
Toward a Self-Learning Governance Loop for
Competitive Multi-Attribute MAS?

Michael Pernpeintner[0001−6939−1028]

Institute for Enterprise Systems (InES), University of Mannheim, Germany
pernpeintner@es.uni-mannheim.de

Abstract. Competitive Multi-Agent Systems (MAS) are inherently hard
to control due to agent autonomy and strategic behavior, which is partic-
ularly problematic when there are system-level objectives to be achieved
or specific environmental states to be avoided.
Existing methods mostly assume specific knowledge about agent pref-
erences, utilities and strategies, neglecting the fact that actions are not
always directly linked to genuine agent preferences, but can also reflect
anticipated competitor behavior, be a concession to a superior adversary
or simply be intended to mislead other agents. This assumption both
reduces applicability to real-world systems and opens room for manipu-
lation.
We therefore propose a new governance approach for Multi-Attribute
MAS which relies exclusively on publicly observable actions and tran-
sitions, and uses the acquired knowledge to purposefully restrict action
spaces, thereby achieving the system’s objectives while preserving a high
level of autonomy for the agents.

Keywords: Multi-Agent System · Competition · Governance · Restric-
tion.

1 Introduction

One of the most intriguing and challenging characteristics of an MAS is the fact
that the environmental transitions depend simultaneously on the actions of all
agents. This mutual influence leads to strategic and sometimes even seemingly
erratic agent actions—particularly when human agents are involved—, and it
decouples intended and observed behavior: In general, the preference order of
a self-interested and strategic agent over the environmental states cannot be
concluded from observing its actions, meaning that preference elicitation, for
example using CP-nets [4], is only possible as long as additional assumptions
hold about the link between actions and preferences.

While full control on the part of an outside authority directly contradicts the
Multi-Agent property of such a system, some level of control and cooperation
can still be achieved. Existing approaches include Stochastic Games [8], Deontic
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Logic [7], Normative Systems [9], and more specifically Normative Multi-Agent
Systems [2, 1] and Game Theory for MAS [5, 3, 6]. Building upon these ideas, we
propose to make use of the knowledge collected by observing how agents behave
in the system, in order to refine the rules of the game. As a consequence, we
do not reason in terms of agent preferences or utilities, but rather in terms of
actions and transitions.

Naturally, there is a conflict between control and autonomy, requiring a rel-
ative weighting of the two objectives. We strive here for minimal restriction,
subject to a constraint on the expected value of the system objective.

2 Model

Consider a finite set I = {1, ..., n} of agents who, at every time step t ∈ N0,
perceive the environmental state st ∈ S and perform an action ai ∈ Ai, i ∈ I,
following a confidential action policy πi : S → Ai. The environmental state
changes from t to t+ 1 according to a transition function δ : S ×A → S, where
A =

∏
iAi.

Since the action policies are at the agents’ discretion, the evolution st+1 :=
δ (st, π(st)) can be influenced either by changing what agents can do (altering
their action sets) or by changing what consequences actions have (altering the
transition function). We choose a strict separation of concerns: δ represents the
(unalterable) reaction of the environment to agent actions, while the restriction
of actions is performed by the Governance G. To use an analogy, the transition
function accounts for the laws of nature, whereas the Governance plays the role
of the legislature.

The Governance intervenes by defining a set of allowed actions At = Γ (st) v
A, where A =

∏
iAi is the fundamental action set. When all agents have made

their choice a = (ai)i ∈ At, the Governance uses the information (st, a) to learn,

i.e., to update its internal state s
(t+1)
G := λ

(
s
(t)
G , st, a

)
.

We assume that there is a system objective in addition to the agents’ goals.
Since G has only probabilistic information about the agents’ future actions, its
objective needs to be compatible with probabilistic reasoning. Therefore, we
assume a cost function cG : S → R to be minimized.

3 Governance Loop

In this work, we propose a solution for multivariate binary environments (S =
Bm for some m ∈ N), where agents can change one attribute per time step (or
choose the neutral action ∅), and an attribute is toggled when at least one agent
chooses to change it.

Let n be the number of agents, m the number of attributes, and q the number
of actions per agent (we assume the same Ai for all i).
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3.1 Observation and Learning

Let sG be a simple counter of observed actions per agent per environmental

state, i.e., SG := Nn·2
m·q

0 . For every observation (st, at), the learning function λ
increments the respective numbers by one.

This gives rise to an (observed) probability distribution

P
(t)
i (s) :=

(
s
(i,s,1)
G

s
(i,s)
G

, ...,
s
(i,s,q)
G

s
(i,s)
G

)
, where s

(i,s)
G =

q∑
k=1

s
(i,s,k)
G

for all i and s, reflecting the knowledge about the agents’ actions up to step t
and thus being G’s best guess for the actions at (t + 1). It is customary to set

P
(t)
i (s) :=

(
1
q , ...,

1
q

)
if s

(i,s)
G = 0.

3.2 Restriction of Action Spaces

Given some independence assumptions, Algorithm 1 solves the restriction prob-
lem by computing an expected cost matrix for all joint actions, and then deleting
individual actions from this matrix until the expected value drops below a given
cost threshold α.

Data: Governance cost function cG , cost threshold α
Input: Agent-specific probability distributions Pi(st)
Output: Restricted action set At

P (st) :=
∏

n Pi(st) ∈ Pn
q ;

C := P (st) ◦ cG ∈ Rqn ;
A := A ;
while

∑
a∈A Ca > α do

(i, j) := arg maxaj∈Ai\{∅},i∈I C(�−i,aj) ;
Remove all a ∈ A where agent i chooses aj and delete the corresponding
hyperplane of C ;

end
At := A ;

Algorithm 1: Restricting agent actions

Theorem 1 (Proof omitted). Let α ≥ Cδ(st,∅). Then Algorithm 1 produces
a restriction At ⊆ A of actions such that CAt ≤ α. This restriction is Pareto
minimal, i.e., @A′t A At with the same property.

If the cost function has the form cG(s) := 1S−(s) for a subset S− ∈ S
of violating states, then α is precisely an upper bound for the probability of
transitioning into a violating state.

The worst-case time complexity of Algorithm 1 is O
(
n2 · qn+2

)
.
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4 Evaluation and Results

We compare unrestricted (agents have the full range of actions) and restricted
(with Governance as in Section 3) evolution. To quantify the restriction, we use

rG(t) := 1 − |At|
|A| ∈ [0, 1] and show this degree of restriction together with the

average cost over time.
The application domain is a smart home environment with 7 binary variables:

S = T × O ×W × B × H × L × A ∼= B7 (Time, Occupancy, Window, Blinds,
Heating, Light and Alarm). Agents can change five of the variables, while time
and occupancy are controlled externally. The Governance wants to make sure
that the heating is off whenever the window is open, and therefore acts against
the cost function cG(s) := 1sW∧sH .

In the deterministic scenario, each agent i has a fixed mapping πi : S →
Ai of states to actions. In the probabilistic scenario, agents have probability
distributions for their action policy πi : S → ∆Ai.

Each line in Figure 1 is the mean of 10 independent runs with identical
parameters, random initial states and fixed α := 3

2 ·
1
qn .

4.1 Results
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Fig. 1. Evaluation results

G succeeds in reducing the average cost substantially in all cases from the a
priori violation probability of 25%. Moreover, both cost and degree of restriction
decrease over time, which indicates that the Governance indeed learns to predict
agent actions and improves its corrective action. Notably, this learning process is
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independent from an estimated agent preference order: The action policies were
created randomly, which means that they most likely do not correspond to a
consistent order over the environmental states.

5 Conclusion and Future Work

We show here that governing a competitive MAS is possible without prior knowl-
edge or assumptions about agent preferences. This extends the applicability of
such an approach to unknown and, in particular, human agents.

While the algorithm is functional, it lacks (polynomial) scalability in terms
of the number of agents and attributes, and it fully re-evaluates the minimal re-
striction at every step, thereby reducing continuity of allowed actions over time.
Future work will therefore include a more efficient representation of knowledge
(e.g. attribute dependencies and conditional probabilities), as well as a gener-
alization to environments with continuous attributes or irregular shape, more
complex agent actions, locality constraints and multiple-step restrictions.
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