
LIZARD – A Lightweight Stream Cipher for
Power-constrained Devices

Matthias Hamann1, Matthias Krause1 and Willi Meier2

1 University of Mannheim, Germany, {hamann,krause}@uni-mannheim.de
2 FH Nordwestschweiz, Switzerland, willi.meier@fhnw.ch

Abstract. Time-memory-data (TMD) tradeoff attacks limit the security level of many
classical stream ciphers (like E0, A5/1, Trivium, Grain) to 1

2 n, where n denotes the
inner state length of the underlying keystream generator. In this paper, we present
Lizard, a lightweight stream cipher for power-constrained devices like passive RFID
tags. Its hardware efficiency results from combining a Grain-like design with the
F P (1)-mode, a recently suggested construction principle for the state initialization
of stream ciphers, which offers provable 2

3 n-security against TMD tradeoff attacks
aiming at key recovery. Lizard uses 120-bit keys, 64-bit IVs and has an inner state
length of 121 bit. It is supposed to provide 80-bit security against key recovery
attacks. Lizard allows to generate up to 218 keystream bits per key/IV pair, which
would be sufficient for many existing communication scenarios like Bluetooth, WLAN
or HTTPS.
Keywords: Stream Ciphers · Lightweight Cryptography · Time-Memory-Data Tradeoff
Attacks · F P (1)-mode · Grain · RFID

1 Introduction
Stream ciphers have a long history when it comes to protecting digital communication. In
1987, Ronald L. Rivest designed RC4 [Sch95], which was later used in SSL/TLS [DR08]
and the wireless network security protocols WEP [Ins97] and TKIP (often called WPA)
[Ins04]. Other well-known stream cipher examples are E0 of the Bluetooth standard
[SIG14] and A5/1 of GSM [BGW99]. Unfortunately, E0 and A5/1 have been shown to be
highly insecure (see, e.g., [LMV05] and [BB06]) and RC4 also shows severe vulnerabilities,
which led to its removal from the TLS protocol [Pop15] and rendered other protocols like
WEP insecure [FMS01]. In 2004, the eSTREAM project [ECR08] was started in order to
identify new stream ciphers for different application profiles. In the hardware category,
aiming at devices with restricted resources, three ciphers are still part of the eSTREAM
portfolio after the latest revision in 2012: Grain v1 [HJM06], MICKEY 2.0 [BD06] and
Trivium [CP05].

Grain v1 uses 80-bit keys, 64-bit IVs and the authors do not give an explicit limit on
the number of keystream bits that should be generated for each key/IV pair. MICKEY
2.0 uses 80-bit keys, IVs of variable length up to 80 bit and the maximum amount of
keystream bits for each key/IV pair is 240. Trivium uses 80-bit keys, 80-bit IVs and at
most 264 keystream bits should be generated for each key/IV pair.

Interestingly, all three ciphers of the eSTREAM hardware portfolio are obviously
designed for potentially very large keystream sequences per key/IV pair. In contrast, the
aforementioned transmission standards all use much smaller packet sizes. For example,
A5/1 produces only 228 keystream bits per key/IV pair, where the session key is 64 bits
long and the IV corresponds to 22 bits of the publicly known frame (i.e., packet) number.

mailto:hamann@uni-mannheim.de,krause@uni-mannheim.de
mailto:willi.meier@fhnw.ch

2 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

Similarly, Bluetooth packets contain at most 2790 bits for the so-called basic rate. The
Bluetooth cipher E0 takes a 128-bit session key and uses 26 bits of the master’s clock,
which is assumed to be publicly known, as the packet-specific IV. For wireless local area
networks (WLANs), the currently active IEEE 802.11-2012 standard [Ins12] implies that
at most 7943 bytes (i.e., < 216 bits) are encrypted under the same key/IV pair using
CCMP. Another widespread example for encryption on a per-packet basis is SSL/TLS,
which underlies HTTPS and thus plays a vital role in securing the World Wide Web. In
the most recent version, TLS 1.2 [DR08], the maximum amount of data encrypted under
the same key/IV pair is 214 + 210 bytes (i.e., 217 + 213 < 218 bits), as long as RC4, which
is now forbidden for all TLS versions by RFC 7465 [Pop15], is not used.

Considering the above examples, the natural question arises whether a stream cipher
with attractive features regarding security and efficiency could be designed by specifically
targeting such packet mode scenarios, where only moderately long pieces of keystream
are generated under the same key/IV pair. In this paper, we answer the question in
the affirmative by presenting Lizard, a lightweight stream cipher for power-constrained
devices. It takes 120-bit keys, 64-bit IVs and generates up to 218 keystream bits per
key/IV pair. (Note that a maximum packet size of 218 bits covers all of the real-world
protocol examples given in the previous paragraph.) Lizard is designed to provide 80-bit
security against key recovery attacks including generic time-memory-data (TMD) tradeoff
attacks. This is remarkable insofar as Lizard’s inner state is only 121 bit wide. In
contrast, Trivium and Grain v1, for example, have an inner state length of at least twice
the size of the targeted security level against key recovery attacks. This is due to the
inherent vulnerability of classical stream ciphers (i.e., stream ciphers which compute the
keystream based on a so-called initial state) against TMD tradeoff attacks like those of
Babbage [Bab95] and Biryukov and Shamir [BS00], which allow to recover some inner state
during keystream generation (and, usually, also the corresponding initial state by clocking
the cipher backwards) with an overall attack complexity of 2n/2, where n denotes the
inner state length of the underlying keystream generator (KSG). As the state initialization
algorithm, which computes the initial state from a given key/IV pair, is efficiently invertible
for Trivium and Grain v1, knowing the initial state immediately reveals the secret key. And
even if the state initialization algorithm is not efficiently invertible, variants of such TMD
tradeoff attacks often allow for key recovery (see Sec. 4.2 for further details). Lizard, on
the other hand, represents the first practical instantiation of the FP (1)-mode introduced
in [HK15], which provides a method for designing stream ciphers in such a way that, for
packet mode scenarios, a beyond-the-birthday-bound security level of 2

3n w.r.t. generic
TMD tradeoff attacks aiming at key recovery can be proved. (TMD tradeoff attacks
aiming at recovering some initial state still work for Lizard, but they do not allow to
straightforwardly derive the underlying secret key.)

The design of Lizard is closely related to that of Grain v1, which turned out to be the
most hardware efficient member of the eSTREAM portfolio and, hence, can be considered
as a benchmark for new hardware-oriented designs. When compared to Grain v1, the
major differences of Lizard are the smaller inner state (121 bit vs. 160 bit), the larger
key (120 bit vs. 80 bit) and the fact that Lizard introduces the secret key not only once
but twice during its state initialization. All of these modifications are a direct consequence
of implementing the FP (1)-mode as explained in section 3.5. Naturally, reducing the size
of the inner state also required to change the underlying feedback shift registers and, for
security reasons, to choose a heavier output function.

Note that, very recently, another line of research which also pursues the goal of reducing
the inner state size of stream ciphers has emerged. In 2015, Armknecht and Mikhalev
suggested Sprout [AM15], which has a Grain-like structure and uses two 40-bit feedback
shift registers. Compared to conventional stream ciphers like Grain v1 (and also compared
to Lizard), the characteristic difference of Sprout is that the 80-bit key is not only accessed

Matthias Hamann, Matthias Krause and Willi Meier 3

during the state initialization but also continuously used as part of the state update during
the subsequent keystream generation phase. Even though Sprout was broken shortly after
publication (see, e.g., [LNP15], [ZG15], [Ban15], [EK16]), it has sparked interest in the
underlying design principle and related ciphers like Fruit [GHX16] have been suggested
since. Unfortunately, though being elegant in theory, continuously accessing the secret
key often comes at a heavy price in practice. For example, if the key is stored in an
EEPROM, the corresponding access times may significantly slow down the operation speed
of the KSG. This is particularly true if the key bits are not accessed sequentially (as in
the case of Sprout and its successor Plantlet [MAM17]) but at random positions (as in
the case of Fruit). In fact, Fruit needs to access six different, non-sequential key bits per
clock cycle. Another drawback to continuously reading key bits from an EEPROM is the
associated increase in power consumption, which is especially problematic for low-cost
RFID tags, where the power budget is often as low as 10 µW (cf. [JW05]). For comparison,
Ranasinghe and Cole state in [CR08] that “[a] tag performing a read operation will require
about 5 µW – 10 µW , while a tag attempting to perform a write operation to its E2PROM
will require about 50 µW or more.” Our entire hardware implementation of Lizard, on
the other hand, has an estimated power consumption of only 2.1 µW . A way to circumvent
the disadvantages of continuously accessing the key in the EEPROM might be to buffer it
in volatile memory. This, however, would significantly increase the hardware costs of the
corresponding implementation due the additionally required flip-flops. On the other hand,
in a scenario where the key is fixed (e.g., via burning fuses), continuously accessing key bits
(in potentially random order) is clearly feasible. There, however, it might be problematic
that Fruit requires each key to be used with less than 215 different IVs, which places a
strong limit on the lifetime of corresponding devices in a fixed-key scenario. Finally, note
that, unlike Lizard, neither Sprout nor Fruit offer provable security against TMD tradeoff
attacks aiming at key recovery.

We would like to point out that the above arguments by no means imply that we
reject the idea of stream ciphers that continuously access the secret key. However, they
illustrate the need for alternative ideas that allow to reduce the size of the inner state even
in scenarios where continuous key access is not feasible.

Lizard was designed with low-cost scenarios like passively powered RFID tags in
mind. In particular, it outperforms Grain v1 in important hardware metrics like cell area
and power consumption. Most notably, the estimated power consumption is about 16
percent below that of Grain v1, making Lizard particularly suitable for power-constrained
devices. This shows that in scenarios where plaintext packets of moderate length are to be
encrypted under individual IVs, the FP (1)-mode provides an interesting alternative to
conventional state initialization algorithms of stream ciphers.
Structure of the paper: In section 2, we specify the components of Lizard (Sec. 2.1) and
describe how it is operated during state initialization (Sec. 2.2) and keystream generation
(Sec. 2.3). Building on this, section 3 then provides the corresponding design considerations.
In particular, subsection 3.5 contains a detailed explanation of the generic FP (1)-mode
and how it was implemented for Lizard. Section 4 treats the cryptanalysis of Lizard
and in section 5, we present the details of our hardware implementation along with a
comparison of the corresponding performance metrics between Lizard and Grain v1.
Section 6 concludes the paper and provides an outlook on potential future work. Test
vectors can be found in appendix A.

2 Design Specification
The design of Lizard is similar to (and was in fact inspired by) that of the Grain family
[HJMM08] of stream ciphers. In particular, the inner state of Lizard is distributed over
two interconnected feedback shift registers (FSRs) as depicted in Fig. 1.

4 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

NFSR2 NFSR1

a

f2 f1

zt

Bt
0 Bt

89 St
0 St

30
St

0

Figure 1: Lizard in keystream generation mode.

Note, however, that while Grain uses one linear feedback shift register (LFSR) and
one nonlinear feedback shift register (NFSR), which, moreover, are of the same length,
Lizard uses two NFSRs of different lengths instead. The reasons for this design choice
will be explained in section 3. Like in Grain, the third important building block besides
the two FSRs is a nonlinear output function, which takes inputs from both shift registers
and is also used as part of the state initialization algorithm.

In the following, we describe the components of the cipher in detail (Sec. 2.1) and
specify how it is operated during state initialization (Sec. 2.2) and keystream generation
(Sec. 2.3). For the sake of clarity, subsections 2.1–2.3 contain only the technical aspects of
Lizard. Explanations of important design choices for our construction are given separately
in section 3, along with a discussion of the security properties of the particular components
(e.g., the algebraic properties of the feedback functions).

2.1 Components
The 121-bit inner state of Lizard is distributed over two NFSRs, NFSR1 and NFSR2, whose
contents at time t = 0, 1, . . . we denote by (St

0, . . . , S
t
30) and (Bt

0, . . . , B
t
89), respectively (cf.

Fig. 1). As NFSR1 and NFSR2 are Fibonacci-type, for t ∈ N \ {0, 128} (cf. Sec. 2.2) it holds
that St+1

i := St
i+1, i = 0, . . . , 29, and Bt+1

j := Bt
j+1, j = 0, . . . , 88.

2.1.1 NFSR1

In Lizard, NFSR1 replaces the LFSR of the Grain family of stream ciphers. NFSR1 is
31 bit wide and corresponds to the NFSR A10 of the eSTREAM Phase 2 (hardware
portfolio) candidate ACHTERBAHN-128/80 [GGK06]. For non-zero starting states, it
has a guaranteed period of 231 − 1 (i.e., maximal) and can be specified by the following
update relation (during keystream generation), defining f1 depicted in Fig. 1:

St+1
30 := St

0 ⊕ St
2 ⊕ St

5 ⊕ St
6 ⊕ St

15 ⊕ St
17 ⊕ St

18 ⊕ St
20 ⊕ St

25

⊕ St
8S

t
18 ⊕ St

8S
t
20 ⊕ St

12S
t
21 ⊕ St

14S
t
19 ⊕ St

17S
t
21 ⊕ St

20S
t
22

⊕ St
4S

t
12S

t
22 ⊕ St

4S
t
19S

t
22 ⊕ St

7S
t
20S

t
21 ⊕ St

8S
t
18S

t
22

⊕ St
8S

t
20S

t
22 ⊕ St

12S
t
19S

t
22 ⊕ St

20S
t
21S

t
22 ⊕ St

4S
t
7S

t
12S

t
21

⊕ St
4S

t
7S

t
19S

t
21 ⊕ St

4S
t
12S

t
21S

t
22 ⊕ St

4S
t
19S

t
21S

t
22

⊕ St
7S

t
8S

t
18S

t
21 ⊕ St

7S
t
8S

t
20S

t
21 ⊕ St

7S
t
12S

t
19S

t
21

⊕ St
8S

t
18S

t
21S

t
22 ⊕ St

8S
t
20S

t
21S

t
22 ⊕ St

12S
t
19S

t
21S

t
22.

2.1.2 NFSR2

NFSR2 is 90 bit wide and uses a modified version of g from Grain-128a [gHJM11] as its
feedback polynomial. More precisely, f2 of NFSR2 (cf. Fig. 1) squeezes the taps of g to fit

Matthias Hamann, Matthias Krause and Willi Meier 5

a 90 bit register, resulting in the following update relation (during keystream generation):

Bt+1
89 := St

0 ⊕Bt
0 ⊕Bt

24 ⊕Bt
49 ⊕Bt

79 ⊕Bt
84 ⊕Bt

3B
t
59 ⊕Bt

10B
t
12

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83.

Note that this update relation for Bt+1
89 additionally contains the masking bit St

0 from
NFSR1 (analogously to the Grain family).

2.1.3 Output Function a

a : {0, 1}53 −→ {0, 1} builds on the construction scheme introduced in [MJSC16] as part
of the FLIP family of stream ciphers (see Sec. 3 for details). For the sake of clarity, we
define a through the output bit zt of Lizard at time t, which is computed as

zt := Lt ⊕Qt ⊕ Tt ⊕ T̃t,

where

Lt := Bt
7 ⊕Bt

11 ⊕Bt
30 ⊕Bt

40 ⊕Bt
45 ⊕Bt

54 ⊕Bt
71,

Qt := Bt
4B

t
21 ⊕Bt

9B
t
52 ⊕Bt

18B
t
37 ⊕Bt

44B
t
76,

Tt := Bt
5 ⊕Bt

8B
t
82 ⊕Bt

34B
t
67B

t
73 ⊕Bt

2B
t
28B

t
41B

t
65

⊕Bt
13B

t
29B

t
50B

t
64B

t
75 ⊕Bt

6B
t
14B

t
26B

t
32B

t
47B

t
61

⊕Bt
1B

t
19B

t
27B

t
43B

t
57B

t
66B

t
78,

T̃t := St
23 ⊕ St

3S
t
16 ⊕ St

9S
t
13B

t
48 ⊕ St

1S
t
24B

t
38B

t
63.

2.2 State Initialization
The state initialization process can be divided into 4 phases. Phases 1–3 constitute an
instantiation of the FP (1)-mode introduced in [HK15], which, in our case, provides 80-bit
security against generic time-memory-data (TMD) tradeoff attacks aiming at key recovery.
Phase 4 is a consequence of the necessity to make sure that NFSR1 is not in the all-zero
state after phase 3 (see below for details).

2.2.1 Phase 1: Key and IV Loading

Let K = (K0, . . . ,K119) denote the 120-bit key and IV = (IV0, . . . , IV63) the 64-bit public
IV. The registers of the keystream generator are initialized as follows:

B0
j :=

{
Kj ⊕ IVj , for j ∈ {0, . . . , 63} ,
Kj , for j ∈ {64, . . . , 89} ,

S0
i :=

Ki+90, for i ∈ {0, . . . , 28} ,
K119 ⊕ 1, for i = 29,
1, for i = 30.

2.2.2 Phase 2: Grain-like Mixing

Clock the cipher 128 times without producing actual keystream. Instead, at time t =
0, . . . , 127, the output bit zt is fed back into both FSRs as depicted in Fig. 2. To avoid

6 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

NFSR2 NFSR1

a

f2 f1

zt

Bt
0 Bt

89 St
0 St

30
St

0

Figure 2: Lizard in phase 2 of the state initialization.

ambiguity, we now give the full update relations that will be used for NFSR2 and NFSR1 in
phase 2. For t = 0, . . . , 127, compute

Bt+1
j := Bt

j+1 for j ∈ {0, . . . , 88} ,
Bt+1

89 := zt ⊕ St
0 ⊕Bt

0 ⊕Bt
24 ⊕Bt

49 ⊕Bt
79 ⊕Bt

84 ⊕Bt
3B

t
59 ⊕Bt

10B
t
12

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83,

St+1
i := St

i+1 for i ∈ {0, . . . , 29} ,
St+1

30 := zt ⊕ St
0 ⊕ St

2 ⊕ St
5 ⊕ St

6 ⊕ St
15 ⊕ St

17 ⊕ St
18 ⊕ St

20 ⊕ St
25

⊕ St
8S

t
18 ⊕ St

8S
t
20 ⊕ St

12S
t
21 ⊕ St

14S
t
19 ⊕ St

17S
t
21 ⊕ St

20S
t
22

⊕ St
4S

t
12S

t
22 ⊕ St

4S
t
19S

t
22 ⊕ St

7S
t
20S

t
21 ⊕ St

8S
t
18S

t
22

⊕ St
8S

t
20S

t
22 ⊕ St

12S
t
19S

t
22 ⊕ St

20S
t
21S

t
22 ⊕ St

4S
t
7S

t
12S

t
21

⊕ St
4S

t
7S

t
19S

t
21 ⊕ St

4S
t
12S

t
21S

t
22 ⊕ St

4S
t
19S

t
21S

t
22

⊕ St
7S

t
8S

t
18S

t
21 ⊕ St

7S
t
8S

t
20S

t
21 ⊕ St

7S
t
12S

t
19S

t
21

⊕ St
8S

t
18S

t
21S

t
22 ⊕ St

8S
t
20S

t
21S

t
22 ⊕ St

12S
t
19S

t
21S

t
22,

where zt := Lt +Qt + Tt + T̃t is computed as described in subsection 2.1.3.

2.2.3 Phase 3: Second Key Addition

In this phase, the 120-bit key is XORed in a bitwise fashion to the inner state of the
keystream generator, similar to how it was introduced in phase 1. More precisely, the
following update relations for NFSR2 and NFSR1 constitute phase 3:

B129
j := B128

j ⊕Kj , for j ∈ {0, . . . , 89} ,

S129
i :=

{
S128

i ⊕Ki+90, for i ∈ {0, . . . , 29} ,
1, for i = 30.

Note that, like in phase 1, the rightmost cell of NFSR1 is here again set to 1 in order to
avoid the all-zero state, which would practically render our maximum-period FSR NFSR1
ineffective as, after phase 3, the only input to it will come from its feedback function (i.e.,
for t ≥ 129, St+1

i , i = 0, . . . , 30, is computed as described in subsection 2.1). In contrast
to phase 1, the key bit K119 is not inverted in phase 3.

2.2.4 Phase 4: Final Diffusion

As pointed out previously, phases 1–3 constitute an instantiation of the key loading and
mixing steps of the FP (1)-mode, which, in our case, yields 80-bit security w.r.t. generic

Matthias Hamann, Matthias Krause and Willi Meier 7

NFSR2 NFSR1

f2 f1

Bt
0 Bt

89 St
0 St

30
St

0

Figure 3: Lizard in phase 4 of the state initialization. The output function a is omitted
as all output bits generated in this phase are discarded.

TMD tradeoff attacks aiming at key recovery. Phase 4 is additionally required in order to
obtain the necessary diffusion w.r.t. the bit at the rightmost position of NFSR1, which was
set to 1 in phase 3. We achieve this by stepping the whole KSG 128 times in keystream
generation mode as phase 4 (see Fig. 3). Note that the 128 output bits produced during
phase 4 are discarded, i.e., they are not used as actual keystream.

Once more, to avoid ambiguity, we give the full update relations that will be used for
NFSR2 and NFSR1 in phase 4. For t = 129, . . . , 256, compute

Bt+1
j := Bt

j+1 for j ∈ {0, . . . , 88} ,
Bt+1

89 := St
0 ⊕Bt

0 ⊕Bt
24 ⊕Bt

49 ⊕Bt
79 ⊕Bt

84 ⊕Bt
3B

t
59 ⊕Bt

10B
t
12

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83,

St+1
i := St

i+1 for i ∈ {0, . . . , 29} ,
St+1

30 := St
0 ⊕ St

2 ⊕ St
5 ⊕ St

6 ⊕ St
15 ⊕ St

17 ⊕ St
18 ⊕ St

20 ⊕ St
25

⊕ St
8S

t
18 ⊕ St

8S
t
20 ⊕ St

12S
t
21 ⊕ St

14S
t
19 ⊕ St

17S
t
21 ⊕ St

20S
t
22

⊕ St
4S

t
12S

t
22 ⊕ St

4S
t
19S

t
22 ⊕ St

7S
t
20S

t
21 ⊕ St

8S
t
18S

t
22

⊕ St
8S

t
20S

t
22 ⊕ St

12S
t
19S

t
22 ⊕ St

20S
t
21S

t
22 ⊕ St

4S
t
7S

t
12S

t
21

⊕ St
4S

t
7S

t
19S

t
21 ⊕ St

4S
t
12S

t
21S

t
22 ⊕ St

4S
t
19S

t
21S

t
22

⊕ St
7S

t
8S

t
18S

t
21 ⊕ St

7S
t
8S

t
20S

t
21 ⊕ St

7S
t
12S

t
19S

t
21

⊕ St
8S

t
18S

t
21S

t
22 ⊕ St

8S
t
20S

t
21S

t
22 ⊕ St

12S
t
19S

t
21S

t
22.

See section 3.5 for further remarks on this design choice.

2.3 Keystream Generation
At the end of the state initialization, the 31-bit (initial) state of NFSR1 is

(
S257

0 , . . . , S257
30
)

and the 90-bit (initial) state of NFSR2 is
(
B257

0 , . . . , B257
89
)
. The first keystream bit that

is used for plaintext encryption is z257. For t ≥ 257, the states
(
St+1

0 , . . . , St+1
30
)
and(

Bt+1
0 , . . . , Bt+1

89
)
and the output bit zt are computed using the relations given in sub-

section 2.1. Fig. 1 depicts the structure of Lizard during keystream generation.
As Lizard is designed to be operated in packet mode, the maximum size of a plaintext

packet encrypted under the same key/IV pair is 218 bits and no key/IV pair may be used
more than once, i.e., for more than one packet. Let X =

(
x0, . . . , x|X|−1

)
denote such

a plaintext packet and let z257, z258 . . . be the keystream generated for it as described
before. Then the corresponding ciphertext packet Y =

(
y0, . . . , y|X|−1

)
can be produced

via yi := xi ⊕ zi+257, i = 0, . . . , |X| − 1. Decryption (given that the secret session key and
the public IV are known) works analogously.

Note that, though we use the terms plaintext/ciphertext packet here, Lizard is really
a (synchronous) stream cipher. I.e., the keystream bits z257, z258 . . . are generated in a
bitwise fashion (and independently of the plaintext/ciphertext) and, consequently, the
individual plaintext bits xi can be encrypted and then (in the form of yi) transmitted as
they arrive. The same obviously holds for the decryption of the ciphertext bits yi.

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

3 Design Considerations

In this section, we provide additional explanations w.r.t. our design, which were omitted
in section 2 for the sake of clarity. Based on several of the following properties, we will
then argue in section 4, why we believe that Lizard resists the currently known types of
attacks against stream ciphers.

3.1 NFSR1

As mentioned in section 2.1, NFSR1 is 31 bit wide and corresponds to the NFSR A10 of
the eSTREAM Phase 2 (hardware portfolio) candidate ACHTERBAHN-128/80 [GGK06].
We chose the NFSR A10 out of the set of all maximum-period NFSRs used in Achterbahn
due to the fact that the two NFSRs which would have offered even slightly longer periods
(namely, A11 and A12) both use inconvenient taps w.r.t. potential speedup measures (see
Sec. 3.3 for details). Moreover, we did not choose one of the smaller maximum-period
NFSRs of Achterbahn as (under the condition that we want to keep the speedup option
as decribed below) those would have led to the situation that we would have had to use
certain taps of NFSR1 at the same time in its feedback function and in the output function.
The reason why we used the ACHTERBAHN design as a source for our NFSR1 in the first
place is twofold.

First, we wanted NFSR1 to have guaranteed period 231−1, as, in Lizard, NFSR1 replaces
the maximum-length LFSR of the Grain family. Unfortunately, apart from special cases
like constructing n-bit NFSRs with period 2n − 1 from n-bit maximum-length LFSRs (cf.
[Dub13]), not much is known yet about how to construct large NFSRs with maximum
period (see, e.g., [Dub12] or [Dub13] for further remarks and references to corresponding
approaches).1 However, due to the restriction to packet mode (with a maximum of 218

keystream bits per key/IV pair), Lizard actually does not need as large guaranteed periods
as the Grain family, which allowed us to replace the maximum-length LFSR of Grain by
a suitable maximum-length NFSR. The design document of ACHTERBAHN provides a
collection of such maximum-length NFSRs that have sufficient size to be used in Lizard.

The second reason for using A10 from ACHTERBAHN as our NFSR1 is its hardware
efficiency. Despite a comparatively large algebraic normal form, the designers of ACH-
TERBAHN are able provide a compact hardware realization of the feedback function
consuming only 31.75 gate equivalents (GE) and having logical depth three (see Sec. 5 for
further details w.r.t. hardware complexity and an explanation of corresponding units of
measure like GE).

When operated in a self-contained manner (i.e., after phase 3 of the state initialization),
NFSR1 has a guaranteed period (for non-zero starting states) of 231 − 1. The following
properties of A10 of ACHTERBAHN (and, hence, also of NFSR1 of Lizard) were given in
[GGK06]: a nonlinearity of 61440, an order of correlation immunity of 6, and a diffusion
parameter2 of 61. Moreover, it is easy to see that the feedback function f1 of NFSR1 is
balanced and, thus (as it is 6th order correlation-immune), 6-resilient. For comparison, in
Grain v1 as well as in Grain-128a, the feedback function of the LFSR (which is replaced
by NFSR1 in Lizard) has resiliency 5. Finally, the algebraic degree of f1 is 4.

1In fact, a De Bruijn sequence of length 2n can be generated with an n-bit NFSR. Still, for simplicity,
we also call our 31-bit NFSR1 with period 231 − 1 maximum-length, in analogy to the case of LFSRs (where
a period of 2n is obviously impossible to achieve with an n-bit LFSR).

2The diffusion parameter λ was determined experimentally in [GGK06] and denotes “the minimum
number of clock cycles needed in order to transform any two initial states of the shift register Aj of
Hamming distance 1 into shift register states of Hamming distance close to Nj/2” (Nj denotes the size of
the shift register Aj).

Matthias Hamann, Matthias Krause and Willi Meier 9

3.2 NFSR2
NFSR2 is 90 bit wide and its feedback polynomial is a modified version of g from Grain-128a
[gHJM11], which, after years of intense cryptanalysis, is still considered unbroken. In
contrast to NFSR1, the period of NFSR2 during keystream generation is unknown because,
due to the masking bit from NFSR1, NFSR2 is actually a filter instead of a real NFSR (cf.
corresponding remark for the Grain family in [HJMM08]).

As described in section 2.1, f2 of Lizard squeezes the taps of g from Grain-128a in
such a way that the property of g that no tap appears more than once is preserved in
f2. In consequence, several important properties of g like its balancedness, its resiliency
of 4, its nonlinearity of 267403264 and its security w.r.t. linear approximations (214 best
linear approximations with bias 63 ·2−15) carry over to f2 (see [gHJM11] for further details
regarding the security of g of Grain-128a). The algebraic degree of f2 is 4.

Beyond these properties, an important requirement for NFSR2 is that it should provide
resistance against cube-like attacks on the initialization. The NFSR as selected for Lizard
meets this condition as unpublished results suggest, [Tod17].

3.3 Output Function a

An important question in FSR-based stream cipher design is how to share the load of
ensuring security between the driving register(s) and the output function. To compensate
for the fact that the inner state of Lizard is smaller than that of Grain v1, we decided
that the output function should have more inputs and larger algebraic degree instead. It
builds on the construction scheme introduced in [MJSC16] as part of the FLIP family of
stream ciphers. More precisely, Lizard’s output function a can be written as the direct
sum of a linear function with seven monomials, a quadratic function with four monomials,
a triangular function with seven monomials, and another triangular function with four
monomials, where each tap of NFSR1 and NFSR2 appears at most once in a.

As a consequence, the output function of Lizard is defined over 53 variables, balanced,
and has, according to lemmata 3–6 in [MJSC16], the following security properties: a
nonlinearity of 4476506321453056 (≈ 251), a resiliency of 8, an algebraic immunity of at
least 7, and a fast algebraic immunity of at least 8. The algebraic degree of a is 7.

If the content of NFSR1 at time t should be known to the attacker (e.g., as part of a
guess-and-determine attack), the output function still depends on at least 43 variables
and “gracefully degrades” into the direct sum of a linear function with seven or eight
(depending on the values of St

9 and St
13) monomials, a quadratic function with four or five

(depending on the values of St
1 and St

24) monomials, and a triangular function with seven
monomials, which again conforms to the construction principle introduced in [MJSC16]
and leads to the following worst-case security properties for that situation: a nonlinearity
of 4317411672064 (≈ 241), a resiliency of 7, an algebraic immunity of at least 7, and a fast
algebraic immunity of at least 8.

While the choice of tap positions for state update functions is often already restricted
by the need to guarantee a certain period (e.g., as in the case of NFSR1), the choice of
tap positions for an output function is commonly less substantiated. For example, the
design documents introducing the members of the Grain family (cf. [HJM06], [gHJM11],
[HJMM08]) mainly focus on the conceptual question whether certain taps used in the
output function should be from the NFSR or the LFSR (and how many of each). The
more concrete question of which tap positions within each FSR are actually chosen for the
output function is almost exclusively discussed in the context of hardware acceleration or
when it comes to mitigate issues of previous versions arising from actual attacks (e.g., the
attack of Dinur and Shamir [DS11] on Grain-128, which lead to a change of tap positions
in the output function of Grain-128a [gHJM11]).

In the absence of canonical criteria for the selection of tap positions for Grain-like

10 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

constructions, we mainly resort to the concept of (full) positive difference sets that was
used by Golić in [Gol96] to assess the security of nonlinear filter generators consisting of a
single LFSR and a nonlinear output function. A similar approach was taken, e.g., for the
NFSR-based stream cipher Espresso [DH15]. As it is unclear, however, to what extent the
results of Golić apply in our case, we move the corresponding discussion to appendix D.

Another cryptanalytic result motivating our selection of tap positions for the output
function of Lizard are attacks based on binary decision diagrams (BDDs). A direct
consequence of this type of attack against stream ciphers, which was introduced by Krause
in [Kra02] and applied to Grain-128 by Stegemann in [Ste07], is that (roughly speaking)
the distance between the smallest and the largest tap index of a monomial should be large
for as many monomials as possible (see appendix B.2 for further details).

3.4 Speedup Options
Our update relation for NFSR1 does not involve the five taps corresponding to St

26, St
27,

St
28, St

29, St
30 in the generation of St+1

30 . Analogously, Bt+1
89 of NFSR2 is computed without

the involvement of Bt
85, Bt

86, Bt
87, Bt

88, Bt
89. These ten taps are also not used in the output

function of the cipher, which allows for a speedup of the keystream generation (up to a
factor of 6) simply by multiplying the (comparatively cheap) hardware for the two feedback
functions and the output function. Grain-128a uses the same idea to allow for a speedup
of up to a factor of 32 (which is obviously not possible here as NFSR1 has only 31 register
cells in total).

3.5 State Initialization Algorithm
As pointed out in section 2.2, the state initialization algorithm of Lizard represents an
instantiation of the FP (1)-mode introduced in [HK15], which, in our case, provides 80-bit
security against generic time-memory-data (TMD) tradeoff attacks aiming at key recovery
(cf. Sec. 4.2).

In a nutshell, the generic FP (1)-mode for stream ciphers can be described as follows:

• Choose an appropriate3 keystream generator (KSG) of inner state length n and an
appropriate packet length R.

• Define the state initialization algorithm for packet i as follows:

(1) Loading: Given the symmetric session key k ∈ {0, 1}n and the packet initial
value IV i ∈ {0, 1}n, load IV i ⊕ k into the inner state registers of the KSG,
yielding the inner state qi

load = IV i ⊕ k.
(2) Mixing: Run an appropriate KSG-based mixing algorithm4 on qi

load, yielding
the inner state qi

mixed.
(3) Hardening: XOR k bitwise to this inner state qi

mixed, yielding the initial state
qi

init = qi
mixed ⊕ k.

• Starting with the initial state qi
init, the keystream for packet i is generated by the

KSG in the traditional way.
3“Appropriate” means that the keystream generator satisfies standard requirements w.r.t. design goals

like security and hardware efficiency. 2
3n-security against TMD tradeoff attacks aiming at key recovery is

then added by the FP (1)-mode.
4Such a mixing algorithm can, e.g., simply consist of repeatedly stepping the KSG in keystream

generation mode without producing output (cf. Trivium [CP05]) or involve more sophisticated measures
like generating a piece of internal keystream that is not output but instead loaded in parallel to the inner
state registers of the KSG as the initial state based on which the actual keystream is then generated (cf.
the E0-cipher of the Bluetooth standard [SIG14]).

Matthias Hamann, Matthias Krause and Willi Meier 11

The state initialization algorithm of Lizard as described in section 2.2 implements the
above scheme with some minor adaptions, which we will describe in the following. Note
that none of these modifications reduces the provable 2

3n-security against TMD tradeoff
key recovery attacks provided by the FP (1)-mode.

When compared to the generic scheme, the first obvious difference of Lizard is that
the IV length is now smaller than the key length. Even in the context of packet mode,
we currently do not see the need for IVs larger than 64 bit, hence, this design choice was
made to reduce the hardware costs of an implementation. (Grain v1 also uses 64-bit IVs.)
For extreme situations, where more than 264 packets need to be encrypted, Lizard should
be operated in a setting that allows the use of session keys.

W.r.t. potential security implications, observe that phase 1 of the state initialization of
Lizard (cf. Sec. 2.2) could equivalently be written as

B0
j :=

{
Kj ⊕ IVj , for j ∈ {0, . . . , 63} ,
Kj ⊕ 0, for j ∈ {64, . . . , 89} ,

S0
i :=

Ki+90 ⊕ 0, for i ∈ {0, . . . , 28} ,
K119 ⊕ 1, for i = 29,
1, for i = 30,

which (ignoring S0
30 for now, see below) can be interpreted as the loading phase of the

generic FP (1)-mode under the restriction that the rightmost 56 bits of the 120-bit IV (in
the generic scheme) are fixed to (0, . . . , 0, 1). In the random oracle model that was used
to prove the 2

3n-security of the FP (1)-mode against TMD tradeoff attacks aiming at key
recovery (cf. [HK15]), such a restriction of the choice of IVs in fact means a limitation of
an attacker’s capabilities. Hence, the security claims for the generic FP (1)-mode still hold
for Lizard (cf. Sec. 4.2) . The reason for setting S0

29 := K119 ⊕ 1 is to avoid the “sliding
property” of Grain v1 and Grain-128 that was pointed out in [DCKP08] (see appendix B.3
for further details).

Another difference compared to the generic scheme is that in Lizard, the size of the
inner state is one bit larger than the size of the key. This extension by one bit is necessary
because of the Grain-like, FSR-based structure of Lizard. More precisely, XORing a
120-bit key to a 120-bit inner state in phase 3 could result in a situation, where both
FSRs get stuck in the all-zero state, leading to an all-zero keystream for the corresponding
packet. Extending the inner state to 121 bit and setting S129

30 := 1 prevents this. Again, in
the context of the security proof for the FP (1)-mode, a TMD tradeoff attack on Lizard
(with 120-bit keys and a 121-bit inner state) will have at least the same complexity as an
attack on the generic scheme with 120-bit keys and a 120-bit inner state.

The third notable difference between the generic FP (1)-mode and the state initialization
of Lizard is the additional phase 4 (cf. Sec. 2.2) in Lizard. The purpose of this phase is
twofold. First, without it, due to setting S129

30 := 1 in phase 3, one bit of the inner state of
NFSR1 would be known to an attacker during the first 31 steps of keystream generation.
Though we do not consider this an immediate threat (remember that the output function
of Lizard takes 53 inner state bits as input), it is nonetheless an undesirable property
that we feel should be avoided. The second motivation behind phase 4 (and, in fact, also
the reason for stepping the whole KSG in phase 4 instead of only stepping NFSR1, which
would have been sufficient to counter the first problem) is to avoid certain related key/IV
properties, which are discussed in detail as part of appendix B.3.

4 Cryptanalysis
Beyond question, the essential feature of a cipher is its security. In particular, new schemes
need to resist those attacks which weakened or even broke other ciphers in the past.

12 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

The term resist here refers to a certain security level targeted by the designers, where
the common approach is to require that no attack with a complexity lower than that of
exhaustive key search exists. For Lizard, we deviate from this one-security-level-fits-it-all
approach to allow for a hardware efficient implementation in low-cost scenarios, where
certain types of attack might be of lesser importance than, e.g., strictly limiting factors
like energy consumption. More precisely, Lizard offers 80-bit security against key recovery
and 60-bit security against distinguishing. Due to the key length of 120 bit, the complexity
of exhaustive key search is even significantly higher than that of key recovery via TMD
tradeoff attack (cf. Sec. 4.1 and Sec. 4.2).

Note that Lizard is only one of many cryptographic schemes that deviate from the
design paradigm key length = security level. Most prominently, in asymmetric cryptography,
key sizes significantly larger than the claimed security level are generally accepted. A well-
known example from the field of symmetric cryptography is the lightweight authentication
protocol by Hopper and Blum [HB01] (commonly known as HB protocol) with its numerous
variants (e.g., the HB+ protocol of Juels and Weis [JW05]), some of which need key sizes
of several hundreds of bits to be operated securely (see [AHM14] for further details).

Trading some security against distinguishing attacks in favor of hardware efficiency
seems a plausible option to us as there are many practical scenarios where an attacker
will know anyhow that he is dealing with an encrypted data stream. Moreover, the fact
that there is a distinguishing attack does not mean that there are necessarily other, more
practically relevant attacks of the same complexity as well. Finally, we would like to point
out that for prominent lightweight block ciphers like PRESENT [BKL+07] and KATAN64
[DCDK09], which both have 80-bit key size and 64-bit block size, a complete code book
can be built with complexity lower than 280 without considering the ciphers broken. In
the same spirit, we consider a TMD tradeoff-based distinguishing attack of overall attack
complexity 260 against Lizard acceptable for many use cases.

In the following subsections, we will argue for several types of attacks against stream
ciphers (and the Grain family in particular) why we believe that Lizard will resist them.

4.1 Exhaustive Key Search

Based on experiments using the computer algebra system Magma, the number of pos-
sible initial states (under an arbitrarily fixed IV) after phase 4 of the state initiali-
zation of Lizard is expected to be around 2119.34, if we assume that phase 2 of the
state initialization realizes a random, bijective mapping of

(
B0

0 , . . . , B
0
89, S

0
0 , . . . , S

0
30
)
to(

B128
0 , . . . , B128

89 , S128
0 , . . . , S128

30
)
. Consequently, an attacker who knows a (sufficiently long)

piece of keystream of some packet will need at most around 2119.34 key guesses to find
the corresponding initial state, which then allows to generate the complete keystream of
this packet. Note that in Trivium and all members of the Grain family, for an arbitrarily
fixed IV, the state initialization realizes an injective mapping of the key space to the set of
initial states. In our case, this property is lost due to the second key addition and setting
S129

30 := 1 in phase 3 of the state initialization. Still, around 2119.34 possible initial states
for an arbitrarily fixed IV seems more than enough, given that Lizard is supposed to be a
power-saving alternative to Grain v1, whose key space has only size 280. Moreover, only if
the actual key was found by the attacker (and not just one that produces the same initial
state for the given IV), he will be able to decrypt other packets as well.

In [DCKP08], an attack on Grain v1 and Grain-128 (but not Grain-128a) was introduced
that allowed to reduce the cost of exhaustive key search by a factor of two by making
use of what the authors call the “sliding property” of those ciphers. In appendix B.3, we
explain how this sliding property was avoided for Lizard.

Matthias Hamann, Matthias Krause and Willi Meier 13

4.2 Time-Memory-Data Tradeoff Attacks

The vulnerability against TMD tradeoff attacks like those of Babbage [Bab95] and Biryukov
and Shamir [BS00] represents an inherent weakness of existing practical stream ciphers
(see appendix B.1 for further details and note that we consider precomputation time to be
part of the overall attack complexity). This yields the well-known rule that for achieving
l-bit security by a stream cipher (in the standard, non FP (1)-type operation mode), one
has to choose an inner state length of at least 2l for the underlying keystream generator.
As a consequence, modern practical stream ciphers have comparatively large inner state
lengths (e.g., 288 bit for Trivium [CP05] or 160 bit for Grain v1 [HJM06]).

Keep in mind that, e.g., for Trivium and all members of the Grain family, not only
the state update function during keystream generation but also the state initialization
algorithm, which computes the initial state from a key/IV pair, is efficiently invertible.
As a consequence, if an attacker manages to recover any inner state during keystream
generation, he will also be able to recover the corresponding initial state, and, by inverting
the state initialization algorithm, the underlying secret key. While computing the initial
state from any of the later inner states is also possible for Lizard, the secret key cannot be
computed efficiently from the initial state. This is due to the fact that Lizard represents
an instantiation of the FP (1)-mode as described in section 3.5.

As a consequence, for Lizard, we have to treat the case of TMD tradeoff attacks aiming
at key recovery and the case of TMD tradeoff attacks aiming at recovering the initial
state of some packet separately. In [HK15], it was shown that by using the FP (1)-mode,
one can reach 2

3n-bit security against TMD tradeoff attacks aiming at key recovery for a
keystream generator with inner state length n. In the case of Lizard, this means 80-bit
security against key recovery as argued in section 3.5.

Using the classical TMD tradeoff attack, an attacker could also try to recover the
initial state of some keystream packet generated by Lizard. We will briefly describe the
two extreme cases of such an attack, both of which have overall attack complexity of (at
least) 260. In the first variant, an attacker knows 121 keystream bits of each of approx.
260 keystream packets. A TMD tradeoff attack will then allow him to learn one of the
corresponding 260 initial states of these keystream packets, based on which he will be able
to generate the complete keystream of this packet. Note, however, that the attacker has
no control about which one of these 260 keystream packets he will eventually be able to
generate completely. Moreover, the attacker must know at least 121 bits of the respective
keystream packet beforehand, i.e., he will not be able to generate a keystream packet that
was not part of his TMD tradeoff attack. In the second extreme case, the attacker tries to
keep the set of keystream packets used in his TMD tradeoff attack as small as possible.
This is achieved if he knows 121 + 217 (i.e., little more than half the maximum packet
size of Lizard) keystream bits of each of approx. 243 keystream packets. Then, a TMD
tradeoff attack (still with overall attack complexity 260) will allow him to learn one of the
corresponding 243 initial states of these keystream packets, based on which he will be able
to generate the complete keystream of this packet. Again, the attacker has no control
about which one of these 243 keystream packets he will eventually be able to generate
completely and, to launch his attack, he must know more than 217 keystream bits of each
of those 243 packets.

Obviously, the state recovery attack with overall complexity of (at least) 260 described
in the previous paragraph would also allow an attacker to distinguish Lizard from a truly
random function, i.e., the security against TMD tradeoff-based distinguishing attacks is
not increased by implementing the FP (1)-mode.

In appendix B.1, we provide further details about the various types of TMD tradeoff
attacks and their implications for the security of Lizard.

14 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

4.3 Correlation Attacks, Linear Approximations
In [HJM06], the designers of Grain v1 state: “Due to the statistical properties of maximum-
length LFSR sequences, the bits in the LFSR are (almost) exactly balanced. This may
not be the case for a NFSR when it is driven autonomously. However, as the feedback
g(x) is xored with an LFSR-state, the bits in the NFSR are balanced. Moreover, recall
that g(x) is a balanced function. Therefore, the bits in the NFSR may be assumed to
be uncorrelated to the LFSR bits.” The same, in fact, applies to Lizard, where (the
maximum-length FSR) NFSR1 corresponds to Grain’s LFSR, NFSR2 corresponds to Grain’s
NFSR, and f2 corresponds to g (cf. Sec. 2.1 and Sec. 3.1–3.2).

In [MJSC16], Méaux et al. point out the importance of “good balancedness, non-
linearity and resiliency properties” of the filtering function in order to withstand corre-
lation attacks [Sie85] and fast correlation attacks [MS89]. As explained in section 3.3,
Lizard features a rather heavy output function to compensate for the smaller inner state
compared to the original Grain family. It is defined over 53 variables and has nonlinearity
4476506321453056, whereas the output function of Grain v1 is defined over 12 variables and
has nonlinearity 1536 and the output function of Grain-128a is defined over 17 variables
and has nonlinearity 61440. The resiliency of Lizard’s output function is 8 compared to 7
for that of Grain v1 and Grain-128a, respectively.

In [BGM06], Berbain, Gilbert and Maximov present an attack on Grain v0 that combines
linear approximations of the NFSR’s feedback function and of the output function in order
to recover the initial state of the LFSR given a sufficient amount of keystream bits. Once
the initial state of the LFSR is known, each keystream bit can be expressed as a linear
function in one or two (depending on the LFSR state) bits of the internal bitstream of the
NFSR, which allows to efficiently recover the initial state of the NFSR using “a technique
which consists of building chains of keystream bits” [BGM06]. Two variants (differing in
the LFSR derivation method) of this key recovery attack5 against Grain v0 are described
in [BGM06], the best of which has time complexity 243, memory complexity 242 and data
(i.e., keystream) complexity 238.

As possible countermeasures, Berbain, Gilbert and Maximov proposed the following
modifications [BGM06]: “Introduce several additional masking variables from the NFSR in
the keystream bit computation”, “replace g by a 2-resilient function”, “modify the filtering
function h in order to make it more difficult to approximate” and “modify the function g
and h to increase the number of inputs”. The Grain designers revised their eSTREAM
submission accordingly (in particular, seven bits from the NFSR were added linearly to
the output function) and suggested Grain v1 [HJM06], for which the authors of [BGM06]
acknowledge that “[t]his novel version of Grain appears to be much stronger and is immune
against the statistical attacks presented in this paper”.

For Grain-128a, the feedback function g of the NFSR was constructed with the above
attack in mind. The designers state: “The best linear approximation of g is of considerable
interest, and for it to contain many terms, we need the resiliency of the function g to be
high. We also need a high nonlinearity in order to obtain a small bias.” As a consequence,
g was chosen such that it has nonlinearity 267403264 and resiliency 4.

As explained in section 3.2, the feedback function f2 of NFSR2 in Lizard squeezes the
taps of g of Grain-128a in a way that preserves its balancedness, resiliency and nonlinearity.
Moreover, in accordance with the above suggestions from [BGM06] and the construction
principle underlying g of Grain-128a (see previous paragraph), the output function of
Lizard has more than three times as many inputs, a much higher nonlinearity and a
higher resiliency than those of Grain v1 and Grain-128a (cf. values at the beginning of
this subsection) in order to strengthen it against linear approximations.

Note that even if the initial state of NFSR1 of Lizard (corresponding to the LFSR
5Remember that for the original Grain family, initial state recovery and key recovery are equivalent

due to the efficiently invertible state initialization algorithm.

Matthias Hamann, Matthias Krause and Willi Meier 15

in the original Grain family) could be recovered by means of linear approximation, the
subsequent NFSR initial state recovery procedure for Grain v0 described in section 5 of
[BGM06] would not work against NFSR2 of Lizard. This is due to the fact that the output
function of Lizard will still contain at least ten nonlinear monomials (of degrees 2, . . . , 7)
over bits from NFSR2 if the content of NFSR1 should be known (cf. Sec. 3.3), making the
aforementioned chaining technique from [BGM06] not applicable any more.

4.4 Algebraic Attacks
As pointed out previously, unlike for the members of the original Grain family, the state
initialization algorithm of Lizard is not efficiently invertible. Hence, we would actually
have to differentiate here between algebraic attacks aiming at key recovery and algebraic
attacks trying to recover the initial state of some keystream packet. However, an attempt
to express the observed keystream bits as functions of the 120 key bits and then solve
the corresponding system of equations would require to include all state transitions down
to t = 0. Given that both FSRs are nonlinear and considering the high algebraic degree
of the output function (which is used as part of the state update in phase 2 of the state
initialization), this is clearly more complex than expressing the observed keystream bits as
functions of the 121 bits of the initial state at t = 257 and then solving the corresponding
system of equations. Consequently, for the remainder of this subsection, we will focus on
algebraic attacks that try to recover the initial state of some keystream packet generated
by Lizard.

First of all, note that, to the best of our knowledge, no successful (i.e., having complexity
lower than 280 (Grain v1) or 2128 (Grain-128a)) algebraic attacks that can recover arbitrary
initial states for Grain v1 or Grain-128a have been reported so far.6 Due to the smaller
inner state of Lizard, the number of variables of the corresponding system of equations
in such an attack would now in fact be lower. This, however, is compensated for by
the larger degree of the output function, which is now 7 as compared to 3 for Grain v1
and Grain-128a. As pointed out in section 3.3, Lizard’s output function builds on the
construction scheme introduced in [MJSC16] and has algebraic immunity of at least 7 and
a fast algebraic immunity of at least 8. In addition, now both FSRs are nonlinear and
NFSR1, which corresponds to the LFSR of the original Grain-family, has algebraic degree 4.
Based on these properties, we expect that algebraic attacks against Lizard will not be
efficient (i.e., will not have complexity lower than 280, which is that of TMD tradeoff-based
key recovery as described in subsection 4.2).

4.5 Guess-and-determine Attacks
The output function of Lizard depends on 53 variables, compared to 12 in Grain v1
and 17 in Grain-128a. As pointed out in in section 3.3, when guessing the shorter NFSR1,
the output function still depends on at last 43 variables and has the following worst-case
security properties: nonlinearity 4317411672064, resiliency 7, algebraic immunity at least
7, and fast algebraic immunity at least 8. For comparison, the full output function of
Grain v1 (Grain-128a) has nonlinearity 1536 (61440) and algebraic degree 3 (3). Thus an
algebraic attack on NFSR2 similar to the one in [BGJ09] will have large enough complexity.

Note that guessing the content of NFSR1 at t = 0 corresponds to guessing the bits
K90, . . . ,K119 of the secret key. An attack that guesses the content of NFSR1 at t = 257
(i.e., the respective part of the initial state) in order to recover to full initial state will

6The currently best result seems to be an algebraic attack by Berbain, Gilbert and Joux against a
modified version of Grain-128, which requires 2115 computations and 239 keystream bits [BGJ09]. They
point out, however, that “[t]his attack is not applicable to the original Grain-128”. Moreover, note that the
required amount of keystream bits (belonging to a single initial state) would not be available for Lizard
due to the maximum packet size of 218 bits.

16 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

not automatically reveal the secret key because of the use of the FP (1)-mode, due to
which the state initialization of Lizard (in constrast to the original Grain family) is not
efficiently invertible.

More precisely, when considered individually, phase 2 and phase 4 of the state initiali-
zation are obviously efficiently invertible. In particular, the knowledge of

(
S257

0 , . . . , S257
30
)

(i.e., the NFSR1-related part of the initial state) is already sufficient to efficiently recover(
S129

0 , . . . , S129
30
)
(i.e., the content of NFSR1 after the second key addition in phase 3).

However, when treated as a whole, phases 1–3 (i.e., the state transition from t = 0 to
t = 129) cannot be inverted efficiently.

4.6 Conditional Differentials, Cube Distinguishers
In [LM12], Lehmann and Meier studied the security of Grain-128a against dynamic cube
attacks and differential attacks. They came to the following conclusion: “To analyse the
security of the cipher, we study the monomial structure and use high order differential
attacks on both the new and old versions. The comparison of symbolic expressions suggests
that Grain-128a is immune against dynamic cube attacks. Additionally, we find that it is
also immune against differential attacks as the best attack we could find results in a bias
at round 189 out of 256.”

Lizard has 128 rounds in phase 2 of the state initialization, where the Grain-like
mixing is performed as described in section 2.2 and further explained in section 3.5. On
top of that, the key is added again in phase 3 of the state initialization and, finally, the
keystream generator is stepped 128 additional times (now in keystream generation mode)
before the first keystream bit is output.

Note that the inner state of Lizard (121 bit) is smaller than that of Grain v1 (160 bit)
and significantly smaller than that of Grain-128a (256 bit), whereas the output function is
more dense. It depends on 53 variables as compared to 12 in Grain v1 and 17 in Grain-128a.
The output function of Lizard also has more nonlinear monomials (13) than Grain v1 (8)
and Grain-128a (5). Moreover, now both FSRs are nonlinear.

The combination of a smaller state and a more dense output function causes a faster
diffusion of differentials and of the monomial structure for Lizard. Therefore, we expect
that Lizard is at least as resistant against differential attacks and dynamic cube attacks
as Grain v1 and Grain-128a, which seem to be already sufficiently secure in that respect.

4.7 IV Collisions
A consequence of setting S129

30 := 1 in phase 3 of the state initialization of Lizard (cf.
Sec. 2.2) is that, in contrast to the original Grain family, what we call IV collisions can
now occur, i.e., two key/IV pairs (K, IV) and (K, IV ′) with IV 6= IV ′ can map to the
same initial state and, hence, result in identical keystream packets. The implications of
this are twofold.

First, an attacker could try to exploit this fact to launch a distinguishing attack. More
precisely, if the corresponding oracle answers with identical, sufficiently long keystream
packets for two different key/IV pairs (K, IV) and (K, IV ′), where IV 6= IV ′, then the
attacker can distinguish the pseudo-random from the random the scenario. However, as
proved in appendix C, the number of such oracle queries necessary for finding a collision
with probability > 1/2 exceeds 260, i.e., the complexity of this attack is not lower than
that of the generic TMD tradeoff distinguishing attack mentioned in section 4.2.

Second, an attacker might get hold of a (partial) keystream packet x generated for
the key/IV pair (K, IV) and a partial keystream packet y generated for (K, IV ′), where
IV 6= IV ′. If |x| > |y| > 121 and y fully coincides with the corresponding part of x, then
the attacker can conclude that, with high probability, both (partial) keystream packets
x and y where generated based on the same initial state. Consequently, he would now

Matthias Hamann, Matthias Krause and Willi Meier 17

know a larger piece (i.e., x) of the keystream packet for (K, IV ′). However, the expected
number of (partial) keystream packets needed for finding such a collision is larger than
260 and the attacker would have no choice w.r.t. for which one of these packets he would
obtain further keystream bits. Overall, this scenario has at least the complexity of the
TMD tradeoff-based initial state recovery attack described in section 4.2 and seems even
less realistic.

4.8 More Cryptanalytic Results
In [Kra02], Krause introduced the idea of using binary decision diagrams (BDDs) to attack
LFSR-based stream ciphers like A5/1 of the GSM standard or E0 of Bluetooth. Stegemann
later showed in [Ste07], how this approach can be transferred to NFSR-based stream
ciphers like Trivium and Grain. In appendix B.2, we explain which countermeasures were
taken for Lizard in order to thwart BDD attacks.

In [Küç06], Küçük first pointed out a sliding property of Grain v1, which was later
formally published by De Cannière, Küçük and Preneel in [DCKP08] as: “For a fraction of
2−2·n of pairs (K, IV), there exists a related pair (K∗, IV ∗) which produces an identical
but n-bit shifted key stream.” In appendix B.3, we show that Lizard does not exhibit the
respective sliding property and, hence, does not succumb to the attacks resulting from it.
Appendix B.3 also contains an explanation of how phase 4 of the state initialization of
Lizard helps to protect against another undesirable related key/IV property.

In [ZW09], Zhang and Wang introduced the notion of weak key/IV pairs for the Grain
family. Such weak key/IV pairs do not exists for Lizard as we explain in appendix B.4.

5 Hardware Results
In this section, we present the hardware results for our new stream cipher Lizard and
compare them to those of Grain v1. The reasons for focusing on Grain v1 are twofold.
First, it is a natural choice for comparison due to the close structural relation between
Lizard and Grain v1 as explained in sections 2 and 3. Second, and more importantly,
Grain v1 turned out to be the most hardware efficient member of the eSTREAM [ECR08]
portfolio (see tables 1–4 and figures 1–3 in [GB08]) and, hence, can be considered as a
benchmark for new designs.

When comparing the hardware performance of ciphers, the first apparent task is to
specify which hardware is actually targeted. In line with papers like [Fel07] and [GB08],
which evaluate candidates in the eSTREAM hardware category, we focus on application-
specific integrated circuits (ASICs) with standard CMOS libraries. ASICs are an essential
component in radio frequency identification (RFID) technology, which, as Feldhofer puts it,
“allows giving a digital identity to nearly every object in the world” [Fel07]. While especially
low-cost RFID tags may be subject to severe resource limits (see, e.g., [AHM14]), in many
cases, they still need to provide security features like confidentiality or privacy. The two
main restrictions imposed on the design of cryptographic protocols for RFID tags are the
circuit size and the power budget. The circuit size strongly influences the manufacturing
costs of an RFID tag (see [AHM14] for details) and is commonly specified in gate eqivalents
(GE), where one GE corresponds to the area of a two-input drive-strength-one NAND gate.
The power consumption is crucial as low-cost RFID tags are usually passively powered
(i.e., via an electromagnetic field radiated by the reader). Given that the transmission
power of an RFID reader is limited by factors like legal regulations, the more power a tag
consumes, the smaller the maximum reading distance becomes. As done by Feldhofer in
[Fel07] for his comparison of low-power implementations of Trivium and Grain, we will
focus on these two values, cell area and power consumption, in our comparison of Lizard
and Grain v1. In addition, we provide the delay of the respective circuits (see appendix E.2

18 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

for further details on this metric) and the number of clock cycles required to perform the
state initialization in Tab. 1. Like Feldhofer, we will not provide compound metrics (e.g.,
the power-area-time product given in [GB08]) but leave the computation (as appropriate
for the application scenario) to the reader.

It is important to note that while the area requirement of cipher designs can be compared
over different standard cell libraries by using the measure gate equivalents, “[p]ower cannot
be scaled reliably between different processes and libraries” [GB08]. Consequently, it is ine-
vitable to use the same design flow for all implementations that are to be compared. As done
by Good and Benaissa in [GCB06] and [GB08] in their hardware comparison of eSTREAM
candidates, we use Cadence tools for synthesis and ModelSim for generating switching
activity. While Feldhofer uses 0.35 µm and Good and Benaissa use 0.13 µm CMOS process
technology in the cited papers, we employ the UMCL18G212T3 (0.18 µm, 1.8 V) standard
cell library that was also used by Poschmann in [Pos09] for implementing the block cipher
PRESENT and by Beierle et al. for the SKINNY family of block ciphers [BJK+16]. Our
results (see Tab. 1) are obtained via Encounter RTL Compiler RC12.22 and are based
on the netlist generated through the command synthesize -to_placed -effort high.
Like Feldhofer in [Fel07], we target a 100 kHz clock and employ clock gating. The switching
activity for power estimation (recorded with ModelSim SE-64 6.5b and fed back to RTL
compiler) covers the generation of 10 kbit of keystream (as done in [GCB06]) at a clock
rate of 100 kHz and includes the state initialization of the compared cipher modules. To
improve the accuracy of the results, switching activity for 25 different random key/IV
combinations is considered and the arithmetic mean of the respective power estimations is
computed. For all power values given in Tab. 1, the largest deviation of a single estimation
from the computed average was below one percent.

As pointed out above, we had to implement not only our new cipher Lizard but
also Grain v1 in order to obtain a meaningful comparison of power consumptions on the
basis of the same design flow. Moreover, as Lizard targets low-power environments, we
decided to serialize phases 1 (i.e., the initial key and IV loading) and 3 (i.e., the second
key addition) of its state initialization (see appendix E.1 for details). This allows to take
full advantage of the FSR-based structure of the keystream generator by using simple
D flip-flops (without additional costly features like scan, set/reset or enable functionality)
for storing the cipher’s inner state. Naturally, for reasons of fairness, we considered the
positive effects of serializing the key/IV loading for Grain v1 as well. The corresponding
values can be found in Tab. 1 along with those for the straightforward implementation of
Grain v1. We do not suggest to use non-serialized key/IV loading for Lizard and, hence,
Tab. 1 only contains the hardware metrics for Lizard with phases 1 and 3 implemented
as described in appendix E.1.7

Serializing parts of the state initialization comes at a price, however, as it increases
latency. In the case of Lizard, 240 additional clock cycles are required for computing
the initial state, based on which, subsequently, one keystream bit per clock cycle is
produced. We consider this increase tolerable considering that, even with serialized key/IV
loading, the state initialization (including module reset) of Lizard takes only 499 clock
cycles, as compared to, e.g., 1153 clock cycles for the straightforward (i.e., non-serialized)
implementation of the state initialization of the eSTREAM hardware portfolio member
Trivium. For Grain v1, serializing the key/IV loading can be realized at the cost of only
80 additional clock cycles as the key and the IV can be shifted separately into the NFSR
and the LFSR, respectively, at the same time. In our non-serialized (i.e., straightforward)
implementation of Grain v1, the key/IV loading is performed as part of the module reset
(which takes one clock cycle). Hence, the state initialization takes 1 + 160 = 161 clock

7The reason for not describing phases 1 and 3 of the state initialization of Lizard in its serialized
form in the first place in Sec. 2.2 is that we wanted the specification of the algorithm to be as concise
as possible. Moreover, the way we introduce Lizard in Sec. 2.2 hopefully facilitates to understand the
relation to the FP (1)-mode as described in Sec. 3.5.

Matthias Hamann, Matthias Krause and Willi Meier 19

Table 1: Hardware results for a clock speed of 100 kHz. The symbol ∗ indicates that
the respective implementation uses serialized key/IV loading. Latency is given as the
number of clock cycles needed to perform the state initialization (including module reset
and key/IV loading), denoted Load/Ini in the table. After state initialization, all designs
produce one keystream bit per clock cycle, corresponding to a throughput of 100 kbit/s.

Design Area Power Delay Load/Ini
[GE] [nW] [ps] [clk. cyc.]

Lizard∗ 1161 2110 2474 499
Grain v1∗ 1268 2517 2155 241
Grain v1 1221 3578 2166 161

cycles. In the serialized implementation, the key/IV loading of Grain v1 is performed in a
separate stage, leading to a state initialization effort of 1 + 80 + 160 = 241 clock cycles.

Tab. 1 shows that the estimated power consumption of Lizard during the generation
of 10 kbit of keystream (including state initialization) is about 16 percent lower than that
of Grain v1 with serialized key/IV loading. Moreover, Lizard also allows to save on chip
area and, hence, production costs.

At first glance, the reduction in chip area might seem surprisingly small, considering
that Lizard’s inner state is about 25 percent smaller than that of Grain v1. Remember,
however, that Lizard needs additional logic for loading the (larger) key (twice) and,
moreover, we chose a much heavier output function, which is defined over 53 variables.

As a consequence of the larger key, Lizard would benefit more than Grain v1 from
an “external” key source (like an EEPROM) that takes over the task of key bit selection
based on an index or supplies the key bits sequentially. However, for reasons of fairness,
we assumed the (from Lizard’s point of view) worst situation that all key and IV bits
are provided via separate wires to the respective cipher modules, which then have to take
care of key bit selection themselves. To avoid ambiguity about the capabilities of the
implementations which the values in Tab. 1 are based on, we provide the interfaces of the
respective modules along with a short description in appendix E.3.

Finally, note that, while Lizard explicitly targets power-constrained devices like
passively powered RFID tags, it can also help to save energy on battery powered devices.
For example, producing 10 kbit of keystream (including state initialization) at 100 kHz
would consume 0.22 µJ with Lizard∗, 0.26 µJ with Grain v1∗ and 0.36 µJ with Grain v1.
Keep in mind, however, that, due to the larger number of state initialization cycles of
Lizard∗, Grain v1∗ will consume less total energy for very small keystream pieces.

For application scenarios, where only few hundred (continuous) bits of plaintext are to
be encrypted under a single IV and the optimization target is energy consumption, it might
actually be preferable to not use stream ciphers at all but instead resort to lightweight block
ciphers like SKINNY [BJK+16], Simon [BSS+13], or PRESENT [BKL+07]. For example, a
round-based implementation of SKINNY-64-128 (block size 64 bit, key size up to 128 bit)
takes 1696 GE and achieves a throughput of 177.78 kbit/s at 100 kHz and a nibble-serial
implementation takes 1399 GE and achieves 8.12 kbit/s at 100 kHz. As block ciphers do
not need a state initialization in the style of stream ciphers, these throughput rates are
achievable for all plaintext amounts whose length is a multiple of the cipher’s block size.
For stream ciphers, the effective throughput (including state initialization) depends on
the amount of keystream that is produced under a single IV. This shows that efficiency
comparison of stream ciphers and block ciphers is dependent on targeted applications. For
example, our implementations of Lizard and Grain v1 may be paused after each single
keystream bit, whereas block ciphers can only operate on whole blocks of data. Hence, in

20 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

a scenario where only few bits (i.e., less than the block size) need to be encrypted from
time to time (under the same IV), the use of block ciphers might lead to a large overhead
w.r.t. computation and communication (due to padding). In other scenarios, as described
above, block ciphers may be preferable.

6 Conclusion
We presented Lizard, a new lightweight stream cipher for power-constrained devices like
passive RFID tags. Its hardware efficiency results from combining a Grain-like design with
the FP (1)-mode, a recently suggested construction principle for the state initialization of
stream ciphers, which offers provable 2

3n-security against TMD tradeoff attacks aiming at
key recovery. Lizard uses 120-bit keys, 64-bit IVs and has an inner state length of 121 bit.
It is supposed to provide 80-bit security against key recovery attacks and 60-bit security
against distinguishing attacks. Lizard allows to generate up to 218 keystream bits per
key/IV pair, which would be sufficient for many existing communication scenarios like
Bluetooth, WLAN or HTTPS.

Hardware implementations for Lizard and Grain v1 were created using the same
design flow in order to allow for a meaningful comparison of performance metrics. The
results show that Lizard consumes about 16 percent less power than Grain v1 at slightly
reduced area requirements. This indicates that in scenarios where plaintext packets of
moderate length are to be encrypted under individual IVs, the FP (1)-mode provides an
interesting alternative to conventional state initialization algorithms of stream ciphers.

As future work, we suggest to evaluate the performance of Lizard on other hardware
platforms like FPGAs or microcontrollers. Moreover, it might be interesting to investigate,
whether, under the current security guarantees, even more lightweight variants of Lizard
are possible (e.g., by choosing a less heavy output function). With respect to the generic
FP (1)-mode, it would be desirable to have key sizes of 2

3n (instead of currently n) and
still maintain provable 2

3n-security against TMD tradeoff attacks aiming at key recovery.
One way to achieve this could be to derive an n-bit FP (1)-mode key (or even two separate
n-bit keys for the respective phases of the state initialization) on-the-fly from the actual
2
3n-bit key, e.g., by using a component like the round key function of Fruit [GHX16].

Another important open problem is the guaranteed keystream period of Lizard (as
well as of the Grain family and other stream ciphers like Trivium; see, e.g., [HG11]). In the
design document of Grain v1 [HJM06], it is stated that “the LFSR guarantees a minimum
period for the keystream and it also provides balancedness in the output.” But in fact, in
the setting of Grain (and also Lizard), a large guaranteed period of the internal state
(composed of both FSRs) is necessary but not sufficient for a large guaranteed period of
the keystream, because we only know that the period of the keystream divides the length
of the corresponding internal state cycle.

Finally, we also suggest to study and compare the suitability of recent (lightweight)
stream and block ciphers for different application scenarios. Such a comparison could be
in the style of [GB08], where Good and Benaissa evaluated the hardware performance of
eSTREAM candidates, but would also need to establish a reasonable common test setting
for the different concepts stream and block cipher.

Acknowledgement
We would like to thank Peter Fischer and Michael Ritzert, who provided us with the
necessary technical means and additional valuable information for creating the hardware
implementation of Lizard. Moreover, we are grateful to anonymous reviewers and to
Gregor Leander, whose comments helped improve the presentation of this paper.

Matthias Hamann, Matthias Krause and Willi Meier 21

References
[AHM14] Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Lightweight

Authentication Protocols on Ultra-Constrained RFIDs - Myths and Facts. In
Nitesh Saxena and Ahmad-Reza Sadeghi, editors, Radio Frequency Identifica-
tion: Security and Privacy Issues: 10th International Workshop, RFIDSec 2014,
Oxford, UK, July 21-23, 2014, Revised Selected Papers, pages 1–18. Springer
International Publishing, Cham, 2014.

[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers with
Shorter Internal States. In Gregor Leander, editor, Fast Software Encryption:
22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers, pages 451–470. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[Bab95] S.H. Babbage. Improved "exhaustive search" attacks on stream ciphers. In
Security and Detection, 1995., European Convention on, pages 161–166, May
1995.

[Ban15] Subhadeep Banik. Some Results on Sprout. In Alex Biryukov and Vipul Goyal,
editors, Progress in Cryptology – INDOCRYPT 2015: 16th International Confe-
rence on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings,
pages 124–139. Springer International Publishing, Cham, 2015.

[BB06] Elad Barkan and Eli Biham. Conditional Estimators: An Effective Attack on
A5/1. In Bart Preneel and Stafford Tavares, editors, Selected Areas in Crypto-
graphy: 12th International Workshop, SAC 2005, Kingston, ON, Canada, August
11-12, 2005, Revised Selected Papers, pages 1–19. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

[BD06] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0. eS-
TREAM: the ECRYPT Stream Cipher Project, 2006. http://www.ecrypt.eu.
org/stream/p3ciphers/mickey/mickey_p3.pdf.

[BGJ09] Côme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Correlation
Attacks against Linearly Filtered Non Linear Feedback Shift Registers. In
Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, Selected
Areas in Cryptography: 15th International Workshop, SAC 2008, Sackville, New
Brunswick, Canada, August 14-15, Revised Selected Papers, pages 184–198.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[BGM06] Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of Grain.
In Matthew Robshaw, editor, Fast Software Encryption: 13th International
Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers,
pages 15–29. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[BGW99] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation
of A5/1, 1999. Available at http://www.scard.org/gsm/a51.html.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO
2016: 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, pages 123–153. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.scard.org/gsm/a51.html

22 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block
Cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007: 9th International Workshop,
Vienna, Austria, September 10-13, 2007. Proceedings, pages 450–466. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology —
ASIACRYPT 2000: 6th International Conference on the Theory and Application
of Cryptology and Information Security Kyoto, Japan, December 3–7, 2000
Proceedings, pages 1–13. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[BSW01] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of
A5/1 on a PC. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Bruce
Schneier, editors, Fast Software Encryption: 7th International Workshop, FSE
2000 New York, NY, USA, April 10–12, 2000 Proceedings, pages 1–18. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[CP05] Christophe De Cannière and Bart Preneel. Trivium – Specifications. eS-
TREAM: the ECRYPT Stream Cipher Project, 2005. http://www.ecrypt.
eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.

[CR08] Peter H. Cole and Damith C. Ranasinghe. Networked RFID Systems and
Lightweight Cryptography: Raising Barriers to Product Counterfeiting. Springer
Berlin Heidelberg, first edition, 2008.

[DCDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN
and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009: 11th International Workshop Lausanne,
Switzerland, September 6-9, 2009 Proceedings, pages 272–288. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[DCKP08] Christophe De Cannière, Özgül Küçük, and Bart Preneel. Analysis of Grain’s
Initialization Algorithm. In Serge Vaudenay, editor, Progress in Cryptology –
AFRICACRYPT 2008: First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11-14, 2008. Proceedings, pages 276–289. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[DH15] Elena Dubrova and Martin Hell. Espresso: A stream cipher for 5G wireless
communication systems. Cryptography and Communications, pages 1–17, 2015.

[DK08] Orr Dunkelman and Nathan Keller. Treatment of the Initial Value in Time-
Memory-Data Tradeoff Attacks on Stream Ciphers. Cryptology ePrint Archive,
Report 2008/311, 2008. http://eprint.iacr.org/2008/311.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://eprint.iacr.org/2008/311

Matthias Hamann, Matthias Krause and Willi Meier 23

[DS11] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In
Antoine Joux, editor, Fast Software Encryption: 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers,
pages 167–187. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Dub12] Elena Dubrova. A List of Maximum Period NLFSRs. Cryptology ePrint Archive,
Report 2012/166, 2012. http://eprint.iacr.org/2012/166.

[Dub13] Elena Dubrova. A Scalable Method for Constructing Galois NLFSRs With
Period 2n−1 Using Cross-Join Pairs. IEEE Transactions on Information Theory,
59(1):703–709, January 2013.

[ECR08] ECRYPT – European Network of Excellence for Cryptology. eSTREAM: the
ECRYPT stream cipher project, 2008. http://www.ecrypt.eu.org/stream/.

[EK16] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full Sprout
with TMD Tradeoff Attacks. In Orr Dunkelman and Liam Keliher, editors,
Selected Areas in Cryptography - SAC 2015: 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, pages
67–85. Springer International Publishing, Cham, 2016.

[Fel07] Martin Feldhofer. Comparison of Low-Power Implementations of Trivium and
Grain. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/027, 2007.
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf.

[FMS01] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the Key Scheduling
Algorithm of RC4. In Serge Vaudenay and Amr M. Youssef, editors, Selected
Areas in Cryptography: 8th Annual International Workshop, SAC 2001 Toronto,
Ontario, Canada, August 16–17, 2001 Revised Papers, pages 1–24. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[GB08] Tim Good and Mohammed Benaissa. Hardware performance of eStream phase-III
stream cipher candidates. eSTREAM: the ECRYPT Stream Cipher Project,
2008. http://www.ecrypt.eu.org/stream/docs/hardware.pdf.

[GCB06] Tim Good, William Chelton, and Mohamed Benaissa. Review of stream cipher
candidates from a low resource hardware perspective. eSTREAM, ECRYPT
Stream Cipher Project, Report 2006/016, 2006. http://www.ecrypt.eu.org/
stream/papersdir/2006/016.pdf.

[GGK06] Berndt Gammel, Rainer Göttfert, and Oliver Kniffler. Achterbahn-128/80.
eSTREAM: the ECRYPT Stream Cipher Project, 2006. http://www.ecrypt.
eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf.

[gHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: A
New Version of Grain-128 with Optional Authentication. International Journal
of Wireless and Mobile Computing, 5(1):48–59, December 2011.

[GHX16] Vahid Amin Ghafari, Honggang Hu, and Chengxin Xie. Fruit: Ultra-Lightweight
Stream Cipher with Shorter Internal State. Cryptology ePrint Archive, Report
2016/355, 2016. http://eprint.iacr.org/2016/355.

[Gol96] Jovan Dj. Golić. On the security of nonlinear filter generators. In Dieter Gollmann,
editor, Fast Software Encryption: Third International Workshop Cambridge, UK,
February 21–23 1996 Proceedings, pages 173–188. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

http://eprint.iacr.org/2012/166
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://eprint.iacr.org/2016/355

24 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

[HB01] Nicholas J. Hopper and Manuel Blum. Secure Human Identification Protocols.
In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001: 7th
International Conference on the Theory and Application of Cryptology and
Information Security Gold Coast, Australia, December 9–13, 2001 Proceedings,
pages 52–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[Hel80] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, Jul 1980.

[HG11] Honggang Hu and Guang Gong. Periods on Two Kinds of Nonlinear Feedback
Shift Registers with Time Varying Feedback Functions. Technical report, Uni-
versity of Waterloo, Canada, 2011. http://cacr.uwaterloo.ca/techreports/
2011/cacr2011-08.pdf.

[HJM06] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Cipher for
Constrained Environments. eSTREAM: the ECRYPT Stream Cipher Project,
2006. http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The
Grain Family of Stream Ciphers. In Matthew Robshaw and Olivier Billet, editors,
New Stream Cipher Designs: The eSTREAM Finalists, pages 179–190. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[HK15] Matthias Hamann and Matthias Krause. On Stream Ciphers with Provable
Beyond-the-Birthday-Bound Security against Time-Memory-Data Tradeoff At-
tacks. Cryptology ePrint Archive, Report 2015/636, 2015. http://eprint.iacr.
org/2015/636.

[Ins97] Institute of Electrical and Electronics Engineers. IEEE Standard for Infor-
mation Technology – Telecommunications and Information Exchange Between
Systems – Local and Metropolitan Area Networks – Specific Requirements – Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Std 802.11-1997, pages i–445, 1997.

[Ins04] Institute of Electrical and Electronics Engineers. IEEE Standard for Information
Technology – Telecommunications and Information Exchange Between Systems
– Local and Metropolitan Area Networks – Specific Requirements – Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations: Amendment 6: Medium Access Control (MAC) Security Enhancements.
IEEE Std 802.11i-2004, pages 1–190, July 2004.

[Ins12] Institute of Electrical and Electronics Engineers. IEEE Standard for Information
Technology – Telecommunications and Information Exchange Between Systems
– Local and Metropolitan Area Networks – Specific Requirements – Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spe-
cifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pages
1–2793, March 2012.

[JW05] Ari Juels and Stephen A. Weis. Authenticating Pervasive Devices with Human
Protocols. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005. Proceedings, pages 293–308. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[Kra02] Matthias Krause. BDD-Based Cryptanalysis of Keystream Generators. In Lars R.
Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002: International

http://cacr.uwaterloo.ca/techreports/2011/cacr2011-08.pdf
http://cacr.uwaterloo.ca/techreports/2011/cacr2011-08.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://eprint.iacr.org/2015/636
http://eprint.iacr.org/2015/636

Matthias Hamann, Matthias Krause and Willi Meier 25

Conference on the Theory and Applications of Cryptographic Techniques Am-
sterdam, The Netherlands, April 28 – May 2, 2002 Proceedings, pages 222–237.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[Küç06] Özgül Küçük. Slide Resynchronization Attack on the Initialization of Grain
1.0. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/044, 2006.
http://www.ecrypt.eu.org/stream.

[LM12] Michael Lehmann and Willi Meier. Conditional Differential Cryptanalysis of
Grain-128a. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors,
Cryptology and Network Security: 11th International Conference, CANS 2012,
Darmstadt, Germany, December 12-14, 2012. Proceedings, pages 1–11. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[LMV05] Yi Lu, Willi Meier, and Serge Vaudenay. The Conditional Correlation Attack: A
Practical Attack on Bluetooth Encryption. In Victor Shoup, editor, Advances in
Cryptology – CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005. Proceedings, pages 97–117.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[LNP15] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full Sprout.
In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
– CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, pages 663–682. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015.

[MAM17] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that
Continuously Access the Non-Volatile Key. IACR Transactions on Symmetric
Cryptology, 2016(2):52–79, 2017.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016: 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I, pages 311–343. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[MS89] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream
ciphers. Journal of Cryptology, 1(3):159–176, 1989.

[Pop15] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465 (Proposed Standard),
February 2015.

[Pos09] Axel Poschmann. Lightweight Cryptography - Cryptographic Engineering for
a Pervasive World. Cryptology ePrint Archive, Report 2009/516, 2009. http:
//eprint.iacr.org/2009/516.

[Sch95] Bruce Schneier. Applied Cryptography (2nd Ed.): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[Sie85] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext
Only. IEEE Transactions on Computers, 34(1):81–85, January 1985.

[SIG14] Bluetooth SIG. Bluetooth Core Specification 4.2, 2014. https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439.

http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2009/516
http://eprint.iacr.org/2009/516
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439

26 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

[Ste07] Dirk Stegemann. Extended BDD-Based Cryptanalysis of Keystream Generators.
In Carlisle Adams, Ali Miri, and Michael Wiener, editors, Selected Areas in
Cryptography: 14th International Workshop, SAC 2007, Ottawa, Canada, August
16-17, 2007, Revised Selected Papers, pages 17–35. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[Tod17] Yosuke Todo. Personal communication, 2017.

[ZG15] Bin Zhang and Xinxin Gong. Another Tradeoff Attack on Sprout-Like Stream
Ciphers. In Tetsu Iwata and Hee Jung Cheon, editors, Advances in Cryptology –
ASIACRYPT 2015: 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November
29 – December 3, 2015, Proceedings, Part II, pages 561–585. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015.

[ZW09] Haina Zhang and Xiaoyun Wang. Cryptanalysis of Stream Cipher Grain Family.
Cryptology ePrint Archive, Report 2009/109, 2009. http://eprint.iacr.org/
2009/109.

A Test Vectors
Key (120 bit), IV (64 bit) and the corresponding first 128 keystream bits in hexadecimal
notation. To avoid ambiguity, note that, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(K0, . . . ,K119) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . . , 1) .

Similarly, for the keystream, the example

0x01000000000000000000000000000000

would mean that the first seven keystream bits (i.e., z257, . . . , z263) are zero, followed by a
one and 120 more zeros.

Key: 0x000000000000000000000000000000
IV: 0x0000000000000000
Keystream: 0xB6304CA4CA276B3355EC2E10968E84B3

Key: 0x0000000000000000FFFFFFFFFFFFFF
IV: 0xFFFFFFFFFFFFFFFF
Keystream: 0x4D190941816F942358F0D164F4ECEB09

Key: 0x0123456789ABCDEF0123456789ABCD
IV: 0xABCDEF0123456789
Keystream: 0x983311A97831586548209DAFBF26FC93

B Cryptanalysis – Additional Results
B.1 More on TMD Tradeoff Attacks against Stream Ciphers
In the context of TMD tradeoff attacks against stream ciphers, we will consider the
following complexities:

http://eprint.iacr.org/2009/109
http://eprint.iacr.org/2009/109

Matthias Hamann, Matthias Krause and Willi Meier 27

P : the preprocessing time of the attack,

T : the online time of the attack,

M : the memory required for the attack,

D: the (keystream) data required for the attack.

When we speak of the overall complexity of a TMD tradeoff attack, we refer to the
maximum of the above four cost factors (including preprocessing time). Correspondingly,
we assume attackers whose goal is to keep the overall complexity of their attack as low as
possible.

Let us first consider TMD tradeoff attacks that aim at recovering some inner state. In
this case, we denote by N the number of all possible inner states of the targeted keystream
generator. The TMD tradeoff attack of Babbage [Bab95] has the tradeoff curve TM = N
with P = M and T ≤ D (where T < D means that some of the available data is ignored
during the online phase of the attack). Obviously, the best overall complexity that can be
achieved here is N1/2 by choosing T = M = N1/2. The TMD tradeoff attack of Biryukov
and Shamir [BS00] is based on Hellman’s time-memory tradeoff attack for block ciphers
[Hel80] and has the tradeoff curve TM2D2 = N2 with P = N/D and T ≥ D2. As, in our
model, the overall complexity includes preprocessing, P = N/D implies here that N1/2 is
a lower bound for the attack’s overall complexity. This lower bound, however, cannot be
achieved as P = D = N1/2 would imply T ≥ N due to the restriction T ≥ D2. Note that,
even if we did not consider preprocessing to be part of the overall attack complexity, the
original attack of Biryukov and Shamir would not have an overall complexity lower than
N1/2 due to the condition T ≥ D2. Because choosing T < N1/2 would imply D < N1/4

and, in order to satisfy TM2D2 = N2, also M > N1/2.
In [BS00], Biryukov and Shamir also discuss a technique called BSW-sampling, which

was originally used by Biryukov, Shamir, and Wagner in [BSW01] to attack the GSM
cipher A5/1. While BSW-sampling allows to relax the restriction T ≥ D2 in the above
attack, the tradeoff curve TM2D2 = N2 and the relation P = N/D remain unchanged.
Hence, if one considers precomputation to be part of the overall attack complexity (as we
do), even the use of BSW-sampling does not allow for attacks with overall complexity lower
than N1/2. Moreover, the applicability of BSW-sampling is highly cipher specific (see
[BS00] for further details). In [HJM06], the designers of Grain v1 state: “The sampling
resistance of h(x) is reasonable: This function does not become linear in the remaining
variables by fixing less than 3 of its 5 variables. Similarly, the variables occurring in
monomials of g(x) are sufficiently disjoint. Hence the resulting sampling resistance is large,
and thus time/memory/data tradeoff attacks are expected to have complexity not lower
than O

(
280).” Note that the output function of Lizard is even much more complex than

those of Grain v1 or Grain-128a and, e.g., does not become linear in the remaining variables
by fixing less than 13 of its 53 variables. Moreover, the variables occurring in monomials
of f2 of Lizard (which corresponds to g in the Grain family) are also sufficiently disjoint.
Additionally, in contrast to the Grain family, both FSRs of Lizard are now nonlinear.
Consequently, we believe that, like Grain, Lizard is sufficiently resistant w.r.t. sampling.

Keep in mind that the TMD tradeoff attacks we have just described all aim at recovering
one of the inner states occurring during keystream generation. As mentioned previously,
such attacks also work for Lizard, but, due to the use of the FP (1)-mode, they do not
allow to straightforwardly recover the secret key. (Remember that we claim 80-bit security
against key recovery and 60-bit security against distinguishing, e.g., via TMD tradeoff
attacks. The reason why we do not claim 60.5-bit security against distinguishing despite
Lizard’s state size of 121 bit is the following: An attacker could also target the inner
state at the end of phase 3 of the state initialization using a TMD tradeoff attack on the
basis of 260 keystream data points obtained from 260 different IVs. Such an attack could

28 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

be realized with overall complexity 260 as, due to setting S129
30 := 1 in phase 3, there are

actually only 2120 states possible at t = 129.)
Let us now consider TMD tradeoff attacks that aim at recovering the secret key. As

pointed out in sections 3.5 and 4.2, Lizard’s state initialization represents an instantiation
of the generic FP (1)-mode introduced in [HK15], which, in our case, offers 80-bit security
against key recovery via TMD tradeoff attacks. It is important to keep in mind that the
attacker model underlying the provable security of the FP (1)-mode (and also all other
security claims w.r.t. Lizard) treats any precomputations as part of the overall attack.
In particular, our claims do not conflict with the TMD tradeoff key recovery attack of
Dunkelman and Keller presented in [DK08]: Let P , T , M , D be defined as introduced
at the beginning of this subsection with the additional condition that all D keystream
data points have to be obtained on the basis of different IVs (i.e., D keystream prefixes of
sufficient length, generated under the same secret key but D different IVs). Moreover, let
K denote the number of all possible keys and let V denote the number of all possible IVs.
The key recovery attack of Dunkelman and Keller has the tradeoff curve TM2D2 = (KV)2

with D ≤ V and P = (KV) /D.8 In the case of Lizard, where K = 2120 and IV = 264,
this means that P = 2184/D with D ≤ 264. Hence, the key recovery attack of Dunkelman
and Keller would have a precomputation complexity greater or equal exhaustive key search
and thus way larger than the 80-bit security against key recovery claimed for Lizard.

Finally, note that even when ignoring precomputation time (which we do not in our
security model), the attack of Dunkelman and Keller would not break Lizard’s 80-bit
security against key recovery. More generally, any TMD tradeoff attack with tradeoff curve
TM2D2 = (KV)2 and restriction D ≤ V will have an online complexity larger or equal
280 in the case of Lizard. Because when choosing D = 264 (i.e., as large as possible), one
obtains TM222·64 =

(
2120 · 264)2 or TM2 = 2240, for which T < 280 and M < 280 cannot

hold at the same time. Similarly, any TMD tradeoff attack with tradeoff curve TM = KV
will have an online complexity larger or equal 2(120+64)/2 = 292 for Lizard, even without
any additional restrictions on the tradeoff parameters.

B.2 BDD-based Attacks
In [Kra02], Krause introduced the idea of using binary decision diagrams (BDDs) to
attack LFSR-based stream ciphers like A5/1 of the GSM standard or E0 of Bluetooth.
Stegemann later showed in [Ste07], how this approach can be transferred to NFSR-based
stream ciphers like Trivium and Grain. In contrast to TMD tradeoff attacks or correlation
attacks, which potentially require a lot of keystream or ciphertext data, BDD attacks
are short-keystream attacks in the sense that only the information-theoretic minimum of
keystream bits (i.e., often only few more than n bits of keystream for a keystream generator
of inner state length n) is required to recover the corresponding initial state. As pointed
out in section 4.2, for Trivium and all members of the Grain family, an attack that recovers
the initial state is equivalent to an attack that recovers the underlying secret key as the
state initialization of these stream ciphers is efficiently invertible. For Lizard, this is not
the case due to the use of the FP (1)-mode. Hence, for each keystream packet produced
by Lizard, a separate BDD attack would be required to recover the corresponding initial
state, which would then allow to generate the remaining, unknown keystream bits of that
packet.

While we are currently not aware of any BDD attack faster than exhaustive key search
against any member of the Grain family, the major design consequence of the BDD-related
cryptanalytic results that Stegemann obtained for Grain-like stream ciphers is that the

8The relation P = (KV) /D is not given explicitly in [DK08] but can be derived from the description
of the attack algorithm. Also note that, in contrast to the aforementioned (inner state recovery) attack of
Biryukov and Shamir, the condition T ≥ D2 does not have to be satisfied in the (key recovery) attack of
Dunkelman and Keller.

Matthias Hamann, Matthias Krause and Willi Meier 29

maximum number of what he calls active monomials of the feedback functions and the
output function should be as large as possible (see [Ste07] for further details). In the
setting of Stegemann, for Grain v1, the maximum number of active monomials would be 0
for the LFSR, 6 for the NFSR and 5 for the output function. For Grain-128a, the maximum
number of active monomials would be 0 for the LFSR, 3 for the NFSR and 3 for the output
function. In comparison, for Lizard, the maximum number of active monomials would be
21 for NFSR1, 3 for NFSR2 and 10 for the output function a. Consequently, we expect that,
despite the smaller inner state, Lizard will also perform sufficiently well against BDD
attacks.

B.3 Related Key(/IV) Attacks, Slide Attacks

In [Küç06], Küçük first pointed out a sliding property of the state initialization of Grain v1,
which was later formally published by De Cannière, Küçük and Preneel in [DCKP08]
as: “For a fraction of 2−2·n of pairs (K, IV), there exists a related pair (K∗, IV ∗) which
produces an identical but n-bit shifted key stream.” In the same paper, the authors
describe how this property can be exploited to speed up exhaustive key search for Grain
v1 (and also for Grain-128) by a factor of two. In addition, they also suggest a related-key
slide attack, for which they note: “As is the case for all related key attacks, the simple
attack just described is admittedly based on a rather strong supposition.” [DCKP08] As a
reaction, the designers of Grain-128a changed the 22-bit constant (1, . . . , 1) that was used
in state initialization of Grain-128 to (1, . . . , 1, 0).

For Lizard, a speed-up of exhaustive key search by a factor of two would actually be
tolerable due to the key length of 120 bit together with the fact that we aim for 80-bit
security against key recovery. Still, we consider such a sliding property undesirable as it
might pave the way for other attacks. To avoid it, we set S0

29 := K119 ⊕ 1 in phase 1 of
the state initialization (cf. Sec. 3.5). As a result, for a key/IV pair (K, IV), a related
key/IV pair (K∗, IV ∗) in the sense of [DCKP08] would have to satisfy K∗118 = K119 ⊕ 1.
This, however, would then lead to a bad (i.e., inverted) key bit being added in phase 3 of
the state initialization, where K∗118 = K119 must hold for the attack to work. Note that,
without inverting K119 in phase 1 of the state initialization, Lizard would in fact suffer
from a variant of the sliding property, despite the second key addition in phase 3.

Another undesirable related key/IV property, which would arise out of using the
FP (1)-mode with a Grain-like keystream generator, is avoided by phase 4 of the state
initialization of Lizard. More precisely, given some key/IV pair (K, IV) together with
the corresponding keystream packet, an attacker might know (or suspect) for some other
keystream packet that it was generated under the related key/IV pair (K ′, IV ′), where
K ′2 = K2 ⊕ 1, IV ′2 = IV2 ⊕ 1, K ′i = Ki for 0 ≤ i ≤ 79, i 6= 2, and IV ′i = IVi for
0 ≤ i ≤ 63, i 6= 2. Without phase 4 (i.e., if z129 instead of z257 was the first keystream
bit used for plaintext encryption), the attacker could immediately conclude that the first
11 keystream bits generated for (K ′, IV ′) are identical to the first 11 keystream bits
z129, . . . , z139 generated for (K, IV). This is due to the fact that if Ki ⊕ IVi = K ′i ⊕ IV ′i
for i = 0, . . . , 63 and Ki = K ′i for i = 64, . . . , 119, then the corresponding inner states of
Lizard will be identical after phase 2 of the state initialization. In the above example,
where key bit K2 and IV bit IV2 are flipped for K ′2 and IV ′2 , respectively, this would lead
to identical inner states after the second key addition at t = 129 except the bit B129

2 of
NFSR2, which would be flipped now as well. However, it takes ten further steps of the
keystream generator for this information to reach a tap of the output function. While
the described scenario might seem rather far-fetched, we still wanted to avoid this kind of
nonrandom behavior in order to thwart other attacks that might make us of it. Moreover,
as pointed out in section 3.5, phase 4 also became necessary due to setting S129

30 := 1 in
phase 3.

30 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

B.4 Weak Key/IV Pairs
In [ZW09], Zhang and Wang introduced the notion of weak key/IV pairs for the Grain
family of stream ciphers. They use such pairs, which lead to an all-zero initial state of the
LFSR, to mount distinguishing attacks and initial state recovery attacks.9 In [gHJM11],
the designers of Grain-128a point out: “We note that the IV is normally assumed to
be public, and that the probability of using a weak key/IV pair is 2−128. Any attacker
guessing this to happen and then launching a rather expensive attack, is much better off
just guessing a key.” For Grain v1, which has 264 weak key/IV pairs among a total of 2144

key/IV pairs, the corresponding probability would be 2−80, leading to a similar conclusion.
In analogy to the definition of Zhang and Wang, weak key/IV pairs for Lizard would

lead to an all-zero initial state of NFSR1. This, however, is impossible due to setting
S129

30 := 1 in phase 3 of the state initialization (cf. Sec. 2.2) togther with the fact that, after
phase 3, the only input to the maximum-period FSR NFSR1 comes from its own feedback
function.

Note that, without setting S129
30 := 1 in phase 3 of the state initialization, there would

have been about 2153 weak key/IV pairs out of 2184 total key/IV pairs for Lizard, leading
to a probability of using a weak key/IV of 2−31. Consequently, without setting S129

30 := 1
in phase 3 of the state initialization, attacks based on weak key/IV pairs might have posed
a real threat to Lizard.

C Complexity of Finding IV Collisions
In order to show that the number of oracle queries necessary for finding an IV collision
with probability > 1/2 exceeds 260 as claimed in section 4.7, we first need to observe that,
for an arbitrarily fixed key, each initial state can be the result of at most two different IVs.

Let (K, IV) and (K, ĨV) with IV 6= ĨV be an IV collision, i.e., the corresponding
initial states ((

B257
0 , . . . , B257

89
)
,
(
S257

0 , . . . , S257
30
))

for (K, IV) and ((
B̃257

0 , . . . , B̃257
89

)
,
(
S̃257

0 , . . . , S̃257
30

))
for (K, ĨV) coincide. Then((

B129
0 , . . . , B129

89
)
,
(
S129

0 , . . . , S129
30
))

=
((
B̃129

0 , . . . , B̃129
89

)
,
(
S̃129

0 , . . . , S̃129
30

))
must hold as phase 4 of the state initialization algorithm of Lizard (cf. Sec. 2.2) implements
a bijective mapping over the set of all inner states. As the key is (arbitrarily) fixed, we
also know that (

B128
0 , . . . , B128

89
)

=
(
B̃128

0 , . . . , B̃128
89

)
together with either (

S128
0 , . . . , S128

30
)

=
(
S̃128

0 , . . . , S̃128
30

)
or (

S128
0 , . . . , S128

30
)

=
(
S̃128

0 , . . . , S̃128
30 ⊕ 1

)
must hold. The case((

B128
0 , . . . , B128

89
)
,
(
S128

0 , . . . , S128
30
))

=
((
B̃128

0 , . . . , B̃128
89

)
,
(
S̃128

0 , . . . , S̃128
30

))
,

9Keep in mind that, for all members of the original Grain family, initial state recovery is equivalent to
key recovery as pointed out in section 4.2.

Matthias Hamann, Matthias Krause and Willi Meier 31

however, is impossible due to the fact that, like phase 4, phase 2 of the state initialization
algorithm also implements a bijective mapping over the set of all inner states and, as
IV 6= ĨV , ((

B0
0 , . . . , B

0
89
)
,
(
S0

0 , . . . , S
0
30
))
6=
((
B̃0

0 , . . . , B̃
0
89

)
,
(
S̃0

0 , . . . , S̃
0
30

))
.

This now also shows immediately that there cannot be a third key/IV combination (K, ÎV)
with IV 6= ÎV 6= ĨV 6= IV that results in the same initial state as the IV collision (K, IV)
and (K, ĨV) because

S128
30 6= S̃128

30 6= Ŝ128
30 6= S128

30

is a contradiction.
How many oracles queries (K, IV i), i = 1, . . ., with IV i 6= IV j for i 6= j, are now

necessary in order to find an IV collision with probability 1/2? Based on the above
observations, we can model this as a simple urn problem. The urn contains 2120 different
pairs of balls (i.e., 2121 balls in total), where each pair of balls corresponds to a different
pair of inner states at t = 128 fulfilling((

B128
0 , . . . , B128

89
)
,
(
S128

0 , . . . , S128
30
))

=
((
B̃128

0 , . . . , B̃128
89

)
,
(
S̃128

0 , . . . , S̃128
30 ⊕ 1

))
.

The question is how many balls need to be drawn (randomly and without putting them
back) in order to have at least one pair with probability 1/2?

The probability pi that at attempt i = 1, . . ., a pair is completed, can be upper bounded
by

pi ≤
i− 1

2121 − (i− 1) .

Consequently, the probability Pr[k] that after k attempts, at least one pair has been found,
can be upper bounded by

Pr[k] ≤
k∑

i=1
pi =

k∑
i=1

i− 1
2121 − (i− 1) < k · k

2121 − k
.

For k ≤ 260, we have Pr[k] < 1/2, which proves the claim. (Note that, using the more
precise estimate

∑k
i=1

i−1
2121−(i−1) ≤

∫ k

0
x

2121−x dx, one can even show that Pr[k] ≤ 1/2 for
all k ≤ 260.5.)

D Output Function a: Tap Selection
As pointed out in section 3.3, due to the absence of canonical criteria for the selection of
tap positions for Grain-like constructions, we mainly resort to the concept of (full) positive
difference sets that was used by Golić in [Gol96] to assess the security of nonlinear filter
generators consisting of a single LFSR and a nonlinear output function: “for a positive
integer λ, call Γ a λth-order positive difference set if λ is the maximum number of pairs of
its elements with the same mutual difference (for λ = 1, we get a full positive difference
set)” [Gol96].

In particular, the output function a of Lizard has the following properties:
• The set

{1, 3, 9, 13, 16, 23, 24}
of output function taps from NFSR1 is a 2nd-order positive difference set. Moreover,
no taps from NFSR1 are used at the same time for its feedback function and the output
function. (In Grain-128a, the feedback function of the LFSR, which corresponds to
NFSR1 in our construction, and the output function do not share any taps, either.)

32 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

• No taps from NFSR2 are used at the same time for its feedback function and the output
function. (In Grain-128a, the feedback function of the NFSR, which corresponds to
NFSR2 in our construction, and the output function share only a single tap called
“bi+95” in [gHJM11].)

• The direct sum Lt +Qt + Tt uses only taps from NFSR2. (To maintain a sufficient
security level even when the content of the smaller NFSR1 is known to the attacker,
e.g., due to guessing; cf. Sec. 4.5.)

• The set
{5, 7, 11, 30, 40, 45, 54, 71}

of the tap indices (all from NFSR2) of the linear monomials of Lt +Qt + Tt is a full
positive difference set.

• The set
{4, 8, 9, 18, 21, 37, 44, 52, 76, 82}

of the tap indices (all from NFSR2) of the quadratic monomials of Lt +Qt + Tt is
a full positive difference set. One consequence of this is that each two bits of the
internal bitstream of NFSR2 can form at most once a quadratic monomial together.

• The sets
{|4− 21|, |8− 82|, |9− 52|, |18− 37|, |44− 76|}

of differences between the two taps (all from NFSR2) of each quadratic monomial in
Lt +Qt + Tt and

{|3− 59|, |10− 12|, |15− 16|, |25− 53|, |35− 42|}

of differences between the two taps (all from NFSR2) of each quadratic monomial in
the feedback function of NFSR2 are disjoint. Hence, even during phase 2 of the state
initialization, each two bits of the internal bitstream of NFSR2 can form at most once
a quadratic monomial together.

• None of the differences

{|4− 21|, |8− 82|, |9− 52|, |18− 37|, |44− 76|}

between the two taps (all from NFSR2) of each quadratic monomial in Lt +Qt + Tt

appears as a difference between two taps of a higher degree monomial of Lt +Qt +Tt.

• Each of the sets

{34, 67, 73} ,
{2, 28, 41, 65} ,
{13, 29, 50, 64, 75} ,
{6, 14, 26, 32, 47, 61} ,
{1, 19, 27, 43, 57, 66, 78}

of tap indices (all from NFSR2) of the monomials of degree 3, . . . , 7 of Lt +Qt + Tt is
a full positive difference set. Consequently, each two bits of the internal bitstream
of NFSR2 never appear more than once as part of each (i.e., the same) of those
monomials.

Matthias Hamann, Matthias Krause and Willi Meier 33

E Implementation Details
E.1 Serialization of Phases 1 and 3 of LIZARD’s State Initialization
In our implementation of Lizard, phase 1 of the state initialization is distributed over 121
clock cycles c = 0, . . . , 120 as follows:

B0,c+1
j :=

{
B0,c

j+1, for j ∈ {0, . . . , 88} ,
S0,c

0 , for j = 89,

S0,c+1
i :=

{
S0,c

i+1, for i ∈ {0, . . . , 29} ,
pc, for i = 30,

where

pc :=

Kc ⊕ IVc, for c ∈ {0, . . . , 63} ,
Kc, for c ∈ {64, . . . , 118} ,
Kc ⊕ 1, for c = 119,
1, for c = 120.

To avoid ambiguity, we point out that B0,121
j = B0

j , j = 0, . . . , 89, and S0,121
i = S0

i ,
i = 0, . . . , 30, where B0

j and S0
i are defined as explained in section 2.2. The initial content of

the FSRs (i.e., B0,0
j , j = 0, . . . , 89, and S0,0

i , i = 0, . . . , 30) is undefined and algorithmically
irrelevant as, what effectively happens here, is that the bitstring

K0 ⊕ IV0, . . . ,K63 ⊕ IV63,K64, . . . ,K118,K119 ⊕ 1, 1

is shifted into the KSG’s driving registers “from the right” (in terms of Fig. 1 in Sec. 2).
Analogously, phase 3 of the state initialization is also distributed over 121 clock cycles

c = 0, . . . , 120 as follows:

B129,c+1
j :=

{
B129,c

j+1 , for j ∈ {0, . . . , 88} ,
S129,c

0 , for j = 89,

S129,c+1
i :=

{
S129,c

i+1 , for i ∈ {0, . . . , 29} ,
qc, for i = 30,

where

B129,0
j := B128

j for j ∈ {0, . . . , 89} ,

S129,0
i := S128

i for i ∈ {0, . . . , 30} ,

qc :=
{
B129,c

0 ⊕Kc, for c ∈ {0, . . . , 119} ,
1, for c = 120,

and B128
j and S128

i are defined as explained in section 2.2.
Again, to avoid ambiguity, we point out that B129,121

j = B129
j , j = 0, . . . , 89, and

S129,121
i = S129

i , i = 0, . . . , 30, where B129
j and S129

i are defined as explained in section 2.2.

E.2 Critical Path Delay
The critical path delay of the circuit determines the maximum clock frequency and,
hence, the maximum achievable throughput. However, for low-cost RFIDs, 100 kHz is

34 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

the commonly assumed clock frequency (see, e.g., [AHM14], [Fel07], [GB08]), which would
allow a delay of up to 107 ps. For comparison, the delay of our implementation of Lizard
is 2474 ps, which corresponds to a maximum clock frequency of about 404 MHz. Also
note that, though targeting low-cost devices, Lizard can still be used in scenarios where
throughputs larger than 404 Mbit/s are required, simply by using techniques like pipelining
(as done for the stream cipher Espresso in [DH15]) in order to reduce the delay or by
implementing a parallelized version of Lizard as described in Sec. 3.4. Moreover, it is
possible to instruct the synthesis tool to optimize for higher clock speeds, which will lead
to a circuit with smaller delay but, inter alia, higher area requirements. However, to keep
the comparison between Lizard and Grain v1 as concise as possible, we only give the
delays for the design flow targeting 100 kHz clocks in Tab. 1 as these values already show
sufficiently well that Lizard is also suitable for higher speed applications.

E.3 Module Interfaces

Listing 1: Verilog module port declaration for Lizard.
module l i z a r d (

input wire c lk ,
input wire r e s e t ,
input wire enable ,
input wire [0 : 1 1 9] key ,
input wire [0 : 6 3] iv ,
output wire keystreamBit ,
output wire keystreamFlag
) ;

Listing 2: Verilog module port declaration for Grain v1.
module gra inv1 (

input wire c lk ,
input wire r e s e t ,
input wire enable ,
input wire [0 : 7 9] key ,
input wire [0 : 6 3] iv ,
output wire keystreamBit ,
output wire keystreamFlag
) ;

Listings 1 and 2 show the interfaces of the implemented cipher modules. For Grain v1,
the straightforward implementation and the variant with serialized key/IV loading (denoted
as Grain v1∗ in Tab. 1) have identical interfaces.

The modules use synchronous reset (taking one clock cycle) and all operations are
triggered by the rising edge of the clock. By setting the enable flag low, the respective
cipher module can be paused at any time during state initialization or keystream generation.
Setting reset high resets a module. Once reset is set low again, state initialization begins.
For all modules, it is assumed that key and IV are available (via key and iv) until key/IV
loading has finished. Once a cipher module has completed state initialization and enters
the keystream generation phase, it changes keystreamFlag from low to high and outputs
one keystream bit per clock cycle via keystreamBit.

	Introduction
	Design Specification
	Components
	NFSR1
	NFSR2
	Output Function a

	State Initialization
	Phase 1: Key and IV Loading
	Phase 2: Grain-like Mixing
	Phase 3: Second Key Addition
	Phase 4: Final Diffusion

	Keystream Generation

	Design Considerations
	NFSR1
	NFSR2
	Output Function a
	Speedup Options
	State Initialization Algorithm

	Cryptanalysis
	Exhaustive Key Search
	Time-Memory-Data Tradeoff Attacks
	Correlation Attacks, Linear Approximations
	Algebraic Attacks
	Guess-and-determine Attacks
	Conditional Differentials, Cube Distinguishers
	IV Collisions
	More Cryptanalytic Results

	Hardware Results
	Conclusion
	Test Vectors
	Cryptanalysis – Additional Results
	More on TMD Tradeoff Attacks against Stream Ciphers
	BDD-based Attacks
	Related Key(/IV) Attacks, Slide Attacks
	Weak Key/IV Pairs

	Complexity of Finding IV Collisions
	Output Function a: Tap Selection
	Implementation Details
	Serialization of Phases 1 and 3 of LIZARD's State Initialization
	Critical Path Delay
	Module Interfaces

