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1 Introduction 

 

“The survey method has strengths and deficits that are reflections of the society that it measures; 

the very act of speaking candidly to a stranger is governed by norms that can and do change. 

Survey research has always and must always adapt to those changes.” 

- Robert Groves (2011, p. 870) 

 

Many areas, such as the government, market research, opinion research, social science, 

etc., and professions rely on the survey method to generate insights for their respective 

fields. For instance, governments use establishment surveys to monitor the economy, help 

managers make decisions and enable politicians to craft informed policies (Jones et al. 

2013). 

According to Robert Groves (2011), survey research is currently in its third era (1990 – 

present) since the field was established in the 1930s. The third era is characterized by 

technological advancements that can be grouped into two developments worth mention-

ing (see Groves 2011, p. 865). First, traditional offline survey modes such as face-to-face 

and telephone surveys have been mostly replaced by much cheaper web surveys (Call-

egaro and Yang 2018). Second, there is an increasing availability of organic data (also 

known as big data, sensor data, digital trace data, and social media data) that are data 

collected for a purpose other than research (e.g., Salganik 2017, Baker 2017). Both de-

velopments were long seen as competitors, with the survey profession fearing being re-

placed by organic data solutions (Callegaro and Yang 2018, Couper 2017). However, 

surveys are not being replaced but rather have shifted to web-based administration, and 

researchers worldwide are starting to evaluate the possibilities of combining so-called 

designed and organic data (Callegaro and Yang 2018). 
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As a member of the statistical methods department (KEM) at the Institute for Employ-

ment Research (IAB) and the Collaborative Research Center SFB 884 (SFB), my career 

as a survey methodologist started in 2015 with improving web data collection in estab-

lishment surveys and proceeded with novel approaches to mobile phone data collection, 

including mobile phone sensor data. Over the last decade, novel data collection ap-

proaches have increased in number due to the increased use of web surveys, the possibil-

ity of collecting a large variety of organic data, the combination of surveys and organic 

data and the overall development of information and communication technologies (ICTs). 

Past learnings of the survey profession are helpful to developing new design solutions for 

those novel data collection methods. However, the effects of new data collection design 

possibilities have yet to be explored. Understanding how design decisions affect the data 

generation process is crucial for assessing the validity and reliability of measurements 

and the explanatory power when inferring from a sample to a population (Kreuter and 

Peng 2014). Using data from three different projects, my thesis contains four studies fo-

cusing on the effects of novel designs on outcomes related to response burden and data 

quality. 

The first study focuses on the difference in the response burden between the paper and 

web modes in an establishment survey. The second study evaluates how different admin-

istrations of a text message survey affect the response rates, nonresponse bias, substantive 

responses and the propensity to participate in a follow-up survey. The third study evalu-

ates the effects of different incentive strategies on installation rates, activating data col-

lection functions, withdrawing data collection consent and retention in a smartphone data 

collection project. The last study evaluates a novel technique called geofencing, that is, 

using geolocation data to trigger survey invitations over smartphones. 
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In the following, I briefly describe recent developments in ICT that led to a rethinking of 

how to conduct survey data collection similar to the telephone mode replacing personal 

interviews in the 1970s (Dillmann et al. 2010). To accomplish this, I use the web mode 

as the starting point. Furthermore, I provide a brief description of each project related to 

the submitted thesis papers. 

In the beginning of the third era, as internet penetration was low, web surveys were used 

to complement other modes (Groves 2011). With increasing internet penetration rates 

worldwide, the web mode has become increasingly more reliable and works increasingly 

more as a standalone mode in many use cases, making web surveys one of the main data 

collection tools for market and social research (see, e.g., Keusch 2015). One reason for 

the web mode’s increasing popularity may be the rise of do-it-yourself web survey tools 

(e.g., Survey Monkey or LimeSurvey) and in-house survey tools (see Callegaro and Yang 

2018). Those web survey tools have high levels of usability, which makes them conven-

ient for individuals to craft their own web survey without having a background in pro-

gramming or survey methodology. 

As web surveys enable timely and cost-effective data collection, web surveys have de-

veloped into one of the most important tools for professions requiring fast and cheap data, 

e.g., journalists and politicians. However, the survey market is full of statistics from web 

surveys using a nonprobability approach and ignoring lessons from the first era of survey 

research that relied on probability samples (Groves 2011). Survey professionals using the 

Total Survey Error (TSE, see Groves et al. 2011) framework as the main school of thought 

or guiding method to evaluate the quality of surveys or data in general are challenged in 

competing with cheap and timely nonprobability samples by using well-maintained sam-

ple frames to invite individuals based on a probability sample. A good example that over-

comes this challenge is the German internet panel (GIP), which uses a probability sample 
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based on the general population in Germany and recruits individuals face-to-face to min-

imize the nonresponse bias associated with the web survey (Blom et al. 2015). 

Web surveys may have become easier to use; however, designing a web survey may have 

special requirements in certain settings, such as when surveying establishment popula-

tions. Independent of the data collection mode, questions in personal surveys address 

opinions, attitudes and/or behaviors. Establishment surveys may ask about different areas 

of the establishment, e.g., human resources, business finances, etc. This knowledge may 

be distributed over different employees. Therefore, the web survey must be shareable 

with colleagues who own specific knowledge, and the survey requires a navigation tool 

indicating which sections of the questionnaire may need which expertise. 

A major concern in establishment surveys is response burden, that is, the strain experi-

enced by respondents when they respond to a survey. Each survey response uses precious 

time of an establishment that could have been used to generate a product or service (e.g., 

Haraldsen et al. 2013). Therefore, response burden is regarded as an important issue in 

the establishment survey context, and researchers aim to reduce the response burden for 

establishments as much as possible (see, e.g., Giesen et al. 2018). Using a web mode in 

an establishment survey may be a more cost-effective mode of choice but may also have 

an effect on response burden. The first paper of my thesis evaluates how using a web 

mode in an establishment survey affects response burden compared to using a paper mode 

(see chapter 2). 

At the beginning of the third era, web surveys were usually designed for a PC or laptop 

screen. These days, individuals access the internet using mobile devices such as 

smartphones and tablets. With the increased use of mobile devices, researchers must de-

sign web surveys that are compatible with a smaller screen size and optimize web surveys 

for smartphones (Toepoel et al. 2020). Therefore, web surveys can be considered mixed-
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device surveys, and survey designers are challenged to design online surveys that are 

suitable for larger (e.g., laptops or PCs) or smaller (e.g., smartphones) screens (Toepoel 

and Lugtig 2015). 

Groves’s statement that the third era is characterized by the rise of web surveys may be 

true for first-world countries with high internet penetration rates but not for regions where 

internet penetration rates are low. In 2014, PEW published a report on mobile and internet 

use for emerging nations (PEW 2014). The report shows that the mobile phone penetra-

tion rates lie between 55 and 95%, while the internet penetration level is lower in each of 

the listed countries. Therefore, web surveys may not be used for all populations. It may 

make more sense to use other modes such as text message surveys, which is a mode that 

has resulted from ICT development over the last decade; however, there is currently little 

experience available regarding how to best apply this method. The second paper of my 

thesis assesses different strategies of using a text message survey in Egypt concerning 

differences between response rates, completeness, non-response bias, substantive re-

sponses and the effect on response rates in follow-up surveys (see chapter 3). 

To contrast the term designed data, essentially meaning survey data, Groves (2011) uses 

the term organic data. Organic data can be seen as another term for big data, which in 

itself has a wide range of definitions (see Dutcher 2014). Researchers seek to grasp, de-

fine, distinguish and summarize the different terms and types of big or organic data. 

Couper (2017), for instance, summarizes the different types and terms as follows: 

“[…] (a) administrative data, which are provided by persons or organizations for 

the administration of a program (e.g., electronic medical records, insurance rec-

ords, bank records, tax records, registers); (b) transaction data, which are gener-

ated as an automatic by-product of financial or other transactions and activities 

(e.g., credit card transactions, online purchases); (c) sensor data (e.g., satellite im-

aging, road sensors, climate sensors); (d) tracking device data (e.g., GPS, mobile 

phones); (e) behavioral data (e.g., online searches, page views, cookie data); and 

( f ) social media data, which are created by people with the express purpose of 

sharing with (at least some) others (e.g., Facebook, Twitter). The focus here is 
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primarily on the last two types, sometime referred to as big social data (Lampe et 

al. 2014), organic data (Groves 2011), found data (AAPOR 2015, Schober et al. 

2016), naturally occurring data (Gelman et al. 2014), or data in the wild (Ang et 

al. 2013).” 

Couper 2017, p. 12.14 

 

For my thesis, it is important to acknowledge that the data collection process for organic 

data is not designed for research but for another purpose (Salganik 2018). Organic data 

are intriguing for researchers because they solve problems for the survey profession, such 

as increased costs for conducting surveys and decreased response rates, survey biases and 

response burden (Amaya et al. 2020). 

Organic data contain information that may bring valuable insights for research and other 

purposes. For instance, the Institute for Employment Research (IAB) conducts the Inte-

grated Employment Biography (IEB). The IEB consists of notifications of employers re-

garding their employees and employment agencies regarding their customers sent to the 

Federal Employment Agency (BA) in Germany. One of the main purposes of collecting 

these data is not to use it for research but rather to calculate several dues and claims, e.g., 

dues for unemployment insurance and claims in the case of unemployment. This infor-

mation can be used to create a dataset containing employment biographies of labor market 

participants all the way back until 1975, e.g., information about their periods of employ-

ment, unemployment, welfare recipiency and other topics (for more details, see Antoni et 

al. 2019). 

Sometimes the volume of organic data is confused with information (Groves 2011); there-

fore, organic data users are prone to the fallacy that organic data are error free. However, 

organic data are not error free and sometime face challenges and confidentiality concerns 

(Amaya et al. 2020). The survey profession spent decades defining and assessing different 

sources of error when using the survey method. Many of these sources of error can be 
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applied to organic data. For instance, using IEBs requires researchers to account for lim-

itations in coverage, as some occupational groups, such as self-employed and civil serv-

ants, are not represented in the IEB (e.g., Antoni et al. 2019). Therefore, the IEB cannot 

make any statements about those occupational groups and suffers from coverage bias 

when making inferences regarding the whole German labor market population. Further-

more, if labor market participants become self-employed or civil servants, gaps within 

the data appear (missing data errors) that may be interpreted as the labor market partici-

pant leaving the labor market instead of transferring to another profession that is not cap-

tured by the data (e.g., Antoni et al. 2019). Additionally, some variables are not needed 

for the intended purpose to calculate dues and claims (e.g., educational status) and there-

fore suffer from measurement errors (e.g., Fitzenberger et al. 2005). As a result, employ-

ers pay less attention to reporting recent educational status data, e.g., if an employee earns 

an additional degree. Therefore, some variables in the IEB suffer from measurement er-

rors that require adjustments, such as imputation. 

Designed and organic data contain sources of error along the themes of the well-known 

TSE framework, such as validity, missingness and representativeness (Baker 2017). Or-

ganic data, however, also introduce new sources of error. Research using Twitter data, 

for instance, suffers from query errors (Hsieh and Murphy 2017), which occur when spec-

ifying the keywords used for searching Twitter posts.  

The fact that designed and organic data contain different error sources does not mean that 

they should not be used. Understanding these sources of error helps researchers and users 

understand the validity of their analyses and findings, identify which data best fit the 

research question, predict which type of data suffers from which sources of error, and 

account for or eliminate these sources of error beforehand (e.g., Amaya et al. 2020, Kirch-

ner et al. 2020, Kreuter and Peng 2014). 
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The jewel in the crown combines designed and organic data and employs their strengths 

to complement each other (e.g., Couper 2017, Lazer and Radford 2017). Survey data are 

suitable for collecting opinions and attitudes (the why), while organic data are suitable 

for collecting behavioral data (the what) (Callegaro and Yang 2018). Combining both 

types of data enables researchers to add more context to their designed or organic data 

and may be helpful to evaluate and harmonize potential sources of error in both data types 

(Link et al. 2014, Kirchner et al. 2020). 

Combining designed and organic data or integrating organic data collection processes 

into a designed data collection process is one of the recent major challenges. One way to 

combine designed and organic data collection is to use smartphone apps that collect both 

survey and smartphone sensor data. My third and fourth thesis papers draw on the IAB-

SMART project that uses such a data collection approach. While the third thesis paper 

evaluates the effects of different incentive strategies on installation rates and retention 

(see chapter 4), the fourth thesis paper evaluates a novel approach called geofencing, that 

is, using geolocation data to trigger survey invitations (see chapter 5). 

I briefly discuss the developments of web surveys, the rise of mobile phone surveys, the 

increasing significance of organic data for the survey profession and the need to combine 

designed and organic data. Against this background, the survey profession is facing new 

unexplored possibilities to design and modernize data collection approaches resulting 

from recent developments of ICTs that changed the survey landscape. My thesis explores 

the potential of design and modernized data collection methods by evaluating different 

research designs in each of my submitted papers. 

My thesis consists of four papers from three projects (see Table 1.1). The remaining part 

of the introduction discusses each project and briefly describes the content of each paper. 

First, I describe the “Quality in Establishment Surveys (QuEst)” project, which set out to 
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evaluate methodological differences between the paper and web modes in establishment 

surveys. Second, I describe a project in Egypt in which we tested how to conduct a short 

text message survey. Third, I describe the IAB-SMART study, which is an app research 

project that collected various smartphone sensor and survey data. For my thesis, I submit 

two papers from the IAB-SMART study. The first paper evaluates the effect of different 

incentive strategies on installation rates, activating data collection, withdrawing data col-

lection and retention in an experimental setting. The second paper evaluates a novel tech-

nique to conduct survey data collection dependent on geolocation data collection from 

the Google Geofence API. 

Table 1.1: List of each thesis paper with the corresponding project. 

Paper Project Written with 

Comparing Response Bur-

den Between Paper and 

Web Modes in Establish-

ment Surveys 

Quality in Establishment Sur-

veys (QuEst) 

Stephanie Eckman 

and Ruben Bach 

Comparing Single-sitting 

Versus Modular Text Mes-

sage Surveys in Egypt 

Project A9: Survey mode, 

survey technology and tech-

nology innovations in data 

collection of the Deutsche 

Forschungsgesellschaft 

(DFG) funded project: SFB 

884 "Political Economy of 

Reforms" 

Florian Keusch and 

Markus Frölich 

Effects of Incentives in 

Smartphone Data Collec-

tion. 

IAB -SMART Frauke Kreuter, Flo-

rian Keusch, Mark 

Trappmann and Se-

bastian Bähr 

Using Geofences to Collect 

Survey Data: Lessons 

Learned From the IAB-

SMART Study 

IAB -SMART Mark Trappmann, 

Florian Keusch, Se-

bastian Bähr and 

Frauke Kreuter 
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1.1 Quality in Establishment Surveys (QuEst) 

The project was initiated to prepare the IAB establishment survey to move their data col-

lection from paper to the web. The web mode offers several advantages over paper re-

garding data collection costs. For instance, web surveys can eliminate mailing costs by 

inviting establishments to participate via e-mail. If an e-mail address is not available, web 

surveys still reduce mailing costs by sending mail invitations containing only an invita-

tion letter rather than a large paper questionnaire and return envelope. Furthermore, as 

respondents digitalize their answer themselves during the response process, web surveys 

reduce data entry costs. 

The web mode also offers advantages regarding data quality. Web questionnaires can 

provide feedback to respondents and therefore may increase data quality (Couper 2008, 

Conrad et al. 2007). If respondents submit an unlikely answer, plausibility checks can ask 

respondents to re-evaluate their answers, which could reduce the need for data editing. 

Furthermore, researchers can offer definitions and additional information about ques-

tions. Future web surveys may even include chatbots that can address respondents’ ques-

tions during the response process (Lagerstøm 2018). Additionally, the web mode can 

manage calculation and counting tasks to simplify responses (Giesen et al. 2009, Giesen 

2007). Especially in establishment surveys, which often require responses from multiple 

respondents, web surveys may simplify the response process within the establishment as 

respondents can distribute a link for a web survey easily via email while a paper ques-

tionnaire is more cumbersome to distribute to multiple respondents. Finally, web surveys 

enable a complex filter and skip pattern design and thus only show applicable items to 

each respondent. 

In the establishment survey context, little is known about the effects of the web mode. By 

implementing an experimental setting with five different mode conditions (Paper-only, 
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Web-only, Choice, Paper-followed by Choice, Web followed by Choice) the QuEst project 

helped to narrow the gap. 

All five mode conditions received a postal invitation letter to the study. Overall, one in-

vitation letter and two reminders were sent. However, the forms and choices varied over 

the mode groups. For the Paper-only group, we mailed establishments a cover letter with 

information about the study and a paper questionnaire. Respondents could only respond 

by sending back a completed questionnaire. For the Web-only group, establishments re-

ceived a cover letter with a link and a request to complete our online questionnaire. The 

establishments in the Choice groups received a cover letter and the same paper question-

naire as that provided to the Paper-only group. The cover letter offered a web link and 

presented the respondents with the option to choose between the paper and web modes. 

For the paper followed by choice mode, respondents received the same invitation letter 

and reminder materials as those used in the Paper-only group. The second reminder con-

tained the materials as those provided to the Choice group. For the web followed by paper 

mode, respondents received the same invitation letter and reminder materials as those 

provided to the Web-only group. The second reminder contained the materials as those 

provided to the Choice group. 

In the first step, the mode experiment was analyzed considering the response rate, com-

position effects and item nonresponse rate (see Haas et al. 2016). Concerning the response 

rates, the authors found that web performs poorly compared to paper (5.6% vs. 11.7%). 

However, offering both modes in all mailings performs as well as the paper mode. This 

outcome is interesting as it contradicts well-established results that providing respondents 

with a mode choice lowers response rates (see Medway and Fulton 2012). In terms of 
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composition effects, the authors found no systematic differences between mode condi-

tions. Regarding item response rates, the results suggest that web respondents have lower 

item nonresponse rates than paper respondents. 

The paper for this thesis evaluates how much the web mode affects the response burden 

during the data collection process compared to the paper mode. Response burden is a 

multifaceted concept influenced by motivation, task difficulty, survey effort and respond-

ent perception (Yan et al. 2020). Especially in establishment surveys, data collectors 

should monitor and reduce burden to the fullest possible extent (e.g., see European Com-

mission 2011). Giesen et al. (2018) even state that burden management has to become a 

key element for all national statistical institutes. 

Modernizing establishment survey designs and moving the data collection for establish-

ments towards the web mode may help data collectors reduce establishments’ response 

burden. However, previous research is inconclusive regarding the effects of switching 

modes to the web on response burden. The first paper of my thesis, “Comparing Response 

Burden Between Paper and Web Modes in Establishment Surveys” (Haas et al. forthcom-

ing), evaluates the differences in the response burden between paper and the web. The 

paper compares how the actual and perceived response burdens differ when respondents 

complete a survey in the paper mode, the web mode or are allowed to choose between the 

two modes. The results show that in the web mode respondents estimate the time to com-

plete the questionnaire to be lower than paper respondents while there are no differences 

between paper and the web in the perceived response time and perceived burden. No 

evidence showing that researchers should be concerned that the response burden is in-

creased when conducting an establishment survey using a web survey instead of a paper 

survey is found. 
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1.2 Project A9: Survey mode, survey technology and technology 

innovations in data collection 

Project A9 is embedded in a larger research agenda called Sonderforschungsbereich 884 

(SFB 884), which is funded by the Deutsche Forschungsgemeinschaft (DFG). SFB 884 

is an interdisciplinary research group consisting of an interdisciplinary workforce of re-

searchers from economics, political science, sociology, statistics and computer science. 

It aims to produce scientific insights into the successes and failures of reforms that address 

economic and social challenges. Project A9 works closely together with other projects 

from SFB 884 to further develop data collection methods in terms of improved data qual-

ity and lower costs of future projects. The project does focus on several developments 

and technological innovations in survey research. For this thesis, however, the focus is 

on mobile phone data collection. 

Part of the research agenda of project A9 is the exploration and evaluation of new data 

collection methods in certain research areas. Examples include (1) avoiding interviewee 

fatigue with the use of ultra-short but high-frequency surveys, (2) combining surveys with 

information treatments and (3) interviewing difficult-to-interview populations. These 

three research areas are addressed in the paper selected for my thesis: “Comparing Single-

sitting Versus Modular Text Message Surveys in Egypt”. 

The experiment described in the thesis paper piggybacks on a larger economic field study 

evaluating the effects of information treatments on nutritional health of kindergarten chil-

dren in Egypt. As internet penetration rates (43%, see PEW 2014) and landline penetra-

tion rates (29%, see PEW 2015) are low in Egypt, web and telephone surveys suffer from 

undercoverage. However, Egypt has a rather high mobile phone penetration rate of 88% 

(see PEW 2014). Therefore, a text message survey was conducted to measure differences 

in behavior due to an information treatment. To date, little is known about how to best 
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administer text message surveys efficiently. Therefore, two different designs of auto-

mated text message surveys were experimentally compared. In the first design, single-

sitting, respondents automatically receive a text message with a new question once they 

replied to a question. In the second design, modular, respondents received a new question 

each day regardless of whether they had responded to the previous question. Overall, 

1,081 Egyptian parents of kindergarten children who own a mobile phone were invited to 

participate in a text message survey with eight questions on the nutritional behavior of 

their children. The sample was randomly assigned to one of the experimental groups. In 

short, compared to the single-sitting group, the modular group achieved a higher number 

of answered questions but had fewer fully completed questionnaires. In addition, the ex-

perimental groups differed regarding substantive responses to behavioral questions. No 

differences concerning nonresponse bias or the probability of responding to a follow-up 

survey were found. 

 

1.3 IAB-SMART 

In 2018, we (Frauke Kreuter, Florian Keusch, Mark Trappmann, Sebastian Bähr and my-

self) conducted the IAB-SMART app study that collected survey data and smartphone 

sensor data. The data included geolocations, telephone and text message logs, character-

istics of social networks from smartphone contacts, mobility data and smartphone usage 

data. The IAB-SMART study had the intention of exploring the feasibility of how the 

combination of passively collected smartphone and survey data can be helpful to replicate 

old insights and gain new insights into labor market research. One of the main goals was 

to replicate the results from one of the first and most famous studies that applied a com-

bination of various methods, namely, the Marienthal study by Jahoda et al. (1939). 
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Marienthal was a small city near Vienna that was built around a textile factory. Almost 

everybody living in Marienthal was employed in this factory. However, due to the eco-

nomic crisis in 1929, the factory was closed in 1930, and all workers of the factory were 

unemployed. What was a tragedy for the community of Marienthal was an opportunity 

for social scientists including Marie Jahoda and Paul Larzarsfeld to research the effects 

of unemployment on the social life in a community. The researchers used a variety of 

methods, such as qualitative interviews, field observations in the streets, stocktaking of 

household belongings, etc. 

One of their most prominent findings was that unemployment results in a loss of structure 

in the daily lives of citizens. When Marienthal’s citizens were employed, they valued 

their time in a remarkably high manner due to its scarcity. With the loss of employment, 

time was abundant in daily living, which resulted in less reading, canceling club mem-

berships and a slower walking pace. Interestingly, as women also had to manage house-

hold affairs (i.e., cooking, cleaning and caring for children), they had a purpose that struc-

tured their daily lives and were less affected by the effects of unemployment compared 

to men. 

The Marienthal study was possible with the help of a large research team that performed 

timely expensive data collection. Due to the ubiquity of smartphones in everyone’s daily 

lives, the results from the Marienthal study may be replicated with less manpower and in 

a more cost-efficient way. Smartphones can collect various data, such as geolocation data, 

mobility data and app usage data. As individuals use smartphones in their daily lives, 

smartphone data may inform researchers about smartphone owner behavior and may be 

used to generate insights for social science. 

In the past few years, many researchers have started to evaluate the use of smartphone or 

mobile phone data for their research projects (e.g., Ben-Zeev et al. 2015, Elevelt et al. 
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2019, Goodspeed et al. 2018, Harari et al., 2017, Lathia et al. 2017, MacKerron and 

Mourato 2013, Montag et al. 2015, Smeets et al. 2019, Scherpenzel 2017, Sugie 2018, 

Wang et al. 2014, York Cornwell and Cagney, 2017, Katevas et al. 2018). Most of those 

studies, however, are based on convenience samples, have a small sample size (less than 

100 participants), have a short data collection period (less than a month) and/or are limited 

in evaluating potential sources of error in their data. The IAB-SMART study overcame 

these limitations and is a perfect example of the role of the survey profession in exploring 

new opportunities and challenges to design new data collection approaches and integrate 

combined survey and organic data while assessing different sources of error along the 

themes of the total survey error framework (TSE). 

The main reason why the IAB-SMART study enabled researchers to assess sources of 

error around the TSE framework is that study participants were selected from the panel 

study “Labour Market and Social Security” (PASS) (Trappmann et al. 2019). PASS is a 

household survey of the general population in Germany with annual waves of data col-

lection. The focus of PASS is on unemployment, poverty and recipiency of state transfers. 

Using PASS as a starting point to invite study participants has the benefit that a relation-

ship of trust between study participants and the IAB is already implemented. Furthermore, 

linking PASS and IAB-SMART data provides background information about participants 

and nonparticipants, making it possible to assess coverage and nonresponse bias in the 

IAB-SMART participant sample (see Keusch 2020, Keusch under review). 

Overall, 685 of the 4,293 invited PASS respondents installed the app. Recruiting partici-

pants to install a research app that collects various abstract types of data is one of the new 

design challenges mentioned above. Installing an app and keeping the app installed is 

quite different from responding to a one-time web survey. Furthermore, when collecting 

passive mobile phone data or linking app data to other data sources (e.g., PASS panel 
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data), researchers have to consider further data protection measures and communicate 

those in a simple, transparent and comprehensive way. This gets harder as more different 

types of data are collected. To meet ethical and legal standards, we implemented the prin-

ciples of the General Data Protection Regulation (GDPR) on informed consent. We de-

veloped a comprehensive strategy to communicate the purpose of our study to invited 

individuals and sought to lower their privacy concerns as much as possible so that they 

would agree to our data collection (see Kreuter et al. 2020 for more details). 

It is quite common for most smartphone owners to install an app and to accept that app’s 

permission to obtain access to all types of smartphone data. However, being invited to 

install an app that collects several different types of smartphone data may be suspicious. 

One could argue that apps such as WhatsApp and Facebook also collect many types of 

behavioral data and that it should not be a problem for most individuals to give their data 

to unknown researchers. However, installing the Facebook app follows the intention of 

using a service that enables smartphone owners to connect with their families and friends 

or to entertain themselves. A research app can hardly make a similar offer and has to 

appeal to other factors to motivate individuals to participate, e.g., using convincing argu-

ments that data are used for the social good. 

A strategy to motivate individuals to participate in a research project or survey is using 

incentives. In surveys, monetary incentives are known to compensate respondents and 

increase response rates (e.g., James and Bolstein 1990, Church 1993, Willimack et al. 

1995, Singer et al. 1999, Singer 2002, Toepoel 2012, Pforr 2016). The rule of thumb is 

that cash incentives are more effective than gifts or lotteries and that unconditional (also 

known as (aka) prepaid) incentives are more effective than conditional (aka promised) 

incentives. (Singer and Ye 2013). However, little is known about how incentives work in 

studies involving smartphone sensor data. Smartphone data may be perceived as more 
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valuable than survey data, and it may be harder to recruit participants for an app study 

involving smartphone sensor data than for regular surveys. Furthermore, the IAB-

SMART study was set to a field period of 180 days. It was important that the app collects 

daily data from each individual without any participant-mediated gaps. The third paper 

for my thesis, “Effects of Incentives in Smartphone Data Collection” (Haas et al. 2020a), 

addresses this gap. It addresses the use of incentives in smartphone data collection and 

evaluates the effects of different incentive strategies on downloading the app, activating 

data collection, withdrawing data collection and retention in an experimental setting. 

The IAB-SMART app contained the Google Geofence API, which allowed us to admin-

ister surveys that were triggered by geographical areas. This survey data collection tech-

nique is called geofencing. Against the background of survey data collection, a geofence 

can be described as a geographical area that triggers a survey by entering this area, dwell-

ing within this area for a defined amount of time and/or exiting this area. Therefore, 

geofencing combines organic and survey data in an interesting way by using real-time 

organic data, in our case geolocation data, to trigger a survey as a novel design feature to 

recruit respondents to respond to a survey. 

Geofences are already used in other contexts (e.g., marketing and retail) but are still un-

derutilized in social research. The fourth paper, “Using Geofences to Collect Survey 

Data: Lessons Learned From the IAB-SMART Study” (Haas et al. 2020b), addresses the 

challenge of conducting survey data collection that is dependent on geolocation data col-

lection from the Google Geofence API. We implemented a geofence survey and 

geofenced 410 job centers with the Google Geofence API. Overall, the app sent 230 

geofence-triggered survey invitations to 107 participants and received 224 responses from 

104 participants. This paper shows how the geofence method was applied within the IAB-

SMART project and provides the reader with six lessons researchers should consider 
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when designing a geofence data collection project to increase data quality and minimize 

costs. 

1.4 The modernization of data collection methods 

I have briefly presented each project from which my submitted thesis papers resulted. 

Traditionally, dissertations focus on one topic that is wholesomely and thoroughly exam-

ined. In this regard, the submitted papers of my thesis may be too diversified over differ-

ent topics and approaches. Over the last decade, however, the survey profession has also 

become much more diversified. Increasingly more frequently, survey methodologists and 

statisticians find themselves caught between using survey data collection and other vari-

ous types of data collection and combinations thereof that belong to other professions. 

My thesis mirrors this development and the need for the diversification of the field by not 

specializing on one topic but rather by assessing different topics that address new chal-

lenges in survey design. 
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2 Comparing the Response Burden between Paper and 

Web Modes in Establishment Surveys 

2.1 Abstract 

Previous research is inconclusive regarding the effects of paper and web surveys on re-

sponse burdens. We conducted an establishment survey with random assignment to paper 

and web modes to examine this issue. We compare how the actual and perceived response 

burdens differ when respondents complete a survey in the paper mode, in the web mode 

or when they are allowed to choose between the two modes. Our results show that in the 

web mode, respondents have a lower estimated time to complete the questionnaire, while 

we do not find differences between paper and the web on the perceived response time and 

perceived burden. Even though the response burden in the web mode is lower, our study 

finds no evidence of an increased response burden when moving an establishment survey 

from paper to the web. 

2.2 Introduction 

Data on establishments are essential for monitoring national and international economies, 

e.g., to help managers make decisions and to enable politicians to craft informed policies 

(Jones et al. 2013). A large proportion of establishment data originates from surveys. 

However, for most establishments, responding to a survey is a task unrelated to business 

production, which potentially takes employee time away from other essential tasks 

(Willimack and Nichols 2010). This article is particularly concerned with response bur-

den, which unfortunately is loosely defined in the literature (Yan et al. 2020). We define 

response burden as the strain experienced by respondents while they respond to a survey. 

Factors affecting response burden are multifaceted and include questionnaire design, con-

tent and length, question wording, and the data collection mode. 
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When the response burden is high, respondents have difficulties answering a question-

naire (Couper and Groves 1996). In establishment surveys, a high response burden is 

associated with low data quality and high data collection costs (e.g., Bavdaž et al. 2015, 

Jones 2012, Giesen 2012, Giesen et al. 2011a, Hedlin et al. 2005, Haraldsen and Jones 

2007). A high burden can also lead to more data editing and fewer timely responses (e.g., 

Haraldsen and Jones 2007, Berglund et al. 2013, Giesen 2013) and may reduce respond-

ents’ motivation and efforts to answer correctly (Krosnick 1991). 

One way to reduce the response burden in establishment surveys may be to change the 

survey mode from paper to the web. The web mode offers many advantages that can 

reduce the response burden. However, it can also introduce response burden if respond-

ents are not comfortable with website navigation and forms. In practice, many surveys 

offer a choice of web or another mode, often paper. The choice of mode may allow re-

spondents to choose their preferred mode, leading to a lower burden; or it may present 

respondents with another decision they must make, leading to a higher burden, as in Med-

way and Fulton (2012). Studies of the change in the response burden when moving es-

tablishment surveys from paper to the web have found that the introduction of the web 

mode reduces the response burden (Giesen 2013b, Gravem et al. 2011, Giesen et al. 2009) 

or has no effect (Snijkers et al. 2007). However, because the questionnaire content and 

structure in those studies also changed, we cannot draw a definitive conclusion on the 

effect of web on response burden (Gravem et al. 2011). 

To address the shortcomings of previous studies, we conducted an establishment survey 

with an experimental assignment to the mode: Paper-only, Web-only or concurrent Paper 

and Web mixed mode. We examine the differences in response burden between modes, 

and we will answer the following research questions: 
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Is response burden in an establishment survey lower in the web mode than it is in 

the paper mode? 

Do respondents experience a lower burden if they can choose between the paper 

and the web mode? 

To answer our research questions, we first define what type of response burden we eval-

uate. Second, by listing the benefits of the web mode, we explain why data collection 

agencies are interested in using the web mode for their establishment surveys. Third, we 

provide a literature overview on how response burden is measured. Fourth, we describe 

the possible effects of paper and the web on response burden, leading us to our hypothe-

ses. Fifth, we describe our data, including our study and experimental design as well as 

key features of our web survey. Sixth, we describe the models we use to evaluate response 

burden differences. Seventh, we present our results. Finally, we summarize our results 

and the limitations of their scope. 

2.3 Background 

Establishment surveys can impose burden in three ways (Löfgren 2011, Haraldsen et al. 

2013). First, each time an establishment is selected for a survey, the establishment is bur-

dened with a response request, and large establishments are selected more often than me-

dium and small establishments (Jones 2012). Second, for those establishments that choose 

to participate, the participation costs are presumably greater than the benefits to the es-

tablishment (Verkruyssen and Moens 2011, Giesen 2011). As a result, establishments 

may have a low motivation to respond. Third, instrument design introduces burden 

through questionnaire content and length, the data collection mode (e.g., face-to-face, 

telephone, paper, web, etc.), the wording of questions and other factors. This paper fo-

cuses on burden introduced through instrument design. We refer to this type of burden as 

response burden. Specifically, we focus on the mode as part of the instrument design and 
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compare the difference in response burden between paper and web modes in establish-

ment surveys. 

In the remainder of this section, we provide a short overview of the benefits of web sur-

veys compared to paper surveys. We explain how response burden is conceptualized and 

measured and the possible effects of paper and web surveys on response burden. We then 

develop hypotheses regarding how response burden differs between paper and web sur-

veys. 

2.3.1 Benefits of web surveys 

Although paper and web are both cost-efficient self-administered modes, web offers sev-

eral advantages over paper. Web surveys reduce or eliminate mailing costs. Many estab-

lishment survey invitations can be sent via email; when mail invitations are used, only an 

invitation letter is sent rather than a large paper questionnaire and return envelope. Fur-

thermore, web surveys reduce data entry costs. These savings usually more than offset 

potential increases in programming needed to set up the web survey. 

The web mode can also increase data quality. Web questionnaires can provide feedback 

to respondents (Couper 2008, Conrad et al. 2007). If respondents submit an unlikely an-

swer, plausibility checks can ask respondents to re-evaluate their answers, which could 

reduce the need for data editing. Furthermore, researchers can offer definitions and addi-

tional information on how to answer the question. Future web surveys may even include 

chatbots that can address respondents’ questions during the response process (Lagerstøm 

2018). Additionally, the web mode can manage calculation and counting tasks, which 

simplify responses (Giesen et al. 2009, Giesen 2007). Especially in establishment sur-

veys, which often require responses from multiple respondents, web surveys may sim-

plify the response process within the establishment as respondents can distribute a link 

for a web survey easily via email while a paper questionnaire is more cumbersome to 
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distribute to multiple respondents. Finally, web surveys enable a complex filter and skip 

pattern design while only showing items applicable to each respondent. 

2.3.2 Conceptualizing and measuring response burden 

Bavdaž et al. (2015) summarize three reasons why National Statistical Institutes (NSIs) 

should consider response burden when designing data collection programs. The first is 

political: responding to a survey takes time away from an establishment’s core business 

and may decrease competitiveness. The second is methodological: a high burden may 

reduce data quality and increase data collection costs. The third is strategic: burden can 

negatively affect the relationship between NSIs and the business community, reducing 

the motivation to respond to surveys. Therefore, NSIs should monitor and reduce burden 

to the fullest possible extent (e.g., see European Commission 2011), and burden manage-

ment has become a key element for NSIs (e.g., see Giesen et al. 2018). 

Response burden is a multifaceted concept influenced by motivation, task difficulty, sur-

vey effort and respondent perception (Yan et al. 2020). It is often “loosely defined”, and 

Yan et al. argue for a unified concept for response burden. For our study, we follow the 

conceptualization of actual and perceived response burden, which we find is the most 

prominent within the establishment survey literature (e.g., Giesen 2013, Berglund et al. 

2013, Hedlin 2005, Giesen et al. 2009, Giesen and Burger 2013, Haraldsen and Jones 

2007). The literature suggests several indicators to measure actual response burden. Be-

cause respondents need time to read, think, and respond to a question, each item in the 

survey adds to the overall burden (Bradburn 1978). Therefore, questionnaire length is 

probably the most basic indicator for response burden (see, e.g., Groves, Cialdini and 

Couper 1992, Van Loon et al. 2003). In our study, we asked respondents how much time 

they spent answering the questions (see, e.g., Dale et al. 2007, Giesen et al. 2011a, Giesen 
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2013b). Additional indicators used by NSIs to track response burden imposed on estab-

lishments include the following: calls to the service number, requests for help, response 

rates, and average time for questionnaire completion (Downey et al. 2007, Snijkers et al. 

2007, Sear 2011, Giesen et al. 2011a). 

Perceived response burden is a subjective measure of respondents’ experiences respond-

ing to the survey, e.g., as burdensome and time consuming (see, e.g., Haraldsen et al. 

2013). It is not the actual time spent taking a survey but the perception of the time and 

effort of the survey that affects respondents’ survey experience and response quality (e.g., 

Haraldsen and Jones 2007). Many factors can contribute to perceived response burden: 

structures within the establishment (who has the information needed to respond), the tim-

ing of a survey (during a firm’s busy period or while a key informant is on vacation), 

question design, data collection mode, number of survey invitations, difficulty of the re-

sponse task, and attitudes towards the data collector (Hedlin et al. 2005, Giesen 2013b). 

Perceived response burden is often collected with two items. One item asks for the per-

ception of time on a five-point scale, i.e., if respondents perceive the survey as quick or 

time-consuming. The other item asks for the perception of burden on a five-point scale, 

i.e., if respondents perceive the questionnaire as easy or burdensome to answer (see, e.g., 

Dale et al. 2007, Giesen et al. 2011a, Giesen 2013b). We use the same perceived response 

burden indicators for our study. 

Actual and perceived response burdens are conceptually different from each other but 

positively correlated (Giesen 2013a, Berglund et al. 2013). If respondents perceive a 

questionnaire as difficult, the actual response burden (time spent) is also likely high (Gie-

sen 2013a). Giesen et al. (2011a) found that 34 of 41 NSIs collect data on actual response 

burden while 12 collect data on perceived response burden. We examine how assigned 

mode and mode choice affect both actual burden and perceived burden. 
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2.3.3 Possible effects of paper and web surveys on response burden 

The impact of mode on actual and perceived burden is complex. Each page of a paper 

questionnaire introduces an additional workload, and respondents may perceive mul-

tipage questionnaires as burdensome. Even if not all questions apply to the respondent, 

the number of pages can make the survey seem overwhelming. Skip instructions in paper 

questionnaires may not be clear to respondents, and they may have a hard time navigating 

a paper survey. Web surveys, on the other hand, do not show all questions to the respond-

ent but only those that apply. As a result, respondents never see the entire questionnaire 

and cannot immediately assess its total length. They also do not need to pay attention to 

filter instructions, which reduces the respondent’s cognitive effort. 

On the other hand, the web mode could increase response burden. Respondents with lower 

online skills may experience a greater burden (Gregory and Earp 2007). A poorly de-

signed instrument can be difficult or frustrating to fill out. Furthermore, even well-de-

signed plausibility checks may increase response burden (Hedlin et al. 2005). 

Most NSIs do not use web as a standalone mode but in combination with other modes of 

survey data collection, often a paper mode. Offering the web in addition to paper may 

reduce the perceived response burden: faced with a choice of mode, respondents should 

choose the mode they feel most comfortable responding to and the one that is lower bur-

den for them (Erikson 2007). Lyly-Yrjänäinen and van Houten (2011) propose offering 

multiple modes to reduce the respondent burden in Eurostat establishment surveys. How-

ever, offering multiple modes can overwhelm respondents and reduce response rates 

(Medway and Fulton 2012). Requiring respondents to choose a mode before they can 

begin the survey may also impose an additional burden on respondents. 
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2.3.4 Hypotheses 

The above discussion leads us to several hypotheses regarding the relationship between 

the mode and response burden in establishment surveys. In accordance with the findings 

from earlier research (Gravem et al. 2011, Giesen et al. 2009, Snijkers et al. 2007), we 

hypothesize that burden will be lower for respondents assigned to the web mode than for 

those assigned to the paper mode (hypothesis 1). 

Therefore, compared to the paper mode, we expect … 

… a shorter time to complete the questionnaire in the web mode (hypothesis 1.1) 

… a lower perceived time in the web mode (hypothesis 1.2) 

… a lower perceived burden in the web mode (hypothesis 1.3) 

 

Hypothesis 2 relates to mode choice: when respondents can choose their mode, they are 

likely to experience a lower burden than respondents who respond in the same mode but 

were not given a choice. We hypothesize that actual and perceived response burden 

among those who choose the web mode from a mixed-mode condition are lower than 

burden among those assigned to the web mode (hypothesis 2.1). Therefore, compared to 

the assigned web condition, we expect… 

… a shorter time to complete the questionnaire by web respondents in the mixed-mode 

condition (hypothesis 2.1.1) 

… a lower perceived time by web respondents in the mixed-mode condition (hypothesis 

2.1.2) 

… a lower perceived burden by web respondents in the mixed-mode condition (hypothe-

sis 2.1.3) 
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Similarly, we expect lower actual and perceived response burden for respondents in the 

paper mode from a mixed-mode condition compared to respondents from the assigned 

paper condition (hypothesis 2.2). That is, compared to the assigned paper condition, we 

expect… 

… a shorter time to complete the questionnaire by paper respondents in the mixed-mode 

condition (hypothesis 2.2.1) 

… a lower perceived time by paper respondents in the mixed-mode condition (hypothesis 

2.2.2) 

… a lower burden by paper respondents in the mixed-mode condition (hypothesis 2.2.3) 

 

Although respondents likely use their preferred mode when choosing between paper and  

web, we should still see differences in response burden between those choosing paper and 

those choosing web. The features of the web mode described earlier should reduce re-

sponse burden. Therefore, we hypothesize that actual and perceived response burden will 

be lower for those who respond via the web in the mixed-mode condition than for those 

who respond via paper in the mixed-mode condition (hypothesis 3). Therefore, compared 

to those choosing paper, we expect … 

… a shorter time to complete the questionnaire for those choosing web (hypothesis 3.1) 

… a lower perceived time for those choosing web (hypothesis 3.2) 

… a lower perceived burden for those choosing web (hypothesis 3.3) 
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2.4 Data 

To examine our hypotheses regarding the differences in response burden between modes, 

we use data from a German establishment survey. The Institute for Employment Research 

(IAB) designed this survey to evaluate the effect of the mode on the data quality in estab-

lishment surveys. 

Overall, 16,000 establishments were sampled from German administrative records. Sam-

ple selection was stratified by location (East and West Germany), establishment size class 

(< 10 employees, 10 - 199 employees, and ≥ 200 employees) and industry class following 

the German Classification of Economic Activities (Destatis 2008). Establishments al-

ready selected for IAB surveys in 2015 were removed from the frame before selection to 

avoid causing any problems for those ongoing data collection efforts. The removed es-

tablishments were random selections from the frame and thus should not bias the sample. 

However, there are some strata where no unselected establishments remained on the 

frame. This issue particularly affected the largest size class in which there are few estab-

lishments. For this reason, the sample used in this study is not fully representative of the 

population of establishments, but efforts were made to be as complete as possible given 

the need to avoid overlap with ongoing surveys. Participation in the survey was voluntary, 

and the overall response rate was 10.2% (AAPOR RR1) with 1,574 establishments re-

sponding. 

All sampled establishments were randomly assigned to one of the three mode conditions 

(Paper-only, Web-only, Choice). To ensure we would have enough cases in all three mode 

groups and within the two modes in the Choice group, we assigned one-fourth of the 

establishments in our sample to Paper-only, one-fourth to Web-only and two-fourths to 

Choice. 
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We prepared two versions of the questionnaire with different topics, number of items and 

question formats. One version focused on the consequences of the introduction of the 

federal minimum wage in Germany in 2015. We refer to this version as Minimum Wage. 

Another version contains questions about the effect of increasing digitalization on labor 

markets. We refer to this version as Digitalization. We randomly assigned each sampled 

establishment to one of the two versions. Therefore, both versions are independent sur-

veys with the same experimental mode design. However, our hypotheses should apply to 

both questionnaire versions. In fact, seeing similar results over both versions should in-

crease the reliability of our results. All mode groups were invited to participate in the 

study via a mailed letter. For the Paper-only group, we mailed establishments a cover 

letter with information about the study and a paper questionnaire. Depending on the as-

signed versions, the number of pages and questions differed slightly. The Minimum Wage 

questionnaire contained 74 questions on 20 pages. In contrast, the Digitalization ques-

tionnaire had 69 questions on 19 pages, printed in a 20-page booklet. Therefore, the dif-

ference in page volume between both versions was negligible. 

For the Web-only group, we sent establishments a cover letter with information about the 

study, a link and the request to fill out our online questionnaire. To isolate mode effects, 

we took care to ensure that the paper and web questionnaire were visually similar to each 

other. However, the web mode offers functionalities that may reduce response burden, as 

discussed above. We implemented six web survey functionalities. First, the web survey 

presented questions in a paging design (one question on each page) so that respondents 

would not miss a question. Second, the web survey used automatic skips, i.e., questions 

that did not apply to respondents were not shown. Third, the question about the number 

of different employment groups automatically summed and displayed the total number of 

employees. Fourth, we implemented plausibility checks. For instance, if the respondent 

stated that the regular weekly working hours were greater than the legal limit of 48 hours, 
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the web survey prompted an error message in red that asked respondents to re-evaluate 

their answer. The number of plausibility checks differed by questionnaire version: Mini-

mum Wage contained up to 13 plausibility checks, and Digitalization contained up to five 

plausibility checks. Fifth, at the end of each section, respondents were able to print the 

questionnaire section with their responses for their own documentation. 

Sixth, the web survey contained an index that allowed respondents to navigate to specific 

sections. The index indicated the structure of the questionnaire and showed the headings 

for each section (see Figure 2.1). After finishing a section, the web survey redirected 

respondents to this index page. The index page gave respondents an understanding of 

what part of the questionnaire should be answered by whom in the establishment. In es-

tablishment surveys, respondents sometimes do not have the information required to an-

swer all questions. Therefore, they require help from colleagues to answer some ques-

tions. 

 
Figure 2.1: Index page for the web survey in the Digitalization version 
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For the establishments in the Choice groups, we sent a cover letter and the same paper 

questionnaire as in the Paper-only group. The cover letter offered a web link and pre-

sented the option to choose between the paper and web modes. 
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a All Ns exclude 557 cases found to be ineligible. 
b Overall AAPOR RR1 for Minimum Wage is 11.9%. 
c Overall AAPOR RR1 for Digitalization is 8.5%. 

Figure 2.2: Experimental Assignment and Response Rates (RR) 

 

 

Mode groups 
(AAPOR RR1 response rate, in 

percent) 

Mode conditions 

(N) 

Version 

(N) 

Sampled establishments 
(15,443)a 

Minimum 
Wageb 

(7,711) 

Paper-
only 

(1,922) 

Paper-
only 
(13.9) 

Web-
only 

(1,939) 

Web-
only 
(6.2) 

Choice 
(3,850) 

Choice-
Paper 

(9.2) 

Choice-
Web 
(4.5) 

Digitalizationc 

(7,732) 

Paper-
only 

(1,929) 

Paper-
only 
(11.7) 

Web-
only 

(1,941) 

Web-
only 
(5.6) 

Choice 
(3,862) 

Choice-
Paper 

(7.8) 

 Choice-
Web 
(4.0) 
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Figure 2.2 shows the response rates (RR) for our three mode groups and two versions. In 

the figure, Choice-Paper refers to cases that chose to respond via the paper mode in the 

mixed-mode condition. Choice-Web refers to those that responded on the web. In both 

versions, response rates in the Web-only and Choice-Web groups are smaller than those 

in the Paper-only and Choice-Paper groups. The response rates are also lower in all con-

ditions for the Digitalization survey than the Minimum Wage survey (8.5% vs. 11.9%). 

Furthermore, we find that compared to Paper-only, the Choice group is not different in 

terms of response rates (13.7% vs 13.9% in the Minimum Wage survey; 11.8% vs 11.7% 

in the Digitalization survey). (To calculate the response rate for Choice-Paper and 

Choice-Web, we split the response rate of Choice into the proportion of Choice-Paper 

and Choice-Web, i.e., 𝑅𝑅𝐶ℎ𝑜𝑖𝑐𝑒 =  𝑅𝑅𝐶ℎ𝑜𝑖𝑐𝑒−𝑃𝑎𝑝𝑒𝑟 +  𝑅𝑅𝐶ℎ𝑜𝑖𝑐𝑒−𝑊𝑒𝑏.) These results con-

tradict findings from meta-analyses where offering a choice between modes is burden-

some enough to not participate (Medway and Fulton 2012). However, the meta-analysis 

did not include establishment surveys. 

To check whether respondents in each mode group differ from each other, a nonresponse 

analysis for the variables location (East and West Germany), establishment size class (< 

10 employees, 10 - 199 employees, and ≥ 200 employees) and industry was conducted 

(see Haas et al. 2016). No systematic differences in nonresponse patterns between the 

mode groups were found. 

Involving other people and managing the response process can be a burden to respond-

ents. Overall, 16.2% of our respondents reported that they had help answering the ques-

tionnaire. Concerning the proportion of multiple respondents, a chi-squared test suggests 

no differences between the mode groups and questionnaire versions (χ2
7, N=1,663 = 5.6, p < 

0.585). 
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2.5 Methods 

To evaluate the differences in response burden between survey modes, we use median 

and ordered regression models. The dependent variables in all models are measures of 

response burden. The independent variables are the experimental conditions (mode and 

topic) and control variables about the establishments (size class, industry, and East versus 

West Germany).  

2.5.1 Response burden variables 

We measure actual and perceived burden with three questions (Dale et al. 2007) asked at 

the end of the questionnaire. First, we asked respondents to estimate the time they needed 

to complete the questionnaire. The question required an answer in hours and minutes and 

has been used as a measure of actual burden in earlier studies (e.g., Dale et al. 2007, 

Giesen 2013, Berglund et al. 2013). However, as respondents retrospectively estimate 

time and do not actively measure it, our measure of actual burden is not as objective as 

the literature may suggest. Second, we asked respondents to rate the perceived time taken 

on a 5-point scale from “very quick” to “very time consuming”. Third, we asked respond-

ents to rate the burden of the survey on a 5-point scale ranging from “very easy” to “very 

burdensome”. For the sake of simplicity, we will refer to these two variables as perceived 

burden indicators. Furthermore, we recode our scales from 5 points to 3 points (0, 1 and 

2) by collapsing the two categories at each end. The results are not substantially different 

between the five- and three-point scales, but the 3-point scale makes it easier for the 

reader to interpret the results. For the full wording of the three burden questions and re-

sponse options, see Appendix Table 2.4. 
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2.5.2 Independent variables 

We have four mode groups, i.e., Paper-only, Web-only, Choice-Paper, and Choice-Web, 

which are our independent variables of interest. We can test our three hypotheses by com-

paring the four groups. First, we compare Paper-only and Web-only to test whether re-

sponse burden is lower for web in an establishment survey (hypothesis 1). Second, we 

compare Paper-only and Choice-Paper and also Web-only and Choice-Web to test 

whether having the chance to choose a mode affects response burden (hypothesis 2). 

Third, we compare Choice-Paper and Choice-Web to test whether response burden is 

lower among respondents who opted for the web mode (hypothesis 3). 

The models also control for the number of questions the respondent answered. Due to 

filters and skip patterns, the number of questions each respondent answered was not 

tightly controlled, even within the same questionnaire version. Therefore, we introduce 

the variable number of applicable items for each respondent. This variable counts the 

number of items respondents should have answered from the start of the interview until 

the response burden questions. In the last section, we asked respondents which question-

naire sections they answered themselves (as opposed to which ones a colleague an-

swered). If they reported that more than one person answered the questionnaire, we con-

sider only the number of items that the final respondent answered in the model because 

that respondent was the one who answered the burden questions. Furthermore, we include 

the indicator of more than one respondent in the model as a dummy variable. 

The models also control for location, size and industry to account for possible selection 

bias between modes and to increase the precision of our estimates. 
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2.5.3 Models 

To evaluate our hypotheses on response burden differences between modes, we use mul-

tivariate regression models. We ran a model for each of our three response burden varia-

bles: time to complete the questionnaire, perceived time and perceived burden. Further-

more, we ran our models for each questionnaire version separately. Therefore, we have 

six models. Because we do not claim to represent the population of establishments, all 

analyses are unweighted. Each model does include the three stratification variables as 

controls in all models; however, they are the only variables that influence the weights. 

Controlling for the components of sample weights is an alternative to the use of weights 

in regression analyses (Gelman 2007). 

Because the dependent variables have different scales, we use different models. Our re-

sponse burden variable time to complete the questionnaire has large outliers (see Fehler! 

Verweisquelle konnte nicht gefunden werden.). For this reason, we use a median re-

gression that is less susceptible to being influenced by very short and very long times than 

an ordinary least squares regression (e.g., Cameron and Trivedi 2005): 

𝒚𝒊 = 𝑴𝒊
′𝜷𝑴 + 𝑿𝒊

′𝜷𝑿 +  𝜺𝒊 (1) 

 

where 𝑦𝑖 is the time to complete the questionnaire for a questionnaire version, 𝑀𝑖
′ is the 

mode group, 𝑋𝑖
′ are the controls and 𝜀𝑖 are the unobserved variables or errors. 

Using a median regression, we assume that 𝑀𝐸𝐷(𝜀𝑖| 𝑀𝑖
′, 𝑋𝑖

′) = 0, which implies that: 

𝑴𝑬𝑫(𝒚𝒊 | 𝑴𝒊
′, 𝑿𝒊

′) =  𝑴𝒊
′𝜷𝑴 + 𝑿𝒊

′𝜷𝑿 (2) 
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Table 2.1: Summary statistics for the time to complete the questionnaire in minutes by 

questionnaire version and mode group 

 Minimum Wage  Digitalization 

 
N Mean 

Me-

dian 

Min Max 
 N Mean 

Me-

dian 

Min Max 

Paper-only 272 34.4 30 5 180  190 48.9 35 10 240 

Web-only 116 26.2 20 2 120  91 38.2 30 5 165 

Choice-Pa-

per 
355 37.5 30 5 210  245 55.4 30 5 1,440 

Choice-Web 171 32.1 20 1 210  123 44.9 30 1 1,200 

Overall 914 34.2 30 1 210  649 49.1 30 1 1,440 

 

The two perceived burden variables are ordinal scales, and we use ordinal logistic regres-

sion models with these variables (e.g., see Cameron and Trivedi 2005, p. 519 f.) and adapt 

our model as follows: 

𝑦𝑖
∗ = 𝑀𝑖

′𝛽𝑀 + 𝑋𝑖
′𝛽𝑋 +  𝜀𝑖 (3) 

𝑌𝑖 = {

0 𝑖𝑓 𝑦𝑖
∗ ≤ 𝛼0          

1 𝑖𝑓 𝛼0 < 𝑦𝑖
∗ ≤ 𝛼1

2 𝑖𝑓 𝛼1 < 𝑦𝑖
∗           

 (4) 

 

where 𝑦𝑖
∗ is one of our perceived burden indicators and 𝛼𝑖 the threshold parameters that 

are obtained by maximizing the log-likelihood. We calculate the marginal effects in the 

probabilities as follows: 

𝛿Pr [𝑦𝑖 = 𝑗]

𝛿𝑀𝑖
′ = {𝐹′(𝛼𝑗−1 −  (𝑀𝑖

′𝛽𝑀 + 𝑋𝑖
′𝛽𝑋) −  𝐹′(𝛼𝑗 −  (𝑀𝑖

′𝛽𝑀 + 𝑋𝑖
′𝛽𝑋)} 𝛽𝑀 

(5) 

where 𝐹′denotes the derivative of the cumulative distribution function of 𝜀𝑖. 
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The independent variables in all models are the same. Table 2.2 summarizes the six mod-

els. 

Because we focus on the differences between modes, we report only the linear prediction 

of the median time from the median regression (
MED(yi | Mi

′,Xi
′) 

𝛿 Mi
′ = 𝛽𝑀) and the predicted 

probabilities from the ordinal logistic regression (Equation (5)) for our mode groups. 

 

Table 2.2: Summary of the six models for evaluating the response burden 

Model Dependent  

Variable 

Questionnaire 

Version 

Model Type Independent  

Variables 

1 Time to complete Minimum Wage 
 

Median  

regression 

 

 

 

 

• Mode 

• Number of appli-

cable items 

• Establishment 

size 

• Industry 

• Region 

• Multiple re-

spondents 

(Yes/No) 

• Interaction of 

mode with each 

of the above (ex-

cept mode) 

2 Time to complete Digitalization 

3 Perceived time Minimum Wage 
 

 

 

Ordinal  

logistic  

regression 

 

4 Perceived time Digitalization 

5 Perceived burden Minimum Wage 

6 Perceived burden Digitalization 

 

The results of each model provide information supporting or rejecting our hypotheses. 

Running the models on the two questionnaire versions separately provides us with infor-

mation about whether our results hold across both survey topics. Support for hypotheses 

1.1 to 1.3 (response burden is lower in the web mode than in the paper mode) will be seen 
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by comparing the coefficients of the mode indicators for Paper-only and Web-only. For 

the time to complete the questionnaire, we expect to see a lower estimated time for the 

Web-only group. For both perceived indicators, we expect to see higher predicted proba-

bilities for the categories “quick” (perceived time) and “easy” (perceived burden) in the 

Web-only group. For hypotheses 2.1.1 to 2.1.3, we compare the coefficients of Choice-

Web against Web-only; and for hypotheses 2.2.1 to 2.2., we compare Choice-Paper and 

Paper-only. We expect a lower burden in the Choice conditions than in the Only condi-

tions. For hypotheses 3.1 to 3.3, we compare the coefficients of Choice-Web against 

Choice-Paper. We expect all three models to indicate lower burden in Choice-Web than 

Choice-Paper. 

2.6 Results 

Before presenting the results of our hypothesis tests, we examine the burden within the 

two questionnaire versions with the three response burden indicators (time to complete 

the questionnaire, perceived time and perceived burden). 

On average, respondents to the Minimum Wage version needed less time to complete the 

questionnaire (34 vs. 49 minutes) than respondents in the Digitalization version. As the 

data for the time to complete the questionnaire is not normally distributed (see Table 2.1), 

we cannot conduct a two-sample t-test. However, a nonparametric equality-of-medians 

test (see Snedecor and Cochran 1989) shows that complete time (χ2
1, N=1,563 = 50.1, p < 

0.001) is different between the two versions. 

Table 2.3 shows the descriptive results of our perceived time indicators for each ques-

tionnaire version independent of the mode. We use a chi-squared test to examine differ-

ences in the perceived time indicators between our questionnaire versions. Overall, the 

Digitalization version is perceived as more time consuming (χ2
2, N=1,668 = 32.0, p < 0.001) 

and burdensome (χ2
2, N=1,660 = 54.6, p < 0.001) than the Minimum Wage version (see Table 
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2.3). Because burden is very different in the two questionnaire versions, we run separate 

models for the two versions in the rest of the paper. 

 

Table 2.3: Proportions of perceived time and burden by questionnaire version. 

Perceived time* Minimum Wage (N= 967) Digitalization (N= 701) 

Quick 57.3 44.4 

Neither 34.1 40.5 

Time consuming 8.6 15.0 

   

Perceived burden** Minimum Wage (N= 962) Digitalization (N= 698) 

Easy 66.6 49.0 

Neither 29.0 42.1 

Burdensome 4.4 8.9 

* χ 2= 32.0, p < 0.001; ** χ 2= 54.6, p < 0.001 

 

Hypothesis 1: The response burden in the Web-only mode is lower than that in the 

Paper-only mode. 

We hypothesized that the web mode leads to a lower response burden. We test this hy-

pothesis using the six models described in the methods section. For the time to complete 

the questionnaire, we expect to see a lower estimated time for the Web-only group than 

for the Paper-only group. For both perceived indicators, we expect to see higher predicted 

probabilities for the categories “quick” (perceived time) and “easy” (perceived burden) 

in the Web-only group compared to the Paper-only group. 

Figure 2.3 compares the marginal effects of the four mode conditions on the median time 

to complete the questionnaire for the Minimum Wage version. At the median, respondents 
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assigned to the Web-only group needed 5.5 fewer minutes to complete the questionnaire 

than respondents in the Paper-only group (based on self-reported completion time; F1, 886 

= 4.9, p < 0.013). As the time to complete the questionnaire is lower in the web group, 

the results support hypothesis 1.1 that the web mode has a lower actual burden than the 

paper mode. 

Figure 2.4 shows the average predicted probabilities from the ordinal logistic regression 

model for respondents’ perceived time and burden over the four mode groups in the Min-

imum Wage version. The predicted probabilities provide us with a measure of how the 

respondents perceived responding to the survey mode while controlling for our independ-

ent variables (size, industry, number of applicable items and region). The left panel shows 

the results for perceived time, and the right panel shows the results for perceived burden. 

Our model predicts similar probabilities for Paper- and Web-only for perceived time 

(�̂�quick=0.54-0.61, �̂�neither=0.32-0.37, and �̂�time consuming=0.07-0.09) and perceived burden 

(�̂�easy=0.64-0.72, �̂�neither=0.25-0.31, and �̂�burdensome=0.03-0.05). We see no variation be-

tween Web-only and Paper-only for either of our perceived burden indicators (χ2
4, N=409 = 

3.2, p=0.53 for perceived time and χ2
4, N=409 = 0.7, p = 0.95 for perceived burden). The 

results from the two perceived burden indicators do not support hypotheses 1.2 and 1.3. 

The results for the Digitalization version are similar (see Figure 2.5 for the time to com-

plete the questionnaire and see Figure 2.6 for perceived time indicators). Figure 2.5 

shows that the estimated time for completing the questionnaire is 10 minutes lower in 

Web-only (F1, 615 = 6.0, p = 0.007) and supports hypothesis 1.1 that response burden is 

lower for the web mode. In Figure 2.6, there is no variation in the marginal predicted 

probabilities between Web-only and Paper-only for perceived time (χ2
4, N=298 = 0.1, p = 

1.0) and perceived burden (χ2
4, N=295 = 0.5, p = 0.97). Therefore, our results do not support 

hypotheses 1.2 and 1.3 that the perceived response burden is lower in the web mode. 
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Hypothesis 2: The burden is lower when respondents choose a mode than when that 

mode is assigned. 

We hypothesized that the possibility of choosing one’s preferred mode lowers the burden 

of respondents. Therefore, the estimated time should be smaller for the (2.1) Choice-Pa-

per group than for the Paper-only and for the (2.2) Choice-Web group than the Web-only. 

For the Minimum Wage version (see Figure 2.3), the difference between Paper-only and 

Choice-Paper in the time to complete the questionnaire is 0.4 minutes. In the group com-

parison of Web-only and Choice-Web, we find a -0.6-minute difference. For the Digitali-

zation version (see Figure 2.5), there is no difference in the time to complete the ques-

tionnaire between the Paper-only and Choice-Paper groups and between the Web-only 

and Choice-Web groups. 

For our perceived burden indicators (see Figure 2.4 for the Minimum Wage version and 

Figure 2.6 for the Digitalization version), there is no variation in the predicted probabili-

ties between our Choice and Only groups (see Appendix Table 2.5 for the joint χ2 values). 

Overall, we find no support for our hypotheses 2.1.1 to 2.2.3. 

 

Hypothesis 3: The response burden in the web mode is lower than that in the paper 

mode (mode choice). 

Our third hypothesis is similar to the first, but it compares paper and the web when a 

choice is offered. We hypothesized that among those respondents given a choice, the web 

mode should have a lower response burden than the paper mode. 

In the Minimum Wage questionnaire, Choice-Web respondents needed 6.4 fewer minutes 

to complete the questionnaire (F1, 886 = 9.5, p = 0.001) (see Figure 2.3) than Choice-Paper 
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respondents. In the Digitalization questionnaire, the differences were larger: the esti-

mated median time for completing the questionnaire is 10 minutes lower in Choice-Web 

(F1, 625 = 7.6, p = 0.003) (see Figure 2.5). 

Examining Figure 2.4 and Figure 2.6, we see no variation in the predicted probabilities 

between Choice-Paper and Choice-Web (see Appendix Table 2.5 for the joint χ2 values). 

Therefore, we find mixed support for our hypothesis: when offered a choice, those choos-

ing the web mode have a lower estimated time for completing the questionnaire (hypoth-

esis 3.1) but there is no difference in the perceived burden (hypotheses 3.2 and 3.3). 
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Figure 2.3: Linear prediction of the estimated median time to complete the question-

naire in minutes for the Minimum Wage questionnaire (bars show 95% confidence in-

tervals) 

 

 

Figure 2.4: Predicted probabilities from the ordinal logistic regression model for per-

ceived time and perceived burden in the Minimum Wage version by mode group (bars 

show 95% confidence intervals) 
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Figure 2.5: Linear prediction of the estimated median time in minutes to complete the 

questionnaire for Digitalization questionnaire (bars show 95% confidence intervals) 

 

 

Figure 2.6: Predicted probabilities from the ordinal logistic regression model for per-

ceived time and perceived burden in the Digitalization version by mode group (bars 

show 95% confidence intervals)   
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2.7 Conclusion 

We designed this study to determine the differences in response burden between paper 

and web modes in a German establishment survey. We designed two surveys with the 

same experimental mode groups. To evaluate response burden, we used three measures 

of burden (estimated time to complete the questionnaire, perceived time and burden) and 

four mode comparisons (Paper-only vs. Web-only, Choice-Paper vs. Paper-only, Choice-

Web vs. Web-only, Choice-Paper vs. Choice-Web) to answer our research questions about 

whether response burden is lower in an establishment web survey and whether respond-

ents feel less burdened if they can choose between paper and web modes. 

This study has shown that web respondents, whether they were offered the web as a 

standalone mode or concurrently with a paper questionnaire, have a lower median time 

to complete the questionnaire compared to a paper questionnaire. These results held when 

respondents chose the web mode and when they were assigned to the web mode. 

We found no evidence of a difference in either measure of perceived burden between the 

paper and web modes. As we have mentioned at the beginning of this paper, response 

burden is a multifaceted concept. It is important to note that perceptions of burden could 

be affected by factors other than time. For instance, a questionnaire that seems relevant 

and straightforward to respondents might be less burdensome than a shorter but more 

difficult instrument.  

Our results suggest that offering respondents the choice of their preferred mode has no 

effect on response burden compared to a single-mode setting. Therefore, concerning re-

sponse burden, the web mode is a cost-effective alternative to the paper mode1. Further-

more, the results of our study are consistent across two different topics: Minimum Wage 

 
1 Nevertheless, the reader should be aware that the web mode may have a considerably lower response rate 

than a paper questionnaire. 
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and Digitalization. Therefore, our results may also be applicable to other sur-

veys.TEXTTEXT 

A reason why we find a lower estimated time for the time to complete the questionnaire 

may be that the web mode has an automatic questionnaire flow and does not show unnec-

essary questions to the respondents. However, the estimated time to complete could also 

indicate that web respondents are more satisfied than paper respondents. Future research 

needs to address this question. 

One could argue that the lower response rate in the web survey is a sign that respondents 

find that mode more burdensome. However, there are several possible explanations for 

the lower response rate in the web mode. First, while the paper group received an invita-

tion letter and a 20-page questionnaire, the web group received only a one-page invitation 

letter, which is easier to overlook. Second, the paper questionnaire may have served as a 

visible reminder to complete the survey in a way that the one-page letter did not. Third, 

we have anecdotical evidence from our pretest that some respondents had trouble entering 

the survey link in their web browser. Therefore, contact persons in the web group may 

have failed to participate because they could not access the web survey, a challenge that 

the contact persons in the paper group did not have to overcome. Response burden may 

not be the driving issue for lower response rates. However, researchers planning to use 

the web mode for their establishment survey should remember that administrating a web 

survey comes at a cost of lower response rates. 

Finally, we need to consider a number of important limitations: 

First, the generalizability of our results is limited to surveys with similar lengths and for-

mats. Our results are especially limited to our web survey design. Web surveys with a 

different design may perform differently as they may have functions or design character-

istics that impact the response burden. We designed our web survey to be visually very 
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similar to the paper questionnaire. However, important design features may reduce re-

spondents’ burden in a web survey. Further research might explore how to reduce the 

response burden in the web mode. 

Second, participation in the surveys used in this study was not mandatory. However, for 

a large proportion of establishment surveys, participation is required by law. Voluntary 

establishment surveys are likely to exclude establishments that are not motivated to re-

spond or that anticipate a high response burden. Unfortunately, we can only speculate 

about the relationship between the anticipated response burden, the response rate and our 

mode groups. Inviting establishments to participate a web survey may exclude respond-

ents who are not very savvy in using digital technologies and therefore decide not to par-

ticipate. Establishments in the paper group may have cross-read the questionnaire or even 

started to respond but decided to not respond. As the choice between several modes is 

likely to overwhelm respondents to not respond at all (Medway and Fulton 2012), the 

choice of mode in a mandatory survey may add a perceived burden to respond. In all three 

mode groups, we may have found a higher response burden if the establishment survey 

would have been mandatory. 

Third, there may be establishments with no internet access or with internal security guide-

lines that block web surveys or render them poorly (Harrel, Yu and Rosen 2007). Fur-

thermore, establishments may have problems logging in, finding the website or navi-

gating the survey (Bremner 2011, Gregory and Earp 2007). Therefore, our web respond-

ent sample may be biased by an unknown coverage error. 

Fourth, offering a paper, web or paper/web survey may recruit different kinds of respond-

ents. Therefore, our respondent sample may be biased by mode-introduced nonresponse 

not visible in the data. However, the fact that the differences between paper and the web 

in the Only groups and paper and the web in the Choice groups are similar and the fact 
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that our findings are consistent over two questionnaire versions makes us somewhat con-

fident in the validity and reliability of our results. 

Fifth, our results only consider German establishments. The results may change in estab-

lishment populations with higher or lower digitalization rates or with higher or lower 

internet penetration rates. Furthermore, we can link our results only to establishments that 

finished the survey but not to all invited establishments. 

Sixth, we only consider the effect of the paper and web modes and not any other mode; 

instrument design; or interaction between instrument designs, respondent characteristics 

and establishment structures such as size. Especially in relation to the mode, instrument 

design decisions, respondents’ characteristics and establishment structures can interact 

with each other. As we know from surveys of individuals, younger, more affluent, and 

higher educated respondents prefer the web mode over the paper mode (Kaplowitz et al. 

2004, Kwak and Radler 2002, Messer and Dillman 2010, Millar et al. 2009). Similar ef-

fects may occur in establishment surveys. Our sample does not allow testing for these 

interactions as the number of cases is insufficient. The interaction of the web mode with 

other survey properties, respondent characteristics and establishment structures should be 

evaluated in future research. 

Seventh, independent of the mode, first-time respondents must become familiar with the 

survey instrument. Against this background, respondents will develop individual best 

practices on how to interact with the survey instrument, i.e., they improve when respond-

ing to a mode each time they participate. Therefore, we may see a change in the response 

burden over time. Future research should assess whether panel participation affects the 

response burden and whether the response burden decreases or increases over time in the 

web mode. 
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Eighth, we used a postal letter as the mode of contact to invite establishments in each 

mode group to participate. Using a different means for contact, e.g., email, may affect 

respondents’ perceived burden. To access a web survey, respondents usually use a link. 

If the link is provided within an email, respondents only need to click on that link to 

access the web survey. If the link is provided on a paper invitation letter, respondents 

should type the link into their browser search bar to access the web survey, which takes 

more effort than just clicking on a link. Therefore, in terms of the response burden, con-

tacting establishments with postal letters may increase the burden. 

Although these limitations seem numerous, our results provide important insights into the 

effect of the web mode on the response burden in establishment surveys. Moreover, we 

are convinced that the validity of our findings is very high due to our rigorous experi-

mental manipulations. In addition, our findings are consistent across two different sur-

veys, which increases the reliability of our results. Our study provides important findings 

for the development and design of establishment surveys in the online era. Even if the 

perceived response burden (for respondents) is not lower in the web mode, web surveys 

are cost effective and enable features that help to improve data quality. Our findings about 

response burden, combined with the lack of difference in the response rates between the 

Paper-only and the Choice conditions, lead us to recommend that surveys should offer 

establishments a choice of paper and web modes.
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Appendix 

Table 2.4: Wording and response options for the response burden indicators. 

Dimension Indicator Question Response options 

Perceived burden 

 

Perception of time 

 

Did you find it quick 

or time consuming to 

fill in the question-

naire? 

 

Very quick, Quite 

quick, Neither quick 

nor time consuming, 

Quite time consum-

ing, Very time con-

suming 

 

 Perception of burden 

 

Did you find it easy 

or burdensome to fill 

in the questionnaire? 

 

Very easy, Quite 

easy, Neither easy 

nor burdensome, 

Quite burdensome, 

Very burdensome 

 

Actual burden 

 

Time to complete 

(if 1+ persons filled 

out the question-

naire) 

How much time did 

you spend on actu-

ally filling in the 

questionnaire (sec-

tions)? 

Number of hours, 

Number of minutes 
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Table 2.5: Joint χ2 values from margin contrast for Minimum Wage and Digitalization questionnaire versions and hypotheses 1-3 

 Minimum Wage Digitalization 

H1: lower estimated time for web respondents 

Perceived time χ2
4, N= 409= 3.2, p = 0.53 χ2

4, N=298 = 0.1, p = 1.0 

Perceived burden χ2
4, N=409 = 0.7, p = 0.96 χ2

4, N=295 = 0.5, p = 1.0 

H2.1: lower estimated time for choice-paper respondents 

Perceived time χ2
4, N=655 = 2.5, p = 0.64 χ2

4, N=461 = 0.1, p = 1.0 

Perceived burden χ2
4, N=652 = 0.7, p = 0.94 χ2

4, N=457 = 0.1, p = 1.0 

H2.2: lower estimated time for choice-web respondents 

Perceived time χ2
4, N=305 = 1.2, p = 0.88 χ2

4, N=234 = 0.0, p = 1.0 

Perceived burden χ2
4, N=304 = 1.5, p = 0.83 χ2

4, N=234 = 1.0, p = 0.90 

H3: lower estimated time for choice-web respondents 

Perceived time χ2
4, N=551 = 0.66, p = 0.96 χ2

4, N=397 = 0.7, p = 0.95 

Perceived burden χ2
4, N=547 = 0.0, p = 1.0 χ2

4, N=396 = 0.6, p = 0.96 

+ p ≤ 0.1, * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.0
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3 Comparing Single-sitting Versus Modular Text Message 

Surveys in Egypt 

3.1 Abstract 

Survey researchers increasingly explore the benefits and drawbacks of text message sur-

veys. This survey mode enables cost efficient data collection and can be applied in hard-

to-reach populations where other survey modes suffer from undercoverage, e.g., in re-

gions with low landline and/or low internet penetration. However, so far not much is 

known about how to best administer surveys in this mode. We experimentally compare 

two different designs of automated text message surveys in terms of response rate, non-

response bias, substantial responses, and participation in a follow-up survey in Egypt. In 

the single-sitting design, respondents automatically received a text message with a new 

question once they reply to a question. In the modular design, respondents received a new 

question each day, regardless of whether they had responded to the previous question. 

We invited 1,081 Egyptian parents of kindergarten children who own a mobile phone to 

participate in a text message survey with eight questions on nutrition behavior of their 

children. We randomly split the sample into the two design groups. We found that, com-

pared to the single-sitting design, the modular design achieved a higher number of an-

swered questions but had fewer fully completed questionnaires. In addition, we found a 

difference between groups on substantive responses of behavioral questions. We find no 

nonresponse bias in both groups and no difference in probability to respond to a follow-

up survey. Our results will help researchers making design decisions about how to imple-

ment text message surveys.  
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3.2 Introduction 

The use of mobile phones is on the rise worldwide, not only in North America (PEW 

2014a) and Europe (GMSA Intelligence 2020), but also in many non-western countries 

(Silver et al. 2019). While the vast majority of mobile phones in western societies are 

smartphones, the share of internet-enabled smartphones in emerging countries is still lag-

ging behind (Taylor and Silver 2019). In Egypt, the country of interest for this study, 

PEW reported a mobile phone penetration rate of 88% while only about 43% of the Egyp-

tian population use the internet (PEW 2014b).  

For researchers who want to conduct surveys in these emerging countries, penetration 

rates have a crucial influence on the decision which mode to use for data collection, and 

text message surveys may be especially suitable for studying hard-to-reach populations, 

that is, populations with no permanent addresses, low landline penetration, and low inter-

net penetration. In addition, text messages do not need a permanent network connection 

making them a viable survey method in regions without a stable phone network connec-

tion (Conrad et al. 2017). In fact, a short connection is enough to receive and send multi-

ple messages. Furthermore, text message surveys are considered a very fast mode, i.e., 

most respondents reply within a day (Conrad et al. 2017, Down and Duke 2003, Hoe and 

Grunwald 2015, McDonald and Kifer 2018). Another advantage of text message surveys 

is that they are less intrusive than modes with direct interviewer contact, e.g., face-to-face 

or telephone interviews (Broich 2015, Johnson 2016). Even if an interviewer conducts 

the text message survey instead of an automated texting system, text message surveys are 

considered to be less intrusive (West et al. 2015). At last, text message surveys, especially 

if conducted without interviewers, are very cheap. For example, Hoe and Grunwald 

(2015) found that a text message survey only costs a tenth of a telephone study. 
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While text message surveys offer many advantages, there are also certain limitations re-

searchers should keep in mind when administering text message surveys. For instance, 

text messages have a character limit depending on country and provider (usually 160 

characters per message). Messages longer than this limit are automatically broken up into 

multiple messages and the order of the messages might change due to technical reasons 

when participants receive messages. Therefore, researchers are advised to fit a question 

and all response options in one text message (Conrad et al. 2017, Down and Duke 2003, 

Johnson 2016). Furthermore, respondents may answer to a survey question by texting 

back a number or letter associated with the response, the original wording of the response, 

or some combination or variation of the response. This makes the standardization of an-

swers and the use of plausibility checks much more complicated, and the system used 

should allow for a variety of valid answers (Down and Duke 2003, Broich 2015).  

While researchers are gaining experience with text message surveys, there are still several 

open questions about how to best implement this mode. For instance, response rates from 

various text message surveys vary in a wide range from 0.2% to 94.7% (see Table 3.1). 

So far, no systematic analysis has evaluated which characteristics of text message surveys 

are responsible for the magnitude of response rates.  

 

Table 3.1: Summary of response rate in text message surveys.  

Study Country 
Number of 

Questions 
Response rate in % 

West et al. 2015 Nepal 15 94.7 

Marlar et al. 2014 US 
5 13 

12 12 

Schober et al. 2015 US 32 48.9 (without interviewer) 

71.8 (with interviewer) 

Broich 2015   1.3 

Down and Duke 2003  2 54 

Hoe and Grunwald 2015  5 7 

McDonald and Kifer 2018 US 39 32 
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Study Country 
Number of 

Questions 
Response rate in % 

Johnson 2016 Kenia 
5 (wave 1) 39.5 

6 (wave 2) 28.4 

Lau et al. 2018 

Ghana 16 0.6 

Nigeria 16 0.3 

Uganda 16 14.2 

Kenia 16 12.1 

Lau et al. 2019 Nigeria 12 0.2 

Cooke et al. 2003 UK 

3 over 5 days 69 

3 within 1 day 61 

4 within 1 day 58 

5 within 1 day 64 

 

The goal of our study is to contribute to the literature on text message surveys by experi-

mentally comparing two designs how researchers might administer text message surveys. 

In the single-sitting design, respondents receive a survey question via text message and 

upon answering that question automatically receive the next question. To complete the 

survey, respondents must answer all questions, like they would do in many other survey 

modes. In the modular design, respondents receive one new question each day, regardless 

of whether they had responded to the previous question.  

Arguments for using the modular design are that such a design might reduce the perceived 

questionnaire length and thus lowers respondents’ burden, limit recall error for questions 

that refer to behavior on a specific day, and eliminate context effects (West et al. 2015, 

Johnson et al. 2012, Smith et al. 2012, Peytchev et al. 2020, Toepel and Lugtig 2018). 

The literature differentiates between two kinds of modularization (see, e.g., Toepel and 

Lugtig 2018). First, within respondent modularization, meaning a questionnaire is splitted 

into several modules, and respondents are invited to answer all modules at separate points 

in time. Survey designers can either control the order in which the modules have to be 

answered by inviting respondents to each module one after the other, or they can let re-

spondent decide in which order and at what time they want to respond to each module. 
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Second, modularizing across respondents, meaning that different questionnaire modules 

are assigned to different groups of respondents. This technique is also known as split 

questionnaire design.  

Our study employs a within respondent modularization with a predefined order in which 

respondents had to respond and for the sake of simplicity, we will refer to this as the 

modular design throughout the paper. Our study compares a single-sitting to a modular 

text message survey design on the following dimensions: unit and item response, non-

response bias, substantive responses, and participation in a follow-up survey. While our 

study provides insights in the use of text message survey methods for a specific popula-

tion in Egypt, that is, parents who participated in a nutrition health project targeting their 

kindergarten children, the findings will add to the literature on text message survey de-

sign. Our paper is structured as follows. First, we provide an overview about the current 

state of the literature on text message surveys, including existing research on differences 

between single-sitting and modular text message survey designs. Second, we describe the 

nutrition health project in Egypt which our study is part of, and we explain our experi-

mental design. Third, we present the results of our study. Fourth, we provide a discussion 

of the theoretical and practical implications of our findings as well as suggestions for 

future research in this field. 

 

3.3 Using a modular design in text message surveys 

To formulate hypotheses on how the modularization of a text message survey may affect 

survey outcomes, we review the current literature of text message surveys and the mod-

ular design. 
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3.3.1 Unit and item response 

Two studies compared response rates between single-sitting and modular design in text 

message surveys. Cooke et al. (2003), who used an automated text message system, con-

ducted an experiment with members of an online panel in Great Britain and found that 

text message surveys spread out over five days (modular) have a higher response rate than 

a text message survey administered in a single-sitting in one day. However, they also 

found that completion rate, i.e., the proportion of respondents who answered all questions, 

was higher for the single-sitting group compared to the modular group. At first, this effect 

seems counterintuitive but makes sense if we consider that the modular design works 

similarly to sending reminders2, which are known to increase response rates (e.g., Shih 

and Fan 2008). However, since the second question replaces the first question in the mod-

ular design, respondents who, for instance, missed the first question and started with the 

second had no possibility to go back and answer the first question and therefore cannot 

respond to all questions in the survey. 

A second study that compared single-sitting and modular designs was conducted by West 

et al. (2015) in Nepal, who conducted an interviewer administrated text message survey. 

The authors did not find any differences in response rates between the two text message 

design groups but they attribute that to the extremely high overall response rate (94.7%) 

and the extremely cooperative Nepalese respondents. However, the study found that item 

response was 26 to 53.5 percentage points higher in the single-sitting design group.  

Toepel and Lugtig (2018) also conducted an experiment to compare the single-sitting and 

two modular designs but did so in a web survey. One modular group received three larger 

survey modules with a gap of one week between each module, and the second received 

 
2 Cooke et al. (2003) refrained from using reminders because they had a legitimate response rate in the one day survey.   
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ten shorter modules with a gap of two days between each module. Respondents were able 

to participate via PC, smartphone, or tablet. Results from this study are comparable to the 

text message studies in that the overall number of people who started the survey increased 

with the number of modules in a design but so did the share of people who dropped out. 

Eventually, this led to similar number of completes in each of the three groups.  

Based on the current literature, we hypothesize that compared to a single-sitting mode, 

we should see a higher unit response rate (H1) and lower item response rates (H2) for the 

modular design of a text message survey.  

3.3.2 Nonresponse bias 

Systematic differences between respondents and the invited sample may lead to biased 

estimates in substantive variables (Groves et al. 2011). For example, the data collected in 

our text message survey will be used to produce estimates about health-related behaviors 

of parents and the health condition of their kindergarten children. If responding to the text 

message survey correlates with personal or household characteristics that are related to 

health behaviors, e.g., employment status, income, and education of the parents, resulting 

estimates may only represent a subset of parents. A large number of studies evaluated 

sample composition or nonresponse error of text message surveys by comparing charac-

teristics of the respondent sample against the characteristics of the invited sample or an-

other benchmark and find that text message surveys underrepresent women, older people, 

less educated, less technically savvy people, married people, and people living in rural 

areas (e.g., Lau et al. 19, Lau et al. 2018, Hoe and Grunwald 2015, Johnson 2016). How-

ever, these studies do not evaluate the potential resulting nonresponse bias.  

When it comes to nonresponse bias due to the design of the text message survey, West et 

al. (2015) found no differences in key characteristics between the experimental groups in 
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their study. However, this result may again be attributed to the very cooperative popula-

tion. We are not aware of other studies that evaluated nonresponse bias between single-

sitting and modular text message survey design. However, the modular design, where 

respondents can skip a daily question, may work in a similar way as using reminders. Lau 

et al. (2018) found that the use of reminders in text message surveys increases the pro-

portion of older and less educated respondents, who are usually underrepresented in text-

message surveys. As we do not use reminders for the single-sitting group, we may be able 

to identify different nonresponse bias between single-sitting and modular design in our 

study. We therefore expect that the respondent sample of the modular design group shows 

less nonresponse bias than the single-sitting design group (H3).  

3.3.3 Substantive responses 

The longer a certain event is in the past, the harder it is for people to correctly remember 

this particular event (see Cannel et al. 1981). Therefore, daily text message surveys that 

ask about the behavior on that day may produce lower retrospective error compared to a 

one-time survey that asks retrospective questions about a longer time period. Johansen 

and Wederkopp (2010) evaluated the use of text message surveys for collecting patients 

back pain. They compared a weekly text message survey against a one-time retrospective 

telephone survey asking about respondents’ number of days with back pain during the 

last week3, the last month, and the last year. The authors found no differences in reporting 

backpain between the text message survey and the telephone survey asking about the last 

week as well as the monthly aggregate of weekly reports from the text message survey 

and the telephone survey asking about the last month. However, they found that the re-

ported number of days with back pain largely differed between the aggregated yearly 

estimate from the weekly text message survey and the one-time report in the telephone 

 
3 Question: "How many days in the past week have you had problems due to LBP?" 



3 Comparing Single-sitting Versus Modular Text Message Surveys in Egypt 90 

 

survey asking about the last year by 36 days on average, concluding that the weekly text 

message survey achieves more reliable reports.  

West et al. (2015) found no differences between the single-sitting and the modular design 

concerning substantive responses. However, in this study respondents were not asked 

about specific events in the past but about behaviors or lifetime histories that are unlikely 

to change over time. Toepel and Lugtig (2018) found that satisficing behavior decreases 

with the number of modules in a modular design. Their modules, however, each contain 

more than one question and their single-sitting design contained over 100 items.  

In our study the largest time period for recalling behavior is five days. As Johansen and 

Wedderkopp (2010) found no difference between the weekly and monthly report, the time 

differences between our design groups are probably too short to find differences in re-

sponse behavior that can be tied to recall bias. Therefore, we do not expect any differences 

between the single-sitting and modular group (H4).  

 

3.3.4 Effects on follow-up survey participation 

The main idea of a modular survey design is that splitting the questionnaire in smaller 

parts reduces the perceived questionnaire length (i.e., respondent burden) and therefore 

reduces break-offs within a module (Toepel and Lugtig 2018). However, with each addi-

tional module, individuals are invited to another short survey. As a result, respondents 

may feel fatigued and less interested at some point to respond to another survey, and we 

may see an effect similar to panel attrition. On the other side, a daily invitation to a survey 

may increase the commitment to the study and the organization conducting the research. 

Individuals may apply the sunk cost fallacy, that is, they invest more, if they already 

invested in something (Arkes and Ayton 1999). In terms of modular text message survey 
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designs, this could mean that individuals that participated in more modules (i.e., invested 

time), are more likely to respond to future surveys of the same study or from the same 

organization (i.e., invest more time). As we are not aware of any study that has evaluated 

the effect of participating in a modular survey on participation in follow-up surveys, we 

also explored the effect of participating in a modular survey on the response rate of the 

follow-up survey. 

3.4 Data and Methods 

To study the effect of the design of text message surveys, we conducted an experiment. 

Our research is embedded in a larger study evaluating the impact of nutrition of kinder-

garten children in Egypt in 2017. We refer to this study as the nutrition study. The nutri-

tion study targeted 76 kindergartens in Egypt. A baseline face-to-face survey with 3,003 

parents of 4,517 children in these kindergartens was conducted in 2017. The baseline 

survey collected information about parents’ and childrens’ sociodemographics, childrens’ 

health and nutrition, information on the main caregiver, basic information on the house-

hold, and available means of communication in the household. 

Among other things, the baseline survey asked the parents whether they own a mobile 

phone (77.3%). All 2,322 parents reporting to own a mobile phone were asked to provide 

a phone number and consent to being contacted for a text message survey. To verify that 

phone numbers were working and a parent could be reached, all phone numbers were 

called once before sending any text messages. For 1,081 parents (36.0% of all parents in 

the nutrition study) a working phone number could be verified. This makes up the sample 

for our text message surveys.  

We used the viamo (formerly votomobile) platform to administer two waves of the text 

message survey. Before the start of the survey, each parent with a valid phone number in 
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the study received a pre-paid, unconditional incentive as airtime sent to their phone ac-

count. This amount would at least cover the costs for sending and receiving the text mes-

sages as part of the two survey waves. 

The text message survey comprised of two waves (see Figure 3.1). Wave 1 consisted of 

eight questions (see Appendix Table 3.7 for question wording and response format) and 

was administered in a single-sitting design, i.e., respondents were expected to answer the 

survey in one go. A new question was sent automatically once the previous question was 

answered, and all questions had to be answered to complete the survey. Therefore, re-

spondents had the chance to stop the survey at any question and return to the questionnaire 

later. Data collection for wave 1 started on Monday, April 3rd 2017. The survey was left 

open for a week and no reminders were sent. Overall, 267 parents (24.7%) responded to 

wave 1 by answering at least the first question, and 102 (9.4 %) parents completed the 

entire questionnaire by responding to all questions. 

 

 

Figure 3.1 Overall design of the nutrition study 
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Three weeks after the end of wave 1, we invited the same 1,081 parents to participate in 

the wave 2 survey. This time we conducted a 2 x 2 experiment with random assignment 

to four groups. The first experiment concerned the two different survey designs for the 

text message mode: single-sitting vs. modular. The second experiment concerned an in-

tervention on healthy nutrition information4. 

Table 3.2 shows the field implementation of our experimental design. For the single-sit-

ting group the text message survey design in wave 2 was equal to the one in wave 1: 

questions had to be answered one after the other, new questions were sent only if a reply 

to the earlier question was received, and all questions had to be answered to complete the 

survey. Data collection for the single-sitting group started on Friday, April 28th 2017. The 

survey was left open for a week, and no reminders were sent. Invited individuals in the 

modular group received one question each day, starting on Thursday, April 20th 2017. 

The last question was sent on Thursday, April 27th 2017 (overall eight questions). Parents 

assigned to the modular group had 24 hours to respond to one question, and once a new 

question was sent on the next day, they could not go back to the previous question. For 

both groups, no reminders were sent. 

  

 

4 For the intervention experiment the treatment group (N=541) received a daily text message of helpful tips 

about healthy nutrition for kindergarten children, aiming at altering parents’ awareness and behavior on 

providing their kids healthy food. The intervention started on Saturday, April 8th 2017 and lasted three days 

The control group (N=540) received no text message about healthy nutrition for kindergarten children. We 

found no evidence that the intervention experiment has any effect on our results. Therefore, we will not 

discuss results of the intervention experiment. 
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Table 3.2: Experimental design of text message survey wave 2 for question (Q) 1-8.  

Date (month, year, day) Weekday Single-sitting Modular 

April 2017 

20 Thursday - Q1 

21 Friday - Q2 

22 Saturday - Q3 

23 Sunday - Q4 

24 Monday - Q5 

25 Tuesday - Q6 

26 Wednesday - Q7 

27 Thursday - Q8 

28 Friday Q1-Q8 - 

 

3.4.1 Questionnaire 

The questionnaire for text message survey wave 1 and wave 2 included the same eight 

questions. As an introduction to the text message survey, three messages were sent ex-

plaining how to respond to the survey. All messages and survey questions were sent in 

Arabic. Questions 1 to 3 requested information on parents’ nutrition knowledge, and only 

one answer category could be chosen (see Appendix Table 3.7). Questions 4 to 8 asked 

parents about the type of food their kindergarten child ate on a specific day. For these 

questions, respondents could send back all numbers that applied5.  

The wording of questions four to eight was slightly different in the single-sitting and the 

modular design (see Table 3.3). In the single-sitting design questionnaire, each question 

asked retrospectively for the past five days. Since the survey started on a Friday, the ques-

tions asked about Sunday, Monday, Tuesday, Wednesday, and Thursday. In the modular 

 
5 If respondents choose more answer categories or did not submit a valid number, the question was sent 

again.  



3 Comparing Single-sitting Versus Modular Text Message Surveys in Egypt 95 

 

design questionnaire, each daily question asked retrospectively about the previous day, 

that is, about what their kindergartener ate yesterday. The first of the five questions in the 

modular group was asked on a Monday. Therefore, the referenced days were equal for 

each question in the two groups (see Table 3.3). 

The answer categories in both groups for each question were the same. Respondents could 

select multiple answer categories out of five different kinds of foods: “meat or fish”, 

“fruits”, “vegetables or legumes”, “dairy”, and “sweets”. 

 

Table 3.3: Wording for questions 4 to 8 in the single-sitting and the modular design 

Survey design Question wording Answer categories  

(multiple answers allowed) 

Single-sitting 

 

On [day]* this week, did 

your kindergarten kid(s) eat 

…? 

 

1 meat or fish 

2 fruits 

3 vegetables or legumes 

4 dairy 

5 sweets 
Modular 

 

Which of the following did 

your kindergarten kid eat 

yesterday …? 

*day: Sunday, Monday, Tuesday, Wednesday, Thursday 

 

3.5 Analysis Plan 

3.5.1 Unit and item response 

To test H1 (higher unit response rates for the modular design group compared to the sin-

gle-sitting design group), we compare the proportions of total interviews (answered at 

least one question), completed interviews (answered all eight questions), partial inter-

views (answered at least one question but did not finish), and non-participants between 
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single-sitting and modular design using two sample z-tests of proportions. To test H2 

(lower item response rates for the modular design group compared to the single-sitting 

design group), we compare the proportion of non-missing responses for each question 

between single-sitting and modular design for all parents who answered at least one ques-

tion using two sample z-tests of proportions.  

 

3.5.2 Nonresponse bias 

To study the influence of the survey design on nonresponse bias, we use information from 

the baseline survey. Unlike other studies that use person level variables, we use household 

level variables for our analyses for several reasons. First, data collected in the baseline 

survey are mostly on household level. Second, variables collected on the person level 

have low variance due to the homogenous nature of respondents. For instance, respond-

ents in the baseline survey are mainly female (94.7%), indicating that the mother of the 

child responded to the survey. Third, it is likely that households share a mobile phone. 

Therefore, it is not certain that the person who responded to the baseline survey also re-

sponded to the text message survey. Fourth, health behavior is likely to be homogenous 

within the household and the quality of nutrition is likely to correlate with factors that 

indicate wealth, e.g., monthly income and household facilities. 

We use the following variables from the baseline survey in our analysis: employment 

status of the household breadwinner, monthly income, daily spendings on food, accom-

modation possessions, household size, number of rooms, and number of daily full meals 

for children. We estimate the difference (diff) between the invited sample (b) and the re-

spondent sample (r), i.e., respondents who answered at least one survey question, in a survey 

design group (d) for each variable (y) the following way: 
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diff(𝑦d)=𝑦rd−𝑦b 

 

Next, we calculate the standard error of the estimated bias following the formula used by 

Lee (2006) and Keusch et al. (under review) as 

 

𝑠. 𝑒. (𝑦𝑟𝑑
− 𝑦𝑏) =

𝑛𝑏 − 𝑛𝑟𝑑

𝑛𝑏
× √𝑣𝑎𝑟(𝑦𝑟𝑑

) + 𝑣𝑎𝑟(𝑦𝑛𝑟𝑑
) 

To test the significance of a given bias, we use a z-test. To calculate a test statistic, we 

divide the estimate of the difference by the standard error of the difference. 

 

3.5.3 Substantive responses 

To test whether the modular design and the single-sitting design lead to similar or differ-

ent substantive responses (H4), we compare the answers to the five questions about what 

food children ate on a specific day. For each referenced day, we compare the proportion 

of each food category between single-sitting and modular design using Chi-Squared 

Tests.  

 

3.5.4 Effects on follow-up survey participation 

Finally, we specified a logistic regression model to evaluate whether inviting parents to a 

specific text survey design has an impact on the participation of a face-to-face follow-up 

survey. The information if a respondent participated in the follow-up survey serves as the 

dependent variable in our model. The modular design may reduce parents’ propensity to 

participate in three ways. First, by the number of invitations. Therefore, we test if the 
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group assignment has an impact on the follow-up survey. Second, by responding to at 

least one question of the text message surveys. Therefore, we include an interaction term 

between group assignment and the information if an invited parent responded. Third, by 

the number of questions answered in each group. However, as case numbers are too low 

(e.g., only four respondents answered all eight questions in the modular group), we cannot 

consider the number of answered questions as an independent variable for our model. In 

our model, we control for possible selection effects by including all variables used in our 

nonresponse bias analysis. For ease of interpretation, we present average marginal effects 

(AMEs) calculated using the margins package (version 0.3.23) (Leeper 2018) in R version 

4.0.3 (R Core Team 2020). 

 

3.6 Results 

3.6.1 Unit and item response 

Table 3.4 provides an overview about the participation behavior in the single-sitting and 

the modular design. In the single-sitting design group, 14.3% of contacted parents replied 

to at least one question with a valid response. In the modular design group, the total re-

sponse rate is twice as high (28.7%; p < 0.001). Therefore, the modular design seems to 

generate more respondents who complete at least one survey question than the single-

sitting design, supporting H1. Similarly, we find a higher rate of partial completes, i.e., 

respondents who answered at least one question but did not complete the entire survey, 

in the modular design (27.9%) compared to the single-sitting design (10.4%; p ≤ 0.001 ). 

However, looking at the percentages of completes we see that the single-sitting design 

produces significantly more completed questionnaires than the modular design (3.9% vs. 

0.7%; p = 0.001).   
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Table 3.4: Number and percent of respondents for total, 8 questions, 1-7 questions and 

each question by experimental design. 

 Single-sitting (N=540) Modular (N=541) Diff (RRmodular – 

RRsingle-sitting) 

 
N % N % N 

%-

points 

Total Response 

(responded to 

at least one 

question) 

77 14.3 155 28.7 78 14.4*** 

Completes  

(responded to 8 

questions) 

21 3.9 4 0.7 -17 -3.2** 

Partials  

(responded to 

at least one 

question but 

did not finish) 

56 10.4 151 27.9 95 17.5*** 

Question 1 77 14.3 43 8.0 -34 -6.3** 

Question 2 59 10.9 49 9.1 -10 -1.8 

Question 3 49 9.1 52 9.6 3 0.5 

Question 4 41 7.6 63 11.6 22 4.0* 

Question 5 34 6.3 55 10.2 21 3.9** 

Question 6 28 5.2 57 10.5 29 5.3** 

Question 7 27 5.0 49 9.1 22 4.1* 

Question 8 21 3.9 42 7.8 21 3.9** 

Mean number 

of questions 

answereda 

4.9 2.7 2.2*** 

p-values are based on two sample z-test of proportions: *** p ≤ 0.001, *** p ≤ 0.01, *** p ≤ 0.05 
ap-value is based on two sample t-test: *** p ≤ 0.001 
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The conceptual differences between single-sitting and modular design also affects the 

mean number of answered questions. We find that the mean number of answered ques-

tions is 4.9 questions for the single-sitting group, which is significantly higher compared 

to the modular group with an average of 2.7 answered questions (p < 0.001). The com-

parison of mean number of answered questions, suggest a support for H2, that is, we find 

lower item response rates in the modular design group. However, looking at response on 

an item level, we see a relatively stable, curvilinear trend in the modular design, i.e., until 

the fourth question item response rates slightly increase from 8% (Q1) to almost 12% 

(Q4) and then slightly decrease again to 8% for the last question. For the single-sitting 

design, we see a steady decrease in the number of responses with each additional question 

from 14% (Q1) to 4% (Q8). These different trends in the two design groups lead to a 

significantly lower item response rate for the modular design compared to the single-

sitting design in the first question (-6.3 percentage points; p = 0.001), while questions 4 

to 8 show significantly higher item response rates for the modular design, contradicting 

H2.  

Following our argumentation, Question 1 should have the same response in both groups. 

However, while respondents in the modular group had 24 hours to respond, the single-

sitting group had a few days. Comparing the number of responses for Question 1 and only 

considering first day responders, we find no statistical difference between groups (10 % 

vs. 7.6 %; p = 0.165). 

 

3.6.2 Nonresponse bias 

Table 3.5 shows the nonresponse bias analysis for our baseline variables for both experi-

mental groups. In the following we administer 22 statistical tests for each group; thus we 
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adjust our p-value with the Bonferroni procedure for multiple comparisons 

(𝑝𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.05 ÷ 22 𝑡𝑒𝑠𝑡𝑠 = 0.002).  

For both groups, we find no statistically significant (p > 0.002) bias for the variables 

employment status of the household breadwinner, monthly income, daily spendings on 

food, household size, number of rooms, and number of daily full meals for children. Over-

all, we only find a few variables that are biased regarding accommodation possessions. 

In the single-sitting group, we find that the respondent sample has a 2.4 higher percent-

ages points (p.p.) possession rate for refrigerators compared to the invited sample. The 

possession of a refrigerator, however, is rather high in the invited sample (97.6 %) and 

the possession rate in the respondent sample is 100 %. It seems likely that the twelve 

households not owning a refrigerator did not participate by chance and that the difference 

may be a false positive. In the modular group, we find differences in accommodation 

possessions between the invited and respondent sample for the accommodation posses-

sions toilet, flush-toilet and hot water. While we find a lower possession rate for toilet (-

12.3 p.p., p < 0.002), the possession rate for flush toilet (12.3 p.p., p < 0.00005) and hot 

water (11.3 p.p., p < 0.002) is higher in the respondent sample of modular design com-

pared to the invited sample. As more variables are biased in the modular group, we see 

no support for our hypothesis (H3) that the modular group contains less nonresponse bias. 
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Table 3.5: Comparing nonresponse bias for single-sitting and modular text message survey design by comparing invited with respondent sample for 

each design 

 Single-sitting  Modular 

 Invited 

sample 

Respondents 

sample 
Difference  

Invited 

sample 

Respondents 

sample 
Difference 

 
% (s.e.) % (s.e.) 

Percentage 

points (s.e.) 
 % (s.e.) % (s.e.) 

Percentage 

points (s.e.)  

Employment status of household breadwinner    

Unknown status 4.3 (1.7) 2.6 (1.3) -1.7 (1.8  5.0 (1.8) 6.5 (2.1) 1.5 (1.6) 

Full-time 28.9 (3.8) 36.4 (4.0) 7.5 (5.0)  26.6 (3.7) 31.0 (3.9) 4.4 (3.1) 

Part-time 39.6 (4.1) 37.7 (4.1) -1.9 (5.1)  39.0 (4.1) 35.5 (4.0) -3.5 (3.3) 

Self-employed 22.8 (3.5) 20.8 (3.4) -2.0 (4.3)  25.0 (3.6) 22.6 (3.5) -2.4 (2.9) 

In fulltime education, unemployed, retired, 

ill or disabled 
4.4 (1.7) 2.6 (1.4) -1.8 (1.8)  4.4 (1.8) 4.5 (1.8) 0.1 (1.4) 

Monthly income    

Unknown 15.4 (3.1) 13.0 (2.9) -2.4 (3.6)  15.2 (3.1) 9.7 (2.5) -5.5 (2.2) 

1-1000 L.E. 39.6 (4.2) 29.9 (3.9) -9.8 (4.9)  39.4 (4.2) 37.4 (4.1) -2.0 (3.3) 

1001-2000 L.E. 34.3 (4.1) 49.4 (4.3) 15.1 (5.2)  37.0 (4.1) 41.3 (4.2) 4.3 (3.3) 

2001-7000 L.E. 10.7 (2.6) 7.8 (2.3) -2.9 (2.9)  8.5 (2.4) 11.6 (2.7) 3.1 (2.1) 
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 Single-sitting  Modular 

 Invited 

sample 

Respondents 

sample 
Difference  

Invited 

sample 

Respondents 

sample 
Difference 

 
% (s.e.) % (s.e.) 

Percentage 

points (s.e.) 
 % (s.e.) % (s.e.) 

Percentage 

points (s.e.)  

Daily spendings on food     

food is Unknown 6.7 (2.1) 6.5 (2.1) -0.2 (2.6)  8.9 (2.4) 8.4 (2.3) -0.5 (1.9) 

1-50 L.E. 70.4 (3.8) 71.4 (3.8) 1.0 (4.8)  72.1 (3.8) 69.7 (3.8) -2.4 (3.1) 

51-100 L.E. 18.9 (3.3) 16.9 (3.1) -2.0 (4.0)  16.1 (3.1) 18.1 (3.2) 2.0 (2.6) 

101 or more L.E. 4.1 (1.7) 5.2 (1.9) 1.1 (2.3)  3.0 (1.4) 3.9 (1.6) 0.9 (1.2) 

Accommodation possesses    

Toilet 44.6 (4.2) 37.7 (4.1) -6.9 (5.1)  44.5 (4.2) 32.3 (3.9) -12.3* (3.2) 

Flush-toilet  62.6 (4.1) 68.8 (3.9) 6.2 (4.9)  61.9 (4.1) 74.2 (3.7) 12.3*** (3.1) 

Piped water 99.1 (0.8) 98.7 (1.0) -0.4 (1.2)  98.0 (1.2) 97.4 (1.3) -0.5 (1.0) 

Hot water 53.3 (4.1) 59.7 (4.1) 6.4 (5.2)  55.8 (4.2) 67.1 (3.9) 11.3* (3.2) 

Refrigerator  97.6 (1.3) 100.0 (0.0) 2.4** (0.7)  98.2 (1.1) 99.4 (0.7) 1.2 (0.7) 

Fan 98.5 (1.0) 97.4 (1.3) -1.1 (1.6)  98.5 (1.0) 99.4 (0.7) 0.8 (0.7) 

Household sizea 5.5 (0.2) 5.0 (0.2) -0.5 (2.9)  5.3 (0.2) 5.0 (0.2) -0.3 (2.4) 

Number of roomsa 3.1 (0.1) 3.0 (0.1) -0.1 (1.3)  3.2 (0.1) 3.2 (0.1) 0.0 (1.0) 

Number of daily full meals for childrena 2.6 (0.05) 2.8 (0.06) 0.2 (0.8)  2.6 (0.05) 2.6 (0.05) 0.0 (0.6) 

p-values based on z-test: ***  𝑝𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝 = .001 <.00005; ** 𝑝𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝 = .01 <.0005 * 𝑝𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝 = .05 <.002 
a Estimates provided as means not percentages  
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3.6.3 Substantive responses 

Figure 3.2 shows the proportion of respondents who reported that their kindergartner ate 

a specific food category on a day by text message survey design. Contrary to our hypoth-

esis H4, parents in the modular group more often choose the “meat or fish” category on 

all five days compared to parents in the single-sitting design group, with non-overlapping 

confidence intervals on two days (Monday and Tuesday). For the category “sweets”, we 

see a similar relationship: respondents in the modular design group more often reported 

that their kindergartner ate sweets compared to the single-sitting design group. However, 

due to the relatively small sample size, all confidence intervals overlapped for this food 

category. For the categories “fruits”, “vegetables”, and “dairy” there are no differences in 

substantive responses between the two groups.  

 

 

Note: The number of cases changes by days and survey design respectively: N Sunday, modular = 63, N Sunday, 

single-sitting = 49, N Monday, modular = 55, N Monday, single-sitting = 41, N Tuesday, modular = 57, N Tuesday, single-sitting = 34, N 

Wednesday, modular = 49, N Wednesday, single-sitting = 28, N Thursday, modular = 42, N Thursday, single-sitting = 27) 

Figure 3.2: Proportion (points) of food entries for the nutrition question by day of the 

week Sunday (S) – Thursday (T) with 95% confidence intervals (lines).  
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3.6.4 Effects on follow-up survey participation 

Table 3.6 shows four different models that help us to estimate the effect of the text mes-

sage survey design (single-sitting vs. modular) on the propensity to participate in a fol-

low-up face-to-face survey. Model 1 shows that there is no main effect of the text message 

survey design on the propensity to response to the follow-up survey. Controlling for pos-

sible selection effects by adding household level characteristics in Model 2 does not 

change the result. While this is not one of our main research questions, it is interesting to 

note that households with a monthly income between 2001-7000 L.E. have a significantly 

lower probability to participate in the follow-up survey than parents with an income be-

tween 1-1000 L.E. The probability to participate in the follow-up face-to-face survey 

slightly increases with the number of rooms in the home and with spending 51-100 L.E. 

on food daily compared to spending 1-50 L.E. on food daily. 
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Table 3.6: Average marginal effects (AME) for logistic regression models to evaluate the impact of participation on follow-up surveys 

 Model 1 Model 2  Model 3 Model 4 

 AME (s.e.) AME (s.e.)  AME (s.e.) AME (s.e.) 

Survey design (ref. = modular)  
    

Single-sitting -0.02 (0.03) -0.02 (0.03)  -0.04 (0.03) -0.03 (0.03) 

Responded to at least one question in wave 1 (ref. = did not respond)  
    

Responded    -0.01 (0.04) -0.01 (0.03) 

Responded to at least one question in wave 2 (ref. = did not respond)  
    

Responded    -0.09 (0.04)* -0.07 (0.04) 

Interaction between survey design and response to text message survey wave 2 

(ref. did not respond) 

 

    

Response to text message survey wave 2 in single-sitting   
  -0.09 (0.06) -0.07 (0.06) 

Response to text message survey wave 2 in  

modular  

 

  -0.09 (0.05) -0.07 (0.05) 

Employment status of household breadwinner (ref. = Part-time)  
    

Full-time  -0.02 (0.04)   -0.02 (0.04) 

Self-employed  -0.01(0.04)   -0.01 (0.04) 

In fulltime education/ Unemployed/ Retired/ Ill or disabled  -0.08 (0.08)   -0.09 (0.08) 

Unknown status  -0.02 (0.07)   -0.01 (0.07) 

Monthly income (ref. = 1-1000 L.E.)   
  

 

1001-2000 L.E.  -0.01 (0.03)   -0.01 (0.03) 

2001-7000 L.E.  -0.18 (0.06)**   -0.19 (0.06)** 
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 Model 1 Model 2  Model 3 Model 4 

 AME (s.e.) AME (s.e.)  AME (s.e.) AME (s.e.) 

Unknown  -0.02 (0.05)   -0.03 (0.05) 

Daily spendings on food (ref. = 1-50 L.E.)      

51-100 L.E.  0.08 (0.04)*   0.08 (0.04)* 

101 or more L.E.  -011 (0.09)   -0.11 (0.09) 

Unknown  -0.01 (0.06)   -0.01 (0.06) 

Accommodation possesses      

Toilet  0.0 (0.05)   0.0 (0.05) 

Flush-toilet   0.02 (0.06)   0.02 (0.06) 

Piped water  0.03 (0.12)   0.02 (0.12) 

Hot water  -0.04 (0.04)   -0.03 (0.03) 

Refrigerator   -0.2 (0.13)   -0.18 (0.13) 

Fan  0.13 (0.12)   0.13 (0.12) 

Household size  0.01 (0.01)   0.01 (0.01) 

Number of rooms   0.03 (0.01)*   0.03 (0.1)* 

Number of daily full meals for children  -0.03 (0.02)   0.03 (0.01) 

N 1,081 1,081  1,081 1,081 

AIC 1,405.2 1,408.4  1,404.6 1,409.8 
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Model 3 and 4 in Table 3.6 include indicators for whether a parent had responded to the 

text message survey in wave 1 and whether they had participated in the text message 

survey in wave 2 together with an interaction term for text message survey participation 

in wave 2 and the design of the survey in wave 2. None of the coefficients is statistically 

significant, indicating that responding to the text message survey had no effect on the 

probability to participate in the follow-up survey.  

 

3.7 Conclusion  

In this article, we investigated the effects of two designs to administer text message sur-

veys: single-sitting and modular. We randomly assigned 1,081 Egyptian parents of kin-

dergarten children who participated in a nutrition study to the group single-sitting, in 

which parents received one invitation to an eight question long text message survey and 

to the group modular in which parents received an invitation to a question each day over 

the course of eight days. We evaluated the effect of both groups on unit and item response 

rates, substantive responses and effect on response propensity on a follow-up face-to-face 

survey.  

We found that the modular group is able to recruit more respondents than the single-

sitting group. However, the increase in the number of respondents goes at the expense of 

the average number of questions answered by the respondent. Furthermore, we see an 

interesting trend between both groups. While the item response rates decrease from the 

first (14.3 %) to the last question (3.9 %), item response rates are distributed curvilinear 

ranging from 7.8 to 11.6 %. Reason for this distribution may relate to the fact that re-

spondents in the single-sitting group have to answer the prior question to proceed within 

the survey, i.e., to answer the second question, the first question must be answered; to 
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answer the fifth question, the fourth question must be answered. Therefore, we see a de-

creasing number of respondents with each question. For the modular group, however, 

invited individuals can decide each day if they want to continue with the survey, regard-

less of whether they answered the question on the previous day or not. Against this back-

ground, the modular design may work in a similar way as a reminder. Therefore, using a 

reminder for parents in the single-sitting design may increase the response rate and de-

crease the difference in response rates between single-sitting and modular. 

Our second hypothesis, that is, lower item response rates in the modular design group 

compared to the single sitting group, is not supported by our analysis. This hypothesis 

was mainly based on a text message study in Nepal (West et al. 2015) which found that 

item response was 26 to 53.5 percentage points higher in the single sitting design group. 

The study had very cooperative respondents with an overall response rate of 94.7 % that 

did not differ between experimental groups. We assume that the difference between West 

et al. (2015) and our study are due to different target populations. 

Using a reminder in text message surveys has a positive effect on sample composition 

(Lau et al. 2018). The modular design, i.e., sending a survey invitation each day, may 

have a similar effect as sending reminders and may have a positive effect on nonresponse 

bias. Therefore, we hypothesized that the respondent sample in the modular group should 

have lower nonresponse bias than the respondent sample of the single-sitting group in 

which respondents were only invited once. We find no support for this hypothesis. How-

ever, we find that compared to the invited sample, respondents in the modular groups are 

more likely to have a flush toilet and a hot water supply. Both accommodation posses-

sions may be associated with a higher wealth. However, more direct wealth indicators 

like monthly income on daily spending for food are unaffected. Therefore, we cannot 
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conclude that the modular design increases the propensity to respond for more wealthier 

households. 

Five of the text message survey questions were retrospective behavioral questions that 

asked parents which kind of food they provided to their children on a certain day. While 

in the single-sitting group those questions related to the last five days, in the modular 

group those questions related to the day before the survey invitation to each question. 

Parents could choose between five answer categories “meat or fish”, “vegetables”, 

“fruits”, “dairy” and “sweets”. Our data shows that parents in the modular group are more 

likely to state that their kids ate “meat or fish” and “sweets”. Providing meat and fish to 

children as a healthy nutrition may be seen as a social desirable behavior. On the other 

side, giving sweets to children is a less social desirable behavior in terms of healthy nu-

trition. We are not able to explain the underlying effects behind those differences. Nev-

ertheless, we find some differences in responses between the modular and single-sitting 

design.  

For the effect on follow-up surveys, we were not able to identify an effect that suggests 

that inviting parents multiple times and parents responding in the modular group have a 

lower propensity to participate in a follow-up survey.   

Finally, we like to discuss some limitations of the study and using text message surveys 

as a modular design approach. 

First, our modularization had one question for each module which may be not efficient. 

For instance, respondents may perceive the participation of one question as not rewarding 

and may expect more and feel more burdened by participating each day in a survey in-

stead of answering a survey in one sitting. 

Second, in the modular design, respondents can only answer the question to which they 

were invited last. If respondents missed to answer a question yesterday (n-1) and already 
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received a new question today (n), it is not possible to answer yesterday’s question as 

each response will be matched to the today’s question. Against this background, respond-

ents may have answered more questions in the modular design on the second or following 

days, but our data collection design did not notice or replace responses.  

Third, we found entries in the modular group with a timestamp indicating that the ques-

tion was answered the following day but before the invitation to the next module. As each 

question in the modular group has the wording “yesterday” in it, referencing the previous 

day, it is not clear if parents answered the question for yesterday or the day we intended: 

the day before yesterday.  

Fourth, as parents in the modular group are invited each day to answer a survey, each 

module of the modular text message survey can be seen as an independent survey. From 

this perspective the modular design would not have item level response but unit level 

nonresponse for each module. Therefore, nonresponse analyses on the item level would 

be more reasonable. However, we are not able to conduct a sample composition analysis 

on item level between single sitting and modular as we do not have enough cases for later 

questions in the single-sitting group.  

Our study suffers from a few limitations. However, our results provide important insights 

and contribute knowledge to the literature on text message surveys by experimentally 

comparing two designs how researchers might administer text message surveys and will 

help researchers to make design decisions on how to implement text message surveys. 
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Appendix 

 

Table 3.7: Questionnaire wording for text message surveys (wave 1, wave 2 single-sit-

ting and wave 2 modular) 

Wave 1 and wave 2 single-sitting (Q 

sent after response to previous Q is re-

ceived) 

Wave 2 modular (one Q per day)* 

Message 1: [155 characters] 

Thanks for participating in our study. In the next days, you will receive questions 

via SMS about what your kindergarten kid(s) eat. 

  

Message 2: [137 characters] 

If at any point you don’t want to participate in the study anymore, just send an 

SMS with the word STOP and you will receive no more SMS. 

 

Message 3: [161 characters] 

First, we will ask you what you think about different foods. Just reply with the 

number that you think is the best answer. The costs of replying are covered by the 

amount that was sent to your phone. 

 

Q1: [133 characters] 

To be in good health, how often should a kid eat fruits and vegetables? 

1 To every meal 

2 Every day 

3 Every week 

4 Less than every week 

 

Q2: [99 characters] 

Which food provides your kid with a high amount of iron? 

1 Potatoes 

2 Nuts and seeds 

3 Bread 

4 Cake 
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Q3: [90 characters] 

Which of the following best helps your kid to absorb iron? 

1 Milk 

2 Lemon 

3 Bread 

4 Sweets 

 

Q4 - Q8: [154 characters] 

On [weekday]* this week, did your 

kindergarten kid(s) eat: 

1 meat or fish 

2 fruits 

3 vegetables or legumes 

4 dairy 

5 sweets? 

Send back all numbers that apply. 

 

*weekday: Q4 – Sunday, Q5 – Monday, Q6 – Tuesday, Q7 – 

Thursday, Q8 – Friday 

Q4 - Q8: [163 characters] 

Which of the following did your kin-

dergarten kid eat yesterday? 

1 meat or fish 

2 fruits 

3 vegetables or legumes 

4 dairy 

5 sweets? 

Send back all numbers that apply. 
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4 Effects of Incentives in Smartphone Data Collection  

4.1 Abstract 

Smartphones are increasingly attractive data collection devices. In particular, they allow 

us to collect sensor data and analyze phenomena that cannot be investigated with survey 

data alone. Sensor data collected on smartphones include very sensitive information, such 

as geolocation and mobility data or app usage data that may be perceived as too private 

to share with researchers. Therefore, sensor data may be more valuable than survey data 

to participants, and it may be harder to recruit participants for an app study involving 

smartphone sensor data than for a survey. However, respondent burden may be reduced 

by this passive kind of data collection, which might make it easier to recruit participants. 

In surveys, monetary incentives are known to increase response rates. However, to date, 

we do not know whether incentives work the same way in studies involving smartphone 

sensor data. This paper reports results of an experimental study conducted in Germany, 

in which different incentive amounts and different incentive schemes (paid using Ama-

zon.de vouchers) were randomly assigned to Android users selected from a large labor 

market panel survey (Panel Study Labour Market and Social Security – PASS). We find 

that a higher installation incentive resulted in a higher installation rate, but we find very 

little effect heterogeneity within the experimental conditions and no interaction effects of 

incentive schemes and wealth. 

4.2 Introduction 

Smartphone sensor data enable researchers to analyze phenomena that cannot be investi-

gated with survey data alone (e.g., Sugie 2018). However, smartphone data may include 

very sensitive information, e.g., on geolocation or app usage, which users may perceive 

as too private to share with researchers. To date, very little research has systematically 

examined participation in studies that collect passive smartphone sensor data and to our 
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knowledge, and no study so far has examined whether the knowledge about the effective-

ness of incentives in surveys also holds for smartphone sensor data collection. It is possi-

ble that common incentive amounts and incentive schemes traditionally used in surveys 

will not be sufficient to motivate participation in a study that collects data passively from 

smartphones, given that individuals may perceive sensor data as being more valuable than 

survey data. However, since participation in passive data collection requires less effort 

from participants, burden (measured in time spent on data collection) is much reduced 

compared to regular surveys. Therefore, it might be much easier to recruit participants, 

and the effect of incentives on participation might be less pronounced. In either case, it is 

important for researchers to know whether vulnerable groups are particularly receptive to 

incentives, compared to majority groups in a population. Institutional review boards and 

ethics committees would likely hesitate to approve a study that—by using monetary in-

centives—places vulnerable populations, e.g., welfare recipients, at greater risk of provid-

ing sensitive data. For these reasons, we not only analyze effects of different incentive 

schemes on participation rates in a study combining self-reports and passive data collec-

tion using smartphones but also break out these effects by economic subgroups. In section 

4.3, we start with a brief review of the literature on the effectiveness of incentives and the 

postulated mechanisms explaining these effects. Section 4.4 explains the study design 

with an emphasis on the experimental conditions (more details on study design features 

are described in Kreuter et al. 2018). Section 4.5 displays the results, which we will dis-

cuss in section 4.6 paired with suggestions for future research. 

 

4.3 The Influence of Incentives on Participation 

Providing some form of incentive, whether monetary or some other kind of token of ap-

preciation, is common for studies recruiting respondents to answer survey questions (see, 
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for example, James and Bolstein 1990, Church 1993, Willimack et al. 1995, Singer et al. 

1999, Singer 2002, Toepoel 2012, Pforr 2016). Singer and Ye (2013) summarize the find-

ings of two decades of research on this topic and state that monetary (cash) incentives are 

more effective in increasing response rates than are gifts or in-kind incentives, and pre-

paid incentives are more effective than are promised incentives. Although incentive 

amounts have increased over time, Singer and Ye (2013:18) also report that research 

points to the nonlinear effect of monetary incentives, though generally higher incentives 

increase response rates more than lower ones do.  

To gauge how findings from surveys translate to data collection on smartphones, it is 

helpful to remind ourselves about the different mechanisms suggested to explain the ef-

fect of incentives. Going all the way back to the 1960s, Singer and Ye (2013: 115) point 

to social exchange and the “norm of reciprocity” as an explanation for the effectiveness 

of prepaid incentives. Social exchange theory argues that prepaid incentives create an 

obligation to provide on individuals, which they can settle by responding to the survey. 

The effectiveness of promised incentives—paid conditionally after the survey has been 

completed—could be better explained by various “versions of utility theories” (Singer 

and Ye 1013: 115), arguing that people decide on a course of action if, in their view, the 

benefits of acting outweigh the costs. Since we only use promised incentives, we can only 

test the hypotheses of the utility theories framework—albeit, as we will explain below, 

we paid out incentives continuously and respondents did not have to wait until the whole 

study was over. 

In the context of utility theories, the question arises of what value a given incentive has 

for an individual. In their discussion of Leverage-saliency Theory, Groves et al. (2000) 

emphasize the relative importance of various features of the survey in the decision-mak-

ing process, together with how salient these features are to the sample case. Incentives 
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can be used as leverage to increase survey participation, and Groves et al. (2006) demon-

strated that people with low interest in a survey topic can be recruited by monetary incen-

tives that compensate for the lack of interest. Therefore, higher incentives may be used to 

increase the leverage, whereby research suggests that, compared to lower incentives, 

higher incentives have a diminishing marginal utility to increase response rates (Singer 

and Ye 2013, Mercer et al. 2015).  

Experiments in panel studies suggest that incentives also have a long-term effect on sur-

vey participation. Incentives only need to be paid in one wave to increase participation 

for the current and following waves, and larger incentives lead to higher response rates 

in later waves (Singer and Kulka, 2002; Goldenberg, McGrath, and Tan, 2009). For con-

tinuous data collection in a smartphone app study, this result could mean that a higher 

incentive for installing the app may increase participant’s commitment throughout the 

data collection period to keep the app installed and lower attrition or that a higher incen-

tive for installing the app may nudge participants to allow more passive data permissions.  

Jäckle et al. (2019) are the first to evaluate the effect of incentives on installing a research 

app. The app served as a data collection instrument for a spending study in the United 

Kingdom. Participants had to download the app and upload receipts over the course of a 

month. The authors randomly assigned sample members into two groups and offered £2 

or £6 for downloading the app. For each of the three examined outcomes (completion of 

the registration survey, proportion of individuals using the app at least once, and propor-

tion of individuals using the app at least once per week over the data collection period), 

the £6 incentive produced higher rates than did the £2 incentive, but the differences were 

not statistically significant for any of the outcome variables. The lack of effect might have 

been a result of the small monetary difference between the two incentive groups.  
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A concern often voiced in the context of incentives is that the same monetary amount has 

a higher value for individuals with less wealth (Philipson,1997, Felderer et al. 2018). If 

this observation is indeed true, economically disadvantaged sample units might be more 

inclined to provide data in general and sensitive sensor data in particular.  

If incentive payments are perceived as compensation for the time and effort a respondent 

provides (Philipson, 1997), the opportunity cost for low-income respondents should be 

lower compared to high-income groups, and incentives should have a stronger effect on 

low-income respondents. This notion is supported by findings from Mack et al. (1998), 

who found that a $20 incentive, compared to a $10 incentive and to no incentive, dispro-

portionally increased participation of respondents with less wealth. Singer et al. (1999) 

also found that incentives increased response propensities of low-income individuals.  

In the context of a smartphone app study such as ours described below, it is not clear 

whether utility theories are applicable in a similar fashion. Compared to telephone and 

face-to-face interviews, relatively little time is needed to install an app and to have it run 

in the background for data collection. However, one could argue that in the case of re-

search apps, it is not time that is exchanged for money but data. In general, if asked hy-

pothetically, individuals are concerned about their privacy when asked to share their data 

passively with researchers (Jäckle et al. 2019, Revilla et al. 2018, Keusch et al. 2017, 

Wenz et al. 2017). Those concerns may be tied to trust issues, meaning that individuals 

do not trust researchers to protect their data adequately. However, individuals’ concerns 

seem to decrease, i.e., their willingness to participate increases, if they are offered more 

control over when the data are collected, if the study is sponsored by a university (com-

pared with a governmental institution), and if the study offers incentives (Keusch et al. 

2017). Cantor et al. (2008) and Dillman et al. (2014) point out that incentives can be used 
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to establish trust and that trust is more important for gaining cooperation than the incen-

tive value. If these observations describe the major mechanism, we would expect a certain 

threshold to be needed to establish trust but would not necessarily expect increasing in-

centive amounts to have a linear effect on participation. 

The study presented below has several characteristics that are novel with respect to issu-

ing incentives. First, incentives are paid for installing an app that passively collects data 

(if the participant grants informed consent) and presents short surveys to participants. 

Second, incentives are paid for the actual permission to collect such passive data for 30 

consecutive days. Without this permission, the app only collects survey and para data 

(i.e., time stamps and information on whether the data sharing is activated). Third, incen-

tives are paid for answering survey questions. For the first two tasks, the amount and 

conditions of the incentives were randomly varied, and it is the effects of these variations 

on participation behavior we examine below in detail.  

Broadly speaking, we try to answer the following questions: Do we observe effects of 

different incentive amounts on the installation rate of a research app? Are these effects 

proportional to the incentive amounts provided? Do incentives affect participants’ deci-

sions to share passive data or to deinstall the app? Do we observe differential effects of 

incentives, with vulnerable (less wealthy) groups being more receptive to higher incen-

tives than non-vulnerable groups? How much money is actually paid out, i.e., participants 

downloading vouchers from the app? 

 

4.4 IAB-SMART study design 

The goal of the IAB-SMART study is to gain insights into the effects of long-term unem-

ployment on social inclusion and social integration and to examine effects of network 

integration on reintegration into the labor market using a new data collection approach. 
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There is not enough room here to go into detail about the planned measurement, but for 

context, three sets of data are needed to achieve the substantive research goals: (1) a reli-

able data source about the employment status of the study participants (available at the 

IAB through social security administration records; see Jacobebbinghaus and Seth 2007), 

(2) background variables on the study participants (available through IAB surveys), and 

(3) behavioral measures on the amount of social interaction and network activities (avail-

able through the IAB-SMART study). For more details on the overall study design and 

measurements, see also Kreuter et al. (2018).  

4.4.1 Sampling frame and sample restrictions 

Participants for the IAB-SMART study were sampled from the German panel study “La-

bour Market and Social Security” (PASS), an annual household panel survey of the Ger-

man residential population aged 15 and up oversampling households receiving welfare 

benefits. PASS is primarily designed as a data source for research into the labor market, 

poverty, and the welfare state. However, PASS also focuses on the social consequences 

of poverty and unemployment, including social exclusion and health outcomes. At the 

time of the IAB-SMART study, PASS has been in the field for 12 years (more information 

on PASS can be found in the yearly PASS methods and data reports available at 

https://fdz.iab.de/de/FDZ_Individual_Data/PASS.aspx). Due to the ability to match data 

collection outcomes of PASS against high-quality administrative records from social se-

curity notification and labor market programs, extensive nonresponse studies are availa-

ble for PASS, showing rather small biases for a range of variables such as benefit receipt, 

employment status, income, age, and disability (Kreuter et al. 2010, Levenstein 2010, 

Sakshaug and Kreuter 2012). Foreign nationals have been found to be considerably un-

derrepresented in PASS (Kreuter et al. 2010), but weighting can adjust for this un-

derrepresentation.  
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All PASS respondents who participated in wave 11 (2017) and reported having an An-

droid smartphone (see Figure 4.1) were eligible for the IAB-SMART app study. We re-

stricted the study to Android devices because extensive passive data collection is re-

stricted under iOS (Harari et al. 2016), and other operating systems had too low market 

shares to justify additional programming efforts. For the purposes of the incentive study, 

we do not expect the operating system to have any limiting factor, though we will come 

back to this point in the discussion section. Keusch et al. (2018) examined issues of cov-

erage and found that smartphone owners in Germany are younger, more educated, and 

more likely to live in larger communities than are non-smartphone owners, but the authors 

reported little coverage bias in substantial PASS variables due to smartphone ownership. 

These results hold even when limiting the sample to Android smartphone owners only. 

 

 

Figure 4.1 Sample size at each stage of the IAB-SMART selection process 
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4.4.2 Invitation and data request 

The invitation to participate in the IAB-SMART study was sent out in January of 2018 to 

a random sample of PASS Wave 11 participants aged 18 to 65 who reported owning an 

Android smartphone (N=4,293). To participate in the study, smartphone owners needed 

to install an app on their smartphone and activate the data sharing functions explained 

below. The field period of the study was six months. 

Our initial goal was to recruit 500 participants. Because response rates to smartphone data 

collection with extensive data sharing functionalities were hard to gauge from the litera-

ture, we sent out invitations in two installments. We used the first round of invitations to 

1,074 PASS participants to monitor uptake rates. The second round of invitations was 

sent to an additional 3,219 PASS participants.  

The invitation package sent in both installments contained several pieces: a cover letter 

(explaining the goals of the study and how to find the app in the Google Play store), 

information on data protection and privacy, a description of the data sharing functions, 

and an explanation regarding the incentives. Each letter contained a unique registration 

code. A reminder mailing was sent after 11 days, including an installation brochure, 

which walked users through the downloading and registration process step by step. In the 

second installment, the installation brochure was added to the first mailing. The addition 

of the installation brochure did not have a significant effect on installation rates. See the 

online appendix in Kreuter et al. (2018) for full documentation of the invitation materials. 

Those willing to participate in the study had three tasks incentivized separately: (1) in-

stalling the app from the Google Play store using the QR code, using the link provided in 

the invitation letter, or by searching for the app name directly in the store, (2) allowing 

the app to collect sensor and other passive measurements, and (3) answering survey ques-
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tions launched through the app at predefined times or triggered by geo-locations. All par-

ticipants were offered incentives in form of Amazon.de vouchers (see Figure 4.2, bottom) 

based on the number of points earned (one point = one euro-cent). Vouchers were avail-

able for every 500 points earned (5 euro). The total amount a participant could earn varied 

between 60 and 100 euro, depending on the incentive condition (see section 3.3). 

Experimental conditions were assigned randomly to the selected PASS participants. 

However, as PASS is a household panel, some households received different incentive 

conditions within the same household. To avoid any confounding due to family members 

talking to each other, we restricted our analysis to those households that had only one 

person selected into the IAB-SMART study (N=2,853). This restriction did not negatively 

affect the distribution of cases to incentive groups (see Figure 4.3, showing roughly equal 

amounts of cases in each condition within each of the two factors). However, the number 

of app installations we could use decreased from 687 to 420 app installations.  
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Figure 4.2: Screen-shots showing the five data sharing functions (top) and in-app Ama-

zon.de vouchers (bottom). The app was programmed and offered in German, but direct 

translations into English are provided in the Figure.  

 

The data passively collected through IAB-SMART are grouped into five data sharing 

functions. Individuals who installed the app had the opportunity to provide consent to the 

sharing of their data via any or all of these five functions. Participants could enable and 

disable data collection in any or all of the five functions at any point in time during the 

six-month study period (for more details on the consent process, see Kreuter et al. (2018)). 
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We designed a separate screen for respondents to navigate their data sharing (Figure 4.2 

top panel). Allowing Network quality and location information issues a test every half 

hour where Wi-Fi and mobile network data are collected. Those data allow estimates of 

the current geo-position of the smartphone. Interaction history records metadata from in-

coming and outgoing calls and text messages with hashed phone numbers (i.e., taking a 

string (phone number) of any length and output a nonpersonal random string of a fixed 

length). The Characteristics of the social network function allowed, if enabled, access to 

the phone’s address book and the classification of contacts into gender and nationalities 

using the following two websites: genderize.io and www.name-prism.com. Information 

is pinged to the site, without any names being stored on either providers site. Resulting 

classification probabilities are retrieved and combined with the hashed phone book con-

tact. The Activity data function collects measurements in two-minute intervals via the 

smartphone’s accelerometer and pedometer. Smartphone usage captures the apps in-

stalled on the phone and the start/end-time of each app usage without recording any in-

formation about activities done within an app. 

4.4.3 Experimental design for incentive study6 

We conducted a 2x2 experiment on the installation and the function incentives (see Figure 

4.3). One random group of participants was promised 10 euro for installing the app, and 

the other group was promised 20 euro. Independent of the installation incentive (com-

pletely crossed), one random group was promised one euro for each function activated 

for 30 consecutive days, and the other group was promised one euro for each function 

activated for consecutive 30 days plus five additional euro if all five data sharing func-

tions were activated for 30 days. Consequently, the first group would receive 5 euro and 

 
6 The invitation letter contained a flyer, which explained the incentive scheme (for the original flyer and 

English translation see Appendix Figure 4.13 and Figure 4.14). 
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the second group 10 euro per month for activating all five data sharing functions. For the 

sake of simplicity, we refer to the groups of the function experiment as the regular and 

bonus group. Additionally, all participants receive up to 20 euro for answering survey 

questions in the app over the field period (10 euro-cent per answered question). Therefore, 

the maximum promised incentive varies between 60 and 100 euro depending on the as-

signed group. Participants could redeem their incentives directly in the app as Amazon.de 

vouchers7.  

 

 

Figure 4.3: Crossed experimental design with maximum incentive amounts for a six-

month data collection period (N=2,853) 

 

As the invitation letter mentioned both the individual incentive amounts and the overall 

maximum amounts, it is conceivable that respondents primarily focused on the overall 

maximum amounts and less on the differential incentives provided for installation and the 

app functions. We therefore report both marginal effects for each factor (installation ex-

periment and function experiment, see Figure 4.3) and the combination of the two factors 

(maximum amounts of 60, 70, 90, and 100 euro). 

 
7 When issuing the incentives, we allowed for discretion (e.g., due to network error, etc.). The IAB-SMART 

app checked whether each data collection function was activated at three random points in time each 

day. To receive points for activation, the app had to be able to execute the check on at least 10 out of 

30 consecutive days. Furthermore, of the days the app was able to execute the check, the function was 

not allowed to be deactivated on more than three days. However, we did not explicitly mention this 

point to participants. 
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4.4.4 Analysis plan 

We will analyze the effect of incentives on four outcome variables: (1) installing the app 

on the smartphone (app installed vs. app not installed), (2) number of initially activated 

data sharing functions (0–5), (3) deactivating functions during the field period (deac-

tivated a function at least once vs. did not deactivate any functions), and (4) retention 

(proportion of days out of field period until the app is deinstalled). For each of our four 

outcome variables, we will proceed as follows. First, we use t-tests, Chi-squared tests, 

and ANOVAs to examine the main effects of the incentive conditions in our three exper-

iments, i.e., installation experiment, function experiment, and maximum amount, on the 

outcome variables. Second, we investigate effects of treatment heterogeneity across wel-

fare status8 (welfare recipients vs. non-welfare recipients) to evaluate whether vulnerable 

groups are more affected by incentives. To do so, we examine differences in our outcome 

variables across welfare recipient status with t-tests, Chi-squared tests, and ANOVAs. 

We also analyze to what extent individuals installed the app and cashed-out the incentive 

without providing any data. We analyze how many points individuals actually redeemed 

in the experimental groups to study the influence of incentives on costs. 

All analyses were conducted using Stata 14.2 (StataCorp. 2015) and R version 3.4.0 (R 

Core Team 2017). Analysis code and data can be reviewed and accessed on request at the 

IAB (for more information, see here: https://www.iab.de/en/daten.aspx). 

 

 
8 Welfare benefits are paid to all households with insufficient income in which at least one person is of 

working age (15 to 65) and able to work, regardless of their labor market status. 
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4.5 Results 

4.5.1 App installation 

Figure 4.4 shows the overall effects of the different incentive treatments on app installa-

tion. A higher installation incentive resulted in a higher installation rate, at 16.4% of those 

offered 20 euro for installing the app compared to 13.1% of those offered only 10 euro 

(Chi2=5.8, df=1, p=0.01). We do not observe a marginal effect for the additional function 

experiment with a 5-euro bonus for activation of all five data sharing functions for 30 

consecutive days compared to the regular group (Chi2=0.58, df=1, p=0.447). For the 

maximum incentive amount, we observe a higher installation rate (bottom panel) for the 

70 euro (16.4%) and 100-euro group (16.3%) compared to the 60 euro (12.0%) and 90-

euro (14.2%) group. However, the differences are not significant at the 5% level 

(Chi2=7.53, df=3, p=0.057). As the 70- and 100-euro groups include the 20 euro as an 

installation incentive, the installation experiment drives the differences in the installation 

rates by maximum amounts. 
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Figure 4.4: Percentage of app installations of invited individuals, with 95% confidence 

intervals (N = 2,853), by incentive condition, maximum amount of incentives and wel-

fare status 

 

We do not find a differential installation rate based on welfare status (Chi2=0.37, df=1, 

p=0.541). However, to understand a potentially differential effect of incentives on people 

with different welfare status, we analyze the effects of our incentives for non-welfare and 

welfare recipients separately (see Figure 4.5). In the top panel of Figure 4.5, we observe 

that for both welfare status groups, the 20-euro incentive increases the installation rate 

compared to the 10-euro incentive (3.5 percentage point increase for non-welfare recipi-

ents and 2.7 percentage point increase for welfare recipients). We only find, however, a 

significant effect for non-welfare recipients (Chi2=4.9, df=1, p=0.027), not for welfare 

recipients (Chi2=0.9, df=1, p=0.342). As the number of cases is lower for the welfare 

recipient group (n=729) than for the non-welfare recipient group (n=2.118), the nonsig-

nificant effect for welfare recipients may be tied to smaller sample size. For the function 

experiment, we observe no difference in the installation rate between the regular and the 
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bonus function incentive for non-welfare recipients, while for welfare recipients, the bo-

nus incentive leads to a higher installation rate than does the regular incentive. However, 

this effect is not statistically significant (Chi2=3.2, df=1, p=0.073), potentially due to the 

relatively small sample size of welfare recipients. Similarly, there seems to be a linear 

increase in the installation rate with increasing maximum incentive amount for welfare 

recipients, but we do not observe a clear pattern for non-welfare recipients. Again, none 

of the effects is statistically significant (Chi-squared tests; all p>0.05). 

 

 

Figure 4.5: Percentage of app installations of invited individuals, with 95% confidence 

intervals (N = 2,853), by experimental groups and maximum amount of incentives, by 

welfare status 
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4.5.2 Number of initially activated data sharing functions 

When installing the app, participants could choose to activate any of five data sharing 

functions. One must keep in mind that the general installation of the app is a precondition 

for being able to receive any incentive for activating a function. In general, we observe 

high activation rates in all experimental groups (on average, between 4.1 and 4.3 initially 

activated data sharing functions; see Figure 4.6). The already high activation rate does 

not change with a higher installation incentive (t=-0.04, df=407.8, p=0.971), the bonus 

incentive to have all five data sharing functions activated (t=-0.34, df=417.3, p=0.735), 

or the resulting maximum amounts (FANOVA=0.46; df=3; p=0.707). The bonus group in-

centive of the function experiment, however, does not primarily aim to increase the aver-

age number of initially activated data sharing functions; instead, it aims to nudge partici-

pants to activate all five data sharing functions. Although there is a four-percentage-point 

difference in activating all data sharing functions between the experimental groups 

(70.8% for the bonus incentive vs. 66.2% for the regular incentive), this difference is not 

statistically significant (Chi2=0.85, df=1, p=0.356). 
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Figure 4.6: Mean number of initially activated data sharing functions, with 95% confi-

dence intervals, conditional on installation, by incentive condition and maximum 

amount of incentives (N = 420)  

 

We do not find significant differences in the mean number of initially activated data shar-

ing functions by welfare recipient status (t=-1.58, df=145.6, p=0.115). Figure 4.10 (see 

Appendix) shows the effects of our incentives for non-welfare and welfare recipients. We 

do not find any significant differences within the welfare subgroups (t-tests and ANOVA; 

all p > 0.05), suggesting that our incentives do not have differential effects within welfare 

status subgroups.  

4.5.3 Deactivating functions 

To be compliant with the EU General Data Privacy Regulation (GDPR), we made it easy 

for participants to change the settings of the data sharing functions in the setting menu of 

the app during the field period. For the installation experiment and the maximum amount, 

we expect that higher incentives create a commitment to deactivate fewer data sharing 
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functions during the field period. For the function experiment, as participants in the bonus 

group gain an additional five euro by having all five functions activated for 30 consecu-

tive days, the loss associated with deactivating a function is larger than for the regular 

group. Thus, we expect that fewer participants deactivate a data sharing function in the 

setting menu for the bonus group.  

Only approximately 20% of all participants changed their settings at least once during the 

field period. Of those participants who changed their function settings at least once, only 

31 participants (approximately 7% of 420 participants) deactivated a function at least 

once. We have very few cases that we can compare over our experimental groups. As a 

result, we obtain large confidence intervals that overlap and make it hard to find effects 

(see Figure 4.7). Although there seems to be a pattern of less deactivation with higher 

installation incentive, bonus incentive (vs. regular incentive), and higher maximum 

amount, none of these differences were statistically significant (Chi-squared tests; all 

p>0.05; see Figure 4.7).  
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Figure 4.7: Percentages of participants who deactivated their function settings at least 

once, with 95% confidence intervals, conditional on installation, by incentive condi-

tions, maximum amount of incentives and welfare status (N = 420) 

 

As the proportion of participants who deactivated a function is very low, we do not further 

compare the effect of incentives within the two welfare status subgroups.  

4.5.4 Retention  

It was possible for participants to just install the app and provide no or very little infor-

mation by deinstalling the app rather quickly—but still cashing in an Amazon.de voucher 

for installing the app. On average, participants kept the app installed for 86% of the field 

period, meaning that if an individual decided to install the app exactly 100 days before 

the end of the field period, she kept the app installed for 86 days. Looking at the average 

percent of days participants stayed in the study (see Figure 4.8), we observe patterns that 

may suggest that those who received lower incentives deinstalled the app earlier than did 

those who received higher incentives. Although the effect is not statistically significant 
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in the installation and function experiments (t-tests; p>0.05), it is for the maximum overall 

amount (FANOVA =3.13, df=3, p=0.026). A post hoc test reveals that those receiving up to 

60 euro overall stayed on average ten of 100 days fewer than did those receiving 70 or 90 

euro (Tukey multiple comparisons of means tests; padjusted<0.05). However, the difference 

between the 100-euro maximum amount group and the 60-euro group is not statistically 

significant (Tukey multiple comparisons of means test; p>0.05).  

 

 

Figure 4.8: Average time participants stayed in field, with 95% confidence intervals, 

i.e., time between first installation and deinstallation in percent, by incentive conditions 

and maximum amount of incentives (N = 420) 

 

We do not find a differential retention rate by welfare status (t = 0.38, df = 158.0, p-value 

= 0.704). Looking at effects of our incentive experiments within welfare status subgroups 

(see Figure 4.11 in the Appendix), we find no significant differences (t-tests and ANOVA; 

all p>0.05) except for the difference between the 60-euro maximum amount (82%) and 
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the 70-euro maximum amount (91%) for non-welfare recipients (Tukey multiple compar-

isons of means test; padjusted=0.032).  

Only 20 participants deinstalled the app within one week of installation. Unfortunately, 

our groups are too small to examine effects of our experimental treatment on the tendency 

to deinstall the app shortly after installing it.  

4.5.5 Analysis of costs 

For any study designer, overall costs of data collection are of ultimate interest. In the final 

section, we therefore analyze how our experimental groups affect costs. To do so, we 

analyze the average proportion of collected points that participants redeemed. 

Overall, 687 individuals installed the app. However, as previously, for the following anal-

yses, we only consider participants from households in which only one member was se-

lected (N=420). Of 420 individuals who installed the app, 361 individuals redeemed at 

least one voucher, and 59 participants did not exchange their points for vouchers. One 

reason for not redeeming vouchers might be tied to technical issues within the app, i.e., 

participants received vouchers, but the app failed to store and upload voucher data to the 

data collection server9. Some individuals might not have exchanged any points for vouch-

ers. However, for the sake of simplicity, we assign the value zero to all cases where we 

have no information on the amount paid out. 

 
9 The data for received vouchers and credits has implausible gaps. For example, some participants receive 

more money in vouchers than they actually collected points. We expect that the missing points appear 

due to technical errors within the app or communication problems between the app and the server. For 

our analysis, we assume that missing points are equally distributed over our groups. For our full partic-

ipant sample (N=685), we spent 37,730 euro on vouchers but only have data for received vouchers of 

36,070 euro. Therefore, we cannot account for 1,660 euro in voucher. For our restricted participant 

sample (N=420), our data show that we have paid out 21,420 euro in vouchers to our participants. Un-

fortunately, as we do not know what data is missing for participants who received one invitation per 

household and for participants who received more than one invitation per household, we have no means 

of evaluating how large the gap between the redeemed voucher value and the collected points is for our 

analysis sample. However, it is not possible to receive a higher voucher value than collected points; we 

therefore conclude that each participant who received more vouchers than collected points actually col-

lected those points without the system storing this information. For example, a participant received a 

10-euro voucher, but we have no information on collected points for this participant. To receive a 
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Individuals may be motivated to participate not only by the incentives we offered but also 

for other reasons, e.g., to help us collect innovative scientific data or due to curiosity 

about the new form of data collection. However, the higher the incentive, the higher 

should be the probability of attracting benefit maximizers whose major motivation to par-

ticipate is receiving an incentive. If this prediction is true, we should observe that the 

proportion of redeemed voucher values is lower for smaller incentive groups.  

 

 

Figure 4.9: Average percent of points redeemed by participants, with 95% confidence 

intervals, by incentive conditions, maximum amount of incentives and welfare status 

(N=420) 

 

Overall, participants redeemed 78.8% of their collected points. Figure 4.9 shows the av-

erage proportion of points that participants redeemed by our experimental groups. We 

 
voucher, however, (s)he must have collected at least 1000 points; we impute these 1000 points for the 

participant. Therefore, we adjust our data by adding the missing points to those who redeemed more 

money in vouchers than collected points. This process reduces the missing points to approximately 

26,560 points (265.60 euro). 
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observe an average proportion of 80.2% of redeemed points for those offered 20 euro for 

installing the app compared to 76.1% for those offered only 10 euro. However, the dif-

ference is not significant (t=-1.1, df=388.5, p=0.252). For the function experiment, we 

observe a small nonsignificant difference of 0.4 percentage points (t=0.1, df=416.5, 

p=0.917). We also cannot find any significant effects for the maximum amount (FAN-

OVA=1.19, df=3, p=0.313). 

Our argument that individuals may only participate because we offered incentives may 

especially affect the group of welfare recipients. Vulnerable groups may be more moti-

vated to participate because of incentives instead of for other reasons such as altruism or 

curiosity and thus have a higher average proportion of redeemed points compared to non-

vulnerable groups who can afford to not redeem all points. However, we cannot find any 

significant effects of the welfare status on the redeeming of points (t=0.77, df=157.5, 

p=0.443). 

We find no significant difference between our experimental groups within welfare status 

subgroups (see Figure 4.12 in Appendix; t-tests and ANOVA; all p > 0.05), suggesting 

that incentive conditions do not affect non-welfare and welfare recipients differently with 

respect to redeeming points.  

4.6 Summary 

In this article, we investigated the effects of monetary incentives on participation in a 

study collecting self-reports and sensor data from smartphones based on a completely 

crossed two-factor experimental design. Target persons sampled from the long-running 

PASS panel survey in Germany were promised either 10 or 20 euro conditional on in-

stalling the app and were promised either one euro for each passive data collection func-

tion activated for 30 consecutive days or one euro per function plus a five-euro bonus if 
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all five data sharing functions were activated for 30 consecutive days. All incentives were 

provided as Amazon.de vouchers that could be redeemed by participants in the app. 

The main finding of this article is that well-known results from the survey literature on 

the effects of incentives on participation seem to carry over to invitations to share 

smartphone data. Although the task differs and is less time consuming for participants, 

we found similar patterns regarding the effects of different amounts of incentives. 

A 20-euro installation incentive causes significantly more targeted individuals (16.4 per-

cent) to install an app that passively collects smartphone data than does a 10-euro incen-

tive (13.1 percent). In contrast, paying respondents a five-euro bonus incentive if they 

grant researchers access to all five data sharing functions neither increases installation 

rates nor has an effect on the number of data sharing functions activated. This result is 

surprising, as the potential difference between the regular and the bonus incentive condi-

tion over the 180-day field period is three times higher than the installation incentive. We 

communicated the potential maximum amount to the respondents.  

We argued that vulnerable groups such as welfare recipients may be more attracted by 

the monetary incentives and thus have a higher installation rate. However, for different 

subgroups defined by welfare status, we find no effect on installation rates.  

In the literature, on survey nonresponse, one important issue is whether participants who 

require more recruitment effort produce data of lower quality, e.g., more item nonre-

sponse. Applied to the research question at hand, one could ask whether participants in 

the high installation incentive group provide less passively collected data, i.e., initially 

activate fewer data sharing functions, deactivate functions during the field period, and 

deinstall the app earlier. For the number of initially activated functions and deactivation 

of function settings during the field period, we find no evidence that different incentives 

have an effect. Similarly, for retention, we cannot tie any effect to our installation and 
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function experiment. What we find is that participants who were offered a maximum in-

centive of 70 euro and above had the app installed on average for a longer period than did 

their counterparts in the 60-euro group. Thus, it seems that between the 60- and 70-euro 

maximum incentive lies a threshold that affects participant’s choice to keep the app in-

stalled. Our results indicate that the higher incentive does not encourage target persons to 

collect the incentive and then deinstall the app.  

We do not find any effect for welfare status subgroups for the number of initially activated 

data sharing functions, deactivating function settings during the field period or retention. 

Furthermore, we do not find evidence of differential effects of incentives across the dif-

ferent subgroups for those three outcome variables. From an ethical perspective, these 

results are good news because our results suggest that with offering different amounts of 

incentives, we do not coerce vulnerable groups to share their data. Our analyses, however, 

may suffer from a low number of cases (especially in the welfare recipient groups) that 

may mask existing effects. Furthermore, we have to keep in mind that finding no signifi-

cant differences between vulnerable and non-vulnerable groups does not mean that no 

individuals felt constrained by being offered an incentive. Offering incentives is ethically 

problematic, even if one individual was forced to participate because her situation did not 

allow her to decline the offered incentive.  

4.6.1 Limitations and future research 

This study comes with several limitations. First, we used data from only one study in 

Germany, and we do not know yet how results generalize to similar studies with different 

passive data collection requests or in different countries. All invited smartphone owners 

had participated in at least one prior wave of a mixed-mode (CAPI and CATI) panel sur-

vey. Thus, they are likely to have more-positive attitudes towards scientific studies than 

does the general population. In addition, a trust relationship between the research institute 
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conducting the study and the panel respondents has been established, and respondents 

have become used to receiving a cash incentive of 10 euro per survey wave. These factors 

might increase willingness to participate in general and modify the reaction to incentives 

compared to other populations who are not part of an ongoing panel study.  

Second, for each type of incentive in our study, there were only two experimental groups 

and no control group without an incentive. Thus, we have no information on the effect of 

introducing an incentive versus no incentive or on whether there are diminishing returns 

when the amount is further increased.  

Third, smartphone data collection is still new. All invited PASS respondents are very 

unlikely to ever have been confronted with a similar request. This novelty factor could 

lead to different results than might be found once this form of data collection becomes 

more established. People might become more or less trusting or more or less interested in 

this kind of research in the future. 

Fourth, our study’s generalizability may be limited by the type of incentive we used. 

Throughout the paper, we claim that we provided monetary incentives to participants, but 

participants never received actual money; instead, they received Amazon.de vouchers. 

Amazon is the largest online retailer in Germany (Ecommerce News 2017). One could 

argue that these vouchers are as good as money; however, these vouchers can only be 

used in the German Amazon online store. They are not usable in brick-and-mortar shops, 

such as supermarkets, or in other online stores. Individuals may perceive a 10-euro Am-

azon.de credit as harder to spent than 10 euro in cash. Against this background, the type 

of incentive may actually modify the effect of the amount of incentive. Furthermore, we 

have no information on how many of our participants do not have an Amazon.de account 

and whether those without an account differ from those with an account. Some partici-

pants might have preferred different online incentives, e.g., payments through PayPal, 
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bank transfers, or donations. Therefore, our findings about the effect of incentives are 

limited to Amazon.de vouchers. Whether different incentives or combinations of incen-

tives are more efficient has to be empirically tested in future research.  

Fifth, so far, we have very little knowledge about the value of passively collected 

smartphone data; nor do participants have a benchmark to estimate their value. Most tar-

get persons in our study probably share similar data with commercial providers without 

pay and without the benefits of anonymization to be able to use certain apps or other 

online services.  

Sixth, our analyses may suffer from small sample sizes. With a higher number of cases 

in each experimental group, differences between groups may become more clear, and 

statistical tests may identify effects that are now covered.  

Finally, it is not possible to identify whether sample members went to the Google Play 

Store, looked at the app, but then decided not to download the app. We only have data 

from individuals who finished the onboarding process, i.e., the process between accessing 

the Google Play Store and finishing all consent decisions. Only as the onboarding process 

was finished was the app able to collect data, and we do not have any information about 

the number of failed onboardings. 
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Appendix 

 

 

Figure 4.10: Mean number of initially activated data-sharing functions with 95% confi-

dence intervals, by incentive conditions and maximum amount of incentive, by welfare 

status (N = 420) 
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Figure 4.11: Average time participants stayed in field with 95% confidence intervals, 

i.e., time between first installation and deinstallation in percent, by incentive conditions 

and maximum amount of incentive, by welfare status (N = 420) 
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Figure 4.12: Average percent of points redeemed by participants with 95% confidence 

intervals by incentive conditions and maximum amount of incentive, by welfare status 

(N=420) 
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Figure 4.13: Original (German) voucher flyer; experimental conditions are marked in 

red. 
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Figure 4.14: Voucher flyer (English translation); experimental conditions are marked in 

red. 
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5 Using Geofences to Collect Survey Data: Lessons 

Learned From the IAB-SMART Study 

5.1 Abstract 

Within the survey context, a geofence can be defined as a geographical area that triggers 

a survey invitation when an individual enters the area, dwells in the area for a defined 

amount of time or exits the area. Geofences may be used to administer context-specific 

surveys, such as an evaluation survey of a shopping experience at a specific retail loca-

tion. While geofencing is already used in other contexts (e.g., marketing and retail), this 

technology seems so far to be underutilized in survey research. We implemented a 

geofence survey in a smartphone data collection project and geofenced 410 job centers 

with the Google Geofence API. Overall, the app sent 230 geofence-triggered survey in-

vitations to 107 participants and received 224 responses from 104 participants. This arti-

cle provides an overview of our geofence survey, including our experiences analyzing the 

data. We highlight the limitations in our design and examine how those shortcomings 

affect the number of falsely triggered surveys. Subsequently, we formulate the lessons 

learned that will help researchers improve their own geofence studies.  

5.2 Introduction 

Designed for the purpose of survey data collection, a geofence can be defined as a geo-

graphical area that triggers a survey invitation when an individual enters the area, dwells 

in the area for a defined amount of time or exits the area. For a geofence to work, the 

individual needs to carry a device, such as a smartphone, that collects geolocation data 

and allows geofence software to run within an app that triggers the survey invitation. The 

geofence software can identify if the individual is inside or outside the geofence.  

In market research, geofences are used to collect real-time feedback about a store or other 

establishment aimed at reducing the recall bias of costumers (Greenwood 2017). 
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Geofences might also be used in combination with ecological momentary assessments 

(EMAs, e.g., Stone and Shiffman 1994). Usually, EMAs consist of asking participants 

about their current affect or behavior at random points in time during a day. Geofences 

allow researchers to target these questions about people’s moods or behaviors when they 

are at a specific location (e.g., at school, the work place, a fitness studio). For instance, 

Wray et al. (2019) used smartphone geofences to evaluate if specific characteristics of 

locations such as bars are associated with consuming more alcohol when visited by study 

participants.  

However, to date, the literature on geofences in surveys is very sparse, and no clear study 

design guidelines exist that would help researchers to avoid certain pitfalls when employ-

ing this technology for survey research.  

We conducted a feasibility study where we geofenced 410 job centers in Germany to 

assess whether geofence surveys can provide researchers with insightful data on formal 

job search methods. Usually, the Panel Study “Labour Market and Social Security” 

(PASS) collects data on formal job search methods with a yearly telephone or face-to-

face survey in Germany (Trappmann et al. 2019). One dimension of the formal job search 

methods that PASS assesses is welfare recipients visiting a job center. Asking respond-

ents about their experience during job center visits once a year may bias estimates if re-

spondents visit the job center multiple times during that year. During the PASS interview, 

respondents have to summarize their experience over all visits in a given year. Further-

more, since job center visits may have happened almost a year ago at the time of the 

interview, responses are likely to suffer from recall bias (see Tourangeau et al. 2000). 

Geofences offer the possibility to collect information on respondents’ feelings directly 

after each job center visit, that means, for each job center visit, we get a timely estimate 

of the current visit. 



5 Using Geofences to Collect Survey Data: Lessons Learned From the IAB-SMART Study 160 

 

During analysis of the data from our feasibility study, we noticed several challenges that 

are easy to overlook when designing a geofence survey. Since the literature provides little 

guidance on how to conduct geofence-triggered survey data collection, this article serves 

as a summary of different challenges that survey researchers should consider when con-

ducting a geofence survey. The geofence study is part of a larger app data collection pro-

ject (Kreuter et al. 2018). We first provide an overview of the main study and describe 

our geofence survey design. We then report the number of triggered surveys and re-

sponses, followed by an evaluation of our geofence study. Finally, we list the lessons 

learned from our study that will help future geofence studies to improve their designs. 

5.3 Design 

The IAB-SMART study uses a smartphone app to collect data for labor market research 

from the smartphones of participants. The app was designed to collect passive smartphone 

data and to deliver short surveys. In January 2018, we invited 4,293 participants of the 

Panel Study “Labour Market and Social Security” (PASS) via a postal letter to install the 

IAB-SMART app on their smartphones, respond to survey questions and passively share 

data over a period of six months. 

PASS is a household panel survey based on a probability sample of the residential popu-

lation aged 15 and above in Germany with annual waves of data collection (Trappmann 

et al. 2019). The goal of PASS is to facilitate research on unemployment, poverty and the 

receipt of state transfers. The questionnaire focuses, among other topics, on income 

sources, deprivation, (un)employment, job search behavior, social inclusion and attitudes 

towards the labor market. A dual sampling frame (population registers and welfare benefit 

recipient registers) is used in order to oversample welfare benefit recipients (for more 

information, see Trappmann et al. 2013). The data collection mode of PASS is a sequen-

tial mixed-mode combination of computer-aided personal and telephone interviews. 
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Overall, 13,703 respondents participated in wave 11 in 2017. Invitation to the IAB-

SMART study was restricted to respondents aged 18—64 (n=11,208) who had reported 

owning an Android-operated smartphone (n=6,544), conducted their wave 11 PASS in-

terview in the German language (n=5,826) and agreed to be re-contacted for the panel 

(n=5,771). We only invited Android smartphone users because extensive passive data 

collection is restricted under iOS (the operating system of Apple iPhones). The shares of 

other operating systems are too small to justify the effort to program additional apps. 

Keusch et al. (2020a) evaluated how smartphone owners as well as android and iOS 

smartphone owners differ from the general population in Germany. The authors find that 

the likelihood of owning an Android smartphone increases with being male, younger and 

with a higher formal education level. Out of the 5,771 eligible respondents, 4,293 were 

randomly selected and invited to participate in the IAB-SMART study with a postal letter 

and one reminder. Overall, 685 of the invited PASS participants installed the app (Keusch 

et al. 2020b).  

During the installation process, individuals could decide if they wanted to allow the IAB-

SMART app to passively collect data by enabling up to five data collection functions: (1) 

network quality and location information, (2) interaction history, (3) social network char-

acteristics, (4) activity data, and (5) smartphone usage. Withdrawing consent was possible 

at any time in the app’s setting menu. For the purpose of this specific study, we only used 

information from the first function, and we only did this to verify information about 

geofences (see below). More details on the other functions, including consent rates, can 

be found in Kreuter et al. (2018). 

“Network quality and location information” app function 

If an individual decided to enable the “Network quality and location information” func-

tion, they allowed the app to collect the location of the smartphone every 30 minutes and 
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to trigger surveys via the geofences. Note, however, that the geofencing did actually hap-

pen outside this custom-made function (see below). However, to receive a geofenced sur-

vey in the app, the function needed to be enabled by the participant. Out of the 680 par-

ticipants of the IAB-SMART study, 577 participants (87.4 %) successfully shared at least 

one geoposition with us during the data collection period and 209 participants (30.6 %) 

shared at least one geoposition per day for over 180 days. To collect geopositions, four 

different methods were used, with each method acquiring data with different accuracy: 

(1) GPS (median accuracy: 12 meters), (2) mobile carrier network (median accuracy: 20 

meters), (3) WiFi (median accuracy: 30 meters), and (4) cell tower database (median ac-

curacy: 930 meters). With each 30-minute measurement, the app tried to collect the most 

accurate geoposition available (see Bähr et al. 2020). We used this information to verify 

which geofence triggered a survey. 

Job center geofences 

We specified 410 geofences distributed across Germany for our study. Each geofence 

was defined as an area with a 200-meter radius around a job center. Job centers are agen-

cies responsible for the provision of welfare benefits for people aged 15—64 who are able 

to work. In Germany, this welfare benefit is called Unemployment Benefit II and is avail-

able to all households with an insufficient income, irrespective of the labor market status 

of their members, as long as at least one member is aged 15—64 and able to work. Job 

centers administer the payments but also have the task to support recipients in finding 

employment, providing them with job offers, and offering training or active labor market 

policy programs. For long-term unemployed who have lower chances to reenter the labor 

market, such training and programs can focus on stabilizing their life situations and im-

proving their employability. Welfare benefit recipients usually visit their local job centers 

at regular intervals. These visits can happen for two different purposes: (1) visits to file 
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and discuss claims (administrative meetings) or (2) visits to improve labor market and 

life situations (consulting meetings).   

To prevent falsely triggered surveys (e.g., due to passing by a center), we defined a min-

imum duration of 25 minutes within the geofence before a survey was triggered. Those 

25 minutes are based on a plausible guess on the minimum length of stay at a job center. 

However, we may have missed some job center visits that took less than 25 minutes. The 

app would administer a short survey upon exiting the geofence, asking the participant if 

she had a consulting meeting, and, if so, their experience with the meeting. The survey 

was triggered after a participant exits the geofence to prevent participants from respond-

ing to the survey during their job center visits.  

To identify when a participant stayed for at least 25 minutes in a geofence and then exited 

it, we used the Google Geofence API. The Google Geofence API measures three events 

(see Figure 5.1): (1) whether an individual enters, (2) dwells and (3) exits the geofence. 

In our use case, the Google Geofence API only documented how long an individual 

dwelled in the geofence and when she exited. For the sake of simplicity, we will use the 

term visited to describe the procedure of dwelling for at least 25 minutes in a geofence 

and exiting it.  

Note that the Google Geofence API operated independently of our custom “Network 

quality and location information” function in the IAB-SMART app, and it used Google 

Services for geopositioning to identify whether an individual visited a geofence. To pre-

serve participants’ privacy, we did not save any geolocation data measured from the 

Google Geofence API or any other apps. This implies that we did not collect data on 

which specific geofence triggered a survey. However, to evaluate how well the geofences 

worked in terms of identifying if a participant was within a geofence, we can use the 

timestamp of the survey trigger and the geolocation information from our custom 30-
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minute interval as an approximation of whether a participant was or was not within a 

geofence at the time the survey invitation was sent (see the Results section).  

 

 

Figure 5.1: The three events (Enter, Dwell and Exit) that the Google Geofence API 

measures (source: https://developers.google.com/location-context/geofencing/, ac-

cessed: January 12, 2020).  

 

The Google Geofence API has a limit of 100 geofences per user and device. To circum-

vent this limitation, each user was dynamically assigned to 100 geofences depending on 

their current spatial area. 

Survey data 

Upon visiting a job center geofence, the Google API triggered a survey invitation through 

the IAB-SMART app asking about the job center visit. The first question was used to 

verify that the participant had a consulting meeting (see Figure 5.2).  
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You were just near a job center. 

 

Did you have a conversation there that was not 

only about the payment of unemployment benefit 

2, but about your private and professional situ-

ation? 

 

o Yes 

o No 

 

Figure 5.2: Verification question that appeared as the first question upon accessing the 

geofence survey with the translation on the left.  

 

If a participant answered the question with no, no follow-up questions were asked; if a 

participant answered the question with yes, ten follow-up questions were asked evaluat-

ing the consulting meeting with the placement officer (see Appendix Figure 5.6 for the 

full wording). In the IAB-SMART app, participants were incentivized to allow passive 

data collection and respond to the short surveys (the job center survey was one of a total 

of twelve different survey modules programmed into the app). For each answered survey 

question, participants received an incentive of 10 points, that is, participants received 10 

points by answering the first question with “No”, and 110 points by answering the first 

question with “Yes” and completing the entire survey module. Once participants reached 

500 points, they could convert the points to amazon.de vouchers; 500 points equaled a 5 

Euro voucher (for more information about the incentives, see Haas et al. 2020).  

5.4 Results 

To assess how well the geofence study worked, we organize the presentation of our results 

in two sections. First, we present the number of triggered invitations and responses for all 
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job center geofences as quantitative measures of how often the geofences triggered a sur-

vey in the IAB-SMART study. Second, we discuss the challenges by qualitatively evalu-

ating (1) how considering the operation times of job centers would have affected the num-

ber of triggered surveys and responses, (2) if the participant visited a valid geofence, (3) 

on which day the survey was answered and (4) how well the geofence trigger worked by 

assessing if the location of our custom function measurement was within a geofence 

shortly before the time that a survey was triggered. We use data from the custom “Net-

work quality and location information” function and the responses to the in-app survey 

questions for this purpose. 

5.4.1 Number of triggered surveys and responses 

If a participant visits a geofence, the IAB-SMART app triggers a survey invitation. Over-

all, the IAB-SMART app sent 230 geofence-triggered survey invitations to 107 partici-

pants. Table 5.1 shows that the majority of participants (62) received only one, 18 partic-

ipants received two and 26 participants received more than two geo-triggered survey in-

vitations, including one participant who received nine invitations. Overall, 104 out of the 

107 (97.2%) IAB-SMART participants who received a geofence-triggered survey invita-

tion responded at least once. In terms of invitations, 224 out of a total of 230 (97.4%) 

survey invitations that were sent led to a response by a participant. Out of these, partici-

pants reported 56 times (25.0%) that they had a consulting meeting in the job center.  

  



5 Using Geofences to Collect Survey Data: Lessons Learned From the IAB-SMART Study 167 

 

Table 5.1: Number of IAB-SMART participants by the number of triggered surveys 

Number of triggered 

surveys per IAB-

SMART participant  

1 2 3 4 5 6 7 8 9 

Number of IAB-

SMART participants 

(N=107) 

62 18 9 5 2 5 4 1 1 

In percent 57.9 16.8 8.4 4.7 1.9 4.7 3.7 0.9 0.9 

Sum of triggered sur-

veys (N=230) 

62 36 27 20 10 30 28 8 9 

In percent 27.0 15.7 11.7 8.7 4.3 13.0 12.2 3.5 3.9 

  

Figure 5.3 shows the positions of all geocoded job centers in the IAB-SMART app. The 

size of the marker indicates the number of triggered surveys per job center. Overall, 79 

of the 410 (19.3%) implemented job center geofences were triggered at least once, 

whereas the number of triggered invitations per job center ranges from one to 15 times 

(see Table 5.2). 

 

Figure 5.3: Implemented job center geofences in Germany (N=410) 
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Table 5.2: Number of triggered surveys by the number of job centers 

Number of triggered 

surveys per job center 

1 2 3 4 5 6 7 8 9 15 

Number of job centers 

(N=79) 
39 15 4 4 3 5 1 3 3 2 

In percent 49.4 19.0 5.1 5.1 3.8 6.3 1.3 3.8 3.8 2.5 

Sum of triggered sur-

veys per job center 

(N=230) 

39 30 12 16 15 30 7 24 27 30 

In percent 17.0 13.0 5.2 7.0 6.5 13.0 3.0 10.4 11.7 13.0 

 

Only after the end of our data collection did we notice that five pairs of job centers were 

very close to each other and thus had overlapping geofences. The closest distance between 

two job centers in the IAB-SMART app is 167 meters. If a participant visits the overlap-

ping space of two geofences, it is not clear which geofence triggered a survey and, thus, 

it is not clear which triggered surveys belong to which job center. We did, however, not 

find a geolocation in our data that indicates that any participant actually dwelled within 

the overlapping area of two geofences.  

5.4.2 Challenges 

Operation times of job centers 

Our design did not consider the operation times of job centers, which made geofence 

triggered surveys possible at times when job centers were closed. For the sake of simplic-

ity, we assume that job centers operate from 7 am to 7 pm on business days. The actual 

opening times may vary slightly between job centers, but these were the maximum open-

ing hours found in a small data collection from the websites of a sample of 15 job centers. 

Overall, we find 45 (19.6%) triggered surveys on the weekend. Additionally, we find 14 

(6.0%) triggered surveys before 7 am or after 7 pm on weekdays. As a result, we have 59 

(25.6%) clearly false triggered surveys that could have been avoided by considering the 
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operation times of job centers. This can even be considered a conservative estimate since 

we chose the maximum opening times.  

Each participant who received a survey invitation at the time the job center was closed 

and responded to the survey (N=59) should have answered “No” to the first survey ques-

tion asking if a consulting meeting took place. However, we find that in eight surveys 

(13.6%), respondents reported that they had a consulting meeting in the job center, which 

are probably false reports. If we sum up the incentive costs of those false triggered sur-

veys, we obtain an amount of 13.9 Euros, which is approximately 18% of the overall 

incentive costs for the geofence surveys (77.4 Euros). While the monetary consequences 

are negligible in our study, geofence studies with larger sample sizes may benefit from 

the cost savings through considering the opening times. Additionally, this points to a po-

tential measurement error problem induced by the incentive structure. Identified false re-

porters can be interpreted as a reversal of an effect termed ‘motivated underreporting’, 

where respondents answer filter questions in such a way that they avoid lengthy follow-

ups (Eckman et al. 2014). When confronted with the option to earn extra money per ques-

tion, respondents might tend to choose longer paths through the survey.  

Valid geofences per participant 

In our design, each participant was able to access each geofence and trigger a survey. In 

practice, however, each participant is assigned to one job center based on the participant’s 

home address located within the administrative area of the job center. We do not know 

the administrative areas of our job centers. For the sake of simplicity, we thus assume that 

the responsible job center is within a radius of less than 100 kilometers of the participant’s 

home address. If the distance between a job center geofence that triggered a survey and 

the home address is greater than 100 kilometers, we can assume that this person walked 

randomly into the geofence ( e.g., during a business or leisure trip). 
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To infer home addresses, we use our collected geolocation data from the custom “Net-

work quality and location information” function. First, we assume that most individuals 

stay more nights at home than anywhere else (i.e., even if individuals work night shifts, 

they should be more at home than at other places). Second, we round the coordinates of 

the location measurement to the 3rd digit after the decimal point and identify the rounded 

location that appears the most often from 8 pm to 6 am over all days of data in the study. 

Third, we calculate the average of the unrounded location measurements to obtain an 

approximate home address of the participant.  

Overall, we find nine triggered invitations that are more than 100 kilometers away from 

the participants’ home addresses and are likely implausible. We find that in one of these 

nine triggered surveys, respondents stated that they had a consulting meeting.  

Availability of the survey invitation 

With a few exceptions, all surveys sent through the IAB-SMART app were available to 

participants for seven days after the initial invitation. All geofence survey questions, how-

ever, contained the word “TODAY” to reference the day of the geofence visit. This might 

compromise the validity of the survey responses for participants who did not respond on 

the day the invitation was sent. We rely on their implicit understanding that the questions 

refer to the date of the job center visit that triggered the survey.  

Comparing the timestamp of the survey invitation with the timestamp of the survey re-

sponse, we find that for 74 of 224 responded surveys (33.0%), the day of the survey invi-

tation does not match the day of the survey response. 

Evaluating the geofence survey trigger 
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A geofence should only trigger a survey when an individual visits that geofence. In prac-

tice, however, the geofence may malfunction in two ways. First, a survey might be trig-

gered even though the geofence was not visited (false positive). We are concerned about 

this kind of error because each additional survey invitation may increase the respondent’s 

burden to participate (Bradburn 1978). Furthermore, the content of the survey may be out 

of context and thus increase the burden. In addition, when individuals receive an incentive 

for responding to a geofence survey, each survey invitation increases the data collection 

costs and – as stated above – may even induce false reports of visits that actually did not 

occur. To minimize the respondent burden, data collection costs and measurement error, 

we need to minimize false positives.  

A second malfunction would be when no survey is triggered, even though the geofence 

was visited (false negative). If the app fails to trigger a survey, even though the participant 

visited the geofence, we fail to cover part of the events of interest. This will lead to an 

underestimation of the frequency of such visits and decrease the statistical power for an-

alyzing such visits. Furthermore, if false negatives are systematically related to the attrib-

utes of the visit (e.g., duration), they might potentially bias the estimates of any statistics 

produced from the geofence surveys. 

Unfortunately, our design does not allow us to examine false negatives. Having a geopo-

sition measurement at best every 30 minutes (see Bähr et al. (2020) for reasons why the 

intervals might have been longer), we are never able to verify whether a participant re-

mained within the fence between two measurements. To be able to verify whether a par-

ticipant remained within the fence between two measurements, we would need a higher 

frequency of geoposition measurements.  

We can, however, approximately evaluate the false positives by comparing the geofence 

survey trigger via the Google Geofence API with our custom geolocation measurement. 
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The Google Geofence API was programmed to trigger a survey after identifying that the 

participant dwelled for 25 minutes within the geofence and then exited the geofence.  

Dwelling within the geofence means that the geolocation along with its location uncer-

tainty is within the geofence. It is very unlikely that this condition was fulfilled if none of 

our geolocation measurements designed to be taken in 30 minute intervals lies within the 

geofence.  

To compare the Google Geofence API and our custom function, we use an explorative 

approach by creating a figure for each triggered survey. Figure 5.4 shows how it looks in 

our data when the geofence triggered survey matches our custom function. The x-axis in 

Figure 5.4 shows the time of the day that the geofence triggered a survey. The y-axis 

shows the distance of the participant to the job center. Each point represents a geomeasure 

from our customized function, which was designed to collect a geoposition every 30 

minutes. The dashed line is the 200 meter mark for the geofence and the triangular shaped 

marker represents the triggered survey. 

 

Figure 5.4: Example plot for the distances between the job center and the custom func-

tion geolocation measures on the day of the geofence triggered survey   
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During our explorative analysis, we find that in 121 out of 230 triggered surveys (52.6%) 

the Google API trigger matches our geolocation measure, similar to the example in Figure 

5.4. In these cases, we are confident that the survey trigger using the geofence worked as 

intended. For the remaining 109 triggered surveys, we notice a pattern that deviates from 

that in Figure 5.4.  

For 66 triggered surveys, we find that the location accuracy radius overlaps the area inside 

and outside of the geofence (i.e., participants could have been within the geofence or not). 

We assume that the geofence survey trigger also worked correctly for those cases but that 

the different measurement time points and possibly different accuracies between the 

Google Geofence API and our custom function lead to those mismatches.  

We find 28 triggered surveys in which participants were not within the geofence prior to 

the survey trigger. We have no explanation for why this kind of mismatch appears. 

For 15 triggered surveys, we do not have any geolocation measures from our custom 

function at least two hours prior to the time of the survey trigger. It may be possible that 

the Google API was able to collect geolocation data while our custom function was not. 

The lack of geomeasures from our custom function may be due to technical errors during 

the data transfer from the app to the backend or due to the Android operating system 

killing the data collection process (Bähr et al. 2020). Since the Google Geofence API was 

able to collect data, the Android operating system might discriminate between the custom 

data collection functions from third parties, like our IAB-SMART app, and functions de-

veloped and implemented by Google. 

In addition to examining if participants visited the geofence prior to a triggered survey, 

some patterns indicate that a participant may not have visited the geofence for a job center 

visit but for another purpose. Figure 5.5, for example, shows a participant near the 

geofence from 7 am to 5 pm, which may indicate that the person works somewhere near 
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the job center, potentially even in the job center. It seems very unlikely but not impossible 

that this individual had a consulting meeting at the job center. 

 

 

Figure 5.5: Example for distances between the job center and the custom function geo-

location measures on the day of the geofence triggered survey   

 

5.5 Conclusion - Lessons learned  

In this paper, we described a geofence feasibility study with 410 geofences corresponding 

to job centers in Germany. Ideally, if an IAB-SMART participant visited a geofence with 

their smartphone for at least 25 minutes, a survey about the visit was triggered. In retro-

spect, we have to concede that many decisions we made were not optimal with respect to 

the data quality and data collection costs. Most errors we made originated from having 

no literature available on prior studies utilizing this data collection technique. We derive 

a series of lessons learned from our study that researchers may consider when designing 

and implementing a geofence survey in the data collection process. While some of these 

recommendations build on the specifics of our study design, population of interest and 
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research question about job center visits, they can inform researchers who plan to employ 

geofenced surveys in various contexts. 

 

1. Collect information that indicates which geofence triggered a survey 

When setting up the geofence surveys, we did not consider specifically instructing the 

programmers to save the information on which geofence triggered a survey. As a result, 

this exact information was lost, and we only know that one of the 410 geofences triggered 

a survey, but not which one. For an evaluation of how well the geofence surveys worked 

or to compare estimates between job centers, we needed to infer which geofence triggered 

a survey from a different, unrelated function in the app. Especially, studies that use more 

than one geofence should make sure to program the information on which geofence trig-

gered a survey into their app.  

 

2. Avoid overlapping geofences 

If geofences overlap and an individual is within the overlapping space, a triggered survey 

cannot be reliably assigned to the geofence since one of four possible scenarios happens.  

 Individual visits geofence 

A… 

Individual visits geofence 

B… 

…geofence A triggers a 

survey 

correct trigger wrong trigger 

…geofence B triggers a 

survey 

wrong trigger correct trigger 

 

Therefore, researchers should avoid overlapping geofences by, for example, creating 

more precise geofences around the locations of interest, such as our job center, that in-

clude just a small buffer of a few meters instead of using a simple large radius of several 
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hundred meters as we did. Such a more sophisticated approach would increase the time 

and effort needed when defining each geofence individually, but it would increase preci-

sion by avoiding overlaps and reducing the chance of a survey being triggered by a pass-

ersby, which might be especially problematic in densely frequented areas. 

 

3. Consider the operation times of the locations in the geofence 

As a result of not considering any operation times of the job centers, we find false trig-

gered surveys in our data (i.e., triggered surveys on weekends and after business hours). 

Not considering operation times may not only increase the number of false triggered sur-

veys but also the number of false reports. Even if the exact operation times are not known 

or they vary between geofences, it may be a good strategy to define broad operation times 

for all geofences to single out at least part of the false triggered surveys. Especially when 

the researchers are interested in locations that operate at certain hours only, geofences 

should be implemented with operation times to prevent false triggered surveys and reduce 

the amount of data cleaning required afterwards. 

 

4. Consider the number of valid geofences per participant 

In our design, each participant was able to trigger a survey for each geofence. In practice, 

however, each participant will only have one job center that is responsible for them. 

Therefore, we have participants who triggered a survey for a geofence of a job center that 

is not responsible for them. In cases where valid geofences differ between respondents, 

we therefore propose to link each participant to their valid geofence(s) (e.g., via the home 

address of the participant).  

 

5. Availability of the survey invitation 
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As it is a major benefit of a geofence survey to collect real-time feedback, researchers 

should consider for how long a geofence survey should be available to participants. If an 

individual responds to a geofence survey after a day, survey questions may be out of 

context or the individual may have a harder time recalling events.  

 

6. Validate the geofence visit and the event 

We assumed that not every participant who visited the job center geofence was there for 

a consulting meeting. Therefore, we implemented a question in the geofence survey that 

asked if a consulting meeting took place or not. Participants who reported not being in 

the geofence for a consulting meeting were filtered out and did not receive the follow-up 

questions about the job center visit. From our design, we cannot validate whether a par-

ticipant answering “no” to the validation question visited the job center at all or for a 

different purpose (i.e., we cannot distinguish between administrative visits to the job cen-

ter and visits to other locations within the geofence). To distinguish between these cases, 

we should have implemented two validation questions: one that asks whether the partici-

pant was at the point of interest, and a second one that asks about the specific purpose of 

the visit (e.g., a consulting meeting). Researchers need to consider the context in which 

their study is conducted to determine what questions need to be asked to validate whether 

a survey is triggered in the appropriate context (i.e., at the right time, at the right location, 

and for the right person). 

 

5.6 Use of geofences in future research 

As noted earlier, the lessons learned from the implementation of geofences are informed 

by the scope of our IAB-SMART study, and not all recommendations might apply to all 
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geofence surveys in other contexts. To broaden our understanding of when geofencing 

can be used as a valuable tool in survey research, we need more studies that implement 

the technology in the data collection process and validate the findings in different settings. 

Based on our experience, working with 410 geofenced job centers might have been too 

ambitious of a task. There still seem to be many technical and logistic problems pertaining 

to the accuracy of the geoposition measurement and the validation of locations to simul-

taneously implement several hundred geofences in one study. For example, while it is 

highly unlikely that a job center visit happened at 10 on a Saturday evening, our definition 

of opening hours between 7am and 7pm for all job centers might have been too imprecise. 

However, for studies with one or just a few precisely defined geofences, such as a stadium 

where the spectators of a sports event or concert visitors should be invited to an experi-

ence survey, this technology could be a very promising addition to the toolkit of survey 

designers. 
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Appendix 

 

Question 

Number 
Screenshot English Translation 

2 

 

The following is about your personal ex-

perience with the job center and its em-

ployees that you have made TODAY. To 

what extent do the following statements 

apply from your very personal point of 

view? 

 

The employees of the job center patron-

ized me TODAY. 

 

o Strongly agree 

o Slightly agree 

o Slightly disagree 

o Strongly disagree 

3 

 

The following is about your personal ex-

perience with the job center and its em-

ployees that you have made TODAY. To 

what extent do the following statements 

apply from your very personal point of 

view? 

 

TODAY I had no opportunity to bring my 

own ideas into the conversation. 

 

o Strongly agree 

o Slightly agree 

o Slightly disagree 

o Strongly disagree 
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4 

 

The following is about your personal ex-

perience with the job center and its em-

ployees that you have made TODAY. To 

what extent do the following statements 

apply from your very personal point of 

view? 

 

The employees of the job center have dis-

cussed with me TODAY in detail how I 

can improve my chances on the job mar-

ket. 

 

o Strongly agree 

o Slightly agree 

o Slightly disagree 

o Strongly disagree 

 

5 

 

The following is about your personal ex-

perience with the job center and its em-

ployees that you have made TODAY. To 

what extent do the following statements 

apply from your very personal point of 

view? 

 

TODAY I had the feeling that I can trust 

the employees. 

 

o Strongly agree 

o Slightly agree 

o Slightly disagree 

o Strongly disagree 
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6 

 

The following is about your personal ex-

perience with the job center and its em-

ployees that you have made TODAY. To 

what extent do the following statements 

apply from your very personal point of 

view? 

 

There were only demands made TODAY 

instead of really helping me. 

 

o Strongly agree 

o Slightly agree 

o Slightly disagree 

o Strongly disagree 

 

7 

 

The following is about your personal ex-

perience with the job center and its em-

ployees that you have made TODAY. To 

what extent do the following statements 

apply from your very personal point of 

view? 

 

TODAY the employees of the Job Center 

helped me to develop a new perspective. 

 

o Strongly agree 

o Slightly agree 

o Slightly disagree 

o Strongly disagree 
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8 

 

How satisfied are you all and everything 

with your TODAY visit to the job center 

 

o Fully satisfied 

o Slightly satisfied 

o Slightly dissatisfied 

o Fully dissatisfied 

 

9 

 

How are you feeling right now? 

 

Tired – Awake  



5 Using Geofences to Collect Survey Data: Lessons Learned From the IAB-SMART Study 186 

 

10 

 

How are you feeling right now? 

 

Bad – Good  

11 

 

How long did you have to wait for your 

interview at the job center today? 

 

 

Minutes  

Figure 5.6: Screenshots and English translation of the geofence survey for IAB-SMART 

participants that received the survey invitation and answered the first question with 

“Yes”. 
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6 Conclusion 

Over the last decade, information and communication technology lead to tremendous 

changes in society, resulting in challenges and opportunities for the survey profession. 

The web mode, smartphones and the combination of a seemingly unmanageable variety 

of different data sources offer new possibilities to design and modernize data collection 

approaches that need to be evaluated in their feasibility and effects on data quality. In my 

thesis, I tackled some of these new possibilities to modernize the design of data collection 

methods by evaluating different research designs in each of my four thesis papers. My 

thesis papers originate from three different projects, consider different target populations 

(i.e., German establishment population, Egyptian parents, general German population), 

and different modes (web survey, text message survey, app based data collection). Three 

of the four submitted papers use an experimental design to reach their conclusion. The 

fourth paper reports on a novel approach to use organic or sensor data to trigger surveys 

at certain locations. On the first sight, the papers of my thesis may miss to hit the same 

notch. However, all four papers have in common that they use self-administered data 

collection tools, i.e., for the data collection, no interviewers were used but individuals 

provided their data themselves and use novel approaches in their respective research field. 

By showing how the data collection process was designed, all four submitted papers make 

necessary contributions to the academic research literature on modernizing data collection 

methods and enlarge the survey methodologist’s toolbox for similar studies.  

My first thesis paper, Comparing Response Burden between Paper and Web Modes in 

Establishment Surveys, evaluates the difference in response burden between a paper and 

web mode in a German establishment survey. Response burden was measured with three 

variables (estimated time to complete the questionnaire, perceived time and burden). To 
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evaluate if response burden is lower in an establishment web survey and whether respond-

ents feel less burdened if they can choose between a paper and a web mode, four mode 

comparisons were made (Paper-only vs. Web-only, Choice-Paper vs. Paper-only, 

Choice-Web vs. Web-only, Choice-Paper vs. Choice-Web). Furthermore, within each 

mode group establishments were randomly assigned to two different topics. The response 

burden study shows that web respondents, whether they were offered web as a standalone 

mode or concurrently with a paper questionnaire, have no negative effect on response 

burden and a small positive effect on the estimated time to fill out the questionnaire. As 

there are no substantial differences between the paper and web mode design, the results 

suggest that the web mode is a suitable alternative or addon for establishment surveys 

that already use a paper mode.  

My second thesis paper, Comparing Single-sitting Versus Modular Text Message Surveys 

in Egypt, investigates the effects of two designs to administer text message surveys: sin-

gle-sitting and modular and contribute to the knowledge on how to implement text mes-

sage surveys. Overall, 1,081 Egyptian parents were randomly assigned to one of both 

groups. While the single-sitting group received one invitation to an eight-question long 

text message survey, the modular group received an invitation to a question each day over 

the course of eight days. Results show that compared to the single-sitting design, the 

modular design achieved a higher number of answered questions but had fewer fully com-

pleted questionnaires. Furthermore, the paper finds some differences in substantive re-

sponses of behavioral questions between the groups. The study suggests no differences 

in nonresponse bias between both groups and in the probability to respond to a follow-up 

survey.  

My third thesis paper, Effects of Incentives in Smartphone Data Collection, investigates 

the effects of monetary incentives on participation in a smartphone study. Incentives are 
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one of the main tools to increase participation and cooperation in a survey. However, 

smartphone studies that collect sensor data may be seen as more valuable by participants 

and incentives may be higher than in surveys. Furthermore, smartphone studies enable 

new strategies to keep participants engaged, that is, keeping the app installed. To make a 

first step towards an effective incentive strategy for smartphone studies, the study inves-

tigates a crossed two factor experimental design. First, participants were promised either 

10 or 20 Euros conditional on installing the app. Second, participants were promised ei-

ther one Euro for each passive data collection function that was activated for 30 consec-

utive days or one Euro per function plus a five Euro bonus if all five data sharing functions 

were activated for 30 consecutive days. 

The amount of incentive offered for installing the app (10 Euro vs 20 Euro) influences 

the installation rate. Compared to a 10-Euro incentive, individuals that were offered 20-

Euro install the app more often (13.1% vs. 16.4%). However, the study shows no evidence 

that installation incentives affect the number of activated functions, number of deac-

tivated functions or retention. The second experiment, paying respondents a five-Euro 

bonus incentive if they grant access to all five data sharing functions does not affect the 

propensity to install the app. As the bonus incentives doubles the monthly incentive when 

all functions are activated, one would expect a substantial effect on the propensity to ac-

tivate functions, keep functions activated and retention. In this regard, however, the study 

shows no evidence that there are differences between experimental groups. Combining 

the two experiments from the crossed two factor experimental design and adding the 

planned amount of 20 Euro for responding to in app surveys, we get four different maxi-

mum amounts of incentives for that study participants could earn: 60, 70, 90 and 100 

Euro. The study shows no evidence that this promised maximum amount affects the de-
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cision to install the app, activate more or less functions or deactivate any functions. How-

ever, participants in the 70 Euro and above group kept the app installed for a longer pe-

riod.  

One of the major ethical concerns conducting this study was that the offered incentive is 

too high for vulnerable groups, as they may feel forced to install the app and keep it 

installed. The study found no difference in installation rates, number of activated func-

tions, number of deactivated functions or retention indicating, that experimental incentive 

groups have an effect on the vulnerable groups in our study. However, not seeing any 

differences between welfare recipients and non-welfare recipients does not mean that par-

ticular individuals did not feel forced to participate in the study as the situation of a par-

ticular welfare recipient does not allow to decline the offered incentive.   

My fourth thesis paper, Using Geofences to Collect Survey Data: Lessons Learned From 

the IAB-SMART Study, evaluated the feasibility of geofences for labor market research. 

In context of survey research a geofence can be defined as a geographical area that trig-

gers a survey by entering this area, dwelling within this area for a defined amount of time 

and/or exiting this area. The design approach in this study combines survey and 

smartphone sensor data by using geolocation data to trigger survey invitations. For this 

purpose, we implemented the geolocation of 410 German job center with a 200 m radius 

defining the geofences in the IAB-SMART app. If participants dwelled for 25 minutes 

within one of the geofences, a survey invitation was sent, containing questions about the 

experience of a consultation meeting in the job center. 

By now, there is a vast body of literature on how to design and implement surveys in 

different settings. However, there are only few articles that use geofences and a vast body 

of literature about the “do’s and don’ts” does not exist. Without any background on how 
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to design a geofence survey, design decisions were not optimal for this study. The sub-

mitted paper describes design decisions made and concludes with six lessons learned on 

how to improve the design: (1) Collect information that indicates which geofence trig-

gered a survey, (2) Avoid overlapping geofences, (3) Consider the operation times of the 

locations in the geofence, (4) Consider the number of valid geofences per participant, (5) 

Availability of the survey invitation, (6) Validate the geofence visit and the event. Not all 

recommendations may apply to other geofence studies and the study did not cover all 

design decisions. However, this is a first step towards designing survey data collection 

with geolocation data.  

The insights gained from my thesis may be of assistance to researchers designing data 

collection tools in different contexts. Each paper in this thesis contributes to a growing 

body of literature and has different outcome variables. The response burden study, for 

example, provides important findings for the development and design of web establish-

ment surveys. Results from the text message survey study contribute to a growing body 

of literature on how to apply this mode. The incentive study, from the IAB-SMART app, 

provides first insights on how different incentive strategies affect the participation on 

smartphone studies. And the geofence study, which uses a novel approach to administer 

surveys, provides a guideline to avoid several design flaws when setting up a geofence 

study.  
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