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Abstract: The automatic, sensor-based assessment of human activities is highly relevant for produc-
tion and logistics, to optimise the economics and ergonomics of these processes. One challenge for
accurate activity recognition in these domains is the context-dependence of activities: Similar move-
ments can correspond to different activities, depending on, e.g., the object handled or the location of
the subject. In this paper, we propose to explicitly make use of such context information in an activity
recognition model. Our first contribution is a publicly available, semantically annotated motion
capturing dataset of subjects performing order picking and packaging activities, where context infor-
mation is recorded explicitly. The second contribution is an activity recognition model that integrates
movement data and context information. We empirically show that by using context information,
activity recognition performance increases substantially. Additionally, we analyse which of the pieces
of context information is most relevant for activity recognition. The insights provided by this paper
can help others to design appropriate sensor set-ups in real warehouses for time management.

Keywords: context awareness; human activity recognition; context model; motion capture; warehousing;
logistics; industrial processes

1. Introduction

In production and logistics, time data of workers, resources and work objects are used
to determine performance-based remuneration and to plan and control deadlines and sched-
ules [1] (p. 573 ff.). The time data of workers, i.e., their movements, are mainly recorded
using classical methods of time management. When using methods such as the REFA time
study, trained REFA employees use a stopwatch to record workers movements in real-
time [2]. This manual process is time-consuming and cost-intensive [3] (p. 84), [4] (p. 199).
In addition, the time data can be subjectively influenced, depending on the experience of
the REFA employees [4] (p. 196).

These methods of time management do not take into account the technical potential
of wearable sensor technology or machine learning. Wearable or environmental sensors
are already used for the fully automatic recording of movements [5]. Compared with
manual methods, the use of sensors eliminates the subjective factors in data acquisition
and significantly reduces both effort and cost. Analysing sensor data through machine
learning, especially human activity recognition (HAR), provides the potential to determine
time data uniformly and objectively [6,7].

State-of-the-art activity recognition methods in logistics are based on movement
data, recorded by wearable sensors and optical marker-based motion capture (oMoCap)
systems [8,9]. For a comprehensive analysis of logistics processes, a fine-grained, detailed
description of activities is necessary. For example, instead of measuring performance
during packaging as an overall process, more detailed information can be used to analyse
sub-processes, such as reaching for packaging material, filling a box or adding a delivery
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note. From the analysed data, waste, unevenness in workloads and overburdening can be
identified [10] (p. 67). However, when attempting to recognise increasingly fine-grained
activities, recognition accuracy will typically decrease, as the recognition task becomes
more and more challenging.

A general strategy to increasing classification performance is to collect additional data
streams that allow discriminating between the fine-grained activities [11,12]. Specifically, in
addition to the worker and their movements, process-relevant environmental information,
the so-called context, can be recorded. For example, the movement data in [13] were ex-
tended by audio, location and phone status to improve the activity recognition performance.
Dourish [14] considers activities as entities that take place within a context, but can also
exist detached from it. Therefore, we distinguish between human movements, as the basis
for HAR, and context, which is not necessary for HAR but can be used as additional data.
Context includes information about location, time, identity, conditions and infrastructure
from the subject and the physical environment [15].

This paper presents a context-aware model for HAR in logistics. The starting point
for the development of the model is the first logistical dataset with context data for HAR—
CAARL [16]: Context-Aware Activity Recognition in Logistics (Section 3). CAARL contains
human movement data and context data. The context includes the identities and loca-
tions of objects. Like the subjects, 12 objects were equipped with reflective markers. Using
an oMoCap system, the markers were captured and recorded. An exemplary overlay of the
oMoCap visualisation with the video recording is shown in Figure 1. The markers make it
possible to identify objects and sub-components of objects and to determine their locations.
Since the location of the subject is also recorded, the distances between the subjects and
all objects and sub-components can be determined. The context can be used as additional
information to improve the performance of the HAR method based on motion data.

(b) (c)(a)

Figure 1. Data processing pipeline of the oMoCap system based on a person to goods order picking
process: (a) Reconstruction of a point cloud consisting of markers. (b) Marker labelling based on
patterns of markers from the subject and the picking cart. (c) Overlay of the oMoCap visualisation
with the video recording.

We use a model that allows such context information to be directly integrated into
motion-based HAR. The model combines a pre-trained neural network that predicts high-
level motion descriptions (attributes) with a classifier that predicts activity classes from
these attributes and context information (Section 4). The approach is flexible in the sense
that classifiers can be easily replaced and additional context information can be integrated
without complete re-training. The empirical results show that the use of context information
significantly improves the activity recognition performance in terms of F1 scores (Section 5).
In addition, we analyse which context features are most relevant to increase the performance
of activity recognition. The results of this analysis can be used to record only the most
informative context information in a real warehouse. This greatly simplifies the entire time
management process.
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2. Related Work
2.1. Related Datasets

The CAARL dataset is based on the set-up of the freely available logistics dataset
LARa [8,17]. Both datasets were recorded in the same laboratory environment and contain
the same scenarios. They differ in the entities captured. While LARa only contains human
movements, CAARL also includes objects.

The dataset AndyData-lab-onePerson [18,19] includes similar activities as the LARa
dataset and can be assigned to logistics. Various postures of the legs, upper body and hands
are labelled. With activity classes such as Reach, Pick, Place, Release, Carry etc., the posture
of the hands is even more detailed than in LARa. Just like LARa, AndyData-lab-onePerson
does not contain any context information. Thus, the only two freely accessible logistical
datasets for the development of an intralogistic context-based approach are omitted.

Consequently, a new dataset had to be created. The KIT Whole-Body Human Motion
Database [20,21] helped with orientation. The dataset cannot be assigned to only one domain.
In addition to cooking activities, locomotion and healthcare activities were recorded using
an oMoCap system. The recordings each include the movements of a subject and the
marked objects with which the subject interacts. For the cooking activities, for example, a
cucumber, whisk, pizza box, bowl, cup and a cooking spoon were recorded. Locomotion
and grooming activities include, for example, a staircase, a seesaw and a sponge. CAARL is
based on a similar approach, but involves a much larger laboratory environment with more
complex processes. Furthermore, the datasets differ in their scenarios and the objects used.

The oMoCap system is not suitable for use in a real warehouse. However, due to
its high accuracy, it serves as a reference and represents the ground truth with which
more inaccurate sensors can be tested for their practicality. In the real warehouse, mobile
sensors must be used, as was done, for example, in Daily Log [22,23], RealWorld [24] and
ExtraSensory Dataset [13,25]. In these datasets, activities of daily living including locomotion
activities were recorded using inertial measurement units and supplemented with location
information from the GPS. Unlike the ExtraSensory approach, the location information from
Daily Log was not used to improve activity accuracy. Instead, the linking of activities and
location information helped to create a personal activity-position map and to optimise the
daily routine concerning a healthier life. The ExtraSensory Dataset contains further context
information in the form of audio files, which are also used for activity recognition.

From the approaches that have been implemented in the real world and not in the
laboratory, the next step arises: The current approach needs to be extended to include
mobile sensors.

2.2. Methods

Recently, deep neural networks have been very successful for sensor-based HAR [26,27].
The architecture described in Section 4 is a temporal convolutional network, as introduced
in [28], i.e., it carries out a convolution and pooling operations along the time axis. Fur-
thermore, our employed architecture is related to few-shot and transfer learning: We use a
network that predicts domain-independent movement attributes, and predict activity classes
based on the attributes. This allows one to recognise new, unseen activities, by making use
of knowledge about the relationship between movement attributes and new activities. This
concept was originally proposed for vision [29] and then adapted for HAR [30]. Specifically,
attribute representations for HAR in a logistics context have been investigated in [31].

The use of context data to improve HAR has been considered in various forms before.
For example, the authors of [32] used both ego-centric video data (to recognise used objects)
and wearable sensor data for activity recognition in a warehouse scenario. The authors
of [33] considered high-level process states as additional context information. However,
the process states usually cannot be inferred directly from the sensor data. In our work,
we make use of their proposed architecture, but use sensor-based context data instead of
process states.
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Furthermore, symbolic and hybrid HAR models [34–36] can also integrate context
data. They model the causal structure of activities, e.g., via precondition-effect rules, and
do not only estimate the currently performed activity, but maintain a distribution over
system states, which can also include factors such as the locations or states of objects or
subjects. In this way, integration of context data becomes straightforward, by extending the
observation model (which relates system states to sensor data) appropriately. Such symbolic
methods model the relationship between activities and context data explicitly, based on
prior knowledge. Instead, our architecture learns the correspondence between activity
classes and context directly from the available data.

3. The CAARL Dataset

Context information is already used to increase the recognition performance of HAR
methods, e.g., in healthcare [37,38]. However, this idea does not apply to all domains. In
logistics, context-aware activity recognition is unexplored, which is also reflected in the
existing datasets. Logistic datasets, such as [17,18], only contain sensor data of human
movements. Specifically, it has not been investigated systematically which context data is
most relevant in (intra-)logistics to increase HAR performance. Here, a trade-off must be
made between HAR performance (requiring rich, highly informative context features) and
practical feasibility of recording (requiring low-cost data collection).

In order to determine which context data is relevant, we have recorded a rich dataset
for Context-Aware Activity Recognition in Logistics (CAARL) that enables systematic
investigation. CAARL contains human movement and object data. The information on
the locations of objects in three-dimensional space can be categorised under what is being
described as context. A marker-based oMoCap system was used to record both subjects
and objects. In total, the CAARL dataset comprises 140 min of annotated recordings of two
subjects and 12 objects. The entire dataset is freely available [16].

3.1. Laboratory Set-Up and Scenarios

Intralogistics processes were physically recreated in a laboratory set-up. Figure 2
shows examples of two different order picking scenarios and one packaging scenario.

L01 L02 L03

Figure 2. Extracts from the physical laboratory set-up of all three logistics scenarios.

Logistics scenario one (L01) was a simplified order picking system. Mainly, small
items were picked from racks or from boxes stacked on top of each other. Then, they were
placed on a small picking cart in small load carriers. Finally, the filled small load carriers
were placed on a base. This scenario was not based on a real warehouse. However, its
process steps were comparable to typical person-to-goods picking systems.

Logistics scenario two (L02) was based on a real-world order picking and consolidation
system. The primary process remains item picking. Compared to the first scenario, the
second scenario was extended with new process steps and the items used in them. The
picked items were scanned using barcodes and then placed in boxes on a large picking
cart. The subject had to confirm with a button on the put-to-light frame at the cart each
time an item was placed in the box. When the box was filled for the first time, the subject
had to mark the box with a stamp. This allows mistakes to be traced back to the worker.
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After all items were picked, the consolidation took place. The subject placed all boxes in
the channels of the flow through rack.

In the third logistics scenario (L03), a physical simulation of the real-world packaging
process was carried out. In this scenario, the items picked in the second scenario were
carried from the flow rack to the packaging table, checked by means of a scale and repacked
if necessary. The box was then packed ready for dispatch. This included filling the boxes
with a layer of bubble wrap and one delivery note, and attaching a barcode to the outside
of the box.

A detailed description of the three logistics scenarios can be found in [8] (pp. 6–12).

3.2. Human Movement Data—Subjects

One female subject aged 26 and one male subject aged 30 participated in the data
collection. The specifications of the subjects are listed in Table 1. Both subjects were recorded
for 70 min. The recordings are divided into two-minute sequences. Five recordings from
the first scenario, 15 recordings from the second and 15 recordings from the third scenarios
are available for each subject.

Each subject wore a suit, a headband and safety shoes, to which a total of 39 optical
markers were attached (see Figure 2). The exact marker configuration is detailed in the
recording protocol.

Table 1. Subjects—specifications and scenario assignment.

ID Sex Age Weight Height Handedness No. of Two-Minute Recordings
[F/M] [years] [kg] [cm] [L/R] L01 L02 L03

S17 M 30 85 176 R 5 15 15
S18 F 26 62 177 R 5 15 15

3.3. Context Data—Objects

In addition to the two subjects, 12 different objects were instrumented and recorded,
including a base, two picking carts, entrances to rooms, various racks and a packaging
table. The objects were not used equally in all three scenarios. Nevertheless, all marked
objects, i.e., also unused objects, were recorded. Consequently, all files in the dataset are
structured in the same way, regardless of the scenario assignment. The laboratory set-up
for the three scenarios is visualised in Figure 3.

Cart_large

Cart_small
Subject

PackagingTable

FlowThroughRack

Rack01, 02 and 03

RackComplex

Base

Entrance_BreakRoom

Entrance_CartRoom

Entrance_Office

Figure 3. Entire laboratory set-up as an oMoCap visualisation.

In order to capture rigid objects using the oMoCap, several prerequisites must be
met. Each object must have at least three markers that form an individual pattern and are
neither obscured nor change their position in relation to each other during the recording.
The robustness of the estimation is increased with a larger number of visible markers. This
resulted in a total number of 94 reflective markers for the 12 objects. A complete list of all
objects captured by oMoCap and their scenario assignment can be seen in Table 2.
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Table 2. Objects—specifications and scenario assignment.

Name in No. of Logistics Scenario
Dataset Files Marker L01 L02 L03

Base 5 x
Cart_large 15 x
Cart_small 4 x

Entrance_BreakRoom 5 x x x
Entrance_CartRoom 4 x x

Entrance_Office 5 x x
FlowThroughRack 19 x x

PackagingTable 11 x
Rack01 5 x x
Rack02 5 x x
Rack03 5 x x

RackComplex 11 x x

Before recording, the individual marked patterns were stored in Nexus software. By
means of the stored patterns, the captured markers can be assigned to the respective objects,
and thus the object can be recognised (see Figure 3). The advantage is that not only is the
object recognised, but also its markers are individually named and recognised. This makes
it possible to mark and recognise sub-components within an object that are too small to be
equipped with sufficient markers as an independent object. For example, the large picking
cart had markers that identified the handles, the individual levels in which the boxes were
located and even the buttons on the put-to-light frame. The same applied to the packaging
table. Instead of marking a barcode roll, a single marker was placed near the roll, which, in
combination with other markers, identified the packaging table.

Like the barcodes, the computer and the delivery notes, the bubble wrap was not an
independent object but a sub-component of the packaging table. By combining the context
information of these sub-components and the movement data of the subject, activities can
be derived. If there was a hand marker near the marker bubblewrap, a handling activity of a
small item could be assumed. Since bubble wrap is considered a small item when grabbing,
but when filling the shipping box, the grabbing movement shown in Figure 4 is likely to be
followed by a handling activity with Utility as an attribute.

bubblewrap

barcodes

deliveryorderPac_t_l Pac_t_r

PC_ba_l
PC_ba_r

PC_f_r

buffer_ba
buffer_f

scales

Figure 4. Marker designations of the packaging table.

3.4. Recordings

The recordings of both subjects took place on the same day. Neither the set-up nor the
settings of the recordings were changed. Each scenario was carried out without breaks or
other interruptions, with the aim of not interrupting the flow of movement of the subjects at
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any time. Experts in the field of logistics explained the process steps before and during each
scenario. No instructions were given on how exactly to perform the movements in order to
ensure the most natural body movements possible. For example, the subject decided for
himself/herself whether to pick up an item with his/her left or right hand.

During the performance of picking and packaging tasks, the oMoCap system recorded
the positions of markers of objects and subjects at a sampling rate of 200 fps. The pro-
cesses were recorded in two-minute sequences. After all recordings were completed,
time-consuming reconstruction and labelling of the markers took place. This allowed the
recordings to be made immediately one after the other. Thus, there were only minimal
time offsets of only a few seconds between the two-minute sequences. Both subjects were
recorded 35 times for two min. This corresponds to 140 min of data.

3.5. Annotation Results

The annotation consisted of two steps. First, the oMoCap data were divided into one-
second (200 frames) windows and automatically classified using a temporal convolutional
neural network [39]. Then, two researchers used an annotation tool to manually modify
the data. In total, the revision took 44.72 person-hours. This corresponds to 19.17 minutes
per 1 minute recording.

All data were labelled and grouped into seven activity classes. The activity classes
include locomotion, such as Standing (c1), Walking (c2) and Cart (c3). In total, they represent
about 30% of the entire dataset. Almost 70% of the activities involved Handling (c4–c6).
Handling centred (c5) is the most strongly represented activity. This high proportion is partly
due to scenario three. Most of the movements were performed on the packaging table and
thus at stomach and chest height. The None class (c7) represents movements that could not
be assigned to any of the first six activities and oMoCap data that incorrectly represent the
subject. Table 3 gives an overview of the seven activity classes and their proportions in the
dataset. On average, the annotated windows are 1.46 s long.

Table 3. Annotation results divided by activity classes.

Activity Class Frames Windows
No. % No. % Min. Length [Frames] Max. Length [Frames]

c1 Standing 112,228 6.68 432 7.51 32 2348
c2 Walking 181,596 10.81 326 5.67 61 8800
c3 Cart 207,774 12.37 315 5.48 60 4400
c4 Handling (upwards) 137,911 8.21 589 10.24 26 1400
c5 Handling (centred) 954,959 56.84 3732 64.90 26 4607
c6 Handling (downwards) 72,368 4.31 339 5.90 29 1384
c7 None 13,164 0.78 17 0.30 200 2600

1,680,000 100 5750 100

The activity classes are subdivided into 19 binary descriptions in more detail, also
called attributes [31]. Each window is labelled with attributes describing the movement of
the legs, upper body, and hands, along with information about the posture of the item:

• Legs: Gait Cycle, Step, Standing Still.
• Upper Body: Upwards, Centred, Downwards, No Intentional Motion, Torso Rotation.
• Handedness: Right Hand, Left Hand, No Hand.
• Item Pose: Bulky Unit, Handy Unit, Utility/Auxiliary, Cart, Computer, No Item.
• Other attributes: None, Error.

An example of an annotated sequence is visualised in Figure 5. The 20 s sequence of
the second scenario consists of six windows. Each window symbolises an activity class
composed of independent attribute representations. In the first window (a), the subject
picks up a small item from the lowest level of the rack with their right and left hand. The
markers (see top right) indicate the top level of the rack. Then, the subject moves with the
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item to the front of the picking cart (b). The cart is shown at the top left. Since the subject
only takes two steps, this is not a gait cycle. The item was held by both hands but was not
handled. This makes it the class standing. In the next window (c), the item is placed in the
lowest level of the cart with the right hand. The release of the item is confirmed by pressing
a button on the put-to-light frame of the cart (d). The button is classified as a utility. Both
movements (c and d) are performed in a bent posture. The subject then grips the cart with
the left hand (e). The upper body is in an straight position. In the last window, the subject
moves with the cart around the rack to the next position. The cart is pulled with the left hand
without an intentional motion, only a steady stance.

(a) (b) (c)

(d)

Activity class: Handling (downwards)
Attributes

- Standing Still
- Downwards
- Right Hand
- Left Hand
- Handy Unit

Activity class: Standing
Attributes

- Step
- No Intentional Motion
- Right Hand
- Left Hand
- Handy Unit

Activity class: Handling (downwards)
Attributes

- Standing Still
- Downwards
- Right Hand
- Handy Unit

Activity class: Handling (downwards)
Attributes

- Standing Still
- Downwards
- Right Hand
- Left Hand
- Utility Auxiliary (e)

Activity class: Handling (centred)
Attributes

- Step
- Centred
- Left Hand
- Cart

(f)

Activity class: Cart
Attributes

- Gait Cycle
- No Intentional Motion
- Left Hand
- Cart

Figure 5. Example of an annotation sequence of six windows.

Due to the numerous possible combinations, the dataset contains a total of 122 unique
attribute representations. The list of all attribute representations is given as part of the pub-
licly available dataset. The activity classes and attributes used in this paper are explained
in detail in [8] (pp. 15–19).

4. Activity Recognition Methodology

In the following, we present the utilised HAR method, which is based on the archi-
tecture proposed by [33]. It can make use of motion data from the subject and additional
context data to predict activity classes. Specifically, the architecture consists of a pre-trained
deep neural network that predicts movement descriptors (attributes) from the subjects’
sensor data and a shallow classifier that predicts activity classes from these attributes
and the context data (see Figure 6). The architecture is designed to be easily adaptable to
different context data without having to re-train the entire model.
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Figure 6. Activity recognition architecture. The pre-trained neural network predicts high-level
movement descriptors (attributes). Together with the context data, they are used by a shallow
classifier to predict activity classes. Figure adapted from [33].

The deep neural network is a temporal convolutional neural network (CNN) [27]; i.e.,
its convolutional layers perform convolutions along the time axis. The CNN processes
segments of 200 samples, i.e., 1 s of data due to the sampling rate of 200 Hz. The network
consists of four convolutional layers, followed by two fully connected layers. The output
layer has 19 units, corresponding to 19 movement attributes, and a sigmoid activation
function. We did not perform any training of the network, but used the pre-trained network
available at [17], which was trained on the LARa [8] dataset.

Due to the final sigmoid layer, a network output can be interpreted as the probability of
an attribute being present or not present in the input segment. More formally, the network is
a function φ : d→ π, where d is a motion data segment and π = π1, . . . , π19 are the param-
eters of the posterior distribution P(a | d) over attribute vectors a = a1, . . . , a19. Specifically,
the distribution over binary attribute vectors is given by a product of Bernoulli distributions:

Pφ(a1, . . . , a19 | d) =
19

∏
i=1

π
ai
i (1− πi)

1−ai (1)

The overall goal of our HAR method is to estimate a posterior distribution over
activity classes P(c | d) (from which estimating the maximum-a-posterior class becomes
straightforward). Given a distribution P(c | a) that associates activity classes c and attributes,
the activity class posterior P(c | d) can be computed by marginalising the attributes a.
Further simplifications are possible when a deterministic relationship g(a) = c exists
between class and attribute [33]. However, in this way, the additional data representing the
context cannot be directly integrated into the activity class estimation.

Therefore, we follow the approach outlined in [33]: The network output π, along with
the context data de, are used as input for a (shallow) classifier that predicts an activity class.
We experimented with quadratic discriminant analysis (QDA), gradient boosted decision
trees (XGBoost) and random forests (RF) as shallow classifiers. Alternatively, another fully
connected layer can be used. The shallow classifier was trained using the pre-computed
network outputs π and the context data de.

The underlying intuition for this architecture is the fact that processing movement
data from the subject requires elaborate models to extract relevant features, but is domain-
independent (using a fixed subject instrumentation). Thus, a pre-trained network can be
used to save training time and data to train this part of the model. The integration of context
data, on the other hand, depends on the domain, e.g., on the specific configuration of the
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environment, and thus the part of the model concerned with the context data is trained.
Training of the final classifier can be seen as a form of fine-tuning, a common technique in
deep learning.

The architecture has several additional advantages, compared to training an activ-
ity recognition classifier from scratch: A posterior distribution P(a | d) over attributes
is available and can be used for downstream tasks. Furthermore, using such attributes
as an intermediate representation has been shown to lead to higher activity recognition
performance, compared to directly predicting activity classes [31].

5. Experimental Evaluation
5.1. Experimental Procedure

The goal of the experimental evaluation was to investigate the effect of the additional
context data on HAR performance, in comparison to a baseline HAR method based solely
on movement data. Specifically, we investigated the following three research questions:

Q1 What influence does context data have on HAR performance (in terms of F1 score),
compared to a baseline model where this context data are not available?

Q2 Which context features are most relevant for HAR performance, i.e., increase F1 score
the most?

Q3 How comprehensive do context data have to be? How do complex context data
affect the HAR performance, compared to a model where only simple, distance-based
context features are used?

To evaluate Q1, we performed ablation studies on the architecture described in
Section 4: The baseline model only used the attribute estimates from the pre-trained at-
tribute classifier [8]. We investigated three shallow classifiers for combining attribute and
context data: QDA, XGBoost and RF. We used two variants of context data to answer
Q3: (i) the raw, segmented data from the environmental markers, and (ii) pre-computed
distances between subject markers and environmental markers. Specifically, we computed
pairwise distances between 25 selected environmental markers (related to the cart, table
and different racks) and the left-hand, right-hand and chest markers of the subject. The
complete list of involved markers is part of the published dataset. This preprocessing
was based on our intuition that activities often depend on the proximities of the subject to
certain objects or locations. For example, when the subject’s hand is close to the handle of
the cart, the Cart activity is likely.

The context data (raw marker positions and distances) were preprocessed by comput-
ing the mean of each data column for segments of length 1 s, without overlap. The attribute
classifier also computes attribute estimates for 1 s segments. Thus, all inputs of the final
classifier (attribute estimates and context data) were available with a sampling rate of 1 s
and could be combined directly. Performance was assessed using a 10-fold cross validation,
for which we made sure that all data of an experimental run were contained in the same
fold. We report class-wise F1 scores and the macro F1 score.

Research question Q2 was assessed by a greedy stepwise feature selection approach:
We started with the baseline model that used only the attribute estimates. At each step,
the algorithm then selected the single context feature that increased macro F1 score the
most, using the same 10-fold cross validation procedure as all models outlined above. This
feature was added to the model, and the process was repeated until no feature increased
HAR performance further.

Evaluations were performed using the R programming language [40] and the R
packages xgboost [41] and randomForest [42].

5.2. Results

Table 4 shows the macro F1 scores of the different models. The RF outperformed
QDA in all cases, and XGBoost in all cases except for the case where only distance features
were available. Note that the QDA could not be applied to the raw data because of the
dimensionality of the data. Thus, in the following, we focus on the RF.
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The baseline RF model (using only the attribute estimates, but no context data)
achieved a macro F1 score of 0.716. Adding context data improved this baseline result:
attributes and distance data achieved an F1 score of 0.733, and attributes and raw context
data even achieved an F1 score of 0.820. Thus, pre-computation of distance features did not
seem to be beneficial in our case, and instead, working directly with the raw data provided
better results. Interestingly, using just the raw context data but no attribute estimates
already outperformed the baseline model. Nevertheless, the combination of both models
(i.e., using attribute estimates and raw context data) improved performance compared to
the former cases.

Table 4. Macro F1 scores of the different classifiers and feature subsets.

Classifier Att. (Base Model) Dists Att. + Dists Raw Att. + Raw

QDA 0.670 0.515 0.619 – –
XGBoost 0.717 0.730 0.643 0.691 0.727
RF 0.716 0.646 0.733 0.745 0.820

The class-wise F1 scores (Table 5) show a large variance in recognition performance for
the different classes. Specifically, the F1 score for the Standing class was low, independently
of the used data. This result could be expected because the stand class contains unspecific
behaviour that does not fall in any of the other categories and is thus difficult to discriminate
from the other classes. Using raw context data improved F1 scores of three classes (Cart,
Handling upwards, Walking) with respect to the baseline model, but decreased the F1 scores
of the other three classes (Handling centered, Handling downwards, Standing). Despite this,
the overall (macro) F1 score increased significantly.

Table 5. Class-wise F1 scores of RF model.

Standing Walking Cart Handling Handling Handling
Upwards Centred Downwards

Att. (Base
model) 0.210 0.743 0.809 0.880 0.761 0.815

Dists 0.063 0.716 0.819 0.858 0.508 0.593
Att. + Dists 0.156 0.842 0.880 0.886 0.743 0.822
Raw 0.214 0.823 0.803 0.808 0.687 0.804
Att. + Raw 0.150 0.833 0.880 0.825 0.753 0.826

Tables 6–8 show the results of the greedy feature selection. Note that results for the
base models do not agree exactly with the baseline models in Table 4 due to the random
assignment of data to folds in the cross validation procedure. Consistently, only few
features were selected before there was no single feature that increased F1 score further.
This behaviour can be explained by the fact that the greedy feature selection approach
only converges to a local minimum. Therefore, interactions of features that would increase
performance further cannot be considered.

Thus, overall we could show that including few select context features already in-
creased HAR performance, compared to the baseline model. Overall, the most relevant
markers were markers related to the carts and the table, which intuitively makes sense, be-
cause knowing that the cart is moving should help identify the Cart activity and proximity
of the subject to the table indicates handling activities. Nevertheless, the use of all recorded
context features further improves HAR performance. Thus, the choice of utilised context
features is subject to a trade-off between the cost of recording and accuracy required for
downstream tasks.
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Table 6. Greedy feature selection results (QDA, distance features).

Marker 1 Marker 2 F1 Score

Attributes (Base model) 0.680
+ Cart_large:C_large_PtL_3_l Subject:RFIN 0.698

+ PackagingTable:barcodes Subject:RFIN 0.705
+ Cart_small:C_small_handle Subject:RFIN 0.711

+ Cart_small:C_small_ba_t Subject:RFIN 0.718
+ Cart_small:C_small_ba_t Subject:LFIN 0.719

+ PackagingTable:bubblewrap Subject:LFIN 0.719

Table 7. Greedy feature selection results (RF, distance features).

Marker 1 Marker 2 F1 Score

Attributes (Base model) 0.717
+ PackagingTable:barcodes Subject:LFIN 0.740

Table 8. Greedy feature selection results (RF, raw features).

Marker Axis F1 Score

Attributes (Base model) 0.717
+ PackagingTable:Pac_t_r z 0.748

+ Cart_small:C_small_handle y 0.761

6. Discussion and Conclusions

In this paper, we demonstrated that making use of context information can increase
activity recognition performance substantially. Specifically, we recorded an oMoCap dataset
that includes both the movement of subjects and the location of objects and environmental
features. We analysed the dataset regarding (a) the potential of context information to
increase activity recognition performance and (b) the most informative context features.
We found that for our intralogistics scenarios, the location of the handle of the cart and the
packaging table were most informative for activity recognition. These findings intuitive
make sense, because proximity to the packaging table or cart indicate, which process step
is currently performed, and thus which activities are likely to happen. Therefore, in further
research, one can focus on these context information, instead of instrumenting additional
objects. Since the processes in intralogistics are standardised, the results can be applied to
different warehouses. However, for other tasks in the same domain, e.g., driving a forklift
truck, further context data can be collected in addition to the existing ones. To account
for this, our proposed architecture makes it straightforward to change the utilised context
information, without re-training the entire model.

Still, further research is necessary to explore the full potential of context information
for activity recognition: First, we rely on a relatively simple activity recognition archi-
tecture. Using a more elaborate model instead of the shallow classifier that is currently
used, e.g., a model that allows end-to-end training of the overall model, could increase
activity recognition performance further. Secondly, investigating the utility of context
information for other tasks, e.g., for recognising movement attributes instead of activities, is
an interesting direction for future work. Third, we focused on additional markers on objects
and environmental features as context information. However, context information in a
more general sense could contribute towards activity recognition—e.g., events occurring
in the warehouse management system; prior knowledge about causal relations between
activities; or additional sensors, such as inertial measurement units or cameras. Finally,
we focused on using context information to improve activity recognition, but one could
also be interested in inferring the context (e.g., the currently used object) from the subject’s
movement or recognised activities. The long-term goal of this research direction is to jointly
estimate the model of motion attributes, activities and context from multiple sensor modal-
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ities (e.g., inertial measurement units, Bluetooth low energy devices and radio-frequency
identification for industrial application) and prior domain knowledge.
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