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PREFACE

Knowledge-based economic policy decisions often rely on empirical conclusions drawn
from observational studies about the causal effect of a treatment on a set of outcomes.
If units can self-select into treatment, a simple comparison of the outcomes of treated
and untreated units does not identify any causal effect as both groups can be inherently
different. Several empirical strategies to identify causal effects have been developed for
specific setups and are widely applied in empirical economic research today. While being
theoretical in nature, this thesis aims to provide practical and easy-to-implement tools to
improve the reliability and accuracy of empirical estimates in these methods. It consists
of three self-contained chapters. Chapter 1 considers the local average treatment effect
framework, Chapters 2 and 3 the regression discontinuity design.

In the canonical setting of the local average treatment effect (LATE), units are incen-
tivized to take up a treatment by a randomly assigned instrument; for instance, a group
of people is randomly assigned to participate in a job training program or a health treat-
ment. Under additional assumptions, the treatment effect of those units whose treatment
status is indeed affected by the instrument, compliers, is identified (Imbens and Angrist,
1994). One of the key additional assumptions, however, is monotonicity restricting the
effect of the instrument on the treatment status to be monotone across all units. In many
empirical economics applications, the validity of this assumption might be questionable.

In Chapter 1, I develop a method to assess the sensitivity of LATE estimates to po-
tential violations of the monotonicity assumption. I parameterize the degree to which
monotonicity is violated using two sensitivity parameters: the first one determines the
share of defiers in the population, and the second one measures differences in the distribu-
tions of outcomes between compliers and defiers. I derive sharp bounds on the compliers’
outcome distributions in the first-order stochastic dominance sense for each value of these
two sensitivity parameters. I identify the robust region, which is the set of all values of
sensitivity parameters for which a given empirical conclusion, e.g., the LATE is posi-
tive, is valid. Researchers can assess the credibility of their conclusion by verifying that
all plausible sensitivity parameters lie in the robust region so that their estimates gain
credibility.
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In regression discontinuity designs (RDs), treatment is assigned if a specific covariate,
the running variable, exceeds a known cutoff value; for instance, unemployment benefits,
access to credits, or a health treatment can be based on an administrative or health score
exceeding a specific cutoff value. Under mild assumptions, units that are close to the
cutoff are as good as randomly assigned so that the causal effect for units at the margin
of being assigned is identified in a credible and transparent way. In sharp RD designs,
units fully comply with their treatment assignment, whereas in fuzzy designs, units may
only partially comply (Hahn et al., 2001).

The statistical challenge in RD designs is that units that are directly at the cutoff
are in general not observed, so that their expected outcome has to be inferred from units
that are close to the cutoff. Imposing strong functional form assumptions between the
expected outcome and the running variable, e.g., a linear or polynomial relation, would
identify the expected outcome of units at the cutoff. However, conclusions drawn on
these estimates might be misleading if the imposed functional form does not accurately
approximate the true conditional expectation function. Therefore, empirical economic
research often relies on nonparametric methods, that only impose that the relation of
outcome and running variable is sufficiently smooth in a neighborhood of the cutoff; for
instance„ by assuming that the second derivative of the true function is bounded. In
particular, local linear regression methods are used, where a linear regression is fitted
only to observations that are in a small neighborhood of the cutoff. The choice of the size
of the neighborhood is key here. A smaller neighborhood implies that the linear function
approximates the regression function more accurately so that the potential smoothing
bias is reduced; a larger neighborhood implies that more observations are used so that
the variance of the estimator is reduced. This thesis considers two econometrics issues
in RD designs: the construction of confidence sets in fuzzy designs that adequately take
the smoothing bias into account; and the use of additional pretreatment covariates to
efficiently reduce the variance of RD estimators.

Chapter 2 is joint work with Christoph Rothe. We argue that confidence sets for the
parameter of interest in fuzzy RD designs that are commonly applied in the literature
generally fail to be valid under a wide range of empirically relevant conditions such
as setups with discrete running variables, donut designs, and weak identification. We
propose new confidence sets that are bias-aware in the sense that they take possible
smoothing bias explicitly into account. Their construction shares similarities with that
of Anderson-Rubin confidence sets in exactly identified instrumental variable models and
thereby avoids issues with “delta method” approximations that underlie most commonly
used existing inference methods for fuzzy RD analysis. Our confidence sets compare
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favorably in terms of both theoretical and practical performance to existing procedures
in canonical settings with strong identification and a continuous running variable.

Chapter 3 is joint work with Tomasz Olma and Christoph Rothe. We propose a
novel class of covariate-adjusted RD estimators that can have a smaller variance than
estimators used in the literature. Our procedure accommodates a wide range of covariate
adjustments under mild conditions. We consider classic parametric and nonparametric,
as well as machine learning methods so that suitable estimators can be chosen for any
given type of covariates. We allow for discrete and continuous covariates in low- and
high-dimensional settings. The proposed estimators are easily applicable because the
tuning parameters can be selected, and confidence intervals can be constructed following
standard methods used in the literature. We characterize the covariate adjustments that
lead to the smallest variance in this class of RD estimators.
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CHAPTER 1
SEnSITIVITY AnALYSIS OF THE

MOnOTOnICITY ASSumPTIOn In THE LATE FRAmEWORK

1.1. INTRODUCTION
The local average treatment effect framework (LATE), introduced in Imbens and Angrist
(1994), is one of the most popular econometric frameworks for instrumental variable
analysis in setups of heterogeneous treatment effects. We consider settings of a binary
instrumental variable and a binary treatment variable. The Wald estimand then equals
the treatment effect of compliers, individuals for which the instrument influences the
treatment status, given the well-known classical LATE assumptions: monotonicity, inde-
pendence, and relevance.

Monotonicity states that the effect of the instrument on the treatment decision is
monotone across all units. In the canonical example, in which the instrument encourages
units to take up the treatment, monotonicity rules out the existence of defiers, i.e., units
that receive the treatment only if the instrument discourages them. Researchers might
question the validity of this assumption in empirical applications. In these settings, the
local treatment effect estimates might be biased and might lead the researchers to draw
incorrect conclusions about the true treatment effect.

As an example of a setup in which monotonicity could plausibly be violated, consider
the study of Angrist and Evans (1998), who analyze the effect of having a third child on
the labor market outcomes of mothers. As the decision to have a third child is endogenous,
the authors use a dummy for whether the first two children are of the same sex as an
instrument. The underlying reasoning is that some parents would only decide to have a
third child if their first two children were of the same sex; these parents are compliers. The
monotonicity assumption seems questionable in this setting as parents, who have a strong
preference for one specific sex, might act as a defier in this setup. Consider, for example
parents who want to have at least two boys and their first child is a boy. Contrary to the
incentivization through instrument, they have two children if their second child is a boy,
and three children if their second child is a girl. As the monotonicity assumption might
be questionable in this example, one can question the validity of empirical conclusions
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drawn from the classical LATE analysis.1

In this chapter, we provide a framework to evaluate the sensitivity of treatment effect
estimates to a potential violation of the monotonicity assumption. As noted in Angrist
et al. (1996), a violation of the monotonicity assumption always has two dimensions: The
first dimension is the heterogeneous effect of the instrumental variable on the treatment
variable, the presence of defiers. The second dimension is the heterogeneous effect of the
treatment variable on the outcome variable, the outcome heterogeneity between defiers
and compliers. We derive the extent to which monotonicity is violated by parameterizing
these two dimensions.

We parameterize the existence of defiers by their population size and the outcome
heterogeneity by the Kolmogorov-Smirnov norm, which bounds the difference of the cu-
mulative distribution functions of compliers and defiers. For each of these two sensitivity
parameters, we identify sharp bounds of the outcome distribution of compliers in a first-
order stochastic dominance sense. These bounds also imply sharp bounds on various
treatment effects, e.g., the average treatment effect or quantile treatment effects of com-
pliers.

Our analysis precedes in tow steps. In a first step, we identify the sensitivity region.
The sensitivity region defines the set of sensitivity parameters for which a data generat-
ing process exists, that is consistent with our model assumptions and implies both the
observed probabilities and the sensitivity parameters. Since sensitivity parameters lying
in the complement of the sensitivity region are not compatible with our model, we do not
analyze them further. For the derivation of the sensitivity region, we also derive sharp
bounds of the population size of defiers.

In a second step, we identify the robust region, which is the set of sensitivity parame-
ters that imply treatment effects that are consistent with a particular empirical conclusion;
for instance, the treatment effect of compliers has a specific sign or a particular order
of magnitude.2 Parameters lying in the complement of the robust region, the nonrobust
region, imply treatment effects that are not, or may not be, consistent with the given em-
pirical conclusion. The robust region and the nonrobust region are separated from each
other by the breakdown frontier, following the terminology of Masten and Poirier (2020).
For each population size of defiers, the breakdown frontier identifies the weakest assump-
tion about outcome heterogeneity, which is necessary to be imposed to imply treatment
effects being consistent with the particular empirical conclusion under consideration.

1The other LATE assumptions seem to be plausible here. As the sex of a child is determined by
nature and as only the number of and not the sex of the child arguably influences the labor market
outcome of mothers, the independence assumption seems to be satisfied. The relevance assumption is
testable.

2See Masten and Poirier (2020) for a detailed exposition of this approach.
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This approach is useful in the following aspects. First, by evaluating the size of the
sensitivity region, one can determine the plausibility of the model. If this set is empty, the
model is refuted, which implies that even if one would allow for an arbitrary violation of
the monotonicity assumption, the independence assumption has to be violated. Second,
researchers can analyze the sensitivity of their estimates with respect to the degree to
which the monotonicity assumption is violated by varying the sensitivity parameters
within the sensitivity region. Third, by evaluating the plausibility of the parameters
within the robust region, researchers can assess the sign or the order of magnitude of the
treatment effect. While being transparent about the imposed assumptions, they might
still arrive at a particular empirical conclusion of interest in a credible way. Fourth,
one can assess to which degree monotonicity has to be violated to overturn a particular
empirical conclusion. Within our framework, researchers can use their economic insights
about the analyzed situation to judge the severity of a violation monotonicity.

While the main focus of this chapter lies on the treatment effects of compliers, we also
show how this framework can be exploited to analyze treatment effects of defiers. Under
further support assumptions of the outcome variable, treatment effects of even the entire
population are partially identified, which complements known results in the literature (see
Kitagawa, 2021; Balke and Pearl, 1997; Machado et al., 2019). As the explicit expressions
of the sensitivity and robust regions are rather complicated and difficult to interpret, we
also provide simplified analytical expressions of these regions in the case of a binary
outcome.

To construct confidence sets for both the sensitivity and the robust region, we show
that both regions are determined through mappings of some underlying parameters.
These mappings are not Hadamard-differentiable, and inference methods relying on stan-
dard Delta-method arguments are therefore not applicable. We show how to construct
smooth mappings that bound the parameters of interest. This construction leads to
mappings for which standard Delta-method arguments are applicable, and we use the
nonparametric bootstrap to construct valid confidence sets for the parameters of interest.
With a binary outcome variable, the mappings resulting in the sensitivity and robust
region are considerably simpler. Therefore, we can use a generalized Delta-method to
show asymptotic distributional results and apply a bootstrap procedure to construct
asymptotically valid confidence sets.

We show in a Monte Carlo study that our proposed inference method has good finite
sample properties. We further apply our method to the setup studied by Angrist and
Evans (1998) introduced above. We show that relatively strong assumptions on either
the population size of the defiers or the outcome heterogeneity have to be imposed to
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preserve the sign of the estimated treatment effect. This result demonstrates that the
monotonicity assumption is key in the local treatment effect framework.

The remainder of this chapter is structured as follows: A literature review follows,
and Section 1.2 illustrates the setup in a simplified setting. Section 1.3 introduces the
sensitivity parameters and Section 1.4 derives sharp bounds on the distribution functions
of compliers. The main sensitivity analysis is presented in Section 1.5. Section 1.6 also
discusses extensions and Section 1.7 derives estimation and inference results. Section 1.8
contains a simulation study and Section 1.9 an empirical example. Section 1.10 concludes.
All proofs and additional materials are deferred to the appendix.

Literature. This chapter relates to several strands of the literature. First, this chapter
contributes to the growing strand of the literature, which considers sensitivity analysis
in various applications. These applications include, among many others, violations of
parametric assumptions, violations of moment conditions, and multiple examples within
the treatment effect literature (see, among others, Armstrong and Kolesár, 2021b; Mukhin,
2018; Christensen and Connault, 2019; Kitamura et al., 2013; Bonhomme and Weidner,
2018, 2019; Andrews et al., 2017, 2020a; Andrews and Shapiro, 2020; Andrews et al.,
2020b; Roth and Rambachan, 2019; Conley et al., 2012; Imbens, 2003; Chen et al., 2011).
This paper is very closely related to Masten and Poirier (2020, 2021), who generalize
ideas of breakdown points developed in Horowitz and Manski (1995); Imbens (2003);
Kline and Santos (2013); Stoye (2005, 2010). These papers consider several assumptions
in the treatment effect literature, but not the monotonicity assumption.

Second, it is related to the local average treatment effect framework literature, which is
formally introduced in Imbens and Angrist (1994) and further in Vytlacil (2002). Several
papers consider violations of the monotonicity assumption through different types of
assumptions. Balke and Pearl (1997); Machado et al. (2019); Huber et al. (2017); Manski
(1990); Huber and Mellace (2015); Huber (2015) consider a binary and Kitagawa (2021)
a continuous outcome variable and partially identify the average treatment effect. Small
et al. (2017); Manski and Pepper (2000); Dahl et al. (2017); Huber et al. (2017) propose
alternative assumptions on the data generating process, which are strictly weaker than
monotonicity and obtain bounds on various treatment effects.

De Chaisemartin (2017) shows that in the presence of defiers, under certain assump-
tions, the Wald estimand still identifies a convex combination of causal treatment effects
of only a subpopulation of compliers. In a policy context, the treatment effect of com-
pliers might be of particular interest because the treatment status of compliers is most
likely to change with a small policy change. However, the same reasoning does not apply
to the subpopulation of compliers. Klein (2010) evaluates the sensitivity of the treatment
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effect of compliers to random departures from monotonicity. Fiorini et al. (2014) give
examples of analyzing the sensitivity of the monotonicity, and Huber (2014) considers a
violation of monotonicity in a specific example. They do not provide sharp identification
results of the treatment effect of compliers in the presence of defiers, nor do they derive
the robust region. A violation of the monotonicity assumption with a non-binary instru-
mental variable is considered, and alternative assumptions and testing procedures are
proposed in Mogstad et al. (2019); Frandsen et al. (2019); Norris et al. (2020). This chap-
ter contributes to this literature by presenting an effective tool to analyze the severity of
a potential violation of the monotonicity assumption. It thus gives applied researchers a
new tool to evaluate the robustness of their estimates to a violation of the monotonicity
assumption, and their estimates may thereby gain credibility.

Our proposed inference procedure builds on seminal work about Delta-methods for
non-differentiable mappings by Shapiro (1991); Fang and Santos (2018); Dümbgen (1993);
Hong and Li (2018), and it further exploits ideas of smoothing population parameters by
Masten and Poirier (2020); Chernozhukov et al. (2010); Haile and Tamer (2003).

1.2. SETUP
1.2.1. Model of the Local Average Treatment Effect. We observe the distribution
of the random variables (Y,D,Z), where Y is the outcome of interest; D is the actual
treatment status, with D = 1 if the person is treated and D = 0 otherwise; and Z is the
instrument, with Z = 1 if the person is assigned to treatment and Z = 0 otherwise. We
assume that each unit has potential outcomes Y0 in the absence and Y1 in the presence of
treatment, and potential treatment status D1 when assigned to treatment and D0 when
not assigned to treatment. The observed and potential outcomes are related by Y =

DY1+(1−D)Y0, and observed and potential treatment status by D = ZD1+(1−Z)D0.
Based on the effect of the instrument on the treatment status, we distinguish four

different groups: compliers that are only treated if they are assigned to treatment (CO);
defiers that are only treated if they are not assigned to treatment (DF); always takers
that are independently of the instrument always treated (AT), and never takers that
are never treated (NT). We denote the population sizes of the respective group by πAT,
πNT, πCO, and πDF. We denote by Y T

d the potential outcome variable of group T ∈
{AT,NT,CO,DF} under treatment status d. To simplify the notation, we write Y dT

d

for the potential outcome variable of always takers if d = 1 and otherwise of never takers,
and similarly πdT for the respective population size. We denote the outcome distribution
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of a variable Y by FY , its density function, if it exists, by fY , and its support by Y.3

The key parameters of interest in this analysis are treatment effects of compliers. We
denote the average treatment effect of compliers by4

∆CO = E[Y1 − Y0|D0 = 0, D1 = 1].

Throughout the chapter, we assume that P(D = 1|Z = 1) ≥ P(D = 1|Z = 0) without
loss of generality, and we impose the following identifying assumptions.

Assumption 1.1. The instrument satisfies (Y1, Y0, D1, D0) ⊥ Z (Independence), and
P(D = 1|Z = 1) > P(D = 1|Z = 0) (Relevance).

We refer to Angrist et al. (1996) for an extensive discussion of these assumptions.

1.2.2. Illustration of the Sensitivity Analysis. In this section, we illustrate the sensi-
tivity analysis in a very simplified framework, where we introduce the sensitivity param-
eters, the sensitivity, and the robust region. We do not consider any sharp identification
results in this illustration, but we do in our main sensitivity analysis in Section 1.3-1.5.

1.2.2.1. Sensitivity Parameter Space. In the presence of defiers, the average treatment
effect of compliers is not point identified. Angrist et al. (1996) show that the Wald esti-
mand, βIV = Cov(Y, Z)/Cov(D,Z), equals a weighted difference of the average treatment
effect of compliers and defiers:

βIV =
1

πCO − πDF
(πCO∆CO − πDF∆DF ) . (1.1)

Clearly, if either πDF = 0, implying the absence of defiers, or ∆CO = ∆DF , implying that
compliers and defiers have the same average treatment effect, the treatment effect ∆CO

is still point identified. In general, however, three parameters of Equation (1.1) are not
identified: the population size of defiers πDF, the treatment effect of compliers ∆CO and
of defiers ∆DF . To bound the average treatment effect of compliers, we introduce two
sensitivity parameters. The first one determines the population size of defiers, and the
second one outcome heterogeneity between compliers and defiers. These two parameters
measure the degree to which monotonicity is violated and represent the two dimensions
of heterogeneity: (i) heterogeneous effects of the instrument on the treatment status and
(ii) heterogeneous effects of the treatment on the outcome.

The heterogeneous impact of the instrument on the treatment status, is parameterized,

3Throughout the chapter, we implicitly assume that all necessary moments of all random variables
for the parameter of interest exist; for instance, if we consider the local average treatment effect, we
assume Y T

d has first moments for all d ∈ {0, 1} and T ∈ {C,DF,AT,NT}.
4Similarly, the average treatment effect of defiers is denoted by ∆DF = E[Y1 − Y0|D0 = 1, D1 = 0].
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in the most simplest ways, by the population size of defiers

πDF = P(D0 = 1 and D1 = 0). (1.2)

A larger sensitivity parameter πDF implies a more severe violation of monotonicity. It is
clear that, for a given population size of defiers, πDF, the population sizes of the other
groups are point identified. In our analysis, these population sizes are, therefore, functions
of the sensitivity parameter πDF, but we leave this dependence implicit.5

We parameterize the second dimension of heterogeneity by the sensitivity parameter
δa which equals the absolute differences in treatment effects of both groups

δa = |∆CO −∆DF |.

A larger sensitivity parameter δa implies a more severe violation of monotonicity.

1.2.2.2. Sensitivity Region and Robust Region. The sensitivity region is the set of sensitiv-
ity parameters which do not violate our model assumptions. For instance, a sensitivity
parameter πDF ≥ 0.5 would violate our model assumptions as the relevance assumption
implies that πCO > πDF. Therefore, such a sensitivity parameter does not lie within our
sensitivity region, which is identified without imposing any additional assumptions. In
this illustrative example, we simplify the derivation and say that the sensitivity region is
trivially given by

SRa = [0, 0.5)× R+.

In our main sensitivity analysis, this set, however, is nontrivial and can even be empty. In
this case, the model is rejected, implying that even though the monotonicity assumption
may be violated, the independence assumption has to be violated as well.

Even though the treatment effect of compliers is generally not identified if πDF > 0,
using (1.1), it is partially identified for any given pair of sensitivity parameters (πDF, δa) by

∆CO ∈
[
βIV − πDF

πCO − πDF
δa, β

IV +
πDF

πCO − πDF
δa

]
.

In a typical sensitivity analysis, researchers now consider different values of the sensitivity
parameters to evaluate the identified sets of the parameter of interest and to evaluate the
robustness of the LATE estimates to a potential violation of monotonicity. However, in
many empirical applications, the interest does not lie in the precise treatment effect but in
its sign or in its order of magnitude. It is, therefore, natural to start with the empirical
conclusion of interest and to ask which sensitivity parameters imply treatment effects

5It follows from the definitions of the groups and our assumptions that πAT = P(D = 1|Z = 0)− πDF,
πNT = P(D = 0|Z = 1)− πDF and πCO = P(D = 1|Z = 1)− P(D = 1|Z = 0) + πDF.
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BF

πDF πDF

δa

Robust Region

Nonrobust Region

Figure 1.1: Illustration of Sensitivity and Robust Region. Non-shaded area represents sensitivity
region. [πDF , πDF ] represent some bounds on the population size of defiers.

that are consistent with this conclusion. This approach is formalized by the breakdown
frontier (see, e.g., Kline and Santos, 2013; Masten and Poirier, 2020).

We now consider the empirical conclusion that ∆CO ≥ µ, and we assume that
βIV ≥ µ.6 Under our model assumptions and for a given value of the population size
of defiers πDF, the breakdown point determines the largest value of outcome heterogene-
ity δa that implies treatment effect that are consistent with our empirical conclusion of
interest. Specifically, for any πDF ∈ [0, 0.5], the breakdown point is given by

BPa(πDF) =
πCO − πDF

πDF
(βIV − µ).

The breakdown frontier (BF) is the set of all breakdown points and the robust re-
gion (RR) is the set of all sensitivity parameters that are consistent with the empirical
conclusion of interest. They are respectively given by

BFa = {(πDF, BPa(πDF)) ∈ SRa} and RRa = {(πDF, δa) ∈ SRa : δa ≤ BPa(πDF)} .

The nonrobust region is the complement of the robust region within the sensitivity region.
It contains sensitivity parameters that may or may not be consistent with the empirical
conclusion. Due to the functional form of the breakdown frontier, the nonrobust region is
a convex set in this example. An illustrative example of this setup is shown in Figure 1.1.

In this simple example, neither the sensitivity region nor the robust regions are sharp.
For example, if the outcome is binary than the difference between compliers and defiers
treatment effects is bounded by [−2, 2] and not by R+. Similarly, the robust region might

6If βIV ≤ µ, the robust region for the conclusion that ∆CO ≥ µ is empty.
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also be substantially reduced by taking into account the actually observed outcomes.7

This reasoning means that even though a parameter pair may lie within the sensitivity
region, it might not imply a well-defined data generating process that is consistent with
the model assumptions and the observed probabilities. Similarly, even though a parameter
pair may lie within the nonrobust region, it might be robust. Empirical conclusions that
can be drawn from this analysis might, therefore, not be very informative. Consequently,
we improve upon this framework in the remainder of this chapter.

1.3. SENSITIVITY PARAMETERS
Since treatment effects of compliers are generally not identified in the presence of defiers,
we introduce two sensitivity parameters in this section that are interpretable and imply
bounds on the outcome distributions of compliers so that the parameter of interest is
partially identified. They allow us to consider a trade-off between the strength of the
imposed assumption and the size of the identified set.

To derive the sensitivity parameters, we consider the following function :

Gd(y) =
Cov(1{Y ≤ y}, 1{D = d})

Cov(Z, 1{D = d})
,

for d ∈ {0, 1}. In the absence of defiers, Gd(y) is the cumulative distribution function of
compliers under treatment status d. In the presence of defiers, it holds analogously to
the Wald estimand (1.1) that

Gd(y) =
1

πCO − πDF

(
πCOFY CO

d
(y)− πDFFY DF

d
(y)
)
. (1.3)

The outcome distributions of compliers are thus identified up to the population size of
defiers and the heterogeneity between the outcome distributions of compliers and defiers.

We introduce two sensitivity parameters to parameterize these two dimensions. First,
the presence of defiers is parameterized by the population size of defiers πDF (1.2). Sec-
ond, outcome heterogeneity is represented by δ, which bounds the maximal difference
between cumulative distribution functions of the outcome of compliers and defiers by the
Kolmogorov-Smirnov (KS) norm

max
d∈{0,1}

sup
y∈Y

{|FY CO
d

(y)− FY DF
d

(y)|} = δ,

where δ ∈ [0, 1]. Without a restriction on δ, the outcome distributions can be arbitrarily

7To give a more concrete example, assume that all treated units have a realized outcome of 1 and all
nontreated units have a realized outcome of 0. Then it is clear, that the treatment effect of compliers is
point identified to be one.
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different. If δ = 0, the outcome distributions are restricted the most as both distribution
functions coincide. We say that a larger value of the parameter δ implies a more severe
violation of monotonicity.

There are clearly many different possibilities for how heterogeneity between distribu-
tion functions can be specified. In this chapter, we choose the Kolmogorov-Smirnov norm,
as it leads to tractable analytical solutions of the bounds on the compliers outcome distri-
bution. More importantly, this parameterization is simple enough to be interpretable in
an empirical conclusion. A similar parameterization is chosen in Kline and Santos (2013)
in a different context.8

1.4. PARTIAL IDENTIFICATION OF DISTRIBUTION FUNCTIONS
Since our main sensitivity analysis exploits bounds on parameters defined by the distri-
bution function FY CO

d
for d ∈ {0, 1}, we bound this distribution function for a fixed given

sensitivity parameter pair (πDF, δ) in this section. We illustrate the derivation of the
bounds in the subsequent sections, and the main result is stated in Section 1.4.3.

1.4.1. Preliminaries.

1.4.1.1. Identification Strategy. Our goal is to obtain sharp lower and upper bounds of
the distribution function FY CO

d
in a first-order stochastic dominance sense. That is, we

derive analytical characterizations of the distribution functions F Y CO
d

and F Y CO
d

that are
feasible candidates for FY CO

d
, in the sense that they are compatible with the imposed

sensitivity parameters, our assumptions, and the population distributions of observable
probabilities. They are further such that F Y CO

d
(y) ≤ FY CO

d
(y) ≤ F Y CO

d
(y), for all y ∈ Y.

The identification strategy for deriving such sharp bounds F Y CO
d

and F Y CO
d

is based on the
premise that any candidate distribution function of FY CO

d
then also implies distribution

functions of FY dT
d

and FY DF
d

. Our candidate function FY CO
d

is therefore feasible, only if
the implied functions of FY dT

d
and FY DF

d
are indeed distribution functions.

The explicit analytical characterization of these sharp bounds illustrates the effect of
the sensitivity parameters on the bounds, and more importantly, it implies sharp bounds
on a variety of treatment effects of interest, e.g., the average treatment effect of compliers
(Stoye, 2010, Lemma 1).9

8Since the parameterization of δ is weak on the tails of the distributions, the bounds on the tails are
likely to be uninformative. Imposing a weighted KS assumption, that penalizes deviations at the tails of
the two distributions more, would overcome this issue but would also lead to less tractable results.

9The explicit characterization also allows the inference procedure to be based on FY CO
d

and FY CO
d

.
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1.4.1.2. Notation. We here collect the notation used in the following subsections. Let
d, s ∈ {0, 1} and y ∈ Y. Let the differences in population sizes of compliers and defiers
be denoted by π∆ = πCO − πDF. Let Qds(y) ≡ P(Y ≤ y,D = d|Z = s) be the observed
joint distribution of Y and D. We further let, for B denoting the Borel σ-algebra,

G̃+
d (y) = sup

B∈B
{P(Y ∈ B, Y ≤ y,D = d|Z = d)− P(Y ∈ B, Y ≤ y,D = d|Z = 1− d)}.

and G+
d = 1

πCO
G̃+
d (y). Our sensitivity analysis is based on the following observed under-

lying parameters

θ =
(
Q11, Q10, Q01, Q00, G̃

+
1 , G̃

+
0

)
. (1.4)

1.4.2. Preliminary Bounds. To illustrate the identification argument, we first derive
preliminaries bounds on the distribution function FY CO

d
, which are not necessarily sharp

in general. Based on the law of total probability and our assumptions, the probability
function Qdd is a weighted average of the distribution functions FY CO

d
and FY dT

d
, specifi-

cally Qdd(y) = πCOFY CO
d

(y) + πdFY dT
d

(y). Any feasible distribution function of FY CO
d

has
to imply a function FY dT

d
that is a distribution function. Exploiting this argument and

using our sensitivity parameter πDF, it follows that

1

πCO
Qdd(y) ≤ FY CO

d
(y) ≤ 1

πCO
(Qdd(y)− πd) . (1.5)

These bounds correspond to the extreme scenarios where compliers have the highest or
the lowest outcomes compared to always and never takers.Using the same argument for
defiers and the definition of Gd(y) in (1.3), it further follows that

π∆
πCO

Gd(y) ≤ FY CO
d

(y) ≤ 1

πCO
(π∆Gd(y) + πDF) . (1.6)

We now consider the second sensitivity parameter δ. Based on the definition of Gd(y) in
(1.3), we conclude that any feasible candidate of FY CO

d
also has to satisfy that

Gd(y)−
πDF

π∆
δ ≤ FY CO

d
(y) ≤ Gd(y) +

πDF

π∆
δ. (1.7)

Since the function Gd is not necessarily increasing in y for all y ∈ Y, bounds on the
distribution function FY CO

d
based on (1.6) and (1.7) have to take this into account. We

therefore directly consider bounds on FY CO
d

that employ this information. To be precise,
for the lower bound, we consider equation (1.6) and (1.7), where we replace Gd by its
smallest, nondecreasing upper envelope; vice versa, for the upper bound, where we replace
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Gd by its greatest, nondecreasing lower envelope.10 Following this reasoning and taking
(1.5)-(1.7) into account, the lower bound is given by

HY CO
d

(y, πDF, δ) = max{0, 1

πCO
(Qdd(y)− πd),

π∆
πCO

sup
ỹ≤y

Gd(ỹ), sup
ỹ≤y

Gd(ỹ)−
πDF

π∆
δ},

(1.8)

and the upper bound by

HY CO
d

(y, πDF, δ) = min{1, 1

πCO
Qdd(y),

π∆
πCO

( inf
ỹ≥y

Gd(ỹ) + πDF), inf
ỹ≥y

Gd(ỹ) +
πDF

π∆
δ}. (1.9)

Any value outside of these bounds is clearly incompatible with the distribution of (Y,D,Z)
and our assumptions. To illustrate the effect of our sensitivity parameters, we consider
the width of these bounds for any fixed y ∈ Y as a function of (πDF, δ), that is11

HY CO
d

(y, πDF, δ)−HY CO
d

(y, πDF, δ).

The width is weakly increasing in the sensitivity parameter δ, which implies that a larger
violation of monotonicity leads to a larger identified set. However, the effect of the sen-
sitivity parameter πDF on this width can be both negative and positive depending on
the specific underlying parameters θ. For example, we note that FY CO

d
is point identified

either if πDF = 0 or πd = 0, which denotes the absence of always or never takers. Heuris-
tically speaking, the parameter πDF, therefore, trades off the identification power gained
from the non-existence of defiers and the non-existence of always or never takers.

The functions HY CO
d

and HY CO
d

clearly bound FY CO
d

in a first-order stochastic domi-
nance sense. However, since they do not imply that the implied functions of FY dT

d
and

FY DF
d

are nondecreasing, they are not necessarily a feasible candidate of FY CO
d

. To give an
intuition for this result and for the sake of argument, we now assume that all outcome vari-
ables are continuously distributed. We consider HY CO

d
, and we assume that the bound

on the outcome heterogeneity δ determines the bound, i.e., HY CO
d

(y) = Gd(y) − πDF
π∆
δ.

This bound does not necessarily imply that the always takers have a positive density.
Specifically, the density of the lower bound is gd(y) = (qdd − qd(1−d)(y))/π∆, whereas to
guarantee that the density function fY dT

d
does not take any negative value, any feasible

candidate of fY CO
d

has to satisfy that

fY CO
d

(y) ≤ qdd(y)

πCO
(1.10)

10We give an illustration of this derivation in Appendix 1.E.1.
11This comparison is helpful as the qualitative size of the width of the bounds on the distribution

functions is related to the width of the identified set of many parameters of interest, e.g., the LATE.

16



for all y ∈ Y.12 A similar restriction as (1.10) can be derived for defiers such that any
feasible candidate of the density fY CO

d
(y) has to also satisfy that, for all y ∈ Y,

fY CO
d

(y) ≥ π∆
πCO

max{gd(y), 0}. (1.11)

Based on this argument, we construct our final bounds, F Y CO
d

and F Y CO
d

. Specifically, the
distribution function F Y CO

d
is dominated by HY CO

d
in a first-order stochastic dominance

sense, and the distribution function F Y CO
d

dominates HY CO
d

in a first-order stochastic dom-
inance sense, and they both carefully take into account the reasoning of (1.11) and (1.10).
In Appendix 1.B.1, we show that these distribution functions both bound the distribution
function FY CO

d
and are feasible candidates.

1.4.3. Identification Result. We first provide the analytical expressions of the bounds
in the following. The lower bound of the distribution functions FY CO

d
is given by

F Y CO
d

(y,πDF, δ) =
1

πCO
Qdd(y) (1.12)

− 1

πCO
inf
ỹ≥y

(
Qdd(ỹ)−

(
π∆G

+
d (ỹ)− inf

ŷ≤ỹ

(
π∆G

+
d (ŷ)− πCOHY CO

d
(ŷ, πDF, δ)

)))
,

and similarly the upper bound by

F Y CO
d

(y,πDF, δ) =
π∆
πCO

G+
d (y) (1.13)

− 1

πCO
sup
ỹ≥y

(
π∆G

+
d (ỹ)−

(
Qdd(ỹ)− sup

ŷ≤ỹ

(
Qdd(ŷ)− πCOHY CO

d
(ŷ, πDF, δ)

)))
.

Based on the derivation above, Theorem 1.1 summarizes the result.

Theorem 1.1. Suppose that Assumption 1.1 holds, and the data generating process is
compatible with the sensitivity parameters (πDF, δ). Then, it holds that

F Y CO
d

(y, πDF, δ) ≤ FY CO
d

(y) ≤ F Y CO
d

(y, πDF, δ),

for d ∈ {0, 1} and for all y ∈ Y. Moreover, there exist DGPs which are consistent
with the above assumptions such that the outcome distribution of compliers equals either
F Y CO

d
(y, πDF, δ), F Y CO

d
(y, πDF, δ), or any convex combination of these bounds.

Theorem 1.1 shows not only that the proposed bounds are valid but also that without
imposing further assumptions, the bounds cannot be tightened in a first-order stochastic

12To be precise, one can assume that qd(1−d)(y) = 0 and as π∆ = πCO −πDF ≤ πCO the claim follows.
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dominance sense.13

Remark 1.1. Theorem 1.1 does clearly not imply that all distribution functions that
are bounded by the distribution functions F Y CO

d
and F Y CO

d
are feasible candidates of

the distribution function of FY CO
d

. The reason for that is that these functions do not
necessarily imply nondecreasing distribution functions of the other groups. Since we are
not interested in the distributions functions themselves but in parameters defined through
the bounds, this result is sufficient to derive sharp bounds on the sensitivity and robust
region for empirical conclusions about these parameters.

Remark 1.2. In empirical applications, the parameter of interest is often not only the
average treatment effect but also, e.g., quantile and distribution treatment effects. As
Theorem 1.1 identifies the entire outcome distributions of compliers, these treatment
effects are identified as well and are sharp for many relevant parameters. We present
them in Appendix 1.A.2.

Remark 1.3. Researchers also often have access to pre-intervention covariates. In Ap-
pendix 1.A.3, we show how these covariates can be exploited to reduce the size of the
identified set of the distribution function FY CO

d
. These covariates can then be used to

tighten the sensitivity and to enlarge the robust regions.

1.5. SENSITIVITY ANALYSIS
We present our main sensitivity analysis in this section.

1.5.1. Sensitivity Region. We derive the sensitivity region, which is the set of sensitivity
parameter pairs for which a feasible candidate of the distribution function FY CO

d
exists.

Sensitivity parameters that ly in the complement of this set refute the model, and we,
therefore, do not consider them further.14

1.5.1.1. Population Size of Defiers. We show that the population size of defiers is partially
identified. We denote an upper bound by

πDF = min{P(D = 1|Z = 0), P(D = 0|Z = 1)}. (1.14)

The first element of the minimum represents the sum of the population size of always
takers and defiers, whereas the second one of never takers and defiers. The population
size of defiers is clearly smaller than both of these quantities.

13As the derived bounds are rather complicated, we propose simpler bounds for each of our sensitivity
parameters in Appendix 1.A.1. These bounds are possibly conservative. We explain how to evaluate in
an empirical setting whether they are close to the sharp bounds derived in this section.

14Masten and Poirier (2021) call the complement of the sensitivity region the falsification region.
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The lower bound on the population size of defiers is denoted by

πDF = max
s∈{0,1}

{sup
B∈B

{P(Y ∈ B,D = s|Z = 1− s)− P(Y ∈ B,D = s|Z = s)}}. (1.15)

The supremum is taken over the differences in the population sizes of defiers and compliers,
which bounds the population size of defiers from below. This lower bound is similar
to bounds presented in Kitagawa (2015) and Balke and Pearl (1997). The following
proposition shows that these bounds are indeed sharp.15

Proposition 1.1. Suppose Assumption 1.1 holds. Then the population size of defiers
πDF is sharply bounded by [πDF , πDF ].

If the lower bound on population size of defiers is greater than zero, πDF > 0, at
least one of the classical LATE assumptions, including monotonicity, is violated (see,
e.g., Kitagawa, 2015). However, if the above inequalities contradict, i.e., πDF > πDF ,
the sensitivity region is empty. This implies that even if one allows for a violation of
monotonicity, our model assumptions must be violated as well.

1.5.1.2. Outcome Heterogeneity. We now consider the sensitivity parameter δ. Based on
Theorem 1.1, we can bound the sensitivity parameter δ from below and from above for a
given value of the sensitivity parameter πDF.

A given pair fo sensitivity parameters (πDF, δ) is refuted if the implied lower and upper
bounds, F Y CO

d
and F Y CO

d
, intersect, so that there does not exists a feasible candidate of

the distribution function FY CO
d

which is compatible with these sensitivity parameters.
The domain of the sensitivity parameter δ is bounded from below by

δ(πDF) = min
d∈{0,1}

inf{δ : inf
y
F Y CO

d
(y, πDF, δ)− F Y CO

d
(y, πDF, δ) ≥ 0}. (1.16)

The feasible set of the sensitivity parameter δ is further bounded from above. The bounds
F Y CO

d
and F Y CO

d
imply bounds on the distribution function of FY DF

d
, where the largest

value of the Kolmogorov-Smirnov norm between the distributions of FY CO
d

and FY DF
d

is
achieved when δ = 1. It follows that there does not exists a feasible candidate function
of FY CO

d
such that the implied outcome heterogeneity parameter exceeds this value. We

denote the upper bounds by

δ(πDF) = max
d∈{0,1}

sup
y∈Y

{
|F Y CO

d
(y, πDF, 1)− F Y DF

d
(y, πDF, 1)|,

|F Y CO
d

(y, πDF, 1)− F Y DF
d

(y, πDF, 1)|
}
. (1.17)

15Huber et al. (2017) also present bounds on the population size of defiers. They note that their
bounds are not sharp.

19



By the reasoning of Theorem 1.1, these bounds are sharp, and any convex combination
of these bounds is feasible as well. It follows that our sensitivity region is given by

SR = {(πDF, δ) : π ∈ [πDF , πDF ] and δ(πDF) ≤ δ ≤ δ(πDF)}. (1.18)

1.5.2. Robust Region. We now derive the robust region for the empirical conclusion that
∆CO ≥ µ.16 To simplify the presentation, we assume in the following that the sensitivity
region is nonempty and that ∆CO(πDF , δ(πDF )) ≥ µ.17

By first-order stochastic dominance of the distribution functions F Y CO
d

and F Y CO
d

, we
can construct sharp bounds on many treatment effect parameters, that depend on these
bounds (see Lemma 1 in Stoye, 2010). Specifically, let

∆CO(πDF, δ) =

∫
Y
y dF Y CO

1
(y, πDF, δ)−

∫
Y
y dF Y CO

0
(y, πDF, δ) (1.19)

∆CO(πDF, δ) =

∫
Y
y dF Y CO

1
(y, πDF, δ)−

∫
Y
y dF Y CO

0
(y, πDF, δ). (1.20)

Corollary 1.1. Suppose that Assumption 1.1 holds, and the data generating process is
compatible with the sensitivity parameters (πDF, δ). Then, the average treatment effect of
compliers, ∆CO, is sharply bounded by [∆CO(πDF, δ),∆CO(πDF, δ)].

For a given sensitivity parameter πCO, we now consider the breakdown point given by

BP (πDF) = sup{δ : (πDF, δ) ∈ SR and ∆CO(πDF, δ) ≥ µ}.

For a given sensitivity parameter πDF, it identifies the weakest assumption on outcome
heterogeneity between compliers and defiers such that the empirical conclusion holds.
The breakdown point, as a function of the sensitivity parameter πDF, is not necessarily
decreasing in the population size of defiers as the bounds on the outcome distribution
of compliers can become tighter if the value of πDF increases (see the discussion in Sec-
tion 1.4.2). The breakdown frontier of the average treatment effect is the boundary of
the robust region and given by the set of all breakdown points

BF = {(πDF, δ) ∈ SR : δ = BP (πDF)}. (1.21)

The robust region of the empirical conclusion that ∆CO ≥ µ is characterized by

RR = {(πDF, δ) ∈ SR : δ ≤ BP (πDF)}. (1.22)
16In Appendix 1.A.2, we also consider other treatment effects than the average treatment effect of

compliers. Sensitivity and robust regions for empirical conclusions about these parameters can then also
be derived based on the reasoning of this section.

17If ∆CO(πDF , δ(πDF )) < µ, the robust region is empty.
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The nonrobust region, that is the complement of the robust region within the sensitivity
region, contains pairs of sensitivity parameters which only may not imply treatment
effects being consistent with the empirical conclusion. Figure 1.2 illustrates one example
of the sensitivity and robust region.18

BF

πDF πDF

δ

Robust Region

Nonrobust
Region

1

Figure 1.2: Sensitivity and Robust Region. Non-shaded region represents sensitivity region.

1.6. EXTENSIONS
In this section, we show how our framework can be exploited to draw empirical conclusions
about other population parameters, and how it simplifies if the outcome variable is binary.

1.6.1. Treatment Effects for other Populations. To show how empirical questions
about treatment effects of the entire population can be analyzed, we exploit that the proof
of Theorem 1.1 presents sharp bounds on all groups in a first-order stochastic dominance
sense. For d ∈ {0, 1}, let the lower bound be denoted by

F Yd
(y, πDF, δ) = πCO · F Y CO

0
(y, πDF, δ) +Qd(1−d)(y),

and the upper bound by

F Yd(y, πDF, δ) = πd + πCO · F Y CO
0

(y, πDF, δ) +Qd(1−d)(y).

Proposition 1.2. Suppose the instrument satisfies Assumption 1.1, and the data gen-
erating process is compatible with the sensitivity parameters (πDF, δ). Then, it holds
that

F Yd
(y, πDF, δ) ≤ FYd(y, πDF, δ) ≤ F Yd(y, πDF, δ)

for d ∈ {0, 1} and for all y ∈ Y. Moreover, there exist data generating processes which
are consistent with the above assumptions such that the potential outcome distributions

18We refer to a discussion on how these sets can be used in an empirical setting to Section 1.2 and 1.9
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equal either F Yd(y, πDF, δ), F Yd
(y, πDF, δ), or any convex combination of these bounds.

As the data do not contain any information about the distribution functions FY AT
0

and FY NT
1

, the bounds F Yd
and F Yd are such that their respective probability mass is

shifted to the extreme of the support Y. To interpret these bounds, for any given y ∈ Y,
we consider the difference

F Yd(y, πDF, δ)− F Yd
(y, πDF, δ) = πd.

The size of the bounds decreases with the population size of defiers, πDF, as the
population size of always and never takers πd decreases with πDF. As if πd decreases, the
observed probabilities represent more of the population of interest and correspondingly
less of the population mass has to be set to the extreme of the support of the outcome
variable. However, the sensitivity parameter δ does not influence the distribution of the
outcome of the entire population, as it only influences how the observed outcomes are
distributed between the groups.

This reasoning aligns with results of Kitagawa (2021), who showed that imposing the
monotonicity assumptions (e.g., πDF = 0) does not imply a smaller identified set of the
average treatment effect of the entire population. The bounds evaluated at πDF = πDF

are equivalent to the bounds derived in Kitagawa (2021) and for the special case of
a binary outcome variable bounds derived in Balke and Pearl (1997); Machado et al.
(2019); De Chaisemartin (2017).

Based on the bounds presented in Proposition 1.2, we can now derive a sensitivity
analysis similar to the one presented in Section 1.5. However, to derive informative results
about the average treatment effect of the entire population, we would have to impose that
the outcome is bounded as otherwise the average treatment effect is not identified.

The sensitivity analysis of this chapter is based on the premise that the treatment
effect of compliers is the object of interest. However, if the parameter of interest is the
treatment effect of the entire population, one might then be willing to impose assumptions
not only on outcome heterogeneity between compliers and defiers but also between other
groups. To be precise, we can replace the sensitivity parameter δ by δp such that

max
d

sup
y
{|FY T

d
(y)− FY T ′

d
(y)|}| ≤ δp ∀ T, T ′ ∈ {AT,NT,CO,DF},

where δp ∈ [0, 1]. Using similar arguments as in the proof of Theorem 1.1, one can then
derive sharp bounds on the outcome distribution functions of the entire population and
then conduct a sensitivity analysis similar to the one described in Section 1.5. Empirical
conclusions drawn on this parameterization might be substantially more informative.
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1.6.2. Binary Outcome Variable. In many empirical applications, the outcome of in-
terest is binary. The results of Section 1.4 and 1.5 are still valid in this case, but we
show in this section that the bounds substantially simplify so that they are easier appli-
cable. Let P T

d = P(Y T
d = 1) denote the probability that the random variable Y T

d equals
one, and let the conditional joint probability of the outcome and the treatment status
be given by Pds = P(Y = 1, D = d|Z = s). We denote the underlying parameters by
θb = (P11, P10, P01, P00, P0, P1) ∈ [0, 1]6.

Following the same arguments as above, the sensitivity and robust region depend
on the marginal outcome distributions of the compliers. The presence of defiers is also
bounded by πDF, and the parameter of outcome heterogeneity simplifies to

δb = max
d∈{0,1}

|PCO
d − PDF

d |.

The outcome probabilities of compliers are bounded from below by

PCO
d (πDF, δ) = max

{
0,
Pdd − πd

πCO
,
Pdd − Pd(1−d)

πCO
,
Pdd − Pd(1−d) − πDFδb

π∆

}
, (1.23)

and from above by

P
CO

d (πDF, δ) = min
{
1,
Pdd
πCO

,
Pdd − Pd(1−d) + πDF

πCO
,
Pdd − Pd(1−d) + πDFδb

π∆

}
. (1.24)

Corollary 1.2. Assumption 1.1 holds, and the data generating process is compatible with
the sensitivity parameters (πDF, δ). The outcome probabilities of compliers are sharply
bounded by PCO

d ≤ PCO
d ≤ P

CO

d and they may attain any value inbetween. Thus, they are
sharp.

The interpretation of the width of these bounds follows the same reasoning as in
Section 1.4.2. The lower bound of the population size of defiers simplifies to

πDF = max
d∈{0,1}

{
1∑
y=0

max{0,P(Y = y,D = d|Z = 1− d)− P (Y = y,D = d|Z = d)}

}
.

The upper bound on πDF cannot be simplified further and is given by (1.14). The lower
bound on outcome heterogeneity is given by

δb(πDF) =
πDF
πDF

.

The lower bound on the sensitivity parameter δ decreases with the population size of
defiers. The upper bound on the sensitivity parameter δ is given by the maximal difference
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between the outcome probabilities of compliers and defiers

δb(πDF) = max
d∈{0,1}

max{|PCO
d (πDF, 1)− PDF

d (πDF, 1)|, |P
CO

d (πDF, 1)− P
DF

d (πDF, 1)|}.

The sensitivity parameter space is given by

SRb = {(πDF, δb) ∈ [πDF , πDF ]× [0, 1] : δb(πDF) ≤ δb ≤ δb(πDF)},

and the robust region for the claim ∆CO ≥ µ is given by 19

RRb = {(πDF, δb) ∈ SRb : P
CO
1 (πDF, δb)− P

CO

0 (πDF, δb) ≥ µ}.

Using the simple algebra structure of the bounds of the outcome probabilities, a closed-
form expression for both the robust and the sensitivity region can be derived. As this ex-
pression is rather lengthy without providing much intuition, we state it in Appendix 1.B.5.

1.7. ESTIMATION AND INFERENCE
Even though the contribution of this chapter is the derivation of the sensitivity and robust
region for a particular empirical conclusion, we consider some methods for estimation and
inference of these two regions. While the technical details are deferred to Appendix 1.C,
in this section, we sketch the main issues of conducting inference in this setting and our
proposed solutions. To simplify the exposition, we consider the setting of a continuous
and a binary outcome variable, but our method is not restricted to these distributions.

Throughout this section, we assume that we have access to the data {(Y z
i , D

z
i )}nz

i=1 for
z ∈ {0, 1} that are independent and identically distributed according to the distribution
of (Y,D) conditionally on Z = z with support Y×{0, 1}. We denote this distribution by
(Y z, Dz) and we let n = n0+n1, where n0/n converges to a nonzero constant as n→ ∞.20

1.7.1. Estimation. To construct estimators of the sensitivity and robust region for a
particular empirical conclusion, we note that the identification argument of these regions
are constructive. It follows from Section 1.5 that the boundaries of both regions are
identified by the following mapping,21

ϕ(θ, πDF) = (πDF , −πDF , δ(πDF), −δ(πDF), BP (πDF)), (1.25)

which is evaluated at the sensitivity parameter πDF ∈ [0, 0.5) and the underlying param-
eters θ, that is defined in (1.4). Estimating the sensitivity and robust region is then

19We assume again that PCO
1 (πDF , δb)− P

CO

0 (πDF , δb) ≥ µ
20We discuss this assumption in Assumption A.1.3.
21The signs of the components of the mapping ϕ(θ, πDF) simplify the subsequent analysis.
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equivalent to estimating this mapping. To do so, we consider estimates of the underlying
parameters θ that are simply obtained by replacing unknown population quantities by
their corresponding nonparametric sample counterparts and by standard nonparametric
kernel methods. We denote the estimates of θ by θ̂. Point estimates of the mapping
ϕ(θ, πDF) can then be derived by simple plug-in methods. We defer a detailed description
to Appendix 1.C.4.

1.7.2. Goal of Inference. We propose to construct confidence sets for the sensitivity and
robust region such that the confidence set for the sensitivity region is an outer confidence
set and for the robust region is an inner confidence set.22 These confidence sets should
therefore jointly satisfy with probability approaching the confidence level, 1− α, that (i)
any sensitivity parameter pair of the sensitivity region lies within the confidence set for
the sensitivity region and (ii) not any single parameter pair of the nonrobust region lies
within the confidence set for the robust region.23 Let ŜRL and R̂RL denote two sets of
the sensitivity parameters. They satisfy the described condition if

lim
n→∞

P(SR ⊆ ŜRL and R̂RL(SR) ⊆ RR(SR)) ≥ 1− α. (1.26)

Based on the definition of the mapping ϕ(θ, πDF), it therefore suffices to construct a lower
confidence band for each component of the estimator ϕ(θ̂, πDF) as a function of πDF that
are jointly valid.24 That is, we need to find a function that is componentwise a uniformly
lower bound ϕL(θ̂, πDF) in πDF of ϕ(θ, πDF) so that25

lim
n→∞

P
(

min
1≤l≤5

inf
πDF∈[0,0.5)

e⊤l (ϕL(θ̂, πDF)− ϕ(θ, πDF)) ≤ 0

)
≥ 1− α, (1.27)

where el is the l-th unit vector.26

22Considering inner confidence set for the robust region follows from Masten and Poirier (2020).
23To give one more interpretation of the confidence sets and using the language of hypothesis testing,

a sensitivity parameter pair, (πDF, δ), does not lie in the sensitivity region only if we can reject such
a hypothesis with confidence level 1 − α. Contrary, (πDF, δ) lies in the robust region, only if we can
reject that it is nonrobust with confidence level 1 − α. The confidence sets are constructed so that the
hypothesis tests are valid uniformly in the sensitivity parameter space.

24Throughout this section, we consider confidence sets that are uniformly valid in the sensitivity
parameter space, but not necessarily in the distribution of the underlying parameters θ

25We verify this equivalence in Appendix 1.B.7.3.
26Conservative confidence sets for only the average treatment effect of compliers for specific values

of (πDF, δ) directly follow from the presented procedure. To obtain nonconservative confidence sets, one
can follow the literature on partially identified parameters (see, e.g., Imbens and Manski, 2004)
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1.7.3. Inference for a Continuous Outcome Variable. We analyze the distribution
of ϕ(θ̂, πDF) in order to construct confidence sets for the mapping ϕ(θ, πDF).27 Under
regularity assumptions presented in Appendix 1.C.2, the estimators of the underlying
parameters θ̂ converge in

√
n to a tight Gaussian process (see Proposition A.1.5 in Ap-

pendix 1.D). Since the mapping ϕ is not Hadamard-differentiable, as it depends on mini-
mum, maximum, supremum, and infimum of random functions, standard Delta-method
arguments do not apply in this setup (see Fang and Santos, 2018). We propose a method
to construct confidence sets that are asymptotically conservative but valid in the sense
of (1.26). It is based on ideas of population smoothing that have been suggested by, e.g.,
Haile and Tamer (2003); Chernozhukov et al. (2010); Masten and Poirier (2020).

In contrast to considering the mapping ϕ, which identifies the sensitivity and robust
region, we construct a smooth mapping, ϕκ, which yields valid bounds of both regions.
The smoothed mapping ϕκ is indexed by a fixed smoothing parameter κ ∈ N. The
mapping ϕκ is differentiable such that the standard functional Delta-method can be
applied to ϕκ and we can study its asymptotic distribution by standard methods. The
mapping ϕκ is further such that it yields an outer set of the sensitivity region and an
inner set of the robust region. This reasoning implies that confidence sets of the smooth
mappings ϕκ, which are valid in the sense of (1.26), are also valid for the mapping ϕ.

In finite samples, the choice of the smoothing parameter κ comprises the trade-off
of constructing conservative confidence sets and better finite sample approximations of
the underlying distributions. Suppose the smoothing parameter κ is small. In that
case, the smoothed sensitivity and robust region are very similar to the original regions.
However, the finite-sample distribution of ϕκ(θ̂πDF) might not be well-approximated by
its asymptotic distribution. Vice versa, suppose the smoothing parameter κ is large.
The finite-sample distribution of ϕκ(θ̂πDF) might be well-approximated by its asymptotic
distribution. However, the smoothed sensitivity and robust region are conservative to the
original regions.

In Appendix 1.C.7.1, we show how the smoothed mappings can be constructed. It then
follows that plug-in estimators of the smoothed mappings converge in

√
n to a Gaussian

process by standard functional Delta-method arguments. The covariance structure of this
process is, in general, rather complicated and tedious to estimate. We, therefore, apply
the nonparametric bootstrap to simulate its distribution. Consistency of this bootstrap
procedure follows from arguments of Fang and Santos (2018). In Appendix 1.C, we show
how to construct the confidence sets based on the described procedure and that they

27We want to emphasize that this procedure is valid for a fixed distribution. In particular, we do not
consider settings of weak instruments or data generating processes which are such that the robust region
becomes empty.
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achieve the outlined goal (1.26).

1.7.4. Inference for a Binary Outcome Variable. Following the discusssion about
a bianry outcome model in Section 1.6.2, the mapping yielding the sensitivity and the
robust region for a particular conclusion for a binary outcome variable is given by28

ϕb(θb, πDF) = (πDF,b,−πDF,b,−δb(πDF), BPb(πDF)),

The interpretation of ϕb follows the one for a continuously distributed outcome variable,
and in principle, we could apply the same inference procedure as described above. How-
ever, the mapping ϕb(θb, πDF) is substantially simpler than the mapping ϕ(θ, πDF) so that,
in this section, we can apply more classical inference procedure to obtain confidence sets
in the sense of (1.26); in particular, we follow ideas of Masten and Poirier (2020) and the
literature about moment inequalities (see, e.g., Andrews and Soares, 2010).

Under standard sampling assumptions, it follows that the estimators of the underlying
parameters are jointly

√
n normally distributed (see Appendix 1.C.3). The mapping

ϕb(θb, πDF) is clearly not Hadamard-differentiable, as it consist of minimum and maximum
of random functions. Standard Delta-method arguments are therefore not applicable here
as well. Valid confidence sets could be obtained by projection arguments, which, however,
are known to be conservative in general.

We show instead that the mapping ϕb is Hadamard directionally differentiable in
the direction of θ when evaluated at finitely many {πkDF}Kk=1. Using generalized Delta-
method arguments, the estimator of the mapping ϕb converges to some tight random
process, which is a continuous transformation of a Gaussian process, indexed at the finite
set {πkDF}Kk=1. As this limiting distribution is rather complicated, we do not construct
our inference procedure directly on its limiting distribution, but one can choose various
modified bootstrap methods to simulate this distribution, e.g., subsampling or numerical-
Delta-method (see Dümbgen, 1993; Hong and Li, 2018). In this chapter, we follow a
bootstrap method which relies on ideas based on the moment inequality literature (see,
e.g., Andrews and Soares, 2010; Bugni, 2010) and we explain the procedure in detail
in Appendix 1.C.3. Based on this bootstrap procedure, we can construct valid lower
confidence sets for ϕb indexed at the finite set of sensitivity parameters {πkDF}Kk=1. Using
these confidence sets and exploiting the functional form of ϕb, we then obtain lower
confidence sets for the estimator of the mapping ϕb, which are uniformly valid in πDF.
We state these arguments precisely in Appendix 1.C.3 and show that these confidence
sets are asymptotically valid in the sense of our goal of inference (1.26).

28where its precise definition follows from Section 1.6.2 and Appendix 1.C.3.
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Table 1.1: Simulated coverage rates of the sensitivity and robust region for a positive treatment
effect.

πCO ∆CO ∆TE η = 0.2 η = 0.5 η = 1 η = 1.5 η = 2

0.35

0.3 0 99.1 97.8 95.1 91.3 90.8
0.3 -0.3 96.9 94.3 91.2 92.5 91.6
0.1 0 99.3 98.5 96.0 92.9 91.2
0.1 -0.3 99.3 98.5 95.6 93.1 91.3

0.25

0.3 0 98.9 98.1 95.2 92.4 91.2
0.3 -0.3 99.1 98.0 94.3 92.9 91.4
0.1 0 99.3 98.6 96.0 93.5 91.2
0.1 -0.3 99.0 97.7 94.3 92.9 90.9

The data generating process and the expressions follow the description of the text. Results are based
on 10,000 Monte Carlo draws.

1.8. SIMULATIONS
1.8.1. Setup. We study the finite sample performance of the proposed estimators of
the sensitivity and robust regions through a Monte Carlo study. We consider different
data generating processes with varying degrees of violations of monotonicity, implying
different sizes and shapes of both the sensitivity and robust regions. Specifically, we
consider the following population sizes (πCO, πDF) ∈ {(0.35, 0.05), (0.25, 0.15)}, where
πDF = πAT = 0.3. We set P(Z = 1) = 0.5 and we generate the outcome by

Y CO
1 ∼ B(1, 0.5 + ∆CO) Y DF

1 ∼ B(1, 0.5 + ∆DF ) Y AT
1 , Y NT

0 , Y DF
0 , Y CO

0 ∼ B(1, 0.5),

where ∆CO ∈ {0.2, 0.1}, and B(1, p) denotes the Bernoulli distribution with parameter
p. The sensitivity region is nonempty as the data generating process satisfies our model
assumptions. We consider the empirical conclusion of a positive treatment effect of com-
pliers, so that the robust region is nonempty in each of the data generating processes as
the Wald estimand is positive. The bootstrap procedure requires to choose the tuning
parameter η, which is explained in Appendix 1.C.3. We consider different values of η
given by {0.2, 0.5, 1, 1.5, 2}/

√
N . The results are based on 10,000 Monte Carlo draws.

1.8.2. Simulation Results. Table 1.1 shows the results of the simulated coverage rates
at which the confidence sets cover the population sensitivity and nonrobust region for
the different data generating processes and choices of tuning parameters. Our considered
choice of tuning parameters implies that the simulated coverage of our confidence sets is
close to the nominal one in most data generating processes. These results illustrate that
the confidence method performs reasonably well in finite samples.
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1.9. EMPIRICAL APPLICATION
To illustrate our proposed framework, we apply this sensitivity analysis to data from
Angrist and Evans (1998), who analyze the effect of having a third child on the labor
market outcomes of mothers. It is shown that even small violations of the monotonicity
assumption may have a large impact on the robustness of the estimated treatment effects
such that even the sign of the treatment effects may be indeterminate. The same-sex
instrument in Angrist and Evans (1998) arguably satisfies Assumption 1.1: The indepen-
dence assumption seems to be plausible by the following reasoning: The sex of a child
is determined by nature, and only the number of and not the sex of the child arguably
influences the labor market outcome. The relevance assumption is testable. However,
monotonicity might be violated. We apply the proposed sensitivity analysis to evaluate
the robustness of the estimated treatment effects to a potential violation of monotonicity
in this setting. For simplicity, we focus on two outcome variables: the labor market par-
ticipation of mothers and their annual wage.29 The binary decision to treat represents
the extensive margin and the continuous outcome variable a mix of extensive and inten-
sive variables. We use the same data as Angrist and Evans (1998).30 The sample size is
211,983. The point estimated difference of the population sizes of compliers and defiers
is given by 0.06.

1.9.1. Sensitivity Analysis for Binary Outcome Variable . We consider the labor
market participation of mothers as the outcome variable. The Wald estimate is given by
−0.13. Figure 1.3 illustrates the 95% confidence set for the sensitivity and the robust re-
gion for the claim that the treatment effect of compliers is negative. The formal definition
of these confidence sets is given in Section 1.7.2. In this example, a (conservative) 95%
confidence set for πDF is given by [0, 0.37]. Following the literature, one can therefore not
conclude that monotonicity is violated in this example (see for a comparison, e.g., Small
et al., 2017). The sensitivity parameter pairs below the red line represent the robust re-
gion, which is the estimated set of sensitivity parameters implying a negative treatment
effect. This figure shows that concerns about the validity of the monotonicity assumption
have to be taken seriously. Since BP (0.37) is almost zero, the hypothesis that the treat-
ment effect is negative cannot be rejected without imposing any assumptions on the data
generating process, If the population size of defiers increases, the breakdown frontier is
relatively steeply declining, and thus the robust region is rather small. This implies that
relatively strong assumptions on the outcome distributions of compliers and defiers have

29The annual wage is a continuously distributed running variable with a point mass at zero.
30Data are taken from the website Joshua D. Angrist website www.economics.mit.edu/faculty/

angrist from 1980. The sample is restricted to women at the age of 20-36, having at least two children,
being white, and having their first child at the age of 19-25.

29
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Figure 1.3: Confidence sets for the sensitivity and robust region for a negative treatment effect
of compliers. The confidence level is 95 %. The treatment effect of compliers is the effect of
having a third child on the labor market participation of mothers complying with the same-
sex instrument. The black lines bound the sensitivity region, and the red line indicates the
boundary of the robust region. The population size of defiers is on the horizontal axis, and
outcome heterogeneity between compliers and defiers on the vertical axis.

to be imposed to conclude that the treatment effect is negative in the presence of defiers.
In contrast, if the population size of defiers is small, it is not necessary to impose strong
assumptions about heterogeneity in the outcome variables to imply a negative effect.

This example shows that without imposing any assumptions on the data generating
process, only non-informative conclusions can be drawn in this example, which is the
case as the population size of defiers is not much restricted and is arguably implausible
high. 31 One, therefore, might be willing to impose further assumptions to arrive at more
interesting results, and we show how one could plausibly proceed. These assumptions
should only serve as an example, and obviously, they have to be always adapted to the
analyzed situation. We adopt the approach of De Chaisemartin (2017). One of the
most essential inherently unknown quantities of interest is the population size of defiers.
Imposing a smaller upper bound of this quantity based on economic reasoning allows
us to derive sharper results. Based on a survey conducted in the US, De Chaisemartin
(2017) states that it seems reasonable that 5% of defiers is a conservative upper bound of
the population size of defiers in this setting. If one is willing to impose this assumption,

31To interpret these numbers, we note that the upper bound is a rather conservative estimate. If
roughly 37% of the population were a defier, then approximately 43% of the population would have been
a complier. This reasoning implies that roughly 90% of the population would base their decision to have
a third child on the sex composition of the first two children.
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Figure 1.4: Confidence Sets for the Sensitivity and Robust Region for a Negative Treatment
Effect of Compliers. The confidence level is 95 %. The compliers treatment effect is the effect of
getting a third child on the annual log wage of mothers complying with the same-sex instrument.
The black lines bound the sensitivity region, and the red line indicates the boundary of the robust
region.

one would still have to assume that the differences in the Kolmogorov-Smirnov norm are
less than 0.05, which is a quite strong assumption. Therefore, we would conclude that
the treatment effect is not robust to a potential violation in this specific example.

1.9.2. Sensitivity Analysis for Continuous Outcome Variable. We now consider
the annual log income of the mother. This variable has a point mass at zero, representing
all women who do not work but is otherwise continuously distributed. The Wald estimate
is given by −1.23. Figure 1.4 shows the corresponding 95% confidence sets for the robust
and sensitivity region. If the monotonicity assumption were not violated, this estimate
would imply that women who get a third child have an annual log wage reduced by 1.23.

Figure 1.4 shows 95 % confidence sets for both the sensitivity and robust region. The
same line of interpretation applies as in the case of a binary outcome variable. One
can see that without imposing any assumption about the population size of defiers, the
empirical conclusion of a negative treatment effect is not robust to a potential violation of
monotonicity. However, applying the same reasoning as above and imposing a maximal
population size of 5% as an upper bound of the population size of defiers, one can see
that the empirical conclusion is now robust to a potential violation of monotonicity.

To conclude, this sensitivity analysis is of interest, as one can identify the sign and
the order of magnitude of the treatment effects by imposing further assumptions. These
imposed assumptions are substantially weaker than the monotonicity assumption. The
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estimates, therefore, gain credibility.

1.10. CONCLUSION
The local average treatment effect framework is popular to evaluate heterogeneous treat-
ment effects in settings of endogenous treatment decisions and instrumental variables. In
some empirical settings, one might doubt the validity of one of its key identifying assump-
tions, the monotonicity assumption. Conducting a sensitivity analysis of the estimates
in these settings improves the reliability of the results. This chapter, therefore, proposes
a new framework, which allows researchers to assess the robustness of the treatment ef-
fect estimates to a potential violation of monotonicity. It parameterizes a violation of
monotonicity by two parameters, the presence of defiers and heterogeneity of defiers and
compliers. The former parameter is represented by the population size of defiers and
the latter by the Kolmogorov-Smirnov norm bounding the outcome distributions of both
groups. Based on these two parameters, we derive sharp identified sets for the average
treatment effect of compliers and for any other group under further mild support as-
sumption on the outcome variable. These identification results allow us to identify the
sensitivity parameters that imply conclusions of treatment effect being consistent with
the empirical conclusion. The empirical example of Angrist and Evans (1998) same-sex
instruments underlines the importance of the validity of the monotonicity assumptions
as small violations of monotonicity may already lead to uninformative results.
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APPEnDIX TO CHAPTER 1

1.A. ADDITIONAL MATERIALS FOR THE SENSITIVITY ANALYSIS
In this section, we collect additional materials on identification of the sensitivity region.
In Section 1.A.1, we present simplified bounds, and we consider additional treatment
effects in Section 1.A.2. We explain how covariates can be used to tighten the bounds in
Section 1.A.3 and we give further results on a binary outcome variable in Section 1.A.4.

1.A.1. Simple Bounds II. The bounds presented in Theorem 1.1 are rather tedious,
and conducting inference for the sensitivity and robust regions based on these bounds
is complicated as it depends on many tuning parameters to choose. In this section, we,
therefore, present simpler bounds, which might be more easily applicable in an empirical
context, and confidence sets of these regions might be more reliable. The proposed simple
bounds are especially suited for settings in which the empirical researcher does not have
evidence for the existence of defiers and expects that the number of defiers is, if any,
smaller than of defiers. In this case, the simplified bounds on the distribution function
FY CO

d
are similar to the sharp bounds of Theorem 1.1.

The main reason for the rather complicated expression of the sharp bounds F Y CO
d

and
F Y CO

d
is heuristically that these bounds exploit all the information contained about the

defiers included in the function Gd(y). However, if we forgo the aim of constructing sharp
bounds, we can simply look at the functions

F S
Y CO
d

(y, πDF, δ) = max
{
0,

1

πCO
(Qdd(y)− πd),

π∆
πCO

Gd(y), Gd(y)−
πDF

π∆
δ

}
,

and

F
S

Y CO
d

(y, πDF, δ) = min
{
1,

1

πCO
Qdd(y),

π∆
πCO

(Gd(y) + πDF), Gd(y) +
πDF

π∆
δ

}
.

It follows from the reasoning of the main text that these functions satisfy that any value
outside of these bounds is incompatible with the distribution of (Y,D,Z), and our model
assumptions.32 They are therefore always valid bounds of the distribution function FY CO

d
.

Our simplified sensitivity analysis is then based on the simplified bounds, and we fur-

32This reasoning directly follows from the discussion of Section 1.4.
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ther ignore the lower bound on the sensitivity parameters πDF and δ and set both to zero.
These bounds are still valid for both the sensitivity and robust region. Estimation and
conducting inference within this sensitivity analysis is substantially more straightforward.

In an empirical setting, it remains the question under which conditions these are
actually ”good” bounds in the sense that they are close to the sharp bounds and do
not lead to a substantial loss in information. The most important difference between
the sharp and these simple bounds is that we do not exploit the information about the
defiers, which is contained in the function Gd for d ∈ {0, 1} and the information that the
distribution function is not allowed to increase too much. So if Gd is indeed decreasing, we
expect that the sharp bounds are substantially more informative than the simple bounds.
To assess how conservative these bounds might be, a researcher could also test whether
Gd(y) is non-decreasing for all y ∈ Y (Kitagawa, 2015).

1.A.2. Additional Treatment Effects. The sharp bounds on the distribution function,
FY CO

d
, in a first-order stochastic dominance sense, allows us to consider various other

treatment effects as well. In this section, we consider quantile treatment effects and
define the τ -th quantile effect of the compliers by ∆CO(τ) and we consider empirical
conclusions of the form ∆CO(τ) ≥ µ.

We define the lower and upper bounds of the quantile functions by the respectively
left and right inverse of the bounds of the outcome distributions

Q
Y CO
d

(τ, πDF, δ) = inf{y ∈ Y : F Y DF
d

(y, πDF, δ) ≥ τ}

QY CO
d

(τ, πDF, δ) = sup{y ∈ Y : F Y DF
d

(y, πDF, δ) ≤ τ}.

The quantile treatment effect of a quantile τ is then given by

[∆CO(τ, πDF, δ),∆CO(τ, πDF, δ)]

= [Q
Y CO
1

(τ, πDF, δ)−QY CO
0

(τ, πDF, δ), QY CO
1

(τ, πDF, δ)−Q
Y CO
0

(τ, πDF, δ)].

It follows from the reasoning of Lemma 1 in Stoye (2010) that these bounds are indeed
sharp as well, and there exist feasible candidate distribution functions of FY CO

d
, which

also imply any value between these bounds.
The sensitivity region is defined independently of the particular empirical conclusion

under consideration and is therefore given by the expression of the main text (1.18). It
follows that the breakdown point for the conclusion that ∆CO(τ) ≥ µ is given by

BPτ (πDF) = sup{δ : (πDF, δ) ∈ SR and ∆CO(τ, πDF, δ) ≥ µ}.
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The breakdown frontier of the quantile treatment effect is given by

BFτ = {(πDF, δ) ∈: δ = BPτ (πDF)}.

and the robust region by

RRτ = {(πDF, δ) ∈ SR : δ ≤ BPτ (πDF)}.

1.A.3. Additional Covariates. Additional covariates, which are measured prior to treat-
ment assignment, can be used to tighten the bounds on the identified set of treatment
effects of compliers and can thus lead to greater sets of the robust region; the arguments
are similar to those in Lee (2009). It further holds that conditioning on pretreatment
covariates can imply that the identified set of the sensitivity parameters can be reduced
such that the analysis becomes more informative. We, therefore, assume that the co-
variates are discrete and given by X = {x1, . . . , xK}, which splits the population into
non-overlapping groups. We further impose the following assumptions.

Assumption A.1.2. (i) Conditional independence assignment: (Y1, Y0, D) ⊥ Z|X = x,
(ii) Conditional relevance: P(D = 1|Z = 1, X = x) > P(D = 1|Z = 0, X = x), (iii)
Common support: 0 < P(Z = 1|X = x) < 1.

We construct the sensitivity parameters such that for all x ∈ {x1, . . . , xK}

πDF(x) ≤ πDF.

This parameterization implies that the population size of defiers is bounded from above
for each value of the covariates. We note that this parameterization implies without
further assumptions conservative bounds as long as πDF(x) ̸= πDF for some values of x.33

By similar reasoning the heterogeneity in the outcome distribution is restricted by

|FY CO
d |X=x(y|X = x)− FY DF

d |X=x(y|X = x)| ≤ δ.

Based on the pre-intervention covariates one can calculate for each k lower and up-
per bounds on the population size of defiers πDF (xk) and πDF (xk), respectively. The
bounds on the sensitivity parameters can then be calculated based on the definition of
the sensitivity parameters by πDF = mink(πDF (xk)) and πDF = maxk(πDF (xk)). Let

33We consider two alternative parameterization: First, one could argue that πDF(x) = πDF for all
x ∈ X . The implied bounds would be sharp, but this assumption is very restrictive. Second, we could
consider a setting of πDF(x) = πx

DF. In this parameterization, however, the parameter space might be
very large and therefore difficult to interpret. The parameterization chosen in the text is plausible and
interpretable.

35



πkDF = max{πkDF , πkDF} and denote the lower bound by

F x
Y CO
d

(y, πDF, δ) =
1

πDF

K∑
k=1

P(X = xk, π
k
DF) F

x
Y CO
d

(y, πDF, δ|X = xk)

and the upper bound by

F
x

Y CO
d

(y, πDF, δ) =
1

πDF

K∑
k=1

P(X = xk, π
k
DF) F

x

Y CO
d

(y, πDF, δ|X = xk).

Proposition A.1.3. Suppose that Assumption A.1.2 holds, and the data generating
process is compatible with the sensitivity parameters (πDF, δ). Then, for d ∈ {0, 1}

F Y CO
d

(y, πDF, δ) ≤ FY CO
d

(y, πDF, δ, θx) ≤ F Yd(y, πDF, δ).

Moreover, there exist DGPs which are consistent with the model assumptions such that
the outcome distribution of compliers equals either F Y CO

d
(y, πDF, δ), F Y CO

d
(y, πDF, δ), or

any convex combination of these bounds, if for all x ∈ X it holds that πDF(x) = πDF and
for each x ∈ X and for d ∈ {0, 1}, it holds that

sup
y∈Y

|FY CO
d |X=x(y|X = x)− FY DF

d |X=x(y|X = x)| = δ.

The derivation of the sensitivity and robust region follows the same line of arguments
as in Section 1.5.

1.A.4. Form of Sensitivity and Robust Region for Binary Outcome Variable.
Since our inference procedure exploits the shape of the sensitivity and robust region for
a particular empirical conclusion about a binary outcome variable, we discuss this form
in this section. We note again that they are determined by the following parameters.

ϕb(θb, πDF) = (πDF , −πDF , −δ(πDF), BP (πDF)),

We discuss the components in turn. The sensitivity region is determined based on four
parameters: the lower and upper bound on the population size of defiers and the lower
and upper bound on the sensitivity parameter of outcome heterogeneity. Due to their
simple form, we do not have to discuss the lower and upper bound on the population size
of defiers further, neither the lower bound on the outcome heterogeneity. However, the
upper bound on the sensitivity parameter of outcome heterogeneity is given by

δb(πDF) = max
d∈{0,1}

max{|PCO
d (πDF, 1)− PDF

d (πDF, 1)|, |P
CO

d (πDF, 1)− P
DF

d (πDF, 1)|}.
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Following the discussion about how the bounds are constructed, e.g., in Appendix 1.E.1,
it follows that the upper bound on outcome heterogeneity has to be decreasing in the
population size of defiers as the distribution of both compliers and defiers become more
similar. We now consider the breakdown point as a function of the population size of
defiers. We note that it can be rewritten as

BP (πDF) =
1

πDF
max{BP0(πDF), BP1(πDF), BP2(πDF)},

where BP0(πDF) is decreasing, BP1(πDF) and BP2(πDF) are potentially increasing so that

BP0(πDF)

= max
{
P11 − P10 − (µ+

P00 − P01 + πDF

πCO
)π∆,−((µ− P11 − P10

πCO
)π∆ + P00 − P01)

− (µ · π∆ + P00 − P01) , P11 − P10 − (µ+ 1)π∆,
1

2
(P11 − P10 − P00 + P01 − µ · π∆), 0

}
BP1(πDF) = max

{
0,−((µ− P11 − πAT

πCO
)π∆ + P00 − P01)

}
BP2(πDF) = max

{
0, P11 − P10 − (µ+

P00

πCO
)π∆

}
.

We therefore denote by

ϕ̃b(θb, πDF) = (πDF , −πDF , −δ(πDF), BP0(πDF), BP1(πDF), BP2(πDF)). (A.1.28)

The mapping ϕ̃b is either nondecreasing or nonincreasing in each of its component. We
exploit this shape to construct confidence sets for the sensitivity and robust region that
are uniformly valid in πDF.

1.B. PROOFS OF MAIN RESULTS
In this section, we prove the main results of this paper.

1.B.1. Proof of Theorem 1.1. As we consider a fix sensitivity parameter pair (πDF, δ),
we omit the dependence of all functions on the sensitivity parameter in this section, for
instance, we write F Y CO

d
(y) instead of F Y CO

d
(y, πDF, δ).

To determine whether a given distribution function is indeed a feasible candidate for
the distribution function FY CO

d
, we construct random variables W̃ ≡ (Ỹ0, Ỹ1, D̃0, D̃1, Z̃),

which do not only imply the candidate distribution function as outcome distribution of
compliers, but also they imply the observed distribution function (Y,D,Z), are consistent
with our model assumptions, and the imposed sensitivity parameters.

Based on the instrument’s independence assumption, the definition of our groups, and
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our sensitivity parameters, this joint distribution is not restricted beyond the population
sizes, it suffices to consider the marginal outcome distributions of each group for d ∈ {0, 1}
34

FỸ CO
d
, FỸ DF

d
, FỸ AT

d
, FỸ NT

d

to construct the joint distribution function W̃ . Since the data are also noninformative
about the distribution functions FY AT

0
and FY NT

1
these distributions are left unrestricted

as well. As the outcome distributions of the groups are defined independently of the
random variable Z̃, they satisfy by their construction the independence assumption, and
the relevance assumption is satisfied by the imposed sensitivity parameters. It therefore
follows that FỸ CO

d
is a feasible candidate of FY CO

d
if we can construct outcome distributions

FỸ DF
d

and FỸ dT
d

which are compatible with the observed distribution functions and the
sensitivity parameters for d ∈ {0, 1}.

We argue in the main text that any feasible candidate of the distribution function
FY CO

d
has to satisfy at least that

HY CO
d

(y) ≤ FY CO
d

(y) ≤ HY CO
d

(y) (A.1.29)

The proof now proceeds in two parts. In part I, we exploit which information can be
obtained from the observed probabilities about the compliers outcome distribution to
show which additional restriction, besides (A.1.29), any feasible candidate of FY CO

d
has to

satisfy. In part II, we then verify that the proposed bounds F Y CO
d

and F Y CO
d

are feasible
candidates of the distribution function FY CO

d
. We show that these bounds satisfy that

any value outside of these bounds is incompatible with the distribution of (Y,D,Z), and
our assumptions. We denote by y and y the respectively left and right limits of Y, which
might equal ±∞.

Let further Gsup
d (y) = supŷ≤y Gd(ŷ) be the smallest envelope function that is nonde-

creasing and satisfies Gd(y) ≤ Gsup
d (y) for all y ∈ R; similarly, let Ginf

d (y) = infŷ≥y Gd(ŷ)

be the greatest envelope function that is nondecreasing and satisfies Ginf
d (y) ≤ Gd(y) for

all y ∈ R.

Part I. Using (1.5) and that distribution functions are nondecreasing, any feasible candi-
date of FY CO

d
has to satisfy that, for any y, y′ ∈ Y and y′ ≤ y,

FY CO
d

(y)− FY CO
d

(y′) ≤ Qdd(y)−Qdd(y
′)

πCO
. (A.1.30)

34In the discussion of the sensitivity region, we obviously analyze the joint distributions.
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Using the same reasoning and (1.6), it follows that

FY CO
d

(y)− FY CO
d

(y′) ≥ π∆
πCO

(Gd(y)−Gd(y
′)) .

for any arbitrary y and y′. As Gd(y) is not necessarily nondecreasing, we can similarly
conclude that it has to hold that

P(Y CO
d ∈ B) ≥ π∆

πCO
(P(Y ∈ B,D = d|Z = d)− P(Y ∈ B,D = d|Z = 1− d))

for any B ∈ B and therefore

FY CO
d

(y)− FY CO
d

(y′) ≥ π∆
πCO

(
G+
d (y)−G+

d (y
′)
)
. (A.1.31)

Any feasible candidate of FY CO
d

has to further satisfy the conditions

(viii) lim
y→y

FY CO
d

(y) = 0 and lim
y→y

FY CO
d

(y) = 1. (A.1.32)

The distribution functions FY DF
d

, and FY dT
d

fulfill then these limit conditions based on
(1.5) and (1.6), as it holds that limy→y Gd(y) = limy→yQds(y) = 0 and limy→y Gd(y) = 1

and limy→yQdd(y) = πd + πCO and limy→yQd(1−d)(y) = πd + πDF for any d, s ∈ {0, 1}.
Any real-valued function, which is defined on Y and right-continuous, which left-limits

exists and which satisfy equations (A.1.29) – (A.1.32) implies by construction potential
outcome distributions for all four groups, which are consistent with the imposed model
assumption, the sensitivity parameter constraints, and the observed probability functions.
It is thus a feasible candidate of FY CO

d
. It is clear that the simple additive structure of all

imposed conditions implies that if there are two different such feasible candidate functions,
any convex combinations of these functions satisfy these conditions as well.

Part II. We show in the following both that the proposed bounds F Y CO
d

and F Y CO
d

satisfy
the constraints in (A.1.29) – (A.1.32) and that any function which takes values outside of
these bounds contradicts one of these conditions and is therefore incompatible with the
distribution of (Y,D,Z), our assumption and the sensitivity parameters. As the consid-
ered sensitivity parameters lie within the sensitivity region by assumption, bounds on the
outcome distribution of compliers exist and are therefore non-intersecting by construction.
The condition in (A.1.29) is therefore satisfied if our bounds F Y CO

d
and F Y CO

d
satisfy

HY CO
d

(y) ≤ F Y CO
d

(y) and F Y CO
d

(y) ≤ HY CO
d

(y) (A.1.33)

for all y ∈ Y. Additionally, both bounds preserve the existence of limits and continuity.
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Part II - Lower Bound. We consider first

H1(y) =
1

πCO

(
π∆G

+
d (y)− inf

ỹ≤y

(
π∆G

+
d (ỹ)− πCOH(ỹ)

))
. (A.1.34)

It clearly holds that H1(y) ≥ HY CO
d

(y). Consider again any y, y′ ∈ Y such that y′ ≤ y.
Based on this reasoning H1(y) satisfies constraint (A.1.31) as

H1(y)−H1(y
′)

=
1

πCO

(
π∆G

+
d (y)− π∆G

+
d (y

′)− inf
ỹ≤y

(
π∆G

+
d (ỹ)−H(ỹ)

)
− inf

ỹ≤y′

(
π∆G

+
d (ỹ

′)−HY CO
d

(ỹ′)
))

≥ 1

πCO

(
π∆G

+
d (y)− π∆G

+
d (y

′)
)
.

Any function F such that F (y) ≤ H1(y) either violates (A.1.31) or (A.1.33) for some
y ∈ Y. We conclude that any feasible candidate function of FY CO

d
has to satisfy

H1(y) ≤ FY CO
d

(y) (A.1.35)

We now consider our final lower bound

F Y CO
d

(y) =
1

πCO

(
Qdd(y)− inf

ỹ≥y
(Qdd(ỹ)−H1(ỹ))

)
.

It is clear that F Y CO
d

(y) ≥ H1(y) and that Qdd(y)− Qdd(y
′) ≥ F Y CO

d
(y)− F Y CO

d
(y′). As

it further holds that, for any y, y′ ∈ Y and y′ ≤ y,

Qdd(y)−Qdd(y
′) ≥ G+

d (y)−G+
d (y

′)

F Y CO
d

(y) satiates (A.1.31), (A.1.30), and it holds that F Y CO
d

(y) ≥ H1(y). Clearly, any
function F such that F (y) ≤ H1(y) is incompatible with the distribution of (Y,D,Z),
the sensitivity parameters and our assumptions.

We now show that F Y CO
d

(y) satisfies (A.1.32) . By construction, F Y CO
d

∈ [0, 1]. We
therefore show that limy→y F Y CO

d
(y) ≤ 0 and limy→y F Y CO

d
(y) ≥ 1. It holds that

lim
y→y

F Y CO
d

(y) =
1

πCO
inf
ỹ∈R

(
Qdd(ỹ)− (π∆G

+
d (ỹ)− inf

ŷ≤ỹ

(
π∆G

+
d (ŷ) + πCOHY CO

d
(ŷ)
)
)

)
The equality follows as limy→yQdd(y) = 0. We note that for all y, y′ ∈ Y and y′ ≤ y
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Qdd(y)−Qdd(y
′) ≥ π∆

(
G+
d (y)−G+

d (y
′)
)
. It follows that

lim
y→y

F Y CO
d

(y)

≤ 1

πCO
inf
ŷ∈Y

(
max{ 0︸︷︷︸

(1a)

, Qdd(ŷ)− πd︸ ︷︷ ︸
(2a)

, π∆G
sup
d (ŷ)︸ ︷︷ ︸

(3a)

, πCOG
sup
d (ŷ)− πCO

πDF

π∆
δ︸ ︷︷ ︸

(4a)

} −Qdd(ŷ)
)
.

We now show that each of the expressions (1a)–(4a) evaluated at any ŷ ∈ Y is bounded by
Qdd(ŷ) so that it holds that limy→y πCOF Y CO

d
(y) ≤ 0. It is obvious that expressions (1a)

and (2a) satisfy this reasoning. Considering (3a), we note that it holds that π∆Gsup
d (ŷ) ≤

Qdd(ŷ). We turn to (4a). It holds that

Gsup
d (ŷ)− πDF

π∆
δ − Qdd(ŷ)

πCO
≤ FY CO

d
(ŷ) +

πDF

π∆
δ − πDF

π∆
δ − Qdd(ŷ)

πCO
≤ FY CO

d
(ŷ)− Qdd(ŷ)

πCO
≤ 0

We consider the right limit. It holds that F Y CO
d

≥ HY CO
d

and therefore

lim
y→y

F Y CO
d

(y) ≥ lim
y→y

max{0, Gsup
d (y)− πDF

π∆
δ,
π∆
πCO

Gsup
d (y),

Qdd(y)− πd
πCO

} ≥ 1.

The second inequality follows as limy→yQdd(y)−πd = πCO+πd−πd = πCO. This reasoning
concludes the proof of the lower bound.

Part II - Upper Bound. A similar reasoning applies to the upper bound. To briefly sketch
this reasoning, let

H1(y) = Qdd(y)− sup
ŷ≤y

(
Qdd(ŷ)− πCOHY CO

d
(ŷ)
)
.

It is clear that H1(y) ≥ HY CO
d

(y) and that Qdd(y) − Qdd(y
′) ≥ H1(y) − H1(y

′). It
holds that H1(y

′) satisfies (A.1.30). Clearly, any function F such that F (y) ≤ H1(y)

is incompatible with the distribution of (Y,D,Z), the sensitivity parameters and our
assumptions. It therefore follows that any function which is a feasible candidate of the
distribution function FY CO

d
has to satisfy

FY CO
d

(y) ≤ H1(y) (A.1.36)

We now consider our proposed bound.

F Y CO
d

(y) = π∆G
+
d (y)− sup

ỹ≥y

(
π∆G

+
d (ỹ)−H1(y)

)
.

It follows from the same reasoning as above that F Y CO
d

(y) satisfies (A.1.36), (A.1.30) and
(A.1.31). Clearly, any function F such that F (y) ≥ F Y CO

d
(y) is incompatible with the
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distribution of (Y,D,Z), the sensitivity parameters and our assumptions.
We conclude by showing that F Y CO

d
(y) satisfies (A.1.32). It holds that

lim
y→y

F Y CO
d

(y) ≤ lim
y→y

min{1, Ginf
d (y) +

πDF

π∆
δ,
πCO

π∆
Ginf
d (y) +

πCO

πDF
,
Qdd(y)

πCO
} ≤ 0,

where the second inequality follows by limy→y
Qdd(y)
πCO

= 0. We now consider

lim
y→y

F Y CO
d

(y)

=
πCO + πd
πCO

− sup
ŷ∈Y

(Qdd(ŷ)

πCO
− min{ 1︸︷︷︸

(1b)

,
Qdd(ŷ)

πCO︸ ︷︷ ︸
(2b)

,
π∆
πCO

Ginf
d (ŷ) +

πDF

πCO︸ ︷︷ ︸
(3b)

, Ginf
d (ŷ) +

πDF

π∆
δ︸ ︷︷ ︸

(4b)

}
)
.

We show that (1b)–(4b) are bounded from below by Qdd(ŷ)
πCO

− πd
πCO

such that

lim
y→y

F Y CO
d

(y) ≥ πCO + πd
πCO

− πd
πCO

= 1.

It is clear that (1b)-(2b) satisfies this restriction. Concerning (3b), we note that

1

πCO

(
π∆G

inf
d (ŷ) + πDF

)
≥ 1

πCO
(Qdd(ŷ) + πDF − πd − πDF) =

Qdd(ŷ)− πd

πCO
.

Concerning (4b), we note that

Ginf
d (ŷ) +

πDF

π∆
δ ≥ FY CO

d
(ŷ)− πDF

π∆
δ +

πDF

π∆
δ ≥ Qdd(ŷ)

πCO
− πd
πCO

This completes this proof.

1.B.2. Proof of Proposition 1.1. We show that the population size of compliers is
sharply bounded by πCO ≤ πCO ≤ πCO, where for B ∈ B and d, z ∈ {0, 1}

πCO =min{P(D = 1|Z = 1),P(D = 0|Z = 0)}

πCO = max
d∈{0,1}

{sup
B∈B

{P(Y ∈ B,D = d|Z = d)− P(Y ∈ B,D = d|Z = 1− d)}}.

The proposition follows from this statement as πDF = πCO − P(D = 1|Z = 1) + P(D =

1|Z = 0). Let P(Y t
d ∈ B) denotes the unobserved probability distribution of the potential

outcome of group t with treatment status d.35

πCO is a valid lower bound of the population size of compliers as it follows from the

35In principle, Proposition 1.1 is a Corollary of Theorem 1.1. Considering the sharp lower bound on
the population size of defiers, one could simply use the bounds to solve for the minimal size of defiers
for which there exists one value of outcome heterogeneity δ such that the bounds are non-intersecting.
However, this exercise is tedious, and we propose a simpler and direct proof for this claim in this section.
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definition of groups that

πCO = min{πAT + πCO, πNT + πCO} ≥ πCO.

Similarly, πCO bounds the population size of compliers from below as πCO equals

max
{

sup
B∈B

{P(Y1 ∈ B,AT ) + P(Y1 ∈ B,CO)− P(Y1 ∈ B,AT )− P(Y1 ∈ B,DF )} ,

sup
B∈B

{P(Y0 ∈ B,NT ) + P(Y0 ∈ B,CO)− P(Y0 ∈ B,NT )− P(Y0 ∈ B,DF )}
}

≤ max{sup
B∈B

{P(Y1 ∈ B,CO)}, sup
B∈B

{P(Y0 ∈ B,CO)}} = πCO.

The inequality follows from the independence assumption and the definition of the groups.
It is therefore clear that the population size of compliers lies within the bounds. It remains
to show that these bounds are sharp. To show this, we consider any fix π̃CO ∈ [πCO, πCO].
Let B ∈ B and BB = {A∩B|A ∈ B}. Using the discussion of the proof of Theorem 1.1
how to verify that a candidate distribution is a feasible distribution, we consider the
following marginal outcome distributions of the groups.36

P(Ỹd ∈ B, T = CO) = P(Y ∈ B,D = d|Z = d)− P(Ỹd ∈ B, T = dT ),

P(Ỹd ∈ B, T = DF ) = P(Y ∈ B,D = d|Z = 1− d)− P(Ỹd ∈ B, T = dT ),

P(Ỹd ∈ B, T = dT ) = L1 · L2,

where

L1 =
P(D = d|Z = d)− π̃CO

P(D = d|Z = d)− supC∈B(P(Y ∈ C,D = d|Z = d)− P(Y ∈ C,D = d|Z = 1− d))
,

L2 = P(Y ∈ B,D = d|Z = d)

− sup
C∈BB

(P(Y ∈ C,D = d|Z = d)− P(Y ∈ C,D = d|Z = 1− d)).

The outcome distribution of group dT is the product of two terms. The term L1 guar-
antees that the probability distributions integrate to the corresponding population size.
The term L2 guarantees that the outcome probabilities of compliers and defiers are non-
negative. The outcome distributions of the other groups are respectively defined.

By construction, the proposed outcome probability distributions imply the observed
outcome probability distributions.37 We show now that the implied probability distri-

36Otherwise P(Ỹd ∈ B, T = dT ) is defined to be zero if P(D = d|Z = d) = supC∈B(P(Y ∈ C,D =
d|Z = d)− P(Y ∈ C,D = d|Z = 1− d)). The other probability distributions stay the same.

37This means that ∀B ∈ B and ∀d, z ∈ {0, 1} P(Y ∈ B,D = d|Z = z) = P(Ỹ ∈ B, D̃ = d|Z̃ = z).
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butions are indeed distributions, which satisfy ∀ T ∈ {CO,DF,AT,NT}, d ∈ {0, 1},
and B,B′ ∈ B, where B′ ⊆ B: (i) P(Ỹ T

d ∈ Y) = 1; (ii) P(Ỹ T
d ∈ B) ≥ 0; and (iii)

P(Ỹ T
d ∈ B) ≥ P(Ỹ T

d ∈ B′). We consider any B ∈ B and any d ∈ {0, 1} in the following.
We first consider condition (i). It clearly holds that P(Ỹd ∈ Y, T = CO) = π̃CO, and

P(Ỹd ∈ Y, T = dT ) = P(D = d|Z = d)− π̃CO = π̃dT

P(Ỹd ∈ Y, T = DF ) = P(D = d|Z = 1− d)− P(D = d|Z = d) + π̃CO = π̃DF .

We turn to condition (ii). First note that it follows from the bounds on the population
size of compliers πCO that 0 ≤ L1 ≤ 1. Second, we note that

L2 ≥ P(Y ∈ B,D = d|Z = d)− sup
C∈BB

(P(Y ∈ C,D = d|Z = d)) = 0.

This reasoning implies that P(Ỹd ∈ B, T = dT ) ≥ 0. Further, note that

P(Ỹd ∈ B, T = DF ) = P(Y ∈ B,D = d|Z = 1− d)− P(Ỹd ∈ B, T = dT )

= P(Y ∈ B,D = d|Z = 1− d)− L1P(Y ∈ B,D = d|Z = d)

+ L1 sup
C∈BB

(P(Y ∈ C,D = d|Z = d)− P(Y ∈ C,D = d|Z = 1− d)) ≥ 0,

by basic arguments about sets. A similar reasoning applies to the compliers.
We consider condition (iii). Let B′ ⊆ B. We note that

P(Ỹd ∈ B, T = dT )− P(Ỹd ∈ B′, T = dT )

≥ P(Y ∈ B\B′, D = d|Z = d)

− sup
C∈BB\B′

(P(Y ∈ C,D = d|Z = d)− P(Y ∈ C,D = d|Z = 1− d)) ≥ 0.

Using a simple arguments, it further holds that P(Ỹd ∈ B, T = DF ) ≥ P(Ỹd ∈ B′, T =

DF ) as

P(Ỹd ∈ B, T = dT )− P(Ỹd ∈ B, T = dT )

= P(Y ∈ B,D = d|Z = d)− P(Y ∈ B′, D = d|Z = d)

− sup
C∈BB\B′

(P(Y ∈ C,D = d|Z = d)− P(Y ∈ C,D = d|Z = 1− d))

≤ P(Y ∈ B,D = d|Z = 1− d)− P(Y ∈ B′, D = d|Z = 1− d).

A similar reasoning applies to the compliers, which completes this proof.
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1.B.3. Proof of Proposition 1.2. It holds by our assumptions that, for d ∈ {0, 1},

FYd(y) = π1−dFY (1−d)T
d

(y) + πCOFY CO
d

(y) + πDFFY DF
d

(y) + πdFY dT
d

(y),

where π1−d is the population size of always takers if d = 0 and otherwise of never takers
and F

Y
(1−d)T
d

respectively. In the absence of treatment, the data generating process does
not reveal anything about the distribution of the always takers, and neither in the presence
of treatment of the never takers. The proof of Theorem 1.1 implies sharp bounds on the
remaining six potential outcome distributions. Using (1.5) and (1.6), it follows that

FYd(y)

= π1−dFY (1−d)T
d

(y) + πCOFY CO
d

(y)− π∆Gd(y) + πCOFY CO
d

(y) +Qdd(y)− πCOFY CO
d

(y).

= π1−dFY (1−d)T
d

(y) + πCOFY CO
d

(y)− π∆Gd(y) +Qdd(y)

= π1−dFY (1−d)T
d

(y) + πCOFY CO
d

(y) +Qd(1−d)(y)

Sharp bounds in a first-order stochastic dominance sense of FYd(y) are therefore ob-
tained by Theorem 1.1 by taking the distribution functions F Y CO

d
and F Y CO

d
and setting

F
Y

(1−d)T
d

(y) to its most extreme values, respectively. The statement follows from this
reasoning.

1.B.4. Proof of Corollary 1.1. The statement follows directly from first-order stochastic
dominance of the distribution functions F Y CO

d
and F Y CO

d
by Theorem 1.1 and Lemma 1

in Stoye (2010).

1.B.5. Proof of Corollary 1.2. The statement directly follows from Theorem 1.1 by
noting how the bounds simplify for a binary variable.

1.B.6. Proof of Proposition A.1.3. By the same arguments of the proof of Theorem 1.1,
one can show that these bounds are sharp conditionally on the covariates given the
respective assumptions.

1.B.7. Verification of Expressions used throughout the Paper. In this section, we
verify a few expressions, which we have used through the text. We emphasize that they
rely on textbook arguments, but we show them for completeness.

1.B.7.1. Verification of Equation (1.3). For completeness, we want here also to verify one
of the main equations used in this analysis, Equation (1.3). Similar arguments can be
found in Imbens and Angrist (1994), and in many textbooks.

Lemma A.1.1. Let Assumptions 1.1 hold. Then Equation (1.3) is satisfied.
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Proof: We note that

G1(y) =
Cov(1{Y ≤ y}, Z)

Cov(Z,D)
=

E[1{Y ≤ y}D|Z = 1]− E[1{Y ≤ y}D|Z = 0]

E[D|Z = 1]− E[D|Z = 0]
.

It then follows from the independence assumption and the definition of the groups that

G1(y) =
E[D1{Y CO ≤ y}]πCO + E[D1{Y AT ≤ y}]πAT

E[D|Z = 1]− E[D|Z = 0]

− E[D1{Y AT ≤ y}]πAT + E[D1{Y DF ≤ y}]πDF

E[D|Z = 1]− E[D|Z = 0]

=
πCO

πCO − πDF
FY CO

1
(y)− πDF

πCO − πDF
FY DF

1
(y)

The denominator is positive by the relevance assumption. G0(y) follows similarly.

1.B.7.2. Verification of Properties of the function G+
d (y).

Lemma A.1.2. Suppose Qds(y) is continuously differentiable in y ∈ R for d, s ∈ {0, 1}.
Then,

G+
d (y) =

∫
Y

1{z ≤ y}max{0, gd(z)}dz. (A.1.37)

Proof: We note that

G+
d (y) =

1

π∆
sup
B∈B

{P(Y ∈ B, Y ≤ y,D = d|Z = d)− P(Y ∈ B, Y ≤ y,D = d|Z = 1− d)}

=
1

π∆
sup
B∈B

{
∫
Y

1{z ∈ B}1{z ≤ y}qdd(z)dz −
∫
Y

1{z ∈ B}1{z ≤ y}qd(1−d)(z)dz}

=

∫
Y

1{z ≤ y}max{0, gd(z)}dz.

The first inequality follows from the definition of probabilities and our definition of qds(z).
The second equality follows by continuity of qd(1−s).

1.B.7.3. Outer and Inner Set for Sensitivity and Robust Region. We first verify that our
expression (1.26) follows from expression (1.27). Let it holds that ϕL(πDF; θ, ) ≤ ϕ(πDF; θ)

for each component and for all πDF ∈ [0, 0.5). We denote the l− th unit vector by el. We
then note that by the definition of ϕL(πDF; θ) and SR of Section 1.5 that

SR =
{
(πDF, δ) : e

⊤
1 ϕ(θ, πDF) ≤ πDF ≤ −e⊤2 ϕ(θ, πDF)

e⊤3 ϕ(θ, πDF) ≤ δ ≤ −e⊤4 ϕ(θ, πDF)
}

⊆
{
(πDF, δ) : e

⊤
1 ϕL(θ, πDF) ≤ πDF ≤ −e⊤2 ϕL(θ, πDF)

e⊤3 ϕL(θ, πDF) ≤ δ ≤ −e⊤4 ϕL(θ, πDF)
}
= SRL.
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By a similar argument we note that

RRL(SRL) = {(πDF, δ) ∈ SRL : δ ≤ e⊤5 ϕL(θ, πDF)}

⊇ {(πDF, δ) ∈ SRL : δ ≤ e⊤5 ϕ(θ, πDF)} = RR(SRL).

As we have shown above that SR ⊆ SRL it follows that RRL(SR) ⊇ RR(SR).

1.C. ADDITIONAL MATERIALS FOR ESTIMATION AND INFERENCE
In this section, we present more details on the estimation and inference methods proposed
in the main text. We first consider a binary and then a continuous outcome variable. For
both cases, we provide more details about estimating the sensitivity and robust regions,
we discuss the imposed assumptions and then proceed by showing asymptotic results.
Many of the following results are based on applications and ideas from other papers and
we therefore only sketch most of them.

1.C.1. Estimation for a binary outcome variable. We consider a binary outcome
variable, where the mapping of interest is ϕb(θb, πDF). As shown in Section 1.6.2, the
underlying parameters θb are given by (P11, P10, P01, P00, P0, P1). We estimate the prob-
abilities by their sample counterparts, i.e. Pds = 1

ns

∑ns

i=1 1{Y s
i = 1, Ds

i = d} and
Ps = 1

ns

∑ns

i=1 1{Ds
i = 1}. We then estimate ϕb(θ̂b, πDF) by simple plug-in estimates,

where the precise formulas are given in Section 1.6.2 and Appendix 1.A.4.

1.C.2. Assumptions. We consider the following sampling process.

Assumption A.1.3. For z ∈ {0, 1}, {(Y z
i , D

z
i )}nz

i=1 are identically and independently
distributed according to the distribution of (Y z, Dz) which is drawn conditional on Z = z

with support Y× {0, 1}. It holds that n0/n converges to a nonzero constant as n→ ∞.

By Assumption 1.1, the instrument is independent of all potential outcomes, so that
the distribution of the instrument does not contain any further information and we can
assume that the sampling is conditionally on the instrument (see, e.g., Kitagawa, 2015).

1.C.3. Inference for a binary outcome variable. In this section, we present more
details on how to construct confidence sets for a binary outcome variable. Based on
the derivation in Section 1.6.2 and in Appendix 1.A.4, it suffices to construct a lower
confidence band for ϕ̃b(θ̂b, πDF) given in (A.1.28). To unify the notation, let us denote
the i-th component of this mapping by ϕb,i(θb, πDF) for i ∈ {1, · · · , 6}. We note that each
of these components can be written as

ϕb,i(θb, πDF) = max{ψi,j(θb, πDF)}J(i)j=1,
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where ψi,j(θb, πDF) are Hadamard-differentiable functions of (θb, πDF) by the relevance
assumption. The mappings ϕb,i(θb, πDF) are not Hadamard-differentiable on (θb, πDF),
but they are Hadamard-directionally-differentiable in the direction of θb when evaluated
at any finite set of {πkDF}Kk=1 , where πkDF ∈ [0, 0.5] and K is some finite number.

Following ideas of Fang and Santos (2018) and Masten and Poirier (2020), we consider
a bootstrap method to construct confidence sets ϕ̃b,i(θb, πkDF) which are uniformly valid
across k and i. Specifically, the directional derivative of ϕ̃b,i(θb, πDF) in the direction of
θb evaluated at some πDF is given by

ϕ̃′
i,b,θb

(h, πDF) = max
j:ψ1,j(θb,πDF)≥maxs≤J(i){ψ1,s(θb,πDF)}

hj,

for all h ∈ RJ(i).38 Following Fang and Santos (2018), we consider as an estimator of this
directional derivative,

̂̃
ϕ
′

i,b,θb
(h, πDF) = max

j:ψ1,j(θb,πDF)≥maxs≤J(i){ψ1,s(θb,πDF)+κ}
hj,

where κ > 0 and κ→ 0 and κ
√
n→ ∞ as n→ ∞.

We first get estimates of θb and ϕb(θb, π
k
DF) from the original sample for all k ∈

{1, . . . , K}. We then generate B bootstrap samples {(Y b,z
i , Db,z

i )}nz
i=1, b = 1, . . . , B by

drawing nz observations with replacements from the original data {Y z
i , D

z
i }nz

i=1 for z ∈
{0, 1} and we calculate ϕ̂′

b,θ for each bootstrap iteration. We take

ĉv1−α = inf(z : P( max
k∈1,...,K

ϕ̃′
b,θ((

√
n(θ̂⋆b − θ̂b);π

k
DF)− z) ≤ 0) ≥ 1− α′),

where α′ < α but arbitrarily close to α.39 We then consider as lower confidence set
ϕ̃b(θ̂b, π

k
DF)− ĉv1−α/

√
n for all k ∈ {1, . . . , K}. These lower confidence sets are uniformly

valid for the mapping ϕ̃b when evaluated at {πkDF}Kk=1.
To obtain a lower confidence band of ϕ̃b, which is valid uniformly in πDF, we exploit

the functional form of ϕ̃b similarly to Masten and Poirier (2020). The lower bound
for intermediates points, that are not within the set {πkDF}Kk=1, is interpolated based on
the left and right nearest neighbor of the point of evaluation. The respectively lowest
confidence set is taken. By monotonicity of ϕ̃b, this lower confidence set is then also valid
uniformly valid in πDF.

To construct a valid confidence set for ϕb, we then consider a simple projection argu-
38See Definition 2.1 in Fang and Santos (2018) for a definition of Hadamard-directional differentiable

mappings.
39To simplify the notation, we just consider a fix critical value cv1−α here. In principle, it might be

different for each component and for each point of evaluation {πk
DF}Kk=1 and indeed it would be more

efficient to do this.
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ment of ϕ̃b by taking the maximum of the last three components of ϕ̃b into account. We
construct our confidence set for our sensitivity and our robust region R̂Rb,L and ŜRb,L

based on our constructed lower confidence set.

Proposition A.1.4. Suppose that Assumption 1.1 and A.1.3 hold and the variance of
each component of θb is bounded away from zero. It then holds that,

lim
n→∞

P(R̂Rb,L ⊆ RRb, SRb ⊆ ŜRb,L) ≥ 1− α.

We impose the variance condition to ensure that the underlying parameters converge
to a non-degenerated distribution.

1.C.4. Estimation for a Continuous Outcome Variable. In this section, we give
further details on the construction of the estimators for a continuous outcome variable.
We first estimate the underlying parameters θ. We estimate the conditional joint densities
by standard nonparametric kernel density estimator

q̂dz(y) =
1

nzh

nz∑
i=1

Kh(Y
z
i − y) · 1{Dz

i = d},

where Kh(·) = K(·/h)/h and K(·) denotes a density function and h > 0 a bandwidth.
We show in Lemma A.1.2 that our estimator of G+

d (y) =
∫
Y 1{ỹ ≤ y}max{0, gd(ỹ)}dỹ

under our assumptions. We therefore define

Ĝ+
d (y) =

∫
Y

1{ỹ ≤ y}max{0, ĝd(ỹ)}dỹ,

where ĝd(y) = (q̂dd(y)− q̂d(1−d)(y))/π̂∆. The conditional probability functions are further
estimated by Q̂dz(y) =

∫
Y 1{ỹ ≤ y}q̂dz(ỹ)dỹ. Based on these estimators, the parameters

of θ are estimated and we estimate ϕb(θ̂b, πDF) by simple plug-in methods, where infimum,
supremum and integrals are numerically evaluated.

1.C.5. Assumptions for a Continuous Outcome Variable. We first impose the fol-
lowing regularity assumptions.

Assumption A.1.4. (i) Yd is given by [y
d
, yd] for ∞ < y

d
< yd < ∞ for d ∈ {0, 1}.

(ii) ∀d, z ∈ {0, 1}, the functions qdz(y) are bounded and bounded away from zero, absolutely
continuous and two times continuously differentiable with uniformly bounded derivatives.
(iii) For d ∈ {0, 1}, the functions qdd(y) and qd(1−d)(y) cross at a finite number of times.

Assumption (i) assumes compact support of the outcome variable as it simplifies the
following analysis. Assumption (ii) imposes smoothness conditions on the joint densi-
ties, which are standard in the nonparametric literature. Assumption (iii) is imposed
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for simplicity and substantially simplifies the analysis of the estimator of the function
G+
d (y).40

Assumption A.1.5. (i) The kernel is a second order kernel function, being symmetric
around zero, integrates to one, twice continuously differentiable, of bounded variation and
zero-valued off, say [−0.5, 0.5]. (ii) The bandwidth satisfies: (a) nh4 → 0, (b) nh2 → ∞,
(c) nh/ log(n) → ∞.

Assumption A.1.5 (i) imposes conditions on the choice of kernel which can be satisfied
by construction and Assumption A.1.5 (ii) imposes conditions on the bandwidth.

1.C.6. Asymptotic Results for a Continuous Outcome Variable. We first note
that we have the following result.

Proposition A.1.5. Suppose Assumptions A.1.3–A.1.5 hold. It then follows that
√
n(θ̂(y)− θ(y)) → Z1(y),

where Z1(y) is a tight mean-zero Gaussian process in ℓ∞(R,R6).41

As explained in the main text, we cannot directly base our inference procedure on
the mapping ϕ(θ, πDF), as this mapping is non-smooth and standard asymptotic theory
cannot be applied. We, therefore, consider a smoothed version of this mapping in this
section. To be more precise, we consider the definition of Masten and Poirier (2020),
which we cite here for completeness.

Definition 1.1 (Definition 1, Masten and Poirier (2020)). Let (Θ, ∥ · ∥Θ) and (H, ∥ · ∥H)
be Banach spaces. Let ≤ be a partial order on H. Let h : Θ → H be a function. Consider
a function Hκ : Θ → H, where κ ∈ Rdim(κ)

+ is a vector of smoothing parameters. Then
Hκ denotes a smooth lower approximation (SLA) of H if

1. Lower envelope: Hκ(θ) ≤ H(θ) for all θ ∈ Θ and κ ∈ Rdim(κ)
+ .

2. Approximating: For each θ ∈ Θ, Hκ(θ) → H(θ) for κ→ ∞ (pointwise).

3. Smoothing: Hκ is Hadamard-differentiable.

40This assumption is satisfied if the weighted densities πDFfY DF
d

and πCOfY CO
d

intersect only finitely
many times. Without this assumption, our proposed estimator of Ĝ+

d (y) is a biased estimator of G+
d (y).

Following the arguments of Anderson et al. (2012), one can construct a debiased estimator of G+
d (y),

which converges in
√
n to a mean-zero normal distribution. Based on similar arguments, one could now

construct a debiased estimator of G+
d (y). As this is a rather tedious exercise and not the purpose of this

chapter, we impose this stronger assumption.
41Let A be some arbitrary set and B a Banach space. Then ℓ∞(A,B) denotes the set of all mappings

f : A→ B, which satisfy that supa∈A ||f(a)||B ≤ ∞.
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This definition of a smooth upper approximation (SUA) is analogues. We now assume
that ϕκ is a SLA of ϕ componentwise, and we show in the subsequent sections how we can
obtain such a smooth mapping. Let θ̂⋆ denotes a draw from the nonparametric bootstrap.
We then choose the critical value such that

ĉv1−α = inf {z ∈ R :

P

(
( sup
πDF∈[0,0.5],l≤5

√
ne⊤l (ϕκ(θ̂

⋆, πDF)− ϕκ(θ̂, πDF)) ≤ z|{{Y z
i , D

z
i }nz

i=1}1z=0

)
≥ 1− α}

We can also allow that z is a known function of πDF and l. By doing so, we can exploit
the trade-off by constructing the confidence set for the sensitivity and robust region. We
construct our function ϕκ,L(θ, πDF) = ϕκ(θ̂, πDF) + ĉv1−α/

√
n and our confidence sets

for the sensitivity and robust region ŜRL(κ) and R̂RL(κ) are constructed based on this
mapping as explained in Section 1.5. We then have the following result.

Proposition A.1.6. Suppose Assumptions 1.1 and Assumptions A.1.3–A.1.5 hold. It
then follows that lim

n→∞
P(R̂RL(κ) ⊆ RR, SR ⊆ ŜRL(κ)) ≥ 1− α.

1.C.7. Population Smoothing.

1.C.7.1. General Introduction. We now show how to construct these smoothed mapping
ϕκ. As our mapping ϕ is a mapping of many non-differentiable mappings, we prove a
chain-rule argument, which allows us to consider simpler mappings.

Lemma A.1.3. Let ψ and ϕ be two positive and nondecreasing mappings and denote by
ψU(κ) and by ϕU(κ) there respectively SLA, then ψU(f, κ) and by ϕU(ψU(f, κ), κ) is a
SLA of ψ(ϕ). Accordingly, ϕU(ψU(f, κ), κ) denotes the SUA.

Based on these definitions, we argue that the mapping ϕ(θ, πDF) is a composition of
non-smooth random functions, where we replace each of them with a respective SLA and
SUA. We first consider these mapping separately, and we then show how to use them
to construct our bounds. Let κ > 1 be the smoothing parameter. Let (Θ, ∥ · ∥Θ) and
(H, ∥ · ∥H) be Banach spaces, where ≤ is a partial order on H. we consider two mappings
f, g : Θ → H in the following, which are both Hadamard-differentiable.

Maximum and minimum: We first consider the function ψav(f) = |f |, where a
SLA and SUA is given by ψUav(f ;κ) =

√
f 2 + 1/κ and ψLav(f ;κ) = f 2/(

√
f 2 + 1/κ).

Lemma A.1.4. ψLav(f ;κ) is a SLA and ψUav(f ;κ) a SUA for the mapping ψav(f) and .

Let ψmin(f, g) = min(f, g) and ψmax(f, g) = max(f, g). A SLA of ψmax(f, g) is clearly
given by ψLmax(f, g;κ) = f + g + ψLav(f − g;κ) and a SUA is given by ψUmax(f, g;κ) =
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f+g+ψUav(f−g;κ). It follows from a simple induction argument, that one can generalize
this procedure to the maximum of a set of finitely many mappings.

Supremum and infimum: In the following, we consider the mapping ψsup,≤(f, g)(·) =
supz≤· f(z) − g(z) and the equally binned set Y =

⋃κ
k=1[y + (k − 1)dY , y + kdY ], where

dY = 1
κ
(y − y). Let kj = y + j · dy, where j ∈ {0, 1, 2, . . . , κ}.

ψLsup,≤(f, g;κ)(·) = ψLmax({g(kj)− f(kj)}j:kj≤·;κ).

ψUsup,≤(f, g;κ)(·) = ψUmax({g(kj)− f(min(·, kj+1))}j:kj<· ;κ).

We similarly define for the mapping ψinf,≤(f, g)(·) = infz≤· f(z)− g(z) that

ψUinf(f, g;κ)(·) = ψUmin({g(kj)− f(kj+1))}j:kj≤·;κ).

ψLinf(f, g;κ)(·) = ψLmin({g(min(·, kj+1)− f(kj))}j:kj<·;κ).

Lemma A.1.5. If f and g are monotone increasing, ψLinf,≤(f, g;κ) is a SLA and ψUsup,≤(f, g;κ)

a SUA to the function ψsup,≤(f, g), and ψUinf,≤(f, g;κ) a SUA and ψLinf,≤(f, g;κ) a SLA to
the function ψinf,≤(f, g).42

1.C.7.2. Smoothing the Sensitivity and Robust Regions. We derive the smoothed mapping

ϕκ(θ, πDF) =
(
πLDF (κ), −πUDF (κ), δL(πDF;κ), −δ

U
(πDF;κ), BP

L(πDF;κ))
)
.

Since our sharp bounds F Y CO
d

and F Y CO
d

are the key elements in our construction, we
consider them first. We show how to smooth the lower bound from above. we note that
Gsup
d (y) = supz≤y G+

d (z)−G−
d (z), where G−

d (z) =. We denote the upper bound by

Gsup,U
d (y;κ) = ψUsup,≤(G

+
d −G−

d ;κ)(y)

The bound on the outcome distribution of compliers are therefore bounded by

HU
Y CO
d

(y, πDF, δ;κ) =

1

πCO
ψUmax

({
0, π∆G

sup,U
d (y;κ), Qdd(y)− πd,

πCO

π∆
(Gsup,U

d (y;κ)− πDFδ)

}
;κ

)
A SUA of F Y CO

d
(y, πDF, δ) is given by

FU
Y CO
d

(y, πDF, δ;κ) =
1

πCO
Qdd(y)

− 1

πCO
ψLinf,≥

(
Qdd(ỹ)− π∆G

+
d (ỹ)− ψLinf,≤

(
π∆G

+
d (ŷ)− πCOH

U(y, πDF, δ;κ);κ
)
(ŷ) ;κ

)
(ỹ).

42By similar reasoning, the functions ψsup,≥(f, g) and ψinf,≥(f, g) can be smoothly approximated.
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A SLA of F Y CO
d

(y, πDF, δ) can be similarly constructed as well as a smooth lower and
upper approximation of F Y CO

d
(y, πDF, δ). We now turn to the sensitivity region. The

lower bounds on the sensitivity parameter πDF can be constructed by

πLDF (κ) = ψLmin({P(D = 1|Z = 0),P(D = 0|Z = 1)};κ)

and similarly upper bound on the sensitivity parameter πDF by

πUDF (κ) =
π∆
πCO

ψUmax({G+
1 (y), G

+
0 (y)};κ)− 1.

We therefore note that just by construction the smoothed upper and lower bounds of
F Y CO

d
(y, πDF, δ) and F Y CO

d
(y, πDF, δ) are Hadamard-differentiable in (y, πDF, δ). Moreover,

they are strictly increasing in δ if δ is small. Taking the inf is Hadamard-differentiable
by Lemma 21.4 van der Vaart (1998b). A SLA is given by

δL(πDF) = ψLmax(inf{δ : inf
y
F
U

Y CO
d

(y, πDF, δ)− FL
Y CO
d

(y, πDF, δ) ≥ 0};κ).

A SUA of δ(πDF) is given by

δ
U
(πDF;κ) = ψUmax(

{
ψUsup,≤(F

U

Y
T1
d
(y, πDF, 1), F

U

Y
T2
d
(y, πDF, 1))(y;κ),

ψUsup,≤(F
U

Y
T1
d

(y, πDF, 1), F
U

Y
T2
d

(y, πDF, 1))(y;κ)
}
T1,T2∈{CO;DF}

;κ).

Based on these definitions, we can smoothly bound the treatment effect of compliers,
where the lower bound ∆L

CO(πDF, δ;κ) is given by

∆L
CO(πDF, δ;κ) =

∫
Y
y dF

U

Y CO
1

(y, πDF, δ)−
∫
Y
y dFL

Y CO
0

(y, πDF, δ).

A SLA of the breakdown point BPLcan be derived by

BPL(πDF;κ) = ψLmin
(
sup{∆L

CO(πDF, δ;κ) ≥ µ}, δ(πDF);κ
)
.

Since ∆L
CO(πDF, δ;κ) is strictly increasing in δ, BP (πDF) is Hadamard-differentiable and

as ∆L
CO(πDF, δ;κ) is Hadamard differentiable in both πDF and δ and strictly increasing in

δ. It follows that ϕL(πDF) is a SLA of ϕ(πDF), which concludes this subsection.

1.D. PROOFS OF ADDITIONAL RESULTS
1.D.1. Proof of Proposition A.1.6. We remind that θb = (P11, P10, P01, P00, P1, P0). It
follows from standard central limit arguments that, under Assumption A.1.3, the estima-

53



tor θ̂b, the arithmetic mean of binary variables, satisfies that
√
n(θ̂b − θb) → N (0,Σ),

where we specify the elements of the variance-covariance matrix Σ in the following. Let
Σij denote the i-th row and j-th column element of Σ. Σii = θb,i(1−θb,i) for i ∈ {1, . . . , 6};
Σij = 0, if i ∈ {1, 2, 5} and j ∈ {3, 4, 6}; Σij = −θbiθbj for i = 1 and j = 3 or i = 2 and
j = 4; and Σij = θbi(1− θbj) and for i ∈ {1, 3} and j = 5, or i ∈ {2, 4} and j = 6.

Using the arguments of Example 2.2 of Fang and Santos (2018) and Corollary 3.2
of Fang and Santos (2018), it follows that ϕ̂′

b,θ is a consistent estimator of ϕ̂′
b,θ when

evaluated at finitely many πkDF so that the bootstrap procedure is consistent, as we have
chosen a slightly larger value than 1− α.

The final result of the Proposition then follows from applying the reasoning of Ap-
pendix 1.B.7.3.

1.D.2. Proof of Proposition A.1.5. Let Ay be the interval [y, y]. We first consider the
following parameters, that is similar to θ,

θ̃(y) = (Q11(y), Q10(y), Q01(y), Q00(y), B1(y), B0(y)) , (A.1.38)

where Bd(y) =
∫
C1d(y)

qss(z)dz +
∫
C0d(y)

qs(1−s)(z)dz + oP (1), and C1d(y) = {z ∈ Ay :

qdd(z) < qd(1−d)(z)}, C0d(y) = {z ∈ Ay : qdd(z) > qd(1−d)(z)}. By Assumption A.1.4 (iii),
we can consider the class of functions

{1{Y ≤ y} · 1{Y ∈ Csd} · 1{D = d} : y ∈ Y, d ∈ {0, 1}, s ∈ {0, 1}},

Using Assumption (iii), it then follows by Example 19.6 van der Vaart (1998b) that F is
Donsker. Based on this reasoning, using our assumptions, and using Theorem 4 in Giné
and Nickl (2008), it then follows from simple variance calculations, that

√
n(̂̃θ(y)− θ(y)) → Z1(y),

Z1 is a tight Gaussian process with continuous paths in ℓ∞(R×{0, 1},R6) with zero mean
and covariance kernel given by the following expressions.43 It holds that [Σ(y, y′)]ii =

θi(y ∧ y′) − θi(y)θi(y
′) for i ∈ {1, 2, 3, 4}, [Σ(y, y′)]24 = −θ2(y)θ4(y′), and [Σ(y, y′)]13 =

−θ2(y)θ4(y′). For i ∈ {5, 6}, it holds that

[Σ(y, y′)]ii = θ(i−2)(y ∧ y′)− θ(i−2)(y
′)θ(i−2)(y) + θ(i−4)(y ∧ y′)− θ(i−4)(y

′)θ(i−4)(y);

43Let min(a, b) = a ∧ b.
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and for i ∈ {6}and j ∈ {2, 4} or for i ∈ {5}and j ∈ {1, 3}

[Σ(y, y′)]ij = θs(1−s)(y ∧ y′)− ps(1−s)(y)ps(1−s)(y
′);

and otherwise [Σ(y, y′)]ij = 0.

It is left to show that

sup
y∈Y

√
n(θ̂(y)− ̂̃θ(y)) = oP (1) (A.1.39)

It suffices to analyze supy∈Y
√
nĜ+

d (y)− B̂d(y) = oP (1). We note that this results follows
from using the same arguments used in the proof of Theorem 1 of Anderson et al. (2012).

1.D.3. Proof of Proposition A.1.6. By construction, the mapping ϕκ is a composition
of SLA by Lemma A.1.4 and Lemma A.1.5. It therefore follows that ϕκ is SLA of ϕκ by
Lemma A.1.3. It then follows by the Delta method of Hadamard differentiable mappings
that (see, e.g., Theorem 20.8 van der Vaart, 1998a) that

√
n(ϕκ(θ, πDF) − ϕκ(θ, πDF))

converges to a Gaussian distribution. Let

cv1−α = inf
{
z ∈ R : P

(
( sup
πDF∈[0,0.5],l≤5

√
nel(ϕκ(θ̂, πDF)− ϕκ(θ, πDF)) ≤ z

)
≥ 1− α}

We can conclude that ĉv1−α = cv1−α+op(1) as the nonparametric bootstrap is consistent
for the mapping ϕκ by Dümbgen (1993) and Fang and Santos (2018). Based on this
reasoning it follows that

lim
n→∞

P(max
l≤5

inf
πDF∈[0,0.5]

e⊤l (ϕκ,L(θ̂, πDF) + ĉv1−α − ϕκ,L(θ, πDF)) ≤ 0) ≥ 1− α.

It then follows by construction of ϕκ that ϕκ(θ, πDF) ≤ ϕκ(θ, πDF) for each component
and for all πDF ∈ [0, 0.5], so that

lim
n→∞

P(max
k≤5

inf
πDF∈[0,0.5]

e⊤k (ϕκ,L(θ̂, πDF) + ĉv1−α − ϕ(θ, πDF)) ≤ 0) ≥ 1− α.

Using ϕκ,L(θ̂, πDF) = ϕκ,L(θ̂, πDF) + c̃v1−α as mappings to construct both ŜRL and R̂RL

then yields in turn by the reasoning of Appendix 1.B.7.3 that

lim
n→∞

P(R̂Rκ,L ⊆ RR, SR ⊆ ŜRκ,L) ≥ 1− α,

which concludes this proof.
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1.D.4. Proof of Lemma A.1.3.

1. It holds by monotonicity that ϕU(ψU(f, κ), κ) ≤ ϕU(ψ(f, κ), κ) ≤ ϕ(ψ(f, κ))

2. It is clear that if |ϕU(ψU(f, κ), κ)− ϕ(ψ(f, κ))| ≤ |ϕU(ψU(f, κ), κ)− ϕ(ψU(f, κ), κ)| +
|ϕ(ψU(f, κ), κ) − ϕ(ψ(f, κ))| where the right hand side of the equation can be made
uniformly arbitrarily small for κ large enough by assumption by continuity of the mapping

3. It follows from the chain-rule of HD mappings (Theorem 20.9 van der Vaart, 1998b)

1.D.5. Proof of Lemma A.1.4. We first consider ψUav.

1. Trivial, as |f(y)| =
√
f(y)

2 ≤
√
f(y) + 1/κ

2 for all y ∈ Y and any f ∈ l∞(Y).

2. It is also clear that
√
f(y) + 1/κ

2 → |f(y)| uniformly for all x ∈ R as κ→ ∞.

3. ψUav is HD as (ψUav(f ;κ))
′(y) = (f(y)2 + 1

κ
)−1/2 · f ′(y) and (f(y)2 + 1

κ
) ≥ 1

κ
≥ 0.

ψLav satisfies the above criterion by similar arguments.

1.D.6. Proof of Lemma A.1.5. We first consider ψLsup,≤.

1. Follows immediately, as for any y ∈ Y and any κ ∈ N

ψLsup,≤(f, g;κ)(y) ≤ max({g(kj)− f(kj)}j:kj≤y) = ψsup,≤(f, g).

The second inequality follows as g and f are nondecreasing.

2. It follows that for κ→ ∞, ψLsup,≤(f, g;κ) → ψsup,≤(f, g)

3. HD follows from the chain rule of HD functions (Theorem 20.9 van der Vaart, 1998b)
and as the difference is a linear operator.

Similar arguments apply to the other mappings, which concludes this proof.

1.E. FURTHER ILLUSTRATIONS
We now give intuitive explanations on how the bounds on the distribution function FY CO

d

are derived and how the sensitivity parameter δ is bounded. For simplicity, we just
consider the presence of treatment in both cases.

1.E.1. Illustration of Derivation of Bounds on Outcome Distributions. In Fig-
ure A.1.1, we give some intuition on how the outcome distribution of compliers is con-
structed. We plot the functions q11 and q10. Based on the reasoning of the main text, the
function q11 is a weighted average of the densities of fY CO

1
and fY AT

1
, and the function q10
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Figure A.1.1: Derivation of the compliers outcome distributions

of the densities of fY DF
1

and fY AT
1

. It is clear that to be a feasible candidate of fY CO
1

, any
density has to satisfy that

1

π∆
max{0, q11(y)− q10(y)} ≤ fY CO

1
(y) ≤ 1

πCO
q11(y).

In Figure A.1.1 (a), the density of fY CO
1

is point identified for the sensitivity parameter πDF

that is the smallest when ignoring the distribution functions in the absence of treatment.
However, if πDF increases the density of fY CO

1
is in general not point identified. The

corresponding probability mass of the tails of the function min{q11(y), q10(y)} is then
imputed to belong to the compliers and defiers. Figure A.1.1 (b) gives such an example
for a possible candidate of density function of fY CO

1
implying an upper bound on the

distribution function of compliers.

1.E.2. Intuition for Lower and Upper Bound on Outcome Heterogeneity. We
give some intuition on how the bounds on the sensitivity parameters δ are derived. Let
us first consider the largest value πDF ignoring the distribution functions in the absence
of treatment. In Figure A.1.2 (a), this value implies that both the outcome distributions
of compliers and defiers are point identified, as the population size of always takers would
be zero. Thus the outcome distribution function of defiers equals Q10(y), and of compliers
equals Q11(y) up to normalization. In this specific example, the outcome heterogeneity
would be point identified but especially bounded from above by 0.5. In Figure A.1.2 (b),
we consider the smallest possible value of outcome heterogeneity πDF = πDF . The two
outcome distributions are again point identified, and the outcome heterogeneity would
be close to one, but especially it would be bounded from below. A similar reasoning then
also applies to the absence of treatment.
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Figure A.1.2: Illustration of sensitivity region.
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CHAPTER 2
BIAS-AWARE InFEREnCE

In FuZZY REgRESSIOn DISCOnTInuITY DESIgnS
with Christoph Rothe

2.1. INTRODUCTION
The regression discontinuity design is a popular empirical strategy for estimating causal
treatment effects from observational data. In sharp (SRD) designs units receive a treat-
ment if and only if a running variable falls above a known cutoff value, whereas in fuzzy
(FRD) designs the treatment probability jumps at the threshold, but generally not from
zero to one. Methods for estimation and inference based on local linear regression are
widely used in empirical research for both kinds of designs, and their theoretical proper-
ties have been studied extensively; see Imbens and Lemieux (2008) or Lee and Lemieux
(2010) for surveys, and Cattaneo et al. (2019) for a textbook treatment.

A key issue for SRD confidence intervals (CIs) is the handling of the estimator’s
smoothing bias, with undersmoothing (cf. Imbens and Lemieux, 2008) and robust bias
correction (Calonico et al., 2014) being popular approaches in applications. However,
Armstrong and Kolesár (2020) show that common implementations of such CIs can have
coverage issues in practice, mostly due to the way they select the bandwidth,1 and that
“bias-aware” CIs, which adjust the critical value to take possible bias into account, are
more efficient than their counterparts based on either undersmoothing or robust bias
correction, even at infeasible bandwidths. A further advantage of bias-aware SRD CIs
relative to these alternatives is that they do not require a continuously distributed running
variable.

In an FRD design, the usual point estimator is the ratio of two SRD estimators,
and due to this nonlinearity one cannot directly use the same bias-handling techniques
as in SRD setups. The CIs reported in empirical FRD papers therefore typically build

1Both methods typically take an estimate of a pointwise-MSE-optimal bandwidth (Imbens and Kalya-
naraman, 2012) as an input. This bandwidth can be large even if the underlying function is highly
nonlinear, which then leads to large smoothing biases in finite samples. Estimators of this bandwidth
generally involve a regularization step to prevent extreme values, the result can depend critically on
tuning parameters that are difficult to pick (Armstrong and Kolesár, 2020).
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on a delta method (DM) argument. This entails approximating the FRD estimator
with a term that behaves like an SRD estimator, imposing conditions under which the
corresponding error is negligible in large samples, and applying an SRD bias-handling
approach to the leading term. Proceeding like this can exasperate the practical issues of
undersmoothing and robust bias correction known from SRD contexts; and it can also
create problems for the bias-aware approach, as bias-aware FRD DM CIs only account for
an approximate bias. Moreover, any type of DM CI can only be asymptotically valid if the
running variable is continuous with positive density around the cutoff, and the jump in
treatment probabilities at the cutoff is “large”. DM CIs generally break down in empirical
settings that do not exhibit these properties, in the sense that their actual coverage can
deviate substantially from the nominal level; and they cannot be salvaged by adjusting
the method used to control the bias. This is important because empirical researchers often
face running variables that take only a limited number of distinct values, like test scores
or class sizes (Angrist and Lavy, 1999; Oreopoulos, 2006; Urquiola and Verhoogen, 2009;
Fredriksson et al., 2013; Clark and Martorell, 2014; Hinnerich and Pettersson-Lidbom,
2014; Card and Giuliano, 2016; Jepsen et al., 2016); “donut designs” that exclude units
close to the cutoff to increase the credibility of causal estimates (Almond and Doyle, 2011;
Dahl et al., 2014; Dube et al., 2019; Le Barbanchon et al., 2019; Scott-Clayton and Zafar,
2019); or weakly identified setups with small jumps in treatment probabilities (Malenko
and Shen, 2016; Coviello et al., 2018).

In this chapter, we propose new confidence sets (CSs) for the FRD parameter that
are not subject to such shortcomings. Our CSs avoid the use of the FRD point estimator,
and are instead based on auxiliary statistics that can be computed directly via local
linear regression. The construction avoids the approximation errors of the DM, and is
somewhat analogous to that of an Anderson-Rubin (AR) statistic in an exactly identified
linear instrumental variable model (Staiger and Stock, 1997). We then apply the bias-
aware approach to these statistics, which allows us to account exactly for the possible
smoothing bias. The resulting CSs are easy to compute; an R package is available on the
authors’ website.

We derive two main results under the common assumption that the second deriva-
tives of the conditional expected outcome and the conditional treatment probability are
bounded by some constant on either side of the cutoff. First, we show that our CSs are
honest in the sense of Li (1989), meaning that they have correct asymptotic coverage
uniformly over the class of functions satisfying our assumption, irrespective of the dis-
tribution of the running variable or the strength of identification. This property implies
good CS performance across the entire range of plausible data generating processes, and
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is thus necessary for good finite-sample coverage. The novel insight here is not so much
that AR CSs can accommodate weak identification, but that combining this construction
with a bias-aware approach provides robustness to other deviations from the canonical
setup, like discreteness of the running variable and “donut” designs.2

Second, we show that bias-aware AR CSs are asymptotically equivalent to bias-aware
DM CIs if the running variable is continuous and identification is strong, which are
conditions needed for DM CIs to be honest in the first place. The robustness of bias-
aware AR CSs does thus not come with a cost in terms of power relative to DM CIs
in a canonical setup. Moreover, since Armstrong and Kolesár (2020) show that bias-
aware DM CIs outperform DM CIs based on undersmoothing and robust bias correction,
the equivalence result implies that the same is true for our bias-aware AR CSs. These
predictions are confirmed by simulation results reported in this chapter.

We also make three contributions regarding the implementation of bias-aware infer-
ence that are not only important for our CSs, but can also be used more generally. First,
we provide a new standard error for local linear regression estimates that is uniformly
consistent over the class of functions with bounded second derivatives. It is a variation of
the nearest-neighbor variance estimator (e.g. Abadie and Imbens, 2006) commonly used
in the RD literature. Our proposal replaces the usual local average with a local linear pro-
jection among the nearest neighbors, which removes a bias term that is proportional to
the underlying function’s first derivative. Second, we propose a new empirical bandwidth
that enforces an upper bound on Lindeberg weights to ensure that a normal approxima-
tion works well for our local linear estimates in finite samples. Third, we provide new
graphical tools and an analysis of “rules of thumb” that can help guide the choice of
the bounds on second derivatives, which are the main tuning parameters required for
bias-aware inference.

As an extension, we also derive new bias-aware CSs for the fuzzy regression kink
design (Card et al., 2015), and establish theoretical properties analogous to those we
obtain for the FRD case. These results also apply more generally to settings in which the
parameter of interest is the ratio of jumps in the vth-order derivatives of two conditional
expectation functions at some threshold value.

Our paper contributes to a growing literature on “bias-aware” inference. Building
2Feir et al. (2016) already showed that undersmoothing AR CSs can have correct pointwise asymptotic

coverage if the jump in treatment probabilities tends to zero with the sample size at an appropriate rate,
while undersmoothing DM CIs generally do not have this property. Such CIs require a continuous
running variable with positive density around the cutoff, and may, depending on the implementation of
undersmoothing, not be honest. After circulating the first draft of the paper, we were also made aware
that Huang and Zhan (2020) have discussed combining a bias-aware approach with an AR-type statistic.
Since they misinterpret the results from Armstrong and Kolesár (2020), however, their proposed methods
do not yield valid inference.
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on classical work (e.g. Sacks and Ylvisaker, 1978; Donoho, 1994), such methods, which
take bias explicitly into account rather than trying to remove it, have recently been
shown to yield powerful and practical CSs in a wide range of non- and semiparametric
problems (Armstrong and Kolesár, 2018, 2021a, 2020; Kolesár and Rothe, 2018; Imbens
and Wager, 2019; Ignatiadis and Wager, 2020; Roth and Rambachan, 2019; Schennach,
2020; Armstrong et al., 2020). A concern sometimes raised with these methods is that,
in contrast to traditional approaches such as undersmoothing or robust bias correction,
they require specifying explicit bounds on the smoothness of the underlying functions.
However, this view neglects such bounds are implicitly required for traditional methods
to work well in practice.3 Following the literature on bias-aware inference, we recommend
to vary the values of smoothness bounds in the construction of our CS in empirical
practice as a form of sensitivity analysis. We also provide a number of tools to guide and
communicate the choices.

The remainder of this chapter is structured as follows. Section 2 describes our setup.
Section 3 describes existing approaches to SRD and FRD inference, and discusses issues
with DM CIs. Section 4 describes our bias-aware AR CSs, and Section 5 establishes
their theoretical properties. Section 6 discusses implementation issues. Section 7 con-
tains a simulation study, and Section 8 an empirical application. Section 9 concludes.
The appendix contains the proofs of our main theorems. Further technical arguments,
extensions and additional materials are given in the online appendix.

2.2. SETUP AND PRELIMINARIES
2.2.1. Fuzzy RD Designs. Let Yi ∈ R be the outcome, Ti ∈ {0, 1} be the actual
treatment status, Zi ∈ {0, 1} be the assigned treatment, and Xi ∈ R be the running
variable of the ith unit in a random sample of size n from a large population. Treatment
is assigned if the running variable falls above a known cutoff. We normalize this threshold
to zero, so that Zi = 1{Xi ≥ 0}. Because of limited compliance, it could be that Zi ̸= Ti.
For a generic random variable Wi (which could be equal to Yi or Ti, for example), we then
write µW (x) = E(Wi|Xi = x) for its conditional expectation function given the running
variable; µW+ = limx↓0 µW (x) and µW− = limx↑0 µW (x) for its right and left limit at zero;
and τW = µW+ − µW− for the jump in µW at the cutoff. The parameter of interest is

θ =
τY
τT
,

3For example, in order for standard implementations of robust bias correction SRD CIs to have
approximately correct coverage in finite samples, one must have a “sufficiently small” bound on the
underlying function’s third derivative (Kamat, 2018). Researchers that report such CIs and consider
them reliable thus implicitly impose a smoothness bound. Moreover, if that bound was made explicit, a
more efficient CI could be constructed through a bias-aware approach (Armstrong and Kolesár, 2020).
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which, in a potential outcomes framework with certain continuity and monotonicity con-
ditions (e.g. Hahn et al., 2001; Dong, 2018), has a causal interpretation as the local
average treatment effect among “compliers” at the cutoff, where “compliers” are units
whose treatment decision is affected by the assignment rule (Imbens and Angrist, 1994).

2.2.2. Honest Confidence Sets. Our goal is to construct confidence sets (CSs) that
cover the parameter θ in large samples with at least some pre-specified probability, uni-
formly over (µY , µT ) in some function class F that embodies shape restrictions that the
analyst is willing to impose. That is´, we want to construct data-dependent sets Cα ⊂ R
that satisfy

lim inf
n→∞

inf
(µY ,µT )∈F

P(θ ∈ Cα) ≥ 1− α (2.1)

for some α > 0.4 Following Li (1989), we refer to such CSs as honest with respect to F .
This is a much stronger requirement than correct pointwise asymptotic coverage:

lim inf
n→∞

P(θ ∈ Cα) ≥ 1− α for all (µY , µT ) ∈ F . (2.2)

In particular, under (2.1) we can always find a sample size n such that the coverage
probability of Cα is not below 1− α by more than an arbitrarily small amount for every
(µY , µT ) ∈ F . Under (2.2) there is no such guarantee, and even in very large samples the
coverage probability of Cα could be poor for some (µY , µT ) ∈ F . Since we do not know in
advance which function pair is the correct one, honesty as in (2.1) is necessary for good
finite sample coverage of Cα across data generating processes. Of course, we also want
CSs that are efficient, in the sense that they are “small” while maintaining honesty.

2.2.3. Smoothness Conditions. Following Armstrong and Kolesár (2018, 2020), we
specify the class F of plausible candidates for (µY , µT ) as a smoothness class. Specifically,
let

FH(B) = {f1(x)1{x ≥ 0} − f0(x)1{x < 0} : ∥f ′′
w∥∞ ≤ B,w = 0, 1}

be the Hölder-type class of real functions that are potentially discontinuous at zero, are
twice differentiable almost everywhere on either side of the threshold, and have second
derivatives uniformly bounded by some constant B > 0; and let

F δ
H(B) = {f ∈ FH(B) : |f+ − f−| > δ},

4Note that we leave the dependence of the probability measure P and the parameter θ on µY and µT

implicit in our notation. Each function pair (µY , µT ) corresponds to a single distribution of (Y, T,X,Z) =
(µY (X) + ϵM , 1{µT (X) ≥ ϵT }, X, Z), where (ϵM , ϵT ) is some fixed random vector.
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for some δ ≥ 0, be a similar class of functions whose discontinuity at zero exceeds δ in
absolute magnitude. We then assume that

(µY , µT ) ∈ FH(BY )×F0
H(BT ) ≡ F , (2.3)

for some constants BY and BT whose choice in empirical practice we discuss in Sec-
tion 2.6.4. Note that in addition to imposing smoothness, condition (2.3) also rules out
cross-restrictions between the shapes of µY and µT , since F is a Cartesian product. This
seems reasonable for applications in economics. Also note that we impose µT ∈ F0

H(BT ),
and thus that τT ̸= 0, only to ensure that the parameter of interest θ = τY /τT is well-
defined. Our setup explicitly allows τT to be arbitrarily close to zero.

2.2.4. Discrete Settings. Conditional expectation functions are only well-defined over
the support of the conditioning variable. One must therefore clarify the meaning of (2.3) if
Xi is discrete, or more generally such that there are gaps in its support. Following Kolesár
and Rothe (2018) and Imbens and Wager (2019), we understand this condition to mean
that there exists a single “true” function pair (µY , µT ) ∈ F such that (µY (Xi), µT (Xi)) =

(E(Yi|Xi),E(Ti|Xi)) with probability 1. This pair is then obviously point identified on
the support of the running variable, and partially identified everywhere else through the
shape restrictions implied by it being an element of F . This reasoning further implies
that θ must be contained in the identified set

ΘI ={
mY+ −mY−

mT+ −mT−
: (mY ,mT ) ∈ F , (mY (Xi),mT (Xi)) = (E(Yi|Xi),E(Ti|Xi)) w.p.1

}
.

This set is a singleton if Xi is supported on an open neighborhood around the cutoff, but
generally it is either (i) a closed interval [a1, a2]; (ii) the union of two disjoint half-lines,
(−∞, a1]∪ [a2,∞); (iii) the entire real line; or, as a knife-edge case (iv) a half-line [a1,∞)

or (−∞,−a1], with a1 > 0. This holds because the range of (mY+ −mY−,mT+ −mT−)

over (mY ,mT ) ∈ F is a Cartesian product of two intervals IY × IT . The four cases then
obtain depending on which of these two intervals contain zero, possibly as a boundary
value.

Note that while it is not possible to consistently estimate either τY , τT , or θ if ΘI

is not a singleton, inference is not futile in such cases. Indeed, our CSs described below
are valid in the sense of Imbens and Manski (2004) irrespective of whether θ is point or
partially identified, and without applied researchers having to decide which of the two
notions of identification more accurately describes their particular setting.
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2.2.5. Local Linear Estimation. Local linear regression (Fan and Gijbels, 1996) is
arguably the most popular empirical strategy for estimation and inference in RD designs.
Formally, for a generic dependent variable Wi (which could be equal to Yi or Ti, for
example), the local linear estimator of the jump τW = µW+ − µW− is

τ̂W (h) = e⊤1 arg minβ∈R4

n∑
i=1

K(Xi/h)(Wi − β′(Zi, Xi, ZiXi, 1))
2, (2.4)

where K(·) is a kernel function with support [−1, 1], h > 0 is a bandwidth, and e1 =

(1, 0, 0, 0)′ is the first unit vector. The natural point estimator of θ is then given by
θ̂(h) = τ̂Y (h)/τ̂T (h), for some value of h. A key feature of τ̂W (h) is that it can be written
as a weighted average of the Wi, with weights wi(h) that depend on the data through the
realizations Xn = (X1, . . . , Xn)

′ of the running variable only:

τ̂W (h) =
n∑
i=1

wi(h)Wi.

The exact form of the weights follows from standard least squares algebra, and is given
explicitly in Appendix 2.A. Estimators of the form (2.4) are the building blocks of our
honest CSs described below, and we refer to τ̂W (h) as an SRD-type estimator of τW in the
following, as it is the conventional estimator in a hypothetical SRD design with outcome
Wi.

2.3. EXISTING METHODS FOR RD INFERENCE
2.3.1. SRD Inference. We first review some techniques for inference based on SRD-
type estimators, which are by now well-understood. To describe the bias-aware SRD
CIs of Armstrong and Kolesár (2018, 2020), let bW (h) and sW (h) denote the bias and
standard deviation, respectively, of a generic SRD-type estimator τ̂W (h) conditional on
the realizations of the running variable; and let ŝW (h) be a standard error. Under mild
conditions, the large sample distribution of the t-ratio (τ̂W (h)− τW )/ŝW (h) is then that
of the sum of a standard normal random variable and the ratio bW (h)/ŝW (h). While
the latter is unknown in practice, a bound r̂W (h) = (supµW∈FH(BW ) |bW (h)|)/ŝW (h) on
|bW (h)/ŝW (h)| can be calculated explicitly. One can then construct the bias-aware CI

CαW = [τ̂W (h)± cv1−α(r̂W (h))ŝW (h)],

where the critical value cv1−α(r) is the (1−α)-quantile of |N(r, 1)|, the distribution of the
absolute value of a normal random variable with mean r and unit variance. Armstrong
and Kolesár (2018, 2020) show that this CI is honest with respect to FH(BW ) irrespec-
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tive of the distribution of the running variable, valid for any bandwidth (for which the
quantities involved in its construction are well-defined), and highly efficient if the running
variable is continuous and the bandwidth is chosen to minimize the length of CαW .

Other popular approaches to SRD inference include undersmoothing, or using a
“small” bandwidth for which the “bias to standard error” ratio is asymptotically negligible
(cf. Imbens and Lemieux, 2008); and robust bias correction, which involves subtracting
a bias estimate from τ̂W (h), and adjusting the standard error (Calonico et al., 2014).
In either case, CIs are formed with the usual critical value cv1−α(0). Both approaches
assume a continuously distributed running variable, but Armstrong and Kolesár (2020)
show that common implementations of undersmoothing and robust bias correction can
still have finite-sample issues in such settings. One reason is that both methods typically
take an estimate of a pointwise-MSE-optimal bandwidth (Imbens and Kalyanaraman,
2012) as an input. This bandwidth can be very large even if the underlying function is
highly nonlinear, which then leads to large smoothing biases in finite samples. While
estimators of the pointwise-MSE-optimal bandwidth generally involve a regularization
step to prevent extreme bandwidth values, in practice the result is often still unstable
and depends critically on the values of tuning parameters, which are difficult to pick.
Armstrong and Kolesár (2020) also show that undersmoothing and robust bias correction
CIs are inefficient, in that they tend to be much longer than bias-aware counterparts,
even with infeasible bandwidths.

2.3.2. Delta Method FRD Inference. The above mentioned methods for SRD infer-
ence critically rely on the “weighted average” representation of local linear regression
estimators. Since the FRD estimator θ̂(h) = τ̂Y (h)/τ̂T (h) is a nonlinear transformation
of two SRD-type estimators, such methods cannot simply be applied directly. Instead,
the CIs commonly reported in empirical FRD studies are based on a “delta method”
(DM) argument. From a simple Taylor expansion, it follows that θ̂(h)− θ can be written
as the sum of an SRD-type estimator τ̂U(h) as in (2.4), with an unobserved dependent
variable Ui, and a remainder ρ̂(h):

θ̂(h)− θ = τ̂U(h) + ρ̂(h), τ̂U(h) =
n∑
i=1

wi(h)Ui, Ui =
Yi − τY
τT

− τY (Ti − τT )

τ 2T
,

ρ̂(h) =
τ̂Y (h)(τ̂T (h)− τT )

2

2τ̂ ∗T (h)
3

− (τ̂Y (h)− τY )(τ̂T (h)− τT )

τ 2T
,

with τ̂ ∗T (h) an intermediate value between τT and τ̂T (h). With DM inference, one then
imposes regularity and bandwidth conditions under which ρ̂(h) is an asymptotically neg-
ligible relative to τ̂U(h), and forms a CI for θ by applying some method for SRD inference
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to τ̂U(h). Since Ui is unobserved, any such method is must be made feasible by using an
estimate Ûi in which τY and τT are replaced by suitable preliminary estimators. Versions
of such CIs are proposed, for example, by Calonico et al. (2014) and Armstrong and
Kolesár (2020) in combination with robust bias correction and a bias-aware approach,
respectively.5

An obvious downside of such constructions, to which we refer as DM CIs, is that
they only control the bias of a first-order approximation of θ̂(h), and not the bias of θ̂(h)
itself. Moreover, replacing Ui with an estimate Ûi introduces additional uncertainties in
finite samples. In practice, all DM FRD CIs are thus subject to additional distortions
relative to conventional SRD CIs. A more principal, and more practically important
issue with DM CIs is that the central condition for their validity, namely that ρ̂(h) is
asymptotically negligible relative to τ̂U(h), is not innocuous. In particular, this condition
is not compatible with a discrete running variable, or more generally one with support
gaps around the cutoff.

To see this last point, recall from Section 2.2.4 that consistent estimation of τT and
τY is generally not possible with a discrete running variable. The terms τ̂U(h) and ρ̂(h)

therefore have non-zero probability limits in this case, and ρ̂(h) cannot be ignored for the
purpose of inference on θ. This issue occurs irrespective of the method chosen to control
the bias of τ̂U(h), including bias-aware inference. Since running variables with discrete
or irregular support are ubiquitous in practice, this is an important limitation.

Another issue for DM CIs is that the conditions for their validity rule out weakly
identified settings with τT close to zero. This issue occurs even if the running variable is
continuously distributed. To see this, note that for any DM CI to be honest with respect
to F , the term ρ̂(h) must be of smaller order than τ̂U(h) not only at the “true” function
pair (µY , µT ), but uniformly over all (µY , µT ) ∈ F . But since τT can be arbitrarily close
to zero over (µY , µT ) ∈ F , we have that supµY ,µT |ρ̂(h)| = ∞, which means that DM CIs
break down.6

5In empirical papers, FRD estimates are sometimes obtained through the two-stage least squares
regression Yi = θTi + β+XiZi + β−Xi(1 − Zi) + εi with Zi as an instrument for Ti, using only data in
some window around the cutoff. This is numerically equivalent to a ratio of local linear regressions with
a uniform kernel, and the resulting CI is thus of the DM type (Hahn et al., 2001; Imbens and Lemieux,
2008).

6Feir et al. (2016) also point out covarage issues of DM CIs under weak identification, although
through a different technical argument. Specifically, they show that DM CIs based on infeasible “under-
smoothing” bandwidths do not have correct asymptotic coverage under pointwise asymptotics when τT
tends to zero with the sample size at an appropriate rate.
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2.4. BIAS-AWARE FUZZY RD CONFIDENCE SETS
We propose an alternative approach to FRD inference that avoids the inherent shortcom-
ings of DM CIs by directly considering an object that can be estimated by an SRD-type
estimator. We define the “auxiliary” parameter τM(c) = τY − cτT , which can be written
as

τM(c) = µM+(c)− µM−(c), µM(x, c) = E(Mi(c)|Xi = x), Mi(c) = Yi − cTi.

That is, τM(c) is the jump in the conditional expectation µM(x, c) of the constructed
outcome Mi(c) given the running variable Xi at the cutoff x = 0. We can form a
bias-aware CI for τM(c) based on the SRD-type estimator τ̂M(h, c), which is as in (2.4)
but with Mi(c) replacing Wi, and a bandwidth that might depend on c. Note that
to keep the notation simple, the estimator τ̂M(h, c) = τ̂Y (h) − cτ̂T (h) uses the same
bandwidth on each side of the cutoff, and also the same bandwidth for estimating τY and
τT . It is straightforward to accommodate more general bandwidth choices; see Online
Appendix 2.B for details.

Our CS for the actual parameter of interest θ is then obtained by collecting all values
of c for which the “auxiliary” CI contains zero:

Cαar = {c ∈ R : a (1− α) bias-aware CI for τM(c) contains 0}. (2.5)

This construction shares similarities with that of Anderson and Rubin (1949) for infer-
ence in exactly identified linear IV models, and Fieller (1954) for inference on ratios.
Emphasizing the former connection, we refer to such CSs as bias-aware AR CSs for θ.

To describe the approach in more detail, recall the notation from Section 2.2.5 and
denote the conditional bias and standard deviation of τ̂M(h, c) =

∑n
i=1wi(h)Mi(c) given

Xn = (X1, . . . , Xn)
′ by bM(h, c) = E(τ̂M(h, c)|Xn)−τM(c) and sM(h, c) = V(τ̂M(h, c)|Xn)

1/2,
respectively. These quantities can be written more explicitly as

bM(h, c) =
n∑
i=1

wi(h)µM(Xi, c)− (µM+(c)− µM−(c)),

sM(h, c) =

(
n∑
i=1

wi(h)
2σ2

M,i(c)

)1/2

,

with σ2
M,i(c) = V(Mi(c)|Xi) the conditional variance of Mi(c) given Xi. The bias depends

on (µY , µT ) through the transformation µM = µY − c · µT only, and µY − c · µT ∈
FH(BY + |c|BT ) by (2.3) and linearity of the second derivatives operator. Following
Armstrong and Kolesár (2020), we can bound bM(h, c) in absolute value over the functions
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contained in F , for any value of the bandwidth h, by

sup
(µY ,µT )∈F

|bM(h, c)| ≤ bM(h, c) ≡ −BY + |c|BT

2
·

n∑
i=1

wi(h)X
2
i · sign(Xi),

with the supremum being achieved by a pair of piecewise quadratic functions with second
derivatives equal to (BY ·sign(x), BT ·sign(x)) over x ∈ [−h, h].7 Under standard regularity
conditions, the statistic

τ̂M(h, c)− τM(c)

sM(h, c)
=
τ̂M(h, c)− τM(c)− bM(h, c)

sM(h, c)
+
bM(h, c)

sM(h, c)

is then the sum of a term that is approximately standard normal in large samples condi-
tional on Xn, and a term that is bounded in absolute value by rM(h, c) = bM(h, c)/sM(h, c),

the “worst case” bias to standard deviation ratio. For every c ∈ R we can thus construct
an (infeasible) auxiliary bias-aware CI for the pseudo parameter τM(c) as Cα

M(h, c) =

[τ̂M(h, c)± cv1−α(rM(h, c))sM(h, c)], where cv1−α(r) is again the (1 − α)-quantile of the
|N(r, 1)| distribution. Since the construction of this CI is conditional on the realizations
of the running variable, it is valid irrespective of whether the distribution of the latter
is continuous or discrete; and since it takes into account the exact conditional bias, it is
also valid for any choice of bandwidth h = h(c), including fixed ones that do not depend
on the sample size. Its asymptotic length is minimized by

hM(c) = arg minhcv1−α(rM(h, c))sM(h, c).

Following the idea from (2.5), an efficient infeasible CS for θ is then given by the collection
of all values of c for which the auxiliary CI Cα

M(h, c), evaluated at hM(c), contains zero:

Cα∗ = {c : |τ̂M(hM(c), c)| ≤ cv1−α(rM(hM(c), c))sM(hM(c), c))} . (2.6)

Our proposed class of CSs for θ are then feasible versions of (2.6) that replace sM(h, c)

and hM(c) with suitable empirical analogues ŝM(h, c) and ĥM(c), respectively:

Cαar =
{
c : |τ̂M(ĥM(c), c)| ≤ cv1−α(r̂M(ĥM(c), c))ŝM(ĥM(c), c))

}
, (2.7)

with r̂M(h, c) = bM(h, c)/ŝM(h, c). Such CSs could in principle be implemented in a
variety of ways, and our theoretical analysis below therefore only imposes some weak
“consistency” conditions. However, we propose a specific standard error ŝM(h, c) that

7Note that this bound may not be sharp if no such pair of piecewise quadratic functions is a feasible
candidate for (µY , µT ). For example, there is no function µT with µ′′

T (x) = BT ·sign(x) and µT (x) ∈ [0, 1]
for all x ∈ [−h, h] if h > (2/BT )

1/2. Still, the bias bound is valid in such cases.
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substitutes appropriate nearest-neighbor estimates σ̂2
M,i(c) into the above expression for

sM(h, c) in Section 2.6.1; and a feasible bandwidth ĥM(c) that combines a plug-in con-
struction with a safeguard against certain small sample distortions in Section 2.6.2.

In Online Appendix 2.D, we present an extension of our approach that allows con-
structing a bias-aware AR CSs for the ratio of the jumps in the vth-order derivatives of
two conditional expectation functions at some threshold value, using pth-order local poly-
nomial regression. The most prominent example of such setup is the Fuzzy Regression
Kink Design (Card et al., 2015), where the parameter of interest is the ratio of jumps in
first derivatives, and the CSs are typically based on local quadratic regression.

2.5. THEORETICAL PROPERTIES
2.5.1. Assumptions. To study the theoretical properties of our proposed CSs, we intro-
duce the following assumptions.

Assumption 2.1. (i) The data {(Yi, Ti, Xi), i = 1, . . . , n} are an i.i.d. sample from a fixed
population; (ii) E((Mi(c) − E(Mi(c)|Xi))

q|Xi = x) exists and is bounded uniformly over
x ∈ supp(Xi) and (µY , µT ) ∈ F for some q > 2 and every c ∈ R; (iii) V(Mi(c)|Xi = x) is
bounded away from zero uniformly over x ∈ supp(Xi) and (µY , µT ) ∈ F for every c ∈ R;
(iv) the kernel function K is a continuous, unimodal, symmetric density function that is
equal to zero outside some compact set, say [−1, 1].

Assumption 2.1 is standard in the literature on local linear regression. Part (i) could
be weakened to allow for certain forms of dependent sampling, such as cluster sampling.
Parts (ii)–(iii) are standard moment conditions. Since Mi(c) = Yi − cTi and Ti is bi-
nary, these conditions mainly restrict the conditional moments of the outcome variable.
Part (iv) is satisfied by most kernel functions commonly used in applied RD analysis,
such as the triangular or the Epanechnikov kernels.

Assumption 2.2. The following holds uniformly over (µY , µT ) ∈ F : (i) ĥM(c) =

hM(c)(1 + oP (1)); and (ii) ŝM(ĥM(c), c) = sM(hM(c), c)(1 + oP (1)).

Part (i) of Assumption 2.2 states that the empirical bandwidth is consistent for the
infeasible optimal one, and part (ii) states that that the empirical standard error is
consistent for the true standard deviation at the infeasible optimal bandwidth. We discuss
specific implementations in Sections 2.6.1 and 2.6.2.

Assumption LL1. The support of the running variable Xi is finite and symmetric, in
the sense that it is of the form {±x1, . . . ,±xk}, for positive constants (x1, . . . , xk) over
some open neighborhood of the cutoff.
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Assumption LL2. (i) The running variable Xi is continuously distributed with density
fX that is bounded and bounded away from zero over an open neighborhood of the
cutoff; (ii) V(Mi(c)|Xi = x) is Lipschitz continuous uniformly over x ∈ supp(Xi)\0 and
(µY , µT ) ∈ F for every c ∈ R; and (iii) E((Mi(c) − E(Mi(c)|Xi))

4|Xi = x) is uniformly
bounded over x ∈ R and (µY , µT ) ∈ F for every c ∈ R.

Assumptions LL1–LL2 are standard descriptions of setups with a discrete and a con-
tinuously distributed running variable, respectively.8 In Lemma A.2.1 in the Appendix,
we show that these assumptions have two main implications that we use in the proofs
of the main results below: (i) using an estimate of the optimal bandwidth instead of its
population version has a minor impact, in some appropriate sense, on the quantities in-
volved in the construction of our CS; (ii) the magnitude of each of the weights wi(hM(c))

becomes arbitrarily small relative to the others’ in large samples, in the sense that
wratio(hM(c)) = oP (1), where wratio(h) = maxj=1,...,nwj(h)

2/
∑n

i=1wi(h)
2, which means

that a CLT applies to an appropriately standardized version of the estimator of τM(c).

2.5.2. Honesty. Our main theoretical result in this chapter is that Cαar is an honest CS
for θ with respect to F as defined in (2.1) under the rather weak conditions introduced in
the previous subsection. As mentioned above, such a property is necessary to guarantee
that a CS has good finite sample coverage.

Theorem 2.1. Suppose that Assumptions 2.1–2.2 and either LL1 or LL2 hold. Then Cαar

is honest with respect to F in the sense of (2.1).

2.5.3. Shape. Since Cαar is defined through an inversion argument, it is interesting to study
its general shape. Recall that c ∈ Cαar if and only if

|τ̂M(ĥM(c), c)| − cv1−α(r̂M(ĥM(c), c))ŝM(ĥM(c), c) ≤ 0.

A simple sufficient condition for Cαar to be non-empty is that hM(c) is continuous in c,
but beyond that it is difficult to make general statements. This is because the quantities
involved in the above inequality depend on c directly, but also indirectly through the
bandwidth ĥM(c). While the former dependence is rather simple in structure, the latter
introduces complicated nonlinearities that make it impossible to give a simple analytical
result regarding the shape of our CS. Such a characterization is possible, however, for a
version that uses bandwidth that does not depend on c.

8A discrete running variable with asymmetric support can easily be accommodated by using a dif-
ferent bandwidth on each side of the cutoff, as in described Appendix 2.B.
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Theorem 2.2. Let Cαar(h) be a version of Cαar that uses a bandwidth h that does not depend
on c. Then either Cαar(h) = [a1, a2], or Cαar(h) = (−∞, a1]∪[a2,∞), or Cαar(h) = (−∞,∞),
or Cαar(h) = [a1,∞) or Cαar(h) = (−∞, a1], for some constants a1 < a2.

This result mirrors the identification analysis in Section 2.2.4, and suggests that our
actual CS should also take one of these general shapes as long as ĥM(c) does not vary
“too much” with c. We found this to be the case in every simulation run and every
empirical analysis that we conducted in the context of this chapter. The last two cases in
Theorem 2.2, in which Cαar(h) is a half-line, are also “knife-edge” cases: they only occur
if one of the boundaries of a bias-aware CI for τT is exactly equal to zero. Since this is a
probability zero event under standard asymptotics, these two cases are largely irrelevant
for empirical practice.

2.5.4. Comparison with Bias-Aware Delta Method CIs. Armstrong and Kolesár
(2020) study bias-aware DM CIs under conditions for which such DM CIs are asymp-
totically valid. These include Assumption LL2, which implies that is Xi continuously
distributed, and that (µY , µT ) ∈ FH(BY ) × F δ

H(BT ) ≡ F δ for some δ > 0, which means
that τT is well-separated from zero. Armstrong and Kolesár (2020) show that in this
case bias-aware DM CIs honest with respect to F δ, and also near-optimal, in the sense
that no other method can substantially improve upon its length in large samples. This
construction thus dominates others commonly used in empirical practice, such as robust
bias correction (Calonico et al., 2014).

The next theorem shows that our bias-aware AR CSs are as efficient as their DM
counterparts in settings for which DM CIs are specifically designed. In order to avoid
introducing additional high-level assumptions about the implementation details we con-
sider an infeasible version of the bias-aware DM CI from Armstrong and Kolesár (2020),
and compare them to our infeasible counterpart Cα∗ ; see the proof for further discussion
and the exact construction of Cα∆. Equal efficiency is established in the sense that both
CSs have the same local asymptotic coverage for a drifting parameter within a neighbor-
hood of θ; the most interesting being of order O(n−2/5), as the length of Cα∆ is OP (n

−2/5)

uniformly over F δ.

Theorem 2.3. Suppose that Assumptions 2.1–2.2 and LL2 hold, and put θ(n) = θ+κ·n−2/5

for some constant κ. Then

lim sup
n→∞

sup
(µY ,µT )∈Fδ

∣∣P (θ(n) ∈ Cα∗
)
− P

(
θ(n) ∈ Cα∆

)∣∣ = 0.

This result parallels the well-known finding that there is no loss of efficiency when
using the AR approach in exactly identified IV models relative to one based on a con-
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ventional t-test (e.g. Andrews et al., 2019). It is not a simple corollary, however, as
there are, for example, no analogues to the bandwidth and the smoothing bias in an IV
model. Note that bias-aware DM CIs do not account for the actual bias of the estimator
of interest, but only for the bias of the leading term in a stochastic approximation; and
even that bound needs to be estimated. They are thus subject to additional higher-order
distortions that could affect their finite sample performance relative to that of our AR
CSs.

2.6. IMPLEMENTATION DETAILS
2.6.1. Standard Errors. Given the form of the conditional standard deviation sM(h, c),
it is natural to use a standard error of the form ŝM(h, c) = (

∑n
i=1wi(h)

2σ̂2
M,i(c))

1/2, with
σ̂2
M,i(c) some estimate of σ2

M,i(c). Nearest-neighbor estimators that defines σ̂2
M,i(c) as the

squared difference between the outcome of unit i and the average outcome among its
nearest neighbors in terms of the running variable (Abadie and Imbens, 2006; Abadie
et al., 2014) are a common recommendation in the RD literature for this purpose (e.g.
Calonico et al., 2014; Armstrong and Kolesár, 2018, 2020). However, such a standard
error is actually not uniformly consistent over F because the leading bias of σ̂2

M,i(c) is
proportional to the first derivative of µM(·, c) at Xi (Abadie and Imbens, 2006), which
is unbounded over F . We therefore propose a novel nearest-neighbor procedure in which
the local sample average is replaced with a best linear predictor.

Specifically, let R be a small fixed integer, denote the rank of |Xj − Xi| among the
elements of the set {|Xs−Xi| : s ∈ {1, . . . , n}\{i}, XsXi > 0} by r(j, i), let Ri be the set
of indices such that r(j, i) ≤ Qi, where Qi is the smallest integer such that Ri contains
at least R elements, and let Ri be the resulting cardinality of Ri. If every realization
of Xi is unique, then R = Qi = Ri, and Ri is the set of unit i’s R nearest neighbors’
indices; but with ties in the data Ri could be greater than R. We then define σ̂2

M,i(c)

as the scaled squared difference between Mi(c) and its best linear predictor given its Ri

nearest neighbors:

σ̂2
M,i(c) =

1

1 +Hi

(
Mi(c)− M̂i(c)

)2
, with

M̂i(c) = X̃i

(∑
j∈Ri

X̃⊤
j X̃j

)−1 ∑
j∈Ri

X̃⊤
j Mj(c), Hi = X̃i

(∑
j∈Ri

X̃⊤
j X̃j

)−1

X̃i

⊤
.

Here X̃i = (1, Xi)
⊤ if the running variable takes at least two distinct values among the

Ri nearest neighbors of unit i, and X̃i = 1 otherwise. The scaling term Hi, whose form
follows from standard regression theory, ensures that σ̂2

M,i(c) is approximately unbiased
in large samples. The next result shows that our new standard error is indeed uniformly
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consistent.

Theorem 2.4. Suppose that Assumption 2.1, Assumption 2.2(i), and either Assump-
tion LL1 or Assumption LL2 are satisfied. Then Assumption 2.2(ii) holds for the standard
error described in this subsection.

This result holds because the bias of σ̂2
M,i(c) is proportional to the second derivative

of µM(·, c) at Xi, which is bounded in absolute value over F by BY + |c|BT . In contrast,
the result would not hold for the conventional nearest-neighbor estimator, whose bias is
proportional to the first derivative of µM(·, c) at Xi and therefore unbounded. We there-
fore recommend using our standard error not just the construction of our CS, but more
generally in bias-aware inference problems that work with bounds on second derivatives.
We use R = 5 in the simulations and the empirical application in this chapter.

2.6.2. Bandwidth Choice. An obvious candidate for a feasible bandwidth is the empir-
ical analogue of hM(c), which minimizes the length of the auxiliary CI in Section 4:

ĥ∗M(c) = arg minhcv1−α(r̂M(h, c))ŝM(h, c).

While this choice is attractive in principle, in finite samples it could yield some coverage
distortions if BY + |c|BT is very large relative to sampling uncertainty. To see why, recall
from the discussion at the end of Section 2.5.1 that asymptotic normality of τ̂M(h, c) =∑n

i=1wi(h)Mi(c) follows from a CLT if wratio(h) = oP (1). Normality should thus be a
“good” finite-sample approximation if wratio(h) is “close” to zero. If BY + |c|BT is large,
however, ĥ∗M(c) is typically small in order to control the bias. The weights wi(ĥ∗M(c))

then concentrate on few observations close to the cutoff, wratio(ĥ
∗
M(c)) is large, and CLT

approximations could be inaccurate as τ̂M(ĥ∗M(c), c) then effectively behaves like a sample
average of a small number of observations.

To address this issue, we propose imposing a lower bound on the bandwidth, chosen
such that the value of wratio(h) remains below some reasonable threshold constant η > 0:

ĥM(c) = max
{
ĥ∗M(c), hmin(η)

}
, hmin(η) = min {h : wratio(h) < η} .

To motivate a choice for η, suppose that Xn = {±.02,±.04, . . . ,±1}, that K(t) = (1 −
|t|)1{|t| < 1} is the triangular kernel, and that h = 1. In this case wratio(h) ≈ .075, and a
CLT approximation should be reasonably accurate for τ̂M(h, c), which is a weighted least
squares estimator with 50 observations on each side of cutoff. Choosing η ∈ [0.05, 0.1]

therefore seems reasonable in practice; and we actually use η = .075 in our simulations.
As ĥM(c) ≥ ĥ∗M(c), the constrained bandwidth could over-smooth the data relative

to the one that would be asymptotically optimal for inference. If that happens, the
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resulting increase in finite-sample bias is the cost for normality being a better finite-sample
approximation. This trade-off seems worthwhile since our CS construction explicitly
accounts for the exact bias through, while deviations from normality cannot be captured.
Under standard conditions like Assumption LL1 or LL2 the lower bound on the bandwidth
clearly never binds asymptotically, but it can improve the finite-sample coverage of our
CSs. The same idea can also be used for SRD inference, and more generally in settings
where the finite-sample accuracy of inference faces a similar “bias vs. normality” trade-off.
For example, Armstrong and Kolesár (2021a) use our approach for inference on average
treatment effects under unconfoundedness with limited overlap.

2.6.3. Computation. Although our CS is defined through an inversion argument, it can
be computed rather efficiently. We start by noting that our CS can be written as

Cαar = {c : p̂(c) ≥ 0}, where p̂(c) = 1− α− F

(∣∣∣∣∣ τ̂M(ĥM(c), c)

ŝM(ĥM(c), c)

∣∣∣∣∣ , r̂M(ĥM(c), c)

)
, (2.8)

and F (·, r) is the CDF of the |N(r, 1)| distribution. Computing Cαar thus reduces to finding
the roots of p̂(c). Algorithm 1 describes how this is implemented in the R package that we
provide with this chapter. The main idea is to first evaluate p̂(c) on a coarse grid over the
plausible range of θ to get a “rough” picture of p̂(c), and then search for a root between
grid points where the sign of p̂(c) changes. Following the discussion after Theorem 2.2,
we assume that the boundaries of a bias-aware CI for τT are not exactly equal to zero,
and exploit that (−∞, a1] ∪ [a2,∞) ⊂ Cαar for some a1 < a2 if zero is contained in such a
CI (this holds because the t-ratios of τ̂M(h, c) and τ̂T (h) become equal for |c| → ∞). In
line with the conjecture after Theorem 2.2, p̂(c) turned out to have either two or no roots
in all of our numerical examples, but our algorithm does not assume that this is the case.

The runtime of Algorithm 1 is mostly driven by the computational cost of evaluating
the function p̂(c). This cost is rather low with efficient programming: even with n = 105

data points, our algorithm computes Cαar in about 20 seconds on a standard desktop
computer. For comparison, it takes the widely used rdrobust package about 45 seconds
to compute a robust bias correction DM CI on the same machine with the same number
of data points (with smaller samples there is generally no practically relevant difference
between the computation times of the two packages). Much computation time can be
saved by noting that the nearest-neighbor variance estimates do not have to be computed
from scratch for every value of c. This is because σ̂2

M,i(c) = σ̂2
Y,i + c2σ̂2

T,i − 2cσ̂Y T,i is a
quadratic function in c, with coefficients given by two variance terms and one covariance
term that need to be computed only once. Also note that computing ĥM(c) is not too
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Algorithm 1. Computes the CS Cαar for θ given bounds BY and BT on the second
derivatives of µY and µT , respectively, and the number R of nearest neighbors to be
used for the variance estimates that enter standard error.
1. Pick an interval [cL, cU ] that covers the plausible range of θ, and define grid points
cj = cL + j(cU − cL)/J for j = 0, . . . , J and some integer J ≥ 2.

2. Compute p̂(cj) as in (2.8) for j = 0, . . . , J . If p̂(cj) and p̂(cj+1) have different sign,
use the uniroot algorithm to find a root of p̂(·) over the interval (cj, cj+1). Denote
the number of roots found by S ≥ 0, and the roots themselves by a1, . . . , aS.

3. Compute CαT , a bias-aware CI for τT , the jump in treatment probability.
4. Return the bias-aware AR CS Cαar according to the following rules.

(a) If 0 ∈ CαT and S = 0, then return Cαar = (−∞,∞).

(b) If 0 ∈ CαT , S is positive and even, p̂ is decreasing at as if s is odd, and
increasing if s is even, then return Cαar = (−∞, a1] ∪ [a2, a3] ∪ . . . ∪ [aS,∞).

(c) If 0 /∈ CαT , S is increasing at as if s is odd, and decreasing if s is even, then
return Cαar = [a1, a2] ∪ [a3, a4] ∪ . . . ∪ [aS−1, aS].

If none of the four conditions is satisfied, restart the algorithm with a larger
interval [cL, cU ] and/or a larger number of grid points J .

costly, as the corresponding optimization problem only involves a single linear regression
for every candidate value of the bandwidth. This step is much less involved than, say,
leave-one-out cross validation, which would require n linear regressions for every candidate
bandwidth.

2.6.4. Choosing Smoothness Bounds. In order to compute Cαar, one needs to specify
values for the smoothness bounds BY and BT . Such bounds cannot be estimated con-
sistently without imposing strong additional assumptions; and without specifying such
bounds it is generally not possible to conduct inference on θ that is both valid and infor-
mative, even in large samples (Low, 1997; Armstrong and Kolesár, 2018; Bertanha and
Moreira, 2020).

Roughly speaking, small values of BY and BT amount to the assumption that the
respective functions are “close” to linear on either side of the cutoff, whereas for larger
values they are allowed to be increasingly “curved”. This choice should be guided by
subject knowledge, but in empirical applications there will generally be no single objec-
tively right one. We hence recommend considering a range of plausible values as a form
of sensitivity analysis. In the following subsections, we give some suggestions for how to
determine such ranges, and for how to communicate their implications. For simplicity,
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we focus on the choice of BY , but the choice of BT follows from analogous considerations.
We note that, as pointed out in the introduction, the need to specify smoothness

bounds arises generally with bias-aware inference, but not with other popular methods
like undersmoothing or robust bias correction. While at first glance this might seem like
a disadvantage, in effect other methods also require such bounds to guarantee approx-
imately correct CI coverage in practice.9 Having to specify BY and BT is thus not a
meaningful impediment of our approach, but helps clarifying the assumptions on which
inferential statements are based.

2.6.4.1. Visualizing Smoothness Bounds. Determining whether a particular value of BY

is plausible in practice requires intuition for what functions are actually contained in
FH(BY ). We suggest a procedure that visualizes some “extreme” elements of FH(BY )

to convey such intuition. Specifically, our proposal is to pick functions that match the
scale of the data, and whose second derivative is equal to BY near the cutoff, through
the following algorithm. Let g(Xi) be a vector of basis transformations of Xi and its
interaction with 1{Xi ≥ 0}, with sufficiently many entries for an OLS regression of Yi
on g(Xi) to result in an erratic overfit of the data; and consider functions of the form
µ̃Y (x) = g(x)⊤γ̂, where γ̂ solves

min
γ

n∑
i=1

(Yi − g(Xi)
⊤γ)2 s.t. ∥g′′(·)⊤γ∥∞ ≤ BY , |g′′(x0)⊤γ| = |g′′(−x0)⊤γ| = BY ,

for some x0 ≥ 0. The function µ̃Y is thus obtained by a constrained regression of Yi on
g(Xi) in which the absolute second derivative is bounded by BY overall, and equal to BY

near the cutoff. This optimization can easily be solved via quadratic programming.
We stress that µ̃Y is not supposed to be a good estimate of µY , but simply an example

of an “extreme” element of FH(BY ). The idea is to plot this function for various values
of BY (and possibly x0) to obtain a better understanding for what kind of functions are
contained in FH(BY ). For example, one could start with a very small BY , implying an
almost linear function, and then increase the value in small steps until the resulting µ̃Y
becomes implausibly erratic. Figure 2.1 illustrates this approach for a hypothetical data
set.

9For example, an undersmoothing SRD CI can only be expected to have approximately correct
coverage in finite samples if the bias is “small” relative to the standard error. With local linear estimation,
this can only be the case if the underlying function is “close” to linear, which is equivalent to its maximum
second derivative being “close” to zero. A similar point applies to robust bias correction, which in its
standard implementation can only be expected to deliver CIs with approximately correct coverage in
finite samples if the maximum third derivative of the underlying function is “close” to zero (Kamat,
2018). A researcher that reports such a CI and considers it reliable thus implicitly imposes a smoothness
bound. If that bound was made explicit, however, a more efficient CI could be constructed through a
bias-aware approach. See Armstrong and Kolesár (2020) for more details on this point.
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Figure 2.1: Examples of elements of FH(BY ) for various values of BY , each superimposed over
the same hypothetical data set. Examples are constructed with g(x) containing splines of order
k = 2 and 50 knots on each side, and ϵ = .1. Applied researchers can produce such graphs, and
then pick the largest value of BY for which the resulting plot is empirically plausible. here the
linear case in panel (a) is given for reference, panel (b) could be seen as adequate, panel (c) as
a borderline case at best, and panel (d) would probably be considered implausible in economic
applications.

2.6.4.2. One-Sided CI for Smoothness Bound. While it is not possible to obtain a valid
data-driven upper bound on the curvature of µY , it is possible to estimate a lower bound
B̂Y,low for BY , and to compute a one-sided CI [B̂α

Y,low,∞) that covers BY with probability
1 − α in large samples (cf. Armstrong and Kolesár, 2018; Kolesár and Rothe, 2018).
We recommend computing these quantities in empirical practice to guard against overly
optimistic choices of the smoothness bounds.

2.6.4.3. Rules of Thumb. While it is not possible to consistently estimate the smoothness
bounds from data, we are aware of two heuristic “rules of thumb” (ROT) that have
been suggested as a way of determining plausible values in practice. Both rules are
based on fitting global polynomial specifications µ̃Y,k of order k on either side of the
cutoff by conventional least squares. Armstrong and Kolesár (2020) consider fourth-oder
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Figure 2.2: Conditional expectation function µY for τY = 1 and various values of the smoothness
bounds (solid line: BY = 1; dashed line: BY = 10; dotted line: BY = 100).

polynomials, and propose the ROT bound B̂Y,ROT1 = supx∈X |µ̃′′
Y,4(x)|, where X denotes

the support of the running variable. Imbens and Wager (2019) consider a ROT in which
the maximal curvature implied by a quadratic fit is multiplied by some moderate factor,
say 2, to guard against overly optimistic values, yielding B̂Y,ROT2 = 2 supx∈X |µ̃′′

Y,2(x)|.
Such rules can provide a useful first guidance to choosing smoothness bounds, but they

should be complemented with other approaches in a sensitivity analysis. We strongly rec-
ommend to always check the fit of the respective polynomial specification, and to dismiss
the ROT value if the fit is obviously poor. In Online Appendix 2.C, we compare the
properties of ROT1 and ROT2 in a simple simulation study. We argue that in “roughly
quadratic” settings the fourth-order polynomial specification that underlies ROT1 tends
to produce quite erratic over-fits of the data. This leads to vast over-estimates of the
true smoothness bounds, and corresponding CSs with poor statistical power. ROT2, on
the other hand, tends to produce more reasonable values many such setups. See also our
main Monte Carlo results in Section 2.7 for further details on this points.

2.7. SIMULATIONS
2.7.1. Setup. We now compare the practical performance of our bias-aware AR CS to
that of alternative procedures though a Monte Carlo Study. We consider a number of
data generating processes with varying curvature of the conditional expectation functions,
richness of the running variable’s support, strength of identification. Specifically, we sim-
ulate Xi from either a continuous uniform distribution over [−1, 1] or a discrete uniform
distribution over {±1/15,±2/15, . . .± 1}; and let

Yi = (BY /2)sign(Xi)f(Xi) + 1{Xi ≥ 0}τY + 0.1 · ε1i,

Ti = 1{−(BT/2)sign(Xi)f(Xi) + 1{Xi ≥ 0}τT + 0.3 ≥ Φ(ε2i)},

where (ε1i, ε2i) are bivariate standard normal with correlation 0.5, and f(x) = x2 − 1.5 ·
max(0, |x| − .1)2 + 1.25 · max(0, |x| − .6)2. The functions µY and µT are then second
order splines with maximal absolute second derivative BY and BT , respectively, over
[−1, 1]. Figure 2.2 shows µY for different values of BY . We consider the parameter
values (τY , τT ) ∈ {(1, .2), (.5, .1)}, so that θ = 2 in all settings, BT ∈ {.2, 1}, and BY ∈
{1, 10, 100}; and set the sample size to n = 1, 000. We refer to DGPs with τT = .1 as
weakly identified, and those with τT = .5 as strongly identified.

We consider the performance of eight different AR CSs in our simulations: (i) our
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bias-aware CS, using the true BY and BT ; (ii) our bias-aware CS, using twice the true
BY and BT ; (iii) our bias-aware CS, using half the true BY and BT ; (iv) our bias-aware
CS, using ROT1 estimates of BY and BT ; (v) our bias-aware CS, using ROT2 estimates
of BY and BT ; (vi) a naive CS that ignores bias, using an estimate of the “pointwise-
MSE optimal” bandwidth (Imbens and Kalyanaraman, 2012, henceforth IK); (vii) an
undersmoothing CS, using n−1/20 times the estimated IK bandwidth;10 (viii) a robust
bias correction CS, using local quadratic regression to estimate the bias, and estimated
IK bandwidths. In addition, we also consider the performance of eight different DM
CIs using the just-mentioned approaches to handling bias. Note that DM CIs based
on undersmoothing and robust bias correction are currently the most common CSs in
empirical FRD studies.11

2.7.2. Simulations Results. Table 2.1 shows simulated coverage rates of the various
CSs we consider for θ = 2. We first discuss results for AR CSs, shown in the left
panel. With the true smoothness bounds, coverage rates our bias-ware CSs are close
to and mostly slightly above the nominal level irrespective of the distribution of the
running variable, the degree of nonlinearity of the unknown functions, and the degree
of identification strength. The slight overcoverage occurs because the function µY (x) −
θµT (x) is not exactly quadratic, and thus does not achieve the worst-case bias. Using
twice or half the true bounds mostly leads to minor increases and decreases in simulated
coverage, respectively. Using ROT1 for the smoothness bounds leads to over-coverage,
especially for setups with a discrete running variable. This is because the underlying
global quadratic approximation tends to severely over-estimate the smoothness bounds
in our DGPs. ROT2 bounds generally lead to good coverage except for DGPs with
BY = 100, where the underlying quadratic approximation leads to severe under-estimates
of the smoothness bounds. Combining a naive approach, undersmoothing, or robust bias
correction with an AR construction leads to CSs that undercover in all DGPs we consider,

10This CS corresponds to the one proposed by Feir et al. (2016) with a particular implementation of
undersmoothing. Undersmoothing could in principle be implemented in a variety of ways, and hence the
performance of the resulting CS must be interpreted accordingly.

11All computations are carried out with the statistical software package R. All bias-aware CSs are
computed using our own software, which builds on the package RDHonest. All other CSs are computed
using functions from the package rdrobust. A triangular kernel is used in all cases. Note that all CSs
are only well-defined if the respective bandwidths are such that positive kernel weights are assigned to
at least two (or three, in case of robust bias correction) distinct points on either side of the cutoff. In our
simulations, the IK bandwidth estimates computed by rdrobust often do not satisfy this criterion if the
running variable is discrete. We then manually set the bandwidth to 4/15, so that positive weights are
given to three support points on each side of the cutoff. We also carried out a variant of our simulations in
which we replace the IK bandwidth with the “coverage error optimal” bandwidth proposed by Calonico
et al. (2018), using again the implementation in rdrobust. The results, which are qualitatively very
similar to the ones reported in this section, are reported in Appendix 2.F.
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with the distortions being more severe (up to about 30 percentage points) for those with
larger values of BY and BT .

Turning to result for DM CIs in the right panel of Table 2.1, we see that combining
a bias-aware approach with this construction does not necessarily lead to a CI with
correct coverage even under strong identification. This is because bias-aware DM CIs
only control the bias of a first-order approximation of the estimator on which they are
based. Such coverage distortions are further amplified by weak identification in our
simulations. Discreteness of the running variable does not have a strong detrimental
effect on bias-aware DM CIs in this particular setup though. Using the ROT choices
for the smoothness bounds leads to further distortions in some cases. The coverage of
DM CIs that use the naive approach, undersmoothing, or robust bias correction is again
distorted for most DGPs, with particularly severe deviations for weak identification and
large values of the smoothness constants.

To show that our bias-aware AR CSs not only have good coverage properties, but
also yield comparatively powerful inference, we simulate the rates at which the various
CSs we consider cover parameter values other than the true one. We report the results
for the DGP with (BY , BT ) = (1, .2) and strong identification in Figure 2.3.12 To avoid
having all 16 coverage curves in one plot, we split the results into four panels: the five
bias-aware AR CSs in (a), the three other AR CSs in (b), the five bias-aware DM CIs
in (c), and the three other DM CIs in (d). Panels (b)–(d) also show the curve for our
bias-aware AR CS with the true constants to have a common point of reference.

Panel (a) then shows that the coverage rate of bias-aware AR CSs drops very quickly
to zero away from the true parameter, except for the CS based on ROT1 (which, as
mentioned above, severely overestimates the smoothness bounds). Panels (b)–(d) show
that the coverage of bias-aware AR CSs is also below that of all competing procedures
over almost all the parameter space. This confirms that the accurate coverage of our
CSs in settings with discrete running variables and weak identification does not come at
the expense of statistical power in a canonical setup, for which most competing CS are
specifically constructed.

2.8. EMPIRICAL APPLICATION
In this section, we apply our methods to data from Oreopoulos (2006, 2008), who studies
the effects of a 1947 education reform in Great Britain that raised the minimum school-
leaving age from 14 to 15 years. The data are a sample of n = 73, 954 workers who

12We focus on these results because the coverage of the true parameter is reasonably close to the
nominal level for all procedures, and thus comparison of coverage rates at “non-true” parameter values
is meaningful across CSs. Analogous plots for other DGPs are available from the authors.
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Table 2.1: Simulated coverage rate (in %) of true parameter for various types of confidence sets
Anderson-Rubin Delta Method

Bias-Aware Bias-Aware
τT BY BT TC TC×2 TC×.5 ROT1 ROT2 Naive US RBC TC TC×2 TC×.5 ROT1 ROT2 Naive US RBC

Running Variable with Continuous Distribution
0.5 1 0.2 97.2 97.1 96.9 96.4 96.9 93.1 93.4 93.4 97.3 96.6 97.6 92.6 95.3 90.8 90.4 91.3
0.5 1 1.0 96.7 96.5 96.7 96.4 96.5 93.0 93.3 93.3 95.8 94.5 97.5 92.6 95.3 90.4 89.9 91.0
0.5 10 0.2 95.8 95.6 96.3 96.8 96.4 92.4 93.0 92.5 95.0 94.5 95.3 93.2 94.3 88.3 88.3 88.7
0.5 10 1.0 95.5 95.4 96.2 96.6 96.1 92.2 92.8 92.2 94.5 93.9 95.7 93.0 94.0 87.9 88.2 88.4
0.5 100 0.2 95.1 98.9 88.8 99.5 86.1 78.5 87.9 74.7 94.5 98.0 86.0 98.1 79.1 72.8 80.8 72.2
0.5 100 1.0 95.1 99.0 88.6 99.5 86.0 78.2 88.0 74.4 93.3 97.8 87.1 98.1 79.9 72.6 80.9 72.1
0.1 1 0.2 97.2 97.3 96.8 97.1 97.3 93.7 94.0 94.0 92.3 90.0 92.0 79.0 87.0 76.6 74.0 79.2
0.1 1 1.0 97.3 97.1 96.8 97.1 96.9 93.4 93.8 93.8 89.6 86.5 93.2 78.7 87.6 76.5 73.8 79.0
0.1 10 0.2 96.9 96.6 97.1 97.4 97.1 93.4 94.0 93.7 84.1 85.8 82.8 79.3 82.6 71.0 69.6 73.3
0.1 10 1.0 96.9 96.7 97.1 97.5 97.1 93.2 93.9 93.5 85.0 83.0 87.2 78.8 83.5 70.3 69.2 72.7
0.1 100 0.2 96.3 99.2 91.5 99.6 89.7 83.2 91.0 79.0 83.6 96.0 65.4 92.3 54.4 36.7 47.4 37.1
0.1 100 1.0 96.4 99.2 91.7 99.6 89.8 83.2 91.0 79.1 82.4 94.4 72.6 92.3 58.1 36.5 47.4 37.0

Running Variable with Discrete Distribution
0.5 1 0.2 97.4 97.6 96.9 99.3 97.9 94.3 94.6 94.6 97.6 97.2 97.8 95.4 96.0 89.9 88.9 91.0
0.5 1 1.0 97.5 97.7 96.9 99.2 97.5 94.0 94.2 94.4 96.5 95.5 98.0 95.2 96.2 89.6 88.5 90.5
0.5 10 0.2 97.7 98.2 97.6 99.5 95.8 93.6 93.9 93.7 95.9 96.0 95.7 96.0 95.2 85.3 84.8 85.4
0.5 10 1.0 97.7 98.2 97.7 99.5 94.6 93.6 93.7 93.6 96.5 96.6 96.9 95.8 95.1 84.6 84.4 84.6
0.5 100 0.2 96.9 100.0 91.2 100.0 86.2 67.9 60.4 57.8 95.0 97.5 48.1 98.8 25.3 26.8 27.9 17.1
0.5 100 1.0 96.8 100.0 91.0 100.0 85.8 67.2 59.5 57.2 93.1 98.0 54.0 98.7 26.8 26.5 27.6 16.7
0.1 1 0.2 97.5 97.9 96.6 99.5 98.1 94.7 94.9 95.1 92.7 89.4 92.1 79.2 87.5 71.2 64.8 75.6
0.1 1 1.0 97.8 98.1 96.9 99.4 97.9 94.5 94.7 94.7 90.0 86.8 93.5 78.6 88.3 70.5 64.5 74.8
0.1 10 0.2 98.5 99.0 98.1 99.6 96.2 94.5 94.5 94.6 82.3 88.9 78.9 75.0 86.3 55.9 52.6 59.9
0.1 10 1.0 98.5 99.0 98.2 99.6 95.3 94.5 94.5 94.6 82.7 84.7 85.0 74.9 86.8 55.8 51.8 59.6
0.1 100 0.2 97.2 100.0 93.6 100.0 91.5 73.7 66.9 63.9 94.9 96.3 94.3 96.6 89.9 68.6 69.5 65.3
0.1 100 1.0 97.3 100.0 93.8 100.0 91.5 73.2 66.4 63.0 95.3 96.1 96.3 96.8 91.1 68.1 69.0 64.8

Notes: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show results for bias aware approach with true constants (TC),
two times true constants (TC×2), half true constants (TC×.5), and with rule of thumb estimates (ROT1) and (ROT2); naive approach that ignores bias (Naive);
undersmoothing (US); and robust bias correction (RBC).
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(a) Bias-aware Anderson-Rubin CSs
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(b) Other Anderson-Rubin CSs
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(c) Bias-Aware Delta Method CI
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(d) Other Delta Method CIs
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Figure 2.3: Simulated coverage rates of various values of parameter values and for different types of confidence sets. Based on the DGP
described in the main text with τT = .5, BT = .2, and BY = 1. Bias aware approach with true constants (TC (ref); as reference function
in all graphs), two times true constants (TC×2), 0.5 times true constants (TC×.5), and with rule of thumb smoothness bounds (ROT1)
and (ROT2); naive approach that ignores bias (Naive); undersmoothing (US); and robust bias correction (RBC).
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turned 14 between 1935 and 1965, obtained by combining the 1984-2006 waves of the
UK General Household Survey. We take the effect of attending school beyond age 14 on
annual earnings measured in 1998 UK pounds as the parameter of interest. The running
variable is the year in which the worker turned 14, and the threshold is 1947. Figure 2.4
shows the average of log annual earnings and the empirical proportions of students who
attended school beyond age 14 as a function of the running variable. The RD design is
clearly seen to be fuzzy.

For reasons explained below, we conduct the analysis for both the entire data and
the subset that excludes the 1947 cohort. Oreopoulos (2006) uses a parametric approach
in which the respective dependent variable is regressed on a dummy for turning 14 in or
after 1947 and a 4th order polynomial in age. This yields the estimate θ̂ = .146 with
a 95% DM CI [−.009; .300] based on a heteroscedasticity-robust standard error for the
entire data, and θ̂ = .111 with a 95% DM CI [−.032; .255] if the 1947 cohort is excluded.13

These CIs, however, do not account for the model misspecification bias one should expect
here.

To compute our bias-aware AR CSs, we first have to determine plausible values for
the smoothness constants BY and BT . To do that, we compute the ROT values, the
lower bound estimates and one-sided CIs, and various graphs of candidate functions, all
as described in Section 2.6.4. All graphs are shown in Appendix 2.E. Regarding the value
of BY , inspection of the top panel of Figure 2.4 suggests that the function µY should not
be too erratic. Indeed, we estimate a lower bound of B̂Y,low = 0 for BY , meaning that the
data cannot rule out that µY is linear. We also have B̂Y,ROT1 = .023 and B̂Y,ROT2 = .012,
with the fit of the underlying polynomials seeming adequate in both cases. Including also
some conservative values, we then consider [0; .04] as a plausible range for BY .

Regarding the choice of BT , one has to be more careful. From the bottom panel of
Figure 2.4, we see that the empirical share of “treated” students increases very slowly after
1948, but jumps sharply from 0.724 for 1947 to 0.909 for 1948. If we consider the latter
change to be natural variation in treatment probabilities, then only rather large values
of BT are consistent with the data. Indeed, we estimate a lower bound B̂T,low = .158,
with a 95% one-sided CI of [0.126;∞). The two ROTs yield much smaller values, namely
B̂T,ROT1 = .031 and B̂T,ROT2 = .011. But since the fit of both underlying polynomial

13The numerical result here differ from those in Oreopoulos (2006) because (i) we use the data set
from its online corrigendum (Oreopoulos, 2008), which includes additional waves of the UK General
Household Survey; (ii) Oreopoulos (2006) considers a slightly different parameter of interest; and (iii)
Oreopoulos (2006) uses Lee and Card (2008) standard errors that are clustered by the running variable.
Kolesár and Rothe (2018) show that such clustering does not alleviate the issues caused by a discrete
running variable, but tends to produce CIs with poor coverage properties, and hence such standard errors
should not be used.

84



Table 2.2: Bias-aware Anderson-Rubin confidence sets for the effect of one additional year of
compulsory schooling for various values of the smoothness bounds

BY

BT 0 .01 .02 .03 .04
Panel A: Results for full data set

.12 [-.239; 1.841] [-.366; 1.953] [-.458; 2.068] [-.555; 2.183] [-.655; 2.301]

.14 [-.343; 2.395] [-.448; 2.554] [-.569; 2.716] [-.694; 2.881] [-.824; 3.049]

.16 [-.432; 3.608] [-.591; 3.887] [-.762; 4.174] [-.941; 4.467] [-1.131; 4.767]

.18 [-.637; 10.049] [-.907; 11.152] [-1.217; 12.279] [-1.575; 13.427] [-1.995; 14.590]

.20 (-∞;∞) (-∞;∞) (-∞;∞) (-∞;∞) (-∞;∞)
Panel B: Results excluding data for 1947

0 [-.108; .080] [-.152; .441] [-.237; .546] [-.313; .619] [-.386; .687]
.01 [-.100; .224] [-.168; .496] [-.257; .589] [-.338; .665] [-.415; .733]
.02 [-.117; .406] [-.187; .554] [-.280; .638] [-.367; .714] [-.459; .778]
.03 [-.125; .495] [-.208; .606] [-.307; .692] [-.400; .765] [-.489; .825]
.04 [-.126; .566] [-.232; .664] [-.340; .749] [-.439; .814] [-.522; .879]

Notes: All CSs have 95% nominal level. Results based on 73,954 data points for Panel A and
73,954 data points for Panel B. See main text for a justification of the smoothness bounds value
considered.

specifications is poor we choose to disregard these values, and consider [.12; .2] as a
plausible range for BT . The upper end was chosen because it turns out that for BT ≥ .2

our CS is always equal to the real line, and thus considering larger values would not affect
the results.

If we take the arguably more realistic position that the change in treatment probabil-
ities between 1947 and 1948 was largely caused by delayed implementation of the reform,
a more natural approach is to exclude the 1947 cohort and conduct a “donut” analysis.
We then estimate a lower bound B̂T,low = 0 for BT , meaning that linearity of µT cannot
be ruled out, and the ROTs yield B̂T,ROT1 = .013 and B̂T,ROT2 = .009, with the fitted
polynomial being adequate in both cases. To also include some conservative values, we
then consider [0; .04] as a plausible range for BT in this donut setup.

In Table 2.2, then we report bias-aware AR CSs with nominal level 95%, separately for
the entire data (top panel) and for the subsample that excludes the 1947 cohort (bottom
panel), and for values of BY and BT in regular grids over the ranges motivated above.
All CSs in panel (a) are extremely wide, in the sense that even the shortest one is much
larger than all plausible values for the return to increased compulsory schooling. This is
because treating the sharp increase in treatment probability from 1947 to 1948 as natural
variation implies that the parameter of interest is only weakly identified. In panel (b),
which excludes 1947 cohort data, and considers an appropriate range for BT , the CSs
become much shorter, but they still all cover zero and many contain the full plausible
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parameter space.
Our overall preferred specification is the one that excludes the 1947 cohort, and uses

BY = .02 and BT = .01 (the grid values in between the respective ROT estimates), which
yields the bias-aware AR CS [−.257, .589]. This CS is almost three times as large as the
reference CS [−.032; .255] based on the parametric specification. Overall, the data are
not very informative about the returns to schooling.

2.9. CONCLUSIONS
FRD designs occur frequently in many areas of applied economics. Motivated by the
various shortcomings of existing methods of inference, we propose new confidence sets
for the causal effect in such designs, which are based on a bias-aware AR construction.
Our CSs are simple to compute, highly efficient, and have excellent coverage properties
in finite samples because they explicitly take into account the exact smoothing bias
from the local linear regression steps. They are also valid under weak identification and
irrespective of whether the distribution of the running variable is continuous, discrete, or
of some intermediate form.
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Figure 2.4: Average log annual earnings (top panel) and fraction of individuals in full time
education beyond age 14 by birth year cohort. Dashed vertical lines indicate the year 1947, in
which the minimum school leaving age changed from 14 to 15 years. Size of dots is proportional
to the cohort size in the data.
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APPEnDIX TO CHAPTER 2

2.A. PROOFS OF MAIN RESULTS
In this Appendix, we prove the main results from Section 2.5. We use repeatedly that,
using basic least squares algebra, the statistic τ̂M(h, c) can be written as

τ̂M(h, c) =
n∑
i=1

wi(h)Mi(c), wi(h) = wi,+(h)− wi,−(h),

wi,+(h) = e⊤1 Q
−1
+ X̃iK(Xi/h)1{Xi ≥ 0}, Q+ =

n∑
i=1

K(Xi/h)X̃iX̃
′
i1{Xi ≥ 0}

wi,−(h) = e⊤1 Q
−1
− X̃iK(Xi/h)1{Xi < 0}, Q− =

n∑
i=1

K(Xi/h)X̃iX̃
′
i1{Xi < 0},

with X̃i = (1, Xi)
′. To simplify the notation, throughout the proofs we write An(µ) =

oP,F(1) if supµ∈F P (|An(µ)| > ϵ) = o(1) for all ϵ > 0 and a generic sequence An(µ) of
random variables indexed by µ ∈ F . We also drop the dependency on c from the notation
for the optimal bandwidth in most instances, writing hM instead of hM(c).

2.A.1. Proof of Theorem 2.1. We first establish the following lemma.

Lemma A.2.1. Suppose that Assumption 2.1–2.2 and either Assumption LL1 or As-
sumption LL2 are satisfied. Then the following holds uniformly over (µY , µT ) ∈ F : (i)
wratio(hM(c)) = oP (1); (ii) (τ̂M(ĥM(c), c)− τ̂M(hM(c), c))/sM(hM(c), c) = oP (1); and (iii)
(b̄M(ĥM(c), c)− b̄M(hM(c), c))/sM(hM(c), c) = oP (1).

Proof. We first show part (i). Suppose that Assumption LL1 is satisfied. With
probability approaching 1, we have that

max
i∈{1,...,n}

wi(hM)2∑n
j=1wj(hM)2

≤ max
i∈{1,...,n}

wi(hM)2∑
j:Xj=Xi

wj(hM)2
= max

i∈{1,...,n}

1∑
j:Xj=Xi

1{Xi = Xj}
.

As n → ∞, the number of units whose realization of the running variable is equal to
any particular value in its support tends to infinity, and we obtain the statement of the
lemma.

Now suppose that Assumption LL2 is satisfied. First, it is easy to see that the
minimizer of cv1−α(rM(h, c)) · sM(h, c) must satisfy hM → 0 and nhM → ∞ as n → ∞.
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Under these conditions, the bias and variance of the local linear regression estimator scale
as h2M and 1/(nhM), respectively. From the properties of the function cv1−α(·), it then
follows that hM ∝ n−1/5(1 + oP (1)). It also holds that

max
i∈{1,...,n}

wi(hM)2∑n
j=1wj(hM)2

≤ max
i:Zi=1

wi(hM)2∑
j:Zj=1wj(hM)2

+ max
i:Zi=0

wi(hM)2∑
j:Zj=0wj(hM)2

.

It then suffices to show that the first term on the right-hand side of the last inequality
tends to zero in probability uniformly over F , as the same arguments can be used to
prove an analogous result for the second term. Note that

max
i:Zi=1

wi(hM)2∑
j:Zj=1wj(hM)2

= max
i:Zi=1

K(Xi/hM)2[
∑

l:Zl=1X
2
l K(Xl/hM)2 −Xi

∑
l:Zl=1XlK(Xl/hM)]2∑

j:Zj=1K(Xj/hM)2[
∑

l:Zl=1X
2
l K(Xl/hM)2 −Xj

∑
l:Zl=1XlK(Xl/hM)]2

.

Treating the numerator of the right-hand side of the second line as a function of Xi, it
follows from the fact that the kernel is bounded from above by Assumption 2.1 that this
function is bounded from above by a quadratic function in Xi ∈ [0, h]. The maximum of
this quadratic function is bounded by a constant multiplied by [

∑
l:Zl=1X

2
l K(Xl/hM)2]2+

h2M [
∑

l:Zl=1XlK(Xl/hM)]2. Taken together, this means that

max
i:Zi=1

wi(hM)2∑
j:Zj=1wj(hM)2

≤ C
(
∑

l:Zl=1X
2
l K(Xl/hM)2)2 + h2M(

∑
l:Zl=1XlK(Xl/hM))2∑

j:Zj=1K(Xj/hM)2[
∑

l:Zl=1X
2
l K(Xl/hM)2 −Xj

∑
l:Zl=1XlK(Xl/hM)]2

.

for some finite constant C, and for n sufficiently large. Standard kernel calculations than
yield that the numerator on the right-hand side of the last inequality is an OP (n

2h2M)

term, while the denominator an OP (n
3h3M) term. As nhM → ∞ as n→ ∞, this completes

part (i).
Now consider part (ii)–(iii). Suppose Assumption LL1 holds. With a discrete running

variable, it is clear that the optimal bandwidth hM shrinks with the sample size, but
it cannot tend to zero as it has to be greater than the support point second closest to
the cutoff in order for the local linear regression estimator to be well-defined. Further-
more, any bandwidth h between the second and third support point closest to the cutoff
implies the same local linear regression weights wi(h) for all i. Hence any bandwidth be-
tween the second and third support point closest to the cutoff is asymptotically optimal.
Part (ii)–(iii) then follow trivially, as each expression under consideration depends on h

only through wi(h).
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Now suppose that Assumption LL2 holds. Statements (ii)–(iii) of Lemma A.2.1 then
follow as in the proof of Theorem E.1 in Armstrong and Kolesár (2020).

We now proceed with the proof of the core statement of Theorem 1. Since θ ∈ Cαar if
and only if τM(θ) ∈ Cα(θ), it suffices to show that for any c ∈ R

lim inf
n→∞

inf
(µY ,µT )∈F

P(τM(c) ∈ Cα(c)) ≥ 1− α.

Note that it follows from Lemma A.2.1 (ii)–(iii) and uniform continuity of cv1−α(·) that

|τ̂M(ĥM , c)− τM(c)|
ŝM(ĥM , c)

− cv1−α(r̂M(ĥM , c))

=

∣∣∣∣ τ̂M(hM , c)− E [τ̂M(hM , c)|Xn]

sM(hM , c)
+
bM(hM , c)

sM(hM , c)

∣∣∣∣− cv1−α(rM(hM , c)) + oP,F(1).

We now apply Lyapunov’s CLT to show that (τ̂M(hM , c) − E [τ̂M(hM , c)|Xn])/sM(hM , c)

converges in distribution to a standard normally distributed random variable, uniformly
over (µY , µT ) ∈ F . Specifically, let C be a positive constant, let δ > 2, and recall that
τ̂M(hM , c) =

∑n
i=1wi(hM)Mi(c). Lyapunov’s CLT can be applied conditional on Xn since

lim
n→∞

∑n
i=1 E

[
|wi(hM)(Mi(c)− E[Mi(c)|Xn])|δ |Xn]

]
(√∑n

i=1wi(hM)2σ2
M,i

)δ ≤ lim
n→∞

C
n∑
i=1

|wi(hM)|δ(√∑n
i=1wi(hM)2

)δ
≤ lim

n→∞
C max

i=1,...n

(
|wi(hM)|√∑n
i=1wi(hM)2

)δ−2

= oP,F(1)

by Assumption 2.1(i)–(iii) and Lemma A.2.1(i). Standard arguments then yield that

lim inf
n→∞

(
inf

(µY ,µT )∈F
P(τM(c) ∈ Cα(c))

− inf
(µY ,µT )∈F

P
(∣∣∣∣S +

bM(hM , c)

sM(hM , c)

∣∣∣∣ ≤ cv1−α(rM(hM , c))

))
= 0,

with S a generic standard normal random variable. The statement of the theorem now
follows from the definition of the critical value function cv1−α(·) if

sup
(µY ,µT )∈F

|bM(hM , c)/sM(hM , c)| ≤ rM(hM , c).

Note that Armstrong and Kolesár (2020, Theorem B.3) show that the last statement
holds with equality if µY and µT have unbounded domain. In our setup, we only have
a potentially weak inequality because µT is naturally constrained to take values in [0, 1],
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and the supremum is thus taken over a smaller set of functions. This completes our
proof.

2.A.2. Proof of Theorem 2.2. To simplify the exposition, we emphasize the depen-
dence of various estimators on c in our notation, but suppress their dependency on the
bandwidth h (which does not depend on c under the conditions of this theorem). The
CS Cαar(h) is given by the set of all values of c satisfying

ϑ(c) ≤ 0, where ϑ(c) ≡ |τ̂Y − cτ̂T | − cv1−α(r̂M(c))ŝM(c).

The function ϑ(c) is continuous in c, as cv1−α(·) is a uniformly continuous function,
and both the standard error ŝM(c) = (ŝ2Y − 2cŝTY + c2ŝ2T )

1/2 and the worst case bias
bM(h, c) = −(BY + |c|BT )/2 ·

∑n
i=1wi(h)X

2
i · sign(Xi) are continuous in c. Moreover, the

term cv1−α(r̂M(c))ŝM(c) is also strictly convex in c, because both the standard error and
the worst-case bias are convex in c and cv1−α(·) is strictly convex and increasing. The
shape of Cαar(h) is then determined by the roots of ϑ(c). While one can in principle solve
analytically for the roots of ϑ(c), doing so is very tedious.

To prove the theorem, it suffices to show that the function ϑ(c) always fits into one
of the following four categories: (i) ϑ(c) ≤ 0 for all c; (ii) ϑ(c) has two roots, and there
exists c∗ > 0 such that ϑ(c) < 0 for all |c| > c∗; (iii) ϑ(c) has two roots, and there exists
c∗ > 0 such that ϑ(c) > 0 for all |c| > c∗, and (iv) ϑ(c) has one root. Then Cαar(h) = R in
case (i), Cαar(h) = (−∞, a1]∪ [a2,∞) for some a1 < a2 in case (ii); and by Cαar(h) = [a1, a2]

for some a1 < a2 in case (iii), and Cαar(h) = (−∞, a2] or Cαar(h) = [a1,∞) in case (iv). We
now go through a number of case distinctions.

If τ̂T = 0, then |τ̂Y − cτ̂T | is a constant function in c. As cv1−α(r̂M(c))ŝM(c) is strictly
convex in c and unbounded, ϑ(c) must be either of form (i) or (ii). We threfore suppose
that τ̂T ̸= 0 from now on , and write θ̂ = τ̂Y /τ̂T . Since ϑ(θ̂) < 0 by construction, the
function ϑ(c) cannot be strictly positive. As |τ̂Y − cτ̂T | is a piecewise linear function and
cv1−α(r̂M(c))ŝM(c) is strictly convex, the function ϑ(c) can also have at most two roots
for c ≤ θ̂, and at most two roots for c > θ̂. If it does not have any root, ϑ(c) is of the
form (i).

Let us first assume that limc→±∞ ϑ(c) ̸= 0. It follows from basic algebra that there
exists some c∗ sufficiently large such that sign(ϑ(c)) = sign(ϑ(−c)) = 1 or sign(ϑ(c)) =
sign(ϑ(−c)) = −1 and ϑ(c) ̸= 0 for all c > c∗. The function ϑ(c) therefore cannot
have one or three roots; so it must have either four roots or two roots or none. If
sign(ϑ(c)) = −1 for all |c| > c∗, which means that |τ̂Y − cτ̂T | > cv1−α(r̂M(c))ŝM(c). The
function cv1−α(r̂M(c))ŝM(c) intersects once with the function |τ̂Y − cτ̂T | for c < θ̂, and
once for c > θ̂. Therefore ϑ(c) must be of form (iii) in this case. If sign(ϑ(c)) = −1 for
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all |c| > c∗, the above reasoning only yields that ϑ(c) has at most four roots. However,
note that for |c| → ∞ the absolute value of the first derivative of cv1−α(r̂M(c))ŝM(c) with
respect to c converges to some constant ϖ, and that for any value of ς ∈ R the expression
sign(c) · (cv1−α(r̂M(c))ŝM − |ς +ϖ · c|) converges to a constant. Choose ς such that the
latter constant is zero, and set ϱ(c) = |ς + ϖc|. By construction, ϱ(c) intersects with
|τ̂Y − cτ̂T | twice either for c ≤ θ̂ or c ≥ θ̂. It also holds that ϱ(c) ≤ cv1−α(r̂(c)) · ŝM(c) for
all c by strict convexity of cv1−α(r̂(c)) · ŝM(c). This reasoning implies that ϑ(c) can have
at most two roots, and must be of form (ii) in this case.

Now suppose that limc→±∞ ϑ(c) = 0, which is an event that only occurs if τ̂T =

±cv1−α(r̂T (c)) · ŝT (c). It then follows from strict convexity of cv1−α(r̂M(c))ŝM(c) that
ϑ(c) cannot have three roots. ϑ(c) is therefore of form (i) if it does not have any root,
and otherwise of form (iv). This completes the proof.

2.A.3. Proof of Theorem 2.3. We begin by giving a formal description of a bias-aware
DM CI. Recall the definition of Ui from Section 2.3.2, and let bU(h) = E(τ̂U(h)|Xn) and
sU(h) = V(τ̂U(h)|Xn)

1/2 denote conditional bias and standard deviation, respectively, of
the SRD-type estimator τ̂U(h). Exploiting linearity, one can write

bU(h) =
n∑
i=1

wi(h)(µU(Xi)− τU) and sU(h) =

(
n∑
i=1

wi(h)
2σ2

U,i

)1/2

,

where µU(x) = (µY (x) − τY )/τT − τY (µT (x) − τT )/τ
2
T is a linear combination of the

functions µY and µT , and σ2
U,i = V(Ui|Xi) is the conditional variance of Ui given Xi.

Since the bias depends on (µY , µT ) through the function µU ∈ FH(BY /|τT |+ |τY |BT/τ
2
T )

only, its “worst case” magnitude over the functions contained in F δ is

sup
(µY ,µT )∈Fδ

|bU(h)| = bU(h) ≡ −1

2

(
BY

|τT |
+

|τY |BT

τ 2T

) n∑
i=1

wi(h)X
2
i sign(Xi).

An infeasible bias-aware DM CI is then given by

Cα∆ =
[
θ̂(hU)± cv1−α

(
bU(hU)/sU(hU)

)
sU(hU)

]
,

where hU = arg minhcv1−α
(
bU(h)/sU(h)

)
sU(h) is the bandwidth that minimizes its

length.
Making this CI feasible would require three main modifications. First, replacing the

unknown bias bound with an estimate b̂U(h) which replaces τY and τT with feasible
estimates (obvious candidates would be local linear estimates τ̂Y = τ̂Y (gY ) and τ̂T =

τ̂T (gT ) based on preliminary bandwidths gY and gT ). Second, replacing the standard
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deviation sU(h) with a valid standard error (this could be achieved as in Section 2.6.1,
using estimates Ûi = (Yi − τ̂Y )/τ̂T − τ̂Y (Ti − τ̂T )/τ̂

2
T of the Ui). Third, replacing the

bandwidth hU with a suitable empirical analogue (such as an adaptation of the restricted
plug-in procedure described in Section 6.2). Since such modifications can be shown not to
affect the asymptotic coverage properties of the CI under standard additional regularity
conditions, we simply base our result on a comparison of Cα∗ and Cα∆.

To prove Theorem 2.3, we now make the dependence of quantities like hM(c) on c

again explicit in our notation. We begin by noting that the events θ(n) ∈ Cα∆ and θ(n) ∈ Cα∗
occur if and only if

|θ̂(hU)− θ(n)|
sU(hU)

− cv1−α

(
bU(hU)

sU(hU)

)
≤ 0 (A.2.9)

and |τ̂M(hM(θ(n)), θ(n))|
sM(hM(θ(n)), θ(n))

− cv1−α

(
bM(hM(θ(n)), θ(n))

sM(hM(θ(n)), θ(n))

)
≤ 0, (A.2.10)

respectively. Since the left-hand sides of the last two displays are both approximated by
a constant plus the absolute value of a normal random variable with variance 1 in large
samples, it suffices to show that the difference between the respective left-hand sides of
the last two displays converges to zero in probability, uniformly over F δ. To show this,
note first that standard delta method arguments yield that the left-hand side of (A.2.9)
is equal to

|τ̂U(hU)− κn−2/5|
sU(hU)

− cv1−α

(
bU(hU)

sU(hU)

)
+ oP,Fδ(1).

Next, note that Ui =Mi(θ)/τT , and that we thus have that

τ̂U(h) =
τ̂M(h, θ)

τT
, sU(h) =

sM(h, θ)

|τT |
, bU(h) =

bM(h, θ)

|τT |
,

for any h > 0. Substituting these identities into the definition of hU , we also find that

hU = arg minhcv1−α

(
bM(h, θ)

sM(h, θ)

)
·sM(h, θ)

|τT |
= arg minhcv1−α

(
bM(h, θ)

sM(h, θ)

)
sM(h, θ) = hM(θ).

The left-hand side of (A.2.9) is thus equal to

|τ̂M(hM(θ), θ)− τTκn
−2/5|

sM(hM(θ), θ)
− cv1−α

(
bM(hM(θ), θ)

sM(hM(θ), θ)

)
+ oP,Fδ(1).
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Now consider the term on the left-hand side of (A.2.10). By simple algebra, we have that

bM(h, θ(n)) = bM(h, θ) + n−2/5|κ|bT (h),

sM(h, θ(n)) = sM(h, θ) + n−2/5|κ|(sT (h)− 2s̃M(θ),T (h)),

with s̃M(θ),T (h) = (
∑n

i=1wi(h)
2σM(θ),T,i)

1/2 a conditional covariance term of the same
order as sT (h). These identities imply that evaluation at θ(n) does not change the leading
terms of the (conditional) bias and the standard deviation (which are of order h2 and
1/
√
nh, respectively) relative to evaluation at θ. Since the leading term of hM(θ) is

a smooth transformation of the leading terms of the bias and standard deviation, this
means that hM(θ(n)) = hM(θ)(1+oP,Fδ(1)). Arguing as in the proof of Lemma A.2.1, the
left-hand side of (A.2.10) is thus equal to

|τ̂M(hM(θ), θ)− τTκn
−2/5|

sM(hM(θ), θ)
− cv1−α

(
bM(hM(θ), θ)

sM(hM(θ), θ)

)
+ oP,Fδ(1),

which completes the proof.

2.A.4. Proof of Theorem 2.4. We split the proof into two parts, and first show that

sM(hM) = ŝM(hM)(1 + oP,F(1)). (A.2.11)

This part is similar in structure to that of Abadie and Imbens (2006, Theorem 6). To
simplify the presentation, we suppress the dependence on c of various quantities that
appear in this proof. For example, we write ŝ2M(hM) instead of ŝ2M(hM(c), c), etc. We
also define

qi(hM) =
wi(hM)2∑n

i=1wi(hM)2σ2
M,i

,

so that
∑n

i=1 qi(hM)σ̂2
M,i = ŝ2M(hM)/s2M(hM). We note that maxi=1,...,n qi(hM) = oP,F(1)

and
∑n

i=1 qi(hM) = OP,F(1) by the same arguments as in the proof of Theorem 2, and the
fact that the variance terms σ2

M,i are uniformly bounded and bounded away from zero,
respectively.

The proof for the case that Assumption LL1 holds is rather straightforward. As we the
kernel has compact support by Assumption 2.1, and hM is bounded as a function of n, the
number of support points at which qi(hM) > 0 is finite. It follows that

∑n
i=1 1{Xi = x}

tends to infinity for all support points x with qi(hM) > 0 if Xi = x. Moreover, it holds
that

max
i:qi(hM )>0

|σ̂2
M,i − σ2

M,i| = oP,F(1).

Since
∑n

i=1 qi(hM) = OP,F(1) and qi(hM) is positive, the statement of the theorem then
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follows because∣∣∣∣ ŝ2M(hM)

s2M(hM)
− 1

∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

qi(hM)(σ̂2
M,i − σ2

M,i)

∣∣∣∣∣ ≤ max
i:qi(hM )>0

|σ̂2
M,i− σ2

M,i| ·
n∑
i=1

qi(hM) = oP,F(1).

Now suppose that Assumption LL2 holds. In this case there are no ties in the data,
and each unit has exactly Ri = R nearest neighbors, with probability 1. We thus de-
fine the R × 2 matrix X̃−i = (X̃ ′

r1
, . . . , X̃ ′

rR
)′, where r1, . . . , rR are the indices of the

R nearest neighbors of unit i, and X̃i = (1, Xi), let Hi = X̃i(X̃
′
−iX̃−i)

−1X̃ ′
i, and write

vj(Xi) = X̃i(X̃
′
−iX̃−i)

−1X̃ ′
−iej with ej the jth R-dimensional unit-vector. With Wi a

generic random variable, we also write W

∧

i = Wi −
∑

j∈Ri
vj(Xi)Wj. In the following, we

use repeatedly that∑
j∈Ri

vj(Xi) = 1,
∑
j∈Ri

vj(Xi)(Xj −Xi) = 0, and
∑
j∈Ri

vj(Xi)
2 = Hi,

which follows from basic algebra. Next, note that the variance estimators σ̂2
M,i, i =

1, . . . , n, are all well-defined with probability one, as the running variable is continuously
distributed with a bounded density function. Also, recall that Mi = Yi − cTi, that
E(Mi|Xi) = µM(Xi) = µY (Xi) − cµT (Xi), put εi = Mi − µM(Xi), and note that εi =
εY,i−cεT,i = (Yi−µY (Xi))−c(Ti−µT (Xi)). The variance estimators can then be written
as

σ̂2
M,i =

M

∧2
i

1 +Hi

=
1

1 +Hi

(
µ

∧

M(Xi) + εi −
∑
j∈Ri

vj(Xi)εi

)2

It then suffices to show the following:∣∣∣∣∣
n∑
i=1

qi(hM)(σ2
M,i − E[σ̂2

M,i|Xn])

∣∣∣∣∣ = oP,F(1) and (A.2.12)∣∣∣∣∣
n∑
i=1

qi(hM)(σ̂2
M,i − E[σ̂2

M,i|Xn])

∣∣∣∣∣ = oP,F(1), (A.2.13)

We begin by noting that (A.2.12) follows from the triangle inequality and the fact
that

∑n
i=1 qi(hM) = OP,F(1) if

max
i=1,...,n

|σ2
M,i − E[σ̂2

M,i|Xn]| = oP,F(1). (A.2.14)
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To show (A.2.14), note that

E
[
σ̂2
M,i|Xn

]
=

1

1 +Hi

E

(µ∧M(Xi) + εi −
∑
j∈Ri

vj(Xi)εj

)2

|Xn


=

1

1 +Hi

(
µ

∧

M(Xi)
2 + σ2

M,i +
∑
j∈Ri

vj(Xi)
2σ2

M,j

)

= σ2
M,i +

1

1 +Hi

(
µ

∧

M(Xi)
2 +

∑
j∈Ri

vj(Xi)
2(σ2

M,j − σ2
M,i)

)
.

Here the second equality holds because εi and εj are independent if i ̸= j, and are
zero in expectation; and the third equality holds because

∑
j∈Ri

vj(Xi)
2 = Hi. As the

running variable density is uniformly bounded away from zero, it follows from the proof
of Theorem 6 in Abadie and Imbens (2006) that

xmax ≡ max
i=1,...,n

max
r∈Ri

|Xi −Xr| = oP,F(1). (A.2.15)

Since σ2
M,i is uniformly Lipschitz continuous with some constant Lσ by Assumption 2.1,

we then have that

max
i

1

1 +Hi

(∑
j∈Ri

vj(Xi)
2(σ2

M,j − σ2
M,i)

)
≤ Lσxmax max

i

1

1 +Hi

(∑
j∈Ri

vj(Xi)
2

)

≤ Lσxmax max
i

Hi

1 +Hi

= oP,F(1).

To show (A.2.14), it thus only remains to show that

max
i

1

1 +Hi

µ

∧

M(Xi)
2 = oP,F(1). (A.2.16)

To do so, note that

max
i∈{1,...,n}

(
µM(Xi)−

∑
j∈Ri

vj(Xi)µM(Xj)

)

= max
i∈{1,...,n}

(
µM(Xi)−

∑
j∈Ri

vj(Xi)(µM(Xi) + µ′
M(Xi)(Xj −Xi)

+
1

2
µ′′
M(X̊i,j)(Xj −Xi)

2)

)
=

1

2
max

i∈{1,...,n}

∑
j∈Ri

vj(Xi)µ
′′
M(X̊i,j)(Xj −Xi)

2.
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Here the first equality follows from a second order expansion, with X̊i,j some value between
Xi and Xj, where j ∈ Ri; and the second equality follows as

∑
j∈Ri

vj(Xi) = 1 and∑
j∈Ri

vj(Xi)(Xj −Xi) = 0. We then find that

max
i∈{1,...,n}

1

1 +Hi

µ

∧

M(Xi)
2 =

1

4
max

i∈{1,...,n}

1

1 +Hi

(∑
j∈Ri

vj(Xi)µ
′′
M(X̊i,j)(Xj −Xi)

2

)2

≤ R

4
max

i∈{1,...,n}

1

1 +Hi

∑
j∈Ri

vj(Xi)
2µ′′

M(X̊i,j)
2(Xj −Xi)

4

≤ RB2
Mx

4
max

4
max

i∈{1,...,n}

1

1 +Hi

(∑
j∈Ri

vj(Xi)
2

)
= oP,F(1).

Here first inequality follows from Cauchy-Schwarz as the cardinality of Ri is R; and the
second inequality follows as all the terms of the sum are positive, µ′′(X̊i,j)

2 is bounded
by B2

M , and (Xj − Xi)
4 ≤ x4max for all i and j ∈ Ri. The final equality follows because∑

j∈Ri
vj(Xi)

2 = Hi, and Hi/(1+Hi) ≤ 1 for all i ∈ {1, . . . , n}, and xmax = oP,F(1). This
completes the proof of the statement (A.2.12).

To show that (A.2.13) holds, write q̃i(hM) = qi(hM)(1 + Hi)
−1. Note that since

|q̃i(hM)| ≤ |qi(hM)|, it follows from Theorem A.2.1 that maxi=1,...,n q̃i(hM) = oP,F(1) and∑n
i=1 q̃i(hM) = OP,F(1). We write this quantity the sum of five terms:

n∑
i=1

qi(hM)(σ̂2
M,i − E[σ̂2

M,i|Xn])

=
n∑
i=1

q̃i(hM)(ε2i − σ2
M,i) +

n∑
i=1

q̃i(hM)
∑
j∈Ri

v2j (Xi)(ε
2
j − σ2

M,j)

+ 2
n∑
i=1

q̃i(hM)εi
∑
j∈Ri

vj(Xi)εj + 2
n∑
i=1

q̃i(hM)µ

∧

M(Xi)εi

− 2
n∑
i=1

q̃i(hM)µ

∧

M(Xi)
∑
j∈Ri

vj(Xi)εj

≡ G1 +G2 + 2G3 + 2G4 + 2G5.

It is easy to see that these five terms all have mean zero conditional on Xn. It thus suffices
to show that their second moments converge uniformly over the function class F to zero.
In the following derivations, we write C for a generic positive constant whose value might
differ between equations.
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For the first term, we have that

V(G1|Xn) =
n∑
i=1

q̃i(hM)2E[(ε2i − σ2
M,i)

2|Xn] ≤ C max
i=1,...,n

q̃i(hM) ·
n∑
i=1

q̃i(hM) = oP,F(1),

where the inequality follows from the bound on the fourth moment of εi and q̃i(hM) being
positive, and the last equality follows since maxi=1,...,n q̃i(hM)

∑n
i=1 q̃i(hM) = oP,F(1).

We now turn to the second term, and note that by independent sampling

V(G2|Xn) =
n∑
i=1

n∑
l=1

q̃l(hM)q̃i(hM)
∑
j∈Ri

∑
k∈Rl

v2k(Xl)v
2
j (Xi)E

[
(ε2j − σ2

M,j)(ε
2
k − σ2

M,k)|Xn

]
=

n∑
i=1

∑
l:Ri∩Rl ̸=∅

q̃l(hM)q̃i(hM)

·
∑
j∈Ri

∑
k∈Rl

v2k(Xl)v
2
j (Xi)E

[
(ε2j − σ2

M,j)(ε
2
k − σ2

M,k)|Xn

]
≤

n∑
i=1

∑
l:Ri∩Rl ̸=∅

q̃l(hM)q̃i(hM)
∑
j∈Ri

∑
k∈Rl

v2k(Xl)v
2
j (Xi)E

[
(ε2j − σ2

M,j)
2|Xn

]
.

Using that εi has bounded fourth moments, that
∑

k∈Rl
v2k(Xi) = Hi, and that Hi/(1 +

Hi) ≤ 1 for all i ∈ {1, . . . , n}, we further deduce that

V(G2|Xn) ≤ C
n∑
i=1

qi(hM)
∑

l:Ri∩Rl ̸=∅

ql(hM).

Finally, note that the cardinality of the set {l : Ri ∩Rl ̸= ∅}, which contains the indices
of those units that share at least one common R-nearest neighbor with unit i, is bounded
by 3R + 1 (this can be seen through a simple counting exercise). We thus have that

V(G2|Xn) ≤ C

n∑
i=1

qi(hM)(3R + 1) max
j∈{1,...,n}

qj(hM) = oP,F(1).

We now consider the third term, which satisfies

V(G3|Xn) =
n∑
i=1

n∑
k=1

q̃i(hM)q̃k(hM)
∑
j∈Ri

∑
l∈Rk

vj(Xi)vl(xg)E[εiεjεkεl|Xn].

To proceed, note that E[εiεjεkεl|Xn] = 0 unless the four indices involved in this expression
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can be grouped into two pairs that each have the same value. This means that

V(G3|Xn) ≤ C
n∑
i=1

∑
j∈Ri

q̃i(hM)2vj(Xi)
2 +

∑
j∈Ri:i∈Rj

q̃i(hM)q̃j(hM)vi(Xj)vj(Xi)


≤ C max

i∈{1,...,n}
q̃i(hM)

n∑
i=1

q̃i(hM)
∑
j∈Ri

vj(Xi)
2

= C max
i∈{1,...,n}

q̃i(hM)
n∑
i=1

qi(hM)
Hi

1 +Hi

= oP,F(1).

For the fourth and fifth term, we can use arguments similar to those used for the three
previous terms to show that that

V(G4|Xn) ≤ CB2
Mx

4
max

n∑
i=1

q̃i(hM)2 = oP,F(1);

V(G5|Xn) ≤ CB2
Mx

4
max max

i∈{1,...,n}

(
qi(hM)

Hi

1 +Hi

) n∑
i=1

q̃i(hM) = oP,F(1).

This completes the proof of the statement (A.2.13); and thus (A.2.11) holds, as claimed.
In the second part of our proof, we show that

ŝM(ĥM) = ŝM(hM)(1 + oP,F(1)). (A.2.17)

Equations (A.2.11) and (A.2.17) then imply together the statement of Theorem 2.4 and
thus the proof is completed.

First suppose that Assumption LL1 holds. Equation (A.2.17) follows trivially in this
case similarly to the arguments of Lemma A.2.1.

Now suppose that Assumption LL2 holds. Statements (ii)–(iii) of Lemma A.2.1 then
follow from arguments analogous to those in the proof of Theorem E.1 in Armstrong and
Kolesár (2020). A similar line of reasoning can be used to show Assumption 2.2(iv). We
describe the latter argument in detail. Since s2M(hM) = OP ((nhM)−1), it suffices to show
that

nhM(ŝ2M(ĥM)− ŝ2M(hM)) = oP,F(1).

To do so, write η̂i = σ̂2
M,i − E[σ̂2

M,i|Xn], and note that

ŝ2M(ĥM)− ŝ2M(hM) =
n∑
i=1

(wi(ĥM)2 − wi(hM)2)η̂i +
n∑
i=1

(w2
i (ĥM)− w2

i (hM))E[σ̂2
M,i|Xn].

Above, we showed that maxi=1,...,n |σ2
M,i − E[σ̂2

M,i|Xn]| = oP,F(1), and by assumption the
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conditional variance terms σ2
M,i are bounded. We thus only need to show that

nh
n∑
i=1

|wi(ĥM)2 − wi(hM)2| = oP,F(1), (A.2.18)

nh

∣∣∣∣∣
n∑
i=1

(wi(ĥM)2 − wi(hM)2)η̂i

∣∣∣∣∣ = oP,F(1). (A.2.19)

We show this using arguments analogous to those used in the proof of Theorem E.1 in
Armstrong and Kolesár (2020), the main difference being that in their proof the analogue
of η̂i is i.i.d., whereas in our case these terms are generally not independent. By the
triangle inequality, it suffices to show that both (A.2.18) and (A.2.19) hold with w+,i(·)2

replacing wi(·)2, as the same arguments apply to w−,i(·)2. These weights can be written
as

w2
+,i(h) =

1

nh
φ(h)′ψi(h)φ(h), where

φ(h) =

(
1

nh

∑
i:Xi>0

K(Xi/h)X̃
′
iX̃i

)−1

e1, ψi(hM) = K(Xi/h)
2X̃ ′

iX̃i/(nh).

Let ∥ · ∥ be the L1-norm of a vector or a matrix. By the triangular inequality, it follows
that the left-hand side of (A.2.18) is bounded by(
(2 ∥φ(hM)|+ ∥φ(ĥM)− φ(hM)∥)

∑
i:Zi=1

∥ψi(ĥM)∥+ ∥φ(hM)∥2
∑
i:Zi=1

∥ψi(ĥM)− ψi(hM)∥

)
× ∥φ(ĥM)− φ(hM)∥.

As shown in the proof of Lemma E.1 in Armstrong and Kolesár (2020), this term is of
the order oP,F(1). Moreover, equation (A.2.19) is bounded by

||φ(ĥM)||2||
n∑
i=1

(ψn(xi, ĥM)− ψn(xi, hM))η̂i||+

∥φn(ĥM)− φn(hM)∥

(
2∥φn(ĥM)∥||

n∑
i=1

ψn(xi, ĥM)− ψn(xi, hM)||

+|
n∑
i=1

ψn(xi, ĥM)||
(
||φn(ĥM)− φn(hM)||+ 2||φ(ĥM)||

))
.

By Lemma E.1 Armstrong and Kolesár (2020) it follows that ∥φ(hM)∥2 = OP,F(1) and
∥φ(ĥM) − φ(hM)∥ = oP,F(1). It therefore suffices to show that ∥

∑
i:Zi=1(ψi(ĥM) −

ψi(hM))η̂i∥ = oP,F(1). The elements of ψi(h) are given by the function g(z) = zvK(z)w
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for v, w ∈ {0, 1, 2}. We therefore show that for all ε > 0

lim
δ→0

lim sup
n→∞

P

(
sup

s∈[1−δ,1+δ]

∣∣∣∣∣√nh ∑
i:Zi=1

(g(Xi/(shM))− g(Xi/hM))η̂i

∣∣∣∣∣ > ε

)
= 0. (A.2.20)

For δ small enough, it holds that for s and s̃ in a neighborhood of 1, and C a positive
constant that can take different values at different occurrences, that

E

(∑
i:Zi=1

(g(Xi/shM)− g(Xi/s̃hM))η̂i

)2


≤ C

nhM

∑
i:Zi=1

(g(Xi/(shM))− g(Xi/(s̃hM)))2

≤ |1/s− 1/s̃|2 C

nhM

∑
i:Zi=1

1{Xi/hM ≤ C}. (A.2.21)

Here the first inequality holds because η̂i has a finite second moment, Cauchy-Schwarz,
and the fact that for all i the cardinality of the set of indicies j such that η̂i contains
data points that are also used in η̂j is bounded by a finite constant (this is shown in the
proof of Theorem 2.4). The second inequality then holds because the function g(·) is
Lipschitz continuous and the kernel is bounded from above with compact support. For n
large enough, the term in (A.2.21) is bounded by |1/s− 1/s̃|2 times a constant that does
not depend on the sample size. Equation (A.2.20) then follows from Example 2.2.12 in
van der Vaart and Wellner (1996). This completes our proof.

2.B. MORE GENERAL BANDWIDTH CHOICES
In the main body of the paper, the local linear regression estimators τ̂M(h, c) = τ̂Y (h)−
cτ̂T (h) on which our bias-aware AR CSs are based use the same bandwidth on each side
of the cutoff, and also the same bandwidth for estimating τY and τT . It is also imposed
that the second derivatives of µY and µT are bounded in absolute value by the same
respective constant on either side of the cutoff. These features can all easily be relaxed.
In particular, we can define a more general Hölder-type class of functions as

FH(B+, B−) = {f1(x)1{x ≥ 0} − f0(x)1{x < 0} : ∥f ′′
1 ∥∞ ≤ B+, ∥f ′′

0 ∥∞ ≤ B−},

define the class F δ
H(B+, B−) similarly, and then seek to obtain bias-aware AR CSs that

are honest uniformly over (µY , µT ) ∈ FH(BY+, BY−)×F0
H(BT+, BT−), based on the local
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linear regression estimator

τ̂M(h, c) =
n∑
i=1

(wi,+(hY+)− wi,−(hY−))Yi − c

n∑
i=1

(wi,+(hT+)− wi,−(hT−))Ti,

where h = (hT+, hT−, hY+, hY−) is a vector of side- and function-specific bandwidths, and
the weights wi,+(h) and wi,−(h) are as defined in the beginning of Appendix 2.A in the
main body of the paper. With such a setup, the explicit expression for the bound on the
absolute value of the conditional bias of τ̂M(h, c) is

bM(h, c) = −BY+

2

n∑
i=1

wi,+(hY+)X
2
i −

|c|BT+

2

n∑
i=1

wi,+(hT+)X
2
i

+
BY−

2

n∑
i=1

wi,−(hY−)X
2
i +

|c|BT−

2

n∑
i=1

wi,−(hT−)X
2
i ,

and the conditional standard deviation of τ̂M(h, c) is

sM(h, c) =
(

n∑
i=1

(wi,+(hY,+)− wi,−(hY−))
2 σ2

Y,i + c2
n∑
i=1

(wi,+(hT+)− wi,−(hT−))
2 σ2

T,i

−2c
n∑
i=1

(wi,+(hY+)− wi,−(hY−)) (wi,+(hT+)− wi,−(hT−))σY T,i

)1/2

,

with σ2
Y,i = V(Yi|Xi), σ2

T,i = V(Ti|Xi), and σY T,i = C(Yi, Ti|Xi) being conditional variance
and covariance terms. A feasible standard error ŝM(h, c) can be obtained by substituting
nearest-neighbor estimates of the latter terms into the above expression for sM(h, c).
Letting ĥM(c) be a feasible estimate of hM(c) = arg minhcv1−α(rM(h, c)) · sM(h, c), with
rM(h, c) = bM(h, c)/sM(h, c), a generalization of our proposed bias-aware AR CS for θ is
then given by

Cαar =
{
c : |τ̂M(ĥM(c), c)| ≤ cv1−α(r̂M(ĥM(c), c))ŝM(ĥM(c), c))

}
.

A theoretical analysis of this CS would follow arguments that are fully analogous to
those in the analysis of the CS in the main body of this chapter, which only uses a single
bandwidth, and would yield fully analogous results.

2.C. PROPERTIES OF RULE-OF-THUMB SMOOTHNESS BOUNDS
In this appendix, we study the properties of two data-driven rules-of-thumb (ROT) for
selecting the smoothness constants BY and BT , which are both based on fitting global
polynomial specifications on either side of the cutoff. For simplicity, we focus on the
case of BY , but the arguments apply analogously to the case of BT . To describe the two
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Figure A.2.1: Mean (dots) and interquartile range (bars) of simulated ROT1 (black) and ROT2
(red) “rule-of-thumb” estimates of bound on absolute second derivative for σ2 ∈ {0, .1, . . . , 1}
and µY (x) = x2 (left panel) and µY (x) = x2 − x4 (right panel)

methods, let gk(x) = (1, x, . . . , xk, 1{x ≥ 0}, 1{x ≥ 0}x, . . . , 1{x ≥ 0}xk)⊤ be a vector of
polynomials, define the function

µ̃Y,k(x) = gk(x)
⊤γ̂k, with γ̂k = arg minγ

n∑
i=1

(Yi − gk(Xi)
⊤γ)2,

and write X for the range of the realizations of the running variable.Armstrong and
Kolesár (2020) then consider fourth-order polynomials, and propose the ROT value

B̂Y,ROT1 = sup
x∈X

|µ̃′′
Y,4(x)|.

Imbens and Wager (2019) mention a ROT in which the maximal curvature implied by
a quadratic fit is multiplied by some moderate factor, say 2, to guard against overly
optimistic values, yielding the rule-of-thumb value

B̂Y,ROT2 = 2 sup
x∈X

|µ̃′′
Y,2(x)|.

We refer to these estimators ROT1 and ROT2 in the following. In principle, we would
like any such rule to be close to the true smoothness bound, but not to underestimate
it, so that the resulting CS has high power and correct coverage. Both Armstrong and
Kolesár (2020) and Imbens and Wager (2019) caution that the respective rules cannot be
expected to provide universally good smoothness bounds, and should rather serve as a
first guidance that is complemented with other approaches in a sensitivity analysis.

To get a better understanding of the relative properties of these two rules, we conduct
two small Monte Carlo experiments in which the conditional expectation function is either
µY (x) = x2 or µY (x) = x2 − x4. With each function and each σ2 ∈ {0, .1, .2, . . . , 1}, we
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conduct 10, 000 runs in which we simulate n = 1, 000 realizations of (Yi, Xi) according to

Yi = µY (Xi) + εi, Xi ∼ U [−1, 1], εi ∼ N(0, σ2), Xi⊥εi,

and calculate both ROT values. If µY (x) = x2, the true smallest upper bound on the
absolute second derivative is BY = 2, whereas if µY (x) = x2 − x4, we have that BY = 10.
In both cases, the corresponding values of “population R squared”, defined as R2 =

V(µY (Xi))/V(Y ), are also within the range typically encountered in empirical studies.
We start by considering the case µY (x) = x2, for which both a second and a fourth

order polynomial obviously constitute a correct specification. It thus holds in this partic-
ular case that B̂Y,ROT1

p→ BY = 2 and B̂Y,ROT2
p→ 2BY = 4 as n → ∞. That is, ROT1

consistently estimates BY here, while the probability limit of the ROT2 exceeds the true
smoothness bound by a factor of two. A priori, one might therefore expect ROT1 to per-
form better than ROT2 rule in this setup. Our results, summarized in the left panel of
Figure A.2.1, show that this is not the case. The distribution of ROT1 depends strongly
on the error variance, and except for very small values of σ2 the methods tends to produce
vast over-estimates of BY . For σ2 = 1, for example, the average across simulation runs is
33.58, which exceeds the true bound by a factor of almost 17. ROT1 is also quite volatile,
which can be seen from its large interquartile range. ROT2, on the other hand, is much
less affected by changes in the error variance: its mean across simulation runs increases
from 4.01 for σ2 = 0.1 to only 4.74 for σ2 = 1, and its sampling variability is rather small.

Now consider the case µY (x) = x2−x4, for which fourth order polynomial is clearly a
correct specification. Indeed, a second order polynomial is particularly inadequate here, as
the true function oscillates on either side of the cutoff. We have that B̂Y,ROT1

p→ 10 = BY

and B̂Y,ROT2
p→ 2.753 ̸= BY as n → ∞, which means that ROT1 consistently estimates

BY here, while the probability limit of ROT2 is about four times smaller than the true
smoothness bound. Our simulation results for this setup are summarized in the right
panel of Figure A.2.1. Again, ROT1 estimates are highly variable, and tend to be much
larger than the true smoothness bound. The discrepancy is not as pronounced as in
the previous setup though: for σ2 = 1, for example, the average across simulation runs
is 36.86, which is only 3.6 times larger than BY . ROT2 is again much less affected by
changes in the error variance: its mean across simulation runs increases from 2.78 for
σ2 = 0.1 to only 3.99 for σ2 = 1, and its sampling variability is rather small. But due
to the severe misspecification of a second-order polynomial these values tend to severely
under-estimate the true smoothness bounds.

These results first of all stress the theoretical point that no data-driven method for
choosing smoothness bounds can be expected to work well under all circumstances. Still,
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our exercise conveys some insight regarding under which condition one rule might be a
better “first guess” than the other. Roughly speaking, the performance patterns of ROT1
can be explained by the fact that its underlying fourth order polynomial specification
tends to produce erratic over-fits if the function µY (x) is rather “simple”, and there is a
non-negligible level of noise in the data (this is a general feature of high-order polynomial
regression, related to Runge’s phenomenon in the literature on approximation theory).
This is much less of an issue with a quadratic model. In practice, we therefore recommend
using ROT2 over ROT1 in settings where one believes that µY is “close” to being a
“moderately” convex or concave function. If this is not the shape one has in mind there is
no obvious ordering of the ROTs, and both should be considered within a more extensive
sensitivity analysis.

2.D. EXTENSION TO FUZZY REGRESSION KINK DESIGNS
2.D.1. Description. Our approach to FRD inference described in the main body of the
paper can easily be extended to the cases in which the parameter of interest is the ratio
of jumps in the derivatives (of some order v ≥ 0) of two conditional expectation functions
µY (x) = E(Y |X = x) and µT (x) = E(T |X = x) at the threshold value zero.14 The most
prominent example of such a setup is the Fuzzy Regression Kink Designs (Card et al.,
2015), where the goal is to estimate the ratio of jumps in the first derivatives of these
functions. We now sketch our extension using notation analogous to that in Section 2.4.

For a generic random variable Wi, we write µ
(v)
W (x) = ∂vE(Wi|Xi = x)/(∂x)v for

the vth derivative of its conditional expectation given Xi; µ(v)
W,+ = limx↓0 µ

(v)
W (x) and

µ
(v)
W,− = limx↑0 µ

(v)
W (x) denotes the left and right limits of the derivative at the threshold;

and τW,v = µ
(v)
W,+ − µ

(v)
W,− denotes the corresponding jump in µ

(v)
W . Our parameter of

interest is θv = τY,v/τT,v, and the goal is again to construct CSs with correct asymptotic
coverage, uniformly in (µY , µT ) over some function class F . That is, we want to construct
data-dependent sets Cα ⊂ R that satisfy

lim inf
n→∞

inf
(µY ,µT )∈F

P(θv ∈ Cα) ≥ 1− α (A.2.22)

for some α > 0. We again define F as a smoothness class. Specifically, let

FH,p(B) = {f1(x)1{x ≥ 0} − f0(x)1{x < 0} : ∥f (p+1)
w ∥∞ ≤ B,w = 0, 1}

be the Hölder-type class of real functions that are potentially discontinuous at zero, (p+1)-
times differentiable almost everywhere on either side of the threshold, and whose (p+1)th

14We could in principle allow the two derivatives to be of of different order, but as we are not aware
of a setup that requires this we only consider identical orders here to keep the notation simple.
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derivative is uniformly bounded by some constant B > 0. We also define the class

F δ
H,vp(B) = {f ∈ FH,p(B) : |f (v)

+ − f
(v)
− | > δ},

and assume that
(µT , µY ) ∈ F0

H,vp(BT )×FH,p(BY ) ≡ F .

Our CSs for the ratio of jumps in vth-order derivatives are based on pth order local
polynomial regression, where v ≤ p. Following standard results on the bias properties of
local polynomial regression (Fan and Gijbels, 1996), it is generally recommended to use
p = v+1. For a generic dependent variable Wi, the local pth order polynomial estimator
τ̂W,vp(h) of τW,v is the (p+ v + 2)th component of

arg minβ∈R2p

n∑
i=1

K(Xi/h)(Wi − β⊤(1, Xi, X
2
i /2, . . . , X

p
i /(p!), Zi, ZiXi, . . . , ZiX

p
i /(p!))

2,

where K(·) is a kernel function with support [−1, 1] and h > 0 is a bandwidth. It follows
from standard least squares algebra that this estimator can be written as

τ̂W,vp(h) =
n∑
i=1

wvp,i(h)Wi, wvp,i(h) = wvp,i,+(h)− wvp,i,−(h),

wvp,i,+(h) = e⊤v+1Q
−1
p,+X̃p,iK(Xi/h)1{Xi ≥ 0}, Qp,+ =

n∑
i=1

K(Xi/h)X̃p,iX̃
⊤
p,i1{Xi ≥ 0},

wvp,i,−(h) = e⊤v+1Q
−1
p,−X̃p,iK(Xi/h)1{Xi < 0}, Qp,− =

n∑
i=1

K(Xi/h)X̃p,iX̃
⊤
p,i1{Xi < 0},

with X̃p,i = (1, Xi, X
2
i /2, . . . , X

p
i /(p!))

⊤. We then obtain a bias-aware AR CS for θv by
collecting those values of c for which an auxiliary bias-aware CI for τM,v(c) = τY,v − cτT,v

contains zero. To describe the construction, denote the conditional bias and standard
deviation of τ̂M,vp(h, c) =

∑n
i=1wvp,i(h)Mi(c) given Xn = (X1, . . . , Xn)

′ by bM,vp(h, c) =

E(τ̂M,vp(h, c)|Xn) − τM,vp(c) and sM,vp(h, c) = V(τ̂M,vp(h, c)|Xn)
1/2, respectively. These

quantities can be written more explicitly as

bM,vp(h, c) =
n∑
i=1

wvp,i(h)µM(Xi, c)− (µ
(v)
M+(c)− µ

(v)
M−(c)),

sM,vp(h, c) =

(
n∑
i=1

wvp,i(h)
2σ2

M,i(c)

)1/2

,

with σ2
M,i(c) = V(Mi(c)|Xi) the conditional variance of Mi(c) given Xi. The bias depends

on (µY , µT ) through the transformation µ
(v)
M = µ

(v)
Y − c · µ(v)

T only, and µ
(v)
Y − cµ

(v)
T ∈
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FH,vp(BY + |c|BT ). Our main contribution is to show that one can bound bM,vp(h, c) in
absolute value over the functions contained in F by

sup
(µY ,µT )∈F

|bM,vp(h, c)| ≤ bM,vp(h, c) ≡ (−1)p−v
BY + |c|BT

(p+ 1)!

n∑
i=1

wvp,i(h)X
p+1
i sign(Xi),

(A.2.23)

assuming only that h is such that positive kernel weights are assigned to at least (p+ 1)

data points on either side of the threshold. An infeasible bias-aware AR CS for our
parameter of interest θv is then given by

Cαvp = {c : |τ̂M,vp(hM,vp(c), c)| ≤ cv1−α(rM,vp(hM,vp(c), c))sM,vp(hM,vp(c), c)} ,

where hM,vp(c) = arg minhcv1−α(rM,vp(h, c))sM,vp(h, c) is again the efficiency-maximizing
bandwidth and rM,vp(h, c) = bM,vp(h, c)/sM,vp(h, c) the “worst case” bias to standard
deviation ratio. We can then establish the following result.

Theorem A.2.5. Suppose that Assumptions 2.1 and either LL1 or LL2 hold. Then Cαvp
is honest with respect to F in the sense of (A.2.22).

It is also straightforward to obtain an analogous result for a feasible version of Cαvp that
uses a valid standard error and an estimate of the optimal bandwidth, under appropriate
regularity conditions.

2.D.2. Proof of Theorem A.2.5. The result follows from the same type of arguments
as those used in the proof of Theorem 1 for the FRD case. The only step that requires
particular attention is establishing the validity of the general bias bound in (A.2.23), as
Armstrong and Kolesár (2020, Theorem B.3) give an explicit expression for the special
case p = 1 and v = 0 only. We first prove a preliminary result. Let χ = {x0, x1, . . . , xk},
with 0 ≤ x0 ≤ x1 ≤ . . . ≤ xk < h and k ≥ p, be a generic set of at least p + 1 constants
from the interval [0, h), write χ−i = χ \ {xi} for the subset of χ that excludes its ith
element, and define

β̂vp(t, χ) =
k∑
i=0

wvp,i,+(h, χ)1{xi ≥ t}(xi − t)p,

where wvp,i,+(h, χ) are local polynomial regression weights analogous to those defined
above, but with χ taking the role of the data Xn. Put differently, the term β̂vp(t, χ) is
the (v + 1)th coefficient in a weighted least squares regression of 1{xi ≥ t}(xi − t)p on
(1, xi, x

2
i , . . . , x

p
i )

⊤. This term is well-defined as long as χ contains at least p+ 1 distinct
elements. We first establish the following preliminary result.
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Lemma A.2.2. Suppose that either (i) χ has (p + 1) elements, all which are distinct;
or (ii) χ has at least (p + 2) distinct elements, and β̂vp(t, χ−i) satisfies (A.2.24) for all
i = 1, . . . , |χ|. Then it holds for all t ∈ R that

β̂vp(t, χ) ≤ 0 if p− v odd and β̂vp(t, χ) ≥ 0 if p− v even. (A.2.24)

To then establish the bias bound (A.2.23), note that the bias can be written as

bM,vp(h, c) =

( ∑
i:Xi≥0

wvp,i,+(h)µM(Xi, c)− µ
(v)
M+(c)

)

−

( ∑
i:Xi<0

wvp,i,−(h)µM(Xi, c)− µ
(v)
M−(c)

)
≡ T1 + T2.

Since
∑

i:Xi≥0wvp,i,+(h)X
v
i = 1 and

∑
i:Xi≥0wvp,i,+(h)X

j
i = 0 for j ̸= v and j ≤ p by

standard least squares algebra, it follows that

T1 =
∑
i:Xi≥0

wvp,i,+(h)

(
p∑
j=0

1

j!
Xj
i µ

(j)
M (0, c) +

1

p!

∫ Xi

0

µ(p+1)(Xi, c)(Xi − t)jdt

)
− µ

(v)
M+(c)

=
1

p!

∑
i:Xi≥0

wvp,i,+(h)

∫ Xi

0

µ
(p+1)
M (t, c)(Xi − t)pdt

=
1

p!

∫ ∞

0

µ
(p+1)
M (t, c)

∑
i:Xi≥0

wvp,i,+(h)1{Xi ≥ t}(Xi − t)pdt

≡ 1

p!

∫ ∞

0

µ
(p+1)
M (t, c)β̂vp(t,X+

n ),

where X+
n = {Xi ∈ Xn : 0 ≤ Xi ≤ h}. This expression is clearly maximized in abso-

lute value by any function µM(t, c) whose (p + 1)th derivative is given by µ
(p+1)
M (t, c) =

BMsign(β̂vp(t,X+
n )) for t ≥ 0.

We now construct a collection X+
n,k of subsets of X+

n , with k = p+1, . . . , n, as follows.
Let X+

n,p+1 be an arbitrary subset of p + 1 distinct elements of X+
n (such a subset exists

by assumption), and let X+
n,k, for k > p + 1, be the union of X+

n,k−1 and an arbitrary
element of X+

n \X+
n,k−1. Then Lemma A.2.2 implies that β̂vp(t,X+

n,k) satisfies (A.2.24) for
any k = p + 1, . . . , n. Since X+

n,n = X+
n , this means that sign(β̂vp(t,X+

n )) = (−1)p−v for
all t. The term T1 is thus maximized in absolute value for any function µM such that
µM(t, c) = (−1)p−vBM t

p+1sign(t)/((p+1)!) for t ≥ 0. A similar reasoning implies that T2
is maximized for any function µM such that µM(t, c) = (−1)p−vBM t

p+1sign(t)/((p + 1)!)

for t < 0. Together, these statements prove (A.2.23).
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2.D.3. Proof of Lemma A.2.2. To prove part (i), note that there is always a unique
polynomial of order p that interpolates the points {(x, 1{x ≥ t}(x− t)p)}x∈χ. We denote
this polynomial as a function of x by P (x, χk)..Our proof comes down to determining the
sign of the corresponding coefficients as a function of t. To do so, let S(k) = k+ |{x ∈ χ :

x ≤ t}| be the sum of k and the number of elements of χ whose value does not exceed t,
and consider subsets of χ of the form χk = {xi ∈ χ : xi ≤ t}∪{xi ∈ χ : S(1) ≤ i ≤ S(k)}
that contain those elements of χ whose value does not exceed t, and the k next largest
ones. That is, χ0 = {xi ∈ χ : xi ≤ t}, and χ1 is the union of χ0 and the smallest
element of χ that is larger than t, etc. We also note that if χ is such that S(0) = 0,
then β̂vp(t, χ) = (−1)p−v

(
p
v

)
tv clearly satisfies (A.2.24). It therefore suffices to restrict

attention to sets χ such that S(0) > 0. It is also easy to see that β̂vS(0)(t, χ0) = 0, and
hence satisfies (A.2.24). It thus remains to show that if β̂vS(k)(t, χk) satisfies (A.2.24), so
does β̂vS(k+1)(t, χk+1). The statement of the lemma then follows by induction.

To show the last step, assume that β̂vS(k)(t, χk) satisfies (A.2.24), and write the poly-
nomial that interpolates the points {x, 1{x ≥ t}(x− t)S(k+1)}x∈χk+1

as

P (x, χk+1)x
v = (x− t)P (x, χk) + ῑp+1

∏
xl∈χk

(x− xl), where (A.2.25)

ῑk+1 = (xS(k+1) − t)
(
(xS(k+1) − t)S(k) − P (x, χk)

) ∏
xl∈χk

1

xS(k+1) − xl
.

We can then express the β̂vS(k+1)(t, χk+1) in terms of the β̂vS(k)(t, χk) by comparing the
appropriate terms on both sides of equation (A.2.25). This yields that

β̂vS(k+1)(t, χk+1) =
β̂S(k)S(k)(t, χk) + ῑk+1 if v = S(k + 1),

−tβ̂0S(k)(t, χk) + (−1)S(k+1)ῑk+1

∏
0≤j≤S(k)

xj if v = 0,

β̂(v−1)S(k)(t, χk)− tβ̂vS(k)(t, χk) + (−1)S(k+1)−v ῑk+1

∑
M∈MS(k+1)−v

∏
ms∈M

xms else.

where Mv is the set of all subsets M = {m1, . . . ,mv} of {1, . . . , S(k + 1)} that contain
exactly v elements. Careful inspection of the last display shows that β̂vS(k+1)(t, χk+1)

satisfies (A.2.24) if ῑk+1 ≥ 0. We proof this claim by a simple argument about the
number of zeros of polynomials. Let χk\0 = χk\x0 that is the set χk without its smallest
element. We note that ῑk+1 ≥ 0 if

P (x, χk) < P (x, χk\0 ∪ x) for all x > xS(k). (A.2.26)
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To show (A.2.26), we fix some arbitrary xl > xS(k) and consider the two different poly-
nomials P (x, χk) and P (x, χk\0 ∪ xl). These polynomials are of degree S(k) and they
intersect S(k) times at all x ∈ χk \ x0, so that they cannot intersect for any x /∈ χk \ x0.

As the set χk was arbitrarily chosen, we note that by the induction argument the
intercept of both polynomials has the same sign such that

sign(P (0, χk)) = sign(P (0, χk\0 ∪ xl)). (A.2.27)

Using (A.2.27) together with standard arguments of polynomials and their sign as x →
±∞, (A.2.26) is satisfied if |P (0, χk)| ≤ |P (0, χk\0 ∪ xl)|. Polynomials of order S(k),
that are different from (x − t)S(k), can have at most (S(k) + 1) intersections with the
function g(x) = 1{x ≥ t}(x− t)S(k) for t > 0. This reasoning implies that the polynomial
P (x, χk\0 ∪ xl) does not have any intersections with the function g(x) for x ≤ x0, and
in particular it does not have any root for x ≤ x0, so that it has the same sign for all
0 ≤ x ≤ x0. As P (x0, χk) = 0, we can conclude that |P (x, χk)| ≤ |P (x, χk\0 ∪xl)| for any
x ≤ x0. This completes our proof of part (i).

To prove part (ii) of the lemma, note that it follows from textbook arguments that

β̂vp(t, χ) = β̂vp(t, χ−i) + (1− li)
−1wvp,i,+(h, χ)ϵ̂i,

where ϵ̂i = 1{xi ≥ t}(xi − t)p −
∑p

v=0 β̂vp(t, χ)x
v
i is the ith regression residual and li =∑p

j=0wjp,i(χ)x
j
i is the leverage of the ith observation. We now first consider the case

that β̂vp(t, χ−i) ≤ 0 for all i, which implies that β̂vp(t, χ) ≤ (1− li)
−1wvp,i,+(h, χ)ϵ̂i. Since∑|χ|

i=1wvp,i,+(h, χ)ϵ̂i = 0 and 0 ≤ li < 1 for all i by basic least squares algebra, we know
that (1−li)−1wvp,i,+(h, χ)ϵ̂i ≤ 0, for at least some i, which in turn means that β̂vp(t, χ) ≤ 0.
The same kind of argument applies to the case that β̂vp(t, χ−i) ≥ 0 for all i.

2.E. ADDITIONAL MATERIALS FOR THE EMPIRICAL APPLICATION
In this appendix, we provide additional materials for the empirical application. Fig-
ure A.2.2 shows the fit of the polynomial regressions on which the two ROT values are
based. The top four panel show the result for for the full data. Both the second and forth
order polynomial specification provide a reasonable fit when log wage is the dependent
variable, whereas both fits seem inadequate for the conditional treatment probabilities.
The bottom four panels of Figure A.2.2 show the fits for the data excluding the 1947
cohort. Here both polynomials seem to provide good fit for outcomes and treatment
probabilities.

To further illustrate the order of magnitude of the implied smoothness bounds on the
curvature of µY , we plot examples of functions lying in the respective smoothness class
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under consideration in Figure A.2.3. The resulting functions look very similar because
of the scaling of the vertical axis, and hence we plot them again with a different scaling
in Figure A.2.4. Figure A.2.5 shows analogous graphs with the data excluding the 1947
cohort. We perform the same exercise for the fraction of people staying in school beyond
age of 14 in Figure A.2.6 with the full sample and in Figure A.2.7 with the data excluding
the 1947 cohort. We want to emphasize again that the functions plotted in Figures A.2.3–
A.2.7 are not meant to be estimates of the respective underlying conditional expectation
functions. They are examples of elements of the respective smoothness classes, and
plotted to help applied researchers understand the implications of choosing a particular
smoothness bound.

2.F. ADDITIONAL MATERIALS FOR THE SIMULATIONS
In this section, we report results from a variation of our main simulation study, in which
the procedures using an estimate of the IK bandwidth were implemented with an estimate
of “coverage error optimal” bandwidth proposed by Calonico et al. (2018). The latter was
computed using the R package rdrobust. Table A.2.1 shows the coverage rates obtained
in the main simulation (IK) for reference, and the ones newly obtained here. The values
are overall very similar, suggesting that the results regarding robust bias correction in
the main body of the paper are not driven by the details of the algorithm for bandwidth
choice.
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(e) ROT1, Wages, Excluding 1947
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Figure A.2.2: Fits of polynomial specifications underlying ROT1 and ROT2.
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Figure A.2.3: Average Log Annual Earnings: Examples of elements of FH(BY ) for various
values of BY based on the full data set. Figure also shows 2,000 random data points.
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Figure A.2.4: Average Log Annual Earnings: Examples of elements of FH(BY ) for various
values of BY based on the full data set. Figure also shows 2,000 random data points. Note that
the functions in red are identical to those in Figure A.2.3. The scale of the vertical axis has
been changed to better show their shape.
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Figure A.2.5: Average Log Annual Earnings: Examples of elements of FH(BY ) for various
values of BY based on data excluding the 1947 cohort. Figure also shows 2,000 random data
points. The scale of the vertical axis is restricted to better show the shape of the candidate
functions.
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Figure A.2.6: School Attendance Beyond Age 14: Examples of elements of FH(BT ) for various
values of BT based on the full data.
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Figure A.2.7: Examples of elements of FH(BT ) for various values of BT based on data excluding
the 1947 cohort.
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Table A.2.1: Simulated coverage rate (in %) of true parameter for various types of confidence
sets

Anderson-Rubin Delta Method
IK CEO IK CEO

τT BY BT Naive US RBC Naive US RBC Naive US RBC Naive US RBC
Running Variable with Continuous Distribution
0.5 1 0.2 93.1 93.4 93.4 93.4 93.1 93.5 90.8 90.4 91.3 90.4 89.4 90.7
0.5 1 1.0 93.0 93.3 93.3 93.3 93.3 93.5 90.4 89.9 91.0 89.9 89.0 90.2
0.5 10 0.2 92.4 93.0 92.5 93.0 92.9 93.0 88.3 88.3 88.7 88.3 87.8 88.4
0.5 10 1.0 92.2 92.8 92.2 92.8 92.7 92.8 87.9 88.2 88.4 88.2 87.4 88.3
0.5 100 0.2 78.5 87.9 74.7 87.9 90.7 86.7 72.8 80.8 72.2 80.8 82.9 80.5
0.5 100 1.0 78.2 88.0 74.4 88.0 90.7 86.8 72.6 80.9 72.1 80.9 83.2 80.6
0.1 1 0.2 93.7 94.0 94.0 94.0 94.0 94.2 76.6 74.0 79.2 74.0 70.8 75.5

0.1 1 1.0 93.4 93.8 93.8 93.8 93.9 94.0 76.5 73.8 79.0 73.8 71.0 75.2
0.1 10 0.2 93.4 94.0 93.7 94.0 94.0 94.1 71.0 69.6 73.3 69.6 66.7 71.0
0.1 10 1.0 93.2 93.9 93.5 93.9 94.0 94.0 70.3 69.2 72.7 69.2 66.5 70.5
0.1 100 0.2 83.2 91.0 79.0 91.0 93.2 89.9 36.7 47.4 37.1 47.4 53.5 47.6
0.1 100 1.0 83.2 91.0 79.1 91.0 93.2 90.0 36.5 47.4 37.0 47.4 53.2 47.7

Running Variable with Discrete Distribution
0.5 1 0.2 94.3 94.6 94.6 94.6 93.8 95.0 89.9 88.9 91.0 88.9 88.1 89.5
0.5 1 1.0 94.0 94.2 94.4 94.2 93.6 94.7 89.6 88.5 90.5 88.5 87.6 89.0
0.5 10 0.2 93.6 93.9 93.7 93.9 93.1 94.2 85.3 84.8 85.4 84.8 86.1 85.7
0.5 10 1.0 93.6 93.7 93.6 93.7 93.1 94.1 84.6 84.4 84.6 84.4 85.5 85.3
0.5 100 0.2 67.9 60.4 57.8 60.4 60.4 65.1 26.8 27.9 17.1 27.9 28.5 22.3
0.5 100 1.0 67.2 59.5 57.2 59.5 59.5 64.6 26.5 27.6 16.7 27.6 28.1 22.0
0.1 1 0.2 94.7 94.9 95.1 94.9 94.3 95.2 71.2 64.8 75.6 64.8 62.6 67.4

0.1 1 1.0 94.5 94.7 94.7 94.7 94.2 95.0 70.5 64.5 74.8 64.5 62.0 67.0
0.1 10 0.2 94.5 94.5 94.6 94.5 94.1 94.9 55.9 52.6 59.9 52.6 59.1 57.0
0.1 10 1.0 94.5 94.5 94.6 94.5 94.1 94.8 55.8 51.8 59.6 51.8 58.6 56.2
0.1 100 0.2 73.7 66.9 63.9 66.9 66.9 69.4 68.6 69.5 65.3 69.5 65.8 69.4
0.1 100 1.0 73.2 66.4 63.0 66.4 66.3 68.7 68.1 69.0 64.8 69.0 65.2 68.8

Notes: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show
simulated coverage rates of the true constants for confidence sets based on AR and DM. The bandwidth is
chosen minimizing the MSE bandwidth and the CEO, see rdrobust for details. We consider confidence sets
based on an approach ignoring the bias (Naive); undersmoothing (US); and robust bias correction (RBC). See
main paper for details of the simulation design.
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CHAPTER 3
FLEXIBLE COVARIATES ADjuSTmEnTS

In REgRESSIOn DISCOnTInuITY DESIgnS
with Tomasz Olma and Christoph Rothe

3.1. INTRODUCTION
Regression discontinuity (RD) designs are widely used for estimating causal treatment
effects from observational data in economics and other social sciences. In a sharp RD
design, the treatment status is determined by whether the running variable exceeds a fixed
cutoff value. Under standard assumptions, the average treatment effect at the cutoff is
identified by the size of the jump in the conditional expectation of the outcome variable
given the running variable at the cutoff. This parameter is typically estimated using
local linear regression methods, and various inference procedures have been proposed in
the literature; see, e.g., Imbens and Kalyanaraman (2012), Calonico et al. (2014), and
Armstrong and Kolesár (2020).

The standard estimator of the average treatment effect in sharp RD designs is based
solely on the outcome variable and the running variable, but in many empirical applica-
tions, researchers include additional, pretreatment covariates linearly in the RD regression
to reduce the variance of the estimates (see Calonico et al., 2019). However, linear ad-
justments in general do not fully exploit the information contained in the covariates. The
goal of this chapter is to improve upon these methods.

We propose a novel class of covariate-adjusted RD estimators. They are constructed
in two stages. In the first stage, we obtain adjustment terms, which aim at capturing the
variation in the outcome variable near the cutoff that can be explained by the additional
covariates. The adjustment terms are estimated using cross-fitting, which allows us to
use a wide range of methods in the first stage under weak conditions. We generate
a covariate-adjusted outcome variable by subtracting the adjustment terms from the
original outcomes. In the second stage, we estimate the RD parameter in a local linear
regression with our generated outcome variable.

Our proposed approach is based on the premise that in a valid RD design, the condi-
tional distribution of the additional covariates given the running variable should evolve
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continuously through the cutoff. Such a condition is inherently related to the standard,
behavioral identification arguments in RD designs, which postulate that the units just to
the left and just to the right of the cutoff are very similar in all pretreatment character-
istics.1 Based on this feature, we can adjust our outcome variable by subtracting from it
essentially any function of the additional covariates without changing the RD estimand.
We can further choose the adjustment function that leads to the smallest variance of the
RD estimator in the considered class of estimators. We find that the optimal adjustment
function is given by the average of the conditional expectations of the outcome variable
just to the left and just to the right of the cutoff given the additional covariates. This
function is not known, and therefore we estimate it in the first stage.

An important feature of our proposed RD estimator is that it is very insensitive to the
first-stage estimation error, which has the following important, practical and theoretical
implications. First, we only require that the first-stage estimator concentrates, possibly
very slowly, in a mean-squared-error-type sense around some deterministic sequence of
functions. This condition is satisfied for a wide range of estimators, including parametric
estimators, classic nonparametric methods, such as local linear and sieve estimators (Fan
and Gijbels, 1996; Newey, 1997), as well as modern machine learning methods, such as
lasso (Tibshirani, 1996), random forests (Breiman, 2001; Wager and Athey, 2018), and
deep neural networks (Farrell et al., 2021). Importantly, our RD estimator is not very
sensitive to the specific choice of the tuning parameters that are required for some of the
above methods.

Second, in our asymptotic analysis, we can ignore the fact that the adjustment terms
are estimated in the first stage. Our proposed RD estimator is asymptotically equivalent
to an estimator employing the deterministic function around which the first-stage estima-
tor concentrates. As a result, existing procedures for inference and bandwidth choice can
be directly applied to the second-stage regression. Specifically, we obtain the standard
error using the nearest-neighbors method. We also argue that one can choose the band-
width and construct confidence intervals following the robust bias corrections approach
of Calonico et al. (2014) or the bias-aware procedure of Armstrong and Kolesár (2020).

We further show that if the first-stage estimator consistently estimates the targeted
conditional expectations, then our estimator is efficient in the considered class, but our
asymptotic results remain valid whether or not this condition is satisfied. Our proposed
covariate adjustments asymptotically lead to variance reductions compared to the stan-
dard RD estimator whenever the covariates have explanatory power for the outcome
variable in a neighborhood of the cutoff.

1Indeed, in empirical applications, testing continuity of the distribution of baseline covariates at the
cutoff has become a standard way of assessing the validity of an RD design (Cattaneo et al., 2019).
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Our proposed procedure is related to covariate adjustments used in randomized exper-
iments to improve efficiency of the average treatment effect estimator (see, e.g., Wager
et al., 2016). This analogy occurs because RD designs are similar in nature to random-
ized experiments. In randomized experiments, comparability of the treated and untreated
units is ensured by random assignment, whereas in RD designs, it is ensured for units
close to the cutoff by continuity of potential outcomes’ distributions. Our proposed RD
estimator has a very similar structure as the augmented inverse probability weighted
estimator, which is widely used in randomized experiments. Accordingly, the minimal
variance that our estimator can achieve resembles the efficiency bound for estimation of
the average treatment effect under unconfoundedness (Hahn, 1998).

Literature. There exists an extensive literature on estimation in RD designs; see, e.g.,
Imbens and Lemieux (2008) and Cattaneo et al. (2019) for a textbook treatment. In
general, existing methods do not require covariate information, but it is standard practice
to incorporate covariates in order to reduce the variance of the estimates (see, e.g., Lee
and Lemieux, 2010, Section 3.2.3). We contrast our approach with two papers that are
most closely related to our approach.

Calonico et al. (2019) employ a local linear regression in the running variable with
additional covariates included in a linear fashion. We allow for linear adjustments as a
special case, but we cover a wide range of other, more flexible adjustments that improve
efficiency compared to simple linear adjustments. We discuss the relation of our approach
to that of Calonico et al. (2019) in more detail in Section 3.6.1.

Frölich and Huber (2019) propose a procedure using first-stage nonparametric predic-
tions of the treatment effect conditional on the additional covariates at the cutoff, which
achieves approximately the same variance as our estimator in some settings. However,
their results rely on strong assumptions about the number of covariates and/or smooth-
ness of the conditional expectation of the outcome variable given the covariates, which
are not needed for our method.2

Our chapter is also related to the literature on two-stage estimation with nuisance
parameters (Andrews, 1994; Newey, 1994). The combination of locally-robust moment
conditions and cross-fitting has been used, e.g., by Belloni et al. (2017); Chernozhukov
et al. (2018). Estimation of conditional treatment effects with orthogonal moments have
been studied, e.g., by Kennedy et al. (2017); Kennedy (2020); Fan et al. (2020).

2For example, Frölich and Huber (2019) allow for at most three continuous additional covariates and
require that the bandwidth converges at a specific rate if the local linear estimator with a second-order
kernel is used in the first stage.
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Plan of the Chapter. The remainder of this chapter is organized as follows. In Sec-
tion 3.2, we introduce the setup. In Section 3.3, we present our proposed covariate-
adjusted estimator. In Section 3.4, we present our main theoretical results under general
conditions on the covariate adjustments used. We discuss implementation details in Sec-
tion 3.5. In Section 3.6, we consider specific examples of covariate adjustments. We
present a simulation study in Section 3.7. Section 3.8 concludes.

Notation. Throughout the chapter, we use the following notation. For a generic func-
tion f(x), we write f(0+) = limx↓0 f(x) and f(0−) = limx↑0 f(x) for the right and left
limit of the function f(x) at zero, respectively.

3.2. SETUP
In this section, we introduce the model and parameter of interest. Furthermore, we
discuss estimation of the RD parameter based on local linear regression methods.

3.2.1. Model and Parameter of Interest. We consider a sharp RD design, in which the
researcher investigates the causal effect of a binary treatment on some outcome variable
of interest. The data (Wi)i∈{1,...,n} are an i.i.d. sample of size n from the distribution of
Wi = (Yi, Xi, Zi). Here, Yi ∈ R is the outcome variable, Xi ∈ R is the running variable,
and Zi ∈ Rd is a vector of additional covariates. Units receive the treatment if and only if
the running variable exceeds some known threshold, which we normalize to zero without
loss of generality. We denote the treatment indicator by Ti, so that Ti = 1{Xi ≥ 0}.

Throughout the chapter, we assume that the distribution of the running variable Xi

is fixed, but we consider a sequence of conditional distributions of (Yi, Zi) given Xi that
can change with n. In particular, we allow the dimension of Zi to grow with n. For ease
of notation, we leave the dependence on n implicit.

We denote the support of Zi by Z, and we let X be an open neighborhood of the
cutoff that is contained in the support of the running variable. The density of the running
variable is denoted by fX , the conditional cumulative distribution function of Zi given
Xi = x is denoted by FZ|X(z|x). If the corresponding conditional density exists, we
denote it by fZ|X(z|x). Under standard assumptions (see, e.g., Lee and Lemieux, 2010)
the average treatment effect at the cutoff is identified by the height of the jump in the
conditional expectation of the observed outcome variable given the running variable at
zero:

τ = E[Yi|Xi = 0+]− E[Yi|Xi = 0−]. (3.1)

We take this identification result as given and consider estimation of τ as defined above.
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3.2.2. Standard RD Estimator. In RD designs, the parameter of interest is typically
estimated using local linear regression (see, e.g., Fan and Gijbels, 1996). The standard
estimator is given by:

τ̂(h) = e⊤1 arg minβ∈R4

n∑
i=1

K(Xi/h)(Yi − β⊤(Ti, Xi, TiXi, 1))
2,

where K(·) is a kernel function with support [−1, 1], h > 0 is a bandwidth, and e1 =

(1, 0, 0, 0)⊤ is the first unit vector. Using simple algebra, this estimator can be expressed
as a weighted sum of the outcome variable:

τ̂(h) =
n∑
i=1

wi(h)Yi,

where the weights wi(h) depend only on the realizations of the running variable. We give
the explicit expressions for the weights in Appendix 3.C.1.

Under standard assumptions, the estimator τ̂(h) is asymptotically normally distributed.
Its leading bias term is proportional to ∂2xE[Yi|Xi = x]|x=0+ − ∂2xE[Yi|Xi = x]|x=0− , and
it is of order h2. The bias results from approximating the possibly non-linear conditional
expectation function with a linear function. Its magnitude is determined by the degree
of nonlinearity, measured by the value of the second derivative. The variance is of order
(nh)−1, and it is approximately proportional to V[Yi|Xi = 0+] + V[Yi|Xi = 0−].

3.3. COVARIATE ADJUSTMENTS
In this section, we motivate our proposed estimation procedure, and we formally define
the proposed covariate-adjusted RD estimator.

3.3.1. Covariate-Adjusted Outcome Variable. We now introduce the key object of
this chapter. We consider a modified outcome variable of the following form:

Mi(µ) = Yi − µ(Zi), (3.2)

where µ is a real-valued function of the additional covariates, which we refer to as the
adjustment function.

For the further analysis, we impose a regularity condition on the admissible adjust-
ment functions and require that µ(Zi) is square integrable conditional on the running
variable. We define the set of such functions as:

Mn =
{
µ : Z → R s.t. sup

x∈X
E[µ(Zi)2|Xi = x] <∞

}
.

The central premise for our proposed approach is that the conditional distribution
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of the additional covariates given the running variable evolves continuously through the
cutoff.

Assumption 3.1. For all n ∈ N and µ ∈ Mn, E [µ(Zi)|Xi = x] is continuous in x on
X .

Assumption 3.1 requires that the conditional distribution of Zi given Xi = x converges
weakly to the distribution of Zi given Xi = 0, as x converges to 0.3 Under this assumption,
we can replace the outcome variable Yi in the definition of τ in (3.1) with Mi(µ) without
affecting the value of the estimand, that is:

τ = E[Mi(µ)|Xi = 0+]− E[Mi(µ)|Xi = 0−] (3.3)

for all µ ∈ Mn.
Motivated by the above representation, for any fixed µ ∈ Mn, the RD parameter

τ could be estimated using the local linear RD estimator with Mi(µ) as the outcome
variable, which we denote by:

τ̂(h;µ) =
n∑
i=1

wi(h)Mi(µ). (3.4)

In practice, the adjustment function might be estimated from the data. However, in
a sense made precise in the next sections, we can replace the deterministic adjustment
function with its estimate without affecting the first-order asymptotic properties of the
final estimator of the RD parameter. We therefore first determine the adjustment function
that minimizes the variance of the RD estimator τ̂(h;µ).

3.3.2. Optimal Adjustment Function. The RD estimator τ̂(h;µ) has variance that is
approximately proportional to V[Mi(µ)|Xi = 0+] + V[Mi(µ)|Xi = 0−]. We find that the
adjustment function that minimizes this expression is given by

µn(z) =
1

2

(
µ+
n (z) + µ−

n (z)
)
, (3.5)

where µ+
n (z) = E[Yi|Xi = 0+, Zi = z] and µ−

n (z) = E[Yi|Xi = 0−, Zi = z]. This result
follows from simple derivations, which we outline below to present the intuition behind
this result.

Under Assumption 3.1, if µ−
n , µ+

n , µ ∈ Mn, then

V[Mi(µ)|Xi = 0+]+V[Mi(µ)|Xi = 0−] = V[Mi(µ
+
n )|Xi = 0+]+V[Mi(µ

−
n )|Xi = 0−]+V(µ),

3This condition holds if FZ|X(z|x) → FZ|X(z|0), as x→ 0, for all continuity points of FZ|X(z|0).
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where the first two terms on the right-hand side do not depend on µ, and

V(µ) = V[µ+
n (Zi)− µ(Zi)|Xi = 0] + V[µ−

n (Zi)− µ(Zi)|Xi = 0].

Our goal is therefore to minimize V(µ). Each component of V(µ) could be set to zero
separately if µ was chosen as µ+

n or µ−
n , respectively. It turns out that the whole expression

V(µ) is minimized by the function µn, which can be seen by noting that:

V(µ) = V(µn) + 2V[µn(Zi)− µ(Zi)|Xi = 0] ≥ V(µn).

This reasoning shows that indeed the expression V[Mi(µ)|Xi = 0+] + V[Mi(µ)|Xi =

0−] achieves the smallest value if µ = µn. The function µn is essentially a unique minimizer
up to shifts by a constant.

3.3.3. Estimator. We estimate τ in a two-stage procedure. In the first stage, we estimate
the function µn defined in (3.5), which involves estimating the limits of the conditional
expectation of the outcome variable given the additional covariates as the running variable
approaches the cutoff from the left and from the right.

Conditional expectations at boundary points are often estimated using local linear
methods because of their good bias properties. However, for our purposes, essentially any
procedure can be adapted to estimate these limits by restricting the data to observations
with the running variable close to the cutoff.4 For example, we can use parametric
estimators, classic nonparametric methods such as series and spline estimators (Masry,
1996; Newey, 1997), as well as modern machine learning methods including the lasso
(Tibshirani, 1996), random forests (Breiman, 2001; Wager and Athey, 2018), and deep
neural networks (Farrell et al., 2021).

In order to allow for a variety of, possibly highly complex, first-stage estimators, we
use cross-fitting (see, e.g., Chernozhukov et al., 2018).5 We split the data randomly into
S disjoint folds denoted Is for s ∈ [S] = {1, ..., S}, where all folds have the same number
of observations to the left of the cutoff, and similarly to the right of the cutoff.6 For
s ∈ [S], we define the complement of fold Is as Ics = [n] \ Is. Further, let s(i) denote the
index of the fold containing observation i, so that i ∈ s(i). Given a selected estimation
procedure, we define µ̂n,s(z) = µ̂n(z; (Wi)i∈Ics ), which is an estimator of µn(z) that uses

4In our asymptotic analysis, we require only that the first-stage estimator concentrates around some
deterministic sequence.

5For simple first-stage estimators, such as linear adjustments, cross-fitting is not required, but it
offers a unifying approach that is suitable for all considered types of adjustments.

6In simulations, we choose S to be a moderate number, e.g. 5. We assume that the number of
observations both to the left and to the right of the cutoff is divisible by S in order to simplify the
notation.
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all observations except for the sth fold of the data.
In the second stage, we estimate the RD parameter using our covariate-adjusted

outcome variable. For each observation, we generate the outcome using the first-stage
estimate based on data from other folds. The final estimator is defined as:

τ̂CF (h; µ̂n) =
n∑
i=1

wi(h)Mi(µ̂n,s(i)), (3.6)

where the subscript CF refers to cross-fitting.

3.4. THEORETICAL RESULTS
In this section, we formally study the properties of the estimator τ̂CF (h; µ̂n) under high-
level conditions on the first-stage estimator. We also propose a method to estimate its
variance.

3.4.1. Assumptions. The conditions we impose in this section consist of standard as-
sumptions in RD designs without covariates as well as high-level assumptions on the
first-stage estimator µ̂n. Low-level conditions, tailored to specific types of covariate ad-
justments, are discussed in Section 3.6. Throughout the chapter, we implicitly assume
that if a real-valued function f is continuous on X \ {0}, then also the limits f(0−) and
f(0+) exist and are finite.

Assumption 3.2. (i) Xi is continuously distributed with density fX , which is continuous
and bounded away from zero uniformly over x ∈ X ; (ii) The kernel function K is a bounded
and symmetric density function that is continuous on its support and equals zero outside
some compact set, say [−1, 1]; (iii) As n→ ∞, h→ 0 and nh→ ∞.

Assumption 3.2 contains basic conditions for our asymptotic analysis. The assump-
tions on the density of the running variable, kernel, and bandwidth are standard in the
literature.

The next two assumptions concern the first-stage estimator. By construction, its
properties are relevant only for observations that are used in the second-stage local linear
regression, i.e. the observations with |Xi| ≤ h. We define Xh = X ∩ [−h, h] and Zh =

supp(Zi|Xi ∈ Xh).

Assumption 3.3. For all n ∈ N, there exist a set Tn ⊂ Mn and a function µ̄n ∈ Tn
such that: (i) µ̂n,s belongs to Tn with probability approaching 1 for all s ∈ [S]; (ii) It holds
that:

sup
µ∈Tn

sup
x∈Xh

E
[
(µ(Zi)− µ̄n(Zi))

2|Xi = x
]
= o(1).
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Assumption 3.3 specifies the required mode of convergence for the first-stage estimator.
We require that it belongs with high probability to some realization set Tn ⊂ Mn, which
contracts around a deterministic sequence of functions (µ̄n)n∈N in a mean-squared-error-
type sense. This assumption is weak, as µ̄n can be any function, not necessarily the
targeted, true function µn, and we do not require any specific rate at which Tn shrinks.
In particular, we allow for µ̂n to be based on a misspecified parametric model for the
function µn, or to have an arbitrarily slowly vanishing bias, as long as the estimator
concentrates around some deterministic sequence.

Assumption 3.3 can be ensured in various ways. If the adjustment function is linear,
then it follows from convergence of the estimated coefficients if the additional covariates
have bounded conditional second moments. Assumption 3.3 is also satisfied if the differ-
ence µ̂n,s− µ̄n converges to zero in the supremum norm on Zh. Such results are available
for example for classic nonparametric estimators in settings with a fixed dimension of the
additional covariates. Assumption 3.3 follows also from the unconditional convergence
in mean square under mild conditions on the conditional distribution of the additional
covariates given the running variable, which can be used to verify this assumption for
machine learning methods; see Section 3.6.4 and Appendix 3.A.1.

Assumption 3.4. For all n ∈ N, it holds that:

(i) E [µ(Zi)|Xi = x] is twice continuously differentiable in x on X \{0} for all µ ∈ Mn;

(ii) sup
µ∈Tn

sup
x∈Xh\{0}

∣∣∂1xE [µ(Zi)− µ̄n(Zi)|Xi = x]
∣∣ = o(1/h);

(iii) sup
µ∈Tn

sup
x∈Xh\{0}

∣∣∂2xE [µ(Zi)− µ̄n(Zi)|Xi = x]
∣∣ = o(1).

Part (i) strengthens Assumption 3.1 and requires that E[µ(Zi)|Xi = x] is twice con-
tinuously differentiable to the left and to the right of the cutoff. We emphasize that
we do not require continuity of the derivatives of E[µ(Zi)|Xi = x] at the cutoff. This
assumption is analogous to the assumptions of Calonico et al. (2019), who assume that
E[Zi|Xi = x] is (thrice in their case) continuously differentiable to the left and to the
right of the cutoff but not necessarily at the cutoff.7 If, however, ∂2xE[µ(Zi)|Xi = x] is
continuous at the cutoff, we can exploit this assumption to simplify our asymptotic re-
sults; see Corollary 3.1. Parts (ii) and (iii) impose high-level requirements on derivatives
of E [µ(Zi)− µ̄n(Zi)|Xi = x] for µ ∈ Tn.

7In their main analysis, Calonico et al. (2019) assume only that E[Zi|Xi = x] is continuous also at
the cutoff, which ensures consistency of the RD estimator. The higher-order smoothness assumptions
ensure that standard theory of local linear estimation can be applied to their RD estimator.
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Assumption 3.4 follows from Assumption 3.3 under regularity conditions on the con-
ditional distribution of the additional covariates given the running variable. Specific
conditions may depend on the estimator used. If the adjustment function is linear, then
it follows if each component of E[Zi|Xi = x] is twice continuously differentiable on X \{0}.
Assumption 3.4 also follows whenever the conditional density fZ|X(z|x) is bounded away
from zero on its support and the partial derivatives ∂jxfZ|X(z|x) are L-Lipschitz contin-
uous in x for all z and j ∈ {0, 1}. We discuss further, technical sufficient conditions for
this assumption in Appendix 3.A.2.

Assumption 3.5. There exist constants B and L such that the following conditions hold
for all n ∈ N. (i) E[Mi(µ̄n)|Xi = x] is twice continuously differentiable on X \ {0} with
L-Lipschitz continuous second derivative bounded by B; (ii) For all x ∈ X and some q > 2

E[(Mi(µ̄n)− E[Mi(µ̄n)|Xi])
q|Xi = x] exists and is bounded by B; (iii) V[Mi(µ̄n)|Xi = x]

is L-Lipschitz continuous and bounded from below by 1/B for all x ∈ X \ {0}.

Assumption 3.5 is a translation of standard RD assumptions to the setting withMi(µ̄n)

as the outcome variable. We employ these conditions to show asymptotic normality of our
proposed RD estimator and to characterize its bias. Part (i) requires that the conditional
expectation of the outcome variable is twice continuously differentiable to the left and to
the right of the cutoff. Parts (ii) and (iii) impose standard assumptions on conditional
moments of the outcome variable.

3.4.2. Main Asymptotic Results. In this section, we study the asymptotic properties
of our estimator. We define the following kernel constants: ν̄ = (ν̄22 − ν̄1ν̄3)/(ν̄2ν̄0 − ν̄21)

and κ̄ =
∫∞
0
(k(v)(ν̄1v − ν̄2))

2dv/(ν̄2ν̄0 − ν̄21)
2, where ν̄j =

∫∞
0
vjk(v)dv.

Theorem 3.1. Suppose that Assumptions 3.1–3.4 hold.

(i) It holds that
τ̂CF (h; µ̂n) = τ̂(h; µ̄n) + op(h

2 + (nh)−1/2).

Suppose additionally that Assumption 3.5 holds.

(ii) It holds that
√
nhV (µ̄n)

−1/2
(
τ̂CF (h; µ̂n)− τ −B(µ̄n)h

2
)
→ N (0, 1),

where for µ ∈ Mn

B(µ) =
1

2
ν̄
(
∂2xE[Mi(µ)|Xi = x]

∣∣
x=0+

− ∂2xE[Mi(µ)|Xi = x]
∣∣
x=0−

)
+ oP (1),

V (µ) =
κ̄

fX(0)

(
V[Mi(µ)|Xi = 0+] + V[Mi(µ)|Xi = 0−]

)
.
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(iii) For all functions µ ∈ Mn, it holds that

V (µ) ≥ V (µn) =
κ̄

fX(0)

(
E
[
V[Yi|Zi, Xi]|Xi = 0+

]
+ E

[
V[Yi|Zi, Xi]|Xi = 0−

]
+
1

2
V
[
µ+
n (Zi)− µ−

n (Zi)|Xi = 0
])
.

Part (i) states the key technical result. It shows that the proposed estimator is
asymptotically equivalent to its infeasible analog with the estimator µ̂n replaced with
the deterministic sequence µ̄n. We emphasize that this equivalence holds even though
the first-stage estimator can converge arbitrarily slowly. This high insensitivity is only
possible because for all k ∈ N

∂kµ
(
E[Mi(µ)|Xi = 0+]− E[Mi(µ)|Xi = 0−]

)
|µ=µn = 0 (3.7)

where ∂kµ is the k-th functional derivative with respect to the function µ. This property
is in the spirit of Neyman orthogonality with respect to the adjustment function µ. We
discuss it further in Appendix 3.B.3.

Based on the asymptotic equivalence result in part (i), the asymptotic normality
shown in part (ii) follows from standard theory of local linear estimation. The approx-
imate variance depends on the sequence µ̄n around which the first-stage estimator con-
centrates. If µ̄n = µn, then the variance expression is similar to the efficiency bound for
estimation of the average treatment effect under unconfoundedness with a constant con-
ditional probability of treatment equal to one half (Hahn, 1998). We discuss the analogy
between the covariate adjustments used for randomized experiments and our approach
in Appendix 3.B.2.

The proposed covariate adjustments lead to efficiency gains compared to the standard
RD estimator in a very wide range of settings, even if µ̄n ̸= µn. We show in Appendix 3.D
that V (µ̄n) < V (0) if and only if V[µn(Zi) − µ̄n(Zi)|Xi = 0] < V[µn(Zi)|Xi = 0], i.e.
whenever µ̄n(Zi) has some explanatory power for µn(Zi). This condition is satisfied for
example if µ̄n(Zi) represents some nontrivial projection of Yi on Zi based on the data in
a neighborhood of the cutoff.

The bias expression simplifies under an additional smoothness assumption. If the
smoothness condition in Assumption 3.4(i) holds also at the cutoff, then the leading bias
does not depend on the function µ̄n. The simplified bias expression is convenient for
conducting statistical inference based the bias-aware approach; see Section 3.5.2.

Corollary 3.1. Suppose that Assumptions 3.1–3.5 hold and ∂2xE[µ̄n(Zi)|Xi = x] is con-
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tinuous at the cutoff for all n ∈ N. Then

B(µ̄n) =
1

2
ν̄
(
∂2xE[Yi|Xi = x]|x=0+ − ∂2xE[Yi|Xi = x]|x=0−

)
+ oP (1).

Remark 3.1. It follows from the proof of Theorem 3.1 that our proposed estimator is
asymptotically equivalent to the average of RD estimators run on different folds of the
data.8 We prefer our version because existing estimation and inference routines as well
as bandwidth selectors can be readily applied to the modified data (Mi(µ̂n,s(i)), Xi)i∈[n];
see Section 3.5.

3.4.3. Standard Error. To estimate the variance of our estimator, we use a standard
error of the form

ŝe2CF (h; µ̂n) =
n∑
i=1

w2
i (h)σ̂

2
i (µ̂n,s(i)),

where σ̂2
i (µ̂n,s(i)) is an estimator of the variance σ2

i (µ̄n) = V[Mi(µ̄n)|Xi]. Following Noack
and Rothe (2021), we consider a version of the nearest neighbor variance estimator of
Abadie et al. (2014).9 We choose some R, say R = 5, which determines the number of
neighbors to be used in the variance estimation. Based on the realized running variable,
for each unit i, we determine its R nearest neighbors that are on the same side of the
cutoff and within the same fold as unit i. Our estimator σ̂2

i (µ̂n,s(i)) is proportional to
the squared difference between Mi(µ̂n,s(i)) and its best linear predictor given the running
variable based on its R nearest neighbors. We give a formal definition of this estimator
in Appendix 3.C.4.

Proposition 3.1. Suppose that Assumptions 3.1–3.5 hold and that for all x ∈ X and
n ∈ N, supµ∈Tn E[(Mi(µ)− E[Mi(µ)|Xi])

4|Xi = x] is bounded by B. Then

nh ŝe2CF (h; µ̂n)− V (µ̄n) = oP (1).

The additional assumption imposed in Proposition 3.1 strengthens Assumption 3.5(ii).
Existence of conditional fourth moments of the outcome variable is often used for showing
consistency of standard errors.

8A similar point is made by Chernozhukov et al. (2018) in the context of the (unconditional) average
treatment effect estimation; cf. their methods DML1 and DML2. Fan et al. (2020) average local linear
estimators run on different folds of the data in a conditional average treatment effect estimation problem.

9Alternatively, one can use the Eicker-Huber-White (EHW) standard error, but it might be conserva-
tive in finite samples; see the discussion by Abadie et al. (2014) in the standard nonparametric regression
context.
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3.5. IMPLEMENTATION DETAILS
In this section, we address point estimation and inference. We also discuss how to incor-
porate different bandwidths on different sides of the cutoff in the second stage.

3.5.1. Bandwidth Choice. One of the key steps to implement our estimation procedure
is to choose the bandwidth h for the local linear regression in the second stage. We
consider two approaches used in the RD literature.

First, we can select the bandwidth that minimizes the asymptotic mean squared error
(AMSE), which is defined as:

AMSEn(h) = B(µ̄n)
2h4 +

1

nh
V (µ̄n).

The optimal bandwidth is then given by hopt = (V (µ̄n)/(4B(µ̄n)
2))

1/5
n−1/5. It can be

estimated following the procedures proposed by Imbens and Kalyanaraman (2012) and
Calonico et al. (2014). These procedures require estimating ∂2xE[Mi(µ̄n)|Xi = x] to the
left and to the right of the cutoff, which can be done using our generated outcome variable
under additional smoothness assumptions.

Second, we can adapt the ‘bias-aware’ approach of Armstrong and Kolesár (2020).
They select the bandwidth that minimizes the worst-case mean squared error over a
function class formed by imposing a bound on the second derivatives of the considered
function. Suppose that |∂2xE[Mi(µ̄n)|Xi = x]| is bounded by constants BM− and BM+

to the left and to the right of the cutoff, respectively, and let BM = BM− + BM+. The
leading bias term of our estimator is then bounded in absolute value by 1

2
|ν̄|BMh

2. The
bandwidth minimizing the corresponding worst-case asymptotic mean squared error is
given by hBAopt = (V (µ̄n)/(ν̄BM)2)

1/5
n−1/5. Implementation of this bandwidth selector

requires choosing the smoothness constants BM− and BM+. See Armstrong and Kolesár
(2020) and Noack and Rothe (2021) for discussions of the choice of smoothness constants.
We note that under the smoothness assumption in Corollary 3.1, it suffices if the smooth-
ness constants BM− and BM+ are chosen so as to bound |∂2xE[Yi|Xi = x]| to the left and
to the right of the cutoff, respectively.

3.5.2. Confidence Intervals. We construct confidence intervals (CIs) for τ based on the
asymptotic distribution obtained in part (ii) of Theorem 3.1. The variance Vn(µ̄n) can
be estimated using the standard error ŝeCF (h; µ̂n) proposed in Section 3.4.3. To account
for the asymptotic bias, we can adapt standard methods available in the nonparametric
literature.

First, we consider undersmoothing (US), which relies on selecting a bandwidth of
order smaller than n−1/5. In this case, the bias is asymptotically negligible, and an
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asymptotically valid 1− α CI can be formed as:

CIUSα = [τ̂CF (h; µ̂n)± z1−α/2 · ŝeCF (h; µ̂n)], (3.8)

where zu is the u-quantile of the standard normal distribution. The two further ap-
proaches allow for the optimal bandwidths discussed in the previous section, which are
of order n−1/5.

Second, the robust bias corrections (RBC) proposed by Calonico et al. (2014) can be
easily adapted to our setting. In this approach, we subtract an estimate of the leading
bias term and account for the additional variation in the bias-corrected estimator when
forming a CI. These additional steps can be conducted using our generated outcome vari-
able Mi(µ̂n,s(i)) instead of the original outcome Yi under further regularity conditions. Let
τ̂RBCCF (h; µ̂n) be the bias-corrected estimator and ŝeRBCCF (h; µ̂n) the corresponding standard
error. The proposed CI is given by:

CIRBCα = [τ̂RBCCF (h; µ̂n)± z1−α/2 · ŝeRBCCF (h; µ̂n)], (3.9)

The third approach adapts the ‘bias-aware’ approach of Armstrong and Kolesár (2020).
Under the assumption of bounded second derivatives discussed in the previous section, it
follows that an asymptotically valid 1− α confidence interval can be formed as:

CIBAα = [τ̂CF (h; µ̂n)± cv1−α(r̂(h)) · ŝeCF (h; µ̂n)],

where r̂(h) = 1
2
|ν̄|BMh

2/ŝeCF (h) and cv1−α(t) is the 1 − α quantile of the folded nor-
mal distribution |N (t, 1)|. One can also account for the maximal bias of the infeasible
estimator τ̂(h; µ̄n) conditional on Xn instead of bounding only the leading bias term.

3.5.3. Different Bandwidths. Our estimation procedure introduced in Section 3.3.3
employs a single bandwidth in the second-stage local linear regression. In some empirical
settings, however, it might be desirable to run two separate local linear regressions using
different bandwidths on different sides of the cutoff. The reason for that might be, for
example, that the curvature of the conditional expectation of the outcome variable or its
conditional variance are different to the left and to the right of the cutoff. Another reason
for choosing different bandwidths might be that the density of the running variable is
very steep at the cutoff, so that the numbers of observations with the running variable
in (−hopt, 0) and (0, hopt) are substantially different.

It is straightforward to account for different bandwidths in the asymptotic distribution
of our estimator, but the adjustment term based on µn is no longer optimal in such a
case. We therefore generalize the optimality result in part (iii) of Theorem 3.1. When
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bandwidths h− and h+ are used to the left and to the right of the cutoff, respectively,
then the variance of our estimator in large samples is approximately equal to:

Ṽ (µ̄n) = ω+V[Mi(µ̄n)|Xi = 0+] + ω−V[Mi(µ̄n)|Xi = 0−],

where ω− =
∑n

i=1wi,−(h−)
2 and ω+ =

∑n
i=1wi,+(h+)

2 and the weights wi,− and wi,+

correspond to the local linear estimators run using the data to the left and to the right
of the cutoff, respectively. The explicit expressions are given in Appendix 3.C.1.10 The
weights ω− and ω+ capture the inverse of the effective sample size to the left and to the
right of the cutoff, respectively.

We show in Appendix 3.D that Ṽ (µ) is minimized by the function

µ∗
n(z) =

ω−

ω− + ω+

µ−
n (z) +

ω+

ω− + ω+

µ+
n (z) (3.10)

in the sense that Ṽ (µ∗
n) ≤ Ṽ (µ) for all µ ∈ Mn. This result is consistent with Theorem 3.1

because ω−/(ω− + ω+) → 1/2 under our assumptions if h− = h+.
We remark that for any given bandwidths the above weighting scheme puts more

weight to the side of the cutoff where the effective sample size is smaller. The rea-
son for that is apparent in the proof given in Appendix 3.D, where we show that mini-
mization of Ṽ (µ) is equivalent to minimization of Ṽ(µ) = ω+V[µ+

n (Zi)− µ(Zi)|Xi = 0] +

ω−V[µ−
n (Zi)− µ(Zi)|Xi = 0]. If, for example, ω+ is large compared to ω−, then choosing

µ so as to make V[µ+
n (Zi) − µ(Zi)|Xi = 0] small is relatively more important than de-

creasing the value of V[µ−
n (Zi)− µ(Zi)|Xi = 0]. Accordingly, µ+

n receives a higher weight
in (3.10) in such a case.

3.6. EXAMPLES OF COVARIATE ADJUSTMENTS
In this section, we give primitive conditions for our high-level Assumptions 3.3 and 3.4,
which concern the properties of the first-stage estimator. We consider in turn: linear,
non-linear parametric, local linear, and generic machine learning adjustments. In Sec-
tions 3.6.1–3.6.3, where we consider methods suitable for settings with a low-dimensional
covariate, we assume that the distribution of Wi does not change with n.

10Apart from allowing for different bandwidths, Ṽ (µ) differs from V (µ) in Theorem 3.1 in that it
does not rely on kernel-weighted sums of Xi to converge to their limits. As such, Ṽ(µ̄n) may capture
the finite-sample variance of our estimator more accurately. Still, this expression remains valid only
asymptotic as we use V[Mi(µ)|Xi = x] evaluated to the left and to the right of the cutoff, rather than
for each Xi separately.
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3.6.1. Linear Adjustments. We define a linear estimator using observations close to
the cutoff:

β̂s = arg minβ
∑
s∈Ics

K(Xi/h)(Yi − β⊤(Z⊤
i Ti, Z

⊤
i (1− Ti), Xi, TiXi, Ti, 1)

⊤)2. (3.11)

Let β̂+
s,Z denote the first d components of β̂s and let β̂−

s,Z be the next d components of
β̂s. We define µ̂n,s(z) = z⊤β̂s,Z , where β̂s,Z = 1

2
(β̂+

s,Z + β̂−
s,Z).11 Let Z̄i = (1, Z⊤

i , Xi/h1)
⊤.

Assumptions 3.3 and 3.4 hold if we can ensure that the estimated slope coefficients concen-
trate around some deterministic sequence and the conditional expectation E[Zi|Xi = x]

is sufficiently smooth.

Assumption 3.6. (i) Each component of E[Zi|Xi = x] is twice differentiable on X \ {0}
with L-Lipschitz continuous second derivative for some constant L; (ii) The limit as
n → ∞ of E[Kh1(Xi)Z̄iZ̄

⊤
i ] is non-singular; (iii) E[Z⊤

i Zi|Xi = x] is bounded uniformly
over x ∈ X .

Proposition 3.2. Suppose that Assumption 3.6 holds and either (i) h1 → 0 and nh1 → ∞
or (ii) h1 → c > 0. Then Assumptions 3.3 and 3.4 are satisfied.

This type of adjustments bears a resemblance to the procedure of Calonico et al.
(2019). Specifically, they obtain their estimator from a regression as in (3.11) but with
two main differences. First, they using the whole sample. With these simple adjustments,
cross-fitting is not necessary in our procedure, but it does not have any adverse effects.
Second, they impose the restriction that β̂+

Z = β̂−
Z . Doing so implies by standard OLS

algebra that µ̂n(z) puts more weight to the side of the cutoff with the larger effective
sample size. As can be seen in Section 3.5.3, this type of weighting is not optimal.12

3.6.2. Non-linear Parametric Adjustments. Suppose that the researcher uses some
parametric specification mβ(z) = 1

2
(m−

β (z) + m+
β (z)) for the function µn, which can be

based, e.g., on the logit or probit model. This specification might be correct or incorrect.
The function mβ is known up to a finite-dimensional parameter β ∈ B ⊂ Rdβ . We
assume that there is an estimator β̂ converging to some nonrandom probability limit β̄.
Classic conditions for consistency in M-estimation problems are given, e.g., by Newey
and McFadden (1994).

Assumption 3.7. (i) For some β̄ and rn → 0, ∥β̂−β̄∥∞ = Op(rn); (ii) For all β1, β2 ∈ B,
z ∈ Z, and some constant G, |mβ1(z)−mβ2(z)| ≤ G||β1 − β2||∞.

11As discussed in Section 3.3.2, it suffices to estimate µn up to a constant.
12A similar point is made by Negi and Wooldridge (2020) in the context of randomized experiments.
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Assumption 3.7 guarantees that the first-stages estimator converges in the supremum
norm to some limiting function. With this mode of convergence, Assumption 3.3 follows
trivially, and Assumption 3.4 also holds under regularity conditions on the conditional
distribution of the additional covariates given the running variable. For concreteness, we
assume that Zi is continuously distributed given Xi, but analogous results can be derived
if the additional covariates have a discrete distribution.

Proposition 3.3. Suppose that Assumptions 3.1, 3.2, and 3.7 hold. Moreover, Zi has
bounded support and ∂jxfZ|X(z|x) is L-Lipschitz continuous in x for all z and j ∈ {0, 1}.
Then Assumptions 3.3 and 3.4 are satisfied.

3.6.3. Nonparametric Adjustments. We consider covariate adjustments based on clas-
sic nonparametric methods, which are suitable if the number of additional covariates is
not too large. To fix ideas, we focus on local linear estimation (Fan and Gijbels, 1996),
but similar results can be obtained for example for sieve estimation (Newey, 1997).

For z ∈ Rd, we define the multivariate kernel as the product of univariate kernels,
Kh(z) =

∏d
i=1Kh(zi), where Kh(v) = 1

h
K(v/h).13 We define estimators of µ+

n (z) and
µ−
n (z) using data in the complement of the sth fold as:

µ̂+
n,s(z) = e⊤1 arg minβ

∑
i∈Ics

TiKhX (Xi)KhZ (Zi − z)(Yi − β⊤(1, (Zi − z)⊤, Xi))
2,

µ̂−
n,s(z) = e⊤1 arg minβ

∑
i∈Ics

(1− Ti)KhX (Xi)KhZ (Zi − z)(Yi − β⊤(1, (Zi − z)⊤, Xi))
2.

In Assumption A.3.8 in Appendix 3.C.6, we impose standard assumptions on the data
generating process for the local linear estimator.

Proposition 3.4. Suppose that Assumptions 3.1, 3.2, and A.3.8 hold. Further, assume
that hX → 0, hZ → 0, log(n)/(nhXhdZ) → 0, and ∂2xfZ|X(z|x) is L-Lipschitz continuous
in x for all z. Then Assumptions 3.3 and 3.4 are satisfied.

Under Assumption A.3.8 and the bandwidth conditions of Proposition 3.4, Masry
(1996) shows that the local linear estimator is uniformly consistent. Using this result, As-
sumption 3.1 follows trivially. Assumption 3.4 also follows under the additional smooth-
ness conditions; see the discussion in Appendix 3.A.2.

We emphasize that the bandwidth conditions are very mild, and they can be chosen,
e.g., via cross-validation under further, standard regularity conditions. With a moderate
number of covariates, it is optimal to choose a relatively large bandwidth, but this is

13The kernel chosen for the local linear first-stage estimator can be also different from the kernel used
in the second stage.
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allowed as long as they converge to zero. In general, with our method is advisable to
oversmooth, rather than undersmooth when choosing the bandwidths in order to guaran-
tee that the estimator is not too volatile. Oversmoothing comes at the cost of a possible
increase in the variance of the final estimator, but it renders the normal approximation
of the asymptotic distribution more reliable in finite samples.

3.6.4. Adjustments Based on Machine Learning Methods. We outline a general
approach to ensuring that our high-level assumptions hold for many machine learning
methods. Results about estimation of conditional expectations using machine learning
methods typically concern convergence in mean square. We can make use of these results
by estimating the functions µ−

n and µ+
n based on narrow, fixed ‘slices’ of the data to the

left and to the right of the cutoff, respectively.14 Specifically, for any fixed h1, we can
readily obtain the result that the selected estimator belongs to some realization set Tn
with probability approaching one, and

sup
µ∈Tn

E
[
(µ(Zi)− µ̄n(Zi))

2|Xi ∈ Xh1

]
= o(1), (3.12)

where µ̄n(z) = 1
2
(µ̄+

n (z) + µ̄−
n (z)) with µ̄+

n (z) = E[Yi|Zi = z,Xi ∈ (0, h1)] and µ̄−
n (z) =

E[Yi|Zi = z,Xi ∈ (−h1, 0)]. If the conditional distribution of the additional covariates
given the running variable is sufficiently smooth on the interval (−h1, h1), then the above
property implies that Assumptions 3.3 and 3.4 hold; see Appendix 3.A for more details.

Primitive conditions for (3.12) are available for a variety of machine learning tech-
niques, e.g. post-lasso (Belloni et al., 2012), random forests (Breiman, 2001; Wager and
Athey, 2018), and deep neural networks (Farrell et al., 2021). Hence, we can flexibly
choose a method that is best-suited for a given dataset under the assumptions imposed.

With fixed h1, µ̄n might be different from µn. Our theory allows for that, but this
procedure in general does not achieve the optimal variance V (µn). In the previous section,
we show that for the local linear estimator, the optimal variance can be achieved by
choosing h1 that converges to zero. It would be interesting to formally study the setting
with h1 → 0 for other methods. We leave this for future research.

14Restricting the sample corresponds to weighting the observations based on a uniform kernel. Our
reasoning applies also to any other kernel weighting scheme, e.g. using the triangular kernel.
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3.7. SIMULATIONS
We compare the finite sample performance of our proposed estimator for different first-
stage estimation methods in a Monte Carlo study.

3.7.1. Setup. We consider four models, which differ in the number of covariates entering
the outcome equation, which we denote by L ∈ {0, 4, 10, 25}. The running variable Xi

follows the uniform distribution over [−1, 1]. There are four independent, baseline covari-
ates, denoted by Zb

i , which are distributed uniformly over [−1 + x2, 1 + x2]4 conditional
on Xi = x. We generate further covariates based on the baseline covariates using Hermit
polynomials. Let bl(Zb

i ) denote the l-th covariate. The outcome is generated according
to the following model:

Yi = Di + µL(Xi, Zi) + εi,

where εi ∼ N (0, 0.25) and

µL(Xi, Zi) = sign(Xi) · (Xi +X2
i − 2 (Xi − 0.1)2+) + ῑL(ρ)

L∑
l=1

bl(Z
b
i ).

For positive L and ρ, we chose the coefficient ῑL(ρ) so that V[µL(0, Zi)|Xi = 0] = ρ2V[εi].
In this definition, ρ represents the signal to noise ratio at the cutoff given the treatment
status. It determines the scope for improvements from using covariates, but it does not
affect the relative performance of different covariate adjustments. For concreteness, in
the main text, we consider ρ = 3. We report simulation results for further values of ρ
in Appendix 3.E. The results are based on 5, 000 simulation draws. The sample size is
2, 000 for the main results.

We consider in total seven implementations of the first-stage estimator: (i) the stan-
dard RD estimator with no covariate adjustments; (ii) the infeasible, optimal RD esti-
mator with covariate adjustments based on the true conditional expectation function;
(iii) the infeasible RD estimator with adjustments based on the best linear prediction on
the population level of the true conditional expectation function given the four baseline
covariates.15 We consider four feasible adjustment functions based on:16 (iv) a linear
regression given the four baseline covariates; (v) a local linear regression given the four

15We obtain the population projection coefficients based on 107 draws with Xi = 0 and εi = 0. We
fix this estimate through all simulations for each data generating process.

16In the first-stage, the observations are weighted using kernel weights with the bandwidth selected
for the standard RD estimator.
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baseline covariates; (vi) a post-lasso regression given 200 covariates; and (vii) a random
forest with the four baseline covariates.

To keep the exposition simple, in the main text, we consider only the bias-aware
approach for the implementation of the second stage. Our procedure is based on the true
bound on the second derivative of the conditional expectation of the outcome variable.
The bandwidth is chosen to be optimal in terms of the estimated worst-case mean squared
error. The main qualitative conclusions of our simulation study hold also for robust bias
corrections and undersmoothing. We present these results in Appendix 3.E. There we
also compare our estimators to the linear covariates adjustment method proposed by
Calonico et al. (2019).17

Table 3.1: Simulation Results
Cov Bias SD CI h Cov Bias SD CI h

Model 1: L=0 Model 2: L=4
Standard 97.0 -1.4 7.4 32.4 43.2 96.1 -7.1 18.6 81.8 68.8
Optimal Inf 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2
Linear Inf 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2

Linear 97.0 -1.4 7.4 32.7 43.3 96.7 -1.5 7.5 32.6 43.3
Local Linear 97.0 -1.4 7.4 32.7 43.3 96.8 -1.4 7.5 32.7 43.3
Lasso 96.7 -1.4 7.6 33.1 43.6 96.6 -2.1 8.8 38.3 46.6
Forest 96.8 -1.5 7.6 33.1 43.6 96.7 -2.1 8.7 37.9 46.5

Model 3: L=10 Model 4: L=25
Standard 96.4 -9.5 19.1 87.6 79.3 95.9 -6.3 18.5 81.0 68.5
Optimal Inf 96.5 -1.3 7.6 32.5 43.2 96.9 -1.3 7.4 32.4 43.2
Linear Inf 96.7 -4.8 12.7 56.2 61.8 96.8 -4.3 10.3 47.2 59.0

Linear 95.9 -4.0 13.7 59.1 59.7 96.5 -4.3 10.8 49.2 58.8
Local Linear 96.3 -1.6 8.3 35.6 45.2 96.8 -1.6 8.2 35.9 45.6
Lasso 96.2 -2.0 9.2 39.1 46.7 96.8 -1.4 7.7 34.0 44.3
Forest 96.6 -1.9 8.5 37.2 46.9 97.1 -2.2 9.3 41.3 49.0

Notes: Results based on 5000 Monte Carlo draws for the bias-aware approach. All numbers are
multiplied by 100. Columns show results for simulated coverage for a nominal confidence level
of 95% (Cov); the mean bias (Bias); the mean Standard Deviation (SD); the mean confidence
interval length (CI); and the mean bandwidth (h).

17All computations are carried out with the statistical software R. The Hermit-polynomials are com-
puted using the package calculus. To implement the first-stage estimators, we use the following pack-
ages: np for local polynomial regressions; glmnet for lasso regressions; grf for random forests, where
predictions are based on 200 trees. In the second stage, a triangular kernel is used and EHW standard
errors are computed. The bias-aware approach is based on the package RDHonest, and the other two
approaches are implemented using the package rdrobust.
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3.7.2. Simulations Results. Table 3.1 reports estimation and inference results for differ-
ent types of adjustments. The CIs for all estimators have simulated coverage rates close
to their nominal ones.18 First, we compare the standard RD estimator and the infeasible
estimators. In Model 1, these estimators are numerically equal. In Models 2–4, where the
covariates have some explanatory power for the outcome, the infeasible estimators have
a substantially lower standard deviation than the standard estimator has. If the linear
model is misspecified, the standard deviation of the optimal infeasible estimator is much
smaller than that of the infeasible estimator with linear adjustments. We now turn to
the feasible covariate-adjusted RD estimators. As predicted by Theorem 3.1, their mean
standard deviations are close to those of their respective infeasible estimator, with only
a slight increase due to the first-stage estimation.

In Figures 3.1 and 3.2, we compare the difference between the optimal infeasible RD
estimator and two feasible ones: with adjustments based on local linear regression and
post-lasso regression for several choices of the tuning parameters. In each simulation
draw, we find the MSE-optimal tuning parameters via cross-validation, and then scale it
down or up by different factors.19 We consider two sample sizes, n = 2000 and n = 10000.
We normalize the difference by the standard error of the optimal infeasible RD estimator.

In Figure 3.1, we observe that the normalized difference between the estimators is
relatively small for a wide range of bandwidths around the optimal one. By comparing
panels (a) and (b), we can see that these normalized differences become smaller as the
sample size increases, which illustrates the asymptotic equivalence result in part (i) of
Theorem 3.1. For a given sample size, the average absolute value of the normalized
differences is U-shaped as a function of the bandwidth. If the bandwidth chosen in the
first stage is too small, then the local linear estimator is very unstable. In this case, the
property in Assumption 3.3 is not a good description of its finite-sample behavior, and
the equivalence result in Theorem 3.1 fails. If the bandwidth is chosen to be too large,
the local linear estimator has a relatively small variance, but it might be heavily biased,
and it is effectively very similar to the linear estimator. In this case, the equivalence to
an infeasible estimator holds with a different limiting sequence (µ̄n)n∈N. We expect the
estimator to be less efficient, but we emphasize that our inference procedure remain valid
in this case.

Figure 3.2 shows a very similar pattern as Figure 3.1. If the penalty parameter in
the lasso regression is chosen to be too small, effectively all covariates are classified as

18In the considered models, the maximal bias is not achieved, so that the bias-aware CIs are conser-
vative.

19To facilitate comparisons of different covariate adjustments, in each simulation draw, we use the
bandwidth selected for the standard RD estimator in the second stage across all different methods.
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relevant, and the first-stage estimator has a high variance. In contrast, if the penalty
parameter is chosen to be too large, very few covariates are classified as relevant. In this
case, the RD estimator behaves similarly to the standard RD estimator.

3.8. CONCLUSIONS
Linear covariate adjustments are commonly used in RD designs to improve efficiency of
the standard RD estimator. In this chapter, we propose a class of RD estimators that
allow for nonparametric covariate adjustments, which can reduce the variance of the RD
estimator even further. We allow for a wide range of covariate adjustments under mild
conditions. Despite using possibly highly complex covariate adjustments, inference on
the RD parameter can be conducted using standard methods available in the literature.
We illustrate our results in a simulation study.
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(a) Sample size n = 2, 000.
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(b) Sample size n = 10, 000.

Figure 3.1: Normalized difference of RD estimates with local linear adjustments.
Notes: Difference between optimal infeasible and feasible RD estimate normalized by standard deviation
of infeasible estimator. We consider various scaling factors for the cross-validated MSE-optimal first-
stage bandwidth. Simulations are based on Model 3. Panel (a) shows simulation results for n = 2, 000,
and Panel (b) for n = 10, 000.
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(a) Sample size n = 2, 000.
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(b) Sample size n = 10, 000.

Figure 3.2: Normalized difference of RD estimates with post-lasso regression adjustments.
Notes: Difference between optimal infeasible and feasible RD estimate normalized by standard deviation
of infeasible estimator. We consider various scaling factors for the cross-validated MSE-optimal first-
stage penalty parameter. Simulations are based on Model 3. Panel (a) shows simulation results for
n = 2, 000, and Panel (b) for n = 10, 000.
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3.A. FURTHER SUFFICIENT CONDITIONS FOR MAIN ASSUMPTIONS
In this section, we discuss sufficient conditions for our high-level Assumptions 3.3 and
3.4.

3.A.1. Sufficient Conditions for Assumption 3.3. We outline a generic way of ensur-
ing that Assumption 3.3 holds, which can be employed for a wide range of estimators. For
concreteness, we assume that the additional covariates are continuously distributed condi-
tional on the running variable, but similar results can be derived for discrete distributions
or intermediate cases.

Many results in the machine learning literature concern convergence in mean square,
which means that we can obtain the following property:

sup
µ∈Tn

E
[
(µ(Zi)− µ̄n(Zi))

2|Xi ∈ Xh

]
= o(1). (A.3.13)

We can infer our assumption from the above condition if the conditional distribution
of the additional covariates does not change abruptly around the cutoff. Specifically,
suppose that

sup
x∈Xh

sup
z∈Zh

fZ|X(z|x)
fZ|X∈Xh

(z)
< B, (A.3.14)

for some constant B and h small enough. If the conditions in (A.3.13) and (A.3.14) hold,
then Assumption 3.3 is satisfied because::

sup
µ∈Tn

sup
x∈Xh

E
[
(µ(Zi)− µ̄n(Zi))

2|Xi = x
]

= sup
µ∈Tn

sup
x∈Xh

∫
Zh

(µ(Zi)− µ̄n(Zi))
2fZ|X∈Xh

(z)
fZ|X(z|x)
fZ|X∈Xh

(z)
dz

≤ B sup
µ∈Tn

E
[
(µ(Zi)− µ̄n(Zi))

2|Xi ∈ Xh

]
= o(1).

3.A.2. Sufficient Conditions for Assumption 3.4. We show that Assumption 3.4
can be inferred from the convergence imposed in Assumption 3.3 under mild additional
smoothness conditions on the conditional distribution of the additional covariates given
the running variable. This can be most intuitively seen when the support Z is discrete.
In the continuous case some additional integrability conditions are needed.

3.A.2.1. Discrete Additional Covariates. Suppose that the support of the additional covari-
ates, Z, is finite. In this case, Assumption 3.3 implies that supµ∈Tn supz∈Zh

|µ(z)−µ̄(z)| =
o(1). Then for j ∈ {1, 2},

∂jxE[µ(Zi)− µ̄n(Zi)|Xi = x] =
∑
z∈Z

(µ(z)− µ̄(z))∂jxP[Zi = z|Xi = x].
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Given Assumption 3.3, Assumption 3.4 holds if supx∈Xh\{0} supz∈Zh
∂1xP[Zi = z|Xi = x] =

O(1/h) and supx∈Xh\{0} supz∈Zh
∂2xP[Zi = z|Xi = x] = O(1).

3.A.2.2. Continuous Additional Covariates. Suppose that the additional covariates are
continuously distributed given the running variable, and that the conditional density
fZ|X(z|x) is twice differentiable with respect to x on X \ {0} for all z. Further, assume
that for j ∈ {0, 1}, there exists a function Hj(z) integrable over Z such that for all
x1,x2 ∈ (0, h),∣∣∂jxfZ|X(z|x1)− ∂jxfZ|X(z|x2)

∣∣+ ∣∣∂jxfZ|X(z|−x1)− ∂jxfZ|X(z|−x2)
∣∣ ≤ Hj(z)|x1 − x2|.

In this setting, Assumption 3.4 holds if in addition to Assumption 3.3 for j ∈ {0, 1} either

(i) sup
µ∈Tn

sup
z∈Zh

|µ(z)− µ̄n(z)| → 0, or

(ii) sup
x∈Xh\{0}

E
[(
Hj(Zi)/fZ|X(Zi|x)

)2 ∣∣Xi = x
]
<∞.

The first condition requires that the first-stage estimator converges in the supremum
norm. This condition is satisfied for classic nonparametric estimators such as kernel and
sieve estimators, see, e.g., Masry (1996); Newey (1997).

The second condition ensures that Assumption 3.4 holds in combination with L2-
convergence assumed in Assumption 3.3. The additional integrability condition holds for
example if the conditional density fZ|X(z|x) is bounded away from zero and ∂jxfZ|X(z|x)
is bounded for j ∈ {1, 2} uniformly in x and z.

3.B. RELATION TO THE LITERATURE
In this section, we compare our asymptotic results with those of Frölich and Huber (2019)
and draw an analogy between our approach and double-robust estimation of the average
treatment effect in randomized experiments. We also discuss the relation to estimation
based on Neyman-orthogonal moments.

3.B.1. Comparison with Frölich and Huber (2019). Our procedure with the local
linear estimator in the first stage is related to that proposed by Frölich and Huber (2019).
Under our assumptions, for sharp designs with the same kernels of order λ = 2 used in
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both stages, their bias expression simplifies to:

biasFH =
ν̄

2

∫
(µ+

n (z)− µ−
n (z)− τ)

∂2xf(x, z)

fX(0)
dzh2

+
ν̄

2

∫
(∂2xµn(x, z)|x=0+ − ∂2xµn(x, z)|x=0−)fZ|X(z|0)dzh2x

+
ν2
2

L∑
l=1

∫
(∂2zlµ

+
n (z)− ∂2zlµ

−
n (z))fZ|X(z|0)dzh2z,

where µn(x, z) = E[Yi|Xi = x, Zi = z], ν̄ is the “boundary bias kernel constant” defined
before Theorem 3.1, and ν2 =

∫
v2k(v)dv. This expression has a more complicated than

the bias in Theorem 3.1, and it does not simplify further under the additional smoothness
assumption in Corollary 3.1.

The asymptotic variance equals the variance of our proposed estimator when the first-
stage estimator is consistent, VFH = V (µn). The procedure of Frölich and Huber (2019),
however, allows for at most three continuous additional covariates if a second-order kernel
is used in the first-stage local linear regression.

3.B.2. Analogy with ATE estimation. RD designs are very similar in nature to ran-
domized controlled trials. Conditional on the running variable being close to the cutoff, if
the distribution of the covariates evolves continuously through the cutoff, the probability
of observing a unit with any given value of the additional covariate is approximately the
same to the left and to the right of the cutoff. Hence, the treatment is as if randomly
assigned and the propensity score is constant.

In an experiment where the treatment probability is constant across covariates, the
augmented inverse probability weighted estimator of the average treatment effect is given
by:

τ̂ =
1

n

n∑
i=1

(
m̂1(Zi)− m̂0(Zi) +

Ti(Yi − m̂1(Zi))

p̂
− (1− Ti)(Yi − m̂0(Zi))

1− p̂

)
, (A.3.15)

where, m̂t(z) is an estimator of E[Yi|Zi = z, Ti = t] for t ∈ {0, 1}, and p̂ = 1
n

∑n
i=1 Ti is

the proportion of treated units.
This estimator can be also represented as the difference in means in the treatment

and control group of a modified outcome variable:

τ̂ =

∑n
i=1 Ti(Yi − m̂(Zi; p̂))∑n

i=1 Ti
−
∑n

i=1(1− Ti)(Yi − m̂(Zi; p̂))∑n
i=1(1− Ti)

, (A.3.16)

where m̂(z; p̂) = (1 − p̂)m̂1(z) + p̂ m̂0(z). Our proposed estimator is analogous to the
expression in (A.3.16) in the sense that it is the difference between estimates from the
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treatment and control group, except that we replace the estimated propensity score p̂
with the known one, which equals one half.

3.B.3. Insensitivity to the First Stage. In two-stage estimation procedures, the first
stage generally affects the properties of the final estimator. This complication, however,
can be avoided using estimators based on so-called Neyman-orthogonal moments (Ney-
man, 1959, 1979), whose derivative with respect to the nuisance parameter estimated in
the first stage is zero. This method has been recently used in the semiparametric litera-
ture in settings where a, possibly high-dimensional, nuisance parameter is estimated using
machine learning methods; see, e.g., Belloni et al. (2017); Chernozhukov et al. (2018). In
our context, Neyman-orthogonality means that

∂1µ
(
E[Mi(µ)|Xi = 0+]− E[Mi(µ)|Xi = 0−]

) ∣∣
µ=µn

= 0, (A.3.17)

where ∂kµ denotes the k-th functional derivative in all possible directions.
Our setting is related to estimation problems with Neyman-orthogonal moments but

it differs in two main aspects. The property in Equation (3.7) is much stronger than
(A.3.17) because functional derivatives of all orders evaluated at any function µ ∈ Mn

vanish. However, this property holds only conditional on the running variable been at the
cutoff, whereas any estimation procedure has to rely on the data in some neighborhood
of the cutoff.

3.C. PROOFS OF MAIN RESULTS
3.C.1. Additional Notation. We use the following notation throughout the proofs. For
s ∈ [S], i ∈ Is(i), and j ∈ {0, 1}, we define the local linear weights as

w
(j)
i,s (h) = w

(j)
i,s,+(h)− w

(j)
i,s,−(h),

w
(j)
i,s,+(h) = e⊤j+1Q

−1
s,+X̃iK(Xi/h)1{Xi ≥ 0}, Qs,+ =

∑
i∈Is

K(Xi/h)X̃i, X̃
⊤
i 1{Xi ≥ 0},

w
(j)
i,s,−(h) = e⊤j+1Q

−1
s,−X̃iK(Xi/h)1{Xi < 0}, Qs,− =

∑
i∈Is

K(Xi/h)X̃iX̃
⊤
i 1{Xi < 0},

with X̃i = (1, Xi)
⊤. We omit the index s if the sum is taken over the whole sample and

we omit the superscript (j) if j = 0.
Further, for µ ∈ Mn, we let

Ts,+(µ) =
∑
i∈Is

K(Xi/h)X̃iµ(Zi)1{Xi ≥ 0}

Ts,−(µ) =
∑
i∈Is

K(Xi/h)X̃iµ(Zi)1{Xi < 0}.
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Let m(x;µ) = E[µ̄(Zi) − µ(Zi)|Xi = x]. We define β0(µ) = m(0;µ), β+
1 (µ) =

∂xm(x;µ)|x=0+ , and β−
1 (µ) = ∂xm(x;µ)|x=0− , and further β+(µ) = (β0(µ), β

+
1 (µ)) and

β−(µ) = (β0(µ), β
−
1 (µ)). Let H = diag(1, h) and I2 = diag(1,1).

3.C.2. Proof of Theorem 3.1. The proof of Theorem 3.1 is preceded by two lemmas.

Lemma A.3.1. Suppose that Assumption 3.2 holds. Then for all s ∈ [S] it holds that:

(i) For all j ∈ N,

1

nh

n∑
i=1

K(Xi/h)(Xi/h)
jTi = ν̄jfX(0

+) + oP (1),

1

nh

n∑
i=1

K(Xi/h)(Xi/h)
j(1− Ti) = ν̄jfX(0

−) + oP (1),

1

nh

n∑
i=1

K(Xi/h)(Xi/h)
jTi =

S

nh

∑
i∈Is

K(Xi/h)(Xi/h)
jTi +OP ((nh)

−1/2),

1

nh

n∑
i=1

K(Xi/h)(Xi/h)
j(1− Ti) =

S

nh

∑
i∈Is

K(Xi/h)(Xi/h)
j(1− Ti) +OP ((nh)

−1/2).

(ii) For j ∈ {0, 1}, h2j
∑
i∈Is

w
(j)
i,s (h)

2 = OP ((nh)
−1) and hj

∑
i∈Is

|w(j)
i,s (h)X

2
i | = OP (h

2).

Proof. Standard kernel calculations.

Lemma A.3.2. Suppose that Assumptions 3.1–3.4 hold. Then

G(j)
s,⋆ ≡ e⊤j+1H(Q−1

s,⋆Ts,⋆(µ̄n − µ̂n,s)− β⋆(µ̄n − µ̂n,s)) = op(h
2 + (nh)−1/2)

for all s ∈ [S], ⋆ ∈ {+,−}, and j ∈ {0, 1}.

Proof. We analyze the expectation and variance of G(j)
s,⋆ conditional on Xn and (Wj)j∈Ics .

First, we consider the expectation. It holds with probability approaching one that

|E[G(j)
s,⋆|Xn, (Wj)j∈Ics ]| =

∣∣∣∣∣∑
i∈Is

w
(j)
i,s,⋆(h)E[µ̄n(Zi)− µ̂n,s(Zi)|Xi, (Wj)j∈Ics ]

∣∣∣∣∣
≤ sup

µ∈Tn

∣∣∣∣∣∑
i∈Is

w
(j)
i,s,⋆(h)E[µ̄n(Zi)− µ(Zi)|Xi]

∣∣∣∣∣
By Taylor’s theorem with the mean-value form of the remainder, it holds that

m(Xi;µ) = m(0;µ) + ∂xm(x;µ)|x=0⋆Xi +
1

2
∂2xm(x̃i;µ)X

2
i ,
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for some x̃i between 0 and Xi. Using standard local linear algebra and the triangle
inequality, we obtain that

|E[G(j)
s,⋆|Xn, (Wj)j∈Ics ]| ≤ sup

µ∈Tn

∣∣∣∣∣12∑
i∈Is

w
(j)
i,s,⋆(h)∂

2
xm(x̃i;µ)X

2
i

∣∣∣∣∣
≤ sup

µ∈Tn
sup

x∈Xh\{0}

1

2
|∂2xm(x;µ)|

∑
i∈Is

∣∣∣w(j)
i,s,⋆(h)X

2
i

∣∣∣ = op(h
2),

where we use Lemma A.3.1 and Assumption 3.4 in the last step.
Second, we consider the conditional variance. It holds with probability approaching

one that

V
[
G(j)
s,⋆|Xn, (Wj)j∈Ics

]
=
∑
i∈Is

w
(j)
i,s,⋆(h)

2V
[
µ̄n(Zi)− µ̂n,s(Zi)|Xn, (Wj)j∈Ics

]
≤ sup

µ∈Tn

∑
i∈Is

w
(j)
i,s,⋆(h)

2E[(µ̄n(Zi)− µ(Zi))
2|Xi]

≤ sup
µ∈Tn

sup
x∈Xh

E[(µ̄n(Zi)− µ(Zi))
2|Xi = x]

∑
i∈Is

w
(j)
i,s,⋆(h)

2

= op((nh)
−1).

where we use Lemma A.3.1 and Assumption 3.3 in the last step. The conditional conver-
gence implies the unconditional one (see Chernozhukov et al., 2018, Lemma 6.1), which
concludes the proof.

Proof of Theorem 3.1. We prove the three parts separately.
Part (i) It holds that:

τ̂CF (h; µ̂n)− τ̂(h; µ̄n)

= e⊤1

S∑
s=1

{
Q−1

+ Ts,+(µ̄n − µ̂n,s)−Q−1
− Ts,−(µ̄n − µ̂n,s)

}
= e⊤1

S∑
s=1

Q−1
+ Qs,+(Q

−1
s,+Ts,+(µ̄n − µ̂n,s)− β+(µ̄n − µ̂n,s)) + e⊤1

S∑
s=1

Q−1
+ Qs,+ β

+(µ̄n − µ̂n,s)

− e⊤1

S∑
s=1

Q−1
− Qs,−(Q

−1
−,sTs,−(µ̄n − µ̂n,s)− β−(µ̄n − µ̂n,s))− e⊤1

S∑
s=1

Q−1
− Qs,− β

−(µ̄n − µ̂n,s).

≡ A1 + A2 − A3 − A4.
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In the following, we consider each of the four terms separately. First, note that

A1 = e⊤1H
−1

S∑
s=1

HQ−1
+ HH−1Qs,+H

−1H(Q−1
s,+Ts,+(µ̄n − µ̂n,s)− β+(µ̄n − µ̂n,s))

By Lemma A.3.1, for all s ∈ [S], it holds that

HQ−1
+ HH−1Qs,+H

−1 =
1

S
I2 +OP ((nh)

−1/2), (A.3.18)

where throughout the proof we assume that the term OP ((nh)
−1/2) has conformable

dimensions. Using Lemma A.3.2 and noting that e⊤1H−1 = e⊤1 , we obtain that A1 =

op(h
2 + (nh)−1/2).

Second, it holds that

A2 = e⊤1H
−1

S∑
s=1

HQ−1
+ HH−1Qs,+H

−1H β+(µ̄n − µ̂n,s).

Using equation (A.3.18), we obtain that

A2 =
1

S

S∑
s=1

(e⊤1 +Op((nh)
−1/2))H β+(µ̄n − µ̂n,s)

=
1

S

S∑
s=1

β0(µ̄n − µ̂n,s)(1 +Op((nh)
−1/2)) + hβ+

1 (µ̄n − µ̂n,s)Op((nh)
−1/2)

=
1

S

S∑
s=1

β0(µ̄n − µ̂n,s) + op((nh)
−1/2),

where we use the fact β0(µ̄n− µ̂n,s) = op(1) by Assumption 3.3 and hβ+
1 (µ̄n− µ̂n,s) = op(1)

by Assumption 3.4 for all s ∈ [S].
Using analogous calculations, we can show that A3 = oP (h

2 + (nh)−1/2) and A4 =
1
S

∑S
s=1 β0(µ̄n − µ̂n,s) + oP ((nh)

−1/2), which concludes the proof of part (i).
Part (ii). By the conditional version of Lyapunov CLT, we obtain that

se(h; µ̄n)−1(τ̂(h; µ̄n)− E[τ̂(h; µ̄n)|Xn]) → N (0, 1).

where se2(h; µ̄n) =
∑n

i=1wi(h)
2V[Mi(µ̄n)|Xi = Xi]. Further, using L-Lipschitz continuity
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of V[Mi(µ̄n)|Xi = x], we obtain that

se2(h; µ̄n)

=
n∑
i=1

wi,−(h)
2V[Mi(µ̄n)|Xi = 0−] +

n∑
i=1

wi,+(h)
2V[Mi(µ̄n)|Xi = 0+] + op((nh)

−1/2).

It then follows from standard local linear arguments, that nh se2(h; µ̄n)− V (µ̄n) = oP (1)

and E[τ̂(h; µ̄n)|Xn]− τ = B(µ̄n)h
2 + op(h

2).
Part (iii). The proof is discussed in Section 3.3.2. It also follows from Proposition A.3.5.

3.C.3. Proof of Corollary 3.1. This result follows directly from linearity of the second
derivative operator.

3.C.4. Definition of Standard Error. We first introduce the notation. Let µ ∈ Mn.

We denote the standard error by ŝe2(h;µ) =
∑n

i=1w
2
i (h)σ̂

2
i (µ), where

σ̂2
i (µ) =

1

1 +Hi

(
Mi(µ)−

∑
j∈Ri

vj,iMj(µ)

)2

,

vj,i = X̃i

(∑
j∈Ri

X̃⊤
j X̃j

)−1

X̃⊤
j , Hi = X̃i

(∑
j∈Ri

X̃⊤
j X̃j

)−1

X̃i

Here X̃i = (1, Xi) and Ri is the set of the R nearest neighbors of unit i based on
the running variable and within the same fold and on the same side of the cutoff as
unit i. We note that by basic OLS algebra, the weights vj,i satisfy:

∑
j∈Ri

vj,i = 1,∑
j∈Ri

vj,i(Xj −Xi) = 0, and
∑

j∈Ri
v2j,i = Hi.

We further let ŝe2s(h;µ) =
∑

i∈Is w
2
i (h)σ̂

2
i (µ), so that ŝe2(h;µ) =

∑S
s=1 ŝe2s(h;µ). Simi-

larly, we define se2s(h;µ) =
∑

i∈Is w
2
i (h)σ

2
i (µ) and se2(h;µ) =

∑S
s=1 se2s(h;µ).

3.C.5. Proof of Proposition 3.1. Using the triangular inequality, we first note that

|nh ŝe2CF (h; µ̂n)− V (µ̄n)| ≤ nh|ŝe2CF (h; µ̂n)− se2(h; µ̄n)|+ |nh se2(h; µ̄n)− V (µ̄n)|

≤ Smax
s∈[S]

nh|ŝe2s(h; µ̂n,s)− se2s(h; µ̄n)|+ op(1),

where the second inequality follows from the proof of Theorem 3.1. The main step in this
proof is to show that for any s ∈ [S] and conditional on Xn and (Wj)j∈Ics , it holds that

nh|ŝe2s(h; µ̂n,s)− se2s(h; µ̄n)| = oP (1). (A.3.19)
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We remark that the condition in (A.3.19) would essentially follow from the results of
Noack and Rothe (2021) if V[Mi(µ)|Xi = x] was L-Lipschitz continuous for all µ ∈
Tn. Our setting is different as we impose L-Lipschitz continuity only for the function
V[Mi(µ̄n)|Xi = x]. Still, some steps of our proof follow from the proof of Theorem 4 of
Noack and Rothe (2021). We note that

ŝe2s(h; µ̂n,s)− se2s(h; µ̄n)
= (E[ŝe2s(h; µ̄n)|Xn]− se2s(h; µ̄n)) + (ŝe2s(h; µ̂n,s)− E[ŝe2s(h; µ̂n,s)|Xn, (Wj)j∈Ics ])

+ (E[ŝe2s(h; µ̂n,s)− ŝe2s(h; µ̄n)|Xn, (Wj)j∈Ics ])

≡ G1 +G2 +G3.

In the following, we show that each of the three terms is of order oP ((nh)−1). First,
it follows from the proof of Theorem 4 of Noack and Rothe (2021) that G1 = oP ((nh)

−1)

as V[Mi(µ̄n)|Xi = x] is L-Lipschitz continuous by Assumption 3.5.
Second, it is clear that E[G2|Xn, (Wj)j∈Ics ] = 0. Further, it follows that with probabil-

ity approaching one,

E[G2
2|Xn, (Wj)j∈Ics ] ≤ sup

µ∈Tn
E
[(

ŝe2s(h;µ)− E[ŝe2s(h;µ)|Xn]
)2]

= op((nh)
−2),

where the last equality follows from the proof of Theorem 4 of Noack and Rothe (2021)
using boundedness of the fourth conditional moment assumed in the proposition.

We now consider G3. We note that with probability approaching one

|G3| = |
∑
i∈Is

w2
i (h)E[σ̂2

i (µ̂n,s)− σ̂2
i (µ̄n)|Xn, (Wj)j∈Ics ]|

≤ sup
j∈Is: Xj∈Xh

sup
µ∈Tn

∣∣E[σ̂2
j (µ)− σ̂2

j (µ̄n)|Xn]
∣∣∑
i∈Is

wi(h)
2.

Following Noack and Rothe (2021), we note that for any µ ∈ Tn and any i ∈ Is

E[σ̂i(µ)|Xn] = σ2
i (µ) +

1

1 +Hi

(∑
j∈Ri

v2j,i(σ
2
j (µ)− σ2

i (µ))

)
(A.3.20)

+
1

1 +Hi

(
E[Mi(µ)|Xi]−

∑
j∈Ri

vj,iE[Mj(µ)|Xj]

)2

.

In the following, we denote by C a positive constant, which might be different from line
to line. By a second-order Taylor-expansion and by a simple OLS-algebra, it holds for
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the last term in the above expression that

sup
i∈Is: Xi∈Xh

sup
µ∈Tn

1

1 +Hi

(
E[Mi(µ)|Xi]−

∑
j∈Ri

vj,iE[Mj(µ)|Xj]

)2

(A.3.21)

≤ C sup
i∈Is: Xi∈Xh

sup
j∈Ri

|Xi −Xj|4 sup
x∈Xh

sup
µ∈Tn

(∂2xE[Mi(µ)|Xi = x])2 = op(1),

where we used that 1
1+Hi

∑
j∈Ri

v2j,i ≤ 1 and supx∈Xh
supµ∈Tn ∂2xE[Mi(µ)|Xi = x] = O(1)

by Assumptions 3.4 and 3.5.
Using (A.3.20) and (A.3.21), we obtain that

sup
i∈Is: Xi∈Xh

sup
µ∈Tn

|E[σ̂2
i (µ)− σ̂2

i (µ̄n)|Xn]|

≤ sup
i∈Is: Xi∈Xh

sup
µ∈Tn

∣∣∣∣∣σ2
i (µ)− σ2

i (µ̄n) +
1

1 +Hi

(∑
j∈Ri

v2j,i(σ
2
j (µ)− σ2

j (µ̄n) + σ2
i (µ̄n)− σ2

i (µ))

)∣∣∣∣∣
+ op(1)

≤ C sup
i∈Is: Xi∈Xh

sup
µ∈Tn

|σ2
i (µ)− σ2

i (µ̄n)|+ op(1)

≤ C sup
x∈Xh

sup
µ∈Tn

|V[Mi(µ)|Xi = x]− V[Mi(µ̄n)|Xi = x]|+ op(1)

= op(1),

where we used that 1
1+Hi

∑
j∈Ri

v2j,i ≤ 1 and Assumption 3.3. Since
∑

i∈Is wi(h)
2 =

Op((nh)
−1), we conclude that G3 = oP ((nh)

−1).

3.C.6. Proofs for sufficient conditions in Section 3.6.

Proof of Proposition 3.2. We start by showing that Assumption 3.3 holds. It follows
from basic OLS algebra that there exists β̄Z such that for all s ∈ [S] it holds that
∥β̂s,Z − β̄Z∥∞ = OP ((nh1)

−1/2). This implies that β̂s,Z ∈ [β̄s,Z ± (nh1)
−1/2vn] w.p.a. 1.

Let vn → ∞ be a sequence s.t. (nh1)
−1/2vn → 0. We define

Tn = {µ : µ(z) = β⊤z, where β ∈ Bn = [β̄Z ± (nh1)
−1/2vn]}.

By construction, µ̄ ∈ Tn and P[µ̂n,s ∈ Tn] = 1 + o(1) for all s ∈ [S]. Assumption 3.3
follows by noting that

sup
β∈Bn

sup
x∈Xh

E
[
(β⊤Zi − β̄⊤

ZZi)
2|Xi = x

]
≤ d sup

β∈Bn

∥β − β̄Z∥2∞ sup
x∈Xh

E
[
Z⊤
i Zi|Xi = x

]
= o(1).

We now consider Assumption 3.4. For j ∈ {1, 2}, all β ∈ Bn and x ∈ X \ {0}, we
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have that
∂jxE

[
β⊤Zi − β̄⊤

ZZi|Xi = x
]
= (βZ − β̄Z)

⊤∂jxE [Zi|Xi = x] ,

which concludes this proof.

Proof of Proposition 3.3. We start by showing that Assumption 3.3 holds. Let vn be a
sequence such that vn → ∞ and rnvn → 0. We define

Tn = {µ : µ(z) = mβ(z), where β ∈ Bn = [β̄ ± rnvn]}.

By construction, µ̄ ∈ Tn and P[µ̂n,s ∈ Tn] = 1 + o(1) for all s ∈ [S]. Assumption 3.3
follows by noting that

sup
β∈Bn

sup
x∈Xh

E[(mβ(Zi)−mβ̄(Zi))
2|Xi = x] ≤ sup

β∈Bn

∥β − β̄∥2∞G2 = o(1).

We now consider Assumption 3.4. Under the assumptions made, for j ∈ {1, 2}, all β ∈ Bn,
and x ∈ X \ {0}, we have that

∂jxE[mβ(Zi)−mβ̄(Zi)|Xi = x] =

∫
(mβ(z)−mβ̄(z))∂

j
xfZ|X(z|x)dz.

It then follows that for j ∈ {1, 2}

sup
β∈Bn

sup
x∈Xh\{0}

∣∣∂jxE[mβ(Zi)−mβ̄(Zi)|Xi = x]
∣∣

≤ G sup
β∈Bn

∥β − β̄∥∞
∫
Z
|∂jxfZ|X(z|x)|dz = oP (1),

which concludes the proof.

For completeness, we restate the classic assumptions for uniform convergence of the
local linear estimator used by Masry (1996).

Assumption A.3.8. (i) (Xi, Zi) are continuously distributed, and X and Z are compact
and convex; (ii) The joint density f(x, z) is bounded, has bounded first-order derivatives,
and is bounded away from zero for all (x, z) ∈ X × Z; (iii) E[Yi|Xi = x, Zi = z] is
twice continuously differentiable w.r.t. x and z and the second derivatives are Lipschitz
continuous; (iv) supx,z E[|Yi|2+δ|Xi = x, Zi = z] < ∞ for some constant δ > 0; (v) For
j ∈ {0, ..., 3}, Hj(u) ≡ ujK(u) is Lipschitz continuous;

Proof of Proposition 3.4. By Theorem 6 of Masry (1996), supz∈Zh
∥µ̂n(z) − µn(z)∥ =

OP (rn), where rn = o(1). Hence, the set Tn can be chosen s.t. supµ∈Tn ∥µ(Zi) −
µn(Zi)∥∞ = o(1). Assumption 3.3 follows trivially. Assumption 3.4 is also satisfied,
as discussed in Section 3.A.2.
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3.D. VARIANCE CALCULATIONS
In this section, we provide formal derivations for the optimality result discussed in Sec-
tion 3.5.3 and for the discussion of variance reductions in comparison to the standard RD
estimator discussed in Section 3.4. Recall that

Ṽ (µ) = ω+V[Mi(µ)|Xi = 0+] + ω−V[Mi(µ)|Xi = 0−],

µ∗
n(z) =

ω−

ω− + ω+

µ−
n (z) +

ω+

ω− + ω+

µ+
n (z).

We obtain the variance V (µ) and the function µn as a special case when ω+ = ω− = 1.

Proposition A.3.5. Suppose that Assumptions 3.1–3.5 hold. Then for all µ ∈ Mn, it
holds that:

(i) Ṽ (µ∗
n) ≤ Ṽ (µ) with Ṽ (µ∗

n) = Ṽ (µ) if and only if V[µ(Zi)− µ∗
n(Zi)|Xi = 0] = 0;

(ii) Ṽ (µ) < Ṽ (0) if and only if V[µn(Zi)− µ(Zi)|Xi = 0] < V[µn(Zi)|Xi = 0].

Proof. Fix µ, µ̃ ∈ Mn. By basic properties of the conditional expectation, we have that

Ṽ (µ) = ω+V[Yi − µ+
n (Zi)|Xi = 0+] + ω−V[Yi − µ−

n (Zi)|Xi = 0−] + Ṽ(µ),

where the first two terms on the right-hand side do not depend on µ, and

Ṽ(µ) = ω+V[µ+
n (Zi)− µ(Zi)|Xi = 0] + ω−V[µ−

n (Zi)− µ(Zi)|Xi = 0].

Further, it holds that

Ṽ(µ) = Ṽ(µ∗
n + µ− µ∗

n) = ω+V
[

ω−

ω+ + ω−
(µ+

n (Zi)− µ−
n (Zi))− (µ(Zi)− µ∗

n(Zi))|Xi = 0

]
+ ω−V

[
−ω+

ω+ + ω−
(µ+

n (Zi)− µ−
n (Zi))− (µ(Zi)− µ∗

n(Zi))|Xi = 0

]
= Ṽ (µ∗

n) + (ω+ + ω−)V[µ(Zi)− µ∗
n(Zi)|Xi = 0].

Hence, Ṽ (µ) < Ṽ (µ̃) if and only if V[µ(Zi)− µ∗
n(Zi)|Xi = 0] < V[µ̃(Zi)− µ∗

n(Zi)|Xi = 0],
and similarly with equalities instead of inequalities. Both parts of the lemma follow.

3.E. ADDITIONAL SIMULATION RESULTS
In this section, we present further simulation results. Table A.3.1 extends the results
in Table 3.1. Apart from the bias-aware approach discussed in the main text, we con-
sider bandwidth choices and confidence intervals based on robust bias corrections and
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undersmoothing.20 The qualitative conclusions about the relative performance of differ-
ent first-stage estimators in different models remain the same as discussed in the main
text.

The simulated mean bandwidth of robust bias corrections is on average smaller than
that of the bias-aware approach, and the confidence intervals are larger. This feature is
known in the nonparametric literature. In the last two rows of Table A.3.1 we report the
results using the procedure of Calonico et al. (2019). In this simulation setting, they are
essentially the same as the results for our procedure with a linear adjustment function.

In Table A.3.2, we report simulation results for Model 3 for different values of the
signal-to-noise ratio. This illustrates that the potential gains from covariate adjustments
are large if the covariates explain a large portion of variation in the outcome variable.

20The bandwidth for undersmoothing is chosen as n−1/20 times the MSE-optimal bandwidth estimated
using the rdrobust package.
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Table A.3.1: Full simulation results for different numbers of relevant covariates
Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h

Model 1: L=0 Model 2: L=4 Model 3: L=10 Model 4: L=25

Standard
BA 97.0 -1.4 7.4 32.4 43.2 96.1 -7.1 18.6 81.8 68.8 96.4 -9.5 19.1 87.6 79.3 95.9 -6.3 18.5 81.0 68.5

RBC 94.8 1.5 11.0 41.5 29.9 94.7 0.0 35.1 130.9 30.5 94.6 1.1 37.1 140.0 26.9 94.2 1.6 39.3 145.7 24.5
US 94.9 0.6 11.3 42.5 20.5 94.5 -1.1 36.0 133.4 20.9 94.7 0.1 38.0 142.4 18.4 94.3 0.8 40.5 148.4 16.7

Optimal Inf
BA 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2 96.5 -1.3 7.6 32.5 43.2 96.9 -1.3 7.4 32.4 43.2

RBC 94.8 1.5 11.0 41.5 29.9 94.3 1.3 11.0 41.5 29.9 93.6 1.5 11.3 41.5 29.9 94.2 1.5 11.0 41.4 30.0
US 94.9 0.6 11.3 42.5 20.5 94.5 0.3 11.3 42.5 20.4 93.7 0.5 11.6 42.6 20.4 94.4 0.5 11.3 42.5 20.5

Linear Inf
BA 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.5 32.5 43.2 96.7 -4.8 12.7 56.2 61.8 96.8 -4.3 10.3 47.2 59.0

RBC 94.8 1.5 11.0 41.5 29.9 94.3 1.3 11.0 41.5 29.9 93.7 1.3 23.4 85.9 26.3 94.6 0.7 19.9 75.4 19.7
US 94.9 0.6 11.3 42.5 20.5 94.5 0.3 11.3 42.5 20.4 94.1 0.3 23.9 87.6 18.0 94.2 0.2 20.5 76.6 13.4

Linear
BA 97.0 -1.4 7.4 32.7 43.3 96.7 -1.5 7.5 32.6 43.3 95.9 -4.0 13.7 59.1 59.7 96.5 -4.3 10.8 49.2 58.8

RBC 94.8 1.5 11.0 41.8 30.0 94.3 1.4 11.1 41.8 29.9 94.0 1.6 25.0 91.8 27.9 94.3 0.7 21.6 81.0 20.3
US 95.1 0.6 11.3 42.9 20.5 94.6 0.3 11.4 42.8 20.5 94.2 0.6 25.6 93.7 19.1 94.4 0.2 22.2 82.4 13.9

Local Linear
BA 97.0 -1.4 7.4 32.7 43.3 96.8 -1.4 7.5 32.7 43.3 96.3 -1.6 8.3 35.6 45.2 96.8 -1.6 8.2 35.9 45.6

RBC 94.5 1.5 11.1 41.9 30.0 94.5 1.4 11.1 41.9 29.9 94.3 1.4 12.7 47.1 29.3 94.2 1.5 13.0 49.0 27.8
US 94.9 0.6 11.4 42.9 20.5 94.7 0.4 11.4 43.0 20.5 94.3 0.5 13.1 48.2 20.0 94.3 0.5 13.5 50.1 19.0

Lasso
BA 96.7 -1.4 7.6 33.1 43.6 96.6 -2.1 8.8 38.3 46.6 96.2 -2.0 9.2 39.1 46.7 96.8 -1.4 7.7 34.0 44.3

RBC 94.4 1.5 11.6 43.5 28.8 95.0 1.2 13.8 52.1 29.1 93.9 1.3 14.6 53.0 29.5 94.3 1.1 13.2 49.0 24.3
US 95.1 0.7 11.8 44.5 19.7 94.7 0.2 14.2 53.2 19.9 94.1 0.4 15.0 54.2 20.2 94.2 0.5 13.5 50.0 16.6

Forest
BA 96.8 -1.5 7.6 33.1 43.6 96.7 -2.1 8.7 37.9 46.5 96.6 -1.9 8.5 37.2 46.9 97.1 -2.2 9.3 41.3 49.0

RBC 94.6 1.5 11.3 42.5 29.9 94.9 1.0 13.4 50.7 29.7 94.0 1.0 15.2 56.0 23.3 94.0 0.8 18.6 68.8 19.8
US 94.6 0.6 11.6 43.6 20.5 94.8 0.0 13.8 51.8 20.3 94.3 0.3 15.5 57.0 15.9 94.3 0.4 19.1 70.1 13.6

CCFT RBC 94.5 1.4 11.0 41.3 29.7 93.9 1.3 11.1 41.3 29.7 93.4 1.3 23.5 85.1 26.3 94.3 0.7 20.1 74.6 19.6
US 94.4 0.6 11.4 42.2 20.3 94.0 0.3 11.4 42.2 20.3 93.4 0.3 24.1 86.3 18.0 93.5 0.2 20.8 75.2 13.4

Notes: Results based on 5000 Monte Carlo draws based on Model 3 explained in the main text. All numbers are multiplied by 100. Columns show results for
simulated coverage for a nominal confidence level of 95% (Cov); the mean bias (Bias); the mean Standard Deviation (SD); the mean confidence interval length
(CI); and the mean bandwidth (h). Bandwidth and confidence intervals are constructed based on the bias-aware approach (BA), robust bias correction (RBC), and
undersmoothing (US).
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Table A.3.2: Simulation results for different signal-to-noise ratios
Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h Cov Bias SD CI h

ρ = 3 ρ = 1 ρ = 5 ρ = 10

Standard
BA 96.2 -8.9 19.6 87.5 79.3 96.4 -3.1 9.8 43.3 52.0 96.0 -14.7 29.6 134.7 95.5 95.5 -16.8 58.6 241.5 99.9

RBC 94.7 1.1 37.2 139.6 26.9 94.1 0.8 16.4 61.2 27.9 94.6 0.9 59.8 226.5 26.7 94.7 -0.1 118.3 446.9 26.7
US 94.3 0.4 38.2 142.1 18.4 93.8 -0.2 16.9 62.4 19.1 94.5 -0.2 61.4 230.3 18.3 94.8 -0.5 120.5 454.4 18.3

Optimal Inf
BA 97.0 -1.4 7.4 32.4 43.2 96.6 -1.5 7.4 32.5 43.2 96.5 -1.3 7.6 32.4 43.2 96.9 -1.3 7.3 32.5 43.2

RBC 94.8 1.5 11.0 41.5 29.9 94.3 1.3 11.0 41.5 29.9 93.5 1.5 11.3 41.5 29.8 94.2 1.5 11.0 41.4 30.0
US 94.9 0.6 11.3 42.5 20.5 94.5 0.3 11.3 42.5 20.4 93.6 0.6 11.6 42.6 20.4 94.5 0.5 11.3 42.5 20.5

Linear Inf
BA 96.0 -4.8 12.9 56.2 61.9 96.2 -1.9 8.3 36.1 46.1 96.4 -8.5 18.1 81.5 76.6 95.9 -14.1 33.0 146.9 96.3

RBC 94.2 1.2 23.1 85.8 26.4 94.0 1.2 13.1 48.9 28.3 93.8 1.2 35.8 131.6 25.8 94.8 1.2 66.2 252.9 25.6
US 93.9 0.6 23.8 87.5 18.0 94.4 0.2 13.4 49.9 19.4 94.1 0.1 36.6 134.0 17.7 95.0 0.6 67.2 257.4 17.5

Linear
BA 96.1 -4.0 13.8 59.1 59.8 96.1 -1.9 8.4 36.5 45.9 95.6 -7.2 21.2 90.7 74.0 95.8 -14.1 37.0 161.5 95.4

RBC 94.0 1.7 24.9 91.9 27.9 94.0 1.2 13.2 49.3 28.6 94.0 1.7 42.2 155.3 28.8 94.6 2.3 83.4 312.8 29.0
US 93.9 1.0 25.6 93.8 19.1 94.3 0.3 13.5 50.4 19.5 94.2 0.7 43.3 158.4 19.7 94.8 1.0 85.5 318.8 19.8

Local Linear
BA 96.7 -1.7 8.2 35.6 45.1 96.5 -1.5 7.8 33.9 44.1 96.5 -1.7 8.7 37.3 46.3 97.0 -2.6 10.2 45.1 52.3

RBC 94.4 1.5 12.5 47.1 29.3 94.2 1.3 11.7 43.9 29.7 94.0 1.5 13.7 50.5 28.8 94.6 1.6 17.4 65.1 27.6
US 94.7 0.7 12.9 48.2 20.1 94.3 0.4 12.0 45.0 20.3 94.0 0.6 14.1 51.7 19.7 94.6 0.7 18.0 66.4 18.9

Lasso
BA 96.8 -2.0 9.1 39.3 46.9 96.8 -1.6 7.7 34.0 44.5 96.1 -2.7 11.5 48.4 51.0 96.2 -4.9 18.1 75.8 61.6

RBC 93.8 1.5 14.4 53.3 29.6 94.3 1.0 12.4 46.9 26.5 93.9 1.5 18.5 67.7 31.1 94.1 1.9 32.6 117.7 32.2
US 94.3 0.6 14.9 54.6 20.2 94.4 0.3 12.7 47.9 18.1 94.2 0.6 19.1 69.2 21.3 94.2 0.8 33.3 120.1 22.0

Forest
BA 96.6 -1.9 8.5 37.2 46.9 96.5 -1.6 7.7 33.7 44.3 96.7 -2.6 10.0 43.8 51.1 96.3 -5.8 14.7 64.5 64.5

RBC 94.1 1.1 15.1 56.1 23.1 94.1 1.1 12.1 45.3 27.7 94.5 0.8 18.9 70.6 21.8 93.9 0.5 31.7 116.1 20.7
US 94.3 0.6 15.5 57.2 15.8 94.5 0.2 12.4 46.2 19.0 95.0 0.2 19.3 71.8 14.9 94.2 0.1 32.5 118.1 14.2

CCFT RBC 93.8 1.2 23.3 85.0 26.3 93.5 1.1 13.2 48.6 28.1 93.4 1.2 36.0 130.3 25.8 94.6 1.3 66.2 250.4 25.6
US 93.3 0.6 24.0 86.3 18.0 93.9 0.2 13.5 49.4 19.2 93.3 0.2 36.9 132.0 17.7 94.7 0.5 67.4 253.4 17.5

Notes: Results based on 5000 Monte Carlo draws based on Model 3 explained in the main text. All numbers are multiplied by 100. Columns show results for simulated
coverage for a nominal confidence level of 95% (Cov); the mean bias (Bias); the mean Standard Deviation (SD); the mean confidence interval length (CI); and the
mean bandwidth (h). Bandwidth and confidence intervals are constructed based on the bias-aware approach (BA), robust bias correction (RBC), and undersmoothing
(US).
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