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Abstract

In the following thesis, we investigate the modeling of time series data with multivariate
discrete and especially binary structure. A model for categorical time series data with
a nice interpretability which, in addition, is parsimonious, is the New Discrete AutoRe-
gressive Moving Average (NDARMA) model of Jacobs and Lewis (1983). However,
this model only can capture positive autocorrelation as well as positive parameters.

In the first part of the thesis, we propose an extension of the NDARMA model class
for the special case of binary data, that allows for negative model parameters, and,
hence, autocorrelations leading to the considerably larger and more flexible model class
of generalized binary ARMA (gbARMA) processes. For this class of processes, we infer
statistical properties and compare it in a simulation study with the benchmark model,
the Markov Processes and other time series models.

In the second part, we adopt the approach of the first part and propose a vector-
valued extension of gbAR processes, that enable the joint modeling of serial and cross-
sectional dependence of multivariate binary data. The resulting class of generalized
binary vector Auto-Regressive (gbVAR) models is parsimonious, nicely interpretable
and allows also to model negative dependence. We further extend the gbVAR model
to include a moving average part, resulting in turn in the gbVARMA model.

In the third and final part we pursue a further extension to vector-valued categorical
time series data. For the proposed gbVARMA and NDVARMA models, we provide
stationarity conditions and state the stationary solution. Stochastic properties, e.g.
Yule-Walker- type equations and classical Yule-Walker equations for the pure autore-
gressive case are derived. We show ϕ- and ψ- mixing properties of the gbVAR and
NDVARMA model by proving the strict positivity of the transition probabilities. For
the NDVARMA model, we discuss the identification of the distribution of the vector-
valued innovation process. In simulation studies the performance of the estimators is
illustrated.

All three model classes are applied to real data examples.
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Zusammenfassung

In der folgenden Arbeit wird die Modellierung von Zeitreihendaten mit multivariater
diskreter und insbesondere binärer Struktur untersucht. Ein Modell für kategoriale
Zeitreihendaten mit guter Interpretierbarkeit, das zudem noch parameterarm ist, ist
das neue diskrete autoregressive gleitendes Mittelwertmodell (NDARMA) von Jacobs
und Lewis (1983). Allerdings kann dieses Modell nur positive Autokorrelation sowie
positive Parameter erfassen.

Im ersten Teil der Dissertation schlagen wir eine Erweiterung der NDARMA- Modell-
klasse für den Spezialfall binärer Daten vor, die negative Modellparameter und damit
Autokorrelationen zulässt, was zu der wesentlich größeren und flexibleren Modellklas-
se der generalisierten binären ARMA-Prozesse (gbARMA) führt. Für diese Klasse
von Prozessen leiten wir statistische Eigenschaften ab und vergleichen diese in einer
Simulationsstudie mit dem Benchmark-Modell, den Markov-Prozessen und anderen
Zeitreihenmodellen.

Im zweiten Teil übernehmen wir den Ansatz des ersten Teils und schlagen eine vek-
torwertige Erweiterung von gbAR-Prozessen vor, die die gemeinsame Modellierung von
serieller und Querschnittsabhängigkeit von multivariaten binären Daten ermöglicht.
Die resultierende Klasse von verallgemeinerten binären vektoriellen Auto - Regressi-
onsmodellen (gbVAR) ist parameterarm, gut interpretierbar und erlaubt auch die Mo-
dellierung negativer Abhängigkeit. Ferner erweitern wir das gbVAR Modell um einen
gleitenden Durchschnitt, was wiederum das gbVARMA-Modell ergibt.

Im dritten und letzten Teil verfolgen wir eine zusätzliche Erweiterung auf vektorwer-
tige kategorielle Zeitreihendaten. Für die vorgeschlagenen gbVARMA- und NDVARMA-
Modelle stellen wir Stationaritätsbedingungen auf und geben die stationäre Lösung an.
Stochastische Eigenschaften, wie beispielsweise Gleichungen vom Yule-Walker-Typ und
klassische Yule-Walker-Gleichungen für den reinen autoregressiven Fall werden abge-
leitet. Wir zeigen ϕ- und ψ-Mischeigenschaften des gbVAR- und NDVARMA-Modells,
indem die strikte Positivität der Übergangswahrscheinlichkeiten beweisen wird. Für
das NDVARMA-Modell diskutieren wir die Identifizierbarkeit der Verteilung des vek-
torwertigen Innovationsprozesses. In Simulationsstudien werden die Güte der Schätzer
gezeigt.

Alle drei Modellklassen werden auf reale Datenbeispiele angewendet.
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1. Introduction

The analysis of time dependent data is a field in statistics that has been widely inves-
tigated over the last decades. The collection of data over time arises in diverse areas
of science and application, for e.g. in economics the quarterly number of unemployed
in a country, in biology and medicine the daily number of virus infected people or in
the financial sector the daily closing prices of a stock, to name just a few. In all the
previous examples, the data depend on each other over the time, which is the main
challenge of time series analysis as the classical approaches for independent or at least
uncorrelated data are not applicable. The main task is to establish models for de-
scribing the relationship between the observations, and to impose conditions that are
strong enough to derive insightful results, but which are also as general as possible, so
as to be able to apply such a model on real data.

In the last few years, however, categorical time series has received renewed attention,
whereas in most text books, e.g. Brockwell and Davis (1991), Wei (1989) or Lütkepohl
(2005), the models concentrate on continuous - valued time series data. Yet, categorical
data form a special type of data, to which the common approaches of continuous data
cannot be applied. A categorical variable represents a state, e.g. in medicine categories
occur as nucleobases such as the adenine (A), cytosine (C), guanine (G) and thymine
(T) bases as components of a DNA row. Recession, slowdown or recovery of the
market cycle are three states that are examples of categorical structure which appear
in an economic analysis or even, for instance, a yes/no expression is contained in
the class of categorical data. Transferring these examples to the natural numbers N0

for its statistical analysis, the categories already have a nominal structure, meaning
that no further information can be derived from the value of the category. Whereas
for example the distance between two real valued data points transfers additional
information about the position to each other, the distance between two categorical
variables has no meaning. Due to this special structure of non ordinal ranking within
the data, categorical time series can not use the common models for continuous valued
data. The additional reason is, that these models do not ensure the time series stay
within the permissible categorical values. However, for inference on such data, the
tools and approaches of the continuous valued time series models are very helpful also
in the categorical case.

To overcome the issue, Jacobs and Lewis (1978a) introduced a model to analyze
such data, where the outcome is again assured to be categorical. In Kedem (1980),
Davis et al. (2016) and Weiß (2009a) additional models are introduced, which we will
take a closer look at and discuss later.

In addition, the development of computers and the internet has facilitated a great
amount of data collection. So it is not only the time dependence occurring in the data
that we might consider, but also that the observations are multidimensional and it
is interesting to investigate the dependence between these dimensions. Furthermore,
multivariate methods are needed for a proper analysis of the data.
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1. Introduction

In this thesis, a new model for the special case of only two categories, and thus
binary data, is investigated. We introduce the model for both univariate and multi-
variate data, as nowadays the data sets typically have more than one dimensions. With
the extension of the models for multivariate time series data, we have to consider not
just that the methods need to be adapted to more than one dimensions, but also that
multiple dimensions present different problems to those that we face with with univari-
ate models. Nevertheless, we would like to shed more light on the categorical data first.

Categorical and especially binary time series data appear as univariate and mul-
tivariate versions in many fields of application. Davis et al. (2016) mostly analyze
univariate categorical and binary time series data, as some examples being the time
series of recession states of the US, the three state time series of sleep states of the
AgeWise study from the University of Pittsburgh and the filtered mortality data of
Los Angeles to a binary time series.

In addition, as discussed by Kedem (1980), a binarized real valued time series data
still keeps the rhythmic and random mechanism of the data. Therefore, it may also be
interesting to look at the binarized version of a continuous valued time series, which
also contains the main information but is cheaper to store. This procedure extends the
application of binary time series to many more data sets, which initially do not have
a binary structure. In Chapter 2, we examine the binarized eruption duration of the
Old Faithful Geyser, as it is only of interest if a certain period is exceeded and thus
whether or not a long eruption occurs. Thereby the investigation is not aimed at the
eruption duration itself. For further discussion on this example, see Section 2.1.

Over last few years, the amount of collected data has been growing due to the
availability of cheap storage. Interest is increasingly focused on the investigation of
the dependence structure over the dimensions within the data sets. In time series
analysis for example, the aim is to investigate the relationship of the dimensions on each
other, therefore the cross sectional dependence structure. One example is the spread of
recession states over e.g. the G7 countries. The examination of the countries together
can shed light on the dependency between them and in particular their economies.

Another example of multivariate data are the binarized air pollution data of mea-
suring stations in a city or metropolitan area to examine if they exceed a threshold or
not. A detailed discussion is given in Section 3.1.

For the data described so far, variables Xt,k are monitored, where k = 1, . . . ,K and
all variables are taken according to a time point t. In practice, the observations are
mostly observed at discrete time t and therefore we assume in this thesis t ∈ Z. The
variables are generated by a stochastic process (Xt,k, t ∈ Z) and are therefore random
variables for each k and t. A more convenient notation is to compose all variables to
a vector-valued process Xt := [Xt,1, . . . , Xt,k]

′, where Xt,k is then the k-th component
variable and K is the dimension of the time series. In the following, we assume the
process (Xt,k, t ∈ Z) to take values in a categorical state space V = {0, 1, . . . ,m} with
m ∈ N and thus the K - dimensional process (Xt, t ∈ Z) takes values in the state space
VK = {0, 1, . . . ,m}K .

When directly dealing with these data, we face several issues. Whereas for con-
tinuous data a large number of distributions are available, there are a lower number
of distributions available for categorical data. Furthermore, the usual mathematical
operations are not applicable. This can be directly illustrated by the example of nu-
cleobases given previously. Adding the base adenine A and cytosine C, e.g. A + C,

2



we may ask what the meaning of this operation is. The issues of the meaning and in-
formative value still remain in the context of time series analysis. For example, whilst
the definitions of trend and seasonality are clear for continuous valued time series,
it is not obvious how this terminology is defined for categorical valued time series.
The main difficulty for categorical time series comes from the nominal structure of the
data, such that the commonly used dependency measures, as the autocovariance or
autocorrelation, have no meaning. For further discussion see e.g. Weiß (2009a).

Nevertheless, the special case of only two categories allows us to adopt some parts
of the commonly used theory. Thus, in the binary case, the addressed measures can
still provide information about existing dependencies within the data, as we only have
two possibilities, as e.g. V = {0, 1}. In Chapter 2 and 3 we examine the special case of
only two categories, where the analysis is based on the commonly used autocorrelation.

In addition to the above examples of categorical time series, over the last few years a
new class of data objects has been gaining increasing interest in theory and application.
The analysis of network data has been rising as these data are available in various fields,
e.g. computer networks, biological networks or social networks. Typically, networks
are represented by two sets, the vertex set and the edge set. The first set consists of the
vertices or nodes corresponding to the objects, e.g. computers, people or members of
a social network. The second set contains the edges corresponding to the connections
between the objects in the vertex set, transferring the information on whether or not
two nodes are in contact to each other. An edge can contain information e.g. if two
computers have a direct connection via the internet, two people had contact and the
virus was spread or two members are friends. More examples from various disciplines
can be found in Kolaczyk (2009), Newman (2010) and Jackson (2008).

The notation of networks make use of the graph theory, where a graph G = (V,E)
with V is the set of vertices {v1, . . . , vK} and the interactions between these vertices,
called the set of edges E = {e1, . . . , en} with el = {vi, vj} for l = 1, . . . , n and i, j ∈
{1, . . . ,K}. Another representation of a graph G, containing the same information of
the presence or absence of an edge between two nodes is the so called adjacency matrix
A. It is of dimension K × K with K = |V | the number of nodes and each row and
column belongs to one vertex vi, i = 1, . . . ,K. Then, it is

A = (aij)i,j=1,...,K

where aij ∈ {0, 1}, such that aij = 1 means that there is a connection between the
vertices vi and vj . Whenever aij = 0, the edge between vi and vj is not contained in
the edge set E. The resulting network representation is of binary nature and therefore
also a part of the categorical data, which we want to assume in this thesis.

Let’s assume that we are observing a network of fixed dimension K not just at one
time point t, but at several time points t = 1, . . . , T , so that we face a sequence of
adjacency matrices A1, . . . , AT . The main interest is to investigate the dependence of
the absence and presence of edges evolving over time. Examples of evolving networks of
fixed number of vertices are friendship networks, where each adjacency matrix consists
the information on whether two friends in the network were in contact with each other
at that time or not.

Bai et al. (2019), for example, considered the dynamic face-to-face interaction net-
work between participants playing the Resistance game. An edge between the nodes
v and u is detected, whenever a participant v looks at the other participant u at time
t. The interaction is detected at each 1/3 second. Whereas Paranjape et al. (2016)

3



1. Introduction

analyzed the email - communication of a big European research institute, where an
edge is detected if an email is sent from person v to person u at time t. This data
set is observed over 803 days, such that a sequence of adjacency matrices is given over
nearly two years.

1.1. Models for categorical time series

The widely investigated time series models for continuous data often do not adequately
specify the categorical type of the data. However, there are many different models that
can describe the special data structure.

1.1.1. Markov Processes

One prominent and well known model with serial dependence are Markov models. They
form a powerful model class, having the characteristic of fixed-dependence memory and
therefore the current past has an impact on the new outcome. This property means,
that the future probabilistic evolution of the process only depends on the immediate
past of the process and can be summarized in the following Definition.

Definition 1.1 (Markov Process)
A categorical process (Xt, t ∈ N0) with range V is said to be a pth- order Markov
Process with p ∈ N, if

P (Xt = st|Xt−1 = st−1, . . . X0 = s0) = P (Xt = st|Xt−1 = st−1, . . . Xt−p = st−p)

for all t ≥ p and all si ∈ V with i ≤ t.
If the transition probabilities

P (Xt = st|Xt−1 = st−1, . . . Xt−p = st−p) = ps0|i−1,...s−p

are time invariant, then the process is said to be a homogeneous pth- order Markov
Process.

The whole dependence structure of a Markov Process can be described, when all
transition probabilities from all possible states to the others in the state space V are
composed to a transition probability matrix P .

The model class of Markov processes has been extensively studied in classical litera-
ture, where a variety of different properties are investigated for such models. Statistical
Theory on Markov processes are discussed in e.g. Billingsley (1961), Bartlett (1951)
and Seneta (1981).

An additional advantage of the model class is the possibility to model a wide range
of dependence structure within the data, which in turn makes the model attractive for
categorical and in particular binary time series data.

The next definition is based on Weiß (2009a)[Definition 9.1.1.2]. It covers some im-
portant properties of Markov processes for the following thesis. Further discussions on
additional properties of finite state space Markov processes are given in Weiß (2009a).

Definition 1.2 (Properties of a Markov Process)
Let (Xt, t ∈ N0) be a homogeneous Markov Process of order p = 1 with range V and
transition matrix P . Then (Xt, t ∈ N0) and P are said to be
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i) irreducible if for any i, j ∈ V there exists some n ∈ N such that pi|j (n) > 0.

ii) periodic of period d if it is irreducible, and if for an i ∈ V (and therefore for
all i ∈ V) the greatest common divisor of those n ∈ N, for which pi|i (n) > 0, is
equal to d.

iii) primitive if there exists an n ∈ N such that all pi|j (n) > 0.

iv) ergodic if it is irreducible with period 1.

With these properties of Markov process, its asymptotic behavior can be stated.
Thus the property of primitivity of a Markov process indicates that it has a unique
stationary distribution. Besides, a Markov process is ergodic if and only if it is primi-
tive, see e.g. Seneta (1981)[Theorem 1.4]. From the long term behavior of an ergodic
Markov process, additional meaningful properties can be derived. So it follows for the
marginal distribution of an ergodic Markov process that it converges in addition to its
stationary marginal distribution, whereas this stationary distribution is independent of
the initial distribution of the process. Further essential conclusions from the properties
mentioned above are summarized by Weiß (2009a)[Tables 5 and 6, Chapter 9] and will
be applied later in the thesis.

With the assumption that the range is finite countable and a stationary transition
distribution, a pth- order Markov process can be fitted to the univariate process by
estimating the necessary (m+ 1)p ·m transition probabilities. Despite the advantages,
the number of parameters may pose a challenge and leads to an over-parametrization,
see e.g. McKenzie (2003). Therefore, the associated issue of identifiability of the pro-
cess parameters has to be considered and the issue potentizes when the considered
process is K- dimensional. This curse of dimensionality, first introduced by Bellman
(2016), indicates an exponential growth of the parameter with the dimension, which
is also the case when a Markov process is adapted to a K-dimensional process.

Two models, addressing the drawback of too many parameters of Markov processes,
are considered in Bühlmann and Wyner (1999) the variable length Markov model and in
Raftery (1985) the mixture transition distribution model. Both reduce the parameters
of the process, though the variable length Markov model has the challenge of the model
choice and are further discussed in Weiß (2009a)[Chapter 9.2]. The second model, the
mixture transition distribution model, is an extension of the standard homogeneous
Markov process, which was introduced to approximate a high-order Markov process
with far fewer parameters. The model suffers from m(m−1)+p−1 parameter and only
one parameter for one additional lag is added, see also Berchtold and Raftery (2002).
Even if this is similar to an autoregressive (AR) model, the modeling is based on a
transition probability matrix, which dimension would increase in size for multivariate
data.

1.1.2. Discrete autoregressive moving average model

To overcome the problem of an over-parametrization of Markov models and also to
investigate the non-Markovian structure of data, Jacobs and Lewis (1978a), Jacobs
and Lewis (1978b), and Jacobs and Lewis (1978c) introduced, in a series of papers,
a mixed AutoRegressive Moving Average (ARMA) model for discrete data, defined
as DARMA process. The process was constructed to model non-Markovian structure
with a specific marginal distribution and correlation structure.
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Definition 1.3 (Discrete ARMA Model)
Let (Xt, t ∈ Z), (Zt, t ∈ Z) and (et, t ∈ Z) be categorical processes with range V =
{0, 1, . . . ,m}. Let (et, t ∈ Z) be an independent and identically distributed (i.i.d.) dis-
crete valued process with marginal distribution P (et = j) = pj > 0 for j ∈ {0, 1, . . . ,m}.
The innovation process et is assumed to be independent of the processes Xs and Zs for
s < t.
Let P := [α(q+1), β(0), . . . , β(q)] and P̃ := [α̃(1), . . . , α̃(p), β̃(0)] be the parameter vectors
with P1q+2 = 1 and P̃1p+1 = 1 where 1l is the one vector of length l. And further let

Pt := (a
(q+1)
t , b

(0)
t , . . . , b

(q)
t ) ∼Mult(1;P)

P̃t := (ã
(1)
t , . . . , ã

(p)
t , b̃

(0)
t ) ∼Mult(1; P̃) , t ∈ Z

be i.i.d. random vectors, which are independent of (Xs), (Zs) for s < t and (et, t ∈ Z).
Then, the process (Zt, t ∈ Z) is called a discrete AR (DAR) process of order
p ∈ N0, if it follows the recursion

Zt = ã
(1)
t Zt−1 + . . .+ ã

(p)
t Zt−p + b̃

(0)
t et.

The process (Xt, t ∈ Z) is called a discrete ARMA (DARMA) process of order
p, q + 1N, if it follows the recursion

Xt = a
(q+1)
t Zt−q−1 + b

(0)
t et + . . .+ b

(q)
t et−q.

In contrast to the Markov models described above, the DARMA model recursion is
similar to common ARMA recursion and thus its interpretation is possible directly via
the model parameters. The benefit of the multinomial selection with model parameters
P and P̃, is that the process always takes values within the discrete state space V,
because only one entry of the random vector Pt and P̃t is equal to one, whereas all
other entries are zero. Consequently, the multinomial selection implies that the model
parameters are probabilities and take values in the unit interval. Nevertheless, it is
not intuitive why the DARMA(p,q+1) model indirectly depends on the autoregression
and consequently only on the predecessors of the process Zs with t− s > q.

To avoid such a complex recursion definition, Jacobs and Lewis (1983) refine the
DARMA model to a new discrete ARMA model, where the process follows only one
recursion.

Definition 1.4 (New Discrete ARMA Model)
Let (Xt, t ∈ Z) be a stationary process taking values in V. Let (et, t ∈ Z) be an
i.i.d. discrete valued innovation process, such that et is independent of (Xs)s<t with

mean µe = E(et) and variance σ2e > 0. Let P :=
[
α(1), . . . , α(p), β(0), . . . , β(q)

]
be the

parameter vector such that P1p+q+1 = 1 where 1p+q+1 the one vector of length p+q+1.
Further, let

Pt :=
(
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

)
∼Mult (1;P) , t ∈ Z,

be i.i.d. random vectors, which are independent of (et, t ∈ Z) and (Xs, s < t). Then,
the process (Xt, t ∈ Z) is said to be a New Discrete ARMA (NDARMA) process
of order p, q ∈ N0, if it follows the recursion

Xt =

p∑
i=1

a
(i)
t Xt−i +

q∑
j=0

b
(j)
t et−j .
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1.1. Models for categorical time series

In the case of q = 0, the process is said to be a NDAR(p) process and for p = 0 it is
called a NDMA(q) process.

This model has a nicely interpretable autoregressive moving average structure with-
out any indirect modeling. The multinomial selection of the random vector Pt ensures
that the process always takes values within the state space V. This is where the es-
sential difference to common ARMA models for continuous data comes into account,
because the model parameters P are now probabilities which are inserted into the
selection mechanism.

Consequently, the time series Xt is a random mixture of the past observations or
innovation processes. Therefore, the new value of the process takes either a predecessor
value Xt−1, . . . , Xt−p with probability

∑p
i=1 α

(i) or an innovation term et, . . . , et−q with
probability 1−

∑p
i=1 α

(i). The random vector Pt selects for every t ∈ Z the new value
of the categorical process.

Jacobs and Lewis (1983) derived a few first properties of the model as e.g. Yule
- Walker equations and autocorrelation structure. Due to its nice structure, Weiß
and Göb (2008), Weiß (2009a), Weiß (2011a), Weiß (2011b) and Weiß (2013) extend
the analysis of the model to further stochastic properties and dependency measures,
e.g. signed and unsigned serial dependence measures as Cohen’s κ and Cramer’s ν.
Since the model parameters can take only positive values, it is possible to capture
exclusively positive dependence structure. Another characteristic of NDARMA models
are the generated long runs of the same value. This results from the random selection
mechanism, as it either chooses a predecessor or innovation with a certain probability.
However, very few application data sets show this property of repeating the same
category over a period of time and thus these properties restrict the application of the
model.

Despite the limitation that only positive autocorrelations can be modeled, the NDAR-
MA model has several advantages, which makes this model extendable to multivariate
data. Especially the number of model parameter are parsimonious and therefore suit-
able for an extension.

Möller and Weiß (2020) used the idea of the NDARMA model, to expand it for
multivariate categorical time series data but also added a data-specific variation op-
erator to obtain a great flexibility and prevent long runs of the same value over time.
Here, the variation operator is assumed to be mean preserving and also maintain the
ARMA-like autocorrelation structure but whilst allowing more variation within the
sample paths.

Definition 1.5 (Generalized Discrete ARMA model)
Let (Xt, t ∈ Z) be a stationary K - dimensional process taking values in VK =
{0, 1, . . . ,m}K . Let (et, t ∈ Z) be an i.i.d. discrete valued K - dimensional inno-
vation process taking values in VK , such that et is independent of (Xs)s<t with mean

µe = E(et) and variance Σ2
e > 0. Let P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
be the pa-

rameter vector such that P1p+q+1 = 1 with 1p+q+1 the one vector of length p+ q + 1.
Further, let

Pt :=
(
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

)
∼Mult (1;P) , t ∈ Z,

be i.i.d. random vectors, which are independent of (et, t ∈ Z) and (Xs, s < t).
Then, the process (Xt, t ∈ Z) is said to be a generalized discrete ARMA (GDAR-

MA) process of order p, q ∈ N0 with variation operators S·,· : V → V, if it follows the
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recursion

Xt =

p∑
i=1

a
(i)
t St,i(Xt−i) + b

(0)
t et +

q∑
j=1

b
(j)
t St,j(et−j).

The model is still parsimonious like the NDARMA model, even though multivariate
data can be handled. Instead of taking scalar process variables Xt into the model equa-
tion, the idea of the NDARMA model equation is applied on a K- dimensional process
Xt, therefore selecting a predecessor vector Xt−1, . . . , Xt−p or an K-dimensional inno-
vation et, . . . , et−q. So the model suffers again only from p+q+1 parameters to specify
the multinomial selection.

Besides, the operator S randomly varies the inserted processes to reach a more
flexible model. It is assumed to be mean preserving, such that the ARMA - like auto-
correlation structure is maintained. This means, that the variation operator satisfies
E[S(X)|X] = X and hence E[S(X)] = E[X]. However, even Möller and Weiß (2020)
discussed several operators, the functions are still random within the state space VK
and a systematic modeling of cross-sectional dependence is therefore not possible. Nev-
ertheless, it is conceivable that in data setups after an occurring category m1 ∈ V a
systematic change to another category m2 ∈ V\{m1} arises. In the NDARMA - like
models, it is only possible to get a change of the category when 1) an innovation takes
the value m2 and is in addition chosen by the selection mechanism or 2) a predeces-
sor is equal to the value m2 and is selected. But this change is still random and not
systematically driven by the model directly.

In addition, both the GDARMA and NDARMA models have the disadvantage, that
the process can only handle non-negative autocorrelation structure as the model pa-
rameters have to take values in the unit interval. These two properties restrict the
application of the NDARMA model to univariate categorical data and the GDARMA
model multivariate categorical data, as the estimation of the model parameter and au-
tocorrelation in most cases show invalid values, e.g. non negative parameters although
negative autocorrelation can also occur by fitting the NDARMA - type model. Besides,
as mentioned by Möller and Weiß (2020) for K- dimensional time series data, the mul-
tivariate extension of the GDARMA model selects the observations and innovations
vector-wise, but an individual selection of just one entry of a certain observation or
innovation vector should be also mentioned to allow for cross - sectional dependence.

In the following chapters, we want to address these two issues and investigate two
extensions of the NDARMA model. The first question is how the model can be ex-
tended to allow also potential negative parameters and autocorrelation too, where the
open question is how negative autocorrelation should be interpreted in the case of cat-
egorical data. In the special case of only two categories, such that V = {0, 1}, negative
autocorrelation is interpretable. The negative dependence indicates a change of the
category from one step to the next and so it is directly clear to take the opposite value
of the state space. However, this concept is not straightforward to transfer to a state
space with more than two categories, because it is not clear which of the remaining m
categories should be chosen as the opposite value. The first part of the thesis considers
a new model for a binary state space V = {0, 1} based on the NDARMA idea, by now
allowing for negative parameters indicating a negative dependence.

The models introduced previously are defined for univariate time series data. Only
the GDARMA model suggests a way to handle multivariate data but without including
the cross-sectional dependency. The extension to multivariate data is introduced in the
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1.1. Models for categorical time series

second and third part of the thesis (Chapter 3 and Chapter 4), where we generalize
firstly the new introduced model of Chapter 2 and then the NDARMA model for
multivariate data.

1.1.3. Binary time series model

For negative dependence structure within binary sequences, Kanter (1975) introduced
the binary AR model and Weiß (2009b) added a moving average part, resulting in the
binary ARMA model. Instead of using an additive operator within the ARMA model
equation, a modulo 2 (⊕) operation is applied to ensure a binary outcome each time.

Definition 1.6 (Binary ARMA model)
Let (Xt, t ∈ Z) be a stationary binary process taking values in V = {0, 1}. Let (et, t ∈ Z)
be an i.i.d. binary valued innovation process, such that et is independent of (Xs)s<t
with mean µe = E(et) and variance σ2e > 0. Let P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
be the parameter vector such that P1p+q+1 = 1 where 1p+q+1 the one vector of length
p+ q + 1. Further, let

Pt :=
(
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

)
∼Mult (1;P) , t ∈ Z,

be i.i.d. random vectors, which are independent of (et, t ∈ Z) and (Xt, s < t). Then,
the process (Xt, t ∈ Z) is said to be a Binary ARMA (BinARMA) process of
order p, q ∈ N0, if it follows the recursion

Xt = ⊕pi=1a
(i)
t Xt−i ⊕ et ⊕qj=0 b

(j)
t et−j .

In the case of q = 0, the process is said to be a BinAR(p) process and for p = 0 it is
called a BinMA(q) process.

The random vector Pt is defined as in the previous NDARMA model, nevertheless
the process takes the value et with probability β0 thus all entries within Pt are zero

except b
(0)
t . The modulo operation comes into account, when either a predecessor

Xt−1, . . . , Xt−p or an innovation term et−1, . . . , et−q is chosen by the random vector Pt
and thus Xt takes either the value Xt−i⊕et for i = 1, . . . , p or et⊕et−j for j = 1, . . . , q.
This allows a direct modeling of negative autocorrelation within the data by a well
known operation. However, the model recursion is not very intuitive to interpret and
it might not even be clear how the process behaves. Nonetheless, the idea of using
a modulo 2 operation enables now to model a small amount of the desired negative
autocorrelation structure, as shown in Weiß (2009b). The range of possible negative
autocorrelation, which can be modeled by a BinAR(2) process is also discussed in 2.3.1
together with the models mentioned above. However, we will take up the idea of using
a modulo 2 operation for systematical modeling of negative dependence structure.

Especially for the modulo 2 operation, a combination of the process variable Xt with
a value of one results in a more common and direct way of

(Xt ⊕ 1) = (1−Xt) (1.1)

for Xt ∈ {0, 1}. Mostly, the right hand side of equation (1.1) is more understandable
and leads in a direct representation of the systematic switching of a binary variable
to its opposite state. This approach of the modulo operation (1.1) can be used for
modeling negative dependence structure and thus a systematic change of a binary
variable. The helpful simplification of the modulo operator in the binary case is used
in Chapter 2 to extend the NDARMA model to a negative dependency structure.
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1.2. Outlook

The thesis is organized as follows: In Chapter 2, we introduce the generalized binary
ARMA model (gbARMA) starting with a discussion on possibly negative parame-
ters and, hence, autocorrelations leading to the considerably larger and more flexible
model class. We provide stationary conditions, give the stationary solution and derive
stochastic properties of gbARMA processes as its transition probabilities, marginal dis-
tribution and common probability. For the purely autoregressive case, classical Yule
- Walker equations hold that facilitate parameter estimation of gbAR models. Yule
- Walker - type equations are also derived for gbARMA processes. In a simulation
study, we compare several models by simulating a second order binary process to show
the different ranges of manageable dependence structure.

In Chapter 3 we extend the gbARMA model that is presented in Chapter 2 to a
vector-valued time series model, called the gbVARMA model. First, we discuss the
pure autoregressive case in Chapter 3.2, that enables the joint modeling of serial and
cross-sectional dependence of multivariate binary data. We provide stationarity condi-
tions, state moving-average-type representations and give general stochastic properties
of gbVAR processes, including formulas for transition probabilities and mixing prop-
erties. In particular, classical Yule-Walker equations hold that facilitate parameter
estimation in gbVAR models. In simulations, we investigate the estimation perfor-
mance and propose a parametric bootstrap procedure for statistical inference. For
illustration, we apply gbVAR models to particulate matter (PM10, ’fine dust’) alarm
data observed at six monitoring stations in Stuttgart, Germany.

We add a moving average part to the gbVAR model and discuss the extension of the
resulting gbVARMA processes in Chapter 3.6. We extend the stochastic properties of
the gbVAR process to the additional moving average part.

In Chapter 4, the NDARMA model is extended to vector-valued time series data
taking the cross- sectional dependence into account as well. For the resulting ND-
VARMA model, we derive stationarity conditions and state the stationary solution.
Stochastic properties are provided, e.g. Yule - Walker type equations and for the pure
autoregressive case, classical Yule - Walker equations for the parameter estimation.
We show ϕ - and ψ - mixing conditions of the NDVARMA model and discuss the dis-
tribution identification of the vector-valued innovation process. Finally, the business
cycle clock data is applied to the model for illustration.
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2. Generalized Binary Time Series Models
- the univariate Model

Based on: Jentsch, C. and Reichmann, L.
Generalized Binary Time Series Models - Econometrics 2019, 7 (4), 47

2.1. Introduction

Categorical time series data are collected in many fields of applications and the sta-
tistical research focusing on such data structures evolved considerably over the last
years. As an important special case, binary time series that correspond to categorical
data with two categories, occur in many different contexts. Often, binary time series
are obtained from binarization of observed real-valued data. Such processes are con-
sidered, e.g., in Kedem and Fokianos (2002). In Figure 2.1, we show three real data
examples of binary time series from different fields of research. For example, in Figure
2.1a, the eruption duration of the Old Faithful Geyser in the Yellowstone National
Park is binarized using a threshold. It is coded with a value of one if an eruption lasts
for longer than three minutes and zero if it is shorter. In economics, the two states
of recessions and economic growth are of interest, as discussed, e.g., in Bellégo and
Ferrara (2009). One example of a recession/no-recession time series is shown in Figure
2.1b, where for every quarter it is shown if Italy is in a recession, indicated by zero, or
not, indicated by one. Recently, there is great interest in the air pollution in European
cities, where an exceedance of the threshold of 50 µg/m3 PM10 (fine dust) causes a fine
dust alarm. The resulting sequence of states of no exceedance corresponding to zero
and exceedance corresponding to one is shown in Figure 2.1c. Further examples can be
found, e.g., in geography, where sequences with the two states of dry and wet days are
considered, e.g., in Buishand (1978). In biomedical studies, binary time series occur
in the case, where the participants keep daily diaries of their disease. For example,
in clinical trials, as in Fitzmaurice and Lipsitz (1995), the binary self assessment of
participants of their arthritis is collected, where poor is indicated by zero and good
by one. In natural language processing, the occurrence of vowels as a sequence can
be of interest, as considered in Weiß (2009b), where a text is binarized by detecting a
consonant or no consonant/vowel as the two states. The binarization of a time series
by a threshold, as, e.g., in the PM10 example, or by categorizing the time series into
two states, as, e.g., in dry and wet days, indeed simplifies the real valued time series
to a binary version. As mentioned in Kedem (1980), nevertheless, the transformation
keeps the random mechanism from which the data are generated. For the example of
PM10 data, it might often be of more interest, whether a certain threshold is crossed
(or not) instead of the actual amount. In general, the rhythm within the binarized
time series contains a great amount of information of the original data.
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(a)

(b)

(c)

Figure 2.1.: Three real data examples of binary time series: (a) binarized eruption
duration of the Old Faithful Geyser over 299 eruptions; (b) quarterly
detected binarized recession/no-recession time series of Italy from Quarter
1 in 1960 to Quarter 1 in 2017 (229 time points); and (c) binarized fine
dust (PM10) data from Stuttgart, Germany recorded daily from 3 March
2016 to 31 July 2018 over 881 days.

As discussed in Kedem (1980), binary Markov chains are typically used for modeling
the dependence structure due to their great flexibility. However, the number of pa-
rameters to estimate from the data grows exponentially with the order of the Markov
model leading to over-parametrization (see, e.g. McKenzie (2003)).

To avoid the estimation of a large number of parameters, Jacobs and Lewis (1983)
proposed the class of (new) discrete autoregressive moving-average (NDARMA) models
for categorical time series. More precisely, for processes with discrete and finite state
space, a parsimonious model is suggested. The idea is to choose the current value
for Xt randomly either from the past values of the time series Xt−1, . . . , Xt−p or from
one of the innovations et, et−1, . . . , et−q with certain probabilities, respectively. This
random selection mechanism is described by independent and identically distributed
(i.i.d) random vectors (Pt, t ∈ Z) with

Pt :=
[
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

]
∼Mult (1;P) ,

where Mult (1;P) denotes the multinomial distribution with parameter 1 and prob-
ability vector P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
with α(1), . . . , α(p) ∈ [0, 1), β(0) ∈

(0, 1] and β(1), . . . , β(q) ∈ [0, 1) such that
∑p

i=1 α
(i) +

∑q
j=0 β

(j) = 1. Then, the
NDARMA(p,q) model equation is given by
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Xt =

p∑
i=1

a
(i)
t Xt−i +

q∑
j=0

b
(j)
t et−j , t ∈ Z, (2.1)

where (et, t ∈ Z) is an i.i.d. process taking values in a discrete and finite state space V.
Since for each time point t only one entry in the random vector Pt is realized to be one
while all others become zero, the value of Xt takes either one of the values of Xs for
s ∈ {t− 1, . . . , t− p} or one of the error terms es for s ∈ {t, . . . , t− q}. This sampling
mechanism assures that the time series takes values in the state space V, such that,
e.g., for a binary time series with V = {0, 1}, the process stays binary. In contrast to
the real-valued ARMA model, the lagged time series values and errors are not weighted
according to the model coefficients and summed-up since only one of them is actually
multiplied with one and all the others with zero based on the realization of Pt.

The model parameters are the probabilities of the multinomial distribution, sum-
marized in the parameter vector P, where all entries of P lie in the unit interval and
sum-up to one. In comparison to Markov Chains, NDARMA models maintain the nice
interpretable ARMA-type structure and have a parsimonious parametrization. Fur-
thermore, NDARMA models fulfill certain Yule–Walker-type equations, as shown in
Weiß and Göb (2008).

In Figure 2.2, one realization of an NDARMA(1,0) process, denoted by NDAR(1),

Xt = atXt−1 + btet, [at, bt] ∼Mult (1;α, β) , β = 1− α (2.2)

with binary state space is shown. NDAR(1) models are probably the simplest members
of the NDARMA class, but Figure 2.2 nicely illustrates the limited flexibility of the
whole NDARMA class. The sampling mechanism of choosing the predecessor with
some probability α tends to generate long runs of the same value in particular when
the parameter α ∈ (0, 1) is large. A switching from one state to the other, e.g., from
Xt−1 = 0 to Xt = 1, can only occur, e.g., if the error term et is selected (with
probability 1 − α) and the error term takes the value et = 1. Hence, the NDARMA
class does not allow systematically selecting the opposite value of Xt−1 for Xt.

Figure 2.2.: Realization of an NDAR(1) process (Equation (2.2)) with parameter vector
P = [0.7, 0.3] and error distribution P (et = 1) = 0.5 and corresponding
autocorrelation function (ACF).

As for the NDARMA class all model parameters are restricted to be non-negative,
which explains in particular why the NDARMA class can model exclusively non-
negative autocorrelations in the data. For the example of a NDAR(1) process, the
autocorrelation at lag one is equal to α ∈ [0, 1), such that any alternating pattern that
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corresponds to negative model parameters as, e.g., observed in Figure 2.1a, cannot
be captured. For a more detailed discussion of the properties of NDARMA models,
we refer also to Jacobs and Lewis (1983) or Weiß (2009a). To increase its flexibility,
Gouveia et al. (2018) proposed an extension of the NDARMA model class by using
a variation function, but the resulting models do also not allow for negative model
parameters and, hence, no negative dependence structure. Hence, whenever negative
dependence structure is present in binary time series data, the NDARMA model is not
suitable. In fact, in all three data examples of Figure 2.1, a straightforward estimation
based on Yule–Walker estimators leads to at least some negative coefficients, such that
NDAR models turn out to be not applicable.

To address this lacking flexibility of the NDARMA model class, we propose a sim-
ple and straightforward extension of the original idea of Jacobs and Lewis (1983)
that allows also negative serial dependence. The resulting generalized binary ARMA
(gbARMA) model class maintains the nicely interpretable model structure. Further-
more, no additional parameters are required to handle the negative dependence, pre-
serving the parsimonious parameterization as well. In Figure 2.3, a realization of a
gbARMA(1,0) process, denoted as gbAR(1), is shown. As a straightforward extension
of an NDAR(1) model in Figure 2.2, gbAR(1) models allow for negative serial depen-
dence. In fact, the range of the autocorrelation at lag one is extended from [0, 1) for
NDAR(1) to (−1, 1) for gbAR(1) models.

Figure 2.3.: Realization of a gbAR(1) process (Equation (2.4)) with parameter vector
P = [−0.7, 0.3] and error distribution P (et = 1) = 0.5 and the correspond-
ing autocorrelation function (ACF).

To allow for negative autocorrelation up to some limited extend, Kanter (1975)
proposed the binary ARMA model class, where he applied the modulo 2 operator
in an ARMA-type model equation. Using the modulo operation assures to stay in
the binary state space, but the nice interpretability of the dependence structure in
the model is lost since the past values of the time series are summed up prior to the
modulo operation, see also McKenzie (1981). We follow a different path in this thesis
and propose a much simpler operation that enables modeling a systematic change of
the state from one time point to the other.

The idea of allowing for negative serial dependence resulting in the gbARMA class
is as follows: a negative model parameter α ∈ (−1, 0) (and hence a negative au-
tocorrelation α ∈ (−1, 0)) in binary time series data corresponds to the time series
systematically changing from one state to the other over time. Hence, the natural idea
to incorporate negative serial dependence in the binary NDAR(1) Model (Equation
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(2.2)) is to replace Xt−1 by 1−Xt−1 as

(1−Xt−1) =

{
1 for Xt−1 = 0

0 for Xt−1 = 1
(2.3)

holds. This leads to the model equation

Xt = at (1−Xt−1) + btet, [at, bt] ∼Mult (1; |α|, β) .

This process has negative autocorrelation α at lag one. Note that, in comparison
to Equation (2.2), as α ∈ (−1, 0) here, we have to use its absolute value |α| as the
probability to select the 1 − Xt−1. Altogether, for α ∈ (−1, 1), we can define the
generalized binary AR(1) (gbAR(1)) process by the model equation

Xt =

{
atXt−1 + btet, [at, bt] ∼Mult (1;α, β) , α ∈ [0, 1)

at (1−Xt−1) + btet, [at, bt] ∼Mult (1; |α|, β) , α ∈ (−1, 0)
. (2.4)

Note that Equation (2.4) extends the parameter space from α ∈ [0, 1) for NDAR(1)
models to α ∈ (−1, 1) for gbAR(1) models. Further, note that, for identification of the
model, we have to assume β(0) = β ∈ (0, 1]. Using indicator variables, Equation (2.4)
can be compactly written as

Xt = at
(
1{α≥0}Xt−1 + 1{α<0} (1−Xt−1)

)
+ btet (2.5)

=
[
a
(+)
t Xt−1 + a

(−)
t

]
+ btet (2.6)

with [at, bt] ∼ Mult (1; |α|, β), β = 1 − |α|, a(+)
t := at

(
1{α≥0} − 1{α<0}

)
and a

(−)
t :=

at1{α<0}.

In Figure 2.3, a realization of a gbAR(1) process with negative parameter α = −0.7
is shown, where the time series tends to take systematically the opposite state of
the predecessor. The corresponding autocorrelation plot reflects the negative serial
dependence leading to an alternating pattern. Runs of the same state can only occur,
when the error term et is selected (with probability 1−|α|) and the error term et takes
the same value as Xt−1, that is, et = Xt−1. The empirical autocorrelations for the Old
Faithful Geyser data can be found in Figure 2.4a, where the pronounced alternating
behavior clearly indicates negative linear dependence to be present in the data.

The idea of allowing for a negative model coefficient by replacing Xt−1 by 1−Xt−1
in gbAR(1) processes (Equation (2.5)) can be also employed for each parameter in pth
order gbAR processes, where each Xt−i, i = 1, . . . , p may be replaced by 1 −Xt−i in
the model equation.

The chapter is organized as follows. In Section 2.2, generalized binary AR processes
of order p ∈ N are defined, where we also give stationarity conditions and state the
stationary solution. Further, stochastic properties are derived that include formulas
for the transition probabilities, the marginal distribution, and Yule–Walker equations.
As a real data example, we illustrate the applicability of our model class to the geyser
eruption data in Section 2.1. In Section 2.3, we present several simulation experiments.
First, in Section 2.3.1, for the example of a gbAR(2) model, we illustrate the generality
of the resulting gbAR model class in comparison to natural competitors including AR,
NDAR, and Markov models of order two, respectively. In Section 2.3.2, we examine
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2. Generalized Binary Time Series Models - the univariate Model

the estimation performance of Yule–Walker estimators in the gbAR models in Section
2.3.2. In Section 2.3.2, we investigate the benefit of using the parsimonious gbAR
models in comparison to Markov models and their robustness in cases where the model
is mis-specified. By adding a moving-average part to gbAR models in Section 2.4,
ARMA-type extensions of gbAR models leading to gbARMA processes are discussed.
We conclude in Section 2.5. All proofs are deferred to Section 2.6.

2.2. The generalized binary Autoregressive (gbAR) Model
Class

We define now generalized binary AR(p) (gbAR(p)) models for binary data based on
the notation of NDAR(p) models by adopting the idea of replacing Xt−1 by 1−Xt−1 for
a negative parameter α as in Equations (2.5) and (2.6) separately for all or some of the
lagged values Xt−1, . . . , Xt−p. To be most flexible, each parameter α(i) corresponding
to the lagged value Xt−i, i = 1, . . . , p is allowed to be either positive or negative, that
is, α(i) ∈ (−1, 1), respectively.

2.2.1. gbAR Models

The parameter vector P :=
[
α(1), . . . , α(p), β(0)

]
contains the probabilities of the multi-

nomial distribution that controls the selection mechanism of NDAR models. As we
allow now for α(i) ∈ (−1, 1), i = 1, . . . , p, i.e. the parameters can be negative, P has to
be modified to serve again as a parameter vector of probabilities. This is achieved by
taking entry-wise absolute values and we define

P|·| :=
[
|α(1)|, . . . , |α(p)|, β(0)

]
, (2.7)

where β(0) ∈ (0, 1] such that
∑p

i=1 |α(i)| + β(0) = 1. This enables us to give the
definition of the generalized binary AR model of arbitrary order p ∈ N.

Definition 2.1 (Generalized binary AR processes)
Let (Xt, t ∈ Z) be a stationary process taking values in {0, 1}. Let (et, t ∈ Z) be a
binary error process such that et is independent of (Xs, s < t) with mean µe = E(et) =
P (et = 1) and variance σ2e = V ar(et) = P (et = 1)(1 − P (et = 1)) > 0. Let P :=[
α(1), . . . , α(p), β(0)

]
be the parameter vector with P|·| as in Equation (2.7) such that

P|·|1p+1 = 1 with 1p+1 the one vector of length p+ 1. Further, let

Pt :=
(
a
(1)
t , . . . , a

(p)
t , b

(0)
t

)
∼Mult

(
1;P|·|

)
, t ∈ Z,

be i.i.d. random vectors, which are independent of (et, t ∈ Z) and (Xt, s < t). Then, the
process (Xt, t ∈ Z) is said to be a generalized binary AR process of order p (gbAR(p)),
if it follows the recursion

Xt =

p∑
i=1

[
a
(+,i)
t Xt−i + a

(−,i)
t

]
+ b

(0)
t et (2.8)

with a
(+,i)
t := a

(i)
t

(
1{α(i)≥0} − 1{α(i)<0}

)
and a

(−,i)
t := a

(i)
t 1{α(i)<0} for i = 1, . . . , p.
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2.2. The generalized binary Autoregressive (gbAR) Model Class

By rewriting the random variables a
(·,i)
t , · ∈ {−,+} in the defining model (Equation

(2.8)), the model can be represented in the spirit of Equation (2.5). However, the
benefit of the representation in Equation (2.8) is that only one random variable is

multiplied with the lagged value Xt−i, whereas a
(−,i)
t is an additional random variable

that accounts for the switching that leads to negative model coefficients.

2.2.2. Stochastic Properties of gbAR Models

Before calculating moments of the binary time series process (Xt, t ∈ Z) itself, we first
consider the expectation of the random variables related to the multinomial selection

mechanism. Noting that E(a
(i)
t ) = |α(i)|, we have

E
(
a
(−,i)
t

)
= |α(i)|1{α(i)<0} =: α(−,i),

E
(
a
(+,i)
t

)
= α(i).

This enables us to compute the stationary mean µX = E(Xt) of the process, directly
leading to

µX =

∑p
i=1 α

(−,i) + β(0)µe

1−
∑p

i=1 α
(i)

. (2.9)

If all parameters α(1), . . . , α(p) are non-negative, the above formula becomes µX = µe
due to

∑p
i=1 α

(−,i) = 0 and 1 −
∑p

i=1 α
(i) = β(0), leading then to the well-known

formula for the mean of NDAR(p) models. Otherwise, we have µX 6= µe for gbAR(p)
models in contrast to NDAR(p) models (see, e.g., Weiß (2009a)).

For the familiar stationary condition imposed on the model parameters α(1), . . . , α(p)

that all roots of the characteristic polynomial lie outside the unit circle, i.e. if(
1− α(1)z − . . .− α(p)zp

)
6= 0 ∀z ≤ 1 (2.10)

holds, the stationary solution of the gbAR(p) model can be derived. Note that the
condition in (2.10) is equivalent to

∑p
i=1 |α(i)| < 1, such that the error has to be

selected with strictly positive probability β(0) > 0 by the multinomial distribution. If
the stationarity condition in Equation (2.10) holds, a moving-average representation
of the gbAR(p) process can be derived.

For constructing the stationary solution of the gbAR time series, we follow the
common approach based on a multivariate representation of the model, as in Lütkepohl
(2005)[Chap. 11.3.2]. Precisely, the gbAR(p) model can be written as a p-dimensional
gbVAR(1) process (Yt, t ∈ Z) with the following matrices and vectors, such that the
first entry of (Yt, t ∈ Z) is equal to the gbAR(p) process. We define

Yt :=

 Xt
...

Xt−p+1

 (p× 1) and Ut :=


et
0
...
0

 (p× 1) .

To obtain a vector autoregressive representation for Yt, we have to define several ma-
trices that contain the random variables of the multinomial distribution. Precisely, for
· = {−,+}, let
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2. Generalized Binary Time Series Models - the univariate Model

Ã
(·)
t :=


a
(·,1)
t . . . a

(·,p−1)
t a

(·,p)
t

1 0 0
. . .

...
0 . . . 1 0

 and B̃
(1)
t :=

(
b
(0)
t 0 . . . 0

0p−1×1 0p−1×1 . . . 0p−1×1

)

be p×p matrices, where 0r×s denotes the (r×s)-dimensional zero matrix. Based on the
notation introduced above, gbVAR(p) processes can be represented as a vector-valued
gbAR model of first order (gbVAR(1)) as follows

Yt = Ã
(+)
t Yt−1 + Ã

(−)
t 1p + B̃

(1)
t Ut, (2.11)

where 1p is the one vector of length p. The above notation enables us to state a
moving-average representation of gbAR(p) processes as follows.

Theorem 2.2 (Moving-average representation of gbAR processes)
Let (Xt, t ∈ Z) be a stationary gbAR(p) process, that is (Xt, t ∈ Z) fulfills Equation
(2.10). Then, we have

(i) For p = 1, the gbAR(1) model has a gbMA(∞)-type representation (in L2-sense),
that is,

Xt =
∞∑
i=0

ζia
(−)
t−i +

∞∑
i=0

ζib
(0)
t−iet−i, t ∈ Z, (2.12)

where ζ0 := IK and ζi :=
∏i−1
j=0 a

(+)
t−j since limk→∞

∏k−1
i=0 a

(+)
t−i = 0 in L2.

(ii) For p ∈ N, the gbAR(p) model has a gbMA(∞)-type representation (in L1-sense),
that is,

Xt = eT1

 ∞∑
i=0

i−1∏
j=0

Ã
(+)
t−jÃ

(−)
t−i1p +

∞∑
i=0

i−1∏
j=0

Ã
(+)
t−jB̃

(1)
t−iUt−i

 , t ∈ Z, (2.13)

since limk→∞
∏k
i=0 Ã

(+)
t−i = 0p×p in L1. Here, e1 is the first unit vector and 1p is

the one vector of length p. The notation used here is obtained from that used in
Section 2.4.2 for the special case of q = 0.

Hence, the process can be represented as an infinite weighted sum of the error
terms. However, in comparison to classical AR or NDAR processes, an additional
term appears that takes control of potential negative parameters and, consequently,
allows for negative dependence to be modeled. This term vanishes if all parameters
α1, . . . , αp are positive.

The second-order dependence structure of gbAR processes coincides with that of AR
or NDAR processes in the sense that the same Yule–Walker equations for h 6= 0 hold.
However, note again that the parameter space for gbAR models is considerably larger
than for NDAR models allowing for negative parameters leading to more flexibility.
The Yule–Walker equations link the model parameters to the autocovariances of the
process. Hence, they can be used for estimating the model parameters by the same
well-known Yule–Walker estimators. A link between the autocovariances, the model
coefficients, and the mean and variance of the error terms is established by the Yule–
Walker equation for h = 0, respectively.
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2.2. The generalized binary Autoregressive (gbAR) Model Class

Theorem 2.3 (Yule Walker Equations)
Let (Xt, t ∈ Z) be a stationary gbAR(p) process.

(i) For all h ∈ N, we have

γ (h) =

p∑
i=1

α(i)γ (|h− i|) . (2.14)

(ii) For h = 0, we have

γ (0) = σ2e +
(1− 2µX)

∑p
i=1 α

(−,i) +
(∑p

i=1 |α(i)| − 1
)
µ2X + β(0)µ2e(

1−
∑p

i=1 |α(i)|
) . (2.15)

The next Lemma states some basic properties of the marginal distribution of gbAR
processes and their transition probabilities. Since the time series has a binary state
space, these conditional probabilities allow quantifying the probability to reach a cer-
tain state from the past values. In their derivation, the multinomial selection mecha-
nism plays a crucial role and, in the stated formulas, the Kronecker delta δij indicates
if a past value has actually impact on the outcome of the time series or not.

Lemma 2.4 (Marginal, joint and transition probabilities of gbAR processes)
Let (Xt, t ∈ Z) be a stationary gbAR(p) model and set pi := P (et = i). Then, the
following properties hold:

(i) P (Xt = i0|Xt−1 = i1, . . . , et = j0)

=
∑p

l=1 |α
(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)δi0j0

(ii) P (Xt = i0|Xt−1 = i1, . . .)

=
∑p

l=1 |α
(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)pi0

(iii) P (Xt = j) = β(0)

(1−
∑p
i=1 α

(i))
pj +

∑p
i=1 |α

(i)|1{α(i)<0}

(1−[
∑p
i=1 α

(i)])

(iv) P (Xt = i0, et = j0) = β(0)δi0j0

+
∑p

i=1 |α(i)|1{α(i)<0}

(
1− pj0 +

pj0

1−
∑p
i=1 |α(i)|

[
1{α(i)≥0}−1{α(i)<0}

]
)

Comparing the results in Lemma 2.4 with Weiß (2009a)[Lemma 11.2.1.3] established
for NDARMA(p,q) processes, the main difference is in Part (iii). The marginal distri-
bution of the NDARMA process is equal to the marginal distribution of the error term
process, but this does not hold for gbAR processes. Instead, the marginal distribution
of gbAR processes depends on an additional term that results from the absolute values
of the negative parameters.

In the following example, let us conclude this section with a more detailed look at
the gbAR(1) model and a real data example.

Example 2.5 (gbAR(1) process)
Let (Xt, t ∈ Z) be a gbAR(1) process with parameter vector P :=

[
α(1), β(0)

]
, α(1) ∈

(−1, 1) and β(0) = 1 − |α(1)|. The i.i.d. error term process (et, t ∈ Z) follows the
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2. Generalized Binary Time Series Models - the univariate Model

distribution P (et = 1) = p1 ∈ (0, 1) such that µe = p1 and σ2e = p1(1− p1) > 0. Then,
the model equation equals

Xt = a
(1)
t

[
1{α(1)≥0}Xt−1 + 1{α(1)<0} (1−Xt−1)

]
+ b

(0)
t et,[

a
(1)
t , b

(0)
t

]
∼Mult

(
1;
[
|α(1)|, β(0)

])
.

At each time point t, if α(1) ≥ 0, either the predecessor Xt−1 with probability α(1) or
the error term et with probability β(0) is selected by a multinomial distributed random
variable to determine Xt. In the case of α(1) < 0, either 1−Xt−1 with probability |α(1)|
or the error term et with probability β(0) is selected. That is, as for each t, either at
or bt is equal to one and the other is zero, it holds

Xt =


Xt−1 if a

(1)
t = 1 for α(1) ≥ 0

1−Xt−1 if a
(1)
t = 1 for α(1) < 0

et if b
(0)
t = 1

.

For positive values of α(1), the gbAR(1) model coincides with the NDAR(1) model. A
corresponding realization is shown in Figure 2.2, where for large values of α(1) mainly
the predecessor Xt−1 is chosen and long runs of the same value occur. Figure 2.3
shows one realization of a gbAR(1) process with negative value of α(1). The time
series switches its states from zero to one and vice versa at most time points.

The transition probability to move from state i1 at time t− 1 to state i0 at time t is
given by

P (Xt = i0|Xt−1 = i1) = |α(1)|
[
1{α(1)≥0}δi0i1 + 1{α(1)<0}δi0(1−i1)

]
+
(

1− |α(1)|
)
pi0 .

(2.16)

The probability of the process taking the value i0 = 1 depends on two terms. First,
the probability of choosing the error term is multiplied by the probability of the error
term taking the same value as Xt, e.g., P (et = i0) = pi0 with i0 = 1. If the probability
of choosing the predecessor is added, it depends on its value and the sign of α. If,
for example α < 0, then the probability of choosing Xt−1 is just added if its value is
the contrary of i0, such that the Kronecker delta is equal to one. This leads to the
representation of Equation (2.16) as

P (Xt = i0|Xt−1 = i1) =

{
|α(1)|δi0i1 +

(
1− |α(1)|

)
pi0 if α ≥ 0

|α(1)|δi0(1−i1) +
(
1− |α(1)|

)
pi0 if α < 0

.

Example 2.6 (Eruption duration of the Old Faithful Geyser)
The binarized eruption duration of the Old Faithful Geyser is illustrated in Figure 2.1a.
Its empirical autocorrelation, as shown in Figure 2.4a, clearly indicates that there is
negative serial dependence present in the data such that a gbAR(p) process appears to
be appropriate. The order selection using the AIC criterion leads to a model of order
p = 2 with AIC = 159.83. This selection is confirmed by an inspection of the partial au-
tocorrelation in Figure 2.4b. Parameter estimation is based on the Yule–Walker Equa-
tion (2.14) leading to the estimated parameter vector P̂ = [−0.3949, 0.2659, 0.3393] and
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the fitted model

Xt =

2∑
i=1

[
a
(+,i)
t Xt−i + a

(−,i)
t

]
+ b

(0)
t et,

Pt ∼Mult (1; [| − 0.3949|, 0.2659, 0.3393]) .

The sample mean of the binary time series is equal to µ̂X = 0.6488 since long eruptions
of the geyser arise more often than short eruption duration. The first parameter α̂1

is indeed estimated to be negative and the second one α̂2 to be positive. From β̂(0) =
1−

∑2
i=1 |α̂(i)|, an error term is chosen with probability β̂(0) = 0.3393. In Figure 2.1a,

a change from zero to one or vice versa can be observed in many time steps, whereas the
run of ones in the time series correspond in most cases to choosing an error term. The
error term distribution is calculated by Equation (2.9) with µ̂e = P (et = 1) = 0.9953.

(a) ACF (b) pACF

Figure 2.4.: Autocorrelation (ACF) and partial autocorrelation (pACF) of the Old
Faithful Geyser data

To measure the predictive power of the estimated model, we use ROC curves and
the corresponding area under the curve (AUC). The ROC concept indicates a good
predictive performance whenever the resulting curve is “far away” above the diagonal
leading to an AUC larger than 0.5. Note that the diagonal corresponds to the case of
independent observations, where no prediction based on past values is meaningful. For
the one step ahead prediction, the transition probability of Lemma 2.4 (ii) is used by
plugging in the estimated probabilities.

Comparing the predictor to the realized values in the sample leads to the ROC curve
shown in Figure 2.5, where the corresponding AUC becomes 0.8317. Hence, as the ROC
curve is “far away” above the diagonal and the AUC is larger than 0.5, the prediction
performance of the gbAR model turns out to be considerably better than that of a model
that relies on independent observations. By allowing for negative model parameters,
gbAR models appear to be suitable for this real data example that shows negative serial
dependence.
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2. Generalized Binary Time Series Models - the univariate Model

Figure 2.5.: ROC curves based on Yule–Walker estimation (black) and MLE (red) of
a gbAR(2) model fitted to the binarized Old Faithful Geyser eruption
duration leading to an AUC = 0.8317 in both cases.

For further improvement, the Yule–Walker estimates might serve as starting values
for a maximum likelihood estimation (MLE) based on the conditional log-likelihood
function

` (θ|xp, . . . , x1) =
T∑

t=p+1

log p (xt|xt−1, . . . , xt−p) , (2.17)

where p (xt|xt−1, . . . , xt−p) := P (Xt = xt|Xt−1 = xt−1, . . . , Xt−p = xt−p) (see also Weiß

(2018) [(B.6)]). However, the resulting parameter estimates P̂MLE = [−0.3935, 0.2711, 0.3353]
differ only slightly from the Yule–Walker estimates P̂ = [−0.3949, 0.2659, 0.3393], lead-
ing to virtually the same ROC and AUC.

(a) Yule–Walker

T α̂(1) α̂(2) β̂(0)

50 −0.5819 0.1444 0.2738
100 −0.4610 0.2675 0.2715
150 −0.3748 0.3382 0.2871
200 −0.3738 0.3440 0.2822
250 −0.4048 0.2625 0.3328
299 −0.3949 0.2659 0.3393

(b) MLE

T α̂(1) α̂(2) β̂(0)

50 −0.5556 0.1812 0.2632
100 −0.4546 0.2822 0.2632
150 −0.3658 0.3511 0.2830
200 −0.3706 0.3514 0.2780
250 −0.4004 0.2723 0.3259
299 −0.3935 0.2711 0.3353

Table 2.1.: Comparison of (a) Yule–Walker and (b) MLE parameter estimates based on
subsamples of length T = 50, 100, 150, 200, 250 of the binarized Old Faithful
Geyser data.

To shed some light on the potential improvement of MLE in comparison to Yule–
Walker estimation, we fit a gbAR(2) model to subsamples of length T = {50, 100, 150, 200,
250} of the binarized Old Faithful Geyser data. The parameter estimates for Yule–
Walker estimates and MLE are shown in Table 2.1. The results differ only slightly and
decrease with increasing subsample sizes.
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2.3. Generality of the gbAR Model Class and Estimation
Performance

In this section, we investigate the generality of the gbAR model class in comparison
to obvious competitors in Section 2.3.1 and address the estimation performance in
different setups and in comparison to parameter-intensive Markovian models in Section
2.3.2.

2.3.1. Illustration of the Generality of gbAR Models

By construction of the gbAR model and in contrast to NDAR models, negative pa-
rameters α(i) ∈ (−1, 1) , i = 1, . . . , p are allowed such that negative autocorrelation is
possible. Hence, the proposed gbAR model class clearly generalizes the NDAR model
class. In this section, we aim to shed some light on the question how much more
general the gbAR model actually is in comparison to other AR-type models such as
AR, NDAR, and binAR models, as well as Markov models. For this purpose, we con-
sider such models of order p = 2 and study their generality. That is, we compare the
parameter ranges of these four model classes as well as the possible ranges of pairs of au-
tocorrelation (ρ (1) , ρ (2)). Precisely, we compare the flexibility of gbAR(2), NDAR(2),
binAR(2), and AR(2) processes (even if they model continuous data) and second-order
Markov chains. For all four autoregressive-type models, the autocorrelations depend
on the model parameters as follows

ρ (1) =
(1− 2µ)α(1)

1− (1− 2µ)α(2)
,

ρ (2) = (1− 2µ)
(1− 2µ)(α(1))2

1− (1− 2µ)α(2)
+ (1− 2µ)α(2).

For the gbAR(2), AR(2), and NDAR(2) processes, it holds µ = 0.

For a stationary AR(2) process, the range of possible coefficients is restricted to
α(1) ∈ (−2, 2) and α(2) ∈ [−1, 1] such that α(1) + α(2) < 1 and α(2) − α(1) < 1. For
a stationary NDAR(2) and binAR(2) process, the parameter range is restricted by
α(1), α(2) ∈ [0, 1] with α(1) + α(2) < 1 and in the binAR(2) process P (et = 1) = µ ∈
(0, 1) (for further details, see Weiß (2009b)). For a gbAR(2) model, the restrictions
read |α(1)|+ |α(2)| < 1 with α(1), α(2) ∈ (−1, 1).

The parameter ranges of AR, NDAR, binAR and gbAR models of order two, re-
spectively, are illustrated and compared in Figure 2.6a and the corresponding range of
pairs of autocorrelations (ρ (1) , ρ (2)) is shown in Figure 2.6b.

The parameter range as well as the range of autocorrelation pairs for the gbAR(2)
model is considerably larger than those of an NDAR(2) model. The range of the
classical AR model is again larger, but this is an unfair comparison as the AR model
has been proposed for continuous data and is not suitable for binary data at all.
In Figure 2.6b, the areas of AR(2), NDAR(2), and binAR(2) models are hyperboloid-
shaped and, as shown in Jacobs and Lewis (1983), the autocorrelations of the NDAR(2)
model take just positive values. In contrast to NDAR(2) processes, the binAR(2)
process captures an additional area that corresponds to negative serial dependence.
The range of autocorrelation pairs for the gbAR(2) is not hyperboloid-shaped, but
forms a triangle. The range of this triangle comes actually close to the range of the
AR(2) model, although the comparison with the AR(2) model is indeed unfair as
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Figure 2.6.: Comparison of (a) parameter ranges of (α(1), α(2)) and (b) pairs of au-
tocorrelations (ρ (1) , ρ (2)) for AR(2) (black), gbAR(2) (red), binAR(2)
(blue), and NDAR(2) (green) models.

the latter has been proposed for continuous data and the gbAR(2) for binary data.
Compared to NDAR(2) processes, the extension allowing also for negative parameters
leads to a much larger range of possible autocorrelation pairs than just the mirrored
half parable. This is explained by the four times larger possible range for the model
parameters of gbAR(2) processes in comparison to NDAR(2) processes, as shown in
Figure 2.6a. In summary, by allowing for negative model parameters in gbAR models,
we can get a considerably more flexible model class in comparison to NDAR models
that is suitable to capture a wider range of dependence structures of binary time series
data.

In Figure 2.7, the possible range of autocorrelation pairs of gbAR(2) processes and
Markov chains of order two are shown together. Recall that the gbAR(2) model is a
parsimonious member of the class of Markov chains of order two and hence less flexible.
Interestingly, with respect to pairs of autocorrelations of lags one and two, the possible
range for the gbAR(2) model is only slightly smaller than that of a Markov chain of
order two. Moreover, the largest range shown for the (continuous) AR(2) models in
Figure 2.6b (in black) cannot be attained by Markov chains of order two. Hence,
gbAR(2) models can to cover a large portion of the possible range of autocorrelation
pairs of lags one and two of second-order Markov chains. However, keep in mind that
for a pth-order Markov chain, 2p parameter have to be estimated. For example, 22 = 4
parameters need to be specified for a second-order Markov chain, whereas gbAR(2)
processes only require three parameters.

2.3.2. Simulations

In this simulation study, we addressed two things. First, as shown in Section 2.3.2, we
investigated the estimation performance of Yule–Walker estimators for gbAR models
of different orders and sample sizes. Second, as shown in Section 2.3.2, we studied
the flexibility of the gbAR model class and compared the prediction performance to
Markovian models in the case where the estimated model was correctly specified as a
gbAR model and in the case where the underlying model was a Markovian model that
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Figure 2.7.: Autocorrelation pairs of the gbAR(2) process (red) compared to the pairs
of autocorrelation of a second-order Markov chain (blue).

does not belong to the class of gbAR models.

Estimation Performance

To study the estimation performance of Yule–Walker estimators in gbAR models, we
considered three different specifications of gbAR(p) processes with p = 1, 2, 3 and
sample sizes T = 100, 200, 500, 1000. Precisely, we considered the following gbAR data
generating processes (DGPs):

(DGP1) gbAR(1) with α(1) = −0.85, µe = 0.3, β(0) = 0.15 and µX = 0.48378.

(DGP2) gbAR(2) with α(1) = 0.42, α(2) = −0.38, µe = 0.3, β(0) = 0.2 and µX =
0.45833.

(DGP3) gbAR(3) with α(1) = 0. − 0.294, α(2) = 0.382, α(3) = −0.2393, µe = 0.67,
β(0) = 0.0847 and µX = 0.52140.

The model parameters summarized in P were estimated based on Yule–Walker Equa-
tion (2.14) and the error term distribution using Equation (2.9). Note that, in all
setups, we considered gbAR models that make use of the extended parameter space
by including negative parameters α(i) in the model. For each DGP, we simulated 1000
replications to calculate the mean squared error (MSE) to measure the estimation per-
formance.

Table 2.2 summarizes the simulation results for all DGPs and all considered sample
sizes. The estimation performance is generally good, as confirmed by rather small
MSEs. It turns out that, as expected, in all considered setups, the estimation perfor-
mance improves with increasing the sample size. It is interesting to note that, relative
to the estimation of the other quantities, the estimation of the mean of the error terms
µe is generally less precise. This can be explained by the fact that the error terms et
do enter the time series only in the case when it is actually selected which happens

only with probabilities β
(0)
DGP1 = 0.15, β

(0)
DGP2 = 0.2 and β

(0)
DGP3 = 0.0874 for the three

DGPs, respectively. A comparison of the estimation performance of the gbAR mod-
els of different orders shows that the estimation performance declines with increasing
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2. Generalized Binary Time Series Models - the univariate Model

order, which is of course plausible as the number of parameters gets larger, leading to
more estimation uncertainty.

T MSE of α̂(1) MSE of α̂(2) MSE of α̂(3) MSE of µ̂X

DGP1 100 0.00271 0.00022
200 0.00133 0.00011
500 0.00051 0.00004
1000 0.00025 0.00002

DGP2 100 0.00684 0.00588 0.00191
200 0.00338 0.00314 0.00107
500 0.00136 0.00124 0.00044
1000 0.00068 0.00064 0.00020

DGP3 100 0.01079 0.01253 0.00900 0.00416
200 0.00502 0.00525 0.00386 0.00200
500 0.00194 0.00198 0.00143 0.00082
1000 0.00097 0.00087 0.00065 0.00040

T MSE of µ̂e MSE of β̂(0)

DGP1 100 0.03140 0.00271
200 0.01464 0.00133
500 0.00543 0.00051
1000 0.00262 0.00025

DGP2 100 0.04877 0.01007
200 0.02689 0.00521
500 0.01169 0.00219
1000 0.00555 0.00108

DGP3 100 0.10187 0.02212
200 0.08931 0.01044
500 0.05859 0.00374
1000 0.03913 0.000178

Table 2.2.: Estimation performance for several Yule–Walker parameter estimates with
respect to mean squared errors for three different DGPs over 1000 Monte
Carlo replications.

Robustness of gbAR Model Class

The class of gbAR(p) models form a parsimoniously parametrized subclass in the class
of Markovian models of order p. To study the benefit of this newly proposed class of
binary models, we wanted to compare the gbAR(p) model to Markov chains which are
mostly used for binary data.

First, let us consider the case of an underlying gbAR model. Since gbAR(p) pro-
cesses have a Markov chain representation, a comparison in terms of the transition
probabilities becomes suitable. From Lemma 2.4 (ii), the transition probabilities of
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gbAR models compute to

P (Xt = i0|Xt−1 = i1, . . . , Xt−p = ip)

=

p∑
l=1

|α(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)P (et = i0) . (2.18)

First, for p = 1, 2, 3, we simulated from the gbAR(p) models defined for DGP1-3 in
Section 2.3.2 realizations of different sample sizes to estimate the transition probabil-
ities of: (a) a pth-order Markov chain and (b) a gbAR(p) process. For gbAR models,
the true transition probabilities are given by Equation (2.18) and can be estimated by
replacing the model parameters by the corresponding estimators. Then, the MSE is
calculated model-wise and over all transition probabilities. For all three DGPs with
model orders p = 1, 2, 3, the simulation results are stated in Table 2.3. By “MSE
gbAR(p)”, we denote the mean squared error by evaluating the difference between the
estimated transition probability and the truth over all possible transition probabilities
from a gbAR(p) process. Equivalently, “MSE MC” denotes the corresponding differ-
ence between the estimated transition probability and the truth of a Markov model
over all possible transition probabilities.

The MSEs are calculated over 1000 replications and show clearly that the estimated
gbAR(p) transition probabilities have smaller MSEs for all sample sizes and orders in
comparison to the MSEs of the Markov chain fits. This indicates that, in the case of
an underlying gbAR(p) process, fitting the more parsimonious model to the data leads
to better estimation performance than fitting a Markov chain.

Next, we considered the situation where the underlying model is a Markov chain
of order p that does not belong to the subclass of gbAR(p) models. In general, the
2p × 2-dimensional transition probability matrix Q of a Markov chain of order p is
defined by

Q =
(
pi0i1i2...ip

)
ij=0,1,j=0,...,p

, (2.19)

where

P (Xt = i0|Xt−1 = i1, . . . , Xt−p = ip) =: pi0i1i2...ip . (2.20)

For the simulations, we had to make sure that the used specifications of Q are such
that the resulting model is not a member of the gbAR class. For a set of specified
transition probabilities, it is actually easy to check whether the resulting model is a
gbAR model, by checking whether Equation (2.18) hold true.

It turns out that the class of gbAR(1) models and the class of binary Markov chains
of order 1 coincide. Hence, for the simulations study, we chose transition probabilities
such that Equation (2.18) does not hold for p = 2, 3. Precisely, we set

Q =

(
0.46 0.54
0.56 0.44

)
, Q =


p000 p100
p001 p101
p010 p110
p011 p111

 =


0.21 0.79
0.69 0.31
0.32 0.68
0.89 0.11

 ,
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2. Generalized Binary Time Series Models - the univariate Model

Q =



p0000 p1000
p0001 p1001
p0010 p1010
p0100 p1100
p0011 p1011
p0101 p1101
p0110 p1110
p0111 p1111


=



0.16 0.84
0.26 0.74
0.42 0.58
0.21 0.79
0.75 0.25
0.64 0.36
0.57 0.43
0.94 0.06


.

Using such transition probabilities summarized in Q, binary time series were gener-
ated. Again, a gbAR(p) process and a pth order Markov chain were fitted. In Table 2.4,
the MSE estimation performance for the different DGPs is summarized. Interestingly,
although the corresponding gbAR fits (for p = 2, 3) do actually estimate the wrong
models, with respect to MSE over all transition probabilities, their estimation perfor-
mances for small sample sizes are superior to those of Markov chains that estimate
the correct models. However, for large sample sizes, the estimated Markov models
outperform the misspecified gbAR model fits. As it is estimating the true model, this
pattern was expected. In summary, for time series with small sample size, where the
true underlying DGP is indeed a Markov chain and not a gbAR(p) process, the par-
simonious gbAR model might be a good approximation, leading potentially to more
precise estimates of the transition probabilities although the model is misspecified.

MSE MSE MSE MSE MSE MSE
T gbAR(1) MC p = 1 gbAR(2) MC p = 2 gbAR(3) MC p = 3

100 0.01887 0.02690 0.02647 0.02674 0.03302 0.06942
200 0.01288 0.02399 0.01889 0.01904 0.02333 0.04935
500 0.00788 0.02256 0.01125 0.01191 0.01536 0.02940
1000 0.00529 0.02168 0.00775 0.00852 0.01074 0.02024

Table 2.3.: Comparison of the estimation performance of gbAR(p) model fits and
Markov chain fits of order p for p = 1, 2, 3 for three different gbAR-DGP1-3
with respect to the mean squared difference of estimated transition proba-
bilities to the truth over 1000 Monte Carlo replications.

MSE MSE MSE MSE MSE MSE
T gbAR(1) MC p = 1 gbAR(2) MC p = 2 gbAR(3) MC p = 3

100 0.03183 0.03310 0.02563 0.02784 0.02771 0.03216
200 0.02219 0.02365 0.01894 0.01951 0.02276 0.02202
500 0.01420 0.01610 0.01371 0.01242 0.01960 0.01380
1000 0.00980 0.01216 0.01132 0.00882 0.01838 0.00977

Table 2.4.: Comparison of a gbAR Model and Markov chain by its difference of the
transition probabilities to the truth from an underlying Markov Process.
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2.4. Further Extension: The Generalized Binary ARMA Class

In this section, we extend the gbAR model class and give a definition of generalized
binary ARMA (gbARMA) models that additionally contain a moving average part in
their model equations. In the spirit of the gbAR model as an extension of the NDAR
model class, we allow also for negative parameters in the moving-average part of the
model.

First, we provide the definition of the gbARMA(p,q) model, derive its stationary
solution, and state some basic properties of marginal, joint, and transition proba-
bilities of gbARMA(p,q) processes. We conclude this section with an example of a
gbARMA(1,1) process.

2.4.1. gbARMA Models

To be most flexible, the gbARMA model class allows additionally for negative param-
eters to capture negative dependence structure also in the moving average part. As
before, we assume β(0) ∈ (0, 1] for identification reasons. In the gbARMA(p,q) model
class, the parameters α(i) and β(j) are allowed to be either positive or negative, e.g.,
α(i), β(j) ∈ (−1, 1) for i = 1, . . . , p and j = 1, . . . , q. To modify the parameter vector
P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
, again such that it contains the probabilities, we

define

P|·| :=
[
|α(1)|, . . . , |α(p)|, β(0), |β(1)| . . . , |β(q)|

]
. (2.21)

Definition 2.7 (Generalized binary ARMA processes)
Let (Xt, t ∈ Z) be a stationary process which takes values in {0, 1}. Let (et, t ∈ Z) be
a binary error process such that et is independent of (Xs, s < t) with mean µe and
variance σ2e = V ar (et) > 0. Let P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
be the parameter

vector with P|·| as in Equation (2.21) such that P|·|1p+q+1 = 1. Further, let

Pt :=
(
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

)
∼Mult

(
1;P|·|

)
, t ∈ Z

be i.i.d. random vectors, which are independent of (et, t ∈ Z) and (Xt, s < t). Then, the
process (Xt, t ∈ Z) is said to be a generalized binary ARMA(p,q) process, if it follows
the recursion

Xt =

p∑
i=1

[
a
(+,i)
t Xt−i + a

(−,i)
t

]
+ b

(0)
t et +

q∑
j=1

[
b
(+,j)
t et−j + b

(−,j)
t

]
(2.22)

with a
(+,i)
t := a

(i)
t

(
1{α(i)≥0} − 1{α(i)<0}

)
, a

(−,i)
t := a

(i)
t 1{α(i)<0} and analogous defini-

tions for b
(+,·)
t and b

(−,·)
t .

The model parameters are contained in the vector P with entries α(i) ∈ (−1, 1) for
i = 1, . . . , p, β(0) ∈ (0, 1] and β(j) ∈ (−1, 1) for j = 1, . . . , q. Note that, as β(0) > 0

holds, no random variable b
(−,0)
t is contained in the model equation.

With probability
∑p

i=1 |α(i)|, a predecessor Xs, s ∈ {t − 1, . . . , t − p} is chosen,
whereas, with probability

∑q
j=0 |β(j)|, the process takes the value of an error term

es, s ∈ {t, . . . , t− q}, where it follows that
∑p

i=1 |α(i)|+
∑q

j=0 |β(j)| = 1.
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2.4.2. Stochastic Properties of gbARMA Models

When dealing with possibly negative parameters also in the moving-average part of
gbARMA models, the idea of Equation (2.4) is employed also for the lagged error
terms. Hence, this allows modeling negative dependence in the moving average part as
well. In the multinomial distribution, all values of the parameter vector P have to be
considered in absolute value, thus we have to use P|·| as defined in Equation (2.21). For
the expectation of gbARMA processes, two additional sums show up in comparison to
the NDARMA case. Precisely, we have

µX =

∑p
i=1 α

(−,i) +
∑q

j=1 β
(−,j) +

∑q
j=0 β

(j)µe

1−
∑p

i=1 α
(i)

.

The construction of the stationary solution of the gbARMA time series is similar
to the construction of the gbAR(p) process introduced in Section 2.2.1 and Lütkepohl
(2005)[Chap. 11.3.2]. The vector representation of the process (Yt, t ∈ Z) is equipped
with a moving average part and thus the dimension of the corresponding random
matrices becomes p + q × p + q. Precisely, the gbARMA(p,q) model can be written
as a (p+ q)-dimensional gbVAR(1) process (Yt, t ∈ Z) with the following matrices and
vectors, such that the first entry of (Yt, t ∈ Z) is equal to the gbARMA(p,q) process.
We define

Yt :=



Xt
...

Xt−p+1

et
...

et−q+1


((p+ q)× 1) and Ut :=



et
0
...
0
et
0
...
0


((p+ q)× 1) .

To obtain a vector autoregressive representation for Yt, we define directly matrices that
contain the random variables of the multinomial distribution. Precisely, for · = {−,+},
let

Ã
(·)
t :=

(
A

(·)
t,11 A

(·)
t,12

A
(·)
t,21 A

(·)
t,22

)
and B̃

(1)
t :=


b
(0)
t 0 . . . 0

0p−1×1 0p−1×1 . . . 0p−1×1

1 0
. . .

...
0q−1×1 . . . 0q−1×1


be (p+ q)× (p+ q) matrices, where

A
(·)
t,11 :=


a
(·,1)
t . . . a

(·,p−1)
t a

(·,p)
t

1 0 0
. . .

...
0 . . . 1 0

 , A
(·)
t,12 :=


b
(·,1)
t . . . b

(·,q)
t

0 . . . 0
...

...
0 . . . 0

 ,

A
(·)
t,22 :=


0 . . . 0 0
1 0 0

. . .
...

0 . . . 1 0


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are p × p, p × q and q × q matrices, respectively, and At,21 := 0q×p. Based on the
notation introduced above, gbARMA(p,q) processes can be represented as a vector-
valued gbAR model of first order (gbVAR(1)) as follows

Yt = Ã
(+)
t Yt−1 + Ã

(−)
t 1p+q + B̃

(1)
t Ut (2.23)

with 1p+q being the one vector of length p+ q.
To derive a suitable stationarity condition for the process, we know from Lütkepohl

(2005) that it corresponds to the characteristic polynomial of the parameter matrix

Ã := E
(
Ã

(+)
t

)
.

det
(
IK(p+q) − Ãz

)
6= 0 ∀ |z| ≤ 1.

From the block structure of Ã, the polynomial can be reduced to the determinant of

the block matrices A(+)
11 := E

(
A

(+)
t,11

)
and A(+)

22 := E
(
A

(+)
t,22

)
. Hence, a gbARMA(p,q)

process is stationary if the roots of the characteristic polynomial of the autoregressive
part lie outside the unit circle, that is, if(

1− α(1)z − . . .− α(p)zp
)
6= 0 ∀ |z| ≤ 1

holds. The assumption is fulfilled whenever an error term has a positive probability,
such that there exists a |β(j)| > 0 for some j ∈ {0, . . . , q}. Therefore, the sum over all
probabilities of choosing a predecessor fulfills

∑p
i=1 |α(i)| < 1. Without any restriction,

we assume that β(0) is strictly positive for a stationary gbARMA process, i.e. β(0) ∈
(0, 1].

For a stationary gbARMA(p,q) process, a moving average representation can be
derived using the above defined vectors and matrices.

Theorem 2.8 (Moving Average representation of gbARMA processes)
Let (Xt, t ∈ Z) be a stationary gbARMA(p,q) process with gbVAR(1) representation
(Equation (2.23)). Then, it follows that

Xt = eT1

 ∞∑
i=0

i−1∏
j=0

Ã
(+)
t−jÃ

(−)
t−i1p+q +

∞∑
i=0

i−1∏
j=0

Ã
(+)
t−jB̃

(1)
t−iUt−i

 ,

where limk→∞
∏k
i=0 Ã

(+)
t−i = 0(p+q)×(p+q) in L1 and e1 is the first unit vector.

The univariate moving average representation is obtained from the multivariate for-
mula by multiplying it with the first unit vector because of Xt = eT1 Yt.

Considering the autocorrelation structure, Jacobs and Lewis (1983) and Weiß (2011a)
showed that the NDARMA(p,q) model fulfills a set of Yule–Walker type equations
which was also derived by Möller and Weiß (2020) for the GDARMA class of cate-
gorical processes. The following result shows that this property is maintained for the
gbARMA class.

Theorem 2.9 (Yule–Walker-type equations)
Let (Xt, t ∈ Z) be a stationary gbARMA(p,q) process. Set β(k) := 0 for k > q. Define
coefficients (φk)k∈Z recursively by

φk = 0 for k < 0, φ0 = β(0), φk =

p∑
i=1

α(i)φk−i + β(k) for k > 0.
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Then, the autocovariance function for lags k > 0 is obtained by

γ (k)−
p∑
i=1

α(i)γ (|k − i|) = σ2e

q∑
j=k

β(j)φj−k

The autocovariances of the NDARMA and GDARMA processes can only be posi-
tive, whereas the Yule–Walker type equations of gbARMA processes allow for possibly
negative model parameters α(i), β(j) ∈ (−1, 1) for i = 1, . . . , p and j = 1, . . . , q.

For the generalized binary ARMA model, formulas for the marginal, joint and tran-
sition probabilities can be calculated, extending the results from Lemma 2.4.

Lemma 2.10 (Marginal, joint, and transition probability of gbARMA processes)
Let (Xt, t ∈ Z) be a stationary gbARMA(p,q) process. Then, the following properties
hold:

(i) P (Xt = i0|Xt−1 = i1, . . . , et = j0. . . .)

=
∑p

l=1 |α
(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+ β(0)δi0j0

+
∑q

k=1 |β
(k)|
[
1{β(k)≥0}δi0jk + 1{β(k)<0}δi0(1−jk)

]
(ii) Defining pi := P (et = i) then it follows

P (Xt = i0|Xt−1 = i1, . . . , et−1 = j1. . . .)

=
∑p

l=1 |α
(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+
∑q

k=1 |β
(k)|
[
1{β(k)≥0}δi0jk + 1{β(k)<0}δi0(1−jk)

]
+ β(0)pi0

(iii) P (Xt = j) =

[∑q
l=1 |β

(l)|
(
1{β(l)≥0}−1{β(l)<0}

)]
+β(0)

(1−
∑p
i=1 α

(i))
pj

+

∑p
i=1 |α

(i)|1{α(i)<0}+
∑q
l=1 |β

(l)|1{β(l)<0}

(1−
∑p
i=1 α

(i))

(iv) P (Xt = i0, et = j0) =

pi0pj0

 ∑q
l=1 |β

(l)|1{β(l)<0}

1−
∑p

i=1 |α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

] − q∑
l=1

|β(l)|1{β<0}

+ β(0)δi0j0

+

q∑
l=1

|β(l)|1{β(l)<0}

1− pj0 +
pj0

1−
∑p

i=1 |α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

]


+

p∑
i=1

|α(i)|1{α(i)<0}

1− pj0 +
pj0

1−
∑p

i=1 |α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

]


The flexibility of gbARMA models obtained by allowing for negative parameters
shows also in the transition probabilities and in the joint and marginal distributions.
Hence, more complex structures can be captured since systematic changes in the error
terms are allowed as well.

We conclude this section with an example of a gbARMA(1,1) model.
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Example 2.11 (gbARMA(1,1) process)
Let (Xt, t ∈ Z) be a stationary gbARMA(1,1) process. Then, the process follows the
recursion

Xt = a
(+,1)
t Xt−1 + a

(−,1)
t + b

(0)
t et + b

(+,1)
t et−1 + b

(−,1)
t

Four sign combinations of parameter pairs are possible and the corresponding model
equations are given as follows:

Xt =


a
(1)
t Xt−1 + b

(0)
t et + b

(1)
t et−1 for α(1) ≥ 0, β(1) ≥ 0

a
(1)
t (1−Xt−1) + b

(0)
t et + b

(1)
t et−1 for α(1) < 0, β(1) ≥ 0

a
(1)
t Xt−1 + b

(0)
t et + b

(1)
t (1− et−1) for α(1) ≥ 0, β(1) < 0

a
(1)
t (1−Xt−1) + b

(0)
t et + b

(1)
t (1− et−1) for α(1) < 0, β(1) < 0

.

Whereas for identification purposes β(0) only takes positive values, the predecessors
Xt−1 and et−1 are systematically switched if the corresponding model parameters are
negative, respectively.

For a stationary gbARMA(1,1) process, the moving average representation fulfills
the following equation:

Xt =
∞∑
j=0

j−1∏
i=0

a
(+,1)
t−i a

(−,1)
t−j +

∞∑
j=0

j−1∏
i=0

a
(+,1)
t−i b

(0)
t−jet−j

+

∞∑
j=0

j−1∏
i=0

a
(+,1)
t−i

[
b
(+,1)
t−j et−(j+1) + b

(−,1)
t−j

]
.

From the stationarity assumption, we have |α(1)| < 1, β(0) ∈ (0, 1] and |β(1)| ∈ [0, 1).
The moving average representation consists of three parts. There first is a sum over

all terms a
(−,1)
t−j for the potential case of α(1) < 0. This part accounts for the choosing

a predecessor and its switching. Since β(0) is strictly positive, the second is a sum over
all error terms without any modification occurs. In the third sum, the random variable

b
(−,1)
t appears for controlling the case of β(1) < 0.

2.5. Conclusions

By extending the NDARMA model class of Jacobs and Lewis (1983) to allow for nega-
tive parameters in the binary state space, the generalized binary ARMA model remains
parsimonious, but it becomes more flexible to allow for negative model parameters and,
hence, negative dependence structure in the data. The extension of the model to a
more general parameter space enables the application to real data without having that
many restrictions as in the NDARMA model class. Although the extension leads to ad-
ditional terms in the model equation, the Yule–Walker equations still provide a direct
way to estimate the model parameters.

We discuss stationarity conditions for gbARMA models and derive the stationary
solution. The resulting moving average representation shows an additional term, com-
pared to most MA(∞)-type representations. These additional terms control for the
switching of the states.

An illustration of autocorrelation pairs (ρ (1) , ρ (2)) of four different models of order
2 shows a comparison of the captured dependence structure of the time series models.

33



2. Generalized Binary Time Series Models - the univariate Model

It reveals that the proposed gbARMA model can capture a wide range of negative and
positive dependence structures. A second-order Markov chain is shown to capture only
a slightly larger range of negative dependence structure that gbAR(2) models. Hence,
by allowing for negative parameters, the proposed extension of the NDARMA model
class leads to a new model class that allows capturing a wide range of dependence
structures in binary time series data, while maintaining a parsimonious parametriza-
tion. Moreover, in small sample sizes, parsimonious gbAR models might turn out to
be beneficial in cases where the model is actually misspecified as they may provide a
sufficient approximation to the true model.

2.6. Proofs of Chapter 2

2.6.1. Proof of Theorem 2.2

Proof.

(i) By recursively inserting the model equation, the process can be expressed as

Xt =
k−1∏
i=0

a
(+)
t−iXt−k +

k−1∑
i=0

i−1∏
j=0

a
(+)
t−ja

(−)
t−i +

k−1∑
i=0

i−1∏
j=0

a
(+)
t−jb

(0)
t−iet−i.

Since the random variables a
(+)
t take values in {−1, 0, 1} and the process is also binary

with mean µX ∈ (0, 1), the convergence of the first part follows directly in quadratic
mean (in L2 sense), that is,

E

(
|
k−1∏
i=0

(
a
(+)
t−i

)
Xt−k|2

)
= E

(
k−1∏
i=0

|at−i|2|Xt−k|2
)

= E

(
k−1∏
i=0

at−iXt−k

)
= αkE (Xt−k) −→k→∞ 0 for α ∈ (−1, 1) .

Part (ii) follows from Theorem 2.8 by setting q = 0. Its proof can be found in Section
2.6.2.

2.6.2. Proof of Theorem 2.8

Proof.

The convergence is shown by using the p-norm ‖A‖p for a matrix A, which is induced
by the vector norm, that is,

‖A‖p =

 K∑
j=1

K∑
i=1

|aij |p
 1

p

.
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For p = 1, we get

lim
k→∞

E

∥∥∥∥∥
k−1∏
l=0

Ã
(+)
t−l

∥∥∥∥∥
1

= lim
k→∞

E

p+q∑
i=1

p+q∑
j=1

|

(
k−1∏
l=0

Ã
(+)
t−l

)
|ij


= lim

k→∞
E

(1 . . . 1
) (
|
k−1∏
l=0

Ã
(+)
t−l |
)1

...
1


 = lim

k→∞

(
1 . . . 1

) k−1∏
l=0

E
[
|Ã(+)

t−l |
]1

...
1


= lim

k→∞

(
1 . . . 1

) k−1∏
l=0

E
[
Ãt−i

]1
...
1

 = lim
k→∞

(
1 . . . 1

) k−1∏
l=0

Ã|·|

1
...
1


= lim

k→∞

(
1 . . . 1

)
Ãk|·|

1
...
1

 k→∞−→ 0(p+q)×(p+q) for |αij | ∈ [0, 1) .

Since the entries of Ã
(+)
t−l lie in {−1, 0, 1}, it follows that |Ã(+)

t−l | := Ãt−l ∈ {0, 1}
and the expectation is given by E

(
Ãt−l

)
=: Ã|·| with only positive values in (0, 1).

Consequently, the term vanishes for k → ∞ and as result we get the gbVMA(∞)
representation.

2.6.3. Proof of Theorem 2.3 and 2.9

Proof.

For a stationary gbARMA process, it follows

γ (k) = Cov (Xt, Xt−k)

= Cov

(
p∑
i=1

a
(i)
t

[
1{α(i)≥0}Xt−i + 1{α(i)<0} (1−Xt−i)

]
+

q∑
j=0

b
(j)
t

[
1{β(j)≥0}et−j + 1{β(j)<0} (1− et−j)

]
, Xt−k

)

=

p∑
i=1

α(i)Cov (Xt−i, Xt−k) +

q∑
j=0

β(j)Cov (et−j , Xt−k)

The above equation leads in the Yule–Walker equations of Theorem 2.3 (i) since q = 0
and Cov (et, Xt−k) = 0 for k > 0.

We now have to consider the covariance of the error terms and the time series.
Therefore, we define the variable ϕk := Cov (Xt, et−k). For k < 0, it follows ϕk = 0
and, for k = 0, we have

ϕ0 = Cov (Xt, et) =

p∑
i=1

α(i)Cov (Xt−i, et) +

q∑
j=0

β(j)Cov (et−j , et) = σ2eβ
(0).
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2. Generalized Binary Time Series Models - the univariate Model

For k ≥ 1, we get

ϕk = Cov (Xt, et−k) =

p∑
i=1

α(i)Cov (Xt−i, et−k) +

q∑
j=0

β(j)Cov (et−j , et−k)

=

p∑
i=1

α(i)ϕk−i + β(k)σ2e .

By defining φk := ϕk
σ2
e
, the recursion of Theorem 2.9 follows.

Part (ii) of Theorem 2.3 is directly obtained by inserting the model equation and
by using the property of multinomial choosing only one entry of Pt equal to one and
all others to zero, such that

E
(

(a
(+,i)
t )2

)
= |α(i)|, E

(
(a

(−,i)
t )2

)
= |α(i)|1{α(i)<0}.

2.6.4. Proof of Lemma 2.4 and 2.10

Proof.

(i) The conditional probability is an immediate consequence from the model equation
and multinomial distribution of the random variables at and bt.
(ii) With the independence assumption on the error terms and Part (i), the conditional
probability without conditioning on the current error term is:

P (Xt = i0|Xt−1 = i1, . . . , et−1 = j1. . . .)

=

1∑
j0=0

P (Xt = i0|Xt−1 = i1, . . . , et = j0, . . .)

P (et = j0|Xt−1 = i1, . . . , et−1 = j1, . . .)

=

p∑
l=1

|α(l)|
[
1{α(l)≥0}δi0il + 1{α(l)<0}δi0(1−il)

]
+

q∑
k=1

|β(k)|
[
1{β(k)≥0}δi0jk + 1{β(k)<0}δi0(1−jk)

]
+ β(0)pi0 .

(iii) Consider the probability that the time series is in state j ∈ {0, 1} at time point
t and note that P (et = 1− j) = 1− P (et = j) , P (Xt = 1− j) = 1− P (Xt = j).

P (Xt = j) =

p∑
i=1

|α(i)|
[
1{α(i)≥0}P (Xt−i = j) + 1{α(i)<0}P (Xt−i = 1− j)

]
+

q∑
l=1

|β(l)|
[
1{β(l)≥0}P (et−l = j) + 1{β(l)<0}P (et−l = 1− j)

]
+ β(0)P (et = j)

=

p∑
i=1

|α(i)|
[
1{α(i)≥0}P (Xt = j) + 1{α(i)<0}P (Xt = 1− j)

]
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+

q∑
l=1

|β(l)|
[
1{β(l)≥0}P (et = j) + 1{β(l)<0}P (et = 1− j)

]
+ β(0)P (et = j)

=

(
p∑
i=1

|α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

])
P (Xt = j) +

q∑
l=1

|β(l)|1{β(l)<0}

+

(
q∑
l=1

|β(l)|
[
1{β(l)≥0} − 1{β(l)<0}

])
pj + β(0)pj +

p∑
i=1

|α(i)|1{α(i)<0}.

Then, by rearranging the terms on the last right side, we get

P (Xt = j) =

[∑q
l=1 |β

(l)|
(
1{β(l)≥0} − 1{β(l)<0}

)]
+ β(0)(

1−
∑p

i=1 α
(i)
) pj

+

∑p
i=1 |α(i)|1{α(i)<0} +

∑q
l=0 |β

(l)|1{β(l)<0}(
1−

∑p
i=1 α

(i)
) .

(iv) Consider the joint probability of the error term and time series at time point t.
We get

P (Xt = i0, et = j0)

=

p∑
i=1

|α(i)|1{α(i)≥0}P (Xt−i = i0, et = j0) +

p∑
i=1

|α(i)|1{α(i)<0}P (Xt−i = 1− i0, et = j0)

+

q∑
l=1

|β(l)|1{β(l)≥0}P (et−l = i0, et = j0) +

q∑
l=1

|β(l)|1{β(l)<0}P (et−l = i0, et = j0)

+ β(0)P (et = i0, et = j0)

=

p∑
i=1

|α(i)|1{α(i)≥0}P (Xt−i = i0) pj0 +

p∑
i=1

|α(i)|1{α(i)<0}P (Xt−i = 1− i0) pj0

+

q∑
l=1

|β(l)|1{β(l)≥0}P (et−l = i0) pj0 +

q∑
l=1

|β(l)|1{β(l)<0}P (et−l = 1− i0) pj0

+ β(0)P (et = i0, et = j0) .

By inserting Part (iii) into the equation above, we get

p∑
i=1

|α(i)|pj0
[
1{α(i)≥0} − 1{α(i)<0}

] 1−
∑p

i=1 |α(i)| −
∑q

l=0 |β
(l)|1{β(l)<0}(

1−
[∑p

i=1 |α(i)|
(
1{α(i)≥0} − 1{α(i)<0}

)])pi0
+

∑p
i=1 |α(i)|1{α(i)<0} +

∑q
l=0 |β

(l)|1{β(l)<0}(
1−

[∑p
i=1 |α(i)|

(
1{α(i)≥0} − 1{α(i)<0}

)])
+ β(0)pj0δi0,j0

+

p∑
i=1

|α(i)|1{α(i)<0} +

q∑
l=1

|β(l)|pj0
[
1{β(l)≥0}pi0 + 1{β(l)<0} (1− pi0)

]
.
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Using the properties of the parameters, the joint distribution of the time series and
error term is given by

P (Xt = i0, et = j0)

= pi0pj0

 ∑q
l=1 |β

(l)|1{β(l)<0}

1−
∑p

i=1 |α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

] − q∑
l=1

|β(l)|1{β<0}

+ β(0)δi0j0

+

q∑
l=1

|β(l)|1{β(l)<0}

1− pj0 +
pj0

1−
∑p

i=1 |α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

]


+

p∑
i=1

|α(i)|1{α(i)<0}

1− pj0 +
pj0

1−
∑p

i=1 |α(i)|
[
1{α(i)≥0} − 1{α(i)<0}

]
 .
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3. Generalized Binary Vector ARMA
Processes

Based on: Jentsch, C. and Reichmann, L.
Generalized binary vector ARMA processes - Working Paper

3.1. Introduction

Categorical data is collected in many fields of applications. When such data is observed
over time, serial dependence is often present that has to be taken into account e.g. for
modeling purposes or for statistical inference. Hence, the statistical research focusing
on such data structures evolved considerably over the last years. With the collection of
huge amounts of data nowadays, this leads particularly to a growing interest in statis-
tical methods for the analysis of multivariate categorical time series. As an important
special case, multivariate binary time series, that correspond to categorical time series
data with just two categories, occur in many different contexts such as agriculture,
biology, economy, engineering, environmetrics, genetics, geography, geology, medical
science, natural language processing or sports; see e.g. Jentsch and Reichmann (2019)
for some univariate examples. For instance, recent related literature addresses the
detection of dependent Bernoulli sequences in Ritzwoller and Romano (2020) or the
efficient generation of high-dimensional binary data with specified correlation struc-
tures in Jiang et al. (2020). Often, binary time series are obtained from binarization
of observed real-valued data, when e.g. the interest is, whether some event occurs (or
not) or a certain threshold is crossed (or not) instead of the actual value. Although
simplified, this transformation will generally contain a great amount of the information
and the dynamics of the original data.

Multivariate binary time series obtained from a suitable thresholding procedure are
for instance of much interest in economics, where periods of recession and of economic
growth (no-recession) are considered; see e.g. Bellégo and Ferrara (2009) and Startz
(2008) on forecasting recessions in the Euro area and in the United States, respectively.
Considering jointly such recession time series of several countries, a multivariate anal-
ysis allows to study not only the serial, but also the cross-sectional dependence in the
data. In turn, this allows to investigate the spillover effects between several countries,
that is, how a recession in one country will affect the economy in other countries in the
future. In Figure 3.1, we show quarterly time series indicating periods of recessions
and of economic growth for the G7 countries Canada, France, Germany, Italy, Japan,
United Kingdom and the United States from Q2/1960 - Q1/2017.

In signal processing, large numbers of nodes, i.e. inexpensive sensors, are employed
to make binary decisions whenever a signal is above a certain threshold or not, see
e.g. Cheng et al. (2013). Hence, multiple two-state time series with states ’detection’
and ’no detection’ are observed. In such applications, binarization of the original signal
is particularly beneficial as binary data is inexpensive to store.
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Figure 3.1.: Quarterly time series indicating periods of recessions (“0”) and of economic
growth (“1”) for all G7 countries Canada (black), France (red), Germany
(blue), Italy (green), Japan (purple), United Kingdom (grey) and United
States (orange) from Q2/1960 - Q1/2017.

Figure 3.2.: Daily time series indicating a fine dust alarm (“1”) and no fine dust
alarm (“0”) at six monitoring stations: Arnulf-Klett Platz (orange), Bad
Cannstatt (purple), Hauptstätter Strasse (blue), Hohenheimer Strasse
(green), Neckartor (black), Stadtgarten (red) in Stuttgart, Germany from
03/01/2016 - 07/31/2018.

In recent years, there is increasing interest in air pollution in European cities and
metropolitan areas. The EU established the European emission standards, which in-
clude limits for particulates in the air. Whenever the amount of PM10 (coarse particles
with a diameter between 2.5 and 10 micrometers, ’fine dust’) exceeds the threshold
of 50 µg/m3 at a monitoring station, this causes a ’fine dust alarm’. Hence, for each
monitoring station, this results in binary sequence with states ’exceedance’ and ’no
exceedance’. In fact, the current public discourse centers to a large extent around
whether the threshold is exceeded or not, and less about the actual amount of fine dust
measured. Typically, several monitoring stations in one city allow for a joint analysis
of the fine dust pollution. In Figure 3.2, we show the recorded fine dust alarms at
six monitoring stations in the urban area of Stuttgart, Germany from 03/01/2016 -
07/31/2018. The occurrences of alarms tend to cluster, but a closer inspection reveals
that the station Neckartor often shows an alarm before the others. Hence, a multi-
variate analysis of this pattern might be helpful to allow for an improved prediction of
future exceedances. In Section 3.4, we discuss this data set in more detail.

Typically, Markovian models are used to describe the dependence structure of cat-
egorical time series, see e.g. Kedem (1980). Such models are very flexible and allow
to capture a broad range of serial dependence, but the number of parameters grows
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exponentially with the order of the Markov model. As indicated by McKenzie (2003)
already in the univariate case, this likely leads to over-parametrization. For a K-
dimensional multivariate binary time series, this problem is even much more intricate
as the fitting of an unrestricted Markov model of order p requires the estimation of 2Kp

parameters. Hence, Markov models are not feasible, when the time series dimension
or the model order become large.

3.1.1. The univariate case: NDARMA vs. gbARMA

In the univariate case, to avoid the estimation of a large number of parameters, Jacobs
and Lewis (1983) proposed the class of (New) Discrete AutoRegressive Moving-Average
(NDARMA) models for categorical time series. To make sure that the process (Xt, t ∈
Z) takes only values contained in a discrete state space V, their idea is to choose Xt

randomly either from the past values of the time series Xt−1, . . . , Xt−p or from one of
the innovations et, et−1, . . . , et−q with certain probabilities, respectively. This random
selection mechanism is described by independent and identically distributed (i.i.d.)
random vectors (Pt, t ∈ Z) with

Pt :=
[
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

]
∼Mult (1;P) , t ∈ Z, (3.1)

where Mult (1;P) denotes the multinomial distribution with parameter 1 and prob-
ability vector P :=

[
α(1), . . . , α(p), β(0), . . . , β(q)

]
with α(1), . . . , α(p) ∈ [0, 1), β(0) ∈

(0, 1] and β(1), . . . , β(q) ∈ [0, 1) such that
∑p

i=1 α
(i) +

∑q
j=0 β

(j) = 1. Then, the
NDARMA(p,q) model equation is given by

Xt =

p∑
i=1

a
(i)
t Xt−i +

q∑
j=0

b
(j)
t et−j , t ∈ Z, (3.2)

where (et, t ∈ Z) is an i.i.d. innovation process taking values in the state space V.
NDARMA models are contained as special cases in the broad class of Markov models,

but are considerably more parsimonious and still nicely interpretable due to their
ARMA-type structure. In this spirit, Weiß and Göb (2008) showed that Yule-Walker-
type equations hold and Weiß (2009a) discussed the connection of NDARMA models
to general Markov chains.

It is important to note that the probability vector P of the multinomial distribution
in (3.1) contains the NDARMA model parameters, which are naturally restricted to
satisfy two conditions: all entries of P have to lie in the unit interval and they have
to sum up to one. Hence, in contrast to general Markov chains, NDARMA models
are particularly restricted to capture exclusively non-negative serial dependence. To
address this lacking flexibility of the NDARMA model class, Jentsch and Reichmann
(2019) proposed a simple and straightforward extension of the original idea of Jacobs
and Lewis (1983) that allows also to capture negative serial dependence in univariate
binary time series. In the resulting generalized binary ARMA (gbARMA) model class,
in contrast to NDARMA models, the parameters α(i) and β(j) are allowed to be either
positive or negative. Precisely, gbARMA models allow for α(1), . . . , α(p) ∈ (−1, 1) and
β(1), . . . , β(q) ∈ (−1, 1), with β(0) ∈ (0, 1] , such that

∑p
i=1 |α(i)|+β(0)+

∑q
j=1 |β(j)| = 1.

The parameter vector P =
[
α(1), . . . , α(p), β(0), . . . , β(q)

]
has to be modified to contain

valid probabilities in [0, 1] for the selection mechanism. We define

P|·| :=
[
|α(1)|, . . . , |α(p)|, β(0), |β(1)|, . . . , |β(q)|

]
. (3.3)
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3. Generalized Binary Vector ARMA Processes

As in NDARMA models, the random selection mechanism for gbARMA models is
again described by i.i.d. multinomial random vectors (Pt, t ∈ Z) with

Pt :=
(
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

)
∼Mult

(
1;P|·|

)
, t ∈ Z.

Then, the gbARMA(p,q) process (Xt, t ∈ Z) follows the model equation

Xt =

p∑
i=1

[
a
(+,i)
t Xt−i + a

(−,i)
t

]
+ b

(0)
t et +

q∑
j=1

[
b
(+,j)
t et−j + b

(−,j)
t

]
, t ∈ Z, (3.4)

where (et, t ∈ Z) is an i.i.d. innovation process taking values in {0, 1}. Here, we

set a
(+,i)
t := a

(i)
t

(
1{α(i)≥0} − 1{α(i)<0}

)
and a

(−,i)
t := a

(i)
t 1{α(i)<0}, i = 1, . . . , p, with

analogous definitions for b
(+,j)
t and b

(−,j)
t , j = 1, . . . , q. A detailed description of

the gbARMA model class and its properties can be found in Jentsch and Reichmann
(2019).

3.1.2. An example: NDAR(1) vs. gbAR(1)

In a nutshell, the benefit of a gbARMA model in comparison to an NDARMA model for
binary data, is that it allows to pick systematically the opposite value of a predecessor
if the corresponding model parameter is negative. To illustrate this, let us consider
the simplest case of a gbAR(1) model with P = [α, β] following

Xt = a
(+)
t Xt−1 + a

(−)
t + btet, t ∈ Z, (3.5)

where a
(+)
t := at

(
1{α≥0} − 1{α<0}

)
and a

(−)
t := at1{α<0} such that Pt := (at, bt) ∼

Mult
(
1;P|·|

)
with P|·| = [|α|, β] and |α|+ β = 1. Equation (3.5) can be re-written to

get

Xt =

{
atXt−1 + btet, [at, bt] ∼Mult (1;α, β) , α ∈ [0, 1)

at (1−Xt−1) + btet, [at, bt] ∼Mult (1; |α|, β) , α ∈ (−1, 0)
. (3.6)

Hence, depending on the sign of the parameter α ∈ (−1, 1), either the predecessor Xt−1
or its opposite value 1 − Xt−1 can be systematically picked by the random selection
mechanism. Actually, the first equation in (3.6), that allows for α ∈ [0, 1), corresponds
to an NDAR(1) model with a binary state space, which is contained in a gbAR(1) model
as a special case. Hence, the gbAR(1) model is more flexible and allows particularly
for an unrestricted first-lag autocorrelation in (−1, 1).

In view of the operations atXt−1 and at (1−Xt−1) in (3.6), that take the value of
the time series from the time point before or its opposite value, respectively, it seems
plausible to combine them and allow both at the same time. That is, we could think
of a model equation of the form

Xt = at,=Xt−1 + at, 6= (1−Xt−1) + bt,=εt, t ∈ Z, (3.7)

where ([at,=, at,6=, bt,=], t ∈ Z) are i.i.d. with [at,=, at, 6=, bt,=] ∼Mult(1;α=, α6=, β=) such
that α=, α6= ∈ [0, 1], β= ∈ (0, 1] and α= + α 6= + β= = 1 as well as E(εt) = µε ∈ (0, 1).
However, the model (3.7) is not identified as it is indistinguishable from the gbAR(1)
model (3.6) with

α = α= − α 6=, β = 1− |α= − α6=| (3.8)
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3.1. Introduction

Figure 3.3.: NDAR(1) vs. gbAR(1): Realizations and ACF of an NDAR(1) process
(that is, of a gbAR(1) process with positive α in the first line of (3.6))
(upper panel) with P = [0.7, 0.3] and of a gbAR(1) process (3.5) (lower
panel) with P = [−0.7, 0.3]. In both cases, we used P (et = 1) = 0.5.

and

µe =
α 6=1{α=−α 6=≥0} + α=1{α=−α 6=<0} + β=µε

1− |α= − α 6=|
. (3.9)

We refer to the appendix for a proof of (3.8) and (3.9).

In Figure 3.3, we show realizations and corresponding autocorrelation functions
(ACFs) of a gbAR(1) process with positive parameter α ∈ [0, 1) (i.e. an NDAR(1)
process) and a gbAR(1) process with negative parameter α ∈ (−1, 0). Whereas the
NDAR(1) process with positive α shows long runs of the same value and a non-negative
ACF, the gbAR(1) process with negative α shows an oscillating pattern and an alter-
nating ACF.

3.1.3. Towards a multivariate analysis: a bivariate gbVAR(1)

In the case, when more than just one binary time series is observed, as e.g. for the G7
recession data in Figure 3.1 or the fine dust alarm data in Figure 3.2, a multivariate
(i.e. joint) analysis is desirable.

For categorical time series data, Möller and Weiß (2020) proposed a multivariate
extension of the NDARMA class with (non-negative) scalar model parameters that
control the multinomial selection mechanism. This approach restricts the flexibility
of the resulting Generalized DARMA (GDARMA) class to model joint dependence to
some large extent. Instead, GDARMA models make use of a variation function applied
to lagged observations and innovations to increase the entry-wise variation over time.
However, the proposed variation function does not modify the past time series values
in a systematical way and the resulting process is not suitable to capture negative
dependence structure.

To achieve more model flexibility, let us first consider the case of two independent
gbAR(1) processes (Xt, t ∈ Z) and (Yt, t ∈ Z). By stacking them, we get a bivariate
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process(
Xt

Yt

)
=

(
a
(+)
t,XXt−1 + a

(−)
t,X + bt,Xet,X

a
(+)
t,Y Yt−1 + a

(−)
t,Y + bt,Y et,Y

)

=

(
a
(+)
t,X 0

0 a
(+)
t,Y

)(
Xt−1
Yt−1

)
+

(
a
(−)
t,X 0

0 a
(−)
t,Y

)(
1
1

)
+

(
bt,X 0

0 bt,Y

)(
et,X
et,Y

)
.

(3.10)

However, due to the diagonal structure of the (random) coefficient matrices, such a
model in (3.10) is not yet sufficient to study the cross-sectional dependence between
two binary time series. Naturally, this can be achieved by allowing the off-diagonal
elements of the coefficient matrices in (3.10) to be non-zero. This leads to the bivariate
gbVAR(1) model(

Xt,1

Xt,2

)
=

(
a
(+)
t,11 a

(+)
t,12

a
(+)
t,21 a

(+)
t,22

)(
Xt−1,1
Xt−1,2

)
+

(
a
(−)
t,11 a

(−)
t,12

a
(−)
t,21 a

(−)
t,22

)(
1
1

)
+

(
bt,11 0

0 bt,22

)(
et,1
et,2

)
,

(3.11)

which can be compactly written as

Xt = A
(+)
t Xt−1 +A

(−)
t 12 +Btet, (3.12)

where (et, t ∈ Z) is an i.i.d. innovation process taking values in {0, 1}2. Note that
Cov(et) = Σe is allowed to be non-diagonal, whereas Bt is imposed to be diagonal for
identification reasons; compare also Remark 3.13. For a comprehensive discussion of
multivariate Bernoulli distributions allowing for dependence leading to non-diagonal
Σe, we refer to Dai et al. (2013).

The model parameters of the process (3.12) are summarized in the matrix P :=
[A,B] with A := (αkl)k,l=1,2 and B := diag(β11, β22) and P|·| :=

[
A|·|,B

]
with A|·| :=

(|αkl|)k,l=1,2, where αkl ∈ (−1, 1), βkk ∈ (0, 1] for all k, l = 1, 2, such that |αk1|+ |αk2|+
βkk = 1 for k = 1, 2.

The natural approach is to adopt row-wise the random (multinomial) selection mech-
anism leading to mutually independent i.i.d. vector-valued processes (Pt,1•, t ∈ Z) and
(Pt,2•, t ∈ Z), where

Pt,1• := [at,11, at,12, bt,11, 0] ∼Mult
(
1;P|·|,1•

)
, (3.13)

Pt,2• := [at,21, at,22, 0, bt,22] ∼Mult
(
1;P|·|,2•

)
. (3.14)

Here, P|·| is defined to contain entry-wise the absolute values of P with row-sums equal
to one such that P|·|,k• become valid arguments for the multinomial distributions in
(3.13) and (3.14). Note also the desirable redundancy in the above notation obtained
by including the off-diagonal zeros of Bt in Pt,k•, but this allows to use the whole rows
P|·|,k• as arguments of the multinomial distributions.

3.1.4. Outline

In the spirit of the gbVAR(1) model (3.11) as a natural extension of the univari-
ate gbAR(1) model in (3.5), we provide a full description and investigation of the
corresponding generalized binary vector AR (gbVAR) model class in this paper. In
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3.2. The gbVAR Model Class

Section 3.2, we define generalized binary VAR processes of order p ∈ N and derive
general stochastic properties including formulas for the mean, stationarity conditions,
moving-average representations, Yule-Walker equations and transition probabilities.
We discuss possible extensions and identification issues and prove ϕ - and ψ - mixing
properties, that allow for a general approach to derive asymptotic theory. Further, we
address parameter estimation in gbVAR models based on Yule-Walker estimators. In
Section 3.3, we examine the finite sample performance of these parameter estimators
by means of different criteria in simulations and we propose a parametric bootstrap
method to construct confidence intervals. For illustration, we use gbVAR models to
analyze a six-dimensional binary time series that indicates fine dust alarms in the
urban area of Stuttgart, Germany, in Section 3.4. We conclude the extension on gb-
VAR models in Section 3.5 and give an extension to gbVARMA processes by adding
an moving-average part in Section 3.6 All proofs, additional simulation results are
deferred to Section 3.7.

3.2. The gbVAR Model Class

In Section 3.2.1, we define gbVAR processes as multivariate extensions of (univariate)
gbAR models as introduced by Jentsch and Reichmann (2019). The definition naturally
extends the bivariate gbVAR(1) model (3.11) to arbitrary order p ∈ N and dimension
K ∈ N. Stochastic properties of gbVAR models including stationarity conditions,
formulas for the mean, Yule-Walker equations and transition probabilities are derived
in Section 3.2.2.

3.2.1. gbVAR models

For a K-dimensional binary time series (Xt, t ∈ Z), let the matrix

P :=
[
A(1), . . . ,A(p),B

]
(3.15)

contain the autoregressive coefficient matrices A(i) = (α
(i)
kl )k,l=1,...,K , i = 1, . . . , p and

B = diag(β11, . . . , βKK) of a gbVAR(p) model. As the gbVAR model allows for

α
(i)
kl ∈ (−1, 1), the entries of P have to satisfy

∑p
i=1

∑K
l=1 |α

(i)
kl |+βkk = 1, k = 1, . . . ,K,

and P has to be modified to serve as a parameter matrix containing (row-wise) valid
probabilities of multinomial distributions. This is achieved by taking entry-wise abso-
lute values in P and we define

P|·| :=
[(
|α(1)
kl |
)
k,l=1,...,K

, . . . ,
(
|α(p)
kl |
)
k,l=1,...,K

, diag(β11, . . . , βKK)
]

=:
[
A(1)
|·| , . . . ,A

(p)
|·| ,B

]
. (3.16)

These prerequisites enable us to give the definition of the generalized binary vector
AR model of order p ∈ N.

Definition 3.1 (gbVAR(p) processes)
Let (Xt, t ∈ Z) be a stationary K-dimensional process taking values in {0, 1}K . Let
(et, t ∈ Z) be an i.i.d. K-dimensional binary innovation process, such that et is inde-
pendent of (Xs, s < t) with mean vector µe = (µe,1, . . . , µe,K)′ = E(et), where µe,i =
P (et,i = 1), i = 1, . . . ,K, and variance-covariance matrix Σe = (σe,kl)k,l=1,...,K =
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3. Generalized Binary Vector ARMA Processes

Cov(et), where σe,ii = µe,i(1 − µe,i). Let P be the parameter matrix as in (3.15)
with P|·| as in (3.16) such that P|·|1K(p+1) = 1K , where 1M = (1, . . . , 1)′ denotes the
M -dimensional vector of ones, and rk(Σe) ≥ rk(BΣe). Further, let (Pt, t ∈ Z) with

Pt = [A
(1)
t , . . . , A

(p)
t , Bt] be a K × K(p + 1)-dimensional i.i.d. process with mutually

independent rows (Pt,k•, t ∈ Z), k = 1, . . . ,K, such that

Pt,k• :=
[
a
(1)
t,k•, . . . , a

(p)
t,k•, bt,k•

]
∼Mult

(
1;P|·|,k•

)
,

which are independent of (et, t ∈ Z) and (Xs, s < t). Here, we set A
(i)
t = (a

(i)
t,kl)k,l=1,...,K

and Bt = (bt,kl)k,l=1,...,K = diag(bt,11, . . . , bt,KK) with a
(i)
t,k• = (a

(i)
t,k1, . . . , a

(i)
t,kK) for

i = 1, . . . , p and bt,k• defined similarly.
Then the process (Xt, t ∈ Z) is said to be a generalized binary vector AR process of

order p (gbVAR(p)), if it follows the recursion

Xt =

p∑
i=1

[
A

(+,i)
t Xt−i +A

(−,i)
t 1K

]
+Btet, t ∈ Z, (3.17)

with

A
(+,i)
t :=

{
a
(i)
t,kl, α

(i)
kl ≥ 0

−a(i)t,kl, α
(i)
kl < 0

}
k,l=1,...,K

=
(
a
(i)
t,kl

(
1{α(i)

kl ≥0}
− 1{α(i)

kl <0}

))
k,l=1,...,K

,

A
(−,i)
t :=

{
0, α

(i)
kl ≥ 0

a
(i)
t,kl, α

(i)
kl < 0

}
k,l=1,...,K

=
(
a
(i)
t,kl1{α(i)

kl <0}

)
k,l=1,...,K

for i = 1, . . . , p.

Note that it is possible to rewrite the gbVAR(p) model according to the alternative
presentation of the univariate gbAR(1) model in (3.6). However, for the multivariate
case, this becomes cumbersome and the main benefit of the presentation of the gb-
VAR model in (3.17) is the closed-form expression using an autoregressive-type model
equation. Note that Xt is equal to the sum of lagged time series observations Xt−i
multiplied in a familiar fashion with (random) matrices A

(+,·)
t , i.e.

∑p
i=1A

(+,i)
t Xt−i

(as in VAR-type models), plus an additional term
∑p

i=1A
(−,i)
t 1K (related to negative

coefficients) plus an innovation term Btet.
In the following, we pick up the introductory example from Section 3.1.2 and consider

a bivariate gbVAR(1) model in more detail to illustrate the class of gbVAR models.

Example 3.2 (Bivariate gbVAR(1) model)
Let (Xt, t ∈ Z) follow a two-dimensional gbVAR(1) model

Xt = A
(+)
t Xt−1 +A

(−)
t 1K +Btet, (3.18)

with parameter matrix P = [A,B] and P|·| = [A|·|,B], where

A =

(
0.49 0.35
−0.43 −0.39

)
, A|·| =

(
|0.49| |0.35|
| − 0.43| | − 0.39|

)
and B =

(
0.16 0.00
0.00 0.18

)
such that P|·|14 = 12 holds. Hence, for the (mutually independent) multinomial selec-
tion mechanisms, we have

Pt,1• = [at,11, at,12, bt,11, 0] ∼Mult
(
1; (|0.49|, |0.35|, 0.16, 0)

)
,

Pt,2• = [at,21, at,22, 0, bt,22] ∼Mult
(
1; (| − 0.43|, | − 0.39|, 0, 0.18)

)
.
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Figure 3.4.: Realization and autocorrelation structure of the bivariate gbVAR(1) pro-
cess as specified in Example 3.2.

Taking the negative signs of the entries in A into account, the gbVAR(1) process follows
the model equation(

Xt,1

Xt,2

)
=

(
at,11Xt−1,1 +at,12Xt−1,2 +bt,11et,1

at,21 (1−Xt−1,1) +at,22 (1−Xt−1,2) +bt,22et,2

)
.

Hence, in the second dimension the opposite values of the predecessors Xt−1,1 or Xt−1,2
are selected, whenever at,21 or at,22 become 1, respectively.

The innovation process (et, t ∈ Z) consists of two independent Bernoulli processes
(et,1, t ∈ Z) and (et,2, t ∈ Z) with µe,1 = P (et,1 = 1) = 0.4 and µe,2 = P (et,2 = 1) = 0.8
leading to Σe = diag(0.24, 0.16). In Figure 3.4, we show a realization of the bivariate
gbVAR(1) process with the above specification together with the corresponding serial and
cross-sectional autocorrelation structure. By allowing for positive as well as negative
entries in the non-diagonal parameter matrix A, the gbVAR(1) model becomes rather
flexible and allows to describe diverse serial and cross-sectional dependence structures.

3.2.2. Stochastic properties of gbVAR models

First, we consider the expectation of the random matrices A
(+,i)
t and A

(−,i)
t , i =

1, . . . , p. Note that, by construction, we have E
(
A

(i)
t

)
= A(i)

|·| and E
(
Bt
)

= B. Hence,

from the definitions of A
(+,i)
t and A

(−,i)
t , we get

E
(
A

(+,i)
t

)
=
[
α
(i)
kl

]
k,l=1,...,K

= A(i), (3.19)

E
(
A

(−,i)
t

)
=
[
|α(i)
kl |1{α(i)

kl <0}

]
k,l=1,...,K

=: A(−,i). (3.20)

This enables us to compute the stationary mean vector µX := E (Xt) of a gbVAR(p)
process.
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Lemma 3.3 (Stationary mean of gbVAR processes)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVAR(p) process. Then, we have,

µX =
(
I −

p∑
i=1

A(i)
)−1( p∑

j=1

A(−,j)
1K + Bµe

)
. (3.21)

The latter result reflects the relationship between the mean vector of the time series
µX , the mean vector µe of the innovation process and the autoregressive parame-
ters P =

[
A(1), . . . ,A(p),B

]
. In comparison to the univariate NDAR(p) process (see

e.g. Weiß (2009a)), additional matrices A(−,·) appear in the formula for the mean that
correspond to potentially negative model parameters. Further note that, in contrast to
univariate gbAR(p) processes discussed in Jentsch and Reichmann (2019), we do not
get µX = µe in the special case when the parameter matrices in P contain exclusively
non-negative entries, such that all A(−,j) vanish. This is due to the diagonal structure
of B leading to I −

∑p
i=1A(i) 6= B in general.

In view of Definition 3.1, which supposes the gbVAR(p) process (Xt, t ∈ Z) to be
stationary and to fulfill the gbVAR recursion (3.17), its stationary solution can be
derived in form of a moving-average-type gbVMA(∞) process. As for classical AR
processes, the most simple case of p = 1 allows for a direct approach to construct
the moving-average representation by recursively plugging-in the gbVAR(1) model
equation. For all d ∈ N0, by recursively plugging-in (3.17), we get

Xt = A
(+)
t Xt−1 +A

(−)
t 1K +Btet

= A
(+)
t

(
A

(+)
t−1Xt−2 +A

(−)
t−11K +Bt−1et−1

)
+A

(−)
t 1K +Btet

... (3.22)

=

d∏
j=0

A
(+)
t−jXt−(d+1) +

d∑
i=0

i−1∏
j=0

A
(+)
t−j

(A(−)
t−i1K +Bt−iet−i

)

= ζdXt−(d+1) +

d∑
i=0

ζi−1ηt−i,

where ζ0 := IK and ζi :=
∏i
j=0A

(+)
t−j , i ∈ N and ηt−i := A

(−)
t−i1K + Bt−iet−i. For

gbVAR(p) processes of general order p ∈ N, we follow the common approach described
e.g. in Lütkepohl (2005)[Chap. 11.3.2] to rewrite the K-dimensional gbVAR(p) process
as a Kp-dimensional gbVAR(1) process (X̃t, t ∈ Z). Precisely, by defining the Kp-
dimensional vectors

X̃t :=

 Xt
...

Xt−p+1

 and ẽt :=


et
0
...
0


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and the (Kp×Kp)-dimensional matrices

Ã
(+)
t :=


A

(+,1)
t . . . A

(+,p−1)
t A

(+,p)
t

IK 0K×K 0K×K
. . .

...
0K×K . . . IK 0K×K

 , Ã
(−)
t :=


A

(−,1)
t . . . A

(−,p−1)
t A

(−,p)
t

0K×K 0K×K 0K×K
. . .

...
0K×K . . . 0K×K 0K×K

 ,

B̃t :=

(
Bt 0K×K(p−1)

0K(p−1)×K 0K(p−1)×K(p−1)

)
,

where IK denotes the K-dimensional unity matrix and 0r×s the (r×s)-dimensional zero
matrix, we get an autoregressive representation for the process (X̃t, t ∈ Z). That is, the
K-dimensional gbVAR(p) process (Xt, t ∈ Z) can be represented as a Kp-dimensional
gbVAR(1) process (X̃t, t ∈ Z) as follows

X̃t = Ã
(+)
t X̃t−1 + Ã

(−)
t 1Kp + B̃tẽt, t ∈ Z, (3.23)

where 1Kp is the one vector of length Kp. Note that the first K entries of (X̃t, t ∈ Z)
equal the gbVAR(p) process (Xt, t ∈ Z). By exploiting the above representation (3.23)
of X̃t as a gbVAR(1) process, analogous to (3.22), we get

X̃t = ζ̃dX̃t−(d+1) +
d∑
i=0

ζ̃i−1η̃t−i, (3.24)

with ζ̃0 := IK and ζ̃i :=
∏i
j=0 Ã

(+)
t−j , i ∈ N and η̃t := Ã

(−)
t−i1Kp + B̃t−iẽt−i. Now, by

letting d→∞ on the right-hand sides of equations (3.22) and (3.24), respectively, this
allows us to derive moving-average-type representations of gbVAR processes that make
use of a stationarity conditions familiar from (causal) vector-valued autoregressive-type
processes. Precisely, for p = 1, this condition is

det
(
IK −A|·|z

)
6= 0 ∀z ∈ C : |z| ≤ 1, (3.25)

and, for general p ∈ N, it becomes

det
(
IKp − Ã|·|z

)
6= 0 ∀z ∈ C : |z| ≤ 1, (3.26)

which is equivalent to the condition that all eigenvalues of Ã|·| have modulus smaller
than one, and to the condition that all roots of the characteristic matrix polynomial
lie outside the unit circle, i.e.

det
(
IK −A(1)

|·| z − . . .−A
(p)
|·| z

p
)
6= 0 ∀z ∈ C : |z| ≤ 1. (3.27)

The following result extends Theorem 1 in Jentsch and Reichmann (2019) to the mul-
tivariate case.

Theorem 3.4 (Moving-average representation of gbVAR processes)
Let (Xt, t ∈ Z) be a (stationary) K-dimensional gbVAR(p) process that fulfills (3.17).

(i) If p = 1 and condition (3.25) holds, the gbVAR(1) model has a gbVMA(∞)-type
representation

Xt =
∞∑
i=0

ζiηt−i, t ∈ Z, (3.28)

converging in L1.
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(ii) If p ∈ N and condition (3.27) holds, the gbVAR(p) model has a gbVMA(∞)-type
representation

Xt = JX̃t = J

( ∞∑
i=0

ζ̃iη̃t−i

)
, t ∈ Z, (3.29)

converging in L1, where J := [IK , 0K×K(p−1)].

In comparison to classical vector autoregressive processes, the moving-average repre-

sentation of gbVAR processes contains an additional term Ã
(−)
t−i1Kp in η̃t−i = Ã

(−)
t−i1Kp+

B̃t−iẽt−i that takes control of potential negative parameters. If all entries in the pa-
rameter matrix P = [A(1), . . . ,A(p),B] are non-negative, this additional term vanishes.
It is also important to note that the stationarity conditions in (3.25) - (3.27) rely on

the modified coefficient matrices A(1)
|·| , . . . ,A

(p)
|·| instead of A(1), . . . ,A(p).

The stationarity condition (3.25) for gbVAR(1) processes is illustrated in the follow-
ing example.

Example 3.5 (Stationarity of gbVAR(1) models)
Let K = 2 and consider the bivariate gbVAR(1) process with parameter matrix P :=
[A,B], where

A :=

(
α11 α12

α21 α22

)
and B :=

(
β11 0
0 β22

)
such that |α11|+ |α12|+ β11 = 1 and |α21|+ |α22|+ β22 = 1.

Let us consider four cases:

(i) If β11, β22 > 0, both innovations et,1 and et,2 are allowed to enter the gbVAR(1)
model. From |α11| + |α12| < 1 and |α21| + |α22| < 1, we get that all eigenvalues
of A|·| and of A have modulus smaller than one. Hence, condition (3.25) holds.

(ii) If β11 = 0, β22 > 0 and α12 6= 0, only the innovation et,2 is allowed to enter the
gbVAR(1) model, but as α12 6= 0, it may reach Xt,1 after one time step as well.
Indeed, in this case, it can be checked that all eigenvalues of A|·| and of A have
modulus smaller than one and condition (3.25) holds.

(iii) If β11 = 0, β22 > 0 and α12 = 0, the innovation et,2 is allowed to enter the
gbVAR(1) model, but it will never reach Xt,1. In this case, where |α11| = 1 −
|α12| − β11 = 1, the largest (in modulus) eigenvalues of A|·| and of A are equal
to one and condition (3.25) does not hold.

(iv) If β11 = β22 = 0 and αij 6= 0, i, j = 1, 2, such that

A =

(
α11 1− α11

α22 −(1− α21)

)
and A|·| =

(
α11 1− α11

α21 1− α21,

)
no innovations at all are allowed to enter the gbVAR(1) model. In this case, the
eigenvalues of A are (in modulus) smaller than one (e.g. for α11 = α21 = 0.5 they
compute to λ1,2 = ±0.7071). Nevertheless, the largest eigenvalue (in modulus)
of A|·| becomes one, such that condition (3.25) does not hold.
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The latter example illustrates that βkk > 0 for all k = 1, . . . ,K is a sufficient, but
not a necessary condition for (3.25) (and also for (3.27)) to hold.

Note that gbVAR processes are of autoregressive-type, but they are non-linear due
to the random coefficient matrices. Nevertheless, we can show that the autocovariance
structure of gbVAR processes coincides with that of classical VAR processes in the
sense that the same Yule-Walker equations hold. For this purpose, we denote by
ΓX(h) = Cov(Xt+h, Xt), h ∈ Z, the corresponding autocovariance matrices of the
gbVAR(p) process (Xt, t ∈ Z).

Theorem 3.6 (Yule-Walker equations for gbVAR(p) models, h > 0)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVAR(p) process. Then, for all h ∈ N
(with h 6= 0), we have

ΓX (h) =

p∑
i=1

A(i)ΓX (h− i) (3.30)

leading, in particular, to the system of Yule-Walker equations

[A(1), . . . ,A(p)]

(
ΓX(i− j)

i, j = 1, . . . , p

)
= [ΓX(1), . . . ,ΓX(p)]. (3.31)

By replacing the autocovariances ΓX(h) by sample versions Γ̂X(h), Yule-Walker
equations can be used for parameter estimation using the well-known Yule-Walker
estimators. Before these will be addressed in Section 3.2.5, we will discuss possible
identification issues in Section 3.2.3.

The derivation of a Yule-Walker-type equation for h = 0 is much more intricate. For
this purpose, we will use Hadamard products denoted by “◦”, where A◦B := (aijbij)i,j
for two matrices A and B of the same dimensions.

Theorem 3.7 (Yule-Walker equation for gbVAR(p) models, h = 0)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVAR(p) process. Then, for h = 0, we
have

ΓX(0) =

p∑
i,j=1

[
IK ◦

{(
A(i)
|·| µX1

′
K

)
1{i=j} −

(
A(i)

(
ΓX(j − i) + µXµ

′
X

)
A(j)′

)}
.

+
(
A(i) (ΓX(j − i))A(j)′

) ]
+

p∑
i,j=1

[
IK ◦

{(
−A(−,i)µX1

′
K

)
1{i=j} −

(
A(i)µX1

′
KA(−,j)′

)}]

−
p∑
i=1

[
IK ◦

{(
A(i)µXµ

′
eB′
)

+
(
A(−,i)

1Kµ
′
eB′
)}]

+

p∑
i,j=1

[
IK ◦

{(
−A(−,i)µX1

′
K

)
1{i=j} −

(
A(−,i)

1Kµ
′
XA(j)′

)}]
(3.32)

+

p∑
i,j=1

[
IK ◦

{(
A(−,i)

1K1
′
K

)
1{i=j} −

(
A(−,i)

1K1
′
KA(−,j)′

)}]

−
p∑
j=1

[
IK ◦

{(
Bµeµ′XA(j)′

)
+
(
Bµe1′KA(−,j)′

)}]
+ IK ◦

{
Bµe1′K − Bµe1′KB

}
+ BΣeB.
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Note that the formula derived in Theorem 3.7 contains the expression

ΓX(0) =

p∑
i,j=1

(
A(i) (ΓX(j − i))A(j)′

)
+ BΣeB,

which is similar to the classical formula for the Yule-Walker equation for h = 0 of
VAR(p) processes (see e.g. Lütkepohl (2005)[Section 11.4], here only BΣeB is replaced
by Σe) plus some additional terms that contain “IK ◦ · · ·′′. Note that these additional
terms only adjust the diagonal entries. They show up due to the random coefficients,
that control the selection mechanism in the gbVAR model.

Alternatively, the last line in (3.32) can be rearranged to get

IK ◦
{
Bµe1′K + B(Σe − µe1′K)B

}
+ (1K×K − IK) ◦ {BΣeB}

=IK ◦
{
Bµe1′K − B

(
µeµ

′
e

)
B
}

+ B {(1K×K − IK) ◦ Σe}B. (3.33)

Note that the Hadamard multiplication in last term on the right-hand side sets the
diagonal of Σe (which is already determined by µe) to zero and that all other expressions
in (3.33) contain only B and µe, but not Σe. This is particularly useful to identify the
off-diagonal elements of Σe, which can be used for estimation purposes as discussed in
Section 3.2.5.

Example 3.8 (Special cases of Theorem 3.7)
For p = 1, the formula derived in Theorem 3.7 simplifies to become

ΓX(0) = IK ◦
{(
A(1)
|·| µX1

′
K

)
−
(
A(1)

(
ΓX(0) + µXµ

′
X

)
A(1)′

)}
+
(
A(1)ΓX(0)A(1)′

)
+
[
IK ◦

{(
−A(−,1)µX1

′
K

)
−
(
A(1)µX1

′
KA(−,1)′

)}]
−
[
IK ◦

{
A(1)µXµ

′
eB′
}]

+
[
IK ◦

{
−A(−,1)µX1

′
K −

(
A(−,1)

1Kµ
′
XA(1)′

)}]
+
[
IK ◦

{(
A(−,1)

1K1
′
K

)
−A(−,1)

1K1
′
KA(−,1)′

}]
−
[
IK ◦

{
A(−,1)

1Kµ
′
eB′
}]
−
[
IK ◦

{
Bµeµ′XA(1)′

}]
−
[
IK ◦

{
Bµe1′KA(−,1)′

}]
+ IK ◦

{
Bµe1′K − B(µe1

′
K)B

}
+ BΣeB.

If additionally all entries in A(1) are non-negative, all terms containing A(−,1) = 0K×K
vanish and we can replace A(1)

|·| by A(1). This leads to

ΓX(0) = IK ◦
{(
A(1)µX1

′
K

)
−
(
A(1)

(
ΓX(0) + µXµ

′
X

)
A(1)′

)}
+
(
A(1)ΓX(0)A(1)′

)
−
[
IK ◦

{
A(1)µXµ

′
eB′
}]
−
[
IK ◦

{
Bµeµ′XA(1)′

}]
(3.34)

+ IK ◦
{
Bµe1′K − B(µe1

′
K)B

}
+ BΣeB.

In the following result, we derive expressions for one step ahead transition probabil-
ities for gbVAR processes to reach a certain state in {0, 1}K given the past values of
the time series.

Lemma 3.9 (Transition probabilities of gbVAR processes)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVAR(p) process. Further, for k =
0, 1, . . . , p, let sk, r0 ∈ {0, 1}K with sk := (sk,1, . . . , sk,K)′ and r0 := (r0,1, . . . , r0,K)′.
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Figure 3.5.: Realization and autocorrelation structure of the bivariate gbVAR(2) pro-
cess as specified in Example 3.10.

Denote by δij = 1{i=j} the Kronecker delta and set pr0 := P (et = r0). Then, the
transition probability given the past values of the time series becomes

P
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp

)
= (3.35)∑

r0∈{0,1}K
pr0

K∏
k=1

[
p∑
i=1

K∑
l=1

|α(i)
kl |
[
1{α(i)

kl ≥0}
δs0,ksi,l + 1{α(i)

kl <0}δs0,k(1−si,l)

]
+ βkkδs0,kr0,k

]
.

In the following example, we illustrate the derived formula for the transition proba-
bilities (3.35) by using a bivariate gbVAR(2) process.

Example 3.10 (Transition probabilities of a bivariate gbVAR(2) model)
Let (Xt, t ∈ Z) be a bivariate gbVAR(2) process following the model equation(
Xt,1

Xt,2

)
=

(
a
(+,1)
t,11 a

(+,1)
t,12

a
(+,1)
t,21 a

(+,1)
t,22

)(
Xt−1,1
Xt−1,2

)
+

(
a
(−,1)
t,11 a

(−,1)
t,12

a
(−,1)
t,21 a

(−,1)
t,22

)(
1
1

)

+

(
a
(+,2)
t,11 a

(+,2)
t,12

a
(+,2)
t,21 a

(+,2)
t,22

)(
Xt−2,1
Xt−2,2

)
+

(
a
(−,2)
t,11 a

(−,2)
t,12

a
(−,2)
t,21 a

(−,2)
t,22

)(
1
1

)
+

(
bt,11 0

0 bt,22

)(
et,1
et,2

)
.

Let s0, s1, s2, r0 ∈ {0, 1}2. Then, based on the model parameters summarized in P :=[
A(1),A(2),B

]
, the transition probability to observe the state vector s0 at time t given

the state vectors s1 and s2 have been observed at time t− 1 and t− 2, respectively, is

P (Xt = s0|Xt−1 = s1, Xt−2 = s2) =

=
∑

r0∈{0,1}2
pr0

2∏
k=1

(
2∑
i=1

2∑
l=1

[
|α(i)
kl |
(
1{α(i)

kl ≥0}
δs0,ks1,l + 1{α(i)

kl <0}δs0,k(1−s1,l)

)]
+ βkkδs0,kr0,k

)
.

Depending on the signs of the entries α
(i)
kl , the Kronecker deltas in the formula above

control which |α(i)
kl | enter the transition probability. In Figure 3.5, we show a realization
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of the gbVAR(2) process with parameters P =
[
A(1),A(2),B

]
specified as

P :=

[(
−0.37 0.15
−0.14 0.33

)
,

(
0.23 −0.18
−0.11 0.36

)
,

(
0.07 0.00
0.00 0.06

)]
with innovation process (et, t ∈ Z) consisting of two independent Bernoulli processes
(et,1, t ∈ Z) and (et,2, t ∈ Z) with µe,1 = P (et,1 = 1) = 0.4 and µe,2 = P (et,2 = 1) = 0.5
leading to Σe = diag(0.24, 0.25). This leads to the corresponding transition probability

P (Xt = s0|Xt−1 = s1, Xt−2 = s2) =
∑

r0∈{0,1}2
P (et,1 = r0,1)P (et,2 = r0,2) ·

(
| − 0.37|δs0,1(1−s1,1) + 0.15δs0,1s1,2 + 0.23δs0,1s2,1 + | − 0.18|δs0,1(1−s2,2) + 0.07δs0,1r0,1

)(
| − 0.14|δs0,2(1−s1,1) + 0.33δs0,2s1,2 + | − 0.11|δs0,2(1−s2,1) + 0.36δs0,2s2,2 + 0.06δs0,2r0,2

)
.

As can be seen in Figure 3.5, the first component of the gbVAR(2) process shows an
alternating pattern with an alternating ACF, whereas the second component tends to
show longer runs of the same value and a positive ACF.

Remark 3.11 (Dependent multinomial selection)
In view of the mutually independent multinomial selection mechanisms Pt,k•, k =
1, . . . ,K, used to define gbVAR processes in Definition 3.1, a possible extension would
be to allow for dependence between the multinomial distributions. Such an extension
would not affect the Yule-Walker equations for h > 0 in Theorem 3.6, but those in The-
orem 3.7 for h = 0. However, we do not follow this path as it would complicate things
considerably and the benefit of such an extension of the gbVAR model class would be
comparatively small. Furthermore, multinomial distributions allowing for dependence
seem to be less developed; see e.g. Johnson et al. (1997)[Ch. 36] for a rather restrictive
attempt in this direction.

Note that the scalar selection mechanism used for the GDARMA approach proposed
in Möller and Weiß (2020) coincides with a setup of mutually dependent multinomial
selection mechanisms with perfectly correlated coefficient matrices’ diagonal entries.

3.2.3. Identification of gbVAR models

As discussed in Theorem 3.4, the stationarity condition (3.27) implies a gbVMA(∞)-
type representation of a gbVAR(p) process. Moreover, Theorem 3.6 shows that stan-
dard Yule-Walker equations hold. However, the stationarity condition (3.27) alone
is not yet sufficient to make a gbVAR(p) model identifiable even if we assume that
V ar(Xt,k) > 0 for all k = 1, . . . ,K. Such an identification problem will show whenever
a stationary K-dimensional gbVAR process has a reducible state space VX ( {0, 1}K .
That is, when the process cannot take all states in {0, 1}K , such that there are
s0 ∈ {0, 1}K with P (Xt = s0) = 0. Hence, if we assume that V ar(Xt,k) > 0 for

all k = 1, . . . ,K, for the true state space VX , we have |VX | = 2K̃ for some K̃ < K. In
this case, Xt contains components Xt,i and Xt,j that are either perfectly positively cor-
related or perfectly negatively correlated, respectively, such that ΓX(0) has a reduced
rank rk(ΓX(0)) < K. Consequently, the Yule-Walker matrix(

ΓX(i− j)
i, j = 1, . . . , p

)
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has a reduced rank and is not invertible. Hence, a reducible state space leads to
identifiability issues as the Yule-Walker equations derived in Theorem 3.6 do not have
a unique solution and corresponding Yule-Walker estimators are not applicable.

However, whenever a stationary K-dimensional binary process (Xt, t ∈ Z) with

V ar(Xt,k) > 0 for all k = 1, . . . ,K has a reducible state space VX with |VX | = 2K̃

with K̃ < K, it can be written as

Xt = M(G1
K̃

+HYt), (3.36)

where (Yt, t ∈ Z) is a K̃-dimensional binary process with non-reducible state space

VY = {0, 1}K̃ , M is a K × K dimensional permutation matrix, and G and H are
suitable K × K̃ matrices with entries in {0, 1} and {−1, 0, 1}, respectively. Precisely,
(Xt, t ∈ Z) can be rearrange (according to M) and partitioned to get

Xt = M

Xt,pos

Xt,neg

Yt

 , (3.37)

where (Yt, t ∈ Z) is a K̃-dimensional process such that K̃ is the largest possible di-
mension with ΓY (0) = V ar(Yt) has full rank and (Yt, t ∈ Z) has a non-reducible state
space. Then, for all remaining components Xt,i of Xt (that are not included in Yt)
there exist (only!) one component Yt,j in Yt such that Xt,i and Yt,j are either perfectly
positively or perfectly negatively correlated. Let Xt,pos and Xt,neg be sub-processes of

dimensions Kpos and Kneg with Kpos + Kneg + K̃ = K that summarize all remaining
components of Xt that are perfectly positively and perfectly negatively correlated with
some component in Yt, respectively. Furthermore, the (K × K̃) matrices G and H can
be partitioned as follows

G =

 Gpos
Gneg
O
K̃×K̃

 and H =

 Hpos

Hneg

I
K̃×K̃

 ,

where

Gpos = O
Kpos×K̃ , Gneg =

1{Cov(Xt,r,neg, Yt,s) = −1)}
r = 1, . . . ,Kneg

s = 1, . . . , K̃


as well as

Hpos =

1{Cov(Xt,r,pos, Yt,s) = 1)}
r = 1, . . . ,Kpos

s = 1, . . . , K̃

 , Hneg := −Gneg,

are matrices of dimensions (Kpos × K̃) and (Kneg × K̃), respectively.

In the following example, to illustrate the above, we consider the concrete setup of a
four-dimensional gbVAR(1) process (Xt, t ∈ Z), that fulfills the stationarity condition
(3.25), but has a reducible state space leading to identification issues as described
above. We derive how this process relates via (3.36) and (3.37) to a stationary lower-
dimensional gbVAR(1) process (Yt, t ∈ Z) with non-reducible state space.
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Example 3.12 (gbVAR(1) with reducible state space)
Suppose (Xt, t ∈ Z) is a four-dimensional gbVAR(1) process (K = 4) with

A =


0 0 0 1
0 0 0 −1
0 0 0 1
α41 α42 α43 α44

 and B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 β44

 ,

where α41, α42, α43, α44 ≥ 0 and β44 > 0 such that α41 +α42 +α43 +α44 + β44 = 1 and
with E(et) = µe and V ar(et) = diag(µe,k(1−µe,k), k = 1, . . . , 4) Then, by construction,
the process (Xt, t ∈ Z) fulfills Xt,1 = −Xt,2 = Xt,3 for all t ∈ Z such that the true state
space becomes

VX = {(1, 0, 1, 0), (1, 0, 1, 1), (0, 1, 0, 1), (0, 1, 0, 0)} ( {0, 1}4 (3.38)

with |VX | = 22 = 4. Hence, the process (Xt, t ∈ Z) has a reducible state space as the
process does not take all values in {0, 1}4 with |{0, 1}4| = 24 = 16. In particular, Xt,1

and Xt,3 are perfectly positively correlated and Xt,2 and Xt,3 are perfectly negatively
correlated. Hence, in this case, we get

Xt = M(G12 +HYt), (3.39)

where M = I4 (by construction),

G =

 Gpos
Gneg
O
K̃×K̃

 =


0 0

1 0

0 0
0 0

 and H =

 Hpos

Hneg

I
K̃×K̃

 =


1 0

−1 0

1 0
0 1

 .

The process (Yt, t ∈ Z) follows a bivariate (K̃ = 2) gbVAR(1) model

Yt = A
(+)
Y,t Yt−i +A

(−)
Y,t 1K +BY,tεt, t ∈ Z,

with parameters AY ,A(−)
Y ,AY,|·| and BY as in Definition 3.1 such that

E(A
(+)
Y,t ) = H+AH =

(
0 1

α41 − α42 + α43 α44

)
=

(
0 1

αY,21 αY,22

)
= AY ,

E(A
(−)
Y,t ) =

(
0 0

|αY,21|1{αY,21<0} 0

)
= A(−)

Y ,

E(AY,t) =

(
0 1

|αY,21| αY,22

)
= AY,|·| and

E(BY,t) =

(
0 0
0 1− |α41 − α42 + α43| − |α44|

)
= BY .

Here, H+ denotes the Moore-Penrose inverse of H with

H+ =

(
1
3 −1

3
1
3 0

0 0 0 1

)
.
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Furthermore, we get µε = E(εt) with µε,1 := 0 (µε,1 is not identified due to βY,11 = 0)
and

µε,2 =
(0, 1)

(
−A(−)

Y 12 +H+AG12 +H+A(−)
14 +H+Bµe −H+G12

)
βY,22

(3.40)

=
(α41 − α42 + α43)1{α41−α42+α43<0} + α42 + µe,4

1− |α41 − α42 + α43| − α44
,

where we used that

A(−) =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


by construction due to α41, α42, α43, α44 ≥ 0 and β44 > 0. The proof of equation (3.40)
can be found in the appendix.

Now, we address why diagonality of B has to be imposed to achieve identifiability
of Σe.

Remark 3.13 (Non-diagonal B matrix)
So far, we presumed a diagonal structure of the parameter matrix B, i.e. B = diag(β11,
. . . , βKK). The purpose is essentially two-fold. First, the parameter matrices A(1), . . . ,
A(p) can be easily estimated using Yule-Walker estimators as will be described in Section
3.2.5. From the requirement that row-wise the entries in P = [A(1), . . . ,A(p),B] have

to sum up to one, it is most convenient to define βkk := 1 −
∑p

i=1

∑K
l=1 |α

(i)
kl |, for

k = 1, . . . ,K. Second, if the diagonality of B is not enforced, it is unclear how to

allocate 1−
∑p

i=1

∑K
l=1 |α

(i)
kl | to K free parameters βk1, . . . , βkK . Hence, allowing B to

be non-diagonal leads to identification issues.
For example, let K = 2 and suppose B is potentially non-diagonal with non-negative

entries. Then, the bivariate process {Btet, t ∈ Z} is i.i.d. taking values s0 ∈ {0, 1}2
and we get

P (Btet = s0) =
∑

r0∈{0,1}2
P (Btet = s0|et = r0)P (et = r0)

=
∑

r0∈{0,1}2

(
β11δr0,1s0,1 + β12δr0,2s0,1

) (
β21δr0,1s0,2 + β22δr0,2s0,2

)
pr0 .

(3.41)

Hence, as the distribution of Btet takes values in {0, 1}2, it is fully specified by three
parameters. If B is imposed to be diagonal such that β12 = β21 = 0 and β11 and

β22 are pre-determined (by βkk := 1 −
∑p

i=1

∑K
l=1 |α

(i)
kl |), the distribution of et, which

is specified by e.g. p(0,0), p(0,1) and p(1,0) (with p(1,1) = 1 − p(0,0) − p(0,1) − p(1,0)), is
identified. If B is not restricted to be diagonal, this is not the case.

3.2.4. Mixing properties of gbVAR processes

For the derivation of asymptotic theory such as e.g. central limit theorems for statistics
computed from the time series data, mixing concepts are very helpful to quantify the
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3. Generalized Binary Vector ARMA Processes

serial dependence structure of time series processes. For overviews of different mixing
concepts, we refer e.g. to Doukhan (1994), Dedecker et al. (2007) or Bradley (2007).

A suitable Markov chain representation has been proven to be beneficial to prove
mixing properties for time series processes with discrete and finite state spaces; see
e.g. Jacobs and Lewis (1983) or Weiß (2009a). In this section, we adopt this approach
to examine mixing properties of gbVAR processes in order to prove (geometric) ψ- and
ϕ-mixing. As given in Billingsley (1968), when defined on a suitable probability space
(Ω,A, P ), a process (Zt, t ∈ Z) is called ψ- mixing, if for all subsets E1 ∈ σ(Zt, Zt−1, . . .)
and E2 ∈ σ(Zt+h, Zt+h+1, . . .) of the induced σ- fields, and a non negative sequence
(fh, h ∈ N) with fh → 0 for h→∞, we have

|P (E1 ∩ E2)− P (E1)P (E2) | ≤ fhP (E1)P (E2) . (3.42)

If the right-hand side of the inequality (3.42) is replaced by fhP (E1), we get the
definition of the (weaker) ϕ- mixing property.

The Markov chain representation of a gbVAR(p) process (Xt, t ∈ Z) is obtained by
stacking the time series values Xt−i, i = 0, . . . , p − 1 and the innovation et to get a
K(p+ 1)- dimensional random vector Zt defined by

Zt := vec ([Xt, Xt−1, . . . , Xt−p+1, et]) , (3.43)

which defines a K(p + 1)- dimensional homogeneous Markov chain (Zt, t ∈ Z). Let
s0, s1 ∈ {0, 1}K(p+1) with

s0 := (s′0, . . . , s
′
p−1, r

′
0)
′ and s1 := (s̃′1, . . . , s̃

′
p, r̃
′
1)
′,

where si, s̃i, r0, r̃1 ∈ {0, 1}K with si = (si,1, . . . , si,K)′ etc. for i = 0, . . . , p. Similar
to the derivation of the transition probability stated in Lemma 3.9, we obtain the
conditional probability

P (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp, et = r0) = (3.44)

K∏
k=1

[
p∑
i=1

K∑
l=1

|α(i)
kl |
[
1{α(i)

kl ≥0}
δs0,ksi,l + 1{α(i)

kl <0}δs0,k(1−si,l)

]
+ β

(0)
kk δs0,kr0,k

]
,

which allows to express the transition probability of the Markov chain (Zt, t ∈ Z) as
follows

P (Zt = s0|Zt−1 = s1) = P (Xt = s0|Xt−1 = s̃1, . . . , Xt−p = s̃p, et = r0) ·
P (Xt−1 = s1|Xt−1 = s̃1) · . . . · P (Xt−p+1 = sp−1|Xt−p+1 = s̃p−1)P (et = r0)

=

K∏
k=1

[
p∑
i=1

K∑
l=1

|α(i)
kl |
[
1{α(i)

kl ≥0}
δs0,ksi,l + 1{α(i)

kl <0}δs0,k(1−si,l)

]
+ β

(0)
kk δs0,kr0,k

]
·

δs1s̃1 · . . . δsp−1s̃p−1 · pr0 ,

where pr0 = P (et = r0). If the underlying K-dimensional gbVAR(p) process (Xt, t ∈
Z) has a non-reducible state space, that is, we have P (Xt = s0) > 0 for all s0 ∈ {0, 1}K ,
the latter formula allows to prove primitivity of the Markov chain (Zt, t ∈ Z). We will
address gbVAR(p) processes with reducible state spaces also in Theorem 3.15 below.
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3.2. The gbVAR Model Class

Lemma 3.14 (Primitivity)
Let (Zt, t ∈ Z) be the Markov Chain representation of a stationary gbVAR(p) process
(Xt, t ∈ Z) with non-reducible state space and p ≥ 1. Then (Zt, t ∈ Z) is primitive,
that is, for n := max{p,K ′}+ 1, we have

ps|r(n) := P (Zt = s|Zt−n = r) > 0 for all r, s ∈ {0, 1}K(p+1).

Following the argumentation in Weiß (2009a)[Section 11.2], we can conclude from
Lemma 3.14 that the Markov process (Zt, t ∈ Z) based on a stationary gbVAR(p)
process (Xt, t ∈ Z) with non-reducible state space is ergodic and geometrically ψ- and
ϕ-mixing.

As the process (Xt, t ∈ Z) is contained in (Zt, t ∈ Z), we can finally conclude
from the mixing properties of its Markov chain representation that the gbVAR(p)
process (Xt, t ∈ Z) itself is geometrically ψ- and ϕ- mixing if (Xt, t ∈ Z) has a non-
reducible state space. Otherwise, if the process (Xt, t ∈ Z) has a reducible state space
VX ( {0, 1}K , we consider the corresponding lower-dimensional process (Yt, t ∈ Z) with
non-reducible state space as discussed in Section 3.2.3 and derive mixing properties
for this process. As (Xt, t ∈ Z) is obtained by a linear transformation from (Yt, t ∈ Z),
the corresponding mixing properties are easily concluded also for (Xt, t ∈ Z).

Theorem 3.15 (Mixing properties of gbVAR processes)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVAR(p) process with p ≥ 1 and
V ar(Xt,k) > 0 for all k = 1, . . . ,K. Then the process is ψ- and ϕ- mixing with
exponentially decreasing weights (fn, n ∈ N) i.e. there exists an a > 0 and ρ ∈ (0, 1)
such that fn = aρn.

3.2.5. Parameter estimation in gbVAR models

The joint distribution of a gbVAR process is fully determined by the marginal dis-
tribution of the i.i.d. innovations (et, t ∈ Z) and by the model parameters in P. In
view of the second-order dependence structure of gbVAR processes, the Yule-Walker
equations derived in Theorems 3.6 and 3.7 constitute an important link between the
mean vector µX , the autocovariance function ΓX , the gbVAR coefficients in P, which
are all population quantities of the process (Xt, t ∈ Z), and innovation mean µe and
variance Σe, which are population quantities of the innovation process. Here, µX and
ΓX(h) are easily estimable from a gbVAR data sample X1, . . . , Xn by their sample
versions

µ̂X := X =
1

n

n∑
t=1

Xt, (3.45)

Γ̂X(h) :=

{
1
n

∑n−h
t=1 (Xt+h −X)(Xt −X)′, 0 ≤ h < n

0, h ≥ n
(3.46)

and ΓX(−h) := Γ′X(h) for h < 0. If the K-dimensional process (Xt, t ∈ Z) has
the non-reducible state space VX = {0, 1}K , we can use the Yule-Walker equation
system (3.31) to construct the well-known Yule-Walker estimator [Â(1), . . . , Â(p)] for
[A(1), . . . ,A(p)] by replacing the ACF ΓX by the sample ACF Γ̂X . Otherwise, i.e. if the
process has a reducible state space, we have to apply the Yule-Walker estimation to
the corresponding lower-dimensional process (Yt, t ∈ Z) with non-reducible state space
VY as introduced in Section 3.2.3, which is identified.
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3. Generalized Binary Vector ARMA Processes

In the following, we assume without loss of generality, that (Xt, t ∈ Z) has a non-
reducible state space. Then, the Yule-Walker estimator (see e.g. Lütkepohl (2005)[eq.
(3.3.17)]) is

[Â(1), . . . , Â(p)] = [Γ̂X(1), . . . , Γ̂X(p)]

(
Γ̂X(i− j)

i, j = 1, . . . , p

)−1
(3.47)

with Â(i) = (α̂
(i)
kl )k,l=1,...,K . As we imposed diagonality of B to achieve identification

of Σe, by using the natural restriction βkk = 1−
∑p

i=1

∑K
l=1 |α

(i)
kl | for k = 1, . . . ,K, we

get immediately the estimator B̂ defined by

B̂ := IK − diag
(

[Â(1), . . . , Â(p)]1Kp

)
. (3.48)

For further discussions about the diagonal structure of B, see Remark 3.13. From
Lemma 3.3, we get an estimator µ̂e for the innovation mean µe by rearranging equation
(3.21) and plugging in the sample versions of A(i), A(−,j), B and µX to get

µ̂e = B̂−1
[IK − p∑

i=1

Â(i)

]
µ̂X −

p∑
j=1

Â(−,j)
1K

 , (3.49)

where Â(−,i) := (|α̂(i)
kl |1{α̂(i)

kl <0})k,l=1,...,K , i = 1, . . . , p analogous to (3.20).

In scenarios where (some) diagonal elements β̂kk equal zero such that B̂ is no longer
invertible, the corresponding µe,k’s are not identified, but the remaining mean param-
eters are still identified via an equation similar to Lemma 3.3 of reduced dimension;
see also Remark 3.16 below. The diagonal of Σe, i.e. IK ◦ Σe can be estimated by

̂IK ◦ Σe := diag(µ̂e,i(1− µ̂e,i), i = 1, . . . ,K). (3.50)

Moreover, by using the Yule-Walker equation (3.32) from Theorem 3.7, it is also pos-
sible to construct an estimator for the non-diagonal elements of Σe, i.e. for (1K×K −
IK) ◦ Σe. Such an estimator is obtained by replacing the last line of (3.32) by (3.33),
separating (1K×K − IK) ◦Σe on one side of the equation (achieved by left- and right-
multiplication with B−1) and replacing all population quantities on the other side of
the equation by their sample versions proposed above.

Finally, transition probabilities derived in Lemma 3.9 can be estimated in a similar
fashion by replacing population quantities by the corresponding estimators to get

P̂
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp

)
= p̂s0|s1,...,sp = (3.51)∑

r0∈{0,1}K
p̂r0

K∏
k=1

[
p∑
i=1

K∑
l=1

|α̂(i)
kl |
[
1{α̂(i)

kl ≥0}
δs0,ksi,l + 1{α̂(i)

kl <0}δs0,k(1−si,l)

]
+ β̂kkδs0,kr0,k

]
,

where

p̂r0 =

 K∏
k=1

k:r0,k=1

µ̂e,k


 K∏

k=1
k:r0,k=0

(1− µ̂e,k)

 (3.52)

in the case where et consists of mutually independent Bernoulli random variables. In
the dependent case, the estimator for off-diagonal elements of Σe, i.e. (1K×K−IK)◦Σe,
derived above can be used to allow also for dependent Bernoulli random variables to
incorporate linear dependence.
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Remark 3.16 (Estimation outside of the parameter space)
Estimation of the gbVAR parameters A := [A(1), . . . ,A(p)] using the Yule-Walker es-
timator Â := [Â(1), . . . , Â(p)] can lead to invalid parameters with

[Â(1)
|·| , . . . , Â

(p)
|·| ]1Kp 6∈ [0, 1]K (3.53)

such that at least for one row k0 ∈ {1, . . . ,K}, we have

(|α̂(1)
k0,•|, . . . , |α̂

(p)
k0,•|)1Kp =

p∑
i=1

K∑
l=1

|α̂(i)
k0,l
| > 1. (3.54)

Let K∗ denote the number of such rows and by K the set of all indexes k0 ∈ {1, . . . ,K}
satisfying (3.54). Then, we propose to estimate a constraint model that assures valid

parameters [Â(1)
|·| , . . . , Â

(p)
|·| ]1Kp ∈ [0, 1]K ; see Lütkepohl (2005)[Section 5.2]. For this

purpose, we construct a K∗ × (K2p + K) matrix C of rank K∗ by first defining the
auxiliary matrix

c̃k0 =
((
1{Ak,m≥0} − 1{Ak,m<0}

)
δ{k0=k}

)
k=1,...,K, m=1,...,Kp

of dimension K × Kp for each k0 ∈ K. These matrices c̃k0 have only entries of −1
and 1 in row k = k0 and zero otherwise. Then, the matrix C combines the vectorized
auxiliary matrices for every k0 ∈ K := {k0,1, . . . , k0,K∗} by

C :=

 vec(c̃k0,1)′

...
vec(c̃k0,K∗ )

′

 .

Furthermore, we define Z =
[
Z(p−1), . . . , ZT

]
containing the process variables Zt :=

vec [Xt, . . . , Xt−p+1] and β = vec
([
A(1), . . . ,A(p)

])
, thus β̂ is the vectorized estimated

parameter matrix from the Yule-Walker estimator (3.47). The constraint is of a row
sum equal to one has influence by the vector c = 1K∗. With these components, the
constraint estimator results by

β̂valid = β̂ +
[(
ZZ ′

)−1]
C ′
[
C
(
ZZ ′

)−1
C ′
]−1 (

c− Cβ̂
)
. (3.55)

Re-vectorizing β̂valid leads to the constraint parameter estimator Âvalid and B̂valid is
calculated as described in (3.48). Since B̂valid contains now K∗ zero diagonal entries,
the innovation process (et, t ∈ Z) is not identified for those rows. The remaining entries
of µ̂e can be estimated by a reduced system of dimension K−K∗ consisting of all rows
with β̂valid,kk 6= 0.

3.3. Simulation Study

In this section, we investigate the performance of Yule-Walker-based estimators in
gbVAR models as described in Section 3.2.5 by Monte-Carlo simulations. To illus-
trate the estimation performance in several gbVAR model setups, we consider a) the
(average) mean squared error (MSE) of different parameter estimators and b) the (av-
erage) mean absolute deviation error (MADE) of transition probability estimators.
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To construct confidence intervals from parameter estimators, we propose a paramet-
ric gbVAR-bootstrap method, and c) investigate its accuracy by means of (average)
coverage rates.

For this purpose, we consider three different gbVAR(p) setups with orders p = 1, 2
and of dimensions K = 3, 4 for sample sizes n = 100, 500, 1000 to be able to judge the
performance of parameter estimation in several gbVAR model specifications. Precisely,
we consider data generating processes (DGPs) with the following specifications:

(DGP1) gbVAR(1) with K = 3, µe = (0.48, 0.52, 0.47)′,

A(1) =

 0.15 −0.25 0.49
−0.19 0.27 0.28

0.17 −0.39 0.21

 and B = diag (0.11, 0.26, 0.23)

(DGP2) gbVAR(1) with K = 4, µe = (0.48, 0.52, 0.47, 0.33)′,

A(1) =


−0.18 0.25 −0.19 −0.15

0.33 −0.23 0.18 −0.18
−0.27 −0.29 0.21 −0.11

0.08 0.15 −0.21 −0.32

 and B = diag (0.23, 0.08, 0.12, 0.24)

(DGP3) gbVAR(2) with K = 3, µe = (0.48, 0.52, 0.47)′,

A(1) =

−0.09 0.15 −0.13
0.13 −0.11 0.28
0.13 −0.19 −0.18

 , A(2) =

−0.18 0.07 −0.19
−0.09 −0.17 0.15
−0.17 −0.09 0.14

 ,

and B = diag (0.19, 0.07, 0.10)

For all DGPs, the corresponding innovation process (et, t ∈ Z) consists of K inde-
pendent Bernoulli processes (et,k, t ∈ Z), k = 1, . . . ,K with µe,k = P (et,k = 1) leading
to diagonal Σe matrices with diagonal entries µe,k(1 − µe,k), k = 1, . . . ,K. Note that
we make use of positive as well as negative entries in A(1) and A(2). Hence, these co-

efficient matrices are related to the diagonal matrix B via βkk = 1−
∑p

i=1

∑K
l=1 |α

(i)
kl |.

In Section 3.3.2, we address also the estimation of the off-diagonal elements of a non-
diagonal variance-covariance matrix Σe.

3.3.1. Average MSE estimation performance

To measure the estimation performance, we calculate averages of the entry-wise mean
squared errors (MSE) of the estimators Â(1) and Â(2), µ̂X , µ̂e and B̂, respectively,
based on 1000 Monte-Carlo replications for each DGP and each sample size. The
simulation results are presented in Table 3.1. It can be seen that the estimation
performance improves with increasing sample size for all estimators and all DGPs.
In comparison, the estimation of the mean innovation vector is least precise with an
average mean squared error around 10 percent. This phenomenon can be explained by
formula (3.49), which requires the inversion of the diagonal matrix B̂. Due to rather
small diagonal entries of B, already small deviations in B̂ might lead to a less stable
estimation of µe and to a larger MSE.
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n MSE of Â(1) MSE of Â(2) MSE of µ̂e MSE of µ̂X MSE of B̂
DGP1 100 0.0085 0.0626 0.0046 0.0214

500 0.0017 0.0152 0.0009 0.0034
1000 0.0008 0.0070 0.0005 0.0015

DGP2 100 0.0085 0.0794 0.0022 0.0426
500 0.0017 0.0388 0.0004 0.0085
1000 0.0008 0.0208 0.0002 0.0035

DGP3 100 0.0084 0.0083 0.1041 0.0015 0.0821
500 0.0018 0.0018 0.0701 0.0003 0.0374
1000 0.0009 0.0009 0.0502 0.0002 0.0198

Table 3.1.: Average MSE estimation performance for different parameter estimators

Â(1), Â(2), µ̂X , µ̂e and B̂ for three different parameter specifications DGP1,
DGP2 and DGP3, respectively.

3.3.2. Average MSE estimation of non-diagonal Σe

As discussed in Remark 3.13, the imposed diagonality of B(0) does generally allow
to identify also the non-diagonal entries of Σe. These can be estimated by using the
Yule-Walker equation for h = 0 from Theorem 3.7 in conjunction with (3.33), where
the corresponding estimator is obtained by replacing all population quantities by their
sample analogues as described in Section 3.2.5.

For illustration, we consider a bivariate gbVAR(1) process, where we used the four
entries α12, α13, α32 and α33 inA of DGP1 leading to B = diag(0.26, 0.4). The bivariate
marginal distribution of the innovations (et, t ∈ Z) is fully specified by µe,1 = P (et,1 =
1) = 0.260, µe,2 = P (et,2 = 1) = 0.382 and

Σe =

(
0.19240 0.134680
0.13468 0.236076

)
,

where Σe determines the joint probabilities P
(
(et,1, et,2) = (i, j)

)
for i, j ∈ {0, 1}.

Practically, such an innovation process can be generated by first sampling the inno-
vation et,1 from a Bernoulli distribution with P (et,1 = 1) = 0.26. Then, we gener-
ate et,2 conditional on the outcome of et,1 such that P (et,2 = 1|et,1 = 1) = 0.9 and
P (et,2 = 1|et,1 = 0) = 0.2. This leads to a marginal Bernoulli distribution of et,2 with
P (et,2 = 1) = 0.9 · 0.26 + 0.2 · (1 − 0.26) = 0.382. For a comprehensive discussion of
multivariate Bernoulli distributions allowing for dependence also beyond K = 2, we
refer to Dai et al. (2013).

In Table 3.2, we report the MSE for the diagonal and non-diagonal elements of Σ̂e

for different sample sizes. It can be seen that the MSE decays for increasing sample
size. However, for a small sample size of n = 100, the MSE of the off-diagonal ele-
ments σ̂e,12 is huge with 16.7383. This value is caused by a mis-estimation for some
few Monte-Carlo replications, where the estimated parameters already show a large
MSE. Due to a matrix inversion, this leads to unstable and unreliable estimates. Nev-
ertheless, this issue disappears for larger sample sizes such that the joint distribution
of the innovation process in form of the non-diagonal entries of Σe can be consistently
estimated. However, as B is imposed to be diagonal for identification reasons, the
non-diagonal entries of Σe do not have large effects on the stochastic properties of the
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n σ̂11 σ̂12,σ̂21 σ̂22
100 0.0100 16.7383 0.0028
500 0.0025 0.0101 0.0002
1000 0.0009 0.0045 0.0001

Table 3.2.: Mean squared error of diagonal and non-diagonal elements of Σ̂e

model. Hence, in practice, it seems to be recommendable to avoid the estimation of a
non-diagonal Σe due to potentially unstable estimation results.

3.3.3. Average MADE estimation performance

An alternative concept to measure the estimation performance in gbVAR models is
based on (average) mean absolute deviation error (MADE) of transition probability
estimators. Note that a direct comparison of prediction probabilities in [0, 1] and
outcomes in {0, 1} are not straightforward and might be misleading to judge the pa-
rameter estimation performance. Hence, we compare the (one step ahead) population
transition probabilities with the corresponding estimated transition probabilities and
consider

|ps0|s1,...,sp − p̂s0|s1,...,sp | (3.56)

= |P (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp)− P̂ (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp) |

with ps0|s1,...,sp = P (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp) as obtained in Theorem 3.9

and p̂s0|s1,...,sp = P̂ (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp) as constructed in (3.51) for the

special case, where et,1, . . . , et,K such that pr0 = P (et = r0) =
∏K
k=1 P (et,k = r0,k).

Mainly, there are two possibilities to use (3.56) to judge the average estimation accu-
racy in gbVAR models. The first one, considers the absolute deviation of the transition
probabilities according to their actual appearances in the Monte Carlo sample under
consideration. That is, given (X1, . . . , Xn) = (x1, . . . , xn), we compute

1

n− p

n∑
t=p+1

|pxt|xt−1,...,xt−p − p̂xt|xt−1,...,xt−p |. (3.57)

The second option is to calculate the absolute deviate of the transition probabilities
over all possible states of s0, . . . , sp in the state space {0, 1}K leading to

1

2K(p+1)

∑
s0,s1,...,sp∈{0,1}K

|ps0|s1,...,sp − p̂s0|s1,...,sp |. (3.58)

Based on 1000 Monte-Carlo samples, we report the estimation performance using both
versions (3.57) and (3.58) of average MADE for each DGP and each sample size in
Table 3.3.

3.3.4. Parametric gbVAR bootstrapping

To construct confidence intervals for the gbVAR model parameters, we propose to
use a parametric gbVAR bootstrap. Autoregressive-type bootstrap methods based on
resampling residuals from an AR model fit have been extensively studied in the time
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average MADE (3.57) average MADE (3.58)

n DGP1 DGP2 DGP3 DGP1 DGP2 DGP3

100 0.0341 0.0358 0.0196 0.0338 0.0169 0.0179

500 0.0154 0.0151 0.0082 0.0149 0.0077 0.0076

1000 0.0108 0.0106 0.0054 0.0104 0.0054 0.0050

Table 3.3.: Estimation performance based on both versions of average MADE in (3.57)
and (3.58) for DGP1, DGP2 and DGP3, respectively.

series literature; see e.g. Kreiß and Paparoditis (2011) for an overview. However, due to
randomness in the coefficients of gbVAR models, it is not possible to construct mean-
ingful residuals from gbVAR fits; see also the discussion in Jentsch and Weiß (2019)
for a similar setup addressing integer-valued autoregressive (INAR) models. Never-
theless, for DGP1 - DGP3, it is possible to estimate consistently all parameters that
determine the distribution of the innovation process (et, t ∈ Z) from time series data
X1, . . . , Xn using the mean formula (3.21) which allows a straightforward parametric
gbVAR bootstrap to construct confidence intervals as follows.

gbVAR bootstrap

Step 1.) Given a data sample X1, . . . , Xn from a gbVAR(p) model, compute the (scalar)
statistic of interest Tn = Tn(X1, . . . , Xn) and estimate the model parameters
P = [A(1), . . . ,A(p),B] and µe as described in Section 3.2.5 leading to P̂ =

[Â(1), . . . , Â(p), B̂] and µ̂e as well as P̂|·| = [Â(1)
|·| , . . . , Â

(p)
|·| , B̂].

Step 2.) Generate a gbVAR(p) bootstrap sample X∗1 , . . . , X
∗
n according to

X∗t =

p∑
i=1

[
A

(+,i)∗
t X∗t−i +A

(−,i)∗
t 1K

]
+B∗t e

∗
t , t ∈ Z, (3.59)

where {e∗t,k, t ∈ Z}, k = 1, . . . ,K, are mutually independent i.i.d. Bernoulli
variables with P ∗(e∗t,k = 1) = µ̂e,k. Further, conditional on X1, . . . , Xn, (P ∗t,k•, t ∈
Z), k = 1, . . . ,K are mutually independent vector-valued i.i.d. processes where

P ∗t,k• :=
[
a
(1)∗
t,k• , . . . , a

(p)∗
t,k• , b

∗
t,k•

]
∼Mult

(
1; P̂|·|,k•

)
,

which are independent of (e∗t , t ∈ Z) and (X∗s , s < t). Here, A
(+,i)∗
t and A

(−,i)∗
t

are defined analogously to A
(+,i)
t and A

(−,i)
t as in Definition 3.1.

Step 3.) Compute T ∗n = Tn(X∗1 , . . . , X
∗
n).

Step 4.) Repeat Steps 2.) and 3.) B times, where B is large, to get T ∗1,n, . . . , T
∗
B,n.

Step 5.) Let q∗α/2 and q∗1−α/2 denote the empirical α/2 - and 1 − α/2-quantiles of T ∗1,n −
Tn, . . . , T

∗
B,n−Tn, respectively, and construct a (1−α)-confidence interval of the

form
[
Tn − q∗1−α/2, Tn − q

∗
α/2

]
.
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T = 100 500 1000 T = 100 500 1000

α
(1)
11 0.933 0.958 0.949 β

(0)
11 0.886 0.946 0.949

α
(1)
12 0.937 0.951 0.942 β

(0)
22 0.866 0.917 0.956

α
(1)
13 0.922 0.946 0.943 β

(0)
33 0.899 0.927 0.926

α
(1)
21 0.927 0.941 0.950

α
(1)
22 0.929 0.957 0.922

α
(1)
23 0.939 0.944 0.955

α
(1)
31 0.936 0.940 0.958 µX,1 0.886 0.943 0.951

α
(1)
32 0.931 0.939 0.947 µX,2 0.910 0.947 0.957

α
(1)
33 0.948 0.949 0.948 µX,3 0.900 0.956 0.927

Table 3.4.: Coverage rates of bootstrap confidence intervals for each entry of the pa-

rameter matrices A(1), B(0) and µX for DGP1.

In Table 3.4, we report the results of a simulation study based on 1000 Monte Carlo
replications and B = 1000 bootstrap replications for DGP1 and each sample size,
where we show coverage rates of (1 − α) bootstrap confidence intervals for all entries
of A(1), B(1) and µX for level α = 0.05. The coverage rates for DGP2 and DGP3 show
a similar behavior and can be found in Appendix 3.9.

3.4. Real Data Example: PM10 data

With increasing environmental awareness, there has been great interest in collecting
and analyzing data describing the extent of the pollution of the environment and its
impact on the health of the population. In recent years, there is particularly growing
interest in air pollution with particulate matter in European cities and metropolitan ar-
eas. The European Union established the European emission standards, which include
limits for particulates in the air. In 2008, the European Parliament made a policy on
critical values in the rule 2008/50/EG for air pollution substances. In particular, it is
by law not allowed to exceed the threshold on 35 or more days per year. For particulate
matter PM10 (coarse particles with a diameter between 2.5 and 10 micrometers), the
liability has a threshold of 50 µg / m3. Hence, whenever the amount of PM10 exceeds
the threshold of 50 µg/m3 at a certain monitoring station, this will cause a ’fine dust
alarm’. Hence, for each such monitoring station, this results in a binary sequence with
states ’exceedance’ and ’no exceedance’. In fact, the current public discourse centers
to a large extent around whether the threshold is exceeded or not, and less about the
actual amount of fine dust measured.

In view of these EU regulations, Stuttgart, Germany is one poorly prominent city,
where air pollution generally is a major problem. The reasons for these problems are
essentially two-fold. On the one hand, they can be explained by its geographic location
in a valley leading to a poor air exchange in the city area. On the other hand, the main
industry such as automobile companies and suppliers as well as financial industry is
located near to the city center. Due to the restricted space in a valley to expand, many
people live in suburbs of Stuttgart and have to commute to their work places. The
commuting traffic concentrates on few main traffic routes, which are highly frequented
during rush hours. Hence, large portions of particulate matter in the air in and around
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3.4. Real Data Example: PM10 data

Figure 3.6.: Locations of six major PM10 monitoring stations in Stuttgart, Germany

Stuttgart is caused by individual mobility.
In Figure 3.2, we show the recorded fine dust alarms at six monitoring stations in

Stuttgart, Germany for 886 consecutive days from 03/01/2016 - 07/31/2018. Precisely,
with Yt,k, k = 1, . . . , 6, representing the day-wise mean of the PM10 values for each
station, Figure 3.2 shows binarized time series data (Xt = (Xt,1, . . . , Xt,6), t ∈ Z),
where

Xt,k =

{
1 if Yt,k ≥ 50

0 if Yt,k < 50
for k = 1, . . . , 6.

The locations of the six monitoring stations Arnulf-Klett Platz, Bad Cannstatt, Haupt-
stätter Straße, Hohenheimer Straße, Neckartor and Stadtgarten are illustrated in Fig-
ure 3.6.

A first inspection of the data in Figure 3.2 shows that fine dust alarms tend to occur
in clusters indicating serial and cross-sectional dependence. However, all sequences
do not show long runs of fine dust alarms, but rather long runs without any alarm.
Moreover, fine dust alarms tend to show more likely in winter. This is due to the fact
that the topological influence of stationary temperature inversion hinders vertical air
exchange. One station (Neckartor, k = 5) shows considerable more exceedances in
comparison to the other stations with fine dust alarms occurring in about 13% of the
days in the considered time period. This is captured by the sample mean vector

µ̂X = (0.0420, 0.0227, 0.0397, 0.0386, 0.1283, 0.0249)′ .

The mean of all the other stations lie around 3 % indicating that only few fine dust
alarms are detected. Overall, this is not surprising, as the station Neckartor is located
at one of the most frequented roads of Stuttgart, where high buildings on one side of
the road hinder the air exchange and favor air pollution. In contrast, the station Bad
Cannstatt with the smallest value of 0.0227 is located at an accommodation route to
the city outside of the city center.

Now, to study the serial dependence in the data, we aim to fit a gbVAR(p) model.
As gbVAR processes satisfy standard Yule-Walker equations and can be estimated
by Yule-Walker estimators as described in (3.47), we can make use of classical order
selection criteria such as Hannan-Quinn (HQ) or BIC to determine an appropriate
order p of the fitted gbVAR process. Whereas HQ selects a more parsimonious model
with p=1, BIC leads to p = 2. To make a choice which model fits best in terms of
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3. Generalized Binary Vector ARMA Processes

Figure 3.7.: Heatmap of the estimated parameter matrix Â for a fitted gbVAR(1) pro-
cess

prediction performance, we use the receiver operating characteristic (ROC) curve and
the corresponding area under the curve (AUC), where an AUC near to one indicates
good prediction performance. For this purpose, similar to Section 3.3.3, we make
use of transition probability estimators P̂ (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp) as
constructed in (3.51) to estimate the transition probabilities for each station, which
allows to compute the ROC curves and AUC values. In Table 3.5, we show the resulting
component-by-component AUC values and their overall means for model orders p ∈
{1, 2}. Both models show a good prediction performance with AUC values near to one.
However, the additional benefit of fitting a gbVAR(2) model in comparison to a more
parsimonious gbVAR(1) model is minor. Hence, we make use of a gbVAR(1) model in
the following to further analyze the PM10 data set.

AK BC HS HH NT SG mean

p = 1 0.9368 0.9500 0.9337 0.9459 0.8022 0.9305 0.9164

p = 2 0.9388 0.9572 0.9352 0.9479 0.8111 0.9306 0.9201

Table 3.5.: AUC values for a fitted gbVAR(p) model for p ∈ {1, 2} component- wise
for each station and the overall mean

In this case, Yule-Walker estimation leads to an estimated parameter matrix having∑K
l=1 |α̂kl| = 1.1451 > 1 for k = 5, which corresponds to station Neckartor. Hence, in

view of Remark 3.16, we have to use constraint estimation leading to the estimated
parameter matrix Â as shown in Figure 3.7. The absolute eigenvalues of Â compute
to {0.7092, 0.2933, 0.2933, 0.1143, 0.1143, 0.0019} such that the fitted gbVAR(1) model
is stationary.

In each row of Â, we can see which past state at time t − 1 of the six monitoring
stations (fine dust alarm or not) does affect the state at time t. For example, with
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3.5. Conclusion

51.33% probability, the station Neckartor takes the same value as the day before. In
contrast, the largest entry in row k = 4 (Hohenheimer Strasse) is 0.2509 in the second
column corresponding to Bad Cannstatt such that it takes its value of the day before
with probability of about 25%. Note also, as can be seen in Figure 3.7, that the
fitting of a gbVAR model leads to some negative coefficients in Â. From a modeling
perspective, this naturally leads to more flexibility in comparison to models that do
allow only for non-negative coefficients.

For identification purposes, we impose B to be diagonal; see also Remark 3.13. Since
we constrained the estimation to achieve

∑K
l=1 |α̂5l| = 1 and set β̂55 = 0 for station

Neckartor, the effective innovation process is of reduced dimension K̃ = 6 − 1 = 5.
Hence, as described in Section 3.2.5, we get

diag
(
B̂
)

= (0.1694, 0.2837, 0.2594, 0.2684, 0.0000, 0.3999) .

The diagonal entries of B̂ indicate how often the corresponding innovation terms
are selected. For example, at the station Stadtgarten, in about 40% of the days, the
innovation term enters the gbVAR model, whereas this happens only in about 17% for
Arnulf-Klett Platz.

By using formula (3.49) and (3.50), we can estimate the mean vector and the vari-
ances of the innovations. This leads to

µ̂e = (0.1176, 0.4084, 0.0693, 0.0993, 0.0000, 0.0203)′ . (3.60)

and

(σ̂e,11, . . . , σ̂e,KK) = (0.1038, 0.2416, 0.0645, 0.0895, 0.000, 0.0199). (3.61)

Hence, for PM10 data, (3.60) indicates that the innovation terms generally take zero
values with high probability. Note that µ̂e,5 and σ̂e,55 are not identified due to β̂55 = 0
and we set µ̂e,5 = σ̂e,55 = 0 for convenience.

3.5. Conclusion

We consider vector-valued extensions of gbAR processes introduced by Jentsch and Re-
ichmann (2019) to model multivariate binary time series data with potentially negative
model parameters. We derive stationarity conditions that assure a moving-average-
type representations of the stationary solution. Yule-Walker equations are derived
that allow particularly for a straightforward estimation of gbVAR processes. Transi-
tion probabilities are derived and a Markov chain representation has been employed
to derive ψ- and ϕ- mixing properties.

In a simulation study, the estimation performance of Yule-Walker estimators and
related estimators is analyzed in several regards indicating good finite sample proper-
ties. For the construction of confidence intervals, we propose a parametric bootstrap
resulting in coverage rates close to nominal coverage.

In a real data application, we fit gbVAR processes to binarized PM10 data from
Stuttgart, Germany. The estimated gbVAR(1) model contains positive as well as
negative coefficients to capture the serial dependence in the data and proves to yield
accurate predictions.
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3.6. The generalized binary VARMA Class

In this section, we extend the gbVAR model class and give a definition of generalized
binary VARMA (gbVARMA) models that additionally contain a moving average part.
To be most flexible, we allow for negative parameters to capture negative dependence
structure also in the moving average part of gbVARMA models.

First, we provide the definition of the gbVARMA(p,q) model in Section 3.6.1. Then,
we discuss the moment structure of gbVARMA models and derive its stationary solu-
tion before stating a formula for the transition probabilities in Section 3.6.2.

3.6.1. gbVARMA models

As for gbVAR processes considered in the previous section, we set B(0) := B correspond-
ing to the current innovation et to be diagonal. Furthermore, to avoid identification

issues, we assume that all diagonal entries β
(0)
kk ∈ (0, 1] are strictly positive throughout

this section1; see also the discussion in Remark 3.13.

As for the parameter matrices A(1), . . . ,A(p) of the autoregressive part, the param-
eter matrices B(1), . . . ,B(q) corresponding to the moving-average part are also allowed
to contain negative entries. That is, similar to gbVAR models discussed in Section

3.2, we allow for α
(i)
kl , β

(j)
kl ∈ (−1, 1) for k, l = 1, . . . ,K, i = 1, . . . , p and j = 1, . . . , q.

Hence, the parameter matrix

P :=
[
A(1), . . . ,A(p),B(0),B(1), . . . ,B(q)

]
(3.62)

has to be modified to contain (row-wise) valid probabilities of multinomial distribu-
tions. Hence, we define

P|·| =
[
A(1)
|·| , . . . ,A

(p)
|·| ,B

(0),B(1)|·| , . . . ,B
(q)
|·|

]
, (3.63)

where B(j)|·| = (|β(j)kl |)k,l=1,...,K for j = 1, . . . , q, such that
∑p

i=1

∑K
l=1 |α

(i)
kl | + β

(0)
kk +∑q

j=1

∑K
l=1 |β

(j)
kl | = 1 for all k = 1, . . . ,K.

Definition 3.17 (gbVARMA(p, q))
Let (Xt, t ∈ Z) be a stationary K-dimensional process taking values in {0, 1}K . Let
(et, t ∈ Z) be an i.i.d. K-dimensional binary innovation process, such that et is inde-
pendent of (Xs, s < t) with mean vector µe = (µe,1, . . . , µe,K)′ = E(et), where µe,i =
P (et,i = 1), i = 1, . . . ,K, and variance-covariance matrix Σe = (σe,kl)k,l=1,...,K =
Cov(et) > 0,where σe,ii = µe,i(1 − µe,i). Let P be the parameter matrix as in (3.62)
with diagonal B(0) such that βkk ∈ (0, 1] for all k = 1, . . . ,K and with P|·| as in (3.63)
such that P|·|1K(p+q+1) = 1K .

Further, let (Pt, t ∈ Z) with Pt = [A
(1)
t , . . . , A

(p)
t , B

(0)
t , B

(1)
t , . . . , B

(q)
t ] be a K×K(p+

q + 1)-dimensional i.i.d. process with mutually independent rows (Pt,k•, t ∈ Z), k =
1, . . . ,K, such that

Pt,k• :=
[
a
(1)
t,k•, . . . , a

(p)
t,k•, b

(0)
t,k•, b

(1)
t,k•, . . . , b

(q)
t,k•

]
∼Mult

(
1;P|·|,k•

)
,

1Otherwise, if for example one diagonal entry is zero, this innovation might nevertheless enter the
gbVARMA system in the first lag of the innovations, where the corresponding B matrix is not
restricted to be diagonal which leads to identification issues.
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which are independent of (et, t ∈ Z) and (Xs, s < t). Here, A
(i)
t and a

(i)
t,k• are as in

Definition 3.1 with B
(j)
t and b

(j)
t,k• defined similarly.

Then the process (Xt, t ∈ Z) is said to be a generalized binary vector ARMA(p,q)
process (gbVARMA(p,q)), if it follows the recursion

Xt =

p∑
i=1

[
A

(+,i)
t Xt−i +A

(−,i)
t 1K

]
+B

(0)
t et +

q∑
j=1

[
B

(+,j)
t et−j +B

(−,j)
t 1K

]
, t ∈ Z,

(3.64)

with A
(+,i)
t and A

(−,i)
t as in Definition 3.1 and

B
(+,j)
t :=

{
b
(j)
t,kl, β

(j)
kl ≥ 0

−b(j)t,kl, β
(j)
kl < 0

}
k,l=1,...,K

=
(
b
(j)
t,kl

(
1{β(j)

kl ≥0}
− 1{β(j)

kl <0}

))
k,l=1,...,K

and

B
(−,j)
t :=

{
0, β

(j)
kl ≥ 0

b
(j)
t,kl, β

(j)
kl < 0

}
k,l=1,...,K

=
(
b
(j)
t,kl1{β(j)

kl <0}

)
k,l=1,...,K

for j = 1, . . . , q.

The selection mechanism of gbVARMA processes proceeds as follows: for each k ∈
{1, . . . ,K}, depending on the signs of α

(i)
kl and β

(j)
kl , the value of Xt,k is either chosen

from the entries (or their opposites) of the lagged time series Xt−1, . . . , Xt−p with

probability
∑p

i=1

∑K
l=1 |α

(i)
kl | or from the entries (or their opposites) of the innovations

et, et−1, . . . , et−p with probability β
(0)
kk +

∑q
j=1

∑K
l=1 |β

(j)
kl |, respectively. More precisely,

with probability |α(i)
kl | the predecessor Xt−i,l is chosen for the time series value Xt,k

if α
(i)
kl ≥ 0 and its opposite value 1 − Xt−i,l if α

(i)
kl < 0. With probability |β(j)kl | the

innovation et−j,l is chosen if β
(j)
kl ≥ 0 and its opposite value 1− et−j,l if β

(j)
kl < 0.

Since the multinomial selection mechanism is executed independently for each row,
the outcomes Xt,k1 and Xt,k2 for k1 6= k2 are independent given the past values of the
time series Xt−1, . . . , Xt−p and the innovations et, et−1, . . . , et−q.

3.6.2. Stochastic properties of gbVARMA models

Similar to the random matrices in (3.19) and (3.20), we can compute the expecta-

tions of B
(+,j)
t and B

(−,j)
t , j = 1, . . . , q. By construction, we have E(B

(0)
t ) = B(0) =

diag(β
(0)
11 , . . . , β

(0)
KK) and E

(
B

(j)
t

)
= B(j)|·| leading to

E
(
B

(+,j)
t

)
=
[
β
(j)
kl

]
k,l=1,...,K

= B(j), (3.65)

E
(
B

(−,j)
t

)
=
[
|β(j)kl |1{β(j)

kl <0}

]
k,l=1,...,K

=: B(−,j). (3.66)

In comparison to the purely autoregressive gbVAR(p) case in (3.21), the additional
parameter matrices B(1), . . . ,B(q) show up in the formula for the mean vector µX =
E(Xt) of a gbVARMA(p,q) process. In detail, we have:
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Lemma 3.18 (Stationary mean of gbVARMA processes)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVARMA(p,q) process. Then, we have

µX =

(
I −

p∑
i=1

A(i)

)−1 p∑
i=1

A(−,i)
1K +

q∑
j=0

B(j)µe +

q∑
j=1

B(−,j)1K

 . (3.67)

To construct the stationary solution of a gbVARMA model in form of a gbVMA(∞)-
type representation we proceed similarly to the approach used in Section 3.2.2 for
gbVAR(p) models. We follow again the approach of Lütkepohl (2005)[Chapter 11.3.2]
and represent the K-dimensional gbVARMA(p,q) process (Xt, t ∈ Z) as a gbVAR(1)
process (X̌t, t ∈ Z) of dimension K(p+ q), where the first K entries in X̌t correspond
to Xt. For this purpose, we define the K(p+ q)-dimensional vectors

X̌t :=



Xt
...

Xt−p+1

et
...

et−q+1


and ět :=



et
0
...
0
et
0
...
0


and, for · ∈ {+,−}, the (K(p+ q)×K(p+ q))-dimensional matrices

Ǎ
(·)
t :=

(
Ǎ

(·)
t,11 Ǎ

(·)
t,12

Ǎ
(·)
t,21 Ǎ

(·)
t,22

)
and B̌t :=


B

(0)
t 0K×K(p+q−1)

0K(p−1)×K 0K(p−1)×K(p+q−1)
IK 0K×K(p+q−1)

0K(q−1)×K 0K(q−1)×K(p+q−1)


where Ǎ

(+)
t,21 = Ǎ

(−)
t,21 = 0Kq×Kp and Ǎ

(−)
t,22 = 0Kq×Kq. Further, Ǎ

(+)
t,11 = Ã

(+)
t and

Ǎ
(−)
t,11 = Ã

(−)
t with Ã

(+)
t and Ã

(−)
t from Section 3.2.2 and

Ǎ
(+)
t,12 :=


B

(+,1)
t . . . B

(+,q)
t

0K×K . . . 0K×K
...

...
0K×K . . . 0K×K

 , Ǎ
(+)
t,22 :=


0K×K . . . 0K×K 0K×K
IK 0K×K 0K×K

. . .
...

0K×K . . . IK 0K×K

 ,

Ǎ
(−)
t,12 :=


B

(−,1)
t . . . B

(−,q)
t

0K×K . . . 0K×K
...

...
0K×K . . . 0K×K


are matrices of dimension Kp × Kq, Kq × Kq and Kp × Kq, respectively. Then,
based on the notation introduced above, the K-dimensional gbVARMA(p,q) process
(Xt, t ∈ Z) can be represented as a K(p+q)-dimensional gbVAR(1) process (X̌t, t ∈ Z)
as follows

X̌t = Ǎ
(+)
t X̌t−1 + Ǎ

(−)
t 1K(p+q) + B̌tět. (3.68)
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where 1K(p+q) is the one vector of length K(p + q). Similar to equation (3.24) for
gbVAR(p) derived in Section 3.2.2, we get

X̌t = ζ̌dX̌t−(d+1) +
d∑
i=0

ζ̌i−1η̌t−i, (3.69)

with ζ̌0 := IK and ζ̌i :=
∏i
j=0 Ǎ

(+)
t−j , i ∈ N and η̌t−i := Ǎ

(−)
t−i1K(p+q) + B̌t−iět−i. Hence,

the K(p+q)-dimensional process (X̌t, t ∈ Z) has a moving-average-type representation
if

det
(
IK(p+q) − Ǎ|·|z

)
6= 0 ∀z ∈ C : |z| ≤ 1, (3.70)

where Ǎ := E(Ǎ
(+)
t ). The above block determinant can be reduced such that (3.70)

becomes equivalent to condition (3.27); see e.g. Lütkepohl (2005)[Eq. (11.3.9)].

Theorem 3.19 (Moving-average representation of gbVARMA processes)
Let (Xt, t ∈ Z) be a (stationary) K-dimensional gbVARMA(p,q) process that fulfills
(3.64) with gbVAR(1) representation (3.68). Then, if condition (3.70) holds, the gb-
VARMA(p,q) model has a gbVMA(∞)-type representation

Xt = JX̌t = J

( ∞∑
i=0

ζ̌i−1η̌t−i

)
, t ∈ Z, (3.71)

converging in L1, where J := [IK , 0K×K(p+q−1)].

Similar to classical VARMA models, Yule-Walker-type equations can be derived also
for gbVARMA models. For the NDARMA(p,q) model class in the case of univariate
categorical processes, these equations were proven by Weiß (2011a).

The following result generalizes Theorem 4 in Jentsch and Reichmann (2019) estab-
lished for gbARMA models to the multivariate case of gbVARMA models.

Theorem 3.20 (Yule-Walker-type equations of gbVARMA processes)
Let (Xt, t ∈ Z) be a stationary gbVARMA(p,q) process that fulfills (3.70). Set B(m) :=
0K×K for m > q and define a sequence of coefficient matrices (Φm,m ∈ Z) recursively
by

Φm := 0K×K for m < 0, Φ0 := ΣeB(0)′, Φm :=

p∑
i=1

Φm−iA(i)′ + ΣeB(m)′ for m > 0.

Then, for all h ∈ N, we have

ΓX (h)−
p∑
i=1

A(i)ΓX (h− i) =

q∑
j=h

B(j)Φj−h. (3.72)

As an extension of Theorem 3.9, the one step ahead transition probability can be
derived also for gbVARMA processes.

Lemma 3.21 (Transition probabilities of gbVARMA processes)
Let (Xt, t ∈ Z) be a stationary K-dimensional gbVARMA(p,q) process. Further, for
k = 0, 1, . . . , p and j = 0, 1, . . . , q, let sk, rj ∈ {0, 1}K with sk := (sk,1, . . . , sk,K)′

and rj := (rj,1, . . . , rj,K)′, denote the Kronecker delta by δij = 1{i=j} and set prj :=
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P (et = rj). Then, the transition probability given the past values of the time series is
given by

P
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp

)
=∑

r0,r1,...,rq∈{0,1}K

q∏
m=0

prm

K∏
k=1

[
p∑
i=1

K∑
l=1

|α(i)
kl |
[
1{α(i)

kl ≥0}
δs0,ksi,l + 1{α(i)

kl <0}δs0,k(1−si,l)

]

+ β
(0)
kk δs0,kr0,k +

q∑
j=1

K∑
l=1

|β(j)kl |
[
1{β(j)

kl ≥0}
δs0,krj,l + 1{β(j)

kl <0}δs0,k(1−rj,l)

]]
.

The following example of a gbVARMA(1,1) model illustrates the flexibility of the
gbVARMA class.

Example 3.22 (Trivariate gbVARMA(1,1) model)
Let (Xt, t ∈ Z) follow a three-dimensional gbVARMA(1,1) model with parameter matrix

P = [A(1),B(0),B(1)] and P|·| = [A(1)
|·| ,B

(0),B(1)|·| ] such that P|·|19 = 13 holds. Hence,

for the (mutually independent) multinomial selection mechanisms, we have

Pt,1• =
[
a
(1)
t,11, a

(1)
t,12, a

(1)
t,13, b

(0)
t,11, 0, 0, b

(1)
t,11, b

(1)
t,12, b

(1)
t,13

]
∼Mult

(
1;P|·|,1•

)
,

Pt,2• =
[
a
(1)
t,21, a

(1)
t,22, a

(1)
t,23, 0, b

(0)
t,22, 0, b

(1)
t,21, b

(1)
t,22, b

(1)
t,23

]
∼Mult

(
1;P|·|,2•

)
,

Pt,3• =
[
a
(1)
t,31, a

(1)
t,32, a

(1)
t,33, 0, 0, b

(0)
t,33, b

(1)
t,31, b

(1)
t,32, b

(1)
t,33

]
∼Mult

(
1;P|·|,3•

)
,

and, in the general case, the gbVARMA(1,1) process follows the equation

Xt = A
(+,1)
t Xt−1 +A

(−,1)
t 13 +B

(0)
t et +B

(+,1)
t et−1 +B

(−,1)
t 13, t ∈ Z.

Note that, for identification reasons, we do not allow for negative entries in the diagonal

B(0), but in B(1) leading to the additional term B
(−,1)
t 13. From (3.72), the Yule-Walker-

type equation for the gbVARMA(1,1) model with h = 1 becomes

ΓX (1)−A(1)ΓX (0) = B(1)ΣeB(0)′,

which, similar to the classical VARMA(1,1) case, constitutes a familiar relationship
between the autocovariance matrices ΓX(0) and ΓX(1), the model parameters P =
[A(1),B(0),B(1)] and the innovations’ variance-covariance matrix Σe.

3.7. Proofs of Chapter 3

3.7.1. Proof of Equations (3.8) and (3.9)

We can re-arrange (3.7) to get

Xt = at,=Xt−1 + at,6= (1−Xt−1) + bt,=εt

=

{
(at,= − at, 6=)Xt−1 + at, 6= + bt,=εt, α= − α 6= ≥ 0

(at,6= − at,=)(1−Xt−1) + at,= + bt,=εt, α= − α 6= < 0
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such that a direct comparison with (3.6) leads to

α =

{
α= − α 6=, α= − α6= ≥ 0,

−(α6= − α=), α= − α6= < 0
= α= − α6=

and

β =

{
1− (α= − α 6=), α= − α6= ≥ 0,

1− (α6= − α=), α= − α6= < 0
= 1− |α= − α6=|

as well as α6= + β=µε = βµe if α= − α 6= ≥ 0 and α= + β=µε = βµe if α= − α 6= < 0
leading to

µe =
α 6=1{α=−α 6=≥0} + α=1{α=−α6=<0} + β=µε

1− |α= − α 6=|
.

�

3.7.2. Proof of Lemma 3.3 and 3.18

By taking expectations on both sides of (3.17) for Lemma 3.3 or (3.64) for Lemma 3.18,
respectively, we get immediately the formulas for the mean by using law of iterated
expectations and by exploiting stationarity. �.

3.7.3. Proof of Theorem 3.4 and 3.19

We prove only Theorem 3.4 and the calculations and arguments for Theorem 3.19 are
very similar. As part (i) of 3.4 follows directly as a special case, we have to prove
only part (ii). Suppose all eigenvalues of Ã|·| have modulus smaller than one. In view

of equation (3.24), we have to show that ζ̃dX̃t−(d+1) converges to zero in L1 sense

as d → ∞. Let ‖A‖1 := E(|A|1), where |M |1 :=
∑Kp

r,s=1 |Mrs| is the 1-norm of a

(Kp ×Kp) matrix M = (Mrs)r,s=1...,Kp. Then, using the bound ‖X̃t−(d+1)‖ ≤ Kp, it
remains to show that ∥∥∥ζ̃d∥∥∥

1
=

∥∥∥∥∥∥
d∏
j=0

Ã
(+)
t−j

∥∥∥∥∥∥
1

→ 0 as d→∞. (3.73)

By plugging-in, a direct calculation leads to

∥∥∥ζ̃d∥∥∥
1

= E

 Kp∑
k,l=1

∣∣∣∣∣∣
 d∏
j=0

Ã
(+)
t−j


kl

∣∣∣∣∣∣


= E

 Kp∑
k,l=1

| Kp∑
r1,...,rd=1

ã
(+)
t,kr1

ã
(+)
t,r1r2

· · · ã(+)
t,rd−1rd

ã
(+)
t,rdl
|


kl


≤ E

 Kp∑
k,l=1

 Kp∑
r1,...,rd=1

|ã(+)
t,kr1
| · |ã(+)

t,r1r2
| · · · |ã(+)

t,rd−1rd
| · |ã(+)

t,rdl
|


kl


= E

 Kp∑
k,l=1

 Kp∑
r1,...,rd=1

ãt,kr1 · ãt,r1r2 · · · ãt,rd−1rd · ãt,rdl


kl


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= E

 Kp∑
k,l=1

 d∏
j=0

Ãt−j


kl


=

Kp∑
k,l=1

 d∏
j=0

E
(
Ãt−j

)
kl

= 1
′
KpÃd+1

|·| 1Kp →
d→∞

0,

where we have used that the process (Ã
(+)
t , t ∈ Z) is i.i.d. and that all eigenvalues of

Ã|·| are strictly smaller than one. �

3.7.4. Proof of Theorem 3.6 and 3.20

Let h ≥ 0. Then, by plugging-in the model equation and using the law of iterated
expectations, we get for stationary gbVARMA(p,q) processes the identity

Cov(Xt, Xt−h) =

p∑
i=1

Cov(A
(+,i)
t Xt−i, Xt−h) +

p∑
i=1

Cov(A
(−,i)
t 1K , Xt−h)

+

q∑
j=0

Cov(B
(+,j)
t et−j , Xt−h) +

q∑
j=0

Cov(B
(−,j)
t 1K , Xt−h)

=

p∑
i=1

A(i)ΓX (h− i) +

q∑
j=0

B(j)Cov (et−j , Xt−h) ,

where we set B
(+,0)
t := B

(0)
t for notational convenience. Next, we define the recur-

sion for the mixed covariance terms of the innovation and time series. Let Φm :=
Cov(et−m, Xt). Then, we get Φm = 0K×K for m < 0 because (Xs, s < t) and (et, t ∈ Z)
are independent due to the causal gbVMA representation (3.71). For m = 0, we get

Φ0 = Cov(et, Xt) =

p∑
i=1

Cov(et, Xt−j)A(i)′ +

q∑
j=0

Cov(et, et−j)B(j)′

= ΣeB(0)′

and, for m > 0, we get

Φm = Cov(et−m, Xt) =

p∑
i=1

Cov(et−m, Xt−j)A(i)′ +

q∑
j=0

Cov(et−m, et−j)B(j)′

=

p∑
i=1

Φm−iA(i)′ + ΣeB(m)′.

Note B(m) := 0K×K form > q. Then the Yule-Walker type equation for gbVARMA(p,q)
processes is given by

ΓX (h)−
p∑
i=1

A(i)ΓX (h− i) =

q∑
j=h

B(j)Φj−h (3.74)

due to Φm = 0K×K for m < 0. The Yule Walker equation for gbVAR(p) processes
derived in Theorem 3.6 follows by setting q = 0. �
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Lemma 3.23
For the K×K(p+1)-dimensional i.i.d. process (Pt, t ∈ Z) with Pt = [A

(1)
t , . . . , A

(p)
t , Bt]

with A
(i)
t , A

(+,i)
t , A

(−,i)
t and Bt as defined in Definition 3.1, we have, for all i, j =

1, . . . , p and v, r, w, s = 1, . . . ,K, the following:

(i) E(a
(i)
t,vra

(j)
t,ws) =


|α(i)
vr |, v = w, r = s, i = j

|α(i)
vr ||α(j)

ws|, v 6= w

0, otherwise

(ii) E(a
(i)
t,vrbt,ws) =

{
|α(i)
vr |βws, v 6= w

0, otherwise

(iii) E(a
(+,i)
t,vr a

(+,j)
t,ws ) =


|α(i)
vr | v = w, r = s, i = j

α
(i)
vrα

(j)
ws, v 6= w

0, otherwise

(iv) E(a
(+,i)
t,vr a

(−,j)
t,ws ) =


−α(−,i)

vr , v = w, r = s, i = j

α
(i)
vrα

(−,j)
ws , v 6= w

0, otherwise

(v) E(a
(−,i)
t,vr a

(−,j)
t,ws ) =


α
(−,i)
vr , v = w, r = s, i = j

α
(−,i)
vr α

(−,j)
ws , v 6= w

0, otherwise

(vi) E(a
(+,i)
t,vr bt,ws) =

{
α
(i)
vrβws, v 6= w

0, otherwise

(vii) E(a
(−,i)
t,vr bt,ws) =

{
α
(−,i)
vr βws, v 6= w

0, otherwise

(viii) E(bt,vrbt,ws) =


βvr, v = w, r = s

βvrβws, v 6= w

0, otherwise

Proof.

By direct calculation.
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3.7.5. Proof of Theorem 3.7

By plugging-in (3.17), we get

ΓX(0) = Cov(Xt, Xt)

=

p∑
i,j=1

Cov(A
(+,i)
t Xt−i, A

(+,j)
t Xt−j) +

p∑
i,j=1

Cov(A
(+,i)
t Xt−i, A

(−,j)
t 1K)

+

p∑
i=1

Cov(A
(+,i)
t Xt−i, Btet) +

p∑
i,j=1

Cov(A
(−,i)
t 1K , A

(+,j)
t Xt−j)

+

p∑
i,j=1

Cov(A
(−,i)
t 1K , A

(−,j)
t 1K) +

p∑
i=1

Cov(A
(−,i)
t 1K , Btet)

+

p∑
j=1

Cov(Btet, A
(+,j)
t Xt−j) +

p∑
j=1

Cov(Btet, A
(−,i)
t 1K) + Cov(Btet, Btet)

=: I1 + I2 + · · ·+ I9

with an obvious notation for I1, . . . , I9. Starting with I1, we can write

Cov(A
(+,i)
t Xt−i, A

(+,j)
t Xt−j) = E(A

(+,i)
t Xt−iX

′
t−jA

(+,j)′
t )−A(i)µXµ

′
XA(j)′

and, by law of iterated expectations, we get

E(A
(+,i)
t Xt−iX

′
t−jA

(+,j)′
t ) = E(E(A

(+,i)
t Xt−iX

′
t−jA

(+,j)′
t |Xt−i, Xt−j)) (3.75)

Now, we have to distinguish the cases i = j and i 6= j. For i = j, we can write

E(E(A
(+,i)
t Xt−iX

′
t−iA

(+,i)′
t |Xt−i)) =

∑
m∈{0,1}K

E(A
(+,i)
t mm′A

(+,i)′
t )P (Xt−i = m)

(3.76)

By using Lemma 3.23(iii), the expectation on the last right-hand side computes to K∑
r,s=1

mrmsE(a
(+,i)
t,vr a

(+,i)
t,ws )


v,w

=

 K∑
r=1

m2
r |α(i)

vr |1{v=w} +

K∑
r,s=1

mrmsα
(i)
vrα

(i)
ws1{v 6=w}


v,w

Plugging this into (3.76) and by re-arranging the sums, this leads to

E(E(A
(+,i)
t Xt−iX

′
t−iA

(+,i)′
t |Xt−i))

=

 K∑
r=1

 ∑
m∈{0,1}K

m2
rP (Xt−i = m)

 |α(i)
vr |1{v=w}


v,w

+

 K∑
r,s=1

α(i)
vr

 ∑
m∈{0,1}K

mrmsP (Xt−i = m)

α(i)
ws1{v 6=w}


v,w

=

(
K∑
r=1

µX,r|α(i)
vr |1{v=w}

)
v,w

+

 K∑
r,s=1

α(i)
vr (ΓX,rs(0) + µX,rµX,s)α

(i)
ws1{v 6=w}


v,w

= IK ◦
{
A(i)
|·| µX1

′
K

}
+ (1K×K − IK) ◦

{
A(i)

(
ΓX(0) + µXµ

′
X

)
A(i)

}
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due to m2
r = mr. Similarly, for i 6= j, this leads to

E(E(A
(+,i)
t Xt−iX

′
t−jA

(+,j)′
t |Xt−i, Xt−j)) (3.77)

=
∑

m,n∈{0,1}K
E(A

(+,i)
t mn′A

(+,j)′
t )P (Xt−i = m,Xt−j = n).

By using again Lemma 3.23(iii), the expectation on the last right-hand side becomes K∑
r,s=1

mrnsE(a
(+,i)
t,vr a

(+,j)
t,ws )


v,w

=

 K∑
r,s=1

mrnsα
(i)
vrα

(j)
ws1{v 6=w}


v,w

.

Plugging this into (3.77) and re-arranging the sums, this leads to

E(E(A
(+,i)
t Xt−iX

′
t−jA

(+,j)′
t |Xt−i, Xt−j))

=
∑

m,n∈{0,1}K

 K∑
r,s=1

mrnsα
(i)
vrα

(j)
ws1{v 6=w}


v,w

P (Xt−i = m,Xt−j = n)

=

 K∑
r,s=1

α(i)
vr

 ∑
m,n∈{0,1}K

mrnsP (Xt−i = m,Xt−j = n)

α(j)
ws1{v 6=w}


v,w

=

 K∑
r,s=1

α(i)
vr (ΓX,rs(j − i) + µX,rµX,s)α

(j)
ws1{v 6=w}


v,w

= (1K×K − IK) ◦
{
A(i)

(
ΓX(j − i) + µXµ

′
X

)
A(j)′

}
.

Considering both cases i = j and i 6= j together, gives

E(A
(+,i)
t Xt−iX

′
t−jA

(+,j)′
t )

= IK ◦
{
A(i)
|·| µX1

′
K

}
1{i=j} + (1K×K − IK) ◦

{
A(i)

(
ΓX(j − i) + µXµ

′
X

)
A(j)′

}
.

leading to

I1 =

p∑
i,j=1

[
IK ◦

{
A(i)
|·| µX1

′
K

}
1{i=j}

+ (1K×K − IK) ◦
{
A(i)

(
ΓX(j − i) + µXµ

′
X

)
A(j)′

}
−A(i)µXµ

′
XA(i)′

]
=

p∑
i,j=1

[
IK ◦

{(
A(i)
|·| µX1

′
K

)
1{i=j} −

(
A(i)

(
ΓX(j − i) + µXµ

′
X

)
A(j)′

)}
+
(
A(i) (ΓX(j − i))A(j)′

) ]
Similarly, continuing with I2, we get

Cov(A
(+,i)
t Xt−i, A

(−,j)
t 1K) = E(A

(+,i)
t Xt−i1

′
KA

(−,j)′
t )−A(i)µX1

′
KA(−,j)′
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and, by law of iterated expectations, we get

E(A
(+,i)
t Xt−i1

′
KA

(−,j)′
t ) = E(E(A

(+,i)
t Xt−i1

′
KA

(−,j)′
t |Xt−i)) (3.78)

=
∑

m∈{0,1}K
E(A

(+,i)
t m1′KA

(−,j)′
t )P (Xt−i = m).

By using Lemma 3.23(iv), the expectation on the last right-hand side computes to K∑
r,s=1

mr1E(a
(+,i)
t,vr a

(−,i)
t,ws )


v,w

=

 K∑
r=1

mr1
(
−α(−,i)

vr

)
1{v=w,i=j} +

K∑
r,s=1

mr1α
(i)
vrα

(−,j)
ws 1{v 6=w}


v,w

.

Plugging this into (3.78) and re-arranging the sums, this leads to

E(A
(+,i)
t Xt−i1

′
KA

(−,j)′
t )

=

 K∑
r=1

 ∑
m∈{0,1}K

mrP (Xt−i = m)

(−α(−,i)
vr

)
1{v=w,i=j}


v,w

+

 K∑
r,s=1

α(i)
vr

 ∑
m∈{0,1}K

mrP (Xt−i = m)

α(−,j)
ws 1{v 6=w}


v,w

=

(
K∑
r=1

µX,r

(
−α(−,i)

vr

)
1{v=w,i=j}

)
v,w

+

 K∑
r,s=1

α(i)
vrµX1

′
Kα

(−,j)
ws 1{v 6=w}


v,w

= IK ◦
{
−A(−,i)µX1

′
K

}
1{i=j} + (1K×K − IK) ◦

{
A(i)µX1

′
KA(−,j)′

}
.

Altogether, we get

I2 =

p∑
i,j=1

[
IK ◦

{
−A(−,i)µX1

′
K

}
1{i=j}

+ (1K×K − IK) ◦
{
A(i)µX1

′
KA(−,j)′

}
−A(i)µX1

′
KA(−,j)′

]
=

p∑
i=1

[
IK ◦

{
−A(−,i)µX1

′
K

}
+ (1K×K − IK) ◦

{
A(i)µX1

′
KA(−,i)′

}
−A(i)µX1

′
KA(−,i)′

]
+

p∑
i,j=1

i 6=j

[
(1K×K − IK) ◦

{
A(i)µX1

′
KA(−,j)′

}
−A(i)µX1

′
KA(−,j)′

]

=

p∑
i=1

[
IK ◦

{
−A(−,i)µX1

′
K −

(
A(i)µX1

′
KA(−,i)′

)}]
−

p∑
i,j=1

i 6=j

[
IK ◦

{
A(i)µX1

′
KA(−,j)′

}]

=

p∑
i,j=1

[
IK ◦

{(
−A(−,i)µX1

′
K

)
1{i=j} −

(
A(i)µX1

′
KA(−,j)′

)}]
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and, due to symmetry (note that the first term is diagonal)

I4 =

p∑
i,j=1

[
IK ◦

{
(−A(−,i)µX1

′
K)1{i=j} −

(
A(−,i)

1Kµ
′
XA(j)′

)}]
.

For the summands of I3, we have

Cov(A
(+,i)
t Xt−i, Btet) = E(A

(+,i)
t Xt−ie

′
tB
′
t)−A(i)µXµ

′
eB′

and, by using Lemma 3.23(vi),

E(A
(+,i)
t Xt−ie

′
tB
′
t) = E(E(A

(+,i)
t Xt−ie

′
tB
′
t|A

(+,i)
t , Bt))

= E(A
(+,i)
t E(Xt−ie

′
t|A

(+,i)
t , Bt)B

′
t)

= E(A
(+,i)
t E(Xt−ie

′
t)B
′
t)

= E(A
(+,i)
t µXµ

′
eB
′
t)

=

 K∑
r,s=1

µX,rµe,sE(a
(+,i)
t,vr bt,ws)


v,w

=

 K∑
r,s=1

µX,rµe,sα
(i)
vrβws1{v 6=w}


v,w

= (1K×K − IK) ◦
{
A(i)µXµ

′
eB′
}

leading to

I3 =

p∑
i=1

[
(1K×K − IK) ◦

{
A(i)µXµ

′
eB′
}
−A(i)µXµ

′
eB′
]

= −
p∑
i=1

[
IK ◦

{
A(i)µXµ

′
eB′
}]

and, due to symmetry,

I7 = −
p∑
j=1

[
IK ◦

{
Bµeµ′XA(j)′

}]
.

Continuing with I5, we have

Cov(A
(−,i)
t 1K , A

(−,j)
t 1K) = E(A

(−,i)
t 1K1

′
KA

(−,j)′
t )−A(−,i)

1K1
′
KA(−,j)′

and (note the sign in comparison to term I2!)

E(A
(−,i)
t 1K1

′
KA

(−,j)′
t )

=

 K∑
r,s=1

E(a
(−,i)
t,vr a

(−,j)
t,ws )


v,w

=

 K∑
r=1

α(−,i)
vr 1{v=w,i=j} +

K∑
r,s=1

α(−,i)
vr α(−,j)

ws 1{v 6=w}


v,w

= IK ◦
{
A(−,i)

1K1
′
K

}
1{i=j} + (1K×K − IK) ◦

{
A(−,i)

1K1
′
KA(−,j)′

}
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resulting in

I5 =

p∑
i,j=1

[
IK ◦

{
A(−,i)

1K1
′
K

}
1{i=j} + (1K×K − IK) ◦

{
A(−,i)

1K1
′
KA(−,j)′

}
−A(−,i)

1K1
′
KA(−,j)′

]
=

p∑
i,j=1

[
IK ◦

{
A(−,i)

1K1
′
K

}
1{i=j} + (−IK) ◦

{
A(−,i)

1K1
′
KA(−,j)′

}]

=

p∑
i,j=1

[
IK ◦

{(
A(−,i)

1K1
′
K

)
1{i=j} −A(−,i)

1K1
′
KA(−,j)′

}]
.

For the summands of I6, we have

Cov(A
(−,i)
t 1K , Btet) = E(A

(−,i)
t 1Ke

′
tB
′
t)−A(−,i)

1Kµ
′
eB′

and, by using Lemma 3.23(vii),

E(A
(−,i)
t 1Ke

′
tB
′
t) = E(E(A

(−,i)
t 1Ke

′
tB
′
t|A

(−,i)
t , Bt))

= E(A
(−,i)
t 1KE(e′t|A

(−,i)
t , Bt)B

′
t)

= E(A
(−,i)
t 1KE(e′t)B

′
t)

= E(A
(−,i)
t 1Kµ

′
eB
′
t)

=

 K∑
r,s=1

µe,sE(a
(−,i)
t,vr bt,ws)


v,w

=

 K∑
r,s=1

µe,sα
(−,i)
vr βws1{v 6=w}


v,w

= (1K×K − IK) ◦
{
A(−,i)

1Kµ
′
eB′
}

leading to

I6 =

p∑
i=1

[
(1K×K − IK) ◦

{
A(−,i)

1Kµ
′
eB′
}
−A(−,i)

1Kµ
′
eB′
]

= −
p∑
i=1

[
IK ◦

{
A(−,i)

1Kµ
′
eB′
}]

and, due to symmetry,

I8 = −
p∑
j=1

[
IK ◦

{
Bµe1′KA(−,j)′

}]
.
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Finally, I9 equals Cov(Btet, Btet) = E(Btete
′
tB
′
t) − Bµeµ′eB′ and, by using Lemma

3.23(viii) and as (Σe + µeµ
′
e)rr = µe,r(1− µe,r) + µe,rµe,r = µe,r, we get

E(Btete
′
tB
′
t) = E(E(Btete

′
tB
′
t|Bt))

= E(BtE(ete
′
t|Bt)B′t)

= E(BtE(ete
′
t)B
′
t)

= E(Bt
(
Σe + µeµ

′
e

)
B′t)

=

 K∑
r,s=1

(
Σe + µeµ

′
e

)
rs
E(bt,vrbt,ws)


v,w

=

 K∑
r=1

βvr
(
Σe + µeµ

′
e

)
rr
1{v=w} +

K∑
r,s=1

βvr
(
Σe + µeµ

′
e

)
rs
βws1{v 6=w}


v,w

=

 K∑
r=1

βvrµe,r1{v=w} +
K∑

r,s=1

βvr
(
Σe + µeµ

′
e

)
rs
βws1{v 6=w}


v,w

= IK ◦
{
Bµe1′K

}
+ (1K×K − IK) ◦

{
B
(
Σe + µeµ

′
e

)
B
}
.

Putting everything together, we get

ΓX(0) = Cov(Xt, Xt)

=

p∑
i,j=1

[
IK ◦

{(
A(i)
|·| µX1

′
K

)
1{i=j} −

(
A(i)

(
ΓX(j − i) + µXµ

′
X

)
A(j)′

)}
.

+
(
A(i) (ΓX(j − i))A(j)′

) ]
+

p∑
i,j=1

[
IK ◦

{(
−A(−,i)µX1

′
K

)
1{i=j} −

(
A(i)µX1

′
KA(−,j)′

)}]

−
p∑
i=1

[
IK ◦

{
A(i)µXµ

′
eB′
}]

+

p∑
i,j=1

[
IK ◦

{
−A(−,i)µX1

′
K1{i=j} −

(
A(−,i)

1Kµ
′
XA(j)′

)}]

+

p∑
i,j=1

[
IK ◦

{(
A(−,i)

1K1
′
K

)
1{i=j} −A(−,i)

1K1
′
KA(−,j)′

}]

−
p∑
i=1

[
IK ◦

{
A(−,i)

1Kµ
′
eB′
}]

−
p∑
j=1

[
IK ◦

{
Bµeµ′XA(j)′

}]

−
p∑
j=1

[
IK ◦

{
Bµe1′KA(−,j)′

}]
+ IK ◦

{
Bµe1′K − B(µe1

′
K)B

}
+ BΣeB.
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�

3.7.6. Proof of Lemma 3.9 and 3.21

To compute the transition probability P
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp

)
, by

conditioning also on the innovations et, et−1, . . . , et−q, we get

P
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp

)
=

∑
r0,r1,...,rq∈{0,1}K

P (et = r0, et−1 = r1, . . . , et−q = rq)

× P
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp, et = r0, et−1 = r1, . . . , et−q = rq

)
.

For the first probability on the last right-hand side, we have

P (et = r0, et−1 = r1, . . . , et−q = rq) =

q∏
m=0

P (et−m = rm) =

q∏
m=0

prm ,

since (et, t ∈ Z) are independent and identically distributed. For handling the second
probability term, note that Xt = (Xt,1, . . . , Xt,K)′ with

Xt,k =

p∑
i=1

K∑
l=1

a
(i)
kl,t

[
1{α(i)

kl ≥0}
Xt−i,l + 1{α(i)

kl <0} (1−Xt−i,l)
]

+ b
(0)
kk,tet,k +

q∑
j=1

K∑
l=1

b
(j)
kl,t

[
1{β(j)

kl ≥0}
et−j,l + 1{β(j)

kl <0} (1− et−j,l)
]
.

Since the matrix-valued i.i.d. process (Pt, t ∈ Z) consists of mutually independent rows
which are also independent of es, s ≤ t and Xs, s < t, this leads to

P
(
Xt = s0|Xt−1 = s1, . . . , Xt−p = sp, et = r0, et−1 = r1, . . . , et−q = rq

)
=

K∏
k=1

P
(
Xt,k = s0,k|Xt−1 = s1, . . . , Xt−p = sp, et = r0, et−1 = r1, . . . , et−q = rq

)
=

K∏
k=1

P

( p∑
i=1

K∑
l=1

a
(i)
kl,t

[
1{α(i)

kl ≥0}
si,l + 1{α(i)

kl <0} (1− si,l)
]

+ b
(0)
kk,tr0,k +

q∑
j=1

K∑
l=1

b
(j)
kl,t

[
1{β(j)

kl ≥0}
rj,l + 1{β(j)

kl <0} (1− rj,l)
]

= s0,k

)

=

K∏
k=1

[
p∑
i=1

K∑
l=1

|α(i)
kl |
[
1{α(i)

kl ≥0}
δs0,ksi,l + 1{α(i)

kl <0}δs0,k(1−si,l)

]

+ β
(0)
kk δs0,kr0,k +

q∑
j=1

K∑
l=1

|β(j)kl |
[
1{β(j)

kl ≥0}
δs0,krj,l + 1{β(j)

kl <0}δs0,k(1−rj,l)

]]
,

which completes the proof of Lemma 3.21. The transition probability derived for
gbVAR(p) processes in Lemma 3.9 follows directly as a special case for q = 0. �
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3.7.7. Proof of Equation (3.40)

As M = I4, plugging-in (3.39) into the gbVAR(1) model equation corresponding to
the model proposed in Example 3.12, re-arranging to separate HYt on the left-hand
side of the equation and left-multiplying with H+ leads to

Yt = H+A
(+)
t HYt−1 +H+A

(+)
t G12 +H+A

(−)
t 14 +H+Btet −H+G12.

Taking expectations on both sides leads to

µY = H+AHµY +H+AG12 +H+A(−)
14 +H+Bµe −H+G12 (3.79)

and a comparison with a corresponding bivariate gbVAR(1) model equation (in expec-
tation) for a process (Yt, t ∈ Z), that is,

µY = AY µY +A(−)
Y 12 +BY µε, (3.80)

indicates, that we have to add ±A(−)
Y 12 on the right-hand side of (3.79). Then, a

direct comparison leads to AY = H+AH, which already fully determines A(−)
Y and

BY , and we get

BY µε = −A(−)
Y 12 +H+AG12 +H+A(−)

14 +H+Bµe −H+G12. (3.81)

As βY,11 = 0, we have to left-multiply both sides of (3.81) with (0, 1) leading to (3.40).
�

3.8. Proofs of Subsection 3.2.4

3.8.1. Proof of Lemma 3.14

Remark 3.24 (Transition probability for gbVAR(p) model )
For some vectors s̃0, s̃1 the p+ 1 step ahead transition probability of the Markov Chain
representation based on a gbVAR(p) process calculates to

ps̃0|s̃1 (p+ 1) = P
(
Zt = s̃0|Zt−(p+1) = s̃1

)
=

∑
smax{p,1},...,sp

r0,...,rp

P
(
Xt = s0, . . . , Xt−p+1 = sp−1, et = r0|

Xt−(p+1) = sp+1, . . . , Xt−2p = s2p, et−p = rp

)
=

∑
smax{p,1},...,sp

r0

p∏
n=0

(
P (Xt−n = sn|Xt−n−1 = sn+1, . . . , et−n = rn, . . .)

· P (et−n = rn|Xt−n−1 = sn+1, . . . , et−n−1 = rn+1, . . .)
)

=
∑

smax{p,1},...,sp+q
rq ,...,rq+p

p+q∏
n=0

(
prn

K∏
k=1

[
p∑
i=1

K∑
l=1

|α(i)
kl |
(
1{α(i)

kl ≥0}
δsn,ksi+n,l

+ 1{α(i)
kl <0}δsn,k(1−si+n,l)

)
+ β

(0)
kk δsn,krn,k

])
.

As the innovation process is i.i.d., the probability to take a value rn is independent on
the condition of the past time series values and we define P (et−n = rn) = prn.
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Remark 3.25
Due to the stationarity condition of the time series (Xt, t ∈ Z) and its implication, see
Example 3.5, we conclude that in every dimension an innovation term has an impact.
We call the impact directly whenever βkk 6= 0 in dimension k or indirectly if we face
the case of Example 3.5(ii). We illustrate the indirect impact in Figure 3.25, showing
a di-graph of a bivariate gbVAR - process. The innovation e2 has a strictly positive

e1

e2

X1

X2

|α11|

|α22|

|α21| |α12|

β22

Figure 3.8.: Di - Graph of a two dimensional gbVAR(1) time series with β11 = 0.

probability to show up in the first dimension, as there exists a path from node e2 to X1

via X2.

With the given Remark, we can prove the primitivity of the Markov Chain repre-
sentation, when the underlying process follows a gbVAR(p) model.

Lemma 3.26
Let (Zt, t ∈ Z) be the Markov representation of a stationary gbVAR(p) process and p ≥
1. For n := max{p,K ′}+1 the transition probability fulfills ps|r (n) := P (Zt = s|Zt−n = r) >

0 for every s, r ∈ {0, 1}(p+1)K , where K ′ is the number of rows k ∈ {1, . . . ,K} with∑K
l=1

∑p
i=1 |α

(i)
kl | = 1.

Proof.

Let F :=
{
k ∈ {1, . . . ,K}

∣∣∣βkk = 0
}

. For the transition probability with max{p,K ′}+1

steps with K ′ = |F| the cardinality of F and

s̃0 := vec (s0; s1, . . . , sp−1, r0)

s̃1 := vec
(
smax{p,K′}+1; . . . , sp+max{p,K′}, rmax{p,K′}+1

)
follows

P
(
Zt = s̃0|Zt−max{p,K′}−1 = s̃1

)
= P

(
Xt = s0, Xt−1 = s1, . . . , Xt−p+1 = sp−1, et = r0

∣∣∣Xt−max{p,K′}−1 = smax{p,K′}+1,

. . . , Xt−max{p,K′}−p = smax{p,K′}+p, et−max{p,K′}−1 = rmax{p,K′}+1

)
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=
∑

sp,...,smax{p,K′},
r0,...,rmax{p,K′}

max{p,K′}∏
n=0

P (Xt−n = sn|Xt−n−1 = sn+1, . . . , Xt−n−p = sn+p, et−n = rn)

· P (et−n = rn)

=
∑

sp,...,smax{p,K′},
r0,...,rmax{p,K′}

max{p,K′}∏
n=0

prn

K∏
k=1

K∑
l=1

[ p∑
i=1

|α(i)
kl |
(
1{α(i)

kl ≥0}
δsn,ksn+i,l + 1{α(i)

kl <0}δsn,k(1−si+n,l)

)

+ |βkk|δsn,kr0,k
]

=
∑

sp,...,smax{p,K′},
r0,...,rmax{p,K′}

max{p,K′}∏
n=0

prn×

∏
k∈F

(
K∑
l=1

[ p∑
i=1

|α(i)
kl |
(
1{α(i)

kl ≥0}
δsn,ksn+i,l + 1{α(i)

kl <0}δsn,k(1−sn+i,l)

))
︸ ︷︷ ︸

i)∏
k∈Fc

(
K∑
l=1

[ p∑
i=1

|α(i)
kl |
(
1{α(i)

kl ≥0}
δsn,ksn+i,l + 1{α(i)

kl <0}δsn,k(1−sn+i,l)

)
+ βkkδsn,krn,k

])
︸ ︷︷ ︸

ii)

Considering the product ii) then ∀k ∈ Fc and ∀n = 0, . . . ,max{p,K ′}

∃rn,k := sn,k

and so for every n = 0, . . . ,max{p,K ′} there exists a positive summand and therefore
the product is positive.
For the first case i) it holds, since the time series (Xt, t ∈ Z) is stationary and with
Remark 3.25, we know that for every entry of Xt there exists a directed graph from
minimal one innovation to the resulting Xt. So the probability of seeing an innovation
term in an entry Xt,k for k ∈ F is strictly positive as consequence of the stationarity
assumption.
And ∀n = 0, . . . ,max{p,K ′} and ∀k ∈ F

∃ sn,k = 1
{α(ik)

klk
≥0}

sn+ik,lk + 1
{α(ik)

klk
<0}

(1− sn+ik,lk) > 0.

The above equation holds since (Xt, t ∈ Z) follows a gbVAR(p) model equation. Thus
the new Xt,k value is driven by a lagged value Xt−n,l and therefore

max{p,K′}∏
n=0

∏
k∈F

(
K∑
l=1

[ p∑
i=1

|α(i)
kl |
(
1{α(i)

kl ≥0}
δsn,ksn+i,l + 1{α(i)

kl <0}δsn,k(1−sn+i,l)

))
> 0.

(3.82)

Overall it follows that

P
(
Zt = s̃0|Zt−max{p,K′}−1 = s̃1

)
> 0.
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3.8.2. Proof of Theorem 3.15

Proof.

Following Weiß (2009a) define [Xt]
b
a := (Xb, . . . , Xa) for all a, b ∈ Z and with b > a.

Let l, k ≥ p̃ = max{1, p}, a1 ∈ Vk·K and a2 ∈ V l·K and n ∈ N be arbitrarily given.
Then we have to consider |P (A ∩B)− P (A)P (B) | for the sets of X :

|P
(

[Xt]
n+k−1
n = a1, [Xt]

0
−l+1 = a2

)
− P

(
[Xt]

n+k−1
n = a1

)
P
(

[Xt]
0
−l+1 = a2

)
|

=
∣∣∣∑
b1,b2

(
P
(

[Xt]
n+k−1
n = a1, [et]

n+k−1
n−q+p̃ = b1, [Xt]

0
−l+1 = a2. [et]

0
−l+1−q+p̃ = b2

)
− P

(
[Xt]

n+k−1
n = a1, [et]

n+k−1
n−q+p̃ = b1

)
P
(

[Xt]
0
−l+1 = a2, [et]

0
−l+1−q+p̃ = b2

))∣∣∣
=
∣∣∣∑
b1,b2

(
P [Zn + k − 1 = zn+k−1, . . . , Zn+p̃−1 = zn+p̃−1, Z0 = z0, . . . , Z−l+p̃ = z−l+p̃]

− P (Zn + k − 1 = zn+k−1, . . . , Zn+p̃−1 = zn+p̃−1)P (Z0 = z0, . . . , Z−l+p̃ = z−l+p̃)
)∣∣∣

Inserting the innovation process states and integrate over all appropriate vectors
b1 ∈ V(k−p̃)·K and b2 ∈ V(l−p̃)·K , the transition probabilities can be rewritten to the
Markov Chain representation as given in (3.43). The values zi are then given by the
values of the vectors a1, a2, b1 and b2.

Due to the primitivity of the Markov Chain representation and Corollary 11.2.3.2
in Weiß (2009a), the Markov Chain representation of the gbVAR process is ψ - and ϕ
- mixing with exponential decreasing weights gn. And so it follows∣∣∣P ([Xt]

n+k−1
n = a1, [Xt]

0
−l+1 = a2

)
− P

(
[Xt]

n+k−1
n = a1

)
P
(

[Xt]
0
−l+1 = a2

) ∣∣∣
≤
∑
b1,b2

gn+p̃−1P (Zn+k−1 = zn+k−1, . . . , Zn+p̃−1 = zn+p̃−1)P (Z−l+1 = z−l+1, . . . , Z0 = z0)

=gn+p̃−1P
(

[Xt]
n+k−1
n = a1

)
P
(

[Xt]
0
−l+1 = a2

)
So for fn := gn+p̃−1 the gbVAR process (Xt, t ∈ Z) itself is ψ - and ϕ mixing. In the
case of k < p by assembling the Xt vectors the missing p− k vectors have to be added
to the considered difference by summing over all possible values.∣∣∣P ([Xt]

n+k−1
n = a1, [Xt]

0
−l+1 = a2

)
− P

(
[Xt]

n+k−1
n = a1

)
P
(

[Xt]
0
−l+1 = a2

) ∣∣∣
=
∣∣∣∑
a3

P
(

[Xt]
n+k−1
n = a1, [Xt]

n−1
n+k−p = a3, [Xt]

0
−l+1 = a2

)
−

P
(

[Xt]
n+k−1
n = a1, [Xt]

n−1
n+k−p = a3

)
P
(

[Xt]
0
−l+1 = a2

) ∣∣∣
Now the proof is the same as above by summing over all needed innovation terms and
rewriting the vectors by using the Markov representation. For the other cases as l < p
and the combination of both the missing vectors have to be inserted and then the
statement is proved.
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3.9. Bootstrap Confidence Intervals

3.9. Bootstrap Confidence Intervals

T = 100 500 1000 T = 100 500 1000

α
(1)
11 0.935 0.959 0.953 α

(1)
41 0.938 0.941 0.934

α
(1)
12 0.938 0.941 0.938 α

(1)
42 0.929 0.954 0.953

α
(1)
13 0.938 0.943 0.937 α

(1)
43 0.929 0.948 0.954

α
(1)
14 0.942 0.949 0.936 α

(1)
44 0.925 0.943 0.942

α
(1)
21 0.898 0.915 0.947 β

(0)
11 0.869 0.932 0.948

α
(1)
22 0.900 0.948 0.942 β

(0)
22 0.799 0.924 0.947

α
(1)
23 0.908 0.941 0.954 β

(0)
33 0.834 0.936 0.940

α
(1)
24 0.909 0.949 0.961 β

(0)
44 0.850 0.918 0.934

α
(1)
31 0.921 0.929 0.937 µX,1 0.881 0.941 0.943

α
(1)
32 0.914 0.941 0.940 µX,2 0.791 0.900 0.918

α
(1)
33 0.920 0.944 0.940 µX,3 0.823 0.921 0.951

α
(1)
34 0.938 0.946 0.954 µX,4 0.845 0.946 0.944

Table 3.6.: Coverage rates of bootstrap confidence intervals for each entry of the pa-

rameter matrices A(1), B(0) and µX for DGP2.

T = 100 500 1000 T = 100 500 1000

α
(1)
11 0.953 0.944 0.941 α

(2)
11 0.926 0.926 0.949

α
(1)
12 0.958 0.948 0.962 α

(2)
12 0.949 0.952 0.950

α
(1)
13 0.942 0.947 0.951 α

(2)
13 0.951 0.939 0.940

α
(1)
21 0.950 0.960 0.950 α

(2)
21 0.954 0.947 0.957

α
(1)
22 0.960 0.957 0.944 α

(2)
22 0.927 0.946 0.957

α
(1)
23 0.929 0.953 0.942 α

(2)
23 0.943 0.965 0.955

α
(1)
31 0.953 0.949 0.939 α

(2)
31 0.952 0.952 0.956

α
(1)
32 0.938 0.958 0.965 α

(2)
32 0.948 0.932 0.955

α
(1)
33 0.948 0.951 0.948 α

(2)
33 0.950 0.952 0.945

β
(0)
11 0.869 0.926 0.948 µX,1 0.717 0.855 0.909

β
(0)
22 0.879 0.959 0.976 µX,2 0.711 0.838 0.896

β
(0)
33 0.888 0.954 0.972 µX,3 0.747 0.844 0.879

Table 3.7.: Coverage rates of bootstrap confidence intervals for each entry of the pa-

rameter matrices A(1), A(2), B(0) and µX for DGP3.
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4. Vector - valued New Discrete ARMA
Processes

Based on: Jentsch, C. and Reichmann, L.
Vector - valued New Discrete ARMA Processes - Working Paper

4.1. Introduction

In the last years, multivariate time series analysis (Lütkepohl (2005)) gained more
and more importance as multi-dimensional time series data of any kind is collected in
many fields of application. When the multivariate time series is categorical, common
modeling approaches for continuous-valued multivariate data are typically not suitable
anymore. However, categorical valued serially dependent data arises in many fields of
application, e.g. in text and speech recognition, biology as human physiology and DNA
analysis as well as in computer science and economics. For instance, in biology, the
DNA sequence contains plenty of information of a creature or virus. By considering
the dinucleotide frequencies in the DNA sequences, Dehnert et al. (2005) show that
the short range correlation serves as evolutionary fingerprints of eukaryotes, where the
chromosomes form the categories of the analysis. In speech analysis, Weiß (2009b)
analyzed the letters and dependence structure of the natural speech in Shakespeare’s
poem Venus and Adonis, where each letter coincides with one category. Another ap-
proach is to categorize or pre-define certain states, for instance, Stoffer et al. (1988)
considered for the infant sleep data set to investigate the effects of prenatal alcohol
exposure on the neurophysiological development. By using an electroencephalography
(EEG), six states of the infant sleep are recorded and analyzed by Biswas and Song
(2009). The economic situation and its analysis has an important role for e.g. policy
makers, analysts and central bankers. Macroeconomic data sets, e.g. the gross do-
mestic product (GDP), contain broad information of the status of an economy. To
reduce complexity, Mazzi (2015) investigated the business cycle clock (BCC), which
categorizes the economic situation into six different states where the main aim is to
finally detect forthcoming recession periods of the countries economy. We analyze this
data set for six European countries in Section 4.5.

Whereas Markov processes are clearly the most natural models of choice for describ-
ing serially dependent and discrete-valued categorical data. However, as mentioned
e.g. by Moysiadis and Fokianos (2014) already for univariate data, the number of pa-
rameter increases by the selected order of the time series: (m + 1)p parameter are
necessary to specify a univariate p-th order Markov chain with a state space consist-
ing of m + 1 categories. The issue of a large number of parameters becomes even
worse if the cross-sectional dimension of the data increases. Therefore the application
to multivariate categorical data leads to parameter estimation problems as well as
identification issues.

A more parsimonious but still Markovian model for stationary univariate categorical
time series was introduced by Jacobs and Lewis (1983), the New Discrete AutoRegres-
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4. Vector - valued New Discrete ARMA Processes

sive Moving Average (NDARMA) class. Such processes have the typical autoregressive
moving average structure and, in addition, its autocorrelation structure coincides with
that of standard ARMA models. More precisely, let (Xt, t ∈ Z) and (et, t ∈ Z) be
categorical univariate time dependent processes with state space V = {0, 1, . . . ,m}.
The innovation process (et, t ∈ Z) is assumed to be an independent and identically
distributed (i.i.d.) process with marginal distribution P (et = j) = pe(j) > 0 for
j = 0, 1, . . . ,m such that et is independent of (Xs)s<t. Let (Pt, t ∈ Z) be i.i.d. random
vectors defining a selection mechanism by

Pt :=
[
a
(1)
t , . . . , a

(p)
t , b

(0)
t , . . . , b

(q)
t

]
∼Mult (1;P) (4.1)

with probability vector P :=
[
α(1), . . . , α(p), β(0), . . . , β(q)

]
where

∑p
i=1 α

(i)+
∑q

j=0 β
(j) =

1, which is independent of the innovation process (et, t ∈ Z) and of (Xs, s < t).

The process (Xt, t ∈ Z) is called to follow an NDARMA(p,q) model, if it suffices the
recursion

Xt = a
(1)
t Xt−1 + . . .+ a

(p)
t Xt−p + b

(0)
t et + . . .+ b

(q)
t et−q. (4.2)

In comparison to classical ARMA models, where Xt is a weighted average of the
previous time series values and innovation terms, the multinomial sampling mechanism
ensures that the process stays within the state space V as for each t ∈ Z only one entry

of Pt is equal to one and all others are zero. That is, whenever one a
(i)
t , i = 1, . . . , p

takes the value one, the multinomial distribution chooses a predecessor Xt−1, . . . , Xt−p

or, if b
(j)
t = 1 for some j = 0, . . . , q an innovation et, . . . , et−q, respectively, becomes

the new value Xt of the time series.

The NDARMA model maintains the typical ARMA structure and its nice inter-
pretability, as well as the categorical characteristic of the data. For this reason, the
model contains p+q+1 parameters. In contrast, whenever univariate categorical data
is modeled using a univariate p-th order Markov Chain, (m+ 1)p transition probabili-
ties are required to fully determine the model. For NDVARMA processes, Jacobs and
Lewis (1983) stated Yule - Walker - type equations that allow for model identifica-
tion. Signed dependence measures that are more suitable for categorical data, such as
Cohen’s κ and Cramer’s ν, are considered in Weiß (2009a). Möller and Weiß (2020)
extended the parsimonious NDARMA model class to allow vector valued categorical
processes. However, the model parameters are still scalar for the multinomial selection
mechanism, such that the vectors are selected as a whole, instead of individual entries.
Nevertheless, the introduced Generalized Discrete ARMA (GDARMA) processes make
additional use of a variation function applied to lagged observations and innovations
to increase the entry-wise variation over time. Nevertheless, the GDARMA class does
not allow for a meaningful modeling of cross-sectional dependence. Hence, we aim for a
more flexible model class that allows to capture cross-sectional dependence structures,
such that the selection mechanism allows to choose the new states in each dimension
of Xt independently from the others. Hence, a row-wise applied multinomial selection
mechanism defining the New Discrete Vector - valued ARMA (NDVARMA) model
class, leads to more flexibility in comparison to GDARMA models.
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4.2. Vector new discrete ARMA processes

4.1.1. A bivariate extension of the NDAR(1) process: the NDVAR(1)
model

By stacking two independent NDAR(1) processes (Xt, t ∈ Z) and (Yt, t ∈ Z), we get a
bivariate process(

Xt

Yt

)
=

(
at,XXt−1 + bt,Xet,X
at,Y Yt−1 + bt,Y et,Y

)
=

(
at,X 0

0 at,Y

)(
Xt−1
Yt−1

)
+

(
bt,X 0

0 bt,Y

)(
et,X
et,Y

)
.

However, this process is not yet suitable for studying cross-sectional dependence struc-
tures and does not require further theoretical considerations, as all parameter matrices
have a diagonal structure. Of course, a natural approach is to allow for non-diagonal
parameter matrices. We want to illustrate this by considering a bivariate first-order
New Discrete Vector AutoRegressive process (called NDVAR(1)), where for k = 1, 2
the i.i.d. random vectors Pt,k• follow multinomial distributions, such that

Pt,1• := [at,11, at,12, bt,11, 0] ∼Mult (1; [α11, α12, β11, 0]) ,

Pt,2• := [at,21, at,22, 0, bt,22] ∼Mult (1; [α21, α22, 0, β22]) .

The first two entries of Pt,k• (at,k1 and at,k2) correspond to choosing one of the entries
of the predecessor vector (Xt−1,1, Xt−1,2)

′ as new state of the process Xt, where bt,kk
corresponds to the innovation process et,k. Analogously to the NDARMA process, the
model parameter αk1, αk2 and βkk still have to fulfill the condition to sum up to one,
e.g. αk1 + αk2 + βkk = 1, as they are probabilities for the multinomial distribution.

Hence, the NDVAR(1) process follows the model equation(
Xt,1

Xt,2

)
=

(
at,11 at,12
at,21 at,22

)(
Xt−1,1
Xt−1,2

)
+

(
bt,11 0

0 bt,22

)(
et,1
et,2

)
(4.3)

where (et, t ∈ Z) an i.i.d. bivariate categorical process taking values in V2.
The paper is structured as follows. First, we define the vector valued NDARMA

process in Section 4.2 and illustrate it by an example. Stochastic properties of the
process are stated in Section 4.3, where first the stationarity condition and stationary
solutions are discussed. Yule - Walker - type equations are derived for NDVARMA
models which lead to the common Yule-Walker estimators for the purely autoregressive
NDVAR case. Transition probabilities are derived that allow to establish mixing prop-
erties of NDVARMA models based on a useful Markov chain representation. Further,
we discuss the identification of the innovation process distribution. For illustration,
NDVAR processes are employed to analyze a business cycle clock data set.

4.2. Vector new discrete ARMA processes

In this section, we extend univariate NDARMA models, introduced by Jacobs and
Lewis (1983), to obtain multivariate NDVARMA processes of dimension K. To capture
cross sectional dependence, the scalar model parameters α(1), . . . , α(p) and β(0), . . . , β(q)

of an NDARMA process become K×K dimensional parameter matrices A(1), . . . ,A(p)

and B(0), . . . ,B(q), as in the setup of classical vector ARMA models. Let the K × (p+
q + 1)K dimensional parameter matrix

P =
[
A(1), . . . ,A(p),B(0), . . . ,B(q)

]
(4.4)
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summarize the autoregressive coefficients A(i) = (α
(i)
kl )k,l=1,...,K and the moving average

coefficients B(j) = (β
(j)
kl )k,l=1,...,K . Similar to the NDARMA model setup, all entries

α
(i)
k,l, β

(j)
k,l are allowed to take values in [0, 1]. And, as a row-wise multinomial selection

approach is natural, the model parameter P has to satisfy

p∑
i=1

K∑
l=1

α
(i)
kl +

q∑
j=0

K∑
l=1

β
(j)
kl = 1

for all k = 1, . . . ,K. These extensions enable us to define New Discrete Vector-valued
ARMA processes of orders p ∈ N0 and q ∈ N0 as follows.

Definition 4.1 (New discrete vector-valued ARMA models)
Let (Xt, t ∈ Z) be a stationary K-dimensional process taking values in VK = {0, 1, . . . ,m}K .
Let (et, t ∈ Z) be an i.i.d. K-dimensional discrete valued process, such that et =
(et,1, . . . , et,K)′ is independent of (Xs, s < t) with marginal distribution specified by
pe(r) = P (et = r) for r ∈ VK such that P (et,k = j) > 0 for all k = 1, . . . ,K and all
j ∈ V with Σe = (σe,kl)k,l=1,...,K = Cov(et) > 0. Let P be the parameter matrix in (4.4)
with diagonal B(0) 6= 0K×K , such that P1K(p+q+1) = 1K . Further, let (Pt, t ∈ Z) with

Pt :=
[
A

(1)
t , . . . , A

(p)
t , B

(0)
t , . . . , B

(q)
t

]
be a K ×K(p+ q + 1) dimensional i.i.d. process

with mutually independent rows (Pt,k•, t ∈ Z), k = 1, . . . ,K, such that

Pt,k• :=
[
a
(1)
t,k•, . . . , a

(p)
t,k•, b

(0)
t,k•, b

(1)
t,k•, . . . , b

(q)
t,k•

]
∼Mult (1;Pt,k•) , (4.5)

which are independent of (et, t ∈ Z) and (Xs, s < t). Here, we set A
(i)
t = (a

(i)
t,kl)k,l=1,...,K ,

B
(0)
t = diag(b

(0)
t,11, . . . , b

(0)
t,KK) and B

(j)
t,kl = (b

(j)
t,kl)k,l=1,...,K with a

(i)
t,k• = (a

(i)
t,k1, . . . , a

(i)
t,kK),

i = 1, . . . , p and b
(j)
t,k•, j = 1, . . . , q defined similarly. Then, the process (Xt, t ∈ Z) is

said to be a New Discrete Vector ARMA(p,q) process (NDVARMA(p,q)), if it follows
the recursion

Xt =

p∑
i=1

A
(i)
t Xt−i +B

(0)
t et +

q∑
j=1

B
(j)
t et−j , t ∈ Z. (4.6)

In the case, of q = 0, the process is called an NDVAR(p) process and for p=0, e.g. if

Xt = B
(0)
t et + . . . , B

(q)
t et−q it is said to be an NDVMA(q) process.

Note that E(A
(i)
t ) = A(i), i = 1, . . . , p and E(B

(j)
t ) = B(j), j = 0, . . . , q by construc-

tion. B(0) is assumed to be diagonal due to identification issues otherwise, whereas we
allow for Σe to be non-diagonal. Due to the independently applied sampling mecha-
nism in each row, Xt,k, k = 1, . . . ,K are independent given the past values of the time
series Xt−1, . . . , Xt−p and the innovations et, . . . , et−q.

The following example illustrates the above definition for the case of a bivariate
NDVAR(1) process.

Example 4.2 (Bivariate NDVAR(1) process)
Consider a K = 2 dimensional NDVAR process (Xt, t ∈ Z) of order p = 1 with m = 4
leading to V = {0, 1, 2, 3, 4}. The process follows the recursion(

Xt,1

Xt,2

)
=

(
at,11 at,12
at,21 at,22

)(
Xt−1,1
Xt−1,2

)
+

(
bt,11 0

0 bt,22

)(
et,1
et,2

)
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4.2. Vector new discrete ARMA processes

Figure 4.1.: Realization of an NDVAR(1) process of dimension K = 2 with m+ 1 = 5
states of sample size n = 100 as specified in Example 4.2 together with
corresponding Cohen’s κ plots.

with parameter matrix P = [A,B], where

A =

(
0.57 0.27
0.45 0.35

)
and B(0) =

(
0.16 0.00
0.00 0.20

)
.

The processes (et,1, t ∈ Z) and (et,2, t ∈ Z) are chosen to be independent with distribu-
tions specified by

P (et,1 = 0) = 0.15, P (et,1 = 1) = 0.35, P (et,1 = 2) = 0.20, P (et,1 = 3) = 0.20,

P (et,1 = 4) = 0.10, P (et,2 = 0) = 0.13, P (et,2 = 1) = 0.15, P (et,2 = 2) = 0.15,

P (et,2 = 3) = 0.17, P (et,2 = 4) = 0.40.

The random matrices At and Bt are specified by the row-wise independently applied
multinomial distributions

Pt,1• = [at,11, at,12, bt,11, 0] ∼Mult(1; [0.57, 0.27, 0.16, 0.00]),

Pt,2• = [at,21, at,22, 0, bt,22] ∼Mult(1; [0.45, 0.35, 0.00, 0.20]).

One resulting realization of the described process is shown in Figure 4.1. As autoco-
variances are not meaningful to describe the dependence of categorical data, we present
Cohen’s κ plots in Figure 4.1. Weiß (2013) used the Cohen’s κ to measure the degree
of signed serial dependence and we adapt this to the multivariate case by considering

κ(Xt,k, Xt−h,l) =

∑m
j=0

[
P (Xt,k = j,Xt−h,l = j)− P (Xt,k = j)P (Xt−h,l = j)

]
1−

∑m
j=0 P (Xt,k = j)P (Xt−h,l = j)

(4.7)

as a measure of serial and cross - sectional dependence in categorical time series.
Nevertheless, for the univariate NDARMA model with a cardinally interpretable state
space V, Weiß (2009a) showed that Cohen’s κ and autocorrelations coincide, where the
first measure is meaningful also for the nominal range of a state space.
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4.3. Stochastic Properties of the NDVARMA processes

4.3.1. Stationarity conditions and moving-average-type representations

First, we establish stationarity conditions and derive the stationary solution. By
recursively plugging-in the NDVARMA model equation, the stationary solution can
be derived having a common moving - average - type representation. For this purpose,
we first illustrate the recursion for the case p = 1 and q = 0 leading to an NDVAR(1)
process. By plugging-in d ∈ N0 times the NDVAR recursion (4.6), we get

Xt =
d∏
j=0

At−jXt−(d+1) +
d∑
i=0

i−1∏
j=0

At−j

 et−i = ζdXt−(d+1) +
d∑
i=0

ζi−1Bt−iet−i, (4.8)

where ζi :=
∏i
j=0At−j for i ∈ N0 with ζ−1 = IK .

Hence, whenever ζd vanishes for d→∞, (4.8) leads to a moving - average - type rep-
resentation. For NDARMA(p,q) processes with arbitrary p and q, such an NDVMA(∞)
representation can be deduced by following Lütkepohl (2005)[Chapter 11.3.2]. ND-
VARMA(p,q) processes (Xt, t ∈ Z) can be rewritten as a K(p + q) dimensional ND-
VAR(1) process (X̃t, t ∈ Z). For this purpose, we define

X̃t = (X ′t, . . . , X
′
t−p+1, e

′
t, . . . , e

′
t−q+1)

′, ẽt = (e′t, 0, . . . , 0, e
′
t, 0, . . . , 0)′

and random coefficients matrices Ãt and B̃t containing the random matrices of the

NDVARMA process A
(i)
t , i = 1, . . . , p and B

(j)
t , j = 0, . . . , q. Precisely, let

Ãt :=

(
Ãt,11 Ãt,12
Ãt,21 Ãt,22

)
and B̃t :=


B

(0)
t 0K×K(p+q−1)

0K(p−1)×K 0K(p−1)×K(p+q−1)
IK 0K×K(p+q−1)

0K(q−1)×K 0K(q−1)×K(p+q−1)


be K(p+ q)×K(p+ q) matrices, where

Ãt,11 :=


A

(1)
t . . . A

(p−1)
t A

(p)
t

IK 0K×K 0K×K
. . .

...
0K×K . . . IK 0K×K

 , Ãt,12 :=


B

(1)
t . . . B

(q)
t

0K×K . . . 0K×K
...

...
0K×K . . . 0K×K

 ,

Ãt,22 :=


0K×K . . . 0K×K 0K×K
IK 0K×K 0K×K

. . .
...

0K×K . . . IK 0K×K


are Kp × Kp, Kp × Kq and Kq × Kq matrices, respectively, and At,21 := 0Kq×Kp.
Based on the introduced notation, the NDVAR(1) process follows the recursion

X̃t = ÃtX̃t−1 + B̃tẽt. (4.9)

Now, the moving - average - type representation can be derived as already shown in
(4.8), such that

X̃t = ζ̃dX̃t−(d+1) +

d∑
i=0

ζ̃i−1B̃t−iẽt−i (4.10)
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where ζ̃i :=
∏i
j=0 Ãt−j for i ∈ N0 with ζ̃−1 = IK . Setting Ã := E(Ãt), the first term

vanishes for d→∞, if and only if

det(IK(p+q) − Ãz) 6= 0 ∀z ∈ C : |z| ≤ 1 (4.11)

and the K(p+q) dimensional process (X̃t, t ∈ Z) has a moving average representation.
Due to the block structure of Ã, the stationarity condition (4.11) becomes equivalent
to

det(IK −A(1)z . . .−A(p)zp) 6= 0 ∀z ∈ C : |z| ≤ 1, (4.12)

see e.g.Lütkepohl (2005)[Eq. 11.3.9]. Representation (4.9) enables us to state the
moving - average - type representation of (Xt, t ∈ Z) as well.

Theorem 4.3 (Moving-Average representation of NDVARMA processes)
Let (Xt, t ∈ Z) be a K-dimensional stationary NDVARMA(p,q) process satisfying (4.12).

(i) If p = 1, q = 0, the NDVAR(1) model has an NDVMA(∞)-type representation

Xt =

∞∑
i=0

ζi−1Bt−iet−i, t ∈ Z

converging in L1.

(ii) If p ∈ N0, q ∈ N, the NDVARMA(p,q) process fulfills the NDVAR(1) represen-
tation (4.9) and has an NDVMA(∞)-type representation

Xt = JX̃t = J

( ∞∑
i=0

ζ̃i−1B̃t−iẽt−i

)
, t ∈ Z, (4.13)

converging in L1, where J :=
[
IK , 0K×K(p+q+1)

]
.

Example 4.4 (Cont. of Example 4.2)
For the NDVAR(1) process as specified in Example 4.2, the parameter matrix A has
eigenvalues λ ∈ {0.8255, 0.0945}. Hence, as all eigenvalues are strictly smaller than
one, the NDVAR(1) process is stationary and admits a moving - average representa-
tion.

A necessary and sufficient condition for an NDVAR(1) process to fulfill the station-
arity condition (4.12) and to admit an NDVMA(∞) representation is as follows:

(a) at least one diagonal entry of the parameter matrix B(0) is non zero, and

(b) for each univariate process (Xt,k, t ∈ Z), k = 1, . . . ,K, there exists at least one
innovation process (et,l, t ∈ Z), l = 1, . . . ,K such that et,l enters (Xt,k, t ∈ Z)
with strictly positive probability after finitely many time steps.

In particular, if all diagonal entries of B(0) are strictly positive, condition (b) is auto-
matically fulfilled. If all diagonal entries of B(0) are zero, the largest eigenvalue of A(1)

is always equal to one. We want to illustrate the situation with an example.
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Remark 4.5 (Stationarity condition for NDVAR(1) process)
Consider a bivariate NDVAR(1) process with model parameter P := [A,B] with

A =

(
α11 α12

α21 α22

)
and B =

(
β11 0
0 β22

)
,

where α11 + α12 + β11 = 1 and α21 + α22 + β22 = 1. Then, the process follows the
recursion(

Xt,1

Xt,2

)
=

(
at,11 at,12
at,21 at,22

)(
Xt−1,1
Xt−1,2

)
+

(
bt,11 0

0 bt,22

)(
et,1
et,2

)
, t ∈ Z.

Figure 4.2 illustrates all possible selection paths of the NDVAR(1) process. We consider
the following special cases:

1. If βkk > 0, k = 1, 2, both innovation terms have a strict positive probability
to be selected. Hence, all row-sums of A are strictly smaller than one, that is,
αk1 + αk2 < 1 for k = 1, 2. Consequently, all eigenvalues of A are also strictly
smaller than one and the stationarity condition (4.12) is fulfilled.

2. If β22 = 0 and β11 > 0, only the innovation term et,1 may enter the model in
Xt,1. To check the stationarity condition, we have to distinguish two cases:

a) If α21 = 0, we have α22 = 1 such that Xt,2 only depends on its first lag
Xt−1,2. Then, the parameter matrix A has eigenvalues α11 and α22 = 1,
such that the stationarity condition (4.12) is not fulfilled in this case.

b) If α21 > 0, after one extra time step the innovation et,1 may enter also the
second dimension. in this case, it can be calculated, that all eigenvalues of
A are strictly smaller than one such that the stationarity condition (4.12)
holds.

3. If βkk = 0 for k = 1, 2, the innovation process does not enter the time series
process at all. The parameter matrix A have both row sums equal to one, such
that the largest eigenvalue is equal to one and the stationarity condition (4.12)
is not fulfilled.

4.3.2. Yule-Walker(-type) equations and conditional probabilities

ND(V)ARMA models resemble the model recursion of linear (V)ARMA models, but
they are non-linear due to the random coefficient matrices. Furthermore, although
autocorrelations are generally not a meaningful measure for dependence in categorical
data. However, they are very helpful for deriving Yule - Walker equations. As in
classical VAR models, these can be used for parameter estimation also in NDVAR
models. For the NDVARMA process, Yule - Walker - type equations can be derived
as well.

The following theorem summarizes the Yule-Walker equations for the purely autore-
gressive case of an NDVAR(p) model and the Yule - Walker - type equations for an
NDVARMA(p,q) model; see also e.g. Weiß and Göb (2008) and Weiß (2009a) for the
univariate case.
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e1

e2

X1

X2

α11

α22

α21 α12

β11

β22

Figure 4.2.: Di - Graph of a two dimensional NDVAR(1) time series with corresponding
selection probabilities.

Theorem 4.6 (Yule-Walker (-type) Equations)
Let (Xt, t ∈ Z) be a stationary K-dimensional NDVARMA(p,q) process and denote

by ΓX(h) = Cov(Xt, Xt−h), h ∈ N, the corresponding autocovariance matrices.

(i) If p = 1 and q = 0, (Xt, t ∈ Z) is an NDVAR(1) process and for all h ∈ N (with
h 6= 0), we have

ΓX(h) =

p∑
i=1

A(i)ΓX(h− i). (4.14)

leading, in particular, to the system of Yule-Walker equations[
A(1), . . . ,A(p)

]( ΓX(i− j)
i, j = 1, . . . , p

)
= [ΓX(1), . . . ,ΓX(p)] . (4.15)

(ii) If p ∈ N and q ∈ N0 such that (Xt, t ∈ Z) is a stationary NDVARMA(p,q)
process. Further, set B(m) := 0K×K for m > q and define a sequence of coefficient
matrices (Φm,m ∈ Z) recursively by

Φm := 0K×K for m < 0, Φ0 := ΣEB(0)′,

Φm :=

p∑
i=1

Φm−iA(i)′ + ΣEB(m)′ for m > 0.

Then, for all h ∈ N (with h 6= 0), the autocovariance function fulfills

ΓX (h)−
p∑
i=1

A(i)ΓX (h− i) =

q∑
j=h

B(j)Φj−h. (4.16)

Formulas (4.14) and (4.16) in Theorem 4.6 link the parameter matrices A(1), . . . ,A(p)

for the NDVAR case and A(1), . . . ,A(p),B(0), . . . ,B(q) for the NDVARMA(p,q) case to
the autocovariances {ΓX(h), h ∈ Z} of the process. A similar link that includes
also the process mean µX = E(Xt) as well as the innovation mean µe = E(et) and
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covariance Σe = Cov(et) based on the Yule-Walker equation for h = 0 can also be
achieved as in Jentsch and Reichmann (2020)[Theorem 2.7]. However, as Σe is not of
particular interest for categorical data, we shall investigate instead the (conditional)
distributions of NDVARMA processes next.

In the following lemma, for the NDVARMA processes, we derive two types of condi-
tional probabilities including the one step ahead transition probability, which contain
the results obtained in Weiß (2009a), Weiß (2011b) and Weiß (2020) for univariate
NDARMA processes as a special case.

Lemma 4.7 (Conditional probabilities of NDVARMA processes)
Suppose (Xt, t ∈ Z) is a stationary NDVARMA(p,q) process of dimension K and let
si, rj, i = 0, . . . , p and j = 0, . . . , q denote K-dimensional vectors with values in VK .

(i) The conditional probability given the past values of the NDVARMA process as
well as the past and present of innovation process is given by

P (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp, et = r0 . . . , et−q = rq) = (4.17)

K∏
k=1

[
p∑
i=1

K∑
l=1

α
(i)
kl δs0,ksi,l + β

(0)
kk δs0,kr0,k +

K∑
l=1

q∑
j=1

β
(j)
kl δs0,krj,l

]
,

where δij = 1{i=j} denotes the Kronecker delta.

(ii) The one step ahead transition probability is given by

P (Xt = s0|Xt−1 = s1, . . . , Xt−p = sp) = (4.18)∑
r0,r1,...,rq∈VK

q∏
m=0

pe(rm)

K∏
k=1

[
p∑
i=1

K∑
l=1

α
(i)
kl δs0,ksi,l + β

(0)
kk δs0,kr0,k +

K∑
l=1

q∑
j=1

β
(j)
kl δs0,krj,l

]
,

where pe(rm) := P (et = rm).

Example 4.8 (Cont. of Example 4.2)
For the NDVAR(1) process as specified in Example 4.2, for s0, s1 ∈ VK , the transitions
probabilities derived in (4.18) become

P (Xt = s0|Xt−1 = s1) =
∑
r0∈VK

P (et,1 = r0,1, et,2 = r0,2)

·
[
0.57δs0,1s1,1 + 0.27δs0,1s1,2 + 0.16δs0,1r0,1

]
·
[
0.45δs0,2s1,1 + 0.20δs0,2s1,2 + 0.06δs0,2r0,2

]
.

4.3.3. Identification issues of NDVARMA processes

In comparison to univariate NDARMA processes, its multivariate extension may
suffer from identification issues. As discussed already in Jentsch and Reichmann (2020,
Remark 2.13) for the special case of m = 1 leading to (multivariate) binary data, non
- zero off diagonal elements in B(0) would lead to identification issues. Hence, we
imposed a diagonal structure of B(0) in Definition 4.1.

Furthermore, we have to discuss the crucial property of non - reducibility of the
state space of an NDVARMA process in the following.

We call the state space VK of an NDVARMA process non-reducible if it takes every
state s0 ∈ VK with strictly positive probability, i.e. P (Xt = s0) > 0 for all s0 ∈ VK .
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However, this property might be not true in practice. For gbVAR(p) processes, Jentsch
and Reichmann (2020)[Example 2.12] discussed this issue for a binary state space, i.e.
m = 1. The next example illustrates this problem for general m ∈ N and state space
V = {0, 1, . . . ,m}.

Example 4.9 (NDVAR(1) model with reducible state space)
Consider a K = 3 dimensional NDVAR(1) process with parameter matrices

A(1) =

 0 1 0
α21 α22 α23

0 1 0

 and B =

0 0 0
0 β22 0
0 0 0


such that α21 + α22 + α23 + β22 = 1. The stationarity condition (4.12) holds whenever
β22 > 0. By construction, the first and third dimensions of Xt, i.e. Xt,1 and Xt,3

always take the value Xt−1,2 for all t ∈ Z. That is, the process fulfills Xt,1 = Xt,3

for all t ∈ Z, such that the process just takes states in the set
{

(m1,m2,m1) with
m1,m2 ∈ V

}
⊂ VK . Hence, (Xt, t ∈ Z) has a reducible state space which is completely

determined by a process (Yt, t ∈ Z) of dimension K̃ = 2 < 3 = K with non-reducible
state space V2. Note that the same phenomenon occurs for an NDVMA(1) process with
parameter matrices B(0) := B and B(1) := A from above.

Note that a reducible state space of the form illustrated in the above example implies
perfect correlations between certain components Xt,i and Xt,j , say, of Xt leading to
a singular ΓX(0). Hence, even if V ar(Xt,k) > 0 for all k = 1, . . . ,K, this leads to
identification problems, because the Yule-Walker matrix (ΓX(i− j), i, j = 1, . . . , p) in
(4.15) does not have full rank and is therefore non-invertible. This leads in particular
to issues, when Yule-Walker equations are employed for parameter estimation; see also
Section 4.3.6.

To solve this practical issue, following the approach of Jentsch and Reichmann (2020)
proposed for gbVAR processes having binary state spaces, we aim to find a lower-
dimensional process (Yt, t ∈ Z) of dimension K̃, with K̃ < K completely determined
by the process (Xt, t ∈ Z). First, without loss of generality, the dimensions of an
NDVARMA process (Xt, t ∈ Z) can be rearranged to have an order like

Xt =

(
Xdep
t

Yt

)
, (4.19)

where Xdep
t is of dimension K − K̃ and contains all sub-processes which perfectly

correlate with only one (!) component of Yt such that Yt is of dimension K̃, where K̃
is the maximal dimension leading to a non-singular K̃ × K̃ matrix ΓY (0). Then, the
process (Yt, t ∈ Z) has a non-reducible state space and we can write

Xt = HYt, (4.20)

where H is a K × K̃ matrix defined by

H :=

(
Hdep

I
K̃

)
and Hdep :=

 1{Cov(Xdep
t,k ,Yt,l)=1}

k = 1, . . . ,K − K̃,
l = 1 . . . , K̃

 . (4.21)
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4.3.4. Identification of the marginal innovation distribution

For univariate NDARMA processes, Weiß (2009a) showed that the marginal distri-
bution of the innovation process is equal to the marginal distribution of the process
itself, e.g. P (Xt = s) = P (et = s) for all s ∈ V. However, for multivariate NDVARMA
models, the marginal distributions of Xt and et will generally differ.

To relate the marginal distribution of the unobservable innovation process (et, t ∈ Z)
to the observable (marginal and joint) distributions of the NDVARMA process (Xt, t ∈
Z), we derive a general relationship between sub-processes of (et, t ∈ Z) and (Xt, t ∈ Z)
of arbitrary dimension g ∈ {1, . . . ,K}. For this purpose, we define

Wt−1 := (X ′t−1, . . . , X
′
t−p, e

′
t, . . . , e

′
t−q)

′ (4.22)

and denote by z ∈ {0, 1}K(p+q+1) with ‖z‖1 =
∑K(p+q+1)

l=1 |zl| = 1 a unit vector of
length K(p+ q + 1) as a possible realization of Pt,k• from (4.5).

Lemma 4.10 (Marginal distribution of an NDVARMA(p,q) process)
Let (Xt, t ∈ Z) be a K - dimensional stationary NDVARMA(p,q) process with state
space VK = {0, 1, . . . ,m}K for m ∈ N with K-dimensional innovation process (et, t ∈
Z). Further, for g ∈ {1, . . . ,K}, let k1, . . . , kg ∈ {1, . . . ,K} with ki 6= kj for i 6= j and
s1, . . . , sg ∈ V = {0, 1, 2 . . . ,m}. Then, we have

P (Xt,k1 = s1, . . . , Xt,kg = sg)

=
∑

z1,...,zg∈{0,1}K(p+q+1),

‖z1‖1=···=‖zg‖1=1

P (z1Wt−1 = s1, . . . , zgWt−1 = sg)

(
g∏
r=1

P (Pt,kr• = zr)

)
.

(4.23)

To make further use of Lemma 4.10, note that the first Kp entries of the vector
Wt−1 defined in (4.22) consists of lagged entries (X ′t−1, . . . , X

′
t−p)

′ of the process and
the remaining K(q+1) entries consist of lagged entries (e′t, . . . , e

′
t−q)

′ of the innovations.
Correspondingly, we can split each sum over zr in (4.23) in two parts to get∑

zr∈{0,1}K(p+q+1),

‖zr‖1=1

· · · =
∑

zr∈{0,1}K(p+q+1),∑Kp
j=1 zr,j=1

· · ·+
∑

zr∈{0,1}K(p+q+1),∑K(p+q+1)
j=Kp+1 zr,j=1

· · · (4.24)

leading to 2g many combinations of partial sums related to lagged process and lagged
innovations, respectively. More precisely, the marginal distributions of et,k, k =
1, . . . ,K can be identified using g = 1 as follows. In this case, Lemma 4.10 together
with (4.24) leads to

P (Xt,k1 = s1) =
∑

z1∈{0,1}K(p+q+1),∑Kp
j=1 zr,j=1

P (z1Wt−1 = s1)P (Pt,k1• = z1)

+
∑

z1∈{0,1}K(p+q+1),∑K(p+q+1)
j=Kp+1 zr,j=1

P (z1Wt−1 = s1)P (Pt,k1• = z1) (4.25)

=

p∑
i=1

K∑
l=1

α
(i)
k1l
P (Xt−i,l = s1) +

q∑
j=0

K∑
l=1

β
(j)
k1l
P (et−j,l = s1).
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The latter holds for all k1 ∈ {1, . . . ,K} and all s1 ∈ {0, 1, . . . ,m} and making use of sta-
tionarity of (Xt, t ∈ Z) and (et, t ∈ Z), by defining pe(s) := (P (et,1 = s), . . . , P (et,K =
s))′ and pX(s) := (P (Xt,1 = s), . . . , P (Xt,K = s))′ for s ∈ V, we get the following
relationship.

Lemma 4.11 (Marginal distributions of innovation components et,k)
Let (Xt, t ∈ Z) be a K - dimensional stationary NDVARMA(p,q) process with state
space VK = {0, 1, . . . ,m}K for m ∈ N with K-dimensional innovation process (et, t ∈
Z). Then, we have (

IK −
p∑
i=1

A(i)

)
pX(s) =

 q∑
j=0

B(j)
pe(s)

for any s ∈ V. If
∑p

j=1 B(j) is invertible, this allows to identify all marginal distribu-
tions of et,k, k = 1, . . . ,K by writing

pe(s) =

 q∑
j=0

B(j)
−1(IK − p∑

i=1

A(i)

)
pX(s).

Note that for NDVAR(p) processes, the invertibility condition imposed on
∑q

j=0 B(j)

is fulfilled if all diagonal entries of B(0) are strictly positive. In contrast, if some diagonal
entries of B(0) are zero, the corresponding innovation distributions are not identifiable
as these innovations do not enter the NDVAR(p) process at all, which is then driven
by some lower-dimensional innovation process.

Next, we illustrate how Lemma 4.10 can be employed to identify also the joint
marginal innovation distribution of et = (et,1, . . . , et,K)′ beyond the marginal distribu-
tions of et,k, k = 1, . . . ,K. By using Lemma 4.10 with g = 2, this leads to

P (Xt,k1 = s1, Xt,k2 = s2)

=
∑

z1,z2∈{0,1}K(p+q+1),

‖z1‖1=‖z2‖1=1

P (z1Wt−1 = s1, z2Wt−1 = s2)

(
2∏
r=1

P (Pt,kr• = zr)

)
, (4.26)

which allows to identify all bivariate distributions of (et,i, et,j) for i, j = 1, . . . ,K, i 6= j.
For notational convenience, the following example illustrates this for the special case
of a stationary NDVAR(1) process.

Example 4.12 (Marginal distribution of the innovation vector)
Let (Xt, t ∈ Z) be a stationary K-dimensional NDVAR(1) process with non-singular
B(0). Then, using (4.26), decomposing both sums according to (4.24) and due to The-
orem 4.3, we get

P (et,k1 = s1, et,k2 = s2)

=
1

βk1k1βk2k2

pX,k1k2(s1, s2)−
K∑

l1,l2=1

αk1l1αk2l2pX,l1l2(s1, s2)

−
K∑
l1=1

αk1l1βk2k2pX,l1(s1)pe,k2(s2)−
K∑
l2=1

βk1k1αk2l2pe,k1(s1)pX,l2(s2)

 ,
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for all k1, k2 ∈ {1, . . . ,K}, k1 6= k2, where pX,lk(r, s) = P (Xt,l = r,Xt,k = s),
pX,l(s1) = P (Xt,l = s1) and pe,k(s) = P (et,k = s). Note that pX,ll(s1, s2) = pX,l(s1)δs1,s2
for all l ∈ {1, . . . ,K} and s1, s2 ∈ {0, 1}. As the process (Xt, t ∈ Z) is observed and
the marginal distributions of et,k, k = 1, . . . ,K can be identified using Lemma 4.11,
the bivariate distribution of (et,k1 , et,k2) is identified.

Analogous to the identification of bivariate innovation distributions indicated in
Example 4.12, similar formulas can be derived to identify also trivariate innovation
distributions etc.

4.3.5. Mixing properties of NDVARMA(p,q) processes

In this section, we aim to derive mixing properties of NDVARMA processes. Mixing
concepts are in particular helpful to quantify the dependence structure of serially
dependent processes. Overviews of different concepts are given e.g. in the monographs
Doukhan (1994), Billingsley (1968) and Bradley (2007). For this purpose, we follow
the argumentation of Jacobs and Lewis (1983), Weiß (2009a) and Weiß (2013) to prove
mixing properties of NDARMA models. For the multivariate case, according to Jentsch
and Reichmann (2020), who considered vector-valued gbVAR(p) models, we define a
K(p+ q) dimensional process (Zt, t ∈ Z) with

Zt := (X ′t, X
′
t−1, . . . , X

′
t−p+1, e

′
t, . . . , e

′
t−q+1)

′, (4.27)

which has a suitable Markov chain representation useful to derive ϕ- and ψ-mixing of
K-dimensional NDVARMA(p,q) processes in the following. The process (Zt, t ∈ Z) is
called ψ - mixing, if

|P (E1 ∩ E2)− P (E1)P (E2)| ≤ fhP (E1)P (E2) (4.28)

for all subsets E1 ∈ σ(Zt, Zt−1, . . .) and E2 ∈ σ(Zt+h, Zt+h+1, . . .) with a non-negative
sequence (fh, h ∈ N) such that fh → 0 for h → ∞. If the right-hand side of (4.28) is
replaced by fhP (E1), the process is called ϕ - mixing.

To achieve the (homogeneous) Markov property (of order one) of the process (Zt, t ∈
Z), we have to establish its transition probability. This is obtained as a direct conse-
quence of the transition probabilities derived in Lemma 4.7 for the NDVARMA(p,q)
processes. Let s0, s1 ∈ VK(p+q+1) with s0 := (s′0, . . . , s

′
p−1, r

′
0, . . . , r

′
q−1)

′ and s1 :=

(s̃′1, . . . , s̃
′
p, r̃
′
1, . . . , r̃

′
q)
′, where si, s̃i, rj , r̃j ∈ VK

for i = 0, . . . , p and j = 0, . . . , q with si = (si,1, . . . , si,K)′ etc. Then, with pe(r0) =
P (et = r0), we get

P (Zt = s0|Zt−1 = s1) = (4.29)

K∏
k=1

[
p∑
i=1

K∑
l=1

α
(i)
kl δs0,k s̃i,l + β

(0)
kk δs0,kr0,k +

q∑
j=1

K∑
l=1

β
(j)
kl δs0,k r̃j,l

](
p−1∏
v=1

δs̃vsv

)(
q−1∏
w=1

δr̃wrw

)
pe(r0).

Therefore, the transition probability of (Zt, t ∈ Z) is determined by the transition
probability of the underlying NDVARMA process and the marginal distribution of et.
As the transition probability is time invariant, the process (Zt, t ∈ Z) is a homogeneous
Markov chain of order one.

If the underlying NDVARMA process (Xt, t ∈ Z) has a non-reducible state space,
such that we have P (Xt = s) > 0 for all s ∈ VK , we can prove primitivity of the
Markov chain (Zt, t ∈ Z).

104



4.3. Stochastic Properties of the NDVARMA processes

Lemma 4.13 (Primitivity)
Let (Zt, t ∈ Z) be the Markov Chain representation of a stationary NDVARMA(p,q)
process (Xt, t ∈ Z) with non-reducible state space and p + q ≥ 1. Then (Zt, t ∈ Z) is
primitive, that is, for n := max{p+ q,K ′}+ 1, we have

ps|r(n) := P (Zt = s|Zt−n = r) > 0 for all r, s ∈ VKp.

With the primitivity of stationary NDVARMA processes with non - reducible state
space and following the argumentation of Weiß (2009a)[Section 11.2], it follows that
the Markov chain (Zt, t ∈ Z) with an underlying NDVARMA process is ergodic and
geometrically ψ - and ϕ - mixing.

This allows then the conclusion, as NDVARMA processes (Xt, t ∈ Z) are contained in
(Zt, t ∈ Z), that stationary NDVARMA processes with non-reducible state space itself
are geometrically ψ- and ϕ- mixing. If nevertheless, (Xt, t ∈ Z) has a reducible state
space, such that VX ( VK , we consider the reduced version (Yt, t ∈ Z) from Section
4.3.3 and derive its mixing property for this process. Due to the linear transformation
of (Yt, t ∈ Z) to (Xt, t ∈ Z), the property of mixing can easily be concluded also for
the original process (Xt, t ∈ Z).

Theorem 4.14 (Mixing of the NDVARMA process)
Let (Xt, t ∈ Z) be a K - dimensional stationary NDVARMA(p,q) process with p+q ≥ 1
and V ar(Xt,k) > 0 for k = 1, . . . ,K. Then the process is ψ - and ϕ - mixing with
exponentially decreasing weights (fh, h ∈ N) i.e. there exists an a > 0 and ρ ∈ (0, 1)
such that fh = aρh.

4.3.6. Parameter estimation

The whole distribution of NDVARMA models is completely determined by the model
parameters in P and by the marginal distribution of the i.i.d. innovations (et, t ∈ Z).
The Yule-Walker equations derived in Theorem 4.6 are particularly useful to construct
Yule-Walker estimators Â(1), . . . , Â(p) for the model parameters A(1), . . . ,A(p) of an
NDVAR(p) model. Naturally, with data X1, . . . , Xn at hand, these are obtained by
replacing the population autocovariances ΓX(h) by their sample version

Γ̂X(h) :=

{
1
n

∑n−h
t=1 (Xt+h −X)(Xt −X)′, 0 ≤ h < n

0, h ≥ n
(4.30)

with ΓX(−h) := Γ′X(h) for h < 0. If the process has a non-reducible state in the sense
of Section 4.3.3, the Yule-Walker matrix is non-singular and we get

[Â(1), . . . , Â(p)] = [Γ̂X(1), . . . , Γ̂X(p)]

(
Γ̂X(i− j)

i, j = 1, . . . , p

)−1
. (4.31)

with Â(i) = (α̂
(i)
kl )k,l=1,...,K . Otherwise, i.e. if the state space is reducible, Yule-Walker

estimation has to be applied to the corresponding lower-dimensional process (Yt, t ∈ Z)
with non-reducible state space VY as introduced in Section 4.3.3. Diagonality of B(0)

together with the natural restriction βkk = 1−
∑p

i=1

∑K
l=1 |α

(i)
kl | for k = 1, . . . ,K leads

to the estimator B̂ defined by

B̂ := IK − diag
(

[Â(1), . . . , Â(p)]1Kp

)
. (4.32)

105



4. Vector - valued New Discrete ARMA Processes

For NDVAR(p) models, the conditional probabilities corresponding (4.17) and (4.18) as
derived in Lemma 4.7 can be estimated in a similar fashion by replacing all population
quantities by the corresponding estimators. To estimate the transition probabilities in
(4.18), this also requires the estimation of the innovation distribution to get pe(r) =
P (et = r) for all r ∈ VK . If B(0) is invertible, the marginal distributions of et,k,
k = 1, . . . ,K can be estimated using the formulas derived in Lemma 4.11 by plugging-
in the estimators from. This leads to

p̂e,k(s) =
1

β̂
(0)
kk

(
p̂X,k(s)−

p∑
i=1

K∑
l=1

α̂
(i)
kl p̂X,l(s)

)
, (4.33)

where p̂X,k(s) = 1
T

∑T
t=1 1{Xt,k=s} for k ∈ {1, . . . ,K} and s ∈ V. This fully identifies

the innovation distribution under the assumption of independence of et,k, k = 1, . . . ,K.
Nevertheless, similar formulas as sketched in Example 4.12 for bivariate distributions
of (et,i, et,j), i 6= j, can be used to estimate also the innovation distribution beyond
the marginal distributions of et,k, k = 1, . . . ,K. Note that the latter formulas rely on

β̂kk > 0.

However, in practice, the Yule-Walker estimators might lead to invalid model pa-
rameters with

p∑
i=1

K∑
l=1

α̂
(i)
kl > 1 (4.34)

for some k ∈ {1, . . . ,K}. In such cases, we propose to use an approach similar to
Jentsch and Reichmann (2020, Remark 2.15) based on linearly constraint estimation

to assure
∑p

i=1

∑K
l=1 α̂

(i)
kl = 1 and setting β̂kk = 0. A similar constraint estimation

approach is also applicable if certain entries are estimated negative, i.e. α̂
(i)
kl < 0 for

some i ∈ {1, . . . , p} and k, l ∈ {1, . . . ,K}, where we restrict these entries to zero. Note
that B̂(0) is no longer invertible, if some diagonal elements β̂kk are equal to zero and
(et, t ∈ Z) is not identified for those rows. However, the fitted NDVAR(p) model might
still satisfy the stationarity condition (4.12), as long as another innovation term enters
Xt,k with strictly positive probability later; see Example 4.5.

4.4. Simulation Study

In this section, we investigate the performance of Yule-Walker-based estimators in
NDVAR models by Monte-Carlo simulations. To illustrate the estimation performance
in several NDVAR model setups, we consider the (average) mean squared error (MSE)
of different parameter estimators.

4.4.1. The DGPs

To be able to judge the performance of parameter estimation in several NDVAR
model specifications we examine three different NDVAR(p) setups with orders p = 1, 2,
dimensions K = 3, 4 and m = 3, 4, and therefore m + 1 categories for sample sizes
n = 100, 500, 1000. In all cases, we use innovation processes (et, t ∈ Z) consisting of K
independent components. We consider three data generating processes (DGPs):
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v 0 1 2 3 4

P (et,1 = v) 0.10 0.30 0.15 0.15 0.30
P (et,2 = v) 0.30 0.20 0.40 0.05 0.05
P (et,3 = v) 0.10 0.10 0.30 0.40 0.10
P (et,4 = v) 0.20 0.10 0.10 0.20 0.40

Table 4.1.: Innovation distribution used for (DGP2) and (DGP3), where the et,k, k =
1, . . . ,K are stochastically independent.

(DGP1) NDVAR(1) with K = 3, m = 3 and parameter matrices

A(1) =

0.15 0.25 0.49
0.19 0.27 0.28
0.17 0.39 0.21

 , B(0) = diag (0.11, 0.26, 0.23)

and P (et,k = v) = (m+ 1)−1 for all k = 1, 2, 3 and v ∈ V.

(DGP2) NDVAR(1) with K = 4, m = 4 and parameter matrices

A(1) =


0.15 0.25 0.19 0.26
0.19 0.17 0.28 0.15
0.17 0.35 0.21 0.11
0.13 0.22 0.36 0.11

 , B(0) = diag (0.15, 0.21, 0.16, 0.18) .

with innovation distribution stated in Table 4.1.

(DGP3) NDVAR(2) with K = 3, m = 4 and parameter matrices

A(1) =

0.15 0.05 0.23
0.09 0.17 0.28
0.17 0.19 0.21

 , A(2) =

0.11 0.15 0.19
0.11 0.20 0.08
0.17 0.09 0.11

 ,

and B(0) = diag (0.12, 0.07, 0.06)

with innovation distribution corresponding to dimensions k = 1, 2, 4 stated in
Table 4.1.

4.4.2. Average MSE estimation performance

We measure the estimation performance by calculating the entry-wise MSE of each
parameter estimate for 1000 Monte Carlo replications. In Table 4.2, we summarize the
average MSE results for several estimators discussed in Section 4.3.6. For increasing
sample size, the estimation accuracy improves for all parameter estimators and all
DGPs. In comparison, the estimation of the the marginal innovation distribution(s)
is least precise and the MSE turns out to be large for smaller sample size and larger
dimensions. This phenomenon can be explained as the diagonal entries of B̂(0) have
to be inverted to estimate the probabilities corresponding to the innovations. Hence,
when estimating small diagonal entries of B(0), already small deviations in B̂(0) might
lead to large estimation variance leading to a larger MSE.
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n MSE of Â(1) MSE of Â(2) MSE of B̂(0) MSE of P̂ (et,k = s)

DGP1 100 0.0122 0.0360 2.4750
500 0.0023 0.0021 0.0163
1000 0.0012 0.0009 0.0043

DGP2 100 0.0133 0.0718 0.2504
500 0.0026 0.0038 0.0108
1000 0.0012 0.0012 0.0044

DGP3 100 0.0065 0.0535 0.0247 0.2502
500 0.0026 0.0190 0.0038 0.0109
1000 0.0013 0.0100 0.00012 0.0044

Table 4.2.: Average MSE for parameter estimators Â(1), Â(2), B̂(0) and P̂ (et,k = s) for
the three different parameter specifications (DGP1), (DGP2) and (DGP3),
respectively.

n p̂e,1 p̂e,2 p̂e,12
100 0.0291 0.0111 0.0333
500 0.0049 0.0020 0.0078
1000 0.0022 0.0010 0.0041

Table 4.3.: Average MSE for the parameter estimators p̂e,k(s) and p̂e,kl(s, t) for the
DGP described in Section 4.4.3 averaged over the states s ∈ V and (s, t) ∈
V2.

4.4.3. (Average) MSE estimation of the innovation process covariance
matrix

As described in Section 4.3.4, it is possible to identify not only the marginal distri-
butions of the innovation components et,k, but also their joint marginal distribution.
For illustration, we consider a bivariate process with three categories, i.e. V = {0, 1, 2}2
and model parameters α12, α13, α32 and α33 of (DGP1) with corresponding diagonal
matrix B(0) = diag(0.26, 0.40). The innovations et are generated based on the following
probabilities:

P (et = (0, 0)′) = 0.09, P (et = (0, 1)′) = 0.13, P (et = (0, 2)′) = 0.06,

P (et = (1, 0)′) = 0.14, P (et = (1, 1)′) = 0.12, P (et = (1, 2)′) = 0.07,

P (et = (2, 0)′) = 0.09, P (et = (2, 1)′) = 0.21, P (et = (2, 2)′) = 0.09.

In Table 4.3 the simulation results based on 1000 Monte-Carlo replications are dis-
played. The averaged MSE clearly decreases for increasing sample size. Non-surprising,
the averaged MSE for the joint marginal distribution of both innovation processes et,1
and et,2 has the biggest MSE, as the estimation make use of the previous estimated
marginal distribution of each innovation process.

4.5. Real Data application: the business cycle clock

Macroeconomic data and its analysis are important for e.g. policy makers, analysts
and central bankers, to understand the economic situation and adapt their behavior
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Figure 4.3.: Business Cycle Clock data of six European countries from January 1999
till June 2020

or reaction on the given and expected state, as discussed in Mazzi (2015) and based
on Zarnowitz (1992). One measure of the business cycle is the gross domestic product
(GDP), where the growth rate of the real domestic product indicates the economic
situation of a country. As not only recession states of the countries are of interest,
Mazzi (2015) developed a clock-type visualization tool, where the economic situation
is sub-classified in six different more detailed states. The business cycle is divided into
sections, defined as follows:

State 1: expansion of the economy with decelerating growth

State 2: slowdown

State 3: recession of an economy

State 4: recession with accelerating growth

State 5: recovery

State 6: expansion with accelerating growth

For further details see https://ec.europa.eu/eurostat/cache/bcc/resources/locales/
en/user_manual.pdf. The expansion phase is characterized by a positive growth but
with decreasing growth rate still above the trend. Whereas a slowdown (state 2) is
given when the growth rate is decreasing and now below the trend. The next state,
state 3, indicates a country to be in a recession period. In state 4, the growth rate
increases but is still negative and below the trend, where in state 5 the growth rate is
now positive. Finally, in state 6, the growth rate is increasing and above the trend.

For six European countries, the monthly Business Cycle clock (BCC) data are avail-
able from January 1999 till June 2020. All time series show an oscillating period be-
tween the states 1 and 6, thus, the growth is fluctuating between accelerating ”6” and
decelerating ”1” growth in an expansion state. These periods occur almost for all coun-
tries at the same time such that we have cross - sectional dependence in the data. In
addition, the time series takes all possible values in state space VK = {1, 2, 3, 4, 5, 6}K .
Therefore we fit a K = 6- dimensional NDVAR(p) model, by selecting the order p
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4. Vector - valued New Discrete ARMA Processes

Figure 4.4.: Estimated parameter matrix Â of the Business Cycle clock data of six
European countries

by common order selection criteria as the Hannan - Quinn and Bayesian information
criteria. Both select an order p = 1.

In the estimated parameter matrix Â, derived from the Yule - Walker equation
(4.14), small negative entries occur and we apply a constraint estimation to get rid of
negative parameters to receive a valid parameter estimator.

The estimated parameters Â shown in Figure 4.4 indicate cross-sectional among the
six countries with leading diagonal entries of Â. For instance, the diagonal entry of
Germany, the largest social economy in Europe, takes the overall largest value in the
parameter matrix Â. The influence of the other countries is thus relatively minor in
comparison e.g. to Spain, which has the overall smallest diagonal element. Also, it is
not surprising that the coefficient α̂41 is rather large, which indicates that the econ-
omy of Spain depends to some extent on the economy of its bordering country France.
France is the leading economic partner of Spain with more than 60 billion Euro of an-
nual trade, see e.g. https://www.diplomatie.gouv.fr/en/country-files/spain/.
In comparison, the leading European economies Germany and France depend with
rather large value on its own previous state and less on the economic states of the
other countries. The parameters indicating a dependence on other countries are ex-
plainable by the amount of trade between these countries. For example, the parameters
of Germany corresponding to countries France, Belgium, Italy and Spain, which are the
most important European trading partners of Germany, sum up to about 31 percent.
Nevertheless, it seems surprising that the economic status of Austria is estimated to
have no direct influence on Germany in our analysis.

The parameter matrix B̂ is estimated as discussed in Section 4.3.6 leading to

B̂ = diag(0.3878, 0.5186, 0.2059, 0.6588, 0.1896, 0.4795).

These parameters illustrate the findings of the parameter matrix Â that strong economies
tend to depend little on the innovation process, while the smaller countries as well as

110

https://www.diplomatie.gouv.fr/en/country-files/spain/
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Spain are highly influenced by the innovation process with values around 50 %. It
might be also plausible that global shocks on the economies, coming from the innova-
tion process, affect smaller countries first than more stable economies, as e.g. Germany
and France.

This data application shows that applying the NDVAR model to the BCC time
series data is suitable to reveal cross-country as well as serial dependencies of Business
Cycle states.

Nevertheless, even if the estimated negative entries are small, it might be interesting
to enlarge the NDVARMA process to allow also negative dependence structure. In the
case of a binary state space, Jentsch and Reichmann (2019) extended the NDARMA
process to negative dependence. In case of a state space with two values negative
dependence means to switch to the opposite state, it is an open question what negative
dependence in a state space with m+ 1 different values means.

4.6. Conclusion

In the paper, we discussed the multivariate extension of the NDARMA process, intro-
duced by Jacobs and Lewis (1983) and further discussed by Weiß (2009a), to analyze
also cross-sectional dependence structures of vector-valued categorical time dependent
data.

We derive the stationarity conditions for the NDVARMA model class and state the
stationary solution. Afterwards, Yule-Walker-type equations are proven that allow for
a direct estimation of NDVAR models using the common Yule-Walker estimators. We
derive formulas for the transition probabilities, that allow to prove mixing properties
of NDVARMA processes. Potential identification issues are discussed and we show
how the innovation distribution can be identified.

The estimation performance of Yule-Walker-based parameter estimators are ana-
lyzed in a simulation study. By considering business cycle clock data for six European
countries, we illustrate the application of NDVAR processes to analyze the dynamic of
economic states across Europe. The application reveals a reasonable amount of cross-
sectional dependence that should be taken into account for the cross-country modeling
of economic states.

4.7. Proofs of Chapter 4

4.7.1. Proof of Theorem 4.3

The proof works similar to the proof of Theorem 2.4 in Jentsch and Reichmann (2020).
By the same argumentation, with all eigenvalues of Ã lying in [0, 1) by assumption
4.10 and boundedness of X̃t−(d+1), using 4.10, we can show∥∥∥ζ̃d∥∥∥

1
= 1

′
K(p+q)Ã

d+1
1K(p+q) →

d→∞
0.

�

4.7.2. Proof of Theorem 4.6

The proof is completely analogous to the proofs of Theorems 2.6 and 2.7 in Jentsch
and Reichmann (2020).
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�

4.7.3. Proof of Lemma 4.7

The proof of part (ii) follows directly from the proof of Lemma 2.9 in Jentsch and
Reichmann (2020) when all entries of P are non-negative and part (i) follows similarly.

�

4.7.4. Proof of Lemma 4.10

By plugging-in component-wise the NDVARMA recursion (4.6), conditioning on the
Pt,k•’s and using the independence of Pt,k• and Wt−1 and the independence of Pt,k1•
and Pt,k2• for k1 6= k2, we get

P (Xt,k1 = s1, . . . , Xt,kg = sg)

=
∑

z1,...,zg∈{0,1}K(p+q+1),

‖z1‖1=···=‖zg‖1=1

P (Xt,k1 = s1, . . . , Xt,kg = sg|Pt,k1• = z1, . . . , Pt,kg• = zg)

· P (Pt,k1• = z1, . . . , Pt,kg• = zg)

=
∑

z1,...,zg∈{0,1}K(p+q+1),

‖z1‖1=···=‖zg‖1=1

P (Pt,k1•Wt−1 = s1, . . . , Pt,kg•Wt−1 = sg|Pt,k1• = z1, . . . , Pt,kg• = zg)

· P (Pt,k1• = z1, . . . , Pt,kg• = zg)

=
∑

z1,...,zg∈{0,1}K(p+q+1),

‖z1‖1=···=‖zg‖1=1

P (z1Wt−1 = s1, . . . , zgWt−1 = sg)

(
g∏
r=1

P (Pt,kr• = zr)

)
.

�

4.7.5. Proof of Lemma 4.11

The proof follows directly from Lemma 4.10 for g = 1 and equation (4.25). �

4.7.6. Proof of Example 4.12

For the NDVAR(p) case, decomposing both sums in (4.26) according to (4.24) leads
to 2g = 4 terms:
Case 1:

∑Kp
j=1 zrj = 1 for r = 1, 2

∑
z1,z2∈{0,1}K(p+1),∑Kp
j=1 zrj=1, r=1,2

P (z1Wt−1 = s1, z2Wt−1 = s2)

(
2∏
r=1

P (Pt,kr• = zr)

)

=

p∑
i1,i2=1

K∑
l1,l2=1

α
(i1)
k1l1

α
(i2)
k2l2

P (Xt−i1,l1 = s1, Xt−i2,l2 = s2)
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Case 2:
∑Kp

j=1 z1j = 1 and
∑K(p+1)

j=Kp+1 z2j = 1:

∑
z1,z2∈{0,1}K(p+1),∑Kp

j=1 z1j=1,
∑K(p+1)
j=Kp z2j=1

P (z1Wt−1 = s1, z2Wt−1 = s2)

(
2∏
r=1

P (Pt,kr• = zr)

)

=

p∑
i1=1

K∑
l1=1

α
(i1)
k1l1

β
(0)
k2k2

P (Xt−i1,l1 = s1, et,k2 = s2)

=

p∑
i1=1

K∑
l1=1

α
(i1)
k1l1

β
(0)
k2k2

P (Xt−i1,l1 = s1)P (et,k2 = s2),

as Xt−i1 and et are independence for all i1 ≥ 1.

Case 3:
∑K(p+1)

j=Kp z1j = 1 and
∑Kp

j=1 z2j = 1:

∑
z1,z2∈{0,1}K(p+1),∑K(p+1)

j=Kp+1 z1j=1,
∑Kp
j=1 z2j=1

P (z1Wt−1 = s1, z2Wt−1 = s2)

(
2∏
r=1

P (Pt,kr• = zr)

)

=

p∑
i2=1

K∑
l2=1

β
(0)
k1k1

α
(i2)
k2l2

P (et,k1 = s1, Xt−i2,l2 = s2)

=

p∑
i2=1

K∑
l2=1

β
(0)
k1k1

α
(i2)
k2l2

P (et,k1 = s1)P (Xt−i2,l2 = s2)

as Xt−i1 and et are independence for all i1 ≥ 1.

Case 4:
∑K(p+1)

j=Kp+1 zrj = 1 for r = 1, 2:

∑
z1,z2∈{0,1}K(p+1),∑K(p+1)
j=Kp zrj=1,r=1,2

P (z1Wt−1 = s1, z2Wt−1 = s2)

(
2∏
r=1

P (Pt,kr• = zr)

)

= β
(0)
k1k1

β
(0)
k2k2

P (et,k1 = s1, et,k2 = s2)

Finally, setting p = 1 above leads to the formula in Example 4.12. �

4.8. Proof of results of Section 4.3.5

For proving the mixing property of NDVARMA processes, we first show the positive-
ness of their transition probability for afterwards concluding mixing from the conse-
quently ergodicity.
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4.8.1. Proof of Lemma 4.13

The proof follows the proof of Weiß (2009a) Lemma 11.2.3.1. for the univariate
NDARMA process. We split the proof of Lemma 4.13 considering NDVMA(q), ND-
VAR(p) and NDVARMA(p,q) processes separately.

Remark 4.15 (Transition probability for NDVARMA(p,q) model )
For some vectors s0, s1 ∈ VK(p+q+1) the transition probability is given by

ps0|s1 (p+ q + 1) = P
(
Zt = s0|Zt−(p+q+1) = s1

)
=

∑
smax{p,1},...,sp+q

rq ,...,rq+p

P
(
Xt = s0, . . . , Xt−p+1 = sp−1, et = r0, . . . , et−q+1 = rq−1|

Xt−(p+q+1) = sp+q+1, . . . , et−(p+q+1) = rp+q+1, . . .
)

=
∑

smax{p,1},...,sp+q
rq ,...,rq+p

p+q∏
n=0

(
P (Xt−n = sn|Xt−n−1 = sn+1, . . . , et−n = rn, . . .)

· P (et−n = rn|Xt−n−1 = sn+1, . . . , et−n−1 = rn+1, . . .)
)

=
∑

smax{p,1},...,sp+q
rq ,...,rq+p

p+q∏
n=0

(
pe(rn)

K∏
k=1

[
p∑
i=1

K∑
l=1

α
(i)
kl δsn,ksi+n,l

+ β
(0)
kk δsn,krn,k +

q∑
j=1

K∑
l=1

β
(j)
kl δsn,krn+j,l

])
Since the innovation terms are independent of the past, the probability of the innovation
taking the values rn can be defined by P (et−n = rn) = pe(rn).

The first Lemma consider the NDVMA(q) process and its transition probability for
the Markov chain representation. First, note, that the case of NDVMA(0) is trivial

and follows directly by Xt = B
(0)
t et and the innovation process has strict positive

probability of P (et,k = r) > 0 for r ∈ V and k = 1, . . . ,K.

Lemma 4.16
Let (Zt, t ∈ Z) be the Markov representation of a stationary NDVMA(q) process with
non-reducible state space and q ≥ 1. For some n := q + 1 the transition probability
ps|r (n) := P (Zt = s|Zt−n = r) > 0 for every s, r ∈ VK(q+1)

Proof.
Since P (et,k = r) > 0 for every k ∈ {1, . . . ,K} and r ∈ V, the vector including all
innovation terms can reach every state in VK . Furthermore, NDVMA processes exclu-
sively depend on the innovation terms and have by definition of the innovation process
positive probability to take every state in VK . It follows directly from the Markov
chain representation Zt := (X ′t, e

′
t, . . . , e

′
t−q+1)

′ that at least q + 1 steps, depending on

the parameter matrices B(j), are needed to get a strictly positive transition probability
following directly from P (et,k = r) > 0 for every k ∈ {1, . . . ,K} and r ∈ V.

The next Lemma states the primitivity of an NDVAR(p) process with corresponding
Markov Chain representation. The proof is related to Jentsch and Reichmann (2020)
[Lemma C.1] with state space VK(p+1).
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4.8. Proof of results of Section 4.3.5

Lemma 4.17
Let (Zt, t ∈ Z) be the Markov representation of a stationary NDVAR(p) process and p ≥
1. For n := max{p,K ′}+1 the transition probability fulfills ps|r (n) := P (Zt = s|Zt−n = r) >

0 for every s, r ∈ VK(p+1), where K ′ is the number of rows k ∈ {1, . . . ,K} with∑K
l=1

∑p
i=1 |α

(i)
kl | = 1.

Proof.

Define F :=
{
k ∈ {1, . . . ,K}

∣∣∣β(0)kk = 0
}

.

With K ′ = |F| the cardinality of F and

s̃0 :=
(
s′0; s

′
1, . . . , s

′
p−1, r

′
0

)′
s̃1 :=

(
s′max{p,K′}+1; . . . , s

′
p+max{p,K′}, r

′
max{p,K′}+1

)′
it follows for the transition probability with max{p,K ′}+ 1 steps

P
(
Zt = s̃0|Zt−max{p,K′}−1 = s̃1

)
=

∑
sp,...,smax{p,K′},
r0,...,rmax{p,K′}

[
max{p,K′}∏

n=0

pe(rn)
∏
k∈F

(
K∑
l=1

p∑
i=1

α
(i)
kl δsn,ksn+i,l

)
︸ ︷︷ ︸

i)∏
k∈Fc

(
K∑
l=1

[ p∑
i=1

α
(i)
kl δsn,ksn+i,l + βkkδsn,krn,k

])
︸ ︷︷ ︸

ii)

]

Considering the product ii) and summing over all states of rn,k then ∀k ∈ Fc

∃rn,k = sn,k

and so for every n = 0, . . . ,max{p,K ′} there exists a positive summand and therefore
for every dimension k ∈ Fc the product ii) is positive.

For the first case i) it holds, since the time series (Xt, t ∈ Z) is stationary and
with Remark 4.5, we know that for every entry of Xt there exists a directed graph
from minimal one innovation to the resulting Xt. So the probability, that minimal
one innovation term enters Xt,k for k ∈ F is strictly positive as consequence of the
stationarity assumption.

And ∀n = 0, . . . ,max{p,K ′} and ∀k ∈ F there exists a tuple of (k, ik, lk) with
ik ∈ {1, . . . , p} and lk ∈ {1, . . . ,K} such that

∃ sn,k = sn+ik,lk .

As the process (Xt, t ∈ Z) follows a NDVAR(p) model, the new Xt,k value is driven
by a lagged value Xt−n,l and therefore

max{p,K′}∏
n=0

∏
k∈F

(
K∑
l=1

p∑
i=1

α
(i)
kl δsn,ksn+i,l

)
> 0. (4.35)

Overall as both parts i) and ii) yield in a positive product, it follows that

P
(
Zt = s̃0|Zt−max{p,K′}−1 = s̃1

)
> 0.
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We can combine both statements to prove Lemma 4.13.

Proof of Lemma 4.13 .

First we define the two sets F :=
{
k, l ∈ {1, . . . ,K}, j = 0, . . . , q|β(j)kl = 0

}
and Fc.

For this, it is

P
(
Zt = s0|Zt−max{p+q,K′}−1 = s1

)
=

∑
smax{1,p},...,smax{p+q,K′},

rq ,...,rmax{p+q,K′}

max{p+q,K′}∏
n=0

pe(rn)
∏
k∈F

(
K∑
l=1

[ p∑
i=1

α
(i)
kl δsn,ksn+i,l

])

∏
k∈Fc

(
K∑
l=1

[ p∑
i=1

α
(i)
kl δsn,ksn+i,l + β

(0)
kk δsn,krn,k +

q∑
j=1

β
(j)
kl δsn,krn+j,l

])

The two cases k ∈ F and k ∈ Fc are now considered separately.
k ∈ F :

The argumentation for this case is similar to the proof in Lemma 4.17 for part i).
k ∈ Fc: As the process (Xt, t ∈ Z) has an irreducible state space, there always exists
for k1, k2 ∈ Fc and k1 6= k2 two tuple of indices (dki , lki) , i = 1, 2 such that rn+dk1 ,lk1 6=
rn+dk2 ,lk2 .

So we can find a set of indices (k, dk, lk) to chose the entries of the summands
smax{q,1}, . . . , smax{p+q,K′} and rq, . . . , rmax{p+q,K′}. The following cases have to be
considered:

1. for n = p, . . . ,max{p+ q,K ′}:

sn,k = rn+jk,lk

2. n+ jk ≥ q :

rn+jk,lk := sn,k

If the second case holds ∀k ∈ Fc and ∀r then the proof is done as for every k = 1, . . . ,K
a positive summand can be found for all n = 0, . . . ,max{p+q,K ′} and so the transition
probability ps|r (max{p+ q,K ′}+ 1) > 0.

If ∃k ∈ Fc with n + jk < q for n ∈ {0, . . . ,max{p + q,K ′}} and the first case
doesn’t occur (so n < p) then there exists again a path within the rows, where just a

predecessor is taken. For these rows, we know that β
(jk)
klk

= 0, jk ∈ {0, . . . , q − 1} and

α
(ik)
klk

= 0, ik ∈ {1, . . . , p − q} and so since no vector entry is free to chose the entry
within the row is chosen from a previous value. Thus, we get a positive transition
probability.

4.8.2. Proof of Theorem 4.14

Proof.
The proof follows the same arguments as proof Theorem 3.15 given in 3.8.2 for the
state space VK = {0, 1, . . . ,m}.
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5. Conclusion and Outlook

In this thesis, we introduced three time series models for categorical and especially
binary data as extensions to the so far known models. The new models have a nice
interpretable form due to their ARMA structure and are still parsimonious in the
number of parameters. The latter is a main issue for multivariate time series, where
the curse of dimensionality has to be considered. The special case of binary data, and
consequently only two categories, are discussed in Chapters 2 and 3. The introduced
generalized binary ARMA and generalized binary vector ARMA processes include the
extension to also allow negative parameters, indicating a systematic switching to the
opposite state and thus they can additional handle also negative dependence structure.

In a simulation study in Chapter 2.3.2, we compared the estimation of univariate
gbAR processes with the well-known Markov models by using the goodness of pre-
diction via the transition probability. Interestingly, the gbAR model performs better
for small sample sizes even when the underlying process is Markovian. Additionally,
the gbAR(2) model can capture nearly the same amount of dependence structure as
a Markov process of second order. However, this observation is only based on the
processes used in the simulation study. An open question is, whether a theoretical
investigation can also confirm the two latter findings. It might be interesting to inves-
tigate how much more dependence structure a Markov process can model compared
to gbARMA processes in general.

The multivariate extension of the gbARMA and the NDARMA model to the gb-
VARMA and new discrete vector ARMA model provides the possibility to include
cross-sectional dependence structures, however the multivariate extension leads to iden-
tification issues which we have to keep in mind. For this purpose, several problems e.g.
the diagonal structure of the parameter matrix for the innovation processes of lag zero,
as well as the identification of the innovation distribution are discussed. Additionally,
the concept of processes with non-reducible state space is introduced.

Both multivariate models make use of a row-wise independent selection of the multi-
nomial distributed random vectors, such that only one entry of the vector valued pro-
cesses is chosen, in contrast to the GDARMA model of Möller and Weiß (2020) where
the new value is chosen vector-wise. These approaches form two opposing methods,
but nevertheless it is conceivable to combine both approaches as a further extension.

Hence, the selection mechanism of the models is one point for possible further ex-
tensions, we shortly discussed in Remark 3.11. It is also imaginable that the choice
of one dimension does not always depend on the choice of the other dimension, but
its dependence can be modeled by a random variable, selecting either a perfect de-
pendence or a independent chosen random vector by the multinomial selection. For
instance, let z ∼ Bernoulli(1, η) and k1, k2 ∈ {1, . . . ,K}, the choice of the new state
of Xt in dimension k1 follows

Pt,k1• = zPt,k2• + (1− z)Pt,k1• t ∈ Z.

Whenever the new random variable z is equal to one, the multinomial selection mech-
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5. Conclusion and Outlook

anism in dimension k1 takes the same selection as in dimension k2, whereas with
probability (1− η) a non depending selection is used in dimension k1.

Some different options are conceivable here, which change the model to such an
extent that the stochastic properties might change, as e.g. the transition probability
and the stochastic properties depending on it.

One potential data with binary and time dependent structure are networks that
evolve over time. Applying our gbVARMA model to such data, two further extensions
are thinkable to describe the additional structure of network data. For instance in
friendship networks it is more likely to be in contact with the friends of your friends,
such that an edge is more likely to appear to the neighbor nodes of distance two.
Whereas the actual gbVARMA model chooses a value from either all edges or no edges,
the feature of having more likely an edge to the friends of my friends is not totally
included. We might think of calculating first the neighborhood for each node and then
include the additional information into the model to emphasize the constitution of
the neighbors in a possible forecast for the next step. Furthermore, as the number of
nodes K can be large, a sparsity within the parameter matrices is possible and this
characteristic is not captured by the classical Yule-Walker estimators. An investigation
on the goodness of a sparse estimator, as e.g. the Lasso technique, has to be performed.
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A. Appendix

A.1. A second representation of the Yule-Walker equation of
lag zero

An additional representation of the Yule-Walker equation for gbVAR and also NDVAR
processes of order p ∈ N is discussed in the following Section. In contrast to the given
representation in Theorem 3.7, we follow Lütkepohl (2005), by first vectorizing the
autocovariance formula for a direct calculation of the expectation terms. Furthermore,
the proof can be stated independent of the state space VK , such that the calculations
hold for gbVAR and NDVAR processes without adjustments.

The vectorize operator vec stacks the entries of a matrix column-wise and has the
spin-off that a product of matrices can be rearranged involving a Kronecker products
denoted by ⊗. Besides, in our case we have to include also Hadamard products denoted
by ◦ due to the multinomial selection mechanism and the product of dependent random
variables. For this purpose, we make use of three auxiliary matrices ψ,ψ1 and ψ2,
which are suitable to deal with expectation of the matrices having entries of the form

a
(+,i)
k1l1,t

a
(+,i)
k2l2,t

, a
(−,i)
k1l1,t

a
(−,i)
k2l2,t

and a
(+,i)
k1l1,t

a
(−,i)
k2l2,t

for k, l = 1, . . . ,K and i = 1, . . . , p, also
discussed in Lemma 3.23. Let

ψ =



01×K2

1K×K2

01×K2

1K×K2

...
01×K2


ψ1 =



u′1 u′2 . . . u′K
0K×K 0K×K . . . 0K×K
u′1 u′2 . . . u′K

0K×K 0K×K . . . 0K×K
...

u′1 u′2 . . . u′K


ψ2 =



−11×K
0K×K2

−11×K
0K×K2

...
−11×K


(A.1)

with ui is the i-th unit vector.

Theorem A.1 (Yule - Walker equation of lag h = 0)
Let ψ,ψ1, ψ2 be K2 ×K2 auxiliary matrices defined in (A.1). Let (Xt, t ∈ Z) be a K-
dimensional gbVAR(p) process with autocovariance ΓX (0).(
IK2×K2 −

p∑
i=1

[
ψ ◦ A(i) ⊗A(i) + ψ1 ◦ A(i)

|·| ⊗ 1K×K
])
vec (ΓX (0)) =

p∑
i1,i2=1,
i1 6=i2

[
ψ ◦ A(i2) ⊗A(i1)

]
vec (ΓX (i2 − i1)) +

[
ψ ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec (Σe) +

( p∑
i1,i2=1

[
ψ2 ◦ A(i2) ⊗A(i1)

]
+

p∑
i=1

[
ψ1 ◦ A(i)

|·| ⊗ 1K×K
])
vec
(
µXµ

′
X

)
+

( p∑
i1,i2=1

[
ψ2 ◦ A(−,i2) ⊗A(i1)

]
+

p∑
i=1

[
−ψ1 ◦ A(−,i) ⊗ 1K×K

])
vec
(
µX1

′)+
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p∑
i=1

[
ψ2 ◦ B ⊗ A(i)

]
vec
(
µXµ

′
e

)
+

( p∑
i1,i2=1

[
ψ2 ◦ A(i2) ⊗A(−,i1)]+

p∑
i=1

[
−ψ1 ◦ A(−,i) ⊗ 1K×K

)
vec
(
1µ′X

)
+

( p∑
i1,i2=1

[
ψ2 ◦ A(−,i2) ⊗A(−,i1)]+

p∑
i=1

[
ψ1 ◦ A(−,i) ⊗ 1K×K

])
vec
(
11
′)+

p∑
i=1

[
ψ2 ◦ B ⊗ A(−,i)]vec(1µ′e)+

p∑
i=1

[
ψ2 ◦ A(i) ⊗ B

]
vec
(
µeµ

′
X

)
+

p∑
i=1

[
ψ2 ◦ A(−,i) ⊗ B

]
vec
(
µe1

′)+
[
ψ2 ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec
(
µeµ

′
e

)
with µX := E [Xt] and µe := E [et] and Σe = Cov(et, et).

The above formula can be also applied for NDVAR(p) processes by setting A(·,−)
t :=

0K×K and take A(·)
|·| = A(·).

Proof.

We fragment the autocovariance equation in the same way as given in proof in Chapter
3.7.5 but by considering first its expectation.

ΓX
(
0
)

= E
[
XtX

′
t

]
− E

[
Xt

]
E
[
X ′t

]
Initially, we calculate the first part of the right hand side and afterwards combining

it with the product of the expectation vectors µX = E(Xt).

E
[
XtX

′
t

]
= E

[
p∑

i1,i2=1

A
(+,i1)
t Xt−i1X

′
t−i2A

(+,i2)′
t︸ ︷︷ ︸

I1

+

p∑
i1,i2=1

A
(+,i1)
t Xt−i11

′A
(−,i2)′
t︸ ︷︷ ︸

I2

(A.2)

+

p∑
i=1

A
(+,i)
t Xt−ie

′
tB
′
t︸ ︷︷ ︸

I3

+

p∑
i1,i2=1

A
(−,i1)
t 1Xt−i2A

(+,i2)′
t︸ ︷︷ ︸

I4

+

p∑
i1,i2=1

A
(−,i1)
t 11

′A
(−,i2)′
t︸ ︷︷ ︸

I5

+

p∑
i=1

A
(−,i)
t 1e′tB

′
t︸ ︷︷ ︸

I6

+

p∑
i=1

BtetX
′
t−iA

(+,i)′
t︸ ︷︷ ︸

I7

+

p∑
i=1

Btet1
′A

(−,i)′
t︸ ︷︷ ︸

I8

+Btete
′
tB
′
t︸ ︷︷ ︸

I9

]

Applying now the vectorization operator to each summand and make use of

vec (ABC) = C ′ ⊗A vec (B) .

we can examine each term In, n = 1, . . . , 9 individually.

Additionally, we distinguish between terms with the same order index i1 = i2 and
i1 6= i2 for i1, i2 = 1, . . . , p.
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vec
(
I1
)

=

p∑
i=1

E
[
vec
(
A

(+,i)
t Xt−iX

′
t−iA

(+,i)′
t

)]
+

p∑
i1,i2=1,
i1 6=i2

E
[
vec
(
A

(+,i1)
t Xt−i1X

′
t−i2A

(+,i2)′
t

)]

=

p∑
i=1

E
[
A

(+,i)
t ⊗A(+,i)

t vec
(
Xt−iX

′
t−i
)]

+

p∑
i1,i2=1,
i1 6=i2

E
[
A

(+,i1)
t ⊗A(+,i2)

t vec
(
Xt−i1X

′
t−i2
)]

=

p∑
i=1

E
[
A

(+,i)
t ⊗A(+,i)

t

]
E
[
vec
(
Xt−iX

′
t−i
)]

+

p∑
i1,i2=1,
i1 6=i2

E
[
A

(+,i1)
t ⊗A(+,i2)

t

]
E
[
vec
(
Xt−i1X

′
t−i2
)]

The evaluation of the Kronecker product of the random matrices A
(+,·)
t , we utilize

the considerations of Lemma 3.23. This results in the following matrices ψ and ψ1,
which selects the corresponding matrix entries, either dependent, when both entries
are contained in the same dimension Pt,k• or independent, corresponding to different
dimensions Pt,k1• and Pt,k2•. The first matrix ψ selects the independent entries and
the dependent entries are set to zero. This yields into the following expectation for
k1 6= k2

E
[
ψ ◦A(+,i1)

t ⊗A(+,i2)
t

]
= ψ ◦ E

[
A

(+,i1)
t

]
⊗ E

[
A

(+,i2)
t

]
= ψ ◦ A(i1) ⊗A(i2).

In rows with dependent entries, we have to keep in mind, that the entries are together
chosen by the multinomial selection mechanism. The Hadamard product with the
defined matrix ψ1 collects the dependent entries within the Kronecker product of the
modified random matrices and we apply Lemma 3.23, such that

E[a
(+,i1)
t,kl1

a
(+,i2)
t,kl2

] =

{
E(a

(+,i)
t,kl1

) for l1 = l2, i1 = i2

0 otherwise

Overall it follows with the same argumentation for I4, I5 and I9.

E
[
A

(+,i)
t ⊗A(+,i)

t

]
= ψ ◦ A(i) ⊗A(i) + ψ1 ◦ A(i)

|·| ⊗ 1K×K (A.3)

E
[
A

(−,i)
t ⊗A(+,i)

t

]
= ψ ◦ A(−,i) ⊗A(i) + ψ1 ◦ (−A(−,i))⊗ 1K×K (A.4)

E
[
A

(−,i)
t ⊗A(−,i)

t

]
= ψ ◦ A(−,i) ⊗A(−,i) + ψ1 ◦ A(−,i) ⊗ 1K×K (A.5)

E
[
Bt ⊗Bt

]
= ψ ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K . (A.6)

Therefore the above consideration of the entries we get for the evaluation of I1

E (I1) =

p∑
i=1

[
ψ ◦ A(i) ⊗A(i) + ψ1 ◦ A(i)

|·| ⊗ 1K×K
]
vec
(
E
[
Xt−iX

′
t−i
])

+

p∑
i1,i2=1,
i1 6=i2

[
ψ ◦ A(i2) ⊗A(i1)

]
vec
(
E
[
Xt−i1X

′
t−i2
])
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vec(I2) =

p∑
i1,i2=1,
i1 6=i2

[
ψ ◦ A(−,i2) ⊗A(i1)

]
vec
(
E
[
Xt−i11

′])

+

p∑
i=1

[
ψ ◦ A(−,i) ⊗A(i) − ψ1 ◦ A(−,i) ⊗ 1K×K

]
vec
(
E
[
Xt−i1

′])

vec (I3) =

p∑
i=1

ψ ◦ B ⊗ A(i)vec
[
E
(
Xt−i

)
E
(
e′t
)]

=

p∑
i=1

ψ ◦ B ⊗ A(i)vec
[
µXµ

′
e

]
The next-to-last equation follows from the independence of the innovation term et and
the (Xs, s < t).

By evaluating the next term we have to distinguish again between the summands
with the same index and the others.

vec
(
I4
)

=

p∑
i1,i2=1,
i1 6=i2

[
ψ ◦ A(i2) ⊗A(−,i1)]vec(1µ′X)

+

p∑
i=1

[
ψ ◦ A(i) ⊗A(−,i) − ψ1 ◦ A(−,i) ⊗ 1K×K

]
vec
(
1µ′X

)
vec
(
I5
)

=

p∑
i1,i2=1,
i1 6=i2

ψ ◦ A(−,i2) ⊗A(−,i1)vec
(
11
′)

+

p∑
i=1

[
ψ ◦ A(−,i) ⊗A(−,i) + ψ1 ◦ A(−,i) ⊗ 1K×K

]
vec
(
11
′)

vec
(
I6
)

=

p∑
i=1

[
ψ ◦ B ⊗ A(−,i)]vec(1µ′e)

vec
(
I7
)

=

p∑
i=1

[
ψ ◦ A(i) ⊗ B

]
vec
(
µeµ

′
X

)
vec
(
I8
)

=

p∑
i=1

[
ψ ◦ A(−,i) ⊗ B

]
vec
(
µe1

′)
vec
(
I9
)

=
[
ψ ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec
(
E
[
ete
′
t

])
Finally, the multiplied mean vectors are first vectorized and then substracted from the
above evaluated equations.

vec
(
µXµ

′
X

)
=

p∑
i1,i2=1

[
A(i2) ⊗A(i1)

]
vec
(
µXµ

′
X

)
+

p∑
i1,i2=1

[
A(−,i2) ⊗A(i1)

]
vec
(
µX1

′)
(A.7)

+

p∑
i=1

[
B ⊗A(i)

]
vec
(
µXµ

′
e

)
+

p∑
i1,i2=1

[
A(i2) ⊗A(−,i1)

]
vec
(
1µ′X

)
+

p∑
i1,i2=1

[
A(−,i2) ⊗A(−,i1)

]
vec
(
11
′)+

p∑
i=1

[
B ⊗A(−,i)

]
vec
(
1µ′e

)
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+

p∑
i=1

[
A(i) ⊗ B

]
vec
(
µeµ

′
X

)
+

p∑
i=1

[
A(−,i) ⊗ B

]
vec
(
µe1

′)+ [B ⊗ B] vec
(
µeµ

′
e

)
We additional use the following decompositions for further calculations.

E
[
Xt−iX

′
t−i
]

= ΓX(0) + E
[
Xt−i

]
E
[
X ′t−i

]
E
[
Xt−i1X

′
t−i2
]

= ΓX(i2 − i1) + E
[
Xt−i1

]
E
[
X ′t−i2

]
E
[
ete
′
t

]
= Σe + E

[
et
]
E
[
e′t
]
.

Combining now these decompositions with (A.2) and substracting (A.7), the difference
between the two Kronecker products lead to a sparse matrix. Especially the rows of
independent entries within (A.3) to (A.6) eliminates to zero, more precisely, only the
sums multiplied with ψ1 remain. For this, we need another auxiliary matrix, which
picks up the remaining entries of the Kronecker product

ψ2 :=



−1 −1 . . . −1
0 0 . . . 0
...

...
...

0 0 . . . 0
−1 −1 . . . −1

...
−1 −1 . . . −1


with dimension K2 ×K2.

The rows of zero entries have dimension K × K2 and therefore a −1 appears in a
dimension corresponding to a diagonal element of the autocovariance matrix ΓX(0).
By using again the Hadamard product it follows

vec (ΓX (0)) =

p∑
i=1

[
ψ ◦ A(i) ⊗A(l) + ψ1 ◦ A(i)

|·| ⊗ 1K×K
]
vec
(
ΓX (0)

)
+

p∑
i1,i2=1,
i1 6=i2

[
ψ ◦ A(i2) ⊗A(i1)

]
vec
(

ΓX (i2 − i1)
)

+

(
p∑
i=1

[
ψ1 ◦ A(i)

|·| ⊗ 1K×K + ψ2 ◦ A(i) ⊗A(i)
]

+

p∑
i1,i2=1,
i1 6=i2

[
ψ2 ◦ A(i2) ⊗A(i1)

])
vec
(
µXµ

′
X

)

+

(
p∑

i1,i2=1,
i1 6=i2

[
ψ2 ◦ A(−,i2) ⊗A(i1)

]
+

p∑
i=1

[
−ψ1 ◦ A(−,i) ⊗ 1K×K + ψ2 ◦ A(−,i) ⊗A(i)

])
vec
(
µX1

′)

+

(
p∑
i=1

ψ2 ◦ B ⊗ A(i)

)
vec
(
µXµ

′
e

)
+

(
p∑

i1,i2=1,
i1 6=i2

[
ψ2 ◦ A(i1) ⊗A(−,i2)]+

p∑
i=1

[
−ψ1 ◦ A(−,i) ⊗ 1K×K + ψ2 ◦ A(i) ⊗A(−,i)])vec(1µ′X)

+

(
p∑

i1,i2=1,
i1 6=i2

ψ2 ◦ A(−,i2) ⊗A(−,i1) +

p∑
i=1

[
ψ1 ◦ A(−,i)

1K×K + ψ2 ◦ A(−,i) ⊗A(−,i)])vec(11′)
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+
( p∑
i=1

ψ2 ◦ B ⊗ A(−,i)
)
vec
(
1µ′e

)
+
( p∑
i=1

ψ2 ◦ A(i) ⊗ B
)
vec
(
µeµ

′
X

)
+
( p∑
i=1

ψ2 ◦ A(−,i) ⊗ B
)
vec
(
µe1

′)+
[
ψ2 ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec
(
µeµ

′
e

)
+
[
ψ ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec (Σe)

Rearranging the sums of different indices i1 6= i2 and expressions we end up with the
autocovariance of lag zero.

(
IK2×K2 −

p∑
i=1

[
ψ ◦ A(i) ⊗A(i) + ψ1 ◦ A(i)

|·| ⊗ 1K×K
])
vec (ΓX (0)) =

p∑
i1,i2=1,
i1 6=i2

[
ψ ◦ A(i2) ⊗A(i1)

]
vec (ΓX (i2 − i1)) +

[
ψ ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec (Σe)

+
( p∑
i1,i2=1

[
ψ2 ◦ A(i2) ⊗A(i1)

]
+

p∑
i=1

[
ψ1 ◦ A(i)

|·| ⊗ 1K×K
])
vec
(
µXµ

′
X

)
+
( p∑
i1,i2=1

[
ψ2 ◦ A(−,i2) ⊗A(i1)

]
+

p∑
i=1

[
−ψ1 ◦ A(−,i) ⊗ 1K×K

])
vec
(
µX1

′)
+

p∑
i=1

[
ψ2 ◦ B ⊗ A(i)

]
vec
(
µXµ

′
e

)
+
( p∑
i1,i2=1

[
ψ2 ◦ A(i2) ⊗A(−,i1)]+

p∑
i=1

[
−ψ1 ◦ A(−,i) ⊗ 1K×K

)
vec
(
1µ′X

)
+
( p∑
i1,i2=1

[
ψ2 ◦ A(−,i2) ⊗A(−,i1)]+

p∑
i=1

[
ψ1 ◦ A(−,i) ⊗ 1K×K

])
vec
(
11
′)

+

p∑
i=1

[
ψ2 ◦ B ⊗ A(−,i)]vec(1µ′e)+

p∑
i=1

[
ψ2 ◦ A(i) ⊗ B

]
vec
(
µeµ

′
X

)
+

p∑
i=1

[
ψ2 ◦ A(−,i) ⊗ B

]
vec
(
µe1

′)+
[
ψ2 ◦ B ⊗ B + ψ1 ◦ B ⊗ 1K×K

]
vec
(
µeµ

′
e

)

Even the formula has no matrix form, the auxiliary matrices ψ, ψ1 and ψ2 indicate,
which parts have influence in the diagonal entries of the variance matrix Σe or not.
All sums with Hadamard product ψ influence the off- diagonal entries and therefore
the cross - dependence, whereas ψ1 and ψ2 just have influence on the diagonal entries.

Besides, the above representation of Theorem A.1 and Theorem 3.7 for gbVAR(p)
processes can be transferred into each other by utilizing the following: When re-
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vectorizing the above sums, it is

(ψ ◦ A(i2) ⊗A(i1))vec(µXµ
′
X) = vec(1K×K − IK) ◦

[
(A(i2) ⊗A(i1))vec(µXµ

′
X)
]

(ψ1 ◦ A(i) ⊗ 1K×K)vec(ΓX(0)) = vec(IK) ◦
[
(A(i) ⊗ 1K×K)vec(ΓX(0))

]
(ψ2 ◦ A(i2) ⊗A(i1))vec(µXµ

′
X) = −vec(IK) ◦

[
(A(i2) ⊗A(i1))vec(muXµ

′
X)
]

and accordingly for the other terms. Additional, by calculation rules for the Kronecker
and Hadamard product, it is

vec (D ◦ (ABC)) = vec(D) ◦
[
C ′ ⊗A

]
vec(B)

for square matrices A,B,C,D. This in turn gives again the matrix representation.
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