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Abstract

In this thesis new robust integration techniques, which are suitable for various prob-
lems from stochastic analysis and mathematical finance, as well as some applications
are presented.

We begin with two different approaches to stochastic integration in robust financial
mathematics. The first one is inspired by It6’s integration and based on a certain
topology induced by an outer measure corresponding to a minimal superhedging price.
The second approach relies on the controlled rough path integral. We prove that this
integral is the limit of non-anticipating Riemann sums and that every “typical price
path” has an associated It6 rough path. For one-dimensional “typical price paths”
it is further shown that they possess Holder continuous local times. Additionally, we
provide various generalizations of Follmer’s pathwise It6 formula.

Recalling that rough path theory can be developed using the concept of controlled
paths and with a topology including the information of Lévy’s area, sufficient con-
ditions for the pathwise existence of Lévy’s area are provided in terms of being con-
trolled. This leads us to study Foéllmer’s pathwise It6 formulas from the perspective
of controlled paths.

A multi-parameter extension to rough path theory is the paracontrolled distribu-
tion approach, recently introduced by Gubinelli, Imkeller and Perkowski in [GIP12].
We generalize their approach from Hélder spaces to Besov spaces to solve rough dif-
ferential equations. As an application we deal with stochastic differential equations
driven by random functions.

Finally, considering strongly coupled systems of forward and backward stochastic
differential equations (FBSDEs), we extend the existence, uniqueness and regularity
theory of so-called decoupling fields to Markovian FBSDEs with locally Lipschitz con-
tinuous coefficients. These results allow to solve the Skorokhod embedding problem
for a class of Gaussian processes with non-linear drift.
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Zusammenfassung

Diese Dissertation préasentiert neue Techniken der Integration fiir verschiedene Pro-
bleme der Finanzmathematik und einige Anwendungen in der Wahrscheinlichkeits-
theorie.

Zu Beginn entwickeln wir zwei Zugénge zur robusten stochastischen Integration.
Der erste, dhnlich der I[t&’schen Integration, basiert auf einer Topologie, welche erzeugt
wird von einem &ufleren Maf}, gegeben durch einen minimalen Superreplikationspreis.
Der zweite griindet auf der Integrationtheorie fiir rauhe Pfade. Wir zeigen, dass das
entsprechende Integral als Grenzwert von nicht antizipierenden Riemannsummen ex-
istiert und dass sich jedem “typischen Preispfad” ein rauher Pfad im It6’schen Sinne
zuordnen lasst. Fir eindimensionale “typische Preispfade” wird sogar gezeigt, dass
sie Holder-stetige Lokalzeiten besitzen. Zudem erhalten wir verschiedene Verallge-
meinerungen von Follmer’s pfadweiser [t6-Formel.

Die Integrationstheorie fiir rauhe Pfade kann mit dem Konzept der kontrollierten
Pfade und einer Topologie, welche die Information der Lévy-Flache enthélt, entwickelt
werden. Deshalb untersuchen wir hinreichende Bedingungen an die Kontrollstruktur
fiir die Existenz der Lévy-Flache. Dies fithrt uns zur Untersuchung von Foéllmer’s
pfadweiser It6-Formel aus der Sicht kontrollierter Pfade.

Para-kontrollierte Distributionen, kiirzlich von Gubinelli, Imkeller und Perkowski
[GIP12] eingefiihrt, erweitern die Theorie rauher Pfade auf den Bereich von mehr-
dimensionale Parameter. Wir verallgemeinern diesen Ansatz von Holder’schen auf
Besov-Raume, um rauhe Differentialgleichungen zu 16sen, und wenden die Ergebnisse
auf stochastische Differentialgleichungen an.

Zum Schluf} betrachten wir stark gekoppelte Systeme von stochastischen Vorwarts-
Riickwarts-Differentialgleichungen (FBSDEs) und erweitern die Theorie der Exis-
tenz, Eindeutigkeit und Regularitét der sogenannten Entkopplungsfelder auf Markov-
sche FBSDEs mit lokal Lipschitz-stetigen Koeffizienten. Als Anwendung wird das
Skorokhodsche Einbettungsproblem fiir Gaufische Prozesse mit nichtlinearem Drift
gelost.
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1. Introduction

One of the central topics in probability theory is stochastic integration with its nu-
merous applications in stochastic analysis and mathematical finance. Let us begin by
illustrating the importance of stochastic integration by two fundamental problems.

In financial mathematics a basic problem is to find “reasonable” prices and hedging
strategies for financial derivatives. The first approach to this problem goes back to
Bachelier [Bac00]. Seventy years later the works by Merton [Mer73] and Black and
Scholes [BS73] revolutionized the mathematical finance. The idea can be described
as follows: Assuming the price evolution S of a stock is given by a Brownian motion
or a geometric Brownian motion, and we want to price, for instance, a European
call option (S — K)*. In words this option allows, but not obliges, the holder
to buy one stock corresponding to S at time 7T for the strike price K. By the
predictable representation property of the price process .S, there exist a constant p
and a predictable process H such that

T
(Sp — K)t :p+/ H,dS,.
0

Therefore, an investor endowed with an initial capital p can choose the trading strat-
egy H to obtain the same payoff as the option (St — K)*. Consequently, in an
arbitrage free and frictionless market the “reasonable” price of the European call
option (St — K)* should be p.

More generally, in classical financial mathematics, where the price process S is often
presumed to be a semimartingale, one can rely on It6’s stochastic integration to give
the appearing capital process [ H dS a rigorous meaning. This requires to postulate
a fixed underling probability space together with a probabilistic description of the
market dynamics. Unfortunately, this approach fails to include the model risk, also
called Knightian uncertainty (cf. Knight [Kni21]). The first works including model
risk and dealing with pricing and hedging under volatility uncertainty were authored
by Lyons [Lyo95b] and Avellaneda et al. [ALP95]. Instead of assuming a price dynamic
under one probability measure P, they consider the price process S simultaneously
under a family {P,}.cs of probability measures. In this case a suitable stochastic
integration theory can be developed using quasi-sure analysis based on capacity theory
as done by Denis and Martini [DMO06], or using aggregation methods as by Soner et
al. [STZ11]. More recently, starting with the pioneering work of Hobson [Hob98|,
it becomes more and more popular to price and hedge options completely without
an underlying model or without presuming any reference measure. In the model-
independent context, to develop an appropriate integration theory is an even more
challenging and widely open problem.

Our second application of stochastic integration is linked with the area of controlled
differential equations, which are omnipresent in stochastic analysis. They form a very



1. Introduction

important subclass of classical ordinary differential equations gaining extra interest
from their various fields of application. The dynamic of such a controlled differential
equation is described by

a(t) = F(u(t)d(t), u(0)=ug, tel0,T], (1.1)

where ug € R™ is the initial condition, F' is a suitable vector field and ¥: [0, 7] — R"
is a deterministic smooth function, for m,n € N. In probability theory, 9 is often
replaced by a stochastic driving signal, for example white noise, given formally as
derivative of Brownian motion B. It is well-known that Brownian motion is a-Holder
continuous for any « < 1/2 and nowhere differentiable almost surely. This makes it
impossible to give directly a rigorous meaning to the product F (u)z? One approach
to overcome this problem is to formally integrate equation (1.1), which gives

u(t) = up + /Ot F(u(s))dd(s), tel0,T].

In this way the problem of defining the product F(u)¥ translates into understanding
the integral [ F(u(s))dd(s). Roughly speaking, there are two different approaches
to construct this integral. The first strategy relies on the probabilistic nature of
the involved process 1. This leads to stochastic integration theory as, for instance,
It6 or Stratonovich integration. The second one ignores the stochastic structure,
but assumes additional information about % in order to build up a deterministic
integration theory rich enough to handle paths with the regularity of Brownian motion
trajectories. To the later strategy we refer as pathwise approach or pathwise stochastic
integration since it will be used for problems coming from probability theory in the
present thesis.

Let us briefly display the most common concepts of integration suitable for stochas-
tic analysis and financial mathematics.

Riemann and Young integration
The most classical attempt to define an integral of two functions X : [0,7] — R"
and Y: [0,7] — R" is to start with left-point Riemann sums and to set

T
/ YVodX, = lim > Yi(Xy - X,), (1.2)
0

[s,t]e

|7|—=0
S,

where 7 belongs to the collection of all partitions of [0,7] and || denotes the mesh
size of . Especially, in view of the above mentioned application to finance, where
the integral is meant to be the capital process of a hedging strategy Y investing on a
market with price dynamics X, the left-point Riemann sums are the canonical choice.
Assuming that the path Y is continuous and X is of finite variation, i.e.

lim > |X; — X,| < oo,

im0 [s,tlem

it is commonly known that the limit (1.2) exists along every sequence of partitions
with mesh size going to zero. Already this basic construction has its applications in



recent model-independent financial mathematics. We refer, for instance, to Dolinsky
and Soner [DS14].

A more elaborated approach was developed by Young [You36] relying on the con-
cept of p-variation. The p-variation of a continuous path X is given by

1/p
Sup( Z ‘Xt - Xs‘p> ) p Z 17

4 [s,tlem

where the supremum is taken over the collection of all partitions of [0, T'|. Provided X
and Y are of finite p- and g-variation, respectively, with 1/p+1/q > 1, Young proved
that the limit of Riemann sums in (1.2) exists independently of the chosen sequence
of partitions, and that the integral operator (Y, X) +— [Y dX is continuous with
respect to the ¢- and p-variation norm. To point out the necessity of the assumption
1/p+1/q > 1, Young also constructed an example of two paths of finite 2-variation
for which the Riemann sums in (1.2) diverge. Young integration already allows for
treating controlled differential equations (1.1) under the assumption that 1 has finite
p-variation for some p < 2. This was proven for the first time by Lyons [Lyo94] using
a Picard iteration. Although this result covers interesting examples from stochastic
analysis such as fractional Brownian motion with Hurst index H > 1/2, it excludes
frequently appearing stochastic processes like Brownian motion and continuous mar-
tingales.

It6 integration

The most frequently used notion of integration in probability theory is the so
called It6 integration initiated by Itd [It644]. Like ordinary integrals, stochastic 1t6
integrals are constructed by a limiting procedure. To briefly sketch this construction,
we suppose that X in (1.2) is replaced by a Brownian motion B, which generates
a filtration (F;). Let us denote the space of simple integrands by & consisting of
all stochastic processes which are piecewise constant, left-continuous and adapted to
the Brownian filtration (F;). Adaptedness is a probabilistic concept, which does not
appear in the other pathwise approaches to integration, but is crucial for constructing
the Ito integral. Heuristically, it says that the integrand Y at time ¢ does not have
more “information” about the Brownian motion B than is available at time ¢. If Y
is a simple integrand, the integral [ Y;dBjs is well-defined as Riemann sum and the
integral process is a martingale. Hence, a fairly elementary calculation reveals the

1t6 isometry:
T T 2
/ det] =E (/ YtdBt> ]
0 0

Therefore, one sees that the integral map I: & — L%(P) defined by Y + [Y dB is
a linear isometry, which can be uniquely extended from & to the space L?(dP ® dt).
This extension is then called Ité integral.

With this notion of stochastic integration Ito6 [It651] was able to define and solve
the differential equation (1.1) driven by Brownian motion. Subsequently, the 1t
integral was extended to stochastic integration with respect to martingales (Kunita
and Watanabe [KW67]), local martingales (Meyer [Mey67], Doleans-Dade and Meyer
[DDM69]) and semimartingales (Jacod [JacT79], Dellacherie and Meyer [DM82]).

E




1. Introduction

Follmer integration

In his seminal paper Follmer [F681] developed the first deterministic approach
which allows for defining pathwise integrals with respect to Brownian motion or con-
tinuous martingales. His starting point was the hypothesis that the quadratic varia-
tion of the continuous path X exists along a sequence of partitions (7,) whose mesh
size tends to zero. This is almost surely the case, for instance, for the just mentioned
stochastic processes. According to his concept, a continuous function X: [0,7] — R
has quadratic variation if the sequence of discrete measures on ([0, 7], B([0,T])) given
by

JTIEES Z | X — X5|255

[s,t]€mn

converges weakly to a measure p along an increasing sequence of partitions (m,) such
that lim,_,~ |m,| = 0, where 5 denotes the Dirac measure at s € [0,7]. It turns
out that this concept is actually sufficient to construct certain stochastic integrals
in a pathwise manner. More precisely, provided F' is a twice continuously differen-
tiable function and X has quadratic variation along (7,), Follmer presents a pathwise
version of Itd’s formula

T T
F(X7) = F(Xy) +/ DF(X;)d™X, +/ D?F(X;) d(X);.
0 0
The appearing “stochastic” integral is given by the limit of Riemann sums

/TDF(Xt)d”"Xt = lim > DF(X,)(X: - Xy), (1.3)
0 n—oo

[s,t]€mn

which has to converge by the assumption on quadratic variation. This special kind
of integration is today named Féllmer integration.

Let us stress that this construction of integrals comes with a clear financial inter-
pretation thanks to its approximation by left-point Riemann sums. Unsurprisingly,
Follmer integration has applications in finance. In particular, it is recently used in
model-independent financial mathematics to derive price bounds of certain financial
options, see for example Lyons [Lyo95b] and Davis et al. [DOR14].

Rough path integration

The theory of rough paths has established an analytical frame which allows for
treating stochastic differential and integral calculus beyond Young’s classical notions.
It simultaneously extends the Riemann-Stieltjes, the Young and Follmer integrals.
Lyons [Lyo98] provided a systematic approach to handle pathwise integrals of the
form [ f(X)dX if X is of finite p-variation for some p > 1. The main purpose of
his seminal work [Lyo98] was to analyze controlled differential equations (1.1) driven
by such irregular paths. His significant insight was to enhance the path X with its
iterated integrals in an abstract setting in order to define [ f(X)dX as a linear and
continuous map. As shown by Young, the iterated integrals cannot be defined in
general as limit of Riemann sums, but they are supposed to be objects which mimic
the iterated integrals in an algebraic and analytic way. In his well-known Extension
Theorem [Lyo98, Theorem 2.2.1] Lyons proves that the number of iterated integrals



required to define [ f(X)dX depends on the regularity of the path X. More precisely,
if X is a path of finite p-variation with existing iterated integrals up to order p, then
the iterated integrals of higher order are uniquely determined. In parallel to the p-
variation setting, rough path theory can be developed in the Hélder topology with
similar tools, cf. [FH14].

In this thesis we shall focus on paths of finite p-variation for p € (2,3), which
require only the existence of the first iterated integral. A p-rough path (X,X) for
p € (2,3) is a pair of X: [0,7] — R" and X: [0,7]? — R™ " such that X has finite
p-variation, X has finite p/2-variation and (X, X) satisfies Chen’s relation, i.e.

X&t — X&u — Xuﬂg = X57u & Xu,ta for 0 <s<u<t<L T.

In that case X is sometimes referred to as the area of X. For such a rough path
(X,X) and a twice continuously differentiable function F' the rough path integral is
defined by

/TF(XS)dXs = lim Y (F(X) (X — Xs) + F'(Xo)Xsp). (1.4)
0

A significant refinement of the rough path integral was due to Gubinelli [Gub04]:
Ensuring still the existence of the rough path integral (1.4), the integrand F'(X;) can
be replaced by any path Y which is controlled by X. To be more exact, Y: [0,7] — R"
is controlled by X if there is a process Y’ of finite g-variation such that the remainder
R: [0,T)? — R™ implicitly given by

Y;f - Yts - Y:g,(Xt - Xs) + Rs,t
is of finite r-variation with 1/r =1/¢+1/q and 2/p+1/q > 1.

As we have seen in the various approaches to integration, the information struc-
ture, usually modeled by a filtration, plays a crucial role in Itd concept while it was
completely ignored in the pathwise approaches. For example changing the initial
condition to a terminal one in (1.1) makes a massive difference in the dynamics of
the stochastic differential equation, dependently of whether one wants to be consis-
tent with the information flow of the driving signal or not. Stochastic differential
equations with a terminal condition are called backward stochastic differential equa-
tions (BSDEs) and have been introduced in the linear case by Bismut [Bis73, Bis78§]
as adjoint process in the stochastic version of the Pontryagin maximum principle.
Almost 20 years later Pardoux and Peng [PP90] were the first to consider general
BSDEs and to solve the question of existence and uniqueness. Many phenomena in
stochastic analysis and financial mathematics can be described by or in fact require to
solve more general systems of forward and backward stochastic differential equations
(FBSDESs), whose dynamics can be stated by

s

S
Xo=Xo+ [ pn X Ve Z)drt [ o X, Y5, Z,) AW,
0 0

T T
Y;:g(XT)—/t f(r,XT,YT,Zr)dr—/t Z,dW,, st e[0,T],
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where i, o, f and £ are supposed to be suitable coefficient functions. The theory of
FBSDEs is closely connected to the theory of quasi-linear partial differential equa-
tions. It received strong interest from its numerous areas of applications among which
stochastic control and mathematical finance are the most vivid ones in recent decades.
See [EPQ97] or [PW99] for surveys.

Such a system of equations can be even linked to an old and central problem in
probability theory: the Skorokhod embedding problem. This problem was originally
formulated by Skorokhod [Sko61, Sko65]. Given a Brownian motion and a probabil-
ity measure, it consists in finding a stopping time such that the stopped Brownian
motion has the law given by the prescribed probability measure. Over 50 years this
problem has received a lot of attention in probability theory, see [Obl04] for a survey.
It recently gained additional interest because of its applications in robust finance
starting with the seminal work of [Hob98|.

To summarize the previous discussion about stochastic integration and its applica-
tions, this thesis contributes mainly to two general tasks from financial mathematics
and stochastic analysis:

(i) Develop a stochastic (pathwise) integration concepts suitable for the require-
ments of model-independent financial mathematics.

(ii) Use a (robust) theory of stochastic integration to solve (pathwise forward)
stochastic differential equations and system of forward-backward stochastic dif-
ferential equations.

Roughly speaking, the first part (Chapters 2, 3 and 4) of this thesis is mainly related
and motivated by the first task, while the second part (Chapters 4, 5 and 6) is
concerned with the second one. Every Chapter is relatively self-contained and can
be read independently. In the following we give a brief outline of each Chapter and
sketch its main contributions.

Chapter 2: Pathwise stochastic integrals for model free finance

This chapter is based on [PP13] by Perkowski and Promel. It uses Vovk’s [Vov12]
game-theoretic approach to develop two different techniques of stochastic integra-
tion in frictionless and model free financial mathematics. As discussed above in the
application of stochastic integration in financial mathematics, integration is highly
non-trivial in the model free context since we do not want to assume any probabilistic
or semimartingale structure. Therefore, we do not have access to It6 integration and
most known techniques completely break down.

In a recent series of papers [Vovlla, Vovllb, Vov12], Vovk introduced an outer
measure given by the cheapest pathwise superhedging price of the indicator function
of a set. His aim was to characterize “typical price paths”. The basic idea of Vovk,
which we shall slightly modify in the following, is that “non-typical price paths” can
be excluded since they are in a certain sense “too good to be true”: they would allow
investors to realize infinite profit while at the same time taking essentially no risk.

To be more precise, let 2 be the space of d-dimensional continuous paths (which
represent all possible asset price trajectories), with coordinate process S. A process



H:Qx[0,T] — R? is called a simple strategy if there exist a sequence of stopping
times (7,,) and F;, -measurable bounded functions F},: Q — R%, such that for every
w €  we have 7,(w) = oo for all but finitely many n, and such that

Hi(w) =Y Fu(w) L, () (@) (£)-
n=0

The outer measure of A C ) is defined as the cheapest superhedging price for 1 4,
that is

P(A):=inf {A>0:I(H") CHy st liminf(A+ (H" - $)p(w)) > 1a(w) Y € 0},

where (H™-S) is the integral process of H with respect to S and for A > 0 the set Hy
consists of all A-admissible simple strategies, i.e. H € H, if H is a simple strategy
such that (H - S)¢(w) > =X for all w € Q, ¢t € [0,T].

We start by observing that P is indeed an outer measure, which simultaneously
dominates all local martingale measures on 2. It comes with a natural arbitrage
interpretation in terms of “no arbitrage of the first kind” (NA1): A set A C Qis a
null set under P if and only if there exists a sequence of 1-admissible simple strategies
(H™) C Hi such that

liminf(1 4 (H" - S)r(w)) > 0o - 14(w), for all w € Q.

n—oo

In other words, if a set A has outer measure 0, then we can make infinite profit by
investing in the paths of A, without ever risking to lose more than the initial capital
1. Hence, we say that a property (P) holds for typical price paths if the set A where
(P) is violated is a null set under P.

In our first approach we do not restrict the set of paths and work on the whole
space 2. Vovk’s outer measure allows us to define a topology on processes on 2, and
we observe that the “natural It6 integral” on simple functions is in a certain sense
continuous in that topology. This is made precise in our “Model free version of 1t6’s
isometry” (Lemma 2.2.4): We denoted by djo. and d, pseudometrics induced for P,
for details we refer to Section 2.1.4. For all a, b, ¢ > 0 and a simple process F' we have

P{I(F -9 = abve} N {[|Flloo < a} N {{S)1 < c}) < 2exp(=b*/(2d)),

where {(S)r < ¢} denotes the set of all paths for which the quadratic variation (S)r
exist and is smaller than c.

This allows us to extend the integral from simple integrands to adapted cadlag
processes. The resulting integral is called “model free It6 integral” (Theorem 2.2.5):
For any adapted cadlag process F' there exists an adapted process [, F'dS such that
for every sequence of step functions (F") satisfying lim, deo(F", F') = 0, we have
limy, dioc((F™ - S), [ FdS) = 0. Furthermore, the map F +— [ F dS is linear, satisfies

dhoc / Fds, / G dS) £ dwo(F.G) M/

for all € > 0, and also the model free version of It6’s isometry extends to this setting.
We stress once more that the entire construction is based only on financial argu-
ments. Therefore, it has a purely financial interpretation and does not come from an
artificially imposed probabilistic structure.



1. Introduction

The second approach relies on the controlled rough path integral, which is more in
the spirit of [Lyo95b, DOR14, DS14]. The controlled rough path integration has the
advantage of being an entirely linear Banach space theory.

For a p-rough path (S, A) with p € (2,3) and a function F controlled by S in
the sense of Gubinelli, we recall that the rough path integral is defined as limit of
compensated Riemann sums

T
/ FydS, := lim Z Fo(St — Ss) + FlAs ;.
0

[s,t]lem

We show that every typical price path has a natural It6 rough path associated to
it. While its existence is directly ensured by our model free It6 integral, we need
additional fine estimates to obtain the required regularity of the area process. This
seems to be the first time that the area of a path is constructed in a nontrivial
setting without using probability theory. Since in financial applications we can always
restrict to typical price paths, this observation opens the door for applications of the
controlled rough path integral in model free finance.

There is only one pitfall: the rough path integral is usually defined as a limit of
compensated Riemann sums, which have no obvious financial interpretation. This
sabotages our entire philosophy of only using arguments related to portfolio pro-
cesses. This is why we show that under some weak regularity condition every rough
path integral [ F'dS is given as limit of non-anticipating Riemann sums that do not
need to be compensated. Of course, this will not change anything in particular ap-
plication, but it is of utmost importance from a philosophical point of view. Indeed,
the justification for using the It6 integral in classical financial mathematics is cru-
cially based on the fact that it is the limit of non-anticipating Riemann sums, even
if in “every day applications” one never makes reference to that; see for example the
discussion in [Lyo95b].

We use a certain “coarse-grained” regularity condition to obtain the rough path
integral as limit of Riemann sums, which roughly says: Let (m,) be an increasing
sequence of partitions. Suppose S and A have finite p- respectively p/2-variation
along the grid induced by the partition (7, ) and A is given as limit of Riemann sums
along (7). This assumption (cf. Assumption (RIE) in Section 2.3.3) is weaker than
the one required by Davie [Dav07]. Given our regularity condition the rough path
integral can be obtained as limit of non-anticipating Riemann sums (see Theorem

2.3.19), i.e.
T N,—1
/0 Fs dSs = nh—%lo Z Ft;cl St;cl’trkLJrl'
[t th1]€m

More importantly, every typical price path satisfies our “coarse-grained” assumption
if we choose (t}}) to be a partition by suitable stopping times (73}).

Chapter 3: Local times for typical price paths and pathwise Tanaka
formulas

This chapter is based on [PP15] by Perkowski and Promel. It uses Vovk’s [Vov12]
game-theoretic approach to mathematical finance to construct local times for one-



dimensional typical price paths.

While techniques of Chapter 2 were capable of treating integrands that are not nec-
essarily functions of the integrator, the construction of [ f(S)dS required f € C'*¢
in the last Chapter. In Chapter 3 we show that for one-dimensional price processes
this assumption can be greatly relaxed. Using a pathwise concept of local times,
we derive various pathwise change of variable formulas. They generalize Follmer’s
pathwise It6 formula in the same way as the classical Tanaka formula generalizes the
classical It6 formula for continuous semimartingales.

In order move along the some lines in a purely analytic way, we define a discrete
pathwise local time by setting

L (S,u) := Z 1QS(t;?/\t),S(t;.‘+l/\t)]](u)|S(t§L+1 At)—u|, uéeR,

t? ETn

where (7,) is a sequence of partitions with mesh size going to 0. This is our start-
ing point for a pathwise version of a generalized Itd formula and Tanaka’s formula,
respectively.

Let us suppose that S: [0,7] — R and (L]"(S,-)) converge in L? along a sequence
of partitions (7). Then Wiirmli [Wue80] proved for f in the Sobolev space H? that
the generalized pathwise It6 formula

F50) = 5SO) + [ 7560 ass) + [~ (s, w du
holds with

[ FS)ast) = lm 3 SN0 - S A0), e 0,00),

tyenn

In Section 3.1 a pattern emerges: the more regular the local time is, the larger is the
space of functions to which we can extend our pathwise stochastic integral. Indeed,
Wiirlmi’s result is based on the duality between the derivative of the integrand and
the occupation measure. In his setting, the occupation measure has a density in L?
and therefore defines a bounded functional on L?. If the local time is continuous,
then we can even integrate Radon measures against it.

Using the Young integral, it is possible to extend the pathwise Tanaka formula to
a larger class of integrands, allowing us to integrate [ ¢g(S)dS provided that g has
finite g-variation for some ¢ > 1, see Theorem 3.1.8. Therefore, we obtain a pathwise
integral, which is given very naturally as a limit of Riemann sums.

To make our pathwise Tanaka formulas applicable in a framework of model free
finance, we verify that every typical price path has a local time which satisfies all
the requirements needed to apply our most general version of It6-Tanaka formula,
Theorem 3.1.8. Indeed, for typical price paths, the discrete local times L™ (S, -)
converge uniformly in (t,u) € [0,7] x R to a continuous limit L(S,-), and for all
p > 2 we have the discrete local times (L;™) have uniformly bounded p-variation for
typical price paths, see Theorem 3.2.5. In particular, we can integrate f(S) against
a typical price path S whenever f has finite g-variation for some g < 2.
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While we worked in Chapter 2 on a finite time horizon and with multidimensional
price paths, the price paths are now assumed to be one-dimensional but may live on
an infinite time horizon.

A remarkable result of [Vov12] roughly states: if A C Q is “invariant under time
changes” and such that Sp(w) = 0 for all w € A, then A € F and P(A) = W(A),
where W denotes the Wiener measure. This can be interpreted as a pathwise Dambis
Dubins-Schwarz theorem. For instance, based on this theorem a model-independent
super-replication theorem for time-invariant options in continuous time, given in-
formation on finitely many marginals, can be derived as done in Beiglbock et al.
[BCH*15]. Time-invariant options cover a broad range of exotic derivatives, includ-
ing lookback options, discretely monitored Asian options, and options on realized
variance.

In Appendix A.3, we sketch an alternative proof for the existence of local times
based on Vovk’s pathwise Dambis Dubins-Schwarz theorem, which allows for trans-
lating standard results for Brownian motion to typical price paths. For the Brownian
local time all statements of Theorem 3.2.5 are well-known except one: the uniform
boundedness in p-variation of the discrete local times.

Chapter 4: Existence of Lévy’s area and pathwise integration

The theory of rough paths has established an analytical frame in which stochastic
differential and integral calculus is traced back to properties of the trajectories of
stochastic processes without reference to a particular probability measure, as we
discuss in Section 2.3.

More recently, an alternative calculus with a more Fourier analytic touch has been
designed (see [GIP14, Per14]) in which an older idea by Gubinelli [Gub04] is further
developed. The existence of the rough path integral in this approach is seen to be
linked to the existence of the corresponding Lévy area and the concept of “controlled
paths”. This raises the question about the relative power of the hypotheses leading to
the existence of the integral. In Chapter 4, which was published in [IP15] by Imkeller
and Promel, we deal with this natural question.

In probability theory Lévy’s area was first introduced by Lévy [Lé40]. For a d-
dimensional path X := (X!,..., X%) it can be defined via Riemann sums by

- T T .y -
L(X)i 1= /0 Xidxi — /0 X} axi = 1im Y (xix!, - x)xi)),

for 1 <1i,j < d, where s’ € [s,t] € m. Here the limit means “along every sequence of
partitions with mesh going to zero”.

Keeping in mind the concept of controlled paths in the sense of Gubinelli, to ensure
the pathwise existence of Lévy’s area, a suitable structure of control turns out to be
sufficient. This new modification is called “self-control”. We call a d-dimensional path
X self-controlled if X* is controlled by X7 or vice versa, for i # j. In Theorem 4.1.5
and Lemma 4.1.5 it is proven that this specific type of control always implies the
existence of Lévy’s area independently of the choice of the s’ € [s,t] € m and without
any reference probability measure. If a path is not self-controlled, Lévy’s area may
not exit as we demonstrate in Example 4.1.8.
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As already mentioned, these two concepts of control and Lévy’s area play an im-
portant role in integration theory suitable for applications in stochastic analysis.
Therefore, we link these concepts to Follmer’s pathwise integrals. Our analysis relies
on the decomposition of the integral into its symmetric and its antisymmetric part,
which is closely related to Lévy’s area, i.e.

T 1 1
'y—/ Y, dX; = lim E (Y +v(Y: — Ys)(Xy — Xg) = §S7<X,Y>+§A7<X,Y>,
0

im0 [s,t]em

for v € [0, 1]. We identify two different additional assumptions on the control relation-
ship between Y and X which both lead to the existence of the antisymmetric part
A, along every sequence of partitions and independently of ~, cf. Theorem 4.2.4.
The first assumption imposes that Y’ is symmetric and the second one is that X
and Y are controlled mutually by each other. Each of these requirements directly
gives the existence of the Stratonovich integral corresponding to v = %,
Corollary 4.2.6, since the symmetric part simplifies considerably in that case. For
arbitrary v the symmetric part can only be obtained along sequences of partitions for
which the quadratic variation in the sense of Follmer is guaranteed. Under the latter
assumption we provide in Theorem 4.2.11 an It6 formula for controlled path Y with
symmetric Y

as seen in

T 1 T 1 T ) :
- [ vamxo= - [ vdxee -1 X [y am i X,
0 0 1<i,j<d”0

where Y/ = (Y/(i,))1<ij<d- As a consequence, this yields Follmer’s pathwise Ito
formula, see Corollary 4.2.13

In recent years, functional It6 calculus, which extends classical calculus to function-
als depending on the whole path of a stochastic process and not only on its current
value, has received much attention. Based on the notion of derivatives due to Dupire
[Dup09], in a series of papers Cont and Fournié [CF10a, CF10b, CF13] developed a
functional It6 formula. One drawback of their approach is that the involved functional
has to be defined on the space of cadlag functions, or at least on a subspace strictly
larger than the space of continuous functions C([0, T],R?) (see [CR14]). In the spirit
of Follmer the paper [CF10b] provides a non-probabilistic version of a probabilistic
It6 formula shown in [CF10a, CF13]. Referring to this approach we generalize in The-
orem 4.2.14 Follmer’s pathwise 1t6 formula to twice Fréchet differentiable functionals
defined on the space of continuous functions. Our functional It6 formula might be
seen as the pathwise analogue to formulas stated in [Ahn97]. Let us stress that twice
Fréchet differentiable functionals are generally beyond the scope of the concept of
controlled paths as illustrated in Example 4.2.15.

Chapter 5: Rough differential equations on Besov spaces

The paracontrolled distribution approach recently introduced by Gubinelli, Imkeller
and Perkowski [GIP12] is an extension of rough path theory to a multiparameter
setting. It contains a concept of rough integration respectively multiplication of dis-
tributions, which very well fits with Hairer’s theory of regularity structures [Hail4] to

11



1. Introduction

certain singular stochastic partial differential equations. The paracontrolled distribu-
tion approach works with tools from analysis like Bony’s paraproduct and Littlewood-
Paley theory.

In Chapter 5, which also appeared in [PT15] by Promel and Trabs, we deal with
rough differential equations (RDESs) on the very large and flexible class of Besov spaces
By, based on paracontrolled distributions. Intuitively, in ng(Rd) the regularity « is
measured in the LP-norm while ¢ can be seen as a fine tuning parameter. The RDE
considered is given by

du(t) = F(u(t)&(t), u(0) =wug, teR, (1.5)

where ug € R™ is the initial condition and F' a family of vector fields on R™. The
immediate and highly non-trivial problem appearing in equation (1.5) is that the
product F'(u)¢ is not well-defined for very irregular signals £&. While classical ap-
proaches as rough path theory formally integrate equation (1.5) and then give the
appearing integral a meaning, the first step of our analysis is to give a direct meaning
to the product in (1.5). For this purpose we generalize paracontrolled distributions
from Hélder spaces By, ., as studied in [GIP12], to By .

It is well-known that the continuity of the It6 map, defined by mapping & to
the solution trajectory u, can be restored with respect to a p-variation topology, cf.
[Lyo98], as well as with respect to a Holder topology, cf. [Fri05]. One core goal of
Chapter 5 is to unify these two approaches in a common framework.

Our analysis relies on Littlewood-Paley theory: Taking a dyadic partition of unity
(x, p), every function f in a Besov spaces can be approximated in term of Littlewood-
Paley blocks, i.e.

7j—1

f = lim ZAf with A f := F Y Ff),

jroe T

with p_1 := x, p; := p(277-) for i > 0, and F denotes the Fourier transform. Applying
Bony’s decomposition to F'(u)¢, which gives

Fu) =Trwé+  7(F(u),§)  +Te(F(u)), fore By,

2a—1 2 1
eBS‘El €B o 2.a/2 if 2a—1>0 €B 72 /2
where
Trwé = Y SiciF(u)A€ and w(F(u = Y AF(u
iz-1 li—jl<1

The stated Besov regularity of the different terms is presented in Lemma 5.1.1.

Provided the driving signal £ is in B;f;l fora > 1/2,p > 2, q > 1, the existence and
uniqueness of a solution u to the RDE (1.5) is proven in Theorem 5.2.1 and further it
is shown that the corresponding It6 map is locally Lipschitz continuous with respect
to the Besov topology, see Theorem 5.2.2. In particular, with these results we recover
the classical Young integration on Besov spaces.

In order to handle a more irregular driving signal £ in ngl for « > 1/3, p > 3,
q > 1, we assume a control relation given by u = Tr(,)J + u#, where ¥ is the
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antiderivative of ¢ and u# € 3272 ¢ This yields that understanding the so called

resonant term 7(u, &) boils down to the analysis of 7(¢, ) thanks to the commutator
lemma (Lemma 5.3.4) and the paralinearization result (Lemma (5.3.2)):

m(u, &) = F(u)n(9,€) + 7(Tpw)?,€) — Flu)m(9,€) + m(u”,€).
——

€805, €B, g

Therefore, the path itself has to be enhanced with the “information” of the resonant
term 7 (¥, £) instead of the first iterated integral common in rough path theory. In the
spirit of the usual notion of geometric rough paths, this leads naturally to the new
definition of the space of geometric Besov rough paths, cf. Definition 5.4.1, which is
the closure of smooth paths ¥ enhanced with they resonant terms 7 (9, £) in the Besov
topology. Starting with a smooth path ¢, it is shown that the It6 map associated
to the RDE (1.5) extends continuously to the space of geometric Besov rough paths,
cf. Theorem 5.4.8. As a consequence there exists a unique pathwise solution to the
RDE (1.5) driven by a geometric Besov rough path.

Generalizing the approach from [GIP12] to Besov spaces poses severe additional
problems, which are solved by using the Besov space characterizations via Littlewood-
Paley blocks as well as the one via the modulus of continuity, cf (5.3). Besov spaces
are a Banach algebra if and only if p = ¢ = co. Hence, in general our results can only
rely on pointwise multiplier theorems, Bony’s decomposition and Besov embeddings.
We thus need to generalize certain results in [BCD11] and [GIP12], including the
already mentioned commutator lemma, see Lemma 5.3.4. A second difficulty is that
the condition u € By, leads to an LP-integrability requirement for u. To overcome
this problem, we localize the signal and actually consider a weighted It6(-Lyons) map,
both done in a way that does not change the dynamics of the RDE (1.5) on a compact
interval centered at the origin.

As an application we consider stochastic differential equations in Section 5.5, where
the driving signal £ is replaced by typical trajectories of stochastic processes including
for example continuous martingales and Gaussian processes. But the prototypical
example for our approach is a driving signal given by random functions via wavelet
expansions, see Proposition 5.5.6.

Chapter 6: An FBSDE approach to the Skorokhod embedding problem
for Gaussian processes with non-linear drift

In the last chapter we deal with fully coupled forward backward stochastic differential
equations (FBSDEs) with the purpose to solve the Skorokhod embedding problem
(SEP) for Gaussian processes with non-linear drift. This chapter is based on the joint
work [FIP14] by Fromm, Imkeller and Prémel.

The classical goal of the SEP consists in finding, for a given Brownian motion B and
a probability measure v, a stopping time 7 such that B, possesses the law v. Since the
first solution by Skorokhod [Sko61], there appeared many different constructions for
the stopping time 7 and generalizations of the original problem in the literature. Just
to name some of the most famous solutions to the SEP we refer to Root [Roo69], Rost
[Ros71] and Azéma-Yor [AY79]. A comprehensive survey can be found in [Obl04].
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1. Introduction

Recently, Skorokhod embedding raised additional interest because of its applications
in financial mathematics, as for instance to obtain model-independent price bounds
for lookback options [Hob98| or options on variance [CL10, CW13, OdR13].

In general terms, let us recall that a fully coupled system of FBSDEs is given by

S S
Xo=Xot [ plr X Yo Z)dr+ [ o, XY, Z,) AW,
0 0
T T
Ytzg(XT)—/ f(r,XT,YT,zr)dr—/ Z,dW,, s,tc[0,T].  (L6)
t t

Here the coefficient functions u, o of the forward part, the terminal condition £ and
the driver f of the backward component are supposed to be suitable functions.

There are mainly three methods to show the existence of solutions for a system
of FBSDEs: the contraction method [Ant93, PT99], the four step scheme [MPY94]
and the method of continuation [HP95, Yon97, PW99]. As an unified approach,
[MWZZ15] and also [Del02] designed the theory of decoupling fields for FBSDEs,
which was significantly refined in [FI13] to a multidimensional setting. We call a
function u decoupling field if Y = u(-, X) holds, i.e. if the backward part Y of the
FBSDE can be written as a functional of the forward part X, cf. Definition 6.2.1. The
method of decoupling fields can primarily be seen as an extension of the contraction
method.

In Chapter 6 we deal with Markovian systems of FBSDEs, that means all the
involved coefficient functions (&, (i, 0, f)) are deterministic. This comes with the
crucial advantage that heuristically we have

Zs = uyz(s,Xs) - 0(s,Xs,Ys,Zs), s€0,T).

Allowing the coefficients (u, o, f) to be locally Lipschitz continuous in the control
variable z, we develop an existence, uniqueness and regularity theory for FBSDESs in
Section 6.2.2.

Equipped with these tools we are able to solve the Skorokhod embedding problem
for Gaussian processes G of the form

t t
Gy = G0+/ asds—i—/ Bs AW,
0 0

where G € R is a constant and «, 3: [0,00) — R are suitable deterministic functions.

The spirit of our approach is related to the one by Bass [Bas83|, who employed
martingale representation to find a solution of the SEP for the Brownian motion. His
approach was further developed for Brownian motion with linear drift in [AHIO8] and
time-homogeneous diffusion in [AHS15]. Bass’ approach rests upon the observation
that the SEP may be viewed as the weak version of a stochastic control problem: the
goal is to steer G in such a way that it takes the distribution of a prescribed law. In
the case of a Gaussian process G we reformulate the SEP in terms of FBSDEs in the
form

s s T
xM :/ 1dW,, X© :/ Z2dr, Ys:g(X}”)—é(X}”)—/ Z, dW,,
t t s
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where the function g is taken such that g(X%l)) has the prescribed law v and ¢ in

such a way hat it encodes the information of the drift of G.

As a first step we construct a weak solution, i.e. we obtain a Gaussian process
of the above form and an integrable random time such that, stopped at this time,
the process possesses the given distribution v. More precisely, if g and § are both
Lipschitz continuous, then there exist a Brownian motion B, a bounded stopping time
7 and a constant ¢ € R such that ¢+ fg Qg ds—i—fg B dBS has law v, see Lemma, 6.3.2.

In order to transfer the result for the auxiliary Brownian motion B to the given
Brownian motion B, we need to control the growth of the gradient process u, (s, Xs),
s € [0,T], and for this purpose have to describe this process by an intrinsic higher
dimensional system of FBSDE. Provided g and § are twice continuously differentiable
with bounded derivative and both with Lipschitz continuous second derivative, cf.
Lemma 6.3.10, the weak solution carries over to the originally given Gaussian process
G. This finally solves the Skorokhod embedding problem for the Gaussian process G
in the classical sense.
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2. Pathwise stochastic integrals for model
free finance

In this chapter we use Vovk’s [Vov12] game-theoretic approach to develop two different
techniques of stochastic integration in frictionless model free financial mathematics.
A priori the integration problem is highly non-trivial in the model free context since
we do not want to assume any probabilistic respectively semimartingale structure.
Therefore, we do not have access to It0 integration and most known techniques com-
pletely break down. There are only two general solutions to the integration problem
in a non-probabilistic continuous time setting that we are aware of. One was pro-
posed by [DS14], who simply restrict themselves to trading strategies (integrands)
of bounded variation. While this already allows to solve many interesting problems,
it is not a very natural assumption to make in a frictionless market model. Indeed,
in [DS14] a general duality approach is developed for pricing path-dependent deriva-
tives that are Lipschitz continuous in the supremum norm, but so far their approach
does not allow to treat derivatives depending on the volatility.

Another interesting solution was proposed by [DOR14] (using an idea which goes
back to [Lyo95b]). They restrict the set of “possible price paths” to those admitting a
quadratic variation. This allows them to apply Follmer’s pathwise 1t6 calculus [F681]
to define pathwise stochastic integrals of the form [ VF(S)dS. In [Lyo95b] that ap-
proach was used to derive prices for American and European options under volatility
uncertainty. In [DOR14] the given data is a finite number of European call and put
prices and the derivative to be priced is a weighted variance swap. The restriction to
the set of paths with quadratic variation is justified by referring to Vovk [Vov12], who
proved that “typical price paths” (to be defined below) admit a quadratic variation.

In our first approach we do not restrict the set of paths and work on the space €2 of
d-dimensional continuous paths (which represent all possible asset price trajectories).
We follow Vovk in introducing an outer measure on 2 which is defined as the pathwise
minimal superhedging price (in a suitable sense), and therefore has a purely financial
interpretation and does not come from an artificially imposed probabilistic structure.
Our first observation is that Vovk’s outer measure allows us to define a topology on
processes on €2, and that the “natural It6 integral” on step functions is in a certain
sense continuous in that topology. This allows us to extend the integral to cadlag
adapted integrands, and we call the resulting integral “model free It6 integral”. We
stress that the entire construction is based only on financial arguments.

Let us also stress that it is the continuity of our integral which is the most important
aspect. Without reference to any topology the construction would certainly not be
very useful, since already in the classical probabilistic setting virtually all applications
of the It6 integral (SDEs, stochastic optimization, duality theory, ...) are based on
the fact that it is a continuous operator.
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2. Pathwise stochastic integrals for model free finance

This also motivates our second approach, which is more in the spirit of [Lyo95b,
DOR14, DS14]. While in the first approach we do have a continuous operator, it is
only continuous with respect to a sequence of pseudometrics and it seems impossible
to find a Banach space structure that is compatible with it. This is a pity since Banach
space theory is one of the key tools in the classical theory of financial mathematics, as
emphasized for example in [DS01]. However, using the model free It integral we are
able to show that every “typical price path” has a natural It6 rough path associated
to it. Since in financial applications we can always restrict ourselves to typical price
paths, this observation opens the door for the application of the controlled rough path
integral [Lyo98, Gub04] in model free finance. Controlled rough path integration has
the advantage of being an entirely linear Banach space theory which simultaneously
extends

e the Riemann-Stieltjes integral of S against functions of bounded variation which
was used by [DS14];

e the Young integral [You36]: typical price paths have finite p-variation for every
p > 2, and therefore for every F' of finite g-variation for 1 < g < 2 (so that
1/p + 1/q¢ > 1), the integral [FdS is defined as limit of non-anticipating
Riemann sums;

e Follmer’s [F681] pathwise It6 integral, which was used by [Lyo95b, DOR14].
That this last integral is a special case of the controlled rough path integral is,
to the best of our knowledge, proved rigorously for the first time in this chapter,
although also [FH14] contains some observations in that direction.

In other words, our second approach covers all previously known techniques of inte-
gration in model free financial mathematics, while the first approach is much more
general but at the price of leaving the Banach space world.

There is only one pitfall: the rough path integral is usually defined as a limit of
compensated Riemann sums which have no obvious financial interpretation. This
sabotages our entire philosophy of only using financial arguments. That is why we
show that under some weak condition every rough path integral [ F'dS is given as
limit of non-anticipating Riemann sums that do not need to be compensated — the
first time that such a statement is shown for general rough path integrals. Of course,
this will not change anything in concrete applications, but it is of utmost importance
from a philosophical point of view. Indeed, the justification for using the It0 integral
in classical financial mathematics is crucially based on the fact that it is the limit of
non-anticipating Riemann sums, even if in “every day applications” one never makes
reference to that; see for example the discussion in [Lyo95b].

The chapter is organized as follows. Below we present a very incomplete list of
solutions to the stochastic integration problem under model uncertainty and in a
discrete time model free context (both a priori much simpler problems than the
continuous time model free case), and we introduce some notations and conventions
that will be used throughout the chapter. In Section 2.1 we briefly recall Vovk’s
game-theoretic approach to mathematical finance and introduce our outer measure.
We also construct a topology on processes which is induced by the outer measure.
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Section 2.2 is devoted to the construction of the model free 1t6 integral. Section 2.3
recalls some basic results from rough path theory, and continues by constructing
rough paths associated to typical price paths. Here we also prove that the rough
path integral is given as a limit of non-anticipating Riemann sums. Furthermore,
we compare Follmer’s pathwise It6 integral with the rough path integral and prove
that the latter is an extension of the former. Appendix A.1 recalls Vovk’s pathwise
Hoeffding inequality. In Appendix A.2 we show that a result of Davie which also
allows to calculate rough path integrals as limits of Riemann sums is a special case
of our results in Section 2.3.

Stochastic integration under model uncertainty

The first works which studied the option pricing problem under model uncertainty
were [ALP95] and [Lyo95b], both considering the case of volatility uncertainty. As
described above, [Lyo95b] is using Follmer’s pathwise It integral. In [ALP95] the
problem is reduced to the classical setting by deriving a “worst case” model for the
volatility.

A powerful tool in financial mathematics under model uncertainty is Karandikar’s
pathwise construction of the It6 integral [Kar95, Bic81], which allows to construct
the Ito integral of a cadlag integrand simultaneously under all semimartingale mea-
sures. The crucial point that makes the construction useful is that the [t6 integral
is a continuous operator under every semimartingale measure. While its pathwise
definition would allow us to use the same construction also in a model free setting,
it is not even clear what the output should signify in that case (for example the
construction depends on a certain sequence of partitions and changing the sequence
will change the output). Certainly it is not obvious whether the Karandikar integral
is continuous in any topology once we dispose of semimartingale measures. A more
general pathwise construction of the It integral was given in [Nut12], but it suffers
from the same drawbacks with respect to applications in model free finance.

A general approach to stochastic analysis under model uncertainty was put for-
ward in [DMO6], and it is based on quasi sure analysis. This approach is extremely
helpful when working under model uncertainty, but it also does not allow us to define
stochastic integrals in a model free context.

In a related but slightly different direction, in [CDR11] non-semimartingale mod-
els are studied (which do not violate arbitrage assumptions if the set of admissible
strategies is restricted). While the authors work under one fixed probability measure,
the fact that their price process is not a semimartingale prevents them from using It6
integrals, a difficulty which is overcome by working with the Russo-Vallois integral
[RV93].

Of course all these technical problems disappear if we restrict ourselves to dis-
crete time, and indeed in that case [BHLP13] develop an essentially fully satisfactory
duality theory for the pricing of derivatives under model uncertainty.
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2. Pathwise stochastic integrals for model free finance

Notation and conventions

Throughout the chapter we fix T € (0,00) and we write Q := C([0,T],R?) for the
space of d-dimensional continuous paths. The coordinate process on ) is denoted
by Si(w) = w(t), t € [0,T]. Fori € {1,...,d}, we also write S}(w) := w'(t), where
w= (w!,...,w?). The filtration (Ft)tefo,r) s defined as Fy := o(Ss : s < t), and we
set F := Fr. Stopping times 7 and the associated o-algebras F, are defined as usual.

Unless explicitly stated otherwise, inequalities of the type F; > Gy, where F' and
G are processes on €2, are supposed to hold for all w € 2, and not modulo null sets,
as it is usually assumed in stochastic analysis.

The indicator function of a set A is denoted by 14.

A partition m of [0,7T] is a finite set of time points, 7 = {0 = tp < t; < -+ <
tm = T'}. Occasionally, we will identify 7 with the set of intervals {[to, 1], [t1,t2],- ..,
[tm—1,tm]}, and write expressions like Dlstlen-

For f:[0,7] — R™ and ty,ts € [0,T], denote f, +, :== f(t2) — f(t1) and define the
p-variation of f restricted to [s,¢] C [0,T] as

m—1 1/p
Hf”p—var,[s,t} ‘= Sup {( Z |ftk,tk+1|p> ts=tg < <tm=tme N}? p>0,
k=0

(2.1)
(possibly taking the value +00). We set || f|lpvar := [|f|lp-var,jo,r)- We write A =
{(s,t) : 0 < s <t < T} for the simplex and define the p-variation of a function
g: A7 — R™ in the same manner, replacing fi, +, ., in (2.1) by g(tx, tg+1)-

For @ > 0 and |a] := max{z € Z : z < a}, the space C“ consists of those func-
tions that are |a] times continuously differentiable, with (o — [« |)-Hélder continuous
partial derivatives of order |«| (and with continuous partial derivatives of order «
in case a = |a]). The space C}* consists of those functions in C“ that are bounded,
together with their partial derivatives, and we define the norm H||Cba by setting

Lo

I £lce =D 1D"flloo + Las af 1P fllaz(a), (2.2)
k=0

where ||-|| g denotes the S-Hélder norm for 5 € (0,1), and |||l denotes the supremum
norm.

For z,y € R?, we write zy := Zle x;y; for the usual inner product. However, often
we will encounter terms of the form [ SdS or SsSs+ for s,t € [0,T], where we recall
that .S denotes the coordinate process on 2. Those expressions are to be understood
as the matrix ([ S° de)lgi,jgd, and similarly for SsSs;. The interpretation will be
usually clear from the context, otherwise we will make a remark to clarify things.

We use the notation a < b if there exists a constant ¢ > 0, independent of the
variables under consideration, such that ¢ < ¢-b. If we want to emphasize the
dependence of ¢ on the variable x, then we write a(z) S b(x).

We make the convention that 0/0:=0-00:=0, 1- 00 := 00 and inf ) := occ.
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2.1. Superhedging and typical price paths

2.1. Superhedging and typical price paths

2.1.1. The outer measure and its basic properties

In a recent series of papers, Vovk [Vov08, Vovlla, Vov12| has introduced a model free,
hedging based approach to mathematical finance that uses arbitrage considerations
to examine which properties are satisfied by “typical price paths”. This is achieved
with the help of an outer measure given by the cheapest superhedging price.

Recall that 7' € (0,00) and = C([0,T],R%) is the space of continuous paths,
with coordinate process S, natural filtration (F3)co,7], and F = Fr. A process
H:Qx[0,T] — R? is called a simple strategy if there exist stopping times 0 = 7y <
71 < ..., and F;, -measurable bounded functions Fj,: Q — R? such that for every
w € Q we have 7,(w) = oo for all but finitely many 7, and such that

Ht(w) = Z Fn(w)l(Tn(W)an+1(w)] (t)
n=0

In that case, the integral

(H - 9)(w) == i Fo(w)(Sryant(w) = Sront(w)) = i Fp(w)Srat,rpgant (W)
n=0 n=0

is well defined for all w € Q, t € [0,7]. Here F,(w)Sr,At,rmsint(w) denotes the
usual inner product on R%. For A > 0, a simple strategy H is called \-admissible if
(H-9)i(w) > —Xforallwe Q,te0,T]. The set of A-admissible simple strategies
is denoted by H.

Definition 2.1.1. The outer measure of A C € is defined as the cheapest super-
hedging price for 14, that is

P(A) = inf {A>0:3(H") C Hy st. liminf(A + (H" - S)r(w)) > 1a(w) Ve € Q.

A set of paths A C Q is called a null set if it has outer measure zero.

The term outer measure will be justified by Lemma 2.1.3 below. Our definition of
P is very similar to the one used by Vovk [Vov12], but not quite the same. For a
discussion see Section 2.1.3 below.

By definition, every It6 stochastic integral is the limit of stochastic integrals against
simple strategies. Therefore, our definition of the cheapest superhedging price is
essentially the same as in the classical setting, with one important difference: we
require superhedging for all w € 2, and not just almost surely.

Remark 2.1.2 ([Vov12], p. 564). An equivalent definition of P would be
P(A) := inf{)\ > 0:3(H")pen C Ha s:t.
liminf sup (A+ (H"-S)i(w)) > 1a(w)Vw € Q}

=0 telo,T)
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2. Pathwise stochastic integrals for model free finance

Clearly P < P. To see the opposite inequality, let P(A) < X. Let (H™)neny C Hy be
a sequence of simple strategies such that lim infy, oo supsejo ry(A + (H™ - S)t) > 14,
and let € > 0. Define 7, := inf{t € [0,T] : A+ e+ (H"-S); > 1}. Then the stopped
strategy G (w) = H{' (w)1(o 7, (w)) () is in Hy C Hyrye and

liminf(A +& +(G" - S)r(w)) = M1 ersup, o (#0521} (W) 2 La(w).

Therefore P(A) < X\ + ¢, and since € > 0 was arbitrary P < P, and thus P = P.

Lemma 2.1.3 ([Vov12], Lemma 4.1). P is in fact an outer measure, i.e. a nonneg-
ative function defined on the subsets of Q) such that

- P(0) =0;
- P(A) < P(B) if AC B;
- if (Ap)nen is a sequence of subsets of Q, then P(U,, An) <3, P(Ay).

Proof. Monotonicity and P((})) = 0 are obvious. So let (A,,) be a sequence of subsets of
Q. Lete > 0,n € N, and let (H™™),,,en be a sequence of (P(A,)+27""1)-admissible
simple strategies such that lim inf,, oo (P(A,)+€27" 4+ (H™™.S)p) > 14, . Define
for m € N the (},, P(A,) + €)-admissible simple strategy G := > H™™. Then
by Fatou’s lemma

0 k
lim inf < 2_:0 P(A,) +e+ (G™- S)T> > 2_:0 (P(A,) +e27" 1+ lim inf(H™™ - S)r)
=1y, 4
for all k¥ € N. Since the left hand side does not depend on k, we can replace ].Uk A
n=0"""

by 1Un 4,, and the proof is complete.

Maybe the most important property of P is that there exists an arbitrage inter-
pretation for sets with outer measure zero:

Lemma 2.1.4. A set A C Q is a null set if and only if there exists a sequence of
1-admissible simple strategies (H™), C H1 such that

limnf(1+ (7 - $)r()) 2 00 14(w), 2.3)
where we use the convention 0-00 =0 and 1 - oo := 0.

Proof. If such a sequence exists, then we can scale it down by an arbitrary factor
e > 0 to obtain a sequence of strategies in H. that superhedge 14, and therefore
P(A) = 0.

If conversely P(A) = 0, then for every n € N there exists a sequence of simple
strategies (H™™)nen C Ho-n-1 such that 27771 + lim inf,, oo (H™™ - w)7 > 14(w)
for all w € Q. Define G™ = Y ;" H™™, so that G € H;. For every k € N we
obtain

k
liminf (1+ (G™ - S)r) > ZO (27" + liminf (H™™ - S)7) > (k +1)1a.

Since the left hand side does not depend on k, the sequence (G™) satisfies (2.3). O
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2.1. Superhedging and typical price paths

In other words, if a set A has outer measure 0, then we can make infinite profit
by investing in the paths from A, without ever risking to lose more than the initial
capital 1.

This motivates the following definition:

Definition 2.1.5. We say that a property (P) holds for typical price paths if the set
A where (P) is violated is a null set.

The basic idea of Vovk, which we shall adopt in the following, is that we only
need to concentrate on typical price paths. Indeed, “non-typical price paths” can be
excluded since they are in a certain sense “too good to be true”: they would allow
investors to realize infinite profit while at the same time taking essentially no risk.

2.1.2. Arbitrage notions and link to classical mathematical finance

Before we continue, let us discuss different notions of arbitrage and link our outer
measure to classical mathematical finance. We start by observing that P is an outer
measure which simultaneously dominates all local martingale measures on €.

Proposition 2.1.6 ([Vov12], Lemma 6.3). Let P be a probability measure on (2, F),
such that the coordinate process S is a P-local martingale, and let A € F. Then
P(A) < P(A).

Proof. Let A > 0 and let (H"),en € H)y be such that liminf, (A 4+ (H™ - S)r) > 14.
Then

P(A) < Epfliminf(A + (H" - $)r)] < liminf Ep[A + (H" - §)7] < A,

where in the last step we used that A + (H" - S) is a nonnegative P-local martingale
and thus a P-supermartingale. O

This already indicates that P-null sets are quite degenerate, in the sense that they
are null sets under all local martingale measures. However, if that was the only
reason for our definition of typical price paths, then a definition based on model free
arbitrage opportunities would be equally valid. A map X: Q — [0,00) is a model
free arbitrage opportunity if X is not identically 0 and if there exists ¢ > 0 and a
sequence (H™) C H, such that liminf, ,.o(H" - S)7r(w) = X(w) for all w € Q. See
[DHO7, ABPS13] where (a similar) definition is used in the discrete time setting.

It might then appear more natural to say that a property holds for typical price
paths if the indicator function of its complement is a model free arbitrage opportu-
nity, rather than working with Definition 2.1.5. This “arbitrage definition” would
also imply that any property which holds for typical price paths is almost surely
satisfied under every local martingale measure. Nonetheless we decidedly claim that
our definition is “the correct one”. First of all the arbitrage definition would make
our life much more difficult since it seems not very easy to work with. But of course
this is only a convenience and cannot serve as justification of our approach. Instead,
we argue by relating the two notions to classical mathematical finance.

For that purpose recall the fundamental theorem of asset pricing [DS94]: If P is a
probability measure on (£2, ) under which S is a semimartingale, then there exists
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2. Pathwise stochastic integrals for model free finance

an equivalent measure Q such that S is a Q-local martingale if and only if S admits
no free lunch with vanishing risk (NFLVR). But (NFLVR) is equivalent to the two
conditions no arbitrage (NA) (intuitively: no profit without risk) and no arbitrage
opportunities of the first kind (NA1) (intuitively: no very large profit with a small
risk). The (NA) property holds if for every ¢ > 0 and every sequence (H") C H, for
which limy, oo (H™ - S)7r(w) exists for all w we have P(lim,,_,oo (H™ - S)7 < 0) > 0 or
P(lim;, oo (H™ - S)r = 0) = 1. The (NA1) property holds if {1+ (H - S)r: H € H1}
is bounded in P-probability, i.e. if

lim sup P(1+ (H-S)r >c¢)=0.
CcC— 00 HEHl

Strictly speaking this is (NA1) with simple strategies, but as observed by [KP11]
(NA1) and (NA1) with simple strategies are equivalent; see also [Ank05, IP11].

It turns out that the arbitrage definition of typical price paths corresponds to (NA),
while our definition corresponds to (NA1):

Proposition 2.1.7. Let A € F be a null set, and let P be a probability measure on
(Q, F) such that the coordinate process satisfies (NA1). Then P(A) = 0.

Proof. Let (H™)nen € Hi be such that 1 + liminf,,(H™ - S)p > 0o 14. Then for
every ¢ > 0

P(A) = P(AN {liminf(H" - S)p > ¢}) < sup P{(H - S)r > c}).

n—oo HGHl

By assumption, the right hand side converges to 0 as ¢ — oo and thus P(A) =0. O

Remark 2.1.8. Proposition 2.1.7 is actually a consequence of Proposition 2.1.6,
because if S satisfies (NA1) under P, then there exists a dominating measure Q >
P, such that S is a Q-local martingale. See [Ruf13] for the case of continuous S,
and [IP11] for the general case.

The crucial point is that (NA1) is the essential property which every sensible market
model has to satisfy, whereas (NA) is nice to have but not strictly necessary. Indeed,
(NA1) is equivalent to the existence of an unbounded utility function such that the
maximum expected utility is finite [KK07, IP11]. (NA) is what is needed in addition
to (NA1) in order to obtain equivalent local martingale measures [DS94]. But there
are perfectly viable models which violate (NA), for example the three dimensional
Bessel process [DS95, KK07]. By working with the arbitrage definition of typical
price paths, we would in a certain sense ignore these models.

2.1.3. Relation to Vovk’s outer measure

Our definition of the outer measure P is not exactly the same as Vovk’s [Vov12].
We find our definition more intuitive and it also seems to be easier to work with.
However, since we rely on some of the results established by Vovk, let us compare
the two notions.
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2.1. Superhedging and typical price paths

For A > 0, Vovk defines the set of processes

S,\ :—{ZHk:HkEH,\k,)\k>O,Z)\k_)\}. (2.4)
k=0 k=0

For every G = 35 HF € Sy, every w € Q and every t € [0, 7], the integral

(G- S)e(w) =Y _(H" - S)e(w) = Y (A + (H" - 5)e(w)) — A

k>0 k>0

is well defined and takes values in [—\, 0o]. Vovk then defines for A C  the cheapest
superhedging price as

Q(A) ==inf{A>0:3G €S\ s.t. A\+(G-S)r > 14}. (2.5)

This definition corresponds to the usual construction of an outer measure from an
outer content (i.e. an outer measure which is only finitely subadditive and not count-
ably subadditive); see [Fol99], Chapter 1.4, or [Taoll], Chapter 1.7. Here, the outer
content is given by the cheapest superhedging price using only simple strategies. It
is easy to see that P is dominated by Q:

Lemma 2.1.9. Let A C Q. Then P(A) < Q(A).

Proof. Let G = ), H*, with H* € Hy, and >, A = A, and assume that A + (G -
S)r > 14. Then (3F_o H*),en defines a sequence of simple strategies in ., such
that

- = k . )
lim inf (A + ((kz:%H ) -S)T) = A+ (G- 8)r > 14
So if Q(A) < A, then also P(A) < A, and therefore P(A) < Q(A). O

Corollary 2.1.10. For every p > 2, the set A, == {w € Q : ||S(w)|[pvar = o0} has
outer measure zero, that is P(A,) = 0.

Proof. Theorem 1 of Vovk [Vov08] states that Q(4,) = 0, so P(A,) = 0 by Lemma
2.1.9. O

It is a remarkable result of [Vov12] that if Q = C([0,00),R) (i.e. if the asset price
process is one-dimensional), and if A C 2 is “invariant under time changes” and
such that Sp(w) = 0 for all w € A, then A € F and Q(A) = P(A), where P denotes
the Wiener measure. This can be interpreted as a pathwise Dambis Dubins-Schwarz
theorem.

2.1.4. A topology on path-dependent functionals

It will be very useful to introduce a topology on functionals on €. For that purpose
let us identify X,Y: Q — R if X =Y for typical price paths. Clearly this defines an
equivalence relation, and we write L for the space of equivalence classes. We then
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2. Pathwise stochastic integrals for model free finance

introduce the analogue of convergence in probability in our context: (X,,) converges
in outer measure to X if

lim P(|X,, — X|>¢)=0 foralle>0.
n—oo
We follow [Vov12] in defining an expectation operator. If X : @ — [0, oc], then

E[X]:=inf {A>0: I (H")ew C Hy st liminf(A+(H"-S)r(w)) > X (w) Vo € Q.

(2.6)
In particular, P(A) = E[14]. The expectation E is countably subadditive, monotone,
and positively homogeneous. It is an easy exercise to verify that

d(X,Y) = E[|X = Y|A1]
defines a metric on L.

Lemma 2.1.11. The distance d metrizes the convergence in outer measure. More
precisely, a sequence (X,,) converges to X in outer measure if and only if

lim d(X,, X) = 0.

Moreover, (Lo, d) is a complete metric space.

Proof. The arguments are the same as in the classical setting. Using subadditivity
and monotonicity of the expectation operator, we have

eP(|Xn — X| > ) <E[|Xn — X| A1 < P(|Xn — X| >e) +¢

for all € € (0, 1], showing that convergence in outer measure is equivalent to conver-
gence with respect to d.
As for completeness, let (X;,) be a Cauchy sequence with respect to d. Then there

exists a subsequence (X, ) such that d(X,,, Xy, ,) < 27F for all k, so that

B Y (X, = Xu A D] € DBl Xny, = X | A1) = Y d(Xoy, X)) < 00,
k k k

which means that (X, ) converges for typical price paths. Define X := liminf; X, .
Then we have for all n and k

(X, X) < d(Xn, X)) + d(Xn, X) < d(Xn, X)) + 3 d( Xy, X
>k

1)
< d(Xpn, Xn,) +27F

Choosing n and k large, we see that d(X,, X) tends to 0. O
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2.2. Model free 116 integration

The present section is devoted to the construction of a model free It integral. The
main ingredient is a (weak) type of model free It6 isometry, which allows us to estimate
the integral against a step function in terms of the amplitude of the step function
and the quadratic variation of the price path. Using the topology introduced in
Section 2.1.4, it is then easy to extend the integral to cadlag integrands by a continuity
argument.

Since we are in an unusual setting, let us spell out the following standard definitions:

Definition 2.2.1. A process F': Q x [0,T] — R? is called adapted if the random
variable w — Fi(w) is Fi-measurable for all ¢ € [0, 7).

The process F' is said to be cadldg if the sample path ¢ — Fi(w) is cadlag for all
w € (.

To prove our weak It6 isometry, we will need an appropriate sequence of stopping
times: Let n € N. For each 7 =1, ..., d define inductively

oft =0, O'Zil = inf {¢t > a,?’i L |S) — S;’,:l| >27", keN.

Since we are working with continuous paths and we are considering entrance times
into closed sets, the maps (¢™?) are indeed stopping times, despite the fact that (F)
is neither complete nor right-continuous. Denote 7' := {o;"" : k € N}. To obtain
an increasing sequence of partitions, we take the union of the (7™"), that is we define
oy =0 and then

d .
opy1(w) ;= min {t >op(w):te U ﬂ””(w)}, keN, (2.7)
i=1

and we write 7" := {0} : k € N} for the corresponding partition.

Lemma 2.2.2 ([Vovlla], Theorem 4.1). For typical price paths w € ), the quadratic
variation along (7™ (w))nen ewists. That is,

ux — i i 2
V" w) =) (Sini (W) =S ’?’iAt(w)) , te[0,T], neN,
k=0

k+1 9k

converges uniformly to a function (S%)(w) € C([0,T],R) for alli € {1,...,d}.

For later reference, let us estimate N;* := max{k € N : o) <t and o} # 0}, the
number of stopping times o # 0 in 7" with values in [0, t]:

Lemma 2.2.3. For allw € Q, n €N, and t € [0,T], we have

d
27N (w) < YV (W) = VW),
i=1
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2. Pathwise stochastic integrals for model free finance

Proof. For i € {1,...,d} define N := max{k € N : o}"" < t and o}’ # 0}. Since
S’ is continuous, we have |S¢,, — 8¢, .| = 27" as long as o1 < T. Therefore, we

k41 Tk
obtain
d ' d N1 , d
NP(w@) £ 3N W) =3 o (S (@) = S,s(@)” < 220 SV w),
i=1 i=1 k=0 i=1

O]

We will start by constructing the integral against step functions, which are defined
similarly as simple strategies, except possibly unbounded: A process F': Q x [0,T] —
R? is called a step function if there exist stopping times 0 =79 < 71 < ..., and Fr.-
measurable functions Fj,: Q — R?, such that for every w € Q we have 7,,(w) = oo for
all but finitely many n, and such that

Ft(W) = Z F’I’L(w)]'[Tn(w),Tn+1(W))(t)’
n=0

For notational convenience we are now considering the interval [7,(w), Th+1(w)) which
is closed on the left-hand side. This allows us define the integral

(o) (o)
(F : S)t = Z FnSTn/\t,Tn+1/\t - Z FTnSTn/\t,Tn+1/\t7 t S [O7T]

The following lemma will be the main building block in the construction of our
integral.

Lemma 2.2.4 (Model free version of Itd’s isometry). Let F' be a step function. Then
for all a,b,c > 0 we have

P{I(F- 9 = abve} N {[|Flloo < a} N {{S)r < c}) < 2exp(=b*/(2d)),
where the set {(S)r < ¢} should be read as
{{(S)r = lim VI exists and satisfies (S)r < c}.

Proof. Assume Fy = 3309 Fy1y,, - y(t) and set 7, := inf{t > 0 : [F}| > a}. Let
n € N and define pj := 0 and then for £ € N

Prpr i=min{t > pp :t € 7" U {7y : m € N}},
where we recall that 7" = {0} : k € N} is the n-th generation of the dyadic partition
generated by S. For t € [0,T], we have (F - S)-at = D g FPZSTaAPZMvTaAPZH/\t’ and
by the definition of 7"(w) and 7, we get
sup |FPZSTa/\pZ/\t,Ta/\pZ+1/\t| < CL\/(EQ_TL.

t€[0,T]
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2.2. Model free It6 integration

Hence, the pathwise Hoeffding inequality, Lemma A.1.1 in Appendix A.1, yields for
every A € R the existence of a 1-admissible simple strategy H»" € H; such that

A2 n
SO w2t = e,

L (M 8), > exp (ME - S)rpi = 5

for all ¢t € [0,T], where
Nt(p )= = max{k: p; <t} < N/'+ Nt( 7= N{* 4+ max{k : 7, <t}.
By Lemma 2.2.3, we have NJ* < 22"V*_ so that

An )‘2 n 2 )‘ () 2n 2
Exiy > exp (MF - 8), = T Vfta*d = T (N + 1)2 "%

Ta

If now [[(F - S5)||eo > aby/c, ||F(w)|loo < a and (S)r < ¢, then

gA,TL +5—A, 1
liminf sup —+——~t— > — (/\ab\f ca,zd)
N0 4ei0,T) 2 2

The argument inside the exponential is maximized for A = b/(a+/cd), in which case
we obtain 1/2exp(b?/(2d)). The statement now follows from Remark 2.1.2. O

Of course, we did not actually establish an isometry but only an upper bound
for the integral. But this estimate is the key ingredient which allows us to extend
the model free Itd integral to more general integrands, and it is this analogy to the
classical setting that the terminology “model free version of It6’s isometry” alludes
to.

Let us extend the topology of Section 2.1.4 to processes: we identify X, Y : Q x
[0,7] — R™ if for typical price paths we have X; =Y} for all ¢ € [0,T], and we write
Lo([0,T],R™) for the resulting space of equivalence classes which we equip with the
distance

doo(X,Y) ;== E[||X — Yoo A 1]. (2.8)

Ideally, we would like the stochastic integral on step functions to be continuous with
respect to ds. However, using Proposition 2.1.6 it is easy to see that P(||((1/n) -
S)|leo >€) =1 for all n € N and € > 0. This is why we also introduce for ¢ > 0 the
pseudometric

de(X,Y) = E[([|X = Ylloo A1) L5y,<c] < doo(X,Y), (2.9)
and then
dioe(X,Y) Z 27y (X,Y) < doo (X, Y). (2.10)
n=1

The distance dj,. is somewhat analogous to the distance used to metrize the topology
of uniform convergence on compacts, except that we do not localize in time but
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2. Pathwise stochastic integrals for model free finance

instead we control the size of the quadratic variation. For step functions F' and G,
we get from Lemma 2.2.4

de((F'- 5),(G - 5))
< P{I((F = G) - 9o Z abV/e} N{|IF = Glloc < a} N {(S)r < c})

+dc(Fa’G)+abﬁ
b2 d.(F,G
§2exp(—2d)+(a)+abﬁ

whenever a,b > 0. Setting a := \/d.(F,G) and b := \/d|log a|, we deduce that
de((F - 9), (G- 9)) S (L+ Ve)de(F,G) />~ (2.11)

for all € > 0, and in particular

dioo((F - 9), (G- 8)) £ 3 27 2dyn (F,G)*72 < doo(F, G)V/2 75

n=1

Theorem 2.2.5. Let F be an adapted, cadldg process with values in RE. Then there
exists [ FdS € Lo([0,T),R) such that for every sequence of step functions (F™)
satisfying lim,, doo (F™, F') = 0 we have limy, djoc((F™ - S), [ FdS) = 0. The integral
process [ F'dS is continuous for typical price paths, and there exists a representative
J FdS which is adapted, although it may take the values £oo. We usually write
[y FsdSs == [FdS(t), and we call [ FdS the model free Ito integral of F with
respect to S.
The map F — [ FdS is linear, satisfies

o / Fds, / G dS) £ doo(F.G) /7

for all € > 0, and the model free version of Ito’s isometry extends to this setting:

P({Il [ FdSlle > abv/e} N {IIFlle < a} 0 {(S)r < c}) < 2exp(~b/(24)
for all a,b,c > 0.

Proof. Everything follows in a straightforward way from (2.11) in combination with
Lemma 2.1.11. We have to use the fact that F' is adapted and cadlag in order to
approximate it uniformly by step functions. O

Another simple consequence of our model free version of 1t6’s isometry is a strength-
ened version of Karandikar’s [Kar95] pathwise It6 integral which works for all typical
price paths and not just quasi surely under the local martingale measures.

Corollary 2.2.6. In the setting of Theorem 2.2.5, let (F™)nen be a sequence of step
functions with ||F™(w) — F(w)|lec < ¢m for allw € Q and all m € N. Then for typical
price paths w there exists a constant C(w) > 0 such that

|- 8)w) - / FaS@)|_ < Cw)emy/iogm (2.12)

for all m € N. So, if c;n = o((logm)~Y2), then for typical price paths (F™ - S)
converges to [ FdS.
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2.3. Rough path integration for typical price paths

Proof. For ¢ > 0 the model free It6 isometry gives

P({iEm5)~ [ Fas| 2 onvAdlogmye 0 (Shr <) < .

Since this is summable in m, the claim follows from Borel Cantelli (which only requires
countable subadditivity and can thus be applied for the outer measure P). O

Remark 2.2.7. The speed of convergence (2.12) is better than the one that can be
obtained using the arguments in [Kar95], where the summability of (¢,) is needed.

Remark 2.2.8. It would be desirable to extend the robust Ité integral obtained in
Theorem 2.2.5 to general locally square integrable integrands, that is adapted processes
H with measurable trajectories and such that f(f H2(w)d(S)s(w) < oo for allt and for
all w which have a continuous quadratic variation (S)(w) up to time t. The reason
why our methods break down in this setting is that our “model free version of Ité’s
isometry” requires as input a uniform bound on the integrand. However, even with the
restriction to cadlag integrands our robust Ité integral is suitable for all (financial)
applications which use Karandikar’s pathwise stochastic integral [Kar95], with the
great advantage of being a “model free” and not just a “quasi sure” object.

Stmilarly, it would be nice to have an extension of Theorem 2.2.5 to cdadlag in-
tegrators. Unfortunately, neither the outer measure P nor Vovk’s outer measure Q
have an obvious reasonable extension to the space D([0,T],R?) of all cadlag func-
tions. The problem is that on this space there are no non-zero admissible strategies.
As initiated in [Vovlla], it is possible to consider P or Q on the subspace of all
paths in D([0,T],RY) whose jump size at time t > 0 is bounded by a function of their
supremum up to time t. However, it would be necessary to develop new techniques
to obtain Theorem 2.2.5 in this setting since for instance the pathwise Hoeffding in-
equality (Lemma A.1.1) would not be applicable anymore.

2.3. Rough path integration for typical price paths

Our second approach to model free stochastic integration is based on the rough path
integral, which has the advantage of being a continuous linear operator between
Banach spaces. The disadvantage is that we have to restrict the set of integrands to
those “locally looking like S”, modulo a smoother remainder. Our two main results
in this section are that every typical price path has a naturally associated It6 rough
path, and that the rough path integral can be constructed as limit of Riemann sums.
Let us start by recalling the basic definitions and results of rough path theory.

2.3.1. The Lyons-Gubinelli rough path integral

Here we follow more or less the lecture notes [FH14], to which we refer for a gentle
introduction to rough paths. More advanced monographs are [LQ02, LCL07, FV10b].
The main difference to [FH14] in the derivation below is that we use p-variation to
describe the regularity, and not Holder continuity, because it is not true that all
typical price paths are Hoélder continuous. Also, we make an effort to give reasonably
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2. Pathwise stochastic integrals for model free finance

sharp results, whereas in [FH14] the focus lies more on the pedagogical presentation
of the material. We stress that in this subsection we are merely collecting classical
results.

Definition 2.3.1. A control function is a continuous map c: Ap — [0,00) with
c(t,t) =0 for all t € [0,T] and such that ¢(s,u) + c(u,t) < c(s,t) forall 0 < s < u <
t<T.

Observe that if f: [0,7] — R? satisfies | fs|? < c(s,t) for all (s,t) € Az, then the
p-variation of f is bounded from above by ¢(0,T)/?.

Definition 2.3.2. Let p € (2,3). A p-rough path is a map S = (S,A4): Apr —
R x R4%d guch that Chen’s relation

S'(s,t) = S'(s,u) +S%(u,t) and A% (s,t) = A% (s,u) + A (u,t) + S'(s,u)S? (u,t)

holds for all 1 < 4,5 < dand 0 < s <wu <t <7T and such that there exists a control
function ¢ with
1S(s, )P + [A(s, P2 < (s, )

(in other words S has finite p-variation and A has finite p/2-variation). In that case
we call A the area of S.

Remark 2.3.3. Chen’s relation simply states that S is the increment of a function,
that is S(s,t) = 5(0,t) — S(0,s) = Ss¢ for Sy := S(0,t), and that for all i,j there
exists a function f%: [0,T] — R such that A% (s, t) = f49(t)— f4I(s)— S;S’gt Indeed,
it suffices to set f(t) := A (0,t) + SOSO,t

Remark 2.3.4. The (strictly speaking incorrect) name “area” stems from the fact
that if
S:[0,T] — R? is a two-dimensional smooth function and if

. t
AV (5, 1) / / dsi dsi, = / S, dsi,

then the antisymmetric part of A(s,t) corresponds to the algebraic area enclosed by
the curve (Sy)relsy- It is a deep insight of Lyons [Lyo98], proving a conjecture of
Féllmer, that the area is exactly the additional information which is needed to solve
differential equations driven by S in a pathwise continuous manner, and to construct
stochastic integrals as continuous maps. Actually, [Lyo98] solves a much more general
problem and proves that if the driving signal is of finite p-variation for some p > 1,
then it has to be equipped with the iterated integrals up to order |p| — 1 to obtain
a continuous integral map. The for us relevant case p € (2,3) was already treated
in [Lyo95a).

Example 2.3.5. If S is a continuous semimartingale and if we set S(s,t) := S, as

well as
AL (s, 1) / / dsi dsi, = / S, dsi,
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2.3. Rough path integration for typical price paths

where the integral can be understood either in the It6 or in the Stratonovich sense,
then almost surely S = (S, A) is a p-rough path for all p € (2,3). This is shown in
[CLO5], and we will give a simplified model free proof below (indeed we will show
that every typical price path together with its model free It6 integral is a p-rough
path for all p € (2,3), from where the statement about continuous semimartingales
easily follows).

From now on we fix p € (2,3) and we assume that S is a p-rough path. Gu-
binelli [Gub04] observed that for every rough path there is a naturally associated
Banach space of integrands, the space of controlled paths. Heuristically, a path F is
controlled by S, if it locally “looks like S”, modulo a smooth remainder. The precise
definition is:

Definition 2.3.6. Let p € (2,3) and ¢ > 0 be such that 2/p+1/q > 1. Let S = (5, A)
be a p-rough path and let F: [0,7] — R™ and F': [0,T] — R"*¢. We say that the
pair (F, F') is controlled by S if the derivative F' has finite g-variation, and the
remainder Rp: Ap — R™, defined by

RF(S,t) = s,t*Fs/Ss,ta

has finite 7-variation for 1/r = 1/p + 1/¢. In this case, we write (F,F’) € ¢4, and
define
H(F7 F/)H%Sq = HF/Hq—var + HRFHr—var-

Equipped with the norm |Fy| + |F§| + || (F, F”)

q .
%2> the space 63 is a Banach space.

Naturally, the function F’ should be interpreted as the derivative of F' with respect
to S. The reason for considering pairs (F, F’) and not just functions F is that the
regularity requirement on the remainder Ry usually does not determine F’ uniquely
for a given path F. For example, if F' and S both have finite r-variation rather than
just finite p-variation, then for every F’ of finite g-variation we have (F,F’) € ¢g.

Note that we do not require F' or F’ to be continuous. We will point out in
Remark 2.3.10 below why this does not pose any problem.

To gain a more “quantitative” feeling for the condition on ¢, let us assume for the
moment that we can choose p > 2 arbitrarily close to 2 (which is the case in the
example of a continuous semimartingale rough path). Then 2/p 4+ 1/q > 1 as long
as ¢ > 0, so that the derivative F’ may essentially be as irregular as we want. The
remainder Rp has to be of finite r-variation for 1/r = 1/p + 1/q, so in other words
it should be of finite r-variation for some r < 2 and thus slightly more regular than
the sample path of a continuous local martingale.

Example 2.3.7. Let ¢ € (0,1] be such that (2+¢)/p > 1. Let ¢ € C;™ and
define Fy := ¢(Ss) and F. := ¢'(Ss). Then (F,F’) € ‘fsp/e: Clearly F’ has finite
p/e-variation. For the remainder, we have

[Rp (s, 0P = [0(St) = 0(Ss) = /(85556 P/ 1F) < gl pavec(s, 1),

where c is a control function for S. As the image of the continuous path S is compact,
it is not actually necessary to assume that ¢ is bounded. We may always consider a
C'*¢ function 1 of compact support, such that 1) agrees with ¢ on the image of S.
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2. Pathwise stochastic integrals for model free finance

This example shows that in general Rp(s,t) is not a path increment of the form
Rp(s,t) = G(t) — G(s) for some function G defined on [0, T], but really a function of
two variables.

Example 2.3.8. Let G be a path of finite r-variation for some r with 1/p+1/r > 1.
Setting (F, F’) = (G,0), we obtain a controlled path in ¢, where 1/q = 1/r —1/p.
In combination with Theorem 2.3.9 below, this example shows in particular that the
controlled rough path integral extends the Young integral and the Riemann-Stieltjes
integral.

The basic idea of rough path integration is that if we already know how to define
J SdS, and if F looks like S on small scales, then we should be able to define [ F'dS
as well. The precise result is given by the following theorem:

Theorem 2.3.9 (Theorem 4.9 in [FH14]|, see also [Gub04], Theorem 1). Let p € (2,3)
and g > 0 be such that 2/p +1/q > 1. Let S = (S, A) be a p-rough path and let
(F,F') € 65. Then there exists a unique function [FdS € C([0,T],R™) which
satisfies

t
/ Fy S, — FuSe—FLA(s. 1)
S

S ”SHp-var,[s,t]HRFHT—Van[sﬂ + ”AHp/Q—var,[s,t] ’F/Hq—var,[s,t]

for all (s,t) € Ap. The integral is given as limit of the compensated Riemann sums

t
/FudSu: Hm Y [Fy S + FLA(s1,82)], (2.13)
0

m—o0
[s1,82]€T™™

where (1) is any sequence of partitions of [0,t] with mesh size going to 0.
The map (F,F') — (G,G') := ([ F,dS,, F) is continuous from €§ to €& and
satisfies

(G, G lgr S NFllpvar + (1 oo + 1 F" llg-var) | Allp/2-var + 1S ]lpvar | R [lrvar-

Remark 2.3.10. To the best of our knowledge, there is no publication in which the
controlled path approach to rough paths is formulated using p-variation regqularity.
The references on the subject all work with Hélder continuity. But in the p-variation
setting, all the proofs work exactly as in the Holder setting, and it is a simple exercise
to translate the proof of Theorem 4.9 in [FH1/j] (which is based on Young’s mazimal
inequality which we will encounter below) to obtain Theorem 2.3.9.

There is only one small pitfall: We did not require F or F' to be continuous.
The rough path integral for discontinuous functions is somewhat tricky, see [Wil01,
FS14]. But here we do not run into any problems, because the integrand S = (.S, A)
is continuous. The construction based on Young’s maximal inequality works as long
as integrand and integrator have mo common discontinuities, see the Theorem on
page 264 of [You36].
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2.3. Rough path integration for typical price paths

If now ¢ € C’I}JFE for some ¢ > 0, then using a Taylor expansion one can show that
there exist p > 2 and ¢ > 0 with 2/p+ 1/¢ > 0, such that (F, F') — (¢(F), ¢ (F)F")
is a locally bounded map from 4% to 6¢. Combining this with the fact that the rough
path integral is a bounded map from 6¢ to 6%, it is not hard to prove the ezistence
of solutions to the rough differential equation

t
Xt:onr/ o(X,) dS,, (2.14)
0

t € [0,T], where X € €¢, [ p(X,)dSs denotes the rough path integral, and S is a
typical price path. Similarly, if ¢ € CZ¢, then the map (F, F') > (p(F), ¢ (F)F’)
is locally Lipschitz continuous from 6% to ¢g, and this yields the uniqueness of
the solution to (2.14) — at least among the functions in the Banach space 6%. See
Section 5.3 of [Gub04] for details.

A remark is in order about the stringent regularity requirements on . In the
classical It6 theory of SDEs, the function ¢ is only required to be Lipschitz continuous.
But to solve a Stratonovich SDE, we need better regularity of . This is natural,
because the Stratonovich SDE can be rewritten as an [t6 SDE with a Stratonovich
correction term: the equations

dXt = gD(Xt) @) th and
1
dX; = o(Xy¢) dW; + iwl(Xt)V?(Xt) de

are equivalent (where W is a standard Brownian motion, dW; denotes Itd integration,
and o dW; denotes Stratonovich integration). To solve the second equation, we need
¢’ to be Lipschitz continuous, which is always satisfied if ¢ € CZ. But rough path
theory cannot distinguish between It6 and Stratonovich integrals: If we define the area
of W using Itd (respectively Stratonovich) integration, then the rough path solution
of the equation will coincide with the Itd (respectively Stratonovich) solution. So in
the rough path setting, the function ¢ should satisfy at least the same conditions as
in the Stratonovich setting. The regularity requirements on ¢ are essentially sharp,
see [Dav07], but the boundedness assumption can be relaxed, see [Lejl2]. See also
Section 10.5 of [FV10b] for a slight relaxation of the regularity requirements in the
Brownian case.

Of course, the most interesting result of rough path theory is that the solution to
a rough differential equation depends continuously on the driving signal. This is a
consequence of the following observation:

Proposition 2.3.11 (Proposition 9.1 of [FH14]). Let p € (2,3) and ¢ > 0 with
2/p+1/q>0. Let S = (S, A) and S = (S5, A) be two p-rough paths, let (F, F') € 64
and (F,F') € %Sq. Then for every M > 0 there exists Cpy > 0 such that

H/'Fsdss—/'ﬁsdgs
0 0

v SCM(’FO — FO’ + |Fp — F(I)| + || F - F/Hq-var

+ ”RF - RF”T—Var + ”S - SHp—var + HA - AHp/Z—Var)a
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2. Pathwise stochastic integrals for model free finance

as long as

max{|Fg| + || (£, F")

g0 | B3|+ (B, F)

?%‘77 HSHp—mh HA||p/2—varu ||*§Hp-varv ||A”p/2—var}
is smaller or equal M.

In other words, the rough path integral depends on integrand and integrator in a
locally Lipschitz continuous way, and therefore it is no surprise that the solutions to
differential equations driven by rough paths depend continuously on the signal.

2.3.2. Typical price paths as rough paths

Our second approach to stochastic integration in model free financial mathematics
is based on the rough path integral. Here we show that for every typical price path,
the pair (S, A) is a p-rough path for all p € (2,3), where A corresponds to the model
free It6 integral [ .S dS which we constructed in Section 2.2. We also show that many
Riemann sum approximations to [.SdS uniformly satisfy a certain coarse grained
regularity condition, which we will use in the following section to prove that in our
setting rough path integrals can be calculated as limits of Riemann sums (and not
compensated Riemann sums as in Theorem 2.3.9). The main ingredient in the proofs
will be our speed of convergence (2.12).

Theorem 2.3.12. For (s,t) € Ap, w € Q, and i,j € {1,...,d} define
A (w / S dSY (w / P dS (w / Si S (w)— S (w) 57, (),

where [ StdS7 is the integral constructed in Theorem 2.2.5. If p > 2, then for typical
price paths A = (A")1<; j<a has finite p/2-variation, and in particular S = (S, A) is
a p-rough path.

Proof. Define the dyadic stopping times (7}'), keny by 74" := 0 and
Tipr = inf{t > 7! 0[Sy — Sen [ =277},

and set S§' 1= )y Srn L o, )(#), so that [|S™ — S[[oc < 27", Accorcing to (2.12), for

typical price paths w there ex1sts C(w) > 0 such that

(57 ) = [ sasw)] _ < clwziogn.

Fix such a typical price path w, which is also of finite g-variation for all ¢ > 2 (recall
from Corollary 2.1.10 that this is satisfied by typical price paths). Let us show that
for such w, the process A is of finite p/2-variation for all p > 2.

We have for (s,t) € Ap, omitting the argument w of the processes under consider-
ation,

|As,t| S (Sn : S)s,t

< C27"logn + |(S™ - 8)ss — SsSss| Sc €271 £ (8™ - S)gt — SSs 4]

+ ’(Sn ' S)s,t - SsSs,t‘
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2.3. Rough path integration for typical price paths

for every n € N, € > 0. The second term on the right hand side can be estimated,
using an argument based on Young’s maximal inequality (see [LCL07], Theorem 1.16),
by

(8™ 8) st —SsSs| S max{2 "c(s, )9, (#{k : 70 € [s,t]})}"He(s, t)¥ I+ (s, )%/},
(2.15)
where ¢(s,t) is a control function with |Ss¢|? < ¢(s,t) for all (s,t) € Ap. Indeed, if
there exists no k with 77 € [s, ], then |(S™ - S)ss — SsSs.| < 27™c(s, )19, using that
Ss4| < c(s,t)"/9. This corresponds to the first term in the maximum in (2.15).
Otherwise, note that at the price of adding ¢(s, t)%/9 to the right hand side, we may
suppose that s = 7 for some ko. Let now 7 ,..., 70 , | be those (7;!); which
are in [s,t). Without loss of generality we may suppose N > 2, because otherwise
(S™ - 8S)st = SsSs+. Abusing notation, we write Thin = t. The idea is now to
successively delete points (77 ,,) from the partition, in order to pass from (S™ - S) to
SsSs.t. By super-additivity of ¢, there must exist £ € {1,..., N — 1}, for which

2
C(Tl?o-‘rﬁ—l? Tl?o-i—é-i—l) S N - 10(87 t)

Deleting 7;7 |, from the partition and subtracting the resulting integral from (S™-9) st
we get

+8

S n S n n n S n n — S n S n n
‘ Trg+2—1" Tho+£—1Tkg+£ Trg+2" Tho+0Tkg+0+1 Tro+0—1 Tk0+l—1’7—k0+é+l|

2

2/q

10(5, t))

_ n n 2/q
o |ST£0+£—1’TI?O+ZSTI?O+€’T£0+£+1| = C(Tko-&-f—l’Tko—i-Z—l—l) < (N

Successively deleting all the points except 77 = s and 7;; , y = ¢ from the partition
gives

N 5/
(S 8)as = S:Sutl < 3 (——c(s,1) T < N12ag(s, 1)2/,
k=2

and therefore (2.15). Now it is easy to see that #{k : 7]’ € [s,t]} < 2™¢(s,t) (compare
also the proof of Lemma 2.2.3), and thus

k—1

|Ast| Se €270 4 max{2 " e(s, 1) /9, (2"(s, 1))~ 9e(s, )2/ + e(s, )%/}
= 27179 4 max{27"c(s, 1)/, 272D (s, 1) + (s, )2/ 9. (2.16)
This holds for all n € N, ¢ > 0, ¢ > 2. Let us suppose for the moment that
c(s,t) <1 and let @ > 0 to be determined later. Then there exists n € N for which
271 < ¢(s,t)1/*(1=8) < 27" Using this n in (2.16), we get
|A54]* e (s, 1) + max {c(s,t)l/(l_a)c(s,t)a/q,C(S,t)(Z_q)/(1_€)+a + C(S,t)2a/q}

gt+a(l—e) 2—qg+4a(l—e)

= c(s,t) + max {c(s, t) a0=21 Je(s,t)” T-= 4 c(s, t)2a/f1} )

We would like all the exponents in the maximum on the right hand side to be larger
or equal to 1. For the first term, this is satisfied as long as ¢ < 1. For the third term,
we need o > ¢/2. For the second term, we need o > (¢ — 1 —¢)/(1 —¢). Since € > 0
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can be chosen arbitrarily close to 0, it suffices if & > ¢ — 1. Now, since ¢ > 2 can be
chosen arbitrarily close to 2, we see that o can be chosen arbitrarily close to 1. In
particular, we may take ov = p/2 for any p > 2, and we obtain |As7t]p/2 S (s, t).

It remains to treat the case c(s,t) > 1, for which we simply estimate

|As,t

sl < (| [ seas,

[e.9]

. /2
p/2 <, H/o S, dsS, ZO + \SHgo)c(s,t).

So for every interval [s,t] we can estimate |Ag|P/? <., c(s,t), and the proof is
complete. ]

Remark 2.3.13. To the best of our knowledge, this is one of the first times that a
non-geometric rough path is constructed in a non-probabilistic setting, and certainly
we are not aware of any works where rough paths are constructed using financial
arguments.

We also point out that, thanks to Proposition 2.1.6, we gave a simple, model free,
and pathwise proof for the fact that a local martingale together with its It integral
defines a rough path. While this seems intuitively clear, the only other proof that we
know of is somewhat involved: it relies on a strong version of the Burkholder-Davis-

Gundy inequality, a time change, and Kolmogorov’s continuity criterion; see [CL05]
or Chapter 14 of [FV10b].

The following auxiliary result will allow us to obtain the rough path integral as a
limit of Riemann sums, rather than compensated Riemann sums, which are usually
used to define it.

Lemma 2.3.14. Let (cp)nen be a sequence of positive numbers such that ¢, =
o((logn)=¢) for all ¢ > 0. For n € N define 7§ := 0 and 7, := inf{t > 7 :
St — Spn| = en}, k € N, and set S;' == 33, 57?1[7577&,1)(0' Then for typical price
paths, ((S™-S)) converges uniformly to [ S dS defined in Theorem 2.2.5. Moreover,
for p > 2 and for typical price paths there exists a control function ¢ = ¢(p,w) such
that

|(Sn ’ S)TI?,TZ‘ (W) - ST,? (w)ST;:,T;‘ (w)’pm <1

sup sup S
n k<t C(T]?a T(ZZ)

Proof. The uniform convergence of ((S™ - 5)) to [SdS follows from Corollary 2.2.6.
For the second claim, fix n € N and k < £ such that 7;' <T'. Then

k

[(S™ - S)zpzn — SenSpn zn| S H(S" -5) — /0 SsdSs|| + \AT;%T?
Sw cnV/logn + Up/Q(Tl?a 7_21)2/17 ,SE 6711_6 + Up/2 (7_1?7 T?)Q/pa
(2.17)

where € > 0 and the last estimate holds by our assumption on the sequence (cy,), and
where vy, /9(s,t) := ||A|]z;§_var’[s7t] for (s,t) € Ap. Of course, this inequality only holds

for typical price paths and not for all w € €.
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On the other side, the same argument as in the proof of Theorem 2.3.12 (using
Young’s maximal inequality and successively deleting points from the partition) shows
that

|(S™ - S)TIQL*TEL - ST]?STI?’TZH| < C?L—qvq(Tg,TZ), (2.18)
where vy(s,t) := [|S]7_,, 15, for (s,t) € Ag.

Let us define the control function ¢ := v, + v,/2. Take a > 0 to be determined
below. If ¢,, > &(s,t)1/*(1=2) then we use (2.18) and the fact that 2— ¢ < 0, to obtain

S". S — 8.8 a < (AN N %:Z) n_ma o zon on 2—q(—&1-f(51)—5)
( Jrp e = SenSen ool S (6(my, 7)) O g (1, 7)) < ey 77

The exponent is larger or equal to 1 as long as o > (¢ —1—¢)/(1 —¢). Since g and ¢
can be chosen arbitrarily close to 2 and 0 respectively, we can take o = p/2, and get

(8™ S)eprp = SepSep,rp P S &, 1) (1 + E0,T)°)

for a suitable § > 0.
On the other side, if ¢, < é&(s,t)/*(1=2) then we use (2.17) to obtain

(8™« S)rpay = Srp Segap|® S 6 70 + S 70,

so that also in this case we may take o« = p/2, and thus we have in both cases
2
(8™ S)ep o = Sep SeprpP? < et 70Y),

where c is a suitable (w-dependent) multiple of ¢. O

2.3.3. The rough path integral as limit of Riemann sums

Theorem 2.3.12 shows that we can apply the controlled rough path integral in model
free financial mathematics since every typical price path is a rough path. But there
remains a philosophical problem: As we have seen in Theorem 2.3.9, the rough path
integral [ F'dS is given as limit of the compensated Riemann sums

t
0 Fs dSs = Tr%gnoo Z [Frl Srl,rz + F{,lA(Tl, 7“2)} ’
[r1,r2]emT™

where (7') is an arbitrary sequence of partitions of [0,¢] with mesh size going to 0.
The term F, S, r, has an obvious financial interpretation as profit made by buying
F,., units of the traded asset at time r; and by selling them at time 7. However,
for the “compensator” Fy, A(r1,r2) there seems to be no financial interpretation, and
therefore it is not clear whether the rough path integral can be understood as profit
obtained by investing in S.

However, we observed in Section 2.2 that along suitable stopping times (7]')y, %, we
have

t
S48 = Jimm, D Sy Sy s v
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2. Pathwise stochastic integrals for model free finance

By the philosophy of controlled paths, we expect that also for F' which looks like S
on small scales we should obtain

/F ds, = lim ZF Se it At

without having to introduce the compensator F;I?A(T,’j At 73t At) in the Riemann
sum. With the results we have at hand, this statement is actually relatively easy to
prove. Nonetheless, it seems not to have been observed before.

For the remainder of this section we fix S € C([0,7],R?), and we work under the
following assumption:

Assumption (RIE). Let 7" = {0 =t <1} <--- <t} =T} n €N, be a given
sequence of partitions such that sup{|Stn o |k =20,...,N, — 1} converges to 0,

7k‘+1‘
and let p € (2,3). Set
n_l

Z Senl; Lt ,) ) (£)-

We assume that the Riemann sums (S” - S) converge uniformly to a limit that we
denote by [SdS, and that there exists a control function ¢ for which
p (8™ - S)gn in — SnSen n|P/?

|SS ¢ k k"¢
sup : + sup sup < 1. (219
(st)eAT c(s,t) n 0<k<(<N, c(ty,t}) )

Remark 2.3.15. We expect that “coarse-grained” regularity conditions as in (2.19)
have been used for a long time, but were only able to find quite recent references:
condition (2.19) was previously used in [Perl4], see also [GIP14], and has also ap-
peared independently in [Kell4]. In our setting this is quite a natural relazation of a
uniform p-variation bound since say for s,t € [t} 1), 1] with |t — s| < [t} —t}| the
increment of the discrete integral (S™-S)s is not a good approximation of fs Sy dSy,
and therefore we cannot expect it to be close to SsSs ;.

Remark 2.3.16. FEvery typical price path satisfies (RIE) if we choose (t}}) to be a
partition of stopping times such as the (13}) in Lemma 2.3.14.

It is not hard to see that if S satisfies (Rig) and if we define A(s,t) := [ S, dS, —
SsSs.t, then (S, A) is a p-rough path. This means that we can calculate the rough path
integral [ F'dS whenever (F, F’) is controlled by S, and the aim of the remainder
of this section is to show that this integral is given as limit of (uncompensated)
Riemann sums. Our proof is somewhat indirect. We translate everything from It6
type integrals to related Stratonovich type integrals, for which the convergence follows
from the continuity of the rough path integral, Proposition 2.3.11. Then we translate
everything back to our Itd type integrals. To go from It6 to Stratonovich, we need
the quadratic variation:

Lemma 2.3.17. Under Assumption (RIE), let 1 <i,7 < d, and define

L L o t . t .
S, 87 =818 — 84S, — | S8LdSI — [ S7dSE.
t-t 0~0 0 T T 0 T T
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2.3. Rough path integration for typical price paths

Then (S%, S7) is a continuous function and

Np—1 ] ]
(87,87 = Jim (8% 507 = lim, 32 (Sl v = Sipn) S, 0 = S (220)

The sequence ({S%, S7Y™),, is of uniformly bounded total variation, and in particular
(5%, 57} is of bounded variation. We write (S) = (S,S) = ((S%,57))1<ij<d, and call
(S) the quadratic variation of S.

Proof. The function (5%, S7) is continuous by definition. The specific form (2.20) of
(8%, 87) follows from two simple observations:

Np—1
i QJ iQl _ J i J
StSt - 5050 = 1;) ( tg+1/\tstg+1/\t - t;;AtSt;;/\t)

for every n € N, and

) J
St /\tSt”

— S, .S%
w1/t tRAEDER N

k+1

_ Qi J J
= StgAtS HALEL AL + S} "/\tSt"/\t,tZ A + St"/\t tz+1/\tst"/\t,tz+1/\t,

so that the convergence in (2.20) is a consequence of the convergence of (S™ - S) to
[ Sds.
To see that (S%, S7) is of bounded variation, note that

j 1 i gi 2 J 2
St"/\tt" /\tSt"/\tt" AT <(S +5 )t”AttZ+1At> _((S s )tn“tﬁﬂ/\t)

k+1 k41

(read (S%,57) = 1/4((S*+S7) —(S?—S7))). In other words, the n-th approximation of
(S, 87} is the difference of two increasing functions, and its total variation is bounded
from above by

Nn—1 2 2
Z <<(SZ+SJ)tZ,tZ+1> + ((S Sj)t;;,tgﬂ) >
k=0

Nn—1

< sup Z (St )2+ (S )?)

k’k+1 kYk41

Since the right hand side is finite, also the limit (S*, S7) is of bounded variation. [J

Given the quadratic variation, the existence of the Stratonovich integral is straight-
forward:
Lemma 2.3.18. Under Assumption (RIE), define Sn‘[tﬁ,tﬁrl} as the linear interpo-

lation of Sy and St2+1 fork=0,...N, — 1. Then ([ S™dS™) converges uniformly
to

t t
/STodS ;:/ STdST+%<S>S,t. (2.21)

Moreover, setting A™(s,t) = [! S‘QT dS™ for (s,t) € Ar, we have sup,, Hfl”Hp/z_var <
0.
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2. Pathwise stochastic integrals for model free finance

Proof. Let n € Nand k € {0,..., N, — 1}. Then for t € [t},{}, ;] we have

t—tp

n n
tk+1 - tk

S’ZL:StZ—F Stn t

n n
koYk+1?

so that

: (2.22)

n 4+n
kolk+1"

e 5n 1 Em 1
[ Sras = SuSu,, + 35,
k
from where the uniform convergence and the representation (2.21) follow by Lemma
2.3.17.

To prove that A™ has uniformly bounded £-variation, consider (s,t) € Ap. If there
exists k such that ¢}) <s <t < t};‘ﬂ, then we estimate

2
Angs.p = [ s as <) / (o) Dt arf”*

[t — 1kl
1 Sep e, P |t — s
—_ _ P k7" k+1 P
a 2p/2‘t s e, — P < o, — 7 1S e 2 21 (2.23)

Otherwise, let kg be the smallest k such that ¢} € (s,t), and let k; be the largest such
k. We decompose

A (s, 1) = Ao, )+ A" (8 8) + A8y 0) + g STy iy o+ Slag Sy o
We get from (2.22) that

|A™ (e )P/ S |(S™ Sep e — Sep S . [P/ + (S m. P2,

where (S)™ denotes the n-th approximation of the quadratic variation. By the as-
sumption (RIE) and Lemma 2.3.17, there exists a control function ¢ so that the
right hand side is bounded from above by &(tf .ty ). Combining this with (2.23)

and a simple estimate for the terms S7,» Sin ;» and SI'yn Sin 4, we deduce that
ko ko’ ky "k k1’

Hfl””p/g_var S &0,T) + ||S|I2.ar» and the proof is complete. O
We are now ready to prove the main result of this section.

Theorem 2.3.19. Under Assumption (RIE), let ¢ > 0 be such that 2/p+1/q > 1.
Let (F,F'") € €4 be a controlled path such that F is continuous. Then the rough path
integral [ F'dS which was defined in Theorem 2.3.9 is given by

; Np—1
/0 FsdS, = nh—>nc}o Z Ft}:Stz/\t,tZJrl/\t?
k=0
where the convergence is uniform in t.

Proof. For n e N define F" as the}inear interp(zlation of F' between the points in
7. Then (F™, F’) is controlled by S™: Clearly ||F"| gvar < ||F|lg-var- The remainder
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2.3. Rough path integration for typical price paths

R’;:,n of F™ with respect to S™ is given by R%, (s,t) = F;ft - F;S'Qt for (s,t) € Arp.
We need to show that R%n has finite r-variation for 1/r =1/p+1/q.
If1 <s<t< th. 1, we have

- t—s t—s r
13 r_\___ — n in — / n 4n
| R (s, 1)]" = ‘tz—i-l — 31 Fy tn o, —tr Stk’tk+1
t—s mr/a r/p
S ‘W‘ (||RF||T Var tk+1 + ||F ||q var [t" ]HSHp var k’tk+l})
|t — s

pl)s

(2.24)

W(HRF”T—Var,[t ] + HF/Hq var, [t ] + HSHP-V&I“ nt
k+1 k

where in the last step we used that 1/r =1/p+ 1/q, and thus r/q +r/p = 1.
Otherwise, there exists k € {1,...,N,, — 1} with ¢} € (s,t). Let ko and ki be the
smallest and largest such k, respectively. Then

R, (5, 6)]" Spl R (s, 3| + | R % (7, tR )]
+ R, (6 0] + | FL sip Stn "+ |F sty St "

ko’ kq
Now ]%%n( kosthy) = Rp(ty,, 1k, ), and therefore we can use (2.24), the assumption on
Rp, and the fact that 1/r = 1/p + 1/q (which is needed to treat the last two terms
on the right hand side), to obtain

1R llrvar S 1R [lrvar + 1 F llgvar + [1Slp-vas-

On the other side, since F' and Ry are continuous, (F™, R%n) converges uniformly to
(F, Rr). Now for continuous functions, uniform convergence with uniformly bounded
p-variation implies convergence in p’-variation for every p’ > p. See Exercise 2.8
in [FH14] for the case of Holder continuous functions.

Thus, using Lemma 2.3.18, we see that if p’ > p and ¢ > ¢ are such that
2/p' +1/¢' > 0, then ((S™, A™),) converges in (p/, p'/2)-variation to (S, A°), where
A°(s,t) = A(s,t) + 1/2(S)sy. Similarly, ((F", F’, R” ) converges in (¢',p/,1')-
variation to (F, F', Rp), where 1/r' =1/p' + 1/ .

Proposition 2.3.11 now yields the uniform convergence of [ F™dS™ to [ Fo dS, by
which we denote the rough path integral of the controlled path (F, F’) against the
rough path (S, A°). But for every t € [0,T] we have

. t as ~ : 1
lim / F'dSY = lim Z i(Ft};‘i‘FtZH)St it

n—oo J n—00 k+1
kety | <t
:nlglolo( Z Fip Stkvtk+1 Z Ftk7tk+15tk7tk+1)
k:t’,;q_1 ktz+1<t

Using that F' is controlled by S, it is easy to see that the second term on the right
hand side converges uniformly to 1/2 [5 F/d(S)s, ¢t € [0,T]. Thus, the Riemann sums
>k Fip Sepnn, A converge uniformly to [ F'o dS—1/2 [ F'd(S), and from the repre-
sentation of the rough path integral as limit of compensated Riemann sums (2.13), it
is easy to see that [ FlodS = [FdS+1/2 [ F'd(S), which completes the proof. [
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2. Pathwise stochastic integrals for model free finance

Remark 2.3.20. Given Theorem 2.3.19 it is natural to conjecture that if (S, A) is
the rough path which we constructed in Theorem 2.5.12 and Lemma 2.3.1/, then for
typical price paths and for adapted, controlled, and continuous integrands F the rough
path integral agrees with the model free integral of Section 2.2. This seems not very
easy to show, but what can be verified is that if F € C'¢, then for the integrand
F(S) both integrals coincide — simply take Riemann sums along the dyadic stopping
times defined in (2.7).

Theorem 2.3.19 is reminiscent of Follmer’s pathwise It6 integral [F681]. Follmer
assumes that the quadratic variation (S) of S exists along a given sequence of parti-
tions and is continuous, and uses this to prove an It6 formula for S: if F' € C?, then

F(S)) = F(So) + /0 'VF(S.)dS, + % /0 "D2R(S.) d(S)., (2.25)

where the integral [; VF(Ss)dS; is given as limit of Riemann sums along that same
sequence of partitions. Friz and Hairer [FH14| observe that if for p € (2,3) the
function S is of finite p-variation and (S) is an arbitrary continuous function of finite
p/2-variation, then setting

Sy (A)(5,0) = 5 (S + ()s0)

one obtains a “reduced rough path” (S, Sym(A)). They continue to show that if F is
controlled by S with symmetric derivative F’, then it is possible to define the rough
path integral [ F'dS. This is not surprising since then we have F/As; = F.Sym(A);;
for the compensator term in the definition of the rough path integral. They also
derive an It6 formula for reduced rough paths, which takes the same form as (2.25),
except that now [ VF(S)dS is a rough path integral (and therefore defined as limit
of compensated Riemann sums).

So both the assumption and the result of [FH14] are slightly different from the
ones in [F681], and while it seems intuitively clear, it is still not shown rigorously
that Follmer’s pathwise It6 integral is a special case of the rough path integral. We
will now show that Follmer’s result is a special case of Theorem 2.3.19. For that
purpose we only need to prove that Follmer’s condition on the convergence of the
quadratic variation is a special case of the assumption in Theorem 2.3.19, at least as
long as we only need the symmetric part of the area.

Definition 2.3.21. Let f € C([0,7],R) and let 7" = {0 = t{ <t} <--- <t} =T},
n € N be such that sup{|fip e |:k=0,..., N, — 1} converges to 0. We say that f
has quadratic variation along (7™) in the sense of Féllmer if the sequence of discrete

measures (u") on ([0,77], B[0,T]), defined by

Nn—1
=Y | fipa, Pon, (2.26)
k=0

converges weakly to a non-atomic measure pu. We write [f]; for the “distribution
function” of p (in general p will not be a probability measure). The function f =
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2.3. Rough path integration for typical price paths

(fY,.... f4 € 0([0,T],R?) has quadratic variation along (7") in the sense of Follmer
if this holds for all f* and f*+ f7, 1 <, < d. In this case, we set

7 Ple= 505+ Pl= 1= 1P, t€0,T)

Lemma 2.3.22 (see also [Vovlla|, Proposition 6.1). Let p € (2,3), and let S =

(S,...,8% € C([0,T],R?) have finite p-variation. Let ™" = {0 = t§ < } <
- <ty =T}, n €N, bea sequence of partitions such that sup{]Stn gl k=

0,...,N, — 1} converges to 0. Then the following conditions are equivalent:

(i) The function S has quadratic variation along (7™) in the sense of Follmer.
(i) For all 1 <i,j <d, the discrete quadratic variation
Np—1

i qJ
(5", 57) Z St"/\tt" /\tS”/\tt” At

P41 et

converges uniformly in C([0,T],R) to a limit (S, S7).

(iii) For S™ .= ZN"_I S’tn [t ) i € {1,...,d}, n € N, the Riemann sums
(S™8.89)+(S™9.S%) converge uniformly to a limit [ S*dS7+ [ S7 dS*. Moreover,
the symmetric part of the approximate area,

. 1 o o
Sym(A™)™ (s, 1) = S((5™" - )50 + (5™ - 5")sy — SiS1, — S1SL,), (s,1) € Ar,
for 1 <i,5 <d, has uniformly bounded p/2-variation along (7™), in the sense
of (2.19).

If these conditions hold, then [S%, S7] = (S%,87) for all 1 <i,j < d.

Proof. Assume (i) and note that

1 2 2
CHYY tg+1/\tStJnAt,tg+1/\t 2(((5Z + 5 ) een, nt)? = (St AL AL) (Sg"/\t arone)):

Thus, the uniform convergence of (S%, 57)" and the fact that (S?, S7) = [S?, $7] follow
once we show that Follmer’s weak convergence of the measures (2.26) implies the uni-
form convergence of their distribution functions. But since the limiting distribution
is continuous by assumption, this is a standard result.

Next, assume (ii) The uniform convergence of the Riemann sums (S™¢ . S7) +
(S™7 - S%) is shown as in Lemma 2.3.17. To see that Sym(A™) has uniformly bounded
p/2-variation along (7™), note that for 0 < k < ¢ < N, and 1 <1i,j < d we have

(5™ - )+ (S™ - )y = SeSH g — SLSip P
= 1Sh 1 Sy g — (87, o2
< ”SHp—var,[tZ,t?] + ||<Sz7 Sj>n||1—var,[tz,t?]'

That ||(S%, S7)"||1-yar is uniformly bounded in n is shown in Lemma 2.3.17.
That (iii) implies (i) is also shown in Lemma 2.3.17. O
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2. Pathwise stochastic integrals for model free finance

Remark 2.3.23. With Theorem 2.3.19 we can only derive an Ité formula for F €
C?*¢, since we are only able to integrate VF(S) if VF € C'T¢. But this only seems
to be due to the fact that our analysis is not sharp. We expect that typical price paths
have an associated rough path of finite 2-variation, up to logarithmic corrections.
For such rough paths, the integral extends to integrands F € C', see Chapter 10.5
of [FV10b]. For typical price paths (but not for the area), it is shown in [VovlZ2],
Section 4.3, that they are of finite 2-variation up to logarithmic corrections.
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3. Local times for typical price paths and
pathwise Tanaka formulas

This chapter uses Vovk’s [Vov12] game-theoretic approach to mathematical finance
to construct local times for “typical price paths”. Vovk’s approach is based on an
outer measure, which is given by the cheapest pathwise superhedging price, and it
does not presume any probabilistic structure.

In the last chapter we proved that in a multidimensional setting every typical price
path has a natural It6 rough path in the sense of Lyons [Lyo98| associated to it.
Based on this, we set up a theory of pathwise integration which was motivated by
possible applications in model free financial mathematics. With the techniques of
Chapter 2, we are able to treat integrands that are not necessarily functions of the
integrator. But if we want to construct [ f(S)dS, then we need f € C'*¢. The
aim of the current chapter is to show that for one-dimensional price processes this
assumption can be essentially relaxed.

We define discrete versions of the local time and prove that outside a set of outer
measure zero they converge to a continuous limit. Roughly speaking, this means that
it should be possible to make an arbitrarily large profit by investing in those paths
where the convergence of the discrete local times fails. A nice consequence is that
the convergence takes place quasi surely under all semimartingale measures for which
the coordinate process satisfies the classical condition of "no arbitrage opportunities
of the first kind”, i.e. for which the drift has a square integrable density with respect
to the quadratic variation of the local martingale part.

Using these pathwise local times, we derive various pathwise change of variable
formulas which generalize Follmer’s pathwise It6 formula [F681] in the same way
that the classical Tanaka formula generalizes the classical 1t6 formula. In particular,
we can integrate f(S) against a typical price path S whenever f has finite ¢g-variation
for some ¢ < 2.

For a more detailed discussion about pathwise integration in mathematical finance
we refer back to Chapter 2. However, for the present chapter some additional motiva-
tion comes amongst others from [DOR14], where pathwise local times and a pathwise
generalized It6 formula are used to derive arbitrage free price bounds for weighted
variance swaps in a model free setting. The techniques of [DOR14] allow to handle
integrands in the Sobolev space H'. Here we extend this to not necessarily con-
tinuous integrands of finite g-variation for some ¢ < 2. Further motivations can be
found in the survey paper [FS13] which emphasizes possible applications of pathwise
integration to robust hedging problems, or in [CJ90] and [Son06], where local times
appear naturally in a financial context and are used to resolve the so-called “stop-loss
start-gain paradox”.

This chapter is organized as follows: In Section 3.1 we present various extensions
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3. Local times for typical price paths and pathwise Tanaka formulas

of Follmer’s pathwise Itd formula under suitable assumptions on the local time. In
Section 3.2 we show that typical price paths possess local times which satisfy all the
assumptions of Section 3.1.

3.1. Pathwise Tanaka formulas

A first non-probabilistic approach to stochastic calculus was introduced by Follmer
in [F681], where an It6 formula was developed for a class of real-valued functions with
quadratic variation. This builds our starting point for a pathwise version of Tanaka’s
formula and a generalized [t6 formula, respectively. Let us start by recalling Follmer’s
definition of quadratic variation.

A partition 7 is an increasing sequence 0 = ty < t; < ... without accumulation
points, possibly taking the value co. For T' > 0 we denote by «[0,T] := {t; : t; €
[0,T)}U{T} the partition 7 restricted to [0,T], and if S: [0, 00) — R is a continuous
function we write

S, w0, T]) := S(t;)—S(ti—

(S0 = s [S(8) = (1)
for the mesh size of 7 along S on the interval [0,7]. We denote by B(]0,00)) the
Borel o-algebra on [0, 00).

Definition 3.1.1. Let (7™) be a sequence of partitions and let S € C([0,00),R) be
such that lim, oo m(S,7"[0,7]) = 0 for all 7" > 0. We say that S has quadratic
variation along (7™) if the sequence of measures

Hn = Z (S(tﬂ+1) - S(tj))26tj7 ne Na
tyen™\{oo}

on ([0,00),B([0,00))) converges vaguely to a nonnegative Radon measure p without
atoms, where d; denotes the Dirac measure at ¢ € [0,00). We write (S)(t) := u([0,¢])
for the continuous “distribution function” of x and Q(#™) for the set of all continuous
functions having quadratic variation along (7).

The reason for only requiring lim,, m(S, 7"[0,T]) = 0 rather than assuming that the
mesh size of (1) goes to zero is that later we will work with Lebesgue partitions and
paths with piecewise constant parts, in which case only the first assumption holds.

We stress the fact that Q(7") depends on the sequence (7n™) and that for a given
path the quadratic variation along two different sequences of partitions can be differ-
ent, even if both exist. This is very unpleasant and might lead the reader to question
the usefulness of our results. But quite remarkably there is a large class of paths
which have a natural pathwise quadratic variation that is independent of the specific
partition used to calculate it. More precisely, in the master’s thesis [Lem83|, see
also [CLPT81], the notion of quadratic arc length is introduced. Roughly speaking, a
path S has quadratic arc length A if the quadratic variation of S along any sequence
of Lebesgue partitions is equal to A. It is shown in [Lem83], Theorem II11.3.3, that
almost every sample path S(w) of a continuous semimartingale has a quadratic arc
length which is equal to the semimartingale quadratic variation (S)(w). The same
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3.1. Pathwise Tanaka formulas

theorem also shows that almost every sample path of a continuous semimartingale
has a natural local time which can be obtained by counting interval upcrossings.

For k € N let us write C¥ = CF(R,R) for the space of k times continuously
differentiable functions, and Cf = C’f(R, R) for the space of functions in C* that are
bounded with bounded derivatives, equipped with the usual norm || - || o

Theorem 3.1.2 ([F681]). Let (") be a sequence of partitions and let S € Q(n")
and f € C?. Then the pathwise Ito formula

F(50) = £SO + [ FSe)as) + 5 [ F(S)ais)

holds with

[ 756 a8() = Jm S FSUNS A0 - 8 A0), 1€ 0,00), (31

tyemm™

where the series in (3.1) is absolutely convergent.

In particular, the integral [;g(S(s))dS(s) is defined for all g € Ct, and for all
T > 0 the map C} 3 g — [;9(S(s))dS(s) € C([0,T],R) defines a bounded linear
operator and we have

¢ 1
| [ a(s(s)as(s)] < 15 = S0)] % gl upwisiogn + 5

5 (SOl o supp(5110.))

for all t > 0, where supp(S|o,q]) denotes the support of S restricted to the interval
[0, t].

Follmer actually requires the mesh size maxy e n\ (40}, ¢,<T |t; —tj—1| to converge
to zero for all T' > 0, but he also considers cadlag functions S. For continuous S, the
proof only uses that m(S, ™[0, T]) converges to zero.

The continuity of the It6 integral is among its most important properties: if we
approximate the integrand in a suitable topology, then the approximate integrals
converge in probability to the correct limit. This is absolutely crucial in applications,
for example when solving stochastic optimization problems or SDEs. Here we are
arguing for one fixed path, so the statement in Theorem 3.1.2 is a natural formulation
of the continuity properties in our context.

In the theory of continuous semimartingales, It&’s formula can be extended further
to a generalized It6 rule for convex functions, see for instance Theorem 6.22 in [KS88].
In the spirit of Féllmer, a generalized [t6 rule for functions in suitable Sobolev spaces
was derived in the unpublished diploma thesis of Wuermli [Wue80]. We briefly recall
here the idea for this pathwise version as presented in [Wue80] or [DOR14].

Let f’ be right-continuous and of locally bounded variation, and we set f(z) :=
f(O,x] f'(y)dy for x > 0 and f(z) := — f(Lo] f(y)dy for x < 0. Then we get for b > a
that

f®)=fla) = f(@)b—a)+ [  (f(z)=f(a))dz = f'(a)(b—a) +/ (b—t)df'(t),

(a,b]
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3. Local times for typical price paths and pathwise Tanaka formulas

where we used integration by parts, and where the integral on the right hand side is
to be understood in the Riemann-Stieltjes sense. For b < a, we get f(b) — f(a) =
f(a)(b—a)+ [}, (t—b) df'(t). Therefore, for any S € C([0, ), R) and any partition

7 we have

FS(0) = S(S(0) = 3 F(S0; A 0)(Sltysa 1) = Slty A1)
[ > Tt siteanel (915t 1) = ul) 470,

where we used the notation

0] = {(u,v}, if u <w, (3.3)

(v,ul, ifu>wv,
for u,v € R. Let us define a discrete local time by setting

L7 (S, u) Z 1(]S(tj/\t S(tj+1At)] (U)|S(tj+1 At) —ul, ueR,

tyjem

and note that LT (S,u) = 0 for u ¢ [inf (o 7 5(s), supsejo,q S(s)]- In the following we
may omit the S and just write LT (u).

Definition 3.1.3. Let (7™) be a sequence of partitions and let S € C([0,0),R).
A function L(S): [0,00) x R — R is called L2-local time of S along (7™) if for all
t € [0,00) it holds lim, oo m(S,7"[0,t]) = 0 and the discrete pathwise local times
LT (S, ) converge weakly in L?(du) to Li(S,-) as n — co. We write L2 (7") for the
set of all continuous functions having an L?local time along (7™).

Using this definition of the local time, Wuermli showed the following theorem,
where we denote by H* = H¥(R,R) the Sobolev space of functions which are k times
weakly differentiable in L?(R,R).

Theorem 3.1.4 ([Wue80], Satz 9 or [DOR14], Proposition B.4). Let (7") be a se-
quence of partitions and let S € Li2(7"). Then S € Q(7"), and for every f € H?
the generalized pathwise Ité formula

F(S(8)) = +/f ))dS(s +/ £ () Lo(S, u) du
holds with

[ £ as(s) = tim 3 FSENS 0 A1)~ S A, t€ o0,

tyjenn

(Note that f' is continuous for f € H?). In particular, the integral [;g(S(s))dS(s)
is defined for all g € H*, and for all T > 0, the map H' 3 g — Jog(S(s))dS(s) €
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3.1. Pathwise Tanaka formulas

C([0,T],R) defines a bounded linear operator. Moreover, for A € B(R) we have the
occupation density formula

/ALt(u) du = ;/Ot 14(S(s)) d(S)(s), t € [0,00).

In other words, for all t > 0 the occupation measure of S on [0,t] is absolutely
continuous with respect to the Lebesgue measure, with density 2L;.

Sketch of proof. Formula (3.2) in combination with the continuity of f and S yields

F(S@) = £(S(0)) = D> f(SEt;))(S(tjur At) = S(t; At))

tyemm

+/ ( D s a8t a0] (WS (i1 At) —U|)f”(u) du.

- ten”

By assumption, the second term on the right hand side converges to
o0
| s, w du
—0o0

as n tends to oo, so that also the Riemann sums have to converge.
The occupation density formula follows by approximating 1 4 with continuous func-
tions. O

As already observed by Bertoin [Ber87], the key point of this extension of Follmer’s
pathwise stochastic integral is again that it is given by a continuous linear operator
on H'. Since L(S,-) is compactly supported for all + > 0, the same arguments also
work for functions f that are locally in H?, i.e. such that f|; € H?((a,b),R) for
all —oo < a < b < 0.

As we make stronger assumptions on the local times L(S), it is natural to expect
that we can extend Wuermli’s generalized 1t6 formula to larger spaces of functions.

Definition 3.1.5. Let (7™) be a sequence of partitions and let S € L2(7"). We say
that S has a continuous local time along (7™) if for all ¢ € [0, 00) the discrete pathwise
local times LT (S, -) converge uniformly to a continuous limit L;(S, ) as n — co and
if (t,u) — L(S,u) is jointly continuous. We write L.(7") for the set of all S having
a continuous local time along (7™).

In the following theorem, BV = BV(R,R) denotes the space of right-continuous
bounded variation functions, equipped with the total variation norm.

Theorem 3.1.6. Let (") be a sequence of partitions and let S € L.(n"). Let
f: R — R be absolutely continuous with right-continuous Radon-Nikodym derivative
f' of locally bounded variation. Then we have the generalized change of variable
formula

£5(0) = 15O + [ Fse)ase) + [~ Lt

o1



3. Local times for typical price paths and pathwise Tanaka formulas
for all t € [0,00), where

[ £ ass) = tm 3 SN n 0~ S M), 1€ 0,00). (34)

tyemn

In particular, the integral [;g(S(s))dS(s) is defined for all g of locally bounded vari-
ation, and for all T'> 0 the map BV 2 g — [;9(S(s))dS(s) € C([0,T],R) defines a
bounded linear operator.

Proof. From (3.2) we get

FSW) = F50) = 3 FSUSa 70 =S A0+ [ L7 (@ df @)

tyemn
for all t > 0. Since LT" converges uniformly to L, our claim immediately follows. [

Observe that f satisfies the assumptions of Theorem 3.1.6 if and only if it is the
difference of two convex functions. For such f, Sottinen and Viitasaari [SV14] prove
a generalized change of variable formula for a class of Gaussian processes. They
make the very nice observation that for a suitable Gaussian process X one can con-
trol the fractional Besov regularity of f/(X), and they use this insight to construct
Jo ['(X;) dX; as a fractional integral. Such a regularity result is somewhat surprising
since in general f’(X) is not even ladlag, so in particular not of finite p-variation
for any p > 0. But since regularity of f'(X) is shown using probabilistic arguments,
the integral of Sottinen and Viitasaari is not directly a pathwise object: the null set
outside of which it exists may depend on f. Moreover, they can only handle Gaussian
processes that are Holder continuous of order o« > 1/2, and their approach breaks
down when considering processes with non-trivial quadratic variation. Here we have
a completely different focus, since we are interested in pathwise results for paths with
non-trivial quadratic variation.

As an immediate consequence of Theorem 3.1.6 we obtain a pathwise version of
the classical Tanaka formula.

Corollary 3.1.7. Let (") be a sequence of partitions and let S € L.(7™). The
pathwise Tanaka-Meyer formula

L) = (S(0) = )™ = (5(0) =)+ [ 1y (S() 4S(9)

is valid for all (t,u) € [0,00) x R, with the notation (- —u)~ := max{0,u — -}. The
analogous formulas for 1y, oo)(-) and sgn(- —u) hold as well.

At this point we see a picture emerge: the more regularity the local time has,
the larger the space of functions is to which we can extend our pathwise stochastic
integral. Indeed, the previous examples are all based on duality between the derivative
of the integrand and the occupation measure. In the classical Follmer-1t6 case and
for fixed time T" > 0, the occupation measure is just a finite measure on a compact
interval [a,b], and certainly the continuous functions belong to the dual space of
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3.1. Pathwise Tanaka formulas

the finite measures on [a,b]. In the Wuermli setting, the occupation measure has a
density in L? and therefore defines a bounded functional on L?. If the local time is
continuous, then we can even integrate Radon measures against it.

So if we can quantify the continuity of the local time, then the dual space further
increases and we can extend the pathwise It6 formula to a bigger class of functions.
To this end we introduce for a given sequence of partitions (7™) and p > 1 the set
Lep(m") C Lo(n") consisting of those S € L.(n") for which the discrete local times
(LT") have uniformly bounded p-variation, uniformly in ¢ € [0,7] for all T > 0, i.e.
for which

SUP||L7rnHCTVP ‘= sup sup ”Lgn('>||p—var <00
neN neN¢€[0,T]

for all T' > 0, where we write for any f: R — R

n 1/19
1f s = sup { ( S f ) — f(uk_1)|p) 00 <ty < ... < Uy < 00, E N}.
k=1

We also write VP for the space of right-continuous functions of finite p-variation,
equipped with the maximum of the p-variation seminorm and the supremum norm.

For S € L.,(n") and using the Young integral it is possible to extend the path-
wise Tanaka formula to an even larger class of integrands, allowing us to integrate
J 9(S) dS provided that ¢ has finite g-variation for some ¢ with 1/p+1/q > 1. This is
similar in spirit to the Bouleau-Yor [BY81] extension of the classical Tanaka formula.
Such an extension was previously derived by Feng and Zhao [FZ06], Theorem 2.2.
But Feng and Zhao stay in a semimartingale setting, and they interpret the stochastic
integral appearing in (3.6) as a usual 1t6 integral. Here we obtain a pathwise integral,
which is given very naturally as a limit of Riemann sums.

Let us briefly recall the main concepts of Young integration. In [You36], Young
showed that if —oco < a < b < oo, if f and g are two functions on [a, b] of finite p-
and g-variation respectively with 1/p +1/¢ > 1, and if 7 is a partition of [a, b], then
there exists a universal constant C(p,q) > 0 such that

Z f(tj)(g(tj-l—l) - g(tj))‘ < C(pa Q)”f”p—var,[a,b}Hqu—var,[a,b]a

tj,tj41€T

where we wrote || f|)-var,(a,5] fOr the p-variation of f on [a,b] and similarly for g. In
particular, if there exists a sequence of partitions (") and if the Riemann sums of f
against g along (7") converge to a limit which we denote by | ; f(s)dg(s), then

b
| [ 1) d9(3)] < O )1 @] + 17 v )19 s (3.5)

Moreover, Young showed that if f and g have no common points of discontinuity,
then the Riemann sums along any sequence of partitions with mesh size going to zero
converge to the same limit f(f f(s)dg(s), independently of the specific sequence of
partitions.

We therefore easily obtain the following theorem.
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3. Local times for typical price paths and pathwise Tanaka formulas

Theorem 3.1.8 (see also [FZ06], Theorem 2.2). Let p,q > 1 be such that 1% + % >
1. Let (n™) be a sequence of partitions and let S € L.p(n™). Let f: R — R be
absolutely continuous with right-continuous Radon-Nikodym derivative f’ of locally
finite g-variation. Then for all t € [0,00) the generalized change of variable formula

50 = f5O) + [ Fse)ase) + [ Lwarw) 66

holds, where df'(u) denotes Young integration and where

/ F(8(5))dS(s) o= Tim 30 F(S(E)(S(ya A — S(t A1), t € [0,00).

tyjenn

In particular, the integral [, g(S(s))dS(s) is defined for all right-continuous g of
locally finite q-variation, and for all T > 0 the map V¢ 3> g — [, 9(S(s))dS(s) €
C([0,T],R) defines a bounded linear operator.

Proof. Observe that for each n € N, the discrete local time LT is piecewise smooth
and of bounded variation. Therefore, formula (3.2) holds for LT and f’, and the
integral on the right hand side of (3.2) is given as the limit of Riemann sums along
an arbitrary sequence of partitions with mesh size going to zero — provided that every
element of the sequence contains all jump points of Lfn. Therefore, the integral must
satisfy the bound (3.5). Since the p-variation of (LF") is uniformly bounded, and
the sequence converges uniformly to L, it is easy to see that it must converge in
p/-variation for all p’ > p. Choosing such a p’ with 1/¢+1/p’ > 1 and combining the
linearity of the Young integral with the bound (3.5), the result follows. O

Remark 3.1.9. Theorem 2.2 in [FZ06] states (3.6) under the slightly weaker as-
sumption that f: R — R s left-continuous and locally bounded with left-continuous
and locally bounded left derivative D™ f of finite q-variation. But absolute continuity
of f is clearly necessary: Consider the path S(t) =t fort € [0,00), for which (S) =0
and thus L = 0. In this case equation (3.6) would read

t
£ = O+ [ D fdu, te0,c0),
0
a contradiction if f is not absolutely continuous.

In the following, we will show that any typical price path which might model
an asset price trajectory must be in L. ,(7") if (7™) denotes the dyadic Lebesgue
partition generated by S.

3.2. Local times for model free finance

3.2.1. Super-hedging and outer measure

In a recent series of papers [Vovlla, Vovllb, Vov12], Vovk introduced a hedging
based, model free approach to mathematical finance. Roughly speaking, Vovk con-
siders the set of real-valued continuous functions as price paths and introduces an
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3.2. Local times for model free finance

outer measure on this set which is given by the cheapest super-hedging price. A
property (P) is said to hold for “typical price paths” if it is possible to make an arbi-
trarily large profit by investing in the paths where (P) is violated. We will see that in
Vovk’s framework it is possible to construct continuous local times for typical price
paths, which gives an axiomatic justification for the use of our pathwise generalized
It6 formulas from Section 3.1 in model free finance. While we worked in Chapter 2
on a finite time horizon and with multidimensional price paths, the price paths are
now assumed to be one-dimensional but may live on an infinite time horizon. Let us
briefly introduce this slightly modified stetting.

More precisely, we consider the (sample) space @ = C([0,00),R) of all continuous
functions w: [0,00) — R. The coordinate process on € is denoted by Si(w) := w(t).
For t € [0,00) we define F; := o(Ss : s < t) and we set F := \/;~q F¢. Stopping times
7 and the associated o-algebras F, are defined as usual. -

A process H: 2 x [0,00) — R is called a simple strategy if there exist stopping
times 0 = 7p(w) < T1(w) < ... such that for every w € Q and every T" € (0, 00)
we have 7, (w) < T for only finitely many n, and F, -measurable bounded functions
Fp: @ = Rsuch that Hy(w) = 32,50 Fn(W)1 (5, (w),me () (t)- In that case the integral

(H - S)e(w) = Fuw)[Sniy @t — Srn(wntl
n=0

is well defined for every w € Q and every ¢ € [0, 00).
For A > 0 a simple strategy H is called A-admissible if (H - S):(w) > —A for all
t € [0,00) and all w € Q. The set of A-admissible simple strategies is denoted by .

Definition 3.2.1. The outer measure P of A C ) is defined as the cheapest super-
hedging price for 14, that is

P(A) = inf {)\ >0 :3(H")pen C My such that

lim inf lim inf(A + (H" - $)y(w)) = 1a(w)Vew € Q}.
A set of paths A C Q is called a null set if it has outer measure zero. A property (P)
holds for typical price paths if the set A where (P) is violated is a null set.

Of course, it would be more natural to minimize over simple trading strategies
rather than over the limit inferior along sequences of simple strategies. But then P
would not be countably subadditive, and this would make it very difficult to work
with. Let us just remark that in the classical definition of superhedging prices in
semimartingale models we work with general admissible strategies, and the It6 inte-
gral against a general strategy is given as limit of integrals against simple strategies.
So in that sense our definition is analogous to the classical one (apart from the fact
that we do not require convergence and consider the lim inf instead).

For us, the most important property of P is the following arbitrage interpretation
for null sets.
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3. Local times for typical price paths and pathwise Tanaka formulas

Lemma 3.2.2 (cf. Lemma 2.1.4). A set A C Q is a null set if and only if there
exists a sequence of 1-admissible simple strategies (H™)pen € Hi, such that

liminfliminf(1 4+ (H" - S);(w)) > 0o - 14(w),

t—oo  M—0oo

where we set 00-0=0 and co -1 = 0.

In other words, a null set is essentially a model free arbitrage opportunity of the first
kind, and to only work with typical price paths is analogous to only considering models
which satisfy (NA1) (no arbitrage opportunities of the first kind). The notion (NA1)
has raised a lot of interest in recent years since it is the minimal condition which has to
be satisfied by any reasonable asset price model; see for example [KK07, Ruf13, IP11].
If P is a probability measure on (2, F), we say that S satisfies (NA1) under P if
the set Wi° := {1 + [ HsdSs : H € M} is bounded in probability, that is if
limg, oo SUP xeyyee P(X > n) = 0. In the continuous setting this is equivalent to
S being a semimartingale of the form S = M + [jasd(M),, where M is a local
martingale and [;° a2 d(M)s < oo.

In the next proposition we collect further properties of P. For proofs (in finite
time) see Section 2.1.1.

Proposition 3.2.3. (i) P is an outer measure with P()) = 1, i.e. P is nonde-
creasing, countably subadditive, and P(()) = 0.

(ii) Let P be a probability measure on (Q, F) such that the coordinate process S is
a P-local martingale, and let A € F. Then P(A) < P(A).

(iii) Let A € F be a null set, and let P be a probability measure on (2, F) such that
the coordinate process S satisfies (NA1) under P. Then P(A) = 0.

The last statement says that every property which is satisfied by typical price
paths holds quasi-surely for all probability measures which might be of interest in
mathematical finance.

Lemma 3.2.2 and Proposition 3.2.3 are originally due to Vovk, but here and in
Chapter 2 we consider a small modification of Vovk’s outer measure, which in our
opinion has a slightly more natural financial interpretation and with which it is easier
to work.

3.2.2. Existence of local times for typical price paths

This subsection is devoted to the presentation and the proof of our main result (The-
orem 3.2.5): every typical price path has a local time which satisfies all the require-
ments needed to apply our most general It6-Tanaka formula, Theorem 3.1.8.

For this purpose recall that for every partition m(w) = {0 = tp(w) < t1(w) < ... <
t(w) (W) < tk41)(w)(w) = 0o} of [0,00) a discrete version of the local time is given
by

K(w)

L?(S, u)(w) - Z 1(]St]~/\t(w);stj+1/\t(w)]] (u)|Stj+1/\t(w) - u|7 (tvu) € [07 OO) x R.
=0
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From (3.2) we get the following discrete version of Tanaka’s formula, which can also
be obtained by direct computation:

K(w)
LF(S,u) (@) = (St(w) =)= (So(w) =)™+ 3 1 ey (St (@))[Sty 1 10e (6) = Sty ()]
j=0
(3.7)
for all (t,u) € [0,00) x R and w € Q. Taking a sequence of partitions with mesh
size converging to zero, we see that at least formally the construction of the stochas-
tic integral [ 1(_oou)(Ss)dSs(w) is equivalent to the construction of the local time
L(S,u)(w).
In the following we will work with a very natural sequence of partitions, namely
the dyadic Lebesgue partitions generated by S: For each n € N denote D" := {k27" :
k € Z} and define the sequence of stopping times

70 (w) =0, 7h(w) =inf{t > 7 (w) : S(w) €D™\ Siny)(w)}, kKeN. (3.8)

We set " (w) = {0 = 7§'(w) < 1{"(w) < ...}. Note that the functions 7}(w) are
stopping times and that (7™(w)) is increasing, i.e. it holds 7" (w) C 7" (w) for all
n € N. From now on we will mostly omit the w and just write 7™ and 77’ instead of
7m"(w) and 77} (w), respectively.

A key ingredient for our construction of the local time is the following analysis of
the number of interval crossings. Let Uy(w, a,b) be the number of upcrossings of the
closed interval [a,b] C R by S(w) during the time interval [0, ¢], where an upcrossing
is a pair (u,v) € [0,#]? with u < v such that S, (w) = a, Sy(w) = b and Sy, (w) € (a,b)
for all w € (u,v). Downcrossings are defined analogously and we write D¢(w, a, b) for
the number of downcrossings by w € Q during the time interval [0, t].

Lemma 3.2.4. For typical price paths w € Q, there exists C(w): (0,00) — (0, 00)
such that
max (UR(w, k27™) 4+ D (w, k27™)) < Cp(w)n?2"
€
for alln € N, T > 0, where U (w,u) := Up(w,u,u+27") for u € R, and similarly
for the number of downcrossings.

Proof. Let K,T > 0. Without loss of generality we may restrict our considerations
to the set Ax = {w € Q : supycp 7 |St(w)| < K}. Let k € (—2"K,2"K) and write
u = k27", The following strategy will make a large profit if U} (u) := UR(w,u) is
large: start with wealth 1, when S first hits u buy 1/(2K) numbers of shares. When
S hits —K sell and stop trading. Otherwise, when S hits « + 27" sell. This gives us
wealth 1 +27"/(2K) on the set {Uf(u) > 1} N Ax. Now we repeat this strategy:
next time we hit u, we buy our current wealth times 1/(2K) shares of S, and sell
when S hits u+ 27" or —K. After n?2" upcrossings of [u,u +27"], stop trading. On
the set {UR(u) > n?2"} N Ax we then have a wealth of

—n n?2n"

(1+5%)  =zew (irﬂ)

4K
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3. Local times for typical price paths and pathwise Tanaka formulas

for all n that are large enough. Therefore

2
D n 20n o n
P({UR(w) > n?2"} N Ak) < exp ( 4K)
for all large n. Summing over all dyadic points © = k27" in (— K, K), we obtain

n2

P(Upar VR 222} 0 Ac) < K2 e (- )
2

= Kexp ( - STLK +(n+1) log(2))

for all large n. Since this is summable in n, the claimed bound for the upcrossings
follows for all typical price paths. To bound the downcrossings, it suffices to note
that up- and downcrossings of a given interval differ by at most 1. O

The following construction is partly inspired by [MP10], Chapter 6.2.

Theorem 3.2.5. Let T > 0, a € (0,1/2) and (7") as defined in (3.8). For typical
price paths w € Q, the discrete local time L™ (S,-) converges uniformly in (t,u) €
[0,7] x R to a limit L(S,-) € C([0,T],C*(R)), and there exists C' = C(w) > 0 such
that

sup {217 (8,) ~ L(S, )= (o.11xm) | < C- (3.9)

Moreover, for all p > 2 we have sup,cy ||L™ ||cpyr < 00 for typical price paths.

Proof. By the identity (3.7) it suffices to prove the corresponding statements with
the stochastic integrals fé L(—oo,u)(Ss) dSs replacing Lt (S, u). Using Lemma 3.2.4, we
may fix K > 0 and restrict our attention to the set

A = {w €Q: sup |Si(w)] < K
te[0,T
and max (UR(w, k27™) 4+ Dp(w, k27™)) < Kn?2" Vn}.
Let u € (=K, K). For every n € N we approximate 1(_., ,)(S) by the process

Ftn(u) = Z 1(700,11,)(STg)l[TI;L,TgL+1)(t)7 t>0.
k=0

Then we write for the corresponding integral process

k+1

I (u) == > 1 (oo (Sep (W) [Srr, at(w) = Sronr(w)], >0,
k=0
and since (™) is increasing, we get

I (w) = 17" () = D [Fp(u) — FLH @)][Sep, ae = Srpndl-
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3.2. Local times for model free finance

By the construction of our stopping times (77'), we have

sup |[F7n (u) — Fli (w)][Srp, ae(w) = Srpa(w)]| < 27742,

>0 ke +1 k

Hence, the pathwise Hoeffding inequality, Theorem 3 in [Vov12] or Lemma A.1.1,
implies for every A € R the existence of a 1-admissible simple strategy H* € H;, such
that

2
(W)~ 17" (W) - 5 NP ()2 24 = €27(w)

n

1+ (H - S)i(w) > exp <A(It”

for all t € [0,7] and all w € Q, where N/'(u) := N{*(u,w) denotes the number of
stopping times 77" < t with FT"g(u) — F%Tl(u) # 0. Now observe that F}* and F/"~*
are constant on dyadic intervals of length 27", which means that we may suppose
without loss of generality that v = k27" is a dyadic number. But we can estimate
N7#(k27™) by the number of upcrossings of the interval [(k — 1)27",k27"] plus the

number of the downcrossings of the interval [k27", (k 4+ 1)27"], which means that on
Ak we have N2 (u) < 2K2"n%. So considering (H* + H=*)/2 for A > 0, we get

P({ sup |17 (w) — I7" " (u)| > 2%} N AK> < Dexp(—A2 4 N2KD T H2)
te[0,T

for all A, > 0. Choose now A = 2™2 and a € (0,1/2). Then we get the estimate

P({ sup |17 (u) = IF"" (u)] > 2-%} n AK> < 2exp(—27(1/2-%) | 16K n?).
t€[0,T]

Moreover, noting that for all ¢ > 0 the maps u + IJ (u) and u Ifnil(u) are
constant on dyadic intervals of length 27" and that there are 2K2" such intervals in
[— K, K], we can simply estimate

P({ sup  |IF (u) — Igrnfl(u)| > 2_”0‘} N AK>
(t,u)€[0,T] xR

< 2K2™ x 2exp(—2"1/27%) 4 16 Kn?)
= exp(—2"1/27%) L 16 Kn? + (n + 2)log 2 + log K).

Obviously, this is summable in n and thus the proof of the uniform convergence and
of the speed of convergence is complete.

It remains to prove the uniform bound on the p-variation norm of I™" and the
Holder continuity of the limit. Let p > 2 and write a = 1/p, so that o € (0,1/2).
First let u = k27" € (—K, K) and write v = (k4 1)27". Then

o0

IF"(0) = I7" (w) = 3 (Fpn(v) = Ffa (@) (Srpae — Sep o)
k=0

and similarly as before we have sup,~ |(FT7:? (v) — Fln (W) (Srpat — Sen at)| < 2- L,
On Ak, the number of stopping times (73), with Fln (u) # Eln (v) is bounded from
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3. Local times for typical price paths and pathwise Tanaka formulas

above by 2K2"n? + 1, and therefore we can estimate as before

P({ sup sup 11T (0)—IF" (u)| > 2_”0‘}0AK> < exp(—2"(1/2=2) L on?),
te[0,T] u,vER: [u—v|<2—™

for some appropriate constant C' = C(K) > 0.
We conclude that for typical price paths w € € there exists C' = C'(w) > 0 such
that

sup  sup |7 (v) — I ()| + sup sup I (u) — I ()] < 0277
te[0,T] ju—v|<2—n tel0,T] ueR

for all n € N. Let now n € N and let u,v € R with 1 > |u —v| > 27"™. Let m < n be
such that 27! < |u — v| < 27™. Then

117 (0) = I™" (w)]oo
<™ (@) = I ()lloo + (117 (0) = I7" (W) oo + (117" (u) = I (u) |0

n n
< C Z 2—/604 + 9—ma + Z 2—1@04 < o9~ ma < C|U _ u|a’
k=m-+1 k=m+1

possibly adapting the value of C' > 0 in every step. Since I is constant on dyadic
intervals of length 27", this proves that sup;cjo [1IF"||pvar < C. The a-Holder
continuity of the limit is shown in the same way. O

We reduced the problem of constructing L to the problem of constructing certain
integrals. In Corollary 2.2.6, we gave a general pathwise construction of stochastic
integrals. But this result does not apply here, because in general 1(_oo7u)(5) is not
cadlag.

Remark 3.2.6. Theorem 3.2.5 gives a simple, model free proof that local times ex-
ist and have nice properties. Let us stress again that by Proposition 3.2.3, all the
statements of Theorem 3.2.5 hold quasi-surely for all probability measures on (2, F)
under which S satisfies (NA1).

Below, we sketch an alternative proof based on Vovk’s pathwise Dambis Dubins-
Schwarz theorem. While we are interested in a statement for typical price paths,
which a priori is stronger than a quasi-sure result for all measures satisfying (NA1),
the quasi-sure statement may also be obtained by observing that every process satisfy-
ing (NA1) admits a dominating local martingale measure, see [Ruf13, IP11]. Under
the local martingale measure we can then perform a time change to turn the co-
ordinate process into a Brownian motion, and then we can invoke standard results
for Brownian motion for which all statements of Theorem 3.2.5 except one are well
known: The only result we could not find in the literature is the uniform boundedness
in p-variation of the discrete local times.

Remark 3.2.7. Note that for u = k27" with k € Z we have LT (u) = 27" Dy(u —
27" u) +e(n,t,u) for some e(n,t,u) € [0,27"]. Therefore, our proof also shows that
the renormalized downcrossings converge uniformly to the local time, with speed at
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least 27" for o < 1/2. For the Brownian motion this is well known, see [CLPT81];
see also [Kho94] for the exact speed of convergence. In the Brownian case, we actually
know more: Qutside of one fixed null set we have

lim sup sup |e ' Dy(x,z +¢) — Li(x)] = 0

=0 zeR t€[0,7)
for allT > 0. It should be possible to recover this result also in our setting. It follows
from pathwise estimates once we prove Theorem 3.2.5 for a sequence of partitions (™)
of the following type: Let (c,) be a sequence of strictly positive numbers converging
to 0, such that c¢p.1/c, converges to 1. Define D" := {ke, : k € Z}. Now define
7 as w", replacing D™ by D". The only problem is that then we cannot expect the
sequence (T") to be increasing, and this would complicate the presentation, which is
why we prefer to work with the dyadic Lebesgue partition.

Finally, we want to briefly indicate that Theorem 3.2.5 could also be partially
proven by relying on the pathwise Dambis Dubins-Schwarz type theorem of Vovk
[Vov12], which allows to transfer properties of the one-dimensional Wiener process to
typical price paths. For a more detailed exposition of the time-change argument we
refer to Appendix A.3.

As mentioned above, Vovk’s outer measure @ is defined slightly differently than
P but all results which hold true outside of a Q-null set are also true outside of a
P-null set; see Section 2.1.3. To understand Vovk’s pathwise Dambis Dubins-Schwarz
theorem, we need to recall the definition of time-superinvariant sets.

Definition 3.2.8. A continuous non-decreasing function f: [0, 00) — [0, 00) satisfy-
ing f(0) = 0 is said to be a time change. A subset A C 2 is called time-superinvariant
if for each w €  and each time change f it is true that wo f € A implies w € A.

Roughly speaking, Vovk proved in Theorem 3.1 of [Vov12] that the Wiener measure
of a time-superinvariant set equals the outer measure Q of this set. It turns out that
the sets

Ao i={w e : Sw)e L.} and
Acp ={we A. : ur Li(S,u)(w) has finite p-variation for all ¢ € [0,00)}

are time-superinvariant. Based on this, one can rely on classical results for the Wiener
process (see [KS88], Theorem 3.6.11 or [MP10], Theorem 6.19) to show that typical
price paths have an absolutely continuous occupation measure L;(S,u) with jointly
continuous density and that L;(.S, -) has finite p-variation which is uniformly bounded
int e [0,7] for all T'> 0 and all p > 2 (see [MP10], Theorem 6.19).

However, to the best of our knowledge the alternative approach does not give us
the uniform boundedness in p-variation of the approximating sequence (L™ ): we
were not able to find such a result in the literature on Brownian motion. Without
this, we would only be able to prove an abstract version of Theorem 3.1.8, where the
pathwise stochastic integral fot g(Ss) dSs is defined by approximating g with smooth
functions for which the Follmer-1t6 formula Theorem 3.1.2 holds (see [FZ06] for sim-
ilar arguments in a semimartingale context). Since we are interested in the Riemann
sum interpretation of the pathwise integral, we need Theorem 3.2.5 to make sure that
all requirements of Theorem 3.1.8 are satisfied for typical price paths.
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4. Existence of Lévy’s area and pathwise
integration

The theory of rough paths (see [LCL07, Lej09, FH14]) has established an analytical
frame in which stochastic differential and integral calculus beyond Young’s classical
notions is traced back to properties of the trajectories of processes involved without
reference to a particular probability measure. See Section 2.3.1 for a brief introduc-
tion. For instance, in the simplest non-trivial setting it provides a topology on the
set of continuous functions enhanced with an “area”, with respect to which the (It6)
map associating the trajectories of a solution process of a stochastic differential equa-
tion driven by trajectories of a continuous martingale is continuous. In this topology,
convergence of a sequence of functions X™ = (X5, ..., X%"), cy defined on the time
interval [0, 7] involves besides uniform convergence also the convergence of the Lévy
areas associated to the vector of trajectories, formally given by

- t ) . A
Lidn ::/0 (XraxIim — XIrAxim), 1<ij<d, telo,T).

In Chapter 2 and especially in Section 2.3, we proved that the iterated integrals
of typical price paths exist and in particular Lévy’s area always exists for typical
price paths. In probability theory the concept of Lévy’s area is much older and was
already studied in the 1940s. It was first introduced by P. Lévy in [Lé40] for a two
dimensional Brownian motion (B!, B?). For time T fixed and any trajectory of the
process it is defined as the area enclosed by the trajectory (B!, B?) and the chord
given by the straight line from (0,0) to (Bk, BZ), and may be expressed formally by

1 T T
2(/ BtldBf—/ B,?dB}),
0 0

provided the integrals make sense.

More recently, an alternative calculus with a more Fourier analytic touch has been
designed (see [GIP14, Per14]) in which an older idea by Gubinelli [Gub04] is further
developed. It is based on the concept of controlled paths. In this calculus, rough path
integrals are described in terms of Fourier series for instance in the Haar-Schauder
wavelet, and are seen to decompose into different parts, one of them representing
Lévy’s area. The existence of a stochastic integral in this approach is seen to be
linked to the existence of the corresponding Lévy area, and both can be approximated
along a Schauder development in which Hoélder functions are limits of their finite
degree Schauder expansions. In its simplest (one-dimensional) form a path of bounded
variation Y on [0,7] is controlled by another path X of bounded variation on [0, 77,
if the associated signed measures px, py on the Borel sets of [0, 7] satisfy that py
is absolutely continuous with respect to px. In its version relevant here two rough
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4. Existence of Lévy’s area and pathwise integration

(vector valued) functions X and Y on [0, 7| are considered, both with finite p-variation
for some p > 1. In the simplest setting, Y is controlled by X if there exists a function
Y of finite p-variation such that the first order Taylor expansion errors

RV, =Y, ~ Y.~ Y!(X, - X,)

are bounded in a suitable semi-norm, i.e. 37 yex |RY,|" is bounded over all possible

partitions 7 of [0,7]. Here % = %. Since for a path X Holder continuity of order %
is closely related to finite p-variation, the control relation can be seen as expressing
a type of fractional Taylor expansion of first order: the first order Taylor expansion

error of Y with respect to X - both of Holder order % and “derivative” Y’ - is of

double Holder order 2. In its para-controlled refinement as developed by Gubinelli et
al. in [GIP12] this notion has been seen to give an alternative approach to classical
rough path analysis, which we shall generalize in Chapter 5. In the comparison of
the two approaches, to make the It6 map continuous, information stored in the Lévy
areas of vector valued paths has to be complemented by information conveyed by
path control or vice versa. This raises the problem about the relationship between
the existence of Lévy’s area and the control relationship between vector trajectories
or the components of such. We shall deal with this fundamental problem in Section
4.1.

Based on this study we then decompose Riemann approximations of different ver-
sions of integrals into a symmetric and an antisymmetric component and prove that
for the classical Stratonovich integral just the antisymmetric Riemann sums have to
converge, while for more general Stratonovich or It6 type integrals the existence of
limits for the symmetric part has to be guaranteed along fixed sequences of parti-
tions, as in Follmer’s approach [F681]. Under this assumption we additionally derive
a pathwise version of a functional It6 formula due to [Ahn97], where the functional
has to be just defined on the space of continuous functions. At this point our It6 for-
mula circumvents a technical problem of Dupire differentiability (see [Dup09, CF13]),
where the functional has to be defined for cadlag functions as well.

The chapter is organized as follows. In Section 4.1 we show that for a vector X of
functions a particular version of control, which we will call self-control, is sufficient
for the pathwise existence of the Lévy areas. An example of two functions is given
which are not mutually controlled and for which consequently Lévy’s area fails to
exist. In Section 4.2 we study the question how control concepts and the existence of
different kinds of integrals (Itd type, Stratonovich type) are related, and in particular
in which way control leads to versions of Follmer’s pathwise It6 formula. Finally,
provided the quadratic variation exists, we present a pathwise version of a functional
1t6’s formula in Section 4.2.1.

4.1. Lévy’s area and controlled paths

It is well-known that both the control of a path Y with respect to another path X,
as well as the existence of Lévy’s area for X entails the existence of the rough path
integral of Y with respect to X, as we have seen in Section 2.3. This raises the question
about the relative power of the hypotheses leading to the existence of the integral.
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4.1. Lévy’s area and controlled paths

This question will be answered here. We will show that control entails the existence
of Lévy’s area. The analysis we present, as usual, is based on d-dimensional irregular
paths, and corresponding notion of areas. For a continuous path X : [0,7] — R?, say
X = (XY ..., X%, we recall that Lévy’s area L(X) = (L"(X)); ; is given by

. T . : T )
L(X)% ;:/ X;dXxy —/ X7 dX;, 1<i,j<d,
0 0

where X* denotes the transpose of the vector X, if the respective integrals exist.
There are pairs of Holder continuous paths X' and X? for which Lévy’s area does
not exist (see Example 4.1.8 below). To answer this question, we need the basic setup
of rough path analysis, which we briefly recall here for the convenience of the reader,
starting with the notion of power variation.

A partition ™ = {[ti—1,t] : i = 1,...,N} of an interval [0,7] is a family of
essentially disjoint intervals such that N, [t;_1,t;] = [0,T]. For any 1 < p < oo, a
continuous function X : [0,7] — R? is of finite p-variation if

1
P
X1 = sup (3 1Xap)" < oc,

e [s,t]em

where the supremum is taken over the set P of all partitions of [0,7] and Xs; :=
X; — X, for 5,t € [0,T], s < t. We write VP([0,T],R?) for the set (linear space) of
continuous functions of finite p-variation. Let, more generally, R: [0,7]? — R be
a continuous function. In this case we consider the functional

\wwww(zum

1
T) , 1<r<o.
TEP [s,tlem

An equivalent way to characterize the property of finite p-variation is by the existence
of a control function. Denoting by Ar := {(s,t) € [0,T]? : 0 < s <t < T}, we call
a continuous function w: Ar — R vanishing on the diagonal control function if it
is superadditive, i.e. if for (s,u,t) € [0,T]® one has w(s,u) + w(u,t) < w(s,t) for
0<s<u<t<T. Note that a function is of finite p-variation if and only if there
exists a control function w such that | X ;|P < w(s,t) for (s,t) € Ap. For a more
detailed discussion of p-variation and control functions see Chapter 1.2 in [LCLO7].
For later reference we remark that all objects are analogously defined for general
Banach spaces instead of R%.

A fundamental insight due to Gubinelli [Gub04] was that an integral [ Y dX exists
if “Y looks like X in the small scale”, cf. Section 2.3.1. This leads to the concept of
controlled paths, which we recall in its general form.

Definition 4.1.1. Let p,q,r € RT be such that 2/p+1/¢>1and 1/r =1/p+1/q.
Suppose X € VP([0,T],R%). We call Y € VP([0,T],R%) controlled by X if there
exists Y/ € V9([0,T],R%*?) such that the remainder term RY given by the relation
Yo =Y/X s+ RY, satisfies ||RY||, < oo. In this case we write Y € €%, and call Y’
Gubinelli derivative.
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4. Existence of Lévy’s area and pathwise integration

See Theorem 1 in [Gub04] for the case of Holder continuous paths, or Theorem 2.3.9
for precise existence results of [ Y dX. Let us now modify this concept to a notion
of control of a path by itself.

Definition 4.1.2. Let p,q,r € RT be such that 2/p+1/¢>1and 1/r =1/p+1/q.
We call X € VP([0,T],R?) self-controlled if we have X' € €%, or XJ € €%, for all
1<i,j<dwithi+j.

With this notion we are now able to deal with the main task of this section, the

construction of the Lévy area of a self-controlled path X. In fact, the integrals arising
in Lévy’s area will be obtained via left-point Riemann sums as

o T o ) T . A o .
L(X) :/ X} dx) —/ Xjdxi=lim 3 (XIX7, - XIX1),  (41)
0 0 im0 [s,tlem 7 ,
for 1 <14,5 < d, where || denotes the mesh of a partition 7. Our approach uses the
abstract version of classical ideas due to Young [You36] comprised in the so-called
sewing lemma.

Lemma 4.1.3. [Corollary 2.3, Corollary 2.4 in [FD06]] Let Z: Ar — RY be a con-
tinuous function and K > 0 some constant. Assume that there exist a control function
w and a constant ¥ > 1 such that for all (s,u,t) € [0,T]> with0 < s <u<t<T we
have
Zst — Bsn — Zut] < Kw(s, 1)’ (4.2)
Then there exists a unique function ®: [0,T] — R? such that ®(0) = 0 and
|D(t) — B(s) — Zg4| < C(Nw(s,t)? and  lim Z =®(t) — P(s),

|7 (s,t)|—0 [u,w]€m(s,t)

for (s,t) € Ap, where C(9) := K(1—2'"")"! and n(s,t) denotes a partition of [s,].

[I]

Remark 4.1.4. For simplicity we state Lemma 4.1.3 only for a continuous function
E: Ar — R Yet, it still holds true without the continuity assumption and for
a general Banach space replacing R?. See Theorem 1 and Remark 3 in [FDMOS)].
Consequently, all results of this section extend to general Banach spaces.

With this tool we now derive the existence of Lévy’s area for self-controlled paths
of finite p-variation with p > 1.

Theorem 4.1.5. Let 1 < p < oo and suppose that X € VP([0,T],R%) is self-
controlled, then Lévy’s area as defined in (4.1) exists.

Proof. Let X € VP([0,T],R%) for 1 < p < oo be self-controlled and fix 1 < i,j < d,
i # j. We may assume without loss of generality that X? € ‘K)qﬁ, Xs7t =
X1 (4, j)Xﬁt + Rw and || X(4,5)|lg, || R]|, < oo. In order to apply Lemma 4.1.3, we
set 257 = Xngt X{ X}, for (s,t) € Ar and observe that for (s, u,t) € [0, T]* with
0<s<u<t<T, we have
- =, - 2 = XL, - XL
= X (X000 )Xo + R — (X{(05) XL, + R X,
= X{URy = REXG + (X0(65) = XU(0.0) X1,

[1]

s,u”tu,t
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4.1. Lévy’s area and controlled paths

Since the finite sum of control functions is again a control function, we can choose
the same control function w for X7, X'(4,j) and R*7, and setting ¢ := % + % > 1 we
get

.. .. .. 1 1 1 1 2 1
Eo} — B, —E) <w(s, t)r T w(s, t)r T w(s, t)r e < 3w(s, 1)’

—'s,u
0

We will next show that Riemann sums with arbitrary choices of base points for the
integrand functions lead to the same Lévy area as just constructed.

Lemma 4.1.6. Let X € VP([0,T],R%) for some 1 < p < co. Suppose that X is
self-controlled. Denote by s’ € [s,t] an arbitrary point chosen in a partition interval
[s,t] € m. Then Lévy’s area from the preceding theorem is also given by

L(X)" = lim Y (XLXI, - X3,X1,), 1<ij<d

—0
Il [s,tlem

Proof. For a self-controlled path X € VP([0,T], R?) with 1 < p < 0o we may assume
without loss of generality that X* %f(j for 1 <4,j <d, i # j. From Theorem 4.1.5
we already know that the left-point Riemann sums converge. Hence, we only need to
show that ' ' '

> (XX, - XIXL) - Y (XoX], - XUXD) (4.3)

[s,t]€mn [s,tlemn

tends to zero along every sequence of partitions (7, ) such that the mesh |, | converges
to zero. Indeed, we may write for a partition interval [s, ¢]

XX, = XIXL, — (XOX], — X[ XL) = — X0 X, + X] XL,
= (XU, )Xy + RI)XT, + X] (XU DXL, + R
= —R7, X1, + X] R
Taking the same control function w for X7 and R%/, we estimate

L y o S i i A 9
\X;Xﬁ}t - XgX;,t - (X;/Xﬁ,t - Xﬁ/ ;t)‘ =|- RZ,@/Xi,t + XiS/R;ﬂ < 2w(s, t)

with 9 := % + %D > 1. Recalling the superadditivity of w, we get for n € N

Z (Xés’th_ng’Xét) S Z w(sat)ﬁg max w<3at)19_1w(07T)7
[S,t]Eﬂ'n 7 7 7 7 [S’t]Eﬂ'n [S,t]eﬂ'n

which means that (4.3) tends to zero as n — oo. O

Example 4.1.7. Let (B;; t € [0,T]) be a standard Brownian motion on a probability
space (Q,F,P) and let f € C1(R,R) be a continuously differentiable function with
a-Holder continuous derivative for o > 0. The trajectories of B are of finite p-
variation for all p > 2 outside a null set N'. Thus we can deduce from Theorem 4.1.5
that Lévy’s area of (B + g1, f(B) + g2) exists outside the same null set A/ whenever
g1, 92 € VI([0,T],R?) for some 1 < ¢ < 2.
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4. Existence of Lévy’s area and pathwise integration

The following example illustrates that for p > 2 things are essentially different.
It will in particular show that in this case self-control of a path is necessary for the
existence of Lévy’s area.

Example 4.1.8. Let us consider for m € N the functions X™: [~1,1] — R? with
components given by

m m
Xm .= > agsin(2frt)  and X7 = > agcos(2rt), te[-1,1],
k=1 k=1

where aj := 27°% and o € (0,1). Set X := lim,, ;00 X™. These functions are a-
Holder continuous uniformly in m. Indeed, let s,¢ € [—1,1] and choose k € N such
that 27%~1 <|s — t| < 27%. Then we can estimate as follows

m
X" = X = |3 @2 cos(2 (s + 1)) sin(2' (s — t))’
1=1
k o0
<2 Jallsin(@ ' w(s — )| +2 Y |af
=1 I=k+1
k o
<23 |2 rls —t+2 Y
=1 I=k+1
k (k+1) 1
< 2l70¢l _ t 2701 k’+1 +17
= ZZZI s | + 1 _ 92—«
o(k+1)(1-a) _ 9l-o o
S e st T gals
o(k+1)(1—a) _ l-a

L 12_?|5 o< Cls— ¢
for some constant C' > 0 independent of m € N. Analogously, we can get the a-Holder
continuity of X?™. Furthermore, it can be seen with the same estimate that (X™)
converges uniformly to X and thus also in a-Hélder topology. The limit function X
is not S-Hoélder continuous for every 5 > «. In order to see this, choose s = 0 and
t=t, =27" for n € N and observe that

1 1 n—1
‘th - XO| _ Z 2—ak+Bn Sin(2k_nﬂ') > 2(ﬁ—a)n+cx
[tn — 017 k=1 ’

which obviously tends to infinity as n tends to infinity. Since a-Hoélder continuity
is obviously related to finite é—variation, we can conclude that X € V%([—l, 1],R?),
and X ¢ V?([-1,1],R?) for v < 1. Let us now show that X possesses no Lévy area.
For this purpose, fix a € (0,1) and m € N. Then Lévy’s area for X™ is given by

1 1
/ Xymdxym — / XPmaxm
-1 -1

m 1
=— > aq / (sin(2%ms) sin(2'7s) 2! + cos(2'7s) cos(2Fms)2F ) ds
k=1 -1
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m

1 akal( /11 ;(cos((2k — 2Y7s) — cos((2F + 2))ms)) ds

k=

+ 2% /_11 %(cos((Z’“ — 2Y7s) + cos((2F + 21 7s)) ds)

m m
=—2) ai2br = -2 2l72kg
k=1 k=1

This quantity diverges as m tends to infinity for é > 2. Since (X™) converges to
X in the a-Hoélder topology, we can use this result to choose partition sequences of
[—1,1] along which Riemann sums approximating the Lévy area of X diverge as well.
This shows that X possesses no Lévy area. In return Theorem 4.1.5 implies that X
cannot be self-controlled. However, it is not to hard to see directly that no regularity
is gained by controlling X! with X?2. For this purpose, note that for —1 < s <t < 1,
and 0 # X! € R, one has

|Xs XXQt’_

[(sin(2¥7t) — sin(2¥F7s)) — X[ (cos(2Fnt) — cos(2k7rs))]‘

‘ i [ sin( 2k_17r(s — 1)) cos(2¥ I (s + 1))
+ X! sin(28 (s + t)) sin(25 (s — 1)) ’

=2 i ar sin(28 (s — t))y/1 + (X2)2sin(28 (s + 1) + arctan((X;)l))’.
k=1

Let us now investigate Holder regularity at s = 0. First, assume X(’) > 0, and take
t = 27" to obtain
| X5 9n — X0XG o0
2—pn

n
L) > ay sin(2M 1) /1 4 (X5)2 sin(2F 1 + arctan((X() 7))
k=1

> 2= gin (g +arctan((X}) ™).
For X{, < 0 the same estimates work for ¢,, = —2~" instead. Therefore, the Holder

regularity at 0 cannot be better than o and in particular X cannot be self-controlled
for £ > 2.
«

4.2. Follmer integration

In his seminal paper Follmer [F681] considered one dimensional pathwise integrals.
He was able to give a pathwise meaning to the limit

T
/0 DF(X;)d™ Xy := lim > (DF(Xy), Xsu),

[s,t]€emn
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4. Existence of Lévy’s area and pathwise integration

provided F € C%(R% R). A translation of Féllmer’s work, today named Féllmer
integration, can be found in the appendix of [Son06]. His starting point was the
hypothesis that quadratic variation of X € C([0,T],R%) exists along a sequence of
partitions (m,)nen whose mesh tends to zero. Here (-,-) denotes the usual inner
product on R%. As indicated and discussed below, this construction of an integral
depends strongly on the chosen sequence of partitions (7, )nen-

Before coming back to an approach to Follmer’s integral, we shall construct a
Stratonovich type integral, thereby discussing the problem of dependence on a chosen
sequence of partitions. As in the previous section, our approach is based on the
notion of controlled paths. This will also lead us on a route which does not require
the existence of iterated integrals as in the classical rough path approach. We fix
a v € [0,1], to discuss Stratonovich limits for Riemann sums where integrands are
taken as convex combinations 7Yy + (1 — 7)Y} of the values of Y at the extremes of
a partition interval [s,t]. We start by decomposing these sums into symmetric and
antisymmetric parts. For p,q € [1,00), X € VP([0,T],R?) and Y € €% we have

T
y- /0 Y,dX, = lim S (Ya+9Yap Xay)

im0 [s,tlem

1 T T 1 T 4
== (fy—/ Y, dX; + ’7‘/ Xy dY;&) + 5 <'Y‘/ Y, dX; — ’7'/ Xi dYt)
2 0 0 2 0 0
1 1
::§SV<X7 Y)+ §A7<X7 Y). (4.4)

Note that v = 0 corresponds to the classical It6 integral and v = % to the classical
Stratonovich integral.

If the variation orders of X and Y fulfill 1/p+1/¢ > 1, we are in the framework of
Young’s integration theory. Below 1, either the existence of the rough path or control
is needed. To illustrate this, we go back to Example 4.1.8.

Example 4.2.1. Let X = (X! X?) be given according to Example 4.1.8. In this
case, we have seen that X! and X? are of finite i—variation. With decomposition
(4.4) we see that

S1(X1 X?) + ZAL (X, X?)

N

1
2

N|=

| =

1 ! ) 1
5 | XPax!= tim S0 (xXE4Sx2L X)) =
[s,t]lem
1 1 1
=5 lim Y0 (X2 XP X - X))+ (X + XL XP - XD)) 4 JL(X)
2 |n|=0 2 2
[s,t]lem
1. 1 yv2 Lo1o L o1y2 1y2y , Lo
:§|Tlrl|glo Z (X0, X%)st + §L (X) = §(X1X1 - XoXp) + §L (X)),
[s,t]lem
provided all terms are well-defined. Therefore, the integral exists if and only if Lévy’s
area exists, which is not the case for instance if a = % So beyond Young’s theory,

the existence of the %-Stratonovich integral is closely linked to the existence of Lévy’s
area.

Using a suitable control concept, we will next construct the Stratonovich integral
described above, but not just with restriction to a particular sequence of partitions.
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4.2. Féllmer integration

This time, the symmetry of the Gubinelli derivative of a controlled path plays an
essential role. However, this symmetry assumption can be avoided if the involved
paths control each other.

Definition 4.2.2. Let X,Y € VP([0,T],R?). We say that X and Y are similar if
there exist X', Y’ € V4([0, T], R™*?) such that X € €} with Gubinelli derivative X',
Y € €% with Gubinelli derivative Y/, and ((X})*)~! = Y/ for all t € [0,T]. In this
case we write Y € /Y.

Let us give a very simple example of two paths X,Y € VP ([O,T],Rd) such that
Y € % but neither Y € €% with Y’ symmetric nor X € 4y with X’ symmetric.

Example 4.2.3. For p € [2,3) take X! € V?([0,T],R) and X2, X? € V%([0,T],R).
If we set
X = (X1 X% X3 and Y :=(X%0,0),

we obviously have X,Y € VP([0,T],R?). In this case we could choose X’ and Y’
identical to (z1, 22, 23), where 2} := (1,0,0), 25 := (0,0,1), and 23 := (0, —1,0). We
see that Y € %, but X’ and Y’ are not symmetric matrices.

Under both assumptions we prove the existence of the Stratonovich integral de-
scribed above. This time, thanks to the additional requirements of the Gubinelli
derivative, the usual concept of controlled paths is sufficient, and Lévy’s area is not
needed.

Theorem 4.2.4. Let~y € [0,1], X € VP([0,T],RY). IfY € €% and Y] is a symmetric
matriz for all t € [0,T], then the antisymmetric part

A’Y<X7 Y> = lim Z (<YVS =+ ’YY'S,t7XS,t> - <XS + 7Xs,t7 Y;,t>)7 (45)

Lingl [s,tlem
exists and satisfies

A(X,Y) = AX,Y) = lim 3 (Y, Xod) — (X Vi)

Im|—=0 [s,tlem
for every choice of points s' € [s,t] € m. The same result holds if Y € /3.

Proof. 1t is easy to verify that by definition the antisymmetric part, if it exists as a
limit of the Riemann sums considered, has to satisfy the second formula of the claim
at least with the choice s’ = s, for all intervals [s,t] belonging to a partition. To
prove that this limit exists, we use Lemma 4.1.3. For this purpose, we set Zs; :=
(Ys, Xst) — (X5, Ysy) for (s,t) € Ap. Since Y is controlled by X, we obtain

St Es,u - Eu,t = <Y1£Xu,t + quta Xs,u> - <Xu,ta Ys/Xs,u + R§u>

= <RY Xs,u> - <Xu,t7 R}g/’u> + <Y11Xu,taXs,u> - <Xu,t7 Y:g/Xs,u>

u,tr

= <R57t7Xs,u> - <Xu,t7 Rsy,u> + <Xu,t> Yq:Xs,u - Ys/Xs,u>
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4. Existence of Lévy’s area and pathwise integration

for 0 < s <u<t<T, where we used (Y, Xy ¢, Xsu) = (Xut, Yy Xs ) in the last line
thanks to symmetry. With the same control w for all functions involved as above,
this gives

1,1 1,1 2,1
1Zst — Bo — But] <w(s,0)p 7 +w(s, )7 +w(s, t)r e < 3w(s,t)?

with ¢ := 127 + % > 1. So from Lemma 4.1.3 we conclude that the left-point Riemann
sums converge. It remains to show that

Z (<YS”X8,25> - (Xs/yys,t>) - Z (<YSvXS,t> - <X37Ys,t>) (4-6)

[s,t]emn [s,tlemn

tends to zero along every sequence of partitions (7, ) such that the mesh |, | converges
to zero. Applying the symmetry of Y’, we get

<YS’7 XS,t) - <XS’7 Ys,t> - (<}/Sa Xs,t) - <Xsa Ys,t>)
= (Y] X9+ RY o, Xs1) — (Xo9, Y{ Xy + RY,)

)
= <R§s/7Xs,t> — (X, R}e/,t>u
and thus
(Y, Xo) = (X, Vo) — (Yo, Xot) — (X, V)| < w(s,1)”
with 9 := L + % > 1, where we choose the same control function w for X and RY.

Therefore, the properties of w imply

> ((Yew, Xoy) — <Xs,s/,Y;7t>)‘ < > w(st)? < max w(s, ) w(0,T),

[s,t]€mn [s,]€mn [s,t}€mn

which means that (4.6) tends to zero as |m,| tends to zero.
If we instead assume, that X and Y are similar, we obtain

— e — / X / Y
Sst T Ssu T Sut = <X5Y:9,u + Rs,u? YuXu,t + Ru,t> - <Y:97U7 X'M,t>

= <X;Ys,m qut) + <RX Yq:Xu,t> + <RX qut> + <X;Ys,u7Y1:Xu,t> - <Ys,u, Xu,t>

s,u) s, u)

for 0 < s <wu<t<T. The last two terms in the preceding formula can be rewritten
as

(XYoo, YaXu) = Yo Xug) = Yo (X)) VyXuy — Xug)
= (Yo, (XD)"(Yy = Y{) Xup).

Here we applied ((X/)*)~™! = Y/. Since the finite sum of control functions is again
a control function, we can choose the same control function w for X, X’ RX and
Y,Y’, RY, and obtain
’Es,t - Es,u - Eu,t‘
/ 141 /
<X loow(s, £) 777 + [[Y oo (s, )
1
< @IX oo + 1Y lloo + w (0, T) 4 )as(s, 1)",

1 1 1 2
T w(s, ) A4 | X[aow(s, 1)1 T
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4.2. Féllmer integration

where || - ||oo denotes the supremum norm and ¢ := 2/p+1/q > 1. We therefore have
shown that the left-point Riemann sums converge. It remains to prove that (4.6) goes
to zero along every sequence of partitions (7,,) such that the mesh |m,| tends to zero.
Since X and Y are similar, we observe that for (s,t) € Ap, and s’ € [s, ]

(Yo, Xst) — (X, Yo ) = ((Vs, X p) — (X5, Vi)
= (V! X0, XIYor) + (Y] X0, RY) + (RY 4, XY y)
+ (R g, RY) — (Yar, Xowr)
= (V) X0, RY) + (RYy, X0Yo0) + (R o, RYY).

CN-) s,8"9

To obtain the last line, we once again use ((X2)*)~! = Y/. Taking again the same
control function w for X, X', RX and Y,Y’, RY, we estimate

‘<Y:97Xs,t> - <XS7}/s,t> - (<Ys'7Xs,t> - <Xs’7Y:§,t>)’ < Cw(sat)197

where C := [|X"||oo + [|Y||oo + w(0, T)Y/9 with 9 := % + % > 1. Superadditivity of w
finally gives

Z (<Ys,s’aXs,t> - <XS,S’7}/S,t>) < CW(O,T) max w(sat)ﬂila

(s.4]emn [s,t]€mn
which means that (4.6) tends to zero as |m,| tends to zero. O

Remark 4.2.5. The proof of Theorem 4.2.4 works analogously under the assumption
that X is controlled by Y and X{ is a symmetric matriz for all t € [0,T]. Moreover,
if Y is controlled by X and Y] is an antisymmetric matriz for oll t € [0,T], then an
analogous result to Theorem 4.2.4 holds true for the symmetric part S,(X,Y).

In case v = % as in the example above, the symmetric part simplifies consider-

ably, and therefore the preceding theorem will already imply the existence of the
%—Stratonovich integral.

Corollary 4.2.6. Let X € VP([0,T],RY), Y € €% and suppose Y/ is a symmetric
matriz for allt € [0,T] or Y € L. Then, the Stratonovich integral

T 1
Y, 0dX, := lim Yo+ =Y, X 47
/0 L R e [S%Tf st 5 ¥en Xop) (47)

exists and satisfies
1 /T T 1 1
5-/0 Y, dX, = /0 Yio dX, = 3 (Y, Xr) — (Yo, Xo) + SA(X,Y).

Proof. By equation (4.4) we may separately treat the symmetric part S 1 (X,Y) and

the antisymmetric part A1 (X,Y) of the integral %— fOT Y; dX;. The existence of the
2
antisymmetric part A1 (X,Y) follows from Theorem 4.2.4. For the symmetric part,
2
note that as in Example 4.1.8

1 1
<Y; + st,t»Xs,t> + <Xs + §Xs,ta Y;,t> = <Y7X>s,t7 (S,t) € AT-
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4. Existence of Lévy’s area and pathwise integration

Therefore, S 1 (X,Y) is given by

. 1 1
S:(X,Y) = lim Z (Yo 4 =Y, Xop) + (Xs + 2 X4, Yor))
2 |7|—0 2 2
[s,t]em
= (Yr, X1) — (X0, Y0). (4.8)
The proof works analogously for Y € .¢. O

The discussion of y-Stratonovich integrals above has shown that the corresponding
antisymmetric component can be treated by means of the concept of path control.
In the case v # %, a symmetric term is left to consider. This does not seem to
be possible by means of the ideas used for the antisymmetric component. And this
brings us back to Féllmer’s approach. Our treatment of the symmetric part reflects
the role played by quadratic variation in Follmer’s approach, and will therefore be
strongly dependent on partition sequences. For this purpose we define the quadratic
variation in the sense of Follmer (cf. [F681]), and call a sequence of partitions ()
increasing if for all [s,t] € m, there exist [t;,tiy1] € Tpt1, ¢ = 1,..., N, such that
[, 8] = U1 [ti, tisa]-

Definition 4.2.7. Let (m,) be an increasing sequence of partitions such that
lim;, o0 || = 0. A continuous function f: [0,7] — R has quadratic variation along
(my,) if the sequence of discrete measures on ([0, 7, B([0,7])) given by

Hn = Z ’fs,t’Q(ss (49)

[s,tlemn

converges weakly to a measure u, where J; denotes the Dirac measure at s € [0, 7.
We write [f]; for the “distribution function” of the interval measure associated with
p. A continuous path X = (X*',...  X9) has quadratic variation along (m,) if (4.9)
holds for all X* and X* + X7, 1 <i,j < d. In this case, we set

o 1 . . . .
(X' X7, = 5([XZ + X7 — [ X' — [X]e), te][0,T].
Remark 4.2.8. Since in our situation the limiting distribution function is continu-
ous, weak convergence is equivalent to uniform convergence to the distribution func-
tion. Hence, X = (X1,..., X%) € C([0,T],R%) has quadratic variation in the sense
of Féllmer if and only if

i yim . i J
[X ’X }t T Z Xu/\t,v/\tXu/\t,U/\t

[u,v]€mn

converges uniformly to [X* X7] in C([0,T],R) for all 1 < i,j < d, where u At :=
min{u,t}. See Lemma 2.3.22.

Remark 4.2.9. Let us emphasize here that quadratic variation should not be con-
fused with the notion of 2-variation: quadratic variation depends on the choice of a
partition sequence (my,), 2-variation does not. In fact, for every continuous function
f € C(]0,T],R) there exits a sequence of partitions (my,) with limy,_o |7Tp] = 0 such
that [f, flt = 0 for all t € [0,T). See for instance Proposition 70 in [Fre83].
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4.2. Féllmer integration

The existence of quadratic variation guaranteed, Follmer was able to prove a path-
wise version of [t6’s formula. In his case, the construction of the integral is closely
linked to the partition sequence chosen for the quadratic variation. We will now aim
at combining the techniques of controlled paths with the quadratic variation hypoth-
esis, and derive a pathwise version of Itd’s formula for paths with finite quadratic
variation, in which the quadratic variation term may depend on a partition sequence,
but the integral does not. As a first step, we derive the existence of vy-Stratonovich
integrals for any v € [0, 1]. To do so, we will need the following technical lemma, the
easy proof of which is left to the reader.

Lemma 4.2.10. Let p > 1, (m,) be an increasing sequence of partitions such that
limy, 00 |Tn| = 0, X € VP([0, T], RY) with quadratic variation along () and Y € €.
In this case the quadratic covariation of X and Y ezists and is given by
T ) )
YoX]r= Jim Y (XYa) = X [0 x, X

n—oo —
[s,tl€mn 1<ij<d

where Y{ = (Y{(i,7))1<ij<d, for 0 <t <T.

Theorem 4.2.11. Let X € VP([0,T],RY), Y € €% and suppose Y/ is a symmetric
matriz for allt € [0,T] orY € L. Let (m,) be an increasing sequence of partitions
such that lim, o0 |m,| = 0 and X has quadratic variation along (7). Then for all
~v € [0,1] the v- [ Y d™ X, integral exists and is given by

T T 1 T . .
”Y-/ Y, d™ X, = / Yio dX; + 5(27 -1 Y / Y/ (i, 5) d™ X", Xy,
0 0 1<ig<q 0
where Y/ = (Y{ (i, j))1<ij<d-

Proof. Fix v € [0,1]. As before we split the sum as in (4.4) into its symmetric and
antisymmetric part:

1
> Yo+, Xoy) =3 > (Yo +9Yar Xaa) + (X +vXot, Yar)

[s,tlemn [s,tlemn

1
oY (Ve +Yas, Xog) — (Xs + 7 X0, Yau)).

[s,tlemn

The second sum converges for every sequence of partitions (m,) with lim, . |7,| =0
and is independent of 7 thanks to Theorem 4.2.4. Taking v = 1/2 we can apply
Corollary 4.2.6 to see that

EMX Y) = /TYt o dX;— 1((XT Yr) — (X0, Yo))- (4.10)
2 ’ 0 2 ’ ’

For the symmetric part, we note for (s,t) € Ap

<Y; + ”)/Ys,ta Xs,t> + <Xs + "YXs,t, Yrs,t) :(1 - ’Y)(<Y;57Xt> - <}/;7XS> - <X8,t? }/S7t>)
+ ’7(<Y27 Xt> - <}/Sa Xs> + <Xs,ta }/;,t>>
:<Y2a Xt> - <Y:9>XS> + (27 - 1)<Xs,ta Y;,t>-
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4. Existence of Lévy’s area and pathwise integration

Thus the first sum reduces to

1
S (Ve +Yer, Xon) + (Xs +7Xot, Yar))

[s,t]€Tn
2y —1

(Y, X7) — (Yo, X0)) + Z (Xt Ysr).

[s,t]€Tn

l\.')\r—t

Therefore, the symmetric part converges along (7,), and the assertion follows by
(4.10) and Lemma 4.2.10.
The statement for Y € ./} can be proven analogously. O

An application of Theorem 4.2.11 to the particular case Y = DF(X) for a smooth
enough function F provides the classical Stratonovich formula.

Lemma 4.2.12. Let 1 <p < 3, X € V?([0,T],RY) and F € C?>(R%,R). Suppose that
the second derivative D*F is a-Hélder continuous of order o > max{p — 2,0}. Then
the Stratonovich integral [ DF(X;) o dX; exists and is given by

/OT DF(X,) o dX; = F(Xr) — F(Xo).

Proof. Let X = (X',..., X%)* € V([0,T],R?) for 1 < p < 3. Then, with 7 = £ in the
definition of controlled paths we easily see that DF(X) € €%. Thus by Corollary 4.2.6
the (%-)Stratonovich integral is well-defined and independent of the chosen sequence
of partitions (m,) along which the limit is taken. Now choose an increasing sequence
of partitions (m,) such that lim, . |m,| = 0 and [X]; = 0 along (w,) for t € [0,T]
(cf. Proposition 70 in [Fre83]). Applying Taylor’s theorem to F', we observe that

FXp)-F(Xo) = 5 Y ((F(X) ~ F(X.) ~ (F(X,) ~ F(X,)

[s,t]emn

> <%DF(X)+ “DF(Xy), Xop) + D (R(Xs, Xy) + R(Xs, X3))

[s,t] Emn, [s,t]€mn

+* > > @ — DZ,(Xe)) X1, XD,

[5 t}@rn 1<4,5<d

where |R(z, y)|+|R(z,y)| < ¢(|z—y|)|z—y|?, for some increasing function ¢: [0, 00) —
R such that ¢(c) — 0 as ¢ — 0. Since X is continuous and has zero quadratic varia-
tion along (7,,), the last two terms converge to 0 as n — 0o, and we obtain

/ DF(X,)o dX,= lim Y (DF(X.)+ L (DF(X) ~ DF(X,)), X0}
[s,t]€mn

— F(X1) - F(Xo).
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4.2. Féllmer integration

We can now present the announced version of the pathwise formula by Follmer (cf.
[F681]), for which the proof reduces to combining the previous results of Theorem
4.2.11 and Lemma 4.2.12.

Corollary 4.2.13. Let 1 < p < 3, v € [0,1] and (m,) be an increasing sequence
of partitions such that lim, o |7,| = 0. Assume F € C%*(R?% R) with a-Hélder
continuous second derivative D*F for some o > max{p —2,0}. If X € V?([0,T],R%)
has quadratic variation along (), then the formula

T
F(Xr) = F(X0)+7- [ DF(X)d™ X,

1 T 2 T 7 1
—5@ =1 ¥ [ DEFX) dv X X,
1<i,5<d

holds.

The assumptions, that X is of finite p-variation for some 1 < p < 3 and that
the second derivative D*F is a-Hélder continuous for some o > max{p — 2,0} can
be considered as the price we have to pay for obtaining an integral of which the
antisymmetric part does not depend on the chosen partition sequence. Follmer [F681]
does not need these hypotheses and especially not that the integrand is controlled by
the integrator. This leads to a much bigger class of admissible integrands as we will
see in the next subsection.

4.2.1. Functional Itdé formula

In recent years, functional It6 calculus which extends classical calculus to functionals
depending on the whole path of a stochastic process and not only on its current
value, has received much attention. Based on the notion of derivatives due to Dupire
[Dup09], in a series of papers Cont and Fournié [CF10a, CF10b, CF13] developed a
functional It6 formula. One drawback of their approach is that the involved functional
has to be defined on the space of cadlag functions, or at least on a subspace strictly
larger than C(]0,T],R%) (see [CR14]), and not only on C([0,T],R?). In the spirit of
Follmer the paper [CF10b] provides a non-probabilistic version of a probabilistic It6
formula shown in [CF10a, CF13].

The present subsection takes reference to this program. We generalize Follmer’s
pathwise It6 formula (cf. [F681] or Corollary 4.2.13) to twice Fréchet differentiable
functionals defined on the space of continuous functions. Our functional Itd formula
might be seen as the pathwise analogue to formulas stated in [Ahn97].

First we have to fix some further notation. Let (7,) be an increasing sequence of
partitions such that lim, o |7,| = 0 and X € C([0,T],R?%). We denote by X" the
piecewise linear approximation of X along (7,), i.e.

X — Xyn
Xpom B )+ Xy, e 0), for [ €m.  (411)
j+1 J

In the following C stands for C([0,T],R%) and C* for the dual space of C. For X €
C we define Xé = Xsl[o,t)(s) + th[t,T](s) and Xg’t = Xgl[(),t)(s) + X[bl[t,T](S)
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4. Existence of Lévy’s area and pathwise integration

for s € [0,7T], where 1 7 is the indicator function of the interval [¢,T]. Assume
F:C — R is twice continuously (Fréchet) differentiable. That is, DF': C — C* and
D2F: C — L(C,C*) are continuous with respect to the corresponding norms. It is
well-known that £(C,C*) is isomorphic to C®C. For each ¢t € [0,T] we can understand
1j; 7] as an element of C**, the bidual of C, and 1j, 71 @1y, 7] as an element in (C®C)**,
respectively. Hence, (DF(X?),1(, 7)) and (D2F(X*), 157 @ 157)) are well-defined
as dual pairs.

Theorem 4.2.14. Let (m,) be an increasing sequence of partitions such that the mesh
satisfies limy, o0 |mn| = 0, and X € C with quadratic variation along (m,). Suppose
F:[0,T) xC — R is continuously differentiable with respect to the first argument and
twice continuously differentiable with respect to the second. Furthermore, assume that
OF and D?F are bounded and uniformly continuous. Then, for all t € [0,T] we have

t d ot )
Ft, X') =F(0, X°) + / OF(s, X*)ds + Y / (DiF(s, X5, 1 77) d™ X
0 i—1 0
1&gt
2 s i j
5 2 [ D3P, X7, 1y @ T X, X, (412)

ij=1

where the integral is given by

Z/ (DiF (s, X%), 1[5 7)) d™ X
=1
d .
= lim > (DiF(ty, X1, 7]%%>XZZ,tg+lv
i=1 [tz,tz+1}€7rn(t)

where mn(t) == {[u, v At] : [u,v] € mp, u <t} and npn for [t7,17,1] € mn(t) by
J

(sVip, ) —t!
77%1(8) = +_ m J 1[tg,T](3)7 s €[0,T].
k+1 k

Proof. To increase the readability of the proof, we assume d = 1. The general result
follows analogously. Let ¢t € [0,7] and (m,) a sequence of partitions fulfilling the
assumption of Theorem 4.2.14. We easily see that

F(t, X™)—F(0,X™Y)

— Z (F(tR g, X™esn) — (£, X ™)
[t:‘ 7t2+1167r71 (t)

+ F(£, X™r) — F(£], X)) (4.13)

and note that the right hand side converges uniformly to F(¢, X?) — F(0,X") as
n — oo. Applying a Taylor expansion, we obtain

F(tg i1, X™Ml) — F(tp, X)) = 3tF(tZaXn’tg“)(tZ+1 —tg) + R(tg, ti1),
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4.2. Féllmer integration

where one has [R(t7, 7, 1) < @1([t} — th])|th, —t}], for some continuous function
v1: [0,00) — R such that pi(c) — 0 as ¢ — 0. With this observation and the
continuity of 9,F (s, X?®), we conclude by dominated convergence that

t
Tm o> (Pt X — P8, X)) = /0 0F (s, X°) ds.
[t27t2+1]€ﬂn(t)
For the second difference of equation (4.13), we use a second order Taylor expansion
to get
D Bt XM = P, X
[tr 87, J€mn (D)
= > (DF(tp, X™E), XM — X
[tr 87, J€mn (D)
1 n n n n n
+ Z - <D2F(t7]z, Xn,tk )’ (X”?tk+1 _ thk) ® (X"’tk+1 _ Xn,tk )>
(2 47, €mn (D)
o REXME XM = Si(0) + SH(1) + Si),
[t27t2+1]€ﬂ-n(t)

where [R(X™, X™+1)| < @o([| X+ — X || o0 )| X™E+1 — X712 for some
continuous function ¢y: R — R such that ps(c) — 0 as ¢ — 0. Since X™+1— X"t =

Ngn Xep | and [-,-] is bilinear, S} and S? can be rewritten by
J
1 n
Sn (t) = Z <DF(t7]:,, Xl )7 n%-L)XtZ’tZJrl ,
[tz,tz+1]€ﬂ'n(t)
2 2 n 2
Sn(t) = Z <D F(tz, Xn7tk)7 7”%,, [ ’I’]%})th7t'lr€z+1,

[tp 7, ) €mn (D)

and S2 estimated by

3 2
sup |S;(t)| < max 2| Xym . |) Xinn .
welor] e o [tz,tzg:lemu) i

Because X has quadratic variation along (7,,) and 902(|th¢2+1 ) = 0asn — oo, S3(-)

tends uniformly to zero. To see the convergence of S2(t), we set \,(s) := max{t] :
[t7,t711] € mn, t] < s} and define

fn(s) = <D2F(>‘n(s)a Xn,)\n(s))’ ngn(s) ® 'r]gfn(s)% and
f(S) = <D2F(87Xs)7 1[S,T] ® 1[S,T]>7 s € [OuT]

Note that (fy,) is a sequence of left-continuous functions which are uniformly bounded
in n. Additionally, lim,,_, fn(s) = f(s) for each s € [0,T] as

Jim | fu(s)=f(s)] < lim [(D*F(Ay(s), X"’A”(s))mfn(s) D0 () ~ o) © Lis1))]
+ lim [(D*F(An(e), X)) = D*F(s, X*), 1o 1y © 1o 17)| = 0.
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4. Existence of Lévy’s area and pathwise integration

The first summand tends to zero by weak convergence of nfn( 5) ®7]§n( s to 15 7@ 77,
and the second one by Lemma 3.2 in [Ahn97]. By Proposition 2.1 in [Ahn97] f is
also left-continuous and so Lemma 12 in [CF10b] implies

t
lim S2(0) = [ (D2F(s.X*), L & Ly ) X

In summary, we derived equation (4.12) and implicitly the convergence of S}(¢). [

It is fairly easy to see that (DF(t, X?), 1j77) is in general not controlled by a path
increment of X, which we briefly illustrate by revisiting Example 2.3 in [Ahn97].
Especially, this explains why we cannot just rely on Theorem 4.2.11 to prove Theorem
4.2.14.

Example 4.2.15. Let p be a finite signed Borel measure and let F': C([0,7],R) — R
be given by

T
PX) = [ gls, X u(ds),
where g(t,-) € C*(R,R) for each ¢ € [0,T] with bounded second partial derivatives

D2 ,gand g(-,z): [0,7] — R p-measurable. In this case (1j,7), DF(X")) is of course in
general not controlled by a path increment of X as we see from the explicit calculation

t
(DF(X"), 1) ~ (DF(X*), ym) = = [ Doglu, X p(du), 0<s<t<T.
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5. Rough differential equations on Besov
spaces

Differential equations belong to the most fundamental objects in numerous areas of
mathematics gaining extra interest from their various fields of applications. A very
important sub-class of classical ordinary differential equations (ODEs) are controlled
ODEs, whose dynamics are given by

du(t) = F(u(t))E(t), u(0) =up, teR, (5.1)

where ug € R™ is the initial condition, u: R — R™ is a continuous function, d
denotes the differential operator and F': R™ — L(R",R™) is a family of vector fields
on R™. In such a dynamic £&: R — R™ typically models the input signal and u the
output.

If the signal £ is very irregular, for instance if & has the regularity of white noise,
equation (5.1) is called rough differential equation (RDE). Over the last two decades
Lyons [Lyo98] and many other authors have developed the theory of rough paths to
solve and analyze rough differential equations. A significant insight due to Lyons
[Lyo98] was that the driving signal £ must be enhanced to a "rough path” in some
sense, in order to solve the RDE (5.1) and to restore the continuity of the Itd6 map
defined by & +— w in a p-variation topology, cf. [LQ02, LCL07, FV10b]. In particular,
the rough path framework allows for treating important examples as stochastic dif-
ferential equations in a non-probabilistic setting. Parallel to the p-variation results,
rough differential equations have been analyzed in the Holder topology with similar
tools, cf. [Fri05, FH14].

One core goal of this chapter is to unify the approach via the p-variation and the
one via the Holder topology in a common framework. To this end, we deal with
rough differential equations on the very large and flexible class of Besov spaces By,
noting that, loosely speaking, the space of a-Holder regular functions is given by the
Besov space BY, ,, and that the p-variation scale corresponds to B;,/qp (see [BLS06)).
The results by Zéhle [Za98, Z&01, Z&05], who set up integration for functions in
Sobolev—Slobodeckij spaces via fractional calculus, are covered by our results as well.
In fact, Besov spaces unify numerous function spaces, including also Sobolev spaces
and Bessel-potential spaces. For a comprehensive monograph we refer to Triebel
[Tril0].

Due to this generality, studying solutions to the RDE (5.1) on Besov spaces is
a highly interesting, but challenging problem. In a first step, provided the driving
signal ¢ is in B;fgl for > 1/2, p > 2, ¢ > 1, the existence and uniqueness of a
solution u to the RDE (5.1) is proven, see Theorem 5.2.1, and further it is shown
that the corresponding Itd6 map is locally Lipschitz continuous with respect to the
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5. Rough differential equations on Besov spaces

Besov topology, see Theorem 5.2.2. In particular, with these results we recover the
classical Young integration [You36] on Besov spaces.

In order to handle a more irregular driving signal £ in Bg‘;l for « > 1/3, p > 3,
q > 1, the path itself has to be enhanced with an additional information, say (¥, £),
which always exists for a smooth path £ and corresponds to the first iterated integral
in rough path theory. In the spirit of the usual notion of geometric rough path, this
leads naturally to the new definition of the space of geometric Besov rough paths 82:3‘,
cf. Definition 5.4.1. Starting with a smooth path &, it is shown that the Itd map
associated to the RDE (5.1) extends continuously to the space of geometric Besov
rough path, cf. Theorem 5.4.8. As a consequence there exists a unique pathwise
solution to the RDE (5.1) driven by a geometric Besov rough path. Note that due
to a > 1/p our results are restricted to continuous solutions, which seems to appear
rather naturally, see Remark 5.4.10 for a discussion. Especially, for signals which
are not self-similar like Brownian motion but whose regularity is determined by rare
singularities, we can profit from measuring regularity in general Besov norms.

The immediate and highly non-trivial problem appearing in equation (5.1) is that
the product F'(u)¢ is not well-defined for very irregular signals. While classical ap-
proaches as rough path theory formally integrate equation (5.1) and then give the
appearing integral a meaning, the first step of our analysis is to give a direct meaning
to the product in (5.1). Our analysis relies on the notion of paracontrolled distri-
butions, very recently introduced by Gubinelli et al. [GIP12] on the Hélder spaces
B%, - Their key insight is that by applying Bony’s decomposition to F(u)¢ the
appearing resonant term can be reduced to the resonant term 7 (¢, &) of € and its an-
tiderivative ¥, using a controlled ansatz to the solution u. The resonant term 7 (¥, )
turns out to be the necessary additional information to show the existence of a path-
wise solution and corresponds to the first iterated integral in rough path theory as
already mentioned above.

Generalizing the approach from [GIP12] to Besov spaces poses severe additional
problems, which are solved by using the Besov space characterizations via Littlewood-
Paley blocks as well as the one via the modulus of continuity. Besov spaces are a
Banach algebra if and only if p = ¢ = oo such that in general our results can only
rely on pointwise multiplier theorems, Bony’s decomposition and Besov embeddings.
We thus need to generalize certain results in [BCD11] and [GIP12], including the
commutator lemma, see Lemma 5.3.4. A second difficulty is that u € By, imposes
an LP-integrability condition on u. To overcome this problem, we localize the signal
and consider a weighted It6(-Lyons) map, both done in a way that does not change
the dynamic of the RDE on a compact interval around the origin.

The paracontrolled distribution approach [GIP12] offers an extension of rough path
theory to a multiparameter setting as also done by the innovative theory of regularity
structures developed by Hairer [Hail4]. While Hairer’s theory presumably has a much
wider range of applicability, both successfully give a meaning to many stochastic
partial differential equations (PDEs) like the KPZ equation [Hail3, GP15] and the
dynamical ®% equation [Hail4, CC13] just to name two. Even if the approach of
Gubinelli et al. [GIP12] may not be a systematic theory as regularity structures,
it comprises some advantages. The approach works with already well-studied tools
like Bony’s paraproduct and Littlewood-Paley theory, which leads to globally defined
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5.1. Functional analytic preliminaries

objects rather than the locally operating “jets” appearing in the theory of regularity
structures. Since for stochastic PDEs the question about the “most suitable” function
spaces seems not to be settled yet, it might be quite promising on its own to extend
[GIP12] to a more general foundation as we do by working with general Besov spaces.
For instance, let us refer to the very recent work of Hairer and Labbé [HL15], where
the theory of regularity structures is adapted to a setting of weighted Besov spaces.

In probability theory the prototypical example of the differential equation (5.1) is a
stochastic differential equation driven by a fractional Brownian motion B with Hurst
index H > 0. It is well-known that the Besov regularity of such a fractional Brownian
motion is Bﬁoo for p € [1,00) and thus the results of the present chapter are applica-
ble. For our Besov setting, an even more interesting example coming from stochastic
analysis, recalling for example the Karhunen-Loeéve theorem, are Gaussian processes
and stochastic processes given by a basis expansion with random coefficients. The
Besov regularity of such random functions can be determined sharply and they are
well-studied for instance when investigating the regularity of solutions for certain
stochastic PDEs [CDD"12] or in non-parametric Bayesian statistics [ASS98, Boc13].
In order to make our results about RDEs accessible for these examples, we prove all
the required sample path properties in Section 5.5. Especially the existence of the
resonant term is provided.

This chapter is organized as follows. Section 5.1 introduces the functional analytic
framework and gives some preliminary results. In Section 5.2 we recover Young
integration on Besov spaces and deal with differential equations driven by paths
with regularity o > 1/2. The analytic foundation of the paracontrolled distribution
approach on general Besov spaces is presented in Section 5.3. The application of
the paracontrolled ansatz to rough differential equations is developed in Section 5.4
and in Section 5.5 it is used to solve certain stochastic differential equations. In
Appendix A.6 some known results about Besov spaces are recalled and the proof for
the local Lipschitz continuity of the It6 map is given.

5.1. Functional analytic preliminaries

For our analysis we need to recall the definition of Besov spaces, some elements of the
Littlewood-Paley theory and Bony’s paraproduct. For the properties of Besov spaces
we refer to Triebel [Tril0]. The calculus of Bony’s paraproduct is comprehensively
studied by Bahouri et al. [BCD11], from which we also borrow most of our notation.

For the sake of clarification let us mention that LP(R% R™) denotes the space of
Lebesgue p-integrable functions for p € (0, 00) and L*®(R? R™) denotes the space of
bounded functions with the (quasi-)norms || - ||zr, p € (0, 00]. The space of a-Holder
continuous functions f: R¢ — R™ is denoted by C* equipped with the Holder norm

o= 3 1fPe+ 3 Sup\f(k)(x)—f(’“)(y)l,

ki<l kia) oty [Tyl

where k denotes multi-indices with usual conventions and where |« denotes the
integer part of a > 0. For operator valued functions F': R™ — L(R™,R™) we write
F e Cf,neN,if I is bounded, continuous and n-times differentiable with bounded
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5. Rough differential equations on Besov spaces

and continuous derivatives, and we use the abbreviation Cj := C’l? . The first and
second derivative are denoted by F’ and F”, respectively, and higher derivatives by
F(™)_ On the space C}' we introduce the norm

n
1Flloc := sup [F(a)l| and [Flcp = [|Flloo + > [F™ o,

for n > 1, where || - || denotes the corresponding operator norms.
The presumably most fundamental way to define Besov spaces is given via the
modulus of continuity of a function f € LP(R? R™)

wp(f,8) == sup |If(-) = f(-—h)lLr for p,é6>0. (5.2)
0<|h|<é

For p,q € [1,00] and « € (0, 1) Besov spaces are defined as

By, (R?) = By (RLR™) := {f € LP(RL,R™) : | fllwsapq < 00}  with

, dh )1/q

I v = Wl ([ I, 10 (5.3

and the usual modification if ¢ = co. If d = 1 (and no confusion arises from the
dimension m) we subsequently abbreviate L? := LP(R,R™) and By := By (R,R™).
In Bg’q(Rd) the regularity « is measured in the LP-norm while ¢ is basically a fine
tuning parameter in view of the embedding By, (RY) Bg . (R%) for B < a and any
q1,q2 > 1. The classical Holder spaces and Sobolev spaces are recovered as the special
cases BS (R?) (for non-integer o) and Bg'y(R?), respectively. Alternatively, Besov
spaces can be characterized in terms of a Littlewood-Paley decomposition. Since our

analysis mainly relies on this latter characterization, we describe it subsequently.

We write S(R?) := S(R?, R™) for the space of Schwartz functions on R? and denote
its dual by S'(R%), which is the space of tempered distributions. For a function f € L'
the Fourier transform is defined by

Ff(z) ::/ e_i<z’x>f(:c) dz

R4

and so the inverse Fourier transform is given by F~1f(z) := (2m) ¢ Ff(—z). If
f € S’(R%), then the usual generalization of the Fourier transform is considered. The
Littlewood-Paley theory is based on localization in the frequency domain. Let x and
p be non-negative infinitely differentiable radial functions on R¢ such that

(i) there is a ball B ¢ R? and an annulus A C R? satisfying suppy C B and
suppp C A,

(i) x(2) + > >0 p(2772) =1 for all z € RY,

(iii) supp(x) N supp(p(277-)) = 0 for j > 1 and supp(p(27")) N supp(p(277-)) = 0
for |i —j| > 1.
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We say a pair (x, p) with these properties is a dyadic partition of unity and throughout
we use the notation

p-1:=x and p;:= p(279.) for j > 0.

For the existence of such a partition we refer to [BCD11, Prop. 2.10]. Taking a dyadic
partition of unity (x, p), the Littlewood-Paley blocks are defined as

A_if:=F Yp_1Ff) and Af = f_l(pj]:f) for j > 0. (5.4)

Note that A;f is a smooth function for every j > —1 and for every f € S'(R?) we
have

f—ZAf_thf with  S;f = > Af.

Jjz-1 i<j—1

For o € R and p, ¢ € (0, 00] the Besov space can be characterized in full generality as

By (RLR™) = {f € SRLR™) : o < o0 55)
with  [|fllapa = || 27185 120) 5 4,
According to [Tril0, Thm. 2.5. 12] the norms || - ||w:ap,q and || - ||a,p,q are equivalent

for p,q € (0,00] and o € (m d,1). Bg’q(]Rd) is a quasi-Banach space and if
p,q > 1, it is Banach space, cf. [Tril0, Thm. 2.3.3]. Although the (quasi-)norm
Il - lap,q depends on the dyadic partition (y,p), different dyadic partitions of unity
lead to equivalent norms.

We will frequently use the notation Ay < By, for a generic parameter 1, meaning
that Ay < CBy for some constant C' > 0 independent of ©¥. We write Ay ~ By if
Ay < By and By < Ay. For integers jy, kg € Z we write jy < ky if there is some
N € N such that jy < kg + N, and jy ~ ky if jy < ky and ky < jy.

In view of the RDE (5.1) we need to study the product of two distributions. The
standard estimate, cf. [Tril0, (24) on p. 143],

1£9la ,p,q ~S Hf”a oo,qHQHOtpq (5.6)

applies only for a > 0 and p,q > 1. However, in the context of RDEs the regularity

o of the involved product will typically be negative. Given f € By (RY) and
BgQ o (RY), at least formally we can decompose the product fg in terms of
thtlewood Paley blocks as
fa= > > AifNjg=Trg+Tyf +7(f,9),
jz-li>-1
where
Tyg := Z Sj—1fAjg, and 7w(f,g): Z AifAjg. (5.7)
j=-1 li—jl<1

We call 7(f,g) the resonant term. This decomposition was introduced by Bony
[Bon81] and it comes with the following estimates:
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Lemma 5.1.1. Let o, 8 € R and p1,p2,q1,q2 € [1,00] and suppose that

1 1 1 1 1 1
- =—+—<1 and -:=—+—<1.
b b1 p2 q a1 42

(i) For any f € LP'(R?) and g € B, ,(R%) we have

1Trallgpa S N eeallgll g pa.q-

(ii) If o <0, then for any (f,g) € BY

. (R%) x BZ _ (R?) we have

P2,q2

1Trgllarbpa S Nfllaprallglsps.e:

(iii) If a + 8 > 0, then for any (f,g) € BY

- (RY) x BS _ (R?) we have

P2,92

|7 (f, 9)||oc+6,pq ~ ”f“a,pl,ql”gn,&pz q2-

Proof. The last claim is Theorem 2.85 in [BCD11]. For the first claim and the second
one we slightly generalize their Theorem 2.82. Since p; is supported on 27 times an
annulus and the Fourier transform of Si_1fAgg is supported on 2% times another
annulus, it holds A;Tyrg = A; 37, i Sk—1fAkg. Using that A; is a convolution with
Flp; =204F~1p(27.), j > 0, Young’s inequality yields for any function h € LP(R?)
that |Ajhlle < | F tpllp1]|hllLe. Together with Hélder’s inequality we obtain for
any j > —1

|80 Sirang)| | 5 2 k-1 ugllzr < 32 WSi-a e Neslle

k>—1 k~j
Since limy_yo0 ||Sk—1fllzrr = || f||Lr1, assertion (i) follows from
1Zgl50 < [277 3 ISk-af e 1 Axglor |,
j~k

Sz 1271859002 [l g0 = 111z lgl15,p2.0-

For (ii) another application of Holder’s inequality yields

175900 S[2T 3 1Sko1fllors [ Angllion]|,
j~k

§||2j“HSj—1fHLmng1H?jﬁHAngLmHm <2181 F 2wl o 19115502

Finally, we apply Lemma A.4.3 to conclude that (27||S;_1f||z#1); € ¢7* and that
1N Sj=1fllzen)jllenr S 1]

We finish this section with two elementary lemmas, which seem to be non-standard
(cf. Lemma A.4 and A.10 in [GIP12] for the Hélder case). To control the norm of an
antiderivative with respect to the function itself will play an import role, naturally
restricted to the case d = 1. The following lemma provides the counterpart to the
well-known estimate ||F'|lo—1pq S [[F'lla,p,q for any F € By, cf. [Tril0, Thm. 2.3.8].
For p < oo the antiderivative will in general have no finite LP-norm such that we have
to apply a weighting function to ensure integrability.

&,P1,91- O

86



5.1. Functional analytic preliminaries

Lemma 5.1.2. Let p € (1,00] and o € (1/p,1). For every f € B3, (R) there exits
a unique function F: R — R™ such that F' = f and F(0) = 0. Moreover, it holds

for any fized 1 € C} satisfying Cy := HiﬁHCg + 25 ke{0,1} (74" () || r < oo that

||T/’F‘|a,pq ~ Cl/}HfHa 1,p,q-

In particular, for any smooth 1 with suppy C [T, T] for some T > 0 one has

W Fllapq S AV TNl flla-1pa-

Proof. Since differentiating in spatial domain corresponds to multiplication in Fourier
domain, we set

=3 F! [ WFf(w)](t) and H(t /A f(s)ds, teR.

7>0

Provided

HwGHa,pq ~ Hw“cl|’GHa,p,q ~ kuclufua 1,p,q> HwHHa,p,q < CwaHa—Lp,q (5-8)

and noting that By, C C(R) for a > 1/p, the function F:= G + H — G(0) satisfies
I’ = f and the asserted norm estimate. Uniqueness follows because any distribution
with zero derivative is constant.

It remains to verify (5.8). Concerning G, we obtain for each Littlewood-Paley
block, using supp(p;) Nsupp(pr) = 0 for all j,k > —1 with |k —j| > 1,

k+1 k+1

MG= 3. T I <u>pj<u>ff<u>]=( b f—[ pi(w)] ) * Aef.

Using twice a substitution, we have for j > 0

(), - b

mu U

|

U

=7 5@l

Lt Lt

Hence, Young’s inequality yields

1Cllaa =¥ 1AG )|, S[|CTFIFIp@)/ @] 1212,
5 HfHa—Lp,q'

To show the second part of (5.8), we use [VH|lapq S [VH |1 poo S IVH | e +

l(WH) ||zr due to a < 1. Holder’s inequality yields for p := pfl with the usual

modification for p = oo that

[@H e < 1A= fllze (O P) L, SNV OB o llf la-1pq

and similarly

N@HY e < [0/ Hllze + 1981 fllze S HAFllee ([0 @], + dlloo)
S (Wlle + 1AV O lLo)l fla-1pg- O
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For later reference we finally investigate the scaling operator Ay, given by Ay f(-) :=
f(A) for any A > 0 and any function f, on Besov spaces.

Lemma 5.1.3. For a« #0, p,q>1 and all f € B&Q(Rd) we have
[Axfllapg S (1+ A% IOg)‘D)\id/prHa,pﬂ'

Proof. Using Ax(Ff) =r"@F[A,1f] for s >0, f € Bgfq(]Rd), we first deduce

Aj(ANF) = X AF pi A1 (Ff)] = F 1 pj(A)FfI(A\)  and
MDA ) =X 1F ;AN FHAT)] = F o (A ) FIAA S]]

for all A > 0. For j > 0 the Fourier transform of A)(A; f) is consequently supported in
27 A, where A is the annulus containing the support of p, and we have Ag(A\A; f) #
0 only if 28 ~ A27. Together with || A fllre < [|F ol flle < |1 f]le by Young's
inequality we obtain

IAKM e < D" ARMAA; Nlle SAYP 3" A fllee  for k> 0.

j:2k~ 27 ko2
Applying again Young’s inequality to the sequences a := (L[_|1og|, 10z (F))r and
(QjQHAjf”Lp)j, we infer

| @I AkANF o) sl S X A XA r)

ji2k~N27
A lallallf lapg S 1108 MAY7 ] fllapg.

k>0110q

Finally, we obtain analogously for kK = —1 that

IAZIANf e SATYP ST 1A f e

7:A29<1

N flapg 3 20 S QAN gy O
§:A29<1

5.2. Young integration revisited

In the present section we start to consider the differential equation (5.1), which was
given by

du(t) = F(u(t))é(t), u(0) =up, teR,

where ug € R™, u: R — R™ is a continuous function and F': R™ — L(R",R™). As-
suming our driving signal £: R — R” is smooth enough, the differential equation (5.1)
is well-defined and can be equivalently written in its integral form

u(t) = uo + /0 " Plu(s)E(s)ds, t e [0,00), (5.9)
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and analogously for t € (—00,0). According to Young [You36], the involved integral
can be defined as limit of Riemann sums as long as the driving signal £ is the derivative
of a path ¥ which is of finite p-variation for p < 2. Then, equation (5.9) admits a
unique solution on every bounded interval [-7,7] C R if F € C? (see modern books
as [LCLO7, Theorem 1.28] or [Lej09, Theorem 1]). This result was first proven by
Lyons [Lyo94] using a Picard iteration. The case of a 1/p-Hélder continuous driving
path ¥ was treated by Ruzmaikina [Ruz00]. Since then it is still of great interest
to find new approaches to (5.9): Gubinelli [Gub04] has introduced the notion of
controlled paths, Davie [Dav07] has shown the convergence of an Euler scheme, Hu
[HNO7] have used techniques from fractional calculus and Lejay [Lej10] has developed
a simple approach similar to [Ruz00].

In this section we recover the analogous results on Besov spaces with a special focus
on the situation when F' is a linear functional. For a discussion of the importance of
linear RDEs we refer to Coutin and Lejay [CL14] and references therein.

We first note that the function F'(u) inherits its regularity from the regularity of
u. More precisely, [BCD11, Thm. 2.87] shows for u € By, satisfying |lu/|c < oo and
a family of sufficient regular vector fields F' with F'(0) = 0 (or p = oo) that

[a]
IF@lapa S (X 5w IFO@) [ulapg S I1Fl o [ullapas — (5:10)

k=1 lz[<llullo

denoting the smallest integer larger or equal than o > 0 by [«] and provided the
norms on the right-hand side are finite. If the product F'(u)¢ is regular enough, we
can understand the differential equation (5.1) in its integral form (5.9) where the
integral is given by the antiderivative of the product, i.e.

t 0
A( [ Fu()€(s)ds) = Fu(®)E(t) and [ Fu(s)g(s)ds =0,
0 0

In view of Lemma 5.1.2 the solution u of (5.1) cannot be expected to be contained
in By ,. Therefore, we consider instead a localized version of the differential equa-
tion. Alternatively, the solution of the RDE (5.1) could be studied in homogenous
or weighted Besov spaces, which can only lead to very similar results. In order to
provide our results in the most commonly used notion of Besov spaces, we focus on
localized equations. We impose the following standing assumption:

Assumption 1. Let ¢: R — R be fixed smooth function with support [—2, 2] and
equal to 1 on [—1,1]. Denote ¢7(z) := @(x/T) for T > 0.

Theorem 5.2.1. Let T > 0, o € (1/2,1] and assume that & € BS," for p € [2,00]
and q € [1,00]. If F: R™ — L(R™ R™) is a linear mapping, then for every ug € R?
there exists a unique global solution u € By, to the Cauchy problem

ut) = prityuo + pr(t) [ Ful)e(s)ds, ¢ R, (5.11)

with the usual convention for t < 0. This result extends to nonlinear F € C'g if
P = 00.
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Proof. Step 1: First we establish a contraction principle under the assumption that
| F’ Hcg is sufficiently small. Without loss of generality we may assume ug = 0.
Following a fixed point argumentation, we consider the solution map

O BC, = BY, s ii= W/o Flu(s)E(s)ds, ¢ €R.
In order to verify that & is indeed well-defined, we use Lemma 5.1.2 to observe

a,p,q S (1 \ 7—2)(1 \4 7-_1)H<PHC,} HfHa—l,;n,q S CT,cprHa—Lp,q?

o7 F|

where Cr , 1= (T_l\/TQ)HgoHCg, for any given f € By, ! with dF = f and F(0) = 0.
We thus have

S CT,goHF(U)fHa—Lp,q'

() = Jor( [ Fluts)éts) as)

Ha,p,q

Applying Bony’s decomposition, the Besov embedding B;%qu C Bg’gl (cf. [Trilo,
Thm. 2.7.1]) for p > 1/a and Lemma 5.1.1, we obtain

12(wW)llapg < CT o (ITr@ENa—1p.q + 17(F (W), O)ll2a—1,p/2,4 + 1 Te(F () la-1.q)
SOT o (1F () llool€lla—1,p.4
+F W llap2qll€lla-1.0.2 + 1€lla—1,p.0] F(w)

0,00,00)-

Using the embeddings BS, C L*° and BY

P4 pg & Bgo,oo for « > 1/p and (5.10), we
deduce that

H(I)(U)Ha,p,q S 07'790 |F/||oo||§”a—1,p7q”uHOc7p7Q‘ (5.12)

To apply Banach’s fixed point theorem, it remains to show that ® is a contraction.
For u,u € By, Lemma 5.1.2 again yields

12(w) = @(@)[lapg S CT Il (F(w) = F(@)€lla-1,p4

1
S COrg [P (b= ) (0 = 0 a1 .
Denoting by v := F'(u + t(u — @))(u — @), we conclude as above

() = @(@)]|ap.q

1

5 CT,W/O (HTvtg”a*l,p,q + ||7T(Ut7£)||2a—1,p/2,q/2 + ||T§Ut||a717p,q) dt
1

SOre [ (ltlapal€llaspg) dt.

By the standard estimate (5.6), we obtain

1
19(0) = ©(@) ea S Crio( [ 1+ 10 = 0l 20) It =
(5.13)
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5.2. Young integration revisited

Hence, if F' is linear and || F'||« is small enough, ® is a contraction. Provided p = oo
and F € CZ, it suffices if || F|| cp is sufficiently small:

12(w) =@ (@) lapg S CT I F lcp (ullaoo.q+1@lac0a) €]la-1,00gllu=lla00q- (5-14)

Step 2: In order to ensure that ||F’ Hq} is small enough, we scale £ as follows: For
some fixed € € (0, — 1/p) and for some X € (0,1) to be chosen later we set

¢ = ATerrtep (5.15)
where we recall the scaling operator Ay f = f(\:) for f € §’. Lemma 5.1.3 yields
||£>\Hocfl,p,q = )\l_aﬂ/p%HAAgHafl,p,q S (A[log Al + Al_a%)”f”orl,p,q < Hf”ozfl,p,q-

For A > 0 sufficiently small Step 1 provides a unique global solution u* € By, to the
(localized) differential equation

A0 = pr(to +pr(t) [ ARG ds, (5.16)

A

for all ug € R. Setting now u := Ay-1u”, we have constructed a unique solution to

) = Aeri (1) = oar(Bhuo + par(®) [ F(as)(s)ds,

which coincides with (5.11) on [=AT, AT].

Step 3: Since the choice of A does not depend on wug, we can iteratively apply
Step 2 on intervals of length 2A\T to construct a unique global solution v € By, to
equation (5.11).

In this simple setting it turns out that the I1t6 map .S defined by
S:RY x Bﬁ;l — By, via (up,§) = u, (5.17)

where u denotes the solution of the (localized) Cauchy problem (5.11), is a locally
Lipschitz continuous map with respect to the Besov norm.

Theorem 5.2.2. Let o € (1/2,1], g € [1,00] and F: R™ — L(R™,R™). If either F
is a linear mapping and p € [2,00] or F € C’g and p = oo, then the Ité map S given
by (5.17) is locally Lipschitz continuous.

Proof. Let uj € RY, & € By,! be such that [|€']|qpq < R and |uf| < R for some
R > 0 and denote by u* the unique solution to corresponding Cauchy problems (5.11)
for ¢ = 1,2, which exists thanks to Theorem 5.2.1. In order to avoid repetition, we
just consider a linear mapping F'. The non-linear case works analogously.

Step 1: Suppose that ||F'||o is sufficiently small. Recalling Cr, = (T7'V
7_2)||g0HCb1, we deduce similarly to (5.12) that

”UiHa,p,q S ||80T’|a,p,q|ué| + CT,cpHF,Hoo||fi||a71,p,q||ui||a,p,qa
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5. Rough differential equations on Besov spaces

which, provided ||F”’||s is small enough, depending only on R, ¢ and T, leads to
||ui||a,p,q S lerllapgl?,  for i=1,2.
For the difference u! — u? we have

' = w?[la g

< llor(ug — )|

anater( [ Fuls)e s)ds = [ Fad()es) as)|

S lerlapalub | + o7 [ (PG () = P(s))é! () ds]
+ CT,saHF(Uz)(fl - 52)Ha—1,p7q-

The second term can be estimated as in (5.13) and for the last one Bony’s decompo-
sition, Lemma 5.1.1 and (5.10) yield

”F(UQ)(fl—gQ)Hafl,p,q = HF(U2)||a,p,q”§1—§2||a71,p,q < ”F/Hoo”U2||a,p7q||§1—52||a71,p,q-

Therefore, we can combine the above estimates to

a’p?q

a,p,q

a,p,qHF,HooRHfl - §2||a71,p,q

lu' = wllapg SCT- (b — ud] + lio7]
L 1.1 2 1 1 2
(1P @+t = ) oot dE) Rt = 0.

If F is linear with sufficiently small ||F' Hcg, we obtain the desired estimate by rear-
ranging:

||u1 - UQHa,p,q S CT,@O(W(I) - “3| + o7 llapq F||CgR||§1 - 52Ha71,p,q)-

Step 2: The assumption on || F’||o can be translated to an assumption on 7 using
the same scaling argument as in Step 2 in the proof of Theorem 5.2.1. More precisely,
we define ¢M and €42 for A > 0 as in (5.15) and note [|EM|qpq S R for i = 1,2,
Therefore, for sufficiently small \ there exists a unique solution u™* to (5.16) for
i = 1,2. Setting again u’ := A —1u* and applying twice Lemma 5.1.3 together with
Step 1 gives

”Ul - U2Ha7p7q
S (LA log A AP — u?la g
S Crp (L4 A7 1og A DAY (Jug — wf| + 197 lapal | F oo RIEN = €2 [la-1,p,0)
S O (14 A log A DAYP (jug — ug| + 07 lapal F loo RIE" = € lla-1,5,0)-

In conclusion, the It6 map is locally Lipschitz continuous given 7 > 0 is sufficiently
small because u' is a solution to

u'(t) = o7 (t)uh + orr (1) /OtF(ui(S))éi(S) ds, =12

Step 3: The local Lipschitz continuity for arbitrary 7 follows by a pasting ar-
gument. For this purpose choose a partition of unity (uj)jcz C Cp° satisfying
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5.3. Linearization and commutator estimate

ity +e€ =1, € € [—%)\T,%)\’T], for anchor points ¢t; € R with ¢{p = 0 and
|t; —tj—1] < AT /2 and fulfilling

|suppp;| == sup{|jx —y| : x,y € suppy;} < AT and Zuj(x) =1 forallxz eR.
JEZ

Since the u’ for i = 1,2 have compact support, there is some N € N such that one
has, using (5.6),

N N
Hul - U2Ha,p,q < Z |2 (ul - UZ)Ha,p,q N Z HIU/JHC;”U} - U?Hmpm
j=—N j=—N

7;.

where (&

is the unique solution to
) ) t ) .
5 (8) = oarlt = t)ud, + oar(t—ty) [ F(u()€'(s) ds
J

with initial condition u'tij := u'(t;) for i = 1,2. Noting that ]ul}] - ufj| S Hujl-fl -
u§71||a7p7q for j > 1 and similarly for negative j, Step 2 yields

”Ul - UQHa,p,q S CT,¢(|U(1) - u%] + H‘PTHa,p,qHF/HooRufl - fQHa—Lp,q)' O

To extend these results to nonlinear functions F' for p < co and to less regular
driving signals &, more precisely & € ngl for a € (1/3,1/2), is the aim of the
following two sections.

5.3. Linearization and commutator estimate

In order to deal with more irregular driving signals £ € Bﬁ;l, we shall apply
Bony’s decomposition to rigorously define the product F'(u){, which appears in the
RDE (5.1). Let us first formally decompose F(u){ and analyze the Besov regularity
of the different terms as follows

Fu) =Tpwé+ 7(F(u),§) +Te(F(u)). (5.18)
—— SN—————— N———
€Bgg'  €Byly,n if20-1>0  eBXl

The first term Tp(,)€ is in B,g;l due to Lemma 5.1.1 and the boundedness of F'. The
regularity of the third term T¢F(u) € 3272_7;/2 for a < 1 can also be deduced from
Lemma 5.1.1 since naturally the solution u has regularity By, and thus F'(v) € By, by
(5.10). The regularity estimate of the resonant term can be applied only if 2a—1 > 0.
This is the main reason, why it was possible for o € (1/2, 1] to show the existence of
a solution to the (localized) RDE (5.1) in Section 5.2 without taking any additional
information about £ into account. However, this high Besov regularity assumption
on £ is violated in most of the basic examples from stochastic analysis as for instance
for stochastic differential equations driven by Brownian motion or martingales. The
aim of this section is to reduce the resonant term w(F'(u),§) to 7(u,&):
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5. Rough differential equations on Besov spaces

Proposition 5.3.1. Let a € (%, %), p € [3,00] and F € C,?JW(R) for some v € (0,1]
satisfying F(0) = 0. Then there is a map Il : By (R) x BS M (R) — B3 1 (R) such

p/3,00
that for any u € BY . (R) and £ € BS ) (R) we have
m(F(u),§) = F'(w)m(u, &) + p(u, §) (5.19)

with

ITLr (4, €)l130—1,p/3.00 S I1F 2 llull? p.oolE]la—1,p.00- (5.20)
Moreover, I1p is locally Hélder continuous satisfying for any u',u® € ng(R) and

1 ¢2 -1
§,¢" € By (R)
||HF(U17 51) - HF(U27 52)||3a—1,p/3,oo

< 1F e Ol 2 €€ (w2 + ! = 0o + 1€ €2lat o)
where

Clul,u?, &%) =l |2 poo MM llap.00 + (1t lapoo + 147 [lap,o0)

x (1+ Hflua—l,p,oo N H§2Ha—1,p,<>0)-

As we will see in the next section, it suffices to consider only ¢ = oo in Proposi-
tion 5.3.1. Taking into account the embedding By, C By, for any ¢ € [1,00], this
case corresponds to the weakest Besov norm for fixed o and p.

In order to prove this proposition, we need the subsequent lemmas. As the first
step, we show the following paralinearization result, which is a slight generalization of
Theorem 2.92 in [BCD11]|. Our proof is inspired by [GIP12, Lem. 2.6] and relies on
the characterization of Besov spaces via the modulus of continuity. We obtain that
the composition F'(u) can be written as a paraproduct of F’(u) and u up to some
more regular remainder.

Lemma 5.3.2. Let 0 < f < a < 1 and F € C;Jrﬁ/a(Rm). Let p > B/a+1
and define p' := ap/(a + B). Then for any g € B&OO(R“Z) N L>(RY) there is some
Rp(g) € B;To’g(Rd) satisfying

27
Flg) = F(O) = Torgg+ Re(a) and [Re(o)laspproe S IFIE20 g5
b

Moreover, if F' € C'Z?JW for some v € (0,1] and if p > 2V 1/« then the map

Rp: By (RY) N L®(RY) — B)%, (RY)

is locally Hélder continuous with

|Re(9) = Re(h) |aapya.0c
SUE gz (1912 poo A I oo + I9llapce + 7]

apoo) (19 = BlIZ + 119 = llapec)-
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5.3. Linearization and commutator estimate

Proof. The remainder Rp(g) is given by
Rp(g) = F(g) — F(0) = Tpigp9 = > F

i>-1
with F) = A;(F(g) — F(0)) = S-1(F'(9))Ayg.
For j < 0 Young’s inequality and the Lipschitz continuity of F' yield
1Bl =l18;(F(g) = FO)ze < IFpillis F(9) = FO)llzv £ IFllallglzo

and we have ||Fj || < [1Fjll o | Fill perre S I 1567 N E 17

For j > 0 we have A;F'(0) = 0 and the Fourier transform of F} is supported in
2/ times some annulus. Defining the kernel functions K jo=F _lpj and K j_1 =
> k<j—1 Kk and using that [ K;(x)dz = p;(0) = 0, the blocks F; can be written as
convolution

2) = [ K@= p)Keya(e = ) (Floly)) — Flg(2)g(y) dydz
= |, Kilw = 9)Eeja(e = 2) (Flo) = Flo(z) = F9())(9(y) ~ 9()) ) dyd
= | Kj(x—y)Kcj1(z—2)

R2
x ((F(9(2) + &2 (9(y) — 9(=))) = F'(9(2))) (9(y) — 9(2)) ) dydz, (5.21)

where we used in the in last equality the mean value theorem for intermediate points
&y € [0,1]. By the Holder continuity of F’ the above display can be estimated by

B @) U goore [ 1w =)K< = 2)Ig%9() - g(2)7* dydz
Pl gpoore [ 1S @K <12l =) = gla = 2)/> dy d.

Now we can estimate the L” -norm of the integral by the integral of the LP -norm,
which yields

HfGH[mffSHIFHC;+ﬂﬂij2\1¥5(y)l(<j—1(2)|H\g('—-(y-—-Z))-9(0!5/a+1HLpfdy<iZ

Nl [ 1K @K sup(llg() = gl = W/ dyda
b R |h|<|y—z]

1+58/a
Pl [ V@G s o) — o~ W[5y
b R? |h|<|ly—z|

Recalling the modulus of continuity from (5.2) and the corresponding representation
of the Besov norm, we obtain with Holder’s inequality for any ¢ € [1, o0] with ¢* =

q/(g—1)

1Bl < Wl ggoore [V W)K <jo1(y = B)lewng, )4/ dy dn

148/ o 1/q*
SN greore 9]0 /)0 (/(\h| +5”/‘1/\11( JK<yoaly— )l dy)” dn)
(5.22)
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5. Rough differential equations on Besov spaces

(with d/q := 0 for ¢ = oo and the usual modification for ¢* = oo0). Abbreviating
d := a+ [+ d/q, the last integral can be written as

[1R[°(| 5] * [ K <jmr (=)]) (B ||Lq
< [ (RIPVEGI(R)) 1K <jn (=] e+ 1B (R TK <52 (=R)D)]] e
< ALK () e 1K <l r + I oo AL K <1 (=R) ] o
where we apply Young’s inequality in the last estimate. Due to K; = F “lpj =
(2m) 7929 Fp(27.), we see easily that |||h|?|K;|(h)||pe S 2778 and || K| < 1.

To bound similarly the norms of K;_1 note that K ;1 is uniformly bounded and
supported on a ball with radius of order 2/. We conclude

14+
1Eillr S 277N Pl grssellgl e

The claimed bound ||Rr(9)|la+8p,00 thus follows from Lemma A.4.1 and choosing
q =00

To show the Hoélder continuity, we will apply similar arguments. For convenience
we define Af(y, z) := f(y) — f(z) for any function f. Using the additional regularity
of F', we obtain from (5.21) that

Fi(@) = [ Koo = p)Eegite—2) [ (Flo(z) + s0(0,2) ~ Flo(2))
x Ag(y,z)dsdydz

_/ (x—y)Kej_1(x — 2 / / sF"(g(2) +rsAg(y, 2)) Ag(y, z)? dr ds dy dz.

Hence, we can write

Rp(9) — Rr(h) = ) G;

j=>-1
with

(@ _/]R?/ / Kj(z —y)B<j(z = 2)s (F”(g(z)+T8Ag(yvz))Ag(y,z)2
— F"(h(2) + rsAh(y, 2)) Ah(y, 2)?) dr ds dy d=

—/R// YK<joi(z— 2)s
X ((F”(g(z) +7rsAg(y, z)) — F" (h(z) + rsAh(y, z)))
x Ag(y, 2)? + F"(h(z) + rsAh(y, 2)) (Ag(y, 2)* — Ah(y, z)2)> drdsdydz.

96



5.3. Linearization and commutator estimate

The Holder continuity of F” yields

G <l [, [ [ 1Kie =K ya(o =)
% (|9 = M) +rsalg = )y, 2)|
% |Ag(y, )" + |Alg = h)(y, )| (1Ag(y, )| + |Ah(y, 2)]) ) dr ds dy d=
<Pllper [ 1@ =9 <sata = 2)|(lo = k| Aay. )

+[A(g = 1) (5, )| (1Ag(y, 2)| + |Ah(y, 2)]) ) dy d=.

Using the inequalities by Minkowski and Cauchy-Schwarz, we obtain analogously to
(5.22)
Gl <Pl e [ @)K i1 (g = Al Ag(a = g2 = 2
+1Alg = h)(x -y, 2 —2)|w»
x (|ag(@ = y,x = 2) s + | AR(z — y, 2 — 2)|10) ) dy dz
<IPlge [ (1K)l Eja (=) ()
x (Ilg = BlZwn(g. 127 + (g — A ll) (g, |21) + wp(h,|2]) ) dz

<Pl (g = PlIZ NI p2g + 19 = Allap2a(lgllapzq + Ihlapzd) )27

The claimed bound follows again from Lemma A.4.1 and the symmetry in ¢ and
h. O

In the situation of Proposition 5.3.1 we conclude
F(u) = TF’(u)U + RF(U) with HRF(U)HZa,p/Q,oo rg Hu”i,p,oo'

Due to this linearization it remains to study Tr(TF/(u)u,g). For Holder continuous
functions [GIP12, Lem. 2.4] have shown that the terms 7(Tp:(yyu, &) and F'(u)7(u, §)
only differ by a smoother remainder. To find an estimate of the regularity for the
commutator

F(fagvh) = 7T(ngah) _fﬂ-(g7 h) (523)

in general Besov norms, we first prove the following auxiliary lemma, cf. [BCD11,
Lem. 2.97].

Lemma 5.3.3. Let p,p1,ps > 1 such that % = p% =+ p% < 1. Then for a € (0,1)
and for any f € B;‘l,oo(Rd) and g € LP2(RY) the operator [A;, flg :== Aj(fg) — fAjg
satisfies

1[4, flglize < 277 fllapr,collgll e
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5. Rough differential equations on Besov spaces

Proof. Since A;f = (F~tpj)* f , we observe
(A, flg(x) =F ~'pj + (f9)(x) — F(F ' pj * g)()
= [ F W)@ -y~ F@)gl@—y)dy. = eRr

Minkowski’s and Hoélder’s inequalities yield

1185 flglles < [ 1705 @) (76 =) = Do = )l
<lglzen [ 17 o)A =) = Fllm dy.
With the modulus of continuity (5.2) and the corresponding Besov norm, we obtain
1A, flgllze <llgllLe= / IF =05 ()wp, (f, 1y])] dy

<l sup {1yl (£ 1D} [ 191717 ;0] dy
yeR

~Fllapr.collgle 1117 o3I 1

For j = —1 the previous L'-norm is finite because x is smooth and compactly sup-
ported. For j > 0 we additionally note that F~1p; = 209 Fp(27.) implies
y1*1F = 25 @)l = 277wl F o)l 0 S 277 M

Lemma 5.3.4. Let « € (0,1), 8,7 € R such that a + 3+~ > 0 and f+v < 0.
Moreover, let p1,p2,p3 > 1 satisfy p% + p% + p% = % <1 andlet ¢ > 1. Then for

f,9,h € S(RY) the commutator operator from (5.23) satisfies

ITCF 95 Mllat s4v.m0 S 1 lprallglls.pa.allollyps.a-

Therefore, I can be uniquely extended to a bounded trilinear operator

I':BY (RY) x BS (RY) x BY, (R?) — BoAH(RY),

P1,9 p2,9 p3,q

Proof. Let f,g,h € S(Rd)- Using Trg = Zszl Zl2k+2 ApfAg = Ekzﬂ Arf(g —
Sk+29), we decompose
P(f7gah) = (ng7 ) - fﬂ-(gv )
=Y > (Ai(Trg)Ajh— fAigA;h)

jz=1ai—j|<1

S Y (A(ARN(G ~ Sis29) — AkfAig) Ajh

Gk>—14:li—j|<1

== > > D ApfA(Ske29)Ash

k>—1j5>—14:]i—j|<1

=:ag

+ > > > (A0 A9 — Skr29))Ajh. (5.24)

jZ2—1k>-14:|i—j|<1

=:b]‘
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5.3. Linearization and commutator estimate

We will separately estimate both sums in the following.
For k > —1 we have A;(Sk129) = 0 for i > k+ 2 due to property (iii) of the dyadic
partition of unity. Consequently,

k+2
ap = Z Z Akaz(Sk+Qg)AJh

i=—1 jili—j|<1

and its Fourier transform satisfies suppFay, C 288 for some ball B. Holder’s inequality
yields

k+2
laklle <IARFLe Do Do 18:(Ske29)llze2 | Ajh] os.
i=—1j:li—j|<1
Owing to Ai(Sks2g) = Aig for i < k and [AijArgllres < [IF 7 pill 1| Akgllze <
|Akg|lzr2 by Young’s inequality, we have

k+2

larllze SNARf e D D |Aigllzea || AR Les
i=—1 jili—j|<1
k+2

B,p2,00 H h‘H%P3700 Z 2_1’(5—"_7)
i=—1

—k
5 ) (B+7) ||Akf||Lp1 ||g||5,p2,oo‘|h||%p37007

using 3+ < 0 in the last estimate. Since 2¥¥||Af]|ze1 € £9, Lemma A.4.2 yields

S Akfllzedlgl

a H < h .
| 32 bl g S 1 losralglgmos bl g

Now, let us consider the second sum in (5.24). Note that

bj: Z Z Z ([Ai7Akf]Alg)Ajh: Z Z ([Ai,Sl,lf]Alg)Ajh.

ili—g]|<1 k>—11>k+2 ili—j|<11>—1

Since the support of the Fourier transform of S;_1 fA;g is of the form 2! A for some
annulus A, we have that

(A, Si—1f1A1g = Ai(Si—1fArg) — (Si—1f) (A Ag)

vanishes if |i — | > N for some N € N. Therefore,

b= > > ([AiSi1flAg)Ash

itli—g] <1 L~

has a Fourier transform supported on 2/ times some annulus. Using Holder’s inequal-
ity and Lemma 5.3.3, we estimate

ojllze S >° D27 ISk-1f]
irfi—j|<1 I
<o d(atBt)| 1]

aprooll AigllLez | Ajh] Les

apro0(27 ) 1 AgllLr2 )27 | A o

I~j
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5. Rough differential equations on Besov spaces

For any g¢o, g3 > ¢ satisfying % = q% + qig Holder’s inequality and Lemma A.4.2 yield
then

YP3,93*

b < h
| 50 0.1 S 1 sl

To obtain the claimed norm bound, recall that Bgiq(Rd) continuously embeds into
By (RY) for any ¢ < ¢'.
For p,q < co the Schwartz space S(R?) is dense By, (R9) for any a € R such that

there is a unique extension of C' on Bg,  (R?) x Bgm(Rd) x B (R?). For p = oo or

g = oo a similar argument as in [GIP12, Lem. 2.4] applies. O

Combining the previous results, we obtain the following corollary, cf. [GIP12, Lem.
2.7], which immediately implies Proposition 5.3.1 due to the embedding By, C L™
fora > 1/p and d = 1.

Corollary 5.3.5. Let p1,p2 € [1,00] satisfy p% + p% =: ]lg < 1. Let « € (0,1) and

B < 0 such that 2a+ 3 > 0 and a+ 3 < 0. Further, suppose F € Cl?Jr'Y(Rm) for some
v € (0,1] satisfying F(0) = 0. Then there exists a map Ilp: BS,  (RY) ><Bg27oo(Rd) —
Bg%jﬂ (RY) such that

m(F(f),9) = F'(f)n(f,9) + Tr(f,9)

and
L7 (f 9)ll2a+6,0.00 S I1Fllcz 112510011901 8.02,00-

For f1, fa € Bg‘hoo(Rd) N L®([RY) and g1,92 € BS _ (R?) we have furthermore

Pp2,00

ITE(f1,91) — OE(f2, 92)l20+8,p,00
S HFHob2+v<||f1||i,p1,q A f2ll2 100 + (I1£1]

x (14 91l 5.m00 A9 llapnce) ) (12 = ol + 11 = Follooo + 191 — 92l15.m00)-

ap1,00)

apro0 + [ f2

Proof. Setting IIr(f,g) :==T(F'(f), f,9) + m(Rr(f),g), we can write
T(F(f),9) = F'(N)m(f,9) + T(EF'(f), f.9) + 7(Re(f), 9) = F'(f)m(f,9) + e (f, 9).

Lemmas 5.1.1, 5.3.2 and 5.3.4 yield

ITLR(f, 9)||2a+ﬁ,p,oo SHF(F,(f), fyg)H2oc+B,p,oo + |7 (RF(f), g)||2a+,3,p,oo
SIE (P llaprc0 | fllapr o0 9118.p2,00 + 1BE(F) 201 /2,00 1911 8.p2,00
SUF (D llasproo + 1F ez | fllapro0) 1 laipr oo l191l 800,005

where we again used Besov embeddings. Finally, we apply (5.10).
The bound of ||II(f1,91) — IIr(f2, 92)||20+8.p,00 follows from analogous estimates,
using the argument-wise linearity of I' and 7w, the Holder continuity of Rp from
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5.4. The paracontrolled ansatz

Lemma 5.3.2 and

HFMNJWMMMWW/IWﬁ+4ﬁfﬁMﬁ f2)ds|

«,p1,9

SLHFUHw%—ﬁMﬁ—M%mNS
< ool f1 = Follapra (5.25)

for any ¢ € [1, 00]. O

5.4. The paracontrolled ansatz

Assuming that the driving signal ¢ satisfies { € By, for a > 1/3, we come back to
the RDE (5.1). Recall that it was given by

du(t) = F(u(t))é(t), uw(0) =up, teR,

where uy € R™, u: R — R™ is a continuous function and F': R™ — L(R",R™)
is a family of vector fields on R™. In Section 5.2 we have already considered the
case a > 1/2. The classical way to continuously extend Young’s approach to more
irregular driving signals is Lyons’ rough path theory, which additionally to the signal
¢ needs to handle the corresponding “iterated integral”.

As an alternative, we use in the present section a new paracontrolled ansatz similar
to Gubinelli et al. [GIP12]. We postulate that the solution u of the RDE (5.1) is of
the form

u=T,o0 + u”
with 9, u? € B, and a remainder u € 3572 . Decomposing F' (u)€ in terms of

Littlewood- Paley blocks and linearizing I’ by Proposition 5.3.1, we have

F(u)§ = Trp)§+m(F(u), )+ Te(F(u)) = Trw)é+F () (u, §) +10r (u, §) +Te (F(u)).

The presumed controlled structure yields that understanding the (problematic) term
7(u, &) reduces further to the analysis of 7(¢, £) owing to the commutator from (5.23):

m(u, ) = m(Td, &) + m(u¥,€) = u’n(¥,€) + T(u”,9,&) + m(u#,€).
e —— N——

3a—1 3a—1
eBp/3 q GBp/3 q

Plugging the paracontrolled ansatz into the RDE (5.1), the Leibniz rule and the above
observation yield

T d9 + Tguo® + du# = du = Tip& + F'(u)m(u, €) + Tp(u, &) + Te(F(u)).

Comparing the least regular terms on the left-hand and on the right-hand side, we
choose 9 as the solution to d¥ = ¢ with 9(0) = 0 and u? = F(u).

As already noted in Section 5.2, we cannot expect ¥ to be contained in any Besov
space (cf. Lemma 5.1.2). This requirement would especially be violated in most
interesting examples from probability theory, for instance, 1 being Brownian motion
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5. Rough differential equations on Besov spaces

or a martingale. In order to circumvent this issue, we use again the localizing function
¢ from Assumption 1. Still relying on d¢ = £ and ¥(0) = 0, we introduce the local
version of the signal

I7 =70 and &= didT = o7&+ o
The corresponding localized RDE is then given by
du = F(u)ér, u(0) = ug. (5.26)

This differential equation coincides with the original one on the interval [—7, 7] due
to p(t) =1 and ¢'(t) =0 for |t| < T.

Summarizing briefly the above discussion, we need two additional pieces of infor-
mation about very irregular signals. Namely, &7 has to be the derivative of a path
Y7 with compact support and the resonant term 7 (d7,£7) has to be well-defined.
This precisely corresponds to the classical rough path theory, where a path ¢ defined
on some compact interval is enhanced with the information of the iterated integral
[ ¥ dvs.

Analogously to the notion of geometric rough path (cf. for example Section 2.2. in
[FH14]), we introduce now the notion of geometric Besov rough path:

Definition 5.4.1. Let 7 > 0 and let C'* be the space of smooth functions J7: R —
R™ with support suppd7 C [-27,27] and 97(0) = 0. The closure of the set
{07,797, dI7)) = 97 € CF} C By, x B2y | with respect to the norm | - flapq +
| - [loa—1,p/2,q i3 denoted by 82:3 and (V7,n7) € Bg;g‘ is called geometric Besov rough

path.

Even with the driving signal (9,7) € Bg:g‘ we unfortunately cannot expect in general
that the solution u to the Cauchy problem (5.26) with &7 = dd7 lies in any Besov
spaces By, for finite p and g. On the other hand, Besov spaces on the compact domain
[T, T] seem not be convenient for the paraproduct approach since Littlewood-Paley
theory and Bony’s paraproduct are from their very nature constructed on the whole
real line. It appears to be natural to instead consider a weighted version of the
It6-Lyons S map given by

S: R x Bg:g‘ — By, via  (ug, 97, 7(d7, dd71)) = Yu, (5.27)

where u solves (5.26) with &7 = d¥7 and ¢: R — (0, 00) is a regular weight function
being constant one on [-27,27]. Consequently, provided ¥7 € C$ with {7 = ddr
the weighted solution @ := 1)u possesses the dynamic

/
v
(G
Let us emphasize that also this weighted differential equation still coincides with the
original RDE (5.1) restricted to the interval [-7,T].

The aim is now to continuously extend the weighted It6-Lyons map S from smooth
functions with support in [-27,27] to the geometric Besov rough paths or more
precisely from the domain R? x {(97, w(d7, dd7)) : ¥7 € CF} to R? x BY&. For
this purpose we specify our assumptions on the weight function 1 as follows:

da =y du+¢'u=F(a)ér + @(0) = up. (5.28)
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5.4. The paracontrolled ansatz

Assumption 2. For any 7 > 0 let ¢ = o7 € By, N C} be a strictly positive
function which is equal to one on [—27, 27 ] and suppose that there exist two constants

Cy, ¢y > 0 such that |1 /9|loe S Cy and max{yp(2T +1),9(=2T — 1)} > ¢y.

The conditions on ¢ are quite weak and allow for a large variety of weight functions
as illustrated by the following examples.

Example 5.4.2. Let a € (0,1), 7 > 0 and s € (0,1).

(i) The function
{1, [t < 2T,

Y7 (t) = w(t|—27)?
exp ( — %), [t| > 27,

satisfies Assumption 2 for Cy = k and ¢y, = e /2,

(ii) The function
L It| < 2T,
(L it = 27)) 7, 1 > 2T,

satisfies Assumption 2 for Cyy = \/k and ¢y, = 1/4.

PYr(t) = {

For later reference let us remark a property which makes weight functions fulfilling
Assumption 2 so suitable in our context.

Remark 5.4.3. For any two weight functions 1 and 1 satisfying Assumption 2, the
resulting weighted Besov morms of the solution u are equivalent. More precisely, it is
elementary to show

||1/’U||a,p,q IS (1 + C;H@Z) - 7»bHoa;D,q)||¢U||oe,zw

for any uw € By, which is constant on (—oo, —2T] and on [2T, 00).
In order to analyze the weighted RDE (5.28), we modify our ansatz to
i = Tp@)V7 + u”, where u” e 3572@ vr e CF.

Roughly speaking, in the terminology of [GIP12] the pair (@, F(@)) € (Bg,)? is said
to be paracontrolled by V7 € By,. The dynamic of u¥ is characterized in the next
lemma.

Lemma 5.4.4. Let ug € R™, let ¥ € CF with derivative {7 = di7 and suppose
that ¢ satisfies Assumption 2. Then the following conditions are equivalent:

(i) u is the solution to the ODE (5.26),
(ii) u can be written as u = ¥ ~1u where i solves the ODE (5.28),

(iii) U can be written as @ = Tpg V7 + u# where u# solves

/

du® = F(a)ér — d(Tr@dT) + ija, u?(0) = up = Tp(yd7(0).  (5:29)
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5. Rough differential equations on Besov spaces

Proof. For the equivalence between (i) and (ii) note that u = 1 ~'4 is well-defined by
Assumption 2 and that we have by the Leibniz rule

/

du= d(yla) =y tda— ﬁﬂ = F(u)éT, u(0) = ¥ ~1(0)@(0) = ug.

The equivalence between (ii) and (iii) follows by combining % = Trg)J7 + u¥ and
(5.28), which yields

/
du? = di — d(TF(ﬁ)ﬁT) = F(ﬂ)é’T — d(TF(ﬂ)ﬂ’T) 4 Ziﬂ

and due to @(0) = u(0) = ug the initial condition satisfies u# (0) = ug — Tz 97(0).
O

As we have seen in the discussion at the beginning of the present section, we want
to reduce the resonant term 7(F (@), &7) to the resonant term (¢, &7 ). Indeed, this
is possible as proven in the following proposition. The specific form of u allows to
improve the quadratic estimate (5.20) in Proposition 5.3.1 to a linear one. Its proof

is inspired by Lemma 5.2 by Gubinelli et al. [GIP12].
Proposition 5.4.5. Let o € (%,%), p>3,q¢>1, and F € C} with F(0) = 0. If
U1 € CF with derivative &7 = ddT, then for @ = Tp@d1 + u¥ with @ € By, and
u? € B§7Q,q one has

17 (F(@), &7) 201,724 S (I1Fllz v HFHQCE)(HﬂH%p,q + [[u™ |20 p/2,0)

x (HﬁT”a,p,q + ||’l97'||3,p,q + ||7T(197—a£7—)||2a—1,p/2,q)'

Proof. Step 1: To avoid the quadratic estimate, we first need a modified version of
Lemma 5.3.2. We will borrow some notation from the proof of this former lemma.
For brevity we define v, := Tp( U7 and recall @ := u such that @ = v, + u#. We
write

F(u) — F(0) = Tri(ayt + Rp(a)
with

Rp(@)= Y F; with Fj:=A;(F(a)— F(0)) — 8;_1(F'(@)A;i.
j>-1

For j <0, we saw in Lemma 5.3.2 that || Fj||;p2 S ||FHC;||11HLT,/2 which yields

11l or2 SIFllcp Uvullpore + 1™ [l o)
<IFllcx (I Tp@yd7 o + 0| 1or2)-
For j > 0, we deduce from (5.21) and our ansatz that

Bl =] [, Ko =Ky = 2) (P (0(:) + §2(aly) - (2)) — F'(0(:))
x (va(y) = va(2) + u#(y) — u#(2))) dy dz
<IFllep [, 1K@ =y i (@ = 2)[aly) = () louly) = va(z) dy dz

+20Plley [ 1K@ = p)Kejr(a = Dl (y) — u# ()| dyd

)
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5.4. The paracontrolled ansatz

Proceeding as in proof of Lemma 5.3.2 and applying Hdélder’s inequality, we obtain
for ¢* =q/(q¢—1)

I3l
<IFlcg [, 1KW1t - = 2) - 5@,
<[ (vale = (5= 2) = vul@)] dy d=
+2Flgy [ 1K@l @ = (4= 2) = wF @) 2 dy
<IPllp [, 150K <soa(y = e )y (v 1) dy
F20Flly [ 10K <j1(y = D)y (ut, 1) dy
<I| Fllg [ 111279 (LG B <ja (=)) ()]

x (|11 wp wus 11D €

S272|F | g2 (lvullapooo |

La*

(117 9y (@, BD| |+ 2 1R ey o (a, ])|

)

ap,g Tt ||U#||2oc,p/2,q)'

Due to Lemma 5.1.1 one further has
””uua,p,oo = |’TF(a)79THa,poo ~ HTF q97'Hoz,pq ~ ||FH<>OH197'Ha,pq
and thus Lemma A.4.1 gives

IRF(@)ll2a,/2,00 S I1Fllcz (L + 1 F oo 197 lapia) (18llapg + 16" ll2a,p/2,4)-  (5:30)

Step 2: Plugging in the ansatz once again and keeping the definition of our com-
mutator (5.23) in mind, we decompose

m(F(u), &) = 71(Tpr(a)t, 1) + T(Rp (@), $T)
=1 (Tpr(a)Tr(ay97: 67) + 7(Tprayu™, &) + m(Rp (@), &7)

=F' () (Tp@yV7, &) + T(F' (@), TpaydT, &7) + m(Teau®, ) + m(Rp (@), &7)
=F'(a)F(a)r(I7,&7) + F'(@)T(F (71) O, &7) + T(F'(a), Tpa 97, €T)
+ 1 (Tp gy, &7) + m(Rp(), 7). (5.31)

Therefore, we can bound ||7(F (@), {7)[l2a—1,p/2,4 by estimating these five terms sepa-
rately. We will apply the following bound which holds owing to the Besov embedding

3373_7;/2 B272_q/2 due to a > 1/p and which uses Bony’s estimates and 2o — 1 < 0:

for f € LU By and g € B272 1/2 it holds

1f9ll2a—1,p/2,0/2 S 1 T19ll2a—1p/2.972 + 17(f5 9 3a—1,p/3,0/2 + 1Ty fll2a=1,p/2,q/2
SHfHOOHgHQOc—l,p/Q,q/Q + (||f||0,oo,oo||9||3a—1,p/3,q/2 N Hf||a,p,ooH9H2a—1,p/z,q/2)
+ ll9ll2a—1.p/2,4/211 fll0,00,00
SUflloollgllza—1,p73.072) A (1f lap.oollgllza—1p/2,4/2)- (5.32)
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5. Rough differential equations on Besov spaces

Furthermore, note for the following estimates that ||{7||a—1p.q S [|97]a.p,q thanks to
the lifting property of Besov spaces, cf. [Tril0, Thm. 2.3.8].
Applying (5.32) and (5.10) to F' := F'F, we obtain for the first summand

HF,(’&)F(’&)W(’&T"fT)HZoa—l,p/Q,q SHF(&)HOQP,OOH"T(197—757')”201—1,10/27‘1
SIFl ey 1Pl

a,p,q ”71-(197-7 57—) |‘2a—1,p/2,q-
For the second term the above estimate (5.32) and Lemma 5.3.4 yield
”F/('&)F(F(ﬂ),Q9T7€T)“2a71,p/2,q S; HF/HOOHF(F<71)7197’7&7’)”304*1:10/3711

SNF Nooll F (@) llapal07 lapalléT o104
SIEIE o p.qlloT]

2
a?p7q’

where (5.10) is used in the last line. Lemmas 5.1.1 and 5.3.4 again together with
(5.10) gives for the third term

INCF (@), Tray07- 67l 1072 S I @ lapal Tr@ 07 llop all€7 a1 g
< IFIZ il pal 712

The second last term in (5.31) can be estimated by

57’”04—1710,11
SF oo 1w ll2ap/2, 197 llp.g

||7T(TF'(71)U#7§T)H2a—1,p/2,q S ”TF’(ﬂ)u#HQOz,p/Zq’

where a Besov embedding, Lemma 5.1.1 and (5.10) are used. Finally, for the last
term, note that there is some € € (0, — %) such that 3a — 1 — ¢ > 0. Applying
Lemma 5.1.1, Step 1 and Besov embeddings, we get
HW(RF(Q)v 57-)H2a—1,p/2,q 5 ||7T(RF(a)a £T)||3a—l—e,p/3,q
5 ||RF(Q)”2a—e,p/2,qHfTHa—l,p,q
S IFllez (T + 1 Flloo 97 llap.a) (]

These five estimates combined lead to the asserted bound. O

ap,g T Hu#H2a,p/2,q)HﬂTH%P:Q‘

Having established a linear upper bound for the resonant term = (F(a),{7), we
deduce the boundedness of the solution to the localized RDE (5.26) in the weighted
Besov norm.

Corollary 5.4.6. Let a € (1/3,1/2), p >3, ¢ > 1 and F € C? with F(0) = 0. Let
d1 € CF with derivative {7 = dir. If the bound

-1
1Fllez VIEIE < (T2 V1) (197 lamtpa + 197 lapq + 17007, 67)l20-1,5/2,0)

holds for a universal constant ¢ > 0, independent of ¥, F, ug and if ¢ satisfies
Assumption 2 for some sufficiently small Cy,, then the solution u to (5.26) satisfies

[Yullapg S (T2 V 1)(Ju(0)] + (IFllez v |!F||?ég)(||19’r|!a,p,q +1)
X (197 lavipug + 97|

2,p7q + H”T(ﬁTv gT) H2a—l,p/2,q)) .

106



5.4. The paracontrolled ansatz

Proof. We recall the characterization of & = ¥u from Lemma 5.4.4. In order to obtain
the desired estimate of the norm, we apply Bony’s decomposition and calculate

/

du# = F(ﬂ)fT - d(TF(ﬂ)’ﬁT) + gﬂ,

(G
Y
= Tp@wér + m(F(0),{7) + Tep (F(a)) — d(Tr@ydT) + o
_ . (.
= m(F(@),&7) + Ter (F(0) — Taray VT + o (5.33)
We bound the B?% !-norm of these four terms separately. The first term is bounded

p/2.4
by Proposition 5.4.5. To estimate the second term in (5.33), Lemma 5.1.1, (5.10) and

a Besov embedding yield

[ Ter (F(@)ll2a-1p/2.0 S 1Fllcp 167 o102 [l p,24
Sl o]

a7p7q”/&/HO¢7p7q‘

The third term in (5.33) can be estimated with the lifting property of Besov spaces,
Lemma 5.1.1, (5.10) and a Besov embedding

”Td(F(a))ﬁTuzafl,p/Q,q S dF(a)||oz—1,p72qH797’Hoc,p,2q
S IE (@ llap20l 07 lap2g S NF Ny 1allap.al97 llap.a-
For the last term in (5.33) we note the norm equivalence |[{ul| 52 ~ || fpse With
for u being constant outside of [—27, 27|, where we set ¢ := 119 for another weight

function v, satisfying Assumption 2. Hence, @l p/2 S |28 o2 < ||9¥allze @] ze by
Holder’s inequality. Since 2o — 1 < 0, a Besov embedding yields

/

/ / /
. v v _ _
||EuH2afl,p/2,q S ||EUHLP/2 S ||EHOOHUHLP/2 S(Tv 1)||EHooHUHLp-
Combining all the above estimates, we obtain
Il du#llaa—1p/2,4 SCeo(IFllcz V IFNE) (lallapg + 4% ll20,/2,4)
LT,
+ (T V Dl —lloollttl|ap,g
(U
with

05719 = ”197"’01,1’#1 + ”ﬁTHi,p,q + ||7T(197—7§7')||204—1,p/2,q'

Applying again the lifting property of Besov spaces [Tril0, Thm. 2.3.8] together with
the definition of u?, ||@|;p/2 < (T V1)|@|L» and the compact support of 97, we have

~

[ |20 p/2,0 SN[l porz + | du#lloa—1p/2.
<\ Tr@y 7l e + il o + | du[lag—1,/2.4
STV D) (IF o971 2o + l[allre) + 1 du®[|on—1 py2.q- (5.34)
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Hence, combining the last two inequalities leads to

Il du#llaa—1p/2.4 SCeo(I1Fllcz V IFNE) (lallapg + | du[l2a-1,p2,)
+(TV D (CeollFllcz v IFIE2) (1 lloll07]

Lp
/

_ (0 _
+ llallzr) + HEIIOOIIUIIa,p,q)'

If C’gﬂg(HFHCg Y HFH%;) is sufficiently small, we thus obtain

| du#”mfl,p/?,q
S(TVHCeu(l[Fllcz v IIFllég)(Hﬂlla,p,q + 1 Flloo 197l ap.q)

/

LTV 1>||1iuoo||aua,p,q- (5.35)

In combination with the ansatz and the bounds from above, Lemma 5.1.1 reveals

|| daHa—l,p,q < || d(TF(ﬂ)ﬂT)”a—Lpﬂ + || du#Ha—l,nq
SITar@ 97201720 + 1 Tr@ET la—1pq + 1| 0¥ (201,24
. W’ .
(T vV 1)(05,19(HFH05 v HFHQCE)(HUHa,p,q 1 Flooll97 llapg +1) + HEHooHUHa,p,q)-

Due to Remark 5.4.3 applied to 1) = 11ps, we can apply Lemma 5.1.2 to obtain
lillapa S [P2allapg < (T2 V1) (Ju(0)] + || difla—1,p.q)-

Y’ .
S (TPVDCeo(IFllz VIFIIE) + IIEHOO) ]| ovp.q

=:D
+(T?V ) ([uO)] + Cen(IFllcz V IFIE) NF looll97 llapq + 1))-

For D smaller than some universal constant we conclude the assertion. O

For any F € C} and ||F HC;:’ small enough, the following lemma reveals that the

weighted Ito-Lyons map S as introduced in (5.27) is locally Lipschitz continuous
with respect to the Besov norms on R? x Bg;l X B;;Yzfql and thus it can be uniquely
extended in a continuous way.

Lemma 5.4.7. Let o € (1/3,1/2), p > 3, ¢ > 1 and let F € C} with F(0) =
0. Assume 1 is a weight function satisfying Assumption 2 and let 97 € C§° with
derivative & = d7. Then there exits a polynomial on R3 such that, provided the
bound

1Fllgs + 1F122 < P(TV L [[07 llap.g: 1767, 97)ll20-10) 7"

holds and Cy is sufficiently small, there exists for every uy € R? a unique global
solution u € 8" with Yu € By, to the Cauchy problem (5.26). Furthermore, for fized

T, ¥ and F the weighted It6-Lyons map S is local Lipschitz continuous on R x cF
around (’LL(), 197—a 7-[-(197-7 67-))
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The local Lipschitz continuity is the key ingredient to extend the weighted It6-Lyons
map from smooth paths to irregular ones. The proof works similarly to the proofs of
Proposition 5.4.5 and Corollary 5.4.6 with an additional application of the Lipschitz
result in Proposition 5.3.1. Due to the necessary, but quite lengthy estimations, we
postpone the proof to Appendix A.5 with the hope to increase the readability of the
chapter.

The requirement F'(0) = 0 seems to be a purely technical assumption. However,
we decided not to get rid of this condition because it would only make all estimates
even more involved without the need of conceptually new ideas.

Finally, we can state our main result: There exist a continuous extension of the
weighted It6-Lyons map S from RY x C% to the domain R? x Bg:g‘. Similarly to
Theorem 5.2.1 we use a dilation argument together with a localization procedure to
circumvent the assumption that || F|| c3 has to be small. Allowing for general Besov
spaces, this theorem generalizes Lyons’ celebrated Universal Limit Theorem [LQ02,
Thm. 6.2.2] and in particular [GIP12, Thm. 3.3].

Theorem 5.4.8. Let T >0, a € (1/3,1/2),p >3, ¢> 1 and F € C} with F(0) = 0.
If the weight function 1 satisfies Assumption 2 with Cy, sufficiently small, then the
weighted Ito-Lyons map S as introduced in (5.27) can be continuously extended from

R? x CF to the domain R? x Bog‘. In particular, there exists a unique solution to
(5.27) for any geometric Besov rough path (V1,7 (Y7, ddr)) € 3070‘

An elementary formulation of Theorem 5.4.8 is presented in the next lemma. The
proof of Theorem 5.4.8 is then an immediate consequence.

Lemma 5.4.9. Assume the weight function v satisfies Assumption 2 with Cy suffi-
ciently small. Let T >0, a € (1/3,1/2), p >3, ¢ > 1 and F € C} with F(0) = 0.
Let further ug € R™ be an initial condition and (91,n7) € 82:3‘ be a geometric Besov
rough path. Let (V%) C C$ be a sequence of functions with corresponding derivatives

(&%) and (ug) C R™ be a sequence of initial conditions such that (ug, V%, w(95, EF))
converges to (ug, V7, n7) in R™ X Bg‘,ql BZQ)‘/)‘2 L Denote by u™ the unique solutzon

to the Cauchy problem (5.26) with ug and & for all n € N. Then there exists u € S’
such that Yu € By, and Yu™ — Yu in By . The limit u depends only on (uo, V7, 17)
and not on the approxzmatmg family (uo, om0, E7)).

Proof. In order to apply Lemma 5.4.7, we first need to ensure that ||F ||Cg is small
enough. Thus, as similarly done in Step 2 of the proof of Theorem 5.2.1, we scale 97
For some fixed € € (0, — 1/p) and for A € (0,1) we set

19?_,)\ — )\—a—i-l/p—‘reA)\,l%z_ and £n>\ /\1 a+1/p+eA>\£n

where we recall the scaling operator Ayf = f(\) for f € §'. Given this scaling,
still 5?’ = Aoy A holds true and the corresponding norms of fT and 19?’\ can be
controlled by the Lemmas 5.1.2 and 5.1.3, i.e.

A
Hf?‘ la-1p.q S 167 la-1,pq and

?)\ 9
||19?’ D4~ (1 \ TQ)||§7’ ||a71,p,q 5 (1 \ 7-2)”5%”04*1,10,(1-
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Moreover, again using Lemma 5.1.3 we can estimate

795, €M 1,72, = A2 PF2 (A0, ANER) |20 1 /2.4
< (W og Al + A 22 [ m (05, €1 2a—1,p/2.0-

Let us take once more the localization function ¢ from Assumption 1 and noticing that
o7V = ¥ for all n € N. Therefore, Lemma 5.4.7 provides for A > 0 sufficiently
small a unique global solution u™* € By, to

dum™ = N VPR () d(por93Y),  umMN0) = uf.

A

Setting now u" := A —1u™", we have constructed a unique global solution to

du" = F(u") d(paxt97), u(0) = ug.

Since (ug, 19"”\, 77(19?)‘, 771—)‘)) converges to (ug, 99, 7(9% ,52})) in R? x Bgfgl X B;?‘qul,
the continuity of the It6-Lyons map established in Lemma 5.4.7 implies that u™?*
converges to some u? in By, weighted by 9. Therefore, the solution u" converges to
u = Ay—1u? in B, weighted by 1, due to Lemma 5.1.3 and 5.1.3, which can be seen
analogously to Step 2 of the proof of Theorem 5.2.2. We note that u[_y7 y7] does
not depend on 7.

Following the same argumentation as in Step 3 of the proof of Theorem 5.2.2, we
can iterate this construction of u™ and w on intervals of the length 2A\T". In this way we
end up with a continuous function u such that yu € By, and ¢u™ converges to ¢u in
By .- Note that u depends only on (ug, J7, 7(97,&7)) but neither on approximating

fan’aily (ug, V5, m(0%, £F)) nor on pyr. O

While general Besov spaces contain functions with jumps, the paracontrolled dis-
tribution approach to rough differential equations as explored in the present section
only studies continuous functions. Therefore, we think a discussion is in order why the
paracontrolled distribution approach seems to be naturally restricted to continuous
functions.

Remark 5.4.10. The results in Section 5.5 apply only to Besov spaces By, for
p > 1. According to (5.20), our estimates result in a bound of the B;;Ygttll—norm.
Consequently, we require p > 3 and o > 1/3 in order to have positive reqularity. In
particular, our main theorem applies only to the case o > 1/p which implies that By,
embeds into the space of continuous functions.

If we want to extend our results to discontinuous functions, corresponding to o <
1/p, then we could hope that it helps to verify the previous results for p < 1. Let
us sketch some details on this idea, where we have to deal with the quasi-Banach
space By, for p < 1. In that case the triangle inequality only holds true up to a
multiplicative constant

1+ 9llapg < 21/p_1(||f||a,p,q +19llapg) for f.ge€ By
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5.5. Stochastic differential equations

Following the lines of the proof of Lemma 2.84 (or Lemma 2.49 respectively) in Ba-
houri [BCD11], we obtain in the case p € (0,1), ¢ > 1, a > 1/p =1, for u:= 3, u;
with suppu; C 2/B for some ball B that

[ells—1/p-1)p.0 S ||(2jSHUjHLP)szqv

provided the right-hand side is finite. For the commutator lemma in the case p € (0,1)
we thus cannot hope for more than the following: Replacing the assumption p > 1
with a4+ B+ v > (% — 1) vV 0 in the situation of Lemma 5.5.4, we conjecture

IT(f, g, h)||a+ﬁ+’yf(%fl)\/07p,q S a,p1,q||g||5,p2,q||h”%p3,Q‘

Applying this bound to (5.20), we obtain for p € (0,1)

apg T [|ul a,pvq) ”uHa,pyqug”a—l,p,q-

1T e (w, E)llsa—1-(3/p—1)p/3,0 < (| F(w)]

However, 3a—1—(3/p—1) > 0 is equivalent to o > 1/p, which is the same condition
as we had before, excluding discontinuous functions.

Alternatively, a higher order expansion in the linearization Lemma 5.3.2 could be
studied (corresponding to more additional information). If such a second order ex-
pansion would succeed, we may have the condition 4o — 1 > 0, but with the price of
imposing p/4 > 1. Consequently, we would again obtain oo > 1/p.

In conclusion, it appears natural that this approach is restricted to continuous func-
tions.

5.5. Stochastic differential equations

The purely analytic results from the previous sections for rough differential equations
allow for treating a large class of stochastic differential equations (SDEs) in a pathwise
way. While we assumed so far that the driving signal £ of the RDE (5.1) is given by a
deterministic function with a certain Besov regularity, we suppose from now on that &
is the distributional derivative of some continuous stochastic process X. Provided all
involved stochastic objects live on a suitable probability space (2, F,P) and setting
¢ := dX, the RDE (5.1) becomes an SDE with the dynamic

du(t) = F(u(t))dX,, u(0)=up, te€[0,1], (5.36)

where ug is a random variable in R™ and X is some d-dimensional stochastic process
for simplicity on the interval [0, 1].

Instead of relying on classical stochastic integration in order to give the SDE (5.36)
a meaning, we shall demonstrate here that the results of Section 5.2 and 5.4 are
feasible for a wide class of SDEs. For this propose the present section is devoted to
show the required sample path properties of a couple of stochastic processes. This
allows for solving SDEs which are beyond the scope of classical probability theory as
well as for recovering well-known examples. Let us emphasize that we present here
only a few exemplary stochastic processes to illustrate our results and do not aim for
the most general class of stochastic processes.
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5. Rough differential equations on Besov spaces

Gaussian processes

A well-known but very common example for a stochastic driving signal X is the
fractional Brownian motion, cf. [Cou07, Mis08]. A d-dimensional fractional Brownian
motion B = (B!,..., BY) with Hurst index H € (0,1) is a Gaussian process with
zero mean, independent components, and covariance function given by

1
E[B'Bi] = 5(SQH + 28—t — 5?1, st e0,1],

for i = 1,...,d. The Besov regularity of (fractional) Brownian motion is already
know for a long time due to Roynette [Roy93] and Ciesielski [CKR93]: it holds
(Bf)1epa) € BEL([0,1],R?) almost surely for any p € [1,00] and (Bf )01 ¢
ng([O, 1], R?) almost surely if ¢ < oo, see for instance [Ver09, Corrollary 5.3]. More
recently, Veraar [Ver09] investigated the Besov regularity for more general Gaussian
processes. The self-similar behavior of fractional Brownian motion implies that BY
has the same regularity H with respect to all p-scales of the Besov spaces. Therefore,
it suffices to focus on p = oo for this example.

Even if one could still rely on results from rough path theory (Lyons [Lyo98] or
Gubinelli et al. [GIP12]) in the case H > 1/3, the following lemma shows how to
recover the results for SDEs with our machinery. It in particular covers the fractional
Brownian motion.

Lemma 5.5.1 ([GIP12, Cor. 3.10]). Let X be a centered d-dimensional Gaussian
process with independent components whose covariance function fulfills for some H €
(1/4,1) the Coutin-Qian condition
E[|X; — X2 < |t — 5" and
E[(Xstr — Xo) (Xerr = Xo)]| S [t = 52722, (5.37)
for all s,t € R and all v € [0,|t — s|). For every o < H and any smooth function

¢ with compact support we have 9 X € BS, . Moreover, there exists an n € ngjgol
such that for every 6 > 0 and every 1» € S with [ (t)dt =1 it holds

Jim, P14 X)~(oX)|

a,oo,oo_‘_”ﬂ-(wn*((pX)’ d(@bn*(@X))_n)HQOé*LOO,OO > 5) = 07

where we denote Y™ := nip(n-).

In other words, every d-dimensional Gaussian process X satisfying the Coutin-Qian
condition (5.37) for some H € (1/3,1/2) can be enhanced to a geometric Besov rough
path and especially Theorem 5.4.8 can be applied to solve the SDE (5.36), cf. Coutin
and Qian [CQ02] or Friz and Victoir [FV10a].

Stochastic processes via Schauder expansions

Instead of approximating stochastic processes by processes with smooth sample paths,
in probability theory it is often more convenient to construct a process via an expan-
sion with respect to a basis of L?. The presumably most famous construction of this
type is the Karhunen-Loeve expansion of Gaussian processes.
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5.5. Stochastic differential equations

A classical construction of a Brownian motion on the interval [0, 1] is the Lévy-
Ciesielski construction based on Schauder functions. More generally, Schauder func-
tions are a very frequently applied tool in stochastic analysis. Notably, they are used
to investigate the Besov regularity of stochastic processes, cf. for example Ciesielski
et al. [CKR93] and Rosenbaum [Ros09], and very recently Gubinelli et al. [GIP14]
constructed directly the rough path integral in terms of Schauder expansions.

The Schauder functions can be defined as the antiderivatives of the Haar functions.
More explicitly they are given by

Gin(t) == 2722t — (k—1))  with (t) i=1t111/9/(t) = (t—3)11/21(t), tER,

for j e Nand 1 < k < 2", and Gy(0) := 1. The Haar functions form a basis of
L%([0,1],R) and it is obvious that G, € ng for 0 < < 1 and p,q € [1,00] with
B > 1/p, cf. [Ros09, Prop. 9]. The next lemma explains why an approximation of
stochastic processes in terms of Schauder expansions can also be used to show that a
process can be enhanced to a geometric Besov rough path.

Lemma 5.5.2. Let o € (1/3,1/2), p € (1/2,1], p > 2 and q¢ > 1. Suppose
(fm C ng is a sequence of functions such that suppf™ C [0,1] for all n € N.
If (f*,w(f", df")) converges in By, x BZ?‘;’; to some (f,n(f, df)) € By, X B‘g?{’ql,
then (f,w(f, df)) € Byg.

Proof. Let us recall that C7° is dense in {g € ng : suppg C [0,1]}. Hence, for
every n € N there exists a sequence of smooth functions (f™™),, C C° such that
(fmm df™™) converges to (f™, df™) in Bﬁq X B{f’;l as m goes to infinity, where the
convergence of the second component follows by the first one using the lifting property
of Besov spaces. Since > 1/2, we also have by Lemma 5.1.1 that «(f™", df™™)
converges to 7(f", df™) as m goes to infinity. Therefore, taking a diagonal sequence
there exists a sequence of smooth functions (f™™(™), C C5° such that (f,7(f, df)) =
limy, o0 7(f™™) | df7(") where the limit is taken in By, % Bﬁ?‘;’ql. O

Based on Lemma 5.5.2 it is now an immediate consequence of Theorem 6.5 and
6.6. in [GIP14] that suitable hypercontractive processes and continuous martingales
can be lifted to geometric Besov rough paths since the Lévy area term in [GIP14]
corresponds to our resonant term. Especially, all examples from probability theory
in [GIP14] are feasible with our results as well.

Random functions via wavelet expansions: a prototypical example

Motivated from the previous construction, we shall consider as a last example more
general stochastic processes which can be constructed as series expansion with random
coefficients and with respect to a wavelet basis. There are several applications of such
models, for instance, in non-parametric Bayesian statistics to construct priors on
function spaces. One advantage is that the sample path regularity of such processes
can be determined precisely, cf. Abramovich et al. [ASS98], Chioica et al. [CDD"12]
and Bochkina [Bocl13].
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5. Rough differential equations on Besov spaces

Wayvelets can be taken to be localized in the time domain as well as in the Fourier
domain. The latter property is quite convenient when working with Littlewood-
Paley theory as we demonstrate in the following. Let {1; : j € N, k € Z} be an
orthonormal wavelet basis of L2(R), where 1; 1. (t) 1= 27/2)(27t — k) for j > 1, k € Z,
t € R, and ¢ € L2(R). Then, any function f € L?(R) can be written as

=Y > (S tn(t), teR, with (f, ) : /f (8)¥jk(s

7=0keZ

Replacing the deterministic wavelet coefficients with real valued random variables
(Zj k)jk, we now study stochastic processes of the type

Xp=> Z ikik(t), teR. (5.38)

720 k=—27

Without loss of generality, we truncated the series expansion in k since we always
have to localize the signal in order to apply our results concerning RDEs, see the
equations (5.11) and (5.26). Let us impose the following weak assumptions on (Z; 1), x

and (1 )k

Assumption 3. Let {¢1 : j € N, k € Z} be an orthonormal and band limited
wavelet basis of L?(R) and suppose Zjr=AjpBj forall j >0and k= -27,... , 27
where

o (Aj);k are random variables satisfying E[A? /P < 277% for some s > 0 and
pe{2,4},

o E[A;;] =0 forall j,k and E[A; Ay, ] =0 for j # m or k #n,

e (Bj)jkr are Bernoulli random variables with P(Bjr = 1) = 277" for some
re0,1),

[ E[Aj,kBj,kAmmBmm] = E[Aj,kAm,n]E[Bj,kBmm] for all j, k,m, n.

The assumption allows for a quite flexible class of stochastic processes although it
is chosen in a way to keep the required analysis simple. Having in mind the construc-
tion of Brownian motion via Schauder functions, as mentioned before, the process
X behaves like a Wiener process if (Z;);, are i.i.d. standard normal distributed
random variables with s = 1. In particular, the self-similar behavior of Brownian
motion is then achieved because all wavelet coefficients at a level j are of the same
order of magnitude (especially r = 0). If instead r € (0, 1), we expect only a number
of 2+ 29=") non-zero wavelet coefficients at each level j and we consequently gain
from measuring the regularity of X in a B -norm for some finite p.

In order to profit from (Z;);, being uncorrelated we choose an even number p.
Together with the requirement p > 3 in our uniqueness and existence theorem for
RDEs (Theorem 5.4.8), we thus take p = 4. Keeping in mind that the Littlewood-
Paley theory relies on decomposing functions into blocks with compact support in
the Fourier domain, we postulate to take band limited wavelets, e.g. Meyer wavelets.
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5.5. Stochastic differential equations

Note that X then is not compactly supported, but exponentially concentrated on a
fixed interval for an appropriate choice of ). We obtain the following sample path
regularity of X:

Lemma 5.5.3. If X is defined as in (5.38) and satisfies Assumption 3, then X € By,
almost surely for any o <'s+ o — 3 and for p € {2,4}.

Proof. Applying formally the Littlewood-Paley decomposition, one has

X=> AKX

j=-1

and for the sake of brevity we introduce the multi-indices A = (7, k) with || := j.
Noting that by the assumption on the wavelet basis suppFiyy C 2MA for some
annulus A independent of A, we obtain Ajiy = 0if |j — |A|| is larger than some fixed
integer. Therefore, the Littlewood-Paley blocks are well-defined and given by

AjX: Z Z)\Ajw)\ for jz—l
X[ X[~

Further, let us remark that X as given in (5.38) exists in By if >, A; X exists as
limit in Bp;.
In order to show the claimed Besov regularity, we have to verify

18, X [p S 2796+ 712 for > 1, pe{2,4}.

Let us focus on p = 2. The case p = 4 can be proved similarly relying on the estimates
for the forth moments of (Z)), see also Lemma 5.5.5 below. For j > —1 we have

212X = [ E[(X 23u50) ] de
A

= SEIZZn] [ Apa()Aun () dt £ 30 27BN (a2 dr,
A

AN

where the last equality follows from (Z)) being mutually uncorrelated. Hence, we
further estimate

EA;X[I7:] S > 27N a 912,

A
27’
< Z 2—(2s+r)j’ Z ||77Z}j/,k’||%2 —9 Z 2—2j'(s+7‘/2—1/2).
J'~g k=—24' J'~j

By the Littlewood-Paley characterization of the Besov norm we conclude

E[| X lapi] = > POB[|A;X||1e] S Y 2lamsTr/212)
jz—1 i>-1

which is finite whenever a < s+ r/2 — 1/2. O
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5. Rough differential equations on Besov spaces

Remark 5.5.4. With analogous estimates as in Lemma 5.5.3 it is easy to show that
X € By a.s. for any a < s+ % — % for any even p > 2 provided E[Ag.”k]l/p <278
still holds for these higher powers.

The derivative of X is naturally given by dX; = 3, Zj,kw;"k(t) for t € R. The
crucial point is now, that we can indeed verify that the resonant term (X, dX) is
in Bg"){_l almost surely due to the probabilistic nature of X. The following lemma
highlights how the stochastic setting nicely complements the analytical foundation.

Lemma 5.5.5. Suppose X is given by (5.38) and satisfies Assumption 3, then

XeBy, and n(X,dX)e B35

1
almost surely for any a < s+ 7 — 3.

Proof. We start as in the classical proof of Bony’s estimate (Lemma 5.1.1 (iii), cf.
[BCD11, Thm. 2.85]), and decompose

m(X,dX)= Y R; with Rj:= > (A;_,X)(A;dX).
Jj=—1 lv|<1

By the properties of the Littlewood-Paley blocks the Fourier transform of R; is sup-
ported in 27 times some fixed ball. Consequently, AyR; =0if j/ 2 j and thus

SO D A X)(A; dX)| 2

Jzi" v<1

|aym(X, dX) | = || 3 Ay
325’

Now we proceed similarly to Lemma 5.5.3 (using again the multi-indices A = (j, k)):
E[[[(Aj-,X)(A; dX)|[72]
2
= [E[( X 2 Zu(dimtn)(3504,)) ] dt
R A1,A2
= Y ElZ0Z0ZnZ] [ (B3, (Aguin (A0, de

AlyeeesAdt
[A-J~g

< ¥ EIRZA] [ () (A0,
gy

+ (Agoutba) (A4, ) (Dymsthr ) (By94,) ) dt

+ > E[Z] /R (A ) (Ajeh)* dt

NN~
S Y 27 g (i, o (o, lzallvdg s + llebns |l zallbh, Nl 2a)
A1F#£Ag:
[A~j
+ > 27 Uy 1
NN~
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5.5. Stochastic differential equations

Plugging in 1, = 2//2(27 - —k), we obtain
E[|[(Aj_, X)(A; dX)|| 2] < 277@str/2-2),

The assertion follows from Lemma A.4.2 by the compact support of FR; for j >
—1. O

Combining the two previous lemmas, we conclude that stochastic models of the
form (5.38) are prototypical examples of geometric Besov rough paths, which were
introduced in Definition 5.4.1, and thus Theorem 5.4.8 can be applied to the corre-
sponding stochastic differential equations.

Proposition 5.5.6. Let ¢ satisfy Assumption 1 and X = (X',...,X"™) be an n-
dimensional stochastic process. Suppose each component X, d = 1,...n, is of the
form (5.38), fulfills Assumption 3 for % < s+ 7 and the corresponding coefficients
(Zﬁk) and (Z;:’k) are independent for d = m and all j, k. Then, the localized process

pX can be enhanced to a geometric Besov rough path, that is p X € Bgf almost surely
fora e (%,s—&—%— 3).

Proof. The regularity for each component X%, d =1,...,n, is determined by Lemma
5.5.3 and thus X € Bf, for a € (3, s+%—3). Furthermore, a smooth approximation
is given by the projection of X onto the first J > 1 Littlewood-Paley blocks as used
in the proof of Lemma 5.5.3 or similarly by projecting on the first J > 1 wavelet
resolution levels.

The resonant terms F(Xd, dXd)7 d =1,...,n, are constructed in Lemma 5.5.5
again by a smooth approximation in terms of Littlewood-Paley blocks. Due to the
independence of the corresponding coefficients (Z]('i,k) and (Z7},) for d # m, an analo-
gous calculation shows that the resonant terms 7(X¢, dX™) for d # m exists as limit
of the same approximation in terms of Littlewood-Paley blocks, too.

It remains to deduce the above results for the localized process ¢ X as well. The
regularity and approximation of ¢ X is implied by Lemma 5.1.2. For the resonant
term 7(pX, d(¢X)) we observe that

(X, d(pX)) = 1(eX, ¢ X) + 7(pX, pdX),

where the first term turns out to be no issue thanks to Lemma 5.1.1. For the second
one we apply Bony’s decomposition to ¢ X and our commutator lemma (Lemma 5.3.4)
to get

(X, pdX) =om(X, 0 dX) + ¢l'(p, X, o dX) + 7(7(p, X), pdX)
+ X7(p, 0 dX) + T'(X, 9, pdX).
Due to the regularity of ¢ and X it remains to only handle the first term. By
another analogous application of the commutator lemma, we finally see that the

approximation of the resonant term of the localized process can be deduced from the
above approximation of the non-localized process and therefore X € Bg”f‘. O
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6. An FBSDE approach to the Skorokhod
embedding problem for Gaussian
processes with non-linear drift

The Skorokhod embedding problem (SEP) stimulates research in probability theory
now for over 50 years. The classical goal of the SEP consists in finding, for a given
Brownian motion W and a probability measure v, a stopping time 7 such that W
possesses the law v. It was first formulated and solved by Skorokhod [Sko61, Sko65]
in 1961. Since then there appeared many different constructions for the stopping time
7 and generalizations of the original problem in the literature. Just to name some
of the most famous solutions to the SEP we refer to Root [Roo69], Rost [Ros71] and
Azéma-Yor [AYT79]. A comprehensive survey can be found in [Ob104].

Recently, the Skorokhod embedding raised additional interest because of some
applications in financial mathematics, as for instance to obtain model-independent
bounds on lookback options [Hob98| or on options on variance [CL10, CW13, OdR13].
An introduction to this close connection of the Skorokhod embedding problem and
robust financial mathematics can be found in [Hob11].

In this chapter we construct a solution to the Skorokhod embedding problem for
Gaussian process GG of the form

t t
G: .= Gy +/ agds +/ Bs AW,
0 0

where Gy € R is a constant and «, 8: [0,00) — R are suitable functions. Especially,
this class of processes includes Brownian motions with non-linear drift. The SEP
for Brownian motion with linear drift was first solved in the technical report [Hal68]
and 30 years later again in [GF00] and [Pes00]. Techniques developed in these works
can be extended to time-homogeneous diffusions, as done in [PP01], and can be seen
as generalization of the Azéma-Yor solution. However, to the best of our knowledge
there exists no solution so far for the case of a Brownian motion with non-linear drift.

The spirit of our approach is related to the one by Bass [Bas83], who employed
martingale representation to find an alternative solution of the SEP for the Brownian
motion. This approach was further developed for the Brownian motion with linear
drift in [AHIO8] and for time-homogeneous diffusion in [AHS15]. It rests upon the
observation that the SEP may be viewed as the weak version of a stochastic control
problem: the goal is to steer G in such a way that it takes the distribution of a
prescribed law, which in case of zero drift is closely related to the martingale repre-
sentation of a random variable with this law. We therefore propose in this chapter
to formulate and solve the SEP for GG in terms of a fully coupled Forward Backward
Stochastic Differential Equation (FBSDE).
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6. An FBSDE approach to the Skorokhod embedding problem

In general terms, the dynamics of a system of FBSDE is expressed by the equations
S S
Xo=Xo+ [ pn X Ve Z)dr+ [ o X, Y5, Z,) AW,
0 0
T T
Y, = £(Xp) / Xy, Yo, Z,) dr — / Z,dW,, te[0,T),
t t

with coefficient functions u, o of the forward part, terminal condition £ and driver f
of the backward component. In recent decades the theory of FBSDE with its close
connection to quasi-linear partial differential equations and their viscosity solutions
has been propagated extensively, in particular in its numerous areas of applications
as stochastic control and mathematical finance (see [EPQ97] or [PW99]).

There are mainly three methods to show the existence of a solution for a system of
FBSDE: the contraction method [Ant93, PT99], the four step scheme [MPY94] and
the method of continuation [HP95, Yon97, PW99]. As a unified approach, [MWZZ15]
(see also [Del02]) designed the theory of decoupling fields for FBSDE, which was sig-
nificantly refined in [FI13]. It can primarily be seen as an extension of the contraction
method. In our approach of the SEP via FBSDE, we shall focus on the subclass of
Markovian ones for which all involved coefficient functions (&, (u,o, f)) are deter-
ministic. We, however, have to allow for not globally, but only locally Lipschitz
continuous coefficients (u, o, f) in the control variable z, and therefore to develop an
existence, uniqueness and regularity theory for FBSDE in this framework.

Equipped with these tools we solve the FBSDE system resulting from the SEP. We
first construct a weak solution, i.e. we obtain a Gaussian process of the above form
and an integrable random time such that, stopped at this time, the process possesses
the given distribution v. Under suitable regularity on the given measure v and the
process, this construction will be carried over to the originally given Gaussian process
G. This solves the SEP for G.

The chapter is organized as follows: in Section 6.1 we relate the SEP to a fully
coupled system of FBSDE, and in Section 6.2 we establish general results for decou-
pling fields of FBSDE. The Skorokhod embedding problem is solved in Section 6.3,
in its weak and in its strong version. Section A.6 recalls some auxiliary results for
BMO processes.

6.1. An FBSDE approach to the Skorokhod embedding
problem

We consider a filtered probability space (2, F, (Ft):e[0,00), P) large enough to carry
a one-dimensional Brownian motion W. The filtration (F)sc[,00) s assumed to be
generated by the Brownian motion and is assumed to be augmented by P-null sets.
We also assume that F = o (U2 Ft)-

We start by formulating the Skorokhod embedding problem in the modified version
(SEP): For given probability measure v on R and a Gaussian process X on [0, c0)
of the form

t t
X; = Xo—l—/ asds—l—/ Bs AW, (6.1)
0 0
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6.1. An FBSDE approach to the Skorokhod embedding problem

where X € R is some predetermined constant and «, 3: [0,00) — R are deterministic
measurable processes such that [j |as|ds + f§ 2 ds < oo for all ¢t > 0, find

e a (F;)-stopping time 7 s.t. E[7] < oo together with
e a starting point c € R

such that ¢ + X has the law v.

In order to have a truly stochastic problem S should not vanish and v should not
be a Dirac measure. In fact we will assume that g is bounded away from zero later
on.

Our method of solving this problem is based on the observation that it may be
viewed as the weak version of a stochastic control problem: We want to steer X
in such a way that it takes the distribution of a prescribed law. The spirit of our
approach is related to an approach to the original Skorokhod embedding problem
by Bass [Bas83] that was later extended to the Brownian motion with linear drift in
[AHIO8]. The procedure of both papers can be briefly summarized and divided into
the following four steps.

(i) Construct a function g: R — R such that g(W;) has the given law v.

(ii) Use the martingale representation property of the Brownian motion for o = 0
and § =1 or BSDE techniques for a = k # 0 and 8 = 1 to solve

1 1
Yt:g(Wl)—n/ ngs—/ ZsdWs, te]0,1]. (6.2)
t t

(iii) Apply the random time-change of Dambis, Dubins and Schwarz in the quadratic
variation scale [; Z2ds to transform the martingale [; Zs dW, into a Brownian
motion B. This also provides a random time 7 := fol 72 ds fulfilling B; + k7 +
Yy = g(Wh), which is why Bz + x7 + Y has the law v.

(iv) Show that 7 is a stopping time with respect to the filtration generated by B
through an explicit characterization using the unique solution of an ordinary
differential equation. With this description transform the embedding with re-
spect to B into one with respect to the original Brownian motion W to obtain
the stopping time 7 as the analogue to 7.

The first step of the algorithm just sketched is fairly easy. Let F': R — [0, 1] such
that F(z) := v((—o0,x]) is the cumulative distribution function associated with v
and define F~1: (0,1) — R via

F~ly) :=inf{z € R : F(x) > y}.
Denoting by ® the distribution function of the standard normal distribution, we

define g: R — R as g(x) := F~1(®(z)). It is straightforward to prove that g has the
following properties.
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6. An FBSDE approach to the Skorokhod embedding problem

Lemma 6.1.1. The function g is measurable and non-decreasing. Moreover, if v is
not a Dirac measure, then g is not identically constant and g(W7) has the law v.

Proof. Since ® and F~! are measurable and non-decreasing, their composition ¢ is
also measurable and non-decreasing.

Clearly, g can only be constant if F~! is constant, which can only happen if F
assumes values in {0,1}. This only happens in case v is a Dirac measure. In order
to see that g(W1) has the law v, note that

P(g(W1) < z) = P(FH(®(W))) < z) = P(W1 < & (F(x))) = ®(® ' (F(x))) = F(x)
for all z € R. ]

Since we want to require as little regularity as possible for the processes involved, we
use the concept of weak differentiability. We recall that a measurable f: O xR” — R
is weakly differentiable if there exists a mapping d%\ f:Q xR® — R™™ guch that

d d
[ e N dh == [ Flw e dn

for any smooth test function ¢: R” — R with compact support, for almost all w € €.
Now define a measurable function 9: [0,00) — R via

R t
(5(t) = X0+/ agds
0

such that X; = 8(t) + I Bs dWs. Obviously, § is weakly differentiable. Conversely,

for every weakly differentiable function 6: [0,00) — R we can set Xg := 6(0) and
as = 0(s).

Furthermore, define H: [0,00) — [0, 00) via

H(t) := /Otﬁgds.

Note that H is weakly differentiable, monotonically increasing and starts at 0. If
we assume that (3 is bounded away from 0, H becomes strictly increasing and in-
vertible such that the inverse function H~! is monotonically increasing and Lipschitz
continuous. In this case we can define

§:=6o0H "

If 8=1, then H = Id and thus § = 4.

For the second step we assume that 3 is bounded away from 0 and observe that the
random time change, which turns the martingale [; Z; dW, into a Gaussian process of
the form [; s dB, simultaneously turns the scale process [; Z2ds into [;32ds = H.
This means we have to modify the classical martingale representation of g(W7) to

g(W1)+S<H1</01 Zfds» —E{Q(Wl)+3<H1</Ol szs)ﬂ :/01 Z, dWs,
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6.1. An FBSDE approach to the Skorokhod embedding problem

which amounts to finding a solution (Y, Z) to the equation

1Q_ga%)—5(lf2@b>—Adadw; te[0,1]. (6.3)

For §(t) = 0 this would be just the usual martingale representation with respect to
the Brownian motion. Also for a linear drift §(¢) = st and § = 1 equation (6.3) can
be rewritten as

Y}::YH—/@/ Zfdszg(Wl)—H/ Zfds—/ ZsdWs, t€0,1],
0 t t

which is exactly the BSDE (6.2) related to the SEP as stated in [AHIO8]. In the
case of a Brownian motion with general drift equation (6.3) would be a BSDE with
time-delayed terminal condition. Unfortunately, the theory of BSDE with time-delay
as introduced by Delong and Imkeller in [DI10] and extended by Delong [Dell2] for
time-delayed terminal conditions reaches its limits in our situation. Alternatively, we
will understand equation (6.3) as an FBSDE and develop new techniques to solve it.
This will be done in Sections 6.2 and 6.3. Before we tackle the solvability of equation
(6.3), we show that it really leads to the desired result in the third step of our
algorithm. To be mathematically rigorous we introduce

e S?(R) as the space of all progressively measurable processes Y: Q x [0,1] — R
satisfying
supge(o,1) E[|Ve[?] < o0,

e H?(R) as the space of all progressively measurable processes Z: 2 x [0,1] — R
satisfying
E[Jy |2/ df] < o,

where | - | denotes the Euclidean norm on R.
For the rest of the chapter we assume that S is bounded away from 0, i.e.
infsE[O,oo) 85| > 0.

Lemma 6.1.2. Suppose (Y, Z) € S®’(R) x H?(R) is a solution of (6.3). Then there
exist a Brownian motion B and a random time T with E[T] < oo such that

YO+X0+/ ozsder/ BsdBs = g(W7).
0 0

Proof. Note that Y is a martingale with quadratic variation process f(f Z2%ds for t €
[0,1] since Z € H?(R). Now choose another Brownian motion B which is independent
of Y. If necessary we extend our probability space such that it accommodates the

Brownian motion B. Set 7 := H~! (fol 7?2 ds), and define the time-change of the
type of Dambis, Dubins and Schwarz by

<T

inf {t>0: [322ds > [§ B2ds} H0<r
oy =
1 if r > 7.
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6. An FBSDE approach to the Skorokhod embedding problem

Observe that the condition r < 7 is equivalent to [5 82ds < fol Z2ds. Since Y,, is
a continuous martingale with quadratic variation H(r) = [; 82 ds, we can define a
Brownian motion B by

5 _ AT 1
ByimBy—Byot [ Ve, 0<r<cc
0 /Bs
We find

7 . 1
/ ﬁsst+6<%>+m=Y1—Yo+a</ zzds> + Yo = (W),
0 0

E[7] :E[H—l (/01 Zfds” < o0,

where we used that Z € H?(R) and H~! is Lipschitz continuous. O

and further

As an immediate consequence of the previous lemma we observe the following fact.
If we have a solution (Y, Z) € S?(R) x H?(R) of equation (6.3), we obtain a weak
solution to the Skorokhod embedding problem, i.e. a Gaussian process of the form
(6.1), a starting point ¢, and an integrable random time such that our process stopped
at this time possesses a given distribution.

At a first glance equation (6.3) might look easy. We, however, have to deal with a
fully coupled FBSDE which in addition possesses a not globally Lipschitz continuous
coefficient in the forward component.

6.2. Decoupling fields for fully coupled FBSDEs

The theory of FBSDE, closely connected to the theory of quasi-linear partial differen-
tial equations and their viscosity solutions, receives its general interest from numerous
areas of application among which stochastic control and mathematical finance are the
most vivid ones in recent decades (see [EPQ97] or [PW99]). Owing to their general
significance, we treat the theory of FBSDEs and their decoupling fields in a more
general framework than might be needed to obtain a solution to our equation (6.3).

Although in Section 6.2.2 we will focus on the Markovian case, which means that
all involved coefficients are purely deterministic, let us dwell in a more general setting
first.

6.2.1. General decoupling fields

For a fixed time horizon T' > 0, we consider a complete filtered probability space
(Qa F, (‘Ft)tE[O,T]ap)a

is a d-dimensional Brownian motion in-

where Fy contains all null sets, (W;).c(0,1)
elo,g) With F := Fr. The dynamics of an

dependent of Fy, and F; := o(Fp, (W),
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FBSDE is classically given by

Xo=Xo+ [ . Xp Yo Z)dr+ [ o, XY, Z) AW,
0 0

T T
Yt:ﬁ(XT)—/t f(?“,XT,YT,ZT)dr—/t Z, dW,.,

for s,t € [0,7] and Xy € R", where (§, (i, 0, f)) are measurable functions. More
precisely,

£: QxR - R™, p:0,T] x Q x R® x R™ x R™*4 4 R",
0:[0,T] x Q x R® x R™ x R™*4 5 R4 :[0,T] x Q x R" x R™ x R™*4 5 R™,

for n,m,d € N. Throughout the whole section u, ¢ and f are assumed to be
progressively measurable with respect to (Ft)icpo,7], i-e. pljog, o1, [l are
B([0,T]) ® F; @ B(R") @ B(R™) @ B(R™*4)-measurable for all t € [0, T].

A decoupling field comes with an even richer structure than just a classical solution.

Definition 6.2.1. Let t € [0,7]. A function u: [t,T] x QxR" — R™ with u(T,-) = ¢
a.e. is called decoupling field for (&, (1, 0, f)) on [t, T if for all t1,te € [t,T] with t; <
to and any Fy,-measurable X, : @ — R” there exist progressive processes (X,Y, Z)
on [t1,ts] such that

S S
X, = X, +/ W, X, Yo, Z) dr + [ o(r, X0, Yo, Z,) AW,
t1

t
to 1t2
Vo=Yi - [ f0. XY Z)dr - [ Z0aw,
S S
Yy = u(s, Xs), (6.4)

for all s € [t1,t2]. In particular, we want all integrals to be well-defined and (X, Y, Z)
to have values in R™, R™ and R™*¢, respectively.

Some remarks about this definition are in place.

e The first equation in (6.4) is called the forward equation, the second the back-
ward equation and the third will be referred to as the decoupling condition.

e The requirement that X should start at Xy, is referred to as the initial condition.
By a slight abuse of notation we will sometimes refer to Xy, itself as the initial
condition.

e Note that, if to = T, we get Y7 = £(X7) a.s. as a consequence of the decoupling
condition together with u(7,-) = £. At the same time Yp = £(X7p) together
with the decoupling condition implies u(7,-) = £ a.e.

e If t9 = T we can say that a triplet (X,Y,Z) solves the FBSDE, meaning that
it satisfies the forward and the backward equation, together with Y = {(X7).
This relationship Yy = £(X7) is referred to as the terminal condition.

By an abuse of notation the function & itself is also sometimes referred to as
the terminal condition. Sometimes we will describe the relationship u(7),-) = ¢
a.e. with this term.
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6. An FBSDE approach to the Skorokhod embedding problem

In contrast to classical solutions of FBSDE, decoupling fields on different intervals
can be pasted together.

Lemma 6.2.2 (Lemma 1 in [FI13]). Let u be a decoupling field for (&, (u,o, f)) on
[t,T] and @ be a decoupling field for (u(t,-),(u,o,f)) on [s,t], for 0 < s <t < T.
Then, the map @ given by @ := a1,y + ulyq is a decoupling field for (€, (i, 0, f))
on [s,T].

We want to remark that, if u is a decoupling field and @ is a modification of w,
i.e. for each s € [t,T] the functions u(s,w,-) and @(s,w,-) coincide for almost all
w € , then 4 is also a decoupling field to the same problem. So u could also be
referred to as a class of modifications. Some of the representatives of the class might
be progressively measurable, others not. As we see below a progressively measurable
representative does exist if the decoupling field is Lipschitz continuous in x:

Lemma 6.2.3 (Lemma 2 in [FI13]). Let u: [t,T] x & x R™ — R™ be a decoupling
field to (&, (u, 0, f)) which is Lipschitz continuous in x € R™ in the sense that there
exists a constant L > 0 s.t. for every s € [t,T]:

lu(s,w,z) —u(s,w,2’)| < Lz — 2/| Vz,©' € R",  for a.a. w € Q.

Then u has a modification @ which is progressively measurable and Lipschitz contin-
uous in x in the strong sense

li(s,w,r) — (s, w,z’)| < L|lx — 2| Vs € [t,T], w € Q, z,2’ € R™.

Let I C [0,7] be an interval and u : I x Q x R™ — R™ a map such that u(s,-) is
measurable for every s € I. We define

Ly :=supinf{L > 0|for a.a. w € Q: |u(s,w,z) — u(s,w,z’)| < L|lz — 2|
sel

for all z,2" € R"}, (6.5)

where inf ) := co. We also set Ly, , := oo if u(s, -) is not measurable for every s € I.
One can show that L, , < oo is equivalent to v having a modification which is truly
Lipschitz continuous in z € R™.

We denote by L, . the Lipschitz constant of o w.r.t. the dependence on the last
component z and w.r.t. the Frobenius norms on R™*? and R™*¢. We set Loy, =00
if o is not Lipschitz continuous in z.

By L;i = ﬁ we mean ﬁ if Ly, > 0 and oo otherwise.

Definition 6.2.4. Let u: [t,T] x Q x R"™ — R™ be a decoupling field to (§, (i, o, f)).
We say u to be weakly regular if L, , < L;é and sup,ep 7 [[u(s, -, 0)[leo < 0.

This is a natural definition due to Lemma 6.2.3. In practice, however, it is im-
portant to have explicit knowledge about the regularity of (X,Y, 7). For instance,
it is important to know in which spaces the processes live, and how they react to
changes in the initial value. Specifically, it can be very useful to have differentiability
of (X,Y,Z) w.r.t. the initial value.
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In the following we need further notation. For an integrable real valued random
variable F' the expression E;[F] refers to E[F'|F;], while E; __[F] refers to ess sup E[F|F],
which might be oo, but is always well defined as the infimum of all constants ¢ €
[—00, 00] such that E[F|F;] < ¢ a.s. Additionally, we write ||F||s for the essential
supremum of |F|.

Definition 6.2.5. Let u: [t,T] x Q x R™ — R™ be a weakly regular decoupling field
o (& (u,0,f)). We call u strongly reqular if for all fixed t1,ty € [t,T], t1 < to, the
processes (X, Y, Z) arising in (6.4) are a.e unique and satisfy

t
sup By, ool Xsl?]+ sup Epy ool[Vsl?] + By 00 [/ : |Z5|2d5] < 00, (6.6)
SE[t1,t2] sE€[t1,t2] t1
for each constant initial value X;, = = € R". In addition they must be measurable
as functions of (z,s,w) and even weakly differentiable w.r.t. = € R™ such that for
every s € [t1, 2] the mappings X and Y, are measurable functions of (z,w) and even
weakly differentiable w.r.t. x such that
X[ <o

Jo

ds

v

esssup,ecgre Sup  sup K¢ oo ’
veEST— 186 t1,t2]

dy
dx
i

esssUpgere SUP  sup Ei o Y,
veSn—1 sefty,tg] d

&

—Z

6.7
e < 0. (6.7)

esssup,egrn SUp i o [ /
t1

vesn—1

We say that a decoupling field on [t,T] is strongly reqular on a subinterval [t1,t2] C
[t, T] if u restricted to [t1, o] is a strongly regular decoupling field for (u(t2,-), (1, o, f)).

Under certain conditions a rich existence, uniqueness and regularity theory for
decoupling fields can be developed. We will summarize the main results, which are
proven in [FI13]:

Assumption (SLC): (&, (u, 0, f)) satisfies standard Lipschitz conditions (SLC) if
(i) (w,0, f) are Lipschitz continuous in (z,y, z) with Lipschitz constant L,

(i) [[(ul + £+ o) (-5+,0,0,0)[| < o0,
(ili) £: Q x R™ — R™ is measurable such that [|£(-,0)]lsc < 00 and L¢, < L.

Theorem 6.2.6 (Theorem 1 in [FI13]). Suppose (&, (i, 0, f)) satisfies (SLC). Then
there exists a time t € [0,T) such that (&, (,u, o, f)) has a unique (up to modification)
decoupling field w on [t,T] with Ly, < L} and supgepe, 7 llu(s, -, 0)|[oo < 00.

A brief discussion of existence and uniqueness of classical solutions can be found
in Remark 3 in [FI13]. For later reference we give the following remarks (cf. Remark
1 and 2 in [FI13]).

Remark 6.2.7. It can be observed from the proof that the supremum of allh =T —t,
with t satisfying the properties required in Theorem 6.2.6 can be bounded away from
0 by a bound, which only depends on
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6. An FBSDE approach to the Skorokhod embedding problem

e the Lipschitz constant of (u,o, f) w.r.t. the last 3 components, T,
o Lgand L - L, <1,
and which s monotonically decreasing in these values.

Remark 6.2.8. It can be observed from the proof that our decoupling field u on
[t,T] satisfies Ly(s.) e < Leo + C(T — s)%, where C' is some constant which does not
depend on s € [t,T]. More precisely, C depends only on T, L, L¢ 5, L¢ 2Ly, and is
momnotonically increasing in these values.

We can systematically extend this local theory to obtain global results. This is
based on a simple argument which we will refer to as small interval induction.

Lemma 6.2.9 (Lemma 11 and 12 in [FI13]). Let T1 < Ty be real numbers and let
S C T, Ty).

(i) Forward: If Th € S and there exists an h > 0 s.t. [s,s+h|N[T1,T2] C S for all
s € S, then S = [Th, T3] and in particular Ty € S.

(i) Backward: If To € S and there exists an h > 0 s.t. [s — h,s]N[T1,T>2] C S for
all s € S, then S = [Ty, Ts] and in particular Ty € S.

Using these simple results we obtain global uniqueness and global reqularity of a
decoupling field.

Theorem 6.2.10 (Corollary 1 and 2 in [FI13]). Suppose that (&, (u,0, f)) satisfies
(SLC).

(i) Global uniqueness: If there are two weakly regular decoupling fields u® u? to
the corresponding problem on some interval [t,T], then we have u® = 4@ yp
to modifications.

(ii) Global regularity: If there exists a weakly regular decoupling field u to this
problem on some interval [t,T], then u is strongly regular.

Notice that Theorem 6.2.10 only provides uniqueness of weakly regular decoupling
fields, not uniqueness of processes (X,Y, Z) solving the FBSDE in the classical sense.
However, using global regularity in Theorem 6.2.10 one can show:

Corollary 6.2.11 (Corollary 3 in [FI13]). Let (&, (p, 0, f)) fulfill (SLC). If there
exists a weakly regqular decoupling field u of the corresponding FBSDE on some interval
[t,T], then for any initial condition X; = x € R"™ there is a unique solution (X,Y, Z)
of the FBSDE on [t,T) satisfying

< 00.

T
sup E[[X,%] + sup E[[Vs’] +E [ [ 1z as
s€(t,T) s€(t,T] t
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6.2.2. Markovian decoupling fields

A system of FBSDE given by (&, (i, 0, f)) is said to be Markovian if these four
coefficient functions are deterministic, that is, if they depend only on (¢, z,y,2). In
the Markovian situation we can somewhat relax the Lipschitz continuity assumption
and still obtain local existence together with uniqueness. What makes the Markovian
case so special is the property

"Zs = ux(37Xs) : 0(37X57 Ys, Zs)”y

which comes from the fact that u will also be deterministic. This property allows us
to bound Z by a constant if we assume that ¢ is bounded.

Lemma 6.2.12 (Lemma 14 in [FI13]). Let p,o, f,€ satisfy (SLC) and assume in
addition that they are deterministic. Assume that we have a weakly reqular decou-
pling field uw on an interval [t,T]. Then u is deterministic in the sense that it has a
modification which is a function of (r,x) € [t,T] x R™ only.

An application of Lemma 6.2.12 is the following very fundamental result.

Lemma 6.2.13 (Lemma 15 in [FI13]). Let (&, (u,0, f)) satisfy (SLC) and suppose
that these coefficient functions are deterministic. Let u be a weakly reqular decoupling
field on an interval [t,T]. Choose t1 < ta from [t,T] and an initial condition Xi,.
Then the corresponding Z satisfies || Z|loco < Ly - ||0]0o-

If | Z]| oo < 00, we also have || Z|lso < Luzllo(y 5 0)|loo(1 = LuzLo )"t

Next we investigate the continuity of v as a function of time and space.

Lemma 6.2.14 (Lemma 16 in [FI13]). Assume that (u, o, f) have linear growth in
(z,y) in the sense

(Il + ol + /D) (tw,2,y,2) S C(L+ |2+ Jy)  V(t,2,y,2) € [0, T]XR"xR™xR™*4,

for a.a. w € Q, where C € [0,00) is some constant.

If u is a strongly regular and deterministic decoupling field to (&, (u, 0, f)) on an
interval [t, T, then u is continuous in the sense that it has a modification which is a
continuous function on [t,T] x R™.

This boundedness of Z in the Markovian case motivates the following definition.
It will allow us to develop a theory for non-Lipschitz problems via truncation.

Definition 6.2.15. Let ¢t € [0,7]. We call a function u: [t,T] x Q x R” — R™ with
u(T,w, ) = &(w,-) for a.a. w € Q a Markovian decoupling field for (£, (u,o, f)) on
[t,T)] if for all t1,ty € [t,T] with ¢; <t and any F3,-measurable Xy, : £ — R”™ there
exist progressive processes (X,Y, Z) on [t1,t2] such that the equations in (6.4) hold
a.s. for all s € [t1,t5], and additionally || Z]|s < occ.

We remark that a Markovian decoupling field is always a decoupling field in the
standard sense as well. The only difference is that we are only interested in triplets
(X,Y, Z), where Z is a.e. bounded.

Regularity for Markovian decoupling fields is defined very similarly to standard
regularity.
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6. An FBSDE approach to the Skorokhod embedding problem

Definition 6.2.16. Let u: [t,T] x 2 x R” — R™ be a Markovian decoupling field to
(&, (>0, 1))-

o We call u weakly regular if L, . < L, and supgepe,r) llu(s, -, 0)][oo < 00

e We call a weakly regular u strongly regular if for all fixed t1,t2 € [t, T, t1 < to,
the processes (X,Y, Z) arising in the defining property of a Markovian decou-
pling field are a.e. unique for each constant initial value X;, = = € R” and
satisfy (6.6). In addition they must be measurable as functions of (z,s,w)
and even weakly differentiable w.r.t. = € R™ such that for every s € [t1, 2]
the mappings X and Y; are measurable functions of (z,w), and even weakly
differentiable w.r.t. = such that (6.7) holds.

e We say that a Markovian decoupling field on [t, T is strongly regular on a subin-
terval [t1,ta] C [¢,T] if u restricted to [t1,ts] is a strongly regular Markovian
decoupling field for (u(ts,-), (1,0, f)).

Now we define a class of problems for which an existence and uniqueness theory
will be developed.

Assumption (MLLC):
(&, (u, 0, f)) fulfills a modified local Lipschitz condition (MLLC) if

(i) the functions (u,o, f) are
a) deterministic,

b) Lipschitz continuous in (z,y, z) on sets of the form [0, 7] x R" x R™ x B,
where B C R™*? is an arbitrary bounded set,

c¢) and fulfill ||x(+,0,0,0)|/c0, [[£(-,0,0,0)|lc0, lo(-,+,*,0)||00s Lo,z < 00,
(ii) &: R™ — R™ satisfies L¢, < L, .
We start a providing a local existence result.

Theorem 6.2.17. Let (&, (u,0, f)) satisfy (MLLC). Then there exists a time t €
[0,T) such that (&, (u,0, f)) has a unique weakly regular Markovian decoupling field
w on [t,T]. This u is also strongly regular, deterministic, continuous and satisfies
SUDy, 1, X, | Z]|co < 00, where t1 < to are from [t,T] and Xy, is an initial value (see
the definition of a Markovian decoupling field for the meaning of these variables).

Proof. For any constant H > 0 let yz: R™*? — R™*% be defined as

H
X (%) = 1{1<mz + ml{\zEH}Z-
It is easy to check that xp is Lipschitz continuous with Lipschitz constant L, =1
and bounded by H. Furthermore, we have xg(z) = z if |2| < H. We implement an
"inner cutoft” by defining (ug, op, fi) via pg(t,z,y, 2) = p(t, x,y, xg(2)), ete.
The boundedness of x i together with its Lipschitz continuity makes (ugr, o, fr)
Lipschitz continuous with some Lipschitz constant L. Furthermore, Ly, . < Ly ..
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Also (pm,om, fir) have linear growth in (y,z) as required by Lemma 6.2.14. Ac-
cording to Theorem 6.2.6 we know that the problem given by (&, (g, o, fi)) has a
unique weakly regular decoupling field u on some small interval [/, T] where t' € [0,T).
We also know that this u is strongly regular, u is deterministic (by Lemma 6.2.12),
and continuous (by Lemma 6.2.14).

We will show that for sufficiently large H and ¢ € [/, T') it will also be a Markovian
decoupling field to the problem (&, (i, 0, f)). Using Remark 6.2.8

1 /
Lytye < Lea + Cu(T —t)1 Ve[, T,

where C'y < o0 is a constant which does not depend on ¢ € [/, T]. For any t; € [t/,T]
and F -measurable initial value X, consider the corresponding unique X,Y,Z on
[t1,T] satisfying the forward equation, the backward equation and the decoupling
condition for pg,op, fi and u. Using Lemma 6.2.13 we have || Z||oc < Ly 2|00 <
Lyg(llo(-,+,+0)||oc + LsH) < 00 and, therefore,

1
||Z|| SUPsclty,T] LU(S,')yx' H0—(777O>H°° < (LE’I+CH(T_t1)4) ] ||O-(’77O)||OO
F T L=sweey a1 Lugsalo: T 1= LeyLg. — Lo Cy(T — 1)1
1
LQJ ‘7‘7'70 o) Cu(T —t1)x - ')'7'50 00
_ eallo,,,0)] O =)t ol O

-
-

1= L¢pLo, — Lo .Cu(T — 1) 1= L¢pLo, — Lo .Cu(T —t1)

for T' — t1; small enough.
Now we only need to

L x '7'7'70 00
e choose H large enough such that 51_”22—]:)” becomes smaller than %,

e and then in the second step choose t close enough to 7', such that
— Ly .Cu(T — t)i becomes smaller than 3 (1 — L¢ ;Lo,.),

1
- CHHU&’ ’L’O)Hg"(T 9% becomes smaller than %.
—L¢oLo:

Considering (6.8) this implies that if ¢; € [¢t,T] the process Z a.e. does not leave
the region in which the cutoff is "passive”, i.e. the ball of radius H. Therefore,
u restricted to the interval [¢t,T] is a decoupling field to (&, (u,0, f)), not just to
(& (um,om, fr)). It is even a Markovian decoupling field due to the boundedness of
Z. As a Markovian decoupling field it is weakly regular, because it is weakly regular
as a decoupling field to (&, (um,om, fr)).

Uniqueness: Assume than there is another weakly regular Markovian decoupling
field @ to (&, (i, 0, f)) on [t,T]. Choose a t; € [t,T] and an = € R"™ as initial con-
dition X;, = z, and consider the corresponding processes (X,Y, Z) that satisfy the
corresponding FBSDE on [t1,T], together with the decoupling condition via @. At
the same time consider (X,Y, Z) solving the same FBSDE on [t1,T], but associated
with the Markovian decoupling field u. Since Z,Z are bounded, the two triplets
(X,Y,Z) and (X,Y, Z) also solve the Lipschitz FBSDE given by (&, (1, o5, fzr)) on
[t1,T] for H large enough. The two conditions Y = (s, X;) and Y, = u(s, X,) imply
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6. An FBSDE approach to the Skorokhod embedding problem

by Remark 3 in [FI13] that both triplets are progressively measurable processes on
[tl,T] x €1 s.t.

T
sup Eo oo []XS\Q] + sup Epoo UYSPH +Eo 00 [/ ZS,QdS} < 0
SE[tl,T} SE[tl,T} t1

and coincide. In particular, @(ty, z) = Yy, = Vi, = u(ty, ).

Strong regularity of u as a Markovian decoupling field to (£, (u, 0, f)) follows di-
rectly from the above argument about uniqueness of (X,Y, Z) for deterministic ini-
tial values and bounded Z, and the strong regularity of u as decoupling field to

& (wm,0H, fH))- O

Remark 6.2.18. We observe from the proof that the supremum of all h =T —t with
t satisfying the hypotheses of Theorem 6.2.17 can be bounded away from 0 by a bound,
which only depends on

L4 LE,I; L&,z : La,z;
b ||U(‘7'7'70)||OO} T; Loyz;

e the values (Ly)pejo,00) where Ly is the Lipschitz constant of (i1, 0, f) on [0,T] x
R™ x R™ x By w.r.t. to the last 3 components, where By C R™ ¢ denotes the
ball of radius H with center 0,

and which is monotonically decreasing in these values.

The following natural concept introduces a type of Markovian decoupling fields for
non-Lipschitz problems (non-Lipschitz in z), to which nevertheless standard Lipschitz
results can be applied.

Definition 6.2.19. Let u be a Markovian decoupling field for (&, (u, 0, f)).

o We call u controlled in z if there exists a constant C' > 0 such that for all t1,t5 €
[t,T], t1 < t9, and all initial values Xy, the corresponding processes (X,Y, Z)
from the definition of a Markovian decoupling field satisfy |Zs(w)| < C, for
almost all (s,w) € [t,T] x Q. If for a fixed triplet (¢1,t2, X¢,) there are different
choices for (X,Y, Z), then all of them are supposed to satisfy the above control.

e We say that a Markovian decoupling field on [t, T is controlled in z on a subin-
terval [tq,ta] C [¢,T] if u restricted to [t1,t2] is a Markovian decoupling field for
(u(te,-), (1, 0, f)) that is controlled in z.

e A Markovian decoupling field u on an interval (s,7T] is said to be controlled
in z if it is controlled in z on every compact subinterval [t,T] C (s,T] with C
possibly depending on ¢.

Remark 6.2.20. Our Markovian decoupling field from Theorem 6.2.17 is obviously
controlled in z: consider (6.8) together with the choice of t < t; made in the proof.
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6.2. Decoupling fields for fully coupled FBSDEs

Remark 6.2.21. Let (&, (u, 0, f)) satisfy (MLLC), and assume that we have a Marko-
vian decoupling field u on some interval [t,T|, which is weakly reqular and controlled
in z. Then u is also a solution to a Lipschitz problem obtained through a cutoff as in
Theorem 6.2.17. As such it is strongly reqular (Theorem 6.2.10) and deterministic
(Lemma 6.2.12). But now Lemma 6.2.14 is also applicable, since due to the use of a
cutoff we can assume the type of linear growth required there. So u is also continuous.

Lemma 6.2.22. Let (&, (u,0,f)) satisfy (MLLC). For 0 < s <t < T let u be a
weakly reqular Markovian decoupling field for (€, (u, 0, f)) on [s,T]. If u is controlled
in z on [s,t] and T —t is small enough as required in Theorem 6.2.17 resp. Remark
6.2.18, then u is controlled in z on [s,T].

Proof. Clearly, u is not just controlled in z on [s, t], but also on [¢t,T] (with a possibly
different constant), according to Remark 6.2.20. Define C' as the maximum of these
two constants.

We only need to control Z by C for the case s < t; <t <ty < T, the other two
cases being trivial. For this purpose consider the processes (X,Y, Z) on the interval
[t1,t2] corresponding to some initial value Xy, and fulfilling the forward equation,
the backward equation and the decoupling condition. Since the restrictions of these
processes to [t1, ] still fulfill these three properties we obtain |Z,(w)| < C for almost
all 7 € [t1,t], w € Q.

At the same time, if we restrict (X, Y, Z) to [t, t2], we observe that these restrictions
satisfy the forward equation, the backward equation and the decoupling condition for
the interval [t,ts] with X} as initial value. Therefore |Z,(w)| < C holds for a.a.
r € [t,t2], w € Q as well. O

The following important result allows us to connect the (MLLC)-case to (SLC).

Theorem 6.2.23. Let (&, (i, 0, f)) be such that (MLLC) is satisfied and assume that
there exists a weakly reqular Markovian decoupling field u to this problem on some
interval [t,T). Then u is controlled in z.

Proof. Let S C [t,T] be the set of all times s € [t,T], s.t. u is controlled in z on [¢, s].

e Clearly t € S: For the interval [t,t] = {t} one can only choose t; = t3 =t and
so Z: [t,t] x Q — R™*4 is dt @ dP-a.e. 0, independently of the initial value Xy, .
So we can take for C' any positive value.

e Let s € S be arbitrary. According to Lemma 6.2.22 there exists an h > 0
s.t. w is controlled in z on [t,(s + h) A T] since ||u((s + h) AT, )|[cc < 00
and Ly ((s4n)at,) < L;’i. Considering Remark 6.2.18 and the requirements

[ulloo < 00, Ly < L, L, we can choose h independently of s.

This shows S = [t,T] by small interval induction. O
Note that Theorem 6.2.23 implies together with Remark 6.2.21 that a weakly regu-
lar Markovian decoupling field to an (MLLC) problem is deterministic and continuous.

Such a u will be a standard decoupling field to an (SLC) problem if we truncate
u, o, f appropriately. We can thereby extend the whole theory to (MLLC) problems:
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6. An FBSDE approach to the Skorokhod embedding problem

Theorem 6.2.24. Let (&, (p,0, f)) satisfy (MLLC).

(i) Global uniqueness: If there are two weakly regular Markovian decoupling fields
u® u?) to this problem on some interval [t,T], then u(t) = u(?),

(i) Global regularity: If that there exists a weakly regular Markovian decoupling
field u to this problem on some interval [t,T], then u is strongly regular.

Proof. 1. We know that u(!) and u(® are controlled in z. Choose a passive cutoff
(see proof of Theorem 6.2.17) and apply 1. of Theorem 6.2.10.

2. u is controlled in z. Choose a passive cutoff (see proof of Theorem 6.2.17) and
apply 2. of Theorem 6.2.10. ]

Lemma 6.2.25. Let (&, p,0,f)) satisfy (MLLC) and assume that there exists a
weakly reqular Markovian decoupling field u of the corresponding FBSDE on some
interval [t,T].

Then for any initial condition X; = x € R™ there is a unique solution (X,Y,Z) of
the FBSDE on [t,T] such that

sup E[|X|!] + sup E[|Y:)] + || Z]|e0 < oo
s€(t,T] s€(t,T)
Proof. Existence follows from the fact that w is also strongly regular according to 2.
of Theorem 6.2.24 and controlled in z according to Theorem 6.2.23.

Uniqueness follows from Corollary 6.2.11: Assume there are two solutions (X,Y, Z)
and (X,Y, Z) to the FBSDE on [t, T] both satisfying the aforementioned bound. But
then they both solve an (SLC)-conform FBSDE obtained through a passive cutoff.
So they must coincide according to Corollary 6.2.11. O

Definition 6.2.26. Let IM C [0,T] for (¢, (u,0, f)) be the union of all intervals

[t,T] C [0,T] such that there exists a weakly regular Markovian decoupling field u
on [t,T1.

Unfortunately, the maximal interval might very well be open to the left. Therefore,
we need to make our notions more precise in the following definitions.

Definition 6.2.27. Let 0 <t < T.

e We call a function u: (¢t,7] x R" — R™ a Markovian decoupling field for
(& (u,0,f)) on (¢,T] if u restricted to [t',T] is a Markovian decoupling field
for all ¢’ € (¢, 7.

e A Markovian decoupling field u on (t,77] is said to be weakly regular if u re-
stricted to [/, T'] is a weakly regular Markovian decoupling field for all ¢’ € (¢, T'.

e A Markovian decoupling field w on (¢,7] is said to be strongly regular if u
restricted to [/, T] is strongly regular for all ¢’ € (¢,T].

Theorem 6.2.28 (Global existence in weak form). Let (£, (i, 0, f)) satisfy (MLLC).
Then there exists a unique weakly reqular Markovian decoupling field u on IH%X. This
u 1s also deterministic, controlled in z and strongly regular.

Moreover, either IM. =10,T] or IM = (t*_.T], where 0 <tM < T.

max max min> min
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6.3. Solution to the Skorokhod embedding problem

Proof. Let t € IM . Obviously, there exists a Markovian decoupling field w® on
[t,T] satisfying L , < L, and SUDgc[t, 7] %8 (s, -,0)||oo < co. @) is controlled in
z and strongly regular due to Theorems 6.2.23 and 6.2.24. We can further assume
w.l.o.g. that (") is a continuous function on [t,T] x R™ according to Remark 6.2.21.
There is only one such %4® according to Theorem 6.2.24. Furthermore, for ¢,t' € A
the functions ©* and @(*) coincide on [tV ¢/, T] because of Theorem 6.2.24.

Define u(t, ) := u®)(t,-) for all t € IM . This function u is a Markovian de-
coupling field on [t,T], since it coincides with @) on [t,T]. Therefore, u is a
Markovian decoupling field on the whole interval I} and satisfies Lu\[t,T] z < L;;,
SUPget, 7] llul 17 (85 - 0)]loo < 00 forall t € IM .

Uniqueness of u follows directly from Theorem 6.2.24 applied to every interval

t,T) C I},
Addressing the form of I} | we see that IM = [t, T] with t € (0,77 is not possible:

Assume otherwise. According to the above there exists a Markovian decoupling field «
on [t,T]s.t. Ly < L, and SUPsep,7 [[u(s; *, 0)]loo < 0o. But then u can be extended
a little bit to the left using Theorem 6.2.17 and Lemma 6.2.2, thereby contradicting
the definition of IM O

max*

M

The following result basically states that for a singularity ¢ ;, to occur u,; has to

"explode” at tM

min*

Lemma 6.2.29. Let (¢, (u, 0, f)) satisfy (MLLC). If IM = (tM._T], then

max min>

-1

0,27

lim Lu(t,~),x =L

where u is the Markovian decoupling field according to Theorem 6.2.28.

M

Proof. We argue indirectly. Assume otherwise. Then we can select times ¢,, | ;.

n — oo such that
sup Ly(t,,),2 < L;i.
neN
But then we may choose an i > 0 according to Remark 6.2.18 which does not depend

on n and then choose n large enough to have ¢, —t* < h. So u can be extended to
the left to a larger interval [(t, — h) V 0, T contradicting the definition of I}/ O

max*

6.3. Solution to the Skorokhod embedding problem

In this section we present a solution to the Skorokhod embedding problem as stated
in (SEP) at the beginning of Section 6.1 based on solutions of the associated system
of FBSDE.
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6. An FBSDE approach to the Skorokhod embedding problem

6.3.1. Weak solution

Let us therefore return to our FBSDE (6.3) that can be rewritten slightly more
generally as

xM :x(1)+/81dWr, x® :x<2>+/s Z%dar,
t t
(1) (2) r 1) y(2)
Y, = g(xW) — 5(x % )—/ Z,dW,, (s, XU, X@) = v, (6.9)
S

-
for s € [t,T] and = = (x(l),x@)) € R2. So using the notations of Section 6.2 we
have

ult,w,z,y,2) = (0,2%)7, o(t,w,z,y,2) = (1,0)",
flt,w,z,y,2) =0, E(w,z) = g(a) = 6(=®),

for all (t,w,z,y,2) € [0,T] x A xR2xRxRandd=1,n=2and m = 1. In
particular, the problem satisfies (MLLC).

Notice that by choosing z = (¢, 2T = (0,0)T and T = 1 we will have
X(I) W1 and X1 = [ Z2%ds, which makes the FBSDE equivalent to (6.3).

With the general results of Section 6.2.2 at hand we are capable to solve this
system of equations. In other words, we are able to perform the second step of our
algorithm to solve the SEP.

Lemma 6.3.1. Assume ¢ and g are Lipschitz continuous. Then for the FBSDE (6.9)
there exists a unique weakly reqular Markovian decoupling field w on [0, T]. This u is
strongly regular, controlled in z, deterministic and continuous.

In particular, equation (6.3) has a unique solution (Y, Z) such that || Z||ec < o0.

Proof. Using Theorem 6.2.28 we know that there exists a unique weakly regular
Markovian decoupling field u on IM . This u is furthermore strongly regular, con-
trolled in z, deterministic and continuous. It remains to prove I} = [0,T]. Due
to Lemma 6.2.29 it is sufficient to show the existence of a constant C' € [t, 00] such
that Ly .. <C <L, Lforallt € IM . In our case L;é = 00, so we have to prove
that the weak partial derlvatlves of u with respect to (1) and 2 are both uniformly
bounded.

Fix t € IM and consider the corresponding FBSDE on [t,T]: First notice that
the associated triplet (X,Y,Z) depends on the initial value z = (a;(l),a:@))T € R?,
even in a weakly differentiable way with respect to the initial value x, according to
the strong regularity of u. For more on rules regarding working with weak derivatives
consult Section 2.2 of [FI13].

Let us first look at the matrix d%cX . We have

4 xm_y d X(Q):/SQZ —d Z, dr
dx(l) S ) S T T )

d o
dx(z)x,g =0, d _1+/ 22, Ze dr,
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6.3. Solution to the Skorokhod embedding problem

a.s. for s € [t, T}, for almost all z = (:1:(1), x(2))T € R2. In particular, the 2 x 2-matrix

d%:X s is invertible if and only if dxd<2> X§2) ist not 0. We will see later that it remains
positive on the whole interval allowing us to apply the chain rule of Lemma A.6.8
in order to write (%U(S,X S)C%X s. But let us first proceed by differentiating the

backward equation in (6.9) with respect to z(%):

dw(2) / dz@) Zr AWy

To be precise the above holds a.s. for every s € [t, T], for almost all z = (1), ()T ¢
R2,
Now define a stopping time 7 via

d

— (2)
@ = 0T

i . (2)
T mf{se [t,T] : dq:(Q)Xs SO}/\T.
For s € [t,7) we have —Lu(s, X,)-L X, according to the chain rule of Lemma A.6.8
and in particular ﬁu(s,Xs(l),Xs(z)) dx%) =4 (Q)Y Let us set

d 47,

Vs = u(s, XM, XY, se[t,T] and Z, = By reltr
dz(2) _ (%2 x® {reft,n)}
Then the dynamics of ( EREELS (2)> can be expressed by
d o\ _y [y s (4 y@)

(dgj(2) Xs/\f') =1- /t QZTZT (dx(2)Xr ) d?”, (610)

for an arbitrary stopping time 7 < 7 with values in [¢t,T]. We also have ﬁYS =

Vsg (2) XS( ) and therefore

d vy

(2) *s
VVS:iddm @) S € [t,T).

dz(2) Xs

Applying Ité’s formula and using the dynamics of o <2)Y and o (2)X @) we easily
obtain an equation describing the dynamics of Viaz:

vV —27.7, d —_Xx® Aid Y. d
S/\’T* t+/ dw(Q) r dIL'(Z) r ar

d _1
@) qw
+/ dx(Q)ZT<d OR ) dWr

_Vt+/ _22,V.)Z, dr+/ aw, (6.11)

for any stopping time 7 < 7 with values in [¢,T7. .
Note that, since V' and (—2ZV) are bounded processes, Z1[.<5 is in BMO(P)
according to Theorem A.6.7 with a BMO(P)-norm which does not depend on 7 < 7,
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6. An FBSDE approach to the Skorokhod embedding problem

and so in particular E[f] |27, Z,|? dr] < co. From (6.10) we can actually deduce that
7 = T must hold almost surely. Indeed, (6.10) implies that

d 9 -1 SAT _
<dm(2) Xﬁ&) = exp < - /1t 27,7, dr>

d 9 SAT B
=& X2 = exp ( /t 27,7, dr)

for all stopping times 7 < 7 with values in [t,T]. Using continuity of s — —9 x®

or equivalently

dz(2)
we obtain
4 _xo_ /TZZZd >0
dx(Q) T - eXp ’ rer r 9
which gives us 7 = T a.s. because {T < T} C { dxd@) x® = O}, due to continuity of
2
e X®.
So we have — °}2) X @) is positive on the whole [t, T] and therefore d%:X is invertible
on [¢t,T].

Setting W := Wy — [°2Z,V, dr, s € [t,T] we can reformulate (6.11) to
S ~ ~
V=W +/ Zy dW,.
t

This means that V; can be viewed as the conditional expectation of

d

VI = 3@

u(T, X\, xPy = 5 (x?)

with respect to F, and some probability measure, which turns W into a Brownian
motion on [¢,T]. Note here that 27,V is bounded on [t,T] because ||Z]|s < 00.
Hence, we conclude that V; and therefore dx%)u(t, M, 2(?)) is bounded by [|0’||o for
almost all z = (), 2(2))T € R2. This value is independent of t.

Secondly, we have to bound (1)u(t M 2(2). To this end we differentiate the

equations in (6.9) with respect to a;(l).

d
)_
dx() =1
/2Z Z dr,
d (1) @, d oo (T d
WYS =g (X;') = §(X7 )dx(l)XT —/S ey Z, dW,,

d d d
x (1) x(2) _ = YO xO@y_—  x(2) _
dZE(l) U(S, s s )+ d$(2) ’U,(S, s s )d (1) s d.’E(l)Y;,
and define
d v d -~ d
— (1) (2 — _ 2)
Us = dx(l)u(s,XS VX)), Zyp= e Zy — 7, EPEY
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6.3. Solution to the Skorokhod embedding problem

Note that
dX(2):/SQZ Zo+ 7 4 v@) g
dq;(l) S t r r Tdm(l) r !
d d
_ _ (2)
Vs = e~ Vogum s

which allows us to deduce the dynamics of U from the dynamics of ﬁY, ﬁX )
and V using It6 formula:

s d s d s d
_ _4 vy @\_ [ _ 9 v@
Us _Ut+/t 1d<dx<1>y7"> /t wd(dxﬂ)X’" ) /t dq;(l)XT v

X52>) ar

S d s v =
:Ut +/t WZT dWr _2/75 ‘/rZr (Zr+ Z’I“ dl'(l)

S d = -
4 xe
/t X (~22:V: 2y dr + 2, aW)

where the marked terms either merge into one or cancel out and the equation simplifies
to

U, =U, + / (=22,V,2,) dr + / 7, dW,. (6.12)
t t
=U; + / Z, dW,.
¢
By the same argument as for the process V' we deduce that U and therefore
d
- 1) 2
dx(l)u(t,x , ')

is bounded by ||¢||c = Lg for almost all 2 2@ where Ly is the Lipschitz constant
of g, i.e. the infimum of all Lipschitz constants.
This shows that IM = [0, T].

max

Finally, Lemma 6.2.25 shows that there is a unique solution (X, Y, Z) to the FBSDE
on [0, 7] for any initial value (Xél),X[gQ))T = (21, 2®)T € R? such that

sup E[| X[’ + sup E[|Ys[*] + | Z|oo < o0,
s€[0,T) s€[0,T7

which is equivalent to the simpler condition || Z]|~ < 0o as we claim:
If || Z]|oo < 00, then according to the forward equation

IX® oo < 1@+ TN 213, < o0,

sup E[X,[2] = [¢V]2 + sup E[W, ] = [2D 2+ T < os,
s€[0,T] s€[0,T)

and according to the backward equation together with the Minkowski inequality

)
< (2ot ])" (e )"+ (o e

< oo+ 2o (£ [|x2])* + 01+ 24 (5] x2[])* < .

7|

:
(o Evl)” = (o [ o) - s0xf?)
s€[0,17] s€[0,T
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6. An FBSDE approach to the Skorokhod embedding problem

where Ly, Ls are Lipschitz constants of g, d. O

For the following result we use the notations of Section 6.1. As before we assume
that /3 is bounded away from 0. Under this condition H ! is well defined and Lipschitz
continuous. Therefore, § = SoHLis Lipschitz continuous if dis Lipschitz continuous,
which is equivalent to a being bounded.

Lemma 6.3.2. Suppose g and & are both Lipschitz continuous with Lipschitz con-
stants Ly and Ls. Then there exist a Brownian motion B, a random time 7 <
H~Y(L2) and a constant ¢ € R such that ¢ + [§ asds + [j Bs dBy has law v.

Proof. First we solve FBSDE (6.3) using Lemma 6.3.1 such that the corresponding
Z is bounded. According to Lemma 6.3.5, which we prove a bit later, we can even
assume that Z is bounded by L,. Now we set ¢ := Y and construct B and 7 as in
the proof of Lemma 6.1.2.

Moreover, ¥ = H ! (fol 72 ds) is bounded by H~!(L2) since Z is bounded by L,

and H~! is increasing. d

Remark 6.3.3. It is a priori not clear that the random time T is also a stopping
time with respect to

(ff)se[O,OO) = (7 (Bror € 0, 5l)ueio )

as also mentioned in Remark 1.2 in [AHIO8]. However, we will prove a sufficient
criterion for this in terms of reqularity properties of the Markovian decoupling field
u.

Remark 6.3.4. The boundedness of the stopping time solving the Skorokhod embed-
ding problem has not been investigated so frequently. However, very recently it gained
attention in [AS11] and [AHS15]. Especially, its economic interest comes from its
applications in the context of game theory (see [SS09]).

6.3.2. Strong solution

This subsection is devoted to the fourth step of our algorithm, i.e. to translate the
results of the preceding section into a solution of the Skorokhod embedding problem
in the strong sense. Our main goal is to show that if g,d are sufficiently smooth,
then 7 and B constructed so far will have the property that 7 is indeed a stopping

time w.r.t. filtration (]—'B

. generated by the Brownian motion B, and thus a

)sE[O,oo)
functional of the trajectories of B. The same functional applied to the trajectories

of the original Brownian motion W will then provide the required strong solution.
For this purpose, we will assume that g and J are three times weakly differentiable
with bounded derivatives. We will also require that g is non-decreasing and not
constant. Our arguments shall be based on a deep analysis of regularity properties
of the associated decoupling field u.

First let us first prove the following very useful result about the solution (Y, Z) to
FBSDE (6.3) constructed in Lemma 6.3.1.
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Lemma 6.3.5. Assume § and g are Lipschitz continuous. Let u be the unique weakly
reqular Markovian decoupling field associated to the problem (6.9) on [0, T] constructed
in Lemma 6.3.1. Then for any t € [0,T) and initial condition (Xt(l),Xt(Q))T =
(M), 2T € R? the associated process Z on [t, T satisfies | Z||co < Ly = ||¢']|co-

Furthermore, if the weak derivative ﬁu has a version which is continuous in the
first two components (s, on [t,T) x R? then

Zy(w) =~y (5, XD (w), XP(w))

for almost all (s,w) € [t,T] x €.

Proof. We already know that Z is bounded according to Lemma 6.3.1, but not in the
form of the more explicit bound || Z]|o < Lg.

Notice that limy,o + szh Zp(w)dr = Zg(w) for almost all (w,s) € Q x [t,T) due to
the fundamental theorem of Lebesgue integral calculus.

Now take some s € [t,T) s.t. limyg % /. Ss+h Z.dr = Zs almost surely. Almost all
s € [t,T) have this property. Choose any h > 0 s.t s + h < T and consider the
expression

1
EE[)@+h(Ws+h — We)|Fs]

for small A > 0. On the one hand we can write using It6’s formula
s+h s+h s+h
Yorh(Wepp — Wy) = / Y, dW, + / (W, — W) Z, dW, + / Zpdr,
S S S
which leads to

1 1 s+h
EE[YS-i-h(WS—Fh — Ws)|Fs| = EE / Zydr

]—"5]—>ZS for h—0.

On the other hand we can use the decoupling condition to write
Yorn(Wan = Wo) =u (s + b, XU, X3,) (Wapn = W)
=u (5 -+, X, XP) Wy — W)
+(u(s+nx00 X3, —u (s + 0, XU, XP)) (Wi — W),

After applying conditional expectations to both sides of the above equation we inves-
tigate the two summands on the right hand side separately.

FIRST SUMMAND: Recall:

. Xgl) and Xs(2) are Fs-measurable,

XU = X + (W — W),

Wein — Wy is independent of Fg,

u is deterministic, i.e. can be assumed to be a function of (s,x(l),x(2)> €
[0,7] x R x R only.
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6. An FBSDE approach to the Skorokhod embedding problem

These properties imply

E[ (4 Xy X)) (Wogn — W)

7|

/ (5+hX +Z\fX2)>Z\f\ﬁe 37 dz

/ (54 X0 4+ VR, XP) h——e 37 d,
dz(1

which means

lim %E [ (5 + 7. X8 XO) (Wen - W) u (s XM, x@),

d
|=qm

if ﬁu is continuous in the first two components on [0,7T) x R?. Here we use that

ﬁu is bounded by ||¢'||c according to the proof of Lemma 6.3.1. But even if ﬁu
is not continuous in the first two components, we can still at least control the value

]

‘;LE [ (s + b, X, XP) (Wop, = W)

by [|9'[|o-
SECOND SUMMAND: Recall:

e u is also Lipschitz continuous in the last component and ||§'||o serves as a
Lipschitz constant,

o XU = x® 4 sth 72,

s+h —

These properties allow us to estimate

L8 [ (s b X X2, (s 1 Xy X)) (Wi — W)

s}

IN

E [Ju(s+h X0, x3,) —u(s+n X0, xO) |- Wopn -

7|

1
h
1 1 ! 2

Fs| < 310 lloch | ZISE[Wetn — Wi,

s+h
W [na'uoo ( |z dr) JUATS

which clearly tends to 0 as h — 0.
CONCLUSION: We have shown

| /\

i L i L 1) (2
Zs = lim B[V on (Wan= W) F] = lim 1 [u (s 4+ b X[ XP ) (W = W)

7,
which is identical with ﬁu (s, Xs(l),Xs@)) a.s. if ﬁu is continuous in the first
two components on [0,T') x R? and bounded by ||¢[|s otherwise. O

For the sequel let u be the unique weakly regular Markovian decoupling field to
the problem (6.9) constructed in Lemma 6.3.1. At least for the following result we

assume for convenience T' = 1. We also use definitions and notations from the proof
of Lemma 6.1.2.
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6.3. Solution to the Skorokhod embedding problem

Theorem 6.3.6. Assume that ﬁu s

e Lipschitz continuous in the first two components on compact subsets of [0,1) x
R?,

e R\{0} - valued on [0,1) x R
Then 7 is a stopping time with respect to the filtration (FP) = (FF)sei0,00)-

Proof. We consider the system (6.9) for t = 0 and z(!) = () = 0. According to
Lemma 6.3.5 we can assume

7 d;m u( X X_(?))

and, thereby, have

s S 2
x? = ["z2ar= [ (dd(l)u(r,x,gw,xp)) ar
0 0 T

for all s € [0,T]. So, we can assume that X1

2
e is Lipschitz continuous and strictly increasing in s due to positivity of (ﬁu)
on [0,1) x R?,

e starts in 0.

Therefore, for every w € €2 the path
H! (X.(Q)(w)) £ [0,1] = [0, 00)

is also Lipschitz continuous and strictly increasing in time and, therefore, has a con-
tinuous and strictly increasing inverse function on the interval

0, H7 (X2 (w))] = [0, 7(w)).

It is straightforward to see that this inverse is given by the process o from the
proof of Lemma 6.1.2. We can now calculate the weak derivative of o: Firstly, note

(H) (x) = m and also H-1(X{? (w)) = r or equivalently X5 (w) = H(r).
So, we can calculate
d 1 1
T x| w5z,
H'(r) r 2

_ _ . (6.13)
(dou (on X80, X2)) (Gu) (or W H))

on {0, < 1}. Observe at this point that

{o, <1} = {r <H! (Xf))} = {r < 7}.
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6. An FBSDE approach to the Skorokhod embedding problem

If we define o, := 1 for r > 7, then o is still continuous and we have
7=1inf{r € [0,00) |0, > 1}.

It is also straightforward to see Z,, = = (}Uu (o, Wy, ,H(r)) for r € [0, 7).

Now, remember B, = f dYUs for r € [0,7] and also Y; — Yy = [J Z, dW, for
se0,1], s

T T 1
= —Zy AW, =W, .
/0 Z Zas /Bs JS /0 Zas 7 7 o
So, if we define ¥, := W, , we have dynamics
T
2= [ dB.,
0 mu (087 Zsa H(S))

for r € [0,7). So, to sum up o, 3 fulfill on [0,7) the dynamics

2 r
ar_0+/ ds+ [ 0dB.,
d (1)“ (Us,z&H( ) 0

5, _0+/ Ods+/ dB,.
1)U O-S)EsvH( ))

where r € [0,7). Note that this dynamical system is locally Lipschitz continuous in
(0,%).

Now, for any K;,Ks > 0 and K3 € (0,1) define a bounded random variable
TK1,K2,K3 via,

TK, Ko, K5 = K1 Adnf {r € [0,00) | |X;| > K2} Ainf{r € [0,00) |0, > K3} .

Note that o and X both remain bounded on [0, 7k, Kk, k). Therefore, on [0, 7k, K, K]
the pair (o, ) coincides with the unique solution (o%1:%2.K3 $K1,K2,K3) t 3 Lipschitz
problem, which is automatically progressively measurable w.r.t. the filtration (FZ).
Note that

T, Ko, K3 = Ky Ainf {7“ € [0, o0 ‘ |E7I‘<1’K2’K3‘ > Kg}/\inf {7“ € [0, OO) | 0’7{(1’K2’K3 > Kg} ,

which is clearly a stopping time w.r.t. (F?). Furthermore, due to continuity of ¥
and o

T= sup TK1,K2,K3»
K3€(0,1),K1,K2>0

which makes it a stopping time w.r.t. (F?) as well. O

In order to deduce sufficient conditions for Theorem 6.3.6 to hold we need to
investigate higher order derivatives of u.

Assume that g, 4, ¢’ and & are Lipschitz continuous, and consider the following
(MLLC) system with d =1, n =2 and m = 3:

XM =z 4 / 1w, X = 2@ 4 / (29)" ar,
t t
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6.3. Solution to the Skorokhod embedding problem

YO = g/( / ZM aw, — / v z0 ar,
v = / Z® dw, — / (—2200v,2) 2
YO = 0 )(S X( X®), v =uW(,xM x@) v =@, xV x2),

(6.14)

Theorem 6.3.7. For the above problem (6.14) we have IM, = [0,T]. Furthermore,

d
—u, a.e.,

dz (2

1) _

—%u and u® =
x

=u, ul
where u is the unique weakly reqular Markovian decoupling field to the problem (6.9).

In particular, u is twice weakly differentiable w.r.t. = with uniformly bounded
derivatives.

Proof. The proof is in parts akin to the proof of Lemma 6.3.1 and we will seek to
keep these parts short.
Let u(®, ¢ = 0,1,2 be the unique weakly regular Markovian decoupling field on
IM . We can assume u( to be continuous functions on I x R? (Theorem 6.2.28).
Let t € IM . For an arbitrary initial condition 2 € R? consider the corresponding
processes

X0, x@ yO y®) y@ 70 7z0) 72

on [t, T]. Note that X(1), X@ y©) z0) solve FBSDE (6.9), which implies that they
coincide with the processes X1, XY, Z from (6.9) if we assume

2
> sup Eoool| X1 + sup EoeollYsl?]
i=1 S€[t.T] s€[t,T]

2 2
+11Zllos + 3 sup EBosol[Y? ]+ D 12700 < o0,
i=0 S€[t.T] i=0

according to Lemma 6.2.25. This condition is fulfilled due to strong regularity and
the fact that we work with Markovian decoupling fields.
Now, YO = ¥ implies u(t,z) = u®(t,z) for all t € IM 2 € R?, where IM is

the maximal interval for the problem given by (6.14). We now claim that Y1) Y(2)
are bounded processes: Using the backward equation we have

Y = E, [-0(X{)] - B, [ / ' (—2200v,@) 2 dr]

and, therefore,

r

T
V< W0+ [ 2120l 22k |

VAL H dr,
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6. An FBSDE approach to the Skorokhod embedding problem

for s € [t, T, which using Gronwall’s lemma implies
Y =B, [V 2] < 16lloc exp (271120 2?1

This in turn automatically implies boundedness of Y(!) according to its dynamics.
Furthermore, Y1), Z(1) and Y@, Z(2) gatisfy the BSDE which is also fulfilled by the
processes U, Z and V, Z from the proof of Lemma 6.3.1 (see (6.11) and (6.12)) and
so in particular

v® v, =0- / Z® ~ 7,) aw, - / —220) (Y22 -V, 2,) ar
:0—/ (2% - 2,) aw, - / (-229) (v@Vv;) 22 + v, (2 - 2,)) ar.

Using the boundedness of Z(©, Z(?) and V this implies using Lemma A.6.6 that
Y® — V is 0 almost everywhere. Therefore, after setting W, = W, — s 2Z,£0)VT dr,
s € [t,T] we get from the above equation fsT (Zg) — ZT) dW, =0 a.s. for s € [t,T].
Since W is a Brownian motion under some probability measure equivalent to P we

also have Z®?) — Z =0 a.e.
Similarly, one shows that Y and U as well as Z()) and Z coincide so

vy =y, v®=v, zO=27 and z® =2 a.e.

Now, remember Uy = dx(%l)u(s,Xél),X§2)). Together with u(l)(s,Xél),Xs(Q)) = Y;(l)
and Y1) = U this yields uM(t,-) = ﬁu(t, ) and, therefore, u(!) = ﬁu a.e. on
IM . Similarly, we get u(®) = ﬁu. Now, note that u!) = ﬁu is continuous.

This makes Lemma 6.3.5 applicable, so

ZO =z=U=vW ae. (6.15)
Thereby Y (1, Y2 satisfy the following dynamics:
D _ iy T a T Dy@2) 71
Y = ¢/(x! )_/ ZW aw, —/ —2YT( )y, )) zM dr, (6.16)
Y@ = / 2@ aw, — / yOY2) z@dr, selt,T), (6.17)

which implies using the chain rule of Lemma A.6.8:

4y grxmy_d

dx(® 5 T 74z®"T — J, dz®
_/T(_Q) 4 yoye Ly d ye) o yoye_d sm)y,
s EORG 2@ e e R ’
and
d d
@2 _ _sriy(2)
dx(i)Y; 0 (XT )d:r(’

X
2

T d
) _/S dz(®)
T d d d
_/ (-2) _yWy @ 4 yM_—_y@)) z2) L yDy @) _ 7)) dr,
s dz () dz () x
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6.3. Solution to the Skorokhod embedding problem

for ¢ = 1,2. Let us recall some statements about the forward process obtained in the
proof of Lemma 6.3.1:

d

_ = (2 (1) — 1) —
dm(Q)X > 0, dx(l)X =1, e 0, a.e.,
and
d o\ oy (4 @\
d s d
(2) — (1) (1) (2= x(2
dx(l)Xs /t 2Y,) (Zr +Z, dx(l)X’” > dr. (6.19)

Using the chain rule of Lemma A.6.8 and the decoupling condition, we have

d . d . . d
@ _ 4 @) 1 y(©2) (i) 1) y(©@ (2)
d$(1)Ys = dx(l)u <37 s 1 )+ d$(2)u (SaXs , X )d:L'(l)XS )
d .. d d
0 _ 4 @ 1) y(©@ (2) _
d.l'(Z)}/S - dl‘(2)u (87 s 14*s )d.ZL‘(2)XS ) 1_172
Now, define
d d d -1
(12 - (1) 1 (2) _ 1 - 2
v .= T (s, XV, x?)) = (dw(z)y;( >) (dx@)xg >) , (6.20)
d d -1
(22) ._ ) W vy (% v\ _ % y©
Y .= S REL (s, XM, X! )<dm(2)Ys )(dx@)XS ) ,
d d d
11 1 1 2)\ 1 12 2
v —Wu()(S,XS(),XS( ))_WYSU—Y; >dx(l)X,§), (6.21)
d d d
). 9 @ W yv@y_ 4 @ _ye_ ¢ @
Y2 .= O (s, X\, X2 = dx(l)YS Y, dm(l)Xs .

We can apply the Ité formula to deduce dynamics of Y12 and Y1V from dynamics

-1
ot e 0. (33X) )

-1
Let us define Z{'? := (dxd@ Zs(l)) (aﬁ% X§2)) , SO we can write using (6.20)

T T d d
(12) _ o — (12) _ _ 1)y (2) 1_= _yv@) »(1)
v =0 / Z(32) aw, / {( 2)<(d$(2)Yr Y2+ vy )ZT,

vy 4 oY (L4 ey d poyoge (L4 y@) L,
T da®@7T dz@ ™7 dz@ ™ "7 7T\ dzx@ 7T '
Using the definitions of Y12 Y22 7(12) we can simplify this to
T
y(2) — / Z02) qw,

s T T T

_ /T(_Q) ((Y(lz)y@) + Y(l)y(QQ)) Zr(,l) + K(l)x(Q)Z£12) + Yr(12)y;(1)27§2)> dr.
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6. An FBSDE approach to the Skorokhod embedding problem

Let us now define Zéll) = ﬁZs(l)

Ys(n) _ g"(Xél)) _ /T Z7(’11) aw,

T d d d
_ _ (1) y(2) O_~ _y@) z1) Wy _=_ 71
/ {( 2)(( YO v 4+ vy )ZT + Y0y, dx(l)zr>

~(-2) (( Y2 y@ | Yra)yT(m)) 20 4 yOy @702 4 y 12y 0 Zp))

B Zs(lz)ﬁXéEZ)’ so we can write using (6.21)

d
(2) _y(12) 9.y [ z(1) (2= x(2
X d[L‘(l)Xr Y 2.Y, (Zr + Z, da:(l)Xr ) }dr.
The two marked terms above can be effectively merged into one using (6.21):

1) _ iy Dy T (11)
v —g"(x) - [ 200 aw,

T d d
_ _ (Dy @ 4y @ |z 4 yOy@ 4z
/S {( 2)((1@ Y2+ ¥ oy )ZT + YOy oSz )

d
~(-2) (yr(l) v22) 700 4 yOy@[Z08) | y02y0 Zp)) _d s

Cv2 9y (70 4z 4 x@) Ly,
T T T T dl'(l) T N

Similarly, the four marked terms can be merged into only two using the structure of

Y2 and ZzUY gt.

an _ oy ()Y r (11)
Yts =g (X ) Zr dWr

— ’ _ ((YADy (@) L vy D) (1) 4 y1)y(2) z(11)
( ) T T + T T T + T T T

+2 vy 72 d X _y2) 9. y@) (71 L z(2) d X&) Yar,
T T T dx(l) T T T T T dx(l) T

where the two marked terms effectively cancel each other out:

an _  ipy(D)y r (11)
v =g'(x{V)— [z aw,

S

_ /T(_Q) ((yr(ll)y;@) + yr(l)yT(Ql)) ZW 4+ y Dy @)z 4 y(12)YT(1)Z7§1)> dr.

T T 7 7

Analogously to Y12 we can deduce dynamics of Y (22);
@, ("
Y = s(x®) - / 7 aw,

— /T(_Q) ((yr(l?)y;(?) + }/;a(l)y;(??)> ZP) + Yr(l)y;(?)Z?@?) + Kﬂ(22)n(1)zﬁ2)> dr.
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6.3. Solution to the Skorokhod embedding problem
From here we can, analogously to Y (M), deduce dynamics of Y 21):
T
}/'5(21) =0— / Zﬁ?l) dWr
T
— / (—2) ((yr(ll)yr(?) + y;(l)yr(Ql)) Z7(,2) + yT(l)y'T(?)Z?{?l) + YT(QQ)YT(I)ZT(})) dr.

And so we have finally obtained the complete dynamics of the 4-dimensional process
(Y)), 4,5 = 1,2, which are clearly linear in it. Furthermore, remember:

e YU, Y are uniformly bounded independently of (¢,z) due to the decoupling

condition, u() = ﬁu, 1 =1,2 and Lemma 6.3.1,

e ZW 7 are BMO(P) processes with uniformly bounded BM O(PP)-norms in-
dependently of (¢,z) due to (6.16)), (6.17) and Theorem A.6.7,

o (Y1) 4,4 =1,2are bounded according to their definition (with a bound which
may depend on ¢,z at this point),

o (2U1), i j=1,2 are in BMO(P) according to Theorem A.6.7,
. (YT(U))Z»J-:LQ is uniformly bounded by [|¢"||oc + [|0”sc < 0.

Therefore, Lemma A.6.6 is applicable and (Y (% ))i,j=1,2 is uniformly bounded, inde-

pendently of (¢,z). In particular, Yt(ij) = ﬁu(i) (t,z), i,7 = 1,2 can be controlled
independently of t € IM  x € R?, while d( )u(o) (t,z), 7 = 1,2 has the same property

dz (i
as we already know. This shows I} = [0,T] using Lemma 6.2.29. O

max

Lemma 6.3.8. Assume that g, 8, g, 6’ are Lipschitz continuous. Let (u(i)), oo be
1= bt

the unique weakly regular Markovian decoupling field to the problem (6.14) constructed
in Theorem 6.5.7.

Assume that ﬁu(i), 1=0,1,2, has a version which is continuous in the first two
components (s,21)) on [t,T) x R? for some t € [0,T). Then for any initial condition
(Xt(l),Xt(Q))—r = (x(l),x(Q))T = 2 € R? the associated processes ZW, i = 0,1,2, on
[t,T] satisfy

d

Z0@) = gy

s

D (s, X (w), X W), =012,

for almost all (s,w) € [t,T] x €.
Furthermore, in this case the processes

d v _d o d @)
dx(l)X , dx(Z)X and dq:(Q)X on [t,T],

can be bounded uniformly, i.e. independently of (t,x).
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6. An FBSDE approach to the Skorokhod embedding problem

Proof. The first part of the proof works analogously to the proof of Lemma 6.3.5. So
we keep our arguments short. For ¢ = 0, 1,2 we consider

1 i
FEYL (Wan — WOl 7]

for small A > 0. As in the proof of Lemma 6.3.5, we use [t0’s formula applied to
(6.14) to obtain

v

sth s+h '
sth(Waan — W) = / Y dw, + / (W, = W) ZI) W,

s+h . s+h .
+ / (W, — W) (—2Z,§0)YT(2)> Z dr + / Z dr,
and also

v ©

sth s+h s+h
weh Wi = We) = / Y, dw, + / (W, — W) ZO aw, + / 29 qr,

which leads to

S

s+h
/+ Zﬁo)dr

s

1 1
Y, (Wap = Wo)|F] = 1B [

fs] — 7O for h—0,
and

lE Y(z) (”f —W. )|f‘

h [ +h s+h S s]

_lg l/SM Z0 (14 (W, = Wy) (—2207 @) dr

(4)
. E] — Ly

as h — 0 for i = 1,2. The arguments are valid for almost all s € [t,T].
On the other hand we can use the decoupling condition to rewrite

Y(ZJBh(W5+h - Ws)

s

=ul (54 h, X, XP) (Wosn = W)
(0 (4 X0 X)) (X0, X)) (W W),
Let us deal separately with the two summands. For the first one recall that
° Xgl) and X5(2) are JFs-measurable,
o XU = x4 (W —Wy),

o Weyp — Wy is independent of Fg,

e 1 is deterministic, i.e. is assumed to be a function of (s, x(l),x(2)> € [0, 7] x R,
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6.3. Solution to the Skorokhod embedding problem

A combination of these properties leads to

lim %E [u (5 + h, X0y, XP) (Wop, = W)

im o fs] - d:(l)um (s, X§1)’X§2)) ’

if ﬁu(i) is continuous in the first two components on [t, T) x R?, where we use that
—d_4® is bounded.
dz(1)

For the second summand recall that

e u) is also Lipschitz continuous in the last component with some Lipschitz

constant L,
o X8, =xP 4 7 (Z”) ar

These properties allow us to estimate

% B[ (u (s + b, X0 X3, ) = u® (545, X1 XO)) (Wopn = W)

s+h
< %E [L- (/ (Z,£0>)2dr> Wi —

which tends to 0 as h — 0. Therefore, we can conclude

7|

1
< L RIZOIEE W — W),

(i) _d g ) (2

if ﬁu(i) is continuous in the first two components on [t,T) x R?, for i = 0, 1, 2.
Now recall (6.18)) and (6.19) from the proof of Theorem 6.3.7:

d X2 - 2y, (1 d —Xx® _1d
dz® / 4z "
d <2):/ oy (700 4 z0_ 4 _x@) g,

; r r r dCL‘(l) r ’

a.s. for s € [t,T]. The first equation implies

d 2\ ¥ v (1) (2
(dx@)xg >) — oxp (_ / 2y (V) 7 )dr) |

Using 2 = 245u@(, x, xP), vy = 20 = dd(l)u((’)( X, xP)y (see (6.15)

in the proof of Theorem 6.3.7) and uniform boundedness of (1> u® fori=0,1,2 we

(2) (2)

-1
see that this implies uniform boundedness of ( ) and its inverse

dz() “*9 dz (2 s -
Furthermore,
4 xo| <ompymzo) +/82||y(1)Z(2)|| 4 voly
dx(l) - > t > dx(l) r ’

By Gronwall’s lemma together with uniform boundedness of Z @ y® and zM
ﬁu(l)(-, X.(l), @ )) this implies uniform boundedness of (1) X®@,

oo
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6. An FBSDE approach to the Skorokhod embedding problem

For the subsequent result we employ the following notation:

e For a real number H > 0 let xg : R — R be defined via xg(z) := (-H) V

(x ANH) for x € R. In particular, xpg is bounded, Lipschitz continuous and
coincides with the identity function on the interval [—H, H].

e For real numbers y(#@), ¢, j = 1,2 and y, i = 1,2 we denote by y " and
y O the values x g (y#)) and g (y®).

Now assume that g, d, ¢, &, ¢”, 6" are all Lipschitz continuous and consider for
H > 0 the following (MLLC) system with d =1, n =2 and m = 6:

XM =20 4 / Tlaw, X® =2 / ) (7
t t

T
VO = (X))~ s(x) - [ 20 aw,,

Y =g/ (x) / ZW aw, — / )Z<1> dr,

Y = —§(x?) / Z@ aw, — / )Z<2> dr,
VO =4O, xM x3), vy =y 1)(8 X(l) @y, w@ (s, xM x2) =y®,
and

yan - / Z qw, +/ { YDAy (2 )/\H_’_Y;(l)/\H}/T(m)/\H) 70

by WAHY @INH Z(1) Y;ﬂ(12)/\HYT(1)/\HZT(1)} dr,

y(12 —g _ / Z02) qw, +/ { YDAy A |y (1 )/\HYT(QQ)/\H) Z

by (DAY @AH 7(2) | }/7"(12)/\H§/T(1)/\HZ7§2)} dr,

y2) (21) yIDAHY QIAH |y (DAHy DAHY 7(2)
—o— [ zVaw, + Y@ oy WAy A
n Y;ﬂ(l)/\H}/r(Z)/\Hzpl) n Y;q(22)/\HYr(l)/\HZr(l)} dr,

Y;(22) _ (SH(Xég)) _/ Z(22 dw, +/ { (12)/\Hy( )ANH —|—Yr(1)/\HK,(22)/\H> Zr(‘Q)

b Y (DAY QINH 7(22) | K(22)AHK(1)AHZ£2)} dr,

with the decoupling conditions

2 = ys(ll), u1? (s, X

g ,X0) = v,
u®V(s, XM x@)y = y 2 u®(s, X

D, x®) = v, (6.22)

With (6.22) we will always refer to all the above equations belonging to the current
(MLLC) system.

w~ .~
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6.3. Solution to the Skorokhod embedding problem

Theorem 6.3.9. For sufficiently large H > 0 the above problem (6.22) satisfies
IM =10,T) and in addition

max
d d d2
© = M = @ _< an . 4°
R P PO " (da)?”
d d d d d2
(12) _ (21) _ 220 4
U E RO 40 YT T 0 e v = (d$(2))2U7 a.e.,

where u is the unique weakly reqular Markovian decoupling field to the problem (6.9).
In particular, u is three times weakly differentiable w.r.t. x with uniformly bounded
derivatives.

Proof. The proof is in parts akin to the proof of Lemma 6.3.1, and we will again seek
to keep these parts short.

Assume IM = (tM T] and t € IM . Let v and w® i =0,1,2, j,k = 1,2
be the associated weakly regular decoupling field on IM . We want to control
d%ﬂu(i)u(t, ), (%u(jk) (t,-),i=0,1,2, j,k = 1,2 independently of ¢ to create a contra-
diction according to Lemma 6.2.29.

For this purpose consider the first three components of the decoupling field. Since

(u(i)) - is clearly a weakly regular Markovian decoupling field to the problem
(6.14)

)

e the mappings (u(i)) in (6.14) and in (6.22) are identical according to

Theorem 6.2.24,

1=0,1,2

e the processes XM, X@ vy 7@ §—=0,1,2in (6.14) must coincide with the
identically denoted processes in (6.22) according to strong regularity. This is
true for every ¢ € IM and initial condition » € R2.
So we can apply Theorem 6.3.7 and get
d d
©0) — 1 — 2 = M
U u, U dx(l)u’ U dm(2)u on I ...

In particular, the last two functions are uniformly bounded.
Furthermore, we saw in the proof of Theorem 6.3.7 that

e Y and Y® are uniformly bounded independently of (t,z),

e ZW and Z®) are BMO(P) processes with uniformly bounded BM O(PP)-norms
independently of (¢, z).

Especially, Y OM — Y for 4 = 1,2 if we make H large enough. We will make this
assumption from now on.
The processes Y 75) j,k = 1,2 satisfy

| . T
Yk =y k) / ZUR) aw,

lil2l3la "7
l1,l2,l3,l4=1,2

_/T( Z a(ﬂf) Y(ll)Zﬁb)Yr(lsu)AH+Y;(1)Y;,(2)Zr(jk)) ar.
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6. An FBSDE approach to the Skorokhod embedding problem

where al(f 2 15,1, 18 always either 0 or —2. Since due to the structure of the terminal

condition Yj(f ") are uniformly bounded, we can apply Lemma A.6.6 to obtain uniform
boundedness of Y'7%) as processes on [t, T] independently of (¢, ).

In particular, YURN — Y (k) for jk = 1,2 if we make H large enough. We will
make this assumption from now on.

This implies that the processes Y U¥) | j k = 1,2 must coincide with the identically
denoted processes in the proof of Theorem 6.3.7, since

e they satisfy the same stochastic differential equations,
e they satisfy the same terminal condition and

e we can apply Lemma A.6.6 to the difference of these four-dimensional processes
obtaining that this difference must vanish.

This implies however that Yt(jk) = d;}k)u(j) (t,x(l), .CU(2)) for almost all z(), 2. So

we obtain uUk) = dgjk) w9, j k =1,2 a.e and these functions are uniformly bounded
according to Theorem 6.3.7.

According to Remark 6.2.21, the functions ﬁu =u), %u(i) =u, ;=12
are continuous on [t,T] x R? and we can apply Lemma 6.3.8 to get

Z00) _ %um (. x® x®), =012

dz(1
Hence, Z(®, i = 0, 1,2 are uniformly bounded.
Let us now analyze higher order derivatives ﬁu(ﬂ“), 1,5,k = 1,2. As usual

this is done by investigating equations characterizing the dynamics of dd(i)Y(jk),
x
1,7,k = 1,2. Using strong regularity we obtain

d . d g Toq
(k) — (gk) _ (4k)
ot =gt - [ e aw,

T . . .
- / (Gﬁﬂ]k) + Yl HY k)’ll’l2’13’l4) dr,
S

l1,l2,l3,14=1,2

where

HHUR b — ZL)y (sl 4 y () 7(l2)

d.l‘(l) r T r r dx(l) T r r r dl'(l) T
d

4 yoyegzim L yo_d yezum yoye_dgan
dl'(z) r T r r dl'(z) r r r .

"o dz@ T
This already implies that d;(i)Y(jk), 1,7,k = 1,2, is uniformly bounded according to
Lemma A.6.6. The lemma is applicable since

d

@ YT(j k) is either O or has the structure

@ x4 v o sey@y_ 4 @
g7 (X )dx(i)XT or — (X )dx(i)XT
which is uniformly bounded according to the Lipschitz continuity of ¢”,¢” and

Lemma 6.3.8,
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6.3. Solution to the Skorokhod embedding problem

l 1 2 1 1 2 2) .
. —d;@ YT() = —dxd(l)u(l)(r, qu ), 7( )) d;(i) X?g ) rﬁz) u(l)(r, qu ),ng )) df@ 7§ ) i

also uniformly bounded according to Theorem 6.3.7 and Lemma 6.3.8,

ik i 1 2 1 i 1 2 2
b d;l(i) Yr(j ) — dx%)u(ﬂk)(r’ X7§ )7X7"( )) d;(i) Xﬁ )+‘d§2)u(]k)(7‘a ng )7X7£ )) d;(i) ng )

is a bounded processes on [t, T according to Lemma 6.3.8 (but not necessarily
uniformly in ¢ at this point),

o -4z = 40 (r, Xﬁ”,X@) = 4y forall 1 = 1,2,

o Y(il) y() 70 are always uniformly bounded as was already mentioned,

o ZWk2) are BMO(P)-processes with uniformly bounded BMO(P) - norms ac-
cording to the equations describing Y (1/2) and Theorem A.6.7.

Let j,k € {1,2}. As a consequence of the decoupling condition together with the
chain rule of Lemma A.6.8 we have

d gw_ _d

— (3k) (1) ¥(2) (7k) (1) x(2) (2)
de 7 d:L‘(l)u (T,Xr , Xy >+ dx(2)u (?”,XT , Xy )dl‘(l)Xr >
d . d . d
_ = vk (3k) (1) y@_2 x(2
d$(2)}/r - d.ZE(Z)u (Tv Xr 7Xr )dCL‘(Q)XT :

-1
Using the boundedness of (ﬁX (2)) , the second equation implies boundedness
of

d

e 1,20, 22
T

for almost all z(), 2 by a uniform constant. Now the first equation together with

uniform boundedness of ﬁXP) and ﬁYr(jk) implies uniform boundedness of

dwc}l)u(jk) as well.
Considering Lemma 6.2.29 we have a contradiction and the proof is complete. [

Lemma 6.3.10. Let T =1 and assume that
©g,0,4,08,4", 0" are all Lipschitz continuous,
e g is increasing and not constant.

Then the Markovian decoupling field u from Lemma 6.3.1 fulfills the requirements of
Theorem 6.3.6.

For the proof of Lemma 6.3.10 we need the following auxiliary lemma.

Lemma 6.3.11. Let ¢: R — R be twice weakly differentiable s.t. ©(0) = 0 and
| loc < 00. Then

2

1 1 1
oz e 2% dz| < Z0?||0"]| 0o,
[ ol < 519"

for all o € [0, 00).
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6. An FBSDE approach to the Skorokhod embedding problem

Proof. Using weak differentiability of ¢ we can write for any x € R:

1
:/ ¢ (sz)x ds
1 1
:x/ ( —|—/ '(tsx) sxdt) ds J:go'(O)—l—xQ/ s/ " (tsz) dtds,
o Jo

and so

1
/cp(a - 2) e 27 dz
R

ous
1 1,2 1 1 1 1,2
) e 2? dz—i—/ 022? / 3/ ¢ (tsoz)dt ds e 2% dz.
V2r R o Jo V2r

:/ach'(O
R
The first summand clearly vanishes and we can finally estimate:
1 1.2 1 1 1 1.2
o-z e 2% dz <02/ z2/ s/ "(tsoz)|dtds e 2% dz
[olo 5= <ot [ 2[5 [ wsonlaras——

1 1
_02/ z2/ sHap”Hoods 6_%'22 dz
R Jo

1 11 "Ml
2 2 " 22 2 oo
=0 z°= e 2 dz=o0 .

O

Proof of Lemma 6.3.10. Denote by (u(o), u®, u(2),u(n),u(12),u(21),u(22)) the unique
Markovian decoupling field to the problem (6.22) on [0,7]. We have u(®) = u, u(1) =
ﬁu etc. according to Theorem 6.3.9.

Let us show that 1) u is Lipschitz continuous in the first component (i. e. time).

For this purpose, COIlSldeI‘ for a starting time ¢ € [0,7] and initial condition x € R?
the associated FBSDE (6.22) on [t,1]. Recall that

yow - 4 u(s, XM, X2),  selt 1], (6.23)
s dm(l) s s
satisfies
YO =v® + / (—2200v,2) 2z dr + / ZWAw,, s e [t 1], (6.24)
t t
where
o 7(0) = ﬁu(o) (-,Xl(l),X.(Q)) =YW a.e. according to Lemma 6.3.8, which is

applicable since (ﬁu(i))izl , = (u(“))i:l ) and
ous on [t, 1] according to Remark 6.2.21,

(1)u(0) = uM are continu-

e 70 = y® and Y@ are bounded by Hﬁu”w and Hﬁu“w,

o Z7() = ﬁu(l) (-,X.(l),X.(2)) a.e. according to Lemma 6.3.8, which is appli-

cable as already mentioned. So Z(!) is bounded by H d:cd(l) u(l)H
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6.3. Solution to the Skorokhod embedding problem

Let s € (t,1]. Using the triangular inequality we obtain

d d d d
’dx(l)u(s,m) - Wu(t, z)| < ‘dx(l)u(s,x) ~E [w“(s’Xﬁl)’X@)H
d
t|E [dx(l)u(s,XS(l),Xgm)} R

Applying the triangular inequality for a second time together with (6.23) we get

d
’dx(l)u(sax)_dx(l)u(t,x)
< | S u(s, 2, o) B[S ou(s, X0, 2?)
B dx(l) ’ ’ dx(l) y s
d d
—qyuls, XM, 2®) | — B | (s, XY, XP 1) _y®
o o [t X090 8 [t 200,09 e 120 )

Let us now control the three summands on the right-hand-side separately.

FIRST SUMMAND: Define

d d
¢(z) = dx(1)u(37$(1)7$(2)) - dx(l)u(s,x Dy z,m(2)), z eR,
and note:
[ ]
4 s 2™ 2@y _E [y x x(g))H _ /@(mz) L ey
dx(l) Y ) dx(l) 9 S 9 - \/ﬂ ,
since

XU =20 4w, —w, NN(m(l),s—t),

s

e  is Lipschitz continuous with Lipschitz constant L, ), which is the Lipschitz

constant of ﬁu = u® w.r.t. the last two components,

e ' is Lipschitz continuous with Lipschitz constant L1, which is the Lipschitz

constant of su=u) wr.t. the last two components,

d2
(da:(l))
e »(0)=0.

And so using Lemma 6.3.11 we obtain

‘d;(l)u(ij(l)’ x(z)) ) |:dxd(1)u(S’X(1)’ x(Z))] ‘ < %(S —t)- L,an.

SECOND SUMMAND: We have

d D (2 d 1 )
R
d d
M,2) — —u(s, XV, X () _ 4
< [ gt X000 = g XX < Lok 2 =2
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6. An FBSDE approach to the Skorokhod embedding problem

while

2
a.s.,

[ () ar

where we used Z(0) =y () ge.

R L NEYCN o

(e 9]

THIRD SUMMAND: We have using (6.24):

E

Y _ th} ‘ _ ’E[ _ 2/5 y Oy @ z0) dr}
t

d d d 4
<2:-(t-9)- H dx(l)uHoo ' H dm(Q)uHoo ' H dx(l)u( )

[e.o]

CoONCLUSION: We have shown

t,fL‘) < C‘S - t|7

d
u(s,x) — mu(

_ 4
dz™
with some constant C' € [0, 00), which does not depend on ¢,z or s. In other words

ﬁu is Lipschitz continuous in time. Since it is also Lipschitz continuous in space,

it is a Lipschitz continuous function on its whole domain [0, T x R2.
It remains to show that ﬁu is R\{0}-valued on [0,1) x R
Clearly ¢’ is non-negative and does not vanish. Let t € [0,1), z € R?. Consider the

associated FBSDE on [¢,1]. Using (6.24) we can write

d vy [T " W)y 2)
mu(s,x} =g (Xp )—/t Z, d<Wr+/t (—QY,,€ Y, )dm).

So there is a probability measure Q ~ P such that

d
dz()

u(s,z) = Eg [g’ (X;l))] > 0.

Now note that X%l) =M 4 W — W, has a non-degenerate normal distribution w.r.t.
P. Therefore its distribution is equivalent to the Lebesgue measure. But since Q ~ P

the distribution of X:(pl) w.r.t. @Q must also be equivalent to the Lebesgue measure.

This shows
d

mu(s, z) = Eg {g’ (X:(pl))} >0

since otherwise ¢’ = 0 a.e. would hold. ]

158



A. Appendix

A.1. Pathwise Hoeffding inequality

In the construction of the pathwise It6 integral for typical price processes as done in
Chapter 2, we needed the following result, a pathwise formulation of the Hoeffding
inequality which is due to Vovk. Here we present a slightly adapted version.

Lemma A.1.1 ([Vov12]|, Theorem A.1). Let (7,)nen be a strictly increasing sequence
of stopping times with 7o = 0, such that for every w € Q we have 7,(w) = oo for all
but finitely many n € N. Let for n € N the function hy,: Q — R? be F, -measurable,
and suppose that there exists a Fr, -measurable bounded function b,: Q — R, such
that

sup |7 (W) Srat,rpnt(W)] < bp(w) (A.1)
t€[0,T]

for allw € Q. Then for every X\ € R there exists a simple strategy H* € H, such that
[ee] )\2 N
1 + (H/\ . S)t Z exp ()\ Z hnS’Tn/\t,Tn+1/\t — ? Z b%)
n=0 n=0
for allt € [0,T), where Ny := max{n € N: 1, <t}.

Proof. Let A € R. The proof is based on the following deterministic inequality: if
(A.1) is satisfied, then for all w € Q and all ¢t € [0, 7] we have that

)\2
exXp (Ahn(w)STn/\t7Tn+1/\t(w) - 2bi(w)> -1

22 e)\bn(w) _ ef)\bn(w)
< exp <2bi(w)> 20 () P (W) Sy At 7118 (W)

= fn(w)STn/\t,Tn+1/\t(w)- (A2)
This inequality is shown in (A.1) of [Vov12]. We define H} = Y, Folir, 7] (1),

with F),, that have to be specified. We choose Fy := f, which is bounded and F7,-
measurable, and on [0, 7] we obtain

A2
1+ (H*-S); > exp ()‘hOSTnAt,Tn+1At - 253)-

Observe also that 1+ (H* - S);, = 1+ foSy - is bounded, because by assumption
hoS+y,r is bounded by the bounded random variable by.
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Assume now that F} has been defined for £k =0,...,m — 1, that

[e'e) )\2 Ny
L4 (H- §)y > exp (A > hnSrunsmint — 5 D bg)

for all t € [0,7,,), and that 1 + (H* - S), is bounded. We define F,, := (1 +
(H* - 8),,.) fm, which is F;, -measurable and bounded. From (A.2) we obtain for
t € [Tm, Tmt1]

L+ (H)\ Sy =1+ (H)\ ) + (1 + (H)\ ) S)Tm)fmSTm/\t,Tm+1/\t
2
Z (]. + (HA . S)Tm) exXp ()\thTm/\tmi+l/\t - zbzn)
A2 N¢

> exXp ()\ Z hnSTn/\t,Tn+1/\t - ? Z bi)v
n=0

n=0

where in the last step we used the induction hypothesis. From the first line of the
previous equation we also obtain that 14 (H*-S)., ., is bounded because f,,Sr,, 7.,
is bounded for the same reason that fyS;, -, is bounded. ]

A.2. Davie’s criterion

It was already observed by Davie [Dav07] that in certain situations the rough path
integral can be constructed as limit of Riemann sums and not just compensated
Riemann sums. Davie shows that under suitable conditions, the usual Euler scheme
(without “area compensation”) converges to the solution of a given rough differential
equation. But from there it is easily deduced that then also the rough path integral
is given as limit of Riemann sums. Here we show that Davie’s criterion implies our
assumption (RIE) as required in Section 2.3.3.

Let p € (2,3) and let S = (S, A) be a 1/p-Holder continuous rough path, that is
1Ss4] S [t — s|V/P and |A(s, t)| < |t — s|?/P. Write a := 1/p and let 8 € (1 — a,20q).
Davie assumes that there exists C > 0 such that the area process A satisfies

/—
f A(jh, (j +1Dh)| < C(£ — k)P, (A.3)
j=k

whenever 0 < k < £ are integers and h > 0 such that /b < T. Under these conditions,
Theorem 7.1 of [Dav07] implies that for ' € C7 with v > p and for t} = kT /n,
n, k € N, the Riemann sums

n—1
Y F(Sy)Seatay, aes t€[0,T],
k=0

converge uniformly to the rough path integral. But it can be easily deduced from (A.3)
that the area process A is given as limit of non-anticipating Riemann sums along (¢"),,.
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Indeed, letting h = T'/n,

t n—1 n-l t};+1
/O SSdSS_I;JStnStnAt’tk+l | = kZ:% </t"/\t S, dS, —Stn/\tStn/\ttZ+l/\t>
n—1 [t/h]—
— | XA At ) < > g + 1ACL/AL0)
k=0

< Clt/h)PR% + b2 All2a < C’thzo‘ B4+ h2) Al|ga.

Since < 2, the right hand side converges to 0 as n goes to co (and thus h goes to 0).
Furthermore, (A.3) implies the “uniformly bounded p/2-variation” condition (2.19):

/-1

ty
. SsdSs — SgnSenn| + z;c(/ St;?St?,t§‘+1)‘
j
-1
< N Allzalty = R+ | Y Agar, | < [1All2alty — 1% + O — k)R>
=k

< [ All2alty — i + Clt7 — tR >

A.3. Existence of local times via time change

A remarkable result in [Vov12] is a pathwise Dambis Dubins-Schwarz theorem, which
allows to link results for the one-dimensional Wiener process to typical price paths.
As already indicated at the end of Chapter 3, this opens another way to show the
existence of local times, which we will briefly sketch here.

For that purpose let us briefly recall Vovk’s outer measure and relate it to ours.
For A € (0,00) we define the set of processes

Sy = {ZH’“ D HY € Hy,, M >O,Z)\k :)\}-
k=0 k=0

For every G = 3y~ H* € Sy, all w € Q, and all ¢ € [0,00), the integral

(G- 8)e(w) := Y (H" - S)e(w) = Y _ (A + (H" - §)e(w)) — A

k>0 k>0

is well defined and takes values in [—\, 0o]. Vovk then defines
QA):==inf{A>0:3G €Sy st A+ lim inf(G - §)y(w) 2 1a(w) Ve € Qf, AcQ.

It is fairly easy to show that P(A) < Q(A) for all A C Q, see Section 2.1.3. In
other words, all results which hold true outside of a Q-null set are also true outside
of a P-null set.

To state Vovk’s pathwise Dambis Dubins-Schwarz theorem, we need to define time-
superinvariant sets.
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Definition A.3.1. A continuous non-decreasing function f: [0, 00) — [0, 00) satisfy-
ing f(0) = 0 is said to be a time change. A subset A C ) is called time-superinvariant
if for each w € € and each time change f it is true that wo f € A implies w € A.

For x € R we denote by u, the Wiener measure on (2, F) with pz(w(0) =z) = 1.

Lemma A.3.2. For every time-superinvariant set A C Q satisfying w(0) = x for all
w € A and p,(A) =0, we have P(A) = 0.

Proof. Using Theorem 1 in [Vov12], we obtain P(A) < Q(A) = p,(A) = 0. O

First we investigate in the next lemma the behavior of local times under a time
change. Recall that L. is the set of those paths S which are in L.(7™) for the dyadic
Lebesgue partition (7™) constructed from S.

Lemma A.3.3. Let S € Q and assume that for all t > 0 the occupation measure

) = [ "14(5())dS(s), A< BR),

is absolutely continuous with density 2L,(S). Let f be a time change. Then So f € Q
and the occupation measure of S o f is absolutely continuous with density 2Lf(t)(5’)
for allt > 0.

Proof. Recall that (S) is constructed along the dyadic Lebesgue partition, which
yields (S o f)r = (S) yt)(w). The result then follows by considering the push forward
of the occupation measure of .S under f. O

With the previous lemma at hand we can reduce the existence and continuity of
local times for typical price paths to the case of the Wiener process. For p > 1 let us
define the events

Ao ={we: Sw) e L} and
Acp ={we A. 1 u— Ly(S(w),u) has finite p-variation for all ¢ € [0, 00)}.

Theorem A.3.4. Typical price paths are in A for all p > 2.

Proof. Define Q; = {w € Q : w(0) = z} for x € R. Lemma A.3.2 and Lemma
A.3.3 in combination with classical results for the Wiener process (see [KS88], The-
orem 3.6.11 or [MP10], Theorem 6.19) show that typical price paths w € Q, have an
absolutely continuous occupation measure with jointly continuous density

{2L(S,u), (t,u) € [0,00) x R}.

In [MP10], Theorem 6.19 it is also shown that w — L(S, u) has finite p-variation for
all t > 0, p > 2. It remains to show the uniform convergence of the discrete local
times to L and to get rid of the restriction w € €.

Recall that U;(S, a,b) and Dy(S, a,b) denote the number of up- respectively down-
crossings of the interval [a, b] completed by S up to time ¢. First observe that

L7 (S,u) = 27" Dy(S,u— 27" u)| < 27" (A.4)
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for all t € [0,00) and u € D". For u € R we define {u},, := min{k € D" : k > u} and
by the triangle inequality we read

sup ]L?R(S, u) — Ly (S, u)]

(t,u)€[0,T]xR

< sup ]Lfn(S, u) — Lfn(S, {u}n)]

(t,u)€[0,T]xR

+  sup L7 (S {ukn) — Le(S {uln)| +  sup  |Li(S, {u}n) — Li(S,u)|.
(t,u)€[0,T]xR (t,u)€[0,T]xR

Now we separately deal with the three summands. The discrete Tanaka formula (3.7)
yields

L7 (S,u) — LT (S, {u}n)| < 3-27"

for all (¢,u) € [0,T] x R.
For the second summand we remark that the event

E = {w €Qy :limsup  sup  |27"Dy(S,u— 27", u) — Ly(S,u)| > 0
n—0o (tu)el0.T]xR

for some T € |0, oo)}

is time-superinvariant. Therefore, it suffices to combine Theorem 2 in [CLPT81]
with (A.4) to obtain that the second summand converges to zero for typical price
paths.
That the last ones goes to zero simply follows from the joint continuity of the
compactly supported occupation density L(S) in (¢, u).
Finally, we indicate how to get rid of the assumption w € €2, for some z € R. For
e > 0 it suffices to fix a sequence of simple trading strategies (H") C H. with
- n
hnnl)g.}f(s + (H"-S)r(w)) >1
for all w € Qg for which the local time does not exist. Applying these simple trading
strategies to w —w(0) achieves the same aim but without the restriction w(0) =0. O

Remark A.3.5. (i) For Theorem A.3.4, the dyadic points D™ in the definition of
(™) can be replaced by any other increasing sequence of partition (P™) of R
such that lim,,_, |P"| = 0. See [CLPT&81].

(ii) While Theorem A.3.4 gives us the uniform convergence to a jointly continuous
local time which is of finite p-variation in u, it does not give us the uniform
boundedness in p-variation of the approximating sequence (L’rn). Therefore,
we can use Theorem A.3.4 only to prove an abstract version of Theorem 3.1.8,
where the pathwise stochastic integral [} g(S(s)) dS(s) is defined by approzimat-
ing g with smooth functions for which the Féllmer-1to formula Theorem 3.1.2
holds (see [FZ06] for similar arguments in a semimartingale context). Since we
want the Riemann sum interpretation of the pathwise integral, we need Theo-
rem 2.2.5 to obtain the full strength of Theorem 3.1.8.
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A.4. Nonhomogeneous Besov spaces

In this part of the appendix we collect for the reader’s convenience some results
which allow to estimate the Besov norm of a function. For a general introduction to
Littlewood-Paley theory and Besov spaces we recommend Triebel [Tril0] as well as
Bahouri et al. [BCD11].

Lemma A.4.1. [BCD11, Lem. 2.69] Let A C R? be an annulus, o € R and p,q €
[1,00]. Suppose that (f;) is a sequence of smooth functions such that

supp]:fj C 2jA and ||(2aj”fj||Lp)j||eq < 0.
Then f :=3_; [ satisfies
feBy,RY and | fllapq S 1N FilLe);ll

Lemma A.4.2. [BCD11, Lem. 2.84] Let B C R be a ball, o € R and p,q € [1,00].
Suppose that (f;) is a sequence of smooth functions such that

suppFfj C 2'B  and H(2aj||fj‘|LP)jHZq < 0o,
Then f :=3%_; [ satisfies
f e B ®Y and | fllapg S 1@ Fllze),

Lemma A.4.3. [BCD11, Prop. 2.79] Let p,q € [1,00], a < 0 and f be a tempered
distribution. Then, [ € ng(Rd) if and only if

(29185 f|l1e); € 24,

where we recall S; f = ch;al Arf. Furthermore, there exists a constant C > 0 such
that

—|a aj 1
C ) o < 129185 1) < 1+ M)HfHa,p,q-

A.5. Proof of Lemma 5.4.7: Lipschitz continuity

This subsection is devoted to the proof of Lemma 5.4.7. For j = 1,2 let ug € R4
and V- € CF° with derviative & = d¥’-. Denote by w/, j = 1,2, the solutions
to corresponding Cauchy problems (5.26) and @/ = u’/ for a weight function v
satisfying Assumption 2. Then Lemma 5.4.7 is proven if we can show that

13" = @l|apq < C(19F = Flapg + 1707, &) = (07 €7 loa—1,p/2.4)

for a constant C' which does not depend on %. Roughly speaking, the verification of
this bound follows the pattern of the proofs of Proposition 5.4.5 and Corollary 5.4.6.
However, since Lemma 5.4.7 is essential for one of our main results, we shall present
it here in full length.
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Taking another weight function o fulfilling Assumption 2 and keeping Remark
5.4.3 in mind, we obtain

1@ = @ [lapg S [¥2(@" = @) [lapq
S(T2 Vv 1)(Ju' (0) = w?(0)] + | (@' = @) lla=1,p4)
< (T? v 1)(Ju'(0) — w?(0)| + | d(TF(ﬁl)ﬁlT - TF(QQ)'ﬁQT)Ha—Lp,q
A = u®2) a1 p4), (A.5)

where Lemma 5.1.2 is used in the second line and the paracontrolled ansatz W =
TF(ﬁj)ﬁJT + u#J in the third one. Let us continue by further estimating the term

d(TF(ﬂl)ﬁ%’ — TF(az)ﬁ%). Applying the Leibniz rule and the triangle inequality leads
to

1d(Tp@ay 97 — Tra) 97 ) lo-1p.4
< HTdF )19T TdF i2) ﬁT”a Lpg T ||TF 1)57' TF gT”a 1.p.q
<N Tar@)(@r — 99 la-1,p¢ + 1 Tar@)-ar@) 97 lo-1p.4
+ |1 Tr@r) (67 — €9 la-1.p.q + 1 Tr(ar)—ra2)6F la—1,p.q-

Based on Lemma 5.1.1, Besov embeddings, the lifting property of Besov spaces [Tril0,
Thm. 2.3.8], (5.10) and (5.25), one has

”d(TF(al)ﬁ%’_TF(~ ﬁgF)Hoc 1,p.g

S N AF(@") [la-1p.ll97 = 7 ll0,0000 + | dF (@) = dF (@) ]|a1,p,4 197 ll0.00,50
+HFHooH§T—«STIIa 1,pq+HF( 1) = F(@®)looll€F la—1,p,q

S I1F(@")llap, pa T IE@) — (~2)||a
+ 1P llocllér — ETIIa 1,pq+HF’HooHu —a P

SIFlella o, Tlapa + 1E loll0F Haquu — @[lapq
+ | Fllocllé — éTIIa—l,p,q +[1F [l osllEFla-1pqlla" — @)

SIFller (1 + 1@t lapg + 1€F la—1p0 + 107 lap.a)

(HfT fTHa l,pq+H79’r 93 Hocpq"‘”“ 2Ha,p,q)- (A.6)

It remains to consider the difference of derivatives da#7, which can be decomposed
(cf. (5.33)) into

a,p,q

a’p7q

/

Qi = m(F(#), 1) + Ty (F()) ~ Topian ¥ + Ziaj for j = 1,2,

Applying Proposition 5.3.1, we can rewrite the resonant term, differently than in the
proof of Proposition 5.4.5, as

m(F(&), &) = F'(@)n(@, &) + p(@, &) (A7)

and, taking the ansatz @/ = TF(ﬁj)ﬁ%’ + 47 into account and applying the commu-
tator Lemma 5.3.4, we have

m(@, &) = m(Tpgan V. &) + 7w, €7)
= F(@ (0, &) + T(F(@), 9, &) + (w7, &),
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Therefore, we decompose du#+ into the following seven terms
da#? = F'(@ ) F (& )r (9, &) + F'(@)T(F (@), 9, &) + F' (@) )w (w9, &)
+p (i), &) + T, ;(F(@j)) — Tap@yPr + 1/:&]-
=: D{—G—-"—FD%
Let us tackle the differences of these seven terms: The first term is estimated as
follows

1D} — DRlaa1p/20 = |[F' @)Y F (@ )n(0}, 60 — F'@) P @03 )| 0
S| F@)F@') - FI(@)F @)
+ [ F @) F @)l m (05, ) — (9%, ) 201,24
S (0 €)1y (1(F (@) = F'(@2) F(a") o pg
+[F@)FE @) — FE2)]ap)
|2 l| 8 7 (9, €)= (0%, €3 o 1,/24
< 112 (1 (0 D) l2a- 172 (13

+ 18l pgll (B3, £5) — 793, ) 201724 )

where we refer to (5.6), (5.10), (5.25) and (5.32) for explanations to the above es-
timates. Applying (5.32), Lemma 5.3.4 and Besov embeddings, we see for the next
term that

1D} — D3laa1p/20 = |F/@D(F ), 0 5) = F @), )01 o,
SN oo (IT(F () = F (), 0, ) 3019750
+ITE @), 9y — 95, 6P laam1p/q + ITE@). 9% 6 — )llsa1p/30)
FIF (@) — F(@)]|ocl D(F(02), 93 ) 5010754

SIEIE (107 lapalleFla-1pallE = @llapq

+ ||§T||a l,pq”u2||a,pq||197' ﬂTHa,pq + HUQHa,quﬁ ”a

a,pquW(ﬁlﬁ f%’)”m—l,p/z,q

a,p,q + ||ﬂ2HOé7p7‘I)||ﬂ1 - a2||047p7q

Py Q)

For the third term, again due to (5.32) as well as Lemma 5.1.1 and Besov embeddings,
we obtain

1D} = D3llsa—1p2,4 = |1F'(@)m(u®, &) — F' (@) (u®?, 1) 2a—1,p/2,0
SNF'@)w (™ — w2, 60) 2a-1p/2q + 1F/(@)m (w2, 67 = €1 l2a-1p/2.4
+ |[(F' (@) = F'(@*)m(u™?, 63) laa-1,0/2.4
SF(@") [loollm(ut — w2 €5 I30-1,p73.4 + 1 F (2"l
< |lm(u#?, &7 — ) Izam1,p/3. + 172, E) 3a—1 /3,61 F (@") — F' (@) 0
SIF e lEr a1 pallu®t = u#2(laa 2.4 + 1Fllcr 1 ll2a 52,167 = EFla—1,p.q
I oo 4™ ll2,p/2, 167 lam1,p.q /1

+ 1F ool Fllet 13l pg 197 llcpal €7 la—1.p.gl1 @' = 2 lapag-

U — UQHa,pq
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Proposition 5.3.1 and the embedding B373 010 3272 ! vield for the fourth term

1Di = Dill2a—1p/24 = (@', €7) — TR (a°, €3) | 20-1p/24
S g (@t &) — e (%, €5) Isa-1p/3.00
SIFleaC (@, 3%, €5, ) (13" = @llapg + 167 — EHlla—1pa),
where the constant C(@', @2, &L, £2) is given in Proposition 5.3.1. The fifth term can
be bounded by

IDs = Dillaa—1p/2.4 = HT§1 (F(a')) — Te2 (F(@*))ll2a-1,p/2.4
S Te g2 (F(a Nll2a-1p/2.4 + [Tz (F( (@') — F(@*)llsa—1p/2,9
SFller 1@t lap2ql€r — EFla—1,p,2¢ + 1€F lam1,p,2 | F (@) = F(@%)llap,2q
S IFlerllatlapallér — EFlla—1pa + I1F loolléHla-1,pql18" = @[lapq
because of Lemma 5.1.1 and (5.25). For the sixth term, the lifting property [Tril0,
Thm. 2.3.8], an analog to (5.25) and (5.10) yield
ID§ — Dill2a—1p/2.4 = | Tar@) 97 — Tar@2) 5 2a—1p/2.4
ST ar@) - ar@) 7 |l2a-1.p/2.0 + 1 Tar@) (07 — 95)l2a-1,/2,4
S dF(ﬂl) - dF(fLQ)Hafl,p,qHﬁH apaq T | dF(~2)||a quH%’ - ﬂ%’Ha,p,q
SF@@") — F(@?)]ap, apq + 1E @) lapal¥r — 97 llap.q
S IF locll9F lapglla' = @llapq + I Fllor 1@ lap.qll07 — 07

Since 2a — 1 < 0, the last difference DY — D2 can be easily estimated by

a,p,q-

/

Ha(ﬂl — @) |2a-1p/2.4 S ||E(7l1 — @%)]| 2
!
< HEH soll@! — @ pos S(TV 1)”*“00““ — @[lapig-

Defining the constants

éﬁ,u# =1 + Z (HajHOé7p7q + ||ﬂj||i,p,q + ||u#7j||2a,p/2,q)a
1=1,2

C§J 9= H7~9 ||a,pq + HQ9 ||ocpq + ”ﬂ-(ﬁj ag’]T)HQa—l,p/Q,qa J=12,
Cg’g =1+ C§17791 + C§27192,
we altogether obtain

I du#t — du#?

2a—1,p/2,q
< CeoCopr (IFllcs + || Fl122)
X (Hﬂl - fL2| a,p,q + ||U#’1 - u#72‘|2a,p/2,q + ”5’%’ - 5’%’||0¢—1,p,q

05 — g + 7€) — 7 (0% ) a1 /2

+(TV 1)||Elloollﬂ1 — @[lagp.g-
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The factor éﬁ,u# is (locally) bounded since ||@!||o p,q and ||%?||a,p.q can be bounded by

Corollary 5.4.6 and ||u#’j\|2a,p/2’q, for j = 1,2, can be bounded analogously to (5.34)
and (5.35) by

[6# oz S (T D (1 e[ lzr + 157 122)

+ Ce s (IFllc2 VI1FNZ22) (187 lapg + I F ol lla

a,p, q) + H Hoo”“j|

a.p, q)
/

STV A+ (I1Fllez VIFIE) (1 + [07)Cer s + II¢ Hoo)(l + 1@ [lap.q)-

Relying on the lifting property of Besov spaces together with the definition of u#,
@' — @2 oo S (TV 1)@t — @2||» and the compact support of 07, we have

||U#’1 - u#,Q ||2a,p/2,q

St — w2 e + || du®t — du? g0 1,p/2.q
< [ Tr@ 197 Tr(a2) Ol oz + 8" = @[ 2 + || du?! du#’2||2a—1,p/2,q
< || Tr(an)—r@) 97 | oz + 1 T2y (05 — 05 pore + [0 — @l o2
+ [ du®t = du?|l2a-1 /2,
S(TVD(IF@') = F@@)looll97 e + [ Fllooll0F — 9F|I1o + @' — @[|1r)
+ | du! — du? l2a—1,p/2.q
STV DUF ool lapall@' = @llapg + [ Fllooll9F = 97| apg
+ ||U - U2||a,p g) du#! du#’2||2a—1,p/2,q-

Therefore, if [|F||cs + || F||, is sufficiently small, depending on Cg g, C’mu# and T,
then

H du#J - du#72”2a—1,p/2,q
S (14 19% llapg) Ce.oCout (T V D (| Flles + 1F[1E2)
x (|8t = @[lapg + 165 = Ella-t0 + (95 = o

+ w0, &) = 705 )20 1py2.0) + (T V 1)\@”%”&1 = @|apg-
Plugging this estimate and (A.6) into (A.5), we obtain

HU —a2||a,p,q
STV D)[u(0) = w?(0)] + (1 + |07 ]| ap.g) CewCat (T V (| Fllca + | F[|22)

(HU _“QHa,pq"‘HgT fTHa l,pq""HﬁT 7 Tllapa

+ 7w (07, &7) — 7 (97 >£27)||2a—1,p/2,q) +(T?V 1)IIEH<><>||111 — @[lap.g-
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For a possibly smaller ||F||cs + ||F||2. and a sufficiently small H%’HOO, we conclude
" = @l|apq < (T2 V Dlu' (0) = w?(O)] + (1 + |97 ap.a)
CeoCant (T V)| Fllos + || F22)

% (9% = 9 lapq + 1707, €F) = 703, ) l2am1,p/2.0) -

Finally, note again that C‘ﬁ,u# is (locally) bounded by Corollary 5.4.6. O

A.6. BMO - Processes and their properties

In the following, let (2, Fr, (F¢)ejo, 1], P) be a complete filtered probability space such
that the filtration satisfies the usual hypotheses. Assume furthermore that there exists
a d-dimensional Brownian motion W on [0, T'|, which is progressive w.r.t. (F¢):c(o,1),
independent of Fy and such that F; = o(Fo, F}V), where F" is the natural filtration
generated by W and JF( contains all null sets.

For a probability measure Q and any ¢ > 0 and m € N define H?(R™,Q) as the
space of all progressive processes (Zt)te[o,T] with values in R normed by

T ak
</ ]Zs|2ds> ] < 00.
0

Definition A.6.1. Let Q ~ P be an equivalent probability measure and define

1Z][#a := Eq

BMO(Q) := {Z :[0,T] x Q : Z is progressively measurable and vector-valued s.t.

T
3C >0Vt € [0,7) : Eg V | Z,|* ds|Fy
t

gC’a.s.}.

By vector-valued we mean that Z assumes values in some normed vector space.
The smallest constant C' such that the above bound holds is denoted by C' :=
HZHQBMO(Q). For processes Z ¢ BMO(Q) we define ||Z| gryo(q) := oc-
Furthermore, we call a martingale M a BMO-martingale if

t
Mt:M0+/ ZsdWy =: M0+(ZOW)t
0

with some R™?-valued Z € BMO(P). Also, if a progressive process Z is only defined
on a subinterval of [0, 7], the statement Z € BMO(Q) means that its natural exten-

sion to [0, T], obtained by setting it equal to 0 everywhere outside its initial domain,
is in BMO(Q).

Theorem A.6.2 (Theorem 2.3. in [Kaz94]). Let u € BMO(P) be R'*%-valued, then
Qt:=E(peW)p-P

is a probability measure.
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Lemma A.6.3. For a probability measure Q ~ P let Z € BMO(Q) be R™-valued.
Then Z € H*"(R™, Q) for allm € N and
1Z]l3g2nm ) < | Z| pro)-

Proof. Define A; := [J|Zs|?ds for all ¢ € [0,T]. A is progressive, non-decreasing,
starts at 0 and satisfies Eg[Ar — A Fy] < ||Z||QBMO(Q) for all t € [0,T]. Therefore,
using energy inequalities we have

A" < ) 7 2 n
Egl(4r)"] < ! (1Z13m000) -
which implies the assertion. O

Lemma A.6.4. For all K > 0 there exists a constant C > 0, which is increasing in

K, such that
T
Eg [exp (/ | Zs| ds)
t

all probability measures Q ~ P and all Z € BMO(Q) such that || Z| pypo) < K-

Fi| <C as. foralltel0,T],

Proof. We apply Lemma A.6.3 to estimate

T © 1 [ (T k
EQ{exp / | Zs| ds Zg / |Zs| ds
t k=0 "\t

(/tT |Zs|ds>k
(T/tT\ZsPds>k

Fi

((T—t) /tT\ZSst>2

E
ft]

1

1
2 k
X T3 k\ 2
ft]) < Z T (k! (HZHZBMO(Q)) )
k=0 "

]—"t] = Eg

Sl |
]:t] < ’;)HE@

We use

k+1 k 1
T T2 T3
— KM =K =—K =0, k— o0,
( (k+1)! Vk! vk +1
to see that the series converges absolutely and is monotonically increasing in K. [

Theorem A.6.5 (Theorem 3.6. in [Kaz94]). Let u € BMO(P) be R**?-valued. De-

fine the probability measure Q" := E(pueW)p-P. Then for all progressively measurable
processes Z:

1ZlBrro@ry < KillZllymowy  and (| Z Brow) < K2l Zl Baor)

with some real constants K1, Ko > 0 only depending on ||p|| prrop) and montonically
increasing in this value.
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As an application let us prove the following statement:

Lemma A.6.6. For some N € N let Y be an RV -valued progressively measurable
bounded process on [0,T], the dynamical behavior of which is described by

T T d
nzﬁi/dmww/(m+ﬁ®@ﬁﬂﬁ+2ﬂ%+ﬂ&>w,SGMH

i=1
(A.8)
where

o Yr is RN yalued, Fr-measurable and bounded,

o 7 is some RN _valued progressively measurable process s.t. fOT |Z|2dr < o

a.s., which can also be interpreted as a vector (Z')i=1,.. a4 of RN _valued pro-
gressively measurable processes Z', i =1,....,d,

o a is an RN yalued BMO(P)-process,
e § is some non-negative progressively measurable process with fOT dsds < 00 a.s.,

In € RVXN s the identity matriz,

B is an RVN*N _yalued BMO(P)-process,

v, i =1,...,d, are progressively measurable and bounded RN*N -valued pro-

cesses,
e 1 is an R%-valued BMO(P)-process.
Then'Y s bounded by

Yoo < C1- Y7 l[oo + C2 - @l Baroe),

with constants C1,Cy € [0,00) which depend only on T, ||B|lsymow)s |llBarow) and
17 oo, @ = 1,...,d, and are monotonically increasing in these values.

Proof. In order to get rid of the term p, Z, we define a Brownian motion with drift
on [0,T7] via

- S
Wy = Ws+/ prdr, s €10,T]
0
Using a standard Girsanov measure change W is a Brownian motion w.r.t. to some

equivalent probability measure Q. Furthermore, using (A.8) the process Y has dy-
namics

T T a
YS:YT—/ dW:ZT—/ <a,~+Y,~(5TIN+ﬁT)+ZZﬁ’yf,> dr, se€]0,7T].
s s i=1

Now, choose a t € [0,T]. We want to control Y;. For that purpose define

d d
s s 1 /s o
T, = exp (-/t (6, In + ) dr—/t }jdwm—§/ E:ﬂ,yﬁdr>, se[t,T).
=1

t =1
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According to the It6 formula I' has dynamics
T
T, =Tr+ / Z AWiniT, + / (6:In + ) Ty dr,
for s € [t,T]. Now, apply the It6 formula to Y,I's:
Y,Iy =Y7I'p — / Z AWy (2, - Yy,
T pp—
- / {(ar + }/1'(6TIN + /Br) + Z Zf,zf)/,z« )Fr - Y;*(CSTIN + Br)rr
S

=1
d . .
=" ZNT, } dr
i=1

A few terms cancel out and we end up with
rdo T
VLo =Yelr— [ Y aWi (20 = Yily) - [ aiTodr (A9)
5 =1 s

We now want to control supsecp 1 [I's|: Observe that due to 6 > 0 we have for all
p=>1

Eg [ sup |Ts[? _7-}]
se(t,T]
S S S d p

:Eleup exp(—/ 5Tdr_/ﬁrdT—/ZdW’ z_i/ Z%% ) 1

s€t,T) t t t i

d p

<Eq [ sup |exp (’/ By dr| + Z de'yﬁ i ’d7«> t]

s€(t,T] i—1
<Eq| sup eXP( / || dr + TH’YHQ ) sup exp (p Wﬁvﬁ) J-"t],

s€[t, T s€[t,T]

which using Cauchy-Schwarz inequality can be further controlled by

(e lexp ( [ 2p\/3r!dr+pTH’YH§o> M ;
il

x Eg [ sup exp <2p
s€(t,T]

According to Lemma A.6.4 the first of the two factors above can be controlled by

a finite constant, which depends only on p, |8 Byo(); [[7llec and T" and is mono-

tonically increasing in these values. Also, note that ||5| 5 Mo(Q) can be controlled by

18l Baroy and ||ul| arocr) according to Theorem A.6.5.

> AWy
toi=1
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The second factor can be estimated using Doob’s martingale inequality:
/ Z dW;Vﬁ > ’ft]
k
4
S ~ . .
/ S ai; (2077)

=1
t‘|
=1
k
\ft] |

I Z aw; (2p)
+;§:2]:'<kﬁ Eqg |/ X:dI/VZ 2p7T>

Using Cauchy-Schwarz inequality and Doob’s martingale inequality again, the above
value can be controlled by

Eq |exp | 2p sup
s€(t,T]

s€t,T)

=1
S|z

<1+Eg | sup

s€t,T]

k

t Ft

142 | Eq ZdW 21?%)2 Z 14E@ Zdul 27”7“)
k!
/tT 221: dWiy

i)‘ft.

< 10Eq lexp <2p

This value is bounded by a finite constant, which depends only on p, T and ||y||ec
and is monotonically increasing in these values: For instance use Theorem 2.1 in
[Kaz94] by applying it to finitely many sufficiently small subintervals of [t,T] such
that 2p||v||eo multiplied by the square root of the size of every subinterval is smaller
%. Also, use the triangle inequality and the tower property after splitting up the
stochastic integral. One implication of the above control for supc 7y |I's| is that
the stochastic integral in (A.9) represents a uniformly integrable martingale w.r.t. Q
since

/ Z dw?! ZZ T%F ) =Y., I's - V,Iy —/ a,I'ydr as., for all s € [t,T],
t

and, therefore, using triangle inequality, Cauchy-Schwarz inequality and simple esti-
mates

S d ~ . . .
Bo| sup | [*3° aW; (21, - vilir) |
sele, T 1/t 5

[ ] S

<2||Y|«Eqg | sup |T's|| +Eq | sup /arfrdr]
sE[tT} i seft, T 1/t

T

<2||Y||Eqg | sup |F| +Eqg | sup |F| || dr

lset, 7] s€[t,T]

N

I i T
< 2HYHOOIEQ sup ‘Fs| + (EQ [ sup |Fs|2] EQ [T/ |Oz|3 dr]) ,
L s€(t,T] i s€t,T] t
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which is finite due to o € BMO(P) and Theorem A.6.5. We can finally estimate
using (A.9) and Cauchy-Schwarz inequality:

Yi| = [Eq [Yil'|F]| =

T
Eq [YoT'1|F) - Eg [ / T, dr
t

)

3 T
.7-}]) (EQ lT/ \ar|2dr
s€(t,T] t
<Yz lloo\/Eq [T F] + VT ||l ro) (E@ l sup [T ftD

s€(t,T]

1
2
< Y7 lloo\/Eq [ITr | F] + Killal Bamoee) (EQ l SEI?F] Fs|2‘]:tD ;
sE|t,

where we again used Theorem A.6.5. K depends only on ||u|| gyom) and T O

7|
< 1Yz [looEq [ITr||F2] + (E@ l sup ||

N

The following theorem is an extension of a result from [BE09].

Theorem A.6.7. Let Y, Z, X, ¢, ¢ be some progressively measurable processes on
[0,T] such that

e Y is real-valued and bounded,
o 7 is R™yalued and s.t. fOT |Zs|? < > a.s.,
o i, ¢ are real-valued and in BMO(P),

o X is real-valued and satisfies X < ¢*+|Z|o+C|Z|* with some constant C' > 0.

Assume furthermore
T T
Yt:YT—&—/ Xsds—/ ZsdWy a.s., tel0,T).
t t

Then we have ||Z|ppor@) < K < oo for some constant K, which only depends on
Yoo, C, ll¢llBrrom), 1]l Baro) and is monotonically increasing in theses values.

Proof. Clearly, we see
1 1
X <9 +1Zlp + CZ]° < (¥* + 5¢°) + (C+ )12
Define ¢ := /92 + $p2 € BMO(P), C:=C+ %, and write

t t
Yt:YO—/ Xsds+/ Z. dW..
0 0

Let 8 € R be some constant specified later. Using It6’s formula we get

t t
exp(BY;) = exp(BYp) — /0 B exp(BYs) X, ds + /0 B exp(BYs) Zs AW,

,82 t
+7/ exp(BY:)| Zs|? ds.
0
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So for every stopping time 7 € [t,T] we can write

exp(3Y) —exp(8Y;) + [ Bexp(8Y) X, ds - [ Bexp(3Y.)Z, W,

BT 2
- ? exp(ﬁYS)|Z5| ds,
t

which can be rearranged to
5 [ ep(sv2) (5172 = X.) ds = exp(87:) — exp(8Y0) — [ 78 exp(5¥) 2, a1V,
or again to
ﬂ/tTexp(BYs) (ngs\%u?? —Xs) ds

— exp(8Y;) — exp(8Yi) + 8 [ exp(B8Y.)ids - [ Bexp(8Y.)Z, AW,

Setting 3 := 2C + 2 = 2C + 3, we have
2 < D12+ - X,

Now choose a localizing sequence of stopping times 7, € [t,T], n € N, such that

E[/n\Zs\zds] <
t

for every n € N while 7,, T T for n — oo. Applying conditional expectations we have

8o [ ewisvzas|m] <E[p [ ew(sr) (5128 + 3 - x,) ds]

< B [exp(87;,) — exp(3%0) + 8 [ exp(0Y,) (02 + 3 ds

ft:|7

which we can rewrite as

" 2
B[ [ ew(av12,7 5|7
exp(8Y:,) — exp(BY:) T , 1,
=k { BYr — BY; (¥r, = %) +/t exp(BYs) (v~ + 3¢ )ds ft]
exp(BYs,) — exp(BYy) . B
B ﬂYTn - ﬂy;t ‘oo HYT” Y”’OO

1
+exp (817 o) (101006 + 51elaro )

Finally, note that the exponential function is Lipschitz continuous on any interval
[a, b] with exp(a V b) as Lipschitz constant, so

exp(BYr, ) — exp(BY:)

3Y. — A, Y7, = Yilloo < exp(B[Yfloc) - 2 [[Y]]oc-
Tn

‘ o0
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We obtain by monotone convergence
T Tn
/ |Z,|*ds|F;| = lim E U | Z,|% ds
t n—oo t

< Jim exp(3]Y )8 | [
n—o0 ¢

E

,

" exp(BY2)| Zs[? ds

7|
1

< 2exp (2B [|oo) 1Y [loo + exp (26]]Y [loc) (H@DIIQBMO(P) + 2H90||2BM0(P>>

= 2exp(2(2C + 3)[[Y [loo) Y [loo

1
+oxp (220 + 3)IY o) (It + 3Ielisroe) )
which is finite and increasing in [|Y|eo, C, l¢llBrro®)s 1% Brom)- O

Miscellaneous

Lemma A.6.8. For N,m € N, let g: RN — R™ be Lipschitz continuous. Moreover,
let X:R™ = RN, n N be weakly differentiable. Then

e g(X) is also weakly differentiable,

o for almost every A € R"™ the restriction g’TAX of g to the affine space

5 = {a: cRY

d
x=X(\)+ aX(A)v, for some v € R"}

is differentiable at X (\) and

e for almost all A € R™ we have

SO0 = gl (X)) S XN,

This implies in particular:

e Ifn = N and the matrix (%\X()\) is invertible for a.a. A, then T5X = RN for

a.a. A and d d d
—g(X)=— X)—X
5900 = (49) 04
a.e., where d%cg is a weak derivative of g.
e If g is differentiable everywhere then d%\g(X) = ((%g) (X)%X a.e.

e [fgis only locally Lipschitz continuous rather than Lipschitz continuous, but dif-
ferentiable everywhere, while X is bounded, then still di/\g(X) = ((%g) (X)d%\X
a.e.

Proof. For the main statement consult Corollary 3.2 in [AD90]. Concerning the three
implications we may state:
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o (Clearly, if d%\X (A) is invertible for some A € R™, then T must be the whole
RY for this A. So for almost all A the expression d%c9|T§( (X (A)) coincides with

the classical derivative of g at the point X ().

Furthermore, if we choose the identity on R™ for X, the main statement of the
lemma implies that

— g is differentiable almost everywhere,
— g is weakly differentiable and

— any weak derivative of g coincides with the classical derivative up to a null
set.

So, if we define a function on R™ by setting it to the classical derivative of g at
all points for which the classical derivative exists and to 0 for all those points
in which it does not, we obtain a weak derivative.

e If g is differentiable everywhere, then d%ﬁ 9|ij (X (N)) is just the classical deriva-
tive of g at X ().

e If X is bounded, we can assume without loss of generality that g is Lipschitz
continuous by restricting its domain or using a removable inner cutoff.

O]
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Notation

Basic notation and conventions

14

BN
_
<

NS <t W/

ess sup
max I
min I
inftej
SUPier

indicator function of a set A

smallest integer greater or equal o € R

smallest integer larger or equal than a > 0
usual inner product for z,y € RY, i.e. xy := zgl:l TiYs
usual inner product for z,y € R%, ie. (z,y) == % | sy
Euclidean norm on RY, i.e. |z| := /(z,z) for v+ € R?
there exists

there exists no

for all

empty set

there exists a constant ¢ > 0, independent of the
variables a, b such that a < c-b

a<Sband b <a

0

0

00

00

max{0,u — -}

min{a, b}

max{a, b}

{(5,) €0, T)? : 0<s<t<T}

essential supremum

maximum of a set [

minimum of a set [

infimum of a set I

supremum of a set [

set of non-negative integers

set of rational numbers

set of real numbers

set of non-negative real numbers

set of integers
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Notation

Definitions

() quadratic variation of the function f, cf. Lemma 2.3.17

(f,9) quadratic covariation of the functions f, g, c¢f. Lemma 2.3.17

[f]e quadratic variation in the sense of Follmer of the
function f: [0,7] — R, cf. Definition2.3.21

[f, 9t quadratic covariation in the sense of Follmer of the
functions f,g: [0,7] — R, cf. Definition2.3.21

(u,v] see equation (3.3)

1 || oo essential supremum of |F| for a random variable F

A, (X,Y) antisymmetric part of the - foT YidXy, cf. (4.4)

A(X,Y)  antisymmetric part of the 7- fOT Y; dX;, see Theorem 4.2.4
B(]0,00)) Borel o-algebra on [0, c0)

I'(f,g,h) commutator of the functions f,g, h, cf. (5.23)

deo distance for processes with respect to P, see (2.8)
de d restricted to set of path with quadratic variation
less than ¢, see (2.9)
dioc localized d, distance, see (2.10)
A f Jj-th Littlewood-Paley block of a function f, cf. (5.4)
E expectation operator with respect to P, see (2.6)
E¢[F] conditional expectation with respect to the filtration (F3)

E[F|F:]  conditional expectation with respect to the filtration (F;)

E; ool F] abbreviation for esssup E[F|F]

E expectation with respect to a probability measure P
Ff Fourier transform of the distribution or function f
Ha set of A-admissible simple strategies for A > 0

M maximal interval for the existence of a weakly regular

Markovian decoupling, see Definition 6.2.26
Li(S,z)  local time of the process S, see Definition 3.1.3 and 3.1.5

Lyg Lipschitz constant of a function « in the variable x, cf. (6.5)

Lo space of equivalence classes with respect to P

P outer measure defined via the minimal superhedging price,
see Definition 2.1.1

w(f,9) resonant term of the Littlewood-Paley decomposition of

the functions f, g, cf. (5.7)
Ip(u,§)  for the definition see Proposition 5.3.1

Q Vovk’s outer measure, see (2.5)

Rr(g) for the definition see Lemma 5.3.2

S,(X,Y) symmetric part of the integral - fOT Y: d Xy, see (4.4)

S set of Vovk’s A-admissible simple strategies for A > 0, cf. (2.4)
Ay scaling operator given by Ay f(:) := f(A-) for any A > 0

S It6 map, see (5.17)

S weighted version of the It6-Lyons map, see (5.27)

Tyg part of the Littlewood-Paley decomposition of the

product fg for two distributions f, g, cf. (5.7)
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Functions spaces and norms

C5F

&
H*(R)

LP (R R™)

L>(R4,R™)
LO([Ov T]? Rm)
L(R™, R™)
S(RY)

S'(RY)

I

S*(R)

VP([0,T], R%)
wp(f? 5)

I lesapg

I llep.a

H ’ Hp—var,[s,t]
- llp
Il

|- 1l

I Iloo

I lla

Il

space of right-continuous functions with bounded variation
Besov space, cf. (5.5)

space of geometric Besov rough path, cf. Definition 5.4.1
space of BMO process with respect to a probability
measure Q, see Definition A.6.1

space of continuous functions f: [0,00) — R

space of continuous and bounded functions f: R — R™
space of k times continuously differentiable functions
space of functions in C* that are bounded

with bounded derivatives

space of |a]-times continuously differentiable functions with
(v — |])-Holder continuous partial derivatives of order |« |
or with continuous partial derivatives of order |«

in the case a = |

space of smooth functions ¥7: R — R"™ with support

supp 971 C [-27,2T]

space of controlled paths with respect to S, cf. Definition 2.3.6
space of progressively measurable processes

Z:Q x [0,1] — R satisfying E[ [} | Z;|? dt] < oo

space of Lebesgue p-integrable functions f: R — R™

for p € (0, 00)

space of bounded functions f: R — R™

space of equivalence classes with respect to d

space of bounded linear operator mapping from R™ to R™
space of Schwartz functions on R¢

space of tempered distributions on R?

set of functions similar to X, see Definition 4.2.2

space of progressively measurable processes

Y Qx [0,1] — R satisfying sup;ejo 1) E[|Y:]*] < 0o

space of continuous functions with finite p-variation
modulus of continuity of a function f, cf. (5.2)

norm on the Besov space Bj), via the modulus

of continuity, cf. (5.3)

norm on the Besov space By , cf. (5.5)

p-variation seminorm on the interval [s,t] C R, see 2.1
p-variation seminorm || - {|,var 0,77

norm on C’If”, see 2.2

LP-norm with respect to the Lebesgue measure, p € (0, c0)
supremum norm

Holder norm for « € (0,1)

norm on %<, cf. Definition 2.3.6
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