
ON A NON-DETERMINISTIC MIXED INTEGER

PROBLEM FOR PRODUCTION CONTROL
A BRANCH-AND-BOUND ALGORITHM AND A NEURAL NETWORK

APPROACH

Inauguraldissertation
zur Erlangung des akademischen Grades

des Doktors der Naturwissenschaften
der Universität Mannheim

vorgelegt von

Katrin Schlegel, M. Sc.
aus Tübingen

Mannheim, Juni 2021

II

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Professor Dr. Simone Göttlich, Universität Mannheim
Korreferent: Professor Dr. Michael Herty, Universität Aachen

Tag der mündlichen Prüfung: 13. Oktober 2021

Abstract

Just in sequence (JIS) production of automotive manufacturers and numerous of their
suppliers shift the focus to production sections that do not preserve the order sequence
during the production process. The increasing variety enhances the importance of such
sections. Resorting is necessary, which is cost, time and space consuming. The aim to
satisfy the customers’ demand, meet goals for productivity growth and be competitive
through increase in efficiency motivates the controlling of such production sections.

This work focuses on use cases with a non-deterministic perturbation of the order
sequence. The mathematical models are built and tested with the data provided by
the paint shop of an automobile manufacturer. A mixed integer program and a neural
network approach are presented.

The MIP is formulated based on a simulation of the paint shop in the objective function
and an approximation of the statistics in the constraints. The structure of the model is
exploited and dependencies are pointed out. It is shown to be stable, further experi-
ment designs for use cases are proposed.
A specific constraint is identified as the main factor for the long and strongly varying
computational times. On that basis a customized branch-and-bound algorithm is de-
veloped. The success of the algorithm in the reduction of the search tree size is shown
and proposals for a performant implemetation are made.

Within the scope of a second approach a sequence-to-sequence neural network is pre-
sented. This approach is motivated by the strength of neural networks to recognize pat-
terns in data without any preceeding interpretation or assumptions by the researcher.
Different network types are discussed and the sequence-to-sequence network is em-
bedded. Experiments with different parameter settings point out the non-deterministic
and complex data structure. Further theoretical considerations on the network design
are discussed.

Zusammenfassung

Die just-in-sequence-Produktion bei Automobilherstellern und einer Vielzahl ihrer Zu-
lieferer lässt Produktionsabschnitte in den Fokus der Produktionssteuerung rücken, die
die Reihenfolge der Aufträge nicht erhalten. Die wachsende Produktvielfalt verstärkt
die Gewichtung ebensolcher Abschnitte. Die daraus resultierende notwendige Re-
sortierung hat einen hohen finanziellen, zeitlichen und räumlichen Aufwand zur Folge.
Das Bestreben die Kundennachfrage zu befriedigen, Wachstumsziele zu erreichen und
konkurrenzfähig zu bleiben motiviert die Steuerung und Optimierung solcher Produk-
tionsabschnitte.

Der Fokus dieser Arbeit liegt auf nicht-deterministischer Verwirbelung der Auftragsrei-
henfolge. Anhand der Daten aus dem Gewerk Oberfläche eines Automobilherstellers
als Anwendungsfall werden mathematische Modelle zur Steuerung formuliert und
getestet. In zwei seperaten Ansätzen wird das Potenzial eines MIP und eines neu-
ronalen Netzes untersucht.

Das MIP basiert zum einen auf einer Simulation der Oberfläche in der Zielfunktion und
zum anderen auf einer Annäherung der statistischen Verwirbelung in den Nebenbedin-
gungen. Die Struktur des Models wird untersucht und es wird auf Abhängigkeiten
zwischen Variablen hingewiesen. Wir zeigen, dass das Modell stabil ist und geben
einen Ausblick auf Möglichkeiten zur Umsetzung weiterer Experimente.
Insbesondere eine Nebenbedingung wird als Hauptfaktor für lange und stark schwank-
ende Rechenzeiten des MIPs identifiziert. Ausgegend davon wird ein branch-and-
bound Verfahren mit problemspezifischem Pruning entwickelt. Die aus der Anwen-
dung dieses Algorithmus resultierende Verkleinerung des Suchbaums wird evaluiert
und es werden Vorschläge für eine performante Implementierung gemacht.

Im Rahmen eines zweiten Lösungsansatzes wird ein sequence-to-sequence neural net-
work vorgestellt. Dieser Ansatz ist motiviert durch das Vermögen neuronaler Netze,
losgelöst von menschlichen Interpretationen oder Annahmen, Muster in Daten erken-
nen zu können.
Unterschiedliche Arten von Netzen werden diskutiert und das sequence-to-sequence

VI

neural networt wird eingebettet. Experimente mit unterschiedlichen Parametereinstel-
lungen zeigen erneut die nicht-deterministische und äußerst komplexe Struktur der
Daten auf. Weitere theoretische Überlegungen zur Architektur des neuronalen Netzes
werden diskutiert.

Contents

List of Figures VIII

List of Tables IX

1. Introduction 1

2. Structure and solution methods for mixed integer programs 5

2.1. Introduction to linear programming 5
2.2. Basic properties of polytopes . 6

2.2.1. Representation and permutation polytopes 12
2.3. Performance of famous algorithms on the Birkhoff polytope 15

2.3.1. Simplex Algorithm . 17
2.3.2. Ellipsoid Method . 20
2.3.3. Interior Point Method . 21

2.4. Reformulation techniques for MIPs 23
2.4.1. Reformulation based on decomposition 23
2.4.2. Projection of polyhedrons 24
2.4.3. Relaxation techniques in MIP solving 25
2.4.4. On the extended formulation of a polytope 28

3. The Mixed Integer Model 29

3.1. Motivation . 29
3.2. Notation and setup . 32
3.3. Analysis of real and artificial data 39

3.3.1. Analysis of real data . 40
3.3.2. Algorithm for generating artificial data 42
3.3.3. Analysis of artificial data . 45
3.3.4. Discussion of the artificial data 48

3.4. Measure on the set of sequences . 48

VIII Contents

3.5. Mixed Integer Model . 51
3.5.1. Idea . 51
3.5.2. Mathematic formulation of the MIP 51
3.5.3. Stability analysis of the MIP 56

3.6. Computational results of the MIP . 58
3.7. Discussion of the MIP results . 61

4. Heuristic 67

4.1. A survey on branching methods, node selection strategies and pruning
rules . 68
4.1.1. Most common branching strategies 68
4.1.2. Most common search strategies 70
4.1.3. Pruning rules . 71

4.2. A customized branch-and-bound algorithm 72
4.2.1. Idea . 72
4.2.2. A branch-and-bound algorithm with customized pruning rule . 74

4.3. Computational results of the heuristic 77
4.4. Discussion of the heuristic results 78

5. Neural Network 79

5.1. Neural Networks in business and industries 79
5.2. Feedforward Neural Network and Recurrent Neural Networks 80

5.2.1. Feedforward Neural Networks 80
5.2.2. Recurrent neural networks 83
5.2.3. Long-short term memory . 83
5.2.4. Autoencoders . 84
5.2.5. Hopfield neural networks . 85

5.3. A sequence-to-sequence neural network 87
5.3.1. Design of the sequence-to-sequence network 87
5.3.2. Preprocessing and formatting of the training and test data . . . 90

5.4. Description of the results for the sequence-to-sequence neural network 92
5.5. Limitations and applicability of the network 93

6. Conclusion 95

7. Bibliography 97

Contents IX

A. Analysis of real and artificial data 107

A.1. Statistical analysis of real data . 108
A.2. Statistical analysis of artificial data 112

A.2.1. Moving statistic values for mono-distributed sets with n = 10,
50, 100, 200 . 112

A.2.2. Moving statistic values for poly distributed sets with n = 10,
50, 100, 200 . 117

A.2.3. Probability distributions for n = 10, 50, 100, 200 121

B. Computational results of the MIP 125

B.1. Gurobi Optimizer without start solution 125
B.1.1. Statistic values for Gurobi Optimizer without start solution . . 135

B.2. Gurobi Optimizer with MIPstart . 137
B.2.1. Statistic values for Gurobi Optimizer with start solution . . . 146
B.2.2. Overview computational time for Gurobi Optimizer 149

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 152

C. Computational results of the customized branch-and-bound algo-

rithm 166

D. Computational results of the sequence-to-sequence network 168

List of Figures

1.1. Chapter overview . 3

2.1. 1-simplex, a 1-polytope . 9
2.2. SCHLEGEL diagram of a cube, a 3-polytope 9

3.1. Production chart . 30
3.2. Structure of paint shop. 31
3.3. Probability distribution and relative frequency for two orders 63
3.4. Probability distribution and relative frequency for five orders 63
3.5. Classification of perturbation factors 65

4.1. Exemplary search tree comparing heuristic and Gurobi Optimizer . . 73

5.1. Structure of the encoder . 88
5.2. Structure of the decoder . 89

A.1. Statistic values for HD-1 . 108
A.2. Statistic values for HD-2 . 109
A.3. Statistic values for HD-3 . 110
A.4. Statistic values for 104-1 . 112
A.5. Statistic values for 504-1 . 113
A.6. Statistic values for 1008-1 . 114
A.7. Statistic values for 2008-1 . 115
A.8. Statistic values for 104-2 . 117
A.9. Statistic values for 504-2 . 118
A.10.Statistic values for 1008-2 . 119
A.11.Statistic values for 2008-2 . 120
A.12.Probability distributions for 104-1 and 104-2 121
A.13.Probability distributions for 504-1 and 504-2 122
A.14.Probability distributions for 1008-1 and 1008-2 123

List of Figures XI

A.15.Probability distributions for 2008-1 and 2008-2 124

B.1. Average computational time for mono-distributed sets n4-1 149
B.2. Average computational time for poly-distributed sets n4-2 150
B.3. Gurobi log of problem 302-2-96 without MIPStart 155
B.4. Gurobi log of problem 302-2-96 with MIPStart 165

List of Tables

3.1. Data format of orders . 35
3.2. Real data analysis, range and shift values 41
3.3. Color-specific shift and distribution of colors 44
3.4. Example data generation . 46
3.5. Artificial data analysis, range and shift values 47
3.6. Variables in MIP (3.29a)-(3.29m) . 52
3.7. Results of the stability analysis for MIP (3.29a)-(3.29m) 57
3.8. Examples overview . 60

5.1. Neural network data set overview . 91

B.1. MIP results . 134
B.2. Statistic values for MIP results . 136
B.3. MIP results with MIPStart . 145
B.4. Statistic values for MIP results with MIPStart 147

C.1. Computational results Heuristic . 167

D.1. Results for the neural network . 170
D.2. Results for parameter configurations 171

1. Introduction

Any customer can have a car
painted any color that he
wants so long as it is black.

(Henry Ford)

Whereas the number of available colors for cars was limited to a handful of choices in
the times of Henry Ford, one hundred years later automobile manufacturers provide a
large variety to meet customer demands. The growing number of colors made it neces-
sary to recognize the painting process in the context of production management. Today
the painting process is a complex, multistage, extremely energy intensive and expen-
sive operation [Bys+20]. While researchers have focused on optimizing processes in
the assembly line so far, the paint shop has stayed untouched to a large extent. One
reason might be, that high potential in cost and material reduction is facing a high
process complexity.

In contrast to the final assembly, where the sequence of bodies gets physically fixed
with putting them on the assembly line, a sequence of bodies gets perturbed while
passing the paint shop. Currently, this perturbation is indirectly dealt with by operat-
ing a high rack warehouse for painted car bodies located between the paint shop and
the assembly line. This so-called main buffer works as a storage and sorting place.
Construction and operation of the buffer consumes space, that is often limited within
a plant, as well as human resources. Additionally, it produces costs in a significant
amount.
This gives rise to the question asking for a method to control the paint shop such that
the buffer size can be reduced maintaining the supply of the assembly line.
The assembly line defines the sequence, in which the painted car bodies leave the paint

2 1. Introduction

shop ideally. Hence, we look upon this shop against the production direction. Let
a desired output sequence be given by the assembly line. Then, the method should
determine an input sequence, whose resulting output sequence after passing the paint
shop differs as little as possible from the given output sequence. A paint shop output
sequence similar to the sequence demanded by the assembly line usually requires less
buffer spaces than an arbitrary sequence.

Approaching the challenge of controlling the paint shop we use techniques from two
different mathematical fields. On the one hand, we model the behaviour of the paint
shop and formulate a mixed integer program. Optimization theory is known as a strong
tool and its application in production planning and production control has rapidly in-
creased in the past few decades.
On the other hand, we feed a neural network with the raw data. A powerful benefit
of neural networks is the capability to identify patterns or trends in data, that have re-
mained unrecognized by the human eye and data analysis. Recently, the potential of
neural networks as an operations research tool has been discussed.

Structure of this work

Chapter 2 is dedicated to the structure of mixed integer programs as well as the per-
formance of well-established algorithms. We give an introduction to the properties of
polytopes. The performance of well-known optimization algorithms on polytopes is
presented and reformulation techniques are outlined.
Chapter 3 starts with the description of the use case, originally provided by a mem-
ber of the automotive industries, that we raise to a more general level. The problem
presented stands out by its complexity and strong dependency on the input data. The
terms of an extensive analysis of the available data from the Daimler AG are described
and the results are presented. These results show, that certain adjustments in the oper-
ating principle of the paint shop are necessary in order to have starting points for the
controlling thereof. We set a framework of assumptions and restrictions and develop
an algorithm for the generation of artificial data fitting into this setting. We claim, that
this algorithm is “the most deterministic way” of generating statistical data meeting
the required specifications, which form the basis for best-case scenario analyses of the
presented problem. Within the same framework we formulate a mixed integer pro-
gram. Find the study of stability and the results of extensive test calculations presented

3

Mixed Integer Program
Chapter 3

Neural Network
Chapter 5

Heuristic
Chapter 4 Computational Results

Appendix B-C

Structure and solution methods for MIPs
Chapter 2

Automotive Use Case
Chapter 3

1

Figure 1.1.: Chapter overview

in Chapter 3. We conclude the chapter with a discussion of application possibilities in
the automotive section and beyond.
In Chapter 4, a heuristic is presented in order to handle the strongly varying and par-
tially extremely long computational times of the mixed integer program in Chapter 3.
The chapter gives an overview of well-known branching and search strategies as well
as pruning rules as being the core components of a branch-and-bound or branch-and-
cut algorithms. The impact of the components on each other is roughly summarized.
Subsequently, a branch-and-bound algorithm with a custom pruning rule is introduced
and tested. We combine depth first search with a problem-specific pruning rule, that
allows to reduce the search space by a significant part. The results are presented and
further modifications and analyses are discussed.
Chapter 5 starts with an introduction to neural networks and their increasing popularity
for numerous use cases in the industrial sector. We outline the differences of common
neural networks and their application areas. The main design choices for networks
are described. The remainder of this chapter is concerned with the architecture of a
sequence-to-sequence neural network. Mapping one sequence into another does not
belong to the inner circle of classic examples for the scope of neural networks. Classi-
fication and regression problems are application examples that come to mind first. In
designing a reliable network we follow the architecture of translation networks with
encoder and decoder. The network is tested with color sequences. Based on these re-

4 1. Introduction

sults we present theoretical considerations to modify the network and the loss function,
in particular.
See Figure 1.1 for a graphical chapter overview.

Application spectrum

The phenomenon described in this work can be found in numerous productive sectors.
Due to our research background, the first industries suggesting themselves are auto-
motive suppliers that provide their goods just in sequence (JIS).
For the performance of a mixed integer program as well as a neural network the data
quality is essential. The application requires an extensive analysis of the relevant man-
ufacturing data and -potentially- of production processes and structural conditions as
well. There might be cases, where raw data is usable directly or after eliminating “non-
representative” data caused by unregularities such as emergency stops. Yet we assume
that it is not uncommon that the manufacturing process might require adjustments con-
cerning noise making factors, such as wear and tear of machining tools, temperature of
the material, air humidity, human factors of any kind, et cetera. This procedure of ad-
justment also has to be executed on the paint shops of the Daimler AG in order to apply
the mixed integer program. Mainly depending on the exact structure and the number
of processed Rohbaulack variants more or less groundwork is necessary in the paint
shops of the individual plants to reach a certain quality of results. Similar efforts have
been sought for the body shop in the plant in Sindelfingen since a few years within the
scope of a separately set up project. This sumptuous analysis takes the cooperation of
production managers, data analysts and mathematicians. By the time of completion of
this work final results of the body shop project have not been available yet.
The complex structure of the paint shop is both, downside and opportunity. Despite all
groundwork it might be necessary to combine several models in series in order to cope
with the complexity. We see potential in dividing the paint shop in several sections,
for each of which a modification of the presented mixed integer program or an indi-
vidually trained neural network applies. However, the Daimler AG currently pursues
a different strategy. Instead of understanding the shops as suppliers of the assembly
line and as such optimizing them individually, the plant is aimed to be controlled as a
whole. Results of this work will not be tested or applied in the running operation of a
Daimler plant in the near future.

2. Structure and solution

methods for mixed integer

programs

2.1. Introduction to linear programming

Linear Programming is the problem of minimizing (maximizing) a linear objective
function subject to a set of linear inequalities. We consider Linear Programs (LP) in
the general form

min c x (2.1a)

s.t. Ax b (2.1b)

x� 0 , (2.1c)

where c 2 R
n, A 2 R

m⇥n, b 2 R
m. We call x1, . . . ,xn decision variables, (2.1a) the

objective function and refer to (2.1b) and (2.1c) as the constraints of the optimization
problem. We assume, that A has full rank m and there exists a feasible solution, then
the feasible region of (2.1a)-(2.1c) is the intersection of a d = n�m dimensional affine
subspace and the nonnegative orthant in R

n, a polyhedron. For a brief introduction
and basic properties, see Section 2.2. An LP is called Mixed Integer Linear Program
(MILP or MIP) if it adds the additional condition, that at least one of the decision vari-
ables x1, . . . ,xn can only take integer values. Note, that minimization and maximation
problems can easily be transformed into one another, since for the objective function
holds

mincx = max�cx . (2.2)

6 2. Structure and solution methods for mixed integer programs

An inequality constraint

a1x1 +a2x2 + · · ·+anxn  b (2.3)

can be converted into an equality constraint by adding a nonnegative w, a so-called
slack variable

a1x1 +a2x2 + · · ·+anxn +w = b . (2.4)

An equality constraint
a1x1 +a2x2 + · · ·+anxn = b (2.5)

can be expressed by two inequality constraints

a1x1 +a2x2 + · · ·+anxn  b (2.6)

a1x1 +a2x2 + · · ·+anxn � b . (2.7)

Thus, an LP can always be written in the form (2.1a) - (2.1c) [Van14].

Remark. An LP with discrete - usually finite - but large search space is often referred
to as combinatorial optimization problem in literature.

Some well-known examples for combinatorial optimization problems are [Law76]

(i) Traveling Sales Man Problem

(ii) Job Scheduling Problem

(iii) Knapsack Problem

(iv) Arc Coloring Problem.

2.2. Basic properties of polytopes

In the following we introduce the notion of bounded convex polytopes. For a detailed
introduction we refer to [Zie12a]. Convex polytopes are fundamental geometric ob-
jects, whose discovery and study can be traced back to ancient Greece. Objects known
to us as regular convex 3-dimensional polytopes are discusssed in Euclid’s book XIII
of the “Elements” [Zie01; Art99].

2.2. Basic properties of polytopes 7

There are two alternative ways to specify convex polytopes. We have an interior de-
scription as convex hulls, in literature often referred to as V-polytopes. And we have
an exterior description as intersection of half spaces, known as H-polytopes. The proof
of the mathematical equivalence of these two formulations is nontrivial. For a detailed
study see [Zie12a, Lecture 1].

Definition 2.1. Let A ⇢ R
d . The subset A is called convex if the line segment for any

two points in A lies in A, i.e. for all x, x̃ 2 A we have lx+(1�l)x̃ 2 A for all l 2 [0,1]
[Zie12a].

convex nonconvex

The convex hull conv(A) of a set A⇢ R
d is the smallest convex set that contains A

conv(A) =
\

A✓C✓Rd

C convex

C . (2.8)

Definition 2.2. Let x1, . . . ,xn 2Rn and l1, . . . ,ln 2R. Then Ân
i=1 lixi is called a linear

combination of the vectors x1, . . . ,xn. It is futher a

(i) conic combination, if li � 0 ,

(ii) affine combination, if Ân
i=1 li = 1 ,

(iii) convex combination, if it is conic and affine.

Definition 2.3. A convex polyhedron P is the intersection of a finite number of affine
halfspaces, where an affine halfspace is a set

H(a,b) = {x 2 R
d �� ha,xi  b} (2.9)

for some a 2 R
d , b 2 R. Thus every polyhedron is the set

P(A,b) = {x 2 R
d �� Ax b} (2.10)

8 2. Structure and solution methods for mixed integer programs

of feasible solutions to an LP Ax  b for some matrix A 2 R
m⇥d and some vector

b 2 R
m. A polyhedron is of dimension d if the points in the polyhedron affinely span

R
d . Moreover, a polyhedron is a topologically closed subset of Rd [Kai11a].

Note, that polyhedra are of great importance for Operations Research since they are
not only the set of feasible solutions to LPs but even the solution of MILPs that can be
reduced to linear optimization problems over polyhydra [Kai11a].

Remark. P⇢ R
n is a polytope if and only if P is a bounded polyhedron.

Definition 2.4. Let S = {x1, . . . ,xn} be a finite set of points in a real vector space
V = R

d . A V-polytope P is the convex hull

P= conv(S) =

(
n

Â
i=1

lixi
�� li � 0,

n

Â
i=1

li = 1

)
(2.11)

of the set S. By this definition the polytope is defined by its vertices.

Definition 2.5. A H-polytope P is a bounded solution set of a finite system of linear
inequalities

P= P(A,b) =
n

x 2 R
d �� Ax b

o
, (2.12)

where A 2Matm⇥d(R), b 2 R
m. P is bounded in the sense that there is a constant N

such that kxk  N for all x 2 P. By this definition the polytope is defined by its facets.

These two definitions are equivalent as the following main theorem for polytopes
states. Originally the WEYL and MINKOWSKI theorems show, that any polyhedron,
and thus every polytope in particular, that is represented in one form, can also be rep-
resented in the other. In literature one often finds the theorems stated for the case of
convex cones and then the results extended to more general polyhedra. We chose to
present the combined WEYL-MINKOWSKI theorem formulated for the case of poly-
topes.

Theorem 2.1. (WEYL-MINKOWSKI Theorem.) A subset P✓ R
d is the convex hull of

a point set (a V-polytope)

P= conv(S) for some S 2 R
d⇥n (2.13)

if and only if it is a bounded intersection of halfspaces (a H-polytope)

P= P(A,b) for some A 2 R
m⇥d, b 2 R

m (2.14)

2.2. Basic properties of polytopes 9

[Zie12a, Theorem 1.1].

Proof. This theorem actually consists of two theorems. The “)”-direction is the
MINKOWSKI-Theorem, the reverse direction is WEYLs Theorem.
Besides the formulation above, a version for cones and one for polyhedra can be found
in literature. Both of them can be found with proofs in [CCZ10], for example.

Note, that although the geometric objects are the same, as the WEYL-MINKOWSKI

Theorem states, from a computational point of view it makes a difference whether a
certain polytope is represented as a convex hull or via linear inequalities: the size of one
description cannot be bounded polynomially in the size of the other, if the dimension
d is not fixed [KS09].
According to our definition a polytope is always convex, so we will not distinguish
between polytopes and convex polytopes.

Remark. A d-polytope P with P = conv(P\Zd) is in literature often referred to as
integral polytope. Integral polytopes play a crucial role in integer programming.

Example. The empty set, any point, any bounded line segment, any convex polygon in
R

n is a polytope.

Figure 2.1.: 1-simplex,
a 1-polytope

Figure 2.2.: SCHLEGEL diagram of a
cube,
a 3-polytope

By a classical theorem of MINKOWSKI any compact convex set can be written as a
convex combination of its extreme points. In the context of polyhedral theory this
theorem formulates as follows.

Theorem 2.2. (MINKOWSKI Theorem.) Let P be a polytope in R
d, let {x1, . . . ,xn} be

a finite subset of P. Let ext(P) denote the set of vertices of P.
Then, the following two conditions are equivalent

10 2. Structure and solution methods for mixed integer programs

1. P= conv{x1, . . . ,xn}

2. ext(P)✓ {x1, . . . ,xn} .

In particular, we have P= conv(ext(P)) [Bro83, Theorem 7.2].

Proof. This theorem applies for compact convex sets in R
d in general. Let C ⇢ R

d be
a compact convex set and let M ⇢ C be a subset. Suppose there is an extreme point
x of C with x /2 M. Then, M is a subset of C\{x}, and since C\{x} is convex by the
definition of an extreme point, it follows, that conv(M) is also a subset of C\{x}. Set
P=C and {x1, . . . ,xn}= M and we have 1.) 2.
For 2.) 1. it suffices to show, that

C ⇢ conv(ext(C)) . (2.15)

Together with the opposite inclusion, that obviously holds, we have C = conv(ext(C)).
And we also have C = conv(M) for any subset M containing ext(C). We prove (2.15)
by induction on the dimension of C. For dim(C) =�1 and dim(C) = 0 there is nothing
to be proven. For dim(C) = 1 the statement is clearly valid. Suppose the statement
is valid for all compact convex sets of dimension < d, and let C be a convex set of
dimension d. Let x 2 C, we have to show that x is a convex combination of extreme
points of C. If x is an extreme point itself then there is nothing to be proven. So suppose
x is not an extreme point, then there is a segment in C having x in its relative interior.
Extending the segment, if necessary, we have two points y0,y1, such that x 2]y0,y1[.
Let F0 and F1 be the smallest faces of C containing y0 and y1 respectively. Then, F0

and F1 are proper faces of C. They are, in particular, compact convex sets and they both
have dimension < d. By induction hypothesis there are points x01, . . . ,x0p 2 ext(F0)

and x11, . . . ,x1p 2 ext(F1) such that y0 is a convex combination of the x0i’s and y1 is
a convex combination of the x1 j’s. Since x is a convex combination of y0 and y1, it
follows, that x is a convex combination of the x0i’s and x1 j’s. In order to complete the
proof, note, that the x0i’s and x1 j’s are extreme points of C [Bro83, proof of Theorem
5.10].

Note, that a polytope has a finite number of faces.

2.2. Basic properties of polytopes 11

The dimension dim(P) of a polytope P is the dimension of the affine hull aff(P)

aff(P) =

(
y 2 R

d ��y =
n

Â
i=1

aixi,xi 2 P,ai 2 R,
n

Â
i=1

ai = 1

)
. (2.16)

A polytope P is denoted a d-Polytope, if dim(P) = d. By convention we have
dim(P) =�1 if P= /0 [Bau+09].

Theorem 2.3. (CARATHÉODORY’S theorem.) Let P denote a d-polytope. Any point
in the polytope is a convex combination of at most d+1 extreme points of the polytope
[Fad15].

Definition 2.1. Let P be a polytope. A linear inequality cx  c0 is valid for P, if it is
satisfied for all points x 2 P. A face F of P is any set of the form

F = P\{x 2 R
d �� cx = c0} (2.17)

The dimension of a face dim(F) is the dimension of its affine hull dim(aff(F)). A
k-dimensional face is being called a k-face.

Remark. For the valid inquality 0x 0, we get that P itself is a face of P.

Lemma 2.4. Every face of a polytope is a polytope.

Proof. Let P = conv(S) be a polytope and let F be a face of P defined by cx  c0.
Let S0 = {x 2 S

�� cx = c0} and S̊ = {x 2 S
�� cx < c0}. Then, S = S0[S̊. The following

calculation shows, that F = conv(S0). The convex combination l1x1+ · · ·+lnxn, xi 2 S̊
satisfies cx = c0 if and only if li = 0 for all i. In order to see this let S̊ = {x1, . . . ,xk}
and S0 = {x01, . . . ,x

0
l}. Let x 2 F

c0 = cx = c((l1x1 + · · ·+lkxk)+(l 01x01 + · · ·+l 0l x0l))

= (l1cx1 + · · ·+lkcxk)+(l 01cx01 + · · ·+l 0l cx0l)

 (l1c0 + · · ·+lkc0)+(l 01c0 + · · ·+l 0l c0)

= c0(l1 + · · ·+lk +l 01 + · · ·+l 0l) ,

where licxi  lic0 for 1  i  k and l 0jcx0j = l 0jc0 for 1  j  l. For this to hold, we
must have licxi = lic0, which only holds if li = 0 for all i. Thus, we have
x = l 01x01 + · · ·+l 0l x0l , so x 2 conv(S0).

12 2. Structure and solution methods for mixed integer programs

Definition 2.2. Let P be a polytope of dimension d. The 0-dimensional faces are
called vertices. The 1-faces are called edges. The (d� 2)-faces are called ridges and
(d�1)-faces are called facets.

Note, that the facets of a polytope correspond to the exterior description of that poly-
tope (H-polytope). Exactly one inequality for each facet is needed.
Since some vertices are connected by edges, we can define an undirected graph
G = (V (G),E(G)), where V (G) = {v

��v 2 vert(P)} and
E(G) = {(v,w) 2V (G)

��9 edge E of P such that v 2 E,w 2 E}.

Remark. In certain applications two improper faces are introduced: /0 and P itself.
Then, we have the following additional properties

i For every two faces F1,F2 ⇢ F we have F1 \F2 is also a face of F. We write
F1^F2.

ii For every two faces F1,F2 ⇢ F there exists a uniquely defined face F1_F2, the
“smallest” face that contains both, F1 and F2.

Proposition 2.5. Let P be a d-polytope, let fk(P) denote the number of different k-faces
of P. Then, we have

fk(P)
✓

f0(P)

k+1

◆
, (2.18)

with the convention fk(P) = 0 for k > d or k <�1 [Gru13].

2.2.1. Representation and permutation polytopes

Let G be a finite group. Let r : G! GL(V) be a real representation of G. It induces
an R-algebra homomorphism from the group algebra R[G] to End(V), which we also
denote by r [Bau+09].

Definition 2.3. The representation polytope P(r) of the representation r is defined as
the convex hull of r(G) in the vector space End(V) [Bau+09, Definition 1.1].

Let G = hp1, . . . ,pmi be a permutation group over a finite set X . Let n denote the
number of elements of X . Consider the standard permutation representation c with

c : G! R
X2

, (2.19)

2.2. Basic properties of polytopes 13

c(p)i j =

8
<

:
1 if p(i) = j,

0 else .
(2.20)

This is the usual way of representing permutations of X by n⇥ n permutation matri-
ces.

Let Sn denote the symmetric group over {1, . . . ,n}. Let G be any finite group. Let
c : G! Sn be the permutation representation, thus G can be identified with the per-
mutation group c(G)  Sn. We write in short G  Sn in both cases, whether G is a
subgroup of Sn or identified as such by c .

Definition 2.4. For G Sn the permutation polytope associated to G is defined as

P(G) = conv(c(G))⇢Matn⇥n(R)⇠= R
n2

(2.21)

[Bau+09, Definition 1.2].

In particular, any permutation polytope is a representation polytope [Bau+09].

For an extensive investigation of general permutation polytopes, as well as their di-
mensions and graphs, we refer to the work by Guralnick and Perkinson [GP06].

The Birkhoff Polytope

We consider the special case that G is the symmetric group over X .

Definition 2.5. The nth Birkhoff polytope Bn also called assignment polytope is defined
by

Bn = conv(c(p)
��p 2 Sn) . (2.22)

The Birkhoff polytope is one of the most important polytopes. It arises in various
fields of mathematics, in combinatorics ([Ath05]), statistics (see [Pak00]), optimiza-
tion ([Pak00] et al.) or representation theory (e.g. [Bra+91], [Onn93]) [Bau+09].

The BIRKHOFF-VON NEUMANN Theorem characterizes the nth Birkhoff polytope Bn

as the polytope of all doubly stochastic n⇥ n matrices. This theorem was stated by
George David Birkhoff in 1946 and independently proven by John von Neumann in
1953.

14 2. Structure and solution methods for mixed integer programs

Theorem 2.6. (BIRKHOFF-VON NEUMANN Theorem.) Bn is an (n�1)2 dimensional
polytope with n! vertices having the following inequality description

Bn =

(
(xi j) 2 R

n2 ��xi j � 0 and Â
i

xi j = Â
j

xi j = 1 for 1 i, j  n

)
. (2.23)

Proof. The original proof by Birkhoff can be found in [Bir46], an alternative version
in [Hur].

The facets of Bn are defined by the inequalities xi j � 0 for 1 i, j  n.

Remark. In particular, the Birkhoff polytope is a 0/1-polytope, that is the convex hull
of vectors in {0,1}n2

. The probably most famous application of 0/1-polytopes is the
Travelling Salesman Problem [BS96]. The Birkhoff polytope is a so called transporta-
tion polytope T (a,b)

T (a,b)=

(
(xi j) 2 R

m⇥n ��xi j � 0 and Â
i

xi j = b j,Â
j

xi j = ai for 1 i m,1 j  n

)
.

(2.24)

Remark. Two permutations s ,p 2 Sn correspond to an edge of Bn if and only if s�1p
is a cycle.

Although polytopes have been studied since ancient Greece, calculating the volume
of a polytope still remains tough. Even for relatively small values of n, computing
vol(Bn) represents a significant challenge. The explicit volume is known up to n = 10
[BP03].

vol(B10) =

727291284016786420977508457990121862548823260052557333386607889
82816086010676685512567631879687272934462246353308942267798072138805557399562702937508835048928208848640000000

.

In [CM07] Canfield and McKay present an symptotic formula for the volume of the
nth Birkhoff polytope Bn

vol(Bn) =
1

(2p)n�1/2n(n�1)2 exp
✓

1
3
+n2 +O(n�1/2+e)

◆
(2.25)

for any e > 0 as n! •.

2.3. Performance of famous algorithms on the Birkhoff polytope 15

De Loera et al. [LLY09] present an exact combinatorial formula

vol(Bn) =
1

((n�1)2)! Â
s2Sn

Â
T2Arb(l,n)

hc,si(n�1)2

’e/2E(T)hc,W T,esi . (2.26)

For two vertices x,y of a polytope P recall, that the distance dist(x,y) is the minimal
number of edges needed to go from x to y in the graph of P. Let D(P) denote the
diameter of P, that is the maximum possible distance between two vertices in the
graph of the polytope. In the context of algorithms in optimization theory we can
characterize D(P) as the best-possible number of iterations initiated at the worst vertex
[Loe13]. This relation to the Simplex Algorithm in Linear Programming was the origin
of the following HIRSCH Conjecture. This conjecture was posed by Warren M. Hirsch
in 1957 and published by George D. Dantzig in 1963 [Dan63, p.168]. It states, that
any two vertices of a d-polytope with n facets can be connected by a graph of at most
n�d edges.

Conjecture 2.7. (HIRSCH Conjecture). Let n > g � 2. Let P be a d-dimensional
polytope with n facets and let G(P) be its graph. Then, D(G(P)) n�d.

As we know now the conjecture, as stated by Dantzig, is false [Zie12b]. Credits for
this result go to Klee and Walkup, who gave a counterexample in [KW67]. For a nice
overview giving correct kinds of polytopes for this conjecture see [KS09].

2.3. Performance of famous algorithms on the

Birkhoff polytope

Over the years, tens of algorithms for linear programming have been suggested, how-
ever, most of them could not compete with the historically first algorithm, Dantzig’s
simplex method. Nevertheless, at least two methods are worth mentioning. In the
following section we give a survey of these algorithms and their performance on poly-
topes and the Birkhoff polytope in particular. Therefore, we mainly follow [MG07].

16 2. Structure and solution methods for mixed integer programs

Recall the general form of a mixed integer minimization problem

min cx (2.27a)

s.t. Ax b (2.27b)

x� 0 (2.27c)

x j integer , (2.27d)

The LP relaxation of a MIP is the continuous optimization problem that is obtained
by dropping the integrality restrictions. For one, the LP relaxation provides an lower
bound for the optimal value of the MIP. In addition, if an optimal solution to the LP
relation is found, that satisfies the integrality constraints, it is also an optimal solution
to the corresponding MIP [JNS00].
According to the rules of a branch-and-cut method, an enumeration tree is spanned,
where every node is solved by a linear programming algorithm, commonly the sim-
plex algorithm. By moving down the tree, more and more integer variables are fixed.
Branch-and-cut is a combination of branch-and-bound and a cutting plane method. In a
cutting plane method, the LP relaxation of the integer program is solved. If the optimal
solution is feasible in the integer program, it also solves the integer program. Other-
wise, a constraint is added to the linear program that separates this solution from the
set of feasible solutions to the integer program and the new program is solved again.
In a branch-and-bound method the first step also is to solve the LP relaxation. If the
optimal solution is feasible in the integer program it also solves the integer program.
Otherwise, the relaxation is split into two subproblems, usually by fixing a particular
variable at zero or one. One subproblem is chosen and the LP relaxation of that sub-
problem is solved.
Depending on whether the subproblem is infeasible or the solution is also feasible to
the integer program and whether objective value of the optimal solution is worse than
the one of the known solution to the integer program the tree is pruned at this node or
the node is split into two further subproblems [Mit96].
The computational efficiency in solving a mixed integer program depends on the num-
ber of iterations and the effort on each iteration. We first focus on the latter here. The
significance and impact of the branching strategies will be revisited in Chapter 4.

2.3. Performance of famous algorithms on the Birkhoff polytope 17

2.3.1. Simplex Algorithm

As being one of the most important problems studied by researchers in mathematics,
operations research und computer science, the understanding of linear programing has
improved vastly in the last 70 years. The classical method for solving linear programs
is still the well-known simplex algorithm, presented by George Dantzig in 1947. The
simplex method considers the combinatorial structure of the faces of the polytopes.
In order to state it briefly, the algorithm proceeds by walking from one vertex to an-
other. At each step, a vertex is chosen that is superior with respect to the objective func-
tion. The algorithm either determines an optimal solution, gets the indication of un-
boundedness or determines infeasibility. We follow the work of Adler et al. [APR14]
as well as Friedmann et al. [FHZ11] and Friedmann [Fri11] and Pak [Pak00] for an
overview of the performance of the simplex method in linear programs.
A strongly polynomial algorithm for a linear program is one whose total number of
operations is bounded polynomially in the input length. Several variants of Dantzig’s
simplex method have been developed and many of them have been proven to have
exponential worst-case performance. In order to specialize the simplex method to a
concrete algorithm, a pivoting rule needs to be provided, determining the choice of
the next vertex in case there is more than one candidate. It is still an open question
if there exists a pivoting rule requiring a polynomial number of steps on any linear
program. However, in practice the simplex method usually performs very well. The
primal simplex method usually requires at most 2m to 3m pivots to obtain optimality.
This was stated based on numerous experiments with thousands of practical problems
by Dantzig very early [Dan63, p. 160].
In graph-theoretic terms, the simplex algorithm computes a path in the graph G defined
by the vertices and edges of the underlying polytope. The efficiency of the method
is determined by the length of that path. Therefore, the diameter of the polytope de-
termines a lower bound for the number of pivot steps [FT94]. Recall the HIRSCH

conjecture (2.7) stating, that a walk of length of at most n� d should always exist.
As a significant progress on this conjecture we mention the work of Kalai and Kleit-
man [KK92], who proved, that there always exists a walk of length at most nlog2 d+2.
However, the existence of such a short walk, does not imply that the simplex algorithm
finds it [ST04].
Recall, that the vertices of Bn are in a one-to-one correspondence of the elements of the
symmetric group Sn, and the edges correspond to pairs of permutations s ,p 2 Sn such
that s�1p is a single cycle. Since every permutation can be represented by a product

18 2. Structure and solution methods for mixed integer programs

of two cycles [HKL04, Proposition 5], conclude, that the diameter of the Graph Gn of
vertices and edges of Bn is 2. Thus, we can reach the desired minimum in at most two
steps [Pak00]. In order to determine the maximal number of steps, we consider the
following “toy version” of the simplex algorithm presented by Pak [Pak00].

Theorem 2.8. Let Pn be the nth Birkhoff polytope. Consider the linear functional f

f = cax = x11 +ax12 + · · ·+an�1x1n +anx21 + · · ·+an2�1xnn . (2.28)

We think of the graph Gn as a partially ordered set with s � p if there exists a sequence
of edges between s and p on which f decreases. Then, for 0 < a < 1/(n+1) there exists
a decreasing sequence of vertices of Pn of length >Cn!, for a universal constant C > 0
[Pak00, Theorem 1.4].

Proof. We prove the theorem by constructing a desired sequence from the permutation
(1,2, . . . ,n) to (n,(n�1) . . . ,1). For n = 2 the chain is trivial. We prove the statement
by induction over n. Suppose we know the chain of permutations for n  m� 1. Let
the chain for n = m be as follows: It starts with

(1,2, . . . ,m�1,m)! · · ·! (1,m,m�1, . . . ,2) , (2.29)

where the middle part is the sequence of permutations for n = m� 1. We get the rest
of the chain by going to an element like (2,⇤, · · · ,⇤), then some chain in the middle,
then (2,n,n� 1, . . . ,3,1), to (3,⇤, · · · ,⇤) and so on, until we reach (n,n� 1, . . . ,1).
All we need now is to describe the chain from (i,n,n� 1, . . . , i + 1, i� 1, · · · ,1) to
(i+ 1,n,n� 1, . . . , i+ 2, i, . . . ,1). Let therefore k = bn/2c. Observe, that it is always
possible to move from s1 = (i,n,n�1, · · · ,1) to s2 = (i+1,1,2, . . . ,k,⇤, . . . ,⇤) since
s2  s1 and there is a rearrangement of ⇤ such that s�1

1 s2 is a long cycle. Now get
from s2 to s3 = (i+ 1,1,2, . . . ,k,m,m� 1, . . . ,k+ 1) by decomposing s�1

2 s3 into a
product of cycles and using them one by one. Use induction again for n = m� k. We
reach (i+1,n,n�1, . . . ,1), which completes the construction. In order to compute the
length of the whole chain of permutations, let Ln denote the length of the chain on Sn.
The induction gives us

Ln+1 = (n+1)(Ln� (bn/2c+1)!) . (2.30)

2.3. Performance of famous algorithms on the Birkhoff polytope 19

Dividing both sides by (n+1)! gives us

Ln+1

(n+1)!
>

Ln

n!
� 1
bn/2c! . (2.31)

Since Âk
2
k! !

2
e < 1, we have Ln

n! > 1� 2
e for all n. This implies the result [Pak00,

proof of Theorem 1.4].

Thus, the maximum running time of the simplex algorithm on the Birkhoff polytope
is exponential. Pak also showed that the expected average running time of the simplex
method on the Birkhoff polytope with cost function ca is O(n logn) [Pak00].

Theorem 2.9. Let f be as above, let 0  a  a0, then we have an expected running
time of the algorithm of O(n logn) [Pak00, Theorem 1.5].

Proof. Let Dn be the total number of cycles in the symmetric group Sn, i.e. the degree
of a graph G. We have

Dn =
n

Â
l=2

✓
n
l

◆
(l�1)! = n!

n

Â
l=2

1
l(n� l)!

< c(n�1)! (2.32)

for some universal constant c > 1. Therefore, the probability of the randomly chosen
cycle being a long cycle is > 1/c.
Now suppose the algorithm is at a permutation s = (n,n� 1, . . . ,n� k, j,⇤, · · · ,⇤),
with 1 j < n� k�1. Note, that elements n,n�1, . . . ,n� k are fixed at this point, in
the sense that no decreasing edge can ever change them. We compute the number of
decreasing edges (s ,w) leaving s which do not change j. This number is not greater
than Dn�k�2 and at least (n�k�1� j)(n�k�2)!, which is the number of all cycles on
the last n� k�1 elements and such that w(k+2)> j. Therefore, the probability, that
in a decreasing edge (s ,w), we have w(k+ 2) > j is at least c0 = 1/(1+c). Conclude,
that with probability > c0 the (k+2)th element j in a permutation changes to a uniform
element 2 [j+1,n� k�1]. Therefore, after O(logn) moves the (k+2)nd element in
a permutation will become n� k� 1 and “stuck”. From here it takes O(n logn) steps
for all elements to get fixed, which means we reach (n,n� 1, . . . ,1) [Pak00, proof of
Theorem 1.5].

One of the most important parameterizations of the simplex algorithm is the pivoting
rule. It determines which nonbasic variable is to enter the basis at each step of the

20 2. Structure and solution methods for mixed integer programs

iteration. It still remains an open challenge to find a pivot rule that makes the simplex
method run in polynomial time for all LPs or show that none exists. For discussions of
this problem see [APR14; Tod02] and the references therein.

2.3.2. Ellipsoid Method

The ellipsoid method is designed to solve decision problems rather than optimization
problems. It was originally invented by Shor [SZ71], Yudin and Nemirovski [YN76a;
YN76b; YN77] to solve a certain kind of nonlinear optimization problems in the 1970s.
Nine years later Khachyian [Kha79] showed how the ellipsoid method can be used to
solve linear programs in provable polynomial time [MG07]. We consider the decision
problem of finding a feasible point to a system of linear inequalities [Reb09]

Ax b . (2.33)

Roughly, the ellipsoid method constructs a sequence of ellipsoids Ek, each of which
contains a point satisfying the constraints (2.33), if one exists, starting with an initial
ellipsoid containing the solution set of (2.33). On the (k+1)st iteration the algorithm
checks whether the center xk of the current ellipsoid Ek satisfies constraints (2.33). If
so, it stops. If not, some constraints violated by xk, say

aT x bi (2.34)

is chosen and the ellipsoid of minimum volume that contains the half-ellipsoid

Ek+1 = {x 2 Ek
�� aT x aT xk} (2.35)

is constructed. Denote the center of Ek+1 by xk+1. The iterative step above is repeated.
One can determine whether (2.27a) is feasible or not in a polynomial number of iter-
ations by modifying the algorithm to account for finite precision arithmetic, applying
it to a suitable perturbation of (2.27a) and choosing E0 appropriately [BGT81]. This
result of being “theoretically efficient” was first noted by L. G. Khachiyan in 1979,
though the ellipsoid method did not prove to be “practically efficient”. In fact, it has
been shown, that the expected running time of the simplex algorithm is polynomial
and much better than the expected running time of the ellipsoid method [GLS88]. The

2.3. Performance of famous algorithms on the Birkhoff polytope 21

decision problem (2.33) is closely related to the linear program

min c x (2.36a)

s.t. Ax b (2.36b)

x� 0 . (2.36c)

Due to duality, theory solving problem (2.36a)-(2.36c) is equivalent to finding a feasi-
ble point of the following system of linear inqualities:

Ax b (2.37a)

�x 0 (2.37b)

�Ay�c (2.37c)

�y 0 (2.37d)

�cx+bx 0 (2.37e)

where the third and fourth inequality come from the dual problem of (2.36a)-(2.36c).
The last inequality comes from the Strong Duality Theorem. The equivalence of the
two problems means that vector x of each solution (x,y) of (2.37a)-(2.37e) is an op-
timal solution of (2.36a)-(2.36c), and y is an optimal solution for the dual problem.
In addition, for every solution to the optimization problem there exists a vector such
that this pair is feasible for (2.37a)-(2.37e) [Reb09]. From this equivalence Gács and
Lovász [GL81] concluded, that the linear programming problem (2.36a)-(2.36c) can
be solved in polynomial time. It has to be noted, that the problem size increases from
n to n+m. Since a polytope is bounded, the ellipsoid method is a polynomial-time
algorithm. Usually the simplex method performs better in practice [BGT81].

2.3.3. Interior Point Method

In contrast to the simplex algorithm, that explores the extremal points of the feasible
region of a linear program, the interior point method walks its way through the interior
of the polytope. In 1984, the publication of a paper by Karmarkar [Kar84] built the
foundation of the research on this new method. It was originally invented in the context
of linear programming. See also [Wri97] for more discussion on different variations
of the interior point method. Due to its ability of scaling to large problem sizes, the
interior point method has attracted a lot of attention in recent years, since the demand

22 2. Structure and solution methods for mixed integer programs

for large-scale optimization in industries and engineering has increased. Another ad-
vantage of the interior point method is, that it is applicable to semidefinite, quadratic
and other nonlinear programs. Like the ellipsoid method, most variants of the interior
point method have polynomial time complexity [MPR98].
Consider a linear program in the standard form

min cx (2.38a)

s.t. x 2 X (2.38b)

x� 0 , (2.38c)

where X is a closed convex domain. The basic idea of the interior point method is
to equip the linear program with a barrier function F , a smooth and strongly convex
function defined on int(X), such that F(xk)�! • along every sequence (xk) 2 int(X)

with xk �! x̄ 2 ∂X . A possible barrier function subproblem is

min c x�µ
n

Â
i=1

log(xi) (2.39a)

s.t. Ax = b (2.39b)

x� 0 , (2.39c)

where µ denotes the so-called barrier parameter, a positive constant [NT09]. The in-
terior point method appears to be superior to the simplex algorithm when it comes to
problems with a large number of constraints and variables (say, more than one thou-
sand) [MPR98]. One reason may be the possibility of parallelization where the interior
point method often is preferred to the simplex method due to matrix sparsity and com-
munication during the solving process [DSA98]. For the application on MIPs, the
integer point method is usually combined with a branch-and-cut algorithm. The chal-
lenge thereby is that a solution of the relaxed program might in general not be a good
starting point for an interior point method, since it is close to the boundary of the fea-
sible region. In particular, this method tends to have very poor performance: when the
starting point is a nonoptimal extreme point, then several iterations are needed to walk
towards the center of the feasible region.
This is usually overcome by stop working on the current relaxation before it is solved
completely: the earlier we can find good cutting planes, the better, that means further
in the interior, the initial solution to the next relaxation [Mit96]. This proceeding ob-
viously saves iterations spent on the current relaxation and also on the next relaxation,
because the starting point for the next relaxation is more centered. The advantages and

2.4. Reformulation techniques for MIPs 23

diasadvantages of this approach of early termination can be found in [Mit96]. In the
work of Mitchell, a branch-and-bound interior point algorithm can be found [Mit96,
Section 2.2].
We summarize, that an interior point method can be useful in solving large integer
programs, especially when a feasible solution with good objective value is sufficient
and optimality is not necessarily required. However, it depends on the problem spec-
ifications if an interior point method, despite its difficulties, outperforms a simplex
algorithm in a branch-and-bound algorithm [BM98].

2.4. Reformulation techniques for MIPs

In this section we examine ways to reformulate mixed integer programs. Given an ini-
tial formulation of an LP, we are interested in different ways of reformulating the prob-
lem in order to obtain improved problem formulations by using the problem structure.
Improvement may be obtained by reduction of the number of variables so that cal-
culations are typically faster, treatment or elimination of symmetry among solutions,
as well as identification of variables that are more effective as branching variables
[VW10].

2.4.1. Reformulation based on decomposition

Consider an integer program of the form

min cx

s.t. Ax b

x 2 Z
n
+ .

Let X = {x 2 Z
n
+| Ax  b}. We are interested in finding alternative problem descrip-

tions, that are more effective in any kind [Bad+18]. Both classical decomposition
methods, Dantzig-Wolfe decomposition and Benders’ decomposition, are concerned
with decomposing the original problem in a master problem and one or several sub-
problems.
The Dantzig-Wolfe decomposition exploits the linear programming formulation of the

24 2. Structure and solution methods for mixed integer programs

Lagrangean dual (see Section 2.4.3) as master problem by using dynamic column gen-
eration [VS06].
The key point of Bender’s decomposition is to derive a master problem, that provides
a lower bound for the original problem. The problem is either solved, if possible, or,
if not, a cut is generated and added to the master problem, it is called a Bender’s cut
[CJ05]. A Bender’s cut is inferred by the dual of the subproblem and thus valid for all
variables of the master problem and rather effective.

Remark. Anticipating the results of Chapter 3 we note, that due to the strong relation
of all of the decision variables, a decomposition approach is not pursued.

2.4.2. Projection of polyhedrons

The structure of a linear program or mixed integer program might admit the focus on
a subset of the more important variables (e.g the integer variables in a MIP).

Definition 2.6. Let U ⇢ R
n⇥R

p denote a subset, the projection of U on the first n
variables x = (x1, . . . ,xn) is the set

projx(U) = {x 2 R
n| 9w 2 R

pwith(x,w) 2U} (2.41)

[VW10, Definition 5].

The FARKAS’ Lemma characterizes the optimality condition for several problems by
stating, that either the primal problem or the dual problem of a MIP has a solution
[Dax97].

Lemma 2.10. (FARKAS’ Lemma.) Let A 2 R
m⇥n and b 2 R

m. Then, exactly one of
the following two conditions holds

i there exists x 2 R
n such that Ax = b, x� 0 ,

ii there exists y 2 R
m such that AT y� 0, yT b < 0 .

A proof of this lemma can be found in numerous optimization textbooks, inter alia
[CCZ14, Theorem 3.4].
Furthermore, the FARKAS’ Lemma gives a characterization of the projection of a poly-
hedron.

2.4. Reformulation techniques for MIPs 25

Theorem 2.11. Let Q = {(x,w) 2 R
n⇥R

p
+| Gx+Hw� d}. Then,

projx(Q) = {x 2 R
n| v(d�Gx) 0 8v 2V}

= {x 2 R
n| v j(d�Gx) 0 for j = 1, . . . ,J} ,

(2.42)

where V = {v 2 R
m
+| vH  0} and {v j} j=1,...,J are the extreme rays of V [VW10, The-

orem 4].

Proposition 2.12. If P ⇢ R
n⇥R

p is a polytope, then the projection of P onto R
n is a

polytope [JKM04, Proposition 15].

2.4.3. Relaxation techniques in MIP solving

Since a matrix is a permutation matrix if - and only if - it is both orthogonal and dou-
bly stochastic, much work focused on finding semidefinite relaxations on orthogonality
constraints. These relaxations are convex and hence tractable, but usually they become
quite large and scale poorly [Fog+13]. Lim and Wright [LW14] present a typical way
of converting a discrete optimization problem over a set of permutations into a contin-
uous relaxation. It follows three steps

(i) represent the permutations by permutation matrices,

(ii) relax to the convex hull of the set of permutation matrices, which is the Birkhoff
polytope,

(iii) relax other constraints to ensure convexity/continuity.

This results in a significant rise in the number of variables, from n variables that are
needed to represent the permutation directly to O(n2), that are required to represent
the Birkhoff polytope.

Lagrangean relaxation

Lagrangean relaxation is a technique based on the observation that many computation-
ally hard linear programming problems can be viewed as easy problems complicated
by a relatively small set of constraints. Using the Lagrangean relaxation produces a

26 2. Structure and solution methods for mixed integer programs

linear program that is easier to be solved and whose optimal value is a lower bound
on the optimal value of the original problem. Thus, this technique can be used to
provide bounds in a branch-and-bound algorithm [Fis04]. The Lagrangean relaxation
was first applied to the Travelling Sales Man Problem (TSP) in 1970/71 by Held and
Karp [HK70]. Since then the number of problems, whose computational time can be
speeded up by the use of this technique, has grown. Among them are - in addition to
the TSP - Knapsack problem generalized assignment problem, set covering, scheduling
problems to name the most famous ones. Several modified versions of the Lagrangean
method have been developed, we follow the version presented by [VW10]. Consider
an optimization problem of the general form

min cx

s.t. Bx b (2.43a)

Dx d (2.43b)

x 2 Z
n
+ ,

where (2.43b) represent rather “complicated constraints” and (2.43a) are “more tractable”
and can be solved quickly in practice. The Lagrangean approach for this problem
consists of turning (2.43b) into constraints that can be violated at a price p . Let
Z = {x 2 Z

n
+|Bx b}.

This gives rise to the so-called Lagrangean subproblem

L(p) = min
x
{cx+p(Dx�d)|Bx b,x 2 Z

n
+} . (2.44)

For any p > 0 the dual function L(p) defines a lower dual bound on the optimal value
x⇤ of the original problem, since we have

cx⇤ � cx⇤+p(Dx⇤ �d)� L(p) . (2.45)

Maximizing this bound over the set of admissible penalty vectors is known as the
Lagrangean dual

zLD = max
p>0

L(p) = max
p>0

min
x2Z

{cx+p(Dx�d)} . (2.46)

2.4. Reformulation techniques for MIPs 27

Let {xt}t=1,...,T denote the set of extreme points of conv(Z). Since the Lagrangean
subproblem achieves its optimum at xt for a t 2 {1, . . . ,T}, one can write

zLD = max
p>0

min
t=1,...,T

{cxt +p(Dxt�d)} . (2.47)

Let s denote a lower bound on (c+pD)xt , then the Lagrangean dual can be rewritten

max �pd +s

s.t s �pDxt  cxt , t = 1, . . . ,T

p � 0

s 2 R

Taking its linear programming dual we obtain

min
T

Â
t=1

(cxt)lt

s.t.
T

Â
t=1

(Dxt)lt  d

T

Â
t=1

lt = 1

lt � 0

The following theorem summarizes the results.

Theorem 2.13. (Lagrangean Duality.)

zLD = min{cx
�� Dx d,x 2 conv(Z)} . (2.50)

By definition of the set {xt}t=1,...,N we have

conv(Z) = {x =
T

Â
t=1

xtlt
��

T

Â
t=1

lt = 1,lt � 0, t = 1, . . . ,T} . (2.51)

Thus, the value of the Lagrangean dual is equal to the value of the original LP obtained
by minimizing cx over the intersection of the complicated “constraints” with the convex
hull over the “tractable” set [VW10, Theorem 5].

Remark. Anticipating the results of Section 4.2.1 we note that the structure of MIP

28 2. Structure and solution methods for mixed integer programs

(3.29a)-(3.29m) appears suitable for Langrangean relaxation.

2.4.4. On the extended formulation of a polytope

In the following section we give a brief overview of the concept of representing a
polytope associated with an optimization problem as a linear projection of a higher
dimensional polyhedron. We follow mainly Kaibel [Kai11b] and Goemans [Goe15].

Definition 2.7. The nth permutahedron Pn is the convex hull of all permutations of
the vector v = {1, . . . ,n}

Pn =

(
x 2 R

n ��
n

Â
i=1

xi =
n(n+1)

2
,Â

i2S
xi 

|S|

Â
i=1

(n+1� i) for all S⇢ {1, · · · ,n}
)

.

[LW14]

The permutahedron is an (n�1)-dimensional polytope with n! vertices. In order to see
this, consider the following: for each permutation s the vector sv lies on the sphere
with radius r = Ân

i=1 i2, so sv can’t be a convex combination of other permutations of
v. The number of (n� k)-dimensional faces is k! · S(n,k), where S(n,k) is the Stirling
number of the second type.
Let p : Matn⇥n(R)! R

n, A 7! Av. Then, p projects the set of permutation matrices
Pn to the vertices of Pn. Since p is linear we have p(conv(Pn)) = conv(p(Pn)).
The permutahedron is a linear projection of the Birkhoff polytope via the map
p(A)i = Ân

j=1 jai j.
Since for every linear objective function vector c 2 R

n, we have

max{hc,xi
��x 2Pn}= max{

n

Â
i=1

n

Â
j=1

jciai j
��A 2 Pn} , (2.52)

one can use the Birkhoff polytope Pn instead of the permutahedron Pn in linear pro-
gramming related issues [Kai11b]. Using a relaxation based on the permutahedron (de-
scription requires 2n� 2 inequalities) instead of the Birkhoff polytope (prescribed by
n2 nonnegativity inequalities) is computationally infeasible, because of the exponen-
tially many facets (whereas the Birkhoff polytope has n2 facets). For more information
on extended formulations of polytopes in general see [Kai11b] as well as [CCZ10].

3. The Mixed Integer Model

3.1. Motivation

In recent years, the consumer demand for customized products and individual cus-
tomer requests has been growing extensively. This results in a high product diversity
in many areas of economy. The automotive industry is widely affected by this develop-
ment and provides a good example of high complexity products manufactured in mass
customization [LRZ06].

Automobile manufacturers face challenges of several kinds in many areas, such as de-
velopment, sales, production, logistics. Production related challenges tend to be quite
complex in the number of involved parties and restrictions, that have to be met. Simul-
taneously, handling those challenges well is essential in order to satisfy the demand,
meet goals for productivity growth and be competitive through increase in efficiency.
The manufacturing process in the automotive industry contains three shops, the body
shop, paint shop and the assembly line. Controlling of the assembly line has been
in the focus of researchers in operations research and optimization theory. A bind-
ing specification of the production sequence is supposed to stabilize production and
logistic processes, which ensures predictable costs and production time. This issue
called the Car Sequencing Problem (CSP) has first been described by Parello et al. in
[PKW86]. Since then, extensive research has been done in that field and results can be
found in a great amount of publications, see [DKM06; Sol+08; Kis04; FB08; PR08]
and references therein.

We consider body shop and paint shop as second and first tier supplier of the final as-
sembly. Currently, both shops neither preserve the body sequence during the passage
nor are able to provide the sequence required by the final assembly. In order to secure
the supply of the final assembly with the required car body at any time, the paint shop

30 3. The Mixed Integer Model

input
sequence

1 1

pearl chain

body
shop

paint
shop

main
buffer

assembly
line

Gewerkeoptimale Sequenzbildung | 2. SC/KA-Forum | Katrin Schlegel | 24.07.2019 1

1

1

1

1

2 2

2

2

3

3

3 3

4

4

4

4 5

5

5

5

Gewerkeoptimale Sequenzbildung | 2. SC/KA-Forum | Katrin Schlegel | 24.07.2019 1

1

1

1

1

2 2

2

2

3

3

3 3

4

4

4

4 5

5

5

5

Gewerkeoptimale Sequenzbildung | 2. SC/KA-Forum | Katrin Schlegel | 24.07.2019 1

1

1

1

1

2 2

2

2

3

3

3 3

4

4

4

4 5

5

5

5

Gewerkeoptimale Sequenzbildung | 2. SC/KA-Forum | Katrin Schlegel | 24.07.2019 1

1

1

1

1

2 2

2

2

3

3

3 3

4

4

4

4 5

5

5

5

1

Figure 3.1.: Production chart

charges a high rack warehouse with painted bodies, which functions as storage and
sorting place. This so-called main buffer assembles the pearl chain sequence for the
final assembly. The filling of the main buffer has to be monitored at all times and has
to be manually adjusted if necessary. The buffer size has to be checked for sufficiency
with every launch of a new model. Costs for construction, support, monitoring and
adjustments sum up to a significant amount. In the production line, the paint shop
is located between body shop and final assembly (see Figure (3.1)). A car body is
assigned to a specific customer order right from the start of manufacturing. There-
fore, it holds several order defining attributes, of which the following are relevant in
our work: body ID, body type, paint code, model, production number and vehicle type.
When entering the paint shop, the car bodies physically just differ in body type, whereas
they differ in body type and color when leaving. A combination of body type and color
code is called a Rohbaulack variant. Car bodies can switch their assigned orders at sev-
eral stations in the paint shop, if they coincide in body type and color code. We call
the possibility to exchange orders swap option. Exchanges like that are performed for
reasons of different kind such as manufacturing control, supply shortfalls or modifica-
tion of customer request. In the design of the MIP we respect only the main buffer as a
spot with swap options and consider the pairing of car bodies and customer order fixed
from manufacturing start to main buffer.

Depending on the question one is interested in, a sequence in the paint shop can be
considered a sequence of specified virtual orders or of physical Rohbaulack variants.
We justify the latter one by the fact that bodies of the same type and color code can
get the assigned customer order exchanged. Unless noted explicitly, a sequence of
bodies is usually considered a sequence of orders in the following. A third way is to

3.1. Motivation 31

understand a sequence as a sequence of orders that get shifted.
We assume that the bodies traverse the paint shop within one day, the set of orders that
are processed in the same day is being called a daily order set. This definition does not
hold in a factory, since there are bodies that remain in the shop beyond the day limit.

For a better understanding of the process and the resulting challenges we take a peek
at the interior of the paint shop. A rough draft of the organization and the workflow
with focus on relevant details should suffice.
The paint consists of three coats for mat lacquers and four coats for metallic lacquers,
that are applied in dipping baths or spraying booths. Since purging painting tools is
time and money comsuming, bodies are usually stored in a smaller buffer until a certain
amount of one color is accumulated. Besides that, the paint shop might include some
other smaller buffers to assure continuity in the production process. See Figure 3.2 for
an exemplary structure of a paint shop.

order to ensure continuous flow of materials and products. The final
stage of production planning was typically the sequencing stage – here
a build sequence was determined for the orders to be manufactured on a
given day (Epping, Hochstattler, & Oertel, 2004). This stage was very
important because sequencing has a great impact both on production
quality and on costs, since each order has to pass through various
production phases and meet other optimization criteria. This issue,
defined as the Car Sequencing Problem (CSP), has first been described
by Parello, Kabat, and Wos (1986). Despite the huge amount of research
on the CSP done over recent years (Solnon, Cung, Nguyen, & Artigues,
2008), there is still a vast disconnect between the problem considered
in the literature and the real industry problem. The reason is that
continuously increasing demand for individual car features has led to
car variety changes much more frequent than one per day. Customer
orders are delivered to planning systems on an ongoing basis and as a
result, production plans can be determined for a period of 3–4 h, so
there is insufficient information even for a full working shift. In re-
sponse to the impossibility of long-term planning, the structure of the
paint shop has evolved.

2.5. Paint shop structure

Over the years, structure of the production line in paint shop has
changed. Most critically, buffers appeared on the lines. A simplified
structure of the modified paint shop is presented in Fig. 3.

Consideration of buffering is particularly important from the per-
spective of ensuring the continuity of the production process. In the
event of downtime in the paint shop due to lack of paint, the vehicles
are stored in the buffer until it is completely filled. Furthermore, if a
failure occurs in the body shop, car bodies stored in the buffer are

successively transported to an output line – preventing downtime in the
painting process. This solution has been shown to be more efficient and
less fallible than the flow system.

Buffer potential has also been used for one more purpose – to allow
the change of sequence of car bodies transported from the body shop to
the paint shop, so as to minimize the number of painting gun change-
overs. The ideal solution would therefore be to build such a large buffer
that each line would be reserved for a different color (Fig. 4).

In reality, the size of the buffers is limited to the area that remains
unused. The only one field of possible modification is the buffer
structure.

As part of the project, three factories in Central Europe were visited.
Each of them uses buffers with a different structure. The organization of
car flow through the selected buffers is described here in detail.

For all examples, inside blue columns the movement is carried out
vertically (up and down), while transport between buffering positions
(black columns) depends on the buffer structure.

The first buffer structure allows to move a car only within one row
(Fig. 5).

Fig. 2. Stages of car production.

BODY SHOP

PAINT SHOP

ASSEMBLY LINE

CLEANING
STATION

DRYING
STATION

CLEANING
STATION

QUALITY
CONTROL
STATION

PAINTING
STATION OF THE

INNER BODY

PAINTING
STATION OF THE

OUTER BODY

PAINTING STATION – PRIMER PAINT

PAINTING
STATION OF THE

INNER BODY

PAINTING
STATION OF THE

OUTER BODY

PAINTING STATION – COLORLESS PAINT

PAINTING
STATION OF THE

OUTER BODY
– MANUAL

PAINTING
STATION OF THE

OUTER BODY

PAINTING STA-
TION OF THE
INNER BODY

PAINTING STATION – BASE PAINT

DRYING
STATION

BUFFER

BUFFER

BUFFER

Fig. 3. Structure of paint shop equipped with buffers.

Fig. 4. Structure of ideal buffer with reserved line.

S. Bysko, et al. &RPSXWHUV�	�,QGXVWULDO�(QJLQHHULQJ������������������

�

Quelle: [Bys+20, Fig. 3.]

Figure 3.2.: Structure of paint shop.

Different buffer structures can be found among European automotive manufacturers.
For an interesting overview and discussion on this issue see [Bys+20].
The permanent need to reduce production costs while meeting manufacturing and con-
sumer related due dates gives raise to the question, if there is a way to control both,
body shop and paint shop, in order to minimize the size of the main buffer.

32 3. The Mixed Integer Model

This research focuses on the paint shop, however, the results are adjustable for the
body shop. See section (3.7) for a further discussion on necessary adjustments and the
possibility to combine two models in order to control both, the body shop and the paint
shop.
Between the painting processes there are several stations for quality control, reworking
or manual operations. Besides, we have ovens, cooling sections and polishing stations.
Moreover, there are other work stations that are not directly painting related, e.g. seal-
ing. Due to the architecture of the paint shop as well as the body characteristics, a
sequence of bodies is not preserved during the throughput. The factor that two or more
longitudinal conveyors meet one transverse conveyor and the accumulation of bodies
in a sorter inside the paint shop are examples of the first type. Regarding the second
type we name the fact that not every body requires the same amount of time for re-
working and that rarely requested color codes may have more time spent in the buffer
in the paint shop.
Many of those factors being non-deterministic challenges the control of the paint shop.
Assuming the main impact on the sequence perturbation is carried by properties of the
bodies, essentially the paint, we decided to consider the paint shop a black box, that
transforms an input sequence into a perturbed output sequence.

3.2. Notation and setup

Originating from the automotive use case decribed above (see Section 3.1) we set the
problem in a more general mathematical context. Therefore, it is required to fix some
notation. Some of the terms might have been mentioned in the work so far. For the
sake of completeness we give rigorous definitions as well as a concrete example in
terms of a use case in the following.

Let A1, . . . ,Am denote properties and let A = {A1, . . . ,Am} denote the set of those
properties. For each property Al let there be given a finite number of characteristics
Al = {a1

l ,a
2
l ,a

3
l , . . .}. In the use case of this research we focus on six properties

1. body ID

2. body type

3.2. Notation and setup 33

3. color code

4. model

5. production number

6. vehicle type.

The characteristics of every property are given in the form of numerical codes of a
specific length.

Let
G : A1 �!A2⇥ · · ·⇥Am (3.1)

be a map. We call an element A = (a1, . . . ,am) 2 Graph(G)⇢A1⇥ · · ·⇥Am an order.
In our use case an order is a full specification of a vehicle corresponding to a customer
request 1. An order is characterized by its characteristic in property A1, respectively
the body ID.

Let

tl : Graph(G)�!Al , (3.2)

(a1, . . . ,am) 7! al (3.3)

denote the projection on the lth component. On a set of orders we define equivalence
classes by the quotient

A
.

tl1⇥ · · ·⇥ tlL
, (3.4)

where {tl1 , . . .tlL}⇢ {t1, . . . ,tm} with L 2 N, L < m and

tl1⇥ · · ·⇥ tlL : Graph(G)�!Al1⇥, . . . ,⇥AlL , (3.5)

(a1, . . . ,am) 7! (al1 , . . . ,alL) . (3.6)

Hence, we have

(a1, . . . ,am)⇠ (a01, . . . ,a
0
m)() tli(a1, . . . ,am) = tli(a

0
1, . . . ,a

0
m) . (3.7)

We denote the equivalence class of an order (a1, . . . ,am) = A by [A]. The projections

1At the time of our tracking, e.g entrance and exit of the paint shop, the physical order carries the six
properties mentioned above. A completely manufactured one carries far more.

34 3. The Mixed Integer Model

defining the quotient space (3.4) will always be clear from context, so we omit them in
the notation of the equivalence classes.

Furthermore, for each fixed set of orders {A1,A2, . . .} there exists a family of sequences
jt : N �! {A1,A2, . . .}. We denote a sequence by (xi

j), where i denotes the order Ai

and j denotes its position within the sequence.
Let

⇣
S,(xi

j),(y
i
j̃)
⌘

be a tuple of a finite set of orders S = {A1, . . . ,An} and two finite
sequences (xi

j),(y
i
j̃) of orders Ai 2 S. For the length n of a sequence we have

n((xi
j)) = |S|. Since the elements are pairwise different a sequence (xi

j) can also be
identified with a permutation in Sn or a permutation matrix X = (xi j) 2Matn⇥n({0,1})
in the natural way.

xi j =

8
<

:
1 if order xi is at position j within the sequence ,

0 else.
(3.8)

Remark. The identification of a sequence with the permutation or the permutation ma-
trix are 1-to-1 maps

permutation

permutation matrix

sequence

1-1

1-1

1-1

Depending on the mathematical context we prefer one interpretation or the other. For
the sake of readability we omit the brackets in the notation from now on and write x j

i

and xi j for a sequence and permutation or matrix, respectively.

We extend the definition of equivalence classes 3.4 on an order set to sequences and
analogously to permutations and permutation matrices, respectively. For two sequences
x j

i , yk
i we define

x j
i ⇠ yk

i () xi ⇠ yi, for all i = 1, . . . ,n . (3.9)

The equivalence class of x j
i is denoted by [x j

i]. Again, we omit the notion of the pro-
jections defining the relation, since they are usually clear from context.

3.2. Notation and setup 35

In the presented use case let S be a daily order set, that is the set of orders which are
manufactured in the paint shop on a given day. This number may vary daily, so we
consider n arbitrary but fixed during the optimization.2

Every order carries two time stamps. Ordering by one provides the input sequence,
that is the sequence in which the orders enter the paint shop. Ordering by the other
time stamp gives us the output sequence, in which the orders leave the shop. Table 3.1
shows the format of the use case data.

body ID body
type

paint
code model production

number
vehicle

type time In time Out

1700159 7034 197 22215912 9398284 V222 01.07.2019
06 : 38

01.07.2019
21 : 38

1700164 7036 992 22215612 9398217 W222 01.07.2019
06 : 40

01.07.2019
22 : 03

1700188 7067 197 22216612 9398205 V222 01.07.2019
07 : 49

01.07.2019
20 : 39

1700281 7034 998 22215612 9398090 V222 01.07.2019
06 : 52

01.07.2019
20 : 43

Table 3.1.: Data format of orders

Since every order is assigned to a body from production start, the number of orders
equals the number of car bodies.
We differ three kinds of sequences

(i) sequence of physical bodies,

(ii) sequence of virtual customer orders,

(iii) sequence of Rohbaulack variants.

Recall, that an order is assigned to a body at any time but may get interchanged. After
distinguishing them we now keep those three perspectives in mind. Where necessary
we will explicitly mention the perspective to choose.

Considering the paint shop a black box, we can think of the process therein as a permu-

2In production orders not rarely remain in the paint shop beyond one or more daily order sets due to
manufacturing reasons such as reworking. We neglect this in our model and assume that all orders
which enter the paint shop one day, leave it the same day. In Section 3.7 we discuss the possibilites
of adjusting the model for application.

36 3. The Mixed Integer Model

tation of order sequences or as shifting of single orders within position 1 to n, where
the corresponding permutation matrix carries stochastic entries. We denote a shift for-
wards within the sequence with negative sign and backwards with positive sign. Let

di =�(j� j̄) (3.10)

be the shift that xi received during the throughput, where j is its input position and j̄
its output position.
The shift of any order passing the paintshop depends on two factors. It is the result of
the interactions of the orders nearby as well as the intrinsic behavior of that order itself.
Assume, that this behavior can be tightened3 to a fixed subset of the set of properties.
We call this subset set of defining properties Ad p. Note, that we have A1 /2Ad p.

At some point of the thesis we refer to the data from production as historic input/output
sequence in order to distinguish them from calculated or artificial orders. We call the
default output sequence, which is aimed to be reached with high probability and low
deviation, optimal output sequence. Note, that the term “optimal” refers to production
planning in the assembly line, not to the quality of MIP solutions. This optimal output
sequence is dictated by the final assembly. In the factory, single orders of the optimal
output sequence may be rearranged or put on hold. We neglect this and consider the
optimal output sequence to be fixed.

In the use case we set L = 2 and tl1 = t2,tl2 = t3. For two orders a = (a1, . . . ,a6) and
a0 = (a01, . . . ,a

0
6) of a daily order set, we have

(a1, . . . ,a6)⇠ (a01, . . . ,a
0
6)()

t2(a1, . . . ,a6) = t2(a01, . . . ,a
0
6) and t3(a1, . . . ,a6) = t3(a01, . . . ,a

0
6) .

(3.11)

Two orders are equivalent, if - and only if - they coincide in body type and color code.
We say the orders are of the same Rohbaulack variant.

Determining probability functions

For a fixed set of input sequences {xi
j} let W denote the set of possible output se-

quences, that is the set of permutations of each input sequence. For each order in the

3In the sense that probability functions (discussed in Section 3.2) with respect to that set are time-
independent and of high regularity.

3.2. Notation and setup 37

input sequences let X : W �! Z denote the random variable that describes the shift
X(w) experienced by the order regarding the input sequence and the event of output
sequence w4.

Let Ad p = {Am1 , . . . ,Amm} ⇢ {A2, . . . ,Am} be the set of defining properties. For
each element a = (am1 , . . . ,amm) 2 Am1 ⇥ · · ·⇥Amm let Pa denote the probability
distribution of shifts for orders of characteristics a

Pa :[�n+1,n�1]\Z�! [0,1] (3.12)

k 7! Pa(k) = Â P̃X(X = k) (3.13)

where the sum over all random variables is corresponding to orders of specification
a .

For every pair of input and output sequences, for every order in those sequences de-
termine the shift. Then, for each element a 2Am1⇥ · · ·⇥Amm the relative frequency
distribution can be understood as approximation of the corresponding probability dis-
tribution P and set

Pa(k) :=
|{orders of characteristics a with shift k}|

|{orders of characteristics a}| . (3.14)

Let fa denote the probability function

fa(x) =

8
<

:
Pa(k) = pk if x = k 2 {�n+1, . . . ,n�1} ,

0 else.
(3.15)

A set of pairs of input and output sequences, for which probability distributions are
determined, is being called profile data set.

For the sake of readability we now drop the reference to the characteristics in the
notation of probability density functions, but refer to the order instead. Write fi for fa ,
if the characteristics of xi equal a = am1 , . . .amm .
Note, that we then have fi = f j, if xi = x j respective the defining properties, that is
x j 2 [xi].

In the following we consider the color code the only defining property. For the sake
of readability and understanding we pass on the general formulation from here on and

4In this section we adapt the notation familiar from the field of stochastic theory.

38 3. The Mixed Integer Model

continue in terms of the use case.
Let C = {c1, . . . ,cC} denote the set of different colors, that appear in the paint shop5.
Fix a daily order set {x1, . . . ,xn} and the associated optimal output sequence ỹ = ỹi

j̃,
set by the assembly line. Let x, y be two sequences consisting of the orders in that
daily order set. Consider the quotient {x1, . . . ,xn}�p3 . Let lh denote the size of the
equivalence class given by p�1

3 (h) for h = 1, . . . ,C. Let sh,k(x,y) be the number of
orders of color h and shift k from sequence x to sequence y.
Since it will either be clear from the context, to which two sequences the shift refers, or
mentioned explicitly, we just write sh,k. With this notation, the quotient sh,k

lh
denotes the

relative frequency of a shift by k positions among orders of color h, for k = �n, . . . ,n
and h = 1, . . . ,C.

Combinatorics

With regard to the design of the MIP (see Section 3.5) and the evaluation of the results,
some combinatoric observations are required. For a set of n orders there are

n! (3.16)

possible sequences. On the set of equivalence classes A
.

tl1⇥ · · ·⇥ tlL
we have

n!
’i |[A]i|!

(3.17)

sequences, where the product ’i |[A]i| is over all equivalent classes of orders. For the
size of an equivalence class [x] of sequences we have

|[x]|= ’
i
|[A]i| . (3.18)

Terms for best-case scenario studies

The structure of the problem described above stands out by its high complexity and the
strong dependency of the behavior of the orders within a sequence. Thus, it suggests
itself for a best-case scenario analysis, where the data is of very high regularity that

5In the plant considered in this work we have |C|⇡ 40.

3.3. Analysis of real and artificial data 39

permits estimations on lower bounds of the computational time and upper bound of
the quality of results. For both of the approaches, the MIP and the neural network, we
specify the following terms.
We set Ad p = {A3} = {paint code} for the set of defining properties, and consider
data sets of sequences satisfying |{A3}|= 2, |{A3}|= 4 and |{A3}|= 8 respectively.
Let nC denote the size of a data set constisting of pairs of input and output sequences,
where n denotes the sequence length and C = |{A3}|. We set

nC = 102, 152, 202, 302, 104, 154, 204, 304, 404, 504, 308, 408, 508 . (3.19)

The following terms hold.

(i) For each data set there exists one distribution for the set of defining properties
A3 such that for each sequence in the data set the orders of the sequence fulfill
the distribution6.

(ii) The probability density functions are time-independent.

(iii) Calculations run on sequences of exactly one data set.

In a second step, in order to investigate the behavior of calculation time and the quality
of results, we run further calculations on the terms

(i) Bullet points (i) and (ii) from above

(ii) Profile data are taken from more than one data set, all of the same size.

For details of the neural network data see Section 5.3.2.

3.3. Analysis of real and artificial data

The use case in this work is provided by the Daimler AG. The description of the setup
and the processes as well as the sets of real data relate to a particular plant in Sindelfin-
gen. The remaining part of this chapter gives an analysis of real data and the reasons
for using artificial data instead. An algorithm for data generation is presented and the

6For further explanation see Table 3.3 as well as the whole section about the generation of artificial
data (Section 3.3.2)

40 3. The Mixed Integer Model

results are discussed.
The assumption that the setup and conditions, under which the paint shop is run, don’t
change over time provides us with a significant number of pairs of input and output
sequences. However, note, that we are not able to manipulate the input sequence and,
particularly, have exactly one realization of the experiment in form of the historic out-
put sequence.

3.3.1. Analysis of real data

In order to justify the interpretation of the throughput of a sequence of car bodies
through the paint shop as an experiment in probability theory, it is required to have a
recognizable regularity for each color code or Rohbaulack variant, that are assumed to
be the only elements of the set of defining properties, Ad p = {paint code} or
Ad p = {body type, paint code}. For a probability distribution Pa we analyze statis-
tic values up to the third moment. Mean, variance and skewness are determined for
several subsets of the data to be analyzed according to the method of moving values.
Therefore, we fix two natural numbers shift s and range r , with s < r . For each
element a 2 Am1 ⇥ · · ·⇥Amm get the subsequence of orders of these characteristics.
For each of those subsequences we iteratively determine subsequences of length r ,
where the s th order of the n th subsequence is set to be the first order of the (n +1)th
subsequence until the end of the sequence. Mean, variance and skewness are calcu-
lated for each of these subsequences. Note, that for each order set r and s are fixed
and independent of the number of orders for each color code. This leads to different
numbers of subsequences but offers potential for comparison.
The paint shop is run in a three-shift operation from 0:00 to 24:00. This leads to the
following approach in the data analysis. We fix a continuous period of time and get
the historic output sequence for each day in this time period as the set of orders, that
left the paint shop on that day. Ordering those orders by the date of entry is considered
the corresponding input sequence. Note, that this procedure ignores orders of the same
entry day but an exit day beyond the fixed time period.

For the analysis of real data we request order sets of cardinality 10037, 29994, 1003057.
In terms of cardinality those sets approximately meet the artificial data sets of sequence
length n = 10,30,100, where in each case the data analysis is based on sets of 1000

7On a sidenote: These data sets correspond to the workload of about 7,20 and 70 working days,
respectively.

3.3. Analysis of real and artificial data 41

sequences. The following table (Table 3.2) shows the values for shift and range.

order set size range r shift s

HD-1 10037 200 50
HD-2 29994 300 200
HD-3 100305 500 400

Table 3.2.: Real data analysis, range and shift values

In choosing those values we balanced between having a statistically significant number
of orders per subset and a representative number of subsets for each color code. Despite
the fact that further analysis8 did not show any indication of relations between shift and
position of the order within the sequence, the orders are shuffled for the computation
of the statistical values to ensure that even hidden effects may not fall into account.

The diagrams in Section A.1 show mean and variance values9 for four of the most
common color codes. The values are rounded up to two decimal points.
Since the skewness values are in the range of 10�7 to 10�9 and thus the distributions
can be considered symmetric, we forego the presentation of those.
Focussing on the second data set HD-2 consisting of 29994 orders we determine great
variations in the mean values up to 277 positions over all subsequences (see Figure
A.2a). For a reference, this corresponds to 0.16 to 0.21 of the total number of orders
per sequence. All of the variance values consist of five or six figures (Figure A.2b).
By taking into account the results of both of the other data sets, we conclude that the
greater the data set the greater the variations in mean and variance values and thus the
less stable the behavior of the observed system.
The results of color codes, that are requested more rarely10, are even worse regarding
stability. The main reasons for this include the fact that these car bodies tend to remain

8In the scope of an extensive analysis the data was investigated for the indication of several dependen-
cies, such as ’position within sequence - shift’ and ’color code of predecessor/successor - shift’ and
’Rohbaulack variant of predecessor/successor - shift’. None of these analyses showed any reliable
results. The main reasons may be found in the great number of different factors that cause the shift
of orders and the round-the-clock operation of the paint shop. In a manufactoring view the latter im-
pedes a division of the flow of car bodies into the individual sequences. We leave it at this footnote
and forgo further specifications.

9Due to the different numbers of orders for each color code we get different numbers of subsequences
in the procedure of calculating moving statistical values. Furthermore we bounded the number of
displayed subsequences to 22 for real data and to 30 for artificial data

10We omit a detailed presentation in Appendix A.1

42 3. The Mixed Integer Model

longer in the small buffer, where they are gathered before the topcoat is applied. And
secondly, bodies of rare color codes are rather affected by manually control since they
have less swap options in the main buffer.

We summarize that the analysis has shown that the shift of the car bodies passing the
paint shop can not be attributed to one property or a combination of several properties.
There might be an underlying regularity under a huge noise. On the one hand, manual
operations might have a great influence, on the other hand, there are factors such as
temperature, humidity, air pressure, substrate composition, that can have an impact on
the painting quality and that can not be tightened to specific properties of the bodies.
This lack of regularity is one reason why we felt the need to generate artificial data.

3.3.2. Algorithm for generating artificial data

In order to perform best-case scenario studies on the Mixed Integer Program (Section
3.5) as well as on the neural network (Section 5.3.1), we designed an algorithm to
generate artificial data. We are interested in the dependence of the computational time
and the quality of results from

(i) the overall length of the sequence

(ii) the number of orders of specific properties (e.g. different paints)

(iii) the support sizes of the probability functions.

Since the shift of any individual order is highly dependent on the behavior of the orders
in a neighborhood, we cannot get sequences meeting our desired properties by cutting
off daily sequences of real data. Also, it is not possible to design input sequences that
run through production. In addition, the cardinal number of the daily order set varies
by around 7 to 9%, fluctuations up to 20% are possible. For computational studies
this is an improper situation. On this account we generated artificial input and output
sequences of any desired kind.

We claim, that this algorithm (Algorithm 1) presented in detail in the following is the
most deterministic way of generating data that meet the requirements. Since deter-
minism is measured by the Dirac measure, the phrasing of this claim calls for further

3.3. Analysis of real and artificial data 43

explanation. For each tuple of characteristics a , in this case a 2A3 = {color codes},
we fix an integer ma . For different data sets let |{color codes}| = 2, 4, 8. The color-
specific probability functions describe the behavior of the orders which solely results
from the shift by ma positions as well as the interaction of the orders. In calculating
the sequences, the algorithm does not take into account other factors. In this sense
we consider this method the “most deterministic way” of creating pairs of sequences,
where the shifts of the orders follow probability distributions.

Let nC be a sequence of n orders and C different color codes among these orders.
We take a suitable set of real orders11. Generate a number N  n! of different input
sequences by arranging the orders randomly and sorting out duplicate sequences. The
following table (Table 3.3) shows the color codes and the corresponding shifts ma as
well as the distributions of colors for the first data set of each specification. In total,
we generate sixteen data sets constisting of 1000 sequences for each assignment of n
and C (see (3.19))12. All of these data sets obey different distributions of colors. The
data analysis as well as calculations for the MIP and the neural network are perfomed
first on data sets, where the orders of each sequence follow one paint code distribution,
namely those shown in Table 3.3, column four to six. We call data sets of this kind
mono-distributed and denote them by nC-1. The i th sequence in this set is denoted by
nC-1-i . In a second step, the same computations are performed on data sets where the
sequences are taken out of the sixteen sets mentioned above in equal parts. We call
these data sets poly-distributed. We write nC-2 and nC-2-i for the data set and the i th
sequence, respectively.

11We remark that the body types and thus Rohbaulack variants - in contrast to number and distribution
of color codes - are not specified here. Rohbaulack variants are not relevant for the data analysis
but in the evaluation of MIP results. Therefore, we postpone further comments on number and
distribution of Rohbaulack variants to Section 3.7.

12Except for nC = 102 and nC = 152 where it is not possible to fix sixteen different color code distribu-
tions for combinatorial reasons.

44 3. The Mixed Integer Model

length n paint code shift ma distribution in n2 distribution in n4 distribution in n8

0 n 30

197 -3 0.8 0.35 0.25
775 2 0.2 0.30 0.22
149 -4 0.20 0.10
897 1 0.15 0.05
799 6 0.12
183 4 0.08
831 -4 0.07
992 2 0.11

30 < n 50

197 -8 0.8 0.35 0.25
775 2 0.2 0.30 0.22
149 -4 0.20 0.10
897 10 0.15 0.05
799 6 0.12
183 4 0.08
831 -4 0.07
992 2 0.11

50 < n 100

197 -15 0.8 0.35 0.25
775 11 0.2 0.30 0.22
149 -9 0.20 0.10
897 21 0.15 0.05
799 6 0.12
183 4 0.08
831 -4 0.07
992 2 0.11

Table 3.3.: Color-specific shift and distribution of colors

We summarize that the input sequences in each data set are permutations of each
other13. For each input sequence, for each order of the sequence, calculate the fic-
tional output position j +ma by adding the specific shift ma to the input position j
of the order. In doing so, there might occur positions < 1 or > n and some positions
might be occupied by more than one order whereas others might not be occupied at
all. Sorting the orders by that fictional position in ascending order gives us the actual

13We keep this fact in mind, it will also be vitally important in the evaluation of the MIP results.

3.3. Analysis of real and artificial data 45

artificial output sequence (see Algorithm 1).

Algorithm 1: Artificial data generation

Input: order pool;
n - sequence length;
C - number of colors;
N - data set size;
ma - shift;
distribution for nC;
initialize data set d;
initialize x̂ order sequence;
Function GenerateBasicSequence(n, C, order pool):

fill x̂ with orders of the order pool such that x̂ satisfies nC;
return
for 1 n  N do

x randomPermutation(x̂);
for 1 j  n do

set fictional output position of x j as j+ma ;
end
y x ordered by fictional output position in ascending order;
d.Add(x,y);

end
return d;

See Table 3.4 for an exemplary realization on a set of ten orders.

3.3.3. Analysis of artificial data

We perform the same analysis on the artificial data as on the historic sequences, ignor-
ing the fact that we actually know the underlying deterministic shifts ma . Analogous
to the analysis of the real data, statistical values up to the third moment as well as prob-
ability functions (for a reminder see Section (3.2)) are determined. Table 3.5 shows the
values for shift s and range r .

46 3. The Mixed Integer Model

paintcode
775

197
197

149
197

775
897

775
197

149

input
position

1
2

3
4

5
6

7
8

9
10

fictional
output

position
1
+

2
=

3
2�

3
=
�

1
3�

3
=

0
4�

4
=

0
5�

3
=

2
6
+

2
=

8
7
+

1
=

8
8
+

2
=

10
9�

3
=

6
10�

4
=

6

output
position

5
1

2
3

4
9

8
10

6
7

T
a
b
le

3
.4

.:
Exam

ple
data

generation

3.3. Analysis of real and artificial data 47

order set range r shift s

104 300 200
504 400 300

1008 400 300
2008 400 300

Table 3.5.: Artificial data analysis, range and shift values

In order to perform a best-case scenario analysis, we strive for data of stability and
regularity as high as possible. Section A.2.1 displays the moving statistical values for
the mono-distributed sets nC � i = 104-1, 504-1, 1008-1, 2008-1 rounded up to two
decimal points. Across all data sets and all color codes we have very stable mean
values. The statistical values of the second moment increase with growing sequence
length in a moderate way. Comparing 104-1 to 504-1 and 1008-1 to 2008-1 we note,
that the variance values decrease. However, those are of very little significance due to
the overall order of magnitude.
Section A.2.2 shows the results on poly-distributed sets 104-2, 504-2, 1008-2, 2008-2.
In comparison to values for mono-distributed sets, we obtain greater variations for the
mean values and thus greater variance values. These analyses give an insight into the
strong dependencies of the orders amongst each other and the effect on each others
shift. We take both of them being in a range, so that the data can still be considered
sufficiently good. The skewness values are again insignificantly small, so that the dis-
tributions can be considered symmetric.
Probability distributions are determined for the same eight data sets. Find them at-
tached in Section A.2.3.
As the statistical values let us expect we obtain time-independent probability distribu-
tions. They consistently can be approximated by a Gaussian distribution. We note,
that for n� 50 the graphs show a significant difference for mono-distributed and poly-
distributed data sets. The presented probability functions referring to the latter sets
show, what we might call in this context, a softening. Different color distributions for
the sequences lead to greater support for the probability distribution of each color. De-
spite the fact that the underlying shifts are deterministic, the interaction of the orders
is affected just by varying the distributions of colors.

48 3. The Mixed Integer Model

3.3.4. Discussion of the artificial data

The great variations in mean and variance values even for frequent color codes indicate
that the perturbation of order sequences passing the paint shop cannot be tightened to
the paint of the car bodies. Further analyses did not yield a better choice of the set
of defining properties. Perturbation factors depending on the order position within a
sequence or on properties of predecessor/successor can not be identified as well. Thus,
the real data leaves us with two conclusions: Firstly, they do not meet our requirements
on regularity and thus are improper for extensive testing of the Mixed Integer Model,
that is based on this very regularity. Secondly, on the application side there is the con-
cern that the sheer number of perturbating factors does not allow controlling the paint
shop as a whole. Additionally, the inflexibility - as far as in particular the sequence
length is concerned - made it necessary to discard the real data.

The algorithm (Algorithm 1) provides us with some comfortable degrees of freedom,
such as the choice of sequence length, number of color codes, et cetera. By taking
deterministic shifts as a basis, the dispersion of shifts is the result of the interaction of
the orders solely. This leads to eminently stable moving mean and variance values and
time-independent color-specific probability functions.
As a downside of this approach we only have one realization for each experiment, i.e.
one output sequence for each input sequence. However, we assume that this is the
case in many applications in the industries, since the orders may often correspond to
customer demands and cannot be exchanged or arranged arbitrarily. Thus, with use
cases in mind, the choice of this approach seems legitimate.
While the statistical values and the probability distributions show the desired extent
of stability, poly-distributed data sets make the dependencies apparent. The effect of
varying color code distributions within a data set on mean and variance values justify
the term of best case studies for mono-distributed data sets. They may indeed be
considered the best conditions the Mixed Integer Model can be tested for. We conclude
that Algorithm 1 generates artificial data satisfying the requirements on stability.

3.4. Measure on the set of sequences

There are two candidates suggesting themselves for the choice of a measure, depending
which identification we use. On the set of sequences of the same length we have the

3.4. Measure on the set of sequences 49

Hamming distance as a natural measure.

Definition 3.1. The Hamming distance dH measures the number of substitutions that
are required to transform one string into the other [Mac03, page 206].

Example. The Hamming distance dH between the two strings

110101110

111101100

is 2.

On the symmetric group Sn we have the Cayley distance.

Definition 3.2. The Cayley distance dC is the minimum number of transpositions
needed to transform one permutation into another

dC(s ,p) = min{n
��st1 · · ·tn = p, ti transpositions} . (3.20)

It is well-known that the Cayley distance is a metric in Sn [LAR12].

Both these measures do not meet all of our requirements. We need a measure that
respects the number of permutations and the shift length of the orders.

Definition 3.3. Let xi
j and xi

k denote two sequences of one daily order set. We define
the distance d between two sequences

d (xi
j,x

i
k) =

n

Â
i=1

| j� k| . (3.21)

We define a second measure on the equivalence classes of Rohbaulack variants

d(xi
j,x

i
k) =

n

Â
i=1

| j� k̃| , (3.22)

where
k̃ =min{m

�� t2(xi
j) = t2(xk

m) and t3(xi
j) = t3(xk

m)

and xk
m is not assigned to an order yet}

=min{m
�� xi

j = xk
m in color and body type

and xk
m is not assigned to an order yet} .

(3.23)

50 3. The Mixed Integer Model

Note, that we can identify the following relationship between d and d by using the
equivalence relation (3.4)

d([xi
j],[x

i
k]) = min{d (xi

j, x̃
i
k)
�� x̃i

k 2 [xi
k]} . (3.24)

Recall, that every sequence xi
j can be identified with a permutation matrix A in Matn⇥n({0,1}).

Let n denote the vector (1, · · · ,n) 2 R
n. Then, for d and d we have

d (A,B) =
n

Â
i=1
�(Ain�Bin) (3.25)

and
d(A,B) = min{d (A, B̃)

�� B̃ 2 [B]} . (3.26)

For a fixed sequence length n, the distances d and d are metrics. Identity of indis-
cernibles and symmetry are obviously fulfilled. In order to prove the triangle inequality
let xi

j, xi
k, xi

l be sequences. We note, that for each summand we have for l̃ 2 R+

| j� k|= | j� l̃ + l̃� k| | j� l̃|+ |l̃� k| . (3.27)

This holds in particular for l̃ = l. Summing over all orders in the sequence proves
the triangle inequality. With identity (3.24) it follows that d also fulfills the triangle
inequality.

Remark. Both of the Definitions 3.21 and 3.22 are motivated by the operating principle
of the main buffer. In a simplified scheme, each painted car body is stored in the main
buffer until the retrieval by the assembly line. Definition 3.22 respects the possibility
of order swaps. We assume that a buffer works with a first-in-first-out principle within
each equivalence class of Rohbaulack variants. Thus, an order, that is placed on the
correct position considering its color and body type still makes a positive contribution
to the distance, if there is an order of the same Rockbaulack variant in the buffer
already.

3.5. Mixed Integer Model 51

3.5. Mixed Integer Model

3.5.1. Idea

Information about the behavior of the paint shop can be found accumulated in the
color-specific probability functions as well as in the mean values of shifts. The infor-
mation contained in the color-specific probability functions may be considered more
detailed, whereas the mean values offer the possibility to respect the order sequence in
a specific input sequence.
We consider the following procedure a simulation of the paint shop: for a given profile
data set determine the mean value of shifts for each color code. Let x be a suitable
input sequence, for each order in x let the fictional output position be the sum of the
input position and the mean value corresponding to the color code of the order. The
simulated output sequence y is determined by sorting the orders by their fictional out-
put positions in ascending order14.
We combine the power of the probability functions with the flexibility of the mean
values of shifts in the design of the Mixed Integer Model determining an optimal input
sequence.
The objective function minimizes the distance (see (3.26)) of a corresponding simu-
lated output sequence y to the given optimal output sequence ỹ over all possible input
sequences under the condition that the relative shifts sh,k

lh
, regarding an input sequence

x and the simulated output sequence y, minimize the distance to the corresponding
probability function pointwise

minÂ
h

Â
k

����
sh,k

lh
� fh(k)

���� . (3.28)

3.5.2. Mathematic formulation of the MIP

This section is dedicated to the formulation of a MIP to determine an optimal input
sequence for the use case presented in Section 3.1. Table 3.6 gives an overview of the
MIP variables.

14This procedure is quite similar to the one in the artificial data algorithm with a key factor that the
orders are shifted by the mean value in which the interaction of orders is accumulated.

52 3. The Mixed Integer Model

input
ỹig optimal output sequence i,g = 1, . . . ,n

decision variables
xi j input sequence i, j = 1, . . . ,n

binary variables
xibl

m auxiliary variable l,m = 1, . . . , |[xi]|
rig auxiliary variable i,g = 1, . . . ,n

integer variables
zg number of orders whose position is smaller than pg g = 1, . . . ,n
pi position of order xi after shifting by mean i = 1, . . . ,n

notation
t t = t2⇥ t3 projection on Rohbaulack variant

|[xi]| cardinal number of [xi] 2 ỹ�t i = 1, . . . ,n
t |[xi]|
l position of the lth order of Rohbaulack variant t(xi) in ỹ l = 1, . . . , |[xi]|, i = 1, . . . ,n

constraint Fỹ  F⇤+e
sh,k number of orders of color h and shift k15 h = 1, . . . ,C, k =�n+1, . . . ,n�1
lh number of orders of color h h = 1, . . . ,C
Lhi slack variable h = 1, . . . ,C, i = 1, . . . ,n

Table 3.6.: Variables in MIP (3.29a)-(3.29m)

15regarding optimal output sequence ỹig and xi j

3.5. Mixed Integer Model 53

The MIP is given by

min
x

w(x) = min
xi j

n

Â
i=1

�����zi�

|[xi]|

Â
l=1

xibl
m ⇤ t |[xi]|

l

!����� (3.29a)

s.t
|[xi]|

Â
l=1

xibl
m = 1 for all m = 1, . . . ,|[xi]| (3.29b)

for all equivalence classes in ỹ�t
|[xi]|

Â
m=1

xibl
m = 1 for all l = 1, . . . ,|[xi]|, (3.29c)

for all equivalence classes in ỹ�t
xibl

m 2 {0,1} (3.29d)

zg =
n

Â
i=1

rig�1 for all g = 1, . . . ,n (3.29e)

pg� pi  rigM for all i,g = 1, . . . ,n (3.29f)

� (pg� pi) (1� rig)M for all i,g = 1, . . . ,n (3.29g)

rig 2 {0,1} for all i,g = 1, . . . ,n (3.29h)

pi =
n

Â
j=1

xi j ⇤ j+µi for all i = 1, . . . ,n (3.29i)

Fỹ(x) F⇤+ e (3.29j)
n

Â
i=1

xi j = 1 for all j = 1, . . . ,n (3.29k)

n

Â
j=1

xi j = 1 for all i = 1, . . . ,n (3.29l)

xi j 2 {0,1} (3.29m)

54 3. The Mixed Integer Model

where F⇤ denotes the objective value of an optimal solution of the mixed integer pro-
gram

min
x

Fỹ(x) = min
xi j

C

Â
h=1

n�1

Â
k=�n+1
1i+kn

����
sh,k

lh
� fh(k)

���� (3.30a)

s.t
n

Â
i=1

xi j = 1 for all j = 1, . . . ,n (3.30b)

n

Â
j=1

xi j = 1 for all i = 1, . . . ,n (3.30c)

xi j 2 {0,1} for all i, j = 1, . . . ,n (3.30d)

Number of variables for MIP (3.29a)-(3.29m)16:

2n2 +2n+O(n2) ,

of which 2n2 +O(n2) binary and 2n integer.
(3.31)

Number of variables for MIP (3.30a)-(3.30d)17:

n2 +O(2n�1) ,

of which n2 binary and O(2n�1) continuous.
(3.32)

Remark. Without loss of generality assume that the optimal output sequence ỹi j pro-
vided by the final assembly can be identified with the identity matrix E(n). This can
always be achieved by a suitable choice of the is. The programmatic formulation dif-

16Let C 2 N, C := maxi{|[x]i|
�� [x]i 2 {xi}

�
t } n and let C̃ 2 N, C̃  n denote the number of equiva-

lence classes in {xi}
�

t . Then, we have 2n2 +2n+C̃C2 as upper bound on the number of variables.
17Consider formulation (3.33a)-(3.33f) in order to see that. Let D denote the number of equivalence

classes in {xi}
�

t3 , the number of shifts within a sequence is 2n�1.

3.5. Mixed Integer Model 55

fers from the mathematic formulation mainly for problem (3.30a)-(3.30d).

min
x

Fỹ(x) = min
xi j

C

Â
h=1

Â
�n+1kn�1

1i+kn

Lhk (3.33a)

s.t Lhk 

0

B@
Ât3(xi)=h

t3(yi)=h
xi(i+k)

ỹii
� fh(k)

1

CA for all h = 1, . . . ,C, i = 1, . . . ,n

(3.33b)

Lhk ��

0

B@
Ât3(xi)=h

t3(yi)=h
xi(i+k)

ỹii
� fh(k)

1

CA for all h = 1, . . . ,C, i = 1, . . . ,n

(3.33c)
n

Â
i=1

xi j = 1 for all j = 1, . . . ,n (3.33d)

n

Â
j=1

xi j = 1 for all i = 1, . . . ,n (3.33e)

xi j 2 {0,1} for all i, j = 1, . . . ,n (3.33f)

Remark. Forgetting about constraint (3.29j) we have

w : Sn �! Sn
�

t �! N (3.34)

and thus the search space is the Birkhoff polytope Bn.

The summand e in constraint (3.29j) can be interpreted as weight. The smaller the
value of e , the more weight on meeting the color-specific probability distributions
(3.29j) compared to minimizing the distance between the simulated output sequence
and the optimal output sequence (3.29a).

We usually refer to MIP (3.29a)- (3.29m) as the MIP in this work.

Remark. Note, that the fictional output positions do not necessarily coincide with the
positions within a corresponding unique output sequence (where every position is oc-
cupied by exactly one order). For reasons of saving on variables as well as the bound-
edness of the optimization problem (-constraints), we choose to work with output po-
sitions determined as number of orders that have a lower value for pi = Ân

j=0 xi j j+µi

56 3. The Mixed Integer Model

(see constraint (3.29i)). This may lead to pi = pĩ for i 6= ĩ. The calculation of the
input sequence is not affected by this nonunique positions. However, note, that it may
lead to objective values of the MIP that can not be interpreted as the distance between
calculated output sequence and optimal output sequence readily, such as an objective
value equal to 1.

3.5.3. Stability analysis of the MIP

It is not trivial to check the results of the MIP for quality due to its non-deterministic
character. Since we have just one realization for each input sequence we are not able
to check for distribution of output sequences. However, there are required conditions
that can be investigated, such as stability of the results.
Roughly spoken for two “similar” optimal output sequences we expect the input se-
quences calculated by the model also to be “similar”. For an optimal output sequence
y1 let x1 denote the corresponding optimal input sequence. Then, we swap the posi-
tions of M orders and get the perturbed optimal output sequence y2. Let x2 denote the
corresponding input sequence, respectively. Let d be the measure defined in (3.21)
and let zx1x2 denote the number of orders that got swapped permuting x1 into x2. The
dependence of the probability function on the color of the orders motivates the inves-
tigation of color-internal and cross-color swaps. We examine sequences of up to 50
orders for reasons of calculation time.

3.5. Mixed Integer Model 57

Instance M Swap
color-internal (d (y1,y2),z y1y2) (d (x1,x2),z x1x2) D= d (x1,x2)

z x1x2

102

2 yes (2,2) (2,2) 1
2 no (4,2) (4,2) 2
3 yes (4,3) (4,3) 4

3 = 1.3
3 no (4,3) (4,3) 4

3 = 1.3

104

2 yes (2,2) (4,2) 2
2 no (6,2) (10,4) 5

2 = 2.5
3 no (6,3) (10,8) 5

4 = 1.25

204

2 yes (6,2) (10,2) 5
2 no (6,2) (16,12) 4

3 = 1.3
3 no (6,3) (6,3) 2

208

2 yes (4,2) (6,2) 3
2 no (4,2) (24,14) 12

7 ⇡ 1.71
3 no (6,3) (12,9) 4

3 = 1.3

504

2 yes (4,2) (12,9) 4
3 = 1.3

2 no (6,2) (28,21) 4
3 = 1.3

4 no (12,4) (30,17) 30
17 ⇡ 1.73

508

2 yes (4,2) (2,2) 1
2 no (6,2) (28,15) 28

15 = 1.86
4 no (10,4) (42,28) 3

2 = 1.5

Table 3.7.: Results of the stability analysis for MIP (3.29a)-(3.29m)

Table 3.7 shows that the MIP is stable in the sense that small changes in the optimal
output sequences cause small changes in the calculated input sequences, where we un-
derstand small changes in the optimal output sequence as a relative shift per order
D < 3 independently of the sequence length n. In the generation of perturbed optimal
output sequences we achieved the property D < 3 by shifting few orders by few posi-
tions (by an absolute value of 2 to 4 positions).

58 3. The Mixed Integer Model

We have d (x1,x2)� d (y1,y2) in most and zx1x2 � zy1y2 in all of the cases. The instances
504 and 508 show higher values for d (x1,x2) with no color-internal swap. However,
the relative shift per order D is < 2 for all calculations, so that we conclude, that the
MIP is stable in the sense defined above. There is no detectable difference between
color-internal and cross-color swaps.

3.6. Computational results of the MIP

Find extensive computational results of the MIP attached in Appendix B. We run the
MIP on mono-distributed and poly-distributed data sets

102-1, 102-2, 104-1, 104-2, 152-1, 152-2, 154-1, 154-2,

202-1, 202-2, 204-1, 204-2, 302-1, 302-2, 304-1, 304-2, 308-1, 308-2,

404-1, 404-2, 408-1, 408-2,504-1, 504-2, 508-1, 508-2

For each instance the profile data consists of 1000 pairs of input and output sequences.
Due to the great variation in factors such as explored nodes and computational time
the optimization is performed for 100 sequences for each instance. Dependencies and
correlations among results for computation time, number of explored nodes, number
of orders and number of colors are determined on the basis of mean and variance
values.

Table B.2 displays mean µ and standard deviation s values for the number of explored
nodes rounded up to integers as well as for computational time rounded up to four deci-
mal points and the mean value of objective values rounded up to one decimal point. We
note, that for the instances 302-2, 404-1, 404-2, 408-1, 408-2, 504-1, 504-2, 508-1, 508-2,
calculations got interrupted by reaching the time limit. The statistic values in Table B.2
are determined from the results when each calculation terminates, whether an optimal
solution is found or the time limit is reached. The share D of interrupted calculations
is specified in the last column of the table, if it differs from the whole set.
The standard deviation of number of explored nodes as well as of the computational
time summarizes the great variations in both of these parameters. We observe that
µ(obj val) is always smaller for the mono-distributed set than for the corresponding
poly-distributed set. With the exception of set 302-1 and 202-2, the average objective
value µ(obj val) increases with growing n for fixed number of color codes and mode

3.6. Computational results of the MIP 59

of color distributions.
Comparing the results for mono-distributed profile data to those of the corresponding
poly-distributed sets, the former one exceeds the latter one by at least approximately
34% in number of explored nodes (see pair of values 104-1 and 104-2) and about 31%
in computational time18 (see 154-1 and 154-2).
This survey also shows the impact of the number of defining properties and of their
characteristics on the complexity of the problem, the size of the search space in par-
ticular. The smaller the number of different color codes in the data set, the greater the
number of explored nodes and the longer the computational time. Potential reasons for
this are reviewed in Section 3.7.

For each instance, find 10 of the 100 calculations explicitly presented in Table B.1. We
consider the number of explored nodes, number of simplex iterations, model status,
objective value, MIP gap in % and computational time in s. Over all instances there are
great variations in number of explored nodes, and thus in number of simplex iterations,
and the computational time.19

In analogy to Table B.2 Table B.4 shows the statistic values for the identical 100 se-
quences per instance with setting the MIPStart attribute in the GurobiTMOptimizer. For
each calculation the result of the mixed integer program (3.30a)-(3.30d) is passed to
the solver before the optimization begins. We observe the same correlations between
the number of color codes and the calculation time or the number of explored nodes as
well as between the calculation time or the number of nodes for mono-distributed as
well as for poly-distributed data sets.

The comparison of the results with and without MIPStart shows the range of the impact
MIPStart has on the number of explored nodes and the computational time. There are
several gradations from performance improvement by around 87.5% in computational
time20 to a negative effect in form of an extension by around 276%21. This appears to
be independent from the MIPStart objective value. The GurobiTMOptimizer logs for
sequence 302-4-96 (see Figure B.3 and Figure B.4) are an example where the use of
MIPStart extends the computational time by the factor 3.7 although the objective value
of the start solution22 is significantly smaller than the objective value of the first few

18Both with regard to the mean values.
19We remind that sequences of mono-distributed data sets are permutations.
20for data set 304-1
21for data set 202-1
22objective value MIPStart: 9

60 3. The Mixed Integer Model

incumbents23 GurobiTMfinds by itself. In this case the time consuming part is prov-
ing optimality. Passing a start solution can lead to an adverse path through the search
space. There are other sequences where closing the gap between lower and upper ob-
jective bound is the major portion of the computing time, with or without MIPStart.
For further examples see Table B.3. It itemizes the objective value of the MIPStart so-
lution, the number of explored nodes, model status, objective value of the solution, gap
in % as well as computational time for the exact same sequences as those presented in
Table B.1. We observe similar variations in the values as in Table B.1 and additionally
in the objective value of the MIPStart. All instances are effected by the phenomenon
that MIPStart reduces the computing time for some sequences, while it keeps the time
uninfluenced or even extends it for others. We examine the impact exemplarily with
four sequences (see Table 3.8).

difference obj values of MIPStart and solution

small great

M
IP

St
ar

te
ffe

ct
on

co
m

p
tim

e

po
si

tiv
e

204-1-8 202-2-10

ne
ga

tiv
e

308-1-4 152-2-8

Table 3.8.: Examples overview

Problem 204-1-8 shows the MIPStart effect we hoped to see for all the problems. The
difference between the objective value of the start solution and of the solution is 2 and
thus quite small (see Table B.3). The use of MIPStart reduces the computational time
by the factor 0.5.
The second example for a desired effect is problem 202-2-10. The difference of both
objective values is rather big (9). MIPStart brings the computational time down from
68.89s to 21.80s.
For problem 152-2-8 the difference of the objective values also equals 9. However,

23objective value first three incumbents 92,23,21

3.7. Discussion of the MIP results 61

MIPStart leads to an extension of the computing time by the factor ⇡ 4.
Problem 308-1-4 is an example for the fourth case. Despite a very small difference of
1, the use of MIPStarts extends the computing time from 8.42s to 33.28s.

The average growth of computational time for n4 data sets is given by Figure B.1 for
mono-distributed sets and Figure B.2 for poly-distributed sets. Recall that the number
of variables of MIP (3.29a)-(3.29m) is given by 2n2 + 2n+O(n2). The figures show
the computational time subject to the leading term 2n2. In each case the values are
plotted with a linear axis and a logarithmic axis. For sequence length n� 30 there are
sequences in the data set, where the optimization does not terminate with an optimal
solution but by reaching the time limit. We include these sequences in the calculation
by taking the time limit of 50000s as an approximation of the computational time.
Each diagram shows six graphs. They refer to calculations with and without MIPStart
in equal parts. Data points derived from the results in Table B.2 and B.4 are connected
with a dotted line for n � 30. The exponential fits with the continuous line are de-
termined on the basis of computational times for sequence length n < 30, where each
problem is solved until optimality. The dotted lines represent the exponential fit cal-
culated by taking all sequence lengths into account. The graphs can be understood as
upper and lower bounds. The use of MIPStart has a significant effect on the average
computational time for n > 20. By setting a time limit, this effect has less impact for
n = 50 in proportion. We have similar developments for mono- and poly-distributed
sets with stronger growth over all graphs.

The GurobiTMparameters TimeLimit and MIPGap are set to 50000s and 3e� 2, re-
spectively. The weight in constraint (3.29j) is set to e = 0.02.

The results have been generated with an Intel-i7 CPU, GurobiTMOptimizer version
8.0.1 on a Lenovo notebook, code in Visual-C# 2017.

3.7. Discussion of the MIP results

The computational time decreasing with growing number of color codes for a fixed
n, arises from combinatorics. The objective function (3.29a) measures the distance
between two sequences on the level of Rohbaulack variants. Let r be the number of
Rohbaulack variants in a daily order set and let bi, i = 1, . . . ,r be the number of orders

62 3. The Mixed Integer Model

of Rohbaulack variant i. Then, the number of sequences modulo Rohbaulack variants
is given by (see Section 3.2)

n!
’r

i=1 bi
. (3.35)

The number and distribution of body types and thus of Rohbaulack variants is not fixed
in the artificial data algorithm (Section 3.3.2). However, the random selection of order
configurations from real data secures that the artificial data show the correlation: the
smaller the number of color codes the greater the size of equivalence classes for each
Rohbaulack variant. Thus, less color codes presume less different sequences modulo
Rohbaulack variants and more equivalent sequences. We interpret the phenomenon of
increasing computational time with decreasing number of color codes as a result of
GurobiTMstruggling with constraint (3.29j).

Sequences equivalent to the optimal solution modulo Rohbaulack variant do not nec-
essarily satisfy constraint (3.29j). The greater the number of equivalent sequences, the
greater the risk for the solver to follow a path into depth and to explore nodes that can
be pruned by checking constraint (3.29j) for integer solutions. In the progress of the
branch-and-cut algorithm the solver follows tree paths into a depth, where constraint
(3.29j) can only be satisfied by the partly relaxed solution of the node, but not by an
integer solution of this path.

This effect is enhanced by the following, also concerning constraint (3.29j) and MIP
(3.30a)-(3.30d). We explain it by the example of 304-1 and 302-1. Let xi

j 2 304-1
and let x̃k

l 2 302-1 be sequences. Then, there exists a color code c in the orders of x̃k
l

such that there are more orders of color c in sequence x̃k
l than there are in sequence xi

j.
Suppose the number of orders are two and five, respectively. We consider orders of
one color but we keep the strong dependencies of all of the sequence orders in mind.
Suppose, there are two possibilities for the orders of color c taking shifts, that are both
optimal. Figure 3.3 shows the probability distribution of color code c (data points on
solid line) as well as the relative frequencies for two possibilities of the orders taking
shifts. Let both possibilities correspond to nodes in the search tree of an optimization
call for MIP (3.29a)-(3.29m). Suppose the filled bars are part of a feasible solution and
the lined bars are part of an infeasible solution due to violation of constraint (3.29j).
Comparing both cases (Figure (3.3) and Figure (3.4)), we can imagine that infeasibility
can be detected earlier in optimization process. However, in the five-orders-case there
is the possibility to follow the corresponding tree path, since the partly relaxed solution
is still feasible for some of the five orders fixed to a position. Checking constraint

3.7. Discussion of the MIP results 63

(3.29j) for an integer solution regarding variables xi j (corresponding orders of color c
as well as others colors), that are already fixed to 0 or 1, may detect infeasibility at an
earlier node.

0

0.2

0.4

shift

pr
ob

ab
ili

ty

Figure 3.3.: Probability distribution and relative frequency for two orders

0

0.1

0.2

0.3

0.4

shift

pr
ob

ab
ili

ty

Figure 3.4.: Probability distribution and relative frequency for five orders

Setting the Start attribute and passing a feasible solution before the optimization call
can help GurobiTMin cases where it struggles to find an initial feasible solution. It is
possible to specify only some of the variables. The GurobiTMsolver tries to construct
a complete solution from the provided information [Gurb]. Examples of this effect are
observed in the data. It is rarely the matter to overcome the struggle to find an initial
feasible solution. In fact, GurobiTMmanages to find a feasible solution for many of the

64 3. The Mixed Integer Model

problems very quickly. In the case presented above, MIPStart provides a quite good
solution regarding the objective value. For a part of the performed calculations we
observe the improvement of the calculation time intended by the use of MIPStart.
However, there is a significant part where MIPStart negatively affects the computing
time. In numerous cases, passing a feasible solution makes it more difficult for the
solver to prove optimality, in others, the solver quickly fails to close the gap between
upper and lower bound. Figure B.1 and Figure B.2 show that the computational time
scales exponentially on average.

The design of the spanning tree as well as the path through the tree in the process of
the branch-and-cut method have a major impact on the performance. The search tree,
that is spanned originating from the start solution, can lead to an improper tree design
and a worse starting position. We observe this phenomenon not only in comparing
calculations with and without MIPStart but also among problems with a fixed attribute
setting. In particular we identify constraint (3.29j) as a main factor for the performance
issues and turn this into an opportunity by customizing a heuristic (see Chapter 4).

Potential adjustments for the use case

We perform the following considerations neglecting the computational times that do
not allow any applications so far. Extensive testing and venier adjustments on the
model are only possible by several experiments in the factory.
Assuming that there is a uniquely identified sufficiently small set of defining proper-
ties the quality of the results determined by the MIP is to be tested and evaluated in
the ongoing operation in the plant. This enables us to weight the shifting of the orders
by the color specific mean (simulation performed in the objective function) against the
constraint of minimizing the distance to the probability functions by choosing a proper
e in the constraint Fỹ  F⇤+ e .
We suggest to face the plurality of perturbation relevant factors by the following ap-
proach consisting of four steps.

1. analysis of the whole shop and identification of spots and sections where pertur-
bation occurs

2. analysis of the perturbation factors and classification (see Figure 3.5)

3.7. Discussion of the MIP results 65

3. adjustment of planning steps and production stages in order to eliminate pertur-
bation factors

4. design of a mini model for each section and connecting those models in series.

identify pertur-
bation factor

not eliminable eliminable

further analysis
of perturbation

adjust pro-
duction to

eliminate factor

not deter-
ministic deterministic

adjust model
controlling is
easier, MIP
not required

Figure 3.5.: Classification of perturbation factors

Possible adjustments of the model

We decided to weight all the colors and Rohbaulack variants equally. Depending on the
use case it might be necessary to assign different weights to the probability functions.
In order to control both, the paint shop and the body shop, we recommend to design a
MIP for each of them. The sequences are calculated against the production direction.
As before the assembly line provides the optimal output sequence of the paint shop,
the optimal input sequence of the paint shop then serves as optimal output sequence
for the body shop. The more models combined, the more vulnerable the results for
inaccuracies and variations.
Manufacturing or supplying reasons might require additional constraints on the input
sequence. Examples are minimum distance for orders with a certain property or a
lower/higher bound on the position of orders with a certain property.

66 3. The Mixed Integer Model

Addressing the problem might give rise to the idea of splitting the given optimal output
sequence into several subsequences optimizing them independently and then obtain-
ing the optimal input sequence. However, this approach leads to greater distance be-
tween the shifts and the color code probability distributions. Furthermore, we strongly
assume that the relations between the orders conflict with the splitting up of the se-
quences.

4. Heuristic

It is common knowledge that the selection of the branching variable and of the un-
solved subproblem is of significant influence on the computational time in a branch-
ing algorithm. The impact depends on the structure of the problem and no univer-
sal method is known among the great number of selection strategies. State-of-the-art
solvers such as GurobiTMOptimizer offer the choice between a handful of settings to
adjust the solving strategy to a specific problem.
Customized algorithms can be a way to tackle a problem individually and thus can out-
perform commercial and noncommercial solvers for that specific kind of problem.

We find that the computational time of the mixed integer program presented in Section
3.5 grows exponentially and varies significantly between sequences of the same length.
This is an indication that the GurobiTMalgorithms do not handle the MIP perfectly, but
there is potential for improvement on the solving strategy. Regarding the use case, the
model is not yet proper for employment since in this particular case a computational
time of 600s for sequences of 1400 to 1700 orders is not to be exceeded.
The long computational times and the variations can not be justified simply by the size
of the program, in particular not the immense variations. We pinpoint one constraint
as the main cause

Fỹ(x) F⇤+ e . (4.1)

The operating mode of the branch-and-cut algorithm can lead to a situation, where a
solution branch is pursued far into the depth before it gets cut off. Constraint (4.1)
can be valid for a partly relaxed solution but invalid as soon as we enforce integrality
for all of the variables. This means adding some additional information to the solution
algorithm offers the opportunity to cut off invalid solutions at an earlier stage in the
solving process.

Assumption 4.1. We assume that checking constraint (4.1) for integer satisfiability of
subproblem solutions can cut off the size of the search space by a significant part and
therefore reduce the computational time of some problems.

68 4. Heuristic

In the following sections we give a survey on the main components of branch-and-
bound algorithms in preparation for a customized branch-and-bound strategy for MIP
(3.29a)-(3.29m).

4.1. A survey on branching methods, node

selection strategies and pruning rules

4.1.1. Most common branching strategies

The branching strategy, the node selection strategy (also called search strategy) and the
pruning rules are the three core components of every branch-and-bound algorithm and
thus crucial for the performance of solvers.
We follow mainly the work of Achterberg [Ach07], Achterberg et al [AKM05] and
Morrison et al. [Mor+16] giving a revealing insight of the strength of branching, vari-
able selection and pruning rules. This section as well as Section 4.1.2 and Section 4.1.3
summarize the basics and the state of research.

The only way to split a problem in an LP based branch-and-bound method while keep-
ing the property of having a LP relaxation is to branch on linear inequalities. The
simplest and most common inequalities are trivial inequalities, which means inquali-
ties that split the feasible interval of a single variable. If x j is some integer variable with
the fractional value x̃ j at the current optimal relaxed solution, we obtain two subprob-
lems: one by adding the inequality x j  bx̃ jc, the other one by adding x j � dx̃ je. This
procedure of branching on trivial inequalities is also called branching on variables.
Branching on more complex inqualities or splitting into more than two subproblems is
quite rarely implemented in common MIP solvers [Ach07].

In the following we focus on the most common branching rules that are all based on
the same principle. For each branching variable candidate a score is determined. The
variable with the highest score value is selected to be branched on. Since a global
procedure is not known the variable selection depends on its benefit for the current
branching. One possibility of measuring this benefit is by the change on the objective
value of the two child nodes in comparison with the objective value of the relaxation
of the parent node.

4.1. A survey on branching methods, node selection strategies and pruning rules 69

See the PhD thesis of Achterberg [Ach07] for a great survey [Ach07, Chapter 5] and
computational analysis [Ach07, Section 5.11] of the most common branching rules.

Most fractional/infeasible branching is one of the most common rules. It chooses that
variable, whose fractional value is the closest to 0.5. Its counterpart is the least infea-
sible branching that picks the variable closest to integrality. Both rules perform rather
poorly.
The pseudocost branching rule estimates the objective change in the LP relaxation for
branching upwards and downwards. It sums over all subproblems where it has been
branched over the same variable xl . The average objective change values are called the
pseudocost. Variations of this rule are uninitialized pseudocost branching and reliabil-
ity pseudocost branching, for example.
Originally developed for the TSP, strong branching was soon implemented in solvers
as GurobiTMand CPLEX R�. Strong branching means to test which of the fractional
candidates provides the best progress for the dual bound. This test is performed by
introducing an upper bound x j  dx̌ je and a lower bound x j � bx̌ jc on variable x j

with LP relaxation fractional value x̌ j and solving the linear relaxations. If we choose
the set of all variables with noninteger values for the candidate set, it is called full
strong branching. It is apparent that this branching strategy has high computation
times for each node. By restricting the candidate set, a speed up of the algorithm can
be achieved.
In addition to the branching rules mentioned above, there are several variants and hy-
brids of these.

The choice of the branching strategy impacts both of the two phases of a branch-and-
bound algorithm, the search phase and the verification phase [Mor+16].

GurobiTMoffers five variable selection strategies. The default setting is the not further
specified choice “depending on problem characteristics”. The available alternatives are
pseudo reduced cost branching, pseudo shadow price branching, maximum infeasibil-
ity branching, and strong branching. The GurobiTMManual points out that changing
the selection strategy rarely provides significant benefit [Gura].

70 4. Heuristic

4.1.2. Most common search strategies

After one subproblem in the search tree has been processed it has to be chosen which
node to continue with. This choice often impacts primarily the search phase of the
branch-and-bound algorithm[Mor+16]. Search strategies are also referred to as node
selection strategies. The available selection strategies can be divided in two categories:
depth first search and best first search.

Both strategies have opposing goals. The depth first strategy is based on the observa-
tion that integral LP solutions are found deep in the search tree. This selection strategy
always chooses a child of the current node to be processed next. If the current node
is pruned the algorithm proceeds with a child of the most recent ancestor having an
unprocessed child left. This strategy is a good choice for pursuing to find an improve-
ment on the upper bound, which helps to prune the search tree. A second advantage
is the similarity of the current subproblem and the next subproblem. Often, there are
only a few changes required on the LP relaxation. In particular, when branching over
variables by setting an upper and lower bound on an integer variable the update on the
LP relaxation consists of changing the value of a single variable. The main disadvan-
tage is the risk to explore nodes that could have been pruned if a good solution was
available earlier [Ach07].
Best first search selects the node with the smallest dual bound of all remaining leaves
in the search tree. When the branching rule is fixed, best first search leads to a minimal
number of nodes that have to be processed [Ach07, Proposition 6.1]. However, since
this strategy is not uniquely defined (several nodes can have the same value for the dual
bound), not every best first search processes the minimal number of nodes. Tending to
perform as a breadth first strategy, best first search leaves us with the disadvantage of
higher computation time for each node since the next subproblem has little relation to
the current one [Mor+16, Section 3].
Hybrids of both seach rules, such as the cyclic best-first search, seek to combine the
advantages of both strategies. Changing the node selection strategy during the solving
process is another possibility for improvement.

The GurobiTMOptimizer allows to specify which child node to process first via the
BranchDir parameter. With the parameter MIPFocus one changes the focus between
finding feasible solutions in good quality, proving optimality and a balance between
both. However, the search strategy can not be specified explicitly.

4.1. A survey on branching methods, node selection strategies and pruning rules 71

4.1.3. Pruning rules

The worst-case-running time of a branch-and-bound-algorithm is given by

O(Mbd) , (4.2)

where b denotes the maximum number of children generated at any node in the tree, i.e
the branching factor, and d denotes the search depth, that is the longest path from the
root to a leaf. The factor M is a bound on the time required to explore a node. Pruning
rules are the primary way to reduce this complexity in practice [Mor+16].

If it can be proven that no solution in the current branch has a better objective value
than the incumbent solution, the current subproblem is pruned. One of the most com-
mon rules is pruning by bound. Pruning by bound means to introduce a lower bound
on the objective function value and use this to prune nodes whose lower bounds are
not better than the incumbent’s solution value. The optimal objective value of the LP
relaxation is a quite frequent choice [Mor+16, Section 5].
When applying dominance relations, a subproblem is pruned if it can be shown to
be dominated by another subproblem. We call a subproblem P1 dominating another
subproblem P2, if for every descendant of P2 there exists a complete solution descend-
ing from P1 that is at least as good. Thus, it suffices to explore S1. We distinguish
memory-based and non-memory-based dominance relations. The former one requires
more memory since it stores the entire search tree during the solving process, the latter
one just implies the existence of a dominating subproblem but tends to be less effec-
tive. This pruning rule is important for solving MIPs with a high degree of symmetry,
in particular [Mor+16, Section 5.2]. Other pruning possibilities are pruning by opti-
mality and pruning by infeasibility. In many cases pruning rules impact mainly the
verification phase of the branch-and-bound algorithm [Mor+16].
Note, that the choices for the three components, branching strategy, node selection
strategy and pruning rules affect each other. In particular, the choice of pruning rules
impacts the choices that can be made for the other two components [Mor+16].

Node pruning in GurobiTMis managed by adding cutting planes via callbacks.

72 4. Heuristic

4.2. A customized branch-and-bound algorithm

4.2.1. Idea

We remind that the feasible region of MIP (3.29a)-(3.29m) ignoring constraint (3.29j)
is the Birkhoff polytope. Recall from Section 2.2.1 that this polytope is huge which
effects the performance of solution algorithms. Using knowledge about the problem
structure and about constraint (3.29j) in particular, the search space of the MIP is ex-
pected to get cut enormously.

Idea 4.2. For each subproblem determine the assignment of the variables x j that have
been branched on. These equations are added to the optimization problem minFỹ(x)
(3.30a) - (3.30d)as constraints. If the objective value of the optimal solution is greater
than F⇤+ e the corresponding node is pruned.

Since the GurobiTMOptimizer does not support retrieving branching variables and
partly relaxed solutions at each node in the branching tree via callbacks24 we imple-
ment a customized branch-and-bound algorithm.
Algorithm 2 combines a depth first search strategy with a problem specific pruning
rule. The efficiency of this pruning rule is favored by the depth first search. For each
node the upwards branch x j � dx̌ je is chosen to be explored first. As branching rule
we choose most fractional branching. Low computation times and simplicity of the
implementation beat the usually rather poor performance of this branching rule.
Figure 4.1 visualizes the benefit of the heuristic compared to a standard solve call in

the GurobiTMOptimizer regarding the size of the search tree. For the smaller nodes we
have, the dark gray ones symbolize subproblems, where Fỹ(x) < F⇤+ e holds for an
integer solution. Subproblems, where Fỹ(x)< F⇤+ e is satisfied by the corresponding
partly relaxed solution but not for any corresponding integer solution are represented
by the light gray nodes. The blue node represents the optimal solution. The bigger
nodes correspond to those that are pruned with respect to the constraint represented by
the respective color.

24Note, that the variables GurobiTMbranches on may not coincide with the variables in the original
formulation of the model due to GurobiTMpresolve transformations.

4.2. A customized branch-and-bound algorithm 73

feasible
pruned due to integrality constraint

feasible but no integer solution
pruned due to infeasibility

optimal solution

1

Figure 4.1.: Exemplary search tree comparing heuristic and Gurobi Optimizer

74 4. Heuristic

4.2.2. A branch-and-bound algorithm with customized
pruning rule

Let N denote the node pool. We denote the LP relaxation of the original problem by
P0. Let Pk denote the kth subproblem of P0. The LP relaxation P0 is given by

min
x

wrel(x) = min
xi j

n

Â
i=1

�����zi�

|[xi]|

Â
l=1

xibl
m ⇤ t |[xi]|

l

!����� (4.3a)

s.t
|[xi]|

Â
l=1

xibl
m = 1 for all m = 1, . . . ,|[xi]| (4.3b)

for all equivalence classes in ỹ�t
|[xi]|

Â
m=1

xibl
m = 1 for all l = 1, . . . ,|[xi]|, (4.3c)

for all equivalence classes in ỹ�t
xibl

m 2 {0,1} (4.3d)

zg =
n

Â
i=1

rig�1 for all g = 1, . . . ,n (4.3e)

pg� pi  rigM for all i,g = 1, . . . ,n (4.3f)

� (pg� pi) (1� rig)M for all i,g = 1, . . . ,n (4.3g)

rig 2 {0,1} for all i,g = 1, . . . ,n (4.3h)

pi =
n

Â
j=1

xi j ⇤ j+µi for all i = 1, . . . ,n (4.3i)

Fỹ(x) F⇤+ e (4.3j)
n

Â
i=1

xi j = 1 for all j = 1, . . . ,n (4.3k)

n

Â
j=1

xi j = 1 for all i = 1, . . . ,n (4.3l)

xi j 2 [0,1] (4.3m)

4.2. A customized branch-and-bound algorithm 75

where F⇤ denotes the objective value of an optimal solution of the MIP

min
x

Fỹ(x) = min
xi j

C

Â
h=1

n�1

Â
k=�n+1
1i+kn

����
sh,k

lh
� fh(k)

���� (4.4a)

s.t
n

Â
i=1

xi j = 1 for all j = 1, . . . ,n (4.4b)

n

Â
j=1

xi j = 1 for all i = 1, . . . ,n (4.4c)

xi j 2 {0,1} for all i, j = 1, . . . ,n (4.4d)

Remark. In the context of Algorithm 2 we slightly abuse the term LP relaxation in the
sense that not all of the integer variables of the original problem are relaxed but only
the decision variables xi j. The integrality constraints on the auxiliary variables xibl

m

and rig still hold.

We will use Pk to refer to both, the subset and its corresponding branch-and-bound
node, from now on. Let xk denote the partly relaxed solution of problem Pk and let x̃k

be the setting of branching variables of Problem Pk.
We fix a number d 2 N. If d = 0, a second optimization problem is solved at each
node

min Fỹ(x̃k) . (4.5)

The notation of xk as argument means the following: the values of decision variables,
that are already branched on, are added to the MIP min Fỹ as constraints. The MIP
is solved over the decision variables that are not yet fixed to a value by branching. If
d > 0, the MIP min Fỹ(x̃k) is solved at each node Pk with k = 0 mod d (see Algorithm

76 4. Heuristic

2). Let ub denote the upper bound on the objective value.

Algorithm 2: Customized branch-and-bound algorithm
Input: d
initialize N = {P0}, incumbent x̂ min Fỹ(x), ub w(x̂);
while N is not empty do

take node Pk from node pool;
solve subproblem Pk;
if Pk is infeasible then

node is pruned;
end
else

xk minPk;
if xk > ub then

node is pruned;
end
else

if xk is integer then
update incumbent x̂ xk;
unpdate upper bound ub w(xk);

end
else

branch according to most fractional branching;
get two nodes Pk1 and Pk2 ;
foreach node do

if d = 0 then
solve MIP min Fỹ(x̃k);
if Fỹ(x̃kl) F⇤+ e then

add node Pkl to N;
end
else

node is pruned;
end

end
else

if kl = 0 mod d then
solve MIP min Fỹ(x̃k);
if Fỹ(x̃kl) F⇤+ e then

add node Pkl to N;
end
else

node is pruned;
end

end
else

add node Pkl to N;
end

end
end

end
end

end
end
return x̂;

4.3. Computational results of the heuristic 77

There is no start solution handed over to the MIP solver at each node. Due to the
relation between the current node and the successive node, depth first search suggests
itself for so-called warm starts of the subproblems (see Section 4.1.2). However, in
a common branch-and-bound algorithm the subproblems are relaxed and as such are
LPs, whereas in Algorithm 2 a MIP is solved at each node. Generalizing the results in
Section 3.6 to partly relaxed versions of the MIP we dispense potential improvements
in computational time and thereby do not risk negative impact on the same parameter
for n > 30. Recall that for sequence length of n 30 we did not determine a significant
benefit of passing over a start solution on the average computational time.

4.3. Computational results of the heuristic

Algorithm 2 is evaluated with mono-distributed sets 104-1 and 154-1. The profile data
sets consist of 1000 pairs of input and output sequences. Table C.1 shows the results
for ten sequences of each instance. Each problem is solved with two parameter settings
for d , i.e. d = 0 and d = 4.
As a reference, the values for number of explored nodes and computational time of the
MIP are listed in the last two colums.
The results show a significant impact of the choice of d over all problems. The num-
ber of explored nodes increases by a factor of 6.5 on average for 104-1 and by a factor
of 9.7 for 154-1, respectively. And thus, the computational time shows a similar be-
havior. It increases by a factor of 5.1 and 14.3. Looking at the results individually it
shows that the heuristic branch-and-bound produces solutions with great variations in
number of explored nodes and computational time. We remind of the analysis of the
GurobiTMOptimizer results in Section 3.6.
Comparing the results of Algorithm 2 and of GurobiTM, the computational times in
particular, we recognize that the former one exceeds the latter one by the factor of 23.1
on average for 104-1 and by 279.3 on average for 154-1 (parameter setting d = 0).

The results have been generated with an Intel-i7 CPU, GurobiTMOptimizer version
8.0.1 on a Lenovo notebook, code in Visual-C# 2017.

78 4. Heuristic

4.4. Discussion of the heuristic results

The increase in both of the parameters, number of explored nodes and computational
time, when changing d = 0 to d = 4, confirms Assumption 4.1. Checking min Fỹ(x̃k)

for an integer solution with an objective value < F⇤+ e at each node Pk, reduces the
size of the search tree by a significant amount.
The fact that at least one MIP is solved at every node encounters the positive effect of
the search tree reduction to such an extent, that the heuristic is noncompetitive with the
GurobiTMOptimizer for any sequence length 10  n  50. We remark that the main
part of the computational time is consumed by subproblems Pk.
We identify the following factors as main reasons:

(i) each subproblem is a MIP, since the auxiliary variables are not relaxed

(ii) no presolve before the branching process is started

(iii) GurobiTMOptimizer is implemented performantly

Further theoretical considerations on modifications of the
customized branch-and-bound algorithm

We are confident that the basic idea 4.2 performed within a MIP solving process via
callbacks is a possibility to significantly reduce the computational time for n� 20. In
Algorithm 2 the benefit of the reduction of the search tree size competes with the ex-
tension of the processing time of each node.
A customized branching strategy could conceivably improve the performance of the
Branch-and-bound Algorithm 2. The findings in connection with Figure 3.3 and Fig-
ure 3.4 in Section 3.7 motivate a hybrid of branching by color codes and most fractional
branching. We suggest prioritization of the orders relative to the frequency of the re-
spective color code, where orders of the rarest color code have the highest priority.
However, it can be assumed that the advantage of the search tree cuts do not compen-
sate for the computational time of the subproblems.

5. Neural Network

5.1. Neural Networks in business and industries

In recent decades the interest in neural networks for solving business problems grew
rapidly. The idea of solving a complex pattern recognition problem by using a data-
driven approach is no longer just an interesting challenge for researchers[SG00]. Many
of these problems have typically been in the scope of operations researchers, such as
forecasting, clustering and classification. The use cases originate from diverse sectors.
Citing some examples we mention medical image recognition such as cancer detection
[She+19], demand forecasting in manufacturing companies [Cha+19] or credit risk as-
sessment [YWL08]. More fields of application are management, security, engineering,
trading commodity, education and art.
Many problems are difficult to access by conventional modeling approaches due to lack
of knowledge about the involved system, a high degree of uncertainty, time-varying
characteristics or strongly nonlinear behavior [JA05].
“The principal difference between neural networks and statistical approaches is that
neural networks make no assumptions about the statistical distribution or properties
of the data, and therefore tend to be more useful in practical situations” [SG00].

80 5. Neural Network

5.2. Feedforward Neural Network and Recurrent

Neural Networks

5.2.1. Feedforward Neural Networks

We give an introduction of the quintessentials of deep learning following mainly the
work of Goodfellow et al. [GBC16].
Deep feedforward networks are also called feedforward neural networks or multilayer
perceptrons. They are the basis of most deep learning models. Their main goal is to
approximate a non-linear function f .
A classic example is a classifier, where y = f (x) maps an input x to a category y. A
feedforward network defines a mapping y = f (x,q) and learns the value of the param-
eters q that results in the best function approximation. The most common structure is
a chain of functions. For example, let f1, f2, f3 be three functions forming

f (x) = f3(f2(f1(x))) . (5.1)

The overall length of the chain determines the depth of the network. In this case, fi is
called the ith layer of the network. First and last layer are also called input and output
layer, respectively. The layers between them are hidden layers, due to the fact that
the training data do not show the desired output for these layers. The hidden layers
are typically vector-valued. They can be seen as consisting of single units that act in
parallel, each representing a vector-to-scalar function. From another point of view,
neural networks can be interpreted as fitting a probability density function

p(y | x) (5.2)

instead of fitting a non-linear function. This can be achieved by using the maximum
likelihood to estimate the parameter vector q for a parametric family of distributions

p(y | x;q) . (5.3)

Example. The linear regression corresponds to the parametric family

p(y | x;q) =N (y;q T x, I) . (5.4)

5.2. Feedforward Neural Network and Recurrent Neural Networks 81

Working with a feedfoward network requires some design decisions: choosing the
optimizer, the loss function (also called cost function), the activation function for the
hidden units and the form of the output units.
The type of activation function is essential for the accuracy of the predictions of a
network. Non-linear activation functions are the most-commonly used ones [SA20].
The default recommendation is to use the rectified linear unit (ReLU) defined by the
activation function

g(z) = max{0,z} . (5.5)

The nonlinearity of a neural network often causes the loss function to be nonconvex.
For this reason they are usually trained by using iterative, gradient-based optimizers.
Other than convex optimization, gradient descent applied to nonconvex functions has
no guarantee to converge and is sensitive to the initial parameter values.

An example for a common loss function is the cross-entropy loss function between the
training data and the model’s predictions, this means the loss function L is the negative
log-likelihood25

L(q) =�Ex,y⇠p̂data log pmodel(y | x) . (5.6)

The specific form of L depends on the form of log pmodel. For example, if pmodel(y | x)=
N (y; f (x,q), I), then we have the mean erros loss function

L(q) = 1
2
Ex,y⇠ p̂dataky� f (x,q)k2 + const , (5.7)

up to a scaling factor of 1/2 and a term that does not depend on q . Unfortunately, the
use of the mean squared error and the mean absolute error function lead to poor results
when used with gradient-based optimization. This is one reason why the cross-entropy
is so popular.

This approach has the advantage that the maximum likelihood provides a loss function,
so that it has not to be designed for each model. The loss function having a large and
predictable gradient is essential for the learning algorithm. In many cases, several out-
put units involve an exponential function, that becomes very small for small arguments
⌧ 0. The log-likelihood cancels the exp and prevents the function from becoming flat
and thus the gradient from becoming too small [GBC16, Section 6.2.1].

The choice of the loss function is connected with the design of the output units. The

25We maximize the log-likelihood by minimizing the negative log-likelihood using gradient descent.

82 5. Neural Network

most common output units are linear, sigmoid and softmax. See [GBC16, Sections
6.2.2.1 - 6.2.2.4] for a comprehensive description of the relation between the choice of
output units and of the cost function.

We complete the task of basic design decisions for a feed forward neural network by
choosing the type of hidden units. Rectified linear units

g(z) = max{0,z} (5.8)

are good default choice. Apart from those, there is a great number of other types of hid-
den units available. The perfect decision can be difficult and require some experience
in network modeling. More popular hidden units are logistic sigmoid and hyperbolic
tangent with activation functions

g(z) = s(z) =
1

1+ e�z (5.9)

and
g(z) = tanh(z) , (5.10)

respectively.

Remark. The activation functions of some types of hidden units are nondifferentiable at
usually a small number of points. For example, the function (5.8) is nondifferentiable
at z = 0. However, gradient descent algorithms perform quite well in practice. Since
we do not expect to reach a point where the gradient is equal to 0, it is acceptable if the
minimum of the loss function corresponds to points with undefined gradient [GBC16,
Section 6.3].

In deciding about the ideal depth of the network and the width of each layer, we are
left to try and error. The universal approximation theorem for neural networks states,
that sufficiently wide and deep multilayer feedforward neural networks are able to ap-
proximate any continuous function to any desired degree of accuracy [HSW89; Hor91;
Les+93]. Lack of success is mainly due to inadequate learning, insufficient size of the
network, lack of a deterministic relation between input and target data [HSW89].

5.2. Feedforward Neural Network and Recurrent Neural Networks 83

5.2.2. Recurrent neural networks

The term feedforward arises from the fact that the information flows through the net-
work in one direction without any feedback connections. Feedforward networks hav-
ing feedback memories included are called recurrent neural networks (RNN). Net-
works with this feature are able to learn stochastic mappings, functions with feedback,
and probability distributions over a single vector.
RNNs are specialized on processing sequential data. A recurrent network works on a
sequence of values x1, . . . ,xn. The index t = 1, . . . ,n is often referred to as time step,
but needs not literally represent a passage of time in real world. It can also refer to
the position in the sequence. An RNN may even work on two-dimensional spatial data
such as images.
The crucial difference to nonrecurrent networks is the parameter sharing across dif-
ferent parts of the network. Sharing parameters makes it possible to apply the model
to different forms, such as sequences of different length. Each element of the output
sequence is a function of the preceding elements and each element is produced using
the same update rule applied to previous output sequences [GBC16, Chapter 10].

Remark. Sharing parameters in RNNs relies on the assumption that a parameter can be
used for different time steps. Furthermore, it is assumed that the conditional probability
distribution of time step t+1 given the data for the first t time steps is stationary, which
means the relation between a time step and the next time step does not depend on t
[GBC16, Section 10.2.3].

An RNN processes information by incorporating it in the hidden state h and passing
that forward through time. Other parts of the network are able to read information from
h and make predictions. In a network that is trained to predict the future from the past,
ht is typically used as a summary of task-relevant aspects of the past sequence up to
element t. In general, this summary is necessarily lossy, since it maps a sequence of
arbitrary length x1, . . . ,xt to a fixed length vector ht [GBC16, Chapter 10].

5.2.3. Long-short term memory

A great advantage of RNNs is the ability to take into account the context when map-
ping an input to an output sequence. The range of context than can be accessed by a
standard RNN can be expanded by using a Long-Short Term Memory (LSTM) archi-

84 5. Neural Network

tecture [Gra12, Chapter 4].
An LSTM consists of a set of recurrently connected subsets, so-called memory blocks.
Each block contains a self-connected memory cell and three mulitplicative units - in-
put, output and forget gates.
For details on the architecture and functioning of LSTMs see [Gra12; GBC16; SVL14;
GMH13]. LSTMs have proven to be successful in a wide spectrum of applications that
require a long range of contextual information: image recognition, handwriting recog-
nition and music generation, to name a few [Gra12].

5.2.4. Autoencoders

An autoencoder is a neural network that seeks to copy its input to its output. An au-
toencoder consists of two parts, an encoder function h = f (x) and a decoder function
r = g(h) [GBC16, Chapter 14]. The idea of autoencoders is pursued and refined since
the 1980s. Originally, they were used for dimensionality reduction or feature learn-
ing. Modern autoencoders are generalized to stochastic mappings pencoder(h | x) and
pdecoder(x | h).
The learning process can simply be described as minimizing the function

L(x,g(f (x))) , (5.11)

where L denotes a loss function that penalizes g(f (x)) for being dissimilar to x, such
as mean squared error.
When being trained to perform the copying task, the autoencoder extracts informa-
tion about the training data, that are often of greater interest than the output of the
network.

Example. Consider an autoencoder with a linear decoder and the mean squared error as
loss function L. Let h be of smaller dimension than the input x. Then, the autoencoder
learns to span the same subspace as Principal Component Analysis (PCA)26.

An encoder maps a sequence of variable length to a fixed-dimensional vector. The
symbol positions in the input are aligned to steps in computation time and thus gen-
erate a sequence of hidden states ht as a function of the previous hidden state ht�1

26PCA is a variance maximizing technique to reduce dimensionality. It is a linear transformation that
projects the data into a lower dimension such that the variance is maximized [Pla18].

5.2. Feedforward Neural Network and Recurrent Neural Networks 85

and the input for position t. As a sequential procedure this is not suitable for paral-
lelization and becomes computationally inefficient for long sequences [Vas+17]. In
order to overcome these difficulties, an attention mechanism is included in the network
connecting encoder and decoder [FCB16]. The core of the attention mechanism is the
attention function. The output of this function is a weighted sum of a query and a set of
key-value pairs. The weights are called attention weights [FCB16]. They are learnable
parameters.

If the hidden code has a dimension equal or greater than the input, the network may
lern to copy the input without learning any useful features about the data distribution.
There are several variants of autoencoders differing in the form of the loss function L
or having an additional penalty term W(h,x), for example.
Autoencoders are often, but not necessarily, designed with a single layer encoder and a
single layer decoder. However, the advantages of depth in a feedforward network also
apply to autoencoders.

5.2.5. Hopfield neural networks

In the context of optimization problems and neural networks one almost necessarily
encounters Hopfield networks. For the sake of completeness, this section is dedicated
to a brief overview of the potential and limitations. In their pioneering work of 1985,
Hopfield and Tank [HT85] applied a neural network to the TSP of the size of 10 and 30
cities. They presented a way of mapping a linear program into a closed-loop network,
known as Hopfield network.
Solving the TSP is NP-hard. In order to find optimal tours efficiently in practice,
heuristics are designed. Although these heuristics perform well on the TSP, they have
to be revised, if the problem statement changes slightly. Machine learning methods
have the potential of developing their own heuristics from the data, thus they may
require less handmade adjustments and be all-purpose.
An extension of the results of Hopfield and Tank to nonlinear optimization problems
can be found in [XFW08] and to Bilevel programs in [He+14]. Neural networks can be
powerful in finding good approximate solutions to difficult combinatorial optimization
problems. Much of the literature about neural networks in optimization theory focus
on the TSP, due to its benchmark status and the amount of research that has been done
on this problem [Pot93].

86 5. Neural Network

A Hopfield network is a single layer, recurrent neural network [LMS99]. It consists of
n interconnected neurons that are both, input and output neurons. Any two neurons are
connected in both directions with weights. Let wi j denote the weight of the connection
from the jth to the ith neuron. We have wi j = w ji. The dynamics of a Hopfield network
are defined by

dui

dt
= Â

j
wi jv j +hi

vi =
1
2

⇣
1+ tanh

⇣ui

T

⌘⌘
,

(5.12)

where vi 2 [0,1], ui and hi are an output value, internal value and bias of neuron i.
The energy function of the network is given by

E =�1
2 Â

i
Â

j
wi jviv j�Â

i
hivi . (5.13)

It holds that
T

dvi

dt
=�2vi(1� vi)

∂E
∂vi

. (5.14)

Equation (5.14) shows that the value of a neuron changes in order to decrease the
energy E and converges to an equilibrium state, where dvi/dt = 0, that is to zero or to a
state where ∂E/∂vi.
Representing a combinatorial optimization problem in the form of an energy function
and designing a Hopfield network with this energy function provides the opportunity
to get an optimal or near optimal solution of the optimization problem by minimizing
the energy function [Mat98].
Consider the optimization problem

min c x (5.15a)

s.t. A1 x b1 (5.15b)
... (5.15c)

Amx bm . (5.15d)

The Hopfield energy function is

E(x) = acx+b1(A1x�b1)
2 + · · ·+bm(Amx�bm)

2 , (5.16)

where a,b1, . . . ,bm are penalty parameters to reflect the relative importance of each
term in the function. The network parameters weights and inputs are determined by

5.3. A sequence-to-sequence neural network 87

comparing (5.16) and (5.13) [SM99]. See [Hop84; Mat98; SM99; JAS02; KPKP90]
for a more detailed survey on this topic.

One of the major pitfalls of solving optimization problems with Hopfield networks
is the fact that stable states of the network do not necessarily correspond to feasible
solutions of the optimization problem. Several terms in the energy function compete
to be minimized, a trade-off occurs. As soon as one term is not equal to zero, the
corresponding solution is infeasible for the optimization problem.

MIP (3.29a)-(3.29m) requires an enormous energy function due to the number of con-
straints. A great number of penalty parameters increases the probability to get infeasi-
ble solutions.
We decided not to apply a Hopfield network but to feed the data to a neural network
detached from the interpretation of the formulated optimization problem. We assume
that the most valuable information comes from the input/output data and that no phys-
ical insight is available. This approach is known under the term black box modeling
[JA05].

5.3. A sequence-to-sequence neural network

5.3.1. Design of the sequence-to-sequence network

In this chapter we do not distinguish individual orders but project every order on its
color code and consider sequences of color codes. In the application of the network
presented in the following we understand the mapping of output to input sequences as
translation of a sentence consisting of color codes as words into a sentence of the exact
same words.
In designing a neural network, we followed a sequence-to-sequence translation net-
work provided by MathWorks R� [Seq]. It is a recurrent encoder-decoder model.
Encoder and decoder of an RNN process the input and output data, respectively. An
encoder typically includes a recurrent layer, such as an LSTM and extracts a fixed-
length representation of a variable-length input sequence. The encoder of [Seq] is a
stack of three layers, an embedding layer and two LSTM layers. Figure 5.1 provides
an illustration.

88 5. Neural Network

Encoder
Input

Embedding

LSTM

LSTM

Encoder
Output

Hidden
State

1

Quelle: [Seq]

Figure 5.1.: Structure of the encoder

By the Matlab R� Documentation [Wor] it is required to use a word embedding layer
with an LSTM network. A word embedding layer maps word indizes to vectors and
is mainly implemented for computational efficiency. Its dimension is set to 128. The
number of hidden units in the two LSTM layers is set to 100. The probability of
dropout layers with random dropout is set to 0.05. We summarize the parameter set-
tings:

embedding dimension = 128

number of hidden units = 100

dropout = 0.05

In order to initalize weights and bias of layers MathWorks R� Deeplearning ToolboxTM

provides several functions. The weights of the word embedding layer are sampled
from a normal distribution, for instance. Besides the attention mechanism, the decoder
consists of five more layers, an embedding layer, two LSTM layers, a fully connected
layer and a softmax layer (see Figure 5.2). It remains the task to define the encoder
and decoder function, as well as the attention function and the model gradient func-
tion. The encoder function gets the input data, the encoder model parameters (input

5.3. A sequence-to-sequence neural network 89

Decoder
Input

Encoder
Output

Embedding

Context Updated
ContextConcatenate

Stacked
LSTM

Hidden
State

Updated
Hidden
State

Attention

Concatenate

Fully
Connect

Softmax

Decoder
Output

1

Quelle: [Seq]

Figure 5.2.: Structure of the decoder

90 5. Neural Network

weights, recurrent weights and bias) and the mask, that determines the correct outputs
for training, and returns the model output and the LSTM hidden state. In this case, the
mask is the length of the input sequences. This is important when the data is varying
in length which holds for most use cases.
The decoder function gets the input data, decoder model parameters, the context vector,
the LSTM initial hidden state, the outputs of the encoder and the dropout probability.
It returns the decoder output, the updated context vector, the updated LSTM state and
the attention scores [Seq].
The attention function returns the attention scores, according to Loung scoring27, and
the updated context vector. The model gradients function takes the encoder and de-
coder model parameters, a mini-batch of the input data, the padding mask of the input
data and the dropout probability. It returns the gradient of the loss with respect to
the learnable parameters and the corresponding loss. The loss is computed by cross
entropy.

The training options are specified

mini-batch size = 32

number of epochs = 100

learn rate = 0.002

We adopt the options of [Seq].

5.3.2. Preprocessing and formatting of the training and
test data

We run the neural network on 27 data sets varying in overall size and sequence length.
The data is generated by algorithm (3.3.2) with the parameters according to (3.3).
We maintain the previous notation and write NN-nC-1 for a data set with sequences
of length n with C different mono-distributed color codes and NN-nC-2 for a poly-
distributed set, respectively. Compared to the MIP data, there is an additional mono-
distributed set for each instance. Both of the mono-distributed sets differ by size, they

27There two different attentions used in an Encoder-Decoder network, Luong attention [LPM15] and
Bahdanau attention [BCB15].

5.3. A sequence-to-sequence neural network 91

are denoted by NN-nC-1-min and NN-nC-1-max. Table 5.1 gives an overview of the
data sets and their sizes.

data set size data set size

NN-104-1-min 967 NN-n4-1-min28 1000
NN-104-1-max 4135 NN-n4-1-max 5000

NN-104-2 11200 NN-n4-2 11200

NN-154-1-min 1000 NN-m8-1-min29 1000
NN-154-1-max 4999 NN-m8-1-max 5000

NN-154-2 11200 NN-m8-2 11200

Table 5.1.: Neural network data set overview

In distinction to the data for the MIP we project each order on its color code before
feeding it to the neural network. Thus, the network operates on sequences of S�t3 ,
where S denotes an order set.

The training set constists of 70% of the data set. The evaluated test set contains tuples
of given output and input sequences and the calculated input sequence.
In order to analyze the results we defined some key figures. As a first step of the result
analysis we remove tuples of sequences30 from the test set, where the length of the
sequence calculated by the network is not equal n. We refer to the adjusted test set as
test set from now on. For an input sequence x and the corresponding calculated input
sequence xcalc in a test set let the number of incorrect color codes ICC be

ICC =
C

Â
h=1

|nh(x)�nh(xcalc)| , (5.17)

where nh(x) denotes the number of color h in sequence x. We determine the mean
value of incorrect color codes µ(ICC) over all sequences in a test set.
For x and xcalc we determine the number of correctly placed color codes CPCC. Let

28for n = 20,30,40,50
29for m = 30,40,50
30We slightly abuse the term sequence by calling each result of the neural network a sequence, even

though it is not a permutation of the given output sequence.

92 5. Neural Network

µ(CPCC) denote the mean value over all tuples of sequences in a test set, in particular
also for sequences with ICC > 0.
For x, xcalc with xcalc being a permutation of x we define a measure in analogy to 3.22

dNN =
n

Â
i=1

|i� j| , (5.18)

where

j = min{k
��xi = xk and xk is not assigned to another color code yet} . (5.19)

5.4. Description of the results for the

sequence-to-sequence neural network

Table D.1 lists the computational results of the network for the parameter setting and
training options defined in Section 5.3.1. In total, there are five data sets where the
number of removed sequences equals zero, NN-104-1-min, NN-104-2 and NN-154-1-
min, NN-504-2 and NN-508-2. In three data sets every pair of sequences is removed
from the test set, which means none of the sequences determined by the network is of
length n. Across all data sets, the majority of the calculated input sequences are not
permutations of the given output sequences. The best results regarding the µ(ICC) are
achieved for NN-104-2. This value increases with decreasing size of the data set and
with growing sequence length. We recognize the same relations for the values of P.
The average distance µ(dNN) (5.18) we have the lower bound of approximately n

2 and
10
3 n.

The mean value µ(CPCC) is - quite roughly spoken - about n
2 , where the best results

are determined for the biggest data sets for each n.
The last column of Table D.1 lists the computational time. By increasing with grow-
ing sequence length and increasing size of data set, the computation time behaves as
expected. Since a net is trained once and can then be applied as long as the problem
parameters and the data do not change the computational time of a neural network is
not as notable as that of a MIP.
For n > 20 the data sets NN-nC-1-min lead to considerably worse results across all
parameters than the greater sets. For n > 30 we rate the sets NN-nC-1-max too small
as well.

5.5. Limitations and applicability of the network 93

Test calculations with number of hidden units 20 and 200 as well as an word embed-
ding layer of dimension 2 are summarized in Table D.2. For NN-204-2 we achieve
improvements for RS and deterioration for all of the other parameters, except for the
computational time31.

The results have been generated with an Intel-i5 CPU, Matlab R� version R2020b on a
Lenovo notebook.

5.5. Limitations and applicability of the network

From the results evaluated in Section 5.4 we conclude that the considered neural net-
work is not applicable for any instance of the presented problem. As we observed in
Chapter 3 the problem is of very high complexity but at the same time it is not in the
typical application area of neural networks (see Section 5.2). We identify the non-
deterministic relation of the input and target data as a main factor for the discrepancy
between problem and network in this case.
The quality of the results indicates that the problem requires at least a customized loss
function. However, we assume that far more constraints have to be implemented in the
network, analogically to how they are made designing the MIP.
We assume that the projection on color codes and, associated therewith, the non-
distinctness of individual orders makes it more diffcult to recognize the structure in
the data. Using order sequences instead of color sequences would blow up the size of
the network by a multiple.
We end this section with considerations on inter- and intra-sequence relations. The
kind of color codes and the number of each kind in an input sequence to be determined
depends on the given output sequence. The order of color codes depends on the output
sequence and the behavior of each color code. There is no intra-sequence relation. The
(k+1)th color code is not based on the first k color codes in the input sequence but on
the positions in the output sequence and the shifts. We assume that the network is not
able to detect the problem structure based on non-deterministic shifts.

31The computational time increases with increasing NHU .

94 5. Neural Network

Further theoretical considerations on applicability and
modifications of the neural network

We assume designing a loss function can possibly yield results making the neural net-
work competitive with the MIP regarding the quality of results. As analyzed in Section
5.4, a very small part of the calculated sequences in the test sets are permutations and
those have a significant distance to given input sequences. This leads to the conclu-
sion that it is necessary to implement a problem-specific measure. However, it is not
possible to derive the network loss function from the MIP objective function without
adopting the simulation as well.
Neural networks show great potential for a range of application areas, which justifies
the boost they are having in recent years. As for any method, it is crucial that the
problem matches the method. We claim that the described problem does not fulfill this
condition for a neural network. Even if a good quality of the results can be achieved
by customizing the loss function, we conjecture a level of modeling and interpretation
being similarly high as for the MIP. On the one hand, this affects the size of the net and
thus the computational time, on the other hand, the aspect of using the neural network
to reveal structure in the data fails.

6. Conclusion

All models are wrong, but
some models are useful.

(George Edward Pelham Box)

This work is dedicated to a non-deterministic MIP and solution approaches thereof.
The structure and the complexity of the problem is tackled by a customized branch-
and-bound algorithm and a sequence-to-sequence neural network. We mention just in
sequence production in the automotive sector as a typical application of the presented
problem.
The analysis of the real data provided by a specific use case results in the development
and implementation of an algorithm for the generation of artificial test data. These
form a basis for extensive computations.

The results provided by the branch-and-cut algorithm in the GurobiTMOptimizer show
that the presented MIP is stable. The impact of the number of colors and the color
code-specific distributions are pointed out and discussed in detail. The analysis of the
results leads to the identification of the main factor for the long and strongly varying
computational times. This knowledge about the problem structure goes beyond the
solver’s and is processed in a solution algorithm.

We developed a branch-and-bound algorithm with a customized pruning rule. Com-
paring the results for different parameter settings shows the benefit of the heuristic.
The search space of the MIP is successfully reduced by a significant amount. We are
confident that a hybrid of the customized pruning rule and a solution algorithm in a
state-of-the-art solver such as GurobiTMcan achieve the desired reduction of computa-
tional time.

96 6. Conclusion

Several possibilities of adjustment for potential use cases offered by the MIP are pre-
sented. Due to its non-deterministic character, the model can only be tested and tuned
for a use case during operation. Mathematical intuition supported by the results allow
considerations and recommendations, such as parameter tuning and weighting.

The processing of the raw data via a sequence-to-sequence neural network and the
results thereof reflect the complex and non-deterministic structure of the problem. We
are confident that the result quality can be improved by modifications of the network
and the loss function, in particular. It is pointed out that this problem requires to
balance the benefit of learning from raw data and problem interpretation processed in
network modifications. Despite the great interest neural networks experience over the
last decades it is important to bear the suitability of the problem in mind. From our
research we conclude that the optimization approach can be considered superior to the
sequence-to-sequence neural network for this specific problem.

We finish this work by returning to Henry Ford. A black-cars-only policy would sim-
plify controlling the paint shop exceedingly. However, lively discussions, profound
thought experiments, several misperceptions and numerous moments of enthusiasm
would have been denied to us. This research highly encouraged our understanding and
delight for optimization theory and deep learning.

7. Bibliography

[Ach07] Tobias Achterberg. “Constraint Integer Programming”. PhD thesis. Tech-
nische Universität Berlin, 2007.

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin. “Branching
rules revisited”. In: Operations Research Letters 33 (2005), pp. 42–54.

[APR14] Ilan Adler, Christos Papadimitriou, and Aviad Rubinstein. “On Simplex
Pivoting Rules and Complexity Theory”. In: Integer Programming and
Combinatorial Optimization. Ed. by Jon Lee and Jens Vygen. Cham:
Springer International Publishing, 2014, pp. 13–24. ISBN: 978-3-319-
07557-0.

[Art99] Benno Artmann. Euclid - The Creation of Mathematics. Springer New
York, 1999.

[Ath05] Christos Athanasiadis. “Ehrhart polynomials, simplicial polytopes, magic
squares and a conjecture of Stanley”. In: Journal für reine und ange-
wandte Mathematik 583 (2005), pp. 163–174.

[Bad+18] Jörg Bader et al. “Mixed integer reformulations of integer programs and
the affine TU-dimension of a matrix”. In: Mathematical Programming
169 (2018), pp. 565–584.

[Bau+09] Barbara Baumeister et al. “On permutation polytopes”. In: Advances in
Mathematics (2009).

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: CoRR
abs/1409.0473 (2015).

[BGT81] Robert Bland, Donald Goldfarb, and Michael Todd. “The Ellipsoid Method:
A Survey”. In: Operations Research 29.6 (1981).

[Bir46] George Birkhoff. “Tres observaciones sobre el algebra lineal”. In: Uni-
versidad Nacional de Tucuman Revista, Serie A 5 (1946), pp. 147–151.

98 7. Bibliography

[BM98] Brian Borchers and John Mitchell. Using an Interior point Method in a
Branch and Bound Algorithm for Integer Programming. 1998.

[BP03] Matthias Beck and Dennis Pixton. The volume of the 10th Birkhoff poly-
tope. 2003.

[Bra+91] Jeremy Brandman et al. “Convex hulls of Coxeter groups”. In: Mathemat-
ics Subject Classification (1991).

[Bro83] Arne Brondsted. An Introduction to Convex Polytopes. Springer-Verlag
New York, 1983.

[BS96] Louis Billera and Aravamuthan Sarangarajan. “All 0/1-polytopes are trav-
eling salesman polytopes”. In: Combinatorica 16.2 (1996), pp. 175–188.

[Bys+20] Sara Bysko et al. “Automotive Paint Shop 4.0”. In: Computers & Indus-
trial Engineering 139 (2020).

[CCZ10] Michele Conforti, Gérard Cornuójols, and Giacomo Zambelli. “Extended
formulations in combinatorial optimization”. In: 4OR 8.1 (2010), pp. 1–
48.

[CCZ14] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer
Programming. Springer International Publishing, 2014, pp. 85–128.

[Cha+19] Aditya Chawla et al. “Demand Forecasting Using Artificial Neural Net-
works - A Case Study of American Retail Corporation”. In: Advances
in Intelligent Systems and Computing. Ed. by Natalya Shakhoyska and
Mykola Medykovskyy. Springer, 2019, pp. 79–89.

[CJ05] Hadrien Cambazard and Narendra Jussien. “Integrating Benders Decom-
position Within Constraint Programming”. In: Principles and Practice of
Constraint Programming - CP 2005. 2005, pp. 752–756.

[CM07] E. Rodney Canfield and Brendan D. McKay. The asymptotic volume of
the Birkhoff polytope. 2007.

[Dan63] George Dantzig. Linear Programming and Extensions. Princeton Univer-
sity Press, 1963.

[Dax97] Achiya Dax. “An Elementary Proof of Farkas’ Lemma”. In: SIAM Review
39.3 (1997), pp. 503–507.

[DKM06] Andreas Drexl, Alf Kimms, and Lars Matthießen. “Algorithms for the car
sequencing and the level scheduling problem”. In: Journal of Scheduling
9 (2006), pp. 153–176.

99

[DSA98] Amal De Silva and David Abramson. “A parallel Interior Point Method
and its application to Facility Location Problems”. In: Computational Op-
timization and Applications 9 (1998), pp. 249–273.

[Fad15] Salman Fadaei. “Mechanism Design via Dantzig-Wolfe Decomposition”.
In: CoRR (2015).

[FB08] Malte Fliedner and Nils Boysen. “Solving the car sequencing problem via
Branch & Bound”. In: European Journal of Operational Research 191.3
(2008), pp. 1023–1042.

[FCB16] Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. “Multi-Way, Multi-
lingual Neural Machine Tranlation with a Shared Attention Mechanism”.
In: 2016, pp. 866–875.

[FHZ11] Oliver Friedmann, Thomas Hansen, and Uri Zwick. “Subexponential lower
bounds for randomized pivoting rules for solving linear programs”. In:
Proceedings of the forty-third annual ACM symposium on Theory of com-
puting (2011), pp. 283–292.

[Fis04] Marshall Fisher. “The Lagrangian Relaxation Method for solving Integer
Programming problems”. In: Management Science 50.12 (2004), pp. 1861–
1871.

[Fog+13] Fajwel Fogel et al. “Convex Relaxations for Permutation Problems”. In:
Advances in Neural Information Processing Systems (2013).

[Fri11] Oliver Friedmann. “A Subexponential Lower Bound for Zadeh’s Pivoting
Rule for Solving Linear Programs and Games”. In: Integer Programming
and Combinatoral Optimization. Ed. by Oktay Günlük and Gerhard J.
Woeginger. Springer Berlin Heidelberg, 2011, pp. 192–206.

[FT94] Alan Frieze and Shang-Hua Teng. “On the complexity of computing the
diameter of a polytope”. In: Comput Complexity 4 (1994), pp. 207–219.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[GL81] Peter Gács and Laszlo Lovász. “Khachiyan’s algorithm for linear pro-
gramming”. In: Mathematical Programming at Oberwolfach. Ed. by H.
König, B. Korte, and K. Ritter. Springer, Berlin, 1981, pp. 61–68.

[GLS88] Michel Groetschel, Laszlo Lovász, and Alexander Schrijver. “The Ellip-
soid Method”. In: Geometric Algorithms and Combinatorial Optimiza-
tion. Vol. 2. Springer, Berlin, 1988, pp. 64–101.

100 7. Bibliography

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks”. In: 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing. 2013,
pp. 6645–6649.

[Goe15] Michel Goemans. “Smallest compact formulation for the permutahedron”.
In: Mathematical Programming 153 (2015), pp. 5–11.

[GP06] Robert Guralnick and David Perkinsons. “Permutation polytopes and in-
decomposable elements in permutation groups”. In: Journal of Combina-
torial Theory, Series A (2006).

[Gra12] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Net-
works. Vol. 385. Studies in Computational Intelligence. Springer, Berlin,
Heidelberg, 2012.

[Gru13] Branko Gruenbaum. Convex Polytopes. Ed. by Günther M. Ziegler. Springer-
Verlag New York, 2013.

[Gura] GurobiTMOptimizer Reference Manual. Version 9.0. Accessed: 2021-02-
13. GurobiTMOptimization. 2020.

[Gurb] MIP Starts. https://www.gurobi.com/documentation/9.1/exampl
es/mip_starts.html. Accessed: 2021-02-04.

[He+14] Xing He et al. “A Recurrent Neural Network for Solving Bilevel Linear
Programming Problem”. In: IEEE Transactions on Neural Networks and
Learning Systems 25.4 (2014), pp. 824–830.

[HK70] Michael Held and Richard Karp. “The Traveling-salesman Problem and
minimum spanning trees”. In: Operations Research 18 (1970), pp. 1138–
1162.

[HKL04] Marcel Herzog, Gil Kaplan, and Arieh Lev. “Representation of permu-
tations as products of two cycles”. In: Discrete Mathematics 285 (2004),
pp. 323–327.

[Hop84] John Hopfield. “Neurons with graded response have collective computa-
tional properties like those of two-state neurons”. In: Proceedings of the
National Academy of Science (1984).

[Hor91] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Net-
works”. In: Neural Networks 4 (1991), pp. 251–257.

101

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-
forward networks are universal approximators”. In: Neural Networks 2.5
(1989), pp. 359–366.

[HT85] John Hopfield and David Tank. “Neural Computation of Decisions in Op-
timization Problems”. In: Biological Cybernetics 52 (1985), pp. 141–152.

[Hur] Glenn Hurlbert. “A short Proof of the Birkhoff-Von Neumann Theorem”.

[JA05] B.A. Jensen and János Abonyi. “Neural networks for process modeling”.
In: Instrument Engineers Handbook, Fourth Edition: Process Control and
Optimization. Ed. by Béla Lipták. CRC Press, 2005, pp. 253–264.

[JAS02] Gonzola Joya, Miguel Atencia, and Francisco Sandoval. “Hopfield neural
networks for optimization: study of different dynamics”. In: Neurocom-
puting 43 (2002), pp. 219–237.

[JKM04] Colin Jones, Eric Kerrigan, and Jan Maciejowski. Equality Set Projection:
A new algorithm for the projection of polytopes in halfspace representa-
tion. Tech. rep. CUED/F-INFENG/TR.463, 2004.

[JNS00] Ellis Johnson, George Nemhauser, and Martin Savelsbergh. “Progress
in Linear Programming-Based Algorithms for Integer Programming: An
Exposition”. In: Informs Journal on Computing 12.1 (2000).

[Kai11a] Volker Kaibel. “Basic Polyhedral Theory”. In: Wiley Encyclopedia of Op-
erations Research and Management Science (2011).

[Kai11b] Volker Kaibel. “Extended Formulations in Combinatorial Optimization”.
In: Optima 85 (2011).

[Kar84] Narendra Karmarkar. “A New Polynomial-Time Algorithm for Linear
Programming-II”. In: Combinatorica 4.4 (Dec. 1984), pp. 373–395. DOI:
10.1007/BF02579150.

[Kha79] Leonid Khachiyan. “A polynomial algorithm in linear programming”. In:
Dokl. Akad. Nauk SSSR 244.5 (1979), pp. 1093–1096.

[Kis04] Tamás Kis. “On the complextity of the car sequencing problem”. In: Op-
erations Research Letters 32.4 (2004), pp. 331–335.

[KK92] Gil Kalai and Daniel Kleitman. “A quasi-polynomial bound for the diam-
eter of graphs of polyhedra”. In: Bulletin of the American Mathematical
Society 26 (1992).

102 7. Bibliography

[KPKP90] Behzad Kamgar-Parsi and Behrooz Kamgar-Parsi. “On Problem Solving
with Hopfield Neural Networks”. In: Biological Cybernetics 62 (1990),
pp. 415–423.

[KS09] Edward Kim and Francisco Santos. “An Update on the Hirsch Conjec-
ture”. In: Jahresbericht der Deutschen Mathematiker-Vereinigung (2009).

[KW67] Victor Klee and David Walkup. “The d-step conjecture for polyhedra of
dimension d”. In: Acta Mathematica 117 (1967), pp. 53–78.

[LAR12] Thaynara Arielly de Lima and Mauricio Ayala-Rincón. “Complexity of
Cayley Distance and other General Metrics on Permutation Groups”. In:
7th Colombian Computing Congress (CCC). 2012.

[Law76] Eugene Lawler. Combinatorial Optimization. Networks and Matroids.
Holt, Rinehart and Winston, 1976.

[Les+93] Moshe Leshno et al. “Multilayer Feedforward Networks with a Nonpoly-
nomial Activation Function can approximate any Function”. In: Neural
Networks 6 (1993), pp. 861–867.

[LLY09] Jesús Loera, Fu Liu, and Ruriko Yoshida. “A generating function for all
semi-magic squares and the volume of the Birkhoff Polytope”. In: Journal
of Algebraic Combinatorics 30 (2009), pp. 113–139.

[LMS99] George Lendaris, Karl Mathia, and Richard Saeks. “Linear Hopfield net-
works and constrained optimization”. In: IEEE Transactions on Cyber-
netics 29 (1999), pp. 114–118.

[Loe13] Edward Loera Jesús Kim. “Combinatorics and Geometry of Transporta-
tion Polytopes: an Update”. In: Contemporary Mathematics 625 (2013).

[LPM15] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Ap-
proaches to Attention-based Neural Machine Translation”. In: Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2015, pp. 1412–
1421. URL: https://www.aclweb.org/anthology/D15-1166.

[LRZ06] Udo Lindemann, Ralf Reichwald, and Michael Zäh. Individualisierte Pro-
dukte - Komplexität beherrschen in Entwicklung und Produktion. Springer,
2006.

[LW14] Cong Lim and Stephen Wright. “Beyond the Birkhoff Polytope: Convex
Relaxations for Vector Permutation Problems”. In: Advances in Neural
Information Processing Systems 3 (2014).

103

[Mac03] David MacKay. Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2003.

[Mat98] Satoshi Matsuda. “Optimal Hopfield Network for Combinatorial Opti-
mization with Linear Cost Function”. In: IEEE Transactions on Neural
Networks 9.6 (1998), pp. 1319–1330.

[MG07] Jirí Matousek and Bernd Gärtner. Understanding and Using Linear Pro-
gramming. Springer-Verlag Berlin Heidelberg, 2007.

[Mit96] John Mitchell. “Interior Point Algorithms for Integer Programming”. In:
Advances in Linear and Integer Programming. Ed. by John Beasley. Claren-
don Press, 1996, pp. 223–248.

[Mor+16] David Morrison et al. “Branch-and-bound algorithms:A survey of recent
advances in searching, branching and pruning”. In: Discrete Optimization
19 (2016), pp. 79–102.

[MPR98] John Mitchell, Panos Pardalos, and Mauricio Resende. “Interior Point
Methods for Combinatorial Optimization”. In: Handbook of Combina-
torial Optimization. Ed. by Ding-Zhu Du and Panos Pardalos. Vol. 1.
Kluwer Academic Publishers, 1998, pp. 189–297.

[NT09] Arkadi Nemirovski and Michael Todd. “Interior-point methods for opti-
mization”. In: Acta Numerica (2009).

[Onn93] Shmuel Onn. “Geometry, Complexity and Combinatorics of Permutation
Polytopes”. In: Journal of Combinatorial Theory (1993), pp. 31–49.

[Pak00] Igor Pak. “Four Questions on Birkhoff Polytope”. In: Annals of Combi-
natorics 4 (2000).

[PKW86] Bruce Parello, Waldo Kabat, and Larry Wos. “Job-scheduling using auto-
mated reasoning: A case study of the car-sequencing problem”. In: Jour-
nal of Automated Reasoning 2 (1986), pp. 1–42.

[Pla18] Elad Plaut. From Principal Subspaces to Principal Components with Lin-
ear Autoencoders. 2018.

[Pot93] Jean.-Yves. Potvin. “State-of-the-Art Survey - The Traveling Salesman
Problem: A Neural Network Perspective”. In: Journal on Computing 5.4
(1993), pp. 328–348.

104 7. Bibliography

[PR08] Matthias Prandtstetter and Günther Raidl. “An integer linear program-
ming approach and a hybrid variable neighborhood search for the car se-
quencing problem”. In: European Journal of Operational Research 191.3
(2008), pp. 1004–1022.

[Reb09] Steffen Rebennack. “Ellipsoid Method”. In: Encyclopedia of Optimiza-
tion. Ed. by C Floudas and P. Pardalos. Springer US, 2009, pp. 890–899.

[SA20] Simone Sharma and Anidhya Athaiya. “Activation functions in neural
networks”. In: International Journal of Engineering, Applied Sciences
and Technology 4.12 (2020), pp. 310–316.

[Seq] SeqToSeq. https://de.mathworks.com/help/deeplearning/ug
/sequence-to-sequence-translation-using-attention.html.
Accessed: 2021-02-11.

[SG00] Kate Smith and Jatinder Gupta. “Neural networks in business: techniques
and applications for the operations researcher”. In: Computers & Opera-
tions Research 27.11-12 (2000), pp. 1023–1044.

[She+19] Li Shen et al. “Deep Learning to Improve Breast Cancer Detection on
Screening Mammography”. In: Scientific Reports 9 (2019), pp. 1–12.

[SM99] Kate Smith-Miles. “Neural Networks for Combinatorial Optimization: A
Review of more than a Decade of Research”. In: Informs Journal on Com-
puting 11.1 (1999), pp. 15–34.

[Sol+08] Christine Solnon et al. “The car sequencing problem: Overview of state-
of-the-art methods and industrial case-study of the ROADEF’2005 chal-
lenge problem”. In: European Journal of Operational Research 191.3
(2008), pp. 912–927.

[ST04] Daniel Spielman and Shang-Hua Teng. “Smoothed Analysis of Algo-
rithms: Why the Simplex Algorithm usually takes polynomial time”. In:
Journal of the ACM 51.3 (2004), pp. 385–463.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc Le. “Sequence to Sequence Learn-
ing with Neural Networks”. In: CoRR (2014).

[SZ71] Naum Shor and N Zhurbenko. “The minimization method using space di-
latationin direction of difference of two sequential gradients”. In: Kiber-
netika 3 (1971), pp. 51–59.

[Tod02] Michael Todd. “The many facets of linear programming”. In: Mathemat-
ical Programming (2002), pp. 417–436.

105

[Van14] Robert Vanderbei. Linear Programming. Foundations and Extensions. In-
ternational Series in Operations Research & Management Science. Springer
US, 2014.

[Vas+17] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017. URL: https://proceedings.neurips.cc/pap
er/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[VS06] François Vanderbeck and Martin Savelsbergh. “A generic view of Dantzig–
Wolfe decomposition in mixed integer programming”. In: Operations Re-
search Letters 34 (2006), pp. 296–306.

[VW10] François Vanderbeck and Laurence Wolsey. “Reformulation and Decom-
position of Integer Programs”. In: 50 Years of Integer Programming 1958-
2008. Jünger, M. et al., 2010, pp. 431–502.

[Wor] WordEmbedding. https://www.mathworks.com/help/textanalyt
ics/ref/nnet.cnn.layer.wordembeddinglayer.html. Accessed:
2021-03-26.

[Wri97] Stephen Wright. Primal-dual Interior-Point Methods. SIAM, 1997.

[XFW08] Youshen Xia, Gang Feng, and Jun Wang. “A novel recurrent neural net-
work for solving nonlinear optimization problems with inequality con-
straints”. In: IEEETransactions on Neural Networks 19.8 (2008), pp. 1340–
1353.

[YN76a] David Yudin and Arkadi Nemirovski. “Evaluation of the Informational
Complexity of Mathematical Programming Problems”. In: Èkon Math
Metod 12 (1976), pp. 128–142.

[YN76b] David Yudin and Arkadi Nemirovski. “Informational Complexity and Ef-
ficient Methods for the Solution of Convex Extremal Problems”. In: È
Math Metod 12 (1976), pp. 357–369.

[YN77] David Yudin and Arkadi Nemirovski. “Optimization Methods Adapting
to the “Significant” Dimension of the Problem”. In: Autom Telemekhanika
38 (1977), pp. 75–87.

[YWL08] Lean Yu, Shouyang Wang, and Kin Keung Lai. “Credit risk assessment
with a multistage neural network ensemble learning approach”. In: Expert
Systems with Applications 34 (2008), pp. 1434–1444.

106 7. Bibliography

[Zie01] Günther Ziegler. “Questions about Polytopes”. In: Mathematics Unlim-
ited - 2001 and Beyond. Ed. by Björn Engquist and Wilfried Schmid.
Springer Berlin Heidelberg, 2001, pp. 1195–1211.

[Zie12a] Günther Ziegler. Lectures on Polytopes. Springer-Verlag New York, 2012.

[Zie12b] Günther. Ziegler. “Who solved the Hirsch conjecture?” In: Documenta
Mathematica (2012), pp. 75–85.

A. Analysis of real and artificial

data

All figures in Section A.1 as well as Sections A.2.1 to A.2.2 are supposed to carry the
label “subset” on the x-axis and “mean(variance/skewness) value” on the y-axis.
The x-axes of the figures in SectionA.2.3 are supposed to be labeled “shift” and the
y-axes “probability”.
Due to reason of clearity we omit the axis labels, they are clear from the figure cap-
tions.

108 A. Analysis of real and artificial data

A.1. Statistical analysis of real data

0 5 10 15 20

�200

0

200

197
149
775
992

(a) mean values

0 5 10 15 20
0

0.5

1

·106

197
149
775
992

(b) variance values

Figure A.1.: Statistic values for HD-1

A.1. Statistical analysis of real data 109

0 5 10 15 20

�200

0

200

197
149
775
992

(a) mean values

0 5 10 15 20

0

2

4

6
·106

197
149
775
992

(b) variance values

Figure A.2.: Statistic values for HD-2

110 A. Analysis of real and artificial data

0 5 10 15 20

�400

�200

0

200

400

197
149
775
992

(a) mean values

0 5 10 15 20

0

1

2

3

·107

197
149
775
992

(b) variance values

Figure A.3.: Statistic values for HD-3

A.1. Statistical analysis of real data 111

112 A. Analysis of real and artificial data

A.2. Statistical analysis of artificial data

A.2.1. Moving statistic values for mono-distributed sets
with n = 10, 50, 100, 200

0 5 10 15

�2

0

2

(a) mean values

0 5 10 15

0.6

0.7

0.8

0.9

(b) variance values

0 5 10 15

�0.4

�0.2

0

0.2

197 149 775 897

(c) skewness values

Figure A.4.: Statistic values for 104-1

A.2. Statistical analysis of artificial data 113

0 5 10 15 20 25 30

�5

0

5

10

(a) mean values

0 5 10 15 20 25 30

2

2.5

3

3.5

(b) variance values

0 5 10 15 20 25 30

�0.1

�5 ·10�2

0

5 ·10�2

197 149 775 897

(c) skewness values

Figure A.5.: Statistic values for 504-1

114 A. Analysis of real and artificial data

0 5 10 15 20

�10

0

10

20

(a) mean values

0 5 10 15 20

4

5

6

(b) variance values

0 5 10 15 20

�2

0

2

4

6

·10�2

197 775 799 831
149 897 183 992

(c) skewness values

Figure A.6.: Statistic values for 1008-1

A.2. Statistical analysis of artificial data 115

0 5 10 15 20

�10

0

10

(a) mean values

0 5 10 15 20

4

5

6

7

(b) variance values

0 5 10 15 20

�2

0

2

·10�2

197 775 799 831
149 897 183 992

(c) skewness values

Figure A.7.: Statistic values for 2008-1

116 A. Analysis of real and artificial data

A.2. Statistical analysis of artificial data 117

A.2.2. Moving statistic values for poly distributed sets with
n = 10, 50, 100, 200

0 2 4 6 8 10 12
�3

�2

�1

0

1

2

(a) mean values

0 2 4 6 8 10 12

0.7

0.8

0.9

1

1.1

1.2

(b) variance values

0 2 4 6 8 10 12

�0.2

0

0.2

197 149 775 897

(c) skewness values

Figure A.8.: Statistic values for 104-2

118 A. Analysis of real and artificial data

0 5 10 15 20 25 30

�5

0

5

10

(a) mean values

0 5 10 15 20 25 30

4

5

6

7

8

(b) variance values

0 5 10 15 20 25 30
�8

�6

�4

�2

0

2

4
·10�2

197 149 775 897

(c) skewness values

Figure A.9.: Statistic values for 504-2

A.2. Statistical analysis of artificial data 119

0 5 10 15 20
�20

�10

0

10

20

(a) mean values

0 5 10 15 20
5

10

15

20

(b) variance values

0 5 10 15 20

�4

�2

0

2

·10�2

197 775 799 831
149 897 183 992

(c) skewness values

Figure A.10.: Statistic values for 1008-2

120 A. Analysis of real and artificial data

0 5 10 15 20

�10

0

10

20

(a) mean values

0 5 10 15 20

5

10

15

20

25

(b) variance values

0 5 10 15 20

�4

�2

0

2

·10�2

197 775 799 831
149 897 183 992

(c) skewness values

Figure A.11.: Statistic values for 2008-2

A.2. Statistical analysis of artificial data 121

A.2.3. Probability distributions for n = 10, 50, 100, 200

�10 �5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

197
149
775
897

(a) 104-1

�10 �5 0 5 10

0

0.1

0.2

0.3

0.4

197
149
775
897

(b) 104-2

Figure A.12.: Probability distributions for 104-1 and 104-2

122 A. Analysis of real and artificial data

�20 �10 0 10 20

0

0.1

0.2

197
149
775
897

(a) 504-1

�20 �10 0 10 20

0

5 ·10�2

0.1

0.15

197
149
775
897

(b) 504-2

Figure A.13.: Probability distributions for 504-1 and 504-2

A.2. Statistical analysis of artificial data 123

�20 0 20

0

5 ·10�2

0.1

0.15

0.2

197 775 799 831
149 897 183 992

(a) 1008-1

�20 0 20

0

5 ·10�2

0.1

0.15

197 775 799 831
149 897 183 992

(b) 1008-2

Figure A.14.: Probability distributions for 1008-1 and 1008-2

124 A. Analysis of real and artificial data

�20 0 20

0

5 ·10�2

0.1

0.15

197 775 799 831
149 897 183 992

(a) 2008-1

�20 0 20

0

5 ·10�2

0.1

197 775 799 831
149 897 183 992

(b) 2008-2

Figure A.15.: Probability distributions for 2008-1 and 2008-2

B. Computational results of the

MIP

B.1. Gurobi Optimizer without start solution

The columns of Table B.1 and B.3 are defined as follows

Problem - problem in the usual no-
tation

MIPStart - objective value of the
solution provided by MIP (3.30a)-
(3.30d) handed over to GurobiTMvia
the Start attribute, only affects Table
B.3

Nodes - number of nodes explored
during solving process

simplex interations - number of
simplex iterations performed until
termination, only affects Table B.1

Status - model status, either op-
timal, when optimal solution is
found, or interrupted, when time
limit is reached

Obj Val - objective value of the op-
timal or incumbent solution, respec-
tively

Gap - gap between upper bound ub
and lower bound lb, |ub�lb|

|ub| in %

Time - time elapsed when solver
terminates in s, rounded up to two
decimal points

Problem Nodes simplex iterations Status Obj Val Gap Time

102-1-1 1 1122 optimal 2 0 0.23

102-1-2 256 6949 optimal 0 0 0.33

102-1-3 214 3825 optimal 3 0 0.25

126 B. Computational results of the MIP

Problem Nodes simplex iterations Status Obj Val Gap Time

102-1-4 1 855 optimal 3 0 0.19

102-1-5 1 856 optimal 3 0 0.14

102-1-6 1 1531 optimal 6 0 0.33

102-1-7 1 782 optimal 3 0 0.13

102-1-8 1 1573 optimal 2 0 0.20

102-1-9 1 444 optimal 0 0 0.09

102-1-10 1 727 optimal 0 0 0.11

102-2-1 2560 108611 optimal 8 0 3.64

102-2-2 854 27295 optimal 3 0 0.77

102-2-3 278 4044 optimal 6 0 0.25

102-2-4 1 1799 optimal 5 0 0.67

102-2-5 4282 208512 optimal 2 0 4.84

102-2-6 1 1534 optimal 0 0 0.51

102-2-7 7705 490088 optimal 2 0 12.34

102-2-8 403 22147 optimal 6 0 0.85

102-2-9 1 1742 optimal 0 0 0.43

102-2-10 2416 121164 optimal 5 0 2.34

104-1-1 1 694 optimal 1 0 0.15

104-1-2 65 2095 optimal 6 0 0.22

104-1-3 1 1321 optimal 1 0 0.31

104-1-4 21 1491 optimal 8 0 0.37

104-1-5 1 590 optimal 2 0 0.12

104-1-6 648 21358 optimal 2 0 0.51

104-1-7 1 920 optimal 14 0 0.19

104-1-8 1 653 optimal 9 0 0.11

104-1-9 122 4545 optimal 2 0 0.29

104-1-10 1 906 optimal 6 0 0.17

104-2-1 118 3723 optimal 2 0 0.61

104-2-2 1 1066 optimal 7 0 0.32

104-2-3 64 2172 optimal 11 0 0.47

B.1. Gurobi Optimizer without start solution 127

Problem Nodes simplex iterations Status Obj Val Gap Time

104-2-4 0 19 optimal 5 0 0.20

104-2-5 624 22771 optimal 4 0 1.02

104-2-6 0 7 optimal 2 0 0.15

104-2-7 146 4656 optimal 3 0 0.80

104-2-8 46 1663 optimal 2 0 0.55

104-2-9 1 684 optimal 5 0 0.19

104-2-10 1 685 optimal 0 0 0.10

152-1-1 76 4487 optimal 0 0 0.65

152-1-2 23 5691 optimal 3 0 0.60

152-1-3 360 17598 optimal 3 0 0.81

152-1-4 1 3000 optimal 3 0 0.44

152-1-5 4194 356422 optimal 4 0 1.30

152-1-6 2549 125810 optimal 2 0 2.51

152-1-7 1248 54176 optimal 4 0 2.14

152-1-8 3891 254441 optimal 3 0 4.59

152-1-9 1 2526 optimal 0 0 0.41

152-1-10 1 2729 optimal 6 0 0.38

152-2-1 2123 227601 optimal 3 0 6.09

152-2-2 497 12981 optimal 5 0 0.77

152-2-3 2810 71232 optimal 12 0 1.63

152-2-4 9034 973575 optimal 2 0 39.90

152-2-5 5126 547405 optimal 2 0 19.24

152-2-6 2124 76064 optimal 7 0 1.81

152-2-7 2272 326713 optimal 2 0 8.35

152-2-8 1216 93394 optimal 12 0 3.18

152-2-9 5759 597830 optimal 2 0 23.07

152-2-10 248 11513 optimal 3 0 0.65

154-1-1 2098 157327 optimal 11 0 3.34

154-1-2 251 8789 optimal 11 0 0.66

154-1-3 539 45501 optimal 3 0 1.34

128 B. Computational results of the MIP

Problem Nodes simplex iterations Status Obj Val Gap Time

154-1-4 4861 432003 optimal 8 0 14.73

154-1-5 1 3442 optimal 1 0 0.56

154-1-6 2727 149263 optimal 3 0 3.57

154-1-7 97 6184 optimal 20 0 0.79

154-1-8 87 6543 optimal 8 0 0.76

154-1-9 1 1516 optimal 2 0 0.38

154-1-10 744 58243 optimal 5 0 1.45

154-2-1 1211 97004 optimal 5 0 2.39

154-2-2 93 7410 optimal 8 0 0.63

154-2-3 191 7736 optimal 9 0 0.55

154-2-4 564 29220 optimal 7 0 1.13

154-2-5 1 3109 optimal 4 0 0.50

154-2-6 1 2526 optimal 6 0 0.33

154-2-7 3411 361435 optimal 4 0 7.98

154-2-8 1 2197 optimal 10 0 0.39

154-2-9 6358 662229 optimal 4 0 20.28

154-2-10 1303 72862 optimal 15 0 1.46

202-1-1 1 3514 optimal 0 0 0.81

202-1-2 3166 314830 optimal 6 0 37.30

202-1-3 1988 145974 optimal 2 0 15.88

202-1-4 41815 5410465 optimal 6 0 443.30

202-1-5 1 4582 optimal 3 0 0.75

202-1-6 5595 331610 optimal 5 0 10.53

202-1-7 7850 5609977 optimal 7 0 21.01

202-1-8 1 3740 optimal 3 0 0.58

202-1-9 12527 1462252 optimal 4 0 58.81

202-1-10 201 17553 optimal 0 0 1.58

202-2-1 113367 8799089 optimal 5 0 407.34

202-2-2 7860 489972 optimal 5 0 28.77

202-2-3 2093 221926 optimal 3 0 10.48

B.1. Gurobi Optimizer without start solution 129

Problem Nodes simplex iterations Status Obj Val Gap Time

202-2-4 2241 166658 optimal 2 0 7.36

202-2-5 1730 122591 optimal 2 0 6.85

202-2-6 15402 1152807 optimal 7 0 36.97

202-2-7 6228 283944 optimal 3 0 14.52

202-2-8 1 6088 optimal 3 0 1.33

202-2-9 3670 215469 optimal 6 0 10.76

202-2-10 13411 692132 optimal 4 0 68.89

204-1-1 1731 95345 optimal 5 0 4.04

204-1-2 1 3584 optimal 5 0 0.78

204-1-3 3972 564466 optimal 8 0 29.85

204-1-4 5283 281327 optimal 9 0 11.72

204-1-5 1 4116 optimal 5 0 0.88

204-1-6 778 48707 optimal 0 0 2.52

204-1-7 1 3799 optimal 1 0 0.80

204-1-8 5888 529123 optimal 5 0 18.08

204-1-9 4818 579244 optimal 9 0 35.51

204-1-10 246 13381 optimal 7 0 1.42

204-2-1 4357 607944 optimal 5 0 51.5

204-2-2 2170 182871 optimal 4 0 24.85

204-2-3 185 13560 optimal 7 0 3.66

204-2-4 1 3403 optimal 3 0 1.50

204-2-5 1646 167067 optimal 18 0 12.52

204-2-6 3179 266848 optimal 8 0 21.07

204-2-7 1 12481 optimal 14 0 4.69

204-2-8 6360 1317354 optimal 4 0 114.63

204-2-9 24610 2008326 optimal 13 0 168.72

204-2-10 1 4311 optimal 11 0 0.90

302-1-1 1 12267 optimal 0 0 5.49

302-1-2 8 18254 optimal 0 0 17.06

302-1-3 22080 1158025 optimal 4 0 1001.43

130 B. Computational results of the MIP

Problem Nodes simplex iterations Status Obj Val Gap Time

302-1-4 4173 557693 optimal 0 0 89.25

302-1-5 37599 187835 optimal 1 0 362.65

302-1-6 706 61561 optimal 4 0 15.56

302-1-7 284391 29782599 optimal 4 0 2371.17

302-1-8 1 12977 optimal 0 0 2.86

302-1-9 1200 138260 optimal 2 0 9.10

302-1-10 1 17939 optimal 1 0 3.54

302-2-1 1089 101590 optimal 5 0 13.42

302-2-2 18568 1631150 optimal 3 0 46.96

302-2-3 1202 122916 optimal 11 0 21.44

302-2-4 337391 53585981 optimal 10 0 1223.37

302-2-5 93306 5937693 optimal 39 2.5641 365.44

302-2-6 8303737 649975006 interrupted 6 66.667 50000.05

302-2-7 52512 3579851 optimal 38 2.6316 25010.43

302-2-8 12376 1292665 optimal 3 0 48.33

302-2-9 2978 229267 optimal 3 0 6.89

302-2-10 3559 343770 optimal 16 0 29.47

304-1-1 382 46024 optimal 2 0 7.56

304-1-2 11291 1381795 optimal 5 0 85.57

304-1-3 4800 501522 optimal 4 0 51.78

304-1-4 130825 18698574 optimal 14 0 1869.82

304-1-5 21515 3101402 optimal 7 0 286.79

304-1-6 31533 2768581 optimal 2 0 5269.63

304-1-7 2167 425595 optimal 7 0 42.65

304-1-8 1 9042 optimal 6 0 2.37

304-1-9 1 11828 optimal 5 0 2.68

304-1-10 53971 6438066 optimal 9 0 49789.46

304-2-1 17579 3962755 optimal 14 0 278.89

304-2-2 71 15916 optimal 5 0 2.89

304-2-3 1763 228662 optimal 9 0 25.49

B.1. Gurobi Optimizer without start solution 131

Problem Nodes simplex iterations Status Obj Val Gap Time

304-2-4 261322 35011933 optimal 14 0 2474.55

304-2-5 1485859 105316434 optimal 25 0 5776.07

304-2-6 1067579 123574543 optimal 13 0 33825.67

304-2-7 1 8521 optimal 7 0 2.29

304-2-8 228 24827 optimal 24 0 5.94

304-2-9 2465 288071 optimal 17 0 37.09

304-2-10 1 12799 optimal 12 0 3.38

308-1-1 97750 6664211 optimal 30 0 676.78

308-1-2 371 45584 optimal 12 0 6.05

308-1-3 6705 510808 optimal 13 0 17.81

308-1-4 149 36022 optimal 18 0 8.42

308-1-5 4721 775084 optimal 27 0 29.06

308-1-6 11866 2625520 optimal 16 0 302.92

308-1-7 81273 9832639 optimal 5 0 524.91

308-1-8 127833 18965452 optimal 13 0 7584.43

308-1-9 1696 49379 optimal 25 0 10.95

308-1-10 241 29708 optimal 11 0 5.46

308-2-1 5381 762988 optimal 32 0 29.27

308-2-2 398 39434 optimal 12 0 5.26

308-2-3 3895 286450 optimal 12 0 19.71

308-2-4 23765 2544924 optimal 37 0 283.43

308-2-5 89171 11668494 optimal 16 0 861.52

308-2-6 80679 12184261 optimal 24 0 1008.93

308-2-7 34053 3775060 optimal 8 0 375.57

308-2-8 1 21475 optimal 29 0 5.91

308-2-9 3808 296503 optimal 5 0 28.72

308-2-10 238 39481 optimal 24 0 5.27

404-1-1 44244 8572568 optimal 50 0 2352.00

404-1-2 2179 146663 optimal 37 0 26.27

404-1-3 22058 3123955 optimal 27 0 1108.90

132 B. Computational results of the MIP

Problem Nodes simplex iterations Status Obj Val Gap Time

404-1-4 3492 440488 optimal 82 1.2195 227.83

404-1-5 159292 24246249 optimal 41 0 28832.90

404-1-6 201943 21441442 optimal 40 0 3071.36

404-1-7 1089022 123947018 optimal 8 0 2026.98

404-1-8 731429 160012696 interrupted 6 100 50000.05

404-1-9 3166 189589 optimal 19 0 21.03

404-1-10 15944 1189780 optimal 41 2.4390 173.13

404-2-1 732958 177796577 interrupted 28 100 50000.10

404-2-2 621677 234448174 interrupted 60 50 50000.03

404-2-3 2379734 648559892 interrupted 29 13.7931 50000.09

404-2-4 893850 201285975 interrupted 37 100 50000.15

404-2-5 322481 53445900 optimal 44 0 23901.34

404-2-6 53801 4601221 optimal 52 0 2830.51

404-2-7 485664 1849555 optimal 48 2.1344 17269.41

404-2-8 422 26443 optimal 54 0 829.41

404-2-9 6554 60056 optimal 46 2.0054 4412.67

404-2-10 1612 2557 optimal 37 0 2854.80

408-1-1 1362832 112635591 optimal 68 2.9412 35566.02

408-1-2 85608 6991181 optimal 26 0 1572.34

408-1-3 51659 7274944 optimal 40 0 5024.46

408-1-4 4277 230775 optimal 44 0 27.78

408-1-5 6804 886934 optimal 50 0 349.14

408-1-6 58936 11323469 optimal 16 0 40651.50

408-1-7 3952 358631 optimal 24 0 41.15

408-1-8 2257675 268968432 interrupted 38 100 50000.15

408-1-9 1 44234 optimal 57 1.7544 50.47

408-1-10 12276 1192188 optimal 17 0 124.91

408-2-1 26001 8399463 optimal 78 0 328.51

408-2-2 42764 3270094 optimal 91 0 2095.63

408-2-3 10385 2774622 optimal 51 2.0863 1003.52

B.1. Gurobi Optimizer without start solution 133

Problem Nodes simplex iterations Status Obj Val Gap Time

408-2-4 4952 388465 optimal 75 2.1984 177.05

408-2-5 15309 10294344 optimal 63 0 842.77

408-2-6 735 24409 optimal 82 0 51.09

408-2-7 3849 488374 optimal 109 2.2666 541.38

408-2-8 638422 2346664 interrupted 60 100 50000.10

408-2-9 1173405 103744432 interrupted 50 100 50000.09

408-2-10 9388 200934 optimal 76 0 930.41

504-1-1 2711 438223 optimal 27 0 280.11

504-1-2 791365 268400868 interrupted 30 23.33 50000.10

504-1-3 24652 3679633 optimal 38 2.6316 1150.73

504-1-4 2657 356704 optimal 38 2.6316 102.49

504-1-5 240710 27567454 interrupted 42 100 50000.13

504-1-6 632452 174433628 optimal 23 0 8117.42

504-1-7 471915 57721795 optimal 62 1.6129 4675.64

504-1-8 1124 112908 optimal 38 2.6316 56.21

504-1-9 2723 1071715 interrupted 85 85.8824 50000.04

504-1-10 114062 9360474 optimal 27 0 475.97

504-2-1 456369 178885571 interrupted 48 100 50000.15

504-2-2 1119001 227933588 interrupted 77 24.6753 50000.20

504-2-3 264708 92080217 interrupted 98 100 50000.13

504-2-4 962758 445765326 interrupted 44 38.6364 50000.13

504-2-5 32845 7942764 optimal 64 0 921.38

504-2-6 890734 74364780 interrupted 80 100 50000.11

504-2-7 138424 11543975 optimal 63 1.989 26590.61

504-2-8 52905 1052222 optimal 62 0 1420.91

504-2-9 553756 982176554 optimal 78 2.3211 28004.68

504-2-10 9052113 9834254211 optimal 50 0 48012.25

508-1-1 108977 6132090 interrupted 54 100 50000.15

508-1-2 456656 80143298 optimal 24 0 35998.22

508-1-3 5744 21409 optimal 34 1.9867 1420.98

134 B. Computational results of the MIP

Problem Nodes simplex iterations Status Obj Val Gap Time

508-1-4 534432 53286874 optimal 44 0 10972.41

508-1-5 894770 7400989 optimal 19 0 16309.37

508-1-6 143768 5446571 optimal 15 0 5260.76

508-1-7 8975 879090 optimal 28 2.1332 834.05

508-1-8 6372 1450857 optimal 70 2.8571 356.06

508-1-9 565680 99794627 interrupted 45 100 50000.20

508-1-10 2823 1624796 optimal 32 0 781.90

508-2-1 87433 9371774 optimal 103 2.9126 8926.87

508-2-2 257364 34432876 interrupted 88 100 50000.05

508-2-3 64473 7854309 optimal 93 0 1461.61

508-2-4 831146 68401126 optimal 99 2.0202 4322.59

508-2-5 532713 608335179 interrupted 66 100 50000.25

508-2-6 99836 90647145 optimal 92 0 5198.32

508-2-7 192324 64887143 optimal 62 0 24954.23

508-2-8 654656 730909843 interrupted 84 100 50000.15

508-2-9 99761 655639 interrupted 72 46.9897 50000.13

508-2-10 376822 4281143 interrupted 88 100 50000.05

Table B.1.: MIP results

B.1. Gurobi Optimizer without start solution 135

B.1.1. Statistic values for Gurobi Optimizer without start
solution

The columns of Table B.2 and B.4 are defined as follows

Instance - problem instances in the
usual notation

µ(Nodes) - mean value of num-
ber of explored nodes over all se-
quences

s (Nodes) - standard deviation of
number of explored nodes over all
100 problems of a instance

µ(Obj Val) - mean of objective val-

ues, only affects Table B.2

µ(Time) - mean value of computa-
tional time over all sequences

s (Nodes) - standard deviation of
computational time over all se-
quences

D - ratio of problems that are solved
until optimality

The values µ(Nodes) and s(Nodes) are rounded up to integers, µ(Obj Val) is rounded
up to one decimal point, µ(Time) and s(Time) are rounded up to four decimal points.

Instance µ(Nodes) s (Nodes) µ(Obj Val) µ(Time) s (Time) D

102-1 178 384 2.4 0.2882 0.2736

102-2 1139 1873 2.8 1.6326 2.5258

104-1 33 81 4.7 0.2164 0.0642

104-2 50 104 6.2 0.3690 0.1467

152-1 986 2027 2.6 2.0670 4.6445

152-2 4474 4202 4.7 8.5786 8.2114

154-1 469 865 6.4 1.0756 1.5786

154-2 684 1228 8.1 1.5507 2.8000

202-1 1996 4537 2.9 10.4456 44.3706

202-2 11936 19159 4.2 41.9028 73.0439

136 B. Computational results of the MIP

Instance µ(Nodes) s (Nodes) µ(Obj Val) µ(Time) s (Time) D

204-1 1602 1842 7.4 7.4917 11.0009

204-2 3240 6467 9.9 16.6039 26.7905

302-1 70823 605066 2.4 969.3047 8221.0383

302-2 272192 1296445 6 1859.05 8599.9129 0.98

304-1 15884 52755 7.6 679.9996 4979.1035

304-2 50767 185711 13.8 833.9253 4165.6043

308-1 11577 31687 17.2 260.5132 1029.9150

308-2 11784 24811 22.7 469.8185 3417.5650

404-1 189789 373012 34.7 6927.1679 14698.3453 0.92

404-2 327485 579326 45.2 9636.2526 15734.4021 0.88

408-1 125661 317561 39.8 5180.71 9531.1251 0.93

408-2 223094 528831 48.2 7052.8564 10435.5419 0.9

504-1 475933 1539808 41 24385.2291 48688.4240 0.75

504-2 558974 22436875 52.7 37125.1911 49273.9833 0.71

508-1 354527 963444 42.5 22764.0935 45928.6232 0.77

508-2 468853 1365390 78.7 29803.746 48873.2565 0.72

Table B.2.: Statistic values for MIP results

B.2. Gurobi Optimizer with MIPstart 137

B.2. Gurobi Optimizer with MIPstart

Problem MIPstart Nodes Status Obj Val Gap Time

102-1-1 2 1 optimal 2 0 0.40

102-1-2 4 610 optimal 0 0 1.06

102-1-3 5 1 optimal 3 0 1.17

102-1-4 3 1 optimal 3 0 0.27

102-1-5 4 1 optimal 3 0 0.22

102-1-6 14 1 optimal 6 0 0.70

102-1-7 3 15 optimal 3 0 0.31

102-1-8 5 556 optimal 2 0 0.68

102-1-9 0 0 optimal 0 0 0.09

102-1-10 0 0 optimal 0 0 0.07

102-2-1 10 2334 optimal 8 0 3.09

102-2-2 6 865 optimal 3 0 1.04

102-2-3 6 171 optimal 6 0 0.32

102-2-4 12 1 optimal 5 0 0.71

102-2-5 2 3894 optimal 2 0 7.19

102-2-6 4 1 optimal 0 0 0.34

102-2-7 2 4413 optimal 2 0 8.07

102-2-8 8 914 optimal 6 0 1.05

102-2-9 2 1 optimal 0 0 0.47

102-2-10 5 2369 optimal 5 0 2.84

104-1-1 1 1 optimal 1 0 0.30

104-1-2 6 1 optimal 6 0 0.53

104-1-3 1 1 optimal 1 0 0.37

104-1-4 8 5 optimal 8 0 0.55

104-1-5 2 1 optimal 2 0 0.21

104-1-6 2 48 optimal 2 0 0.49

104-1-7 14 93 optimal 14 0 0.41

104-1-8 13 1 optimal 9 0 0.18

104-1-9 2 193 optimal 2 0 0.63

138 B. Computational results of the MIP

Problem MIPstart Nodes Status Obj Val Gap Time

104-1-10 6 1 optimal 6 0 0.18

104-2-1 2 160 optimal 2 0 0.68

104-2-2 7 1 optimal 7 0 0.52

104-2-3 11 1 optimal 11 0 1.21

104-2-4 14 0 optimal 5 0 0.19

104-2-5 5 965 optimal 4 0 1.02

104-2-6 4 0 optimal 2 0 0.22

104-2-7 3 166 optimal 3 0 0.46

104-2-8 2 15 optimal 2 0 0.27

104-2-9 5 1 optimal 5 0 0.34

104-2-10 0 0 optimal 0 0 0.18

152-1-1 1 1 optimal 0 0 0.64

152-1-2 6 3069 optimal 3 0 5.67

152-1-3 4 1 optimal 3 0 1.55

152-1-4 4 1 optimal 3 0 0.61

152-1-5 6 6704 optimal 4 0 21.27

152-1-6 4 1565 optimal 2 0 2.78

152-1-7 14 2173 optimal 4 0 4.14

152-1-8 3 2763 optimal 3 0 4.07

152-1-9 3 1 optimal 0 0 0.66

152-1-10 6 1 optimal 6 0 0.69

152-2-1 7 4517 optimal 3 0 23.30

152-2-2 8 1 optimal 5 0 1.34

152-2-3 19 3094 optimal 12 0 2.38

152-2-4 2 18154 optimal 2 0 31.00

152-2-5 3 5003 optimal 2 0 22.44

152-2-6 8 2412 optimal 7 0 4.96

152-2-7 11 2593 optimal 2 0 7.32

152-2-8 21 2145 optimal 12 0 13.37

152-2-9 8 4576 optimal 2 0 46.84

B.2. Gurobi Optimizer with MIPstart 139

Problem MIPstart Nodes Status Obj Val Gap Time

152-2-10 4 674 optimal 3 0 1.73

154-1-1 11 1580 optimal 11 0 2.99

154-1-2 11 1 optimal 11 0 0.86

154-1-3 3 398 optimal 3 0 1.29

154-1-4 9 2436 optimal 8 0 10.63

154-1-5 1 1 optimal 1 0 0.50

154-1-6 3 912 optimal 3 0 1.93

154-1-7 20 705 optimal 20 0 1.68

154-1-8 8 898 optimal 8 0 1.62

154-1-9 2 1 optimal 2 0 0.41

154-1-10 5 541 optimal 5 0 1.74

154-2-1 6 1412 optimal 5 0 3.27

154-2-2 8 62 optimal 8 0 1.19

154-2-3 9 1 optimal 9 0 2.27

154-2-4 8 729 optimal 7 0 1.7

154-2-5 6 1 optimal 4 0 0.93

154-2-6 6 1 optimal 6 0 0.56

154-2-7 8 3618 optimal 4 0 10.45

154-2-8 10 1 optimal 10 0 0.66

154-2-9 4 5217 optimal 4 0 20.71

154-2-10 16 1131 optimal 15 0 1.83

202-1-1 2 1 optimal 0 0 0.96

202-1-2 9 4070 optimal 6 0 15.12

202-1-3 4 46718 optimal 2 0 595.56

202-1-4 15 389572 optimal 6 0 2499.01

202-1-5 5 1 optimal 3 0 0.69

202-1-6 5 5253 optimal 5 0 7.53

202-1-7 9 1515 optimal 7 0 26.74

202-1-8 3 1 optimal 3 0 0.49

202-1-9 4 21649 optimal 4 0 131.28

140 B. Computational results of the MIP

Problem MIPstart Nodes Status Obj Val Gap Time

202-1-10 1 1 optimal 0 0 0.90

202-2-1 19 238659 optimal 5 0 898.73

202-2-2 12 23866 optimal 5 0 53.48

202-2-3 6 2128 optimal 3 0 8.90

202-2-4 6 4516 optimal 2 0 13.21

202-2-5 6 1226 optimal 2 0 5.08

202-2-6 21 32600 optimal 7 0 68.75

202-2-7 6 5161 optimal 3 0 8.39

202-2-8 4 1 optimal 3 0 1.92

202-2-9 11 5428 optimal 6 0 16.08

202-2-10 13 6194 optimal 4 0 21.80

204-1-1 11 1850 optimal 5 0 3.26

204-1-2 6 1 optimal 5 0 0.98

204-1-3 8 1478 optimal 8 0 7.79

204-1-4 15 6857 optimal 9 0 12.19

204-1-5 6 1 optimal 5 0 0.77

204-1-6 2 803 optimal 0 0 3.23

204-1-7 4 1 optimal 1 0 0.67

204-1-8 7 3718 optimal 5 0 8.82

204-1-9 13 13003 optimal 9 0 54.69

204-1-10 7 150 optimal 7 0 1.42

204-2-1 8 4272 optimal 5 0 43.58

204-2-2 7 3009 optimal 4 0 10.43

204-2-3 7 1569 optimal 7 0 13.12

204-2-4 3 1 optimal 3 0 1.63

204-2-5 18 2253 optimal 18 0 13.91

204-2-6 9 2159 optimal 8 0 23.94

204-2-7 14 60 optimal 14 0 1.79

204-2-8 10 2078 optimal 4 0 38.37

204-2-9 18 24015 optimal 13 0 136.95

B.2. Gurobi Optimizer with MIPstart 141

Problem MIPstart Nodes Status Obj Val Gap Time

204-2-10 12 1 optimal 11 0 3.17

302-1-1 4 1 optimal 0 0 2.54

302-1-2 2 209 optimal 0 0 6.99

302-1-3 4 21127 optimal 4 0 334.70

302-1-4 5 10234 optimal 0 0 35.82

302-1-5 9 9532 optimal 1 0 105.93

302-1-6 6 1126 optimal 4 0 6.81

302-1-7 7 60578 optimal 4 0 630.86

302-1-8 2 296 optimal 0 0 13.48

302-1-9 2 2126 optimal 2 0 28.42

302-1-10 3 1 optimal 1 0 4.33

302-2-1 17 1416 optimal 5 0 16.63

302-2-2 12 7993 optimal 3 0 45.22

302-2-3 23 10596 optimal 11 0 92.15

302-2-4 16 48283 optimal 10 0 179.67

302-2-5 43 47710 optimal 39 0 19117.78

302-2-6 47 1479638 optimal 6 0 19642.34

302-2-7 42 60287 optimal 38 2.6316 384.52

302-2-8 12 6781 optimal 3 0 85.36

302-2-9 9 3642 optimal 3 0 7.63

302-2-10 28 4297 optimal 16 0 25.18

304-1-1 9 2032 optimal 2 0 24.78

304-1-2 8 3374 optimal 5 0 22.47

304-1-3 9 6456 optimal 4 0 122.70

304-1-4 17 66082 optimal 14 0 712.38

304-1-5 13 14058 optimal 7 0 50.61

304-1-6 5 34046 optimal 2 0 757.34

304-1-7 10 8729 optimal 7 0 28.74

304-1-8 10 1 optimal 6 0 2.19

304-1-9 5 1 optimal 5 0 3.42

142 B. Computational results of the MIP

Problem MIPstart Nodes Status Obj Val Gap Time

304-1-10 13 22129 optimal 9 0 347.88

304-2-1 19 75819 optimal 14 0 245.95

304-2-2 10 48 optimal 5 0 2.91

304-2-3 9 6296 optimal 9 0 60.73

304-2-4 18 27729 optimal 14 0 288.20

304-2-5 44 822675 optimal 25 0 2033.25

304-2-6 22 601215 optimal 13 0 4638.76

304-2-7 7 1 optimal 7 0 2.13

304-2-8 24 3152 optimal 24 0 9.36

304-2-9 23 7649 optimal 17 0 54.78

304-2-10 12 1 optimal 12 0 2.28

308-1-1 34 6317 optimal 30 0 192.32

308-1-2 13 760 optimal 12 0 5.30

308-1-3 15 6196 optimal 13 0 20.51

308-1-4 19 1838 optimal 18 0 33.28

308-1-5 39 2233 optimal 27 0 49.10

308-1-6 18 129505 optimal 16 0 651.56

308-1-7 9 18504 optimal 5 0 88.98

308-1-8 20 934552 optimal 13 0 8279.58

308-1-9 55 313 optimal 25 0 4.45

308-1-10 11 1 optimal 11 0 5.92

308-2-1 42 3167 optimal 32 0 66.38

308-2-2 12 474 optimal 12 0 4.68

308-2-3 12 21492 optimal 12 0 179.61

308-2-4 46 59069 optimal 37 0 456.62

308-2-5 25 170815 optimal 16 0 1526.36

308-2-6 37 308862 optimal 24 0 2606.09

308-2-7 18 26854 optimal 8 0 311.45

308-2-8 33 1 optimal 29 0 5.19

308-2-9 9 2213 optimal 5 0 41.07

B.2. Gurobi Optimizer with MIPstart 143

Problem MIPstart Nodes Status Obj Val Gap Time

308-2-10 24 274 optimal 24 0 8.06

404-1-1 59 27724 optimal 50 0 1024.85

404-1-2 43 357 optimal 37 0 32.24

404-1-3 43 4035 optimal 27 0 217.74

404-1-4 93 5545 optimal 82 2.439 60.22

404-1-5 94 15592 optimal 41 2.439 436.79

404-1-6 53 85334 optimal 40 2.5 1655.34

404-1-7 20 49904 optimal 8 0 355.38

404-1-8 34 798552 interrupted 6 100 50000.15

404-1-9 27 4332 optimal 19 0 25.63

404-1-10 58 18851 optimal 41 2.439 372.12

404-2-1 64 887232 interrupted 30 100 50000.10

404-2-2 58 998126 interrupted 52 27.9817 50000.17

404-2-3 72 655428 optimal 25 0 41621.27

404-2-4 66 665872 interrupted 37 100 50000.12

404-2-5 78 99872 optimal 44 0 17253.67

404-2-6 94 76823 optimal 52 2.1213 5411.98

404-2-7 88 78655 optimal 48 0 11219.45

404-2-8 82 6528 optimal 54 2.4981 622.52

404-2-9 57 7878 optimal 46 2.0018 987.63

404-2-10 62 12326 optimal 37 0 1128.55

408-1-1 88 658129 optimal 68 2.1342 24562.87

408-1-2 28 2994 optimal 26 0 370.07

408-1-3 50 18692 optimal 40 2.5 793.58

408-1-4 81 2200 optimal 44 0 31.81

408-1-5 53 2442 optimal 50 0 33.77

408-1-6 48 187763 optimal 16 2.9816 22871.97

408-1-7 30 2626 optimal 24 0 52.44

408-1-8 102 635810 interrupted 35 99.3 50000.12

408-1-9 64 1 optimal 57 0 19.94

144 B. Computational results of the MIP

Problem MIPstart Nodes Status Obj Val Gap Time

408-1-10 53 654896 optimal 17 0 10484.13

408-2-1 86 21554 optimal 78 0 316.47

408-2-2 110 29793 optimal 91 2.1978 1167.23

408-2-3 62 5818 optimal 51 0 258.95

408-2-4 101 57219 optimal 75 2.6667 226.54

408-2-5 65 129 optimal 63 0 14.88

408-2-6 91 48724 optimal 82 2.439 351.12

408-2-7 115 2121 optimal 109 0 32.98

408-2-8 78 523311 interrupted 63 100 50000.14

408-2-9 56 89624 interrupted 49 100 50000.11

408-2-10 83 6741 optimal 76 2.2651 587.17

504-1-1 38 19342 optimal 27 0 791.94

504-1-2 53 2034311 interrupted 37 94.5946 50000.25

504-1-3 71 13862 optimal 38 2.6316 236.24

504-1-4 96 14289 optimal 38 2.6316 694.74

504-1-5 53 31661 interrupted 44 100 50000.15

504-1-6 48 21749 optimal 23 0 12850.84

504-1-7 82 13225 optimal 62 2.0132 6419.05

504-1-8 45 1195 optimal 38 2.7027 70.61

504-1-9 88 264322 optimal 68 0 36740.73

504-1-10 42 57831 optimal 27 0 262.25

504-2-1 60 324551 interrupted 46 100 50000.05

504-2-2 117 1222985 interrupted 68 6.7663 50000.13

504-2-3 114 589012 interrupted 78 27.9437 50000.10

504-2-4 83 829061 interrupted 56 64.5521 50000.10

504-2-5 118 98001 optimal 64 0 1287.54

504-2-6 92 916227 interrupted 76 100 50000.25

504-2-7 101 100823 optimal 63 2.0421 18432.65

504-2-8 77 62341 optimal 62 0 982.67

504-2-9 108 476219 optimal 78 0 26443.81

B.2. Gurobi Optimizer with MIPstart 145

Problem MIPstart Nodes Status Obj Val Gap Time

504-2-10 84 1098232 optimal 50 2.3227 35720.16

508-1-1 56 56743 interrupted 52 100 50000.20

508-1-2 32 481008 optimal 24 0 30524.59

508-1-3 48 41085 optimal 34 2.9412 769.30

508-1-4 133 91455 optimal 44 2.2727 8192.32

508-1-5 43 50365 optimal 19 0 19953.34

508-1-6 41 192693 optimal 15 0 1148.41

508-1-7 29 1769 optimal 28 0 111.19

508-1-8 148 94542 optimal 70 2.8571 2293.06

508-1-9 66 698873 interrupted 36 14.9723 50000.05

508-1-10 32 1724 optimal 32 0 196.08

508-2-1 111 43344 optimal 103 2.9126 1453.72

508-2-2 106 210096 interrupted 84 100 50000.30

508-2-3 115 19212 optimal 93 2.0753 467.00

508-2-4 167 429069 optimal 99 2.0202 4572.29

508-2-5 61 596122 interrupted 54 100 50000.10

508-2-6 98 92761 optimal 92 0 4299.76

508-2-7 72 223891 optimal 62 0 20981.45

508-2-8 102 369982 interrupted 98 100 50000.20

508-2-9 66 326155 interrupted 58 38.8671 50000.10

508-2-10 82 482130 interrupted 76 78.1134 50000.10

Table B.3.: MIP results with MIPStart

146 B. Computational results of the MIP

B.2.1. Statistic values for Gurobi Optimizer with start
solution

Instance µ(Nodes) s (Nodes) µ(Time) s (Time) D

102-1 163 347 0.5218 0.4996

102-2 1755 7099 1.6258 2.4818

104-1 49 258 0.3464 0.3567

104-2 55 136 0.4092 0.1584

152-1 845 1588 2.1947 3.3072

152-2 3507 3920 15.5188 17.9783

154-1 506 894 1.5322 2.1026

154-2 874 1212 2.5746 3.5803

202-1 6415 38954 39.2584 254.5784

202-2 15052 34960 48.1776 118.3943

204-1 2018 2314 8.4606 10.7791

204-2 3171 4230 22.4838 25.9126

302-1 57259 292002 822.1245 4703.9788

302-2 189370 820964 1504.9326 5756.8158 0.98

304-1 9387 23984 85.0376 183.5775

304-2 29709 103787 518.9885 3520.0314

308-1 17229 93644 178.6525 835.1429

308-2 13654 38478 225.2411 688.0066

404-1 146465 407446 3830.0334 7544.9800 0.93

404-2 287654 809513 7971.2516 14644.9071 0.9

408-1 95546 297644 3577.8907 7501.5445 0.93

408-2 175390 438997 5981.1437 10436.6087 0.89

504-1 437066 1365996 19611.2629 38745.9603 0.76

504-2 516990 1745988 32241.9744 48995.5307 0.71

508-1 275953 805543 18755.8004 37644.9610 0.75

B.2. Gurobi Optimizer with MIPstart 147

Instance µ(Nodes) s (Nodes) µ(Time) s (Time) D

508-2 397501 1153543 25769.2651 42751.1754 0.72

Table B.4.: Statistic values for MIP results with MIPStart

148 B. Computational results of the MIP

B.2. Gurobi Optimizer with MIPstart 149

B.2.2. Overview computational time for Gurobi Optimizer

(a) linear axis

1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

2

2.5

·104

number of variables 2n2

tim
e

in
s

(b) logarithmic axis

1,000 2,000 3,000 4,000 5,000
0.1

1

10

100

1,000

10,000

number of variables 2n2

tim
e

in
s

without MIPStart with MIPStart

without MIPStart, time limit with MIPStart, time limit

exponential fit, without MIPStart,
10 n 30

exponential fit, with MIPStart,
10 n 30

exponential fit, without MIPStart,
10 n 50

exponential fit, with MIPStart,
10 n 50

Figure B.1.: Average computational time for mono-distributed sets n4-1

150 B. Computational results of the MIP

(a) linear axis

1,000 2,000 3,000 4,000 5,000

0

1

2

3

4
·104

number of variables 2n2

tim
e

in
s

(b) logarithmic axis

1,000 2,000 3,000 4,000 5,000

1

10

100

1,000

10,000

100,000

number of variables 2n2

tim
e

in
s

without MIPStart with MIPStart

without MIPStart, time limit with MIPStart, time limit

exponential fit, without MIPStart,
10 n 30

exponential fit, with MIPStart,
10 n 30

exponential fit, without MIPStart,
10 n 50

exponential fit, with MIPStart,
10 n 50

Figure B.2.: Average computational time for poly-distributed sets n4-2

B.2. Gurobi Optimizer with MIPstart 151

152 B. Computational results of the MIP

B.3. Gurobi logs of problem 302-2-96 with and

without MIPStart

Gurobi 8.0.1 (win64, .NET) logging started 01/20/21 16:19:53

Optimize a model with 2217 rows, 2376 columns and 110210 nonzeros
Variable types: 148 continuous, 2228 integer (2228 binary)
Coefficient statistics:
 Matrix range [1e+00, 2e+02]
 Objective range [1e+00, 1e+00]
 Bounds range [1e+00, 9e+02]
 RHS range [8e-01, 2e+02]
Presolve removed 175 rows and 6 columns
Presolve time: 0.21s
Presolved: 2042 rows, 2370 columns, 107945 nonzeros
Variable types: 115 continuous, 2255 integer (2225 binary)

Root relaxation: objective 0.000000e+00, 4067 iterations, 0.66 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node
Time

 0 0 0.00000 0 272 - 0.00000 - -
1s
 0 0 0.00000 0 351 - 0.00000 - -
2s
 0 0 0.00000 0 371 - 0.00000 - -
2s
 0 0 0.00000 0 195 - 0.00000 - -
3s
 0 0 0.00000 0 203 - 0.00000 - -
3s
 0 0 0.00000 0 144 - 0.00000 - -
4s
 0 0 0.00000 0 193 - 0.00000 - -
4s
 0 0 0.00000 0 160 - 0.00000 - -
5s
 0 0 0.00000 0 131 - 0.00000 - -
5s
 0 2 0.00000 0 131 - 0.00000 - -
7s
* 635 431 162 92.0000000 0.00000 100% 59.5
9s
H 676 461 23.0000000 0.00000 100% 59.4
9s
H 913 557 21.0000000 0.00000 100% 49.8
9s
 1173 720 0.00000 78 131 21.00000 0.00000 100% 45.2
13s
 1175 721 0.00000 42 1001 21.00000 0.00000 100% 45.1
15s
 1182 727 7.26629 86 849 21.00000 0.00000 100% 58.7
21s
 1185 729 0.48726 58 1013 21.00000 0.00000 100% 58.6
25s
H 1186 693 7.0000000 0.00000 100% 58.5
26s
H 1187 659 6.0000000 0.00000 100% 58.5
26s

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 153

H 1188 626 5.0000000 0.00000 100% 58.4
28s
 1207 632 0.00000 27 883 5.00000 0.00000 100% 77.9
30s
 3388 527 0.00000 57 788 5.00000 0.00000 100% 43.6
36s
H 3397 501 4.0000000 0.00000 100% 43.7
36s
 3525 501 0.00000 65 104 4.00000 0.00000 100% 44.3
42s
 4642 687 infeasible 57 4.00000 0.00000 100% 38.3
45s
 8784 1444 infeasible 98 4.00000 0.00000 100% 31.7
52s
 9596 1546 0.00000 73 73 4.00000 0.00000 100% 31.3
55s
 10541 1722 1.00000 83 131 4.00000 0.00000 100% 30.6
63s
 10543 1723 0.00000 62 986 4.00000 0.00000 100% 30.6
65s
 10549 1727 3.00000 99 979 4.00000 0.00000 100% 30.5
70s
 10555 1731 0.00000 64 915 4.00000 0.00000 100% 30.5
75s
 10566 1740 1.00000 70 814 4.00000 0.00000 100% 33.1
80s
 10578 1749 1.00000 82 789 4.00000 0.00000 100% 35.2
85s
 10594 1758 0.00000 57 626 4.00000 0.00000 100% 36.6
90s
H11337 1609 3.0000000 0.00000 100% 39.0
94s
 11580 1567 infeasible 99 3.00000 0.00000 100% 39.1
95s
 11960 1500 1.00000 76 58 3.00000 0.00000 100% 40.6
100s
 13394 1423 infeasible 78 3.00000 0.00000 100% 44.8
105s
 13521 1401 1.00000 76 661 3.00000 0.00000 100% 45.8
114s
 13731 1340 cutoff 80 3.00000 0.00000 100% 47.0
115s
 14646 1205 1.00000 72 661 3.00000 0.00000 100% 51.5
120s
 17449 1602 0.06667 75 532 3.00000 0.00000 100% 55.3
125s
 19765 1794 1.00000 73 690 3.00000 0.00000 100% 59.1
130s
 24723 2343 1.00000 86 228 3.00000 1.00000 66.7% 58.1
138s
 25315 2282 1.15208 91 333 3.00000 1.00000 66.7% 58.3
181s
 28036 2453 1.00000 78 38 3.00000 1.00000 66.7% 60.5
185s
 29901 2196 1.00000 81 53 3.00000 1.00000 66.7% 63.2
190s
 32356 2406 1.00000 75 482 3.00000 1.00000 66.7% 64.6
195s
 36282 3036 infeasible 89 3.00000 1.00000 66.7% 65.0
201s

154 B. Computational results of the MIP

 37854 2855 1.00000 77 496 3.00000 1.00000 66.7% 66.8
206s
 40358 3293 1.17201 84 131 3.00000 1.00000 66.7% 67.9
211s
 40367 3299 2.00000 89 761 3.00000 1.00000 66.7% 67.9
215s
 40389 3304 1.00000 68 373 3.00000 1.00000 66.7% 68.3
220s
 40573 3325 1.00000 77 685 3.00000 1.00000 66.7% 68.4
226s
 41166 3274 1.00000 86 555 3.00000 1.00000 66.7% 68.8
230s
 43889 3074 1.00000 90 357 3.00000 1.00000 66.7% 70.4
235s
 46890 2606 1.13810 84 561 3.00000 1.00000 66.7% 71.8
243s
 47142 2535 infeasible 82 3.00000 1.00000 66.7% 72.1
245s
 50171 2222 infeasible 90 3.00000 1.00000 66.7% 72.4
250s
 52489 2061 1.01235 74 789 3.00000 1.00000 66.7% 73.7
255s
 55766 2268 1.00000 98 47 3.00000 1.00000 66.7% 73.1
260s
 59717 2429 infeasible 97 3.00000 1.00000 66.7% 72.2
266s
 62179 2422 infeasible 115 3.00000 1.00000 66.7% 71.9
270s
 66330 2679 infeasible 101 3.00000 1.00000 66.7% 71.2
275s
 70542 3093 infeasible 89 3.00000 1.00000 66.7% 70.5
281s
 73490 3291 infeasible 122 3.00000 1.00000 66.7% 70.5
285s
 76121 3180 1.00000 102 613 3.00000 1.00000 66.7% 71.5
290s
 79113 3281 infeasible 102 3.00000 1.00000 66.7% 71.9
295s
 82773 3623 1.00000 100 215 3.00000 1.00000 66.7% 72.1
301s
 85948 3811 infeasible 108 3.00000 1.00000 66.7% 72.1
309s
 86113 3683 infeasible 101 3.00000 1.00000 66.7% 72.2
310s
 87171 3596 1.00000 104 441 3.00000 1.00000 66.7% 73.0
315s
 90249 3914 infeasible 109 3.00000 1.00000 66.7% 73.7
321s
 92127 3972 1.00000 98 453 3.00000 1.00000 66.7% 74.4
325s
 95106 4050 infeasible 85 3.00000 1.00000 66.7% 75.4
330s
 96795 4052 infeasible 91 3.00000 1.00000 66.7% 76.2
335s
 99105 4186 infeasible 118 3.00000 1.00000 66.7% 76.6
340s
 101306 4221 infeasible 112 3.00000 1.00000 66.7% 77.0
345s
 103318 4155 infeasible 98 3.00000 1.00000 66.7% 77.9
357s

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 155

 103635 3943 2.00000 87 533 3.00000 1.00000 66.7% 78.2
361s
 104262 3836 infeasible 95 3.00000 1.00000 66.7% 78.8
365s
 106160 3816 1.03846 95 91 3.00000 1.00000 66.7% 79.5
371s
 108297 3833 infeasible 106 3.00000 1.00000 66.7% 80.0
376s
 110244 3777 infeasible 98 3.00000 1.00000 66.7% 80.3
380s
 112186 3746 1.00000 89 403 3.00000 1.00000 66.7% 81.1
386s
 114152 3633 infeasible 100 3.00000 1.00000 66.7% 81.7
390s
 116318 2345 infeasible 90 3.00000 2.00000 33.3% 81.3
395s
 118349 1506 infeasible 112 3.00000 2.00000 33.3% 80.8
400s
 121150 958 infeasible 92 3.00000 2.00000 33.3% 80.1
405s
 122882 586 2.00000 89 474 3.00000 2.00000 33.3% 80.1
410s
 124799 254 2.00000 97 656 3.00000 2.00000 33.3% 80.0
415s
 127097 26 infeasible 92 3.00000 2.00000 33.3% 80.2
420s

Cutting planes:
 Learned: 1
 Gomory: 1
 Cover: 19
 Implied bound: 18
 Clique: 33
 MIR: 13
 StrongCG: 3
 Flow cover: 55
 GUB cover: 31
 Inf proof: 82
 Zero half: 3

Explored 127395 nodes (10252692 simplex iterations) in 420.91 seconds
Thread count was 8 (of 8 available processors)

Solution count 8: 3 4 5 ... 92

Optimal solution found (tolerance 3.00e-02)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap
0.0000%

Figure B.3.: Gurobi log of problem 302-2-96 without MIPStart

156 B. Computational results of the MIP

Gurobi 8.0.1 (win64, .NET) logging started 01/25/21 21:29:51

Optimize a model with 2217 rows, 2376 columns and 110210 nonzeros
Variable types: 148 continuous, 2228 integer (2228 binary)
Coefficient statistics:
 Matrix range [1e+00, 2e+02]
 Objective range [1e+00, 1e+00]
 Bounds range [1e+00, 9e+02]
 RHS range [8e-01, 2e+02]

MIP start produced solution with objective 87 (0.02s)
MIP start produced solution with objective 40 (0.02s)
MIP start produced solution with objective 14 (0.02s)
MIP start produced solution with objective 10 (0.02s)
MIP start produced solution with objective 9 (0.02s)
Loaded MIP start with objective 9

Presolve removed 175 rows and 6 columns
Presolve time: 0.20s
Presolved: 2042 rows, 2370 columns, 107945 nonzeros
Variable types: 115 continuous, 2255 integer (2225 binary)

Root relaxation: objective 0.000000e+00, 4067 iterations, 0.60 seconds

 Nodes | Current Node | Objective Bounds | Work
 Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node
Time

 0 0 0.00000 0 272 9.00000 0.00000 100% -
1s
 0 0 0.00000 0 357 9.00000 0.00000 100% -
2s
 0 0 0.00000 0 347 9.00000 0.00000 100% -
2s
 0 0 0.00000 0 176 9.00000 0.00000 100% -
3s
 0 0 0.00000 0 211 9.00000 0.00000 100% -
3s
H 0 0 8.0000000 0.00000 100% -
4s
 0 0 0.00000 0 180 8.00000 0.00000 100% -
4s
 0 0 0.00000 0 183 8.00000 0.00000 100% -
4s
 0 0 0.00000 0 169 8.00000 0.00000 100% -
4s
 0 0 0.00000 0 167 8.00000 0.00000 100% -
5s
 0 2 0.00000 0 158 8.00000 0.00000 100% -
5s
 873 532 0.00000 36 202 8.00000 0.00000 100% 96.6
10s
 1019 646 0.00000 42 188 8.00000 0.00000 100% 102
17s
 1084 698 0.00000 23 167 8.00000 0.00000 100% 106
21s
 1088 701 3.13438 25 1095 8.00000 0.00000 100% 106
25s

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 157

 1095 706 1.87983 27 937 8.00000 0.00000 100% 122
31s
 1100 711 0.75645 35 167 8.00000 0.00000 100% 133
35s
 1105 714 1.34284 69 847 8.00000 0.00000 100% 133
40s
 1113 721 0.03030 81 965 8.00000 0.00000 100% 153
46s
 1118 726 4.50280 37 167 8.00000 0.00000 100% 164
50s
 1123 729 0.65029 50 996 8.00000 0.00000 100% 163
55s
 1129 735 3.31067 85 1018 8.00000 0.00000 100% 174
60s
 1135 739 0.03030 43 953 8.00000 0.00000 100% 174
65s
 1621 764 infeasible 132 8.00000 0.00000 100% 79.5
70s
 4918 1047 6.00000 138 670 8.00000 0.00000 100% 43.9
76s
H 5003 866 4.0000000 0.00000 100% 43.5
76s
 6469 1124 0.07143 149 639 4.00000 0.00000 100% 42.9
80s
 9262 1638 cutoff 151 4.00000 0.00000 100% 40.1
86s
 9524 1659 1.12026 117 655 4.00000 0.00000 100% 40.2
90s
 9716 1680 1.37119 142 634 4.00000 0.00000 100% 40.6
95s
 11149 1988 1.00000 111 167 4.00000 0.00000 100% 39.4
104s
 11151 1989 2.00000 126 799 4.00000 0.00000 100% 39.4
106s
 11156 1993 0.00000 95 899 4.00000 0.00000 100% 39.4
110s
 11161 1997 0.00000 80 745 4.00000 0.00000 100% 41.4
115s
 11172 1995 0.00000 86 810 4.00000 0.00000 100% 41.5
120s
 11327 2011 1.50000 103 793 4.00000 0.00000 100% 41.9
125s
 13947 2281 0.05000 135 125 4.00000 0.00000 100% 38.8
130s
 14694 2209 0.00000 120 134 4.00000 0.00000 100% 38.1
141s
 15245 2192 1.00000 133 481 4.00000 0.00000 100% 38.6
145s
 15440 2157 infeasible 124 4.00000 0.00000 100% 38.9
151s
 15859 2036 0.00000 117 413 4.00000 0.00000 100% 39.3
155s
H16720 1586 3.0000000 0.00000 100% 38.5
158s
 17547 1857 cutoff 148 3.00000 0.00000 100% 38.8
160s
 18748 2244 infeasible 135 3.00000 0.00000 100% 40.0
169s
 18765 2226 2.00000 127 147 3.00000 0.00000 100% 40.2
170s

158 B. Computational results of the MIP

 19483 2378 1.00000 138 126 3.00000 0.00000 100% 42.0
175s
 21631 3164 0.00000 146 78 3.00000 0.00000 100% 40.1
262s
 23099 3301 0.18610 126 854 3.00000 0.00000 100% 39.6
265s
 23979 3471 0.38281 145 832 3.00000 0.00000 100% 41.9
270s
 24591 3587 0.40793 142 741 3.00000 0.00000 100% 42.8
288s
 24940 3675 0.14537 122 761 3.00000 0.00000 100% 42.9
290s
 25844 3855 infeasible 111 3.00000 0.00000 100% 44.1
295s
 26479 3963 infeasible 121 3.00000 0.00000 100% 45.7
300s
 27055 4121 infeasible 103 3.00000 0.00000 100% 47.1
305s
 28145 4342 infeasible 134 3.00000 0.00000 100% 48.8
310s
 29611 4850 infeasible 127 3.00000 0.00000 100% 49.6
315s
 29852 4987 infeasible 131 3.00000 0.00000 100% 49.8
324s
 29859 4940 infeasible 132 3.00000 0.00000 100% 49.8
325s
 31338 5458 infeasible 148 3.00000 0.00000 100% 50.1
331s
 32595 5900 0.00000 121 87 3.00000 0.00000 100% 49.9
335s
 34154 6361 0.00000 123 78 3.00000 0.00000 100% 49.6
353s
 34983 6538 1.00000 167 185 3.00000 0.00000 100% 49.6
356s
 36418 7065 infeasible 175 3.00000 0.00000 100% 49.3
360s
 37912 7464 0.60000 115 851 3.00000 0.00000 100% 49.5
365s
 40059 8087 infeasible 119 3.00000 0.00000 100% 49.4
370s
 42578 8909 infeasible 121 3.00000 0.00000 100% 48.6
375s
 44363 9529 0.37752 129 626 3.00000 0.00000 100% 48.2
380s
 46672 10363 infeasible 110 3.00000 0.00000 100% 48.0
385s
 48423 10773 infeasible 129 3.00000 0.00000 100% 48.2
390s
 50023 10993 cutoff 148 3.00000 0.00000 100% 48.2
395s
 50268 11074 1.02461 132 924 3.00000 0.00000 100% 48.3
403s
 50539 11084 0.00000 105 862 3.00000 0.00000 100% 48.5
405s
 51805 11359 0.00000 113 700 3.00000 0.00000 100% 48.9
410s
 53119 11898 infeasible 169 3.00000 0.00000 100% 48.6
415s
 54260 12206 cutoff 130 3.00000 0.00000 100% 48.9
420s

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 159

 57132 13177 0.25139 144 376 3.00000 0.00000 100% 48.6
425s
 57626 13269 infeasible 119 3.00000 0.00000 100% 48.9
430s
 58891 13576 1.00000 129 411 3.00000 0.00000 100% 49.3
447s
 59295 13644 0.00000 103 978 3.00000 0.00000 100% 49.5
451s
 59705 13699 0.00000 122 790 3.00000 0.00000 100% 50.0
455s
 61154 14021 2.00000 126 457 3.00000 0.00000 100% 50.5
460s
 62038 14222 infeasible 122 3.00000 0.00000 100% 50.9
465s
 64118 14796 0.00000 143 82 3.00000 0.00000 100% 50.6
470s
 65974 15454 infeasible 114 3.00000 0.00000 100% 50.5
475s
 67551 15865 0.00000 124 132 3.00000 0.00000 100% 50.7
498s
 67938 15916 infeasible 122 3.00000 0.00000 100% 50.8
501s
 68773 16050 infeasible 153 3.00000 0.00000 100% 51.2
505s
 69510 16202 0.00000 124 777 3.00000 0.00000 100% 51.5
510s
 71617 16729 infeasible 155 3.00000 0.00000 100% 51.6
515s
 72537 16813 infeasible 138 3.00000 0.00000 100% 52.0
520s
 73649 17064 infeasible 140 3.00000 0.00000 100% 52.6
525s
 74400 17236 0.00000 120 862 3.00000 0.00000 100% 52.9
530s
 75085 17539 infeasible 132 3.00000 0.00000 100% 52.9
547s
 75410 17637 1.00000 137 568 3.00000 0.00000 100% 53.0
550s
 76148 17768 2.00000 125 748 3.00000 0.00000 100% 53.3
555s
 77387 18078 infeasible 146 3.00000 0.00000 100% 53.8
560s
 78622 18402 infeasible 114 3.00000 0.00000 100% 54.0
565s
 80979 19103 infeasible 133 3.00000 0.00000 100% 53.7
570s
 82679 19360 infeasible 151 3.00000 0.00000 100% 53.9
576s
 83252 19488 1.00000 119 873 3.00000 0.00000 100% 54.1
593s
 83257 19451 1.00000 119 756 3.00000 0.00000 100% 54.1
595s
 84174 19661 infeasible 130 3.00000 0.00000 100% 54.4
600s
 84650 19732 infeasible 104 3.00000 0.00000 100% 54.8
607s
 85031 19727 infeasible 110 3.00000 0.00000 100% 55.1
611s
 86036 19839 0.19240 108 942 3.00000 0.00000 100% 55.4
616s

160 B. Computational results of the MIP

 86604 19923 1.00000 124 603 3.00000 0.00000 100% 55.8
620s
 87711 20142 0.08522 134 765 3.00000 0.00000 100% 56.2
625s
 88876 20422 1.00000 129 499 3.00000 0.00000 100% 56.7
631s
 89633 20582 infeasible 126 3.00000 0.00000 100% 57.0
635s
 90529 20780 1.00000 151 149 3.00000 0.00000 100% 57.6
641s
 92211 21253 infeasible 131 3.00000 0.00000 100% 57.8
646s
 92550 21349 0.00000 118 786 3.00000 0.00000 100% 57.9
651s
 93039 21405 infeasible 114 3.00000 0.00000 100% 58.1
655s
 93958 21695 0.25817 119 881 3.00000 0.00000 100% 58.4
672s
 94000 21658 0.09648 118 909 3.00000 0.00000 100% 58.5
675s
 94769 21806 infeasible 108 3.00000 0.00000 100% 59.0
681s
 95188 21905 0.00000 108 945 3.00000 0.00000 100% 59.1
685s
 95776 22004 0.00000 102 806 3.00000 0.00000 100% 59.4
690s
 97412 22453 infeasible 118 3.00000 0.00000 100% 59.7
696s
 98430 22664 1.00000 121 671 3.00000 0.00000 100% 59.9
700s
 99670 22881 1.00000 120 152 3.00000 0.00000 100% 60.3
706s
 100817 23193 infeasible 126 3.00000 0.00000 100% 60.4
711s
 101627 23460 cutoff 120 3.00000 0.00000 100% 60.5
728s
 101771 23459 0.54832 127 766 3.00000 0.00000 100% 60.6
731s
 102332 23577 0.09733 129 731 3.00000 0.00000 100% 60.8
735s
 102829 23603 0.84470 112 772 3.00000 0.00000 100% 61.1
740s
 104133 23824 1.00000 111 140 3.00000 0.00000 100% 61.5
746s
 105252 24061 infeasible 111 3.00000 0.00000 100% 61.6
751s
 105724 24026 0.52874 123 804 3.00000 0.00000 100% 61.9
756s
 106690 24170 infeasible 106 3.00000 0.00000 100% 62.2
763s
 106788 24152 infeasible 127 3.00000 0.00000 100% 62.3
765s
 107307 24182 0.83333 128 88 3.00000 0.00000 100% 62.6
770s
 107743 24330 infeasible 110 3.00000 0.00000 100% 62.8
784s
 107779 24290 infeasible 115 3.00000 0.00000 100% 62.8
787s
 108413 24450 1.24541 117 690 3.00000 0.00000 100% 63.0
792s

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 161

 109635 24955 infeasible 122 3.00000 0.00000 100% 63.2
796s
 110748 25317 infeasible 134 3.00000 0.00000 100% 63.3
801s
 111898 25661 infeasible 124 3.00000 0.00000 100% 63.4
805s
 112732 25915 infeasible 134 3.00000 0.00000 100% 63.5
819s
 112770 25881 0.49000 124 787 3.00000 0.00000 100% 63.6
821s
 113261 25959 0.13001 120 768 3.00000 0.00000 100% 63.8
827s
 113749 26013 0.50010 101 769 3.00000 0.00000 100% 64.0
831s
 114529 26155 0.00000 112 906 3.00000 0.00000 100% 64.3
836s
 115513 26387 infeasible 130 3.00000 0.00000 100% 64.6
842s
 115773 26413 0.00000 115 809 3.00000 0.00000 100% 64.7
846s
 116551 26539 0.04348 133 969 3.00000 0.00000 100% 65.0
851s
 117683 26914 1.00000 130 134 3.00000 0.00000 100% 65.0
856s
 118411 27034 infeasible 145 3.00000 0.00000 100% 65.1
868s
 119066 27256 infeasible 123 3.00000 0.00000 100% 65.0
871s
 119858 27362 0.00000 118 913 3.00000 0.00000 100% 65.1
876s
 120895 27652 cutoff 116 3.00000 0.00000 100% 65.3
881s
 121106 27690 0.01083 130 952 3.00000 0.00000 100% 65.5
899s
 121422 27749 0.05000 131 906 3.00000 0.00000 100% 65.4
902s
 121682 27775 0.00000 113 978 3.00000 0.00000 100% 65.6
905s
 122105 27829 infeasible 119 3.00000 0.00000 100% 66.0
911s
 122602 27889 0.06872 112 945 3.00000 0.00000 100% 66.3
917s
 123328 27996 1.05882 130 638 3.00000 0.00000 100% 66.7
922s
 123523 27975 0.00000 122 741 3.00000 0.00000 100% 66.9
925s
 124381 28173 1.20682 125 845 3.00000 0.00000 100% 67.2
930s
 125337 28394 0.51986 132 943 3.00000 0.00000 100% 67.5
936s
 126308 28598 infeasible 115 3.00000 0.00000 100% 67.8
943s
 126535 28593 0.00000 138 451 3.00000 0.00000 100% 68.1
954s
 126635 28568 infeasible 107 3.00000 0.00000 100% 68.2
957s
 126864 28569 infeasible 123 3.00000 0.00000 100% 68.4
960s
 127438 28639 infeasible 120 3.00000 0.00000 100% 68.8
967s

162 B. Computational results of the MIP

 127634 28684 0.00000 112 987 3.00000 0.00000 100% 69.0
970s
 128493 28953 infeasible 134 3.00000 0.00000 100% 69.4
977s
 128692 28981 infeasible 116 3.00000 0.00000 100% 69.6
986s
 128714 28934 1.00000 111 880 3.00000 0.00000 100% 69.7
990s
 129077 28921 infeasible 130 3.00000 0.00000 100% 70.1
997s
 129252 28897 1.00000 118 683 3.00000 0.00000 100% 70.4
1000s
 129649 28885 1.00000 115 541 3.00000 0.00000 100% 70.9
1008s
 130226 29077 cutoff 122 3.00000 0.00000 100% 71.0
1011s
 130462 29140 0.00000 118 941 3.00000 0.00000 100% 71.2
1016s
 130768 29226 infeasible 148 3.00000 0.00000 100% 71.3
1020s
 131258 29234 0.00000 107 872 3.00000 0.00000 100% 71.7
1030s
 132022 29333 infeasible 120 3.00000 0.00000 100% 72.1
1037s
 132216 29292 0.00000 122 940 3.00000 0.00000 100% 72.3
1041s
 132478 29323 infeasible 115 3.00000 0.00000 100% 72.5
1051s
 132517 29286 cutoff 115 3.00000 0.00000 100% 72.6
1055s
 132994 29285 infeasible 122 3.00000 0.00000 100% 73.1
1064s
 133231 29306 infeasible 122 3.00000 0.00000 100% 73.4
1068s
 133605 29391 infeasible 128 3.00000 0.00000 100% 73.6
1072s
 134486 29774 infeasible 122 3.00000 0.00000 100% 73.8
1081s
 134557 29723 0.14972 123 903 3.00000 0.00000 100% 73.9
1085s
 134843 29734 0.00000 134 823 3.00000 0.00000 100% 74.1
1090s
 135065 29733 1.00000 122 883 3.00000 0.00000 100% 74.3
1095s
 136039 29925 infeasible 117 3.00000 0.00000 100% 74.8
1103s
 136283 29898 0.00000 125 181 3.00000 0.00000 100% 75.0
1108s
 136524 29947 1.00000 176 167 3.00000 0.00000 100% 75.2
1284s
 136526 29948 1.00000 137 864 3.00000 0.00000 100% 75.2
1285s
 136533 29953 1.00000 144 717 3.00000 0.00000 100% 75.2
1290s
 136538 29957 infeasible 94 3.00000 0.00000 100% 75.3
1295s
 136545 29960 0.00000 97 803 3.00000 0.00000 100% 75.3
1301s
 136557 29960 0.00000 99 480 3.00000 0.00000 100% 75.3
1305s

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 163

 136608 29967 0.00000 104 795 3.00000 0.00000 100% 75.3
1310s
 136876 29934 infeasible 133 3.00000 0.00000 100% 75.3
1315s
 137299 29921 1.00000 119 605 3.00000 0.00000 100% 75.2
1320s
 137397 29898 infeasible 152 3.00000 0.00000 100% 75.3
1325s
 137515 29886 infeasible 137 3.00000 0.00000 100% 75.2
1331s
 137802 29857 cutoff 133 3.00000 0.00000 100% 75.2
1335s
 138637 29804 0.01125 125 839 3.00000 0.00000 100% 75.2
1340s
 139468 29800 0.00000 118 890 3.00000 0.00000 100% 75.2
1345s
 139957 29629 infeasible 131 3.00000 0.00000 100% 75.4
1350s
 140370 29548 0.00547 117 745 3.00000 0.00000 100% 75.6
1355s
 141967 29583 infeasible 127 3.00000 0.00000 100% 75.5
1360s
 142789 29410 2.00000 127 759 3.00000 0.00000 100% 75.7
1366s
 143994 29442 1.00000 143 112 3.00000 0.00000 100% 75.6
1371s
 145293 29375 0.01000 118 803 3.00000 0.00000 100% 75.6
1377s
 145597 29254 1.00000 119 793 3.00000 0.00000 100% 75.6
1380s
 147110 29293 1.00000 159 815 3.00000 0.00000 100% 75.4
1385s
 147118 29298 1.00000 119 803 3.00000 0.00000 100% 75.4
1390s
 147131 29301 0.00000 108 438 3.00000 0.00000 100% 75.6
1395s
 147141 29305 0.00000 111 350 3.00000 0.00000 100% 75.6
1400s
 147181 29320 0.00000 122 613 3.00000 0.00000 100% 75.6
1405s
 147401 29303 infeasible 124 3.00000 0.00000 100% 75.6
1410s
 147614 29261 1.00000 127 556 3.00000 0.00000 100% 75.6
1415s
 147854 29209 infeasible 119 3.00000 0.00000 100% 75.6
1420s
 148021 29200 0.00000 119 674 3.00000 0.00000 100% 75.7
1425s
 148173 29206 infeasible 155 3.00000 0.00000 100% 75.7
1431s
 148225 29186 1.96000 128 767 3.00000 0.00000 100% 75.7
1436s
 148488 29099 cutoff 129 3.00000 0.00000 100% 75.9
1440s
 150053 28994 1.02068 142 631 3.00000 0.00000 100% 75.6
1445s
 151749 28575 cutoff 143 3.00000 1.00000 66.7% 75.3
1450s
 154051 28101 1.00000 146 660 3.00000 1.00000 66.7% 74.8
1455s

164 B. Computational results of the MIP

 156659 27645 infeasible 146 3.00000 1.00000 66.7% 74.3
1460s
 157811 27535 2.00000 145 680 3.00000 1.00000 66.7% 74.1
1465s
 157822 27545 1.00000 114 128 3.00000 1.00000 66.7% 74.2
1471s
 157832 27544 1.00000 117 127 3.00000 1.00000 66.7% 74.2
1475s
 157868 27550 infeasible 121 3.00000 1.00000 66.7% 74.2
1480s
 158031 27529 1.00000 129 624 3.00000 1.00000 66.7% 74.2
1485s
 158631 27491 1.00000 155 117 3.00000 1.00000 66.7% 74.1
1490s
 159694 27437 infeasible 143 3.00000 1.00000 66.7% 74.0
1495s
 159732 27425 infeasible 143 3.00000 1.00000 66.7% 74.0
1501s
 160420 27265 1.00000 142 416 3.00000 1.00000 66.7% 74.0
1505s
 165363 26228 infeasible 159 3.00000 1.00000 66.7% 73.0
1510s
 170354 25089 infeasible 146 3.00000 1.00000 66.7% 72.0
1515s
 173867 23998 1.00000 143 642 3.00000 1.00000 66.7% 71.6
1520s
 178837 23064 infeasible 135 3.00000 1.00000 66.7% 70.9
1525s
 183700 22107 1.00730 156 221 3.00000 1.00000 66.7% 70.3
1530s
 188316 20909 cutoff 171 3.00000 1.00000 66.7% 69.6
1536s
 192341 19939 infeasible 156 3.00000 1.00000 66.7% 69.0
1540s
 196622 18809 1.00000 156 587 3.00000 1.00000 66.7% 68.5
1545s
 200772 17642 2.00000 158 59 3.00000 1.00000 66.7% 68.0
1550s
 204516 16423 infeasible 138 3.00000 1.00000 66.7% 67.5
1555s
 207567 13642 2.00000 143 78 3.00000 2.00000 33.3% 67.1
1560s
 209440 11717 infeasible 154 3.00000 2.00000 33.3% 66.9
1565s
 210851 10153 2.00000 137 510 3.00000 2.00000 33.3% 66.8
1570s

Cutting planes:
 Gomory: 2
 Cover: 27
 Implied bound: 20
 Clique: 47
 MIR: 8
 StrongCG: 3
 Flow cover: 50
 GUB cover: 11
 Inf proof: 66
 Zero half: 4

Explored 211389 nodes (14241416 simplex iterations) in 1572.23 seconds

B.3. Gurobi logs of problem 302-2-96 with and without MIPStart 165

Thread count was 8 (of 8 available processors)

Solution count 8: 3 4 8 ... 87

Optimal solution found (tolerance 3.00e-02)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap
0.0000%

Figure B.4.: Gurobi log of problem 302-2-96 with MIPStart

C. Computational results of the

customized branch-and-bound

algorithm

The columns of Table C.1 are defined as follows

d - parameter defined in Sec-
tion 4.2.2 determining how often
the second optimization problem is
solved

Problem - problem in the usual no-
tation

BB Nodes - number of nodes ex-
plored provided by the customized
branch-and-bound algorithm, non

considering the nodes within the
solve calls at each node

Nodes - number of explored nodes
during the Gurobi MIP solving pro-
cess

Optim calls - total number of opti-
mization calls over all nodes

Time - computational time in s, ap-
plies for all of the three columns

d=0 d=4 Gurobi

Problem BB Nodes Optim calls Time BB Nodes Optim calls Time Nodes Time

104-1-11 25 50 3.435 104 130 11.462 1 0.15

104-1-12 19 38 3.115 117 146 17.557 1 0.15

104-1-13 17 34 6.584 117 146 29.246 65 0.22

104-1-14 23 46 3.892 222 277 31.540 1 0.31

104-1-15 16 32 2.213 107 133 11.739 1 0.21

104-1-16 22 44 2.777 154 192 13.195 48 0.20

167

d=0 d=4 Gurobi

Problem BB Nodes Optim calls Time BB Nodes Optim calls Time Nodes Time

104-1-17 48 56 7.174 207 258 32.364 178 0.29

104-1-18 56 112 9.005 232 290 21.936 1 0.13

104-1-19 16 32 4.211 121 151 26.113 43 0.29

104-1-20 12 24 1.965 106 162 12.463 1 0.16

154-1-11 27 54 74.003 408 510 233.049 255 0.84

154-1-12 147 294 202.108 779 973 3044.674 2098 3.34

154-1-13 79 158 157.804 858 1072 2278.826 1125 2.26

154-1-14 76 152 83.478 464 580 2198.329 251 0.66

154-1-15 30 60 1768.049 122 152 2748.781 126 0.81

154-1-16 58 118 106.561 774 967 2788.792 333 0.76

154-1-17 69 138 48.933 460 575 314 539 1.34

154-1-18 20 40 9.111 367 458 190.308 1 0.73

154-1-19 37 74 25.237 312 390 471.718 93 0.65

154-1-20 38 76 27.254 343 428 287.763 284 0.73

Table C.1.: Computational results Heuristic

D. Computational results of the

sequence-to-sequence network

The columns of Table D.1 are defined as follows

aTSS - adjusted test set size, in
number of tuples of sequences; the
test set is 30% of the data set; the
aTSS is obtained by removing cal-
culated sequences of length 6= n
from the test set

µ(ICC) - mean value of number of
incorrect color codes over all se-
quences in aTSS as defined in (5.17)

µ(CPCC) - mean value of number
of correctly placed color codes

P - number of permutations, se-
quences with NICC= 0, share in
brackets

µ(dNN) - mean value of distance de-
fined in (5.18), defined for permu-
tations and thus calculated for se-
quences with ICC= 0

RS - number of removed sequences;
tuples of sequences, where the
length of the calculated sequence is
not equal to n are removed from the
set before analysing

OS - number of optimal solutions,
µ(dNN) = 0

TT - training time of the neural net-
work in s

The mean values in Table D.1 are rounded up to two decimal points and to three deci-
mal points for P, respectively.

Data set aTSS µ(ICC) µ(CPCC) P µ(dNN) OS RS TT

NN-104-1-min 267 3.01 5.52 16(0.06) 7 0 0 516

169

Data set aTSS µ(ICC) µ(CPCC) P µ(dNN) OS RS TT

NN-104-1-max 1235 2.06 6.12 285(0.23) 6.05 20 5 1800

NN-104-2 3360 1.48 6.02 1302(0.39) 5.33 142 0 5227

NN-154-1-min 300 3.51 8.22 13(0.04) 15.08 0 0 711

NN-154-1-max 1498 3.44 8.39 99(0.07) 13.8 1 1 3028

NN-154-2 3350 2 9.65 790(0.24) 7.38 45 10 7178

NN-204-1-min 298 6.56 10.38 2(0.01) 53 0 2 924

NN-204-1-max 1475 3.06 12.39 141(0.1) 13.82 2 25 4043

NN-204-2 3324 2.91 12.99 393(0.12) 12.68 9 36 9453

NN-304-1-min 153 20.35 13.27 0(0) NaN 0 147 1512

NN-304-1-max 1498 4.34 19.59 43(0.03) 36.33 0 2 6615

NN-304-2 3358 4.26 20.93 173(0.05) 25.28 0 2 15352

NN-308-1-min 168 17.55 11.55 0(0) NaN 0 132 1666

NN-308-1-max 1491 7.53 14.81 4(0) 66 0 9 6997

NN-308-2 3323 8.72 15.46 1(0) 70 0 37 17613

NN-404-1-min 0 NaN NaN 0(0) NaN 0 300 2209

NN-404-1-max 708 7.95 23.12 1(0) 70 0 792 10056

NN-404-2 3107 5.07 29.71 94(0.03) 37.17 1 253 26851

NN-408-1-min 7 33.14 13.71 0(0) NaN 0 293 1247

NN-408-1-max 2759 10.95 18.25 1(0) 132 0 123 9957

NN-408-2 3356 8.47 22.18 1(0) 38 0 4 26138

NN-504-1-min 0 NaN NaN 0(0) NaN 0 300 2773

NN-504-1-max 548 8.16 27.95 4(0.01) 164 0 952 14184

NN-504-2 3360 6.5 32.79 34(0.01) 94.76 0 0 36625

NN-508-1-min 0 NaN NaN 0(0) NaN 0 300 2653

NN-508-1-max 212 12.76 22.98 0(0) NaN 0 1288 16585

170 D. Computational results of the sequence-to-sequence network

Data set aTSS µ(ICC) µ(CPCC) P µ(dNN) OS RS TT

NN-508-2 3360 9.28 27.79 2(0) 137 0 0 37006

Table D.1.: Results for the neural network

171

The columns of Table D.2 are defined as in Table D.1. We use the following parameter
settings

NHU - number of hidden units

EmDim - embedding dimension of

the word embedding layer in the en-
coder

configuration aTSS µ(ICC) µ(CPCC) P µ(dNN) OS RS TT

NN-204-2

NHU= 20 1500 4.88 11.53 34(0.02) 34 0 0 3261

NHU= 200 1500 3.18 11.43 129(0.09) 19.57 0 0 5987

EmDim= 2
NHU= 50

1500 3.39 12.83 105(0.07) 18.06 0 0 4654

NN-404-2

NHU= 20 165 10.04 21.4 0(0) NaN 0 1235 7494

NHU= 200 0 NaN NaN 0(0) NaN 0 1500 19360

Table D.2.: Results for parameter configurations

