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ABSTRACT
As eye tracking is becoming feasible on commodity devices, it
provides a powerful tool for inferring users’ perceived relevance of
objects. Yet the prediction quality depends on multiple parameters
that have to be considered when designing the prediction model.
In this paper, we review approaches to predict relevance from gaze
with regard to five design issues: 1) extracting features, 2) defining
the algorithm, 3) setting a prediction scope, 4) eliminating visual
distractors, and 5) evaluating the system. The insights may serve as
a guide to establish best practices for the design and evaluation of
relevance prediction models, thus allowing for better comparability
of future work. We further discuss promising fields of application
that will drive future research on gaze-based relevance prediction.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interaction design process and methods; Contextual de-
sign.
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1 INTRODUCTION
Customers of online shops find that whenever they visit their fa-
vorite store, some items have already been handpicked for them.
A similar experience is provided by streaming platforms, where
customers are recommended content that matches their interests.
In order to provide such personalization, individual preferences
have to be determined.

Given the continuously maturing technology, eye tracking has
enjoyed increasing popularity as an indicator for users’ relevance
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judgments. During the last years, the ease of use of eye trackers
has continuously increased up to a point where they can now be
easily integrated into a user’s smartphone camera or webcam [29].
The major advantage of this approach is that the users don’t have
to explicitly judge the relevance of the items themselves. Instead,
inferences are made from their behavior while naturally using the
system [22]. Yet, the accuracy of the predictions is highly influenced
by a multitude of parameters that have to be considered when
designing the predictionmodel. The lack of standardized procedures
for evaluating the models make a direct comparison of different
approaches difficult.

Motivated by this gap, we review the state of the art of gaze-
based relevance predictions. We highlight both the advantages and
disadvantages of the implemented models and evaluation methods.
This shall stimulate a discussion to establish best practices for the
definition and evaluation of gaze-based relevance predictionmodels.
As a starting point, we propose a general evaluation procedure that
aims to ensure comparability of future research works.

Relevant literature was found by using a keyword search in
Google Scholar with the search terms (“user profile modeling" OR
“user modeling") AND (“eye tracking" OR “review" OR “survey").
We started with this initial set and then additionally conducted
backward reference searching in the papers we collected. We in-
cluded all papers concerned with the mapping of gaze data to the
user’s relevance judgment of objects. We coded each paper based on
the design of the prediction model. Finally, we identified five main
categories: 1) Extracting gaze features; 2) Defining the prediction
model; 3) Setting a scope for the prediction model; 4) Accounting for
visual distractors; 5) Collecting ground truth data and evaluating
the system. Starting from the application domains of the reviewed
systems, we further discuss the most promising fields of application
that will drive future research on gaze-based relevance predictions.

2 RELATEDWORK
The existence of a link between gaze and relevance of elements has
been established in the 1960s [30]. Citing the results of several psy-
chological studies, Bednarik [1] more recently confirms that gaze
allocation is closely related to cognitive processes. Application areas
for gaze-based relevance predictions have thus been the subject
of multiple literature reviews. In market research, gaze allocation
is a popular indicator for products and product features that are
perceived as relevant by consumers [7, 45]. In attentive user in-
terfaces, in contrast, the users’ focus of attention triggers a direct
system response with the aim to support the users in their current
task [19, 31]. A comprehensive overview of algorithmic approaches
for relevance prediction based on implicit user feedback can be
found in [22].
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Yet to the best of our knowledge, the state-of-the art approaches
to predict relevance from gaze have not been analyzed in a sys-
tematic manner. We thus take a look at recent research works,
highlighting their advantages and disadvantages, and identify ar-
eas that can benefit from applying the knowledge created by the
prediction models.

3 HOW IS RELEVANCE PREDICTED?
The quality of the prediction model depends on the gaze features
that are fed into the prediction algorithm, the extent to which
the model should be applicable to new objects and users, and the
elimination of visual distractors. The reported performance, in turn,
is highly influenced by the evaluation procedure.

3.1 Extracting gaze features
Gaze patterns consist of alternations between fixations and saccades.
During fixations, the user focuses on one specific point, usually to
acquire information. During the saccades in between fixations, only
little information is absorbed. Relevance is therefore often inferred
solely from fixations [21]. Table 1 summarizes the common gaze
features.

3.1.1 What gaze features contain relevance information? Ahuman’s
gaze tends to linger on relevant elements [9]. Concordingly, rele-
vance is most often inferred either from the total gaze duration (in
terms of time [39] or number of gaze points [40, 46]), or fixation du-
ration [5, 18, 38, 41] on an object. The total number of fixations [5, 44]
places less weight on prolonged continuous observations of one
object. In contrast, the continuous gaze [32] or continuous fixation
duration [5, 21], considers uniquely how long the gaze dwells on
an object before readjusting the focus.

By using feature vectors, the combined information content of
multiple gaze features can be used. A subset of the primary features
mentioned above is usually used. In addition, secondary features
are included which may not be suitable to directly infer object
relevance, but explain to some degree the user’s gaze allocation.
Since the initial focus tends to be guided by salient features instead
of interest in the element, the first fixation [6] and time to first
focus [27, 29] control for this effect. In contrast, the last fixation is
most often placed on an object that is perceived as relevant [15, 36].
The intensity of the focus is measured by the number of transitions
to an element [26, 27, 32, 36, 40], standard deviation of the number
of fixations [27], distance between fixations [27], distance of fixations
from the object center [25], and saccade length [13, 24, 25]. Pupil
dilation tends to be smaller [6, 24] when focusing on relevant items.

A comprehensive image of the user’s gaze patterns is represented
by the scanpath [24, 35]. This time series collection of fixations and
saccades provides the most holistic representation of the user’s
gaze allocation.

3.1.2 How are gaze features assigned to an object? Predictions are
based on the distribution of gaze data to Areas of Interest (AOI).
These are rectangle areas around the elements for which relevance
is elicited. An AOI may encompass a static graphic element such as
an image [5, 6, 8, 14, 15, 26, 27, 29, 32, 36, 39, 41, 46] or interaction
element [21]. In text documents, it usually holds a single word [12,

13, 18, 35, 38, 46]. For dynamic targets in videos [44, 46] or real-
world scenes [24, 25], die AOI has to be defined for each video frame
or observation window individually.

3.2 Defining the prediction model
When selecting the relevance prediction algorithm, it is impera-
tive to consider on what level of detail the system aims to predict
relevance. Table 2 provides an overview of the proposed implemen-
tation.

3.2.1 How is relevance defined? Relevance can be predicted on
multiple levels of detail: On the most basic level, it refers to a binary
evaluation [13, 18, 21, 24, 26, 29, 32, 35, 38, 41]. The prediction
model infers whether a given element is relevant or not. On a
deeper level, the model identifies the most relevant element out of
a given set [14, 15, 25, 36, 39, 40, 44]. The relevance judgment is
thus based on a comparison between multiple elements. The most
detailed models quantify the relevance that each object has to the
user [5, 6, 8, 12, 27, 29, 46]. This allows to rank the elements.

3.2.2 What prediction logic is applied? Most commonly, binary
evaluations are based on threshold values [18, 21, 32, 38]. This ap-
proach was first applied in gaze-controlled systems. In order to
avoid that each fixation on an object instantly triggers an action
(a.k.a. Midas Touch), objects are only activated when the dwell
time exceeds an empirically defined threshold [21]. It is usually
defined in terms of gaze duration [18, 21, 32, 38], but can also be
applied to other gaze features such as the number of fixations [5].
Empirically defined optimal thresholds range from 150 ms [21] to
800 ms [18]. In order to rank the relevance of elements, multiple
threshold values can be defined [5].

In the most naive implementation, relevance is quantified by
the cumulative gaze allocation to each object [6, 8, 12, 46]. The
user’s preferred object can directly be inferred by selecting the
element with the highest visual focus [14, 39, 40, 44]. Starker and
Bolt [40] additionally consider the time dimension by discounting
the importance of old gaze points whenever a new gaze point is
recorded. When using feature vectors, weights can be assigned
to manipulate the impact that each feature has on the relevance
prediction. Equal vector weights assign the same importance to all
features [12].

If different weights are used, their optimal values can be deter-
mined explicitly based on experience [6, 8], or implicitly through
machine learning [8, 13, 15, 24–27, 29, 35, 36, 41, 46]. Provided that
ground truth data for the relevance of the elements exists, the latter
determines the optimal weights in a training phase. The features
are mapped to the objects’ known relevance, so that the number
of correct predictions is maximized. Linear discriminant analysis
(LDA) [26] is a simple model which assigns the data to linear sub-
spaces to maximize class discrimination. Classes are defined as
“relevant", or “not relevant" respectively. The often more robust
logistic regression (logit) maps the reported relevance class to a
linear combination of the features [15, 25, 27]. It predicts the prob-
ability of an object being relevant or not, and can therefore also be
used to quantify relevance. Being capable of modeling both linear
and non-linear relationships, k-Nearest Neighbor (k-NN) minimizes
the difference between data points in the class [15]. For the same
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Table 1: Gaze features commonly used in relevance prediction models
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Reference Dimension dwell time intensity sequential

Starker & Bolt, 1990 [40] single feature • •

Jacob, 1990 [21] single feature •

Sibert et al., 2000 [38] single feature •

Hyrskykari et al., 2003 [18] single feature •

Salojärvi et al., 2004 [35] feature vector • • •

Qvarfordt & Zhai, 2005 [32] single feature • •

Vesterby et al., 2005 [44] single feature •

Hardoon et al., 2007 [13] feature vector • • •

Klami et al., 2008 [26] feature vector • • • •

Xu et al., 2008 [46] single feature •

Kozma et al., 2009 [27] feature vector • • • • • •

Cheng et al., 2010 [6] feature vector • • • •

Kandemir et al., 2010 [25] feature vector • • • •

Kandemir & Kaski, 2012 [24] feature vector • • •

Giordano et al., 2012 [12] feature vector • •

Li et al. (2017) [29] feature vector • •

Chen et al., 2017 [5] single feature • • •

Schweikert et al., 2018 [36] feature vector • • • •

Song & Moon, 2019 [39] single feature •

Fahim Shahriar et al., 2020 [8] feature vector • •

Sulikowski et al., 2020 [41] single feature •

Heck et al., 2019 [15] feature vector • • • • •

purpose, Support Vector Machines (SVM) construct a hyperplane
so that the area around class borders is maximized [13, 15, 29].
Ensemble classifiers including boosting algorithms [15, 36] and
Random Forests [15, 29] combine multiple machine learning algo-
rithms and therefore often perform better. Yet Li et al. [29] found
that the SVM classifier outperforms not only Decision Trees (DT),
but also Random Forests (RF). While the readily interpretable De-
cision Trees learn simple decision rules for data classification or
regression, the ensemble classifier RF predicts relevance as the aver-
aged result of multiple randomly constructed Decision Trees. When
tested against other ensemble methods, the RF classifier in turn out-
performs Mixed Group Ranks (MGR), boosting, and a multi-layer
neural network (NN) [15, 36]. The Multi-layer Perceptron (MLP)
deep neural network implements multiple non-linear hidden layers
to map the gaze features to relevance classes[15, 41]. Sulikowski
and Zdziebko [41] use the model to infer relevance of objects with
varying display positions, while using a small training set. If large
amounts of training data are available, Passive-Aggressive (PA) clas-
sifiers can be used [15]. Gaussian Processes (GP) [24] and Hidden
Markov Models (HMM) [35] can be applied to sequential scanpath
features. Based on Bayesian methodology, GPs represent states in
terms of conditional probability distributions. The classification

is determined by the sign of the final probability [24]. HMMs rep-
resent sequential changes in the data as probabilistic transitions
between hidden states. Discriminative HMMs define transitions so
that the likelihood of the data being assigned to the correct class is
maximized. Salojärvi et al. [35] find that discriminative HMMs out-
performs LDA and SVMs. Yet the improvement over the twomodels,
both of which use averaged feature vectors instead of sequential
data, is marginal.

3.3 Setting a scope for the prediction model
The scope of a prediction model encompasses two dimensions: The
generalisability of relevance predictions with regard to other users,
and to other objects (see Figure 1).

3.3.1 Can the model be applied to new users? Models based on
cumulative gaze allocation tend to generalize well across different
users, even if different weights are assigned to each feature [6, 8].
The same applies to activation thresholds, although Sibert et al. [38]
recognize that the optimal threshold value might be different for
each user.
Machine learning models have proven to deliver reliable relevance
predictions when trained with data of other users [13, 15, 24, 29, 35,
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Table 2: Algorithms and factored distractors
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Chen et al., 2017 [5] • # fixations: [3.16; 2.64; 1.42],
cont. fixation time: [289ms; 340ms; 144ms]
total fixation time: [1089ms; 1039ms; 448ms]
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Salojärvi et al., 2004 [35] • LDA, SVM, HMM
Hardoon et al., 2007 [13] • SVM • • •

Klami et al., 2008 [26] • LDA
Kozma et al., 2009 [27] • logit
Kandemir et al., 2010 [25] • logit •

Kandemir & Kaski, 2012 [24] • GP
Li et al., 2017 [29] • • SVM, DT, RF • •

Schweikert et al., 2018 [36] • NN, boost, RF, MGR
Sulikowski et al., 2020 [41] • MLP • •

Heck et al., 2021 [15] • logit, SVM, DT, RF, MLP, boost, PA, k-NN • •

36, 41]. The predictions are slightly better when training with user-
specific data [25]. Yet person-independent models carry the benefit
of not having to be trained for each user individually [26, 27].

3.3.2 Can predictions be extrapolated to new objects? The pri-
mary objective of the prediction models is to infer the relevance
of elements that are displayed on the user interfaces. By apply-
ing content or collaborative filtering techniques, the relevance of
other objects that the user has not previously looked at can be
predicted [6, 8, 12, 13, 27, 39, 46].

Content-based filtering analyzes the key properties of the ob-
jects and identifies others that are similar with regard to these
features [6, 8, 12, 13, 27, 46]. Automated object retrieval with color
correlograms [17] selects images based on correlations of pixel
colors [46]. Using a tree-structured self-organizing map, the un-
supervised neural algorithm PicSOM [28] analyzes the similarity
between two images based on the three low-level features color,
texture, and shape [27]. Documents can be analyzed with regard to
the occurrence of keywords that the user perceives as most rele-
vant [12]. They can be represented as a bag-of-words model that
decomposes the document into its individual words. SVMs are then
trained with the bag-of-words representation of documents that
have been identified as relevant for the user [13]. The trained SVM

model is applied to the bag-of-words representation of new doc-
uments to rank their relevance. Cheng et al. [6] manually encode
products into a binary representation of five product-related fea-
tures. Based on the user’s visual attention to different products,
a genetic algorithm constructs the optimal product for a given
user. The most similar products are then presented to the user. K-
means clustering groups objects so that similarity within clusters
is maximized, while minimizing between-cluster similarity. Objects
withing the cluster that contains the largest amount of elements
that are known to be relevant to the user are predicted to also
be relevant. Product recommenders usually cluster objects along
product-related features such as brand, category, and price [8].

Collaborative filtering, in contrast, is based on similarity between
users [8, 39]. An unseen element is considered as relevant if it has
been defined as relevant by other users with similar preferences.
Pearson correlations provide a simple measure of similarity [39].
K-means clustering can be applied for an automated identification
of similar user groups [8].

3.4 Accounting for visual distractors
Buscher et al. [4] identify three factors that influence the gaze: 1)
The task and information need determines our perception of what
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Figure 1: The scope of the prediction model is defined by its generalisability across users and objects of interest.

is relevant or not, and is therefore the target of relevance predic-
tions. 2) Expectations about where to find relevant information
is based on prior experience. 3) The gaze is primarily drawn to-
wards text or human figures, especially faces. If no specific object
is present, the gaze is directed towards the center of the screen,
or towards locations with salient low-level features [23]. Seven
low-level features are generally considered to determine salient
regions of a scene: orientation [2–4, 20, 47], luminence/ intensity [2–
4, 11, 20, 47], color [2–4, 20, 33, 34, 37, 42, 47], motion [3, 20, 42, 47],
texture [2–4, 34, 47] (defined as the number of sharp edges in a
frame), size [2, 4, 42], and detail [2–4, 30]. Unintended gaze alloca-
tion to salient regions therefore has to be accounted for. Table 2
summarizes the prevalent approaches.

3.4.1 What distractors are considered? Most low-level salient fea-
tures tend to be accounted for implicitly (see Section 3.4.2). Assum-
ing that more gaze points fall on objects that occupy proportionally
more display space than others, object size (or equivalently word
length) is often considered explicitly [13, 25, 32, 38]. In text-based
relevance predictions, both the complexity of the reading material
and the user’s abilities may affect the dwell time on a word. This
effect is captured by the word frequency [13, 18], type settings [38],
and user age and cognitive abilities [41]. Expectations about where
to find information may be accounted for by the object location on
the page [13, 29, 41]. The activation history of elements reflects the
logical relationships between objects without having to trace the
user’s scanpath [32]. Close relationship to the previously activated
object indicates high relevance. Previous activation has the oppo-
site effect, since users are less likely to be interested in objects they
have already selected before.

3.4.2 How are distractors determined and integrated into the model?
The magnitude of each correction parameter can be specified either
explicitly, or learned implicitly. Explicit parametrization defines
fixed values based on the empirical findings derived from experi-
mental data [18, 32, 38]. Activation thresholds can thus be reduced
to account for distractors. They may vary for each object within one
application, depending on how salient the element is [18, 32, 38].
Cumulative gaze allocation models should account for varying ex-
posure times of objects by normalizing the feature values with
regard to the display time of each object [29, 39, 44].

Learned parameters are directly derived from the data bymapping
the gaze to the known relevance of an object [8, 13, 14, 25, 29,
39, 41]. Machine learning models implicitly already account for
visual distractors by mapping the input features to the known
relevance of the objects during the training phase. Additional object-
related distractors can easily be accounted for by extending the
input vector [13, 25, 29, 41]. Less complex models condition object
relevance on the distributions of gaze and preferences of other
users [8, 14, 39]. Similar to machine learning models, this discounts
the relevance of objects that generally draw much attention but are
not considered as relevant by users. These data-driven approaches
have a more solid empirical foundation than explicitly defined
correction parameters. Yet they are only viable if gaze data and the
corresponding relevance evaluation for the objects have already
been collected.

3.5 Collecting ground truth data and
evaluating the system

In order to determine whether the developed model accurately
predicts relevance, ground truth data about the users’ true relevance
perceptions are required. The gaze data of users interacting with the
target system thus have to be recorded in an experimental setting
along with their relevance assessment of one or multiple elements.

3.5.1 How is data about the users’ true relevance perception col-
lected? The validity of the model evaluations is to a large degree
influenced by the amount of collected data and the method for
relevance elicitation (see Table 3).

The amount of collected data depends on the number of partici-
pants in the user study (ranging from 3 [35] to 132 [15]), as well as
the number of tasks completed by each participant and objects per
task. When participants are instructed to browse freely, the number
of displayed objects is different for each person [5, 6, 8, 27, 29, 32, 41].
In experiments where users are exposed to a fixed number of ob-
jects [13, 24, 26, 35, 36], or look at a dynamic stimulus for a specified
amount of time [15, 25], the total number of samples (where a sam-
ple is defined as the individual gaze record of one user while looking
at one object) ranges from 70 samples [24] to 2700 samples [26].

The ideal moment and task for the data collection depend on
the target application. Since users might not be able to recall their
relevance perception for each displayed object after the experiment,
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Table 3: Experimental setup and metrics for model and system evaluation
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Reference re
al
-t
im

e
in
di
ca
ti
on

ex
po

st
in
di
ca
ti
on

ta
sk

-i
nd

uc
ed

pr
e-
de

te
rm

in
ed

#
pa

rt
ic
ip
an

ts

#
ob

je
ct
s

ac
cu

ra
cy

pr
ec
is
io
n

re
ca
ll

F1 A
U
C

ra
nk

m
et
ri
c

system evaluation

Sibert et al., 2000 [38] 8 n/d task support
Hyrskykari et al., 2003 [18] n/d n/d usability
Salojärvi et al., 2004 [35] • 3 540 •

Qvarfordt & Zhai, 2005 [32] 12 varying usability
Vesterby et al., 2005 [44] 11 66 manipulation awareness
Hardoon et al., 2007 [13] • • 6 600 •

Klami et al., 2008 [26] • 27 2700 •

Kozma et al., 2009 [27] • 6 varying • •

Cheng et al., 2010 [6] • • 9 varying • usability, task support
Kandemir et al., 2010 [25] • 4 n/d •

Kandemir & Kaski, 2012 [24] • 5 70 • • •

Giordano et al., 2012 [12] 30 varying • usability
Li et al., 2017 [29] • 36 varying • •

Chen et al., 2017 [5] • 18 varying •

Schweikert et al., 2018 [36] • 12 1440 •

Fahim Shahriar et al., 2020 [8] • 20 varying • usability
Sulikowski et al., 2020 [41] • 52 varying • • • • manipulation awareness
Heck et al., 2021 [15], [16] • 132 varying • usability

ground truth data is often collected in real-time. This can be done by
asking participants to explicitly indicate their relevance assessment
of an object while looking at it [13, 15, 24, 26, 36]. Alternatively,
relevance can be derived from the users’ interactions with func-
tionalities that constitute an integral part of the system [5, 6, 41].
In recommender systems, this can for example be the selection
of a product for purchase [5, 6], or the submission of a product
review [41]. Collecting the ground truth data after the experiment
has the advantage of not disturbing the user’s task flow. This is
especially relevant when data is collected while the participants
interact with the actual target systems [6, 8, 25, 27, 29]. In these
cases, participants are thus asked to use the system under the pre-
text of its intended purpose, and afterwards explicitly indicate how
relevant each of the displayed items had been to them. Alterna-
tively, the relevance of objects can be pre-determined by the task
itself. Typical tasks include asking participants to browse through
a number of objects and find specific information. The information
can be retrieved from the relevant objects [13, 35].

3.5.2 What metrics are used for the assessment? Binary classifi-
cation is commonly evaluated with regard to accuracy, precision,
recall, F1, or AUC scores. Accuracy indicates the percentage of
correct predictions [15, 24, 25, 35, 41], but is often biased in im-
balanced datasets. This is a frequent issue in applications that
predict relevance, since more items tend to be classified as “ir-
relevant" than “relevant". Precision thus measures how many of
the items that were predicted as relevant were also perceived as
such [8, 12, 13, 27, 36, 41]. Recall takes into account missed items

by measuring how many relevant items were also predicted to be
relevant [6, 41]. The effects captured by precision and recall are
combined in the F1 score [24]. The area under the receiver operator
characteristics curve (AUC) is a combined measure of recall and the
False Positive Rate (i.e., How many irrelevant items were falsely
predicted as relevant?) [24, 26, 27, 29, 41]. It indicates of how well
the classifier can distinguish between relevant and irrelevant items,
independent of the dataset.

The ranking performance of a model can be evaluated based on
the Hit-Ratio@Kmeasure [5]. It indicates the proportion of relevant
items that were also predicted to be among the top K most relevant
items. On a more fine-grained level, the NDCG@k measures how
precisely the top k items were ranked [29].

Since few evaluations report all relevant metrics, a comparison
between the models remains difficult.

3.5.3 How are system effectiveness and usability evaluated? Subjec-
tive user feedback about the system can be collected after their inter-
action with the system. The assessment can either be of qualitative
nature in the form of interviews [32, 44], or quantitative through
standardized questionnaires and log data [6, 8, 12, 16, 18, 32, 38].

Interviews may reveal whether users are aware of the manipu-
lative nature of the system [32, 44]. They can also elicit detailed
feedback about functionalities that are appreciated by the users,
and uncover those that require refinement [32].

Standardized questionnaires only deliver feedback about a set
of pre-specified metrics. Yet they provide numeric data on fixed
item scales. This allows to statistically compare the systems to a
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non-adaptive implementation [6]. Metrics for evaluation include
satisfaction with the system [6, 12, 18, 32], ease of use [6], interest/
engagement [6, 16], and liking [8]. Recommender systems can be
evaluated with regard to their perceived influence on the user’s
item selections [41].

Objective feedback is provided by log data [6, 38]. The recorded
metrics can be as diverse as the number of clicks and keystrokes [6],
task completion time [6, 38], and errorswhile performing an application-
specific task [38].

4 WHAT CAN RELEVANCE PREDICTIONS BE
USED FOR?

Gaze can be used to either trigger a direct system reaction, or to
create user profiles based on the user’s attention to the interface
elements. The latter allows to predict the relevance of new items,
and thus personalize the displayed content.

4.1 Using relevance predictions for known
elements

The initial interest in eye tracking was nurtured by the idea to use
gaze as an interaction technique [21].

Diagnostic applications are used in psychology research to gain
insights into a person’s preferences or behavioral patterns. Schweik-
ert et al. [36] thus predict a user preferences for face images.

With the emergence of attentive user interfaces, visual attention
was used to adapt the interface to better support the user’s current
task. These interfaces derive the users’ attention from their gaze
behavior and put fixated elements into focus [43]. Starker and
Bolt [40] monitor eye movements in a virtual world inspired by the
story of “The little prince”. Whenever the user looks at an object for
a prolongued time, an animated little prince talks about the focused
object. The interactive map iTourist [32] helps users plan a city trip
by displaying additional information about fixated locations. By
applying relevance predictions to real-world objects, Kandemir et
al. [24, 25] personalize augmented reality information for objects in
an art gallery. In interactive movies, the user’s attention to elements
in a scene determines how the movie continues [16, 44]. Attentive
reading assistants [18, 38] reason that words that are fixated longer
than others are unfamiliar to the user, and provide reading support.
The interactive dictionary iDict [18] displays the translation for
words that users reading in a foreign language are struggling with.
Similarly, the GWGazer Reading Assistant [38], supports children
with reading problems by reading out loud words that are difficult
for the child.

4.2 Using relevance predictions for new
elements

On websites, online shops, and search engines, user-adapted con-
tent has been of interest since the early days of the internet [10].
Recommender systems thus determine the user’s preference through
gaze data, and recommend only items that match these prefer-
ences. Recommendations may target search engines for documents,
images, and videos [12, 13, 26, 27, 35, 46], products in an online
shop [6, 8, 14], Google Play Store applications [29], or product
advertisements [39]. More recently, gaze data has been used to

validate relevance predictions. In recommender systems, validating
the user’s satisfaction with the displayed items allows to refine the
recommendation algorithm [5, 41].

5 DISCUSSION
Our review of the various areas where relevance predictions can im-
prove the user experience shows that a strong demand for good pre-
diction models exists. The reported performances of the reviewed
models are very encouraging. Yet, since often different metrics
are used for the evaluation, comparability of different approaches
remains difficult. Comparability is further decreased by the large
variety of parameters that can influence the model performance,
including different gaze features, algorithms, and study design. The
latter is primarily influenced by the tested stimuli, target applica-
tion, and participants. Few evidence thus exists for the replicability
of the reported results in different settings. In order to overcome
this issue, we thus propose to report the results of future research
using a standardized procedure that allows a direct comparison
with previous works:

(1) Clearly define the relevance concept under investigation (see
Section 3.2.1)

(2) Identify the most similar previous work(s) as benchmark
study and determine what gaze features (Section 3.1) and
prediction logic (see Sections 3.2.2-3.4) are used

(3) Replicate the experimental setup and procedure of the bench-
mark study as closely as possible (see Section 3.5.1)

(4) Run multiple evaluations, altering only one model param-
eter (as specified in Sections 3.1-3.4) at a time, so that the
predictions differ from the benchmark study in only a single
aspect

(5) Report the same evaluation metrics that are used in the
benchmark study. Additionally, provide unbiased metrics if
these are not included in the benchmark study

6 CONCLUSION
In this paper, we reviewed the state-of-the-art approaches to predict
relevance of objects from gaze data. The design consideration can
be classified into: 1) gaze feature extraction, 2) algorithm selection
and definition, 3) prediction scope definition, and 4) elimination
of visual distractors. When evaluating the model, special attention
should be paid to the procedure for collecting ground truth data, as
well as to the evaluation metrics and techniques. Furthermore, we
identified five fields where relevance predictions enjoy increasing
importance. Of particular interest are recommender systems where
relevance predictions can be used to speed up the user’s search
task.

A remaining challenge is the low comparability of previous work,
resulting from the lack of a standardized evaluation procedure. The
insight gained from our literature review shall help to establish
best practices for the design and evaluation of relevance prediction
models, thus allowing for better comparability of future work.
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