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Abstract

Data center demand response is a solution to a problem that is just recently
emerging: Today’s energy system is undergoing major transformations due to
the increasing shares of intermittent renewable power sources as solar and wind.
As the power grid physically requires balancing power feed-in and power draw
at all times, traditionally, power generation plants with short ramp-up times
were activated to avoid grid imbalances. Additionally, through demand response
schemes power consumers can be incentivized to manipulate their planned power
profile in order to activate hidden sources of flexibility. The data center indus-
try has been identified as a suitable candidate for demand response as it is
continuously growing and relies on highly automated processes. Technically,
data centers can provide flexibility by, amongst others, temporally or geograph-
ically shifting their workload or shutting down servers. There is a large body
of work that analyses the potential of data center demand response. Most of
these, however, deal with very specific data center set-ups in very specific power
flexibility markets, so that the external validity is limited.

The presented thesis exceeds the related work creating a framework for mod-
eling data center demand response on a high level of abstraction that allows
subsuming a great variety of specific models in the area: Based on a generic ar-
chitecture of demand response enabled data centers this is formalized through a
micro-economics inspired optimization framework by generating technical power
flex functions and an associated cost and market skeleton. As part of a two-
step-evaluation an architectural framework for simulating demand response is
created. Subsequently, a simulation instance of this high-level architecture is
developed for a specific HPC data center in Germany implementing two power
management strategies, namely temporally shifting workload and manipulating
CPU frequency. The flexibility extracted is then monetized on the secondary
reserve market and on the EPEX day ahead market in Germany.

As a result, in 2014 this data center might have achieved the largest benefit
gain by changing from static electricity pricing to dynamic EPEX prices with-
out changing their power profile. Through demand response they might have
created an additional gross benefit of 4% of the power bill on the secondary
reserve market. In a sensitivity analysis, however, it could be shown that these
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results are largely dependent on specific parameters as service level agreements
and job heterogeneity. The results show that even though concrete simulations
help at understanding demand response with individual data centers, the mod-
eling framework is needed to understand their relevance from a system-wide
viewpoint.
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1. Introduction

Data centers, as increasingly huge energy consumers, can assume a new role

in the future energy system: instead of demanding power and energy as needed,

they might adapt their power profile to the requirements of the power grid

through more or less automated communication and trading channels. This

concept is called demand response, the temporary adaptation of power demand

to economic incentives like varying prices or contracts with the electricity power

grid service provider. Fostering this concept with data centers as participants

is the main goal of this thesis.

Reasons for this approach can be found in a changing paradigm on the power

supply side and in characteristics of data center power demand. To date, the

power grid was built to accomodate any power demand from any customer

at any time, with the sole exception of emergencies. The result is a planned

overprovision in the power grid. In Germany for instance, in 2019, 88GW of

conventional and 124GW of renewable energy sites1 were waiting to supply a

demand which in 2019 peaked at around 82.6GW2 [1]. With a growing political

interst to enlarge the share of intermittent renewable energy sources, both the

frequency and the amplitude of oscillations in the grid are becoming higher

and less predictable. Applying former expansion strategies to the grid would

therefore lead to disproportionally reduced utilization rates and at the same

time increase investment cost. For these reasons new concepts are needed.

There are many candidates for demand response ranging from people’s ’smart’

refrigerators via electric vehicle batteries to aluminum production. Recently,

data centers have been given a lot of attention as potential participants in de-

1https://www.energy-charts.de/power_inst.htm, accessed 08/06/2020
2These are preliminary data.

1
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1. Introduction

mand response schemes: Due to increasingly communication-based production

and consumption patterns, they are booming in size, number and power density.

In Germany, for instance, reports indicate that between 2007 and 2017 the

overall number of data centers in Germany has increased from roughly 2000

to nearly 3000. Also, within this time frame the number of big data centers

has doubled [104]. In the U.S., the development of ’big’ data centers is even

steeper: Nearly all server shipment growth between 2010 and 2015 was related

to hyperscale data centers [183], which will render power draws of over 100 MW

per data center more common3. The impact of this on the energy and power

consumption of the total data center industry is further spurred by an increasing

power density inside normal data centers4[156].

Thus, the digitization of society is resulting in increasing shares of data cen-

ter electricity consumption at total electricity demand. For Europe, a study

commissioned by the EU [36] estimated that electricity used by data centers in

2015 were at 78 TWh, equivalent to 2.5 % of total EU demand. In Germany, in

2017, the overall energy demand from data centers was 13,2 TWh, representing

around 2.5% of German final electricity consumption5. Globally, power demand

by data centers is predicted to represent about 20% of power demand world wide

by 20256, and in hubs like Frankfurt this percentage is already a fact today7.

Therefore, due to its sheer size the data center industry is an excellent can-

didate for demand response. And by their very nature, data centers build on

highly automated and often fine-grained computing processes that technically

can be tuned to grid requirements in a sophisticated way. At the same time, this

enables a high level of automation for implementing demand response schemes

at data center sites, should contractual constraints be dealt with. So, not only

its size but also the technical characteristics of the data center industry render

3http://worldstopdatacenters.com/power/, accessed 08/06/2020
4https://www.datacenterknowledge.com/power-and-cooling/new-workloads-cost-pressures-drive-data-center-power-

densities, accessed 08/06/2020
5calculated based on [105] and [44]
6https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast, accessed 08/06/2020
7https://www.datacenter-insider.de/strom-fuer-die-deutsche-hauptstadt-der-rechenzentren-a-827997/?cmp=nl-

86&uuid=00181A4B-B282-4507-B06A3E10CDE5105E, accessed 08/06/2020
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1. Introduction

it a perfect match for demand response schemes. Therefore, it is not surprising

that there is a large body of scientific work examining demand response in data

centers. The number of research papers in this field started to grow very slowly

after the turn of the century and accelerated around 2010, stabilizing on a high

level since around 2015. Most of these acknowledge demand response with data

centers as having enormous potential. However, looking into data about de-

mand response with the participation of data centers reveals that there is not

much experience with this approach, not even in the U.S., where the concept of

demand response was developed and applied long before it became a topic in

Europe.

Demand response was first developed in the U.S. as demand side manage-

ment, i.e. on a mandatory basis and with public intervention rights. In the

1980s a weak power grid was confronted with the formerly unknown load of

ubiquitous air conditioning which led to increasing threats of outages. The

original idea was that the utility could temporarily reduce the load of big power

consumers in order to react to temporary problems in the power grid through

unexpected increases of power demand [84, 62]. While this concept has been

developed and refined to incorporate various scenarios, contractual options and

partners, in principle it is a matter of the difference between power and energy:

Whenever the instant demand for electrical power deviates from the instant

supply, in order to avoid damages to equipment due to electrical imbalances,

this gap must be filled, either by supply or by demand flexibility. In the case

of demand response, this means that a consumer is required to temporarily

reduce or increase their power demand without necessarily changing their over-

all energy consumption. Whereas energy efficiency projects aim to reduce the

energy consumption of processes (i.e. the number of kWh), demand response

targets the adaptation of power (i.e. the number of kW) to a temporary prob-

lem of size in the power grid. Many industrial processes contain elements that

can be temporarily shifted, implying that the theoretical potential for demand

response is huge. Unfortunately, it can be only partially realized due to eco-

nomic constraints which turn some technically feasible concepts into economic
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impracticality. Therefore, the economic potential is greatly reduced when com-

pared to the technical potential. In practice, even economically sound solutions

might not be implementable, creating even less practical potential for demand

response.

However, manipulating power demand to accommodate grid requirements

instead of customer requirements may lead to unwanted consequences. In the

case of data centers these include increased package round trip times, extended

job runtimes or even reduced site accessibility. Also contractual constraints

might prevent data centers from touching the operation of their system, or

data center management might not be ready for the general concept of demand

response. These are a few reasons for the considerable gap between the technical

potential of data center demand response identified in previous research and its

practical implementation, discussed by [217, 28, 37].

1.1. Observations

This dissertation takes a step towards closing this gap by analysing demand

response with data centers from a broader and economically motivated point of

view. It is based on the following observations:

Despite the large body of research dedicated to demand response with

data centers, the real economic potential of data center demand response is

only partially represented.

• On the one hand, many research papers deal with very specific scenarios

so that the results cannot be generalized and the external validity is

low.

• On the other hand, many research papers only address a small subset

of flexibility options and associated incentives in a data center so that

the flexibility potential of a data center is underestimated.
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This partially explains the gap between the theoretical and practical poten-

tial of demand response with data centers.

1.2. Hypotheses

In order to avoid the constraints identified through the above observations,

the following hyphotheses are made:

• The economic potential for data center demand response can be repre-

sented well by a combination of methods that connect an economics-

inspired generic framework of demand response with data centers with

concrete instantiations.

• The broad view of the framework represents the (technical and) economic

potential with a high degree of external validity.

• The specific view of a concrete instantiation represents a high share of the

total flexibility of the modeled data center.

1.3. Research Questions

It it the aim of this thesis to support these hypotheses by working on the

following research questions:

1. How can demand flexibility in data centers be modeled in order to the-

oretically encompass power management strategies at all levels of their

architecture?

2. How can the high level of abstraction of modeling demand response with

data centers be reconciled with technical and economic characteristics of

specific data centers?
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1.4. Contributions

To answer these research questions, this dissertation will produce the follow-

ing results, starting with a high level of abstraction that is successively broken

down to represent the characteristics of a specific data center:

1. A modeling framework for demand response with data centers will be

created in the form of multi-strategy, multi-market optimization. It is

inspired by micro-economics, and it views the power flexibility of a data

center as the ’output’ of a ’production function’ that needs the ’input’ of

power management strategies.

2. This framework is validated in a hierarchical approach by first designing

a generic simulation architecture Sim2Win that models demand response

with a variety of different data center types and demand response schemes.

3. In a second step this generic architecture is instantiated into one specific

simulation system Sim2Win-HPC, which simulates the impact of involv-

ing a specific German HPC data center on two German power flexibility

markets.

1.5. Structure of the Work

To lay down the contributions of this thesis and how they are being developed,

chapter 2, explains the background, introducing data centers, the power grid,

and issues involved with demand response schemes. Chapter 3 is dedicated to

scientific work related to the presented thesis. It focuses on optimizing and

simulating demand response with data centers. As a framework for demand

response with data centers is to be designed, this chapter also refers to other

research that aims at modeling flexibility of electricity consumption in general.

This paves the way for the introduction to the methodology chosen for this thesis

and the explanation of the modeling framework in chapter 4. As a first level of

evaluation the simulation architecture Sim2Win is illustrated in chapter 5, and
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in the second part of this chapter the simulator Sim2Win-HPC is presented in

detail. Chapter 6 explains the set-up of the simulation scenario, the planning

of the simulation runs, and it documents the results which are discussed at the

end of the chapter. Finally, chapter 7 concludes the thesis, summarizing the

results and providing an outlook for future work.
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2. Background

2.1. Data Centers

There are a great variety of data centers. They not only range in size, business

model, and workload, but also in other issues as housing characteristics. These

are, for instance, notable in the case of the Barcelona Supercomputing Center

which was constructed inside a former chapel (see figure 2.1) .

In order to derive a definition of a data center many authors view data centers

from a buildings perspective and focus on the housing aspect of the IT equip-

ment. Hintemann [103] or Barroso and Hölzle [25] define a data center as ’a

building (or buildings) designed to house computing and storage infrastructure

in a variety of networked formats.’[25, p.47]. Others provide broad definitions

based on the computing infrastructure as Ghatikar et al. [89]. As the focus

of this thesis is the power flexibility of data centers these definitions fall short

of providing a good basis. The requirements for defining a data center in the

context of this work are:

• To reflect the overall dependence of a data center’s power demand on the

workload

• To reflect the impact of operating the physical infrastructure in different

modes on the power demand of the data center

• To focus on dynamic, influenceable characteristics of the data center rather

than on static characteristics (e.g housing).

Therefore this thesis builds on the definition by Oro et al. that encompasses

the housing, the infrastructure, and the usage of the DC:
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2.1. Data Centers

Figure 2.1.: Barcelona Supercomputing Center is constructed inside a former
chapel (Photographer: T. Schulze)

’A data centre could be defined as a structure, or group of structures,

dedicated to the centralized accommodation, interconnection and op-

eration of IT and network telecommunications equipment providing

data storage, processing and transport services, together with all the

support facilities for power supply and environmental control with

the necessary levels of resilience and security required to provide the

desired service availability’ [160, p.430].

2.1.1. Power Metrics

From the great variety of data center power metrics only the most well-known

and widely used ’Power Usage Effectiveness’ (PUE) is shortly introduced. The

main reason for its usage is the overall high availability of data relating to this

metric. Also it is applied in many data center power models and will here be

used in this context. For more information on data center power metrics that
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are used to understand how different characteristics in a data center manifest

in its power consumption see e.g. [61, 174, 47, 220]. Metrics that are dedicated

to the flexibility of data centers are introduced e.g. in [128, 14].

The PUE was developed in 2007 by The Green Grid, a U.S. based green data

center organization [174]. It is defined as

PUE =
TotalFacilityPower

ITEquipmentPower
, (2.1)

where TotalFacilityPower is the power measured at the electricity meter of

the utility, i.e. including cooling power, power distribution losses and lighting.

ITEquipmentPower is the power that is used to operate the hardware compo-

nents of a data center in order to process the workload, i.e. server, storage and

network power. Theoretically, the PUE ranges from 1.0 to infinity. PUE values

have been decreasing over time, mostly due to new cooling technologies. Today

many data centers in Europe range around 1.8 [18]; hyperscale data centers even

get close to unity1. The main drawback of the PUE is that it is not compa-

rable between sites due to different cooling necessities in different geographical

locations. It is not even comparable within one data center historically. The

reason is that as equipment is being replaced, cooling demand typically does not

scale accordingly so that the formula’s denominator does not vary in step with

the nominator. In the short run, however, it can be used for power modeling,

especially if the PUE is calculated dynamically and not averaged over the year.

2.1.2. Data Center Service Models

One main criterion to differentiate data centers and understand the demand

response opportunities of specific data center is the service model, i.e. the value

proposition a data center offers to their customers. It is the core part of the

business model of a data center and highly impacts their options for power

1https://www.datacenterknowledge.com/archives/2016/09/27/latest-microsoft-data-center-design-gets-close-to-

unity-pue, accessed 08/06/2020
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management needed to participate in demand response schemes. This thesis

uses the following categories and terminology, loosely aligned with [39, 81, 161]:

Wholesale colocation: offering housing, access, security, power and resilience

to customers that own the dedicated servers inside. Wholesale in this case

means long-term contracts with one or only few customers.

Retail colocation: offering the same or comparable features to multiple cus-

tomers that typically own the servers housed.

Cloud infrastructure services: offering infrastructure as a service (IaaS) or

(development) platform as a service (PaaS). In some cases this is combined

with a colocation service.

Hosting (application hosting, web hosting, software as a service (SaaS)): of-

fering to host applications for the customer, e.g. specialized customer

applications, web applications or off-the-shelf SaaS. It is up to the cus-

tomer to manage and run the software. Supercomputing services might

be offered in this context.

Application Management: a data center that actively manages applications

for their customers. An example is a service provider computing tax dues

from the payroll data delivered by the customer and transferring back the

results. The emerging trend of edge computing can be subsumed in this

category.

2.1.3. Data Center Workload

Given the infrastructure, the main determinants of a data center’s power

profile are the outside temperature and the workload.

The degree to which outside temperature and workload influence data center

power depends on the involved technologies, infrastructure setting and build-

ings’ characteristics. For data centers housed in regular buildings (not e.g under

12



2.1. Data Centers

the sea2 or underground3), the correlation between cooling power and outside

temperature is high: Own findings for a German HPC center with direct liq-

uid cooling technology, based on 2014 data, indicate a correlation between the

cooling power and the outside temperature of 0.4 - nearly the same value as

for the correlation between the cooling power and the IT load (i.e. aggregated

server power and other power consumption like network and lighting). These

findings are corroborated by literature, e.g. by [200] who also detect a high

correlation between non-IT load (i.e. mostly cooling) and outside temperature.

However, the weight of this impact on the total facility power further depends

on the PUE. In cases when this is very low the impact of outside temperature

on the overall data center power is negligible compared to the workload. As

a consequence, in the case of low PUEs the power profile of the data center,

i.e. the dynamics of the changing power, is dominated by the workload profile.

As PUEs are - notwithstanding the shortcomings of this metric - continuously

decreasing on average (see e.g. [18] for Europe and [183] for the U.S.), the focus

in this work is set on analysing the workload profiles in order to derive work-

load models for modeling data center demand response in the later part of this

thesis.

From an aggregated perspective, there are flat and variable data center power

profiles. Using the metric of an ’average daily load factor’, i.e. the ratio between

the average and the peak data center load, Ghatikar et al. [89] classified data

center power profiles into flat loads and mixed-use loads, which according to

their terminology represent data center loads where the presumably flat IT

workload profile is impacted by the surrounding offices.

However, today this is only partially representative: in many cases the work-

load profile itself has valleys and peaks which are the result of varying utilization,

due to office hours or seasonal demand patterns. This was monitored by [32]

who for 10 days in 2010 sampled utilization rates from servers in 500 places

2https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-

provide-internet-connectivity-for-years/, accessed 08/06/2020
3https://www.datacenterdynamics.com/analysis/the-king-under-the-mountain/, accessed 08/06/2020
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around the world. They found that the average CPU utilization was below 50%

and characterized by two extrema of very low times below 12% and above 98%

and thus supported prior research from [24].

Interactive and Batch Workloads

These observations are connected with the general distinction in literature

between batch and interactive workload (see e.g. [21, 138, 141] and [45] as

fundamental analysis). Batch-workload consists of jobs with a distinct power

profile (often averaged) and execution time, which are collected in a queue and

executed using scheduling algorithms as ’first-in-first-out’ or ’shortest-time-to-

deadline-first’; the reason is that the implementation of an optimization is in

many cases infeasible due to complexity [151]. Batch workload often computes

heavy-load scientific work in a high performance environment. Until recently

the scheduling objective was mostly either performance optimization or load

balancing, thus resulting in a flat workload and data center power profile. In

contrast, interactive workload, like web-based searching requests, depends on

the activities of users. This means that it forms diurnal and weekly patterns

and therefore is often modeled based on historical data [169]. These two basic

workload categories can be further refined, by adding a ’data workload’ category

[161], or by being decomposed into even more fine-grained types [46]. These

additions, however, are not considered in this thesis as they do not offer added

value for the management of the power profile.

In many cases, batch workload and interactive workload are modeled differ-

ently. This is due to discrepancies with the statistic or stochastic properties of

arrival, certainty, processing time and deadlines. As a differentiation, Feitelson

[76] talks of ’rates’ rather than ’sizes’ for dynamic vs. static workload, i.e. a

continuous stream of tasks vs. some specific amount of work which is done and

completed after being processed. As figure 2.2 shows, batch and interactive

workload can be viewed as extremes on a continuum: both types have a pro-

cessing time that is not immediate, despite the fact that interactive workload
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Batch Interactive

‚Job‘ duration Deadline imminence‚Job‘ arrival frequency‚Job‘ arrival certainty

Figure 2.2.: Schematic illustration of batch versus interactive workload

requires ’instant feedback’. That means, also HPC jobs may be running for a

very short time and/or carry an immediate deadline, e.g. in the case of medical

modeling. In the same way, as illustrated by figure 2.2, the uncertainty and

frequency of workload arrival are fundamentally not different for the two types.

So, in principle, all kinds of workload can be modeled using the same ap-

proach. A more detailed overview of modeling approaches for both batch and

interactive workloads will be given in section 5.2.1.

Workload Descriptions

Before workload can be modeled, it needs to be described and analysed.

Analysing the aggregated workload, meaning the workload profile, can be done

using a set of different metrics, as for instance the ’peak to mean ratio’, i.e.

the ratio between the average and the maximum load or the ’peak to minimum

ratio’, i.e. the ratio between the peak and the minimum load.

Dis-aggregating the workload allows a more fine-grained view on its composi-

tion, namely a compound of jobs with starting times, average power consump-

tion, ending times, number of nodes occupied, and CPU frequencies applied.

Apart from basic job descriptions workload is also characterized by request ar-

rival rates, by utilization rates on servers or by any other kind of metric that aims

at representing the combination of data, computing instructions, and require-

ments for memory, compute and networking actions. This workload description

can be used as a first step and basis for modeling and fitting data with a model.

This is the approach that is mostly assumed in literature, of course involving
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data pre-processing and often normalization and/or scaling of data traces (e.g.

[54, 141, 175, 214, 142, 4, 200, 191, 172]).

2.1.4. Service Level Agreements

The final section of this introduction is dedicated to the execution of the

service provided by a data center. It is important to differentiate between the

nature of the service itself, e.g. payroll computation or delivering web-based

streaming services and the ’quality of service’ (QoS) required by a customer

for characteristics that are non-functional to this service. Among others, QoS

can have timing aspects as e.g. a certain maximum round-trip time, aspects

regarding the service access, or the maximum error rate of a result. In publicly

owned data centers, QoS levels may be monitored, but typically have no legal

consequences as they are not contractually fixed. In a commercial environment,

however, QoS levels required as the ’correct’ execution of a service are typically

laid down in specific technical contracts, or ’service level agreements’ (SLA).

Thus, an SLA can be defined as a formal technical contract between a data

center as service provider and a customer which determines how a specific service

must be executed. Typically, SLAs are negotiable for each type of service and

customer. Opposed to strict SLAs with strict QoS levels, in the context of

’green’ data centers, also ’GreenSLA’ are being discussed, which are defined in

dependence on the energy context of a data center. This makes them applicable

for the case of demand response with data centers whenever a service provider

aims at extending their flexibility by collaborating with their customers and

sharing the corresponding benefit. More information on this concept can be

found, amongst others, in the former work of the author of this thesis [38, 130].

An overview on SLA parameters and negotiation issues is given e.g. in [3, 78].

The challenge raised by SLA in the context of demand response is the impact

of power management on the SLAs’ QoS parameters. These can be just moni-

tored, serve as constraints, or be used for the calculation of a penalty that has

to be paid to the customer, reducing the data center’s demand response benefit.
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2.2. The Electrical Power System and Demand Response

in Europe

2.2.1. Introduction to the Electrical Power System

Today’s electricity system of Europe is the result of an about 20-year-long

process aiming to transform the formerly vertically integrated, public-utility-

based system. Under this system the utility owned and managed the power

grid, generation, transportation and selling of electrical power (see e.g. [182,

ch.2], [199, ch.11]). This process is called ’unbundling’ and aims at splitting the

responsibility and economic units of the above mentioned issues; it started on a

European level with the 96/92/EG directive in 1996. This was reinforced with

the directive 2009/72/EC of the Third energy package 2009 and as of today is

not completely finished.

Figure 2.3 gives a schematic overview about the physical infrastructure of the

German power grid, but the general idea can be more or less applied to any grid

in Europe. At the upper level, the highest voltage transmission grid transports

electricity generated by large bulk generation sites throughout Germany and

connects to the surrounding countries. This part of the grid is organized by the

transmission system operator (TSO), who is solely responsible for balancing

power inside the grid. In some European countries like Spain and France there

is just one TSO; in Germany the four TSOs Amprion, Transnet BW, Tennet,

50Herz emerged from the four biggest utilities, today named RWE, EnBW, Eon

and Vattenfall. The distribution grids, managed by distribution grid operators

(DSOs) distribute the power to the lower level; both electricity consumption and

production sites are connected to it. Distribution grids are very heterogeneous

regarding size, organizational form, and technical status; in Germany, currently,

there are more than 800 DSOs [40]. Europe as a whole has 90% of the DSOs

still vertically integrated whereas the unbundling of TSOs is complete. The

reason is that on a TSO level the unbundling requirements are stricter than for

DSOs [58].

17



2.2. The Electrical Power System and Demand Response in Europe

Figure 2.3.: Schematic representation of the German grid and grid levels [75]
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As can be seen from figure 2.3, dating from 2012, until very recently the

grid separated strictly between electricity consumers and producers. Due to

the increasingly distributed character on the electricity production side, this

dichotomy is not being kept up: consumers even on the low voltage grid can

become so-called ’prosumers’, both producing and consuming electricity and

thus frequently changing directions of energy flow in a grid that formerly was

uni-directional.

Figure 2.3 shows the physical connection of the electricity production side,

i.e. distributed and bulk generation and the consumption side, i.e. households

and industry through the power grid. These basic units are connected not only

physically, but also through a set of communication and market interactions

grounding on incentive structures and business options.

Due to the political objectives of increasing the shares of renewable energy

sources (REN) the complexity of this ’system of systems’ is constantly increas-

ing, mostly due to rapid and uncontrollable fluctuations through the growing

shares of intermittent REN. Therefore a model representing this complexity was

needed. It was provided through the development of the Smart Grid Architec-

tural Model (SGAM). This was developed in the context of the EU decarboni-

sation policy as a means to fathom the implications of this emerging situation

and the corresponding need for flexibility [49].

The SGAM model (see figure 2.4) decomposes complexity by differentiating

between five layers starting with a ’component layer’ which is composed of in-

frastructure elements using the electricity grid. These are grouped in domains

(generation, transport, consumption) and aggregation zones. The whole con-

tents of figure 2.3 is thus represented in the lowest layer of figure 2.4. On top of

the component layer, the ’communication and information layers’ map protocols

and data models to the physical entities below. The ’function layer’ represents

the use case, as for instance an aggregator offering the aggregated demand re-

sponse potential of various load entities to the grid operator. On top of all, the

’business layer’ represents the sum of rules & regulations whether they come
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Figure 2.4.: The Smart Grid Architectural Model (SGAM) matches business
rules on the top layer with infrastructure elements on the lowest
layer [49]

in the form of legal acts from a public entity or in the form of guidelines and

business rules from a private organisation. This model was amended by a set of

new actors and future roles which are linked to the different layers and domains

[196].

This cube, composed of physical, communication, legal and business struc-

tures, defines the meaning of ’electricity system’ in the context of this thesis.

Although technically speaking the electrical energy system is only a part of the

energy system (also containing e.g. heating), in this thesis the terms ’energy

system’, ’electrical energy system’, and ’electricity system’ are used synony-

mously.
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Electricity Related Goals

As shortly mentioned in the preceding section, the reasons for the current

changes and challenges in the energy system originate in political decisions: one

of them being the unbundling process, another the increase of REN sources.

These political decisions were taken on the basis of a set of overall goals with

regards to the electricity system and climate change. Due to their implications

for the necessity of demand side power flexibility and demand response schemes,

some major goals will be reiterated in this section.

The key EU targets related to the presented thesis concern climate objectives.

The target year is 2030 and the comparison basis are 1990 levels; they were

devised for the following categories in 2009 and 2014 and updated in 20184[70].

• Reduce greenhouse gas emissions by at least 40%

• Achieve a share of at least 32% of renewable energy sources (REN) at final

energy consumption

• Increase energy efficiency by at least 32.5%

A simulation study illustrates the high ambition of these goals: in order

for the EU to achieve a share of 27% REN at final energy consumption, the

study concludes that the share of REN in gross generated electricity would

need to reach 47.3%. Furthermore, a 30% REN share would entail an increase

in European REN electricity consumption by 92% compared to 2016 [23].

The overall climate goals are being turned into national goals as ’national en-

ergy and climate plans’ (NECP) accounting for the diversity of the EU member

states. For Germany, which is the example scenario in the presented thesis, by

2030 the share of REN energy at gross final energy consumption and at final

electricity consumption are to be increased to 30% and 50% respectively [74, 85].

Germany’s starting position to reach their goals is comparably good: The Ger-

man DSO Bayernwerk, for instance, in 2019 stated that already today around

4https://ec.europa.eu/clima/policies/strategies/2030_en, accessed 08/06/2020
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400 hours/year they fully cover the demand of their customers by RENs5.

The main challenge of high REN levels in a power grid system is the physical

necessity to have a strict balance between the intake and the provision of power

at all times. This implies that electrical power cannot be stored, but that this

balance needs to be maintained by flexibility of supply and demand. Today’s

energy systems with their overlay of regulation and market mechanisms can

absorb REN levels of 40-50% by activating existing flexibility options. At levels

beyond these, the required system flexibility will increase drastically. Demand

response is one concept which will play a central role in this future energy system

[163].

2.2.2. Electrical Power Markets

The market layer on top of the physical electricity infrastructure can have

basically two organizational approaches: it can be a pool-based market as the

NordPool group or as the Spanish electricity market or an open trade market

as in several member states of the central EU, e.g. Germany, France, or Italy.

In the pool-based market design all supply and demand of a certain time

span are submitted to one specific market operator who then determines the

price based on the bids creating a ’merit order list’ (MOL), i.e. a list of supply

bids ordered according to their price and volume. All transactions take place

via that market, and there are no bilateral contracts. In order to calculate the

market price, through a modeling approach, the market organizer also takes the

physical flow of the electricity into account, so that the prices include not only

the economic interplay of supply and demand for energy, but also physical power

characteristics and constraints thus including network cost. This model’s main

advantage is that the basic pool market is very liquid; its main disadvantage that

the market outcome depends largely on the quality and nature of the network

modeling based price algorithms.

5https://www.bdew.de/verband/magazin-2050/tomorrowland-die-verteilnetze-der-zukunft/, accessed 08/06/2020
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Figure 2.5.: Timeline-based interaction of wholesale and regulation markets,
based on [199, 121]

The open-trade market design consists of a set of different markets that are

operated subsequently with partial overlaps. This design is amended by reg-

ulation services that close the gaps between supply and demand bequeathed

by the markets in cases of unexpected supply and demand after the trading

is completed. That means after gate-closure in the regular trading-sphere the

TSO takes over the control of adjustment until close to real-time. For more

detailed information on these market designs see [199, ch.11],[80, 121].

The open-trade market design is the foundation for the demand-response

scenario in this thesis. The interaction of the different entities is therefore

explained in more detail using the specific design of the German market (see

figure 2.5).

As mentioned above, there is a market sphere and a regulation sphere which

amend each other [226, 57, 109], [199, ch.11]: The market sphere (blue icons

in figure 2.5) consists of so-called Over the Counter (OTC) contracts, which

are individual contracts between suppliers and demand side agents. They can

have different timings; many of these are contracted months ahead. For market

tradeable long-term bids, there is also the futures exchange market EEX. The

counterpart to these are the EPEX spot markets: on the day-ahead market,

hourly bids for the following day are placed until 12 a.m. In 2012 its volume
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amounted to more than 40% of the total trading volume; so, contrary to the

intra-day market (around 3% in 2012) it is highly liquid [121]. The intra-day

market in Germany is comparably new: it consists of intra-day auctions and

an intra-day continuous market where bids for 15-minute-slots can be traded

until 45 minutes before the actual delivery of electricity at the latest. After this

gate-closure there is no more room for market activity, then regulative power is

called.

In Germany, there are three kinds of regulation that are enacted once the fre-

quency in the German TSO grids goes beyond the allowed band around 50Hz:

primary, secondary, and tertiary regulative power, represented as dark green

arrows in figure 2.5. They differ with regards to response time and activation

time. Primary reserve, often delivered by spinning masses, needs to be fully

activated within 30 sec and can be kept running up to 15 minutes in order to

bridge the time until secondary reserve takes over. In order to restore frequency

into the allowed band, secondary reserve is called, which needs to be fully opera-

tional after 5 to 15 minutes. Both of these are operated automatically, whereas

tertiary reserve, which can be kept operational for several hours, is actively

called in case secondary reserve is not sufficient. The study of Consentec [57]

explains these regulatory concepts in detail; the German TSOs are required to

publish activations on a transparency platform6. Since 2018 the auctions for

reserve power (represented in lighter green arrows in figure 2.5) take place on a

weekly basis for primary reserve and on a daily basis for secondary and tertiary

reserve in Germany [226]. This makes the tertiary reserve product the most

attractive for the suppliers of power flexibility, however, this is also the market

with the least attractive remunerations.

In order to understand demand response concepts, the basic remuneration

concept of regulatory power (e.g. [226, 57, 121]) needs to be explained: The

delivery of electricity as primary reserve power has been hard to trace until

recently, so that suppliers of primary regulative power are rewarded exclusively

6https://www.regelleistung.net, accessed 08/06/2020
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for the capacity offered, i.e. they receive a price per kilowatt offered. For

secondary and tertiary reserve power, both the option and the delivery are

rewarded: the supplier receives price for power (PP) for the time of offering

the capacity and a price for the electricity (EP) which is finally delivered when

called in case of need.

As in the pool-market design the basic methodology of the auction process

for regulation power is a list of suppliers ordered according to the size of their

power bids (e/kW) until the last offer necessary to fill the total reserve power

needed (MOL). Suppliers are then rewarded as pay-per-bid. Whenever regula-

tive power is called, the reserve is activated according to the electricity price

offered (e/Mwh), starting with the least costly offer.

The regulation or reserve power on TSO level introduced above is just one

part of the ancillary services that guarantee the reliability of power provision.

On DSO level, voltages drops are controlled via the supply of reactive power.

Other ancillary services are congestion management and the management of

cold starts and the re-building of grid functionality after blackouts.

2.2.3. Demand Response

As explained in the preceding section, due to physical constraints demand

and supply of electrical power are mapped perfectly on the level of the electrical

power grid. Therefore the economic sphere needs to be amended by a set of

regulation services that take over control once market gates are closed.

Traditionally, the physical balancing between electrical demand and supply

was provided by generation units able to respond quickly as e.g. gas power

plants. However, in step with the increasing share of intermittent REN at elec-

tricity production the necessity for flexibility is increasing (see section 2.2.1).

On the other hand, an increasing power demand through the digitization of

society and through the electrification of mobility also leads to temporarily and

geographically varying pressure on the power grid. The cost of the growing
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volatility is high already - according to the latest report of the German Na-

tional Regulation Authority [41] in 2018 more than 5.2GWh of REN had to

be curtailed due to local congestion issues resulting in reimbursement cost of

around e500m. All ancillary services together in 2018 cost Germany around

e1.8bn of which regulation power was around e123m [41].

At the rise of air conditioning in the U.S. in the 80-ies of the last century the

challenges of grid management led to the idea of using not only the flexibility

of power generation, but also the flexibility of electricity consumption to bal-

ance the grid [84], thus generating the idea of (originally mandatory) ’demand

side management’. Adding pricing and further market participation rules, this

evolved into ’demand response’. Demand response in this thesis is defined as

’[V]oluntary changes by end-consumers of their usual electricity use

patterns - in response to market signals (such as time-variable elec-

tricity prices or incentive payments) or following the acceptance of

consumers’ bids (on their own or through aggregation) to sell in or-

ganised energy electricity markets their will to change their demand

for electricity at a given point in time. Accordingly, demand response

should be neither involuntary nor unremunerated’ [69, p.3].

Contrary to the original understanding of demand response by the U.S. Federal

Energy Regulation Commission from 2006 [72], this definition by the EU com-

mission allows for both up- and down regulation of power. ’End-users’ in this

context are electricity consuming entities, ’customers’ according to the SGAM

model (see 2.2.1), i.e. private, public, industrial, or commercial electricity con-

sumers. This power flexibility can then be offered on power markets where it is

sought for; in this thesis they are generalized as ’power flex markets’.

The general idea can be illustrated by an emergency grid event in Texas on a

very hot summer day at the beginning of August 2011 shown in figure 2.6: The

’emergency interruptible load service’, i.e. a specific demand response product,

was activated in order to implement a load reduction of 400MW over the course

of 2.5 hours (violet line) which was more than met by the real load reduction
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Figure 2.6.: An ERCOT Demand Response Event [112]

(green dotted line). The difference to a pre-calculated ’baseline’ consumption

is shown in the upper part of figure 2.6. The participants in these demand

response schemes in those days in the U.S. were typically big industry sites as

aluminum production plants or paper mills that can postpone some thermal

processes.

In order to reflect different contractual obligations it is helpful to differentiate

between explicit versus implicit demand response [195] (also called incentive-

based vs. price-based). Explicit demand response means to offer and implement

power flexibility based on a specific demand response contract, whereupon a

predetermined adaptation must be enacted when called by the grid operator.

Whereas implicit demand response is the voluntary reaction of an electricity
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consumer to dynamic prices without being contractually bound to such a reac-

tion. Demand response can be dispatchable and non-dispatchable [112]. This

differentiation has a high overlap with explicit vs. implicit demand response.

The main difference is the viewpoint: The latter differentiation stresses the

point of view of the operator and their ability to see demand response as a

power resource (see section 2.2.3).

Today, demand response has a long tradition in the U.S., whereas in Europe

the maturity of demand response programs and markets is very heterogeneous

due to a variety of regulation issues. The U.K., France, and Ireland are con-

sidered to be spearheading European demand response, whereas Germany and

the nordic countries are lagging behind; and in some countries like Spain and

Poland demand response is still in its very infancy [195].

Typical scenarios for offering flexibility can be found in processes like grinding,

smelting or cooling in the cement, aluminum and refrigeration industries [184].

Meanwhile, also smaller and even private equipment is being used for demand

response schemes; in that case, however, not each owner is a demand response

contract partner, but the contracts are mediated via a so-called ’aggregator’

[195, 193, 49]. Demand response with a data center as a ’consumer’ is rarely

referenced in practice. An introduction to this specific case will be given in

section 2.2.3.

Demand Response Functionalities

Demand response can take up various roles which are partially dependent

on contractual obligations [112]: the stricter the ties in the demand response

contracts as in the case of many explicit demand response schemes, the more

dispatchable the connected load behaves, and the more it can be treated as

power system resource. This is important, e.g. in the case of unexpected de-

mand spikes. Based on ramp up times and other characteristics, this power

resource can be mapped to different ancillary services and is thus viewed pri-

marily as a resource for regulation services and also for congestion management.
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Focusing on shifting aspect in power management of demand response partici-

pants stresses its potential as a storage option; a functionality that gains more

importance as the share of intermittent renewable resources at the electricity

generation is growing.

One issue that needs to be considered when evaluating demand response

suitability as a power resource or storage option is the impact of timing : required

ramp up times are decreasing fast, so that the automation of demand response

(e.g. through openADR [184, 89, 134]) gains more importance the more demand

response is going to play a vital role in the next generation power system. This

is reflected in the concept of ’demand response 2.0’ [62, 134] and also a challenge

for data center demand response.

Stakeholders in the Demand Response Eco-System

The demand response eco-system consists of a variety of different roles and

stakeholders [93]; a first description was developed in the course of creating the

SGAM model [196]. On the demand side of flexibility, there are actors from

the distributing and trading functionalities on the business layer of the SGAM

model; notably grid operators on all levels and traders (in the case of implicit

demand response), often also vertically integrated utilities. Regarding grid op-

erators, currently in Europe mostly TSOs implement explicit demand response

programs. Extending these to the DSO level and thus bringing the flexibil-

ity closer to where it is needed is currently being widely discussed [194, 94]

and is evaluated in a European research project [153]. On the consumer side,

traditionally only huge industries were requested to take part in demand re-

sponse schemes. In order to be admitted to ancillary services programs they

need to undergo laborious prequalification processes; even to source electricity

directly at the exchange market as the EPEX, consumers must be able to buy

electricity in volumes of at least 100kW. But since the evolvement of a more

distributed, REN-dominated power system the option to aggregate smaller con-

sumers is being researched (e.g. [190, 192, 83] and implemented in various EU
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member states, although at different stages of maturity [195]. European com-

panies active in this business model are for instance Entelios, Next-Kraftwerke,

EnergyPool, or EDF.

More discussions about the roles in the demand response eco-system can be

found in [196, 184, 135].

Demand Response Potentials

Identifying a potential for demand response either on individual or on ag-

gregated level requires a concept of ’demand response potential’. In energy

efficiency literature the differentiation into theoretical, technical, economic and

practical/market potential of energy savings was devised [120], where each sub-

sequent potential is a subset of the previous. This concept was mapped to the

demand response scenario by ETSO [68], von Roon et al. [210, 211] and Gils

[90]. They define as theoretical potential the theoretical contribution by all

facilities and devices suitable for flexibility, as technical potential the flexibility

of those facilities and devices controlled by existing ICT infrastructure. The

economic potential is the part of the technical potential that can be realized

under the current economic framework in a cost-efficient way. And the prac-

tical potential is the subset of the former which actually can be implemented

accounting for business rules, social norms and the legislative framework (see

figure 2.7).

To a high degree this differentiation explains the gap between demand re-

sponse potentials assessed by literature (e.g. [90, 210]) and the demand response

flexibility provided to a power system (e.g. [195, 41]). Many works focus on the

theoretical potential; only rarely the difference between a theoretical, device- or

process-level potential and the economic potential is discussed.

Based on the identification of suitable processes for load shedding (i.e. re-

ducing power persistently thus saving energy) and shifting (i.e. reducing power

temporarily) Gils [90] identifies an EU hourly average load reduction potential
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Figure 2.7.: The different concepts of demand response potentials (retraced from
[211])

of 93GW and a load increase of 247GW, meaning around 10% of most EU coun-

try’s peak load on average. The processes with the highest shares of average

potential load reduction are pulp and paper (7%), steel (9%), cement (6%),

commercial ventilation (15%), and refrigeration/freezers in private households

(17%).

Contrary to this bottum-up approach, another study chose a top-down ap-

proach starting with the electricity consumptions of the three sectors house-

holds, industry, tertiary and disintegrating these into processes [208]. Thus also

looking into the technical potential for demand response in Europe, their results

indicate a load reduction potential of 52 GW, representing on average 9.4% of

the peak load estimated by ENTSO-E for its 34 represented countries. Interest-

ingly, these two studies, carried out independently but in parallel, reach similar

conclusions.

Analysing the economic potential for Germany, Bergaentzlé et al. in 2013 [33]

estimated a 3% cost reduction through load shedding of 3.5% from the evening

peak at 7pm to the afternoon at 4pm. Apart from cost savings, this would avoid
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coal-fired peak generation and thus have a positive climate effect. For Southern

Germany alone, based on a questionnaire among more than 300 companies,

Klobasa et al. [133] estimates a peak reduction potential of around 1GW. This is

a considerable technical potential compared with the total average consumption

load of 14GW. A further result of this questionnaire is that the absolute amount

of the envisaged cost reduction through demand response for these companies

is more important than the share at their electricity cost budget. This study

concept comes closest to the idea of a practical demand response potential.

In the U.S., however, where demand response has a much longer tradition,

already today demand response plays a significant role in peak power manage-

ment: in 2017 5.6% of peak demand were reduced by the activation of power

flexibility through a variety of demand response schemes [73]. Since 2006, data

of demand response activities have been monitored and published yearly [72].

Data Center Demand Response

With the growing role of data centers in business and society a discussion was

started about the power consumption of data centers and how to increase energy

efficiency. Recently, there has been a growing concern regarding the impact of

data center operation on power grids not only because of the increasing ’weight’

of individual data centers (exascale data centers are estimated to go way beyond

100MW) and the industry as a whole (see figure 2.8), but also with regards to

vast power swings [198] that might be connected with operation due to a high

difference between idle and full operational power. The SuperMuc I in LRZ, for

instance, has an idle power of around 700kW, but can use up to 3.4MW under

Linpack in turbo mode [186]. Sometimes these data centers are fully utilized

with one huge batch job - if that ends unexpectedly this might lead to a voltage

drop that threatens the local power quality.

Towards the end of the first decade of this millennium, demand response

with data centers was brought up in the discussion. Qureshi et al. [171] were

32



2.2. The Electrical Power System and Demand Response in Europe

Figure 2.8.: Extrapolation of data center industry trends in traffic and data
generation as well as power consumption [12]

among the first to give a theoretical foundation of capitalizing on geograph-

ical and temporal price differences of distributed data centers by routing an

interactive load accordingly. Shortly after that, aiming at explicit demand re-

sponse schemes, Ghatikar et al. [89] at Lawrence Berkeley National Laboratory

(LBNL) explored general demand response opportunities for data centres, also

performing experiments in four data centres. The results of above mentioned

experiments are used as a basis for many research papers (e.g. [217, 144, 15]),

sometimes as an assumption for data center loads’ flexibility in settings other

than LBNL’s , e.g. [15].

A selection of the large body of research that addresses various issues con-

sidering data center demand response will be introduced in section 3.1. Issues

relate to the power management strategies applied inside that data center, the

requirements from both explicit and implicit power flex markets but also the
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physical integration into the smart grid. In order to deeply analyse demand re-

sponse opportunities for data centers, chapter 4 will introduce a general model

of a data center in the context of demand response and a modeling framework

that addresses the three different potentials: technical, economic, and practical.

Barriers to Demand Response

The gap between the theoretical potential for demand response in an industry

and its practical potential and implementation is due to a set of barriers to

demand response which can be analysed alongside the four different categories

of demand response potentials. This means that barriers to demand response

relate to

• the gap between the theoretical and the technical potential, i.e. technical

barriers as the lack of monitoring or communication technology imple-

mented to suitable processes;

• the gap between the technical and the economic potential, i.e. economic

barriers as high fees or low remunerations for demand response under the

current market conditions;

• the gap between the economic and the practical potential, i.e. practical

barriers as missing knowlegde, adversarial regulations or social norms.

The lack of the access to monitoring and ICT communication equipment is

an issue that is continuously loosing importance due to a growing prevalence

of corresponding equipment. An example is the roll-out of smart meters, that

in Europe was initiated in 2014 and lead to a heterogeneous coverage ranging

from nearly 100% in Finland, Sweden and Italy, to a very hesitant deployment

in Germany of only 2-15% [170, p.50ff].

In general, the economic benefit of investment into demand response technolo-

gies and its implementation depends to a high degree on the value of electricity

and the stiffness of the grid. Electricity cost consist of generation and distri-

bution cost, fees and taxes, with varying degrees of their shares over Europe.
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Figure 2.9.: The development of prices in the secondary reserve market from
2012-2018 [116]

In Germany, for instance, fees and taxes have about equal weight as electricity

generation, grid management and sales cost [43]. Additionally, electricity gener-

ation and distribution cause so-called ’external cost’ that are not covered by the

prices paid for consumption [150, 181]. For electricity provided by hard coal, for

instance, the external cost exceed the private cost by a factor of 3 [150]. This

implies that the electricity bill today underestimates the real value of electricity

and therefore only very partially incentivizes the realization of power flexibility

through demand response. This has implications for all prices related to gen-

erating and managing electricity, including of course, remunerations paid for

reserve power.

Independent of the absolute level of the value of electricity, prices for power

flexibility are extremely volatile as figure 2.9 shows for the positive week-day

product in the secondary reserve market. Entering into costly prequalification

procedures and finding that prices are not worth it reduces the economic po-

tential of demand response.
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Additional to pricing issues, major obstacles to the implementation of demand

response schemes for all types of consumers are regulation and legislation [184],

but also business models and social norm issues:

Even though the EU Commission launched the so-called ’Clean Energy Pack-

age’ in 2016 that strengthens the role of demand response in Europe, in most

member states the regulations are prohibiting the tapping of its potential [202,

135]. In some markets demand response as a power resource is not eligible for

regulation, in some countries there are no power flex markets at all for explicit

demand response; some markets are closed to aggregation and some have not

clearly defined roles [123] and billing processes [65], or they are requiring very

strict and costly prequalification procedures [137] as mentioned above. A regu-

larly carried out study that assesses the market maturity for demand response

in EU member states finds for 2017 that Germany is still lacking good access of

demand flex resources to electricity markets [195]. One reason for this is that

the reserve markets are aimed at large generation units and that network fees

are still static.

Apart from these tangible issues, intangible barriers like general attitudes

in society still prevent a higher adoption of demand response, e.g. a lack of

awareness and information but also a status-quo bias, loss aversion and bounded

rationality [137, 168].
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The core topic of the presented thesis is ’data center demand response’. This

will cover the major part of this chapter, and section 3.1 is dedicated to orga-

nizing and explaining this research field.

Research that addresses modeling power flexibility in general is the other

focus of this chapter as it provides insights for the presented modeling framework

for data center demand response from a more general perspective. Work in this

rather small research area is discussed in section 3.2.

A different strain of research is data center energy efficiency ; it is interrelated

with data center demand response, because in many cases, power management

strategies have an impact on data center performance and thus on energy ef-

ficiency. This very large research area is not elaborated further in this thesis;

the focus of the work remains the temporary shift of power consumption, not

the reduction of energy consumption. Likewise balancing the power demand of

data centers with intermittent renewable power supply meanwhile is a widely-

researched area. The latter is also not explored explicitly here as it primarily

focuses on creating a physical match between data center power demand and

REN supply, independently of any demand response program issued by an actor

in the energy system.

3.1. Data Center Demand Response

One of the first works about power adaptive data centers was Qureshi et

al. in 2009 [171]. They became aware of the opportunities of regionally and

temporally different prices and simulated the effects of rerouting network traffic.
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For their simulations they used interactive workload data traces of 9 locations

of the content delivery network (CDN) Akamai employing the very simple, but

efficient utilization based power model of [71]. They concluded that a data

center like Akamai could easily save 2% of their aggregated utility bills without

compromising on QoS or increasing bandwidth and up to 30% if their power

demand were fully elastic, i.e. independent on QoS. As a next step, optimization

approaches capitalizing on basically the same scenario appeared: In 2010 Rao

et al. [173] used a queuing based approach to optimize cost in a mixed integer

linear problem formulation, assuming both job arrival and servicing rate. They

corroborated the findings of Qureshi et al., calculating a cost reduction between

17-30%.

After these first endeavors to analyse the power flexibility of data centers in

an implicit demand response scenario, general introductive papers emerged as

for instance [89, 88, 127, 35, 30, 217]. As mentioned, Ghatikar et al. 2012 at

LBNL in California [88] executed a set of experiments: they explored the impact

of different power management strategies in three university data centers and

one commercial data center. For some specific cases they measured 25% of load

reduction on data center level and 10-12% reduction on building level.

Meanwhile, a large body of modeling work exists in this area1, and the here

referenced literature is just the selection of the most relevant works in the con-

text of the discussed research questions. Important is therefore research that

aims at providing a general concept of demand response opportunities of data

centers. Concrete scenarios, however, are the groundwork of the concrete in-

stance of the modeling framework, so that selected papers of this field are also

introduced.

This section is mainly organized according to the method applied, either

optimization or a simulation approach analysing the outcome of a set of different

scenarios. Other important criteria are the power management strategy/ies

applied, the types of power flex markets targeted, the optimization criterion

1A google scholar search on March 10th, 2020, of the terms ’data center’ and ’demand response’ produced
6,190 hits
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and the question if and how SLA cost are integrated. In order to take account

of all these criteria, the works will be summarized in tables at the end of each

section.

3.1.1. Optimizing Data Center Demand Response

The First Phase

In 2011 Liu et al. [143] introduced the classical concept of geographical load

balancing using geographical price differences as incentives to adapt scheduling

and thus change the load. Comparably to Rao et al. 2010 [173] they applied a

queuing based model to inject traffic data into a cost function that depends on

the number of active servers, as a representative for the power consumption, on

regionally differentiated prices, and on the traffic arrival rate. They introduce

delay cost based on the queuing and the routing delay into the optimization

problem that aims at choosing the routing policy and determine the number of

active servers that minimizes the sum of energy and delay cost.

This basic problem setup, i.e. a federation of data centers like internet data

centers (IDC) or CDN with interactive workload that can be (re-)scheduled

geographically was re-used by a high number of later optimization research

papers, some of which are referenced here. Wang et al. 2012 [214] and 2013 [215]

use this setting with an approach of moving virtual machines (VMs) instead of

routing requests. [214] models emergency demand response as a version of

explicit demand response where the reward is based on different ’locational’

marginal prices (LMP), which are unknown in advance. They set up a cost

minimization mixed integer linear problem which takes into account SLA cost

of reduced QoS during migration and is constrained by a threshold profit which

must be achieved. In [215] Wang et al. 2013 the setting is changed insofar as

they add more detail to the time-based impacts of migration and integrate the

risk that the expected reward is lower than anticipated.

Contrary to these, Li et al. 2013 [140] apply migration to batch workloads
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in a data center federation using dynamic prices which are tied to the intake of

renewable energy sources so that the benefit is not only economic but also eco-

logical. They develop two interdependent models, one of which represents data

center cost including the extra migration energy cost and the other determining

the renewable-based geographically differentiated price.

Starting with this, the idea of explicit demand response was discussed more in-

tensely, in different data center settings, and using various adaptation strategies.

Ghamkari & Mohsenian-Rad 2012, for instance, present a profit maximization

framework, viewing the rewards from the participation in ancillary services as

an alternative way of benefit generation [86] at the expense of creating SLA

cost. Using a queuing based approach they analyse the behaviour of one data

center facing adaptation requests which include a volume dependent compensa-

tion function. To this the data center reacts via consolidating workload on few

servers and shutting down unused servers. This commonly modeled power man-

agement strategy is often disputed as it contradicts general data center policy

to keep all servers running independent on the utilization [91].

Similarly, Ghasemi-Gol et al. 2014 [87] develop a load shedding approach via

switching on/off servers to adapt to both regulation requests and hourly chang-

ing prices on the day-ahead market in a scenario comparable to [86]. Contrary

to the latter, they minimize the total electricity cost, substracting the rewards

received through the participation in an ancillary services scheme. Furthermore,

they do not take into account SLA cost. Using trace-based inter-arrival times

the model of [87] achieves an energy cost reduction of up to 13% for the case

of participating in ancillary services compared to dynamic prices. Mahmud et

al. 2013 [149], also focusing on server consolidation and shut-down, are one of

the few that view data centers as price makers in an implicit demand response

setup, not price takers due their huge power consumption (assuming 50MW).

Controlling the number of active servers, they model the price that the data

center predicts based on a linear regression of historic data and a feedback ac-

tivity on that price. In this assumed setting they estimate a cost reduction of
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around 2%.

Very differently from that, Yao et al. 2014 [222] envision a scenario where

the data center does not need to adapt their workload, but reacts via ’smart’

charging or discharging of batteries whenever the dynamic utility energy prices

are specifically low or high. Modeling the server power consumption utilization

based, they derive an energy cost minimization model considering constraints

from both latency and battery models.

Colocation Demand Response

At the end of this first phase of modeling data center demand response, a new

set of papers appeared that turned attention to the fact that the thitherto uti-

lized workload power management models were inapplicable in a major number

of cases where the data center operator is not allowed to touch the workload:

the case of colocation service providers, data centers that rent out space to their

customers who run their own workload on dedicated servers. Thus the challenge

arose to overcome the so-called ’split incentive’, i.e. the situation that the colo-

cation service provider is incentivized to adapt power under demand response

schemes whereas under the predominant business models the tenants are not.

This was first explained and modeled by Ren & Islam 2014 [175]. They

present an incentive mechanism for tenants based on a reverse auctioning pro-

cess in order for them to adapt their demand whenever the colocation provider

receives a signal to reduce as much power as possible. One assumption is an

extremely low utilization rate in colocation data centers which was has been

backed by data many times, e.g. by [91], and allows tenants to consolidate

workload and shut down idle servers. Data center power demand is modeled

through the number of active servers. Arrival and service rates are utilized to

model delay, with different classes of delay-tolerance. In a simulated data center

with 3 tenants, involving data traces from hotmail and Wikipedia, the authors

show that the tenants’ power demand can be decreased by 50% without compro-

mising on assumed delay constraints. This general approach has been studied
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frequently since, always capitalizing on the idea of non-intrusive methods to

stimulate the collaboration of tenants.

Ahmed et al. 2015 [4], using a similar modeling setup and power manage-

ment strategy as in their former work [175], focus on the novel type of contract

needed between the tenants and the colocation provider for the case of emer-

gency demand response where the colocation provider must abide to the power

reduction signal. In order not to incur penalties the data center needs to provide

the gap between the target power consumption and the power flex contribution

from its tenants by turning on a costly diesel generator. The paper develops

algorithms that balance the tenants’ delay costs and the colocation provider’s

generator cost with the demand response renumeration under the uncertainty

that the colocation provider is not informed about the tenants’ power reduction

potential. Tran et al. 2016 [205] aim at minimizing the tenants’ adaptation

cost accrued proportionally to the delay created assuming two different types

of tenants: price-takers and strategically bidding tenants who both react to in-

centives by reducing the number of active servers. This is optimized under the

constraint that the colocation provider again must fulfill the power reduction

request issued from the grid provider.

A different area of demand response entailing a different strategy is suggested

by Islam et al. 2015 [114]. They set up the scenario of a colocation data center

with dynamic cooling demand and intermittent on-site PV power generation

in an implicit demand response scheme with time-varying prices including high

peak power prices. This is used as an incentive for requesting the tenants’

collaboration to avoid increasing peak power. As in [4] the colocation operator

needs to take into account the unsure collaboration effort of the tenants. In

this scenario the colocation service providers’ overall cost is minimized, made

up of energy and power costs as well as the rewards paid to the tenants. The

objective is to determine the reward that needs to be offered to the tenants.

Evaluating the resulting algorithm leads to a cost reduction for the colocation

operator of 27%; tenants can reduce cost by up to 15%. This idea of profit
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sharing goes into the same direction as the research introducing ’GreenSLAs’

[209, 130, 3].

Later, Islam et al. 2016 [115] introduce to the topic of oversubscription in the

context of colocation data center demand response. This means the phenomenon

that colocation providers rent out more power than contracted with their utility,

knowing very well that tenants tend to under-utilize the power infrastructure

due to a low server utilization rate. Thus implementing an overall power cap,

[115] work towards minimizing the tenants’ SLA cost who can adapt their power

by tuning the CPU frequency and who issue individual supply bidding functions.

Temporal Workload Management

A different scenario and research area is the temporal scheduling of jobs

which has a long history beyond the demand response use case. In 2012 Liu et

al. introduced demand response to the temporal scheduling topic by integrating

renewable supply, energy storage, dynamic pricing and dynamic cooling demand

into workload scheduling algorithms [141] . They focus on one data center that

aims at minimizing all cost associated with job scheduling: the energy bill

impacted by dynamic prices and the cost of lost revenue due to the delay-

tolerant batch job part of the workload that is not executed by a specific point

in time. Assuming that interactive workload needs to be serviced instantly, for

each timeslot they generate a schedule for the batch jobs and the energy storage

usage that takes into account dynamic cooling, prices and the deadlines from the

interactive service. They do this first in a generic model without instantiating

power and delay functions and for the evaluation apply the linear, utilization

based power model developed by [71] combined with a queuing delay calculation

model.

Temporal workload shifting has been explored widely since then, e.g. lately

by Tipantuña and Hesselbach 2018 [203], Jiang et al. 2018 [119], and Bahrami

et al. 2017 [19]. Tipantuña and Hesselbach 2018 [203] offer a scheduling ap-

proach of reducing power demand in a demand response event by minimizing
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the ’residual power’ which is the difference between the planned power profile

and the available power issued by a grid operator. They implement this in a

data center with a batch workload using a combinatorial scheduling algorithm

that computes all potential time-shift combinations of all services. Apart from

the high computational load, the drawback of this approach is that whenever

the residual power threatens to become negative, specific jobs are evicted. Jiang

et al. 2018 [119], in an implicit demand response setting with the aim of avoid-

ing peak power cost suggest a scheduling algorithm that minimizes the power

consumption of servers over time. They model a utilization based server power

function for a cluster of heterogeneous servers. Each job has a specific dead-

line and resource requirements. This information is used in a non-linear integer

programming problem which is solved by decomposing it into a temporal job

scheduling and a ’spatial’ task assignment sub-problem. Considering a time

horizon of 4 hours and 400 Map and Mapreduce jobs lasting up to 250 sec-

onds with deadlines up to more than 50 times the job duration, they show that

both peak power and energy consumption are reduced compared to alternative

scheduling algorithms.

Bahrami et al. 2017 [19] address the scheduling problem using an alternative

modeling approach: they construct a game theoretical model representing the

situation of a data center strategically choosing a utility and at the same time

a scheduling strategy in order to minimize their electricity cost. In this case,

however, the dynamic prices offered by the utility depend on both the demand

of this utility - which itself depends on its customers’ demands - and the demand

of all other utilities. This implies that the scheduling decisions of the current

data center, which influence their choice of utility, depends on the scheduling

decisions and power demands of the other data centers in the eco-system.

Other Power Management Strategies

Dynamic Voltage and Frequency Scaling (DVFS), typically realized as scaling

the CPU frequency, is a power management strategy that is often used in the
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context of implicit demand response, either to comply with time-varying prices

or to prevent peak power cost. An example for this is Shoukourian et al. 2015

[185] who explore a ’software defined power cap’ in order to avoid peak charges,

at the same time capitalizing on the slightly different power consumptions of

officially identical nodes in the high performance setting of the German Super-

Muc data center. They analyse the details of the hardware setup in order to find

the most efficient and effective combination of frequency, node and application

which still respects the power cap minimizing the overall energy cost including

the power charge component.

The power management strategies implemented in the context of demand re-

sponse nearly exclusively abstract from the applications which are executed by

the data centers. In 2013 a European project, All4Green [29] introduced the

idea of a middleware software that adapts specific QoS characteristics in order

to comply with event-based power caps and elaborated a proof-of-concept using

experiments at the European HPlabs. Xu & Li 2014 [221] explore a comparable

approach minimizing the energy and power consumption of a data center apply-

ing ’partial execution’. This means that web crawling service as e.g. search ap-

plications are halted a little prematurely. While still delivering sufficient results

they are avoiding over-proportionally increasing energy consumption needed in

order to produce ’final’ results. They achieve this, like All4Green, by tuning the

SLA according to the current situation under a time to completion constraint.

Using Wikipedia request traces and a simulated data center setting they show

that their algorithm can reduce peak demand by 12.17%.

Applying a Set of Power Management Strategies

All models described until here have in common that the adaptation of the

data center power profile is achieved by applying one power adaptation strat-

egy. To the best of the author’s knowledge, this was changed by Liu et al. in

2013 [145]. They use temporal workload shifting as well as turning on backup

generators and consuming local REN as power adaptation strategies to react
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to uncertain events of ’critical peak prices’ (CPP) where the price is known in

advance, however the time-slot for which the utility broadcasts this price can

only be assessed. Minimizing energy, power, fuel and utility cost under the

uncertainty of the events they develop algorithms that - fairly robust to pre-

diction errors - provide cost savings of up to 40%. One year later, the team

around Zhenhua Liu, Liu et al. 2014, compared the system wide savings cre-

ated through data center demand response with the cost of an equally sized

storage system [144]. As a metric for the effectiveness of both technologies

they use the improvement of voltage violations. Assuming a 20MW data cen-

ter with 20% power flexibility they calculate that this can replace a 0.67MWh

battery system. Furthermore, they suggest novel, prediction-based explicit de-

mand response programs targeted specifically at data centers and evaluate these

suggestions through a model minimizing system-wide curtailment cost.

Le et al. 2016 [138] focus on integrating capacity planning and operating, i.e.

minimizing CAPEX and OPEX cost by jointly analysing requirements for both.

In order to use this general approach for demand response schemes, the authors

rely on both scheduling the batch part of the mixed workload in a simulated

data center and ramping up the diesel generator when the contribution from

batch scheduling is either too low or infeasible due to deadline constraints. In

an experiment with HP’s Net-zero Energy Data Center the study simulates a

set of power flex markets like a time-of-use (TOU) tariff2, CPP and the spinning

reserve scheme where participants are rewarded based on pre-defined rates, but

must reduce their power consumption after a signal. In the context of the

spinning reserve scheme, the emulated Net-zero Energy Data Center can reduce

its power during the event by 30%. In this scenario workload scheduling plays

the most important role, contrary to the CPP scenario, where the adaptation

is achieved mostly by using the Diesel generator. However, this is due to the

temporal workload distribution of the data trace, as the original data center’s

power demand is much higher in the CPP event hour than in the spinning reserve

2This is a tariff with time-varying prices for a specific, low number of blocks
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event hour. This detail shows that both adaptation processes and results depend

heavily on the parameter configuration.

In the model of Cupelli et al. 2018 [60] a data center engages in dynamic

pricing or in an event based explicit power flex market using three different

strategies: the data center can schedule the workload at different times, it can

change the cooling set-point and additionally charge or discharge batteries. The

approach aims at minimizing the difference between planned and target power

profile, comparable to [203], but contrary to the latter, they model the ther-

mal characteristics of a specific data center testbed to which end the model

processes a high number of physical data. Chen et al. 2019 [52] present En-

ergyQare, an approach that includes both a bidding strategy for the provision

of load-following, constant regulation services and a policy that executes a set

of different server activities at runtime. Taking into account transition times,

sleeping servers are woken up, idling servers are put to sleep or assigned to jobs,

and finally the CPU frequency can be changed. Using these power management

techniques and respecting QoS, EnergyQare determines the optimal combina-

tion of average power consumption and reserve power provision at each time

step. In a general data center scenario [52] demonstrate that it can provide

50% of their average power consumption as reserve power reducing electric-

ity cost by 44%. The results, however, are highly dependent on the deadline

parameters but do not include a sensitivity analysis.

In another setting the electricity bill of a data center depends on its average

power consumption and on the reserve power that it provides to a fast demand

response scheme with signal updates every couple of seconds. In this scenario

Zhang et al. 2019 [224] develop a cost minimization model where the data

center uses both a scheduling strategy and DVFS. They minimize total power

cost, which is the sum of the energy bill and a penalty in case of provision

failure, less the benefit from the reserve power activation. Defining a set of

different job types with respective QoS constraints and specific queues the model

assigns different weights to each job type so that the levels of average power
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consumption and reserve power are optimized. The suggested algorithm reduces

the total cost by 14-51%.

Nasiriani et al. 2018 [157] apply a game theoretic approach to model a so-

called ’differential pricing’ scheme for cloud data centers engaging in an implicit

demand response scheme. ’Differential pricing’ is based on the observation that

different market participants display different price elasticities, i.e. the percent-

aged reaction of demand in proportion to the percentaged price change. Due

to this observation the authors price cloud data center customers in accordance

with their price elasticities whenever the cloud provider aims to adapt to dy-

namic wholesale electricity prices. The tenants then (dis)charge virtual batteries

or drop workload thus accruing SLA cost proportionally. The impact of this

collaboration maximizes the overall system benefit, leading to both an increased

profit on the data center side (+31%) and a higher tenant utility (+18%).

Modeling Frameworks for Data Center Demand Response

A lot of research on data center demand response starts from a specific power

management strategy or a set of strategies in a specific data center and a spe-

cific power flex market setting. This leads, however, to distorted results from

generalization. Some approaches may exaggerate benefits when the respective

power management strategy, although very beneficial in the referenced setting,

cannot be applied in the majority of scenarios. On the other hand, benefits may

be belittled when focusing on one strategy where a set of strategies could be

applied. Therefore models are needed that aim at identifying the total potential

of data center demand response by analyzing all sources of power flexibility and

evaluate these on both implicit and explicit power flex markets.

To the best of the author’s knowledge, there are but two research groups

that are working on this endeavor: Wang et al. 2014 [213] develop a ’hierar-

chical framework for data center power cost optimization’. They start from the

observation that there is a high complexity both on the part of ’IT knobs’ to

control the data center power profile and on the part of the power flex markets.
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They analyze data center flexibility as being the result of two basic phenomena:

workload related activities either reduce or postpone some portion of the power

demand or they do both at the same time. Power flex markets in general, from

the point of view of the data center exhibit either peak prices or time-varying

prices or a combination thereof. A comparable, more detailed analysis of the

power flex markets, is offered by a former work of the author of this thesis, Kir-

pes & Klingert 2016 [124], who differentiate 6 power flex market pricing compo-

nents. Using their observation Wang et al. develop an optimization framework

where they minimize total cost of electricity plus any revenue loss, which is a

linear non-decreasing function of delay, under capacity constraints. The off-line

version of the problem is approximated using an algorithm for dropping demand

and evaluated using three real world demand traces from MediaServer, Google,

and Facebook.

In the context of the EU research project Geyser Cioara et al. 2016 [54] and

Cioara et al. 2019 [55] analyze all types of power flexibilities in the data center,

not only workload related ones. The first work focuses on the description of the

Geyser market places consisting of two versions of an auction-based energy mar-

ket place and a merit-order based ancillary services market place. Additionally,

they present a non-linear programming problem minimizing both the difference

between the adapted power demand and the target power demand and between

the adapted power demand and the original power demand, initiated by a de-

mand response signal. The power demand in the objective function depends

on the workload, on cooling and on both a thermal storage and a battery. In-

terestingly, the authors do not base the power demand of a component on its

origin, e.g. jobs submitted, but rather the demand of one time-slot depends on

its historical development and, in the case of workload power, on shifting ratios.

The cooling related power management strategy is not evoked by the manip-

ulation of the cooling set-point, but by the charging or decharging of a thermal

power storage. Regarding explicit demand response the evaluation presents so-

lutions for some specific events, as e.g. for an ancillary service request due to
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an unforeseen demand peak in the local electricity grid where the data center

reacts through reducing its power demand by 32%. In this first version of the

model there are neither prices nor cost. In the later work building on a similar

optimization problem, contrary to the first version, Cioara et al. 2019 [55] for

the case of geographical workload shifting account for relocation cost and for as-

sociated delay cost. However, as in that work temporal shifting is not included,

delay cost for extending the time of sojourn of jobs in the system are still not

integrated.

To sum up, even though the authors state that they include in ’a holistic

and integrated manner all major DC [data center] components that consume

electrical energy’ [55, p.3], on the theoretical part of the approach they model

concrete power management strategies instead of formulating a high level model

that leaves room for further instantiation of basic activities, as in Wang et al.

2014, who unfortunately are restricted to workload-based power management.

This means that Cioara et al. do not fully embrace the challenge that they had

set themselves.

Table 3.1 summarizes the main characteristics of the research presented in

this section.

3.1.2. Simulating Data Center Demand Response

A different method of evaluating the impact of data center demand response

on both the data center and the overall eco-system is simulation. Instead of

striving for an optimum, simulation analyses a set of different optional ’futures’

based on a common structure but different, controlled parameter settings. The

modeling framework for data center demand response presented in this thesis is

evaluated through simulation. Therefore, a small set of simulation approaches

in this area are presented in this section.
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Simulation of Software or Server Related Power Management

Strategies

The first work by Qureshi et al. 2009 [171] was introduced at the very

beginning of this section. It capitalizes on the regional and temporal price

differences in geographically distributed data centers and addresses the concept

of implicit demand response by rerouting traffic.

In 2012, Aikema et al. [6] presented a work that implements temporal shifting

of batch workload and the manipulation of servers’ performance states (P-states;

the combination of frequency and voltage pairs) as techniques to enable the par-

ticipation of data centers in the ancillary services market. Using the scenario

of the ancillary service products sought for by New York Independent System

Operator (NYISO), they see the highest revenue opportunity through services

where the participant is rewarded for the general offer of power adaption, even

though it might be activated only partially. The data center simulator is com-

posed of a pricing module that contains any pricing information, a workload

event generator that decides on workload related activities, an ancillary event

generator that starts from the event signal from the grid operator, and a cluster

controller that orchestrates all activities. The server power model is frequency

based; upon an ancillary service request, any running tasks are assumed to be

suspended within a 10 sec reaction time, and new tasks are not admitted until

the end of the event. This strategy neither takes into account the required adap-

tion sizing nor associated SLA cost. Alternatively the authors discuss the option

of data centers using their backup generators for ancillary services events, which

seems a non-disruptive method at first glance, but in reality is rejeced by data

center operators. Injecting data traces of the parallel workloads archive and

using ancillary services market data from NYISO, the authors find amongst

others that they can reduce the electricity cost of the simulated data center

taking part in the emergency demand response scheme by up to 50% not only

implementing the workload related strategies, but also activating the backup

generator.
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3.1. Data Center Demand Response

Chen et al. 2014 [51] view data center demand response from an electri-

cal engineering point of view, analysing the impact on the grid frequency; the

nature of the regulation service applied is then determined in dependence of

the total deviation from the nominal frequency of - in the U.S. - 60Hz. The

data center reacts to ancillary service requests through either temporally shift-

ing or shedding the workload which is comparable to the view of Wang et al.

[213] who understand adaptation as either shifting, shedding or combining the

two. These strategies are enacted through manipulating server consumption

by applying DVFS or putting them into a sleep mode from which they can be

awoken creating a time and power penalty which is taken into account as a

delay constraint. Using artificial traces based on a poisson process and a delay

constraint where at least 95% of the jobs need to be executed at maximum in

twice the minimum time to completion the authors simulate the participation of

a 1000 server data center in different regulation services. As a result, assuming

a ’typical’ server utilization rate, the simulated data center can reduce their

cost by 59.9% by participating in a regulation service scheme. Unfortunately it

is not clear, to which extent the set of data center and workload assumptions

represents the data center landscape. This work was obviously preparatory for

the development of EnergyQare 5 years later [52] (see section 3.1.1).

In a co-simulation approach that links data center activities to a smart grid

model Mäsker et al. 2016 [151] simulate the result of a set of different batch

workload scheduling algorithms on the electricity cost assuming that local elec-

tricity prices are proportional to the local REN generation. The two main

schedulers analysed in this work are the so-called ’green scheduler’ and ’en-

hanced green scheduler’. The difference between them is the level of certainty:

whereas the green scheduler takes into account current REN forecast informa-

tion in order to schedule according to expected REN based prices, the enhanced

version fakes complete knowledge and thus serves as a benchmark for the re-

liability of the REN forecast information. With HPC data traces in a very

rudimentary simulated data center environment and a deadline policy which

restricts the waiting time for a job to 4 days, the green scheduler results in an
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3.1. Data Center Demand Response

improvement of REN energy usage of 42.7% vs. 26% using the FIFO sched-

uler. The enhanced green scheduler with full knowledge of the imminent prices

reaches 46.3% which is only slightly better than the forecast based scheduling

approach.

Ahmed et al. 2017 [5] also analyse the impact of different batch scheduling

strategies, but contrary to [151] without a co-simulation. As [151] they assume

a FIFO scheduler as the baseline situation, switching to an HPC-DR scheduler

that implements job evictions of active jobs during demand response events.

These, however, are only enacted in case the power savings achieved through an

optimization of frequencies for the affected jobs, is not sufficient to stay within

the targeted power cap. Consequently the power model for a job running on

a specific processor is frequency based and assessed through a regression for

the utilized small set of applications emulating three different HPC systems.

As [6] and many others, also Ahmed et al. 2017 use a workload trace from

the parallel workloads archive, i.e. a different one than the ones used to create

the power models. Assuming demand response events happening in 20-80%

of the simulation timeslots where the power cap is suddenly reduced to 80% of

original peak power, the authors find that the jobs’ time to completion increases

between 4.4-21.0%. Unfortunately there is no information about the number of

jobs evicted.

Fridgen et al. 2017 [79], like the very first papers in the area, use the setting

of distributed data centers computing an interactive workload in order to sim-

ulate geographical scheduling. In this case, however, the incentive to migrate

workload is not dynamic pricing but the participation at event-based demand

response schemes. The example implementation envisions two data centers sit-

uated in two balancing power markets. Similar to the evaluation simulation

presented in this theses, the bidding procedure into the power flex market takes

place outside the simulation, i.e. the bids have been placed and accepted and

must be implemented in case of activation; the reward is paid independently of

activation. As soon as an activation of positive balancing power takes place, the
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3.1. Data Center Demand Response

’receiving’ data center increases the capacity in order to assimilate the work-

load from the other data center, and then the central controller dispatches less

workload to the ’giving’ data center and more to the ’receiving’ data center If

necessary the ’giving’ data center reduces power further, e.g. by switching off

idling servers. The simulation does not specifically model server power, but

uses an energy efficiency parameter that determines which power in relation to

the current capacity is necessary to compute one request. The evaluation re-

flects a scenario of two 50MW Google data centers envisioned in Germany and

Finland, assuming that both data centers can provide 15 MW. With regards to

the economic benefit of the data center, using a lower and an upper bound of a

positive balancing power price, the simulation assesses a net income of e1.4m

for the upper and a little less than a million e for the lower bound accordingly.

This simulation set-up represents a very specific situation using data from the

German and the Finnish power flex markets and anylizing the details of power

exchange; however, on the part of the data center the model remains superficial,

so that in theory the power could be provided by any other industry.

Simulation of Physical Infrastructure Related or Mixed Power

Management Strategies

As for the case of optimization, some simulation approaches implement more

than one power management strategy, however none of them apply a simu-

lation on job level. Tang et al. 2013 [200], for instance, use a very simple,

linear-regression based model of the workload and cooling demand in a small

300kW university data center that does not compute critical tasks. For an as-

sumed demand response event they manipulate the cooling set-point and the

utilization rate of servers; in essence this means that workload is being dropped,

and neither deadlines nor SLA cost are applied. The workload data traces in

the form of utilization rates on servers are partitioned into low, medium and

high utilization rate periods so that the reduction potential for each period can

be analysed separately. The authors are also taking into account that the cool-
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ing infrastructure scales less with server power in low utilization periods than

in others. In order to activate more power than achievable through dropping

workload, in times of demand response events, the data center could addition-

ally increase the cooling set-point from regular 26◦C to 35◦C. In high utilization

periods, this data center could thus reduce their power demand by 30%. This

simulation has hardly any external validity, as it is targeted solely at the said

data center. It has however the high advantage of using real data of a real

data center, so that workload data and power data are connected and internally

valid.

In 2014 Aksanli & Rosing [8] proposed a model for a data center to offer

regulation services using a data center’s batteries. The general setting is a data

center that already employs their batteries in order to avoid power peaks and

thus increased power charges. In the case of regulation services, additionally

the batteries are used to deliver positive or negative regulation power without

imposing any disruptive activities on the data center workload operation. Their

model is based on a data center’s average power consumption which can then be

increased or decreased by a potential contribution to regulation services. From

this they calculate a lower bound for the regulation reward and an upper bound

for the contracted regulation power that they have to deliver. They rely on a

utilization based server power model to determine data center power demand

and connect it with a battery model where capacity and degradation cost are

integrated. As most simulation research, also the model of Aksanli & Rosing

targets a very specific case.

Also Arnone et al. 2017 [15] focus on non-IT, non-workload related power

management in a data center to simulate the physical interaction of a data

center and the power grid in the context of primary and secondary reserve power

schemes. What singles out this work from others is the utilized data: contrary to

other research (with the exception of [200]) this paper uses data from a real data

center and data from the real distribution power grid in Italy where the data

center in located. The simulation is not economic-based, but physical, assessing
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Table 3.2.: Simulation research. EX/IM: explicit/implicit demand response,
TTC: time to completion

Authors Strategy/ies DR Area SLA cost?
[171] Qureshi 2009 geogr. scheduling IM (reg.&dyn. prices) QoS constr.
[7] Aikema 2013 temp. shifting, DVFS EX (ancil. services) no
[200] Tang 2013 WL dropping, cooling mgmt. EX (load reduction) no
[8] Akansli 2014 battery management EX (peak mgmt.) n.a.
[51] Chen 2014 serv.cons., shut down, DVFS EX (reg. serv.)IM(peak) QoS constr.
[151] Maesker 2016 temp. scheduling IM (REN-dyn. prices) TTC constr.
[5] Ahmed 2017 WL dropping, DVFS EX (random events) TTC monit.
[79] Fridgen 2017 geogr. scheduling IM (bidding strategy) no
[15] Arnone 2017 cooling, battery mgmt. EX (frequency control) no

how data center reactions in the case of power flex market signals impact both

the data center and the distribution grid. For an event of primary reserve power

the techniques employed are parameter manipulations of the lighting and the

cooling demand. Additionally, the power demand in the offices is reduced by

either a 5% or a 10% , and the data center can ramp up their backup generator.

Secondary reserve power is provided solely by switching on the data center’s

back-up generation. The authors simulate different situations of calamities in

the distribution grid where the data center should respond with said activities,

and they show that this can be accomplished. However, no cost or benefit issues

are taken into account; this is an exclusively physical simulation.

Table 3.2 sums up the main characteristics of the simulation research papers

referenced in this section.

3.2. Modeling Flexibility in General

There may be some characteristics of demand side flexibility which are inde-

pendent of the industry of the supplier. Therefore, in order to create a frame-

work for data center demand response, additionally to research in that area,

also papers that contemplate power flexibility in general need to be analysed.

Niedermeier et al. 2016 [158] discuss the suitability of integrated power plan-
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ning for an unspecified load to continuously adapt to the intermittency of the

electricity supply by RENs. The authors start from the scenario of an omni-

scient planner who, due to the involvement of different entities, needs to split the

overall planning task into creating a power plan, i.e. a target power profile, and

scheduling the load accordingly. The flexibility of this load is modeled alongside

the three characteristics of demand response events: frequency of changes, size

of changes and notification time. Based on this the intake of RENs is maximized

for a specific power plan under the constraint of cost which depend on above

mentioned characteristics of a demand response scheme. They evaluate their

approach using both data centers and electric vehicles as examples.

A different approach is offered by Barth et al. 2018 [26], who try to capture

all possible features of flexible loads in a linear optimization problem. Con-

trary to [158] they focus on the characteristics of the flexibility of loads instead

of the cost incurred in general by determinants of demand response schemes.

The basis of their model are jobs of any kind, be it computational tasks or

production tasks of any industrial process. These jobs have a set of different

attributes as duration, deadlines, resources needed, interdependency with other

jobs or ramping requirements, and the flexibility of these jobs is defined as

’slack’. The authors formulate a mixed-integer linear program that minimizes

the difference between the locally produced electricity and the power demand,

using said attributes of the ’jobs’ as constraints.

An EU research community around the FP7 project MIRABEL3 developed

the concept of so-called ’flex-objects’ which are the combinations of a power

profile of an electrical production or consumption process and the associated

time-frame of starting this process. The power profile of the process consists

of time ’slices’ each of which contains a minimum and a maximum power con-

sumption/production. The flexibility inherent in a flex-object is defined as the

product of time and amount flexibility. All this is explained in detail by Šikšnys

et al. 2015 [190] and Šikšnys and Pedersen 2016 [189]. The main problems are

3https://goflex-community.eu/Projects.html, accessed 08/06/2020
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the aggregation of flex-objects into larger, aggregated ’macro’-flex-objects that

contain the flexibility of the aggregated objects and can be scheduled easier due

to reduced complexity. The corresponding counter-activity is the disaggrega-

tion, which takes place after the scheduling of the macro-flex-object has taken

place. This general idea can be compared to the definition and characterization

of ’jobs’ in [26], however here the focus is not the optimal scheduling, but the

control of complexity in the face of a high number of objects or jobs and on the

observation that a power production process is can be viewed as a counterpart

to power consumption which can be characterized by the same criteria.

3.3. Relating this Thesis to the Presented Research

Despite building in general on the experiences of the related research intro-

duced in this chapter this thesis exceeds these approaches by introducing a uni-

fying modeling framework for data center demand response and an evaluation

through an architectural framework for simulation.

There is a small subset of research in 3.1.1 however, which like the presented

thesis aims at creating a framework for modeling data center demand response.

Wang et al. 2014 [213], for instance, even though presenting a ’hierarchical

framework for data center power cost optimization’ restrict themselves to work-

load related power management strategies. They also do not account for the

interdependence of different power management strategies, and even though

they do offer a variable and abstract model that they link with a simulated real

world situation, this high level of complexity is missing. Also, as opposed to the

suggested framework, they do not account for the option to invest into more

than one power flex market at the same time. However, in the offline model ver-

sion they explicitly formulate a stochastic dynamic programming, a feature that

is currently not included in the here presented approach. In a different strain

of work Cioara et al. 2016 [54] and Cioara et al. 2019 [55] aim at analysing all

types of power flexibilities in data centers, not only workload related ones. As
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mentioned before, they, too, fall short of offering a generic model.

The thesis presented here explores flexibility beyond the referenced research

insofar as it creates a model on a high level of abstraction linked to a general

data center architecture, in order to encapsulate all possible power manage-

ment strategies. It leaves the formulation of concrete strategies to the evalua-

tion which at the same time is an instantiation of the problem not only with

regards to parameter setting but also with regards to the definition of power

management strategies and power flex markets.

Also the simulation approach presented here stands out from other simulation

approaches. By offering a demand response enabled data center simulation

architectural framework it goes beyond the specific scenario implemented in

the concrete simulation system. Other power driven data center simulators are

available [125, 11], but to the knowledge of the author none offers the variance

of starting points for power management and interaction with the power system

as the one presented in the context of this thesis.

The simulation research papers presented in section 3.1.2 with the highest

overlap to the simulation instance created for this thesis are Mäsker et al. 2016

[151] and Ahmed et al. 2017 [5] as both of them simulate the impact of different

scheduling approaches. However, Mäsker et al. 2016 [151] though offering an

interesting scenario located in Germany, however, neither takes into account

effects of data center power consumers other than serves, nor, what is a major

difference, delay cost. Comparing the simulation of Ahmed et al. 2017 [5] to

the simulation instance presented in this thesis shows that Ahmed et al. are

restricted with regards to the available power management strategies. Also,

the data traces used for evaluating the impact of demand response are different

from the ones used to create the utilized power models. Evicting jobs that have

consumed already some energy and restarting them after the demand response

event from the beginning seems like a rather inefficient policy.

Contrary to the presented appraoch, most simulation works use workload

traces from a different source than the data center power models apart from
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Arnone et al. 2017 [15], whose simulation experiment is unfortunately not data

center specific and Tang et al. 2013 [200] whose model is regression based,

offering no explanatory power with regards to workload or cooling models.

Analysing research that models power flexibility independent on the flexibility

provider helped at delimiting the contributions provided here. Niedermeier et

al. 2016 [158], similar to this thesis, aim at modeling flexibility in a very

simple way, just using three parameters. This is a very interesting framework

but it takes a different point of view from the one presented in this thesis.

Whereas in [158] demand response events are analysed with regards to their

impact on cost, in this thesis the detailed reaction of the data center as a

whole is in the center of attention. Šikšnys et al. 2015 [190] and Šikšnys

and Pedersen 2016 [189] dealing with ’flex object’ also exhibit a very different

viewpoint on power flexibility: First of all, obviously, the current thesis analyses

exclusively power consumption processes. But furthermore, contrary to both

latter approaches, data center demand response modeling framework presented

here does not focus on scheduling flexible processes, but rather on extracting

inherent flexibilities by modeling different means to create flexibilities in the

power consumption of a data center.

Finally, Barth et al. 2018 [26] at first sight seem to pursue a similar approach

as the one presented here, albeit not specific to a consumer. The main difference

of the latter is that it focuses on the power flexibility, i.e. the ’slack’ as defined

by [26], whereas Barth et al. model the static and the dynamic part of the

system, albeit without including cost, without the elasticity to different rewards

as formulated in the current model, and without the link to demand response

schemes.
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4. Modeling Demand Response with Data

Centers

Having introduced necessary background information about the topic of this

thesis and the related work that it connects to, the first part of this chapter 4.1

presents methodology considerations. The second part Data Center Modeling

(4.2) is dedicated to the understanding of a data center; this forms the ground-

work on top of which the concept of demand response is added. Subsequently

in section 4.3, the idea of demand response potentials is mapped to the use case

of a data center. The chapter culminates in the presentation of a Modeling

Framework for Data Center Demand Response in section 4.4.

4.1. Methodology Considerations

As a first step the research is put into the context of the affected disciplines.

Figure 4.1 illustrates that this thesis is impacted by questions and methods

used in energy informatics, energy economics and information systems: Around

a decade ago energy informatics started tackling the challenge of balancing the

electricity injected into and extracted from the power grid using methods as

optimization and simulation. This issue is the bedrock of this thesis. The eco-

nomic side of demand response and demand flexibility is part of the research in

energy economics. Energy economics deals with questions of pricing electricity

under different market settings, of market design and regulative and business

rules. Also, amongst others it evaluates the economic potential of flexibility

and analysis its barriers. Economic methods and questions will help modeling

demand response strategies on all levels of the data center architecture. Finally,
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Figure 4.1.: Positioning the Presented Research in Scientific Disciplines

information systems researches into the creation of artifacts that support the

management of organisations. The presented work creates artifacts to assist

the applicability of demand response schemes in a data center thus advancing

the concept of demand response with data centers and linking to all types of

demand response potentials.

This section will explain the approach through a top-down process: at a high

level of abstraction the general methodology is introduced, and this methodol-

ogy is mapped with a specific approach to answer the current research questions.

4.1.1. Generic Research Methodology

A generic definition of a research methodology is given by Novikov and

Novikov 2013 [159] who state that the focus of research methodology is the

organization of research activity which essentially contains a design phase, a

technological phase, and a reflexive phase. In the design phase, a concept in-

cluding problem statement and the criteria for the assessment of the validity
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of results must be drawn up. Then a hypothesis, i.e. a ’model of future sci-

entific knowledge’ [159] p.78, must be constructed which in the technological

phase is probed either theoretically and/or experimentally. The technological

phase begins with research implementation: This is where theoretical models

are developed and subsequently tested, and as a result the hypothesis is ei-

ther supported or rejected. This phase finishes with evaluating and approving

the results. The reflexive phase deals mainly with research communication and

discussion in the research community.

Methods of research, as deduction, induction, analysis and synthesis, are ac-

tivities within this research process to reach the objectives defined in the course

of the research process (see e.g. [159, 139, 92]). They must be amended by basic

empirical methods as literature research, observations, testing, or measurements

[159]. How these methods are applied and instantiated depends on the research

question and research context (e.g. availability of data and tools).

4.1.2. The Specific Approach

For the research questions of the presented thesis (see chapter 1), which are

in short:

a) How to comprehensively model power demand flexibility in data centers

and represent the power market side? ?

b) How to reconcile such a high level of abstraction with specific data centers

and markets?

the following considerations help selecting a suitable set of methods:

Even though there is a lot of research that evaluates data center flexibility

either in terms of a theoretical potential or in terms of economics, the works are

generally dealing with very specific data center and market settings. From these,

often statements about a general potential are induced [144, 86, 145, 50, 19]

which may over- or underestimate the real potential that is impacted by a great

heterogeneity of data center characteristics, by business models, and regulative
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contexts. Also assessing the potential within a data center, business rules or the

influence of the workload composition are hardly ever mentioned, SLAs often

neglected [144, 213, 203, 19].

What is therefore needed is a generic model of demand response with data

centers that comprises typical potential technical and economic options. On

the other hand, such a general approach should be enabled to also represent

specific data centers aiming to know their flexibility potential and opportunities

to turn them into an economic benefit. A solution to the first endeavor is

to create a modeling framework that encompasses options for all categories

of power management strategies and power flex markets (see introduction in

section 2.2.2). In order to comply with the second requirement this framework

needs to be able to instantiate for a specific data center in a specific market

environment.

An approach that suffices the requests from both research questions is there-

fore the following:

To create a comprehensive model of demand response with data centers at

a high level of abstraction as a framework. Based on that, to further design a

generic simulation modeling architecture as a first step in a hierarchical eval-

uation. As a second step to apply this architecture to generate a simulation

system tailored to one specific setting.

This framework model is realized as a micro-economics based optimization

approach that integrates any kind of data center into a generic set of power

flex markets. This implies that this model should be able to represent power

management strategies on all layers of the data center architecture and should

be enabled to integrate any kind of power flex market.

In order to evaluate the general applicability of this model, a hierarchical

evaluation procedure is carried out in two steps: A generic architecture for

an event-based simulation model is generated that is able to implement the
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strategies expressed in the overarching modeling framework and serves as a

blueprint for a real implementation. In order to be encompassed by the modeling

framework also this simulation architecture should be designed in a modular way

that allows adding and removing strategies as for a specific data center these

depend on their chosen business model and technical conditions. The same

applies to the power flex markets: aside from the adaptation to local programs

the generic architecture should enable the addition and removal of flex power

markets.

In a second evaluation step this generic architecture needs to be corroborated

by an empirical evaluation using data from a real data center to instantiate into

a concrete simulation system. The objective of this evaluation is to show the

existence of a consistent chain of artifacts between the overarching comprehen-

sive modeling framework, the generic simulation architecture and the specific

simulation system based on a real data set. For the considered data center, ap-

plying the specific simulation system reduces their knowledge gap how to make

use of opportunities on the local power flex markets.

Through this hierarchical scheme the presented thesis tackles all three de-

mand response potentials: the theoretical and technical potential through the

integration of power management strategies on all layers of the data center ar-

chitecture, the economic potential through the integration in various types of

power flex markets and the consideration of data center cost, and the practical

potential through the applicability to all types of data centers and the showcase

for one specific data center.

This scientific approach matches well with the research methodology devel-

oped within the information system discipline: The design science research

model (DSRM) by Peffer et al. [167] and Hevner et al.[101, 102] as shown

in figure 4.2.

Therefore, the work-flow of this thesis was carried through along the lines of

the DSRM and is mapped to the six DSRM phases in the following way: The

first step in the DSRM Problem Statement and Motivation is the groundwork
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Figure 4.2.: Design Science Research Model [167]

of this thesis laid out in the chapters ’Introduction’ (chapter 1), ’Background’

(chapter 2) and through the analysis in the ’Related Work’, chapter 3. Step 2

Objectives is partially treated in the ’Introduction’ (chapter 1) and presented

in more detail in the requirements analysis (section 5.1.1) in chapter 5. The

Design & Development phase is realized through creating the general model of

demand response with data centers in section 4.4. The Demonstration phase is

realized as a hierarchical evaluation, as explained before: First, the framework

is applied to creating a generic architecture for a simulation model of demand

response with data centers Sim2Win. This is then instantiated as a concrete

simulation system Sim2Win-HPC that reflects the situation of a German HPC

data center (section 5.2) offering its flexibility on two power flex markets in

Germany (5.2.7). Subsequently this simulation system is evaluated for this

realistic case in chapter 6.

Communication, as the last step of the DSRM, is being undertaken with

journal and conference publications as well as through this thesis.

In order to follow this procedure, in the next sections the comprehensive

model of demand response with data centers is introduced.

As explained in section 2.2.3, demand response with data centers essentially
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means that a data center first assesses flexibilities in its power profile depending

on the remuneration from the (implicit and explicit) power flex markets. Then

these flexibilities are offered on the subset of available power markets that are

accessible to the data center and where an economic benefit is expected. Mod-

eling this interaction implies that as a first step a data center without demand

response activities needs to be understood and modeled. Only as a second step,

data center activities in order to integrate in demand response schemes can be

modeled.

Therefore, the next section presents a generic model of data centers that

allows to represent power management strategies which are the source of power

flexibility before the comprehensive modeling framework for demand response

with data centers is introduced.

4.2. Data Center Modeling

The understanding of a data center in this thesis builds on the operation-

based definition of Oro et al. 2015 ([160], see section 2.1). The envisioned data

center model needs to focus on integrating power flexibility into data center

operation and be designed in a way that power, operation and OPEX views

can be mapped with other architectural frameworks (e.g. [129]). In order to do

this, first a data center typology is created for the specific scenario of demand

response and then based on this an architectural framework is developed. The

latter is used to give an introduction to existing power, workload and cost

models that allow for the integration of power flexibility.

4.2.1. Data Center Typology

In order to understand the role and assess the demand response opportunities

of a specific data center as defined in [160], some further characteristics need to

be analysed. They are best subsumed using an archetypical characterization of
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data centers that has been developed as a former work of the author in order to

characterize the flexibility options of data centers [126]. The typology is based

on the following parameters:

Data Center Service Model The data center service model is the core service

or sometimes the set of core services that a data center offers to their

customers. Typical data center service models are colocation and cloud

services, hosting and application management. These will be explained in

more detail in the section 2.1.2.

Ownership The ownership determines to a great degree the rights of a data cen-

ter to shape its power profile by managing the workload. Main categories

are:

• Enterprise data center: it is owned by a company whose sole purpose

is to execute the workload imposed by the mother company.

• Commercial data center: a data center whose core business model

is selling IT services to their customers (also called a ’public’ data

center).

• Public sector/publicly owned data center: a data center that belongs

to a public entity and delivers IT services to the state and its citizens.

Tier level The Tier level is a broadly used classification of data centers created

by the Uptime Institute [207]. It defines 4 ’tiers’ alongside the categories

redundancy, maintenance, uptime, fault resilience and recovery as well as

power and cooling, all of which are evaluated from the point of view of

the overall reliability of a data center. Each higher category fulfills all re-

quirements of the lower categories and adds new ones or imposes stricter

regulations. As opposed to tier 1, for example, tier 4 data centers are fully

redundant, fault tolerant (meaning that there is no impact of faults on IT

operation), and have no maintenance down-times. The topology crite-

ria are amended with a document that requires methods for operational

sustainability linked to the tier levels [206].
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Workload In case a data center has the rights to manage the workload, the na-

ture of the workload (see section 2.1.3) determines if, how, and to which

degree a power management strategy can be applied. The main differ-

entiation is batch vs. interactive workload. The relevance of workload

characteristics for demand response will be explored in more depth in

section 2.1.3.

Figure 4.3 shows the result of applying the described dimensions to create

a typology. Columns show different ownership characteristics, and rows repre-

sent different core value propositions. Each column is further split into a ’high’

(summarizing Tier 3 and Tier 4) versus a ’low’ (summarizing Tier 1 and Tier

2) tier level, as the tier classification plays a major role in operational require-

ments and therefore has a high impact on a data center’s options for power

management. Finally, in the cases where workload management is part of the

value proposition, extra rows for interactive and batch workloads are added.

Except for the greyed-out area all combinations of the suggested dimensions are

imaginable.

In reality, it is difficult to consistently locate a specific data center in one cell.

For instance in cases where a data center offers a set of different service models

instead of one, occupying several of the cells which makes them hard to locate.

However, this typology enables a first assessment with regards to the nature

of power flexibility. This can be linked with power management strategies and

thus demand response activities as will be shown in sections 4.2.5 and 2.2.3.

Today, enterprise data centers still make up more than half of the data centers,

but the outsourcing trend is persistent [39, 161]. This outsourcing trend benefits

both colocation and cloud computing data centers, some of which are huge

hyperscale data centers like Amazon or Google data centers. For colocation,

predictions are between 7-15% growth/year, cloud computing is forecasted to

grow even faster, at around 16%/year1. For Germany, Hintemann et al. 2018

assess that the share of colocation data centers, in terms of IT space, will

1http://www.datacenterdynamics.com/content-tracks/colo-cloud/three-data-center-trends-for-2018/99760.

fullarticle, https://www.researchandmarkets.com/research/3v9rnq/global_colocation?w=5, both accessed 08/06/2020
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Figure 4.3.: A data center typology structuring according to core service, own-
ership, Tier level, and workload type

increase from 25% in 2015 to 45% in 2020 [108]. At the same time the share

of cloud data centers will grow to around 1/3 [104]. All of this, as mentioned

previously, will be at the expense of traditional and enterprise data centers.

4.2.2. Data Center Architectural Framework

Even though there is no typical data center, each data center contains a

set of typical components which are uniquely constructed and connected and

thus form a unique data center following the definition introduced above. The

structure of a generic architecture used as data center model differs depending

on the objective: it can be energy flow based, infrastructure (IT and supporting

components) based, level of abstraction based or of course building physics

based. The first three points of view play an important role in understanding

the focus of this thesis, and therefore they are merged to form one generic

architecture.

The proposed generic architecture (see figure 4.4) decomposes a data center
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Figure 4.4.: Data Center Layers of Abstraction

modeling view into four layers on a different level of abstraction. On the ground

layer the physical infrastructure is depicted; the virtualization layer that re-

organizes the physical infrastructure in order to satisfy the current functional or

contractual needs is positioned on top of it. The third layer is the software layer

that represents the connection point between the top layer, i.e. the applications

running in the data center, and the physical infrastructure layer or - if existent

- virtualization layer. The layers are described in more detail in the subsequent

sections.

The Physical and Virtual Infrastructure Layers

The ground layer of the architectural framework represents the physical data

center infrastructure with the following basic components (see figure 4.5): The

inter-connected IT infrastructure is made up of servers, storage and network de-
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Figure 4.5.: Data Center Infrastructure Components with basic Power and En-
ergy Flows

vices like routers and cables. The IT infrastructure can be rather homogeneous

as in HPC sites where heterogeneity stems solely from different procurement cy-

cles or heterogeneous as in many colocation data centers. It is fed with electrical

power (represented by black lines in the image) through power distribution units

(PDU) which itself draws power from the uninterruptible power supply (UPS)

that acts as contact point between the physical data center infrastructure and

the electricity supply in the form of on-site generation or the public grid. Often,

for safety reasons, there are several IT clusters separately protected by several

UPS units for a partial or full redundancy. Finally some cooling equipment is

located inside and often partially outside of the data center construction; in

most cases this is connected either directly to the power grid or to the UPS,

separately from the IT infrastructure. It takes up the heat produced by the IT

infrastructure (red arrows), e.g. through the heated air (in the case of liquid
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cooling this can also be done directly inside the server infrastructure), cools

it down and sends the cold air (or liquid) back to the IT infrastructure (blue

arrows).

Viewed from a higher level of abstraction, directly above the physical in-

frastructure layer there may be a virtual infrastructure layer, which contains a

virtual network and/or virtual machines (VMs). The VM layer increases secu-

rity and energy efficiency through a higher utilization of the underlying physical

server infrastructure so that (theoretically) non-utilized servers theoretically can

be put into idle or sleep mode. Also VMs allow for a simplified re-location or

temporal shifting of the workload that is computed inside the virtual servers.

The Software and Application Layers

On top of the virtualization layer, the software layer orchestrates virtual-

ization processes and mediates between the final applications and the virtual

or physical infrastructure. Of course the software layer is again composed of

different levels of operating systems, middleware and software closer to the ap-

plications that form the final workload of the data center, i.e. the core of data

center operation and thus in many cases the value creation layer.

This application layer in most cases drives data center operation. In the case

of HPC data centers this is to a high degree composed of batch jobs, in all

other data centers the workload is a unique mixture of batch and interactive

processes. [25] differentiate between platform-level software, i.e. the operating

system, common firmware etc. and cluster-level infrastructure software, i.e. the

resource managing software at cluster level, the two of which are comparable

to the here referred ’software layer’, and finally application-level software which

are the specific services that the data center is operated for. For the current

viewpoint the reason for the differentiation into the two software layers is the

interaction with the customer which is of course higher at the application layer.

This means, whenever the adaption of the data center power profile interferes
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with the application layer software, it is necessary to directly interact with the

customers with regards to QoS considerations.

This layered approach can also be used to understand the general types of

value proposition, or service model, introduced in section 2.1.2: Both wholesale

and retail colocation data centers offer services on the level of the physical and IT

infrastructure layer. Therefore their options to offer power flexibility are greatly

reduced compared to data centers that offer services on a ’higher’ architectural

level as data centers focusing on hosting services in the cloud computing service

chain or directly managing the applications for their customers.

4.2.3. Workload Modeling

Data center power consumption is driven by the workload. Without workload

a data center needs not be operated. Therefore it is not surprising that the

data center power profile is closely linked to the workload that it computes (see

section 2.1.3), be it on the software or the application layer. This relationship

is not linear as it is interfered by outside temperature, by the management of

the server clusters (e.g. with regards to the creation of hotspot or the on and

off powering of servers), and by the inertia of equipment like the cooling or

network setup. In summary, however, the correlation between the computed

workload and the total power profile of the data center is high (e.g. [79]).

This is supported by own findings: The pearson correlation coefficient between

the job power and the derived total data center power consumption of the

available HPC data traces is 0.83. This relationship on the other hand is highly

sensitive to the mapping of the characteristics of the IT system and the workload

[76, 185], as performance and efficiency are interrelated. These considerations

show that using the workload to manipulate a data center’s power profile has a

high impact.

Modeling the impact of the workload (and workload changes) on the power

consumption of servers requires two steps:
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1. The workload data needs to be made usable to be fed into the model.

2. A link must be created between the workload description and the power

consumption of the servers that compute it.

This section deals with the first step. Section 5.2.3 will be dedicated to the

second step for the concrete simulation instance of the demand response model.

In order to use workload information in a system, workload data can be either

injected directly or it can be modeled based on the data. In the presented case

the second option was chosen, mainly in order to enable a sensitivity analysis

asking questions about the impact of different compositions of the workload by

controlling specific workload features. The observations behind this decision was

that jobs in the available data trace contained have an extremely high hetero-

geneity which lead to the question how the results of the real-world simulation

would depend on this fact. The concrete workload model for the simulation

system Sim2Win-HPC will be presented in section 5.2.3. Here, based on Feitel-

son 2015 [76] some general modeling approaches are explained, all of which are

consistent with the presented modeling framework.

The least refined way of modeling data center workload is to combine and

replicated real traces, creating synthetic workload. This approach is often used

for testing models of data center demand response (e.g. [205, 145]); however it

is generally not used to evaluate the sensitivity to workload patterns or compo-

sition.

Descriptive workload models are the second modeling approach; they focus

on the statistical properties of data traces as a whole [76]. On a high level of

abstraction the shape of the workload is mapped with (a set of) distributions,

e.g. a bell curve or a Poisson distribution, and fitted with a certain number of

the moments of these distributions. When these distribution based workload

models are used in a system, the components of the workload in terms of jobs

and job descriptions are lost. On the other hand, sensitivity analysis can be im-

plemented easily. Sometimes, capitalizing on the differences in the distributions

is used to evaluate the sensitivity of results to the workload [222]. Examples
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for fitting distributions to real data traces are given by Postema et al. 2018

[169]; sometimes data are not even fitted, but Poisson distributions and their

parameters assumed [224]. This latter approach was used frequently for model-

ing inter-arrival times of interactive workload until the early 90s when extensive

studies showed that the Poisson distribution often is not representative for the

phenomenon [122].

The third type of workload models are generative models, which according

to Feitelso 2015 means to model the behaviour of the workload trace from the

inside by understanding how this trace is created [76]. This is why Feitelson

2015 also calls this an indirect modeling approach. Thus, in the end, if modeled

with sufficient detail the original workload trace is closely followed. For the

case of interactive workload this implies to understand user behaviour, e.g.

due to diurnal requirements. Also this approach often starts with statistical

descriptions, e.g. based on the data analysis of user sessions ([147, 76, 46]).

By changing the parameters this modeling approach can be used to control

workload manipulations in experiments e.g. for performance evaluation.

Another starting point to build generative models is to cluster the work-

load data into logical entities. Frequently applied clustering algorithms are

the k-means or MapReduce algorithms. Mathew et al. 2015, for instance, use

clustering for data pre-processing, in this case regarding time and geographic

location of interactive workload requests [152].

Based on historic traces, finally, predictive workload models are created using

data analytics based prediction methods as machine learning to extrapolate

historic data. In addition to the generative modeling approach they include

uncertainty. An example where these methods are typically used is energy

efficient scheduling in the cloud [201, 164].

The modeling framework for demand response with data centers is not limited

to a certain workload model. Principally, all kinds of models could be applied,

as long as they can be linked to the power consumption of the servers and other

workload dependent power consumers. The simulation instance Sim2Win-HPC
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that serves as evaluation for the proposed modeling framework uses a k-means

based clustering algorithm on the available data trace.

Apart from the necessity to choose a general workload modeling approach,

also the level of detail of the model must be determined. Obviously this means

to select a specific point on the trade-off curve between precision and complexity,

which is formally represented by the Bayes information criterion (explained in

[76]). It depicts the changing ratio between an increase of goodness of fit and the

complexity of the model. However, obviously the level of achievable goodness

of fit is always dependent on data quality and the level of detail in data. Hence

’...it is important to outline that the difficulty in obtaining workload data is

a critical factor that limits the exploitation of workload characterization.’[46,

p.48:30]. For the simulation system Sim2Win-HPC this turned out to be one of

the main issues.

4.2.4. Data Center Infrastructure: Power and Energy Models

The groundwork for adapting data center power to the requirements of the

power grid through demand response schemes is a power model of the considered

data center. Data center power modeling can be understood along the lines

of the data center architectural framework presented in section 4.2.2 in figure

4.4: Many data center models focus on the infrastructure layers and try to

capture the energy or power used by their different components or aggregations

of these components in infrastructure-based power models. Another group of

data center models analyses the energy or power consumption of a data center

from the point of view of the application layer, e.g. the jobs in an HPC site

or the interactive workload in a cloud or colocation data centers. In the end,

of course, these need to connect to different components of the infrastructure

architecture. Overviews about data center power and energy modeling are given

in [61] and [32].

The main requirement for power models used for modeling demand response

with data centers is that they offer steering knobs to manipulate the power
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profile of a data center taking part in one or more demand response schemes.

Therefore, for a general model of data center demand response that offers the

implementation of power management at all layers of the generic architecture

(see 4.2.2), power models are needed that on the one hand represent infrastruc-

ture components but on the other hand integrate workload models as needed.

The power models used in this thesis are based on literature for two reasons:

firstly, the chosen models have all been corroborated by many research papers

and secondly they are generally applicable in the context of the demand re-

sponse with data centers and specifically in the exemplary use case. Also, the

modeling focus is on power models as demand side management is primarily a

question of temporarily increasing or reducing power, and not on energy mod-

els. However, in some cases the power modification necessarily impacts the

energy consumption of e.g. a job, so that both aspects of electricity need to be

modeled.

As mentioned in section 4.2.2 the infrastructure level consists mainly of the

components severs, network, and cooling. This means that power models are

needed for all of these components that grasp the inter-dependencies on infras-

tructure level. They also need to sufficiently offer starting points for tuning the

power in cases of demand response events by interlinking the different levels

of the architecture to capture the impact of workload changes on aggregated

data center power. The following sections present an appropriate selection of

useful power models on infrastructure level and their connection points with the

software or application layer.

Server Power Model

There is a great variety of server power models that directly or indirectly

depend on the workload as the ultimate goal of operating a data center. One

option are utilization based models, like the classical model of Fan et al. 2007
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[71] that directly uses ’utilization u’ as a variable:

Pserv(u) = (Pmax − Pidle) ∗ u+ Pidle, (4.1)

where Pserv is the server power consumption, Pidle is the power consumption

of the server when it is idle, Pmax is the maximum power consumption of the

server, and u is the current utilization of the server. This simple linear power

model works quite well with many different servers, and comparing it with the

non-linear version of the model it needs much less calibration, traded-off for only

little improvement in accuracy [71, 176]. In order to calculate utilization of a

server from the workload injected, a plethora of different workload models can

be applied, many of which are based on queuing theory. A different approach is

to mediate workload and utilization via the CPU frequency used to compute this

load. This is possible especially, where the workload data include frequencies.

In order to be able to use CPU frequency as a knob to operate power adaptation

strategies, a model building on the work of Elnozahy et al. 2002 [66] suggests

itself. Server power is here defined as

Pserv(f) = A ∗ f 3 + Pidle, (4.2)

where A is a server and application specific constant that represents server

capacitance and the activity of the server gates, Pidle is the server’s idle power,

and f is the CPU frequency of the server. To derive the power consumed by

all servers, these need to be added up in the case of inhomogenous servers or

multiplied by the number of homogeneous servers n. For one server and one

application this power models works well, however, in the case of heterogeneous

workload and/or a heterogeneous server infrastructure either the constant A

needs to be modeled based on workload and server characteristics or some fitting

activities need to be employed.

The modeling framework for demand response with data centers is not limited

to a certain server model. The simulation tool used for evaluation applies the
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frequency based server power model (equation (4.2)), even though the model

had to be fitted due to the heterogeneity of the jobs in the data trace. Using

this model, however, has the advantage, that two power management strategies,

frequency scaling and workload shifting, can be implemented at the same time.

Cooling Power Model

Cooling power may be the most complex component in data center infras-

tructure from a physical point of view as it is the result of the interaction of a

plethora of different factors: buildings physics, wet bulb and dry bulb temper-

ature, workload characteristics and scheduling, rack positioning inside the data

center and many others (e.g. [166, 59, 188]). Again a model that offers starting

points for power manipulation is required considering that also cooling can be

viewed as a source of manipulation of the data center’s power profile. Also

influences like outside temperature and buildings physics, although important

for a general cooling power model, can be neglected for cooling power models in

the context of demand response as these determine the general level of cooling

power. Additionally, for a model relevant for demand response, only short-term

changes are relevant.

In the use case of data center demand response, cooling models can play

both an indirect or a direct role: indirectly, cooling models represent the effects

of changes from other components, most notably the server component e.g.

through workload changes or shutting down servers. However, cooling models

can also be used to directly manipulate the power profile of a data center through

the required server inlet or room temperature (depending on cooling equipment),

i.e. the cooling set-point. In order to offer as many steering points for a data

center’s power demand as possible, this kind of model is sought for in this thesis.

This requirement greatly reduces the number of available cooling models as very

often the inlet temperature, if taken into account at all, is a parameter and not

a variable. A power model that fits with this requirement is based on the metric

82



4.2. Data Center Modeling

’coefficient of performance’ (COP) of the cooling equipment which is defined as

COP = Q/W, (4.3)

where Q is the heat removed and W the amount of work needed for heat removal

[154]. Q is agreed to be equivalent to server power Pserv and W is generally

represented by power consumed through the cooling infrastructure [154, 218,

188]. The COP typically relates to a specific cooling technology, whereas a

related data center metric, the power usage effectiveness (PUE), equation (2.1)

introduced in section 2.1.1, relates to the data center as a whole. Where the

COP has been used for manipulating cooling power consumption in a whole data

center [87, 10] this was done in cases of a homogenous cooling technology. COP

is a promising way to go for modeling demand response with a data center,

as in 2005 a widely cited work by Moore et al.[154] discovered a quadratic

relationship between COP and the Computer Room Air Conditioner (CRAC)

supply temperature, i.e. the temperature CRAC emits into the room which

at the same time is a knob at cooling equipment, i.e. an active manipulation

option. The cooling power model based on this is:

Pcool = 1/COP (Tsup) ∗ Pserv ∗ n, (4.4)

where Pcool is cooling power, COP is the coefficient of performance, Tsup the

supply temperature of the CRAC, Pserv the server power and n the number

of servers assuming that all servers are homogeneous. Instead of Pserv ∗ n in

non-homongeneous cases
∑

i Pservi is used. For a complete infrastructure power

model of the data center, this component is added to the aggregate server power,

but of course it is also dependent on the latter.

Often however, traces for a COP depending on the output temperature or

the cooling set-point are not available. As a way out, dynamic PUE data which

correlate both on the workload and the outside temperature can be used as a

power model. Such a power model, as a major drawback does not allow to tune
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Figure 4.6.: Components of Data Center Power Consumption [177]

the energy profile based on cooling manipulations, but is added to aggregate

server power accounting for the interdependence of cooling and servers, so that

server-based manipulations of the data center trickle down onto the whole data

center power. In this latter case, a formula that is used frequently (e.g. [114,

145]) is:

Pcool = Pserv ∗ n ∗ (PUE − 1) (4.5)

This is also the version on which the cooling model builds that was used for

the simulation instance of the modeling framework. The reason for this is data

availability.

Other Power Consumers/Network Power

Server and cooling power generally account for about 80% of data center

power [172, 106]. Other power consumers (OPC) are storage equipment, net-

work equipement, power distribution and lighting.

As figure 4.6 shows, the shares or power supply, network, and lighting are

mostly low compared to server power (computing and storage): in the show-case,

power supply accounts for 10%, network and lighting both 5%. However, again

it should be pointed out that there is no such thing as a ’typical’ data center,
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so also the shares of the power consumers vary greatly. There is a great body

of work specifically modeling network power consumption, and some of these

also offer actuators to change the power demand of the network, e.g. [125, 118].

Basically, formula for network power devices like switches and routers consist of

a high number of components that have a static power consumption; only 5-15%

of network power consumption devices are dependent on the network load . This

leaves options to either dynamically turn on or off parts of the network with

obvious implications on the scheduling in the data center or to control power

through adaptive link rate mechanisms (ALR), so that the following formula is

a good basis for modeling network power [125, 148]:

Pswitch = Pchassis + nlinecards + Plinecard +
∑
r

nports,r + Pr, (4.6)

where Pchassis and Plinecard are static hardware power elements and
∑

r nports,r +

Pr the dynamic power part depending on the active ports nports,r with the con-

figuration rate r. As the share of network power at total data center power is

comparably low, and the share of the influenceable part of network power even

lower, the necessity of integrating network power management into the portfolio

of demand response power management strategies is debatable.

Depending on data availability and the real share of OPC-power in a data

center the components might be bundled and similar to the PUE be modeled

based on server power consumption using linear regression:

OPC = n ∗ Pserv ∗ fracOPC (4.7)

This is the approach used in the simulation system developed to evaluate the

modeling framework; the data traces available did not include any networking,

lighting or power distribution power data. In the overall comprehensive model

OPC are implicitly accounted for: in case the underlying data center power

modeling differentiates into server and OPC power models with actuators as

e.g. switching off unused network devices corresponding power management
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strategies can be expressed.

4.2.5. Data Center Power Management

Power flexibility in data centers can be achieved through a set of different

power management strategies. Contrary to energy management strategies, there

are no research papers that offer consistent typologies of power management

strategies encompassing the whole and any kind of data center. Therefore,

in a previous work, the author of this thesis categorized power management

strategies using the layers of the data center architectural framework (section

4.2.2) as criteria [126]. Additional criteria are the impact of a power strategy

on the internal (inside the data center site, in line with the architectural model)

or external energy consumption as well as, in the case of software strategies,

different workload characteristics and timings of the adaptation activity.

Figure 4.7 illustrates this categorization, sorting the strategies in rows ac-

cording to the architectural layers.

On the physical infrastructure level the following power management strate-

gies are currently discussed:

• Cooling set-point manipulation on infrastructure level changes not only

the power draw of the cooling system but also the energy consumption by

increasing or decreasing the inlet temperature for servers. The efficiency

of this measure is dependent on the cooling technology (via the coefficient

of performance (COP) [154, 166]) and the IT load (see e.g. [225, 187]). It

might be partially or fully compensated when an internal fan takes over

the cooling task.

• Using backup generators to support the grid in times of external demand

spikes or low power production affects the power draw from the grid but

it does not change the energy consumption inside the data center. This

model [54, 217] is the one which is applied in reality2 for explicit demand

2https://www.webair.com/webair-and-enernoc-turn-data-centers-into-virtual-power-plants-through-demand-

response/, accessed 08/06/2020
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Energy Impact of Power Management Strategy
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Figure 4.7.: Categorization of power management strategies

response, even though it is the least specific to data centers - any in-

dustry with backup generators can participate in programs like this. For

instance, using backup generator testing for ancillary services is sought

for by aggregators like RWE in Germany3 or ENERNOC in the U.S4.

• Energy storage in batteries or phase changing materials (PCM) changes

the power profile of the data center through the charging and de-charging

processes as described in [191, 8]. Depending on the size of the energy

conversion losses, it can also be sorted as a power management strategy

that changes energy consumption.

On the level of hardware, there are generally two approaches:

• Dynamic Voltage and Frequency Scaling (DVFS), in essence consists of

3https://news.rwe.com/flex2market-allows-back-up-generators-to-tap-into-the-electricity-market/, accessed
08/06/2020

4https://www.enernoc.com/sites/default/files/media/pdf/brochures/br_generators.pdf, accessed 08/06/2020
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manipulating the clock speed with which computation or memory access is

being carried through. Especially regarding the CPU clock, this strategy

has been given a lot of attention; the reason is a high impact of the

dynamic part of the power contribution of frequency in power models:

The power impact is cubic [178], whereas the impact on execution time

depends linearly on CPU utilization (see server power model 4.2). This

power saving strategy is discussed in detailed in the related work section

and in the context of the simulation system Sim2Win-HPC (see section

5.2.3).

• Powering on/off servers to save power and energy seems very obvious at

first glance. This strategy is not dichotomic, but can also include the

activation of different sleep states (C-States). However, due to a high

technical and contractual complexity this is still a challenge, so that an

EU research project was set up to deal with this strategy [28]. A lot of

research is dedicated to the efficiency and implications of shutting down

servers temporarily, often in combination with workload consolidation and

using this approach as a flexibility option for demand response e.g.[86, 87,

88, 175].

In principle, hardware strategies can apply to the data center as a whole, to

clusters, servers or even to specific applications.

Software related power management strategies can be described through three

different characteristics as figure 4.7 illustrates:

• The first issue is the decision-making time. Scheduling deals with decisions

that are taken before or at the time of starting a task or a job whereas

migration is implemented after computation has started, and it carries

additional issues like time-consuming migration overheads, the question

of hot or cold migration amongst others.

• Secondly, the impact on the energy consumption of the site matters. If de-

cisions are targeted at consolidating workload on few servers, even though

this may be a temporary activity, in most cases it leads to a shedding
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of load, i.e. an overall energy saving effect. In case software is shifted

temporarily and resumed later (or executed earlier from a queue), the

energy consumption remains constant or is only slightly changed due to

overheads. And in case, software is shifted geographically, as in the case

of federated data centers, there is for example no need to assess the risk

of a later peak, because the energy consumption is shifted to an external

site.

• And finally, these strategies can relate to either workload (WL) in terms

of jobs and tasks or to virtual machines (VM), each of these carrying

different challenges and options.

Software related power management strategies belong to the by far most tilled

research ground; a taxonomy on job scheduling in distributed systems in 2016

covered over 1000 papers [146].

Finally, there are some strategies that relate to the applications themselves.

These are only a few, and they have not been researched by many research

groups:

• Partial execution of software means that the application is stopped prema-

turely on demand. The idea is to use this for applications with a concave-

shaped quality profile with regards to CPU-time input which leads to a

constantly decreasing energy efficiency. Examples are web crawling or

searching algorithms. This strategy has been discussed mostly in the con-

text of increasing the system output via scheduling computation time for

specific applications and has for instance been implemented in Microsoft’s

search engine BING [99]. One work, however, uses this strategy for shap-

ing the power demand curve of a data center [221].

• Adaptive applications are applications that are created in a way that they

adapt their functionality to the energy context. This means that these

applications consist of a bundle of mandatory and optional features which

are combined dynamically according to the requirements of the power
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system and within the boundaries of the SLA [64, 48]. The finally realized

version of this kind of context-aware application is then dependent on

temporary, external power conditions. The idea is obviously implemented

in many applications that exist with basic and upgraded functionalities

(e.g. the so-called ’freemium’ business model); however, to date, it is not

used for data centers offering power flexibility.

All aforementioned strategies can be used to manipulate the originally planned

power profile of a data center in the case of requests to increase or reduce their

power demand (explicit demand response) or to match their power profile as

much as possible to a dynamic pricing vector (implicit demand response).

4.2.6. Data Center Cost

In general, data center cost can be differentiated into various categories: fixed

vs. variable cost, static vs. dynamic cost, cost that are affected through demand

response and others. Real estate and infrastructure cost make up a huge part of

the total cost of ownership, however this section addresses OPEX cost in a data

center that are potentially affected by power management strategies. Personnel

cost are deemed constant and therefore excluded here, which leaves:

• energy cost

• power cost

• SLA cost

• other cost

Power and Energy Cost

The energy bill of a company, payable to a utility, in most countries is made

up of cost for energy, i.e. a static or dynamic price per kWh as well as cost for

the power connection which is usually dependent on the peak power in a billing

period. The way that these cost are structured is subject to tariffs, which can
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be static (fixed price per kWh in all timeslots), variable (time-slot based pre-

fixed price per kWh) or even dynamic, i.e. variable and not known very much

in advance. Alternatively, a company of a certain size, can source electricity

directly at the wholesale markets as the stock market where prices are always

dynamic or through over the counter (OTC) contracts in order to secure large

amounts of variable or even static prices. Basic information can be found in

[182], information about tariffs in the context of demand response programs in

[204, 9], and an analysis of electricity contracts of HPC data centers in [56].

Cost can be therefore calculated as

Cenergy =
T∑
t=1

pet ∗ kWht + pp ∗max
t

(kWt) with t = 1...T , (4.8)

where the cost of energy Cenergy are simply the addition of the energy price in

timeslot t pet multiplied with the corresponding electrical energy kWht and the

peak power maxt kWt multiplied with the peak power price pp.

In the context of demand response the power and energy cost are an im-

portant framework condition. On the one hand, they make up the financial

frame that serves as a baseline for comparing the economic result of engaging

into power flex markets. On the other hand, they might be changed through

the implementation of power management strategies insofar as these impact the

overall energy consumption or the power peak.

SLA Cost

The second cost category that is at the core of an analysis of the economic

benefit of demand response strategies in a data center are SLA cost. SLA as

contracts that determine a required level of QoS were introduced in section

2.1.4. SLA cost apply as soon as the QoS level that is fixed by the contract

is undercut or exceeded. In many papers, SLA cost are a fixed price for each

’unit’ of surpassing the QoS requirement; in case of delay, the nearly exclusively

modeled QoS characteristics, this means that SLA cost increase over time [175],
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but in some cases they are just assumed to be proportional to the energy reduced

[4] or the workload not computed [60]. They can be differentiated according to

different types of workload, however, also the QoS definition itself can be service

dependent. A very generic model introduced by [82] for the case of a delay is:

Pe = y ∗ db, (4.9)

where Pe is the penalty, y a fixed penalty rate and db the delay calculated as

the absolute difference between the deadline and the expected termination. db

could also be interpreted as the degree to which any other SLA characteristic

has been surpassed.

In the current implementation of the simulation system Sim2Win-HPC the

cost is calculated not only depending on the time slots surpassed but also de-

pendent on the size of the workload in terms of nodes occupied. It builds on

formula 4.9, which needed to be adapted to fit the scenario. The procedure

and formula are explained in detail in section 5.2.6. SLA cost calculations for

’GreenSLA’ [128], i.e. the energy aware, dynamic versions of usually static SLA

(see section 2.1.4), are introduced in [38].

Other cost

Among the other cost server wear and tear cost can be considerable, de-

pending on the power management strategies applied: whenever this strategy

relates to shutting off servers, these cost apply; in all other cases they are not

applicable. They come in pair with cost for wake-up times and times to shut

down the servers, during which no service requests can be processed. In cases

where these cost are modeled, the wear-and-tear cost resulting in a reduced life-

expectancy of a server and e.g. expressed in a lower mean time between failures

are mostly represented as constants [175]. Server transition times are in some

cases modeled via the extra electricity cost [53]. Other cost as licensing cost

for management software or virtualization cost are regularly not included into
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Figure 4.8.: Data center power and workload modeling

demand response models. In the presented comprehensive framework model

they could be integrated into the cost for power management strategies.

4.2.7. Summary

In essence, based on a new architectural framework for data centers in the

context of demand response the previous sections explained, how to model this

scenario from different point of views: first power models of a data center in

general were introduced, then the data center was viewed from the point of view

of the workload computed. The categorization of power management strategies

analysed the data center from yet a different angle; and finally the question

how demand response strategies enacted inside a data center affect the OPEX

cost. The figures below summarize the results and link them to the architectural

based model of a data center (see section 4.2.2).

Figure 4.8 illustrates that the only layer of the architectural framework where

power is physically used and transformed into heat, is the physical infrastructure
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Figure 4.9.: Data center power management strategies

layer, although the other layers are the source of this power consumption. To

the best of the author’s knowlegde, in all demand response models the physical

infrastructure layer remains unchanged. It also refers to the introduced work-

load models, positioning them on the virtualization and the software layers.

Figure 4.9 maps the power management strategies introduced in 4.2.5 with

the layers of the generic architectural model. It should be noted again that data

centers that can pursue power management strategies on a ’higher’ level of the

architectural model, can also pursue strategies on a ’lower’ level, but not vice

versa.

Finally figure 4.10 summarizes the section that introduced the cost elements

of a data center’s engagement in power flex markets and maps these to the

affected layers of the general architectural model.
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Figure 4.10.: Data center cost items

4.3. The Potentials of Data Center Demand Response

Before designing the modeling framework for data center demand response it

is helpful to again differentiate between the theoretical/technical, the economic

and the practical potential of demand response as introduced in section 2.2.3.

This will allow to position the different elements of the framework.

4.3.1. The Theoretical and Technical Potential of Demand Response

with Data Centers

Demand response means to change plans; the originally planned power pro-

file of the data center is manipulated in order to meet the requirements of a

power flex market. In general, a data center can change their power profile by

implementing any of the power management strategies introduced in section

4.2.5.

Assessing the impact of applying aforementioned power management tech-
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niques to data center operation in the context of demand response leads to

the identification of the theoretical potential. To understand the challenges

related to this assessment, some exemplary considerations regarding the cool-

ing set-point manipulation and the temporary workload shifting strategy are

presented.

The cooling set-point manipulation is a good example for an endeavor that is

hard to control and very specific to the technical set-up of the data center. Re-

garding the size of the flexibility that can be offered, manipulating the cooling

set-point is obviously the more ’efficient’ the less efficient the cooling technol-

ogy, i.e. the higher the PUE of a data center. This makes it an interesting

option for many legacy data centers in Europe with a comparably high PUE:

in a 2017 sample of 289 European data centers, the average PUE was 1.8 [18].

However, in many cases a data center as a developing entity relies on hetero-

geneous cooling equipment; and cooling operation is therefore often based on

experience. Due to an uncertain outcome, management tends to avoid changing

settings. Especially, as also the net impact is unclear: increasing the server inlet

temperature leads, for instance, to a higher activation of the server fans [166].

To which degree this counteractive effect compensates the aspired result further

depends on the spatial distribution of servers in the room, on hot-spots from

different computation intensities as well as on the share of occupied space in

the compute room. The reason is that, contrary to other thermal buffers used

for demand response as e.g. a cold store, servers in a data center produce heat

themselves. If this exceeds certain limits, it threatens server health [10, 155],

so that the storage time span for cooling is rather short. As a conclusion, ap-

plying cooling set-point manipulation to market their power flexibility might

be a beneficial strategy for a data center with a high PUE, a homogeneous

cooling infrastructure, and a rather sparse population of the server room. The

best market to target would be a primary reserve market where continuous,

extremely short and fine-grained adaptations are required. However, all these

are general considerations that, as could be shown, are highly sensitive to the

details of the real scenario.
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The same applies to software related power management strategies; their

impact on power flexibility, but also on the quality of data center services is

dependent on many factors as for instance the composition of the workload,

the server utilization and the feasibility which is not guaranteed in the case of

heterogeneous server infrastructures and hardware requirement of the workload.

General statements are therefore again misleading. With regards to frequency

scaling, assessment is easier, as most of today’s servers offer frequency scaling

knobs and have a clearer model of the result of changing the frequency on the

servers’ power consumption. The impact on the quality of service, on the other

hand, depends a lot on the nature of the workload; e.g. in case of a high level

of task or job interdependence it is hard to make estimations on total execu-

tion time. Frequency scaling and temporal software strategies are the power

management techniques that will be more thoroughly analysed throughout this

thesis.

Integrating a data center’s back-up generator into the power grid is a rather

straightforward power management strategy that has no anticipated impact

on data center operation. It is therefore comparably simple to estimate the

technical potential of data center demand response for this strategy. This was

done for the German data center industry for the year 2014 by the Borderstep

Institute: using the results of their surveys, this study estimated an installed

power generation capacity in data centers of around 700 MW for said year [108].

In 2014 this was thus the upper limit of a theoretical demand response potential

with data centers in Germany, considering that the back-up generators enable

a data center to run independently from the power grid for some hours.

The technical potential of demand response with data centers is the sub-

set of the the theoretical potential which is enabled through the availability of

technical infrastructure for power control and especially for the communication

with the energy system. One issue in this context that is continuously being

overlooked is the fact that a data center is dependent on its equipment supply

network. The less this supply network offers technical equipment that helps at
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implementing power management strategies, the wider the gap between the the-

oretical and the technical potential. Examples are manifold, be it UPS batteries

that only recently allow frequent charging and discharging, specifying upper and

lower state of charge levels because demand response with data centers is slowly

becoming a real-world topic. Or be it options to manipulate CPU frequency,

which are also only slowly becoming best practice [2]. As technical equipment

is not the subject of this thesis, these issues will not be further elaborated here.

4.3.2. The Economic Potential of Demand Response with Data

Centers

The economic potential of demand response with data center is impacted by

both the cost of implementing demand response inside the data center as well

as by the income generated from the accessed power markets, that means

• the cost of power management inside the data center

• the cost structure inside the data center

• market entrance cost and market fees

• the remuneration from the power flex market.

The cost of implementing the power management strategies inside the data

center are composed of cost for initiating this new strain of income and of cost

for operating in this new mode (OPEX). These were introduced in section 4.2.6.

Apart from power management cost, the general cost structure inside a data

center plays an important - often neglected - role with regards to the economic

impact of demand response. There is a broad range of the energy cost share in

data centers: in some cases energy cost corresponds to around 10% of total cost

[136], in other cases - especially when the PUE of the data center in consider-

ation is high - energy cost can make up more than 50% of total cost [97]. As

[25] shows, the energy cost share is influenced by many factors, be it industrial

energy price, server prices or location (due to cooling needs). It is evident that
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the economic impact of engaging in demand response increases with the share

of the energy bill at total cost.

Market entrance cost can be considerable as in the case of prequalification cost

for entering into the German reserve market. When an aggregator collects the

flexibility of different industrial partners the prequalification cost are lower, but

on the other hand the flexibility income needs to be shared with the aggregator.

Finally, the remunereration for the offered flexibility influences the economic

benefit of data center demand response. Unfortunately, often this reward is

uncertain, as in the case of dynamic prices on the wholesale market or of bidding

results in some explicit demand response power flex markets.

The example of demand response using backup generators in German’s data

centers introduced in section 4.3.1 also coarsely assesses the economic potential:

Considering that in 2014 the estimated 700MW installed back-up generators had

been used in the secondary reserve market, according to Hintemann et al. they

would have achieved a benefit of around e44.000 per MW offered throughout

the whole year. Starting from a estimated average price of 0.14 e/kWh and a

total energy consumption of 10TWh in German data centers in 2014 [107], the

overall energy cost were around e100m. Contrasting this with an upper limit

income of e30.8m, at first this looks like an economically interesting option. Ac-

cording to the same study, one-off entrance cost would have been e3000-5000

for communication and control equipment [108] and thus acceptable. Unfortu-

nately, the study neither considers the cost for the diesel fuel, nor the number

of activations of the considered back-up generators. However, even though the

study is not very detailed, this small example shows that the economic potential

of demand response with data centers is worth considering.

4.3.3. The Practical Potential of Demand Response with Data

Centers

The gap between the economic and the practical impact of demand response

with data centers has its origin in three different aspects:
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• legislative regulations,

• organizational and business constraints inside the data center,

• human behaviour and an inherent inertia to stick to once adopted be-

haviour patterns

• lack of knowledge about demand response opportunities.

Legislative barriers with regards to demand response in general have already

been mentioned in the introduction to demand response (see 2.2.3). In essence

these are market entrance barriers; on the data center side, there are other

specific guidelines as for example the EU general data protection regulation

(GDPR) which in some cases might prohibit geographical workload shifting or

server consolidation. As a different example, labour protection law with regards

to temperature might reduce the options of the cooling setpoint strategy.

The first paper to raise the issue of real-world organizational and business

challenges to demand response in the context of data centers was presented in

2014 by Wiermann et al. [217]: Among others they specifically pointed out

issues of market complexity (see 2.2.3), risk management, and the necessity to

give the control of e.g. the UPS to an outsider. In most programs nowadays,

however, it is up to the data center to implement an adequate power manage-

ment strategy in the event of a demand-response requests. The entails different

control issues because in some data center service types management has only

limited control of the ’knobs’ of power management strategies. One example is a

colocation data center that provides just the housing and grid connection to the

servers of their customers; this business model excludes workload related power

managment strategies (see section 3.1.1). Apart from this specific situation of

colocation demand response, also other service models limit the economic po-

tential for demand response for data center operation due to contractual ties.

This issue is explored in more detail in a former work of the author of this thesis

[126].

The challenge associated with changing human behaviour patterns have been

discussed only rarely in the context of data center demand response. With
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regards to energy efficiency, some research deals with general attitudes in the

data center community that prevent even the shut-down of servers which have

been inactive for a long time [77, 216]. Also some surveys illustrate that even

in the face of economic benefit, management is often hesitant to deploy en-

ergy efficiency solutions [31, 100]. This is closely linked to the final issue, a

lack of knowledge about demand response opportunities including the general

awareness of the necessity to adjust power demand to power supply. This work

aims at both raising the awareness of data center management for demand re-

sponse opportunities and give them the means to understand its relevance in

the context of a specific data center.

The modeling framework presented in the next section in principle addresses

all types of demand response potentials; it focuses on the technical and the

economic potential though, only introducing some starting points for model-

ing some barriers that form the gap between the economic and the practical

potential.

4.4. A Modeling Framework for Data Center Demand

Response

The proposed modeling framework of demand response with data centers

builds on the modeling groundwork explained in the previous sections. It is

realized as an optimization model on a high level of abstraction, which serves

as envelope for the simulation approach used later for evaluation.

The framework focuses on the optimization of the mix of power management

strategies in the face of different power flex market conditions. It takes the view

of a data center ’selling’ its power flexibility, asking in turn for a compensation

that at least outweighs the invested effort. Thus regarding power flexibility as a

(service) product that the data center produces and then sells to a market opens

up possibilities to interpret it using methods from microeconomic theory. There,

very generically, creating a product is represented through a production function
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which describes how an input into the production process is converted into an

output sold on the market. Interpreting the variables of power management

strategies as the input into a flexibility production function has the advantage of

illustrating the dependency of flexibility on the degree to which specific current

settings are changed.

Basically, this point of view can be motivated with the situation of Amazon

suffering from the huge block of fix cost of servers sitting idle eleven months of

the year, waiting for Christmas. Then Amazon explored selling unused capaci-

ties and thus invented a new service product based on flexibility (albeit not on

power flexibility): the cloud.

Using production functions to represent this point of view, adding or removing

power management strategies is then simply a question of adding or removing

’products’ in the ’aggregate power flexibility product function’ (in short ’power

flex function’ ). As will be shown, this modeling approach potentially allows

to also include issues that help at closing the gap between the economic and

the practical potential. The main idea of this modeling framework is to change

the mindset of demand response with data centers from specific scenarios using

specific power management strategies to an overarching concept where power

flexibility is viewed as the result of a set of different strategies, combined in

the most efficient way. Additionally it helps to separate physical concerns from

financial concerns through the differentiation into power flex functions, quality

impact functions, and cost functions. Real world application can then be linked

and subsumed under this concept. This means that the optimization framework

can be concretized through different methods, e.g. linear or non-linear optimiza-

tion; however, it can also be reconciled with other methods as e.g. simulation

(as will be shown), as long as a system incorporates options to apply a set of

strategies to different types of data centers instead of limiting the scenario.
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4.4.1. Requirements

At the beginning of this chapter, in order to answer to the research questions

in 1.3 the need for a comprehensive modeling framework for demand response

that represents any type of data center on any power flex market was expressed.

In order to fulfill this need, such a modeling framework must fulfill the fol-

lowing set of requirements:

• R1: In order to be enabled to represent any data center the framework

must allow to represent all types of workload.

• R2: In order to be enabled to represent a data center’s all-encompassing

power flexibility, the framework must allow to use power management

strategies at all layers of the data center architecture (see section 4.2.2).

• R3: In order to be enabled to represent any data center service model the

framework must allow to add and remove power management strategies

as needed, optimizing among more than one if needed.

• R4 In order to represent the decision basis inside a data center, both cost

and technical dimensions of data center operation need to be accounted

for.

• R5: In order to express the offering of power flexibility on any power

flex market, these markets need to be represented by a set of constituent

components.

4.4.2. Assumptions

The microeconomic-inspired approach of creating a framework for demand re-

sponse with data centers offers a very broad conception, so that most limitations

are derived from assumptions on the level of the application of this framework,

e.g. using specific formula for modeling the power consumption of data center

infrastructure components. An exception is the baseline assumption that the

’behaviour’ of a data center can be consistently described using mathematical
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tools. This implies that even though the behaviour of data center managers

and operators may be subject to bounded rationality and other limitations, e.g.

due to social norms in the data center community as described in [77, 216], it

is consistent and not erratic.

4.4.3. The Data Center Side

As explained, micro-economic enterprise theory views an enterprise as an

organizational unit that creates a product (’output’ ) using resources (’inputs’ )

and a production technology represented by a production function. Producing

evokes cost; the products are priced according to a specific market structure.

In the case of perfect competition, an optimum is reached where marginal cost

equal marginal revenue [13].

Power Flex Functions

The concept suggested in this thesis is to translate the idea that a data center

offers power flexibility to a set of power flex markets into the creation of a new

data center ’service’: the aggregated power flexibility (i.e. the ’output’ ) created

through one or more ’power flex (production) functions’. The ’inputs’ into the

power flex function are thus the necessary power management tuning inside the

data center. The more inputs are used, the more power flexibility is generated

until a maximum capacity is reached. A power flex function can take positive

or negative values based on the direction of adaptation offered to the market:

In the case of power reduction, the flexibility offered to the market is positive, if

the data center increases its power demand, the power flex function is negative.

This is inline with the terminology on the reserve market where offering to

reduce power demand is on par with increasing the output of a power generator.

The aggregate power flex function is continuously increasing (or decreasing, if

negative), using (continuous or discrete) inputs. Mathematically spoken, a set

of power production strategies S = {S1, ..., Sn} and a set of production inputs
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I = {I1, ...Im} are used to produce the data center’s aggregated power flexibility

PFDC based on power management technologies ys,i as:

PFDC = PF (ys,i) with s = 1...n and i = 1...m, (4.10)

where ys,i is the power flexibility output of technology s at the input level i. It

is continuously increasing or decreasing:

PF (ys,a) ≥ PF (ys,b) if ia ≥ ib ∀PF ≥ 0 (4.11)

PF (ys,a) ≤ PF (ys,b) if ia ≤ ib ∀PF ≤ 0. (4.12)

This general function just expresses the dependency of the service output on

the inputs and the technology; in this generic version is does not determine

the shape of the aggregate power flex function which depends on the underly-

ing power management strategies and how they are interrelated. The technical

strategies applied in order to generate the power flex function can relate to any

architectural layer of the data center as explained in section 4.2.5. Combining

all strategies s that can be implemented in a way that optimizes their tech-

nical power flexibility PFDC without considering cost constitutes the technical

potential of power flexibility for this data center.

As a concrete example be referred to the flexibility induced by workload

shifting as introduced in section 5.2.5 and represented by equation (5.11) in the

context of the simulation system Sim2Win-HPC. In the same way, CPU scaling

can be used to offer power flexibilty; its power flex function in the simulation

system can be expressed by equation (5.12).

A very simple version of the power flexibility achieved through the shifting

strategy, under the assumption of identical jobs, would be:

∆P shift
DC = ∆J ∗ APJ, (4.13)

where ∆J are the shifted jobs and APJ the average power consumption per
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job. The maximum capacity of this power flexibility is then expressed in terms

of a constraint, e.g. in the case of the shifting power flex function as:

0 ≤ |∆J | ≤ Ĵ − j0 and j0 + ∆J ≥ 0, (4.14)

where Ĵ is the maximum shiftable workload and j0 the currently running num-

ber of jobs. The maximum shiftable workload is determined through technical

or business model constraints, or even due to a general risk adversity. The in-

dependent variable of the shifting power flex function is the shifted workload

∆J . Due to the assumption that jobs are identical this power flex function is

linear, as can be seen in figure 4.11, which is based on average values of the

considered German HPC data center. This data center on average runs 160

jobs with an average power consumption of 38kW; assuming that 12.5% cannot

be touched, the capacity constraint is to shift a maximum of 140 jobs. In the

case of the figure, ∆J is the the unit of the lower x-axis belonging to shifting

power flexibility PFshift, the maximum capacity for this power strategey would

be Ĵ = 140. The potential power flexibility gained (in kW) is depicted on the

y-axes. This is only a technical function, independent on cost or contracts.

Also the approximated frequency power flex function in this figure is based on

data of the considered data center; the default frequency is at 2.7 GHz, and the

frequency changes ∆F are depicted on the x-axes at the top. Here the capacity

constraint is given by the technical range of possible frequencies. Of course, in

reality, only distinct frequencies can be chosen; the curve is therefore created

by interpolation. To read this figure, it is important to keep in mind, that the

focus is on the offer that is made to the flex market by changing the current

configuration in terms of workload and frequency: If 90 jobs are moved away

from the current time window, the data center can offer 350kW to the market.

If the data center changes the frequency of all nodes running on average, e.g.

by increasing it from the default value of 2.3GHz to 2.7GHz (i.e. an input of

+0.4GHz) it can offer a negative power flexibility of -315kW. This means, in

case the electricity grid suffers from an oversupply, e.g. in the early afternoon
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Figure 4.11.: Power flex functions of shifting and frequency scaling

of a sunny Sunday, the data center can consume additionally 315kW.

In order to aggregate the selected power flex functions from the different

strategies into an aggregated power flex function that depends on all inputs

and all applied power management strategies, inter-dependencies of the strate-

gies need to be taken into account. For example, in the presented cases of

shifting and frequency power flex functions, it is obvious, that frequency scaling

can be applied only to the workload that has not been shifted away. This

might seem rather obvious but combining more strategies will render these

inter-dependencies very complex. So, sticking to the simple example, assum-

ing identical jobs and calling the power flex functions of shifting and scaling

∆PDC
shift = PFshift and ∆PDC

scale = PFscale accordingly, the aggregated form

of the power flex function is

PFDC(PFshift, PFscale) = PFshift +
j0 −∆J

j0
∗ PFscale (4.15)
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This can be either positive (i.e. reducing power consumption) or negative (i.e.

increasing power consumption), depending on the flexibility direction that the

power markets demand.

Quality Impact of Power Flexibility

The overall objective of demand response is to move power load out of or

into a certain time window. This means that power is mainly temporarily

changed, and therefore under a demand response scheme the size of the work-

load measured in number of tasks, services or other non-energy related metrics

system-wide remains constant. What might change, however, is the quality

of service (QoS) related to the service creation, depending on the power man-

agement strategy applied. The QoS level might be increased, e.g. if jobs are

pre-poned, or decreased, e.g. if they are postponed. The quality of service

impact of a power management strategy can be generally expressed by a set of

quality impact parameters QI = {QI1, ..., QIl}, each of them being subject to

change, depending on the strategy s applied and the degree to which inputs i

are employed:

QIr = QIr(ys,i) with s = 1...n; i = 1...m and r = 1...R (4.16)

with the same characteristics as the power flex function above:

QIr(ys,a) ≥ QI(ys,b) if ia ≥ ib ∀ QI ≥ 0 (4.17)

QIr(ys,a) ≤ QI(ys,b) if ia ≤ ib ∀ QI ≤ 0 (4.18)

Again, this quality impact function may be positive or negative and is con-

tinually increasing or decreasing accordingly in its determinants. A specific case

of quality impact is delay, which is also the most frequently metri applied.

For the examples introduced above in the context of the Sim2Win-HPC sim-

ulation delay is the only QoS considered. The definition of delay is based on
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the physical extension of the time that the job is in the system, as ’delay’ is a

contractual term, contrary to ’runtime’ or ’shifting time’ which represent timing

issues (see explanations in section 5.2.6) . In the case of shifting, the shifting

time is just the difference between the originally planned starting time and the

new starting time. It is determined by the desired shifting duration, which

is obviously impacted by power market requirements. For the frequency scal-

ing power flex function the change of the runtime can be calculated using the

formula 5.15 in section 5.2.6.

As these examples show, even though the quality impact depends on the

strategy employed, it needs not correlate directly with the shape of the power

flex function. Similarly, the technical quality impact does not directly affect

demand response transactions - this effect is mediated exclusively via the cost

of power flexibility as will be explained in the next section.

Cost functions

As explained in section 4.2.6, analysing a data center from the viewpoint of

demand response means to abstract from static cost as e.g. infrastructure re-

lated capacity investment cost, but focus on the cost elements that are impacted

by power management strategies. The cost elements enumerated include energy

and power cost, SLA and other cost. Mapping this to the suggested modeling

framework for demand response with data centers leads to the following cate-

gories:

• the cost of quality impact CQI , which ultimately depends on the technical

characteristics of the power management strategies in combination with

the SLA contracts,

• fixed cost of each strategy cfix(s), where applicable, e.g. the cooling ma-

nipulation might require human intervention

• and changed power cost CPC as by increasing or reducing power, the power
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charge part of a bill might be changed5.

Additionally, for each power management technology, the QI cost element

can be weighted with a subjective risk adversity index RI (aggregated or per

strategy). This allows to calculate two instances of the cost function, an objec-

tive and a subjective one. The optimization or simulation can then be carried

out in parallel for both instances and the results compared. In the current eval-

uation of the suggested modeling framework, this option is not further explored,

i.e. the risk factor RI is set to 1.

The QoS impact cost is ultimately dependent on the power flex function via

the quality impact function and therefore represented by

CQI =
R∑
r=1

CQIr(ys,i) with s = 1...n; i = 1...m, and r = 1...R , (4.19)

with the same characteristics as the equations for the power flex and the quality

reduction functions 4.4.3 and 4.16. As mentioned, the QoS change per se does

not impact cost; this is always mediated via SLA. Even a high QoS impact QI

does not lead to cost as long it is not part of an SLA breach.

As to fixed cost, they are reflected by the term

Cfix =
∑

cfix,s ∗ bs, (4.20)

where cfix,s are each strategy’s fixed cost and bs is the corresponding boolean.

By the nature of power flexibility strategies, they change the power used by

a data centre. Depending on the tariff of the data center, this does not lead

to a modification of the power charge unless the peak power in the affected

billing cycle is changed. In that case however, e.g. when the power flex function

is negative and the power demand of the data center increased, the potential

5When time aspects are added to the picture, additionally change of energy cost must be accounted for.
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changed power charge must be integrated as a constraint:

CPC ≥ pc ∗ (P0 + PF − P̂ ) and CPC ≥ 0, (4.21)

where CPC denotes the cost of the power charge change, pc the power charge

per kW, P0 the current and P̂ the maximum power of the considered billing

period. The additional constraint CPC ≥ 0 makes sure that this applies only if

the peak power P̂ is surpassed. In the unlikely case that the tariff does not have

a power charge based on a threshold, the constraint can be simply omitted. In

the same way energy cost can be included in a time-depended instantiation of

the model, if the tariff is per kWh.

The cost effectiveness of different combinations of SLA and quality impact

is illustrated in figure 4.12: In some cases (lower left quadrant) there will be

no quality impact as long as the power flex strategy is implemented within a

technically determined, unthreatening scope, e.g. cooling set-point manipula-

tion within ASHRAE boundaries [223]. In other cases (upper left quadrant)

the QoS impact might be monitored but it is either not ruled in the SLA or

within flexible boundaries of e.g. GreenSLA [27, 98] so that it is equally not

cost-effective. Alternatively (lower right quadrant), cost may be generated, but

they are not linked to QI, as for example fixed cost of applying a power man-

agement strategy. And finally (upper right quadrant), there are SLA based cost

for delay or other QoS criteria which enter directly into the cost function.

All these options are captured in the modeling framework due to the general-

ity of the approach. The total cost CDC is then just an aggregation of the cost

elements:

CDC = CQIDC
∗RI + Cfix + CPC (4.22)

Connecting again to the example illustrating the simulation based approach

in this thesis, the cost CQIDC
would be given by equation (5.20).
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Figure 4.12.: Cost effectiveness of different contractual situations

4.4.4. The Market Side

The market side of the modeling framework is represented by the ’turnover’

and associated cost that the data center can achieve via engaging on power flex

markets. Here, the point of view of realizing a benefit from power flexibility

is stressed. This implies that both types of power flex markets, explicit and

implicit ones, are addressed in a similar way, although with regards to financial

accounting one is attributed an income whereas the other, implicit demand

response, just reduces the energy bill.

Power flex markets are modeled based on the respective pricing components

and the constraints typical for these markets. From the point of view of the

optimization there is no big difference between explicit and implicit power flex

markets, as they typically carry similar constraints and as the bidding process

into explicit markets precedes the optimization so that the prices are given for

both market types. The reasons for this is that bidding rules are highly het-

erogeneous around Europe. Integrating this in the modeling framework would
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reduce the clarity of the approach and increase the computational weight. The

same applies to the different contractual weights of the explicit versus implicit

power flex markets: implicit power flex markets are comparable to an offer that

the demand response candidate at each point in time can accept or ignore,

whereas explicit power flex markets bind the market participants once the bid

has been accepted. This contractual situation of different strengths of binding is

not specified in the presented approach. It can be modeled on a more concrete

level.

For implicit demand response, therefore, the remuneration for power flexi-

bility is modeled via the difference between the baseline power price and the

dynamic power price ∆p exactly as it is explained for the case of the simulation

system Sim2Win-HPC (section 5.2.7). For explicit power flex markets, there a

different options: Some offer rewards for each kW adapted, which is then simply

expressed as reward re. Others, like the French capacity market, offer to buy

power certificates, that relate to a specific amount of power to be reduced (in

kW), which are then reimbursed in terms of the number of certificates traded.

This can be modeled through a variable z which is the number of certificates

of size Z offered z = PF e

Z for the power flexibility PF e sold to market e6. As a

constraint, this number of certificates must then be a natural z ∈ N.

The turnover function containing the revenues from all accessed markets e =

1...k is then derived by adding up the different market revenues:

T =
∑

T e =
∑

(peZ ∗ ze + ree ∗ PF e + ∆pe ∗ PF e) with e = 1...k, (4.23)

where T e is the turnover on market e, peZ the price per power flex certificate z,

ree the reward per unit power offered on market e, PF e the power flexibility

sold on market e and ∆pe the difference between the baseline power price and

the power price on the implicit power flex market e. In this equation the first

term is for trading certificates on an explicit power flex market, the second

6In order to maintain a better overview which variables or parameters are ’market related’ vs. ’data center
related’, the index for the markets is kept as a superscript instead of a lower script.
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models power based explicit markets as reserve markets, and the third term

represents implicit power flex markets. The following constraints that capture

requirements from the specific power flex markets relate to the revenue function:

PF e ≥ M̌ e ∗ be (4.24)

Cmarkets =
∑

(ce ∗ be + f e ∗ PF e) (4.25)

bigM ∗ (1− bes) +Ds ≥ De ∀ s = 1...n, e = 1...k (4.26)

M̂ e ∗ bes ≥ PF e ≥ M̌ e ∗ bes. (4.27)

The first constraint is typical for both explicit and implicit demand response

power markets and ensures that the data center’s offer equals or surpasses the

minimum power M̌ e that can be traded on the respective market e. PF e is

again the power offered to market e, M̌ e the minimum required offer and be the

corresponding boolean (activated for the case of engagement in this market).

This is a typical market entrance barrier that can be found on all types of power

flex markets. Using a boolean, fixed market entrance costs ce are formulated in

the same way as fixed costs in the second constraint of the cost function 4.20.

Total market cost are derived by adding the fees that are composed of a rate

for a fee f e which is proportional to the market turnover PF e (constraint 4.25).

In explicit demand response power markets like ancillary services markets

the market operator offers a reward for power adaptation PF e which is defined

through notification time, frequency of change, adaptation size, [158] and the

required adaptation duration De for market e. This means that if some part of

the flexibility created by strategy s is offered in market e, then the corresponding

delay Ds must be greater than the adaptation duration required by the market

De. This is expressed in constraint (4.26), where the boolean bes signifies the

’engagement’ of strategy s in market e, activated by the bigM parameter. The

behaviour of the boolean is defined in the last constraint (4.27): As soon as a

strategy s delivers power flexibility to market e, the total power flexibility PF e

must be within the minimum requirement M̌ e and the maximum requirement
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M̂ e of the considered market e.

As an example, the markets modeled in section 5.2.7 can be used: the op-

timized EPEX day-ahead prices are represented by the price delta, and the

rewards on the secondary reserve market are the ones that were determined

via the access to post-market data and the construction of artifical bids. Both

markets have minimum offer requirements M epex = 100kW and M res = 5MW 7;

specifically the secondary reserve market has high market entrance cost that can

be modeled as annuities and thus as fixed cost cres.

4.4.5. Optimization Objectives

The optimization framework can utilize any objective that uses the variables

defined in the model. The most obvious optimization objective is the net benefit

of the data center, expressed by:

max (
∑

T e −
∑

Ce − CDC) (4.28)

under the constraints explained in the preceding sections above.

However, in some cases, other issues than maximizing the economic benefit

might be accounted for. Here are some examples that illustrate that even though

this is not yet covered by the presented modeling framework, it can be amended

accordingly:

• It might be possible that the data center’s objective for demand reponse

is to be a ’good citizen’; this is what a survey of some 20 publicly owned

data centers unearthed as guiding principle for the interaction with their

grid operators [165]. In order to reflect this in the modeling framework,

the economic benefit of the data center might be turned into a constraint,

requiring that benefit needs to be at least e.g. non-negative. The optimiza-

tion goal might then for example be to minimize the difference between

an exogenous power parameter (vector) determined by the grid operator

7This was the limitation in 2014; meanwhile this threshold has been reduced to 1MW.
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and the overall power (as P0 +PFDC) as suggested in the general demand

response framework of [26].

• Other possible optimization objectives might be the maximization of the

utility of the data center or of the overall eco-system of data center and

power flex markets. This would entail creating a new utility function,

which would build on the current cost and revenue definitions; in case

additional variables were to be introduced, this would then also require

an additional set of constraints. An example might be a utility function

that not only contains the data center benefit but also a ’good citizen’

component that extends the economic optimization criterion through a

technical part.

The optimization criterion pursued in this thesis, however, is benefit maxi-

mization. The result of this optimization is then the economic demand response

potential of the data center.

116



5. Evaluation: Simulating Demand Response

with Data Centers

The 5th step of the DSRM, after problem identification, objectives’ definition,

design and demonstration phases, is dedicated to evaluating the artifact created.

’IT artifacts can be evaluated in terms of functionality, complete-

ness, consistency, accuracy, performance, reliability, usability, fit

with the organization, and other relevant quality attributes.’ [102,

p.85]

Evaluating a model means to confront it with real data and behaviour. Eval-

uating a modeling framework as the one presented in section 4.4 cannot be

directly carried through in this way, as the mathematical formulation is too

abstract. Instead, as explained in section 4.1.2 a hierarchical evaluation was

designed that first creates a simulation framework on a slightly lower level of

abstraction as the modeling framework, which is in a second step instantiated

through a concrete simulation system. The latter can then be evaluated through

real data and behaviour.

In the context of a model, correctness is often tested as ’Validation and

Verification’ (mostly called V&V [212]) which are defined in the following way:

’Verification deals with the assessment of transformational accuracy

of the artifact and addresses the question of ”Are we creating the

artifact right?”

Validation deals with the assessment of behavioral or representa-

tional accuracy of the artifact and addresses the question of ”Are

we creating the right artifact?” ’ [22, p.150]
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This implies that the instance created needs to undergo V&V in order to un-

derstand if the model is internally consistent (’creating the artifact right’) and

if it considers the functional requirements, i.e. in terms of ’creating the right

artifact’. This terminology was coined in the Software Engineering discipline

(foundations in e.g. [197, 212]).

When thus the correctness of the system in terms of V&V has been estab-

lished, the responsibility of the Software Engineering discipline ends as system

requirements have been fulfilled. The responsibility of the Information Systems

discipline stretches further and additionally demands an evaluation in terms of

usefulness.

In order to conform to the evaluation process illustrated above the simulation

architectural framework Sim2Win was created that follows the general model

as laid out in section 4.4. This was then instantiated into an implemented

simulation system Sim2Win-HPC using the data of a German HPC data center

and German power markets. The latter can be evaluated in terms of V&V, and

then its usefulness can be tested.

The first section of the current chapter therefore introduces the general sim-

ulation architecture Sim2Win, and the second presents the simulation instance

Sim2Win-HPC in detail. The last section of this chapter validates this instan-

tiation against the original data (without demand response).

5.1. The Architecture of the Simulation Framework:

Sim2Win

A generic simulation architecture that matches the framework for demand

response with data centers as introduced in 4.4 needs to fulfil the following

set of requirements which are in line with the requirements for the modeling

framework presented in section 4.4.1.
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5.1.1. Requirements

• R1: In order to be enabled to represent any data center the framework

must offer starting points for all types of workload, generally being differ-

entiated into batch and interactive workload, being provided via physical

servers or VMs.

• R2: For the same reason, all infrastructure layers of the data center

architecture (see section 4.2.2) need to be represented by offering power

models for each of them (cooling, server, VMs, other power consumers like

network and power distribution).

• R3: In order to allow for various types of power management strategies,

the simulation framework must offer starting points for manipulating the

power profile also at all layers of the data center architecture: Infrastruc-

ture and software layers.

• R4: To satisfy the claim that the simulation framework comprehensively

implements demand response with data centers it needs to be enabled to

simulate several different power management strategies at a time. Ad-

ditionally, it needs to be sufficiently flexible to integrate more than one

strategy and to allow for the later addition of new, yet un-identified power

management strategies.

• R5: The economics of demand response with data centers require that in

the simulation the applied power management strategies impact the cost

of the data center, focusing on operational cost as laid down in section

4.2.6. This is mediated via components that influence these cost, i.e. SLA

and energy/power cost.

• R6: To represent the reaction of the data center to explicit demand re-

sponse requests, the simulation framework has to provide an event-based

component that handles such requests, initiating power management ac-

cordingly.

• R7: In order to simulate the reaction of the data center to implicit demand
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response, the simulation framework must be enabled to continuously adapt

to dynamic electricity prices.

5.1.2. Architecture

To address the above presented requirements, the generic architectural frame-

work Sim2Win was developed. It builds on a CloudSim-based simulation frame-

work created in the context of the EU project DC4Cities [63]. This basis was

an event-based simulator aimed at simulating the reaction of a virtualized data

center for interactive workloads to adaptation requests from explicit demand re-

sponse markets. In order to become a generic solution for supporting demand

response with data centers within the demand response with data centers frame-

work, it needed to be redesigned. The main feature of this original simulator

that was used to fulfill the requirements specified above, specifically require-

ments R1-R4, is the modular principle as illustrated in figure 5.1.

The architecture of Sim2Win follows a tree-like structure that has its root

at the SimulationController component. It is structured into two parts: the

Facade and the Simulation Core. The SimulationController component,

the only component in the Facade part, is designed to provide functionality

for the control of a simulation. Through its connection to a database, the

SimulationController is able to conveniently monitor and store simulation data.

All the other design components are located in the Simulation Core part. By

modeling data center demand response through this architecture the data center

takes center stage; the demand response scenario, especially the requirements

from the power flex markets, are represented from the viewpoint of the data

center. The reason for this is the general aim of this thesis, that wants to

understand and promote the economic potential of demand response with data

centers, rather than the effectiveness and the interaction of data centers with

the smart grid in the context of demand response.

The DC component represents a complete data center within the simulation

framework. And as shown in figure 5.1, all other design components in the
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5.1. The Architecture of the Simulation Framework: Sim2Win

Simulation Core part are subcomponents of the DC component ensuring

that the framework properly simulates the effects of the data center’s power

flexibility onto energy consumption and data center cost:

Hardware: There are three main hardware components, that represent the

physical infrastructure layer of the data center architectural model (see

section 4.2.2). These are the servers and the cooling infrastructure, and

other power consumers (OPC) as e.g. network components. One sin-

gle server is modeled by a distinct instantiation of the Server component.

The Cooling and the OPC components represent the entire Non-IT infras-

tructure. All three components have a PowerModel as a subcomponent

which models the power consumption of its respective parent. The power

model of each component might reflect the interdependence of the sub-

components, which is most obvious for the modeling of server and cooling

power. In case a power model of one of the components enables power

management strategies, the respective DR[X]Strategies component, which

is a subcomponent of the power model, is activated. Some of these strate-

gies, e.g. reducing CPU frequency, form one part of a combined demand

response strategy of the DRBatchStrategies component. The structure of

the Hardware component satisfies the requirements 2 and 3.

Scheduler: The Scheduler component is responsible for the execution of batch

workload. It contains at least two direct subcomponents: one Schedul-

ingStrategy and one or several DRBatchStrategies. The SchedulingStrat-

egy component defines the regular execution schedule for a data center’s

batch workload. In case a demand response event is called, during this

event the basic scheduler is replaced by a DRBatchStrategies component

which changes the way that the workload is executed e.g. by shifting it

in time or space. All possibly implemented DRBatchStrategy components

define strategies to use several different techniques like re-scheduling or

migrating jobs in order to to provide power demand flexibility. These

components address the requirements R3 and R4.
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5.1. The Architecture of the Simulation Framework: Sim2Win

BatchJob: The BatchJob component represents a single batch job. As shown

in figure 5.1 BatchJob is a direct subcomponent of DC. It has two sub-

components, the SLAModel and the RuntimeModel. SLAModel models

the SLA specifications for each batch job separately. The same applies

to the RuntimeModel which represents the amount of time a batch job

needs for execution. Of course applying a demand response strategy, e.g.

on the level of the scheduler or the server, may have an impact on the

runtime of a job. These components are constructed in a way to fulfill the

requirements R4 and R1.

LoadManager: For the case of interactive workload, the LoadManager com-

ponent takes care of workload management by specifying for each point

in time, which services the data center currently offers and how many

servers are allocated to each offered service. Thus, it has similar respon-

sibilities as the Scheduler component for the batch workload and its basic

design is the same: It has two subcomponents, one for regular workload

management and one for demand response events: The first is the Man-

agementStrategy and the second the DRMgmtStrategies component. Here

all possibly implemented DRMgmtStrategies components define demand

response strategies relating to interactive workload in response to incom-

ing demand response events as e.g. reducing the CPU frequency. Also

application specific demand response strategies like the partial execution

of web crawling search services [99] can be subsumed here. These compo-

nents address the requirement R3 and R4.

Service: Usually, a dynamic or interactive workload consists of services (e.g.,

web service) that are offered by a data center and that can be used by the

customers via a network connection. The Service component models such

a service and acts thus as the counterpart of the BatchJob component.

Similar to the latter the Service component is a direct subcomponent of

the DC component, which indicates that also each service instance is al-

located to a distinct data center; this setup satisfies requirement R1. The
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5.1. The Architecture of the Simulation Framework: Sim2Win

Service component has two subcomponents, which are namely the User

and Cloudlet components. The User component is designed to model one

distinct user of a service. This is done, to enable the possibility to model

single SLA contract for each distinct user, thus fulfilling requirement R5.

This implies that the SLA component is a subcomponent of the User com-

ponent. The SLA component can also take the form of a GreenSLA and

thus model the support of the customer for demand response activities

of the data center. An instance of the Cloudlet component, the second

service subcomponent, represents only a part of a complete service. Thus

a service can be split into several parts that run on different hardware

devices. Thereby, each Cloudlet instance can have a different utilization

of the hardware device it runs on, which is represented by the Utilization

component.

VM: The VM component represents a single virtual machine running on the

server hardware of a virtualized data center. It is a direct subcomponent

of the DC component and not of the Server component, although a virtual

machine is executed on a physical server. The reason is that a VM can be

interrupted in its execution. When this happens, the current state of the

VM is stored on the storage hardware of the data center. At a later point

in time the stored state can be used to assign the VM to another server and

restart its execution. Therefore, a VM is not necessarily linked to the same

server during the entire execution process. The subcomponent associated

to an intentional activity as the one described above is the DRVMStrategy.

When the modeled data center uses a virtualized execution environment,

both, the individual batch jobs and the services can be executed on virtual

machines, so that requirement R1 is accounted for.

EventHandler: The Sim2Win framework uses an event based internal com-

munication mechanism. Events in the Sim2Win framework are defined

as anything that changes the current state of the data center (with the

exception of a demand response request), for example a new job wait-
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5.2. The Simulating System: Sim2Win-HPC

ing to be scheduled, so that requirement R6 is addressed. This set-up

requires a component that handles the events that occur during a simu-

lation. This task is taken care of by the EventHandler component. In

addition, this component is responsible for allocating the data center’s

hardware resources to the current workload.

DRRequestHandler: As the name suggests, the DRRequestHandler compo-

nent handles any request that is related to a data center’s provision of

power demand flexibility in the context of explicit demand response. This

component satisfies requirement R6.

EnergyPrice: TheEnergyPrice component finally represents the amount of money

a data center has to pay for one electricity unit consumed. Depending on

the implementation, this price might be static or dynamic over time. In

the case of dynamic prices, using the corresponding scheduler this leads to

implicit demand response adaptation. This component satisfies require-

ments R5 and R7.

This setup stresses the overall aim of the simulation framework approach to

place the operative decisions of the data center in the center of attention. This

implies that data center infrastructure is a given and the simulation framework

does not deal with capacity planning challenges.

5.2. The Simulating System: Sim2Win-HPC

In a second step, as explained at the beginning of this chapter, the architec-

tural framework is instantiated into a concrete simulation system representing

a specific data center and specific power flex markets. The main challenge of

this endeavor is to identify appropriate power models that offer activators for

the desired power management strategies and match the power models with the

available data. Because, as will be explained in the subsequent sections, there

is not only a trade-off between goodness-of-fit of a model and the amount and
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5.2. The Simulating System: Sim2Win-HPC

granularity of data needed, but more than that, data availability is a major con-

straint of modeling. This is the groundwork set up that needs to be validated

before the core task of the simulator, implementing demand response as a con-

cretization of the suggested optimization modeling framework can be enacted.

In the presented thesis, an instance of the simulation framework Sim2Win was

created using a set of data traces from a German HPC data center for 2014

and of two local power flex markets that the data center could potentially have

accessed in 2014.

These data traces comprise the power related job data of each job of the

available data center in 2014 including start and ending times and the maximum

frequency. Also available are monitoring data from the IT room, which in

addition to the server data contain other power consumers like network and

power distribution. And finally, a dynamic PUE trace was provided, relating

the total IT power consumption to the cooling power consumption. In order to

represent the power flex market side, it was decided to represent one explicit

and one implicit German power market that the data center could have accessed

in 2014: the EPEX day ahead markets and the secondary reserve market. More

information on the scenario is given in section 6.1.

It would have been desirable to compare this simulation instance against a

second simulation of a data center with a different business model and therefore

a different set of power management strategies. As such data were not available

this comparison is left for future work.

Figure 5.2 illustrates which part of the simulation framework is implemented

as a real simulation by greying out the components that are not used here. This

pre-selection of components to be modeled illustrates clearly how dependent on

the data center set-up both the technical and the economic potential of data

center demand response are:

As can be seen, the components relating to interactive workload are not

needed in this case; also the VM part is not applied. The reason for this is that

the data center at hand does not use virtualization but its scheduling strategy
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5.2. The Simulating System: Sim2Win-HPC

assigns physical resources, i.e. more than 9.000 identical compute nodes. Based

on data availability, two demand response strategies could be implemented using

the DRBatchStrategies as well as the DR[X]Strategies component: a time-based

workload shifting approach and the manipulation of the CPU frequency. Again,

due to data availability, neither a cooling demand response strategy (DRCool-

ingStrategies greyed out) nor any OPC demand response strategy (DROPC-

Strategies greyed out) could be applied. The simulator Sim2Win-HPC is coded

in Java.

The subsequent sections will explain the models instantiating the compo-

nents of the Sim2Win-HPC architecture for the available data traces and the

interactions among these components.

Assumptions

The following assumptions reflect the situation in the considered data center

scenario and the granularity of data available.

• A1: There is no virtualization layer in the HPC data center considered.

Therefore jobs cannot be stopped and continued at a retained execution

status.

• A2: Once started, a job has to be completed. This is connected to as-

sumption A1, but an additional constraint: Due the data center’s policy,

jobs that are running must not be stopped prematurely. The strategy ap-

plied by [5], i.e. evicting of started jobs, albeit technically feasible cannot

be implemented.

• A3: In the case of shifting workload, it is assumed that the earliest possi-

ble time for a job-start is the first timestep after the end of the considered

demand response event window.

• A4: The data center does not use predictors for price or workload changes.

This implies that there is no knowledge about the workload development

for scheduling.
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5.2. The Simulating System: Sim2Win-HPC

• A5: Once the information of explicit or implicit demand response events

is received, the data center can implement frequency changes in real time.

• A6: In the case of shifting workload, neither the execution time of a job

is changed nor does the rescheduling involve a further delay overhead.

• A7: The degree of parallelization of a job does not impact its energy

consumption; i.e. a job running on a few servers consumes more time and

less average power but the same energy as if the same job were running

on many servers consuming less time and more average power.

• A8: The servers are homogeneous, i.e. nodes are deemed identical.

• A9: Idle servers are not shut down, but kept running at all times.

• A10: There are no upfront cost for implementing power management

strategies, e.g. no investment cost. This means that the cost function of

the power management strategies does not include a ’fixed cost’ element.

5.2.1. The HPC Workload

Data center activity begins with a workload being injected into servers in

order to transform this workload into results. Modeling the HPC workload

consists of two issues: in general the available data set needs to be modeled in a

way that is can be matched to a suitable server power model. ’Suitable’ in this

context means that it offers the possibility to manipulate the CPU frequency,

as this is one of the power management strategies to be modeled. Once this has

been set up, the workload needs to be scheduled first in accordance with the

original schedule, but second in a way that allows to shift workload, as this is

the second power management strategy to be modeled.

Applied Workload Model

The HPC data trace available for the current implementation of the simu-

lation framework contains amongst others a job data trace for the whole year
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5.2. The Simulating System: Sim2Win-HPC

of 2014. For each job there is information about the start and end times, the

average power consumption, the calculated energy consumption, and the maxi-

mum allowed frequency. After data cleaning the data set is made up of around

400.000 entries. The data trace and data treatment to make it available for

power modeling will be described in more detail in section 6.1.1, that intro-

duces the scenario in detail.

In order to be able to analyse the sensitivity of results towards the composi-

tion of the workload, it was decided to pursue the generative modeling approach

using the method of clustering jobs into job classes. The most meaningful cri-

terion was deemed to cluster into application types that have similar runtimes.

However, information about application types was not available.

The challenge was therefore to determine how to model the workload com-

position based on the available information of job characteristics. The chosen

approach enhances the external validity of this simulation that needs no addi-

tional data than what is available via regular monitoring equipment.

In order to link the workload data with a server power model that allows

power manipulation, the key information apart from the job duration and av-

erage power consumption per job is its maximum allowed frequency. With

this piece of information a server power model based on the frequency could

be chosen. This lead to the conclusion to cluster the job data into a suitable

number of classes based on the maximum allowed frequency, the average power

consumption and job duration. Thus, the records grouped in one cluster have

similar power consumption statistics, so that the average node power consump-

tion can be modeled; however, they are not records of the same application

type, even though the ratio between memory and computing effort within one

class is comparable.

The records were clustered using the k-Means implementation of the WEKA

framework. The k-means clustering algorithm is non-hierarchical, simply mini-

mizing the squared Euclidean distance within a cluster, i.e. between each data

point and its assigned cluster centroid. The ’k’ represents the number of spher-
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Table 5.1.: Average job characteristics of selected clusters. FR is the maximum
frequency, AP the average power per node, JD the job duration, n
the number of nodes, E the energy consumption, OC the occurrence
of entries in this class

No. FR(GHz) AP(W) JD(hours) n E(kWh) OC
High

AP

7 2.52 378 16.33 6.1 2,658 2,061
9 2.51 349 12.13 5.9 2,452 6,317
20 2.43 320 11.58 5.3 2,249 3,448

Low

AP

10 2.36 23 0.02 310.8 159 1,296
21 2.36 44 0.07 121.3 307 8,612
16 2.32 49 0.16 10.4 343 29,835

High

JD

17 2.49 149 43.14 1,389.4 1,044 184
0 2.50 183 38.29 441.0 1,286 932
7 2.52 378 16.33 6.1 2,658 2,061

Low

JD

10 2.36 23 0.02 310.8 159 1,296
14 2.66 132 0.06 6,782.5 929 211
21 2.34 44 0.07 121.3 307 8,612

ical clusters. Information about the k-means algorithm can be found in e.g.

[46, 117].

The challenge of the k-means algorithm is to settle on a number of desired

classes. This setting decides the trade-off between goodness-of-fit and modeling

complexity.

So, for the available data set, different ’k’s (3, 5, 10, 20, 30, 40, 50,100) were

utilized. The resulting clusters were then used to evaluate the goodness-of-fit

with the selected power model after the implementation of some other fitting

steps (see section 5.2.3). In the end it turned out that beyond clustering into

10 classes the increase in the goodness-of-fit declined quickly, and that beyond

using 30 cluster there was no real added value. Therefore, the workload model

finally used consists of 30 clusters.

Table 5.1 shows the main characteristics of each cluster and the number of

entries for the 9 clusters with the highest and the lowest power consumption.

As can be seen from table 5.1, the clusters mirror the high heterogeneity

of the underlying job data. The assigned job class is then amended to the
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job data set so that it can be used to compute the average node power in the

simulation model. For the sensitivity simulation runs, a subset of these clusters

can be selected to evaluate the impact of different workload compositions on

the simulation results.

The job data, however, are ’horizontal’ data; that means that the data trace

contains information per job: In order to be able to create the link between the

workload model and the server (=node) model, the job data had to be trans-

formed into time-series data for average node power consumption. That means

that at each point in time, the following information needed to be aggregated

per node: node activity (idle/not idle), ID of jobs running on each node (that

includes the number of nodes a job consumes), average power consumption of

this job. Figure 5.3 illustrates this procedure: each row signifies a node, each

column as time slot. The nodes can be run at different utilization levels, i.e.

CPU frequencies, so that e.g. job 1 consumed 100W and job 3 just 80 W. Also

a job can occupy more than one node. Aggregating the job level information

transformed in node level information for each time slot leads to a power profile

as shown in the lower part of the image.

5.2.2. Scheduling Alternatives

In the current implementation of the simulation framework, five schedulers are

used, which are regularly applied to the job-based workload, but for sensitivity

analysis can also be applied to a subset of the job classes. The schedulers, which

will be described later in this section, need to use the SchedulingStrategy in-

terface within the scheduling package. This ensures that the scheduling strate-

gies implemented can be easily exchanged.

1. the HPC redesign (HPC-RE) scheduler ; it schedules the workload in a way

that the original time series of the job data is fully retraced. The results of

this scheduler are used as the baseline simulation run. In the architecture

framework this is the concrete model for the ’scheduler’ component.
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Slot 1 2 3 4 5 6 7 8 9 10

Job 1          (1 node) 100 100 100 100

Job 2          (2 nodes) 250 250 250

Job 3          (1 node) 80 80 80

Job 4          (3 nodes) 400 400 400 400 400 400

Power (W) 100 100 430 430 730 400 400 400 400 400

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10

Po
w

er

Time Slot

Power Time Series

Figure 5.3.: Schematic representation of creating the link between job data and
server power (interpolated data points)

2. the shortest time to deadline first (STDF) scheduler; it sorts all

jobs according to the imminence of the pending deadline and schedules

those first whose risk is highest to cause a delay and thus SLA cost. This

scheduler is the default in the case of a demand response event and is

comparable to threshold time approach from [82], but extended through

an additional cost saving optimization.

3. the longest time to deadline first (LTDF) scheduler; it sorts all

jobs vice versa to the imminence of the pending deadline and shifts those

first whose risk is highest to cause a delay and thus SLA cost. This

scheduler is enacted after the end of a demand response event in case

workload was shifted.

4. the continuous adaptation (CAS) scheduler; it optimizes the benefit

of implicit demand response by evaluating all possible adaptation options.

5. the first in first out (FIFO) scheduler; it sorts jobs according to
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submission time. It is used to analyse the sensitivity of results to SLA

cost.

The HPC-RE Scheduler

The HPC-RE Scheduler is activated in case that there is no explicit demand

response event: During normal operation jobs are read from the workload file

and then take a status of ’submitted’ so that they can be scheduled. As long

as there is no demand response event, to schedule with the HPC-RE scheduler

the information from the input file including job ID, planned frequency and

number of nodes, start time and end time of the job are employed, and the

starting times are used as scheduling information in order to retrace the original

workload. This scheduler is switched on as a default. When a demand response

event is finished, the HPC-RE scheduler is resumed as soon as possible, i.e.

when the original workload curve and the new curve meet again. It then tries

to schedule all the jobs that were not started at their original starting time. In

case this is not possible the jobs are added to a waiting list and the scheduler

uses backfilling.

The STDF Scheduler

The STDF scheduler is activated at the beginning of an adaptation (demand

response) window and implemented as DemandFlexibilitySchedulingStrategy

component that concretises the DR Batch Strategies component in the case of

a demand response event. A demand response request is defined by adjustment

height, direction (in terms of positive or negative reserve power), and duration.

It takes basically the same information as the original HPC-RE scheduler, how-

ever without the start and end times. Additionally it needs the information

about the job class as created through workload modeling.

The STDF scheduler uses the auxiliary job parameter ΘSTDF (x) which is
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defined as

ΘSTDF (x) =
tSLADeadline(x)− testEnd(x)

n(x)
, (5.1)

where x is a batch job, tSLADeadline(x) the SLA deadline of x, testEnd(x) the

estimated end time of x, and n(x) indicates the number of nodes that x utilizes.

The jobs are then organized according to the ascending values of ΘSTDF (x).

The workload remaining in the event window is smoothed through a linear

optimization approach which for the case of a positive power flex offer is for-

malized by:

minimize z

subject to − z +
J∑

j=1

xji ∗ APJj ≤ αi, 1 ≤ i ≤ T

− yj +
T∑
i=1

bji = 0, 1 ≤ j ≤ J,

(5.2)

where z is the minimum power consumption sum in all timesteps within the

optimized demand response event window, T is the total amount of simulation

time steps in this event window, J is the total number of jobs that run at least

partially therein, yj is the number of simulation timesteps a job j is supposed to

run within the concerned window, pj is the average power consumption of job j,

αi is the total power consumption of all jobs that are not shiftable at timestep

i, and bji is a boolean that indicates whether job j runs at the ith timestep of

the demand response event window or not. A ’simulation time step’ is defined

as the combination of a simulation period and the number of nodes a job uses

in order to differentiate different job sizes. The first constraint makes sure that

the objective being minimized is actually the maximum power consumption sum

out of all power consumption sums within the corresponding event window. The

second constraint ensures that each job in the optimized schedule uses the same

number of timesteps as in the original schedule in order to replicate correctly the

job size. Additional constraints enforce that jobs are completely executed (due
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to assumption A1 that there is no virtualization layer) and that the number

of occupied nodes does not exceed the capacity at any point in time. As this

linear optimization problem can get very complex depending on the setting, a

timeout prevents obstructive computing times, reverting to a local minimum of

this problem. To solve the linear optimization problems the java API of the

lp solve framework [34] is used, which is an open source linear programming

system.

The LTDF Scheduler

Jobs delayed due to shifting are rescheduled using the shortest time to dead-

line (STDF) heuristic in a reverse order as longest time to deadline version. It

uses the auxiliary job parameter ΘSTDF (x) as a basis but this time ordering

the jobs according to descending values of ΘSTDF (x). This makes sure that the

shifted jobs by having larger ΘSTDF values are executed after the non-shifted

jobs in order to minimize the total delay cost by not adding extra delays to

non-affected workload. The earliest restart-time after the shift is the first pe-

riod after the event has ended. This means that there is no backfilling during

the requested adjustment duration.

The CAS Scheduler

The CAS is aimed at minimizing the energy- and SLA cost of a job, which

can be both shifted and scaled down through CPU frequency scaling. As a

basis for the energy cost calculation it uses the estimated end time of a job

testEnd(x), which obviously is impacted by both frequency change and shifting

the job in time. Therefore, for each job, the optimization procedure calculates

the energy and delay cost for each potential combination of frequency and start

times of this job for the next set of simulation periods. The resulting values

are compared and the one is picked which offers the highest benefit compared

to the baseline situation. If a start at the optimal timestep is not possible e.g.
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due to the heterogeneity of the workload, CAS chooses a local optimum. If a

job cannot be scheduled at once, the scheduling process waits in order to ensure

that large jobs will be scheduled eventually. As in this process backfilling is not

implemented and large jobs may not be able to be scheduled this scheduler in

some cases is not able to schedule the total load.

The FIFO Scheduler

The FIFO is a standard scheduler often used as a baseline scheduler (e.g.

[5, 151]. It takes the submission time information provided by the job data

trace and sorts the jobs accordingly. This scheduler is used often in the absence

of SLA constraints, and this is the reason why it is implemented here: in the

sensitivity runs that evaluate the influence of SLA cost on the demand response

results it replaces the STDF and LTDF schedulers at the time of the demand

response event.

Interplay of HPC-RE, STDF, and LTDF Schedulers

Figure 5.4 illustrates the application of the schedulers for the case of an ex-

plicit demand response event where SLA cost are to be tracked and minimized.

During normal operation, the HPC-RE scheduler is applied. When a demand

response event is issued, in the figure signified by the green lines, that requests

from the data center to reduce their load between time slots t1 and t2, the

SDTF scheduler is applied, scheduling first the jobs with imminent deadlines,

minimizing the remaining load. Thus the SLA cost inside the event are mini-

mized. Once the event is finished the LTDF scheduler manages the workload

until the originally planned baseline is reached again, ensuring that no extra

SLA cost are imposed on the non-affected workload. Once the two instances of

the job power curve meet again, the HPC-RE scheduler resumes the scheduling.
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Figure 5.4.: Application of HPC-RE, STDF and LTDF schedulers during a de-
mand response event

5.2.3. Server Power Modeling

As explained in section 5.2.1 the workload model needs to be logically con-

nected with the server and network activity of the considered IT system as the

’real’ power consumers. How this task is solved in Sim2Win-HPC is documented

in the following sections.

Conceptual Basis for Server Power Modeling

Dayarathna et al. [61] provide a well structured overview of the most fre-

quently used power models in data centers, differentiating mainly into additive

and utilization based models. As the current version of the simulation frame-

work is based on data that allow to manipulate the CPU frequency and to

time-shift workload, a utilization based model that accounts for CPU frequency

is needed.

A suitable model by Elnozahy et al. [66] is equation (4.2), introduced in
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chapter 4.2.4. It is defined as Pserv(f) = Af 3 + Pidle, where A is a server

specific constant and f is the CPU frequency of the server. Based on this model,

other, more fine-grained server power models were developed, e.g. differentiating

between parallelization (represented the used numbers of node n as a proxy) and

frequency dependency parts of applications [186]. However, the requirements

for a model to be consistently applicable in a concrete setup is that

1. the necessary model inputs (variables and parameters) are available in the

required granularity in the provided data trace and

2. that the model is suitable for the phenomenon it should represent in the

current physical setting i.e. it can be fitted with the available data (model

validation). For instance, a model targeted at a very specific server type

will not render good fitting results with a different server even if the data

needed are available.

Therefore a slightly different version of the equation (4.2), is used which was

validated by Shoukourian et al. for the Sandy Bridge servers and specific appli-

cations in the SuperMUC system [186]: The version of [186] is adapted further

as the number of utilized nodes of the application is not a necessary parameter

for the presented model version. The reason is that the number of nodes is

not to be manipulated through a power management strategy Also the static

parameters of the idle and the dynamic part of the server power are merged.

This implies the assumption that the power consumption of the server is inde-

pendent of the number of nodes an application uses, i.e. of the parallelization

of the application. Thus a model very similar to [66] is derived with the main

difference that the parameters of [66] become fitting parameters.

Pserv(f
3) = k1f

3 + k2, (5.3)

where k1 and k2 are application and server specific fitting parameters and f 3 is

the variable. Using this quite simple, but very well validated approach promised

to have an adequate computational load for the total simulation system.
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Fitting the Server Power Model

Fitting the selected power model with the provided data center traces was

carried through with the help of the regression algorithms in the WEKA data

mining framework, an open source java-based tool [96]. As a metric to evaluate

the fit of the equation (5.5) with the measured average power/node values the

Pearson correlation coefficient was calculated which is suitable for measuring

the correlation between two linearly connected variable x and y:

ρx,y =
cov(x, y)

σxσy
, (5.4)

where cov(x, y) is the covariance between variables x and y, σx is the mean of

variable x, and σy is the mean of variable y.

Deriving k2 looked straightforward at first, as the idle power of ’identical’

nodes even though not being truly identical (see [218]) is at least very similar.

In the current set-up, the average value was 49W. The main issue, therefore,

seemed to be the assessment of k1. In the original formulation of Elnozahy et

al. [66] the dynamic part of the server power Pservdyn was decomposed into:

Pservdyn = A ∗ C ∗ V 2 ∗ f (5.5)

with A being an activity factor accounting for the frequency of gate switch-

ing, C the capacitance of the gate outputs and thus dependent on the physical

architecture of the utilized server, V processor voltage and f frequency. As volt-

age follows frequency, in later research the variables V 2 and f were condensed

into f 3; and as for one specific application on one specific server A and C are

constants, they could be merged, too (see [66]). However, if applied not to a

single application, but to an application mix (as in the case of a whole data cen-

ter), the product of the parameters A and C is not constant. Therefore, using

this model directly by fitting the parameters k1 and k2 for the 2014 data trace

with the help of the WEKA framework achieved, not unexpectedly, a Pearson
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correlation of a mere 0.3311. The result implies that the applications run as

batch jobs in the data center at hand are heterogeneous not only with regards

to workload statistics, but also with regards to CPU activity.

Unfortunately, no further data containing information about the application

or even an application type were available. The decision to cluster the workload

into 30 classes with comparable application statistics and behaviour, taken to

allow sensitivity analyses of the workload composition (see 5.2.1), therefore

proved beneficial also for the case of fitting the power model: using the power

model on job classes instead of individual jobs improved the goodness of fit

drastically.

Before fitting could be implemented, however, the next obstacle was the as-

signment of frequencies to the applications by the IBM loadLeveler, used in

the corresponding HPC data center. The values of frequencies inside the 30

job classes did not differ greatly, so that there were not enough data points (in

terms of different values of the variable f 3) for a good fitting procedure. This

issue could be mitigated by capitalizing on the results of a study determining

the behaviour of the typical set of applications run in an HPC data center un-

der different frequencies (see figure 5.5, created from data in [17]). As can be

seen, 2.7 GHz were used as nominal frequency and the power consumption of

the typical HPC application portfolio was normalized to be 100% for 2.7 GHz.

Interestingly, the power consumption is about halved (47,7%) with respect to

the norm at a frequency of 1.2GHz and is around 63.1% at the so-called ’sweet-

spot’ of the configuration, 1.8 GHz, where the application’s energy consumption

is minimized. Below this frequency, even though power is reduced - which is

the objective of demand response programs - the applications run so slowly

(runtime extended by 40%) that in the end the energy consumption is even

increased compared to the most efficient configuration.

Thus, before fitting equation (5.5) within a job class, all job records within

this class were scaled using the data from [17] so that after this scaling proce-

dure, the data set used to create the fit for a job class contained 16 records for
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Figure 5.5.: Power consumption behaviour of an HPC application portfolio un-
der frequency scaling (data from [17])

each original record (one for each frequency as illustrated in Figure 5.5).

Using this approach the correlation of the original average power/node values

and the predicted average power/node values finally achieved a Pearson correla-

tion of 0.98, which is a sufficient fit for the targets of the simulation. Therefore,

strictly speaking, the derived power model is an abstraction of the original fre-

quency based power model as the values for the ’static’ part can be significantly

below the measured idle value of 49W. This idle value is used whenever a node

is not executing workload.

As mentioned, this power model is just one option of modeling server power

within the simulation framework. Also the current simulator version allows

an easy exchange of power models through the PowerModelSelector class that

calls the getServerPower-method. The status of the server can be OCCUPIED,

IDLE, and OFF. In Sim2Win the ’OFF’ status remains unused due to the data

center’s policy of not turning off servers (see [91] and assumption A9).
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5.2.4. Other Infrastructure Components

Other infrastructure components that need to be modeled in order to de-

termine a data center wide offer of power flexibility can be differentiated into

cooling power, as a major power consumer, and other power consumers (OPC)

that all together typically use less than 20% of total data center power (see

section 4.2.4).

As explained in section 4.2.4, there are a lot of different cooling models ranging

from physical white box to empirical black box models. The more detailed the

modeling of physical interactions, air flows and hot spots is, i.e. the more

’white-boxed’ the modeling, unfortunately, the more data is needed. This is

the bottleneck in many modeling approaches, so that when no detailed data is

available often a rather coarse empirical model is chosen: the consumed power of

the cooling equipment is monitored and put into relation to the IT infrastructure

consumption, thus leading to the definition of a ’partial’ PUE that abstracts

from power of other non-IT power consumers as e.g. the PDU (4.2.4). Due to

the lack of deep data availability and thus the impossibility to apply white box

modeling, for the implementation of the cooling component in the HPC instance

of the simulation framework Sim2Win the following simple cooling power model,

already introduced in 4.2.4 was applied:

Pcool = PIT ∗ (PUE − 1) (5.6)

Even though the data trace that the current model is built on contains minute-

based monitoring results, thus increasing correctness of the calculated cooling

power, unfortunately, this approach does not offer any starting point to exe-

cute a cooling-based power management strategy. Therefore the subcomponent

DRCoolingStrategies of the subcomponent CoolingPowerModel is greyed out

in the Sim2Win-HPC generic architecture version.

The same applies for OPC subsuming all other IT room power consumers

apart from the servers, mostly the communication network, the power distribu-
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tion infrastructure and storage. In this case the lack of data is less of a problem:

as studies show on the one hand the share of other power consumers at the total

power demand of a data center is small and on the other hand, the biggest part

of it, which is network power consumption, is largely static power consumption.

Therefore, to apply a simple rule of thumb in this case can be justified. As

explained in 4.2.4 the simplest model that can be applied is a static approach

which is modeled in the following way:

OPC = n ∗ Pserv ∗ fracOPC , (5.7)

where fracOPC = PIT−n∗Pserv

n∗Pserv
with Pserv as server power consumption and PIT the

IT power consumption, i.e., data that were taken from the monitoring system

in the server room. fracOPC can be estimated via a regression analysis.

In the simulation model, this fraction is used to calculate an estimated total

IT power consumption from the server power consumption. This calculated IT

power consumption is then multiplied with the real PUE to derive cooling and

thereby total facility power PDC :

PDC = PIT + Pcool (5.8)

= n ∗ Pserv +OPC + Pcool (5.9)

= n ∗ Pserv ∗ (fracOPC + PUE) (5.10)

5.2.5. Modeling Demand Response Strategies

The preceding sections provided the foundation for modeling two different

demand response strategies:

• Temporal shifting of workload, as the workload modeled can be managed

by different scheduling alternatives which allow to shift the workload;

• Frequency scaling, as the server power model allows to manipulate fre-

quency. These power management strategies can be applied both for ex-

plicit and implicit demand response schemes.
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For explicit demand response, whenever a issueDemand-ResponseRequest

is called by a subcomponent of the EventHandler due to a DRRequestHandler

activation, a check is carried through to determine if the event size is above the

maximum achievable adjustment size at the very moment. This is a technical

feasibility constraint, defined by shifting the entire affected workload out of the

demand response event time window and scaling the non-shiftable remains to

minimum frequency. Even though this check must be done before offering the

demand response bid, a double-check is necessary to avoid the infeasibility of

solutions.

For the case of implicit demand response, the original scheduler is replaced

by the CAS scheduler for the total evaluation time, thus producing indepen-

dent results. Comparing the results of these two schedulers therefore displays

continuous differences as one takes prices into account and the other does not.

In the presented simulation system Sim2Win-HPC the power management

strategies temporal workload shifting and frequency scaling form a configuration

which is represented as a tuple of percentage of shiftable workload (in terms of

the number of nodes and the execution time) as well as desired frequency for the

remaining workload. An optimization procedure evaluates the combination of

each possible number of shifted jobs with all possible CPU frequencies thereby

determining the least costly combination that just fulfills the power flex market

requirements.

The cost for the demand response adaptations are calculated by running two

copied instances of the simulation: one using the original scheduling and CPU

scaling parameters, and the second using the optimized demand response results.

These instances are maintained until they are both again in the same state. The

additional cost that are caused by the adaptation are then calculated as the

difference between the energy- and SLA cost of the two simulation instances.
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Temporal Workload Shifting

Temporal workload shifting means that workload is post- or preponed, con-

trary to geographical shifting where workload is shifted to a different data center

site. This is implemented in a way that in the workload trace for an affected job

the starting point is replaced by a new starting point given by first the STDF

algorithm and then the LTDF algorithm in the case of postponing workload

and by the STDF algorithm in the case of pre-poning jobs (see section 5.2.2 for

details on the scheduling algorithms). The average power consumption remains

untouched, the end time is adapted accordingly. As the HPC data center at

hand does not use virtualization, only a complete job can be shifted out of the

affected time window. Depending on the workload structure this means that the

response to the event cannot be met exactly; it might be overfulfilled slightly.

The impact of the shifting strategy on the power consumption of the data

center at one particular time period is given by

∆P shift
DC =

∆J∑
j=1

APj ∗ nj ∗ (fracOPC + PUE), (5.11)

where APj is the average node power consumption of the j-th shifted job, nj

the number of nodes of job j, and ∆J the number of shifted jobs.

It is assumed that there is no timing overhead of rescheduling the jobs so

that the time-based requirements from the power flex markets can be fulfilled.

Thus the shifting activity only impacts the part of the workload that is already

in the queue, but has not been scheduled. The ’ratio workload shifting’ (RWL)

metric monitored in the documentation of the results is the share of the shifted

jobs compared to all shiftable jobs, i.e. the ones in the queue that have not

been scheduled yet. It is used as an indicator for the degree to which shifting is

applied. The delay of enacting shifting involves the time spent on receiving the

request, computing the adaptation request and exchanging the scheduler. Also

Cupelli et al. rely on rescheduling; they even assume real-time reaction [60].
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Considering this context the power impact of such a strategy, which uses

only the small share of jobs that are queued but not started is questionable.

Also, depending on the variance of the workload execution time there is some

delay until a workload-driven reduction of power takes its full effect. This

was empirically tested in [88]: After scheduling was stopped and the jobs were

allowed to finish it took up to 72 hours until the server power consumption in the

Lawrencium cluster at LBNL was in idling mode. As the current composition

of the workload is always a snapshot of jobs with different execution times,

this statement is corroborated through analyses of the utilized workload trace:

with execution times between 52 hours and a couple of seconds, the ability

of rescheduling is highly dependent on the chosen time slot. These are the

reasons, why the decision was taken not to rely on temporal shifting alone,

but to combine scheduling and frequency opportunities, which is a solution also

favoured by Bates et al. [31].

CPU Frequency Scaling

As shortly mentioned in the sections 5.2.6 and 5.2.3, contrary to temporarily

shifting workload, manipulating the CPU frequency impacts both the average

power of a job and its execution time. The start time, however, remains un-

touched. The implemented version of the frequency scaling strategy switches

the frequency of all active jobs to the desired average frequency. After the

requested power adaptation time window, all jobs are scaled back to their orig-

inally specified, individual CPU frequency.

The impact of manipulating the frequency of the data center workload on the

overall power consumption at one particular time period is given by

∆P scale
DC =

m∑
j=1

∆APj ∗ nj ∗ (fracOPC + PUE), (5.12)

where ∆APj is change of the average node power consumption of the j-th shifted
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job, nj the number of nodes of job j, and m the total number of active jobs. The

power consumption change ∆APj is calculated according to the server power

model for the respective job class in equation (5.5) in section 5.2.3. It is again

assumed that there is no timing overhead for reasons of compliance with the

requirements from the power flex markets.

That this assumption is realistic is corroborated by Bhattacharya et al. [37].

They executed empirical tests with three different servers in order to understand

the total delay composed of network latency, system latency, and power change

delay. The network latency in the observed case was less than a millisecond

so that the authors concluded it to be negligible. The system latency which

includes the time for executing the threads for reading and manipulating the

frequency ranged between 10 and 50ms on different servers. The power change

delay due to the capacitance of the servers and the time used in the power

circuits was between 100 and 300ms using the frequencies that are furthest

apart. So all in all, the reaction time can be reckoned to be well below a

second, which is a lot faster than required even by the most demanding German

power reserve market: The primary reserve market requires the offered power

adjustment to be activated completely within at maximum 30 seconds1.

5.2.6. The Cost of Power Management

In the current instance Sim2Win-HPC of the Sim2Win architectural frame-

work the cost of power management inside a data center to enact the two se-

lected power management strategies is represented by SLA and energy cost.

Fixed power cost are not included (assumption A10): any upfront investment

for implementing the power management would relate to both power manage-

ment strategies in the same way and would thus not shift the weight of either

strategy; also compared to market entrance cost of the modeled explicit demand

response market due to automation options the cost are deemed negligible (see

section 5.2.7).

1https://www.regelleistung.net/ext/static/technical, accessed May 1st 2020
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The two cost items of power management inside the data center are therefore

SLA cost and energy cost. In order to calculate SLA cost, in the current in-

stance of Sim2Win, the BatchCost subcomponent of the Batchjob component

interacts with the other subcomponents SLA and RuntimeModel. Energy and

power cost are calculated using the Batchjob component and the EnergyPrice

component.

Energy cost are based on the energy price vector - in the case of the baseline

run, this is the average industry price of 2014 is used [42]. It contains an

average value for the power cost of a medium sized industry. It is not necessary

to calculate a power cost impact, as the technical capacity constraint of the

data center in terms of the maximum number of nodes coincides with the peak

power value of 2014. This cannot be surpassed in any case.

SLA cost are dependent on SLA parameters and how they are being affected

by the power management strategies as well as on the price tag of breaking an

SLA. As no information about SLA terms and price tags are available for the

data center at hand, these need to be modeled based on realistic assumptions

for the modeled scenario.

SLA specifications are obviously dependent on the workload that they are

applied to (see e.g.[3]). In the case of interactive workload, SLA are often related

to broad network accessibility, response times, or information losses aka packet

loss ratio (PLR). In the context of batch workload the main SLA parameter

modeled is regularly based on execution time (e.g. [214, 138, 21]). The SLA

parameter used in the current work is generally defined as delay in terms of a

surpassed deadline, which then induces the payment of penalty cost. The cost

model for SLA consequently comprises the definition of the delay which is based

on an assessment of a job’s runtime and the calculation of the cost based on

this delay.
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Batch Job Runtime Model

As explained for performance and energy consumption (see section 5.2.1), the

execution time2 of a job depends on

• job characteristics as cycles per instruction (CPI) and I/O activities,

• the IT infrastructure as server and network characteristics but also their

architecture,

• and run-time settings as the CPU frequency.

In order to model the cost of implementing a power management strategy

the focus of this work is on run-time settings, because these are manipulated

through the selected power management strategies.

For the case of workload shifting, it is assumed that the runtime of the job is

not changed. This assumption does not fully reflect reality in HPC computing

as even nodes marked as identical through the server brand name have slight

differences [218]. Therefore computing a batch job at another point in time on a

different (set of) server(s) might lead to slightly differing runtimes. However, as

in the current scenario (homogeneous servers, see assumption A8) these differ-

ences are negligible and as the strategies applied do not capitalize on workload

consolidation, the execution time (not the end time!) of workload shifting is

deemed constant.

In order to estimate the impact of the demand response reaction of the data

center on the QoS through frequency scaling two approaches are possible: either

starting from modeling the execution time and comparing it before and after

manipulating frequency or modeling directly the change of frequency.

An example for the first approach is given by Shoukourian et al. in [186].

The model is defined as

TtS(n, f) =
t1
f

+
t2
n

+
t3
nf

+ t4n+ t5
n

f
+ t6, (5.13)

2’Runtime’ and ’execution time’ are used as synonyms.
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where TtS is a job’s execution time, f is the execution frequency, n is the

number of nodes the job utilizes, and t1 through t6 are constant fitting param-

eters that depend on the application type of the job. However, as the jobs

within the workload trace cannot be assigned to an application type and as this

model requires six application dependent fitting parameters, this approach is

not possible in the current scenario.

On the other hand, the utilized workload trace gives information about the

measured runtime of a job and its configuration in terms of frequency and the

execution number of nodes. This information allows the application of the

second modeling approach which matches well with the impact-based point of

view of the micro-econmics based modeling framework. Yet, the information

basis limits the choice of applicable models: For instance the model introduced

in [17] builds on information about the cycles per instruction and the memory

transactions per instruction - again a granularity of information that is not

available. A way out is given by a very simple consideration about the impact

of frequency of the computation part of a job. Rountree et al. [179] discovered

that scaling frequency scales execution time reciprocally proportionally, which

can be expressed as:

T (f) =
f0

fn
∗ T (f0), (5.14)

where T (f) is the execution time of a job at frequency f , f0 is the original

frequency, fn the new frequency and T (f0) the original execution time.

This simple relationship, however, only applies to the execution time of com-

putation; when the memory is accessed, this happens independently of the fre-

quency. In reality, however, jobs are never fully compute bound, but they always

have proportion of work that is memory bound. This is also true in the case of

the available data trace.

As memory access times are not sensitive to CPU frequency, the impact of

a frequency adjustment onto the runtime of a job is limited by the degree of

memory boundedness of the job [180, 179]. This lead to the introduction of a

parameter β as a ratio between 0 and 1 which expresses the ratio of compute
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boundedness of a job. Only this part of an application can be influenced by

frequency scaling [111]. Later, the compute boundedness β was incorporated

into an enhanced runtime model by Etinski et al. [67], which is defined as

follows:
T (f)

T (fmax)
= β(

fmax

f
− 1) + 1, (5.15)

where T (f) is the job’s runtime at frequency f , T (fmax) its runtime at a nominal

frequency fmax, and β the fitting parameter that depends on the degree of

compute boundedness of a job. Decomposing the total execution time T of

a job into computation time TCPU and memory access time TMEM , which is

insensitive to frequency changes, β can also be expressed as [67]:

β =
TCPU(fmax)

TCPU(fmax) + TMEM
. (5.16)

It is generally possible that the parameter β varies for different (fmax, f) pairs

of one application. However, according to Etinski et al. [67] in most cases it

is reasonable to assume that these variations are negligible so that one β value

can be used per application.

In 2014, Auweter et al. [17] analyzed this relation for a typical set of ap-

plications that are executed in an HPC data center using 2.3 GHz as default

frequency and comparable to the considered data center. They show how the

runtime scales for more than 300 typical applications when the default frequency

is manipulated. The IBM LoadLeveler predicts the parameters needed to assess

β, so that by measuring themselves, Auweter et al. could verify the model by

comparing the LoadLeveler predictions with their own measurement.

In case the parameters are not available - as for the current data trace - this

model has to be applied vice versa: The deviation from proportionality indicates

the influence of β. With the average values handed over by the authors, it

was thus possible to fit the model from Equation (5.15) to the known runtime

behavior for each (fmax, f) pair. As a result, for the fifteen different frequency

pairs, 15 different β values were obtained (one for each (fmax, f) tuple) although
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according to equation (5.16) the β value should be constant for all frequency

pairs. The average value of β is 0.79; the maximum deviation from this is 4.5%.

As the maximum acceptable deviation according to Etinski et al. [67] is 5%, it

was decided to use this average as a basis for the runtime calculation (see figure

5.6) in the Sim2Win-HPC simulation.
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Figure 5.6.: Average application runtime behavior under frequency scaling (data
from [17])

SLA Cost Model

An SLA cost model consists of the definition of the cost unit, the price per

unit, and the way that these are connected to generate a penalty sum. For the

case of delay cost that means that as a first step ’delay’ needs to be defined. As

unfortunately there are no data concerning an SLA cost model for the considered

data center, the delay is defined based on the runtime calculation, as explained

in the section above, and on an artificially constructed deadline. Garg et al.

have supplied the following deadline model which is reusable in the present case
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[82]:

tSLAdl(x) = tjobStart(x)+ExeT ime(x)+(ExeT ime(x)∗uniform(0, 2)), (5.17)

where tSLAdl(x) is the point in time of the batch job’s deadline, tjobStart(x)

is the point in time where the job starts, ExeT ime(x) is the time that the

job needs under optimal execution conditions, and uniform(0, 2) is a sample

from a uniform distribution in the interval between 0 and 2. Other research

papers use the 4-fold time of the expected execution time [145], determine that

jobs should not wait longer than 4 days [151], or they simply do not state the

origin of the deadlines used [173, 54]. Jiang et al. [119] determine deadlines

with up to 50 times the job runtime. As the uniform distribution reflects the

heterogeneity of job importance, be it due to monetary values or other attributes

this model was considered a sensible solution and therefore chosen for the current

implementation. Obviously, the value of 2 is a random choice, applied by Garg et

al. that determines the spread of deadlines between the default execution time

ExeT ime(x) and thrice the default execution time. Both the randomization

value of 2 and the weight of the default runtime can be used for manipulating

the flexibility in simulation runs. Due to the high heterogeneity of the jobs in

the considered job data trace, the original version of the model lead to very

hard deadlines. As the spread of deadline definition in literature is extremely

high the default deadline was finally defined as:

tSLAdl(x) = tjobStart(x)+ExeT ime(x)+2∗(ExeT ime(x)∗uniform(0, 2)) (5.18)

The original definition of Garg et al. was used as a ’hard SLA’ version for

sensitivity simulation runs. Via information of the start- and the end-time the

job data trace the runtime is available. So, the artificial deadline could be

computed once for the entire cleaned job data trace and added as an additional

job parameter.

Regarding the second step of a cost model, i.e. linking the deadline and a
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price for surpassing this deadline in order to calculate a penalty, for a batch

workload Garg et al. suggest an approach depending merely on the computed

delay and the penalty rate [82]. This implies that as soon as the deadline is

surpassed, cost are attributed proportionally, and that there are no penalty cost

if job finishes before the deadline. The penalty Pe is calculated according to

the equation introduced in 4.2.6

Pe = y ∗ db, (5.19)

where y is a fixed penalty rate, and db is the delay calculated as the absolute

difference between the deadline and the termination. However, this cost model

cannot differentiate between jobs of different sizes and weights in terms of num-

ber of nodes used. Also the delay is absolute, which effectively privileges jobs

with an extremely high runtime compared to shorter running jobs.

For the current scenario, the penalty should depend both on the weight of the

job and the job’s time in the system. As no realistic data for SLA cost were to

be found, the baseline price was determined based on the node usage price in a

comparable data center. Therefore the model for SLA cost CSLA was adjusted

to meet those requirements:

CSLA = uP ∗ rD, (5.20)

where uP is the usage price (in e) of a job, and rD is a relative delay. This

usage price is calculated on the basis of the number of nodes that a job utilizes

and the expected runtime. The relative delay (rD ≥ 0) is calculated as

rD =


(tEndTime(x)−tSLAdl(x))

ExeT ime(x) ∀ tEndTime(x) ≥ tSLAdl(x)

0 ∀ tEndTime(x) < tSLAdl(x),
(5.21)

where tEndTime(x) is the job termination time which might be modified, e.g due

to being shifted or processed at a lower processor speed. rD = 0 when the job
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is not delayed.

5.2.7. Modeling Accessed Power Flex Markets

On the part of the data center simulation framework Sim2Win and the imple-

mented instantiation Sim2Win-HPC, the reaction to incentives by the power flex

markets is handled via the DRRequestHandler-component (for explicit demand

response) and the EnergyPrice-component (for implicit demand response) in

cooperation with the EventHandler-component.

In order for the simulator to receive power market incentives these have to

be modeled according to the specified interfaces. The Sim2Win-HPC modeling

solution is explained in the subsequent sections.

Explicit Power Flex Markets

A explained in section 2.2.2 the European system of reserve power is made

up of basically three reserve markets that are called subsequently once the

frequency in the transmission system goes beyond the allowed band around

50Hz. The primary reserve control takes over unexpected shortfalls of supply

and demand until the resources of the secondary reserve control are up and

running. The latter bridges the time until the tertiary reserve takes over. The

activation of these reserves is beyond a market based control; it needs to happen

in a predetermined process. However, in order to enter into the list of reserve

control suppliers, market participants need to undergo a prequalification process

that is cost effective. In many EU member states the reserve suppliers need to

bid into the respective control power market. This bid corresponds to entering

into a contract; having concluded it, the supply of the offered power and energy

is mandatory. In case that during the considered week the TSO needs the

contracted power, it is merely activated e.g. via a direct manipulation by the

TSO, via a phone call or email or triggered by IT based communication. The
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compensation can relate to the supplied power, to the supplied energy, or to

both.

For the simulation based in Germany the secondary reserve market was cho-

sen as on the one hand it is more profitable than the tertiary market and the

requirement for activation time (full provision after 5 minutes) can be fulfilled

by the two applied power management strategies. The primary reserve needs to

be fully activated within 30 seconds; even though the technical implementation

of the two applied power management strategies within 30 seconds might be

possible, adding the communication overhead makes this requirement critical.

Primary reserve, on the other hand, will always be controlled by the grid op-

erator or aggregator, whereas for the secondary reserve it can be assumed that

in future the enactment within the regulation power service provider can be

executed self-controlled.

In order to include the secondary reserve market in Sim2Win-HPC, artificial

bids are created and the data center collaboration is activated according to the

real counterparts of these bids through the activation data of the TSO for 2014.

This process is explained in detail in section 6.1.2, as it precedes the simulation.

Interfacing with the simulator, a demand response event from the real ac-

tivation data trace is then described in terms of provision type (positive or

negative), adjustment height, starting time, duration and compensation and

read by the DRRequestHandler. The size of the bid must be consistent with a

pre-bidding test about the maximum technically achievable adjustment height

as explained in 5.2.5. This should be carried through in a conservative way

in order to ensure that an activation is possible when called. Otherwise high

penalties from the TSO are due, additionally to being removed from the list of

potential control power providers. The pre-bidding test can be carried through

by the Sim2Win-HPC simulator on the predicted workload, maintaining a safety

margin.
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Dynamic EPEX Prices as an Example of Implicit Power Flex

Markets

Contrary to explicit demand response, the contractual binding of implicit

demand response is much lower: for a pre-specified product the participant can

buy electricity at a pre-determined, dynamic price. There are many options for

implicit demand response one of which is the stock market for electricity. The

main stock market for electric power in Europe is the European Power Exchange

(EPEX) (see section 2.2.2).

Interfacing with the Sim2Win-HPC simulator, the EPEX market is repre-

sented as a vector with different prices (pay-as-clear prices) at each time of the

day for the whole year of 2014. Again, the way that this vector is constructed

is modeled outside the simulating system.

When the EPEX market is activated in the simulation, the CAS scheduler

(see section 5.2.2) optimizes the cost for sourcing the electricity.

5.3. Validation of Sim2Win-HPC

The result of applying the validation & verification procedure to a system can

be internal and external validity (e.g. [139]). This distinction is mostly used

in experimental research; however, simulation with real data can be interpreted

as a method of experimentation [159], so that it is applicable in the current re-

search process: Internal validity signifies, that the validated system is behaving

correctly in the studied scenario. External validity, on the other hand, deals

with the question to which extent the validated system can be applied to other

than the originally intended scenarios.

In this section, the internal validity is being tested by comparing simulated

results of the behaviour of the Sim2Win-HCP simulation system in the absence

of any demand response schemes with all available real data traces from 2014.

The technical configuration of the validation run was a Windows 10 Pro
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machine with an Intel i7-7600U CPU with 2 physical cores at 2.8GHz and a

16GB RAM. As the data traces relate to all 2014, also the validation ran from

01/01/2014 until 06/01/2015 in order to allow for all processes to finish. As the

provided workload trace is on seconds basis, a simulation step length of one real

time second was used. The scheduling interval length was set to one simulation

step.

Table 5.2 contains the validation statistics for the year 2014. The decreas-

ing values of both correlation and Pearson coefficient from job power (0.985

vs. 0.97) over IT power (0.812 vs. 0.659) to facility power (0.808 vs. 0.654)

can be explained with the increasing knowledge gap with regards to the power

components. The most important parameter is the job power time series, as the

job power is the central power model where power management strategies are

to be applied. The other power curves are used to construct the total facility

power which is necessary to calculate remunerations. The job power time series’

statistics have high values of correlation and Pearson Coefficient, and low error

rates which implies that the solution of using job classes for workload modeling

resulted in very accurate predictions of the power consumption.

With the validation parameters being sufficiently high, this validation run will

be used as the ground truth for the evaluation baseline run, that also contains

cost elements. Figures 5.7 and 5.8 show the validation runs and the differences

between the original and the simulated time series data.

Table 5.2.: Statistics of the comparison between original data traces and simu-
lated data traces

Correlation R2 MAE MAPE
Job Power 0.985 0.97 51.2 4.37%
IT Power 0.812 0.659 165.764 10.11%
Cooling Power 0.896 0.803 21.508 10.11%
Total Facility Power 0.808 0.654 187.269 10.11%
Active Nodes 0.999 0.999 1.329 0.03%
Running Jobs 0.999 0.999 0.007 0.02%
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6. Simulation Runs and Results

6.1. Scenario and Data

6.1.1. Data Center

Both the simulation and the optimization framework for demand response

with data centers are evaluated using data traces from a large scale HPC system

in Germany. This implies that contrary to many other works, the data traces are

not combined from various different sources so that they are internally consistent

with regards to workload, server power, power demand of cooling, and of OPC.

The traces are derived from a homogeneous (in terms of installed system soft-

ware stack and system hardware) HPC system with more than 9000 compute

nodes. Each node contains two Intel Sandy Bridge-EP Xeon [113] E5-2680 8C

octa-core processors that each have a thermal design power of 130 W1 and a

maximum CPU frequency of 2.7GHz. The default operating frequency is set to

2.3 GHz, but other frequencies may be employed. The frequency setting policy

is based on efficiency: Applications assessed to experience a runtime degradation

of at least 5% if computed at the 2.5GHz instead of at the default 2.3GHz, will

be executed using 2.5GHz. Applications are only executed at 2.7GHz instead of

2.3GHz if they would incur a runtime degredation of 12%; this policy accounts

for the overproportional increase of power consumption. The physical resources,

i.e. blade servers, are managed using the IBM LoadLeveler2 (no virtualization).

The workload consists nearly exclusively of scientific batch processing with an

1The thermal design power quantifies the power value that an electric component must not exceed during
operation.

2https://www.ibm.com/support/knowledgecenter/en/SSFJTW_5.1.0/com.ibm.cluster.loadl.v5r1.load100.doc/am2ug_ch1.

htm, accessed 08/06/2020
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Table 6.1.: Example of entry in job data trace

Job ID Submission Time Start Time End Time

abc.297906 01.01.2014 00:09:40 01.01.2014 00:10:32 01.01.2014 00:56:50

CPU Freq #Nodes Energy (kWh) Power (W)

2.3 2 0.256636 332.573642

algorithmic and computational background of a high complexity. In 2014, the

total energy consumption of considered data center was roughly 20000MWh;

its theoretical peak power is near 4MW. Efficiency measured as computational

power versus consumed electrical power is 0.85GFLOPS/W. For cooling pur-

poses the considered data center employs hot water cooling, classified into the

ASHRAE W4 [16]. The default inlet temperature is set to 40◦C in summer and

30◦C in winter, and it is not adapted to the IT load. The inlet temperature is

measured at the point where the water enters into the nodes. Data provided

were acquired via a realtime monitoring toolset for the year 2014.

The downside of using real data from a real operating environment is that

the origin of the data cannot be disclosed3.

Job Data

The job data trace contains information for every job that was executed in

the HPC system at hand in 2014. This information consists mainly of job

ID, submission-, start-, and end-time, allowed maximum frequency, energy and

average power consumption. Table 6.1 shows an example with a small selection

of entry fields (the real job ID has been replaced by abc).

As explained in section 5.2.1 the data trace of the workload is used for the

creation of a workload model that fits with the power model. This means that

the original data trace is slightly changed before being fed into the simulator:

parts of the real data trace, namely IDs, beginning times and normed job sizes

are maintained, the workload cluster number is added, and the average node

3Upon personal request data access might be mediated.
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power consumption is calculated using the workload cluster attribution. After

data cleaning, the job data trace contains almost 400,000 job records. The jobs

are very heterogeneous with regards to both runtime and nodes used. The me-

dian of the runtime is only 3% of the average; its maximum in 2014 being more

than 2 days. The same tendency can be seen in nodes used: on average, jobs

run on 32 nodes, the mean, however is only 2 nodes. The frequency data does

not relate to the executed frequency, but to the maximum allowed frequency.

As the default frequency setting is 2.3GHz, it is not surprising that the average

maximum frequency is at 2.38GHz.

The procedure of data cleaning is explained in more detail in the appendix

(A). The Job Power time series generated from the available job data for March

2014 can be seen in figure 6.1.

PUE and IT Power Time Series

Contrary to the job data trace, the two other available data traces are time

series data: IT power trace and PUE trace.

The IT power trace is the power in kW measured hourly at the main power

lines that supply the room which contains servers, storage, network, internal

cooling pumps, and PDUs. The average IT power consumption in 2014 was

1,892kW with a standard deviation of 312kW. It does not contain the external

cooling power, i.e. the roof-top cooling towers’ power consumption. It includes

the power of the server cluster which was provided indirectly as job data trace

and computed as job power. As there is no information about the composi-

tion and behaviours of other power consumers OPC data were calculated as

a proportion, see section 5.2.4. Therefore it is not surprising that at 0.83 the

correlation between job power and the IT power trace is not very high.

The PUE data trace contains hourly values of the (dynamic) PUE for the

complete year of 20144. It is however, not calculated according to the origi-

4Some rare missing values were estimated by linear interpolation.
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nal PUE definition [174], but based on the difference between IT power and

SystemCoolingPower, i.e. the external cooling power:

PUE =
ITPower + SystemCoolingPower

ITPower
(6.1)

It has a range between 1.06 and 1.35, with a standard deviation of 0.3. The

latter is rather high, but as both a correlation and a regression analysis showed,

this is more due to the influence of the weather (correlation with wetbulb tem-

perature5 is 0.7) than due to the impact of the workload: the correlation between

the measured PUE and the measured IT power traces is a mere -0.4. This is

inline with general policies in the HPC data center community to operate cool-

ing equipment in a mostly static way, based on the maximum heat removal

necessary [47],[219] and not scaling it with the dynamics of the workload.

The PUE data trace was used to calculate the cooling power (figure 6.1)

and the total facility power, using equation (6.1). This means that figure 6.1

is a combination of measured curves (IT power trace) and calculated curves

(cooling power and job power), so that even if there were a causal power model

to model the OPC curve (the difference between IT power and job power), the

components would not add up to the ’real’ facility power. Therefore, in order

to achieve a consistent system, an artificial facility power curve was generated

out of the job power, the cooling power and the OPC power data.

Cost

For running the simulations, according to the model set-up in section 5.2.6

two cost items are needed, the electricity cost and the SLA cost.

In order to calculate baseline electricity cost that is used to calculate the ben-

efit from investing into power flex services, the information about the energy

cost for 2014 is needed. In Germany, industry or big commercial consumers

5This is the temperature taken from a sensor embedded in moist material and therefore also dependent on
humidity.
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typically have a component-based electricity tariff [165] where the power charge

(per kW) depends on the peak power needed during a year. The second compo-

nent is the price per consumed energy unit (per kWh); for smaller premises the

kWh-price is static, but for big consumers, there is often a two-period (week-

days between 8-18h and other times) or three-period (including peak times)

time-of-use tariff. Unfortunately this information was not disclosed. As for big

customers both pricing components are highly dependent on individual con-

tracts with the electricity power provider the published average industry price

for 2014 of 0.1532e/kWh was used for the calculation [43]. It contains both the

power and the energy pricing components.

SLA cost is calculated according to formula (5.20) in section 5.2.6which needs

the input of a usage price uP of a compute node hour. Also this information was

not publicly available for the considered HPC data center. So the compute node

price of 0.16e/nodehour of a comparable data center, the HLRS in Stuttgart,

was used instead [110].

6.1.2. Power Markets

The Secondary Reserve Market in Germany

As explained in section 2.2.2 the European system of reserve power is made

up of generally three reserve markets that amend each other. For the simulation

within Sim2Win-HPC the secondary control reserve (SCR) market in Germany

was chosen as explicit demand response market. The SCR market is auction

based; in 2014 auctions were carried out weekly. There are four separate auc-

tions, one for each combination of the provision times (main vs. secondary)

and reserve types (positive vs. negative)[57]. A bid consists of the offered re-

serve power (in MW), a power price (PP) (e/MW) offering, and an energy

compensation price (EP) (e/MWh).

From these bids two so-called ’merit-order lists’ (MOL) are created, one that

sorts the offers for PP in an ascending order, and a second one that sorts the
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EP offers in an ascending order. The TSO then estimates the power needed for

the next week and accepts the bids of the PP MOL in an ascending order until

the necessary power supply is reached. Those bids are accepted until the last

supplier is reached and compensated contrary to the wholesale market pay-as-

bid (i.e. with the price of the original offer, not with an equilibrium price), thus

in total offering the least costly regulation service. When during the affected

week an activation is necessary, the TSO activates the suppliers’ load using the

EP MOL to make sure that again the least costly energy supply is chosen first.

The participant is then compensated through two processes: one relates to the

power of the offered load. This is paid independently of the activation for each

unit of the offered power (in kW). The other relates to the activated energy and

is paid for each energy unit adapted (in kWh).

For 2014 the results of these biddings were obviously generated without the

data center at hand having taken part in the process. However, as the aim of this

simulator is to simulate realistic results of a participation of the said HPC data

center in the SCR market, the real MOLs are to be utilized instead of modeled

MOLs. Therefore artificial bids were created reflecting the situation as if the

data center had been participating in the SCR market. The real activations

of this artificial bid were then isolated from the activation data of the TSO;

and thus an activation data trace for this specific artificial bid was generated

using the data traces from the transparency pages of the German transmission

operators6.

As the minimum bid size (5MW7) is much larger than the power consumption

of the considered data center, it is assumed that the data center participates in

the SCR market via an aggregator who in return is estimated to keep 30% of

the returns 8.

6https://www.regelleistung.net/ext/tender/, accessed 08/06/2020
7Meanwhile, this has been reduced to 1MW
8This is an educated guess based on discussions with stakeholders.
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EPEX Spot Market

For the EPEX Day Ahead Market, which is the example of implicit demand

response chosen for the implementation in Sim2Win-HPC, the integration is less

complex than for the SCR. The only challenge is to determine a price vector

with an hourly price for the year of 2014.

EPEX consists of several sub-markets: Day-ahead-auction, Intraday Contin-

uous, Intraday-auction markets and the capacity market. For Germany in 2014

only the day-ahead auction and the intraday-auction market are relevant, as

the intraday continuous was introduced only 2015, and the capacity market is

a French specialty created in 2016. Both intraday and day-ahead market trade

a set of different ’products’ with different timing specifications: for each hour

of the next day, a bidder can bid for a price of 100kWh, so that both volume

and price may differ from one hour to the next. The traded products can be

hourly products, but they are also bundled into blocks of several hours and at

specific times of the day (baseline vs. peak). For the current implementation,

assuming that the data center optimizes their electricity sourcing decisions, the

minimum of the available products is calculated for each hour of the year 2014.

The price vector was calculated using the EPEX website9 where trading prices

and corresponding volumes are published.

6.2. Simulation Runs

The simulation tool Sim2Win-HPC as an instance of the created modeling

framework for demand response with data centers will be evaluated using a set of

different simulation runs. The baseline run, against which all other simulation

runs are compared, is created by simulating the data center activity for the

whole year of 2014 without offering any kind of power flex services, using the

data center’s original workload and the measured dynamic PUE and IT data

9http://www.epexspot.com/en/market-data/dayaheadauction/chart/auction-chart
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EPEX

Set 2: Workload I: Hard SLA

Max (no SLA)MaxSLA MinSLA

0.5MW

0.2MW 0.4MW

0.6MW

Secondary Reserve

Set 1: Workload I: Baseline

EPEX

Set 3b: Workload III: Long Jobs

Set 3a: Workload II: Short Jobs

Secondary Reserve

0.05MW 0.1MW 0.2MW

MaxSLA

Figure 6.2.: Set up of simulation runs to evaluate the usefulness of the provided
approach

traces (for more information please be referred to appendix A.2). The first

set of additional simulation runs evaluates the engagement of the considered

data center in the German SCR market and alternatively in the EPEX day-

ahead wholesale electricity market based on a parameter setting which is deemed

realistic. The second set of simulation runs simulates the impact of harder

SLA cost parameters than originally assumed based on the model of Garg et

al. [82], both on the SCR market and on the EPEX market. In order to

furthermore understand the influence of the workload composition, in the third

set of simulation runs the workload itself is manipulated extracting in one case

particularly long running and in a second case particularly short running jobs.

The simulation set up is illustrated in figure 6.2.

The metrics that are used to evaluate the impact of the manipulated sets

of simulation parameters are presented in table B.1 in the appendix. Some

metrics relate to power characterstics, some signify how the characteristics of

the workload changes, and finally some metrics calculate the economic benefit

or loss of said strategies.

6.2.1. Baseline Simulation

The week chosen for the simulation is the first week of March from Monday

03/03/2014 to Sunday 09/03/2014. The choice was made based on the combina-

tion of characteristics both in the data center and on the SCR market: In these
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Figure 6.3.: Baseline (BL) simulation run: Simulated data traces of facility
power, job power, and cooling power, 03/03/2014-09/03/2014

two cases that week was ’normal’ in terms of the absence of unusual demand

patterns. Regarding the data center, for example, the mean of the total facility

power of the affected week was only 3.6% below the overall mean of the facility

power in all 2014. Figure 6.3 shows the simulated values for the simulation week

of the job power, the facility power, the cooling power, and the reported PUE.

As the PUE of the considered data center is very low (in this week between 1.08

and 1.17), the influence of the cooling power on the total facility power is small.

It can be seen, however, that the cooling power (depicted on a second axis) is

influenced to a great degree not by the workload but by other parameters as

e.g. the outside temperature.

The data traces delivered by this baseline simulation are used as ’groundtruth’

against which the various sets of demand response scenarios are compared.
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6.2.2. Simulation Set-Up

This section explains in more detail how the parameters of the baseline sim-

ulation are manipulated in the different simulation runs.

Set 1: Monetizing the Flexibility of the Original Data Center Set-Up

The first set of alternative simulation scenarios is based on the original work-

load model. As the left side of figure 6.2 displays, it consists of four simulations

runs: three that evaluate different options to bid into the SCR market and a

fourth that is dedicated to implicit demand response via the EPEX day-ahead

market. Consistent with the available data center traces, also for the SCR

market 2014 data of the considered week was used.

As explained in section 6.1.2, on the German SCR market pricing and activa-

tion order is determined via individual biddings of market participants, so that

artificial bids had to be generated for the data center at hand. It is assumed

that of the four available SCR products, the data center participated in the auc-

tion for main time positive reserve power provision from Monday, 03/03/2014,

to Friday, 07/03/2014.

All successful bids in terms of the amount of electricity offered, corresponding

PPs (Power Price) and EPs (Energy Price) are published on regelleistung.net10.

As the data of the mentioned platform also include how often regulative power

was activated for which (anonymous) participant, it was possible to generate

data traces containing the activation data of the artificial bids of the data center.

The data about successful bids in the considered week were used to create two

sets of artificial bids that reflect two extreme situations in order to evaluated

the range of benefits (or losses) of the data center: the MaxBid scenarios and

the MinBid scenarios.

The MaxBid scenario consists of the maximum accepted PP and the energy

price EP that generated the highest income, i.e. the participant who originally

10https://www.regelleistung.net/ext/tender/, accessed 08/06/2020
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MinBid Requests MaxBid Requests

Figure 6.4.: The demand response activations in MaxBid and MinBid scenarios,
03/03/2014-09/03/2014

gave the bid gambled in a way that this bid was the most expensive just ac-

cepted for the MOL. Contrarily, the MinBid scenario combines the lowest PP,

that consequently was the first to be accepted to the MOL with the EP that

generated the lowest positive income. For the considered week the MaxBid PP

was 382e/MW and the corresponding EP 63.1e/MWh whereas the MinBid PP

was 271e/MW and the corresponding EP 64.1e/MWh. It is conspicuous that

the MinBid EP is higher than the MaxBid EP. The reason for this is that reserve

power providers who offer low PP values regularly bet on being activated, so

that they require comparatively high EPs in order to benefit from frequent ac-

tivation. Constructing the data traces it turned out that as the activation from

the MOL list calls the lowest EPs first, the MinBid provider would have been

activated only in 4 15-minute-intervals, much less than the MaxBid provider

with 90 activation time slots. The SCR power activation data trace created

from this information is shown in figure 6.4.

According to the reserve power regulations, a provider must offer the same

product for the entire week. This implies that the adjustment height and provi-
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sion type are equal for all entries in the activation data trace. As it is assumed

that the adjustment duration for each activation is the maximum activation

duration (15 min) as set by the regulation guidelines, for each entry all param-

eters are fixed. The adjustment height, however, needs to be determined before

entering into bidding process, and it is mandatory that this adjustment be car-

ried in case of activation. In order to do this, before the SCR simulation runs,

pre-tests were carried through with the original workload in steps of 100kW. It

turned out that adjustments beyond 600kW are technically infeasible11, so that

for each scenario alternative offers between 0.1MW and 0.6MW were simulated.

The focus of the documentation lies on the results of the four runs 0.2, 0.4., 0.5,

and 0.6. These runs include the SLA model introduced in section 5.2.6 defining

delay as the original execution time (according to the job data trace) being

surpassed by up to four times, including a random element for different job val-

ues. The SLA cost then increases proportionally to the size of the job in terms

of nodes and to the length of the delay12. These runs are called MaxSLA0.2,

MaxSLA0.4, MaxSLA0.5, and MaxSLA0.6. Additionally, separate simulation

runs without SLA limitations were carried through accounting for the fact that

the real SLA costs are not known. In this run, scheduling was done in ’first

in- first out’ order combined with backfilling; the decision was based on default

scheduling algorithms in other HPC environments withoug SLA cost ([151, 5]).

These runs are documented as Max0.2, and so forth.

The reward remuneration of each simulation run is calculated by adding up

the revenue streams, i.e. the turnover of the offered power (T SCR
PP ) and the

turnover of the activated energy (T SCR
EP ):

T SCR
PP = PFDC ∗ PP (6.2)

T SCR
EP = #Events ∗ PFDC ∗ EP ∗ 0.25 (6.3)

For the case of the power offered, the flexibility of the data center (PFDC) is

11Infeasible means that at least one event cannot be complied to
12for more information on the cost model see section 5.2.6
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Figure 6.5.: EPEX Day Ahead Prices used for the simulation, 03/03/2014-
09/03/2014

multiplied with the offered power price PP, whereas for the case of the activated

energy, in order to turn power values (kW) into energy values (kWh), the power

flexibility of the data center is multiplied with 0.25. Based on the assumption

of full activation for the whole duration, this reward is granted for the number

of 15-minute activations (#Events).

The final simulation run of the first set of simulations is the data center’s par-

ticipation in the EPEX day ahead market instead of using a static electricity

price for the same week. As explained before, contrary to reacting to demand

response events, here the data center generally exchanges the original schedul-

ing approach by a scheduler (see section 5.2.2) that constantly adjusts to the

dynamic EPEX spot energy prices. The volatility of the hourly prices on the

EPEX day-ahead market for the considered week is shown in figure 6.5.
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Set 2: Simulating the Impact of Hard SLA

The second set of simulation runs serves as a sensitivity analysis to the as-

sumed cost model for delay cost (SLA cost) accruing in the data center due to

the impact of the applied power management strategies on the jobs’ completion

time. This can be delayed due to waiting times in the case of temporary work-

load shifting or due to extended execution times due to the manipulation of the

frequency.

The applied deadline model 5.17 which determines the definition of delay is

based on [82] and was introduced in section 5.2.6. Comparing the outcome of

this model with other assumptions in other papers [151, 119, 145], the dead-

line construction of Garg et al. seemed a rather hard constraint, even though

the modeling approach is convincing. Therefore for the baseline execution the

deadline model was softened. However, in order to test the impact of a differ-

ent slack in jobs’ deadlines the second set of simulation runs uses the original

parameters of Garg et al. (see equation (5.17)).

In the corresponding result section (section 6.3.2) the versions are called

’SoftSLA’ and ’HardSLA’.

Set 3: Manipulating the Composition of the Data Center Workload

The final set of simulation runs is dedicated to understanding the sensitivity

of results to the workload composition. To this end, as shown on the right

hand side of figure 6.2, the workload was analysed with regards to the original

job runtime and two extracts were constructed that exhibit a similar shape of

the job power curve as the original workload, but contain only either ’short’ or

’long’ jobs. Short jobs are defined as jobs belonging to job classes with average

job runtimes of up to 6 hours. Long jobs are defined as jobs belonging to job

classes that last between 7 hours and 16 hours. Thus, the outliers with an

execution time of up to several days are excluded from this artificial workloads.

Tables 6.2 and 6.3 display the median and the average values of the artifically
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Table 6.2.: Median values of the artificial workload traces, Jan.-March 2014

Median
Energy
(kWh)

Power
(kW)

Runtime
(minutes)

Frequency
(MHz)

Nodes
(number)

Short Jobs 0.01 0.97 0.67 2.3 8
Long Jobs 1.97 0.80 79.63 2.3 4

Table 6.3.: Average values of the artificial workload traces, Jan.-March 2014

Average
Energy
(kWh)

Power
(kW)

Runtime
(minutes)

Frequency Number of Nodes

Short Jobs 16.32 4.38 172.53 2.42 42.4
Long Jobs 38.75 4.15 566.95 2.43 22.2

created workload traces with either ’short’ jobs or ’long’ jobs.

Figure 6.6 shows the curves of the three different workloads: the original

workload and the artificial ’short jobs’ and ’long jobs’ workloads. As shown in

the simulation set-up figure 6.2 the size of the explicit demand response simula-

tion runs in this simulation set differs from the original sizes. The reason is that

the total facility power of the ’short job’ and ’long job’ subsets of the workload

is too small compared to the total workload: the overall energy consumption

in the considered week, for instance, is 37% lower in the case of the short job

workload compared the original workload; for the case of the long job workload

this ratio is even -44%. Pretests showed that a reduction beyond 0.2MW was

infeasible in all partial workloads.

6.3. Results

Even though the demand response activation week ran from 03/03/2014 to

09/03/2014, the simulation covered the whole period of 01/01/2014 - 15/05/2014.

Representative for the various simulation runs, the execution time of the MaxBid

0.5MW simulation run was recorded which lasted 1,373 sec (approx. 22.9 min).

This section documents the results of the three sets of simulation runs.
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6.3.1. Set 1: Monetizing the Flexibility of the Original Data Center

Set-Up

The simulation result of the first set of simulations as defined in section 6.2

are presented in the same order as introduced there: first the MaxBid scenarios

MaxSLA0.2 - MaxSLA0.6, then scenarios without SLAs (Max0.2-Max0.6), the

MinBid scenarios with SLAs (MinSLA0.2 - MinSLA0.6), and finally the EPEX

day ahead scenario. At the end of this section the results of these first runs are

compared against each other.

MaxBid scenarios: High Price Bids into the Secondary Reserve

Market

The results of the MaxBid scenarios, i.e. the results of ’high’ bids into the

SCR, are shown in figures 6.7, 6.8, 6.9, and 6.10, and a summary of the KPIs

is given in tables 6.4 and 6.5.

Figure 6.7 depicts the total facility power in green and the job power in orange

colours. The curves belonging to the baseline run are shown in light colors, the

MaxSLA0.2 run, i.e. reducing the power in the event window by at least 200kW,

with dotted lines, and the curves of the MaxSLA0.6 run are represented by dark

lines. This image shows not only the week of the SCR activations, but it adds a

couple of days, in order to illustrate how effects linger some time after the initial

impulse has subsided. The general impression of the image is that facility power

and job power are more or less aligned, and that the two reaction curves behave

more or less similarly (the dotted lines of the 200kW run in both curves seem to

be between the baseline run and the MaxSLA0.6 run). The most conspicuous

observation is the discrepancy of the three different curves on the early morning

of the 11th of March, more than three days after the last activation request.

For a deeper analysis more detailed views are needed.

Figure 6.8 gives a first impression about the development of the job power and

the number of jobs for the baseline and the MaxSLA0.5 simulation run for the
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Figure 6.7.: Comparison of facility power and job power between BL and
MaxSLA demand response events, 03/03/2014-11/03/2014

whole simulation week. It shows that the number of jobs does not necessarily

correlate with the job power which is supported by the original job statistics that

reveal a correlation coefficient of 0.75. This behaviour is even more extreme in

the case of demand response, especially for the illustrated case of MaxSLA0.5.

The power decreases due to SCR events, e.g. on the afternoons of the 3rd

and the 5th March, are obviously not implemented primarily through workload

shifting as the number of jobs tends to increase instead of decrease. However, it

has to be kept in mind that the SLA cost incurred due to waiting and extended

execution times are accounted for, and that the STDF scheduler that takes over

in the case of an SCR activation event resorts the jobs, obviously scheduling first

some shorter jobs. In the whole period of 03/03/-09/03 to which the statistics

in table 6.4 relate, in each timeslot an average 3.9% of the shiftable jobs were

actually shifted and the number of jobs increased by 2.3%. The average runtime,

on the contrary, impacted by frequency scaling, increased by nearly 23% (see
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Figure 6.8.: Relationship between job power and number of jobs for baseline
and MaxSLA0.5, 03/03/2014-09/03/2014

table 6.4). This short analysis gives a first hint that in general frequency scaling

seems to be preferred to job shifting. However, again in order to understand

the underlying activities, it is necessary to zoom in.

As shown in figure 6.4, the demand response events are quite unevenly dis-

tributed over the considered simulation week - a peak number of events took

place on the 7th of March, which is why this day is analysed in detail (see figure

6.9). It traces the job power, the number of active nodes, and the number of

jobs for the MaxSLA0.2, MaxSLA0.5, and MaxSLA0.6 scenarios, and it illus-

trates how in each scenario the current composition of workload and the results

of previous events lead to different adaptation activities. The dotted lines rep-

resent the MaxSLA0.5 run which was expected to exhibit a behaviour between

the extremes MaxSLA0.2 (lighter line) and MaxSLA0.6 (darker line).

The image focuses on two major demand response events, one in the morning

from 8:00-10:45h and the other in the late afternoon from 18:15-20:00h. In the
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morning, power reduction starts instantly with the request to reduce power.

As neither the number of nodes nor the number of jobs change at first, this

reaction is obviously exclusively incited by frequency reduction. In the case of

MaxSLA0.2 the number of jobs remains close to the baseline run; but for the

MaxSLA0.5 and MaxSLA0.6 runs the lower two curves show that, after a short

hesitant phase, jobs are shifted. As the analysis of job data shows, some jobs

with a low energy consumption are even preponed, and a few jobs shifted away

from the demand response window. This is because during the event the job

schedule is optimized to keep the load as steadily reduced as possible. At the

end of the event, as often described (e.g.[162]), there is a tiny peak, also called

’rebound effect’, where the modified power curves exceed the baseline curve in

order to partially recapture the big (in terms of number of nodes) shifted jobs.

There are four more demand response events during the day, where the data

center needs to comply to the contractually bound power reduction requests.

The final event of the day lasts from 18:15 to 20:00h (see again figure 6.9).

Here the different adaptation activities seem more disruptive, even though the

demand response window is a little shorter than in the morning. The reason

for that is that during the day more and more adaptation processes started

without the impact of the previous having been fully compensated. What adds

to this is a sharp increase in the baseline power demand right before the ac-

tivation period. Therefore, in the different simulation runs the reactions are

quite disparate. The most striking observations are that both the number of

nodes and the number of jobs of the MaxSLA0.2 run are decreased more than

for the cases where a higher adaptation is required. Analysing the statistics

about the average frequency and the workload shifting ratio corroborates this

observation; MaxSLA0.2 exhibits the highest value for the workload shifting ra-

tio in this afternoon event: 88% vs. 59% (MaxSLA0.5) and 71% (MaxSLA0.6).

This is due to the fact that MaxSLA0.2, only delivering 200kW, experienced

less disruptions before the increase in baseline power demand and reacted to

this request by additionally pre-poning jobs before the event and thus could

deliver the requested power mostly through shifting. This power management
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Table 6.4.: Impact of MaxSLA scenarios on power and job characteristics

BL MaxSLA0.2 MaxSLA0.4 MaxSLA0.5 MaxSLA0.6
absolute % BL absolute % BL absolute % BL absolute % BL

Power
TFE 347,804 344,390 -0.98% 342,429 -1.55% 341,848 -1.71% 341,565 -1.79%
ATFP 2,070 2,050 -0.98% 2,038 -1.55% 2,035 -1.71% 2,033 -1.79%
PTFP 2,408 2,423 0.63% 2,467 2.47% 2,486 3.24% 2,499 3.77%
JE 210,833 209,244 -0.75% 208,556 -1.08% 208,580 -1.07% 208,906 -0.91%
AJP 1,255 1,245 -0.75% 1,241 -1.08% 1,242 -1.07% 1,243 -0.91%
PJP 1,546 1,533 -0.85% 1,566 1.31% 1,566 1.31% 1,583 2.43%

Jobs
ART 16,319 19,791 21.28% 19,897 21.93% 20,026 22.72% 20,127 23.34%
WL 190.9 192.5 0.86% 194.2 1.73% 195.3 2.34% 197.6 3.54%
RWL 0 3.24% 3.79% 3.90% 6.00%
AF 2.35 2.33 -0.92% 2.30 -2.14% 2.28 -2.81% 2.26 -3.73%

strategy has the advantage that it is more fine-granular and thus controls SLA

cost better as it relates to individual jobs, whereas the average frequency is

adapted in each timeslot for all active jobs.

Even though, thus, in general in this setting shifting is preferable to scaling,

in reality only the small fraction of the workload that has been submitted but

not yet started can be shifted. Whenever therefore a higher amount of power

adaptation is requested the ratio of frequency scaling necessarily increases.

This is also reflected in the SLA cost as can be seen in Table 6.5, which for all

scenarios sums up energy (EC) and SLA cost (SLAC), the power and energy

rewards (SCRP and SCRE) as well as the gross (GB) and the net (NB) benefit

(the difference lies in the assumed aggregation fee of 30% of SCR remuneration)

for the week of 03/03-09/03. The gross benefit is calculated as the sum of the

difference between the baseline energy costs and the scenario energy and SLA

costs, the EP and the PP benefit. The percentage value of the benefit relates to

the original energy cost. Both cost and benefit values are evaluated with static

electricity prices (marked by an ’S’, so e.g. GBS) versus dynamic electricity

prices (marked by a ’D’), reflecting the option of a data center of this size to

not necessarily being subject to a flat price but to potentially engage at the
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wholesale market. The main comparison is with static prices though, as the

considered data center does not source their electricity at the wholesale market.

The second column of table 6.5 (column ’BL’) shows a high difference between

the energy cost based on the assumption that the data center uses the average

industry price (ECS) of e53,284 and the energy cost the data center would pay

if it purchased their electricity at the EPEX market without power management

(e10,339). This means that the data center would have been able to save nearly

80% of the energy bill by sourcing their electricity demand at the EPEX day

ahead market without even changing the power profile13. This means, of all

changes possible, the by far most beneficial one is to turn to the wholesale

market for electricity sourcing.

The most striking result in the cost and benefit table is the high amount

of SLA cost in the MaxSLA0.4 scenario compared to the MaxSLA0.5 scenario

which is the most profitable solution. The main reason of the high MaxSLA0.4

SLA cost lies in the fact that in order to reduce the necessary amount of power

demand, in many cases in this particular run it is not sufficient to compute the

workload with a comparably high frequency and add some workload shifting on

top; rather in order to reduce power sufficiently, in many events the next higher

level of frequency needs to be chosen thus accruing a high level of SLA cost.

In order to understand this, it has to be kept in mind, that the simulator uses

specific rules to implement reactions to incentives, it does not optimize!

The most beneficial SCR run, as can be seen, is therefore MaxSLA0.5 where,

contrary to MaxSLA0.4 and MaxSLA0.6, the rewards are not compensated by

SLA cost. In MaxSLA0.2, the energy cost savings of a reduced CPU frequency

and the restructuring of workload according to deadlines dominate the benefit,

whereas later the energy cost savings are lower compared to the SCR remuner-

ation. Therefore also the impact of the aggregator fees of assumed 30% of the

SCR reward gain importance, especially as SLA cost grow over-proportionally

with the power offered. Looking at the net benefit results in table 6.5 reveals

13However, the real price/kWh may be considerably lower than the average industry price; this is not known to
the author.
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Table 6.5.: Cost and benefits of MaxSLA scenarios

BL MaxSLA0.2 MaxSLA0.4 MaxSLA0.5 MaxSLA0.6
Cost absolute % BL absolute % BL absolute % BL absolute % BL
ECS 53,284 52,761 -0.98% 52,460 -1.55% 52,371 -1.71% 52,328 -1.79%
ECD 10,339 10,216 -1.20% 10,144 -1.89% 10,124 -2.09% 10,108 -2.24%
SLA C 0 176 n.a 1,443 n.a 699 n.a 2,501 n.a

Benefit
SCR E 0 284 n.a 568 n.a 710 n.a 852 n.a
SCR P 0 76 n.a 153 n.a 191 n.a 229 n.a
GBS 0 707 1.33% 102 0.19% 1,114 2.09% -464 -0.87%
GBD 0 308 2.98% -526 -5.09% 418 4.04% -1,188 -11.49%
NBS 0 599 1.12% -115 -0.22% 844 1.58% -789 -1.48%
NBD 0 200 1.93% -743 -7.18% 147 1.43% -1,513 -14.63%

that with 1.12% the net benefit of MaxSLA0.2 is slightly smaller than for the

most beneficial run MaxSLA0.5 (1.58%) where the offer of power flexibility is

more than doubled.

In order to assess the general scope of SLA cost, especially for publicly owned

data centers that often do not apply SLA cost, the same runs were executed

without activating the SLA cost component. Without the need to avoid SLA

cost, there is no incentive to apply the deadline-based STDF schedule (see sec-

tion 5.2.2), so that for this set of simulation runs jobs were scheduled according

to the widely used first-in-first out algorithm. The electricity and job related

results do not change fundamentally, but as figure 6.10 shows for March 7th,

there are slight differences as e.g. regarding the number of active nodes be-

tween the runs with (MaxSLA0.2 and MaxSLA0.6) and without SLA (Max0.2

and Max0.6).

The cost (see Table 6.6), however, do change substantially; and as expected,

in this case the highest power reduction offer (Max0.6 scenario) is the most

beneficial one, creating a net income which is worth 3.23% of the static energy

cost and 9.53% related to the baseline dynamic electricity cost.
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Figure 6.10.: Comparison of number of nodes between BL and MaxBid demand
response scenarios with and without SLA, March 7th

Table 6.6.: Cost and benefits of the MaxBid scenarios without SLA

BL Max0.2 Max0.5 Max0.6
absolute % BL absolute % BL absolute % BL

Cost
ECS 53,284 52,470 -1.53% 52,304 -1.84% 52,321 -1.81%
ECD 10,339 10,151 -1.20% 10,114 -1.20% 10,111 -1.20%
SLA C 0 0 n.a 0 n.a 0 n.a

Benefit
SCR E 0 284 n.a 710 n.a 852 n.a
SCR P 0 76 n.a 191 n.a 229 n.a
GBS 0 1,174 2.20% 1,881 3.53% 2,044 3.84%
GBD 0 548 5.30% 1,126 10.89% 1,310 12.67%
NBS 0 1,066 2.00% 1,610 3.02% 1,720 3.23%
NBD 0 440 4.26% 856 8.28% 986 9.53%
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MinBid scenarios: Low involvement on the secondary reserve

market

As explained in section 6.2, additionally to the MaxBid scenarios with and

without SLA, MinBid scenarios were created through the artificial bid of the

combination of the lowest energy and power price offer in the SCR market

which had just entered into the MOL in the considered week. Contrary to the

MaxBid scenarios, the activation trace of the MinBid scenarios contains only

four demand response events where the data center must respond, as shown

in figure 6.4. Obviously, four events have a lower potential for a disruptive

impact than 90 events. And obviously, this extends also to the benefit side.

This hypothesis was confirmed by the simulation results.

Three of the four demand response events happened on the 7th of March

(black activation curve at the bottom of figure 6.11), and the results for the job

power and the number of jobs in each time slot are shown in figure 6.11. In

order to contrast these curves with the disruptions in the MaxBid scenario, the

MaxSLA0.6 curves are added to the picture. It can be seen that the job power

consumption of the MinSLA scenarios equals the baseline power consumption

until the event at 14:45. The reason for this is that there were no events since

March 3rd, so that the data center could fully recover from this only other

event. Similarly, after all three events on March 7th, there is much less difference

between the baseline and the MinSLA curves than in the case of the MaxSLA

scenario. Also the curves of MinSLA0.2 and MinSLA0.6 hardly differ except

for the demand response events themselves; all adaptations nearly exclusively

relate to the time-slots of the activations. All this can be explained by the

extremely rare events of this SCR activation trace, as in this case no impacts

build up over time.

Table 6.7 sums up the costs of these runs. Compared to the MaxSLA scenarios

the benefits of the respective MinSLA scenarios are generally smaller by factors

between 5 and 10! There are two main reasons for that: On the one hand the PP,

which is paid independently of activation, is significantly lower. On the other
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Table 6.7.: Cost and benefits of the MinSLA scenarios

BL MinSLA0.2 MinSLA0.5 MinSLA0.6
absolute % BL absolute % BL absolute % BL

Jobs
AJL 16,319 19,591 20.05% 19,606 20.15% 19,614 20.20%
WL 190.9 190.9 0.04% 191.1 0.13% 191.2 0.16%
RWL 0 0.00% 0.02% 0.04%
F 2.35 2.35 -0.04% 2.35 -0.12% 2.35 -0.15%

Cost
ECS 53,284 53,260 -0.04% 53,243 -0.08% 53,240 -0.08%
ECD 10,339 10,334 -1.20% 10,331 -1.20% 10,330 -1.20%
SLA C 0 10 n.a 14 n.a 10 n.a

Benefit
SCR E 0 13 n.a 32 n.a 39 n.a
SCR P 0 54 n.a 136 n.a 163 n.a
GBS 0 81 0.15% 194 0.36% 234 0.44%
GBD 0 62 0.60% 162 1.57% 200 1.93%
NBS 0 61 0.11% 144 0.27% 174 0.33%
NBD 0 42 0.41% 112 1.08% 140 1.35%

hand, even though the EP, i.e. the energy price, is higher, the associated income

is lower due to the rare activation. Interestingly, here the MaxSLA0.6 scenario

is the most profitable one, as obviously four events generate substantially less

SLA cost than 90 events.

Implicit demand response: buying electricity on the wholesale

market

The simulation run for the EPEX market started at the 01/01/2014 and

ended at the 15/05/2014. However, due to the higher complexity of the CAS

scheduling procedure it took 13.5 hours (48,629 seconds) to complete. Figure

6.12 shows the basesline and EPEX scenario for the total facility power (green

colors) and the number of jobs (yellow colors) and contrasts it with the EPEX

prices (black) for the same week. At first sight this image shows that contrary to

explicit events, here the baseline and adaptive curves are extremely disparate.

This is can be understood easily by noting that the EPEX scheduler replaces
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the original scheduler at all times trying to mirror the EPEX price curve to

the utmost degree. The statistics in table 6.8 support the impression that the

EPEX curves of Facility Power and Number of Jobs are on average below the

baseline curves: the total facility energy consumption is reduced by 7.81% -

contrary to MaxSLA0.5, that also sees a reduction, but only of 1.71%. This is

eventually caused by a reduced utilization of the data center, as the workload,

measured by the average active number of jobs in all timeslots, is reduced by

nearly 12%. The reason lies in the fact that the EPEX scheduler is less efficient

than the original scheduler as it does not use backfilling. So part of the cost

savings can be attributed to a reduced data center utilization. Compared to

the high overall net benefit of 5.77% this is still a very reasonable strategy. In

the case of no SLA cost, contrary to the MaxSLA runs the scheduler is not

exchanged, and the result would be increased to 7,8% net benefit.

The SLA cost are subject to sudden changes when the prices on the EPEX

market exhibit spikes in either direction. An analysis of the total SLA cost

of e1,082 in this week reveals that a high share of these, namely e721 were

created on Saturday, where the EPEX prices dropped as they frequently do on

the weekend thus spurring CAS to schedule a high number of jobs.

Summary of Simulation Set 1

Figures 6.13 and 6.14 summarize the effects of a general engagement in both

the SCR and the EPEX market under different circumstances with regards to

presence or absence of SLAs and higher or lower price bids in the SCR market

auctions.

The complete statistics of all simulation runs can be found in appendix B;

figure 6.13 only visualizes the most interesting ones. Overall, it is obvious that

the demarcation line runs between the EPEX and the SCR simulations, mainly

due to the different characteristics of the event-based vs. continuous adaptation.

What is further interesting is that the total results are comparably unaffected

by the various sizes of SCR offers, however, the minimum of the job power is
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Table 6.8.: Comparison of the statistics of the MaxSLA0.5 and the EPEX sce-
narios

BL MaxSLA0.5 EPEX
absolute % BL absolute % BL

Power
TFE 347,804 341,848 -1.71% 320,657 -7.81%
ATFP 2,070 2,035 -1.71% 1,909 -7.81%
PTFP 2,408 2,486 3.24% 2,505 4.05%
JE 210,833 208,580 -1.07% 184,474 -12.50%
AJP 1,255 1,242 -1.07% 1,098 -12.50%
PJP 1,546 1,566 1.31% 1,621 4.87%

Jobs
ART 16,319 20,026 22.72% 17,567 7.65%
WL 190.9 195.3 2.34% 168.2 -11.88%
RWL 0 3.90%
AF 2.35 2.28 -2.81%

Cost
ECS 53,284 52,371 -1.71% 49,125 -7.81%
ECD 10,339 10,124 -2.09% 9,202 -11.00%
SLA C 0 699 n.a 1,082 n.a
SCR E 0 710 n.a 0 n.a
SCR P 0 191 n.a 0 n.a
GBS 0 1,114 2.09% 3,077 5.77%
GBD 0 418 4.04% 56 0.54%
NBS 0 844 1.58% 3,077 5.77%
NBD 0 147 1.43% 56 0.54%

more volatile than the maximum, and especially the variance increases, although

it not even doubles when the offered amount of power is tripled. Overall the

workload, here represented by the number of jobs, is not changed a lot except

for the EPEX simulation. The most noteworthy development is the the runtime

of jobs, which for the MaxBid runs increases by 20-25% percent whereas for the

EPEX run it is not half as much affected (+7.65%). This explains why the SLA

cost in the EPEX run are low compared to the MaxBid runs.

This is also supported by figure 6.14 that compares the benefits of all simula-

tion runs in the first set. It illustrates how the benefit ratios calculated on the

basis of the dynamic electricity cost are in general more extreme as the basis is

smaller. But it also shows impressively that this basis decides on the overall best
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Figure 6.13.: Selected statistics on the first set of simulation runs, 03/03/2014-
09/03/2014

solution: if the considered data center is subject to the average industry price,

it would have gained a lot of budget by merely sourcing their electricity demand

on the EPEX day ahead market. If, on the other hand, it had already taken to

the option of buying electricity on the wholesale market without changing their

planned power profile, they would have benefited additionally by investing into

the SCR explicit demand response market.

6.3.2. Set 2: Simulating the Impact of Hard SLA

The second set of simulations is dedicated to the influence of alternative SLA

parameters. This is different from the MaxBid runs without SLA insofar as

the SLA component (and with it the STDF scheduler) is activated, however,

as explained in section 6.2, the deadline assumptions in the SLAs are tightened

to the version originally suggested by Garg et al. [82]. As the underlying

workload trace is the same, the relative distance between the original deadlines
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Figure 6.14.: Comparing the net benefit of the first set of simulation runs,
03/03/2014-09/03/2014

and the new, hard deadlines should not change much so that the STDF scheduler

should yield similar results as for the simulation runs of the first simulation set.

However, the deadline definition contains a randomization element, that was

introduced in order to represent different economic weights of different jobs.

This randomization element, that scales the addition to the original execution

time is obviously computed again and accounts for the scheduling differences of

the jobs with the new hard SLAs.

Figure 6.15 for the job power of the MaxSLA0.5 runs spans the part of the

simulation week where demand response events in the positive - high time prod-

uct of the SCR are happening, i.e. 03/03/2014 - 07/03/2014. Similarly to the

first analysis, where it was shown that the impact of power reductions build up

as more activations take place, here the deviations between the original, ’Soft-

SLA’ runs and the ’HardSLA’ runs are also getting slightly higher during the
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Figure 6.15.: Comparing Job Power between original and hard MaxSLA0.5 runs,
03/03/2014 - 07/03/2014

course of events, although the overall sums of energy and power consumption,

of numbers of nodes and jobs do not change much (see table 6.9).

On the level of job statistics that are impacted by the power decreases, how-

ever, there are some small differences, which can be explained by looking more

closely into the reaction to specific events, as displayed in figure 6.16. It shows

in detail the impact of hard versus soft SLA definitions on the MaxSLA0.5 sim-

ulation run on March 7th, from 14:00h to 22:00h, two hours after the last event

terminated.

Figure 6.16 presents the job power in the top and the number of nodes in the

bottom part which together with the number of jobs represents the shifting of

workload. This figure gives the impression that the reactions of the hard SLA

simulation are a bit more extreme than the reactions of the soft SLA simulation.

Not only is the job power slightly more reduced in the longer events, but also

is this development mirrored in the number of nodes which implies that the
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Figure 6.16.: Comparing Job Power between original and hard SLA runs, 7th
of March

supply of control power in the case of hard SLA is more dominated by workload

shifting than for the case of soft SLAs. This is corroborated by the statistics in

table B.4, that for the MaxSLA runs give ratios for workload shifting of 3.9%

for soft and 7.73% for hard SLA. The MaxSLA0.5 run is not an exception, the

same applies for the other MaxSLA runs. Also, the average frequency on the

whole is slighty reduced whereas the average runtime is slightly increased. This

may look inconsistent at first sight but can be explained with the phenomenon

that depending on the timeslots where the frequency is changed, more or less,

smaller or bigger jobs and thus their runtimes are affected. Obviously, this effect

grows over time when more jobs are shifted. Again, even though the physical

differences are small, they build up during time.

The EPEX simulation with hard SLAs, however, exhibits a contrary be-

haviour: Here, as figure 6.17 shows for the three days 07/03-09/03/2014, the

reactions of the hard SLA runs seem less extreme than for the soft SLA runs.
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Figure 6.18.: Illustrating the impact of hard vs. regular SLA on the net benefit
of set 2 simulations, 03/03/2014-09/03/2014

This is intuitive, because the less SLA constrain the adaptation to dynamic

prices, the more elastic the power demand can be. This is why both the peak

power consumptions (see table B.4) and the variance of the power consumptions

are much higher for the case of soft SLAs. The job and node curves of hard

SLA in figure 6.17 display less similarity than it was the case for the job and

the node curves in the SCR market analysis. This means that the adaptations

to the EPEX price vector are implemented to a lesser degree by the shifting of

jobs, but rather by step-by-step frequency tuning.

However, in order to avoid excessive SLA cost, the ’Hard SLA’ EPEX run is

even less efficient than the ’Soft SLA’ run, so that the reduction of workload

processed is slightly higher. Despite of that endeavor, the SLA cost of the

original EPEX run are only two-thirds from the ’Hard SLA’ EPEX run. The
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Table 6.9.: The statistics of the ’Soft’ vs. the ’Hard’ simulation set. Except the
SLA cost, the table contains percentages that relate to the baseline

MaxSLA0.2 MaxSLA0.4 MaxSLA0.5 MaxSLA0.6 EPEX
Soft Hard Soft Hard Soft Hard Soft Hard Soft Hard

Power
TFE -0.98 -0.98 -1.55 -1.86 -1.71 -1.66 -1.79 -1.78 -7.81 -9.99
PTFP 0.63 0.63 2.47 2.72 3.24 2.70 3.77 2.79 4.05 -0.99
JE -0.75 -0.75 -1.08 -1.44 -1.07 -1.01 -0.91 -0.91 -12.50 -14.51
PJP -0.85 -0.85 1.31 1.29 1.31 2.71 2.43 3.08 4.87 -1.11

Jobs
ART 21.28 21.04 21.93 22.68 22.72 22.55 23.34 23.86 7.65 7.49
WL 0.86 0.85 1.73 0.92 2.34 2.65 3.54 3.53 -11.88 -12.88
RWL 3.24 4.50 3.79 6.26 3.90 6.73 6.00 7.26
AF -0.92 -0.92 -2.14 -2.20 -2.81 -2.87 -3.73 -3.76

Cost
SLA C 176 501 1,443 3,881 699 3,532 2,501 4,270 1,082 1,518

cost and benefit side of the ’Hard SLA’ runs compared to the ’Soft SLA’ runs are

displayed for the whole simulation set 2 in the lower part of tables B.4 and B.5,

and the net benefit is visualized in figure 6.18. The huge difference in the net

benefits using dynamic cost somewhat hides the fact, that the difference of net

benefits between the hard and the soft SLA using static electricity cost is also

huge. The MaxSLA0.5 run, that originally was the most beneficial engagement

in the SCR market, under hard SLA turns into an economic loss. The only SCR

engagement that leads to a very small benefit (0.51% for the static net benefit

NBS) is MaxSLA0.2. For the case of ’Hard SLA’ there is no real option to earn

an additional benefit by implementing demand response! Even sourcing power

at the EPEX power market, if the baseline energy cost is already low due to

the dynamic EPEX energy prices, leads to a loss of 4.22%. The reason is the

surging SLA cost depending on the power reduction offered: SLA cost in all

SCR cases outweigh the reward that can be gained on the SCR market; only

in the MaxSLA0.2 case the energy cost savings are high enough to compensate

for that loss.
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6.3.3. Set 3: Manipulating the Composition of the Data Center

Workload

The final simulation set explores the impact of a modified workload compo-

sition on the results of the HPC engaging in the SCR market or sourcing its

electricity on the EPEX market in the first week of March 2014. The original

workload was decomposed into jobs belonging to ’Long Job’ job classes and

’Short Job’ job classes. As therefore the size of the workload is considerably

smaller than the original workload, in the case of explicit demand response, only

reductions of 0.2, 0.1, 0.05MW are possible.

Figure 6.19 shows the case of a positive SCR bid of 0.2MW for both the new

’Long Job’ (dark green, dotted line) and ’Short Job’ (dark green) Facility Power

trace compared with the original load (light green). The MaxBid activation

trace in the upper part of the picture depicts where the data center must react

to the activation; unfortunately, on March 4th, the ’Long Job’ workload would

not have been able to reduce its power consumption by 200kW due to a still

high fix power block. As a result, of course it is paid neither the power nor the

energy SCR reward. The contractual consequences are up to the aggregator.

Apart from this effect, figure 6.19 gives a first impression, that the ’Short Job’

trace is less agile than the ’Long Job’ trace. This is not unexpected, considering

that the ’Short Job’ trace contains 4007 jobs, the ’Long Job’ trace merely 1872

jobs, the energy load however of the ’Short Job’ trace being 11% higher than

of the ’Long Job’ trace. This finding is supported by figure 6.20 that displays

the results of March 7th for the Job Power, the Active Nodes and the number

of Jobs of the MaxSLA0.1 run which was successful for both job traces.

As a matter of comparison, again the original curves for MaxSLA0.1 are

presented. This illustrates how the reaction of the ’Short Jobs’ is slightly more

extreme but more or less retraces the original data trace which illuminates the

fact that the original data trace for the considered week is dominated by short

jobs. The most conspicuous results of this run are that the average active

number of ’Long jobs’ is rather constant, and that the corresponding active
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number of nodes are even behaving counter-intuitively in the evening event

which means that there is not much room for a ’rebound effect’ after the event

has finished as jobs that are lasting for hours cannot be moved.

The differences between the two sets of workload traces are even more con-

spicuous when simulating an engagement on the EPEX markets, which means

exchanging the scheduling algorithms (original HPC-RE vs. CAS) during the

whole simulation time. The numbered blue buttons on figure 6.21 highlight the

difference in behaviour of the ’Short Jobs’ and the ’Long Jobs’, the correspond-

ing arrows differentiate between price adaptations that worked out well (blue

arrows) from those that could not be implemented in the intended direction (red

arrows). The first blue button shows how both traces adapt to a price decrease

by increasing their load. The second and the third blue button, however, point

out that the facility power of the ’Long Jobs’ could not increase in spite of a

price dip (number 1) or even had to increase load (number 2) when unfortu-

nately also the price level increased. These findings are reinforced by the curves

of the number of active nodes and jobs in figure 6.22. Again opposing the two

different workloads against the EXPEX day ahead price vector in this figure

the number of Active Nodes of the ’Short Jobs’ workload exhibits an extremely

elastic behaviour compared both to the Job curve and the corresponding curves

of the ’Long Jobs’ workload. Analysing these curves, it needs to be taken into

account that the active Number of Jobs contains snapshots of each time slot,

so ’Long Jobs’ linger much longer and therefore a spike as in the morning of

the 5th of March implies that some new jobs started without old jobs being

finished due to an increase in the baseline ’Long Job’ workload. The old jobs

are obviously terminated directly after this spike, so that the curve drops. For

the case of the ’Short Jobs’ the Number of Active Nodes reacts more sharply

than the Number of Jobs. This can be explained with the fact that on average

the ’Short Jobs’ run on more nodes than the ’Long Jobs’ (see also tables 6.10

and 6.11 that summarize the results) which also implies that the average power

per job is not much different (not to be confounded ’Average Job Power’ as a

result of averaging the time series, see table 6.3) .
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6.4. Discussion of Simulation Results

This difference in adaptivity to both the dynamic prices in the EPEX power

flex market and the SCR events of the two data traces is also mirrored in the

disparity of benefits as represented in figure 6.23. In case the data center had

a flat tariff that equals the average industry price in 2014, represented by the

’static’ benefit tags, for both workloads it is more beneficial to invest into the

SCR market than to implement power management in order to adapt to the

dynamic EPEX prices. Interestingly, the ’Long Job’ workload is affected more

extremely than the ’Short Job’ workload, also with regards to benefits, which is

an unexpected outcome. This is due to the high difference in SLA cost payable

to the data center’s customers (see tables B.6 and B.7 in the appendix): in the

case of the ’Short Jobs’ the level of SLA cost is considerably lower than for

the ’Long Job’ workload, even though they grow with a lower inclination. And

regarding the MaxSLA0.2 run, which would have incurred surging SLA cost for

the ’Long Job’ workload, this had to be annulled as in one single event during

the considered week the adaptation of the ’Long Job’ workload was technically

infeasible. In case the data center in 2014 purchased energy at the EPEX day

ahead market without managing their power profile accordingly, the ’Short Job’

workload would have benefited from additionally rescheduling and scaling their

job workload in order to adapt to price differences: in that case the net benefit of

such activity would have been an additional 2,8% rent based on their (dynamic)

energy bill. Investing in the SCR market would have lead to a loss, contrary

to the ’Long Jobs’ workload driven data center, which would have benefited

slightly from bidding into the SCR market (through an aggregator), whereas

an EPEX engagement would have led to additional cost only, again due to the

difference in SLA cost.

6.4. Discussion of Simulation Results

The high sensitivity of simulating results to the parameter settings shows

that there is no one-fits-all strategy of data center demand response. In some
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Figure 6.23.: Gross and net benefit of the third simulation set: Short versus
Long Job traces

Table 6.10.: ’Short Jobs’ statistics. Percentages relate to the Short Job BL,
except for the Short Job BL relating to the original data trace

BL Short MaxSLA0.05 Short MaxSLA0.1 Short MaxSLA0.2 Short
absolute % BL absolute % BL absolute % BL absolute % BL

Power
TFE 216,340 -37.80% 215,148 -0.55% 214,735 -0.74% 214,058 -1.05%
PTFP 1,630 -32.29% 1,647 1.00% 1,649 1.12% 1,691 3.70%
AJP 566 -54.91% 563 -0.54% 562 -0.70% 562 -0.72%

Jobs
ART 15,282 14,149 -7.41% 14,281 -6.55% 14,403 -5.75%
WL 93.2 93.8 0.65% 94.1 1.04% 95.5 2.50%
AF 2.42 2,33 -3.67% 2,32 -4.16% 2,28 -5.73%

cases as for instance, if there is a sharp increase of SLA cost, the outcome is

as expected: The benefit of all versions of investing into demand response is

reduced, benefits turned into losses (see B.4), and even power management in

the EPEX market which under the originally assumed SLA cost resulted in a

209



6.4. Discussion of Simulation Results

Table 6.11.: ’Long Jobs’ statistics. Percentages relate to the Long Job BL, ex-
cept for the Long Job BL relating to the original data trace

BL Long MaxSLA0.05L. MaxSLA0.1L. MaxSLA0.2L.
absolute % BL absolute % BL absolute % BL absolute % BL

Power
TFE 194,406 -44.10% 193,494 -0.47% 193,000 -0.72% 192,591 -0.93%
PTFP 1,438 -40.29% 1,436 -0.12% 1,436 -0.11% 1,454 1.12%
AJP 386 -69.21% 384 -0.70% 382 -1.02% 382 -1.01%

Jobs
ART 30,703 30,691 -0.04% 31,002 0.97% 31,294 1.92%
WL 94.9 95.4 0.47% 96.1 1.26% 97.9 3.09%
AF 2,43 2,34 -3.39% 2,32 -4.28% 2,25 -7.16%

profit of 5.8% is reduced by one percent point. This still means that the EPEX

market at first glance is the most resilient investment.

Removing the SLA component all together (MaxBid runs without SLA), as

expected leads to considerably higher benefits, for both explored implicit and

explicit demand response markets. Thus in the absence of SLA cost, earning

e1,720 in the considered week, representing 12.67% of the original static baseline

power cost would have been a possibility for the considered data center offering

0.6MW to the SCR. This is not unrealistic taking into account that HPC data

centers are often publicly owned and therefore do not charge SLA cost. At

no cost, here the technical potential of demand response is analysed which

leads to potential reductions in this considered week of up to 0.6MW of a peak

power consumption of 2.4MW, due to high fixed block of server and cooling

infrastructure which is independent of the workload computed. Also, the point

in time when the SCR called plays an important role: the events calling for

reduction on March 6th come at a time of a comparably low utilization of the

data center, when the job power only just exceeds 1MW. With an average power

consumption of 1.25MW of the job power, the activations might have happened

at more but also at less suitable times.

This highlights not only the sensitivity of both technical and economic de-

mand response potential to the power system conditions but also to the bidding
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strategy of the data center: the MinBid scenarios explored the low-risk invest-

ment which implied a lower activation frequency but also a lower remuneration

for the provision of power. Comparing the gross economic results of SLA-

based MinBid and MaxBid scenarios, e.g. a benefit of 0.44% of the original

flat tariff electricity bill for MinSLA0.6 (table 6.7) versus a benefit of 2.09% for

MaxSLA0.5 (table 6.5) renders the MaxBid scenarios on average superior (see

tables B.2 and B.3 in the appendix). However, accounting for the higher risk

involved (SLA cost of e699 vs. e10) a data center operator might decide on a

lower involvement.

The overall strategy from these first two sets of simulation runs seems obvious:

not to be bound by mandatory activations on the SCR market but instead turn

to the EPEX day ahead market. Simply exchanging the static tariff for the

dynamic electricity prices without manipulating the power profile reduces the

energy bill by 80%, i.e. from e53,284 to e10,339 in the first week of March

2014. This ratio is even increased to 84% looking into the data from 03/03-

30/03. Adding power management on top of this results only in a slight increase

of additional e56 saved.

The same holds in principle for the two alternative workloads, the ’Long

Jobs’ and the ’Short Jobs’ trace: By sourcing their power on the EPEX power

market, without implementing power management, the data center management

in March 2014 could have saved about 80% of their power bill (assuming the

average industry price!).

However, in case the data center sticks to the flat energy tariff and considers

investing into the SCR market or the EPEX market by managing their power

profile according to the price differences, the situation is different: For both

workload models, the ’Long Jobs’ and the ’Short Jobs’ in that case the engage-

ment into the SCR market would prove more beneficial than into the EPEX

market. The ’Short Job’ workload would make a slightly higher profit offering

0.2MW to the SCR market than to invest into the EPEX market (1.09% vs.

0.29%), the ’Long Job’ workload, unfortunately, in the latter case would lose
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3.3%. This is a contradictory finding to the original workload where the EPEX

market in all cases proved to be the best alternative.
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7. Conclusion and Outlook

With the future energy system facing disruptions from intermittent REN

power sources and an increase of electric vehicles, demand response becomes a

necessary supplement to fast responding power sites in the endeavor to avoid

gaps between power feed-in and power draw. Data centers can play a major

role as participants in demand response schemes offering various starting points

for temporary power management at all layers of a general architecture. This

thesis evaluated this opportunity from a data center’s point of view.

Conclusion

The focus of this work was put on the complexity of the potential variety of

different power management strategies in a data center facing a variety of power

flex markets. In order to deal with this complexity a modeling framework was

presented that allows to understand the relevance of individual approaches in

the context of an overarching framework. It comprises both a generic data

center architecture that structures the different starting points for power man-

agement and a micro-economics based optimization modeling framework. As

an example of applying this framework a generic simulation architecture was

created which was instantiated into a concrete simulation system [132]. In order

to produce meaningful results, this simulation system represents a specific data

center that generates power flexibility by applying power management strate-

gies on two different layers of the data center architectural framework, i.e. on

the infrastructure layer and the software layer. Implementing these two strate-

gies, frequency scaling and workload shifting, required to consistently link the

provided 2014 workload data with the physical infrastructure data in a way that
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offers activators to manipulate the data center power profile. The simulation

thus shows how the resulting flexibility could have been monetized on two real

power flex markets that might have been accessed in 2014 by this concrete data

center, namely the secondary reserve market and the EPEX day-ahead market

in Germany.

The most striking result of this concrete evaluation through the simulation

tool Sim2Win-HPC is the following: Assuming a baseline of billing electricity

by applying the (flat) average industry price of e0.1532 results in a power bill of

e53,284 in the simulated week. Compared to this baseline, the financially most

attractive strategy would have been to just replace this price by the dynamic

price vector of the EPEX market, thus saving 80% of the original electricity

bill. This means, that under the market conditions of 2014 the largest financial

efficiency gain for the considered data center would have been not to implement

demand response, but to turn to a different pricing scheme. This statement also

holds if the average industry price had been only half of the real one.

Entering into the explicit demand response market SCR for the best combi-

nation of bids in the considered week would have resulted in an activation trace

of 24 distinct events, all together covering 90 15-minute timeslots. The data

center would have been able to fulfill all these events offering up to 600kW.

Under the assumption of no SLA cost, which is realistic for publicly owned

HPC data centers, it would have been valuable for the data center to further

invest into the SCR market, offering 600kW and therefore achieving another

12.7% gross and 9.5% net (substracting the aggregator fee) benefit based on the

reduced power bill of e10,339. Applying the baseline SLA cost model which is

relevant for most commercial data centers, the SLA cost of this offer would not

have been compensated by the SCR remuneration. Here, the most beneficial

offer would have been 500kW, resulting in an extra benefit of 4% on top of the

dynamic EPEX price gain, assuming the data center had been able to access the

market directly, still a net benefit of 1.4% under the more realistic assumption of

accessing the market via an aggregator. If instead the data center, additionally
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to applying EPEX prices to the original power profile, had manipulated their

power profile based on the EPEX prices and aiming at a cost optimization, they

would have gained a meager extra savings of e56.

These results illustrate the large gap between the technical (i.e. power adap-

tation without SLA cost) and the economic potential of demand response in the

presented case. However, these results, as the results in other works, are largely

dependent on the parameters of the simulation. Simply halving the deadlines

that entail penalties to be paid to the data center’s customers, on the SCR

reserve market turns the net benefit into a loss of -2%; on the EPEX market

the data center would have lost even -2.2%. Also tuning the bid-sizes offered

to reserve market (the MinBid scenarios) or changing the composition of the

workload (’short jobs’ vs. ’long jobs’) impacts the outcome considerably. The

same can be said for market conditions: A baseline flat price of e0.07 instead

of e0.15 would for instance increase the gros benefit of MaxSLA0.5 from 2.1%

to 2.5% related to the original flat priced electricity bill. But still, just using

the dynamic EPEX price vector instead of the reduced baseline flat price would

reduce electricty cost by 57%.

As a summary, the current power market conditions are not very attractive

for data center demand response. If society wishes to activate the technical

flexibility potential of data centers, the reimbursement should be increased.

This is where the greater picture created by the generic modeling frame-

work comes into play: The presented simulation result and economic evaluation

supports the original hypothesis that the broad view of a high level modeling

framework helps to understand the relevance of specific simulation or optimiza-

tion approaches and scenarios. In the presented concrete simulation scenario,

only two power management strategies on two architectural layers were imple-

mented, determining the current ’technical potential’. Modeling more strategies

and using other power market and cost conditions might have increased both

the technical and the economic potential of demand response in this specific

case.
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Threats to validity of the presented approach mostly relate to the concrete

simulation:

• The difference between the time series power representation of the job data

trace and the IT data trace is unspecified, so that it had to be modeled

coarsely.

• The CPU frequency data relate to the maximum allowed frequency, not to

the executed frequency; and the job data trace did not contain information

on the applications, which both might have lead to further inaccuracies.

• The simulation has a high computational weight so that only one week

could be simulated.

• Apart from the fact that not the total range of all possible simulation

parameters could be tested, also the system uses historic data so that

uncertainty of the future development both of the workload and of power

flex market conditions were excluded.

Shortcomings of the modeling framework mostly relate to the fact that it is

static and does not include uncertainty. Also the different levels of contractual

bondage between the explicit and implicit power flex markets have not been

expressed in the theoretical model yet. However, the advantage of the current

version is the clarity of the approach that, notwithstanding the lack of detail,

helps at putting concrete examples of demand response with data centers into

context so that untapped potentials can be easier identified and limitations

understood.

Outlook

Data Center demand response is still in its infancy, not only looking at its

realization under probably unfavourable circumstances but also with regards

to research which fails to offer a complete picture instead of shedding a coup

d’oeil on different aspects. The presented modeling framework is a step in this

direction that needs both further development and more evaluations.
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In order to enhance the presented optimization framework, as hinted above,

uncertainty and temporal dynamics should be included as an additional ver-

sion in order not to reduce the clarity of this first, here presented modeling

framework.

Strengthening the evaluation of this approach can be implemented on two

different levels. On the one hand, different model instances of the framework

can be created. This has been undertaken and published [131] for a linear opti-

mization instance that builds on the same scenario, using the same data, power

management techniques, and power flex markets. Also, the impact of the hu-

man factor on decision making , e.g. risk propensity or inertia of behavioural

patterns, might be further explored. In the framework, this is currently ex-

pressed through the option to formulate alternative cost functions by adding a

risk adversity index RI. As of now this was not included in either evaluation

instance due to the lack of data. In order to collect a first data set, plans to

issue a questionnaire targeting data centers across Europe are under way.

And finally, the generic simulation architecture Sim2Win can be applied in

different scenarios and/or with other data centers and markets. For instance,

alternative markets and new power management strategies could be added as

e.g. analysing the options of geographical shifting or shutting down servers into

the current instance of the architecture. It is further planned to model and

integrate the concept of GreenSLAs using publicly available REN data. As it is

not possible to receive more detailed data for instance with regards to cooling,

a different option is to use workload, server and cooling data from a different

data center. The only limitation, which proved to be one major obstacle on the

way to simulation, is data availability.
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A. Processing the Data Traces

The considered HPC data center provided 3 data traces, of which the first,

’Job Data’ needed to be cleaned in order to avoid inconsistent simulation results

(see section A.1). The total facility power of the data center that provided the

traces, was unfortunately not available but had to be generated artificially (see

section A.2).

A.1. Job Data Trace

Description of the Job Data Trace

’JobData’ contains information for every job in 2014 that was executed in the

considered HPC environment, in total 406980 jobs. Each record consists of the

following 10 fields:

Job id: an individual job id for each job assigned by the scheduling system

Submission time: the time at which the job was submitted to the scheduling

system

Start time: the time at which the actual execution of the job started

End time: the time at which the actual execution of the job finished

Status: the status of a job within the LoadLeveler system which is either Com-

pleted or Removed

Energy tag: a user specified job tag which should be unique for each applica-

tion; however, only rarely any other tag than the default tag is used, so

that the information is meaningless

iii



A.1. Job Data Trace

CPU frequency: the maximum allowed CPU frequency for this specific job;

however, it is not known whether the job was actually executed using this

frequency

Number of utilized nodes: the number of compute nodes which were utilized

for the execution of the job; a compute note is the smalles unit assigned,

which implies that the two CPUs of each node always process the same

job

Energy to solution (EtS): the amount of energy in kWh consumed by the job

during execution; this value is directly measured by the LoadLeveler sys-

tem during execution

Average power consumption (APC): the average power consumption in W of

the corresponding job; this value is calculated from the measured runtime

and the measured EtS values of the job

Data Cleaning

The job data trace contained faulty jobs so that it had to be cleaned before

being processed. This was done usinge the following procedures:

• Jobs with zero values of frequency and EtS were deleted in order not to

distort simulation results. A reason for these errors might have been the

premature abortion of a job or measuring mistakes.

• For the same reason jobs with a negative runtime were deleted.

• All jobs with an APC/node value below 40W were deleted. The reason is

that the according to [95] the computing power of each node is approxi-

mately 23W, so that the idle power of the node should be at least 46W.

It was assumed that the corresponding jobs contain measuring mistakes

and might have been aborted, as the vast majority of these records had a

runtime of less than 5 seconds,

After the data cleaning, the job data trace contained 389968 job records.

Unfortunately, as the HPC data center is a productive environment it is
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A.2. Total Facility Power

not possible to give information about general data statistics for the whole

data trace.

A.2. Total Facility Power

Unfortunately the data center considered could not provide a data trace

for the total facility power. The reason is that there are additional server

rooms with a different technical set-up than the one used as a data

source for this thesis. Therefore an artifical total facility power needed

to be constructed. This was done using the information of the IT room

and the PUE data assuming that the Total Facility Power equals the

sum of the IT power and the Cooling Power. Only if this assumption

holds, equation (6.1) can be used to calculate the Total Facility Power :

TotalFacilityPower = PUE ∗ ITPower.

Using the total facility power constructed from the PUE values and the

IT data, the cooling power consumption can be constructed accordingly.

The artifical data traces generated based on this are part of the basis

against which the validation in section is compared. The derived total

facility power trace is rather stable; the cooling power data center exhibits

more peaks as it is not only influenced by the job load but also by the

outside temperature.
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B. Simulation Results Summary

This section displays the statistics of the simulation runs with Sim2Win-

HPC: first the evalutation metrics are introduced and explained (table

B.1). Subsequently the results of the first simulation set are displayed in

tables B.2 and B.3. The results of the variations of the SLA simulated in

the second set of scenarios are given in tables B.4 for the SCR and B.5

for EPEX. Finally results of simulating the artificial workloads generated

through the job classes with ’Short Jobs’ and ’Long Jobs’ are presented

in tables B.6 and B.7 accordingly.
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B. Simulation Results Summary

Table B.5.: Results comparing the EPEX ’Hard SLA’ and ’Soft SLA’ runs, both
with original workload.

BL EPEX H EPEX
absolute % BL absolute % BL

Power
TFE 347,804 320,657 -7.81% 313,071 -9.99%
ATFP 2,070 1,909 -7.81% 1,864 -9.99%
PTFP 2,408 2,505 4.05% 2,384 -0.99%
JE 210,833 184,474 -12.50% 180,235 -14.51%
AJP 1,255 1,098 -12.50% 1,073 -14.51%
PJP 1,546 1,621 4.87% 1,529 -1.11%
Jobs
ART 16,319 17,567 7.65% 17,540 7.49%
WL 190.9 168.2 -11.88% 166.4 -12.88%
RWL 0
AF 2.35
Cost
ECS 53,284 49,125 -7.81% 49,211 -7.64%
ECD 10,339 9,202 -11.00% 9,258 -10.46%
SLA C 0 1,082 n.a 1,518 n.a
SCR E 0 0 n.a 0 n.a
SCR P 0 0 n.a 0 n.a
GBS 0 3,077 5.77% 2,555 4,79%
GBD 0 56 0.54% -436 -4,22%
NBS 0 3,077 5.77% 2,555 4,79%
NBD 0 56 0.54% -436 -4,22%

xii
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