
STRATIFIED FRAMEWORKS Informatica 25 (2001) 393-401 393 

Stratified frameworks 
Colin Atkinson and Thomas Kiihne 
AG Component Engineering 
University of Kaiserslautem, Germany 
{atkinson,kuehne}@informatik.uni-kl.de 

Keywords: components, refinement, architecture, stratification 

Received: August 16, 2001 

Finding the optimal level of abstraction at which to document the architecture ofa system has long been 
a problem in software engineering, particularly for large and complex systems. In this paper we argue 
that providing Just a single abstraction level is inappropriate, and that instead, multiple architectural 
descriptions should be developed and documented, each capturing a specific aspect of a system's 
realization at a particular level of abstraction. Further, we argue that such a stratified architecture is 
especially valuable when used to organize a framework. After explaining the basic motivation for the 
work, and defining the basic principle of stratification, the paper illustrates the approach in conjunction 
with a small čase study. The paper then discusses the methodological issues associated with the 
creation, application and maintenance of stratified frameworks. 

1 Introduction 
Although it is generally accepted that an optimal 
representation of software architecture includes multiple 
views, the structural view stili invariably plays the 
central role. Hovvever, today's enterprise systems have 
reached such a level of complexity that a single 
"components + connectors" vievv of a system's structure 
as popularised by Garlan and Shaw [1] is no longer 
adequate. Not only has the scale and functionality of 
software increased, but with the advent of component 
technologies the boundary between the application and 
system level services (so called middleware) has 
significantly blurred [2]. As a result, it is no longer clear 
what level of abstraction provides the best overall 
structural description of complex softvvare systems. 
In the following vve argue that for complex, industrial-
scale software systems it is no longer appropriate to think 
in terms of just one structural view ofa softvvare system, 
but that instead it is better to provide multiple structural 
views (or strata), each elaborating upon a different aspect 
of the system's overall functlonality. Since the strata in 
such a multi-level architecture each provide a complete 
description of the system's structure, they are not layers 
in the traditional layered architectural style. On the 
contrary, they each describe the entire structure of the 
system but at different levels of abstraction and with 
respect to different aspects of the system's overall 
functionality. Different stakeholders can therefore 
understand the system's structure at the level of 
abstraction which best matches their individual needs or 
tasks. 
The advantages of such a multi-level view of system 
structure are tvvofold. First, since the relationships that 
connect individual strata reflect those that would result 
from a process of top-down, step-wise refinement, 
starting from the highest-level structural view, the 
approach can serve as the basis for an architecture 

development methodoIogy. Instead of describing the 
whole structural architecture of a system in one fell 
swoop, system developers can focus on separate aspects 
of the system individually, and gradually work towards 
the detailed description [3]. A multi-level view of system 
structure therefore provides a povverful basis for 
separation of concerns and step-wise progress in the 
software development process. Moreover, with a 
reasonable degree of rigour in the structural description 
[4], the approach can provide a foundation for a 
generative approach to software development. 
Second, by viewing the higher level strata as an end in 
themselves rather than a means to an end the concept of 
multiple views forms the basis for a powerful model of 
component-based enterprise frameworks. Regarding the 
upper-level structural views (or strata) as merely stepping 
stones in the creation of the real (most detailed) view 
makes them second class citizens, and makes them 
vulnerable to the neglect that befalls most intermediate 
"documentation" artefacts in softvvare engineering. 
Hovvever, by vievving ali strata as first class citizens of a 
framework, they become more stable software assets that 
are related more in space than in tirne. Multiple structural 
viewpoints within a component-based framework 
enhance the range of possible parameterisation points, 
and thus facilitate more flexible and straightforvvard 
instantiation. 
In this paper vve introduce and explain the concept of 
architecture stratification, and show how it can be used to 
increase the flexibility of component-based enterprise 
frameworks. We give a small example of what a 
stratified framevvork looks like, and then elaborate upon 
the processes by which such frameworks can be created, 
instantiated and evolved. Finally we discuss related 
principles and research areas in software engineering. 



394 Informatica 25 (2001) 393-401 C, Atkinson et al. 

2 What Is Stratification? 
In this section we explain the basic motivation for 
architecture stratification, and describe fundamental 
principles for its realization. We then consider the 
ramifications of stratification from the perspective of 
individual system components. 

2.1 Which Architecture is the 
Architecture? 

Consider a very simple client-server system in which a 
client component requests some form of service from a 
remote server component. At the highest level of 
abstraction the structure of this system could be captured 
using a class diagram of the kind in Figure 1. 

«remote» 
:Client :Server 

Figure 1: High-Level Client-Server Architecture 

The stereotype, «remote», is used here to capture the 
high-level properties (or semantics) of the interaction 
betvveen the client and server. This view of the system's 
structure conforms to the fundamental "components + 
connectors" concept of software architectures 
popularized by Garlan and Shaw [1]. Hovvever, it is not 
the only structural view that bas this property. It is 
perfectly possible to provide alternative representations 
of the system's structure that conform just as well to 
"components + connectors" concept of architecture. 
Figure 2, for example, provides an alternative vievv of the 
structure of the system that explains how ORBs (Object 
Request Brokers) serve to mediate the interaction 
betvveen the client and the server. 

:Client 

«local» 

:Server 

:ORB 
«datagram» 

«local» 

:ORB 

Figure 2: Low - level Client - Server Architecture 

Figure 2 represents an equally valid structural description 
of the system. The only difference betvveen the two views 
is the level of abstraction at vvhich the structure is 
described. Figure 1 provides a high-level view of the 
system, involving a semantically rich interaction betvveen 
the client and server, vvhile Figure 2 gives a more 
detailed vievv that elaborates upon how the interaction 
betvveen the client and server is realized. 
Since both provide acceptable structural representation of 
the system consistent vvith the "components + 
connectors" model, the immediate question that arises is 
vvhich is the correct, or the best, one? In other vvords 
vvhich diagram represents the real architecture? The 
implicit ansvver in most contemporary methods is that the 
lovvest, non-executable description of the system 
structure represents the architecture. Descriptions that are 
executable are typically regarded as an "implementation" 
or a "program" rather than an architecture, vvhile higher-
level descriptions are generally vievved as being 
incomplete or merely models. 

Were one forced to select just one architecture to 
represent the structure of the system, the more detailed 
version of the two architectures vvould probably be the 
best choice. Hovvever, a better solution is obtained if 
more than one architectural description can be chosen. 
This is because higher-level vievvs of the structure 
provide descriptions of the system that are of more value 
to certain stakeholders than the lowest-level vievv. For 
example, the user or customer is probably going to find 
Figure 1 a much more useful representation of the system 
than Figure 2. Therefore, higher-level vievvs are valuable 
assets in their ovvn right, and do not have to merely 
represent stepping stones along the road to the "real" 
(most detailed) architecture. In other vvords, rather than 
being just a means to and end, higher level structural 
vievvs represent a valuable "end" in themselves. 
The basic premise underlying the concept of stratification 
is that a complete representation of a system's 
architecture should contain ali relevant abstraction levels. 
Moreover, the relationships betvveen the different levels 
should be carefully and explicitly documented so that 
they represent a single coherent, vvhole, rather than a set 
of disjoint structural vievvpoints. 

2.2 Interaction Reflnement 
Most component and architecture description languages 
include the concept of "connectors" to capture the 
interaction protocols through vvhich components, or 
architectural units, can be connected together. Ideally 
these connectors should be first class citizens of a 
description language, amenable to the same set of 
manipulations as components themselves. Hovvever, to 
date, no entirely satisfactory model for connectors has 
been found. Introducing the notion of abstraction levels, 
referred to as strata in the follovving, enables connector 
semantics to be understood in terms of lovver level 
components. 

Figure 3: Interaction refinement 

Figure 3 shovvs hovv a high level interaction betvveen 
components X and Y is realised in terms of additional 
interactions and components at a lovver level of 
abstraction. In other vvords, the interaction betvveen X 
and Y is reified into components (A and B) and other 
interactions vvhich reside one stratum lovver in the 
hierarchy. Vievving connectors as collections of 
components at lovver architectural strata, provides a clean 
model for their access and manipulation. 
Note that the original component X in Figure 3 has to be 
adapted to X' in order to communicate vvith A rather than 



STRATIFIED FRAMEWORKS Informatica 25 (2001) 393^01 395 

with Y. This is an important aspect of stratification and 
is discussed further in section 2.3. 

Figure 4: Structure of Stratified Architecture 

In general, a complete stratified architecture is comprised 
of multiple strata as illustrated in Figure 4. Each stratum 
represents a refmement of the stratum above, and thus 
typicaliy contains additional components and interactions 
that explain how interactions in the higher strata are 
realized. In Figure 4 the new components in a stratum are 
represented by white ovais, while those projected down 
from the stratum above are soHd. The abstraction levels 
in a stratified architecture range from a high level, 
analysis-lii<e description of the system down to the most 
detailed implementation-oriented view. The highest level 
will be most useftil for understanding the overall solution 
strategy. This stratum is populated with components and 
connector types that are key to understanding how the 
system is organized. In the lovvest stratum one will find 
the usual complex web of objects where it is hard to "see 
the forest for the tree". Hovvever, this is often the only 
appropriate level of abstraction to resolve realization 
details. 
The key to effective stratification is the selection of 
appropriate sets of interactions vvithin one stratum whose 
collective refmement elaborates upon a well-defined 
aspect of the system's realization. For instance, if in a 
refmement step starting from a business logic stratum 
one elaborates upon how remote interactions are realized, 
this will give rise to a "communication stratum". The 
next level down could be devoted to dealing with 
persistence issues and so on. Depending on the 
application domain the same sequence of types of strata 
will be useftil in structuring a system's architecture 
according to its emergent (often non-functional) 
properties. 
It is important to realize that each stratum of a stratified 
architecture is complete in its own right with respect to 
the level of abstraction it addresses. In contrast to layers. 

which only encapsulate a certain subset of a system, each 
stratum describes the entire system, albeit with varying 
degrees of abstractness. Clearly, ali levels of abstraction 
are useful in a certain context. Someone trying to 
understand the overall structure of the system is best 
served with a high level view. Another person, whose 
task it may be to change the way data is marshalled over 
a netvvork, gains more from looking at the 
communication stratum. Each stratum, therefore, 
provides the appropriate level of abstraction for a 
specialist vvorking on a particular system property. 
The multi-level separation of concerns provided by a 
stratification approach is even more valuable when it is 
used to organ ize a framework, since it offers enhanced 
opportunities for parameterisation. A fiindamental 
concept in framework technology is the idea of so called 
"hot spots", i.e., points of adaptability. With a 
conventional, "single abstraction level" approach, ali hot 
spots reside at the same level, and it is not clear what 
their individual role is vvithin the complexity of the 
detailed architecture. In contrast, a stratified framework 
distributes hot spots over the various strata according to 
their plače in the abstraction hierarchy. Hence, it is much 
easier to understand the role that a point of variability 
plays in the overall framevvork organization and vvhat are 
the implications of plugging in a certain new behaviour. 
Not only are the hot spots easier to see and understand in 
a stratified framework, but they can also have a greater 
range of effects on the eventual system's ftinctionality. In 
conventional object-oriented frameworks, the hot spots 
are typically hooks to replace one object with another. 
This means that although the application developer is 
free to adjust the objects in the architecture, the 
interaction mechanisms, in contrast, remain relatively 
fixed. Hovvever, interactions, which also have a critical 
bearing on the system's functionality, are equally as 
likely to change as objects if not more so'. This is 
especially true when a framework has to be evolved to fit 
an extended or slightly different application context. By 
expressing interactions as objects in a lovver stratum, a 
stratified framework can offer more flexible 
parameterisation than traditional object-oriented 
framevvorks. Interactions within the framevvork can be 
made parameterisable by providing points of variation in 
their realization stratum. This allows application 
engineers to influence interaction semantics, as well as 
object semantics, by providing the required adaptation 
objects tailored to the precise needs of the customer. 

2.3 Component Metamorphosis 
As well as introducing new kinds of components and 
interactions, a given architectural stratum (except the top 
leve!) also contains projections of the components in the 
stratum above. The precise nature of the projection 
depends on the nature of the interaction refmement 

In fact, the success of object-oriented architectures 
partly lies in the fact that objects are more stable 
architectural abstractions than functions (i.e. interactions) 



396 Informatica 25 (2001) 393-401 C. Atkinson et al. 

defining the relationship between the strata. Sometimes a 
component at one level will appear in the lower level 
completely unchanged. Often, however, the 
implementation or even interface of a component will be 
changed, either due to a change of its interaction 
partners, or a change in the nature of the interactions. For 
example, Figure 3 shows how component X is changed 
to X' because of the refinement of its interaction with Y. 
In the lower stratum the new version X', only 
communicates directly with A rather than with Y. 
Because of the obvious analogy with the biological 
development of insects, we refer to the set of changes 
applied to a given component as it is projected across the 
different strata as metamorphosis. When viewed from the 
perspective of an individual system component, 
stratification can be understood as the successive 
metamorphosis of a component to its most detailed form 
in the most detailed architecture. 
Consider, for example, the elaboration of an aspect of a 
system, such as authorization, within a given stratum. 
Authorization cannot be handled by a single module 
alone, but is a cross-cutting concern, i.e., it cuts through 
component boundaries and its introduction causes 
changes that are scattered in a non-local manner 
throughout the system. In a stratified architecture, 
however, the strata above the aspect-elaborating stratum 
do not deal with the aspect in an explicit manner, but 
defer matters of authorization to the stratum that 
explicitly elaborates upon the realization of this aspect 
(i.e. the authorization stratum). When the authorization 
interactions from this stratum are refmed in lower leve) 
strata, the spreading of the aspect-related details starts 
until the bottom level is reached (see section 3.1 for a 
sample application). 

The need for changes to components as they are 
projected into lower strata is simply a testimony to the 
fact that components typically cannot be used "out of the 
box" and that a pure black-box "plug & play" 
composition strategy rarely works in practice. To make 
component composition really work, components have 
to offer some open implementation facilities [5] and 
connectors have to be grey-box connectors [6]. 

3 £xample stratified Framework 
To illustrate how the principles of stratification explained 
in the previous section vvould be applied in practice, in 
this section we walk through a small example. The 
subject of the example is a simple banking system which 
Stores and accesses accounts on behalf of customers. Key 
requirements for this facility are that the bank and the 
accounts are potentially remote, access to accounts must 
only be granted to authorized users, and interactions 
between the bank and accounts must be secure (i.e. non-
interceptable). 
In the discussion belovv we focus on only a small part of 
the systems potential functionality, but the ideas 
explained can be scaled up easily to the other parts of the 
systems. 

3.1 Structure of a Stratified Framework 
Naturally the top-level stratum is the simplest, since it 
describes the structure of the system using the 
semantically richest connectors. The class diagram in 
Figure 5 shows that the class Bank interacts with the 
class Account by a means of an interaction labelled 
vvith the stereotype « r e r ao t eSa fe» . This conveys the 
fact that the interaction is a semantically rich connector 
and "wraps up" the requirements for remoteness, 
authorization and security identified above. 

Bank 

printBalance(Slring) 

«remoteSafe» 
Account 

gelBalanceO 

Figure 5: Application Stratum 

The next stratum elaborates upon the realization of the 
authorization aspects of the system's functionality, as 
illustrated in Figure 6. 

Bank 

printBalanca(Strino, String) 

eremoteSecuren 
Account 

gBtBalance(Strino) 

Figure 6: Authorization Stratum 

In principle, this is done by defining the additional 
components and interactions that are involved in the 
authorization process, and by defining how the 
components and interactions from the Application 
stratum are changed. In this čase, no new components are 
required but the interaction between the Bank and the 
Account components needs to carry the information 
needed to perform the authorization. In particular, 
methods g e t B a l a n c e O and p r i n t B a l a n c e () 
How are elaborated to feature one more parameter. A so 
called PIN (personal identification number) has to be 
provided when requesting a service from the bank and is 
checked by the account before access is granted. Note, 
how the annotation of the association has changed from 
r e m o t e S a f e to r e m o t e S e c u r e , as the safety aspect 
of the interaction is addressed. It remains to speciiy that 
the interaction in addition is remote and secure. 
The next stratum elaborates upon the distribution aspect 
of the system. As illustrated in Figure 7, this ušes the 
broker pattern as defined by Buschmann et al. [7] to 
realize distribution. 

Bank 

printBalanco(5lring, String) 

' ' 
ClientOrb 

reques<(String, String) 

connecta to \ 
«encrypted» 

Account 

getBBlancB{Str!ng} 

-. 

ServerOrb 

axacut«(SlHng, Slring) 

Figure 7: Distribution Stratum 



STRATIFIED FRAMEWORKS Informatica 25 (2001) 393-401 397 

In this particular refinement, two new component types 
and one new interaction type are introduced. Note that 
this implies a change to the required interface of the 
Bank since it must now interact with its C l i e n t O r b 
rather than with the Account directly. The Account 
component type, on the other hand, is totally unaffected 
by this refinement. 
The final stratum in this exampie elaborates upon the 
realization of encryption. As illustrated in Figure 8, this 
is achieved by the introduction of an additional 
E n c r y p t i o n component type that is used by the 
C l i e n t O r b and S e r v e r O r b components to 
respectively encode and decode message before they 
cross the network. 

Bank 

prir>tBalance(5trins, String) 

•" • 

ClientOrb 

roqu8at{Slring, String) 

c o n n e c t s t o > 

Account 

gelBalancejString) 

, L 

ServerOrb 

8xeculB(str ing. String) 

Encryption 

DES_encrypt() 
DES_decrypt() 

Figure 8: Encryption Stratum 

Further strata would be defined to elaborate upon 
successively lovver level details of the system's 
realization until a level is reached that can be translated 
directly into an executable form. In general, strata are 
defined to focus on the realization of each of the key 
aspects of the system realization. Since the aspects 
affecting a system tend to be domain specific so are the 
strata. 

3.2 Refinement transformations 
Documenting architecture at multiple levels of 
abstractions as shown in the previous section is a useful 
activity in its own right. However, it is unrealistic to 
expect that aH the strata can be made mutually consistent 
manually. 
Today it is rare to find examples of softvvare 

development approaches in which just the code and a 
single, very high level architectural description are kept 
mutually consistent, so it is not feasible to expect this to 
be achievable when there are even more system 
representations. Therefore, a stratification tool is needed 
that can organize and help apply -

1. an annotation language and 
2. a set of refinement transformations, 

both of which are typically domain dependent. In the 
example used above we exploited the fact that one could 
use annotations such as encrypted or remoteSecure 
and that there are relafions such as remoteSafe = 
author ized + remoteSecure. The task of the 
annotation language is thus to provide labels that are 

used to refer to certain interaction semantics and relations 
between them. 
Each atomic label of the annotation language refers to an 
individual refinement transformation. Such a 
transformation takes one component sceriario involving a 
labelled interaction and creates a new scenario in the 
stratum below. The resulting scenario has less rich 
interactions and possibly additional components 
implementing the interaction semantics of the initial 
interaction (see Figure 3). A tool that fully supports the 
stratification approach therefore needs to -

• manage the annotation language. 
• support the definition of refinement 

translations. 
• apply the refinement translations, thus keeping 

the strata in sync with each other. 
• facilitate the reengineering of detailed scenarios 

to high-level interactions by applying 
refinement translations in the reverse direction. 

In particular, for the purpose of discovering and 
documenting the architecture within already existing 
software, the last point is useful in creating high-level 
views from representations with too much detail. 
Naturally, in creating a stratified architecture one will 
lise and define both the annotation language and 
refinement translations in an interleaved fashion. Both 
sthese assets, although typically domain dependent, are 
reusable for other systems in a similar domain. 

4 Developing, Using and Evolving 
Stratified Frameworks 

The previous sections have respecfively defined and 
exemplified the structure of a stratified architecture. In 
doing so they have essentially focused on the product of 
stratification, but have said little about how stratified 
architectures are created, used and evolved, that is, the 
processes related to stratification. In fact, just as a 
modeling language such as the UML can be understood 
and used without an associated process, the concept of 
architecture stratification is usefiil as an organizational 
principle on its own. It is, therefore, useable with a 
variety of methodological approaches. In this section we 
explain the most important methodological issues 
associated with stratified frameworks, and suggest some 
Solutions. 
A framework oriented approach to softvvare development 
raises three main questions -

• how should the framevvork initially be 
developed ? 

• what are the necessary actions to instantiate the 
framework so that applications meet the needs 
of a specific customer? 

• how should the framework be evolved over time 
in response to change requests? 

4,1 Developing Stratified Frameworks 
In addition to the usual framevvork development 
activities the following five main activifies have to be 



398 Informatica 25 (2001) 393^01 C. Atkinson et al. 

incorporated into a process for creating and using 
stratified framevvorks-

1. Identily candidate strata 
2. Order candidate strata 
3. Identify hot-spots and allocate them to strata 
4. Elaborate strata 
5. Partial Implementation 

4.1.1 Identifv Strata 
The first challenge in the development of a stratified 
framework is the identification of the appropriate strata. 
This question must be tackied from both a top down and 
bottom up perspective. From the top down perspective, 
the key aspects of the system as identified in the 
requirements specification are extracted and analysed. 
Each system aspect that is likely to involve numerous 
objects is an indicator of a possible stratum. But it is also 
possible that an aspect does not introduce objects at ali 
but only changes method signatures and implementations 
(e.g. the "authorization" aspect in the example in section 
3.1). From the bottom up perspective, the key reusable 
components vvithin standard or predefmed architectural 
Solutions (e.g. ČORBA) are evaluated and considered for 
the problem in hand. By carefiilly balancing the needs of 
the application against the potential solutions an optimal 
set of strata is gradually distilled. In general, a strata-
inducing aspect could be anything that is not essential to 
a very high level analysis model of the system. A good 
indication for proper aspects is the one would expect 
them to appear in similar systems within the system's 
domain. 

4.1.2 Order the Strata 
The next step is to order the strata according to their 
dependencies and levels of abstraction. A key tenet of the 
stratification approach is that strata can be arranged in a 
strict order, such that a stratum on one leve! depends on 
(is refined to) only the stratum immediately below. 
Often, hovvever, analysis of the initial candidate list of 
strata reveals mutual dependencies, or strata that are 
dependent on two or more other strata. Such situations 
must be rectified either by removing strata from the list, 
or by splitting strata into more specialized strata. At the 
end of this process, a list of strata must be identified in 
which each stratum only depends on (is refined to) the 
stratum immediately below. 

4.1.3 ldentify and Allocate Hotspots 
The next step is to analyse the intended fliture ušes of the 
system with a view to the Identification of the key points 
of variation, or "hot spots". This activity is akin to the 
scoping and variability analysis activities found in 
product line approaches. Once candidate hot spots have 
been identified, a first pass is made at allocating hot spots 
to the identified strata. This is driven by a consideration 
of the aspects of the system that are affected by particular 
hot spots. One straightforward technique for 
accomplishing this is to consider one hot spot at a time 
and proceed down the strata from top to bottom until the 

hot spofs purpose is given meaning by the corresponding 
stratum. Strata above this stratum suppress the level of 
detail that the hot spot is addressing and strata beiovv are 
likely to contain abstractions which support the 
realization of hot spot components. A concrete definition 
of the hot spot cannot be completed until the architecture 
of the stratum has been elaborated, but an initial 
allocation of hot-spots to strata can be made based on the 
purpose of each hot spot. 

4.1.4 Strata Elaboration 
The most challenging activity is the elaboration of the 
individual strata. Apart from the top-stratum, the process 
is basically the same for each. The process of creating the 
top-level stratum is a little different, since it has much in 
common with the typical process of deriving an initial 
high-level architectural in a traditional object-oriented 
development method. The main difference is that čare 
must be taken to keep the top stratum as abstract as 
possible, since the architectural features derived from 
specific aspects of the system should be elaborated in 
lovver-level strata. This differs from traditional 
development methods where aH aspects of the system are 
usually considered in the (single) architectural 
description. 
The main difference between nonnal architecture 
development, and the development of the top-level 
stratum in a stratified framevvork is that the latter is 
allowed to make assumptions about services elaborated 
by lower-level strata. For example, in a stratified 
framework containing a stratum that realizes remote 
communication (i.e. in the style of an ORB), a remote 
interaction mechanism can be assumed as a basic 
architectural primitive (i.e. connector) by any stratum 
above it (including of course the top level), This is not so 
in regular architecture development, wherever functional 
requirement must be considered within the single overall 
architecture. 
Once a first version of the top-level stratum has been 
defined, the next step is identiiying which of the 
interactions at the top level are affected by the aspect 
handled by the stratum below. These interactions are then 
analysed in turn to identily appropriate refinements based 
on the facilities handled by the underlying strata. This 
can be done using the transfomiations identified above. 
The set of candidate refinement steps are then analysed 
and a common solution is distilled. A complete 
architecture for the underlying stratum is then 
determined, taking into account relevant architectural 
patterns or lower level design patterns depending on the 
current level of abstraction. Note that the realization of a 
particular stratum as well as the definition of the 
refinement steps mapping into the stratum lends itself to 
enactment by someone who is an expert in the area the 
stratum addresses. For instance, experts in distribution, 
fault-tolerance, persistence, encryption, etc. will work on 
their respective strata, potentially in parallel to some 
extent. 
The previous activity is repeated until each stratum in the 
framework is elaborated and candidate architectures have 



STRATIFIED FRAMEWORKS Informatica25 (2001) 393-401 399 

been selected. Finally, once the detailed architectures are 
available, the hot spots can be revisited and 
accommodated in the framevvork using one of the 
standard object-oriented techniques, as explained below. 
One of the things that must be considered at each stratum 
is the concrete representation of the various hotspots 
allocated to that level. Various techniques can be used to 
capture hot-spots (for instance, see [8]), but for our 
purposes here it is sufficient to distinguish between so 
called "white-box" and "black-box" specialization [9]. A 
mature framework, vvhich has been instantiated a number 
of times and has already undergone ali major 
refactorings, will offer mostly if not exclusively black-
box specialization. Here the hot spot has a well defined 
interface and is parameterised by plugging in a 
prefabricated component (e.g. by using pluggable 
adaptors or the Function Object pattern [10]). If a 
prefabricated component (packaged as part of the 
framevvork) is used one of the known framevvork 
behaviours is selected. If a new component has to be 
created than the framevvork will stili bebave vvithin the 
range of possibilities opened up by the black-box hot 
spot. Analysing vvere that hot spot is located, i.e., vvhich 
stratum it populates and vvhich higher-level interactions 
depend on it gives a good picture about the scope of the 
variation introduced. Here the term traceability is given 
meaning, since it is possible to travel the refinement 
steps up and dovvn to trace vvhere the variation is being 
propagated. This advantage of the stratification approach 
becomes even more important vvhen the other form of 
parameterisation, i.e., white-box specialization is used. In 
this čase, a framevvork class is subclassed to override one 
or more methods. This form of framevvork adaptation is 
common vvhen the framevvork is stili evolving to its final 
form and it is not yet clear how the black-box hot spots 
should be modelled and vvhere they should be located. 
Not only does this specialization variant require more 
intimate knovvledge of the framevvork but it is also 
potentially much more dangerous, as erroneous 
overriding of behaviour could havedisastrous effects on 
the integrity of the framevvork behaviour. Therefore, if 
white-box specialization has to be used it is doubly 
important and revvarding to travel up and dovvn the strata, 
foUovving the refinement transformations, to check the 
scope of the changes made. 

4.1.5 Partial Implementation 
The lovvest-level stratum of a stratified framevvork 
represents the realization of the system containing aH of 
the details introduced in the strata above. This is the 
stratum vvhich is used to derive the implementation of the 
system. Depending on the level of detail present, i.e., on 
the amount of lovv level design aspects introduced by one 
or more strata above, the derivation of an implementation 
ranges from a standard "design-to-implementation" 
activity to a simple "one-to-one" mapping into a 
programming language. 

4.2 Using the framework 
Using a stratified framevvork to create a concrete 
application involves three main activities: 

1. Variant Resolution 
2. Hot-spot Instantiation 
3. Implementation Completion 

4.2.1 Variant Resolution 
Variant resolution is essentially the same for ali 
framevvork-based approaches to softvvare development. 
The basic goal is to determine precisely vvhat set of 
features the desired variant of the system requires in 
terms of the hot spots made available by the framevvork. 
Those features that correspond to default options, if these 
are available, can be immediately dealt vvith and should 
be documented vvith interaction annotations so that they 
can be validated in čase the default option changes in the 
future. 

4.2.2 Hot-Spot instantiation 
The next step is to actually resolve the non-default 
choices by providing concrete representations of the 
chosen features for each of the affected hot-spots. The 
advantage of stratification is that the hot-spots are clearly 
separated and defined vvith respect to the aspect of the 
system that they affect. The instantiation of hot-spots in a 
stratified framevvork is therefore much easier than in 
other non-stratified framevvorks. First, it is clearer vvhere 
to look for an appropriate hot spot because of their 
distribution to strata. Second, as detailed above, the 
refinement transformations represent paths to the places 
vvithin the framevvork affected by the hot-spot allocation. 
Since hot-spots are defined at different strata, the effects 
of the allocation of a hot spot must be carried dovvn 
through the strata to the lovvest stratum. This involves the 
reapplication of the refinement transformations vvhere 
appropriate. As indicated beforehand, this is vvhere 
stratification can benefit most from appropriate tool 
support. 

4.2.3 Implementation Completion 
Once the realizations of ali non-default hot-spot 
resolutions have been mapped dovvn to the bottom 
stratum, any modified or completed architectural 
elements must be translated to an executable form using 
the same techniques specified previously. 

4.3 Evolving the framework 
The final major activity involving in building and 
applying stratified framevvorks is their evolution. No 
softvvare system, or family of systems, is constant, so 
some systematic procedure is required for handling the 
inevitable requests for change. In the context of a 
stratified framevvork this involves three main activities: 

1. Change analysis 
2. Change Localization 
3. Realization 



400 Informatica 25 (2001) 393-401 C. Atkinson et al. 

4.3.1 Change analysis 
Most requests for changes are received from users and 
customers of specific version of the system. Thus, before 
changing the framework, it is first necessary to determine 
whether the request can actually be handled by a 
reinstantiation of the framevvork with a modified set of 
parameters. If this is so, the existing framevvork is 
capable of handling the request and no framework level 
modiilcation is necessary. 

4.3.2 Change Localization 
For those changes that are deemed appropriate for the 
framevvork, it is then necessary to establish two things. 
First, is the change "almost" covered by an existing hot-
spot? If so, the hot-spot realization must be generalized 
to handle the change. If not, then it is necessary to repeat 
the "Identify hot-spots and allocate them to strata" 
activity in framevvork development, and adjust the 
framevvork accordingly to handle the requested change. 

4.3.3 Realization 
In both cases it is necessary to bring the vvhole 
framevvork, including the associated implementation, into 
a consistent state by reapplying aH relevant refmement 
transformations. This ensures that ali changes are 
reflected in lovver strata and the executable code. Again, 
tracing out the affect of changes vvithin higher strata and 
foUovving them along the refinement transformations to 
aH critical locations vvithin the framevvork gives an extra 
means of validating the nevv framevvork version in 
addition to regression tests of the framevvork itself and its 
knovvn instantiations. 

5 Related Work 
The concept of stratified framevvorks is related to several 
other ideas vvhich are currently under investigation in the 
softvvare engineering community. In this section vve 
briefly describe the most important of these. 

5.1 Aspect-oriented programming 
Aspect-oriented programming has received a great deal 
of attention recently as a way of separating out, and 
partial!y automating, the treatment of orthogonal aspects 
of a systems overall fiinctionality [11]. The stratification 
approach shares the same basic philosophy of aspect 
oriented programming since it is built on the basic idea 
of separating concerns for orthogonal issues [12]. As 
explained above each stratum basically focuses on the 
realization of a specific aspect of as system. 
IVIost aspect oriented approaches only deal vvith the code 
level of a system vvhereas stratification is an architectural 
approach as vvell. The main difference betvveen 
stratification and the primary "aspect-oriented 
programming" approaches, hovvever, is the strategy 
adopted for the description and manipulation of these 
aspects. In aspect oriented programming, the emphasis is 
on the semi-automatic integration of distinct aspects 
using special tools typically knovvn as vveavers. This is 

fine for a number of aspects that can be handled vvell by 
vveavers, but in principle this approach suffers from a 
hard superimposition problem vvhen independent aspects 
affect the same softvvare abstraction. It is, for instance, a 
non trivial problem to decide the order of the 
modifications to be made in such a čase. Many of the 
"concerns" vvhich need to be addressed in large-scale 
industrial softvvare development are too complex to be 
handled in this way. Sometimes aH the details of a 
realization need to be available in order to find a bug or 
achieve the desired behaviour. In this čase a pure version 
of the system plus a number of aspects and an implicit 
vveaving strategy is insufficient. The stratification 
approach essential offers an alternative way of separating 
aspects using a more manual softvvare engineering based 
approach (based on standard softvvare development 
activities). The order of aspect introduction is fixed. Each 
aspect is defined on a complete systeiTi description (vvith 
regard to the required level of abstraction) and not on a 
pure, i.e., incomplete, system and possibly more aspects. 
While stratification successfully resolves 
superimposition conflicts vvith a linear and dependent 
aspect introduction, the dovvnside of this is that it is not 
possible to vievv a system's architecture vvith an aspect B 
but vvithout an aspect A if A is introduced earlier (higher 
up the hierarchy) than B. With an optimal ordering of the 
strata, hovvever, it is unlikely that such a need vvill occur. 

5.2 Reflective Architectures 
Another community of researchers, vvhich has pursued 
the idea of capturing distinct aspects of a system's 
behaviour vvithin separate "architectures" is the reflective 
programming community. The basic premise of this 
community is that the description of a system should 
comprise two "architectures", one representing the 
standard application softvvare, and the other "meta" 
architecture describing certain aspects of the support 
software that are amenable to change, sometimes even 
during execution of the softvvare. Since the meta 
architecture allovvs aspects of the system to be modified 
(at run-time), vvhich vvere previously considered fixed 
primitives of softvvare construction in traditional 
approaches, the vvhole approach is knovvn as a reflective 
architecture. Since is separates out the description of 
different aspects of the systeiTis behaviour into separate 
"architectures" this approach has much in common vvith 
stratification. In fact, vve vievv stratification as a 
generalization of the reflective architecture approach - a 
general ization vvhich supports an arbitrary number of 
"architectures" rather than just tvvo. Interestingly, in the 
čase of a reflective programming language, such as 
CLOS, the reflective "stratum" must be vievved as being 
belovv the programming language stratum, as it 
elaborates and defines the meaning of programming 
language mechanisms (called interactions in systems). 
By the same token a meta stratum vvill be found below 
strata vvhich depend on it, although the general 
interpretation of "meta" being higher and above 
something. 



STRATIFIED FRAMEWORKS Informatica 25 (2001) 393^01 401 

6 Conclusion 
As the complexity of softvvare systems continues to 
grow, and the boundary between applications and 
systems level softvvare continues to blur, it will become 
increasingly difficult to visualize the structure of 
softvvare systems using only one structural model. If ali 
the "components and connectors" for ali aspects of the 
system's functionality are crammed into a single 
structural model, it will become increasingly impossible 
to "see the forest for the tree." In this paper we have 
described a solution to this problem referred to as 
architecture stratification. 
The basic premise of the approach is that several distinct 
models of a system's structure should be developed, each 
yielding a different level of abstraction, and focussing on 
the elaboration of different aspect of the system's 
functionality. As such, the approach can be viewed as 
extending the tenets of aspect-oriented programming to 
higher-level development concerns, but in a more 
software engineering oriented style. 
The idea of creating a series of models of a system's 
structure, related by rigorous interaction refmement 
transformations, has value as a systematic technique for 
realizing the full, aH encompassing structural model 
ready for implementation. When used in this way, the 
higher-level strata essentially represent stepping-stones, 
or mllestones, along the route to towards the 
development of the "real" or ultimate all-encompassing 
architecture. The higher-level strata thus play a 
secondary role, and are likely to be neglected over tirne. 
Greater leverage can be gained from the architectural 
stratification approach, however, when it is used to 
describe the structure of a component-based framework. 
When used for the purpose, the higher-level strata have 
the same weight as the lovvest level stratum, and play a 
valuable role in describing the framevvork structure from 
the perspective of a particular stakeholder. The main 
value of the distinct strata is to provide a clean way of 
capturing ftinctional (i.e. interaction-based) variation 
points in terms of components (albeit in a lower stratum), 
and to provide a clearer model of the effects of 
parameterised "hot-spots". 

Another major benefit of the separation of concerns 
afforded by stratification is that is clarifies the role of 
proven architectural patterns in the structuring of a 
softvvare system. The majority of architectural and design 
patterns that have been published to date are intended to 
be used together, but when a single, all-encompassing 
architectural model is used to describe the structure of a 
system, the application and interrelationship of specific 
patterns is aH but lost. Stratification helps by providing 
distinct abstraction levels that focus on the deployment 
of only one or a few patterns, and thus the role and 
location of specific patterns, as well as their relationship 
to other patterns at different strata, can easily be 
discemed. 
As well as explaining the basic principles of 
stratification, and illustrating their application in the 
context of a small example, this paper provided an 
outline of the primary development activities associated 

with the approach. The paper aiso discussed the 
relationship of the stratification concept with other 
leading architectural research initiatives. As a 
generalization of the aspect-oriented programming and 
reflective architecture approaches to software 
development, the principle of architecture stratification 
represents the next step along the road tovvards greater 
separation of concerns in the engineering of quality of 
softvvare systems. 

7 References 
[1] M. Shaw, and D. Garlan (1996) Software 

Architecture: Perspectives on an Emerging 
Discipline, Prentice-Hall 

[2] C. Szyperski (1998) Component Softvvare, Addison-
Wesley 

[3] Nicholas Wirth (1971) "Program Development by 
Stepvvise Refinement." Communications of the 
ACM, vol. 14, no. 4, pp. 221—227. 

[4] M. Broy (1997) Towards a Mathematical Concept of 
a Component and Its Use, TUM Report 19746. 

[5] G. Kiczales (1996) Beyond the Black Box: Open 
Implementations, IEEE Software, vol. 13. no. 1, 
pages 8—11. 

[6] U. Assmann and A. Ludvvig (1999) Introducing 
Connections into Classes with Static 
Metaprogramming, 3rd Int. Conf on Coordination, 
LNCS 1594. 

[7] F. Buschmann, R. Meunier, H. Rohnert, P. 
Sommerlad and M. Stal (1996) Pattem-Oriented 
Softvvare Architecture - A System of Patterns, John 
Wiley & Sons. 

[8] W. Pree (1994) Meta Patterns - A Means for 
Capturing the Essentials of Reusable Object-
Oriented Design, ECOOP '94, pages 139—149. 

[9] R. E. Johnson and B. Foote (1988) Designing 
Reusable Classes, Journal of Object-Oriented 
Programming, vol. 1, no. 2, pages 22—35. 

[10] T. Kuhne (1997) The Function Object Pattern, C++ 
Report, vol. 9, no. 9, pages 32—42. 

[11]G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, 
C. V. Lopes, J.-M. Loingtier and J. Irvvin (1997) 
Aspect-Oriented Programming, In proceedings of 
the European Conference on Object-Oriented 
Programming, Finland. Springer-Verlag LNCS 
1241. 

[12] C. Atkinson and T. Kuhne (2000) Separation of 
Concerns through Stratified Architectures, 
International Workshop on Aspects & Dimensions 
of Concerns, ECOOP 2000, Cannes, France. 


