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Abstract

Scoring functions are decision-theoretically principled tools to quantify predictive per-
formance. A scoring function is strictly consistent for a statistical functional, e.g. the
expectation, if its expected score is uniquely minimized by this functional. This thesis
examines existence and properties of strictly consistent scoring functions for three kinds
of functionals. Firstly, we introduce the class of max-functionals, which contains key
characteristics from extreme value theory, for instance the extreme value index. We
show that its members do not allow for forecast evaluation via strictly consistent scoring
functions in a very strong sense. The second part develops results for interval forecasts.
Strictly consistent scoring functions exist and can be characterized for two types, the
equal-tailed and modal interval. However, for the shortest prediction interval, they are
not available relative to practically relevant classes of distributions. Lastly, the third
part introduces consistent scoring functions for point process characteristics, such as
the intensity, which enables a novel approach to comparative forecast evaluation in this
framework.

Zusammenfassung

Bewertungsfunktionen sind von entscheidungstheoretischen Prinzipien geleitete Hilfs-
mittel um den Erfolg von Vorhersagen zu bewerten. Eine Bewertungsfunktion ist strikt
konsistent für ein statistisches Funktional, beispielsweise die Erwartung, wenn ihre er-
wartete Bewertung durch das Funktional eindeutig minimiert wird. Diese Arbeit un-
tersucht Existenz und Eigenschaften strikt konsistenter Bewertungsfunktionen für drei
Arten von Funktionalen. Zuerst führen wir die Klasse der Max-Funktionale ein, die
zentrale Charakteristiken der Extremwerttheorie enthält, zum Beispiel den Extremwert-
index. Wir zeigen, dass die Elemente dieser Klasse in einem starken Sinne keine Vorher-
sageauswertung mittels strikt konsistenter Bewertungsfunktionen zulassen. Der zweite
Teil entwickelt Resultate für Intervallvorhersagen. Für zwei Typen von Intervallen, das
“equal-tailed interval” und das Modalintervall, gibt es strikt konsistente Bewertungs-
funkionen, die sich auch charakterisieren lassen. Für das kürzeste Prediktionsintervall
sind jedoch, relativ zu praktisch relevanten Verteilungsklassen, keine solchen Funktionen
verfügbar. Schließlich stellt der dritte Teil strikt konsistente Bewertungsfunktionen für
Charakteristika von Punktprozessen vor, zum Beispiel für die Intensität. Dies ermöglicht
eine neue Herangehensweise an die vergleichende Auswertung von Vorhersagen im Rah-
men von Punktprozessen.
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Introduction

In all kinds of situations, people base their decisions on forecasts, which inform them on
the likely implications of different actions. This practice ranges from everyday activities,
where we can check weather forecasts to decide whether or not to carry an umbrella,
to public infrastructure projects based on predicted traffic volume. Naturally, users of
such forecasts want to know which of the competing sources of information will be most
valuable for the decision at hand. If the phenomena of interest, e.g. amount of rain
or traffic volume, can be quantified and exhibit some regular behavior, then statistical
forecast evaluation methods can guide this search for high-quality forecasts. Specifically,
one approach is to assume that the quantity of interest is a random variable Y which
follows some unknown distribution F . A decision maker needs some kind of information
on F in order to choose an appropriate action and thus asks several forecasters for their
reports. After a period of time, these reports are then compared to a set of realizations
of Y .

Scoring functions are widely used and well-studied tools to check whether one forecast
outperforms its competitors (Gneiting, 2011a). The term ‘scoring’ usually refers to
the act of assigning a real number, the ‘score’, to each pair of forecast and realized
observation of Y . Then a low (or high, depending on convention) score signifies a good
report. If the forecast is a statistical property or functional of the distribution of Y , e.g.
the expectation or a quantile, such a mapping is usually called scoring function, whereas
the term scoring rule is common when a full distribution is reported. In both cases, the
key requirement is that forecasting the truth gives the minimal score in expectation: A
scoring function is consistent for a statistical functional if the value of this functional for
a distribution F is a minimizer of the expected score with respect to F . If the minimum is
unique we call the scoring function strictly consistent and the corresponding functional
elicitable (Lambert et al., 2008). Likewise, a scoring rule is (strictly) proper if the
expected score with respect to F is (uniquely) minimized by F .

Consistency and propriety are desirable properties for forecast evaluation, since they
can be used to ensure that rational and risk-neutral forecasters report truthfully: Faced
with a payoff equal to the negative of their score, reporting their true belief maximizes
their expected payoff. Hence, the interests of the forecasters are in line with the interests
of the decision maker (Brier, 1950; McCarthy, 1956).

In probabilistic forecasting, i.e. when full predictive distributions are reported, a
variety of strictly proper scoring rules are available (Gneiting and Raftery, 2007). Sim-
ilarly, many statistical functionals, such as quantiles and expectiles, are elicitable with
convenient characterizations of the corresponding classes of consistent scoring functions,
see Gneiting (2011a) and the references therein. On the other hand, several widely con-
sidered characteristics fail to be elicitable, for instance the variance, the mode (Heinrich,
2014) and the prominent financial risk measure Expected Shortfall (ES) (Weber, 2006;
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Gneiting, 2011a). As a consequence, the question which functionals are elicitable is
a central problem in comparative forecast evaluation, with recent theoretical advances
due to Lambert et al. (2008), Gneiting (2011a), and Steinwart et al. (2014) in the real-
valued case and due to Frongillo and Kash (2015, 2020) and Fissler and Ziegel (2016)
in the vector-valued case. This thesis addresses the question of elicitability for three
special classes of statistical functionals, namely tail properties, interval forecasts, and
characteristics of point processes.

Tail properties

Forecasts are particularly relevant for exceptional events such as natural disasters, or
financial crashes, as these usually have severe consequences. Such events are often rare
and observational data for statistical models is sparse. Hence, these circumstances call
for forecast evaluation techniques that emphasize distribution tails rather than average
behavior. Recent progress includes Friederichs and Thorarinsdottir (2012) who investi-
gate the use of scoring rules for distribution classes central to extreme value theory, and
Diks et al. (2011), Lerch et al. (2017), as well as Holzmann and Klar (2017) who con-
sider weighted scoring rules for forecasts of distribution tails. An event-based approach
to evaluate whether exceedances of high thresholds are predicted correctly is pursued by
Stephenson et al. (2008) and Ferro and Stephenson (2011). Closely connected is the ver-
ification tool of Taillardat et al. (2019) which is based on the asymptotic behavior of the
popular continuous ranked probability score (CRPS), conditional on high realizations.

In Chapter 2 we contribute to the problem of forecast evaluation for rare events by
raising the fundamental question to what extent, and in which sense, statistical features
of distribution tails are elicitable. To answer it, we introduce the class of max-functionals,
which contains key characteristics from extreme value theory, e.g. the extreme value
index. We show that under mild regularity assumptions its members fail to be elicitable
in a very strong sense, which highlights limitations of scoring function-based forecast
evaluation for tail properties.

Interval forecasts

A drawback of point forecasts is the loss of information when reducing a probability dis-
tribution to a real-number, e.g. mean or median. The simplest step towards a more in-
formative forecast consists of reporting intervals, which provide an attractive and widely
used way to convey information on the inherent uncertainty of the quantity of interest.
In particular, one or multiple predictive intervals, which are designed to contain the
observation with specified nominal probability, are requested implicitly or explicitly in
a number of forecasting settings, including the Global Energy Forecasting Competition
(Hong et al., 2016), the M4 Competition (Makridakis et al., 2020), the ongoing M5
Competition (M Open Forecasting Center, 2020), and the emerging COVID-19 Forecast
Hub (Bracher et al., 2020). This highlights the need for sound evaluation methods which
enable researchers and practitioners to compare interval forecasts and choose between
different models for the generation of such intervals.

Early work on the evaluation problem for interval forecasts can be found in Aitchison
and Dunsmore (1968), Winkler (1972), Casella et al. (1993), and Christoffersen (1998).
Recently, Askanazi et al. (2018) have shown that many proposed scoring functions for
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intervals are (strictly) consistent for the equal-tailed interval, which lies between the α
2 -

and (1− α
2 )-quantiles. Hence, they are inappropriate for the shortest prediction interval.

In Chapter 3 we address this issue and show that alternatives for the shortest interval
are not readily available, as the shortest interval fails to be elicitable for many classes
of distributions of practical interest. In contrast, consistent scoring functions for the
equal-tailed interval are based on consistent scoring functions for quantiles and are thus
well-understood. As a third, but conceptually different predictive interval, the modal
interval admits a unique strictly consistent scoring function, up to equivalence. Our
findings provide guidance in interval forecast evaluation and support recent choices of
performance measures in forecast competitions.

Point process characteristics

In numerous forecasting settings the quantity of interest is not a one-dimensional num-
ber, but a complex point pattern in space and time, such that it can be modeled as a
point process. Examples are abundant and range from quantitative criminology, which
considers forecasts of increased criminal offenses in urban areas (Mohler et al., 2011; Flax-
man et al., 2019) to epidemiology, which models when and where people catch diseases
(Meyer and Held, 2014; Schoenberg et al., 2019). Moreover, fire departments monitor
the sources and areas of wildfires (Peng et al., 2005; Xu and Schoenberg, 2011; Taylor
et al., 2013) and statistical seismology quantifies properties of earthquakes such as time,
epicenter, and magnitude (Bray and Schoenberg, 2013; Ogata, 2013). These applications
demand reliable statistical methods for forecast evaluation and model selection in the
point process framework.

Many existing approaches to model evaluation for point processes are due to appli-
cations in seismology, see e.g. Bray and Schoenberg (2013) for a review. In particular,
the regional earthquake likelihood models (RELM) initiative (Field, 2007; Schorlemmer
et al., 2007) set up testing centers to do prospective evaluation of seismological models.
Bray and Schoenberg (2013) point out the connection between some of the used test-
ing procedures and the scoring literature, by stating that “numerical tests such as the
L-test, can be viewed as examples of scoring rules.” In Chapter 4 we make this connec-
tion explicit and derive scoring functions to compare point process models or forecasts.
More precisely, we show that many widely used point process characteristics, such as
the intensity or the product densities can be understood as elicitable statistical function-
als. We illustrate the finite sample properties of the corresponding strictly consistent
scoring functions via simulation experiments. These results offer a new and principled
approach for the comparative assessment of forecasts and models, which encompasses
several existing methods.





1 Scoring functions and elicit-
ability

This chapter fixes notation and definitions and presents some theoretical background
concerning scoring functions and elicitability. It includes well-known results which we
collect for the reader’s convenience, but also new findings which play a key role in
the subsequent chapters or are of independent interest. The chapter ends with a brief
introduction to comparative forecast evaluation, the central application of consistent
scoring functions in practice.

1.1 Notation and definitions

For notation and basic definitions we follow Gneiting (2011a) and Fissler and Ziegel
(2016). Let Y be a random variable taking values in some observation domain O which
is a subset of some real vector space. Typical examples include Rd, the set N0, cor-
responding to count data, or the space of point patterns (see Chapter 4). The Borel
σ-algebra of O is denoted via O and F is a collection of probability distributions on
(O,O), which represents the possible distributions for Y . Whenever convenient, we
identify probability distributions with their cumulative distribution functions (CDFs).
The action domain A holds all possible reports of the forecasters on which the decision
maker can act.

A functional will be a mapping which represents a statistical property of the distribu-
tions in F . In the general framework, a functional is set-valued, i.e. given by T : F → 2A,
where 2A denotes the power set of A. The set T (F ) ⊆ A then consists of all correct fore-
casts if F ∈ F is true. In the special case where T (F ) reduces to a single value t ∈ A
for all F ∈ F we use the more convenient definition T : F → A and call T single-valued.
All results on set-valued functionals naturally transfer to this simpler setting.

A measurable function h : O→ R is called F-integrable if it is integrable with respect
to all F ∈ F . Analogously, a function g : A × O → R is called F-integrable if for all
x ∈ A the function y 7→ g(x, y) is integrable with respect to all F ∈ F . We use the short
notation

h̄(F ) :=

∫
O
h(y) dF (y) and ḡ(x, F ) :=

∫
O
g(x, y) dF (y)

for F-integrable functions h, g and x ∈ A, F ∈ F and let EF denote the expectation
operator when Y has distribution F ∈ F , such that EFh(Y ) = h̄(F ).

A scoring function is an F-integrable mapping S : A×O→ R. The central concepts
connecting scoring functions and statistical functionals are consistency and elicitability.
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Definition 1.1 (Consistency). A scoring function S : A × O → R is consistent for a
functional T : F → 2A relative to the class F if

S̄(t, F ) ≤ S̄(x, F ) (1.1)

for all F ∈ F , t ∈ T (F ), and x ∈ A. It is strictly consistent for T if it is consistent for
T and the equality S̄(t, F ) = S̄(x, F ) implies x ∈ T (F ) for all F ∈ F and x ∈ A.

Definition 1.2 (Elicitability). A functional T : F → 2A is elicitable if there exists a
scoring function S : A× O→ R that is strictly consistent for T relative to F .

If a forecaster faces a penalty S(x, y) for a report x and an outcome y, consistency of
the scoring function S for the functional T ensures that any member of the forecaster’s
set of true beliefs T (F ) minimizes the expected penalty. Strict consistency ensures that
only the values in T (F ) are minimizers, i.e. deviating from the truth leads to a higher
expected penalty.

Although this work introduces consistency and elicitability from the perspective of
forecast evaluation, both concepts are useful in other areas of statistics, too. They enable
regression, e.g. quantile and expectile regression (Koenker, 2005; Newey and Powell,
1987), M-estimation (Huber and Ronchetti, 2009), and are central to various machine
learning algorithms (Steinwart et al., 2014; Frongillo and Kash, 2020). In order to
simplify the presentation we stick with the decision theoretic perspective for the rest of
the thesis.

Since the ordering in (1.1) is not affected by scaling S with a positive constant or
adding a report-independent function, we use the following definition (Gneiting, 2011a).

Definition 1.3 (Equivalence). Let S′, S : A×O→ R be two scoring functions. We call
S′ equivalent to S if

S′(x, y) = cS(x, y) + h(y)

for some c > 0 and an F-integrable function h : O→ R.

1.2 Basic results and examples

This section collects some examples of elicitable functionals and then presents some stan-
dard results on consistency and elicitability for later reference. For a deeper theoretical
introduction see e.g. Gneiting (2011a), Fissler and Ziegel (2016), and Frongillo and Kash
(2019, 2020).

Example 1.4 (Quantiles). Let O = A = R. For α ∈ (0, 1) an α-quantile of F is a
point x ∈ R that satisfies F (x−) ≤ α ≤ F (x), where F (x−) := limy↑x F (y) denotes the
left-hand limit of F at x. The α-quantile functional Tα(F ) := {x | F (x−) ≤ α ≤ F (x)}
is set-valued, and it is elicitable relative to any class F . The strictly consistent scoring
functions are equivalent to

Sα(x, y) = (1(y ≤ x)− α) (g(x)− g(y)) , (1.2)

where g is F-integrable and strictly increasing, see Gneiting (2011a,b) and references
therein. �
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Example 1.5 (Expectations). Let O = R and F2 be the class of distributions with finite
second moments. It is well-known that if S is the quadratic loss S(x, y) = (x− y)2, then
the expected score function x 7→ S̄(x, F ) is minimized by the expectation EFY for all
F ∈ F2. Stated differently, the single-valued functional T (F ) := EFY is elicitable and
S is strictly consistent for T relative to F2. �

A more general result is that expectations of integrable functionals are always elic-
itable, i.e. finite second moments as in the previous example are not needed. To make
this precise, let A,O ⊆ Rk and denote the subderivative (Rockafellar, 1970) of a convex
function f : A→ Rk at x ∈ Rk by ∇f(x). Then the function

b : A× O→ R, (x, y) 7→ −f(x)−∇f(x)>(y − x), (1.3)

is called a Bregman function for f . If f is strictly convex, we call b strictly consistent.
Using these definitions we can formulate the following well-known result, see Savage
(1971), Gneiting (2011a, Theorem 7), and Frongillo and Kash (2015, Theorem 13).

Theorem 1.6 (Elicitability of expectations). If h : O → Rk is F-integrable, then the
functional T : F → Rk defined via

T (F ) =
(
h̄1(F ), . . . , h̄k(F )

)>
is elicitable and consistent scoring functions S : A × O → R are given by S(x, y) =
b(x, h(y)), where b is a Bregman function. If b is strictly consistent, then S is strictly
consistent for T .

Although there are many elicitable functionals beyond quantiles and expectations,
there are also several examples which do not allow for consistent scoring functions.
The simplest approach to check whether a functional is elicitable, is to study its values
for convex combinations of distributions. The following proposition states the classical
convex level sets (CxLS) result (Osband (1985, Proposition 2.5) and Gneiting (2011a,
Theorem 6)) together with the refined CxLS∗ property of Fissler et al. (2020, Proposi-
tion 3.3).

Proposition 1.7 (convex level sets). Let T : F → 2A be an elicitable functional. If
F0, F1 ∈ F and λ ∈ (0, 1) are such that Fλ = λF1 + (1− λ)F0 ∈ F , then

(i) T (F0) ∩ T (F1) ⊆ T (Fλ) (CxLS property)

(ii) T (F0) ∩ T (F1) 6= ∅ =⇒ T (F0) ∩ T (F1) = T (Fλ) (CxLS ∗ property)

If T is a single-valued functional, the properties coincide and are simply referred
to as CxLS. Under certain regularity conditions, convex level sets are also sufficient for
elicitability, as demonstrated by Lambert et al. (2008) for distributions on finite sets and
by Steinwart et al. (2014) for continuous densities on compact metric spaces. The most
relevant examples of functionals that do not have convex level sets and thus fail to be
elicitable, are the variance and the quantitative risk measure Expected Shortfall (ES),
see Weber (2006) and Gneiting (2011a). However, even if a functional does not have
CxLS this can often be overcome by pairing it with another functional such that the
resulting vector becomes elicitable. This is demonstrated in Fissler and Ziegel (2016) for
ES together with the risk measure Value at Risk (VaR). The next example collects the
corresponding arguments for the variance.
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Example 1.8 (Variance). Let F2 be the class of distributions on R having finite second
moments and set Tk(F ) := EFY k for all k ∈ N. A simple construction shows that the
variance functional Tvar(F ) = T2(F )−T1(F )2 does not satisfy the CxLS property on any
class F ⊆ F2 on which T1 is not constant. By Proposition 1.7 it thus fails to be elicitable
relative to such classes. This issue can be addressed by considering the functional T :=
(T1, Tvar)

> which connects to the functional T ′ := (T1, T2)> via a bijection. Since T ′

consists of first and second moment only, it is elicitable by Theorem 1.6, and elicitability
of T follows from the next Proposition. �

The following result formalizes how bijective mappings ensure elicitability, see Os-
band (1985) and Gneiting (2011a, Theorem 4).

Proposition 1.9 (Revelation principle). Let A,A′ be some sets and g : A → A′ a
bijection with inverse g−1. Let T : F → 2A and Tg : F → 2A

′
defined via Tg(F ) :=

g(T (F )) be functionals. Then T is elicitable if and only if Tg is elicitable. A function
S : A × O → R is a strictly F-consistent scoring function for T if and only if Sg :
A′×O→ R, (x, y) 7→ Sg(x, y) := S(g−1(x), y) is a strictly F-consistent scoring function
for Tg.

Analogous to changes of the action domain, there is a straightforward connection
between consistency and the observation domain. It resembles the findings on weighted
functionals as discussed in Gneiting and Ranjan (2011) and Gneiting (2011a, Theorem 5).

Proposition 1.10 (Transformation principle). Let g : O′ → O be a measurable mapping
and F ′ a set of distributions on O′ and define g(F ′) := {F ◦ g−1 | F ∈ F ′}. If there
is an elicitable functional T : g(F ′) → 2A, then the functional T ′ defined via T ′(F ) :=
T (F ◦ g−1) is elicitable and (strictly) consistent scoring functions for T ′ are given by
S′(x, y) = S(x, g(y)), where S is a (strictly) consistent scoring function for T .

1.3 Structural results on elicitable functionals

This section presents two general results which illustrate characteristics of elicitable
functionals by specifying which functionals fail to be elicitable. The first finding relies
on convex combinations, similar to the CxLS properties (see Proposition 1.7), and its
idea will be central for various results in the chapters below. The second result considers
functionals which are invariant under certain transformations, e.g. translations, and is of
independent interest. Lastly, we connect to continuity properties of elicitable functionals.

1.3.1 Convex combinations

As discussed in the previous section, the CxLS properties are central tools to show
non-elicitability in many cases. An important example of a functional which fails to
be elicitable, even though it has the CxLS∗ property, is the mode if it is defined for
absolutely continuous distributions, see Heinrich (2014). We state a refined result on
the behavior of elicitable functionals on convex combinations of distributions.

Theorem 1.11. Let T : F → 2A be a functional, and let F0, F1 ∈ F be such that
Fλ = λF1 + (1 − λ)F0 ∈ F for all λ ∈ (0, 1). If there are t0 ∈ T (F0)\T (F1) and
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t1 ∈ T (F1)\T (F0) such that for every λ ∈ (0, 1) it holds that either t0 ∈ T (Fλ) and
t1 /∈ T (Fλ), or t1 ∈ T (Fλ) and t0 /∈ T (Fλ), then T is not elicitable.

Proof. Let t0, t1 be as stated and set Fλ := λF1 + (1−λ)F0. Suppose that S is a strictly
consistent scoring function for T . Linearity of expectations yields

S̄(t0, Fλ)− S̄(t1, Fλ) = λ
[
S̄(t0, F1)− S̄(t1, F1)

]
+ (1− λ)

[
S̄(t0, F0)− S̄(t1, F0)

]
,

where the first difference is positive, while the second is negative. Hence, S̄(t0, Fλ) =
S̄(t1, Fλ) for some λ ∈ (0, 1). Since either t0 ∈ T (Fλ) and t1 /∈ T (Fλ), or t1 ∈ T (Fλ) and
t0 /∈ T (Fλ), we arrive at a contradiction.

The assertion of Theorem 1.11 overlaps with part (ii) of Proposition 1.7 in the sense
that if T (F0)∩ T (F1) 6= ∅ and the conditions of Theorem 1.11 hold, then T cannot have
the CxLS∗ property and thus fails to be elicitable. If T (F0) ∩ T (F1) = ∅, Theorem 1.11
provides a novel result, since Proposition 1.7(ii) does not address this situation.

For single-valued functionals T : F → A Theorem 1.11 simplifies: If there exist
F0, F1 ∈ F such that T (F0) 6= T (F1) and

T (λF1 + (1− λ)F0) ∈ {T (F0), T (F1)} for all λ ∈ (0, 1),

then T is not elicitable. This formulation illustrates that, loosely speaking, single-valued
elicitable functionals cannot be piecewise constant on convex combinations of distribu-
tions. The following result for single-valued functionals is a simple consequence of this
observation.

Corollary 1.12. Let F be convex. If T : F → A is a non-constant finite-valued
functional, then it is not elicitable.

Proof. For F0, F1 ∈ F define Fλ := λF1 + (1 − λ)F0, set t0 := T (F0) and t1 := T (F1)
and let t0 6= t1. By assumption, there are some t2, . . . , tn ∈ A such that T (Fλ) ∈
{t0, t1, . . . , tn} for all λ ∈ [0, 1]. If there is an i ∈ {0, . . . , n} such that the set {λ ∈ [0, 1] |
T (Fλ) = ti} is not an interval, then Proposition 1.7 implies that T is not elicitable.
However, if they are intervals, we can find a new convex combination of distributions
F ′0, F

′
1 ∈ F such that Theorem 1.11 is applicable.

Connection to identifiability Corollary 1.12 can be interpreted as an analogon
to the statement in Frongillo and Kash (2020) that ‘no nonconstant finite property
is identifiable’. Following Gneiting (2011a) and Fissler and Ziegel (2016) a function
V : A×O→ Rk is a strict identification function for T : F → 2A relative to the class F
if it is F-integrable and

V̄ (x, F ) = 0 ⇐⇒ x ∈ T (F )

for all x ∈ A and F ∈ F . The functional T is called identifiable if there exists a strict
identification function for it. Identification functions can be interpreted as derivatives of
scoring functions, a connection which is called Osband’s principle, see Gneiting (2011a)
and Fissler and Ziegel (2016) for precise results. The following is an analogon to Theo-
rem 1.11 for identifiability.
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Theorem 1.13. Let T : F → 2A be a functional and let F0, F1 ∈ F be such that there
is a t0 ∈ T (F0)\T (F1). If there is a λ ∈ (0, 1) such that Fλ = λF1 + (1− λ)F0 ∈ F and
t0 ∈ T (Fλ), then T is not identifiable.

Proof. Let λ ∈ (0, 1) be as in the theorem and suppose that V is a strict identification
function for T . Linearity of expectations and t0 ∈ T (Fλ) yield

0 = V̄ (t0, Fλ) = λV̄ (t0, F1) + (1− λ)V̄ (t0, F0) = λV̄ (t0, F1),

which is a contradiction to t0 /∈ T (F1).

A version of this theorem for single-valued functionals is presented in Fissler and
Ziegel (2019b, Lemma B.1). The same technique is used in Dearborn and Frongillo
(2020, Lemma 1) to show that the mode functional is not identifiable, a result which
naturally extends to the modal interval, see also Section 3.5 and Theorem 3.10.

1.3.2 Invariant functionals

This section investigates functionals which are invariant under some transformations
of the distribution. The starting point of these considerations is the special case of
translation invariance. For a real-valued distribution function F and z ∈ R we define
the translated distribution via Fz(x) := F (x− z) and assume that the class F contains
Fz for all F ∈ F and z ∈ R. Then a functional T : F → 2A is translation invariant if
T (Fz) = T (F ) for all z ∈ R and F ∈ F .

In order to generalize, let F be a class of distributions on an observation space
O ⊆ Rk and g : O × O → O a measurable function. The following definition formalizes
a notion of invariance with respect to g.

Definition 1.14 (g-invariance). The class F is closed under g-transformations if for all
z ∈ O and F ∈ F the transformed distribution

Fg(z,·)(x) :=

∫
1(g1(z, y) ≤ x1, . . . , gk(z, y) ≤ xk) dF (y) (1.4)

is in F . If F is closed under g-transformations, then a functional T : F → 2A is
g-invariant if T (Fg(z,·)) = T (F ) for all z ∈ O and F ∈ F .

We recover translation invariance by setting g(z, y) = z + y. The next result shows
that non-constant g-invariant functionals cannot be elicitable if g is symmetric, i.e.
g(z, y) = g(y, z) for all y, z ∈ O. A technical condition is necessary.

Condition 1.15. The scoring function S : A×O→ R is strictly consistent for T : F →
2A relative to F and such that (z, y) 7→ S(x, g(z, y)) is (F ⊗G)-integrable for all x ∈ A
and F,G ∈ F .

Theorem 1.16. Let g : O × O → O be symmetric and measurable and let F be closed
under g-transformations. If the functional T : F → 2A is g-invariant and has a scoring
function which satisfies Condition 1.15, then it is constant.
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Proof. Let S : A × O → R be a scoring function as specified in Condition 1.15. Strict
consistency for T and g-invariance give

T (F ) = T (Fg(z,·)) = arg min
x∈A

S̄(x, Fg(z,·)) = arg min
x∈A

∫
S(x, g(z, y)) dF (y),

for all z ∈ R and F ∈ F . This implies that for all z ∈ O the function Sz(x, y) :=
S(x, g(z, y)) is a strictly consistent scoring function for T and due to Gneiting (2011a,
Theorem 2), the same holds true for

SF (x, y) :=

∫
S(x, g(z, y)) dF (z), (1.5)

where F ∈ F . For any choice of F,G ∈ F Fubini’s theorem and the symmetry of g now
give

S̄G(x, F ) =

∫ ∫
S(x, g(z, y)) dG(z) dF (y)

=

∫ ∫
S(x, g(y, z)) dF (y) dG(z) = S̄F (x,G)

for all x ∈ A. This yields T (F ) = T (G) for all F,G ∈ F , so T is constant.

Via the choice g(z, x) = z+x in Theorem 1.16 we obtain that, subject to a technical
regularity assumption, non-constant translation invariant functionals cannot be elic-
itable. Additionally, the choice O = (0,∞) and g(z, x) = zx shows that non-constant
scale invariant functionals fail to be elicitable, too, if they are defined for strictly positive
random variables. Other possible choices are g(x, y) := max(x, y) or g(x, y) := min(x, y)
on O = R which yield non-elicitability for some exceptional properties which only de-
pend on the limiting behavior of the distribution for |y| → ∞. Via these choices of g,
Theorem 1.16 recovers several known results from the literature, for instance the non-
elicitability of the variance (see Example 1.8 and Gneiting (2011a)) or, more generally,
the non-elicitability of all forms of centered expectations T (F ) = EFh(Y − EFY ), e.g.
centered moments. Moreover, Theorem 1.16 shows that certain tail properties cannot
be elicitable, however, other techniques are better suited to address this problem, see
Chapter 2.

It is well known that the variance is jointly elicitable with the mean, see also Exam-
ple 1.8. An interesting further question is which other invariant functionals are jointly
elicitable with an elicitable functional (e.g. the mean in case of translation invariance)
which contains information on the transformation g(z, ·) (e.g. the translation) of the
distribution. The technique used in Theorem 1.16 does not seem suited to answer this
question.

From a technical perspective, it is also possible to proceed in the proof of Theo-
rem 1.16 without requiring g to be symmetric. We then obtain for any two independent
random variables Y and Z, having distributions F and G, respectively, that the distri-
bution of g(Z, Y ) has the same functional value as F . The functional T must thus be
constant on some subset of the class F , but how this subset depends on g is not obvious
and possibly very complex.
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Finally, we remark that Fissler and Ziegel (2019b) consider invariance as well, how-
ever, in their approach, invariance is a property of the consistent scoring function and
not of the functional. They consider elicitable functionals which are π-equivariant, i.e.
they satisfy T (L(ϕ(Y ))) = (πϕ)(T (L(Y ))) for all random variables Y , where L(Y ) de-
notes the law of Y and ϕ, π are some transformations. This definition incorporates
our notion of g-invariance by choosing ϕ ∈ Φ, where Φ := {g(z, ·) | z ∈ O} is a set of
transformations and π : Φ→ {id2A} maps any ϕ on the identity of 2A.

1.3.3 Connections to continuity

In this subsection we connect the non-elicitability result of Theorem 1.11 to continuity
of single-valued functionals. A possible interpretation is that functionals have to be
continuous in some sense in order to be elicitable. In general the connection between
elicitability and continuity is intricate since there is no obvious concept of continuity for
functionals. Possible choices are made in the characterization results of Lambert et al.
(2008) and Steinwart et al. (2014). Here we follow Bellini and Bignozzi (2015) and focus
on mixture-continuity of single-valued functionals T : F → A, where A is a subset of
some metric space (M,d). Throughout, we assume F to be convex.

Definition 1.17 (Mixture-continuity). A functional T : F → A is mixture-continuous
if for all F0, F1 ∈ F the mapping

[0, 1]→ A, λ 7→ T (λF1 + (1− λ)F0)

is a continuous function.

Many statistical properties are mixture-continuous, e.g. ratios of expectations, quan-
tiles, and expectiles, see Fissler and Ziegel (2019b) for details. Fissler and Ziegel (2019b,
Proposition 2.2) and Bellini and Bignozzi (2015, Proposition 3.4) show that under weak
assumptions, an elicitable functional is mixture-continuous if it has a strictly consistent
scoring function for which the expected score function x 7→ S̄(x, F ) is continuous for all
F ∈ F .

Bayes risk Motivated by Frongillo and Kash (2020) we call Te : F → A a Bayes risk
functional if it can be represented via Te(F ) := S̄(T (F ), F ) for a functional T : F → A
and a scoring function S : A×O→ R which is consistent for T relative to F . Examples
of Bayes risk functionals include the variance (see Example 1.8) and Expected Shortfall
(ES). Although they fail to be elicitable in general, the vector valued property (Te, T )>

becomes elicitable whenever T is, see Frongillo and Kash (2020, Theorem 1). However,
we do not require elicitability for the following result.

Proposition 1.18. The Bayes risk functional Te is mixture-continuous.

Proof. Let F0, F1 ∈ F and define Fλ := λF1 + (1 − λ)F0 for λ ∈ [0, 1]. Let S be a con-
sistent scoring function for the functional T in the representation Te(F ) = S̄(T (F ), F ).
Consistency implies that the mapping λ 7→ Te(Fλ) is concave and thus also continuous
on (0, 1). It remains to consider the points {0, 1} and due to symmetry, it suffices to
consider λ ↓ 0 only. The first term on the right-hand side of

Te(Fλ) = λS̄(T (Fλ), F1) + (1− λ)S̄(T (Fλ), F0)
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is bounded since consistency and Nau’s inequality (Nau, 1985) give S̄(T (F1), F1) ≤
S̄(T (Fλ), F1) ≤ S̄(T (F0), F1). Since (F, y) 7→ S(T (F ), y) defines a proper scoring rule
by Lemma 1.22, we obtain Te(Fλ)→ Te(F0) for λ ↓ 0 from Lemma 1.24.

This proposition extends mixture-continuity to the class of Bayes risk functionals,
see Frongillo and Kash (2020) for a collection of examples. Remarkably, elicitability of
T is not needed for this result.

Self-calibration We now show mixture-continuity for functionals which allow for self-
calibration. This property of scoring functions is discussed in Fissler and Ziegel (2019b)
from where we also take the definition.

Definition 1.19 (Self-calibration). A scoring function S : A×O→ R is F-self-calibrated
for a functional T : F → A with respect to the metric d if for all ε > 0 and all F ∈ F
there is a δ = δ(ε, F ) > 0 such that for all x ∈ A and t = T (F )

S̄(x, F )− S̄(t, F ) < δ ⇒ d(x, t) < ε. (1.6)

As stated in Fissler and Ziegel (2019b), self-calibration can be interpreted as conti-
nuity of the inverse of the expected score, which illustrates why it can be used to ensure
convergence in M-estimation (Fissler and Ziegel, 2019b, Theorem 2.9). In particular, it
implies that S is strictly consistent for T .

Proposition 1.20. If the functional T : F → A has an F-self-calibrated consistent
scoring function, then it is mixture-continuous.

Proof. Let F0, F1 ∈ F , define Fλ := λF1+(1−λ)F0 and consider continuity at λ = 0 first.
Let ε > 0 be given and set x = T (Fλ) in (1.6). Due to Lemma 1.22 and 1.24 we obtain
that for all δ = δ(ε, F0) > 0 we can find a δ′ such that S̄(T (Fλ), F0)− S̄(T (F0), F0) < δ
for all λ ∈ [0, δ′]. Self-calibration of S then implies d(T (Fλ), T (F0)) < ε for all λ ∈ [0, δ′].
Continuity in λ = 1 follows by symmetry and the case λ ∈ (0, 1) follows via a re-
parametrization argument: Consider some λ̄ ∈ (0, 1) and define F ′µ := µF1 + (1− µ)Fλ̄
with the re-parametrization µ = (λ− λ̄)/(1− λ̄) for λ ∈ [λ̄, 1] and µ ∈ [0, 1]. Then

lim
λ↓λ̄

T (Fλ) = lim
µ↓0

T (F ′µ) = T (F ′0) = T (Fλ̄)

and the same argument for λ ↑ λ̄ finishes the proof.

This result is roughly the converse statement to Fissler and Ziegel (2019b, Propo-
sition 2.8), which states that a mixture-continuous elicitable functional which admits
continuous expected scores S̄(·, F ) must have a self-calibrated scoring function. Stated
differently, we see that only mixture-continuous elicitable functionals can have self-
calibrated scoring functions.

1.4 Proper scoring rules

In probabilistic forecasting, the whole distribution function instead of some statistical
property is reported to the decision maker, i.e. the action space A is given by F . Anal-
ogously to a scoring function, a scoring rule then assigns a score based on the reported
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distribution F and a realizing observation y. For recent reviews of the theory and ap-
plication of proper scoring rules we refer to Dawid (2007), Gneiting and Raftery (2007),
and Dawid and Musio (2014).

This section gives a short introduction to proper scoring rules for later reference and
then turns to a novel construction principle. Our notation follows Gneiting and Raftery
(2007), in particular we let R̄ := [−∞,∞] be the extended real line.

An extended real-valued function S : F × O → R̄ is a scoring rule if for all F,G ∈
F the integral S̄(F,G) is well-defined. The analogue to the concept of consistency
(Definition 1.1) is usually called propriety.

Definition 1.21 (Propriety). A scoring rule S : F × O → R̄ is proper if S̄(G,G) ≤
S̄(F,G) holds for all F,G ∈ F . It is strictly proper if it is proper and for any F,G ∈ F
the equality S̄(G,G) = S̄(F,G) implies G = F .

In contrast to the definition of scoring functions, we merely require quasi-integrability
for scoring rules such that expected scores can take values in R̄. Following Gneiting and
Raftery (2007, Definition 1) we impose some mild restrictions by considering regular
scoring rules only, i.e. S which satisfy S̄(F,G) > −∞ and S̄(G,G) ∈ R for all F,G ∈ F .

Proper scoring rules connect naturally to consistent scoring functions, as the following
result (Gneiting, 2011a, Theorem 3) illustrates.

Lemma 1.22. Let T : F → A be a functional and S : A×O→ R a scoring function. If S
is consistent for T , then the scoring rule R : F ×O→ R given by R(F, y) := S(T (F ), y)
is proper.

Note that this result cannot guarantee strict propriety, even if S is strictly consistent
for T . We now introduce a continuity property of proper scoring rules, which is closely
connected to the concept of mixture-continuity for functionals, see Definition 1.17. It is
a useful tool for new results on functionals (Subsection 1.3.3) and proper scoring rules
(Section 2.4).

Definition 1.23 (Diagonal-continuity). Let F be convex. A scoring rule S : F×O→ R̄
is diagonal-continuous at G if for all F ∈ F

S̄(λF + (1− λ)G,G)→ S̄(G,G) for λ ↓ 0.

Lemma 1.24. Let F be convex. If S : F × O → R̄ is an F-integrable proper scoring
rule, then it is diagonal-continuous at each G ∈ F .

Proof. We proceed similar to the proof of Nau (1985, Proposition 3). Let F,G ∈ F and
denote Fλ := λF + (1− λ)G for λ ∈ [0, 1). We obtain the inequality

(1− λ)S̄(Fλ, G) = S̄(Fλ, Fλ)− λS̄(Fλ, F )

≤ S̄(G,Fλ)− λS̄(F, F )

= (1− λ)S̄(G,G) + λ
(
S̄(G,F )− S̄(F, F )

)
,

since S is a proper scoring rule. Rearranging leads to

|S̄(λF + (1− λ)G,G)− S̄(G,G)| ≤ λ

1− λ
(
S̄(G,F )− S̄(F, F )

)
for λ ∈ [0, 1) and the right hand side of this equation vanishes as λ ↓ 0.
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The argument in the proof of Lemma 1.24 can be extended to all regular proper
scoring rules as long as the expected score S̄(G,F ) is finite.

1.4.1 Common choices of proper scoring rules

Various proper scoring rules have been proposed in the literature and this subsection
collects some common choices for later reference. We start with proper scoring rules for
densities and assume that µ is a σ-finite measure on (O,O). The classes Lα for α > 1
are defined to contain all densities f of probability measures F ∈ F that are absolutely
continuous with respect to µ and such that

‖f‖α :=

(∫
O
f(y)α dµ(y)

)1/α

is finite. Moreover, for all k ∈ N we let Fk be the classes of distributions with finite k-th
moment.

Logarithmic score The logarithmic score (Good, 1952) is one of the most com-
mon scoring rules since it connects to various fundamental statistical concepts, such
as maximum-likelihood estimation, information criteria, or Bayes factors (Gneiting and
Raftery, 2007). It is defined via

LogS(f, y) := − log f(y)

and it is strictly proper on L1. It is the central example of a scoring rule which takes
values in R̄.

Pseudospherical score For any α > 1 the pseudospherical score (Gneiting and
Raftery, 2007) is defined via

PseudoS(f, y) := −f(y)α−1/‖f‖α−1
α

and it is strictly proper on Lα. After appropriate scaling the pseudospherical score
converges to the logarithmic score as α→ 1, see Gneiting and Raftery (2007) for details.

Hyvärinen score Let O = Rd and let ∇ denote the gradient and ∆ the Laplace
operator. Define L∗ as the class of densities on O which are twice differentiable, positive
almost everywhere, and such that ∇ log(f(y))g(y) → 0 as ‖y‖ → ∞ for all f, g ∈ L∗.
Then the Hyvärinen score (Hyvärinen, 2005) given by

HyvS(f, y) := ∆ log f(y) +
1

2
‖∇ log f(y)‖2

is a strictly proper scoring rule on L∗ if it is L∗-integrable. The Hyvärinen score has
the remarkable property that it is 0-homogeneous, i.e. HyvS(cf, y) = HyvS(f, y) for all
c > 0. It can thus be used in situations where only unnormalized models are available,
see Hyvärinen (2005), Dawid et al. (2012), and Ehm and Gneiting (2012) for details.
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Continuous ranked probability score (CRPS) For O = R a popular choice is the
continuous ranked probability score (CRPS) (Matheson and Winkler, 1976) defined via

CRPS(F, y) :=

∫ ∞
−∞

(F (x)− 1(y ≤ x))2 dx,

for a cumulative distribution function (CDF) F ∈ F . The CRPS is proper and it is even
strictly proper on F1. Various modifications of the CRPS are available, in particular
some regions of the observation domain can be emphasized in the evaluation: For a
weight function w : R → [0,∞) the weighted CRPS (wCRPS) (Gneiting and Ranjan,
2011) is defined via

wCRPS(F, y) :=

∫ ∞
−∞

w(x)(F (x)− 1(y ≤ x))2 dx

and it is proper, but usually not strictly proper without additional assumptions, see
Gneiting and Ranjan (2011) and Holzmann and Klar (2017).

Dawid-Sebastiani score For O = Rd the Dawid-Sebastiani (DS) score (Dawid and
Sebastiani, 1999) is defined via

DSS(F, y) := log det ΣF + (y − µF )>Σ−1
F (y − µF )

on F2, where µF and ΣF are the mean and the covariance matrix of the predictive
distribution F ∈ F2. The DS score is proper, but not strictly proper, as distributions
with the same first and second moments attain the same score.

Binary scoring rules If Y is a random variable taking values in {0, 1}, then we can
identify the class F with the interval [0, 1] via the success probability p = PF (Y = 1).
In this setting, there is a great variety of (strictly) proper scoring rules, which can
be obtained via the mixture representation in Gneiting and Raftery (2007, Theorem 3).
Common choices are the quadratic or Brier score (Brier, 1950) and the logarithmic score,
defined via

S(p, y) = (p− y)2 and S(p, y) = −y log(p)− (1− y) log(1− p),

respectively. Both are strictly proper scoring rules.

1.4.2 A construction principle

This subsection illustrates that the Dawid-Sebastiani (DS) score (see previous subsec-
tion) is a special case of a general result which constructs a proper scoring rule from
an exponential family of densities under certain assumptions. To illustrate the idea,
consider the DS score and notice that

DSS(F, y) = −2 log (ϕ(y | µF ,ΣF ))− d log(2π) = 2LogS (ϕ(· | µF ,ΣF ), y)− d log(2π),

where ϕ(y | µ,Σ) denotes the density of the multivariate normal distribution with mean
µ and covariance matrix Σ. This connection raises the question, under which conditions
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it is possible to obtain a proper scoring rule from the logarithmic score combined with
some parametric family of densities, e.g. the normal distributions.

To answer this question in a general setting let E := {Fθ | θ ∈ Θ} ⊆ F be a
parametric family of distributions with parameter space Θ. Let φ given by φ : F → E ,
F 7→ Fθ be a mapping onto E and write θ(F ) for the parameter θ in φ(F ) = Fθ. The
following result specifies when a new proper scoring rule can be constructed from a given
one.

Theorem 1.25. Let S : F ×O→ R̄ be a proper scoring rule and φ : F → E a mapping.
If there is an F-integrable function H : O→ R such that for all F,G ∈ F

S̄(φ(F ), G) + H̄(G) = S̄(φ(F ), φ(G)) + H̄(φ(G)), (1.7)

then the scoring rule

S∗(F, y) = S(φ(F ), y) = S(Fθ(F ), y)

is proper.

Proof. For F,G ∈ F invoke Equation (1.7) two times to obtain

S̄∗(F,G) = S̄(φ(F ), G) = S̄(φ(F ), φ(G)) + H̄(φ(G))− H̄(G)

≥ S̄(φ(G), φ(G)) + H̄(φ(G))− H̄(G) = S̄(φ(G), G) = S̄∗(G,G),

where the inequality stems from the propriety of S.

Strict propriety is only possible for special choices of E and φ, rendering the mapping
φ a bijection, but we omit these details here. Moreover, the existence of a mapping H is
not necessary if we rewrite Theorem 1.25 in terms of equivalence of scoring rules, which
is defined as in Definition 1.3.

We now turn to some examples of classes E and scoring rules S where Theorem 1.25
yields new proper scoring rules or recovers existing ones. We focus on the logarithmic
and the Hyvärinen score (see Subsection 1.4.1) since both lead to explicit examples.
We begin by defining an exponential family for a set of parameters Θ since it allows for
several non-trivial parametric classes E which satisfy condition (1.7) in combination with
the logarithmic or Hyvärinen score. A set of densities {f(· | θ) | θ ∈ Θ} is an exponential
family if any member can be represented via

f(y | θ) = h(y) exp
(
η(θ)>t(y)−A(θ)

)
for m ∈ N and measurable functions h : O → [0,∞), t : O → Rm, η : Θ → Rm, and
A : Θ → R. The mapping A is often called log-partition function and t is a sufficient
statistic for the parameter θ, see Barndorff-Nielsen (2014) for details.

Logarithmic score It is straightforward to see how the logarithmic score fits well
with exponential families of distributions. In detail, let E be an exponential familiy and
set H(y) := log h(y). Then Equation (1.7) for the logarithmic score reduces to

t̄(G) = t̄(φ(G)), (1.8)

such that only the expectation of t is involved. Such an expectation can often be cal-
culated and expressed in terms of θ ∈ Θ via the partial derivatives of the log-partition
function A, giving simple conditions on the mapping φ : F → E .
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Hyvärinen score Since the Hyvärinen score is based on the logarithm of the density,
as well, it is natural to use it in Theorem 1.25. For simplicity assume that E is an
exponential family of distributions on O = Rd where the function h is constant and all
densities satisfy the regularity conditions of the class L∗ introduced above. If we define
Wθ(y) := η(θ)>t(y), then the Hyvärinen score on E depends on

∆Wθ(y) =
m∑
i=1

ηi(θ)∆ti(y) and ∇Wθ(y) =
m∑
i=1

ηi(θ)∇ti(y)

only. As a consequence, Equation (1.7) holds if the derivatives of the sufficient statistic
t satisfy

EG∆ti(Y ) = Eφ(G)∆ti(Y ) and EG∇ti(Y )>∇tj(Y ) = Eφ(G)∇ti(Y )>∇tj(Y ) (1.9)

for i, j = 1, . . . ,m, giving m+m(m+ 1)/2 identities. These equations are not necessary
for Equation (1.7) to hold, but they provide simple conditions which can be checked to
define a suitable mapping φ : F → E , see Example 1.29.

We close the section with several examples which construct proper scoring rules via
Theorem 1.25 and the logarithmic or Hyvärinen score.

Example 1.26 (Normal distribution). Let E consist of multivariate normal distributions
with parameter θ = (µ,Σ). Its exponential family representation implies t(y) = (y, yy>).
For the logarithmic score, Equation (1.8) yields that the mapping φ is determined by

(EGY,CovG(Y )) = EGt(Y ) = Eφ(G)t(Y ) = (µG,ΣG),

such that θ(F ) = (EFY,CovF (Y )) has to be computed from the predictive distribution.
The resulting scoring function S∗ from Theorem 1.25 is proper and equivalent to the DS
score, as illustrated at the beginning of the subsection. �

Example 1.27 (Laplace distribution). Let E be the class of centered Laplace distribu-
tions with parameter ν > 0, i.e. with densities f(y | ν) = (2ν)−1 exp(−|y|/ν). This is an
exponential family with t(y) = |y| and for the logarithmic score Equation (1.8) becomes

EG|Y | = EGt(Y ) = Eφ(G)t(Y ) = Eφ(G)|Y | = νG,

such that θ(F ) = EF |Y | is computed from the predictive distribution. Theorem 1.25
implies that the scoring rule

S∗(F, y) = log(2νF ) +
|y|
νF
,

where νF = EF |Y |, is proper. One might wonder, whether it is possible to transfer the
same arguments to the general class of Laplace distributions with parameters (µ, ν), i.e.
to the situation of non-constant location parameter µ. In this case, Equation (1.7) reads

EG
(
|Y − θ1(F )|
θ2(F )

+H(Y )

)
= Eφ(G)

(
|Y − θ1(F )|
θ2(F )

+H(Y )

)
,

which shows that the variable Y and the parameter θ1(F ) cannot be separated. It is
thus unclear how to obtain a mapping φ which satisfies this identity for all F,G ∈ F
if F is sufficiently large. As a consequence, Theorem 1.25 does not yield a new proper
scoring rule. �
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Example 1.28 (Poisson distribution). Let O = N and E be the class of Poisson distri-
butions with parameter λ > 0. We have t(y) = y such that for the logarithmic score
Equation (1.8) becomes

EGY = EGt(Y ) = Eφ(G)t(Y ) = Eφ(G)Y = λG,

hence θ(F ) = EFY is reported. Theorem 1.25 implies that the scoring rule

S∗(F, y) = −y log(λF ) + λF + log(y!),

where λF is the expectation of F , is proper. For an alternative derivation of an equivalent
scoring rule, see Proposition 4.18. �

Example 1.29 (Normal distribution, continued). Let E be as in Example 1.26. For the
Hyvärinen score, the conditions in (1.9) reduce to equations which contain the moments
EGYi and mixed moments EGYiYj for i, j = 1, . . . ,m, only. Hence, we obtain that the
mapping φ of Example 1.26 with parameters θ(F ) = (EFY,CovF (Y )) satisfies these
conditions. As a result we obtain a new Dawid-Sebastiani score given by

S∗(F, y) = −2 tr Σ−1
F + ‖Σ−1

F (y − µF )‖2 = −2 tr Σ−1
F + (y − µF )>Σ−2

F (y − µF ),

which is proper due to Theorem 1.25. �

1.5 Forecast comparison and score differences

When several reports of a functional T or a distribution are available, consistent scoring
functions and proper scoring rules become useful statistical tools to address the question
of relative forecast performance. This is because the concept of consistency, or equiva-
lently propriety, suggests a natural way of comparing the quality of competing reports:
Call a forecast superior to its competitor if it achieves a lower expected score. This
principle allows for choosing between two forecasts based on their difference in expected
scores, with only minimal assumptions on the data-generating process.

When this idea is put into practice we have to rely on estimates, as the true expected
score differences are not available. This motivates an intuitive forecast comparison set-
ting, see e.g. Nolde and Ziegel (2017) and Gneiting and Ranjan (2011). We give a brief
introduction for consistent scoring functions, but the evaluation is analogous for proper
scoring rules. Let T : F → A be an elicitable functional with strictly consistent scoring
function S : A×O→ R and consider a sequence of random variables (Yt)t∈N adapted to
a filtration (Ht)t∈N. Assume that forecasts of the functional T applied to the conditional
distribution Yt | Ht−1 are given. These forecasts can be regarded as random sequences
R = (Rt)t∈N and R∗ = (R∗t )t∈N and their performance can be compared via the average
score difference

∆n(R,R∗) :=
1

n

n∑
t=1

S(Rt, Yt)−
1

n

n∑
t=1

S(R∗t , Yt) =
1

n

n∑
t=1

(S(Rt, Yt)− S(R∗t , Yt)) , (1.10)

which is the natural estimator for the difference in expected scores. Based on the law of
large numbers and the strict consistency of S, a positive value supports the conjecture
that R∗ is superior to R, while a negative value supports the opposite conjecture.
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A key issue which remains is to assess whether the size of the observed average
score difference provides enough evidence to favor one of the two forecast sequences.
The Diebold-Mariano (DM) test (Diebold and Mariano, 1995) addresses this aspect by
testing whether ∆n(R,R∗) is significantly different from zero. In the simple situation of
an i.i.d. sequence (Yt)t∈N, the forecast sequences reduce to constants r, r∗ ∈ A and we
can perform such a test based on the asymptotic normality of the well-known t-statistic
tn :=

√
n∆n(r, r∗)/

√
σ̂2
n, where σ̂2

n estimates the variance of S(r, Yt) − S(r∗, Yt). For
more general time series (Yt)t∈N, (Rt)t∈N, and (R∗t )t∈N we refer to the evaluation setting
worked out in Nolde and Ziegel (2017), where tests for equal forecast performance rely
on suitable asymptotic results developed in Giacomini and White (2006).

Alternative testing schemes have been developed, e.g. tests for forecast encompassing
(Giacomini and Komunjer, 2005; Clements and Harvey, 2010; Dimitriadis and Schnait-
mann, 2020), which also allow to focus on conditional instead of unconditional per-
formance. Moreover, if the sample size n is too low to justify asymptotic normality
assumptions, the Wilcoxon signed-rank test provides an alternative to asymptotic nor-
mality, but relies on the assumption of symmetric score differences. Overall, a variety of
testing approaches are available to leverage consistent scoring functions for comparative
forecast evaluation.



2 Elicitability of tail properties

This chapter addresses the question whether consistent scoring functions are available
to perform comparative forecast evaluation for statistical properties of distribution tails.
To this end, we introduce the concept of max-functionals which naturally arises from a
key feature shared by the statistical functionals that are typically considered in extreme
value theory. We demonstrate that max-functionals cannot be elicitable and even have
infinite elicitation complexity. Consequently, we then turn from point to probabilistic
forecasting and allow for reports of the entire distribution function. In this setting we
show that it is an inherent property of all proper scoring rules that they cannot perfectly
distinguish among different max-functional values.

The chapter is organized as follows. Section 2.1 recalls the notions of conditional
elicitability and elicitation complexity and Section 2.2 introduces the class of max-
functionals. We then show that they cannot be elicitable and that their elicitation
complexity is infinite under mild assumptions. Section 2.3 provides examples of widely
used max-functionals and Section 2.4 connects to proper scoring rules. We show that
arbitrary large differences in tail behavior, either quantified by tail equivalence or max-
functionals, can remain undetected by proper scoring rules. Section 2.5 concludes with
a discussion of the results.

The material is based on Brehmer and Strokorb (2019), where I stated and proved
the technical results, except for Proposition 2.11, and wrote the first draft. Kirstin
Strokorb introduced the initial question of the paper. Both of us polished and edited
text.

2.1 Conditional elicitability and elicitation complexity

The non-elicitability of certain functionals can often be addressed by requiring additional
information from the forecasters before evaluation. The simplest instance of this idea
is that a functional T can be jointly elicitable, meaning that there exists a functional
T ′ : F → A′ such that (T, T ′)> becomes elicitable. Alternative, but closely connected,
concepts are conditional elicitability (Emmer et al., 2015; Fissler and Ziegel, 2016) and
elicitation complexity (Lambert et al., 2008; Frongillo and Kash, 2020). We start by
giving an illustrating example.

Example 2.1 (Variance, continued). Example 1.8 illustrates that the variance func-
tional Tvar is not elicitable, whereas the vector-valued functional (T1, Tvar)

T is. Hence,
Tvar is jointly elicitable with the first moment T1. Another notable property is that on
every subset of F where T1 is constant, Tvar reduces to a shifted version of the second
moment T2 and is thus elicitable on this subset. That is, Tvar is conditionally elicitable
given T1 in the following sense. �
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Definition 2.2 (Conditional elicitability). Let T : F → A ⊆ Rn and T ′ : F → A′ ⊆ Rk
be functionals and let T ′ be elicitable. For any x ∈ A′ define the set

Fx := {F ∈ F | T ′(F ) = x}.

Then the functional T is called conditionally elicitable given T ′ if for any x ∈ A′ its
restriction to the class Fx is elicitable.

The concept of conditional elicitability was first introduced by Emmer et al. (2015)
and motivated by a conditional backtesting approach for Expected Shortfall (ES) fore-
casts. A slight generalization was given by Fissler and Ziegel (2016). Our definition
coincides with the one from Fissler and Ziegel (2016) except that we drop the condition
that T ′ has elicitable components and only require it to be elicitable. This allows for a
more convenient presentation of our results below.

Neither joint elicitability nor conditional elicitability imply elicitability, which fol-
lows from Example 2.1 with the variance functional serving as a counterexample. If a
functional T is jointly elicitable with the functional T ′, and T ′ is elicitable, then it is
conditionally elicitable given T ′. Conversely, as discussed in Fissler and Ziegel (2016), it
is unclear under which conditions a conditionally elicitable functional is jointly elicitable.

The definitions of joint elicitability and conditional elicitability both require a second
elicitable functional T ′ accompanying the functional of interest. The distinction between
both functionals is made more explicit in the concept of elicitation complexity. To
illustrate this, recall Example 2.1 and note that the variance functional satisfies Tvar =
f(T1, T2), where f(x1, x2) = x2 − x2

1. Since T1 and T2 are elicitable, we say that the
variance functional has complexity 2. In general, T has elicitation complexity at most k
if there is an elicitable functional T ′ : F → A′ ⊆ Rk such that T = f(T ′) holds. Any f
and T ′ satisfying this condition are then called link function and intermediate functional,
respectively. The smallest dimension k for which such a representation is feasible is the
elicitation complexity.

Definition 2.3 (Elicitation complexity). For any set of distribution functions F the set
of Rk-valued elicitable functionals defined on F is denoted via Ek(F). For a functional
T : F → A ⊆ R and sets Ck ⊆ Ek(F) the elicitation complexity of T with respect to
(Ck)k∈N is defined via

elic(T ) := min{k ∈ N | ∃T ′ ∈ Ck : T = f ◦ T ′ for some f : T ′(F)→ A}.

If the minimum is not attained for any k ∈ N, the elicitation complexity of T with
respect to (Ck)k∈N is infinite and we write elic(T ) =∞.

Elicitation complexity was introduced by Lambert et al. (2008) and further analyzed
in Frongillo and Kash (2020), the latter motivated by its role in empirical risk mini-
mization (ERM) algorithms in machine learning. Intuitively speaking, it replaces the
question whether a functional is elicitable by the question how complex it is to elicit the
functional.

If no regularity conditions are imposed on f or T ′, this can lead to small complexities
without clear benefits in applications. More precisely, if f is arbitrary and Ck = Ek(F)
is chosen, pathological choices of f , like bijections from Rk to R, cause all functionals to
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have complexity 1, as demonstrated by Frongillo and Kash (2020, Remark 4). To avoid
such problems, it is standard to choose suitable subclasses Ck of intermediate functionals.
One possible choice, which is used by Frongillo and Kash (2020) as well as Dearborn and
Frongillo (2020), is Ck := Ik(F)∩Ek(F), where Ik(F) is the set of Rk-valued identifiable
functionals on F . Another possibility, implicitly used by Lambert et al. (2008), is to
define Ck to be a subclass of all functionals which have elicitable components.

Lastly, it is also possible to impose regularity conditions on the link function f , e.g.
by requiring differentiability or continuity. Notably, joint elicitability can be understood
as a version of elicitation complexity where the link function is the projection on the
last component (Frongillo and Kash, 2020).

We need to be cautious when interpreting elicitation complexity, since imposing
different regularity conditions via (Ck)k∈N can lead to different elicitation complexities for
the same functional (Frongillo and Kash, 2020). In particular, an Rk-valued functional
might be elicitable and simultaneously have elicitation complexity strictly greater than
k. Conversely, a functional can have elicitation complexity 1, although it is not itself
elicitable, see Frongillo and Kash (2020, Remark 2).

We conclude this section with a lemma which considers the properties of a functional
T if it is restricted to some subclass F∗ ⊆ F . The first statement corresponds to the
first part of Lemma 2.11 of Fissler and Ziegel (2015), the second and third statement
are simple extensions. Their proofs are straightforward and therefore omitted.

Lemma 2.4. Let T : F → A be a functional and let F∗ ⊆ F be non-empty.

(i) If T is elicitable, then the restricted functional T|F∗ is elicitable.

(ii) If elic(T ) = k with respect to (Ck)k∈N and we define C∗k := {T ′|F∗ | T
′ ∈ Ck}, then

elic(T|F∗) ≤ k with respect to (C∗k)k∈N.

(iii) If elic(T ) = k with respect to (Ck)k∈N and sets (C′k)k∈N satisfy Ck ⊆ C′k for all k ∈ N,
then elic(T ) ≤ k with respect to (C′k)k∈N.

2.2 The elicitation complexity of max-functionals

This section introduces max-functionals, the central objects of our study, and investigates
their elicitability as well as their elicitation complexity. Henceforth, let F always denote
a convex class of distributions.

Definition 2.5 (Max-functional). A functional T : F → R is a max-functional if

T (λF1 + (1− λ)F0) = max (T (F0), T (F1))

holds for all F0, F1 ∈ F and λ ∈ (0, 1).

The essential feature of a max-functional is that its value on convex combinations of
distributions is determined by the values attained on the extreme points. Equivalently,
we can also define min-functionals and all results carry over with minor modifications.
The constant functional is the simplest max-functional, but we will usually not be in-
terested in this trivial case. Instead, Section 2.3 collects some non-trivial examples of
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max-functionals that are routinely considered in extreme value theory. Also note that,
by definition, restrictions of max-functionals to a certain set of values are again max-
functionals.

Lemma 2.6. Let T : F → R be a max-functional and A ⊂ R a set. Set FA := {F ∈ F |
T (F ) ∈ A}, then FA is convex and the restricted functional T : FA → A ⊂ R is also a
max-functional.

We start by proving that max-functionals cannot be elicitable. As remarked in
Section 1.2, the usual way to show that a functional is not elicitable consists of applying
Proposition 1.7, i.e. showing that it fails to have convex level sets. However, any max-
functional has convex level sets by definition, so this approach is not feasible. Instead,
we employ Theorem 1.11 to obtain the following result.

Theorem 2.7. If T : F → R is a non-constant max-functional, then it is not elicitable.

Turning from the elicitability to the elicitation complexity of max-functionals, the
question of elicitation complexity is only meaningful in relation to a family of sets
(Ck)k∈N, where each set Ck ⊂ Ek(F) is a collection of reasonably regular Rk-valued
elicitable functionals, cf. Section 2.1. Our major regularity requirement is mixture-
continuity (see Definition 1.17) as in Bellini and Bignozzi (2015) and Fissler and Ziegel
(2019b). As discussed in Subsection 1.3.3, an elicitable functional which is not mixture-
continuous can have discontinuous expected scores. Moreover, it cannot have a self-
calibrated consistent scoring function by Proposition 1.20. Both of these issues can lead
to difficulties in forecast evaluation, estimation and regression.

To avoid further degenerate behavior, we impose a richness assumption on potential
intermediate functionals T ′ in the sense that we require the image T ′(F) ⊆ Rk to have
at least non-empty interior. This assumption is natural for large enough classes F and
was, for instance, used by Fissler and Ziegel (2016, 2019b) when establishing results on
consistent scoring functions for T ′.

In addition to mixture continuity, we follow Lambert et al. (2008) and consider only
functionals with elicitable components. Summarising, the first family of functionals
which we consider in our complexity result is

Uk :=

{
T ′ ∈ Ek(F)

∣∣∣∣ T ′ mixture-continuous with elicitable
components, int(T ′(F)) 6= ∅

}
,

where int(B) denotes the interior of a set B ⊆ Rk. Alternatively, we require that the
image T ′(F) of a potential intermediate functional T ′ has not only non-empty interior,
but is itself an open set, i.e. we consider the family

Vk :=

{
T ′ ∈ Ek(F)

∣∣∣∣ T ′ mixture-continuous with elicitable
components, T ′(F) open

}
.

We are now in position to consider the elicitation complexity of max-functionals with
respect to these families.

Theorem 2.8. Let T : F → R be a max-functional. Then the following hold true.

(i) T has elicitation complexity ∞ with respect to (Uk)k∈N unless T (F) contains its
supremum.
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(ii) T has elicitation complexity ∞ with respect to (Vk)k∈N unless T is constant.

Proof. Assume there is a k ∈ N, a surjective functional T ′ : F → A′ in Uk or Vk and a
function f : A′ → R such that T = f ◦ T ′. Without loss of generality, T ′ is surjective,
hence its mixture-continuity together with the assumed convexity of F imply that A′

is path-connected. Since it has non-empty interior, we can choose a hyperrectangle
Q :=

∏k
i=1[ci, di] ⊆ int(A′) and consider each component of T ′ isolated on Q. To do so,

choose a component j ∈ {1, . . . , k} and a zi ∈ [ci, di] for all i ∈ {1, . . . , k}\{j}. We can
then obtain Fcj ,z, Fdj ,z ∈ F such that

T ′(Fcj ,z) = (z1, . . . , zj−1, cj , zj+1, . . . , zk) and

T ′(Fdj ,z) = (z1, . . . , zj−1, dj , zj+1, . . . , zk).

All components of T ′ are elicitable and thus have convex level sets by Proposition 1.7.
Consequently, the i-th component, where i ∈ {1, . . . , k}\{j}, equals zi for all convex
combinations of Fcj ,z and Fdj ,z. If we define

A′j,z := {(z1, . . . , zj−1, x, zj+1, . . . , zk) | x ∈ (cj , dj)} ⊆ Q,

the fact that the j-th component has convex level sets and is mixture-continuous implies
that for all a ∈ A′j,z there exists a λ ∈ (0, 1) with T ′(λFcj ,z + (1 − λ)Fdj ,z) = a. The
connection T = f ◦ T ′ now gives

f((z1, . . . , zj−1, x, zj+1, . . . , zk)) = f(T ′(λFcj ,z + (1− λ)Fdj ,z)

= T (λFcj ,z + (1− λ)Fdj ,z)

= max(T (Fcj ,z), T (Fdj ,z))

for all x ∈ (cj , dj), implying that f has to be constant on the set A′j,z. Repeating this
argument for any choice of j ∈ {1, . . . , k} and zi ∈ [ci, di] with i ∈ {1, . . . , k}\{j} shows
that there is a C ∈ R such that f(q) = C for all q ∈ int(Q).

Now fix x0 ∈ int(Q). For any x1 ∈ A′ we can choose distributions F0, F1 ∈ F with
T ′(F0) = x0 and T ′(F1) = x1. Since x0 ∈ int(Q) and T ′ is mixture-continuous, there is
a small µ ∈ (0, 1) such that T ′(µF1 + (1− µ)F0) ∈ int(Q) holds. We thus obtain

C = f(T ′(µF1 + (1− µ)F0)) = T (µF1 + (1− µ)F0)

= max(T (F0), T (F1))

= max(f(x0), f(x1)) = max(C, f(x1)),

implying f(x1) ≤ C. Since x1 was arbitrary, we have f(x) ≤ C for all x ∈ A′, showing
C = supT (F) and proving statement (i).

Assume now that A′ is open. Then for every x1 ∈ A′ there is a hyperrectangle Q1 ⊆ A′

such that x1 ∈ int(Q1). Arguing as in the beginning of the proof gives f(q) = f(x1)
for all q ∈ int(Q1). Letting T ′(F1) = x1 as above, we obtain a ν ∈ (0, 1) such that
T ′(νF1 + (1− ν)F0) ∈ int(Q1). This implies

C = f(T ′(µF1 + (1− µ)F0)) = max(T (F0), T (F1))

= f(T ′(νF1 + (1− ν)F0)) = f(x1).

Since x1 was arbitrary, T must be constant, proving part (ii).
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Theorem 2.8 implies infinite elicitation complexity of max-functionals in a wide range
of natural settings. Ultimately, our main interest lies in understanding the elicitation
complexity with respect to the more general family Uk, which imposes only very weak
assumptions on potential intermediate functionals.

Corollary 2.9. Let T : F → R be a max-functional and let one of the following condi-
tions be satisfied.

(i) T is unbounded.

(ii) T is surjective onto an open interval (a, b).

(iii) T is surjective onto a half-open interval [a, b).

Then T has elicitation complexity ∞ with respect to (Uk)k∈N.

Alternatively, considering elicitation complexity with respect to the family (Vk)k∈N
amounts to requiring more regularity for a potential intermediate functional T ′ and, in
this case, all non-constant max-functionals have infinite elicitation complexity. Lem-
ma 2.4 further implies that the infinite elicitation complexity of max-functionals also
extends to larger classes than the considered convex family of distribution functions F
and is valid with respect to smaller families contained in (Uk)k∈N or (Vk)k∈N.

Finally, by definition, any functional of finite elicitation complexity is conditionally
elicitable, but it is unclear whether the reverse implication holds. We thus conclude
with showing that max-functionals with infinite elicitation complexity can neither be
conditionally elicitable nor jointly elicitable.

Theorem 2.10. Let T : F → R be a max-functional such that elic(T ) =∞ with respect
to a family (Ck)k∈N. Let T ′ : F → A′ be a functional with T ′ ∈ Cm for some m ∈ N.
Then the following hold true.

(i) T is not conditionally elicitable given T ′.

(ii) T is not jointly elicitable with T ′.

Proof. For the first part assume conversely, that there is an m ∈ N and a functional
T ′ ∈ Cm such that T is conditionally elicitable given T ′. That is, T is elicitable on the
subclass Fx = {F ∈ F | T ′(F ) = x} for any x ∈ A′. By assumption, there is no link
function f such that T = f ◦ T ′ holds. Consequently, there is at least one z ∈ A′ ⊆ Rm
such that T is not constant on Fz. If z defines such a class, then it is convex due to
the elicitability of T ′ and moreover we can find F0, F1 ∈ Fz such that T (F0) 6= T (F1)
holds. Theorem 1.11 now implies that the restriction of T to Fz cannot be elicitable, a
contradiction to the conditional elicitability of T .

For the second part note that, as remarked in Section 2.1 and in the discussion of
Fissler and Ziegel (2016), the joint elicitability of T with an elicitable functional T ′

implies that T is conditionally elicitable given T ′. Consequently, the first part of the
proof implies the result.

We conclude this section with a technical remark. In the spirit of Frongillo and
Kash (2020), our complexity result (Theorem 2.8) employs regularity assumptions on
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the possible intermediate functionals. The main assumption is that they possess elic-
itable components. Why this is essential is illustrated by the use of the hyperrectangle
Q in the proof. Intuitively, this assumption can be relaxed at the cost of more technical
arguments. The main challenge hereby is to control the values of T ′ in a small hyper-
rectangle (or ball) around some x0 ∈ int(A′). However, we did not pursue this approach
further, since we believe that our setting covers many functionals of practical interest
and at the same time illustrates the irregular behavior that will be inherent to any link
function for a max-functional.

2.3 Examples of max-functionals

Prominent examples of max-functionals, to which the results of Section 2.2 apply, are
routinely considered in extreme value theory and are key characteristics for the purpose
of inference on the tail of a distribution.

Upper endpoint For a real-valued random variable with distribution function F , its
upper endpoint is the supremum of its support

xF := sup{x ∈ R | F (x) < 1}.

By definition, the upper endpoint can be interpreted as a real-valued max-functional
on the convex class {F ∈ F | xF < ∞}. Bellini and Bignozzi (2015, Example 3.9)
discuss the upper endpoint under the name worst-case risk measure and show that it
is not elicitable, once further regularity conditions on the admissible scoring functions
are imposed. In light of Theorem 2.7, the non-elicitability of the upper endpoint follows
without any further assumptions. In addition, it has infinite elicitation complexity in
the sense of Theorem 2.8 and Corollary 2.9.

Index of regular variation / Tail index When the upper endpoint is infinite,
another key characteristic to describe the tail behavior of heavy-tailed distributions is
the index of regular variation. A strictly positive measurable function f satisfying

lim
x→∞

f(xt)

f(x)
= tρ

for t > 0 is called regularly varying (at infinity) with index ρ(f) ∈ R. For a distribution
F its index of regular variation is the respective index for its survival function F := 1−F ,
that is, T (F ) := ρ(F ). Its inverse T (F )−1 is also called tail index in the risk management
literature, cf. McNeil et al. (2015, Section 5.1). If the tail F is regularly varying with
(a negative) index ρ, this means that F decays essentially like a power function with
decay rate 1/ρ. Since ρ(f + g) = max(ρ(f), ρ(g)) (cf. e.g. de Haan and Ferreira (2006,
Proposition B.1.9)), the index of regular variation T is naturally a max-functional, while
the tail index T−1 is a min-functional.

Tail-separating functionals More generally, we can deduce that the property of ‘be-
ing a max-functional’ (or min-functional) is in fact inherent to all ‘tail-ordering indices’.
To make this precise, let us consider the following natural order on distribution tails.



2.3 Examples of max-functionals 28

For two distribution functions F and G with upper endpoints xF , xG ∈ R∪ {∞} we say
that G has heavier tail than F and write F <t G if

either xF < xG or xF = xG = x∗ and lim
x→x∗

F (x)

G(x)
= 0.

We say that F and G are tail equivalent and write F ∼t G if they share the same upper
endpoint xF = xG = x∗ ∈ R ∪ {∞} and

lim
x→x∗

F (x)

G(x)
∈ (0,∞).

Note that “<t” defines a strict partial order on any set of distribution functions F
and that for tail equivalent F and G neither F <t G nor G <t F can hold. The
following proposition shows that a functional which respects the tail order “<t” is a
max-functional.

Proposition 2.11. Let T : F → R be a functional that satisfies for all F,G ∈ F

T (F )− T (G)


≤ 0 if F <t G,
≥ 0 if G <t F,
= 0 else.

Then T is a max-functional.

Proof. Let F0, F1 ∈ F and set Fλ := λF1 + (1−λ)F0 for λ ∈ (0, 1). We distinguish three
cases. If F0 <t F1, we have xFλ = xF1 ≥ xF0 and the identity

F λ(x)

F 1(x)
= λ+ (1− λ)

F 0(x)

F 1(x)

for x < xF1 implies Fλ ∼t F1. Hence, neither Fλ <t F1 nor F1 <t Fλ can be true.
Together with T (F0) ≤ T (F1) we may conclude T (Fλ) = T (F1) = max(T (F0), T (F1)).
By symmetry, the case F1 <t F0 can be treated analogously. In the remaining case we
have neither F0 <t F1 nor F1 <t F0, so xF1 = xF0 = xFλ =: x∗ must hold. Consequently,

lim inf
x→x∗

F λ(x)

F 1(x)
≥ λ > 0 and lim sup

x→x∗

F λ(x)

F 1(x)
<∞,

where the latter follows as the tail of F0 is not heavier than the tail of F1. This implies
that neither F1 <t Fλ nor Fλ <t F1 can hold true, which gives T (Fλ) = T (F1) =
max(T (F0), T (F1)) and concludes the proof.

Another instance of a tail-ordering functional in the sense of Proposition 2.11 is the
M-index as introduced in Cadena and Kratz (2016). If it exists, it is the unique ρ ∈ R
such that

lim
x→∞

F (x)

xρ+ε
= 0 and lim

x→∞

F (x)

xρ−ε
=∞ for all ε > 0.

It is easily seen that the M-index coincides with the index of regular variation for
distribution functions F with regularly varying tail function F . As it sorts survival
functions according to their power law decay, Proposition 2.11 implies that theM-index
is a max-functional.
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Extreme value index A central characteristic of extreme value theory is the extreme
value index, which classifies the limiting behavior of rescaled maxima of growing samples
from a distribution. More precisely, if there exist suitable location-scale normings an > 0,
bn ∈ R such that the distribution functions Fn(x) := Fn(anx + bn) converge weakly
to a non-degenerate distribution function G, the limiting distribution function G is
necessarily a Generalized Extreme Value Distribution (GEV). This means that up to a
location-scale normalization we have

G(x) = Gγ(x) = exp{−(1 + γx)
−1/γ
+ }

for some γ = γ(F ) ∈ R, where G0(x) = exp{−e−x} for γ = 0. The distribution F is said
to be in the max-domain of attraction of G = Gγ and the shape parameter γ(F ) is the
extreme value index (EVI) of F , cf. e.g. the monographs Resnick (1987) and de Haan
and Ferreira (2006) for further background.

Let F be the class of distribution functions which are in a max-domain of attraction
for some GEV and consider first the EVI on the subclass of heavy-tailed distributions
F+ = {F ∈ F | γ(F ) > 0}. It is well-known that a distribution F ∈ F has EVI γ > 0
if and only if ρ(F ) = −γ−1, where ρ is the index of regular variation (cf. e.g. Resnick
(1987, Proposition 1.11)). Consequently, the EVI γ is also a max-functional on F+.

When considering the class of light-tailed distributions, i.e. the case γ(F ) < 0, we
need to specify an upper endpoint first in order to make ‘being a max/min-functional’
meaningful for the EVI γ. To this end, let Fx∗ = {F ∈ F | γ(F ) < 0, xF = x∗}.
Again the EVI behavior is governed by regular variation, since γ(F ) = −γ(F∗) with
F∗(x) = F (x∗ − x−1) (cf. e.g. Resnick (1987, Proposition 1.13)). This shows that the
EVI γ is a min-functional on the class Fx∗ . Note that it is crucial to assume equal upper
endpoints, because otherwise it is not the EVI that dominates the tail behavior, but the
upper endpoint itself.

So far, we have looked at statistical indices that classify univariate tail behavior.
However, similar issues arise when we want to quantify joint tail behavior in higher
dimensions. Exemplary, let us consider the coefficient of tail dependence.

Coefficient of tail dependence In order to quantify the tail behavior of a bivariate
distribution function, Ledford and Tawn (1996, 1997) introduced the coefficient of tail
dependence. For a bivariate distribution function F of a random vector (X1, X2) let us
write F i(x) := P(Xi > x), i = 1, 2 and F (x) := P(X1 > x,X2 > x) for the associated
survival functions. Suppose there is an α > 0 such that both F 1 and F 2 are regularly
varying with index −α. If in addition the joint survival function F is regularly varying
with index −α/η for some η ∈ (0, 1], the coefficient η = η(F ) is called coefficient of tail
dependence (CTD) of the bivariate distribution F . Let us consider the CTD η on the
class of bivariate distributions

Fα = {F | ρ(F 1) = ρ(F 2) = −α, ρ(F ) = −α/η for some η ∈ (0, 1]}.

Then it follows for F,G ∈ Fα that ρ(λF + (1 − λ)G) = −α/max(η(F ), η(G)) by the
properties of the index of regular variation. Hence η is a max-functional on Fα.
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2.4 Proper scoring rules and max-functionals

In light of the results of Section 2.2, the following approach may seem reasonable to some-
one seeking information about a max-functional: Instead of single values, distribution
functions are reported and evaluated via proper scoring rules. Then the max-functionals
are computed from the forecasted distributions.

If the max-functional of interest is a property of the tail, e.g. the extreme value
index, one could expect this method to work well as long as the scoring rule shows a
good performance in the tails. In order to emphasize specific regions of interests, in
particular the tails, Gneiting and Ranjan (2011) and Diks et al. (2011) combined scoring
rules with weight functions. Drawbacks and benefits of these weighted proper scoring
rules were further studied in Lerch et al. (2017) and Holzmann and Klar (2017), where
the latter propose general construction principles. A theoretical problem is pointed out
by Taillardat et al. (2019), who show that the weighted continuous ranked probability
score (wCRPS, see Subsection 1.4.1) cannot detect that two distributions are not tail
equivalent. More precisely, Taillardat et al. (2019, Section 2) demonstrate that given a
distribution G and ε > 0, it is always possible to construct a distribution F that is not
tail equivalent to G and such that

|EG wCRPS(G, Y )− EG wCRPS(F, Y )| ≤ ε.

This results shows that for any distribution G the tail can be modified while keeping the
expected wCRPS ε-close to its minimum. As put by Taillardat et al. (2019), this means
that the wCRPS is not a tail equivalent score.

In the following we show that all proper scoring rules fail to be tail equivalent in
this sense. Moreover, we extend these findings to max-functionals, i.e. we show that
no proper scoring rule is max-functional equivalent. These findings are motivated by
the observation that tail equivalence and max-functionals lead to a similar kind of dis-
continuity on the convex combinations λF + (1 − λ)G, which intuitively conflicts with
the diagonal-continuity (Definition 1.23) of integrable proper scoring rules. This allows
for an extension of the results of Taillardat et al. (2019). Recall the tail-ordering from
Section 2.3 and that we assume F to be convex.

Theorem 2.12. Let S : F × R → R be an integrable proper scoring rule and G ∈ F .
Then the following are true.

(i) If there is an F ∈ F with heavier tail than G, then for all ε > 0 there is an Fε ∈ F
that is not tail equivalent to G and such that

|S̄(Fε, G)− S̄(G,G)| ≤ ε.

(ii) Let T : F → R be a max-functional. If there is an F ∈ F with T (F ) > T (G), then
for all ε > 0 there is an Fε ∈ F such that T (Fε) = T (F ) > T (G), while

|S̄(Fε, G)− S̄(G,G)| ≤ ε.

Proof. Fix G ∈ F and let S be an integrable proper scoring rule. For F ∈ F set
Fλ := λF + (1 − λ)G. Since F is convex, we have Fλ ∈ F for all λ ∈ [0, 1]. Moreover,



2.5 Discussion 31

S is diagonal-continuous at G by Lemma 1.24, implying that for all ε > 0 and F ∈ F
we can find a δ ∈ (0, 1] such that |S̄(Fλ, G)− S̄(G,G)| ≤ ε holds for all λ ∈ [0, δ]. Now
assume there is an F ∈ F with heavier tail than G. If xF > xG, we have xFλ > xG for
all λ ∈ (0, 1]. If on the other hand xF = xG = x∗ we have

F λ(x)

G(x)
= (1− λ) + λ

F (x)

G(x)

for x < x∗ and the right-hand side goes to infinity as x → x∗. Hence, in both cases
the distributions Fλ cannot be tail equivalent to G for λ ∈ (0, 1], showing part (i).
For the second part, let F ∈ F satisfy T (F ) > T (G). Since T is a max-functional,
T (Fλ) = T (F ) > T (G) holds for λ ∈ (0, 1], proving part (ii).

The first part of Theorem 2.12 shows that the lack of tail equivalence is not a flaw of
the wCRPS, but inherent to all integrable proper scoring rules. The second part extends
this non-equivalence of proper scoring rules to max-functionals. Loosely speaking, this
means that there cannot only be pairs of not tail equivalent distributions, but also pairs
of distributions with arbitrarily different max-functional values, and both having almost
identical expected scores.

2.5 Discussion

This chapter shows that max-functionals do not only fail to be elicitable, but have in
fact infinite elicitation complexity in a wide range of settings. This contrasts situations
in which the non-elicitability can be alleviated by a finite elicitation complexity as, for
instance, is the case for the variance or the Expected Shortfall (see Example 2.1 and
Frongillo and Kash (2020); Fissler and Ziegel (2016)). Rather it bears resemblance to
the mode, which is non-elicitable and has infinite elicitation complexity as well, see Hein-
rich (2014) and Dearborn and Frongillo (2020). Concerning probabilistic forecasts we
demonstrate that integrable proper scoring rules do not lead to a satisfying comparison
of max-functional values, either. This complements recent findings of Taillardat et al.
(2019) and extends these from the wCRPS to all integrable proper scoring rules.

Collectively, these results cast doubt on the ability of expected scores to distinguish
different tail regimes in the sense of max-functional values as they are routinely con-
sidered in extreme value theory. From an applied viewpoint this means that expected
scores are not suitable to access such tail information for regression, M-estimation or
comparative forecast evaluation. Thereby, our results provide a new perspective on the
limitations of weighted scoring rules, adding to practical intricacies described in Lerch
et al. (2017), Holzmann and Klar (2017) and Friederichs and Thorarinsdottir (2012).
What might come to rescue though, is that the max-functionals themselves are often
not the main concern in applications, but rather a tool to guide the extrapolation from
intermediate order statistics to the functionals of interest. In practice, these functionals
may include a high quantile or a tail expectation such as Expected Shortfall, which can
be interpreted as tail properties ‘less extreme’ than max-functionals and with better
elicitablity properties.

However, we would like to point out that non-elicitability is not the only problem
in sound forecast evaluation. Even when elicitability is granted, there is no guarantee
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that the corresponding minimization problem will be well-posed. For instance, poorly
behaved scoring functions may give rise to high variances of realized average scores, in
which case practical sample sizes may be per se too low for an adequate assessment of
competing forecasts.



3 Scoring Interval Forecasts

In this chapter we consider different kinds of predictive intervals, ask whether they are
elicitable, and study the available classes of consistent scoring functions. We provide
results for three types of interval forecasts studied in the extant literature. After some
general considerations, Section 3.3 begins with the equal-tailed interval. It is determined
by the α/2- and (1− α/2)-quantile and is thus elicitable, with a rich class of consistent
scoring functions. However, we show that subject to either translation invariance, or
positive homogeneity and differentiability, the Winkler interval score becomes a unique
choice. In Section 3.4 we then turn to the shortest interval, which has minimal length
subject to a coverage probability of at least 1 − α. We resolve a challenge raised by
Askanazi et al. (2018), by showing that the shortest interval fails to be elicitable in
practically relevant settings. Thirdly, Section 3.5 treats the modal interval, which has an
interesting connection to the shortest interval and possesses a unique strictly consistent
scoring function, up to equivalence. Section 3.6 concludes with a discussion.

The chapter is based on the preprint Brehmer and Gneiting (2020). Tilmann Gneit-
ing conceptualized this work and formulated initial conjectures for the technical results.
I developed the technical contents of the paper, including but not limited to all proofs
and examples and wrote the first draft. Both of us polished and edited text.

3.1 Technical framework

Throughout this chapter, intervals will be defined via their lower and upper endpoints
a and b, which are both elements of the observation domain O. Typically, O will either
be the real line R, or the set N0 of the nonnegative integers. Technically, we consider
intervals which are elements of the action domain

A = AO := {[a, b] | a, b ∈ O, a ≤ b}.

This choice implies that the predictive intervals we consider are closed, with endpoints
belonging to the observation domain O. The endpoint requirement leads to a natural
and desirable reduction of the set of possible intervals for discrete data, such as in the
case of count data, where the endpoints are required to be nonnegative integers. Closed
intervals are compatible with the interpretation of the median as a ‘0% central prediction
interval’. Moreover, in discrete settings an interval forecast might genuinely collapse to
a single point, so closed intervals allow for a unified treatment of discrete and continuous
distributions. Lastly, this setting is consistent with the extant literature, see e.g. Winkler
(1972), Lambert and Shoham (2009, Section 7.6), and Askanazi et al. (2018). A more
general treatment of interval forecasts could, for instance, allow forecasters to choose
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which type of interval (closed, half-open, open) they want to report. We do not pursue
this approach, as it leads to further complexity without recognizable benefits.

The predictive intervals we consider below are rarely unique, which can be illustrated
for the equal-tailed interval. As discussed above, its endpoints are given by quantiles,
and as seen in Example 1.4, quantiles are inherently set-valued functionals whenever the
CDFs are not strictly increasing. Hence, unless both quantiles reduce to single points,
there are multiple equal-tailed intervals. This highlights that interval forecasts call for
the set-valued framework of elicitability, which assumes functionals T : F → 2A.

We denote the length of an interval I as len(I), and if A′ ⊂ A is a set of intervals
that all have the same length, we refer to this common length as len(A′). The left- and
right-hand limits of a function h : R→ R at x are denoted by h(x−) := limy↑x h(y) and
h(x+) := limy↓x h(y), respectively.

3.2 Intervals with coverage guarantees

A standard principle for interval forecasts is that a correct report I contains (or covers)
the outcome with specified nominal probability of at least 1 − α, where α ∈ (0, 1). A
guaranteed coverage interval (GCI) at level α under the predictive distribution F is any
element [a, b] ∈ A satisfying F (b)− F (a−) ≥ 1− α, and for all ε > 0

F (b− ε)− F (a−) ≤ 1− α and F (b)− F ((a+ ε)−) ≤ 1− α. (3.1)

A GCI thus contains just as much probability mass as necessary, but is not as short as
possible. For continuous distributions this definition reduces to the intuitive requirement
F (b) − F (a) = 1 − α. We write GCIα(F ) for the set of guaranteed coverage intervals
at level α of F . An early theoretical treatment is in Proposition 7.6 of Lambert and
Shoham (2009), according to which the GCIα functional fails to be elicitable relative to
the class of all distributions on the finite domain O = {1, . . . , n}. Frongillo and Kash
(2019, Section 4.2) apply tools of convex analysis to extend this result to more general
classes of distributions.

It is straightforward to recover these findings by showing that the GCIα functional
lacks the CxLS∗ property, see Proposition 1.7. Specifically, let α ∈ (0, 1) and consider
continuous distributions F0 and F1 that satisfy F0(b′)−F0(a′) = F1(b′)−F1(a′) = 1−α
for some a′ < b′, whereas

F0(b)− F0(a) > 1− α and F1(b)− F1(a) < 1− α

for some a < b. Then there is a λ ∈ (0, 1) such that [a, b] ∈ GCIα(Fλ), even though
[a, b] 6∈ GCIα(F0)∩GCIα(F1) 6= ∅. Part (ii) of Proposition 1.7 thus implies that the GCIα
functional fails to be elicitable relative to convex classes F that contain distributions of
the type used here. A similar construction for discrete distributions is immediate.

Fissler et al. (2020) introduce a concept of guaranteed coverage without the length
restriction (3.1), i.e. they consider the class of intervals [a, b] ∈ A which satisfy F (b) −
F (a−) ≥ 1 − α. Like the GCIα, the corresponding set-valued functional fails to be
elicitable, see Fissler et al. (2020, Corollary 4.7).

In addition to lacking elicitability, the GCIα functional has the unattractive feature
that it fails to be unique for very many distributions, including, but not limited to, all
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continuous distributions. This motivates the imposition of additional constraints on the
predictive intervals, as discussed now. See also Fissler et al. (2020) for further types of
intervals.

3.3 Equal-tailed interval (ETI)

A straightforward way to pick an interval with nominal coverage at least 1−α under F
consists of choosing quantiles at levels β ∈ (0, α) and β + 1− α as the lower and upper
endpoint of the interval, respectively.

The ubiquitous choice is β = α
2 , such that under a continuous F the outcomes fall

above or below the interval with equal probability of α
2 . In general, an equal-tailed

interval (ETI) at level α of F is any member of

ETIα(F ) := {[a, b] ∈ A | a ∈ Tα/2(F ), b ∈ T1−α/2(F )}, (3.2)

where Tβ(F ) := {x ∈ O | F (x−) ≤ β ≤ F (x)} denotes the β-quantile functional. Some
parts of the literature, e.g. Fissler et al. (2020), label it ‘central prediction interval’. In
the simplified situation where F is strictly increasing, all quantiles are unique and thus
ETIα(F ) reduces to a single interval.

In view of the definition via quantiles, forecasting equal-tailed intervals amounts to
forecasting quantiles. Moreover, the ETIα functional is elicitable, and we can construct
consistent scoring functions for the ETIα functional from the consistent scoring functions
(1.2) for quantiles, as noted by Gneiting and Raftery (2007) and Askanazi et al. (2018).
Specifically, if w1, w2 are nonnegative weights and g1, g2 : O → R are non-decreasing
F-integrable functions, then every S : A× O→ R of the form

S([a, b], y) = w1

(
1(y ≤ a)− α

2

)
(g1(a)− g1(y)) (3.3)

+ w2

(
1(y ≤ b)−

(
1− α

2

))
(g2(b)− g2(y))

is a consistent scoring function for the ETIα functional. Furthermore, S is strictly
consistent if w1, w2 ∈ (0,∞) and g1, g2 are strictly increasing. It is no substantial
loss of generality to restrict attention to the class in (3.3), since essentially all strictly
consistent scoring functions for ETIα are equivalent to this form. This results from
the fact that ETIα can be interpreted as a vector of two quantiles. Under suitable
regularity conditions, all strictly consistent scoring functions for vectors of quantiles are
equivalent to a sum of scoring functions of the form (1.2), see Fissler and Ziegel (2016,
Proposition 4.2(ii)) and Fissler and Ziegel (2019a).

The choice w1 = w2 = 2/α and g1(x) = g2(x) = x in (3.3) gives the classical interval
score (IS) of Winkler (1972), namely,

ISα([a, b], y) := (b− a) +
2

α
(a− y)1(y < a) +

2

α
(y − b)1(y > b), (3.4)

which is strictly consistent for ETIα relative to classes of distributions with finite first
moment. This is the most commonly used scoring function for the ETIα functional, and
scaled or unscaled versions thereof have been employed implicitly or explicitly in highly
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visible, recent forecast competitions (Hong et al., 2016; Makridakis et al., 2020; M Open
Forecasting Center, 2020).

The Winkler interval score (3.4) combines various additional, desirable properties of
scoring functions on O = R, such as translation invariance, in the sense that for every
z, y ∈ R and a < b

S([a− z, b− z], y − z) = S([a, b], y),

and positive homogeneity of order 1, in that for every c > 0, y ∈ R, and a < b

S([ca, cb], cy) = cS([a, b], y).

Additionally, the IS applies the same penalty terms to values falling above or below the
reported interval, such that it is symmetric, in the sense that

S([a, b], y) = S([−b,−a],−y)

for y ∈ R and a < b.
Our next two results concern scoring functions on O = R that are of the form (3.3)

and share one or more of these often desirable additional properties. In particular, the
next theorem demonstrates that either translation invariance or positive homogeneity
and differentiability, combined with symmetry, suffice to characterize the Winkler inter-
val score (3.4), up to equivalence. To facilitate the exposition, assumption (ii) identifies
the action domain A = {[a, b] | a ≤ b} with the respective subset {(a, b)> ∈ R2 | a ≤ b}
of the Euclidean plane.

Theorem 3.1. Let S be of the form (3.3) with non-constant, non-decreasing functions
g1 and g2. If S is either

(i) translation invariant, or

(ii) positively homogeneous and differentiable with respect to (a, b)> ∈ R2, except pos-
sibly along the diagonal,

then g1 and g2 are linear. In particular, if S is symmetric and either (i) or (ii) applies,
then S is equivalent to ISα.

The first part of Theorem 3.1, which states the linearity of g1 and g2, continues to
hold for asymmetric intervals, which are defined by choosing the endpoints a ∈ Tβ(F )
and b ∈ Tβ+1−α(F ) for β ∈ (0, α) in (3.2). However, the second statement does not apply,
as non-constant consistent scoring functions for such intervals cannot be symmetric.

Proof. Let S be a scoring function of the form (3.3). Let y, z ∈ R, a < b and choose
b = y. Then translation invariance of S gives

−w1
α

2
(g1(a)− g1(y)) = S([a, y], y)

= S([a− z, y − z], y − z)

= −w1
α

2
(g1(a− z)− g1(y − z)),

and rearranging yields g1(a)− g1(y) = g1(a− z)− g1(y− z) for a, y, z ∈ R. Choose y = 0
and define g̃(x) := g1(x)− g1(0) to obtain g̃(a− z) = g̃(a) + g̃(−z) for a, z ∈ R. Thus g̃
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obeys Cauchy’s functional equation, and since g̃ is non-constant and non-decreasing, we
get g1(x) = γx+g1(0) for some γ > 0. For g2 we apply the same arguments, to complete
the proof of part (i).

Let y ∈ R, a < b and choose b = y. If S is positively homogeneous then for all c > 0

−w1c
α

2
(g1(a)− g1(y)) = cS([a, y], y)

= S([ca, cy], cy) = −w1
α

2
(g1(ca)− g1(cy)),

and thus c(g1(a) − g1(y)) = g1(ca) − g1(cy) for a, y ∈ R and c > 0. Choose y = 0 and
define g̃(x) := g1(x) − g1(0) to obtain cg̃(a) = g̃(ca) for c > 0 and a ∈ R, as in Section
C of the Supplementary Material for Nolde and Ziegel (2017). Since g̃ is non-constant,
non-decreasing, and differentiable, g1(x) = γx + g1(0) for some γ > 0. Using the same
arguments for g2 we complete the proof of part (ii).

Now suppose S is also symmetric and g2(x) = ρx + g2(0) for some ρ > 0. Then
the same reasoning as in the proof of Theorem 3.2 (see below) shows w1γ = w2ρ, which
proves the equivalence to ISα.

If only symmetry is required in (3.3), then the class of possible scoring functions
for the equal-tailed interval is much larger than just the interval score. To characterize
these functions, take I to be the class of all non-decreasing functions g : R → R with
the property that g(x) = 1

2(g(x−) + g(x+)) for x ∈ R. In a trivial deviation from Ehm
et al. (2016) we define the elementary quantile scoring function as

SQ
α,θ(x, y) = (1(y ≤ x)− α)

(
1(θ < x) +

1

2
1(θ = x)− 1(θ < y)− 1

2
1(θ = y)

)
,

which is a special case of (1.2) with g(x) = 1(θ < x) + 1
21(θ = x). Given any θ ≥ 0, we

now define
Sα,θ([a, b], y) = SQ

α/2,θ(a, y) + SQ
1−α/2,−θ(b, y)

and refer to Sα,θ as the elementary symmetric interval scoring function. The following
result shows that every symmetric scoring function of the form (3.3) arises as a mixture
of elementary symmetric interval scoring functions. The Winkler interval score (3.4)
emerges in the special case where the mixing measure µ is proportional to Lebesgue
measure.

Theorem 3.2. Let S be of the form (3.3) with non-constant, non-decreasing functions
g1, g2 ∈ I. If S is symmetric, then it is of the form

S([a, b], y) =

∫
[0,∞)

Sα,θ([a, b], y) dµ(θ),

where µ is a Borel measure on [0,∞), defined via dµ(θ) = dh(θ) with h(θ) = w1(g1(θ)−
g1(−θ)) for θ ∈ [0,∞).

Proof. Let S be a scoring function of the form (3.3) and let a, b, y ∈ R with a < b and
b = y. Then the symmetry of S gives

−w1
α

2
(g1(a)− g1(y)) = S([a, y], y)

= S([−y,−a],−y) = w2
α

2
(g2(−a)− g2(−y)),
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Table 3.1: Properties of the four different intervals in ETIα(G), where α = 0.2. The
expected penalty for interval [a, b] is given by EG [ISα([a, b], Y )1(Y /∈ [a, b])], so that the
expected score decomposes into length plus penalty.

Interval Coverage Expected ISα Length Expected Penalty

[1, 2] 0.8 3 1 2
[0, 2] 0.9 3 2 1
[1, 3] 0.9 3 2 1
[0, 3] 1.0 3 3 0

and rearranging yields w1(g1(a) − g1(y)) = w2(g2(−y) − g2(−a)) for a, y ∈ R. For
x, y, θ ∈ R, define the function

f(x, y, θ) := 1(θ < x) +
1

2
1(θ = x)− 1(θ < y)− 1

2
1(θ = y),

which satisfies f(−y,−x, θ) = f(x, y,−θ) for x, y, θ ∈ R. Moreover, for any g ∈ I and
y < x∫

f(x, y, θ) dµg(θ) =
1

2
(g(x+)− g(y−)) +

1

2
(g(x−)− g(y+)) = g(x)− g(y),

where µg is the Borel measure on R induced by g. If we define the measures µ1 = w1µg1
and µ2 = w2µg2 , then the first part of the proof implies∫

f(x, y, θ) dµ2(θ) = w2(g2(x)− g2(y))

= w1(g1(−y)− g1(−x))

=

∫
f(−y,−x, θ) dµ1(θ) =

∫
f(x, y,−θ) dµ1(θ)

for y < x, and the proof is completed by defining µ via µ((y, x]) = µ1((y, x]) +
µ1([−x,−y)).

The usual treatment of the ETI considers distributions F ∈ F with strictly increasing
CDFs, such that all quantiles are unique. This ensures that the interval is truly equal-
tailed, with ETIα(F ) = [a, b] implying that PF (Y < a) = PF (Y > b) = α

2 . When F
admits a Lebesgue density, but some quantiles are not unique, this property continues
to hold.

However, care is needed when interpreting equal-tailed intervals for discrete distri-
butions. As a simple example, let α = 0.2 and consider the distribution G on N0 that
assigns probability 0.1, 0.4, 0.4, and 0.1 to 0, 1, 2, and 3, respectively. Since neither the
α
2 - nor the (1− α

2 )-quantile are unique, there are four possible equal-tailed intervals, as
listed in Table 3.1. The distribution G illustrates that the coverage of an equal-tailed
interval does not always equal 1−α, and may differ among the valid intervals. Moreover,
[0, 3] is not a guaranteed coverage interval in the sense of Section 3.2, as it is unneces-
sarily long. A natural idea is to issue recommendations for such cases, e.g. ‘report the
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shortest available interval’ or ‘report the interval with the highest coverage’. However,
consistent scoring functions for the ETIα functional cannot be used to ensure that fore-
casters follow such further guidelines, since by the definition of consistency, any valid
report attains the same expected score.

3.4 Shortest interval (SI)

Instead of defining an interval at the coverage level 1−α via fixed quantiles, the shortest
of these intervals is often sought. Specifically, a shortest interval (SI) at level α of F is
any member of the set

SIα(F ) := arg min
[a,b]∈A

{b− a | F (b)− F (a−) ≥ 1− α}. (3.5)

The shortest interval is never longer than an equal-tailed interval, and in general the
two types of intervals differ from each other. To see this we follow Askanazi et al. (2018,
Appendix) and consider a distribution F on O = [0,∞) with strictly decreasing Lebesgue
density, so that SIα(F ) = [0, T1−α(F )], whereas ETIα(F ) = [Tα/2(F ), T1−α/2(F )] with
a lower endpoint that is strictly positive. However, for distributions with a symmetric,
strictly unimodal Lebesgue density the two types of intervals are both unique and agree.
If a distribution has multiple shortest intervals, then neither of them needs to be an
equal-tailed interval.

As noted in Askanazi et al. (2018), loss functions that have been proposed for interval
forecasts fail to be strictly consistent for the SIα functional, since they are usually tai-
lored to the ETIα functional. The question whether the SIα functional is elicitable thus
remains unanswered, and Askanazi et al. (2018) formulate desiderata for possible scoring
functions. A first result in this direction is discussed in Section 4.2 of Frongillo and Kash
(2019), who show that the SIα functional fails to be elicitable relative to classes F that
contain piecewise uniform distributions. In the following we show non-elicitability for
more general classes of distributions, and we also treat discrete distributions on N0. We
start by studying level sets.

Proposition 3.3. (i) The functional SIα has the CxLS property.

(ii) If the class F consists of distributions with continuous CDFs only, then SIα has
the CxLS ∗ property.

Proof. Let F0, F1 ∈ F , and suppose that [a, b] ∈ SIα(F0) ∩ SIα(F1). Set Fλ := λF1 +
(1− λ)F0 and note that for all λ ∈ (0, 1) and all s, t ∈ R we have

Fλ(t)− Fλ(s−) = λ (F1(t)− F1(s−)) + (1− λ) (F0(t)− F0(s−)) . (3.6)

In particular, Fλ(b) − Fλ(a−) ≥ 1 − α and [a, b] ∈ SIα(Fλ), as otherwise (3.6) yields a
contradiction to our initial assumption. This proves part (i).

Now let F0, F1 ∈ F have continuous CDFs. Since (s, t) 7→ F (t)−F (s) is a continuous
function for all F ∈ F , we must have F (b) − F (a) = 1 − α for every [a, b] ∈ SIα(F ).
Suppose [a′, b′] ∈ SIα(F0) ∩ SIα(F1), as otherwise there is nothing to show, and let
λ ∈ (0, 1) and [a, b] ∈ SIα(Fλ) be given. By the first part of the proof

len(SIα(F1)) = len(SIα(F0)) = b′ − a′ = b− a. (3.7)
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Furthermore, Fλ(b)−Fλ(a) = 1−α, and we see from (3.6) that F0(b)−F0(a) ≥ 1−α or
F1(b)−F1(a) ≥ 1−α must hold. Suppose the first of these inequalities is satisfied. Then
equality must hold since the strict inequality F0(b) − F0(a) > 1 − α is a contradiction
to (3.7). This yields [a, b] ∈ SIα(F0) and via (3.6) we obtain F1(b) − F1(a) = 1 − α.
The same reasoning applies if the second inequality holds. Taken together this gives
[a, b] ∈ SIα(F1) ∩ SIα(F0), which proves part (ii).

The subsequent example shows that the CxLS∗ property can be violated for discrete
distributions.

Example 3.4. Let α ∈ (0, 1
3), and let k ≥ 1 be an integer. Let ε ∈ (0, α3 ) and δ ∈ (0, ε).

Let F0 and F1 be distributions on N0 that assign mass ε+ δ to k− 1 and mass 1−α− ε
to k. Furthermore, F0 and F1 assign mass ε+ δ and ε− δ, respectively, to k + 1. Then
SIα(F0) = {[k − 1, k], [k, k + 1]}, SIα(F1) = {[k − 1, k]}, and for λ ∈ [0, 1

2 ] we have
SIα(Fλ) = SIα(F0) ) SIα(F1). Therefore, SIα does not have the CxLS∗ property relative
to any convex class F that includes F0 and F1. �

As the construction extends to all α ∈ (0, 1), we obtain the following result.

Theorem 3.5. Let k ≥ 1 be an integer, and let F be a class of probability measures on
N0 that contains all unimodal distributions with mode k. Then the SIα functional is not
elicitable relative to F .

We turn to classes of distributions with Lebesgue densities, so that the SIα functional
has the CxLS∗ property, and a more refined analysis proves useful. First we take up an
example in Section 4.2 of Frongillo and Kash (2019).

Example 3.6. Given α ∈ (0, 3
5), we define distributions F0 and F1 via the piecewise

uniform densities

f0(x) = (1− α)1[0,1](x) +
α

3
1[2,5](x) and f1(x) =

1− α
2

1[0,2](x) +
α

3
1[2,5](x),

so that SIα(F0) = [0, 1] and SIα(F1) = [0, 2], respectively. As SIα(Fλ) = [0, 2] for all
λ ∈ (0, 1), we conclude from Theorem 1.11 that the SIα functional fails to be elicitable
relative to convex classes of distributions that contain F0 and F1. �

As noted, Example 3.6 applies in situations where the class F includes all distribu-
tions with piecewise constant densities. As this assumption may be too restrictive in
practice, we proceed to demonstrate non-elicitability based on substantially more flexible
criteria.

Condition 3.7. The distribution F admits a Lebesgue density, and there are numbers
a < b and ε > 0 such that SIα(F ) = [a, b], F (b) = F (b + ε), and if β < α, then
len(SIβ(F )) > len(SIα(F )) + 1

2ε.

Loosely speaking, this condition requires that there are ‘gaps’ on the right- and left-
hand side of the shortest interval at level α, while every shortest interval for a level
β < α is notably longer than the one at level α.
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Theorem 3.8. If the class F contains the location-scale family of a distribution satisfy-
ing Condition 3.7, along with its finite mixtures, then the SIα functional is not elicitable
relative to F .

Proof. We proceed by constructing suitable convex combinations as in Example 3.6.
Specifically, let F0 satisfy Condition 3.7, and without loss of generality assume that
SIα(F0) = [0, b] for some b > 0. Define F1 via

F1(x) := F0

(
b

b+ 1
2ε
x

)

and set Fλ := λF1 + (1 − λ)F0. We proceed to show that [0, b + 1
2ε] ∈ SIα(Fλ) for all

λ ∈ (0, 1], which allows us to apply Theorem 1.11 and conclude non-elicitability.
Clearly, SIα(F1) = [0, b+ 1

2ε], and since F0(b) = F0(b+ ε) it holds that Fλ(b+ 1
2ε)−

Fλ(0) = 1 − α for λ ∈ (0, 1). For a contradiction, suppose there are λ ∈ (0, 1) and
aλ ≤ bλ with Fλ(bλ)−Fλ(aλ) ≥ 1−α and bλ−aλ < b+ 1

2ε. Since SIα(F1) = [0, b+ 1
2ε] it

cannot be true that F1(bλ)−F1(aλ) ≥ 1− α and so F0(bλ)−F0(aλ) > 1− α must hold,
for a contradiction to the final part of Condition 3.7. Consequently, SIα(Fλ) = [0, b+ 1

2ε]
for all λ ∈ (0, 1], and the proof is complete.

A comparable result showing the non-elicitability of SIα is given in Theorem 4.16(i)
of Fissler et al. (2020). The main difference to Theorem 3.8 is that they consider a
different class F and allow for scoring functions which take values in the extended real
numbers R ∪ {−∞,∞}.

Although Condition 3.7 might seem technical, suitable distributions F can be con-
structed under rather weak assumptions. For instance, assume α < 1

2 , and let the class
F contain some compactly supported distribution, along with the respective location-
scale family, and all finite mixtures thereof. Then constructing an F that satisfies Condi-
tion 3.7 is straightforward. A more restrictive requirement is the identity F (b) = F (b+ε),
as it rules out distributions with strictly positive densities. The existence of strictly con-
sistent scoring functions relative to classes of distributions of this type, including but
not limited to the important case of the finite mixture distributions with Gaussian com-
ponents, remains an open problem.

3.5 Modal interval (MI)

In stark contrast to shortest and equal-tailed intervals, we turn to a type of interval that
seeks to maximize coverage, subject to constraints on length.

Specifically, given any c > 0, a modal interval (MI) of length 2c of F is any member
of the set

MIc(F ) = arg max
[a,b]∈A

{F (b)− F (a−) | b− a ≤ 2c}. (3.8)

If F has a strictly unimodal Lebesgue density, then the modal interval shrinks towards
the mode as c → 0. For distributions on N0 the modal interval even agrees with the
mode if c < 1

2 . These connections highlight the fact that the MIc functional is a location
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statistic, whereas the shortest and equal-tailed intervals contain information on both
location and spread simultaneously.

In what follows, separate discussions for classes F of continuous and discrete distri-
butions will be warranted. For distributions on N0, the length of the modal interval will
effectively be b2cc, since expanding it further cannot add probability mass. In this situ-
ation, it is convenient to consider c ≥ 0, substitute 2c = k where k ∈ N0, and encode the
interval via its lower endpoint functional lk, so that MIk/2(F ) = {[x, x+ k] | x ∈ lk(F )}.
Then

S(x, y) = −1(x ≤ y ≤ x+ k) (3.9)

is a strictly consistent scoring function for the functional lk on the class of all distributions
on N0. In particular, the lk and MIk/2 functionals are elicitable. In the special case k = 0,
l0 is the mode functional and (3.9) becomes S(x, y) = −1(x = y), the familiar zero-one
or misclassification loss. Lambert and Shoham (2009) and Gneiting (2017) demonstrate
that for distributions with finitely many outcomes, zero-one loss is essentially the only
consistent scoring function for the mode functional. We extend this result to all integers
k ≥ 0, showing that k-zero-one-loss (3.9) is essentially the only strictly consistent scoring
function for the lk and MIk/2 functionals.

Theorem 3.9. Let k ≥ 0 be an integer, and let F be a class of probability measures
on N0 that contains all distributions with finite support. Then any scoring function
that is strictly consistent for the lk functional relative to the class F is equivalent to
k-zero-one-loss (3.9).

Proof. Let k ≥ 0 be an integer, and suppose that S is a strictly consistent scoring
function for the functional lk relative to F . To facilitate the presentation, we introduce
the alternative notation S(M,y) for S(xM , y), where xM ∈ N0 denotes the lower endpoint
of an interval M ∈ A, with A = {[x, x+ k] | x ∈ N0}. We proceed in three steps.
Step 1 We show that S is of the form

S(x, y) = g(x, y)1(x ≤ y ≤ x+ k) + h(y) (3.10)

for functions g : N0 × N0 → R and h : N0 → R.
To this end, let M0,M1 ∈ A such that M0 ∩M1 = ∅. For a contradiction, suppose

that the mapping ϕ : N0 → R defined via ϕ(y) = S(M0, y) − S(M1, y) is non-zero on
U := (M0 ∪M1)c ∩ N0. We first treat the case where ϕ(y) = c for all y ∈ U and some
c ∈ R\{0}. If c > 0 let F0 be the uniform distribution on M0 and for all n ∈ N let
Fn be the uniform distribution on some set Un ⊂ U with |Un| = 2nk. If we define
Gn := 1

nF0 + (1 − 1
n)Fn, then MIk/2(Gn) = MIk/2(F0) = M0 for all n ∈ N. Since∫

ϕ(y) dGn(y) → c > 0 for n → ∞, we obtain a contradiction to the strict consistency
of S. A similar argument applies if c < 0. Consequently, ϕ cannot be constant on U ,
i.e. there are i0, i1 ∈ U such that ϕ(i0) 6= ϕ(i1).

Now set I := {i0, i1}. As the class F contains all distributions with finite support, we
can find probability measures F0, F

′
0, F1 ∈ F that satisfy the following three conditions:

(i) There exists a λ∗ ∈ (0, 1) such that for Fλ := λF1 + (1 − λ)F0 and F ′λ := λF1 +
(1− λ)F ′0

MIk/2(Fλ) = MIk/2(F ′λ) =

{
M0, λ < λ∗,
M1, λ > λ∗.
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(ii) F0 and F ′0 coincide outside of I.

(iii)
∫
I ϕ(y) dF0(y) 6=

∫
I ϕ(y) dF ′0(y).

To see this, define F0 and F ′0 via the probabilities F0({j}) = F ′0({j}) = 1/(k+ 2) for
j ∈M0 and

F0({i0}) = F ′0({i1}) =
1

2(k + 2)
+ ε, and F0({i1}) = F ′0({i0}) =

1

2(k + 2)
− ε

(3.11)

for some ε ∈ (0, 1/(2(k+ 2))). Condition (ii) is immediate and (iii) follows from the fact
that ϕ(i0) 6= ϕ(i1). Moreover, letting F1 be the uniform distribution on M1 ensures (i).

Consider the integrated score difference

∆(F,G, λ) :=

∫
S(M0, y)− S(M1, y) d(λG+ (1− λ)F )(y),

which is linear in λ ∈ [0, 1]. The strict consistency of S in concert with (i) yields
∆(F0, F1, 0) < 0, ∆(F ′0, F1, 0) < 0, and ∆(F0, F1, 1) = ∆(F ′0, F1, 1) > 0. As ∆(F0, F1, 0)
6= ∆(F ′0, F1, 0) by (ii) and (iii), the two linear mappings λ 7→ ∆(F0, F1, λ) and λ 7→
∆(F ′0, F1, λ) must have distinct roots. This implies that one of the two mappings does
not vanish at λ∗, in contradiction to the consistency of S. Consequently, ϕ = 0 on U
such that we can conclude S(M0, y) = S(M1, y) for all y ∈ (M0 ∪M1)c. By varying the
disjoint intervals M0,M1 ∈ A, we obtain that for all y ∈ N0 the values S(M,y) are the
same for all M ∈ A with y /∈ M . This yields that there exists a function h : N0 → R
such that S is of the form (3.10).
Step 2 Now we prove that y 7→ g(x, y) is constant on [x, x + k]. As before, we use the
notation g(M,y) for g(xM , y), where xM ∈ N0 is the lower endpoint of M ∈ A. For
k = 0 there is nothing to show, so let k > 0. For a contradiction, suppose there is an
M0 ∈ A such that y 7→ g(M0, y) is not constant on M0, i.e. there are i2, i3 ∈ M0 such
that g(M0, i2) 6= g(M0, i3). This ensures that we can choose an interval M1 ∈ A, with
M1 ∩M0 = ∅, and distributions F0, F

′
0, F1 ∈ F that satisfy conditions (i), (ii), and (iii)

in Step 1, for I = {i2, i3}. For example, we can choose F0 and F ′0 by using the uniform
distribution on M0 and modifying it at i2 and i3 as in (3.11), while ensuring M1 is
separated from M0 by a sufficiently large gap. As in Step 1 we obtain ∆(F0, F1, 0) 6=
∆(F ′0, F1, 0) such that the mappings λ 7→ ∆(F0, F1, λ) and λ 7→ ∆(F ′0, F1, λ) have distinct
roots. This is a contradiction to the consistency of S and proves that y 7→ g(M0, y)
is constant on M0. We can thus replace g(x, y) in (3.10) by g̃(x) for some function
g̃ : N0 → R.
Step 3 It remains to be shown that g̃ reduces to a negative constant. To this end,
consider M0 ∈ A and M1 ∈ A and assume that g̃(M0) < g̃(M1). Due to the specific form
of (3.10) we have

EF [S(M0, Y )− S(M1, Y )] = g̃(M0)PF (Y ∈M0)− g̃(M1)PF (Y ∈M1)

for all F ∈ F . However, due to the strict consistency of S this expression must be
negative if M0 ∈ MIk/2(F ) and positive if M1 ∈ MIk/2(F ), for the desired contradiction.
Therefore g̃ reduces to a constant, and using once more the consistency of S, we see that
this constant is negative. The proof is complete.



3.5 Modal interval (MI) 44

For distributions with Lebesgue densities we encode MIc via its midpoint functional
mc so that MIc(F ) = {[x− c, x+ c] | x ∈ mc(F )}, where c > 0. Under this convention,

S(x, y) := −1(x− c ≤ y ≤ x+ c) (3.12)

is a strictly consistent scoring function for mc on the class of distributions with Lebesgue
densities, whence mc and MIc are elicitable. In the limit as c → 0, the scoring func-
tion (3.12) becomes zero almost everywhere and thus cannot be strictly consistent for
any functional. Heinrich (2014) shows that there are no alternative scoring functions,
so the mode fails to be elicitable relative to sufficiently rich classes of distributions with
densities. Further aspects are treated in Dearborn and Frongillo (2020).

The following theorem demonstrates, perhaps surprisingly, that c-zero-one-loss (3.12)
is essentially the only strictly consistent scoring function for the mc and MIc functionals.

Theorem 3.10. Let c > 0, and let F be a class of probability measures on R that
contains all distributions having Lebesgue densities with compact support. Then any
scoring function that is strictly consistent for the mc functional relative to F is almost
everywhere equal to a scoring function which is equivalent to c-zero-one-loss (3.12).

Proof. We sketch this proof only, as it proceeds in the very same three steps as the proof
of Theorem 3.9. Specifically, let c > 0, and let S be a strictly consistent scoring function
for the functional mc relative to F . In Step 1, we show that S is almost everywhere of
the form

S(x, y) = g(x, y)1(x− c ≤ y ≤ x+ c) + h(y)

for F-integrable functions g : R × R → R and h : R → R. In Step 2 we prove that
g reduces to a function g̃ in the variable x only, and in Step 3 we demonstrate that g̃
reduces to a negative constant. The technical details are analogous to those in the above
proof of Theorem 3.9, with the only difference that the set I is now an interval and the
statements hold Lebesgue almost everywhere.

We complete this section by connecting modal and shortest intervals. While these
are conceptually different types of intervals, a comparison of (3.5) and (3.8) shows that
the SIα and MIc functionals relate via their defining optimization problems. Specifically,
the SIα(F ) functional is a solution to the constrained optimization problem

min
[a,b]∈A

(b− a) such that F (b)− F (a−) ≥ 1− α,

while the MIc functional is a solution to

max
[a,b]∈A

(F (b)− F (a−)) such that b− a ≤ 2c.

Consequently, if either len(SIα(F )) = 2c or PF (Y ∈ MIc(F )) = 1− α, one condition im-
plies the other, and MIc(F ) = SIα(F ) holds. It remains unclear whether this connection
can be exploited to construct strictly consistent scoring functions for the SIα functional
on suitably restrictive, special classes of distributions.
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3.6 Discussion

Of the three types of predictive intervals presented in this chapter, the equal-tailed and
modal intervals are elicitable, and we have discussed the corresponding classes of strictly
consistent scoring functions. In contrast, the shortest interval functional fails to be
elicitable relative to classes of distributions of practical relevance. We thus provide a
negative answer to the questions raised by Askanazi et al. (2018) concerning the existence
of suitable loss functions for the shortest interval. Importantly, there is yet to find a way
of setting incentives for forecasters to report their true shortest intervals. Equal-tailed
intervals are preferable due to their elicitability, in concert with other considerations,
such as the intuitive connection to quantiles and equivariance under strictly monotone
transformations (Askanazi et al., 2018, p. 961).

The modal interval admits a unique strictly consistent scoring function relative to
comprehensive classes of both discrete and continuous distributions, up to equivalence.
This appears to be a rather special situation, as functionals studied in the extant litera-
ture either fail to be elicitable, or admit rich classes of genuinely distinct consistent scor-
ing functions (Gneiting, 2011a; Steinwart et al., 2014; Fissler and Ziegel, 2016; Frongillo
and Kash, 2019). It would be of great interest to gain an understanding of conditions
under which consistent scoring functions are essentially unique.

As illustrated, interval forecasts are best suited for continuous distributions, and may
exhibit counter-intuitive properties in discrete settings. In particular, in the discrete
case it may be unavoidable that the coverage probability of a perfect forecast exceeds
the nominal level 1−α. This raises problems when assessing interval calibration with the
methods of Christoffersen (1998), since asymptotically the null hypothesis of frequency
calibration will then be rejected even under perfectly correct forecasts. Modifying the
null hypothesis to nominal coverage greater than or equal to 1−α is not a remedy, since
such a test does not have any power against forecast intervals with too high coverage.
Consequently, tests for correct forecast specification as in Christoffersen (1998) can be
problematic when data fail to be well-approximated by continuous distributions, such
as in the case of retail sales. Fortunately, comparative evaluation via consistent scoring
functions remains valid and unaffected (Czado et al., 2009; Kolassa, 2016).

In general, we agree with Askanazi et al. (2018) that probabilistic forecasts in the
form of predictive distributions are preferable to interval forecasts. They constitute the
gold standard of forecasting as they contain all the available distributional information
and thereby allow for optimal decision making. Additionally, well-understood and pow-
erful evaluation methods, e.g. proper scoring rules, are available (Dawid, 1986; Gneiting
and Raftery, 2007; Gneiting et al., 2007; Gneiting and Katzfuss, 2014). Probabilistic
forecasts can be issued in a number of distinct formats, ranging from the use of para-
metric distributions, such as in the Bank of England Inflation Report (Clements, 2004),
to Monte Carlo samples from predictive models. However, in many applications the
full potential of the probabilistic framework remains unexplored, owing to established
conventions or technical and methodological difficulties. In these settings, reporting a
collection of predictive intervals, which amounts to a collection of quantiles in case of
ETIs, can be a reasonable alternative, which is already commonly used, e.g. in the Global
Energy Forecasting Competition 2014 (Hong et al., 2016) or the COVID-19 Forecasting
Hub (Bracher et al., 2020). The findings of this chapter support forecast evaluation
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methods at this intermediate stage in the transition from point to probabilistic forecast-
ing.



4 Scoring functions for point
process characteristics

This chapter transfers the idea of comparative forecast evaluation via consistent scoring
functions to the point process setting. More precisely, we show elicitability, and derive
consistent scoring functions, for a variety of common point process characteristics such
as the intensity or the K-function. This complements a similar approach of Heinrich
et al. (2019) by considering a more general setting, which leads to a variety of novel
results. We discuss two existing methods for model comparison in statistical seismology
and find that our results can be interpreted as generalizations of these ideas.

We begin with a brief discussion of the point process evaluation setting in Section 4.1
and then rigorously introduce scoring functions for point process characteristics in Sec-
tion 4.2. Section 4.3 explains how some of these scoring functions connect to existing
methods for model assessment and Section 4.4 presents simulation results that illustrate
finite sample behavior. Section 4.5 concludes with an outlook towards further refine-
ments and a discussion.

4.1 Different point process scenarios

This section discusses how forecast evaluation via scoring functions, as lined out in
Section 1.5, transfers to the point process setting. The key difference to the usual
framework is the treatment of time, since points of a (spatio-)temporal point process
occur at random times instead of fixed measurement dates. This feature has to be
addressed in order to use the full information of any sampled point pattern. For clarity
of presentation, we distinguish three different point process scenarios, based on common
applications:

Scenario A (purely spatial) In this scenario the process is defined on either a single
domain (Scenario A1), or non-overlapping subdomains with no (or little) depen-
dence between them (Scenario A2). Examples include the points which an observer
fixates in an image (Barthelmé et al., 2013) or the locations of trees in a forest
(Stoyan and Penttinen, 2000). Stationarity is a common simplifying assumption
in this context.

Scenario B (purely temporal) In this scenario, there is no spatial component and
the process consists of points in time only. Examples are the arrival times of e-
mails (Fox et al., 2016) or times of infections with a disease (Schoenberg et al.,
2019). In this special setting the directional character of time allows for a distinct
interpretation and treatment, as detailed below.
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Scenario C (spatio-temporal) Additional to the spatial component, processes in this
scenario possess a temporal component, which could be discrete (Scenario C1)
or continuous (Scenario C2). Examples are locations of crime hotspots in a city
(Mohler et al., 2011) or earthquakes over time in a specific region (Ogata, 1998;
Zhuang et al., 2002).

In order to compare forecasts in each of these scenarios, the ideas of Section 1.5 can be
used as follows. Let Φ be a point process and S a scoring function such that S(a,Φ) is the
score of the report a ∈ A. Moreover, assume that S is strictly consistent for a statistical
property of point processes, e.g. the intensity. Section 4.2 discusses which properties and
scoring functions are available, as well as technical details. In this situation, two forecasts
a and a∗ can be compared based on the sign of the expectation E [S(a,Φ)− S(a∗,Φ)],
where, due to the consistency of S, negative values provide evidence that report a is
superior to a∗, while positive values support the opposite conclusion.

Given point process realizations Φ1, . . . ,Φn the difference in expected scores can
be accessed via the average score difference as in (1.10). Although the idea of score
differences is the same for all three scenarios, the detailed estimation may vary among
them. In particular, if we want to estimate the uncertainty inherent in the realized score
differences this task depends on whether the process has a continuous or a discrete time
component.

Discrete time Assume that the point process data is sampled at fixed points in time,
i.e. it can be modeled by a sequence (Φt)t∈N adapted to a filtration (Ht)t∈N. Moreover,
let (Rt)t∈N and (R∗t )t∈N be two forecast sequences. This setting includes the special case
of i.i.d. realizations and relates to Scenario C1 as well as variants of Scenario A. Since
the score differences (S(Rt,Φt) − S(R∗t ,Φt))t∈N form a sequence of real-valued random
variables, the ideas of Section 1.5, particularly the comparative testing framework of
Nolde and Ziegel (2017) and its asymptotic results, are directly applicable. This yields
an approach to forecasts evaluation and model selection which is suitable if dependence
is non-existent or not of central interest for forecast evaluation.

Continuous time If we consider point processes in Scenario C2 or Scenario B, then
temporal dependence between the points becomes an essential feature of the process
and can also be object of the forecast. Apart from that, it has to be accounted for in
estimation and testing, since it will affect asymptotic results. To see this, assume for
simplicity that Φ is a purely temporal process observed over a time period [0, T ] with
0 < t1 < · · · < tk < T denoting the corresponding arrival times. In a stepwise forecast
setting, where the reports Ri and R∗i can adapt to previous arrivals t1, . . . , ti−1 (see e.g.
Subsection 4.2.5), this yields a realized score difference

∆T (R,R∗) =

n(T )∑
i=1

(Si(Ri, ti)− Si(R∗i , ti)) , (4.1)

where n(T ) := Φ((0, T ]) is the random number of points in [0, T ]. The score difference
∆T (R,R∗) is a sum of a random number of random variables, usually called a random
sum. This perspective connects score estimation for temporal point processes to the
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theory of total claim amount in insurance, see e.g. Mikosch (2009) and Embrechts et al.
(1997). An example illustrates possible results and difficulties.

Example 4.1 (Independently marked renewal process). Let Φ be a renewal process
(Daley and Vere-Jones, 2003, Chapter 4) with i.i.d. marks (Xi)i∈N following a distribu-
tion F ∈ F . By definition, the time between the i-th and (i+ 1)-th point is given by Yi,
where (Yi)i∈N is an i.i.d. sequence of strictly positive random variables with distribution
G and finite first moment. Suppose furthermore that the marks are unpredictable, i.e.
the sequences (Xi)i∈N and (Yi)i∈N are independent. An observation ϕ of Φ on [0, T ] then
consists of the points {t1, . . . , tn} and the corresponding marks {X1, . . . , Xn}.

Assume two forecasters are asked to report their beliefs F 1, F 2 and G1, G2 concerning
the mark distribution F and the inter-arrival distribution G, respectively. A strictly
consistent scoring function for this pair of distributions is then given by

S((F,G), ϕ) =

n∑
i=1

S1(F,Xi) + S2(G, ti − ti−1),

where S1, S2 are strictly proper scoring rules and n = n(T ) = ϕ((0, T ]) is the number
of points. The difference in average scores of the two competing forecasters is ∆T :=
S((F 1, G1), ϕ) − S((F 2, G2), ϕ) and it can be interpreted as the sum of the marks of a
new process Φ∗ which has the same ground process as Φ and marks

Mi = S1(F 1, Xi)− S1(F 2, Xi) + S2(G1, ti − ti−1)− S2(G2, ti − ti−1).

In general the marks of Φ∗ are no longer independent of the ground process, although
the mark sequence (Mi)i∈N is i.i.d. Suppose we assume that the forecasters possess
equal predictive ability, in the sense that their scores are equal in expectation. This
implies that (Mi)i∈N has mean zero and we further assume that it has strictly positive
variance σ2. If we combine Φ∗((0, T ])/t→ 1/EY1, the elementary renewal theorem, with
a special case of a result due to Anscombe (see Rényi (1957, Theorem 1) and Gut (2012,
Theorem 2.3)), then we obtain that

∆T

σ
√
n(T )

is asymptotically standard normal as T → ∞. This asymptotic result allows for DM
tests as in Section 1.5 in this simplified renewal process setting. �

The assumptions on the underlying process Φ in the previous example are too re-
strictive for most real-world applications. Hence, more general asymptotic results for
the score difference (4.1) for T → ∞ are desirable to assess the uncertainty of the
forecast evaluation task. One possible approach to this problem relies on limit theo-
rems for randomly indexed processes due to Anscombe (1952), in particular random
central limit theorems: If the number of points n(T ) satisfies a weak law of large
numbers, then under Anscombe’s condition, we only have to ensure that the sequence
(Si(Ri, ti)−Si(R∗i , ti))i∈N satisfies a central limit theorem in order to obtain asymptotic
normality of (4.1) after suitable scaling. Random central limit theorems in this spirit are
available for strong mixing (Lee, 1997), ψ-weakly dependent (Hwang and Shin, 2012),
and m-dependent (Shang, 2012) sequences.
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4.2 Consistent scoring functions for point patterns

This section explores which consistent scoring functions are available if the observations
are finite point patterns in a set X ⊂ Rd. We start with general principles which connect
to existing theory and then derive scoring functions for a variety of popular point process
characteristics, which relate to Scenarios A, B, and C (see Section 4.1).

4.2.1 Technical context

A finite point process Φ is a random element in the space M0 = M0(X ) of finite counting
measures on (X ,B(X )), where B(X ) denotes the Borel σ-algebra of X , cf. Daley and
Vere-Jones (2003) for details. Hence, our observation domain is M0 in this context and
we shall denote a set of probability measures on M0 by P and the distribution of Φ
by PΦ. As in Section 1.1, a functional is a mapping Γ : P → A, where A is an action
domain. A mapping S : A×M0 → R̄ is a scoring function if

EPS(a,Φ) = S̄(a, P ) =

∫
M0

S(a, ϕ) dP (ϕ)

is well-defined for all a ∈ A and P ∈ P, i.e. we drop the requirement of integrability used
in the previous chapters. The reason for this is that the results of this chapter often
rely on proper scoring rules, which are by definition R̄-valued functions, see Section 1.4.
Elicitability of Γ as well as (strict) consistency of S are defined as in Section 1.1 via
inequality (1.1).

For ease of presentation and practical implementation, we will usually state how
the score of a realization ϕ =

∑
i=1,...,n δyi ∈ M0 is computed from an enumeration of

its points, i.e. from the set {y1, . . . , yn} if n = |ϕ|. For n = 0 no points occurred, so
the set is empty. To make this meaningful, we will ensure that for spatial processes
all scoring functions are independent of the enumeration of points (see also Daley and
Vere-Jones (2003, Section 5.3)). For temporal processes we use the natural enumeration
which orders the points from smallest to largest.

In light of the results of Section 1.2, constructing simple elicitable functionals of point
processes is straightforward: Since point processes induce real-valued random variables in
many ways, the expectations of these random variables (provided they are well-defined)
will be elicitable functionals.

Example 4.2 (Expected number of points). Given a set B ∈ B(X ), the (N0-valued)
random variable Φ(B) denotes the random number of points of Φ in B. If the functional
ΓB : P → R given by ΓB(P ) = EPΦ(B) is well-defined, Theorem 1.6 shows that it is
elicitable with Bregman scoring function

SB(x, ϕ) = b(x, ϕ(B)) = −f(x)−∇f(x)>(ϕ(B)− x),

where f : [0,∞)→ R is a strictly convex function. �

This construction is not limited to the expected number of points in a set, but works
for any combination of elicitable functional (e.g. expectation) and point process feature
(e.g. number of points). More precisely, let O be an observation domain, g : M0 → O a
measurable mapping and g(P) := {P ◦g−1 | P ∈ P}. Due to the transformation principle
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(Proposition 1.10), the functional Γ(P ) := T (P ◦g−1) is elicitable whenever T : g(P)→ A
is elicitable. We recover Example 4.2 by choosing T (F ) = EFY and g(ϕ) = ϕ(B). The
elicitability of other “simple” properties like finite-dimensional distributions and void
probabilities is a straightforward consequence of Proposition 1.10.

Example 4.3 (Void probability). For any fixed set B ∈ B(X ) the functional Γ defined
via Γ(P ) = PP (Φ(B) = 0) is elicitable. �

Example 4.4 (Point process integrals). Fix some measurable functions fi : X → R,
i = 1, . . . ,m for m ∈ N. Define g : M0 → Rm via

g(ϕ) =

(∫
f1 dϕ, . . . ,

∫
fm dϕ

)>
=

(∑
xi∈ϕ

f1(xi), . . . ,
∑
xi∈ϕ

fm(xi)

)>
and let T = idg(P). Then the finite-dimensional distribution functional Γf1,...,fm(P ) =
T (P ◦ g−1) is an elicitable property of the point process Φ. �

As illustrated by the previous examples, different choices for T and g in Proposi-
tion 1.10 lead to a wide variety of different functionals and consistent scoring functions.
In Heinrich et al. (2019) the main idea is to choose T as the identity on g(P) (see also
Example 4.4). Two distributional models P,Q ∈ P of the process Φ can then be com-
pared based on realizations by comparing P ◦ g−1 and Q ◦ g−1 via a proper scoring rule.
The mapping g : M0 → O is selected to be an estimator of some quantity of interest, e.g.
a kernel-based intensity estimator. Since the distributions of such estimators will usually
not be explicitly available, approximating the values of the scoring rule via simulations
becomes necessary. Moreover, as different P ∈ P may lead to the same law P ◦ g−1, this
approach hinges on the ability of g to discriminate between two distributions P and Q.

Instead of following this approach, we develop strictly consistent scoring functions in
order to compare certain point process characteristics Γ : P → A. Important examples
for Γ include the point process distribution and the intensity measure. This allows for a
direct comparison of the characteristic Γ which includes distributional models P ∈ P as a
special case. In contrast, comparison in Heinrich et al. (2019) always depends on specific
aspects of the distributions in P which are determined via the ‘estimator choice’ g. The
discrimination ability of our approach depends on how similar the property values Γ(P )
and Γ(Q) (e.g. the intensity measures) are. In particular, knowledge of the distribution
P is not needed as long as Γ(P ) is available. In cases where Γ can be computed explicitly,
this avoids possibly high computational costs owing to point process simulations.

4.2.2 Density and distribution – general processes

This subsection constructs consistent scoring functions for the whole distribution PΦ

of the finite point process Φ, which corresponds to the identity functional Γ = idP .
We obtain two results, corresponding to distinct representations of the distribution PΦ.
Although applicable to general processes, the main focus is Scenario A and related results
for temporal point processes are given in Subsection 4.2.5.

For our first approach we use the fact that the law PΦ of a finite point process on
X can be equivalently represented by two sequences (Πk)k∈N and (pk)k∈N0 . Each pk
specifies the probability of finding k points in a realization. The Πk are symmetric
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probability measures on X k which describe the distribution of any ordering of points,
given k points are realized, see Daley and Vere-Jones (2003, Chapter 5.3) for details.
We can thus construct scoring functions for the distribution of the process by combining
scoring functions for all Πk with a scoring function for the distribution (pk)k∈N0 .

To state this result, we introduce the notion of symmetric scoring functions/rules,
where S : A×Rn → R̄ is called symmetric if S(a, y1, . . . , yn) = S(a, yπ(1), . . . , yπ(n)) holds
for all a ∈ A, y ∈ Rn and permutations π. Via this definition we ensure that the scoring
functions of this subsection are independent of the enumeration of the realization of Φ.

Proposition 4.5. Let P be a class of distributions of finite point processes, with Q ∈ P
decomposed into (ΠQ

k )k∈N and (pQk )k∈N0. Set Fk := {ΠQ
k | Q ∈ P} and let Sk : Fk×X k →

R̄ be a symmetric (strictly) proper scoring rule for all k ∈ N. Let S0 be a (strictly) proper
scoring rule on N0. Then the function S : P ×M0 → R̄ defined via

S(((ΠQ
k )k∈N, (p

Q
k )k∈N0), {y1, . . . , yn}) = Sn(ΠQ

n , y1, . . . , yn) + S0((pQk )k∈N0 , n)

for n ∈ N and S(((ΠQ
k )k∈N, (p

Q
k )k∈N0), ∅) = S0((pQk )k∈N0 , 0) is a consistent scoring func-

tion for the distribution of the point process Φ. It is strictly consistent if S0 and (Sk)k∈N
are strictly proper.

Proof. The result follows by decomposing the expectation S̄(Q,PΦ) into expectations
on the sets {Φ = n} for n ∈ N and using (strict) propriety of Sn on each set.

Although Proposition 4.5 allows for a general choice of scoring rules for the distribu-
tions (Πk)k∈N, probability densities are often more convenient vehicles, especially when
multivariate distributions are of interest. Subsection 1.4.1 holds several common choices
of scoring rules for density forecasts.

To define the density of a point process we follow Daley and Vere-Jones (2003) and let
P0 denote the distribution of the Poisson point process with unit rate on some bounded
domain X ⊂ Rd. If P ∈ P is absolutely continuous with respect to P0, then the Radon-
Nikodým density dP/dP0 exists and can be regarded as the density of P . It can be
computed via the identity dP/dP0(ϕ) = exp(|X |)jk(y1, . . . , yk)/k!, where |X | denotes
the Lebesgue measure of X , y1, . . . , yk are the points of ϕ ∈ M0 and the (symmetric)
function jk defined via

jk(x1, . . . , xk) dx1 · · · dxk = k!pk dΠk(x1, . . . , xk) (4.2)

is the k-th Janossy density of Φ. For k = 0 this is interpreted as j0 = p0. The value
jk(x1, . . . , xk) can be understood as the likelihood of k points materializing, one of them
in each of the distinct locations x1, . . . , xk ∈ X . We refer to Daley and Vere-Jones (2003,
Chapter 7.1 and 5.3) for further details.

In principle, the previous discussion and Subsection 1.4.1 allow us to obtain scoring
functions for the point process distribution P based on its densities (jPk )k∈N0 . However,
two important difficulties have to be addressed in the point process setting. Firstly,
explicit expressions for (jk)k∈N0 are usually hard to determine and known only for some
models, see Daley and Vere-Jones (2003, Chapter 7.1) and Examples 4.6 and 4.7 below.
Secondly, even if explicit expressions are available, calculating the realized scores can
pose major challenges. For instance, the use of the pseudospherical score relies on the
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norm ‖dP/dP0‖α which necessitates computing (k!)−1
∫
jk(x1, . . . , xk)

α dx1 . . . dxk for
all k ∈ N. We will thus only discuss two choices of scoring functions, the logarithmic
and the Hyvärinen score, see Subsection 1.4.1 for their definitions.

Logarithmic score Assume that for all distributions Q ∈ P the Janossy densities
(jQk )k∈N0 are well-defined. Due to the strict consistency of the logarithmic score (Gneiting
and Raftery, 2007), the function S : P ×M0 → R̄ defined via

S((jQk )k∈N0 , {y1, . . . , yn}) = − log(jQn (y1, . . . , yn)) (4.3)

for n ∈ N and S((jQk )k∈N0 , ∅) := − log(jQ0 ) is a strictly consistent scoring function for
the distribution of the point process Φ. The term −|X |+ log(n!) can be omitted, since
it is independent of the report (jQk )k∈N0 . This choice recovers the log-likelihood of the
distribution Q from the perspective of consistent scoring functions.

Example 4.6 (Poisson point process). Let Φ be an inhomogeneous Poisson point process
with intensity λ : X → [0,∞). It is well-known that Φ admits the density

jn,λ(y1, . . . , yn) =
( n∏
i=1

λ(yi)
)

exp

(
−
∫
X
λ(y) dy

)
for n ∈ N, see e.g. Daley and Vere-Jones (2003, Chapter 7). In case n = 0 the product
is interpreted as one. When reporting the Poisson point process distribution PΦ, (4.3)
gives the score

S(PΦ, {y1, . . . , yn}) = −
n∑
i=1

log λ(yi) +

∫
X
λ(y) dy (4.4)

for n ∈ N and S(PΦ, ∅) = |λ|, where |λ| =
∫
X λ(y) dy. In the context of Proposition 4.5,

the definition of Poisson point processes implies that the distribution of Φ can be de-
composed via

dΠn(y1, . . . , yn) =
n∏
i=1

λ(yi)

|λ|
dy1 · · · dyn and pn =

|λ|n

n!
e−|λ|.

When choosing all the scoring rules (Sn)n∈N and S0 as the logarithmic score, the scoring
function S in Proposition 4.5 simplifies and agrees with (4.4). �

The previous example illustrates how the scoring functions for (Πk, pk)k∈N0 and
(jk)k∈N0 are connected in the case of Poisson point processes. In general, identity (4.2)
shows that choosing the logarithmic score for (Sn)n∈N and S0 leads to identical scoring
functions in (4.3) and Proposition 4.5. For other choices, relating both expressions is an
open problem.

Hyvärinen score Apart from the Poisson point process, some other models admit
explicit expressions for (jk)k∈N0 or the densities of (Πk)k∈N, however often only up to
an unknown normalizing constant. In this situation 0-homogeneous proper scoring rules
for densities can be of use, as they allow for consistent evaluation of a density f on Rk
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without the normalizing constant being known. The most relevant scoring rule of this
type is the Hyvärinen score given by

HyvS(f, y) = ∆ log f(y) +
1

2
‖∇ log f(y)‖2,

where f is a twice differentiable density, see Hyvärinen (2005) and Subsection 1.4.1 for
details.

Similar to the logarithmic score, we can transfer the Hyvärinen score to the point
process setting. Since it is not obvious how differentiation of the density dP/dP0, i.e.
differentiation in the space M0, can be performed, we apply the score to (jk)k∈N0 directly.

Hence, assume that for all Q ∈ P and k ∈ N, jQk satisfies the regularity conditions of
the Hyvärinen score, as stated in Subsection 1.4.1. Then the function S : P ×M0 → R
defined via

S((jQk )k∈N0 , {y1, . . . , yn}) = −HyvS(jQn , y1, . . . , yn) (4.5)

for n ∈ N and S((jQk )k∈N0 , ∅) := 0 is a consistent scoring function for the distribution of
the point process Φ. Observe that we cannot achieve strict consistency for S, since the
probability of |Φ| = n is proportional to jn (see identity (4.2)) and thus not accessible
to the Hyvärinen score.

Example 4.7 (Gibbs point process). Stemming from theoretical physics, Gibbs pro-
cesses are a popular tool to model particle interactions. They are defined via their
Janossy densities

jn(y1, . . . , yn) = C(θ) exp (−θU(y1, . . . , yn)) ,

where U represents the point interactions, θ is a parameter relating to the temperature,
and C is the partition function, which ensures that the collection (jk)k∈N0 is properly
normalized, see e.g. Daley and Vere-Jones (2003, Chapter 5.3) and Chiu et al. (2013,
Chapter 5.5). It is in general difficult to find expressions for C or even approximate it,
hence the Hyvärinen score might seem attractive to evaluate models based on (jk)k∈N0 .
Plugging jn into (4.5) gives

S((jk)k∈N0 , {y1, . . . , yn}) = θ

(
−∆U(y1, . . . , yn) +

θ

2
‖∇U(y1, . . . , yn)‖2

)
for n ∈ N, where the derivatives are computed with respect to the coordinates of the
vector (y1, . . . , yn) ∈ (Rd)n. The simplest choice for interactions is to restrict U to first-
and second-order terms

U(y1, . . . , yn) =

n∑
i=1

l(yi) +

n∑
i,j=1

ψ
(
‖yi − yj‖2

)
for l : Rd → R and ψ : [0,∞) → [0,∞) with ψ(0) = 0, see e.g. Daley and Vere-Jones
(2003, Chapter 5.3). To apply the Hyvärinen score in this setting, l and ψ have to satisfy
some regularity conditions, detailed in Subsection 1.4.1 and Hyvärinen (2005), and in
particular admit second order derivatives almost everywhere. The soft-core models for
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ψ introduced in Ogata and Tanemura (1984) satisfy this condition, while their hard-core
model for ψ is not even continuous. An additional regularity issue is that all possible
pairs of densities f1, f2 have to satisfy (∂i log f1(y))f2(y)→ 0, whenever ‖y‖ → ∞. Since
Ogata and Tanemura (1984) consider a constant l, their processes cannot satisfy this
condition. Choosing l such that the jn decay fast enough for ‖y‖ → ∞ can be a solution
to this problem. �

4.2.3 Intensity and moment measures

As one of the key characteristics of point processes, the intensity measure, or more general
moment measures, can be interpreted as analogons to the moments of a univariate
random variable. To construct scoring functions for these measures, let X ⊂ Rd be
bounded and Mf =Mf (X ) a set of finite measures on X . We call Λ∗ := Λ/|Λ|, where
|Λ| := Λ(X ), the normalized measure of a finite measure Λ ∈Mf .

Intensity measure The intensity measure defined via B 7→ EΦ(B), and usually de-
noted via Λ, quantifies the expected number of points in a set B ∈ B(X ), see e.g. Daley
and Vere-Jones (2003) and Chiu et al. (2013). It is one of the central tools to describe
average spatial point process behavior and thereby relates to applications in Scenario A
or Scenario C. For a fixed Borel set B, the expected number of points was already dis-
cussed in Example 4.2, thus here we focus on scoring functions for the full measure. We
begin by considering the normalized intensity measure, since it is a probability measure.

Proposition 4.8. Set F := {Λ∗ | Λ ∈ Mf} and let S′ : F × X → R̄ be a (strictly)
proper scoring rule. The scoring function S : F ×M0 → R̄ defined via

S(Λ∗, {y1, . . . , yn}) =
n∑
i=1

S′(Λ∗, yi)

for n ∈ N and S(Λ∗, ∅) = 0 is consistent for the normalized intensity measure. It is
strictly consistent if S′ is strictly proper.

Proof. Let Q ∈ Mf and Φ be a point process with intensity measure Λ ∈ Mf and
distribution PΦ ∈ P. Using Campbell’s theorem, the difference in expected scores is

S̄(Q∗, PΦ)− S̄(Λ∗, PΦ) =

∫ ∑
xi∈ϕ

(
S′(Q∗, xi)− S′(Λ∗, xi)

)
dPΦ(ϕ)

=

∫
S′(Q∗, x)− S′(Λ∗, x) dΛ(x)

= |Λ|
(
S̄′(Q∗,Λ∗)− S̄′(Λ∗,Λ∗)

)
≥ 0,

where the inequality follows from the propriety of S′. If the difference is zero and S′

is strictly proper, this gives Q∗ = Λ∗, showing that S is strictly consistent for the
normalized intensity measure.

In principle, it is possible to define scoring rules for non-normalized measures, as well.
Hendrickson and Buehler (1971) use a constant extension of scoring rules to the cone
induced by a set of probability measures, in order to connect to homogeneous convex
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functions. However, as the proof of Proposition 4.8 illustrates, information concerning
the intensity measure can be accessed only after normalization. Since the total mass
|Λ| = EΦ(X ) is an elicitable property of Φ (see Example 4.2), combining this information
with Λ∗ leads to a consistent scoring function for the (unnormalized) intensity. This
follows from an application of the revelation principle (Proposition 1.9).

Corollary 4.9. Set F := {Λ∗ | Λ ∈ Mf} and let S′ : F × X → R̄ be a (strictly) proper
scoring rule. Let b : [0,∞)× [0,∞)→ R be a (strictly) consistent Bregman function, as
defined in (1.3). The scoring function S :Mf ×M0 → R̄ defined via

S(Λ, {y1, . . . , yn}) =

n∑
i=1

S′(Λ∗, yi) + cb
(
|Λ|, n

)
for n ∈ N and S(Λ, ∅) = cb(|Λ|, 0) for c > 0 is consistent for the intensity measure. It is
strictly consistent if S′ is strictly proper and b is strictly consistent.

Example 4.10. As an important special case, assume that each Λ ∈ Mf admits a
density λ with respect to Lebesgue measure. Using the quadratic score for b and the
logarithmic score for S′ (see Section 1.4.1), the strictly consistent scoring function of
Corollary 4.9 becomes

S(Λ, {y1, . . . , yn}) = −
n∑
i=1

log(λ(yi)) + n log |Λ|+ c (|Λ| − n)2

for some c > 0. If we choose the logarithmic score for b and c = 1, then S leads to
the same score as obtained in (4.4) for Poisson point process reports. This is further
discussed in Subsection 4.3.3. Simulation experiments in Subsection 4.4.1 illustrate how
S compares different intensity forecasts. �

The choice of the constant c > 0 in Corollary 4.9 is irrelevant for (strict) consistency of
the scoring function S. However, since S evaluates a mixture of shape and normalization
of the intensity, where c balances the magnitudes of the scoring components, a careful
choice will likely be crucial in applications. An alternative is to compare the realized
scores for all c in some interval of suitable values.

Moment Measures If the intensity is interpreted as the first moment of a point
process, moment measures generalize this notion to higher moments. Thereby, they are
useful tools to quantify point interactions for processes occurring in Scenario A or C.
Strictly consistent scoring functions for these measures can be constructed analogously.
For n ∈ N, let Mn

f = Mf (X n) be the set of finite Borel measures on X n. For positive

measurable functions f : X n → (0,∞) the n-th moment measure µ(n) and the n-th
factorial moment measure α(n) are defined via the relations

E

 ∑
x1,...,xn∈Φ

f(x1, . . . , xn)

 =

∫
Xn

f(x1, . . . , xn) dµ(n)(x1, . . . , xn)

and E

 ∑ 6=

x1,...,xn∈Φ

f(x1, . . . , xn)

 =

∫
Xn

f(x1, . . . , xn) dα(n)(x1, . . . , xn),
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respectively, see e.g. Chiu et al. (2013) and Daley and Vere-Jones (2003). Here Σ 6=

denotes summation over all n-tuples that contain distinct points of Φ. Using the notion
of factorial product defined via

m[n] :=

{
m(m− 1)(m− 2) · · · (m− n+ 1) , m ≥ n
0 , m < n

for m,n ∈ N we obtain the concise representations µ(n)(Bn) = EΦ(B)n and α(n)(Bn) =
EΦ(B)[n] for B ∈ B(X ), see e.g. Daley and Vere-Jones (2003, Chapter 5). The next
result follows by using the same arguments as in the proof of Proposition 4.8 together
with the revelation principle (Proposition 1.9).

Proposition 4.11. Set Fn := {P ∗ | P ∈ Mn
f}, let S : Fn × X n → R̄ be a (strictly)

proper scoring rule and b : [0,∞)× [0,∞)→ R a (strictly) consistent Bregman function.

(i) The function S1 :Mn
f ×M0 → R̄ defined via

S1(µ, {y1, . . . , ym}) =
∑

x1,...,xn∈{y1,...,ym}

S(µ∗, x1, . . . , xn) + cb(µ(X n),mn)

for m ∈ N and S1(µ, ∅) = cb(µ(X n), 0) for c > 0 is a consistent scoring function
for the n-th moment measure.

(ii) The function S2 :Mn
f ×M0 → R̄ defined via

S2(α, {y1, . . . , ym}) =
∑6=

x1,...,xn∈{y1,...,ym}

S(α∗, x1, . . . , xn) + cb(α(X n),m[n])

for m ≥ n and S2(α, {y1, . . . , ym}) = cb(α(X n), 0) for m < n and with c > 0 is a
consistent scoring function for the n-th factorial moment measure.

Both S1 and S2 are strictly consistent if S is strictly proper and b is strictly consistent.

In many cases of interest α(n) is absolutely continuous with respect to Lebesgue
measure on X n and its density %(n) is the product density, see e.g. Chiu et al. (2013). A
(strictly) consistent scoring function for %(n) can be obtained from Proposition 4.11 (ii)
by choosing S to be a strictly proper scoring rule for densities, as in the next example.

Example 4.12. Let n = 2 and consider the product density %(2) of a stationary and
isotropic point process. In this situation, %(2) depends on the point distances only, i.e.

it can be represented via %(2)(x1, x2) = %
(2)
0 (‖x1 − x2‖) for some %

(2)
0 : [0,∞) → [0,∞).

Analogous to Example 4.10, we can use the quadratic score for b and the logarithmic
score for S in Proposition 4.11 (ii). This gives the strictly consistent scoring function

S(%(2), {y1, . . . , ym}) = −
∑ 6=

x1,x2∈{y1,...,ym}

log(%
(2)
0 (‖x1 − x2‖))

+m[2] log |%(2)|+ c (|%(2)| −m[2])2,

where c > 0 is some scaling constant. Simulation experiments in Subsection 4.4.2 show
how S compares different product density forecasts. �
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4.2.4 Summary statistics

Summary statistics of point processes are central tools to quantify point interactions such
as clustering or inhibition, hence they are typically used in Scenario A or Scenario C1.
This subsection constructs strictly consistent scoring functions for the most frequently
used statistics, the K- and L-function. Throughout we assume that Φ is a stationary
point process on Rd, i.e. any translation of the process by x ∈ Rd, which we denote via
Φx, has the same distribution as Φ. This implies that the intensity measure of Φ is a
multiple of Lebesgue measure and can be represented via some λ > 0, see e.g. Chiu et al.
(2013, Section 4.1).

A common way to describe a stationary point process is to consider its properties
in the neighborhood of x ∈ Rd, given that x is a point in Φ. Due to stationarity, the
location of x is irrelevant and thus it is usually referred to as the “typical point” of Φ.
The technical tool to describe the behavior around this point is the Palm distribution
of Φ, denoted via P0 for probabilities and E0 for expectations. It satisfies the defining
identity

λ |W |E0f(Φ) = E

( ∑
x∈Φ∩W

f(Φ−x)

)

for all measurable f : M0 → R such that the expectations are finite and it is independent
of the observation window W ∈ B(Rd), see e.g. Illian et al. (2008, Chapter 4). Denote
the d-dimensional ball of radius r > 0 around zero via Br = B(0, r). The K-function of
Φ is defined via

K : (0,∞)→ [0,∞), r 7→ E0Φ (Br\{0})
λ

,

and it quantifies the mean number of points in a ball around the “typical point” of Φ, see
e.g. Chiu et al. (2013, Chapter 4) and Illian et al. (2008, Chapter 4). As pointed out by
Heinrich et al. (2019) it is unclear whether it is possible to express K(r) as an elicitable
property in order to employ Proposition 1.10. However, we show that we can proceed
as for the intensity measure (see Subsection 4.2.3) and construct a strictly consistent
scoring function for reports consisting of both, the K-function and the intensity (see
also Example 4.2.) Our point process property of interest is thus Γ(P ) := (λP ,KP ),
where the subscript denotes the dependence of the quantities on the distribution P ∈ P
of the process Φ.

To derive consistent scoring functions let us fix some r > 0 and assume for now
that λP is known and that instead of data we directly observe the Palm distribution of
Φ. In this simplified situation, KP (r) is just an expectation with respect to P0, hence
“consistent scoring functions” for it are of the Bregman form

b(x, ϕ) = −f(x)− f ′(x)(ϕ(Br\{0})− λPx) (4.6)

for a convex function f : (0,∞)→ R, see Theorem 1.6 and Example 4.2. This is because
EP0 b(x,Φ) ≥ EP0 b(KP (r),Φ) holds for all x ≥ 0 and P ∈ P. To arrive at a strictly
consistent scoring function for the functional Γ three steps remain: Firstly, we have
to include a consistent scoring function for the first component of Γ, i.e. the intensity.
Moreover, we need to integrate (4.6) with respect to r > 0 in order to evaluate the
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entire K-function. Finally, we have to account for the fact that we are not observing
P0, but only points of Φ on some closed and bounded observation window W ⊂ Rd.
Hence, we need to compute the expected score E0b(x,Φ) via an expectation of Φ on W .
Such problems lead to edge corrections, i.e. additional terms to account for the fact that
(unobserved) points outside of W affect estimation near the boundary of W , see e.g.
Chiu et al. (2013, Chapter 4.7) for details. Since (4.6) is linear in ϕ, edge corrections for
the expected score are equivalent to edge corrections for the expectation E0Φ(Br\{0}),
which are well-known in the context of K-function estimation. Taken together we obtain
the following result.

Proposition 4.13. Let b1, b2 : [0,∞) × [0,∞) → R be (strictly) consistent Bregman
functions and w : (0,∞) → [0,∞) a weight function. Define C := {KP | P ∈ P}, a set
of possible K-functions and let the function κ satisfy EPκ(Br,Φ) = λPEP0 Φ(Br\{0}) for
all P ∈ P. Then the function S : ((0,∞)× C)×M0 → R defined via

S((λ,K), ϕ) = b1(λ, ϕ(W )|W |−1) +

∫ ∞
0

b2(λ2K(r), κ(Br, ϕ))w(r) dr

is consistent for the point process property Γ as long as the expectation of the integral
is finite. It is strictly consistent if b1 and b2 are strictly consistent and w is strictly
positive.

Proof. Using Theorem 1.6, the Fubini-Tonelli theorem, and

EPκ(Br,Φ) = λPEP0 Φ(Br\{0}) = λ2
PKP (r),

standard arguments show that the scoring function

S′((λ, h), ϕ) = b1(λ, ϕ(W )|W |−1) +

∫ ∞
0

b2(h(r), κ(Br, ϕ))w(r) dr,

where h : (0,∞)→ (0,∞) is an increasing function, is (strictly) consistent for the prop-
erty Γ′(P ) := (λP , λ

2
PKP (r)). An application of the revelation principle (Proposition 1.9)

gives (strict) consistency for Γ.

Similar to Corollary 4.9, this result blends two scoring components, namely the ex-
pected number of points and their distances. Hence, choosing suitable Bregman functions
b1 and b2 in applications, again leads to issues of balancing the magnitudes of different
scoring components.

A similarly delicate question is the choice of κ. Relevant choices result from the
construction of estimators for the K-function, which are often based on dividing κ by
an estimator for λ2, see e.g. Chiu et al. (2013). A common choice is

κst(Br, ϕ) :=
∑ 6=

x1,x2∈ϕ∩W

1Br(x2 − x1)

|Wx1 ∩Wx2 |
,

where Wz := {x + z | x ∈ W} is the shifted observation window and r is such that
|W ∩Wz| is positive for all z ∈ Br, see e.g. Illian et al. (2008, Chapter 4.3) and Chiu
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et al. (2013, Chapter 4.7). An alternative arises via minus-sampling, i.e. by reducing the
observation window W in order to reduce edge effects. It is given by

κminus(Br, ϕ) :=
1

|W |
∑6=

x1,x2∈ϕ∩W,x2∈W	r
1Br(x2 − x1),

where W 	r := {x | B(x, r) ⊂W} is the reduced observation window. For other choices
of κ, most notably for isotropic point processes, see Chiu et al. (2013, Chapter 4.7).

Practitioners usually rely on the L-function, a modification of the K-function, which
is defined via L(r) = d

√
K(r)/bd for r ≥ 0, where bd := |B1|. It satisfies L(r) = r for the

Poisson point process, and thus normalizes the K-function such that it is independent
of the dimension d for a Poisson point process, see e.g. Chiu et al. (2013). A (strictly)
consistent scoring function for the L-function follows immediately from Proposition 4.13
and another application of the revelation principle. The explicit formula follows by
replacing the first component of b2 by λ2L(r)dbd in Proposition 4.13. The idea underlying
the construction of scoring functions for the K- and L-function presented here can be
transferred to other summary statistics for stationary point processes.

4.2.5 Density and distribution – temporal processes

This subsection turns to consistent scoring functions for temporal point processes and
thereby relates to Scenario B, however, suitable adaptions to spatio-temporal point pro-
cesses (Scenario C2) are straightforward. The key feature of temporal (point) processes
is that the dimension “time” possesses a natural ordering, which allows for an intuitive
conditioning on the past that can be used to obtain explicit temporal point process
models.

In order to construct such models, the main tool is the probability of a new point
in the process conditional on past points. The instantaneous rate of points occurring in
the point process Φ is usually described via the conditional intensity

λ∗(t) = lim
∆t→0

E [Φ((t, t+ ∆t)) | Ht]
∆t

, (4.7)

where (Ht)t∈R is the filtration generated by the history of Φ. Although λ∗(t) is random,
it is known conditional on Φ, hence a measurable mapping linking it to Φ allows for
modeling as well as evaluation via consistent scoring functions. This mapping is usually
based on the concept of hazard functions which also reflects a fruitful perspective in
applications (Harte, 2015; Reinhart, 2018). We turn to an illustrative example and refer
to Daley and Vere-Jones (2003, Chapter 7) and Daley and Vere-Jones (2008, Chapter 14)
for further details.

Example 4.14 (Hawkes process). This basic self-exciting point process model was pro-
posed by Hawkes (1971) and is defined via the conditional intensity

λ∗(t) = ν +
∑
ti<t

g(t− ti),

where ν ≥ 0 is the background rate, g : (0,∞) → [0,∞) is the triggering function, and
(ti)i∈N comprises the points of the point process Φ. For a review of its applications see
for instance Reinhart (2018). �
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Let Φ be a point process on R+ and consider an observation window X := [0, T ]
for some T > 0. Given a realization 0 < t1 < . . . < tn of Φ the realized values of the
conditional intensity can be computed for all t ∈ X . More precisely, for a t ∈ X with
t1 < . . . < ti ≤ t < ti+1 we denote the realized value of λ∗ at t via λ∗(t | t1, . . . , ti).
Whenever there is no need to emphasize the dependence on t1, . . . , ti we use the simpler
notation λ∗(t). To ensure uniqueness, we follow Daley and Vere-Jones (2003) and assume
that a left-continuous version of λ∗ exists and is used.

Since the collection of all mappings t 7→ λ∗(t | t1, . . . , ti) for all i = 0, . . . , n and
all possible realizations t1, . . . , tn uniquely determines the distribution of Φ (Daley and
Vere-Jones, 2003), comparing forecasts for the conditional intensity is equivalent to a
comparison of forecasts for the distribution. The connection is the representation of the
likelihood of t1, . . . , tn occurring in [0, T ] via

jn(t1, . . . , tn) =
( n∏
i=1

λ∗(ti)
)

exp

(
−
∫ T

0
λ∗(u) du

)
, (4.8)

where the product is interpreted as one if no points occur. Consequently, (strictly)
consistent scoring functions for the conditional intensity can be obtained via the same
arguments as in Subsection 4.2.2, as illustrated by the following example.

Example 4.15. As in Subsection 4.2.2, the logarithmic score is the most intuitive choice
of strictly proper scoring rules for densities. Plugging (4.8) into (4.3) we see that the
scoring function S given by

S(λ∗, {t1, . . . , tn}) = −
n∑
i=1

log (λ∗(ti)) +

∫ T

0
λ∗(u) du

is strictly consistent for the conditional intensity. This recovers the log-likelihood of
a temporal point process, see for instance Daley and Vere-Jones (2003) and Reinhart
(2018). If Φ is a Poisson point process on R+ with intensity λ, its conditional intensity
agrees with λ and S coincides with (4.4). Simulation experiments in Subsection 4.4.3
illustrate how S compares different conditional intensities of Hawkes processes. �

Instead of using the likelihood (4.8) as a scoring function, an alternative is to proceed
stepwise and rely on the distribution of the next point conditional on all previous points.
After doing this for all points the resulting distribution is then evaluated via proper
scoring rules. The conditional probability density and distribution function of the point
ti, given t1, . . . , ti−1 are

fi(t | t1, . . . , ti−1) = λ∗(t | t1, . . . , ti−1) exp

(
−
∫ t

ti−1

λ∗(u | t1, . . . , ti−1) du

)
and

Fi(t | t1, . . . , ti−1) = 1− exp

(
−
∫ t

ti−1

λ∗(u | t1, . . . , ti−1) du

)
,

where t ∈ (ti−1,∞). For i = 0 the functions are unconditional and we use the convention
t0 = 0. These distributions give an equivalent characterization of the point process
distribution PΦ, see Daley and Vere-Jones (2003, Chapter 7.2) for details. Let D be the
set of left-continuous positive mappings on [0, T ). Adding the scores for all intervals
gives the following result.
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Proposition 4.16. Let Si : F × [0,∞)→ R̄ for i ∈ N be (strictly) proper scoring rules
for densities and S′ : [0, 1] × {0, 1} → R̄ a (strictly) proper scoring rule for Bernoulli
distributions. Then the scoring function S : D ×M0 → R̄ defined via

S(λ∗, {t1, . . . , tn}) =
n∑
i=1

Si(fi(· | t1, . . . , ti−1), ti) + S′(1− Fn+1(T | t1, . . . , tn), 1)

for n ∈ N and S(λ∗, ∅) = S′(1 − F1(T ), 1) is consistent for the conditional intensity
restricted to [0, T ]. It is strictly consistent, if all (Si)i∈N and S′ are strictly proper.

Proof. By the tower property of conditional expectations, the expectation of Si is the
mean of the conditional expectation given t1, . . . , ti−1 for every i = 2, . . . , n. Hence, the
reported conditional distributions are compared to the true conditional distributions in
expectation. An analogous argument for S′ shows (strict) consistency.

The scoring function S′ evaluates the forecast probability of an empty interval oc-
curring after tn. Since it is possible to choose a different scoring rule Si for every
point ti, Proposition 4.16 leads to a greater variety of scoring functions for temporal
point processes compared to the likelihood (4.8). Choosing the logarithmic score for all
(Si)i∈N and S′ recovers the scoring function of Example 4.15 and thereby connects both
approaches.

Another benefit of Proposition 4.16 becomes apparent when considering marked point
processes. In this setting, points ti and corresponding marks κi are observed and the
conditional intensity admits the decomposition λ∗(t, κ) = λ∗g(t)ψ

∗(κ | t), where λ∗g is the
conditional intensity of the ground process and ψ∗(· | t) is the conditional density of the
marks, see Daley and Vere-Jones (2003, Chapter 7.3) for details. If both functions are
reported, a consistent scoring function for λ∗ emerges by using S as given in Proposi-
tion 4.16 for λ∗g and adding scores for the marks. More precisely, such a scoring function
is of the form

S̃((λ∗g, ψ
∗), {t1, . . . , tn}, {κ1, . . . , κn}) = S(λ∗g, {t1, . . . , tn}) +

n∑
i=1

Sm
i (ψ∗(· | ti), κi),

where (Sm
i )i∈N are (strictly) proper scoring rules for densities. These additional scores

evaluate each density ψ∗(· | ti) given a point ti. A decomposed scoring function such
as S̃ might be beneficial in applications where different scoring rules for the points and
marks are reasonable. For instance, only some distributional properties of ψ∗, e.g. the
tails, might be of interest and the (Sm

i )i∈N can be tailored to emphasize this.

4.3 Review of extant methods for model comparison

This section discusses existing techniques for the evaluation of point process models
and how they relate to consistent scoring functions. We focus on two model evaluation
approaches common in statistical seismology, and discuss how they can be interpreted
as scoring function-based comparison methods. Due to this emphasis, other concepts
which do not primarily aim at comparative evaluation, e.g. diagnostic tools, are omitted.

A standard approach to model comparison consists of using the log-likelihood of a
model, i.e. its log-density evaluated at the observations. Most prominently, information
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criteria such as the AIC or BIC build on this idea to assess relative quality of competing
models, and they can also be used for point process models, as long as likelihoods are
available. Information criteria connect naturally to proper scoring rules through their
goodness-of-fit component which usually consists of a log-likelihood and can thus be in-
terpreted as evaluating the logarithmic score (see Subsection 1.4.1) for the given model.
The penalty component, which is computed from the number of fitted parameters, high-
lights the difference to proper scoring rules. It is a necessary correction for information
criteria, as their comparison is in-sample, i.e. it relies on the same data which is used for
model fitting. In contrast, comparative forecast evaluation via scoring functions/rules is
ideally performed out-of-sample, i.e. using new data which was not previously used to
fit models or issue forecasts, see also Gneiting and Raftery (2007, Section 7).

In the Bayesian setting a standard approach to model comparison is the use of Bayes
factors, which indicate whether there is sufficient evidence for one model to be more
likely than a competitor. Like information criteria they are closely connected to the
logarithmic score, as discussed in Gneiting and Raftery (2007, Section 7). Marzocchi
et al. (2012) employ Bayes factors to compare point process models in the setting of
earthquake likelihood model testing (Subsection 4.3.2).

A further variant of the likelihood principle for point processes can be obtained
from a combination with residual methods. In general, point process residuals form an
empirical process arising from fitting a conditional intensity (see Subsection 4.2.5) to
data. They can be used to assess goodness-of-fit and especially indicate in which regions
a model fits well or poorly, see e.g. Bray and Schoenberg (2013) for a review. Clements
et al. (2011) propose the use of deviance residuals to graphically compare two competing
models for the conditional intensity of a spatio-temporal process. The method plots the
log-likelihood ratio of two models for every set of a partition of the spatial domain and
can thus be interpreted as a visualization of local differences in logarithmic score.

4.3.1 Information gain

Closely connected to log-likelihood methods is the information gain approach, introduced
by Vere-Jones (1998) as a tool to compare temporal point processes (Scenario B). The
main idea is to assess a model based on the event probabilities that it induces for a
collection of intervals. Although the term ‘information gain’ is sometimes used in the
context of spatial point processes, too (Rhoades et al., 2011; Strader et al., 2017), we
focus on the temporal case and consider a spatial analogon in the next subsection.

The basis for the information gain is a partition of the interval [0, T ] into n subin-
tervals with length δi for i = 1, . . . , n. A distributional model for a point process Φ,
i.e. a distribution P ∈ P can then be used to generate (conditional) probabilities for
the event that at least one point occurs in interval i. Assume two collections of such
probabilities (pi)i=1,...,n and (qi)i=1,...,n are given, where the former is computed from
the model under consideration and the latter corresponds to a reference model, usu-
ally a homogeneous Poisson process. The time-normalized log-likelihood ratio between
(pi)i=1,...,n and (qi)i=1,...,n is

ρ̄T =
1

T

n∑
i=1

Xi log

(
pi
qi

)
+ (1−Xi) log

(
1− pi
1− qi

)
, (4.9)
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where the Xi are binary random variables indicating whether or not interval i contains
a point of Φ, see Daley and Vere-Jones (2003, Chapter 7.6). This term is called mean
information gain per unit time by Vere-Jones (1998) and positive values are assumed to
indicate improved forecast performance of the model (pi)i=1,...,n compared to the refer-
ence model. Consequently, (4.9) resembles differences of consistent scoring functions. A
rigorous analysis of this connection is presented in Subsection 4.3.3.

When using the information gain method, the choice of suitable subintervals is cru-
cial, as this will influence the performance measured by ρ̄T . The impact of different
choices is difficult to assess, however, Vere-Jones (1998) and Daley and Vere-Jones (2003,
Chapter 7.6) show that the maximal performance is independent of the choice of inter-
vals. More precisely, let Φ be a stationary temporal point process with conditional
intensity function λ∗ and Xi Bernoulli variables with parameters pi for i = 1, . . . , n. If qi
is computed from a homogeneous Poisson point process with rate λ̄ given by the mean
intensity λ̄ := E [λ∗(0)], i.e. via qi = 1− exp(−λ̄δi), then Eρ̄T is bounded by

I := E [λ∗(0) log(λ∗(0))]− λ̄ log(λ̄),

the entropy gain per unit time of the process. Moreover, Eρ̄T → I for a refining sequence
of partitions of [0, T ]. Due to this result, I can be interpreted as the ‘predictability’ of the
process Φ by measuring the potential for concentration in contrast to the homogeneous
Poisson process with rate equal to the mean intensity, see e.g. Vere-Jones (1998) and
Daley and Vere-Jones (2004). This quantification of predictability via I can also be used
for a goodness-of-fit criterion, where I is estimated from the data via the information
gain (4.9) and compared to the true value for a given model, see Daley and Vere-Jones
(2004) and Harte and Vere-Jones (2005) for details.

4.3.2 Earthquake likelihood model testing

When considering spatial point processes, as in our Scenario A, explicitly computable
likelihoods are often not available. A major exception are Poisson point processes, which
motivates a model evaluation approach by Kagan and Jackson (1995) and Schorlemmer
et al. (2007), to which we refer as ‘earthquake likelihood model testing’. Together with
further conceptual and computational improvements due to Zechar et al. (2010) and
Rhoades et al. (2011) this method is used in the RELM initiative, where a collection of
earthquake forecasts underwent several prospective testing procedures, see Schorlemmer
and Gerstenberger (2007) for details.

Earthquake likelihood model testing represents each earthquake by a point in S×M,
where S ⊂ Rk is some region in space and M ⊂ Rd is a set of marks, representing
earthquake features such as magnitude. The set S×M is partitioned into binsB1, . . . , BN
for some N ∈ N and the values x1, . . . , xN ∈ N0 count the numbers of earthquakes falling
in each bin. A forecast or ‘model’ is determined by values λ1, . . . , λN ∈ (0,∞) and its
‘log-likelihood’ (Schorlemmer et al., 2007) is defined as a sum of Poisson likelihoods

`(λ1, . . . , λN , x1, . . . , xN ) =

N∑
i=1

(xi log λi − log(xi!)− λi) . (4.10)

This terminology is motivated by the fact that, if Φ is a Poisson point process with
intensity measure Λ such that Λ(Bi) = λi for i = 1, . . . , N , then (4.10) is the log-
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likelihood of the realization x1, . . . , xN . Based on this idea, Kagan and Jackson (1995)
and Schorlemmer et al. (2007) propose different tests to evaluate forecasts.

To assess the absolute performance of a forecast, they introduce the L-test, which
compares the realized value z := `(λ1, . . . , λN , x1, . . . , xN ) to the distribution of the
random variable Z := `(λ1, . . . , λN , X1, . . . , XN ), where X1, . . . , XN are independent
Poisson random variables with parameters λ1, . . . , λN . The model is rejected if the
realization z lies in the tail of the distribution of Z. To determine the latter, we can
either rely on simulations or approximate the CDF of Z, as proposed in Rhoades et al.
(2011).

The R-test, or ratio test, compares two forecasts A and B specified by their bin
intensities λAi and λBi for i = 1, . . . , N , and aims to check whether model A is at least as
good as model B. Naturally, the analogous formulation with reversed roles is possible,
as well. The R-test considers the ‘log-likelihood ratio’ based on (4.10), i.e.

R(A,B, x1, . . . , xN ) = `(λA1 , . . . , λ
A
N , x1, . . . , xN )− `(λB1 , . . . , λBN , x1, . . . , xN ), (4.11)

and then proceeds analogously to the L-test, i.e. it compares the realized value z :=
R(A,B, x1, . . . , xN ) to the distribution of Z := R(A,B,X1, . . . , XN ), where X1, . . . , XN

are independent Poisson random variables with parameters λAi for i = 1, . . . , N . If z lies
in the lower tail of the distribution of Z, then model A is deemed worse than model B.

As the distributional assumptions onX1, . . . , XN demonstrate, there is an asymmetry
inherent in the R-test: If model A is tested against model B, then the Xi are assumed
to have parameters λAi and if B is tested against A, then λBi are the parameters of
the Xi. As noted by Rhoades et al. (2011) this implies that the R-test is not really
a comparative test, but rather a goodness-of-fit test such as the L-test. This explains
seemingly contradictory results observed in practice, where R-tests deem A worse than
B and vice versa, see Rhoades et al. (2011) and Bray and Schoenberg (2013) for details
and references.

Motivated by this asymmetry, Rhoades et al. (2011) propose two modifications of
the R-test which avoid such contradictory results. Instead of assuming a distribution
for (4.11), they find a different representation of R and assume a normal distribution
for this test statistic. Large positive realizations of R then support model A, while large
negative values support model B. If too few data are available they propose to test
whether R has zero median by employing the Wilcoxon signed-rank test. Both testing
ideas can be interpreted as variants of Diebold-Mariano (DM) tests (see Diebold and
Mariano (1995) and Section 1.5) and the connection to scoring functions is detailed in
Subsection 4.3.3. Note that Rhoades et al. (2011) use the term ‘information gain’ to
refer to their test statistic, see Subsection 4.3.1.

As pointed out by Harte (2015), earthquake likelihood model testing suffers from
several drawbacks. Firstly, relying on binning leads to a loss of information, since the
behavior of models inside bins will not affect the evaluation. Moreover, assuming in-
dependence among bins as well as a Poisson distribution leads to a likelihood mis-
specification when assessing general point process models. This prohibits the testing of
model characteristics other than bin expectations, since by reporting (λi)i=1,...,n, every
forecast is converted to a Poisson point process. The Collaboratory for the Study of
Earthquake Predictabiliy (CSEP), which succeeds RELM, will address these problems
by considering more complex forecasts, which include distributional features or corre-
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lations, see Schorlemmer et al. (2018) for details. However, as mentioned by Bray and
Schoenberg (2013), it is unclear how big the impact of the Poisson assumption is on
the testing results. By viewing the testing methods from the perspective of consistent
scoring functions, the next subsection gives new insights into this question.

4.3.3 Connections to scoring theory

We now explain how information gains and earthquake likelihood model testing connect
to scoring functions and the results from Section 4.2. In a nutshell, both approaches can
be interpreted as special choices of consistent scoring functions which compare forecasts
and realizations for each set in a partition T of the domain X .

Information gain We start with Scenario B and consider a temporal point process
on an interval [0, T ] and a partition Tn := {(a1, b1], . . . , (akn , bkn ]} of (0, T ] into kn
subintervals. Motivated by the information gain approach (Subsection 4.3.1) we define
the interval scoring function STnint : [0, 1]kn ×M0 → R̄ via

STnint(p1, . . . , pkn , ϕ) =

kn∑
i=1

[
−1
(
ϕ
(
(ai, bi]

)
> 0
)

log(pi)− 1
(
ϕ
(
(ai, bi]

)
= 0
)

log(1− pi)
]

(4.12)

for each partition Tn, n ∈ N. The summands of (4.9) are equal to S(qi, Xi)− S(pi, Xi),
where Xi = 1(Φ((ai, bi]) > 0) and S : [0, 1]× {0, 1} → R̄ defined via

S(p, y) = −y log(p)− (1− y) log(1− p)

is the binary logarithmic score (see Subsection 1.4.1). Since S is a strictly proper scoring
rule (Gneiting and Raftery, 2007), we obtain that STnint is strictly consistent for the col-
lection of probabilities P(Xi = 1) = P(Φ((ai, bi]) > 0) with (ai, bi] ∈ Tn. Hence, we can
loosely speak of negative information gains as being strictly consistent for the collection
of probabilities that interval i contains at least one point of Φ. This holds for uncon-
ditional as well as conditional probabilities alike. In case of conditional probabilities,
forecasters need to report instructions on how to calculate the probabilities from past
observations. Simulation experiments in Subsection 4.4.3 illustrate how this approach
compares different conditional intensity forecasts.

If conditional probabilities can be computed from a conditional intensity model λ∗,
then STnint connects naturally to the scoring functions derived in Subsection 4.2.5. To
make this precise, we follow Daley and Vere-Jones (2003, Definition A1.6.I) and call
a sequence of partitions (Tn)n∈N dissecting if it is nesting and asymptotically separates
every pair of points. Then the following approximation result holds and Subsection 4.4.3
studies the quality of this approximation via simulations.

Proposition 4.17. Let λ∗ be a conditional intensity and (Tn)n∈N a dissecting system
of partitions of (0, T ], consisting of intervals. Let P0 ∈ P be the distribution of the unit
rate Poisson point process on [0, T ] and define conditional probability reports

p
(n)
i = 1− exp

(
−
∫ b

(n)
i

a
(n)
i

λ∗
(
t | tj < a

(n)
i

)
dt

)
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for all i = 1, . . . , kn, (a
(n)
i , b

(n)
i ] ∈ Tn, and n ∈ N. Then

STnint(p
(n)
1 , . . . , p

(n)
N , ϕ) +

kn∑
i=1

1
(
ϕ
(
(a

(n)
i , b

(n)
i ]
)
> 0
)

log
(
b
(n)
i − a

(n)
i

)
−→ S(λ∗, ϕ)

for P0-a.e. ϕ ∈M0([0, T ]) as n→∞, where S is the scoring function from Example 4.15.

Proof. Denote a point process realization via ϕ = {t1, . . . , tm} for m ∈ N0 and let n be

large enough so that each interval contains at most one point. Let I
(n)
0 ⊂ {1, . . . , kn}

denote the indices of intervals which do not contain a point and I
(n)
1 the indices of

intervals which contain a point. The score STnint(p
(n)
1 , . . . , p

(n)
N , ϕ) can now be divided into

two sums with respect to the indices I
(n)
0 and I

(n)
1 . For the first sum we obtain

∑
i∈I(n)0

−1
(
ϕ
(
(a

(n)
i , b

(n)
i ]
)

= 0
)

log(1− p(n)
i ) =

∑
i∈I(n)0

∫ b
(n)
i

a
(n)
i

λ∗
(
t | tj < a

(n)
i

)
dt.

For the second sum we add the correction term and use the fact that | log(1−exp(−x))−
log(x)| → 0 for x→ 0. This yields

∑
i∈I(n)1

− 1
(
ϕ
(
(a

(n)
i , b

(n)
i ]
)
> 0
)

log(p
(n)
i ) +

kn∑
i=1

1
(
ϕ
(
(a

(n)
i , b

(n)
i ]
)
> 0
)

log
(
b
(n)
i − a

(n)
i

)

=
∑
i∈I(n)1

− log

((
b
(n)
i − a

(n)
i

)−1
∫ b

(n)
i

a
(n)
i

λ∗(t | tj < a
(n)
i ) dt

)
+ o(1)

−→ −
m∑
j=1

log(λ∗(tj | t1, . . . , tj−1))

for n → ∞ and P0-a.e. ϕ ∈ M0([0, T ]). The convergence follows from suitable approxi-
mation results for λ∗, see e.g. Daley and Vere-Jones (2003, Lemma A1.6.III). Combined
with the first equation this gives the result.

Earthquake likelihood model testing In earthquake likelihood model testing (Sub-
section 4.3.2) forecasts consist of positive values λ1, . . . , λn, and the corresponding Pois-
son distributions are compared via the logarithmic score. To formalize this, consider a
bounded spatial domain X which is partitioned into kn bins Tn = {B1, . . . , Bkn}. Based
on (4.10) and (4.11) we define the bin scoring function STnbin : (0,∞)kn ×M0 → R̄ via

STnbin(λ1, . . . , λkn , ϕ) =

kn∑
i=1

−ϕ(Bi) log(λi) + λi (4.13)

for each partition Tn, n ∈ N. The following result establishes that STnbin is strictly consis-
tent for the collection of bin expectations EΦ(Bi), Bi ∈ Tn, see also Example 4.2.
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Proposition 4.18. If N is a set of probability measures on N0 with finite first moments,
then the scoring function S : [0,∞)× N0 → R̄ defined via

S(λ, y) = −y log(λ) + λ (4.14)

is strictly consistent for the expectation.

Proof. For all λ1, λ2 > 0 we have

S(λ1, y)− S(λ2, y) = λ1 − log(λ1)y − λ2 + log(λ2)y = b(λ1, y)− b(λ2, y),

where b(x, y) = x− log(x)y is the Bregman function corresponding to the strictly convex
function f(λ) = λ(log(λ)−1). Hence, strict consistency for the expectation follows from
Theorem 1.6.

The scoring function (4.14) can be interpreted as a discrete analogon to the David-
Sebastiani (DS) score (see Subsection 1.4.1 and Dawid and Sebastiani (1999)), but with
the normal distribution replaced by the Poisson distribution, see also Example 1.28. The
term log(y!) which appears in (4.10) can be omitted, since it does not depend on the
report λ.

As noted by Harte (2015) the implications of using Poisson likelihoods for earthquake
likelihood model testing are not completely clear. Via Proposition 4.18 we now see that
the Poisson assumption leads to a sound comparison of bin expectations, since the true
expectations obtain minimal expected score. This conclusion holds even if the data do
not follow a Poisson point process. Hence, the Poisson assumption does not imply that
the corresponding tests are only valid for Poisson point process data. It rather means that
the tests are sensitive to the bin expectations only, since they rely on strictly consistent
scoring functions for the expectation. As a consequence, the symmetric modifications
of the R-test due to Rhoades et al. (2011), which assume a normal distribution for the
log-likelihood ratio (4.11), can be seen as DM tests in the spirit of Section 1.5, based on
the scoring function STnbin.

Just as the Poisson distribution gives rise to the scoring function (4.14) for the ex-
pectations, the Poisson point process can be used to obtain a scoring function for the
intensity. The reason is that every intensity report induces a Poisson point process with
this intensity and these processes can then be compared via the logarithmic score (4.3),
which attains the value (4.4) for Poisson densities. Using the notation from Subsec-
tion 4.2.3 we obtain strict consistency, analogous to Proposition 4.18.

Proposition 4.19. Let all elements of Mf admit densities with respect to Lebesgue
measure. Then the scoring function S :Mf ×M0 → R̄ defined via

S(Λ, {y1, . . . , yn}) = −
n∑
i=1

log λ(yi) +

∫
X
λ(y) dy (4.15)

for n ∈ N and S(Λ, ∅) =
∫
λ(y) dy is a strictly consistent scoring function for the

intensity.

Proof. The scoring function (4.15) corresponds to an S from Corollary 4.9 when choosing
the logarithmic score for S′, the Bregman function b as in the proof of Proposition 4.18,
and c = 1. Since S′ is strictly proper and b is strictly consistent, S is strictly consistent
for the intensity.
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Like (4.14) the scoring function (4.15) can be interpreted as a point process analogon
to the DS score. While the DS score relies on first and second moments, this score
depends on the intensity only.

Proposition 4.19 shows that a straightforward generalization of earthquake likelihood
model testing, which compares general processes via their Poisson point process counter-
parts, leads to a consistent comparison of intensities. In particular, we can conclude that
binning is not necessary for this approach. Intensities can be modeled without relying on
bins and they can be compared via scoring functions for intensities (see Subsection 4.2.3)
with Proposition 4.19 giving one possible choice.

However, in some situations binning might be desirable, e.g. when no explicit expres-
sion for λ is available. The next result shows that under weak conditions STnbin can be
used as an approximation to the scoring function (4.15) in this situation.

Proposition 4.20. Let λ : X → [0,∞) be an intensity and (Tn)n∈N a dissecting system
of partitions of X , consisting of rectangles. Let P0 ∈ P be the distribution of the unit
rate Poisson point process on X and define reports

λ
(n)
i =

∫
B

(n)
i

λ(y) dy,

for all i = 1, . . . , kn, B
(n)
i ∈ Tn, and n ∈ N. Then

STnbin

(
λ

(n)
1 , . . . , λ

(n)
kn
, ϕ
)

+

kn∑
i=1

1(ϕ(B
(n)
i ) > 0) log(|B(n)

i |) −→ S(Λ, ϕ)

for P0-a.e. ϕ ∈M0(X ) as n→∞, where S is the scoring function (4.15).

Proof. Let ϕ = {y1, . . . , ym} with m ∈ N0 be a point process realization. For a large

enough n ∈ N every bin B
(n)
i contains at most one point of ϕ so let in(j) denote the

index of the bin such that yj ∈ B(n)
in(j) for all j = 1, . . . ,m. This yields

STnbin(λ
(n)
1 , . . . , λ

(n)
kn
, ϕ) +

kn∑
i=1

1(ϕ(B
(n)
i ) > 0) log(|B(n)

i |)

= −
kn∑
i=1

[
ϕ(B

(n)
i ) log

(∫
B

(n)
i

λ(y) dy
)
− 1(ϕ(B

(n)
i ) > 0) log(|B(n)

i |)−
∫
B

(n)
i

λ(y) dy

]

= −
m∑
j=1

log

(
|B(n)

in(j)|
−1

∫
B

(n)
in(j)

λ(y) dy

)
+

∫
X
λ(y) dy

−→ −
m∑
j=1

log(λ(yj)) +

∫
X
λ(y) dy

for n → ∞ and P0-a.e. ϕ ∈ M0(X ). The last line follows from a result for the approx-
imation of Radon–Nikodým derivatives applied to λ, see Daley and Vere-Jones (2003,
Lemma A1.6.III).
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Table 4.1: Fraction of times the ‘row forecast’ was preferred over the ‘column forecast’
by a standard DM test with level α = 0.05, where Φ is a Poisson point process (left) or
a Gaussian determinantal point process (right)

f0 f1 f2 f3 f4 f5

f0 0.46 0.84 0.66 1 1
f1 0 0.4 0.64 0.99 1
f2 0 0 0.29 0.96 1
f3 0 0 0 0.49 1
f4 0 0 0 0 1
f5 0 0 0 0 0

f0 f1 f2 f3 f4 f5

f0 0.57 0.89 0.76 1 1
f1 0 0.45 0.73 0.99 1
f2 0 0.01 0.38 0.97 1
f3 0 0 0 0.55 1
f4 0 0 0 0 1
f5 0 0 0 0 0

This result can be proved for more general partitions, as long as the family of sets
(Tn)n∈N generates the Borel σ-algebra on X . However, in most cases of interest the
partitions arise from binning each coordinate into intervals, giving rectangles. Sub-
section 4.4.1 studies the speed of convergence of this binning approach via simulation
experiments.

4.4 Simulation examples

This section investigates finite sample properties of scoring function-based model eval-
uation, by illustrating the behavior of average score differences and Diebold-Mariano
(DM) tests for different models and scenarios. We begin with spatial point processes
and consider the intensity and product density (Subsection 4.2.3). We compare differ-
ent forecasts for both characteristics based on n ∈ N realizations of the point process,
where n could reflect the number of locations of measurement (Scenario A), or different
points in time (Scenario C1), e.g. n = 52 for one year of weekly data. We then turn to
temporal processes (Scenario B) and compare forecasts of the triggering properties of
linear Hawkes processes (Subsection 4.2.5) based on one realization of the process in an
interval [0, T ].

All simulations are performed with the free software R (R Core Team, 2020). We
use the spatstat package (Baddeley and Turner, 2005; Baddeley et al., 2015) for the
spatial point processes and Ogata’s thinning method (Ogata, 1981) for the temporal
point processes.

4.4.1 Intensity

This subsection compares different intensity reports based on average scores for a point
process Φ on the window [0, 1]2, which corresponds to Scenario A. We draw n = 20 i.i.d.
samples ϕi from Φ and compare the average score s̄j := 1

n

∑n
i=1 S(fj , ϕi) for different

forecast intensities fj . We consider four different data-generating processes for Φ all of

which have (approximate) intensity λ(x, y) = 30
√
x2 + y2. The simulations are repeated

m = 500 times to assess the variation in average scores.
Six different intensity forecasts are compared below, namely the perfect forecast
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f0 = λ and

f1(x, y) = 40
√

(x− 0.2)2 + (y − 0.1)2

f2(x, y) = 11.78(x+ 3y)

f3(x, y) = 45
√

(x− 0.2)2 + (y − 0.1)2

f4(x, y) = 9.5

(
1√

1.2− x
+ 2(1− y)

)
f5(x, y) = 46 exp

(
−2(x2 + (y − 1/2)2)

)
The motivation for this choice is as follows. Intensity f1 is intuitively the best forecast
since it has roughly the correct shape up to a small shift and f3 is a version of f1

with a too high scaling factor. Intensity f2 is similar to f0 but linear while f4 and
f5 have completely different shape. Except for f3, all intensities put roughly identical
mass on [0, 1]2. This allows for an assessment of how the scoring function reacts to
misspecifications in scale instead of shape.
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Figure 4.1: Boxplot of difference in average scores s̄j − s̄0 for j = 1, . . . , 5 and scoring
function S1 from Example 4.10. From left to right, Φ is a Poisson point process, a
Gaussian determinantal point process, a log-Gaussian Cox process, or an inhomogeneous
Thomas process

Forecast comparison We begin with four simulation experiments based on the scor-
ing function given in Example 4.10, which we denote via S1 in the following. The scaling
factor c > 0 is chosen such that the log and squared terms of S1 are of the same order
of magnitude in these simulations, giving c = 0.1. See Subsection 4.2.3 for a discussion
of the choice of c.

In our first two experiments, Φ is a Poisson point process or a Gaussian determinantal
point process, both having intensity λ. The latter is a determinantal point process (DPP)
with Gaussian covariance, such that its points exhibit moderate inhibition. More details
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Table 4.2: Fraction of times the ‘row forecast’ was preferred over the ‘column forecast’
by a standard DM test with level α = 0.05, where Φ is a log-Gaussian Cox process (left)
or an inhomogeneous Thomas process (right)

f0 f1 f2 f3 f4 f5

f0 0.3 0.62 0.28 0.98 1
f1 0 0.33 0.26 0.82 1
f2 0 0.01 0.17 0.72 1
f3 0 0 0.01 0.19 0.95
f4 0 0 0 0.01 0.99
f5 0 0 0 0 0

f0 f1 f2 f3 f4 f5

f0 0.25 0.49 0.36 0.95 1
f1 0.01 0.24 0.34 0.79 1
f2 0 0 0.2 0.68 1
f3 0.01 0.01 0.02 0.26 0.95
f4 0 0 0 0.01 0.97
f5 0 0 0 0 0

are given in Subsection 4.4.2 and Lavancier et al. (2015). The left part of Figure 4.1
shows the average score differences between the five different forecasts f1, . . . , f5 and the
perfect forecast f0 for both experiments. The plots share the same general properties,
namely f1 is close to the optimal forecast, f2 and f3 are worse, and the average score
differences of the misspecified forecasts f4 and f5 are far from zero. Table 4.1 holds the
results of DM tests (see Section 1.5) for both experiments. The probabilities of preferring
f0 against fj , j = 1, . . . , 5 (first row) are overall in line with the average score differences
in Figure 4.1. The only difference is that f3 is less often deemed inferior to f0 than f2,
although it is clearly inferior to f2 in terms of expected scores. The reason for this is the
higher variance of the average score differences for f3 compared to f2 (see Figure 4.1),
leading to less conclusive DM test results.

In the third and fourth simulation experiment Φ is a log-Gaussian Cox process
(LGCP) or an inhomogeneous Thomas process. For the simulation of the LGCP, which
has the intensity function

λLGCP(s) = exp

(
µ(s) +

1

2
C(s, s)

)
(4.16)

for s ∈ R2, we chose the exponential covariance C(s, t) = 1/4 exp(−‖s− t‖2) and µ such
that λLGCP = λ holds. The Thomas process is a cluster process which arises from an
inhomogeneous Poisson process as parent and a random number of cluster points which
are drawn from a normal distribution centered at its parent point. As intensity of the
parent process we choose λ/2 and the number of points per cluster follow a Poisson
distribution with parameter 2. The location of each cluster point is determined by a
normal distribution which is centered at the parent point and where the components are
uncorrelated and have standard deviation 0.05. As a result of the clustering the intensity
of the Thomas process is only approximately equal to λ.

The results of the third and fourth experiment are given in the right part of Fig-
ure 4.1. The overall behavior of average score differences is the same as in the previous
two experiments (same figure), but the variance increases. As shown in Table 4.2, the
results of DM tests are similar to the previous two experiments, as well, although the
probabilities of preferring f0 (first row) decrease overall. An intuitive reason for this is
that clustering, which is a feature of the LGCP and the Thomas process, complicates
the distinction between different intensity forecasts. In contrast, the inhibition of the
Gaussian DPP seems to facilitate the comparison, see Table 4.1. An increase in sample
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size to n = 50 can compensate for clustering and leads to more definitive preferring
probabilities for the LGCP and Thomas process (not shown).
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Figure 4.2: Average differences in realized scores STnbin−S2 +Cn for different values of n,
where Cn is a correction term as given in Proposition 4.20. The process Φ is a Poisson
point process (left) or a log-Gaussian Cox process (right). Note that f3 obtains the same
values as f1 since the difference STnbin − S2 is independent of the scaling of the reports

Relation to binning and earthquake likelihood model testing We now inves-
tigate how the forecast comparison changes when using scoring functions motivated by
earthquake likelihood model testing (Subsection 4.3.3) instead of S1 from Example 4.10.
We start with the scoring function (4.15), denote it via S2, and repeat the simulation
experiments for the four different choices of Φ as above. These experiments lead to
overall similar boxplots of average score differences as in Figure 4.1 up to an increase in
variance and they are thus omitted. However, inspecting the results of DM tests given
in Table 4.3 reveals some noteworthy differences. If we compare the values for f2 and
f3 in Table 4.3 to the left-hand side of Table 4.1 and 4.2, we see that f2 is more often
preferred to f3 under S1 than vice versa. For S2 the roles are switched and f3 is now
preferred to f2 more often. A possible reason for this is that f3 is a wrongly scaled
version of the ‘almost perfect’ forecast f1 and S2 is less sensitive to scaling than S1. It
puts more emphasis on the shape of the intensity at the cost of less sensitivity to the
number of points. As in the previous experiments, the clustering of the LGCP leads to
less conclusive decisions between the forecasts.

A further sequence of experiments considers the speed of convergence in Proposi-
tion 4.20, i.e. how well the binned scoring function STnbin given in (4.13), together with
a forecast-independent correction term, approximates S2. We select a dissecting system
of partitions (Tn)n∈N of [0, 1]2 which arises from partitioning both axes, i.e. each bin

B
(n)
ij ∈ Tn is given by [(i− 1)/n, i/n]× [(j − 1)/n, j/n] for i, j ∈ {1, . . . , n}. The number

of bins is thus kn = n2 and we choose n ∈ {1, 2, . . . , 35} for the simulations. As forecasts
we rely on the functions f0, . . . , f5 introduced above which we transform into bin reports

f
(n)
l,ij by computing the integral of fl over the bin B

(n)
ij for all bins. These reports are then

compared to the number of points per bin via STnbin. Figure 4.2 illustrates convergence
of the mean difference to zero as n grows. The process Φ is a Poisson point process or
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Table 4.3: Fraction of times the ‘row forecast’ was preferred over the ‘column forecast’
by a standard DM test with level α = 0.05 based on the scoring function S2 (see (4.15)),
where Φ is a Poisson point process (left) or a log-Gaussian Cox process (right)

f0 f1 f2 f3 f4 f5

f0 0.5 0.83 0.75 1 1
f1 0 0.42 0.61 0.99 1
f2 0 0 0.01 0.96 1
f3 0 0 0.12 0.99 1
f4 0 0 0 0 1
f5 0 0 0 0 0

f0 f1 f2 f3 f4 f5

f0 0.44 0.7 0.47 1 1
f1 0 0.38 0.26 0.98 1
f2 0 0 0.04 0.91 1
f3 0 0.01 0.12 0.89 1
f4 0 0 0 0 1
f5 0 0 0 0 0

a LGCP as specified in the previous experiments and m = 500 repetitions are used. It
suggests that the speed of convergence does not depend on the reported intensity. The
results do not change significantly when using the Gaussian DPP or the Thomas process,
thus the corresponding plots are omitted.

An alternative way to study convergence consists of plotting the results of DM tests
based on STnbin for increasing n. The corresponding fractions exhibit fast convergence to
the values in Table 4.3, however, since the related plots contain 30 different curves, we
omit them here.

4.4.2 Product density

In this subsection we focus on Scenario A again, however, we now consider second order
properties and keep intensities fixed. We simulate a stationary and isotropic point pro-
cesses Φ on the window [0, 1]2 with three different second order structures corresponding
to inhibition, clustering, and no interaction. We draw n = 20 i.i.d. samples ϕi from Φ
and compare the average scores for different forecasts, in the same way as in the previous
subsection. The scoring function S is defined in Example 4.12 and the scaling factor
c > 0 is chosen such that the log and squared terms are of the same order of magnitude,
in this case c = 10−5. We repeat the simulations m = 500 times to assess the variation
in average scores.

Five different product density forecasts are compared below, given by

f1(r) = exp
(
2µ+ σ2

(
1 + exp(−400r2)

))
f2(r) = exp

(
2µ+ σ2 (1 + exp(−20r))

)
f3(r) = λ2

f4(r) = λ2 (1− exp(−2r/γ))

f5(r) = λ2
(
1− exp(−2(r/γ)2)

)
,

where we choose µ = log(λ) − σ2/2, σ2 = log(2), γ = 0.06 and λ = 40. Figure 4.3
gives a graphical comparison of the different functions. The first two forecasts represent
clustering, since they arise as product densities of log-Gaussian Cox processes (LGCPs).
A stationary and isotropic LGCP is determined by a stationary and isotropic Gaussian
process with mean µ and covariance C(x, y) = C0(‖x − y‖) for some C0 : [0,∞) → R.
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Figure 4.3: Plot of the five different product densities used as forecasts in Subsection 4.4.2

Its second order product density %(2) is of the form %(2)(x1, x2) = %
(2)
0 (‖x1 − x2‖) with

%
(2)
0 (r) = exp (2µ+ C0(0) + C0(r)) ,

see e.g. Illian et al. (2008). The forecasts f1 and f2 are the product densities of a LGCP
with Gaussian and exponential covariance function, respectively. The variance and scale
are chosen as σ2 = log(2) and s = 0.05 in both cases.
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Figure 4.4: Boxplots of average scores s̄j for different product density forecasts, where
Φ is a log-Gaussian Cox process (left), a homogeneous Poisson process (center), or a
Gaussian determinantal point process (right)

The forecast f3 corresponds to a homogeneous Poisson process. The remaining two
forecasts arise as product densities of determinantal point processes (DPPs) and thus
represent inhibition. In general, a DPP is a locally finite point process with product
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Table 4.4: Fraction of times the ‘row forecast’ was preferred over the ‘column forecast’
by a standard DM test with level α = 0.05. Φ is a log-Gaussian Cox process (left), a
homogeneous Poisson process (center), or a Gaussian determinantal point process (right)

f1 f2 f3 f4 f5

f1 0.23 0.73 1 1
f2 0.01 0.64 1 1
f3 0 0 1 1
f4 0 0 0 1
f5 0 0 0 0

f1 f2 f3 f4 f5

f1 0 0 0 0
f2 0.97 0 0 0
f3 1 1 0 0
f4 1 1 1 0
f5 1 1 1 0.7

f1 f2 f3 f4 f5

f1 0.01 0 0.05 0.66
f2 0.21 0 0.06 0.73
f3 0.91 0.85 0.85 1
f4 0.07 0.05 0 1
f5 0 0 0 0

densities given by

ρ(n)(x1, . . . , xn) = det (C(xi, xj))i,j=1,...,n (4.17)

for all n ∈ N, where C : Rd × Rd → R is a covariance, see Hough et al. (2006) and
Lavancier et al. (2015) for details. A DPP has intensity x 7→ C(x, x) and it is stationary
and isotropic whenever its covariance is. In this case, we have C(x, y) = C0(‖x− y‖) for
some C0 : [0,∞)→ R such that the second order product density can be specified via

%
(2)
0 (r) = C0(0)2 − C0(r)2.

The forecasts f4 and f5 are the product densities of a DPP with exponential and Gaussian
covariance function, respectively. The variance and scale are chosen as λ2 = 402 and
γ = 0.06 in both cases. Our parameter choices ensure that the point process models
corresponding to f1, . . . , f5 all have intensity equal to λ.

In the first experiment the true Φ is a LGCP with a Gaussian covariance function
such that it has product density f1 and intensity λ. In the second experiment Φ is a
homogeneous Poisson process with intensity λ, such that f3 becomes the perfect forecast
in this situation. Lastly, we let Φ be a DPP with Gaussian covariance function and
parameters such that f5 is true. We thus perform one experiment for each of the three
phenomena clustering, no interaction, and inhibition.

The simulated average scores are displayed in Figure 4.4 for all three experiments.
The optimal forecast consistently achieves the lowest average scores. In the case of clus-
tering (left subfigure) the LGCP related forecasts f1 and f2 perform roughly similar,
while the misspecified no interaction and inhibition forecasts f3, f4 and f5 lead to con-
siderably higher average scores. A similar, but mirrored behavior is apparent in the
inhibition experiment (right subfigure): The forecast f4, which gets the nature of point
interactions right, attains low average scores, even though it is not optimal. The average
scores of the Poisson forecast f3 are always in between the ‘extremes’. The DM test
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probabilities of the three experiments are given in Table 4.4 and support these observa-
tions. Additionally, the DM results illustrate that the clustering forecasts f1 and f2 are
preferred more often over the inhibition forecasts f5 in the case of Poisson data (center
table).

4.4.3 Conditional intensity (temporal)

In this subsection we turn to Scenario B and simulate a stationary Hawkes point process
(see Example 4.14) on an interval [0, T ] to compare forecasts of the conditional intensity.
We compute realized scores with the scoring function S from Example 4.15 and normalize
them by the length of the interval T . We repeat the simulation m = 500 times to assess
the variation in realized scores.

We compare five different conditional intensity reports of the form given in Exam-
ple 4.14 and fix the background rate ν = 2 such that the reports differ in the triggering
functions only. We define five different triggering function forecasts given by

f1(t) = 2 exp(−4t)

f2(t) = 5/4 exp(−2t)

f3(t) = 2 exp(−9/2t2)

f4(t) = 2 max{4− 6t, 0}
f5(t) = 1(t ∈ [0, 0.8])

We select f1 and f3 as candidates for the truth and let f2, f4, and f5 differ in shape. A
graphical comparison of the functions is given in Figure 4.5.
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Figure 4.5: Plot of the five different triggering functions used as forecasts in Subsec-
tion 4.4.3

Forecast comparison In our first two experiments, the true process Φ is a Hawkes
process with triggering functions f1 or f3. The left part of Figure 4.6 shows the corre-
sponding boxplots for the score differences between the true forecast and the remaining
four competitors on the interval [0, T ]. In both experiments the score differences are
overall positive, such that the true forecast can be identified. Increasing the interval
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[0, T ] (not shown) does not change the overall appearance of the boxplots. However, the
variance increases as we consider realized scores scaled by the interval length T instead
of average scores.
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Figure 4.6: Boxplot of score differences between the true forecasts and the four remaining
competitors, where Φ is a Hawkes process on the interval [0, 50] with triggering function
f1 or f3. The two plots on the left show the scoring function S from Example 4.15 while
the two plots on the right show STnint (Equation (4.12)) with n = 1000

Relation to information gain approach We now use the idea of information gains
discussed in Subsection 4.3.1 as an alternative method to compare forecasts for the
conditional intensity. To this end, let (Tn)n∈N be a family of partitions of (0, T ] which

consist of intervals (a
(n)
i , b

(n)
i ] = ((i−1)T/n, iT/n] for i = 1, . . . , n. We again rely on the

triggering functions f1, . . . , f5 introduced above and transform them into collections of

conditional probabilities p
(n)
l,i of points materializing in each interval via the formula in

Proposition 4.17. These reports are then compared to the realized data via the scoring
function STnint defined in (4.12). The right part of Figure 4.6 displays boxplots for m = 500
realized scores, where the interval [0, 50] is partitioned into n = 1000 intervals. As in the
first two experiments, f1 and f3 are the true triggering functions. The behavior of the
realized scores closely resembles the left part of Figure 4.6, suggesting that the forecast
ranking of STnint is a good approximation to the one of S for n = 1000.

Proposition 4.17 ensures that the scores computed from STnint converge to the realized
scores under S if a suitable correction term is added. Figure 4.7 illustrates the con-
vergence of the mean of the scores for growing n based on the simulation of m = 500
samples and T = 50. It highlights that the speed of convergence depends on the un-
derlying process. However, the absolute difference between STnint and S is less important
than the overall forecast rankings of the scoring functions. As illustrated by Figure 4.6
these rankings are already in good agreement for n = 1000, corresponding to an interval
length of 0.05.
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Figure 4.7: Average differences in realized scores STnint−S+Cn for different values of T/n,
where Cn is a correction term as given in Proposition 4.17 and the scoring functions are
defined in Equation (4.12) and Example 4.15, respectively. The process Φ is a Hawkes
process with triggering function f1 (left) or f3 (right) on the interval [0, 50]

4.5 Discussion

Assessing accuracy via consistent scoring functions leads to principled tools for the choice
of competing forecasts, which are both, theoretically underpinned and regularly used
in many areas of applied statistics. As worked out in Section 4.2, consistent scoring
functions transfer to the point process setting in a straightforward manner and are
available for a variety of popular point process characteristics. The corresponding model
evaluation methods outlined in Section 4.1 can improve forecast evaluation for point
processes in applications and moreover encompass several existing techniques for model
comparison (Section 4.3).

The comparison of point process functionals, as emphasized in this chapter, can
be contrasted to the approach of Heinrich et al. (2019), who use an estimator in form
of a function g and then compare the resulting distributions in an ‘estimator space’ via
proper scoring rules. In practice such distributions will usually not be explicitly available
and only accessible via simulations from the reported point process models. On the
one hand, Heinrich et al. (2019) argue that their approach has better discrimination
ability, as the whole point process distribution is taken into account. On the other hand,
approximating the resulting scores via simulations leads to high computational costs,
which might be prohibitive in routine evaluations. Moreover, when using characteristics
such as the intensity, anybody can issue a report, without having a fully specified point
process model in mind. Whichever approach is more suitable will likely depend on the
problem at hand.

Absolute and relative performance Apart from the methods of Section 4.3 the
majority of point process model evaluation tools focus on absolute performance and
goodness-of-fit, instead of a comparison of two or more models. The most prominent
example are point process residuals, which form an empirical process arising from fitting
a conditional intensity to data. Classical residual methods were developed for temporal
processes and extended to spatial processes, see Schoenberg (2003) and Baddeley et al.
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(2005). Apart from a quantitative assessment, they can be valuable tools for graph-
ical checks of under- or over-prediction in certain regions, see e.g. Bray et al. (2014)
and Clements et al. (2011) for applications of different residual methods to earthquake
forecasting models.

In a similar spirit, Thorarinsdottir (2013) transfers the probability integral transform
(PIT) to point process forecasts. The PIT is a widely used tool to assess calibration,
which roughly means consistency between forecasts and observations, see Dawid (1984)
and Gneiting et al. (2007). Thorarinsdottir (2013) propose to choose a binning and then
compare the number of points in each bin to the reported distribution of this number.
Based on this, the PIT can be used to assess calibration of point process forecasts.

In contrast to such measures of absolute performance, the central use of scoring
functions is the comparison of (at least) two competing models, even if both are mis-
specified. Although both, absolute and relative evaluation, are important in choosing
suitable models, a selection among the available models has to be done eventually, and
measures of absolute performance are not designed, and hence often badly positioned,
for such a choice. Moreover, as pointed out by Nolde and Ziegel (2017), using absolute
performance measures may lead to wrong incentives in designing candidate models.
Hence, scoring functions are not competing with absolute performance measures, but
are a useful and necessary addition to such methods.

Refined use of scoring functions Several results are available to tailor scoring func-
tions to certain practical applications or address further issues in forecast evaluation.
Most notably, weighted scoring rules provide a way to emphasize forecast performance
on regions of interest and even ignore it on others. Lerch et al. (2017) illustrate that a
simple weighing of the realized scores distorts the evaluation and Holzmann and Klar
(2017) provide a general construction principle which ensures propriety. While previous
work focuses mainly on the tails of the distribution, weighted scoring functions for point
processes might focus on some spatial area or on the distribution of certain marks.

In case of noisy observational data, error corrected scoring rules provide a way to in-
corporate data inaccuracies into the forecast comparison framework. Assuming a certain
error distribution, e.g. additive Gaussian noise, they allow for a consistent comparison
of the underlying distribution of interest, separate from the error, see Ferro (2017) for
details.

Thirdly, there are situations where the statistical property of interest cannot be
computed explicitly from a model and is only accessible via simulations. In this case it
is intuitive to use simulated realizations in order to approximate the realized score of the
forecasts. This idea is a central element of the model comparison approach of Heinrich
et al. (2019). Fair versions of proper scoring rules aim to reduce a possible bias which
might occur in such approximations, see e.g. Ferro (2014) for an overview. Krüger et al.
(2020) address this issue when the model simulation is done via Markov chain Monte
Carlo methods.

Outlook Based on the results of this chapter, consistent scoring functions for point
processes, and the methods relying on them, present themselves as useful tools in eval-
uating point process-based forecasts and choosing suitable models. Since we focus on
working out the theoretical foundations, there are several avenues for future work. A
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first important task consists of investigations concerning the choice of scoring function,
including, but not limited to, simulation studies in the spirit of Section 4.4 or case studies
using real data. Moreover, implementing the here proposed methods for concrete real
world applications poses more difficult, but highly relevant further problems, in partic-
ular if refinements such as weighing or approximations are used. Finally, some technical
results which enable DM tests in certain (spatio-) temporal settings, as discussed in Sec-
tion 4.1, remain to be worked out. We thus believe that model and forecast evaluation
for point processes will remain an area of active research.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling extremal events,
volume 33 of Applications of Mathematics (New York). Springer-Verlag, Berlin.

Emmer, S., Kratz, M., and Tasche, D. (2015). What is the best risk measure in practice?
A comparison of standard measures. Journal of Risk, 18:31–60.

Ferro, C. A. T. (2014). Fair scores for ensemble forecasts. Quarterly Journal of the Royal
Meteorological Society, 140:1917–1923.

Ferro, C. A. T. (2017). Measuring forecast performance in the presence of observation
error. Quarterly Journal of the Royal Meteorological Society, 143:2665–2676.

Ferro, C. A. T. and Stephenson, D. B. (2011). Extremal dependence indices: Improved
verification measures for deterministic forecasts of rare binary events. Weather and
Forecasting, 26:699–713.

Field, E. H. (2007). Overview of the working group for the development of regional
earthquake likelihood models (RELM). Seismological Research Letters, 78:7–16.

https://arxiv.org/pdf/1908.04569.pdf
https://arxiv.org/pdf/1908.04569.pdf


Bibliography 86
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