
Knowledge-Driven Architecture Composition
Case-Based Formalization of Integration Knowledge to Enable Automated Component

Coupling

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Fabian Jonas Burzlaff
aus Lahr/Schwarzwald

Mannheim, 2021

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Prof. Dr. Heiner Stuckenschmidt, Universität Mannheim
Korreferent: Prof. Dr. Colin Atkinson, Universität Mannheim

Tag der mündlichen Prüfung: 29.03.2021

ii

Abstract
Service interoperability for embedded devices is a mandatory feature for dynamically changing
Internet-of-Things and Industry 4.0 software platforms. Service interoperability is achieved on a
technical, syntactic, and semantic level. If service interoperability is achieved on all layers, plug
and play functionality known from USB storage sticks or printer drivers becomes feasible. As a
result, micro batch size production, individualized automation solution, or job order production
become affordable. However, interoperability at the semantic layer is still a problem for the
maturing class of IoT systems.
Current solutions to achieve semantic integration of IoT devices’ heterogeneous services in-
clude standards, machine-understandable service descriptions, and the implementation of soft-
ware adapters. Standardization bodies such as the VDMA tackle the problem by providing a
reference software architecture and an information meta model for building up domain stan-
dards. For instance, the universal machine technology interface (UMATI) facilitates the data
exchange between machines, components, installations, and their integration into a customer-
and user-specific IT ecosystem for mechanical engineering and plant construction worldwide.
Automated component integration approaches fill the gap of software interfaces that are not
relying on a global standard. These approaches translate required into provided software inter-
faces based on the needed architectural styles (e.g., client-server, layered, publish-subscribe, or
cloud-based) using additional component descriptions. Interoperability at the semantic layer is
achieved by relying on a shared domain vocabulary (e.g., an ontology) and service description
(e.g., SAWSDL) used by all devices involved. If these service descriptions are available and
machine-understandable knowledge of how to integrate software components on the functional
and behavioral level is available, plug and play scenarios are feasible.
Both standards and formal service descriptions cannot be applied effectively to IoT systems as
they rely on the assumption that the semantic domain is completely known when they are noted
down. This assumption is hard to believe as an increasing number of decentralized developed
and connected IoT devices will exist (i.e., 30.73 billion in 2020 and 75.44 billion in 2025). If
standards are applied in IoT systems, they must be updated continuously, so they contain the
most recent domain knowledge agreed upon centrally and ahead of application. Although for-
mal descriptions of concrete integration contexts can happen in a decentralized manner, they
still rely on the assumption that the knowledge once noted down is complete. Hence, if an in-
teroperable service from a new device is available that has not been considered in the initial
integration context, the formal descriptions must be updated continuously. Both the formaliza-
tion effort and keeping standards up to date result in too much additional engineering effort.
Consequently, practitioners rely on implementing software adapters manually. However, this
dull solution hardly scales with the increasing number of IoT devices.
In this work, we introduce a novel engineering method that explicitly allows for an incomplete
semantic domain description without losing the ability for automated IoT system integration.
Dropping the completeness claim requires the management of incomplete integration knowl-
edge. By sharing integration knowledge centrally, we assist the system integrator in automating
software adapter generation. In addition to existing approaches, we enable semantic integration
for services by making integration knowledge reusable. We empirically show with students that
integration effort can be lowered in a home automation context.

iii

Zusammenfassung
Service-Interoperabilität ist eine notwendige Eigenschaft für eingebettete Geräte in sich dy-
namisch verändernden Internet der Dinge sowie Industrie 4.0 Plattformen.
Service-Interoperabilität wird auf der technischen, syntaktischen und semantischen Ebene er-
reicht. Falls Service-Interoperabilität auf allen Ebenen erreicht ist, dann sind so genannte "Plug-
and-Play"-Szenarien wie beispielsweise bekannt von USB-Sticks oder Drucker realisierbar. Da-
durch werden beispielsweise Kleinstserienproduktionen, individuelle Automatisierungslösun-
gen oder Auftragsfertigungen finanzierbar. Für IoT Systeme ist Interoperabilität auf der seman-
tischen Ebene aber immer noch ein Problem.
Aktuelle Lösungen zur Erreichung von semantischer Interoperabilität von IoT Geräten um-
fassen Standards, maschineninterpretierbare Servicebeschreibungen und die Implementierung
von Software Adapter. Standardisierungsbestrebungen wie der VDMA bieten eine Referenzar-
chitektur sowie Informationsmodelle an, um Domänenstandards zu bauen. Beispielsweise wird
mit der universellen Maschinenschnittstelle (UMATI) der Datenaustausch zwischen Maschi-
nen, Komponenten, Installationen und deren Integration in kunden- und anwenderspezifische
IT-Ökosysteme im Bereich des Maschinen- und Anlagenbaus weltweit ermöglicht. Es existieren
auch automatisierte Integrationsansätze, welche nicht auf einem globalen Standard beruhen.
Diese Ansätze übersetzen einen benötigte und eine angebotene Schnittstelle basierend auf dem
zugrundeliegenden Architekturstil sowie zusätzlichen Beschreibungen. Dabei wird Interoper-
abilität auf der semantischen Ebene durch ein gemeinsames Vokabular (bspw. Ontologien) und
Schnittstellenbeschreibungen (bspw. SAWSDL) welche von allen Geräten benutzt werden, erre-
icht. Falls die Schnittstellenbeschreibungen offen sind und maschineninterpretierbares Integra-
tionswissen auf der funktionalen Ebene und bezüglich des Verhaltens des Services vorhanden
ist, dann sind auch hier "Plug-and-Play"-Szenarien möglich.
Sowohl Standards als auch formale Servicebeschreibungen können jedoch nicht effektiv in IoT-
Systemen angewendet werden, da sie eine vollständige Beschreibung der Anwendungsdomäne
zum Zeitpunkt der Erstellung voraussetzen. Diese Annahme ist nicht glaubhaft, da die An-
zahl der dezentral entwickelten und miteinander verbundenen IoT-Geräte immer stärker wächst
(bspw. 30.73 Milliarden im Jahr 2020 und 75.55 Milliarden im Jahr 2025). Falls Standards
in IoT-Systemen angewendet werden, dann müssen sie kontinuierlich aktualisiert werden um
den aktuellen Zustand der Domäne wie von Standardisierungsorganisationen festgelegt zu bein-
halten. Formale Schnittstellenbeschreibungen können auch basierend auf konkreten Integra-
tionsfällen dezentral erstellt werden. Jedoch nehmen auch solche inkrementellen Ansätze an,
dass sich die Domäne und damit das Integrationswissen nicht mehr verändert, sobald es gespe-
ichert wurde. Falls ein neues Gerät mit einer interoperablen Schnittstelle verfügbar wird und
es nicht während der initialen Beschreibung bedacht wurde, dann müssen auch hier Schnittstel-
lenbeschreibungen und Integrationswissen erneut angepasst werden. Sowohl der Formalisier-
ungsaufwand für Integrationswissen als auch die Pflege von Standards stellen einen hohen Im-
plementierungsaufwand dar. Deshalb implementieren Praktiker manuelle Software Adapter.
Dieser schwerfällige Lösungsansatz skaliert jedoch kaum mit der immer größer werdenden An-
zahl an IoT-Geräten.
In dieser Arbeit stellen wir eine neue Entwicklungsmethode vor, welche unvollständige, se-
mantische Domänenbeschreibungen explizit von Anfang an erlaubt. Dabei geht die Fähigkeit

iv

zur automatisierten Komponentenintegration nicht verloren. Durch das Weglassen des Voll-
ständigkeitsanspruchs muss unvollständiges Integrationswissen handhabbar gemacht werden.
Durch das Teilen von Integrationswissen unterstützt die Methode den Systemintegrator in der
automatisierten Erstellung des Softwareadapters. Im Gegensatz zu verwandten Forschungsan-
sätzen ermöglichen wir die semantische Integration von Schnittstellen, weil wir Integrationswis-
sen wiederverwendbar machen. Wir zeigen die Leistungsfähigkeit unserer Lösung im Kontext
der Hausautomatisierung anhand von geringeren Integrationsaufwänden.

v

Danksagung
An dieser Stelle möchte ich allen beteiligten Personen meinen großen Dank aussprechen, die
mich bei der Anfertigung und Bearbeitung dieser Dissertation unterstützt haben.

Zuerst möchte ich mich bei meinem Doktorvater Prof. Dr. Heiner Stuckenschmidt bedanken,
der mich auf dem Weg zu dieser Dissertation stets mit viel Verständnis, Ehrlichkeit und Freiheit
unterstützt hat. Für konstruktive Anregungen und hilfreichen Kommentare danke ich ebenso
Prof. Dr. Colin Atkinson, der meine Dissertation als Zweitgutachter betreut hat.

Für die inhaltliche Ausrichtung und die thematische Eingrenzung sei Dr. Christian Bartelt beson-
ders gedankt. Durch sein großes Engagement, fachliche Hinweise und ausführliche Forschungs-
diskussionen hat er wesentlich zum erfolgreichen Abschluss der Arbeit beigetragen.

Für die vielfältige Unterstützung bin ich besonders mit der Forschungsgruppe "AI Systems En-
gineering" am Institut für Enterprise Systeme (InES) verbunden. In zahlreichen Vorträgen,
Projekten und Konferenzen war es mir immer eine Freude mit allen Mitarbeitern in unter-
schiedlichen Konstellationen zusammenzuarbeiten. Im Speziellen möchte ich mich hier bei
Christian Schreckenberger, Nils Wilken und Michael Pernpeintner bedanken.

Weiterhin danke ich allen Studierenden die mich im Rahmen von Abschlussarbeiten, Semi-
nararbeiten und studentischen Teamprojekten unterstützt haben und ohne die diese Arbeit nicht
möglich gewesen wäre. Insbesondere bedanke ich mich bei Steffen Jacobs, Lukas Adler und
besonders bei Maurice Ackel für die Umsetzung diverser Prototypen.

Mein herzlicher Dank gilt schließlich meinen Eltern, Anette Zirlewagen-Burzlaff und Bernd
Burzlaff, die meine Zeit als wissenschaftlicher Mitarbeiter mit großer Begeisterung verfolgt
haben. Bei dieser Gelegenheit möchte ich mich auch bei meinen beiden Brüdern (Konstantin
Burzlaff und Björn Burzlaff), meinen Freunden und meinen Kollegen bedanken. Ihre Motiva-
tion, ihr Lachen und ihre Ablenkung zum richtigen Zeitpunkt haben mich nachhaltig unterstützt.

Mein größter Dank gilt meiner Partnerin Claudine Schaz. Ohne ihr Einfühlungsvermögen, ihre
positive Einstellung und ihre Geduld wäre vieles nicht möglich gewesen.

vi

Contents

I. Introduction 1

1. Motivation 2
1.1. Context . 3
1.2. Problem Statement . 4
1.3. Research Question . 5
1.4. Solution Overview . 5

1.4.1. Running Example . 7
1.5. Influences . 9
1.6. Application Scenarios . 10

1.6.1. Consumer IoT . 10
1.6.2. Industrial IoT . 10
1.6.3. Mobile Apps and Web Services . 11

1.7. Structure of This Work . 12

II. Background 13

2. Definitions and Context 14
2.1. Barriers . 14
2.2. Terminology . 15

2.2.1. Syntax and Semantics in Software Architectures 15
2.2.2. Engineering Approaches . 17
2.2.3. Knowledge Management . 18

2.3. Internet of Things Software Architectures . 19

3. Methods to Achieve Semantic Interoperability in IoT 23
3.1. Software Adapter Implementation . 23
3.2. Top-Down Engineering Methods . 25
3.3. Bottom-Up Engineering Methods . 28

4. Requirements for Semantic Service Interoperability in IoT 33

III. Knowledge-driven Architecture Composition 34

5. Formalization 35
5.1. Basics . 35

vii

Contents

5.2. Mapping Types . 37
5.3. Reasoning Principles for Mappings . 42

6. Integration Knowledge Management 45
6.1. Integration Knowledge Management Process 46
6.2. Algorithms . 49

6.2.1. Composition of Operation Mappings 49
6.2.2. Composition of Identifier Mappings 51
6.2.3. Inverse of Mappings . 52

7. Application 53
7.1. From Abstract to Concrete Integration Knowledge Management 55
7.2. Towards Software Adapter Generation . 57

7.2.1. Client-Server . 57
7.2.2. Publish-Subscribe . 59

IV. Reference Implementation 62

8. Deployment and Technologies 63
8.1. Logical Architecture . 63
8.2. Deployment Architecture . 64

8.2.1. Interface Description Languages . 65
8.2.2. Mapping Language L∗ . 66
8.2.3. Software Adapter Generation and API Endpoints 66

8.3. Application Examples . 67
8.3.1. Client-Server Mapping Function . 67
8.3.2. Client-Server One-to-One . 67
8.3.3. Subscribe One-To-One . 69
8.3.4. Publish One-To-Many . 69

9. Safeguarding Expected Method Benefits 71
9.1. Speed . 72
9.2. Reliability . 73

V. Evaluation 76

10.Preliminaries 77

11.Empirical Evaluation 1: Mapping Generation for Sensor Values 78
11.1. Evaluation Setup . 78
11.2. Evaluation Execution Process . 79

11.2.1. Evaluation Steps . 80
11.3. Implementation . 81

viii

Contents

11.4. Results . 82
11.4.1. Break-Even Analysis . 84

11.5. Threats to Validity . 86

12.Empirical Evaluation 2: Mapping Generation for Services 87
12.1. Evaluation Setup . 87
12.2. Evaluation Execution Process . 88

12.2.1. Evaluation Steps . 88
12.3. Implementation . 91
12.4. Results . 92

12.4.1. Break-Even Analysis . 93
12.5. Threats to Validity . 94

13.Empirical Evaluation 3: Adapter Generation for Services 95
13.1. Evaluation Setup . 95
13.2. Evaluation Execution Process . 96

13.2.1. Evaluation Steps . 98
13.3. Implementation . 98
13.4. Results . 101

13.4.1. Break-Even Analysis . 103
13.5. Threats to Validity . 105

14.Performance Evaluation: Reasoning Algorithms and Architectures 106
14.1. Evaluation Setup . 106
14.2. Fat Client Results . 107

14.2.1. Discussion . 109
14.3. Thin Client Results . 109

14.3.1. Discussion . 110
14.4. Threats to Validity . 110

VI. Related Work, Limitations and Conclusion 112

15.Related Work 113

16.Discussion 117
16.1. Limitations . 118
16.2. Future Work . 119

17.Conclusion 122

A. List of Own Publications 133

B. Usage Examples 135
B.1. Link to Prototype . 136

ix

List of Algorithms

1. Create Mapping Suggestions . 50
2. Find Transitive Mapping Chain . 51
3. Create Identifier Mapping Suggestions . 52

4. Create Mapping Suggestion with Ontology 91

x

List of Figures

1.1. Syntax and Semantics . 3
1.2. Knowledge-Driven Architecture Composition Method 6
1.3. Running Example – Integration Knowledge Reuse and Reasoning 7
1.4. Perspectives on Semantic Service Interoperability 9
1.5. Structure of This Work . 12

2.1. Barriers for Semantic Service Interoperability in IoT Systems 14
2.2. Top-Down vs. Bottom-Up System Design . 17
2.3. Six Layer IoT Architecture . 20
2.4. Service-oriented Architecture for Web Services 21

3.1. Software Adapter Implementation Method . 23
3.2. Example – Software Adapter . 24
3.3. Top-Down Engineering Method . 26
3.4. Example – Top-Down Engineering Method 27
3.5. Bottom-Up Engineering Method . 28
3.6. Example – Bottom-Up Engineering Method 31

5.1. Integration Cases . 40

6.1. Knowledge-Driven Architecture Composition Method 47
6.2. Adapted Bottom-Up Engineering Method . 48

7.2. Client-Server Split . 57
7.3. Client-Server Aggregate . 58
7.4. Client-Server Extend . 58
7.5. Publish-Subscribe Split . 59
7.6. Publish-Subscribe Aggregate . 60
7.7. Publish-Subscribe Extend . 61

8.1. Logical System Overview . 63
8.2. Deployment Diagram . 64
8.3. Example – JSONata . 66
8.4. Example – Simple JSONata Mapping Function 67
8.5. Example – Complex JSONata Mapping Function 67
8.6. One-to-One Mapping using OpenAPI . 68
8.7. Mapping Test & Validator using OpenAPI . 68
8.8. One-to-One Subscribe using AsyncAPI . 69

xi

List of Figures

8.9. Example – One-to-Many Publish using AsyncAPI 70

9.1. Incomplete but Reliable Mappings . 71
9.2. Incomplete Mappings . 72
9.3. Ensuring Mapping Reliability . 75

11.1. Semantic Interoperability Example for a Home Automation Platform 79
11.2. Eval 1 – Evaluation Steps . 81
11.3. Eval 1 – High-Level System Architecture . 82
11.4. Eval 1 – Reuse Task Time Comparison for Both Groups 83
11.5. Eval 1 – Integration Times Per Automation Rule 84
11.6. Eval 1 – Average Participant Performance . 84
11.7. Eval 1 – First Integration Knowledge Reuse with Variable Channel Replacements 85
11.8. Eval 1 – Two Replacements with Variable Integration Knowledge Reuse 85

12.1. Eval 2 – Evaluation Steps . 89
12.2. Eval 2 – High-Level System Architecture . 90
12.3. Eval 2 – Integration Time . 92
12.4. Eval 2 – Component Interaction Correctness 93

13.1. Eval 3 – Evaluation Steps . 97
13.2. Eval 3 – High-Level System Architecture . 99
13.3. Eval 3 – Average and Standard Deviation for All Integration Tasks 101
13.4. Eval 3 – Integration Time . 102
13.5. Eval 3 – Errors . 103
13.6. Eval 3 – First Integration Knowledge Reuse with Variable Mapping Reuse . . . 104
13.7. Eval 3 – 50% Mapping Reuse with Variable Integration Knowledge Reuse . . . 104

14.1. Eval 4 – Example for D=1 . 107
14.2. Eval 4 – Example for D=3 . 107
14.3. Eval 4 – Calculation Times for Fat Client . 108
14.4. Eval 4 – Quadratic and Exponential Approximation Functions for Fat Client . . 108
14.5. Eval 4 – Calculation Times for Thin Client . 109
14.6. Eval 4 – Quadratic and Exponential Approximation Functions for Thin Client . 110

B.1. Eval 2 – Describing Context Based on An Ontology and JSON-LD 135
B.2. Eval 3 – Generated Software Adapter Project without Mappings 135
B.3. Eval 3 – Generated Software Adapter Project with Mappings 136

xii

List of Tables

2.1. Comparisons of Code Repositories for Selected Home Automation Platforms . 14
2.2. One Month Growth of Code Repositories for Selected Home Automation Plat-

forms . 15
2.3. Knowledge Management Activities for Software Architecture 18

4.1. Comparison of Methods to Achieve Semantic Interoperability in IoT 33

5.1. Complete Integration Knowledge for a Domain 42

14.1. Eval 4 – Parameters for Created Data Series 107
14.2. Eval 4 – Quadratic and Exponential Growth Rate Approximation 108
14.3. Eval 4 – Quadratic and Exponential Growth Rate Approximation 109

15.1. Related Solution Approaches . 114

16.1. Related Bottom-Up Solution Approaches . 117

xiii

Part I.

Introduction

1

1. Motivation

Service Interoperability for embedded devices is a mandatory feature for dynamically changing
Internet-of-Things and Industry 4.0 software platforms. Interoperability can be achieved on the
technical, syntactic, and semantic level. For instance, an HTTP endpoint running on a device
could return a JSON payload when called by a client with a GET request.

{
"volume": 20,
"sourceName": 10

}

Listing (1.1) Client payload

{
"volume": 20,
"sourceName": 10

}

Listing (1.2) Server 1 payload

{
"volume": 20,
"input": 10

}

Listing (1.3) Server 2 payload

Assume the required payload of the client is defined as shown in listing 1.1 and the provided
server payload is defined as shown in listing 1.2. On the technical layer, the client and the server
must support the same network protocol. This enables the client and the server to address each
other before talking. On the syntactic layer, the usage of the JSON standard regarding punctua-
tion (e.g., keys are in quotation marks), keys are in quotation marks, parenthesis is determined.
This enables the client and server to process the payload in a machine-readable form. On the
syntactic layer, the client and the server know that "volume" means audio loudness and is mea-
sured in decibel and "sourceName" means HDMI port. Hence, words are linked to well-defined
concepts based on a common domain model. This enables the client and the server to understand
each other meaningfully.
Assume, we replace server 1 payload (see listing 1.2) with server 2 payload (see 1.3). Now, inte-
gration questions arise (i.e., service operation syntax and semantics do not change; no behavioral
aspects are now important). These integration questions could be the following:

• Do sourceName and input refer to the same concept?

• Are volume and volume measured in the same unit?

• Can sourceName values be replaced with input values?

• How is such a transformation implemented so that we can execute it?

• Where are needed transformations deployed?

• ...

For humans, such questions can be answered by looking at PDF documents or machine-readable
service descriptions. Based on their cognitive world model, their domain experience, and other
information sources (e.g., an informal domain standard), they can efficiently reason about pos-
sible answers. For devices (i.e., automated component coupling approaches), the presented pay-
load identifiers only consist of composing symbols with no links to concepts or things in reality.

2

1. Motivation

If a required and a provided interface should be coupled automatically, we must write these links
and references in a formal (i.e., machine-understandable) way.

1.1. Context

In 2012, Barghani et al. [1] published their often cited survey about semantics in the Internet
of Things. In this survey, the authors posed the following challenges related to applying seman-
tic technologies into the IoT domain: dynamicity and complexity; scalability; semantic service
computing for IoT; distributed data storage query; quality, trust and reliability of data; security;
privacy, interpretation & perception of data. Achieving interoperability at the semantic level
(we refer to this as semantic interoperability from now on) is well known since the 90s [2, 3].
Semantic interoperability ensures that services and data exchanges between a provided and a re-
quired interface make sense – that the requester and provider have a common understanding of
the meaning of services and data [2]. Semantic interoperability in distributed systems is mainly
achieved by establishing semantic correspondences (i.e., mappings) between vocabularies of dif-
ferent (data) sources [1, 3].
From a compiler viewpoint, component interface descriptions such as presented in Figure 1.1 are
tokenized and parsed to build up an abstract syntax tree. This abstract syntax tree is then subject
to semantic analysis. Here a compiler may check if all variables have been declared before their
usage or if there exist type violations. However, the semantic analysis phase cannot identify the
domain-specific meaning of a variable. For instance, the identifiers "volume" and "brightness"
are both of type Integer but relate to different things in the real world.
For human-to-machine communication scenarios, this can be achieved by naming software iden-
tifiers according to a language that the human can understand. Hence, the software engineer
builds the software, and the end user must share the same concept definitions that describe the
associated real world entity. If not, the sender and receiver do not communicate meaningfully.
For machine-to-machine communication, words and their associated meaning must be defined
differently as machines operate on words without understanding their meaning. That means that
devices need additional information to reason about the semantics of a word.

<<Interface>>
SamsungTV

+ volume: Integer
+ sourceName: String
+ brightness: Integer
+ artMode: String
...

+ status
(volume, sourceName,
brightness, ...)
:volume, sourceName,
brightness, ...

<<Interface>>
LGTV

+ volume: Integer
+ input: String
+ brightness: Integer
+ power_saving: String
...

+ status
(volume, input, brightness, ...)
:volume, input, brightness, ...

<<Interface>>
PhilipsTV

+ volume: Integer
+ source: String
+ screen_brightness: Integer
+ power_saving: boolean
...

+ status
(volume, source,
screen_brightness, ...)
:volume, source,

screen_brightness, ...

set 0 if false

multiply by 10

divide by 10

Figure 1.1.: Syntax and Semantics

Currently, most industrial or commercial software systems deal with semantic interoperability by
using a domain-specific de-facto standard. For instance, a home infrastructure’s cleaning robot

3

1. Motivation

is compatible with Google Home or Amazon Alexa. Consequently, the cleaning robot producer
must implement the respective software adapters. Another example from the industrial automa-
tion domain is the ecl@ss standard [4] where each product must conform to a predefined prod-
uct description. If the underlying software platform should support semantic interoperability
in a more changeable way, we must engineer it somehow. More precisely, software adaptabil-
ity is achieved by engineering principles (e.g., explicitly planned component configurations),
emergent properties (e.g., implicitly derived from cooperation patterns of the participants), or
evolutionary mechanisms (e.g., replacing components) [5].
Current solutions from the software architecture community already tackle semantic interface
mismatch by automating the software adapter generation process. For example, Autili et al. [6]
provide an automated synthesis method for mediators to achieve interoperability among hetero-
geneous systems that favours correctness.
It would be beneficial from an end user perspective if all devices (e.g., televisions) are controlled
with a mobile remote control. If no domain standard exists, the application developer would be
required to implement and manage many software adapters. In a worst case scenario, this would
mean one adapter for each device in each distinct programming language.

1.2. Problem Statement

In the universe of IoT, there will not exist one distinct standard for each use case [1]. Agree-
ing on and keeping standards up to date is not feasible for dynamically changing IoT systems.
Hence, system integrators are currently forced to implement software adapters. What is bad
about this is not the manual implementation effort but the circumstance that the same integration
knowledge is repeatedly implemented in these software adapters.
Bottom-up approaches that do not rely on a predefined standard try to automate service integra-
tion by describing each integration context based on service descriptions and interface mappings.
These integration contexts are defined with a closed world assumption in mind. However, if an
unforeseen integration case comes up, no automated service integration takes place. In dynam-
ically changing IoT environments, this results in a manual service specification effort that does
not yield the desired benefits as structural and behavioral interface mappings are assumed to be
steady once they are defined. Formalizing possible integration contexts ahead to put them into
inventory increases the specification effort even more as they may not be used [7].
Within this gap, we introduce a novel integration method [8]. This method does not aim at a fixed
model of the desired domain. In contrast to existing bottom-up driven solution proposals, it re-
frains from formalizing concrete integration contexts in a big bang manner at a specific point in
time. Instead, the proposed approach explicitly allows for interface mappings that are formalized
incrementally. Therefore, interface mappings are only formalized in a machine-understandable
way if a concrete integration case is present. The scientific foundations and principles are cur-
rently not available.

4

1. Motivation

1.3. Research Question

The proposed method is an answer to our leading research question:

What does an integration method look like that can semantically integrate software services in
an automated way based on incomplete integration knowledge?

Therefore, the following sub questions will be answered in this thesis:

Research Question 1. How can we make integration knowledge that is captured in imperative
software adapter reusable?

Solution Approach: Describe interface mappings in a declarative way and store it centrally.

We provide a framework that enables a declarative description of integration knowledge. This
declarative integration knowledge is then stored centrally so that it can be reused. Furthermore,
we outline how we can integrate the proposed method into existing engineering processes. Last,
we characterize existing interoperability methods on a conceptual level and provide multiple
examples from existing solution proposals in contrast to our proposal.

Research Question 2. How well can we manage incomplete integration knowledge?

Solution Approach: Design, implement and evaluate an integration knowledge management
process.

Writing integration knowledge using a formal language is a complicated and time consuming
task. Hence, we outline algorithms that can reason about integration knowledge and introduce
a process for capturing and reusing integration knowledge. The proposed algorithms work on
graph structures that contain persisted integration knowledge. These algorithms can generate
machine-readable interface mappings for unseen integration cases in a dependable way. The
overall knowledge management process and its application to selected architectural styles are
illustrated with realistic examples.

1.4. Solution Overview

The goal of the proposed method is to assist the system integrator in generating software adapters
automatically. In addition to existing approaches, we enable semantic integration for services
and make integration knowledge reusable [8, 9]. The technological leverage is to formalize and
reason about declarative integration knowledge that evolves over time. The process leverage is to
support the system integrator by generating a software adapter based on the computed interface
mappings. To reduce the implementation effort, the method relies on the following principles:

• We do not require all component interfaces and mappings to be present at system design
time but formalize them incrementally when a concrete use case is available

5

1. Motivation

• If all mappings for one integration case are present, then a working software adapter can
be generated in a reliable way

• Evolution of the interface mapping model is allowed by construction

The set of all principles for semantic system integration can be subordinated under the term
knowledge-driven architecture composition (KDAC).
From an engineering perspective, software adaptability is achieved by engineering principles
(i.e., explicitly planned component configurations), emergent properties (i.e., implicitly derived
from cooperation patterns of the participants), or evolutionary mechanisms (i.e., replacing com-
ponents) [10]. KDAC tackles engineering principles, emergent properties and evolutionary
mechanisms in the following way:
Engineering: At the core, KDAC is a software engineering method that tries to minimize the
mapping formalization effort by relying on concrete integration cases instead of predefined com-
position models. We can integrate KDAC into current software engineering methods such as
agile development or other incremental development modes. In addition to implementing an
imperative software adapter, mappings are only formalized if a concrete integration case occurs
at system design or run time (i.e., bottom-up). These mappings are stored incrementally using a
declarative language. A declarative language allows for applying reasoning principles. In con-
trast to top-down methods (e.g., integration based on standardized and ontologies that are not
expected to change anymore), incomplete integration knowledge is explicitly allowed.

IFPROVIDER IFREQUIREDIntegration Case

t=0

t=1

t=n

Component
Design

Integration
Case 1

Integration
Case n

ifProv

A

ifProv

A*

ifProv

B

ifReq

KB

KB

B

ifReq

B

ifReq

A

place

time

Manual Mappings

Manual Mappings

Figure 1.2.: Knowledge-Driven Architecture Composition Method

Evolution: In the beginning, the human-in-the-loop principle applies as the underlying knowl-
edge base (see KB in Figure 1.2) is empty. Over time, integration knowledge is added to the
knowledge base when new devices are integrated (see dots and lines at t=1 in Fig. 1.2). Hence,
in the beginning, more formalization effort takes place. The declarative formalization allows for
knowledge reuse from previous integration cases independent of the service model and service
description syntax. Finally, the formalization effort is reduced by reuse and reasoning principles

6

1. Motivation

(see fewer dots and lines at t=n in Fig. 1.2).
Emergent: Although integration knowledge is incomplete, automation is possible over time so
that the system integrator fades out of the loop. Instead of integrating each device with one cen-
tral domain model in a star like manner (i.e., the domain model acts similar to a "translator in
the middle"), we can build up complex mapping chains. This structure allows for applying rea-
soning principles such as transitive relationships and inverse mappings across integration cases.
Moreover, we can integrate unforeseen component replacements without human anticipation
and intervention.

1.4.1. Running Example

This work’s running example is a remote control application running on a mobile device that
can manage televisions (e.g., set volume, change input, change the channel, etc.). Now, the
remote control application should be adapted to support another television providing a seman-
tically identical service interface. No existing application code should be adapted. Hence, the
client’s requests (i.e., mobile application) must be adapted from the currently supported televi-
sion (e.g., POST Samsung) to another television (e.g., POST LG). Here service is defined as a
networked interface that comprises a URL and data being sent as input and output (i.e., REST
over HTTP/JSON).

t=2
t=1

<<Interface>>
SamsungTV

+ volume: Integer
+ sourceName: String
+ brightness: Integer
+ artMode: String
...

+ status
(volume, sourceName,
brightness, ...)
:volume, sourceName,
brightness, ...

<<Interface>>
LGTV

+ volume: Integer
+ input: String
+ brightness: Integer
+ power_saving: String
...

+ status
(volume, input, brightness, ...)
:volume, input, brightness, ...

<<Interface>>
PhillipsTV

+ volume: Integer
+ source: String
+ screen_brightness: Integer
+ power_saving: boolean
...

+ status
(volume, source,
screen_brightness, ...)
:volume, source,

screen_brightness, ...

set 0 if false

multiply by 10

divide by 10

set false if 0

Figure 1.3.: Running Example – Integration Knowledge Reuse and Reasoning

Assume for component A (see Fig. 1.2) the interface of a Samsung TV and for component B
the interface of an LG TV (see Fig. 1.3). At t=1, the action "status" and its input and output
parameters are mapped. A formalized mapping can include an identifier replacement (i.e., black
lines with no text) or an operation (i.e., black lines with text). As we can retrieve no mappings
from the knowledge base (see Fig. 1.2) for the Samsung and LG interface, all mappings have to
be created manually by the system integrator. At t=n, these mappings can be reused for the same
integration case or for the inverse integration case (the Samsung TV substitutes the LG TV).
Furthermore, we can also reuse formalized mappings for extensions of already seen interfaces
(i.e., indicated by component A* in Fig, 1.2).
For a "transitive" mapping chain, assume another integration from LG TV to a Philips TV at

7

1. Motivation

t=2. Now, we can deduce the integration case from Samsung TV to Philips TV. Furthermore, the
inverse integration case from Philips to Samsung may also be covered if there exists an inverse
function for each formalized mapping within the chain Philips TV↔ LG TV↔ Samsung TV.
Hence, as soon as the system integrator identifies the required and provided interfaces based on
his available components, a software adapter can be (partially) generated automatically.

We evaluate the proposed method by conducting empirical experiments with students. Further-
more, our reference implementation is measured regarding its performance in computing new
interface mappings.
In the experiments, we justify that incrementally specifying interface mappings and implement-
ing a working software adapter require less engineering effort over time. We measure the effort
based on the time needed for creating a software adapter and the number of errors made during
classical software adapter implementation, and for using the proposed method.
In the performance evaluation, we provide insights into the developed reasoning algorithms and
their applicability. Here we deploy our tooling as a serverless web application and as a container-
ized cloud instance. We measure the reasoning algorithms’ time to compute complex mappings
when the integration knowledge base contains many nodes and edges.

We have published parts of the approach at various maturity stages. The relevant core publica-
tions are:

• In "Knowledge-driven architecture composition: Case-based formalization of integration
knowledge to enable automated component coupling" [8] we outlined the problem state-
ment from a software-architecture viewpoint. A toy example, including a manufacturing
execution system and an industrial oven, is discussed for illustration.

• In "Towards automating service matching for manufacturing systems: Exemplifying
knowledge-driven architecture composition" [11] we illustrated the application of the
proposed method based on SAWSDL service descriptions. We outlined how integration
knowledge is formalized and reused based on our own ontology to improve matching re-
sults produced by the SAWSDL-MX matcher. We learned that ontologies are hard to use
for our needs.

• In "Semantic Interoperability Methods for Smart Service Systems: A Survey" [12] we sur-
veyed related approaches that also assist system integrator in creating software adapters.

• In "Automated configuration in adaptive IoT software ecosystems to reduce manual device
integration effort: Application and evaluation of a novel engineering method" [9] we de-
signed our first empirical experiment. Informatics students applied the proposed method
within a home automation platform. They formalized and reused integration knowledge
for devices using a standalone integration editor.

• A second empirical experiment based on OpenAPI specifications and JSONata is currently
in the state of a working paper. Here students are equipped with a web based integration

8

1. Motivation

front end that exploits reference implementations of the reasoning algorithms. These al-
gorithms can chain JSONata expressions on the payload and interface level by dependably
preserving their meaning.

• The third empirical evaluation will be published at the International Conference on Web
Engineering (accepted on 17.02.2021). In the paper "Knowledge-Driven Architecture
Composition: Assisting the System Integrator to reuse Integration Knowledge" [13], we
evaluated the end-to-end applicability of KDAC, including software adapter generation.

1.5. Influences

The proposed solution is influenced by a variety of topics (see Fig. 1.4). Its roots are to be found
within the Software Architecture community. Here the underlying communication architecture
such as Client/Server or Publish/Subscribe influence the service descriptions as well as the soft-
ware adapter generation process for IoT systems [14]. We assume the availability of a common
communication protocol and a structured data representation format. Within the adaptive sys-
tem community and the web service community, multiple interoperability mechanisms have
been suggested for various systems (e.g., web services, embedded systems, service-oriented ar-
chitectures). The range of solution proposals include formal interface mapping approaches [7],
domains-specific standards [15], service matching [16], service composition [17] and super-
vised learning for learning abstract syntax trees for distributed code [18]. Our proposed solution
is influenced by building up a central knowledge base and the algorithms to calculate interface
mappings.

Knowledge
Management

Engineering
Approach

Interoperability
Methods

So�ware
Architecture

Seman�c Service
InteroperabilityClient Server

Communica�on
Protocol

Component
Model

Middleware
Standards

Composi�on

Service Matching

Evolu�on/
Revolu�on

Supervised Learning

Top-Down Bo�om-Up

Integra�on Context

Formal Methods

Degree of Automa�on

Capture and
Representa�on

Reuse

Sharing

Recovery

Reasoning

Publish/Subscribe

Figure 1.4.: Perspectives on Semantic Service Interoperability

The Knowledge Management community deals with knowledge representation, reuse, sharing,
recovery, and reasoning. These concepts also have been recently transferred to the software ar-
chitecture community [19]. Especially the topic of architectural mismatch is a well known prob-
lem for system reuse [20]. The proposed solutions contain reasoning algorithms that support the

9

1. Motivation

reuse characteristic for integration knowledge between a provided and a required interface. Ap-
parently, a representation of the integration knowledge must be present. As a last point, the way
distinct IoT systems are built and maintained determines which interoperability mechanisms can
be applied during system design and run time. IoT systems can be engineered top-down using
a waterfall-like engineering process or bottom-up in an agile development setting. Engineering
tasks from both design dimensions can be automated. Here the proposed solution is influenced
by a central knowledge base that is managed by system integrators in a decentralized way.

1.6. Application Scenarios

1.6.1. Consumer IoT

Currently, device manufacturers (e.g., smart lights or TVs) push their smart home devices into
the market. Such commodity devices should be easily replaceable for homeowners. Most of
these devices work together on a centrally managed standard (e.g., the Smart Applications REF-
erence ontology supervised by ETSI1) or using a proprietary platform model (e.g., openHAB2).
In the case of a standard, the corresponding interface elements and their input and output param-
eters are named according to the standard. Thereby, the semantics is checked by the software
engineer so that the end user can work with the television in a plug and play manner.
In the case of a proprietary platform model, plug and play functionality in such software plat-
forms is mainly achieved by creating a de-facto standard where the distinct platform manages
all communication between devices. Devices do not communicate directly but can speak to each
other by using the platform model as an intermediate language. Hence, integration happens
manually between device and platform [21].
However, changing the centrally managed standard or the proprietary platform model requires
significant effort if a smart home device that has not been captured so far should be supported.
This is mainly due to the circumstance that the (proprietary) standard is considered to be com-
plete. What is worse, proprietary domain models often contain platform dependant specialities.
Here the proposed solution can help the system integrator to implement a software adapter by
calculating interface mappings given required and provided interfaces. This is done by reusing
integration knowledge from integration cases formalized by another building manufacturer in
another home. Generated interface mappings may be incomplete such that the system integra-
tor must formalize the missing mappings on his own. Nevertheless, this is more efficient than
always having to formalize all mappings.

1.6.2. Industrial IoT

In industrial domains, plug and play is called plug and produce. Although the underlying concept
for automated interoperability is similar, industrial interoperability solutions require a higher de-
gree of safety and dependability.
Enabling production scenarios for micro batch sizes or commissioned production requires a dig-
ital production model that can be changed quickly. For achieving the required interoperability

1https://www.etsi.org/technologies/internet-of-things
2https://www.openhab.org/docs/concepts/items.html

10

1. Motivation

at the semantic level, industry leaders currently cut the overall manufacturing domain into man-
ageable pieces and create companion specifications (e.g., monitoring activities or automating
processes). Companion specifications are part of the OPC UA framework, which includes a
communication module and exposes a service model3. A technical companion specification can
be enriched by domain-specific models that are published as a standard. Thereby, a variable’s
meaning can be determined by using a domain-specific standard such as ecl@ass4. Each embed-
ded device manufacturer links internal variables used within programmable logical controllers to
one item from the ecl@ass library. Hence, if every device manufacturer (e.g., for a commercial
refrigerator to store vaccines) conforms to this standard, the software engineer ensures that each
variable exposes the same meaning. Although there are fewer standards available compared to
the consumer IoT domain, the goal of having only one standard (e.g., AUTOSAR [22] standard
for the automotive domain) is hard to achieve as the manufacturing domain is more diverse than
the automotive industry.
The proposed solution satisfies the required dependability properties as the system integrator is
still in charge. Especially special purpose machinery manufacturers are a target group for storing
and reusing integration knowledge as the available standards may not cover their devices. In con-
trast to smart home devices, integration knowledge is also needed to connect production devices
to higher order information systems (e.g., manufacturing execution systems) and to connect a
proprietary device with its standardized interface as offered by the digital twin. A digital twin is
the virtual representation of a manufacturing device. Here system integrators can reuse centrally
stored integration knowledge when they upgrade a production line at multiple clients on site.
This allows for a swift change of production lines when a micro batch size of goods should be
produced. The generated adapters can then be deployed as a component in the manufacturing
service bus (e.g., BaSys 4.0)5.

1.6.3. Mobile Apps and Web Services

Flow-based programming allows end users to connect multiple web services in order to solve re-
occurring tasks automatically. For example, if-this-then-that rules like "If a new file is uploaded,
then notify me on my smartphone" reduces the time to check for new files manually. Therefore,
most automation environments implement their software adapter to include new services (e.g., a
new file upload service such as OwnCloud6).
Here semantic web services description techniques such as SAWSDL [23] can be applied. By
doing so, a required and a provided service can be matched. For example, a file upload service is
described as a required interface within the automation application, and each file upload service
instance provides a service description that fulfills the required functionality. To reason about
whether required and provided services match, a semantic service description contains links to
an ontology. A reasoner then checks whether two concepts match exactly (i.e., the input of re-
quired and provided interface refer to the same model element) or can be computed (e.g., by
class subsumption). However, most web services do not offer such a semantic service descrip-

3https://opcua.vdma.org
4https://www.eclasscontent.com/index.php
5https://wiki.eclipse.org/BaSyx
6https://owncloud.com/

11

1. Motivation

tion as the specification effort is perceived to be too high, and no de facto ontology exists for
each use case (e.g., upload a file).
Nevertheless, many web services offer a syntactic service description, such as OpenAPI 7. This
specification makes it easy for the human to understand what a web service does. Depending
on whether the description is used as a template (i.e., API-driven development) or is generated
from an existing interface (i.e., annotation-based development), the service description acts as
a provided or a required interface. In the case of a template, the description acts as a required
interface, and in the case of a generator, the description acts as a provided interface.
As OpenAPI descriptions are frequently used compared to SAWSDL, they can serve as a compo-
nent model between which mappings can be formalized. Furthermore, the effort to create such
a description is compared to a SAWSDL description lower. Using a declarative language for
defining the mappings between OpenAPI description allows to store them in a knowledge base
so that they become reusable. This allows to generate software adapters for mobile apps based
on available services and to support the system integrator when new services become available.

1.7. Structure of This Work

Chapter 2 provides background context and relevant definitions. Furthermore, current method
frames to achieve semantic interoperability are introduced (see Fig. 1.5). Chapter 3 formally
describes our integration knowledge management process in detail and applies it to different ar-
chitectural styles. We focus on Integration Knowledge Representation, Reuse, and Application.
In chapter 4, we illustrate the theoretical concepts based on a reference implementation and se-
lected examples. Chapter 5 describes four evaluations that focus on integration time savings,
interface mapping correctness, and the system’s performance. Last, we conclude our work in
chapter 6 by outlining related work, limitations of our approach and future work.

Creating Interface
Mappings

Without An
Intermediate

Model

Reasoning
Principles for
Incomplete
Mappings

Generating Software
Adapter for

Different
Architectural

Styles

Knowledge-Driven Architecture Composition

Integration
Knowledge

Representation

Integration
Knowledge

Reuse

Integration
Knowledge
Application

Semantic
Service Interoperability

Evaluation

Chapter Ⅲ, Ⅳ Chapter Ⅳ, ⅤChapter Ⅲ

Figure 1.5.: Structure of This Work

7https://www.openapis.org/

12

Part II.

Background

13

2. Definitions and Context

Currently, there exists a dilemma for IoT systems between the considerable effort for creating
service specifications with a formal semantic grounding and implementing many point-to-point
adapters. Although dynamicity in those systems is a mandatory feature and different research
communities have produced a significant set of solutions, the dilemma persists. This chapter
will outline existing solution frames and argue why the interoperability problem for the still
relatively new IoT system class cannot be solved by applying them.

Repe��ve Adapter Implementa�on

Timeliness of Standards

Formaliza�on Effort for Integra�onContext

Seman�cService Interoperability

Figure 2.1.: Barriers for Semantic Service Interoperability in IoT Systems

2.1. Barriers

Most open-source IoT platforms provide many software adapters for IoT devices that should
be supported. For instance, the home automation platforms iobroker, openHab, and homeas-
sisant provide 341, 281, and 969 adapter projects in their github repositories (data was queried
on 15.01.2021). An interesting statistic unfolds if we compare all adapter projects to their core
platform logic and the user interface. For all home automation platforms, the code repositories
for adapters are the largest in lines of code and also grow the fastest in absolute numbers (see Ta-
ble 2.1, data was queried on the 10.01.2021 and Table 2.2, data was queried on the 10.02.2021).

Table 2.1.: Comparisons of Code Repositories for Selected Home Automation Platforms
Core UI Adapter

Platform Files Lines of
Code Comments Files Lines of

Code Comments Files Lines of
Code Comments

iobroker 166 188 574 6 858 140 35 749 31 33 17 231 3 642 123 271 114
openHab 2 269 151 678 64 494 2 121 196 561 7 130 10 661 914 498 240 498
homeassistant 2 619 369 861 30 442 1 332 298 785 3 946 1 2668 545 308 50 193

Although these statistics should be interpreted with a grain of salt, it provides a feeling of the di-
mension of how many lines of code are written within such open source projects. Most adapters

14

2. Definitions and Context

Table 2.2.: One Month Growth of Code Repositories for Selected Home Automation Platforms
Core UI Adapter

Platform Files Lines of
Code Comments Files Lines of

Code Comments Files Lines of
Code Comments

iobroker +3 (1,81%) +859
(0,46%)

+84
(1,22%) 0 (0%) +39

(0,11%) +1 (0,03%) +344
(2,00%)

+119 176
(3,27%)

+3 710
(1,37%)

openHab 0 (0%) 0 (0%) 0 (0%) +268
(12,64%)

+31 469
(16,01%) 0 (0%) +354

(3,32%)
+34 888
(3,81%)

+5 714
(2,38%)

homeassistant +91
(3,47%)

+25 101
(6,79%)

+1 099
(3,61%)

+33
(2,48%)

+10 528
(3,52%)

+9 406 (-
9,28%)

+684
(5,40%)

+30 774
(5,64%)

+1 226
(2,44%)

must be written for each device and platform manually.
Hence, the first barrier to achieve semantic service interoperability is repetitive adapter imple-
mentation (see Fig. 2.1). The other two barriers are the timeliness of standards and the formal-
ization effort for integration contexts. Timeliness of standards deals with the issue of keeping
formal or informal domain standards up to date. Formalization effort for integration contexts
deals with formal descriptions of how two interfaces should be coupled (e.g., platform and de-
vice or device and device).
All three barriers are in the scope of this work and will be discussed in this background chapter.

2.2. Terminology

In general, a software architecture can be defined as "the set of principal design decisions made
about the system" [24]. These design decisions typically involve system functionality, data about
the system state, and interaction of the composed software components. A software component
is an architectural entity that encapsulates a subset of the system’s functionality and/or data and
restricts access to that subset via an explicitly defined Application Programming Interface (API)
[24]. Software connectors handle communication between software components. A software
connector is an architectural element tasked with effecting and regulating interactions among
components [24]. For instance, a software connector can be operationalized by the software
adapter pattern [25]. Such software connectors are needed if APIs do not match. Hence, reusing
existing software components is hard if their architectures mismatch [20, 26]. One problem
dimension responsible for the architectural mismatch is the semantics of API elements.

2.2.1. Syntax and Semantics in Software Architectures

Abstracting away from network protocol mismatches [27], component interface mismatches can
occur on the syntactic and semantic level [28]. Among others, the component interface may also
show mismatches regarding the quality of services, preconditions and postconditions, service
granularity, and order of service invocation [28]. Component interfaces that expose the same
functionality with regards to their semantics may come in different syntactical flavors. More
formally, a model for an interface consists of a syntax, a semantic domain and semantic map-
pings [29]:

Syntax: We define syntax as the set of basic expressions constrained by a grammar that may be
used in a language.

15

2. Definitions and Context

Semantic domain: Syntactic expressions must correspond to at least one element in a semantic
domain (i.e. universe of discourse) to reveal their meaning. We can think of the elements from
one semantic domain as a conceptual model. A conceptual model often serves as a source of
knowledge about a problem area [30]. It represents the concepts and the associations among
them and also attempts to clarify the meaning of various terms.
Semantic mapping: A semantic mapping is a function which maps every syntactic language
expression to its semantic domain element.

One step towards a better human oriented understanding of APIs are interface descriptions. An
interface description can either be used to express actions a component requires from its envi-
ronment or to express actions that are provided to the environment. Then, software components
are compatible if a contract between their interfaces can be defined that maps all necessary inter-
face description elements (i.e., they can be integrated). In most software applications, this results
in implementing a software adapter. From a component-based software development perspec-
tive, the concept of functional compatibility is used. Functional compatibility means that the
required and provided high level functionalities are semantically equivalent [31]. In distributed
systems (e.g., based on web services), this concept is similar to the concept of interoperability.
In order to operationalize the semantic Mapping function for the HTTP/JSON service compo-
nent model, a machine-understandable interface description language and a domain model are
needed. This language L [32] is defined as

L = (C,A, S,MS ,MC) (2.1)

where C is the concrete interface syntax, A is the abstract syntax, and S defines the semantic
domain elements. MC : C → A is a function that assigns graphical or textual syntax elements C
to one abstract syntax elementA andMS : A→ S relates abstract syntax elementsA to semantic
domain elements S (see aforementioned definition of semantic mapping). If the semantic do-
main S is explicitly described in a machine-understandable way and all abstract interface syntax
elements are mapped to S (e.g. using an OWL ontology), then a software adapter for two inter-
faces with different concrete syntax elements C can be generated in an automated way [7, 27].
The semantic domain S can be modeled as a closed world or open world model. A closed world
model of a system directly represents the desired domain (e.g., SAREF ontology [33]). This
means that there is a functional relation between language expressions and the modeled world.
The represented knowledge is implicitly viewed as being complete [5]. Software (eco-) systems
such as smart home systems can be designed with an open world (adaptable domain model) or
closed world (static domain model) assumption in mind.
In an IoT platform, multiple roles are present. These are platform providers, application providers,
system integrators, device providers, and operators. Multiple roles can be assigned to one per-
son. Semantic interoperability is usually achieved by application providers, system integrators,
and device providers. For these three roles, open source code, standards, and APIs are the most
relevant aspects [34]. A system integrator benefits especially from standards concerning inter-
operability and open source when implementing software adapter for end-to-end IoT solutions.
Because of the difficulties in creating standards with machine-understandable semantics men-
tioned earlier, most IoT platforms require software adapter implementation to support a new
device. This manual process involves substantial development effort with no automation.

16

2. Definitions and Context

Top-Down

Bottom-Up

• Decomposition into
smaller problems

• Requirement: Vision
of overall system
architecture needed • Composition of

smaller solutions
• Requirement:

Software libraries
and sub-
functionalities

D
es

ig
n

Figure 2.2.: Top-Down vs. Bottom-Up System Design

2.2.2. Engineering Approaches

Service compositions can be performed bottom-up or top-down [35]. Bottom-up refers to the
composition of pre-existing service interfaces. Adapters may be required due to mismatches
(i.e., from available software components [2]). Top-down refers to the service composition
given a pre-existing composition model. Adaptations may be required to fit services into the
composition model (i.e., from requirements [2]). Hence, the fundamental difference between
top-down and bottom-up is whether the available integration case in an IoT system (e.g., home
automation rule) is predefined or can dynamically emerge. This distinction is visualized in Fig.
2.2. Here any software artefact design can be driven by an overall vision of the IoT platform or
can be composed of smaller software solutions or both.
Semantic integration is a well known topic regarding heterogeneous data sets. For instance,
to analyze resulting data in a business intelligence system or applying data science algorithms.
Here typical integration actions are extract, transform, and load. In this vein, semantic data
integration based on machine-understandable ontologies has emerged [36]. Semantic interop-
erability ensures that services and data exchanges between a provided and a required interface
make sense – that the requester and the provider have a common understanding of the meaning
of services and data [2]. Semantic interoperability in distributed systems is mainly achieved by
establishing semantic correspondences (i.e., mappings) between vocabularies of different (data)
sources [1, 3]. From a software engineering viewpoint, domain standards, mapping instructions
(e.g., companion standards), or individual coordination achieve semantic integration. Depend-
ing on the degree of formalization, domain knowledge can be queried and executed such that
semantic integration scenarios (c.f., Figure 1.3) are automatable. Similar to semantic data inte-
gration, formal ontologies (e.g., using the RDF language) are also widely applied for software
interfaces to relate a shared conceptualization of use cases to interface elements. Hence, seman-
tic integration is similar to semantic interoperability by creating a mapping from one to another
vocabulary but differs between research communities. Semantic integration has its roots in the
artificial intelligence community [3], whereas semantic interoperability originated from soft-
ware engineering processes for distributed systems. Semantic integration techniques are applied
to data structures (e.g., databases), and semantic interoperability techniques deal with deployed

17

2. Definitions and Context

units of software so they can talk to each other using their interfaces in a meaningful way.
Integration can happen at the data and at the service level. In this work, services are defined as
software interfaces that are accessed over some application layer protocol. Services may require
data integration regarding their payload (e.g., JSON document of an HTTP Method). Therefore,
services are a candidate for data integration. Besides data integration, the software interface
may also expose preconditions and postconditions, states, or generic method verbs (e.g., create-
read-update-delete). For closed information systems, various languages such as WSDL [37], or
SAWSDL (i.e., WSDL with links to a domain ontology) can be used at system design time to
describe all relevant service characteristics. These interfaces and the underlying domain model
is not expected to change. Consequently, the required formalization effort pays off over system
operation years. However, data and services within IoT software systems change often and un-
expectedly. Software systems such as smart home platforms or Industry 4.0 platforms require
dynamics as a mandatory feature. Hence, the rate of change directly influences the formalization
effort for service characteristics.

2.2.3. Knowledge Management

Software architecture knowledge management is a rather new field of research [38, 19]. Capilla
et al. [19] describe the need for capturing architectural knowledge (e.g., integration knowledge)
within the dimensions of sharing, compliance, discovery, and traceability. In contrast to tech-
nical activities, Li et al. rather look at knowledge-based activities based on concepts from the
knowledge management framework [38]. They derive their knowledge management activities
from theoretical system science [39].

Table 2.3.: Knowledge Management Activities for Software Architecture (adapted from [38]
Knowledge-based Approach Knowledge Activity in the KM Framework in [39]

Knowledge Capture and Representation Knowledge storage
Knowledge Reuse Knowledge application

Knowledge Sharing Knowledge transfer
Knowledge Recovery Knowledge creation
Knowledge Reasoning Knowledge creation

Li et a. [38] provide the following definitions for each knowledge-based approach in software
architecture:

• Knowledge Capture and Representation (KCR) extracts knowledge from diverse sources
as well as its acquisition directly from the stakeholders, and expresses knowledge in cer-
tain forms so that the knowledge can be used for automatic or human reasoning. On the
one hand, knowledge representation accompanies knowledge capture since the knowledge
should be represented in a particular form when captured; on the other hand, knowledge
capture may happen during knowledge representation. For instance, when one uses a
conceptual model to transform (e.g., annotate) implicit knowledge to explicit knowledge,
knowledge capture takes place simultaneously. We thus consider knowledge capture and
knowledge representation as a combined knowledge approach.

18

2. Definitions and Context

• Knowledge Reuse (KR) applies existing knowledge (e.g., architectural patterns or inte-
gration knowledge) in a particular context for various purposes.

• Knowledge Sharing (KS) exchanges knowledge (e.g., skills or expertise) among individ-
uals in a community or an organization.

• Knowledge Recovery (KRv) recovers explicit knowledge from tacit knowledge, e.g., de-
cision rationale that is not documented. In KM theory, knowledge is classified into tacit
knowledge, which resides in people’s heads, and explicit knowledge, which is codified in
a certain form.

• Knowledge Reasoning (KRs) concludes and derives new knowledge from existing knowl-
edge through inference. An example is reasoning based on the rationale knowledge of the
existing architectural design decisions to make new decisions addressing new or modified
design issues.

In general, knowledge-driven architecture composition relates to human knowledge about com-
posing services in a meaningful way. In our understanding, an approach can be knowledge-
driven as soon as at least one knowledge management activity is carried out. However, we
define knowledge-driven more precisely. Knowledge-driven relates to knowledge about seman-
tic connections between software interfaces (i.e., mappings). These semantic connections can
be explicitly captured, shared, and reasoned about so that they become reusable in an automated
way. In general, achieving reuse at the architectural level is considered a complex problem as
the involved systems are specialized to different degrees [20]. For instance, generic styles such
as call-return require other integration activities compared to software product lines. Garlan et
al. [20] note that dynamically changing systems, trustworthiness (e.g., reliability of mappings),
architecture evolution, and architecture lock-in are increasing problems to reusing software as-
sets.

2.3. Internet of Things Software Architectures

The Internet of Things (IoT) can be defined from various perspectives. In a colloquial way, the
IoT is a network of devices that can communicate with each other. This network of devices
provides connectivity for everyone, and everything [40]. Within this work, we define IoT from
an architectural viewpoint as "the internal/external communication of intelligent components via
internet in order to improve the environment through proving smarter services" (as defined by
Muccinit et al. [14]).
In Fig. 2.3, a corresponding illustration for a six layer IoT architecture is given. We shortly
describe the presented layers based on the explanations provided by Muccini et al. [14]. The
perception layer consists of the physical objects and transfers them to the virtual space. The
adaption layer facilitates the interoperability of heterogeneous IoT devices and may be omitted
if no adapters are needed. The network layer adds networking protocols to the devices (e.g.,
Bluetooth or WiFi). The processing & storage layer analyzes and stores data provided by the
connected devices via their services. On this layer, cloud computing, ubiquitous computing,
databases and others can be applied. The application layer provides the service as requested by

19

2. Definitions and Context

the end user in the corresponding application domain. As a last point, the business layer contains
everything to run the business model and generate revenue.

Applica�on

Percep�on

Adapta�on

Processing & Storage

Business

Network

Figure 2.3.: Six Layer IoT Architecture (adapted from [14])

Depending on the underlying distribution pattern, the various layers can be deployed to dif-
ferent devices [14]. For example, a centralized distribution pattern assumes that there exists a
central processing & storage layer that each device is connected to. In contrast, a decentralized
distribution pattern assumes that all components (e.g., IoT devices) are fully connected and may
expose their own resources to process, combine and provide services to other components in or-
der to achieve a user goal. Regarding quality attributes, Muccini et al. [14] state that IoT systems
should be scalable, secure, interoperable and should expose a good performance. According to
their mapping study, privacy, availability, mobility, reliability, resiliency, and evolvability are
also essential but of less concern according to their mapping study.
In this work, we focus on the adaptation layer. Regarding the mentioned quality attributes, in-
teroperability and reliability are of importance. Especially interoperability at the semantic level
is still a challenge for IoT systems [1, 41]. Therefore, Barnaghi et al. [1] identified and analyzed
the following related challenges to achieve semantic interoperability such IoT systems: dynam-
icity and complexity; scalability; semantic service computing for IoT; distributed data storage
query; quality, trust, and reliability of data; security and privacy and interpretation & perception
of data. Semantic service computing, dynamicity and complexity are in the scope of this work.
Semantic service computing describes the application of semantic technologies within the con-
cept of service-oriented architectures. Initially, service-oriented architectures (SOA) supported
business enterprises using internet protocols [24]. The general idea behind service-orientation
is choreography or orchestration of distinct services to achieve a user goal (e.g., book an airline

20

2. Definitions and Context

ticket). A user goal is usually associated with a software program that knows the services to
be invoked to achieve the desired goal. For example, web services are one implementation of a
service-oriented architecture (see Fig. 2.4). The core architectural activities to build such sys-
tems are describing the components and their services, determining the types of connectors and
describing the application as a whole [24]. Core problems of SOA systems involve interoper-
ability for open, distributed systems as heterogeneous services may come and go. The concept
of SOA can be conceptually transferred to IoT systems. Hence, IoT devices offer their function-
ality by making their own services reusable from third parties. In order to solve interoperability
at the semantic level for such IoT systems, semantic technologies are widely applied. Hence,
the term of semantic service computing.
Applying semantic technologies such as SAWSDL [23] revealed new problems for IoT systems.
Semantic technologies are suitable for interoperability, given that common ontology models are
shared, and widely reused [1]. However, IoT services often operate in dynamic environments,
constantly evolve and are subject to change frequently. Hence, they are different from most
legacy services offered by information systems or the web. This also means that service compo-
sition is more challenging in the IoT domain, where reliable services are abundant.

„Program“ to achieve goals Client

Service
Provider 1

Service 1-1

Service 1-2
Service

Provider 2

Service 2-1

Service 2-2

Service
Provider 4

Service 4-1

Service 4-2

Service 3-1

Service 3-2

Service
Provider 3

Figure 2.4.: Service-oriented Architecture for Web Services (adapted from [24])

Dynamicity relates to the pervasiveness and volatility of underlying devices and their environ-
ment that require continuous updates and monitoring [1]. Imagine that there exist not only one
but multiple clients that access service 1-1 (see Fig. 2.4). If the interface of service 1-1 should
ever change, then all users of that service must become aware of the change and modify their
requests accordingly. For this and other reasons, many decentralized enterprise application de-
velopers have chosen to base their designs on REST. Thereby, they focus on the exchange of
data rather than focusing on the invocation of functions with arguments. Although there are
also service descriptions (e.g., JSON-LD [42]) for services following the REST paradigm, these
descriptions still involve complex ontology engineering (e.g., adapting an ontology to the cur-
rent integration case) and usage (e.g., reuse of share ontologies). The complexity involved in

21

2. Definitions and Context

describing services using common semantic web frameworks has hindered wide adaptation [1].
Dynamicity of the underlying devices also directly influences the adaptation layer (see Fig. 2.3)
and the way it is engineered. Change in IoT software systems happens frequently. For example,
Forbes predicts that until the year 2025, 75 billion devices will be connected to the internet1.
This translates to 20 million devices per day on average. However, innovative use cases such as
drone delivery are not standardized yet. Hence the question arises when interface descriptions
and their mappings are maintained. As most IoT systems require an always on operating mental-
ity, it is debatable if the traditional software engineering life cycle consisting of a requirements
phase, implementation phase, testing phase, and operating phase is still valid. Hence we only
differentiated between run time and design time for software systems. From the viewpoint
of semantic interoperability, the point of time for creating and/or updating mappings between
interfaces is important. For example, systems that rely on a centralized distribution pattern usu-
ally rely on formal standards. Here all current and future use cases, as well as their associated
domain model, are defined in a revolutionary way (i.e., in a top-down manner). Once fixed,
they stay rather static and must be respected during system design time by the application and
device manufacturer to ensure semantic interoperability at system run time. If no suitable do-
main model is available, an own domain model is built up based on the use case at hand. In
contrast to top-down defined standards, this domain model is expected to change. Depending on
the degree of formality, adapting the domain model can become complex. For example, adapt-
ing a domain model stored in a non relational database may be easier in contrast to adapting
an OWL ontology. Hence bottom-up integration methods do have a concrete integration case at
hand (i.e., required and provided services) but may suffer from (too) much formalization effort
if integration knowledge is missing (e.g., interface mappings).

In the next subsection, the presented concepts are discussed in the context of frameworks for
software engineering methods to achieve semantic interoperability. These methods are software
adapter implementation, top-down engineering methods, and bottom-up engineering methods.

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

22

3. Methods to Achieve Semantic
Interoperability in IoT

3.1. Software Adapter Implementation

In the case of ad hoc integration activities, the structural design pattern of a wrapper or software
adapter can be used. Generally, a software adapter allows incompatible interfaces to work to-
gether by assuming that they are functionally compatible (i.e., we can transform them into each
other).

Software Adapter Implementation (SA)

System Integrator

System Integrator

Integration Environment

Integration Environment

Integration Case

Integration Case

select required & provided
 interface

:interface description

evaluate
interface actions

implement mappings

compile and run program

invoke interfaces

:results

:results or error

adapt mappings

opt

loop

finish integration case

Figure 3.1.: Software Adapter Implementation Method

When a system integrator implements a software adapter, the mapping formalization style de-
termines code reusability. For instance, a declarative programming style results in higher code
reuse compared to an imperative, procedural programming style [43]. This is mainly because
declarative programming styles focus on the intention of the mappings needed (i.e., describe the
desired solution) rather than the programming constructs that control the state of execution (i.e.,
write instructions to reach the desired solution).

23

3. Methods to Achieve Semantic Interoperability in IoT

If an imperative, procedural programming style is used, then the software adapter is implemented
manually every time the integration case occurs between two service endpoints. Therefore, Fig
3.1 illustrates the underlying method (SA) to integrate networked service components using a
software adapter pattern (e.g., see Fig 3.2). Within the illustration, the integration environment
relates to the tooling infrastructure. This is usually an Integrated Development Environment
(IDE) such as Visual Studio Code. The Integration Case relates to the services that are called
by a program. The main challenge here is the time and correctness of implementing a software
adapter manually.

<<Interface>>
SamsungTV

+ volume: Integer
+ sourceName: String
+ brightness: Integer
+ artMode: String
...

+ status
(volume, sourceName,
brightness, ...)
:volume, sourceName,
brightness, ...

LGTV

+ volume: Integer
+ input: String
+ brightness: Integer
+ power_saving: String
...

+ status
(volume, input, brightness, ...)
:volume, input, brightness, ...

Client

SamsungLGAdapter

+ lgtv: LGTV

+ status
(volume, sourceName,
brightness, ...)
:volume, sourceName,
brightness, ...

return this.lgtv.status(volume,
sourceName, brigthness, ...)

Figure 3.2.: Example – Software Adapter

Integration Example for Composition: For example, artMode is mapped to power_saving
by the system integrator (see implement/adapt mappings in Fig. 3.1). Here the semantic map-
ping function MS is implicitly codified in the imperative program code. For future integration
cases, integration knowledge reuse is only possible for the system integrator (e.g., by reading
code in adapter projects). This is because only a human can interpret and reason about the
adapter code, but the platform itself cannot. Hence, agile development teams have to implement
similar software adapters for the same integration context all over again on different platforms
by interpreting someone else’s code.
Integration Knowledge Management: Integration knowledge is always incomplete as only a
concrete integration case is known. Adding or updating an interface always requires code adap-
tations. The formalization effort in lines of code is low as only the software adapter must be
implemented in the desired imperative programming language (e.g., JavaScript or Java). The

24

3. Methods to Achieve Semantic Interoperability in IoT

amount of time to write these lines of code is within minutes or hours as the system integrator is
typically used to apply the chosen programming language. Integration knowledge is implicitly
defined inside the software adapter. It cannot be queried and hence reused out of the box. The
implicitly defined integration knowledge can be evolved by adapting the imperative code. The
final software adapter is deployed in the adaptation layer (see Fig. 2.3).
Example Systems: Smart Home Systems such as openHAB offer a platform-specific domain
model that must be used when implementing a software adapter for this system. Another exam-
ple is IFTTT, where no domain model is predefined, but the end user must make sure that data
is interoperable on the semantic level between interfaces.

Using the software adapter pattern, the system integrator can perform ad hoc integration ac-
tivities. However, this approach is unstructured as integration problems were not considered
at system design time. Hence, this approach relies mostly on manual coding and is thus error
prone. For most dynamic IoT systems, a framework for integration activities should already be
considered as a system requirement in the first place. Automated and tool supported adapter
creation is a necessary design decision.

3.2. Top-Down Engineering Methods

Top-down engineering methods (TD) use interface mappings that are correct by construction.
In contrast, web service matching approaches may produce only by probabilistic result values.
Although matching solutions provide automation to software adapter implementation activities,
we only care about methods that provide a perfect match. To achieve such results that are correct
by construction, so called mapping approaches are used.
Top-down engineering methods rely on a complete, pre-defined domain model S (see Def. 1)
that describes the application domain available at system design time. For instance, AUTOSAR
provides a machine-readable domain standard for the automotive industry [44]. If a required
and a provided service endpoint support one composition model, then top-down integration ap-
proaches can be applied (see Fig. 3.3). Top-down means that all independent parties involved in
an application domain agree on standards regarding interface descriptions syntax A, a mapping
function MS , and a domain model S (c.f. AUTOSAR run time [44]).
If such a global agreement is not available, we can apply web service composition approaches
[45]. Besides well-known approaches such as the Semantic Web Service Description Language
(SAWSDL), more lightweight service description languages have recently been proposed to au-
tomate software component integration [45, 46]. For example, the JSON-LD language [42]
is one promising interface description language that can automate service compositions based
on machine-understandable domain models in data-driven environments [47, 48]. Therefore,
JSON-LD combines the JSON syntax with Linked Data (LD in JSON-LD) principles to for-
malize the semantic mapping function MS : A → S using an URL that points to a machine-
understandable domain ontology S. However, this language does not support coordination or
communication mismatches (i.e., service granularity and order of service invocation) as it relies
on the HATEOAS principle for RESTful web services. Approaches that also respect coordina-
tion or communication mismatches during automated software adapter generations mainly rely

25

3. Methods to Achieve Semantic Interoperability in IoT

on Labeled Transition Systems (LTS) as an additional description document besides function-
ality [27, 7]. For a domain-specific model S these approaches rely on machine-understandable
ontologies such as the Web of Things, Semantic Sensor Network, or other domain formalization
(see [49] for an overview).

Figure 3.3.: Top-Down Engineering Method

The challenge for such standard-based approaches in software ecosystems is that the software
component interface elements may exhibit another meaning in the describing context than in
the integration context (see Fig. 1.3). In the describing context, the software architect links all
interface syntax elements C to a standard S (see first line from Software Architect to Standard
Repository in Fig. 3.3) using a description language L (see Equ. 2.1). Then, these interface de-
scriptions are persisted in a standard repository. In service-oriented architectures, this is mainly
done by using a service registry. In the integration context, the platform checks whether all keys
from the provided and the required interface can be mapped (e.g., pointing to the same URL
in one namespace) [45]. This means that top-down approaches rely on the assumption that a
complete domain model can be derived in the requirements specification phase to ensure context
awareness and reuse of service components at system run time [45]. If the standard repository
should not contain all necessary mappings, the system integrator must adapt them manually.
However, this case should not occur.

26

3. Methods to Achieve Semantic Interoperability in IoT

Asset

Administra�on Shell

Asset

Integra�on

Communica�on

Informa�on

Services

Process

Asset

Administra�on Shell

Asset

Integra�on

Communica�on

Informa�on

Services

Process

[…]
<property>
<idShort>>NMax</idShort>
<category>PARAMETER</category>
<descrip�on lang="EN">Max. torque</descrip�on>
<descrip�on lang="DE">max. Drehmoment</descrip�on>
<seman�cId>
<keys>
<key local=“false” type=“GlobalReference“
idType="IRDI">0173-1#02-BAE098#004 </key>
</keys>

</seman�cId>
<valueType>double<valueType>
<value>2000</value>

</property>
[…]

Figure 3.4.: Example – Top-Down Engineering Method

Integration Example for Standards: For example, artMode refers to http://dbpedia.
org/resource/Configuration and power_saving refers to http://dbpedia.org/
resource/Power_saving (see generate mappings in Fig. 3.3). If the standard in use does
not contain a relationship from .../Configuration to .../Power_saving, then no au-
tomated interface mapping can occur although the identifiers are semantically identical. In agile
development teams, integration knowledge reuse only happens if and only if the standard used is
complete, unambiguous, and understood by all human developers involved. If not, the software
architect’s interface specification effort during describing context is not fully applicable. Hence,
top-down approaches focus on reusing domain knowledge expertise as a result of an extensive
agreement process.
Integration Knowledge Management: Integration knowledge for concrete integration cases is
not needed. This is achieved by forcing all participants within a system to implement the same
standard. The standard fixes syntax and semantics of all interface descriptions involved. Hence,
there is no formalization effort in line of codes. The amount of time to create a complete domain
standard is years, as it must be complete and used consistently among all participants. Interface
descriptions can be validated against the definitions as specified in the standard. The standard
repository can be queried and hence reused out of the box. However, standards are not expected
to change and are introduced once in a revolutionary way. There is no need for an adaptation
layer (see Fig. 2.3).
Example Systems: Industrial automation systems currently rely on OPC UA in combination
with the domain standard ecl@ss [4]. For example, the ID 0173-1#02-AAO735#003 refers to
the supplier name of a gauze dissecting swab or sponge (see Fig. 3.4). Scientifically driven
solutions mostly rely on ontologies to model the domain (e.g., Linked Open Data Vocabularies

27

3. Methods to Achieve Semantic Interoperability in IoT

for the Internet of Things [15]).

Although top-down engineering methods to achieve semantic interoperability allow for auto-
mated plug and play scenarios for IoT applications, the downside of this approach is the for-
malization effort needed upfront. Each identifier has to be linked to a machine-understandable
standard at design time. What is worse, an ontology is a formal (i.e., machine-readable), explicit
specification of a shared conceptualization (i.e., domain knowledge). Shared is negative in this
sense, as it refers to agreed upon by an exclusive group. The agreement must be reached before
any application can be implemented if semantic interoperability is a requirement. However, this
assumption contradicts the fact that millions of IoT devices are currently being connected.

Bottom-Up Engineering Method (BU)

System Integrator

System Integrator

Integration Environment

Integration Environment

Knowledge Repository

Knowledge Repository

Integration Case

Integration Case

select required & provided
 interface

:interface descriptions

evaluate interface
 actions

find mapping suggestions

calculate mappings

: set of mappings

:mapping suggestions

evaluate mapping
 suggestions

formalize missing mappings

compile and run program

invoke interfaces

:results

:results or error

adapt mappings

opt

loop

finish integration case

save new mappings

Figure 3.5.: Bottom-Up Engineering Method

3.3. Bottom-Up Engineering Methods

Innovative use cases emerge incrementally over time. This makes it hard for interested group
members to come up with a shared conceptualization across company boundaries. However,
device providers, platform owners, and application designers must cooperate in order to achieve
interoperable solutions.
In contrast to top-down engineering methods, bottom-up engineering methods (BU) soften the
claim for describing domain models completely as a requirement. This means that the domain

28

3. Methods to Achieve Semantic Interoperability in IoT

model is built up based on currently available software interfaces. A concrete set, if required,
and provided interfaces is always given. Hence, integration shifts from a star-like integration
graph (e.g., everyone references an ontology) to a chain-like integration graph (e.g., another in-
terface that can be replaced by another interface that can again be replaced). Bottom-up favors
an evolutionary creation of a domain model during system design time over a revolutionary do-
main model control.
Bottom-up engineering methods address the research challenge to automatically and dynami-
cally compose IoT services by including an adaptation mechanism that can reconfigure delivery
of services when the context changes [1]. This means that the software architect does not spec-
ify the meaning of software interface elements based on predefined requirements. Consequently,
the describing context does not exist in these methods (see Fig. 3.3).
Community standards such as schema.org [50] or domain ontologies from the Semantic Web
of Things [15] allow for a dynamic ecosystem evolution. However, such standards also suffer
from a timeliness problem as more and more IoT devices emerge everywhere. Hence, the dy-
namically evolving domain model S may not be reusable by others, as it does not contain all
required domain elements by C. Furthermore, there may exist no quality gate for new knowl-
edge.
This has the following implications on the underlying engineering method (see Fig. 3.5). The
integration environment typically involves a tool that can query the knowledge repository given
the required and provided interfaces of the integration case. The resulting mapping suggestions
can complete or incomplete. They are complete if the same integration case is implemented
again. If an unknown or adapted interface is included in the integration case, changes are neces-
sary within all used descriptions to reflect interface mappings correctly.
In this vein, Bennaceur et al. [51] proposes to use semantic web service descriptions that are
linked to an ontology. This ontology is controlled by the system integrator and distinct from the
current integration context. Furthermore, they provide a labeled transition system to describe
the order of invocation of services. Their solution proposal can generate a software adapter at
run time that is correct by construction based on these input parameters. Regarding the interface
definition language L (see Def. 1), they formalize a mapping function MS between the web
service description and an intermediate ontology, which represents the semantic domain S.
To illustrate this setup, we reuse their own running example. In their running example, the
operation findTrip(...) offered by the US Travel Agency system should be coupled to the in-
terface EU Travel Agency (see Fig. 3.6). To fix each interface element’s meaning, they link
input and output data contained in both interface descriptions to their ontology (upper part of the
figure). Thereby they integrate both interfaces on the semantic level. Furthermore, they spec-
ify that findTrip(...) as a required interface involves calling selectCar(...), selectF light(...),
selectHotel(...) and makeReservation(...) in that order as a labeled transition system (see
Listing 3.1).

Listing 3.1: Labeled Transition System Example
SFI = (f i n d T r i p I −> s e l e c t F l i g h t I −> END) .
SHI = (f i n d T r i p I −> s e l e c t H o t e l I −> END) .
SCI = (f i n d T r i p I −> s e l e c t C a r I −> END) .
| | P1 = (SFI | | SHI | | SCI) .

29

3. Methods to Achieve Semantic Interoperability in IoT

SFO = (s e l e c t F l i g h t O −> f i n d T r i p O −>END) .
SHO = (s e l e c t H o t e l O −> f i n d T r i p O −>END) .
SCO = (s e l e c t C a r O −> f i n d T r i p O −>END) .
| | P2 = (SFO | | SHO | | SCO) .

P3 = (m a k e R e s e r v a t i o n I −> c o n f i r m T r i p I −> END) .
P4 = (conf i rmTr ipO −> makeReserva t ionO −> END) .
P5 = (s e l e c t F l i g h t O −> s e l e c t C a r I −> END) .
| | Onto = (P1 | | P2 | | P3 | | P4 | | P5) .

US = (f i n d T r i p I −> f i n d T r i p O −> c o n f i r m T r i p I −> conf i rmTr ipO −> END) .
EUF = (s e l e c t F l i g h t I −> s e l e c t F l i g h t O −> m a k e R e s e r v a t i o n I −>

makeReserva t ionO −> END) .
EUH = (s e l e c t H o t e l I −> s e l e c t H o t e l O −> m a k e R e s e r v a t i o n I −>

makeReserva t ionO −> END) .
EUC = (s e l e c t C a r I −> s e l e c t C a r O −> m a k e R e s e r v a t i o n I −>

makeReserva t ionO −> END) .
| | EU = (EUF | | EUH | | EUC) .
| | System = (EU | | US | | Onto) .

Their ontology only captures the present integration case within a domain. Regarding our run-
ning example, this results in the following integration activities:
Integration Example for Formal Methods: Similar to the SA method, the System Integrator
artMode maps to power_saving. Besides, the simple mapping function replace for required
and provided keys are formalized in a declarative way and are stored in the Knowledge Repos-
itory for future reuse. In the future, the system integrator can query the Knowledge Repository
based on required and provided interface descriptions, and an adapter is generated automatically.
Hence, agile development teams continue their current state-of-practice by implementing a soft-
ware adapter. Although they must invest additional mapping formalization effort in the short
term, the reuse and reasoning capability speeds up their work in the long term.
Integration Knowledge Management: Integration knowledge is assumed to be complete once
defined based on the set of concrete integration cases at hand. Adding or updating an inter-
face typically requires updating the formal domain model as well as required transformation
functions. Hence, the formalization effort in lines of code is moderate-high. It is moderate if
the tooling infrastructure allows generating a software adapter automatically. It is high if map-
pings are only suggested but cannot be directly used within an executable software adapter. The
amount of time to create these lines of codes is hours to days as it involves working with lan-
guages that are not applied by the system integrator on a regular basis. For instance, editing an
OWL ontology or specifying labeled transitions systems for controlling the service invocation
order is typically an expert skill. Integration knowledge can be queried and hence reused out
of the box. Integration knowledge can evolve by updating the formal domain model and all
accompanying integration specifications. In addition, the adapter code itself may be subject to
manual adaptations based on the suggested mappings. The final software adapter is deployed in
an adaptation layer (see Fig. 2.3).

30

3. Methods to Achieve Semantic Interoperability in IoT

<<Interface>>
US Travel Agency

+ findTrip(destination: String, departureDate: Date,
returnDate: Date, needCar: Boolean) : Trip
+ confirmTrip(tripId: String) : Acknowledgement

<<Interface>>
EU Travel Agency

+ selectCar(model: String, dateFrom: Date, dateTo: Date) : Car
+ selectFlight(destination: String, departureDate: Date, returnDate: String) : Flight
+ selectHotel(pref: String, checkInDate: Date, checkOutDate: Date) : Hotel
+ makeReservation(flightId: String, hotelId: String, carId: String) : Acknowledgement

hasCheck...
hasReturn...

isPartOf

isPartOf

fromDate

hasHotelID

hasDepart...

isPartOf

hasCarID

toDate

hasFlightID

hasCheck...

isPartOf

isPartOf

isPartOf

hasTripID

hasCheck...

hasPart
(inverse functional)

SelectHotel

dateTime

dateTime

dateTime

string

SelectCar

dateTime

string

dateTime

dateTime

string

Car

Trip
1

Flight

Hotel

TripDestination

Literal

string
SelectFlight

Date

FindTrip

Thing

Figure 3.6.: Example - Semantic Integration based on Bennaceur et al. [7]

Example Systems: Defining interface mappings and transformation using a declarative lan-
guage is currently widely done in practice. For example, flow-based programming environments
such as NODE-RED1 support the declarative mapping language JSONata [42]. Other examples
are ioBoker2 from the smart home domain and OpenIntegrationHub3 for data synchronization
between business applications. However, these systems cannot share or reason in mappings. In
contrast to scientific solutions such as Bennaceur et al. [51], these industrial systems suffer from
the same problem as the software adapter implementation method. They are formalized in a
repetitive way.

Like top-down engineering methods, current bottom-up engineering methods aim to achieve se-
mantic interoperability in an automated way. However, bottom-up engineering methods suffer
from the fact that the system integrator must perform more work compared to software adapter
implementation.

1https://nodered.org/
2https://www.iobroker.net/
3https://www.openintegrationhub.org/

31

3. Methods to Achieve Semantic Interoperability in IoT

On the one hand, we need a working software adapter. On the other hand, the integration knowl-
edge must be efficiently formalized, so reuse is likely.

32

4. Requirements for Semantic Service
Interoperability in IoT

We have seen that achieving semantic interoperability for IoT systems is still a challenge. Now,
we relate the presented methods to our barriers. Therefore, we have summarized all the men-
tioned characteristics in Table 4.1. Although software adapter implementation does not expose
the additional effort to control a shared domain model, software adapters are repetitively imple-
mented, and the contained integration knowledge can not be reasoned about effectively. Top-
down engineering methods rely on a predefined, complete domain model. However, such a
domain model is static and cannot be changed easily as all participants rely on it. TD cannot
cope with fast innovation cycles. Nevertheless, change is omnipresent in dynamic IoT scenarios.
Bottom-up engineering methods, similar to software adapter implementation, do not rely on a
common domain model but focus on concrete integration cases. Although these approaches do
not attempt to formalize every possible detail of a domain, they also assume that their domain
model is complete once defined. The main difference to standards is that they build up their
domain model and the necessary transformation activities based on a set of concrete integration
cases. Despite the fact that formalization effort is less, the formalization and time effort to adapt
these formal models is not manageable over time and therefore not widely applied in practice.

Table 4.1.: Comparison of Methods to Achieve Semantic Interoperability in IoT
Model

Method Incomplete Complete Formalization
Effort Time Effort Evolvable Adaptation

Layer
SA x low hours yes yes
TD x none years no no
BU x moderate-high hours-day yes yes

In the next chapter, we present our solution approach that is also based on the bottom-up princi-
ple. In contrast to existing bottom-up approaches, we explicitly allow for incomplete integration
knowledge at all time. As a consequence, formalization effort for integration context becomes
manageable as mappings are formalized incrementally. We still strive for automated software
adapter generation for seen and unseen integration cases as we can query and reason about
incomplete integration knowledge. Over time, this results in formalizing fewer mappings for
similar integration cases. Still, the method and the tooling infrastructure should be executable
without having expert knowledge in ontology engineering.

33

Part III.

Knowledge-driven Architecture
Composition

34

5. Formalization

5.1. Basics

We begin this chapter by introducing the basic concepts using algebraic syntax. Therefore, we
reuse the fundamentals of the theoretical system model from Bennaceur et al. [51]. Their com-
ponent model is made up of capabilities, interfaces and actions. Later, we use this formal model
to illustrate how our reasoning approach assists the system integrator. In the following, we refer
to abstract concepts written as X and concrete concepts in normal text style.

Let C = {c1, .., cn} be a set of software components. The capability Cap = 〈type, F 〉 of a
component is defined as:

• type ∈ {Req, Prov,ReqProv} where the type specifies if a component requires or pro-
vides functionality to its environment. A component can also expose both types at the
same time.

• F gives the semantics of the functionality by referring to concepts in a domain D. For
such a domain D, an ontology O explicitly models knowledge about the specific domain
for all relevant provided and required functionality.

Capability can be interpreted as a service profile. A service profile has a name, a textual de-
scription, and it refers to concepts in the ontology O. The service behaviour of a service
describes how the capability can be achieved. For instance, a service process states the se-
quence of possible action invocations. An action involves an operation, input data, and output
data. For example, a software component’s actions are described both syntactically, using JSON
schema, and semantically using ontological annotations. An action α is formally defined as
α = 〈op, i, o〉(op, i, o ∈ O). Here an operation op is invoked by providing the appropriate input
data i and consuming the produced output data o. The set of all actions that belong to a compo-
nent is referred to as its interface I. Each component only has one interface. The annotations
of each component interface I(c) refer to a single ontology O specific to the domain D that the
component belongs to.
In order to distinguish between the ontological concepts and the syntax of the input and output
data (i, o), we reuse the notion of a formal language L [32] from the previous chapter.

Definition 1 (Interface Description Language).
An interface description language L is defined as L = (C,A,D,MC ,MD) where C is the con-
crete interface syntax,A is the abstract syntax, andD defines the semantic domain. MC : C → A
is a function that assigns graphical or textual syntax elements c ∈ C to one abstract syntax el-
ement a ∈ A and MD: A → D relates abstract syntax elements a ∈ A to semantic domain
elements d ∈ D.

35

5. Formalization

In our running example (see Fig. 1.3), the concrete syntax refers to the JSON syntax, and the
abstract syntax provides a higher level description from the concrete syntax in use. The relation
of MC realizes this. The semantic domain D is associated with an ontology O that models the
knowledge about the specific domain. Consequently, the function MD contains all annotations
to refer to their ontology concept’s syntactic elements. We denote the concrete syntax of input
C(i) and output C(o) respectively.
Next we need the notion of a client. In our running example (see Fig. 1.3), the client is a remote
application that runs on a mobile device. At design time of this application, the requirements
stated that it should only support the Samsung TV. Hence, the client builds up the requests and
handles responses as defined by the corresponding service description. In this case, the client
requires the functionality defined by the Samsung TV.

Definition 2 (Required/Provided Interface).
When a client only functions by accessing actions {α1, .., αn} from third party components, we
describe such actions as required actions. In contrast, a provided action α is an action that
another client can access. Hence, the actions exposed by a third party component are provided
to the environment.

Regarding the introduced notation, we state that provided actions or interfaces are equipped with
an over line and required actions or interfaces are not.
Our next definition states how a capability Cap can be described within a semantic domain D.
Therefore, we specify the expressiveness of an ontology O and introduce a labeled transition
system. A labeled transition system is needed to capture the sequence of action invocations (i.e.,
service’s behaviour).

Definition 3 (Semantic Domain).
We define the structural characteristics of the semantic domain D using a description language
that supports SHOIN (D) expressiveness. We define the behavior of software components
within a semantic domain using labeled transition systems. A labeled transition system LTS is
defined by a quadruple LTS = (Q,A,→, Q0) where Q is the nonempty, countable set of states,
A is the set of labels (or actions),→⊆ Q×A×Q the transition relation and Q0 ⊆ Q is the set
of starting states. Q contains interface descriptions using L for required and provided interfaces.
Q0 contains interface descriptions using L for required interfaces. → contains preconditions
before an operation can be called.

The described concepts within the resulting ontologyO are used to relate input i and output data
o using annotations. The order of invocations of operations (e.g., due to different granularity) is
described using the labeled transition systems.
Given this formal model, functionally compatible components can be identified. Therefore, we
assume that there exist an ontology O that is used by the required as well as by the provided
action (see Fig. 3.6). We say that a required capability CapR = 〈Req,OpR〉 can be mapped to a
provided capability CapP = 〈Prov,OpP 〉 iff OpP v OpP in the ontology of domain D. This
means that the concepts used by OpP subsume the concepts used by OpR. The idea behind that
statement is that the required functionality is less demanding than the provided functionality.
The semantic domain D can be described implicitly or explicitly. If it is described explicitly, it

36

5. Formalization

must be kept up to date and be integrated into the component development process. If it is not
described explicitly, the actions described by the components interface must be interpreted by
the person who maps required to provided actions.

Although we reuse the formal component model provided by Bennaceur et al. [7], we funda-
mentally differ in the way the formal domain model is built. Bennaceur et al. and all other
approaches found assume that the semantic domain is given at a specific point in time. However,
this is not the case for IoT systems. Hence, our approach provides a structured way to gain
and formalize this domain knowledge incrementally. By doing so, the formalization effort (see
Barriers) becomes manageable.

Now we return to the three general solution proposals software adapter implementation, top-
down, and bottom-up interoperability approaches (see section Background II). All proposals try
to establish semantic correspondences between provided and required interfaces [3, 1]. Further-
more, semantic interoperability ensures that services and data exchanges between a provided
and a required interface make sense – that the requester and the provider have a common under-
standing of the "meaning" of services and data [2]. Hence, we can define the search for such a
mapping between required and provided interfaces. Let I1 be the required interface by compo-
nent c1 and let I2 be the provided interfaces by component c2. Then, the search for mapping pairs
(X1, X2) where X1 = 〈α1, α2, ..., αn〉, αi=1..n ∈ I1 and X2 = 〈β, β2, ..., βm〉, βj=1..m ∈ I
such that X1 can be mapped to X2 is defined by the function X1 7→ X2. This means that the
required actions of X1 can be performed by calling the provided actions of X2. The relation
Map(I1, I2) can now be defined as follows:

Definition 4 (Mappings).

Map(I1, I2) =
{(X1, X2)|X1 = 〈α1, α2, ..., αn〉, αi=1..n ∈ I1

∧X2 = 〈β1, β2, ..., βm〉, βj=1..m ∈ I2
∧X1 7→ X2}

(5.1)

Next we turn towards formalizing different mapping types. Depending on the set of required
actions that should be mapped to a set of provided actions, these cases are one-to-one, one-to-
many, and many-to-many mappings.

5.2. Mapping Types

In Definition 4 for mappings, we have stated that we link a textual interface description ele-
ment from the required interface and a textual interface description element from the provided
interface with one concept d ∈ D. In contrast to Bennaceur’s et al. component model [51], we
do not assume that integration cases are complete and do not change over time. Furthermore,
our approach differs as mappings are defined between interfaces without a common, underlying
ontology. Hence, an action α = 〈op, i, o〉(op, i, o ∈ O) is not related to O but only to D re-
sulting in an action defined as α = 〈op, i, o〉(op, i, o ∈ D). This renders annotations as defined

37

5. Formalization

in the function MD from Definition 1 impossible. However, when searching for mappings (see
Def. 4), we can relate required actions to the ontological concepts as described by the provided
actions.
Let an interface I be described by the set of syntactic elements c ∈ C of the interface description
language L. Now, the function MD can be rewritten as MD: MC(I1)) → MD(MC(I2)). This
means, that concrete ontology O is replaced with the domain D that is imagined by the system
integrator by interpreting the provided interface description. Hence, the search for mappings is
explicitly formalized by relating the concrete syntax C(I1) of a required interface to the concrete
syntax of a provided interface I2.
A required action α = 〈a, Ia, Oa〉 ∈ I1 can be mapped to a provided action β = 〈b, Ib, Ob〉 ∈ I2
if the following requirements are met:

Definition 5 (One-to-One Mapping).

1. b v a

2. Ia v Ib

3. Ia tOb v Oa

This definition’s general idea is that a provided operation can achieve a required operation if the
required operation a is less demanding than the provided operation b. Furthermore, all required
input data Ib for the provided action β can be deduced from the provided input data Ia for the
required action α. Finally, the required output data Oa can be deduced by combining Ob and Ia.
A one-to-many mapping extends this general idea. Again, let α = 〈a, Ia, Oa〉 ∈ I1 be the only
required action. Now, a mapping to a sequence of provided actions
X2 = 〈β1, β2, ..., βm〉, βj=1..m ∈ I2 must be achieved. Such a mappings exists if the following
requirements are met:

Definition 6 (One-to-Many Mapping).

1.
⊔

1≤j≤m
bj v a

2. Ia v Ib1

3. Ia t

(⊔
1≤l≤j−1

Obl

)
v Ibi

4. Ia t

(⊔
1≤l≤m

Obl

)
v Oa

The first statement means that a subset of all provided operations bj is subsumed by the required
action α. The second statement means that the sequence of provided actions can be initiated
since the input data of the first action Ib1 can be obtained from the input data of the required
action Ia. The third statement means that the provided input data Ia subsequently merged by
all outputs Obl finally allows calling all provided interfaces. This is necessary, as an action can

38

5. Formalization

only be executed if all required input data is present. The last statement ensures that the required
output data Oa can be obtained from the set of generated output data by executing all provided
actions.
As last type, the many-to-many mapping case is introduced. Let
X1 = {α1, α2, ..., αn}, αi=1..n ∈ I1 be sequence of required actions and let
X2 = {β1, β2, ..., βm}, βj=1..m ∈ I2 be the sequence of provided actions. Then a many-to-
many mappings exists if:

Definition 7 (Many-to-Many Mapping).

1.
⊔

1≤j≤m
bj v

⊔
1≤i≤n

ai

2.
⊔

1≤i≤l
Iai v Ib1

3.

(⊔
1≤j≤l

Iaj

)
t

(⊔
1≤h≤j−1

Obh

)
v Ibi

4. ∀h ∈ [1, l[, Oah = ∅

5. ∀h ∈ [l,m],

(⊔
1≤i≤h

Iai

)
t

(⊔
1≤k≤n

Obk

)
v Obk

The first statement says that provided operations can perform all required operations. The second
statement states that the execution of provided actions can be initiated if the necessary input
data Ibj can be computed based on the data previously received. The third statement states
that all provided input parameters by the required operations merged with all output parameters
produced by executing the provided operations sequentially allow to call all provided operations
meaningfully.
Similar to Bennaceur et al., we assume synchronous invocation semantics. This means that a
required action can only be called if its output is available, and analogously a provided action
can be executed only if its input is available. However, we can accumulate the required actions’
data and allow them to progress if they do not require any output. Hence, the fourth statement
specifies that the first l-1 actions do not require any output and can be executed before the
provided actions. The last statement specifies that all required outputs can be finally generated
by merging all outputs generated by the provided operations.
This case would shift a lot of application logic into a software adapter. This is often not desired
in reality, as it makes it hard to maintain such complex adapters.

We continue with our own model (i.e., own extensions to Bennaceur et al. [51] anymore) as
we shift to the integration knowledge management process for knowledge-driven architecture
composition. Here we especially focus on the knowledge reasoning aspect.

Throughout the definitions so far, we have applied the Map function that changes the syntac-
tic representation of an identifier by preserving its meaning (e.g., "sourceName" is replaced

39

5. Formalization

Equal Not Equal

Equal
Case 1

(e.g. Formal Standard)
Case 2

(e.g. Homographs)

Not Equal
Case 3

(e.g. Synonyms)
Case 4

(i.e. incompatible)

Syntax

Semantic

Figure 5.1.: Integration Cases

by "input" in the running example 1.3). In this integration context, these two identifiers are
homonyms. However, there are also integration cases on the identifier layer that require more
complex transformations. Generally, we distinguish between four categories, as presented in
Figure 5.1. Therefore, we can apply these categories not only on two identifiers but on all inter-
face elements. With regard to the mapping definition 4, a set of required and a set of provided
interfaces are functionally compatible if the function MD relates operations to the same domain
concepts d ∈ D and if the requirements from one mapping type can be applied. This scenario
assumes that each identifier has a fixed meaning defined by its annotation. To enforce this dis-
tinct meaning, the underlying ontologyO must be available before the definition of a component
interface (see Case 1 in Figure 5.1). Hence, no integration activities on the semantic layer are
necessary for top-down approaches that rely on this assumption. Naturally, no integration activ-
ities occur if interfaces do not share common concepts as stated in Case 4 (e.g., two operations
called "startEngine" and "openMailbox").
Cases 2 and 3 (see Fig. 5.1) can only occur if we use no common, centrally managed ontology.
Here bottom-up integration approaches formalize interface mappings not based on a known stan-
dard but on what is available in a concrete integration context (i.e., driven by the interfaces that
should be integrated). As seen in the Background II chapter, Bennaceur et al. [51] 1) build up
an own ontology that suits their integration case, 2) link all actions to this ontology (i.e., MD
application to the newly created ontology) and 3) provide an LTS to describe the behavior of
the components (see Definition 3). However, such bottom-up approaches allow for automated
integration only if decentralized developers opt in for the same ontology and build up their op-
erations so we can match them according to their behavioral specifications. Consequently, we
need a modified definition for integration knowledge and incomplete mappings for our approach
as our integration knowledge is always incomplete. Now we want to build up interface mappings
incrementally without an intermediate O.
Let L = (C, A,D,MC ,MD) be the interface description language that is used by a required in-
terface I1 and a provided interface I2 to describe their actions. Let L∗ = (C∗, A∗, S∗,M∗C ,M

∗
S)

be a language that describes the relation between the required and provided interface. Hence,
annotations from the syntax of actions to the ontology concepts are not part of the interface
description anymore (i.e., MD). Therefore, we need an expressive language for annotations
as the ontology concepts are not defined once they are needed. For instance, mathematical
operations may be needed to transform input and output data. Based on L∗, the function
MapIntegrationCase(I1, I2) can be defined as follows:

40

5. Formalization

Definition 8 (Case-based Mappings).

1. D1 t D2 6= ∅ ∧ D1,D2 ∈ D

2. MD(I1) :MC(I1)→ D1

3. MD(I2) :MC(I2)→ D2

4. MapIntegrationCase : C
∗(MC(I1)→MC(I2))→MD(I2)

In contrast to the definitions 4, the fourth statement gets rid of the intermediate ontology. Here
C∗ describes the concrete syntax of a mapping function that relates a set of required actions to
the provided actions’ domain concepts. Mappings (c.f., annotations) are not related from the
required interface to the ontology and then to the provided interface but are related directly from
the required interface to the provided interface. Of course, the intersection of the interpreted do-
main concepts from the required and provided actions must not be empty (see integration case 2
and 3 from Fig. 5.1). Otherwise, they would not be functionally compatible.
As a consequence of this case-based mapping formalization, the relation of domain concepts can
be built up incrementally. Hence, domain concepts are never complete for all integration cases
as a new interface can be added at any time. Here the key idea is to store integration knowledge
between required and provided actions not in a star-like manner but as a chain of integration
cases with no fixed intermediate ontology.
A requirement for applying reasoning principles on such chains is a graph structure where map-
pings are stored.
Let Y = {I1, .., In} be a set of interfaces. These interfaces can either provide actions or re-
quire actions based on an integration case. We can then define an incomplete, domain-specific
mapping:

Definition 9 (Incomplete, Case-based Mappings).
Let KB = (Y,MapIntegrationCase) be a knowledge base with a multi graph structure. A vertex
v consists of an interface yi ∈ Y with actions {α1, α2, ..., αn}. An edge MapIntegrationCase

between required yi and provided actions yj is inserted for each mapping type (e.g., one-to-one,
one-to-many,..). Such mappings are incomplete, as only the needed mapping functions for the
integration case at hand are formalized.

For example, assume that there are three interfaces I1, I2, I3 ∈ Y where I1 has actionsα1, .., α3,
I2 has actions α4, .., α6 and I3 has actions α7, .., α9. Furthermore, assume the following func-
tional compatibilities indicated by "x" between these actions exist (multiple "x" in a line indicate
a one-to-many mapping).
Let us further assume an "x" includes all mappings for input and output between required and
provided actions. Then we can state that the domain D is completely described if all possible
mappings are available in the knowledge base KB (see Table 5.1). Consequently, there is an
ontology O for the domain D and a behavioral specification as an LTS for all possible invoca-
tion sequences (see definition 3). Let us assume the knowledge base is empty. An integration
case then represents a subset of all "x"s. Further assume, that the integration case at hand (e.g.,

41

5. Formalization

α1 α2 α3 α4 α5 α6 α7 α8 α9

α1 x x
α2 x x
α3 x x x
α4 x x
α5 x x x x
α6 x x
α7 x
α8 x x x
α9 x x x

Table 5.1.: Complete Integration Knowledge for a Domain

replace Samsung with LG "/status" operation from our running example in Fig. 1.3), only needs
mappings from α1 to α4. We store the corresponding mappings in the knowledge base using the
language L∗. Hence, we can state that the mappings for the domain are incomplete and thus, the
knowledge base is incomplete as well.
If the knowledge base is incomplete for the KDAC approach, then no automated integration is
possible as integration knowledge is missing.
Up to now, mappings between actions have to be defined manually. To tackle this problem, we
use reasoning principles to assist the system integrator in generating mappings automatically.

5.3. Reasoning Principles for Mappings

The mapping function MapIntegrationCase : C∗(MC(I1) → MC(I2)) → MD(I2) takes a re-
quired interface description I1 and a provided interface description I2 as inputs. A mapping
function’s domain (see Def. 8) are all required actions α = 〈op, i, o〉(op, i, o ∈ D). Conse-
quently, the image of a mapping function are all provided actions. The interfaces I1, I2, I3
define the functional interoperability between α1 to α4 and α4 to α7 with reasoning support.
To reason about domains and images of mapping functions, we have to specify how a mapping
function MapIntegrationCase is defined using the language L∗ based on its concrete syntax C∗.
Please note, that L∗ refers to a purely technological language to define mappings with no rela-
tion to the application domain. L∗ is applied to the input and output of an action. In fact, each
input i and output o object can consist of multiple elements. Such elements are usually defined
in a data model. This data model is unique for each interface description. Therefore, each inter-
face description I defines its distinct data model. This means that MapIntegrationCase actually
defines a set of functions {mapaction1 ,mapaction2 , ...,mapactionn} on the input and output data
elements. Such a data element is uniquely recognized as an identifiers id in the name space of
the respective interface.
Let data1 be the data model used by action α1, data4 be the data model used by action α4 and
data7 be the data model used by action α7. Now we can define the domain and the image of an
operation.

42

5. Formalization

Definition 10 (Domain and Image of Case-based Mappings).
Each identifier id ∈ data1 ∪ data4 ∪ data7 has a domain DOM(id) and an image IMG(id).
The domain DOM and image IMG of a mapping function mapaction ∈ MapIntegrationCase

are restricted by the available input i and output o data of the respective operation op.

In the running example (see Fig. 1.3), we have stated that "sourceName" from the Samsung TV
schema can be replaced with "input" from the LG TV. However, this can only be done when
the identifier type can be transformed (e.g., from Integer to String) and the domain of definition
(e.g., enumeration) of both identifiers is identical. If the domain of definition is not identical,
the mapping function mapaction must take care of the correct transformations. Whenever such
a mapping function is defined, we can try to calculate its inverse function. This is our first
reasoning principle.
Let id1 ∈ data1, id2 ∈ data4 be identifiers and f : DOM(data1) → IMG(data4) be the
mapping function that relates data model data1 to data4. Let r ⊆ id1 × id2 be the mapping
function r ⊆ f that relates identifier id1 to id2.

Definition 11 (Inverse of Case-based Mappings).
An inverse mapping function r−1 for an identifier can be computed if r is a bijective function.
Consequently, the inverse mapping function r−1 has the domain DOM(data4) and the image
IMG(data1).

These mapping functions are inserted automatically into the knowledge base KB. Computed
mappings based on the inverse property are complete for the inverse integration case if we can
transform all identifiers from the provided action α4 into the required action α1.

For the second reasoning principle, we have to return to our running example (see Fig. 1.3).
Assume that there is another TV manufactured by Philips. Assume that the system integrator
has examined two integration cases. The first one is integrating the Samsung TV with the LG
TV, and the second is integrating the LG TV with the Philips TV. Then, the knowledge baseKB
contains the following integration knowledge:

• Vertexes: Interface descriptions ISamsung, ILG and IPhilips where only the action "/sta-
tus" and data models for input and output are defined.

• Edges: There is a one-to-one mapping from the required action αSamsung to the provided
action βLG. Furthermore, there is a one-to-one mapping from the required action βLG to
the provided action γPhilips.

Let r ⊆ αSamsung×βLG and s ⊆ βLG×γPhilips be mappings on the respective actions provided
by the interfaces.

Definition 12 (Composition of Case-based Operation Mappings). A composed mapping relation
is defined as S ◦R when {(αI1 , αI3) | ∃αI2 : (αI1 , αI2) ∈ R ∧ (αI2 , αI3) ∈ S}.

Derived mappings based on the composition property are complete for the integration case if we
can transform all input and output data from the set of required actions from interface I1 into

43

5. Formalization

the set of provided actions from interface I3. This definition can be applied to all mapping types.

The third reasoning principle is only applied to the mapping type one-to-many.
Assume the remote control application should control two other TVs (i.e., one-to-many mapping
type). For instance, the request sent to the required interface ISamsung should be duplicated
and sent to ILG and IPhilips. Furthermore, the knowledge base KB contains the following
integration knowledge:

• Vertexes: Interface descriptions ISamsung, ILG andIPhilips where only the action "/status"
and data models for input and output are defined.

• Edges: There is a one-to-one mapping from the action βLG to the action γPhilips

Now assume that a new one-to-many mapping from the required interface Samsung TV ISamsung

to the provided interfaces ILG and IPhilips should be added.
Let S ⊆ aI2 × aI3 be the available mapping and let data1, data2 and data3 be the respective
data models for the interfaces I1, I2 and I3. Then, after a new mapping function mapaction
for an identifier id ∈ R ⊆ αI1 × αI2 is added to the knowledge base KB, we can apply the
following reasoning principle:

Definition 13 (Composition of Case-based Identifier Mappings).
Let idi ∈ data1, idj ∈ data2 and idk ∈ data3. Due to the new mapping (idi, idj) ∈ R, the
mapping (idi, idk) can be calculated when a mapping (idj , idk) ∈ R exists in the knowledge
base KB.

The major difference between the second and third reasoning principle is the abstraction level.
Def. 12 is applied on the action level and Def. 13 is applied on the data mode level. This can
be done independently of the selected action as all actions of an interface relate to the same data
model.

In the next section, we provide a sophisticated process description of how KDAC uses the rea-
soning principles and we lay out the details of the so far graphical representations.

44

6. Integration Knowledge Management

Similar to the presented integration methods in the Background section, knowledge-driven archi-
tecture composition (KDAC) aims to establish interoperability concerns as a first-class citizen in
IoT development – just like test-driven software development revolutionized software engineer-
ing. Concerning the running example (see Fig. 1.3), it would be beneficial for the application
developer to generate a software adapter automatically. Therefore, integration knowledge must
be stored in a machine-understandable way and made publicly available. The additional formal-
ization effort for interface mappings is motivated by a "give a little:receive a lot" mentality. For
example, imagine that there already exists integration knowledge from the LG television to 5
other televisions. Now, the mapping from Samsung to LG allows not only the remote control
application to speak to one but six other devices at once.

This may appear promising but must be put into context to the content presented so far. We do
this by answering three leading questions that may have arisen until now.
1) Why not just keep implementing software adapters manually when standards are not cover-
ing a use case and use machine-readable standards in all other cases? There exists a dilemma
between searching for a standard that supports a novel use case or building up an own domain
ontology. Reusing existing solutions always inherits all possible domain elements because of the
completeness claim. Using multiple standards for distinct use cases requires integration between
standards. Then the amount of work spent on integrating standards increases, and the working
hours spent only have a minimal influence on the use cases that should be supported. To avoid
such a scenario, each IoT platform can define its individual domain model. Now the question
arises whether the platform provider should provide means to implement software adapters in
the platform environment or whether the device is implemented according to the individual plat-
form model. In both cases, standards and software adapters, the human must reason about the
mappings. However, this process is slow and error prone. Furthermore, the value added for
customers to use their individual IoT application independent of the device manufacturer can
only be achieved manually.
2) So, how is KDAC different from just chaining software adapters stored in a code repository?
Search-based software engineering can be applied to software adapters [52, 53] or software
adapters can be integrated into recommendation systems for software reuse [54, 55]. However,
to identify chains between required and provided software interfaces, programming language
independent information about its functionality must be created. Furthermore, the integration
knowledge is trapped within the imperative code and cannot be reasoned about by other soft-
ware components. Testing and debugging a chain of imperative software adapters would require
stubs for each intermediate interface, and errors are hard to fix as wrong input data in another
adapter may cause them. Hence, there is a need to store mappings in a declarative way so that
reasoning algorithms can reuse existing mappings efficiently or create new mappings by means

45

6. Integration Knowledge Management

of rigorous reasoning rules.
3) Finally, how is KDAC different from just updating ontologies incrementally with new domain
knowledge? Ontologies from symbolic artificial intelligence research have been applied widely
by researchers from the software architecture or web service community, as ontologies are one
way to solve semantic ambiguities. However, trained knowledge engineers primarily define on-
tologies for the purpose of semantic data integration in static information systems. Now, reusing
these concepts in IoT systems is challenging, as constant innovation and system dynamism are
omnipresent. Constantly updating ontologies would require a knowledge engineer or training the
system integrator accordingly. Furthermore, ontologies were initially designed to express static
domain-specific data relations but not to express preconditions and postconditions of services.
Hence, KDAC relies on more radical thinking by eliminating ontologies from the infrastructure
support completely. Consequently, there is a need for the use of a declarative language that can
be applied by a system integrator quickly.

6.1. Integration Knowledge Management Process

As with most IoT-related communication, the messages being sent within an environment are
mostly data-driven (i.e., following the HATEOS principle for REST services). Like most en-
gineering approaches that aim to achieve semantic interoperability, KDAC also abstracts away
from networking protocols (e.g., HTTP) and syntactic characteristics (e.g., JSON). Overall, the
method aims at 1) to store mappings between two devices based on their interface definition
using a declarative language and 2) to reason about these mappings. Finally, platform-specific
software adapters are automatically generated based on derived mappings or by reusing stored
mappings. The underlying tool support aims at finding all necessary mappings between a pro-
vided and required interface. If all mappings for one integration case are present, then a software
adapter can be generated automatically.

During the component design phase at time t=0, the component provider and the requester can
design their service interfaces without using an interface description language that contains se-
mantic data annotations based on a machine-understandable domain model (see Fig. 6.1). Fur-
thermore, an application is created which uses software component B.
Assume at time t=1, integration is necessary as a new device is present, and it should not change
the IoT application logic. In addition to writing an individual software adapter to connect com-
ponent model A to the component model of B, the system integrator adds declarative map-
pings between both actions and stores these mappings in a knowledge base KB (e.g., specifying
MapIntegrationCase) as defined in Def. 8). The following definitions and knowledge manage-
ment activities are typically applied at this stage using the language L∗ for mappings:

• Knowledge Capture and Representation: Mapping Types (Def. 5,6,7) and Case-based
Mappings (Def. 8)

• Knowledge Sharing: Store all mappings in knowledge base

Over time, various other components are integrated in a decentralized setting and various phys-
ical places (i.e., shown by frames in Fig. 3), and new mappings are added to the central knowl-

46

6. Integration Knowledge Management

IFPROVIDER IFREQUIREDIntegration Case

t=0

t=1

t=n

Component
Design

Integration
Case 1

Integration
Case n

ifProv

A

ifProv

A*

ifProv

B

ifReq

KB

KB

B

ifReq

B

ifReq

A

place

time

Manual Mappings

Manual Mappings

Figure 6.1.: Knowledge-Driven Architecture Composition Method

edge base. For example, software component A* uses the same domain model as software
component A. Hence, the stored mappings for component A can be reused. Now assume that
there are no mappings between components A and A* are available. Furthermore assume, that
mappings between components A and C (component C are not shown in Fig. 6.1) and between
component C to A* exist. Because of the transitive relationship A ↔ C ↔ A∗, the mappings
from component A↔ A∗ can be calculated by applying the presented reasoning principles.
For example, a reasoning algorithm could infer new integration knowledge for the transitive
characteristics for the identifier "volume" from the running example as a simple example. So,
suppose the integration knowledge base contains the transformation functions
{mapaction1 ,mapaction2 , ...,mapactionn} from volume (SamsungTV) to volume (LGTV) and
from volume (LGTV) to volume (PhillipsTV). In that case, the reasoning algorithm can di-
rectly infer the transformation function from volume (SamsungTV) to volume (PhillipsTV). The
presented reasoning principles and the reuse of machine-understandable integration knowledge
from previous integration cases can partially automate component composition (e.g., towards
realizing a plug and play principle).
The following definitions are typically applied at this stage using the language L∗ for mappings
when integration knowledge is mostly incomplete:

• Knowledge Capture and Representation: Mapping Types (Def. 5,6,7) and Case-based
Mappings (Def. 8)

• Knowledge Sharing: Store (missing) mappings in knowledge base

47

6. Integration Knowledge Management

• Knowledge Reuse: Query the knowledge base for mappings based on available interface
descriptions

• Knowledge Reasoning: Inverse of Mappings (Def. 11) and Identifier Composition (Def.
13)

Knowledge-Driven Architecture Composition (KDAC)

System Integrator

System Integrator

Integration Environment

Integration Environment

Knowledge Repository

Knowledge Repository

Integration Case

Integration Case

...

Mapping Types

find mapping suggestions

Reasoning Principle based on Mapping Chains

calculate mappings

Incomplete Mappings are allowed

: set of mappings

Reliable as reused from previous integration cases

:mapping suggestions

...

finish integration case

Only tested mappings

save new mappings

Figure 6.2.: Adapted Bottom-Up Engineering Method

At time t=n, only a few new mappings are required, which could ultimately result in fully au-
tomated component integration at run time by generating the required software adapter. Auto-
mated component coupling is achievable as soon as all functional action and data characteristics
are present and/or can be deduced using the knowledge base. One can think of the reasoning
process over integration knowledge as playing the game Sudoku: As soon as enough integration
knowledge for an unseen integration case is present, we can calculate the missing information
based on domain-specific rules (e.g., realizing a plug and play principle). The following defi-
nitions are typically applied at this stage using the language L∗ for mappings when integration
knowledge is mostly complete:

• Knowledge Reuse: Query the knowledge base for mappings based on available interface
descriptions

• Knowledge Reasoning: Inverse of Mappings (Def. 11), Identifier Composition (Def. 13)
and Operation Composition (Def. 12)

48

6. Integration Knowledge Management

KDAC itself is a bottom-up engineering method. Therefore, the aforementioned formal descrip-
tion can be related to the bottom-up engineering method illustration from section 3.3. At this
point of writing, we adapt the illustration for BU approaches in the following way (see Fig. 6.2).
When searching for mapping suggestions, the mapping types must be specified. When calcu-
lating mappings, the presented reasoning principles based on available mapping chains are ex-
ploited. The resulting mapping chains from previous integration cases are reliable. Reliability is
enforced by design as only tested mappings are allowed to be stored in the knowledge repository.

In the next section, we outline how the formal definitions that describe the conceptual knowledge
activities are designed as algorithms. Before that, we will shortly outline how KDAC relates to
the presented engineering methods presented in chapter II.

6.2. Algorithms

6.2.1. Composition of Operation Mappings

The first two algorithms perform mapping suggestions based on the operation mapping chain
between the selected source and target interface(s) (see "calculate mappings" in Fig. 6.2). Within
the algorithms, a source relates to a required interface, and a target relates to a provided interface.
Within a mapping chain, intermediate targets can act as a provided or required interface.
To do so, it first extracts all mappings from the knowledge base. Afterwards, the algorithm tries
to find a transitive mapping tree for each of the selected target interfaces. We build up a tree
here because we allow for one-to-many mappings, which inherently leads to a tree structure
when processed. After a transitive mapping tree is built for each target interface, we execute
all mappings (i.e., integration cases). In this step, the request and response mappings of each
mapping mapaction in the tree get recursively applied to each other. Finally, this leads to a
mapping from the source to the target interface(s). The algorithm sanitizes the final request
mapping, so it does not contain any references to API’s other than the source or target. A similar
sanitization step is performed for the response mapping.
Algorithm 1 performs the search for a transitive mapping chain from the source interface to one
of the target interfaces. It relies on recursion and hence performs a depth-first search, with the
search space being all mappings of the knowledge base. In the first step, algorithm 1 retrieves
all mappings from the knowledge base that map the current source interface. While doing so,
the algorithm ensures that no interface is visited twice during the search process. This means
that each walk from the root to a leaf in the final tree will be a path from the source to one target
interface. This restriction reduces the maximum depth of the tree. In the next step, algorithm 1
iterates over all identified mappings and all of those mapping’s target interfaces. This means that
one-to-many mappings are treated as n one-to-one mappings. In each iteration step, we check if
the current mapping’s target is equal to our final target, and if so, we add a node with the current
mapping and no children to the tree. If not, we start the recursion step to find transitive mapping
chains from the current target to the final target. Finally, this leads to a tree structure in which
each node contains mappings and potentially some children.

49

6. Integration Knowledge Management

Algorithm 1 Create Mapping Suggestions
0: procedure BUILDMAPPINGSUGGESTIONS(sourceInterface, targetInterfaces)
0: mappings← getAllMappingsFromKB()
0: mappingTrees← []
0: for each targetInterface ∈ targetInterfaces do
0: // Find mapping trees for each of the target interfaces
0: mappingTrees.addAll(
0: treeSearch(sourceInterface, targetInterface,mappings)
0:)
0: end for
0: requestMapping ← {}, responseMapping ← {}
0: for each mappingTree ∈ mappingTrees do
0: // Execute all mapping trees and combine results
0: result← executeMappingTree(mappingTree)
0: requestMapping ← requestMapping.merge(result.reqMapping)
0: responseMapping ← responseMapping.merge(result.resMapping)
0: // Early return
0: if result.complete then
0: break
0: end if
0: end for
0: // Remove any references to APIs other than the targets from mapping
0: requestMapping ← removeNonTargetReferences(requestMapping)
0: return requestMapping, responseMapping
0: end procedure=0

Algorithm 2 works on the results of algorithm 1 and aims to build up a mapping from a source to
a target interface by repetitively combining intermediary mappings so that the final mapping only
includes the desired source and target. Overall, two mappings MapIntegrationCase need to be
created for the request and response mapping. However, each of the mappings needs to be built
up in different "directions". While the request mapping is created by repetitively performing the
request mappings from the root to the leaves on each other, the response mapping is created by
executing the response mappings from the leaves to the tree’s root (see definitions for mapping
types).
For the request mapping, the algorithm passes on the current intermediary result to the next
recursion step. In the first step, there is no input yet. Hence, the request mapping of the root
node’s mapping is passed directly. In each subsequent step, the current node’s request mapping
is performed on the previous step’s input. This means that each step combines two mappings,
deleting the intermediary one. The newly generated mapping always maps from the source
interface to some target interface along the path from the root to the leaf. Once the recursion
meets a leaf, the generated mapping maps from the source to the target interface. However,
several mappings from source to target will be created if there is more than one leaf. All those
mappings get merged during the recursion step.
Response mapping works differently. At each node in the tree, there is a mapping with a response
mapping that needs the input of several target interfaces. However, to get this input, we first
need to perform a recursion step to get the previous input. This continues until the recursion

50

6. Integration Knowledge Management

reaches a leaf node. We can simply return the response mapping from the target interface to
the intermediate source interface in those nodes. On the level above, we combine all those
intermediary inputs. Once all those inputs are computed, the algorithm executes the current
node’s response mapping on the combined input. This leads to a new mapping that always maps
from the target interface to some source interface.

Algorithm 2 Find Transitive Mapping Chain
0: procedure TREESEARCH(sourceInterface, finalTragetInterface, mappings,
visitedInterfaces = [])

0: sourceMappings← getUnvisitedMappingsWithSource(
0: sourceInterface, visitedInterfaces,mappings)
0: tree← new Tree()
0: for each srcMapping ∈ sourceMappings do
0: for each trgInterface ∈ srcMapping.targetInterfaces do
0: // Iterate over each mapping and each target of the mapping
0: if trgInterface == finalTragetInterface then
0: tree.addNodeWithoutChildren(srcMapping)
0: else
0: childTree← treeSearch(
0: trgInterface, finalTragetInterface
0: mappings, visitedInterfaces.concat(sourceInterface)
0:)
0: if childTree.hasNodes then
0: tree.addNodeWithChildren(srcMapping, childTree)
0: end if
0: end if
0: end for
0: end for
0: return tree
0: end procedure=0

During the entire process, the algorithm checks in each step, whether all required properties of
the source and the target interfaces are already mapped. Once this is the case, the algorithm
returns early from the recursion as it needs no more computations. Once the recursion is back at
the required interface, the final mapping will map the target’s response to the desired source in-
terface. We can feed the final mapping MapIntegrationCase and all included mapping functions
{mapaction1 ,mapaction2 , ...,mapactionn} into an adapter generation framework.
In the running example (see Fig. 1.3), we would integrate the generated adapter within the mo-
bile application source code. However, other environments that allow for implementing software
adapters are also possible (e.g., IoT platforms such as openHAB).

6.2.2. Composition of Identifier Mappings

Algorithm 3 is also based on the knowledge graph. Given this multigraph, finding semantically
equal identifiers boils down to finding the graph component that contains the identifier of in-
terest. After this graph component is identified, the resulting identifiers are filtered based on

51

6. Integration Knowledge Management

whether they belong to any selected target interface. In contrast to the algorithm for opera-
tion mappings, this algorithm is always invoked when a new identifier mapping is added during
mapping creation.

Algorithm 3 Create Identifier Mapping Suggestions
0: procedure BUILDIDENTIFIERMAPPINGSUGGESTIONS(sourceIdentifier, targetInterfaces)
0: // Get graph where previously mapped identifiers are connected
0: knowledgeGraph← getIdentifierEqualityGraphFromKB()
0: component← getGraphComponent(sourceIdentifier)
0: for each identifier ∈ component do
0: // Only return relevant identifiers
0: if identifier in any targetInterfaces then
0: yield identifier
0: end if
0: end for
0: end procedure=0

6.2.3. Inverse of Mappings

This reasoning principle does not need any specific logic as the inverse of a function can be com-
puted based on existing libraries. Such a mapping is inserted into the knowledge base as soon as
the original mapping is stored. From the viewpoint of the presented algorithms, such an inverse
mapping is just another edge that may lead to the desired target interfaces in the multigraph.

In the next chapter, we illustrate the different integration cases that can be solved by the KDAC
method and the presented algorithms. Therefore, we rely on client-server and the publish-
subscribe communication style.

52

7. Application

So far, we have argued that there must exist an interface description L as well as a declarative
language L∗ to formalize the mappings for an integration case. Next, we introduce a more
realistic interface description. In contrast to other bottom-up integration approaches such as
Bennaceur et al. [51], we do not need to manage any concepts in an intermediate ontology.
Hence, we can rely on syntactic interface descriptions that do not contain language features
to express semantic annotations (e.g., JSON-LD). An example of such semantic annotations
according to the JSON-LD standard is shown in Fig. 7.1.

{
"@context": {
"volume": "http://dbpedia.org/resource/Volume",
"sourceName": "http://dbpedia.org/resource/Name",
"brightness": "http://dbpedia.org/resource/Brightness",
"artMode": "http://dbpedia.org/resource/Power_saving"

},
"volume": "20",
"sourceName": "input_1",
"brightness": "100",
"artMode": "deactivated"

}

Listing 7.1: JSON-LD Example for Samsung Television based on DBpedia Knowledge Base

For illustrating the syntactic interface descriptions, listing 7.2 represents the interface description
for Samsung TV, listing 7.3 represents the interface description for the LG TV, and listing 7.4
represents the interface description for the Philips TV. All interface descriptions represent a
REST service. Hence, they typically rely on the HTTP/JSON communication protocol. The
keys, as shown in the listing, have the following meaning:

• "url": The URL where the instance implementing the interface (i.e., service) is running

• "paths": The actions that are offered by this service

• "parameters": Input data that is required by the service

• "responses": Output data that is provided by the service after the action is invoked

• "schemas": The data model used by this interface for input and output data

These interface descriptions act as a provided or required interface. For example, the mobile
remote control application from our running example implements the provided interface Sam-
sung TV and connects it to its application logic. When the LG TV should be integrated into the
application, the Samsung TV interface description becomes the required interface description,
and the LG TV acts as the provided interface description.

53

7. Application

{
"servers": [
{
"url": "https://iot.informatik.uni-

mannheim.de:8088"
}
],
"paths": {

"/status": {
"post": {
"parameters": [

{
"in": "body",
"name": "body",
"description": "Values to be

updated",
"required": true,
"schema": {
"$ref": "#/components/

schemas/SamsungTvInfo"
}

...
],
"responses": {

"200": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/

schemas/SamsungTvInfo"
}

...
},
"components": {
"schemas": {
"SamsungTvInfo": {
"type": "object",
"properties": {
"volume": {
"type": "integer",
"example": 1

},
"sourceName": {
"type": "string",
"example": "source"

},
"brightness": {
"type": "integer",
"example": 1

},
"artMode": {
"type": "string",
"example": "channel"

}
...

}

Listing (7.2) Service Description for Samsung TV

{
"servers": [
{
"url": "https://iot.informatik.uni-

mannheim.de:8089"
}
],
"paths": {
"/status": {
"post": {
"parameters": [

{
"in": "body",
"name": "body",
"description": "Values to be

updated",
"required": true,
"schema": {
"$ref": "#/components/schemas/

LgTvInfo"
}

...
],
"responses": {
"200": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas

/LgTvInfo"
}

...
},
"components": {
"schemas": {
"LgTvInfo": {
}"type": "object",
"properties": {
"volume": {
"type": "integer",
"example": 1

},
"input": {
"type": "string",
"example": "input 1"

},
"brightness": {
"type": "integer",
"example": 1

},
"power_saving": {
"type": "string",
"example": "true"

}
...

}

Listing (7.3) Service Description for LG TV
54

7. Application

7.1. From Abstract to Concrete Integration Knowledge
Management

{
"servers": [

...
],
"paths": {
"/status": {
"post": {
"parameters": [

{
...
"schema": {
"$ref": "#/components/schemas/

PhillipsTvInfo"
}

...
],
"responses": {
"200": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas

/PhillipsTvInfo"
}

...
},
"components": {
"schemas": {
"PhillipsTvInfo": {
"type": "object",
"properties": {
"volume": {
"type": "integer",
"example": 1

},
"source": {
"type": "string",
"example": "source"

},
"screen_brightness": {
"type": "integer",
"example": 1

},
"power_saving": {
"type": "boolean",
"example": true

}
...

}

Listing 7.4: Service Description for Philips TV

This section provides examples of the differ-
ent mapping types and reasoning principles
(see formalization section). We assume that
required interface descriptions should be re-
placed with provided interface descriptions
(e.g., moving to a different home). However,
this replacement action is only for illustrative
purposes. The name of each example acts as
a reference for each corresponding definition.
We do not provide an example for a many-
to-many mapping as such a complex mapping
can also be constructed by multiple, simpler
one-to-many mappings. Furthermore, such a
mapping may result in too much application
logic in the generated software adapter, which
decreases code maintainability.

Example 1 (One-to-One Mapping).
In our running example, this means that the
action "/status" offered by the Samsung TV
(see listing 7.2) can be mapped to the op-
eration "/status" offered by the LG TV (see
listing 7.3). Therefore, all input data must
be mapped to each other (e.g. volume →
volume, sourceName → input, brightness →
brightness and artMode → power_saving).
Here a → defines a mapping function in one
direction (e.g., from Samsung TV to LG TV).
We must formalize the same mappings for
the output data in the opposite direction (i.e.,
from provided to required output).

Example 2 (One-to-Many Mapping).
In our running example (see Fig. 1.3), this
situation is not directly depicted in the pre-
sented service descriptions as it symbolizes
two one-to-one mappings for the action "/s-
tatus". However, we can construct a one-to-
many mapping example by assuming there
are two instead of one TV in a room. Hence,
the Samsung TV is replaced by the LG TV

55

7. Application

and the Philips TV. Now, the required action "/status" from the Samsung TV results in two ac-
tion invocations. One "/status" invocation for the LG TV and one "/status" invocation for the
Philips TV. Another example would be that the "/status" operation requires two action invoca-
tions offered by one other TV.

Example 3 (Domain and Image of Mappings).
In our running example, the input data identifier "volume" of the Samsung TV volumeSamsung

and the input data identifier "volume" volumeLG of the LG TV can be mapped. Both parameters
have the data type integer. Assume that the Samsung TV measures volume (the sound level of
speakers) from 0 to 10 and the LG TV measures volume from 0 to 100. Then, the domain
DOM(volumeSamsung) of a mapping function Mapaction(volume) is the value range 0 to 10
and its image IMG(volumeLG) is the value range from 0 to 100.

Example 4 (Inverse of Mappings).
Let the mapping function volume has the domain DOM(volumeSamsung) and the image
IMG(volumeLG). Then, the mapping function volume : volumeSamsung 7→ volumeSamsung∗
10 translates the identifier values volumeSamsung to identifier values of volumeLG. We can now
define the inverse of a mapping function.
Assume the mapping function volume : volumeSamsung 7→ volumeSamsung ∗ 10 is bijective.
Then, the inverse mapping function volume−1 is volume−1 : volumeLG 7→ volumeLG/10
with domain DOM(volumeLG) and image IMG(volumeSamsung).

Example 5 (Composition of Operation Mappings). In our running example, the composition
of operation mappings is directly visualized. Assume that the knowledge base contains a map-
ping from action "/status" (Samsung TV) to action "/status" (LG TV) and from action "/status"
(LG TV) to action "/status" (Philips TV). Hence there exists a path within the graph from ac-
tion statusSamsung → statusLG → statusPhilips. If the integration case statusSamsung →
statusPhilips occurs, mappings can be computed.
In addition, if all mapping functions also have the inverse property (see Def. 11), then the map-
pings from statusPhilips to statusSamsung can be computed. This is because of the path within
the graph from the action statusSamsung ↔ statusLG ↔ statusPhilips.

Example 6 (Composition of Identifier Mappings).
Assume there is a mapping function brightness : brightnessLG 7→ brightnessPhilips with
DOM(brightnessLG) and IMG(screen_brightnessPhilips) for the action "/status" available
from another integration case. Now, a one-to-many mapping from the action statusSamsung to
statusLG and statusPhilips should be created. Consequently, the mapping function
brightness : screen

Samsung 7→brightnessSamsung/10 with DOM(brightnessSamsung) and
IMG(brightnessLG) is inserted into the knowledge base. After this mapping function is
added, the mapping function brightness : brightnessSamsung 7→ brightnessPhilips/10 with
DOM(brightnessSamsung) and IMG(brightnessPhilips) can be calculated as there exists a
path in the graph from brightnessSamsung → brightnessLG → brightnessPhilips.
To recap, the main difference between the composition of identifier and operation mappings
is the moment of application. For operation mappings, the reasoning principle is applied after
the selection of action. The reasoning principle is applied for the identifier mappings after a
mapping function based on identifiers is created.

56

7. Application

In the next sections, we will connect mapping functions to the client-server and the publish-
subscribe communication style.

7.2. Towards Software Adapter Generation

Up to now, we have seen how integration knowledge for different mapping types can be man-
aged. Furthermore, we introduced reasoning algorithms that assist the system integrator in
reusing integration knowledge. As the last part of this chapter, we outline how available in-
tegration knowledge (especially mapping type one-to-many) is related to two exemplary archi-
tectural styles. Consequently, we can generate the corresponding software adapter and deploy it
on systems that follow these architectural styles.

7.2.1. Client-Server

A client-server model [24] is an architectural style where clients send requests to a server, which
performs the required functions and replies with the requested information. For example, clients
initiated the communications by remote procedure calls.

response

mapping

mapping

<provided>
Interface A

<required>
Interface B

Client
<required>

Interface C

response

response

request

response

mapping

mapping

<provided>
Interface A

<required>
Interface B

Client
<required>

Interface C

request

request

request

Figure 7.2.: Client-Server Split

Our first example deals with splitting an action invocation (see Fig. 7.2). The upper part of the
figure illustrates the context before, and the lower part of the figure illustrates the context after
the integration has been finished. Dotted lines symbolize that these remote procedure calls are
no longer used.
Before: A client sends a request to a provided action from interface A. The instance of interface
A should be replaced by actions offered by interface B and interface C. Now, the request is split
up into two requests.
After: After the mapping is finished, the client application logic still assumes to call actions as

57

7. Application

defined by interface description A. After deployment into the client application code, the gener-
ated software adapter transforms the mapped action requests to the available interface instances
B and C.

response

mapping

mapping

<required>
Interface A

<provided>
Interface B

Client
<provided>

Interface C

response

response

request

response

mapping

mapping

<required>
Interface A

<provided>
Interface B

Client
<provided>

Interface C

request

request

request

Figure 7.3.: Client-Server Aggregate

The second example deals with aggregating data produced by action invocations (see Fig. 7.3).
In contrast to the split example, the response data is to be aggregated.
Before: A client expects response data from an action as defined in interface description A. The
required output data is mapped to the provided output data from actions as offered by interface
B and C.
After: After the mapping is finished, the client application logic still assumes to call actions
as defined by interface description A. After deployment into the client application code, the
generated software adapter transforms the mapped actions responses as produced by the interface
instances B and C.

response
mapping

<provided>
Interface A
<required>

<required>
Interface B
<provided>

Client

response

request

request

response
mapping

<provided>
Interface A
<required>

<required>
Interface B
<provided>

Client

request

Figure 7.4.: Client-Server Extend

58

7. Application

The last example deals with extending an action invocation (see Fig. 7.4). In contrast to the split
example, the required actions are not replaced. Hence, they act as both required and provided
interfaces.
Before: A client expects input and output data as defined by an action from interface description
A. Now, the client is expected to invoke actions from interface A and actions from interface
B. Hence, the mappings from the required actions offered by interface A to provided actions
offered by interface B are created.
After: After the mapping is finished, the client application logic still calls actions as offered by
interface instance A. After deployment into the client application code, the generated software
adapter extends the mapped action requests to the initial interface A and the additional interface
B.
It is up to the client how both responses affect the application logic. This is not part of the
software adapter anymore.

7.2.2. Publish-Subscribe

In contrast to the client-server model, the publish-subscribe model decouples clients from the
server. A client must not know where the requested functionally is executed. A publish-
subscribe model [24] is an architectural style where subscriber register/deregister to receive
specific messages or content. The publisher maintains a subscription list and broadcasts mes-
sages to subscribers either synchronously or asynchronously.
In contrast to the client-server style, requests are not directly sent to an action but to channels
that contain the payload for a specific topic. This channel topic is comparable to the action in-
vocation. Arrows from the client to other interfaces define data published from the client (i.e., a
provided channel). Arrows to the client define data that the client subscribes to (i.e., a required
channel). Again, dotted lines symbolize that these channels are no longer used.

publish
mapping

mapping

<provided>
Interface A

<required>
Interface B

Client
<required>

Interface C

publish

publish

publish
mapping

mapping

<provided>
Interface A

<required>
Interface B

Client
<required>

Interface C

Figure 7.5.: Publish-Subscribe Split

59

7. Application

The first example deals with splitting published data (see Fig. 7.5).
Before: The client publishes data to a channel offered by interface A. The corresponding inter-
face instance is replaced by channels offered by interfaces B and C. Hence, the mappings based
on topic and payload are created.
After: After the mapping is finished, the client application logic still assumes to publish pay-
load as defined by interface description A. After deployment into the client application code, the
generated software adapter transforms the mapped payload and channel topics to the interface
instances B and C.

publish
mapping

mapping

<required>
Interface A

<provided>
Interface B

Client
<provided>

Interface C

publish

publish

publish
mapping

mapping

<required>
Interface A

<provided>
Interface B

Client
<provided>

Interface C

Figure 7.6.: Publish-Subscribe Aggregate

The second example deals with aggregating payload that the client subscribes to (see Fig. 7.6).
Before: A client subscribes to payload from a channel as defined in interface description A. The
required payload is mapped to the provided payloads from channels where B and C’s interfaces
publish their data.
After: After the mapping is finished, the client application logic still assumes to subscribe to
channel and payload as defined by interface description A. After deployment into the client ap-
plication code, the generated software adapter transforms the mapped payload and responses as
published by the interface instances B and C.

The last example deals with extending a subscription (see Fig. 7.7). Again, the required channel
is not replaced, but more payload is consumed by the client as another interface also publishes
its payload to the existing channel.
Before: A client subscribes to the payload as produced by a channel from interface A. Now,
the client should deal with payload from interface A and payload as published by interface B.
Hence, the mappings from the required channel offered by interface A to provided channels of-
fered by interface B are created.
After: After the mapping is finished, the client application logic still receives payload as pub-
lished by channels from interface instance A. After deployment into the client application code,

60

7. Application

the generated software adapter extends the mapped channel topics as published by the provided
channels by the additional interface B. Again, it is up to the client how more payload affects the
application logic.

publish <required>
Interface A mapping <provided>

Interface B

Client

publish

publish <required>
Interface A mapping <provided>

Interface B

Client

Figure 7.7.: Publish-Subscribe Extend

The interested reader may have noticed that we did not give much attention to the behavioral as-
pects of services (e.g., using a labeled transition system). In the scope of this work, we will only
apply KDAC to stateless services. Therefore, we will not consider behavioral service aspects as
we move to our approach’s technological part. However, we will discuss this topic within the
future work section.

In the next part, we will take the final steps towards operationalizing integration knowledge
formalization by introducing the missing mapping language L∗.

61

Part IV.

Reference Implementation

62

8. Deployment and Technologies

In this chapter, we first provide a short overview of the technology frameworks we reuse for
implementing the presented algorithms. However, the central part will be answering our first
research question "How can we make integration knowledge that is captured in imperative soft-
ware adapter reusable?". Therefore, we will give concrete examples of how interface mappings
are described in a declarative way using the language L∗.

KDAC Framework retrieve source & target
interface

Interface Database

compute
mapping suggestions

Transformation
preprocessor

save mapping

Mapping View

use chainTransformation
KB

build (partial)
adapter

Adaptor Generator

perform requests

Mapping Test & Validator
API Endpoint Instance

API Endpoint Instance

invoke
validator

System Integrator

invoke

select source &
target interfaces

creates mappings

Figure 8.1.: Logical System Overview

8.1. Logical Architecture

The logical core elements necessary to store and reason about integration knowledge are dis-
played in the KDAC Frame in Fig. 8.1. This frame contains the Transformation KB, the
Transformation preprocessor, and the Mapping View. The Transformation KB is responsible
for storing mappings. The Transformation Preprocessor is accountable for executing the pre-
sented algorithms. Therefore, it retrieves interface descriptions from the Interface Database and
applies the mappings retrieved from the Transformation KB. The Mapping View displays the

63

8. Deployment and Technologies

algorithms’ results based on the selected required and provided operations and can be used to
save modified mappings.
Besides, the logical components Mapping Test & Validator, API Endpoint Instances, and Adapter
Generator are necessary to accompany the integration knowledge management process. The
Mapping Test & Validator can be used to make a validation query based on the defined map-
pings within the Mapping View. By doing so, the system integrator can verify if requests succeed
and responses are transformed in the desired way. In practice, this is necessary as interface de-
scriptions may contain other identifier definitions compared to the actual service instance. If the
validation succeeds, the Adapter Generator can be invoked such that a software adapter project
is generated in the desired programming language. Depending on the execution environment,
this adapter project is then processed further. For instance, it is imported into the code repository
of the mobile application client (see running example 1.3).

8.2. Deployment Architecture

The presented logical components are deployed using a fat client model. This means that the
client executes all reasoning logic. In total, we have three deployment targets and one user inter-
face. The Presentation Server contains the Web Application, User Management, Authentication,
and a Graph Database.

<<device>> IoT Device

Web Server

«Mockoon»
HTTP/JSON

API

<<device>> Application Server

Web Server

«Node.JS»
Adapter Generator

<<device>> Client Laptop

Web Server

«Browser»
HTML5-Browser

<<device>> Presentation Server

Google Firebase

«Node.JS»
Web Application

«Google User»
User Management

«Google Auth»
Authentification

Google Firestore

«MongoDB»
Graph Database

Figure 8.2.: Deployment Diagram

The Web Application is served to the client laptop and contains the logical elements of Trans-
formation preprocessor and Mapping View. User Management and Authentication are infras-

64

8. Deployment and Technologies

tructure services. The Graph Database stores interfaces and mappings and hence contains an
execution environment for the Interface Database and the Transformation KB. The accompany-
ing logical components API Endpoint Instance (simulating all needed IoT devices) and Adapter
Generator are both realized as a component running in a web server environment.

8.2.1. Interface Description Languages

{
"servers": {
"production": {

"url": "test.mosquitto.org
:1883",

"protocol": "mqtt"
}

},
"channels": {
"smartylighting/lighting/measured"

: {
"publish": {

"operationId": "
receiveLightMeasurement",

"message": {
"$ref": "#/components/

schemas/
lightMeasuredPayload"

...
},
"smartylighting/streetlights/turn/

on": {
"subscribe": {

"operationId": "turnOn",
"message": {

"$ref": "#/components/
schemas/turnOnOffPayload"

}
...

},
"components": {
"schemas": {

"lightMeasuredPayload": {
"type": "object",
"properties": {

"lumens": {
"type": "integer",
"minimum": 0,
"description": "Light

intensity measured in
lumens."

}
...

}

Listing 8.1: AsyncAPI Example

As an interface description language we rely
on OpenAPI [56] and AsynAPI [57].
An example for OpenAPI descriptions has al-
ready been discussed in listings 7.2, 7.3 and
7.4. According to the creators, the goal of an
OpenAPI specification is to "...define a stan-
dard, programming language agnostic inter-
face description for REST APIs, which al-
lows both humans and computers to discover
and understand the capabilities of a service
without requiring access to source code, ad-
ditional documentation, or inspection of net-
work traffic. When properly defined via Ope-
nAPI, a consumer can understand and inter-
act with the remote service with minimal im-
plementation logic. Similar to what inter-
face descriptions have done for lower-level
programming, the OpenAPI Specification re-
moves guesswork in calling a service" [56].
An example of an AsyncAPI description can
be seen in the listings 8.1. According to the
creators, the goal of an AsyncAPI specifica-
tion is to "...make working with EDAs as easy
as it is to work with REST APIs. The Asyn-
cAPI Specification is a project used to de-
scribe and document message-driven APIs in
a machine-readable format. It is protocol ag-
nostic, so you can use it for APIs that work
over any protocol (e.g., AMQP, MQTT, Web-
Sockets, ...)." [57].
Both descriptions are equipped with a specifi-
cation parser, schema validators, code gener-
ators for many programming languages (e.g.,
JavaScript, Java, and many others), and an-
notation libraries for generating interface de-
scriptions from code.

65

8. Deployment and Technologies

We parse these specifications in the implemented prototype to render the API endpoints’ inter-
faces within the Mapping View. Furthermore, they are stored as nodes within the knowledge
graph.

8.2.2. Mapping Language L∗

To describe mappings between required and provided interface descriptions, we use JSONata
[58]. JSONata is a "...lightweight query and transformation language for JSON data. Inspired
by the ’location path’ semantics of XPath 3.1, it allows sophisticated queries to be expressed
in a compact and intuitive notation. The JSONata path expression is a declarative, functional
language. It is functional because it is based on the map/filter/reduce programming paradigm
as supported by popular functional programming languages through higher-order functions. It
is declarative because these higher-order functions are exposed through a lightweight syntax
which lets the user focus on the intention of the query (declaration) rather than the programming
constructs that control their evaluation" [58]. An example of such a query string can be seen in
Fig. 8.3.

Figure 8.3.: JSONata Example from https://try.jsonata.org/

8.2.3. Software Adapter Generation and API Endpoints

Both OpenAPI and AsyncAPI are equipped with code generators to generate client code to ac-
cess a web service and generate server stubs. For code generation, they rely on the Moustache
template engine1. We inject our mappings into their generation process and provide our own
adapter template. A web server serves the generated code. This allows the system integrator to
download a software adapter project using the Mapping View.
To manage and make IoT devices available via their interface fast, we rely on Mockoon2. Mock-
oon provides an easy way to mock APIs. Based on a configuration script, we deploy their com-
mand line interface on a web server. We started the interface instances based on the interface
descriptions as provided by OpenAPI and AsyncAPI. This allows for executing the Mapping
Test & Validator component on desired input and output data.

1https://mustache.github.io/
2https://mockoon.com/

66

8. Deployment and Technologies

8.3. Application Examples

To use the prototype, the system integrator must be authenticated. Furthermore, it must be
selected whether mappings for OpenAPI or AsyncAPI specification should be created or queried.

8.3.1. Client-Server Mapping Function

An example for a simple and a more complex mapping function is visualized in Fig. 8.4 and
Fig. 8.5. This text editor opens when selecting a mapping from the Mapping Area. In a simple
case, one required identifier can be replaced by a provided identifier. In a more complex case,
all functions offered by JSONata can be used to specify an arbitrary complex mapping function.
Therefore, all provided keys can be selected and are then available for usage within the text
editor to compute the required key.

Figure 8.4.: Example – Simple JSONata Mapping Function

Figure 8.5.: Example – Complex JSONata Mapping Function

8.3.2. Client-Server One-to-One

In Fig. 8.6 a One-to-One mapping example for a OpenAPI specification is visualized. After the
required source interface (left side) and provided target interface (right side) are selected, the
operation to be integrated are chosen. Then, the mappings for the request as well as the response
are created. Here the color code of each box within the Mapping Area indicates whether it is
an invalid (red), a manual (blue), or an inferred mapping (green and brown). The algorithms are
invoked as soon as a required operation is selected (c.f. definition 12) or a mapping has been
modified (c.f. definition 13).

67

8. Deployment and Technologies

Figure 8.6.: One-to-One Mapping using OpenAPI

Figure 8.7.: Mapping Test & Validator using OpenAPI

In Fig. 8.7, the Mapping Test & Validator is displayed. The created JSONata mappings are
applied by issuing a test request, and a request is made against all servers as specified in the
interface specification. If a mapping function can fulfil not all required operation elements, an
error listing all missing keys is displayed.

68

8. Deployment and Technologies

8.3.3. Subscribe One-To-One

The user interface for Publish-Subscribe integration cases is slightly different. In Fig. 8.8 a
one-to-one subscription example is displayed. In contrast to the client-server style, the operation
now represents the channel where the device should subscribe or publish to. Furthermore, the
distinction between request keys and response keys is no longer needed as the client does not
wait for an answer (i.e., asynchronous communication). In this figure, the target operation is
marked with an asterisk. This means that the reasoning algorithms (i.e., Def. 12) found a
matching provided operation. Hence, the system integrator can choose this operation directly.

Figure 8.8.: One-to-One Subscribe using AsyncAPI

8.3.4. Publish One-To-Many

In Fig. 8.9, a one-to-many integration scenario for a publisher is visualized. This can be seen
when having two (i.e., Target 1 and Target 2) instead of one target. Furthermore, the switch
states that the source interface (required) is of type publish. On the target side, the new publish-
ing setting is depicted. In this case, it is based on the extend example (see 7.7). For instance,
the Mapping Source "Bosch Grid" acts as a required and as a provided interface. Hence, the
interface list on the right side also contains the "Bosch Grid" as a provided interface.

Overall, all features (e.g., split or extend) discussed within the examples are available for both
architectural styles. What is left is the software adapter generation part.
The software adapter generation mechanism is a supportive feature for the overall process. How-
ever, it does not directly influence the integration knowledge management process. At the time
of writing, we support Node.js adapters. Other programming languages are also possible but
must be implemented with another template.

69

8. Deployment and Technologies

Figure 8.9.: Example – One-to-Many Publish using AsyncAPI

70

9. Safeguarding Expected Method
Benefits

1

2

3

4

5

6

Figure 9.1.: Incomplete but Reliable Mappings

Dealing with incomplete interface
mappings is central to KDAC as in-
tegration knowledge is formalized
incrementally. In addition, all map-
pings formalized over time should
be defined in a reliable way (i.e.,
they should be trustworthy for other
system integrators such that they are
actually reused). Therefore, this
chapter takes a closer look at the
necessary engineering steps to iden-
tify missing mappings and mapping
reliability.
Fig. 9.1 illustrates situations within
the formalization phase based on
the reference implementation. First,
the system integrator selects the re-
quired and the available provided
interface from the knowledge base
(see number 1). Here we already
check if a provided action has al-
ready been mapped to the selected
required action based on the stored
integration knowledge. We indicate
available action mappings with an
asterisk as a prefix before the ac-
tion signature. Then the reasoning
algorithms are invoked. After the
knowledge base is queried and the
mapping calculation is finished, not
all keys may have a mapping. Natu-
rally, this is the case if no mappings
are found or if one of the interfaces
has just been added to the knowl-
edge base. If some but not all map-

71

9. Safeguarding Expected Method Benefits

pings are retrieved, then all required keys without a mapping are highlighted with black color
(see number 2). Next, the missing mappings are added such that all required keys are associated
with a set of provided keys. As soon as all mappings are formalized, the following reliability
checks are performed:
As a preset, mappings that are calculated or retrieved from the knowledge base can not be edited.
This can only be done by deactivating the associated "strict" mode (see number 4). Assuming
the provided mappings are correct, then the added mappings must be checked if they are reli-
able. This can be done by issuing a test request against the required interface where only the
provided interface is actually available (see number 4). After the test request is executed, the
system integrator inspects the result. Furthermore, the system integrator verifies if the device or
mocked version of the device also exposes the desired behavior (e.g., the TV channel is switched
correctly). Only then the system integrator is expected to store the defined mappings (see num-
ber 6 in Fig. 9.1).
Based on the presented engineering steps, we will look at the details in the next two sections.

9.1. Speed

Speed in formalizing interface mappings is mandatory as formalization effort adds to the inte-
gration time by just writing a software adapter. In order to detect missing interface mappings, all
required keys must be mapped. The occurrence of incomplete mappings depends on the map-
ping type and the transformation function. Therefore, we look at the results that are produced
by the algorithms as presented in section 6.2.

t=3

t=2

t=1

<<Interface>>
SamsungTV

+ volume: Integer
+ sourceName: String
+ brightness: Integer
+ artMode: String
...

+ status
(volume, sourceName,
brightness, ...)
:volume, sourceName,
brightness, ...

<<Interface>>
LGTV

+ volume: Integer
+ input: String
+ brightness: Integer
+ power_saving: String
...

+ status
(input, brightness, ...)
:input, brightness, ...

<<Interface>>
PhilipsTV

+ volume: Integer
+ source: String
+ screen_brightness: Integer
+ power_saving: boolean
...

+ status
(volume, source,
screen_brightness, ...)
:volume, source,

screen_brightness, ...

set 0 if false
divide by 10

set false if 0

<<Interface>>
BTSpeaker

+ volume: Integer
...

+ status(volume, ...):volume, ...

Figure 9.2.: Incomplete Mappings

72

9. Safeguarding Expected Method Benefits

The algorithms "Composition of Operation Mappings" (see Algo. 1) and "Composition of Iden-
tifier Mappings" (see Algo. 3) produce incomplete mappings if there exists at least one-to-many
mapping within the chain of mappings and not all intermediate nodes have a distinct path to the
target action.
Assume that the running example is extended by a third device, a speaker (see Fig. 9.2). At t=2,
a one-to-many mapping from SamsungTV to LGTV and BTSpeaker is created. For instance, a
movie’s sound should not be issued by the TV but by a separate speaker. Therefore, the volume
identifier of SamsungTV is mapped to the volume identifier of the BTSpeaker. At t=3, another
system integrator maps the LGTV to the PhilipsTV. This means that there exists a path within the
knowledge base from SamsungTV → LGTV → PhilipsTV . In an integration case between
SamsungTV and PhilipsTV, not all mappings can be calculated by the algorithms. In fact, there
will not exist a mapping for the volume identifier.

Inverse of Mappings (see Def. 11) can also cause incomplete mappings. If no inverse function
exists or multiple provided identifiers are used to calculate a required identifier, then the calcu-
lated reverse mapping is incomplete. As a synthetic example, we can assume that the identifier
brightness of the SamsungTV interface is calculated by multiplying the brigthness_dimmer (not
displayed) and the brightness identifier from the LG device. If such a mapping exists within a
chain of mappings, then the inverse mapping is not calculated. The reason for this is that we
cannot deal with systems of linear equations. For example, the linear equation

brightnessSamsung = brightness_dimmerLG ∗ brightnessLG (9.1)

can be rewritten as

brightness_dimmerLG = brightnessSamsung/brightnessLG (9.2)

The algorithm can then not determine the next mapping as the LG identifier is present in both
sides of the equation (i.e., there is a loop).

If the mentioned cases do not apply, then either no mapping or all mappings are calculated.
Finally, the system integrator finishes the integration by generating the software adapter. This
software adapter is then imported into the client’s software project. In an ideal case, the ap-
plication logic can then talk to the newly added device without changing any other piece of
code. From a practical point of view, adjusting the mappings within the tooling infrastructure is
generally faster than editing code within the generated software project.

9.2. Reliability

Mapping reliability over time is crucial. All mappings inserted into the knowledge base and
calculated by the reasoning algorithms must be correct. Therefore, we implemented a correct by
construction principle within the prototype. This principle is enforced within the prototype by
the strict mode (see 4 in Fig. 9.1). This mode controls whether mappings can be saved or not.
A mapping MapIntegrationCase can only be saved if the set of mappings is incomplete for the

73

9. Safeguarding Expected Method Benefits

selected required and provided action. Hence, it must be ensured that only the correct mappings
are stored. If a manual mapping already exists, then only the initial creator of the mapping can
change it. In order to enforce this correct by construction principle, we have implemented the
following measures:

1. As soon as a mapping is formalized using the JSNOata syntax, the specified syntax is
validated. If the syntax is not valid, the corresponding mapping is highlighted.

2. All necessary mappings between the required and the provided interface actions must be
present. For request and publish mappings, all selected actions and their identifiers for the
provided interfaces must be assigned (i.e., needed to call a provided action). For response
and subscribe mappings, the selected action and its identifiers for the required interface
must be assigned (i.e., needed to construct the required output ultimately). Only in this
case can the system integrator issue a test request.

3. When all mappings are formalized, then value transformation is inspected by issuing a
test request. Therefore, a mock instance or a physical device must be present. The system
integrator decided if the mapping is correct based on the received values. If a transfor-
mation fails, the corresponding error is displayed in the application (e.g., multiplying two
values of type string).

4. The system integrator is allowed to save the mapping only if the values are correct.

If there are mappings that cannot be reused for any other reason, the strict mode can be deacti-
vated. Then, all mappings can be edited regardless of their ownership. However, these mappings
cannot be saved. Only the software adapter can be generated. In this way, we ensure that all
mappings are correct by constructions, and thus reliability is ensured.
However, there exist two cases where reliability is favoured over mapping reuse. The first case
involves multiple paths from source to target actions, and the second case involves setting a static
value using L∗. We will discuss both cases based on the situation as depicted in Fig. 9.3.
Assume four integration contexts have been formalized. At t=1, a mapping from key1A to
key3B is inserted. At t=2, a mapping from key1A to key5C and at t=3 a mapping from key5C
to key7D is inserted. Lastly, a mapping from key3B to key7D is inserted. Now, a conflict
arises if interface A is selected as a required interface, and interface D is selected as a pro-
vided interface. The composition algorithm for operation mappings (see Algo. 1) will now
find two paths for key1A where the first path is key1A 7→ key5C 7→ key7D and the second
path is key1A 7→ key3B 7→ key7D. This case can occur without violating the correct by con-
struction measures as each manually inserted mapping is correct. Despite this circumstance, we
can choose any of the mappings as there is no mapping that is "more" correct. This is mainly
achieved by not allowing to store incomplete mappings for actions.
Nevertheless, the second case involving static values renders choosing between mappings im-
possible. Let us assume that the mapping key1A to key3B is altered such that key1A is set to
true at t=1. Then the mapping suggestion algorithm for operation mappings returns the paths
key1A 7→ true and key1A 7→ key5C 7→ key7D. However, this static value, which can be set
using a valid JSONata expression, is specific to the initial integration context (i.e., from inter-
face A to interface B) and only set if provided the required interface exposes fewer identifiers

74

9. Safeguarding Expected Method Benefits

than the other. Therefore, mapping chains that include a static value mapping are dropped by
the algorithm. In the example depicted in Fig. 9.3 this would mean that only the mapping
key1A 7→ key5C 7→ key7D is returned as a result. If only static value mappings exist, no
mapping would be returned, potentially resulting in an additional mapping to be defined.

t=1

t=3

t=2
<<Interface>>

A

+ attribute1: String
+ attrribute2: String
...

+ method(...):

<<Interface>>
C

+ attribute5: String
+ attrribute6: String
...

+ method(...):

<<Interface>>
D

+ attribute7: String
+ attrribute8: String
...

+ method(...):

<<Interface>>
B

+ attribute3: String
+ attrribute4: String
...

+ method(...):

t=4

Figure 9.3.: Ensuring Mapping Reliability

The presented measures ensure high reliability regarding manual and calculated mappings. There-
fore, we focus on performance metrics, such as integration time and algorithmic performance in
the upcoming evaluation chapter.
However, we acknowledged that reliability must be ensured. In case of unexpected issues, we
assume that these issues are solved out of band. We will further discuss this topic in our future
work section.

75

Part V.

Evaluation

76

10. Preliminaries

This chapter provides three empirical experiments to evaluate the proposed method and one
evaluation setup to illustrate the implemented algorithms’ performance. Each evaluation has
been carried out with different groups of students. Each evaluation was part of a university
course that had to be completed by the students on their way to obtaining their degree. In
the previous section we use examples to illustrate the different problems that can be solved
by our reference implementation "How can we make integration knowledge that is captured in
imperative software adapter reusable". The following experiments tackle the second research
question, "How well can we manage incomplete integration knowledge?" and provide evidence
regarding the proposed integration knowledge management process’s efficiency.

• Evaluation 1 deals with the reconfiguration of home automation platforms. Based on a
distinct infrastructure, we evaluate KDAC based on sensor values. Here semantics for
data channels of IoT devices are changing.

• Evaluation 2 extends data channels to services as illustrated in listings 7.2, 7.3 and 7.4.
The infrastructure, as presented in the previous chapter, is now applied. Within this eval-
uation, we focus on comparing KDAC to the integration methods software adapter im-
plementation (see SW method 3.1) and bottom-up (see BU method 3.5) using an ontol-
ogy. Thereby the application of reasoning principles is evaluated. We do not include TD
methods in this comparison as extending a standard or selecting the right standard for an
integration case is a challenge itself.

• Evaluation 3 extends the infrastructure used in evaluation 2 by adding adapter generation
to it. We focus on comparing KDAC with software adapter implementation in Node.js.

• Evaluation 4 illustrates the implemented reasoning algorithm’s performance for operation
composition (see algorithm 1 using a fat client and thin client setup. Thereby, we provide
evidence on our solution’s usability when the knowledge base contains many nodes and
edges.

77

11. Empirical Evaluation 1: Mapping
Generation for Sensor Values

In this experiment, we provide our first evaluation of the KDAC method [9]. Therefore, we
manipulate the data channels of a home automation platform at run time. Please note that in
this first experiment, we only look at identifiers. As presented in the running example, services
are not respected at this maturity stage (see Fig. 1.3). The central evaluation goal is to compare
manually configuring a home automation platform to using the KDAC method. As an effort
indicator, we measure the integration time to evaluate if specifying integration knowledge in
addition to reconfiguration activities pays off over time.

11.1. Evaluation Setup

We designed a controlled experiment based on a within-subject evaluation design. Therefore,
we used well-known design principles for empirical studies in software engineering [59, 60].
Two groups of students were formed, and these groups competed against each other [61]. By
assigning students to one group, it was ensured that they were balanced in terms of experience
and knowledge. The control group could not reuse interface mappings, but the experimental
group could. This means that the control group had to reconfigure the underlying automation
rule manually. However, if no mapping was found, they had to reconfigure the system (i.e., per-
form the control group’s task) and specify a mapping using JOLT [62] as well. JOLT is a JSON
to JSON transformation library where the specification for the transformation itself is a JSON
document. JOLT acts as the mapping language L∗ in this experiment.
Challenge: Our goal is to provide evidence that, over time, reusing interface mappings formal-
ized based on concrete use cases speeds up integration tasks. Hence, additional specification
effort should pay off regarding system reconfiguration time.
Participants: We conducted the experiment within a project cooperation between a German and
a Romanian university. All students studied within an informatics related profession and can
either speak English, German, or Romanian. Overall, 15 students participated in the evaluation.

• Seven students are currently pursuing their master studies, and eight students are pursuing
their bachelor studies

• Four out of 15 students own IoT devices, and two out 15 have already 5been involved in
IoT software development projects

• Four out of 15 students have read about home automation platforms like openHAB [21],
and three have already worked with If-This-Then-That (IFTTT) rules

78

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

• Five out 15 students knew the IoT-related protocol MQTT [63]

Experiment Scope: We only look at identifiers. Services, as presented in the running example,
are not part of the component model. However, building up mapping chains for identifiers is
already supported.
Metrics: We measure the time in seconds per home automation rule until the correct data chan-
nels are found. Furthermore, we measure the time for additional specification creation and the
time for specification reuse.
Hypothesis: The independent variable is either determined by using the conventional approach
(i.e., configuring the platform each time a new IoT device enters the environment) or by using
the KDAC method. The dependent variable is the required time for solving integration tasks
[60]. We suspect that component integration time is higher when reusing integration knowledge
than manually configuring the home automation platform each time a component changes.
Technology Stack: As a home automation platform we chose openHAB [21]. OpenHAB ex-
poses a management API that can be accessed at run time to manipulate the platform configura-
tion using HTTP/JSON calls. All data channels have been designed based on publicly available
adapter repositories (e.g., https://www.openhab.org/addons/). Devices and their
values are simulated within the openHAB platform using the built in scripting engine.
For specifying interface mappings in a declarative style, we use JOLT [62]. Interface mappings
are stored in a MongoDB database. The user interface is implemented using the Java Swing
framework and deployed as a standalone JAR file.

11.2. Evaluation Execution Process

Assume that there exist multiple software component interfaces that were developed by inde-
pendent software vendors.

System Integrator

Syntactic Description A Syntactic Description B

belongs to

Semantic Domain BSemantic Domain A

belongs to
Mapping function
MapIntegrationCase

iProvided: close iRequired: close

Figure 11.1.: Semantic Interoperability Example for a Home Automation Platform

An integration effort at the semantic level between provided and required software component
interface exists when domain models are used by heterogeneous parties A and B (see Fig. 11.1).
This is mainly because the device developer determines the concrete syntax based on a self-
created semantic domain S for each interface element at component design time. The semantic

79

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

domain is imagined (e.g., Open door in the living room), and the identifier is named accordingly
(e.g., close). At component integration time, a system integrator can identify a mapping to map
two syntaxes, each from one distinct vocabulary. This mapping does not only take place on the
syntactic but also on the semantic interface level. Depending on the use case, close can mean
to undo open or close in proximity. This semantic integration knowledge is codified into the
respective software adapter by defining a mapping or by not defining one.

11.2.1. Evaluation Steps

The storyline presented to the students was the following:
A new automation rule has been downloaded to your home automation platform. However, the
rule is not working as other devices have been initially used. Your task is to replace all data
channels until the graphical state visualization provided by the home automation platform of
each device is acting accordingly to the meaning conveyed by the displayed automation rule.
Overall, all participants worked on six automation rules. As an example for the experimental
group, one automation rule was:
Task 1: Find the correct item for the rule Turn on Heating based on the data channels

1. Living_Heating

2. Heating_Living

3. Heating_GF_Living

on the ground floor.
If the correct item is found, select (1) Living_Heating from the Remote Item Panel and create
the mapping specification to the working item. Hence, the automation rule was initially config-
ured with the data channel Living_Heating, but the device that provided this data channel was
no longer available. The other automation rules exposed a similar structure.
The participants were instructed to follow the given order of data channels replacements and to
then perform the following loop:

• Configuration Time: Configure the next data channel from the task (see 1 in Fig. 11.2)
and export it to the connected home automation platform (see 2 in Fig. 11.2).

– The experimental group could also directly select a correct data channel if a map-
ping was retrieved from the knowledge base (i.e., indicated by a green background).
Hence, existing mappings were automatically evaluated, and the necessary reconfig-
uration calls to the management API of the platform were generated, but the students
had to trigger their invocation manually. Otherwise, they had to stick to the data
channel order from the task.

• Testing Time: Next, the participant switched to the home automation platform user inter-
face and executed the adapted rule. The respective device state icon was then inspected if
the desired action had been executed (e.g., the heating icon label switched its status from
OFF to ON). If the Item changed its status according to the rule, then the task is solved. If
not, the next Item had to be tested.

80

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

– Specification Time: As soon as the correct item was found, then a mapping specifica-
tion had to be created based on a template (experimental group only). Therefor, the
students had to select the initial remote item (see 3 in Fig. 11.2) and had to formalize
the mapping in the text editor (see 4 in Fig. 11.2)

Finally, all created mapping specifications were stored in the knowledge base (see 5 in Fig. 11.2)
and were available to other students that were assigned to the experimental group.

1

2

3

4

5

Figure 11.2.: Eval 1 – Evaluation Steps

11.3. Implementation

The main architectural components are depicted in Fig. 11.3. These components have the fol-
lowing functionality:
Formalization Editor: For specifying interface mappings in a declarative style, we use JOLT
[62]. An example of a declarative JOLT specification can be seen at number four in Fig. 11.2.
Smart Home Platform: We used openHAB [21] as a home automation platform. OpenHAB can
syntactically integrate various IoT components out of the box by providing over 200 adapters
from heterogeneous device manufacturers. In addition, openHAB can be accessed using a
REST-like interface to manipulate home automation rules, data channels offered by the IoT
devices, a rule execution environment, and a user interface to monitor all devices’ state.
Knowledge Base: The Knowledge Base stored formalized mappings in JOLT. Here, a graph-
based structure was implemented where each node represents a data channel, and each edge
represents a mapping specification. This allowed for calculating new mappings (e.g., traversing
the graph from a required to a provided interface to identify transitive relationships).
Component: A component is an IoT device which was connected to the platform by using its
interface. The platform provided the required software adapter that made all data channels syn-
tactically available within the platform.
User Interface for Formalization Editor: Automation Rules within the IoT context often follow
the IFTTT structure. This structure also holds for openHAB. For example, the automation rule

81

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

Smart Home Platform

KDAC Framework

Transformation
preprocessor

Formalization
Edtior

compute
mapping suggestions

use chainKnowledge Base

save mapping

Management APIAutomation Rule View

adjust device mappings

System Integrator

edits mappings

executes

Door Heater Light

retrieve source &
target attributes

Figure 11.3.: Eval 1 – High-Level System Architecture

Turn on Heating contained a trigger, a condition, and an action (see RuleBuilder panel in Figure
11.2). Each rule part contained a drop-down menu where all available data channels provided
by the connected devices were listed. All currently provided data channels were displayed in the
Integration Items perspective, and all required items for one rule were displayed in the Remote
Items panel.
If no mapping for a data channel existed, a mapping must be created by the system integrator
in addition to reconfiguring the automation rule (i.e., adapting the software adapter over a user
interface). The operation shift displayed in the Mapping Specification panel is part of the JOLT
language.

The main effect of applying the proposed method was helping to achieve automated adaptability
in software ecosystems. In particular, we focused on engineered adaptability and evolutionary
adaptability. Engineered Adaptability as the platform was now able to reconfigure itself during
run time and executed context-sensitive automation rules. Evolutionary adaptability as new
components could be integrated manually by the system integrator.

11.4. Results

The main reason for carrying out an empirical evaluation was the trade-off between the cost of
having additional formalization effort for automated data channel replacement and the benefits of
reusing interface mappings for configuring the home automation platform (i.e., software adapter
generation).

82

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

318,35

151,98

0

50

100

150

200

250

300

350

Baseline Reuse

Ti
m

e
in

 s
ec

o
n

d
s

Total Times over all Integra�on Tasks

Baseline

Reuse

Figure 11.4.: Eval 1 – Reuse Task Time Comparison for Both Groups

Each task involved different amounts of item replacements. Only tasks 1, 3, and 5 were equipped
with mapping specifications for the experimental group. Figure (see Figure 11.4) shows the total
times for all reuse rules that were measured.
Therefore, we first calculated the total time in seconds for the rule using 11.3 for the control
group and 11.4 for the experimental group. Here, Y returned the average time in seconds and
X was the amount of replacement operations per rule as an integer. Then the sum of each rule
result per group was calculated.

X = AmountOfReplacementOperationsPerRule (11.1)

Y =
TotalAmountOfReplacementOperations

TotalT imeForAllRules
(11.2)

TimeControlGroup = X ∗ Y (11.3)

TimeReuseGroup =
(X − 1) ∗ Y +ReuseT ime

X
(11.4)

Figure 11.5 displays the averages and variances per rule in more details for both groups. Here,
Baseline refers to the sum of Configuration Time and Testing Time for the control group. Spec-
ification Time means the time to create a mapping specification in JOLT (experimental group
only). Specification Time only occurred once to one student of the experimental group. This
specification then influenced the Configuration Time for the next student in the experimental
group as it was automatically evaluated. Testing Time was almost identical for all students and
groups.
If a green data channel (i.e., indicated by a green background as depicted in Figure 11.2) was
present, measured Reuse times also referred to the sum of Configuration Time and Testing Time
for the experimental group. However, the difference between the control group and the ex-
perimental group was the number of replacement operations. For instance, assume that 5 data
channels must be tested in the given order. Furthermore, data channel 4 is the correct one, and
there exists a mapping from data channel 1 to 4. The control group must then perform three

83

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

42,5
37,7

32,2 31,0 31,4 34,0

57,3 59,2
53,8

43,2 40,3

51,1

38,1

0,0

25,0

0,0

30,1

0,0
0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6

Ti
m

e
in

 s
ec

o
n

d
s

Comparison Baseline vs. Reuse Group per Rule

Baseline Sepcifica�on Reuse

Figure 11.5.: Eval 1 – Integration Times Per Automation Rule

24,15

10,87

49,15

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Average

Ti
m

e
in

 s
ec

o
n

d
s

Average Par�cipant Performance

Average Config Time Average Tes�ng Time Average Spec. Time

Figure 11.6.: Eval 1 – Average Participant Performance

replacement operations (i.e., 1-2, 2-3, 3-4), and the experimental group must perform one re-
placement operation (i.e., 1-4).

Overall, 211 item replacement operations were measured (i.e., Average Config Time) and tested
within the home automation environment (i.e., Average Testing Time). For specification tasks,
we measured 54 runs. On average, configuration time lasted 24 seconds, testing time lasted 11
seconds and specification time 49 seconds (see Figure 11.6).
Figure 11.4 suggests that the experimental group (i.e., reuse) was faster than the control group
(i.e., baseline). Hence, our initial claim to outline the applicability of KDAC within an IoT
software ecosystem was fulfilled. However, the point at which specification effort payed off
over time can only be estimated (i.e., based on the metrics in Figure 11.6).

11.4.1. Break-Even Analysis

Time is a critical factor for KDAC as the additional specification overhead must pay off over
time. The proposed method should be faster than implementing the same adapter all over again.

84

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

Therefore, we provide a forecast based on the collected data to illustrate when the break-even
point in contrast to software adapter implementation is reached in theory.
Within this first experiment, the extrapolation is influenced by how many replacement operations
must be performed manually (i.e., the provided list of potential data channels from the task
description) and the repetition of the same integration task. A mapping specification speeds
up the selection process of the correct data channel. For example, if there exists a mapping
from the first data channel Living_Heating to the correct data channel Heating_GF_Living, then
two manual steps can be skipped. This also means that this integration context must occur at
least twice. Otherwise, the manual adaptation process is always faster as it does not require any
mapping specification.

-57,33 -53,83
-40,33

-10,51 -14,42
-7,63

31,98

17,79
23,79

74,46

50,00 55,21

116,95

82,21 86,64

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Task 1 Task 3 Task 5

Ti
m

e
in

 S
ec

o
n

d
s

Integra�on Time Savings for First Reuse and Variable Replacements

1 Replacement 2 Replacement 3 Replacement 4 Replacement 5 Replacement

Figure 11.7.: Eval 1 – First Integration Knowledge Reuse with Variable Channel Replacements

-10,51 -14,42 -7,63

36,32
25,00 25,07

83,14
64,42

100,79

129,97

103,84

147,83

176,80

143,26

273,89

-50

0

50

100

150

200

250

300

Task 1 Task 3 Task 5

Ti
m

e
in

 S
ec

o
n

d
s

Integra�on Time Savings with variable Reuse and Fixed Replacements

1st Reuse 2nd Reuse 3rd Reuse 4th Reuse 5th Reuse

Figure 11.8.: Eval 1 – Two Replacements with Variable Integration Knowledge Reuse

For the extrapolation, we assume that either the data channel replacements (i.e., the number of
relevant data channels) are variable (see Fig 11.7) or the amount of reuse scenario of the for-
malized mapping (see Fig. 11.8). Regarding the variable data channel replacements, we only

85

11. Empirical Evaluation 1: Mapping Generation for Sensor Values

considered the first reuse of the formalized mapping. Here, we can see that on first integration
knowledge reuse, at least three replacements tasks must be made in order to compensate for the
additional formalization time at first reuse of specified mappings.
Regarding the variable reuse scenarios, we only consider tasks with two data channel replace-
ments. This number was chosen as it represents the average data channel replacements from the
experiment’s integration tasks. We can see that the additional formalization effort for creating a
data channel mapping is caught up after the second time the integration knowledge is applied.

Please note that reasoning in this extrapolation was only applied to data elements. Furthermore,
reverse mappings were not created and evaluated at all.

11.5. Threats to Validity

There are threats to internal validity and to external validity.
Internal Validity: Our evaluation targeted the causal relationship between either reconfiguring
the home automation platform each time a new IoT device enters the system or using KDAC
(independent variable) and reconfiguration time (dependent variable). However, the presented
results provide one distinct result for one concrete implementation that may be subject to change
in another run. This is mainly due to confounding factors (e.g., User Interface Design). Further-
more, the evaluation design ensured the early applicability of data channel mappings. In large
scale engineering projects it is unclear when and how often such mappings can actually be
reused.
External Validity: The population size is too small to be generalized from. Hence, we cannot
say whether the presented results are statistically significant. The respective variances strengthen
this circumstance. However, the empirical evaluation, the presented architecture, and the tech-
nical implementation illustrate how the novel engineering method KDAC can be applied in a
home automation system.
Furthermore, we could not spot any link between students that had already worked within the
field of IoT or and students that had worked on integration tasks and their performance. All stu-
dents were able to finish all integration tasks. This may be interpreted as a hint that the approach
and the tooling were applicable without further training.

86

12. Empirical Evaluation 2: Mapping
Generation for Services

In this experiment, we shift away from data-driven sensor integration. Therefore, we use the
architecture and reasoning principles presented in the previous chapter. The central evaluation
goal in this evaluation was to compare the software adapter (SA) implementation method (see
Fig. 3.1) with the KDAC method (see Fig. 6.2) and bottom-up methods using an ontology
(BU) method (see Fig. 3.5). As an effort indicator, we measured the integration time and the
component interaction correctness by counting needed manual adaptations.

12.1. Evaluation Setup

Challenge: It is unclear how the presented engineering methods to produce mappings perform
in a simple IoT system. Therefore, we empirically compared the methods applying a within-
subject design. SA did not store any mappings, BU evaluated mappings based on URLs to a
common namespace, and KDAC transitively chained mappings from previous integration cases.
Participants: The participants studied Informatics at the Bachelor (4 students) or Master level (3
students). All students did not have working experience in using any of the applied technology
frameworks or IoT projects in general.
Experiment Scope: As we are interested in the performance of the methods and not in the under-
lying technology, we chose a technology stack that all methods can utilize. We did not support
adapter generation in this version but validated all mappings directly within the web based tool.
Metrics: Method performance is measured in integration time and component interaction cor-
rectness by letting seven students perform integration cases. Integration time is measured from
select required & provided interface to finish mapping for all three methods in minutes (see Fig.
3.1, 6.2 and 3.5). The amount of required manual adaptations measured component interaction
correctness after the respective pre-processors had computed all mapping suggestions for an in-
tegration case at hand.
Hypothesis: The independent variable was the engineering method. The dependent variables
were integration time and component interaction correctness. We suspected that component in-
teraction correctness and integration time was highest using the SA method.
Technology Stack: We relied on the HTTP/JSON component model using POST service calls.
For specifying mapping functions MIntegrationCase in a declarative way, we used JSONata
[58] (i.e., L∗) and for specifying domain mappings (i.e., MD) we used the JSON-LD syntax
[48, 46]. The web-based evaluation prototype supported one-to-one interface mappings. All
HTTP/JSON endpoints used had either been extracted from OpenAPI repositories (e.g. https:
//rapidapi.com/) or Smart Home Adapter repositories (e.g. https://www.openhab.

87

12. Empirical Evaluation 2: Mapping Generation for Services

org/addons/). OpenAPI does not support any relationships to a machine-readable or machine-
understandable domain standard. Then, service instances of the extracted OpenAPI specifi-
cations have been created and deployed using MOCKOON and have been mocked with the
dummy-json library.

12.2. Evaluation Execution Process

The leitmotif for the students was that a client requests a required server interface (e.g., POST
Samsung), but only a semantically identical provided interface instance (e.g., POST LG) is
available. Here, semantically identical means that the needed software adapter translates one in-
terface to precisely one other interface. Thus, all request identifiers from the provided interface
must be present in the required request, and all required response identifiers must be present in
the response message of the provided interface.
A student either described interfaces using JSON-LD or used the available mappings directly.
Eight measurement runs using three different integration cases were executed autonomously by
the students. The integration contexts were based on the use case "As a mobile application user,
I want to control all available devices in my current room by only using one application". The
following scope restrictions apply:
For the BU method, the students were instructed to use dbpedia.org as a namespace. How-
ever, if DBpedia did not include a suitable entity, then wikidata.org was allowed to be used
as well. This choice was mainly made as these open linked data vocabularies are frequently
updated. During describing time, the students only used the service and the ontology. This is
similar to describing an IoT component interface at design time using a machine-understandable
domain standard (e.g., an ontology).
When selecting the OpenAPI descriptions, it was made sure that each integration context ful-
filled the technical one-to-one interface mapping constraint. Furthermore, at least three similar
interfaces had to be integrated so that the transitive mapping chain could be computed for the
KDAC method (e.g., a music player from Bose, Sony and Sonos). The JSON-LD descriptions,
abbreviated with BU-D (where D stands for Description), have been specified using a text editor.
The resulting time to describe an interface is measured independently and is not included in the
integration time measurement.

12.2.1. Evaluation Steps

As a first step, the students select the assigned tasks (see 1 in Fig. 12.1). The students mapped
request and response by incrementally selecting one key on both sides and then mapping them
(i.e., the concrete syntax C for the interface description language L in Def. 1 is a graphical one).
Consequently, a mapping function mapaction in JSONata also has a graphical syntax. For this
evaluation, only simple mappings were permitted. A set of mapping function can be tested (i.e.,
perform a request against a provided service instance) at any time (see 4a, 4b and 4c in Fig. 12.1).

Additionally, the following process restrictions hold:
SA: When a mapping source and mapping target was selected from the Interface Database (see

88

12. Empirical Evaluation 2: Mapping Generation for Services

1

2a

3a

4a

3b

SA KDAC BU-D

BU

2b

3c

4c

5c

4b

5b5a

Figure 12.1.: Eval 2 – Evaluation Steps

89

12. Empirical Evaluation 2: Mapping Generation for Services

Fig. 12.2), then no mappings were shown at any time. This is a proxy to implementing a software
adapter for a use case using a textual programming language. Hence, all mappings have to be
inserted manually using the graphical syntax (see 3a in Fig. 12.1).
BU: When a mapping source and mapping target was selected from the Interface Database, then
the associated JSON-LD descriptions (see Fig. 7.1 for an example) form the JSON-LD KB (see
Fig. 12.2) were evaluated by the JSON-LD preprocessor. Suppose two keys were linked to
the same entity in one namespace (i.e., identical URL). In that case, a mapping suggestion is
automatically inserted in the Mapping Area (see 3c in Fig. 12.1). These JSON-LD descriptions
have been created by the students beforehand (see BU-D lane in Fig. 12.1). Therefore only one
interface at a time was presented to the students (see 2a in Fig. 12.1). Hence, the students did not
know the integration context (i.e., the concrete required and provided interface to be mapped)
but interpreted the interface based on a domain standard (i.e., DBpedia or wikidata). This was
done to simulate a new integration case based on an ontology produced by a BU method. Only a
syntactic validation was performed before the description is saved (see 2b in Fig. 12.1). Different
students always performed the respective tasks BU-D and BU.
KDAC: When a mapping source and mapping target were selected from the Interface Database,
then a breadth-first search on the Transformation KB by the Transformation preprocessor was
performed (see Fig. 12.2). All computed mapping functions based on algorithm 1 for the source
(i.e. required) and target (i.e. provided) interface were automatically inserted in the Mapping
Area (see 3b in Fig. 12.1).

BU Mapper

Software Adapter Mapper

KDAC Framework

retrieve source & target interface

retrieve source &
target interface

source & target
interface

Interface Database

compute
mapping suggestions

Transformation
preprocessor

save mapping

invokes

Mapping View invokes

Interface View
use chainTransformation

KB

invokes

test mapping

Mapping View

mapping suggestions

JSON-LD
preprocessoruse contextJSON-LD KB

create descriptions

JSON-LD Editor

requests Mapping Test & Validator

API Endpoint Instance

API Endpoint Instance

...

Figure 12.2.: Eval 2 – High-Level System Architecture

A is finished if the request to a required service was successfully transformed to the request
of a provided service instance and vice versa for the respective response (see 5a, 5b, and 5c
in Fig. 12.1). Generating a software adapter in an imperative language (e.g., Adapter Pattern
implemented in Java) was not part of this architecture as we used an extension point for JSONata
to integrate it into the web front end. Thus, simple transformations cloud be executed and tested.

90

12. Empirical Evaluation 2: Mapping Generation for Services

12.3. Implementation

The overall system architecture was built up of three main parts, which are responsible for
generating the interface mappings. In addition, a generic Mapping Test & Validator for testing
the created mappings was implemented (see Fig. 12.2). Depending on which type of method
was used, different preprocessors might be applied. Their task was to populate the Mapping
View with automatically created suggestions of mapping key pairs.
In the case of the KDAC method, the Transformation pre-processor was invoked (see presented
algorithms for details). To recap, it first tries to find a transitive mapping chain between the
selected source and target interface using the breadth-first search on the Transformation KB. If
the search was successful, a linked list of Mappings was returned. In this list, the first mapping
source is equal to the selected source interface (i.e., POST Samsung), and the source of each
subsequent mapping is equal to the target of the previous one. Finally, the last mapping target
is equal to the selected target interface (i.e., POST LG). Once such a chain was identified, the
preprocessor recursively applied the mappings stored in JSONata to each other, producing a final
mapping from the source to the target interface (i.e., POST Samsung → POST LG). This was
done for both the request and the response data.

Algorithm 4 Create Mapping Suggestion with Ontology
0: procedure BUILDMAPPINGSUGGESTIONS(sourceInterface, targetInterface)
0: expSourceRequest← expand(sourceInterface.jsonLdRequestDefinition)
0: expTargetRequest← expand(targetInterface.jsonLdRequestDefinition)
0: requestMapping ← new Mapping()
0: for each Property requiredProp ∈ expTargetRequest do
0: for each Property providedProp∈ expSourceRequest do
0: requestMapping.add(providedProp, requiredProp)
0: end for
0: end for
0: expSourceResponse← expand(sourceInterface.jsonLdResponseDefinition)
0: expTargetResponse← expand(targetInterface.jsonLdResponseDefinition)
0: responseMapping ← new Mapping()
0: for each Property requiredProp ∈ expSourceResponse do
0: for each Property providedProp∈ expTargetResponse do
0: responseMapping.add(providedProp, requiredProp)
0: end for
0: end for
0: return requestMapping, responseMapping
0: end procedure=0

The preprocessor for the BU method followed a different algorithm. It first used the expand
functionality of the underlying JSON-LD interface description C which was stored in the JSON-
LD KB. Afterwards, it traversed both expanded interface definitions and tried to find keys that
were linked to the same entity in one namespace. Once a match was found, it created a mapping
suggestion for the two keys. This simple algorithm is depicted in Fig. 4.
Once a mapping was completed, it can be tested and validated using the Mapping Test & Val-
idator. This component tested statically whether all required source and target parameters were

91

12. Empirical Evaluation 2: Mapping Generation for Services

mapped and it dynamically executes the mapping against the provided API Endpoint instance.
Hence, the system integrator could ensure that the resulting mapping performs the expected
transformations.

12.4. Results

In order to validate our hypothesis, 54 one-to-one interface integration tasks were captured.
There are 18 integration tasks for the Software Adapter Implementation method (see Fig. 3.1),
18 for the bottom-up engineering method (see Fig. 3.5), and 18 for the KDAC method (see Fig.
6.1).

2,9 2,3

4,5

14,5

0

2

4

6

8

10

12

14

16

Ti
m

e
in

 m
in

u
te

s

Average Dura�on per Integra�on Task

Average SA Average KDAC Average BU Average JSON-LD (BU-D)

(a) Average Integration Duration per Method

2,4 2,9 3,1
1,4

3,6
1,55,0 3,0

4,5

17,4

11,9
10,9

0

2

4

6

8

10

12

14

16

18

20

Illumina�on Music Player Television

Ti
m

e
in

 m
in

u
te

s

Average Dura�on per Use Case

SA KDAC BU JSON-LD (BU-D)

(b) Average Integration Duration per Use Case

Figure 12.3.: Eval 2 – Integration Time

Fig. 12.3a illustrates the average integration time per engineering method and Fig. 12.3b the
average integration time per use case. On average, the participants needed 14.5 minutes to cre-
ate JSON-LD specifications (i.e., BU-D in all figures), which were required by the BU method
using ontologies. Although the time for creating the interface descriptions was not included in
the method result comparison, the BU method took, on average, two and a half minutes longer
to complete than KDAC. KDAC was the fastest method except for the integration context Mu-
sic Player. As the use cases exposed different amounts of JSON keys, the average//variance
statistics for a normalized use case with 59 keys per task were 2.9//0.01 minutes for SA, 2.3//0.1
minutes for KDAC, 4.5//0.1 for minutes BU, and 14.5//2.2 minutes for BU-D.
For the BU method, the number of manual adaptations required after algorithms 1 produced the
suggestions can be seen in Fig. 12.4a. Again, percentages are used as the interfaces contain
different amounts of keys. A common theme for the BU method was using different names-
paces during execution, as these were only partially restricted. This resulted in no automated
mapping suggestions as the algorithm for BU cannot cope with URLs between different names-
paces. However, when sticking to one namespace only, the percentage for manual adaptations
only decreased about 21%.
Among others, the reasons for the manual adaptations for BU were the following: 1) Incom-
plete interface description stored by the student; 2) URLs pointing to type property, datatype
or resource instead of entity; 3) Missing equivalence relationship in namespaces (e.g., Entities

92

12. Empirical Evaluation 2: Mapping Generation for Services

currentTitle and Music Track); 4) References to a complete ontology rather than an entity; 5)
Combined key names such as sourceID are linked to only one entity; 6) Wrong URLs in inter-
face descriptions (e.g., entity Track refers to railway and music).

86,9% 90,0% 86,0%

69,0%

51,7%

78,7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Illumina�on Music Player TelevisionPe
rc

en
ta

ge
 M

an
u

al
 M

ap
p

in
gs

Rela�ve Amount of Manual Mappings BU

Mul�ple Namespaces One Namespace

(a) Percentage of Manual Adaptations

2,2

4,1

1,0

5,0

3,0

4,5

0

1

2

3

4

5

6

Illumina�on Music Player Television

Ti
m

e
in

 m
in

u
te

s

Integra�on �mes with reasoning
results using mul�ple namespaces

KDAC BU

(b) Reasoning benefits from mapping algo-
rithms

Figure 12.4.: Eval 2 – Component Interaction Correctness

For the KDAC method, no manual adaptations were needed whenever a transitive relationship
was calculated. As the SA method deliberately lacked a suggestion algorithm, no mappings
were automatically generated. However, time savings could be calculated whenever an algo-
rithm produced a non empty result (i.e., JSON-LD descriptions and JSONata mappings for an
unseen combination of provided and required interface). Fig. 12.4b outlines that the KDAC
method was quicker (KDAC: 7.3 and BU: 12.5 min in total) and produced no manual mappings
when compared to the BU method (see Fig. 12.4a). SA also did not make mapping errors but
required more time compared to KDAC. However, no mapping errors for KDAC means that an
adapter based on explicitly formalized mappings can be generated automatically, whereas the
adapter generated by BU would contain errors.

We suspected that component interaction correctness and integration time was highest using
the SA method. Based on the data collected, we can summarize that the SA method and the
KDAC method had the highest component interaction correctness (i.e., no manual adaptations
required), and integration time was lowest using the KDAC method. The observed errors for
BU-D were mostly due to inconsistent vocabularies or outdated interface descriptions. This
finding is consistent with the known problem of describing IoT interfaces from literature [1].

12.4.1. Break-Even Analysis

We do not provide a break-even analysis for this experiment. The main reason for this is the
evaluation setting where we implemented three approaches (i.e., software adapter implementa-
tion, KDAC, and the bottom-up approach) on a common technical infrastructure.
In particular, software adapter implementation is abstracted by a graphical user interface to de-

93

12. Empirical Evaluation 2: Mapping Generation for Services

fine mappings. The same user interface is also applied within the KDAC approach (see Fig.
13.1). Hence, the additional formalization effort is the same. Consequently, we cannot add the
additional formalization effort to the time for implementing the software adapter.
Regarding the BU approach using JSON-LD description, we decided to formulate the descrip-
tions using a textual syntax. Comparing this formalization effort with the graphical syntax to
formalize mappings in a concrete integration context is not possible. Due to the presence of
errors in the JSON-LD descriptions during mapping generation by the corresponding algorithm
(see Algo. 4), a comparison to the BU approach would be tampered.

12.5. Threats to Validity

Overall, the presented evaluation design favors internal over external validity. Hence, confound-
ing factors for the independent variable engineering method (i.e. SA in Fig. 3.1, BU in Fig. 3.5
and KDAC in Fig. 6.2) were eliminated as much as possible. Tasks are randomly assigned to
the students, but it is made sure that no student works on the same integration task in subsequent
measurement runs.
Internal Validity: Describing interfaces with JSON-LD and linking interface elements to a do-
main standard is error-prone. These errors show that the integration based on ontologies to
achieve semantic interoperability is not the fastest one. Naturally, if the JSON-LD descriptions
did not contain any errors, all mapping functions would have been generated correctly, and the
BU approach would produce no integration time. However, the presented results show that
applying and reusing this method in a decentralized development setting shows that the used
ontologies expose themselves heterogeneity as entities are defined at different granularity lev-
els. Nevertheless, resuing an existing ontology is perceived easier compared to creating a new
ontology for inexperienced students.
External Validity: All participants were able to solve all tasks using the web tool. Nevertheless,
generalized statements based on this experiment must be discussed within the following frame:
There may be a selection bias as the agile development team consisted of seven students. The
representativeness of use cases is ensured by using OpenAPI specifications from external prod-
uct vendors. However, during OpenAPI interface description selection it was made sure that a
transitive mapping chain could be built early in the experiment. This may not hold in practice.
Furthermore, it may not always be the case that there is a one-to-one mapping between a set of
interfaces. Finally, the evaluation focuses on the engineering method. Therefore, a technology
stack is chosen to be embedded into a single web-app to minimize confounding factors (e.g., a
long learning curve for the students to use an interface description language). Nevertheless, dif-
ferent technologies and textual usage instead of graphical mapping languages L (e.g., SAWSDL)
might have produced other results.

94

13. Empirical Evaluation 3: Adapter
Generation for Services

In this experiment, we illustrate and test the end-to-end application of the proposed method
for web services [13]. The participants had to work in two environments. This allowed for
editing mappings within the mapping and coding environment. The central evaluation goal was
to compare implementing software adapters, generating software adapters without reasoning
principles, and generating software adapters with reasoning principles. As an effort indicator,
we measured the integration time and the number of mapping errors and discuss problems during
software adapter implementation.

13.1. Evaluation Setup

We empirically compared the software adapter implementation method against KDAC applying
a within-subject design [64, 65]. SA represents implementing a software adapter. The KDAC
method was available in two variants. The first variant involved generating software adapter
without any mappings stored in the knowledge base (variant 1). The second variant used map-
pings stored in the knowledge (variant 2). Hence, we could compare the mapping time and errors
made by the system integrator and, if any, made by the reasoning algorithms.

Challenge: It is unclear how well KDAC can assist the system integrator during software adapter
(SA) implementation. In particular, the additional time to formalize mappings should result in
achieving a working software adapter faster.
Participants: Each week, 3 to 5 integration cases have been assigned to four students. The stu-
dents studied Informatics at the Bachelor (two students) or the Master (two students) level. All
students did not have working experience in implementing software adapters in the given pro-
gramming language or in IoT in general.
Experiment Scope: As we were interested in the performance of the method and not in the un-
derlying technology, we chose a technology stack that can be utilized by both methods (i.e., SA
and KDAC).
Metrics: The quantitative implementation effort was measured in integration time and compo-
nent interaction correctness. Integration time was measured from starting the integration task
until the students finished the mapping in the KDAC tool in minutes. Component interaction
correctness was measured by the number of retries needed when the test criterion was not met.
Hypothesis: The independent variable was the engineering method. The dependent variables
were integration time and component interaction correctness. We suspected that the component
interaction correctness and integration time was highest using the KDAC method (see Fig. 6.2).

95

13. Empirical Evaluation 3: Adapter Generation for Services

Technology Stack: We relied on the HTTP/JSON component model using POST and GET ser-
vice calls. For specifying mapping functions in a declarative way, we used JSONata [58], and for
implementing the software adapter, we used the Visual Studio Code Web IDE. The web-based
evaluation prototype supported one-to-one and one-to-many interface mappings. For imple-
menting the software adapter, we chose NodeJS. A project setup script was provided so that the
participants could resolve all necessary dependencies by issuing one command line statement
within the Web IDE.
All HTTP/JSON endpoints have been designed based on publicly available endpoints from the
OpenAPI repositories (e.g., https://rapidapi.com/) or Smart Home Adapter reposito-
ries (e.g., https://www.openhab.org/addons/).

An integration task was finished if the request to a required service instance was successfully
transformed to the request of a provided service instance and vice versa for the respective re-
sponse. There was a test criterion for each integration task that tells the students whether their
mapping was correct or not. In essence, the test criterion contains all identifiers as defined for
the required operation and the values as produced by the provided operations. This test criterion
was checked every time the student runs the software adapter. If the test fails, a snapshot of the
software adapter was stored. This allowed for a qualitative evaluation of the implementation.

13.2. Evaluation Execution Process

The leitmotif for the students was that a client requests a required server interface (e.g., POST
Samsung), but only a semantically identical provided interface instance (e.g., POST LG) is avail-
able. This means that the needed software adapter translates one interface to one other interface.
Thus, all request parameters from the provided interface must be present in the required request,
and all required response parameters must be present in the response message of the provided
interface.
Six measurement runs using three different use cases were executed autonomously by the stu-
dents. Again, the integration contexts were illumination, music player, and television (see run-
ning example 1.3).
When selecting the OpenAPI descriptions, it was made sure by the experiment conductors that
each integration context fulfilled the technical one-to-one interface mapping constraint. Further-
more, at least three similar interfaces had to be integrated so that the transitive mapping chain
could be computed (e.g., a music player from Bose, Sony, and Sonos).
Software Adapter: When a mapping source and mapping target were selected, then no map-
pings were shown at any time. Hence, the students could only continue to generate the software
adapter and start imperatively implementing the necessary transformation code.
KDAC: In both variants, a mapping could be tested before generating the software adapter within
the KDAC tool (i.e., perform a request to a provided service instance) as soon as all request keys
from the provided interface and all response keys from the required interface were mapped.
A search over all stored mappings was performed when a mapping source and mapping target
is selected. All computed mapping functions for the source (i.e., required) and targets (i.e., pro-
vided) interfaces were automatically inserted and visualized in the KDAC tool. They could be

96

13. Empirical Evaluation 3: Adapter Generation for Services

1

2a 2b 2c

3

4

3b

5

6

4b 3c

4

5

SA KDAC-V1 KDAC-V2

Figure 13.1.: Eval 3 – Evaluation Steps

97

13. Empirical Evaluation 3: Adapter Generation for Services

edited at any time during the evaluation process by writing the correct JSONata syntax. All
keys from the selected provided and the required interfaces could be used within one mapping
operation.

13.2.1. Evaluation Steps

The students performed the following steps (see Fig. 13.1). First, they selected a task from the
task overview (see 1 in Fig. 13.1).
Second, the type of tasks determines how the mappings were populated. If the tool was only
used to generate the software adapter project, the students could only do so (see SA lane 2a).
If the tool was used to create mappings between operations, the students could specify map-
pings (see KDAC-V1 lane 2b). This view also symbolizes the first variant of the KDAC method.
Suppose there were already mappings within the knowledge base. In this case, the reasoning
principles were applied, and the results were populated within the mapping view. They were
annotated with a different color than manually specified mappings (i.e., blue) (see KDAC-V2
lane 2c). This view symbolizes the second variant of the KDAC method.
Next, the students could either directly login into the Web IDE (see SA lane 3, KDAC-V1 lane
5, and KDAC-V2 lane 4) or adjust the created mappings until all calls succeed (see KDAC-V1
lane 4b and KDAC-V2 lane 3c). When all calls succeed, then the mappings were stored within
the knowledge base, and the students also proceed to login into the Web IDE (see SA lane 3,
KDAC-V1 lane 5 and KDAC-V2 lane 4).
Last, the students must resolve all dependencies in the underlying Node.js environment by ex-
ecuting an install script and providing their username and password for authentication towards
the knowledge base. If the tool was only used to generate the adapter skeleton, then the method
that contained the actual transformations had to be implemented (see SA lane 4).
Suppose the tool was used to formalize mappings or mappings have been computed based on
the reasoning principles. In that case, these mappings were inserted into the software adapter
code that had to be implemented (see KDAC-V1 lane 6 and KDAC-V2 lane 5). At this stage, the
students could not store mappings anywhere. Finally, the students could check anytime if their
operationalized mappings were correct by executing a test script (see SA lane 4, KDAC-V1 lane
6, and KDAC-V2 lane 5). If this was the case, then a corresponding message is printed on the
terminal, and the students ended the task by switching back to the KDAC tool and by clicking
the finish task button.

13.3. Implementation

The overall system architecture was built up of three main parts responsible for generating the
interface mappings. In addition, a generic Mapping Test & Validator for testing the created
mappings was implemented (see Fig. 13.2). Depending on which type of method was used, a
preprocessor might be applied. Their task was to populate the Mapping View with automatically
created suggestions of mapping key pairs.
In the case of the first variant of the KDAC method (i.e., no reasoning principle application),
the web tool supporting KDAC only provided a graphical user interface for specifying mappings

98

13. Empirical Evaluation 3: Adapter Generation for Services

with JSNOata. Here, the web tool was used to generate the software adapter project skeleton
so that both approaches were as similar as possible. Hence, the first and second variant only
differentiated in whether existing mappings were evaluated or not. In the case of the second
variant of the KDAC method, the Transformation preprocessor was invoked.

Software Adapter Mapper

KDAC Framework

retrieve source & target interface

retrieve source & target
interface

Interface Database

compute
mapping suggestions

Transformation
preprocessor

save mapping

Mapping View invokes

Interface View
use chainTransformation

KB

builds (partial) adapter Adaptor Generator

perform requests

executes adaptor code

Mapping Test & Validator
API Endpoint Instance

API Endpoint Instance

Visual Studio Code Web IDE
(Docker)

refines adaptor

invokes validator

System Integrator

invokes

creates mappings

Figure 13.2.: Eval 3 – High-Level System Architecture

A finished example for the adapter to be implemented manually and the adapter generated based
on the formalized mappings can be seen in listing 13.1 and listing 13.2.
constructor(apiClient) {

this.apiClient = apiClient || ApiClient.instance;
this.targetApi = new targetDefaulApi();

}
/**
* Returns a TvInfo object.

* Returns current date and settings of the tv.

* @return {Promise} a {@link https://www.promisejs.org/|Promise}, with an
object containing data of type {@link module:model/SamsungTvInfo} and
HTTP response

*/
async postSamsungTvInfoWithHttpInfo() {

const response = await this.targetApi.getLgTvInfo();
return {
data: {
volume: response.volume,

99

13. Empirical Evaluation 3: Adapter Generation for Services

sourceName: response.input,
brightness: response.brightness,
....
}

}
}
postSamsungTvInfo() {

return this.postSamsungTvInfoWithHttpInfo()
.then(function(response_and_data) {
return response_and_data.data;

});
}

Listing 13.1: Software Adapter JavaScript Example for Samsung and LG

/**
* Returns a TvInfo object.

* Returns current date and settings of the tv.

* @return {Promise} a {@link https://www.promisejs.org/|Promise}, with an
object containing data of type {@link module:model/SamsungTvInfo} and
HTTP response

*/
async postSamsungTvInfoWithHttpInfo() {

let postBody = null;
const response = {};

const requestMapping = "{\"X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200\":
XwJTD81Qno71ubIQw8eV0_postSamsungTvInfo_200}";
const responseMapping = "{\"XwJTD81Qno71ubIQw8eV0_postSamsungTvInfo_200
\":{\"volume\":X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200.projectorvolume
,\"brightness\":X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200.
picturebrightness,\"sourceName\":
X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200.input,\...}}";

const sourceInputData = { "XwJTD81Qno71ubIQw8eV0_postSamsungTvInfo_200":
{ body: postBody } };
const targetInputData = await jsonata(requestMapping).evaluate(
sourceInputData);

async function handleX0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200() {
async function callTarget(targetInput) {
const { } = targetInput;
const targetApiClient = new

X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200ApiClient();
const data = await new

X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200TargetApi(targetApiClient).
postEpsonTvInfo();

return data;
}
const {body: targetBody} = targetInputData["

X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200"];
response["X0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200"] = await

callTarget();
}

100

13. Empirical Evaluation 3: Adapter Generation for Services

await Promise.all([handleX0Ja22GPOer5wuwtT0vKY_postEpsonTvInfo_200(),]);
const { "XwJTD81Qno71ubIQw8eV0_postSamsungTvInfo_200": sourceOutputData}
= jsonata(responseMapping).evaluate(response);
return { data: sourceOutputData };
}

postSamsungTvInfo() {
return this.postSamsungTvInfoWithHttpInfo()
.then(function(response_and_data) {
return response_and_data.data;
});

}

Listing 13.2: Generated Software Adapter JavaScript Example for Samsung and LG

13.4. Results

We captured 108 one-to-one interface integration tasks to validate our hypothesis. There are
nine integration tasks for the Software Adapter Implementation method, nine for the first KDAC
variant, and nine for the second KDAC variant. Each integration task has been repeated four
times during the evaluation period.

20,1

17,2

14,0
12,4 12,3

9,4 9,3
8,0 7,7

5,9 5,8 5,5 5,5 4,9 4,7
3,3 3,0 2,7

1,7 1,4 1,3 1,2 1,1 1,1 1,0 0,8 0,8

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

Ti
m

e
in

 m
in

u
te

s

Task Dura�on Average and Standard Devia�on

Software Adapter

KDAC without Integration Knowledge

KDAC with Integration Knowledge

Figure 13.3.: Eval 3 – Average and Standard Deviation for All Integration Tasks

Fig. 13.3 outlines the duration average for all integration tasks. An integration task involved
ten to 16 keys that had to be mapped. The integration time was measured in minutes, and the
description of each task involved the integration task type. Here, "MANUAL" corresponds to

101

13. Empirical Evaluation 3: Adapter Generation for Services

only using the tool (see 13.1) as a software adapter generation environment where all mapping
logic had to be implemented in the generated adapter project. "SUPPORTED" relates to the first
variant of the KDAC method, where mappings between interfaces were defined using JSONata.
Last, "SUPPORTED-reasoning" is the second variant of the KDAC method with reasoning and
integration knowledge reuse. Mocked devices from Sony, Bose, and Sonos were speakers, Yee-
light, Lifx, and Philips are lamps, and Epson, LG, and Samsung are TVs.

Overall, the average time needed for constructing a working software adapter was the highest for
implementing software adapters and the lowest when mappings could be reused. Furthermore,
the manual task’s standard deviation is higher than the second variant of the KDAC method.
This is mainly because of the presence or absence of errors during code writing. The number of
keys did not directly affect the average integration time as the highest value of 20.1 minutes had
13 keys to be mapped. The first integration task with 16 keys scored an average duration of 14
minutes.

Fig. 13.4a illustrates the average integration time per engineering method and Fig. 13.4b illus-
trates the average integration time per use case. On average, the participants needed 11.9 minutes
to implement a software adapter, 5 minutes to create mappings in the tool and then generate a
software adapter, and 1.2 minutes when mappings could be reused. For all integration task types,
the same number of keys had to be mapped (i.e., 117 keys). For the three use cases, this equality
did not apply. However, this does not necessarily result in higher average integration times.
Concerning the traditional software adapter implementation method, the use case with lamps (90
keys) lasted 10.2 minutes, the use case with the speakers (117 keys) lasted 12.5 minutes, and the
use case with the TVs (141 keys) lasted 12.9 minutes. The average integration times was highest
for the manual integration task types and lowest for the second variant of the KDAC method.

11,9

5,0

1,2

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

So�ware Adapter KDAC w/o Integra�on
Knowledge

KDAC w/ Integra�on
Knowledge

Ti
m

e
in

 m
in

u
te

s

Average Dura�on per Integra�on Task Type

(a) Average Integration Duration per Method

10,2

12,5 12,9

3,9

6,5

4,5

1,5 1,0 1,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

Lamps Speakers TVs

Ti
m

e
in

 m
in

u
te

s

Average Duration per Use Case

Manual Supported Supported-reasoning

(b) Average Integration Duration per Use Case

Figure 13.4.: Eval 3 – Integration Time

Fig. 13.5a and Fig. 13.5b illustrate the amount of retries from the viewpoints of integration task
types and use cases. Naturally, the sum of retries per use case equals the number of retries per
integration task type. It can be stated that the errors made were highest for the manual software
adapter implementation method and lowest for the second variant of the KDAC method. This
circumstance is straight forward as the number of errors possibly made by the students increases

102

13. Empirical Evaluation 3: Adapter Generation for Services

if no automation is involved (e.g., manually coding a software adapter). Hence, we list the most
common errors for each method based on a manual inspection of code snapshots. For the manual
method, the most common errors using Node.js were: 1) Missing or wrong keys in the result; 2)
result object is undefined; 3) result object is empty; 4) key hierarchy was ignored; 5) key values
not correctly assigned; 6) wrong encapsulation of result data; 7) import of the provided interface
failed. For the first variant of the KDAC method, the most common error was a wrongly mapped
key. No errors have been made for the second variant of the KDAC method.

16

7

0
0

2

4

6

8

10

12

14

16

18

So�ware Adapter KDAC w/o Integra�on
Knowledge

KDAC w/ Integra�on
Knowledge

A
m

o
u

n
t

o
f

Er
ro

rs

Retries per Integra�on Task Type

(a) Average Retries per Task Type

3
2

0

11

4

0

2
1

0
0

2

4

6

8

10

12

So�ware Adapter KDAC w/o Integra�on
Knowledge

KDAC w/ Integra�on
Knowledge

A
m

o
u

n
t

o
f

Er
ro

rs

Retries per Use Case

Lamps Speakers TVs

(b) Average Retries per Use Case

Figure 13.5.: Eval 3 – Errors

Error resolving strategies for all methods included the usage of logging functionality offered by
the IDE. Regarding the manual method, this allowed for mostly identifying keys with different
semantics as the retrieved values from the provided interfaces did not match the specified test
criterion. Regarding the KDAC method’s first variant, errors made in mapping from within the
tool resulted in wrong JSONata transformations. These errors were mainly resolved by adjust-
ing the inserted JSONata mapping strings directly in the software adapter. However, this error
could be traced back to non-use of the Mapping Test & Validator (see Fig. 13.2) as no incorrect
mappings should be stored in the knowledge base.

We suspected that the component interaction correctness and integration time was highest using
the KDAC method. Based on the data collected, we can summarize that the second variant of
the KDAC method had the highest component interaction correctness (i.e., no errors made), and
the integration time was lowest using the second variant of the KDAC method as well. However,
the first variant of the KDAC method involved some errors.

13.4.1. Break-Even Analysis

Similar to the break-even analysis from the first experiment, we extrapolate the needed integra-
tion time again. However, there are some differences. In contrast to the first extrapolation, we
do not only look at one data channel but at services with keys (as specified in chapter 5). Hence,
we look at the number of mappings that can be reused within the integration context after the
first formalization. This means that we assume that a similar integration context occurs again
after some time. The similarity is extrapolated by a percentage value of how many mappings

103

13. Empirical Evaluation 3: Adapter Generation for Services

mapaction can be reused.
We look at the first integration case after mapping formalization and provide insights into time
savings based on variable mapping reuse (see Fig. 13.6). In this figure, we group each device
category. We can see that the additional specification effort cannot be minimized if no mappings
can be reused. With an increasing percentage of mapping reuse in this first integration case, the
additional time for mapping formalization is surpassed by integration cases Lamps and TVs. We
cannot equalise the formalization time for Speakers during the first reuse scenario.

-3,90

-6,51

-4,48

-2,63

-5,30

-2,80

-1,36

-4,10

-1,11

-0,10

-2,89

0,57
1,17

-1,69

2,252,44

-0,48

3,94

-8,00

-6,00

-4,00

-2,00

0,00

2,00

4,00

6,00

Lamps Speakers TVs

Ti
m

e
in

 S
ec

o
n

d
s

Integra�on Time Savings For First Reuse and Variable Mapping Reuse

0% 20% 40% 60% 80% 100%

Figure 13.6.: Eval 3 – First Integration Knowledge Reuse with Variable Mapping Reuse

Now, we fix the percentage of mapping reuse at 50% and look at the number of reuse scenarios
(see Fig. 13.7). We can see that after the second reuse scenario, the additional formalization
time is surpassed in all use cases.

-0,73 -3,49
-0,27

15,86 15,07
21,06

32,44 33,63

42,39
49,03

52,19

63,7265,61
70,75

85,06

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 2 3

Ti
m

e
in

 S
ec

o
n

d
s

Integra�on Time Savings with variable Reuse and Fixed Mapping Reuse

1st Reuse 2nd Reuse 3rd Reuse 4th Reuse 5th Reuse

Figure 13.7.: Eval 3 – 50% Mapping Reuse with Variable Integration Knowledge Reuse

Overall, both extrapolations assume that integration knowledge can be reused in every subse-
quent integration context. However, this may not be the case if there are more use cases than
the mentioned ones. Hence, the collected data only allows for an idealistic extrapolation as the
experiment was designed in a way such that integration knowledge could be reused as early as
possible.

104

13. Empirical Evaluation 3: Adapter Generation for Services

13.5. Threats to Validity

Overall, the presented evaluation design favors internal over external validity. Hence, we elim-
inated the confounding factors for the independent variable engineering method as much as
possible. Tasks were randomly assigned to the students, but it is made sure that no student
works on the same integration task in subsequent measurement runs.
Internal Validity: Apparently, implementing interface mappings in a textual programming lan-
guage and implementing interface mappings in a graphical web tool poses a different challenge
for novices. Therefore, we ensured that the students working on software adapter implementa-
tion tasks also could rely on the NodeJS project skeleton generation service. Furthermore, we
measured the results for using the graphical tool without reuse and reasoning functionality (i.e.,
KDAC variant 1). Consequently, we could identify the time saved by switching from the tex-
tual to the graphical syntax for mapping creation. Although we can see that the second variant
of KDAC is the fastest, we can only approximate the point where using the tool in addition to
implementing the software adapter pays off. This is mainly due to the challenge of collecting
enough realistic engineering data.
External Validity: All participants were able to solve all tasks given the tooling infrastructure.
Nevertheless, we can only discuss generalized statements based on this experiment within the
following frame: There may be a selection bias as only four students were serving as study popu-
lation members. The representativeness of use cases is ensured by using OpenAPI specifications
from external product vendors. However, it was made sure during OpenAPI interface description
selection that mappings could be chained early in the experiment. This may not hold in practice.
Finally, the evaluation focuses on the engineering method. Hence, different technologies might
have produced other results. Last, there existed a learning curve by the students for all use cases.
The first integration contexts worked on (i.e., lamps) had a higher standard variation than the
following use case (i.e., TVs). For instance, the highest (18 minutes) and second-highest stan-
dard deviation (10.7 minutes) have been measured for the tasks "MANUAL Yeelight-Lifx" (i.e.,
lamps) and "SUPPORTED Sonos-Sony" (i.e., speakers). The lowest (0.1) and second-lowest
(0.1) standard deviations have been measured for the tasks "SUPPORTED-reasoning Samsung
- Epson" and "SUPPORTED-reasoning Sony-Sonos". However, this learning curve applied to all
students as they had no prior experience in implementing software adapters or using the KDAC
tooling environment. In this evaluation context, no experience can be measured more precisely
than some experience.

105

14. Performance Evaluation: Reasoning
Algorithms and Architectures

In this experiment, we benchmark the implemented reasoning algorithms using data sets pro-
duced by a supporting tool. Therefore, we deployed the implemented reasoning component on
two realistic architectures (i.e., fat client and thin client model). The central evaluation goal
was to approximate if the tooling environment can also efficiently support the system integrator
when the knowledge base becomes large.

14.1. Evaluation Setup

Challenge: It is unclear how long the implemented reasoning algorithms need to compute map-
pings based on action composition when the multigraph contains many nodes (i.e., interface
descriptions) that are connected by many edges (i.e., mappings).
Experiment Scope: The web-based tool was requested to deduce a mapping from the requested
to the provided action as defined by the interface description. The time needed to calculate the
mapping was measured in milliseconds by the tool itself and printed onto the available console.
The measurements were mostly conducted on different days.
Fat Client: The web application as used in evaluations 2 and 3 was directly connected to a cloud
hosted NoSQL database. Therefore, all computations (e.g., mapping calculations) were done
within the browser. A Google Cloud Firestore provides the data access layer within the Google
Firebase environment. The data process layer was running on the device, using the application.
The experiment was conducted on a Windows 10 laptop with an Intel(R) Core(TM) i5-5200U
CPU @ 2.20GHz (2 cores) and 16 GB of RAM.
Thin Client: The web application as used in evaluations 2 and 3 is packaged as a container. The
underlying tool architecture utilizes a Kubernetes cluster. Therefore all necessary functionalities
such as the transformation pre-processor, adapter generator, authentication, and user manage-
ment were deployed as pods. Hence, the data processing layer was running on the back end
(e.g., calculating mappings). The services are running on an Kubernetes cluster that has access
to up to 8 CPUs with 2.6 Ghz and 16 GB of RAM.

In total, three data series were created (see Table 14.1). A data series consists of a sequence
of measurement runs. In each measurement run, the respective algorithms calculated available
mappings. The following parameters influenced the associated network of node and edges for
each calculation:

• N is the number of nodes

• D is the maximum number of edges starting at each node in addition to the first edge

106

14. Performance Evaluation: Reasoning Algorithms and Architectures

• L is a binary variable that states whether loops are allowed or not

Table 14.1.: Eval 4 – Parameters for Created Data Series
Data series N Values D L Reference Color

1 10, 100, 500, 1000, 2000, ..., 6000 1 true blue
2 10, 100, 500, 1000, 2000, ..., 6000 3 true orange
3 10, 100, 500, 1000, 2000, ..., 6000 1 false grey

Source Node TargetNode

Figure 14.1.: Eval 4 – Example for D=1

Source Node TargetNode

Figure 14.2.: Eval 4 – Example for D=3

An example for different values for parameter D is illustrated in Fig. 14.1 and Fig. 14.2. In
addition to D, the parameter L has been sent to true as both graphs contain loops.

14.2. Fat Client Results

The calculation time results are shown in Fig. 14.3. The graph demonstrates the calculation
time dependent on the N value of the test data set. For example, the calculation time to create
an adapter from node 1 to node 500 was 7966 ms (8 seconds) for a network created during data
series 1. It was 14871 ms (15 seconds) for a network created during data series 2 and 9071
ms (9 seconds) for a network created during series 3. The calculation time increased with an
increasing N or increasing D. The highest values from node 1 to node 6000 were achieved with
139647 milliseconds (2.3 minutes) for data series 1, 300910 milliseconds (5 minutes) for data
series 2 and 152521 milliseconds (2.5 minutes) for data series 3.

To approximate whether the collected data exposes quadratic or exponential growth, we will
only look at data series 1 and 3 as their measurements are quite similar and hence can be com-
bined. For the approximation, we allowed quadratic functions of type ax2 + bx and exponential
functions of type a× ebx.
We can see that both generated approximation functions expose a highR2 value (see Table 14.2).

107

14. Performance Evaluation: Reasoning Algorithms and Architectures

The coefficient of determination or R2 value gives information of the goodness of fit of a model.
R2 is 1 at max, and a high R2 value indicates a good fit. A graphical representation of both
approximation functions can be seen in in Fig. 14.4.

Model f(x) Approximation R2 value
Quadratic 0.00641 ×x2 − 12.47791× x 0.99

Exponential 21670.70934 ×e0.00045×x 0.97

Table 14.2.: Eval 4 – Quadratic and Exponential Growth Rate Approximation

0

50000

100000

150000

200000

250000

300000

350000

10 100 500 1000 2000 3000 4000 5000 6000

C
al

cu
la
�

o
n

Tm
e

in
 m

s

Number of Interfaces N

Performance for Fat Client Infrastructure

D=1, L=true D=3, L=true D=1, L=false

Figure 14.3.: Eval 4 – Calculation times in Milli Seconds (ms) for Fat Client

0 1000 2000 3000 4000 5000 6000 7000
N

0

50000

100000

150000

200000

Ca
lcu

la
tio

n
Ti

m
e

in
 m

s

Quadratic Approximation
Exponential Approximation
D=1; L=True
D=1; L=False

Figure 14.4.: Eval 4 – Quadratic and Exponential Approximation Functions for Fat Client

108

14. Performance Evaluation: Reasoning Algorithms and Architectures

14.2.1. Discussion

The experiment indicates that the tool can effectively reason about mappings if the knowledge
graph’s size is beneath a certain limit. The calculation times are growing quadratic to the com-
plexity of the domain. A quadratic growth rate doubles with each addition to the input data set.
This growth rate is reasonable, but not ideal [66]. Loops do not seem to slow the implemented
algorithms down.

14.3. Thin Client Results

The calculation time results for the thin client infrastructure are shown in Fig. 14.5. Again, the
graph demonstrates the calculation time dependent on the N value of the test data set. For exam-
ple, the calculation time to create an adapter from node 1 to node 500 was 9287 milliseconds (9
seconds) for a network created during data series 1. It was 17904 milliseconds (18 seconds) for
a network created during data series 2 and 9198 milliseconds (9 seconds) for a network created
during sequence 3. The highest values from node 1 to node 6000 were achieved with 310299
milliseconds (5.2 minutes) for data series 1, 705128 milliseconds (11.8 minutes) for data series
2 and 295690 milliseconds (5 minutes) for data series 3.

Again, we approximate the functions as described in the fat client results section. We can see that
both generated approximation functions expose a high R2 value (see Table 14.3). A graphical
representation of both approximation functions can be seen in Fig. 14.6.

Model f(x) Approximation R2 value
Quadratic 0.00164 ×x2 − 12.95678× x 0.99

Exponential 13883.74020 ×2e0.00039×x 0,97

Table 14.3.: Eval 4 – Quadratic and Exponential Growth Rate Approximation

0

100000

200000

300000

400000

500000

600000

700000

800000

10 100 500 1000 2000 3000 4000 5000 6000

C
la

cu
la
�

o
n

 T
im

e
in

 m
s

Number of Interfaces N

Performance for Thin Client Infrastructure

D=1, L=true D=3, L=true D=1, L=false

Figure 14.5.: Eval 4 – Calculation times in Milli Seconds (ms) for Thin Client

109

14. Performance Evaluation: Reasoning Algorithms and Architectures

0 1000 2000 3000 4000 5000 6000 7000
N

0

100000

200000

300000

400000

500000

Ca
lcu

la
tio

n
Ti

m
e

in
 m

s

Quadratic Approximation
Exponential Approximation
D=1; L=True
D=1; L=False

Figure 14.6.: Eval 4 – Quadratic and Exponential Approximation Functions for Thin Client

14.3.1. Discussion

The calculation times are growing quadratic to the complexity of the domain. In comparison to
the fat client infrastructure, the thin client approach is visibly slower. For example, a mapping
time calculation from node 1 to 6000 in data series 1 from the fat client infrastructure was 2.3
minutes, where the corresponding data series from the Thin Client was 5.2 minutes. This is
remarkable in the sense that the algorithm returns a result earlier when running in the browser
with fewer CPUs and similar main memory. We suspect two things. The Kubernetes cluster is
using more calculation time for providing its service than expected. Furthermore, the algorithms
in both approaches are implemented using Node.js. Node.js only runs in one thread and does
not provide parallelization out of the box.
Independent of the differences in measurement, we cannot state how many nodes and edges a
knowledge graph for integration knowledge may have in industry. Hence, we cannot state when
mapping generation time is tolerable or not.
As a side note, we have to mention that HTTP is not the best choice for long running processes
(i.e., several minutes). During some experimental runs with N > 6000, we quickly ran into
multiple timeout errors.

14.4. Threats to Validity

Internal Validity: One limitation for both experiment’s internal validity is measurement inac-
curacies. The measurements were all conducted on different days resulting in slightly different
circumstances for each measurement. Therefore a varying internet connection, different geo-
graphic locations, and varying available capacities of the laptop conducting the test may affected
calculation times. Nevertheless, the experiment displays a multitude of data points, revealing a
definite correlation between the calculation times and the complexity of the knowledge graph.
However, the collected data set is small.

110

14. Performance Evaluation: Reasoning Algorithms and Architectures

External Validity: The external validity of this study is influenced by two factors. First, the test
data consists of homogeneous interface descriptions. Every OpenAPI created during the test
only differs from its title. Hence, only simple mappings were inserted as edges. Also, every
interface description is displaying a basic API with only one resource. Therefore the test data
does not properly represent the practical IoT domain with many profoundly different devices.
Second, the test data is evenly connected. Every device was mapped to an exact number of other
devices. Such an evenly distributed linking is unlikely to exist in a domain. Domain models of
real world scenarios may be sparsely or irregularly connected and may have unreachable nodes,
dead ends, or central nodes acting as a major intersection.
The named factors decrease the external validity of the experiment. The degree of this influence
is undetermined. A heterogeneous set of interface descriptions in the domain model might have
an increasing effect on calculation times.

111

Part VI.

Related Work, Limitations and
Conclusion

112

15. Related Work

Four different research streams deal with semantic interoperability for various system classes.
These are symbolic artificial intelligence, component-based software development, software ar-
chitecture, and web services [12].
In symbolic artificial intelligence, semantic interoperability is discussed from the perspective
of semantic service descriptions [67], ontologies [68, 69], ontologies for IoT [70], case-based
reasoning [71, 72], empirical data integration [73], and knowledge base evolution [74]. A influ-
ential, theoretical approach for semantic interoperability was proposed by Euzenat [36].
In component-based software development, semantic interoperability is achieved by semantic
component retrieval [52, 55], integration approaches for dynamic systems [75], reuse-oriented
recommender systems [54], ontology-based software reuse [76], run time healing of integration
problems [77], software interface adaptation [78], and semantic interoperability testing [79].
In software architectures, semantic interoperbility is discussed regarding architectural styles
[14], fuzzy service matching [16], software adapters [27, 7, 80], service-oriented architectures
[81], architectural knowledge management [19, 38], architectural mismatch and reuse [20], inter-
operability for information systems [82], interface adaptations [83], and interoperability between
software ecosystems [84].
In the web service community, semantic interoperability is examined regarding service descrip-
tion matching [85, 86, 87], semantic degrees [88], service composition [47, 46], description
techniques [48], web of things [45], and matching of web service engineering data [89].
From a software engineering perspective, application examples of semantic technologies within
IoT platforms include discovery service architecture patterns [90, 91], component-based archi-
tectures [92], ontology proposals [69], smart home applications [93], engineering frameworks
[94], and pervasive computing architecutres [95]. In industrial IoT systems (also called Industry
4.0), software engineers are supported to harness the benefits of semantic technologies by pro-
viding administrative shells [96], standard integration [97, 98], plug and play architectures for
embedded systems [99, 100], description standards [101], and ontology proposals [102].

Although there are existing surveys about semantic interoperability for IoT [103] and industrial
IoT systems [104], these surveys rather focus on domain-specific technological solutions or a
system architecture and do not focus on the underlying engineering method to achieve interop-
erability. Hence, we conducted a fine grained search that mentioned knowledge management
processes between stakeholders explicitly [12]. In table 15.1, we categorize formal approaches
based on the applied integration methods (i.e., as presented in the background chapter), use
of software knowledge and assets, mapping creation time, and viewpoint. All papers test their
solution proposals based on reconfiguration time, degree of automation for software adapter gen-
eration, reasoning principles applied to reduce mapping specification time, and software adapter
correctness. As a consequence, a distinct separation of method and technological solution or

113

15. Related Work

architecture proposal is not possible. Otherwise, an evaluation would not be feasible. However,
all papers explicitly focus on humans-in-the-loop to achieve semantic interoperability:

Table 15.1.: Related Approaches based on Formal Mappings Tested in IoT and Industrial IoT
scenarios

Study Year Research Focus Method Software Knowledge
and Assets

Mapping Cre-
ation Time

View-
point

Top
Down

Bottom
Up

Fully
Au-
tomat-
able

Ali et al. [105] 2015 Web Services x x
Domain Ontology, Se-
mantic Sensor Descrip-
tions

Requirements Data

Khodadadi et al. [87] 2017 Web Service Discovery x Domain Ontology, JSON-
LD, Thing Description Desing Time Service

Nostro et al. [80] 2016 Software Adapter x x Domain Ontology, La-
beled Transition Systems Implementation Service

Bennaceur et al. [7] 2015 Software Adapter x x
Domain Ontology, Finite
State Machine, Model
checker

Run Time Service

Gyrard et al. [106] 2015 Logical AI x
Domain Ontology,
Dataset and Rules,
SPARQL Queries

Implementation Data

Patel et al. [107] 2015 Software Architecture x Conceptual Model Implementation Service

Grangel-González et
al. [108] 2018 Logical AI x

Device Models (Automa-
tionML), Domain Model
(Probabilistic Soft Logic)

Implementation Data

Kovatsch et al. [109] 2015 Web Service x x

Semantic Service De-
scription (RESTdesc),
Resource Directory,
Domain Ontology

Run time Data

Koziolek et al. [99] 2018 Software Architecture x x
Device Models
(PLCopen), OPC UA
Service descriptions

Run time Service

Nagib et al. [110] 2016 Software Architecture x Sensor Ontology, Domain
Model (DBpedia) Requirements Data

Mooij [111] 2013 Software Adapter (Syntax
only) x

Software Adapters,
Database Abstraction
Models

Development Service

Yang et al. [112] 2019 Software Architecture x x Proprietary Semantic
Documents (Table-based) Development Data

Prinz et al. [113] 2019 Software Architecture x x oneM2M, BPMN Model-
ing Editor Development Service

Ali et al. [105] present a semantic processing framework for IoT-enabled communication sys-
tems. They base their method on queries for static and dynamic data, and make it easier and
more cost-effective to add new external sources. They test their approach based on semantic
data, which links to a personalized profile in a publish-subscribe architecture.
Khodadadi et al. [87] suggest a framework for service definition and discovery. This framework
relies on ontologies paired with JSON-LD and is a prime example for bottom-up engineering,
as services are annotated incrementally. Their evaluation shows their solution is also scalable.
Nostro et al. [80] introduce an approach to achieve functional and non-functional interoperabil-
ity through synthesized connectors. All devices involved support a BPMN-like language. By
using a stochastic model-based implementation and a dependability analysis, this approach al-
lows software adapters to be generated in an automated way.
Bennaceur et al. [7] present another fully automatable approach that achieves interoperability
through semantic technologies. Their approach uses a domain-specific ontology, already an-
notated services, and model checking techniques to generate correct by construction mediators

114

15. Related Work

automatically. In contrast to Nostro et al., they target the run time phase and minimize additional
specification effort using reasoning principles.
Gyrard et al. [106] assist IoT developers in designing interoperable semantic web of things ap-
plications. To overcome manual mapping work, they design a generator that links all available
data to a collection of ontologies. Therefore, they collected multiple ontologies from research
projects and integrated them into the generator. Hence, the software engineer does only need to
check if the generator suggests the correct mappings.
Patel et al. [107] enable high-level application development for the Internet of Things by using
a common vocabulary defined by (non-technical) domain experts. Therefore, they separate IoT
application development into different concerns and they provide a conceptual framework and
an implementation framework that supports various stakeholders in their actions.
Grangel-González et al. [108] present knowledge graphs for semantically integrating cyber-
physical Systems. They claim that integration knowledge is trapped within informal documents
that describe cyber-physical systems. Hence, they propose a tool called SemCPS that combines
Probabilistic Soft Logic and Knowledge Graphs to describe both a CPS and its components
semantically. Their approach checks whether one component model conforms to another com-
ponent model based on RDF principles.
Kovatsch et al. [109] introduce a practical approach to semantics for the IoT regarding physical
states and device mashups. Their approach calculates an execution plan based on RESTdesc
service descriptions to facilitate service composition. They note that calculating an execution
plan took longer than expected and that this is a potential obstacle to applying their approach out
of the box.
Koziolek et al. [99] show a self-commissioning industrial IoT Systems in Process Automation
from an architectural point of view. This reference architecture is a prime example of top-down
driven interoperability as they do not involve human interaction and they solely based their solu-
tion on standardized information models (i.e., PLCOpen and OPC UA). They could realize plug
and play scenarios with decreased commission time to execute closed loop control programs.
Nagib et al. [110] present a framework for IoT devices. This framework facilitates on-the-fly dy-
namic integration, discovery, and access to heterogeneous sensor data. This is mainly achieved
by reusing sensor data integrated from multiple heterogeneous sources, so that building innova-
tive applications and services is accelerated.
Mooij [111] outlines an approach for system integration by developing adapters using a database
abstraction. Based on a model-based specification, domain experts can reason about the speci-
fication. This specification is then used to generate software adapters. This is mainly achieved
by modeling system interactions as declarative database operations instead of message commu-
nications. Hence, their approach only relies on a human to check semantic interoperability (i.e.,
domain experts interpret the database operation syntax).
Yang et al. [112] introduce an approach based on information fusion to implement semantic
interoperability between IoT devices and end users. In contrast to the approaches presented so
far, this approach focuses not on devices to talk to each other but on how the interaction of
the user differs based on the same data in different contexts. Therefore, they attach a semantic
document representation to the payloads being rendered by the IoT application. Context-aware
system research also seems to influence this approach.
Finally, Prinz et al. [113] propose a novel I4.0-enabled engineering method. In their work, they

115

15. Related Work

require a human to model the desired production process with the Business Process Modelling
Notation (BPMN). An orchestration engine executes this process at run time, where each process
step is linked to available I4.0 components by relying on oneM2M service descriptions. There-
fore, each BPMN process element contains metadata which identifies the required oneM2M
service.

This overview of methods is based on all presented abstract methods. Now, we only look at BU
methods as these methods are directly related solution proposals to our approach.

116

16. Discussion

KDAC classifies as a bottom-up approach. As seen throughout this work, the corresponding
approaches aim at solving the semantic interoperability problem by composing autonomously
developed required and provided interfaces. To outline the differences between KDAC and these
existing approaches, we categorize found bottom-up approaches based on their goal. These
goals are common domain model generation, software template generation, software adapter
generation, and semantic service orchestration. Each subsequent goal conceptually requires all
previous goals to be achieved.

Category Author Title

Common
Domain
Model

Yang et al.
[112]

Tabdoc Approach: An Information Fusion Method to Implement Se-
mantic Interoperability Between IoT Devices and Users

Grangel-
González
et al.
[108]

Knowledge Graphs for Semantically Integrating Cyber-Physical
Systems

API Template
Generation

Gyrard et
al. [106]

Assisting IoT Projects and Developers in Designing Interoperable
Semantic Web of Things Applications

Patel et al.
[107]

Enabling high-level application development for the Internet of
Things

Software
Adapter
Generation

Mooij
[111]

System integration by developing adapters using a database abstrac-
tion

Bennaceur
et al. [7]

Automated Synthesis of Mediators to Support Component Interop-
erability

Service
Orchestration

Khodadadi
et al. [87]

Simurgh: A framework for effective discovery, programming, and
integration of services exposed in IoT

Kovatsch
et al.
[109]

Practical semantics for the Internet of Things: Physical states, device
mashups, and open questions

Prinz et
al. [113] A novel I4.0-enabled engineering method and its evaluation

Table 16.1.: Related Bottom-Up Solution Approaches

Common domain model generation refers to unifying different service descriptions on the same
domain or proposing a new domain model. API template generation builds upon such a domain
model to assist the system integrator. These approaches generate code artefacts such that inter-
faces must not be built from scratch. Software adapter generation adds the ability to compose

117

16. Discussion

a required and a provided interface. In contrast to template generation, the generated code is
executable but must be manually imported into the software project during implementation. Se-
mantic service orchestration generation shifts software adapter generation to system run time.
Here, the software adapter includes all logic to call provided services in order to fulfil the re-
quired service.

16.1. Limitations

We will now look at the four categories and discuss limitations of KDAC in contrast to the iden-
tified existing approaches (see Table 16.1).
Regarding creating a common domain model, we must differentiate between proposing a new
domain model and building up a common domain model based on integration cases. KDAC
stores mappings and builds up a common domain model for integration cases based on available
devices. KDAC cannot be used to define a domain model without these use cases as we require
concrete interface descriptions. The resulting domain model will always be incomplete. There-
fore, we conclude that KDAC cannot be used at the moment to propose a new domain model.
API Template Generation already takes a specific viewpoint on the application development pro-
cess and does not only look at modelling the desired domain. For instance, the domain model
(e.g., described in mappings or using an ontology) can be included in generating abstract soft-
ware stubs that are further implemented by the system integrator. These stubs contain interfaces
based on the available domain knowledge but must still be connected to the available concrete in-
stances. KDAC assists the system integrator by proposing such mappings. Furthermore, KDAC
can be used to generate an API template for further implementation only if the strict mode is
deactivated.
Software Adapter Generation can be automated on the technical (i.e., networking protocol), syn-
tactical (e.g., payload structured as JSON) and semantic (i.e., common domain vocabulary) level.
KDAC provides a structured approach to build up the semantic level. Based on the distinction
between required and provided interfaces, KDAC can generate a software adapter automati-
cally. Depending on the incompleteness of mapping knowledge between required and provided
interfaces, software adapter can also be incomplete. This means that for certain identifiers, no
mapping may be defined. Although the missing mappings can also be inserted into the generated
software code, these mappings are not synced to the knowledge base. Hence, software adapters
should only be generated when all mappings for an integration context are specified and tested.
Service Orchestration aims to discover relevant services with respect to the required user request
and to create a form of computation (e.g., flow-based) at run time. Instead of using semantically
annotated services based on a common standard (e.g., SAWSDL [23]), the knowledge base used
by KDAC as well as the reasoning algorithms can be invoked with the required service as an
input. As an output, the tool infrastructure then invokes all identified provided services, maps
the values to the required service specifications and then returns the desired results. Here, the
central characteristic of incomplete integration knowledge comes into play. Although KDAC
is conceptually ready to be applied at run time, the downside of missing integration knowledge
must be tackled. Especially when the knowledge base contains few mappings, a mechanism
must be provided such that new mappings can be inserted at run time fast.

118

16. Discussion

Most of the identified related bottom-up approaches are using distinct technologies for describ-
ing interfaces, creating a common domain model and providing some intelligence to assist the
system integrator.
Obviously, the selected technologies for KDAC restrict the applicability of the method as well.
As KDAC relies on JSONata to store mappings, service descriptions must be exportable as
JSON. Hence, other service descriptions such as OPC UA [114], which is mainly used in man-
ufacturing scenarios or Eclipse Vorto1, which is used in home automation scenarios, require
adaptions. If a proprietary description standard is used (e.g., a database abstractions as pre-
sented in [111]), major software refactoring is to be expected.
Within the world of web service, OpenAPI [56] and AsyncAPI [57] are relatively new, although
they are already widely applied. More mature standards such as the web service description lan-
guage (WSDL [37]) are also a candidate for describing web services that do not follow REST
principles and that may require other networking protocols. Supporting such a standard would
require adaptations within the tooling infrastructure.
On a more abstract layer, semantic web service descriptions (e.g., SAWSDL [23], JSON-LD
[42] or RESTdesc2) are not compatible with the current tooling infrastructure. For describing
the semantics of interface elements, most identified approaches rely on a formal ontology (e.g.,
supporting SHOIN (D). Furthermore, the reasoner can infer (new) knowledge based on such a
formalization. Although different profiles restrict the expressiveness of formal ontologies (e.g.,
OWL-Full, OWL-DL or OWL-Lite), engineering knowledge within these technologies is com-
plex and requires trained system integrators as compared to teaching them JSONata. Therefore,
KDAC does not support ontologies. As a consequence, we do not inherit the same formalization
and modelling efforts.

Furthermore, we learned early on that modeling the T-Box (i.e., concepts to represents inter-
face mappings) such that reasoners can infer (new) mappings is hard and would result in poor
applicability for students (see JSON-LD in empirical experiment 2 and [11]). Hence, we im-
plemented our own knowledge base and reasoning algorithms. The downside is that we cannot
benefit from the time tested and validated reasoning technologies from the artificial intelligence
community. However, this does not invalidate our initial claim that having an ontology as a cen-
tral knowledge base for semantic integration is not beneficial for IoT applications as they must
be updated continuously.

16.2. Future Work

The presented approach speeds up software adapter implementation in a reliable way. The scope
of KDAC includes web services based on the REST paradigm and event-driven architectures.
The applicability is evaluated within home automation scenarios. In this section, we will high-
light the most important next steps.
First, the tool currently assists the system integrator at design time. This means that code has to

1https://www.eclipse.org/vorto/
2https://restdesc.org/

119

16. Discussion

be recompiled every time a new software adapter is produced and inserted into the correspond-
ing software project. Although this process can be automated using continuous integration or
delivery pipelines, the underlying system cannot change itself autonomously. In order to reuse
integration knowledge in a self-adaptive way, integration knowledge must be evaluated at sys-
tem run time. However, this would only be an intermediate step towards emergent systems. In
an emergent system, device integration is not planned or reasoned based on human integration
knowledge, but the system learns necessary communications based on observed device interac-
tions. However, such plug and play scenarios can only work if integration reliability is given.
Second, reliability in KDAC is currently achieved by a testing process. This testing process
involves human knowledge when a test is passed (i.e., when devices in the physical world show
the expected behaviour). However, this mechanism is not suitable for device integration at run
time. The underlying challenge is to deal with missing integration knowledge. At the moment,
missing integration knowledge is handled by the system integrator. Although effective, this pro-
cess step cannot be handled at run time efficiently. Hence, an automated way to resolve missing
integration knowledge at run time to enable device integration is necessary.
Third, we are currently relying on syntactic interface specifications in the OpenAPI and Asyn-
cAPI format. Although this type of interface specification is more widely used as semantic
interface specifications (e.g., SAWLSDL [23]), they must be created in the first place. The
process to achieve such descriptions still involves a high degree of manual work and technical
knowledge. If no such descriptions exist, our approach (and most other relevant approaches)
will not work. Here, more research on self-describing is necessary. Schwichtenberg et al. [115]
take a fist step by presenting an approach that can semi-automatically link OpenAPI specifica-
tions to a semantic grounding (e.g., a domain ontology) and then generate code adapters from it.
Although this approach reduces human formalization effort, it still assumes that there exists one
central domain ontology. Hence, more radical approaches towards self-describing systems are
needed. For instance, Alon et al. [18] present an approach to learn distributed representations of
code as vectors. However, such approaches are in an early research stage, and it may take years
until they become applicable.
Fourth, other technical extensions to our work so far are A) labeled transitions systems, B)
generating standard enhancements, and C) formal proofs A). At the moment, KDAC can only
be applied to stateless services. This means that the sequence of service invocation does not
matter. However, if service invocations do depend on each other (e.g., in one-to-many map-
ping), labelled transition systems may be integrated as another specification language. B) The
integration knowledge produced by the reasoning algorithms may be used to generate standard
enhancements. For instance, an ontology could be just another node within a mapping chain.
Thereby, service instances for the A-BOX may be identifiable and transferred to an existing
ontology. However, this ontology must be carefully selected, C) Our reasoning algorithms are
well documented and extensively tested within our evaluations. However, we did not formally
prove if they actually generate all possible mappings. Furthermore, their performance can be
improved.
Last, a more business-related topic is named. Integration knowledge is a competitive advantage
in the IoT market. Hence, not everybody may be eager to share this knowledge. Although the
presented approach assumes that generating software adapters directly outweighs the additional
formalization effort in future cases, sharing intellectual property (e.g., integration knowledge)

120

16. Discussion

may be subject to restrictions. Such restrictions (e.g., only selected system integrators can use
individual bits of integration knowledge) are currently not supported by the tool.

121

17. Conclusion

In an ideal world, all software components would be self-descriptive such that they can unam-
biguously communicate in an automated way. However, service interoperability of embedded
devices is still a problem for dynamically changing Internet of Things and Industry 4.0 soft-
ware platforms. Similar to the Babylonian confusion, distributed software components currently
suffer from communication problems. Although they may communicate with each other in the
same language, they cannot understand each other. In this work, we introduced a novel engineer-
ing method that explicitly allows for an incomplete semantic domain description without losing
the ability for automated IoT system integration. We utilize system integrators as a communica-
tion expert to translate between device descriptions in a meaningful way. By sharing integration
knowledge centrally, we assist the system integrator in automating software adapter generation
in the future. Our evaluation shows that students can efficiently apply the presented method and
beat classical software adapter implementation. Hence, the presented approach only formalizes
relevant integration knowledge that can evolve over time.
We hope that other researchers find our work inspiring in order to ultimately solve the interop-
erability challenge for distributed, self-adaptive, self-aware and emergent software systems.

122

Bibliography

[1] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the internet of things:
early progress and back to the future,” International Journal on Semantic Web and Infor-
mation Systems (IJSWIS), vol. 8, no. 1, pp. 1–21, 2012.

[2] S. Heiler, “Semantic interoperability,” ACM Computing Surveys (CSUR), vol. 27, no. 2,
pp. 271–273, 1995.

[3] N. F. Noy, A. Doan, and A. Y. Halevy, “Semantic integration,” AI magazine, vol. 26, no. 1,
pp. 7–7, 2005.

[4] ecl@ass, “ecl@ass.” [Online]. Available: https://www.eclasscontent.com/index.php?
language=en[retrieved:15.02.2021]

[5] A. Rausch, C. Bartelt, S. Herold, H. Klus, and D. Niebuhr, “From software systems to
complex software ecosystems: model-and constraint-based engineering of ecosystems,”
in Perspectives on the Future of Software Engineering. Springer, 2013, pp. 61–80.

[6] M. Autili, P. Inverardi, R. Spalazzese, M. Tivoli, and F. Mignosi, “Automated synthesis of
application-layer connectors from automata-based specifications,” Journal of Computer
and System Sciences, vol. 104, pp. 17–40, 2019.

[7] A. Bennaceur and V. Issarny, “Automated Synthesis of Mediators to Support Component
Interoperability,” IEEE Transactions on Software Engineering, vol. 41, no. 3, pp. 221–
240, Mar. 2015.

[8] F. Burzlaff and C. Bartelt, “Knowledge-driven architecture composition: Case-based for-
malization of integration knowledge to enable automated component coupling,” in 2017
IEEE International Conference on Software Architecture Workshops (ICSAW). IEEE,
2017, pp. 108–111.

[9] F. Burzlaff, S. Jacobs, and C. Bartelt, “Automated configuration in adaptive iot software
ecosystems to reduce manual device integration effort: Application and evaluation of a
novel engineering method,” ADAPTIVE 2020, 2020.

[10] A. Rausch, C. Bartelt, S. Herold, H. Klus, and D. Niebuhr, “From Software Systems to
Complex Software Ecosystems: Model- and Constraint-Based Engineering of Ecosys-
tems,” in Perspectives on the Future of Software Engineering: Essays in Honor of Dieter
Rombach, J. Münch and K. Schmid, Eds. Berlin, Heidelberg: Springer, 2013, pp. 61–80.

123

Bibliography

[11] F. Burzlaff, C. Bartelt et al., “Towards automating service matching for manufactur-
ing systems: Exemplifying knowledge-driven architecture composition,” Procedia CIRP,
vol. 72, pp. 707–713, 2018.

[12] F. Burzlaff, N. Wilken, C. Bartelt, and H. Stuckenschmidt, “Semantic Interoperability
Methods for Smart Service Systems: A Survey,” IEEE Transactions on Engineering Man-
agement, pp. 1–15, 2019.

[13] F. Burzlaff and C. Bartelt, “Knowledge-Driven Architecture Composition: Assisting the
System Integrator to reuse Integration Knowledge (to be published),” in International
Conference on Web Engineering. Springer, 2021, p. tba.

[14] H. Muccini and M. T. Moghaddam, “Iot architectural styles,” in European Conference on
Software Architecture. Springer, 2018, pp. 68–85.

[15] Lov4IoT, “Lov4iot.” [Online]. Available: https://lov4iot.appspot.com/[retrieved:15.02.
2021]

[16] M. C. Platenius, “Fuzzy matching of comprehensive service specifications,” PhD Thesis,
Universitätsbibliothek, Paderborn, 2016.

[17] M. Klusch and P. Kapahnke, “Semantic Web Service Selection with SAWSDL-MX,”
in Proceedings of the Second International Conference on Service Matchmaking
and Resource Retrieval in the Semantic Web - Volume 416, ser. SMRR’08.
Aachen, Germany, Germany: CEUR-WS.org, 2008, pp. 2–16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2889945.2889947

[18] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed rep-
resentations of code,” Proceedings of the ACM on Programming Languages, vol. 3, no.
POPL, pp. 1–29, 2019.

[19] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software archi-
tecture knowledge management: Practice and future,” Journal of Systems and Software,
vol. 116, pp. 191–205, 2016.

[20] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch: Why reuse is still so
hard,” IEEE software, vol. 26, no. 4, pp. 66–69, 2009.

[21] openHAB Foundation e.V., “openHAB,” 2019. [Online]. Available: https://www.
openhab.org/[retrieved:15.02.2021]

[22] S. Bunzel, “AUTOSAR – the Standardized Software Architecture,” Informatik-
Spektrum, vol. 34, no. 1, pp. 79–83, Feb. 2011. [Online]. Available: http:
//link.springer.com/10.1007/s00287-010-0506-7

[23] SAWSDL, “SAWSDL,” 2021. [Online]. Available: https://www.w3.org/2002/ws/sawsdl/
[retrieved:15.02.2021]

124

Bibliography

[24] N. Medvidovic and R. N. Taylor, “Software architecture: foundations, theory, and prac-
tice,” in 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 2.
IEEE, 2010, pp. 471–472.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Abstraction and
reuse of object-oriented design,” in European Conference on Object-Oriented Program-
ming. Springer, 1993, pp. 406–431.

[26] M. Shaw, “Architectural issues in software reuse: It’s not just the functionality, it’s the
packaging,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. SI, pp. 3–6, 1995.

[27] R. Spalazzese and P. Inverardi, “Mediating Connector Patterns for Components Interop-
erability,” in Software Architecture, ser. Lecture Notes in Computer Science, M. A. Babar
and I. Gorton, Eds. Springer Berlin Heidelberg, 2010, pp. 335–343.

[28] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli, “Towards an
Engineering Approach to Component Adaptation,” in Architecting Systems with Trust-
worthy Components, ser. Lecture Notes in Computer Science, R. H. Reussner, J. A.
Stafford, and C. A. Szyperski, Eds. Springer Berlin Heidelberg, 2006, pp. 193–215.

[29] D. Harel and B. Rumpe, “Meaningful modeling: What’s the semantics of "semantics"?”
Computer, vol. 37, pp. 64–72, Nov. 2004.

[30] M. Fowler, Analysis patterns: reusable object models. Addison-Wesley Professional,
1997.

[31] A. Bennaceur, V. Issarny, R. Spalazzese, and S. Tyagi, “Achieving Interoperability
through Semantics-Based Technologies: The Instant Messaging Case,” in The Semantic
Web – ISWC 2012, ser. Lecture Notes in Computer Science, P. Cudré-Mauroux, J. Heflin,
E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber,
A. Bernstein, and E. Blomqvist, Eds. Springer Berlin Heidelberg, 2012, pp. 17–33.

[32] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated development of
embedded software,” Proceedings of the IEEE, vol. 91, no. 1, pp. 145–164, Jan. 2003,
conference Name: Proceedings of the IEEE.

[33] “Smart appliances reference SAREF ontology,” 2020. [Online]. Available: https:
//sites.google.com/site/smartappliancesproject/home2//[retrieved:15.02.2021]

[34] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of internet-of-things
platforms,” Computer Communications, vol. 89, pp. 5–16, 2016.

[35] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web services,” in Web services.
Springer, 2004, pp. 123–149.

[36] J. Euzenat, “Towards a principled approach to semantic interoperability,” 2001.

[37] WSDL, “WSDL,” 2021. [Online]. Available: https://www.w3.org/TR/2001/
NOTE-wsdl-20010315[retrieved:15.02.2021]

125

Bibliography

[38] Z. Li, P. Liang, and P. Avgeriou, “Application of knowledge-based approaches in software
architecture: A systematic mapping study,” Information and Software technology, vol. 55,
no. 5, pp. 777–794, 2013.

[39] M. Alavi and D. E. Leidner, “Knowledge management and knowledge management sys-
tems: Conceptual foundations and research issues,” MIS quarterly, pp. 107–136, 2001.

[40] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet of things
architecture, possible applications and key challenges,” in 2012 10th international con-
ference on frontiers of information technology. IEEE, 2012, pp. 257–260.

[41] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in internet of things: Tax-
onomies and open challenges,” Mobile Networks and Applications, vol. 24, no. 3, pp.
796–809, 2019.

[42] JSON-LD, “JSON-LD,” 2021. [Online]. Available: https://www.w3.org/TR/json-ld11/
[retrieved:15.02.2021]

[43] D. H. Lorenz and B. Rosenan, “Code reuse with language oriented programming,” in
International Conference on Software Reuse. Springer, 2011, pp. 167–182.

[44] S. Bunzel, “Autosar–the standardized software architecture,” Informatik-Spektrum,
vol. 34, no. 1, pp. 79–83, 2011, publisher: Springer.

[45] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F. Skarmeta, “Semantic
web of things: an analysis of the application semantics for the iot moving towards the
iot convergence,” International Journal of Web and Grid Services, vol. 10, no. 2-3, pp.
244–272, 2014.

[46] K. Kurniawan, F. J. Ekaputra, and P. R. Aryan, “Semantic Service Description and Com-
positions: A Systematic Literature Review,” in 2018 2nd International Conference on
Informatics and Computational Sciences (ICICoS). IEEE, 2018, pp. 1–6.

[47] M. Cremaschi and F. De Paoli, “A practical approach to services composition through
light semantic descriptions,” in European Conference on Service-Oriented and Cloud
Computing. Springer, 2018, pp. 130–145.

[48] M. Lanthaler and C. Gütl, “On using JSON-LD to create evolvable RESTful services,” in
Proceedings of the Third International Workshop on RESTful Design, 2012, pp. 25–32.

[49] SWoT, “Semantic Web of Things.” [Online]. Available: http://sensormeasurement.
appspot.com/[retrieved:15.02.2021]

[50] Schema, “Home - iotschema.org.” [Online]. Available: http://iotschema.org/[retrieved:
15.02.2021]

[51] A. Bennaceur, “Dynamic Synthesis of Mediators in Ubiquitous Environments,”
phdthesis, Université Pierre et Marie Curie - Paris VI, Jul. 2013. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-00849402

126

Bibliography

[52] O. Hummel and C. Atkinson, “Automated Creation and Assessment of Component
Adapters with Test Cases,” in Component-Based Software Engineering, ser. Lecture
Notes in Computer Science, L. Grunske, R. Reussner, and F. Plasil, Eds. Springer
Berlin Heidelberg, 2010, pp. 166–181.

[53] F. Meyerer and O. Hummel, “Towards Plug-and-play for Component-based Software
Systems,” in Proceedings of the 19th International Doctoral Symposium on Components
and Architecture, ser. WCOP ’14. New York, NY, USA: ACM, 2014, pp. 25–30.
[Online]. Available: http://doi.acm.org/10.1145/2601328.2601334

[54] W. Janjic, O. Hummel, and C. Atkinson, “Reuse-oriented code recommendation systems,”
in Recommendation Systems in Software Engineering. Springer, 2014, pp. 359–386.

[55] O. Hummel and C. Atkinson, “Extreme harvesting: Test driven discovery and reuse of
software components,” in Proceedings of the 2004 IEEE International Conference on
Information Reuse and Integration, 2004. IRI 2004. IEEE, 2004, pp. 66–72.

[56] “OpenAPI Specification,” 2020. [Online]. Available: https://swagger.io/specification/v2/
[retrieved:15.02.2021]

[57] “AsyncAPI Specification,” 2020. [Online]. Available: https://www.asyncapi.com/
[retrieved:15.02.2021]

[58] JSONata, “Json query and transformation language.” [Online]. Available: https:
//jsonata.org/[retrieved:15.02.2021]

[59] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to controlled
experiments of software engineering tools with human participants,” Empirical
Software Engineering, vol. 20, no. 1, pp. 110–141, Feb. 2015. [Online]. Available:
https://doi.org/10.1007/s10664-013-9279-3

[60] G. Leroy, Designing User Studies in Informatics. Springer Science & Business Media,
Aug. 2011, google-Books-ID: IqR7M1h1yDQC.

[61] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka, and M. Oivo,
“Empirical software engineering experts on the use of students and professionals in
experiments,” Empirical Software Engineering, vol. 23, no. 1, pp. 452–489, Feb. 2018.
[Online]. Available: https://doi.org/10.1007/s10664-017-9523-3

[62] “Jolt,” 2020. [Online]. Available: https://github.com/bazaarvoice/jolt[retrieved:15.02.
2021]

[63] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—A publish/subscribe
protocol for Wireless Sensor Networks,” in Communication systems software and
middleware and workshops, 2008. comsware 2008. 3rd international conference on.
IEEE, 2008, pp. 791–798. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=4554519

127

Bibliography

[64] A. J. Ko, T. D. Latoza, and M. M. Burnett, “A practical guide to controlled experiments
of software engineering tools with human participants,” Empirical Software Engineering,
vol. 20, no. 1, pp. 110–141, 2015.

[65] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in software engineering. Springer Science & Business Media, 2012.

[66] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.

[67] M. Klusch, P. Kapahnke, and I. Zinnikus, “SAWSDL-MX2: A Machine-Learning Ap-
proach for Integrating Semantic Web Service Matchmaking Variants,” in 2009 IEEE In-
ternational Conference on Web Services, Jul. 2009, pp. 335–342.

[68] M. Uschold and M. Gruninger, “Ontologies and semantics for seamless connectivity,”
ACM SIGMod Record, vol. 33, no. 4, pp. 58–64, 2004.

[69] I. Szilagyi and P. Wira, “Ontologies and semantic web for the internet of things-a sur-
vey,” in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society.
IEEE, 2016, pp. 6949–6954.

[70] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, “Iot-o, a core-domain iot ontology
to represent connected devices networks,” in European Knowledge Acquisition Workshop.
Springer, 2016, pp. 561–576.

[71] B. Limthanmaphon and Y. Zhang, “Web service composition with case-based reasoning,”
in Proceedings of the 14th Australasian database conference-Volume 17, 2003, pp. 201–
208.

[72] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological
variations, and system approaches,” AI communications, vol. 7, no. 1, pp. 39–59, 1994.

[73] H. Stuckenschmidt, J. Noessner, and F. Fallahi, “A study in user-centric data integration.”
in ICEIS (3), 2012, pp. 5–14.

[74] F. M. Shipman III and R. McCall, “Supporting knowledge-base evolution with incre-
mental formalization,” in Proceedings of the SIGCHI conference on Human factors in
computing systems, 1994, pp. 285–291.

[75] C. Bartelt, T. Fischer, D. Niebuhr, A. Rausch, F. Seidl, and M. Trapp,
“Dynamic Integration of Heterogeneous Mobile Devices,” in Proceedings of the
2005 Workshop on Design and Evolution of Autonomic Application Software, ser.
DEAS ’05. New York, NY, USA: ACM, 2005, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1083063.1083085

[76] H.-J. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk, “Kontor: an ontology-enabled
approach to software reuse,” in In: Proc. Of The 18Th Int. Conf. On Software Engineering
And Knowledge Engineering. Citeseer, 2006.

128

Bibliography

[77] H. Chang, L. Mariani, and M. Pezze, “In-field healing of integration problems with COTS
components,” in 2009 IEEE 31st International Conference on Software Engineering.
IEEE, 2009, pp. 166–176.

[78] H. B. Pötter and A. Sztajnberg, “Adapting heterogeneous devices into an iot context-
aware infrastructure,” in Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2016, pp. 64–74.

[79] S. K. Datta, C. Bonnet, H. Baqa, M. Zhao, and F. Le-Gall, “Approach for semantic in-
teroperability testing in internet of things,” in 2018 Global Internet of Things Summit
(GIoTS). IEEE, 2018, pp. 1–6.

[80] N. Nostro, R. Spalazzese, F. Di Giandomenico, and P. Inverardi, “Achieving functional
and non functional interoperability through synthesized connectors,” Journal of Systems
and Software, vol. 111, pp. 185–199, 2016.

[81] T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba, M. Zaremba, M. Moran, E. Cimpian,
T. Haselwanter, and D. Fensel, “Semantically-enabled service oriented architecture: con-
cepts, technology and application,” Service Oriented Computing and Applications, vol. 1,
no. 2, pp. 129–154, 2007.

[82] H. Abukwaik, D. Taibi, and D. Rombach, “Interoperability-related architectural problems
and solutions in information systems: A scoping study,” in European Conference on Soft-
ware Architecture. Springer, 2014, pp. 308–323.

[83] F. L. Keppmann, M. Maleshkova, and A. Harth, “Adaptable interfaces, interactions, and
processing for linked data platform components,” in Proceedings of the 13th International
Conference on Semantic Systems, 2017, pp. 41–48.

[84] M. Jacoby, A. Antonić, K. Kreiner, R. Łapacz, and J. Pielorz, “Semantic interoperabil-
ity as key to iot platform federation,” in International Workshop on Interoperability and
Open-Source Solutions. Springer, 2016, pp. 3–19.

[85] S. Grimm, B. Motik, and C. Preist, “Matching semantic service descriptions with local
closed-world reasoning,” in European Semantic Web Conference. Springer, 2006, pp.
575–589.

[86] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino, “RESTful service compo-
sition at a glance: A survey,” Journal of Network and Computer Applications, vol. 60, pp.
32–53, 2016, publisher: Elsevier.

[87] F. Khodadadi and R. O. Sinnott, “A semantic-aware framework for service definition and
discovery in the internet of things using coap,” Procedia computer science, vol. 113, pp.
146–153, 2017.

[88] C.-H. Cheng, T. Guelfirat, C. Messinger, J. O. Schmitt, M. Schnelte, and P. Weber, “Se-
mantic degrees for industrie 4.0 engineering: deciding on the degree of semantic formal-
ization to select appropriate technologies,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 1010–1013.

129

Bibliography

[89] O. Kovalenko and J. Euzenat, “Semantic matching of engineering data structures,” in
Semantic web technologies for intelligent engineering applications. Springer, 2016, pp.
137–157.

[90] S. Evdokimov, B. Fabian, S. Kunz, and N. Schoenemann, “Comparison of discovery
service architectures for the internet of things,” in 2010 IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing. IEEE, 2010, pp. 237–
244.

[91] S. Chun, S. Seo, B. Oh, and K.-H. Lee, “Semantic description, discovery and integration
for the internet of things,” in Proceedings of the 2015 IEEE 9th International Conference
on Semantic Computing (IEEE ICSC 2015). IEEE, 2015, pp. 272–275.

[92] C. Brooks, C. Jerad, H. Kim, E. A. Lee, M. Lohstroh, V. Nouvelletz, B. Osyk, and M. We-
ber, “A component architecture for the internet of things,” Proceedings of the IEEE, vol.
106, no. 9, pp. 1527–1542, 2018.

[93] J. E. Kim, G. Boulos, J. Yackovich, T. Barth, C. Beckel, and D. Mosse, “Seamless in-
tegration of heterogeneous devices and access control in smart homes,” in 2012 Eighth
International Conference on Intelligent Environments. IEEE, 2012, pp. 206–213.

[94] O. Uviase and G. Kotonya, “Iot architectural framework: connection and integration
framework for iot systems,” arXiv preprint arXiv:1803.04780, 2018.

[95] J. Kiljander, A. D’elia, F. Morandi, P. Hyttinen, J. Takalo-Mattila, A. Ylisaukko-Oja,
J.-P. Soininen, and T. S. Cinotti, “Semantic interoperability architecture for pervasive
computing and internet of things,” IEEE access, vol. 2, pp. 856–873, 2014.

[96] I. Grangel-González, L. Halilaj, G. Coskun, S. Auer, D. Collarana, and M. Hoffmeister,
“Towards a semantic administrative shell for industry 4.0 components,” in 2016 IEEE
Tenth International Conference on Semantic Computing (ICSC). IEEE, 2016, pp. 230–
237.

[97] I. Grangel-González, D. Collarana, L. Halilaj, S. Lohmann, C. Lange, M.-E. Vidal, and
S. Auer, “Alligator: A deductive approach for the integration of industry 4.0 standards,”
in European Knowledge Acquisition Workshop. Springer, 2016, pp. 272–287.

[98] I. Grangel-González, P. Baptista, L. Halilaj, S. Lohmann, M.-E. Vidal, C. Mader, and
S. Auer, “The industry 4.0 standards landscape from a semantic integration perspective,”
in 2017 22nd IEEE International Conference on Emerging Technologies and Factory Au-
tomation (ETFA). IEEE, 2017, pp. 1–8.

[99] H. Koziolek, A. Burger, and J. Doppelhamer, “Self-commissioning industrial iot-systems
in process automation: a reference architecture,” in 2018 IEEE International Conference
on Software Architecture (ICSA). IEEE, 2018, pp. 196–19 609.

[100] V. Jirkovskỳ, M. Obitko, P. Kadera, and V. Mařík, “Toward plug&play cyber-physical
system components,” IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp.
2803–2811, 2018.

130

Bibliography

[101] M. Schleipen, S.-S. Gilani, T. Bischoff, and J. Pfrommer, “OPC UA & Industrie 4.0 -
Enabling Technology with High Diversity and Variability,” Procedia CIRP, vol. 57, pp.
315–320, Jan. 2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2212827116312094

[102] D. Manzaroli, L. Roffia, T. S. Cinotti, E. Ovaska, P. Azzoni, V. Nannini, and S. Mat-
tarozzi, “Smart-m3 and osgi: The interoperability platform,” in The IEEE symposium on
Computers and Communications. IEEE, 2010, pp. 1053–1058.

[103] H. Rahman and M. I. Hussain, “A comprehensive survey on semantic interoperability for
internet of things: State-of-the-art and research challenges,” Transactions on Emerging
Telecommunications Technologies, p. e3902, 2019.

[104] J. Nilsson and F. Sandin, “Semantic interoperability in industry 4.0: Survey of recent
developments and outlook,” in 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). IEEE, 2018, pp. 127–132.

[105] M. I. Ali, N. Ono, M. Kaysar, K. Griffin, and A. Mileo, “A semantic processing frame-
work for iot-enabled communication systems,” in International semantic web conference.
Springer, 2015, pp. 241–258.

[106] A. Gyrard, C. Bonnet, K. Boudaoud, and M. Serrano, “Assisting iot projects and de-
velopers in designing interoperable semantic web of things applications,” in 2015 IEEE
International Conference on Data Science and Data Intensive Systems. IEEE, 2015, pp.
659–666.

[107] P. Patel and D. Cassou, “Enabling high-level application development for the internet of
things,” Journal of Systems and Software, vol. 103, pp. 62–84, 2015.

[108] I. Grangel-González, L. Halilaj, M.-E. Vidal, O. Rana, S. Lohmann, S. Auer, and A. W.
Müller, “Knowledge graphs for semantically integrating cyber-physical systems,” in In-
ternational Conference on Database and Expert Systems Applications. Springer, 2018,
pp. 184–199.

[109] M. Kovatsch, Y. N. Hassan, and S. Mayer, “Practical semantics for the internet of things:
Physical states, device mashups, and open questions,” in 2015 5th International Confer-
ence on the Internet of Things (IOT). IEEE, 2015, pp. 54–61.

[110] A. M. Nagib and H. S. Hamza, “Sighted: A framework for semantic integration of het-
erogeneous sensor data on the internet of things.” in ANT/SEIT, 2016, pp. 529–536.

[111] A. J. Mooij, “System integration by developing adapters using a database abstraction,”
Information and Software Technology, vol. 55, no. 2, pp. 357–364, 2013.

[112] S. Yang and R. Wei, “Tabdoc approach: An information fusion method to implement
semantic interoperability between iot devices and users,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1972–1986, 2018.

131

Bibliography

[113] F. Prinz, M. Schoeffler, A. Lechler, and A. Verl, “A novel i4. 0-enabled engineering
method and its evaluation,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 102, no. 5-8, pp. 2245–2263, 2019.

[114] OPC-UA, “OPC-UA,” 2021. [Online]. Available: https://opcfoundation.org/
developer-tools/specifications-unified-architecture[retrieved:15.02.2021]

[115] S. Schwichtenberg, C. Gerth, and G. Engels, “From open api to semantic specifications
and code adapters,” in 2017 IEEE International Conference on Web Services (ICWS).
IEEE, 2017, pp. 484–491.

132

A. List of Own Publications

1. Burzlaff, Fabian. "Knowledge-driven architecture composition." INFORMATIK 2017
(2017).

2. Burzlaff, Fabian, and Christian Bartelt. "Knowledge-driven architecture composition:
Case-based formalization of integration knowledge to enable automated component cou-
pling." 2017 IEEE International Conference on Software Architecture Workshops (IC-
SAW). IEEE, 2017..

3. Burzlaff, Fabian, and Christian Bartelt. "Towards automating service matching for man-
ufacturing systems: Exemplifying knowledge-driven architecture composition." Procedia
CIRP 72 (2018): 707-713.

4. Burzlaff, Fabian, Christian Bartelt, and Heiner Stuckenschmidt. "Next steps in knowledge-
driven architecture composition." CEUR Workshop Proceedings. Vol. 2191. No. Pro-
ceedings of the Conference" Lernen, Wissen, Daten, Analysen". RWTH, 2018.

5. Burzlaff, Fabian, Christian Bartelt, and Steffen Jacobs. "Executing model-based software
development for embedded I4. 0 devices properly." CEUR Workshop Proceedings. Vol.
2060. RWTH, 2018.

6. Burzlaff, Fabian, and Christian Bartelt. "I4. 0-device integration: A qualitative analysis
of methods and technologies utilized by system integrators: Implications for engineer-
ing future industrial internet of things system." 2018 IEEE International Conference on
Software Architecture Companion (ICSA-C). IEEE, 2018.

7. Burzlaff, Fabian, and Christian Bartelt. "A conceptual architecture for enabling future
self-adaptive service systems." Proceedings of the 52nd Hawaii International Conference
on System Sciences. 2019.

8. Fabian, Burzlaff, Ackel Maurice, and Bartelt Christian. "A mapping language for IoT
device descriptions." 2019 IEEE 43rd Annual Computer Software and Applications Con-
ference (COMPSAC). Vol. 2. IEEE, 2019..

9. Burzlaff, Fabian, et al. "Semantic interoperability methods for smart service systems: A
survey." IEEE Transactions on Engineering Management (2019).

10. Burzlaff, Fabian, et al. "MergePoint: A graphical web-app for merging HTTP-endpoints
and IoT-platform models." Proceedings of the 53rd Hawaii International Conference on
System Sciences. 2020.

133

A. List of Own Publications

11. F. Burzlaff, S. Jacobs, and C. Bartelt, “Automated configuration in adaptive iot software
ecosystems to reduce manual device integration effort: Application and evaluation of a
novel engineering method.” ADAPTIVE 2020, 2020.

12. N. Wilken, M. Ailane, C. Bartelt, F. Burzlaff, C. Knieke, S. Lawrenz, A. Rausch and A.
Strasser, “Dynamic Adaptive System Composition Driven By Emergence in an IoT Based
Environment: Architecture and Challenges.” ADAPTIVE 2020, 2020.

13. F. Burzlaff and C. Bartelt, “Knowledge-driven Architecture Composition: Assisting the
system integrator to reuse integration knowledge (to be published).” in International Con-
ference on Web Engineering. Springer, 2021, p. tba

134

B. Usage Examples

Figure B.1.: Eval 2 – Describing Context Based on An Ontology and JSON-LD

Figure B.2.: Eval 3 – Generated Software Adapter Project without Mappings

135

B. Usage Examples

Figure B.3.: Eval 3 – Generated Software Adapter Project with Mappings

B.1. Link to Prototype

Additional information about the current state of the prototype can be found at the website
https://iot.informatik.uni-mannheim.de/.

136

