536 6.93 4.762 6.04
RSJ/CoSkew (TV) 14.87 11.38 1.307 7.09 5.056 6.37 5.300 6.37 4.614 5.67
RSJ/CoKurt (TV) 14.75 11.29 1.307 7.04 5.055 6.57 5.300 6.54 4.579 5.77
RSJ/LPM Beta (TV) 15.23 11.30 1.348 7.37 5.429 7.11 5.693 7.04 4.937 6.13
RSJ/HTCR Beta (TV) 15.09 11.28 1.338 7.25 5.338 6.77 5.614 6.75 4.841 5.89
RSJ/Tail Beta (TV) 15.00 11.49 1.305 7.27 5.035 7.11 5.300 7.09 4.544 6.12
RSJ/Tail Sens (TV) 15.15 11.23 1.349 7.38 5.440 6.95 5.693 6.88 4.934 6.05
RSJ/Tail Risk (TV) 14.95 11.42 1.309 7.25 5.073 7.00 5.300 6.96 4.565 6.11
RSJ/MES (TV) 15.31 11.28 1.357 7.46 5.515 7.14 5.772 7.07 5.014 6.18

Results in this section show that the profitability of momentum strongly depends on the

chosen cut-off point. We find that lower cut-off points typically produce higher returns but

also exhibit a higher volatility. The best risk-return profile is found for the strategies that use

higher cut-off points. Similarly, the benefits of our risk weightings are also higher for strategies

that use higher cut-off points. In contrast, volatility targeting adds the highest value when it is

combined with lower cut-off points. This finding is also quite intuitive, since risk targeting is

more advantageous when it is overlayed on portfolios with higher risk (Harvey et al., 2018).
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As stated above, momentum strategies based on lower cut-off points are typically riskier, which

makes volatility targeting more important for these strategies. However, both approaches, risk

weighting and risk targeting, work well for all cut-off points and clearly outperform the non-

managed and volatility weighted portfolio.

B.4 Alternative US Industry Data Sets

This section examines the profitability of the non-managed and risk-managed momentum strate-

gies when different US industry portfolios are used. For our main results, we use 30 equally

weighted US industry portfolios. However, several other US industry portfolios are frequently

used in the literature on industry momentum and portfolio optimization. For example, instead

of using equally weighted industry portfolios, value-weighted industries could be used. Grundy

and Martin (2001), Lewellen (2002, Table 2) and Moskowitz and Grinblatt (1999, Footnote 12)

find that industry momentum produces quite different results when equally or value-weighted

industries are used, where the momentum strategy based on equally weighted industries pro-

duces a superior risk-return profile. Lewellen (2002, Table 2) shows that a similar result also

holds for momentum based on style portfolios, i.e. using equally or value-weighted style port-

folios produces different results of momentum investing and momentum strategies based on

equally weighted style portfolios are more profitable. Value-weighted industries were also used

by Grobys et al. (2018), Grobys (2018) Grobys and Kolari (2020), Gupta et al. (2010), George

and Hwang (2004), Swinkels (2002) and Moskowitz and Grinblatt (1999). Further, instead of

using different weighting schemes to weight assets within one industry, different industry clas-

sification are also frequently used in the literature. For example, Lewellen (2002) use 15 indus-

tries, Moskowitz and Grinblatt (1999), Grundy and Martin (2001), George and Hwang (2004),

Pan et al. (2004) and Chordia and Shivakumar (2002) use 20 industries, Swinkels (2002) uses

40 industries, Stivers and Sun (2010), Grobys (2018) and Grobys and Kolari (2020) use 48

industries, whereas Novy-Marx (2012), Grobys et al. (2018) and Du Plessis and Hallerbach

(2017) use 49 industries when examining the profitability of industry momentum. Interestingly,

Grobys and Kolari (2020, p. 100) find quite different results compared to Moskowitz and Grin-

blatt (1999) and state that this finding can be explained by using different industry data sets. In
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a similar setting, Behr et al. (2012) use 10, 17, 30 and 48 industries and find better results when

48 industry portfolios are used. Thus, the size of the chosen data set can influence the profitabil-

ity of portfolio strategies. Generally, industry portfolios are important for many financial fields,

like portfolio optimization and asset pricing, where also different industry portfolio data sets are

used. For example, Lettau et al. (2014) use 5 industry portfolios, DeMiguel et al. (2009a) use

10 and 48 industries, Harvey and Siddique (2000) use 27 and 32 industries, Zakamulin (2015)

uses 30 industry portfolios, Chen and Petkova (2012) and Chang et al. (2013) use 49 industries,

whereas Kirby and Ostdiek (2012), DeMiguel et al. (2009b) and Harvey et al. (2018) examine

portfolio strategies using 10 industry portfolios. In particular, some of these studies find quite

different results when different data sets are used.

To assess how different industry classifications and value-weighted industries influence the

profitability of the non-managed and risk-managed momentum strategies, we next examine

performance results for different industry data sets. To assess the influence of the weighting

scheme used to weight assets within the industry portfolios, we use 30 value-weighted US

industry portfolios. To assess how the size of the industry data set influences the profitability of

the non-managed and risk-managed strategies, we use six equally weighted data sets consisting

of 5, 10, 12, 17, 38 and 49 equally weighted US industries. These data sets are again obtained

from Kenneth French’s website. Similar to the choice of the cut-off point, different US industry

classifications also affect the number of industries in the winners and losers portfolios. Using

30 equally weighted industries, as done in the main part of this paper, means that winners and

losers consist of 9 industries each. In contrast, using 5, 10, 12, 17, 38 and 49 industry portfolios

means that winners and losers consist of 2, 3, 4, 6, 12 and 15 industries each. Results for the

value-weighted data set are shown in Table XXVII, whereas results for the six additional equally

weighted data sets are shown in Table XXVIII, Table XXIX, Table XXX, Table XXXI, Table

XXXII and Table XXXIII. For the 10 industry portfolios we use a volatility target of 12%, since

this momentum strategy produces a quite high level of volatility.

In line with the finding of Grundy and Martin (2001), Table XXVII shows that industry

momentum using value-weighted industries underperforms the strategy using equally weighted
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Table XXVII. Robustness Results: 30 Value-Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 30
value-weighted US industries, the t � 12 to t � 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.61 13.02 0.508 - - - - - - -
RV 5.91 12.08 0.489 -0.44 -0.286 -0.55 -0.150 -0.21 -0.341 -0.77

RSJ/Corr 7.97 11.97 0.666 3.67 1.871 2.56 2.120 2.07 1.595 2.43
RSJ/Down Corr 8.17 12.11 0.675 3.82 1.994 2.75 2.197 2.70 1.619 2.33
RSJ/Beta 7.79 11.70 0.666 3.48 1.860 2.66 2.120 2.12 1.515 2.43
RSJ/Down Beta 8.04 11.94 0.673 3.63 1.966 2.38 2.273 2.08 1.652 2.28
RSJ/CoSkew 7.95 13.01 0.611 2.57 1.259 2.39 1.358 2.31 1.197 2.27
RSJ/CoKurt 8.25 12.33 0.669 3.83 1.935 2.79 2.044 2.56 1.741 2.57
RSJ/LPM Beta 7.88 11.82 0.667 3.54 1.879 2.65 2.120 2.26 1.561 2.40
RSJ/HTCR Beta 8.03 11.88 0.676 3.75 1.994 2.82 2.197 2.46 1.732 2.66
RSJ/Tail Beta 7.18 12.31 0.584 1.83 0.880 2.21 1.055 1.65 0.640 1.86
RSJ/Tail Sens 8.06 12.02 0.670 4.00 1.929 2.98 2.273 2.56 1.597 2.58
RSJ/Tail Risk 7.66 12.11 0.633 3.03 1.472 2.99 1.739 2.36 1.085 2.50
RSJ/MES 7.80 11.87 0.657 3.34 1.764 2.40 2.044 1.96 1.415 2.13

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.50 12.98 0.501 - - - - - - -
RV 5.77 12.02 0.480 -0.64 -0.314 -0.61 -0.225 -0.25 -0.364 -0.82

Equal (TV) 9.24 10.57 0.874 5.71 4.467 5.36 5.378 3.89 3.317 4.68
RV (TV) 9.22 11.15 0.827 4.21 3.900 3.59 4.750 2.91 2.926 3.12

RSJ/Corr (TV) 9.81 10.44 0.939 5.79 5.276 4.75 6.247 3.75 4.193 4.37
RSJ/Down Corr (TV) 9.90 10.38 0.954 5.89 5.456 4.86 6.406 3.83 4.344 4.49
RSJ/Beta (TV) 9.79 10.46 0.935 5.65 5.225 4.64 6.168 3.69 4.139 4.24
RSJ/Down Beta (TV) 9.83 10.40 0.945 5.71 5.349 4.43 6.326 3.59 4.297 4.16
RSJ/CoSkew (TV) 9.68 10.33 0.937 5.63 5.243 4.90 6.168 3.83 4.324 4.53
RSJ/CoKurt (TV) 10.01 10.50 0.953 6.03 5.451 4.90 6.406 3.86 4.380 4.54
RSJ/LPM Beta (TV) 9.79 10.46 0.937 5.66 5.242 4.54 6.168 3.64 4.168 4.17
RSJ/HTCR Beta (TV) 9.84 10.44 0.943 5.77 5.317 4.64 6.247 3.76 4.264 4.24
RSJ/Tail Beta (TV) 9.34 10.48 0.891 5.11 4.675 4.78 5.614 3.70 3.635 4.22
RSJ/Tail Sens (TV) 9.68 10.38 0.933 5.68 5.195 4.95 6.089 3.88 4.114 4.30
RSJ/Tail Risk (TV) 9.69 10.51 0.922 5.60 5.064 4.84 6.009 3.75 3.920 4.41
RSJ/MES (TV) 9.76 10.51 0.928 5.56 5.134 4.50 6.089 3.59 4.037 4.06

industries as examined in Section 3.7. Industry momentum based on value-weighted indus-

tries produces a lower return with a similar level of volatility as the momentum strategy using

equally weighted industries.143 In total, the Sharpe Ratio of the strategy using value-weighted

industries is lower than the Sharpe Ratio of the strategy using equally weighted industries. In

line with our earlier results, the performance of this strategy cannot be enhanced by weighting

the value-weighted industries by their volatility. In contrast, the (systematic) tail risk weight-

ings significantly enhance the performance of the industry momentum strategy. This holds

especially for the strategies that combine the (systematic) tail risk weighting with the volatility

143The use of equally or value-weighted industries only determines how assets within one industry are weighted,
but not how different industries are weighted in the winners and losers portfolios.
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Table XXVIII. Robustness Results: 5 Equally Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 5
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.15 11.58 0.618 - - - - - - -
RV 6.62 11.50 0.575 -1.50 -0.461 -1.11 -0.524 -1.14 -0.294 -0.72

RSJ/Corr 8.14 11.51 0.707 2.93 0.964 2.20 0.979 2.05 0.907 1.99
RSJ/Down Corr 8.38 11.63 0.720 3.30 1.108 3.34 1.207 3.51 1.137 3.36
RSJ/Beta 8.25 11.35 0.727 3.36 1.166 3.15 1.282 3.09 1.110 2.62
RSJ/Down Beta 8.49 11.41 0.744 3.93 1.358 5.05 1.510 4.77 1.308 4.22
RSJ/CoSkew 8.53 11.77 0.725 3.57 1.160 3.60 1.282 3.73 1.013 3.04
RSJ/CoKurt 8.27 11.47 0.721 3.31 1.114 3.00 1.131 3.01 1.026 2.58
RSJ/LPM Beta 8.39 11.38 0.737 3.68 1.284 4.08 1.434 3.97 1.246 3.47
RSJ/HTCR Beta 8.31 11.33 0.734 3.56 1.241 3.67 1.358 3.54 1.175 3.10
RSJ/Tail Beta 8.76 11.49 0.762 4.73 1.556 5.00 1.663 4.99 1.550 4.70
RSJ/Tail Sens 8.39 11.45 0.733 3.71 1.246 3.13 1.282 3.10 1.101 2.61
RSJ/Tail Risk 8.72 11.43 0.764 4.70 1.571 4.33 1.663 4.25 1.559 3.92
RSJ/MES 8.42 11.34 0.742 3.85 1.333 3.63 1.434 3.45 1.281 3.09

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.11 11.56 0.615 - - - - - - -
RV 6.55 11.48 0.571 -1.58 -0.482 -1.15 -0.598 -1.17 -0.312 -0.75

Equal (TV) 10.73 12.53 0.856 3.96 2.643 3.16 2.580 3.20 1.636 2.24
RV (TV) 10.93 12.79 0.855 3.63 2.628 3.04 2.657 3.07 1.708 2.17

RSJ/Corr (TV) 12.20 12.69 0.962 4.95 3.777 3.98 3.738 3.96 2.867 3.18
RSJ/Down Corr (TV) 12.22 12.73 0.960 4.93 3.759 4.20 3.738 4.17 2.865 3.37
RSJ/Beta (TV) 12.15 12.70 0.957 4.86 3.730 3.96 3.738 4.03 2.830 3.30
RSJ/Down Beta (TV) 12.30 12.70 0.969 5.02 3.851 4.28 3.815 4.35 2.953 3.60
RSJ/CoSkew (TV) 12.22 12.75 0.959 4.90 3.745 4.18 3.738 4.15 2.843 3.41
RSJ/CoKurt (TV) 12.15 12.72 0.955 4.85 3.706 4.03 3.660 4.04 2.792 3.24
RSJ/LPM Beta (TV) 12.25 12.71 0.964 4.94 3.797 4.12 3.815 4.18 2.909 3.45
RSJ/HTCR Beta (TV) 12.16 12.70 0.958 4.86 3.740 4.06 3.738 4.09 2.841 3.35
RSJ/Tail Beta (TV) 12.51 12.70 0.985 5.28 4.029 4.36 4.048 4.35 3.160 3.60
RSJ/Tail Sens (TV) 12.20 12.73 0.958 4.89 3.742 3.94 3.738 3.90 2.799 3.09
RSJ/Tail Risk (TV) 12.49 12.70 0.983 5.25 4.012 4.29 3.970 4.28 3.127 3.53
RSJ/MES (TV) 12.28 12.70 0.967 4.99 3.829 4.04 3.815 4.09 2.939 3.36

targeting approach. Results for the remaining data sets using several equally weighted industry

portfolios are mainly in line with our previous findings. For the data set consisting of 5, 10

or 12 equally weighted industries, we find that the volatility weighted momentum portfolio

underperforms the equally weighted momentum portfolio. This underperformance is even sta-

tistically significant for the 10 equally weighted US industries. In contrast, the (systematic)

tail risk weighted strategies exhibit significantly higher Sharpe Ratios and utilities compared

to the equally and volatility weighted strategies for all data sets. For the remaining data sets

using 17, 38 or 49 equally weighted industries, we find that all risk based weighting schemes

enhance the risk-return profile of the industry momentum strategy, where again the highest per-
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Table XXIX. Robustness Results: 10 Equally Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 10
equally weighted US industries, the t � 12 to t � 1 ranking period, a cut-off point of p � 30% and a
volatility target σtarget of 12%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.07 15.04 0.603 - - - - - - -
RV 7.47 14.97 0.499 -3.40 -1.421 -5.75 -2.740 -1.99 -1.069 -4.77

RSJ/Corr 11.45 14.28 0.802 5.85 2.692 6.29 3.815 4.02 2.660 7.22
RSJ/Down Corr 11.33 14.34 0.790 5.24 2.535 5.79 3.583 4.80 2.474 5.70
RSJ/Beta 11.34 14.46 0.784 5.24 2.486 6.18 1.968 1.70 2.719 7.38
RSJ/Down Beta 11.07 14.53 0.762 4.35 2.195 3.87 0.677 0.28 2.401 5.54
RSJ/CoSkew 10.91 15.49 0.704 2.95 1.448 2.19 0.526 0.32 1.598 2.70
RSJ/CoKurt 11.40 14.36 0.794 5.61 2.585 5.46 3.660 3.97 2.513 5.56
RSJ/LPM Beta 11.45 14.49 0.790 5.27 2.566 6.28 2.120 1.71 2.776 8.04
RSJ/HTCR Beta 11.35 14.44 0.786 5.22 2.506 5.60 2.044 1.55 2.640 6.63
RSJ/Tail Beta 10.68 14.79 0.722 3.52 1.632 2.92 1.434 1.30 1.753 3.46
RSJ/Tail Sens 11.25 14.41 0.781 5.23 2.400 5.16 3.505 3.77 2.310 5.50
RSJ/Tail Risk 10.91 14.69 0.743 4.17 1.926 3.47 1.586 1.39 2.051 4.56
RSJ/MES 11.64 14.30 0.814 5.93 2.875 8.14 3.583 5.11 2.931 9.49

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.04 14.95 0.605 - - - - - - -
RV 7.42 14.85 0.500 -3.37 -1.431 -5.68 -2.740 -1.97 -1.083 -4.81

Equal (TV) 12.05 13.18 0.914 5.41 4.174 4.93 5.457 3.55 3.188 4.72
RV (TV) 10.83 13.76 0.787 2.73 2.424 2.56 3.738 2.31 1.677 2.20

RSJ/Corr (TV) 14.02 13.13 1.067 6.92 6.308 6.10 8.085 4.20 5.439 6.29
RSJ/Down Corr (TV) 13.88 13.12 1.058 6.68 6.178 6.14 8.004 4.22 5.270 6.22
RSJ/Beta (TV) 13.92 13.34 1.043 6.58 5.988 6.65 6.963 5.13 5.343 6.86
RSJ/Down Beta (TV) 13.71 13.35 1.027 6.24 5.769 6.04 6.009 4.30 5.109 6.28
RSJ/CoSkew (TV) 13.34 13.29 1.004 5.97 5.428 5.01 6.724 4.32 4.647 4.65
RSJ/CoKurt (TV) 13.89 13.08 1.062 6.78 6.227 6.00 8.085 4.05 5.307 6.13
RSJ/LPM Beta (TV) 14.11 13.25 1.065 6.82 6.279 6.60 7.523 4.95 5.546 6.94
RSJ/HTCR Beta (TV) 13.98 13.34 1.048 6.62 6.053 6.35 7.043 4.93 5.349 6.69
RSJ/Tail Beta (TV) 13.47 13.27 1.015 6.10 5.585 5.18 7.043 4.05 4.818 5.14
RSJ/Tail Sens (TV) 13.91 13.17 1.057 6.76 6.155 6.08 7.924 4.17 5.246 6.25
RSJ/Tail Risk (TV) 13.62 13.38 1.018 6.27 5.635 5.59 6.644 4.50 4.928 5.79
RSJ/MES (TV) 14.22 13.17 1.080 7.01 6.483 6.71 8.085 4.62 5.642 7.22

formance and utility gains are found for the (systematic) tail risk weighted strategies. Although

the volatility weighted strategy’s Sharpe Ratio is higher than the Sharpe Ratio of the equally

weighted strategy for all three data sets, the increase in the Sharpe Ratio is only significant

for the 49 industries. The good performance of the volatility managed industry momentum

strategy using 49 industries is in line with the finding of Du Plessis and Hallerbach (2017).

Similar to the choice of the cut-off point, we find that the risk weighted momentum strategies

perform the best when more industries are contained in the winners and losers portfolios. The

best improvements of the risk-return profile are found for the 49 industry data set. This is again

quite intuitive, since different weighting schemes have a higher impact when more assets are
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Table XXX. Robustness Results: 12 Equally Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 12
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.72 12.72 0.686 - - - - - - -
RV 7.79 12.10 0.644 -1.21 -0.528 -1.58 -0.524 -1.40 -0.523 -1.51

RSJ/Corr 11.31 12.10 0.935 6.32 2.918 5.81 2.811 3.93 2.710 5.91
RSJ/Down Corr 11.45 12.35 0.927 6.04 2.832 5.34 2.734 3.44 2.700 5.79
RSJ/Beta 11.30 12.13 0.931 6.03 2.874 6.12 2.657 3.23 2.791 6.45
RSJ/Down Beta 11.48 12.30 0.933 5.80 2.902 5.60 2.811 3.73 2.778 6.31
RSJ/CoSkew 10.74 13.09 0.821 3.51 1.605 3.12 1.510 2.45 1.421 2.98
RSJ/CoKurt 11.41 12.14 0.940 6.39 2.966 4.77 3.350 4.03 2.566 4.64
RSJ/LPM Beta 11.50 12.16 0.945 6.38 3.035 6.41 3.196 4.87 2.901 6.67
RSJ/HTCR Beta 11.52 11.85 0.971 7.03 3.340 6.84 3.428 5.14 3.040 6.87
RSJ/Tail Beta 11.09 12.53 0.885 5.08 2.326 4.33 2.657 3.66 2.206 4.41
RSJ/Tail Sens 11.28 12.10 0.932 5.96 2.870 5.28 3.273 4.50 2.566 5.27
RSJ/Tail Risk 11.13 12.37 0.900 5.48 2.494 5.10 2.811 4.20 2.325 5.32
RSJ/MES 11.80 11.99 0.983 7.16 3.467 6.27 4.048 4.68 3.219 6.35

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.67 12.62 0.687 - - - - - - -
RV 7.71 11.97 0.644 -1.33 -0.529 -1.59 -0.524 -1.43 -0.535 -1.54

Equal (TV) 13.37 12.86 1.040 6.11 4.097 5.49 4.907 4.58 3.276 5.42
RV (TV) 12.57 13.41 0.937 3.61 2.908 3.16 3.815 2.87 2.131 2.77

RSJ/Corr (TV) 15.76 13.01 1.212 7.41 6.108 6.29 6.724 5.79 5.443 6.47
RSJ/Down Corr (TV) 15.84 12.98 1.220 7.54 6.200 6.49 6.883 5.95 5.495 6.71
RSJ/Beta (TV) 15.74 13.08 1.204 7.25 6.014 6.22 6.644 5.75 5.405 6.58
RSJ/Down Beta (TV) 15.87 13.02 1.219 7.38 6.187 6.42 6.883 5.86 5.464 6.75
RSJ/CoSkew (TV) 15.22 13.03 1.168 6.80 5.598 5.41 6.326 5.14 4.797 5.42
RSJ/CoKurt (TV) 15.79 12.81 1.232 7.60 6.341 5.94 7.202 5.15 5.460 6.02
RSJ/LPM Beta (TV) 15.96 12.99 1.228 7.57 6.298 6.47 7.043 5.78 5.608 6.87
RSJ/HTCR Beta (TV) 15.98 12.87 1.242 7.62 6.454 6.46 7.202 5.70 5.714 6.77
RSJ/Tail Beta (TV) 15.61 12.99 1.202 7.37 5.986 5.99 6.803 5.31 5.232 6.21
RSJ/Tail Sens (TV) 15.71 12.91 1.217 7.36 6.161 6.28 7.043 5.42 5.379 6.45
RSJ/Tail Risk (TV) 15.60 12.98 1.201 7.32 5.979 5.80 6.803 5.18 5.224 6.03
RSJ/MES (TV) 16.14 12.84 1.257 7.83 6.623 6.31 7.523 5.25 5.836 6.73

contained in the portfolio. Furthermore, for all six data sets of equally weighted industries, we

find that volatility targeting again significantly enhances the risk-return profile, regardless of

the weighting scheme. The good performance of the volatility targeting approach for the 49

industry portfolios has already been shown by Du Plessis and Hallerbach (2017) and Grobys

et al. (2018). Results in this section show that volatility targeting also works well for other

industry classifications. In line with our previous results, we find that the highest Sharpe Ratios

and economic values are again found for the strategies that combine volatility targeting with the

(systematic) tail risk weightings.

In total, results in this section confirm the finding of Hong et al. (2000) and Grundy and
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Table XXXI. Robustness Results: 17 Equally Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 17
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.35 10.78 0.682 - - - - - - -
RV 7.16 10.37 0.690 0.21 0.069 0.21 -0.075 -0.20 0.078 0.24

RSJ/Corr 9.34 10.58 0.883 4.40 2.013 4.05 2.197 2.89 1.923 5.00
RSJ/Down Corr 9.13 10.81 0.845 3.72 1.635 3.97 1.739 4.04 1.632 4.21
RSJ/Beta 9.03 10.95 0.825 3.49 1.458 3.46 1.207 2.28 1.611 4.19
RSJ/Down Beta 9.37 10.66 0.879 4.45 1.978 4.77 2.120 4.81 1.962 4.94
RSJ/CoSkew 9.16 10.98 0.834 3.71 1.530 3.98 1.815 3.82 1.410 3.82
RSJ/CoKurt 8.99 11.21 0.802 2.81 1.240 3.14 0.753 1.10 1.469 4.43
RSJ/LPM Beta 9.21 10.71 0.860 4.24 1.787 3.94 1.891 3.71 1.815 4.44
RSJ/HTCR Beta 8.99 10.81 0.832 3.60 1.512 2.95 1.434 2.48 1.614 3.53
RSJ/Tail Beta 9.06 10.86 0.834 3.72 1.534 3.75 1.586 3.82 1.542 3.67
RSJ/Tail Sens 8.97 11.19 0.802 2.86 1.223 3.50 1.131 3.25 1.411 4.30
RSJ/Tail Risk 9.04 10.92 0.828 3.64 1.475 3.93 1.510 3.91 1.560 4.29
RSJ/MES 9.28 10.68 0.869 4.37 1.879 4.33 2.044 3.69 1.863 4.96

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.27 10.76 0.675 - - - - - - -
RV 7.07 10.35 0.683 0.15 0.064 0.19 -0.075 -0.22 0.068 0.21

Equal (TV) 12.75 12.66 1.007 6.37 3.350 6.98 3.660 6.24 3.042 6.29
RV (TV) 13.79 13.13 1.051 5.57 3.782 5.48 4.204 4.93 3.420 5.72

RSJ/Corr (TV) 14.37 12.18 1.180 7.23 5.054 6.54 5.536 5.36 4.678 6.92
RSJ/Down Corr (TV) 14.13 12.36 1.144 6.93 4.702 7.05 5.142 6.16 4.422 7.39
RSJ/Beta (TV) 14.08 12.50 1.127 6.87 4.538 7.57 4.907 6.81 4.306 7.62
RSJ/Down Beta (TV) 14.29 12.30 1.162 7.06 4.881 7.17 5.378 6.14 4.591 7.24
RSJ/CoSkew (TV) 14.12 12.20 1.157 6.98 4.834 7.03 5.300 5.89 4.489 7.18
RSJ/CoKurt (TV) 13.97 12.56 1.113 6.68 4.407 7.38 4.672 7.02 4.239 7.35
RSJ/LPM Beta (TV) 14.23 12.35 1.152 7.06 4.785 7.18 5.221 6.07 4.506 7.48
RSJ/HTCR Beta (TV) 14.09 12.38 1.138 6.89 4.645 7.36 5.064 6.35 4.388 7.48
RSJ/Tail Beta (TV) 14.02 12.37 1.133 6.83 4.598 6.74 5.064 5.91 4.317 6.67
RSJ/Tail Sens (TV) 13.92 12.52 1.112 6.68 4.388 6.66 4.829 6.00 4.185 6.96
RSJ/Tail Risk (TV) 13.97 12.41 1.125 6.82 4.520 6.78 4.985 5.96 4.281 6.99
RSJ/MES (TV) 14.24 12.33 1.155 7.00 4.808 7.07 5.300 5.85 4.500 7.27

Martin (2001) that the use of different data sets can lead to quite different performance re-

sults of momentum strategies. However, for all data sets, we find that the (systematic) tail risk

weighted momentum portfolios outperform the non-managed and volatility managed strategies.

Furthermore, volatility targeting enhances the risk-return profile regardless of the used US in-

dustry data set or weighting scheme. Thus, results in this section confirm our earlier findings

for seven additional data sets.
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Table XXXII. Robustness Results: 38 Equally Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 38
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.84 11.77 0.666 - - - - - - -
RV 7.93 11.45 0.692 0.56 0.287 0.58 0.000 0.02 0.781 1.54

RSJ/Corr 9.53 11.02 0.865 3.92 2.167 4.71 1.968 2.84 2.208 5.23
RSJ/Down Corr 9.50 11.35 0.838 3.38 1.876 3.44 1.663 1.94 1.958 3.96
RSJ/Beta 9.87 11.10 0.889 4.33 2.441 4.39 2.044 2.25 2.667 5.08
RSJ/Down Beta 9.78 11.24 0.870 3.71 2.226 3.45 1.968 2.05 2.471 3.82
RSJ/CoSkew 9.24 12.31 0.750 1.66 0.934 1.77 1.055 1.73 1.085 2.06
RSJ/CoKurt 9.52 11.25 0.847 3.44 1.977 3.50 1.739 1.96 2.052 3.98
RSJ/LPM Beta 9.98 11.07 0.901 4.50 2.567 4.46 2.503 3.39 2.757 4.63
RSJ/HTCR Beta 9.75 11.05 0.882 4.29 2.358 4.66 2.197 2.94 2.500 4.95
RSJ/Tail Beta 9.78 11.57 0.845 3.79 1.962 3.78 1.815 2.79 2.318 4.27
RSJ/Tail Sens 9.63 11.33 0.850 3.73 2.005 4.53 2.120 4.47 2.132 4.50
RSJ/Tail Risk 9.89 11.59 0.853 3.93 2.045 4.46 2.044 3.81 2.337 4.59
RSJ/MES 10.15 11.10 0.915 4.84 2.711 5.14 2.734 4.34 2.885 5.23

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.78 11.68 0.665 - - - - - - -
RV 7.88 11.31 0.697 0.63 0.336 0.66 0.075 0.07 0.818 1.57

Equal (TV) 10.68 11.30 0.945 5.12 3.018 4.33 3.350 4.11 2.762 3.84
RV (TV) 13.77 12.65 1.089 6.05 4.599 6.09 4.985 5.96 4.326 5.38

RSJ/Corr (TV) 11.99 10.93 1.097 6.04 4.686 7.09 4.985 6.80 4.434 6.16
RSJ/Down Corr (TV) 11.78 10.94 1.077 5.80 4.467 6.48 4.829 6.14 4.223 5.69
RSJ/Beta (TV) 12.32 11.33 1.088 6.07 4.597 7.21 4.750 6.60 4.559 6.39
RSJ/Down Beta (TV) 11.91 11.06 1.077 5.76 4.465 6.46 4.750 6.22 4.351 5.63
RSJ/CoSkew (TV) 11.06 10.82 1.023 5.05 3.864 4.66 4.282 4.54 3.632 4.29
RSJ/CoKurt (TV) 11.77 10.96 1.074 5.75 4.436 6.82 4.672 6.58 4.247 5.97
RSJ/LPM Beta (TV) 12.39 11.19 1.107 6.18 4.793 6.75 5.142 6.48 4.692 5.93
RSJ/HTCR Beta (TV) 11.95 11.00 1.086 5.97 4.565 7.02 4.829 6.77 4.399 5.97
RSJ/Tail Beta (TV) 12.38 11.40 1.085 6.22 4.560 6.62 4.907 6.34 4.520 5.84
RSJ/Tail Sens (TV) 12.01 10.99 1.093 6.10 4.641 6.73 5.064 6.32 4.451 6.04
RSJ/Tail Risk (TV) 12.48 11.48 1.087 6.24 4.576 6.84 4.907 6.56 4.516 6.01
RSJ/MES (TV) 12.56 11.20 1.121 6.43 4.944 7.07 5.300 6.77 4.844 6.25

B.5 International and European Industry Momentum

Results examined in the previous sections are so far based on US industry momentum. This is

in line with the literature, since most studies on momentum typically focus on US data. How-

ever, momentum does not only work in the US, but is also an international phenomenon (Asness

et al., 2013, Fama and French, 2012, Griffin et al., 2003, Rouwenhorst, 1998). Similarly, indus-

try momentum is also profitable for non-US industries (see Gupta et al. (2010), Nijman et al.

(2004), Swinkels (2002) and references therein). Swinkels (2002, p. 133) “conclude that in-

dustry momentum is a global phenomenon”. Gupta et al. (2010, Table 5) find that also the 52

week high industry momentum strategy is profitable in most countries. Although it has been
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Table XXXIII. Robustness Results: 49 Equally Weighted US Industries
This table shows performance results of the equally and risk weighted momentum strategies using 49
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.49 12.62 0.673 - - - - - - -
RV 8.75 11.30 0.775 2.31 1.125 1.79 1.739 1.49 1.152 1.92

RSJ/Corr 11.24 11.61 0.968 5.80 3.430 4.03 3.350 2.01 3.446 4.48
RSJ/Down Corr 10.89 12.15 0.896 5.06 2.611 3.84 1.968 2.01 2.816 4.12
RSJ/Beta 11.27 11.07 1.018 6.67 3.987 6.16 4.750 4.20 3.734 5.69
RSJ/Down Beta 10.83 11.37 0.952 5.67 3.232 3.83 3.350 2.10 3.149 4.20
RSJ/CoSkew 10.38 13.03 0.796 2.84 1.461 2.80 1.282 1.68 1.685 3.00
RSJ/CoKurt 10.77 12.41 0.868 4.37 2.303 3.87 1.434 1.62 2.660 4.32
RSJ/LPM Beta 11.41 10.97 1.040 7.09 4.254 5.46 5.064 3.98 3.949 5.01
RSJ/HTCR Beta 11.40 11.06 1.031 7.07 4.144 5.98 4.750 4.69 3.889 5.38
RSJ/Tail Beta 10.76 11.53 0.933 5.62 2.990 4.73 3.738 3.33 2.739 4.29
RSJ/Tail Sens 10.90 11.54 0.944 5.87 3.132 4.21 3.738 3.09 2.854 4.05
RSJ/Tail Risk 10.70 11.59 0.923 5.35 2.868 3.97 3.738 2.85 2.585 3.68
RSJ/MES 11.37 11.08 1.026 6.87 4.083 5.68 4.907 4.27 3.772 5.09

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.58 12.48 0.688 - - - - - - -
RV 8.79 11.14 0.789 2.08 1.096 1.75 1.739 1.48 1.121 1.85

Equal (TV) 12.37 11.45 1.080 6.69 4.483 5.62 5.614 4.00 3.649 4.99
RV (TV) 15.70 12.99 1.209 6.97 5.979 5.32 7.122 4.22 5.196 5.24

RSJ/Corr (TV) 14.18 11.19 1.268 7.97 6.688 7.59 7.523 5.04 6.078 7.10
RSJ/Down Corr (TV) 13.76 11.00 1.251 8.03 6.489 7.77 7.442 5.35 5.776 6.99
RSJ/Beta (TV) 14.41 11.08 1.300 8.32 7.061 8.36 8.246 5.65 6.286 7.56
RSJ/Down Beta (TV) 13.73 11.04 1.244 7.60 6.415 7.71 7.362 5.24 5.734 7.05
RSJ/CoSkew (TV) 12.99 10.81 1.202 7.18 5.912 6.69 7.122 4.97 5.106 5.98
RSJ/CoKurt (TV) 13.74 11.16 1.232 7.84 6.268 7.45 7.122 5.03 5.654 6.91
RSJ/LPM Beta (TV) 14.37 10.91 1.317 8.37 7.258 7.87 8.488 5.50 6.417 7.08
RSJ/HTCR Beta (TV) 14.28 10.87 1.314 8.32 7.229 8.59 8.408 5.87 6.435 7.45
RSJ/Tail Beta (TV) 13.91 11.19 1.243 8.06 6.392 7.42 7.523 5.09 5.538 6.95
RSJ/Tail Sens (TV) 13.83 11.00 1.257 7.87 6.552 7.19 7.763 5.01 5.684 6.57
RSJ/Tail Risk (TV) 13.74 11.30 1.216 7.67 6.071 6.60 7.282 4.64 5.199 6.22
RSJ/MES (TV) 14.49 10.99 1.319 8.38 7.281 7.74 8.569 5.46 6.441 6.95

shown that industry momentum is profitable internationally, risk-managed industry momentum

outside the US has not been examined so far. To assess the profitability of the non-managed

and risk-managed industry momentum strategies outside the US, we next use International and

European industry portfolios, which are obtained from Datastream. As in Swinkels (2002), we

use the Datastream industry classification that provides a long sample of daily and monthly

industry returns. The sample period ranges from 01.01.1978 to 31.12.2018. As for the US in-

dustries, we show results for different industry classifications. Tables XXXIV to XXXVII show

results for the momentum strategy using International industry portfolios based on 10, 19, 40

and 113 industries. Similarly, Tables XXXVIII to XLI show results for industry momentum us-
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ing 10, 19, 40 and 113 European industry portfolios. For the momentum strategy based on 113

industries, we use a cut-off point of p � 20%. Thus, the winners and losers portfolios consist of

3, 6, 12 and 22 industries for the 10, 19, 40 and 113 industry portfolios. As in our main results,

we rank industries based on their t � 12 to t � 1 performance. Swinkels (2002) also find that

ranking periods that include the last month’s performance outperform the ranking periods that

skip the last month. An alternative to the ranking method used here would be to rank European

and International industries based on the past performance of the same US industries. Swinkels

(2002, Table 6 and 9) finds good results for International industry momentum portfolios that are

ranked based on the performance of the corresponding US industries.

Table XXXIV. Robustness Results: 10 Equally Weighted International Industries
This table shows performance results of the equally and risk weighted momentum strategies using 10
equally weighted International industries, the t � 12 to t � 1 ranking period and a cut-off point of
p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.79 12.57 0.540 - - - - - - -
RV 5.38 11.34 0.475 -1.37 -0.830 -2.17 -0.896 -2.26 -1.010 -2.38

RSJ/Corr 7.69 11.80 0.652 2.26 1.299 2.64 1.207 2.43 0.983 1.84
RSJ/Down Corr 8.05 11.90 0.676 2.61 1.594 3.59 1.586 3.44 1.407 2.91
RSJ/Beta 7.75 11.70 0.663 2.50 1.422 2.76 1.358 2.59 1.127 1.99
RSJ/Down Beta 7.91 11.83 0.668 2.56 1.494 3.24 1.434 3.05 1.262 2.47
RSJ/CoSkew 7.13 12.52 0.570 0.61 0.358 0.83 0.376 0.84 0.118 0.27
RSJ/CoKurt 7.71 11.86 0.650 2.17 1.281 3.14 1.282 3.02 0.998 2.20
RSJ/LPM Beta 8.00 11.67 0.686 2.91 1.696 3.70 1.663 3.48 1.441 2.84
RSJ/HTCR Beta 7.96 11.61 0.686 3.00 1.692 3.18 1.663 3.01 1.439 2.51
RSJ/Tail Beta 7.41 11.71 0.633 1.93 1.071 2.16 1.055 2.10 0.833 1.58
RSJ/Tail Sens 7.70 12.12 0.636 1.98 1.121 1.89 1.055 1.81 0.842 1.41
RSJ/Tail Risk 7.69 11.74 0.655 2.39 1.330 2.85 1.282 2.73 1.076 2.13
RSJ/MES 7.60 11.70 0.649 2.25 1.265 2.60 1.207 2.44 0.976 1.82

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.79 12.59 0.539 - - - - - - -
RV 5.41 11.34 0.477 -1.45 -0.794 -2.03 -0.822 -2.12 -0.979 -2.27

Equal (TV) 7.70 10.19 0.756 3.16 2.481 4.77 2.580 5.07 1.997 2.85
RV (TV) 6.80 10.34 0.658 1.39 1.317 1.96 1.434 2.14 0.755 0.88

RSJ/Corr (TV) 8.65 10.09 0.857 3.81 3.704 5.73 3.738 5.80 3.085 3.99
RSJ/Down Corr (TV) 8.81 10.04 0.877 3.94 3.940 5.09 3.970 5.17 3.459 3.83
RSJ/Beta (TV) 8.65 10.09 0.858 3.80 3.712 5.96 3.815 6.06 3.140 4.22
RSJ/Down Beta (TV) 8.72 10.14 0.861 3.80 3.744 5.09 3.815 5.17 3.283 3.79
RSJ/CoSkew (TV) 7.63 10.05 0.759 2.55 2.519 3.57 2.580 3.70 2.017 2.58
RSJ/CoKurt (TV) 8.54 10.13 0.843 3.58 3.536 5.18 3.583 5.25 2.995 3.60
RSJ/LPM Beta (TV) 8.87 10.06 0.882 4.07 4.004 5.87 4.048 5.97 3.485 4.24
RSJ/HTCR Beta (TV) 8.77 10.01 0.876 4.04 3.930 5.77 3.970 5.89 3.381 4.09
RSJ/Tail Beta (TV) 8.21 10.04 0.818 3.32 3.227 4.53 3.350 4.66 2.705 3.23
RSJ/Tail Sens (TV) 8.58 10.19 0.842 3.64 3.525 4.83 3.583 4.92 2.944 3.39
RSJ/Tail Risk (TV) 8.47 10.07 0.841 3.63 3.510 5.10 3.583 5.19 2.972 3.56
RSJ/MES (TV) 8.51 10.07 0.845 3.65 3.560 5.25 3.660 5.37 3.002 3.74
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Table XXXV. Robustness Results: 19 Equally Weighted International Industries
This table shows performance results of the equally and risk weighted momentum strategies using 19
equally weighted International industries, the t � 12 to t � 1 ranking period and a cut-off point of
p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.25 10.57 0.591 - - - - - - -
RV 5.52 9.37 0.589 -0.01 -0.069 -0.15 -0.075 -0.13 -0.100 -0.21

RSJ/Corr 7.85 9.96 0.788 3.26 1.946 5.05 1.968 5.23 1.727 5.14
RSJ/Down Corr 7.85 9.95 0.789 3.38 1.954 5.65 1.968 5.75 1.793 5.65
RSJ/Beta 7.73 9.76 0.792 3.19 1.981 4.89 2.044 5.06 1.736 4.78
RSJ/Down Beta 7.86 9.80 0.802 3.43 2.088 4.96 2.120 5.07 1.911 4.94
RSJ/CoSkew 7.88 10.62 0.742 2.72 1.505 3.54 1.510 3.47 1.434 3.25
RSJ/CoKurt 7.90 9.94 0.795 3.40 2.020 5.40 2.044 5.48 1.813 5.23
RSJ/LPM Beta 7.81 9.78 0.798 3.33 2.048 5.76 2.044 5.92 1.853 5.87
RSJ/HTCR Beta 7.79 9.73 0.801 3.39 2.072 6.01 2.120 6.21 1.825 6.49
RSJ/Tail Beta 7.95 9.99 0.795 3.49 2.024 6.01 2.044 6.26 1.832 6.75
RSJ/Tail Sens 7.89 10.14 0.779 3.21 1.859 4.52 1.891 4.62 1.714 4.32
RSJ/Tail Risk 7.93 10.05 0.789 3.51 1.964 6.41 1.968 6.65 1.852 6.77
RSJ/MES 7.78 9.91 0.786 3.14 1.924 5.47 1.968 5.68 1.722 5.58

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.33 10.53 0.601 - - - - - - -
RV 5.60 9.34 0.599 -0.11 -0.061 -0.13 -0.075 -0.11 -0.097 -0.20

Equal (TV) 8.27 10.29 0.804 3.02 2.011 4.17 2.120 4.22 1.772 2.57
RV (TV) 8.02 10.26 0.782 2.14 1.794 2.57 1.891 2.61 1.443 1.62

RSJ/Corr (TV) 9.75 10.10 0.965 4.18 3.614 6.18 3.738 6.29 3.334 4.91
RSJ/Down Corr (TV) 9.66 10.00 0.967 4.23 3.626 6.96 3.738 7.07 3.384 5.42
RSJ/Beta (TV) 9.55 10.08 0.948 3.94 3.438 6.08 3.505 6.18 3.166 4.94
RSJ/Down Beta (TV) 9.70 10.02 0.967 4.21 3.636 6.11 3.738 6.19 3.419 5.08
RSJ/CoSkew (TV) 9.60 10.01 0.959 4.30 3.555 6.82 3.660 6.88 3.313 5.12
RSJ/CoKurt (TV) 9.72 10.05 0.967 4.24 3.635 7.00 3.738 7.08 3.354 5.32
RSJ/LPM Beta (TV) 9.69 10.06 0.963 4.12 3.595 6.56 3.660 6.65 3.367 5.22
RSJ/HTCR Beta (TV) 9.65 10.03 0.962 4.12 3.583 6.88 3.660 6.97 3.325 5.43
RSJ/Tail Beta (TV) 9.71 10.02 0.969 4.25 3.653 7.37 3.738 7.50 3.406 5.89
RSJ/Tail Sens (TV) 9.74 10.12 0.963 4.19 3.594 6.41 3.660 6.51 3.351 4.93
RSJ/Tail Risk (TV) 9.82 10.09 0.973 4.38 3.696 7.53 3.815 7.59 3.506 5.82
RSJ/MES (TV) 9.66 10.13 0.953 4.03 3.494 6.12 3.583 6.20 3.256 4.95

Results in this section show that industry momentum does not only work for US industries,

but also for industries outside the US. For all eight data sets examined in this section, the indus-

try momentum strategy produces high Sharpe Ratios. Thus, similar to the case of the individual

stock momentum strategy, the industry momentum effect is also apparent internationally. Since

industry momentum outside the US is only rarely examined, this is an interesting contribution

to the momentum literature. Furthermore, since also the low risk anomaly holds internationally

(Ang et al., 2009), we expect good results of the risk-managed industry momentum strategies

outside the US. However, we find that for six of the eight data sets, the volatility weighted

momentum strategy underperforms the equally weighted momentum strategy. Only for the Eu-
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Table XXXVI. Robustness Results: 40 Equally Weighted International Industries
This table shows performance results of the equally and risk weighted momentum strategies using 40
equally weighted International industries, the t � 12 to t � 1 ranking period and a cut-off point of
p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.70 11.47 0.584 - - - - - - -
RV 4.75 9.96 0.477 -2.17 -1.227 -2.17 -1.268 -2.19 -1.266 -2.22

RSJ/Corr 8.67 10.22 0.848 3.98 2.819 5.08 2.888 5.11 2.623 5.22
RSJ/Down Corr 8.63 10.53 0.820 3.69 2.518 4.89 2.580 4.89 2.335 4.99
RSJ/Beta 8.21 10.05 0.816 3.37 2.468 3.93 2.503 3.96 2.226 3.89
RSJ/Down Beta 8.30 10.30 0.806 3.30 2.361 5.72 2.427 5.81 2.114 5.64
RSJ/CoSkew 8.46 11.41 0.741 2.72 1.694 3.03 1.739 2.98 1.486 2.65
RSJ/CoKurt 8.55 10.35 0.827 3.70 2.586 5.50 2.580 5.47 2.376 5.51
RSJ/LPM Beta 8.36 10.18 0.821 3.41 2.520 4.81 2.580 4.89 2.316 4.79
RSJ/HTCR Beta 8.44 10.12 0.834 3.60 2.665 5.09 2.734 5.17 2.433 4.99
RSJ/Tail Beta 8.43 10.43 0.809 3.79 2.397 4.67 2.427 4.73 2.194 4.28
RSJ/Tail Sens 8.76 10.44 0.838 4.09 2.716 4.78 2.734 4.82 2.548 5.08
RSJ/Tail Risk 8.06 10.42 0.774 3.13 2.012 4.01 2.044 3.99 1.837 4.21
RSJ/MES 8.44 10.18 0.830 3.58 2.616 4.26 2.657 4.30 2.376 4.21

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.79 11.48 0.592 - - - - - - -
RV 4.81 9.96 0.483 -2.40 -1.246 -2.19 -1.268 -2.21 -1.276 -2.21

Equal (TV) 8.21 10.37 0.792 2.96 2.124 3.81 2.273 3.85 1.806 2.33
RV (TV) 6.98 10.76 0.649 0.65 0.582 0.72 0.677 0.81 0.322 0.33

RSJ/Corr (TV) 10.34 9.95 1.040 4.78 4.818 5.03 4.985 5.07 4.408 4.15
RSJ/Down Corr (TV) 10.12 9.99 1.013 4.56 4.530 4.98 4.672 5.01 4.140 4.00
RSJ/Beta (TV) 10.01 10.01 1.000 4.33 4.388 4.85 4.516 4.91 3.985 4.11
RSJ/Down Beta (TV) 9.89 10.03 0.986 4.22 4.234 5.25 4.360 5.30 3.836 4.14
RSJ/CoSkew (TV) 9.70 10.13 0.958 4.09 3.924 5.27 4.048 5.29 3.520 3.86
RSJ/CoKurt (TV) 10.20 9.93 1.027 4.65 4.678 5.37 4.829 5.39 4.246 4.25
RSJ/LPM Beta (TV) 10.03 10.02 1.001 4.32 4.399 4.99 4.516 5.05 4.033 4.06
RSJ/HTCR Beta (TV) 10.18 9.96 1.023 4.49 4.632 5.48 4.750 5.52 4.258 4.38
RSJ/Tail Beta (TV) 10.08 10.08 1.000 4.61 4.387 5.66 4.516 5.71 4.013 4.51
RSJ/Tail Sens (TV) 10.45 9.97 1.048 4.93 4.905 5.50 5.064 5.54 4.525 4.52
RSJ/Tail Risk (TV) 9.91 10.13 0.979 4.34 4.153 5.91 4.282 5.96 3.786 4.94
RSJ/MES (TV) 10.17 10.00 1.017 4.49 4.567 5.01 4.672 5.06 4.144 4.16

ropean momentum strategy using 19 and 113 industry portfolios, volatility weighting produces

a higher Sharpe Ratio than the equally weighted portfolio. Nevertheless, the increase in the

Sharpe Ratio is quite low and not statistically significant. For the international momentum

strategy using 40 industry portfolios, the volatility weighted strategy’s Sharpe Ratio is even

significantly lower than the equally weighted strategy’s Sharpe Ratio. Similarly, the economic

value of the volatility weighted momentum strategy is very low or even negative in all eight

cases. This again highlights the disadvantage of using volatility weighting for long-short strate-

gies. In contrast, the (systematic) tail risk weighted strategies exhibit higher Sharpe Ratios and

high economic values, which are statistically significant for all models and all eight data sets.
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Table XXXVII. Robustness Results: 113 Equally Weighted International Industries
This table shows performance results of the equally and risk weighted momentum strategies using 113
equally weighted International industries, the t � 12 to t � 1 ranking period and a cut-off point of
p � 20%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.19 14.68 0.626 - - - - - - -
RV 7.97 12.95 0.615 -0.16 -0.236 -0.40 -0.225 -0.35 -0.173 -0.29

RSJ/Corr 10.23 12.63 0.810 2.80 2.421 4.15 2.427 4.31 2.279 3.51
RSJ/Down Corr 10.33 13.13 0.786 2.63 2.114 3.23 2.120 3.25 2.033 2.88
RSJ/Beta 10.02 12.16 0.824 2.87 2.591 4.77 2.580 4.92 2.405 3.90
RSJ/Down Beta 10.03 12.54 0.800 2.71 2.275 3.64 2.350 3.81 2.069 3.15
RSJ/CoSkew 10.96 14.42 0.760 2.50 1.811 2.73 1.815 2.68 1.736 2.44
RSJ/CoKurt 9.97 12.85 0.776 2.41 1.964 3.26 1.968 3.31 1.769 2.72
RSJ/LPM Beta 10.23 12.36 0.828 2.94 2.649 4.34 2.657 4.47 2.468 3.58
RSJ/HTCR Beta 10.15 12.36 0.822 2.86 2.568 4.21 2.580 4.28 2.384 3.47
RSJ/Tail Beta 10.28 12.64 0.813 3.11 2.462 4.14 2.503 4.15 2.300 3.53
RSJ/Tail Sens 10.42 12.94 0.806 2.93 2.371 7.60 2.350 7.77 2.281 5.13
RSJ/Tail Risk 9.92 12.63 0.785 2.75 2.077 3.95 2.120 3.96 1.944 3.33
RSJ/MES 10.21 12.47 0.818 2.82 2.528 4.97 2.503 5.07 2.394 4.13

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.21 14.68 0.628 - - - - - - -
RV 8.05 12.94 0.622 -0.25 -0.164 -0.27 -0.150 -0.22 -0.119 -0.20

Equal (TV) 8.09 10.21 0.793 2.44 2.061 2.32 2.273 2.49 1.528 1.55
RV (TV) 8.19 10.49 0.781 1.73 1.902 1.68 2.120 1.81 1.448 1.11

RSJ/Corr (TV) 9.90 10.14 0.977 3.75 4.628 4.24 4.829 4.38 4.006 3.17
RSJ/Down Corr (TV) 9.71 10.15 0.956 3.63 4.342 3.90 4.594 4.07 3.778 2.96
RSJ/Beta (TV) 10.00 10.15 0.985 3.71 4.752 4.40 4.985 4.53 4.131 3.32
RSJ/Down Beta (TV) 9.64 10.09 0.955 3.49 4.329 4.24 4.594 4.46 3.690 3.17
RSJ/CoSkew (TV) 9.22 9.97 0.925 3.46 3.900 3.64 4.126 3.75 3.533 2.96
RSJ/CoKurt (TV) 9.57 10.16 0.943 3.44 4.151 3.96 4.360 4.13 3.488 2.83
RSJ/LPM Beta (TV) 10.03 10.18 0.985 3.71 4.741 4.35 4.985 4.48 4.113 3.27
RSJ/HTCR Beta (TV) 9.89 10.04 0.985 3.75 4.746 4.97 4.985 5.09 4.080 3.58
RSJ/Tail Beta (TV) 9.95 10.21 0.974 3.86 4.590 3.91 4.829 3.98 4.023 2.99
RSJ/Tail Sens (TV) 10.06 10.14 0.992 4.08 4.849 5.15 5.064 5.22 4.227 3.67
RSJ/Tail Risk (TV) 9.79 10.27 0.954 3.71 4.317 4.21 4.516 4.30 3.748 3.15
RSJ/MES (TV) 10.05 10.19 0.987 3.78 4.771 4.55 4.985 4.64 4.141 3.43

Thus, although the low volatility effect holds internationally, applying the volatility weighting

to international momentum strategies does not work well. In contrast, the (systematic) tail risk

weighting is appealing for International and European industry momentum.144 The volatility

targeting strategy again significantly enhances the risk-return profile for all weighting schemes

and data sets. This is in line with the finding that volatility targeting also works well for non-

144Ang et al. (2009) show that the low volatility puzzle holds internationally. The authors find that the low
volatility effect holds for Japan, Europe, Asia, all countries and all countries ex US, but the authors find that this
effect is most pronounced in the US. The international low volatility anomaly is confirmed by Blitz and Van Vliet
(2007), Blitz et al. (2019), Guo and Savickas (2010, Table 7) and Walkshäusl (2014). However, as stated above,
this does not imply that weighting highly volatile assets lower is beneficial for a long-short strategy, since the
inverse volatility weighting also enhances the losers’ performance. Nonetheless, our results indicate that a low
(systematic) tail risk effect seems apparent internationally as also shown by Atilgan et al. (2018), Atilgan et al.
(2019), Atilgan et al. (2020, Section 6), Bi and Zhu (2020), Asness et al. (2020) and Frazzini and Pedersen (2014).
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Table XXXVIII. Robustness Results: 10 Equally Weighted European Industries
This table shows performance results of the equally and risk weighted momentum strategies using 10
equally weighted European industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%.
The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.86 14.31 0.479 - - - - - - -
RV 6.11 12.83 0.476 -0.03 -0.130 -0.20 -0.075 -0.13 -0.266 -0.41

RSJ/Corr 7.30 12.93 0.565 1.75 1.078 1.51 1.131 1.49 0.827 1.24
RSJ/Down Corr 7.33 12.81 0.572 1.82 1.166 1.39 1.131 1.32 0.903 1.13
RSJ/Beta 7.41 12.76 0.581 2.03 1.279 1.78 1.358 1.88 1.029 1.50
RSJ/Down Beta 6.98 12.79 0.545 1.30 0.805 0.99 0.828 0.96 0.520 0.66
RSJ/CoSkew 6.83 14.01 0.488 0.16 0.097 0.15 0.000 0.01 -0.158 -0.22
RSJ/CoKurt 7.16 13.17 0.543 1.25 0.798 1.38 0.828 1.36 0.732 1.49
RSJ/LPM Beta 7.54 12.70 0.594 2.32 1.462 1.85 1.510 1.87 1.166 1.51
RSJ/HTCR Beta 7.71 12.74 0.605 2.54 1.608 2.44 1.663 2.47 1.341 2.07
RSJ/Tail Beta 7.58 12.95 0.585 2.15 1.349 1.81 1.434 1.91 1.016 1.49
RSJ/Tail Sens 7.19 12.94 0.556 1.61 0.951 1.17 0.904 1.15 0.674 0.87
RSJ/Tail Risk 7.61 12.91 0.590 2.20 1.409 1.81 1.434 1.88 1.123 1.51
RSJ/MES 7.68 12.82 0.599 2.36 1.528 1.87 1.586 1.87 1.293 1.65

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.16 14.16 0.505 - - - - - - -
RV 6.31 12.76 0.495 -0.34 -0.218 -0.33 -0.225 -0.30 -0.305 -0.46

Equal (TV) 6.99 9.56 0.731 2.84 2.809 2.35 2.965 2.42 1.925 1.34
RV (TV) 6.89 9.91 0.696 1.96 2.341 2.24 2.580 2.36 1.626 1.32

RSJ/Corr (TV) 7.80 9.63 0.811 3.30 3.901 2.95 4.126 3.08 3.024 2.08
RSJ/Down Corr (TV) 7.63 9.61 0.794 3.03 3.677 2.64 3.893 2.79 2.909 1.93
RSJ/Beta (TV) 7.85 9.65 0.813 3.29 3.936 2.79 4.126 2.92 3.115 2.04
RSJ/Down Beta (TV) 7.41 9.72 0.762 2.67 3.242 2.33 3.428 2.50 2.525 1.71
RSJ/CoSkew (TV) 6.88 9.32 0.738 2.36 2.898 2.49 3.042 2.58 1.894 1.43
RSJ/CoKurt (TV) 7.81 9.84 0.794 3.01 3.671 3.03 3.970 3.25 3.088 2.28
RSJ/LPM Beta (TV) 7.88 9.58 0.823 3.41 4.072 3.04 4.282 3.17 3.219 2.19
RSJ/HTCR Beta (TV) 7.96 9.62 0.828 3.48 4.136 3.27 4.360 3.40 3.294 2.31
RSJ/Tail Beta (TV) 7.73 9.64 0.802 3.25 3.782 2.99 3.970 3.12 2.875 2.01
RSJ/Tail Sens (TV) 7.53 9.54 0.789 3.11 3.602 2.68 3.815 2.79 2.703 1.85
RSJ/Tail Risk (TV) 7.96 9.65 0.825 3.46 4.101 3.31 4.282 3.43 3.258 2.36
RSJ/MES (TV) 8.03 9.63 0.834 3.56 4.222 3.26 4.438 3.37 3.382 2.38

US data (Barroso and Santa-Clara, 2015, Rickenberg, 2020a,b). The highest Sharpe Ratios and

economic values are again found for the strategies that combine volatility targeting with the

(systematic) tail risk weightings.

B.6 Style Momentum

We have so far only examined momentum strategies using several US, European and Inter-

national industry portfolios. Lewellen (2002) shows that the momentum strategy can also be

applied to style portfolios, like the 25 double sorted portfolios based on size and value (Fama

and French, 1993). Lewellen (2002) finds that industry and style momentum are two different
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Table XXXIX. Robustness Results: 19 Equally Weighted European Industries
This table shows performance results of the equally and risk weighted momentum strategies using 19
equally weighted European industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%.
The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.84 11.07 0.618 - - - - - - -
RV 6.16 9.97 0.618 0.02 -0.047 -0.06 0.000 -0.04 -0.157 -0.21

RSJ/Corr 8.75 10.21 0.857 3.40 2.453 4.71 2.580 4.81 2.545 4.26
RSJ/Down Corr 8.70 10.08 0.863 3.45 2.521 4.13 2.657 4.27 2.458 3.98
RSJ/Beta 8.93 9.97 0.895 3.76 2.856 4.13 2.965 4.21 2.865 3.74
RSJ/Down Beta 8.94 9.87 0.905 3.86 2.955 4.68 3.119 4.80 2.924 4.32
RSJ/CoSkew 8.41 10.56 0.796 2.62 1.838 2.95 1.891 2.84 1.817 2.45
RSJ/CoKurt 8.60 10.15 0.847 3.22 2.349 4.89 2.427 5.24 2.302 4.69
RSJ/LPM Beta 9.17 9.92 0.924 4.11 3.158 4.31 3.273 4.33 3.144 3.83
RSJ/HTCR Beta 8.79 10.01 0.879 3.61 2.680 4.31 2.811 4.35 2.647 3.72
RSJ/Tail Beta 8.90 10.43 0.854 3.42 2.428 3.77 2.580 3.94 2.539 3.44
RSJ/Tail Sens 8.89 10.66 0.835 3.15 2.235 2.94 2.350 2.91 2.372 2.74
RSJ/Tail Risk 8.64 10.22 0.845 3.31 2.332 3.32 2.427 3.46 2.376 3.05
RSJ/MES 9.09 10.17 0.895 3.79 2.850 3.62 2.965 3.63 2.908 3.19

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.17 11.05 0.648 - - - - - - -
RV 6.32 9.99 0.633 -0.30 -0.198 -0.27 -0.150 -0.25 -0.304 -0.41

Equal (TV) 9.01 9.92 0.909 3.51 2.673 3.94 2.811 4.09 2.213 2.58
RV (TV) 8.63 10.33 0.835 1.91 1.918 1.82 2.044 1.98 1.518 1.42

RSJ/Corr (TV) 10.25 9.83 1.043 3.94 4.076 5.60 4.204 5.96 3.887 4.70
RSJ/Down Corr (TV) 10.19 9.81 1.039 3.89 4.032 5.54 4.204 5.91 3.778 5.01
RSJ/Beta (TV) 10.29 9.81 1.049 3.91 4.137 4.96 4.282 5.23 3.946 4.29
RSJ/Down Beta (TV) 10.37 9.73 1.066 4.08 4.318 5.45 4.516 5.75 4.111 4.87
RSJ/CoSkew (TV) 10.05 9.76 1.030 3.82 3.946 4.78 4.126 5.00 3.742 4.33
RSJ/CoKurt (TV) 10.20 9.80 1.041 3.88 4.057 5.55 4.204 5.95 3.831 4.81
RSJ/LPM Beta (TV) 10.56 9.74 1.084 4.23 4.508 5.08 4.672 5.29 4.296 4.39
RSJ/HTCR Beta (TV) 10.30 9.77 1.055 3.99 4.201 4.85 4.360 5.09 3.973 4.11
RSJ/Tail Beta (TV) 10.28 9.98 1.030 3.87 3.944 4.66 4.126 5.00 3.820 4.07
RSJ/Tail Sens (TV) 10.40 9.88 1.053 4.10 4.184 4.04 4.360 4.17 3.963 3.42
RSJ/Tail Risk (TV) 10.13 9.91 1.022 3.79 3.858 4.37 4.048 4.67 3.701 3.84
RSJ/MES (TV) 10.42 9.85 1.058 4.04 4.235 4.43 4.360 4.61 4.035 3.74

phenomena and that both approaches deliver high returns. Style momentum has also been ex-

amined by Novy-Marx (2012) and Stivers and Sun (2010). Besides the usage of style portfolios

in the momentum literature, style portfolios also play and important role in the asset pricing

and portfolio allocation literature.145 Kan and Zhou (2007, p. 646) state that the “25 portfolios,

formed based on size- and book-to-market ratio, are the standard test assets in recent empirical

asset pricing studies”. Similarly, Lettau et al. (2014, p. 209) “employ the Fama and French

145See Atilgan et al. (2019), Blitz and Vidojevic (2017), Chang et al. (2013), Chen and Petkova (2012) Jiang
et al. (2020), Guo and Savickas (2010), Hong et al. (2007), Lettau et al. (2014), Langlois (2020), Fama and French
(2016), Asness et al. (2013), Kritzman et al. (2010), Zakamulin (2015), DeMiguel et al. (2009a), Bali et al. (2017b),
Kirby and Ostdiek (2012), Bali et al. (2017b), Harvey and Siddique (2000), DeMiguel et al. (2009b), Kan and Zhou
(2007) and Farago and Tédongap (2018) for several financial studies that use style portfolios.
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Table XL. Robustness Results: 40 Equally Weighted European Industries
This table shows performance results of the equally and risk weighted momentum strategies using 40
equally weighted European industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%.
The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.13 11.62 0.699 - - - - - - -
RV 6.60 9.99 0.661 -0.55 -0.472 -0.82 -0.449 -0.81 -0.302 -0.55

RSJ/Corr 10.94 10.31 1.062 4.69 3.913 5.66 3.970 5.72 3.892 5.08
RSJ/Down Corr 10.96 10.41 1.052 4.51 3.806 5.86 3.815 5.63 3.864 4.93
RSJ/Beta 10.56 10.15 1.040 4.22 3.668 6.32 3.738 6.41 3.660 5.76
RSJ/Down Beta 10.71 10.34 1.035 4.15 3.622 6.07 3.660 5.86 3.694 5.13
RSJ/CoSkew 10.28 11.17 0.920 3.08 2.375 4.51 2.427 4.27 2.202 3.41
RSJ/CoKurt 10.70 10.51 1.019 4.01 3.444 5.16 3.428 5.19 3.488 4.59
RSJ/LPM Beta 10.59 10.24 1.034 4.15 3.604 6.29 3.660 6.19 3.608 5.48
RSJ/HTCR Beta 10.40 10.30 1.010 3.87 3.341 5.26 3.350 5.28 3.330 4.70
RSJ/Tail Beta 10.33 10.59 0.975 3.83 2.968 6.97 3.042 6.68 2.877 5.78
RSJ/Tail Sens 11.05 10.65 1.038 4.61 3.650 7.38 3.660 7.05 3.548 5.53
RSJ/Tail Risk 10.34 10.53 0.982 3.83 3.045 5.95 3.119 5.77 3.011 5.36
RSJ/MES 10.58 10.34 1.023 4.09 3.484 5.71 3.505 5.70 3.415 5.29

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 8.52 11.61 0.734 - - - - - - -
RV 6.90 10.00 0.690 -0.79 -0.532 -0.96 -0.524 -0.96 -0.370 -0.72

Equal (TV) 10.29 10.19 1.009 3.61 2.944 3.13 3.119 3.13 2.638 2.33
RV (TV) 9.69 10.54 0.920 1.80 1.968 1.65 2.197 1.78 1.847 1.40

RSJ/Corr (TV) 12.66 10.06 1.258 4.92 5.658 5.18 5.772 5.16 5.503 4.31
RSJ/Down Corr (TV) 12.39 10.07 1.230 4.67 5.353 5.71 5.457 5.51 5.300 4.48
RSJ/Beta (TV) 12.49 10.12 1.234 4.65 5.396 5.44 5.536 5.42 5.275 4.51
RSJ/Down Beta (TV) 12.26 10.19 1.204 4.40 5.065 5.73 5.142 5.54 5.031 4.52
RSJ/CoSkew (TV) 11.36 9.97 1.139 3.91 4.355 4.13 4.516 4.02 4.080 3.25
RSJ/CoKurt (TV) 12.41 10.11 1.227 4.56 5.323 5.25 5.457 5.19 5.256 4.22
RSJ/LPM Beta (TV) 12.40 10.13 1.224 4.56 5.292 5.30 5.378 5.22 5.183 4.39
RSJ/HTCR Beta (TV) 12.26 10.12 1.212 4.46 5.156 4.87 5.300 4.83 5.017 4.05
RSJ/Tail Beta (TV) 11.89 10.18 1.169 4.23 4.681 4.62 4.829 4.59 4.530 3.92
RSJ/Tail Sens (TV) 12.51 10.07 1.242 4.88 5.485 5.20 5.614 5.13 5.235 4.19
RSJ/Tail Risk (TV) 12.14 10.24 1.185 4.37 4.863 4.63 4.985 4.60 4.742 4.02
RSJ/MES (TV) 12.46 10.12 1.232 4.66 5.370 5.02 5.536 5.01 5.181 4.26

book-to-market and size-sorted portfolios because they are among the most commonly tested

equity cross sections”. Jagannathan and Ma (2003, Table IX) also use the 25 portfolios based

on size and value in a portfolio setting and find that incorporating an estimate of the mean return

does not work well for these portfolios. In contrast, Novy-Marx (2012), Stivers and Sun (2010)

and Lewellen (2002) find that information on the styles’ relative performance is a valuable asset

allocation tool. This again shows that portfolio allocations based on relative mean estimates are

advantageous to portfolio allocations based on absolute mean estimates.

Due to the importance of style portfolios in the financial literature and since Lewellen (2002)

shows that style and industry momentum are quite different, we next examine as a further ro-
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Table XLI. Robustness Results: 113 Equally Weighted European Industries
This table shows performance results of the equally and risk weighted momentum strategies using 113
equally weighted European industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 20%.
The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 10.31 14.56 0.708 - - - - - - -
RV 9.49 13.15 0.722 0.25 0.118 0.21 0.075 0.11 0.479 0.80

RSJ/Corr 12.25 13.04 0.939 2.83 3.034 2.85 3.119 2.80 3.194 2.91
RSJ/Down Corr 12.32 13.40 0.919 2.68 2.773 3.92 2.888 3.82 2.874 3.50
RSJ/Beta 12.12 12.80 0.947 2.87 3.126 3.38 3.196 3.35 3.242 3.23
RSJ/Down Beta 12.08 13.10 0.922 2.64 2.802 4.16 2.888 4.06 2.857 3.58
RSJ/CoSkew 11.15 14.67 0.760 0.74 0.677 0.80 0.828 0.96 0.552 0.59
RSJ/CoKurt 11.67 13.47 0.866 2.03 2.067 2.48 2.120 2.44 2.150 2.31
RSJ/LPM Beta 12.40 12.83 0.966 3.08 3.393 4.17 3.428 4.13 3.567 3.91
RSJ/HTCR Beta 12.56 13.00 0.966 3.15 3.395 3.75 3.428 3.62 3.425 3.53
RSJ/Tail Beta 12.17 13.53 0.899 2.62 2.505 2.69 2.580 2.73 2.700 2.87
RSJ/Tail Sens 12.20 13.76 0.887 2.39 2.347 1.82 2.350 1.79 2.430 1.92
RSJ/Tail Risk 12.29 13.22 0.930 2.92 2.908 3.70 2.965 3.74 3.104 3.72
RSJ/MES 12.70 12.90 0.984 3.33 3.639 3.57 3.660 3.50 3.714 3.39

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 10.66 14.56 0.732 - - - - - - -
RV 9.81 13.15 0.746 0.14 0.126 0.22 0.075 0.11 0.492 0.81

Equal (TV) 10.27 9.75 1.053 4.41 4.211 4.82 4.438 4.78 3.576 3.62
RV (TV) 11.22 10.32 1.088 3.46 4.682 3.20 4.907 3.19 4.423 2.88

RSJ/Corr (TV) 11.58 10.04 1.154 3.81 5.597 4.14 5.772 4.10 5.763 4.00
RSJ/Down Corr (TV) 11.40 10.06 1.133 3.70 5.316 4.18 5.457 4.10 5.459 3.94
RSJ/Beta (TV) 11.70 10.12 1.155 3.80 5.622 4.40 5.772 4.31 5.755 4.11
RSJ/Down Beta (TV) 11.25 10.05 1.119 3.52 5.120 3.94 5.300 3.87 5.223 3.74
RSJ/CoSkew (TV) 9.73 9.87 0.986 2.48 3.284 2.30 3.505 2.37 3.138 2.09
RSJ/CoKurt (TV) 11.16 10.05 1.110 3.49 4.993 4.14 5.142 4.10 5.085 3.84
RSJ/LPM Beta (TV) 11.71 10.08 1.161 3.85 5.698 4.59 5.851 4.50 5.942 4.34
RSJ/HTCR Beta (TV) 11.85 9.96 1.189 4.14 6.090 5.12 6.247 5.01 6.083 4.70
RSJ/Tail Beta (TV) 10.98 9.99 1.099 3.39 4.851 3.84 4.907 3.72 4.893 3.67
RSJ/Tail Sens (TV) 11.31 10.02 1.129 3.76 5.262 3.75 5.457 3.82 5.254 3.66
RSJ/Tail Risk (TV) 11.53 10.27 1.123 3.61 5.173 3.85 5.300 3.75 5.383 3.73
RSJ/MES (TV) 11.97 10.04 1.192 4.13 6.135 4.70 6.247 4.59 6.238 4.43

bustness check the profitability of (risk-managed) style momentum.146 Weighting different style

portfolios by their risk is important, since different style portfolios can have quite different risk

characteristics. For example, Harvey and Siddique (2000, Table I) find that the 25 size and

value double sorted portfolios have quite different levels of skewness and coskewness. Simi-

larly, Jiang et al. (2020, Table 1.B) find that style portfolios exhibit different levels of return

distribution asymmetries. Ang and Chen (2002, p. 472) find that different size portfolios have

different asymmetric correlations. Thus, similar to the industry momentum strategy, simply

equal or volatility weighting the style portfolios in the winners and losers portfolios should be

146Style portfolios are again obtained from Kenneth French’s website.
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Table XLII. Robustness Results: 25 Double Sorted US Portfolios Based on Size and Value
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted US portfolios based on size and value, the t�12 to t�1 ranking period and a cut-off point
of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.59 12.43 0.369 - - - - - - -
RV 4.73 12.47 0.379 0.30 0.121 0.43 -0.150 -0.37 0.290 1.10

RSJ/Corr 6.10 12.52 0.487 2.70 1.381 2.26 1.968 2.48 1.408 2.44
RSJ/Down Corr 6.19 12.55 0.493 2.94 1.451 2.29 2.350 2.25 1.374 2.31
RSJ/Beta 6.28 12.07 0.520 3.50 1.741 2.94 2.503 2.72 1.664 2.88
RSJ/Down Beta 6.23 12.41 0.502 3.09 1.547 2.64 2.427 2.47 1.579 2.73
RSJ/CoSkew 5.07 13.07 0.388 0.55 0.257 0.47 0.451 0.71 0.208 0.36
RSJ/CoKurt 6.17 12.52 0.492 2.90 1.429 2.21 2.503 2.02 1.319 2.36
RSJ/LPM Beta 6.49 12.38 0.524 3.44 1.803 3.13 2.734 2.73 1.841 2.88
RSJ/HTCR Beta 6.16 12.12 0.508 3.49 1.615 2.96 2.120 2.90 1.534 2.77
RSJ/Tail Beta 6.31 13.07 0.483 2.83 1.374 3.01 1.586 3.30 1.578 3.37
RSJ/Tail Sens 5.97 12.76 0.468 2.73 1.192 2.08 0.979 1.20 1.259 2.54
RSJ/Tail Risk 6.27 13.03 0.481 2.87 1.348 3.01 1.586 3.43 1.495 4.04
RSJ/MES 6.51 12.46 0.523 3.44 1.795 3.28 2.503 3.11 1.859 3.16

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.72 12.30 0.384 - - - - - - -
RV 4.79 12.38 0.387 0.11 0.043 0.14 -0.225 -0.49 0.226 0.74

Equal (TV) 8.13 12.93 0.629 4.09 2.880 2.79 3.970 2.49 1.753 1.78
RV (TV) 8.43 14.50 0.581 3.41 2.441 2.76 2.427 2.35 1.798 2.15

RSJ/Corr (TV) 9.39 12.89 0.729 5.07 4.048 3.40 5.064 3.13 3.014 2.65
RSJ/Down Corr (TV) 9.40 12.72 0.739 5.12 4.152 3.27 5.457 2.86 2.999 2.48
RSJ/Beta (TV) 9.58 12.83 0.746 5.30 4.246 3.44 5.536 2.96 3.147 2.70
RSJ/Down Beta (TV) 9.49 12.83 0.739 5.20 4.163 3.33 5.378 2.92 3.064 2.57
RSJ/CoSkew (TV) 8.93 12.89 0.692 4.56 3.616 3.12 4.750 2.80 2.614 2.36
RSJ/CoKurt (TV) 9.41 12.60 0.747 5.16 4.240 3.40 5.614 2.83 3.031 2.61
RSJ/LPM Beta (TV) 9.64 12.86 0.749 5.36 4.283 3.54 5.536 3.05 3.182 2.77
RSJ/HTCR Beta (TV) 9.41 12.87 0.731 5.19 4.076 3.42 5.142 3.06 3.015 2.66
RSJ/Tail Beta (TV) 9.58 13.28 0.722 5.34 3.991 3.55 4.829 3.40 3.068 2.85
RSJ/Tail Sens (TV) 9.36 13.01 0.719 5.09 3.951 3.32 4.829 3.17 2.979 2.63
RSJ/Tail Risk (TV) 9.61 13.33 0.721 5.36 3.986 3.64 4.750 3.49 3.083 2.96
RSJ/MES (TV) 9.71 12.94 0.750 5.43 4.300 3.64 5.457 3.19 3.237 2.87

suboptimal and should translate into a portfolio where risk may be dominated by a few styles’

risk. Further, Atilgan et al. (2019, Table 5) find a strong and statistically significant negative

relation between downside risk, measured by downside beta, LPM, VaR and CVaR, and future

return for style portfolios. This negative relation makes an inverse risk weighting highly attrac-

tive for style momentum. We therefore apply our different weighting schemes to several style

momentum strategies. Table XLII shows results for the equally weighted and risk-managed

style momentum strategies using the 25 size and value double sorted portfolios of Fama and

French (1993), which are the most frequently used style portfolios. In Tables XLIII to XLV

we show additional results for style portfolios based on profitability and investment (Fama and
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Table XLIII. Robustness Results: 25 Double Sorted US Portfolios Based on Size and Profitability
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted US portfolios based on size and profitability, the t � 12 to t � 1 ranking period and a
cut-off point of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.14 9.70 0.427 - - - - - - -
RV 4.15 9.62 0.431 0.11 0.034 0.13 0.000 0.02 0.025 0.10

RSJ/Corr 5.56 9.43 0.589 3.42 1.499 2.76 1.510 2.76 1.241 2.23
RSJ/Down Corr 5.58 9.51 0.587 3.43 1.483 2.84 1.510 2.86 1.238 2.29
RSJ/Beta 5.44 9.20 0.592 3.41 1.519 2.68 1.586 2.72 1.214 2.09
RSJ/Down Beta 5.48 9.20 0.595 3.46 1.548 2.62 1.586 2.69 1.211 1.98
RSJ/CoSkew 5.46 10.24 0.534 2.66 1.017 2.35 0.979 2.07 1.013 2.36
RSJ/CoKurt 5.49 9.53 0.576 3.19 1.379 2.46 1.434 2.49 1.127 1.97
RSJ/LPM Beta 5.45 9.22 0.591 3.42 1.510 2.63 1.586 2.70 1.212 2.08
RSJ/HTCR Beta 5.45 9.21 0.592 3.42 1.519 2.69 1.586 2.74 1.202 2.08
RSJ/Tail Beta 5.57 9.84 0.565 3.44 1.295 2.65 1.282 2.66 1.168 2.52
RSJ/Tail Sens 5.73 9.52 0.602 3.98 1.620 3.17 1.663 3.13 1.349 2.55
RSJ/Tail Risk 5.48 9.67 0.566 3.42 1.294 2.73 1.358 2.88 1.094 2.33
RSJ/MES 5.47 9.31 0.587 3.43 1.481 2.63 1.510 2.66 1.224 2.18

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.03 9.72 0.415 - - - - - - -
RV 4.06 9.65 0.420 0.16 0.051 0.19 0.000 0.08 0.049 0.19

Equal (TV) 6.67 12.90 0.517 1.62 1.068 2.49 1.207 2.79 0.585 0.96
RV (TV) 6.90 13.00 0.531 1.75 1.205 2.09 1.358 2.40 0.802 1.19

RSJ/Corr (TV) 8.77 12.86 0.682 3.36 2.591 3.29 2.734 3.39 2.048 2.27
RSJ/Down Corr (TV) 8.81 12.84 0.686 3.39 2.629 3.37 2.811 3.49 2.076 2.31
RSJ/Beta (TV) 8.82 12.95 0.681 3.41 2.587 3.22 2.734 3.35 2.093 2.30
RSJ/Down Beta (TV) 8.91 12.90 0.691 3.48 2.673 3.31 2.811 3.46 2.152 2.33
RSJ/CoSkew (TV) 8.75 12.99 0.674 3.36 2.518 3.44 2.657 3.57 2.027 2.38
RSJ/CoKurt (TV) 8.74 12.81 0.683 3.31 2.594 3.17 2.734 3.29 2.025 2.19
RSJ/LPM Beta (TV) 8.87 12.96 0.684 3.45 2.613 3.26 2.734 3.41 2.123 2.34
RSJ/HTCR Beta (TV) 8.83 12.95 0.682 3.41 2.590 3.21 2.734 3.34 2.085 2.28
RSJ/Tail Beta (TV) 8.82 13.21 0.668 3.39 2.471 3.47 2.657 3.77 2.070 2.64
RSJ/Tail Sens (TV) 8.96 12.88 0.695 3.56 2.711 3.50 2.888 3.59 2.163 2.41
RSJ/Tail Risk (TV) 8.84 13.13 0.674 3.43 2.520 3.52 2.657 3.79 2.080 2.61
RSJ/MES (TV) 8.87 13.02 0.681 3.47 2.591 3.24 2.734 3.39 2.115 2.37

French, 2016).147 Table XLIII shows results for 25 double sorted portfolios based on size and

profitability, Table XLIV uses size and investment sorted portfolios, whereas Table XLV shows

results for style portfolios sorted on profitability and investment. Further, we show additional re-

sults for style momentum based on non-US data. Table XLVI shows results for style momentum

using International size and value sorted style portfolios, Table XLVII shows results for style

momentum using International ex US size and value sorted style portfolios and Table XLVIII

shows results for momentum using 25 size and value sorted European style portfolios (Fama and

French, 2012). Further, in order to assess how style momentum works when larger data sets are

147Fama and French (2016) show that a five factor model that includes an investment and profitability factor can
explain many anomalies, like the low volatility and low beta anomaly, but fails to explain momentum returns.
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Table XLIV. Robustness Results: 25 Double Sorted US Portfolios Based on Size and Investment
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted US portfolios based on size and investment, the t�12 to t�1 ranking period and a cut-off
point of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.29 9.76 0.439 - - - - - - -
RV 3.54 10.22 0.346 -2.75 -0.850 -1.78 -0.971 -1.69 -0.611 -1.45

RSJ/Corr 6.01 9.63 0.624 3.63 1.722 3.60 1.815 3.29 1.492 3.22
RSJ/Down Corr 5.89 9.69 0.608 3.40 1.572 3.59 1.663 3.40 1.365 3.19
RSJ/Beta 5.60 9.71 0.577 2.76 1.286 2.65 1.282 2.56 1.189 2.53
RSJ/Down Beta 5.57 9.96 0.559 2.51 1.137 2.25 1.055 1.87 1.139 2.48
RSJ/CoSkew 5.84 10.43 0.559 2.68 1.158 2.34 1.055 1.79 1.284 3.04
RSJ/CoKurt 5.97 9.70 0.616 3.49 1.646 3.62 1.739 3.35 1.436 3.25
RSJ/LPM Beta 5.60 9.88 0.566 2.63 1.199 2.47 1.131 2.16 1.186 2.60
RSJ/HTCR Beta 5.66 9.72 0.582 2.87 1.341 2.79 1.282 2.67 1.252 2.72
RSJ/Tail Beta 5.60 10.19 0.549 2.52 1.053 2.20 0.904 1.72 1.105 2.65
RSJ/Tail Sens 6.04 9.70 0.623 3.72 1.714 3.63 1.815 3.34 1.512 3.31
RSJ/Tail Risk 5.67 10.10 0.562 2.80 1.162 2.53 1.131 2.29 1.162 2.82
RSJ/MES 5.65 9.86 0.573 2.77 1.260 2.64 1.207 2.36 1.233 2.72

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.18 9.78 0.427 - - - - - - -
RV 3.45 10.25 0.336 -2.56 -0.825 -1.71 -0.971 -1.64 -0.578 -1.36

Equal (TV) 8.13 13.46 0.604 2.83 1.776 2.38 2.044 2.29 1.323 1.61
RV (TV) 7.01 14.05 0.499 1.29 0.832 1.19 1.055 1.34 0.585 0.78

RSJ/Corr (TV) 10.21 13.19 0.774 4.09 3.342 3.60 3.583 3.40 2.875 2.92
RSJ/Down Corr (TV) 10.10 13.22 0.764 4.04 3.245 3.59 3.505 3.42 2.789 2.93
RSJ/Beta (TV) 9.94 13.41 0.741 3.94 3.043 3.61 3.273 3.54 2.656 2.97
RSJ/Down Beta (TV) 9.93 13.51 0.735 3.97 2.992 3.60 3.196 3.58 2.635 3.00
RSJ/CoSkew (TV) 10.32 13.38 0.771 4.37 3.318 3.74 3.583 3.63 2.917 3.12
RSJ/CoKurt (TV) 10.14 13.18 0.769 4.04 3.294 3.60 3.583 3.42 2.833 2.92
RSJ/LPM Beta (TV) 9.96 13.48 0.739 3.98 3.026 3.61 3.273 3.56 2.659 2.99
RSJ/HTCR Beta (TV) 10.01 13.38 0.748 4.00 3.106 3.65 3.350 3.58 2.714 3.00
RSJ/Tail Beta (TV) 9.92 13.52 0.734 4.04 2.985 3.76 3.196 3.73 2.622 3.16
RSJ/Tail Sens (TV) 10.19 13.19 0.773 4.09 3.325 3.64 3.583 3.45 2.866 2.95
RSJ/Tail Risk (TV) 9.99 13.52 0.739 4.09 3.027 3.72 3.273 3.68 2.655 3.12
RSJ/MES (TV) 10.02 13.47 0.743 4.04 3.067 3.66 3.273 3.59 2.691 3.02

used, we show in Table XLIX results for 100 double sorted size and value portfolios in the US.

Style momentum for 100 double sorted portfolios on size and value is also examined by Stivers

and Sun (2010). For the 100 size and value sorted portfolios we use a cut-off point of p � 20%.

Results for the 30% cut-off point were quite similar, but slightly less profitable. Furthermore,

instead of examining style momentum based on double sorted portfolios, style portfolios sorted

on only one characteristic, like size or value, can also be used (Lewellen, 2002). In particular,

several style portfolios sorted on one characteristic can be pooled together (Bali et al., 2017b,

DeMiguel et al., 2009b, Farago and Tédongap, 2018, Kirby and Ostdiek, 2012). Following this

idea, Table L shows results for 20 portfolios consisting of 10 equally weighted US portfolios
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Table XLV. Robustness Results: 25 Double Sorted US Portfolios Based on Profitability and Invest-
ment
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted US portfolios based on profitability and investment, the t� 12 to t� 1 ranking period and
a cut-off point of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.15 7.65 0.674 - - - - - - -
RV 4.34 7.18 0.604 -1.87 -0.523 -2.03 -0.524 -1.96 -0.645 -2.62

RSJ/Corr 6.62 7.43 0.891 4.15 1.578 2.60 1.663 2.52 1.451 2.40
RSJ/Down Corr 6.56 7.52 0.872 3.98 1.447 2.60 1.510 2.53 1.341 2.40
RSJ/Beta 6.55 7.45 0.879 3.96 1.490 2.46 1.510 2.37 1.367 2.26
RSJ/Down Beta 6.45 7.59 0.850 3.61 1.288 2.42 1.282 2.36 1.215 2.27
RSJ/CoSkew 6.50 8.49 0.766 2.17 0.690 1.68 0.677 1.71 1.035 2.23
RSJ/CoKurt 6.54 7.50 0.872 3.94 1.445 2.53 1.510 2.46 1.342 2.35
RSJ/LPM Beta 6.55 7.50 0.873 3.97 1.452 2.43 1.510 2.35 1.345 2.26
RSJ/HTCR Beta 6.55 7.44 0.880 3.99 1.499 2.45 1.586 2.37 1.384 2.27
RSJ/Tail Beta 6.67 7.73 0.862 4.12 1.376 2.40 1.434 2.31 1.345 2.36
RSJ/Tail Sens 6.61 7.50 0.881 4.18 1.509 2.48 1.586 2.40 1.397 2.29
RSJ/Tail Risk 6.56 7.70 0.852 3.96 1.301 2.38 1.358 2.30 1.257 2.32
RSJ/MES 6.70 7.57 0.885 4.31 1.537 2.36 1.586 2.27 1.493 2.25

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.07 7.67 0.661 - - - - - - -
RV 4.27 7.19 0.594 -1.89 -0.502 -1.94 -0.449 -1.86 -0.615 -2.48

Equal (TV) 12.29 13.28 0.925 4.10 1.994 4.01 2.044 4.00 1.476 2.25
RV (TV) 10.93 13.25 0.825 2.33 1.286 2.63 1.358 2.72 0.841 1.37

RSJ/Corr (TV) 13.94 12.65 1.102 4.98 3.228 4.60 3.350 4.51 2.779 3.25
RSJ/Down Corr (TV) 13.88 12.68 1.094 4.96 3.171 4.58 3.273 4.50 2.715 3.22
RSJ/Beta (TV) 13.91 12.68 1.097 4.97 3.193 4.52 3.273 4.43 2.744 3.21
RSJ/Down Beta (TV) 13.84 12.73 1.088 4.95 3.126 4.55 3.196 4.46 2.679 3.23
RSJ/CoSkew (TV) 14.00 13.18 1.062 5.18 2.948 4.32 3.042 4.24 2.638 3.13
RSJ/CoKurt (TV) 13.85 12.66 1.094 4.93 3.166 4.59 3.273 4.51 2.717 3.24
RSJ/LPM Beta (TV) 13.94 12.70 1.097 5.01 3.192 4.48 3.273 4.39 2.745 3.19
RSJ/HTCR Beta (TV) 13.91 12.68 1.097 4.96 3.187 4.47 3.273 4.38 2.745 3.19
RSJ/Tail Beta (TV) 14.17 12.79 1.108 5.28 3.269 4.47 3.350 4.37 2.836 3.22
RSJ/Tail Sens (TV) 13.97 12.69 1.102 5.06 3.222 4.49 3.350 4.40 2.771 3.19
RSJ/Tail Risk (TV) 14.05 12.78 1.100 5.21 3.209 4.52 3.273 4.43 2.772 3.24
RSJ/MES (TV) 14.13 12.75 1.108 5.20 3.269 4.29 3.350 4.20 2.849 3.10

sorted on size and 10 equally weighted US portfolios sorted on value. We also examined style

momentum using only 10 size or 10 value portfolios, but found quite similar results, which are

not shown here.

When examining style momentum, we again use the t � 12 to t � 1 ranking period, as we

have done for the industry momentum strategy. Other ranking periods can also be used for style

momentum. Lewellen (2002), Stivers and Sun (2010) and Novy-Marx (2012) show that style

momentum works well for several ranking periods and that, similar to industry momentum,

style momentum is also driven by the recent past’s performance. Thus, the reversal effect that

is known for the individual stock momentum strategy does not hold for the style momentum
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Table XLVI. Robustness Results: 25 Double Sorted International Portfolios Based on Size and
Value
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted International portfolios based on size and value, the t � 12 to t � 1 ranking period and a
cut-off point of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.29 9.14 0.579 - - - - - - -
RV 5.59 8.97 0.623 1.01 0.378 2.53 0.376 2.67 0.127 0.76

RSJ/Corr 7.85 8.87 0.886 5.50 2.667 5.95 2.657 5.70 2.577 5.52
RSJ/Down Corr 7.69 8.86 0.868 5.28 2.511 6.86 2.503 6.74 2.404 6.71
RSJ/Beta 7.69 8.77 0.877 5.13 2.590 6.59 2.580 6.50 2.486 6.00
RSJ/Down Beta 7.67 8.80 0.872 5.04 2.549 6.63 2.503 6.58 2.463 6.20
RSJ/CoSkew 7.51 9.33 0.805 4.29 1.976 4.92 1.968 4.81 1.968 4.13
RSJ/CoKurt 7.69 8.87 0.867 5.23 2.500 6.89 2.503 6.78 2.407 6.90
RSJ/LPM Beta 7.70 8.78 0.877 5.13 2.589 6.30 2.580 6.21 2.490 5.63
RSJ/HTCR Beta 7.75 8.86 0.874 5.14 2.565 6.31 2.580 6.20 2.499 5.75
RSJ/Tail Beta 7.40 9.02 0.820 4.44 2.098 5.35 2.120 5.32 1.974 4.34
RSJ/Tail Sens 7.76 9.07 0.856 5.20 2.409 6.46 2.427 6.23 2.429 6.25
RSJ/Tail Risk 7.59 8.93 0.850 4.92 2.353 6.51 2.350 6.44 2.264 6.42
RSJ/MES 7.69 8.87 0.867 5.09 2.502 6.40 2.503 6.29 2.416 5.92

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.34 9.23 0.579 - - - - - - -
RV 5.66 9.05 0.626 1.07 0.412 2.21 0.376 2.25 0.174 0.78

Equal (TV) 10.88 12.18 0.893 2.69 2.807 3.39 2.888 3.36 1.701 1.47
RV (TV) 11.81 12.38 0.954 3.13 3.336 4.52 3.350 4.43 2.243 2.10

RSJ/Corr (TV) 13.89 11.50 1.207 4.70 5.507 5.54 5.614 5.44 4.477 3.70
RSJ/Down Corr (TV) 13.79 11.51 1.198 4.64 5.428 5.64 5.457 5.54 4.389 3.79
RSJ/Beta (TV) 13.84 11.59 1.194 4.66 5.393 5.71 5.457 5.60 4.378 3.80
RSJ/Down Beta (TV) 13.88 11.59 1.197 4.67 5.421 5.60 5.457 5.50 4.417 3.74
RSJ/CoSkew (TV) 13.97 11.55 1.210 4.73 5.528 5.27 5.614 5.17 4.550 3.62
RSJ/CoKurt (TV) 13.76 11.53 1.193 4.65 5.384 5.70 5.457 5.60 4.352 3.84
RSJ/LPM Beta (TV) 13.86 11.58 1.197 4.66 5.415 5.57 5.457 5.46 4.403 3.70
RSJ/HTCR Beta (TV) 13.91 11.62 1.197 4.70 5.420 5.57 5.457 5.46 4.416 3.71
RSJ/Tail Beta (TV) 13.64 11.66 1.170 4.53 5.188 5.21 5.221 5.12 4.141 3.48
RSJ/Tail Sens (TV) 13.87 11.59 1.197 4.67 5.414 5.54 5.457 5.43 4.419 3.69
RSJ/Tail Risk (TV) 13.79 11.64 1.185 4.63 5.309 5.48 5.378 5.38 4.281 3.70
RSJ/MES (TV) 13.87 11.63 1.193 4.67 5.382 5.56 5.457 5.46 4.367 3.71

strategy. We also used several other ranking periods, but found that the (risk-managed) style

momentum strategies are quite robust to other ranking periods.

Results in this section confirm the finding of Lewellen (2002), Novy-Marx (2012) and

Stivers and Sun (2010) that momentum also works well when it is applied to investment style

portfolios. In contrast to the industry momentum strategy, we find that style momentum pro-

duces lower returns, but also exhibits lower levels of volatility. This is in line with Lewellen

(2002, Table 2) who also finds that style momentum is less profitable than industry momen-

tum.148 For the 25 size and value double sorted US style portfolios, we find in Table XLII that,

148The results of Lewellen (2002) are not directly comparable to our results, since Lewellen (2002) uses a re-

497



Table XLVII. Robustness Results: 25 Double Sorted International ex US Portfolios Based on Size
and Value
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted International ex US portfolios based on size and value, the t� 12 to t� 1 ranking period
and a cut-off point of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.22 7.26 0.857 - - - - - - -
RV 6.51 7.24 0.900 0.77 0.292 0.90 0.300 0.91 0.266 0.69

RSJ/Corr 7.77 7.36 1.055 3.04 1.361 3.55 1.358 3.53 1.251 3.38
RSJ/Down Corr 7.66 7.35 1.043 2.86 1.277 3.37 1.282 3.34 1.141 3.10
RSJ/Beta 7.76 7.31 1.062 3.08 1.409 3.57 1.434 3.54 1.273 3.24
RSJ/Down Beta 7.70 7.29 1.057 2.99 1.370 3.45 1.358 3.43 1.237 3.11
RSJ/CoSkew 7.66 7.56 1.013 2.44 1.069 2.50 1.055 2.48 0.978 2.08
RSJ/CoKurt 7.84 7.38 1.063 3.18 1.411 3.63 1.434 3.61 1.306 3.38
RSJ/LPM Beta 7.73 7.32 1.056 3.00 1.365 3.46 1.358 3.44 1.246 3.14
RSJ/HTCR Beta 7.75 7.37 1.052 2.99 1.337 3.53 1.358 3.51 1.241 3.33
RSJ/Tail Beta 7.67 7.46 1.028 2.62 1.172 3.03 1.131 3.00 1.077 2.42
RSJ/Tail Sens 7.81 7.52 1.039 2.90 1.247 3.39 1.282 3.38 1.203 3.02
RSJ/Tail Risk 7.71 7.44 1.035 2.75 1.226 3.27 1.207 3.24 1.134 2.62
RSJ/MES 7.75 7.35 1.055 3.01 1.356 3.41 1.358 3.39 1.244 3.03

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.36 7.31 0.870 - - - - - - -
RV 6.69 7.29 0.918 0.85 0.332 0.96 0.300 0.97 0.321 0.79

Equal (TV) 13.12 11.50 1.140 2.70 1.854 2.31 1.891 2.33 1.490 1.66
RV (TV) 14.16 11.90 1.190 2.78 2.182 4.35 2.197 4.41 1.898 2.55

RSJ/Corr (TV) 14.33 11.02 1.301 3.56 2.924 3.48 2.965 3.50 2.463 2.87
RSJ/Down Corr (TV) 14.22 11.01 1.292 3.48 2.868 3.41 2.888 3.42 2.400 2.79
RSJ/Beta (TV) 14.38 11.03 1.303 3.60 2.943 3.52 2.965 3.53 2.481 2.86
RSJ/Down Beta (TV) 14.33 11.00 1.303 3.56 2.939 3.47 2.965 3.48 2.482 2.82
RSJ/CoSkew (TV) 14.33 10.95 1.308 3.49 2.972 3.51 2.965 3.52 2.588 2.88
RSJ/CoKurt (TV) 14.44 11.02 1.310 3.65 2.989 3.56 2.965 3.57 2.529 2.87
RSJ/LPM Beta (TV) 14.36 11.04 1.301 3.57 2.929 3.50 2.965 3.51 2.477 2.83
RSJ/HTCR Beta (TV) 14.40 11.07 1.301 3.58 2.924 3.52 2.965 3.53 2.485 2.86
RSJ/Tail Beta (TV) 14.36 11.06 1.298 3.54 2.908 3.60 2.888 3.62 2.483 2.83
RSJ/Tail Sens (TV) 14.39 11.11 1.296 3.54 2.889 3.50 2.888 3.52 2.471 2.79
RSJ/Tail Risk (TV) 14.38 11.12 1.293 3.54 2.874 3.51 2.888 3.53 2.449 2.75
RSJ/MES (TV) 14.39 11.06 1.301 3.58 2.929 3.49 2.965 3.50 2.486 2.79

similar to the results of the industry momentum strategy, all risk weightings produce higher

Sharpe Ratios and a positive economic value. However, the increase is not statistically signifi-

cant for the volatility weighted strategy. In contrast, all (systematic) tail risk weighted strategies,

except for the coskewness based strategy, exhibit statistically higher Sharpe Ratios and utilities.

Volatility targeting again significantly improves the risk-return profile regardless of the weight-

ing scheme, where again the best results are found for the strategies that use the (systematic)

tail risk weighting combined with volatility targeting. Results for the other US style portfolios,

turn based weighting scheme, i.e. every style portfolio is contained in the momentum portfolio and each style is
weighted by the relative past performance.
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Table XLVIII. Robustness Results: 25 Double Sorted European Portfolios Based on Size and Value
This table shows performance results of the equally and risk weighted momentum strategies using 25
double sorted European portfolios based on size and value, the t � 12 to t � 1 ranking period and a
cut-off point of p � 30%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.17 7.89 0.655 - - - - - - -
RV 5.48 7.26 0.755 1.91 0.739 1.98 0.753 2.00 0.582 1.48

RSJ/Corr 6.59 7.29 0.904 3.36 1.867 3.61 1.815 3.57 1.637 3.33
RSJ/Down Corr 6.79 7.26 0.936 3.82 2.110 5.51 2.120 5.52 1.921 5.09
RSJ/Beta 6.60 7.24 0.912 3.43 1.927 3.73 1.891 3.71 1.713 3.51
RSJ/Down Beta 6.82 7.28 0.937 3.69 2.122 4.93 2.120 4.98 1.999 4.68
RSJ/CoSkew 7.04 7.69 0.916 3.80 1.965 4.48 1.968 4.45 1.881 3.90
RSJ/CoKurt 6.58 7.38 0.891 3.24 1.771 4.62 1.739 4.54 1.620 4.91
RSJ/LPM Beta 6.69 7.19 0.931 3.58 2.074 4.08 2.044 4.09 1.874 3.85
RSJ/HTCR Beta 6.66 7.28 0.914 3.48 1.948 4.02 1.891 4.01 1.763 3.81
RSJ/Tail Beta 6.67 7.53 0.886 3.30 1.737 2.58 1.739 2.58 1.612 2.36
RSJ/Tail Sens 6.49 7.52 0.863 2.88 1.559 2.19 1.510 2.17 1.447 2.08
RSJ/Tail Risk 6.61 7.47 0.885 3.27 1.725 2.58 1.739 2.58 1.535 2.27
RSJ/MES 6.62 7.28 0.910 3.36 1.911 3.80 1.891 3.81 1.729 3.49

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.15 7.97 0.646 - - - - - - -
RV 5.51 7.33 0.752 2.00 0.794 2.13 0.828 2.15 0.628 1.58

Equal (TV) 8.45 10.42 0.811 1.59 1.298 1.46 1.282 1.45 0.783 0.98
RV (TV) 9.90 10.83 0.914 2.28 2.070 2.21 2.120 2.25 1.664 1.90

RSJ/Corr (TV) 9.95 9.50 1.048 3.15 3.063 3.52 3.042 3.48 2.439 3.79
RSJ/Down Corr (TV) 10.19 9.51 1.071 3.31 3.236 4.16 3.273 4.14 2.681 5.05
RSJ/Beta (TV) 10.07 9.55 1.054 3.27 3.115 3.65 3.119 3.61 2.523 3.90
RSJ/Down Beta (TV) 10.29 9.57 1.075 3.36 3.270 4.17 3.273 4.16 2.788 4.64
RSJ/CoSkew (TV) 10.53 9.61 1.096 3.52 3.427 4.19 3.428 4.16 2.997 4.81
RSJ/CoKurt (TV) 9.90 9.55 1.036 3.08 2.979 3.58 2.965 3.54 2.411 4.50
RSJ/LPM Beta (TV) 10.14 9.49 1.069 3.30 3.223 3.80 3.196 3.76 2.658 4.03
RSJ/HTCR Beta (TV) 10.12 9.56 1.059 3.26 3.145 3.79 3.119 3.76 2.581 4.06
RSJ/Tail Beta (TV) 10.24 9.84 1.041 3.19 3.010 3.11 3.042 3.10 2.573 2.93
RSJ/Tail Sens (TV) 9.91 9.62 1.029 3.03 2.926 3.04 2.965 3.02 2.387 3.06
RSJ/Tail Risk (TV) 10.14 9.76 1.039 3.19 2.998 3.26 3.042 3.25 2.465 3.10
RSJ/MES (TV) 10.13 9.56 1.060 3.25 3.153 3.78 3.119 3.75 2.598 3.90

shown in Tables XLIII to XLV, are again quite similar. Volatility weighting does not signif-

icantly improve the risk-return profile, whereas the (systematic) tail risk weightings produce

significant Sharpe Ratio and utility increases. The volatility weighted style momentum strategy

does even significantly underperform the equally weighted strategy for the style momentum

strategy based on size and investment or profitability and investment sorted portfolios. Table

XLVI shows results for the 25 size and value sorted portfolios using International stocks instead

of just US stocks. Similar to the US style strategy, all risk weighted strategies exhibit higher

Sharpe Ratios than the equally weighted strategy as well as high and positive economic values.

However, these increases are only statistically significant for the (systematic) tail risk weighted
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Table XLIX. Robustness Results: 100 Double Sorted US Portfolios Based on Size and Value
This table shows performance results of the equally and risk weighted momentum strategies using 100
double sorted US portfolios based on size and value, the t�12 to t�1 ranking period and a cut-off point
of p � 20%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.43 13.09 0.339 - - - - - - -
RV 4.79 12.43 0.385 1.61 0.551 1.27 0.225 0.29 0.550 1.26

RSJ/Corr 5.30 12.35 0.429 2.67 1.084 1.76 1.358 1.74 0.748 1.40
RSJ/Down Corr 5.08 12.94 0.393 1.58 0.650 0.90 1.055 1.23 0.513 0.95
RSJ/Beta 5.41 11.67 0.463 3.38 1.477 2.38 1.663 2.35 1.009 1.65
RSJ/Down Beta 5.34 12.29 0.435 2.63 1.143 1.86 1.510 2.43 0.925 1.82
RSJ/CoSkew 5.25 13.94 0.376 1.23 0.515 1.33 0.451 0.96 0.605 1.50
RSJ/CoKurt 4.86 12.42 0.391 1.55 0.625 1.04 0.677 0.80 0.188 0.30
RSJ/LPM Beta 5.71 12.47 0.458 2.96 1.430 2.12 1.968 2.97 1.431 3.09
RSJ/HTCR Beta 5.16 11.93 0.433 2.42 1.100 1.51 1.358 1.77 0.745 1.13
RSJ/Tail Beta 5.80 12.80 0.453 3.40 1.404 3.21 1.586 3.47 1.283 3.31
RSJ/Tail Sens 5.43 12.87 0.422 2.30 1.011 1.51 1.434 1.76 0.870 1.71
RSJ/Tail Risk 5.85 12.97 0.451 3.43 1.382 2.37 1.739 2.87 1.338 3.02
RSJ/MES 5.86 12.69 0.462 3.04 1.483 2.13 2.120 2.98 1.579 3.40

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 4.48 13.04 0.343 - - - - - - -
RV 4.78 12.41 0.385 1.37 0.501 1.11 0.150 0.22 0.500 1.09

Equal (TV) 7.26 12.01 0.605 4.39 3.214 3.02 3.583 2.67 1.782 1.84
RV (TV) 8.06 13.14 0.613 4.10 3.374 3.43 3.738 3.19 2.241 2.35

RSJ/Corr (TV) 7.82 11.86 0.660 4.53 3.897 3.05 4.360 2.74 2.520 2.13
RSJ/Down Corr (TV) 7.67 11.90 0.644 4.35 3.702 2.82 4.204 2.56 2.327 1.94
RSJ/Beta (TV) 8.06 11.65 0.692 4.79 4.283 3.28 4.907 2.99 2.818 2.30
RSJ/Down Beta (TV) 7.89 11.69 0.675 4.63 4.075 3.14 4.672 2.90 2.632 2.17
RSJ/CoSkew (TV) 7.74 11.94 0.648 4.53 3.748 3.04 4.282 2.86 2.361 2.02
RSJ/CoKurt (TV) 7.53 11.85 0.636 4.10 3.593 2.80 3.970 2.49 2.248 1.90
RSJ/LPM Beta (TV) 8.18 11.74 0.696 4.96 4.343 3.36 4.985 3.07 2.924 2.42
RSJ/HTCR Beta (TV) 7.80 11.66 0.669 4.50 3.999 3.08 4.594 2.83 2.557 2.11
RSJ/Tail Beta (TV) 8.09 11.99 0.675 4.84 4.095 3.33 4.672 3.01 2.690 2.37
RSJ/Tail Sens (TV) 7.78 11.91 0.653 4.49 3.814 2.92 4.360 2.67 2.400 1.98
RSJ/Tail Risk (TV) 8.15 12.06 0.676 5.00 4.107 3.32 4.594 2.98 2.718 2.38
RSJ/MES (TV) 8.27 11.79 0.701 5.09 4.407 3.42 5.064 3.12 2.975 2.47

portfolios. Table XLVII shows results for the International style portfolios where the US are ex-

cluded. These results are quite similar to the results of the International data set where US data

are included. Results for the European size and value style portfolios, shown in Table XLVIII,

are again quite similar and demonstrate that all risk weighted strategies increase momentum’s

Sharpe Ratio and heighten the investors’ utility. For this data set, volatility weighting also

works well but is again outperformed by the (systematic) tail risk weighted strategies. Volatil-

ity targeting further increases the strategies’ Sharpe Ratio and utility gains, especially for the

strategies using the (systematic) tail risk weighting. In Table XLIX, we show results for 100

size and value double sorted portfolios and find that all risk weighted strategies exhibit high
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Table L. Robustness Results: 20 US Portfolios Based on Size and Value
This table shows performance results of the equally and risk weighted momentum strategies using 20 US
portfolios consisting of 10 single sorted portfolios based on size and 10 single sorted portfolios based on
value, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The description of the columns
is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.96 13.73 0.434 - - - - - - -
RV 5.79 12.73 0.455 1.01 0.193 0.50 1.131 1.06 0.078 0.39

RSJ/Corr 6.80 11.55 0.589 4.62 1.905 3.25 3.350 1.59 0.780 1.18
RSJ/Down Corr 6.90 11.69 0.590 4.96 1.928 3.38 3.428 1.63 0.848 1.38
RSJ/Beta 6.82 11.60 0.587 4.69 1.884 3.20 3.350 1.62 0.844 1.34
RSJ/Down Beta 6.94 11.86 0.585 4.94 1.859 3.21 3.428 1.63 0.984 1.86
RSJ/CoSkew 7.70 14.63 0.526 3.37 1.176 1.92 3.350 1.38 1.238 3.44
RSJ/CoKurt 6.92 11.73 0.590 4.83 1.927 3.25 3.428 1.60 0.862 1.42
RSJ/LPM Beta 6.85 11.72 0.584 4.81 1.847 3.22 3.350 1.62 0.887 1.53
RSJ/HTCR Beta 6.83 11.81 0.578 4.58 1.768 2.88 3.350 1.58 0.845 1.34
RSJ/Tail Beta 7.18 12.60 0.570 5.14 1.688 2.95 3.273 1.67 1.081 2.36
RSJ/Tail Sens 6.97 11.96 0.583 5.03 1.846 3.65 3.119 1.70 0.912 1.61
RSJ/Tail Risk 7.13 12.35 0.578 5.20 1.783 3.46 3.273 1.72 1.070 2.25
RSJ/MES 6.91 12.02 0.575 4.54 1.730 2.74 3.428 1.56 0.953 1.77

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 6.09 13.65 0.446 - - - - - - -
RV 5.89 12.65 0.466 0.64 0.172 0.44 1.131 1.04 0.054 0.24

Equal (TV) 9.80 14.38 0.682 3.25 3.114 2.73 3.660 2.13 0.382 0.41
RV (TV) 9.94 14.03 0.708 3.46 3.427 2.90 4.516 1.89 0.515 0.53

RSJ/Corr (TV) 11.15 13.89 0.802 4.24 4.629 4.22 5.772 2.31 1.838 1.70
RSJ/Down Corr (TV) 11.20 13.89 0.806 4.27 4.678 4.26 5.772 2.38 1.885 1.78
RSJ/Beta (TV) 11.19 13.92 0.804 4.28 4.647 4.25 5.772 2.35 1.878 1.76
RSJ/Down Beta (TV) 11.22 13.90 0.807 4.31 4.694 4.16 5.772 2.40 1.940 1.86
RSJ/CoSkew (TV) 11.48 14.23 0.806 4.41 4.689 4.10 5.851 2.47 2.041 2.12
RSJ/CoKurt (TV) 11.23 13.88 0.809 4.30 4.714 4.18 5.851 2.35 1.906 1.81
RSJ/LPM Beta (TV) 11.18 13.91 0.804 4.26 4.649 4.22 5.772 2.36 1.888 1.79
RSJ/HTCR Beta (TV) 11.23 13.96 0.804 4.33 4.654 4.27 5.772 2.35 1.907 1.78
RSJ/Tail Beta (TV) 11.36 14.02 0.811 4.44 4.744 4.48 5.772 2.54 2.000 1.98
RSJ/Tail Sens (TV) 11.29 13.94 0.810 4.39 4.728 4.28 5.851 2.36 1.960 1.87
RSJ/Tail Risk (TV) 11.43 14.02 0.816 4.49 4.802 4.42 6.009 2.40 2.065 2.04
RSJ/MES (TV) 11.22 13.97 0.803 4.32 4.639 4.24 5.772 2.36 1.905 1.83

Sharpe Ratio and utility increases, where again the highest increases are found for the (system-

atic) tail risk weighted strategies. The increase in the Sharpe Ratio and the investors’ utility is

again not statistically significant for the volatility weighted strategy. Volatility targeting again

further enhances the risk-return profile for all weighting schemes and works best when volatility

targeting is combined with the (systematic) tail risk weightings. Finally, Table L shows results

for the data set consisting of 10 portfolios sorted on size and 10 portfolios sorted on value.

Results are again quite similar to our earlier findings, i.e. volatility weighting does not signif-

icantly enhance momentum’s risk-return profile, whereas the (systematic) tail risk weightings

produce high and mostly statistically significant Sharpe Ratio and utility increases. As before,
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the risk-return profile can further be enhanced by overlaying these strategies with the volatility

targeting approach.

B.7 Country Momentum

As next robustness check, we apply non-managed and risk-managed momentum strategies to

several country indices. Momentum of country equity indices has been shown by Chan et al.

(2000), Clare et al. (2016, Table 5), Richards (1997), Asness et al. (2013), Nijman et al. (2004),

Novy-Marx (2012), Goyal and Jegadeesh (2017, Table 11.A) and Bhojraj and Swaminathan

(2006). Richards (1997, Table 1.B) and Bhojraj and Swaminathan (2006) show that country

momentum holds for holding periods of up to twelve months. In particular, country indices

are not only used in the momentum literature, but also in portfolio allocation and asset pricing

studies (Asness et al., 2020, Atilgan et al., 2019, DeMiguel et al., 2009b, Garlappi et al., 2006,

Kirby and Ostdiek, 2012). Generally, country indices are used in many fields and are also

important for practitioners since “country indices represent the largest and the most frequently

traded securities of any stock market” (Bhojraj and Swaminathan, 2006, p. 433). We use two

different data sets consisting of 25 and 61 country indices obtained from Datastream.149 We

use country indices denominated in US dollar. An alternative would be to use indices in local

currency, since Bhojraj and Swaminathan (2006, p. 433) find that “the profitability of [country

momentum] strategies can be significantly improved by forming momentum portfolios based

on past equity-indices returns measured in local currencies rather than in U.S. dollars”. As

for our main results, we use the t � 12 to t � 1 ranking and a cut-off point of p � 30%.

Nevertheless, country momentum also works for other ranking periods and cut-off points. For

example, Bhojraj and Swaminathan (2006) use a six months ranking period combined with p �
20%, Richards (1997) find country momentum for ranking periods between three and twelve

months combined with p � 20%, Asness et al. (2013) also use the past 12 months ranking and

p � 1{3, Novy-Marx (2012) use the t � 12 to t � 7 and t � 6 to t � 2 rankings combined

149In the literature on country momentum, several data sets have been used. For example, Richards (1997)
use 16 developed countries, whereas Bhojraj and Swaminathan (2006, Table 1) use 38 countries and the authors
additionally confirm the earlier results of Richards (1997) using the same 16 countries. Chan et al. (2000) and
Novy-Marx (2012) show that country momentum also works well when it is applied to 23 countries, whereas
Asness et al. (2013) find country momentum for 18 country indices.
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with p � 1{3, whereas Chan et al. (2000) use several ranking periods between one week and 26

weeks and assign each country as either a winner or a loser based on the countries’ past return.

We also used several other ranking periods and cut-off points, but again found that results of

our weighting schemes are quite robust. Weighting countries in the momentum portfolio by

their risk is important since different countries have quite different risk characteristics. For

example, Baltas (2015, Fig. 2) finds that different country indices have quite different levels of

volatility. Atilgan et al. (2019, p. 14) find that countries’ skewness varies between �1.13 and

1.08 and kurtosis lies between 3.33 and 9.03. Further, Atilgan et al. (2019, Table 6) find a strong

negative systematic risk and return relation for countries from developed and emerging markets

as well as a negative univariate tail risk and return relation for developed markets. This negative

risk-return relation makes the inverse risk weighting appealing for country momentum.

Results for the 25 country indices are shown in Table LI, whereas Table LII shows results for

the 61 country indices. Since country momentum has a slightly higher volatility than industry

and style momentum, we use higher volatility target levels for these two data sets. For both

data sets, all risk weighted strategies outperform the equally weighted strategy, where only

the (systematic) tail risk weighted strategies produce significantly higher Sharpe Ratios and

utilities. Nevertheless, the performance and utility gains of our risk weightings are lower for

country momentum than for style and industry momentum. This result is in line with Atilgan

et al. (2019) who find a stronger negative (systematic) tail risk-return relation for style portfolios

than for country indices. Moreover, the impact of volatility targeting is mixed for the country

momentum strategies. For the data set consisting of 25 country indices, we again find the

highest Sharpe Ratios and utility gains for the volatility targeting strategy combined with the

(systematic) tail risk weightings. However, the impact of volatility targeting is only small for

this data set. For the data set consisting of 61 country indices, we even find a slightly negative

impact of volatility targeting. For this data set, we find the best risk-return profile for the

(systematic) tail risk weighted portfolios without target volatility overlay. Thus, the profitability

of volatility targeting strongly depends on the used data set as also shown by Cederburg et al.

(2020).
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Table LI. Robustness Results: 25 Equity Country Indices
This table shows performance results of the equally and risk weighted momentum strategies using 25
equity country indices, the t � 12 to t � 1 ranking period, a cut-off point of p � 30% and a volatility
target of 12%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.32 13.02 0.409 - - - - - - -
RV 5.49 11.85 0.463 0.87 0.617 0.99 0.602 0.90 0.606 1.05

RSJ/Corr 7.60 13.49 0.563 2.42 1.936 2.42 1.968 2.34 1.922 2.42
RSJ/Down Corr 7.12 13.53 0.526 1.91 1.484 2.47 1.510 2.35 1.399 2.30
RSJ/Beta 7.13 13.36 0.533 1.98 1.562 2.28 1.586 2.21 1.588 2.20
RSJ/Down Beta 7.04 13.30 0.530 1.89 1.514 2.52 1.510 2.42 1.406 2.20
RSJ/CoSkew 7.72 13.88 0.557 2.52 1.876 3.06 1.891 2.98 1.811 2.92
RSJ/CoKurt 7.39 13.39 0.552 2.33 1.796 2.93 1.815 2.80 1.773 2.69
RSJ/LPM Beta 6.96 13.22 0.526 1.80 1.471 2.33 1.434 2.20 1.404 2.03
RSJ/HTCR Beta 7.29 13.42 0.543 2.10 1.686 2.32 1.663 2.25 1.661 2.19
RSJ/Tail Beta 7.29 13.61 0.536 2.06 1.602 2.43 1.586 2.37 1.572 2.42
RSJ/Tail Sens 7.57 13.66 0.554 2.39 1.829 2.69 1.815 2.63 1.974 2.83
RSJ/Tail Risk 6.78 13.30 0.509 1.61 1.265 2.04 1.282 1.95 1.295 1.96
RSJ/MES 7.14 13.36 0.534 1.97 1.573 2.19 1.586 2.11 1.565 2.15

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 5.11 13.02 0.393 - - - - - - -
RV 5.40 11.76 0.459 0.95 0.755 1.12 0.677 1.02 0.774 1.19

Equal (TV) 6.43 13.84 0.464 1.47 0.933 1.96 0.904 1.93 0.599 0.83
RV (TV) 6.96 13.32 0.522 1.64 1.623 2.36 1.663 2.36 1.138 1.41

RSJ/Corr (TV) 8.45 13.83 0.611 2.88 2.751 2.98 2.734 2.93 2.398 2.30
RSJ/Down Corr (TV) 8.08 13.85 0.583 2.53 2.406 3.09 2.427 3.01 2.050 2.27
RSJ/Beta (TV) 8.00 13.88 0.576 2.42 2.317 2.75 2.350 2.71 2.011 2.06
RSJ/Down Beta (TV) 7.91 13.76 0.575 2.34 2.297 2.85 2.273 2.77 1.942 2.04
RSJ/CoSkew (TV) 8.33 13.75 0.606 2.83 2.681 3.00 2.657 2.90 2.376 2.32
RSJ/CoKurt (TV) 8.17 13.65 0.598 2.67 2.583 3.29 2.580 3.21 2.239 2.33
RSJ/LPM Beta (TV) 7.87 13.79 0.571 2.27 2.245 2.74 2.197 2.66 1.912 1.95
RSJ/HTCR Beta (TV) 8.22 13.95 0.589 2.56 2.480 2.72 2.503 2.68 2.146 2.07
RSJ/Tail Beta (TV) 7.95 13.92 0.571 2.37 2.261 2.53 2.273 2.49 1.968 2.04
RSJ/Tail Sens (TV) 8.58 13.88 0.618 3.02 2.831 3.19 2.888 3.15 2.587 2.52
RSJ/Tail Risk (TV) 7.78 13.81 0.563 2.27 2.155 2.63 2.120 2.58 1.876 1.99
RSJ/MES (TV) 8.11 13.81 0.587 2.54 2.447 2.93 2.427 2.88 2.116 2.21

B.8 Alternative Crash Indicators

Our results in the main part and the robustness results shown so far highlight that our approach

that switches between univariate and systematic tail risk significantly outperforms the equally

and volatility weighted momentum portfolio. Our results are so far based on the crash indicator

δt that indicates a momentum crash when the momentum portfolio’s volatility, measured by

past month’s Realized Volatility, is higher than the chosen volatility target σtarget. Thus, the

profitability of the switching approach is also influenced by the chosen volatility model and the

chosen volatility target level. To rule out that the switching approach is only profitable for this

certain definition of the crash indicator δt, we next show several robustness results for other

504



Table LII. Robustness Results: 61 Equity Country Indices
This table shows performance results of the equally and risk weighted momentum strategies using 61
equity country indices, the t � 12 to t � 1 ranking period, a cut-off point of p � 30% and a volatility
target of 15%. The description of the columns is given in Table XX.

Panel A: Without Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.27 14.91 0.488 - - - - - - -
RV 7.47 13.22 0.565 1.03 0.985 1.43 1.055 1.54 1.298 2.13

RSJ/Corr 9.07 15.19 0.597 1.50 1.531 2.83 1.663 3.00 1.614 2.58
RSJ/Down Corr 9.36 15.33 0.611 1.71 1.726 2.12 1.891 2.16 1.810 1.99
RSJ/Beta 9.69 15.00 0.646 2.15 2.202 3.16 2.350 3.24 2.272 2.88
RSJ/Down Beta 9.73 15.21 0.640 2.05 2.127 2.46 2.273 2.48 2.157 2.34
RSJ/CoSkew 8.99 15.80 0.569 1.20 1.179 1.42 1.282 1.46 1.303 1.52
RSJ/CoKurt 9.21 15.48 0.595 1.52 1.513 2.81 1.663 3.00 1.685 2.73
RSJ/LPM Beta 9.35 14.99 0.623 1.81 1.889 2.62 2.044 2.69 1.957 2.36
RSJ/HTCR Beta 9.45 15.00 0.630 1.91 1.985 3.01 2.120 3.12 2.004 2.64
RSJ/Tail Beta 9.99 15.35 0.651 2.30 2.290 2.40 2.427 2.40 2.429 2.52
RSJ/Tail Sens 9.11 15.27 0.597 1.53 1.528 2.52 1.663 2.63 1.676 2.49
RSJ/Tail Risk 10.12 15.13 0.669 2.58 2.528 2.76 2.657 2.74 2.705 2.80
RSJ/MES 9.77 14.99 0.652 2.22 2.285 3.04 2.427 3.06 2.370 2.93

Panel B: With Volatility Targeting

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 7.18 14.94 0.481 - - - - - - -
RV 7.43 13.18 0.564 0.98 1.066 1.52 1.131 1.63 1.431 2.29

Equal (TV) 8.24 16.07 0.513 0.67 0.507 0.78 0.602 0.87 0.289 0.43
RV (TV) 9.28 15.40 0.602 1.33 1.717 1.34 1.891 1.42 1.519 1.12

RSJ/Corr (TV) 9.64 15.96 0.604 1.41 1.773 3.05 1.891 3.04 1.819 2.48
RSJ/Down Corr (TV) 9.80 15.94 0.615 1.52 1.920 2.15 2.044 2.18 2.021 1.96
RSJ/Beta (TV) 10.20 15.92 0.641 1.78 2.279 2.85 2.427 2.85 2.319 2.40
RSJ/Down Beta (TV) 10.23 16.00 0.640 1.76 2.267 2.51 2.427 2.55 2.331 2.30
RSJ/CoSkew (TV) 9.21 15.77 0.584 1.22 1.484 1.83 1.586 1.86 1.563 1.72
RSJ/CoKurt (TV) 9.63 15.99 0.602 1.40 1.743 2.93 1.891 3.00 1.809 2.54
RSJ/LPM Beta (TV) 10.01 15.93 0.629 1.62 2.110 2.67 2.273 2.70 2.192 2.31
RSJ/HTCR Beta (TV) 10.14 15.93 0.637 1.72 2.224 3.07 2.350 3.08 2.243 2.54
RSJ/Tail Beta (TV) 10.53 16.11 0.653 1.97 2.464 2.45 2.580 2.46 2.609 2.39
RSJ/Tail Sens (TV) 9.62 15.91 0.605 1.41 1.774 2.68 1.891 2.71 1.871 2.33
RSJ/Tail Risk (TV) 10.68 16.00 0.668 2.15 2.657 2.48 2.811 2.49 2.835 2.40
RSJ/MES (TV) 10.32 15.88 0.650 1.87 2.408 2.87 2.580 2.85 2.487 2.54

definitions of δt.

In Table LIII, we show results for three additional crash indicators that are similar to the

crash indicator used so far. In Panel A, we show results for the crash indicator when RV WML
t is

estimated with the past six months of daily data, whereas Panels B and C useRV WML
t estimated

with the past month’s daily data combined with σtarget � 5% and σtarget � 12%, respectively.

Results in this table show that our switching approach is also advantageous to the equally and

volatility weighted momentum portfolio for other volatility models and volatility targets. Thus,

our results shown so far are not limited to a certain definition of δt.

We next show in Table LIV results for the crash indicator δt based on past volatility of the
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Table LIII. Robustness Results: Alternative Momentum Volatility Based Crash Indicators
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t�12 to t�1 ranking period, a cut-off point of p � 30% and several
alternative definitions of the crash indicator δt based on momentum’s past Realized Volatility. Panel A
shows results for the crash indicator using the past six months of daily data to estimate portfolio volatility
combined with σtarget � 8%, whereas Panels B and C use the past month’s daily data to estimate
portfolio volatility combined with σtarget � 5% and σtarget � 12%, respectively. The description of the
columns is given in Table XX.

Panel A: Past Six Months’ Realized Volatility and σtarget � 8%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 11.36 11.09 1.024 5.11 2.956 4.91 3.119 4.70 2.904 4.82
RSJ/Down Corr 10.94 11.83 0.925 3.35 1.872 2.63 1.434 1.19 2.108 3.35
RSJ/Beta 11.46 10.95 1.047 5.62 3.208 5.65 3.428 5.52 3.129 5.30
RSJ/Down Beta 11.23 11.36 0.988 4.67 2.562 4.25 2.503 3.48 2.634 4.28
RSJ/CoSkew 10.56 12.39 0.852 2.14 1.065 1.71 0.979 1.33 1.241 2.05
RSJ/CoKurt 11.15 11.60 0.961 4.19 2.269 3.62 2.120 2.72 2.406 4.05
RSJ/LPM Beta 11.55 10.99 1.051 5.76 3.257 5.61 3.505 5.53 3.150 5.19
RSJ/HTCR Beta 11.26 10.96 1.027 5.50 2.982 5.30 3.196 5.12 2.796 4.74
RSJ/Tail Beta 11.20 11.50 0.974 4.66 2.399 4.86 2.580 4.83 2.313 4.25
RSJ/Tail Sens 11.37 11.03 1.031 5.57 3.024 5.34 3.273 4.94 2.771 4.86
RSJ/Tail Risk 11.04 11.26 0.980 4.72 2.460 4.78 2.657 4.62 2.362 4.31
RSJ/MES 11.52 10.92 1.054 5.75 3.291 5.93 3.583 5.52 3.138 5.42

Panel B: Past Month’s Realized Volatility and σtarget � 5%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 10.05 10.23 0.982 4.22 2.475 4.46 2.503 4.11 2.351 4.31
RSJ/Down Corr 9.75 11.23 0.869 2.20 1.234 1.74 0.526 0.38 1.447 2.56
RSJ/Beta 10.18 10.10 1.009 4.81 2.772 5.47 2.888 5.25 2.692 5.24
RSJ/Down Beta 10.18 10.68 0.953 3.91 2.159 3.90 1.891 2.54 2.204 4.20
RSJ/CoSkew 9.80 12.37 0.792 0.76 0.391 0.76 0.300 0.51 0.533 1.07
RSJ/CoKurt 10.04 10.87 0.924 3.37 1.836 2.88 1.434 1.65 1.909 3.35
RSJ/LPM Beta 10.52 10.22 1.029 5.26 3.002 6.02 3.119 5.84 2.913 5.78
RSJ/HTCR Beta 10.00 10.13 0.987 4.65 2.527 6.05 2.657 5.74 2.320 5.29
RSJ/Tail Beta 10.22 10.92 0.936 3.80 1.962 4.26 2.120 4.21 1.929 4.00
RSJ/Tail Sens 10.28 10.36 0.992 4.80 2.590 5.37 2.734 4.85 2.343 4.96
RSJ/Tail Risk 10.09 10.68 0.945 3.96 2.054 4.05 2.197 3.88 2.000 3.78
RSJ/MES 10.55 10.21 1.033 5.26 3.040 6.20 3.273 5.61 2.930 5.75

Panel C: Past Month’s Realized Volatility and σtarget � 12%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 12.20 11.58 1.054 5.57 3.289 4.63 3.583 4.12 2.992 4.60
RSJ/Down Corr 12.25 11.70 1.047 5.73 3.211 4.76 3.505 4.32 2.871 4.61
RSJ/Beta 12.34 11.49 1.074 6.05 3.515 5.15 3.815 4.58 3.210 5.00
RSJ/Down Beta 12.37 11.60 1.066 6.12 3.426 5.14 3.738 4.61 3.095 4.93
RSJ/CoSkew 12.01 12.13 0.990 4.89 2.577 4.05 2.888 3.98 2.373 3.74
RSJ/CoKurt 12.09 11.68 1.035 5.50 3.082 4.45 3.350 4.03 2.771 4.32
RSJ/LPM Beta 12.45 11.52 1.081 6.27 3.592 5.25 3.893 4.69 3.266 5.11
RSJ/HTCR Beta 12.28 11.49 1.069 6.23 3.455 4.81 3.738 4.34 3.110 4.56
RSJ/Tail Beta 12.29 11.88 1.034 5.61 3.072 5.28 3.350 4.75 2.875 4.99
RSJ/Tail Sens 12.29 11.57 1.062 6.14 3.385 4.83 3.660 4.27 3.027 4.72
RSJ/Tail Risk 12.15 11.77 1.032 5.55 3.051 5.22 3.273 4.57 2.838 5.13
RSJ/MES 12.35 11.54 1.070 6.15 3.469 5.12 3.815 4.57 3.154 5.00
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market instead of past volatility of the momentum portfolio. Du Plessis and Hallerbach (2017)

find a negative relation between the volatility of the market and the returns of the industry

momentum portfolio. This negative relation has also been shown for the returns of the individual

stock based momentum strategy (Daniel and Moskowitz, 2016, Wang and Xu, 2015). Thus, we

show results for a crash indicator that indicates a crash (δt � 1) if past market volatility is

high, where we define high with respect to three different volatility levels between 5% and

12%. Results in Table LIV show that our (systematic) tail risk switching strategy also works

well when momentum crashes are estimated by a high market volatility. This result holds for

all three different levels of σtarget.

In Table LV, we show results for alternative definitions of δt based on momentum’s volatility,

where we define “low” and “high” volatility periods based on the relation of short- and long-

term volatility (Copeland and Copeland, 1999). In other words, the threshold σtarget,t is not

fixed but varies over time based on past long-term volatility (Dreyer and Hubrich, 2019). This

has the advantage that crash and non-crash periods are not defined based on an arbitrarily chosen

constant. However, as stated in Section 3.5, defining δt with respect to a constant σtarget has the

advantage that an investor’s portfolio fits well to the investor’s risk-aversion. For that reason,

we use a constant σtarget for our main results, but results in Table LV again demonstrate that

the profitability of our switching strategy is not driven by data mining. In Panel A, we define

a crash regime when volatility estimated with the past month’s daily returns is higher than the

long-term volatility estimated with the past twelve months’ daily returns. Panels B and C define

short-term volatility by the Realized Volatility of the past three and six months, whereas long-

term volatility is defined by the past 24 and 48 months’ volatility, respectively. In line with our

previous results, we find that the (systematic) tail risk switching strategies clearly outperform

the equally and volatility weighted strategies.

Finally, in Table LVI we use crash indicators δt that are based on the equally weighted mo-

mentum portfolio’s past performance using the TSMOM strategy of Moskowitz et al. (2012),

where we use the one month, six months and twelve months TSMOM strategies in Panels A,

B and C, respectively. These lengths are frequently used in the literature on TSMOM and are
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Table LIV. Robustness Results: Alternative Market Volatility Based Crash Indicators
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t�12 to t�1 ranking period, a cut-off point of p � 30% and several
alternative definitions of the crash indicator δt based on volatility estimated with daily market returns of
the past month. Panels A, B and C show results for the crash indicator using σtarget � 5%, σtarget � 8%
and σtarget � 12%, respectively. The description of the columns is given in Table XX.

Panel A: Past Month’s Market Volatility and σtarget � 5%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 9.44 9.91 0.953 3.70 2.136 3.70 2.120 3.35 2.171 3.80
RSJ/Down Corr 9.22 10.96 0.841 1.69 0.921 1.23 0.075 0.06 1.303 2.15
RSJ/Beta 9.57 9.77 0.980 4.28 2.447 4.79 2.503 4.52 2.539 4.84
RSJ/Down Beta 9.49 10.42 0.911 3.09 1.681 2.87 1.358 1.67 1.896 3.36
RSJ/CoSkew 8.96 12.33 0.726 -0.72 -0.343 -0.71 -0.374 -0.64 -0.182 -0.39
RSJ/CoKurt 9.65 10.62 0.909 3.06 1.670 2.39 1.207 1.24 1.884 2.99
RSJ/LPM Beta 9.94 9.94 1.000 4.70 2.674 5.07 2.734 4.92 2.747 5.10
RSJ/HTCR Beta 9.44 9.84 0.960 4.12 2.215 5.36 2.273 5.06 2.175 5.03
RSJ/Tail Beta 9.74 10.66 0.913 3.35 1.702 3.75 1.815 3.69 1.797 3.63
RSJ/Tail Sens 9.73 10.11 0.962 4.23 2.245 4.23 2.350 3.88 2.116 4.13
RSJ/Tail Risk 9.56 10.40 0.920 3.49 1.766 3.49 1.891 3.29 1.824 3.47
RSJ/MES 10.16 9.97 1.019 4.97 2.882 6.17 3.042 5.52 2.905 5.89

Panel B: Past Month’s Market Volatility and σtarget � 8%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 9.75 10.21 0.956 3.79 2.172 3.96 2.197 3.61 2.120 4.00
RSJ/Down Corr 9.54 11.18 0.853 1.95 1.059 1.58 0.300 0.25 1.333 2.46
RSJ/Beta 9.86 10.07 0.979 4.32 2.432 4.87 2.503 4.61 2.442 4.71
RSJ/Down Beta 9.79 10.67 0.918 3.31 1.766 3.45 1.510 2.17 1.892 3.71
RSJ/CoSkew 9.29 12.34 0.753 -0.12 -0.045 -0.09 -0.075 -0.17 0.095 0.20
RSJ/CoKurt 9.97 10.86 0.918 3.29 1.779 2.81 1.434 1.60 1.900 3.28
RSJ/LPM Beta 10.20 10.21 0.999 4.77 2.666 5.03 2.811 4.89 2.661 4.85
RSJ/HTCR Beta 9.80 10.13 0.967 4.35 2.304 5.42 2.427 5.00 2.212 5.06
RSJ/Tail Beta 10.07 10.88 0.925 3.60 1.838 3.91 1.968 3.77 1.873 3.76
RSJ/Tail Sens 10.03 10.31 0.973 4.48 2.364 4.61 2.503 4.10 2.142 4.59
RSJ/Tail Risk 9.84 10.64 0.925 3.63 1.836 3.84 1.968 3.55 1.840 3.78
RSJ/MES 10.35 10.22 1.013 4.95 2.814 5.81 3.042 5.14 2.768 5.47

Panel C: Past Month’s Market Volatility and σtarget � 12%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 10.79 11.03 0.978 4.26 2.434 3.98 2.503 3.54 2.344 4.22
RSJ/Down Corr 10.58 11.86 0.893 2.79 1.517 2.36 0.979 0.89 1.689 3.30
RSJ/Beta 10.89 10.93 0.997 4.76 2.648 4.34 2.734 3.91 2.571 4.56
RSJ/Down Beta 10.99 11.40 0.964 4.33 2.294 4.07 2.120 3.18 2.317 4.44
RSJ/CoSkew 10.21 12.65 0.807 1.13 0.571 1.16 0.526 0.83 0.715 1.58
RSJ/CoKurt 10.68 11.55 0.925 3.47 1.864 3.08 1.586 2.09 1.920 3.65
RSJ/LPM Beta 11.24 11.01 1.021 5.32 2.922 4.70 3.042 4.28 2.841 4.92
RSJ/HTCR Beta 10.73 10.92 0.983 4.73 2.487 4.15 2.580 3.70 2.328 4.28
RSJ/Tail Beta 10.98 11.58 0.948 4.15 2.108 4.25 2.273 3.78 2.103 4.41
RSJ/Tail Sens 10.84 11.04 0.982 4.74 2.477 4.48 2.580 3.82 2.226 4.82
RSJ/Tail Risk 10.83 11.37 0.953 4.25 2.162 4.12 2.273 3.65 2.124 4.27
RSJ/MES 11.19 10.99 1.018 5.19 2.884 4.60 3.119 4.03 2.789 4.86

successful in forecasting crashes. In this case, the crash indicator δt equals one if the equally

weighted momentum portfolio’s return in the past months is negative. Results in Table LVI
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Table LV. Robustness Results: Alternative Momentum Volatility Based Crash Indicators
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t�12 to t�1 ranking period, a cut-off point of p � 30% and several
alternative definitions of the crash indicator δt. Panel A shows results for the crash indicator that equals
one if past month’s volatility is higher than past twelve months’ volatility. Panel B shows results for the
crash indicator that equals one if past three months’ volatility is higher than past 24 months’ volatility.
Panel C shows results for the crash indicator that equals one if past six months’ volatility is higher than
past 48 months’ volatility. The description of the columns is given in Table XX.

Panel A: One Month’s Realized Volatility Higher Than Twelve Months’ Realized Volatility

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 11.45 11.36 1.008 4.64 2.775 3.94 3.042 3.47 2.690 4.09
RSJ/Down Corr 11.60 11.52 1.006 4.92 2.752 4.08 3.042 3.64 2.618 4.16
RSJ/Beta 11.37 11.24 1.012 4.77 2.811 4.12 3.119 3.65 2.709 4.18
RSJ/Down Beta 11.54 11.36 1.016 5.02 2.858 4.18 3.196 3.74 2.714 4.16
RSJ/CoSkew 11.49 12.36 0.930 3.63 1.912 3.06 2.273 2.99 1.832 2.97
RSJ/CoKurt 11.31 11.44 0.989 4.50 2.562 3.69 2.811 3.31 2.435 3.75
RSJ/LPM Beta 11.72 11.29 1.037 5.33 3.100 4.56 3.428 4.04 2.993 4.66
RSJ/HTCR Beta 11.38 11.24 1.013 4.96 2.824 3.93 3.119 3.53 2.656 3.85
RSJ/Tail Beta 11.49 11.77 0.976 4.49 2.415 4.80 2.657 4.09 2.315 4.92
RSJ/Tail Sens 11.72 11.54 1.016 5.19 2.861 3.94 3.119 3.50 2.680 3.99
RSJ/Tail Risk 11.50 11.67 0.985 4.68 2.517 4.51 2.734 3.86 2.436 4.64
RSJ/MES 11.82 11.40 1.036 5.37 3.086 4.61 3.428 4.04 2.985 4.74

Panel B: Three Months’ Realized Volatility Higher Than 24 Months’ Realized Volatility

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 11.13 10.86 1.025 5.12 2.959 3.97 3.196 3.50 2.773 4.02
RSJ/Down Corr 11.26 11.17 1.009 4.99 2.776 4.02 3.042 3.68 2.572 3.95
RSJ/Beta 11.26 10.75 1.048 5.49 3.212 4.56 3.505 4.04 3.043 4.49
RSJ/Down Beta 11.33 10.97 1.033 5.33 3.044 4.17 3.350 3.79 2.854 4.09
RSJ/CoSkew 11.35 12.05 0.941 3.82 2.031 3.06 2.350 2.98 1.957 3.12
RSJ/CoKurt 11.23 11.16 1.006 4.97 2.755 4.06 2.965 3.63 2.582 4.13
RSJ/LPM Beta 11.44 10.88 1.051 5.63 3.254 4.65 3.583 4.13 3.086 4.62
RSJ/HTCR Beta 11.28 10.89 1.035 5.30 3.074 4.24 3.350 3.80 2.909 4.17
RSJ/Tail Beta 11.35 11.40 0.995 4.93 2.631 4.55 2.888 3.99 2.547 4.54
RSJ/Tail Sens 11.33 11.18 1.014 5.13 2.839 3.83 3.119 3.39 2.632 3.89
RSJ/Tail Risk 11.07 11.26 0.983 4.67 2.488 4.11 2.734 3.58 2.384 4.18
RSJ/MES 11.38 10.98 1.036 5.40 3.082 4.40 3.428 3.91 2.925 4.40

Panel C: Six Months’ Realized Volatility Higher Than 48 Months’ Realized Volatility

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 11.25 11.08 1.015 5.07 2.855 5.03 3.042 4.53 2.799 5.20
RSJ/Down Corr 10.84 11.85 0.915 3.26 1.760 2.50 1.282 1.13 2.002 3.21
RSJ/Beta 11.48 10.94 1.050 5.86 3.242 6.03 3.428 5.46 3.169 5.92
RSJ/Down Beta 11.10 11.40 0.973 4.50 2.397 3.92 2.350 3.23 2.470 3.96
RSJ/CoSkew 10.72 12.54 0.855 2.23 1.098 1.81 1.055 1.47 1.313 2.20
RSJ/CoKurt 10.91 11.60 0.941 3.89 2.040 3.59 1.891 2.57 2.154 4.14
RSJ/LPM Beta 11.51 11.06 1.041 5.79 3.148 5.65 3.350 5.21 3.073 5.44
RSJ/HTCR Beta 11.34 10.91 1.039 5.87 3.114 5.46 3.350 4.91 2.927 5.12
RSJ/Tail Beta 11.31 11.54 0.981 4.81 2.469 5.78 2.657 5.16 2.447 5.68
RSJ/Tail Sens 11.24 11.15 1.008 5.38 2.773 4.79 2.965 4.25 2.582 4.82
RSJ/Tail Risk 11.10 11.40 0.974 4.68 2.392 5.40 2.580 4.67 2.335 5.52
RSJ/MES 11.61 11.02 1.054 6.04 3.282 5.66 3.583 4.97 3.142 5.52

509



Table LVI. Robustness Results: Alternative TSMOM Based Crash Indicators
This table shows performance results of the equally and risk weighted momentum strategies using 30
equally weighted US industries, the t�12 to t�1 ranking period, a cut-off point of p � 30% and several
alternative definitions of the crash indicator δt based on the TSMOM strategy applied to the momentum
portfolio. Panels A, B and C show results for the crash indicator using the one, six and twelve months
TSMOM strategy, respectively. The description of the columns is given in Table XX.

Panel A: TSMOM Using Past One Month

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 11.38 12.21 0.932 3.95 1.949 3.70 1.968 3.35 2.272 4.25
RSJ/Down Corr 10.86 12.81 0.848 2.10 1.042 2.22 0.602 0.88 1.558 3.53
RSJ/Beta 11.47 12.08 0.949 4.29 2.139 3.98 2.120 3.60 2.488 4.58
RSJ/Down Beta 11.16 12.39 0.900 3.31 1.604 3.42 1.434 2.89 2.010 4.12
RSJ/CoSkew 10.54 13.00 0.811 1.31 0.630 1.22 0.526 0.83 0.893 1.79
RSJ/CoKurt 11.30 12.63 0.895 3.25 1.550 3.56 1.358 2.93 1.986 4.34
RSJ/LPM Beta 11.49 12.11 0.949 4.30 2.133 4.06 2.197 3.77 2.476 4.57
RSJ/HTCR Beta 11.57 12.02 0.963 4.57 2.288 4.25 2.350 3.77 2.586 4.83
RSJ/Tail Beta 11.21 12.33 0.909 3.55 1.695 3.62 1.739 3.08 1.952 4.41
RSJ/Tail Sens 11.52 12.24 0.941 4.19 2.044 3.60 2.120 3.11 2.304 4.23
RSJ/Tail Risk 11.02 12.30 0.896 3.25 1.541 3.09 1.586 2.68 1.831 3.79
RSJ/MES 11.54 12.07 0.956 4.35 2.211 4.11 2.273 3.57 2.498 4.67

Panel B: TSMOM Using Past Six Months

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 11.46 12.19 0.940 3.78 2.036 3.04 2.120 2.61 2.206 3.47
RSJ/Down Corr 11.53 12.34 0.934 3.76 1.973 3.69 2.044 3.14 2.149 4.16
RSJ/Beta 11.48 12.15 0.945 3.87 2.092 3.29 2.197 2.83 2.325 3.73
RSJ/Down Beta 11.63 12.21 0.952 4.10 2.169 3.73 2.273 3.18 2.344 4.11
RSJ/CoSkew 11.01 12.71 0.866 2.37 1.221 2.58 1.358 2.33 1.228 2.75
RSJ/CoKurt 11.68 12.34 0.947 4.03 2.108 3.40 2.197 2.95 2.305 3.83
RSJ/LPM Beta 11.60 12.17 0.954 4.08 2.183 3.51 2.273 3.04 2.423 3.92
RSJ/HTCR Beta 11.59 12.16 0.953 4.09 2.179 3.42 2.273 2.91 2.372 3.85
RSJ/Tail Beta 11.39 12.29 0.927 3.67 1.890 3.65 1.968 3.08 2.120 4.08
RSJ/Tail Sens 11.83 12.24 0.967 4.39 2.334 3.68 2.427 3.13 2.495 4.11
RSJ/Tail Risk 11.30 12.26 0.922 3.54 1.829 3.35 1.891 2.86 2.042 3.80
RSJ/MES 11.59 12.18 0.952 4.03 2.163 3.50 2.197 3.01 2.399 3.93

Panel C: TSMOM Using Past Twelve Months

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.17 12.11 0.758 - - - - - - -
RV 8.44 10.87 0.776 0.48 0.168 0.36 0.075 0.16 0.186 0.41

RSJ/Corr 12.02 12.39 0.970 5.11 2.371 5.21 2.427 4.67 2.509 5.42
RSJ/Down Corr 11.36 13.04 0.871 2.76 1.307 2.82 0.979 1.35 1.703 3.94
RSJ/Beta 11.94 12.38 0.964 4.96 2.306 5.16 2.350 4.58 2.485 5.30
RSJ/Down Beta 11.74 12.67 0.927 4.21 1.903 4.57 1.815 4.12 2.191 4.84
RSJ/CoSkew 11.20 13.18 0.850 2.38 1.062 2.30 0.904 1.71 1.242 2.88
RSJ/CoKurt 11.66 12.87 0.906 3.72 1.679 3.99 1.510 3.37 2.010 4.67
RSJ/LPM Beta 12.00 12.41 0.967 5.05 2.339 5.22 2.427 4.71 2.500 5.28
RSJ/HTCR Beta 12.00 12.34 0.973 5.16 2.398 5.24 2.503 4.52 2.525 5.45
RSJ/Tail Beta 11.89 12.45 0.955 4.82 2.206 4.92 2.273 4.44 2.328 5.05
RSJ/Tail Sens 12.47 12.32 1.012 5.96 2.836 5.73 2.965 4.88 2.930 5.98
RSJ/Tail Risk 12.04 12.39 0.971 5.16 2.383 5.42 2.503 4.79 2.521 5.45
RSJ/MES 12.08 12.32 0.980 5.13 2.485 5.31 2.580 4.52 2.610 5.41

again show that our switching strategy is superior to the equally and volatility weighted mo-

mentum portfolio, where we find the best results for the twelve months TSMOM strategy.
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In total, results in this section show that our (systematic) tail risk switching strategies are

not a result of data mining and are also advantageous to the equally and volatility weighted mo-

mentum portfolio for several crash indicators based on momentum’s past return and volatility or

past market volatility. Rickenberg (2020a) also shows that different definitions of the momen-

tum crash indicator produce quite similar results when momentum’s portfolio risk is managed

by a strategy that switches between two risk targeting approaches. In particular, we find that

crash indicators based on volatility of either the market or the momentum portfolio produce

more convincing results. This finding is in line with Barroso and Santa-Clara (2015) who also

find that volatility is more successful in forecasting crashes than other crash indicators based on

past returns.

B.9 Alternative Volatility Targeting Strategies

In this section, we show that our results are also robust to other specifications of the volatility

targeting approach. Our main results are based on a volatility target of σtarget � 8% combined

with the Realized Volatility (RV) model to estimate monthly portfolio risk. In this section, we

examine results for other volatility target levels and other volatility models to estimate monthly

portfolio volatility. Rickenberg (2020b) and Rickenberg (2020a) shows that more advanced

dynamic volatility models, like the EWMA or GARCH model, are more successful in targeting

a constant level of portfolio volatility and typically produce a better risk-return profile than the

RV estimator. To assess how different volatility targets and volatility models affect the risk-

return profile of our risk-managed momentum strategies, Table LVII shows several robustness

results. Panel A shows results for a volatility target of σtarget � 5%, whereas Panel B shows

results for a volatility target of σtarget � 12%. In both cases, portfolio volatility is estimated

by the RV model.150 In contrast, Panel C shows results when portfolio volatility is managed by

the EWMA model instead of the RV model. We follow Rickenberg (2020a) and fit the EWMA

150The different volatility targets do not only affect the volatility targeting approach, but also the assets’ weights,
since other volatility targets lead to other momentum crash indicators as shown in Section 3.5. We also examined
strategies where the different volatility targets were only used to determine the exposure to the strategy, where the
momentum crash indicator is still estimated with a volatility target of σtarget � 8%. Results of these approaches
were quite similar to the results presented here. In particular, this again shows that our switching approach is quite
robust against other definitions of the crash indicator δt as also shown in Section B.8.
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model to daily data and use the square root of time rule (SRTR) to obtain an estimate of the

portfolio’s monthly volatility. Rickenberg (2020a) shows that this model, although it is very

easy to implement, performs quite well.

Table LVII highlights that the volatility targeted momentum strategies are robust to other

choices of σtarget and the volatility model used to estimate portfolio risk. In all three cases,

volatility targeting significantly increases the Sharpe Ratio and the investors’ utility. In line with

our previous findings, the highest Sharpe Ratios and utility gains are found for the strategies that

combine the target volatility approach with the (systematic) tail risk weightings. As expected,

the strategy using a lower volatility target is significantly less risky but also exhibits a lower

return than the strategy using a higher volatility target. In total, both strategies produce similar

Sharpe Ratios and economic values. Similarly, using the EWMA model instead of the RV

model hardly affects the risk-return profile of the risk-managed momentum strategy and results

in Panel C are quite similar to the results in Tables X and XIV. Concluding, the volatility

targeting strategy used in our main part is also robust to other volatility targets and volatility

models.

B.10 Tail Risk Targeting Strategies

Results are so far based on strategies that combine a given weighting scheme with the volatility

targeting approach to manage portfolio risk. However, Rickenberg (2020a,b) shows that port-

folio risk can also be managed by targeting a constant level of tail risk, measured by VaR or

CVaR, where especially the CVaR targeting strategy produces a convincing risk-return profile.

Moreover, Rickenberg (2020a,b) finds that switching between volatility and CVaR targeting

can further enhance the risk-return profile. We chose the volatility targeting approach for our

main results for several reasons. First, volatility targeting is so far the main approach to man-

age portfolio risk. Second, when managing a portfolio’s monthly risk, the Realized Volatility

model is easy to understand and implement. Rickenberg (2020a) argues that managing a portfo-

lio’s monthly risk based on daily data is not straightforward and can become quite complicated.

Since risk-managed industry momentum is also highly relevant for practitioners, we focus on

the easy RV model. Third, Rickenberg (2020a,b) finds that CVaR targeting works well when
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Table LVII. Robustness Results: Different Volatility Targets and EWMA Model
This table shows performance results of volatility targeting strategies using volatility target levels of
σtarget � 5% and σtarget � 12% in Panel A and B as well as the EWMA volatility model in Panel C.
The industry momentum strategy uses 30 equally weighted US industries, the t � 12 to t � 1 ranking
period and a cut-off point of p � 30%. The description of the columns is given in Table XX.

Panel A: Volatility Targeting With RV Model and σtarget � 5%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.13 11.98 0.763 - - - - - - -
RV 8.37 10.70 0.782 0.34 0.173 0.36 0.075 0.16 0.180 0.39

Equal (TV) 8.34 7.37 1.131 6.23 4.067 5.82 4.516 5.62 3.469 5.12
RV (TV) 9.52 7.90 1.205 5.96 4.904 5.14 5.378 5.16 4.275 4.73

RSJ/Corr (TV) 9.34 7.04 1.328 7.41 6.354 7.46 6.803 7.17 5.552 6.86
RSJ/Down Corr (TV) 9.03 7.20 1.255 6.71 5.499 6.91 5.851 6.92 4.944 6.50
RSJ/Beta (TV) 9.51 7.21 1.320 7.38 6.254 7.85 6.644 7.56 5.582 7.35
RSJ/Down Beta (TV) 9.34 7.17 1.303 7.22 6.060 8.06 6.485 7.90 5.457 7.47
RSJ/CoSkew (TV) 8.49 7.15 1.187 5.79 4.705 5.76 5.221 5.80 4.281 5.34
RSJ/CoKurt (TV) 9.17 7.10 1.292 7.28 5.938 7.71 6.247 7.61 5.237 7.04
RSJ/LPM Beta (TV) 9.67 7.15 1.352 7.69 6.629 8.87 7.122 8.36 5.982 8.35
RSJ/HTCR Beta (TV) 9.26 7.04 1.315 7.20 6.200 8.02 6.644 7.55 5.442 7.34
RSJ/Tail Beta (TV) 9.45 7.39 1.278 7.19 5.762 6.96 6.247 6.76 5.107 6.44
RSJ/Tail Sens (TV) 9.35 7.06 1.324 7.35 6.308 7.46 6.803 7.13 5.590 6.70
RSJ/Tail Risk (TV) 9.44 7.38 1.279 7.12 5.779 6.79 6.247 6.63 5.098 6.19
RSJ/MES (TV) 9.72 7.22 1.347 7.52 6.563 8.63 7.043 8.00 5.958 8.17

Panel B: Volatility Targeting With RV Model and σtarget � 12%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.13 11.98 0.763 - - - - - - -
RV 8.37 10.70 0.782 0.34 0.173 0.36 0.075 0.16 0.180 0.39

Equal (TV) 20.02 17.68 1.132 6.23 4.067 5.82 4.516 5.62 3.469 5.12
RV (TV) 23.00 18.96 1.213 5.96 4.904 5.14 5.378 5.16 4.275 4.73

RSJ/Corr (TV) 23.10 16.87 1.369 7.59 6.552 6.66 7.043 6.22 5.916 6.08
RSJ/Down Corr (TV) 23.15 16.89 1.371 7.72 6.565 6.78 7.122 6.35 5.905 6.17
RSJ/Beta (TV) 23.16 16.93 1.369 7.66 6.541 6.91 7.043 6.43 5.927 6.27
RSJ/Down Beta (TV) 23.23 16.91 1.374 7.76 6.594 6.94 7.122 6.47 5.956 6.27
RSJ/CoSkew (TV) 22.71 16.90 1.344 7.34 6.283 6.50 6.803 6.18 5.709 5.93
RSJ/CoKurt (TV) 22.87 16.88 1.355 7.53 6.402 6.60 6.883 6.20 5.748 5.99
RSJ/LPM Beta (TV) 23.29 16.89 1.379 7.75 6.649 6.92 7.202 6.45 6.029 6.27
RSJ/HTCR Beta (TV) 23.12 16.91 1.367 7.62 6.530 6.69 7.043 6.27 5.926 6.11
RSJ/Tail Beta (TV) 23.15 16.98 1.363 7.76 6.488 7.05 7.043 6.61 5.860 6.31
RSJ/Tail Sens (TV) 23.17 16.83 1.377 7.69 6.631 6.78 7.122 6.34 5.994 6.18
RSJ/Tail Risk (TV) 23.02 16.95 1.358 7.67 6.434 7.00 6.963 6.53 5.816 6.34
RSJ/MES (TV) 23.20 16.91 1.373 7.68 6.583 6.88 7.122 6.41 5.975 6.27

Panel C: Volatility Targeting With EWMA Model and σtarget � 8%

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.13 11.98 0.763 - - - - - - -
RV 8.37 10.70 0.782 0.34 0.173 0.36 0.075 0.16 0.180 0.39

Equal (TV) 13.53 11.91 1.135 5.89 4.096 5.70 4.516 5.49 3.237 4.45
RV (TV) 15.51 12.75 1.216 5.88 4.981 5.38 5.378 5.41 4.075 4.52

RSJ/Corr (TV) 16.84 12.89 1.306 6.66 5.966 6.61 6.326 6.51 5.559 6.42
RSJ/Down Corr (TV) 15.92 13.06 1.219 5.90 5.018 7.01 5.221 7.07 4.919 7.28
RSJ/Beta (TV) 17.65 13.44 1.313 6.64 6.036 6.81 6.406 6.62 5.826 7.10
RSJ/Down Beta (TV) 16.51 13.23 1.248 5.97 5.329 7.32 5.693 7.60 5.241 7.23
RSJ/CoSkew (TV) 12.93 12.55 1.030 3.53 2.935 3.73 3.350 3.86 2.909 3.42
RSJ/CoKurt (TV) 16.45 12.87 1.278 6.64 5.670 6.54 5.851 6.55 5.374 6.54
RSJ/LPM Beta (TV) 17.69 13.31 1.329 6.76 6.210 7.25 6.644 7.24 6.017 7.24
RSJ/HTCR Beta (TV) 16.37 12.59 1.300 6.58 5.902 7.79 6.326 7.66 5.478 7.36
RSJ/Tail Beta (TV) 17.49 13.88 1.260 6.28 5.444 6.07 5.851 6.03 5.321 6.13
RSJ/Tail Sens (TV) 16.70 12.83 1.302 6.65 5.920 6.56 6.326 6.46 5.551 6.05
RSJ/Tail Risk (TV) 17.61 13.85 1.272 6.35 5.575 6.01 6.009 6.02 5.345 6.07
RSJ/MES (TV) 18.18 13.44 1.353 6.95 6.465 7.98 6.963 7.76 6.266 7.98
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risk is estimated with conditional parametric models. However, CVaR targeting performs quite

poorly when CVaR is estimated unconditionally. Since this paper focuses on non-parametric

approaches to estimate risk, using the RV model is appealing since this model quickly adapts to

new market environments. In contrast, estimating CVaR based on the non-parametric Histori-

cal Simulation (HS) approach does not work well in a portfolio risk management setting, since

the HS-CVaR typically adjusts quite slowly to changing market environments. Fourth, Rick-

enberg (2020a) finds that the benefits of tail risk targeting are lower for industry momentum.

Fifth, since our different weighting schemes use many different risk measures and also switch

between univariate and systematic tail risk weightings, we do not want to further complicate

the risk-managed portfolio strategies and rely on the simplest model to estimate portfolio risk.

Sixth, our risk weightings make momentum returns more normal. Tail risk targeting is typi-

cally more important for assets that strongly deviate from the normal distribution. For almost

normally distributed returns, the differences between volatility and tail risk targeting are only

small. As stated above, the left tail risk of industry momentum is much lower than for the stock

momentum strategy used by Rickenberg (2020a). This holds especially for the risk weighted

portfolios. Nevertheless, as a robustness check, this section examines the CVaR targeting ap-

proach of Rickenberg (2020a,b) applied to the industry momentum strategies.

In Table LVIII, we show results for the tail risk targeting strategies that use CVaR estimated

with Historical Simulation. The HS estimator for CVaR is also used by Atilgan et al. (2019),

Atilgan et al. (2020) and Bi and Zhu (2020). Panel A shows results for the portfolios that

use CVaR targeting in every month, whereas Panel B shows the portfolios that switch between

volatility and CVaR targeting based on the crash indicator of Section 3.5. Rickenberg (2020a,b)

shows that using CVaR targeting in every month is typically too conservative and that switching

between volatility and CVaR targeting can further enhance the portfolio’s risk-return profile.

Since we use the same crash indicator as for our strategies that switch between the univariate

and systematic risk weightings, an industry’s weight is given by the industry’s univariate risk

and the portfolio’s volatility when no crash is expected (δt � 0). In contrast, when a momentum

crash in month t is expected (δt � 1), the industry’s weight is given by the industry’s systematic

514



tail risk and the portfolio’s CVaR. Table LVIII shows that our main results are also robust when

the tail risk targeting overlay is used, where we again find the best results when this approach is

combined with the (systematic) tail risk weightings. In particular, we find slightly better results

for the strategy that switches between volatility and CVaR targeting. This finding is in line with

Rickenberg (2020a,b) who also finds that switching between volatility and CVaR targeting is

superior to using CVaR in every month.

Table LVIII. Robustness Results: Tail Risk Targeting Using Historical Simulation
This table shows performance results of risk targeting strategies using momentum’s tail risk measured
by CVaR estimated with Historical Simulation. The momentum strategy uses 30 equally weighted US
industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. Panel A shows results for
the strategy that uses CVaR targeting in every month. Panel B shows results for the strategy that switches
between volatility and CVaR targeting. The description of the columns is given in Table XX.

Panel A: CVaR Targeting Using Historical Simulation

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.16 11.92 0.769 - - - - - - -
RV 8.42 10.63 0.792 0.58 0.219 0.49 0.150 0.25 0.203 0.45

Equal (TV) 13.74 12.52 1.097 5.03 3.586 4.97 4.048 4.85 3.346 4.47
RV (TV) 15.31 13.38 1.144 4.72 4.093 4.09 4.516 4.11 3.816 3.87

RSJ/Corr (TV) 16.07 12.10 1.329 7.16 6.123 7.00 6.565 6.63 5.886 6.52
RSJ/Down Corr (TV) 15.63 12.35 1.265 6.56 5.427 7.06 5.772 6.91 5.316 6.67
RSJ/Beta (TV) 16.10 12.22 1.317 7.09 5.995 7.21 6.406 6.86 5.800 6.68
RSJ/Down Beta (TV) 15.89 12.29 1.293 6.84 5.735 7.28 6.089 7.14 5.606 6.68
RSJ/CoSkew (TV) 14.99 12.25 1.224 5.97 4.971 5.91 5.457 5.80 4.770 5.60
RSJ/CoKurt (TV) 15.66 12.30 1.273 6.69 5.516 6.82 5.851 6.68 5.375 6.26
RSJ/LPM Beta (TV) 16.27 12.18 1.335 7.26 6.192 7.49 6.644 7.10 5.991 6.89
RSJ/HTCR Beta (TV) 15.96 12.15 1.314 6.97 5.958 6.92 6.406 6.59 5.742 6.39
RSJ/Tail Beta (TV) 15.90 12.30 1.293 6.94 5.724 7.03 6.168 6.63 5.477 6.49
RSJ/Tail Sens (TV) 16.04 12.05 1.331 7.13 6.147 7.03 6.644 6.61 5.848 6.53
RSJ/Tail Risk (TV) 15.94 12.24 1.302 7.02 5.828 6.99 6.326 6.62 5.575 6.50
RSJ/MES (TV) 16.34 12.17 1.342 7.29 6.271 7.51 6.803 6.97 6.053 7.02

Panel B: Volatility and CVaR Targeting Using Historical Simulation

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.16 11.92 0.769 - - - - - - -
RV 8.42 10.63 0.792 0.58 0.219 0.49 0.150 0.25 0.203 0.45

Equal (TV) 13.27 11.96 1.110 5.75 3.724 5.06 4.126 5.00 3.141 4.39
RV (TV) 15.12 12.78 1.182 5.49 4.517 4.60 4.985 4.63 3.928 4.25

RSJ/Corr (TV) 15.48 11.38 1.360 7.79 6.492 7.66 6.963 7.20 5.932 6.97
RSJ/Down Corr (TV) 14.96 11.68 1.281 7.01 5.614 7.45 5.851 7.16 5.220 6.98
RSJ/Beta (TV) 15.46 11.49 1.345 7.70 6.321 7.81 6.724 7.40 5.816 7.09
RSJ/Down Beta (TV) 15.23 11.59 1.314 7.39 5.982 7.69 6.326 7.49 5.554 6.95
RSJ/CoSkew (TV) 14.39 11.62 1.238 6.44 5.138 6.33 5.536 6.22 4.624 5.88
RSJ/CoKurt (TV) 15.07 11.60 1.299 7.25 5.814 7.30 6.089 7.07 5.372 6.58
RSJ/LPM Beta (TV) 15.59 11.45 1.362 7.88 6.511 8.06 6.963 7.61 5.987 7.26
RSJ/HTCR Beta (TV) 15.31 11.42 1.341 7.58 6.278 7.44 6.724 7.05 5.732 6.71
RSJ/Tail Beta (TV) 15.29 11.61 1.317 7.56 6.009 7.62 6.485 7.13 5.460 6.87
RSJ/Tail Sens (TV) 15.46 11.34 1.363 7.79 6.525 7.73 7.043 7.20 5.890 6.97
RSJ/Tail Risk (TV) 15.32 11.55 1.326 7.63 6.110 7.66 6.565 7.20 5.554 6.93
RSJ/MES (TV) 15.65 11.45 1.367 7.88 6.567 8.14 7.043 7.49 6.035 7.47

In Table LIX, we repeat the examination of Table LVIII, but we estimate CVaR based on the

EWMA-FHS approach combined with the SRTR (see Rickenberg (2020a) for further details).
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Results are quite similar to the results when CVaR is estimated with Historical Simulation and

are also in line with the results when portfolio risk is estimated with the RV model. Further, in

line with Rickenberg (2020a,b), we find that using the EWMA-FHS approach produces slightly

higher risk-adjusted returns and higher utility gains than the HS approach. Thus, managing a

portfolio’s risk based on a dynamic risk model is typically advantageous to managing a portfo-

lio’s risk with an unconditional risk model.

Table LIX. Robustness Results: Tail Risk Targeting Using Filtered Historical Simulation
This table shows performance results of risk targeting strategies using momentum’s tail risk measured by
CVaR estimated with Filtered Historical Simulation. The momentum strategy uses 30 equally weighted
US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. Panel A shows results
for the strategy that uses CVaR targeting in every month. Panel B shows results for the strategy that
switches between volatility and CVaR targeting. The description of the columns is given in Table XX.

Panel A: CVaR Targeting Using Filtered Historical Simulation

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.16 11.92 0.769 - - - - - - -
RV 8.42 10.63 0.792 0.58 0.219 0.49 0.150 0.25 0.203 0.45

Equal (TV) 13.59 12.11 1.122 5.37 3.855 5.30 4.282 5.08 3.145 4.31
RV (TV) 15.84 13.11 1.208 5.41 4.794 4.76 5.221 4.76 4.080 4.10

RSJ/Corr (TV) 16.29 11.99 1.359 7.25 6.462 6.87 6.883 6.58 5.920 6.13
RSJ/Down Corr (TV) 15.60 12.39 1.259 6.17 5.373 6.27 5.300 5.14 5.087 6.02
RSJ/Beta (TV) 16.36 12.06 1.356 7.27 6.429 6.89 6.883 6.59 5.910 6.16
RSJ/Down Beta (TV) 15.93 12.20 1.306 6.73 5.883 6.86 6.089 6.55 5.493 6.15
RSJ/CoSkew (TV) 15.36 11.93 1.287 6.54 5.672 6.51 6.089 6.28 5.044 5.78
RSJ/CoKurt (TV) 15.87 12.24 1.297 6.67 5.783 6.36 5.930 5.97 5.400 5.78
RSJ/LPM Beta (TV) 16.38 12.05 1.360 7.31 6.466 7.07 6.883 6.81 5.945 6.28
RSJ/HTCR Beta (TV) 16.19 11.97 1.352 7.17 6.388 6.79 6.883 6.50 5.819 6.01
RSJ/Tail Beta (TV) 16.22 12.12 1.338 7.22 6.225 7.08 6.724 6.71 5.647 6.23
RSJ/Tail Sens (TV) 16.37 11.87 1.379 7.43 6.682 7.29 7.202 6.85 6.034 6.40
RSJ/Tail Risk (TV) 16.27 12.11 1.344 7.28 6.294 7.00 6.803 6.65 5.706 6.19
RSJ/MES (TV) 16.48 12.00 1.373 7.42 6.606 7.22 7.122 6.79 6.038 6.45

Panel B: Volatility and CVaR Targeting Using Filtered Historical Simulation

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Equal 9.16 11.92 0.769 - - - - - - -
RV 8.42 10.63 0.792 0.58 0.219 0.49 0.150 0.25 0.203 0.45

Equal (TV) 13.44 11.77 1.142 6.18 4.081 5.80 4.516 5.59 3.457 4.97
RV (TV) 15.36 12.63 1.216 5.89 4.881 5.00 5.300 5.02 4.199 4.46

RSJ/Corr (TV) 15.99 11.63 1.375 7.97 6.652 7.55 7.043 7.20 6.067 6.68
RSJ/Down Corr (TV) 15.24 12.04 1.266 6.72 5.467 6.89 5.300 5.26 5.169 6.67
RSJ/Beta (TV) 16.08 11.73 1.372 7.99 6.607 7.51 7.043 7.17 6.045 6.65
RSJ/Down Beta (TV) 15.59 11.84 1.316 7.34 6.006 7.50 6.168 7.07 5.598 6.67
RSJ/CoSkew (TV) 14.78 11.55 1.279 6.94 5.595 6.91 6.009 6.69 4.999 6.20
RSJ/CoKurt (TV) 15.51 11.87 1.307 7.29 5.903 6.99 6.009 6.45 5.495 6.31
RSJ/LPM Beta (TV) 16.09 11.69 1.376 8.04 6.661 7.76 7.043 7.47 6.100 6.83
RSJ/HTCR Beta (TV) 15.86 11.61 1.366 7.85 6.547 7.34 6.963 7.02 5.933 6.45
RSJ/Tail Beta (TV) 15.87 11.79 1.346 7.90 6.322 7.68 6.803 7.25 5.739 6.69
RSJ/Tail Sens (TV) 16.02 11.50 1.392 8.12 6.841 7.90 7.362 7.39 6.152 6.90
RSJ/Tail Risk (TV) 15.96 11.79 1.353 7.97 6.404 7.60 6.883 7.20 5.794 6.66
RSJ/MES (TV) 16.20 11.65 1.390 8.16 6.813 7.99 7.282 7.46 6.207 7.08

In total, results in this section show that our (systematic) tail risk weighting approach can

also be combined with tail risk targeting strategies. As before, the best risk-return profile is
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found for the strategies that combine the (systematic) tail risk weighting with the tail risk target-

ing approach. However, using CVaR targeting or the strategy that switches between volatility

and CVaR targeting does not further enhance the risk-adjusted performance compared to the

volatility targeting approach based on the RV model. As mentioned above, there are several

possible explanations for this finding. First, Rickenberg (2020a,b) shows that tail risk targeting

works best when risk is managed by conditional and advanced forecasting models. However,

this section only shows results for simple models that are easy to implement. Second, Rick-

enberg (2020a,b) finds that switching between volatility and CVaR targeting works best when

volatility is also estimated conditionally. Results in this section are based on strategies that

switch between the simple RV model and simple CVaR models. Third, Rickenberg (2020a,b)

shows that tail risk targeting works best for portfolios that strongly deviate from normality and

have a high left tail risk. As stated above, the industry momentum’s left tail risk is signifi-

cantly lower than the left tail risk of the individual stock based momentum strategy. This holds

especially for the (systematic) tail risk weighted strategies, since this weighting approach sig-

nificantly reduces left tail risk and makes returns “more normal”. Thus, differences between tail

risk targeting and volatility targeting are expected to be low for industry momentum, especially

for the (systematic) tail risk weighted strategies. Similarly, Rickenberg (2020a) also finds that

the benefits of targeting the industry momentum portfolio’s tail risk are lower than the benefits

found for the individual stock based momentum strategy. Nevertheless, results in this section

show that our approach is robust to strategies that manage the portfolio’s tail risk. Future re-

search could apply the (systematic) tail risk weightings, combined with the tail risk targeting

overlay, to the individual stock based momentum portfolio.

B.11 Portfolio Alpha and Spanning Tests

Our performance evaluations were so far based on the strategies’ Sharpe Ratio and economic

value. Following Daniel and Moskowitz (2016, Sec. 4.4), we next “conduct spanning tests with

respect to the other momentum strategies and other factors”. A similar approach has also been

used by Moreira and Muir (2017) to assess the profitability of volatility managed portfolios. The

performance evaluation based on the strategies’ alpha has several disadvantages (Boguth et al.,
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2011, Cederburg and O’Doherty, 2016, Cederburg et al., 2020, Schneider et al., 2020). For ex-

ample, Boguth et al. (2011) and Cederburg and O’Doherty (2016) state that the unconditional

alpha does not account for volatility timing that is an important component of dynamic trading

strategies as examined in this paper. Further, Schneider et al. (2020) show that the usual alpha

does not account for the (co)skewness preferences of investors. For these reasons, the economic

value approach used in the main part is more realistic and more powerful than the simple portfo-

lio alpha. However, due to the importance of portfolio alphas in the financial literate, we show

in Table LX annualized percentage alphas and the corresponding t-statistics for several span-

ning tests. We calculate the alpha with respect to the CAPM, the Fama and French (1993) three

factor model and the Carhart (1997) four factor model. In order to consider the observation that

low risk strategies are typically highly exposed to the investment and profitability factor, we also

regressed the returns on the Fama and French (2016) five factor model. Since results were quite

similar and the returns of the five factor model are only available from 1963 onwards, these

results are omitted. Further, to control for the performance of the different weighting schemes,

we follow Daniel and Moskowitz (2016, Table 8) and regress the strategies’ returns on the four

factor model expanded by the returns of the remaining momentum strategies. For example, we

regress the (systematic) tail risk weighted strategy’s returns on the four factor model expanded

by the returns of the equally weighted strategy’s returns. Thus, we control for market, size,

value, stock momentum and industry momentum. By doing this, we extract the value of the

(systematic) tail risk weighting by controlling for the performance of well established factors

that include the stock momentum factor and the performance of the equally weighted industry

momentum strategy. The same procedure is repeated for the remaining weighting schemes. Be-

fore running the regressions, we follow Daniel and Moskowitz (2016) and Moreira and Muir

(2017) and rescale all strategies to the same level of volatility.

In Panel A, we show results for the strategies without volatility targeting. Thus, Panel A

contains the risk-adjusted performance of the different weighting schemes and shows if the per-

formance of one strategy is captured by the performance of a strategy with another weighting

scheme or other factors. We find that classical factor models cannot explain the returns of indus-
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Table LX. Robustness Results: Spanning Tests
This table shows portfolio alphas and t-statistics for the non-managed and risk-managed industry mo-
mentum portfolios using 30 equally weighted US industries, the t � 12 to t � 1 ranking period and a
cut-off point of p � 30%. The portfolio alphas are the annualized and percentage intercepts of a regres-
sion of the industry momentum returns using different weighting schemes on several other portfolios.
t-statistics are given in parentheses. Panel A shows results for the strategies without volatility targeting,
whereas Panels B and C use the strategies that additionally use volatility targeting. Returns are regressed
on the CAPM, the Fama and French (1993) three factor model (FF3) or the Carhart (1997) four factor
model (FF4). The four factor model is further extended by including returns of the non-managed and
risk-managed industry momentum strategies. Equal stands for the industry momentum strategy using
equal-weights, Vol stands for the industry momentum strategy using volatility weights, whereas Tail is
the strategy that uses the (systematic) tail risk weighting. Rem means that the remaining two weighting
schemes are included in the regression. (TV) means that a strategy additionally uses the target volatility
overlay. Following Daniel and Moskowitz (2016) and Moreira and Muir (2017), we rescale all strategies
to the same annualized volatility of 19% before running the regressions. Alphas with a corresponding
t-statistic that is higher than 1.96 are given in bold. Alphas with a corresponding t-statistic that is smaller
than -1.96 are given in red.

Panel A: Without Volatility Targeting

Model CAPM FF3 FF4 FF4 + Equal FF4 + Vol FF4 + Tail FF4 + Rem

Equal 17.679 18.868 7.387 - 1.248 -2.737 -1.607
(8.475) (9.004) (5.064) - (1.462) (-3.003) (-2.149)

RV 17.977 18.997 6.781 0.998 - -2.284 -0.883
(8.812) (9.316) (4.913) (1.280) - (-2.516) (-1.073)

Tail Risk 24.365 25.067 13.574 6.523 6.882 - 6.103
(10.614) (11.014) (8.721) (6.882) (7.108) - (6.892)

Panel B: With Volatility Targeting

Model CAPM FF3 FF4 FF4 + Equal FF4 + Vol FF4 + Tail FF4 + Rem

Equal (TV) 24.134 24.879 14.233 6.878 8.014 3.088 3.807
(9.702) (9.983) (7.256) (5.936) (5.169) (2.070) (2.721)

RV (TV) 25.525 26.097 15.071 8.872 8.051 4.926 6.141
(9.823) (10.110) (7.699) (6.424) (5.570) (3.222) (4.257)

Tail Risk (TV) 29.376 29.926 19.605 12.545 13.140 5.552 12.243
(11.550) (11.780) (9.871) (8.821) (8.345) (4.455) (8.599)

Panel C: With Volatility Targeting and Controlling for Volatility Targeting

Model FF4 + Equal(TV) FF4 + Vol(TV) FF4 + Tail(TV) FF4 + Rem(TV) FF4 + Rem
+ Equal(TV)

FF4 + Rem
+ Vol(TV)

FF4 + Rem
+ Tail(TV)

Equal (TV) - 0.758 -1.862 -1.994 - -1.871 -1.393
- (1.027) (-2.318) (-3.166) - (-2.845) (-2.015)

RV (TV) 2.480 - 0.275 1.689 1.423 - 1.220
(3.313) - (0.288) (2.259) (1.925) - (1.451)

Tail Risk (TV) 5.845 6.081 - 5.453 5.627 5.791 -
(6.859) (6.027) - (6.519) (6.827) (6.182) -

try momentum, regardless of the used weighting scheme. Annualized CAPM alphas range from

17.679% of the equally weighted momentum strategy to 24.365% of the (systematic) tail risk

weighted strategy with corresponding t-statistics of 8.475 and 10.614. In particular, we find that

industry momentum cannot be explained by stock momentum as can be seen by the high and

statistically significant four factor alphas. This finding is in line with the results of Moskowitz

and Grinblatt (1999) who also find that industry momentum is not subsumed by stock momen-
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tum. Interestingly, the alphas of the equally and volatility weighted momentum strategies are

not significantly positive once it is controlled for the returns of another momentum strategy. In

particular, when we control for the returns of the (systematic) tail risk weighted strategy, the

portfolio alphas become even significantly negative with t-statistics of �2.737 and �2.284 for

the equally and volatility weighted strategy, respectively. In contrast, the (systematic) tail risk

weighted strategy’s performance is not captured by the equally and volatility weighted strate-

gies. Even when we control for both strategies simultaneously, the alpha of 6.103% is still

economically high with a t-statistics of 6.892. In Panels B and C, we show results for the strate-

gies that additionally use volatility targeting. Panel B shows results when it is controlled for the

same portfolios as in Panel A. Thus, in this case, we do not control for the performance of the

volatility targeting strategy, but for the industry momentum strategies using the different weight-

ing schemes. In line with our previous findings, all strategies exhibit statistically significant and

highly positive alphas, regardless of the weighting scheme. The highest alphas are obtained for

the strategies that use the (systematic) tail risk weighting. This finding is in line with our previ-

ous findings that managing portfolio risk is more important than managing individual asset risk

and that the best risk-return profile is found for the strategies that combine volatility targeting

with the (systematic) tail risk weighting. Furthermore, results in Panel B are also in line with

the findings of Daniel and Moskowitz (2016) and Moreira and Muir (2017) for the individual

stock based momentum strategy. For example, Moreira and Muir (2017, Table 1) find an alpha

of 10.52% for the volatility targeted momentum strategy with respect to the four factor model

and Daniel and Moskowitz (2016, Table 8) find an alpha of 14.27% for the volatility targeted

momentum strategy with respect to the market and the non-managed momentum strategy. We

find alphas of 14.233% and 6.878% when we control for the stock momentum strategy or the

stock and industry momentum strategies, respectively. In Panel C, we show results when we

additionally control for the strategies that use volatility targeting. The strategy that uses equal-

weights does not produce a significantly positive alpha in any case. Thus, the performance of

this strategy can be explained by the performance of the remaining strategies. Similarly, the

alpha of the volatility weighted strategy with volatility targeting is mostly insignificant, once
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we control for the (systematic) tail risk weighted strategy. In contrast, the strategy that uses the

(systematic) tail risk weighting combined with volatility targeting produces economically high

and statistically significant alphas in all cases with t-statistics higher than 6.027. Thus, combin-

ing the (systematic) tail risk weighting with volatility targeting produces returns that cannot be

explained by volatility targeting alone. In total, results of Table LX support our earlier findings

and highlight that the (systematic) tail risk weighting is superior to the remaining weighting

schemes. In particular, the combination of the (systematic) tail risk weighted strategies with the

volatility targeting approach produces statistically significant and economically large alphas.

B.12 Portfolio Performance: Additional Benchmarks

Our main results show that managing portfolio risk is more important than managing individual

asset risk and that the combination of the (systematic) tail risk weighting with the volatility

targeting approach produces the best risk-return profile. The previous section shows that the

(systematic) risk weighting, combined with volatility targeting, is superior to the remaining

strategies, even when we control for the performance of volatility targeting combined with the

equal and volatility weighting. This has been shown by regressions that control for the im-

pact of volatility targeting and other weighting schemes. Another method to assess the benefits

of combining the (systematic) tail risk weighting with the target volatility approach is to cal-

culate the Jobson and Korkie (1981) and Diebold and Mariano (1995) tests with respect to

other benchmark portfolios. Our main results calculate these tests with respect to the equally

weighted portfolio without volatility targeting, i.e. we test if the (systematic) tail risk weighted

strategies, with or without volatility targeting, produce significantly higher Sharpe Ratios and

utilities than the strategy that ignores all kinds of risk. In this section, we repeat this examination

for other benchmark strategies that also use volatility targeting, i.e. we assess if the (systematic)

tail risk weighted strategies with volatility targeting produce significantly higher Sharpe Ratios

and utilities than other weighting schemes that also use volatility targeting.

Table LXI shows additional performance results for the strategies that use the target volatil-

ity overlay, where the Jobson and Korkie (1981) and Diebold and Mariano (1995) tests are

calculated with respect to two other benchmarks. In Panel A, we calculate the tests with respect
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Table LXI. Robustness Results: Performance Results With Alternative Benchmarks
This table shows performance results of risk targeting strategies for the momentum strategy using 30
equally weighted US industries, the t� 12 to t� 1 ranking period and a cut-off point of p � 30%. The
description of the columns is given in Table XX, but we use other benchmarks to calculate the Jobson
and Korkie (1981) and Diebold and Mariano (1995) tests. Panel A shows results for the tests that use
the equally weighted portfolio with volatility targeting as benchmark. Panel B shows results for the tests
that use the volatility weighted portfolio with volatility targeting as benchmark.

Panel A: Equally Weighted Portfolio With Target Volatility Overlay As Benchmark

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Eq 9.13 11.98 0.763 -6.23 -3.921 -5.82 -4.336 -5.62 -3.455 -5.12
RV 8.37 10.70 0.782 -4.83 -3.754 -5.04 -4.264 -4.87 -3.271 -4.18

Eq (TV) 13.35 11.79 1.133 - - - - - - -
RV (TV) 15.28 12.64 1.209 1.58 0.807 1.70 0.828 1.73 0.834 1.73

RSJ/Corr (TV) 15.56 11.29 1.378 4.89 2.627 4.37 2.657 4.33 2.674 4.33
RSJ/Down Corr (TV) 15.12 11.50 1.315 3.73 1.958 3.18 1.891 2.80 2.082 3.43
RSJ/Beta (TV) 15.57 11.41 1.364 4.65 2.480 4.10 2.503 4.03 2.573 4.08
RSJ/Down Beta (TV) 15.41 11.43 1.348 4.39 2.309 3.63 2.273 3.44 2.412 3.70
RSJ/CoSkew (TV) 14.52 11.46 1.267 2.92 1.435 2.86 1.434 2.84 1.524 2.95
RSJ/CoKurt (TV) 15.14 11.46 1.322 3.85 2.029 3.19 1.968 2.92 2.129 3.34
RSJ/LPM Beta (TV) 15.72 11.31 1.390 5.17 2.758 4.44 2.811 4.42 2.804 4.35
RSJ/HTCR Beta (TV) 15.40 11.29 1.364 4.64 2.477 4.10 2.503 4.10 2.500 3.96
RSJ/Tail Beta (TV) 15.43 11.52 1.339 4.35 2.206 4.15 2.273 4.13 2.249 3.99
RSJ/Tail Sens (TV) 15.56 11.24 1.385 5.07 2.701 4.66 2.734 4.65 2.675 4.52
RSJ/Tail Risk (TV) 15.50 11.47 1.351 4.57 2.339 4.37 2.427 4.35 2.384 4.14
RSJ/MES (TV) 15.77 11.33 1.392 5.16 2.780 4.72 2.888 4.67 2.843 4.61

Panel B: Volatility Weighted Portfolio With Target Volatility Overlay As Benchmark

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Eq 9.13 11.98 0.763 -5.96 -4.693 -5.14 -5.125 -5.16 -4.289 -4.73
RV 8.37 10.70 0.782 -6.82 -4.528 -5.73 -5.054 -5.47 -4.109 -5.19

Eq (TV) 13.35 11.79 1.133 -1.58 -0.801 -1.70 -0.822 -1.73 -0.836 -1.73
RV (TV) 15.28 12.64 1.209 - - - - - - -

RSJ/Corr (TV) 15.56 11.29 1.378 2.66 1.807 2.75 1.815 2.70 1.821 2.82
RSJ/Down Corr (TV) 15.12 11.50 1.315 1.68 1.142 1.66 1.055 1.39 1.228 1.85
RSJ/Beta (TV) 15.57 11.41 1.364 2.49 1.661 2.48 1.663 2.41 1.715 2.59
RSJ/Down Beta (TV) 15.41 11.43 1.348 2.23 1.491 2.17 1.434 2.00 1.553 2.32
RSJ/CoSkew (TV) 14.52 11.46 1.267 0.91 0.624 1.00 0.602 0.98 0.676 1.05
RSJ/CoKurt (TV) 15.14 11.46 1.322 1.77 1.213 1.79 1.131 1.56 1.276 1.95
RSJ/LPM Beta (TV) 15.72 11.31 1.390 2.88 1.936 2.81 1.968 2.77 1.947 2.87
RSJ/HTCR Beta (TV) 15.40 11.29 1.364 2.43 1.657 2.51 1.663 2.50 1.643 2.49
RSJ/Tail Beta (TV) 15.43 11.52 1.339 2.21 1.389 2.41 1.434 2.36 1.394 2.44
RSJ/Tail Sens (TV) 15.56 11.24 1.385 2.80 1.880 2.88 1.891 2.87 1.821 2.87
RSJ/Tail Risk (TV) 15.50 11.47 1.351 2.40 1.520 2.53 1.586 2.50 1.532 2.56
RSJ/MES (TV) 15.77 11.33 1.392 2.90 1.958 2.87 2.044 2.85 1.985 2.94

to the equally weighted portfolio with target volatility overlay, i.e. we control for the perfor-

mance of the volatility targeting approach but ignore the risks of the individual assets. In Panel

B, we use the volatility weighted strategy with target volatility overlay as benchmark, i.e. we

control for volatility managing at the individual asset and portfolio level. Results in Table LXI

confirm the findings of the previous section. The (systematic) tail risk weightings outperform

the other two weighting schemes, even when we control for the impact of the target volatil-

ity overlay. Thus, although volatility targeting is more important than risk weighting, results in
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Table LXI demonstrate that our (systematic) tail risk weighting approach still produces econom-

ically high and statistically significant performance gains, even when these weighting schemes

are combined with the target volatility strategy. Thus, investors who time market risk by the

target volatility strategy should additionally readjust their asset allocation based on the assets’

(systematic) tail risk.

B.13 Long-Only Strategies

In this section, we follow Korajczyk and Sadka (2004) and Clare et al. (2016, Table 5) and focus

on the long-only strategy that invests in the (risk-managed) winners portfolio. Focusing on the

winners portfolio is advantageous from a practical view since many investors have short-sale

constraints and shorting the losers portfolio typically generates high transaction costs (Kora-

jczyk and Sadka, 2004, Lesmond et al., 2004). Thus, long-only portfolios are more relevant for

practitioners and most anomalies are investable via “smart beta” ETFs (Blitz et al., 2019). Fur-

ther, the profitability of industry momentum strategies is mainly driven by the winners portfolio

(Behr et al., 2012, Moskowitz and Grinblatt, 1999, O’Neal, 2000).151 We compare our (system-

atic) tail risk weighted strategy with the frequently used mean-variance and minimum variance

approaches as well as with the equally weighted strategy using all industries (DeMiguel et al.,

2009a,b, Jagannathan and Ma, 2003, Kirby and Ostdiek, 2012, Zakamulin, 2015). As in Kirby

and Ostdiek (2012), we estimate the mean-variance portfolio in a way that the equally weighted

portfolio’s mean is targeted. Kirby and Ostdiek (2012) show that this strategy produces more

reliable and less extreme portfolio weights than the method used by DeMiguel et al. (2009b).

Results for these strategies are shown in Table LXII where we use the 49 equally weighted US

industry portfolios. The Jobson and Korkie (1981) test statistic and the economic value are

calculated with respect to the mean-variance portfolio.

Table LXII shows that using the equally weighted 49 industries clearly underperforms all

other weighting schemes that incorporate the industries’ risk. This is in line with Harvey et al.

151This results also holds for the country momentum strategy, i.e. the profitability of country momentum is mainly
driven by the winners portfolio (Bhojraj and Swaminathan, 2006, Chan et al., 2000). Interestingly, this observation
is opposed to the individual stock based momentum strategy, where the profitability is mainly driven by shorting
(small and illiquid) loser stocks (Hong et al., 2000, Lesmond et al., 2004).
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Table LXII. Performance of Long-Only Portfolio Strategies Using 49 Industries
This table shows performance results of the equally weighted, mean-variance and minimum variance
strategies applied to 49 equally weighted US industries as well as the equally weighted and risk weighted
winners portfolios using the t� 12 to t� 1 ranking period and p � 30%. The description of the columns
is given in Table XX.

Performance Results: Long-Only Portfolios

Model Return Volatility SR zJK ∆γ�5
MV DM-test ∆γ�5

CRRA DM-test ∆l�2
LA DM-test

Mean-Variance (All) 14.39 20.67 0.696 - - - - - - -
Minimum-Variance (All) 13.73 19.54 0.703 0.49 0.057 0.11 0.000 -0.07 0.099 0.23
Equal (All) 13.48 24.49 0.550 -6.35 -2.383 -3.69 -2.374 -4.36 -2.754 -5.25

Equal (Winners) 18.87 24.04 0.785 2.08 1.822 2.08 1.586 2.06 0.997 1.29
RV (Winners) 18.78 22.67 0.828 3.53 2.528 3.26 2.273 3.20 1.703 2.46

RSJ/Corr (Winners) 20.51 23.43 0.875 4.51 3.426 3.41 3.042 3.61 2.391 3.06
RSJ/Down Corr (Winners) 20.58 23.54 0.874 4.42 3.400 3.42 3.042 3.55 2.473 3.02
RSJ/Beta (Winners) 20.39 23.56 0.865 4.34 3.253 3.21 2.888 3.36 2.257 2.79
RSJ/Down Beta (Winners) 20.35 23.54 0.865 4.30 3.234 3.18 2.888 3.31 2.316 2.80
RSJ/CoSkew (Winners) 20.37 24.58 0.829 2.96 2.603 2.92 2.580 3.05 2.097 2.27
RSJ/CoKurt (Winners) 20.45 23.47 0.871 4.32 3.355 3.30 2.965 3.53 2.309 2.95
RSJ/LPM Beta (Winners) 20.50 23.65 0.867 4.39 3.276 3.16 2.965 3.32 2.363 2.82
RSJ/HTCR Beta (Winners) 20.57 23.63 0.870 4.40 3.345 3.17 2.888 3.37 2.353 2.86
RSJ/Tail Beta (Winners) 20.12 23.07 0.872 4.39 3.346 3.44 3.042 3.53 2.365 2.89
RSJ/Tail Sens (Winners) 20.41 23.26 0.878 4.43 3.467 3.13 3.042 3.28 2.397 2.81
RSJ/Tail Risk (Winners) 20.09 23.09 0.870 4.30 3.307 3.29 2.965 3.37 2.343 2.74
RSJ/MES (Winners) 20.44 23.51 0.869 4.37 3.321 2.99 2.965 3.14 2.333 2.65

(2018, Exhibit 18) who find a negative risk-return relation for industries. We further find only

minor differences between the mean-variance and minimum variance approach. A possible

explanation for the small difference between both approaches could be the use of industry port-

folios instead of individual stocks, which reduces estimation risk of the mean return. Further,

differences among industries’ mean returns are typically small, which reduces the influence

of incorporating mean returns in the portfolio optimization process. Moskowitz and Grin-

blatt (1999, p. 1251) also find “little cross-sectional variation in our industry sample means”

(see also Pan et al. (2004, Table 1)). Interestingly, buying only the winner industries instead

of all 49 industries significantly enhances the risk-adjusted and raw return. Even the equally

weighted winners portfolio clearly outperforms the mean-variance and minimum variance port-

folios. Thus, as argued in Section 3.2.4, incorporating an estimate of the assets’ relative mean is

advantageous compared to approaches that use an absolute mean estimate or totally ignore any

information on the assets’ performance. Furthermore, the equally weighted winners portfolio is

clearly outperformed by the risk weighted winners portfolios, where the best risk-return profile

is obtained by the (systematic) tail risk weighted winners. However, the volatility weighted
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winners portfolio only slightly underperforms the (systematic) tail risk weighted winners port-

folios. In line with Table VII, this again highlights that volatility weighting is an appealing

approach to manage a long-only portfolio’s risk as frequently shown in the literature (Fleming

et al., 2001, 2003, Han, 2005, Kirby and Ostdiek, 2012). However, the benefits of volatility

weighting do not translate to long-short strategies, since volatility is a symmetric risk measure

and also enhances the performance of the short leg. Furthermore, the good performance of the

risk weighted winners portfolios for the industry data set is striking, since earlier studies find

that risk based portfolio allocations applied to industries are difficult to use (Kirby and Ost-

diek, 2012, Zakamulin, 2015). For example, Zakamulin (2015, p. 96) use an inverse volatility

weighting scheme combined with a volatility targeting approach applied to industry portfolios

and conclude that “this dataset is notorious for being very difficult to use in portfolio optimiza-

tion [...] and moreover, to date, no asset pricing model can explain the cross-section of returns

on industry-sorted portfolios.” Chang et al. (2013, Sec. 6) also find difficulties in using industry

portfolios in an asset pricing context. Similarly, Kritzman et al. (2010, p. 35) state that industry

portfolios are “notorious for the exceptional performance of the [equally weighted] portfolio”.

Figure V further visualizes the differences between the approaches that focus on an abso-

lute, relative or no mean estimate, i.e. Figure V shows the cumulative return of the equally

weighted, mean-variance and minimum variance portfolios using all 49 industries as well as a

(systematic) tail risk weighted winners portfolio. All strategies are rescaled to the same level

of volatility. The equally weighted strategy using all 49 industries, which does not incorpo-

rate any information on the assets’ risk or return, is clearly outperformed by the mean-variance

and minimum variance approach. However, all strategies are clearly outperformed by the risk

weighted winners portfolio. This outperformance is quite steady over time and is not driven by

a single period. Thus, buying risk-managed winners is an appealing long-only portfolio strategy

in bull and bear markets and is a promising alternative to more complex portfolio optimization

methods.
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Figure V. Performance of Long-Only Portfolios. This figure plots the cumulative return of a one dollar
investment in four long-only investment strategies using 49 equally weighted US industries. The four
investment strategies are the equally weighted portfolio, the mean-variance portfolio and the minimum
variance portfolio that invest in all 49 industries as well as the risk weighted winners portfolio. All
strategies are rescaled to the same level of volatility.

C Estimation of Risk Measures

In this section, we present the estimation of the risk measures used in the empirical part. We

estimate all risk measures using daily data. Estimating monthly risk with daily data is important

to increase the estimation accuracy as shown by several studies. For example, DeMiguel et al.

(2009b, Sec. 4) show that huge amounts of data should be used in order to provide good results

of the minimum variance portfolio. Thus, using daily data to estimate monthly risk is important

for risk-based portfolio allocations (Merton, 1980). Other approaches to estimate monthly risk

would be to estimate risk based on monthly data (Agarwal et al., 2017, DeMiguel et al., 2009b),

shrinkage estimators or other Bayesian approaches (DeMiguel et al., 2009a, Jagannathan and

Ma, 2003), the use of high-frequency data (Amaya et al., 2015, Bollerslev et al., 2018, 2019,

2020, Fleming et al., 2003, Patton and Sheppard, 2015), estimation based on lagged risk mea-

sures and other information like momentum (Boguth et al., 2011, Cederburg and O’Doherty,

2016, Chen et al., 2001, Langlois, 2020) or the use of more complex conditional models (Bali
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et al., 2017b, Brownlees and Engle, 2016, Engle et al., 2015, Fu, 2009, Rickenberg, 2020a).152

We concentrate in this paper on simple daily data based estimators of monthly risk, since these

estimates are easy to implement and are therefore interesting for practitioners. Using daily

data to estimate monthly risk is frequently done in the literature on asset pricing (Ang et al.,

2006a, Boguth et al., 2011, Cederburg and O’Doherty, 2016, Langlois, 2020, Van Oordt and

Zhou, 2016) and portfolio selection (Asness et al., 2014, DeMiguel et al., 2009a, Jagannathan

and Ma, 2003, Kirby and Ostdiek, 2012). Further, since our strategies rely on assets that are

portfolios themselves, sampling error of our simple non-parametric estimators is less important

for this data set (Jagannathan and Ma, 2003, p. 1654). This does especially hold for the rank

weighting, which is the main focus of this paper, since an asset’s cross-sectional risk rank can

be estimated more precisely than an asset’s risk (Langlois, 2020). In particular, Jagannathan

and Ma (2003) find that sample estimators of the monthly covariance matrix based on daily

data perform equally well in portfolio allocations as more advanced estimation procedures.

In Section C.1, we show how univariate risk measures are estimated, whereas Section C.2

shows the estimation of systematic risk measures. For the estimation of month t univariate risk,

we consider samples tri,t�1� d�1
h
uThd�1 of realized returns for asset i that are available at the end

of month t � 1. T denotes the number of months used to estimate the risk measures, h � 21

denotes the number of days per month and ri,t�1� d�1
h

denotes the realized daily return of asset

i on day t � 1 � d�1
h

, where ri,t�1 denotes the last daily return of month t � 1. Thus, for

1 ¤ d ¤ 21, ri,t�1� d�1
h

denotes the daily return of asset i on day h � d � 1 of month t � 1.

For an asset in the losers portfolio, ri,t�1� d�1
h

is defined as the negative return of asset i on

day t � 1 � d�1
h

. For the estimation of systematic risk measures, we also consider realized

daily returns trmom,t�1� d�1
h
uThd�1 of the equally weighted momentum portfolio. We estimate

univariate and systematic risk based on past returns of an industry and the momentum portfolio.

Alternatively, risk of an industry could also be estimated by first estimating the risks of all

152As in Frazzini and Pedersen (2014) and Asness et al. (2020) we also used simple shrinkage estimators for the
different beta estimates. However, these estimators do not alter the weights of the ranking based approach and
results of the inverse risk weighting were similar, regardless of whether the shrinked or non-shrinked betas were
used. Alternatively, Jagannathan and Ma (2003, Appendix B) show how beta can be estimated by incorporating
microstructure effects. However, the authors find no sizeable benefit of using this approach compared to the sample
estimator using daily data.
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assets within this industry. The risk of the industry is then estimated as the average risk of the

constituents’ risk (Boyer et al., 2009, Cederburg and O’Doherty, 2016, Chen and Petkova, 2012,

Jondeau et al., 2019, Langlois, 2020).

C.1 Univariate Risk Measures

This section shortly lists the non-parametric estimation of univariate risk measures using the

past T months of daily data.153

Volatility: Following Barroso and Santa-Clara (2015), Moreira and Muir (2017) and Grobys

et al. (2018), we estimate month t volatility using the simple Realized Volatility estimator that

is given by

σ̂i,t,T �
gffe 1

T

T ḩ

d�1

r2
i,t�1� d�1

h

, (C.1)

where T denotes the number of months used to estimate volatility of month t.

Skewness: Following Amaya et al. (2015, Eq. (3)), Chen et al. (2001, Eq. (1)), Bollerslev et al.

(2019, Eq. (7)) and Jiang et al. (2020, Eq. (B-5)), the skewness of month t using one month of

daily data is estimated by

{Skewi,t,1 �
?
h
°h
d�1 r

3
i,t�1� d�1

h

σ̂3
i,t,1

, (C.2)

where σ̂i,t,1 is the simple Realized Volatility of Equation (C.1). Further, following Amaya et al.

(2015, Eq. (6)) and Bollerslev et al. (2019, Eq. (10)), the skewness estimate based on T months

of daily data is given by

{Skewi,t,T � 1

T

T�1̧

j�0

{Skewi,t�j,1. (C.3)

The estimate for month t risk is then given by pRi,t � �1 �{Skewi,t,T .

Kurtosis: Following Amaya et al. (2015, Eq. (4)) and Bollerslev et al. (2019, Eq. (8)), the

kurtosis of month t using one month of daily data is estimated by

zKurti,t,1 � h
°h
d�1 r

4
i,t�1� d�1

h

σ̂4
i,t,1

, (C.4)

153Instead of estimating an industry’s univariate risk by using the industry’s past T months of daily data, an
industry’s risk could also be estimated by using all daily data of all assets in this industry within month t�1 (Allen
et al., 2012, Karagiannis and Tolikas, 2019, Kelly and Jiang, 2014).
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where σ̂i,t,1 is the simple Realized Volatility of Equation (C.1). Further, following Amaya et al.

(2015, Eq. (7)) and Bollerslev et al. (2019, Eq. (10)), the kurtosis estimate based on T months

of daily data is given by

zKurti,t,T � 1

T

T�1̧

j�0

zKurti,t�j,1. (C.5)

LPM: Following Bali et al. (2014) and Price et al. (1982), we estimate month t LPM as

zLPMi,t,k,T � 1

Th

T ḩ

d�1

pq � ri,t�1� d�1
h
qk � 1tr

i,t�1� d�1
h

 qu, (C.6)

where k and q denote the order and the threshold, respectively.

VaR: As in Allen et al. (2012), Atilgan et al. (2020), Bali et al. (2009), Rachev et al. (2007)

and Van Oordt and Zhou (2016), we estimate VaR for month t as the empirical quantile of the

past T months’ realized losses. We define by tli,t�1� d�1
h
uThd�1 :� t�ri,t�1� d�1

h
uTht�1 the loss of

asset i on day t� 1� d�1
h

and denote by tli,t�1,pdquThd�1 the order statistics of tli,t�1� d�1
h
uThd�1, i.e.

li,t�1,p1q ¤ ... ¤ li,t�1,pThq. VaR for month t is then given by

yVaR
α

i,t,T �
?
h � li,t�1,prThp1�αqsq, (C.7)

where α denotes the chosen significance level.154

CVaR: As in Allen et al. (2012, Eq. (9)), Bali et al. (2009), Rachev et al. (2007) and Agarwal

et al. (2017), we estimate CVaR for month t as

{CVaR
α

i,t,T �
?
h � 1

Th� rThp1 � αqs� 1
�

T ḩ

d�rThp1�αqs
li,t�1,pdq, (C.8)

where α denotes the chosen significance level.

SJ: Following Bollerslev et al. (2019, Eq. (5)), we estimate SJ by

xSJ i,t,T � T ḩ

d�1

r2
i,t�1� d�1

h

� 1tr
i,t�1� d�1

h
 0u �

T ḩ

d�1

r2
i,t�1� d�1

h

� 1tr
i,t�1� d�1

h
¡0u. (C.9)

154The multiplication with
?
h guarantees that VaR is defined as a measure of asset i’s monthly tail risk. However,

scaling VaR by a constant does not change our weightings.

529



RSJ: Following Bollerslev et al. (2019, Eq. (6)), we estimate RSJ by

zRSJ i,t,T � xSJ i,t,T
RVi,t,T

, (C.10)

where RVi,t,T �
°Th
d�1 r

2
i,t�1� d�1

h

denotes the realized variance over T months.

DuVol: Following Chen et al. (2001, Eq. (2)), we estimate the down-to-up volatility (DuVol) of

month t as

{DuV oli,t,T � 1
nd�1

°Th
d�1 r

2
i,t�1� d�1

h

� 1tr
i,t�1� d�1

h
 qdu

1
nu�1

°Th
d�1 r

2
i,t�1� d�1

h

� 1tr
i,t�1� d�1

h
¡quu

, (C.11)

where qd and qu denote the thresholds that mark up- and down-days and nd :� |td � 1, ..., Th :

ri,t�1� d�1
h
  qdu| and nu :� |td � 1, ..., Th; ri,t�1� d�1

h
¡ quu| denote the number of down- and

up-days. For our main results, we choose qd and qu as the 30% lowest and highest returns.

DuSkew: Similar to the DuVol, we estimate the down-to-up skewness (DuSkew) as

{DuSkewi,t,T � 1
nd�1

°Th
d�1 r

3
i,t�1� d�1

h

� 1tr
i,t�1� d�1

h
 qdu

1
nu�1

°Th
d�1 r

3
i,t�1� d�1

h

� 1tr
i,t�1� d�1

h
¡quu

, (C.12)

where we choose qd and qu as the 30% lowest and highest returns. The estimate for month t risk

is then given by pRi,t � �1 � {DuSkewi,t,T .

R-Ratio: Similar to Rachev et al. (2007), we estimate the R-Ratio as

xRR
α

i,t,T �
{CVaR

α

i,t,T{CVaR
α,ret

i,t,T

, (C.13)

where {CVaR
α,ret

i,t,T is estimated based on Equation (C.8) using realized ordered returns ri,t�1,pdq

instead of realized ordered losses li,t�1,pdq.

C.2 Systematic Risk Measures

This section shortly lists the non-parametric estimation of systematic risk measures using the

past T months of daily data of an industry and the equally weighted momentum portfolio.

Beta: As in Ang et al. (2006a, Eq. (B-7)), Atilgan et al. (2020, p. 728) and Bali et al. (2014,

p. 243), we estimate the beta as

pβi,t,T � 1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q � prmom,t�1� d�1

h
� µmom,t,T q

1
Th

°Th
d�1prmom,t�1� d�1

h
� µmom,t,T q2

, (C.14)
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where µi,t,T � 1
Th

°Th
d�1 ri,t�1� d�1

h
and µmom,t,T � 1

Th

°Th
d�1 rmom,t�1� d�1

h
.

Correlation: Similar to the beta, we estimate the correlation by

zCorri,t,T � 1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q � prmom,t�1� d�1

h
� µmom,t,T qb

1
Th

°Th
d�1prmom,t�1� d�1

h
� µmom,t,T q2 �

b
1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q2

.

(C.15)

Coskewness: As in Ang et al. (2006a, Eq. (B-9)), Bi and Zhu (2020, Eq. (A-2)), Bali et al.

(2014, Eq. (17)), Bollerslev et al. (2019, Eq. (A-2)), Bollerslev et al. (2020, Eq. (17)), Jiang

et al. (2020, Eq. (B-9)) and Langlois (2020), we estimate the coskewness by

{CoSkewi,t,T � 1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q � prmom,t�1� d�1

h
� µmom,t,T q2b

1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q2 �

�
1
Th

°Th
d�1prmom,t�1� d�1

h
� µmom,t,T q2

	 .
(C.16)

Cokurtosis: As in Ang et al. (2006a, Eq. (B-9)), Bollerslev et al. (2020, Eq. (18)), Jiang et al.

(2020, Eq. (B-10)) and Bollerslev et al. (2019, Eq. (A-3)), we estimate the cokurtosis by

{CoKurti,t,T �
1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q � prmom,t�1� d�1

h
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1
Th

°Th
d�1pri,t�1� d�1

h
� µi,t,T q2 �
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h
� µmom,t,T q2

	3{2
. (C.17)

Downside Beta: As in Ang et al. (2006a, Eq. (B-8)), Atilgan et al. (2020, p. 728) and Bali et al.

(2014, Eq. (15)), we estimate the downside beta as

pβ�i,t,T � 1
nq

°Th
d�1pri,t�1� d�1

h
� µ�i,t,T q � prmom,t�1� d�1

h
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h
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1
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°Th
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h
 qu

, (C.18)

where we define nq �
°Th
d�1 1trmom,t�1� d�1

h
 qu, µ�i,t,T � 1

nq

°Th
d�1 ri,t�1� d�1
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 qu

and µ�mom,t,T � 1
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d�1 rmom,t�1� d�1

h
� 1tr

mom,t�1� d�1
h

 qu.

Downside Correlation: Similar to Hong et al. (2007, p. 1550), we estimate the downside corre-

lation by

zCorr�i,t,T � 1
nq

°Th
d�1pri,t�1� d�1

h
� µ�i,t,T q � prmom,t�1� d�1

h
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,

(C.19)
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where

σ�i,t,T �
gffe 1

nq

T ḩ

d�1

pri,t�1� d�1
h
� µ�i,t,T q2 � 1trmom,t�1� d�1
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and

σ�mom,t,T �
gffe 1

nq

T ḩ

d�1

prmom,t�1� d�1
h
� µ�mom,t,T q2 � 1trmom,t�1� d�1

h
 qu (C.21)

denote the downside volatility of asset i and the momentum portfolio.

LPM-beta: As in Bali et al. (2014) and Price et al. (1982, Eq. (5)), we estimate the LPM-beta

as

pβLPMi,t,T �
1
nq

°Th
d�1pri,t�1� d�1

h
� qq � prmom,t�1� d�1

h
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1
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h

 qu
, (C.22)

where q denotes the chosen threshold.

HTCR-beta: As in Bali et al. (2014), we estimate the HTCR-beta as

pβHTCRi,t,T �
1
nq,i

°Th
d�1pri,t�1� d�1

h
� qq � prmom,t�1� d�1

h
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h

 qu
, (C.23)

where nq,i �
°Th
d�1 1tri,t�1� d�1

h
 qu.

Tail-beta: Following the estimation procedure of Van Oordt and Zhou (2016) and Van Oordt

and Zhou (2017, Sec. 1.2), we use the EVT based non-parametric estimate of Tail-beta. The

authors show that, under certain conditions, Tail-beta can be estimated by

β̂Taili,t,T � pτi,t,T pαq1{ξ̂mom,t,T � yVaR
α

i,t,TyVaR
α

mom,t,T

, (C.24)

where yVaR
α

mom,t,T is the VaR of the momentum portfolio and 1{ξ̂mom,t,T is estimated by the Hill

estimator using losses of the momentum portfolio tlmom,t�1� d�1
h
uThd�1 :� t�rmom,t�1� d�1

h
uTht�1

with corresponding order statistics tlmom,t�1,pdquThd�1. The Hill estimator is given by

1
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� 1
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. (C.25)
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The Hill estimator is also used by Karagiannis and Tolikas (2019), Kelly and Jiang (2014) and

Poon et al. (2004, Eq. (6)). Further, Van Oordt and Zhou (2016) and Van Oordt and Zhou (2017)

show that zτpαq can be estimated by

pτi,t,T pαq � 1

Th� rThp1 � αqs� 1

T ḩ

d�1

1"
l
i,t�1� d�1

h
¡zVaR

α

i,t,T and l
mom,t�1� d�1

h
¡zVaR

α

mom,t,T

*,
(C.26)

i.e. pτi,t,T pαq measures the occurrence of joint crashes of asset i and the momentum portfolio.

The structure of Tail-beta in Equation (C.24) is similar to the usual beta in Equation (3.4.3), but

focuses on the tails instead of the whole distribution.

An alternative to the approach presented above would be to calculate β̂Taili,t,T based on a con-

ditional regression for the observations when the momentum portfolio suffers the most extreme

losses (Van Oordt and Zhou, 2017, Footnote 4). However, Van Oordt and Zhou (2016) and

Van Oordt and Zhou (2017) show that the simple non-parametric estimator gives more reliable

estimates compared to the conditional regression approach.

Tail-Sens: As in Agarwal et al. (2017, p. 615), we estimate the Tail-Sens non-parametrically.

The estimate for Tail-Sens is then given by

xTSi,t,T �
°Th
d�1 1t�ri,t�1� d�1

h
¡VaRαi,t,T ,�rmom,t�1� d�1

h
¡VaRαm,t,T u°Th

d�1 1t�rmom,t�1� d�1
h

¡VaRαm,t,T u
, (C.27)

where yVaR
α

i,t,T and yVaR
α

mom,t,T are the VaR of asset i and the momentum portfolio, estimated

based on Equation (C.7) for losses of asset i and the momentum portfolio, respectively. Al-

ternatives to the estimator in Equation (C.27) are given in Chabi-Yo et al. (2018), Poon et al.

(2004) and Weigert (2015).

Tail-Risk: As in Agarwal et al. (2017, p. 615), we estimate Tail-Risk non-parametrically. The

estimate for Tail-Risk is given by

yTRi,t,T � xTSi,t,T � {CVaR
α

i,t,T{CVaR
α

mom,t,T

, (C.28)

where {CVaR
α

i,t,T and {CVaR
α

mom,t,T are the CVaR of asset i and the momentum portfolio, esti-

mated based on Equation (C.8) for losses of asset i and the momentum portfolio, respectively.
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This measure has a similar structure as the normal beta, which can be decomposed as shown in

Equation (3.4.3), but the Tail-Risk measure replaces the correlation by a measure of co-crash

risk. Moreover, volatility of asset i and the momentum portfolio are replaced by their CVaR.

Hence, the Tail-Risk measure is a natural extension of the usual beta but focuses on tail events

instead of the whole distribution. The Tail-Risk is again similar in nature to the Tail-beta of

Equation (C.24).

MES: As in Acharya et al. (2016, Eq. (16)), we estimate the Marginal Expected Shortfall (MES)

by

zMES
α

i,t,T �
1

Th� rThp1 � αqs� 1
�
T ḩ

d�1

�ri,t�1� d�1
h
� 1t�r

mom,t�1� d�1
h

¡zVaR
α

mom,t,T u. (C.29)

Brownlees and Engle (2016, Eq. (3)) also use the equation above applied to simulated returns

of a multivariate GARCH model to calculate MES. Other estimation methods of MES can be

found in Brownlees and Engle (2016) and Engle et al. (2015).
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