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Preface

This dissertation consists of two chapters. In the following I provide a brief
introduction to each of them.

In the first chapter I study the effects of trend inflation on aggregate
price and output dynamics and their implications for the effectiveness of
monetary stabilization policy. This chapter relates to the ongoing discussion
on whether central banks should raise their inflation targets and achieve
higher levels of trend inflation. In 2020 both the Federal Reserve and the
European Central Bank have signaled changes in monetary policy that are
expected to result in higher levels of trend inflation. This, in turn, would
certainly change the price setting behaviour of firms, which is central for the
transmission of monetary policy. To understand these effects, I address the
following question – how would a higher level of trend inflation affect the
price setting behaviour of firms and what are the consequences for aggregate
price and output dynamics?

To answer this question, I use the standard heterogeneous agents model
of price setting in continuous time and characterize these effects analytically.
The key result of this chapter is that trend inflation affects responses to ex-
pansionary and contractionary shocks asymmetrically. In particular, it am-
plifies price responses and mitigates output responses to expansionary shocks,
whereas the effects are reversed for contractionary shocks. Furthermore, I
show that under positive trend inflation, sufficiently large expansionary mon-
etary shocks lead to a decline in output. Counterintuitively, the monetary
authority tries to stimulate the economy, but achieves quite the opposite – a
contraction in output.

I find that these model predictions are empirically supported by U.S. sec-
toral data and calibrate a quantitative version of the model to show why
the asymmetry matters for monetary stabilization policy. I consider an ad-
verse markup shock that increases desired markups of firms and leads to
higher prices and lower output. This creates a stabilization trade-off for the
monetary authority because it can not stabilize prices and output simulta-
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neously. I show that raising trend inflation from 2% to 4% has two adverse
effects. First, it amplifies the economy’s response to the markup shock and,
second, it worsens the trade-off between output and price stability. Higher
trend inflation reduces the ability of the monetary authority to stabilize the
economy because prices become stickier exactly when flexibility is needed,
whereas they become more flexible exactly when rigidity is needed.

In the second chapter I study the determinants of leverage and asset
prices in a general equilibrium model with incomplete markets and collateral
requirements. Secured (collateralized) loans are a common type of borrowing,
in which borrower pledges an asset as collateral to ensure lender against
potential default. In many cases, agents borrow to purchase an asset and
use that asset to secure the loan. A key statistic that affects the ability
of borrowers to purchase assets is leverage, which is the ratio between the
value of an asset and the agent’s down payment. Leverage on secured loans
experienced violent fluctuations around the Great Recession. The aim of this
chapter is to provide new theoretical insights into forces and mechanisms
responsible for such drastic movements.

To understand the determinants of leverage, I setup a general equilibrium
model with an endogenous leverage constraint. The agents disagree about
the distribution of the risky asset payoff, meaning that some agents are more
optimistic than the others. In equilibrium, optimists would like to buy the
risky asset and to borrow from the more pessimistic agents to increase their
asset purchases. However, borrowing needs to be collateralized by the risky
asset, the value of which is different for borrowers and lenders. This dis-
crepancy creates an endogenous leverage constraint for the borrowers. The
main contribution of this chapter is that it features a continuum of agent
types and a continuum of possible future asset payoffs, in contrast to the
previous literature. Studying two types of continua provides new insights,
unattainable in simpler environments.

I show that agents sort into three categories: pessimists who buy the safe
asset, optimists who buy the risky asset leveraged, and agents with moderate
optimism who lend to the optimists. Each borrower-lender pair has a unique
contract in terms of interest rate and leverage. A new analytic result shows
that in equilibrium only risky borrowing contracts are traded, meaning that
if the asset payoff is low enough, all contracts default. In addition, leverage
and the asset price are decoupled in equilibrium and can move independently.
The asset price depends on the total mass of market participants, whereas
leverage – on how these agents split into borrowers and lenders. Numerical
simulations suggest that leverage, unlike the price of the asset, is not sensi-
tive to changes in the average optimism but drops significantly if uncertainty
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rises. The reason is that higher uncertainty scares lenders away. Some of
them decide not to participate in the market at all and switch from risky
lending to buying a safe asset. Others decide to switch sides of the market
and buy the asset on margin instead.

While the two chapters address questions in different areas of economics,
they share a common theme: I study how the interaction between hetero-
geneity and micro-level frictions shapes aggregate outcomes. In the first
chapter, heterogeneity is driven by idiosyncratic shocks, which give rise to a
cross-sectional distribution of firms, and the friction is represented by a fixed
cost of price adjustment. Because of the adjustment cost, trend inflation in-
centivizes firms to respond differently to positive and negative shocks, which
at the aggregate level is further amplified by the effect of trend inflation on
the shape of the cross-sectional distribution. In the second chapter, agents
have heterogeneous beliefs about the distribution of the future asset payoff,
and the friction is the collateral requirement for the borrowers. Changes in
fundamentals, such as aggregate optimism or uncertainty, affect the endoge-
nous leverage constraint and alter the identities of borrowers, lenders and
safe asset investors, which ultimately determine the aggregate leverage and
the asset price.



Chapter 1

The Effects of Trend Inflation
on Aggregate Dynamics and
Monetary Stabilization

1.1 Introduction

Over the last decade there has been a discussion on whether central banks
should raise their inflation targets and achieve higher levels of trend inflation.
In August 2020 the Federal Reserve announced a major change to its policy,
which would allow inflation to stay above the 2% target after a period of
below-target inflation, whereas previously the Federal Reserve would not
have tolerated such deviations. Just a month later, in September 2020, the
European Central Bank stated that it would consider shifting to a symmetric
inflation target, instead of targeting inflation rates of “below, but close to,
2%”. Given the currently very low levels of inflation, both of these measures
are aimed at increasing inflation expectations, which would in turn decrease
expected real interest rates and stimulate consumption.

While these measures are designed to have a positive effect on the demand
of households, they would also affect inflation expectations of firms. This
would change the price-setting behavior of firms, which is central for the
transmission of monetary policy because it determines aggregate price and
output responses to shocks. In this paper I study how changes in the level
of trend inflation affect the price-setting behavior of firms and the aggregate
price and output dynamics. The results have important implications for the
effectiveness of monetary stabilization policy and, more generally, provide
new insights into aggregate dynamics in economies with lumpy adjustments.

First, I analytically characterize aggregate price and output dynamics in
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economies with small levels of trend inflation. I show that changes in the
level of trend inflation affect aggregate responses to positive and negative
shocks asymmetrically. A higher level of trend inflation reduces the overall
potency of monetary policy to stimulate output and reverts its effects for
sufficiently large shocks. I obtain novel analytic results by studying shocks
of arbitrary size, in contrast to the previous literature which focused on
marginal shocks. Second, I provide supporting empirical evidence for the
new analytic predictions, using U.S. sectoral data. Third, I find that the
effect of trend inflation is sizable in a general equilibrium model calibrated
to the U.S. economy. I show that a higher inflation target impedes the abil-
ity of a monetary authority to counteract adverse shocks that move output
and prices in opposite directions. Finally, many of the analytic results are of
a more general interest, as they can be applied in other environments with
lumpy adjustments, including models of capital and labor adjustment, and
durable good consumption.

New Analytic Results. I use the workhorse menu cost model of price dy-
namics, in which firms face an exogenously given desired price, determined
by common trend inflation (drift) and idiosyncratic shocks. Flow profit is
maximized when the actual price is equal to the desired one, and price ad-
justment comes at a fixed cost. Because of the cost, firms keep their prices
constant most of the time and adjust infrequently, which results in gaps be-
tween actual and desired prices. These price gaps are the key variable in the
model and the evolution of the price gap distribution determines aggregate
price and output dynamics.

Following the literature, I consider an unexpected permanent one-time
monetary shock. To avoid ambiguity, I label shocks as ‘positive’ vs. ‘nega-
tive’ when referring to the intended effects of monetary policy (e.g., interest
rate cuts vs. hikes). I show that the key property of trend inflation is that it
affects responses to positive and negative shocks asymmetrically. In particu-
lar, increasing the level of trend inflation amplifies price responses to positive
monetary shocks and mitigates price responses to negative monetary shocks.
Since the strength of output responses is inversely related to the magnitude
of aggregate price responses, the effect of trend inflation on output is re-
versed. With a higher level of trend inflation, output becomes less sensitive
to positive monetary shocks and more sensitive to negative monetary shocks.

There are two channels through which trend inflation creates asymmetry
in aggregate dynamics: the optimal policy of firms and the shape of the price
gap distribution. First, if trend inflation is positive, firms expect higher prices
in the future and are eager to increase them once a positive shock arrives,
despite the adjustment cost. For the same reason, firms are reluctant to
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decrease their prices after a negative shock because it induces additional
adjustment costs in the future. Second, trend inflation erodes relative prices
and leads to a higher concentration of price gaps at the bottom of the price
gap distribution. Thus, under positive trend inflation, positive shocks trigger
more firms to adjust compared to negative shocks. Both of these channels
work in the same direction and result in asymmetric aggregate price and
output responses, with the degree of asymmetry depending on the level of
trend inflation.

Positive trend inflation has two additional implications: price overshoot-
ing and output contractions after sufficiently large positive monetary shocks.
A shock is considered ‘large’ if it forces all firms to adjust their prices. In an
economy with zero trend inflation, large shocks are neutral – aggregate price
responds one-to-one, and output does not move. I show that in economies
with positive trend inflation, large positive shocks cause aggregate price over-
reaction and actually reduce output. Firms prefer to overshoot when adjust-
ing upward, as they anticipate relative price erosion due to positive trend
inflation. Overshooting at the aggregate level occurs if the mass of adjusters
is sufficiently large, which highlights a special effect of the drift on aggregate
responses to large shocks. In fact, a shock does not have to force all firms
to adjust to have such an effect – even smaller positive shocks can cause a
decline in output. Therefore, the overall ability of a monetary authority to
stimulate output deteriorates as trend inflation rises: moderate shocks cause
weaker responses, and larger shocks become counterproductive.

Empirical Evidence. I show that the new analytic results are supported by
the data. To ensure enough variation in the level of trend inflation, I use U.S.
sectoral data on the Producer Price Index (PPI) and industrial production
(IP). I compute trend inflation for each sector as the average PPI growth
rate and split sectors into two groups: those with trend inflation above and
below the median. I then estimate non-linear impulse responses to identified
monetary shocks within each group and compare the results between the two
groups.

First, I find that trend inflation is strongly related to the degree of asym-
metry in PPI and production responses to monetary shocks. Price responses
in sectors with high trend inflation exhibit primarily positive asymmetry, i.e.,
prices rise more after positive shocks than they fall after negative shocks. On
the contrary, the asymmetry of price responses is negative in sectors with low
trend inflation. Responses of industrial production are generally negatively
asymmetric, meaning that production contracts more after negative shocks
than it rises after positive shocks. However, the asymmetry is much more
negative in sectors with higher trend inflation, where positive shocks have
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almost no impact on production, and negative shocks cause substantial re-
sponses. The model does not always match the level of asymmetry in the
data, but it correctly predicts the relationship between trend inflation and
asymmetry. Even though the results can not be interpreted in a causal sense,
they show that the model predictions are in line with the data.

Second, I find that production responses to positive shocks have an inverse
U-shape, meaning that the maximum stimulative effect on production is
achieved for moderate shock sizes. In addition, sufficiently large positive
shocks have a reverse effect, leading to a contraction in production. As
predicted by the model, these reverse effects are strongly related to the level
of trend inflation: the size of a positive shock that leads to a zero production
response is substantially smaller in sectors with higher trend inflation. The
results suggest that monetary policy is not only less effective in stimulating
output in sectors with higher trend inflation, but also has much less ‘room’
for doing so.

Finally, I provide evidence for the mechanism linking trend inflation and
asymmetries in aggregate responses to monetary shocks. I use daily item-level
price data provided by the Billion Prices Project to study the relationship
between trend inflation and asymmetry in individual price adjustments. I
find that a one percentage point increase in monthly trend inflation at the
item level is associated with a 5% increase in the ratio between the magni-
tudes of positive and negative adjustments. This relationship between trend
inflation and micro-level asymmetries matches the model predictions and is
an important channel leading to aggregate asymmetries in responses to mon-
etary shocks, as observed in the sectoral data.

Implications for Monetary Policy. Lastly, I show that the effects of
trend inflation are sizable and relevant for policy. I embed the analytic
framework into a general equilibrium model calibrated to the U.S. economy.
I consider an adverse markup shock and study the ability of a policymaker
to stabilize the economy in the baseline model with a 2% inflation target
(trend inflation). I then compare the results with a counterfactual economy,
in which the inflation target is set to 4%.

The analysis is positive, as I do not consider optimal policy, but assume
a simple stabilization objective instead. A markup shock suits this purpose
well, as it amplifies the inefficiency stemming from price dispersion but does
not affect the efficient allocation, which rationalizes the stabilization objec-
tive. In addition, the shock increases prices and depresses consumption,
introducing a trade-off for the monetary authority, as it can not stabilize
consumption and prices simultaneously.

I find that raising the inflation target from 2% to 4% has two adverse
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effects. First, it amplifies the initial reaction to the markup shock, causing
larger consumption and price deviations. Second, it worsens the stabilization
trade-off. A policymaker must sacrifice more consumption when stabilizing
prices and tolerate larger price deviations when stimulating consumption.
These effects are due to weaker upward price rigidity and stronger downward
price rigidity, caused by a higher inflation target. Increasing the inflation
target leads to more price flexibility exactly when it is desirable to have rigid
prices and makes prices stickier exactly when flexibility is needed. In addi-
tion, the effects of trend inflation are more pronounced for larger shocks, in
accordance with the analytic results.

Relation to the Literature. The effect of drift on individual and aggregate
behavior has previously drawn the attention of many researchers. Several
early theoretical contributions (Sheshinski and Weiss (1977), Mankiw and
Ball (1994), Tsiddon (1993)) have shown that trend inflation can affect the
magnitude of individual price adjustments and the mass of adjusting firms
after aggregate nominal shocks. My work closely relates to the subsequent re-
search, which has focused on analytic characterization of aggregate dynamics
in economies with lumpy adjustments (Caballero and Engel (2007), Alvarez
and Lippi (2019) and Baley and Blanco (2020)). This strand of literature
has either restricted its attention to marginal aggregate shocks or considered
driftless economies. I contribute to the literature by simultaneously allowing
for non-zero trend inflation and providing analytic results for shocks of arbi-
trary size. I show that the two key statistics of aggregate price and output
dynamics – the impact effect and the cumulative impulse response (CIR),
are both affected by trend inflation to first order, in contrast to the results
obtained for marginal shocks. The analysis requires an analytic characteri-
zation of the CIR for non-zero levels of trend inflation. Alvarez et al. (2016)
show that in order to compute the CIR in an economy with no drift, it is
sufficient to track agents until the first time of adjustment, as subsequent
paths net out to zero in expectation. I show that non-zero drift introduces
an additional term, which is related to paths after the first adjustment. I
propose two ways of computing the new term analytically, and the results
apply to settings well beyond the scope of this paper, including other types
of aggregate shocks and functions of interest.

The empirical results of this paper provide new insights into price and
output responses to monetary policy shocks. Several studies have tested
whether aggregate impulse responses exhibit state dependence (Lo and Piger
(2005), Auerbach and Gorodnichenko (2012), Ramey and Zubairy (2014)),
asymmetries with respect to positive and negative shocks (Long and Summers
(1988), Cover (1992), Angrist et al. (2018)) and non-linearities with respect
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to the shock size (Tenreyro and Thwaites (2016), Ascari and Haber (2020)).
I add to the literature by showing that both asymmetry and non-linearity of
aggregate impulse responses are tightly linked to trend inflation. In addition,
I provide evidence for the mechanism behind this link and show that trend
inflation affects the asymmetry of price adjustments at the micro level, even
if trend inflation is low. This result complements the work of Alvarez et
al. (2019) who find evidence for this relationship only in a high inflation
environment.

The policy implications of my results contribute to the ongoing discus-
sion on the role of trend inflation for the effectiveness of monetary stabi-
lization policy. The proposal of raising inflation targets to gain sufficient
policy ‘room’ from the zero lower bound (see Blanchard et al. (2010) and
Ball (2013)) drew the attention of researchers to the consequences of higher
trend inflation. Ascari and Sbordone (2014) discuss the implications of a
higher inflation target for price dispersion, stability of inflation expectations
and macroeconomic volatility. L’Huillier and Schoenle (2020) argue that a
higher inflation target increases the frequency of price adjustments, lowers
the potency of monetary policy, and thus provides an effective extra room
that is smaller than the nominal one. Blanco (2020) points out that a higher
inflation target increases downward price rigidity, which mitigates recessions
at the zero lower bound. I show that higher trend inflation has an additional
adverse impact on the effectiveness of monetary policy away from the zero
lower bound, particularly for shocks that introduce a trade-off between price
and output stability. Although I do not study the optimal level of trend in-
flation, my results have implications for the normative analysis (see Coibion
et al. (2012), Adam and Weber (2019), Blanco (2020), and Diercks (2017)
for a review).

Adjustment costs appear in numerous economic settings, such as models
of lumpy capital and labor adjustment, durable good consumption and oth-
ers. In many of these models, previous studies have noted the role of drift in
shaping responses to aggregate shocks. In investment models with capital ad-
justment costs (e.g., Khan and Thomas (2008) and Bachmann et al. (2013)),
the distribution of mandated investment is highly skewed, and responses to
aggregate shocks are asymmetric. In this setting, capital depreciation plays
the role of drift because it erodes capital stock. Similarly, depreciation of
durable goods generates asymmetry in consumption responses to fiscal stim-
uli over the cycle in Berger and Vavra (2015). Jaimovich and Siu (2020)
show empirically that employment in routine occupations in the U.S. falls
over time and predominantly during recessions, whereas employment in non-
routine occupations is increasing and does not contract in recessions. These
findings provide another example of the relationship between drift and cycli-
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cal behavior and are in line with my analytic results.

Structure of the paper. The next section presents the main analytical
results of this paper. Section 1.3 provides empirical evidence for these new
findings. Section 1.4 discusses the implications of the results for monetary
stabilization policy in a calibrated general equilibrium model. Section 1.5
concludes.

1.2 Theoretical Results

I consider the simplest version of a two-sided sS model with a quadratic
objective and fixed costs of adjustment. This framework serves as an ap-
proximation to numerous applications, including models of capital, labor or
price adjustment, portfolio or inventory management, as well as durable good
consumption. In the following, I outline the model setup and briefly review
the benchmark case of a driftless economy. I then move to economies with
non-zero drift and highlight the main qualitative differences.

1.2.1 Problem of a Firm

I consider a model of a firm that sets its price subject to a menu cost, given
the optimal price target.1 The instantaneous profits of the firm are given
by π(z) = −z2, where z = ln p − ln p∗ is the log deviation of the current
price p from its frictionless optimum p∗. The optimal price p∗ maximizes the
instantaneous profits of the firm and follows a geometric Brownian motion
with drift µ:

d ln p∗(t) = µdt− σdW (t)

where σ > 0 and W (t) is a Wiener process. In this setup, the drift µ
corresponds to trend inflation and is the key parameter of interest. Price
adjustment comes at a fixed cost κ > 0, so that the firm keeps its price p
constant most of the time and adjusts it infrequently. In the absence of price
adjustment, the price gap z evolves as follows:

dz(t) = −µdt+ σdW (t)

Whenever the firm intervenes and changes its price by ∆ ln p, the price gap
z jumps by the same amount and in the same direction. The profits are

1Here, I take the optimal price as given. In a standard setting, the price target is
typically determined by a markup over marginal costs, which in turn depend both on
aggregate and individual states.
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discounted at rate ρ > 0, and the firm’s objective is to maximize discounted
stream of profits subject to the adjustment costs it pays upon each inter-
vention. Its problem can be formulated entirely in terms of the price gaps
z, with {τi}∞i=1 denoting the sequence of times when the firm adjusts and
{∆zi}∞i=1 being the sequence of adjustments:

v(z) = max
{τi,∆zi}∞i=1

E

[∫ ∞
0

e−ρtπ(z(t))dt−
∞∑
i=1

e−ρτiκ

∣∣∣∣ z(0) = z

]

s.t. z(t) = z(0)− µt+ σW (t) +

N(t)∑
i=1

∆zi

where N(t) is the number of adjustments that occurred until t. This consti-
tutes a standard impulse control problem, the solution to which are bound-
aries of inaction region (z, z) and a return point ẑ. Whenever z(t) ∈ (z, z),
the firm keeps its current price and lets the price gap evolve stochastically.
As soon as z(t) reaches one of the boundaries, the firm pays an adjustment
cost κ and sets z(t) = ẑ. At any intervention time τi, the adjustment is
given by ∆zi = ẑ − lim

t↑τi
z(t), where lim

t↑τi
z(t) is the value of z right before the

adjustment and is equal to either z or z.
The value function v(z) satisfies the following Hamilton–Jacobi–Bellman

equation for any z ∈ (z, z):

ρv(z) = −z2 − µv′(z) +
σ2

2
v′′(z)

together with smooth pasting conditions v′(z) = v′(z) = 0, optimality of
return point v′(ẑ) = 0 and boundary conditions v(z) = v(z) = v(ẑ) − κ.
These conditions constitute a system of equations, which implicitly defines
the solution triplet {z(µ), ẑ(µ), z(µ)}. I highlight the dependence of optimal
policy on trend inflation by explicitly stating µ as its argument, even though
it also depends on other model parameters.

1.2.2 Aggregate Dynamics

Assume that the economy is populated by a continuum of ex-ante identical
firms that face the same drift in optimal price µ but experience idiosyncratic
shocks. Firms follow the same policy {z(µ), ẑ(µ), z(µ)} and the economy
has a stationary distribution of price gaps z with a cumulative distribution
function F (z, µ). The corresponding density is denoted by f(z, µ) and solves
the following Kolmogorov forward equation:

0 = µfz(z, µ) +
σ2

2
fzz(z, µ)
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together with boundary conditions f(z(µ), µ) = f(z(µ), µ) = 0, unit mass

condition
∫ z(µ)

z(µ)
f(z, µ)dz = 1 and continuity at z = ẑ(µ).2

Following the literature, I consider an unexpected permanent nominal
shock that changes the optimal (log) price ln p∗ by δ simultaneously for all
firms. The shock shifts the stationary distribution of price gaps in the op-
posite direction (because z = ln p − ln p∗), as illustrated in Figure 1.2.1 for
δ > 0. The stationary distribution of the price gaps is depicted by the dashed
blue line, whereas the solid red line shows the density immediately after the
shock has arrived, but before firms responded to it. This distribution is
referred to as the initial distribution and is denoted by F0(z, µ). For this
type of shock, the initial distribution is a shifted version of the stationary
distribution F (z, µ), such that F0(z, µ) = F (z + δ, µ).

Figure 1.2.1: Aggregate shock δ

Illustration of a positive shock δ > 0 in an economy with positive drift (µ > 0). The
dashed blue line is the stationary density of price gaps f(z, µ), whereas the solid red line
is the density immediately after the shock and before firms adjust, f0(z, µ). The shaded
triangle corresponds to the mass of firms that adjust on impact.

The shaded area corresponds to the mass of firms that are pushed outside
the inaction region and adjust immediately on impact. Their adjustment
results in an immediate change of the aggregate price level, denoted by Θ(δ, µ)
and commonly referred to as the impact effect. Formally, for a positive shock
δ > 0, Θ(δ, µ) is given by the following expression:

Θ(δ, µ) =

∫ z(µ)

z(µ)−δ

(
ẑ(µ)− z

)
f(z+δ, µ)dz (1.1)

2The density f(z, µ) is non-differentiable at the return point ẑ and the Kolmogorov
forward equation does not hold at this point.
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which is simply the sum of all adjustments
(
ẑ(µ)−z

)
weighed with the initial

density. The resulting distribution of price gaps then gradually converges to
the stationary one, inducing a path for aggregate variables. These dynamics
are summarized in Figure 1.2.2.

Figure 1.2.2: Dynamics after an aggregate shock δ

Illustration of aggregate dynamics after positive shock δ > 0 in economy with positive
drift (µ > 0). The solid red line is the realized path of the aggregate log-price P (t), the
dashed red line is its hypothetical path absent of shock P̄ (t). The initial vertical segment
of P (t) shows the impact effect Θ(δ, µ). The shaded area corresponds to the cumulative
impulse response M(δ, µ).

The solid red line shows the realized path of the aggregate log-price P (t),
whereas the dashed red line corresponds to its hypothetical path absent of any
shock P̄ (t). The price impulse response at any time t is given by the difference
between P (t) and P̄ (t). The shock arrives at t = 0 and triggers the impact
effect Θ(δ, µ), given by the initial vertical jump of P (t). Another statistic,
commonly studied in the literature, is the cumulative impulse response (CIR),
which is shown as the shaded area on the graph and denoted by M(δ, µ):

M(δ, µ) =

∫ ∞
0

[
δ −

(
P (t)− P̄ (t)

)]
dt

This statistic summarizes the strength and speed of the price response, al-
though in a reversed way. The stronger and faster firms react to the shock,
the smaller M(δ, µ) is. For example, if the immediate price response Θ(δ, µ)
is equal to δ, then the shaded area in Figure 1.2.2 collapses and M(δ, µ) = 0,
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provided that there are no further fluctuations in P (t) around the trend.
In addition, M(δ, µ) is of special use in a certain class of general equilib-
rium models (e.g. Golosov and Lucas (2007)), as it measures the cumulative
output response to a nominal shock δ. Under logarithmic preferences, the
output response at any time t is given by Y (t) = δ −

(
P (t) − P̄ (t)

)
, mean-

ing that output absorbs the part of the shock that was not captured by the
price response.3 Cumulating output responses over time recovers the expres-
sion for M(δ, µ), which provides an immediate mapping from price to output
responses and characterizes the real effects of nominal shocks.

Because aggregate price dynamics are determined by the dynamics of the
price gap distribution, one can express M(δ, µ) in the following way:4

M(δ, µ) = −
∫ z(µ)

z(µ)

E
(∫ ∞

0

(
z(t)− x̄(µ)

)
dt

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

where x̄(µ) is the average gap in the steady state
(
x̄(µ) =

∫ z(µ)

z(µ)
zdF (z, µ)

)
.

The outer integrand is the expectation of the cumulated deviations of the
price gap z(t) from its steady state average x̄(µ), given a particular starting
value z(0) = z. The integrand is then averaged across all starting values z,
using the distribution of price gaps immediately after the shock has arrived
and firms outside of the inaction region have adjusted, which is denoted by
Fδ(z, µ). This distribution is equal to the stationary one, shifted by δ and
truncated to the inaction region, together with a mass point at ẑ(µ) due to
a positive mass of firms that adjust on impact.

There are several limitations of this framework. First, the quadratic
profit function serves as a second-order approximation to a more general one,
e.g., the one resulting from a CES demand function. Second, I ignore any
general equilibrium feedback effects from aggregate dynamics to the optimal
policy of firms to ensure that firms follow the steady state policy along the
transition path.5 Both assumptions are crucial for analytic tractability and
are relaxed in Section 4, where I calibrate a general equilibrium model to the
U.S. economy.

The primary interest of this paper is the sensitivity of the impact price
effect Θ(δ, µ) and the cumulative output response M(δ, µ) to changes in trend
inflation µ, particularly for shocks that are not marginal. I briefly review the

3Relaxing logarithmic preferences to a more general case of CES preferences makes
output responses proportional to δ −

(
P (t)− P̄ (t)

)
.

4See Appendix A.1.1 for details.
5Alvarez and Lippi (2014) show that such a setting, these effects are of second order

only.
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main properties of Θ(δ, µ) and M(δ, µ) in a benchmark driftless setting, and
then discuss economies with non-zero drift.

1.2.3 Driftless Benchmark

Driftless economies have been well studied in the literature and serve as
an important benchmark for economies with small drift. In a recent study,
Alvarez and Lippi (2019) characterize the entire impulse response to any
initial disturbance for economies without drift, whereas full characterization
with non-zero drift is still a challenge. To allow for comparability between
the setups, I keep the focus on the impact effect and the cumulative impulse
response, and review their main properties in economies without drift.

The absence of drift in the optimal price coupled with a quadratic profit
function results in a symmetric optimal policy {z(0), ẑ(0), z(0)} = {−z0, 0, z0}.
The return point ẑ(0) is set to zero and the lower boundary of inaction re-
gion z(0) is the negative of the upper boundary z(0), denoted by z0 to ease
notation. Stationary density f(z, 0) becomes a piecewise linear function with
a kink at zero. Solving for the impact effect Θ(δ, 0) of a positive shock δ > 0
yields the following result (derivation is provided in Appendix A.1.2):

Θ(δ, 0) =


1

6z2
0
δ2(3z0 + δ), for δ < z0

1
6z2

0

[
δ(6z2

0 + 3δz0 − δ2)− 4z3
0

]
, for δ ∈ [z0, 2z0)

δ, for δ ≥ 2z0

While Alvarez and Lippi (2014) characterize Θ(δ, 0) given small (δ ≤ z0)
and large (δ ≥ 2z0) values of the shock, I also derive an expression for inter-
mediate values. Three key features of impact effect under zero drift should
be highlighted. First, due to symmetries in optimal policy and stationary
density, the impact effect is symmetric for positive and negative shocks, i.e.,
Θ(−δ, 0) = −Θ(δ, 0). Second, the impact response of aggregate price never
exceeds the shock: |Θ(δ, 0)| ≤ |δ| for all δ. Third, when a shock is large
(δ ≥ 2z0), the price level responds one-to-one, meaning that Θ(δ, 0) = δ.
In general, a shock is considered ‘large’ if it pushes all firms outside of the
inaction region, forcing all of them to adjust. Therefore, the shock must be
larger than the width of the inaction region z(µ)−z(µ), which in the driftless
case is equal to 2z0. Both the average size of price adjustments E(|∆ ln p|)
and the standard deviation of adjustments Std(∆ ln p) are equal to z0, so
that δ is large if it is twice as big as the average adjustment size or exceeds
two standard deviations.
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Alvarez et al. (2016) show that to compute the cumulative output re-
sponse M(δ, 0), one does not have to consider the entire path of price gap
deviations, as it is enough to keep track of each firm until the first adjust-
ment. Because of zero drift, the expected price gap deviation is always zero
after the first adjustment. Furthermore, the steady state average gap x̄(0) is
also zero, which gives the following expression for the CIR:

M(δ, 0) = −
∫ z0

−z0

E
(∫ τ

0

z(t)dt | z(0) = z

)
dFδ(z, 0)

where τ is the first time of adjustment. I provide an expression for M(δ, 0)
in Appendix A.1.2 and briefly review its main properties below.

Identical to the impact effect, there are three key features to note: (1) CIR
is symmetric around zero in the sense that M(−δ, 0) = −M(δ, 0); (2) The cu-
mulative output response is non-negative for all δ > 0, meaning that positive
nominal shocks either increase output or are neutral; (3) Large shocks are
neutral (M(δ, 0) = 0), because aggregate price adjusts one-to-one to these
shocks on impact and Θ(δ, 0) = δ.

As I show in subsequent sections, none of the main properties of the
impact effect and the cumulative output response are valid in economies
with non-zero drift.

1.2.4 Introducing Drift

I now study economies with non-zero drift: µ 6= 0. The optimal inaction
region of a firm is no longer symmetric and the return point is not zero.
Given that the problem is well characterized for zero drift, I consider a first-
order approximation of the key statistics around the zero drift point:6

Θ(δ, µ) = Θ(δ, 0) +
∂Θ(δ, 0)

∂µ
µ+ o(µ2)

M(δ, µ) = M(δ, 0) +
∂M(δ, 0)

∂µ
µ+ o(µ2)

This approach is novel, as I compute the first derivatives of aggregate
responses with respect to the drift µ for shocks of any size. To date, the
literature has only considered the effect of drift on responses to marginal

shocks, given by cross-derivatives ∂2Θ(δ,µ)
∂δ∂µ

∣∣
δ=0,µ=0

and ∂2M(δ,µ)
∂δ∂µ

∣∣
δ=0,µ=0

. Al-

varez et al. (2016) show that these cross-derivatives are equal to zero due to
the symmetry properties of the model and the assumed differentiability of

6I use short-hand notation ∂X(δ,0)
∂µ for ∂X(δ,µ)

∂µ

∣∣
µ=0

.
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Θ(δ, µ) and M(δ, µ) with respect to µ. This result does not require character-
izing Θ(δ, µ) and M(δ, µ) for non-zero levels of drift. On the contrary, such
characterization is crucial for my approach and introduces two challenges.

First, drift µ affects Θ(δ, µ) and M(δ, µ) by altering the stationary dis-
tribution of price gaps and changing the optimal policy (which also feeds
into the gap distribution via boundary conditions). Thus, understanding the
effects of drift on aggregate dynamics requires a characterization of its effects

on the optimal policy
{
∂z(0)
∂µ

, ∂ẑ(0)
∂µ

, ∂z(0)
∂µ

}
and stationary density

(
∂f(z,0)
∂µ

)
.

Second, as I show later, non-zero drift introduces an additional term into
the expression for the cumulative output response M(δ, µ), which is not cap-
tured when tracking firms until the first time of adjustment. I provide a
way of computing this new term and generalize the approach of character-
izing cumulative impulse responses, introduced by Alvarez et al. (2016), to
economies with drift and asymmetries.

1.2.5 Optimal Policy of Firms under Non-Zero Drift

To approximate the optimal policy for the case of non-zero drift, I apply
implicit function theorem to the system of equations that characterize the
solution of the firm’s problem, as discussed in Section 1.2.1. Proposition 1
states the result and the proof is provided in Appendix B.2.

Proposition 1. Let σ, ρ, κ > 0. Then:

∂z(µ)

∂µ

∣∣∣∣
µ=0

=
∂z(µ)

∂µ

∣∣∣∣
µ=0

> 0

∂ẑ(µ)

∂µ

∣∣∣∣
µ=0

>
∂z(µ)

∂µ

∣∣∣∣
µ=0

The first line states that boundaries of the inaction region move in parallel
to the right as trend inflation increases. This implies that the width of the
inaction region

(
z(µ)− z(µ)

)
is insensitive to trend inflation at µ = 0. The

second line states that the return point moves in the same direction, but
stronger than the boundaries. Both effects are due to the desire of the firm
to stay close to the profit maximizing zero price gap for as long as possible.
With a positive drift in the optimal price, the price gaps are expected to fall
over time. Therefore, firms move the return point to the right to increase the
total time spent in the vicinity of zero. Firms also tolerate larger positive
gaps and delay adjusting because the gaps are expected to fall on their own.
For the same reason, firms adjust ‘sooner’ for negative price gaps, as these
are not expected to rise over time. Note that by taking the limit as ρ → 0,
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I recover expressions for the no-discounting case considered in Alvarez et al.
(2019).

The uneven shift of the return point and boundaries leads to asymme-
try in individual adjustments. Denote the size of positive adjustments by
∆+(µ) := ẑ(µ)−z(µ), and of negative adjustments by ∆−(µ) := z(µ)− ẑ(µ).

An immediate implication of Proposition 1 is that ∂∆+(0)
∂µ

= −∂∆−(0)
∂µ

> 0,
meaning that positive adjustments become larger as drift increases, whereas
negative adjustments become smaller. Finally, defining asymmetry in indi-

vidual adjustments by AI(µ) = ∆+(µ)
∆−(µ)

, obtains:

∂AI(0)

∂µ
=

2

z(0)

∂∆+(0)

∂µ
> 0

This implies that asymmetry in individual price adjustments increases with
trend inflation in the sense that positive adjustments become larger relative
to negative adjustments. While the result might not appear surprising, it is
not immediate. When exposed to a small positive drift, a firm may adjust its
behavior entirely via the relative frequency of price increases and decreases,
while keeping adjustments symmetric. Instead, because of a forward-looking
behavior, it chooses to increase its positive adjustments in anticipation of
price erosion due to trend inflation and decrease its negative adjustments for
the same reason. The concerns of firms regarding future dynamics are key
here: stronger discounting weakens the asymmetry, and it is entirely gone in
a static model, which is the limit case as ρ→∞.

1.2.6 Impact Effect

Before stating the results for the impact effect, it is instructive to outline the
channels through which drift influences the impact response of the price level.
Let us decompose the impact effect of a positive shock δ, given in equation
(1.1), using the definition of positive adjustments ∆+(µ) = ẑ(µ)− z(µ) and
performing variable substitution z → x := z(µ)− z:

Θ(δ, µ) = ∆+(µ)F (z(µ)+δ, µ)︸ ︷︷ ︸
Minimal adjustment

+

∫ δ

0

xf(z(µ)+δ−x, µ)dx︸ ︷︷ ︸
Additional adjustment

(1.4)

If there is a positive shock of size δ, then a total mass F (z(µ) + δ, µ) of
agents adjust immediately, with each of them adjusting by ∆+(µ) at least.
This is reflected in the first term and denoted by ’minimal adjustment’.
Because agents are shifted strictly outside of the inaction region, their actual
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adjustment is larger. This ‘additional adjustment’ component depends on
the position of the agent prior to the shock, is denoted by x and is captured
by the second term. Differentiating Θ(δ, µ) and evaluating at µ = 0 provides
the following expression:

∂Θ(δ, 0)

∂µ
=

Intensive margin︷ ︸︸ ︷
∂∆+(0)

∂µ
F (z(0)+δ, 0)

+ ∆+(0)
dF (z(0)+δ, 0)

dµ
+

∫ δ

0

x
df(z(0)+δ− x, 0)

dµ
dz︸ ︷︷ ︸

Extensive margin

The effect of trend inflation on the immediate price response can be decom-
posed into two terms. The first is the effect on the minimal adjustment size,
labeled ‘intensive margin’ and driven purely by changes in optimal policy.
The second is the effect on the mass of adjusting agents, labeled as ‘exten-
sive margin’ and driven by changes in the stationary distribution. Note that
stationary density depends on optimal policy, and thus the latter will indi-
rectly affect the extensive margin as well.7 I provide an expression for ∂Θ(δ,0)

∂µ

in Appendix A.1.5 and Proposition 2 states that this derivative is always
positive.

Proposition 2. Let σ, ρ, κ > 0. Then for any δ 6= 0:

∂Θ(δ, µ)

∂µ

∣∣∣∣
µ=0

> 0

The result implies that a small positive trend amplifies the responses to
positive shocks and mitigates the responses to negative shocks. Importantly,
trend has a first-order effect on Θ(δ, µ), irrespective of shock size. Define
asymmetry for impact effect analogously to individual adjustments: AΘ =

Θ(δ,µ)
−Θ(−δ,µ)

. It follows that:

∂AΘ(δ, 0)

∂µ
=

2

Θ(δ, 0)

∂Θ(δ, 0)

∂µ
> 0

Therefore, asymmetry in the impact price responses goes up as trend inflation
rises, in the sense that the magnitude of responses to positive shocks increases
relative to the magnitude of responses to negative shocks.

7Derivatives of F and f are total (not partial) since both of their arguments depend
on µ in (1.4).
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Interestingly, the effect of drift on asymmetry in aggregate price responses
does not vanish as shock size goes to zero:

lim
δ→0

∂AΘ(δ, 0)

∂µ
=

2z0

σ2

This is because the impact effect and its derivative with respect to trend
inflation are of the same order for small shocks.8 Combining a first-order
approximation with respect to drift µ with a second-order approximation
with respect to shock δ gives:

Θ(δ, µ) ≈

{ (
1 + z0

σ2µ
)
Θ(δ, 0) for δ > 0(

1− z0

σ2µ
)
Θ(δ, 0) for δ < 0

This shows that drift has a multiplicative effect on the impact response. For
a small positive drift, the impact effect of a positive shock is increased by
100· z0

σ2µ percent, whereas the response to a negative shock is decreased in the
same proportion. Therefore, if a shock is small, ignoring the effect of drift
produces an error of the same order as simply setting the impact response to
zero.

One can also compare asymmetry at individual and aggregate levels. At
the micro-level, firms react to shocks as soon as the inaction region bound-
aries are reached, therefore, it would be fair to compare the trend effect on
individual asymmetry (AI(µ), introduced earlier) with the trend effect on

aggregate asymmetry
(
∂AΘ(δ,0)

∂µ

)
for an aggregate shock δ approaching zero.

The comparison yields:

lim
δ→0

∂AΘ(δ, 0)

∂µ
>
∂AI(0)

∂µ

This follows because the trend effect on aggregate asymmetry consists of
extensive and intensive margins, whereas individual asymmetry is only driven
by the latter. These work in the same direction, amplifying asymmetry at
the aggregate level even further.

1.2.7 Cumulative Impulse Response

An extremely useful result for cumulative impulse responses in driftless economies
is that one only has to keep track of price gaps until the first adjustment.

8Alvarez and Neumeyer (2019) also mention that trend affects the coefficient in front
of δ2 in a second-order approximation of Θ(δ, µ) with respect to δ. Here, I provide an
explicit expression for this interaction term for small values of µ.
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Unfortunately, this result does not hold in economies with non-zero drift.
Explicitly writing an infinite-horizon CIR as a limit of a finite-horizon CIR
reveals that cumulative responses until finite horizon t have an additional
‘tail’ term, which represents cumulative deviations between the time of the
last adjustment and period t. This tail term does not vanish in the limit and
is not equal to zero in expectation. In the following, I derive an extension of
the CIR formula for economies with non-zero drift in a more general setting,
which might be useful for purposes beyond the scope of this paper.

Following Alvarez and Lippi (2019), I let z(t) be an individual process
on Z = [z, z], endowed with the strong Markov property and a stationary
distribution F (z). I denote by g : Z → R a bounded, Borel-measurable
function of interest. Suppose the economy is in a steady state. In period
t = 0, an aggregate shock distorts the distribution of z, such that distribution
in t = 0 is given by F0(z). One can express the impulse response t periods
after as follows:

IRF (t, F0) =

∫ z

z

E
(
g(z(t))− ḡ | z(0) = z

)
dF0(z) where ḡ =

∫ z

z

g(z)dF (z)

Therefore, IRF (t, F0) is the period t economy-wide average deviation of g
from its steady state average ḡ if z was initially distributed according to
F0(z). Denote by CIRF (t, F0) the cumulative impulse response up to period
t:

CIRF (t, F0) =

∫ t

0

IRF (s, F0)ds

Switching the order of the integration and taking the expectation operator
out of the inner integral yields:

CIRF (t, F0) =

∫ z

z

E
(∫ t

0

(g(z(s))− ḡ)ds | z(0) = z

)
dF0(z)

One can first compute expected cumulative deviation of g from its steady
state until t for each starting value z and then average across all starting
values using the initial distribution function F0. The statistic of interest is
the infinite-horizon cumulative IRF:

CIRF (F0) = lim
t→∞

CIRF (t, F0) =

∫ z

z

E
(∫ ∞

0

(g(z(s))−ḡ)ds | z(0) = z

)
dF0(z)

Cumulative Impulse Responses in Impulse Control Models

Now consider a special case for the process z(t), namely the one resulting
from an impulse control problem with a fixed return point ẑ, as in the model
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considered in this paper. The next proposition characterizes CIRF (F0) as a
sum of two terms: the familiar expected deviation until the first adjustment
and the new tail term.

Proposition 3. Denote by m(z) the expected cumulative deviation of g from
its steady state ḡ until the time of the first adjustment τ , conditional on the
initial value z(0) = z:

m(z) = E
(∫ τ

0

(g(z(s))− ḡ)ds

∣∣∣∣ z(0) = z

)
Let n(t) be the number of adjustments between time 0 and t, so that τn(t)

denotes the time of the last adjustment before t. Then:

CIRF (F0) =

∫ z

z

m(z)dF0(z) + lim
t→∞

E

(∫ t

τn(t)

(g(z(s))− ḡ)ds

)
Function m(z) is similar to the one used to compute the cumulative IRF

under zero drift. This function provides the expected cumulative deviation
of g from its steady state ḡ until the time of the first adjustment and can
typically be defined with an ordinary differential equation.

To understand the new term, consider the cumulative response until some
large finite time t. Each agent will have a certain number of adjustments,
made until that period, denoted by n(t), and the cumulative response can
be split into periods before the first adjustment, in between adjustments and
after the last adjustment:∫ t

0

(g(z(s))−ḡ)ds =

∫ τ1

0

(g(z(s))−ḡ)ds +

n(t)∑
i=2

∫ τi

τi−1

(g(z(s))−ḡ)ds +

∫ t

τn(t)

(g(z(s))−ḡ)ds

The idea of the proof is that when taking expectations and letting t→∞, the
first term becomes the function m(z), terms in the middle vanish as shown
by Baley and Blanco (2020), and the last term converges to some number,
which is not necessarily zero. Deviations sum up to zero in expectation if they
are considered strictly in between adjustment times, as in the middle terms.
This does not apply to the last term, which cumulates deviations between
an adjustment time and some arbitrary t, given that the next adjustment
occurs after t.

In fact, for the model considered in this paper and g(z) = z, this tail
term is equal to zero if and only if µ = 0. This is because if µ 6= 0, then the
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return point ẑ is not equal to the average gap x̄ =
∫ z
z
zdF (z), which implies

that the expected cumulative deviation between the last time of adjustment
τn(t) and arbitrary t is not equal to zero. For example, if t is very close to
τn(t), then for any time s ∈ (τn(t), t), z(s) is very close to the return point ẑ
in expectation, and thus relatively far from the average gap x̄, so that the
expected cumulative deviation E

( ∫ t
τn(t)

(z(s)− x̄)ds
)

is non-zero.

Computing the Tail Term

Unlike the cumulative response until the first adjustment, the tail term does
not allow for an immediate characterization. However, there are at least
two ways of dealing with this issue. The first one relies on the fact that
the new term does not depend on the initial distribution F0, as it considers
paths after the first adjustments. These paths are independent of the initial
condition due to the strong Markov property of z(t). Note that setting the
initial distribution F0 equal to the stationary distribution F results in zero
impulse response by definition:

CIRF (F ) =

∫ z

z

m(z)dF (z) + lim
t→∞

E

(∫ t

τn(t)

(g(z(s))− ḡ)ds

)
= 0

This allows to obtain an expression for the limit term and express the cumu-
lative response as follows:

Corollary 1.

CIRF (F0) =

∫ z

z

m(z)dF0(z)−
∫ z

z

m(z)dF (z)

When there is no drift, the inaction region is symmetric (z = −z),
F (z) is a symmetric distribution, and m(z) exhibits negative symmetry

(m(−z) = −m(z)). These imply that
∫ z
z
m(z)dF (z) = 0 and CIRF (F0) =∫ z

z
m(z)dF0(z). Therefore, one only needs to track each agent until the first

time of adjustment to compute the entire cumulative response. However,
if drift is non-zero, one can still consider paths until the first adjustment,
but must additionally subtract the average cumulated deviation under the
stationary distribution.

The second approach uses the notion of a discounted cumulative impulse
response:

DCIRF (r, F0) = lim
t→∞

DCIRF (r, t, F0) =

∫ ∞
0

e−rsIRF (s, F0)ds
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which allows to eliminate the tail term for any r > 0. Then, the usual CIR
can be expressed as a limit case of its discounted counterpart:

CIRF (F0) = lim
r→0

DCIRF (r, F0)

This approach substitutes the inconvenient tail term with a more tractable
one, and the next proposition provides the result.

Proposition 4. Denote by m(r, z) the expected discounted cumulative de-
viation of g from its steady state until the time of the first adjustment τ ,
conditional on initial value z(0) = z:

m(r, z) = E
(∫ τ

0

e−rs(g(z(s))− ḡ)ds

∣∣∣∣ z(0) = z

)
Then:

CIRF (F0) =

∫ z

z

m(0, z)dF0(z) +
1

E
(
τ
∣∣ z(0) = ẑ

) lim
r→0

m(r, ẑ)

r

Here, the first term is the same as before, since trivially m(0, z) = m(z),
whereas the second term provides an alternative way of computing the tail
term from Proposition 3.

The first approach from Corollary 1 uses all familiar objects but requires
computing the integral of m(z) twice – under initial and stationary distribu-
tions. Using the second approach from Proposition 4, one needs to compute
an additional function m(r, z), which can typically be defined with an ordi-
nary differential equation, similar to m(z). Therefore, each approach may be
more or less preferable, depending on the application. For example, if one
deals with shocks that shift the stationary distribution (as in this paper),
then the first approach provides a much easier way of computing CIR be-
cause F0 inherits the shape of F . On the other hand, if the initial distribution
is not related to the stationary one, it might be more convenient to analyze
CIR using the second approach, as it only requires computing the integral
under F0 (although F is still required to compute the steady state average
ḡ).

To determine whether the tail term is qualitatively important and whether
one can omit it for simplicity, recall that it neither depends on the initial dis-
tribution F0 nor interacts with it. This implies that it corrects for the level
of the cumulative response, acting as an intercept. Therefore, omitting it
not only changes the CIR value, but may also flip its sign if the true value is
sufficiently close to zero. In the next section, I discuss the special importance
of the tail term for cumulative responses to δ shocks considered in this paper.



CHAPTER 1. EFFECTS OF TREND INFLATION 25

Application to δ Shocks

A δ shock considered in this paper shifts the stationary distribution F in
parallel. The initial distribution F0 is given by the stationary distribution
F , shifted by δ and truncated to the inaction region, together with a mass
point at ẑ, which is due to firms that adjust on impact. As noted earlier,
it is most convenient in this situation to use Corollary 1 for computing the
cumulative response, so that for δ > 0 it is given by:

CIRF (δ) =

∫ z−δ

z

m(z)dF (z+δ) +m(ẑ)F (z+δ)︸ ︷︷ ︸
=0

−
∫ z

z

m(z)dF (z) (1.5)

where m(ẑ) = 0, as shown in Baley and Blanco (2020). Note that the tail
term does not affect the slope of CIRF(δ), which is entirely determined by
cumulative deviations until the first adjustment, captured in the first term.
Instead, it shifts the entire function, which has special importance for very
small and very large shocks. If δ = 0, then ignoring the tail term would give
that CIRF (0) =

∫ z
z
m(z)dF (z), which may not be equal to zero, implying a

‘response’ despite the absence of a shock. If δ is large, so that δ ≥ (z − z),
then the first term in (1.5) vanishes, and the CIR is entirely determined by
the tail term. Omitting the tail term would imply that CIRF (δ) = 0 for all
δ ≥ (z − z), whereas it might be different from zero.

1.2.8 Sensitivity of the Cumulative Impulse Response
to Drift

I now use results from the previous section to study the sensitivity of the
cumulative output response to drift µ. Recall from section 1.2.2 that it is
given by:

M(δ, µ) = −
∫ z(µ)

z(µ)

E
(∫ ∞

0

(z(t)− x̄(µ)) dt

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

where x̄(µ) =
∫ z(µ)

z(µ)
zdF (z, µ). Using Corollary 1 and writing M(δ, µ) as in

(1.5) yields:

M(δ, µ) =

∫ z(µ)−δ

z(µ)

m(z, µ)f(z+δ, µ)dz −
∫ z(µ)

z(µ)

m(z, µ)f(z, µ)dz

where

m(z, µ) = −E
(∫ τ

0

(z(t)− x̄(µ))dt

∣∣∣∣ z(0) = z

)
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Function m(z, µ) solves the following differential equation:

z − x̄(µ) = −µmz(z, µ) +
σ2

2
mzz(z, µ)

with boundary conditions m(z(µ), µ) = m(z(µ), µ) = 0. Proposition 5 states
that drift has a first-order effect on the cumulative output response, irrespec-
tive of the shock size.

Proposition 5. Let σ, ρ, κ > 0. Then for any δ 6= 0:

∂M(δ, µ)

∂µ

∣∣∣∣
µ=0

< 0

In accordance with the results on impact effect Θ(δ, µ), trend inflation
amplifies price responses to positive shocks and thus mitigates responses of
output, which is reflected by the negative sign of the derivative. The reverse
is true for negative shocks, as in this case output responses are amplified.
Note that the tail term is crucial for this result, without it, the derivative is
positive for small shocks, zero for large shocks and negative for intermediate
values.

Define asymmetry in CIR as a difference in magnitudes of responses to
positive and negative shocks: AM(δ, µ) = M(δ, µ)−(−M(−δ, µ)). Here, I am
using difference instead of ratio in order to ensure that asymmetry is well-
defined for shocks of any size because M(δ, 0) = 0 for all δ such that |δ| > 2z0.
It is, however, also possible to define it as a ratio, provided M(δ, µ) > 0 and
M(−δ, µ) < 0. It follows immediately that:

∂AM(δ, 0)

∂µ
= 2

∂M(δ, 0)

∂µ
< 0

Therefore, cumulative output responses to positive shocks become smaller
relative to cumulative output responses to negative shocks as trend inflation
increases.

To determine whether the drift effect is sizable, I combine a first-order
approximation ofM(δ, µ) with respect to µ and a second-order approximation
with respect to δ:

M(δ, µ) ≈


(
1− |δ|

σ2µ
)
M(δ, 0) for δ > 0(

1 + |δ|
σ2µ
)
M(δ, 0) for δ < 0

Cumulative output response is amplified by 100 · |δ|
σ2µ percent if a shock is

negative and mitigated in the same proportion for a positive shock. Thus, for
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small shocks, the drift effect is negligible, but it becomes more important as
the shock size increases. For large shocks, the drift might not only amplify or
mitigate output responses, but also change their sign. This result is discussed
and formalized in the following section.

1.2.9 Large Shocks

The drift effect is of particular importance for large shocks. As noted previ-
ously, in the driftless case, the price level reacts one-to-one to a large nom-
inal shock on impact, which results in monetary neutrality, i.e., output is
not affected by the shock. These results break down when trend inflation is
non-zero.

To see why this occurs, consider a positive shock δ that is large in the
sense that it shifts the entire distribution outside of the inaction region (δ ≥
z(µ)− z(µ)). The impact effect for this shock is given by:

Θ(δ, µ) = δ + ẑ(µ)− x̄(µ) where x̄(µ) =

∫ z(µ)

z(µ)

zf(z, µ)dz

The entire distribution of price gaps is initially shifted to the left by δ, and
the mean price gap immediately after the shock and before the adjustment
becomes x̄(µ)− δ. Because all firms are pushed outside the inaction region,
the aggregate adjustment equals ẑ(µ) − (x̄(µ) − δ), which gives the impact
effect. When µ = 0, both the average gap x̄(0) and the return point ẑ(0)
are zero, and thus the impact effect is equal to the shock, meaning that the
aggregate price responds one-to-one. If trend inflation is positive (µ > 0),
then ẑ(µ) > 0 and x̄(µ) < 0, which leads to price overreaction: Θ(δ, µ) > δ.
Note that if the shock is negative and δ ≤ −|z(µ) − z(µ)|, then |Θ(δ, µ)| <
|δ| and there is no overreaction. All of the above has implications for the
cumulative output response M(δ, µ). Proposition 6 formalizes the results.

Proposition 6. Let σ, ρ, κ > 0, µ > 0 and sufficiently small.
Then there exist δΘ(µ), δM(µ) > 0 such that δΘ(µ), δM(µ) < z(µ) − z(µ)

and:

Θ(δ, µ) > δ for all δ > δΘ(µ)

M(δ, µ) < 0 for all δ > δM(µ)

Proposition 6 states that if trend inflation is positive and small, then
there exist thresholds δΘ(µ) and δM(µ) such that price overreacts on impact
to any positive shock larger than δΘ(µ) and the cumulative output response
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is negative for any positive shock larger than δM(µ).9 The latter implies
that positive shocks eventually become contractionary if trend inflation is
positive. Crucially, the thresholds are both strictly smaller than the width
of the inaction region z(µ)− z(µ). Therefore, a positive shock does not have
to shift the entire distribution outside of the inaction region to induce price
overshooting and a decline in output when trend inflation is positive, as these
effects are already achieved for smaller shocks.

1.2.10 Summary and Comparison with the Driftless
Case

In the following I summarize and illustrate the main analytical results of
the paper. Figure 1.2.3 plots the impact price response Θ(δ, µ) (left panel)
and the cumulative response of output M(δ, µ) (right panel) against different
values of the δ shock, normalized by the width of the inaction region.10 I
also normalize the impact effect to maintain comparability with the size of
the shock. The solid blue lines correspond to the driftless case µ = 0, and
the red dashed lines correspond to µ = 0.1. Recall the three properties
of the impact effect and the cumulative output response under zero trend
inflation, discussed in section 1.2.3: (1) both statistics are symmetric for
positive and negative shocks, (2) the size of the impact effect Θ(δ, 0) is always
weakly smaller than the shock size, and cumulative output response M(δ, 0)
to positive shocks is always weakly positive, and (3) if |δ| is larger than the
width of inaction region (z− z), then Θ(δ, 0) = δ and M(δ, 0) = 0. All these
properties are illustrated in Figure 1.2.3 by the solid blue lines.

Now consider the case of positive trend inflation. The responses to pos-
itive and negative shocks are asymmetric, so that the first property does
not hold anymore. The impact price responses to positive shocks are am-
plified, whereas the responses to negative shocks are mitigated compared to
the driftless benchmark. This can be seen on the left panel, as the dashed
red line lies above the solid blue one. The opposite is true for the cumulative
output responses, which become stronger after negative shocks and weaker
after positive ones as trend inflation rises. This is depicted on the right panel,
where the dashed red line lies below the solid blue one.

Furthermore, large positive shocks lead to price overreaction on impact
and cause negative cumulative output responses, which invalidates both the

9Alvarez and Neumeyer (2019) show that price response exceeds the shock on impact
if µ→∞ and provide numerical examples when this happens for finite values of µ.

10Both statistics are exact values and not first-order approximations with respect to
drift µ.
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Figure 1.2.3: Impact and Cumulative Responses
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Left panel: impact price response Θ(δ, µ), right panel: cumulative output response
M(δ, µ). X-axis: shocks δ normalized by the width of the inaction region z − z. Im-
pact effect Θ(δ, µ) is also normalized by z − z for comparability of x- and y-axes. Solid
blue lines: µ = 0, dashed red lines: µ = 0.1. The tail term is denoted by T on the
right panel. Rest parameter values: σ2 = 0.05, ρ = 0.05, κ = 0.05. Threshold values:
δΘ(0.1) = 0.64(z − z) and δM (0.1) = 0.55(z − z).

second and third properties. Proposition 6 states that there are two thresh-
olds, δΘ(µ) and δM(µ), such that shocks larger than these thresholds cause
price overshooting and output contraction, respectively. The former is de-
termined by the intersection of the red dashed line and a 45◦ line on the left
panel of Figure 1.2.3, where Θ(δ, µ) = δ. The latter threshold corresponds
to the point where the dashed red line crosses zero on the right panel of Fig-
ure 1.2.3 for a positive shock δ, so that δ > 0 and M(δ, µ) = 0. Numerical
computation yields that δΘ(0.1) = 0.64(z − z) and δM(0.1) = 0.55(z − z).
Therefore, when µ = 0.1, any shock δ larger than 64% of the width of the
inaction region causes price overshooting on impact and any shock larger
than 55% of the width of the inaction region leads to a cumulative contrac-
tion in output. The higher the trend inflation, the harder it is to stimulate
output, as even medium-size positive nominal shocks have a reversed effect.
The threshold for the reversed effect on output is smaller than the threshold
for price overshooting. Thus, there is a range of shocks (55% - 64% of the
width of the inaction region) for which cumulative output response is neg-
ative, even though price level responds less than one-to-one on impact. On
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the contrary, negative shocks never lead to an expansion in output and price
overshooting. The price level always underreacts to negative shocks on im-
pact and the cumulative output response is always negative if trend inflation
is positive.

I lastly note the role of the tail term that appears in the expression for the
cumulative output response when trend inflation is non-zero. As discussed
in section 1.2.7, the CIR is entirely determined by this term if |δ| ≥ (z − z).
Therefore, one can directly see the tail term in Figure 1.2.3, where it is
denoted by T on the right panel. Not only is it quantitatively important,
but it is also the only source of difference between the cases of positive and
zero trend inflation.

The results of this section are derived under the assumption that firms
can only adjust prices at a fixed menu cost. This assumption is not pivotal for
the results, although it substantially simplifies the analysis and exposition.
In Appendix A.1.8 I extend the model to allow for random opportunities of
costless adjustments and show that some of the results (including the over-
shooting result of Proposition 6) can also be proven in this richer setting.
Such an extension is usually referred to as ”CalvoPlus” in the literature,
as it nests both the traditional Calvo (1983) model and the standard menu
cost model. An even broader class of models with generalized hazard func-
tions is studied in Caballero and Engel (2007) and Alvarez et al. (2020), and
extending the results to their setting remains a challenge.

1.2.11 Shock to the Drift

The analytic results of this paper allow one to study the dynamics of the price
level after a different type of shock, namely a shock to the trend inflation.
Consider a driftless economy in a steady state. Imagine that at date t = 0
the trend inflation is unexpectedly changed to some small positive value, so
that µ > 0 from now on. How would the economy respond to such a change
on impact and what would be its cumulative effect?

First, the increase in drift induces a change in firms’ policy. The inaction
region shifts to the right and therefore a mass of firms adjusts prices upward
immediately. Formally, this is captured by the impact effect Θ(µ) which now
only depends on the change in the drift:

Θ(µ) =

∫ z(µ)

z(0)

(
ẑ(µ)− z

)
f(z, 0)dz

Since ẑ(µ) > z(µ) > z(0), the impact effect of an increase in drift on the
price level is positive. Even though the desired price p∗ is unchanged at
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t = 0, the aggregate price goes up in anticipation of future rise in p∗ due
to positive drift. However, the impact response is only of second order in µ,
since ∂Θ(µ)

∂µ

∣∣
µ=0

= 0, which can be easily verified.

Computing cumulative impulse responses is less straightforward. Unlike
in the case of a nominal δ shock, a shock to the drift changes the steady state
of the economy, so that cumulative impulse response of output diverges. One
can nevertheless compute the CIR of the price level, considering its deviations
from the new long-run trend. Although this statistic does not have a clear
economic interpretation, it is still informative about the speed at which the
aggregate price converges to the new trend. Such CIR is given by:

M(µ) =

∫ z(0)

z(µ)

m(z, µ)f(z, 0)dz −
∫ z(µ)

z(µ)

m(z, µ)f(z, µ)dz

where

m(z, µ) = E
(∫ τ

0

(z(t)− x̄(µ))dt

∣∣∣∣ z(0) = z

)
In Appendix A.1.7 I show that ∂M(µ)

∂µ

∣∣
µ=0

> 0. It implies that after a small

increase in drift µ, the aggregate price level stays above its new trend for
some time, despite the initial jump Θ(µ) being negligible.

A potential way to study the dynamics of output is to consider discounted
cumulative responses, as these are finite even in the presence of shifts in the
steady state levels. Given the initial increase in the price level, the short-run
effect on output is negative, whereas long-run effects may be positive. I leave
the computations of the discounted CIR for future research.

1.3 Empirical Evidence

In this section I test several predictions of the model derived above. I start
with the effect of trend inflation on aggregate responses to shocks, as these
are the main focus of the paper. However, a substantial part of the mecha-
nism operates via changes in firm behavior induced by the presence of drift.
Therefore, I also provide evidence for the relationship between drift and
asymmetry in micro-level adjustments. As I show, many of the micro- and
macro-level implications of the theory are supported by the data.

1.3.1 Drift and Asymmetry at the Macro Level

I start by testing whether trend inflation affects asymmetry in aggregate
responses to monetary shocks. I use monthly sectoral data on Producer
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Price Index (PPI) provided by the Bureau of Labor Statistics, as well as
data on Industrial Production (IP) provided by the Federal Reserve System.
To estimate impulse responses I use local projections as in Jordà (2005).
This approach has been widely utilized in the literature to test for asym-
metries, non-linearities and state-dependence of impulse responses (Auer-
bach and Gorodnichenko (2012), Ramey and Zubairy (2014), Tenreyro and
Thwaites (2016)). The main advantage of local projections is the ease of
inclusion of non-linear terms, which are of central interest in this paper. The
baseline shock measure is the one computed by Jarociński and Karadi (2020)
using high frequency identification and separating monetary policy shocks
from central bank information shocks. In Appendix A.3.4 I show that results
are generally robust to alternative shock measures.

The central idea is to exploit cross-sectoral heterogeneity in trend inflation
to see whether it relates to asymmetry in production and price responses. To
ensure that impulse responses for every subset of industries are estimated on
the same set of shocks, I use a balanced panel. The sample spans between
February 1990 and January 2013 and consists of 52 industries.11 I provide
more details on data construction and properties of IP and PPI In Appendix
A.3.1.

Asymmetric Responses

The simplest way of introducing asymmetry is estimating piecewise linear
impulse responses with a kink at zero by including positive and negative
shocks separately in the regression. To avoid ambiguity, I will refer to interest
rate cuts (monetary easing) as ‘positive’ shocks, whereas to interest rate
hikes (monetary tightening) as ’negative’ shocks. Thus, the sign of a shock
corresponds to the intended effect on output, which provides the following
non-linear panel local projection:

yi,t+h − yi,t−1 = αi,h + βPh max(εt, 0) + βNh min(εt, 0) + γ′hxi,t + νi,t+h (1.6)

where yi,t+h− yi,t−1 is the growth rate of the dependent variable (IP or PPI)
between t − 1 and t + h in industry i, αi,h is an industry fixed effect, εt is
the monetary policy shock, and xi,t is a vector of controls. This specification
directly estimates cumulative impulse responses. The monetary shocks are
scaled and normalized such that positive values correspond to interest rate
cuts and a shock of size one represents a one standard deviation shock. Here,

11Even though interest rates have stayed low in 2009 – 2013, this period is still infor-
mative as it features both positive and negative monetary shocks (see Figure A.3.5 in
Appendix A.3.3). Considering the period until June 2008 does not alter the main results.
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βPh provides the impulse response to a one standard deviation positive shock
h periods after impact, and (−βNh ) is the response to a negative shock of
the same size. Note that the standard theory predicts that βPh > 0 and
βNh > 0. The set of controls includes a time trend, contemporaneous and
lagged growth rates of aggregate industrial production and of a commodity
price index, as well as lags of the monetary shock, effective federal funds rate,
and industry-specific growth rates of IP and PPI. I set the lag length to 6
months and also include contemporaneous industry-specific growth rate of IP
in the PPI projection and vice versa.12 Finally, I smooth impulse responses
with a 5-month centered moving average when plotting them, in order to
ease comparisons.13

The preferred measure of asymmetry is the ratio between the magnitudes
of responses to positive and negative shocks, given by βPh /β

N
h , because it

controls for the size of an average (linear) response. Values below one in-
dicate that positive shocks have a smaller effect relative to negative shocks,
and larger deviations from one correspond to stronger degrees of asymmetry.
However, this measure is only meaningful if both βPh and βNh are positive.
Whenever this condition is violated, I have to use an alternative measure,
defined as a difference in magnitudes (βPh −βNh ). In this case, negative values
indicate that monetary tightening has stronger effects compared to monetary
easing.

As a first step, I estimate (1.6) on the entire sample. Figure 1.3.1 plots
the impulse responses of industrial production (top row) and PPI (bottom
row) to one standard deviation monetary shock.14 The dashed red lines
depict responses to negative shocks (−βNh ), whereas the solid blue lines show
the negatives of responses to positive shocks (−βPh ) to ease comparison. In
the right column, I plot asymmetries in responses to positive and negative
shocks. I employ the preferred measure of asymmetry (ratio) for industrial
production, but have to use the alternative (difference) for PPI because these
responses switch signs.

Industrial production exhibits a strong and significant degree of asym-
metry, with negative shocks having a much larger effect on IP than positive
shocks. At the horizon of 12 months, a one standard deviation negative
shock has a five times stronger effect on production than a positive shock

12The set of controls is standard, and I consider a much smaller set of controls as a
robustness check in Appendix A.3.4. The commodity price index is the one produced by
the Commodity Research Bureau and used in Coibion (2012) (data taken from the website
of Valerie Ramey https://econweb.ucsd.edu/∼vramey/research.html#data)

13This is a common practice in the literature, it does not affect the results, and the
unsmoothed plots are presented in Appendix A.3.4.

14In the sample, monetary shocks have a standard deviation of 4.8 basis points.
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of the same size. There is less evidence for asymmetry in PPI responses,
although at longer horizons negative shocks tend to cause larger responses
than positive ones. The previous literature has focused on asymmetries at the
aggregate level, and similar patterns have been documented by Angrist et al.
(2018) and Tenreyro and Thwaites (2016), among others. Results in Figure
1.3.1 suggest that asymmetries found in aggregate data are also present at
the sectoral level. I now turn to the interaction between trend inflation and
asymmetry in responses.

Figure 1.3.1: Piecewise Linear Cumulative Impulse Responses, Entire Sample
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Impulse responses of industrial production (top row) and PPI (bottom row) to one stan-
dard deviation monetary shock, estimated on the entire sample. Piecewise linear specifica-
tion as in (1.6). Dashed red lines: responses to a negative shock, solid blue lines: negatives
of responses to a positive shock. Right column: asymmetry in responses, measured as the
ratio of magnitudes for IP (positive over negative) and as the difference in magnitudes for
PPI (positive minus negative). The shaded areas correspond to 68% confidence intervals,
based on Newey-West standard errors. The standard errors for asymmetry are computed
by the delta method.

To determine whether asymmetry is affected by trend inflation, I compute
trend inflation for each industry as an average PPI growth rate over the entire
period, and split the sample into two groups: industries with trend inflation
above and below the median.15 The ‘low’ inflation group has an average

15In addition, I omit the top and bottom 2.5% of industries in terms of trend inflation
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(median) trend inflation of 1.79% (1.85%) p.a., whereas for the ‘high’ inflation
group the numbers are 3.44% and 3.22% respectively.

For the next step, I estimate (1.6) separately for each group. Figure 1.3.2
summarizes the results for industrial production (top row) and PPI (bottom
row). The first column provides responses of industries with trend inflation
below the median, whereas the second column shows those with trend infla-
tion above the median. As before, I plot negatives of responses to positive
shocks to ease comparison. The third column compares the asymmetry be-
tween responses to positive and negative shocks in the two groups. Again,
I employ the preferred measure (ratio) for industrial production and have
to use an alternative (difference) for PPI. The solid green lines correspond
to the high trend inflation group, the dashed yellow lines represent the low
trend inflation group, and the dotted black lines show asymmetry in the
entire sample.

Firstly, PPI in the low inflation industries exhibits negative asymmetry,
whereas in the high inflation industries asymmetry is predominantly positive.
Sectors with low trend inflation do not raise prices after positive shocks, but
decrease them substantially after negative ones. The opposite is observed for
industries with high trend inflation: in the first year after impact, positive
shocks have a much larger effect than negative shocks, whereas at longer
horizons effects are not significantly different. These findings are in line with
the theoretical predictions of this paper: higher trend inflation amplifies price
responses to positive shocks and mitigates reaction to negative shocks.

Secondly, there is a substantial difference in the asymmetry of industrial
production responses between the two groups. In the low inflation sectors,
positive shocks have a strong and significant effect on IP, whereas among
sectors with high trend inflation their effect is more than halved and barely
significant. Negative shocks also have a smaller but nevertheless pronounced
and significant effect in the latter sample. This indicates that higher trend
inflation is related to overall weaker effects of monetary shocks on industrial
production, which is also found by Ascari and Haber (2020) in aggregate data,
who use time variation in trend inflation. However, this drop in overall policy
potency is disproportionately split between positive and negative shocks, as
shown in the third panel, depicting asymmetry.

In both groups, the ratio between the magnitudes of responses to positive
and negative shocks lies below one, but is much smaller for industries with
high trend inflation. For example, compare the asymmetries at a 12-month
horizon. In the low inflation group, interest rate cuts cause a three times

from the original sample in order to control for outliers. Results are robust to a more
conservative trimming, as well as to using the entire sample (see Appendix A.3.4).
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Figure 1.3.2: Piecewise Linear Cumulative Impulse Responses for Low and
High Trend Inflation Industries
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Impulse responses of Industrial Production (top row) and PPI (bottom row) to one stan-
dard deviation monetary shock in industries with trend inflation below the median (left
column) and above the median (central column). Piecewise linear specification as in (1.6).
Dashed red lines: responses to a negative shock, solid blue lines: negatives of responses
to a positive shock. Third column: asymmetry in responses, measured as the ratio of
magnitudes for IP (positive over negative) and as the difference in magnitudes for PPI
(positive minus negative). Solid green lines: industries with trend inflation above the me-
dian, dashed yellow lines: below the median, dotted black lines: entire sample. The shaded
areas correspond to 68% confidence intervals, based on Newey-West standard errors. The
standard errors for asymmetry are computed by the delta method.

weaker response than interest rate hikes. In the high inflation group, the
impact of positive shocks is more than 10 times weaker than the impact of
negative shocks. Although the difference between the two groups is signifi-
cant only at medium term horizons, there is a clear and consistent distance
between the point estimates at all horizons. This is in line with the theo-
retical prediction of the model, which states that trend inflation reduces the
relative strength of positive shocks on output.
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Asymmetry and Shock Size

So far I estimated piecewise linear impulse responses, focusing on asymmetry
in reactions to positive and negative shocks, irrespective of their size. The
theoretical results, however, highlight the importance of non-linearities and
their interactions with trend inflation. The size of a shock is especially im-
portant for output responses. While price reaction in the model is always
increasing in the shock size, the output response is non-monotonic, i.e., it
grows for small shocks and falls when shocks are large. In the latter case,
trend inflation plays a special role, as large positive shocks may lead to con-
tractions in output under positive trend inflation. To determine whether
this holds empirically, I now add non-linear terms to local projections for
industrial production.

To allow for non-monotonicity of production impulse responses for both
positive and negative shocks, at least a third-order polynomial is required.16

I estimate the following non-linear panel local projection:

IPi,t+h − IPi,t−1 = αi,h + β1hεt + β2hε
2
t + β3hε

3
t + γ′hxi,t + νi,t+h (1.7)

where IPi,t+h − IPi,t−1 is the growth rate of industrial production between
t−1 and t+h, αi,h is an industry fixed effect, εt is the monetary policy shock
and xi,t is a vector of controls, which is the same as before.

Firstly, I plot the impulse responses to one standard deviation positive
and negative shocks in Figure 1.3.3 to determine whether the findings of the
previous section are robust to an alternative projection specification. The re-
sults closely resemble those obtained using piecewise linear local projections,
depicted in Figure 1.3.2.

Secondly, making use of non-linearity, I plot the impulse responses for 6-,
12- and 24-months horizons for different shock values in Figure 1.3.4. The
x-axis corresponds to the shock values between -2 and 2 standard deviations.
The y-axis shows the impulse responses as functions of the shock value. The
left panel depicts the impulse responses 6 months after impact, which are
close to linear for both groups, but already exhibit small asymmetry. At the
12-months horizon, asymmetry strengthens, especially for the high inflation
group. In these industries, positive shocks have a very small impact on
production, whereas negative shocks lead to substantial responses. Therefore,
production responses to positive shocks estimated on the entire sample are
almost entirely driven by industries with low trend inflation. In addition, the

16In addition, a second-order polynomial would always result in larger degrees of asym-
metry for larger shocks. In Appendix A.3.4 I show that the results are robust to including
higher order terms.
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Figure 1.3.3: Non-Linear Cumulative Impulse Responses of Industrial Pro-
duction
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Impulse responses of industrial production to one standard deviation monetary shock
in industries with trend inflation below the median (left panel) and above the median
(central panel). Non-linear specification as in (1.7). Dashed red lines: responses to a
negative shock, solid blue lines: negatives of responses to a positive shock. Third panel:
asymmetry in responses, measured as the ratio of magnitudes (positive over negative).
Solid green line: industries with trend inflation above the median, dashed yellow line:
below the median, dotted black line: entire sample. The shaded areas correspond to
68% confidence intervals, based on Newey-West standard errors. The standard errors for
asymmetry are computed by the delta method.

curve in the high inflation group bends toward zero as positive shocks become
larger, which does not happen among sectors with low trend inflation.

At the 24-months horizon, production falls after large positive shocks in
the high inflation sectors, but its response remains positive in the low inflation
group. In contrast, negative shocks always lead to output contractions in
both groups, even though the polynomial permits reversals for both positive
and negative shocks simultaneously. This shape of the impulse response curve
persists as I increase polynomial order, allowing for more flexibility, and is a
robust feature of the data.

Altogether, the results show that trend inflation is more strongly related
to asymmetry in responses to large shocks, than to small ones. Furthermore,
I find evidence for the reverse effects of large positive shocks on production,
as predicted by the model. Most importantly, these reversals are affected by
trend inflation, i.e., the size of a positive shock leading to zero production
response is substantially smaller in industries with high trend inflation than
in those with low trend inflation. Even though these results can not be
interpreted in a causal sense, they show that many of the model predictions
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Figure 1.3.4: Non-Linear Cumulative Impulse Responses of Industrial Pro-
duction
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Impulse responses of industrial production at 6-, 12-, and 24-months horizons. Shock
values are on the x-axis, measured in standard deviations. Solid green lines: industries
with trend inflation above the median, dashed yellow lines: below the median, dotted black
lines: entire sample. The shaded areas correspond to 68% confidence intervals, based on
Newey-West standard errors, computed by the delta method.

are in line with the data.

Robustness

I show that findings discussed above are robust to several important de-
viations from the baseline strategy considered so far. I briefly outline the
alternatives and provide the results in Appendix A.3.4.

Alternative shock measures. In the baseline specification I use a mea-
sure of monetary policy shocks, computed by Jarociński and Karadi (2020)
using high frequency identification and separating monetary policy shocks
from central bank information shocks using sign restrictions. I show that
the results are generally robust to alternative shocks measures, commonly
used in the literature. Firstly, I consider Jarociński and Karadi (2020) shock
series based on a simpler separating procedure, the so called ‘poor man’s sign
restrictions’, as well as the original shock series, computed by Gertler and
Karadi (2015). Secondly, I employ other widely used high-frequency identi-
fied shocks, estimated by Barakchian and Crowe (2013) and Nakamura and
Steinsson (2018). Figure A.3.6 shows that the main results of the paper are
in general robust to these alternative shock measures.

Measurement error in trend inflation. I estimate trend inflation at
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the sector level by an average PPI growth rate, which can be contaminated by
a measurement error. However, I only use trend inflation to classify sectors
into below and above median groups. Thus, the only way measurement error
might affect the results is by distorting the ordering of sectors by trend infla-
tion and leading to misclassification. To address this issue, I omit the middle
40% of sectors and compare the top 30% with the bottom 30%. Because
sectors with trend inflation that is close to the median are much more likely
to be misclassified, excluding them alleviates the problems associated with
measurement error. Figures A.3.7 and A.3.8 show that results are robust to
such a split.

Great Recession and ZLB. The baseline sample spans the period be-
tween February 1990 and January 2013, which includes the apex of the Great
Recession and the subsequent period of low interest rates. As a robustness
check, I consider a shorter sample period ending in June 2008. Figures A.3.9
and A.3.10 show that excluding the Great Recession and the ZLB period
only strengthens the main results of paper.

Trimming the data. In the baseline scenario I omit the top and bottom
2.5% of sectors in terms of trend inflation from the original sample to control
for potential outliers. This choice does not affect the results of the paper,
with Figures A.3.11 - A.3.14 showing that the main findings are robust to
trimming the top and bottom 15%, as well as to using the entire sample.

Polynomial degree. When testing for non-linearity of industrial pro-
duction responses, I use a third order polynomial because it is the minimal
degree that allows for non-monotonicity of impulse responses with respect
to both positive and negative shocks. As a robustness check, I provide the
results for the 4th, 5th and 6th order polynomials in Figure A.3.15, which
shows that the effect of trend inflation on responses to large shocks does not
depend on the degree of a shock polynomial.

Other. Finally, I set the number of lags to 3 and 12 (baseline specification
has 6 lags) and reduce the set of controls, only keeping a time trend and lags
of the dependent variable, monetary shock, and effective federal funds rate.
In addition, I provide the unsmoothed impulse responses. Figure A.3.16
shows that the main findings remain unchanged.

1.3.2 Drift and Micro Level Asymmetry

In this section I show that trend inflation induces asymmetry in individual
price adjustments, as follows from Proposition 1.17 Working with price ad-

17Alvarez et al. (2019) work with Argentinian micro-level price data and study the
effect of inflation on price behavior. The main distinction of my work is that I focus on
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justments is a challenge because only continuous tracking of the price of an
item can ensure that one observes adjustments as opposed to growth rates,
which can consist of multiple adjustments. In addition, growth rates are func-
tions of both adjustment size and frequency, so that any observed asymmetry
in growth rates can be driven by the asymmetry in adjustment frequencies.

To address these issues, I use scraped daily data from the Billion Prices
Project by Cavallo (2018). Under the assumption that prices do not change
more than once a day, daily data provides the desired price adjustments. This
assumption is much milder compared to those required for monthly or even
weekly data. I focus on U.S. supermarket data (store 1), as it provides the
longest time series, and consider items with at least 2 years of observations
and at least 10 price adjustments. In addition, I exclude items that have
adjustments larger than 50% to control for the outliers. The sample period
is between May 2008 and July 2010, and the total number of items used in
the analysis is 1924, with 28808 observed price adjustments. Figure A.3.4 in
Appendix A.3.2 shows the distribution of price adjustments in the sample.

I compute asymmetry for each item i as the ratio between average sizes of
positive and negative adjustments. Drift µi is recovered as the average price
growth rate over the entire period. Baley and Blanco (2020) show that it can
also be computed as the ratio between average adjustment and average time
between adjustments, so I use their approach as a robustness check. The two
approaches converge as the sample size increases, but can produce different
estimates in finite samples. The baseline regression has the following form:

log
∆+pi
∆−pi

= αc + βµi + γ′xi + εi

where ∆+pi is the average positive price adjustment of item i, ∆−pi – average
negative price adjustment, µi is the drift, xi – a vector of controls and αc
is a category fixed effect. Items in the data are grouped into narrowly-
defined categories, corresponding to the URLs where the items are found on
the website. These categories are narrower than the COICOP groups and
there are seven items in each category on average.18 Including category fixed

the cross-sectional variation in item-level trend inflation, whereas they use time variation
in aggregate levels of inflation. Alvarez et al. (2019) find that asymmetry in adjustments
is insensitive to inflation at low inflation rates, but is positively related at high levels of
inflation. I work with U.S. data and find evidence for the positive relationship even at
low levels of trend inflation. A potential reason for the differences in our findings is that I
consider trend inflation, i.e., the long-term growth rate of the price level, whereas Alvarez
et al. (2019) focus on period-specific actual inflation, i.e., log-difference in price levels
between two consecutive periods.

18I exclude categories with less than 3 items to allow for enough within-category varia-
tion.
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effects controls for many unobservables such as category-specific demand,
adjustment costs, or other characteristics that may simultaneously affect
both the drift and the asymmetry. The set of controls includes the frequency
and standard deviation of adjustments, as well as the variance of idiosyncratic
shocks σ2

i , computed following Baley and Blanco (2020). All variables are
normalized to monthly frequency, and summary statistics are provided in
Table A.1 in Appendix A.3.2.

The first three columns of Table 1.1 show the results from an OLS re-
gression with standard errors clustered at the category level. Columns (1)
and (2) employ the baseline estimates of µi as an average price growth rate,
and an alternative measure for µi (as in Baley and Blanco (2020)) is used in
column (3).

Table 1.1: Micro-level Asymmetry

Dependent variable:

Asymmetry
(

log ∆+pi
∆−pi

)
OLS IV

(1) (2) (3) (4) (5)

Drift µ 4.969∗∗∗ 4.966∗∗∗ 11.407∗∗

(1.830) (1.873) (5.448)
Drift µ (alt.) 4.552∗∗∗ 36.707

(1.745) (25.146)
σ2 −0.899 −0.890

(3.173) (3.175)
Frequency 0.114 0.113

(0.151) (0.151)
Std. Dev. 0.028 0.024

(0.730) (0.730)

Observations 1,924 1,924 1,924 1,376 1,376
R2 0.458 0.460 0.460 0.483 0.413

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. All specifications include category FE.
Standard errors are clustered at category level.

Table 1.1 suggests that higher trend inflation is positively related to asym-
metry in individual adjustments, independent of the way drift µ is computed.
The inclusion of controls does not alter this result. The coefficient in the first
column is interpreted in the following way: a one percentage point increase
in monthly trend inflation is associated with a 5% increase in the size of
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positive adjustments relative to the size of negative adjustments. Note that
a 1 p.p. increase in trend inflation is not a very large change at the item
level: standard deviation of the drift µi is 0.8 p.p. in the cross-sectional
distribution, so that the drift effect is sizable.

As noted previously, the positive relationship between the average growth
rate and the asymmetry in adjustments may not be too surprising, but it is
not immediate either. A higher trend may be purely driven by more frequent
positive adjustments and less frequent negative adjustments, however, this
option is not supported by the data.

One potential drawback of the baseline OLS specification is the fact that
drifts and asymmetries are computed using the same item-level time series.
This may lead to spurious results in a short sample because a large positive
adjustment simultaneously increases the estimates of drift and asymmetry.
To resolve this issue, I split the sample into two equal parts for each item.
I use the drift in the first subsample as an instrument for the drift in the
second subsample. I then compute asymmetry in the second subsample and
regress it onto the instrumented drift. Thus, the drifts and asymmetries
are effectively estimated on different samples, which helps addressing this
issue. The results are presented in columns (4) and (5) of Table 1.1. The
coefficient in front of the drift increases, and so do the standard errors.19

The baseline estimate of the drift remains significant and the alternative
specification becomes marginally insignificant with p-value = 0.14. Overall,
I conclude that the results are robust and provide supporting evidence for the
model predictions regarding the link between trend inflation and asymmetry
at the level of individual price adjustment.

1.4 Monetary Policy in General Equilibrium

The analytic results of this paper provide new insights into the efficacy of
monetary policy and its dependence on trend inflation. However, these re-
sults are obtained in a rather restrictive environment. First, I assume that
firms follow the steady state optimal policy along the transition path. Sec-
ond, I use a second-order approximation of the profit function, which ensures
symmetry and substantially contributes to analytic tractability. Third, I con-
sider monetary interventions in isolation, whereas this policy instrument is
often used as a counteractive measure to mitigate the effects of other dis-
turbances. Therefore, monetary policy is often implemented outside of an

19The standard errors increase due to the instrumenting procedure and a smaller sample
as I additionally restrict attention to items with at least 5 adjustments in the second
subsample.
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economy’s steady state, in contrast to the assumption imposed in the analytic
framework.

I now address all these issues and embed the analytic framework into a
standard general equilibrium model, calibrated to the U.S. data. I consider a
transitory adverse markup shock, which leads to an increase in prices and a
drop in consumption. Firms now correctly anticipate the economy dynamics
and follow the appropriate optimal policy. I then compare the ability of a
monetary authority to stabilize the economy under the baseline 2% inflation
target and a counterfactual 4% inflation target. A markup shock is well-
suited for this exercise, as it only increases a wedge in the economy stemming
from price dispersion, without affecting the efficient allocation. This provides
a rationale for the imposed stabilization objective of the monetary authority.
Because the markup shock depresses consumption and increases prices, it
introduces a trade-off for the monetary authority, as it can not stabilize
consumption and prices simultaneously.

I find that increasing the inflation target imposes two negative effects on
the ability of a policymaker to stabilize the economy after such a shock. First,
higher trend inflation amplifies the initial effect of the markup shock, leading
to larger price and consumption deviations. Second, it worsens the trade-off
between price and consumption stabilization. Both effects are sizable and
arise due to the impact of trend inflation on the asymmetry of price and
output responses. The results relate to the ongoing discussion on increasing
the inflation target, highlighting adverse implications for stabilization policy
away from the zero lower bound, in particular for the type of shocks that
exhibit the ‘cost-push’ property of moving prices and output in opposite
directions.

1.4.1 General Equilibrium Setup

Households

I embed the analytic model from Section 1 into a general equilibrium setting,
similar to those in Nakamura and Steinsson (2010) and Karadi and Reiff
(2019). Representative households maximize the present discounted value of
their utility, given by ∫ ∞

0

e−ρt (logCt − αLt) dt

where Ct denotes consumption of a composite good, Lt is the household’s
labor supply, ρ is the discount rate, and α is the disutility of labor. The
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household’s budget constraint is as follows:

PtCt + Ḃt = RtBt +WtLt + Πt

where Pt is the aggregate price level, Bt are the holdings of a bond with
nominal gross return Rt, Wt is the wage and Πt are the firms’ profits. Con-
sumption Ct is composed of a continuum of differentiated goods and is given
by

Ct =

[∫ (
At(i)Ct(i)

) θ−1
θ di

] θ
θ−1

where Ct(i) is consumption of a good produced by firm i, At(i) is its quality,
and θ is the elasticity of substitution. The aggregate price level is Pt =[∫ (

Pt(i)/At(i)
)1−θ

di
] 1

1−θ
and cost minimization yields the following demand

for good i:

Ct(i) = At(i)
θ−1

[
Pt(i)

Pt

]−θ
Ct

First-order conditions imply that wage Wt is proportional to nominal ag-
gregate consumption PtCt, and nominal interest rate is determined by the
growth rate of nominal consumption:

Wt = αPtCt

Rt = ρ+
˙(PtCt)

PtCt

Firms

There is a continuum of firms producing differentiated goods, indexed by i ∈
[0, 1]. Firms demand labor Lt(i) and set prices Pt(i). Production technology
is given by Yt(i) = Lt(i)/At(i), so that higher quality goods are more costly to
produce. Firms’ profits are given by Πt(i) = Pt(i)Yt(i)−WtLt(i). To adjust
its price at time t, a firm must hire additional labor and the total cost of
adjustment is given by κPt(i)Yt(i). In addition, firms receive an opportunity
to adjust for free at rate λ. Such a setup is typically referred to in the
literature as a ‘CalvoPlus’ model because it nests both the standard menu
cost model and the Calvo (1983) setting. Each firm maximizes the expected
discounted stream of profits:

E

[∫ ∞
0

QtΠt(i)dt− κ
∞∑
i=1

QτiPτi(i)Yτi(i)

]
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where Qt = αe−ρt

Wt
is the discount factor implied by the household’s problem

and τi are the adjustment times when a firm pays adjustment costs. The
goods quality At(i) evolves as a geometric Brownian motion with no drift:
d logAt(i) = σdWt(i). Using the household’s first-order conditions and the
fact that firms face consumers’ demand function (Yt(i) = Ct(i)), one can
rewrite the firm’s profit and cost functions as:

Πt(i) = α−θWt

(
θCt
θ − 1

)1−θ

π(zt(i))︷ ︸︸ ︷
e−θzt(i)

(
ezt(i) − θ − 1

θ

)
κPt(i)Yt(i) = κα−θWt

(
θCt
θ − 1

)1−θ

e(1−θ)zt(i)︸ ︷︷ ︸
c(zt(i))

where zt(i) is the price gap, given by zt(i) = logPt(i)− logP ∗t (i), and P ∗t (i)
is the frictionless optimal price, given by P ∗t (i) = θ

θ−1
WtAt(i). Note that Wt

cancels out in the firm’s objective function, so that in a stationary equilibrium
the firm’s problem does not depend on any aggregate state, as constant
aggregate consumption may be taken out of the problem.

Monetary Authority and Stationary Equilibrium

Following Nakamura and Steinsson (2010) and Midrigan (2011), I assume
that the monetary authority is in full control of the nominal output Mt =
PtCt, which in the steady state grows at a constant rate µ: d logMt = µdt.
This assumption is common in the literature and can be rationalized by a
binding cash-in-advance constraint. Given that µ is set exogenously in this
model, I will refer to it both as ‘trend inflation’ and ‘inflation target’.

Household’s first-order conditions imply that the equilibrium nominal in-
terest rate is constant and equal to R̄ = ρ + µ, and the wage follows the
law of motion of nominal output: d logWt = µdt. This creates a drift in the
firm’s optimal price P ∗t (i), and thus in the price gaps zt(i). In the absence
of action, price gaps evolve as dzt(i) = −µdt + σdWt(i). The firm’s prob-
lem becomes almost identical to the one considered in the analytic section,
with a few exceptions: (1) the profit function is no longer symmetric, (2)
adjustment costs depend on the price gap at the time of adjustment, and
(3) firms receive costless adjustment opportunities at rate λ. The solution
to the firm’s problem is characterized by a triplet {z, ẑ, z} where z and z
are the lower and upper boundaries of inaction region, and ẑ is the return
point. The value function satisfies the following Hamilton–Jacobi–Bellman
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equation in the inaction region:

(ρ+ λ)v(z) = π(z) + λv(ẑ)− µv′(z) +
1

2
σ2v′′(z)

where π(z) = e−θz
(
ez − θ−1

θ

)
and ẑ is the optimal return point. The bound-

ary conditions are v(z) = v(ẑ) − c(z) and v(z) = v(ẑ) − c(z), where c(z) =
e(1−θ)z. Optimality and smooth pasting require v′(ẑ) = 0, v′(z) = (θ− 1)c(z)
and v′(z) = (θ− 1)c(z). The density of the stationary price gap distribution
f(z) is determined by a Kolmogorov forward equation:

λf(z) = µf ′(z) +
1

2
σ2f ′′(z)

Aggregate consumption, price level and employment can be computed using
the stationary price gap distribution as follows:

Ct = C̄ =
θ − 1

αθ

[∫ z

z

e(1−θ)zf(z)dz

] 1
θ−1

Pt =
αθ

θ − 1
Mt

[∫ z

z

e(1−θ)zf(z)dz

] 1
1−θ

Lt = L̄ = C̄1−θ
(

αθ

θ − 1

)−θ ∫ z

z

e−θzf(z)dz + Γ

Γ = κα−θ
(

θC̄

θ − 1

)1−θ [
γ+e(1−θ)z + γ−e(1−θ)z]

where Γ is the total labor hired for price adjustment per unit of time and
γ+ and γ− are the masses of firms adjusting at a cost upward or downward,
respectively, per unit of time. Finally, bond holdings Bt are in zero net
supply, so that in equilibrium Bt = 0.

1.4.2 Calibration

I set the discount rate ρ to 0.04 in annual terms and trend inflation µ to 0.02,
roughly matching the average annual inflation in the U.S. over the last two
decades.20 The elasticity of substitution θ is set to 5, which is an intermediate
value among those considered in the literature.21 The remaining parameters,

20When calibrating a continuous time model, the period length is innocuous, as it only
scales certain parameters up or down.

21Midrigan (2011) sets θ to 3, Nakamura and Steinsson (2010): θ = 4, Karadi and Reiff
(2019): θ = 5, Golosov and Lucas (2007) use θ = 7.
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namely the disutility of labor α, the variance of idiosyncratic shocks σ2,
the adjustment cost κ, and the rate at which firms receive free adjustment
opportunities λ, are calibrated internally. I target equilibrium employment
of 1/3 and three moments of the distribution of price adjustments: frequency,
average size, and kurtosis. All three moments are informative of aggregate
responses to shocks and are a typical choice for calibration targets. Alvarez
et al. (2016) show analytically that in a wide class of menu cost models
the ratio of kurtosis to frequency is a sufficient statistic for the cumulative
effect of a marginal monetary shock on output. In the first section of this
paper I show that the effect of trend inflation on aggregate price and output
responses depends on the average size of adjustment.

I target values of frequency, average size and kurtosis, reported in the
literature. I set the frequency of price changes to 10% per month, the aver-
age size of adjustment to 10%, and the kurtosis of the distribution of price
adjustments to 4. The first two values are standard, as many studies report
very similar estimates using different data sets.22 The estimates of kurto-
sis are much more dispersed: Alvarez et al. (2020) report values close to 2,
Midrigan (2011): 3.15, Alvarez et al. (2016): 4, Vavra (2014): 6.4. I use an
intermediate value of 4, obtained by Alvarez et al. (2016) from the weekly
scanner data of the Dominick’s dataset, accounting for heterogeneity and
measurement error. The model matches the targeted statistics exactly, and
Table 1.2 summarizes model parameters and their values in annual terms. In
Appendix A.4.3 I use an alternative calibration, targeting the kurtosis of the
price adjustment distribution of 3. This affects the overall non-neutrality of
monetary policy, but the main findings remain qualitatively unchanged.

1.4.3 Markup Shock

I now consider an unexpected shock that increases steady state optimal
markup

(
θ
θ−1

)
by 3% and then gradually reverts to zero in AR(1) fash-

ion. Formally, the dynamics of the shock εt are governed by an Ornstein-
Uhlenbeck process, so that εt = 0.03 · e−ηt, where η determines the speed
of convergence and is set to generate a half-life of two months. The shock
sets the economy on a deterministic transition path, increasing the aggre-
gate price and depressing consumption. I defer the description of the non-

22Frequency: Nakamura and Steinsson (2008): 10.8%, Nakamura and Steinsson (2010):
8.7%, Vavra (2014): 10.9%. Average size of adjustment: Nakamura and Steinsson (2008):
8.5%, Kehoe and Midrigan (2015): 11%, Vavra (2014): 7.7%. For the average size of ad-
justment, the mean and median estimates are usually similar, whereas the mean frequency
is typically higher than the median. I use the median frequency estimates, as this is the
preferred choice for single-sector models (see Nakamura and Steinsson (2010)).
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Table 1.2: Calibrated Model Parameters

Parameter Value

Discount rate ρ 0.04
Trend inflation µ 0.02
Elasticity of substitution θ 5
Disutility of labor α 2.2
Variance of idiosyn. shocks σ 0.148
Adjustment cost κ 0.11
Rate of free adjustmens λ 1.126

Values are denominated in annual terms.

stationary equilibrium conditions to Appendix A.4.1 and plot the dynamics
of consumption and prices on Figure 1.4.1.

The price level response is plotted in terms of percent deviations from the
trend, whereas consumption and markup responses are in terms of percent
deviations from the steady state. The markup shock raises the firms’ optimal
prices, leading to an increase in the actual price level. Because the nominal
output stays constant and prices increase, consumption falls. Integrating the
area under the lines, one obtains cumulative impulse responses, which are
given by

∫∞
0

(pt−p̄t)dt = 0.44% for the price level and
∫∞

0
(ct− c̄)dt = −0.44%

for consumption, where p̄t is the trend of the aggregate log-price and c̄ is the
steady state log-consumption.23

The shock is purely inefficient in the sense that it increases the wedge
between the actual and efficient level of output, without affecting the effi-
cient allocation.24 Thus, it would be desirable to ‘undo’ its consequences by
means of policy. To capture this in a simple way, I assume that the poli-
cymaker dislikes negative deviations of consumption from its efficient level
and values price stability (dislikes any deviations from the trend).25 I also
assume that monetary interventions follow the same dynamics as the markup
shock, and the only choice of the policymaker is the level of monetary inter-

23A 1% negative cumulative response of consumption is equivalent to a scenario when
consumption is held at 1% below its steady state for one year.

24Efficient output is achieved under zero price dispersion and is given by C∗
t = Lt. Due

to price dispersion, Ct =
[∫

(Pt(i)/(At(i)Pt))
−θ
di
]−1

C∗
t (see Yun (1996)). An increase

in optimal markup lowers θ and increases the inefficiency stemming from price dispersion.
25Such an objective is different from an optimal policy that considers welfare, which

depends on the level of consumption, the degree of price dispersion and the volume of
adjustment costs paid by the firms. A meaningful study of optimal policy with respect to
trend inflation would require additional model components, e.g. heterogeneity in individ-
ual price trends as in Adam and Weber (2020).
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Figure 1.4.1: Markup Shock
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Model-generated impulse responses of consumption, price level and markup to a 3%
markup shock. Consumption and markup responses are in terms of percent deviations
from the steady state, whereas price level responses are in terms of percent deviations
from the trend.

vention. Formally, monetary intervention δt is proportional to the markup
shock: δt = δεt, where δ ∈ R and is chosen by the monetary authority. A
stimulus (δ > 0) mitigates the negative response of consumption, but raises
prices even further (see Figure A.4.1 in Appendix A.4.2). A contraction
(δ < 0) creates an opposite effect, stabilizing prices and amplifying the drop
in consumption. The policymaker thus faces a trade-off, as it is impossible
to stabilize consumption and prices simultaneously.

I do not assign any weights to these objectives, but rather consider the
whole possibility frontier of the policymaker, given the initial markup shock
and the restrictions on policy outlined above. By varying the sign and size
of the monetary intervention δ, the policymaker achieves different combina-
tions of cumulative consumption and price responses. The resulting frontier
depends, among other parameters, on trend inflation µ. I now compare these
frontiers for the baseline level of trend inflation of 2% per year and a coun-
terfactual value of 4%. Figure 1.4.2 shows the results.

On the x-axis I plot cumulative consumption responses, on the y-axis –
cumulative responses of the price level.26 The curves show feasible outcomes
for the baseline economy with trend inflation of 2% (solid blue line) and a
counterfactual economy with a 4% trend inflation (dashed red line), given the

26I consider cumulative deviations of the price level rather than inflation, as in this case it
is impossible to completely neutralize the effect of the shock on inflation due to the imposed
restriction on monetary policy. However, the findings of the paper remain unchanged if I
substitute the price level CIR with the CIR of inflation, as shown in Appendix A.4.4.
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Figure 1.4.2: Frontiers, Small Shock
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Feasible combinations of cumulative responses of consumption (x-axis) and price level (y-
axis) after a 3% markup shock. The solid blue line corresponds to the baseline economy
with a 2% trend inflation, and the dashed red line represents a counterfactual economy
with a 4% trend inflation. Consumption responses are in terms of percent deviations from
the steady state, whereas price level responses are in terms of percent deviations from the
trend. Black dots show the outcomes if the monetary authority does not intervene.

initial 3% markup shock. The red asterisk corresponds to a (0, 0) scenario,
where the effect of the markup shock is completely neutralized. Black dots
on the curves correspond to scenarios when the monetary authority does not
intervene (δ = 0). Stimulative policy (δ > 0) moves an economy along its
frontier to the right, contractionary measures (δ < 0) move it to the left.

First, note that in the economy with a 4% trend inflation the black dot
is further away from the (0, 0) point, which means that the negative effects
of the markup shock are on their own stronger if trend inflation is higher.
Under a 4% inflation target, the markup shock leads to a 3.4% stronger
increase in prices and a 3.4% stronger drop in consumption, compared to
the baseline economy with an inflation target of 2%. When trend inflation
is higher, prices exhibit less upward rigidity and have a stronger response
to the markup shock, which also results in a larger consumption drop if the
monetary authority keeps the nominal output constant. Importantly, this
result is not driven by changes in the overall frequency of price adjustments
because it remains virtually constant as I vary the level of trend inflation.
Instead, the result is due to changes in the relative frequencies and sizes of
positive and negative price adjustments.

Second, higher trend inflation worsens the trade-off between consumption
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and price stabilization. This latter effect is less apparent on the graph, but
can be seen when calculating the curvature of the frontiers. I measure the
curvature as a ratio between the slopes of stimulative and contractionary
interventions. The slope of stimulative policy αS reflects the rate at which
the policymaker gains consumption and loses price stability, when conducting
stimulative policy (δ > 0). Graphically, it is the slope of a straight line,
passing through an economy’s initial point (black dot) and the intersection
of the frontier with the y-axis. The slope of contractionary policy αC reflects
the rate at which the policymaker gains price stability and loses consumption,
when conducting contractionary policy (δ < 0). Graphically, it is the slope of
a straight line, passing through an economy’s initial point (black dot) and the
intersection of the frontier with the x-axis. The curvature is then measured
as a ratio between the slopes: αS/αC .27 A higher curvature indicates that the
stimulative slope becomes steeper, whereas the contractionary slope flattens
out. Therefore, the monetary authority must sacrifice more consumption
when stabilizing prices and tolerate larger price deviations when restoring
consumption. Thus, the higher the curvature, the worse the stabilization
trade-off is.

For the baseline economy with a 2% inflation target the curvature is equal
to 0.93, whereas under a 4% inflation target it increases by by 7.5% to 1.0.
Under higher trend inflation, the policymaker must sacrifice more consump-
tion when stabilizing prices, and must tolerate larger price responses when
stimulating consumption. This is again caused by the effect of trend inflation
on the asymmetry of price and consumption responses. As the inflation tar-
get rises, prices become more sensitive to stimulative shocks and it becomes
harder for the monetary authority to stimulate consumption. Simultane-
ously, prices become less sensitive to contractionary shocks, which impedes
the ability of policymakers to stabilize prices. Higher trend inflation increases
price flexibility exactly when it is desirable to have rigid prices, and makes
them stickier exactly when flexibility is needed.

Both of the effects of a higher inflation target are amplified if the initial
markup shock is larger. Figure 1.4.3 plots the same frontiers for a 10%
markup shock. The economy with a 4% trend inflation now has a 6.1%
stronger response to the initial markup shock and an 11% higher curvature,
compared to the economy with a 2% trend inflation.

Overall, the results show that trend inflation affects the ability of a pol-
icymaker to stabilize the economy after an adverse markup shock. Higher

27This measure is not ideal, as it assigns a unique value to the entire frontier, whereas
the degree of curvature may vary along the frontier. However, it summarizes the overall
trade-off, considering two extreme points of achieving zero consumption or zero price CIRs.
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Figure 1.4.3: Frontiers, Large Shock

-7 -6 -5 -4 -3 -2 -1 0

CIR Consumption, %

0

0.5

1

1.5

C
IR

 In
fla

tio
n,

 %

Inflation target = 2%
Inflation target = 4%

Feasible combinations of cumulative responses of consumption (x-axis) and price level (y-
axis) after a 10% markup shock. The solid blue line corresponds to the baseline economy
with a 2% trend inflation, and the dashed red line represents a counterfactual economy
with a 4% trend inflation. Consumption responses are in terms of percent deviations from
the steady state, whereas price level responses are in terms of percent deviations from the
trend. Black dots show the outcomes if the monetary authority does not intervene.

trend inflation decreases upward price stickiness and leads to stronger price
and consumption responses to the initial markup shock. In addition, higher
trend inflation amplifies the asymmetry of price and consumption responses
to positive and negative monetary shocks, which worsens the policymaker’s
trade-off when stabilizing the economy. I finally note that these results are of
greater importance for large shocks, as the effects of trend inflation become
more pronounced.

In both scenarios I considered a shock that temporarily increases monop-
olistic power of firms. A shock that decreases firms’ monopolistic power and
drives optimal markups down would have two distinct effects. First, because
the steady state markup is positive and price dispersion is non-zero, a fall in
markups would decrease the inefficiency in the economy and bring consump-
tion closer to its efficient level. Such a shock would increase consumption and
decrease prices, so that any subsequent expansionary monetary policy would
lead to price stabilization and further consumption growth, thus inducing no
trade-off. Second, because higher trend inflation increases downward price
rigidity, the initial response to the shock would be larger in the baseline econ-
omy with a 2% inflation target than in the counterfactual with a 4% inflation
target. In addition, it will be easier for the monetary authority to stabilize
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prices and consumption under higher trend inflation, again due to lower up-
ward price rigidity and higher downward rigidity. Therefore, all results are
‘mirrored’ if the markup shock is of the opposite sign, and higher trend in-
flation would be beneficial from a pure stabilization perspective.28 It follows
that the overall potency of monetary stabilization policy would depend on
which types of shocks prevail in the economy.

1.5 Summary

In this paper I show that trend inflation matters for economy’s responses
to aggregate shocks and monetary policy interventions. I derive a set of
new analytic results for the effect of trend inflation on aggregate dynamics
in a standard menu cost model. The main contribution is that I consider
monetary shocks of any size in an environment with non-zero drift. This
approach reveals several new properties of aggregate dynamics, especially for
large shocks.

The key characteristic of trend inflation is that it affects aggregate re-
sponses to positive and negative shocks asymmetrically. In the presence
of adjustment costs, prices are more sensitive to shocks that push them in
the same direction as the trend, and are less sensitive to shocks the push
them in the opposite direction. Under positive trend inflation, larger price
flexibility in responses to positive monetary shocks leads to weaker output
increases, whereas smaller price flexibility in responses to negative shocks
leads to stronger output declines. These effects are especially pronounced for
large shocks that force all firms to update prices. While positive large shocks
are neutral in the driftless case, they cause output contractions in economies
with positive trend inflation.

The empirical analysis shows that the new analytic predictions of the
model are in line with the data. I find that sectors with a higher PPI growth
rate exhibit stronger price responses to positive monetary shocks and weaker
responses to negative shocks, compared to sectors with a lower growth rate
of PPI. I also find that aggregate output expansions after positive monetary
shocks are almost entirely driven by sectors with a low PPI growth rate,
whereas output contractions are distributed more equally. In addition, pro-
duction responses are generally non-linear and large positive shocks may lead
to a decline in output. This holds for sectors with both low and high levels
of trend inflation, however the size of a positive shock that causes an output
contraction is smaller for sectors with a larger level of trend inflation.

28See also the discussion in Blanco (2020) on the effects of higher trend inflation on the
likelihood of hitting the zero lower bound.
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My results have important implications for monetary stabilization policy
and contribute to the ongoing discussion on the necessity to raise the infla-
tion target. Using a general equilibrium model calibrated to the U.S. data, I
find that higher trend inflation has a sizable effect on the ability of a policy-
maker to stabilize the economy after an adverse markup shock. Raising the
inflation target from 2% to 4% amplifies the initial response to the markup
shock and worsens the stabilization trade off. A policymaker has to sacrifice
more consumption when stabilizing prices and has to tolerate larger price
deviations when stimulating consumption. Thus, a higher inflation target
impedes the ability of a monetary authority to counteract adverse shocks
that move output and prices in opposite directions.



Chapter 2

Understanding Leverage
Determinants

2.1 Introduction

Secured loans are a common type of borrowing, in which the borrower pledges
an asset as collateral to ensure the lender against potential default. This
allows the borrower to negotiate a lower interest rate and obtain a larger
loan. In many cases, agents borrow to purchase an asset and use that asset
to secure the loan. One example are mortgages: households borrow to buy a
house and use the house as collateral. A key statistic that affects the ability
of households to purchase houses is leverage. Leverage is the ratio between
the value of an asset (the price of a house) and agent’s equity (household’s
down payment). If a household buys a house borrowing 80% of its price, then
the down payment amounts to 20% of the price, and the leverage is equal
to 5. The margin is the reciprocal of the leverage, and in this example it is
equal to 20%.

Leverage on secured loans experienced violent fluctuations around the
Great Recession. The procyclicality of leverage, documented by Adrian and
Shin (2010), was exceptionally pronounced during this period. According to
Geanakoplos (2010), the average leverage on so-called toxic mortgage backed
securities went down from 16 in 2006 to 1.2 in 2009. Within the same period,
the down payment on mortgages went up from as low as 3% to 30%. Fluc-
tuations originating in the financial sector spilled over to the real economy
and resulted in a severe recession. The aim of this paper is to provide new
theoretical insights into forces and mechanisms responsible for such drastic
movements.

To understand the determinants of leverage, I setup a general equilibrium

56
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model with an endogenous leverage constraint. The model features a risky
asset with a stochastic future payoff and a safe asset. Besides investing in
either of the two assets, agents can borrow from each other. Borrowing,
however, requires pledging one unit of the risky asset as collateral, and the
payoff of the risky asset can not be influenced by the borrower or the lender.
Examples of such borrowing contracts are REPO loans and mortgages. The
agents disagree about the distribution of the payoff of the risky asset, meaning
that some are more optimistic than the others. In equilibrium, the optimists
would like to buy the risky asset and to borrow from the more pessimistic
agents to increase their asset purchases. However, the value of the risky asset
that is used as collateral differs across borrowers and lenders. The lenders
are more pessimistic and require larger amounts of collateral for a given loan.
This creates an endogenous leverage constraint for the borrowers.

The model is based on the framework developed by Geanakoplos (1997)
and extended by Simsek (2013). The novelty of my approach is that I simul-
taneously consider a continuum of agent types and a continuum of states for
the payoff of the risky asset. A continuum of agent types (as opposed to two
types in Simsek (2013)) ensures that identities of borrowers and lenders are
determined endogenously in equilibrium. A continuum of states for the risky
asset payoff (as opposed to two or three in Geanakoplos (2003)) ensures that
agents with different beliefs choose different borrowing contracts in equilib-
rium. Such a setup is not a mere technical complication, but it provides new
theoretical insights, inaccessible otherwise. The model features a continuum
of different borrowing contracts traded in equilibrium, all written against the
same asset used as collateral. There is one-to-one matching between borrow-
ers and lenders and each pair has a unique contract in terms of riskiness,
leverage and promised interest. The most optimistic agents borrow with the
highest leverage and promise the largest interest rates. An important new
analytic result is the absence of riskless borrowing contracts in equilibrium:
all contracts default if the realized asset payoff is sufficiently low.

The model also highlights that the price of the risky asset and the total
leverage in the economy are driven by different forces. The asset price is de-
termined by the ratio between the mass of market participants (those buying
the risky asset or lending) and the rest of the population. The more agents
participate in the market, the larger fraction of total endowment is invested
into the asset, and the higher is the asset price. The aggregate leverage, in
turn, depends on the ratio between the mass of lenders and the mass of agents
buying the asset (borrowers). If the mass of lenders increases relative to the
mass of borrowers, the leverage goes up. Therefore, the aggregate leverage
and the asset price are decoupled: there can be more agents participating in
the market and raising the asset price, but as long as these agents split into
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borrowers and lenders in the same proportion, the leverage stays constant.
Similarly, agents may be switching from borrowing to lending and thus in-
creasing the leverage, but as long as the total mass of market participants
stays constant, so does the asset price.

To see which fundamentals have the largest effect on leverage, I solve
the model numerically and compute comparative statics with respect to two
parameters: the optimism and the uncertainty. The optimism is the average
(across agents) expected payoff of the risky asset. The uncertainty is the
variance of this payoff, and it is constant across agents. I find that aggregate
leverage is much more sensitive to changes in the uncertainty, than to changes
in the optimism. Higher uncertainty scares lenders away, and they either
flee the market or switch to buying the asset on margin instead of lending.
As a result, the mass of lenders goes down, whereas the mass of borrowers
increases, and aggregate leverage falls. The reason is that returns on lending
are sensitive to changes in the lower tail of the asset payoff distribution,
whereas returns on buying the asset on margin primarily depend on the
upper tail of the distribution. As uncertainty rises, the upper tail ‘improves’
in the sense that larger asset payoffs become more likely, whereas the lower
tail ‘worsens’ in the sense that smaller asset payoffs also become more likely.
As a result, more agents are willing to buy the asset on margin and fewer
agents are willing to lend, which leads to lower aggregate leverage.

Changes in the optimism, however, primarily affect the price of the as-
set. Higher optimism attracts more agents on the market, which increases
the asset price. At the same time, I find the effect on leverage to be small
and ambiguous. As the number of market participants rises, the fractions
of borrowers and lenders remain relatively stable, and so does the aggregate
leverage.

Relation to the Literature. This paper is most closely related to the
literature that studies the role of collateral in general equilibrium models
with incomplete markets (GEI). The pioneering work of Geanakoplos (1997,
2003) shows that constraints on leverage arise endogenously due to scarcity
of the collateral and belief heterogeneity. Geanakoplos and Zame (2014) es-
tablish the main properties of collateral equilibrium. Fostel and Geanakoplos
(2008) and Geanakoplos (2010) introduce the notion of the leverage cycle,
in which an increase in uncertainty leads to a spiral of falling leverage and
asset prices. Fostel and Geanakoplos (2015) show that in models with a
continuum of agent types and only two states of nature, only the no-default
borrowing contract is traded in equilibrium. Simsek (2013) considers an op-
posite setting, allowing for a continuum of states but only two agent types,
and explores how the nature of belief disagreement affects equilibrium out-
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comes. The most recent contributions follow the approach of Simsek (2013).
Yan (2017) studies a version of this model with no risk-free asset and con-
sumption in both periods. Pei and Zhang (2020) incorporate this framework
into an infinite horizon RBC model and employ heterogeneity in productivity
instead of belief heterogeneity. I contribute to the literature by combining
a continuum of states with a continuum of agent types. This allows me to
derive new theoretical predictions, unattainable in other environments, such
as the absence of no-default borrowing contracts in equilibrium, in contrast
to the Binomial No-Default Theorem of Fostel and Geanakoplos (2015).

My paper also fits into broader literature that investigates the effects of
financial frictions on asset prices and leverage, including Shleifer and Vishny
(1992), Kiyotaki and Moore (1997), Bernanke et al. (1999), and more re-
cently Brunnermeier and Pedersen (2009), He and Krishnamurthy (2013),
Brunnermeier and Sannikov (2014), and Coimbra and Rey (2020). The key
distinctive features of the setting in my paper are the type of the financial
friction and the source of the endogenous constraint on leverage. The collat-
eral constraint in my setup does not apply to the borrowed amount, but to
the number of borrowing contracts sold by an agent. This implies that agents
may borrow more against the same amount of collateral and increase lever-
age by promising a higher interest rate. The menu of borrowing contracts is
an equilibrium outcome and specifies available combinations of leverage and
interest rates. As a result, the constraints on leverage arise endogenously
and are driven by the difference in the valuation of the collateral between
borrowers and lenders.

Structure of the paper. The next section outlines the model setup and
defines the general equilibrium. Section 3 characterizes the structure of the
equilibrium. Section 4 establishes an alternative equilibrium definition. Sec-
tion 5 computes comparative statics. Section 6 concludes and suggests av-
enues for future research.

2.2 Model Setup

I consider an economy populated by a continuum of agents i ∈ [0, 1]. There
are two periods, t = 0 and t = 1, and agents consume in t = 1 only. There are
two commodities: a risk-free asset, delivering one unit of consumption good
in t = 1, and a risky asset, delivering y ∈ [c, c] units of consumption good
in t = 1, with c > 0. Following Simsek (2013), I will refer to the risk-free
asset as ‘cash’, and to the risky asset simply as ’asset’. Both commodities are
traded in period t = 0. The price of cash is normalized to 1, which sets the
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gross risk-free rate to 1. The price of the asset in t = 0 is denoted by p and is
determined endogenously. There is one unit of each commodity, distributed
equally among agents, so that agent’s endowment is equal to 1 + p.

Agents have linear utility and heterogeneous beliefs about the distribution
of the asset payoff in t = 1, represented by cumulative distribution functions
Fi : [c, c]→ [0, 1]. These distributions have continuous densities fi(·), which
are positive over (c, c). The main source of belief heterogeneity is optimism,
represented by the expected value of the asset payoff Ei[y]. Agents are ranked
by their optimism, in the sense that agents with a higher index expect a
higher asset payoff, formally: ∀ i, j ∈ [0, 1] s.t. i < j, Ei[y] < Ej[y]. The most
optimistic agents belong to the top of the [0, 1] interval, the most pessimistic
– to the bottom.

In equilibrium, the most optimistic agents would hold the asset, and the
most pessimistic ones would invest in risk-free cash. Furthermore, optimists
would like to borrow in order to purchase more of the asset.1 In other words,
optimists would prefer to buy the asset ‘leveraged’ or ‘on margin’, since
borrowed funds are used to purchase more of the asset. In the paper I use
the two terms interchangeably.

I model borrowing in a form of anonymous market for borrowing con-
tracts, as in Geanakoplos (2003, 2010). A borrowing contract is a promise to
deliver ϕ units of consumption good in t = 1, collateralized by one unit of the
asset. Contracts are traded in t = 0 at endogenously determined prices q(ϕ).
By selling a contract, an agent puts up one unit of the asset as collateral,
borrows q(ϕ) in t = 0 and promises to deliver ϕ in t = 1, implying a gross
interest rate of ϕ/q(ϕ). By buying a contract, an agent lends q(ϕ) in t = 0
and is promised ϕ in t = 1.

However, a promise might not be delivered if the borrower prefers to de-
fault. This happens if fulfilling the promise is more costly than surrendering
the collateral, namely if the promised amount ϕ is larger than the value of
collateral y. In the case of default, the lender gets the collateral instead of
the promised amount. Therefore, the actual delivery of a contract is given by
min(ϕ, y). Agents may promise any non-negative amount ϕ, so that the set
of borrowing contracts is R+. Note that any contract ϕ ≤ c is riskless, since
the promise is smaller than the minimal asset payoff and will be delivered
with certainty. Any contract ϕ > c is risky as it may default in some states.

This setting allows agents to chose both the amount borrowed and the
promised interest rate. Borrowing an amount of X can be achieved by selling
one contract ϕ1 with price q(ϕ1) = X, or by selling two identical contracts

1Pessimists would like to short-sell the asset, but I do not allow short-selling in this
setup.



CHAPTER 2. LEVERAGE DETERMINANTS 61

ϕ2 with price q(ϕ2) = X/2. If the pricing function q(·) is concave2, then
ϕ1 > 2ϕ2. This implies that the promised interest rate in the first case
is larger than the one promised in the second case: ϕ1/q(ϕ1) > ϕ2/q(ϕ2).
However, selling two contracts ϕ2 requires pledging two units of the asset as
collateral, whereas selling one contract ϕ1 requires pledging only one unit of
the asset. A portfolio of two contracts with smaller promises is much safer
for the lender, as it is backed by twice as much of collateral, which allows for
a lower interest rate.3 Holding more of the asset reduces the interest rate on
borrowing, which is one of the key features of the model.

2.2.1 Equilibrium Definition

The equilibrium definition in this model is an extension of the one in Simsek
(2013) to the case of a continuum of agents. Let ai ∈ R+ denote agent i′s asset
demand, and let ci ∈ R+ denote the demand for cash. Each agent also decides
on borrowing and lending positions on the contract space ϕ ∈ R+, denoted
by measures µ−i and µ+

i . Measure µ−i corresponds to sold contracts, i.e. those
used to borrow, whereas measure µ+

i – to bought contracts, i.e. those used to
lend. Note that it is important to distinguish between contract purchases and
contract sells as the latter requires pledging the asset as collateral, whereas
the former does not.

Denote agent’s endowment by n := 1 + p. Then the budget constraint is
given by:

pai︸︷︷︸
Asset Purchases

+

Cash Purchases︷︸︸︷
ci +

∫ ∞
ϕ=0

q(ϕ)dµ+
i︸ ︷︷ ︸

Contract Purchases

≤ n︸︷︷︸
Endowment

+

Contract Sellings︷ ︸︸ ︷∫ ∞
ϕ=0

q(ϕ)dµ−i

(BC)
where the integrals correspond to total amounts lent and borrowed. For
each contract sold, agents need to pledge one unit of the asset as collateral.
Therefore, borrowing is limited by the collateral constraint:∫ ∞

ϕ=0

dµ−i︸ ︷︷ ︸
# Contracts Sold

≤ ai︸︷︷︸
Asset Holdings

(CC)

2Which is the case in the numerical example in this paper.
3Note that in this setting each contract requires the same amount of collateral, indepen-

dent of the amount promised. It is the contract price that is set in equilibrium to ensure
equality of demand and supply. However, one could instead fix the amount borrowed (the
price) or the promise for each contract, without affecting the results.
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Note that the constraint is not on the amount borrowed, but on the ‘number’
of contracts sold. The agent’s problem is then:

max
ai,ci,µ

+
i ,µ
−
i

aiEi[y] + ci +

∫ ∞
ϕ=0

(
Ei[min(ϕ, y)]dµ+

i − Ei[min(ϕ, y)]dµ−i
)

(AP)

subject to (BC) and (CC)

Since agents have linear utility, they maximize the expected payoff of their
portfolio. The first term is the expected payoff of asset holdings, and the
second term is the payoff of cash holdings. The third term are the expected
payoffs of all the contracts agent i bought, and the fourth term are the
expected deliveries of all the contracts agent i sold. The market clearing
conditions are:

• Asset market:
∫ 1

0
aidi = 1

• Cash market:
∫ 1

0
cidi = 1

• Contract markets: µ+ =
∫ 1

0
µ+
i di =

∫ 1

0
µ−i di = µ−

The first two conditions are straightforward and state that total asset and
cash holdings are equal to total endowments of these commodities. The last
condition means that the total measure of contract purchases (µ+ =

∫ 1

0
µ+
i di)

is equal to the total measure of contract sells (µ− =
∫ 1

0
µ−i di).

A general equilibrium is defined as a collection of prices {p, q : R+ → R+}
and portfolios {ai, ci, µ+

i , µ
−
i }i∈[0,1] such that portfolios solve (AP) for each

i ∈ [0, 1] and all markets clear.
This formulation of equilibrium is not particularly tractable. There is a

continuum of agents making portfolio decisions over a continuum of contracts.
In the following I establish several equilibrium properties, which provide
insights into its structure and substantially simplify its characterization.

2.3 Equilibrium Properties

Because of linear utility, agents chose a portfolio that maximizes the expected
return. There are four positions that each agent may take: buying cash,
buying the asset, buying a contract, and buying the asset on margin (buying
the asset and selling a contract). Each agent invests her entire endowment
into the position that provides the largest (agent-specific) expected return.
The return on cash is trivially equal to 1. The return on the asset if purchased
unleveraged is given by:

Ei[y]

p
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The numerator is the expected asset payoff and the denominator is the asset
price. If the asset is purchased leveraging with a contract ϕ (i.e. by buying
the asset and selling the contract), the return is denoted by Ry(i, ϕ) and is
given by:

Ry(i, ϕ) :=
Ei[max(y − ϕ, 0)]

p− q(ϕ)

When buying the asset leveraged with a contract ϕ, an agent holds one unit
of the asset and promises to repay ϕ in t = 1. In case the agent delivers the
promise, her payoff is y − ϕ. In the case of default, the agent surrenders the
asset to the lender and receives 0. Thus the expected payoff of this position
is Ei[max(y − ϕ, 0)]. The price is p − q(ϕ), also referred to as the down
payment, since part of the asset is financed by borrowing q(ϕ). Finally, the
return on buying a contract ϕ (lending) is denoted by Rc(i, ϕ) and is given
by:

Rc(i, ϕ) :=
Ei[min(y, ϕ)]

q(ϕ)

Given the asset price p and the contract pricing function q(·), each agent
computes the highest expected return for each action:

max

{
1,

Ei[y]

p
,max

ϕ
Ry(i, ϕ),max

ϕ
Rc(i, ϕ)

}
and takes one position that provides the highest expected return.4 In fact,
only three out of four possible positions can be considered in equilibrium.

Lemma 1.. In any equilibrium, each agent either buys cash, buys a contract,
or buys the asset on margin.

I provide all the proofs in Appendix B.2. Intuitively, if an agent prefers
to buy the asset unleveraged over cash or any contract, she will prefer to
leverage on the asset in order to further increase the expected return. I
now make an additional assumption on beliefs in order to characterize the
equilibrium structure.

Assumption A1.. Beliefs {Fi(·)}i∈[0,1] satisfy hazard-rate order: ∀i, j ∈
[0, 1] s.t. i < j:

fj(y)

1− Fj(y)
<

fi(y)

1− Fi(y)
∀y ∈ (c, c)

or, equivalently,
1−Fj(y)

1−Fi(y)
is strictly increasing in y over [c, c].

4Or is indifferent between several positions that provide the same expected return and
is free to take any combination of these positions.
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The hazard-rate order is also assumed in Simsek (2013). It implies first
order stochastic dominance, but it is weaker than monotone likelihood ra-
tio property. To get an intuition, consider the alternative definition of the
hazard-rate order, stating that

1−Fj(y)

1−Fi(y)
is strictly increasing in y if j > i.

The numerator 1 − Fj(y) is the probability that the asset payoff is larger

than some threshold y, assigned by agent j. The fraction
1−Fj(y)

1−Fi(y)
captures

the optimism of agent j relative to the optimism of agent i < j, regarding
the events ‘better’ than y. Under hazard-rate order, the ratio is increasing
in y, so that j becomes increasingly more optimistic than i as threshold y
increases. Assumption A1 disciplines the belief structure and allows for a
tighter equilibrium characterization, stated in Theorem 1.

Theorem 1.. Under Assumption A1, in any equilibrium there exist i∗, j∗

such that j∗ > i∗ and:

• Most pessimistic agents (i < i∗) buy cash or riskless contracts (ϕ ≤ c)

• Most optimistic agents (j > j∗) buy the asset leveraged

• Agents with moderate optimism (i∗ < i < j∗) buy risky contracts (ϕ >
c)

Theorem 1 establishes equilibrium structure, which is illustrated in Figure
2.3.1.

Figure 2.3.1: Equilibrium Structure
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i∗

j∗
Buy the asset leveraged

Buy a risky contract

Buy cash or a riskless contract

Agents sort into three groups. Pessimists prefer safe assets – cash or
riskless contracts. Optimists buy the risky asset on margin, and agents with
moderate optimism buy risky contracts. The three groups are separated by
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marginal agents i∗ and j∗, so that i∗ is indifferent between buying cash and
lending, and j∗ is indifferent between lending and buying the asset leveraged.

An important part of Theorem 1 is that in any equilibrium there are risky
contracts traded, so that any equilibrium features the possibility of default.
I now make an assumption on equilibrium contract price function in order to
obtain an even sharper equilibrium characterization.

Assumption A2.. The equilibrium contract price function q(·) is differen-
tiable.

It is reasonable to expect this property if beliefs Fi(·) are a smooth func-
tion of i, so that agents’ valuation of any claim on the asset varies gradually
with their type. The assumption ensures that contract choices are deter-
mined by first-order conditions. If agent i buys a risky contract ϕ, then it
must satisfy ∂Rc(i,ϕ)

∂ϕ
= 0. Similarly, if agent j buys the asset leveraging with

contract ϕ, then it satisfies ∂Ry(j,ϕ)

∂ϕ
= 0. In addition, Assumption A2 leads

to an interesting result, provided in Theorem 2.

Theorem 2.. Under assumptions A1 and A2, only risky contracts are traded
in equilibrium.

This result is in stark contrast to the one obtained by Fostel and Geanako-
plos (2015) for binomial economies, where the state space of the asset payoff
consists of two values {y1, y2}. In their model, any equilibrium is equivalent
to the one with no default, i.e. the one where only the riskless contract is
traded. Their result is overturned in my version of the model, where the
space of the asset payoff is a continuum: now only risky contracts are traded
in equilibrium, and default is always possible.

However, a richer state space alone does not guarantee the result of The-
orem 2. Simsek (2013) considers a model with a continuous asset payoff, but
with two agent types only – optimists and pessimists. In his model, riskless
contracts are ruled out by assuming that optimists’ endowments are not large
enough to purchase the risky asset by leveraging with riskless contracts. Re-
laxing this assumption would lead to the possibility that the riskless contract
is the only contract traded in equilibrium. In my setting, endowments and
identities of contract buyers and sellers are endogenous. It is thus a combi-
nation of a continuous state space and a continuum of agent types that leads
to the absence of riskless contracts in equilibrium.

Theorem 3 provides further insights into the equilibrium structure, estab-
lishing a one-to-one mapping between contract sellers and contract buyers.

Theorem 3.. Denote the set of traded contracts by Φ. Under assumptions
A1 and A2, in any equilibrium:
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• Identities of contract buyers are given by a one-to-one strictly increas-
ing function i(ϕ) : Φ→ [i∗, j∗]

• Identities of contract sellers are given by a one-to-one strictly increasing
function j(ϕ) : Φ→ [j∗, 1]

Theorem 3 implies that each traded contract ϕ is associated with a unique
pair of agents {i(ϕ), j(ϕ)}, where i(ϕ) is the buyer and j(ϕ) is the seller. Fur-
thermore, both i(ϕ) and j(ϕ) are increasing in ϕ, so that riskier contracts are
traded by more optimistic agents. Finally, both i(ϕ) and j(ϕ) are bijections,
so that each seller and each buyer chose only one risky contract.

The most pessimistic lender i∗ is indifferent between buying cash and
lending with the safest contract ϕ = min(Φ). The most optimistic lender
j∗ is indifferent between lending with the riskiest contract ϕ = max(Φ) and
purchasing the asset on margin by borrowing the safest contract ϕ. All other
lenders and borrowers chose a contract strictly in between the tow bounds.
Figure 2.3.2 illustrates the equilibrium contract choices.

Figure 2.3.2: Equilibrium contract choices
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I make the final assumption in order to characterize the set of traded
contracts Φ.

Assumption A3.. Distribution function Fi(·) is differentiable with respect
to agent type i.

Assumption A3 implies that beliefs vary smoothly across agents. It leads
to Lemma 2, which states that every contract between ϕ and ϕ is traded in
equilibrium.
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Lemma 2.. Under assumptions A1:A3, in any equilibrium, the set of traded
contracts Φ is an interval [ϕ, ϕ], with ϕ > c and ϕ < c.

By disciplining the belief structure (Assumptions A1, A3) and impos-
ing a restriction on the pricing function (Assumption A2), one obtains a
sharp equilibrium characterization. The assumption on the pricing function
is clearly strong, as it is imposed on an equilibrium object. However, I find
it reasonable, given the amount of details and insights it provides. I now dis-
cuss an alternative (tractable) equilibrium definition, using the results from
this section.

2.4 Alternative Equilibrium Definition

In the following I revisit the equilibrium definition and propose a more
tractable formulation, based on the results from the previous section. The
main takeaway is that agents sort into three categories, separated by two
marginal agents i∗ and j∗. Every agent i < i∗ buys cash, any agent i > j∗

buys the asset leveraged, and any agent i in between buys a risky contract.
Each contract buyer and each contract seller trade only one contract. This
implies that the measure of purchased contracts µ+

i is a Dirac measure for
every contract buyer (i : i∗ < i < j∗). Similarly, the measure of sold contracts
µ−i is a Dirac measure for every contract seller (i > j∗). Note that µ+

i = 0 for
all i < i∗ and i > j∗, whereas µ−i = 0 for all i < j∗. As a result, µ+

i can be
summarized by two real numbers: {m+

i , ϕi}, where ϕi denotes the contract
purchased and m+

i – the amount. Analogously, µ−i can be summarized by
{m−i , ϕi}. Agent i’s portfolio is then given by xi = {ci,m+

i , ai,m
−
i , ϕi}, where

ci denotes cash holdings and ai – asset holdings. Note that ϕi corresponds to
either bought or sold contracts, depending on whether m+

i > 0 or m−i > 0.
If agent i buys cash, the value of ϕi is irrelevant.

I make an additional assumption on equilibrium price function q(ϕ) in
order to ensure differentiability of lenders’ and borrowers’ identities i(ϕ) and
j(ϕ):

Assumption A2a.. Equilibrium contract price function q(·) is twice differ-
entiable.

2.4.1 Agents problem

Denote agent’s endowment as before by n = 1 + p. Each agent i considers
three options:

1. Buying cash. This provides return of 1 for all agents.
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2. Buying a contract. In this case, the agent choses which contract to
buy (ϕi) and how much of it to buy (m+

i ), maximizing expected payoff
m+
i Ei[min(ϕi, y)] subject to budget constraint m+

i q(ϕi) = n. Plugging
the constraint into the objective yields that the agent is maximizing
expected return, choosing from the menu of contracts:

max
ϕi

n
Ei[min(ϕi, y)]

q(ϕi)
= max

ϕi
nRc(i, ϕi)

The choice is determined by the first order condition:5

1− Fi(ϕi)
Rc(i, ϕi)

= q′(ϕi) (OB)

Denote the optimal lending contract by ϕ+
i = arg maxϕi Rc(i, ϕi).

3. Buy the asset leveraged. In this case, the agent choses how much asset
to buy (ai) and which contract to sell (ϕi), using all borrowed funds
for further asset purchases, so that the amount of contracts sold m−i
is equal to the amount of asset bought (ai). The agent maximizes
expected payoff aiEi[max(y−ϕi, 0)] subject to budget constraint aip =
n+m−i q(ϕi). Plugging the constraint into the objective yields that the
agent is maximizing the expected return, choosing from the menu of
contracts:

max
ϕi

n
Ei[max(y − ϕi, 0)]

p− q(ϕi)
= max

ϕi
nRy(i, ϕi)

The choice is determined by the first order condition:

1− Fi(ϕi)
Ry(i, ϕi)

= q′(ϕi) (OS)

Denote the optimal borrowing contract by ϕ−i = arg maxϕi Ry(i, ϕi).

The three options yield expected returns {1, Rc(i, ϕ
+
i ), Ry(i, ϕ

−
i )}, respec-

tively. Each agent i then choses the option that provides the largest ex-
pected return. If agent i prefers to buy cash, then xi = {n, 0, 0, 0, 0}. If
agent i prefers to buy a contract, then xi = {0, n

q(ϕ+
i )
, 0, 0, ϕ+

i }. If agent

i prefers to buy the asset leveraged, then xi = {0, 0, n
p−q(ϕ−i )

, n
p−q(ϕ−i )

, ϕ−i }.
Finally, marginal agent i∗ is indifferent between buying cash and lending:

Rc(i
∗, ϕ+

i∗) = 1

And marginal agent j∗ is indifferent between lending and buying the asset
leveraged:

Rc(j
∗, ϕ+

j∗) = Ry(j
∗, ϕ−j∗)

5See Apeendix B.1 for derivations.
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2.4.2 Market clearing

It is convenient to express market clearing conditions in terms of contracts
and identities of buyers and sellers. The set of traded contracts is an interval
[ϕ, ϕ], and identities are given by functions i(ϕ) for the buyers and j(ϕ) for
the sellers. These functions are implicitly defined by ϕ = arg maxϕ̃Rc(i(ϕ), ϕ̃)
and ϕ = arg maxϕ̃Ry(j(ϕ), ϕ̃), respectively.6 The first equation states that
ϕ is the optimal lending contract of i(ϕ), and the second equation states that
ϕ is the optimal borrowing contract of j(ϕ). Both functions i(ϕ) and j(ϕ)
are differentiable, provided that price function q(ϕ) is twice differentiable.
Marginal agents can then be expressed as: i∗ = i(ϕ) and j∗ = i(ϕ) = j(ϕ).

The market clearing condition for cash can then be written as:∫ 1

0

cidi =

∫ i∗

0

ndi = (1 + p)i∗ = 1

Rewriting this equation gives that:

p =
1− i∗

i∗
=

1− i(ϕ)

i(ϕ)

Recall that agents below i∗ do not participate in the market and buy cash,
whereas those above i∗ either buy the asset or lend to those buying the asset.
Thus all the agents above i∗ collectively buy the asset. The asset price is
then given by the relative size of these two groups – those participating in
the market (1− i∗) and those buying cash (i∗).

The asset market clearing condition can be written as:∫ 1

0

ajdj =

∫ 1

j∗

n

p− q(ϕ−j )
dj = 1

Let Γ(ϕ) be the share of the asset that is bought by leveraging with contracts
ϕ̃ ≤ ϕ. Then:

Γ(ϕ) =

∫ j(ϕ)

j(ϕ)

n

p− q(ϕ−j )
dj =

∫ ϕ

ϕ

n

p− q(ϕ̃)
j′(ϕ̃)dϕ̃

where the second equality follows from variable substitution j(ϕ)→ ϕ. Γ(ϕ)
has density γ(ϕ) = n

p−q(ϕ)
j′(ϕ) and the asset market clearing condition can

be written as:
Γ(ϕ) = 1

6One can also express i(ϕ) and j(ϕ) as inverses of ϕ+
i and ϕ−

j , respectively. In that

case i(ϕ+
i ) = i and j(ϕ−

j ) = j.
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In addition, from the definition of Γ(ϕ) and γ(ϕ) it follows that:

pΓ(ϕ)−
∫ ϕ

ϕ

q(ϕ̃)γ(ϕ̃)dϕ̃ =

∫ ϕ

ϕ

(p− q(ϕ̃))γ(ϕ̃)dϕ̃

= n

∫ ϕ

ϕ

j′(ϕ̃)dϕ̃ = n

∫ j(ϕ)

j(ϕ)

dj = n
[
j(ϕ)− j(ϕ)

]
∀ϕ ∈ [ϕ, ϕ]

and thus:

n
[
j(ϕ)− j(ϕ)

]︸ ︷︷ ︸
Endowment

+

∫ ϕ

ϕ

q(ϕ̃)γ(ϕ̃)dϕ̃︸ ︷︷ ︸
Borrowed

= pΓ(ϕ)︸ ︷︷ ︸
Asset Purchases

∀ϕ ∈ [ϕ, ϕ] (ABC.ϕ)

I will refer to this condition as the aggregated borrowers budget constraint.
The first term on the left-hand side is the total endowment of borrowers
that leverage with contracts smaller than ϕ. The second term is their total
borrowings: since each borrowing contract is collateralized by one unit of the
asset, γ(ϕ) captures the ‘amount’ of contracts ϕ sold, and q(ϕ) provides the
amount borrowed on each of these contracts. The two terms on the left-hand
side give the total amount spent on the asset by agents that sell contracts up
to ϕ. The right-hand side is the price of the asset share, purchased by these
agents.

Now consider market clearing condition for contracts:

µ+ =

∫ 1

0

µ+
i di =

∫ j∗

i∗
µ+
i di

!
=

∫ 1

j∗
µ−j dj =

∫ 1

0

µ−j dj = µ−

where µ+ and µ− are total measures of contracts bought and sold. Since both
measures are finite, their equality can be expressed in the following way:∫ ϕ

ϕ

dµ+ =

∫ ϕ

ϕ

dµ− ∀ϕ ∈ [ϕ, ϕ]

This implies that the two measures coincide on any open interval and thus
are equal.7 Note that

∫ ϕ
ϕ
dµ− is the total amount of contracts ϕ̃ sold, such

that ϕ̃ ∈ [ϕ, ϕ]. These contracts are sold by agents j ∈ [j(ϕ), j(ϕ)]. Agent

j(ϕ̃) sells contract ϕ̃ in amount m−j (ϕ̃) = n
p−q(ϕ̃)

. Thus:∫ ϕ

ϕ

dµ− =

∫ j(ϕ)

j(ϕ)

n

p− q(ϕ−j )
dj = Γ(ϕ)

7This can be shown using the Dynkin’s π − λ theorem, with π-system being the set of
all open intervals in R and λ-system defined as {A ∈ B(R) : µ+(A) = µ−(A)}.
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Analogously,
∫ ϕ
ϕ
dµ+ is the total amount of contracts ϕ̃ bought, such that

ϕ̃ ∈ [ϕ, ϕ]. These contracts are bought by agents i ∈ [i(ϕ), i(ϕ)]. Agent i(ϕ̃)

buys contract ϕ̃ in amount m+
i (ϕ̃) = n

q(ϕ̃)
. Thus:∫ ϕ

ϕ

dµ+ =

∫ i(ϕ)

i(ϕ)

n

q(ϕ+
i )
di =

∫ ϕ

ϕ

n

q(ϕ̃)
i′(ϕ̃)dϕ̃

and since it must hold for any ϕ ∈ [ϕ, ϕ], the contract market clearing
condition implies γ(ϕ) = n

q(ϕ)
i′(ϕ) and thus:∫ ϕ

ϕ

q(ϕ̃)γ(ϕ̃)dϕ̃ = n

∫ ϕ

ϕ

i′(ϕ̃)dϕ̃ = n

∫ i(ϕ)

i(ϕ)

di = n
[
i(ϕ)− i(ϕ)

]
∀ϕ ∈ [ϕ, ϕ] =⇒

n
[
i(ϕ)− i(ϕ)

]
=

∫ ϕ

ϕ

q(ϕ̃)γ(ϕ̃)dϕ̃ ∀ϕ ∈ [ϕ, ϕ]

The term on the right is again the total amount borrowed with contracts
up to ϕ, it appears in the aggregated borrowers budget constraint (ABC.ϕ).
The term on the left is the total endowment of agents that buy contracts up
to ϕ, and since they invest all of their endowment into contracts, it is the
total amount lent with contracts up to ϕ. Contract market clearing requires
that the left-hand side is equal to the right-hand side.

An alternative way of writing the contract market clearing condition is via
γ(ϕ) directly. Using its definition and the market clearing condition yields:

n

p− q(ϕ)
j′(ϕ) =

n

q(ϕ)
i′(ϕ)

The term on the left is, loosely speaking, the total amount borrowed with
contract ϕ and the term on the right is the total amount lent, so the whole
expression is the market clearing condition for contract ϕ. Note that, intu-
itively, one would expect this condition to be n

p−q(ϕ)
= n

q(ϕ)
, since n

p−q(ϕ)
is how

much agent j(ϕ) borrows and n
q(ϕ)

is how much agent i(ϕ) lends. However,
since both agents are of measure zero, market clearing does not require that
these two values coincide. Instead, market clearing accounts for the fact that
the mass of agents borrowing with contracts in the vicinity of ϕ may not be
equal to the mass of agents lending with contracts in the vicinity of ϕ. To
see this more clearly, approximate the above expression as follows:

n

p− q(ϕ)

j(ϕ+ ε)− j(ϕ− ε)
2ε

=
n

q(ϕ)

i(ϕ+ ε)− i(ϕ− ε)
2ε
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The leverage of borrowers is given by:

p

p− q(ϕ)
= 1 +

i(ϕ+ ε)− i(ϕ− ε)
j(ϕ+ ε)− j(ϕ− ε)

and is determined by the relative mass of agents lending and borrowing with
contracts close to ϕ. The larger the mass of lenders is relative to the mass
of borrowers, the larger the leverage is.

Recall that the asset price is given by p = 1−i∗
i∗

. Using this result, one can
express the aggregate leverage as:

p

p−
∫ ϕ
ϕ
q(ϕ)γ(ϕ)dϕ

=
p

p− (1 + p)(j∗ − i∗)
=

1− i∗

1− j∗
= 1 +

j∗ − i∗

1− j∗

Thus aggregate leverage is simply the total mass of market participants
(1 − i∗) over the total mass of the asset buyers (1 − j∗). Given the ex-
pression for the asset price

(
p = 1−i∗

i∗

)
, one immediately sees that there is no

tight link between the asset price and aggregate leverage. The asset price
is fully determined by the split of agents into market participants and cash
buyers, given by i∗. Leverage, on the contrary, is determined by the split
of market participants into lenders and borrowers, given by j∗. If there are
more agents taking part in the market, but the proportion of lenders and
buyers stays constant, then the asset price increases and aggregate leverage
remains constant. If some agents decide to borrow instead of lending, but the
total mass of market participants remains constant, then aggregate leverage
decreases and the asset price stays the same.

I now have all the necessary ingredients to provide an alternative equilib-
rium definition, which can then be computed numerically.

2.4.3 Alternative Equilibrium Definition

A general equilibrium consists of:

• A set of traded contracts [ϕ, ϕ]

• Asset price p and contract prices q(ϕ) for ϕ ≥ 0

• Identities of contract buyers i(ϕ) ∈ [i∗, j∗] for ϕ ∈ [ϕ, ϕ]

• Identities of contract sellers j(ϕ) ∈ [j∗, 1] for ϕ ∈ [ϕ, ϕ]

Such that:

• Every agent i < i∗ optimally buys cash



CHAPTER 2. LEVERAGE DETERMINANTS 73

• Every agent i : i∗ < i < j∗ optimally buys a contract and the contract
choice is given by (OB)

• Every agent j > j∗ optimally buys the asset leveraged and the contract
choice is given by (OS)

• Marginal agents are indifferent (Ind i∗ and Ind j∗)

• Markets clear (MC.1, MC.2, MC.ϕ)

2.4.4 Solving for the equilibrium

Solving for the equilibrium in this model raises new challenges in compar-
ison with other model variations, considered in the literature. In binomial
economies (as in Fostel and Geanakoplos (2015)), the set of contracts traded
in equilibrium is directly obtained from the asset payoff structure. In models
with two types of agents (as in Simsek (2013), Yan (2017) and Pei and Zhang
(2020)), the identities of lenders and borrowers are trivial, and the contract
pricing function is pinned down by either indifference or optimality condi-
tions of the lenders. Therefore, in each of these models, certain equilibrium
objects can be determined outside of equilibrium. In my setting, neither the
set of traded contracts, nor the identities of lenders and borrowers, nor the
pricing function can be determined without solving for the entire equilibrium.
I thus resort to numerical methods when solving for the equilibrium.

2.5 Example

In the following I provide a numerical example. Let beliefs Fi(·) be given
by a normal distribution, truncated to the interval [c, c]. The parameters of
normal distribution (µi and σi) are calibrated such that for each agent i the
expected asset payoff Ei[y] is equal to m+(i−0.5)d and the variance of asset
payoffs is set to a common value σ2. Thus, belief structure is parameterized
by {m, d, σ}, where m represents average optimism, d – belief disagreement
and σ – common uncertainty about the asset payoff.

Let the asset payoff space be given by the interval [0.25, 1.75], average
optimism m = 1, disagreement d = 1, uncertainty σ = 0.175. Figure 2.5.1
illustrates probability densities for several agents. The equilibrium asset price
p for this case is equal to 1.28, the marginal contract buyer i∗ is 0.44 and
the marginal asset buyer j∗ is 0.84. This means that 44% of agents do not
participate in the stock market at all and hold cash, 40% lend with risky
contracts and only 16% invest in the risky asset. The aggregate leverage can
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Figure 2.5.1: Beliefs fi(y)
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be computed as 1 + j∗−i∗
1−j∗ = 3.5. The safest contract traded is ϕ = 0.7 and

the riskiest is ϕ = 1.3. These values lie well inside the payoff state space
[0.25, 1.75]. Figure 2.5.2 plots the contract price function q(ϕ) and the credit
surface: the promised interest rate (ϕ/q(ϕ)) against the Loan-to-Value ratio
(q(ϕ)/p).

The contract price function is concave, which means that larger borrow-
ings require increasingly higher promises. The credit surface is convex, which
means that higher LTVs require increasingly higher promised interest rates.
Recall that the net interest rate on safe cash is 0%. The LTV on the safest
contract ϕ is equal to 0.54 and is achievable with an interest rate of 1% only.
Most optimistic agents, however, finance almost 90% of their asset purchases
with debt, which requires promising a 14% interest.

Figure 2.5.3 shows leverage of asset buyers, as well as their shares in the
asset. Leverage of the least optimistic buyers is just above 2, whereas the
most optimistic agents leverage almost up to the value of 9. Higher leverage
allows the most optimistic agents to hold more of the asset and thus the
cumulated asset holdings Γ(ϕ) is a convex function. In fact, half of the asset
is held by the top third of the asset buyers, who account for approximately
5% of the population.
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Figure 2.5.2: Contract Prices and Credit Surface
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Figure 2.5.3: Buyers of the asset
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2.5.1 Varying average optimism

In order to see which primitives affect leverage the most, I first vary average
optimism m and study how this changes the equilibrium. Figure 2.5.4 shows
the asset price p, aggregate leverage, and the masses of the three groups
of agents for different levels of average optimism. The asset price increases
linearly with average optimism: the larger the expected value of the asset
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Figure 2.5.4: Changing average optimism m
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payoff, the more agents want to participate in the market. This is reflected
by a steep drop in the share of agents holding cash (the dotted blue line
on the third panel, left scale). Leverage, however, is not that sensitive to
average optimism, and also does not exhibit a monotone relationship with it.
Leverage is determined by the relative mass of lenders and borrowers. Both
of these groups grow as optimism increases, but at different rates, which
causes small fluctuations in leverage. The mass of asset buyers (the red solid
line on the third panel, right scale) increases rapidly for low and high values
of optimism, whereas the mass of lenders (the solid blue line on the third
panel, left scale) does so for intermediate values of optimism.

Overall, higher optimism attracts more agents to the market, which in-
creases the price of the asset. The agents that enter the market start lending
to the optimists, which increases the pool of lenders. On the other hand, most
optimistic lenders decide to start buying the asset instead, which increases
the pool of borrowers. Thus the effect on leverage is small and ambiguous.

2.5.2 Varying uncertainty

Figure 2.5.5 provides the same statistics, now for different levels of uncer-
tainty σ. The economy’s response to changes in uncertainty is quite different.
The asset price is not as sensitive to changes in uncertainty, whereas leverage
varies strongly with it.8 As uncertainty rises, lenders either flee the market

8I judge the degree of sensitivity by comparing price and leverage fluctuations across
the two exercises. When increasing average optimism from 0.94 to 1.06, I find that the
asset price increases by 11%, whereas the magnitude of leverage fluctuations is about
2%. When increasing uncertainty from 0.12 to 0.23, I find that the asset price falls by
3%, whereas leverage falls by 14%. I conclude that price is more sensitive to changes in
average optimism, whereas leverage – to changes in uncertainty.
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Figure 2.5.5: Changing uncertainty σ
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and invest into safe cash, or instead buy the asset and leverage on it. The
number of agents willing to lend declines, and the number of agents willing to
borrow increases, which leads to lower aggregate leverage. To gain intuition,
consider the expected returns of borrowers and lenders. The expected return
on lending is given by:

Rc(i, ϕ) =

∫ ϕ
c
ydFi(y) + ϕ(1− Fi(ϕ))

q(ϕ)

where the first term in the numerator is the expected payoff in the case
of default, and the second term is the expected payoff in case the promise
is delivered. Note that only the lower part of the distribution (c to ϕ) is
relevant for the lender. If uncertainty rises, the distribution spreads out and
‘bad’ outcomes become ‘worse’ and more likely, the integral in Rc(i, ϕ) goes
down and lowers the expected return for a lender.9 That is why fewer agents
prefer to lend as uncertainty increases. The expected return on buying the
asset leveraged is as follows:

Ry(i, ϕ) =

∫ c
ϕ
ydFi(y)− ϕ(1− Fi(ϕ))

p− q(ϕ)

Here the focus is on the upper part of the distribution (ϕ to c). As uncertainty
goes up, the ‘good’ outcomes become even ‘better’ and more likely, which
increases the expected return for a borrower. That is why more agents prefer
to buy the asset leveraged as uncertainty rises.

9Note that these are partial equilibrium effects, as in general equilibrium the pricing
function q(ϕ) will also adjust.
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Overall, higher uncertainty scares lenders and forces them to either leave
the market or buy the asset instead. This leads to a moderate price decrease
and a steep drop in leverage.

2.6 Summary and Avenues for Future Re-

search

In this paper I investigate the determinants of leverage when borrowing is
collateralized by an asset, the payoff of which is not affected by asset holders.
Typical examples of this setup are REPO loans and mortgages. I show that
borrowing in equilibrium is always subject to default and no riskless contracts
are traded. Aggregate price and leverage are decoupled: price is determined
by the mass of market participants, whereas leverage depends on how they
split into lenders and borrowers. A numerical exercise suggests that leverage
is very sensitive to uncertainty and decreases sharply when it rises, but does
not respond a lot to changes in average optimism.

So far, I have not investigated the effects of belief disagreement on leverage
and the asset price, which would be the next natural step in this paper. I
expect these effects to be very intricate, as varying belief disagreement has a
lot of degrees of freedom. Simsek (2013) finds that it is important whether
agents disagree on the probabilities of ‘good’ or ‘bad’ states, as these types of
disagreement have different implications for the asset price and leverage. My
setting allows for an additional dimension of disagreement, namely: which
agents become more optimistic and which agents become more pessimistic?

When varying belief disagreement, one has to keep the average optimism
fixed in order to identify the pure effects of disagreement. That implies that
some agents have to become more optimistic and others more pessimistic.
In the numerical example, I set agent i’s expected asset payoff to be m +
(i− 0.5)d, where m is the average optimism and d is the parameter of belief
disagreement. One can thus vary d, which would make all agents above the
median more optimistic and all agents below the median more pessimistic.
However, one could specify more flexible forms of belief disagreement, which
would allow to make, e.g. the top 70% of agents more optimistic and the
bottom 30% more pessimistic. Then it would matter ‘around’ which point
the disagreement is changing.
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A.1 Miscellaneous results

A.1.1 Expressing M(δ, µ) in terms of price gaps

Alvarez and Lippi (2014) show that impulse response of aggregate price level
can be approximated as:

P (t)− P̄ (t) ≈ δ +

∫ z(µ)

z(µ)

zdFt(z, µ)− x̄(µ) with x̄(µ) =

∫ z(µ)

z(µ)

zdF (z, µ)

where P (t) is the aggregate log-price t periods after shock δ, P̄ (t) is the
hypothetical price in absence of shock, Ft(z, µ) is the period t distribution
of price gaps, F (z, µ) is the stationary distribution of price gaps and x̄(µ) is
the average price gap in steady state. Note that instead of evolution of gap
distribution (Ft(z, µ)), one can consider conditional evolution of gaps given
initial after-shock distribution Fδ(z, µ):

P (t)− P̄ (t) ≈ δ +

∫ z(µ)

z(µ)

E
(
z(t)− x̄(µ)

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

where x̄(µ) is taken inside integral and expectation. Finally, switching the
order of integration, one obtains:

M(δ, µ) =

∫ ∞
0

[
δ −

(
P (t)− P̄ (t)

)]
dt

≈ −
∫ z(µ)

z(µ)

E
(∫ ∞

0

(
z(t)− x̄(µ)

)
dt

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

A.1.2 Driftless Benchmark

Suppose µ = 0. Firms’ value function satisfies the following HJB:

ρv(z) = −z2 +
σ2

2
v′′(z)

The general solution to which is:

v(z) = A(eαz + e−αz)− 1

ρ
z2 − σ2

ρ2

where α =
√

2ρ/σ2 and A is the unknown coefficient that depends on bound-
ary conditions. These are given by v(z(0)) = v(z(0)) = v(ẑ(0))− κ. Due to
symmetry, z(0) = −z(0) and ẑ(0) = 0. Denote z0 = z(0) to ease notation.
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Using the expression for v(z) and combining one of the boundary conditions
with smooth pasting condition v′(z0) = 0, one gets:

A =
2z0

αρ(eαz0 − e−αz0)

z2
0 = Aρ(eαz0 + e−αz0 − 2) + ρκ

which implicitly defines solution triplet {−z0, 0, z0}.

Stationary density is defined by Kolmogorov forward equation (σ2/2)fzz(z, 0) =
0 with boundary conditions f(z0, 0) = f(−z0, 0) = 0, integration to one∫ z0

−z0
f(z, 0)dz = 1 and continuity at z = 0. It is thus given by:

f(z, 0) =
z0 − |z|
z2

0

for all z ∈ [−z0, z0] and is zero otherwise. For completeness, cumulative
distribution function F (z, 0) is then given by:

F (z, 0) =


(z0+z)2

2z2
0
, for z < 0

1− (z0−z)2

2z2
0
, for z ≥ 0

Consider a positive shock δ > 0. Impact effect in driftless economy is:

Θ(δ, 0) = −
∫ −z0

−z0−δ
zf(z+δ, 0)dz

and due to a kink in f(z, 0) is computed separately for smaller (δ ≤ z0) and
larger (δ ≥ z0) shocks. A direct computation of the integral provides:

Θ(δ, 0) =


1

6z2
0
δ2(δ + 3z0), for δ < z0

1
6z2

0

[
δ(6z2

0 + 3δz0 − δ2)− 4z3
0

]
, for δ ∈ [z0, 2z0)

δ, for δ ≥ 2z0

The last line follows since for any δ ≥ 2z0:

Θ(δ, 0) = −
∫ −z0

−z0−δ
zf(z+δ, 0)dz = −

∫ −z0+δ

−z0

(z − δ)f(z, 0)dz

= −
∫ z0

−z0

(z − δ)f(z, 0)dz = δ − x̄(0) = δ
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where x̄(0) =
∫ z0

−z0
zf(z, 0)dz is the average gap. First equality is due to

variable substitution, second follows from the fact that f(z, 0) = 0 for z ≥ z0

and third one is immediate. Finally, x̄(0) = 0 due to symmetry of f(z, 0).

Consider now cumulative impulse response (δ > 0):

M(δ, 0) = −
∫ z0

−z0

E
(∫ τ

0

z(t)dt | z(0) = z

)
dFδ(z, 0)

Define m(z, 0) to be the expected cumulated price gap until first adjust-
ment, so that m(z, 0) = E

(∫ τ
0
z(t)dt | z(0) = z

)
. The second argument of

the function highlights that it is evaluated under µ = 0. This function is
characterized by z + (σ2/2)mzz(z, 0) = 0 together with boundary conditions
m(z0, 0) = m(−z0, 0) = 0, which implies that:

m(z, 0) =
z2

0z − z3

3σ2

Given that shock shifts the entire distribution in parallel and some firms ad-
just immediately, distribution Fδ(z, 0) is the shifted stationary distribution,
so that Fδ(z, 0) = F (z+δ, 0) for all z ∈ [z, z−δ] and Fδ(z, 0) = 1 for all
z ∈ (z−δ, z]. In addition, there is a mass point at z = 0 due to firms that
adjust immediately, equal to F (−z0+δ, 0). M(δ, 0) is then given by:

M(δ, 0) = −
∫ z0−δ

−z0

m(z, 0)f(z+δ, 0)dz +m(0, 0)F (−z0+δ, 0)

where the second term can be ignored since m(0, 0) = 0. Again, due to a kink
in f(z, 0), the integral has to be considered separately for smaller (δ ≤ z0)
and larger (δ ≥ z0) shocks. A direct computation yields:

M(δ, 0) =


1

180σ2z2
0
[3δ5 + 15δ4z0 − 40δ3z2

0 + 30δz4
0], for δ < z0

1
180σ2z2

0
[−3δ5 + 15δ4z0 − 20δ3z2

0 + 16z5
0], for δ ∈ [z0, 2z0)

0, for δ ≥ 2z0

The last line is trivial since if δ ≥ 2z0, then the integral in M(δ, 0) is taken
over the interval [z0−δ,−z0], where Fδ(z, 0) has no mass.

A.1.3 Optimal policy under non-zero drift

Recall that firm’s value function solves the following HJB equation for any
z ∈ [z(µ), z(µ)]:

ρv(z) = −z2 − µv′(z) +
σ2

2
v′′(z)
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General solution to v(z) is thus given by:

v(z) = C1e
R1z + C2e

R2z − 1

ρ
z2 +

2µ

ρ2
z −

(
σ2

ρ2
+

2µ2

ρ3

)

where R1 =
µ−
√
µ2+2σ2ρ

σ2 , R2 =
µ+
√
µ2+2σ2ρ

σ2 . Coefficients C1 and C2 are un-
known and determined by boundary conditions v(z) = v(z) = v(ẑ)−κ, where
I drop the argument µ in policy variables in order to ease notation. In addi-
tion v(z) satisfies smooth pasting conditions v′(z) = v′(z) = 0 and optimality
condition v′(ẑ) = 0. Altogether this results in a system of equations:

C1R1e
R1z + C2R2e

R2z − 2

ρ
z +

2µ

ρ2
= 0(h1)

C1R1e
R1ẑ + C2R2e

R2ẑ − 2

ρ
ẑ +

2µ

ρ2
= 0

C1R1e
R1z + C2R2e

R2z − 2

ρ
z +

2µ

ρ2
= 0

C1(eR1z − eR1ẑ) + C2(eR2z − eR2ẑ)− 1

ρ
(z2 − ẑ2) +

2µ

ρ2
(z − ẑ) + κ = 0

C1(eR1z − eR1ẑ) + C2(eR2z − eR2ẑ)− 1

ρ
(z2 − ẑ2) +

2µ

ρ2
(z − ẑ) + κ = 0(h5)

Let ψ denote the vector of unknowns: ψ = [z, ẑ, z, C1, C2]. Then the above
system of equations can be summarized as:

H(µ, ψ) = 0 (A.4)

where H : R × R5 → R5 and each row of H(µ, ψ) corresponds to one of
the equations (h1) – (h5). Given µ, equation (A.4) implicitly defines solu-
tion triplet {z, ẑ, z} and coefficients C1 and C2. Applying Implicit Function
Theorem yields:

∂ψ

∂µ

∣∣∣∣
µ=0

= −

[
∂H

∂ψ

∣∣∣∣
µ=0

]−1
∂H

∂µ

∣∣∣∣
µ=0

provided ∂H
∂ψ

∣∣
µ=0

has full rank. Recall from Appendix A.1.2 that under µ = 0

solution to (A.4) is ψ0 = [−z0, 0, z0, A,A], where z0 and A satisfy:

A =
2z0

αρ(eαz0 − e−αz0)

z2
0 = Aρ(eαz0 + e−αz0 − 2) + ρκ
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with α =
√

2ρ/σ2. Let w1 = (eαz0 − e−αz0), w2 = (eαz0 + e−αz0), γ =
2αz0w2−2w1

ρw1
and β = 4αz0−2w1

ρw1
. Then a direct computation provides:

∂H

∂ψ

∣∣∣∣
µ=0

=


γ 0 0 −αeαz0 αe−αz0

0 β 0 −α α
0 0 γ −αe−αz0 αeαz0

0 0 0 eαz0 − 1 e−αz0 − 1
0 0 0 e−αz0 − 1 eαz0 − 1


This matrix can be inverted as:

[
∂H

∂ψ

∣∣∣∣
µ=0

]−1

=


γ−1 0 0 α(w2+1)

γw1

α
γw1

0 β−1 0 α
βw1

− α
βw1

0 0 γ−1 − α
γw1

−α(w2+1)
γw1

0 0 0 w1+w2−2
2w1(w2−2)

w1−w2+2
2w1(w2−2)

0 0 0 w1−w2+2
2w1(w2−2)

w1+w2−2
2w1(w2−2)


The derivative of H(µ, ψ) with respect to µ evaluated at µ = 0 is:

∂H

∂µ

∣∣∣∣
µ=0

=



αz0w2+α2z2
0w1+2w1

ρ2w1

2αz0+w1

ρ2w1
αz0w2+α2z2

0w1+2w1

ρ2w1

−α2z2
0w2+2αz0w1

αρ2w1
α2z2

0w2+2αz0w1

αρ2w1


Multiplying and collecting terms yields:

∂z

∂µ

∣∣∣∣
µ=0

=
∂z

∂µ

∣∣∣∣
µ=0

=
4α2z2

0 + αz0w1w2 − 2w2
1

2ρ(αz0w1w2 − w2
1)

∂ẑ

∂µ

∣∣∣∣
µ=0

=
α2z2

0w2 + αz0w1 − w2
1

ρ(2αz0w1 − w2
1)

In order to recover the no-discounting case of Alvarez et al. (2019), use
expressions from Appendix A.2.1 and expand numerators up to 6th degree
and denominators up to 4th degree.

A.1.4 Stationary density under non-zero drift

Both the impact and cumulative impulse responses depend on stationary
density. In this section I provide derivatives of the stationary density func-
tion f(z, µ) with respect to drift µ, evaluated at µ = 0.
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Recall that stationary density satisfies the following Kolmogorov forward
equation:

0 = µfz(z, µ) +
σ2

2
fzz(z, µ)

together with boundary conditions f(z(µ), µ) = f(z(µ), µ) = 0, unit mass

condition
∫ z(µ)

z(µ)
f(z, µ)dz = 1 and continuity at z = ẑ(µ). Note that density

depends on drift µ both directly as it appears in KFE, and indirectly as it
also appears in boundary conditions via policy variables. For the purpose
of derivation, it is thus convenient to include policy variables explicitly as
arguments with some abuse of notation: f(z;µ, z, ẑ, z), so that f(z, µ) =
f(z;µ, z(µ), ẑ(µ), z(µ)). Stokey (2009) shows that stationary density is given
by1:

f(z;µ, z, ẑ, z) =


eη(µ)ẑ−eη(µ)z+eη(µ)(z+z−z)−eη(µ)(ẑ+z−z)

(z−z)eη(µ)ẑ−(z−ẑ)eη(µ)z−(ẑ−z)eη(µ)z for z < ẑ

eη(µ)ẑ−eη(µ)z+eη(µ)(z+z−z)−eη(µ)(ẑ+z−z)

(z−z)eη(µ)ẑ−(z−ẑ)eη(µ)z−(ẑ−z)eη(µ)z for z ≥ ẑ

where η(µ) = 2µ/σ2. To ease notation and simplify later derivations, define
v(z, µ) = eη(µ)z, so that:

f(z;µ, z, ẑ, z) =


v(ẑ,µ)−v(z,µ)+v(z+z−z,µ)−v(ẑ+z−z,µ)
(z−z)v(ẑ,µ)−(z−ẑ)v(z,µ)−(ẑ−z)v(z,µ)

for z < ẑ

v(ẑ,µ)−v(z,µ)+v(z+z−z,µ)−v(ẑ+z−z,µ)
(z−z)v(ẑ,µ)−(z−ẑ)v(z,µ)−(ẑ−z)v(z,µ)

for z ≥ ẑ

Partial derivative of f(z, µ) with respect to drift is the total derivative of
f(z, µ, z, ẑ, z):

∂f(z, µ)

∂µ

∣∣∣∣
µ=0

=
df(z;µ, z(µ), ẑ(µ), z(µ)

dµ

∣∣∣∣
µ=0,z=z(0),ẑ=ẑ(0),z=z(0)

=

(
∂f(z; ·)
∂µ

+
∂f(z; ·)
∂z

∂z

∂µ
+
∂f(z; ·)
∂ẑ

∂ẑ

∂µ
+
∂f(z; ·)
∂z

∂z

∂µ

)∣∣∣∣
µ=0,z=z(0),ẑ=ẑ(0),z=z(0)

the first component is the direct effect of µ on the shape of stationary density,
whereas the latter three are indirect effects through optimal policy. Recall
that ẑ(0) = 0 and note that due to symmetry of density around µ = 0,

f(−z, µ) = f(z,−µ) and thus df(−z,0)
dµ

= −df(z,0)
dµ

, so it suffices to calculate
the derivative for z < 0 only.

1See Chapter 5. The formula is obtained as f(z) = L(z)/τ , where L(z) is the expected
local time at z and τ is the average length between adjustments.
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The three derivatives
{
∂f(z;·)
∂z

, ∂f(z;·)
∂ẑ

, ∂f(z;·)
∂z

}
are straightforward to obtain

given the formula for f(z; 0, z, ẑ, z):

f(z; 0, z, ẑ, z) =


2 z−z

(ẑ−z)(z−z) for z < ẑ

2 z−z
(z−ẑ)(z−z) for z ≥ ẑ

Differentiating f(z; 0, z, ẑ, z) with respect to z, ẑ and z, and evaluating at
the optimal policy {z, ẑ, z} = {−z0, 0, z0} yields for z < 0:{
∂f(z; ·)
∂z

,
∂f(z; ·)
∂ẑ

,
∂f(z; ·)
∂z

} ∣∣∣∣
µ=0,z=−z0,ẑ=0,z=z0

=

{
3z + z0

2z3
0

,−z + z

z3
0

,−z + z

2z3
0

}
The derivative with respect to µ is somewhat more complicated. First, set
policy variables to their optimal values under µ = 0:

f(z;µ,−z0, 0, z0) =
1− v(z0, µ) + v(−z, µ)− v(−z0 − z, µ)

2z0 − z0v(−z0, µ)− z0v(z0, µ)
for z < 0

Second, denote the numerator by N(µ) and denominator by D(µ), so that:

∂f(z;µ,−z0, 0, z0)

∂µ
=
N ′(µ)D(µ)−D′(µ)N(µ)

D(µ)2
for z < 0 (A.5)

Third, note that vµ(z, µ) = 2
σ2 zv(z, µ) and thus derivatives of numerator and

denominator are given by:

Nk(µ) =
2k

σ2k

(
− zk0v(z0, µ) + (−z)kv(−z, µ)− (−z0 − z)kv(−z0 − z, µ)

)
Dk(µ) =

2k

σ2k

(
(−z0)k+1v(−z0, µ)− zk+1

0 v(z0, µ)

)
Since v(z, 0) = 1, evaluating at µ = 0 yields:

Nk(0) =


2k

σ2k

(
− zk0 − zk + (z + z0)k

)
for k odd

2k

σ2k

(
− zk0 + zk − (z + z0)k

)
for k even

Dk(0) =


0 for k odd

2k

σ2k

(
− 2zk+1

0

)
for k even
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Note that N(0) = D(0) = 0 and it follows that evaluating (A.5) at µ =
0 directly is not possible since both the numerator and the denominator
converge to zero as µ→ 0. Applying L’Hospital’s rule four times yields:

∂f(z;µ, z0, 0, z0)

∂µ

∣∣∣∣
µ=0

= −z
2 + z0z

σ2z2
0

for z < 0

Finally, collecting all the terms:

∂f(z, µ)

∂µ

∣∣∣∣
µ=0

= −z
2 + z0z

σ2z2
0

+
z

z3
0

∂z(0)

∂µ
− z + z0

z3
0

∂ẑ(0)

∂µ
for z < 0

which provides derivative of density with respect to drift µ at any point
z ∈ [−z0, 0). Density is non-differentiable at z = 0 and for positive values

z ∈ (0, z0] derivative of density is given by ∂f(z,0)
∂µ

= −∂f(−z,µ)
∂µ

.

A.1.5 Impact effect under non-zero drift

Recall that for a positive shock δ > 0, impact effect is given by:

Θ(δ, µ) =

∫ z(µ)

z(µ)−δ
(ẑ(µ)− z)f(z + δ, µ)dz

and its derivative with respect to µ is:

∂Θ(δ, µ)

∂µ
=
∂z(µ)

∂µ
∆+(µ)f(z(µ) + δ, µ)+∫ z(µ)

z(µ)−δ

(
∂ẑ(µ)

∂µ
f(z+δ, µ) + (ẑ(µ)− z)

∂f(z+δ, µ)

∂µ

)
dz

where ∆+(µ) = ẑ(µ) − z(µ) and I have used the fact that f(z(µ), µ) = 0.
Evaluating at µ = 0 yields:

∂Θ(δ, 0)

∂µ
= z0

∂z(0)

∂µ
f(−z0+δ, 0) +

∫ −z0

−z0−δ

(
∂ẑ(µ)

∂µ
f(z+δ, 0)− z∂f(z+δ, 0)

∂µ

)
dz

= z0
∂z(0)

∂µ
f(−z0+δ, 0) +

∂ẑ(µ)

∂µ
F (−z0+δ)−

∫ −z0

−z0−δ
z
∂f(z+δ, 0)

∂µ
dz

Previous sections of Appendix provide expressions for all terms in the above
equation. Note that as long as δ < z0, the integral in the last term is well
defined, however if δ ≥ z0, then it has to be split into two integrals since
f(z, 0) is not differentiable at z = 0:∫ −z0

−z0−δ
z
∂f(z+δ, 0)

∂µ
dz =

∫ −δ
−z0−δ

z
∂f(z+δ, 0)

∂µ
dz +

∫ −z0

−δ
z
∂f(z+δ, 0)

∂µ
dz
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A direct computation provides the following result:

∂Θ(δ, µ)

∂µ

∣∣∣∣
µ=0

=


δ2(6z2

0−δ2−2δz0)

12σ2z2
0

− δ3

6z3
0

∂∆+(0)
∂µ

, for δ < z0

δ2(δ2−2δz0−6z2
0)+z3

0(16δ−6z0)

12σ2z2
0

− δ3−12δz2
0+12z3

0

6z3
0

∂∆+(0)
∂µ

, for δ ∈ [z0, 2z0)

z2
0

6σ2 + 2
3
∂∆+(0)
∂µ

, for δ ≥ 2z0

A.1.6 Cumulative Impulse Response under non-zero
drift

It is convenient to split M(δ, µ) into several smaller parts. First, note that
function m(z, µ) can be written as:

m(z, µ) = −E
(∫ τ

0

(z(s)− x̄(µ)ds

∣∣∣∣ z(0) = z

)
= −E

(∫ τ

0

z(s)ds

∣∣∣∣ z(0) = z

)
︸ ︷︷ ︸

m̂(z,µ)

+x̄(µ)E
(
τ

∣∣∣∣ z(0) = z

)
︸ ︷︷ ︸

τ(z,µ)

= m̂(z, µ) + x̄(µ)τ(z, µ)

Function m̂(z, µ) is now the expected cumulative gap until first adjustment
and is defined by the following ODE:

z = −µm̂z(z, µ) +
σ2

2
m̂zz(z, µ) (A.6)

with boundary conditions m̂(z(µ), µ) = m̂(z(µ), µ) = 0. Function τ(z, µ) is
the expected time of first adjustment conditional on z(0) = z, and is also
defined by ODE:

0 = 1− µτz(z, µ) +
σ2

2
τzz(z, µ)

and boundary conditions τ(z(µ), µ) = τ(z(µ), µ) = 0. Solution to (A.6) is:

m̂(z, µ) = C1 + C2e
2µ

σ2 z − 1

2µ
z2 − σ2

2µ2
z (A.7)

where C1 and C2 are determined by boundary conditions. Solution to τ(z, µ)
is provided in Chapter 5.5 of Stokey (2009).
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Using this notation, express M(δ, µ) as follows:

M(δ, µ) =

∫ z(µ)−δ

z(µ)

m(z, µ)f(z+δ, µ)dz −
∫ z(µ)

z(µ)

m(z, µ)f(z, µ)dz

=

∫ z(µ)−δ

z(µ)

m̂(z, µ)f(z+δ, µ)dz︸ ︷︷ ︸
M̂(δ,µ)

+ x̄(µ)

∫ z(µ)−δ

z(µ)

τ(z, µ)f(z+δ, µ)dz︸ ︷︷ ︸
T (δ,µ)

−
∫ z(µ)

z(µ)

m̂(z, µ)f(z, µ)dz︸ ︷︷ ︸
M̂(0,µ)

− x̄(µ)

∫ z(µ)

z(µ)

τ(z, µ)f(z, µ)dz︸ ︷︷ ︸
T (0,µ)

= M̂(δ, µ)− M̂(0, µ) + x̄(µ)
[
T (δ, µ)− T (0, µ)

]
and thus:

∂M(δ, 0)

∂µ
=
∂M̂(δ, 0)

∂µ
− ∂M̂(0, 0)

∂µ
+
∂x̄(0)

∂µ

[
T (δ, 0)− T (0, 0)

]
+ x̄(0)︸︷︷︸

=0

[∂T (δ, 0)

∂µ
− ∂T (0, 0)

∂µ

]
where x̄(0) = 0 due to symmetry of f(z, 0). Derivatives of M̂(δ, µ) and x̄(µ)
are given by:

∂M̂(δ, 0)

∂µ
=
∂z(0)

∂µ
m̂(z(0)−δ, 0)

=0︷ ︸︸ ︷
f(z(0), 0) − ∂z(0)

∂µ

=0︷ ︸︸ ︷
m̂(z(0), 0) f(z(0)+δ, 0)

+

∫ z(0)−δ

z(0)

∂m̂(z, 0)

∂µ
f(z+δ, 0)dz +

∫ z(0)−δ

z(0)

m̂(z, 0)
∂f(z+δ, 0)

∂µ
dz

∂x̄(0)

∂µ
=
∂z(0)

∂µ
z(0) f(z(0), 0)︸ ︷︷ ︸

=0

− ∂z(0)

∂µ
z(0) f(z(0), 0)︸ ︷︷ ︸

=0

+

∫ z(0)

z(0)

z
∂f(z, 0)

∂µ
dz

where derivatives of integration boundaries are zero due to boundary con-
ditions of m̂(z, 0) and f(z, 0). Note that integrals have to split accordingly
since stationary density f(z, 0) is not differentiable at z = 0. Derivative of
stationary density f(z, µ) with respect to drift is provided in Appendix A.1.4.
A direct computation yields:

∂x̄(0)

∂µ
=

2

3

∂z(0)

∂µ
+

1

3

∂ẑ(0)

∂µ
− z2

0

6σ2
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Stokey (2009) shows that τ(z, 0) =
z2

0−z2

σ2 and thus computing T (δ, 0) gives:

T (δ, 0) =


1

12σ2z2
0

[
δ4 + 4δ3z0 − 12δ2z2

0 + 10z4
0

]
, for δ < z0

1
12σ2z2

0

[
−δ4 + 4δ3z0 − 16δz3

0 + 16z4
0

]
, for δ ∈ [z0, 2z0)

0, for δ ≥ 2z0

Computation of ∂M̂(δ,0)
∂µ

requires knowledge of ∂m̂(z,0)
∂µ

and m̂(z, 0). The latter

solves (A.6) for µ = 0 and is given by:

m̂(z, 0) =
z3 − z2

0z

3σ2

It remains to characterize derivative of m̂(z, µ) with respect to µ and then
derivative of CIR can be computed. First, note that m̂(z, µ) depends on µ
both directly as can be seen in (A.7), as well as indirectly through boundaries
of inaction region that appear in expressions for C1 and C2:

C2 =
1

v(z(µ), µ)− v(z(µ), µ)

[
1

2µ

(
z(µ)2 − z(µ)2

)
+

σ2

2µ2

(
z(µ)− z(µ)

)]

C1 =
1

2µ
z(µ)2 +

σ2

2µ2
z(µ)− C2v(z(µ), µ)

where v(z, µ) = e
2µ

σ2 z. It is thus convenient to include the boundaries explic-
itly as arguments of m̂(z, µ), so that m̂(z, µ) = m̂(z;µ, z(µ), z(µ)). Then:

∂m̂(z, µ)

∂µ

∣∣∣∣
µ=0

=
dm̂(z;µ, z, z)

dµ

∣∣∣∣
µ=0,z=z0,z=−z0

=

(
∂m̂(z; ·)
∂µ

+
∂m̂(z; ·)
∂z

∂z(µ)

∂µ
+
∂m̂(z; ·)
∂z

∂z(µ)

∂µ

) ∣∣∣∣
µ=0,z=z0,z=−z0

Derivatives with respect to boundaries z and z are relatively easy to obtain.
Set µ = 0, then:

m̂(z; 0, z, z) =
z3 − z3

3σ2
− z3 − z3

3σ2(z − z)
(z − z)

∂m̂(z;µ, z, z)

∂z

∣∣∣∣
µ=0,z=z0,z=−z0

= −z0z + z2
0

3σ2

∂m̂(z;µ, z, z)

∂z

∣∣∣∣
µ=0,z=z0,z=−z0

=
z0z − z2

0

3σ2
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Obtaining derivative of m̂(z, µ) is somewhat more involved. Setting z =
z0, z = −z0:

m̂(z;µ, z0,−z0) =
2z0σ

2β(z, µ) + µγ(µ)(z2
0 − z2) + σ2γ(µ)(z0 − z)

2µ2γ(µ)

where γ(µ) = v(z0, µ)− v(−z0, µ) and β(z, µ) = v(z, µ)− v(z0, µ). Differen-
tiating with respect to µ and collecting terms:

∂m̂(z;µ, z, z)

∂µ

∣∣∣∣
µ=0,z=z0,z=−z0

= (A.8)

=
2z0σ

2
(
µγ(µ)β′µ(z, µ)−2γ(µ)β(z, µ)−µγ′(µ)β(z, µ)

)
−µγ(µ)2(z2

0−z2)−2σ2γ(µ)2(z0−z)

2µ3γ(µ)2

Note that as µ → 0, γ(µ) → 0 and β(z, µ) → 0. In addition, derivatives of
γ(µ) and β(z, µ) with respect to µ evaluated at µ = 0 are given by:

γk(0) =


2k+1

σ2k z
k
0 for k odd

0 for k even

βkµ(z, 0) =
2k

σ2k
(zk − zk0)

This implies that evaluating (A.8) at µ = 0 is not possible as both denomi-
nator and numerator are zero at µ = 0. Applying L’Hospital’s rule five times
provides the result:

∂m̂(z;µ, z, z)

∂µ

∣∣∣∣
µ=0,z=z0,z=−z0

=
(z2

0 − z2)2

6σ4

Collecting all the terms gives the derivative of interest:

∂m̂(z, µ)

∂µ

∣∣∣∣
µ=0

=
(z2

0 − z2)2

6σ4
− 2z2

0

3σ2

∂z(µ)

∂µ

Now all necessary ingredients for the derivative of cumulative impulse re-
sponse with respect to drift µ are collected and direct computation yields:

∂M(δ, µ)

∂µ

∣∣∣∣
µ=0

=



1
360σ4z2

0

[
−4δ6 − 18δ5z0 + 45δ4z2

0 + 20δ3z3
0 − 60δ2z4

0

]
− 1

180σ2z3
0

[
3δ5 + 10δ4z0

]∂∆+(0)
∂µ

, for δ < z0

1
360σ4z2

0

[
4δ6 − 18δ5z0 + 15δ4z2

0 + 20δ3z3
0 − 48δz5

0 + 10z6
0

]
− 1

180σ2z3
0

[
3δ5 − 10δ4z0 + 80δz4

0 − 60z5
0

]∂∆+(0)
∂µ

, for δ ∈ [z0, 2z0)

− z4
0

60σ4 − z2
0

5σ2

∂∆+(0)
∂µ

, for δ ≥ 2z0
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A.1.7 CIR for a Shock to the Drift

As in Appendix A.1.6, rewrite m(z, µ) as follows:

m(z, µ) = E
(∫ τ

0

(z(s)− x̄(µ)ds

∣∣∣∣ z(0) = z

)
= E

(∫ τ

0

z(s)ds

∣∣∣∣ z(0) = z

)
︸ ︷︷ ︸

m̂(z,µ)

−x̄(µ)E
(
τ

∣∣∣∣ z(0) = z

)
︸ ︷︷ ︸

τ(z,µ)

= m̂(z, µ)− x̄(µ)τ(z, µ)

with m̂(z, µ) being defined by the following ODE:

0 = z − µm̂z(z, µ) +
σ2

2
m̂zz(z, µ)

with boundary conditions m̂(z(µ), µ) = m̂(z(µ), µ) = 0. This is the exact
same function as in Appendix A.1.6, multiplied by -1. Similarly, and with
some abuse of notation:

M(µ) =

∫ z(0)

z(µ)

m(z, µ)f(z, 0)dz −
∫ z(µ)

z(µ)

m(z, µ)f(z, µ)dz

=

∫ z(0)

z(µ)

m̂(z, µ)f(z, 0)dz︸ ︷︷ ︸
M̂0(µ)

− x̄(µ)

∫ z(0)

z(µ)

τ(z, µ)f(z, 0)dz︸ ︷︷ ︸
T0(µ)

−
∫ z(µ)

z(µ)

m̂(z, µ)f(z, µ)dz︸ ︷︷ ︸
M̂(µ)

+ x̄(µ)

∫ z(µ)

z(µ)

τ(z, µ)f(z, µ)dz︸ ︷︷ ︸
T (µ)

= M̂0(µ)− M̂(µ) − x̄(µ)
[
T0(µ)− T (µ)

]
and thus:

∂M(0)

∂µ
=
∂M̂0(0)

∂µ
− ∂M̂(0)

∂µ
− ∂x̄(0)

∂µ

[
T0(0)− T (0)

]︸ ︷︷ ︸
=0

− x̄(0)︸︷︷︸
=0

[
∂T0(0)

∂µ
− ∂T (0)

∂µ

]
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Derivatives of M̂0(µ) and M̂(µ) are given by:

∂M̂0(0)

∂µ
= −∂z(0)

∂µ

=0︷ ︸︸ ︷
m̂(z(0), 0)f(z(0), 0) +

∫ z(0)

z(0)

∂m̂(z, 0)

∂µ
f(z, 0)dz

∂M̂(0)

∂µ
=
∂z(0)

∂µ

=0︷ ︸︸ ︷
m̂(z(0), 0)f(z(0), 0) − ∂z(0)

∂µ

=0︷ ︸︸ ︷
m̂(z(0), 0)f(z(0), 0)

+

∫ z(0)

z(0)

∂m̂(z, 0)

∂µ
f(z, 0)dz +

∫ z(0)

z(0)

m̂(z, 0)
∂f(z, 0)

∂µ
dz

so that:

∂M(0)

∂µ
= −

∫ z(0)

z(0)

m̂(z, 0)
∂f(z, 0)

∂µ
dz

Using results from Appendix A.1.6, one can obtains that:

∂M(0)

∂µ
=

z2
0

180σ2

[
6z2

0

σ2
− 16

∂z(0)

∂µ
− 14

∂ẑ(0)

∂µ

]
Lemma 3 in Appendix A.2.10 shows that this expression is positive.

A.1.8 Random Opportunities of Costless Adjustment

This section illustrates how the results of this paper can be extended to a
model that allows for random costless adjustments. This class of models
is usually referred to as ”CalvoPlus” in the literature, as it nests both the
traditional Calvo (1983) model and the standard menu cost model. Such
an extension provides a more realistic distribution of price adjustments and
allows for a better fit to the data.

Assume that the problem of a firm is exactly as described in section 1.2.1,
with the only difference that the firm occasionally gets an opportunity to
adjust its price at no cost. These opportunities arrive at Poisson rate λ > 0.
The value function of the firm now satisfies the following HJB equation:

ρv(z) = −z2 − µv′(z) +
σ2

2
v′′(z) + λ(v(ẑ)− v(z))

together with the same set of optimality and smoothness conditions: v′(z) =
v′(z) = v′(ẑ) = 0, v(z) = v(z) = v(ẑ)− κ. Rewrite the HJB equation in the
following way:

(ρ+ λ)︸ ︷︷ ︸
ρ̂

v(z) = −z2 − µv′(z) +
σ2

2
v′′(z) + λv(ẑ)
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and note that since λv(ẑ) is a constant, it drops out in all optimality and
smoothness conditions, so that the results of Proposition 1 regarding the
effect of drift on firms’ optimal policy apply. In addition, the expressions for
the derivatives of the reset point and inaction region boundaries, provided
in Appendix A.1.3, are unchanged as well, with the only difference that ρ is
substituted with ρ̂ = ρ+ λ.

Stationary density is now determined by the following KFE:

0 = −λf(z, µ) + µfz(z, µ) +
σ2

2
fzz(z, µ)

together with boundary conditions f(z(µ), µ) = f(z(µ), µ) = 0, unit mass

condition
∫ z(µ)

z(µ)
f(z, µ)dz = 1 and continuity at z = ẑ(µ). Stationary density

takes the following form:

f(z, µ) =

{
C1e

R1z + C2e
R2z for z < ẑ

C3e
R1z + C4e

R2z for z ≥ ẑ

where R1 =
−µ−
√
µ2+2λσ2

σ2 , R2 =
−µ+
√
µ2+2λσ2

σ2 and coefficients C1, C2, C3, C4

are determined by the four above listed conditions on f(z, µ).
Similarly, the expressions for the expected (negative) cumulative gap until

first adjustment m̂(z, µ) = −E
(∫ τ

0
z(s)ds

∣∣ z(0) = z
)

and the expected time
of adjustment τ(z, µ) = E

(
τ
∣∣ z(0) = z

)
have to be adjusted. They are now

defined by the following ODEs:

z = −λm(z, µ)− µm̂z(z, µ) +
σ2

2
m̂zz(z, µ)

0 = 1− λτ(z, µ)− µτz(z, µ) +
σ2

2
τzz(z, µ)

with boundary conditions m̂(z(µ), µ) = m̂(z(µ), µ) = 0 and τ(z(µ), µ) =
τ(z(µ), µ) = 0.

Obtaining derivatives of Θ(δ, µ) and M(δ, µ) with respect to drift requires

derivatives of f(z, µ) and ˆm(z, µ), as well as expressions for f(z, µ), ˆm(z, µ)
and τ(z, µ) evaluated at µ = 0. The former can be obtained by using the
Implicit Function Theorem, as in Appendix A.1.3, and are given by:

∂f(z, µ)

∂µ

∣∣∣∣
µ=0

=
1

2(q(z0)−2)

[
−αzp(z0+z)

σ2
+

2α2p(z)

p(z0)

∂z(0)

∂µ
− α2q(z0)p(z0+z)

p(z0)

∂ẑ(0)

∂µ

]
, if z ≤ 0

∂m̂(z, µ)

∂µ

∣∣∣∣
µ=0

=
z0zp(z)

λσ2p(z0)
+

1

λ2
− q(z)

q(z0)

[
α2z2

0 + 2

2λ2
+
αz0q(z0)− p(z0)

λp(z0)

∂z(0)

∂µ

]
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where α =
√

2λ/σ, p(z) = eαz − e−αz, q(z) = eαz + e−αz, and the expression

for ∂f(z,µ)
∂µ

∣∣
µ=0

for z > 0 can be obtained by using the fact that ∂f(z,µ)
∂µ

∣∣
µ=0

=

−∂f(−z,µ)
∂µ

∣∣
µ=0

.

The expressions for f(z, 0), ˆm(z, 0) and τ(z, 0) are given by:

f(z, 0) =
α

2(q(z0)− 2)
p(z0 − |z|)

m̂(z, 0) =
z0p(z)− zp(z0)

λp(z0)

τ(z, 0) =
q(z0)− q(z)

λq(z0)

Whereas it is quite challenging to obtain analogues of Propositions 2 and
5 regarding the effects of µ on impact and cumulative responses for shocks of
arbitrary size, one can still show that the overshooting result of Proposition 6
extends to the case with random costless adjustments. It suffices to show that
∂Θ(2z0,µ)

∂µ

∣∣
µ=0

> 0 and ∂M(2z0,µ)
∂µ

∣∣
µ=0

< 0. The expressions for these derivatives

can be obtained using the expressions provided above and are given by:

∂Θ(2z0, µ)

∂µ

∣∣∣∣
µ=0

=
1

2(q(z0)−2)

[
2q(z0)−4−2α2z2

0

λ
+

4(αz0q(z0)−p(z0))

p(z0)

(
∂ẑ(0)

∂µ
− ∂z(0)

∂µ

)]
∂M(2z0, µ)

∂µ

∣∣∣∣
µ=0

= −2q(2z0)− 8q(z0) + 12− α3z3
0p(z0)

2λ2(q(z0)− 2)2

−α
2z2

0q(3z0)−2αz0p(3z0)+2αz0p(2z0)+3α2z2
0q(z0)+2αz0p(z0)−8α2z2

0

2λp(z0)2(q(z0)− 2)2

(
∂ẑ(0)

∂µ
− ∂z(0)

∂µ

)
and the fact that ∂Θ(2z0,µ)

∂µ

∣∣
µ=0

> 0 and ∂M(2z0,µ)
∂µ

∣∣
µ=0

< 0 is proven in Lemma

4 in Appendix A.2.11.

A.2 Proofs

A.2.1 Some useful expressions

I provide several expressions which will be used later. Let w1 = ex− e−x and
w2 = ex + e−x where x > 0. Using Tailor expansion one obtains following
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results:

w1 = 2
∞∑

i=1,3,5...

xi

i!
> 0

w2 = 2 + 2
∞∑

i=2,4,6...

xi

i!
> w1

w1w2 = e2x − e−2x = 2
∞∑

i=1,3,5...

2ixi

i!

w2
1 = e2x + e−2x − 2 = 2

∞∑
i=2,4,6...

2ixi

i!

w2
2 = e2x + e−2x + 2 = 4 + 2

∞∑
i=2,4,6...

2ixi

i!

w3
1 = e3x − e−3x − 3w1 = 2

∞∑
i=1,3,5...

3ixi

i!
− 3w1

w2
1w2 = e3x + e−3x − w2 = 2 + 2

∞∑
i=2,4,6...

3ixi

i!
− w2

A.2.2 Proof of Proposition 1

First, let’s show that ∂z
∂µ

∣∣
µ=0

> 0. Denote x := αz0:

∂z

∂µ

∣∣∣∣
µ=0

=
4x2 + xw1w2 − 2w2

1

2ρ(xw1w2 − w2
1)

Firstly, using expressions from Appendix A.2.1, one can show that denomi-
nator is positive:

2ρ(xw1w2 − w2
1) > 0 ⇐⇒ xw2 − w1 > 0 ⇐⇒

∞∑
i=3,5,7...

xi

(i− 1)!
−

∞∑
i=3,5,7...

xi

i!
> 0

where last inequality is trivially satisfied. Secondly, similar logic applies to
the numerator:

4x2 + xw1w2 − 2w2
1 > 0 ⇐⇒ 4x2 +

∞∑
i=2,4,6...

2ixi

(i− 1)!
−

∞∑
i=2,4,6...

2i+2xi

i!
> 0

⇐⇒
∞∑

i=6,8,10...

2ixi

(i− 1)!
−

∞∑
i=6,8,10...

2i+2xi

i!
> 0
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where last line follows since 2i

(i−1)!
> 2i+2

i!
for all i > 4. Thus ∂z

∂µ

∣∣
µ=0

> 0 which

concludes the proof of the first part of Proposition 1.

Now let’s show that ∂ẑ
∂µ

∣∣
µ=0

> ∂z
∂µ

∣∣
µ=0

. Using expressions for these deriva-

tives and the same substitution (x := αz0) this amounts to showing:

2(x2w2 + xw1 − w2
1)(xw2 − w1)− (4x2 + xw1w2 − 2w2

1)(2x− w1)

2ρw1(2x− w1)(xw2 − w1)
> 0

Note that denominator is negative since 2x−w1 < 0 (trivial) and xw2−w1 > 0
(shown above). Thus it remains to show that numerator (Num) is also
negative. Opening the brackets, collecting terms and dividing by x yields:

Num = 2x2w2
2 − w2

1w2 + 2w2
1 − 8x2 − 2xw1w2 + 4xw1

Plugging expressions from Appendix A.2.1:

Num = 2x2

(
4 + 2

∞∑
i=2,4,6...

2ixi

i!

)
−

(
2 + 2

∞∑
i=2,4,6...

3ixi

i!

)
+

(
2 + 2

∞∑
i=2,4,6...

xi

i!

)

+ 4
∞∑

i=2,4,6...

2ixi

i!
− 8x2 − 4x

∞∑
i=1,3,5...

2ixi

i!
+ 8x

∞∑
i=1,3,5...

xi

i!

= 8x2 +
16

2
x4 +

∞∑
i=6,8,10...

2ixi

(i− 2)!
− 2

9

2
x2 − 2

81

24
x4 − 2

∞∑
i=6,8,10...

3ixi

i!

+ 2
1

2
x2 + 2

1

24
x4 + 2

∞∑
i=6,8,10...

xi

i!
+ 4

4

2
x2 + 4

16

24
x4 + 4

∞∑
i=6,8,10...

2ixi

i!
− 8x2

− 2
4

1
x2 − 2

16

6
x4 − 2

∞∑
i=6,8,10...

2ixi

(i− 1)!
+ 8x2 + 8

1

6
x4 + 8

∞∑
i=6,8,10...

xi

(i− 1)!

=
∞∑

i=6,8,10...

[
2i

(i− 2)!
− 2

3i

i!
+

2

i!
+

2i+2

i!
− 2i+1

(i− 1)!
+

8

(i− 1)!

]
xi

Thus if 2
i!

(
2i−1i(i− 1)− 3i + 1 + 2i+1 − 2ii+ 4i

)
≤ 0 for all i = {6, 8, 10, . . . }

and inequality is strict for some i, then Num < 0. Define:

q(i) = 2i−1i(i− 1)− 3i + 1 + 2i+1 − 2ii+ 4i

and note that q(6) = 0 and q(8) < 0. Now split q(i) into two parts:

q1(i) = 2i−1i(i− 1) + 2i+1 − 3i

q2(i) = 1 + 4i− 2ii

q(i) = q1(i) + q2(i)
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It is easy to see that q2(i) < 0 for all i > 3. Let’s show by induction that q1(i)
is negative for all i ≥ 10. First note that q1(10) < 0. Now assume q1(i) < 0.
Rearranging, this implies:

i(i− 1) < 2

[(
3

2

)i
− 2

]

Then for i+ 1 it holds:

(i+ 1)i = i(i− 1)
i+ 1

i− 1
< 2

[(
3

2

)i
− 2

]
i+ 1

i− 1
< 2

[(
3

2

)i+1

− 2

]

where the first inequality is due to induction assumption and the last one is
true for all i > 5. Thus q1(i) < 0 for all i ≥ 10 and same applies to q(i),
which concludes the proof.

A.2.3 Lemma 1

Let ρ, κ, σ > 0. Let ∆+(µ) = ẑ(µ)− z(µ). Then:

∂∆+(0)

∂µ
<

1

10

z2
0

σ2

Proof. Using expressions for ∂z(0)
∂µ

and ∂ẑ(0)
∂µ

, and denoting x := αz0, the above
expressions can be written as:

10(4x2+xw1w2−2w2
1)(2x−w1)−20(x2w2+xw1−w2

1)(xw2−w1)+w1(xw2−w1)(2x−w1)x2

20ρw1(2x−w1)(xw2−w1)
> 0

Given that denominator is negative (as shown in proof of Proposition 1), it is
required to show that numerator is positive. Opening the brackets, collecting
terms and dividing by x, gives that numerator (Num) is negative if:

Num = 80x2−20w2
1+10w2

1w2+x(20w1w2−40w1+w3
1)−x2(20w2

2+2w2
1+w2

1w2)+2x3w1w2 < 0
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Using expressions from Appendix A.2.1:

Num = 80x2 − 40
∞∑

i=2,4,6...

2ixi

i!
+ 20

∞∑
i=2,4,6...

3ixi

i!
− 20

∞∑
i=2,4,6...

xi

i!

+ x

(
40

∞∑
i=1,3,5...

2ixi

i!
+ 2

∞∑
i=1,3,5...

3ixi

i!
− 86

∞∑
i=1,3,5...

xi

i!

)

− x2

(
80 + 44

∞∑
i=2,4,6...

2ixi

i!
+ 2

∞∑
i=2,4,6...

3ixi

i!
− 2

∞∑
i=2,4,6...

xi

i!

)
+ 4x3

∞∑
i=1,3,5...

2ixi

i!

= 80x2 − 40
4

2
x2 − 40

∞∑
i=4,6,8...

2ixi

i!
+ 20

9

2
x2 + 20

∞∑
i=4,6,8...

3ixi

i!
− 20

1

2
x2 − 20

∞∑
i=4,6,8...

xi

i!

+ 40
2

1
x2 + 20

∞∑
i=4,6,8...

2ixi

(i− 1)!
+ 2

3

1
x2 + 2

∞∑
i=4,6,8...

3i−1xi

(i− 1)!
− 86x2 − 86

∞∑
i=4,6,8...

xi

(i− 1)!

− 80x2 − 11
∞∑

i=4,6,8...

2ixi

(i− 2)!
− 2

∞∑
i=4,6,8...

3i−2xi

(i− 2)!
+ 2

∞∑
i=4,6,8...

xi

(i− 2)!
+ 2

∞∑
i=4,6,8...

2i−2xi

(i− 3)!

=
∞∑

i=4,6,8...

2xi

i!
q(i)

where

q(i) = 10(3i−2i+1−1)+i(10·2i+3i−1−43)+i(i−1)(1−11·2i−1−3i−2)+i(i−1)(i−2)2i−2

Thus if q(i) ≤ 0 for all i ∈ {4, 6, 8...} and q(i) < 0 for some i ∈ {4, 6, 8...},
then Num < 0 and Lemma 1 is proven. A direct computation gives that
q(4) = q(6) = q(8) = 0 and q(10) < 0. Let’s show that q(i) < 0 for all i ≥ 12.
Note that q(i) < 0 if and only if:

10(3i−2i+1−1)︸ ︷︷ ︸
q1(i)

+ i(10·2i+3i−1−43)︸ ︷︷ ︸
q2(i)

+ i(i−1)(i−2)2i−2︸ ︷︷ ︸
q3(i)

< i(i−1)(3i−2 + 11·2i−1− 1)︸ ︷︷ ︸
q4(i)

Let’s establish relations between these terms:

• q1(i) < 1
2
q4(i):

q1(i) <
1

2
q4(i) ⇐⇒ 20(3i−2i+1−1) < i(i−1)(3i−2 + 11·2i−1− 1)

⇐⇒ 3i−2(180− i(i− 1)) + i(i− 1)︸ ︷︷ ︸
<0 for i≥12

−2i−1(80 + 11i(i− 1))− 20︸ ︷︷ ︸
<0

< 0



APPENDIX A. EFFECTS OF TREND INFLATION 106

Term in second bracket is trivially negative. To see why term in the
first bracket is negative as well, consider a proof by induction. If i = 12,
then 3i−2(180− i(i− 1)) + i(i− 1) < 0. Suppose now that for some i,
3i−2(180− i(i− 1)) < −i(i− 1). Consider i+ 1:

3i−1(180− (i+ 1)i) < 3i−1(180− i(i− 1)) = 3 · 3i−2(180− i(i− 1))

< −3i(i− 1) < −i(i+ 1)︸ ︷︷ ︸
for i>2

where the second line follows from the induction assumption and the
last one inequality is true for all i > 2. As a result, q1(i) < 1

2
q4(i) for

all i ≥ 12.

• q2(i) < 1
4
q4(i):

q2(i) <
1

4
q4(i) ⇐⇒ 4(10 · 2i + 3i−1 − 43) < (i− 1)(3i−2 + 11 · 2i−1 − 1)

⇐⇒ 3i−2(13− i) + i︸ ︷︷ ︸
<0 for i≥14

< 2i−1(11i− 91)︸ ︷︷ ︸
>0 for i≥9

+173

The right hand side is trivially positive for i ≥ 9. To see why term on
the left hand side is negative, consider i ≥ 14 and rewrite it as:

3i−2(13− i) + i < 0 ⇐⇒ 3i−2 >
i

i− 13

Here, i
i−13

is a decreasing function of i, whereas 3i−2 is increasing.
In addition, the inequality is true for i = 14 and thus it is true for all
i ≥ 14. Finally, direct computation shows that q2(i) < 1

4
q4(i) for i = 12

and, as a result, q2(i) < 1
4
q4(i) for all i ≥ 12.

• q3(i) < 1
5
q4(i):

q3(i) <
1

5
q4(i) ⇐⇒ 2i−2(5i− 22) < 3i−2 − 1

It suffices to show that 2i−25i < 3i−2 − 1, which can be proven by
induction. First, it holds for i = 14. Now assume that it holds for
some i and consider i+ 1:

2i−15(i+ 1) = 2i−25i
2(i+ 1)

i
< (3i−2 − 1)

2(i+ 1)

i
< 3i−1 − 1︸ ︷︷ ︸

for i≥2
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where the first inequality follows from induction assumption and the
second one can be seen by multiplying both sides with i and collecting
terms, so that it is equivalent to 3i−2(2− i) < i+2 which holds trivially
if i ≥ 2. Finally, direct computation shows that q3(i) < 1

5
q4(i) for

i = 12 and so q3(i) < 1
5
q4(i) for all i ≥ 12.

It follows that q1(i) + q2(i) + q3(i) < 19
20
q4(i) < q4(i) for all i ≥ 12 and thus

q(i) < 0 for all i ≥ 8, which concludes the proof.

A.2.4 Lemma 2

Let ρ, κ, σ > 0. If µ is small and non-zero, then the average price gap in the
steady state x̄(µ) is not equal to zero.

Proof. Due to the symmetry of the stationary distribution under zero
drift, x̄(0) = 0. It thus suffices to show that the derivative ∂x̄(0)

∂µ
is not equal

to zero. Recall from Appendix A.1.6 that:

∂x̄(0)

∂µ
=

2

3

∂z(0)

∂µ
+

1

3

∂ẑ(0)

∂µ
− z2

0

6σ2

=
∂z(0)

∂µ
+

1

3

∂∆+(0)

∂µ
− z2

0

6σ2

where ∆+(µ) = ẑ(µ)− z(µ). From Lemma 1 it follows:

∂x̄(0)

∂µ
<
∂z(0)

∂µ
+

1

30

z2
0

σ2
− z2

0

6σ2

=
∂z(0)

∂µ
− 2

15

z2
0

σ2

Let me now show that ∂z(0)
∂µ
− 2

15

z2
0

σ2 < 0. Using the expression for ∂z(0)
∂µ

,
rearranging terms and denoting x := αz0, it is equivalent to showing that:

60x2 + 15xw1w2 − 30w2
1 − 2x3w1w2 + 2x2w2

1

30ρ(xw1w2 − w2
1)

< 0

Note that the denominator is positive, as shown in the proof of Proposition
1. It thus suffices to show that the numerator is negative:

Num = 60x2 + 15xw1w2 − 30w2
1 − 2x3w1w2 + 2x2w2

1 < 0
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Using the expansion formulas from Appendix A.2.1, rewrite the numerator
as:

Num = 60x2 + 30x
∞∑

i=1,3,5...

2ixi

i!
− 60

∞∑
i=2,4,6...

2ixi

i!
− 4x3

∞∑
i=1,3,5...

2ixi

i!
+ 4x2

∞∑
i=2,4,6...

2ixi

i!

= 60x2 + 15
∞∑

i=2,4,6...

2ixi

(i− 1)!
− 60

∞∑
i=2,4,6...

2ixi

i!
−

∞∑
i=4,6,8...

2i−1xi

(i− 3)!
+

∞∑
i=4,6,8...

2ixi

(i− 2)!

= 15
∞∑

i=4,6,8...

2ixi

(i− 1)!
− 60

∞∑
i=4,6,8...

2ixi

i!
−

∞∑
i=4,6,8...

2i−1xi

(i− 3)!
+

∞∑
i=4,6,8...

2ixi

(i− 2)!

=
∞∑

i=4,6,8...

2i−1xi

i!

[
30i− 120− i(i− 1)(i− 2) + 2i(i− 1)︸ ︷︷ ︸

q(i)

]

If q(i) ≤ 0 for all i ∈ {4, 6, 8...} and q(i) < 0 for some of these i, it would
follow that Num < 0 and Lemma 2 is proven.

Note first that q(4) = q(6) = 0, whereas q(8) < 0 and q(10) < 0. Let me
prove by induction that q(i)+120 < 0 for any i ≥ 10. Suppose that for some
i, q(i) + 120 < 0. Consider i+ 1:

q(i+ 1) + 120 = 30(i+ 1)− (i+ 1)i(i− 1) + 2(i+ 1)i < 0 ⇐⇒
30− i(i− 1) + 2i < 0 ⇐⇒ 30− i(i− 3) < 0

The last inequality is trivially satisfied for any i ≥ 10, which concludes the
proof.

A.2.5 Proof of Proposition 2

First, for convenience, denote Θ̂(δ) = ∂Θ(δ,µ)
∂µ

∣∣
µ=0

. Consider δ > 0. Note that:

Θ̂(δ) =


0, for δ = 0

z2
0

4σ2 − 1
6
∂∆+(0)
∂µ

, for δ = z0

z2
0

6σ2 + 2
3
∂∆+(0)
∂µ

, for δ ≥ 2z0

And thus Θ̂(z0) > 0 by Lemma 1, and Θ̂(δ) > 0 for all δ ≥ 2z0 since
∂∆+(0)
∂µ

> 0 by Proposition 1.
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Consider now δ ∈ (0, z0). For such δ:

Θ̂′(δ) = δ

[
6z2

0 − 2δ2 − 3δz0

6σ2z2
0

− δ

2z3
0

∂∆+(0)

∂µ

]
> δ

[
6z2

0 − 2z2
0 − 3z2

0

6σ2z2
0

− z0

2z3
0

∂∆+(0)

∂µ

]
= δ

[
1

6σ2
− 1

2z2
0

∂∆+(0)

∂µ

]
> 0

where first inequality is due to δ < z0 and second one due to Lemma 1.
It follows that Θ̂(δ) is strictly increasing over (0, z0) and since Θ̂(0) = 0 it
follows that Θ̂(δ) > 0 for all δ ∈ (0, z0].

Consider now δ ∈ (z0, 2z0). For such δ:

Θ̂′(δ) =
2δ3 − 3δ2z0 − 6δz2

0 + 8z3
0

6σ2z2
0

− δ2 − 4z2
0

2z3
0

∂∆+(0)

∂µ

so that lim
δ↓z0

Θ̂′(δ) = z0

6σ2 + 3
2z0

∂∆+(0)
∂µ

> 0. Given that Θ̂(z0), Θ̂(2z0) > 0, the

only case when Θ̂(δ) is negative for some δ ∈ (z0, 2z0) is if its derivative
Θ̂′(δ) becomes negative and then again positive, i.e. switches its sign at least
twice. To see if that is the case, consider second and third derivatives:

Θ̂′′(δ) =
δ2 − δz0 − z2

0

σ2z2
0

− δ

z3
0

∂∆+(0)

∂µ

Θ̂′′′(δ) =
2δ − z0

σ2z2
0

− 1

z3
0

∂∆+(0)

∂µ
>

z0

σ2z2
0

− 1

z3
0

∂∆+(0)

∂µ
> 0

where first inequality follows since δ > z0 and second one from Lemma 1.
Third derivative is strictly positive for all δ ∈ (z0, 2z0) and thus second
derivative is monotonic and can only cross zero at most once. It follows
that first derivative Θ̂′(δ) can switch its sign at most once and thus Θ̂(δ) is
strictly positive for all δ ∈ (z0, 2z0). Given previous results, it follows that
Θ(δ,µ)
∂µ

∣∣
µ=0

> 0 for all δ > 0. Noting that impact effect is symmetric around

zero drift (Θ(−δ, µ) = −Θ(δ,−µ)) provides that Θ(−δ,0)
∂µ

= Θ(δ,0)
∂µ

> 0 which
concludes the proof.

A.2.6 Proof of Proposition 3

Let m̂(z, t) denote the expected cumulative deviation of g from its steady
state until time t, conditional on initial value z(0) = z:

m̂(z, t) = E
(∫ t

0

(g(z(s))− ḡ)ds

∣∣∣∣z(0) = z

)
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Denote m̂(z) = lim
t→∞

m̂(z, t) and thus:

CIRF (F0) =

∫ z

z

m̂(z)dF0(z)

Let τi be the i-th adjustment and let ta∧tb = min{ta, tb}. Fix a staring value
z and consider the cumulated deviation of g form its steady state until t > 0,
writing all the random variables explicitly as a function of the underlying
outcome ω:∫ t

0

(g(z(s, ω))− ḡ)ds =

∫ τ1(ω)∧t

0

(g(z(s, ω))− ḡ)ds+
N−1∑
i=1

∫ τi+1(ω)∧t

τi(ω)∧t
(g(z(s, ω))− ḡ)ds

+

∫ t

τN (ω)∧t
(g(z(s, ω))− ḡ)ds

for some fixed N ≥ 1. Take the limit of the above expression as N →∞. For
a fixed horizon t and outcome ω there will be n(t, ω) adjustments between
time 0 and t. Let N(t, ω) = max{1, n(t, ω)}. Then:

∫ t

0

(g(z(s, ω))− ḡ)ds =

∫ τ1(ω)∧t

0

(g(z(s, ω))− ḡ)ds+

N(t,ω)−1∑
i=1

∫ τi+1(ω)

τi(ω)

(g(z(s, ω))− ḡ)ds

+

∫ t

τN(t,ω)(ω)∧t
(g(z(s, ω))− ḡ)ds

Applying conditional expectation (Ez(·) = E(·|z(0, ω) = z)) yields an expres-
sion for m̂(z, t):

m̂(z, t) = Ez

(∫ τ1(ω)∧t

0

(g(z(s, ω))− ḡ)ds

)

+
∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

(g(z(s, ω))− ḡ)ds

∣∣∣∣N(t, ω) ≥ i+ 1

)
Pz (N(t, ω) ≥ i+ 1)

+ Ez

(∫ t

τN(t,ω)(ω)∧t
(g(z(s, ω))− ḡ)ds

)

Where Pz (N(t, ω) ≥ i+ 1) is the probability that number of adjustments
until t exceeds i + 1 conditional on z(0, ω) = z. Note that once we take
expectation with respect to ω, the finite sum from the previous expression
becomes infinite. That is due to the fact that for any t > 0 and any M there
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exists ω such that N(t, ω) > M , which follows from the fact that increments
of z(t) are normally distributed. Each summand i is the expected cumu-
lated deviation between i-th and (i+ 1)-th adjustment, conditional on there
being at least i+1 adjustments, and weighted with corresponding probability.

Finally, take the limit as t → ∞. For every z and every i ∈ R+,
Pz (N(t, ω) ≥ i+ 1) converges to one and the conditional expectation in sec-
ond line converges to unconditional one. Also N(t, ω) converges to n(t, ω),
τ1(ω)∧t converges to τ1(ω) and τN(t,ω)(ω)∧t→ τn(t,ω)(ω). As has been shown

in Baley and Blanco (2020), Ez
(∫ τi+1(ω)

τi(ω)
(g(z(s, ω))− ḡ)ds

)
= 0 for all i, and

thus:
m̂(z) = lim

t→∞
m̂(z, t) = m(z) + m̃(z)

where

m(z) = E

(∫ τ1(ω)

0

(g(z(s, ω))− ḡ)ds

∣∣∣∣z(0, ω) = z

)

m̃(z) = lim
t→∞

E

(∫ t

τn(t,ω)(ω)

(g(z(s, ω))− ḡ)ds

∣∣∣∣z(0, ω) = z

)
Note that due to Markov property, m̃(z) does not depend on z since after the
first adjustment initial condition does not matter and expectation becomes

unconditional, so that m̃(z) = m̃ = lim
t→∞

E
(∫ t

τn(t,ω)(ω)
(g(z(s, ω))− ḡ)ds

)
.

Thus:

CIRF (F0) =

∫ z

z

m(z)dF0(z) + m̃

which concludes the proof.

A.2.7 Proof of Proposition 4

Let m̂(r, z, t) denote the expected discounted cumulative deviation of g from
its steady state until time t, conditional on initial value z(0) = z:

m̂(r, z, t) = E
(∫ t

0

e−rs(g(z(s))− ḡ)ds

∣∣∣∣z(0) = z

)
with r > 0. Denote m̂(r, z) = lim

t→∞
m̂(r.z, t) so that discounted cumulative

impulse response is given by:

DCIRF (r, F0) =

∫ z

z

m̂(r, z)dF0(z)
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Let τi be the i-th adjustment and let ta ∧ tb = min{ta, tb}. Fix a staring
value z and consider the discounted cumulated deviation of g form its steady
state until t > 0, writing all the random variables explicitly as a function of
the underlying outcome ω:∫ t

0

e−rs(g(z(s, ω))−ḡ)ds =

∫ τ1(ω)∧t

0

e−rs(g(z(s, ω))−ḡ)ds +

N−1∑
i=1

∫ τi+1(ω)∧t

τi(ω)∧t
e−rs(g(z(s, ω))−ḡ)ds +∫ t

τN (ω)∧t
e−rs(g(z(s, ω))−ḡ)ds

for some fixed N ≥ 1. Take the limit of the above expression as N →∞. For
a fixed horizon t and outcome ω there will be n(t, ω) adjustments between
time 0 and t. Let N(t, ω) = max{1, n(t, ω)}. Then:∫ t

0

e−rs(g(z(s, ω))−ḡ)ds =

∫ τ1(ω)∧t

0

e−rs(g(z(s, ω))−ḡ)ds +

N(t,ω)−1∑
i=1

∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))−ḡ)ds +∫ t

τN(t,ω)(ω)∧t
e−rs(g(z(s, ω))−ḡ)ds

Applying conditional expectation (Ez(·) = E(·|z(0, ω) = z)) yields an expres-
sion for m̂(z, t):

m̂(r, z, t) = Ez

(∫ τ1(ω)∧t

0

e−rs(g(z(s, ω))− ḡ)ds

)

+
∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

∣∣∣∣N(t, ω) ≥ i+ 1

)
Pz (N(t, ω) ≥ i+ 1)

+ Ez

(∫ t

τN(t,ω)(ω)∧t
e−rs(g(z(s, ω))− ḡ)ds

)

Where Pz (N(t, ω) ≥ i+ 1) is the probability that number of adjustments
until t exceeds i + 1 conditional on z(0, ω) = z. Note that once we take
expectation with respect to ω, the finite sum from the previous expression
becomes infinite. That is due to the fact that for any t > 0 and any M there
exists ω such that N(t, ω) > M , which follows from the fact that increments
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of z(t) are normally distributed. Each summand i is the expected cumu-
lated deviation between i-th and (i+ 1)-th adjustment, conditional on there
being at least i+1 adjustments, and weighted with corresponding probability.

Finally, take the limit as t → ∞. For every z and every i ∈ R+,
Pz (N(t, ω) ≥ i+ 1) converges to one and the conditional expectation in sec-
ond line converges to unconditional one. Also N(t, ω) converges to n(t, ω),
τ1(ω)∧ t converges to τ1(ω) and τN(t,ω)(ω)∧ t→ τn(t,ω)(ω). Due to r > 0, the
last summand converges to zero and thus:

m̂(r, z) = lim
t→∞

m̂(r, z, t) =

m(r,z)︷ ︸︸ ︷
Ez

(∫ τ(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)

+
∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

)

Because of discounting, expected deviations between adjustments are not
zero anymore. However one can still characterize them. First, consider some
i ≥ 1 and rewrite as:

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

)
= Ez

(
e−rτi(ω)

∫ τi+1(ω)−τi(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)

Note that due to strong Markov property, expectation of the integral does
not depend on i or z, whereas expectation of e−τi(ω) depends on both. Thus
the two terms are independent and we can split the expectation:

Ez

(
e−rτi(ω)

∫ τi+1(ω)−τi(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)
=

Ez
(
e−rτi(ω)

)
· Eẑ

(∫ τ(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)
︸ ︷︷ ︸

m(r,ẑ)

Now second term is the expectation of cumulated deviations until first ad-
justment conditional on starting at the return point: z(0) = ẑ. Denote the
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first term for i = 1 by q(r, z) = Ez
(
e−rτ(ω)

)
. Then for any i ≥ 1:

Ez
(
e−rτi(ω)

)
= Ez

(
e−rτ1(ω) · e−r(τ2(ω)−τ1(ω)) · · · e−r(τi(ω)−τi−1(ω))

)
= Ez

(
e−rτ1(ω)

)
· Ez

(
e−r(τ2(ω)−τ1(ω))

)
· · ·Ez

(
e−r(τi(ω)−τi−1(ω))

)
= Ez

(
e−rτ(ω)

)︸ ︷︷ ︸
q(r,z)

·Eẑ
(
e−rτ(ω)

)︸ ︷︷ ︸
q(r,ẑ)

· · ·Eẑ
(
e−rτ(ω)

)︸ ︷︷ ︸
q(r,ẑ)

= q(r, z)q(r, ẑ)i−1

where second and third lines follow due to strong Markov property of z(t).
Because of this property, times between adjustments are independent (2nd
line) and initial condition z(0) = z is irrelevant once there was an adjustment
(3rd line). Thus:

∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

)
=
∞∑
i=1

q(r, z)q(r, ẑ)i−1m(r, ẑ) =
q(r, z)

1− q(r, ẑ)
m(r, ẑ)

and so:

DCIRF (r, F0) =

∫ z

z

m(r, z)dF0(z) +
m(r, ẑ)

1− q(r, ẑ)

∫ z

z

q(r, z)dF0(z)

Now in order to obtain undiscounted CIRF, it remains to take the limit as
r → 0. Note that lim

r→0
m(r, z) = m(z) wherem(z) = E

(∫ τ
0

(g(z(s))− ḡ)ds
∣∣z(0) = z

)
and lim

r→0
q(r, z) = 1. This implies that second integral converges to 1. In addi-

tion, since m(ẑ) = 0, as shown in Baley and Blanco (2020), lim
r→0

m(r, ẑ) = 0,

and the coefficient in front of the second integral converges to some finite
number. We can further simplify the expression by noting that:

q(r, z) = Ez
(
e−rτ(ω)

)
= 1− rEz

(∫ τ(ω)

0

e−rsds

)
and since lim

r→0
Ez
(∫ τ(ω)

0
e−rsds

)
= Ez (τ(ω)), for small values of r, 1− q(r, ẑ)

behaves like rEz (τ(ω)). Thus CIRF can be expressed as:

CIRF (F0) = lim
r→0

DCIRF (r, F0) =

∫ z

z

m(z)dF0(z)+
1

E
(
τ(ω)

∣∣z(0, ω) = ẑ
) lim
r→0

m(r, ẑ)

r

where

m(z) = E

(∫ τ(ω)

0

(g(z(s, ω))− ḡ)ds

∣∣∣∣ z(0, ω) = z

)

m(r, ẑ) = E

(∫ τ(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

∣∣∣∣ z(0, ω) = ẑ

)
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which concludes the proof.

A.2.8 Proof of Proposition 5

First, for convenience, denote M̂(δ) = ∂M(δ,µ)
∂µ

∣∣
µ=0

and consider δ > 0. Note

that:

M̂(δ) =


0, for δ = 0

− 17z4
0

360σ4 − 13z2
0

180σ2

∂∆+(0)
∂µ

, for δ = z0

− z4
0

60σ4 − z2
0

5σ2

∂∆+(0)
∂µ

, for δ ≥ 2z0

so that M̂(z0) < 0 and M̂(δ) < 0 for all δ ≥ 2z0 since ∂∆+(0)
∂µ

> 0 by Propo-
sition 1.

Now let’s show that M̂(δ) < 0 for any δ > 0. First, consider δ ∈ (0, z)
and denote by M̂k

−(z0) the limit of k-th derivative of M̂(δ) for δ ↑ z0. The
proof consists of five claims. To ease exposition, proofs of the claims are
provided at the end of this section.

1a. M̂V (0) < 0 and M̂V
− (z) < 0. In addition, M̂V (δ) is linear for δ ∈ (0, z0)

and thus M̂V (δ) < 0 for all δ ∈ (0, z0). This implies that M̂ IV (δ) is
strictly decreasing for δ ∈ (0, z0).

2a. M̂ IV (0) > 0 and M̂ IV
− (z) < 0. Together with (1a) this implies that

M̂ IV (δ) crosses zeros once in (0, z0) and thus M̂ III(δ) is strictly concave
and singe-peaked in (0, z0).

3a. M̂ III(0) > 0 and M̂ III
− (z) < 0. Together with (2a) it implies that

M̂ III(δ) crosses zeros once in (0, z0) so that M̂ II(δ) first increases and
then decreases as δ goes from 0 to z0.

4a. M̂ II(0) < 0 and M̂ II
− (z) > 0. Together with (3a) it implies that M̂ II(δ)

crosses zero once in (0, z0) and thus M̂ I(δ) first decreases and then
increases as δ goes from 0 to z0.

5a. M̂ I(0) = 0. Together with (4a) this implies that M̂ I(δ) crosses zero at
most once in (0, z0).

Finally, since M̂(0) = 0, M̂(z0) < 0, M̂ I(0) = 0, M̂ II(0) < 0 and M̂ I(δ)
crosses zero at most once in (0, z0), it follows that M̂(δ) < 0 for all δ ∈ (0, z0).
In order to have M̂(δ) ≥ 0 for some δ ∈ (0, z0), it must be the case that M̂ I(δ)
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crosses zero at least twice, which contradicts (5a).

Now consider δ ∈ (z0, 2z0) and denote by M̂k
+(z0) the limit of k-th deriva-

tive of M̂(δ) for δ ↓ z0. The proof consists of five claims, proofs of which are
also delegated to the end of this section.

1b. M̂V
+ (z0) > 0 and M̂V (2z0) > 0. In addition, M̂V (δ) is linear for δ ∈

(z0, 2z0) and thus M̂V (δ) > 0 for all δ ∈ (z0, 2z0). This implies that
M̂ IV (δ) is strictly increasing for δ ∈ (z0, 2z0).

2b. M̂ IV
+ (z0) < 0 and M̂ IV (2z0) > 0. Together with (1b) this implies

that M̂ IV (δ) crosses zeros once in (z0, 2z0) and thus M̂ III(δ) is strictly
convex in (z0, 2z0).

3b. M̂ III
+ (z0) < 0 and M̂ III(2z0) > 0. Together with (2b) it implies that

M̂ III(δ) crosses zeros once in (z0, 2z0) so that M̂ II(δ) first decreases
and then increases as δ goes from z0 to 2z0.

4b. M̂ II
+ (z0) > 0 and M̂ II(2z0) = 0. Together with (3b) it implies that

M̂ II(δ) crosses zero once in (z0, 2z0) and thus M̂ I(δ) first increases and
then decreases as δ goes from z0 to 2z0.

5b. M̂ I(2z0) = 0. Together with (4b) and (3b) this implies that M̂ I(δ)
crosses zero at most once in z0 to 2z0.

Finally, since M̂(z0) < 0, M̂(2z0) < 0, M̂ I(2z0) = 0, M̂ II(2z0) = 0,
M̂ III(2z0) > 0 and M̂ I(δ) crosses zero at most once in (z, 2z), it follows
that M̂(δ) < 0 for all δ ∈ (z, 2z). In order to have M̂(δ) ≥ 0 for some
δ ∈ (z, 2z), it must be the case that M̂ I(δ) crosses zero at least twice, which
contradicts (5b).

Altogether, this implies that M̂(δ) < 0 for all δ > 0. Note that M(δ, µ)

is symmetric in the sense that M(−δ, µ) = −M(δ,−µ), so that ∂M(−δ,0)
∂µ

=
∂M(δ,0)
∂µ

< 0, which concludes the proof. Below I prove claims used above.

Consider δ > 0. Since M̂(δ) is a polynomial of degree 6, it follows that
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M̂V (δ) is a linear function. Direct computation yields:

M̂V (0) = − 6

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂V
− (z0) = − 14

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂V
+ (z0) =

2

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂V (2z0) =
10

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂ IV (0) =
3

σ4
− 4

3σ2z2
0

∂∆+(0)

∂µ

M̂ IV
− (z0) = − 7

σ4
− 10

3σ2z2
0

∂∆+(0)

∂µ

M̂ IV
+ (z0) = − 1

σ4
− 2

3σ2z2
0

∂∆+(0)

∂µ

M̂ IV (2z0) =
5

σ4
− 8

3σ2z2
0

∂∆+(0)

∂µ

M̂ III(0) =
z0

3σ4

M̂ III
− (z0) = − z0

σ4
− 7

3σ2z0

∂∆+(0)

∂µ

M̂ III
+ (z0) = − z0

3σ4
+

1

3σ2z0

∂∆+(0)

∂µ

M̂ III(2z0) =
z0

σ4
− 4

3σ2z0

∂∆+(0)

∂µ

M̂ II(0) = − z2
0

3σ4

M̂ II
− (z0) =

z2
0

6σ4
− 1

σ2

∂∆+(0)

∂µ

M̂ II
+ (z0) =

z2
0

6σ4
+

1

3σ2

∂∆+(0)

∂µ

M̂ II(2z0) = 0

M̂ I(0) = 0

M̂ I(2z0) = 0

Inequalities in (1a - 5a) and (1b - 5b) follow either trivially, or due to
Proposition 1 or due to Lemma 1.
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A.2.9 Proof of Proposition 6

Let µ > 0 and small. First, consider impact effect Θ(δ, µ). Its first order
approximation with respect to drift is given by:

Θ(δ, µ) = Θ(δ, 0) +
∂Θ(δ, 0)

∂µ
µ

Since for δ ≥ 2z0, Θ(δ, 0) = δ and ∂Θ(δ,0)
∂µ

> 0 by Proposition 2, it follows
that:

Θ(δ, µ)− δ > 0 for δ ≥ 2z0

Since both Θ(δ, 0) and ∂Θ(δ,0)
∂µ

are second order in δ for small shocks, it follows
that:

Θ(δ, µ)− δ < 0 for some small δ > 0

Thus, due to continuity of Θ(δ, µ), there exists δΘ(µ) ∈ (0, 2z0) such that
Θ(δΘ(µ), µ) − δ = 0 and Θ(δ, µ) − δ > 0 for all δ > δΘ(µ). Finally, since
width of inaction region z(µ) − z(µ) does not change with µ to first order
(Proposition 1), and δΘ(µ) < 2z0, it follows that δΘ(µ) < z(µ)− z(µ) if µ is
sufficiently small.

Now, consider cumulative response M(δ, µ). Its first order approximation
with respect to drift is given by:

M(δ, µ) = M(δ, 0) +
∂M(δ, 0)

∂µ
µ

Since for δ ≥ 2z0, M(δ, 0) = 0 and ∂M(δ,0)
∂µ

< 0 by Proposition 5, it follows
that:

M(δ, µ) < 0 for δ ≥ 2z0

Since M(δ, 0) is first order and ∂M(δ,0)
∂µ

is second order in δ for small shocks,
it follows that:

M(δ, µ) > 0 for some small δ > 0

Thus, due to continuity of M(δ, µ), there exists δM(µ) ∈ (0, 2z0) such that
M(δM(µ), µ) = 0 and M(δ, µ) < 0 for all δ > δM(µ). Similar logic as before
leads to δM(µ) < z(µ)− z(µ) if µ is sufficiently small.

A.2.10 Lemma 3

Let ρ, κ, σ > 0. Then the CIR for a shock to the drift ∂M(0)
∂µ

(see Appendix

A.1.7) is positive:

∂M(0)

∂µ
=

z2
0

180σ2

[
6z2

0

σ2
− 16

∂z(0)

∂µ
− 14

∂ẑ(0)

∂µ

]
> 0
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Proof. It suffices to show that
3z2

0

8σ2 −
(
∂z(0)
∂µ

+ ∂ẑ(0)
∂µ

)
> 0. Using expression

from Appendix A.1.3, letting x := αz(0) and collecting terms yields:

3z2
0

8σ2
−
(
∂z(0)

∂µ
+
∂ẑ(0)

∂µ

)
=

−32w3
1−x(48w2

1 +24w2
1w2)+x2(16w1w2−32w1−3w3

1)+x3(64+16w2
2 +6w2

1 +3w2
1w2)−6x4w1w2

16ρ(xw1w2 − w2
1)(2x− w1)

As shown previously, the denominator is negative, so it remain to show that
the numerator is positive. Using the expressions from Appendix A.2.1 and
collecting terms, one can rewrite the numerator as follows:

Num =
∞∑

i=5,7,9...

[ q1(i)︷ ︸︸ ︷
64 · 3i − 192

i!
− 3 · 2i−2

(i− 4)!
+

+
11 · 2i−1 + 2 · 3i−2 − 6

(i− 3)!
− 48 · 2i + 16 · 3i − 48

(i− 1)!
− 2 · 3i−1 − 8 · 2i + 46

(i− 2)!︸ ︷︷ ︸
q2(i)

]
xi

It is easy to verify that q1(i)+q2(i) = 0 for i ∈ {5, 7} and q1(i)+q2(i) > 0
for i ∈ {9, 11, 13, 15, 17}. I will now show by induction that both q1(i) and
q2(i) are strictly positive for all i ≥ 19.

• Showing that q1(i) is positive is equivalent to showing that 3i−1 − 1 >
2i−8i(i− 1)(i− 2)(i− 3), but it suffices to show that 3i−1 − 1 > 2i−8i4.
The latter is true for i = 19. Assume now that it is true for some i
and consider i + 1: 2i−7(i + 1)4 = 2i−8i4 2(i+1)4

i4
< [3i−1 − 1]2(i+1)4

i4
=

3i−1 2(i+1)4

i4
− 2(i+1)4

i4
< 3i − 1, which concludes the proof by induction.

The first inequality follows from the induction assumption and the

second one is due to 2(i+1)4

i4
< 3 for i ≥ 17.

• Showing that q2(i) is positive is equivalent to showing that (11 · 2i−1 +
2 ·3i−2−6)(i−1)(i−2) > 48 ·2i+16 ·3i−48+(2 ·3i−1−8 ·2i+46)(i−1),
but it suffices to show that (2 · 3i−2− 6)(i− 1)(i− 2) > 48 · 2i + 16 · 3i +
2 ·3i−1(i−1) + 46(i−1). It can be easily shown by induction that each
summand on the RHS of the inequality is strictly smaller than 1/4 of
the term on the LHS for all i ≥ 19, so that the inequality holds true
for i ≥ 19.
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A.2.11 Lemma 4

Let ρ, κ, σ, λ > 0. Then ∂Θ(2z0,µ)
∂µ

∣∣
µ=0

> 0 and ∂M(2z0,µ)
∂µ

∣∣
µ=0

< 0.

Proof. Note that expressions for ∂Θ(2z0,µ)
∂µ

∣∣
µ=0

and ∂M(2z0,µ)
∂µ

∣∣
µ=0

can be

split in several parts:

∂Θ(2z0, µ)

∂µ

∣∣∣∣
µ=0

=
1

2(q(z0)−2)

2(

A︷ ︸︸ ︷
q(z0)−2−α2z2

0)

λ
+

4(

B︷ ︸︸ ︷
αz0q(z0)−p(z0))

p(z0)

(
∂ẑ(0)

∂µ
− ∂z(0)

∂µ

)

∂M(2z0, µ)

∂µ

∣∣∣∣
µ=0

= −

C︷ ︸︸ ︷
2q(2z0)− 8q(z0) + 12− α3z3

0p(z0)

2λ2(q(z0)− 2)2

−αz0

D︷ ︸︸ ︷
αz0q(3z0)−2p(3z0)+2p(2z0)+3αz0q(z0)+2p(z0)−8αz0

2λp(z0)2(q(z0)− 2)2

(
∂ẑ(0)

∂µ
− ∂z(0)

∂µ

)
So it remains to show that A,B,C,D > 0. Using expressions from Ap-

pendix A.1.3, letting x := αz(0) and collecting terms yields:

A = 8
∞∑

4,6,8...

xi

i!
> 0

B = 2
∞∑

3,5,7...

(i− 1)xi

i!
> 0

C =
∞∑

4,6,8...

[4 · 2i − 16− 2i(i− 1)(i− 2)︸ ︷︷ ︸
fC(i)

]
xi

i!

D =
∞∑

3,5,7...

[2i · 3i−1 − 4 · 3i + 4 · 2i + 6i+ 4︸ ︷︷ ︸
fD(i)

]
xi

i!

It remains to show that fC(i) and fD(i) are non-negative and take strictly
positive values for some i.

• fC(i). Note that fC(4) = fC(6) = 0 and fC(8) > 0. It suffices to show
that 4×2i > 16 + 2i3 for all i ≥ 10. Note first that it is true for i = 10.
Second, assume by induction that it holds for some i and consider i+1:
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4× 2i+1 = 8× 2i > 32 + 4i3 > 16 + 2(i+ 1)3, where the first inequality
is due to the induction assumption and the second one is true since
4i3 > +2(i+ 1)3 for i ≥ 4.

• fD(i). Note that fC(3) = fC(5) = 0. It suffices to show that 2i ×
3i−1 − 4 × 3i > 0 for all i ≥ 7. This holds since 2i × 3i−1 − 4 × 3i =
3i−1(2i− 12) > 0 for all i > 6.

A.2.12 Proofs of several results regarding Θ(δ, µ) and
M(δ, µ)

• Result 1

lim
δ→0

∂AΘ(δ, 0)

∂µ
=

2z0

σ2

Recall that for a small shock (δ < z0):

Θ(δ, 0) =
1

6z2
0

δ2(δ + 3z0)

∂Θ(δ, 0)

∂µ
=
δ2(6z2

0 − δ2 − 2δz0)

12σ2z2
0

− δ3

6z3
0

∂∆+(0)

∂µ

So that:

∂AΘ(δ, 0)

∂µ
=

2

Θ(δ, 0)

∂Θ(δ, 0)

∂µ
= 2

[
(6z2

0 − δ2 − 2δz0)

2σ2(δ + 3z0)
− δ

z0(δ + 3z0)

∂∆+(0)

∂µ

]
Taking the limit as δ → 0 provides the result.

• Result 2

Θ(δ, µ) ≈

{
(1 + z0

σ2µ)Θ(δ, 0) for δ > 0

(1− z0

σ2µ)Θ(δ, 0) for δ < 0

First order approximation of Θ(δ, µ) with respect to drift µ is given by:

Θ(δ, µ) ≈ Θ(δ, 0) +
∂Θ(δ, 0)

∂µ
µ

Now approximate each term to second order with respect to positive
shock δ > 0:

Θ(δ, 0) ≈ δ2

2z0

∂Θ(δ, 0)

∂µ
≈ δ2

2σ2
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Then:

Θ(δ, µ) ≈ δ2

2z0

+
δ2

2σ2
µ =

(
1 +

z0

σ2
µ

)
δ2

2z0

≈
(

1 +
z0

σ2
µ

)
Θ(δ, 0)

The result for δ < 0 can be shown analogously, with the only difference
that second order approximation of Θ(δ, 0) is given by: Θ(δ, 0) ≈ − δ2

2z0
.

• Result 3

lim
δ→0

∂AΘ(δ, 0)

∂µ
>
∂AI(0)

∂µ

Using expressions for asymmetries, above relation is equivalent to:

2z0

σ2
>

2

z0

∂∆+(0)

∂µ
⇐⇒ z2

0

σ2
>
∂∆+(0)

∂µ

which follows from Lemma 1.

• Result 4

M(δ, µ) ≈

 (1− |δ|
σ2µ)M(δ, 0) for δ > 0

(1 + |δ|
σ2µ)M(δ, 0) for δ < 0

First order approximation of M(δ, µ) with respect to drift µ is given
by:

M(δ, µ) ≈M(δ, 0) +
∂M(δ, 0)

∂µ
µ

Now approximate each term to second order with respect to shock δ:

M(δ, 0) ≈ z2
0δ

6σ2

∂M(δ, 0)

∂µ
≈ −z

2
0δ

2

6σ4

Then for δ > 0:

M(δ, µ) ≈ z2
0δ

6σ2
− z2

0δ
2

6σ4
µ =

(
1− |δ|

σ2
µ

)
z2

0δ

6σ2
≈
(

1− |δ|
σ2
µ

)
M(δ, 0)

The result for δ < 0 is analogous and immediate.
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A.3 Empirics

A.3.1 Sectoral Data Construction and Description

I use monthly sectoral data on industrial production index (IP) provided by
the Board of Governors of the Federal Reserve System (Industrial Produc-
tion and Capacity Utilization - G.17). The original data set spans between
January 1972 and October 2019 and contains 224 sectors at different levels
of aggregation, corresponding to 3-, 4-, 5-, and 6-digit NAICS sectors, and
some series contain several NAICS categories. The data on Producer Price
Index (PPI) is taken from the Bureau of Labor Statistics, where each series
corresponds to a certain NAICS sector, but time spans vary greatly across
sectors.

I pair the two data sets in the following way. First, I only keep IP series
at the most disaggregated NAICS level (by e.g. omitting 3-digit sectors if a
5-digit sector within that 3-digit sector is present in the data). I also remove
series containing several sectors if data in each of these sectors is available
individually. This reduces the IP data set to 119 series. Second, for each
series in the IP data I produce a corresponding PPI series. If an IP series
contains only one NAICS sector, the pairing is straightforward. If an IP
series contains several NAICS sectors, I compute a simple average of PPI in
these sectors.

An issue with the resulting data set is the sparsity of PPI data. Figure
A.3.1 plots the number of series with non-missing values for PPI over time:
Since I am interested in estimating impulse responses to identified monetary

Figure A.3.1: Availability of PPI data
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Number of series with non-missing values for PPI over time.
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shocks, it is crucial to have a balanced panel to ensure that responses of each
series are estimated on the same sample of shocks. Two dates stand out as
potential candidates for truncation: January 1986 and January 2004. The
latter provides a panel that is approximately twice as large and twice as short
as the former one. I restrict the sample to series starting in January 1986, as
estimating impulse responses on very short series may be problematic. I also
omit one series that has a prolonged period of missing values. The resulting
sample contains 52 series, covering the manufacturing sector (NAICS sectors
in 31 - 33), logging (NAICS 1133), mining, quarrying, and oil and gas extrac-
tion (NAICS sectors in 21), and newspaper, periodical, book, and directory
publishers (NAICS sectors in 5111). I set the end date to December 2017, as
several series have missing values in 2018 and later. Note that this provides
the starting sectoral dataset, which is then further truncated depending on
availability of aggregate variables and identified monetary shocks (e.g. in the
baseline estimation I consider the period between February 1990 and January
2013).

For each series I compute trend inflation as the average annual PPI growth
rate over the entire period. Figure A.3.2 shows the cross-sectional distribu-
tion of the estimates. The blue dashed line depicts the median, which is used

Figure A.3.2: Distribution of Trend Inflation
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The blue dashed line shows the median.

to separate series into ‘high’ and ‘low’ trend inflation groups. Figure A.3.3
shows the cross-sectional distribution of average annual IP growth rates. The
two sectors with the highest production growth are communications equip-
ment manufacturing (3342) and semiconductor and other electronic compo-
nent manufacturing (3344). These are also the two sectors with negative
trend inflation in Figure A.3.2, and are excluded in the baseline estimation
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Figure A.3.3: Distribution of IP Growth Rates
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by trimming the top and bottom 2.5% of the distribution of trend inflation.
The two sectors with the highest trend inflation are drilling oil and gas wells
(213111) and petroleum refineries (32411). The two sectors with the largest
negative IP growth are leather and hide tanning and finishing (316) and
newspaper publishers (51111).

A.3.2 Billion Prices Project Data

Table A.1: Summary Statistics, Billion Prices Project Data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Asym. log ∆+pi
∆−pi

1,924 −0.019 0.258 −0.852 −0.184 0.136 1.164

Drift µ 1,924 0.002 0.008 −0.022 −0.002 0.007 0.027
Drift µ (alt.) 1,924 0.003 0.008 −0.022 −0.003 0.008 0.028
σ2 1,924 0.027 0.017 0.001 0.015 0.035 0.106
Frequency 1,924 0.597 0.193 0.369 0.461 0.681 1.402
Std. Dev. 1,924 0.211 0.055 0.043 0.176 0.248 0.375

Each statistic is calculated at the item level. Asymmetry is measured
as the log-ratio between magnitudes of positive and negative price adjust-
ments. Std. Dev. stands for the standard deviation of price adjustments.
Both measures of drift, idiosyncratic volatility σ2, and the frequency of price
adjustments are computed at a monthly rate.

Figure A.3.4 shows the distribution of price adjustments in the sample.
The distribution speaks in favor of fixed costs of price adjustment, since
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small price adjustments are less frequent than adjustments of moderate size.
Typically, such pattern can not be observed in lower frequency data, such
as biweekly or monthly, which highlights the importance of using daily data
when working with price adjustments.

Figure A.3.4: Distribution of Price Adjustments
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A.3.3 Monetary Policy Shocks

Figure A.3.5: Monetary Policy Shocks
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A.3.4 Robustness Checks

Alternative Shock Measures

To ease comparison, I only plot asymmetries (1st row: industrial production,
2nd row: PPI) and non-linear IP responses at a 12-months horizon (3rd row)
for each alternative shock measure by column: (1) Jarociński and Karadi
(2020) ’poor man’s sign restrictions’, (2) Gertler and Karadi (2015), (3)
Barakchian and Crowe (2013), (4) Nakamura and Steinsson (2018). When-
ever possible, I use the preferred measure of asymmetry (ratio), otherwise I
compute asymmetry as a difference. The main results of the paper remain
generally valid. Asymmetry in the IP responses relates negatively to trend
inflation, although results are weaker when measuring asymmetry as a differ-
ence. Asymmetry in the PPI responses relates positively to trend inflation.
Large positive shocks tend to cause contractions in IP when trend inflation
is high, but not so much when trend inflation is low.

Figure A.3.6: Main Results under Alternative Shock Series
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Measurement Error

Figure A.3.7: Asymmetry for a Top-30% / Bottom-30% Split
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Figure A.3.8: Non-Linearity of Industrial Production Responses for a Top-
30% / Bottom-30% Split
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Excluding Great Recession and ZLB period

Figure A.3.9: Asymmetry, Sample Until June 2008
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Figure A.3.10: Non-Linearity of Industrial Production Responses, Sample
Until June 2008
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Alternative Trimming

Figure A.3.11: Asymmetry, Trimming Top and Bottom 15%
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Figure A.3.12: Non-Linearity of Industrial Production Responses, Trimming
Top and Bottom 15%
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Figure A.3.13: Asymmetry, No Trimming
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Figure A.3.14: Non-Linearity of Industrial Production Responses, No Trim-
ming

−5.0

−2.5

0.0

2.5

−2 −1 0 1 2
Shock (Std.)

%

High Trend Inflation
Whole Sample
Low Trend Inflation

6−Month Horizon

−5.0

−2.5

0.0

2.5

−2 −1 0 1 2
Shock (Std.)

%

12−Month Horizon

−5.0

−2.5

0.0

2.5

−2 −1 0 1 2
Shock (Std.)

%

24−Month Horizon



APPENDIX A. EFFECTS OF TREND INFLATION 133

Varying Polynomial Degree

Figure A.3.15: Non-Linearity of Industrial Production Impulse Responses
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Other

To ease comparison, I only plot asymmetries (1st row: industrial production,
2nd row: PPI) and non-linear IP responses at a 12-months horizon (3rd row)
for each alternative specification by column: (1) number of lags is set to 3, (2)
number of lags is set to 12, (3) set of controls consists of a time trend and lags
of the dependent variable, monetary shock and effective federal funds rate,
(4) unsmoothed impulse responses. Whenever possible, I use the preferred
measure of asymmetry (ratio), otherwise I compute asymmetry as difference.
The main results of the paper are unchanged.

Figure A.3.16: Other Robustness Checks
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A.4 General Equilibrium

A.4.1 Equilibrium along the transition path

Deterministic dynamics after transitory shocks, considered in this paper,
introduce three changes relative to the stationary equilibrium. First, the
changing markup makes firms profits time dependent. Second, the drift in
firms optimal price is also affected by the moving markups and the nomi-
nal wage. Third, aggregate consumption can not be omitted from the firms
problem, as it is no longer constant.

Denote the time-dependent drift in firms optimal price by µt =
d logMt+d log

(
θt
θt−1

)
dt

.
The value function of a firm becomes time-dependent:

(ρ+ λ)v(z, t) = π(z, t) + λv(ẑ, t)− µtvz(z, t) +
1

2
σ2vzz(z, t) + vt(z, t)

as well as the distribution of price gaps:

ft(z, t) = µtfz(z, t) +
1

2
σ2fzz(z, t)− λf(z, t)

Time-dependent profit and cost functions are:

π(z, t) =

(
αθtCt
θt − 1

)1−θt
e−θtz

(
ez − θt − 1

θt

)
c(z, t) = κ

(
αθtCt
θt − 1

)1−θt
e(1−θt)z

All other equilibrium objects can be computed as before, substituting
constant variables with time-dependent ones. When solving for the transition
dynamics, I follow the numerical approach of Achdou et al. (2017).
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A.4.2 Dynamics after Policy Interventions

Figure A.4.1: Markup Shock and Policy Response
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Impulse responses of consumption, price level and markup to a 3% markup shock and
policy intervention. Solid blue lines correspond to a zero monetary response, dashed red
lines – to a 2% contraction, dotted yellow lines – to a 2% expansion. Consumption and
markup responses are in terms of percent deviations from the steady state, price level
responses are in terms of percent deviations from the trend.
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A.4.3 Alternative Calibration

I now target the same values of price adjustment frequency and average size
of adjustment, but consider a lower target for kurtosis, setting it to 3. The
calibrated values in annual terms for σ, κ and λ are now 0.142, 0.048 and
1.03. The next two figures show policymaker’s frontiers after 3% and 10%
markup shocks, same as those considered under the baseline calibration.

Figure A.4.2: Frontiers, Small Shock
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Figure A.4.3: Frontiers, Large Shock
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Increasing inflation target from 2% to 4% amplifies the response to the
markup shock by 1.2% when the shocks is small (2%) and by 4.1% when
the shocks is large (10%). At the same time, the curvature of the frontier
increases by 7.4% for the small shock and by 10.2% for the large shock.
Thus, the effect of trend inflation remains quantitatively sizable under an
alternative calibration.
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A.4.4 Using Inflation CIR

Here I consider an alternative frontier of the monetary authority, defined in
terms of the usual consumption CIR and a cumulative response of absolute
values of inflation:

∫∞
0
|πt − µ|dt. The next two figures show policymaker’s

frontiers after 3% and 10% initial markup disturbances, same as those con-
sidered under the baseline specification.

Figure A.4.4: Frontiers, Small Shock
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Figure A.4.5: Frontiers, Large Shock
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In both cases a higher trend inflation leads to a larger initial response to
the markup shock in terms of both consumption and inflation deviations. In
addition, monetary authority becomes more constrained in stabilizing infla-
tion, as some levels of inflation CIR become infeasible (the red dashed lines
lie above the blue ones).
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B.1 Key Expressions

I derive some key expressions, which are used in the main text and in the
proofs in Appendix B.2.

Integrating by parts, the return on purchasing contract ϕ can be rewritten
as:

Rc(i, ϕ) =
Ei[min(y, ϕ)]

q(ϕ)
=

∫ ϕ
c
ydFi(y) + ϕ(1− Fi(ϕ))

q(ϕ)

=
yFi(y)

∣∣ϕ
c
−
∫ ϕ
c
Fi(y)dy + ϕ(1− Fi(ϕ))

q(ϕ)
=
ϕ−

∫ ϕ
c
Fi(y)dy

q(ϕ)

=

∫ ϕ
c

(1− Fi(y))dy + c

q(ϕ)

Rewriting in the same way the return on buying the asset on margin with
contract ϕ yields:

Ry(i, ϕ) =
Ei[max(y − ϕ, 0)]

p− q(ϕ)
=

∫ c
ϕ
ydFi(y)− ϕ(1− Fi(ϕ))

p− q(ϕ)

=
yFi(y)

∣∣c
ϕ
−
∫ c
ϕ
Fi(y)dy − ϕ(1− Fi(ϕ))

p− q(ϕ)
=

(c− ϕ)−
∫ c
ϕ
Fi(y)dy

p− q(ϕ)

=

∫ c
ϕ
(1− Fi(y))dy

p− q(ϕ)

First order conditions are then:

∂Rc(i, ϕ)

∂ϕ
=

(1− Fi(ϕ))q(ϕ)− q′(ϕ)Rc(i, ϕ)q(ϕ)

q(ϕ)2
= 0 ⇐⇒

1− Fi(ϕ)

Rc(i, ϕ)
= q′(ϕ)

∂Ry(i, ϕ)

∂ϕ
=
−(1− Fi(ϕ))(p− q(ϕ)) + q′(ϕ)Ry(i, ϕ)(p− q(ϕ))

(p− q(ϕ))2
= 0 ⇐⇒

1− Fi(ϕ)

Ry(i, ϕ)
= q′(ϕ)

B.2 Proofs

Lemma 1: Proof.. Assume that agent i prefers to buy the asset unleveraged
over cash and any contract: Ei[y]

p
≥ 1, Ei[y]

p
≥ Rc(i, ϕ) ∀ϕ. Rewrite the latter
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equation: ∫ c
c
ydFi(y)

p
≥
∫ ϕ
c
ydFi(y) + ϕ(1− Fi(ϕ))

q(ϕ)
∀ϕ

It follows that:

q(ϕ)

∫ c

c

ydFi(y) ≥ p

[∫ ϕ

c

ydFi(y) + ϕ(1− Fi(ϕ))

]
∀ϕ =⇒

p

[∫ c

c

ydFi(y)−
(∫ ϕ

c

ydFi(y) + ϕ(1− Fi(ϕ))

)]
≥ (p− q(ϕ))

∫ c

c

ydFi(y) ∀ϕ =⇒∫ c
ϕ
ydFi(y)− ϕ(1− Fi(ϕ))

p− q(ϕ)
≥
∫ c
c
ydFi(y)

p
∀ϕ

Where the last line follows since p > q(ϕ). The left-hand side is then Ry(i, ϕ).
Thus agent i weakly prefers to buy the asset on margin.

Lemma A.

• Rc(i, ϕ) is strictly increasing in i for all ϕ > c and is constant in i for
all ϕ ≤ c

• Ry(i, ϕ) is strictly increasing in i for all ϕ < c and is zero for all i for
all ϕ ≥ c

Proof. For the first part, consider ϕ > c, j > i.

Rc(j, ϕ) =

∫ ϕ
c

(1− Fj(y))dy + c

q(ϕ)
>

∫ ϕ
c

(1− Fi(y))dy + c

q(ϕ)
= Rc(i, ϕ)

where the inequality is due to first order stochastic dominance, implied by
hazard-rate order assumption A1. If ϕ ≤ c, then Rc(i, ϕ) = ϕ

q(ϕ)
and thus it

is constant in i.
For the second part, similarly, consider ϕ < c, j > i.

Ry(j, ϕ) =

∫ c
ϕ
(1− Fj(y))dy

p− q(ϕ)
>

∫ c
ϕ
(1− Fi(y))dy

p− q(ϕ)
= Ry(i, ϕ)

where the inequality again follows from assumption A1. The fact that Ry(i, ϕ) =
0 for all ϕ ≥ c is immediate, as in that case max(y−ϕ, 0) = 0 for all y ∈ [c, c].

Theorem 1: Proof.. In order to prove Theorem 1, I use the following
Lemmas:
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• Lemma 1.1
If each agent j prefers to buy cash or riskless contract, then so does
any agent i < j.

• Lemma 1.2
If agent i prefers to buy the asset leveraged, then any agent j > i
strictly1 prefers to buy the asset leveraged.

• Lemma 1.3
Risky contracts are traded in any equilibrium

Lemma 1.1 implies that there exists i∗ such that any agent i < i∗ buys cash
or riskless contracts and any agent j > i∗ buys risky contracts or the asset
leveraged. Lemma 1.2 implies that there exists j∗ such that any agent j > j∗

buys the asset leveraged and any agent i < j∗ buys contracts or cash. Lemma
1.3 then implies that j∗ > i∗ and any agent i between the two marginal agents
buys risky contracts. In the following I provide proofs for the three Lemmas.

Lemma 1.1: Proof.. First note that riskless contracts provide return of 1
in equilibrium, as they are equivalent to cash. Assume that agent j prefers
to buy cash or a riskless contract over the other two options: Rc(j, ϕ) ≤ 1,
Ry(j, ϕ) ≤ 1 ∀ϕ > c. From Lemma A it follows immediately that the same
inequalities hold for any i < j and thus i also prefers to buy cash or a riskless
contract.

Lemma 1.2: Proof.. Suppose agent i prefers to buy the asset leveraging
with contract ϕ: Ry(i, ϕ) ≥ Rc(i, ϕ̃) ∀ϕ̃ > c and Ry(i, ϕ) ≥ 1. Note that
ϕ < c, as otherwise, by Lemma A, Ry(i, ϕ) = 0. Consider agent j > i. Let’s
show that Ry(j, ϕ) > Rc(j, ϕ̃) ∀ϕ̃ > c, since Ry(j, ϕ) > 1 follows immediately
from Lemma A.

Ry(j, ϕ) > Rc(j, ϕ̃) ⇐⇒∫ c
ϕ
(1− Fj(y))dy

p− q(ϕ)
>

∫ ϕ̃
c

(1− Fj(y))dy + c

q(ϕ̃)
⇐⇒∫ c

ϕ

(1− Fj(y))dy︸ ︷︷ ︸
Aj

>
p− q(ϕ)

q(ϕ̃)︸ ︷︷ ︸
α

∫ ϕ̃

c

(1− Fj(y))dy︸ ︷︷ ︸
Bj

+
p− q(ϕ)

q(ϕ̃)
c︸ ︷︷ ︸

γ

In other words, for a fixed ϕ̃, one has to show that Aj > αBj + γ, given

that Ai ≥ αBi + γ and j > i. It suffices to show that
Aj
Bj

> Ai
Bi

, since then

1Strict preference means that j can not be indifferent between purchasing the asset on
margin and any other option.
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Aj >
Ai
Bi
Bj ≥ αBi+γ

Bi
Bj = αBj + γ

Bj
Bi

> αBj + γ, where the last inequality
follows from Lemma A.

Consider first ϕ̃ ≤ ϕ.

Aj
Bj

=

∫ c
ϕ
(1− Fj(y))dy∫ ϕ̃

c
(1− Fj(y))dy

=

∫ c
ϕ

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy∫ ϕ̃

c

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

>

1−Fj(ϕ)

1−Fi(ϕ)

∫ c
ϕ
(1− Fi(y))dy

1−Fj(ϕ̃)

1−Fi(ϕ̃)

∫ ϕ̃
c

(1− Fi(y))dy
≥
∫ c
ϕ
(1− Fi(y))dy∫ ϕ̃

c
(1− Fi(y))dy

=
Ai
Bi

where inequalities are due to hazard-rate order assumption A1.

Consider now ϕ̃ > ϕ.

Aj
Bj

=

∫ c
ϕ
(1− Fj(y))dy∫ ϕ̃

c
(1− Fj(y))dy

=

∫ c
ϕ̃
(1− Fj(y))dy∫ ϕ̃

c
(1− Fj(y))dy

+

∫ ϕ̃
ϕ

(1− Fj(y))dy∫ ϕ
c

(1− Fj(y))dy +
∫ ϕ̃
ϕ

(1− Fj(y))dy

=

∫ c
ϕ̃

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy∫ ϕ̃

c

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

+

[
1 +

∫ ϕ
c

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy∫ ϕ̃

ϕ

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

]−1

>

1−Fj(ϕ̃)

1−Fi(ϕ̃)

∫ c
ϕ̃
(1− Fi(y))dy

1−Fj(ϕ̃)

1−Fi(ϕ̃)

∫ ϕ̃
c

(1− Fi(y))dy
+

[
1 +

1−Fj(ϕ)

1−Fi(ϕ)

∫ ϕ
c

(1− Fi(y))dy

1−Fj(ϕ)

1−Fi(ϕ)

∫ ϕ̃
ϕ

(1− Fi(y))dy

]−1

=

∫ c
ϕ̃
(1− Fi(y))dy∫ ϕ̃

c
(1− Fi(y))dy

+

∫ ϕ̃
ϕ

(1− Fi(y))dy∫ ϕ
c

(1− Fi(y))dy +
∫ ϕ̃
ϕ

(1− Fi(y))dy
=

∫ c
ϕ
(1− Fi(y))dy∫ ϕ̃

c
(1− Fi(y))dy

=
Ai
Bi

where inequality follows from assumption A1.

Lemma 1.3: Proof.. First, let’s show that in any equilibrium there are
contracts traded (potentially riskless). Assume the contrary. That means
pessimistic agents buy cash, optimistic agents buy the asset and there is a
marginal agent i∗ who is indifferent: Ei∗ [y]

p
= 1. Consider j > i∗ and some

riskless contract 0 < ϕ ≤ c. In equilibrium q(ϕ) is such that i∗ does not want
to buy contract ϕ:

Rc(i
∗, ϕ) ≤ 1

and j does not want to sell it:

Ry(j, ϕ) ≤ Ej[y]

p
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In the following I show that it is impossible to find such q(ϕ). Using the fact
that ϕ ≤ c, condition (a) implies:

Rc(i
∗, ϕ) =

ϕ

q(ϕ)
≤ 1 ⇐⇒ ϕ ≤ q(ϕ)

and condition (b) implies:

Ry(j, ϕ) =
Ej[y]− ϕ
p− q(ϕ)

≤ Ej[y]

p
⇐⇒

p (Ej[y]− ϕ) ≤ (p− q(ϕ))Ej[y] ⇐⇒

q(ϕ) ≤ ϕ
p

Ej[y]

Since j > i∗, Ej[y] > p and thus condition (b) requires that q(ϕ) < ϕ,
which contradicts condition (a). Thus in any equilibrium there are contracts
traded.

Assume now that there are no risky contracts traded in equilibrium. That
implies agents buy cash with return of 1, lend with a riskless contract (which
needs to have the same return as cash) or buy the asset leveraged with a
riskless contract. The fact that return on riskless contracts equals 1 implies
q(ϕ) = ϕ ∀ϕ ≤ c. There is a marginal agent i∗ such that for all i < i∗, agent
i buys cash or riskless contract, and for all j > i∗, agent j buys the asset
leveraged. Buying the asset and leveraging with riskless contract ϕ provides
expected return:

Ry(i, ϕ) =
Ei[y]− ϕ
p− ϕ

The marginal buyer is indifferent and thus p = Ei∗ [y]. Thus for all j > i∗,
Ej[y] > p and agents prefer to leverage with the largest riskless contract c.

Consider now risky contract ϕ > c and j > i∗. In equilibrium q(ϕ) is
such that i∗ does not want to buy ϕ:

Rc(i
∗, ϕ) ≤ 1

and j does not want to sell it:

Ry(j, ϕ) ≤ Ej[y]− c
p− c



APPENDIX B. LEVERAGE DETERMINANTS 145

Rewrite condition (b) as:

Ry(j, ϕ) ≤ Ej[y]− c
p− c

⇐⇒
∫ c
ϕ
(1− Fj(y))dy

p− q(ϕ)
≤
∫ c
c
(1− Fj(y))dy

p− c
⇐⇒

p− c
p− q(ϕ)

≤
∫ c
c
(1− Fj(y))dy∫ c

ϕ
(1− Fj(y))dy

⇐⇒ p− c
p− q(ϕ)

≤ 1 +

∫ ϕ
c

(1− Fj(y))dy∫ c
ϕ
(1− Fj(y))dy︸ ︷︷ ︸

Aj

Since p = Ei∗ [y], condition (a) implies:

Rc(i
∗, ϕ) ≤ 1 ⇐⇒

∫ ϕ

c

(1− Fi(y))dy + c ≤ q(ϕ) =⇒

p− q(ϕ) =

∫ c

c

(1− Fi(y))dy + c− q(ϕ) ≤
∫ c

ϕ

(1− Fj(y))dy ⇐⇒

p− c
p− q(ϕ)

=

∫ c
c
(1− Fi(y))dy∫ c

c
(1− Fi(y))dy + c− q(ϕ)

≥
∫ c
c
(1− Fi(y))dy∫ c

ϕ
(1− Fi(y))dy

= 1 +

∫ ϕ
c

(1− Fi(y))dy∫ c
ϕ
(1− Fi(y))dy︸ ︷︷ ︸

Ai

Thus conditions (a) and (b) imply:

Aj ≥ Ai

On the other hand:

Aj =

∫ ϕ
c

(1− Fj(y))dy∫ c
ϕ
(1− Fj(y))dy

=

∫ ϕ
c

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy∫ c

ϕ

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

<

1−Fj(ϕ)

1−Fi(ϕ)

∫ ϕ
c

(1− Fi(y))dy

1−Fj(ϕ)

1−Fi(ϕ)

∫ c
ϕ
(1− Fi(y))dy

=

∫ ϕ
c

(1− Fi(y))dy∫ c
ϕ
(1− Fi(y))dy

= Ai

where the inequality is due to Assumption A1. Thus it is impossible to find
q(ϕ) that satisfies equilibrium conditions and risky contracts are traded in
any equilibrium.

Theorem 2: Proof.. Assume a riskless contract ϕ ≤ c is traded in equi-
librium, i.e. some agent i buys the contract and some agent j sells it. As-
sumption A2 ensures contract choices of those buying and selling contracts
are given by first order conditions. These imply:

1 =
1− Fi(ϕ)

Rc(i, ϕ)
= q′(ϕ) =

1− Fj(ϕ)

Ry(j, ϕ)
=

1

Ry(j, ϕ)
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since Fi(ϕ) = 0 for all i and Rc(i, ϕ) = 1 as riskless contract is equivalent
to cash. As a result, Ry(j, ϕ) = 1. Since agent j prefers to buy the asset
leveraged, Ry(j, ϕ) ≥ Rc(j, ϕ̃) for all ϕ̃. Thus by Lemma A, for any agent
j̃ < j, Rc(j̃, ϕ̃) < Rc(j, ϕ̃) ≤ 1 for all ϕ̃ > c. This means that no agent in
the economy is willing to buy risky contracts, since all the agents above j are
buying the asset (see the proof of Theorem 1), and all those below prefer cash
over risky contracts. This then contradicts Theorem 1 that in any equilibrium
there are risky contracts traded.

Lemma B.

• Rc(i,ϕ)
1−Fi(ϕ)

is strictly decreasing in i for all ϕ ∈ (c, c) and is constant in i
for all ϕ ≤ c

• Ry(i,ϕ)

1−Fi(ϕ)
is strictly increasing in i for all ϕ < c

Proof. For the first part, consider ϕ ∈ (c, c), j > i.

Rc(j, ϕ)

1− Fj(ϕ)
=

1

q(ϕ)

[∫ ϕ
c
yfj(y)dy

1− Fj(ϕ)
+ ϕ

]
<

1

q(ϕ)

[∫ ϕ
c
yfi(y)

1−Fj(y)

1−Fi(y)
dy

1− Fj(ϕ)
+ ϕ

]

<
1

q(ϕ)

[ 1−Fj(ϕ)

1−Fi(ϕ)

∫ ϕ
c
yfi(y)dy

1− Fj(ϕ)
+ ϕ

]
=

Rc(i, ϕ)

1− Fi(ϕ)

where the inequalities follows from hazard-rate order assumption A1. If ϕ ≤
c, then Rc(j,ϕ)

1−Fj(ϕ)
= ϕ

q(ϕ)
and thus is constant in i.

For the second part, similarly, consider ϕ < c, j > i.

Ry(j, ϕ)

1− Fj(ϕ)
=

1

p− q(ϕ)

[∫ c
ϕ
(1− Fj(y))dy

1− Fj(ϕ)

]
=

1

p− q(ϕ)

[∫ c
ϕ

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

1− Fj(ϕ)

]

>
1

p− q(ϕ)

[ 1−Fj(ϕ)

1−Fi(ϕ)

∫ c
ϕ
(1− Fi(y))dy

1− Fj(ϕ)

]
=

Ry(i, ϕ)

1− Fi(ϕ)

where the inequalities again follow from assumption A1.

Theorem 3: Proof.. In order to prove Theorem 3, I use the following
Lemmas:

• Lemma 3.1
If contract ϕ is traded in equilibrium, then there exists a unique i and
a unique j such that agent i buys the contract and agent j sells it.
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• Lemma 3.2
If agent i buys contract ϕ and agent j > i buys contract ϕ̃, then ϕ̃ > ϕ.
If agent i buys the asset and sells contract ϕ, then any agent j > i buys
the asset and sells contract ϕ̃ > ϕ

• Lemma 3.3 Each agent buying (selling) contracts, buys (sells) only
one type of contract ϕ.

Lemmas 3.1 and 3.3 imply that identities of buyers and sellers are one-to-
one functions of contracts. Lemma 3.2 implies these functions are strictly
increasing. In the following I provide proofs for these Lemmas.

Lemma 3.1: Proof..
Suppose contract ϕ ∈ (c, c) is bought by i1 and i2, i1 6= i2. Then optimality
of contracts implies:

1− Fi1(ϕ)

Rc(i1, ϕ)
= q′(ϕ) =

1− Fi2(ϕ)

Rc(i2, ϕ)

Which due to Lemma B contradicts i1 6= i2 and ϕ ∈ (c, c).

Suppose contract ϕ ∈ (c, c) is sold by j1 and j2, j1 6= j2. Then optimality
of contracts implies:

1− Fj1(ϕ)

Ry(i1, ϕ)
= q′(ϕ) =

1− Fj2(ϕ)

Ry(i2, ϕ)

Which due to Lemma B contradicts j1 6= j2 and ϕ ∈ (c, c).

I am not considering ϕ ≥ c and ϕ ≤ c as former contracts provide zero
return for sellers and can not be traded in equilibrium, and latter are not
traded in equilibrium by Theorem 2.

Lemma 3.2: Proof..
For the first part, assume j > i, i buys contract ϕ and j buys contract ϕ̃.
Lemma 3.1 rules out the case ϕ̃ = ϕ. Suppose ϕ̃ < ϕ. Let’s show that in this
case j would prefer to buy contract ϕ: Rc(j, ϕ) > Rc(j, ϕ̃).

Rc(j, ϕ) > Rc(j, ϕ̃) ⇐⇒∫ ϕ
c

(1− Fj(y))dy + c

q(ϕ)
>

∫ ϕ̃
c

(1− Fj(y))dy + c

q(ϕ̃)
⇐⇒∫ ϕ

c

(1− Fj(y))dy︸ ︷︷ ︸
Aj

>
q(ϕ)

q(ϕ̃)︸ ︷︷ ︸
α

∫ ϕ̃

c

(1− Fj(y))dy︸ ︷︷ ︸
Bj

+ c

[
q(ϕ)

q(ϕ̃)
− 1

]
︸ ︷︷ ︸

γ
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In other words, one has to show that Aj > αBj + γ, given that Ai ≥ αBi + γ

(since Rc(i, ϕ) ≥ Rc(i, ϕ̃)) and j > i. It suffices to show that
Aj
Bj
> Ai

Bi
, since

then Aj >
Ai
Bi
Bj ≥ αBi+γ

Bi
Bj = αBj +γ

Bj
Bi
> αBj +γ, where the last inequality

follows from Lemma A.

Aj
Bj

=

∫ ϕ
c

(1− Fj(y))dy∫ ϕ̃
c

(1− Fj(y))dy
= 1 +

∫ ϕ
ϕ̃

(1− Fj(y))dy∫ ϕ̃
c

(1− Fj(y))dy
= 1 +

∫ ϕ
ϕ̃

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy∫ ϕ̃

c

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

> 1 +

1−Fj(ϕ̃)

1−Fi(ϕ̃)

∫ ϕ
ϕ̃

(1− Fi(y))dy

1−Fj(ϕ̃)

1−Fi(ϕ̃)

∫ ϕ̃
c

(1− Fi(y))dy
=

∫ ϕ
c

(1− Fi(y))dy∫ ϕ̃
c

(1− Fi(y))dy
=
Ai
Bi

For the second part, assume agent i buys the asset and sells contract ϕ.
Consider j > i. By Lemma 1.2, j also buys the asset and leverages with
some contract ϕ̃. Both ϕ and ϕ̃ must be strictly smaller than c, as otherwise
i’s and j’s returns are zero. By Lemma 3.1, ϕ̃ = ϕ is ruled out. Suppose
ϕ̃ < ϕ. Let’s show that Ry(j, ϕ) > Ry(j, ϕ̃).

Ry(j, ϕ) > Ry(j, ϕ̃) ⇐⇒
∫ c
ϕ̃
(1− Fj(y))dy∫ c

ϕ
(1− Fj(y))dy

<
p− q(ϕ̃)

p− q(ϕ)

Now consider the left-hand side:∫ c
ϕ̃
(1− Fj(y))dy∫ c

ϕ
(1− Fj(y))dy

= 1 +

∫ ϕ
ϕ̃

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy∫ c

ϕ

1−Fj(y)

1−Fi(y)
(1− Fi(y))dy

< 1 +

1−Fj(ϕ)

1−Fi(ϕ)

∫ ϕ
ϕ̃

(1− Fi(y))dy

1−Fj(ϕ)

1−Fi(ϕ)

∫ c
ϕ
(1− Fi(y))dy

=

∫ c
ϕ̃
(1− Fi(y))dy∫ c

ϕ
(1− Fi(y))dy

≤ p− q(ϕ̃)

p− q(ϕ)

where the first inequality is due to assumption A1 and the last one follows
from the fact that i prefers to sell contract ϕ.

Lemma 3.3: Proof..
Suppose i buys risky contracts ϕ0 and ϕ1 such that ϕ0 < ϕ1. It must be the
case that Rc(i, ϕ0) = Rc(i, ϕ1). These contracts are sold by agents j0 and j1,
and by Lemma 3.2, j1 ≥ j0 > i. Suppose j1 = j0 and thus j0 is indifferent
between the two contracts: Ry(j0, ϕ0) = Ry(j0, ϕ1). Optimality conditions
then imply:

1− Fi(ϕ0)

Rc(i, ϕ0)
= q′(ϕ0) =

1− Fj0(ϕ0)

Ry(j0, ϕ0)

1− Fi(ϕ1)

Rc(i, ϕ0)
=

1− Fi(ϕ1)

Rc(i, ϕ1)
= q′(ϕ1) =

1− Fj0(ϕ1)

Ry(j0, ϕ1)
=

1− Fj0(ϕ1)

Ry(j0, ϕ0)
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and it follows that:
1− Fj0(ϕ0)

1− Fi(ϕ0)
=

1− Fj0(ϕ1)

1− Fi(ϕ1)

which contradicts the hazard-rate order property. Thus j1 > j0. Consider
agent j such that j0 < j < j1, who sells contract ϕ such that, by Lemma 3.2,
ϕ0 < ϕ < ϕ1. Again, by Lemma 3.2, it must be the case that this contract
is bought by agent i. Since this has to hold for any j ∈ (j0, j1), there is a
positive mass of contract sellers [j0, j1] trading with only one (measure zero)
buyer i, which violates market clearing.

The proof of the statement that each seller of risky contracts sells one
contract only is analogous.

Lemma 2: Proof..
Theorem 3 establishes that there exist one-to-one mappings from the set of
traded contracts onto the sets of contracts buyers and sellers. By Theorem
1, the sets of contract buyers and sellers are given by intervals [i∗, j∗] and
[j∗, 1]. It remains to show that these mappings are continuous, and then it
would follow that the set of traded contracts is also an interval.

Denote by ϕ(i) the one-to-one mapping from the set of contract buyers
into the set of traded contracts. The function ϕ(i) is defined implicitly by
optimality conditions:

G(i, ϕ) :=
1− Fi(ϕ)

Rc(i, ϕ)
− q′(ϕ) = 0

G(i, ϕ) is continuous due to the assumptions on differentiability of Fi(ϕ)
with respect to both i and ϕ, and differentiability of q(ϕ). For the same
reason, G′i(i, ϕ) is continuous. This means that implicit function ϕ(i) is
continuous for all i ∈ [i∗, j∗] and thus the set of traded contracts is an interval
[ϕ(i∗), ϕ(j∗)], since ϕ(i) is a strictly increasing function.
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