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Abstract

On the quantum scale, the dynamics of many-particles in a system are governed by Schrodinger’s quantum
systems. However, it is computationally costly to simulate if the system consists of a large number of
particles. Therefore, the method of deriving an effective equation that captures the macroscopic behavior of
the particles is of high interest in the mathematical physics community.

In this thesis, we focus on the derivation of an effective time-dependent equation of a macroscopic system
consisting of interacting fermions. In particular, we derive a Vlasov hierarchy from the Schrodinger system
with respect to the Husimi measure. Then, we show that under regularized interaction potential, the quantum
system converges to the Vlasov equation in terms of semiclassical limit by using the BBGKY method and
Bogoliubov transformation independently. Furthermore, we extend the convergence result to the Vlasov-
Poisson equation by considering a N-fermionic Schrédinger system with truncated Coulomb interaction
potential.

Keywords: Large Fermionic System, Husimi measure, Semiclassical Scale, Schédinger equation, Coulomb

potential, Vlasov-Poisson equation, BBGKY method, Bogoliubov transformation.

Zusammenfassung

Auf der Quantenebene wird die Teilchendynamik in einem System durch Schrédingers Quantenmechanik
beschrieben. Bei einer grofen Anzahl Teilchen ist die Simulation eines solchen Systems jedoch sehr re-
chenaufwéindig. Daher ist die Ableitung einer effektiven Gleichung, die das Verhalten von Teilchen auf der
Makroebene beschreibt, von hohem Interesse in der mathematischen Physik.

In dieser Doktorarbeit konzentrieren wir uns auf die Bestimmung einer effektiven, zeitabhingigen Glei-
chung fiir ein makroskopisches System, bestehend aus Fermionen. Insbesondere leiten wir eine Vlasov-
Hierarchie aus dem Schrodinger-System in Form eines Husimi-Mafies her. Anschliefsend zeigen wir, dass
das Quantensystem unter regularisiertem Wechselwirkungspotential mit Hilfe der BBGKY-Methode und der
Bogoliubov-Transformation zur Vlasov-Gleichung im semiklassischen Limit konvergiert. Aufserdem erweitern
wir das Konvergenzergebnis von N-fermionisches Schrédinger-System auf die Vlasov-Poisson-Gleichung, in-
dem wir ein regularisiertes Coulomb-Potential betrachten.

Schliisselworter: Fermionisches Mehrteilchensysteme, Husimi-Maf, Semiklassische Skalierung, Schédinger-

gleichung, Coulomb Potential, Vlasov-Poisson Gleichung, BBGKY Verfahren, Bogoliubov Abbildung.
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Chapter 1

Introduction

Prior to the 20th century, the physical understanding of the world was thought to be governed by newto-
nian mechanics. However, as experimental abilities improved at the turn of century, physicists unveiled an
increasing number of discrepancies between classical physics and what was observed in their labs. Thus,
classical mechanics can no longer adequately explain the phenomenon in both macro- and microscopic level.
The first fundamental change was the discovery of wave-particle duality, i.e. that light can behave both like
particle and wave. The second fundamental change is the probabilistic nature of particles which was shown
in the famous ‘Young’s double-slit’ experiment, invalidating the deterministic nature of newtonian physics.
From Young’s experiment, it was shown that the collection of identical electrons can behave like a wave. In
fact, it evolves in a wave-like equation and one may determine the position of an electron with respect of
time, in a certain likelihood, by solving the so-called Schrédinger equation. This set the genesis for the field
of quantum mechanics.

In quantum mechanics, physical quantities such as energy, position and momentum are represented by
operators in a Hilbert space H over complex space. In three dimensional space, the corresponding wave

function for the particle is defined as a mapping 1 : R3 — C and its normalization is given by

/ dz (@) =1,
RS

for all z € R3.
Introducing the position and momentum operators on H as X and P respectively, the First Quantization

of position and momentum given by the following equations

Xp(z) =z (),

. d
Py(x) = —zﬁ%d)(:ﬂ)



Observe that even if 1) belongs to L%-space, the function x1(z) may not be in L? space. Moreover, 971
could also fail to be in L? space. This means that the operator X and P could be unbounded. Therefore, a
domain derived from a suitable subspace of L? needs to be defined. This could be done with application from
spectral theories with certain Hermitian assumption on the Hamiltonian. Nevertheless, this thesis will not
itself concern about the unbounded momentum and position operators, instead we assume that the operators
in the Hilbert space is bounded.

Furthermore, we observe that the momentum and position operator are self-adjoint, i.e. for all ¢, 1) € L?

<¢7X"/1>L2(R) = <X¢a¢>L2(R) )
<¢7 P7/1>L2(]R) = <P¢, 7//>L2(]R) .

The Heisenberg uncertainty principle can be expressed by the following inequality

h

(s X200 (3, PP > (2)2. (1.0.1)

The left hand side of (|1.0.1) can be interpreted as the variance of the observables. The inequality implies
that one cannot observe the position of a particle with certainty without giving up the certainty in observing

its momentum vice versa.

1.1 Many-particles system

Suppose now we have N particles in a system of the same type (i.e., either bosons or fermions), the Hilbert
space of this system is L2(R3"), and that the time-dependent wave function ¢y ; € L?(R3") has the following

normalization

1= [ elZn = // doy - dey [ona(ass.. . an)P,

for all t > 0.
The Hamiltonian for N-body particles given by
h &

N
ON
Hy = = Ay, + 72\/(% — ), (1.1.1)
Jj=1 i#]

where A, is the Laplacian operator acting on j-particle and oy is the coupling constant that is to be chosen
depending on the type of particlesﬂ The first term on the left hand side of (1.1.1)) corresponds to the kinetic

energy of the system and the term V in the second term is the interaction potential. We will make further

n fact, for bosons and fermions, the coupling constant o is N=! and N~2/3 respectively.



assumptions for the term V later in this thesis.

For all t > 0, the time-dependent Schrédinger equation for N-identical particles can be expressed by

ihOsn+ = HNYn +,

YN0 = VN,

where ¥y, € L>(R?*Y) and initial data ¥y is given.

We assume here that identical particles are indistinguishable. This means that the wave-function should
represent the same physical state as the original wave-function if we exchange, for example, position x; and
xj, for ¢ # j. In Hilbert space, this means that the new and old wave-function may differ by a constant that

has modulus of 1, i.e., forall 1 <i < j < N,

’(/)N,t(xl,...,mi,...,J}j,...,l‘N) :(JéwN7t(l‘1,...,.Ij,...,mi,...,J}N), (112)

where |a| = 1. If we switch again the position of any two particles we have a1y ;. Therefore, a can take the
value 1 or —1, depending on the spin of the particle. For example, if a particle is spinless, « takes a value of
1 and the corresponding Hilbert space for spinless N particles is the symmetric subspace of L?(R3Y). This
is known as bosons. Conversely, if a particle has spin of half of odd-integer (e.g. %, %, ...), then « takes the
value —1 and its corresponding Hilbert space is an anti-symmetric subspace of L?(R3Y). The particle of the
latter type is known as fermion. In this thesis, we will not focus on the spin of particles.

Since particles are assumed to be indisguishable, the corresponding probability density remains equal,
ie.

2 2
N (@1, oz, an)|] = UNa(@, g, T, e

for both bosons and fermions.

Analyzing the behavior with a large quantity of particles proved to be difficult, as solving the Schrédinger
equation with very large N becomes computationally expensive. Thus, it is highly recommended to approx-
imate the expectation values of observables by employing their corresponding effective evolution equations.
To this effect, it is useful to consider a density matrix instead of describing the many particle systems as a
whole. In the following, we will briefly introduce the aforementioned density matrix.

Suppose a physical observable can be associated with a self-adjoint opertor O in H. The expectation of

the observables for a given wave function ) € L?(R3") can then be calculated as follows,

(6,00) = [+f &x 06 (00) (),

where we denote x := (z1,...,znN).



Let T to be a positive semidefinite trace class operator in H with trace equals to one, we define its integral

kernel I'(zy,...,ZN;Y1,---,yn) such that, for d any ¢ € L2(R3Y),
(00) (9= [-f (@)*" Tay)v).

where we denote y := (y1,...,yn) and (dy)®" := dy, ---dyy. Let {e(j)}é-\’:1 be a family of orthonormal

bases in L2(R3*N), T is called a pure-state density matriz when it takes the following form

S () (@)
— J J
= S|

On the other hand, I' is called a mized-state density matriz when

- (CAVRE))
F:jz_:l)\j’e] ><ej ‘,

where {);}52, satisfies
oo

dAj=land M=M= >0
j=1

The expectation value of an observable associated O is given by
N . .
TrOT = (1, 0) and TrOT = 3 A; (e, 0e)) (1.1.3)
j=1

for pure and mixed states respectivelyﬂ In this thesis, we will focus only on pure state.

Furthermore, the total energy is given by
E(Y) =Tr HyI' = TrTHy,

where Hy is the Hamiltonian defined in (|1.1.1]).
Assume that the quantum system has only one type of indistinguishable particles, i.e. bosons or fermions.
The expectation of observables can be represented such that it depends only on a small number of particles,

1 < k < N. Namely, denoting the k-reduced particle density as

N!
(k) — o TR, (1.1.4)

2Note here that the convention of inner-product in this thesis is (4, B) = [ AB.



and its corresponding integral kernel can be expressed by

N

!
V(k)(fﬂlw-~>33k§il/1>~-~7yN) = m/‘/dlel"'deNF(CUla~~7$N§y17--~7yk75€k+1>~-~al’N)~

The expectation value of any k-observables O®) is written as

NI
gy Te OWA ).

Tr(0% @ 1)1 — =

Observe that by the above definition, the k-reduced particle matrix v*) is also a positive semidefinite

trace-class operator and that the ‘complete’ trace is

Tryk) = -
YTV )

We say that a positive semidefinite operator v(!) with Tr~y() is admissible if it is the 1-particle reduction
of T on the N-particle space. As discussed in [LS09], though v(*) for N-bosonic state is admissible, it does
not necessary hold for fermionic case. In fact, to summarize Theorem 3.1 and Theorem 3.2 respectively in

[LS09], the following statements for bosons and fermions respectively:

1. For all N > 2, there is a bosonic N-particle density matrix such that v(!) = NTeNV-DT,

2. Due to Pauli exclusion principle, there exists a fermionic N-particle density matrix
AW = NTe V=D

if and only if
+M < I (1.1.5)

Denoting observable of j-th particle as O; =1®---® O ®---® 1 to be a self-adjoint operator in Hilbert

space, the expected value of such observable in terms of one-particle density matrix, i.e.

(,019) = Tr O1yW.

The benefit of dealing with a reduced-particle density matrix is that by finding an approximating effective
equation that describes the system one avoids having to deal with the N-particle state v. For the fermionic

case, this can lead to the Hartree-Fock equation which will be discussed later in the following section.



1.1.1 Large fermionic system

In this subsection, we will focus on the particle system consists of only fermions and briefly introduce its
corresponding Hartree-Fock theory and equation. Then, a brief discussion of semiclassical structure will be
presented in order to see the relation between the particle density matrix and Wigner measure more clearly.

Observe first that the L2-subspace for indistinguishable fermions is the antisymmetric space is defined as

N
NLP(R?) = {¢ns € L*(R*N) 1 hny(Trn(1), - > Ta(wy) = e(m)Un (@1, . 2n) } (1.1.6)

for all ¢ > 0 and e(m) is the sign of odd-permutations. This corresponds to with o = —1. In this
thesis, we will consider a system of interacting fermions as described by its corresponding Hamiltonian given
in . In fact, as discussed in [BBP™16, [BPS14al, [EESY04], it is known that a system of fermions that
is initially confined in a volume of order one has kinetic energy of order N°/3 due to the Pauli exclusion
principle. This implies that the coupling constant should be chosen as N~1/3 to balance the order of the
kinetic energy and the potential energy, the latter is of order N2. Thus, the mean-field Hamiltonian acting

on L2(R3N) is given by the following equation:

- 1 R
HN = _izlAIj +W§V(LL‘Z—{EJ)
1= 1]

The time-dependent Schréodinger equation is given by

ia‘rwN,‘r = E[NwNﬂ'?

for all Y, € L2(R3*N) and 7 > 0. Since the average kinetic energy for each fermionic particle is of order
N?2/3 then its average velocity is of order N'/3. Therefore, in the mean-field regime, the time evolution of
the fermion system is expected to be of order N~1/3. Rescaling the time variable t = N/37, one obtains
the following Schriédinger equation for N fermions:
A S
iNSOng = | ) -5+ e > Viwi— ;) | ¥ns (1.1.7)

i=1 S it

for all Yy € AV L2(R3) and time ¢ € [0, 00). Denoting the semiclassical scale as

1

3The semiclassical scaling considered here is related to the Planck’s constant. Such a scale has been studied extensively for
Thomas-Fermi and Hartree-Fock theory (see [LS73|). Other coupling constants for different systems have also been considered
and summarized in [BBP116].



and multiply (1.1.7) by A2 on both side, we obtain

N hg

N
. 1
zh@th,t = Z —?Aj + ﬁ Z V(ﬂ?l — .%'j) '(/JN,t~ (1.1.9)

j=1 i#j
Therefore, the corresponding Hamiltonian that will be considered throughout this thesis is the following:
N2 1 X
Hy :;—?AJ’—FW;V@H—Z‘]‘) (1.1.10)

Remark 1.1.1. Observe that the Hamiltonian given in (1.1.10f) yields the Thomas-Fermi energy

M (p) = /dx gcTFp(w) + %//dwdy Vi(z —y)p()p(y), (1.1.11)

where normalized momentum p € (L*(R3) N L3 (R?)) is the minimizer of the functional and cry is the
Thomas-Fermi constant. See [LS09] for more details.

Denoting 7](\}) = 71(\}7)0 as l-particle density matrix associated with initial state 1)n := 1N, confined in

volume of order 1. Then, choosing the initial data to be Slater determinant, i.e. for any family of orthonormal

bases {e;}¥.; C L?(R?), one obtains
PR (g, ay) = (NN 72 det{e; ()} N

N
=c(0) > [ ew) ()

0€Sy =1

(1.1.12)

where S, be the group of odd permutation, and (o) is the sign function corresponding to the odd permu-
tation. This choice ensures us the ¢y = wil,am(a:l, ..., xy) satisfies the antisymmetrized state described in
(1.1.6).

Given initial data being Slater determinant, its corresponding 1-particle density function can be written

as
N

wy =Y lej)e;l, (1.1.13)

Jj=1

where integral kernel is given by Zjvzl e;(y)e;(z). Then, one may obtain the following Hartree-Fock energy:

N N2
ERF (wy) = ;/Rs dz |Ve;(z)|” + % //dxdy p(@)ply) = (3 )| , (1.1.14)

|z —yl

where p(z) := wy(z;2) = Z;\le lej|? is the diagonal of the kernel w.



For dynamic case, if we set wy,; = Zjvzl lej.+)(ej.¢| where {e;} is a family of orthonormal base of L?(R)

for every t > 0. Then, the initial-value problem of Hartree-Fock equation can be written as

thOwn: = [—th + (Vxp) — Xy, WN,t] ) (1.1.15)

N
Wi,y = 2je leiNesl,

where p(x;x) = %wN’t(x; x) is the normalised density of particles at z, and the exchange operator X; has
the integral kernel of Xy(z;y) = %V (2 — y)wn i (z;y).

Remark 1.1.2. In [BPS14a), Proposition A.1], it is proven that if one assumes [dp (1 + |p|2)X7(p) < 00, then
the exchange term X; in the Hartree-Fock equation vanishes as N tends to infinity. Moreover, they also
proved that if the initial data for the time-dependent Schrédinger equation from (|1.1.9)) is Slater-determinant,

then the solution is close to factorized form of Slater determinant.

Semiclassical structure and Wigner measure

In this subsection, we examine the semi-classical structure for Hartree-Fock as presented in [BPS14al. First,
note that the energy minimizer of the Hartree-Fock energy in (1.1.14)) is expected to be characterized by a
semiclassical structure. In fact, we expect the kernel of reduced particle density to be concentrated close to

the diagonal, and decays off-diagonally at |z — y| > h.

Suppose, there are initially N fermions moving in a box of volume one with a periodic boundary condition.
Furthermore, assume the initial condition to be Slater determinant constructed with the plane waves e™*,
with [p| < ¢N'/3, for some constant ¢ so that the total number of orbitals equals to N. Now, with this

set-up, we define the kernel of the corresponding one-particle reduced density as

w(z;y) = Z e (=),

|p|<eN1/3

Letting ¢ := hp with ik = N~1/3, the kernel can be rewritten as

wlaiy) = 3 e

lg|<ce

1

~%3
h {q€R?; |q|<c}

(1.1.16)

dg el
Then, by spherical transformation, we let

q1 =tcos b,



qo =t cos 01 sin Oy

q3 =t sin 0 sin 05.
The corresponding Jacobian determinant is hence given by

detJ(r,01,0,) = t*sin 6.

Now, chosing z-axis along =¥ and denote || := |

/ PR3 dg :/ ]l‘qlgceiq-f dg
lg|<c R3

c 27 T
— / dt/ d92 / del ez(t cos 01,t cos 01 sin 0s,t sin 01 sin 92)-§t2 sin 91

27
/ dt/ d92/ dfy et oos gl gin g,
=27r/ (/ eiteosttnlé] ging, d91>t dt
0 0

c 1 s
:27_(_/ |: elt cos 01|€|:| t2 dt
0 Zt‘§| 0

—on /(t|£| sin(t[¢])dt

|§| / tsin(t|€])d

dr (sn(e)
- ( g “"”)

Therefore, we have

w(z;y) = %%7 <Ihy> (1.1.17)

where we denote

. L Am sin(c|z|)
o) = (5

for any z € R®. From equation (1.1.17), if we fix 7 and N, then we observe that w(x;%y) decays to zero for

- ccos<c|z|>) ,

|z — y| > h. Therefore, we may make an informed guess that the 1-particle density matrix is approximated

to

w(m;y)%%so <x;y>x<x;y) (1.1.18)

for appropriate function ¢ and x, or any linear combination of such kernels. Note here that y fixes the

density of the particles in space and that ¢ determines the momentum distribution as discussed in [BPS14al.



Differentiating the right side of (I.1.18) w.r.t. to = or y, we will obtain the constant A~'. For any test

function ¢ € C§°, this implies that the commutator [V,w], is characterized by

/ V.0 (2 9)(y)dy = / (Vato(a: ) S(y)dy — / w(w; ) (Vy () dy
_ / (Vaw(z; ) d(y)dy + / (Vyw(z: ) é(y)dy
- / (Vo + V)l ) d(y)dy.

Hence, the integral kernel of [V, w] is

V,0] (2;9) = (Vi + V) )w(z;y) = %@ (m - y> VX (x ; y) . (1.1.19)

Note here that the derivative in the commutator falls onto the y distribution.

Remark 1.1.3. Observe that we do not get any factor of A~! from the derivation in , ie.
Tr|[V,w]| < CN. (1.1.20)

The fact that w(x;y) decays to zero as |z — y| > & suggests that the kernel of [z,w] given by
[z, w](z,y) = (z — y)w(z;y), (1.1.21)

is smaller than w by order A.[BPS14al

On the other hand, we observe that the ¢ in (1.1.17)) does not decay particularly fast at infinity. Therefore,
it is not clear that we can extract A factor from the difference (z — y) from the right hand side of (|1.1.21]).

Computing the commutator of reduced density w with a multiplication operator "% for fixed r € (27)Z?,

)

we have by definition that

[ez’r-x, w] _ Z ( ‘ei(r-&-p)'a: ><eip.x _

|p|<eN1/3

eip‘a:><ei(r+p)~z

Computing the modulus square of the commutator above gives us

(1.1.22)

’ [eir‘w, w] |2 — W[eirw’w] — Z |eip~a;> <eip~z

pel-

)

10



where we denote
I, .= (2m)Z* N {p ER® |p—r|<eNY2 & |p| = eNY3 or|p—r|=eNY2 & |p| < ch/S} .
Observe that | [e”'l, w] |2 = ’ [e"‘”,w] |, one arrives at the following inequality.
Tr|[e"*, w]| < CNRJr|. (1.1.23)

Hence, the trace norm of the commutator is smaller, by a factor of A, than with the norm of operators
ey and we?®. The fact that the kernel w(x;y) is supported near the diagonal allows us to extract
ir-x

additional A-factor from the trace norm of [e ,w}.

Notice that if we considered the Hilbert-Schmidt(HS) norm of [e”“,w] and (|1.1.22)), one gets

e, w] s = (Te[[e=w][*) " < (CNRI)E. (1.1.24)

In other words, the HS norm of [e”'m,w] is smaller, by factor of h%, than HS-norm of e *w and we®™®.
This is consistent the fact that ¢ in equation does not decay fast enough at infinity (follows from
the fact that w is a projection corresponding to a characteristic function in momentum space).

Note that in the dynamic case, the corresponding semiclassical structure suggests that reduced particle
density operator can be approximated by Weyl-quantization. In particular, the k-particle Wigner measure

is defined as follows
ngiz(xlﬂplﬂ ce 7Ik7pk)
N -1 h, h h h iy . .
= (k) /-/(dy)®’f%(\lr€,)t (m + 52/1, s T+ §yk;x1 — iyl’ T — 2yk) e~ i i i v,

where 'y%c)t is the kernel of the k-reduced particle density defined in (2.1.9).

(1.1.25)

Remark 1.1.4. At initial time, v¥) in (T.T.25) is just the initial data of Hartree-Fock wy when we consider
the Slater determinant. As proven in [BPS14al, the solution of Hartree-Fock wj(\];)t is close to 'y](\];)t, the latter

characterizes the solution to the Schrédinger equation.

The Weyl-transformation of a given wave function ¢y € L?(R?*") is defined by the following operator

N\ L
Opyy [ (@1 - TN Y1, - yN) = (kz) Y Opwlenl(@a. iy v), (1.1.26)

1<ii << <N

11



where its kernel is defined as

T+ T + ik
Opt [on] (21, Tui g, - yk) :/ <dp>®’“¢N( A, ‘“zyk)eﬁijlpf<f W, (11.27)
R
where (dp)®’C :=dpy - - - dpy.

Coming back to equation (1.1.18]). If we define ®(z,p) = x (|p| < (67r2p(a:)%)>, where p minimizes
(1.1.11f). Then, by (1.1.17)), one obtains

w(w;y) = Opy'[@](z3 y).
It is remarked in [BPS14a] that the following commutators holds in semiclassical structure,

[z,w] = fihOp%;(,h[foI)],

[V.w] = Opy' [V ).
Observe that, for a given test function @, the following hold

Tr @[z]w ::/d:r O(2)w(z;x) = N//d:z:dp O(x)Wht(z,p),
Tr ®[ihV]w :N//dxdp O(p)Wi (2, p).

With the foundation for Wigner measure established in the preceding discussion, we are now ready to

review the existing literature on the topic of effective equations for large fermionic system.

1.2 Effective equation for large fermionic system: Literature

In this section, we will discuss the current state of art surrounding the topics of effective equation for large
fermionic system. In particular, we will review the existing research from N-fermionic Schrédinger equation

to Vlasov equation. To that effect, we will first give a brief literature review on the Vlasov-Poisson equation.

1.2.1 The Vlasov-Poisson equation

As will be shown later in subsection [1.2.2] it is postulated that one is able to derive the Vlasov equation
in from Schrodinger equation when taking the limits. In this subsection, we briefly introduce the
Vlasov-Poisson equation and the existing literature surrounding the topic.

The Vlasov-Poisson equation is a combination of Vlasov equation and Poisson’s equation for electric

charge. In this system, the interaction potential is repulsive, i.e. V' > 0. On the other hand, the Vlasov-
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Poisson equation can also model galactic dynamics by considering the interaction term as gravitational force,
i.e. that the interaction term is attractive V' < 0.

In fact, denoting the phase-space as (q,p) € R?® x R? and let time t € (0,00), we consider f;(q,p) =
f(t,q,p) to be a smooth non-negative probability density function f : T' — [0,00). Denoting the domain

I':=(0,7] x R? x R3 for some fixed T > 0, the Vlasov-Poisson system with initial data fy is given as

Oufe(q,p) +p-Vofila,p) + Ee(q) - Vpfilg,p) =0  in T,
oi(q) = [dp fi(a,p) in (0,00) x R3, (1.2.1)

Ei(q) =7 [dg Qt((h)ﬁ in  (0,00) x R3.

In (1.2.1)), the term f; represents the density of particles at position ¢ with momentum p, g; represents
the spatial distribution of particles and E} is the electric field (repulsive case) v = 1, or gravitational field
(attractive case) v = —1.

Note that the Vlasov-Poisson system in (1.2.1)) can be rewritten as a transport equation, i.e.
Ocft + b - Vypfi =0,

where b:(q,p) = (p, E+(q)) is divergence-free. Furthermore, the vector field E; can be written as B, = —V,V,
where the potential V, is the solves

AV, =~p; in R?,
¢ (1.2.2)

hIIl|q|_>OO Vg(q) = 0.
Additionally, if we define Coulomb potential V (g) := |q| =, then we have E:(q) = —yV4(V*0:)(q). Therefore,

we can simplify the systems by the following nonlinear partial differential equation:

Oifie(q,p) +p-Vafila,p) =v(VV x 0)(q), (1.2.3)

for a given fj.

The global existence of classical solution to the Vlasov-Poisson in 3 dimensions is proven in [Pfa92] and
[LP91] for a general class of initial data. The uniqueness of the solution is proven in [LP91] for initial datum
with strong moment conditions and integrability. Furthermore, the global existence of weak solution is
provided in [Ars75] for bounded initial data and kinetic energy. The result is then relaxed to only LP-bound
for p > 1 in [GT15]. Existence results with symmetric initial data is proven in [Bat77, [Dob79, [Sch87|. In
[Loe06], the uniqueness of the solution is also proven for bounded macroscopic density. For other results on

the well-posedness of Vlasov-Poisson equation, we refer to the works in [ACF14, BBC16|, [HN8I1] to list a few.
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1.2.2 The limits from many particles system to Vlasov equation

In section [} we discussed about the computational challenges when one is faced with a many particles
system. It is therefore interesting to analyze the mean-field and semiclassical regime for larger fermionic
systems. In this subsection, we will discuss the existing literature on the topic of effective equation for large
fermionic system.

The analysis of mean-field limit, i,e. from the Schrédinger equation to the Hartree-Fock equation, has
been studied extensively. In [EESY04], assuming that the Slater determinant constitutes the initial data
and a regular interaction, the convergence is obtained by the use of the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy method for short times. In [BPS14a], the rates of convergence in both the trace
norm and Hilbert-Schmidt norm for pure states are obtained in the framework of second quantization.
The extension to mixed states has been considered in |[BJPT16| for a positive temperature and for the
relativistic case in [BPS14b]. Furthermore, by utilizing the Fefferman-de la Llave decomposition presented
in [BBP™ 16| [FL.86, [HS02], the rate of convergence, with more assumptions on the initial data is obtained
in [PRSS17] for Coulomb potential and in [Safl7] for inverse power law potential. Further literature on the
mean-field limit for fermionic cases can be found in [FK11l [Pet14), [Pet17, [PP16].

The semiclassical limit from the Hartree-Fock equation to the Vlasov equation has also been extensively
studied. In [LP93|, this is achieved by using the Wigner-Weyl transformation of the density matrix. In
[BPSS16], the authors compared the inverse Wigner transform of the Vlasov solution and the solution of the
Hartree-Fock equation and obtained the rate of convergence in the trace norm as well as the Hilbert-Schmidt
norm with regular assumptions on the initial data. In fact, [BPSS16, [Saf20a] utilized the k-particle Wigner

measure defined in (1.1.25))
As suggested in [BPSS16], suppose X; = 0 in ([1.1.15)), one obtains

) 1 . h h i
ithO Wy (z,p) = W /dyzh@th\r,t (m + iy;x — 2y) e Py

1 ) h h h
= n)? /dy [( — WA ny + (Vxpe) (2 + 2y)>wv,t <x + oy - 2y>

h h h ,
+ <h2Ax—§y — (V * pt)(z - 2y)>wN7t (z + YT = 2y> }ew.y
K2 h h in.
= (2ﬂ)3/dy<Am+gy+Amgy>wN,t <x+2y;x2y>e Py

+ g [ W |V )t ) = (V)= o (4 G = ) e

(1.2.4)
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Observe that

2 h h h h
—ﬁvw - Vywn i (m + SYT 2y> = -V, - (VgHgwa,t (x + QYT 2y> )
h h
+ V- (ngwa,t (x + SYT = 2y> >
h h h h
= 7AI+%wa7t <x + -y — y> + AI_%wa,t (:l: + -y — y>

2 2 2 2

h h
= |:_Ax+gy+Ax—gy:|wN7t <x+2y;x—2y).

Moreover, by Taylor’s expansion with respect to & around 0, we get

V)t 50 = (V 5 )0+ (50) -9V % 01)0) + O2),

(V * pt)(x — gy) = (V * pt)(gc) — (Zy) . V(V * pt) (x) + O(h?).

This implies that

(Vo pe) (@ + gy) — (Vo pe) (2 = gy) = (hy) - V(V * p;) () + O(h?).

Then from (1.2.4]), we have

, 2h h h —ip.
iho Wi t(x,p) = —(2ﬂ)3 /dy <V$ . Vy)‘”NJ <9€ + 5?/;33 - 2y) e "y
1.2.5
+ /d (Vo pr)(@) e y) o) Y
(27'(')3 yy Pt )\T wN,t X 2y7x 23/ )

where 7 is re-scaled with time ¢ for convenient purposes. Apply integration by parts w.r.t. y on equation

[C25), we have

, 2 h A\ .
ihd- Wy (z,p) = — va/dy Vywn,t <9€ + YT — 23/) e "

1 h h .
+ hV(V * pt)(a:)w/dyy CWN <x + YT = 2y) e~ Y 4 O(h?)

1 h h )
= Qvaw /dyWN,t <$ + §y, T — 2y> vye_lp-y

. 1 h h N _ip.
+ th(V * pt)(x)W /dwa,t (x + §y; T — 2y) (—i)ye Y + 0(52)

= _Qth : VzWN,t(xvp)

_ 1 h h —in.
+ ihV (V x py) (z) - )2 /dwat <x + QYT — 2y> Ve PV 4 O(h?)
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= —2ilp - Vo Wi o(z,p) +ihV (V * pi) (2) - VWi (@, p) + O(R?).
Dividing both sides by i% factor and taking the semi-classical limit, we get the following Vlasov equation
O-Wn(x,p) +2p- VoWn(x,p) = V(V * pt) () - VpWh i (z,p) + O(R). (1.2.6)

As a matter of fact, in [BPSS16], it has been shown that the convergence rate in Hilbert-Schmidt norm
from the Hartree-Fock to the Vlasov equation is of order i%/7 for sufficiently regularized initial data as well
as the interaction potential satisfies the inequality VelLl (Rs, 1+ |p|4)dp).

The works in this direction have also been extended for the inverse power law potential in [Saf20b],
rate of convergence in the Schatten norm in [LS20], Coulomb potential and mixed states in [Saf20a], and
convergence in the Wasserstein distance in [Lafl9al [LafI9b]. The convergence of the relativistic Hartree
dynamic to the relativistic Vlasov equation was considered in [DRS1§|. Further analysis of the semiclassical
limit from the Hartree-Fock equation to the Vlasov equation can be found in [APPP11] [AKNT3al [AKN13bl,
GIMS98, MM93].

We can combine both mean-field and semiclassical limits and directly obtain the convergence from the
Schrédinger equation to the Vlasov equation. The notable pioneers in this direction are Narnhofer and Sewell
in [NS81] and Spohn in [Spo81]. They proved the limit from the Schrédinger equation to Vlasov, in which the
interaction potential V' is assumed to be analytic in [NS81] and C? in [Spo81]. The rate of convergence of the
combined limit in terms of the Wasserstein pseudo-distance was obtained in [GP17, [GPP18, [GP19, [GP21].
In fact, the authors studied the rate of convergence in terms of the Wasserstein distance by treating the
Vlasov equation as a transport equation and applying the Dobrushin estimate with appropriately chosen
initial data. Then, the result for the Husimi measure was obtained by convoluting the Wigner measure in
the spirit of with a specifically chosen coherent state. In this thesis, we consider instead a more
generalized coherent state. Recently, the combined limit for the singular potential case was obtained in
[CLS21] where they showed the derivation of the Vlasov equation using the weighted Schatten norm with a
higher moment assumptions, as well as some strong conditions on the initial data.

It is known, however, that the Wigner measure is not a true probability density as it may be negative in
certain phase-space. We show this numerically in Figure for selected Fock states. In [KRSLO7], a vis-a-vis
comparison of the classical and quantum systems of a nonlinear Duffing resonator shows that the classical
system develops a probability density in the traditional sense, while the quantum system yields a negative
region in phase space corresponding to the Wigner measure. In fact, it is proven in [Hud74, MKC09, [SC83]
that the Wigner measure is nonnegative if and only if the pure quantum states are Gaussian. Additionally, in
[BW95], it is shown that the Wigner measure is nonnegative only if the wave function is a convex combination

of coherent states. The issue of incompatibility between the quantum Wigner and classical regimes remains
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an open question [Cas08].
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Figure 1.1: Negative Region in Wigner measure.
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Figure 1.2: Relations of N-fermionic Schrédinger systems to other mean-field equations [GMP16] [GP17,
CLIL2Tal.

Nevertheless, it is shown that one can obtain a nonnegative probability measure by taking the convolution
of the Wigner measure with a Gaussian function as a mollifier; this is known as the Husimi measure [FLS18|
Rob12, [Zha08]. As shown later in Lemma the relation between the Husimi measure and Wigner
measure is given by the following convolution with a specific Gaussian coherent state. In particular, let mg\?)t
be the k-particle Husimi measure and G" := (wh) 3" exp ( — h*1(2?21 ;1% + [p;|?)), the following equality

holds

N(N—=1)-(N—k+1
m, = M )N,E D)« g, (1.2.7)

for any 1 < k < N. Hence, it is interesting to study the convergence by using Husimi measure. In the next

section, we will discuss the motivation and the goals of this thesis.

1.3 Main Goals of the Thesis

The smoothing of the Wigner measure shown in (|1.2.7) motivates the objective of our study: to obtain the
Vlasov-Poisson equation from the Schrédinger equation in terms of the Husimi measureﬁ In particular,
this thesis aims to study the time dependent Schrédinger equation for large spinless fermions with the

1/3 in three dimensions by using the Husimi measure defined by coherent states.

semiclassical scale h = N~
In doing so, we will derive the Schrédinger equation into a BBGKY type of hierarchy for the k particle Husimi
measure. Then, the weak limit of Husime measure is obtained by making use of the weak compactness of
the Husimi measure and the uniform estimates for the remainder terms. Then, in similar fashion, we obtain
the convergence result with a more relaxed assumption on interaction potential by considering a repulsive
interaction that is regularized Coulomb with a polynomial cutoff with respect to N. Lastly, using the

Bogoliubov theory, we show the combined-limit result with a regularized interaction potential.

This thesis will be organized as follows. In chapter 2] we set the foundation of our analysis by introducing

4See Figure

18



Fock Space, Bogoliubov theory, Husimi measure and its relations with Wigner measure, as well as the relevant
properties of Husimi measure. On top of that, useful a priori estimates such the bound on localized number
of particle operator and estimation of oscillation.

With the foundation laid out, we begin in chapter [3]by deriving the Vlasov hierarchy from the convergence
from Schrédinger equation and followed by analyzing its corresponding combined convergence to Vlasov
equation under the framework that the interaction term is assumed to be V € W2°°(R3). Building on the
Vlasov structure from the preceding chapter, we further study the combined convergence from Schrédinger
equation to Vlasov-Poisson equation in chapter [4 by considering the repulsive Coulomb potential with an
algebraic cut-off. Lastly, for a different perspective, we explore in chapter [5| the tools developed around
Bogoliubov transformation and use it to obtain the combined convergence with the Fourier transformation

of interaction term satisfying V e L'(R3;|k|2 dk).
Remarks on notations

The following are some helpful remarks on the notations in this thesis:

1. Unless specified, the norm || - || and inner-product { - ,- ) without subscript will be defined as the

norm and inner-product in Fock space.

2. Unless specified, the domain of each integral is always given as whole space R?, i.e. [dzx f(z) =

Jgs dz f(z) for any z € R®.
3. The norm in LP-space is denoted as || - [|, = || - || sgs) for 1 <p < oo

4. For any vectors v, ¢ in Hilbert space H, the outer product [1))X¢| acting on an operator O in H is
defined by (¢, O), .

5. The trace norm will be denoted as [|O||,, Hilbert-Schmidt norm as [|Ol|g, and operator norm as

|01, for given bounded operator O.

6. For any trace class operators O, P, it holds that [|O||,, < [[Ollgs < O]y, [|OP| 1, < [[Ollgs| Pl
and [[OP||gg < [|O|| || P|lgs- (See [RS80] for more details).

7. For any function f,g:R? — R and k € N, we denote (fg)®k (x1,- - xg) = szl f(zi)g(z;), as well

as the notation (dz)®* := dx; - - - dxy.

8. Let A and B to be any bounded operators H, the commutator and anti-commutator are defined as

[A,B] = AB — BA and {A, B} = AB + BA respectively.

9. The constant C € Ry is defined as an universal constant, of which its dependencies will be stated

only when relevant.
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Chapter 2

Preliminaries

In this chapter, we will briefly introduce the Fock Space, Bogoliubov transformation and present useful a

priori estimates that will be used later.

2.1 Fock space

In the study of large particle systems, we expect the operators to interact with the different Hilbert spaces of
the N-particle system by creating and annihilating particles. Therefore, to analyze a large particle system,
it is convenient for us to build a ‘larger’ Hilbert space that preserves the canonical relations and has the
norm || - ||. This is known as Fock space.

For a large fermionic system in particular, the corresponding Fock space is defined as

n
Fa=Co@p \ L* R,
n>1
where A" L? is the L? space equipped with antisymmetric property as defined in (L.1.6). Moreover, the
vacuum state is denoted as Q =19 000d...0 € F,.
Naturally, L? is the subspace of the Hilbert space, and therefore has well-defined inner-product and norm.
In particular, for ¥, ® € F, and ¢ ™ L?(R3") to be the state in their respective n-sector in F,, we

define the inner product of F, to be

(@, W) = (™, ),

neN
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and their norm

)= ™2,

neN
where we will assume is normalized, i.e. |¥| = 1. Next, we define the number of particle operator N, by
(NT)™) = pap(™), (2.1.1)

for any ¥ = {)(™}, cy. Note here that the number operator on vacuum state (Q, N'Q) is zero since a,Q = 0.

Such a formalism allows us to describe states where the number of particle is not fixed. In particular,
the state in F, characterize a superposition of states with varying number of particles. For example, n-th
sector of the state is characterized by (™. As such, the expectation of the number of particles for the state
in n-th sector is Hw(")Hsz. Note that in Husimi measure, its symmetric property preserves the number of
the states.

Next, we will introduce the creation and annihilation operators in F,.

Definition 2.1.1 (Creation and Annihilation Operators). For any f € L?(R3), we define the creation and

annihilation operators, as
1. Creation operator: a*(f) : \" L2(R3) — A" L2(R3) such that,
1 n+1

N Z(—l)j_lf(xj)w(”)(xl, By Tag)

j=1

(@ ()T (1, . nsn) =

where the hat indicates missing component.

2. Anmihilation operator: a(f): \" L2(R3) — A"~ L2(R3) such that,
(a(H)O) D (r, . wp) = \/ﬁ/dxn Fln)™ (@, ).

Remark 2.1.1. Note here that a*(f) is the adjoint of a(f).
Remark 2.1.2. When applying on a vacuum state €2, we have that o*(f)Q = f and a(f)Q2 = 0.
For systems of fermions, the creation and annihilation operators adhere to Canonical Anticommutator

Relation (CAR). For completeness, we will present the proof as follows.

Lemma 2.1.1 (Canonical Anticommutator Relation). For any operators A and B in Hilbert space H, we

define the Anticommutator as {A, B} :== AB + BA. Then, the following identities holds

1. {a(f),a(9)} =0,

1Taking the convention that /\71 L%(R3) = {0}.
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2. {a*(f),a*(9)} =0,
3. {a(f),a*(9)} = (f, 9)r2
for any f,g € L*(R3).

Proof. 1. We need to show that a(f)a(g)¥ = a(g)a(f)¥ for any ¥ € F,. Consider the n-sector, by

definition we have

(a(f)a(g)\ll)("fz)(xl, ey Tp—2) =Vn — h/ﬁ/d:cn fxy) /dxn_l g(xn_l)i/z(")(ml, ey Tp—1,Ty)
=—-vn-— 1ﬁﬂ dxndxn—lg(xn)f(xn—l)w(n) (xla cees T,y xn—l)

= (@) H)T) (w1, 20 2),

where we used the antisymmetric property of ¥ in second equality.

2. From Remark we exploit the fact that creation operator is adjoint of annihilation operator and

that (AB)* = B* Ax,
{a*(f),a"(9)} = a*(f)a*(9) + a*(9)a*(f) = (al9)a(f) + a(flalg))” = ({a(f), alg)})” = 0.
3. From Remark [2.1.2] testing against the vacuum state Q yields,

{a(f),a"(9)}2 = (a(f)a"(9) + a”(g)a(f)) Q2

aﬁgz/H@ﬁaaw

=(f,9)

Now consider any test function ¥ in n-th sector, we want to show that a(f)a*(¢)¥ + a*(g)a(f)¥ =

(f,9)¥. From definition of creation and annihilation operators,

n+1
(a’(f)a*<g)\ll)(n)(x177xn) = ! [a(f) (Z(_l)j_lg(yj)w(n)(yl,-~-gj7°"7yn+1)>] (‘rlw-w‘rn)

vn+1 o
n+1
/dxn+1 Famn) S (~ 17 L) (@, -y s)
j=1
:(71)2n<f7 >7/1( (Il, <oy I )
/d$n+1f Trg1) Z )™ (21, By Tg)
Jj=1
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= (f,g)qup(")(xl, cey )

= ((£,9)22¥ — a*(9)alH)®) ™ (@1, a0).

|
Next, we observe that creation and annihilation operators defined for fermions are bounded operators:

Lemma 2.1.2. For any function f € L%, let a*(f) and a(f) be the creation and annihilation operators

defined in Definition[2.1.1], then we have

L Ala* (NI < 112
2. [la(HI < (11l

Proof. Suppose any function ¥ € F, such that ||¥| = 1. Then by CAR,

la*(/)|* = (a*(f)¥,a"())¥) = (¥, a(f)a*(f)¥)
= (U, [If]72 %) = (¥,a"(f)a(f)¥)
= 17202 = lla(f)2)”

2
< [ f1Ize-

Similarly
la(HC® = IF1Z 1207 = la() Ll < I IIZe-

It is convenient in this thesis to introduce operator-value distribution a} and a, for the creation and
annihilation operator respectively. Namely, corresponding to the definition given in Definition 2.1.1] we will

henceforth represent the creation and annihilation operator as follows,
a*(f):/dma;f(x), and a(f):/davamm7
for any f € L%. For all f,g € L?, the CAR can be rewritten as
{az,ay} =0, {a},a;} =0, and {az,a;} = 0y=u, (2.1.2)
where §,—, = §(y — x) is the dirac-delta.
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With the help of creation and annihilation operators, we introduce the second quantization formalism

which allows us to conveniently represent the many-body operators in Fock space.

Definition 2.1.2. Let h be a self-adjoint single-particle operator defined on L*(R3). Then its second quan-

tization is an operator on F, defined as,
-3 h
n2>20 i=1
where U € F, and ™ € L?(R*").

Remark 2.1.3. In n-sector, we have (dI' (h)¥)(™ = 3" hyp(™).

Remark 2.1.4. Note that some other literature may write the second quantization for given any orthogonal
basis {fj}jen, Le. dI'(h) =32, 15, (f5, hfi)ajai. [Nam20)

Heuristically, suppose the self-adjoint operator h has an integral kernel, for ¥, ¢ € F, we observe that,

(¢,dT (b ZZ o™ hy 77Z,(n)

n>0i=1
—Z//dxdx®(”1®(")xx1,..., /dyhxy "y, @1, ... )
n=0
—Z//dl’dy dl’ ®(n= 1)(I)(n)(x L1y, & n)/h(mvy)qp(n)(y,xlaaxn)
n>0 (2.1.3)
//dxdyZ// (dz) 2V h(2;9)a, @D (2, . .., 2)ayp ™D (2, ... 2,)
n=0

- // dady h(z;y)(az¢, a,P)

= <¢,/ dzdy h(x;y)a;ay‘l’>,

which implies that
h) = //dxdy h(z;y)asay,. (2.1.4)

Thus, we can rewrite the number operator defined in (2.1.1)) as by replacing h to identity operator 1 in

[214), ie.
dr (1) = /dxa;ax = N. (2.1.5)

Observe here we can extend the single-body operator defined in (2.1.4)) into many-bodies operator. In fact,
let h(*) be an operator on the Hilbert Space /\k L?(R3), then we may have the following second-quantization

representation,

24



dr (ht¥)) = /i/(dxdy)mh(k)(l‘h TR YL - Yk )Gy Oy Gy Oy (2.1.6)

where h®)(zy,... 1;91,...,yx) is the integral kernel of the operator h(*). Thus, we may also write the

corresponding number of particle operator,

Lemma 2.1.3. For every normalized state Yy € F, on N-sector, and the number of particles operator

defined in (2.1.5). Then, the following equality holds
/-/(dm)@)ka;l ey Gy, = NN =1) - (N =k +1). (2.1.7)

Proof. Let k = 2, we compute

* % _ * %
//dxldxg Ay O Qg Oy = —//dxldxg Ay, G, Qg O,
* * *
= //dxldxg Ay Oy Oy, O —//dx1de Oy =20 Uy, Oy

=N? - /dxl ay, Qg

= NN —1).

We extend the Hamilton operator appeared in (1.1.9) acting on L2(R3") to an operator acting on the
Fock space F, by (Hy¥)™ = HS\?)W") with

n

n h? 1 &
’HEV) = ngAIj +5x5 ZV(:CZ —xj).

j=1 i

From the similar calculation in (2.1.3]) we can rewrite the Hamiltonian as follows
h2 * 1 * ok
Hy = 1 dz V,a,Vya, + N drdy V(z — y)aza,a,a.. (2.1.8)

Remark 2.1.5. Observe here that the operator Hy defined above preserves the number of particle, i.e. it

commutes with the number operator V.

Naturally, we may also write the reduced particle densities discussed in Section by its second quanti-
zation form. In fact, for any normalized ¥y ; € F, in N-sector, we define the k-particle density 7%1 having
the kernel

k * *
'y](\,7)t(x1,...,xk;y1 coyk) = (Ung,ay, - ay gy Gz, YN ), (2.1.9)
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where 1 < k < N. Recall from (1.1.4)) that the trace of ’y](\];)t is NI/(N — k)L
The main benefits of using the second quantization formalism is not only that it simplifies the analysis

for many-particles operators, it helps to find the estimates by counting the number of particles.

Bogoliubov transformation

With the framework given, the Cauchy problem for the Schréodinger equation is given as

ihO¥N: =HNU N, (2.1.10)

\I/N,O — \IJ]S\}ater7
for all U, € F, and [Ty .|| =1 for ¢t € [0,T].

Note that the solution to the Schodinger equation in (2.1.10) is Uy = e~ "HNY  where we let ilater

be the initial data characterized by the Slater determinant, given as
eter . — 0@ a0 YT B0 0 =0a"(e1)--a*(en)Q, (2.1.11)

where USter € L2(R3Y) and orthornormal bases {e; ;VZI as defined in (L.I.12).

As the right-hand side of shows, the initial state is obtained by applying an isomorphic mapping
to the vacuum state . Introduced by Bogoliubov in [Bogd7], it is stated that the approximation of the
Hamiltonian for a many-particle system with weak interaction can be described by a quadratic Hamiltonian
in Fock space by using a special class of unitary operators that preserve the canonical commutation relation
algebra for a bosonic gas. For fermionic cases, the treatment with respect to Bogoliubov theory has also
been shown in [BPS14al NNS16| [Sol09] to name a few.

Following [BPS14a], we briefly discuss the Bogoliubov theory here by first defining generalized annihilation

and creation operators as

A(f,9) = a(f) +a*(9), A™(f,9) =a™(f)+a(g),

for any f,g € L?(R3), then we have, for any f1, g1, f2,92 € L?(R3), that

{A(f1,91): A*(f2:.92)} = ((f1,91), (f2:92)) 2 2 (2.1.12)

due to the CAR.
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Next, let J : L? @ L? — L? @ L? be an anti-unitary operator such tha*ﬂ

0 J*
J 0

J =

where J : L?(R3) — L?(R®) be an antilinear operator such that Jf = f. Then, we define a mapping
V:L?® L? — L? ® L? such that, for all (f1,91), (f2,g2) € (L? @ L?), it satisfies

{AV(f1,91)), A*(V(f2,92))} = ((f1,91), (f2,92)) ,

as well as

A*(V(f,9)) = AV(g, f))- (2.1.13)

By [Sol09, Theorem 9.2], the linear bounded isomorphism V : L? @ L? — L? & L? is a Bogoliubov

transformation if and only if it satisfies
VV* =1p2gp2 = V*V and JVJ = V. (2.1.14)

Consequently, given any linear maps u,v : L? — L? and denoting i := JuJ, the fermionic Bogoliubov

map V: L?® L? — L? @ L? is a unitary map given by

u
V= , (2.1.15)
vV ou
where u and v have to satisfy
ufu+v*'v=1, and u*v+v*'a = 0. (2.1.16)

Then, by [Sol09, Theorem 9.5], we say that the Bogoliubov transformation is implementable if there

exists a unitary transformation Ry : F, — F, such that, for all F € L? @ L?,

RYA(f, 9) Ry = AV(f, 9)), (2.1.17)

if and only if the Bogoliubov map V*V given in ([2.1.15)) is a trace class. The latter can be obtained by having
v be a Hilbert-Schmidt operator in our frameworkﬂ In fact, denoting u,(y) := u(y; z) and @, (y) := t(y; z),

?Note here that J = J~! = J*, and A*(f,g) = A(J(f, 9)).[NNS16]
3This is known as the Shale-Stinespring condition.[Ruiz8]
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we have

RyA(fgRy = AL =4 (1 V) (o)
v.ou (2.1.18)

= / dz ((a(us) +a"(v2)) f(2) + / dz (a(Vs) + a*(uz))g(2).

]

On other hand, we have

RyA(f.9)Ry = [ do Ria,Ryf(e) + [ do RiaiRygo)
This implies that the following properties hold

RyazRy = a(ug) + a* (V)
(2.1.19)
RyazRy = a*(uy) + a(vy).

Let g be the 1-particle reduced density associated with some ¥ € F, defined with the integral kernel as
Yo(z;y) = (¥, a50,0).

Note that Try = (¥, N W) = N. We define the pairing density ag as a one-particle operator with an integral
kernel

ay(r;y) = (Y, a,a,¥)
and that ay (z;y) = (¥, a%a; V).
Now, we observe that
(W, A*(f2, 92) A(f1,91)¥) = (¥, (a"(f2) + a(g2)) (a(f1) + a”(91)) ¥)

= //dxdy {(q;,a;am@ﬁ(x)fg(y)+<\I/,a;a;\11>gl(x)f2(y)

+ (¥, aya, ) f1(2)g2(y) + (¥, a,a; V) g1 (x)ga(y)

= <(f1791)7 ™ o (f2792)> = ((f1,91), Tw(f2,92)),

—ay 1%y
where we defined the generalized 1-particle reduced density as

«
reg = " v (2.1.20)

—ay 1—7y
As we are considering the case of the pure state, we have agy = 0. Let ¥ = R, (), where Ry, is the unitary
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map of the Bogoliubov transformation V; then, we have from 1-particle reduced density that
RyvQ,a aIRVQ>

(2.1.21)
Q, [a*(uy) + a(vy)] [a(ue) + a*(V2)] Q)

=
<Q Rva RvaazRVQ>
=
= (W) (@;y) = w(@;y),

where we use (2.1.19)), (2.1.2) and a,Q = 0. Similarly, we can show that ay = vu. As Tryg = N, (2.1.21)

implies that v is a Hilbert-Schmidt operator and therefore is implementable.

As discussed in [BPS14al, [PRSS17], for the Bogoliubov transformation to be implementable, we set that
VNt = Z] 1 [ee.)(er 5| for any orthonormal basis {e;;}}; C L*(R?) and that uy,; := 1 — wy,. In this
setting, the mapping V defined in is an implementable Bogoliubov transformation with a generalized

1-particle reduced density matrix given as

w 0
Tye, = [ : (2.1.22)
0 1- WN,t

for any t > 0E| Furthermore, the initial data with the Slater determinant can be expressed with Ry ,§2;
ie.,

0@ @0® (N) 2 det{e;(z) 1, ®0@ - @0 =Ry, Q. (2.1.23)

Observe that, for ¢ > 0, the solution of the Schrédinger equation given as
Uy =e WHNIRy Q= Ry, Un(t;0)Q, (2.1.24)
where Ry, , is a unitary Bogoliubov mapping and Uy is the quantum fluctuation dynamics defined as follows,
Un(t;8) := R;NyteféﬂN(tfs)RvNYs. (2.1.25)
Since Vn; and Ry, , are unitary mapping, then from , it implies
Run, a® ()R}, = Rik);,’ta#(f)Rv;V,t =Ry, 0% (F)Ryy.,,

for any f € L?(R®) and a# denotes both creation and annihilation operator. Furthermore, as discussed in

4Note that here, we write Ry, , instead of Ry as defined in (2.1.17) to emphasize its dependence on N and t¢.
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[BPS14al, by (2.1.23]) and the property

. a(e;), for i < N,
Ry a"(ei)Ryy, =

a*(e;), for i > N,

where {e;};cy is an orthonormal system on L?(R?), the mapping Ryy., is surjective and preservers the
algebraic structure of the CAR.

For a more structured and pedagogical treatment of Bogoliubov theory, we refer the readers to [BPS16l,

Nam?20, [Sol09].

2.2 Husimi measure

In chapter we have discussed that the Wigner measure is not a true probability distribution, as part
of it may lie in the negative region. E| To overcome this problem, one may ‘smoothen’ the Wigner measure
by using a Gaussian function, which yields a probability measure known as Husimi measure.

As with [FLSI8]|, we formally define the Husimi measure by first defining the coherent state.

Definition 2.2.1 (Coherent State). For p,q,y € R and h be the semiclassical scale, the coherent state is
defined as

_3 Yy—q i,
W) =h1f (\/ﬁ ) enty, (2.2.1)
where the function f any real-valued function with normalization || f|, = 1.

Note here that the function f defined above is allowed to be any real-valued function. Furthermore, as
the function f defined above is a very well localized function in practice [FLS18], we will make the following

assumption throughout the thesis
Assumption H1. The real-valued function f € H*(R3) satisfies | f||, = 1, and has compact support.

Lemma 2.2.1 (Projection of the coherent state, ). Assume . For f;”)p defined as in definition we

have the following projection

(27T1h)3,//dqdp|f5,p>< avl = m%y,//dqdﬂ 2 ) Fan(y) = 1. (22.2)

Additionally, it will be desirable for us to define here the h-weighted Fourier transformation,

5Known as ‘quasiprobability’ distribution, Wigner measure can be negative depending on the state. See Figure
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Definition 2.2.2 (h-weighted Fourier transform). Let f be any real-valued function in L?(R3). We define

the h-weighted Fourier transform of f to be,

1 e
Filflo) = oy [ o s@ehe,

and we denote the corresponding inverse transform by .7:5_1.

From the Definition [2:2.2] we may also derive the corresponding dirac-delta ‘function’. In fact, for any

G,F € L*(R?),
/ dy G(y)F(y) = / dy G // dpdv F(v eﬁ ply=v), (2.2.3)
R3 R3 R3-2

Thus, the dirac-delta distribution corresponding to the Ai-weighted Fourier transform is,

1
= 7P (y—v)
0y (v) Gy /R3 dp en? . (2.2.4)

Now, we are ready to define the Husimi measure. Similar to [Dell6, [FLSTS|, we define it as

Definition 2.2.3 (Husimi Measure). Let fr?k,pk to be the conherent state defined in definition the

k-particle Husimi measure is defined as

mg\];)(qlvplv"‘vqkapk) <wN7 (f41 P1) "(L*( (;ik>Pk)a( 5k’Pk)...a(fqiilapl)wN>’ (225)

where ¥ € L2(R3N). Moreover, we also define the time-dependent Husimi measure mg\lf’)t, by replacing ¥

with wN,t .

Remark 2.2.1. It should be obvious here that the Husimi measure defined above is non-negative due to the

inner-product, as opposed to the possibility of having negative region in Wigner measure as demonstrated
in Figure

Observe here that by the second quantization convention, the Husimi measure can be expressed by

( QI7p17"'7qk7pk:)

Rk
/ o wdn)® (12, @) 00) " (Waasal, -+l au, a0, Une) (2.26)

:/./(dwdu)®k p(W) Zp(u)> W%C)t(uu...,uk;wl,...,wk),

for any ¥y, € F,, where we use the notations

 \®k -
(dwdu)®* := dw,du; - - - dwgpduy, and ( ho(w) (Zp(u)) = H (Z_’pj (wj) £ p, (ug)-

j=1
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Remark 2.2.2. Observe that if the initial data is described by Slater determinant as in (1.1.13)), then the

Husimi measure at initial time is

N
mira,) = Y [ dwrdu £, w0z Goes ) 7 lun), (2.2.7)
j=1

for any family of orthornormal basis {e;}}_, in L*(R?).

The relation between the Husimi measure and the number of particles operator can be expressed as

follows, for the 1-particle Husimi measure my ; := mg\})t,

//dqdp mn,+(g,p) //dqdp//dw1dul o (wn )y (wy ) £ (ur)
o o () (252 () i

= (27rh)3h7%//dq1dw1 f (%)‘ 'YJ(\})t(’wl”lUl)

= (27rh)3/d(7|f(®|2/dw1 Vﬁ’)t(wum)

= (27)°,

where we use the Dirac-delta d,(y) := [ e#?(*=¥) dp.

Next, we prove the following properties of k-particle Husimi measure mg\]f)

Lemma 2.2.2 (Properties of k-particle Husimi measure). Suppose |[¥n ||y =1 = |[[Wn || fort > 0. Then,

the following properties hold true for mg\]f’)t:

1. ms\]f))t(ql,pl,...,thk) is symmetric,
k —1).--(N—
2. W ff(dqdp)®km5\/',)t(qlapl7 . '7Qk7pk) = W;
3. i [[ dgrdpy m) = (N —k+1)miY d
NCCDE ff qrAPk mN,t(q17p1,~"an7pk) ( + )mNﬂ: (QI7p17--~7Qk—1,pk—1)7 an
k
4' 0 < mgv?t(leplr .- ,kapk) < 1 a.e.,

where 1 <k < N.

Proof. 1. Symmetriciy Not that from the second quantization definition of Husimi measure in (2.2.3)), we

have
mg\l;,)t(ql’pl""’qk’pk) <th’ ( q1 pl).“a’*( chk)a( t?k,;ﬂk)” ( q1,P1 th>
= <a( ;Lk Pk) ’ ( q1, Pl)th’ (f% PA) ’ a(fQ1,P1)wN»t> (2'2'8)

- Ha qk,pk) ’ ( q1,p1 q/)NtHQ
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Therefore any permutation of the pair (g;,p;) will be even.

2 and 3. Observe first that

/./(dp)®k ( " (w) // (dp)®* H B ()T )
= n it f[ / (wj\/‘ﬁqf') f (“jJEQj) ([aneimer) @20

2.24) 7T3k (3-23)k wj —4gj Uj —gj )
o 1 (258 (252 0

Therefore, from the definition of Husimi measure,

(2n)F // (dgdp)® (Q17P17'~~7Qk7pk)
W // (dgdwdu)®* [ // (@p)=* (£, () gp(u))@)k] (U@, -y -y Ui

k
= /-/(dqdwdu)@’kh(?’_%)k H f <wj\/_ﬁqj) ¥ (uj\/_ﬁqj) 5wj (uj) <\IJN,t7aZ;1 .. .a;kauk "'aul‘I’N,t>

j=1

:/./(dqdw)mh“g)kﬁ f<wj}hqj) 2

Jj=1

k
- // (@) 5 T] 1 @) (Ut -~ - U

j=1
1 k
= 5 L[ B U@ [ e Qs i )

e1n | //dw1 g (Un s NV = 1) (N — k4 1) W)

N(N—l) (N —k+1)
Nk '

* *
<\Ilet’ aw1 e awka’wk e awl \I’N,t>

(2.2.10)

4. Observe that mg\];) > 0 is obtained directly by its definition. To prove, mg\l;') < 1 observe from ([2.2.8])

and Lemma [2.1.2] we have

mg\]]i)t(thh .. '7qk7pk - H qk, pk) o a(fl?l,pl)/(/)NH;

k
<TT 7 w53 <
j=1



The relation between Husimi measure that of Wigner discussed at ((1.2.7)) is that one can think of Husimi
as the ‘smoothing’ of Wigner by a Gaussian function. In fact, for a specific chosen coherent state, we have

the following equality.

Lemma 2.2.3 (Relation between Wigner and Husimi.). Suppose mg\lf)t be the Husimi measure and let f(x) =

r—3/4e=2l?/2, Then, we have for 1 <k < N,

N(N-1)--(N—k+1)
Nk

k
ms\/,)t(Q1vp17~~~q1mpk) =

(WI(V{?*gh)(qlapla"'qupk)v (2211)

where G" = (mh) ™ exp (— h’l(Z;Ll ;1% + |p;]?)) and Wz(vkl is the Wigner transform of k-particle density
matriz defined in (1.1.25)).

Remark 2.2.3. The lemma above implies that the Husimi measure mg\l,i)t defined in (2.2.6)) coincides with
m{), in ([C27).

Proof. We will prove for the cases for k =1, i.e.,
ms\/)t(qlvpl) ( (1) * gl) (qlapl)‘
From (2.1.9)), we can rewrite m%’)t as follows,

m®, (a1, p1) = g//dwdu e A (la =0l Har—ul?) (g ) o -(w=u)

) , , i (2.2.12)
5/ dwduy e 37 |Q1—w| +lq1—ul ),yt(w;u>egp1'(w—“)

w

We want to then compare the above to the convolution

(WL * G (a1, m) = //dzdv W (z,0)G8 (g1 — 2z,p1 — )

h h ) 2122+ 1p1 —v|2
=1*(h) = //dzdv/dy "t (z + Y%~ 2y> e

By change of variable, one obtains

w o=ty
= dwdu = det(J) dzdy,
u =z gy
where the Jacobian determinant is
ow  Odw
det(J) =det | 22 9| = —p3.
du  Ju
0z dy
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To continue, we have then

(WNli « G (q1,p1)
3 —33-3 — iy (w—u) _la—wH@—wi® _ |pi—v|®
= —h’(7h)~°h dwdu | dv v (w;u)e™ " e h e” .

Letting v = p; — v, then we have
= (wﬁ)ig//dwdu %(w;u)e%’“'(“’*“)e*w /di e~ # (1717 =i(w—u)-D)

Observe that, for all w,u,v € R3,

~ B (w—u) 3 Zlw—u? .
dve » Th =(rh)2 e & = (mwh)2e . (2.2.13)
R3

Therefore, we have

) = wt(a—w)2 | Jw—u|?
4h e 4h

= (7‘(’71)7% //dwdu ’yt(w;u)e%p'(“’*“ e
= (Wh)*% //dwdu 'yt(w;u)e%p'(w*“)e

7\q—w\2+\q—u\2
2h

where we used by Parallogram identiy in the last equality, i.e.,

l(g—w)+ (g—w)*+ Jw—uf>=|(g—w)+ (¢ —w)]* + | —w+ul?
=(g—w)+ (¢ —w) +|(g—w) — (¢ —uw)?

=2|q — w|* +2|q — ul%.

We then finally have

(1) h _3 ip(w—u) _la—w?+]g—u|?
(WN,t * gl)(thl) = (Wh) 2 dwdu ’yt(w;u)ehp e 5
= mg\lr,)t((h;]?l),
by (2.2.12f). The case k > 2 can be proven inductively. [ ]

2.3 A priori estimates

In this part, we give the bounds of number operators and their corresponding localized version, both of which

are used extensively in estimating the remainder terms in (3.2.1) and (3.2.3).
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Lemma 2.3.1. Let Uy € F, be the solution to Schrédinger equation in (2.1.10) with initial data [P N | = 1,
the number operator N defined in (2.1.5). Then, for finite 1 < k < N, we have

AF
<\I/N,ta Nk\I’N,t> < L

Proof. Since ¥ ; satisfies the Schrédinger equation, then for k > 1,

d
ih& <\I'N,taNk\IlN,t> = (Un,, [Nk,HN]‘I/N,t> =k <\I/N,t7Nk_1[Na HN]U ) =0,

where we used the fact that Hy is self-adjoint and [Hy,N] = 0. Therefore, integrating the above equation

with respect to time, gives us

" - NN —1)--- (N —k+1
<\IIN¢7N\I/Nt><\I/N’A[;€\IJN> ( ) +)<1,

Nk ’ N
forany 1 <k < N. |

Remark 2.3.1. The expectation of the number operator is the total mass of Husimi measure. In fact, observe

that
(W N ) = / o (W p, ata U ) = / da (W, Lay Uy |

Then, by (222)

:(277171)3 // dqdp / da <\IJN,t,a; Zp(w)( / dy aw%@)) ‘I’N,t>

<27T1h)s // dadp (W, " (£, )a(F),) Ue)

1
= nh)? //dqdp miy,(¢.p)
=N

)

where we use Lemma in the last equality. Moverover, if we repeat the projection above for k-times, we
get
1 k
W /./(dqdp)(gkmg\f,)t(Qvah s 7Qkapk)
k

N

< <‘I’N,t7 M\IJN,t> <1,

(2.3.1)

where 1 < k< Nandt>0.

More importantly, we have the following estimates for localized number operators.
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Lemma 2.3.2 (Bound on localized number operator). Let ¥y € F, such that |Un| = 1, and R be the

radius of a ball such that the volume is 1. Then, for all 1 < k < N, we have
k
* * _3
/'/(dqu)@)’C <\I/N7 (H Xlxn,—qn<\/ﬁR> Ay, Ay, Gy ~~~aI1\IfN> < hm2k (2.3.2)
n=1
where X is a characteristic function

Proof. Consider first the case where k = 1. For every 1 < j < k, we have

/dxj </de Xle—qu\/ﬁR> <\I'N,a:jal.j\I'N>

:h% <\IJN3N\I/N> :h%—3 <‘I]N7:/7\V/‘\I/N> <h_ )

Njw

where we used Lemma Analogously, for 2 < k < N,

k
[ e (H [ . xm_qnm) (o, s, - )
n=1

Nk:

<R (U, NE D) = pEk—3k <WN, Nk@N> < Rk,

where we applied Lemma |2.3.1| again. [ |
Next, we present the following important estimate which is similar to van der Corput lemma, i.e.

Lemma 2.3.3 (Estimate of oscillation). For ¢(p) € C§°(R?) and
3 @
= ; i< 3.
Q= {z e R; 12?53'37]' < R (2.3.3)

it holds for every a € (0,1), s €N, and x € R3\Qp,

dp eiﬁp'mgo(p)’ < CRt=9)s, (2.3.4)
R3

where C' depends on the compact support and the C*-norm of .

Proof. We will prove the lemma in a single-variable environment. That is, we let the momentum and space
to be p = (p1,p2,p3) and & = (x1,x2,x3) such that z;,p; € R for all j € {1,2,3}. Then, for arbitrary
z € R3\Qy, one of the ;s is bigger than h*. Without loss of generality, we assume that |z;| > A% and
x9,73 € R. Let supp ¢ C B,.(0) C R3, we can rewrite the left hand of into the following,

r r r )
‘/ dp1 / dps / dpgen Pro1 P22 tpsrs) o ()
-Tr -Tr -T
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T R s . T .
‘ dpgenP2"? dpsenPs®s dplehp”l@(p)‘

-Tr -Tr -Tr

Observe that since
Ch d

—i——ece
21 dpy

FP1Z1 — o3 P1T1
- 9

we have after s times integration by parts in py,

’/ dpl/ dp2/ dp:,)e,;(P1$1+p2$2+p313)@(p)‘
h\s

r . r ) r )
B ‘<_ 1;1 dpae??®2 [ dpgen?s®s [ dpien? 105 o(p)
hS

et -7 -7
S

N—

th(l—a)s7

N

where s indicates the number of time that integration by parts has been performed.
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Chapter 3

Vlasov hierarchy

We begin the study of the convergence from time dependent Schrodinger equation for large spinless fermions

1/3

with the semiclassical scale h = N~/ in three dimensions by considering the interaction potential as follows.

Assumption H2. V is a real-valued function such that V(—x) =V (z) and V € W2 (R3).

Furthermore, we will derive in this chapter the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)-type
hierarchy from the Schrédinger equation in terms of the k-particle Husimi measure defined by coherent states.
In addition, uniform estimates for the remainder terms in the aforementioned hierarchy are derived in order
to show that in the semiclassical regime the weak limit of the Husimi measure is exactly the solution of the
Vlasov equation. The work in this chapter is based on our article in [CLL2Ta] which has been published in

Journal of Statistical Physics.

3.1 Main Results

As discussed in chapter [1.2.1] it is well known that in the mean field semiclassical regime, the dynamic of

(2.1.10) can be approximated by a one particle Vlasov equation. Namely, for all ¢,p € R3

9mi(q,p) + p- Vame(q,p) = V(V % p;)(q) - Vpyme(gq, p), (3.1.1)

with initial data mg(q,p), where m(q,p) is the time dependent one particle probability density function,
and p;(q) = [ my(g, p)dp. Although (3.1.1)) is a non-linear equation, such equation would be more suitable
to analyze than the increasingly large systems of Schrédinger equation. The well-posedness of the above

Vlasov problem is given by Drobrushin [Dob79| for smooth V.

Theorem 3.1.1. Let Assumptions and hold, U+ be the solution of Schrodinger equation (2.1.10)),
mg\]f’)t be the Husimi measure defined in (2.2.3)). If the initial 1-particle Husimi measure mg\}) = myater,
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where m3T is defined in (2.2.7), satisfies

// dqrdpr (Ip1 2 + | Y (g1, p1) < C. (3.1.2)

Then, for allt > 0, the k-particle Husimi measure at time t, my;)t has a weakly convergent subsequence which

converges to mgk) in L*(R®), where mgk) s a weak solution of the following infinite hierarchy in the sense

of distribution, i.e. it satisfies for all k > 1 that

k k
atm§ )(qlaph e 7Qk7pk) + Pk - qumg )(qlapla .. -7Qk,pk) (313)

1 k
= vak '//qu+1dpk+1VV((Jj - Qk+1)m§ +1)(ql,p17 oo Qg1 Pht1)-

By using [Vil03, Theorem 7.12], we have the following corollary,

Corollary 3.1.1. Suppose assumptz'ons and hold. Assume further that the initial data of (3.1.3)) can
be factorized, i.e. for allk > 1,

||m§\],€) —m&*||pr =0, as N — oo. (3.1.4)

Then, if the infinite hierarchy (3.1.3) has a unique solution and m; is the solution to the classical Viasov
equation in (3.1.1)), it holds that

W1 (mg\l,?t , mt) — 0, as N — oo,
fort>=0.

Remark 3.1.1. In the pioneering work by Spohn [Spo81], he considered

riM (&, En N, t)

N
= o |V o[ [T exp{ GV gm; + n52)) |
j=1

with p; = —iV; and obtained the following Vlasov hierarchy,

n

0 0
5747(1]\[)(617771ﬂ cee 7§m77nat) = anaigjr%]v)(ghnh e 7§n7nn7t)

+Z/V(dk>k-fsjr,ﬁﬁ)l(«shm,...,fj,nj+k,...§n,nn,o, k1),
j=1
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which is slightly different from Vlasov hierarchy for Husimi measure given in , or the version in
before taking the limit. The benefit of the hierarchy in is that one observes directly the mean field
and semiclassical structure in the remainder terms. The explicit formulation is helpful in getting estimates
for the remainder terms in . Moreover if one can handle singular potentials (or even the Coulomb
potential) for both terms separately, one expects that this new approach can be applied to obtain the limit
from many body Schrordinger to Vlasov with singular potentials in the future. Since the mean field limit
with singular potential has been studied with convergence rate, for example in [BPS16], then we can utilize
similar ideas to handle one of the remainder term which includes the mean field structure. In parallel, we can
apply the techniques in semiclassical limit, for example in [Saf20b], to get estimates for the other remainder

term.

Remark 3.1.2. Although the results in this article does not yield a convergent rate, the main purpose of
this article is to present an alternative approach and framework, namely to rewrite the Schrédinger equation
into a BBGKY type of hierarchy, and to derive estimates for the remainder terms that appear in the new

hierarchy.

Remark 3.1.3. In Corollary [3.1.1] the convergence is stated in terms of 1-Wasserstein distance. For com-

pleteness, we give its definition as defined in [Vil03]

Wi(p,v) = WGHHl(ag{u) / |z —y| dm(z,y), (3.1.5)

where p and v are probability measures and IT(, v) the set of all probability measures with marginals  and v.
The Wasserstein distance, also known as Monge-Kantorovich distance, is a distance on the set of probability
measures. In fact, if we interpret the metric in LP space as the distance that measures two densities

“vertically”, the Wasserstein distance measures the distance between two densities “horizontally”[San15].

Remark 3.1.4. The assumptions for initial data (3.1.2)) and (3.1.4]) can be realized by choosing ¥ to be the

Slater-determinant. That is, for all orthonormal basis {¢; };";1, the initial data is given as

1
Un(qr,.-. qn) = Wdet{%(qi)}lgi,jgm (3.1.6)

Remark 3.1.5. Assumptions and are expected to be weakened to the situation that f € H'(R?),
|z|f(x) € L2(R?), and V to be Coulomb potential. These will be our future projects.

Remark 3.1.6. In this context, we have applied the BBGKY hierarchy, the intermediate mean field approx-
imation Hartree Fock system has not been benefited. With Hartree Fock approximation, one can do direct
factorization in the equation for mg\l,?t. In this direction, we expect to derive the rate of convergence in an

appropriate distance between the Husimi measure and the solution of the Vlasov equation.
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The arrangement of this chapter is the following. In section we give the main strategy of the
proof. Followed by the corresponding kinetic energy operator, which will be contributed to do compactness
argument for the Husimi measure. We leave the computation of the hierarchy to section [3:3.1] Furthermore,
the uniform estimates for remainder terms in the hierarchy, which is another main contribution of this thesis,

are provided in section [3.3.2

3.1.1 The BBGKY method

Denoting fn + to be a time-dependent probability density measure on the N-particles phase-space R3Y, the
dimension of Fiv; increases as N tends to infinity, causing the number of variables in Fiv; to also tend to

infinity. To solve this, one would instead look at the first marginal of Fiv, denoted as Fz(vl )t However, as

one observes later, the computation of F’ J(Vl )t involves second marginal F’ ](\,2 )t as the pairwise interaction of the
particles, while the second marginal involves the third, and so on.
Nevertheless, under the assumption that F](\f )t — Ft(j ) as N = oo (in certain sense) for all j > 1, then

one obtains the following limits with respect of N:

N-—j : _
Tj/d%ﬁrl K($£§$j+1)FZ(\;’t+1) — /dmj+1 Vixe —;Uj+1)Ft(]+1)7

1 .
NK(:EZ;:E,@)F}VJ} — 0,

where £ € {1,...,5}, k€ {j+1,...,N} and K is a kernel that represents the interaction term. This implies
that the mean field hierarchy is

J
0 F + > div, /dxjﬂ K (zi;2;0)F T =0, (3.1.7)
=1

for all j > 1. Assuming a regular K and initial data of (3.1.7) is factorized, e.g. Fn o = (f)®N where fi"
is an initial data, then one obtains

F), — B9 = §®,

where f be the solution of mean-field partial differential equation with initial data f™. Details of existence

and uniqueness of (3.1.7) can be found in [CGPI12| and [Pet72] respectively.
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3.2 Proof strategy through BBGKY type hierarchy for Husimi mea-

sure

We first start from the many particle Schrédinger equation and derive an approximated hierarchy of time
dependent Husimi measure by direct computation. Compare to the BBGKY hierarchy of Liouville equation
in the classical sense, it has two families of remainder terms, which are determined by the N particle wave
function from Schrodinger equation. In order to take a convergent subsequence of the k-particle Husimi
measure, we derive the uniform estimates for number operator and the kinetic energy. Together with an
additional estimate for localized number operator, we can show that the remainder terms are of order hz =9
for arbitrary small 6. Then the desired result will be obtained by the uniqueness of solution to the infinite

hierarchy.

3.2.1 Reformulation: Hierarchy of time dependent Husimi measure

In this subsection, we begin by examining the dynamics of k-particle Husimi measure by using the N-body

fermionic Schrodinger. The proofs of the following propositions are provided in section [3:3.1}

Proposition 3.2.1. Suppose ¥y, € F, is anti-symmetric N-particle state satisfying the Schridinger equa-
tion in (2.1.10). Moreover, if V(—x) = V(z) then we have the following equation for k =1,

3tm§\1r,)t((hap1) +p1- Vqlm%?t(q1ap1)

1 ~
= val . //dQQdPQVV(Q1 - QQ)mg\zf?t(ql,pl,qQ,pQ) +Vy - Ri+V,, R,

(3.2.1)

where the remainder terms Ry and 7%1, are given by

Rl :=hIm <Vq1a( a1 pl)\IJN ts (fql Pl)\I]Nt>

Re//dwdu//dydv//dqupg/ ds 522)

VV(SU + (1 - S)w y) q1,P1 (w) q1,P1 (u) t?z,m (y) 1?2,1?2 (’U) <a’yaw\IIN’t’ ava“\PN’t>

(2m)3 //d‘J2dp2vv(lIl—Q2)m§3,)t(Q17p17QQ,p2),

Ry

Proposition 3.2.2. For every 1 <i,j < k and g;,p; € R3, denote qx, = (q1,.-.,qr) and pr = (p1,---,pk)-
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Under the assumption in Proposition then for 1 < k < N, we have the following hierarchy

k k
Do (@1 D1 - Qe i) + P - VN y (@1, D1 -+, Gy PE)

1

k
= vak 'ﬂko+1dpk+1VV(Qj - qk+1)m§\[jl)(q1,p1, s Q1 Pht1) (3.2.3)

+ Vg, R+ Vp, -ﬁk-l-'f\;,k,

where the remainder terms are denoted as

R _hIm<V‘Ik( qk; Pk) ’ a( q1 P1))\IIN“ (i,pk)"'a(fr?l,pl)‘I’N»t%

(Rk Re// dwdu ®k/dy [/ dsVV (su; + (1 — s)w; —y)} ( Zp(w)m)®k
/ dqdp f; /dv qu‘ﬁ( V) (g Cun Gy U Ny Qo - Qi Gy U N )

e (3.2.4)
/ dq/€+1dpk+1vv( - Qk-‘rl) (qlapla sy Qk-'rlvpk-‘rl))

7—Im// (dwdu) ®1<:Z { —u;) = V(w; — wl)} ( Zp(w)m)(@k

J#i

<awk e awl \IIN,ta auk e aulq/N,t>

3.2.2 Finite moments of Husimi measure

To prove that the second moment in p of the Husimi measure is finite, we first show that the kinetic energy

is bounded from above. Recall that the definition of the kinetic energy operator I, i.e.,

h2
K= 5 dz V,a;V.a,,

and the kinetic energy associated with Wy € F, is given as (¥, KU ).

Lemma 3.2.1. Assume V € W1, then the kinetic energy is bounded in the following

K K
<\IIN,t7 N‘I’N,t> <2 <‘I’N, N\I’N> + Ct?, (3.2.5)

where C' depends on [|[VV]|oo.-

Proof. From the Schrédinger equation, we get

h(;i (N, KON = (U, K, H] U Nt - (3.2.6)
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Note that since the commutator between kinetic and interaction term is given as
h2
[, H] =T {/ dz V,a:V a,, //dydz Vy-— z)ayazazay]

f//dxdyv V(e — )(V a, ayaw — Zayvz%)

=5 Im//dxdyVIV(x —y)(Vzazazaya;)

Then, from ([3.2.6)), we have that

1d

h
N dt <\IIN tJC\I/N t> N2 Im//dxdy vxv(x - y) <\IIN,ta Vma;a;:ayaw‘l’N,t> .

Now, observe that

‘2N2/ dzdy V,V(z — )<‘I/Nt,V ay, ayaw\I/N7t>

<W||VV||Lm//dxdy lay Vaao U illlayae |

1
h 2

<02N <// dxdy <\PN,tavma;azayvmax\IjN,t>) <// d:Cdy <\I/N»t7a;azayam\]:l]\7,t>>

1 1

K2 j\/’ 3 e 1

- <N/dx <\IINt7V ag NV a:c‘I/Nt>> <‘I’N,t7N2\1/N,t>
K 1
<o ({wweome))

Thus, we have
1
d K K 2
— (¥ —v SC( Uy, =T .
dt< Nt N,t> < Nits N,t>

Integrating both sides with respect to time ¢ and we obtain the desired inequality.

Nl=

3]

Nl=

Proposition 3.2.3. Fort > 0, assume and let m(k) to be the k-particle Husimi measure. Denoting the

phase-space vectors qr = (q1,--.,qkx) and pr = (p1,-..,pk), we have the following finite moments,
[ (adp)® aul + o Py e, ) < O+ )

where C' is a constant dependent on k, [[ dgidp1(|¢:1] + |p1|2)m§\})(q1,p1), and ||[VV]|o-
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Proof. We first consider the case where k = 1. Observe that we may rewrite the kinetic energy as follows

h2
¥ W K) = [ dw (W Y, V)
h2
27771 //dqldpl//dwdu Q1p1 w) qlpl( W) (TNt Vi, Vyuay, U )
27T //dqldplffdwdu waql o (W W)V ff  (u) (W (YN s a,a, VN t)

= //dqldplf dwdu (—=Vg, + ik~ pl) o pl(w)~( Vg —ih™ pl) o p1( W (YN, ana, TN,

where we used the fact that

To continue, we have

N (N, KONy = //dQ1dp1 Ip1)? mNt(Ch,Zh)
“!‘ﬁ//d(]ld}?l //dU)dU Vqlfth’pl( ) Vql Q1,P1( )<\I/N7t,a:;au\1’]\]’t> (327)

Im//dqldpl //dwdu p1 - Vqlfq1 (W) thl( W) (Un g, ana,Un ) -

Since kinetic energy is real-valued, if we take the real part of (3.2.7)), the last term in the right hand side

vanishes since it is purely imaginary, yielding

~ <\I’Nt,/C Nt) //dqldpl Ip1)? mNt(Q1,P1)

//dqldpl //dwdu Vql g (W) - Vqlf(?l,pl(u) (UNt,ana, YN -

Note that by (2.2.3)), we have

// dgudp: // dwdu Vo f1 () Vo () (U alyau ¥ )

:h2+3//dq1dw hE |V, f (\/ﬁql>

:h/dZﬂVf ((DI2 <‘IJN,t,';\V/‘IfN,t>
—h / a7V @[,

(Ut 050w YN 1) (3.2.8)
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where we recall that 4% = N1, Thus, taking the real part of (3.2.7), we have that

K 1
(W 30w ) = e [ dondm Pyt + 1 [ 0197 (3:29)

which means,

K
|1 mN)t(Q1ap1) <‘1/Nta N‘I/N,t>- (3.2.10)

Therefore, (3.2.10|) tells us that the second moment of the 1-particle Husimi measure in momentum space

is finite if the kinetic energy is finite.

Now, we turn our focus on the moment with respect to position space. From (3.2.1)), we get

Oy //dihdln |Q1|m§\1f,)t(l117p1) :/ |Q1|3tms\})t(Q1,P1)

://dqldpl |q1|<—p1-Vq1m§\1,7)t(q1,p1) Vpl //dwdu//dxdy//dqupg/ ds (3.2.11)

VV (su+ (1 - s)w — ) (Z’pl(w) n oo () (Z’m(x) 2 (W) (20w U N ¢, aya, VYN ) + Vg, - R1>

where Ry is the remainder term in (3.2.2)).
To check that the surface integral of middle term of (3.2.11)) when taking integration by part will vanish
when p is evaluated at far field. In fact, we will check for the L' integrability, i.e.

//dqldpl |1 Vp, - //dwldU1//dQde2//dw2dU2/ dsVVN(5u1 +(1—s)w; fwz)
0

f41 P1 (wl)f(?l ,P1 (ul)qu Do (wQ)f(Z D2 (UQ) <aw2aw1\IlN ty Qg Qoyy Uy t>

= Ch?”l//dq1d§|q1|vﬁ~//dw1du1/dw2/ ds VVi(sup + (1 — 8)w; — wo)
0

2
f <w1\/ﬁfh> f <U1\/ﬁq1> eiﬁ.(wrul)/d% f (w2 fh)‘ <aw2aw1\IjN,t7awzau1\IjN,t>

Vh

1
= Ch2h5||f||§//dq1d5|q1|v5.//dw1du1/dw2/ ds VVy(su1 + (1 — s)wy — wo)
0

wy —4q UL — 4\ i (wi—w
f( \/ﬁ )f( \/ﬁ )ell) (wi=w) <G’UI20"LU1\I/N,t7au)2au1\IIN,t>
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Then, note that since

3 ! w; —q ur — ¢ *
fﬂ*z//dwldul /dw2/0 dsva(su1+(1s)w1wz)f< 1¢ﬁ 1>f< 1@ 1) (A U Nty @y, Gy Gy Ut
3 u
<29Vl ] dwdus |5 ( ) (1hq)| [ s o o |

u : '
< > f 1 hq>’ ( dws ||aw2aw1‘I’N,t|2) </ dws ||aw2a“1\IJN’t”2>
wy —q ur —¢q gk 2
dw dw aw2aw1\:[l
R RN Pomnaons

< BPTE |Vl //dwldul

// dwldul

< B8 VVrll / a1/ (@)

< Cy.

<3|V

(3.2.12)
This implies that, for any fixed N € N, the function in is bounded L' in both w; and u;. Then
by Riemann-Lebesgue Lemma, the surface integral from applying divergence theorem for the middle term
vanishes when evaluating |p1| — oo.

Thus, integration-by-parts with respect to p;, and then with respect to ¢; in (3.2.11]), we obtain

at//d‘hdpl |Q1\m5\},)t(fh,p1)
< //dQ1dp1 Valal - (plm%,)t(thl) +R1>

= //dQ1dp1 % : (p1m§\},)t(Q17p1) +R1>
< [l dgd e R
< qudpy ([p1lmy, (1, p1) + [Ral)

Note that by Young’s product inequality, we have

//dQIdpl |, (@, p1) <//dq1dp1 1+ |p1f?) m§ (a1 1)
3 K 2
< @m® (1+2( Uy 5 0x ) +CF )

where we used (3.2.10) and Lemma in the last inequality. Next, we want to bound the term associated
with Rh

// dgudpr Ry <h // dardpy [ (Voa(fh, x s a(fh V) .
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Observe that we have,

h‘//dqldpl ‘<VQ1a’(fql pl)\I]N t, @ (f(i’pl)\PN,t> ﬂdqldpl }Vqla tI1,P1 \I]N t7|

<h [/ dgi1dp: <Vqla(f§'1,p1)‘1’N7t7Vqla(fg'l,pl)‘lfN7t>] [/ dgi1dp: <‘1’N,t7a*(f£,pl)a( 51)p1)\IJN,t )

’a’ q1,p1 \IJNtH

1
2

Nl=

{ // dgidp; // dwdu Vo, fi (w) - Vg, fR (0) (U, a, au\IlN,tﬁ (2m)3
<(nvi | [ azres @F] ,
where we used (3.2.8] -7 Lemma Thus, we have that
K 2 2
Oy dgi1dp, \q1|mNt(q1,p1) (277) 1+2 \IJN,N\IJN + Ct —|—C\/ﬁ SC(l—I—t ) (3.2.13)

which gives the estimate for first moment after integrating with respect to time t.

We now consider the case of 2 < k < N. In this computation, we make use of the properties of k-particle

(k )

Husimi measure. Namely, that the my’, is symmetric and satisfies the following equation

N—k+1)
%mg\/,t Y(qeprs -y @ty Pre1)
(3.2.14)

)(qlvplv e an—th—l)'

k
(2 )3/ kodpk mS\/’?t(QlaPla"'anaPk) =

<m(k

Observe that for fixed 1 < k < N.

//(dqdp ®’“Z I PmSe (a1, 1, - - ks )

J=1

k
ZZ//dqjdpj ijIQ/-/dfhdm---dqjdpj---dqzcdpk MmO (q1, 1, - - s P)-
j=1

Then, by using the symmetricity of mg\];)t and change of variables, we get

= k//dqdp Ip\z// dgdp)®* (@, p a1, p1 -, di-1, PE-1)

N — (N —k+1)
= (2m)3k~ Dl Nk - //dqdp Ip2m; (4, p)

< (2n)%%k (1 +2 <\1:N, ]IE\I/N> + C’t2> <C(1+17),

where we denoted (dgdp)®*~! = dqidp; - - - dgr_1dpr_1.
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Similar strategy is used to obtain the first moment with respect to qi. That is

k
/-/(dqdp)®k S lailmharprs - pn)

j=1

_ N-1)--(N—-k+1)
:(27-(-)3(16 Uk:( ) Nk - //dqdp |q|mNt q,p)

<(2m)P=Dg // dgdp lglmP,(q,p) < C(1L+£).

This yields the desired conclusion. [ ]

3.2.3 Uniform estimates for the remainder terms

In this subsection, we give uniform estimates for the error terms that appear in (3.2.1) and (3.2.3)). They
are all bounded of order hz =9 for arbitrary small § > 0. The proofs of all the following propositions will be
provided in section [3.3.2}

Proposition 3.2.4. Let Assumption holds, then for 1 < k < N, we have the following bound for

Ri in (3.2.1) and (3.2.3). For arbitrary small 6 > 0, the following estimate holds for any test function
® € Cg°(RO*),

’/./(dqdp)mcb(thh e Qi) Ve, - Ri| < Ch2 0,
where C depends on | D98, and k.

Proposition 3.2.5. Let Assumption and hold, then we have the following bound for Ry in (13.2.2)).
For arbitrary small 6 > 0, the following estimate holds for any test function ® € C§°(RS),

< Ch?~9, (3.2.15)

‘//dQIdpch)(QMPI)vpl ‘R

where C depends on || D*®)®||

Proposition 3.2.6. Suppose that Assumption and hold. Denote the remainders terms ﬁk and ﬁk as
in (3.2.4). Then for 1 < k < N and arbitrary small § > 0, the following estimates hold for any test function
® € C§°(R),

‘/l/(dqdp)m@(ql,pl,--~,qk,pk) Ry < CH*2, (32.16)

'/'/(dqdp)@)k@(thh o @ PE) Vg - R

where C depends on | D*O)®||o, and k.

and

< Ch» ™9, (3.2.17)
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3.2.4 Convergence to infinite hierarchy

In this subsection, we prove that the k-particle Husimi measure mg\]f)t has subsequence that converges weakly

(as N — o0) to a limit mgk) in L', which is a solution of the infinite hierarchy in the sense of distribution.
The weak compactness of k-particle Husimi measure mg\]f)t can be proved by the use of Dunford-Pettis

theoremE In particular, we have the following result.

Proposition 3.2.7. Let {mg\’,i)t}NeN be the k-particle Husimi measure, then there exists a subsequence

{mﬁ@yt}jeN that converges weakly in LI(RRSXRs) to a function (277)3km§k), i.e. for all ® € L>®(R3 x R3), it

holds
1
W/‘/(dqdp)wmg@),t‘l’ — /'/(dqdp)(@kmgk)‘b’

when j — oo for arbitrary fized k > 1.

Proof. To apply Dunford-Pettis theorem, we need to check that it is uniformly integrable and bounded.
From Lemma [2:2.2] and the finite moment in Proposition [3.2:3] imply

k
<1 dael+ lpehm,

<O().

(k)
HmN,t

L Lt

where qi := (q1,-.-,9%), Px := (p1,.-.,px) and C(t) is a time-dependent constant. Now, we will check the
uniform integrability, i.e. for any £ > 0, by taking r = e~1(27)3*C(t) we have that

1 k 1 1 k
W// s (dgdp)®*m{y), < r @) /-/(dqdp)®k(lqk| + Py miy), <e. (3.2.18)
qk |+ [Pk (2T

Furthermore, for arbitrary € > 0, by taking § = ¢, we have that for all E C R% with Vol(E) < 4, it holds

//E mg\};?t < ng\’z)thVol(E) <g,

which means that there is no concentration for the k-particle Husimi measure.

It is shown in Lemma that the boundedness of k-particle Husimi measure in L', i.e.

Then applying directly Dunford-Pettis Theorem one obtain that k-particle Husimi measure is weakly compact

in L1. |

Proof of Theorem and Corollary Cantor’s diagonal procedure shows that we can take the

same convergent subsequence of mg\l,i)t for all £ > 1. Then by the error estimates obtained in Propositions

!See Theorem 4.30 in [Brel0] for more details.
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and we can obtain that the limit satisfies the infinite hierarchy (3.1.3]) in the sense of
distribution, by directly taking the limit in the weak formulation of (3.2.1]) and (3.2.3]).

Observe that the estimates for the remainder terms also show that any convergent subsequence of mg\];)t

converges weakly in L' to the solution of the infinite hierarchy. Therefore, if the infinite hierarchy has a

(k )

unique solution, then the sequence my’; itself converges weakly to the solution of the infinite hierarchy.

As for Corollary [3.1.1] one only need to combine the facts that the infinite hlerarchy has a unique solution

and that the tensor products of the solution of the Vlasov equation , ¥ is a solution of the infinite
hierarchy.
Lastly, by Theorem 7.12 in [Vil03], we would obtain the convergence in 1-Wasserstein metric. [ ]

3.3 Completion of the reformulation and estimates in the proof

3.3.1 Proof of the reformulation in section [3.2.1]

In this subsection we supply the proofs for the reformulation of Schrédinger equation into a hierarchy of k
(1 < k < N) particle Husimi measure. The reformulation shares similar structure to the classical BBGKY

hierarchy.

Proof of Proposition[3.2.1. First, observe that taking the time derivative on the Husimi measure, we have

2ih8tm§\1;)t(q1,p1)
(ﬁz// dwdudz Zm( )m(\IJNJ,afuaqua;VIaZ\IJMQ
— K2 ///dwdudm m qﬁl,pl (u) (‘llN’t,Vwa:VmawaZaw\I/N@)
( //dwdu//dxdy gopr OV (u )<\Ith,V( —y)ay, auazayayax\I!MQ
//dwdu//dzdy R )l () (U, V(e —y)ata yayama;aw\luv,O)

=: Il + 111
Now, focus on I, we have

I —hQ// dwdudz (ﬁpl( ) thl( W) (Un g,y VearVeas Uy )

—h2// dwdudz thpl( MR o (W) (YN, Veai Vaeagan,a, Uy e)

where the last equality is just change of variable on the complex conjugate term. Then, from CAR, observe
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we have that

* * * * *

— Ay Ay G Ay Gy =05 a0y Ay Gy — Oymg @y Ay,
* * *

=a, 0, Ap@yy — Oy—g Gy Ny,
* %k *

=0, 00,00y — Oyeg G N yay

* * * *
= — Apal a0y + Op=ys Aya)ay — Oy=pay,Ayay,

where integration by parts and CAR of the operator have been used several times. Putting this back, we

cancel out the the second term and get

I, =h? ///dwdudx 2pr (W) (?1% (u) <\I/N_,t, (5w:mAma;au — 5u:zanAmaz)\IlN,t>
:712/ dwdu (Aw gpl(w)) o (W) (U, an,a, Vi g) (3.3.1)

_h2//dwdu g1 )(A qlpl()> (Un,atauUn ).

Now, observe the following

Vol o (1) =V, <hi <Uﬁql) ;Lpl,u)

f
_h iV, (“\;) cTRP T f (“\;ﬁql)vue‘%’“'“

= — h_%vqlf (u\;ﬁql) e—%PLu _ ih_lpl . h_%f (U\;ﬁq1> 6_%;01'“

:(_VQI ih~ pl) q1,P1 (u)

and furthermore,
A Q1P1< ) =Vu -V 1?17171(”)

=Vy - (=Vy — ik~ pl) q1,p1 (u)

1 —_— (3.3.2)
=(=V, —ih™'p1) - (=Yg, —ih7 1) F ()
_<A‘11 + 2ih71p1 ! vlh - h2p?> thvpl (u)
and similarly
Ay fl o (w) = (Aql —2ih7p -V, — h2p%> £ o, (w), (3.3.3)
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we obtain by putting these back into (| 7

Il :h2|:<A /d’u} @ ;Dl( )aw\IlN,t,/du a1 Pl( )au\IJN’t>

([ w T o, 8, [ au T i,
— 2ihp; - [<v /dw maw\IIMt,/du 1 (wa
" < [ @ T @antn Vo, [ au M\IJN>

=2ik% Im <Aqla(fth,pl)\I/N’,ha(fq1 pl)\I/N t> 2ihp; - Vqlmg\}?t(ql,pl).

ﬁ

¢N7t> (3.3.4)

Since the Husimi measure is actually a real-valued function, we have that

11,

= h) +hIm (Aga(fl VU a(fl  )Wx) . (3.3.5)

3tm§\1r,)t(1117p1) +p1- Vqlmg\lf?t(m,pl) Re <

Now, we turn our focus on I, i.e.,

I, = —//dwdu//dxdy 7 p1 w) fl 4 p1( )<\IJN &, V(e —y)ay,aual ayayarWN7t>
- —//dwdu//dxdy o ( w) f1 0o (U u) (Uny, V(x — Y)ayanay 0,050, VN ) .

Observe that

. *
ayaya ayayam =a ayayaxawau

+ Ouw=y 3y A Ao, — =@ Ay

* % *x %
+ Ouma Uy Oy Ay Uy — Sy gy A Ay U

The first term and the complex conjugate term vanishes under changes of variable, u to w and w to wu.
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Therefore, since from assumption V(z) = V(—z), we have

111—74—127<hududx h ) () (U, Vi — w)alalaran Py
///dwdudx - pl( w) fh " pl( w) (Unye, V(e —u)a,ara,a, Yy e)
///dwdudy - pl( w) ql,m( )<\I/N + V(u y)awayayau\IlN,t>
= ] ey £, )T T (U Vi - g ) (33.6)
=~ ///dwdudx (W) fR fh(u) (V(u —z)—V(w— x)) (Uny,ay,ataza, V)
+ — // dwdudy fI  (w )W(V(u —y) = V(w— y)) (Ui, a0 a5 aya, PN, )

=¥ ///dwdudy W) fI () (V(u —y) = V(w— y)) (W10l ayan U ) -

Now, note that mean value theorem gives
1
Viu—y)—V(w—y) = / dsVV (s(u—y)+ (1= s)(w—1y)) - (u—w), (3.3.7)
0

and observe that since, V (s(u —y) 4+ (1 — s)(w —y)) = V(su+ (1 — s)w — y), we can have from (3.3.6) the

following

g —///dwdudy n (W) fE(u) (/OldSVV(qur(ls)wy)) (u— w)-

(YN apanaya, V)

_2ih —_—
i // dwdudy/ dsVV (su+ (1 —s)w—1y) -V, ( ql)pl(w) oo (u )) (Un ., ana5a,0,Y N )

2 h —_—
i ///dwdudy/ dsVV (su+ (1—s)w—1y) -V, ( Z’pl(w) th_’pl(u)> (away U N ¢, anay U N ),
0
(3.3.8)

where we use the fact that

Vo (T )T (@) = 10 =) iy, () Ty ). (3.3.9)

Then we get

2ih ! —_—
I, = ///dwdudy/ dsVV(su—i— (1-9s)w-— y) Vo, ( Z,m(w) (Z’pl(u)) (Away VU N ¢, ayay W) .
0
(3.3.10)
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Applying the following projection

s [ 1) (Pl = 1.

onto a, ¥y, we get

ay Nt = //dq2dp2 fq2 D2 )/ (?Iz’pz (U)av\IIN,t'

Putting this back into (3.3.10)), we get the following

2k 1 !
11, —FW //dwdu//dydv//dqupg/0 ds VV(su+(1 —s)w—y)

Vo (i W T 0) S )T (0) (00 W 1 00 W )

Recall that k3 = , we have

_ 21h //dwdu//dydv//dQ2dp2/ ds VV (su+ (1= s)w —y)

vp1 ( q1,P1 (’LU) q1,P1 (u)> q2,p2 (y> Z,pz (U) <away\IIN taauav\PN t>

Therefore, we have the last term in (3.3.5) as

o
Re % @) Re//dwdu//dydv//dqupg/ ds VV (su+ (1 - s)w —y)

Vou (Fr O T (0)) S )T () (000 W 1 G000 W)

thus we have derived the equation for m%?t(ql, P1).

(3.3.11)

(3.3.12)

(3.3.13)

We have proved the reformulation from Schrédinger equation into 1-particle Husimi measure. We also

observed that it contains a resemblance to the classical Vlasov equation. Next we want to prove the similar

result for 2 < k < N.

Proof of Proposition[3.2.3. Now we focus on the case where 2 < k < N. As in the proof for the case of

k =1, we first observe that for every k € N,

2ihatm§\lfc?t(ql7p17 e 7qk7pk>

®k
:< — h2 //(dwdu)®k/dx ( ZP(U/) (;:L,p(u)> Az <\I}N,ta a’ltjl e a;kukauk i aula;am\I}N,t>
Rk
+ K2 /~/(dwdu)®k/dx( Zp(w) (Zp(u)) Ay <\IIN7t,a;aza Oy, Oy, oaullIlN,t>>
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1 @k * * %k
+ (N /~/(dwdu)®k/ dzdyV (z — y) ( Zp(w) gp(u)) <\I/N7t,aw1 gy, G, -~-au1a$ayayaI\I/N7t>

1 ®k
-~ /-/(dwdu)@’k //dxdyV(x —y) ( t?p(w) ;ﬁp(u)> <\I/N,t, a;afjayawa;l Sy, Gy -aul\I/N,t>>

=: .[2 -I—IIQ,

where the tensor product denotes (dwdu)®* = dwy - - - dwpdu; - - - dug.

We first focus on the Is part of (3.3.14)), i.e.,

@k
IL=—h /~/(dwdu)®k /do: ( Zp(w) (ﬁp(u)) A, <\IIN,t7ajj}1 Oy, Gy, ~-au1a;am\I/N,t>

Rk
4 K2 /~/(dwdu)®k /do: ( Zp(w) (ﬁp(u)) Ay <\IIN,t7a§;amaZ,1 gy, G, "'aul‘IINvt>'

Observe that we have

a* ...a*

* _ *
o v Gy, Oy G =(=1)" A agay, -+ ay, Gy, -+ Gy,

k
—a* .- —1)7 eas .
Qyy -y, E (=1) 0pmu; sy, =+~ Qg - Q| s

where the hat indicates exclusion of that element.

Putting this back into (3.3.15)), we obtain
®k
o=t [ wdn)® [ do (72, )7,()
k .
.AI <\IJN,t7a;kUl ...a*wk Z(_l)](swzujauk ...a/u\j ...aul a:E\IIN,t>

e [of amant [ a (52,0075,

k
* ] * *
-A, <\IJN,t,aI E (—1)3§z:w].aw1~--a;fuj RO auk~-~aul\I/N7t>

Jj=1

k . .\ ®k
=h’ Z(_l)j /~/(dwdu)®k ( Zp(w) tip(u))
j=1
. (Auj <‘IIN,t7a’jjul . ..azjk (auk a/'u: ...aul) auj\yN)t>

* * * *
— Ay, <\I/N’t7awj (awl an -“awk) - "aul“IjN,t>>~

o7

(3.3.14)

(3.3.15)

(3.3.16)



Note that, if we want to move the missing a,. or a} back to their original position after applying the
J w4

delta function, we have for fixed j

(=D)7a}, --ak, [u, Qo Gy, ] G, —(_1)%1@21 Ay, Qg " Oy
:(*1)1(12;1 T a::)kauk Aoy s
(-1)a; [a* ar_---al } a ay, =(=1)tal, ---a’ a ‘a
w; w1 w; Wi Uk U1 w1 wig Uk U1

Therefore, continuing from (3.3.17)), we have

k  \®k
I, = —h? Z/-/(dwdu)@’k ( lip(w) gp(u)> [Au, = Au, | (Ungah, - ah, au, - 0w, Ung) . (3.3.18)
j=1

Now, by integration by parts on (3.3.18)) and note that the Laplacian acting on the coherent state would
be similar to (3.3.2) and (3.3.3), i.e., for fixed j where 1 < j < k

o (T = (8, 42079, —17292) (T, 00)

A
Doy (1, ()" = (By, — 2007, - Ty, — h2p2) (£, ().

Thus, we have similar for when k& = 1, the kinetic part as

k
—\ ®k
Iy =— Qithj Vg, /'/(dwdu)‘g’]C ( (ip(w) (Zp(u)> (UNg ap, -y oy 0, UN )

+ 20 Imz qk,pk a ( q1,p1) Uni,a (fti-,pk) a (fql,m) Uy t>
(3.3.19)
= — 2ihpy, - qu <a (qu pk) a (fqhhpl) YN, a (ft?k,pk) ra (ftz,pl) \IIN»t>
+ 2ih° Imz qk,pk ~-~a( ql,pl) YN, a (f(?k;pk) a ( q1,p1) \I]Nt>
Therefore it follows that
I2 = 721hpk ' qumg\lfc)t(%,]?l, oo ,kapk)
(3.3.20)

+21h21mz ka»Pk “'a’(f;,pl) Unit,a (f(?kvpk) T a (ft?l,pl) \IlNat>'
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Now, we turn our focus on part II5 of (3.3.14),

1 —\®k
=% /--/(dwdu)®k ( P (w) lip(u)) / dedy V(z —y) (¥, ay, - @y, Gu, - G, G0 aya, V)

1 — \®k
- N /-/(dwdu)wC ( ,ip(w) ;L)p(u)> / dady V(z —y) (¥, ajayaya.ay, - ay, Qo -G, V)

(3.3.21)
For 1 < k < N, observe that from the CAR, we have
* . — (- 1)8k * ok .
g+ Uy Qg gy WOy Oy Qi Ay Ay Qg+ -+ Gy Gy = Qg
k
_ /\ .
= — ’I' w; auk e auj Cr Gy, ayayal_
k
_ax w1 g y UjaUk ...auj ...aul ayam
j=1 (3.3.22)
k
§ ' ] P *
5y w] .-aawja..awk auk.a.aulax
k
... * ... * DRI
+ a a E Ope =w; Oy, Ay, Q. | Cuy, Ay, -
Jj=1
From (3.3.21f), we have that
* * * *
// dzdy V(xz —y) (aw1 Oy, Qg Gy GGy Gy Oy — A Oy Gy Ay Gy Qg 'aul)
k
— — —a* ---aF 1) q ... *
= //dxdyV(w Y) [ Ay = Gy, E (1) Opmy Qg+ Gy~ * Quy | QY
i=1
k
—a*a* ---a* 1) a
Ay, oy, E (=1)0y—u; Oy -+~ gy~ -~ Oy | Oy
i=1

k
* ¥ —1) gk g
+ azayay E (1) bamw,ary, - afy - Qg | Quy ooy

k
* ¥ —1) gk g
+azayay E (1) amwary, - afy - Qg | Gy e Gy

=J1+Jo+ J3+ Js.
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Note that summing J; and J4, we have

k

Ji+Js= —Z(—l)j/dy{( (uj —Y)ay, -y Quy, G ~--aula2ayauj)

j=1

- (Vs — )i ey, T o) |
= Z [/ dyV (uj — y)ag,, - Gy, Quy,  Guy @y ay — V(0)ay, - ay, @y, -aul]
— Z [/ dyV(w; — y)ayayay, - ay, Gy -+~ auy, — V(0)ay, - ag, ay, - -aul} ,

where the terms with V' (0) cancel one another. For the remaining term, we use again CAR to obtain

k
-y / Ay (V(uj — ) — V(w; — 1))alaly, - @y, Gy -~ Guyty

j=1
k&
+ Z Z(_l)z / dy V(U] - y)éui:ya’:‘ul T a;kuka’lLk T @ T Quy Gy
j=1i=1
ko k '
_ Z Z(_l)z dy V(w; — y)éwi:ya;atul Ceak, Al Gy Gy
j=1i=1
=3 [ Vi ) - Viws = p)agal, - ay o+ anay
j=1
ko k
— Z Z (V(uj —u;) = V(w; —w;))ak, - ah, Gy, - Qu, .-
j=1i=1

On the other hand, the sum of J; and J> yield
k
Jo+ J3 = Z/dI(V(I —uj) — V(z —wj))agay, - ah, Gy, - Gy, Qo
By change of variable and using the fact that V(—z) = V(z), we have from (3.3.21)) that

11, :% /-/(dwdu)®k/dy i:[‘/(y—uj) - V(w; —y)} ( &(w)W)m

: <awk crt Qg ay\IjN ty Quy, * " aulay\IIN,t>

-+ [ @waw ®k2[ =) = Vs = )| (18,075 @)

J#i

(3.3.23)

: <aw;C o 'awlqjN,taauk o 'ault:[/N,t>
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Applying mean value theorem on the first term on right hand side, we have that

__ \ ®k
2 2 Jof e [ a (Vi =) = Vs ) (13,007, 0)
‘ <awk e awlay\IjN ty Quy, * aulay\PN t>

zi:// dwdu) ®k/dy U ds VV (su; + (1 — s)w, _y)} (w5 — ) Zp(w)m)m

N (3.3.24)
‘ <awk cr Qg ay\IJN,ta Qo+ Ay ay\IjN,t>
ok 1
2ih ®k
—T Y [of @waw [ay VO ds WV (su; + (1 - s)w; - y)} -y, (1 ) T, )
j=1
Ay QG Oy U N, Ay, - QG U Ny
As in the case of k = 1, we apply the projection (3.3.11]) onto a, ¥y and get further
2ih __ \®k
Z [ tawan® [ ay [ aswvious + = sy~ ] -9, (12, 0075,0)
: <awk e awlay\I/N ty Quy, = Aoy ﬂay\l/N t>
(3.3.25)

2”7132/ Jawan [au[ [ asvvion, + - o, -] -5, (5, @750) "

: //df]vdﬁ qﬁ;ﬁ(y) dv f(jhj;(v) (Qw -+ G, Gy U N b Gy, -+ Gy G U ) -

Therefore, dividing both equations by 2i%, we have the following equation

k k
5tm§v)t(lh7p1, e ,qupk) + Pk - qumgvy)t(qlvplv oo 7qkapk)

_hlmz fqmm a (f;ihpl) YNt a (fqh;mpk) ra (fth,pl) \IIN¢>

' % Z [of @i [ay] [ aswvisn + - s )] v, (2 077,0) "
//dqdp /dv fik( ) (@, * Qg Gy U N1, Qg -+ Gy G U N g
25 [ wuye 3 { — ) = Vw; - wz)} (7w 7)™

J#i
! <a’wk T aw1\I}N,t7 Aoy, ** * Ay \IJN,t> . (3326)

for 1 <k <N, pr = (p1,...,px) and recalling A2 = N~1. At this point we finish the computation of the
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hierarchy for Husimi measure. [ ]

3.3.2 Proof of the uniform estimates in section [3.2.3]

(k)

This subsection provide the proof of estimates for the error terms that appeared in the equations for m Nt

Note that in all the proofs below, we suppose, without loss of generality, that the test function ® € C5°(R*)

is factorized in phase-space by family of test functions in C§°(R3) space.

Proof of Proposition [3.2.4

Proof. For fixed k, we denote the vector x = (z1,---,xy) for each x; € R® with j = 1,--- ,k. Then we

estimate the integral as follows

‘/"/(dqdp)@)kvqkq’(%,ph---7Qk,pk) ‘R

(dqdp)®k quq)(CIhph cee 7qkapk)

’ <V‘Ij (a‘( (Zc,Pk) ) a'(fQI p1)>\IINt’ (f;llmpk)”-a(fth1pl)\PN7t>
k k

Z/--/(dqdp)®k Vi, ®(q1,015 -+, qks D) - /-/(dwdu)®k 11 (X(wn—un)eﬂg +X(wn7un)€Qh)

j=1 n=1

Wp, — Gn Un — Gn iy (w., —u
: vqu < \/ﬁ ) f < \/ﬁ ) enpn (wn n) <awk o 'awl\I/N,taauk o 'aul\IjN,t>

k k
// dp H X(wn—un)€Qn + X(wnfun)eﬂ;;) qu(b . g#Pn-(Wn—un)

hl"’“Z// dgdwdu)®*
I eidery

k k
0} 1S [of (dgduay®| [ ) % IT (Xavoreon + Xoomyeng ) Vo, @b romen
j=1

() (o) lier (o)l ()

S [[2% "'aw1\I/N,t||Hauk v Oy

:hl—%k,

||a"UJk © Gy \IINJHHGJHk e a”“‘lWNytH

11

n#j

(3.3.27)

where €, is defined as in and used the fact that
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Now, the product term Hi:l (X(wn—un)eﬂn + X(wn_un)egg) in (3.3.27)) includes a summation of C'(k) terms
of the following type

X(wlful)eﬂﬁ e X(we*w)GSlhx(wul7Ug+1)652§1 to X(wkfuk)eﬂ‘;ba (3328)

where ¢ € {1,...,k}. Thus, to continue from ({3.3.27), we have

‘//(dqdp)(gkvqkq)(thh e 7qk7pk> : Rk

() o e (ol ()

k Lo (WE—ug
: ‘ //(dp)® (X(w1*u1)€Qh e X(wz*uz)EQhX(we-¢-1*uz+1)€ﬂ?’L T X(wkfuk)eﬂa VQj(I) -enPr (wi—us)

k

k
1_3p @k
<
<Chz™2 jélorg?gk / / (dgdwdu)®* ]

n#j

’ ||a’wk e awl\IlN,t””auk Cr Oy \IJN,t”

k

k
1_3p ®k I l
< E
\Chz 2 2 Org?é)(k//(dqdwdu)

S n#£j

Wn, — Gn Un — 4n W; — gy Uj — qj
vi(¥i— 9%
() (ol ()l ()
iyt (Wi —u
' ’ /.'/(dp)@)éx(uufm)eﬁn T X(wefue)eﬂneh L= P (0m =tim)
_ i L . _
: //(dp)®(k Z)X(wg+1—Ue+1)€Q;L e X(wk—uk)GQ;Leh Em:k*z pm (wm “m)quq)‘

Mawy - aw, U [l @uy - - au, U]

Applying Lemma onto the (k — ¢) terms, we have

k
gcz max f7~hH(I=e)(k=0)s /-/(dqdwdu)®k (X(w1—u1)69h T X(we—uz)eﬂh)

() o) ) ()

@, "'awlq/N,t”Hauk c gy U

For a fixed ¢, observe that since f is compact supported, by using Hélder’s inequality in w and w variables,

we have

k

//(dqdwdu)(X)k (X('U)l—ul)eﬂﬁ T X(wg—ug)eQﬁ) H

n#j
Jor ()| (272)

() s ()

([P 'aw1\I/N7t||Hauk c gy U
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k

= (dqdwdu)®k (X(wlfm) Qn " X(we—uy) Qn) H f (wn 7 qn) / (un 7 qn)‘
I e ) I (7)1 (7

k
‘Vf < >‘ ‘f ( >’ T X —ami<v/mnXum —ami<varll@uw, - auw Unelllaw, - auw e
m=1
k
<//(dQ)®k|://(dwdu)®k (X(Uhful)th'”X(wefue)eﬂn)};[j ! (wn\/ﬁqn> f (un\/ﬁqn>
"Vf( Jﬁi]> f< 7 > } [// (dw) ®'“H><|wm ant<varllu - awlwmu]

By change of variables and then applying Lemma we have

2

2

sk U./(dada)m (X|a1-a1|<ho+% "'Xm-wgw%) f[ @) (@)

n#i

95 @)1 @) ] J+f aauye Hmm el -, Ul

<| [of aanr (Xt X et L @) F@OR IV @) P @)F] - (33:29)
n#j

Observe now that by using Holder inequality with respect to u, we get, for every 1 < n < k,
~ ~ 12 ~ ~ N2
[ddn 1£@P [dmx, e )

g/d@n|f(ﬁn)|2 (/daﬂxﬁnﬂnéh‘”é>§ (/dﬂn |f(ﬁn)|6> 3 (3.3.30)

<ot ( [amls@p) ([ i ir@r)

<C52a+1’

where we have used the fact that f € H!, it is also embedded in the L% space. Similarly,

// iy dity X o ey [V @) 1 (@)
:/d@j |V f (faj)\?/daj X g, <ot |f (@)

g/d{z?ij (@;)]? (/daj x|ajﬂj<ha+;>3 (/dﬂj f(ﬂj)|6>3

<0h2a+1'
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Putting this back into (3.3.29)), we have

k

//(dqdwdu)®k (X(wl—ul)eﬂh s X(wg—ug)eﬂﬁ) H

n#j
el (")

gCh(OH-%)@_

P ) ()|

@, -+ @y U il | - - Gy Ui el

Then, from ((3.3.28)), we have

k
’//(dqdp)@ﬂquk ¢(QI7p17 . 7qk:apk) . Rk < C Oril?gk h%—%k+(l—a)(k_g)s+(a+%)é
a (3.3.31)
— Ok max hE—3k+(1—a)(k—0)s+(a+5)e
0<e<k
Therefore, by picking s = {21(1?3)—‘ we arrive immediately that
’//(dqdp)®quk (I)(qlvpl, ey qk’pk) . Rk < Ch%_i,_(a_l)k.
Therefore, for all § <« 1, we choose % < a < 1 such that (« — 1)k < —4.
| ]

Proof of Proposition

Proof. Let ® be an arbitrary test function, then the remainder term ﬁl can be written explicitly into

‘//dQ1dp1Vp1q)(Q1,p1)'7€1

‘ // dg1dp1V,, B(q1, p1) - < // dwdu // dydv // dgadps

: [/01 dsVV (su+ (1 —s)w—y) = VV(q — ‘I2)}

h Y Th ()
’ thl(w) th’Pl(u) Q2’P2(y) 1?27;02(1}) <awayq/N’t7auaU\I/N,t>)‘

//dqldplvplfb(ql,pl)'//dwdu//dydv//dqupg

1 s .
. [/ dsVV(su +(1-s)w-— y) —VVi(g — qz)}e%pr(wfu)eﬁpz-(yfv)
0

ST () [ s

1
T
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Then, utilizing (2.2.3)), we may get

dQ1dp1Vp1‘I>(fJ17p1)'//deu//dde2

[ aswvius (- s —) - Wi - )]
AT
//dqldp1Vp1<I> q1,P1) //dwdu//dydqg

[ dsVV (su+(1—s)w—y)—VV(g —y+ \/ﬁaz)]
f

(2)?

2
<a'wafy\IIN,t; auay\IIN,t>

3
27r5

w
( \f%) f< Q1>6hp1 - u)|f(112)‘ (away¥n i, auayUne) |-

Vh

Then, we insert a term, namely VV (¢; — y) and use triangle inequality to obtain

//dQ1dp1vp1 ¢1,p1) //dwdu//dydq2

/O ds (vv(su + (1 =s)w—y) - VV(g — y)>

§
h2

_f< q1>f( \/%h) 000 £ () [* Gy U duay U g)

//d(hdplvpl (q1,p1) //dwdu//dydq2 <VV (n—y)—VV(a —y+\/ﬁ§2)>

.f( \;ﬁ%)f( ﬁl)enmw—@!f @) [ (@way i auay )

é
h2

=13+ II3,

where we have used change of variable vhg, = (y — g=2) in the second term above.

We first focus on IT3. We begin by splitting the integral on momentum, by using Lemma it follows

115 =(27)3h?

/ dg1dp1 Vy, ®(q1, p1) //deU/ dde2 (w—u)eqs T X(w— u)th>

(Tl = TVl = Vi) )1 () (M)

ip(w—u ~ 2
L enpr )’f (@) | (away U N, auay V)

W é/dlql//dwdu/dy<'/<ipl RPN Gy uyeas Vi (g1, p1)

+ ‘/dm enpr(w= )X(w_u)eszﬁvpl@(%,]?l >'f< i >f<u\;ﬁql)‘
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: (/ dg2| 32| f (G2) ’2> | {@way VNt auay VN ) |

<Cﬁg+%/dq1 //dwdu/dy(‘/dp1 e%py(w—u)x(wiu)eﬂivplq)(ql’pl)

Lpr-(w—u w — u —
+ ‘/dpl ehpl( )X(w—u)eﬂhvpl¢(ql7pl) > : ’f( \/ﬁQ1> f< \/gl)‘

=31 + %31, (3332)

N {awayUn g, auayUny) |

where we used the fact that VV is Lipschitz continuous, f has compact support, and the definition of 3 in
(12.3.3).
The next step is to use Lemmata[2:3.2] and [2:3.3] to bound the terms i3; and i3;. Then we examine what

the appropriate terms o and s should be. By Lemma we may bound the term i3y, i.e.,

i5 < Ch3tat(-—o) /dql//dwdu/dy ‘f( ) ( 7 )‘ (away VN 1, auay V) |
conter fan oo [afr(%52) 1 (52)

Since we assume that f is compactly supported, by Holder inequality with respect to w and u, we have we
have that

_ _ 2\ 2
i <Ch%+%+<1*a>5/d <//dwdu (w ‘h> <“ ql) )
31 Uh f NG f NG
2
. ( [t xi e aievin ([ 0 lowaslliona el )
—cns+rt [ag( [amir @)
2
- <//dwdu X\wfql\gx/ﬁRX\ufqﬂS\/ﬁR (/dy ||away‘l/N,t|||auay‘I’N,t||) ) )

where we used the change of variable v = w — ¢; in the last inequality. Now, since || f||, is normalized,

1
2\ 2
aa (// dwdu X|w*q1|<\/ﬁRx\u*q1\<\/ﬁR </ dy ||away‘I’N,t||||auay ) >
%
dg (// dwdu X\w—ql\gx/ﬁRx\u_qlK\/gR (/dy ||away\1/N7t||2> (/ dy |auay\I’N)t||2>)

2
dql//dydw Xw—qr < virlGway YN e]

laway ¥ n¢lll|auay

2

[

Nl

we continue to have

< Op3tztl-a)s

< Ch3+%+(1—a)8

— Op3tzt-a)s

—_—— —
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= Ch3+%+(1_“)s/dy//dmdw <(ly\I’N,t7X\w7Q1\<\/ﬁRa:uaway\I’N,t>

by Lemma [2.3.2

is1 < CR3—8+3+0- O‘)‘s/dy (ayUnt,ayVUne)

= Cpti—)s—t <\1/N,t, j]\v/qu,t> < Cpi—s—L, (3.3.33)
On the other hand, from 4i3; we have
1131 <0h3+% /dql//dwdu/dy‘/dpl e%i’l'(“")x(w_u)eghvplq)(ql,pl)

w — u —
s ( ﬁql) f ( fq) \| (0t U 1 Gy U |
<CRi+h / day / dwdu / dy / D1 Xu—wyes Vs (a1, 1)

s (“’ﬁ) f <”fq) \| () |

_ u—
Chs+ %/dql//dwdu/dy X(w—u)eQp * ’f( Q1) ( \[ql>’| (@way VU N+, auay PN ) |

Since f is assumed to be compactly supported, we have

o
<Ch%+%/d //dwduX B (“’_‘h> (“_‘”)‘
q1 (w—u)eQy, f \/ﬁ f \/ﬁ
4
. ( [ X i [ Wlowa e, ) ,

where we use Cauchy-Schwarz inequality and Hoélder inequality.

Next, by change of variables as well as Holder inequality in respect of y, we have

2\ %
3+3 =dal )
<Ch (//dwdu X\ﬁ—mgh“*é >

/dy/ dg dw Xlw—q1|§\/ﬁR <a'y\IJN,t7aZ;away\I/N,t> (3334)

<ont ([av p@p [aix, eli@P)

where we applied Lemma Observe from (3.3.30)), we get

f(w) f (@)

.. _1
1131 < Ch* 2.
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Now we compare power of i with the one in (3.3.33)). Namely,

1
a=-5= (I1-—a)s—1. (3.3.35)

Therefore, we choose s = [ﬁﬁg)—‘ such that II5 is of order A~ 2. Now, focus on I3, we use similar strategy

as with I73.

1
I; <Ch? / dg: // dwdu / dy / ds
0

: (‘/dpl e%pl'(w’“)x(wfu)engvpl‘P(ql,pl)

VV(su+ (1—-s)w—y)—VV(g — y)‘

+ ‘/dpl 6%p1.(w7u)x(w7u)eﬂnvm(I)((h7p1)

oy [
1 .
<Ch%/dq1 //dwdu/dy/o ds|su+ (1 —S)w—q1|<‘/dp1 e P TIX 4 uyeas Vi, B(q1, 1)
w—q U — q1

’ X|w7q1|<\/ERX\ufq1\g\/ﬁRHawa’y\I’N;tH ||auay\I]N’t||

)

+ ’/dpl e%plh(wiu)x(wfu)eﬂﬁvpl(I)(qlapl)

= i32 + ’iigz (3336)

Again, by Lemma [2.3.3]and the bounds for number operator and localized number operator, we have for iso

that

1
o znt o [ a1 - | (25) 1 ()
139 a1 wdu ; s |su+ ( syw—q|-|f 7 f 7

'X|w_q1|<\/ﬁRX|u_ql\<\/ﬁR/dyHaway\IjNJ”Hauay\IlN,tH
2)%

<0h3+%+(1—a)5/d(h (//d@dﬂ/lds st + (1 — s)w|? - ‘f(w)f(ﬂ)
0

1
2\ 2
. (//dwdu Xlwfqllgx/ﬁRX\ufql\éx/ﬁR (/dy'away\IjN,t””auay\IjN,tH) >
. 1 2 %
<CpPtzt-a)s (//dﬁdﬂ/ ds |st + (1 — s)w|* - )
0

./dy//dqldw Xjw—gr1<vAR Oy YNt a5 away YN )

<Ch(1—a)s—17

f(w) f (@)
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where we used Lemma [2.3.2] and the bounds for number operator. Similarly, for iiss, we have

1
figy <Ch2 /dql//dwdu/dy/ ds|su+ (1 —s)w—q1|/dp1 |X(w7u)eszﬁvp1<1>(q1,p1)]
0

w—aq u—q
(22 1 () e i e vl Dl D)

1 _ T u—a\
<Ch%/dq1//dwdu/dy/o ds|su+ (1 — s)w — q1 X (w—w)eq, | f <w\/ﬁ(h) f (u\/ﬁcp)’

) X|w_q1|g\/ﬁRX|u_q1|g\/ﬁR||away\I/N7t|| laway ¥yl
1

1 _ _ 2 2
SChg/dql (//dwdu/o ds|su+ (1 —8)w —q1|*|f (w\/ﬁ(h) f <u\/ﬁql>’ X(wu)egh>

1
3
: (//dwdu X|w—q1|<\/ﬁRx\u—q1\§\/ﬁR/dy”aw%\PNﬂf ||auay\1/N,t||)

1 2 %
<Ch*ts dwda [ ds|si + (1 — s)a)? X o
0 @~ <hot 2

~/dq1 (//dwdu X\w—ql\gx/ﬁRXm—qlK\/ﬁR/dyHaway‘I/N,tn”auay\pN,t

f(w) f (@)

)

By Lemma [2.3.2] and the bounds for number operator, we have

1 2
<COht <// dﬁda/o ds|su + (1 — s)w|? X|aa|<ha+%>

Then, by using similar computation in (3.3.30) and the assumption that f is compactly supported, we may

Nl

f(w) f (u)

get
gy < ChO73.
Therefore, II5 and I3 together, we have the bound of order ho~2 for o € (%, 1). [ |

Proof of Proposition [3.2.6

Proof. To calculate the bound in (3.2.16) for ﬁk. It has automatically an 1/N as a factor, therefore, we
expect it has better estimates than the other remainder terms. More precisely, we can split the integrals as
before,
1 k
o o a0 @) e i) 3 Vi~ ) = Vs - )
J#i

_ \®k
(AT 0) T (@ G Wity G+ W)
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:u\f /../(dqdp)m(dwdu)@k@(ql,pl, ) S |:V(uj ) — V(w; — wi)} ( Zp(w)m>®k

k
’ H (X(wn—un)EQ% + X(wn_un)EQh> <a’wk T a’wllI/N,t’ Ay, * " aulq]N,t> )
n=1

where ), is defined as in (2.3.3)). Since V'€ W% and recall i3 = N~ we have

Wn — qn Un — Q4n
() ()

k

H ( (Wn—un)€EQS, + X(w,qu,L)EQh // dp eﬁ Zm 1P (Wm = um)q)(qu o 7pk)

- Unp — (n
1) (7% (%)
. ‘/'/(dp)®k (X(wl—ul)em . ..X(wl_w)eﬂhx(wzﬂ_WH)EQ% .. 'X(wk—uk)eﬂg> vqjq; . o7 Pr-(Wr—ug)

=Ch3~ Sk max // dqdwdu ®k // dp ®2X (w1 1) - X(wz UZ)EQhehzm 1 P (Wi —um)

) ‘

||awk ©r Gy \IJN,t”Hauk cr Oy

k
<C(k)| V|| B> 2 /./(dqdwdu)@”f 11

n=1

||a’wk ©r o Quy \IIN,t”Hauk s Quy \IJN,t”

<Ch3~ 2k max // dgdwdu)

0<U<Lk

. /./(dp)@)(k_é)x(wu-l7ue+1)692 T X(wkfuk)eﬁﬁe% Eme e pm'(wm—um)vqj(I)(thl’ <> Qs Pk)
t Wn — ¢ Un — g
() ()

where we apply similar argument in (3.3.28)) in the last inequality. Note here that the constant C' above is

||awk T a'UJl\I/NytH”auk T aullIlN1t||7

dependent on k. Applying Lemma we have

<C max 3=kt (1-a)(k=0)s /-/(dqdwdu)‘g’k (X(wl_ul)egh . -~X(w€_w)egh)

0<b<k
Wn — Q4n Up — (dn
() ()

([P 'aw1\I/N,t||Hauk e 'aulqjNﬂfH

k
n=1

—C max K3 sktI-a)(k=0s // (dgdwdw)®* (X (w, —ur)eam ** X(we—ue)e0m )

Wn — G Un — (g
() 7 (P8 ) Mmoo, = Bl o0,
n=1

<C max 537%k+(1704)(k7£)s //(dq)®k //(dwdu)®k (X(w1—u1)eﬂh . X(wz—uz)eﬂn)

0<I<k
Wy, — ¢ Un — qn \|” H k
() () T [ ff 0 et
\/ﬁ \/ﬁ oot \ anl k

k
n=1
_ s+-a) k=05 [ [ an®*| [ (a@dm ek
=C jopx R //(dq) {//(dwdu) (X\arausha*% X\awaugn(‘*%)
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k 1 k
I |f<wn>f<an>|ﬂ [ // ()@ TT X\, g 1<l -, Oyl
n=1 n=1

<C max h37%k+(17a)(k7€)s+(a+%)€,
0<<k

where, as in the proof of Proposition we applied Lemma [2.3.2| and (3.3.30). Therefore, we obtain the

2],

Next, we switch to estimate (3.2.17) for ﬁk. Repeated the steps in the proof of Proposition , we

desired result by choosing s = {

have
‘/~/(dqdp)®kvpkcb(q1,p1, ey Qk,pk) : ﬁk

k
Z/-/(dqdp)m(dwdu)@k%j<I>(q1,p1,---,qk,pk)-//dydv/ dgk41dpr41
j=1

. /0 ds [VV(suj + (1 —s)w; —y) — VV(g; —y) + VV(g; —vy) — VV(q; — Gr+1)]

.\ R®k -
h h
’ ( Qap(w) gp(u)> Qk+1:Pk+1 ) (ZchlkaJrl (v) <a’wk Oy Ay VN Gy Gy aU\IjNvt> :

Appling the A-weighted Dirac-delta function as in (2.2.3]), we have

=(2m)3 R332

k
Z/-/(dqdp)@’k(dwdw@kvpj<1>(ql,p1,---,qk,pk)-/ dydgp41
j=1

. /0 ds [VV(suj + (1 —s)w; —y) — VV(g; —y) + VV(g; —y) — VV(q; — qr+1)]

®k _ 2
Y — qk+1
() (2 o, et

<(2w)3h33k§:1 // (dqdwdu)@)knli[l // dydgi1
([ @519V s+ 0= 9huy =) = IV s )+ [TV 05— = 9V 0y~ Vi)
() ()

Using the fact that VV is Lipchitz continuous and that f is compactly supported, we have

/'/(dp)(g)kvqu)(qlapla ) qkapk)e%p".(wniun)

|f (ak+1)|2 | <a’wk T awlay\I/Nﬂf’ Ay~ aulay\IJNﬂQ |

/‘/(dp)mvpj‘b(ql,pl,---,qk,pk)elﬁp"'(w"’“")

k k
<(27r)3h3’%kZ/-/(dqdwdu)®k H / dydqr+1
j=1 n=1

. 1ds|suj+(1—s)wj—qj|+‘x/ﬁak+1‘ P (B @) P
0 Vh Vh

X, =gl VAR —gu <R G G @y U e[y - Gy ay Wy o
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:ZI4 + 114

Focusing on I, we split the integral as follows
k k
_3
1= @3 Y [of (dadudw®™ | TT (X -unreos + Xeonwnrenn) ff @00, 0 preecaum)
j=1 n=1

1 —_ —_
R /0 ds [su; + (1= sy — 5] | (w \/ﬁq") f (“ \/ﬁq)\ o) ?

: X|wn7qn|<\/ﬁRX\unfqn|<\/ﬁR‘ law,, =« @w, ay YN e[| auy, -+ - auy ay P

i k
ek Thisa P —um)

where Oy, is defined as in (2.3.3). We do similar computations for Iy,

k
Iy =(2m)?h= 30y // (dgdwdu)®*
j=1

| s [V

k
H /./(dp)(gk (X(wn—un)EQ% + X(wn—Un)GQﬁ) Vp, ®(q1,p1; - - Gk Pr)
n=1

f (“}\/‘ﬁq) ! (“\;ﬁq)\ 1 (@)

lau, - Guy Gy U el

. e%Pn . (wn _un)

Xy, | <VER N —gu| < VAR Gy - Gy ay Uy

Repeating the proof of Proposition namely in (3.3.36) and (3.3.32)), as well as the proof for estimate
(13.2.16]), we eventually obtain

I, + 1T, < C max hz~gkt-a)(k=Ost(a+3z)e
0<e<k ’

where the constant C' depends on k. As before, we choose s = [21(;123)] and choose a € (%, 1) such that

(e — 1)k < =6, and we obtain the desired estimates. [ |
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Chapter 4

Vlasov-Poisson equation

In this chapter we study the convergence from Schrédinger equation to Vlasov-Poisson equation by consid-

ering the following mollification of repulsive Coulomb potential,

Assumption H3. For any x € R3, let V(x) = |z|~! and its mollification given by

Vn(z) = (V xGgy)(2) (4.0.1)

with g/BN (I) = (27Tﬁ1%\/)3/2 ei(z/ﬁN)?‘-

Heuristically, the Sy in regularized potential defined in can be understood as a low-pass filter.
Another interpretation of the mollification above is that, instead of point particles, we are considering
spherical particles with vanishing radius. This method of starting from mollified Coulomb potential and
remove the mollification when taking N — oo has been applied by many researches, for example in [HJ15]
Laz16, [LP17], to derive the Vlasov-Poisson equation from N body classical dynamics. In [CLS1I], such a
regularized potential has also been considered for the bosonic case in the quantum settings.

Therefore, in this chapter, we will show the convergence from Schrédinger equation to Vlasov-Poisson
equation. The work in this chapter is based on our article in [CLL21b] which has been accepted in Annales

Henri Poincaré.

4.1 Main result

The Hamiltonian acting on F, we are considering in this chapter is given as

h? 1
Hy = 5 /dz VaaiVaa, + IN /dxdy VN (z —y)aza,ayas, (4.1.1)
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and the Cauchy problem for the Schrédinger equation in Fock space is given by

ihoWU N = HNUn, (4.1.2)

\IIN,O — \I/JS\}ater7

for all Wy, € F, and ||[¥n | =1 for ¢t € [0,T].
In this section, we provide our main result, proof strategies, and the a priori estimates. The complete
proof will be presented in Section In the following, we denote V,f and V, f to be the gradients of f

with respect to the position and momentum variables respectively.

Theorem 4.1.1. Suppose that Vy is the regularized Coulomb potential given in with By == N~€ and
0<e< i hold. For any fited T > 0, let Uy, € Fy, t € [0,T], be the solution to the Schrédinger equation
(4.1.2]) with the Slater determinant as the initial data. Let my ¢+ be the 1-particle Husimi measure defined in
[2.2.6), where f is a compact supported positive-valued function in H'(R3) with ||f||z2 = 1. Moreover, let
MU be the initial 1-particle Husimi measure with its L*-weak limit mo and there exists a constant C > 0

independent of N such that

tﬂ@@ﬂW+MWw@m<G (4.1.3)

Then, my+ has a weak-x convergent subsequence in L>((0,T]; L*(R?® x R®)) with limit m;, where my is, in

the sense of distribution, the solution of the Vlasov-Poisson equation with repulsive Coulomb potential,

Oma(g,p) +p- Vgme(a,p) = Vo (|- |71+ ee) (@) - Vpmu(a, p), (4.1.4)

mt((bp) |t=0 = m(](Qap)v

where pi(q) := [ dpmi(q,p).

Remark 4.1.1. Since the total energy is conserved in this problem, the assumption of repulsive interacting
potential is important to give uniform estimates both for kinetic energy and potential energyﬂ In fact,
the result in Theorem holds also for attractive singular potential if the kinetic energy can be bounded

uniformly in N.

Remark 4.1.2. Tt is proven in Proposition [3.2.3|that the first moment of the Husimi measure my; is uniformly
bounded. Therefore, by Theorem 7.12 in [Vil03], the convergence stated in theorem also holds in terms of

the 1-Wasserstein metricE

Remark 4.1.3. In [GP17], the rate of convergence from Schrodinger to the Vlasov equation in the pseudo-

metric is obtained for the interaction potential V' € C1!. In addition, the authors commented that their

1See Lemma below
2The 1-Wasserstein metric is defined as W1 (u,v) := max,ecmu,.) [ |2 — y| dm(z,y), where p and v are probability measures
and II(u, v) the set of all probability measures with marginals p and v.[Vil03]
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result can be extended for the truncated Coulomb interaction, but with order higher than C/vIn N for
some constant C' > 0. In Theorem the mollification of the Coulomb interaction can be handled with

polynomial truncation.

Remark 4.1.4. The global existence of classical solution to the Vlasov-Poisson equation in 3-dimension is
proven in [Pfa92] and [LP91] for a general class of initial data. The uniqueness of the solution is proven in
[LP91] for initial datum with strong moment conditions and integrability. In [Loe06], the uniqueness of the
solution is also proven for bounded macroscopic density. Furthermore, the global existence of weak solutions
is provided in [Ars75] for bounded initial data and kinetic energy. The result is then relaxed to only LP-bound
for p > 1 in [GT15]. Result on existence with symmetric initial data is proven in [Bat77, [Dob79 [Sch87]. For
other results, we refer to the works given in [ACE14l [BBC16] [HN8I1] to list a few.

4.1.1 Proof strategies
As in chapter 5] recall again that from Proposition we obtain the following reformulation of Schrédinger

equation given (2.1.10), i.e.,

8tmN,t(Q7p) +p- quzv,t(q,p) - Vg (hIm <an(f§,p)‘1/N,t, a(pr)WN,t>)

_ ﬁv”' // dwyduy // dwsdus // dqupz( ;‘fp(w)m)®2 (4.1.5)

1
/ ds VVy (su1 +(1—-s)w — wg)’y,(\i)t(uhw; wy, ws),
0

where we denote

(2@ @)™ = 12y ) T ) o 02 T o ).

In particular, this can be rewritten into the Vlasov equation with remainder terms, i.e.,

oymn,¢(q,p) +p-Vemn,i(q,p)
1
-~ (2m)3

~ (4.1.6)
Vy - /dQ2 VVn(q—@2)oni(a2)mn (g, p) + V- R+V, R,
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where on+(q) :== [dpmn (g, p), R and R = R + R are given by

R :=hIm <an(fqh’p)\IlN7t, a(f;”,p)\I/N,t> ,

Ry :=ﬁ // dwydig // dwadus // daadps (f1, ) FE, )

1
{/ ds VVy (su; + (1 — s)wy — wa) — VVn(q — lh)} ’Y](\%)t(ul,uz;wth% (4.1.7)
0

R, :=ﬁ // dwyduig // dwadus // daadps (f1, ) FE, )

VVn(q—q2) {71(\?7)15('“17 Ug; wi, wa) — 71(\2(“1; wl)'Y](\},)t(UQQ WQ)} :

The main idea of this chapter is to rigorously prove the limit N — oo from to the Vlasov-Poisson
equation in the sense of distribution.

First, from the uniform estimate of the kinetic energy shown in Lemma we prove in Proposition
the uniform estimate for the moments of Husimi measure. Additionally, since the Husimi measure
belongs to L>([0, T]; L*(R?) N L>®(R?)) (see Lemma [2.2.2), we obtain directly the weak compactness of the
two linear terms on the left-hand side of by the Dunford-Pettis theoremﬂ

For the quadratic term on the right-hand side of , the classical Thomas-Fermi theory gives that
on+ € L([0,T]; L/3(R3)). With the a priori estimate obtained in Scction the Aubin-Lions compact
embedding theorem shows the strong compactness of VViy * on ;.

The estimate for the remainder term R is provided in Proposition m Thus, the main work of this
paper is dealing with the challenging term R. Unlike the BBGKY hierarchy used in chapter [} where the
remainder term contains only the difference between the 2-particle density matrices, we write the term R as
a combination of the semiclassical and mean-field terms as R and R, respectivelyEI Thus, the factorization
effect can be directly obtained from R, instead of using the method of the BBGKY hierarchy.

The estimates for Ry and Ry are shown in Proposition [£.2.2] and Proposition [£.2.3| respectively, in which
we utilize the estimates of the ‘cutoff” number operator and momentum oscillation presented in Lemma [2.3.2]

and Lemmam to control the growth of the Lipschitz constant Vi, which is of order ﬁ;,z.

4.1.2 A priori estimates

Observe that due to the conservation of energy and the repulsive effect of the Coulomb force, we obtain the

following estimate for the kinetic energy.

Lemma 4.1.1. Assuming that V() = 0 and the initial total energy is bounded in the sense that %(TN, HNTpN) <

3See Proposition
4See ([@.2.1)) for the full structure.
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C, then there exists a constant C > 0 independent of N such that

K
<‘1’N,t7 N\I’N,t> <C. (4.1.8)

Proof. We define the operator

Vy = %//dxdy VN (2 — y)aza,aya,.
Since Vi > 0, we have (¥, VN Un ) > 0. Then
(Unt, HNOIN ) = (Unt, KON + (TN, YNTI ),
implies
0< (Une, KUNy) < (YN, KNP e)-

Hence,

1
—(Un, KON ) <

1
|\ )\ = — (U |\ < C.
N (N, HNO N e) N< Ny HNEN) < C

1
N
|

Consequently, the moment estimate of the Husimi measure is obtained directly from the uniform bound

in Lemma [3.2.11

Proposition 4.1.1. Fort > 0, we have the following finite moments:

[ dado Gal + 1P matap) < c1+), (1.19)

where C > 0 is a constant that depends on initial data [[ dgdp (|g| + |p|*)mn(q,p).

Proof. First, from (3.2.9), we have

K 1 2 2
<‘I’N,t>N‘I’N,t> = W//dqdp Ip mN,t(an) +h/d(I|Vf (@I, (4.1.10)
which implies that
1 K
W/ dgdp |p|*mn (g, p) < <\I/N,t7 N\I’N,t> <C, (4.1.11)

where we use Lemma in the last inequality.
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Then, for the moment with respect to ¢, we obtain from (4.1.6|) that

d
&/ dqdp |glmn (g, p) =/ dqdp |q|0ymn (g, p)

://dqdp |q|<—p-quN,t(q, V //dwldul//dwldug//dqupg/ ds

VV(SUQ +(1—=s)w — wg)f(?p(wl) gp(ul) o2 (wg)f(;‘l2 2 (U2) (@, QG U N 1, Gy @y YN ) + Vg ‘R
(4.1.12)
By applying the divergence theorem first with respect to p and then with respect to ¢ in (4.1.12)), we

// dgdp |g|mn,(q, p // dqdp -pmn.(q,p)

< //dqdp (L+[p*) - mn.(q, p),

obtain

where we use Young’s product inequality. Finally, taking the integral over ¢, we obtain the desired result. B

4.1.3 Proof of Theorem [4.1.1

First, denoting on,:(q) := [ mn (¢, p) dp, recall the Vlasov equation

oymn (q,p) +p - Vomn(q,p)

1 -
= va : /d(h VVn(q— @2)oni(@2)mne(q,p) + V- R+V, R (4.1.13)

1 ~
= 27)? (VVN xont)(q) - Vymui(g,p) + Vg R+ V, - R,

with
R : hIm<V a )\Ith, (f(ip)\IlNat>7

1 o (4.1.14)
{/ ds VVy (5u1 +(1—s)w — w2)'yN,t(u1,u2; w1, Wa)
0

- VVn(q— Q2)7§\},)t(uu wl)%(vl,)t(um wz)} :

The main task is now reduced to taking limits in (4.1.14]). In fact, Section is devoted to deriving the
estimates for the residuals. As a summary, it is proven in Section that for , ¢ € C§°(R3), there exists a

79



positive constant K such that

‘/ dgdp ¢(q)9(p)V, R(q,p)’ < Khi

(4.1.15)
'//dqdp ©(q)9(p)Vyp R(q,p)’ < f((h%@al—@—% + ﬁ%(%—%)—%)’

where % < ap <1, % < ag <land 0 < < 1. The estimates in (4.1.15) show that the residual terms
converge to zero in the sense of distribution.

Recall from Proposition we have the following result on weak convergent in L':

dgdp mn; +(q,p)®(q,p) — //dqdp m¢(q, p)®(q, p),

as j — oo for any ® € C§°(R3 x R3).
To prove the convergence of the nonlinear term (VVy xpn)-V,muy ¢, we first show the strong convergence

of VVi % pn.

Lemma 4.1.2. Let Vi be defined as (4.0.1). Then for t € [0,00) there exists constant C > 0 independent
on N such that

IVVy * on | (4.1.16)

Lo ([0,00); W %(R3))

10:(VVi * on 1)l (4.1.17)

15 <
L= ([0,00);W ™17 (R3))

Proof. From Lemma and Proposition one finds that my ; is uniformly bounded in L ([0, 00); L* (R?x
R?)) N L>([0,00); L>=(R? x R?)) and |p|*mn +(q, p) uniformly in L*([0, 00); L' (R? x R3)) respectively. As a
consequence, it holds that

”QNtHLoo(O 00); L3(]R3)) <C

Thus, Vi * ons = V % Gay % ons is uniformly bounded in L ([0, 00); W23 (R3)) due to the fact that V is

the fundamental solution of the Poisson equation and

HgﬂN *

L (000t t (&%) S G s r) - ”QN’t”Loo([o,oo);L%<R3>>'

This implies the result (4.1.16]).
To prove (4.1.17)), recall again the transport equation for my ;

1

7(27_03 (VVN * QN,t) . meNyt = Vq R+ Vp ‘R, (4.1.18)

omne+p-Vemn, —

80



where on+(¢) := [ mn(g,p) dp. Taking the integral with respect to p,

8t/dpmN,t(q,p)+Vq-/dpp mn,(q,p) =Vq-/dp75-

Next, by taking the convolution with VVy, we obtain
Oy (VVN * QN,t) + Vq . (VVN Rx JN,t) = Vq . (VVN R s /dp'ﬁ,) R (4.1.19)

where Jy :(q) := [dpp mn+(q,p), (u®x v);j = u; *v; for u,v € R3. Then, we observe that

] / dppmN,xq,p)‘ <[/ dp|p|2mN,t] [/ dpmmt] :[/ dp|p|2mN,t} o (4.1.20)

Therefore, we have

[N

5 5 3
1 8 5 8
= /dq‘/dpp mn(q,p)| < {// dgdp |p|2m1v,t} qu Q]if,t:| <G,

where we use Proposition in the last inequality, yielding Jy,; € L‘X’([O,oo);L%(]R‘?)). Then, for any

/ dq|Tn4(q)|

test function ¢ € L'¥ (R3), we obtain

/dQ|‘P(Q)| ‘/dqg VVN(g = ¢2)In(g2)

< / dadan 10(0)| [V V(@ — @)1 e ()]

<c (/dw(q)p;)& (/dquw,t(q)ﬁ)g

<G,

where we use the Hardy-Littlewood-Sobolev inequality in the second inequality. This implies that (VVy *
In) € L=([0,00); L7 (R?)).

Therefore, we focus on the following estimate:

[arR| <n [ ap|(Fatsiynonsatil, v |

<h / dp||Vaalf2 ) U alalsE,) |

[/ dp mN,t(Qap):| 2

1
2
ON ¢

=

< [h2/dp<an(pr)\I’N,t,an(f(ip)‘l’N,t>]

2

= [hQ/dp<vqa(f<?,p)\l’1\’,t7an(fgp)\PNvt>]
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Since

% // dadp (Voa(f" )W, Voa(fh )W)

=h? //dqdp//dwdu Vof (w\th> Vof <U\/ﬁQ> erp(w—u) (U, akanVy )

2
_ h%+3//dqdw v (“’\;ﬁq)‘ (U, a0 W)

- h“/dq~|Vf@’)|2 (Un,e, Ny

< H|V I3,
we have
/dq‘/dp 75' < [ﬁz//dqdp <an(ff,p)‘1’w,t,an(f(f,p)‘IfN,t>] (/dq va,t) < hic.

Repeating the calculation in ([1.20), we have that (VVy * [dpR) € L=([0,00); L7 (R?)), which implies
that (VVy * [dpV, - R+ V, - R) € L®([0,00); L7 (R?)). Thus, from (&1.19), we have that

8 (VVi % on.g) € L([0,00); W™ H7 (R?)).

This completes the proof for Lemma [£.1.2] [ |

Finally, we conclude the proof of main theorem with the following compactness argument.

Compactness argument

As in Section the weak convergence of the linear terms in the Vlasov equation is obtained from
Proposition [3:2.7] The following discussion is focused on the nonlinear term. Without loss of generality,
assume that ®(q,p) = ¢©(q)¢(p) for any test functions ¢, ¢ € C5°(R?), and let the sphere B, with radius
£ > 0 be the support of ¢. Then, from Lemma and Sobolev’s embedding theorem, we have

W5 (By) < L™(By) = W7 (By),

where % <r< % and <> means the compact embedding. Aubin-Lion lemma implies that there exists a

subsequence denoted also by {VVx * on 1} nen, and h € L=([0,T]; L"(B¢)) such that, as N — oo, we have

VVn *on:— h in  L%([0,T]; L"(R%)), (4.1.21)
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where g <r< %.
To show the limit A, we suppose that
[ dae@) (T ox)(@) - TV 0)(@)

—/dw Y(VVN = VV) % ont) (q)+/dqw(Q)(VV*(9N,t —01))(q)

: Aq +./42,

for some test-function ¢ € Cg°. Since VVy converge strongly to VV in L%*E, and on ¢ € L' N Lg, then we

have, for any ¢ € (0, )ad%— €(L,3)

Ay = // dady o(a) (VW — VV)(q - y)ona(y)

<llell 3 IVV = VV| 5. . —0,
as N — co. On the other hand, observe that since
lo* VIl 5 < lellIVVI5. <€,
where ¢ = i(isjlsl) for any ¢ € (0, %) and C > 0.

On the other hand, since gy, —* o, in L>°((0,T); L%(Rg)), where 0,(q) := [ m(q,p) dp, we obtain

Ay = /dy (e*VV) () (ont — o) (y) — O,

as N — oo for fixed t. Therefore, we have the limit h = VV x g; for any test function ¢ € L¥(R3) N LI(R3).

Now, to show the convergence to the Vlasov-Poisson equation, we first compute

T
; dt [[ dgdp o(@)V,0(®) - [(VVN * on.e)(@)mn,i(q,p) — (VV *x 01)mu(q, p)]

dt [[ dgdp ©(q)V,0(p) - [(VVN * one) (@) — (VV % 0)(q)] mn (¢, p)

T
+ [t ] dadp ol 9,00) - (VY < 00(0) st ) = ()] \

T
dt

dqdp ©(q)Vpd(p) - [(VVN * on)(q) — (VV * 01)(q)] mN,t(q,p)‘

T
i \ [t [[ o o@9,00) - (9V 5 0@ mvala.p) — mula.p) | B+ B
0
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Let us focus on the first term.

5= " [, a0 0@ (7Y ex@) = (7 s e0(@]- [ ap Ty olp) )

<T s[t(l)pT] [(VVN xon ) — (VV % Qt)||LT(B£) Hw/dp V,od@)mn (-, p)
telo,

L7 (Be)

<T sup [[(VVN xont) — (VV % 01)]
tc[0,7]

< CTH(VVN * QN,t) - (VV * Qt)”Loo([O,T];Lr(BZ))

L7 (By) ||<P||Lr’(BZ) ||Vp¢||L1(R3)

where we use the fact that 0 < my+ < 1 almost everywhere. Taking the limit N — oo on both sides, then
we have

N—o0

We focus now on Bz. We observe that since |[my ||, . is uniformly bounded, it is implied that there is
a subsequence still denoted by {my}nen such that my; —* m; in L=((0,T); L>°(R? x R?)) as N — oo.
Since ¢(q)V,o(p) - (VV % 0¢)(q) € L*((0,T); L' (R? x R?)), we have limn_yoo B2 = 0. This completes the
proof of Theorem .11}

4.2 Estimates of residuals

The estimate for the residual term R given in (4.1.7) is obtained exactly as Proposition ie.,

Proposition 4.2.1. Suppose that f € HY(R3), ||fll2 = 1 and has compact support; then, we have the
following bound for R in (4.1.6); i.e., for an arbitrarily small § > 0, there exists s(6) > 0 such that the
following estimate holds for any test function ¢, ¢ € C$°(R?)

’// dgdp o(q)é(p)Vq - R(q.p)| < cah ™2,

where the constant ca depends on |Vl r and ||¢]|ws..

For the residual term R, we insert the terms

+VVn(q - Q2)’Y](\$,)t(u1, Ug; Wi, W)
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and write into a sum R = R1 + Ro, where

Ry 1=(27T)3//dw1du1 //dwzdug //dQ2dp2( qu’p(w)m)m

1
{/ ds VVi (su1 4 (1 — s)wy — wa) — VVy(q — fh)} Vﬁ,)t(ulauz;whw),
0

Ro :=(2) //dwldul //dwgduQ //dqup2< qp

{Vz(v)t(ulyuzawl,wz) 71(v,)t(ul§wl)’Yz(\},)t(U%wz)}-

(4.2.1)

@) V- )

Note that in (4.2.1), Ry represents the semiclassical limit part, and Ro represents the mean-field limit.
As a preparation for the estimates of the residual term R, we first show that the following identity for

regularized Coulomb potential, i.e.

Lemma 4.2.1. Let F, be z-weighted Fourier transform gwen in Definition [2.2.9 for = > 0 and h :=
exp(—)\|x|2) € C5°(R?) for XA > 0. Then, the following identity holds

Fo o v) = .
F, [sz[h](p)}( )=C 9 dy |$_y|3_ah(y), (4.2.2)

for all0 < a < 3.
Proof. Observe that,
|~ —C/ dre P ANETL
for A € R. Next, consider the Inverse-Fourier transform of Gaussian e*p%‘,

1 ipg —p3A
(27rz)3/2/dpezp e P

1 B 2
B (2m)3/2/ dpesr e

Fl [e_pz)‘](x) =

1 (VAp—
= W 2zf) /dpe 2z«f
2
— o 3/2 o (555) \-s2
z

— O(2N) "2 (£)%
note there square form here takes meaning of dot-product, i.e., A2 = AT A. Then, observe that

F L 1|afz ] (p>] () =C(2ml)3/2/dpeiw /OOO AAAE L PN (1] (p)

1 i > a i
:Cm/dpezpr d)\)\ﬁ_le_p%\/dye_?p'yh(y)
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]. > a i 2
= dyh dAAETL [ dpesP@—vemP A
C(27Tz)3/ y (y)/0 / pe e
1 © o, 2
=C—— [ dyh AL FE e P (2 —
1 o0 a r—y 23
=C——0 [ dyh AAAETL ()32~ () %
O(27Tz)3/2/ Y (y)/o (zN) e
=Cz3 2/dyh( )/ dr(z r)kTae*(I*y)2r

P a/dyh / dr e~ (@=9)*r5-1

- /dyh( Dy

where we used the substitution,

and b=2(a—1) [ |
Now take standard Gaussian
1 - (L) 2
Gpy () = ————e \Pn
w0 G
where 0 < Sy < 1. Note above that [dzGg, (x) = 1. Then, we have the following moment estimate for
the mollified Coulomb potential

Lemma 4.2.2. Let Viy be the mollification of the Coulomb potential as defined in (4.0.1)); then it holds

/dp|v7v<p>| < OB,
/ dp ol V()] < CB2,
/ dp [pl? [V ()] < CBRS.

Furthermore, we have

IVVi L= < CBR>. (4.2.3)

Proof. Observe we use here Fo[d] = (;AS interchangeably. Then, the Fourier transform of the Gaussian is

given by

! dze ! e_(ﬁ+%)2

G 1 - ()
ip-x

Gon () = 27r)3/2/ 27r)%e "
27r)3/2/



- 16_W)213/dze-(5&+“’§fv)2
2m )2

(2m)3/2 a3(2m
e (W?N)Z e Y
T (2n) / ay (2m)3
oy
B (2m)3/2

Then, by Lemma [£.2.1] we have

Vi (z) = F7 ' [Vn] (=)
_ (2;)/ / dp e Fy [(V * Gar )] ()

1.2.1) 1 inw 1
= W/dpep W‘F[QBN](I))

p/ﬁN)Q

RN e 1

IRCOEEN A e
1 / 1 (fﬂv)z

=_—— [ dpe™ 2
(2r)° “E°

Taking the modulus on both sides yields

V@) < Gy [ dlTaw)

1 _(en)?
SC/dp—ze ( 2 )
Ip|
:Cﬁ—?'/dk 1w
N |kBn|?
1
—3 02 —k

< CBy',

where the last inequality we used the following Spherical coordination,

27 T
1
/dk—Qe :/ d@/ d9sin0/ drr? e
[k 0 0 0 7]

Now take the gradient,

[VVi ()] =

/dpewm\

1
(2m)3/2
1

)3/2
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Similarly, for second derivative

1DV (2)| = o575

In the next subsection, we will estimate the semiclassical and mean-field residual terms, i.e. Rq and
R, by using the truncated radius Sy, the oscillation estimate, the cutoff number operator and the kinetic

operator estimates outlined in Section [1.1.2]

4.2.1 Estimate for the semiclassical residual term R,

In this subsection, we present in full detail the estimate for the semiclassical residue.

Proposition 4.2.2. Let ¢,¢ € C5°(R3). Then, for <o <l,0<d< (6a1 5), and s = [34((210‘71;1))—‘,

we have

‘//dqdp 0()p(p)Vy - Ri(q,p)| < ChitC=9=2, (4.2.4)

where the constant C depends on ||¢||yy1.00 s VO 1 apyesce s SUPP G, || 1l oo g1 » @nd supp .
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Proof. Recall from (4.2.1]) that we have

T ::(%)3// dwrdin // dwzdu, // dgzdp (ftip(w)m>®2

1 (4.2.5)
[/ ds VVN (SUl + (1 — S)U)1 — ’U)g) — VVN(Q — qg):| 71(\?7)]5(1,417112; w1, w2)_
0

For ¢, ¢ € C§°(R?), we have

’//dqdp w(q)qﬁ(p)Vp-Rl(q,p)‘
=(2r

)2 /~/(dqdp)®2 0(q)V,p6(p) - //dwldU1//dw2du2 (ff,p(w)m)m

1
{/ ds VVy (sm + (1= s)wy — wz) —VVn(qg— qQ)} *y](\?,)t(ul,uz;wl,wg)
0

= (2m)° //(dq)®2dp// dwydusdws o(q)V(p) - f (wi/% CI) f (ui/%q)
2 - .1
/ (wQ\th?) Uo ds VViy (su1 + (1 = s)wr —ws) = VVi(g = Qz)}
2

'YN}t(Ula wa; w1, Wa)

e%ﬁ'@ﬂ*“l)

?

where we apply the fact that (27h)38,(y) = [ e#P @) dp. Then, inserting +VVx (¢ — wz), by the triangle

/// (dg)®2dp /// dwyduydws (q)Vé(p) - f (wlﬁq) f (“lﬁq)
2 1
f (wi;h(h) [VW /0 ds Vi (sur + (1 — s)wy — wz) — V(g — ’(1)2):|
@)

’VN,t(Ul, Wa; Wy, Wa)

/// (dg)®*dp // dwduydwy ¢(q)Ve(p) - f (“’i/%q) ! (“1\/%")

£t T, Vala - wa) — Virlg — )

VJ(\?,)t(Ul,w%whw)

[ @07 [Jf dwidudes @vow) - 1 (“’;%q) / (“1\/%")
)

2
vwz’YJ(V,)t(ula wW2; Wy, ’lU2)

inequality, we have

< (2m)°

e%P'(wlful)

+ (2m)°

e P (wi—u)

= (2m)°

elhp'(wliul)

{ 01 ds Vi (s + (1 — s)wr —ws) — Viv(g — wQ)}
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+ (2m)°

/// (dg)®2dp // dwidurdwy ¢(q)Ve(p) - f (“’1\/%") ! (“1\/%")

f (wQ\thQ) ‘2 Uolds Vi (sur + (1 = s)w —w) — VN(QU&)}

e%p'(u}l*ul)vw2

2
vj(v,)t(ul, wa; w1, Wa)

/// (dg)®2dp /// dwidurdwy Vo (p) -V, (w(q)f (“”\/% q) f (“jﬁq»

/ (withQ) ‘2 Vi (g —w2) — V(g — q2)]

2
Vz(v?t(ul, wW2; W1, wz)

+ (2n)8

B%P-(wlful)

)

:II1+J1+K1

where we use integration by parts in the second to last equality.

Before advancing, we observe that by splitting the integral with respect to momentum space €25 and f,

as defined in (2.3.3), for constant C; depending on ||V@|| ;1. and supp ¢, we have

= ‘/dp (X(w1—u1)EQn + X(w1—u1)EQ%)Qb(p)e%pV(wiu)
(4.2.6)

g Cl (X(’ll)l*'UIl)eQﬁ + h(l—al)s) ,

where we use (2.3.4) in the last inequality.

Now, we want to separately estimate the terms I; and J;. We begin by estimating I;. Recall that

[ daco [Jf awrdusdes w(@ o) 1 (w;%q) / (“%q)

ehp () ( [ aa f@)ﬁ’) [ [ s Vavlosu + (1= 9 = ws) ~ Vivla - wﬂ}

I = (2m)%h2

VWQ’Y](\i)t(ula Wwa; Wy, Wa)

By using (4.2.6)) we have,

3 —a1)s w1 —¢q Uy —¢q
L<|[ V|~ Cih? /dq |cp(q)|//dw1du1dw2 (X unyec, + A7) f< - )f( - )‘
(Jus — al + [wr — al) |V vy (ur, we; wy, wo)|

3 w1 — uy —
< bl (1—aq)s 1—4q 1—4q
< |V Cih /dq lo(q)] //dwldul (X(wl,ul)egh +h ) ‘f( NG f T

(lux — gl + o1 — q]) / Q| V oy 72 (w01, w3 n, w3)|

90



. 3 (1—a1)s w1 —¢q Uy —¢q
= 19Vl ot [ aa lot] [[ dundur (X, arcon +1 )‘f( ) (s )]

(Jur — g + |wy — ql)/dw2|Vw2 (s Qoo YN Gy Oy W) |

3 —an)s wy — up —
<19Vl Gt [ g ool [] dwndin (o -upen, + 1070°) |7 (220 5 (120)

(1 =l + s =) | Qw1900 Ol Dl + [0 O ¥ s v

3 w1 — Ul —
< 5 (1—aq)s 14 1—4q
<19Vl [ da lota)] [ durdun (Xeo,-apen, + 10207) |7 (220 £ (M

1 1
2 2
(s — gl + Jwr — ql) [ ( / dwznvwzawawlwm) ( / dwauawzaulw?v,tu)
1 1
2\ 2 2\ 2
; ( [ sl x| ) ( [ sl Vot | ) ]

= Ci||VVn| [im + ’i1,2}7

Before we continue, we observe that from the definition of the kinetic energy operator K and number

operator N, we have

1

2
F) ( / dwznamam%,aﬁ)}

1
2
= 2h71/dq |<p(q)| l:/ dwldul X|w1—q\<R1\/ﬁX|u1—q|§R1\/ﬁ<\PNat’aZ)1’Caw1\IJN7t> <\I'N,t,a:1/\/au1\I/N7t>]

/dq |(P(Q)| [ﬂ dw;duy X|w17q|<R1\/ﬁX|u17q\<R1\/ﬁ </ dw2||vw2aw2aw1\PN,t

=9op~ ! /dq |<p(q)| |:/d’w1 X|w17q|<R1\/ﬁ<\IIN¢7K:(G’Z)1G’“’1 - 1)\IJN,t>

1
2

/dul X|“1—Q|<R1\/ﬁ <\I]N7t7 (Nf 1)a21au1\PN,t>:|

1
2

< 2r71 (// dgdw; |¢(q) Xlwlqul\/ﬁ<\IfN,t,lCa;1awl\I/N’t>>

<//dqdu1 SD(Q)X|ul_q|<31\/ﬁ<\I’N,taNazlau1\I’N,t>>

43
< Coh™ 472,

Nl

(4.2.7)
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where in the last step we use a direct outcome of ([2.3.2]) and (3.2.1), i.e.

//dqu X‘m_q‘<R1ﬁ|<p(q)| (I, asKay PN y)
— ] 0o el (W Koz = D)
< [ dedz X, () (YN, Kaga: VN )
// lo—qI<Ra VR ! ' (4.2.8)

<\Ith,IC//dqu X\, q|<le|4p( q)|ax am\IJNt>

3

<Coh™2 (‘I’N KU N )

w\@

N

Cyh™

In the above estimate, Cy is a constant depends on ||¢||;« and supp f.

To continue, we apply the Holder inequality to i;,; with respect to the terms w; and uy,

’L'171 < h%/dq |(p [//dwldulx(wl Cu1)EQn f <w1\/ﬁ q) f (Ul\/ﬁQ)

2 2
] s X et ([ A astusn i) [ vl w?)
%
//dwldul X|w1*q\<R1\/ﬁX|u1*q|<R1\/ﬁ (/dw?awzawlqjN,t||2> (/dw2||vw2aW2au1\I/N,t|2>}

=t [ amidii ey 17 @0 7 @ P+ )

/dq lo(q) [ //dwldM Xjwy —q| <Ry VAN s —q| <R1 v

%
( / dw2||vw2aw2aws1w,t2) ( / dwz||awau1wzv,t||2ﬂ

Then by using (4.2.7)), the estimate goes further

2 2

(s — gl + s — qﬂ

<ot | ffamaio, s F@0 £ @F (il + @)

1

2
<on| [ dwldwxwl u1\<Rlﬁul+2|f<w1> (@ P+ ol

-5

< Cyh2t3(onts C’gh ,

where C3 depends on ||| o, ||f|l ecnr2, Supp f and we use the following estimate in the last inequality
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above:

Jawlr@l faux, o f@P
2 2
<suplf()f [dw f@P [dux, o
< llpoe £l 22 +2),

where the fixed radius R; arises from the compactness assumption of f.

With steps similar to those for i; ;, we have

212 Csh™ 2h(1 ay)s |:/ dwldullf(wl) ( )| (|U1|+w1)2:| <C4h_2+(1_a1)5,

(4.2.9)

where the constant Cy depends on ||¢|| o, || f|l ecqr2, and supp f. To balance the order between i1 and i1 2,

s is chosen to be
- 3(20&1 + ].)
o 4(1 — 041) ’

for oq € (2,1). Therefore, we have

I < O VVi |l o b

To estimate J;, we compute

/ dwduydws 9(g)Ve(p) - f (““V%q) f (“IJE")
ek o [ag 1 @) vr @) | | " ds Viy (s + (1 sun — wa) — V(g - )

(2)
’VN (ula W23 W1, wQ

(2m) h/dq\cp \///dwlduldwg

Jy = (2m)° dgdp

/dp X(wr—ur)en T X(wi - ul)eQL)VqS( ) - enP(wi—u1)

(4.2.10)

[/c@ IVf@)I} () (5 )[/ ds Viv (s + (1= s)wy — ws) — Vivla - w2>]

2
’7](\[7)13(”1’ wo; Wy, wa)

< [ dale@)] ] durdinduws (Xuunyea, + 1) ‘f (“’;%q) f (“1\/_;) ’

1
{/ ds |VN(su1 + (1= s)w — wg) —Vn(g— ’LU2)|:| ”y](\?’)t(ul,wg;wl,wg)
0

wy — Uy —
< ClHVVN||Looh/dq|ga(q)|//dwldul (X(wl—ul)eﬂn +h(1*a1)8) f( 1\/ﬁQ> f( 1\/EQ>

(jur = al + s = a) [ duz eusa,
—ay)s w1 — Uy —
<GVl [ daleta)] [ dusdun (X -amyen, +H07) f( ;ﬁq)f( ;ﬁq>
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) :
(=l + o= al) ([ awn N wel) ([ dwn fowou vl )

=: C1||VVi | 1o [J11 + J1.2]- (4.2.11)

As in part I, we separately analyze j; 1 and ji 2.

= [ dale@)] [] duwndun o, uen, |1 (“’1\/%‘-’) / (“Jﬁq) \ (s — gl + Jwr —g])

1
bl
* * * *
X\ul—qKRn/ﬁXle—qKRn/ﬁ </dw2 <\IJN7t,aw1aw2aw2aw1\I/N,t>) (/dw2 <\I/N7t7au1awzaw2au1\1/N7t>>

< [ ddolo) ( JJ v uenr (220) 1 (1)

<//dw1dw2 X|w1_q<Rl¢ﬁ<‘1’N,t,allalzawzawl‘l’zv,Q)

2

1

2
(lur = gl + |wr = q|)2>

2

1

=1 (1 [ a1,y 1 @) £ @ PG 4100 ] dadin X,y iela)

(Un ah, Naw, Uny)

N

<l g 27572 (/ w1 dtin X (g, —a,)eu ] f (@) F (@) [ (] + I@I)Q)

<C4h%(041—%)7

where we use (4.2.9) in the last inequality.
On the other hand, from the definition of j; » in (4.2.11)), we get

jra = h/dq|<p(q)| //dwldul pi—e)s| (““\/%q> f (“1\/_;) ’ (Jur — gl + w1 — q])

2\’ 2
X jur—ql< Ry VEX w1 — gl <R1 VR </dw2 ||aw2aw1‘I’N,t||z> </dw2 ||aw2au1\PN,t||2>

1+(1— w1 — ¢ u —q |? 2 :
< pit—an)s //dwldul f( 7 )f( N )‘ (Jur — gl + w1 —ql)

/dq|<p(q)|//dw1dw2 X|w17q|<]{1\/ﬁ<\PN,taaTula*wgaw2aw1\I}N,t>

1

1

2
< plH(-an)s—3-3 <h4//dﬁ1d171 Xlwlfﬂllsh‘”*% |f (@) f (@) (|t | + |ﬁ1|)2>

< C4h(17a1)87% .
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To obtain the same order for j;; and j; 2, we can choose

S

Thus, for a; € (%, 1), we have

J1 < C||VV | h2@172), (4.2.12)

Now, we want to estimate K;.

(dQ)®2dp// dw;duydwy Vé(p) - V, (@(Q)f (wl\/% q) f (m\/%q)>

f <w2\[hth> ’2 (VN (g —w2) — V(g — 2)]
(2)

Yo (U1, wa; wi, wa)

/dq ®2dp///dw1du1dw2 Vo(p) - [ o(q)f (wi/%q) f (ul\/—ﬁq)
—totwvs (B (Bt -t (B0 ()

2
il wy —
enp(wr=um) f(z\th2>’ [V (g —w2) — V(g — q2)] 7](3,)75(U17w2;w17w2)

— (2m)°

e%:ﬂ'(wlful)

271'

= ki1 +ki2+ki3.

Note that, for any ¢ € Cg° and f € W2, the term ky 1 is v/A-order higher than k; o and k; 3. Moreover,
the estimate of the terms k; o and k; 3 are the same when doing change of variables in the final steps.

Therefore, we focus only on the term k5.

ko < (2m)°hT% //(dq)®2// dwyduy dws ‘g&(q)Vf (wl\/% q) s (m\/—ﬁq) ’

'f< >‘ |VN(‘1 w2) VN(Q*Q2)||71(\?,)t(ulvw2;w1,w2)|

= (2m)°h2 /dq///dwlduldwg

’w(q)W( ) (e )‘/h 4 |F@)|* |Viv (g = w) = V(g — VA — )

"Vz(\?,)t(ulv wa; wi, wa)]

< Cl||VVN||LOOﬁ1+% /dq/ dwyduy ‘X(uuful)eﬂh + pl—a1)s

’sD(Q)Vf (wl\/%q> f (ul\/—ﬁq> ‘ (/dq~2|§2| |f(f]v2)|2> /dw2 I (1 wa3 wr, wo)|

/dp X(wr—un)en T X(w: - ul)eQL)Vgi)() enp(wi—u1)
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1 —a1)s w1 — Uy —
< C1|[VVn | poe bt /dq I@(q)l//dwldul (X(wl—m)sh% + R ) ‘Vf< i/ﬁq> f( 1\/;)‘

1
2\’ 2) 2
X\w17q|<R1\/ﬁX\u17q\<R1\/ﬁ (/ dw2 ||aw2aw1\IlN,tH ) (/dw2 ||aw2au1\IIN,t|| )

=: C1||VVn|l o [k + ko, ].
Using the Holder inequality with respect to wy and wy, we obtain that
1
wy —(¢q uy —q ’1°
v
d ( Vh ) y ( Vh )

2
) (f v fowaon vl

by < B3 /dq le(q)] [//dwldul X (wy —ur )<t

{//dwldul Xjwn — gl <Ry VEX jur —g| <R1 VR (/ dwy [|aw, aw, Uit
3
= h% [BS//dﬁldﬂl X(’[Elfal)gfi“lﬁ’%

/dq le(q)] {/dwl Xlwl—q|<R1\/ﬁ<\I’N,taaz;1Naw1\IJN,t>]

3(2a; —1)
i

< 0571%(0‘1-5-%)—% =Csh™ +

2

Vf(wy) f (ur)

where we use (2.3.2) in the last inequality and Cs depending on || f| e, |V f 12, supp f, and [|¢||; -

Similarly, to calculate ji 2,

T < B / dg |o(9) // dwyduy K100

w1 — (¢ Uy —(q
A4
() () ’
Y N3
sz itz ([ A0 lowsan¥al?) ([ s s )
< Csh(meems,
where s is chosen as

°T F:L((Zlai;ﬂ

for ay € (3,1). Thus,
3(201—1)

K, < C|[VVyleh 1, (4.2.13)

where we recall that the constant C' depends on lellyrces VOl Liaws.cos SUPP @, || £l e pr1s and supp f.

Therefore, in summary, we have
'/ dgdp ¢(q)6(p)Vy - Ra(q,p)| < Cl|VViyl| bt =) < O 2R 01—,
where we use (4.2.3)) in the second inequality.
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Setting By = h? for 0 < § < £(6c;; — 5), we obtain the desired result. ]

4.2.2 Estimate for the mean-field residual term R,

Proposition 4.2.3. Let ¢, ¢ € C§°(R?). Then, for 3 <a; <1,0<6 < 3(az—3), and s = {34((21012;-21))" , we

have

‘//dqdp sD(Q)sb(p)Vp‘Rz(q,p)‘ < Chzlo2—3)-2 (4.2.14)

where the constant C depends on |||, IVl 1 apwoces 1]l Loorrs SUPD f, and supp ¢.

Proof. Recall that from (4.2.1)), we have

Ry i=(2r)° // dwyduy // dwadus // dqzdpg( (jﬁp(w)m)@ VYV (g — g2)

(1

(4.2.15)
|:7](\?,)t(u17u2; Wi, w2) — “YN,t(Uﬁ wl)%(\},)t(uz; w2)} :

Then, we have

‘ // dgdp ¢(q)¢(p)Vy - R2

= ’ // (dgdp)®*(dwdu)®* ¢(q)Vé(p) - ( qup(w)m)@z YV (g — g)

{'75\?3,5(”1; Ug; W1, W) — ’V](\}’)t(ul;wl)'}’](\},)t(u2;w2)} ’

/./(dqdp)®2(dwdu)®2 o(q)Vo(p) - <f (w\/—ﬁQ) f (u\;ﬁq> e;p(w—u))@? YV (g — o)

{71(37)t(ul, Ug; W1, W) — 'Y](\}))t(uﬁwl)'yj(\}))t(u%w2>} ’

Jof wauan= (5 (*22) s (“\;;))m (a0 el@vow) - eircn)

VVn(g— ) (/ dp2 e';’m‘(wrm)) {71&2(“1#2; w1, w2) — 71(\},),5(%;“11)%(\}71(”2; w2)} ‘

i () (250 (272

VVn(q—q2) [%(vzft (1, wa; wy, wa) — 4y (urs wr )y (wa; wz)}

=h3

=3

— (2r?

2 (/ dp ¢(q)Ve(p) '6“‘“””‘“)

)

where we use the weighted Dirac-delta function in the last equality; i.e.,

1 ;
(27h)3 / dpy en?>(272) = 5, (us).

Now, splitting the domains of w; and u; into two, namely, with the characteristic functions Xy, —u,)eq, and
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X(wy —uy)eng as defined in (12.3.3)), we have

< (2m)?

(dg)®2( // dwyduydws f (wl\/ﬁ ) ( )’f (wQ_%)’Q

(/dp X(wn —ur)e0n € P TV () ) - V(g — g2) {VJ(V,)t(ul,wz;whwz) - ’Y](\},)t(ul;wl)v(l) (wz;wz)}
27r

)
7| ffeaw=ea [ ><f ) (M) (e F

Vh Vh
(/dp X(wl ul)GQ“ehp(wl ul)VQj

VVi(g—a2) 1K) o
=: 12 +J2.

’YN,t(Ul, w2; W1, wz) (ul, wl)%v,t(wz; wz)}

Without the loss of generality, we let ®(q,p) = ¢(q)¢(p). First, considering the term Js,

o ff amanans (354) 5 (3 ()]

( / dp X(uy ey w(p)e%f"(wl—"l)) V(g - ) (1)

N (U1, w23 wi, w2) — m(vl,)t(ul;wl)%(vl,)t(wz;wz)) ‘

— (2n)*

By the change of variable vVAiga = ws — o, we obtain

dq o(q) /// duwrdurduws f (“’1\/%‘1> f (“1\/}1‘1) (h / dé f@)F) TV la— ws + Vi)
</dp X(w1—u1)EQ%v¢(p)€;1p.(wlul)) (va)t(ul,wz,wl,wz) v

’}/N,t(ul;wl)'}/](\}?t(rLUQ;'LUQ)) ‘
3 wy — uy —
ot o o (252 (55)
‘/dp X(w17u1)652§1v¢(p)6%p‘(’w1_ul)

‘ (’Y](\?,)t (ula w23 Wi, wz) - 7N,t(u1; wl)'YN,t('lUQ; wz)) ‘
. uir —¢q
< C|VVi| b2 /dq (g I//dwldul ( 7 )f (1\/5) ‘X|w1ul|<ml¢ﬁ

/dw2 ‘%(\?,t(ul,wz;whwz) - 71(\},)t(u1;w1)71(\},)t(w2;w2)‘ ‘/dp X(w1—ul)eﬂgvﬁb(p)@%p'(wliul) .

(2)?

Recall again from Lemma that we have

V d” X<w1u1>eaze“"““1‘“l)V¢<p>‘ < [Vl B2,
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for s to be chosen later. Then, we obtain

< 1Tl [TVl 07 [ ag ot [f dwraan

2 1 1
eV 'YJ(V)t ’ng)t@’%(v)t

() ()]

(ul; wl)Xl’wl —Uu1l |<2R1 \/ﬁ’

The Holder inequality yields

2\ 3
E3 —a)s wy —(q uy —(q
J2 < CIIVQlyyoe IV V|| oo B2 FET22) /dq le(q)l </ dwidur Xy, o, <2, VA ( 1\/ﬁ >f< lx/ﬁ )‘ )

2\ 2
(//dwldul [Tr(l) W 0 ey ( ‘ ul,wl)} )

= Cll@ll IVl e [V Vi | o 2T A0S (h3 // d@y iy Xz, —a,<2r, | f (@) f (W) |2)

2
/dq (/ dwyduy Tr(l ’7 ’YNt 7&}7)15‘(u1;w1)] Xlwl—qlan/ﬁ>

[SIE

< Cllpll oo I VBllyyra,o0 [ V Vv || oo B3T 7020 ( // daduy |f (@) f (@) |2>

1
2\ 3
%/dq1X|ql|<Rl (//dwldul [Tr ”y ’yﬁi@vﬁi‘ (ul;wl)] )

2
< Ol VVi | o BFHO 70254 (// dwgdur [T |3, =) @) <u1;w1>}) ,

N

where we denote

(1)

TrD |v$), — 4\ @ 73| (urswr) = /dw2 [P (i, was wi, w2) — ) (s w1 )7 (w2 w2))-

YNt~ INt

Thus, we have

1

(Ul;wl)r>2o

Jy < O VVi|| oo h3H(1-02)5+3 ( // dwiduy [Tr(l)’ @, -5, ®%)

Now, we focus on Iy ;

Jnseo [ vamans 1 (=74) 1 (=) s (=%

</ dp X(wl—m)eme;‘p'(““”W(p)) “VVn(q — q2)

1= (271')3

{Vﬁ,)t(ulﬂﬂz; wy, wa) — 75\2(”1;wl)%(\},)t(w%wﬂ] ‘
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We observe that
‘/ dp b= T(p)| < Vel

Then, we obtain the following estimate:

uy —¢q

b ()

1
2

I < C”vd)HLl”VVN”LOO/dq ‘80 (//dwldul Xlwl —u1|<hS X|w1 u1|<2R;

%/d(h\f (q2)] <//dw1dul ) ‘7(2) ’7](\})t®71(\},)t

< Cllll g IVl 1 [V Vv | 1 (h?’ [ x e X miean, |f(wl)f(ﬂ1)|2>

/dq (//dwldul Trt) ‘7(2) W ey

< OVl ([ i x ey @GP

2\ 2
h%/dfh X|g <R, (//dwldul {Tr(l ‘7(2) 71(\})15@7 (u1§w1)] ) .

From (4.2.9)), we have

2
(u1; w1)} leqSRm/ﬁ)

1
2

2
(u1; ’w1)] X|w1fq|<R1 \/g>

|

|

I < C|[VVy | o i+ 302+ 2043 ( // dunduy [TiD [, = () @44
To balance the order between Iy and Js, s is chosen to be

for ag € [0,1). Therefore, we have

‘//dqdp 0(@)o(P)Vp - Ra| < Iz +Jo

|

~ 2\ 2
< Il 0 ([l (10, 000 ] )

< CB2Ritileeta)ti N2,

Setting Sy = hd for 0 < § < %(60[1 —5), we have the desired inequality.
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Chapter 5

Vlasov equation with Bogoliubov

transformation

In chapter [3] we obtained the convergence by the use of BBGKY hierarchy method. It is, however, possible
to obtain the result for the regular potential with the use of the Bogoliubov Transformation instead, the
latter which will give us more insight on the structure on the convergence. In this chapter, we obtain the
convergence from Schrédinger to Vlasov equation by following closely the Bogoliubov structure introduced

in Benedikter, Porta, Schlein in [BPS14a]. In fact, we assume the interaction potential as follows.

Assumption H4. For any r € R, we assume V(x) = V(—x) and

/ ap (1 + [p)?V (p)| < C.

where C' is a positive constant.

Remark 5.0.1. Observe that by Fourier transformation and Young’s product inequality, it holds

V@ = |V, e

< / dp o] 1V ()] (5.0.1)

5.1 Main theorem

In this section, we will present the main proof as well as the proof strategy.
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Theorem 5.1.1. Let Assumptions[H1| and [H4] hold. Moreover, we assume

1 A
e, < CNh,
pets 14 [p] e eontll (5.1.1)

I[PV, o]l < ON,

where wy be a sequence of projection given in (L.1.13). For t € [0,00), let my . be the 1-particle Husimi
measure defined in ([2.2.3), where f is a compact supported positive-valued function in H'(R?) with || f| > = 1.
Furthermore, let m3/*°" be the initial 1-particle Husimi measure as defined in (2.2.7) with its L*-weak limit

mg and satisfy

/ dgdp ([p]? + lal)mn (¢, p) < oo. (5.12)

Then, my + has a weak-x convergent subsequence in L>((0,T]; L*(R® x R3)) with limit m;, where my is, in

the sense of distribution, the solution of the following Vlasov equation.

omi(q,p) +p - Vgmi(q,p) = (2;)3 (VV * Qt)(Q) -Vgm(q,p), (5.1.3)

where g4(q) == [ dpmy(q,p).

Remark 5.1.1. Similar to Theorem the result in Theorem (5.1.1)) also implies convergence in terms

1-Wasserstein pseudo-distance.

Proof strategy

Recall from Proposition we obtain the following reformulation of Schrédinger equation given (2.1.10)),
ie.,

6tmN,t(Q7p) +p- quN,t(q7p> - Vg (hIm <an( (;L’p)\IIN,t7 a(f(?p)qlN,t>)

2
- (2i>3vp.//dw1dm//dwzdzm//szdm (fqh,p(w)f;'fp(u))® (5.1.4)
1
/ ds VV(SUI + (1= 5w - wz)%(\?,)t(uh Uz; Wi, Wa),
0

where we denote
®2

(Fop () T @) o= Fp () T () f i o (w2) T ().

In particular, this can be rewritten into the Vlasov equation with remainder terms, i.e.,

oymn,(q,p) +p-Vemn,(q,p)

1

= va . /dQQ VVi(g— q2)ont(g2)mn (g, p) + Vg - R +V, R,

(5.1.5)
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where on+(q) :== [dpmn (g, p), R and R = R + R are given by

R =hlm (Voa(f ) Un s a(f1)Un )

Ry :=ﬁ // dwyduig // dwadus // daadps (f1, () FE, )

1
{/ ds VV (su1 + (1 — s)wy —wz) = VV (g~ qQ):|7§\?7)t(u17u25 wi, wa), (5.1.6)
0

Ro ::ﬁ //dw1du1 //dwzdu2//dq2dp2 (fqh,p(w) gp(u))@

VV(g— ) [Vﬁ,)t(ul, ug; wr, w2) — Yy (urs wi)) (s wz)} :

The main idea of this chapter is to rigorously prove the limit N — oo from to the Vlasov-Poisson
equation in the sense of distribution.

Under the assumptions of Theorem the estimate for the residual term R and the mean-field residue
given in can be inferred from Proposition and Proposition respectively. In particular, for
an arbitrarily small § > 0, there exists s(§) > 0 such that the following estimates holds for any test function
@, 0 € C°(R?),

‘//dqdp ¢(a)$(p)Vq -ﬁ(q,p)’ < chi?, 51

‘// dgdp £(q)o(p)Vy - Rl(q,p)’ < opt-s

where the constant ¢ depends on ||V||p~ and ||@|ws.cc.
However, more effort is needed in estimate the residue for the semiclassical term. In particular, we insert

the intermediate terms in Ro as follows:

71(\?,)t(u17 Ug; Wy, Wa) — 'yj(\}’)t(ul; wl)’)/](\}’)t(UQ; wa)

2
= m(v,)t(uh Uy wi, W) — W (U1; w1 )W, (u2; wa)

+ [wn i (ur;wr) — Vﬁ,)t(uu wy) Jwn ¢ (ug; wa) (5.1.8)
+ %(\},)t (Ul; wl) [wN,t(UQ; w2) - 7](\3(“2; wz)]

= T1 +T2 +T3

We observe that T5 and T3 can be estimated by the trace norm and Hilbert-Schmidt norm of fyg\})t — WN,t,

respectively. As shown in Lemma the estimate for residue term involving 7} requires estimates of the

following quantity due to the fast oscillation effect from the coherent state of the second particle:

1
2

2
(//dwldul [/dwg ’fy](\%)t(wl,wg;uhwg) WNﬁt(wl;u1)WN7t('lU2;'lU2)’:| ) . (5.1.9)
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In [BPS14al, the convergence with respect to the trace norm and Hilbert-Schmidt norm of the difference
between fyj(\]f)t and wg\]f)t are obtained separately with the help of Wick’s theorem for k£ > 2. However, we
do not directly use Wick’s theorem to compute as extra effort is needed to estimate the residue
term involving 7). This is a different approach for the 2-particle reduced density matrix given in [BPS14al.
In particular, we trace the strategies given in [BPS14a] to obtain the rate of convergence estimate in the
mean-field limit. After the Bogoliubov transformation, the main estimates are reduced to the expectation
of the number operator N along the quantum fluctuation which will be bounded under the assumption of
Theorem [(.1.71

From the assumption of Theorem the moment estimate is the same as in chapter [3| which implies

that the 1-particle Husimi measure is tight. Finally, we conclude the convergence by making the standard

compactness argument as in chapter @

5.2 Estimate of mean field residue
Recall that the residue of the mean-field term is given by

Ro ::ﬁ//dwldul //deduQ //dqupg (fzp(w)m)®2

VV(g—q2) [’Yz(\?,)t(ula Uz wi, wa) — ’7](\},)15(111; wl)vﬁft(ux wz)] .

Then, we obtain the following estimate.

Proposition 5.2.1. Let p,¢ € C5°(R3). Then, for % <a<l,0<é< %(a —

1
2

), and s = [34((2162_21))—‘, we

have

[N
~

’/ dgdp ¢(q)¢(p)Vy - Ralg,p)| < Ch3 (" (5.2.1)

where the constant C' depends on ||¢|| ., |Véllye.e, Supp @, | £l 1, supp f, and t.

5.2.1 Proof of Proposition [5.2.1

To proof Proposition we will first show some important estimates as preparation. In particular,

denoting

T 52— 41 g )] 1= /dy D (5 2, 1) — 7D (@17 D (2 9)],

we have the following estimate,
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Lemma 5.2.1. Let ¢,¢ € C5°(R3). Then, for <ar<1l,0<d< 2 ( %), and s = [34((210‘_21))—‘, we have

dgdp @(q)¢(p)Vy - Ra(g.p)| < ClIVV | 33 24205
L

(5.2.2)
<//dw1du1 Tr ’7(2) ’y](\})t@)’yl(\})t

(u1§w1)}2>éa

where the constant C depends on 10l os IVOll s s SUPD @, || f| Loopprrs SUPD f, and supp ¢.

Proof. Recall that from (4.2.1]), we have

=(2m) //dwldu1//dw2dU2/ dqzdpz ) q,p(u)> 2VV(q—qz) (523

[’YN t(ul,uz,wth) ’YN t(Uh wl)’Yg\}) (UQ, wz)} .

Then, we have

‘ [ d0iv @00, - =:

= ’ // (dgdp)**(dwdu)*? 4 (q)Vo(p) - ( ;p(w)m)m YV (g - g2)

{7](\?7)t(ula ug; Wi, wa) — Yy (urs wi)y\) (s wz)}

(dgdp)®?(dwdu)** ¢(q)Ve(p) - <f <w\/ﬁq) f (u\/ﬁq) eép'(“’“)>®2 VV(q— q2)
0

[, ) = 0 ) ()|

(dqdde)®2< (w ) (uq>) < dpso(q)Vcb(p)'@;L”'(wl“l))

VVi(g—q2) (/ dps egm'(wz_w)) { z(v)t(u1,u2;w1,w2) - 7](\},)t(u1§wl)’}/](\},)t(u2§w2):| ‘

/./(dQ)®2dw1du1dw2 f <“’1\/ﬁ q) f <u1\/ﬁQ> ‘f (7"2\/%‘12) ’ </ dp () Vé(p) .e;p~<w1u1>>

VV(g—g2) {”&)t(uh wa; wr, w2) — Yy (urs wi)AY ) (wa; wz)}

= (2m)3

9

where we use the weighted Dirac-delta function in the last equality; i.e.,
L [ apy ehrrau — 5, () (5.2.4)
(2 h)3 p2 € = Oy (U2). 2.

Now, splitting the domains of w; and u; into two, namely, with the characteristic functions Xy, —y,)eq, and

X(w; —uy)eqg as defined in (2.3.3), we have
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27T

(dg)®2p ///dwlduldwz f (wi/ﬁ ) ( hq) ‘f (wQ\/_ﬁqz>’2

(/dp Xy sy, 4P V()

")
(dg)®2p(q) /// dwldwdwﬁ)(wlh) ( )‘f (w_qﬂ

</ dp X(wl—ul)egge%p-(wl—ul)v¢

VV(g—q2) {7](\?;(“1» w23 w1, W) — 75\2(%1; wl)%(\},)t(wz; w2)} ‘

+ (2m)3

VV(g—q2) {7(2) (u1, wa; w1, wa) — 75\};(“1; w1)71(\},)t(w2; wz)} ‘

=: 12 + JQ.

Without the loss of generality, we let ®(q, p) = ¢(q)¢(p). First, considering the term Jg 1,

dgdgs w(Q)///dwd“ldw? f (wi/ﬁq) f( ) ‘f <UJ2 QQ> ’2

( / dp ><<w1meangp)e‘ﬁp'w—“ﬂ) V(g = a2) (Y (1, was w1, w5) = A0 s wn )9 (wa w) ‘

— (2n)*

By the change of variable Vg = ws — o, we obtain

o 90) [|f awiadusdus 1 (“’;;L q) i (“yﬁq) (h [ @ f<q~2>|2) YV (g — wn + Vi)

([ 0 X TR0 ) (588 i) = 280002 s ) |

éC’HVVHLmh%/dq |‘P(Q)|// dwy duy dws f<w1 7 ) <“1 Q>‘

‘/dp Xy —u) e Vo(p)er? (17 ‘(Vﬁ,)t(ul’w%wle) - 7N,t(ul§w1)7N,t(w2§w2))‘

3 w1 — q Uy — q
P R e B v [

/dw2 "Y](\?,)t(ul»w%whwﬂ ’Y;(v)t(ul,wl)%(v)t (wa; wo H/dp X (wy —uy)eqs VO(p )ehp(wl wl

Recall again from Lemma [2.3.3] that we have

‘ / dp ><<w1m>eggeép'<wl“1>V¢(p)' <[Vl e B T2)5, (5.2.5)
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for s to be chosen later. Then, continuing from Jg 1,

I < OVl 9V k3020 [ g foa)] ] durdun

2 1 1
eV ’Yz(v)t VI(V)t@’YJ(V)t

) ()|

(ul; wl)Xlwl—U1|<2R1ﬁ7

The Holder inequality yields

1

(=) (20))

Ty <cuwnws,wvaumh%“l—m)S/dq lo(q) (/ dwiduy X\, <or, VR
2\ 2
(//dwldul [Tr(l) W 0 ey ( ‘ ul,wl)} )
= Cllpll o [Tl gy [TV o BEHO—2 (h [[ @i xio, <o, 15 @) 5 @) )
1) @l 2 ?
dg dwyduy Tr ’7 ’yNt 7N7t‘(u1,w1)] Xy —ql<R1 VR
< Ol @l oo IVl oo IV V|| oo BEH 700200 ( // danday | f (@) f (@) 2)
ne [ aG dw;d [Tm’@) (1) <1>‘ o l?)
hz | dgiXig <R, wyduy |Tr YN ® YN | (urswr)

—a)st 3
< CIFI7 10l o [Ty [TV [ oo B (72D ( // dundur [T [y, =) @

1
2

(Ulvwl)r)é?

where we denote

(1)

TrD |y$), =4\ @ 73| (urswr) = /dw2 I (i, was wi, w2) — ) (s w1 )7 (w2 w2))-

YNt~ INt

Thus, we have

1

(Ul;wl)r>2o

(5.2.6)

—)st 3
T2 < Cll@ll oo [V lyreoe [ VTV o 5700 ( // dunduy [T ), =240, @ 94)

Now, we focus on Iy ;

)3 //(dq)@s@(Q)///dwldulde ! <w1\/ﬁq> / <U1\/ﬁq) ‘f (“’2\/;2) ‘2

(/ dp X(wlu1>em€iﬁ”'(’“1_"”v¢(p)> -VV(q—qo)

1271 = (271'

[Wﬁ,)t(uhwz; wi, ws) — 71(\2(“1;wl)%(\},)t(wz;wz)} ’
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We observe that
‘/ dp b= T(p)| < Vel

Then, we obtain the following estimate:

SIS

I < C”ij)HLIHVVHLOC /dq |§0 <//dw1du1 XIUJl u1\<hf’X|w1 —u1|<2R;

%/dqz |/ (a2)] (// dw; duy Tr ) ‘7@) 7O, @Y,

< Cl@ll IVl [V V]| B <h3 / dindinn X e X<, |f(w1>f<a1)2)

/dq (//dwldul Trt) ‘7(2) 1 ey

< ol IVl 19V ([ i x sy (@0 £

1
2\ 2
h%/dfh X|gi <R, (//dw1dul {Tr(l) ‘7(2) WJ(V)t®7 (u1§w1)] > :

From (4.2.9)), we have

o (2579 (7))

1
2

2
(u1; w1)} X|w1q<R1\/ﬁ>

N[

1
2

2
(u1; w1)] Xw1q|<R1\/ﬁ>

|

< el 19l 9V 13003 ([l qunaun [0 2, - 0) 94)

(wiw)] )

To balance the order between Iy and Js, s is chosen to be

for ay € [0,1). Therefore, setting Sy = h?, we have

‘//dqdp 0(Q)p(P)Vp - Ra| < Ia+Jo

2 2
< Cllpl 190l 19V 30043 ( ff v [0 0 ol 2t )]

and we obtained the desired result. [ ]
We estimate the equations above by the following proposition.

Proposition 5.2.2. Let 'y( ) be k-particle reduced density associated with the evolved states ¥ ; = e’%HNt\I/N,

Moreoever, let wy be sequence of projection as in (1.1.13) and wy; be the solution of the Hartree-Fock equa-
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tion in (L.1.15). Then, if [dp(1+ P2V (p)| < C, it holds for all t € R that

W _ < Ceclt 5.2.7
H’YN’t WN,t HS\ e, ( L. )
and
H%(\}’)t — wN’tHT < CV/Nedltl, (5.2.8)
Furthermore, it holds that
2 3
1) |2 _ . clt|
dwiduy | Try YN — WNt ® WNt (up;wy) < CNe, (5.2.9)
where we denote the partial trace Trél) lwnt (21, 5 y1,-)| = [deo|wn (21, 22591, 2)| and the constant ¢

depends on potential V.

The prove of Proposition [5.2.2]is postponed to chapter [5.2.2
More importantly, from Proposition [5.2.2] one may obtain the estimate for the factorization of 2-reduced

particle density as follows.

Corollary 5.2.1. Suppose the assumptions given in Proposition [5.2.3 hold. Then, we have the following

estimate
( // dwyduq {Tr(l) "‘/](\%)t — 7](\3 ® 7](\2

where the constant Cy depends on potential V' and time t.

(u1; wl)r> ’ < ON, (5.2.10)

Proof. Inserting the intermediate terms as discussed in (5.1.8)), we will arrive the sum of the following terms.
2\ 2
1. (ff dw;dug [’IT(U ‘7](@ - w](\},)t ®w§\},)t’ (ul;wl)} ) ,
(1)
2. [Jome =80 Jeoweelnys

HWN t— 7(1)
HS ) Nt

3. H’yj(\},)t

Then, the estimate in (5.2.10)) is obtained directly from the fact that ||wy ||, < N and Proposition [ |

Tr

5.2.2 Proof of Proposition |5.2.2|
The proof for proposition requires the following important results from [BPS14al.

Lemma 5.2.2 (Lemma 3.1 of [BPS14a]). Let dI'(O) be the second quaziation of any bounded operator O
on L*(R®) as defined in [2.1.4) and ¥ € F,. Then, the following inequalities hold

[dT(O) [ < [|O[HINE]]. (5.2.11)
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If O is a Hilbert-Schmidt operator, we have the following bounds:

|A0(0) W] < O] 4] (5.212)
| [ arayotwyasa,s| < o1, (52.13)
H/dxdyO(m;y)a;aZ\D < 2||O||HSH(J\/'+ 1)1/2\IJH. (5.2.14)
Finally, if O is a trace class operator, we obtain
[dCO)¥ | < 2[O0]l g, (5.2.15)
H/dxdy O(m;y)amay\I/H < 2|01, (5.2.16)
H/dzdyO(:L' Yy a*a*\IfH 2/10] (5.2.17)

where ||O||p, == Tr|0| = Tr vVO*O.

Proposition 5.2.3 (Proposition 3.4 of [BPS14a]). Let Assumption holds and wy be a non-negative trace
class operator on L*(R®) with Trwy = N, lwnll,, <1 and satisfies (5.1.1). Then, there exists a constants
K,c > 0 depending only on potential V such that

sup Tr|[wae, €P7]] < K Nhecl!

peERS3 1+ | |
Tr|[wn s, AV]| < K Nheelt!
for allp € R3 and t € R.

Next, we modified the Theorem 3.2 of [BPS14a] to rid one of the two exponentials by using Ou-lang’s

inequality. Namely,

Proposition 5.2.4. Let Un(t;s) be the quantum fluctuation dynamics defined in and N be the
number operator. If the assumptions in Proposition and (£, N*¢) < C hold for any k > 1, then we
have the following inequality:

[N + 1)Fty (£0)En || < Ci, (5.2.18)

where Cy := Ke°ltl is a positive constant depending on t € R, k and potential V.

Proof. Following equations (3.17) and (3.20) in [BPS14a, Lemma 3.5] we have
d
ihg (&, UR (B 0) N + DU (1 0)En) | < RC: [(En, UR (£ 0) (N + DU (£0)En)] (5.2.19)
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Observe that since ||wy ¢||x, = NV and ||V || = 1, we have
[V + DUn (1 0)én ] < ON. (5.2.20)
Then, from , we obtain
A+ 1y (1 0)6 P < BON I+ 1) (1 0)6 |
Dividing both side by & and applying the Ou-lang inequality [OY57], we obtain

|(N 4+ DUN (£ 0)én || < CeN||(N + 1)éEn]- (5.2.21)

We are ready to prove Proposition [5.2.2

Proposition[5.2.3 The proof of the inequalities (5.2.7) and (5.2.8) follows by modifying Theorem 2.1 of
[BPS14a]. In particular, from equation (4.3) in [BPS14al, we obtain

-, < st

)

0 = x| < CVNINU (8 0)¢nl,

by choosing the appropriate operator O as discussed in [BPS14a]. Our results for (5.2.7) and (5.2.8) are
obtained by applying Proposition and taking the assumption that ||[(M + 1)én| < C.

Therefore, it remains to prove for . As remarked previously, the trace norm and Hilbert-Schmidt
norm of the difference between 75\’;),5 and w%c)t are obtained separately with the help of Wick’s theorem for

k > 2 in [BPS14al. For our term, however, we do not directly use Wick’s theorem to compute (5.2.9) as each

terms requires similar but still unique method when taking the estimation.

Simplifying the notation R; := Ry, ,, we have, from the definition of a 2-particle reduced density matrix
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and (2.1.19)). that

2
%(v,)t (z1, 25 Y1, Y2)

= (&N, UK (E0)Rya) ab az, a0, RiUN (8 0)EN )

t Py1 VY2

= (En U (£:0) Ry al, RyR; 0, RiR; Ry R i, Ril (£ 0)En )
<§N,uN (1:0) (0" (1,) + 0(F1)) (0" (t0) + (7,2)

() + 8" (F1)) (a1t,) + " (51.00)) Un (85 0))
<5N,uN (150) [0S a2l a) + )51 )0” (1)

+ a(vt,lh)a(vt,yz)a(utﬂb)a* (\7@381) + (1’(\71773/1 )(]‘(vtsl&)a* (\77‘/-,-’1:2)(1’* (\717;-771 )
(ut@1) + a(vt,m)a* (ut,yz)a* (Vth)a(utwl)

Ja(ut,z, )

Uy, )a(Ut 0, )" (Vea, ) + a(Ve gy, )a™ (Wey,)a" (Vea,)a” (Vi)
Ja(ut .z, )
Ja(uez, )

+ a* (utyyl)a' vt,y'z a(U¢,z, a* (‘_]t,ﬂﬁl) + a* (utvyl)a(vtva)a* (‘_]t,ﬂﬁz)a*(‘_]twl)
+a* (Ugy, )a" (Ut y,)a(Ue e, )a(Ue e, ) +a™ (U y, )a™ (U y,)a™ (Ve e, )a(Ue e, )

+ a* (ut7y1 )CL* (ut7y2 )a'(ut7$2 )a* (Vtawl ) + a* (ut7y1 )a* (ut7y2 )&* (\7757552 )a* (Vt,wl ):| Un (t; 0)§N >7
where we use (2.1.19)) in the third equality. Note that since (v; 4, V; ) = wn (y; z), it holds that

(V1) (Ve )" (Vi25) 0" (Ve,ay )

Vi, )0(Vey, )0 (V,20)a(Ve ) + (Veyos Vises) a(Vey, )@ (Ve 2, )

= *

t,y2s Vi 961> a(vt,y1 )a \7157362) - <\7t71/1 ) vt,$1> a* (\7@932)&(‘77571!2)

*

(
=a ) (vt7y1)a'* (vth)a(vtyz)

< |

tvyl) - <‘7t,y27 Vt,11> <‘7t7y17‘7t’$2>

<l

_|_

t,y2s Vi 171> a* (\715,12 )a‘(

v tyio Vi $1> a* (vt,fm)a(‘_]tﬁﬂ)

a* (v
= (Ve
(Ve,
— (Vo Ve2a) @° (Vey)a(Veg,) + (Vega, Vews) (Vegrs Veen)
(Ve
= (Ve
=a"(Vy,

1)@V, )0 (Vi2y )a(Viy,)

Q
<:|

< 72/27\7@12) a* (vtaxl )a({’t7y1) +
+ < t,y2s vtﬂh) a* (Vt,wz )a(vtm) - <\7t,y2’ Vt,931> <‘7t7y1 ) vth)
—(v (

Vi, Vi w1> a* (\775,12)0’ {’t,yz)'
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Therefore, we obtain

vz(v)t(wl,:vg; Y1, Y2) —

= <§N,u;§,(t; 0) [G(Vt’yl)a(ut,xl)a(Vt,yz)a(utﬂEz)

+a(Vey,)a(urz, )a” (g, )a(Use,) + a(Viy, (e, )a™ (ur,y,)a™ (Vee,) + a” (Vew, )a(Vey, )a™ (W y,)a(ut,q, )

a” a(Vi,y,) 0" (Vi,) @™ (Ut g, ) — @ (W )a(We ) a(Fey, ) a(Ws ) + @7 (Wt )@ty )@ (V25 )a (Ve )

(Vi)
+ a" (W, )a" (Vew )a(Vey, Ja(Uee,) + a7 (Vi )a" ey, )a” Ve, )a(Vey,) + a” (0, Ja(Ue, Ja™ (uy,)a(urq, )

+a* (e, )a(ueq, )a" (W, )a™ (Vew,) + 0" (e, )a" (Ve )a" (U, )a" (Veas) + 0" (Vew,)a(Vey, )™ (Vew, )a(Vey,)
— @ (Vea, ) a(Vey, )a(Ut,0,)a(Vey, ) + a7 (e, )a” (Ve )a™ (e, )a(Ure,) — a(uee,)a(Vey, )a" (Vie, )a(Vey,)

Vi Y2 Vi ;L1 a’(‘_/tﬂh)a(ut,fm) + <‘_’t7y1 ) ‘7757$1> a(vt,w)a(ut,xz)

U,z Ut,yo a(‘_/byl )a(ut,m) + <ut,f61 ’ ut,y2> a* (vt@z)a(‘_’t,m) - <ut7m1 ) ut7y2> <‘7t,y1 s ‘_/t,z2>

+

t,y1 \7157361 Viy1o Vi 921> a” (ut7y2 (Vt 582)

<1 |

Ja
Vi t,y2- \775721> a” (ut7y1)a* (Vt 12)
)

U¢ z17ut Y2

< I

tygvvtmz

*

— )
— )
Nz ) + (¥

— (Vtor Vi2y) @7 —{

—{ ) = (Wtay 5 Ut y,) a” (U y, )a™ (Vi)
= ) (Vtor Via1) 0" (V) a(Viey,)
( ) —(v (v,

)
21)a" (U y,)

— Ve Vi) @ (Vian )a(Ve ) = (Veyos Veay) (Ve Vo) ]UN(t; 0)§N>,

<|

_|_

tyz’vtxz 7y2’VtI2>a

where we used the fact that (¥, ;,us,) =0, (U4, Vy) = 0 and CAR.

//dxldffz//dzldzz 01($1;21)02($2;22) (7](\?’),5(2172%‘%17552) —wN,t(Z1;$1)wN,t(2’2;$2))
= //dl‘ldl‘g/ dzidzy 01(x1;Z1)02($2;Z2)<€N,U}§/(t;0) |:a(vt,w1)a‘(ut,z1)a’(vt,xz)a(ut,zz)

+ a(vt,zl )a’(ut,Zl)a* (ut@’z)a(ut,@) + a‘({’t,l’l )a(ut,zl)a* (ut,lm)a* (Vt,@) +a” (‘7@21 )a(vt,zl)a* (ut,w2>a(ut,z2)

+a* \_It,zl a‘(‘_’t,ﬂﬂl)a* (‘_/t,Z2)a* (ut,12) —a* (ut,xl )a(ut,zl)a’(‘_/t@2)a(ut,z2) +a” (ut,ml )a(ut7zl)a’* (‘_/t,z2)a(‘7t,r2)

- <‘7t,$2 ) Vt,21> a(vt,wl)a(ut,zz) + <‘7t7$1 ) Vti«'l) a(vt,wz)a(ut&z)

- <ut,21 ) ut,z2> a‘(vt,l’l)a(ut,@) + <ut,21 ) ut,z2> a (vt,zz)a’(vt’l’l) - <ut,21 ) ut@2> <‘7t,931 ) vt,22>
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+ <\7t 1 Vit \Z1 a* Ut zo )A\Ut 2, + (V¢ , L1 Vi z1> a* (ut7w2)a* (Vt,Zz)

*

a

*

t$27Vt z1 ta:2>Vt 21>a*(ut71’1)a (vt’zz)

) a* (Ut e, )a(us, 2, )

—(v )a” (W )a(uy,z,) —
— (Ut 2y Up,zn) @ (g gy )0 (U 2p) —
— (v )a”(v )
( )a”( ) -

*

a a(v

+

mzavt z2 tzl

v

v

(U 2y U a) @7 (Ve 0y )@ (T2,
tay) + (Ve
I\

(
) ( 962"—725,21> a*(vt,zz)a(‘_]t@l)
* U xl)a(ut z1 (

*

_|_

\7t3¢27Vt22 a

tﬂfg?vt 22>a’ ‘_,t Zl)a’*(ut,x1)

— (Viz1s Vi20) 6 (V1,20)0(Ve20) — (Vi Vi) (Vi \'f.:,}}UN(t; 0)§N>
16 16
= ZAz +ZB]' + (7'.
i=1 j=1

Using the fact that [[wl|,,, [[vello, < 1, [IVellgs < VN, [[wnlly, = N, inequality in (5.2.20) and the
assumption [|{n]| < 1, we compute the first two estimates each from {A4;}18, and {B;}!®,. The estimates

for the rest of the terms can be done with similar steps.

| Al
= ‘//dmldxg//dzld@ (&N, U (8 0)//dn1dni Ay Qo Vi (115 1) O1 (215 21 ) g (215 7))
/ dnadny ap, an vi(n2; 22)O2(w2; z0)us (205 0o ) Un (L; O)§N>‘
= <€N7U1tf(t§0)//d771d77/1 Uy Qo (Vt01ut)(771;7]/1)//d772d77§ Ay @y, (ViO2uy) (125 0y JUN (£ 0)En )

= // dnydny(En, Up (£ 0)an, a(viOrue(n1; ) a(viOgu (5 15)) any Un (t; 0)§N>‘

= //dmdn'2<a*(w01ut(m;-))aiéluzv(t;ﬂ)&v,a(vtOzut(-;né))an;UN(t;O)&v)‘
< /dm Ha*(Vtolut(nl;'))a Un (0 fNH/dnz Ha Vtozut( nz))an’uN (t;0) fNH

dny [[viO2us (5 m5) ||, Han/UN (t;0) §NH

) Vi O g (/ dnf Han’uN (t;0) fNH2>

< IOt s ( [ an <£N7uzﬂv<t;0>ama;uN(t;0>£N>)

< /dm [lveO1ue(m1; )5

< 01t s (

=

1
2

[[ViO2uy | g (/dné §N,U7§r(t;O)GZ;an;UN(t;O)fN»

\/7||Vt01 HHS”utHopHVtOQHHS Hut”op

N+ 1) Un(t SNH

S VNelop Ot s e lop e s Ozl e

W+ 1>fuN<t;0>fNH
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< N[O1 51Ozl

N+ 1) Uy (0 |-

| As|
= ’//dxldxg//dzleQ Ol(ml;zl)Og(xQ;zz)<§N,Lﬁ{,(t; O)a(x’lt’xl)a(ut,zl)a*(utym)a(ut,Zz)L{N(t;O)§N>
= ‘//olxldsf,z//dzldz2 <§N,Uj'{,(t;O)Ol(xl;z1)02($2;22)//dnldnll an, Gy Ve (015 w1) e (0] 21)
// dnadnty ay, an g (n2; x2)ur(nh; 22)Un (¢; O)§N>’
= //dxldxg/ dz;dzs <§N,Uj§,(t;0)/ dnidn) an, ay vi(n; x1)O01 (215 21)ue (215 77)
//dﬁzdné ajhanéut<7]2§372)02(372522)ut(22§77l2)uN(t;0)£N>’

= <§N,U1f/(t;0)//d771d77/1 Ay oy (VtOlut)(m;ﬂ/l)//dﬂzdﬂlz ay, s (11021 ) (1125 0y )UN (50)EN)
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< IVelop 01 s ot 1Ol o [ A 221 (1 ) |

< ||01 ||HS ||02||op

NY2Uy (1 o)gNH.
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In summary, we have so far the following estimates

16
>4
=1

< N[O1 [l gs | Ozllop N UN (£ 0)n ],

16
ZBi < [O1lus Ozl (NH(N—l— 1)1/2UN(t;0)§NH +VN||(N + 1)UN(t;0)§N||> (5.2.22)
j=1

< N|[O1lysllO2lop [NV + 1)Un (2 0)En |-

Lastly, we compute for the final term.
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Therefore,

16

> B

J=1

TYO(%(VQ,)t —WNt ® WN,t)‘ < + +|C]

16
DA
i=1

< N|[O1llysllO2 ]l [NV + 1)U (2 0)En ],

(5.2.23)

which implies that, for O; and O5 be Hilbert-Schmidt and trace class operator, we get

2
//d$1dy1 [/ dz ”71(\3),5(%1,962;%,%2) - wN,t(ml;yl)wN,t(wz;xz)”
’ (5.2.24)

< N[V + DUy (t0)én]|.

S

Applying Proposition [5.2.4] we obtain the inequalities in Proposition [5.2.2] as desired. [ |
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Finally, combining the estimates from Lemma and Proposition we conclude the proof of
Proposition [ ]

5.3 Proof of main theorem 5.1.1]

Now we complete the proof for the main theorem. Recall the Vlasov equation with remainder terms is given
as,

oymn,(q,p) +p-Vemn,(q,p)

1 ~
= va . /dqz VVn(q— q2)oni(@2)mni(q,p) + V- R+V, R,

where on4(q) :== [dpmn (g, p), R and R := R + Ry are given by

R :=hIm <an(f¢ip)\1/N,tv a(fqh,p)l:[let> )

_W//dwldul //dwgdw/ dQQdPQ( ap(W)f7,(u

)
[/1dsVV(su1+(1—s)w1 wy) — vvq—qg]

Ry = 27r //dwldul //dwgduQ/ dC]deg qp q7p u)

vvmqgfazwhu%whwavﬁumnmrﬁzw%wa}

)"

(2) .
N u17u2aw17w2)7
®2

Then, from Proposition Proposition and Proposition there exists s(d) > 0 such that,
for an arbitrarily small § > 0, the following estimates holds for any test function ¢, ¢ € C5°(R?),

‘// dgdp ¢(q)9(p)V, R(q,p)‘ < ch??,
(5.3.1)

‘// dqdp ¢(q)o(p)V, R(q,p)‘ < chi™f,

where the constant ¢ depends on ||[V¢|| =, ||¢||lws-, V, and t.
Furthermore, since from ([5.0.1)) and Assumption we have [|VV||s < [(14|p))%[V(p)|dp < co. Then,

we obtain the same moment estimates from Proposition [3.2.3] Namely,

/dmmm+mﬁmw@m<cu+ﬂ

where C' is a constant dependent on [ dgdp (|¢| + |p|*)mn(g1,p1), and V. Therefore, by the similar com-
pactness argument made in chapter [f.1.3] we obtain the desired convergence result in Theorem [5.1.1]
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Chapter 6

Summary & future research

6.1 Summary

The study of deriving the effective equation for many-particle systems at quantum scale is very crucial due
to limitations of computational power. As the existing literature on this topic for large fermionic system
often centers around the use of the Wigner measure, a pseudo-probability measure, this thesis set out to
study the macroscopic dynamics with respect of Husimi measure instead. In this regard, we have derived
in chapter [3] the full structure of the Vlasov hierarchy from the time-dependent Schédinger equation with
respect to the Husimi measure for N-fermionic system. Then, by estimating the residual terms arose from
the aforementioned hierarchy structure, we prove that the Husimi measure converges to Vlasov equation
in terms of 1-Wasserstein distance with a regularized interaction potential. In chapter [l we extend our
convergence result to the Vlasov-Poisson equation by assuming the interaction potential to be a truncated
Coulomb potential for repulsive case. Finally, with the help of preceding results, we prove in chapter [5| the
convergence from Schréodinger equation to Vlasov equation by using the Bogoliubov transformation instead
of BBGKY hierarchy, giving us a different method compared to the preceding chapters.

Furthermore, the distinguishing features of our research in comparison to the existing literature can be

summarized as follows:

1. Derivation of Vlasov hierarchy from many-fermionic Schrédinger equation with respect to Husimi

measure.

2. In contrast to [Spo8I] where BBGKY hierarchy method is applied directly at k-reduced density
matrices, we used the Husimi measure with combination of second quantization and the BBGKY

hierarchy method
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3. Compared to [Spo81], the assumption on the interaction potential is slightly relaxed from C?(R3) to
W22 (RR3).

4. The assumption of interaction potential is further relaxed to truncated Coulomb potential (repulsive),
yielding the convergence result from N-fermionic Schédinger equation to the Vlasov-Poisson equation

in the sense of distribution.

5. For the result of convergence from N-fermionic Schrédinger equation to Vlasov-Poisson equation, the

assumption on moments is more relaxed compared to [PRSS17, [Saf20b].

6. Convergence from the large fermionic system to Vlasov equation with help of Bogoliubov transforma-

tion in the sense of distribution.

7. Estimation of the 2-reduced density matrices with respect to mixed norm as shown in [5.2.9] an

extension to result in [BPS14al.

8. The convergence results hold in terms of 1-Wasserstein distance.

6.2 Research prospective

In [GP17, [GP19, [GP21], the convergence rate in terms of 2-Wasserstein pseudometric was obtained from the
many-fermionic Schédinger equation to Vlasov equation under higher moment assumption. In this thesis, we
have shown our convergence results for Vlasov and Vlasov-Poisson equation can be extended to 1-Wasserstein
distance due to the moment results we obtained in Proposition [3.2.3]and in Proposition [f.1.1]for the repulsive
case respectively. It is therefore possible to obtain the convergence rate in terms of 1-Wasserstein distance
by first reformulating the Vlasov equation into a transport equation and obtain the convergence rate by
making use of the Drobrushin’s estimate similar to the steps given in [GP17, [GP19, [GP21].

One may also consider other Schrédinger equations such as the relativistic or magnetic field case. In
[DRS1§|, the mean-field convergence from Hartree to relativistic Vlasov has been obtained for bosonic par-
ticles where they make use of Taylor’s expansion on the relativistic term. It is therefore possible to following
similar steps to obtain the case for fermionic system.

Recently in [CLS21], it has been remarked that % can be allowed in a certain range instead of just
setting it at N~1/3 (see Figure 1 in [CLS21]). This opens up a new research opportunity for our framework.
Namely, by choosing an appropriate i, the moment estimates for the 1-particle Husimi measure remains
finite. Although the Husimi measure will be less than one, its convergence has been explored in [FLS18] for
such an unconfined probability density, i.e. that there is possibility where fermions can escape. With a more
flexible choice of A, one may get the convergence in terms of a certain operator norm. For convergence to

the Vlasov-Poisson equation, it is likely that this allows us to start from Schrédinger equation with Coulomb
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potential instead of its truncation. However, more work is need to understand its physical background since,
for a different 7, the order of kinetic and potential energy would be different than what we have discussed

in chapter [T}
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