
Privacy-Preserving Data Processing

for Real Use Cases

Inaugural-Dissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

M.Sc. Louis Tajan
aus Paris, Frankreich

Mannheim, 2020

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Prof. Dr. Frederik Armknecht, Universität Mannheim
Korreferent: Prof. Dr. habil. Dirk Westhoff, Hochschule Offenburg

Tag der mündlichen Prüfung: 19. March 2021

Abstract

In the work at hand, we state that privacy and malleability of data are two
aspects highly desired but not easy to associate. On the one hand, we are trying
to shape data to make them usable and editable in an intelligible way, namely
without losing their initial information. On the other hand, we are looking for
effective privacy on data such that no external or non-authorized party could
learn about their content. In such a way, we get overlapping requirements by
pursuing different goals; it is trivial to be malleable without being secure, and
vice versa.

We propose four “real-world” use cases identified as scenarios where these
two contradictory features are required and taking place in distinct environ-
ments. These considered backgrounds consist of firstly, cloud security auditing,
then privacy of mobile network users and industry 4.0 and finally, privacy of
COVID-19 tracing app users.

After presenting useful background material, we propose to employ multiple
approaches to design solutions to solve the use cases. We combine homomor-
phic encryption with searchable encryption and private information retrieval
protocol to build an effective construction for the could auditing use case. As a
second step, we develop an algorithm to generate the appropriate parameters to
use the somewhat homomorphic encryption scheme by considering correctness,
performance and security of the respective application.

Finally, we propose an alternative use of Bloom filter data structure by
adding an HMAC function to allow an outsourced third party to perform set
relations in a private manner. By analyzing the overlapping bits occurring on
Bloom filters while testing the inclusiveness or disjointness of the sets, we show
how these functions maintain privacy and allow operations directly computed
on the data structure. Then, we show how these constructions could be applied
to the four selected use cases.

Our obtained solutions have been implemented and we provide promising
results that validate their efficiency and thus relevancy.

I

Zusammenfassung

In der vorliegenden Arbeit legen wir dar, dass der Schutz der Privatsphäre und
die Formbarkeit von Daten zwei Aspekte sind, die hoch erwünscht, aber nicht
leicht miteinander in Einklang zu bringen sind. Einerseits versuchen wir, Daten
so zu gestalten, dass sie auf verständliche Art und Weise nutzbar und bearbeit-
bar sind, d.h. ohne, dass sie ihre ursprüngliche Information verlieren. Ander-
erseits streben wir einen effektiven Datenschutz an, damit externe oder nicht
autorisierte Parteien nichts über den Inhalt der Daten erfahren können. Diese
Anforderungen überlappen sich jedoch, da sie unterschiedliche Ziele verfolgen;
Formbarkeit ist ohne Sicherheit leicht zu erreichen, genauso wie Sicherheit ohne
Formbarkeit.

Wir schlagen vier “reale” Anwendungsfälle vor, die als Szenarien identi-
fiziert wurden, in denen diese beiden widersprüchlichen Merkmale erforderlich
sind und die in unterschiedlichen Umgebungen stattfinden. Die betrachteten
Hintergründe bestehen zunächst aus der Sicherheitsüberprüfung in der Cloud,
dann aus dem Datenschutz von Benutzer mobiler Netzwerke und der Indus-
trie 4.0 und schließlich aus dem Datenschutz von Benutzer von COVID-19-
Tracing-Anwendungen. Nach der Vorstellung nützlichen Hintergrundmaterials,
schlagen wir vor, zur Lösung der Anwendungsfälle mehrere Lösungsansätze zu
entwerfen. Wir kombinieren homomorphe Verschlüsselung mit durchsuchbarer
Verschlüsselung und einem Protokoll zum Abrufen privater Informationen, um
eine effektive Konstruktion für den möglichen Anwendungsfall des Auditing zu
erstellen. In einem zweiten Schritt entwickeln wir einen Algorithmus zur Gener-
ierung der geeigneten Parameter zur Verwendung des somewhat homomorphen
Verschlüsselungsschemas unter Berücksichtigung von Korrektheit, Leistung und
Sicherheit der jeweiligen Anwendung.

Schließlich schlagen wir eine alternative Verwendung der Datenstruktur des
Bloom-Filters vor, indem wir eine HMAC-Funktion hinzufügen, die es einer aus-
gelagerten dritten Partei ermöglicht, festgelegte Beziehungen auf private Weise
durchzuführen. Durch die Analyse der überlappenden Bits, die bei Bloom-
Filtern auftreten, während die Inklusivität oder Disjunktheit der Sätze getestet
wird, zeigen wir, wie diese Funktionen die Privatsphäre wahren und Operationen
ermöglichen, die direkt auf der Datenstruktur berechnet werden. In der Folge
zeigen wir, wie diese Konstruktionen auf die vier ausgewählten Anwendungsfälle
angewendet werden könnten.

Die von uns erhaltenen Lösungen wurden implementiert und liefern vielver-
sprechende Ergebnisse, die ihre Effizienz und damit ihre Relevanz validieren.

III

Acknowledgment

First of all, I would like to express my gratitude to Dirk Westhoff for his trust,
his support and our valuable intellectual interactions. I would also like to thank
Hochschule Offenburg and in particular Johann Betz for helping me to settle in
seamlessly in this new work environment, it has been an indispensable support.

As one may know, a doctoral experience can be as daunting as rewarding.
It certainly is a professional and life experience I would recommend even if the
last moments of these doctoral years have not been easy to overcome. I am
truly glad of this experience and the achievements that have opened me up to
new horizons.

For that, I thank Frederik Armknecht from University of Mannheim for
welcoming me to my first research project and following and challenging the
progress of my investigations over the past four years. Also from University of
Mannheim, I thank Christian Gorke, for the valuable discussions and the joint
research work during the PAL SAaaS project.

I would also like to thank Avi for the nice conversations in HSO, Alex for
showing me the way, Sioul for being the friend he is and Karim for always
making the best of things.

For the next adventures to come, I thank Charles D’Aumale whose unfailing
interest in the field or in my research was always valuable and inspiring.

Last but definitely not least, I would like to warmly thank my mother, Mari-
anne, and sister, Estrella, for their careful rereading and unconditional support,
my grand father, Pierre Rosenstiehl, for the mathematics career inspiration and
Nadia for the precious advises and meticulous proofreading. Finally, I thank
my beloved and wife-to-be Adèle for the daily support and cheering.

V

To my father and Mäıté.

VII

Contents

Notation XIII

1 Introduction 1
1.1 Privacy vs Malleability . 1
1.2 Manipulating Data . 2

1.2.1 Collecting . 4
1.2.2 Retrieving . 5
1.2.3 Processing . 6

1.3 Research Contributions and Outline 6
1.3.1 Thesis Organization . 8
1.3.2 Publications . 8

2 Selected Use Cases 11
2.1 Use Case 1 - Cloud Security Auditing 11

2.1.1 Scenario . 12
2.1.2 Threat Model . 15

2.2 Use Case 2 - Mobile Users’ Data Collection 17
2.2.1 Scenarios . 18
2.2.2 Threat Model . 22

2.3 Use Case 3 - Wireless Sensor Network’s Data Aggregation 22
2.3.1 Scenario . 23
2.3.2 Threat Model . 25

2.4 Use Case 4 - Detection of COVID-19 Infection Chains 26
2.4.1 Scenario . 27

3 Preliminaries and their Respective Literature 29
3.1 Searchable Encryption . 29
3.2 Homomorphic Encryption . 30

3.2.1 Definition and Classification of Homomorphic Cryptosys-
tems . 30

3.2.2 Partially Additive Cryptosystems 31
3.2.3 Somewhat Homomorphic Encryption 34

3.3 Private Information Retrieval Protocol 37
3.3.1 Definition . 37

IX

CONTENTS

3.3.2 Examples of PIR Protocols 39
3.3.3 Protocols Comparison . 41
3.3.4 Related Work . 42

3.4 Set Operations . 42
3.5 Bloom Filters . 43

3.5.1 Definition . 43
3.5.2 Related Work . 44

3.6 Concealed Data Aggregation . 46
3.6.1 Definition . 46
3.6.2 Privacy Constructions and Related Work 46

4 Developed Solutions 51
4.1 Solution A -

Combining PIR Protocol with Searchable Encryption and Homo-
morphic Encryption . 52
4.1.1 Cloud Auditing Construction 52
4.1.2 Protocol . 55
4.1.3 Evaluation and Results 60

4.2 Solution B -
Adapting SHE to Evidence Processing 65
4.2.1 Discussion of the SHE Parameters 65
4.2.2 Protocol . 70
4.2.3 Evaluation and Results 71

4.3 Solution C -
Using Bloom Filters to Process Set Relations 77
4.3.1 Privacy Enhancements . 77
4.3.2 Protocol Functions . 79
4.3.3 Correctness Analysis . 82
4.3.4 Privacy Analysis . 86
4.3.5 On Cloud Security Auditing 95
4.3.6 On Retrospective Tracking of Suspects in GDPR Conform

Mobile Access Networks Datasets 98
4.3.7 On Concealed Data Aggregation in WSN 103
4.3.8 On GDPR Conform Detection of COVID-19 Infection

Chains . 107

5 Conclusion 119

List of Figures XVII

List of Tables XIX

List of Algorithms XXI

Acronyms XXIII

Bibliography XXVII

X

Notation

Searchable Encryption Environment

SE PEKS scheme
pkSE, skSE public and private keys of the SE scheme

λ security parameter
m message
c ciphertext
w keyword
Sw searchable encryption ciphertext of the keyword w
Tw trapdoor of the keyword w

Homomorphic Encryption Environment

M message space
C ciphertext space

Enc encryption function
Dec decryption function

m1,m2 messages
�M operator in M
�C operator in C
N RSA module
p, q prime numbers

φ(N) Euler’s function of N
d integer

λ(n) Carmichael function of n
L(u) L function of u

(
a

p
) Legendre symbol of a and p

z non quadratic residue
pub.key, sec.key public and private keys

ci ciphertext
r Benaloh’s ciphertext length in bits
β part of the Naccache-Stern’s public key

R,Rq rings
χ, χ′ error distributions over R
ei element drown from χ

ai, s uniformly random elements from Rq
n SHE’s degree of polynomials
t SHE’s value space of the plaintext coefficients
b SHE’s encoding base
q SHE’s value space of the ciphertext coefficients

XIII

NOTATION

σ standard deviation of the error
$←− “chosen from the uniform distribution”

pk, sk SHE’s public and private keys
ct, ct′ ciphertexts
γ, δ sizes of ct and ct′

Private Information Retrieval Environment

i database’s index
i∗ index requested by the user
n size of the database

(x1, x2, ..., xn) elements of the database
U user
S server

Q = (q1, q2, ..., qn) query from U
R response from S
Enc encryption function
Dec decryption function

m0,m1 messages
N RSA modulo
e, d RSA public and private exponents

pub.key, sec.key public and private RSA keys
u0, u1, ub random values

b bit of the requested message
k random value

v,mb values computed by Bob
k0, k1,m′0,m

′
1 values computed by Alice

(i, j) two-dimensional database’s indexes (resp. row and column)
(i∗, j∗) indexes requested by U

Q = (α1, ..., α√n, β1, ..., β
√
n) query from the user in the case of a two-dimensional database

R = (R1, ..., R√n) response from S
σi, ui, vi values computed by S

M matrix representation of the database
s, t dimensions of the database

(a, b) coordinates of the requested element from U
y1, ..., yt values ∈ ZN relatively prime to N

(yi
N

) Jacobi symbol of yi and N
wr,j , zr values computed by S

op basic operation
add,mult addition and multiplication on the ciphertexts
testRQ quadratic residuosity testing
G,G′ value spaces of the cleartexts and ciphertexts

Bloom Filter Environment

AD, C, CSP auditor, client and cloud service provider
W client’s whitelist

L1,L2 two sets of the logfile
A, B generic sets

INC(), DIS() inclusiveness and disjointness operators
BFA, BFA∩B, BFA⊆B=∅ respective Bloom filter representation of A,

inclusiveness and disjointness relations between A and B
bfA[i] ith index of BFA

nA, NA cardinality of set A and maximization of this size
h HMAC function
K set of the keys used with function h

nkey amount of keys in K
nLkey , n

U
key lower and upper bounds of nkey

XIV

Notation

m size of the Bloom filter
PFP probability of having a false positive to the inclusiveness operator
PFN probability of having a false negative to the disjointness operator
XBFA number of bits set to 1 in BFA
X∩=∅ estimation of the number of bits set to 1 in BFA⊆B=∅

if A and B were disjoint
YBFA amount of overlapping bits in BFA
Y ∗BFA estimation of YBFA
ZA,B amount of elements from A which are not in B
Z′A,B amount of elements in both A and B
ρ, µ standard deviation and mean of the overlapping bits distribution

Lnkey , L
A
nkey

candidates lists of nkey used in general, and used in BFA
LnA candidates list of nA

λnkey , λ
A
nkey

, λnA cardinalities of the candidates lists Lnkey , L
A
nkey

and LnA
[obLA; obUA] range of the overlapping bits distribution for BFA

idi user i’s credentials
t1i , t

2
i starting and ending times of user i’s connection to the access point

〈A,B,C〉 proximity chain composed by users A,B and C
[D,E, F] infection chain composed by users D,E and F

Tr threshold
Pr(Xi) probability of being infected of user Xi
BSN list of base stations that current node N has been connected to

T proximity tree
S, S′ sets storing the proximity chains from a proximity tree

R reproduction number

Concealed Data Aggregation Environment

BS base station
IN intermediate node
SN sensor node
µ machine identifier

{αµ1 , . . . , α
µ
n} set of keys of machine µ
n amount of keys
h HMAC function
m size of the Bloom filter
i sensor node identifier

sti status of the machine collected by sensor node i
ti temperature of the machine collected by sensor node i
si spin speed of the machine collected by sensor node i
z amount of sensor nodes from a machine

maj majority rule
comp completeness rule
agg aggregation step

BF
(x)
i x-th Bloom filter generated by the sensor node i

BF
(x)
maj x-th Bloom filter obtained after applying rule majority

BF
(x)
comp x-th Bloom filter obtained after applying rule completeness

BF
(x)
agg x-th Bloom filter obtained after applying the aggregation step

BF
(x)
f x-th final Bloom filter obtained by the base station

tx time variable

F jx location file stored in user j’s smartphone at time tx
l proximity limit

En elliptic curve
F field
G group

XV

Chapter 1

Introduction

1.1 Privacy vs Malleability

The objective of this doctoral thesis consists of identifying what we could
call “real-world” use cases, namely scenarios with requirements and limitations
driven by the way societies (as western or European) are established, in par-
ticular by their economy and political functioning and by the need for every
person to have a minimal control over their personal privacy. We attempt here
to weave cryptographically sound sensitive data into process flow. No matter
which environment is considered, let it be cloud infrastructure, mobile network,
industry 4.0 or others, the existing systems should be forensic ready and usable
data collection should be supported. Therefore, gathering building blocks and
developing new promising designs to combine privacy and usability of targeted
data turns out to be a thrilling and challenging issue.

As an example of obvious benefit of setting a data collection in cloud in-
frastructure, we could state that it allows to determine responsibilities between
a cloud service provider and its clients in case an incident has happened. It
also allows to identify how a cyber-crime was perpetrated and to estimate the
damage suffered. But such a straightforward approach could suffer from certain
limitations, such as not being able to identify relevant data related to attacks
exploiting unknown vulnerabilities to the respective parties.

Privacy

After being neglected for quite a time, privacy issue is now fully established as
one of the most studied and funded topics of research. Data privacy could be
considered as one of the main keystones of modern cryptography along with
data integrity or authentication. We show in Figure 1.1 forecasts established by
Gartner, an IT research and consulting company, that illustrate the continual
increase and development of all IT-security aspects and in particular the ones
related to data privacy.

1

CHAPTER 1. INTRODUCTION

In the work at hand, data privacy is clearly the most important requirement
and even if the two concepts of privacy and malleability may overlap, the first
one will always be put forward.

Figure 1.1. Worldwide security spending by segment, 2017-2019 (Millions of U.S. Dollars).

Malleability

Two aspects of the data, namely substance and form, should be considered to
establish the data usability. Indeed, first of all, data on their own should be
relevant and valuable to perform processing and testing. They should be correct
and reflect all that happened. They should also be understandable, since not
readable, to the party that will manipulate them. By understandable we mean
usable by the party, that should know to what information the data correspond
even if they are obfuscated. This brings us to the second consideration on the
data’s form. Indeed, in case of required obfuscation on the data, their format
should still allow to perform some processing on them. This specific aspect
implies very careful attention on the protocol’s initialization, such that settings
allow processing on the private data and therefore correctness on final results.

1.2 Manipulating Data

According to scenarios and environments considered, multiple questions could
be asked on the data’s manipulation. For example, what type of data should be
considered, how and from which infrastructure could one collect them? More

2

1.2. Manipulating Data

generally, what parties are involved in the data’s manipulation? How and where
to store the collected data? Do some of these data need to be protected before
being stored and what kind of computations should be performed on them? We
attempt, in the remainder of this section, to address these issues.

At first, we give a definition of sensitive data material as considered in the
rest of the thesis.

Sensitive material: Any form of data that could be helpful to verify the good
conduct of any party. In addition, such data should be protected to pre-
serve privacy to the respective parties.

In his PhD thesis [Rüb16], Rubsamen makes use of the digital evidence term
to characterize such type of data in cloud environment and in particular cloud
auditing. He also uses a definition from SWGDE (the Scientific Working Group
on Digital Evidence) which defines digital evidence as “information of probative
value that is stored or transmitted in binary form”.

In our current work, we prefer the expression sensitive material to illus-
trate the privacy/malleability dichotomy. Sensitive displays the obvious need
for privacy while material indicates the necessity to perform computation and
transformation on data.

In cloud auditing environment, several published papers address the digital
evidence approach. In [RCN+18] authors state in their work that an attack
on cloud infrastructures will leave evidence in the system’s memory and the
attacker will not be able to erase this evidence within the scan interval. They
propose a solution to scan the system and detect such evidence. The type of
evidence that is left by the attack could consist of anomalous data in well known
kernel or application data structure (e.g. to monitor the kernel’s list of active
tasks for blacklisted processes). It also could be detected by scanning outgoing
network packets for suspicious content. Authors claim that some attacks could
leave no trace and therefore their solution will actively detect such attacks. They
indicate that by proactively installing “tripwires” inside the VM’s memory, the
external scan can more easily discover evidence of the attack. This technique
implies that the cloud could be flexible and should allow to run external libraries
and upload updated code directly on its stack or heap.

As aforementioned, authors from [PHMN16] propose an adaptive evidence
collection from cloud infrastructures using attack scenarios. They state that
performing an exhaustive evidence collection is not always a viable solution since
it could be too cumbersome and energy consuming to effectively analyze all of
them. They also think that cloud-related changes as modifications of physical
or virtual machine configurations, should be monitored, and the corresponding
data collection activities should be adapted accordingly. According to their
analysis of attack scenarios based on the evidence collection, they represent
a sequence of actions an adversary can perform to achieve her criminal goals
as compromising a machine, or copying a VM image. By referring to these
attacks, they claim to reduce the amount of data to be preserved in the cloud
infrastructure and focus their data collection activities on the security breaches
that are likely to happen. Authors distinguish different categories of evidence:

3

CHAPTER 1. INTRODUCTION

Application logs, that are generated by any software installed in the cloud
environment, as Content Management Software, VM Managers or Cloud
development platforms.

Web server logs, that include information on the VMs’ accesses like by ex-
ample user IP addresses as we use in the first presented use case.

Database logs, that contain information generated by database management
systems about queries performed and modifications of databases content.

Network logs, that are generated by both the web server and the operating
system running on a physical machine. They record information about
how network connections are established, the data traffic on the network
and who requested the connection.

System logs, that are generated by the operating systems running on the
physical machines belonging to the cloud deployment.

In [GSG12] authors highlight the challenges that an investigator may face while
analyzing an extremely large amount of data placed in the cloud by a cus-
tomer. In [BW11], authors assess the usability of various sources of evidence
for investigative purposes in all three major cloud service models (SaaS, PaaS,
IaaS). Finally, we mention that in [RPR15], authors list material data as logs,
cryptographical proofs or documentation.

The overall framework of collecting and aggregating evidence from the cloud
service provider and storing it in evidence stores is presented by Ruebsamen
and Reich [RR13], and by Schatz and Clark [SC06] from the Common Digital
Evidence Storage Format working group (CDESF). The latter are proposing
an evidence framework with an architecture focused on Digital Evidence Bags
(DEB).

1.2.1 Collecting

The sensitive material should first be identified and collected. The collection
step could be performed for instance, by an auditor, by a network provider
company or even directly by the involved party. We could list few trivial re-
quirements on data collection. The sensitive material should be complete to
avoid any cherry-picked strategy from the collector or manipulation from the
data provider. Then, as an optional requirement, only the necessary data
should be collected. In that sense, we minimize the data’ collection to re-
duce the effort. Finally, we could mention that each type of material needs an
adapted mechanism as for instance, a log parser for logs or a file retriever for
documentation.

In [THGL11] authors stress that evidence stored in the cloud tend to be
ephemeral, such as registry entries from Microsoft Windows platforms or tem-
porary internet files that can be misled by customer.

4

1.2. Manipulating Data

Wolthussen states in [Wol09] that one of the most challenging issues consists
of collecting evidence across multiple virtual or physical machines, data centers,
specially with different geographical and legal jurisdictions.

In [DS11], authors suggest that evidence should be collected at the virtual
machine level, where a web system interfaces with the provider’s underlying
filesystem and hypervisor. Such an approach allows to have evidence collected
“on-demand” by several parties, including customers, providers and lawyers.
They developed in [DS13] a tool that provides such functionalities to support
forensic acquisition of virtual disks associated with VMs, logs of all APIs re-
quests and firewall logs for the customers’ virtual machines.

In [SFM11] authors created a proof-of-concept continuous evidence collec-
tion system which could be used to record the deletion and creation of service
provisions in the cloud. But monitoring all existing evidence is not a viable
solution, as it could be difficult to analyze.

Existing work has mainly focused on how evidence can be collected in the
cloud without providing guidance on what data should be preserved. Although
sorting techniques have also been proposed as a means of reducing the amount
of data to be analyzed in conventional investigations ([PW10]), they have not
been applied to target evidence collection activities towards the preservation of
the data necessary to investigate the security breaches that are more likely.

1.2.2 Retrieving

This intermediate step introduces the issue of privacy and especially the question
of which data should be protected. It is possible that some of the material
data are sensitive and require privacy. We dissociate different levels of privacy
corresponding to the point where the data should be protected.

No privacy. The data are public and do not need any protection. It could be
directly stored after collection.

Semi privacy. The data could be known to the collector party which collects
them by as plaintexts. The data then need to be protected from other
parties when stored in the evidence store.

Full privacy. No party other than the data provider should be able to read
them. Therefore, data are protected upstream and should remain as they
are until the end of the whole protocol.

Once stored, data should not be tampered with. Cloud environments have
also been suggested as a basis for conducting digital forensic investigations in
[RWB10]. In particular, cloud virtual instances and storage can be used, re-
spectively, to gather and store sensible material relative to potential or detected
incidents/crimes.

In [LZLY13], authors identify potential problems when storing massive
amounts of material data. They specifically address possible information leaks.
To solve these issues, they propose an efficient encrypted database model that

5

CHAPTER 1. INTRODUCTION

is supposed to minimize potential data leaks as well as data redundancy. How-
ever, they focus solely on the storage backend and do not provide a workflow
that addresses secure data collection as a whole. In [RD14] Redfield and Date
propose a system called Gringotts that enables secure evidence collection, where
evidence data are signed by the system that produces them, before being sent to
a central server for archival, using the Evidence Record Syntax (ERS). Authors
focus on archiving and preservation of evidence integrity.

1.2.3 Processing

Lastly, we could wonder what kind of computations could be performed on the
sensitive material. The type of computations performed on these data should
match the one agreed upon during their collection. In other words, the collected
data should only be used for the aims it was collected for and not for any
alternative purposes such as marketing ones.

Depending on the considered scenario, the processing stage may consist of
performing tests on the data like verifying if a VM configuration has changed
or if a user’s IP address is part of a list of authorized IP addresses. The other
type of data processing could be performing an aggregation phase on the sen-
sitive data. To optimize the data-retrieving process or even for the purpose of
the use case, a third party could be required to take care of the computation
load and thus, perform algebraic operations directly on the data. As one of
the mainly used cryptographic primitives that allow such computations on the
private representation of the data, we could mention homomorphic encryption.

Another way of performing computations on private data is multiparty com-
putation. It consists of having multiple parties jointly computing a function over
their inputs while keeping those inputs private to each other. But in such cases,
every party involved in the protocol provides sensitive material and plays an
active part. As we present later, we differentiate the roles to be played such as
to have one party that produces data and another that processes them. Conse-
quently, we set aside this cryptography subfield, which in other circumstances,
would have deserved as much consideration.

1.3 Research Contributions and Outline

In this work, we achieved the following goals:

Identifying real-world use cases. Driving by research projects, top-
ics of interest or news events, we identified scenarios where privacy and
computation of data are essential.

Evaluating constraints. For each of these use cases, we highlighted
data requirements on privacy and malleability aspects.

Construction of valuable solutions. After evaluating existing primi-
tives, we combined some to elaborate new valuable constructions.

6

1.3. Research Contributions and Outline

Implementing solutions and gathering promising results. We im-
plemented all of our three obtained solutions, thus helps validating their
efficiency.

We show in Figure 1.2 how the identified use cases presented in Chapter 2
coincide with proposed solutions developed in Chapter 4.

U S E C A S E S

D E V E L O P E D S O L U T I O N S
1 2 3 4

PIR Protocol with Searchable Encryption and
Homomorphic Encryption

Adapting SHE to Evidence Processing

The Use of Bloom Filters to Process
Set Relations

A

B

C

Figure 1.2. How the developed solutions match the proposed use cases. PIR stands for
Private Information Retrieval and SHE for Somewhat Homomorphic Encryption.

PAL SAaaS Project

Research project from Nov. 2015 to Apr. 2019 carried out by University of
Mannheim with Prof. Frederik Armknecht and Christian Gorke and Hochschule
Offenburg with Prof. Dirk Westhoff and Louis Tajan. Funded by the Baden-
Württemberg Stiftung, the goal of PAL SAaaS is to provide cryptographic mech-
anisms to support PAL (Privacy, Availability, Liability) in the context of SAaaS
(Security Audit as a Service). Several use cases were identified and solutions
were proposed. The main part of this thesis has been established as part of this
research project.

Industry 4.0 Predictive Maintenance Project

Research project involving multiple professors within Hochschule Offenburg, led
by Prof. Matthias Haun and in cooperation with two companies, Junker and
Schrempp. The project started in 2019 and consists of the development of an
Industry 4.0-compatible technology for functional and process design predictive
and intelligent maintenance systems. The aim of our work package is to establish
an end-to-end (E2E) security between the field devices and the instances of the

7

CHAPTER 1. INTRODUCTION

higher layers of the network in order to increase user acceptance and provide
data in a privacy-preserving manner. Outcomes from this project are presented
in Sections 2.3 and 4.3.7.

1.3.1 Thesis Organization

This thesis is structured as follows:

Chapter 2 - Selected Use Cases, presents the four selected use cases that we
state to be relevant to illustrate privacy and malleability’s correlation.
For each of them we describe the scenario with its parties involved and its
threat model.

Chapter 3- Preliminaries and their Respective Literature introduces notions
and primitives used to develop solutions, along with their respective lit-
erature. The different topics correspond to searchable encryption, homo-
morphic encryption, private information retrieval protocols, set operations,
Bloom filter and Concealed Data Aggregation protocols.

Chapter 4 - Developed Solutions, presents our three solutions A, B and C
to solve the aforementioned use cases. We named our solutions as fol-
lows: Solution A - Combining PIR Protocol with Searchable Encryption
and Homomorphic Encryption, Solution B - Adapting SHE to Evidence
Processing and Solution C - Using Bloom Filters to Process Set Relations.

Chapter 5 concludes our work and summarizes its achievements and limita-
tions.

1.3.2 Publications

• Louis Tajan, Dirk Westhoff, Christian A. Reuter, and Frederik Armknecht.
Private information retrieval and searchable encryption for privacy-
preserving multi-client cloud auditing. In 11th International Confer-
ence for Internet Technology and Secured Transactions, ICITST 2016,
Barcelona, Spain, December 5-7, 2016, pages 162–169. IEEE, 2016. URL:
http://dx.doi.org/10.1109/ICITST.2016.7856690

• Louis Tajan, Moritz Kaumanns, and Dirk Westhoff. Pre-computing appro-
priate parameters: How to accelerate somewhat homomorphic encryption
for cloud auditing. In 9th IFIP International Conference on New Technolo-
gies, Mobility and Security, NTMS 2018, Paris, France, February 26-28,
2018, pages 1–6. IEEE, 2018. URL: https://doi.org/10.1109/NTMS.
2018.8328713 Best Paper Award.

• Louis Tajan, Dirk Westhoff, and Frederik Armknecht. Private set relations
with bloom filters for outsourced SLA validation. IACR Cryptology ePrint
Archive, 2019:993, 2019. URL: https://eprint.iacr.org/2019/993

8

http://dx.doi.org/10.1109/ICITST.2016.7856690
https://doi.org/10.1109/NTMS.2018.8328713
https://doi.org/10.1109/NTMS.2018.8328713
https://eprint.iacr.org/2019/993

1.3. Research Contributions and Outline

• Louis Tajan and Dirk Westhoff. Retrospective tracking of suspects in gdpr
conform mobile access networks datasets. In Proceedings of the Central
European Cybersecurity Conference 2019, CECC 2019, Munich, Germany,
November 14-15, 2019, pages 5:1–5:6. ACM, 2019. URL: https://doi.
org/10.1145/3360664.3360680

• Louis Tajan, Dirk Westhoff, and Frederik Armknecht. Solving set re-
lations with secure bloom filters keeping cardinality private. In Mo-
hammad S. Obaidat and Pierangela Samarati, editors, Proceedings of
the 17th International Joint Conference on e-Business and Telecommu-
nications, ICETE 2020 - Volume 2: SECRYPT, Paris, France, July 8-
10, 2020, pages 187–197. SciTePress, 2020. URL: https://doi.org/10.
5220/0007932301870197

• Louis Tajan and Dirk Westhoff. Approach for GDPR compliant detection
of COVID-19 infection chains. CoRR, abs/2007.08248, 2020. URL: https:
//arxiv.org/abs/2007.08248, arXiv:2007.08248

9

https://doi.org/10.1145/3360664.3360680
https://doi.org/10.1145/3360664.3360680
https://doi.org/10.5220/0007932301870197
https://doi.org/10.5220/0007932301870197
https://arxiv.org/abs/2007.08248
https://arxiv.org/abs/2007.08248
http://arxiv.org/abs/2007.08248

Chapter 2

Selected Use Cases

We present four different use cases where privacy is mainly of interest and
processing could be valuable. The first use case is part of our work on the PAL
SAaaS project while the second one results from an HS Offenburg inner project.
The third one results from the Predictive Maintenance for Industry 4.0 project
while the fourth one arises from the COVID-19 crisis of the past months. We
gather all of these use cases here, while we propose solutions to solve them in
Chapter 4.

2.1 Use Case 1 - Cloud Security Auditing

The constantly growing of cloud business over the past decade results in a rapid
increase of different cloud services. While the number of private cloud clients is
also rising, commercial interest in usage of cloud providers seems to grow a little
less. Reason is that trust in the cloud providers is a concern, or more precisely,
provable security of these providers. Having the possibility to prove that a cloud
provider behaves correctly according to the agreed on Service Level Agreements
(SLA) is a substantial goal. When investigating the area of distributed systems,
and in particular service provisioning cloud systems based on SLAs between
user and service provider we observe a strong tendency to involve a third party
[HX11, ZYS+14, LTS16, RBI17]. The third party is in role of auditing and
judging in a semi-automated manner whether the offered services have indeed
been successfully provided for a given epoch in the past. Therefore, we are in-
terested in dependable and privacy-preserving building blocks for a third party
entity, let it be an auditor or other dependable third parties. By using a kind of
whitelist approach an auditor would have to store on the one hand, a whitelist,
and on the other hand, some log-lists for a given duration of the past to validate
access to an offered service from different users, respectively their identities e.g.
ip-addresses. More concretely, we are interested in building blocks which can be
used to verify, with a high level of confidence and in a fully privacy preserving
manner, whether indeed users from a given group accessed the service, or not.

11

CHAPTER 2. SELECTED USE CASES

We want all the parties that own data to upload it to an outsourced third party
that will perform solely by itself the required computations. Such scenario has
gained relevance with the increased usage of cloud infrastructures. Contrary
to multiparty based solutions, we believe that preferably such a protocol class
should be non-interactive. For instance, for an indeed practical cloud auditing
setting it is required that the user does not have to be available for any vali-
dation step after using a given cloud service. We argue that in particular this
non-interactive user is valuable, making our approach beneficial compared to
competing approaches.

In addition to the trendy increase of auditing in cloud environment, we
highlight this use case’s relevancy in terms of managing the data at several sides,
namely clients, cloud provider and auditor along with its privacy requirements.

2.1.1 Scenario

Cloud service providers often offer many different services, as SaaS, PaaS, IaaS,
and a lot more. Clients like companies have many employees which work with
different kind of services from the service provider. As an example, a company
may allow one department to handle the computation services, while another
department is organizing the backups using a cloud storage service. Thus, we
are exactly focusing on such clients which consist of different user groups using
different cloud services. The client generates an authorization list that defines
which users can access to which services. However, there is currently no proof
available that the cloud service provider sticks to this authorization list.

Next, a client is usually not able to create these proofs by itself. Therefore
we employ a third party, let it be an auditor, who acts on behalf of the clients
to perform the checks on the cloud service provider. To be authorized, one
user should be an employee from the specific company that required service
and in addition, should be connecting to the service from an authorized IP
address. An auditor will have to verify that the cloud service provider correctly
performed the access control on the company’s respective service by testing if
IP addresses of the successful users are part of the authorized IP addresses’ set.
On the contrary, auditor will also have to verify that no authorized user has
been denied to connect. With respect to the given privacy requirements, IP
addresses from the successful and non-successful sequences as well as from the
whitelist have to remain hidden from the auditor.

Additionally, we introduce a fourth party, called the evidence store. It peri-
odically gathers or logs data from the cloud service provider. These data could
be encrypted in a way that the store administrator and the auditor do not learn
anything about the data, and, on the other hand, the cloud service provider
will not know which data the auditor requested. The according framework is
depicted in Figure 2.1. We notice that there may be multiple clients.

We identify two Privacy Requirements (PRs) which have to be fulfilled in
this scenario:

12

2.1. Use Case 1 - Cloud Security Auditing

Client 1 Client k Client n

… …

POLICIES

SaaS

PaaS

IaaS

AuditorCloud
Service Provider

Clients

Evidence
Store

AC

Figure 2.1. Cloud security auditing framework including an evidence store. The parties
agree on policies (SLA) before performing the protocols and audits (single line arrow). The
communication flow is represented by the double line arrows.

PR1: Client Identity Privacy. The evidence store and the cloud service
provider do not learn which audit belongs to which client.

PR2: Client Data Privacy. The evidence store and the auditor do not learn
anything about the client data stored at the cloud service provider or the
client’s associated data sent from the service provider to the store.

Parties Involved

In [RPR15] authors are considering three parties involved in the evidence col-
lection: Evidence Source, Evidence Store and Evidence Processor. Evidences
from the Evidence Source are encrypted with the Evidence Processor ’s public
key. Therefore the only party blind to the evidence is the Evidence Store ES.

For privacy reasons, it is of interest to consider a scenario with no Evidence
Store. Indeed, adding another party could make the overall approach more
complicate and bring additional threats to the framework. For that reason we
also propose a scenario without any storage party.

As presented in Figure 2.2, we consider three parties; a cloud service provider
CSP, a client (company) C and an auditor AD. We define three setsW, L1 and
L2:

W = {w1, . . . , wnW} which corresponds to the whitelist, set of the authorized
IP addresses.

13

CHAPTER 2. SELECTED USE CASES

CSP

Auditor

Client

D
E

C
B

A
XaaS

Logfile Whitelist

L1 L2
l1 l’1
l2 l’2
… …
lm l’m’

W
w1
w2
…
wn

(L1,L2)
W

W

AD

Figure 2.2. Generic framework of the cloud security auditing without ES. Users A, B and C
should be authorized to connect by the CSP while users D and E should not.

L1 = {l1, . . . , lnL1 } which corresponds to the logfile of IP addresses that suc-
cessfully connected.

L2 = {l′1, . . . , l′nL2} which corresponds to the logfile of IP addresses that failed
to connect.

W is generated and protected by the client himself. Its content is originally
sent from C to CSP in a non-protected version such that CSP could perform
access control. Nevertheless, it should remain hidden from AD during the com-
plete auditing process and thus being protected. L1 and L2 represent the sets
of IP addresses for any connection attempts during the epoch [ta; tb], for which
auditing is required. They respectively represent the IP addresses’ set for all
successful and non-successful connections. Both contain sensitive information
therefore, their contents should also remain hidden from AD during whole pro-
cess.

Set Relations

To verify that CSP correctly performed access control, AD has to perform two
types of set relations. First of all, to verify that only users with authorized
IP addresses succeeded to connect, AD could perform an inclusiveness relation
between sets L1 and W, i.e. to test if all elements from L1 are included in
W. Secondly, to verify that CSP has rejected only users connecting from non-
authorized IP addresses, AD could perform a disjointness relation between W
and L2. To perform the audit according to the current use case, auditor has to
compare both lists L1 and L2 with the set W. Such verification consists of the
two following steps:

14

2.1. Use Case 1 - Cloud Security Auditing

1. Verify that all the IP addresses that have succeeded to connect are autho-
rized ones. In other words verify if all elements from L1 are also included
in W.

L1 ⊆ W ≡ L1 ∩W = L1 ≡ |L1 ∩W| = |L1|

2. Verify that none of the IP addresses that did not succeed to connect are
authorized ones. In other words, if no elements from L2 are also included
in W.

L2 ∩W = ø ≡ |L2 ∩W| = 0

Remark: The intersection operator ∩ and the inclusion relationship ⊆ are
originally used for sets. We could also consider a case where L1 and L2

are lists instead of sets. In other words, L1 and L2 do not contain solely
distinct elements and IP addresses in L1 and L2 can even be available mul-
tiple times. Therefore, in such concrete case we could redefine such notations as:

A ∩B = {a ∈ A|a ∈ B}

A ⊆ B ⇔ ∀a ∈ A, a ∈ B

With such definitions, we remark that in contrary to its regular usage, the
∩ operator is not symmetric any more.

2.1.2 Threat Model

We recall that all parties are communicating over a secured and authenticated
channel, for instance TLS. On the scenario including an evidence store, out
of the four parties, any of these may be malicious. Collusions can even be
possible. If either C, AD, or ES are corrupt, PR1 and PR2 are not violated. In
contrast, CSP could omit the encryption of the data sent to ES and therefore
ES would learn about client’s actions which contradicts PR2. Furthermore,
CSP could forge the data sent to ES without anyone noticing it. Thus, we state
that CSP does always behave according to the protocol and is at most honest-
but-curious. Secure protocols that are developed against malicious adversaries
require utilization of different techniques [KK08]. Extending this aspect could
be planned for future work. On the other hand, non-availability of CSP will be
detected by ES immediately, since no data will be sent.

Regarding collusions, we will exclude the client from collusions since he has
no further secrets to share with the other parties and will only act in the objec-
tive to protect himself. If AD colludes with ES, both know all the keys used in
the PIR protocol and are then able to decrypt C’s information. If AD colludes
with CSP, PR1 is violated, but not PR2, since ES is honest. If ES colludes
with CSP, PR2 is violated. However, if the client wants to blame other parties,
they need to be able to prove that they behaved correctly.

The set relations could be considered as hard-to-solve if we want to achieve a
considerable privacy level at the same time. Taking privacy into account means

15

CHAPTER 2. SELECTED USE CASES

guaranteeing privacy on the elements of the sets regarding any external party
and, in particular, the party which is performing the protocols of inclusiveness
and disjointness. In the no ES-scenario, we consider that on the one hand C
and CSP behave as honest-but-curious and on the other hand that AD may act
as a malicious party. Indeed, CSP already knows the whitelist content while
C will not have access to the logfiles during the auditing protocol since we are
not in a multi-party computation model. As the auditor will have access to an
obfuscated version of the sets, and we consider that AD could try to retrieve
information about sets’ content or cardinality.

We highlight three security requirements (SR1, SR2 and SR3) that should
be considered:

SR1. AD should not be able to modify any part of sets W,L1,L2 in an unde-
tectable manner and neither should be able to generate its own set and
use it to perform the set relations protocols. I.e., performing the protocol
with a set from a client along with one generated by the third party should
result in a dummy outcome.

SR2. AD should not be able to learn from W, L1 or L2 if:
1) wi = lj for some i, j
2) li = lj for some i 6= j
In other words, AD should not be able to learn in how many occurrences
an element is present in a set and if a specific element from W is also in
L1 or L2. We require a certain level of obfuscation over the computation
on the sets. Solely the results of the set relations should be revealed to
AD.

SR3. AD should not learn the sets cardinalities nW , nL1
and nL2

from the
sets’ representations or any results from the protocols.

SR1 and SR2 are considered as mandatory while SR3 could be considered
as rather optional. Indeed, one may argue that even if the auditor knows the
sets cardinalities, he could still not guess which concrete IP addresses are in the
sets. But one could easily imagine that, firstly in some use cases, knowing the
set cardinality is by itself a leak of privacy, and secondly knowing that a set
contains few elements could lead the auditor to infer which ones.

In our three parties model, we recap motivation and behavior that could be
adopted by each of them.

Client.

The most convenient model would be to consider the client as honest. The
only sensitive data involved are information regarding the company and its
employees. In addition, since they are all gathered under the same framework
party, w.l.o.g. we could consider the client as honest-but-curious. In some

16

2.2. Use Case 2 - Mobile Users’ Data Collection

cases, we could consider the client as malicious if we argue that client could try
to fake the result of the audit and cause CSP (or AD) to be wrongly blamed.
To achieve such a deception, the client could for instance, provide an altered
whitelist W ′ to the auditor. It will then end up on some incorrect results.

Cloud Service Provider.

Its first role is to perform the access control. In that sense, it is authorized to
see all the sensitive data. For the applicability of such a use case, we need to
consider that the CSP is sending the correct evidence to the auditor. Therefore
we consider this party as honest-but-curious.

Auditor.

We consider that the auditor should not be able to determine the content of the
lists L1 and L2 and the whitelist W. We also state that such a party could use
some trick and manipulate the data in order to determine partial information
like knowing how many times an encrypted IP address is present in L1 or L2

(see SR2). Therefore we are considering the auditor as malicious.

2.2 Use Case 2 - Mobile Users’ Data Collection

We present several scenarios related to mobile communication tracking where we
could try to enhance privacy. In all of these scenarios, a 3rd party should verify
if some mobile users’ identifiers from a private list are included in another list.
For instance, such a party could be endorsed by an auditing company. Ideally,
all the lists should remain private to each of the involved parties including the
evaluating 3rd party.

Need of GDPR Compliant IT-Solutions.

The General Data Protection Regulation (GDPR) became enforceable begin-
ning 25 May 2018. Its two main objectives are, firstly to enhance the personal
data protection by processing them and, secondly to empower the companies in
charge of this processing procedure. The European regulation integrates notion
of Privacy by design which requires data protection to be designed into the de-
velopment of business processes for products and services. Telecommunication
service providers or operating system companies should not only care about se-
curing data “at rest” or being transported but also during computations. Even
if GDPR does not regulate national security [HvdSB18], developing private pro-
tocols for access logfiles would limit government agencies to solely access private
data of specific suspects instead of a massive data analysis of all mobile users.
In fact, this could bring the telco providers into the dilemma of fundamental
ethical issues. However, in case a telecommunication provider and a government
agency choose to collude, no solution could bring privacy enhancement anymore.
Nevertheless, we argue that a telco provider respectively Google or Apple do

17

CHAPTER 2. SELECTED USE CASES

not have any interest in aggressively colluding with the agencies. Instead, the
telco providers may have an interest to act GDPR compliant regarding all stored
consumer’s location data. The same holds for Apple and Google at least when
purely considering the users’ geolocation data. Thus, we assume telco providers
and other digital players always in the dilemma to act either GDPR compliant
or to serve the agencies directives as for instance due to the Patriot Act in the
US.

2.2.1 Scenarios

Without loss of generality, we identified three different scenarios where users of
mobile devices could be aimed by massive data collection and therefore, privacy
issued are of value.

Privacy Friendly Tracking for Telecommunication Providers.

Access points, respectively base stations are deployed and as a side effect, collect
connection data like identifiers. They also collect connection times of respective
mobile devices that connect and communicate via these access points. At one
point, a government agency could request the telco provider to compare the
access points’ logfiles to a list of suspects. For obvious reasons and according to
the GDPR, privacy should be preserved in both ways and a 3rd party may be
deployed for this. More concretely, the government agency should not be able to
read all access logfiles revealing the movement patterns of the mobile users and
the mobile telco provider should not be able to infer the suspects. Moreover,
neither the involved 3rd party should be able to get insights to access the telco
provider’s lists and suspected persons. We observe in Figure 2.3 the framework
of the scenario.

Government Agency

WHITELIST

3rd Party

Mobile
telecommunication

provider

AP1

AP2

AP3

Mobile Access Logfiles

Mobile Access Logfiles

Mobile Access Logfiles

Figure 2.3. UC2 - First scenario - Privacy friendly tracking for a telco provider controlling
multiple access points.

18

2.2. Use Case 2 - Mobile Users’ Data Collection

Parties:

• Mobile Telecommunication Provider: deploys multiple access
points (APs) to provide 3G, 4G, LTE or onward access to mobile
devices.

• Government Agency: would like to verify if some specific mobile
users were connected within transmission range of any access points.

• 3rd Party: will perform the verification and guarantee privacy for
all unsuspected mobile user data.

Sets:

• Access Logfiles: there exists a mobile access logfile per each access
point containing the list of the devices that connected Ids along with
other information like time or duration of connection. Identifiers are
available in format of Temporary Mobile Subscriber Identity (TMSI)
or International Mobile Subscriber Identity (IMSI).

• Whitelist: represents a list of suspect users or devices generated by
some government agency. Obviously this list is highly sensitive and
should mandatorily remain confidential.

Network of WAPs.

In our 2nd sub-use case we consider mobile users that move through a Wireless
Local Area Network (WLAN) connecting to different Wireless Access Points
(WAP) with Wi-Fi. Each of the WAPs also collects the connection information
into an access logfile. Consider this network to be under control of a single
administrative party, let it be an IT-administrator within an airport, a mall, a
university campus or similar places, or even FreiFunk activities at public places.
The users’ identifiers could be most probably represented as MAC-addresses.
Since almost all WLAN capable mobile devices continuously try to find WLAN
access points by using active mode (instead of passive mode) they will reveal
their MAC address with the broadcast probe request beacons even if WLAN
is only activated and no connection has been established yet. At any time, a
government agency would like to verify if any specific mobile device user accessed
the WLAN or sent probe request beacons. Also for this scenario we recommend
that the 3rd party privately perform the verification. We show in Figure 2.4 the
framework of the scenario.

Parties:

• Hosting Party of Wireless Access Points: provides 1st-hop in-
ternet access via Wi-Fi to the user.

• User: connects or sends probe request beacons to the WLAN via
different wireless access points.

• Government Agency: would like to verify if any specific user have
been connected to specific Wireless Access Points.

19

CHAPTER 2. SELECTED USE CASES

Government Agency

WHITELIST
3rd Party

Logfiles

Logfiles

Logfiles

User

WAP1

WAP2

WAP3

WAP4WAP5

WLAN

Figure 2.4. UC2 - Second scenario - Network of WAPs.

• 3rd Party: will perform the verification and guarantee privacy on the
government agency and the WLAN along with its respective mobile
users.

Sets:

• Access Logfiles: there is a logfile per each WAP containing the list
of the Ids of the devices that either connected or sent probe requests.
The Ids are represented as MAC-addresses.

• Whitelist: represents a list of suspected users or devices generated
by some government agency. As in the previous use case this list is
highly sensitive and should remain private under any circumstances.

Mobile OS Providers.

In the 3rd scenario, we only consider modern smartphones equipped with a
mobile operating system (OS) either from Google or from Apple (Android or
iOS). We mention that besides smartphones and smartwatches, other embed-
ded devices could be considered, e.g. IP-camera with Android or cars with
their on-board units (OBU). Under this pre-requisite, smartphones and other
devices running Android or iOS, are collecting location-based data, for in-
stance by continuously making use of the approximation of RSSI (Received
Signal Strength Indication) values from nearby telco base stations as well as
WLAN access points. Such local logfiles are e.g. cache encryptedA.db, lock-
Cache encryptedA.db, cache encryptedB.db and cache encryptedC.db under iOS
for WLAN access points, movement pattern and others. These data consti-
tute a personal logfile in each user’s smartphone and all the users’ logfiles are
retrieved by the operating system companies (Apple, Google) that aggregate
them into a massively large master logfile. Modern smartphones equipped with
iOS or Andoid harvest these location data, store them locally on the device
and from time to time send them in an encrypted manner to Google or Apple.
Dhein and Grimm have investigated this swarm mapping based location har-
vesting approach very accurately and in detail [DG17]. Finally, as for the two

20

2.2. Use Case 2 - Mobile Users’ Data Collection

previous scenarios, some government agency could require or even force Apple
and Google to access some specific user’s itinerary. We show in Figure 2.5 the
framework of the scenario.

User 1

WAP1

WAP2

WAP3

WAP4

WAP5 User 2

User 1/Mobile OS

LOCAL LOGFILE

User 2/Mobile OS

LOCAL LOGFILE

Google/Apple Server

MASTER LOGFILE

Government Agency

WHITELIST

3rd Party

Figure 2.5. UC2 - Third scenario - Mobile OS providers continuously harvesting geo-location
data.

Parties:

• User: owns a modern smartphone which continuously gets RSSI
values from the access points (both WAP and base station).

• Wireless Access Points (3G, 4G (and onward) mobile base
stations as well as WLAN access points): reveal their signal
strength being accumulated into RSSI values at the smartphone side.
Also provide various forms of connectivity to the smartphone users.

• Mobile Operating System Company: collects location-based in-
formation on each user’s smartphone and aggregates all the user’s
logfiles into a master logfile.

• Government Agency: would like to verify if users with e.g. smart-
phones, smart watches, tablets or similar, have been in proximity
resp. in the transmission range of either some WAPs or base sta-
tions.

• 3rd Party: will perform the verification and guarantee privacy on
the government agency and the operating system company along with
its users.

Sets:

• Local Logfiles: composed by iOS and Android location-based data
received from the RSSIs and stored on each users’ smartphone.

• Master Logfile: both mobile operating system companies aggregate
the personal logfiles of its respective clients into a massively huge
master logfile.

21

CHAPTER 2. SELECTED USE CASES

• Whitelist: represents a list of users or devices generated by some
government agency. Highly sensitive and should mandatorily remain
confidential.

2.2.2 Threat Model

As we have seen previously, the mobile company has no interest in colluding
with the government agency. Indeed, unless any case of force majeure as the
Patriot Act, the mobile company’s reputation relies on how they protect their
customers’ privacy. Also, we could state that neither the mobile company nor
the government agency have any interest in colluding with the 3rd party. Indeed,
it is too sensitive for the governement to share any of their data with an external
party and the mobile agency could, apart from this protocol, try to sell the data
to external parties.

Mobile Company.

By definition, the mobile company owns all clients’ sensitive data. Providing
privacy to customers against their mobile company is out of scope here, therefore
we consider the company as honest-but-curious with no active motivation to
alter the protocol.

Government Agency.

The agency could legally access customers’ data. The whole point of this use
case is to propose an alternative protocol where the agency only access the data
from suspicious customers. We consider the agency accepting such a protocol.
Thereby, it makes no sens to consider any bad behavior from the agency. It is
then viewed as an honest-but-curious party.

3rd Party.

On the contrary, this party will be invited to participate in the protocol, ma-
nipulating sensitive data, which does not occur in the classic way of tracking
customers’ data. Therefore, the 3rd party could seek to take advantage from its
position. Collecting the sensitive data in order to make profit from them should
be considered, so we describe the 3rd party as a malicious party.

2.3 Use Case 3 - Wireless Sensor Network’s
Data Aggregation

A wireless sensor network could be considered as a large number of low-cost
sensor nodes deployed in a monitoring area. Their objective is to sense, collect,
and process cooperatively the information in the network distributed area and
then forward the results to a base station. The network could consist of a
multihop infrastructure-less network system formed by wireless communication

22

2.3. Use Case 3 - Wireless Sensor Network’s Data Aggregation

method. We emphasize that the nodes are space and computationally limited
devices which could store only few data, and an highly usage could severely
reduce their lifetime. In Figure 2.6 we present a framework of a basic version
of WSN.

Sensor
Nodes

Intermediate
Nodes

Base
station

Figure 2.6. Wireless Sensor Network.

There exists various versions of WSNs as widely studied. For instance, we
could mention one of the specific types of WSN called Cognitive Wireless Sensor
Networks (CWSNs) as described in [Sen13]. It consist of a type of WSNs in
which the sensor nodes have the capabilities of changing their transmission
and reception parameters according to the radio environment under which they
operate in order to achieve reliable and efficient communication and optimum
utilization of network resources.

As stated in [YZFC15], WSN’s fields of application are manifolds. They are
widely used in military defense, industry, agriculture, construction and urban
management, biomedical and environmental monitoring, disaster relief, public
safety and anti-terrorism, hazardous and harmful regional remote control, and so
on which are much accounted by many governments. WSNs have a very impor-
tant scientific and practical value. To cite a concrete example from [LZDT09], a
patient’s blood pressure, sugar level and other vital signs are usually of critical
privacy concern when monitored by a medical WSN which transmits the data
to a remote hospital or doctor’s office.

2.3.1 Scenario

Collecting data from the sensor nodes to the base station through intermediate
nodes without considering any aggregation functions or protocol will increase
the cost in terms of energy and therefore reduce the WSN’s lifetime. Indeed, as
we see in Figure 2.7, communication consumes much more energy when we do
not consider data aggregation from different sensor nodes.

We consider two data processing requirements namely the latency and the
accuracy:

23

CHAPTER 2. SELECTED USE CASES

WITHOUT aggregation function WITH aggregation function

Sensor
Nodes

Intermediate
Nodes

Base
station

Figure 2.7. Wireless Sensor Network without and with aggregation functions.

Latency. We consider as latency the time delay between the generation of the
sensor readings at the leaf nodes and the reception of sensor readings
at the base station. The latency could be increased for instance by the
decryption and re-encryption at each intermediate nodes in a hop-by-hop
construction.

Accuracy. The accuracy or correctness corresponds to the difference between
the result collected by the sensor nodes and the one received at the base
station. A difference could be made because of an adversary or an error
that occurred during the aggregation function. Depending on the require-
ments from the base station, some errors could be tolerated or corrected
later.

Parties Involved.

We consider the WSN composed of a base station and sensor or intermediate
nodes.

Sensor Nodes (SN s): consist of low-cost sensor nodes which are resource-
constrained in terms of computation, communication, storage and power
supply. They are especially sensitive to energy consumption thus, a data
aggregation protocol could be relevant.

Intermediate Nodes (IN s): placed in between the sensor nodes and the base
station. Have to collect data from the sensor nodes and retrieve them to
the base station. In case of an optimization using an aggregation protocol,
the intermediate nodes will have to perform processing on data.

24

2.3. Use Case 3 - Wireless Sensor Network’s Data Aggregation

Base Station (BS): central, powerful party which is responsible for retrieving
data from the nodes. Could also be qualified as server or sink.

For the current scenario we consider the environment of Industry 4.0. In
such surroundings, factories own machines which are augmented with wireless
connectivity and sensors. They are connected to a system such as the base
station that can visualize the entire production line and make decisions on its
own. We consider in each of the machines, some sensors evaluating the need
of maintenance along with other information as machine’s temperature or its
spin speed. Maintenance is instructed by an higher authority, namely the base
station. The scenario is illustrated in Figure 2.8 and takes place like this:

Each machine i owns some sensitive information, as a status sti or some
information as a temperature ti. As an example we could have:{

sti = ok or not ok

ti = 45
(2.1)

We note that all sensor nodes from the same machine are supposed to own the
same values.

For each epoch ej , BS needs to retrieve all the machine’s values to evaluate
the need of maintenance. The intermediate nodes first collect values from a
unique machine and perform a rule on them. A rule could be:

Majority: comparing the values and keeping the one mainly represented. (e.g.
a temperature).

Exclusiveness: aggregation of all different values. (e.g. an error message).

Then IN s aggregate values from different machines to save bandwidth and
energy. Needless to say, IN s should not be able to read the machine’s status
nor information.

We emphasize that it is not sufficient for the base station to know if at least
one machine, or even how many of them need maintenance. We would like
the base station to know the status of each specific machine by retrieving their
respective values, to know exactly which ones need assistance.

2.3.2 Threat Model

To consider threats, we have to analyze the characteristics of possible adver-
saries. Another aspect to highlight is how the sensor hardware is protected
against intrusion.

Insider adversary - Outsider adversary We consider an adversary as in-
sider if it has corrupted a node and remains part of the network. It can
then access to all the private information from that node and take its
control. The outsider adversary settles for listening and analyzing com-
munication between nodes within the network.

25

CHAPTER 2. SELECTED USE CASES

RULESRULESRULES

AGGREGATION

AGGREGATION

Intermediate
Nodes

Base
station

Machines

Tasks

sensor
Nodes

Figure 2.8. Industrial Sensor Network.

Passive adversary - Active adversary A passive adversary analyzes the
communication traffic to extract sensitive information. An active adver-
sary can create or modify a packet in the network. An active adversary
could thus temper the integrity and freshness of data while a passive ad-
versary could violate confidentiality and privacy.

Adversary Model:

Sensor nodes are not equipped with tamper-proof hardware, and the adversary
is capable of compromising and fully controlling arbitrary number of sensor
nodes. Therefore, we assume all the nodes, namely sensor or intermediate,
as malicious parties. On the contrary, we assume that BS is immune to all
physical attacks and is trustworthy. We thus consider it as an honest-but-
curious party. Moreover, the adversary can eavesdrop and alter any messages
from honest nodes. In a word, we consider an adversary granted with a full-scale
attack capacity against the sensor network except BS.

2.4 Use Case 4 - Detection of COVID-19 Infec-
tion Chains

Cases of COVID-19 virus have been reported in more than 190 countries and its
spreading has been characterized as pandemic by the World Health Organization
on 11.03.2020. One of its multiple side effects consists of European democracies

26

2.4. Use Case 4 - Detection of COVID-19 Infection Chains

being challenged. Indeed, several countries are collecting location-based data
from their own citizens. The state of emergency for health reasons has been es-
tablished in countries as Spain, Portugal, France or Switzerland. Such a specific
situation empowers a government to perform actions that would normally not be
allowed to undertake. For instance, in Milano, Italy, mobile network operators
are providing information on users’ traffic to public authorities. In Germany,
issues regarding how and for which usage to process the location-based infor-
mation are ones of the most discussed. Indeed, efforts in Germany are twofold
regarding digital support to detect infection chains. First, with an app which
is currently under investigation. It consists of using a tracking app with Blue-
tooth in which a smartphone of an infected user is subsequently informing all
devices which have been in proximity (within the beaconing received range at
some point in time in the past). Such an approach is very vulnerable due to the
requirement of continuously activated Bluetooth. The recently published family
of BlueBorne attacks [ARY+19] have shown that mobile devices with activated
Bluetooth can easily be remotely executed, e.g. CVE-2017-078 1, CVE-2017-
0782 or CVE-2017-14315 and are classified as a severe risk. Moreover, it has
been pointed out that the harvesting of contacts via Bluetooth with a tracking
app is only properly working in case the app is activated continuously in the
foreground, and, moreover, that at least 60% of the smartphone users need to
download and continuously use it to indeed have an impact with respect to the
identification of infection chains.

Second, telco operators would provide access logfiles of mobile network base
stations to RKI (Robert Koch Institute) to support inferring infection chains.

On the contrary, the Netherlands’ government decided to not approve a gen-
eral confinement, for the reason of being incompatible with individual freedom.

For these reasons, we attempt to propose a construction which combine the
efficiency to help the public authorities to contain the virus spreading with the
possibility to provide privacy with respect to the citizens. Therefore, we con-
centrate on providing a privacy-preserving solution for the 2nd effort currently
done within Germany.

We recall that GDPR’s two main objectives are to firstly enhance the per-
sonal data protection by processing them and to secondly empower the com-
panies in charge of this processing procedure. Even if this regulation does not
apply on fields as public health or national security [HSB19], weaving the pro-
posed Bloom filter based private protocols into infection chains investigation
would limit government agencies to solely identify users with high probability
of being infected instead of a massive data analysis of all mobile users.

2.4.1 Scenario

A government agency, which role is to reduce the spreading of the COVID-
19 virus in its country, knows different pairs of infected persons (A,B). Its
objective here, is to identify all the possible paths which relies user A to user
B and considers the case where infection of user B is a consequence of user A’s
infection. By retrieving all possible paths (surely it could also turn out that no

27

CHAPTER 2. SELECTED USE CASES

path exists and the infection of users A and B was unrelated), the agency could
identify all the users within this path that may be also infected by the virus
and try to contact them. Indeed, different mobile device’s users close to the
same mobile base station at the same time could potentially spread the virus in
case of one being infected. To do so, the agency is analyzing connection data
provided by a telco company. The connection logs are collected on the base
stations which are providing network access to the users’ mobile devices.

Parties Involved.

Four parties are involved in the scenario:

Users: could be infected by the COVID-19 virus. They are connecting to the
base stations to access the mobile network.

Telco company: provides network to the users via several base stations. It
also provides log data from the network connections to government agen-
cies.

Base stations: are distributed over several countries, provide network to the
users’ mobile devices and collect connection data.

Government agency: aims to identify ”infection chains” in order to contact
the possible infected users and counteract the virus pandemic.

Collecting Connection Data

Any time a user is connecting to the mobile network using base station j, the
following connection information is collected and aggregated by the telco com-
pany:

(idi, t
1
i , t

2
i)

with idi the user’s credentials and t1i and t2i respectively the starting and ending
times of its connection to the access point. Such connection data should be
considered as sensitive regarding the location privacy of the users. Indeed, on
the one hand the base stations are using usernames to characterize the users
and on the other hand only the telco company could generate and access the
connection information from the base stations.

28

Chapter 3

Preliminaries and their
Respective Literature

We introduce notions and primitives used to develop solutions in Chapter 4,
along with their respective literature. The different topics correspond to search-
able encryption, homomorphic encryption, private information retrieval proto-
cols, set operations, Bloom filter and Concealed Data Aggregation protocols.
We stress that all of these notions allow directly or indirectly to perform com-
putations on private data.

3.1 Searchable Encryption

Cryptographic primitive searchable encryption offers secure search functions
over encrypted data, that is the search executing party does not learn any
information about the plaintext data. In general, keyword indexes are built to
securely and efficiently perform search queries. The two main techniques used in
searchable encryption are Searchable Symmetric Encryption (SSE) and Public
Key Encryption with keyword Search (PEKS). The latter, proposed by Boneh
et al. [BCOP04] will be employed in our proposed solution in Section 4.1 and is
defined as follows.

The PEKS scheme SE consists of the five algorithms:

SE.KeyGen(λ)→ (pkSE, skSE) : Given a security parameter λ, the public/pri-
vate key pair (pkSE, skSE) is generated.

SE.Enc(pkSE,m)→ c : Given the public key pkSE and a message m, it generates
a ciphertext c.

SE.PEKS(pkSE, w)→ Sw : Given the public key pkSE and a keyword w, it gen-
erates a PEKS ciphertext Sw of w.

29

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

SE.Trapdoor(skSE, w)→ Tw : Given a keyword w and the private key skSE, it
produces a trapdoor Tw.

SE.Test(pkSE, Sw, Tw′)→ {0, 1} : Given the public key pkSE, a searchable en-
cryption ciphertext Sw, and a trapdoor Tw′ , it outputs 1 (true) if w = w′

or 0 (false) otherwise.

3.2 Homomorphic Encryption

3.2.1 Definition and Classification of Homomorphic Cryp-
tosystems

Definition 1. A cryptosystem is called homomorphic if an algebraic operation
processed on ciphertexts is equivalent to one processed on plaintexts.

More formally, let it be M the messages space, C the ciphertexts space and
Enc an encryption function:

∀m1,m2 ∈M, Enc(m1 �M m2)← Enc(m1)�C Enc(m2)

with �M and �C , operators in respectively M and C. ← means “could be
directly computed from” without any decryption.

Homomorphic encryption allows valid computations directly on the cipher-
text, generating an encrypted result which matches the result according opera-
tions performed on the plaintext, when decrypted. An evaluation algorithm is
added to encryption and decryption which operates on ciphertexts.

According to the type of computation, we distinguish several cryptoschemes’
types: partially homomorphic, somewhat homomorphic or fully homomorphic.

Partially homomorphic. These cryptoschemes solely allow one type of com-
putation on the ciphertexts. For instance, the Paillier’s scheme [Pai99] is
additively homomorphic, i.e. given the public key and two ciphertexts one
can compute the encryption of the addition of both respective plaintexts .

Dec(Enc(m1)× Enc(m2)) ≡ m1 +m2

Another example is the “unpadded RSA” scheme where a multiplication
of two ciphertexts is equivalent to a multiplication of two cleartexts.

Dec(Enc(m1)× Enc(m2)) = x1 ×m2

These cryptoschemes allow an unlimited amount of additions or multipli-
cations but not both at once.

Somewhat homomorphic. Allow an unlimited amount of additions and a
limited amount of multiplications. For instance, there is the Brakerski and
Vaikuntanathan’s scheme [BV11a]. We could also cite [DPSZ12] where
somewhat homomorphic encryption schemes are used for multiparty com-
putation.

30

3.2. Homomorphic Encryption

Fully homomorphic. In [Gen09], Craig Gentry firstly introduced a fully ho-
momorphic encryption scheme which allows unlimited amounts of addi-
tions and multiplications on the ciphertexts. Nevertheless, this scheme
is far from being practical due to its computation complexity, and since
currently, none of the known FHE schemes are efficient enough to pro-
vide applicability [ABC+15]. We restrict ourselves to Paillier’s and SHE
instead.

This kind of cryptoschemes, mainly asymmetric, is part of the modern tech-
nique of cryptography. It brings additional features that are highly relevant ac-
cording to its scope of application. Obviously these new features bring another
level of complexity which could classify this kind of cryptography as heavyweight
compared to classical schemes.

3.2.2 Partially Additive Cryptosystems

As we will see in the PIR protocols’ description, we are particularly interested in
the additive feature of the homomorphic cryptosystems. Therefore, we look in
detail different kinds of additive schemes in order to compare their complexities.

First, we give some mathematical reminders, required to a perfect under-
standing of the schemes.

Definition 2. Let it be N a product of two prime integers p and q, we consider
the Euler’s function as φ(N) where φ(N) = (p− 1)(q − 1).

Property 1. N = p ∗ q is an RSA module with p and q two prime integers
and p < q. p does not divide q − 1, in other words, pgcd(N,φ(N)) = 1.

Definition 3. The Carmichael function of a positive integer d, as λ(d),
consists of the smallest integer m such as am ≡ 1 mod d for all integer a
between 1 and d that is coprime to d.

Property 2. For all w ∈ Z∗N2

wλ(N) = 1 mod N and wNλ(N) = 1 mod N2.

Definition 4. We consider an integer q as quadratic residue modulo p if
there exists an interger x such that:

x2 ≡ q mod p.

Definition 5. For u ∈ Z∗N2 , we define the L function as follows:

L(u) = u−1
N mod N2

Definition 6. The Legendre symbol (
a

p
) of an integer a and an odd prime p

consists of:

31

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

(
a

p
) =

1 if a is a quadratic residue modulo p and a 6≡ 0 mod p

−1 if a is a non-quadratic residue modulo p

0 if a ≡ 0 mod p

Definition 7. The Jacobi symbol (
a

n
) corresponds to the product of the Leg-

endre symbols of the prime factors of n:

(
a

n
) = (

a

p1
)α1 × (

a

p2
)α2 × · · · × (

a

pk
)αk

where n = pα1
1 × p

α2
2 × · · · × p

αk
k

Examples of Additive Cryptosystems

We present now several additive homomorphic cryptosystems:

Goldwasser-Micali [GM82]. Developed by Shafi Goldwasser and Silvio Mi-
cali in 1982, this cryptosystem is a bitwise encryption scheme. It is defined
by the following functions:

• Keygen: z is generated as a non quadratic residue such that its

Jacobi symbol (
z

N
) = 1, in particular if pgcd(p, q) ≡ 3 mod 4 then

N − 1 is one of these elements. We have the two following keys:
pub.key = (N, z) and sec.key = (p, q).

• Enc: to encrypt the i-th bit of a message mi ∈ {0, 1}, we randomly
generate y ∈ Z∗N and compute ci = y2zmi mod N .

• Dec: to decrypt ci we compute the following Jacobi symbol:

(
ci
N

) = (
ci
p

)(
ci
q

) =

{
1 ∗ 1 then mi = 0

else mi = 1

• Properties:

• adding two ciphertexts Enc(x1 ⊕ x2) = Enc(x1) ∗ Enc(x2), with
⊕ the addition operator within Z2.

• multiplying a ciphertext with a cleartext k: Enc(kx mod 2) =
Enc(x)k.

• Security: based on the quadratic residuosity problem, i.e. guessing if
a random element x from Z∗N is a square.

Benaloh [Ben94]. This cryptosystem is derivated from the Goldwasser-
Micali’s presented in 1994 by Josh Benaloh. The message space is r bits
but with a pretty long decrypting process.

• Keygen: on select an RSA module such that r divides p − 1 but
not q − 1 neither p−1

r . Therefore, we get that r divides φ(N) and

pgcd(r, φ(N)
r) = 1. We randomly generate g ∈ Z∗N such that g is not

a r-th power residue. We get the following keys: pub.key = (N, r, g)
and sec.key = (p, q).

32

3.2. Homomorphic Encryption

• Enc: to encrypt a message m ∈ Zr we randomly generate z ∈ Z∗N
and we compute c = gmzr mod N .

• Dec: to decrypt c we test, for all j ∈ Zr, if (cg−j)
φ(N)
r = 1 mod N

(i.e. cg−j is a r-th power residue) then m = j.

• Properties:

• adding two ciphertexts Enc(x1 + x2) = Enc(x1) ∗ Enc(x2)

• multiplying a ciphertext with a cleartext k: Enc(kx) = Enc(x)k

• Security: based on the hardness to decide if a random element from
Z∗N is a r-th power residue modulo a composite integer. It general-
izes the quadratic residuosity problem but unfortunately, the decryp-
tion process gets pretty long. There exists an optimization based on
the Pollard’s rho algorithm [Pol78] with a decrypting complexity of
O(
√
r).

Naccache-Stern [NS98]. In 1998, David Naccache and Jacques Stern pro-
posed an alternative version to enhance the message space and reduce
decryption time. It uses the Pohlig-Hellman algorithm [PH78].

• Keygen: we select an RSA module N and β =
k∏
i=1

pi a divisor of φ(N)

such that pgcd(β, φNβ) = 1 and with pi integers relatively prime and
g ∈ Z∗N with an order equal to a multiple of β. We get the following
keys: pub.key = (N, β, g) and sec.key = (φ(N), p1, p2, . . . , pk).

• Enc: to encrypt a message m ∈ Zβ we randomly generate z ∈ Z∗N
and compute c = gmzβ mod N .

• Dec: at first, we determine the mi as follows: we compute ci = c
φ(N)
pi

mod N and as ci ≡ g
miφ(N)

pi mod N then we compare ci to g
jφ(N)
pi

with j ∈ N and 1 < j < pi − 1. After retrieving all the mi, as
mi ≡ m mod pi, we can retrieve m with the use of the Chinese
remainder theorem.

• Properties:

• adding two ciphertexts Enc(x1 + x2) = Enc(x1) ∗ Enc(x2)

• multiplying a ciphertext with a cleartext k: Enc(kx) = Enc(x)k

• Security: based on the higher residuosity problem, i.e. a generaliza-
tion of the quadratic residuosity problem when d = 2.

Okamoto-Uchiyama [OU98]. Presented in 1998 by Tatsuaki Okamoto and
Shigenori Uchiyama, this scheme allows to decrypt without the need of
exhaustive research. Indeed, in the previous schemes, we’ve performed
some tests for every power. Now we use an RSA module as N = p2q and
we notice that (1 + p)m = 1 +mp mod p2 using the binomial theorem.

33

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

• Keygen: we then select an RSA module as N = p2q with p of size k.
We select g ∈ Z∗N such that gp−1 mod p2 has order p. Then we get:
pub.key = (N, k, g) and sec.key = (p, q).

• Enc: for encrypting a message m ∈ [0, 2k−1] we randomly generate
z ∈ Z∗N and we compute c = gmzN mod N .

• Dec: we perform the following formula: m = (cp−1−1 mod p2)/p
(gp−1−1 mod p2)/p

mod p.

• Properties:

• adding two ciphertexts Enc(x1 + x2) = Enc(x1) ∗ Enc(x2)

• multiplying a ciphertext with a cleartext k: Enc(kx) = Enc(x)k

• Security: Based on the factorization using the same technique as
before. If an attacker knows the encryption function, then by en-
crypting a value higher than p and asking for a decryption, he could
get p and therfore break the RSA module.

Paillier [Pai99]. Presented by Paillier in 1999, this scheme extends Okamoto
and Uchiyama’s idea with a module as N2 = p2q2. It is based on the
Carmichael function properties.

• Keygen: we generate g ∈ Z∗N2 such that g has order N (we could
select g = 1 + kN with k ∈ N).
Then we get: pub.key = (N, g) and sec.key = (λ(N))

• Enc: to encrypt a message m ∈ ZN we randomly generate r ∈ Z∗N
and compute c = gmrN mod N2.

• Dec: to decrypt c we compute m =
L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N .

• Properties:

• adding two ciphertextss Enc(x1 + x2) = Enc(x1) ∗ Enc(x2)

• multiplying a ciphertext with a cleartext k: Enc(kx) = Enc(x)k

• Security: Based on the hardness to distinguish between a residue of
order N mod N2 and a non-residue of order N .

Analyzing and Comparing the Additive Cryptosystems

In Section 3.2.2, a relevant aspect to compare the schemes is the expansion
ratio (i.e. length’s increase of a message when it is encrypted). We easily notice
that the smaller the expansion is, the better the cryptosystem is in terms of
communication complexity.

3.2.3 Somewhat Homomorphic Encryption

The Ring Learning with Errors Problem

The Ring Learning with Errors (RLWE) problem, presented by Lyubashevsky
et al.in [LPR10], corresponds to the larger Learning with errors (LWE) problem

34

3.2. Homomorphic Encryption

Table 3.1. Comparing the additive cryptosystems (from our own contri-
bution).

Message space Cyphertext space Expansion
Goldwasser-Micali Z2 ZN log(N)

Benaloh Zr ZN log(N)
log(r)

Naccache-Stern Zσ ZN ≈ 4
Okamoto-Uchiyama Zp ZN ≈ 3
Paillier ZN ZN2 ≈ 2

specialized to polynomial rings over finite fields. The solution to the RLWE
problem may be reducible to the NP-Hard Shortest Vector Problem (SVP)
in Lattice. The RLWE assumption is characterized by multiple parameters,
rings R := Z[x]/〈f(x)〉 and Rq := R/qR for some degree n, integer polynomial
f(x) ∈ Z[x], a prime integer q ∈ Z and an error distribution χ over R. The ring
Rq thus represents the ring of degree n polynomials modulo f(x) with coeffi-
cients in Zq. With these configuration, addition in this ring is done component-
wise in their coefficients and multiplication is simply polynomial multiplication

modulo f(x) and q. Let s
$←− Rq be a uniformly random generated ring element.

The assumption says that given any polynomial number of samples of the form
(ai, bi = ai × s + ei) ∈ (Rq)

2, where ai is uniformly random in Rq and ei is
drawn from the error distribution χ, the bi’s are computationally indistinguish-
able from uniform in Rq. This specific case of the RLWE assumption where ring
elements are represented as polynomials has been highlighted by Brakerski and
Vaikuntanathan in [BV11b].

The SHE Scheme

The studied encryption scheme here is the somewhat homomorphic encryption
scheme presented by Brakerski and Vaikuntanathan in 2011 [BV11b]. This
scheme requires to firstly encode the message into a polynomial representation
subsequently to encrypt it with the respective encryption function resulting in
a couple of polynomials. Figures 3.1 and 3.2 illustrate the steps to encrypt a
message.

Message Space. The plaintext polynomial space corresponds to
Rt = Zt[x]/(xn + 1) with two parameters t and n. The polynomial degree n
limits the amount of coefficients while parameter t bounds the coefficients’ size.

In [Bie14], Bieberstein considers one additional parameter comparing to the
presentation of this scheme by Brakerski et al.: the base b. This parameter

35

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

Plaintext Message Plaintext Polynomial
Encryption

Cipher Polynomials
(n, t, b) (q, !)

Encoding

degree of the
polynomial

value space of the
coefficients

base value space of the
coefficient

standard deviation
of the error

Figure 3.1. Encoding and encryption path for a message.

89
(n=8, t=2, b=2) (q=97, !=4)

EncryptionEncoding
x6 + x4 + x3 + 1 (21 x7 + 2 x6 + 10x5 + 6 x4 + 9 x3 - 14 x +1,

-44 x7 + 15 x6 - 43 x5 + 37 x3 - 30 x2 - 22 x +42)

Figure 3.2. A concrete example with a message m = 89 .

represents the base of all polynomials. In other words, when encoding and
decoding the messages, we have x = b. In a classical manner we consider
this parameter equal to 2 (as it is presented in [NLV11]). In this classical
configuration, we are encoding the message with coefficient ci ∈ {0, . . . , b− 1}.
Bieberstein proposes that b could be different than 2 or t. However, he did not
suggest anything regarding t while in [NLV11], t should be prime and less than
q.

Distributions.

Uniform Distribution When we write d
$←− S that means d chosen from the

uniform distribution over some finite set S. In the latter sections we
specify it to the ring Rq.

Gaussian Distribution We let the distribution χ = DZn,σ to indicate the
n-dimensional discrete Gaussian distribution. To sample a vector x ∈
Zn from this distribution, sample yi ∈ R from the Gaussian standard
deviation σ and set xi := byie, where b·e represents rounding to the nearest
integer. Using the isomorphism mentioned above, we treat χ as the error
distribution over integer degree n polynomials defined by the probability
density function in [NLV11]:

∀e ∈ Zn : Pr[e← DZn,σ] =
e−π‖e‖

2/σ2∑
e∈Zn e

−π‖e‖2/σ2 (3.1)

We let χ′ be a noise distribution like χ, only with larger standard deviation
σ′ as it is presented in [BV11b].

σ′ ≥ 2ω(log n) × σ (3.2)

Key Generation. We are considering here the public-key version of the
scheme such that a key pair is generated. The secret key is set as sk = s ∈ Rq

36

3.3. Private Information Retrieval Protocol

where we sample a ring element s
$←− χ. The public key corresponds to a RLWE

instance: pk = (a0, b0 = a0s + te0). a0
$←− Rq is uniformly randomized and

e0
$←− χ a small error.

Encryption. Given the public-key pk = (a0, b0) and a message m ∈ Rq,

elements v, e′
$←− χ and e′′

$←− χ′ are set and the ciphertext is defined as ct =
(c0, c1) = (b0v + te′′ +m,−(a0v + te′)).

Decryption. Given the secret key sk = s and a ciphertext ct = (c0, c1), we
first compute m̃ = c0 + c1s ∈ Rq. Secondly, we output the decrypted message
m ≡ m̃ mod t. In case of a ciphertext with more than two elements, the generic
decryption formula is:

m̃ =

d∑
i=0

ci × si (3.3)

Addition. Given two ciphertexts ct = (c0, . . . , cd) and ct′ = (c′0, . . . , c
′
d), the

addition of the two corresponds to the following ciphertext:

ctadd = ct+ ct′ = (c0 + c′0, . . . , cd + c′d) (3.4)

Namely, addition is done by coordinate-wise vector addition of the ciphertext
vectors. If the two ciphertexts have a different length, we should pad the shorter
ciphertext with zeroes on the most significant bits. The output of the addition of
two ciphertexts ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c

′
γ) contains max(δ+1, γ+1)

ring elements. Therefore, addition does not increase the number of elements in
the ciphertext vector.

Multiplication. Given ct = (ct0, ct1) and ct′ = (ct′0, ct
′
1), the multiplication

computes ctmult = (ct0ct
′
0, ct0ct

′
1 + ct′0ct1, ct1ct

′
1). Homomorphic multiplication

increases the size of the ciphertext. The output of the multiplication of the
two ciphertexts ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c

′
γ) contains δ + γ + 1 ring

elements and will be represented as:(
δ∑
i=0

civ
i

)
×

(
γ∑
i=0

c′iv
i

)
=

δ+γ∑
i=0

c̃iv
i (3.5)

3.3 Private Information Retrieval Protocol

3.3.1 Definition

Definition 8. In a Private Information Retrieval (PIR) protocol, a server pos-
sesses a database and a user would like to retrieve the i∗-th element of it. At
the end of the protocol, user will get the element and server will know nothing
about i.

37

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

This protocol was first introduced by Chor et al. in [CGKS95]. We consider
the protocol presented by Ostrovsky and Skeitk in [OI07] as the most practical
one. We denote this protocol as the Classical Protocol and we summarize it as
follows. Let i∗ be the index requested by the user U for a n-tuple (x1, x2, . . . , xn)
representing a one-dimensional database owned by a server S.

1. U generates a query Q = (q1, q2, . . . , qn), where for all indexes i ∈
{1, . . . , n}:

qi =

{
Enc(0) if i 6= i∗

Enc(1) if i = i∗
(3.6)

and sends it to the server.

2. S computes and sends back response R =
∑n
i=1 qixi.

3. U decrypts response and gets requested data Dec(R) = xi∗ . Indeed,

Dec(R) = Dec(q0x0 + · · ·+ qi∗xi∗ + · · ·+ qnxn)

= Dec(Enc(0)x0 + · · ·+ Enc(1)xi∗ + · · ·+ Enc(0)xn)

= 0x0 + · · ·+ 1xi∗ + · · ·+ 0xn = xi∗ (3.7)

Here, Enc and Dec respectively correspond to encryption and decryption func-
tion of an additive homomorphic scheme (e.g. Paillier’s [Pai99]).

A more straightforward and naive solution to this problem could be the
server transmitting the whole database to the user. Regarding the database’s
size, such an approach could easily become unrealistic. We distinguish two types
of PIR protocol:

Computational Private Information Retrieval (CPIR). This class of
protocols consists of a unique version of database and a server with a
limited computational power. Therefore, privacy is guarantee against any
malicious server that could not compute any information from the user’s
request and its response.

Information Theoretic Private Information Retrieval (ITPIR). In
this protocols’ class, multiple servers possess a database copy but do not
communicate with each other.

In the work at hand, we limit our research to CPIR protocols. A particular case
of CPIR protocols which provides privacy on both parties is the Symmetric
Private Information Retrieval.

Symmetric Private Information Retrieval (SPIR). In addition to a clas-
sical protocol of PIR, a symmetric PIR brings additional privacy on the
database owner. Indeed, the user does not get any additional information
than the requested data. This protocol is similar to a 1-out-of-2 Oblivious
Transfer problem.

We present the Oblivious Transfer problem and its 1-out-of-2 case in detail.

38

3.3. Private Information Retrieval Protocol

Oblivious Transfer (OT). This problem was firstly introduced by Michael
O. Rabin [Rab05] in 1981. Similarly to the PIR protocol, it consists of
a server that provides data without knowing which data in particular.
Also, receiver learns nothing about other messages. Three types of OT
protocols have been developed; the 1-out-of-2 OT, the 1-out-of-n OT and
the k-out-of-n OT.

We give details of the first category 1-out-of-2 OT:

1. Alice owns 2 messages, m0 and m1, and has to transmit one of the two to
Bob without learning which one will be transmitted.

2. Alice generates RSA keys including a RSA modulo N along with public
and private exponents e and d: pub.key = (N, e) and sec.key = (d).

3. Alice randomly generates u0 and u1 and sends them to Bob along with
the public key.

4. Bob selects b as 0 or 1 regarding the requested message and selects the
respective ub.

5. Bob generates a random value k and obfuscates ub computing v = (ub+k
e)

mod N and sends it to Alice.

6. Alice computes the two possible values of k: k0 = (v − u0)d mod N and
k1 = (v − u1)d mod N .

7. Alice processes the two messages with the respective keys: m′0 = m0 + k0
and m′1 = m1 + k1 and sends them to Bob.

8. Bob selects the one he can read with k, and retrieves mb = m′b − k.

The 1-out-of-n OT protocol is a generic case where Alice owns n messages.
In the k-out-of-n version, Bob would like to retrieve k messages among the n
messages from Alice.

3.3.2 Examples of PIR Protocols

We present several PIR protocols to understand their mechanisms and to the
objective of comparing them and selecting the more efficient. We consider two
parties in the following protocols: a user U and a server S which owns a database.
Both of the parties are limited to probabilistic and polynomial computations.
We use an homomorphic encryption scheme with their respective encryption
and decryption functions Enc and Dec. The homomorphic scheme could be for
example the Paillier’s presented in Section 3.2.2. In addition to the Classical
Protocol [OI07] we present three alternative PIR protocols:

Two-Dimensional Protocol [OI07]. This version is similar to the previous
one except the database of n elements which is a two-dimensional tabular.
Each element from the database is represented by a couple of indexes (i, j)

39

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

with i, j ∈ {1, . . . ,
√
n}, where i corresponds to its row and j its column.

The requested element from U is represented by (i∗, j∗).

1. U generates the request Q = (q1, q2, . . . , q√n) as follows: for all in-
dexes i ∈ {1, . . . ,

√
n},

qi =

{
Enc(0 if i 6= i∗

Enc(1) if i = i∗
(3.8)

2. S computes for each row: Rj =

√
n∑

i=1

qixij . Its sends back the following

response: R = (R1, . . . , R√n).

3. U retrieves the vector and decrypts the required element(i.e. the
j∗-th element): Dec(Rj∗) = xi∗j∗ .

We notice that despite a complexity improvement, U is able to decrypt the
whole i∗-th row from the database, namely

√
n elements. This protocol is

clearly not a symmetric PIR since user could retrieve additional elements
than the one requested.

Chang Protocol [Cha04]. This version has been proposed in 2004 by Yan-
Cheng Chang, it brings back symmetrical feature on privacy even with a
two-dimensional database as in the Two-Dimensional Protocol.

1. U generates a request Q = (α1, . . . , α√n, β1, . . . , β
√
n) as follows: for

all indexes i, j ∈ {1, . . . ,
√
n},

αi =

{
Enc(0) if i 6= i∗

Enc(1) if i = i∗
and βj =

{
Enc(0) si j 6= j∗

Enc(1) si j = j∗
(3.9)

2. S computes for each row: σi =

√
n∑

j=1

βjxi,j mod N2 with N the RSA

module, and decomposes it as: σi = uiN + vi.

S computes u =

√
n∑

j=1

αjuj mod N2 and v =

√
n∑

j=1

αjvj mod N2 and

sends these values to U .

3. U receives the couple (u, v) and decrypts as:

Dec(Dec(u)N +Dec(v)) = xi∗j∗ (3.10)

RQ Protocol [KO97]. This version is based on the quadratic residuosity
problem and could be used if the requested data is a bit. Indeed, the
database from S consists of a matrix M composed by n = s ∗ t bits. U
would like to retrieve the xi∗ -th bit, with i∗ = (a, b), a its row and b its
column.

40

3.3. Private Information Retrieval Protocol

1. U randomly selects t values y1, . . . , yt ∈ ZN , relatively prime to N
and with a Jacobi symbol of 1 (i.e. ∀i (yiN) = 1) such that yi is a
quadratic residuosity for i 6= b and yb is not. U sends these values to
S.

2. For each element from the matrix M , S computes:

wr,j =

{
y2j if Mr,j = 0

yj if Mr,j = 1
(3.11)

Then, for each column, S computes:

zr =

t∏
j=1

wr,j (3.12)

The request’s response is R = (z1, . . . , zt).

3. U solely considers the requested element, namely za and tests if it is
a quadratic residuosity. If it is, then bi = 0, if not bi = 1.

3.3.3 Protocols Comparison

After a detailed description of the four types of PIR protocol, we look at their
respective complexity. First, we express the following complexities. The ones
from U to generate the request (UPL) and to process its response (DWL), and
the ones from S to perform computations on database and to generate the re-
spective response (COMPUTES). Second, we determine the communication’s
complexity in terms of sizes of the messages for the ones sent from U to S (−→)
and their responses (←−). We recall the relevant parameters: n the database’s
size, k the size of the requested element by U (in bits). And we set op as a basic
operation like multiplication or modular exponentiation.

For instance, for Paillier’s cryptosystem [Pai99], encryption corresponds to
two exponentiations and one multiplication, which makes three op. Decryp-
tion corresponds to one exponentiation, one subtraction, one division and one
multiplication, which makes four op. On server’s side, add corresponds to a
multiplication and mult to a modular exponentiation. Then, with a classical
PIR, request generation and server’s computations are in O(n) while the user’s
decryption is in O(1).

For RQ protocol, we do not express the encryption’s complexity which con-
sists in generating n values relatively prime to N quadratic residues. We ex-
press the quadratic residuosity testing by testRQ. Remaining computations
are related to data’ size. Table 3.2 expresses computation and communication
complexities.

To interpret these results, we propose Table 3.3.

41

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

Table 3.2. Complexities’ comparison of different PIR protocols (from
our own contribution).

Protocols U S Communication
UPL DWL COMPUTES −→ ←−

Classic n× Enc ≡ 3n× op 1Dec ≡ 4op n× (add+mult) ≡ 2n× op n× log |G′| log|G′|
[OI07] 7→ O(n) 7→ O(1) 7→ O(n)

DB 2-dim
√
n× Enc ≡ 3

√
n× op 1 Dec ≡ 4op

√
n×
√
n× (add+mult)

√
n× log |G′|

√
n× log |G′|

Paillier [OI07] 7→ O(
√
n) 7→ O(1) ≡ 2n× op 7→ O(n)

Chang 2
√
n× Enc ≡ 6

√
n.op 3Dec+ add+mult

√
n×
√
n× (add+mult)

[Cha04] 7→ O(
√
n) ≡ 14 op 7→ O(1) +

√
n× (div +mod) 2

√
n× log |G′| 2× log |G′|

+2
√
n× (add+mult)

≡ (2n+ 6
√
n)op 7→ O(n)

RQ [KO97] n× op 7→ O(n) k × testRQ ≡ 2k × op n× k(3×mult) ≡ 3kn× op n× log |G| k × log |G|
7→ O(k) 7→ O(kn)

Table 3.3. Pros and cons of different PIR protocols (from our own con-
tribution).

Protocols PROS/CONS
Classic ⊕ user only retrieves requested element: Symmetric PIR
[OI07] 	 a significant complexity on server’s side

Paillier DB 2-dim ⊕ better complexity
[OI07] 	 user learns every elements on row i* from database
Chang ⊕ Symmetric PIR
[Cha04] 	 more computations on both user’s and server’s side

RQ 	 bit-wise processing, therefore not realistic if k is large
[KO97] needs to generate a large amount of prime numbers and quadratic residues.

3.3.4 Related Work

Outsourcing of a PIR protocol is explored when protocols allow multiple
database readers [HG13, JJK+13]. The aspect of retrieving encrypted data,
stored in an outsourced database described in [FD13], is applied to a cloud
scenario, but without PIR. Other work employs Reed-Solomon and LDPC
codes to explore the possibility of retrieving multiple records of a database
[GKL10, FR12]. Another way of achieving this property is k-out-of-n Oblivious
Transfer protocol first introduced in 2002 by Mu et al. [MZV02] and then widely
developed [CT08, Wan15, LH14].

3.4 Set Operations

Multiple types of operations could be performed on sets. In the three aforemen-
tioned use cases, we aim to test set relations and some of them could be reduced
to compute some operations cardinality. For instance, being able to compute
cardinality of the intersection of two sets indicates whether they have elements
in common or if one set is included in the other one. For privacy concerns it
could be of interest to solely reveal its cardinality instead of the intersection it-
self. Therefore, we propose later on a solution to solve two kinds of set relations
namely the inclusiveness and the disjointness defined as follows:

Definition 1 (Inclusiveness). Let A and B be finite sets. A is included in B,

42

3.5. Bloom Filters

i.e. A ⊂ B, iff all elements from A are included in B : ∀a ∈ A : a ∈ B.

Definition 2 (Disjointness). Let A and B be finite sets. A and B are disjoint
iff none of the elements from A are included in B. In other words, A∩B = ∅ :
∀a ∈ A : a /∈ B.

Computing disjointness test as a two-party secure computation problem has
been proposed in several papers [FNP04, KM05, HW06, YWPZ08] based on ho-
momorphic encryption, Pedersen commitments for [FNP04, KM05], on “testable
and homomorphic commitments” on polynomial representations for [HW06],
and Sylvester matrix and Lagrange interpolation for [YWPZ08]. But none of
these are adapted to a third party scenario or provide privacy on the sets’ sizes.

3.5 Bloom Filters

3.5.1 Definition

A Bloom filter is a data structure introduced by Burton Howard Bloom in
1970 [Blo70]. It is used to represent a set of elements. With a Bloom filter
representing a certain set, one can verify whether an element is a member of this
set. Such a data structure consists of a tabular of m bits which is associated to
nkey public hash functions. At first, all the m bits are initialized to 0. Moreover
two functions namely add() and test() are available. To add an element to
the Bloom filter, one has to compute the hashes of this element with each
of respective nkey hash functions. Then, set the bit to 1 for each position
corresponding to a hash value. To test whether one element is included in
the Bloom filter with the test() function, one has, similarly, to compute the
respective hash values of this element and verify if respective bits are set to 1. If
at least one of these bits is set to 0, then we know for sure that the tested element
is not a member of the set represented by the Bloom filter (i.e. no false negative
for test() could happen). On the contrary, with some probability, the test()
function could retrieve a false positive. Indeed, even if all the bits that have been
verified are set to 1, the tested element may not be part of the set represented
by the Bloom filter. There exist multiple applications for this approach. It is
used by web browser or web site to optimize cache or site recommendations.
With database query operations it could also, for example, reduce the disk
lookups for non-existent rows or columns. Finally we could also mention its
relevancy with respect to cryptocurrencies by for instance accelerating the wallet
synchronization of Bitcoin or fasten the finding of logs on Ethereum blockchain.

To express the probability of having a false positive when performing func-
tion test() we introduce the overlapping bit notion.

Definition 3 (Overlapping bit). When adding an element to a Bloom filter, a
certain bit has to be set to 1 but this bit is already set to 1.

The probability of having an overlapping bit is null when the Bloom filter is
still blank, and it grows along with the number of inserted elements. We express

43

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

this probability as following with XBFA the amount of bits already set to 1 in
BFA at a specific point in time:

Pob =
XBFA

m
(3.13)

We could then express the average amount of different bits added to the Bloom
filter when adding one new element to it:

Xadd = nkey +

nkey∑
i=1

(
(−1)i ×

∑nkey−1
j=i

(
j
i

)
mi

)
(3.14)

And we could generalize it to the average amount of bits added to the Bloom
filter when adding N new elements to it:

Xadd(N) = nkey ×N +

nkey×N∑
i=1

(
(−1)i ×

∑(nkey×N)−1
j=i

(
j
i

)
mi

)
(3.15)

By observing the current state of a Bloom filter representing finite set A of nA
elements, one can express the exact amount of overlapping bits as the value
YBFA :

YBFA = (nA × nkey)−XBFA (3.16)

3.5.2 Related Work

Adding privacy to Bloom filters has been yet investigated in different works.
The first way of doing that consists of directly encrypting the Bloom filter with
homomorphic encryption, as Kerschbaum did in [Ker12] and [Ker11] and also
as developed in [BC04] and [ZPH+17]. In [Ker12] we notice that Kerschbaum
proposes an “outsourced” version of his protocol but requires homomorphic
multiplications between Bloom filters of encrypted elements. Also, the proto-
col disables the server to learn about the intersection size. In [NK09] authors
add privacy by using two approaches: blind signature schemes and oblivious
pseudorandom functions. The second type of approaches, as we suggest in
the current work, consists of replacing the traditional hash functions of the
Bloom filter by HMAC functions. We explain how these existing solutions
[Goh03, SBR09, KNV09, SGM02, LG, QLW07] do not fit our requirements
and therefore our solution brings novelty. First of all, we highlight the fact
that none of the following solutions provide privacy on the sets cardinality. In
[Goh03] Goh associates Bloom filters with a keyed pseudo-random function to
allow a private member testing in the Bloom filter. This is in particular one
aspect we do not want the auditor be able to do. In [KNV09] authors propose
a solution that approximately computes the dot product protocol using Bloom
filters. Contrary to our outsourced requirement, this solution is a two-parties
interactive protocol. Also, authors use keyed versions of SHA-1 as the Bloom
filter hash functions but do neither motivate this choice nor explain its ben-
efit. They implemented their solution and show results with relatively small

44

3.5. Bloom Filters

parameters (less than 5 keys and no Bloom filters larger than 5000 bits). They
conclude that their solution roughly supports the use of more than four hash
functions. In [LG] authors expose a construction of Bloom filters along with
HMAC protocol in a wireless sensor aggregation scenario. Their approach is
somehow similar but the base station (equivalent to the auditor here) shares
HMAC keys directly with each of the nodes. Therefore, the merging of Bloom
filters from different nodes does not allow any operation since different keys are
used. Also, the base station performs testing on the Bloom filter and holds
all the secret keys. In [QLW07], still by combining the Bloom filter approach
with HMAC (or keyed hash functions), authors propose a solution to compute
membership of elements in a set. Therefore, they manipulate Bloom filters of
unique elements that leads to data leakage regarding the amount of elements.
Also having one Bloom filter per element could be very costly, especially when
considering thousands of them. In [SGM02], authors combine some version of
filters with HMAC in the objective to compute the sets intersections. But in
such protocol, parties (here the data sources), which perform the intersection,
need the HMAC key to return the result. Such a construction does not fit
our requirements where in particular the active party (the auditor) should not
hold the key for privacy reasons. Indeed, authors consider that all parties hold
the key and thus are all trustable. In [SBR09] authors compute Dice-coefficient,
which represent similarities between two strings in a private manner using Bloom
filters representation. They present some experimental results produced from
relatively small Bloom filters parameters that shows limitations on having a
large amount of bits in Bloom filters to keep set sizes protected. They motivate
the use of HMAC by arguing that it adds an additional security layer to their
protocol. We notice that works that provide results by testing their solution
are space limited. On the contrary, in the work at hand, we expose results with
real-world parameters as 104 elements inserted in the Bloom filters of 1010 bits.
Other works [AM14, EFG+15, Bf12, LYC+06], that deserve attention, compute
set relations and operations using the Bloom filters approach but in a multi-
party model, that does not fit our requirements. Solving the set intersection
cardinality implies solving the disjointness problem as in [EFG+15]. But this
work relies on knowing the sizes of the sets and does not fit our outsourced
configuration.

In Table 3.4 we recap what aforementioned approaches provide, compared
to our proposed solution. For each approach we precise if it can be used in
an outsourced model where an untrustable third party performs the computa-
tions, if functions add(), test() and the set relations inclusiveness (INC) and
disjointness (DIS) are computable by the third party.

In [MS17] authors applied the Bloom filter to key exchange mechanisms in
wireless sensor network (WSN) environment while in [TNS+17], authors use
Bloom filters in WSN environment to minimize overhead and duplication of
packets and also to reduce energy usage. They provide control over broadcast
overhead. Instead of having each node broadcasting to all the nodes like anarchy,
they provide a protocol based on a neighboring pattern where nodes generate
and broadcast Bloom filters to avoid unwanted duplication of packets. Here

45

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

Table 3.4. Comparison of the approaches (from our own contribution).

Approach Outs. add() test() INC/DIS Card. privacy
Encrypted BF [Ker11] yes yes yes yes no

[Ker12, BC04, ZPH+17] (obfuscated results)
Blind Signature [NK09] no - - no no
BF with HMAC [Goh03] yes no yes no no

-[KNV09] no - - no no
-[LG] yes yes yes no no

-[QLW07] yes no yes yes no
- [SGM02] yes yes yes no no
- [SBR09] yes no no no no

PSI [AM14, EFG+15] no - - no yes
[Bf12, LYC+06]
Our approach yes no no yes yes

Bloom filters are used to optimize communication process and not in a privacy
preserving manner. The only retrieved information are nodes’ ID of “urgent
case nodes”. They also investigated the neighbor separation that should be
considered to reach all the nodes and minimize duplication.

3.6 Concealed Data Aggregation

3.6.1 Definition

Concealed data aggregation (CDA) is a type of protocols firstly introduced in
2005 by Westhoff et al.[GWS05]. It consists of an end-to-end privacy preserva-
tion and “en route” aggregation of nodes readouts in wireless sensor network
(WSN). Other security aspects could be consider as data integrity preservation
or replay protection, while processing encrypted data at intermediate nodes.
Analyzing the WSN environment and its respective threat model will directly
set the security requirements our CDA protocol will have to fulfill. That been
said, the main motivation to develop CDA, instead of having a hop-by-hop ag-
gregation construction or even no aggregation at all is the resource-constrained
devices. Indeed, the sensor nodes (leaves) and the intermediate nodes are limited
in terms of energy, memory, bandwidth or lifetime. Applying data aggregation
helps reducing these costs. On the contrary data aggregation increases security
vulnerabilities.

3.6.2 Privacy Constructions and Related Work

To guarantee protection against malicious insider adversaries in case of a com-
promised intermediate node, we consider protocols providing end-to-end secu-
rity. Contrary to hop-by-hop aggregation construction, end-to-end encryption
consists of data encrypted at the sensor nodes. Then these data are aggre-
gated and finally decrypted at the base station and exclusively there. We give

46

3.6. Concealed Data Aggregation

some overview of different types of existing CDA along with their cryptographic
features using literature review [PJ16].

Encrypted Data Classification

In [WMLD04], authors propose a model for categorizing encrypted messages in
wireless sensor networks. A classifier, namely an intermediate sensor node, is
embedded with a set of searching keywords in encrypted format, and matches
an encrypted message with a keyword. The classifier then takes a decision
between forwarding the message without aggregation, forwarding the message
after aggregation or dropping the duplicate message. We highlight that here
the classifier only access encrypted sensor readouts and encrypted keywords.

Symmetric Homomorphic Encryption

Using symmetric-key based cryptosystems provides two main advantages which
are translated into bandwidth and energy saving. They have a small message
expansion and their computation cost is significantly less than asymmetric-key
based operations. On the contrary, since same key is used for encryption across
all nodes, it increases security vulnerabilities. In such a scenario, all sensor
nodes along with the base station own the secret key. We list the different
symmetric cryptosystems used to build CDA in literature and we present their
respective characteristics:

• Domingo-Ferrer’s cryptosystem [Dom02]:

– Characteristics: Supports addition, subtraction, multiplication
and division over encrypted data. The data should be encrypted
using the same secret key. Secure against known-plaintext attacks.
Is also used in [GWS05, WGA06, RKP07].

– Pros: Supports homomorphic multiplication of ciphertexts.

– Cons: Has a large message expansion and a considerably high power
consumption. Is unsecured for some parameters settings and all data
should be encrypted with the same key.

• CMT cryptosystem [CCMT09]:

– Characteristics: Is an additive homomorphic cryptosystem which
uses a pseudo-random function to generate the cryptographic keys.
Is secured in a computational-complexity theoretic setting. Is also
used in [PKP11, RM13, PPL07].

– Pros: Is a viable alternative for real-world applications thanks to
the use of pseudo-random function.

– Cons: Requires more bandwidth and needs sensor nodes’ identity-
related information to perform decryption.

• Armknecht et al. enhancement [AWGH08]:

47

CHAPTER 3. PRELIMINARIES AND THEIR RESPECTIVE
LITERATURE

– Characteristics: Uses a bi-homomorphic encryption function to en-
crypt data as well as cryptographic keys.

– Pros: Do not need sensor nodes’ identity-related information any-
more.

• Onen and Molva [ÖM07]:

– Characteristics: Uses a layer-wise security mechanism and a key-
attribution algorithm.

– Pros: Reduces impact of threats as node compromise attacks. Uses
multiple pair-wise keys between nodes to suppress encryption layers.

– Cons: Needs a pre-distribution mechanism, a re-keying requirement
and a fixed network topology.

• Di Pietro et al. [PMM09]:

– Characteristics: Adapts a concept of delayed aggregation and peer
monitoring for integrity preservation.

– Pros: Mitigates effects of node compromise attacks and nodes fail-
ures.

– Cons: Allows a compromised node to reveal not only its secret key
but also to recover the secret keys of neighboring nodes.

Asymmetric Homomorphic Encryption

Mykletun et al. evaluated viability of asymmetric-key based homomorphic cryp-
tosystems in WSN environment [MGW06, PWC10]. Authors highlight charac-
teristics that asymmetric cryptosystems should have as, the ciphertext indistin-
guishability or the message expansion minimization.

We list the different asymmetric cryptosystems used to build CDA in liter-
ature and we give their respective characteristics:

• Goldwasser-Micali’s cryptosystem [GM84]:

– Characteristics: Is provably secured against Chosen-Plaintext At-
tacks (IND-CPA). Supports privacy homomorphism for X-OR oper-
ations. Is also used in [SJM13, SYY99, AGW05, AKSX04].

– Pros: Could be used to compute MIN and MAX functions at aggre-
gator nodes [SJM13]. Supports multiplicative homomorphic opera-
tions over encrypted data [SYY99]. And performs the secure com-
paraisons of encrypted data [AGW05] or both using order-preserving
encryption [AKSX04].

– Cons: Encrypts data bit-by-bit and therefore has a substantial mes-
sage expansion.

• Okamoto-Uchiyama’s cryptosystem [OU98]:

48

3.6. Concealed Data Aggregation

– Characteristics: Is an additive homomorphic cryptosystem seman-
tically secured under the p-subgroup assumption. Its security de-
pends on intractability of factoring n = p2q. Is also used in [MGW06].

– Pros: Allows less expensive cost for decryption than EC-ElGamal.

– Cons: Requires larger ciphertext size than EC-ElGamal. Cryptosys-
tem’s parameters should be chosen such that n is sufficiently large.

• Elliptic Curve Paillier [Pai00]:

– Characteristics: Is an additive homomorphic, probabilistic and se-
mantically secured. Is based on trapdooring discrete logarithm on
elliptic curve over a ring En=p2q2 .

– Cons: Has a significant message expansion and vulnerability against
adaptive Chosen-Ciphertext Attacks (CCA2). Allows the secret key
to be recovered from publicly available data as shown in [Gal02].

• Elliptic Curve ElGamal [Kob87]:

– Characteristics: Is defined on an elliptic curve over a finite field F,
and supports additive homomorphism. Is based on an intractability
of solving the Elliptic Curve Discrete Logarithm Problem (ECDLP).
Is also used in [GWMA07, AM09, UHW, LHSC10].

– Pros: Requires only 160-bit key-size which improves bandwidth ef-
ficiency, energy utilization, and storage capabilities in WSNs.

– Cons: Has at least a 4-to-1 message expansion ratio, and its reverse
mapping function requires to solve the ECDLP.

• Elliptic Curve Boneh [BGN05]:

– Characteristics: Is an additive homomorphic cryptosystem over an
elliptic curve group G, which supports arbitrary addition operations
and a single multiplication operation over encrypted data. Is based
on the intractability of the subgroup decision problem. Is also used
in [BGM10b, BGM10a, OX11, ZYH14].

– Cons: Requires the use of bilinear pairing which increases computa-
tion cost compared to EC ElGamal.

49

Chapter 4

Developed Solutions

In Chapter 2 we presented four real-life use cases before describing all necessary
preliminaries in Chapter 3. In the current chapter, we propose solutions to solve
these use cases as synthesized in Figure 4.1. Solution A is a first proposition to
address the first use case; Cloud Security Auditing. In Solution B we propose
an accurate analysis along with an algorithm to optimize the using of Solution
A. Finally, Solution C represents a whole new approach which in addition to
solve the first use case, also address the other three use cases.

U S E C A S E S

D E V E L O P E D S O L U T I O N S
1 2 3 4

PIR Protocol with Searchable Encryption and
Homomorphic Encryption

Adapting SHE to Evidence Processing

The Use of Bloom Filters to Process
Set Relations

A

B

C

Figure 4.1. How the developed solutions match the proposed use cases.

51

CHAPTER 4. DEVELOPED SOLUTIONS

4.1 Solution A -
Combining PIR Protocol with Searchable
Encryption and Homomorphic Encryption

We propose here a construction of different building blocks. In order to achieve
requirement PR1, a Private Information Retrieval (PIR) protocol will be used
with respect to envisioned properties secure data storage and query flexibility
which we will explain next. Due to PIR protocol’s features, AD will be able to
hide on behalf of which client the audit is performed. This solution is based on
the initial work [LRW14] from Lopez et al. but both properties are new to the
realm of PIR.

Secure data storage, our first enhancement, means that information from ev-
idence store’s database that AD requests, will no longer be stored in plaintext
but in a certain encrypted manner. In that way, the evidence store’s administra-
tor, in addition to not be able to see the requested element, will not have access
to the plaintext content of the stored evidence itself. This additional feature is
interesting for requirement PR2. Indeed, sensitive data will be hidden to ES
as well as all information retrieved by AD from CSP.

Query flexibility describes our second enhancement. Our PIR protocol is able
to deal with multiple elements. More precisely, with the classical version of PIR
[OI07], AD would retrieve exactly one element of information per query. Using
the scheme presented in this work, in addition to retrieve a unique element, one
query also allowsAD to receive the output of a function. In its simplest form this
can be either the sum or the product of different elements from the evidence
store ES. However, also more enhanced functions using both operations, a
moderate number of times at the same time are possible.

4.1.1 Cloud Auditing Construction

In this section we provide a description of the auditing framework and their
parties developed to solve use case 1. The reader could refer to Section 2.1
where the use case is described in detail. We recall Figure 4.2 to a better
understanding of the scenario.

Auditing Framework

Here we present parties involved in the cloud audit framework. We assume
that all parties communicate using an authenticated and secure channel, as for
example TLS.

Cloud Service Provider (CSP). CSP represents the cloud service provider
who offers different services to clients, for example Software as a Service
(SaaS).

Audit Controller (AC). As a part of CSP, AC collects and aggregates use-
ful digital evidence from the CSP’s services. Besides collecting, AC also

52

4.1. Solution A -
Combining PIR Protocol with Searchable Encryption and Homomorphic

Encryption

Client 1 Client k Client n

… …

POLICIES

SaaS

PaaS

IaaS

AuditorCloud
Service Provider

Clients

Evidence
Store

AC

Figure 4.2. The security cloud auditing framework with the different parties. They agree on
policies as SLA (single line arrow) before performing the audit’s protocol. The communication
flow is represented by double line arrows.

encrypts the data and sends them to ES.

Evidence Store (ES). ES gathers data from (multiple) AC and stores data
in a database. It computes responses to the Auditor.

Auditor (AD). On behalf of clients, AD performs verifications on CSP’s ser-
vices by performing checking on data stored in ES.

Client (C). Client corresponds to a set of entities, for example companies, who
further consist of a set of users each. Client engages the CSP’s services
and wants to have a provable evidence that the CSP is behaving correctly.
He instructs the auditor to check the CSP regularly.

All parties agree on certain policies before performing the PIR protocol, as for
example service level agreements.

Multi-Client Auditing Scenario

We generalize the use case scenario originally presented in [LRW14] with mul-
tiple clients. We initially suppose some companies outsourcing some of their
internal IT services to CSP. That service provider is specialized in providing
Software as a Service (SaaS). A companies’ security policy states that while any
employee may use the service provided by CSP, this may only be done when
connecting from their own company’s network. This ensures additional secu-
rity systems, e.g. transparent security proxies deployed by companies, are not
circumvented. Technically speaking this means:

• Each company specifies a list of IP addresses which are classified as au-
thorized, or unauthorized.

53

CHAPTER 4. DEVELOPED SOLUTIONS

• Employees of each company can access the service provided by CSP only
if they connect using an authorized IP address.

An audit of the CSP’s access control logs consists of verifying that such policies
are being adhered to, and that no access from an unauthorized location has
occurred.

Combination of Two Homomorphic Encryption Schemes

In our solution, we propose a PIR protocol on encrypted data. Thus, two encryp-
tion schemes Scheme1 and Scheme2 have to be combined and their compatibility
has to be guaranteed.

Scheme1: Used to encrypt data stored in ES. Should be at least additively
homomorphic, such that the computation of a sum of entries over a row or
column is possible. However, multiplicative operations are also preferable.

Scheme2: Used to encrypt the query and perform the PIR protocol. Due to
PIR protocol’s requirements, this scheme should be at least additively
homomorphic.

At next we evaluate possible combinations of encryption candidates with respect
to the requirements derived from use case 1 and presented in Section 2.1.

We first consider Paillier’s scheme for both schemes. For a single retrieval,
this candidate will fit perfectly. However, to retrieve the sum of elements,PIR
protocol should result in the ciphertexts’ product. Product of elements could not
be retrieved if Scheme2 is Paillier’s one due to the fact that it is only additively
homomorphic.

Then, we consider Scheme1 as the SHE scheme from [BV11a] and Scheme2

as Paillier’s scheme. With SHE scheme, elements from the database have to
be encoded into a polynomial representation and subsequently encrypted as a
tuple containing two polynomial elements denoted as (ci,0, ci,1). As presented in
Section 3.3, for a PIR query Q = (q1, q2, . . . , qn) and η the encoding polynomial
degree, response will be:

R =

(
n∑
i=1

(ci,0qi),

n∑
i=1

(ci,1qi)

)

where

ci,jqi =

η∑
k=0

ci,0,jqix
k, j ∈ {0, 1}

Paillier’s decryption yields the sum of encrypted data and a modulo reduc-
tion is required before decryption phase. Since Scheme1 is asymmetric, and the
party which encrypts the data does not own the decryption key, it is not ca-
pable of decrypting them. With Scheme2, Paillier’s scheme is also asymmetric
and only the public key is shared. The polynomial representation significantly

54

4.1. Solution A -
Combining PIR Protocol with Searchable Encryption and Homomorphic

Encryption

increases computation effort. Parts of PIR computations will have to be per-
formed on each coefficient of the cipher which may increase computation cost.
This also holds for communication performance and size of the messages.

Finally we consider Scheme1 and Scheme2 as SHE scheme. The PIR is now
using the same scheme as the one used to encrypt database entries. This means
that the party which encrypts data could also generate PIR requests and vice
versa. Therefore we will, either use the same keys for different PIR requests,
or we will have to make a new encryption over the complete database per new
PIR request. Obviously, for a practical setting both approaches lack feasibility.

To conclude the investigation on our first developed solution, since the PIR
protocol retrieves a sum and a product of encrypted data the most suitable
solution is SHE for Scheme1 and Paillier’s scheme for Scheme2.

The PIR Protocol

One objective of our protocol is to hide which client is requesting the audit,
meaning which data of the evidence store is affected by the computation. With
an additive homomorphic scheme such as Paillier’s, this kind of privacy require-
ment could be fulfilled. We recall that in classical PIR protocol [OI07] client
sends a different query for each information he is interested in and subsequently
would be able to compute sum or product at the client-side. Besides poor band-
width performance, in that way the number of queries obviously reveals how
many entries the querier is interested in. In addition to the Paillier’s scheme,
we will need a searchable encryption scheme to perform some test directly on
encrypted data of the evidence store in a confidentiality preserving manner.
With the use of these two schemes, we will be able to retrieve encrypted sum
and product of encrypted data in a way that the evidence store will not learn
which data is affected.

4.1.2 Protocol

In this section, we first show how digital evidence is collected and stored by the
evidence store. Then we introduce the PIR protocol instantiation and apply it
to use case 1 - Cloud Security Auditing.

Digital Evidence

First of all, CSP generates data from its access control. This sensitive informa-
tion are then provided to the evidence store ES, which makes them available
to the auditor in order to validate CSP’ contractual duties. Some of these data
have to be encrypted according to confidentiality agreements between C and
CSP, since this may be part of security policies. C authorizes CSP to log access
control as evidence of compliance of the policy presented above. They apply
restrictions that consist of having sensitive information protected against data
leakage, insiders, outsiders as well as third-party auditors and the evidence store.
For instance, device and geolocation of each companies’ users (e.g. IP address)

55

CHAPTER 4. DEVELOPED SOLUTIONS

are considered as personal sensitive data. Since AD should be able to perform
different kinds of audits, CSP needs to provide several information regarding
its provided services to ES. The following list of data fields are collected and
sent to ES.

Index. Unique identifier for a data row.

Timestamp. Date and time when the evidence was collected.

AC. Identifier of the audit controller which collects the evidence.

Client. Identifier of the user’s company.

User. Identifier of the user who accesses the controlled resource.

IP?. IP address from which the connection was attempted.

Availability?. CSP’s fulfilled service availability Av ∈ {0, 1} during service
usage (availability as defined in the SLA).

Connection?. Describes if a connection was successfully established by Out ∈
{0, 1}.

Authentication. The authentication denotes if the connecting IP address was
authorized or not by Auth ∈ {0, 1}.

A star ? marks these entries as encrypted. As we will explain in the upcoming
audit goals description, AD will have to test if each IP address has been pre-
viously authorized by C. This is why we are using encryption paradigm Public
Key Encryption with keyword Search SE such that AD and ES do not learn IP
addresses. Each IP address collected will be encrypted and aggregated by AC
as SE.PEKS(pkSE, IP).

Regarding the availability and connection data, we are using the SHE scheme,
to allow evidence store to perform computations without learning about these
sensitive data. In the SHE scheme presented in Section 3.2.3, the encryp-
tion function generates a polynomial representation of the ciphertext. We get
((α0, . . . , αη), (β0, . . . , βη)) ← SHE.Enc(sykSHE,m) where αi and βi are coeffi-
cients and η is the degree of the polynomial representing message m’s encryp-
tion.

In Table 4.1 we give a database overview of the service logfile.

Table 4.1. Evidence store database overview of an authentication-
connection log.

Index Timestamp AC Client User IP Av Out Auth

1 09.02.16 AC58 C2 U4 SE.PEKS(IP1) SHE.Enc(1) SHE.Enc(1) 1
2 09.02.16 AC34 C8 U2 SE.PEKS(IP2) SHE.Enc(1) SHE.Enc(0) 1

· · · · · · · · · · · ·
n 10.02.16 AC15 C1 U4 SE.PEKS(IPn) SHE.Enc(0) SHE.Enc(0) 0

56

4.1. Solution A -
Combining PIR Protocol with Searchable Encryption and Homomorphic

Encryption

Regarding the keys’ distribution, C knows solely skSHE, skSE while AD knows
all of the secret keys, i.e. skSHE, skSE, skPA. CSP and ES do not know any of the
mentioned keys.

Initialization of the PIR Protocol

Before performing the audit and having the store checking, if IP addresses from
its database are authorized, an initialization step is required.

At first, all clients send their lists of authorized IP addresses to both AD and
CSP. Then, AD generates trapdoors using the searchable encryption algorithm
described in Section 3.1, and sends all of them to ES. Each time a new piece of
data is received from AC, ES will test IP addresses using trapdoors and will fill
in the database rows Auth with 1, if the IP address is authorized or 0 otherwise.

After testing authorization of all different IP addresses, we get eight different
combinations of values {0, 1}3 which are interpreted as presented in Table 4.2.

Table 4.2. Interpretation of different results regarding service avail-
ability and access control correctness. When Authentication is not suc-
cessful (0), we only consider access control.

Availability Connection Auth
Interpretation

service access control

0 0 0 – correct
0 0 1 not available not correct
0 1 0 – not correct
0 1 1 available correct
1 0 0 – correct
1 0 1 available not correct
1 1 0 – not correct
1 1 1 available correct

Access Control Checking & Availability Validation of the Service

We state that here, the main goal of the auditor is to verify that access control
has been correctly performed by CSP. More concretely, we define an accept-
able case when all successful connections were only made from authorized IP
addresses and no connection attempt made from authorized IP addresses failed.
In Table 4.2 we observe that four of the cases express that the access control
succeeded and the remaining four that it failed. As aforementioned, another
goal for the auditor in this scenario could be to check to what extend the ser-
vice itself has been available. The availability field from the database expresses
if the service was fully available during whole connection duration. In an au-
dit scenario, it is relevant to consider the service availability only in the case

57

CHAPTER 4. DEVELOPED SOLUTIONS

of connections attempted from authorized users. To enable AD to respond to
such type of verification we assume a relaxed but still meaningful definition of
service availability.

Definition 4 (Availability). We suppose a service to be X% available iff X%
of authorized users connection attempts were successful.

This helps AD to verify at the end of an auditing period, the percentage
of offered service availability based on provided digital evidence. It just has
to perform some simple arithmetic operations on it to judge if SLA has indeed
been fulfilled. A concrete query C requests to AD could be: Tell me if the access
control was done correctly and if the service was available. If not, give me the
percentage of errors. In [LRW14], queries as “Separately, the total of successful
and non-successful connections from unauthorized IP addresses” or “Probability
of success when trying to connect from valid and invalid IP address” were solved
in a privacy preserving manner. We also encrypt the data fields Availability and
Connection to add confidentiality on the evidence store. Again, we emphasize
that with the PIR protocol, ES will not be able to learn which company’s data
AD is asking for.

For the protocol, AD has to hide client’s identity. To do so, it has to generate
a PIR request. First, ES sends the client ({Cj}kj=1) and index ({Ij}kj=1) data
fields to AD so it could know the log database’s architecture. It also has to
generate a pair of keys (pkPA, skPA) according PA.KeyGen function. Algorithm 1
corresponds to the PIR request generation performed by AD.

Algorithm 1 Generating PIR request Q = {qj}kj=1 for client Ci′ and k data.

1: procedure Request({Cj}kj=1,{Ij}kj=1, pkPa)
2:

3: for i← 1, k do
4: if CIi = Ci′ then
5: qi ← PA.Enc(pkPA, 1)
6: else
7: qi ← PA.Enc(pkPA, 0)
8: end if
9: end for

10: return (Q = {qj}kj=1, I1, Ik, pkPA)
11: end procedure

We consider six values provided by our protocol and which allow AD to
respond to the following query: “Tell me if the access control was done correctly
and if the service was available. If not, provide the percentage of errors.”

• V1: total amount of connection attempts

• V2: amount of connections made from authorized IP addresses

58

4.1. Solution A -
Combining PIR Protocol with Searchable Encryption and Homomorphic

Encryption

• V3: amount of connections made from authorized IP addresses with a
successful connection

• V4: amount of connections made from authorized IP addresses with a
CSP’s service being available

• V5: quantity of connections made from authorized IP addresses with a
successful connection while CSP’s service is available

• V6: the amount of connections made from unauthorized IP addresses with
a successful connection

To compute these values, ES accesses availability, connection and authentication
columns from the database. Algorithm 2 describes these computations.

Algorithm 2 Computing V1, V2, V3 , V4, V5, and V6 for k data.

1: procedure Computation({qj}kj=1, pkPa, I1, Ik, {Avj}kj=1, {Outj}kj=1,

{Authj}kj=1)
2:

3: V1 ← PA.Enc(pkPA, 0)
4: V2 ← PA.Enc(pkPA, 0)
5: V3 ← SHE.Enc(pkSHE, 0)
6: V4 ← SHE.Enc(pkSHE, 0)
7: V5 ← SHE.Enc(pkSHE, 0)
8: V6 ← SHE.Enc(pkSHE, 0)
9:

10: for i← I1, Ik do
11: V1 ← PA.Add(pkPA, V1, qi)
12: if Authi = 1 then
13: V2 ← PA.Add(pkPA, V2, qi)
14: Prodi ← SHE.Mult(Avi, Outi)
15: for j ← 1, (2η + 2) do
16: V3j ← PA.Add(pkPA, V3j , PA.Mult(pkPA, qi, Outi))
17: V4j ← PA.Add(pkPA, V4j , PA.Mult(pkPA, qi, Avi))
18: V5j ← PA.Add(pkPA, V5j , PA.Mult(pkPA, qi, P rodi))
19: end for
20: else
21: for j ← 1, (2η + 2) do
22: V6j ← PA.Add(pkPA, V6j , PA.Mult(pkPA, qi, Outi))
23: end for
24: end if
25: end for
26: return (V1, V2, V3, V4, V5, V6)
27: end procedure

With these six values, AD decrypts V1, V2 and all coefficients of V3, V4, V5, V6
with Paillier decryption function PA.Dec which yields values V ∗1 , V ∗2 , V ∗3 , V ∗4 ,

59

CHAPTER 4. DEVELOPED SOLUTIONS

V ∗5 , and V ∗6 . Then, it processes the homomorphic decryption function SHE.Dec
to V ∗3 , V ∗4 , V ∗5 , and V ∗6 yielding plaintext values V ′3 , V ′4 , V ′5 , and V ′6 with V ′1 = V ∗1
and V ′2 = V ∗2 . AD then concludes audit by performing Algorithm 3.

Algorithm 3 Audit resulting.

1: procedure Result(V ′1 , V
′
2 , V

′
3 , V

′
4 , V

′
5 , V

′
6)

2:

3: CE ← V ′2 − V ′3 + V ′6
4: AE ← V ′2 − V ′5
5: TE ← V ′2 − V ′5 + V ′6
6:

7: if TE = 0 then
8: return The access control was perfectly performed and the service

fully available.
9: else if AE = 0 then

10: return The service was fully available but the access control failed in
(CE/V ′1)% of the situations.

11: else if CE = 0 then
12: return The service was fully available but the access control failed in

(AE/V ′1)% of the situations.
13: else
14: return The access control failed or the service was unavailable in

(TE/V ′1)% of the situations.
15: end if
16: end procedure

In Figure 4.3 we have an overall recap of this use case’s audit protocol.

4.1.3 Evaluation and Results

Security Analysis

In our framework, we combine SHE scheme from Brakerski and Vaikuntanathan
with Paillier’s scheme. This implies to verify their compatibility. Indeed, the
arithmetic form of the values which are computed and transmitted during audit
corresponds to Paillier’s ciphertext. Concretely, it implies that all these values
are computed modulo a parameter N2. Since our enhancement of PIR protocol
processes on encrypted data, a restriction consists of having the encrypted data
stored in the database not larger than value N2. As the selected cryptosystem
for these pieces of data is the SHE scheme, they will be encoded into polynomial.
We, then argue that each polynomial’s coefficient should be strictly smaller than
N2. According to this limitation, we could analyze the security level of these
two cryptosystems. Paillier’s cryptosystem is a probabilistic asymmetric algo-
rithm based on intractability hypothesis of the decisional composite residuosity
assumption given at next:

60

4.1. Solution A -
Combining PIR Protocol with Searchable Encryption and Homomorphic

Encryption

Client Auditor ES

Asks for Audit

Asks Company & Index

Company & Index

Performs Request

PIR request

Performs Computation

PIR response

Decrypts PIR

Decrypts values

Performs Result

Result

msc Audit overall

1

Figure 4.3. The overall protocol for retrieving the extend of correctness of the access control
performed by CSP.

Decisional Composite Residuosity Assumption (DCRA). It is a math-
ematical assumption which states that, given a composite n and an integer
z, it is hard to decide whether z is a n-residue modulo n2 or not.

Security of the SHE cryptosystem [BV14] relies on the RLWE problem which is
defined in Section 3.2.3.

PEKS scheme of Boneh is used independently. It is provable secure against
chosen keyword attacks and its security relies on difficulty to solve the Bilinear
Diffie-Hellman problem (BDH). We precise the following definition:

Bilinear Map. Let G1 and G2 be two groups of prime order p. A bilinear map
from G1 ×G2 to G2 is a function e: G1 ×G2 → G2 such that for all
u, v ∈ G1, a, b ∈ Z, e(ua, vb) = (u, v)ab.

Bilinear Diffie-Hellman problem. Let G be a cyclic group of order q and
let g be a generator of G. Given {g,A = ga, B = gb, C = gc} where
a, b, c ∈ Zq, compute e(g, g)abc.

61

CHAPTER 4. DEVELOPED SOLUTIONS

The success probability of any probabilistic, polynomial-time algorithm A in
solving BDH in G is defined as:

SuccBDHA,G = Prob[A(g, ga, gb, gc) = e(g, g)abc] (4.1)

BDH assumption. For any probabilistic, polynomial–time algorithm A,
SuccBDHA,G is negligible.

Computation Cost and Performance

For each party involved in our protocol, we express its computation effort in
terms of execution times. To do so, we distinguish three different types of
protocol steps. First, the Initialization process, where PEKS and SHE’s keys are
generated by each client. During this step, the list of authorized IP addresses is
also transmitted to AD by each client and equivalent trapdoors are computed
by AD. The second type consists of all tasks processed on a daily basis, meaning
the data processing. Concretely, AC encrypts sensitive parts of data using the
somewhat homomorphic and searchable encryption schemes and then transfers
data to ES. We also consider the test of each IP address with SE.Test function
by ES with each client’s trapdoor. Finally, the last type of steps consists of
the audit use case. This protocol could be divided into five steps: PIR Request,
Computation, PIR Decryption, Values Decryption and Result. Let n be the
amount of evidence collected and stored in ES at a given time when an audit
is requested. Value e is the number of clients making use of AD and p is the
maximum number of authorized IP addresses by each client.

We specify parameters n, e, and p to estimate the concrete execution times of
auditing process. Let us suppose that data from 10 different companies (e = 10)
are located in ES and all of these companies are using the same auditor AD.
Each of these companies has 100 employees and each of these employees connects
to the service offered by CSP on an average of 3 times a day. Considering 230
working days per year, we finally get the approximative number of 69 × 104

elements (n = 10 × 100 × 3 × 230) after one year of evidence collection. Also,
for each company we consider the maximum amount of allowed IP addresses
of 256 (p = 256). For each cryptographic function, we express in Table 4.3 its
approximative execution time. For the three cryptoschemes, we give the used
configuration measurements from Table 4.3:

• Paillier scheme. Measurements have been made with a CPU configura-
tion of Intel Core i5 M520 2.40GHz × 4, with a C++ implementation and
a secret keys of 1024 bits.

• PEKS scheme. For this cryptosystem, we consider as in [LRW14] that
the operation which requires most of computational effort is the bilinear
mapping (also known as pairing). We use Lynn’s [Lyn07] benchmarking
where the evaluation time of this bilinear map is 11 ms. In the considered
benchmarking, CPU configuration corresponds to Intel Pentium III at 1

62

4.1. Solution A -
Combining PIR Protocol with Searchable Encryption and Homomorphic

Encryption

GHz with an implementation using PBC library [Lyn07] and the Super-
singular elliptic curve y2 = x3 +x of 512 bits. The pairing function is only
used with SE.PEKS and SE.Test functions.

• SHE scheme. We consider here results presented in [NLV11]. Configu-
ration is a CPU of Intel Core 2 at 2.1 GHz, an implementation in algebra
system MAGMA, a degree of ring polynomials η = 512 and a maximal
ciphertext amount of polynomials of D = 2.

All of these execution times from Table 4.3 are obtained with a unique CPU.
In a professional setting, using multiple CPUs and parallelization, one could
drastically reduce these execution times. In Table 4.3, for each party, three
execution times are given: T1 which corresponds to the time for initialization
phase, T2 which is the time spent to process every new piece of data and fi-
nally T3 which represents the complete time of execution of an audit when the
database size is n = 69× 104. We consider here that CSP, AD and ES possess
6 CPUs each and, when the algorithm allows it, we integrate parallelization in
the final execution times. We get 2.6×10−1 s for the client (T1), 1.79 h for AD
(T3), 3.53× 10−1 s for CSP (T2). For ES we obtain 4.73× 10−1 s for T2 and
0.8 h for T3, respectively.

Table 4.3. Performance of cryptographic functions in our PIR protocol.

Party Step Algorithm Execution time (s) # of calls

Client Initialization
SE.KeyGen(λ) – 1
SHE.KeyGen(λ) 2.6× 10−1 1

Auditor

Initialization SE.Trapdoor – cp

PIR Request
PA.KeyGen(λ) 1.498× 10−1 1

PA.Enc 2.503× 10−2 n

PIR Decrypt PA.Dec 2.314× 10−2 4Dη + 2

Values Decrypt SHE.Dec 1.8× 10−2 4

Result Arithmetic functions – 6

ES

Data SE.Test 1.1× 10−2 p

Computation

PA.Enc 2.503× 10−2 2

SHE.Enc 3.53× 10−1 4

PA.Add 1.50× 10−5 (6η + 8)n

PA.Mult 1.282× 10−4 (6η + 6)n

SHE.Mult 5.6× 10−2 n

CSP Data SHE.Enc 3.53× 10−1 4

SE.PEKS 1.1× 10−2 1

With this particular choice of database size, we get an approximative exe-
cution time of the complete audit protocol of 2.6 hours. In Figure 4.4, the first

63

CHAPTER 4. DEVELOPED SOLUTIONS

graphic illustrates this execution time according to database’s size. To also get
a precise idea of the computation cost to process data, the second graphic shows
execution times according the amount of new data daily collected.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·106

0

5

10

Number of rows n at ES

E
x
ec

ti
on

ti
m

e
in

h

fES(n) fAD(n) fT (n)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.5

1

New data rows n per day

E
x
ec

ti
on

ti
m

e
in

h

gES(n) gCSP(n)

Figure 4.4. fES , fAD and fT denote execution time in hours according to the size of the
database at ES, AD and in total. gES and gCSP denote the execution time in hours to process
the data according to the amount of new data collected per day for ES and CSP.

Communication Cost

Finally, we consider the communication cost of the audit protocol between ES
and AD. By referring to Figure 4.3, we are looking here at three messages.
First the Company and Index database’s fields transmitted by ES to AD, then
the PIR request from AD to ES and finally the PIR response in the opposite
direction. We could easily establish that the size of these three pieces of data
depends on the number of elements in the database (n) and on the choice of Pail-
lier’s keys size i.e. the security parameter. Indeed, some Paillier’s ciphertexts
are included in the PIR’s request and response. The size of these ciphertexts is
exactly equal to twice the Paillier’s modulo N size. In the chosen configuration
of n = 69 × 104 and q twice the size of N of 1024 bits, we have a size of data
transmitted of 25.53 Mbits, a PIR request of 0.7 Gbits and its response of 6.14
Mbits. In general, both sizes of data transmitted and PIR response depend lin-
early on the database size n, e.g. for n = 105 the data transmitted is 3.7 Mbits
and 600 Kbits for the PIR response. Lastly, the PIR request’s size depends
linearly on n and q, e.g. for n = 105, q = 1024, the PIR request corresponds to
102.4 Mbits.

64

4.2. Solution B -
Adapting SHE to Evidence Processing

4.2 Solution B -
Adapting SHE to Evidence Processing

As seen in the first presented solution, we need to use a somewhat homomorphic
encryption scheme that fits the scenario. Concretely we are aiming for an ho-
momorphic encryption scheme, which supports in a cost-efficient manner many
addition operations but only few multiplicative operations. The original SHE
scheme is still a promising candidate for our setting.

It is in our pre-dominant interest to accelerate arithmetic operations on
encrypted data, such that they can be performed also on a relatively large
number of data. It turns out that this is a cross-layer effort. Parameters from the
use case that shall be supported, need to be mapped to the performed number of
arithmetic operations and size of the required cleartext value space. They also
have to fit the encoding layer (plaintext polynomials), and finally the encryption
layer (ciphertext polynomials). Since many of these parameters turn out to
be mutually dependent, a proper configuration algorithm is required. Such
configuration orchestrates them to apply SHE in a speed-optimized and secure
way for a given setting. We will independently analyze parameters regarding
correctness, performance and security aspects of a specific SHE scheme and we
will merge them in order to draw this proper configuration algorithm. The
selected somewhat homomorphic scheme is the one introduced by Brakerski
and Vaikuntanathan in 2011 [BV11b] which we carefully adjust to our concrete
privacy enhancing cloud auditing use case.

4.2.1 Discussion of the SHE Parameters

Parameters should be chosen according to guarantee i) the correctness, ii) an
acceptable performance and iii) an appropriate security level.

Correctness Considerations

To guarantee correctness of the resulting value after having computed a certain
amount of additions and multiplications on the ciphertexts, we have to ensure
three aspects of the ciphertext evolution. The growing of information’s degree,
the growing of information’s coefficient and finally the growing of error. Indeed,
even if the ciphertext is not growing by itself because of the q and xn+1 modulo
reductions, these aspects are growing inside of it. In Figure 4.5 we can see the
two ways information is spreading. The choice of parameters n, t and q will
determine the maximal value that the degree and the coefficients could be. The
parameters have been previously presented in Section 3.2.3. By performing
computations on the ciphertexts, the plaintext information weaved into them
will be able to grow up to these limitations.

We have seen in Section 3.2 that addition and multiplication could be per-
formed directly on ciphertexts. In addition to consider the amount of executions
of these two types of operations, we should also be aware of their order of exe-
cution. Indeed, this will impact the plaintext’s maximal possible value and thus

65

CHAPTER 4. DEVELOPED SOLUTIONS

cn’-1

q

q’
c1

q

q’
c0

q

q’
…cn-1

q

q’

Figure 4.5. The two-dimensional growing of the information in the ciphertext polynomials.

the correctness of the final result. That is the reason why, as we will see later,
we are considering an arithmetic tree to integrate the operations’ order. Let’s
define:

‖ct‖∞:= max(| c0 |, | c1 |, . . . , | cδ |) (4.2)

the infinite norm of a ciphertext that corresponds to the maximal size of its
coefficients in plaintext dimension.

For example, we first encode a plaintext value m ∈ ZN into a message
polynomial p and we choose an encoding method where coefficient values are
minimized. We get:

p(X) = c0 + c1 ×X + . . .+ cn−1 ×Xn−1 (4.3)

with ∀i ∈ {0, . . . , n − 1}, 0 6 ci < b, and so ‖p‖∞= b − 1. This polynomial is
then encrypted by SHE scheme into a ciphertext couple ct = {ct0, ct1} and we
obtain ‖ct‖∞= q − 1.

Let us now suppose that we are performing an encrypted addition be-
tween ciphertexts ct and ct′ where ciphertext ct′ has been similarly produced
(‖ct′‖∞= q − 1). Since the encrypted addition is an arithmetic addition per-
formed coefficient-wise as presented in Section 3.2.3, the resulting ciphertext
ctadd will have the same norm due to modulo, i.e. ‖ctadd‖∞= q − 1. However,
in the plaintext space, the resulting polynomial will have its norm doubled i.e.
‖padd‖∞= 2b+ 2. We could then generalize to:

‖Add(p, p′)‖∞= ‖p‖∞+‖p′‖∞ (4.4)

To be able to optimize the choice of parameter t (i.e. choosing it as small as
possible while still ensuring security and correctness), the best solution would
be to predict the maximal retrieved coefficient after performing the arithmetic
tree according to the given use case on plaintexts. Parameter t will have to be
greater than the infinite norm of the resulting corresponding polynomial.

We also have to consider limitations from the initial work [BV11b] in the
Key Dependent Messages (KDM) scenario:

• t > σ
√
n (i.e. a sample from χ resides in Rt with all but negligible

probability).

• t < 2−ω(logn) × σ−d × q with ct = (ct0, . . . , ctd).

66

4.2. Solution B -
Adapting SHE to Evidence Processing

Let us now consider the encrypted multiplication. We define the degree function:

deg(p) := i (4.5)

such that i is the degree of polynomial p. If we perform an addition between two
ciphertexts, since addition is computed on respective coefficients, information
will not spread to higher coefficients. On the contrary, when we perform a
multiplication between ciphertexts, the information will affect higher degree
coefficients. When we multiply two polynomials p and p′, we can denote

deg(pmult) = deg(p) + deg(p′) (4.6)

if deg(p), deg(p′) > 1. In the ciphertext space, the degree of the encrypted
polynomial will not increase because of the xn + 1 modulo and at any time
deg(ct) 6 n − 1. The use of multiplication on the ciphertext will result
in a limitation of parameter n. Indeed, if after too many multiplications,
deg(pmult) > n− 1 the modulo wrapping will remove information and the final
decryption will not be correct. For that reason, with the degree of the “fresh”
encoded polynomials and the arithmetic tree, we will have to predict the degree
of the resulting polynomial such that parameter n remains less than this degree.

Performance Considerations

In [NLV11], Naehrig et al. state for a reduction of the parameters’ size to improve
performance. In the following section, we aim to analyze how these parameters
are manageable and concretely what their limitations are. We should determine
which form could be the best with respect to the objective to reduce the com-
putation cost of the cryptographic functions. We face two opposite strategies:
firstly, having a high polynomial degree with small coefficients and secondly
having a low maximal degree with significant coefficients.

We recall that parameter b is the base that is used to encode the message
into a polynomial. If we choose a small base, by definition, we could get a small
message space reduction t but that will imply the use of a large polynomial
degree n. Vice versa, a choice of a larger base b will increase the lower bound
of t since the “fresh” coefficients will be larger and will grow faster with com-
putations. Choosing a larger encoding base could also reduce the lower bound
of n and thus help reducing the homomorphic operation complexity.

Choosing the base b and selecting how to encode the message polynomial
have to be considered. Regarding b, we could consider two opposite strategies
to encode the messages into polynomials. First we could encode any message
with coefficients ci ∈ {0, . . . , b − 1}. With this strategy we will get a maximal
degree for the encoding polynomial. The second strategy will be to have on the
contrary a minimal degree for the message polynomial. Then we could get the
first coefficient such that c0 = m (for m the complete plaintext message) and
ci = 0 for all 0 < i < n. By this manner we get an encoding polynomial of
degree 0 and therefore parameter n will not have to be that large.

To be able to represent a specific message space, we have to adjust the three
parameters n, t and q, respectively the polynomial degree, the value spaces of

67

CHAPTER 4. DEVELOPED SOLUTIONS

the coefficients of the cleartext and ciphertext. As message space, we should not
consider only the initial message space but also the final one. This corresponds
to the potential values of the messages after being computed in the ciphertext
space.

In [NLV11], authors consider that a wise strategy regarding performance
would be to reduce parameters t, q or n. They suggest to encode the messages
as a list of bits. In other terms, as a polynomial with coefficients equal to
{0, 1}. Such a strategy will directly require the largest parameter n for a given
value space. Indeed, the minimal value of n should be equal to the logarithm
of the maximal encoded message. Also, this technique implies a use of the base
(parameter b) equal to 2, otherwise, not all the values could have been encoded
(see Section 3.2.3). As we will see later, this seems to not be the optimal strategy
to set the parameters.

We are now investigating how reducing the size of the polynomials will im-
pact the performance of the encryption, decryption and computations of the
ciphertexts. In a first step, we will see how a variation of parameter n impacts
the performance. Subsequently we do this for parameter q. We are expressing
the cryptographic functions in terms of elementary operations to see how they
are connected to parameter n. We consider here “fresh” ciphertexts, (i.e. ci-
phertext with two polynomials) and polynomials multiplication performed with
the FFT 1 algorithm:

1 Encdata → 3 Samplepoly + 3 Addpoly + 2 Multpoly + 3n Multpoly

→ 3n Samplecoef + (2n log n+ 7n− 8) Addcoef

+ (2n log n+ 7n− 8) Multcoef + (4n log n+ 13n− 20) Modcoef

1 Adddata → 2 Addpoly → 2n Addcoef + 2n Modcoef

1 Multdata → 4 Multpoly + 4 Redpoly + 1 Addpoly

→ (4n log n + 9n − 16) Addcoef + (4n log n + 8n − 16) Multcoef

+ (21n − 40) Modcoef

1 Decdata → 3 Multpoly + 1 Addpoly

→ (3n log n + 7n − 12) Addcoef + (3n log n + 6n − 12) Multcoef

+ (6n log n + 16n − 30) Modcoef

The results show that the complexity of the four cryptographic functions is
linearithmic in term of n.

1Fast Fournier Transform (FFT) algorithm which optimizes the multiplication’s perfor-
mance.

68

4.2. Solution B -
Adapting SHE to Evidence Processing

We now analyze the complexity at a deeper level. We consider the coefficients
encoded with the two’s complement encoding technique [vN93].

1 Encdata → 3n Samplecoef + [(2n log n + 7n − 8)(10(log q)2 − 14 log q + 8)

+ (4n log n + 13n − 20)(5 log q − 2)] Addbit

+ [(2n log n + 7n − 8)(3(log q)2 − 2 log q + 1)

+ (4n log n + 13n − 20) log q] Multbit

1 Adddata → 4n (5 log q − 2) Addbit + 4n log q Multbit

1 Multdata → [(4n log n + 9n − 16)(10(log q)2 − 14 log q + 8)

+ (21n − 40)(5 log q − 2)] Addbit

+ [(4n log n + 9n − 16)(3(log q)2 − 2 log q + 1)

+ (21n − 40) log q] Multbit

1 Multdata → [(3n log n + 7n − 12)(10(log q)2 − 14 log q + 8)

+ (6n log n + 16n − 30)(5 log q − 2)] Addbit

+ [(3n log n + 7n − 12)(3(log q)2 − 2 log q + 1)

+ (6n log n + 16n − 30) log q] Multbit

We see here that the complexity is quadratic in term of log q, or in term of
parameter q, it is polylogarithmic. We could then affirm that a reduction of n
is the predominant parameter to save performance even if that should imply an
increase in q. This must be the guiding principle that leads our aimed algorithm.

Security Considerations

We are now taking security aspects into account by integrating a security mea-
surement against a specific attack, currently considered as the most promising
one. As in [NLV11], we are considering the distinguishing attack presented in
[LP11]. In this work, authors analyze the security of a lattice-based encryption
scheme based on the LWE problem. This scheme is an instance of an ab-
stract system described by Micciancio [Mic10] that generalizes all the schemes
of [Reg09, PVW08, GPV08]. The cryptosystem could be assimilated to the one
we are currently using, since it is based on the same mathematical problem and
both of them are characterized by the same parameters.

We are considering this attack and expressing the robustness of the scheme
according to the selected parameters. As it is also done in [NLV11], we express
the security of the scheme through the logarithm of the running time Θ (in
seconds) of the attack itself under each specific parameters’ configuration. This

69

CHAPTER 4. DEVELOPED SOLUTIONS

amount of security depends on the three parameters n, q and l. Parameter l cor-
responds to the size of the messages that have to be encrypted and is expressed
in bits. Equation (4.7) from [LP11] shows how we quantify the security:

log(Θ) =
1.8 (2n+ l)2

n log(q)
− 110 (4.7)

As it is presented in the appendix section of [DPSZ12], the security of this
cryptosystem could also be reduced to the hardness of the RLWE assumption
(defined in Section 3.2.3). Parameter σ, the standard deviation of the used
Gaussian distribution, relies on the security of such a problem. This parameter
should be chosen so that it could avoid combinatorial style attack. An attack of
this kind is presented in [AG11] which breaks LWE in time 2O(‖e‖2∞) with high
probability, where e is the LWE error vector. Since e is chosen by the discrete
Gaussian distribution with standard deviation σ, if we pick σ large enough then
this attack should be prevented. Thus, according to [DPSZ12] choosing σ > 8
will ensure avoiding combinatorial attacks. Also, we define the second standard
deviation σ′ = n× σ to obtain slightly stronger overall security by making the
public key better protected than any ciphertext.

4.2.2 Protocol

We integrate the three previously presented considerations on correctness, per-
formance and security in order to obtain an algorithm that generates the perfect
parameters to a suitable usage. This algorithm allows a user, respectively in
our case a database administrator, to select appropriate and performance saving
parameters for his own use case. We emphasize that our approach is generic,
with the only pre-condition being that one can derive an arithmetic tree from
its given use case. The algorithm’s input arguments T , M and λ correspond
respectively to the arithmetic tree of computations, the set of the value spaces of
the computed data and the security parameter. In other words, Mi corresponds
to the value spaces of the ith leaf of T .

The overall protocol is presented in Algorithm 4 -
Generating SHE Parameters and we describe each of its steps in detail:

Set n. As we have seen in Section 4.2.1, parameter n should be chosen
as a power of 2, as small as possible. Thus we initialize n = 2 in the
algorithm.

Set b. To initialize the encoding base, we consider parameters n and Mi

and we apply the restriction formula b > d n
√
Max(Mi)e.

Compute presult. In the objective to select parameter t, we firstly have
to compute a prediction of the resulting polynomial after the decryption
phase (see Algorithm 5). In that way, we will select parameter t such that
the t-reduction during the decryption will not remove any information as
described in Section 4.2.1. For this step, the concrete use case’s arithmetic

70

4.2. Solution B -
Adapting SHE to Evidence Processing

tree T is necessary to consider the order of the homomorphic operations
and to which data they are processing. Then, we verify that deg(presult) >
n. If not, parameter b should be set greater in order to reduce deg(presult).

Set t. We select parameter t prime such that t > ‖presult‖∞. In other
words, t should be greater than the maximal possible value of coefficients
from the resulting polynomial.

Set σ and σ′. As we have seen in Sections 3.2.3 and 4.2.1, to avoid
combinatorial style attacks we set the standard deviations σ = 8 and
σ′ = n× σ.

Set q. We set modulo q regarding others parameters. q should be
a sub-exponential prime such that q ≡ 1 (mod 2n). To perform cor-
rectly the decryption phase, q should also fulfill the inequation q >
2× ‖presult‖∞×(tσn1,5)D+1. Algorithm 6 enables to compute D.

Compute log(Θ). We compute the security level of the generated pa-
rameters and verify if it fulfills the security parameter λ. If not, we start
over Algorithm 4 with a greater parameter n.

4.2.3 Evaluation and Results

Use Cases

To illustrate the choice of the correct parameters we have implemented our
algorithms. We first execute the algorithms on the Use Case 1 - Cloud Security
Auditing by using an implementation of the SHE scheme. Then we also apply
the algorithms to another use case - Billing Service to support and verify that
the generated parameters are indeed the best choice in terms of performance
while at the same time providing appropriate security. These two specific use
cases are derived from cloud security auditing [Clo], to illustrate our purpose.
Nevertheless, we would like to emphasize that our algorithms could be applied
to any scenario as long as the SHE scheme is needed. The user will have to
provide his arithmetic tree as well as the message spaces of the different values
used during the scenario and define the required level of security.

SHE Implementation. For the SHE running we are using the initial work of
Bieberstein. For his Master Thesis [Bie14], he implemented the SHE scheme in
C++ with the use of two arithmetic libraries Flint and GMP. His work was purely
based on the symmetric version and we modified it in order to use it as a public-
key scheme. The need of the scheme with private/public keys was motivated by
the use cases that could require the cloud infrastructure as investigated within
the PAL-SAaaS project. The measurements presented in Tables 4.5 and 4.7
have been made with a CPU configuration of Intel Core i5 M520 2.40GHz x 4.

71

CHAPTER 4. DEVELOPED SOLUTIONS

Algorithm 4 Generating SHE Parameters

Input: M , T , λ
Output: n, b, t, q, σ, σ′

1: Set n←
√

2
2: Set log(Θ)← 0
3: while log(Θ) < λ do
4: Set n← n2

5: Set b← d n
√
Max(M)e

6: if b < 2 then
7: b← 2
8: end if
9: Compute presult ← Estimate ResultingPoly fromArithmeticTree

(n, b, T.root)
10: while deg(presult) > n do
11: b← b+ 1
12: Compute presult ← Estimate ResultingPoly fromArithmeticTree

(n, b, T.root)
13: end while
14: Set t prime s.t. t > ‖presult‖∞
15: Set σ ← 8
16: Set σ′ ← n× σ
17: Compute D ← Compute MultDepth fromArithmeticTree(T.root)
18: Set q prime s.t. q ≡ 1 (mod 2n) and q > 2× ‖presult‖∞×(tσn1,5)D+1

19: Compute log(Θ)← (1.80× (2n+ dlog(Max(M))e)2)/(n× log(q))− 110
20: end while
21: return σ, σ′, b, n, t and q

Application to Use Case 1 - Cloud Security Auditing. The first con-
sidered use case corresponds to the one presented in Section 2.1. The cloud
auditor is checking on behalf of a client that the CSP’s access control has been
performed correctly. Some computations will be performed directly on the ev-
idence in the Evidence Store (ES) with the aim to retrieve some amounts of
specific data. The considered evidence is partially encrypted with the SHE
scheme. To compute a set, we add all of the encryption regarding one field in
the ES database and we get the total amount of connection attempts with this
characteristic. To get an intersection of sets we first multiply two characteristics
for each connection attempt and subsequently add all the products. We then
get the total amount of connection attempts with the two characteristics. In
Figure 4.6 we show a preview of the database stored in the ES simplified to two
characteristics, along with the operation circuit of the computations that will
have to be performed on the data.

We run our algorithms for this use case and obtain the following set of
parameters {t = 20011, b = 2, n = 4096, log(q) = 84, σ = 8, σ′ = 32768} for
a standard level of security of 128 bits (λ = 128). The use case’s algorithm will

72

4.2. Solution B -
Adapting SHE to Evidence Processing

Algorithm 5 Estimate ResultingPoly fromArithmeticTree

Input: n, b, ν
Output: presult

1: if ν = null then
2: return
3: end if
4: Estimate ResultingPoly fromArithmeticTree(n, b, ν.left son)
5: Estimate ResultingPoly fromArithmeticTree(n, b, ν.right son)
6: if ν.left son = null AND S2i = null then
7: deg(ν)← blogb(ν.M)c
8: if ν.M < b then
9: ‖ν‖∞← ν.M

10: else
11: ‖ν‖∞← b− 1
12: end if
13: else
14: if ν.type = (+) then
15: deg(ν)← max(deg(ν.left son), deg(ν.right son))
16: ‖ν‖∞← ‖ν.left son‖∞+‖ν.right son‖∞
17: else if ν.type = (×) then
18: deg(ν)← deg(ν.left son) + deg(ν.right son)
19: ‖ν‖∞← 2 × [min(deg(ν.left son), deg(ν.right son)) + 1] ×
‖ν.left son‖∞×‖ν.right son‖∞

20: end if
21: end if
22: presult ← ν
23: return presult

perform 104 times a multiplication between two polynomials which represent a
simple encryption of 0 or 1. Table 4.5 shows the different running times when
we run the use case with the parameters obtained with our algorithms for n
equals some power of two as well as the appropriate level of security against the
distinguishing attack. We reasonably get results showing that increasing the
polynomial degree makes the running times relatively bigger.

Table 4.5. UC1 runtimes (in ms) and level of security for different SHE
parameters settings

t b n qBits Encryption Addition Multiplication Decryption Audit (in s) log(Θ)

20011 2 4096 84 22.773 3.980 40.64 10.186 534.345 241.171
20011 2 8192 87 47.814 7.937 81.409 21.420 1012.756 568.041
20011 2 16384 90 99.290 15.965 183.258 45.624 2220.649 1200.800

73

CHAPTER 4. DEVELOPED SOLUTIONS

Algorithm 6 Compute MultDepth fromArithmeticTree

Input: ν
Output: int D

1: D ← 0
2: if ν.type = (+) then
3: D ← max(Compute MultDepth fromArithmeticTree(ν.left son),

Compute MultDepth fromArithmeticTree(ν.right son))
4: else if ν.type = (×) then
5: D ← 1 + Compute MultDepth fromArithmeticTree(ν.left son)+

Compute MultDepth fromArithmeticTree(ν.right son)
6: else
7: return 0
8: end if
9: return D

Table 4.4. Use Case 1 - Cloud Security Auditing database sample

Authorized ai ∈ J0, 1K Connected ci ∈ J0, 1K
Enc(a1) Enc(c1)
Enc(a2) Enc(c2)
· · · · · ·

Enc(a10000) Enc(c10000)

Application to a Billing Service use case. This second use case represents
a billing process for cloud service’s usage executed by an auditor on encrypted
data from a database. In this scenario, an auditor needs to sum up all the con-
nection times of a client to a cloud service. The database stores every connection
attempt (in this case, 104) with, for each of them, the duration - Time, the price
to charge (per units of duration) - Price, if the connection was made from an
authorized user - Authorized and if the user succeeded to connect - Connected.
All of the database components are encrypted with the specific SHE encryption
scheme presented in Section 3.2.3. Regarding the characteristic of being made
from an authorized user or not and being successful or not, we express it by
having an encryption of 1 to the respective field and an encryption of 0 other-
wise. For each client, the cloud auditor multiplies the service usage with the
cost and with the two fields Authorized and Connected which represent tags.
Finally, the auditor sums up all values together and sends the final sum to the
client. We show in Figure 4.7 a preview of the database stored in the Evidence
Store (ES), along with the operation circuit of the computations that will have
to be performed on the data. For each line, we do a multiplication between time
and cost and another one between the two tag fields. Subsequently we multiply
the two resulting products. Finally, the summation of all of these 104 products

74

4.2. Solution B -
Adapting SHE to Evidence Processing

+

×

c10000a10000

...

+

×

c3a3

+

×

c2a2

×

c1a1

Figure 4.6. UC1 - Cloud Security Auditing arithmetic tree obtained from the SQL query >
SELECT SUM (Authorized × Connected) FROM UC1.

is performed. An important aspect to notice is that since we are multiplying
products, we get a multiplication depth of three.

Table 4.6. Use Case - Billing Service database sample

Time ti ∈ J0, 86400K Price pi ∈ J0, 10K Authorized ai ∈ J0, 1K Connected ci ∈ J0, 1K
Enc(t1) Enc(p1) Enc(a1) Enc(c1)
Enc(t2) Enc(p2) Enc(a2) Enc(c2)
· · · · · · · · · · · ·

Enc(t10000) Enc(p10000) Enc(a10000) Enc(c10000)

We run our algorithm Generating SHE Parameters for the Billing Service
UC with a standard level of security of 128 bits (λ = 128) and obtain the
following set of parameters {t = 320009, b = 2, n = 8192, log(q) = 178, σ =
8, σ′ = 65536}.

Independently of our resulting set of parameters, we run the use case with
several other sets of parameters to illustrate the accuracy of our algorithms in
term of performance. In Table 4.7 we show the different running times as well
as the level of the security against the distinguishing attack. In this specific
scenario, we consider that CSP has encrypted and aggregated 2.104 rows in
the ES database. It makes no sense to express the total time of the database
generation since each data has been aggregated one by one when a connection
attempt occurred. The Audit field corresponds to the execution of the computa-
tions circuit by the auditor. We notice that we could get a very small parameter
n thanks to an increase of the base, but to fulfill an acceptable level of security
against the distinguishing attack we must consider a large polynomial degree as

75

CHAPTER 4. DEVELOPED SOLUTIONS

+

×

×

c10000a10000

×

p10000t10000

...

+

×

×

c2a2

×

p2t2

×

×

c1a1

×

p1t1

Figure 4.7. UC - Billing Service arithmetic tree obtained from the SQL query > SELECT
SUM ((Time × Price)×(Authorized × Connected)) FROM UC BILLING SERVICE.

Table 4.7. UC Billing Service runtimes (in ms) and level of security for
different SHE parameters settings

t b n log(q) Encryption Addition Multiplication Decryption Audit (in s) log(Θ)

320009 2 8192 178 47.735 8.757 78.101 30.850 4585.882 223.956
320009 2 16384 184 99.956 17.433 175.129 63.754 9905.253 533.620
320009 2 32768 190 215.479 34.710 380.250 137.817 31921.553 1134.161

n = 8192 for a security of 223 bits. In Table 4.7, the first line corresponds to the
parameters obtained by our algorithm Generating SHE Parameters. The two
following ones correspond to the optimized parameters sets when we set degree
n as the very next power of two. By observing the resulting running times, we
could see that for every line, the running time of each function doubles. For
instance, if we select a parameter n four times too large (n = 16384) the running
time of the auditing process will be approximately four times longer than with
the optimized n selected by our algorithm Generating SHE Parameters.

Regarding the running times of both use cases, we notice that every running
time of the cryptographic functions of the SHE scheme grows linearly in terms
of the degree n of the polynomial representation. In our scenario, a perfect
selection of the scheme’s parameters could then lead to major time savings for
the auditor as well as for the CSP.

76

4.3. Solution C -
Using Bloom Filters to Process Set Relations

4.3 Solution C -
Using Bloom Filters to Process Set Rela-
tions

We propose here a protocol to solve what we present as private outsourced
inclusiveness test and private outsourced disjointness test. We suppose two
parties, let it be Alice and Bob each owning a dataset of elements, respectively
A and B. They would like to know, for example, if their datasets are disjoint,
i.e. if A ∩ B = ∅. To do so, they will ask a third party, S to perform the
verification. Alice (resp. Bob) does not want to reveal any information on her
dataset including its size to any other party.

We propose a solution based on Bloom filters [Blo70] representation along
with keyed hash functions as HMAC to solve both of the set relations. We recall
that Bloom filters are space-efficient data structures used to represent sets that
allow to perform set membership checks; a more complete description can be
found in Section 3.5. One may argue that a simple pseudonymization could be
sufficient for the scenario sketched above, as only apply a keyed hash function
on the sets [CC04b]. However, even if the pseudonymization function remains
private to any other party than the Bloom filter owners, one may directly gain
knowledge on the number of common elements of two Bloom filters. Such a
naive approach will also reveal which pseudonym is present in none, one or both
sets. Conversely, Bloom filter representation has the particular feature of adding
obfuscation to sets.

We argue that contrarily to multiparty based solutions [KS05], it has rele-
vance if such a protocol class is non-interactive. It could for example be applied
to a scenario of networking where a social network server should verify if any
users have relations in common. In particular we apply this solution to the four
selected use cases in Chapter 2 as for instance, it could be applied to cloud au-
diting use cases (UC1) where a third party auditor should perform verification
on logfiles and whitelists or scenarios of mobile users tracking (UC2).

In the following sections, we present how we tuned the Bloom filters usage
to enhance privacy on the sets’ content and cardinality. After describing our
functions in detail, we analyse the correctness and privacy of our protocol, in
particular by presenting one possible attack on the sets’ cardinality. Finally
we explain how we applied this solution to our four use cases and present their
respective results.

4.3.1 Privacy Enhancements

Using Bloom filters with privacy-sensitive scenarios is not as common as it
is for classical applications. Our approach, which consists of making such a
technique fitting privacy-sensitive use cases, is based on the use of a public
keyed collision-resistant hash function (e.g. MAC function) with a set of nkey
private keys instead of nkey public hash functions. Without loss of generality
we decide to use an HMAC function to solve our bunch of use cases. That being

77

CHAPTER 4. DEVELOPED SOLUTIONS

said, any party that does not hold the keys cannot use the test() function to
verify directly whether a specific element is included in the Bloom filter or not.
The other security benefit when using an HMAC function is that even if the
function is publicly released, any party that does not hold the keys cannot add
additional elements. More formally, we define a Bloom filter of size m of a set
A = {a1, . . . , anA}, with a set of nkey keys K = {k1, . . . , knkey} and an HMAC
function hk : {0, 1}∗ → {1, . . . ,m} with k ∈ K as:

BF
(
A, (hk)k∈K

)
= bfA[j]16j6m (4.8)

where bfA[j] = 1 if ∃ (i, κ) s.t. hkκ(ai) = j

bfA[j] = 0 otherwise

For a better understanding, we use the simplified notation BFA to represent
the Bloom filter of set A.

The second privacy enhancement we add aims to keep parameter nkey private
in order to avoid revealing the sets’ cardinalites. Having parameter nkey publicly
released in addition to privacy requirements on cardinality, requires too many
overlapping bits in the Bloom filters. Indeed, the naive technique to retrieve
the cardinality of the set by simply looking at its respective Bloom filter would
be to divide its amount of bits set to one, by parameter nkey. There exists an
optimized technique introduced by Swamidass and Baldi [SB07] that computes
n∗A, an approximation of the number of distinct elements inserted in BFA, with
XBFA the amount of bits set to 1 in the Bloom filter:

n∗A = − m

nkey
ln
[
1− XBFA

m

]
(4.9)

Such a technique requires even more overlapping bits to mislead any prospective
attacker. We see that by making parameter nkey private, one could not be able
to compute n∗A anymore. We give examples in Table 4.8, for several parameter’
configurations. We simulate the generation of 103 Bloom filters BFA and we
estimate the sets’ cardinality with the naive technique and the one from Swami-
dass and Baldi (S&B). By referring to the results obtained using S&B technique,
we could agree on the necessity of keeping nkey private to gain privacy on the
sets’ cardinality. However, in Section 4.3.4 we show how an attacker could still
retrieve information on cardinalities even with such precaution. One may ques-
tion the complexity of keeping size of K private or the effort to store a large
amount of keys. We could then slightly modify the protocol to have a unique
key k. Indeed, outcome of hk(x) could be divided in nkey equal size fragments,
each indicating Bloom filter’s index to increment. As it is suggested in [LG], in
case of a fragment too small to contain information of size m, we may perform
multiple rounds of HMAC operations with different salts. Of course, in such
protocol modification, parameter nkey and sets’ size are not disclosed.

78

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Table 4.8. Set cardinality estimations with the naive and Swamidass and
Baldi (S&B) technique for different parameters’ configurations.

nA m nkey XBFA n∗A with naive n∗A with S&B
100 1.44× 103 10 [682 - 758] [68.2 - 75.8] [92.4 - 107.6]
100 6.5× 107 1700 [169824 - 171718] [100.0 - 101.1] [99.9 - 100.0]
1000 2× 109 950 [949730 - 949822] [999.7 - 999.8] [999.9 - 1000.1]

4.3.2 Protocol Functions

Initialization.

h,nkey,m,K←Setup: One of the two parties Alice or Bob should first
choose and generate the Bloom filter’s parameters: a dimension m, an
HMAC function h, an amount of keys nkey and the set of keys K =
{κ1, . . . , κnkey}. Alice generates parameters by performing the following
protocol:

• randomly choose nkey ∈ [nLkey;nUkey] with nkey, nLkey and nUkey inte-
gers.

• set m such that X∩=∅ < nLkey.

Values nLkey and nUkey are public and we determine them later considering
correctness and privacy in Section 4.3.3. Restriction on parameter m cor-
responds to a correctness consideration which we explain in greater detail
in Section 4.3.3. Alice then selects the public HMAC function h, generates
the nkey respective keys and privately shares parameters {h, nkey,m,K}
with Bob.

BFA,BFB ←Create(A,B): Alice (resp. Bob) generates the Bloom filter of its
data A = {a1, . . . , anA} (resp. B = {b1, . . . , bnB}).

BFA = BF
(
A, (hκ)κ∈K

)
= bfA[j]16j6m

BFB = BF
(
B, (hκ)κ∈K

)
= bfB[j]16j6m

Inclusiveness Protocol.

This operator allows to verify if one set is included in another. It has to be
performed directly on Bloom filters of the respective sets. To determine if A is
included in B we define BFA⊆B ← INC(BFA,BFB):

bfA⊆B[j]16j6m ← INC(BFA, BFB) (4.10)

where 0← bfA⊆B[j] if (bfA[j] = 1 ∧ bfB[j] = 0)

1← bfA⊆B[j] otherwise.

79

CHAPTER 4. DEVELOPED SOLUTIONS

We remark that such operator is equivalent to the bitwise binary operator com-
bination:

INC(BFA, BFB) ≡ ¬(BFA) OR BFB (4.11)

S firstly computes the inclusion protocol on the two respective Bloom filters of
sets A and B to test if A ⊆ B, namely if all the elements from Alice’s set are
included in Bob’s set:

INC(BFA, BFB) = BFA⊆B = bfA⊆B[j]16j6m

Then S expresses value XA⊆B which corresponds to the number of bits set to 1
in the resulting Bloom filter:

XA⊆B =

m∑
j=1

bfA⊆B[j] (4.12)

S tests whether XA⊆B = m and can conclude that A ⊆ B if no false positive
occurred. Otherwise we have A * B with certainty.

We give an example of the inclusiveness relation with tiny sets and
parameters. We test if both sets A and A′ are included in set B.

A = {x1, x2}, A′ = {x1, x4}, B = {x1, x2, x3}
m = 12, nkey = 3, K = {k1, k2, k3}

hk1(x1) = 10, hk1(x2) = 1, hk1(x3) = 5, hk1(x4) = 9
hk2(x1) = 11, hk2(x2) = 10, hk2(x3) = 12, hk2(x4) = 2
hk3(x1) = 2, hk3(x2) = 5, hk3(x3) = 8, hk3(x4) = 1

BFA 1 1 0 0 1 0 0 0 0 1 1 0

BFA’ 1 1 0 0 0 0 0 0 1 1 1 0

BFB 1 1 0 0 1 0 0 1 0 1 1 1

BFA⊆B 0 0 0 0 0 0 0 0 0 0 0 0

BFA’⊆B 0 0 0 0 0 0 0 0 1 0 0 0

�1

By computing the inclusiveness relation we see that A ⊆ B. On the contrary
A′ * B since bfA′ [9] = 1 and bfB[9] = 0.

Disjointness Protocol.

This set relation allows us to check that no elements from one set are included in
another one. In other words, it verifies the claim that two sets are disjoint. Such
a test function is not trivial. Indeed, if we use Bloom filters, it is not sufficient to

80

4.3. Solution C -
Using Bloom Filters to Process Set Relations

highlight cases where a bit has been set to 1 at the same index in the respective
Bloom filters. We define this operator as BFA∩B=∅ ← DIS(BFA,BFB):

bfA∩B=∅[j]16j6m ← DIS(BFA, BFB) (4.13)

where 1← bfA∩B=∅[j] if (bfA[j] = 1 ∧ bfB[j] = 1)

0← bfA∩B=∅[j] otherwise.

We remark that this operator is equivalent to the bitwise logical-and operator:

DIS(BFA, BFB) ≡ BFA AND BFB. (4.14)

To verify that no elements from Alice’s dataset are included Bob’s, S performs
the disjointness relation on respective Bloom filters of A and B:

DIS(BFA, BFB) = BFA∩B=∅ = bfA∩B=∅[j]16j6m

Then S expresses XA∩B=∅ which corresponds to the number of bits set to 1 in
the resulting Bloom filter:

XA∩B=∅ =

m∑
j=1

bfA∩B=∅[j] (4.15)

S compares it such that:

if XA∩B=∅ < nLkey then A and B are distinct

if XA∩B=∅ > nLkey then A and B have at least one element in common

Indeed, for each element included in both sets, we get nkey times a bit set to 1 in
the resulting Bloom filter. However, we could still get such a bit set to 1 due to a
bit set to 1 in BFA and BFB stemming from different elements originally added
to the Bloom filters. We call such a case a false negative for the disjointness
relation since the auditor will state that the sets are not disjoint while they are.
We will discuss the probability of this occurrence in the following sections.

We give another toy example of the disjointness relation between BFA,
BF ′A and BFB.

A = {x4, x5}, A′ = {x1, x4}, B = {x1, x2, x3}
m = 12, nkey = 3, nLkey = 3, nUkey = 5, K = {k1, k2, k3}

hk1(x1) = 10, hk1(x2) = 1, hk1(x3) = 5, hk1(x4) = 9, hk1(x5) = 6
hk2(x1) = 11, hk2(x2) = 10, hk2(x3) = 12, hk2(x4) = 2, hk2(x5) = 1
hk3(x1) = 2, hk3(x2) = 5, hk3(x3) = 8, hk3(x4) = 1, hk3(x5) = 7

81

CHAPTER 4. DEVELOPED SOLUTIONS

BFA 1 1 0 0 0 1 1 0 1 0 0 0

BFA’ 1 1 0 0 0 0 0 0 1 1 1 0

BFB 1 1 0 0 1 0 0 1 0 1 1 1

BFA∩B=∅ 1 1 0 0 0 0 0 0 0 0 0 0

BFA’∩B=∅ 1 1 0 0 0 0 0 0 0 1 1 0

�1

We get XA∩B=∅ = 2 and XA′∩B=∅ = 4. Since we have XA∩B=∅ < nLkey, we
definitively know that A and B are disjoint. On the contrary, we get XA′∩B=∅ >
nLkey, therefore A′ and B might be disjoint. Indeed, with such toy configuration

we have XA∩B=∅ = 2 and do not get nLkey << XA∩B=∅. With XA′∩B=∅ = 4 we
hesitate between either A′ and B disjoint or having one element in common.

4.3.3 Correctness Analysis

In this section we analyze correctness of our two proposed relations. We recall
the Bloom filter approach allows false positives but no false negative on the
test() function. Nevertheless, with our proposal we are not considering the test()
function and we thus focus on overlapping bits of the Bloom filters resulting from
our set relations.

Correctness of the Inclusiveness Relation.

For the inclusiveness relation, we stress that only false positives could happen
and not false negatives. Indeed, after performing INC(BFA, BFB), if there is
an index j with bfA⊆B[j] = 0, we have bfA[j] = 1 and bfB[j] = 0, then with
certainty, at least one element from A does not belong to B. In practice, if the
outcome of the auditing process states that A * B then we have a probability
of correctness of 1.

On the other hand, if we get A ⊆ B as a result, such outcome is not nec-
essarily correct. Indeed, we get a probability of correctness equal to 1 − PFP ,
with PFP the probability of having a false positive. PFP could be expressed
in terms of parameters nkey, m and nW denoting the amount of elements in-
serted in BFB. The probability that our inclusiveness relation outcomes a false
positive whereas one element a1 from A is not in B is equivalent to the one to
have test(B, a1) resulting true with the same parameters. We detail the value
of PFP :

First, we denote the probability that after inserting nA elements, a certain
bit is equal to 1 is:

1− (1− 1

m
)nkey×nA (4.16)

If we consider that ZA,B elements from A are not included in B, the probability

82

4.3. Solution C -
Using Bloom Filters to Process Set Relations

of having a false positive after computing inclusiveness relation is:

PFP >
(
1− (1− 1

m
)nkey×nA

)nkey×ZA,B (4.17)

PFP '
(
1− (1− 1

m
)Xadd(nA)

)Xadd(ZA,B) (4.18)

With Xadd() presented in (3.15).

We give here a toy example of the inclusiveness relation between BFA and
BFB and where we obtain a false positive case.

A = {x1, x5}, B = {x1, x2, x3}
m = 12, nkey = 3, nLkey = 3, nUkey = 5, K = {k1, k2, k3}

hk1(x1) = 10, hk1(x2) = 1, hk1(x3) = 5, hk1(x5) = 12
hk2(x1) = 11, hk2(x2) = 10, hk2(x3) = 12, hk2(x5) = 5
hk3(x1) = 2, hk3(x2) = 5, hk3(x3) = 8, hk3(x5) = 1

BFA 1 1 0 0 1 0 0 0 0 1 1 0

BFB 1 1 0 0 1 0 0 1 0 1 1 1

BFA⊆B 0 0 0 0 0 0 0 0 0 0 0 0

�1

By performing the inclusiveness relation INC() on BFA and BFB we get
A ⊆ B but this is not correct since x5 /∈ B.

We test our implementation of Bloom filters construction for multiple pa-
rameters’ configurations. We express in Table 4.9 the percentage of false positive
obtained while performing 104 times the inclusiveness relation between sets A
and B, and we verify that it corresponds to the respective PFP expressed in
(4.18).

Correctness of the Disjointness Relation.

For the disjointness relation, we have on the contrary no case of false positive,
but a case of false negative may happen. Indeed, if we get XA∩B=∅ < nLkey, it

means that BFA and BFB have less than nLkey (and thus less than nkey) indexes
i where bfA[i] = 1 and bfB[i] = 1. It is then not possible that A and B have
common elements. Regarding the false negative scenario, it could happen if we
get too many resulting overlapping bits in the resulting Bloom filter BFA∩B=∅,
which we define as:

Definition 5 (Resulting overlapping bit). When there exists a specific index i,
where bfA[i] = bfB[i] = 1 and these two bits are coming from different elements.

83

CHAPTER 4. DEVELOPED SOLUTIONS

Table 4.9. Comparison of the False positive percentage resulting from
the running of the inclusiveness relation’s implementation and the prob-
ability from (4.18).

nB nkey m PFP %FP

102 101 1× 103 1.02× 10−2 9.00× 10−3

102 7× 102 1× 104 5.28× 10−1 5.38× 10−1

103 5 5× 103 1.01× 10−1 1.01× 10−1

103 102 2× 104 5.09× 10−1 5.12× 10−1

104 5× 102 1× 106 3.40× 10−2 4.00× 10−2

104 103 1.5× 106 2.80× 10−1 2.20× 10−1

Therefore, a false negative consists of a case where A and B have no elements
in common but S gets XA∩B=∅ > nLkey, i.e. more than nLkey resulting overlapping
bits happened. To avoid such a case, we have to accurately tune parameters
such that in a case of distinct sets A and B, the respective value XA∩B=∅
will never (with acceptable probability) be greater than nLkey. To do so, Alice

has to carefully select parameters nkey and m such that X∩=∅ < nLkey. Value
X∩=∅ represents the expected value ofXA∩B=∅ when performing the disjointness
protocol on two distinct sets A and B. To express value X∩=∅, we firstly give
the probability of having a bit set to 1 for any index j in both Bloom filters
BFA and BFB, knowing that A and B are distinct:

p(bfA[j] = 1 ∧ bfB[j] = 1) = p(bfA[j] = 1) × p(bfB[j] = 1) (4.19)

= (1− (1− 1

m
)nkey×nA) × (1− (1− 1

m
)nkey×nB)

Finally, the expected amount of bits set to 1 in both BFA and BFB at the
same index resulting from distinct set elements is:

X∩=∅ = m × (1− (1− 1

m
)Xadd(nA)) × (1− (1− 1

m
)Xadd(nB)) (4.20)

When we have Z ′A,B common elements inserted in both Bloom filters, we get
XA∩B=∅ ' Z ′A,B × nkey + X∩=∅. Therefore, if Alice takes care that X∩=∅
never gets greater or equal to nLkey, then S could notice when the two sets have
common elements even in the case of Z ′A,B = 1. We compare the value of X∩=∅
obtained by (4.20) with the value of XA∩B=∅ obtained by running 104 times our
implementation. We show our results in Table 4.10.

84

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Table 4.10. Comparison of the overlapping bits on the disjointness rela-
tion between two distinct sets and its prediction from (4.20).

nA nB nkey m X∩=∅ XA∩B=∅
102 102 10 1× 103 3.99× 102 4.00× 102

102 102 10 1× 106 9.99× 10−1 1.02× 100

102 102 700 1× 104 9.99× 103 9.98× 103

102 103 700 1× 107 4.71× 103 4.72× 103

103 103 5 5× 107 5.00× 10−1 5.02× 10−1

103 103 100 2× 104 1.97× 104 1.97× 104

103 103 1500 1× 107 1.94× 105 1.94× 105

103 104 1000 1× 107 6.01× 105 6.02× 105

104 104 1500 1× 108 1.94× 106 1.94× 106

Choosing Parameters Regarding Correctness.

In the classical use of Bloom filters as presented in [Blo70], some usage recom-
mendations are made to generate parameters nkey and m:

m = −nA × ln (PFP)

(ln 2)2
(4.21)

nkey =
m

nA
× ln 2 (4.22)

We stress that initially Bloom filters are not supposed to hold such relations
testing as inclusiveness or disjointness. Therefore, the considerations on gener-
ation of nkey and m are manifold. In Table 4.11 we provide some examples of
parameters m and nkey such that the false positive probability PFP of inclu-
siveness relation is acceptable and the expected amount X∩=∅ is significantly
smaller than, for instance, nLkey = 5.

Table 4.11. Appropriate parameters m and nkey considering PFP and X∩=∅
with fixed nA and nB.

nA nB m nkey PFP X∩=∅
102 5× 101 106 10 9.9× 10−31 0.50
102 103 107 10 9.9× 10−41 0.99
103 103 7.62× 109 1861 ∼ 0 4.54× 102

104 2× 102 9.47× 109 1468 ∼ 0 4.55× 102

We notice that in Table 4.11, parameters nkey and m are significantly smaller
than the ones considered later on, but we recall that we care here solely about
correctness of the set relations and not about privacy of the set cardinality.

85

CHAPTER 4. DEVELOPED SOLUTIONS

4.3.4 Privacy Analysis

In this section we show how our solutions fulfill privacy requirements in terms
of content and cardinality.

Distribution of the Overlapping Bits.

In this section we analyze the characteristics of overlapping bits occurring
throughout the basic step of Bloom filters generation. To complete this analysis
we run our Bloom filter’s implementation for several parameters’ configurations
103 times each. We start by illustrating in Figure 4.8 the distribution of YBFA in
two parameters’ configurations namely {nA = 50, m = 1.3× 107, nkey = 200}
and {nA = 200, m = 1.4 × 107, nkey = 100}. We recall YBFA to be the exact
amount of overlapping bits as presented in (3.16).

0 5 10 15 20 25 30

0

5

10

15

20

YBFA

%

nA = 50,m = 1.3× 107, nkey = 200

nA = 200,m = 1.4× 107, nkey = 100

Threshold of 1%

Figure 4.8. Overlapping bits distribution for 103 generated Bloom filters of the same set.

In Figure 4.9, we show the distributions for Bloom filters of two sets with
similar cardinalities (nA ≈ nB) and the same parameters’ configuration. We also
show the distribution of the amount of bits in the Bloom filter corresponding to
the result of the disjointness operator between the two previous Bloom filters
representing two distinct sets. We have {nA = 1000,m = 1.44×104, nkey = 10}
and {nB = 1100,m = 1.44× 104, nkey = 10}.

In Figure 4.10 we show a case where the parameters are generated following
recommendations from (4.21) and (4.22) for set B and 100 distinct elements
inserted in the Bloom filters. We use the same parameters’ configuration with

86

4.3. Solution C -
Using Bloom Filters to Process Set Relations

2,500 3,000 3,500 4,000

0

0.5

1

1.5

2

YBFA YBFB and XA∩B=∅

%
nA = 1000,m = 1.44× 104, nkey = 10

nB = 1100,m = 1.44× 104, nkey = 10

XA∩B=∅ =
∑m
j=1 bfA∩B=∅

Threshold of 1%

Figure 4.9. Overlapping bits distribution when nA ≈ nB.

set A containing only 10 distinct elements (nA � nB). We have {nA = 10,m =
1.44 × 103, nkey = 10} and {nB = 100,m = 1.44 × 103, nkey = 10}. As it
is illustrated, we obtain such a distribution by running the generation of 103

Bloom filters for each parameters’ configuration.

From these distributions we noted several characteristics. First, the more
elements we add to the Bloom filter, the larger the overlapping bits range is. For
instance, if we follow recommendations from (4.21) and (4.22), and we insert
only 10 elements, we get a range of overlapping bits to approximately 10. When
we have 100 inserted elements the range increases to approximately 40. Since our
protocols use an HMAC function that generates a uniform random distribution,
we could consider that the overlapping bits follow a normal distribution. If it is
the case, to consider 99.7% of the possible overlapping bits values for a Bloom
filter representing a specific set, one could define them in range [µ− 3σ;µ+ 3σ]
with µ the mean and σ the standard deviation. Setting parameters in the aim to
tune the distribution to get an acceptable overlapping bits range regarding the
aimed level of privacy could be performed. In Table 4.12 we see how the standard
deviation of the overlapping bits distribution varies depending on parameters
and the amount of inserted elements. As a second characteristic, we observe
that when we have two sets with highly distant cardinalities nA � nB (or
resp. nB � nA), the number of overlapping bits in the Bloom filter of the
smaller set YBFA (resp. YBFB) decreases substantially and that of the larger set
increases substantially. Having too few overlapping bits in a Bloom filter could

87

CHAPTER 4. DEVELOPED SOLUTIONS

0 100 200 300 400

0

5

10

15

20

25

YBFA YBFB and XA∩B=∅

%

nA = 10,m = 1.44× 103, nkey = 10

nB = 100,m = 1.44× 103, nkey = 10

XA∩B=∅ =
∑m
j=1 bfA∩B=∅

Threshold of 1%

Figure 4.10. Overlapping bits distribution when nA � nB.

be problematic, especially if it could be predictable by the attacker. By running
tests we notice that no matter which nkey is picked or how many elements are
inserted in the Bloom filters, if the ratio nA

nB
remains the same, then, firstly the

expected amounts of overlapping bits in BFA and BFB remain approximately
the same and secondly YBFA (resp. YBFB) is quite small. Moreover, we see that
it is even worse if we keep decreasing the ratio nA

nB
. One solution to maintain an

acceptable range of overlapping bits in the smaller set’s Bloom filter, even if we
have a significant difference in the cardinalities, could be to use a greater domain
[nLkey;nUkey]. Indeed, for the same ratio nA

nB
, we obtain greater overlapping bits

ranges.

Content Privacy.

First, we claim that no attacker can determine which concrete elements are
included in both of the sets A and B. Such a characteristic holds by means
of the Bloom filter’s construction. Indeed, each element of the sets is mapped
with the HMAC function. Such a primitive is constructed from a cryptographic
hash function and therefore benefits from its one-wayness characteristic. This
means, that the only straightforward manner to get any knowledge on Bloom
filters’ content would be to use the test() function which is only computable by
Alice and Bob.

88

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Table 4.12. The average and standard deviation of the overlapping bits
distribution in Bloom filters BFA and BFB for different parameters’ con-
figurations.

nA nB m nkey µA σA µB σB
10 100 1.44× 103 10 3.3 1.73 278.6 10.3
100 100 2.2× 107 1700 653.9 24.6 654.9 26.1
10 100 2× 106 1700 72.3 8.4 7023.4 77.9
100 1000 6× 107 500 20.8 4.44 2075.8 45.3

Cardinality Privacy.

In this section, we focus on the ability of any attacker to retrieve the cardinality
of the sets from one or multiple versions of the Bloom filter’s representation of
the set. We recall that there exists an optimized manner to get the cardinality
of a set from its Bloom filter representation as explained in Section 4.3.1, the
S&B technique. Without any overlapping bit, getting the result is therefore
straightforward. On the contrary, having multiple overlapping bits will lead
any non-authorized party to misinterpret the cardinality. To ensure this, the
ratio of the amount of overlapping bits over parameter nkey should be large.

Another aspect to consider with such an approach is that anytime an at-
tacker gets a different Bloom filter of the same set A, he can get closer to its

cardinality. Indeed, the cardinality of A will always be greater or equal to
XBFA
nkey

.

By accessing XBFA from several different Bloom filters of the same set A, he
therefore can refine his cardinality guessing.

We also notice that having an acceptable probability of false negative and
an acceptable level of privacy for set cardinalities are contradictory strategies.
Indeed, our approach to solve the disjointness set relation is based on reducing
the amount of overlapping bits to avoid confusion on having common elements.

Sets Cardinalities Attack.

We present here a possible attack performed by any external attacker or even
the server S, that aims to retrieve cardinalities nA and nB. To do so, S will
firstly try to determine parameter nkey used by Alice and Bob. S knows that
nkey ∈ [nLkey;nUkey] and that nkey is a factor of the amount of bits inserted
in both Bloom filters. From these pieces of information and by observing the
Bloom filters, S will start by generating candidate lists. The candidates list for
nkey is represented as Lnkey = {l1, . . . , lλnkey } with λnkey a security parameter

which represents the size of this list. S also considers two sub-lists LAnkey =

{l1, . . . , lλA} and LBnkey = {l1, . . . , lλB} which correspond to the lists of factors
regarding BFA and BFB before the cross-checking which leads to Lnkey . Finally
we have YBFA ∈ [obA1

; obA2
] and YBFB ∈ [obB1

; obB2
] amounts of overlapping

bits in the Bloom filters.

89

CHAPTER 4. DEVELOPED SOLUTIONS

In each Bloom filter, some overlapping bits could have occurred, therefore
the attacker knows that regarding BFA, nkey is a factor of XBFA or (XBFA+1)
or (XBFA + 2) . . . Similarly holds for BFB. It means that LAnkey (resp. LBnkey)
is composed by elements lj which verify the two following characteristics:

lj ∈ [nLkey;nUkey] and lj |xA with xA ∈ [XBFA + obA1 ;XBFA + obA2]

(resp. lj |xB with xB ∈ [XBFB + obB1 ;XBFB + obB2])

Finally, we get LnA = (li)i∈[1;λnA] the list of candidates for nA with λnA the

amount of elements in LnA . Similarly we have LnB = (li)i∈[1;λnB] the list of
candidates for nB with λnB the amount of elements in LnB .

The first step of the attack consists of listing all the common factor of
{XBFA , (XBFA + 1), (XBFA + 2), . . . } and {XBFB , (XBFB + 1), (XBFB + 2), . . . }
to generate lists LAnkey and LBnkey . Then, S will intersect the two lists to generate
the candidates list Lnkey .

The second phase of the attack is to translate Lnkey into lists LnA and LnB . S
could use the S&B technique [SB07] to approximate size nA. Since parameter m
is public and value XBFA is directly computable, we have the following function:

n∗A(nkey) = − m

nkey
ln
[
1− XBFA

m

]
(4.23)

When we look closely at list Lnkey , we notice that if some elements are following
each other, they are translated to the same candidate of nA. In other words,
multiple elements from Lnkey correspond to the same element from LnA . Thus
we get λnA 6 λnkey .

Attack on Three Cases. We have implemented the sets cardinalities attack
and we run it with different levels of knowledge for the attacker. We differentiate
three cases namely the best case, the in-between case and the worst case. They
could be seen as three attacker models where level of knowledge is minimal in
the best case and maximal in the worst case.

Best Case. S knows nothing about the expected overlapping bits distri-
bution. It considers that any amounts of overlapping bits could occur and thus
the attack will not result in any valuable information on the sets’ cardinality.
Indeed, the attack will return λA = λB = λnkey = (nUkey − nLkey). In such ideal
case we get a perfect privacy on the sets cardinality.

In-Between Case. In such a case we consider that S has more knowledge
about the overlapping bits that affect the Bloom filters. We assume that S is not
able to predict the exact overlapping bits distribution but could approximately
estimate its ranges [obA1

; obA2
] and [obB1

; obB2
]. S will perform the attack with

these maximized default ranges.

90

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Worst Case. In the worst case assumption, S knows the exact overlap-
ping bits distribution for both Bloom filters. With this knowledge, S could
associate a weight to any elements from Lnkey and de facto elements from LnA
and LnB . S sets weight for each element from Lnkey based on the overlapping
bits distribution of each Bloom filter.

Example of an Attack in the Three Cases. We give a toy example of
the attack obtained with our implementation of the protocol. The parameters
selected by Alice and Bob are the following: nkey = 17 with nLkey = 10 and

nUkey = 30, m = 1.5× 108, nA = 1024 and nB = 2305.
S gets BFA and BFB and counts their respective bits set to 1; XBFA = 17407

and XBFB = 39179. It is then listing factors as described in Section 4.3.4 by
considering overlapping bits amounts as YBFA , YBFB ∈ [0; 10].

Table 4.13. Results of the set cardinality attack

YBFA/YBFB XBFA + YBFA LA
nkey

XBFB + YBFB LB
nkey

0 1707 13 39179 29
1 1708 16, 17 39180 10, 12, 15, 20, 30
2 1709 21 39181 ∅
3 1710 10 39182 11, 13, 22, 26
4 1711 23 39183 ∅
5 1712 12 39184 16
6 1713 11 39185 17
7 1714 ∅ 39186 14, 18, 21
8 1715 15, 27 39187 ∅
9 1716 14, 28 39188 ∅
10 1717 ∅ 39189 ∅

S selects the common factors from LAnkey and LBnkey and narrows the candi-

dates list to Lnkey = {10, 11, 12, 13, 14, 15, 16, 17, 21, 23}. We note that S has
reduced the candidates list by more than half. Indeed, before the attack we had
λnkey = 21 and now λnkey = 10.

Then the attacker translates Lnkey into LnA and LnB with the (S&B) tech-
nique:

LnA = {757, 829, 1024, 1088, 1161, 1243, 1339, 1451, 1583, 1741}
LnB = {1704, 1866, 2305, 2449, 2612, 2799, 3014, 3265, 3562, 3918}

We give more examples of the attack in particular for each of the three cases
considered as attacker model.

Best Case. S could only translate the information that nkey is any in-
teger and nkey ∈ [nLkey;nUkey]. Therefore, S reduces the candidates list to

LnA = [dn∗A(nUkey)e; bn∗A(nLkey)c] and gets its cardinality as λnA = bn∗A(nLkey)c−

91

CHAPTER 4. DEVELOPED SOLUTIONS

dn∗A(nUkey)e + 1 since in this case the attacker could not yet exclude any value
from LnA . We notice that in some cases, λnA could be very small even without
performing the attack. It is the case especially when we have a quite small nA.
In Table 4.14 we give some examples of LnA and λnA without any attack.

Table 4.14. Respective LnA and λnA for several parameter’ configura-
tions.

nA m nLkey nUkey XBFA LnA λnA
10 2× 106 1500 2000 16935 [9; 11] 3
100 2× 106 1500 2000 162968 [85; 113] 29
100 6× 107 500 1000 49981 [51; 100] 50
1000 6× 107 500 1000 497936 [501; 1000] 500

In-Between Case. In Table 4.15 we show the results of the attack with
such a limited knowledge.

Table 4.15. Results of the attack.

nA nB m nkey [obA1
; obA2

] [obB1
; obB2

] λA λB λnkey λnA λnB
100 1000 6× 107 500 [0 - 50] [1500 - 2500] 38 315 38 38 38
10 100 2× 106 1700 [0 - 150] [6000 - 8000] 46 425 46 3 3
100 100 2.2× 107 1700 [500- 1000] [500 - 1000] 142 140 136 29 29

Worst Case. For this attacker model, we give examples with three differ-
ent parameters’ configurations. In each case, we run 103 Bloom filter genera-
tions of each specific set to obtain a precise overlapping bits distribution. Then,
we provide all the retrieved candidates for parameter nkey and how they are
translated into nA and nB candidates along with their respective weights. In
particular we set a weight of 1.00 for the most probable candidate for parameter
nkey and then, we set the other ones proportionately to this one.

We start by a parameters’ configuration of {nA = 100, nB = 1000, m =
6× 107, nkey = 500, nLkey = 500, nUkey = 1000}. Before the attack S knows that
LnA = [50; 100] and LnB = [500; 1000] and therefore deduces that λnA = 51 and
λnB = 501. In Table 4.16 we show the results of the attack obtained by running
our implementation with overlapping bits distribution obtained by generating
103 Bloom filters of two sets. We see in Table 4.16 that S gets greater weights for
candidates which are not the correct ones. In particular we have six couples of
candidates with an equal or greater probability than the correct couple (nA, nB).

The second selected parameters’ configuration is {nA = 10, nB = 100, m =
2×106, nkey = 1700, nLkey = 1500 and nUkey = 2000}. Before the attack, S knows
that LnA = [8; 11]and LnB = [85; 113] and therefore deduces that λnA = 3 and
λnB = 29. In Table 4.17 we show the attack’s results. With the attack, we get

92

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Table 4.16. Example of translating Lnkey into LnA and LnB for the sets
cardinalities attack.

Element from Lnkey Weight Element from LnA and LnB Weight
500 0.67 100 and 1000 0.67
505 1.00 99 and 990 1.00
532 0.02 94 and 940 0.02
625 0.67 80 and 800 0.67
633 0.02 79 and 790 0.02
641 0.94 78 and 780 0.94
658 0.02 76 and 760 0.02
685 0.14 73 and 730 0.14
862 0.85 58 and 580 0.85
877 0.43 57 and 570 0.43
893 0.02 56 and 560 0.02
909 1.00 55 and 550 1.00
926 0.17 54 and 540 0.17
1000 0.67 50 and 500 0.67

Table 4.17. Example of translating Lnkey into LnA and LnB for the sets
cardinalities attack.

Element from Lnkey Weight Element from LnA and LnB Weight
1545, 1546, 1547 0.10, 0.53, 1.00 110 and 11 1.63

1700, 1701, 1702 0.16, 0.71, 0.84 100 and 10 1.71
1889, 1890 0.33, 0.71 90 and 9 1.04

LnA = {9, 10, 11} and LnB = {90, 100, 110} with λnA = λnB = 3. We also get
the greater weight for the correct candidates.

We give a last example where nA ≈ nB. The selected parameters are {nA =
100, nB = 100, m = 2.2 × 107, nkey = 1700, nLkey = 1500, nUkey = 2000}.
Before the attack S knows that LnA = λnA = [85; 113] and λ = λnB = 29. In
Table 4.18 we show the resulting LnA and LnB .

Finally we get LnA = LnB = [85; 113] and λnA = λnB = 29, namely the
same lists than before performing the attack. S gets information on whether
one candidate is more probable than another regarding the attached weight.
We notice in this example that the correct value for nA and nB (100) is not the
most probable, and even S gets eight candidates with an higher or equivalent
probability of being the correct size. We see then that in some cases, the attack
allows the attacker to reduce its lists LnA and LnB but in other cases it only
provides approximation on the probability of being the actual size.

We have shown in this section, depending on the considered security model,
how much information any attackers could gain on the sets’ cardinality. We
have seen that increasing domains of parameters nkey and m could allow to

93

CHAPTER 4. DEVELOPED SOLUTIONS

Table 4.18. Example of translating Lnkey into LnA and LnB for the sets
cardinalities attack.

Element from Lnkey Weight Element from LnA and LnB Weight
1504 0.46 113 0.46
1518 0.61 112 0.61
1531 0.21 111 0.21
1545 0.54 110 0.54
1560 0.18 109 0.18
1574 0.93 108 0.93
1589 0.43 107 0.43
1604 0.64 106 0.64
1619 0.75 105 0.75

1634, 1635 0.18 104 0.36
1650 0.54 103 0.54
1666 0.21 102 0.21
1683 0.68 101 0.68
1700 0.71 100 0.71
1717 0.68 99 0.68

1734, 1735 0.21 98 0.42
1752 0.29 97 0.29
1771 0.61 96 0.61
1789 0.46 95 0.46
1808 0.46 94 0.46
1828 0.93 93 0.93
1848 0.61 92 0.61
1868 0.96 91 0.96
1889 0.71 90 0.71
1910 1.00 89 1.00
1932 0.61 88 0.61
1954 0.82 87 0.82
1976 0.18 86 0.18
2000 0.71 85 0.71

94

4.3. Solution C -
Using Bloom Filters to Process Set Relations

CSP

Auditor

Client

D
E

C
B

A
XaaS

Logfile Whitelist

L1 L2
l1 l’1
l2 l’2
… …
lm l’m’

W
w1
w2
…
wn

(L1,L2)
W

W

AD

Figure 4.11. Generic framework of the cloud security auditing. Users A, B and C should be
authorized to connect by the CSP while users D and E should not.

reduce such information. As we will see now, by applying this solution to our
use cases, we recall that the most predominant privacy consideration is on the
content of the sets. Preserving the cardinality’s privacy is therefore secondary
and providing a certain amount of this particular privacy could be considered
as sufficient.

4.3.5 On Cloud Security Auditing

We show here how the inclusiveness and disjointness protocols could be used
to solve the first presented use case; Use Case1 - Cloud Security Auditing.

Protocol

For simplicity of presentation, we present our protocols with only one client
involved. We remark that one can easily adapt it to a use case with multiple
clients using the same cloud provider. We also emphasize the fact that, to
process the two set relations, the considered Bloom filters should be similarly
generated, namely with the same size m, keyed hash function and set of keys K.
First we recall the two privacy enhancements from tuning the classical use of
Bloom filter. Then we present the inclusiveness and disjointness set relations
before explaining how the parameters should be selected to guarantee a certain
level of correctness on these two relations.

We recall use case 1 framework in Figure 4.11. Firstly, C performs function
Setup() and generates the Bloom filter parameters: the dimensionm, the HMAC
function h, the amount of keys nkey and the set of keys K = {κ1, . . . , κnkey}.

95

CHAPTER 4. DEVELOPED SOLUTIONS

Then, by the use of Create() function, C (resp. CSP) generates the Bloom
filter of its data W = {w1, . . . , wnW} (resp. L1 = {l1, . . . , lnL1} and L2 =
{l′1, . . . , l′nL2 }).

BFW = BF
(
W, (hκ)κ∈K

)
= bfW [j]16j6m

BFL1 = BF
(
L1, (hκ)κ∈K

)
= bfL1 [j]16j6m

BFL2 = BF
(
L2, (hκ)κ∈K

)
= bfL2 [j]16j6m

AD computes the inclusiveness protocol on the two respective Bloom filters
of sets L1 and W to test if L1 ⊆ W, namely if all the authorized connections
have been made from authorized IP addresses:

INC(BFL1 , BFW) = BFL1⊆W = bfL1⊆W [j]16j6m

Then AD expresses XL1⊆W which corresponds to the number of bits set to 1 in
the resulting Bloom filter:

XL1⊆W =

m∑
j=1

bfL1⊆W [j] (4.24)

AD tests if XL1⊆W = m and can conclude that L1 ⊆ W if no false positive
occurred. Otherwise we have L1 *W with certainty.

To verify that no authorized user failed to connect to the service offered by
CSP, AD performs the disjointness relation on the respective Bloom filters of
W and L2:

DIS(BFW , BFL2) = BFW∩L2=∅ = bfW∩L2=∅[j]16j6m

Then AD expresses XW∩L2=∅ which corresponds to the number of bits set to 1
in the resulting Bloom filter:

XW∩L2=∅ =

m∑
j=1

bfW∩L2=∅[j] (4.25)

AD compares it such that:

if XW∩L2=∅ < nLkey then W and L2 are distinct

if XW∩L2=∅ > nLkey then W and L2 have at least one element in common

By referring to the security requirements presented in Section 2.1.2 we could
outline that SR1 and SR2 are fulfilled. Indeed:

SR1. If AD does not know the HMAC’s keys K = {k1, . . . , knkey}, it cannot
generate its own Bloom filter or add any element to an existing one and
perform the set relations. Indeed, using HMAC function requires that all
the considered Bloom filters are generated with the same keys.

96

4.3. Solution C -
Using Bloom Filters to Process Set Relations

SR2. These two sub-requirements are fulfilled thanks to the Bloom filter in-
herent characteristics. Indeed, the first one holds because of the fact that
all elements inserted in a Bloom filter are mixed together and it is not
possible, even from the same Bloom filter, to distinguish between them.
The second sub-requirement holds since when the whitelist Bloom filter is
created, even if an element occurs multiple times in the logfile, it will be
added to the respective Bloom filter only once.

We show as well that our solution fulfills the third security requirement SR3 :

SR3. The overlapping bits property of the Bloom filters allows to hide the exact
number of elements in the whitelist or the logfile. However, AD is able to
determine the amount of bits set to 1 in the Bloom filters. It could then
deduct the following information: nA >

XBFA
nkey

. By keeping parameter

nkey secret to AD, we consider the cardinalities obfuscated and SR3 could
still be considered as fulfilled to a certain level.

Evaluation and Results

We have implemented our protocols of the set relations in Java. The following
measurements have been made with CPU configuration of Intel Core i5 M520
2.40GHz × 4.

Results on the Cloud Auditing Use Case. First of all, running the imple-
mentation allowed us to express a precise value of the false positive (resp. false
negative) rate. We test our solution with parameters suiting the cloud security
auditing use case meaning a whitelist of 103 or 104 elements and logfiles from
102 to 104 elements. To test the false positive case, we generate Bloom filters
of a whitelist W and a logfile L1 with different amounts of IP addresses. The
tested parameters configurations are displayed in Table 4.19. Every IP addresses
inserted in BFL1 are also inserted in BFW except for one. For every param-
eters configuration we test the inclusiveness relation INC(L1,W) 103 times.
We performed the same experimental protocol with the disjointness relation.
In both cases we obtained 0.00% of false positives or false negatives.

Performance. In Table 4.19 we show the performance of our two set relations.
We run 104 times each set operator for more accuracy and the computation
times are expressed in seconds. We see that performance times decrease linearly
depending on parameter m, indeed as presented, the set relations are equivalent
to bit-wise operations on the Bloom filters. That being said, we also notice that
the performance times considering the set cardinality privacy are very acceptable
especially in an auditing use case.

97

CHAPTER 4. DEVELOPED SOLUTIONS

Table 4.19. Running times of the two set relations in seconds.

nW nL1
nL2

m nkey nLkey nUkey Time for Time for

INC(L1,W) DIS(L2,W)
103 103 103 1.18× 109 733 500 2000 2.57× 10−1 2.16× 10−1

103 103 103 7.62× 109 1861 500 2000 2.51× 10−1 7.44× 10−1

104 9× 103 2× 102 2.93× 109 816 500 2000 2.29× 10−1 2.80× 10−1

104 9× 103 2× 102 9.47× 109 1468 500 2000 2.16× 10−1 8.67× 10−1

4.3.6 On Retrospective Tracking of Suspects in GDPR
Conform Mobile Access Networks Datasets

In this section we show in detail how the proposed disjointness protocol could
be applied to the aforementioned use case 2. We recall that the three sub-
use cases are dealing with mobile tracking of suspects with the objective of a
privacy friendly handling of all unsuspected mobile user’s personal geo-location
information. Finally, we present results from our implementation of the third
scenario and evaluate its correctness and privacy aspects.

In the following sections we refer to the Bloom filter’s function Setup(),
Create() and DIS() that we introduced in Section 4.3.2.

Protocols

Tracking of Suspect Entities on Telco Datasets Ensuring Privacy for
Unsuspected Users. First of all, the mobile telecommunication provider ini-
tiates the Bloom filter’s parameters by processing the Setup() function. For each
of its access points, the mobile telecommunication provider generates a Bloom
filter to which they add the relevant information (TMSI/IMSI) for any connec-
tion at the harvesting time. In other words, each of the Bloom filters represent
the list of the devices that connected themselves to the respective access points
during a certain period of time.

When the government agency requests to intersect the access points’ access
logfiles with its whitelist of suspected entities, the respective telco provider
shares the Bloom filter’s parameters (size m and keys K) with the agency.
Then, the agency generates the Bloom filter corresponding to its whitelist with
the relevant parameters by means of the Create() function.

After receiving all the Bloom filters, the 3rd party (e.g. Interpol or BKA
in Germany, responsible for wiretapping, or similar players in other countries)
performs the disjointness function DIS() between the whitelist’s Bloom filter
and each access point’s Bloom filters. Every time the function returns that sets
are not disjoint, the 3rd party could notify the agency that at least one element
from the whitelist has been connected to a certain access point. On the contrary,
if the DIS() function returns a positive outcome, it means the sets are disjoint
and therefore no suspect entity from the agency’s whitelist has been connected
to any access point during the specific period.

Finally, in case of a match, the government agency due to its legal exception,
could request the involved access point logfile directly from the telco.

98

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Tracking of Suspect Entities on WLAN Network Providers Datasets
Ensuring Privacy for Unsuspected Users. Similarly to the first use case,
the WLAN administrator initiates the Bloom filter’s parameters by processing
the Setup() function. The administrator of the WAPs generates a Bloom filter
in which they add the MAC address of each device that either connected or
used the active mode to detect the nearest WLAN access point.

When the government agency requests to intersect the WAPs’ logfiles with
its whitelist, the WLAN administrator shares the Bloom filter’s parameters with
the agency. Then, the agency generates a Bloom filter of its whitelist with the
relevant parameters by means of the Create() function.

After receiving all the Bloom filters, the 3rd party performs the DIS() func-
tion between the whitelist’s Bloom filter and each WAPs’ Bloom filters. Any
time the function returns that the sets are not disjoint, the 3rd party could
notify the agency that at least one suspect from the whitelist has connected to
a certain access point.

Finally, in case of a match, the agency could request the access point logfile
directly to the WLAN administrator.

Tracking of Suspect Entities on Mobile OS Providers Datasets Ensur-
ing Privacy for Unsuspected Users. In our last use case, we face two types
of logfiles. A local logfile generated by each mobile device and a master logfile
which aggregates all the local logfiles coming from the same mobile operating
system company. At each time tj , the user’s mobile device (smartphone, tablet
or similar embedded devices equipped with Android or iOS) generates a per-
sonal logfile composed by tuples (RSSIi/WAPi) with i ∈ [1;n] which represent
the mobile device’s distances from the n wireless access points let it be WAPs
or BSs. The bunch of these data indicates the exact location of the phone’s
user at any time tj . After retrieving all the logfiles from the users’ smartphones,
the operating system company creates the master logfile as follows. For each
WAPi, it creates a Bloom filter BFi with the Create() function and adds a
user’s identification in form of its MAC address to it if there exists a tuple
(RSSIi/WAPi) where RSSIi < l in its respective personal logfile. Variable l
represents a certain limit to which we could assume that the user has been in
proximity to a certain WAP . In other words, a mobile user is added to a WAP’s
Bloom filter if he has been nearby this wireless access point at a certain time.
We show in Figure 4.12 the generation of the master logfile from two personal
logfiles located at different smartphones.

Finally, the 3rd party receives reveal parts of the master logfile and the
whitelist’s Bloom filter and performs the DIS() function to determine if one of
the elements from the whitelist has been in transmission range of one of the
wireless access points. Please note that the privacy extension of the 3rd use
case may be particularly helpful when suspects shall be identified on European
ground and Apple or Google are willing to support EU-GDPR.

In Algorithm 7 we show how the inherent system of the modern mobile OS
already integrates the geo-location harvesting approach at each user j’s device
for j ∈ [1;n′].

99

CHAPTER 4. DEVELOPED SOLUTIONS

User 1/Mobile OS

LOCAL LOGFILE

(RSSI1-WAP1)
(RSSI2-WAP2)

...

...
(RSSIn-WAPn)

User 2/Mobile OS

LOCAL LOGFILE

(RSSI1-WAP1)
(RSSI2-WAP2)

...

...
(RSSIn-WAPn)

BF1
BF2
BF3

BFn

Google/Apple Server

MASTER LOGFILE

0 1 0 0 0 1 0 1

0 0 0 1 0 1 1 1

1 1 0 1 0 0 0 1

0 1 0 1 0 1 0 1

…
…
…

MAC of User 1 is added to BFi if RSSi < l

MAC of User 2 is added to BFi if RSSi < l

Figure 4.12. Generation of the master logfile from two smartphone users’ logfiles.

Algorithm 7 Local logfile generation by the mobile OS geo-location harvesting
feature

for all tx do
Create file(F jx) with
for i ∈ [1;n] do

F jx .add((RSSIi;WAPi))
end for
Send F jx to its respective Mobile OS company

end for

100

4.3. Solution C -
Using Bloom Filters to Process Set Relations

In Algorithms 8 to 10 we provide the pseudo-code performed by the three
active parties of the protocol. We remark that although the parameters’ gen-
eration could takes place at the government agency’s side, we decided to place
it at the OS company’s side to be more adjustable to the relevant sizes of the
larger sets or access logfiles. In such a way, it makes more sense to have the
company adjusting the parameters to its logfile and estimating the whitelist’s
size with a standard value rather than the opposite.

We consider all the communication channels between the parties, and es-
pecially when transmitting the parameters, secured e.g. out-of-band signaling,
TLS.

Algorithm 8 Parameters initialization and BF generation by the mobile OS
company’s data center

h,nkey,m,K←Setup
Send h,nkey,m,K to the Government Agency
for i ∈ [1;n] do

BFi ←Create(h,m,K)
for j ∈ [1;n′] do

in F jx :
if RSSIi < l then

add j to BFi
end if

end for
Send BFi to the 3rd party

end for

Algorithm 9 BF generation by the government agency

BFW ←Create(h,m,K,Whitelist)
Send BFW to the 3rd party

Algorithm 10 Verification phase by the 3rd party

for i ∈ [1;n] do
if DIS(BFi,BFW) = False then

Send i to the Agency
end if

end for

Evaluation and Results

Discussion on Correctness. We see in this section what kind of parameters
should be selected to perform the function on the current use cases which obvi-
ously, due to the size of the sets, are varying very much. As it is presented with

101

CHAPTER 4. DEVELOPED SOLUTIONS

the Setup() function, the parameters initialization relies on the cardinalities of
the sets, i.e. how many different elements have to be added to the Bloom filters.

Regarding the whitelist, namely the list of suspects from a government
agency, we could estimate its scale up to at most 102 elements. Also, we could
estimate the maximal size of Bloom filters from the master logfile by considering
e.g. a location as Gare du Nord in Paris, one of the busiest places in Europe
with approximately 7 × 105 visitors per day. According to the 2018 study on
the French numeric usage from the ARCEP [ARC18], we know that 75% of
the French population owns a smartphone and therefore we could estimate the
maximal size of the logfiles from use cases 1 and 2 to a Bloom filter with 5×105

elements. Due to OS market allocation, we could estimate the maximal Bloom
filter retrieving all the Android users connecting to the Gare du Nord’s WAPs
for a day to 4× 105 in use case 3.

We tested our solution with an implementation of the disjointness operator
to validate the correctness of the retrieved results and to give a rough esti-
mation of the processing times. In Table 4.20 we give examples of relevant
parameters that produced successful computations along with the running time
of the disjointness function in seconds. We precise that we have implemented
the disjointness protocol in Java and the measurements from Table 4.20 have
been made with a CPU configuration of Intel Core i5 M520 2.40GHz × 4.

Table 4.20. Examples for the Disjointness running times of Algorithm 10.

Use Case Logfiles Whitelist m nkey Running Time
Size Size [sec]

1 & 2 104 102 4.40× 109 1416 7.41× 10−1

1 & 2 5× 104 102 8.1× 109 861 3.36× 101

3 105 102 6.90× 109 561 1.3× 101

3 5× 105 102 1.27× 1010 561 1.9× 102

Discussion on Privacy. The main advantage of using the solution presented
in Section 4.3 is to provide privacy on the cardinality of the sets. Indeed, with
the use of another approach or the classical way of using Bloom filters, the 3rd

party would be able to learn how many suspects form the agency’s whitelist. As
described in Section 4.3.1, keeping nkey secret enables a much more complete
privacy on the whitelist and logfiles. The other benefit of this approach and
its particularity of using an HMAC function instead of a bunch of public hash
functions is avoiding the 3rd party to create its own Bloom filter. In case of a
malicious 3rd party trying to retrieve identities of the suspects, one may easily
imagine that it generates a Bloom filter with a unique element and performs the
disjointness function between this Bloom filter and the whitelist’s one. In that
way the 3rd party could test if a specific element is included in the suspect list.

102

4.3. Solution C -
Using Bloom Filters to Process Set Relations

For that reason, using secret keys to generate a valid Bloom filter enhances the
privacy aspect of the protocol. By applying our solution to real world scenarios,
we could imagine several examples of role distribution. We imagine several role
distributions for the third sub-use case Tracking of Suspect Entities on Mobile
OS Providers Datasets Ensuring Privacy for Unsuspected Users. In the first
case we have a mobile telecommunication provider from a country A and a gov-
ernment agency from a country B. To perform the disjointness protocol, the
3rd party could be performed by an international institution like e.g. Interpol
or Europol to act as a go-between. In another scenario, the mobile telecom-
munication provider and the government agency are from the same country
A. To guarantee privacy rights to their own citizens, the 3rd party could be
endorsed either by a friendly government agency from a foreign country B or
by a semi-trusted private company. Such a friendly government agency (resp.
subcontractor company) needs to be, reliable enough in the sense of correctly
performing the sensitive protocol, but not to the point of blind trust and secret
key sharing.

4.3.7 On Concealed Data Aggregation in WSN

Protocol

To solve Use Case 3 we could adapt our private construction of the Bloom
filters to form a sort of concealed data aggregation protocol. As recalled in
Section 3.6, the main objective of CDA protocols is to make the intermediate
nodes collecting and aggregating the data in order to save computation and
communication power. Such a protocol’s class fits perfectly our use case 3 which
main privacy requirement consists of disabling the intermediate nodes (IN s) of
gaining any information from the retrieved data from the sensor nodes. Using
Bloom filters with HMAC functions instead of public hash functions could be
particularly suitable.

One of the main characteristic of Bloom filters consists of the fact that, when
the amount of data in the filter (number of elements) increases, its size does not
necessary increase. Such a feature is highly valuable especially in aggregation
scenarios. We could also find such attributes with homomorphic encryption
but in this case, to avoid increasing the size of the ciphertext, the element
values should be processed together (e.g. added or multiplied). This makes
it harder, even impossible, to decompose and retrieve the original elements.
Moreover, using homomorphic encryption in aggregation environment, means
that all the elements have to be encrypted with the same key. This brings a
security weakness in case of corrupted nodes. To avoid such a drawback we
propose to use a different set of keys for each machine.

In Figure 4.13 we recall our solution to the third use case based on the
privacy-preserving Bloom filters which construction is the following:

103

CHAPTER 4. DEVELOPED SOLUTIONS

RULESRULESRULES

AGGREGATION

AGGREGATION

Intermediate
Nodes

Base
station

Machines

Tasks

sensor
Nodes

Figure 4.13. Industrial Sensor Network.

Initialization.

h,m, {αµ1 , . . . , αµn} ←Setup: The base station BS should first choose and gen-
erate the Bloom filter parameters: the HMAC function h and the dimen-
sion m and should generate a distinct set of keys for each machine µ:
{αµ1 , . . . , αµn}. BS distributes the keys’ set to all SN s from the respective
machines along with the Bloom filter parameters.

BF
(1)
i ,BF

(2)
i ,BF

(3)
i , · · · ←Create(sti, ti, si, . . .): Each SN i creates its own

Bloom filter BF
(x)
i for each information. For instance the 1st corresponds

to the status and the 2nd to the temperature of respective machine µ.
Thus, SN i generates its Bloom filters with sti, ti and si respectively
status, temperature and speed of machine µ:

BF
(1)
i =

BF

(
{2× µ}, (hκ)κ∈{αµ1 ,...,α

µ
n}
)

= bf
(1)
i [j]16j6m if sti = ok

BF
(
{2× µ+ 1}, (hκ)κ∈{αµ1 ,...,α

µ
n}
)

= bf
(1)
i [j]16j6m

if sti = not ok

BF
(2)
i = BF

(
{1000× µ+ ti}, (hκ)κ∈{αµ1 ,...,α

µ
n}
)

= bf
(2)
i [j]16j6m

BF
(3)
i = BF

(
{1000× µ+ si}, (hκ)κ∈{αµ1 ,...,α

µ
n}
)

= bf
(3)
i [j]16j6m

Therefore, each SN i owns three Bloom filters or more if other pieces of
information from the machine are relevant to be retrieved to BS.

104

4.3. Solution C -
Using Bloom Filters to Process Set Relations

Rules. IN performs a rule on all the Bloom filters coming from the same
machine µ. Two of these rules could be:

Majority: IN compares the Bloom filters together and keeps the one which

value is the most represented. Such a rule could be applied to BF
(2)
i or

BF
(3)
i that concern respectively the temperature or the speed collected by

SN i. We define this rule as:

BF
(2)
maj ← maj{BF (2)

i1
, BF

(2)
i2
, . . . , BF

(2)
iz
} (4.26)

Completeness: IN sums all the Bloom filters together to get all the pos-

sible values. This rule could be applied to BF
(1)
i that concerns

the machines’ status collected by SN i. We define this rule as

BF
(1)
comp ← comp{BF

(1)
i1
,BF

(1)
i2
, . . . ,BF

(1)
iz
}:

bf (1)comp[j]16j6m ← comp{BF (1)
i1
, BF

(1)
i2
, . . . , BF

(1)
iz
} (4.27)

where 1← bf (1)comp[j] if ∃i st bf
(1)
i [j] = 1

0← bf (1)comp[j] otherwise.

We remark that this operator is equivalent to the bitwise logical-or oper-
ator:

comp{BF (1)
i1
, BF

(1)
i2
} ≡ BF (1)

i1
OR BF

(1)
i2
. (4.28)

Aggregation. IN s sums the Bloom filters of the same type (1, 2, . . .) together
even if they come from different machines. This operation is similar to the
completeness rule and the bitwise logical-or operator.

BF (1)
agg ← agg{BF (1)

compi1
, BF (1)

compi2
, . . . , BF (1)

compiz
} (4.29)

Retrieving. BS gets final BF
(x)
f and with each set of keys {αµ1 , . . . , αµn} tests

if a machine µ is defective and requires maintenance:

∀µ, if (2× µ) ∈ BF (1)
f then stµ = ok (4.30)

if (2× µ+ 1) ∈ BF (1)
f then stµ = not ok

Also, to retrieve the temperature and the spin speed of every machine, BS
performs:

∀µ, t if (1000× µ+ t) ∈ BF (2)
f then tµ = t (4.31)

∀µ, s if (1000× µ+ s) ∈ BF (3)
f then sµ = s (4.32)

We remark that having BS not retrieving any of the two cases of Equation (4.30)
for a particular µ, means the status of machine µ has not been retrieved by the
nodes network. Similarly, it holds for Equation (4.31) and Equation (4.32) and
the machine’s temperature and speed.

105

CHAPTER 4. DEVELOPED SOLUTIONS

Evaluations and Results

Discussion on Performance. As classical CDA protocols, the described so-
lution brings space and energy saving. Instead of storing and forwarding all the
sensors’ data, IN s are aggregating the data together. This aspect is very valu-
able since we recall the space and computation power limitation of the nodes in
WSN environment.

By applying the majority or completeness rules or the aggregation step,
IN s are reducing the amount of data to be stored at each level of the WSN.
BS will have to generate the Bloom filters’ size m according to the prediction
of the amount of data aggregated. That being said, even if the Bloom filters
representations contain more bits, the storage saving is significant. Without
any data aggregation, the intermediate nodes close to the base station have to
forward many more data packets compared with the sensor nodes. With our
approach we observe that all the nodes, intermediate or sensor, will have to
forward the same amount of data packets. If we consider BS requesting to be
updated on the machines’ status and data for each epoch ej , all the nodes would
have to transfer data packets the same amount a single SN generates Bloom
filters. In the protocol’s description, it means three Bloom filters, namely one
for the machine’s status, one for its temperature and one for its spin speed.

Regarding the nodes’ workload within the network, the protocol adds in-
termediate steps as the rules or the aggregation processing. As we explained,
these computations are equivalent to bitwise operations between tabular of bits.
Such additional efforts are absorbed by strongly reducing the amount of data
to process.

Discussion on Correctness. We propose to apply the rules in order to be
as correct as possible regarding data retrieval from the machine. Indeed, by ap-
plying the rule completeness to the machines’ status we guarantee that a status
not ok will always be retrieved by BS and a maintenance will be requested. We
notice that in case of two different nodes collecting different status messages,
both of them will be retrieved. Regarding machine’s data as temperature or
spin speed, we argue that retrieving the most common value could be sufficient.
In case of finding no value more frequent than others, we could apply the ma-
jority rule the other way by removing the data packages corresponding to data
seldom presented. Finally, in addition to enabling BS to link every data with its
respective machine, our approach also allows BS to notice if no information has
been collected for a particular machine. Indeed, as discussed previously, for a
specific machine index µ, retrieving no data in Equation (4.30), Equation (4.31)
nor Equation (4.32) will be detected by BS. Therefore, this approach brings on
additional aspect as completeness notification which is provided by only a few
existing CDA protocols.

Discussion on Privacy. By employing a Bloom filter representation of the
SN s’ data we provide privacy to the network. Indeed, all the IN s that ma-
nipulate the data by collecting, aggregating and forwarding them are likely to

106

4.3. Solution C -
Using Bloom Filters to Process Set Relations

retrieve information from the whole process. By making the SN s obfuscating
the data, the IN s are getting no information on them. Its security level relies
on the proper use of the HMAC function, namely correctly choosing the hash
function and generating keys of sufficient length according to the standard rec-
ommendation. At this point in time, a good usage of HMAC could be to use
the SHA-256 hash function along with keys of 512 bits which generates output
hash of 256 bits length.

Contrary to other CDA’s approaches, such as the ones using homomorphic
encryption, sensor nodes from different machines do not have to share the same
keys set. Indeed, homomorphic schemes like the symmetric Domingo-Ferrer’s
cryptosystem [Dom02] used in the CDA protocol [GWS05] can be used solely
by sharing the same symmetric keys to all the sensor nodes so the encrypted
data could be aggregated together along the WSN. Even if we agree that dis-
tributing different sets of keys to the sensor nodes adds more complexity to
the initialization phase, its benefit on the privacy level is highly more valuable.
Indeed, having one sensor node corrupted by an attacker will solely compromise
the sensitive data for the sensor nodes from the respective machine.

4.3.8 On GDPR Conform Detection of COVID-19 Infec-
tion Chains

Protocol

Collecting Connection Data. We recall that for each base station j, the
telco company firstly generates and initializes a fresh Bloom filter BFj repre-
sented by a tabular of bits, all set to 0. Any time a user is connecting to the
mobile network using base station j, the following connection information is
aggregated and added to BFj :

(idi, t
1
i , t

2
i)

with idi the user’s credentials and t1i and t2i respectively the starting and ending
times of its connection to the access point.

Proximity Chain - Infection Chain. As notation rule, we use 〈〉 to express
proximity chains and [] for infection chains.
A proximity chain consists of a list of users where two successive ones have
been at the same location at the same time. To establish a proximity chain,
these times of contact should be ordered. In other words, in the proximity
chain 〈A,D,F,E,B〉, the time at which users A and D have been at the same
location should precede the one for users D and F (i.e. [t1A; t2A] ∩ [t1D; t2D] <
[t1D; t2D] ∩ [t1F ; t2F]).

In addition to be defined as a proximity chain, the list could also represent
an infection chain. In this case, all the users composing the chain should have a
probability of being infected Pr(Xi) greater than a certain threshold Tr. More
concretely, an infection chain [A,X1, . . . , Xn, B] is a proximity chain for which

107

CHAPTER 4. DEVELOPED SOLUTIONS

it holds that: ∀ Xi : Pr(Xi) > Tr, otherwise it is solely a proximity chain.
Therefore, an infection chain [A,X1, . . . , Xn, B] represents how the COVID-19
virus may have spread from an initially infected user A to a consecutive infected
user B.

It may happen that one or several subsets of a proximity chain
〈A,X1, . . . , Xn, B〉 are considered as infection chains, e.g. [A,X1, . . . , Xi]
and/or [Xj , . . . , B].

Proposed Solution. From any two given infected users A and B, the govern-
ment agency first aims to identify all the proximity chains 〈A, idX1

, . . . , idXn , B〉.
In our protocol, we recall that the telco company provides all the relevant Bloom
filters to the government agency. We propose to dissociate three cases:

• CASE 1: the smallest possible proximity chain 〈A,B〉:
there is a base station BSj and a Bloom filter BFA,B for set {A,B} and
INC(BFj , BFA,B) = true.
Since both users A and B are indeed infected, the proximity chain 〈A,B〉
is also an infection chain [A,B].

• CASE 2: a proximity chain with one intermediate user X 〈A, idX , B〉:
there is a base station BSj1 and a Bloom filter BFA,idX for set
{A, idX} where INC(BFj1 , BFA,idX) = true and in addition, there is
a base station BSj2 and a Bloom filter BFidX ,B for set {idX , B} and
INC(BFj2 , BFidX ,B) = true. We remark here that we know users A and
B but we do not know user X nor his access credential idX , so the gov-
ernment agency has to search in all base stations for all Xj for which the
above two inclusiveness tests INC hold.
If Pr(idX) > Tr we can denote [A, idX , B].

• CASE 3: the general case 〈A, idX1
, . . . , idXn , B〉:

we have INC(BFj1 , BFA,idX1
) = true ∧ . . . ∧INC(BFjn , BFidXn ,B) =

true.

Our solution consists of having the government agency building a data tree
structure representing all the proximity chains starting from user A. From this
tree, the agency could easily identify the proximity chains from user A to user
B. For the next step of the protocol, the government agency has to evaluate
the chain to determine its plausibility to actually be an infection chain. We
give the outlines of this step but not its evaluation function that we save for the
epidemiologists.

We emphasize that at this point, the proximity or infection chains will only
reveal usernames of users X1, . . . , Xn and not their real identities. At the very
end of the protocol, the government agency will request from the telco company
the identities of the intermediate infected users.

Generating the Proximity Tree. To obtain a proximity tree, the gov-
ernment agency starts by creating an empty tree T with user A as root. Then,

108

4.3. Solution C -
Using Bloom Filters to Process Set Relations

it processes the recursive algorithm prox tree(A,A,B, t′) presented in Algo-
rithm 11 with t′ the time from when user A could have started the infection
process. The recursive algorithm does as follow: first, it generates the list BSN
of base stations that the current node N has been connected to at a time later
than t. To test if a user N has been connected to a base station j (i.e. test if
(idN , t

1
j , t

2
j) ∈ BFj), the government agency receives from the telco company all

the Bloom filters composed of each of the 3-tuples (idN , t
1
j , t

2
j). Then, the gov-

ernment agency performs the inclusiveness testing between the received Bloom
filters and BFi, the Bloom filter corresponding to the connections logfile from
BSj as: INC(BFN,j , BFi). The next step of the algorithm consists of iden-
tifying all the users that visited the base stations from set BSN at the same
moment than user N . As before, the telco company generates Bloom filters with
the 3-tuples (idl, t

1
l , t

2
l) for all users l and all time ranges [t1l ; t

2
l] that overlap the

connection time of user N . To determine which users should be listed, the gov-
ernment agency performs the inclusiveness operator between these Bloom filters
and BFN the one composed by the elements from BSN . Finally, for every iden-
tified users, they are added to the proximity tree T as a leaf of current node N
and Algorithm 11 is then recursively processed on the leaves.

An additional aspect to take into account while recursively processing the
algorithm is to consider the upper nodes of the current node in the proximity
tree. Indeed, we would like to avoid creating some loops in the tree which are
irrelevant when dealing with infection problems; if user A infected user C, it
makes no sense to consider user C infecting user A in short period of time. The
algorithm should then exclude all the users which are already inserted as upper
nodes in the tree. Regarding the tree construction, if we consider that user C
has been in proximity of user A and idC is added as a leaf of root A, user A
should not be considered anymore as potential leaf of node idC and so on.

In Figure 4.14 we give a toy example of our recursive algorithm with seven
users A,B,C,D,E, F,G, three base stations BSj1 , BSj2 , BSj3 and times as in-
tegers in [0; 24]. We show the content of connection logfiles from the three base
stations and the proximity tree from user A to user B that has been gener-
ated by computing prox tree(A,A,B, 0). We observe in Figure 4.14 that two
users might be in contact around different base stations. Indeed, the resulting
proximity chains are 〈A,C,G,B〉, 〈A,G,B〉 (with users A and G in proximity
around BSj1), 〈A,G,B〉 (with users A and G in proximity around BSj3) and
〈A,B〉. In case there are evaluated as infection chains, users C and G might
also be infected.

Algorithm optimization. With respect to performance, one could con-
sider computing the algorithm on the opposite way, namely with input B as
root. To do so, the algorithm should be modified so that time is considered
backwards. It starts at ending time (24 for our toy example) and we build the
proximity tree by going back in time. We consider as reverse prox tree this
reverse recursive algorithm.

In Figure 4.15 we show the proximity tree obtained after computing

109

CHAPTER 4. DEVELOPED SOLUTIONS

Algorithm 11 prox tree(N,A,B, t)

Input: a node N from a tree T, users A and B, a time t
Output: a tree T

if N = B then
break

end if
for all BFj do

for all t1j , t
2
j > t do

if (idN , t
1
j , t

2
j) ∈ BFj then

BSN .add((BSj , t
1
j , t

2
j))

end if
end for

end for
for all (BSNk, t

1
Nk, t

2
Nk) ∈ BSN do

for all idl do

for all (t1l , t
2
l) | (t1l 6 t1Nk ∧ t2l > t1Nk) ∨ (t2l > t2Nk ∧ t1l 6 t2Nk) ∨

(t1l 6 t2Nk ∧ t2l > t1Nk) do

if (idl, t
1
l , t

2
l) ∈ BFNk then

createLeaf(idl)
prox tree(idl, A,B,max(t1Nk, t

1
l))

end if
end for

end for
end for
if N.leaf = ∅ then

break
end if

110

4.3. Solution C -
Using Bloom Filters to Process Set Relations

BFj1={ (idA , 0, 6), (idC , 2, 9), (idG , 3, 5), (idD , 7, 10)}
BFj2={ (idA , 8, 17), (idD , 15, 18)}
BFj3={ (idF , 2, 11), (idE , 6, 15), (idG , 8, 24), (idA , 18, 24), (idB , 18, 20)}

A

(idC , j1) (idG , j1) (idD , j2) (idG , j3) (idB , j3)

(idG , j1) (idD , j1) (idC , j1)(idF , j3) (idB , j3)

(idF , j3) (idE , j3) (idB , j3) (idD , j1)

(idF , j3)

(idE , j3)(idB , j3)

(idF , j3)

Figure 4.14. Example of connection logfiles from three base stations and the respective prox-
imity tree obtained from prox tree(A,A,B, 0). It outcomes three different proximity chains
〈A,C,G,B〉, 〈A,G,B〉 and 〈A,B〉.

reverse prox tree(B,A,B, 24) from user B considering the time backwards.
As expected, the resulting proximity chains are the same than in Figure 4.14
but we remark that the resulting tree is smaller than the one obtained in Fig-
ure 4.14. In this specific toy example we notice that obtaining the proximity
tree was made faster by reversing our algorithm.

B

(idA , j3) (idG , j3)

(idA , j3) (idE , j3) (idF , j3)

(idF , j3)

(idA , j1) (idC , j1)

(idA , j1)

Figure 4.15. Example of a proximity tree obtained from reverse prox tree(B,A,B, 24)
with the same toy example than Figure 4.14. It generates three different proximity chains
〈A,C,G,B〉, 〈A,G,B〉 and 〈A,B〉.

Another aspect we could consider while comparing the two resulting trees,
is that the order the tree is being build in and the proximity chain obtained are
also reversed. Indeed, in Figure 4.14 we obtain first 〈A,C,G,B〉 then 〈A,G,B〉
(via j1), 〈A,G,B〉 (via j3) and finally 〈A,B〉. In Figure 4.15 we see that we
obtain the chains in the exact opposite order with reverse prox tree. Still
aiming to optimize the computation time of our algorithm, in particular when

111

CHAPTER 4. DEVELOPED SOLUTIONS

dealing with large numbers of users and base stations, one could simultaneously
start the tree generation using the algorithm and its reversed version. For both
cases the tree propagates and every time we find a proximity chain in the tree
(meaning N = B or N = A for reverse prox tree) we could store the chain in
a set S (or S′ for reverse prox tree). Then for each round (i.e for iteration)
we test if the two sets have a common element. If not, we continue. In case
they have a common proximity chain, we could stop both algorithms and the
complete set of proximity chains from users A to B is composed of the addition
of sets S and S′.

To illustrate the approach of computing both versions at the same time and,
as argued, gain on performance, one could explain:

• if you throw one stone into the water and you want the resulting waves to
reach a point in r meters distance, then the circle at the end will encompass
many square meters.

• if you throw two stones into the water (one at the original position, the
other one at the position you want to reach), the intersection of the re-
sulting waves propagation will be approx. at a distance r/2 meters.

• adding the area of these two circles shall be much smaller than the circle’s
area obtained with one stone.

For example, with A = π× r2 and r = 10 A = 314.159, and with r = 5 the area
of the two circles is altogether approximately 160!.

Another level of optimization could be considered in order to identify some
of the proximity chains faster as for instance to support the start of a localized
quarantine immediately. Instead of storing the chains into S and S′, at each
propagation round we look at the chains while they are processed so that we
stop both algorithms when:

• prox tree has built a path 〈A,X1, . . . , Xi〉

• reverse prox tree has built a path 〈B,Xn, . . . , Xj〉

• and it holds Xi == Xj

Then the two parts of the proximity chain could be concatenated to create the
proximity chain 〈A,X1, . . . , Xi == Xj , . . . , Xn, B〉

We could refer to Table 4.21 to see that if we perform both algorithms at
the same time in the toy example configuration, we could retrieve the proximity
chain 〈A,C,G,B〉 faster with this second level of optimization.

In Table 4.21 we could observe in detail how we retrieve the proximity chains
using the two versions of Algorithm 11 and the optimization with the toy ex-
ample’s configuration. As stated previously, reverse prox tree(B,A,B, 24) was
executed much faster than prox tree(A,A,B, 0). Indeed, the original algorithm
ended after 18 rounds while the reverse one stopped after the 9th round. Since
it is not possible to predict which of the two will finish processing first, com-
puting both in parallel will optimize the retrieving. As for the second level

112

4.3. Solution C -
Using Bloom Filters to Process Set Relations

of optimization, concatenating two parts of proximity chains allows to retrieve
〈A,C,G,B〉 at round 2 while discovered at round 6 with prox tree and round
9 with reverse prox tree. It is of value especially when proximity chains are
composed by a high number of intermediate users.

Table 4.21. Construction of the proximity tree round by round with
prox tree and reverse prox tree and how the optimization could be applied.

Round prox tree reverse prox tree With optimization

1 C A, 〈A,B〉 〈A,B〉 from reverse prox tree.
from reverse prox tree.

2 G G 〈A,C,G,B〉 from concatenation of 〈A,C,G〉 from
prox tree and 〈G,B〉 from reverse prox tree.

3 F A, 〈A,G,B〉 〈A,G,B〉 from reverse prox tree.

4 E E

5 F F

6 B, 〈A,C,G,B〉 F

7 D A, 〈A,G,B〉 〈A,G,B〉 from reverse prox tree.

8 G C

9 C A, 〈A,C,G,B〉
.

14 B, 〈A,G,B〉 -

.

17 B, 〈A,G,B〉 -

18 B, 〈A,B〉 -

The performance gain obtained with our two levels of optimization is down-
played due to the extreme smallness of logfiles in our toy example. But we
have seen in Section 4.3.6 that such approach fits perfectly with scenarios with
logfiles and therefore Bloom filters up to 106 elements.

Algorithm decentralization. The European PEPP-PT consortium is
advocating a decentralized approach which has also been investigated in [Vau20].
With our presented optimization, we could integrate such construction by in-
troducing two additional parties besides the ones already presented:

• Computing party 1 which runs prox tree

• Computing party 2 which runs reverse prox tree

This way the agency is only receiving per round the values for Xi (from com-
puting party 1) and Xj (from computing party 2) and comparing if Xi == Xj .
Only in the case Xi == Xj do we obtain that computing party 1 is sending
〈A,X1, . . . , Xi〉 and computing party 2 is sending 〈Xj , . . . , Xn, B〉 to the agency.
With such a construction, multiple parties are involved in the computation and
the whole effort does not rely on the government agency.

113

CHAPTER 4. DEVELOPED SOLUTIONS

Algorithm complexity. One could easily see by analyzing the obtained
results in Figure 4.14 and Figure 4.15 that the size of the resulting tree will
depend on the size of the base stations’ logfiles. These logfiles will naturally
depend on the amount of users and thus connections during the particular time.
The more base stations and users there are, the more logfiles will be numer-
ous and fully filled. In our toy example, we have 11 connection entries in all
combined base stations as displayed in Figure 4.14. They result in a tree with
respectively 19 and 10 nodes by computing prox tree and reverse prox tree.
We also recall that in case we find the final user of the wanted infection chain
(user B in our example) in the tree, the algorithm reaches a break instruction
and therefore the respective sub-tree is no longer explored. A high activity of
this particular user could then reduce the tree’s spreading. As seen previously,
one of the two algorithms will be faster to execute without being able to predict
which one and applying the presented optimization could reduce the complexity
to the faster one.

Proximity Chain Evaluation. From all the proximity chains
〈A, idX1

, . . . , idXn , B〉 obtained by performing the aforementioned proto-
col, the government agency should determine if users Xi might also be
infected. To do so, the agency could estimate the users’ probability of
being infected and compare it to a threshold (i.e. Pr(Xi) > Tr). Such a
probability obviously depends, among others, on the respective neighbors
within the chain. We consider the probability value computed as a function
infection(previous node, contact time, contact distance, reproduction number,
saturation) where saturation shall denote the percentage of infected persons
within the human population of a region, which obviously changes over time.

More precisely, in Germany the reproduction number R, which is defined
as the mean number of people infected by a case, was 3 at the beginning of
the COVID-19 crisis and by 17.04.2020 could be reduced to 0.7 (and mean-
while R = 1.1). Clearly this number is only an average but still indicates that
inference from a proximity chain to an infection chain very much depends on
the concrete time and location entities met during the pandemic wave. Simi-
lar numbers also exist for other countries as for instance R = 0.8 for Belgium
at 17.04.2020. Another important observation is that since a proximity chain
can easily build up over a period of weeks, Pr(Xi) may significantly vary. But
only if all probabilities are larger than Tr the agency can at least argue having
identified a possible infection chain.

It goes without saying that it is out of scope to determine the infection
function. On the one hand, specialists emphasize the high contagiousness of
the virus but on the other hand, having two users connecting to the same base
station at the same time does not necessarily imply any physical contact between
the two.

Without being able to determine the exact probability of a user to be in-
fected by another one, we could propose a model to evaluate the probability of
a proximity chain becoming an infection chain. First, we know that users A

114

4.3. Solution C -
Using Bloom Filters to Process Set Relations

and B are infected and we would like to determine if user B has been infected
due to user A or via another chain and other infection events. Therefore, ap-
plying probability theory to such a problem is relevant and reflects the chain
characteristic of it.

We define as Pr(Xi) the following conditional probability P (Xi|Xi−1) of
the event “Xi−1 has infected Xi knowing that Xi−1 is already infected”. It

holds that Pr(X1 ∩ · · · ∩ Xn) =

n∏
i=1

Pr(Xi). Considering a proximity chain

〈A,X1, . . . , Xn, B〉, there is a clear tendency that the overall probability to
have user B infected due to user A is inversely proportional to the length of the
proximity chain. We propose the following probability model for evaluating a
proximity chain:

For each 〈A,X1, . . . , Xn, B〉, if

n∏
i=1

Pr(Xi) ≥ Tr then [A,X1, . . . , Xn, B].

The proximity tree obtained at the previous stage of the protocol contains
nodes with users’ credentials and only these usernames are revealed. It is only
in case a proximity chain turns out to be an infection chain that, the agency will
request from the telco company the real identities of the users composing the
chain. Therefore, users’ identity are solely revealed in case of infection function
outcomes so. Moreover, we recall that during the overall process no additional
location information of other users listed in the mobile operator’s logfile are
revealed to the agency.

Recursivity of the Infection Detection. One may notice that a trivial op-
timization would be to switch users A and B in the sense that “infection of user
A is coming from user B”. In Figure 4.16 we show the proximity tree obtained
from our algorithm by computing prox tree(B,B,A, 0) with our toy example
logfiles. We notice that it results in a very different tree than in Figure 4.14
obtained by prox tree(A,A,B, 0). In case the government agency holds some
information on the infection time of users A and B, for example that user A
has been infected before user B, only one direction should be considered by the
agency.

B

(idA , j3) (idG , j3)

(idA , j1)

Figure 4.16. Example of a proximity tree from user B to user A obtained from
prox tree(B,B,A, 0). It results in two different proximity chains 〈B,A〉 and 〈B,G,A〉.

115

CHAPTER 4. DEVELOPED SOLUTIONS

To be the most efficient, the government agency should perform a final step
in the protocol. All the users identified as infected at the previous stage (i.e. all
Xi where Pr(Xi) > Tr) should be considered as new users A and respectively
B in the proposed solution. Indeed, our protocol is initiated with users tuples
(A,B) already identified as infected by the agency. The freshly identified users
are thus incrementing the list of known infected persons and the protocol should
be applied to them to optimize the search. In such a way, the most infected
users could be identified and contacted.

Evaluation and Results

Discussion on Location Privacy. We argue that the proposed solution pro-
vides privacy for the users by two different means. Firstly by using only personal
credentials as usernames and secondly thanks to the Bloom filter’s construction
and its obfuscation feature. Indeed, as explained previously, the real identities
of users are not provided and stored in the Bloom filters nor the logfiles. The
telco company uses usernames to distinguish users and the private mapping
will be provided to the government agency solely on-demand, when a user is
identified as being part of an infection chain.

The second aspect of location privacy is given by the Bloom filters based
approach as presented in Section 4.3.1 which allows to compute relations among
logfiles while keeping these data sets private. We recall that such an approach
uses an HMAC function instead of a bunch of public hash functions and therefore
only the telco company could create the Bloom filters and no other party. To
this extent, the government agency could not try to retrieve locations of a
specific user by generating a Bloom filter with a unique element and performs
the inclusiveness relation between this Bloom filter and the ones from base
stations. For that reason, using secret keys to generate a valid Bloom filter
enhances the privacy aspect of the protocol. Finally we recall that secret keys
are generated and stored only at the telco company side and are not required
by the government agency to perform our protocol.

Our detailed protocol supports a government agency to track possible
COVID-19 infection chains and therefore identify plausible infected mobile
users. Throughout the entire protocol, the agency will only handle usernames
which do not allow to retrieve the users’ identities and therefore their privacy
will be preserved. Solely in the case of possible infection by the life-threatening
COVID-19 virus, real identities will be revealed to the agency, that will be able
to contact them and provide medical support. In such way, the telco companies
act GDPR compliant and could still guarantee a certain level of location pri-
vacy to their clients. We could stress that if data stem from the ‘in proximity’
mobile telco’s logfile, it means that two devices have been in the same trans-
mission range of a base station. In the worst case they can still have a 2 × r
distance (easily 500 m or more). However, if the same approach can be applied
to the RSSI based Swarm-mapping approach for Android or iOS collected data
then ‘in proximity’ has a much better accuracy [DG17]. In particular also the
WiFiLocationHarvest file of each mobile device contains timestamp, latitude,

116

4.3. Solution C -
Using Bloom Filters to Process Set Relations

longitude, trip-id, speed, course at an amazing accuracy which comes close to
the accuracy required to check if two devices got nearer than 2 m (infection
distance). And, moreover, compared to the promoted App based approach with
Bluetooth from Germany Fraunhofer Institutes and others in the RSSI based
approach the mobile’s WLAN and Bluetooth can be off, and yet, simply due to
the measured RSSI from the access point, the approach provides the location
data of the devices equipped with such modern mobile operating systems.

To conclude, applying the Bloom filters approach to Use Case 4 - Detection
of COVID-19 Infection Chains may be a good starting point for debating a
reasonable GDPR compliant detection of COVID-19 infection chains since we
argue it does not provide additional privacy-leakage to other parties than those
who already have the knowledge of our location data.

117

Chapter 5

Conclusion

As a lesson learned from the PAL SAaaS project, aiming to broadly solve all
the cloud auditing scenarios or all cases where privacy and malleability are
requested, is not realistic. For that reason, we concentrated our work on estab-
lishing specific and relevant use cases that we claim to be achievable in everyday
life. We tried to diversify the scope of application by covering tasks delegation
issues in cloud security auditing as well as preventing mass-surveillance for mo-
bile network users. We also included government surveillance issues in the very
latest context of COVID-19 pandemic. Finally, we addressed optimization issues
in industry 4.0 environment along with the highly critical aspect of preventing
machines’ data breaches.

After identifying relevant “real-world” use cases, we used two appropriate
strategies to provide solutions, that we could characterize as combination and
distortion.

The first strategy combination consists of combining existing approaches as
presented in Solution A - Combining PIR Protocol with Searchable Encryp-
tion and Homomorphic Encryption. Since making these cryptographic protocols
usable together is not straightforward, we analyzed and identified the most rel-
evant of homomorphic scheme, PIR protocol or searchable encryption scheme
and proposed an efficient protocol. We applied this proposal to Use Case 1 -
Cloud Security Auditing to allow a third party auditor to securely perform veri-
fications of the cloud provider, on behalf of users. To be even more complete, we
developed in Solution B - Adapting SHE to Evidence Processing an algorithm
that allows any user to optimally initialize the somewhat homomorphic scheme,
and therefore making Solution A even more efficient. As a matter of fact, our
second solution allows any user to select the most fit parameters considering the
three highlighted aspects of correctness, performance and security.

The second strategy distortion corresponds to distort well-known solutions
that, originally had a completely different purpose; thinking outside the box.
This is precisely what we did by redirecting the use of Bloom filters in Solu-
tion C - Using Bloom Filters to Process Set Relations. We recall that originally,
Bloom filter data structure was established to make usable applications in which

119

CHAPTER 5. CONCLUSION

systems are resource-limited and could not support too large amounts of data.
Without neglecting this optimization feature, we used the obfuscation aspect
brought by the structure itself, along with the “one-wayness” feature of hash
functions, to develop set relations processed in a private manner. To that end,
we shown how to perform the private outsourced inclusiveness test and the pri-
vate outsourced disjointness test on data sets. Such defined protocols could
therefore be applied to a great amount of scenarios. In particular we shown
how it could be used to solve the four presented use cases. In addition to the
aforementioned first use case, we applied the disjointness protocol to Use Case
2 - Mobile Users’ Data Collection to allow a third party to intersect mobile con-
nection logfiles with a government whitelist of suspect users. Then we applied
our Bloom filter-based construction to perform a version of Concealed Data Ag-
gregation protocol in the environment of industry 4.0 in Use Case 3 - Wireless
Sensor Network’s Data Aggregation. Finally, with use of the inclusiveness func-
tion, we developed a protocol to generate proximity tree and infection chain
to solve Use Case 4 - Detection of COVID-19 Infection Chains, highlighting
the up-to-dayness value of our work. Indeed, such construction will allow a
government agency to identify suspected chains of infection and to contact the
probable infected users in the objective to contain the COVID-19 pandemic.

Throughout the fulfillment of this doctoral research, not resulting in a global
and broad-based solution led us to investigate approaches at a very much precise
level. In fact, it gave us the satisfaction of assimilating and mastering several
different topics as cloud auditing or wireless sensor networks.

Such a well received limitation enables multiple new use cases and scenarios
to be addressed in future work.

120

List of Figures

1.1 Worldwide security spending by segment, 2017-2019. 2

1.2 How the developed solutions match the proposed use cases. PIR
stands for Private Information Retrieval and SHE for Somewhat
Homomorphic Encryption. 7

2.1 Cloud security auditing framework with parties including an ev-
idence store. 13

2.2 Cloud security auditing framework with data flows and without
ES. 14

2.3 UC2 Mobile Security- First scenario diagram. 18

2.4 UC2 Mobile Security - Second scenario diagram. 20

2.5 Mobile Security- Third scenario diagram. 21

2.6 Wireless Sensor Network. 23

2.7 Wireless Sensor Network without and with aggregation functions. 24

2.8 Industrial Sensor Network. 26

3.1 SHE scheme encoding and encryption path. 36

3.2 SHE scheme encoding and encryption example. 36

4.1 How the developed solutions match the proposed use cases. . . . 51

4.2 Cloud security auditing framework with parties. 53

4.3 PIR with SE and HE overall protocol. 61

4.4 Execution times of the different parties. 64

4.5 Growing effect of the information in the ciphertext polynomials. 66

4.6 Use Case 1 - Cloud Security Auditing arithmetic tree. 75

4.7 Use Case - Billing Service arithmetic tree. 76

4.8 Overlapping bits distribution of 103 generated Bloom filters. . . . 86

4.9 Overlapping bits distribution when nA ≈ nB. 87

4.10 Overlapping bits distribution when nA � nB. 88

4.11 Cloud security auditing framework with data flows. 95

4.12 Mobile Security - Generation of the master logfile from two smart-
phone users’ logfiles. 100

4.13 Industrial Sensor Network. 104

XVII

LIST OF FIGURES

4.14 Connection logfiles and proximity tree obtained from
prox tree(A,A,B, 0). 111

4.15 Proximity tree obtained from reverse prox tree(B,A,B, 24) . . . 111
4.16 Proximity tree obtained from reverse prox tree(B,B,A, 0) . . . 115

XVIII

List of Tables

3.1 Comparing the additive cryptosystems. 35
3.2 Complexities’ comparison of different PIR protocols. 42
3.3 Pros and cons of different PIR protocols (from our own contribu-

tion). 42
3.4 Related Work - Use of Bloom filters - Comparison of the approaches. 46

4.1 PIR with SE and HE - Evidence store database overview. 56
4.2 PIR with SE and HE - Results interpretation table. 57
4.3 PIR with SE and HE - Cryptographic functions’ performance table. 63
4.5 UC1 runtimes and security’s levels 73
4.4 Use Case 1 - Cloud Security Auditing database sample 74
4.6 Use Case - Billing Service database sample 75
4.7 UC Billing Service runtimes and security’s levels 76
4.8 Set cardinality estimations table. 79
4.9 False positive percentage comparison table. 84
4.10 Overlapping bits comparison table. 85
4.11 Display of appropriate parameters. 85
4.12 Average and standard deviation of the overlapping bits distribution. 89
4.13 Results of the set cardinality attack 91
4.14 BF attack - Best case - Respective LnA and λnA 92
4.15 BF attack - In-between case - Results of the attack. 92
4.16 BF attack - Worst case - Example of translating Lnkey into LnA

and LnB . 93
4.17 BF attack - Worst case - Example of translating Lnkey into LnA

and LnB . 93
4.18 BF attack - Worst case - Example of translating Lnkey into LnA

and LnB . 94
4.19 BF attack - Worst case - Example of translating Lnkey into LnA

and LnB . 98
4.20 Running times of the disjointness protocol. 102
4.21 Proximity tree obtained from reverse prox tree(B,A,B, 24) . . . 113

XIX

List of Algorithms

1 PIR request generation . 58
2 Audit computations . 59
3 Audit resulting . 60
4 SHE parameters generation . 72
5 Estimation of the resulting polynomial from the arithmetic tree . 73
6 Computation of the multiplication depth from the arithmetic tree 74
7 Local logfile generation by the mobile OS geo-location harvesting

feature . 100
8 Parameters initialization and BF generation by the mobile OS

company’s data center . 101
9 Bloom filter generation by the government agency 101
10 Verification phase by the 3rd Party 101
11 Proximity tree generation . 110

XXI

Acronyms

AC Audit Controller

AP Access Point

API Application Programming Interface

ARCEP Autorité de Régulation des Communications Electroniques et des
Postes

BDH Bilinear Diffie-Hellman

BF Bloom Filter

BKA Bundeskriminalamt

CCA2 Adaptive Chosen-Ciphertext Attack

CDA Concealed Data Aggregation

CDESF Common Digital Evidence Storage Format

COVID-19 Coronavirus Disease 2019

CPIR Computational Private Information Retrieval

CPU Central Processing Unit

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

CWSN Cognitive Wireless Sensor Network

DB Database

DCRA Decisional Composite Residuosity Assumption

DEB Digital Evidence Bag

E2E End-to-End

ECDLP Elliptic Curve Discrete Logarithm Problem

XXIII

ACRONYMS

ERS Evidence Record Syntax

ES Evidence Store

FFT Fast Fournier Transform

FHE Fully Homomorphic Encryption

GDPR General Data Protection Regulation

GMP GNU Multiple Precision arithmetic library

HE Homomorphic Encryption

HMAC Hash-based Message Authentication Code

IaaS Interface as a Service

IMSI International Mobile Subscriber Identity

IN Intermediate Node

IND-CPA Indistinguishability under Chosen-Plaintext Attack

iOS iPhone Operating System

IP Internet Protocol

IT Information Technology

ITPIR Information Theoretic Private Information Retrieval

KDM Key Dependent Message

LDPC Low-Density Parity-Check

LTE Long Term Evolution

LWE Learning With Error

MAC Media Access Control

NP Non-deterministic Polynomial time

OBU On-Board Unit

OS Operating System

OT Oblivious Transfer

PaaS Platform as a Service

PAL Privacy Availability Liability

PBC Pairing-Based Cryptography

XXIV

List of Algorithms

PEKS Public Key Encryption with keyword Search

PEPP-PT Pan-European Privacy-Preserving Proximity Tracing

PIR Private Information Retrieval

PR Privacy Requirement

PSI Private Set Intersection

RKI Robert Koch Institute

RLWE Ring Learning With Error

RSA Rivest Shamir and Adleman

RSSI Received Signal Strength Indication

SAaaS Security Audit as a Service

SaaS Software as a Service

SE Searchable Encryption

SHA Secure Hash Algorithm

SHE Somewhat Homomorphic Encryption

SLA Service-Level Agreement

SPIR Symmetric Private Information Retrieval

SQL Structured Query Language

SR Security Requirement

SSE Searchable Symmetric Encryption

SVP Shortest Vector Problem

SWGDE Scientific Working Group on Digital Evidence

TLS Transport Layer Security

TMSI Temporary Mobile Subscriber Identity

UC Use Case

VM Virtual Machine

WAP Wireless Access Point

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

XaaS Anything as a Service

XXV

Bibliography

[ABC+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian
Gjøsteen, Angela Jäschke, Christian A. Reuter, and Martin Strand.
A guide to fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2015:1192, 2015. URL: http://eprint.iacr.org/2015/
1192.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in pres-
ence of errors. In Proceedings of the 38th International Collo-
quim Conference on Automata, Languages and Programming - Vol-
ume Part I, ICALP’11, pages 403–415, Berlin, Heidelberg, 2011.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=

2027127.2027170.

[AGW05] Mithun Acharya, Joao Girão, and Dirk Westhoff. Secure com-
parison of encrypted data in wireless sensor networks. In Eitan
Altman and Holger Karl, editors, 3rd International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Net-
works (WiOpt 2005), 4-6 April 2005, Trentino, Italy, pages 47–53.
IEEE Computer Society, 2005. URL: https://doi.org/10.1109/
WIOPT.2005.44.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and
Yirong Xu. Order-preserving encryption for numeric data. In
Gerhard Weikum, Arnd Christian König, and Stefan Deßloch, ed-
itors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, Paris, France, June 13-18, 2004, pages
563–574. ACM, 2004. URL: https://doi.org/10.1145/1007568.
1007632.

[AM09] Julia Albath and Sanjay Madria. Secure hierarchical data aggrega-
tion in wireless sensor networks. In 2009 IEEE Wireless Commu-
nications and Networking Conference, WCNC 2009, Proceedings,
Budapest, Hungary, 5-8 April 2009, pages 2420–2425. IEEE, 2009.
URL: https://doi.org/10.1109/WCNC.2009.4917960, doi:10.

1109/WCNC.2009.4917960.

XXVII

http://eprint.iacr.org/2015/1192
http://eprint.iacr.org/2015/1192
http://dl.acm.org/citation.cfm?id=2027127.2027170
http://dl.acm.org/citation.cfm?id=2027127.2027170
https://doi.org/10.1109/WIOPT.2005.44
https://doi.org/10.1109/WIOPT.2005.44
https://doi.org/10.1145/1007568.1007632
https://doi.org/10.1145/1007568.1007632
https://doi.org/10.1109/WCNC.2009.4917960
http://dx.doi.org/10.1109/WCNC.2009.4917960
http://dx.doi.org/10.1109/WCNC.2009.4917960

BIBLIOGRAPHY

[AM14] Vikas G. Ashok and Ravi Mukkamala. A scalable and efficient pri-
vacy preserving global itemset support approximation using bloom
filters. In Vijay Atluri and Günther Pernul, editors, Data and
Applications Security and Privacy XXVIII - 28th Annual IFIP
WG 11.3 Working Conference, DBSec 2014, Vienna, Austria,
July 14-16, 2014. Proceedings, volume 8566 of Lecture Notes in
Computer Science, pages 382–389. Springer, 2014. URL: http:

//dx.doi.org/10.1007/978-3-662-43936-4_26.

[ARC18] ARCEP. Baromètre du numérique. 2018. URL:
https://www.arcep.fr/uploads/tx_gspublication/

barometre-du-numerique-2018_031218.pdf.

[ARY+19] Muder Almiani, Abdul Razaque, Liu Yimu, Meer Jaro Khan,
Tang Minjie, Mohammed Alweshah, and Saleh Atiewi. Bluetooth
application-layer packet-filtering for blueborne attack defending.
In Fourth International Conference on Fog and Mobile Edge Com-
puting, FMEC 2019, Rome, Italy, June 10-13, 2019, pages 142–
148. IEEE, 2019. URL: https://doi.org/10.1109/FMEC.2019.
8795354, doi:10.1109/FMEC.2019.8795354.

[AWGH08] Frederik Armknecht, Dirk Westhoff, Joao Girão, and Alban
Hessler. A lifetime-optimized end-to-end encryption scheme for
sensor networks allowing in-network processing. Computer Com-
munications, 31(4):734–749, 2008. URL: https://doi.org/10.

1016/j.comcom.2007.10.019.

[BC04] Steven M. Bellovin and William R. Cheswick. Privacy-enhanced
searches using encrypted bloom filters. Cryptology ePrint Archive,
Report 2004/022, 2004. https://eprint.iacr.org/2004/022.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano. Public key encryption with keyword search.
In Cachin and Camenisch [CC04a], pages 506–522. URL: http:
//dx.doi.org/10.1007/978-3-540-24676-3_30.

[Ben94] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the
workshop on selected areas of cryptography, pages 120–128, 1994.

[Bf12] Martin Burkhart and Xenofontas Dimitropoulos
fontas. Fast private set operations with sepia. 2012.
URL: https://pdfs.semanticscholar.org/c79a/

c8b0ff2f7377fc12d0d8f23ba74aecd8db3b.pdf?_ga=2.

250376646.1532399169.1562684991-2082322444.1554797542.

[BGM10a] J. M. Bahi, C. Guyeux, and A. Makhoul. Efficient and robust secure
aggregation of encrypted data in sensor networks. In 2010 Fourth
International Conference on Sensor Technologies and Applications,
pages 472–477, July 2010. doi:10.1109/SENSORCOMM.2010.76.

XXVIII

http://dx.doi.org/10.1007/978-3-662-43936-4_26
http://dx.doi.org/10.1007/978-3-662-43936-4_26
https://www.arcep.fr/uploads/tx_gspublication/barometre-du-numerique-2018_031218.pdf
https://www.arcep.fr/uploads/tx_gspublication/barometre-du-numerique-2018_031218.pdf
https://doi.org/10.1109/FMEC.2019.8795354
https://doi.org/10.1109/FMEC.2019.8795354
http://dx.doi.org/10.1109/FMEC.2019.8795354
https://doi.org/10.1016/j.comcom.2007.10.019
https://doi.org/10.1016/j.comcom.2007.10.019
https://eprint.iacr.org/2004/022
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
https://pdfs.semanticscholar.org/c79a/c8b0ff2f7377fc12d0d8f23ba74aecd8db3b.pdf?_ga=2.250376646.1532399169.1562684991-2082322444.1554797542
https://pdfs.semanticscholar.org/c79a/c8b0ff2f7377fc12d0d8f23ba74aecd8db3b.pdf?_ga=2.250376646.1532399169.1562684991-2082322444.1554797542
https://pdfs.semanticscholar.org/c79a/c8b0ff2f7377fc12d0d8f23ba74aecd8db3b.pdf?_ga=2.250376646.1532399169.1562684991-2082322444.1554797542
http://dx.doi.org/10.1109/SENSORCOMM.2010.76

Bibliography

[BGM10b] Jacques M. Bahi, Christophe Guyeux, and Abdallah Makhoul. Se-
cure data aggregation in wireless sensor networks: Homomorphism
versus watermarking approach. In Jun Zheng, David Simplot-Ryl,
and Victor C. M. Leung, editors, Ad Hoc Networks - Second Inter-
national Conference, ADHOCNETS 2010, Victoria, BC, Canada,
August 18-20, 2010, Revised Selected Papers, volume 49 of Lec-
ture Notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, pages 344–358. Springer,
2010. URL: https://doi.org/10.1007/978-3-642-17994-5_23,
doi:10.1007/978-3-642-17994-5_23.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf for-
mulas on ciphertexts. In Joe Kilian, editor, Theory of Cryptogra-
phy, Second Theory of Cryptography Conference, TCC 2005, Cam-
bridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378
of Lecture Notes in Computer Science, pages 325–341. Springer,
2005. URL: https://doi.org/10.1007/978-3-540-30576-7_18.

[Bie14] Arndt Bieberstein. An implementation of somewhat homomorphic
encryption scheme from the ring learning with errors. Master’s
thesis, Hochschule Furtwangen University, Furtwangen, Germany,
2014.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Commun. ACM, 13(7):422–426, July 1970. URL:
http://doi.acm.org/10.1145/362686.362692.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homo-
morphic encryption from (standard) LWE. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-
25, 2011, pages 97–106. IEEE Computer Society, 2011. URL:
https://doi.org/10.1109/FOCS.2011.12.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic
encryption from ring-lwe and security for key dependent messages.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 505–524. Springer, 2011. URL:
http://dx.doi.org/10.1007/978-3-642-22792-9_29.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully ho-
momorphic encryption from (standard) lwe. SIAM J. Com-
put., 43(2):831–871, 2014. URL: http://dx.doi.org/10.1137/

120868669.

[BW11] Dominik Birk and Christoph Wegener. Technical issues of foren-
sic investigations in cloud computing environments. In Robert F.

XXIX

https://doi.org/10.1007/978-3-642-17994-5_23
http://dx.doi.org/10.1007/978-3-642-17994-5_23
https://doi.org/10.1007/978-3-540-30576-7_18
http://doi.acm.org/10.1145/362686.362692
https://doi.org/10.1109/FOCS.2011.12
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1137/120868669

BIBLIOGRAPHY

Erbacher, Roy H. Campbell, and Yong Guan, editors, 2011 IEEE
Sixth International Workshop on Systematic Approaches to Digital
Forensic Engineering, SADFE 2011, Oakland, CA, USA, May 26,
2011, pages 1–10. IEEE Computer Society, 2011. URL: https:

//doi.org/10.1109/SADFE.2011.17.

[CC04a] Christian Cachin and Jan Camenisch, editors. Advances in Cryptol-
ogy - EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzer-
land, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science. Springer, 2004.

[CC04b] Tim Churches and Peter Christen. Some methods for blindfolded
record linkage. BMC Med. Inf. & Decision Making, 2004. URL:
https://doi.org/10.1186/1472-6947-4-9.

[CCMT09] Claude Castelluccia, Aldar C.-F. Chan, Einar Mykletun, and Gene
Tsudik. Efficient and provably secure aggregation of encrypted data
in wireless sensor networks. TOSN, 5(3):20:1–20:36, 2009. URL:
https://doi.org/10.1145/1525856.1525858.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Su-
dan. Private information retrieval. In 36th Annual Symposium on
Foundations of Computer Science, Milwaukee, Wisconsin, 23-25
October 1995, pages 41–50. IEEE Computer Society, 1995. URL:
http://dx.doi.org/10.1109/SFCS.1995.492461.

[Cha04] Yan-Cheng Chang. Single database private information retrieval
with logarithmic communication. In Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan, editors, Information Security
and Privacy: 9th Australasian Conference, ACISP 2004, Sydney,
Australia, July 13-15, 2004. Proceedings, volume 3108 of Lecture
Notes in Computer Science, pages 50–61. Springer, 2004. URL:
https://doi.org/10.1007/978-3-540-27800-9_5.

[Clo] Cloud Auditing Data Federation (CADF). https://www.dmtf.

org/standards/cadf.

[CT08] Cheng-Kang Chu and Wen-Guey Tzeng. Efficient k-out-of-n obliv-
ious transfer schemes. J. UCS, 14(3):397–415, 2008. URL: http:
//dx.doi.org/10.3217/jucs-014-03-0397.

[DG17] Andreas Dhein and Rüdiger Grimm. Standortlokalisierung in mod-
ernen smartphones - grundlagen und aktuelle entwicklungen. In-
formatik Spektrum, 40(3):245–254, 2017. URL: https://doi.org/
10.1007/s00287-016-0964-7.

[Dom02] Josep Domingo-Ferrer. A provably secure additive and multiplica-
tive privacy homomorphism. In Agnes Hui Chan and Virgil D.

XXX

https://doi.org/10.1109/SADFE.2011.17
https://doi.org/10.1109/SADFE.2011.17
https://doi.org/10.1186/1472-6947-4-9
https://doi.org/10.1145/1525856.1525858
http://dx.doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1007/978-3-540-27800-9_5
https://www.dmtf.org/standards/cadf
https://www.dmtf.org/standards/cadf
http://dx.doi.org/10.3217/jucs-014-03-0397
http://dx.doi.org/10.3217/jucs-014-03-0397
https://doi.org/10.1007/s00287-016-0964-7
https://doi.org/10.1007/s00287-016-0964-7

Bibliography

Gligor, editors, Information Security, 5th International Confer-
ence, ISC 2002 Sao Paulo, Brazil, September 30 - October 2, 2002,
Proceedings, volume 2433 of Lecture Notes in Computer Science,
pages 471–483. Springer, 2002. URL: https://doi.org/10.1007/
3-540-45811-5_37.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic en-
cryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Ad-
vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 643–662. Springer, 2012. URL: https://doi.org/10.1007/
978-3-642-32009-5_38.

[DS11] Josiah Dykstra and A.T. Sherman. Understanding issues in cloud
forensics: Two hypothetical case studies. Journal of Network
Forensics, 3:19–31, 01 2011. URL: https://www.researchgate.
net/publication/286192780_Understanding_Issues_in_

cloud_forensics_Two_hypothetical_case_studies/link/

569670be08ae1c427903c76b/download.

[DS13] Josiah Dykstra and Alan Sherman. Design and implementation
of frost: Digital forensic tools for the openstack cloud comput-
ing platform. Digital Investigation, 10:S87–S95, 08 2013. doi:

10.1016/j.diin.2013.06.010.

[EFG+15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias
Senker, and Jörn Tillmanns. Privately computing set-union and
set-intersection cardinality via bloom filters. In Ernest Foo and
Douglas Stebila, editors, Information Security and Privacy - 20th
Australasian Conference, ACISP 2015, Brisbane, QLD, Australia,
June 29 - July 1, 2015, Proceedings, volume 9144 of Lecture
Notes in Computer Science, pages 413–430. Springer, 2015. URL:
http://dx.doi.org/10.1007/978-3-319-19962-7_24.

[FD13] Bernardo Ferreira and Henrique Domingos. Searching private data
in a cloud encrypted domain. In João Ferreira, João Magalhães,
and Pável Calado, editors, Open research Areas in Information
Retrieval, OAIR ’13, Lisbon, Portugal, May 15-17, 2013, pages
165–172. ACM, 2013. URL: http://dl.acm.org/citation.cfm?
id=2491783.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Effi-
cient private matching and set intersection. In Cachin and Ca-
menisch [CC04a], pages 1–19. URL: http://dx.doi.org/10.

1007/978-3-540-24676-3_1.

XXXI

https://doi.org/10.1007/3-540-45811-5_37
https://doi.org/10.1007/3-540-45811-5_37
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://www.researchgate.net/publication/286192780_Understanding_Issues_in_cloud_forensics_Two_hypothetical_case_studies/link/569670be08ae1c427903c76b/download
https://www.researchgate.net/publication/286192780_Understanding_Issues_in_cloud_forensics_Two_hypothetical_case_studies/link/569670be08ae1c427903c76b/download
https://www.researchgate.net/publication/286192780_Understanding_Issues_in_cloud_forensics_Two_hypothetical_case_studies/link/569670be08ae1c427903c76b/download
https://www.researchgate.net/publication/286192780_Understanding_Issues_in_cloud_forensics_Two_hypothetical_case_studies/link/569670be08ae1c427903c76b/download
http://dx.doi.org/10.1016/j.diin.2013.06.010
http://dx.doi.org/10.1016/j.diin.2013.06.010
http://dx.doi.org/10.1007/978-3-319-19962-7_24
http://dl.acm.org/citation.cfm?id=2491783
http://dl.acm.org/citation.cfm?id=2491783
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-540-24676-3_1

BIBLIOGRAPHY

[FR12] Matthieu Finiasz and Kannan Ramchandran. Private stream
search at the same communication cost as a regular search: Role
of LDPC codes. In Proceedings of the 2012 IEEE International
Symposium on Information Theory, ISIT 2012, Cambridge, MA,
USA, July 1-6, 2012, pages 2556–2560. IEEE, 2012. URL: http:
//dx.doi.org/10.1109/ISIT.2012.6283979.

[Gal02] Steven D. Galbraith. Elliptic curve paillier schemes. J. Cryp-
tology, 15(2):129–138, 2002. URL: https://doi.org/10.1007/

s00145-001-0015-6, doi:10.1007/s00145-001-0015-6.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD
thesis, Stanford, CA, USA, 2009. AAI3382729. URL: https://
crypto.stanford.edu/craig/craig-thesis.pdf.

[GKL10] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-query
computationally-private information retrieval with constant com-
munication rate. In Phong Q. Nguyen and David Pointcheval, ed-
itors, Public Key Cryptography - PKC 2010, 13th International
Conference on Practice and Theory in Public Key Cryptography,
Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lec-
ture Notes in Computer Science, pages 107–123. Springer, 2010.
URL: http://dx.doi.org/10.1007/978-3-642-13013-7_7.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and
how to play mental poker keeping secret all partial information.
In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, May 5-7, 1982, San
Francisco, California, USA, pages 365–377. ACM, 1982. URL:
https://doi.org/10.1145/800070.802212.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28(2):270–299, 1984. URL: https://doi.org/
10.1016/0022-0000(84)90070-9.

[Goh03] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive,
2003:216, 2003. URL: http://eprint.iacr.org/2003/216.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trap-
doors for hard lattices and new cryptographic constructions. In
Cynthia Dwork, editor, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 197–206. ACM, 2008. URL:
https://doi.org/10.1145/1374376.1374407.

[GSG12] George Grispos, Tim Storer, and William Bradley Glisson. Calm
before the storm: The challenges of cloud computing in digital

XXXII

http://dx.doi.org/10.1109/ISIT.2012.6283979
http://dx.doi.org/10.1109/ISIT.2012.6283979
https://doi.org/10.1007/s00145-001-0015-6
https://doi.org/10.1007/s00145-001-0015-6
http://dx.doi.org/10.1007/s00145-001-0015-6
https://crypto.stanford.edu/craig/craig-thesis.pdf
https://crypto.stanford.edu/craig/craig-thesis.pdf
http://dx.doi.org/10.1007/978-3-642-13013-7_7
https://doi.org/10.1145/800070.802212
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
http://eprint.iacr.org/2003/216
https://doi.org/10.1145/1374376.1374407

Bibliography

forensics. IJDCF, 4(2):28–48, 2012. URL: https://doi.org/10.
4018/jdcf.2012040103.

[GWMA07] Joao Girão, Dirk Westhoff, Einar Mykletun, and Toshinori Araki.
Tinypeds: Tiny persistent encrypted data storage in asynchronous
wireless sensor networks. Ad Hoc Networks, 5(7):1073–1089,
2007. URL: https://doi.org/10.1016/j.adhoc.2006.05.004,
doi:10.1016/j.adhoc.2006.05.004.

[GWS05] Joao Girão, Dirk Westhoff, and Markus Schneider. CDA: con-
cealed data aggregation for reverse multicast traffic in wireless sen-
sor networks. In Proceedings of IEEE International Conference on
Communications, ICC 2005, Seoul, Korea, 16-20 May 2005, pages
3044–3049. IEEE, 2005. URL: https://doi.org/10.1109/ICC.

2005.1494953.

[HG13] Yizhou Huang and Ian Goldberg. Outsourced private information
retrieval. In Ahmad-Reza Sadeghi and Sara Foresti, editors, Pro-
ceedings of the 12th annual ACM Workshop on Privacy in the Elec-
tronic Society, WPES 2013, Berlin, Germany, November 4, 2013,
pages 119–130. ACM, 2013. URL: http://doi.acm.org/10.1145/
2517840.2517854.

[HSB19] Chris Hoofnagle, Bart Sloot, and Frederik Borgesius. The european
union general data protection regulation: What it is and what it
means. Information & Communications Technology Law, 28:1–34,
02 2019. doi:10.1080/13600834.2019.1573501.

[HvdSB18] Chris Jay Hoofnagle, Bart van der Sloot, and Frederik Zuiderveen
Borgesius. The european union general data protection regulation:
What it is and what it means. In UC Berkeley Public Law Research
Paper, 2018. URL: http://dx.doi.org/10.2139/ssrn.3254511.

[HW06] Susan Hohenberger and Stephen A. Weis. Honest-verifier private
disjointness testing without random oracles. In George Danezis
and Philippe Golle, editors, Privacy Enhancing Technologies, 6th
International Workshop, PET 2006, Cambridge, UK, June 28-30,
2006, Revised Selected Papers, volume 4258 of Lecture Notes in
Computer Science, pages 277–294. Springer, 2006. URL: https:
//doi.org/10.1007/11957454_16.

[HX11] Shuai Han and Jianchuan Xing. Ensuring data storage security
through a novel third party auditor scheme in cloud computing.
In 2011 IEEE International Conference on Cloud Computing and
Intelligence Systems, CCIS 2011, Beijing, China, September 15-
17, 2011, pages 264–268. IEEE, 2011. URL: https://doi.org/
10.1109/CCIS.2011.6045072.

XXXIII

https://doi.org/10.4018/jdcf.2012040103
https://doi.org/10.4018/jdcf.2012040103
https://doi.org/10.1016/j.adhoc.2006.05.004
http://dx.doi.org/10.1016/j.adhoc.2006.05.004
https://doi.org/10.1109/ICC.2005.1494953
https://doi.org/10.1109/ICC.2005.1494953
http://doi.acm.org/10.1145/2517840.2517854
http://doi.acm.org/10.1145/2517840.2517854
http://dx.doi.org/10.1080/13600834.2019.1573501
http://dx.doi.org/10.2139/ssrn.3254511
https://doi.org/10.1007/11957454_16
https://doi.org/10.1007/11957454_16
https://doi.org/10.1109/CCIS.2011.6045072
https://doi.org/10.1109/CCIS.2011.6045072

BIBLIOGRAPHY

[JJK+13] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Outsourced symmetric pri-
vate information retrieval. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pages 875–888. ACM, 2013. URL:
http://doi.acm.org/10.1145/2508859.2516730.

[Ker11] Florian Kerschbaum. Public-key encrypted bloom filters with ap-
plications to supply chain integrity. In Yingjiu Li, editor, Data and
Applications Security and Privacy XXV - 25th Annual IFIP WG
11.3 Conference, DBSec 2011, Richmond, VA, USA, July 11-13,
2011. Proceedings, volume 6818 of Lecture Notes in Computer Sci-
ence, pages 60–75. Springer, 2011. URL: https://doi.org/10.
1007/978-3-642-22348-8_7.

[Ker12] Florian Kerschbaum. Outsourced private set intersection using ho-
momorphic encryption. In Heung Youl Youm and Yoojae Won,
editors, 7th ACM Symposium on Information, Compuer and Com-
munications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012,
pages 85–86. ACM, 2012. URL: http://doi.acm.org/10.1145/
2414456.2414506.

[KK08] Murat Kantarcioglu and Onur Kardes. Privacy-preserving data
mining in the malicious model. IJICS, 2(4):353–375, 2008. URL:
http://dx.doi.org/10.1504/IJICS.2008.022488.

[KM05] Aggelos Kiayias and Antonina Mitrofanova. Testing disjointness
of private datasets. In Andrew S. Patrick and Moti Yung, edi-
tors, Financial Cryptography and Data Security, 9th International
Conference, FC 2005, Roseau, The Commonwealth of Dominica,
February 28 - March 3, 2005, Revised Papers, volume 3570 of Lec-
ture Notes in Computer Science, pages 109–124. Springer, 2005.
URL: https://doi.org/10.1007/11507840_13.

[KNV09] Murat Kantarcioglu, Robert Nix, and Jaideep Vaidya. An effi-
cient approximate protocol for privacy-preserving association rule
mining. In Thanaruk Theeramunkong, Boonserm Kijsirikul, Nick
Cercone, and Tu Bao Ho, editors, Advances in Knowledge Discov-
ery and Data Mining, 13th Pacific-Asia Conference, PAKDD 2009,
Bangkok, Thailand, April 27-30, 2009, Proceedings, volume 5476 of
Lecture Notes in Computer Science, pages 515–524. Springer, 2009.
URL: https://doi.org/10.1007/978-3-642-01307-2_48.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed:
SINGLE database, computationally-private information retrieval.
In 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997,

XXXIV

http://doi.acm.org/10.1145/2508859.2516730
https://doi.org/10.1007/978-3-642-22348-8_7
https://doi.org/10.1007/978-3-642-22348-8_7
http://doi.acm.org/10.1145/2414456.2414506
http://doi.acm.org/10.1145/2414456.2414506
http://dx.doi.org/10.1504/IJICS.2008.022488
https://doi.org/10.1007/11507840_13
https://doi.org/10.1007/978-3-642-01307-2_48

Bibliography

pages 364–373. IEEE Computer Society, 1997. URL: https:

//doi.org/10.1109/SFCS.1997.646125.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of com-
putation, 48(177):203–209, 1987.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set oper-
ations. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings, vol-
ume 3621 of Lecture Notes in Computer Science, pages 241–257.
Springer, 2005. URL: http://dx.doi.org/10.1007/11535218_

15.

[LG] Zhijun Li and Guang Gong. Efficient data aggregation with se-
cure bloom filter in wireless sensor networks. URL: http://cacr.
uwaterloo.ca/techreports/2012/cacr2012-32.pdf.

[LH14] Der-Chyuan Lou and Hui-Feng Huang. An efficient t-out-of-n
oblivious transfer for information security and privacy protection.
Int. J. Communication Systems, 27(12):3759–3767, 2014. URL:
http://dx.doi.org/10.1002/dac.2573.

[LHSC10] Y. Lin, B. He, H. Sun, and Y. Chen. Cds: Concealed data sorting
scheme in wireless sensor networks. In 2010 International Computer
Symposium (ICS2010), pages 370–375, Dec 2010. doi:10.1109/

COMPSYM.2010.5685484.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks)
for lwe-based encryption. In Aggelos Kiayias, editor, Topics in
Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the
RSA Conference 2011, San Francisco, CA, USA, 2011, Lecture
Notes in Computer Science. Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In Henri Gilbert,
editor, Advances in Cryptology - EUROCRYPT 2010, 29th An-
nual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2010. URL: http://dx.doi.org/10.1007/
978-3-642-13190-5_1.

[LRW14] Jose M. Lopez, Thomas Rübsamen, and Dirk Westhoff. Privacy-
friendly cloud audits with somewhat homomorphic and searchable
encryption. In I4CS, pages 95–103, 2014. URL: http://dx.doi.
org/10.1109/I4CS.2014.6860559.

XXXV

https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/SFCS.1997.646125
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/11535218_15
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-32.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-32.pdf
http://dx.doi.org/10.1002/dac.2573
http://dx.doi.org/10.1109/COMPSYM.2010.5685484
http://dx.doi.org/10.1109/COMPSYM.2010.5685484
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1109/I4CS.2014.6860559
http://dx.doi.org/10.1109/I4CS.2014.6860559

BIBLIOGRAPHY

[LTS16] Sebastian Lins, Heiner Teigeler, and Ali Sunyaev. Towards a
bright future: Enhancing diffusion of continuous cloud service au-
diting by third parties. In 24th European Conference on Infor-
mation Systems, ECIS 2016, Istanbul, Turkey, June 12-15, 2016,
page Research Paper 130, 2016. URL: http://aisel.aisnet.org/
ecis2016_rp/130.

[LYC+06] Pierre K. Y. Lai, Siu-Ming Yiu, K. P. Chow, C. F. Chong, and
Lucas Chi Kwong Hui. An efficient bloom filter based solution
for multiparty private matching. In Hamid R. Arabnia and Se-
lim Aissi, editors, Proceedings of the 2006 International Confer-
ence on Security & Management, SAM 2006, Las Vegas, Nevada,
USA, June 26-29, 2006, pages 286–292. CSREA Press, 2006. URL:
https://dblp.org/rec/bib/conf/csreaSAM/LaiYCCH06.

[Lyn07] B. Lynn. On the implementation of pairing-based cryptosystems.
Stanford University, 2007. URL: https://books.google.de/

books?id=sy0hAQAAIAAJ.

[LZDT09] Na Li, Nan Zhang, Sajal K. Das, and Bhavani M. Thuraisingham.
Privacy preservation in wireless sensor networks: A state-of-the-
art survey. Ad Hoc Networks, 7(8):1501–1514, 2009. URL: https:
//doi.org/10.1016/j.adhoc.2009.04.009.

[LZLY13] Zehui Li, Ruoqing Zhang, Zichen Li, and Yatao Yang. An effi-
cient massive evidence storage and retrieval scheme in encrypted
database. pages 25–25, 01 2013. doi:10.1049/cp.2013.2469.

[MGW06] Einar Mykletun, Joao Girão, and Dirk Westhoff. Public key based
cryptoschemes for data concealment in wireless sensor networks.
In Proceedings of IEEE International Conference on Communica-
tions, ICC 2006, Istanbul, Turkey, 11-15 June 2006, pages 2288–
2295. IEEE, 2006. URL: https://doi.org/10.1109/ICC.2006.
255111.

[Mic10] Daniele Micciancio. Duality in lattice cryptography. In Public
key cryptography, page 2, 2010. URL: https://cseweb.ucsd.edu/

~daniele/papers/DualitySlides.pdf.

[MS17] Anup Kumar Maurya and V. N. Sastry. Secure and efficient au-
thenticated key exchange mechanism for wireless sensor networks
and internet of things using bloom filter. In 3rd IEEE International
Conference on Collaboration and Internet Computing, CIC 2017,
San Jose, CA, USA, October 15-17, 2017, pages 173–180. IEEE
Computer Society, 2017. URL: https://doi.org/10.1109/CIC.
2017.00032.

XXXVI

http://aisel.aisnet.org/ecis2016_rp/130
http://aisel.aisnet.org/ecis2016_rp/130
https://dblp.org/rec/bib/conf/csreaSAM/LaiYCCH06
https://books.google.de/books?id=sy0hAQAAIAAJ
https://books.google.de/books?id=sy0hAQAAIAAJ
https://doi.org/10.1016/j.adhoc.2009.04.009
https://doi.org/10.1016/j.adhoc.2009.04.009
http://dx.doi.org/10.1049/cp.2013.2469
https://doi.org/10.1109/ICC.2006.255111
https://doi.org/10.1109/ICC.2006.255111
https://cseweb.ucsd.edu/~daniele/papers/DualitySlides.pdf
https://cseweb.ucsd.edu/~daniele/papers/DualitySlides.pdf
https://doi.org/10.1109/CIC.2017.00032
https://doi.org/10.1109/CIC.2017.00032

Bibliography

[MZV02] Yi Mu, Junqi Zhang, and Vijay Varadharajan. m out of n obliv-
ious transfer. In Lynn Margaret Batten and Jennifer Seberry, ed-
itors, Information Security and Privacy, 7th Australian Confer-
ence, ACISP 2002, Melbourne, Australia, July 3-5, 2002, Proceed-
ings, volume 2384 of Lecture Notes in Computer Science, pages
395–405. Springer, 2002. URL: http://dx.doi.org/10.1007/

3-540-45450-0_30.

[NK09] Ryo Nojima and Youki Kadobayashi. Cryptographically secure
bloom-filters. Trans. Data Privacy, 2(2):131–139, 2009. URL:
http://www.tdp.cat/issues/abs.a015a09.php.

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan.
Can homomorphic encryption be practical? In Christian Cachin
and Thomas Ristenpart, editors, Proceedings of the 3rd ACM Cloud
Computing Security Workshop, CCSW 2011, Chicago, IL, USA,
October 21, 2011, pages 113–124. ACM, 2011. URL: https://dl.
acm.org/citation.cfm?id=2046682.

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem
based on higher residues. In Li Gong and Michael K. Reiter, editors,
CCS ’98, Proceedings of the 5th ACM Conference on Computer and
Communications Security, San Francisco, CA, USA, November 3-
5, 1998., pages 59–66. ACM, 1998. URL: https://doi.org/10.
1145/288090.288106.

[OI07] Rafail Ostrovsky and William E. Skeith III. A survey of single-
database private information retrieval: Techniques and applica-
tions. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Pub-
lic Key Cryptography - PKC 2007, 10th International Confer-
ence on Practice and Theory in Public-Key Cryptography, Bei-
jing, China, April 16-20, 2007, Proceedings, volume 4450 of Lecture
Notes in Computer Science, pages 393–411. Springer, 2007. URL:
http://dx.doi.org/10.1007/978-3-540-71677-8_26.

[ÖM07] Melek Önen and Refik Molva. Secure data aggregation with
multiple encryption. In Koen Langendoen and Thiemo Voigt,
editors, Wireless Sensor Networks, 4th European Conference,
EWSN 2007, Delft, The Netherlands, January 29-31, 2007, Pro-
ceedings, volume 4373 of Lecture Notes in Computer Science,
pages 117–132. Springer, 2007. URL: https://doi.org/10.1007/
978-3-540-69830-2_8.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key
cryptosystem as secure as factoring. In Kaisa Nyberg, editor, Ad-
vances in Cryptology - EUROCRYPT ’98, International Confer-
ence on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of

XXXVII

http://dx.doi.org/10.1007/3-540-45450-0_30
http://dx.doi.org/10.1007/3-540-45450-0_30
http://www.tdp.cat/issues/abs.a015a09.php
https://dl.acm.org/citation.cfm?id=2046682
https://dl.acm.org/citation.cfm?id=2046682
https://doi.org/10.1145/288090.288106
https://doi.org/10.1145/288090.288106
http://dx.doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/978-3-540-69830-2_8
https://doi.org/10.1007/978-3-540-69830-2_8

BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 308–318. Springer, 1998.
URL: https://doi.org/10.1007/BFb0054135.

[OX11] Suat Ozdemir and Yang Xiao. Integrity protecting hierarchical
concealed data aggregation for wireless sensor networks. Com-
puter Networks, 55(8):1735–1746, 2011. URL: https://doi.org/
10.1016/j.comnet.2011.01.006, doi:10.1016/j.comnet.2011.
01.006.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, Advances
in Cryptology - EUROCRYPT ’99, International Conference on
the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer, 1999. URL:
http://dx.doi.org/10.1007/3-540-48910-X_16.

[Pai00] Pascal Paillier. Trapdooring discrete logarithms on elliptic curves
over rings. In Tatsuaki Okamoto, editor, Advances in Cryptology
- ASIACRYPT 2000, 6th International Conference on the Theory
and Application of Cryptology and Information Security, Kyoto,
Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture
Notes in Computer Science, pages 573–584. Springer, 2000. URL:
https://doi.org/10.1007/3-540-44448-3_44.

[PH78] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm
for computing logarithms over gf(p) and its cryptographic signifi-
cance (corresp.). IEEE Trans. Information Theory, 24(1):106–110,
1978. URL: https://doi.org/10.1109/TIT.1978.1055817.

[PHMN16] Liliana Pasquale, Sorren Hanvey, Mark Mcgloin, and Bashar Nu-
seibeh. Adaptive evidence collection in the cloud using attack sce-
narios. Computers & Security, 59:236–254, 2016. URL: https:

//doi.org/10.1016/j.cose.2016.03.001.

[PJ16] Keyur Parmar and Devesh C. Jinwala. Concealed data aggregation
in wireless sensor networks: A comprehensive survey. Computer
Networks, 103:207–227, 2016. URL: https://doi.org/10.1016/
j.comnet.2016.04.013, doi:10.1016/j.comnet.2016.04.013.

[PKP11] Stavros Papadopoulos, Aggelos Kiayias, and Dimitris Papadias.
Secure and efficient in-network processing of exact SUM queries.
In Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-
Lee Tan, editors, Proceedings of the 27th International Conference
on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, pages 517–528. IEEE Computer Society, 2011. URL:
https://doi.org/10.1109/ICDE.2011.5767886.

XXXVIII

https://doi.org/10.1007/BFb0054135
https://doi.org/10.1016/j.comnet.2011.01.006
https://doi.org/10.1016/j.comnet.2011.01.006
http://dx.doi.org/10.1016/j.comnet.2011.01.006
http://dx.doi.org/10.1016/j.comnet.2011.01.006
http://dx.doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-44448-3_44
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1016/j.cose.2016.03.001
https://doi.org/10.1016/j.cose.2016.03.001
https://doi.org/10.1016/j.comnet.2016.04.013
https://doi.org/10.1016/j.comnet.2016.04.013
http://dx.doi.org/10.1016/j.comnet.2016.04.013
https://doi.org/10.1109/ICDE.2011.5767886

Bibliography

[PMM09] Roberto Di Pietro, Pietro Michiardi, and Refik Molva. Confiden-
tiality and integrity for data aggregation in WSN using peer moni-
toring. Security and Communication Networks, 2(2):181–194, 2009.
URL: https://doi.org/10.1002/sec.93.

[Pol78] John M Pollard. Monte carlo methods for index computation (mod
p). Mathematics of computation, 32(143):918–924, 1978.

[PPL07] S. Peter, K. Piotrowski, and P. Langendoerfer. On concealed
data aggregation for wsns. In 2007 4th IEEE Consumer Com-
munications and Networking Conference, pages 192–196, Jan 2007.
doi:10.1109/CCNC.2007.45.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Frame-
work for Efficient and Composable Oblivious Transfer, pages 554–
571. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:

10.1007/978-3-540-85174-5_31.

[PW10] Stephen Pearson and Richard Watson. Digital triage foren-
sics: processing the digital crime scene. Syngress, 2010.
URL: https://www.sciencedirect.com/book/9781597495967/

digital-triage-forensics.

[PWC10] Steffen Peter, Dirk Westhoff, and Claude Castelluccia. A survey on
the encryption of convergecast traffic with in-network processing.
IEEE Trans. Dependable Sec. Comput., 7(1):20–34, 2010. URL:
https://doi.org/10.1109/TDSC.2008.23.

[QLW07] Ling Qiu, Yingjiu Li, and Xintao Wu. Preserving privacy
in association rule mining with bloom filters. J. Intell. Inf.
Syst., 29(3):253–278, 2007. URL: https://doi.org/10.1007/

s10844-006-0018-8.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer.
IACR Cryptology ePrint Archive, 2005:187, 2005. URL: http://
eprint.iacr.org/2005/187.

[RBI17] Syed S. Rizvi, Trent A. Bolish, and Joseph R. Pfeffer III. Security
evaluation of cloud service providers using third party auditors.
In Hani Hamdan, Djallel Eddine Boubiche, Homero Toral-Cruz,
Sedat Akleylek, and Hamid Mcheick, editors, Proceedings of the
Second International Conference on Internet of things and Cloud
Computing, ICC 2017, Cambridge, United Kingdom, March 22-23,
2017, pages 106:1–106:6. ACM, 2017. URL: https://doi.org/10.
1145/3018896.3025154.

[RCN+18] Sundaresan Rajasekaran, Harpreet Singh Chawla, Zhen Ni, Neel
Shah, Emery Berger, and Timothy Wood. CRIMES: using evidence
to secure the cloud. In Paulo Ferreira and Liuba Shrira, editors,

XXXIX

https://doi.org/10.1002/sec.93
http://dx.doi.org/10.1109/CCNC.2007.45
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-540-85174-5_31
https://www.sciencedirect.com/book/9781597495967/digital-triage-forensics
https://www.sciencedirect.com/book/9781597495967/digital-triage-forensics
https://doi.org/10.1109/TDSC.2008.23
https://doi.org/10.1007/s10844-006-0018-8
https://doi.org/10.1007/s10844-006-0018-8
http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187
https://doi.org/10.1145/3018896.3025154
https://doi.org/10.1145/3018896.3025154

BIBLIOGRAPHY

Proceedings of the 19th International Middleware Conference, Mid-
dleware 2018, Rennes, France, December 10-14, 2018, pages 40–52.
ACM, 2018. URL: https://doi.org/10.1145/3274808.3274812.

[RD14] Catherine M. S. Redfield and Hiroyuki Date. Gringotts: Secur-
ing data for digital evidence. In 35. IEEE Security and Pri-
vacy Workshops, SPW 2014, San Jose, CA, USA, May 17-18,
2014, pages 10–17. IEEE Computer Society, 2014. URL: https:
//doi.org/10.1109/SPW.2014.11.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. J. ACM, 56(6):34:1–34:40, September 2009.
URL: http://doi.acm.org/10.1145/1568318.1568324.

[RKP07] Shu Qin Ren, Dong Seong Kim, and Jong Sou Park. A secure
data aggregation scheme for wireless sensor networks. In Parimala
Thulasiraman, Xubin He, Tony Li Xu, Mieso K. Denko, Ruppa K.
Thulasiram, and Laurence Tianruo Yang, editors, Frontiers of High
Performance Computing and Networking ISPA 2007 Workshops,
ISPA 2007 International Workshops SSDSN, UPWN, WISH, SGC,
ParDMCom, HiPCoMB, and IST-AWSN Niagara Falls, Canada,
August 28 - September 1, 2007, Proceedings, volume 4743 of Lecture
Notes in Computer Science, pages 32–40. Springer, 2007. URL:
https://doi.org/10.1007/978-3-540-74767-3_4.

[RM13] M. B. O. Rafik and F. Mohammed. Sa-spkc: Secure and effi-
cient aggregation scheme for wireless sensor networks using stateful
public key cryptography. In 2013 11th International Symposium
on Programming and Systems (ISPS), pages 96–102, April 2013.
doi:10.1109/ISPS.2013.6581500.

[RPR15] Thomas Rübsamen, Tobias Pulls, and Christoph Reich. Security
and privacy preservation of evidence in cloud accountability audits.
In Markus Helfert, Vı́ctor Méndez Muñoz, and Donald Ferguson,
editors, Cloud Computing and Services Science - 5th International
Conference, CLOSER 2015, Lisbon, Portugal, May 20-22, 2015,
Revised Selected Papers, volume 581 of Communications in Com-
puter and Information Science, pages 95–114. Springer, 2015. URL:
https://doi.org/10.1007/978-3-319-29582-4_6.

[RR13] Thomas Rübsamen and Christoph Reich. Supporting cloud ac-
countability by collecting evidence using audit agents. In IEEE
5th International Conference on Cloud Computing Technology and
Science, CloudCom 2013, Bristol, United Kingdom, December 2-
5, 2013, Volume 1, pages 185–190. IEEE Computer Society, 2013.
URL: http://dx.doi.org/10.1109/CloudCom.2013.32.

[Rüb16] Thomas Rübsamen. Evidence-based accountability audits for
cloud computing. PhD thesis, University of Plymouth, UK,

XL

https://doi.org/10.1145/3274808.3274812
https://doi.org/10.1109/SPW.2014.11
https://doi.org/10.1109/SPW.2014.11
http://doi.acm.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-540-74767-3_4
http://dx.doi.org/10.1109/ISPS.2013.6581500
https://doi.org/10.1007/978-3-319-29582-4_6
http://dx.doi.org/10.1109/CloudCom.2013.32

Bibliography

2016. URL: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.
ethos.698105.

[RWB10] Denis J. Reilly, Chris Wren, and Tom Berry. Cloud computing:
Forensic challenges for law enforcement. In 5th International Con-
ference for Internet Technology and Secured Transactions, ICITST
2010, London, United Kingdom, November 8-10, 2010, pages 1–
7. IEEE, 2010. URL: http://ieeexplore.ieee.org/document/
5678033/.

[SB07] S. Joshua Swamidass and Pierre Baldi. Mathematical correction for
fingerprint similarity measures to improve chemical retrieval. Jour-
nal of Chemical Information and Modeling, 47(3):952–964, 2007.
PMID: 17444629. URL: https://doi.org/10.1021/ci600526a.

[SBR09] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. Privacy-
preserving record linkage using bloom filters. BMC Med. Inf. &
Decision Making, 9:41, 2009. URL: https://doi.org/10.1186/
1472-6947-9-41.

[SC06] Bradley Schatz and Andrew J. Clark. An open architecture for
digital evidence integration. In Andrew J. Clark, Mark McPherson,
and George M. Mohay, editors, AusCERT Asia Pacific Information
Technology Security Conference : Refereed R&D Stream, pages 15–
29, Gold Coast, Queensland, May 2006. University of Queensland.
URL: http://eprints.qut.edu.au/21119/.

[Sen13] Jaydip Sen. A survey on security and privacy protocols for cognitive
wireless sensor networks. CoRR, abs/1308.0682, 2013. URL: http:
//arxiv.org/abs/1308.0682, arXiv:1308.0682.

[SFM11] Clay Shields, Ophir Frieder, and Mark Maloof. A sys-
tem for the proactive, continuous, and efficient collection of
digital forensic evidence. Digital Investigation, 8:S3 – S13,
2011. The Proceedings of the Eleventh Annual DFRWS Confer-
ence. URL: http://www.sciencedirect.com/science/article/
pii/S1742287611000260.

[SGM02] Gunther Schadow, Shaun J. Grannis, and Clement J. McDon-
ald. Discussion paper: Privacy-preserving distributed queries for
a clinical case research network. In Proceedings of the IEEE In-
ternational Conference on Privacy, Security and Data Mining -
Volume 14, CRPIT ’14, pages 55–65, Darlinghurst, Australia,
Australia, 2002. Australian Computer Society, Inc. URL: http:
//dl.acm.org/citation.cfm?id=850782.850790.

[SJM13] Bharath K. Samanthula, Wei Jiang, and Sanjay Madria. A proba-
bilistic encryption based MIN/MAX computation in wireless sen-
sor networks. In 2013 IEEE 14th International Conference on

XLI

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698105
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698105
http://ieeexplore.ieee.org/document/5678033/
http://ieeexplore.ieee.org/document/5678033/
https://doi.org/10.1021/ci600526a
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1186/1472-6947-9-41
http://eprints.qut.edu.au/21119/
http://arxiv.org/abs/1308.0682
http://arxiv.org/abs/1308.0682
http://arxiv.org/abs/1308.0682
http://www.sciencedirect.com/science/article/pii/S1742287611000260
http://www.sciencedirect.com/science/article/pii/S1742287611000260
http://dl.acm.org/citation.cfm?id=850782.850790
http://dl.acm.org/citation.cfm?id=850782.850790

BIBLIOGRAPHY

Mobile Data Management, Milan, Italy, June 3-6, 2013 - Vol-
ume 1, pages 77–86. IEEE Computer Society, 2013. URL: https:
//doi.org/10.1109/MDM.2013.18.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryp-
tocomputing for nc1. In Proceedings of the 40th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’99, pages 554–
, Washington, DC, USA, 1999. IEEE Computer Society. URL:
http://dl.acm.org/citation.cfm?id=795665.796534.

[THGL11] Mark John Taylor, John Haggerty, David Gresty, and David J.
Lamb. Forensic investigation of cloud computing systems. Network
Security, 2011(3):4–10, 2011. URL: https://doi.org/10.1016/
S1353-4858(11)70024-1.

[TKW18] Louis Tajan, Moritz Kaumanns, and Dirk Westhoff. Pre-computing
appropriate parameters: How to accelerate somewhat homomor-
phic encryption for cloud auditing. In 9th IFIP International Con-
ference on New Technologies, Mobility and Security, NTMS 2018,
Paris, France, February 26-28, 2018, pages 1–6. IEEE, 2018. URL:
https://doi.org/10.1109/NTMS.2018.8328713.

[TNS+17] Anum Talpur, Thomas Newe, Faisal Karim Shaikh, Adil Amjad
Sheikh, Emad A. Felemban, and Abdelmajid Khelil. Bloom fil-
ter based data collection algorithm for wireless sensor networks.
In 2017 International Conference on Information Networking,
ICOIN 2017, Da Nang, Vietnam, January 11-13, 2017, pages 354–
359. IEEE, 2017. URL: https://doi.org/10.1109/ICOIN.2017.
7899458.

[TW19] Louis Tajan and Dirk Westhoff. Retrospective tracking of suspects
in gdpr conform mobile access networks datasets. In Proceedings of
the Central European Cybersecurity Conference 2019, CECC 2019,
Munich, Germany, November 14-15, 2019, pages 5:1–5:6. ACM,
2019. URL: https://doi.org/10.1145/3360664.3360680.

[TW20] Louis Tajan and Dirk Westhoff. Approach for GDPR compliant
detection of COVID-19 infection chains. CoRR, abs/2007.08248,
2020. URL: https://arxiv.org/abs/2007.08248, arXiv:2007.
08248.

[TWA19] Louis Tajan, Dirk Westhoff, and Frederik Armknecht. Private
set relations with bloom filters for outsourced SLA validation.
IACR Cryptology ePrint Archive, 2019:993, 2019. URL: https:

//eprint.iacr.org/2019/993.

[TWA20] Louis Tajan, Dirk Westhoff, and Frederik Armknecht. Solving set
relations with secure bloom filters keeping cardinality private. In

XLII

https://doi.org/10.1109/MDM.2013.18
https://doi.org/10.1109/MDM.2013.18
http://dl.acm.org/citation.cfm?id=795665.796534
https://doi.org/10.1016/S1353-4858(11)70024-1
https://doi.org/10.1016/S1353-4858(11)70024-1
https://doi.org/10.1109/NTMS.2018.8328713
https://doi.org/10.1109/ICOIN.2017.7899458
https://doi.org/10.1109/ICOIN.2017.7899458
https://doi.org/10.1145/3360664.3360680
https://arxiv.org/abs/2007.08248
http://arxiv.org/abs/2007.08248
http://arxiv.org/abs/2007.08248
https://eprint.iacr.org/2019/993
https://eprint.iacr.org/2019/993

Bibliography

Mohammad S. Obaidat and Pierangela Samarati, editors, Proceed-
ings of the 17th International Joint Conference on e-Business and
Telecommunications, ICETE 2020 - Volume 2: SECRYPT, Paris,
France, July 8-10, 2020, pages 187–197. SciTePress, 2020. URL:
https://doi.org/10.5220/0007932301870197.

[TWRA16] Louis Tajan, Dirk Westhoff, Christian A. Reuter, and Frederik
Armknecht. Private information retrieval and searchable encryp-
tion for privacy-preserving multi-client cloud auditing. In 11th In-
ternational Conference for Internet Technology and Secured Trans-
actions, ICITST 2016, Barcelona, Spain, December 5-7, 2016,
pages 162–169. IEEE, 2016. URL: http://dx.doi.org/10.1109/
ICITST.2016.7856690.

[UHW] Osman Ugus, Alban Hessler, and Dirk Westhoff. Performance of ad-
ditive homomorphic ec-elgamal encryption for tinypeds. 6. Fachge-
spräch Sensornetzwerke, page 55.

[Vau20] Serge Vaudenay. Centralized or decentralized? the contact trac-
ing dilemma. Cryptology ePrint Archive, Report 2020/531, 2020.
https://eprint.iacr.org/2020/531.

[vN93] John von Neumann. First draft of a report on the EDVAC.
IEEE Annals of the History of Computing, 15(4):27–75, 1993.
URL: https://doi.org/10.1109/85.238389, doi:10.1109/85.

238389.

[Wan15] Qinglong Wang. Efficient k-out-of-n oblivious transfer protocol.
IACR Cryptology ePrint Archive, 2015:218, 2015. URL: http://
eprint.iacr.org/2015/218.

[WGA06] Dirk Westhoff, Joao Girão, and Mithun Acharya. Concealed data
aggregation for reverse multicast traffic in sensor networks: En-
cryption, key distribution, and routing adaptation. IEEE Trans.
Mob. Comput., 5(10):1417–1431, 2006. URL: https://doi.org/
10.1109/TMC.2006.144.

[WMLD04] Yongdong Wu, Di Ma, Tieyan Li, and Robert H Deng. Classify
encrypted data in wireless sensor networks. In IEEE 60th Vehicu-
lar Technology Conference, 2004. VTC2004-Fall. 2004, volume 5,
pages 3236–3239. IEEE, 2004.

[Wol09] Stephen D. Wolthusen. Overcast: Forensic discovery in cloud
environments. In Oliver Goebel, Ralf Ehlert, Sandra Frings,
Detlef Günther, Holger Morgenstern, and Dirk Schadt, editors,
IMF 2009, Fifth International Conference on IT Security Inci-
dent Management and IT Forensics, Stuttgart, Germany, 15-17
September 2009, pages 3–9. IEEE Computer Society, 2009. URL:
https://doi.org/10.1109/IMF.2009.21.

XLIII

https://doi.org/10.5220/0007932301870197
http://dx.doi.org/10.1109/ICITST.2016.7856690
http://dx.doi.org/10.1109/ICITST.2016.7856690
https://eprint.iacr.org/2020/531
https://doi.org/10.1109/85.238389
http://dx.doi.org/10.1109/85.238389
http://dx.doi.org/10.1109/85.238389
http://eprint.iacr.org/2015/218
http://eprint.iacr.org/2015/218
https://doi.org/10.1109/TMC.2006.144
https://doi.org/10.1109/TMC.2006.144
https://doi.org/10.1109/IMF.2009.21

BIBLIOGRAPHY

[YWPZ08] Qingsong Ye, Huaxiong Wang, Josef Pieprzyk, and Xian-Mo
Zhang. Efficient disjointness tests for private datasets. In Yi Mu,
Willy Susilo, and Jennifer Seberry, editors, Information Security
and Privacy, 13th Australasian Conference, ACISP 2008, Wollon-
gong, Australia, July 7-9, 2008, Proceedings, volume 5107 of Lec-
ture Notes in Computer Science, pages 155–169. Springer, 2008.
URL: https://doi.org/10.1007/978-3-540-70500-0_12.

[YZFC15] Qiuwei Yang, Xiaogang Zhu, Hongjuan Fu, and Xiqiang Che. Sur-
vey of security technologies on wireless sensor networks. J. Sensors,
2015:842392:1–842392:9, 2015. URL: https://doi.org/10.1155/
2015/842392.

[ZPH+17] Jan Henrik Ziegeldorf, Jan Pennekamp, David Hellmanns, Felix
Schwinger, Ike Kunze, Martin Henze, Jens Hiller, Roman Matzutt,
and Klaus Wehrle. Bloom: Bloom filter based oblivious outsourced
matchings. BMC Medical Genomics, 10(2):44, Jul 2017. URL:
https://doi.org/10.1186/s12920-017-0277-y.

[ZYH14] Qiang Zhou, Geng Yang, and Liwen He. A secure-enhanced data
aggregation based on ECC in wireless sensor networks. Sen-
sors, 14(4):6701–6721, 2014. URL: https://doi.org/10.3390/

s140406701, doi:10.3390/s140406701.

[ZYS+14] Hongli Zhang, Lin Ye, Jiantao Shi, Xiaojiang Du, and Mohsen
Guizani. Verifying cloud service-level agreement by a third-party
auditor. Security and Communication Networks, 7(3):492–502,
2014. URL: https://doi.org/10.1002/sec.740.

XLIV

https://doi.org/10.1007/978-3-540-70500-0_12
https://doi.org/10.1155/2015/842392
https://doi.org/10.1155/2015/842392
https://doi.org/10.1186/s12920-017-0277-y
https://doi.org/10.3390/s140406701
https://doi.org/10.3390/s140406701
http://dx.doi.org/10.3390/s140406701
https://doi.org/10.1002/sec.740

	Notation
	Introduction
	Privacy vs Malleability
	Manipulating Data
	Collecting
	Retrieving
	Processing

	Research Contributions and Outline
	Thesis Organization
	Publications

	Selected Use Cases
	Use Case 1 - Cloud Security Auditing
	Scenario
	Threat Model

	Use Case 2 - Mobile Users' Data Collection
	Scenarios
	Threat Model

	Use Case 3 - Wireless Sensor Network's Data Aggregation
	Scenario
	Threat Model

	Use Case 4 - Detection of COVID-19 Infection Chains
	Scenario

	Preliminaries and their Respective Literature
	Searchable Encryption
	Homomorphic Encryption
	Definition and Classification of Homomorphic Cryptosystems
	Partially Additive Cryptosystems
	Somewhat Homomorphic Encryption

	Private Information Retrieval Protocol
	Definition
	Examples of PIR Protocols
	Protocols Comparison
	Related Work

	Set Operations
	Bloom Filters
	Definition
	Related Work

	Concealed Data Aggregation
	Definition
	Privacy Constructions and Related Work

	Developed Solutions
	Solution A - Combining PIR Protocol with Searchable Encryption and Homomorphic Encryption
	Cloud Auditing Construction
	Protocol
	Evaluation and Results

	Solution B -Adapting SHE to Evidence Processing
	Discussion of the SHE Parameters
	Protocol
	Evaluation and Results

	Solution C -Using Bloom Filters to Process Set Relations
	Privacy Enhancements
	Protocol Functions
	Correctness Analysis
	Privacy Analysis
	On Cloud Security Auditing
	On Retrospective Tracking of Suspects in GDPR Conform Mobile Access Networks Datasets
	On Concealed Data Aggregation in WSN
	On GDPR Conform Detection of COVID-19 Infection Chains

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

