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Abstract

The multidimensional forced-choice (MFC) format has been proposed as an alternative
to rating scales. In the MFC format, respondents indicate their relative preference for
items measuring different attributes within blocks. Test construction for the MFC format
is complex because how the items are combined affects the properties of the test. The aim
of this thesis was to investigate and further develop IRT methods for the MFC format
that can help to improve MFC test construction, focusing on the Thurstonian IRT model
and a ranking instruction.
In the first manuscript (Frick et al., 2021), we conducted an extensive simulation study

on the normativity of Thurstonian IRT trait estimates. We investigated realistic test de-
signs, removed a potential confounding with item parameter bias and compared recovery
to that from classical test theory scoring and from rating scale and true-false formats.
We found that with all positively keyed items, trait estimates showed ipsative properties.
However, with mixed item keys, they were insensitive to otherwise suboptimal test designs.
In an empirical study, we found that construct validity in the MFC format with three-item
blocks was lower and criterion validity equal to the true-false format.
In the second manuscript (Frick, 2021b), I developed the Faking Mixture model, a

model for faking in the MFC format that allows to estimate the fakability of individual
MFC blocks. A simulation study showed good parameter recovery. An empirical validation
showed that the model can capture expected differences in item desirability, but also
that matched blocks were not fully fake-proof. Therefore, it is worth to apply the Faking
Mixture model in order to reduce fakability by removing or modifying blocks during test
construction.
In the third manuscript (Frick, 2021a), I proposed methods to estimate and summarize

Fisher information for Thurstonian IRT models on the block level. Three simulation studies
showed that the methods can accurately recover true information and are useful for test
construction. It was examined how the proposed information summaries can be combined
with algorithms for automated test assembly. Thus, block information can be used to
assemble MFC tests that maximize reliability and have an ideal test design.
In summary, this thesis provided both new methods and guidelines for MFC test con-

struction. Modeling the block level did and will help to adequately capture the relative
response process and item interactions and it can provide avenues for further psychometric
developments.
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Articles

This cumulative thesis is based on the following three manuscripts:

Manuscript I

Frick, S., Brown, A. & Wetzel, E. (2021). Investigating the normativity of trait estimates
from multidimensional forced-choice data. Multivariate Behavioral Research. Ad-
vance online publication. https://doi.org/10.1080/00273171.2021.1938960

Manuscript II

Frick, S. (2021). Modeling faking in the multidimensional forced-choice format
– The Faking Mixture model. Psychometrika. Advance online publication.
https://doi.org/10.1007/s11336-021-09818-6

Manuscript III

Frick, S. (2021). Block information in the Thurstonian item response model. Manuscript
submitted for publication to Psychometrika.

This research deals with investigating and further developing item response theory meth-
ods for multidimensional forced-choice (MFC) tests. In the following, I will first give a short
overview of the MFC format and its advantages in comparison to rating scales, of challenges
in MFC test construction and of item response theory models for MFC tests, especially of
the Thurstonian item response model. Then, I will summarize the three manuscripts. In
the end, I will discuss implications and future research directions for MFC test construction
and psychometric modeling. The full manuscripts are appended to this synopsis.
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1 Introduction

Tests are frequently used to assess personality and draw inferences about respondents’
trait levels. For example, employers use personality tests to assess whether applicants
possess the characteristics needed for the job. Psychotherapists routinely use personality
tests as part of the initial assessment. Since important life outcomes may depend on the
results of personality tests, test scores should measure the intended construct precisely and
free of irrelevant influences. In other terms, test scores should be reliable and valid. Most
personality tests use a rating scale format (e.g., strongly disagree, disagree . . . ). However,
rating scales often suffer from systematic influences on the response beyond the construct
intended to measure, termed response biases (Paulhus, 1991). For example, respondents
might show preferences for certain categories, called response styles (Henninger & Meiser,
2020; Wetzel, Böhnke, et al., 2016). Or, in a so-called high-stakes situation (e.g., when
applying for a job), respondents might distort their responses in order to leave a certain
impression, a response behavior called faking (MacCann et al., 2011). Response biases
can diminish reliability and validity. For example, response styles can change correlations
between scale scores (Moors, 2012). Faking can result in mean increases of trait scores of
.1 to .6 SD when using rating scales (Birkeland et al., 2006; Viswesvaran & Ones, 1999).
To prevent response biases emerging from the use of rating scales, the multidimensional
forced-choice (MFC) format has been proposed as an alternative.

1.1 Multidimensional Forced-Choice versus Rating Scales

In the MFC format, several items measuring different attributes are combined into blocks
and respondents indicate their relative preference for the items. In such, the MFC format
is both an item and a response format. I refer to it as a response format in the following.
Typical response instructions include ranking all items (for an example, see Figure 1) or
selecting the items that describe oneself most and/or least. This research focuses on MFC
blocks with a ranking instruction, because this response instruction (potentially) provides
the largest amount of information and therewith the highest reliability (Brown & Maydeu-
Olivares, 2011). Additionally, the number of items per block can vary, with two to four
items being the most common.
Research interest in the MFC format has increased in recent years as evidenced by the
growing number of articles published on this topic (Figure 2). Further, the MFC format
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Figure 1: Example of a multidimensional forced-choice block from the Big Five Triplets
(Wetzel & Frick, 2020).

has become popular in assessment which is reflected in several tests that use this format.
For example, it is used to assess work-related personality in TAPAS (Drasgow et al., 2012),
OPQ (Brown & Bartram, 2009–2011), and the personality test by TalentQ (Holdsworth,
2006).
The MFC format allows to prevent, or at least reduce, some of the response biases that

occur with rating scales (Brown & Maydeu-Olivares, 2018a). From a theoretical perspec-
tive, uniform response biases, such as halo effects or acquiescence, are avoided, because the
relative preferences remain the same if the preferences for all items increase to the same
extent (Brown et al., 2017). This has been confirmed empirically: Halo effects (Brown et
al., 2017) were reduced with an MFC as compared to a rating scale format. Furthermore,
biases that arise from the use of rating scales, such as response styles, cannot occur (Brown
& Maydeu-Olivares, 2018a).
The MFC format can prevent faking when the items within blocks are matched for

their (social) desirability, as was first proposed by Edwards (1953). This is based on the
assumption that respondents who want to fake would first try to rank the items according
to how desirable they are. If this is not possible, because all items are equally desirable, they
give an honest response instead (Berkshire, 1958; Gordon, 1951). Figure 3 shows examples
of blocks with all socially desirable and all socially undesirable items. Empirically, faking
was reduced with an MFC format, resulting in mean increases of only .06 SD on trait
scores in a meta-analysis (Cao & Drasgow, 2019).
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Figure 2: Number of new articles published in journals listed in the Web of Science Core
Collection including the keywords "multidimensional" and "forced-choice" in any entry.

To address the issue of validity more directly, it is important to compare how well MFC
and rating scale formats perform at predicting external constructs and criteria. Overall,
similar (Lee et al., 2018; Wetzel & Frick, 2020; Zhang et al., 2019) or higher (Bartram,
2007; Salgado & Táuriz, 2014; Watrin et al., 2019) construct and criterion validities were
observed with an MFC as compared to a rating scale format. Differences in validities
probably depend on how the MFC responses were scored and on the type of criteria
investigated (Wetzel et al., 2020). Moreover, the assessed constructs might slightly differ
between the response formats: When the same items were presented in an MFC versus
a rating scale format, correlations between traits slightly changed (Guenole et al., 2018;
Wetzel & Frick, 2020). This could be explained by item interactions that occur in the MFC
format: Item properties can change when items are presented together in blocks (Lin &
Brown, 2017).

1.2 Challenges in the Construction of Multidimensional
Forced-Choice Tests

Constructing MFC tests is a more complex endeavor than constructing rating scale tests,
because the items must be combined into blocks. To give an example, it is usually preferable
to have the same number of items per trait so that reliability is comparable. In a test
measuring five traits with block size three, there are

(
5
3

)
= 10 possible combinations of

traits. If we increase the number of traits to 15, this yields
(
15
3

)
= 455 combinations. How



4 Chapter 1. Introduction

Figure 3: Examples of socially undesirable (left) and socially desirable (right) multidi-
mensional forced-choice blocks from the Big Five Triplets (Wetzel & Frick, 2020).

the items are combined affects the properties of the test, both in terms of measurement
and response behaviors. In the following, I outline three important aspects of MFC test
construction that motivated the present research.

Normativity

When trait scores can be compared between different persons they are called norma-
tive. The opposite of normative is ipsative. Ipsative scores arise when the sum of scores
across different traits (or attributes) is constant across persons (Clemans, 1966). It follows
mathematically from this property that correlations with and between ipsative scores and
correlation-based analyses, such as factor analysis, are distorted (Clemans, 1966; Hicks,
1970). MFC tests scored with classical test theory (CTT) yield fully ipsative scores when
all items within blocks are ranked (ranking instruction) and all items are keyed in the
same direction. To illustrate, for blocks of size B = 3, respondents assign ranks 1 to 3 to
the items, which sum to 6. Across K blocks and all traits, this results in a total sum score
of K × 6 for each respondent. MFC tests scored with CTT yield partially ipsative scores
when items are keyed in different directions or when the instruction is to select only some
items. With partially ipsative scores, there is some variance in the total score. However,
they are said to retain characteristics of ipsative scores (Hicks, 1970).
Item response theory (IRT) models, however, allow deriving normative scores from MFC

data (Brown, 2016; Brown & Maydeu-Olivares, 2011, 2013; McCloy et al., 2005). In IRT,
normative scores can be derived when the scale origin for the latent traits is identified.
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For this to be the case, the test design must meet certain conditions, which depend on the
item type (Brown, 2016). There are two common item types in personality psychology: For
dominance items, the preference for an item increases monotonically with increasing trait
levels. This idea is expressed, for example, in a linear factor model. For ideal-point (or
unfolding) items, the preference for an item is highest at one point of the trait continuum
(the item location) and decreases with increasing distance from it. To identify the scale
origin for MFC tests with dominance items, the matrix of factor loadings for pairwise
comparisons must be full-rank. With ideal-point items, the general conditions have not
been examined so far. In the special case of equal weights for all items (i.e., all items
correlate with the trait to the same extent), the item locations must differ between blocks.
The results of simulation studies complement these theoretical conditions: With domi-

nance items, trait scores showed ipsative properties and trait recovery was decreased when
all items were keyed in the same direction, that is, when all factor loadings were positive
(Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019; Schulte et al., 2020). The same was
found for ideal-point items with equal locations (Hontangas et al., 2015; Hontangas et al.,
2016). Hence, MFC tests should be scored and constructed in such a way that normative
trait scores can be derived.

Item Matching and Fakability

If the test should reduce faking, the items within blocks must be matched for desirability.
When matching items, several issues should be considered: First, an estimate of item
desirability is needed. Some researches use item intercepts or differences in item intercepts
between honest responding and faking instructions for this (e.g., Lee et al., 2018; Ng et al.,
2020). Others use ratings of item desirability (e.g., Heggestad et al., 2006; Jackson et al.,
2000). Second, to combine items of equal desirability requires defining which differences
in item desirability estimates are considered negligible. If the differences are too large,
the blocks might still be fakable. A recent study showed that agreement on which rank
order was desirable was higher with larger differences in item desirability (Hughes et al.,
2021). Third, item desirability might differ between assessment contexts. For example,
desirability ratings for agreeableness items differed between the scenarios of applying for
a job as a manager versus as a nurse (Pauls & Crost, 2005). Fourth, item interactions
can occur in the form of item desirability changing in the context of item blocks because
the relative response format might trigger more fine-grained distinctions of desirability
(Feldman & Corah, 1960; Hofstee, 1970).

Reliability

A further issue to consider when constructing MFC tests is reliability. With the same
number of items, MFC tests are theoretically less reliable than rating scale tests. This
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can be illustrated by recoding rankings into binary outcomes of pairwise comparisons
(Table 1). As can be seen from Table 1, a block of size B = 3 is approximately equally
informative as the same three items presented in a dichotomous true-false format. More
generally, a block of size B yields B(B−1)/2 pairwise comparisons. In comparison, rating
scales with C categories yield C − 1 pieces of information per item. Moreover, binary
outcomes of pairwise comparisons involving the same item, e.g., between items 1 and 2
and between items 1 and 3, are locally dependent given the latent traits. Thus, for block
sizes B > 2, information is slightly lower than it would be expected if the binary outcomes
were independent (Brown &Maydeu-Olivares, 2011, 2018b; Yousfi, 2018). Hence, achieving
sufficient levels of reliability is an important issue in MFC test construction.

Table 1: Example of recoding rankings into binary outcomes
Item Content Ranking Comparison Outcome
i1 I am emotionally stable. 1 i1 > i2 1
i2 I like to explore new things 3 i1 > i3 1
i3 I am always prepared. 2 i2 > i3 0

Note. This is a sample block from the Big Five Triplets (Wetzel & Frick, 2020).

Beyond the specific aspects described, the preceding overview reveals some overarching
issues that research on the MFC format should address: First, it is important to inves-
tigate which (item) properties actually matter for the resulting trait scores. Second, in
order to account for potential item interactions, the block level should be modeled. And
third, methods for the construction of MFC tests should be developed that allow all rel-
evant aspects to be considered simultaneously. The three manuscripts in this thesis each
incorporate one or more of these issues.

1.3 Item Response Models for Multidimensional
Forced-Choice Tests

Following Brown (2016), IRT models for MFC tests can be classified according to three
axes: (a) whether block sizes B > 2 can be modeled, (b) whether the model assumes a
dominance or an ideal-point relationship between item and trait and (c) whether the deci-
sion model for choice behavior is based on the ideas of Thurstone (Thurstone, 1927, 1931)
or Bradley and Terry (Bradley, 1953; Bradley & Terry, 1952). Thurstonian models imply
a probit link function whereas Bradley-Terry models imply a logit link function. As to my
knowledge, two additional models have been proposed since the work by Brown (2016): The
multi-unidimensional pairwise preference two-parameter logistic model (MUPP-2PL, Mo-
rillo et al., 2016), which can be classified as a Bradley-Terry model for dominance items
and block size B = 2 and the generalized graded unfolding model for ranks (GGUM-
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RANK, Lee et al., 2019), which can be classified as a Bradley-Terry model for ideal-point
items and any block size, with a ranking instruction.
The present research employs the Thurstonian IRT model (Brown & Maydeu-Olivares,

2011), which is a Thurstonian model for dominance items and any block size, for two
reasons: First, the Thurstonian IRT model is the most broadly applicable in terms of
response formats and ranking instructions. Second, it is a model for dominance items
which are currently most common in personality psychology (Brown & Maydeu-Olivares,
2010). Moreover, research interest in this model is currently high: Half of the 28 articles
about this model were published in the past two years (2019 and 2020), as evidenced
by a search for articles including the keywords "Thurstonian item response theory" or
"Thurstonian IRT" in any entry published in journals listed in the Web of Science Core
Collection after the introduction of the Thurstonian IRT model in 2011.

Thurstonian Item Response Model

In the Thurstonian IRT model, there is a latent value underlying each item response called
utility. The utility t of item i for person j is a linear function of a latent trait ηj , weighted
with an item loadings λi and having an intercept µi and an error term εij :

tij = µi + λiηj + εij (1)

The latent traits are assumed to follow a multivariate normal distribution: H ∼
N(MH,ΣH). The errors follow independent normal distributions: εi ∼ N(0, ψi). Accord-
ing to Thurstone’s Law of Comparative Judgment (Thurstone, 1927, 1931), respondents
rank the items within each block according to the magnitude of their utilities.
The Thurstonian IRT response probabilities are usually expressed for binary outcomes

of pairwise comparisons (Table 1) instead of rank orders, which enabled model estimation
in the first place (Maydeu-Olivares, 1999; Maydeu-Olivares & Brown, 2010). The response
probability for outcome l comparing items i andm that measure traits c and d, respectively,
can be expressed as:

P (ylj = 1|ηcj , ηdj) = Φ


−γl + λiηcj − λmηdj√

ψ2
i + ψ2

m


 (2)

where Φ(x) denotes the cumulative standard normal distribution function evaluated at x.
Typically, instead of separate intercepts µi and µm for the items, a threshold −γl for the
outcome is estimated (i.e., the restriction γl = µi − µm is not imposed).
Since binary outcomes of pairwise comparisons involving the same item are locally de-

pendent given the latent traits, the same applies to the response probabilities in Equation
2. Consequently, if these response probabilities are multiplied, the likelihood of the response
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pattern is overestimated for block size B > 2. Therefore, instead of using a likelihood-based
approach, the item parameters and trait correlations are usually estimated using limited
information methods and a two-step procedure. First, the tetrachoric correlations and
thresholds for the binary outcomes are estimated. Second, the results from the first step are
used as input to limited information methods such as unweighted or diagonally weighted
least squares, accounting for error covariances of the outcomes. For a tutorial on how to
estimate Thurstonian IRT models in Mplus (Muthén & Muthén, 1998–2017) using this
procedure, see Brown and Maydeu-Olivares (2012). Trait scores are then estimated given
the previously obtained item parameters and trait correlations in a maximum-likelihood
approach, such as maximum a posteriori (MAP) or weighted likelihood estimation (WLE).
Thus, for trait estimation, the local dependencies for block size B > 2 are neglected. This
yields unbiased point estimates but underestimated standard errors and overestimated
reliability (Brown & Maydeu-Olivares, 2011; Yousfi, 2018), although the extent of the
reliability overestimation was deemed negligible (Brown & Maydeu-Olivares, 2011).
Alternatively, following Yousfi (2018), the response probability for the full rank order

can be expressed by first sorting vectors of utilities tk and of error variances ψ2
k within

each block k in descending order, according to the selected rank order r. For example,
if the rank order 3-1-2 was selected by person j, we would sort the vector of utilities
as tjk =

(
t3j t1j t2j

)′
. For estimation, differences between consecutive utilities are

calculated. In the example, the area where t3j > t1j > t2j is equivalent to the area where
t3j − t1j > 0 ∩ t1j − t2j > 0. The differences between consecutive utilities are calculated
with a comparison matrix A. For example, if block size B = 3:

AB=3 =

(
1 −1 0

0 1 −1

)
(3)

Then, the probability to select rank order r is the area under the multivariate normal
density where each difference between two consecutive utilities Atjk is positive:

P (Xjk = r) =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
N
(
Atjk(r),Aψ

2
k(r)

)
dAtjk(r) (4)

The multiple integral in Equation 4 can be numerically approximated with methods de-
veloped by Genz (2004) and Genz and Bretz (2002). For equivalent variants of expressing
the response probability, see Maydeu-Olivares (1999). To compute Equation 4 from esti-
mated item parameters, the item intercepts have to be estimated or the restriction on the
thresholds for the binary outcomes must be imposed.
To illustrate the effect of neglecting local dependencies, I conducted a small simulation

on standard error accuracy for block size B = 4, because the effect of local dependen-
cies increases with block size. Traits and their observed standard errors were estimated
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based on the formulation neglecting local dependencies (Equation 2) and the true response
probability (Equation 4). The test design was identical to the condition with block size
B = 4, five traits and 1/2 mixed keyed comparisons in Frick et al. (2021). Besides that,
the simulation design was identical to simulation study 1 on standard error accuracy in
Frick (2021a) for the condition with high loadings and the short test. Figure 4 shows that
when neglecting local dependencies, standard errors were underestimated both for the
maximum likelihood (ML) and the MAP estimator. The bias was smaller for extreme trait
levels and it showed high variance for the ML estimator in these areas. This might have
occurred because the estimation procedure and the box constraints were not optimized for
the formulation neglecting local dependencies.
In comparison to the scale of the latent traits (SD = 1) and the range of true SE s

(Figure 5), the bias of observed SE s was small but not negligible. As expected, the bias of
the point estimates of the latent traits was comparable between the true likelihood and the
one neglecting local dependencies (Figure 5). When neglecting local dependencies, it was
slightly higher for the MAP estimator, because the likelihood is given too much weight in
relation to the prior (Yousfi, 2020).

−0.6

−0.4

−0.2

0.0

0.2

−2 −1 0 1 2
η

M
B

0.0

0.2

0.4

0.6

0.8

−2 −1 0 1 2
η

R
M

S
E

likelihood

true
dependent

estimator

ML
MAP

−0.6

−0.4

−0.2

0.0

0.2

−2 −1 0 1 2
η

M
B

0.0

0.2

0.4

0.6

0.8

−2 −1 0 1 2
η

R
M

S
E

likelihood

true
dependent

estimator

ML
MAP

Figure 4: Bias of observed standard errors in the simulation on local dependencies. Shaded
areas show ±1SD around the mean (line). MB = Mean Bias, RMSE = Root Mean Square
Error, true = true likelihood, dependent = likelihood neglecting local depencencies, ML
= Maximum Likelihood, MAP = Maximum a Posteriori.
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Figure 5: Trait recovery and empirical SE s in the simulation on local dependencies.
Shaded areas show ±1SD around the mean (line). SE = empirical Standard Error, MB
= Mean Bias, RMSE = Root Mean Square Error, true = true likelihood, dependent =
likelihood neglecting local depencencies, ML = Maximum Likelihood, MAP = Maximum
a Posteriori.

1.4 Overview of Manuscripts

The present research addresses challenges in MFC test construction by investigating and
developing IRT methods for this response format, focusing on the issues of normativity,
fakability, and information. Although I used the Thurstonian IRT model throughout the
three manuscripts, some findings transfer to and some methods could be applied to other
IRT models for MFC tests as well. In this synopsis, I highlight where this is the case.
Since the theoretically derived conditions for normativity differ from the results of sim-

ulation studies, in the first manuscript (Frick et al., 2021), we conducted an extensive
simulation study on this issue. We investigated the interplay of various test design fac-
tors with normativity, eliminated bias in item parameters as a potential confound, and
compared Thurstonian IRT trait recovery to that from CTT scoring and from rating scale
and true-false formats. The empirical counterpart of normativity/ipsativity is the relative
response process. Therefore, the simulation study was complemented with an empirical
study investigating the effect of a relative versus an absolute response process on validity
while controlling for reliability.
In light of item interactions within blocks and the variety of methods to assess item

desirability and to match items, in the second manuscript (Frick, 2021b), I developed a
mixture IRT model that allows to assess fakability on the block level—the Faking Mixture
model. As a post-hoc method, this model accounts for item interactions and is a useful
complement to a priori methods of matching. The model results can be used to remove
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or modify blocks so that the fakability of the whole test is reduced. Moreover, to my
knowledge, this is the first IRT model for the MFC format that can capture response
processes in addition to those triggered by the content trait.
Given that reliability with an MFC format is usually lower than with conventional

rating scales, it is essential to construct MFC test in a way that maximizes reliabil-
ity/information. So far, information in Thurstonian IRT models was calculated for binary
outcomes which comes with empirical, practical and statistical disadvantages. Therefore, in
the third manuscript (Frick, 2021a), I proposed methods to estimate and summarize Fisher
information on the block level (block information) and investigated their performance in
three simulation studies. Moreover, I combined algorithms for automated block selection
with information summaries from the optimal design literature. These algorithms allow to
automatically assemble MFC tests with maximum reliability while considering restrictions
on test design such as item keying or trait balancing.
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2 Investigating the Normativity of Trait
Estimates from Multidimensional
Forced-Choice Data

Frick, S., Brown, A. & Wetzel, E. (2021). Investigating the normativity of trait estimates
from multidimensional forced-choice data. Multivariate Behavioral Research. Ad-
vance online publication. https://doi.org/10.1080/00273171.2021.1938960

2.1 Simulation Study

Motivation

The first aim of the simulation study was to examine Thurstonian IRT trait recovery under
realistic conditions. An ideal MFC test would have the same number of items per trait.
Item keys would be structured such that at least half of the pairwise comparisons across
the test would be between items keyed in different directions. Previous simulation studies
examined these ideal designs and, in addition, all positively keyed items (Brown &Maydeu-
Olivares, 2011; Bürkner et al., 2019; Schulte et al., 2020). However, ideal test designs might
not be representative of existing tests. For example, the Big Five Triplets (Wetzel & Frick,
2020) are an MFC test with 20 blocks and block size B = 3 measuring the Big Five traits.
All blocks are matched for desirability. However, item matching resulted in unbalanced
numbers of items per trait: There are 16 neuroticism, 13 extraversion, ten openness, seven
agreeableness, and 14 conscientiousness items. All blocks except one contain at least one
negatively keyed item. However, when neuroticism is defined in the opposite direction,
as emotional stability, the item keys obviously change. Then, there are only four blocks
containing a negatively keyed item. From previous simulation studies, it is unclear to what
extent deviations from ideal test designs affect trait recovery.
The second aim of the simulation study was to investigate Thurstonian IRT trait recov-

ery with unbiased item parameters. Previous studies reported convergence issues when all
items in the test were positively keyed (Brown et al., 2017; Bürkner et al., 2019; Guenole
et al., 2018). Although it is possible that the matrix of factor loadings for pairwise compar-
isons is of full rank with all positively keyed items, empirical underidentification might still
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occur. Empirical underidentification can lead to bias in item parameters which propagates
to the trait scores. Therefore, we examined trait recovery with item parameters fixed to
their true values.
The third aim of the simulation study was to compare Thurstonian IRT trait recovery

to that from (partially) ipsative CTT scoring, from rating scales and from true-false data.
Previous comparisons between those scoring methods and response formats used empirical
data (Brown & Maydeu-Olivares, 2013) or did not include single-stimulus formats (e.g.,
rating scale or true-false formats; Hontangas et al., 2015; Hontangas et al., 2016). We kept
the amount of information across MFC block sizes approximately equal to the true-false
version. To accomplish this, the number of pairwise comparisons over the test was kept
equal for different block sizes, while in turn the number of items varied. In this way, we
could investigate the effect of local dependencies because any reliability differences between
block sizes would be attributable to local dependencies.

Methods

In the simulation study, the following factors were varied and completely crossed: Number
of traits, trait correlations, item keying, number of items per trait, and block size. MAP
estimates for the latent traits were obtained based on the true item parameters and with
the true trait correlations as prior covariances. Trait recovery was evaluated for single
traits and for sums and differences of two traits each. Further, bias in mean correlations
was calculated. The bias in mean correlations can be regarded as an indicator to ipsativity
(Hicks, 1970).

Results

Figure 6 shows the correlation between true and estimated traits, averaged across traits,
block sizes and numbers of items per trait. Regarding test design, positively keyed items
were found to be detrimental to trait recovery, as, for example, evidenced by lower corre-
lations between true and estimated traits in Figure 6. With positively keyed items, trait
recovery was lower for five as compared to 15 traits and for positive as compared to mixed
positive and negative trait correlations or uncorrelated traits (Figure 6). The other factors
of test design, namely, unequal numbers of items per trait, varying levels of item keying
and block size, had negligible effects on trait recovery. The mean trait correlation was
negatively biased, indicating ipsativity (Clemans, 1966; Hicks, 1970) due to the condition
with all positively keyed items. Similarly, the recovery of sums of traits (i.e., absolute trait
levels) was affected by item keying, but not that of differences of traits (i.e., relative trait
levels). Thus, the lower recovery with all positively keyed items could be attributed to
ipsativity. Reliability was comparable to the true-false format, but lower than that of rat-
ing scales (Figure 6), as to be expected by the amount of information. With CTT scoring
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of MFC responses, recovery was markedly worse and ipsativity was present in all condi-
tions besides the one with uncorrelated traits and half of pairwise comparisons between
differently keyed items, which was ideal for CTT scoring.

item keying proportion
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Figure 6: Mean correlation between true and estimated traits (i.e., r(η, η̂)) by condition.
The results were averaged across traits, across block sizes two to four and across equal
and unequal numbers of items per trait. MFC = multidimensional forced-choice format;
IRT = item response theory scoring, CTT = classical test theory scoring, mixed = mixed
positive and negative trait correlations, positive = all positive trait correlations, 5 = 5
traits, 15 = 15 traits.

2.2 Empirical Study

Motivation

The empirical study compared construct and criterion validity between the MFC format
with block size three and the true-false format. The true-false format was chosen as a
comparison because the amount of information is comparable to an MFC format with
block size three (see also Table 1). Moreover, the true-false format is free from response
styles arising from the use of rating scales such as midpoint and extreme responding.
Assuming that a relative response process leads to higher differentiation between behaviors
(Kahnemann, 2011), we expected validities to be higher in the relative (MFC) than in the
absolute (true-false) response format.
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Methods

N = 999 respondents filled out both an MFC and a true-false version of the Big Five
Triplets (Wetzel & Frick, 2020), with an interval of two weeks in between and in coun-
terbalanced order. Further, they answered questions on criterion variables focusing on the
areas of employment (e.g., ability to supervise people at work; yes/no), social (e.g., hav-
ing Facebook; yes/no), health (e.g., exercising regularly (at least once a week); yes/no)
and relationships (e.g., being married; yes/no). Further, the constructs quality of life,
satisfaction with life and depression/mental health were assessed with the World Health
Organization Quality of Life BREF (WHOQOL group, 1996, WHOQOL-BREF, ), the
Satisfaction with Life Scale (SWLS; Diener et al., 1985) and the Center for Epidemiologic
Studies-Depression Scale short form (SWLS; Cole et al., 2004), respectively. Based on
meta-analyses and studies with large samples, we formulated and preregistered which Big
Five traits and constructs/criteria were expected to correlate and only tested for differ-
ences in these correlations between MFC and true-false. Each construct (modeled with a
graded response model; Samejima, 1969) and each criterion was regressed on the Big Five
latent traits, separately for the MFC (modeled with the Thurstonian IRT model) and the
true-false version (modeled with the two-parameter normal ogive model).

Results and Discussion

Figure 7 shows correlations with the constructs and with exemplary criteria. For all con-
structs, the differences in correlations between MFC and true-false were small to medium
and in favor of true-false. For the criteria, all differences in correlations were negligible,
besides one statistically insignificant difference in favor of MFC. Thus, our expectation of
higher differentiation in the MFC format leading to higher validity was not confirmed. Pos-
sible explanations for this include: Method biases common to absolute response formats,
such as acquiescence, might have increased the correlations between the Big Five traits
assessed with the true-false format and constructs assessed with rating scales. Moreover,
it is unclear which criteria actually value differentiation, because previous research was
done with absolute response formats that allow to compensate for low levels on one trait
with high levels on another trait. Last, the MFC format might not always trigger deeper
retrieval. For example, in a recent think-aloud study, sometimes the response process could
be sufficiently described by absolute evaluations of the items (Sass et al., 2020).
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3 Modeling Faking in the Multidimensional
Forced-Choice Format - The Faking
Mixture Model

Frick, S. (2021). Modeling faking in the multidimensional forced-choice format
– The Faking Mixture model. Psychometrika. Advance online publication.
https://doi.org/10.1007/s11336-021-09818-6

3.1 Motivation

In this manuscript, I introduced the Faking Mixture model, an IRT model for faking in
MFC tests. Previous modeling approaches are limited in their usefulness for the MFC
format or they cannot be applied to it. First, previous modeling approaches for faking in
MFC tests focus on changes in trait scores, on the test level (e.g., Pavlov et al., 2019;
Wetzel et al., 2021). The Faking Mixture model is the first one that allows to estimate
the fakability of individual MFC blocks. Hence, its results can inform modifications of
the test, such as removing items or blocks, with the aim of reducing fakability. Second,
to apply the IRT models currently available for faking or socially desirable responding in
rating scales (Böckenholt, 2014; Leng et al., 2019), it is necessary to know a priori which
response options are desirable. In the MFC format, response options are rank orders.
However, responses to MFC blocks are needed in order to know which rank orders are
more desirable, because the relative response process might change evaluations of item
desirability (Feldman & Corah, 1960; Hofstee, 1970). By modeling responses on the block
level, the Faking Mixture model can capture such item interactions. Moreover, the Faking
Mixture model reflects assumptions and empirical findings about the process of faking,
some of which are specific to the MFC format. This will be outlined in the following part.

3.2 Model Properties

Respondents do not necessarily fake all items (MacCann et al., 2011). But when they fake
they might not even consider their content traits (Robie et al., 2007). This is captured
in the Faking Mixture model by conceptualizing responses in a high-stakes situation as a



20 Chapter 3. The Faking Mixture Model

mixture of responses based on the content trait and faked responses (Figure 8).
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Figure 8: The Faking Mixture model depicted as a multinomial processing tree model.

For each person j and each block k, there is a probability to fake on this block P (Fjk = 1)

or to respond based on the content traits P (Fjk = 0). In both cases, faking (Fjk = 1) or
responding based on the content traits (Fjk = 0), there is a probability for each rank order
r to be selected. Thus, the probability of observing rank order r for person j on block k
is the sum of these two response probabilities:

P (Xjk = r) = P (Fjk = 1)P (Xk = r|Fjk = 1) + P (Fjk = 0)P (Xjk = r|Fjk = 0) (5)

Not all respondents fake when they are in a high-stakes situation (MacCann et al.,
2011). But a respondent highly motivated to fake might even do so on closely-matched
blocks. To capture this in the Faking Mixture model, a faking tendency θj is introduced.
The probability of faking a block increases both with the person’s faking tendency θj and
the block fakability αk:

P (Fjk = 1) = Φ (θj + αk) (6)

where Φ(x) denotes the cumulative standard normal distribution function, evaluated at x,
and Φ−1 its inverse.
The probability to select a rank order when faking P (Xk = r|Fjk = 1), called rank
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order probability, is modeled by rank order parameters βkr via the softmax function (like
a multinomial IRT model without a person parameter):

P (Xk = r|Fjk = 1) =
exp(βkr)∑R
u=1 exp(βku)

(7)

The rank order probabilities are constant across persons in order to reflect item desir-
abilities, which depend on the situation but not on the person. (Therefore, the person
subscript j is dropped.) More precisely, the rank order probabilities reflect differences in
item desirabilities because they are not linked to the individual items. Further, they are
not related within traits. This facilitates the estimation of the rank order parameters while
at the same time being flexible to account for differential desirabilities of the items and
traits in the context of item blocks.
The block fakability αk is obtained from the sum of squares of the rank order probabil-

ities across all R = B! rank orders:

αk = Φ−1
(

R∑

r=1

(P (Xk = r|Fjk = 1)−M [P (Xk|Fjk = 1)])2
)

(8)

Thus, the more respondents agree about which rank order to prefer when faking, the
more likely they are to fake on this block. This captures the idea underlying matching in
the MFC format, namely, that respondents are more likely to base their response on their
own content trait levels when items are closely-matched and vice versa (Berkshire, 1958;
Gordon, 1951).
The response probabilities when responding honestly P (Xjk = r|Fjk = 0) follow the

Thurstonian IRT model as formulated in Equation 4. Currently, there is no computer
software availabe that can estimate both the Thurstonian IRT model for rank orders and
the within-block mixture of the Faking Mixture model at once. Therefore, the response
probabilities when responding honestly are estimated with low-stakes data from the same
respondents and treated as fixed in the estimation of the Faking Mixture model. The
parameters of the Faking Mixture model are estimated in a Bayesian modeling framework
(for details, see Frick, 2021b). Note, that the Faking Mixture model is theoretically not
limited to the Thurstonian IRT model or to the MFC format; the response probabilities
when responding honestly could potentially follow any other IRT model.

3.3 Simulation on Parameter Recovery

I conducted a simulation study to examine how well the parameters of the Faking Mixture
model could be recovered. The simulation study investigated possible conditions from
minimum to extreme faking and fakability, varying the faking trait mean and variance,
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and the variance of the rank order parameters (i.e., the mean fakability across the test).
The results showed that the parameters were generally well recovered. Both the faking trait
θj and the rank order parameters βkr were recovered best when they had a high variance.
In addition, the faking trait θj was recovered better when its mean was medium, so that
there were no floor or ceiling effects. The rank order parameters βkr were recovered better
when the faking trait mean was high, because this allowed to observe more instances of
faking.

3.4 Empirical Validation

For the empirical validation, I re-analyzed a dataset from Wetzel et al. (2021). In this
dataset, N = 1244 respondents were randomly assigned to either the original version of
the Big Five Triplets (Wetzel & Frick, 2020), which is matched for social desirability, or a
version in which one item in seven triplets was replaced by a clearly more desirable one.
I fitted the Faking Mixture model to (a) the matched version and (b) to both versions
allowing the rank order parameters for the different items to differ between groups and
estimating differences in the block fakability parameters αk.

Applying the Faking Mixture model to the matched version showed that the blocks
had intermediate to high fakability. Figure 9 shows the rank order probabilities for two
exemplary blocks. In the matched version, for Block 3, it was undesirable to rank the
item "I am often sad" first, whereas the preferences for the other four rank orders were
approximately equal. For Block 5, ranking the item "I love big parties" last was desirable,
so that the probabilities were high only for the two rank orders where this was the case.
Therefore, Block 5 was more fakable than Block 3. Comparing the results for the mixed and
the matched version showed that the mixed blocks were more fakable than the matched
blocks (in all seven cases). Moreover, the clearly more desirable items were preferred when
faking. For example, when replacing "I act without thinking" with "I treat my belongings
with care", the probabilities for rank orders in which this item was ranked first increased
(Figure 9). Indeed, for all mixed blocks, the rank order probabilities were different from
zero only for two or three rank orders, always including the ones in which the highly
desirable item was ranked first.
Thus, this re-analysis validated the Faking Mixture model by showing that mixed blocks

were more fakable than matched blocks and that more desirable items were preferred in
mixed blocks. Moreover, it showed that matching alone was not sufficient, because even
the matched blocks were still fakable. Probably, item desirability was evaluated differently
in the context of item blocks. Hence, the Faking Mixture model is worth using, because it
can capture such item interactions.
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25

4 Block Information in the Thurstonian
Item Response Model

Frick, S. (2021). Block information in the Thurstonian item response model. Manuscript
submitted for publication to Psychometrika.

4.1 Motivation

Currently, information in the Thurstonian IRT model is calculated for binary outcomes of
pairwise comparisons (Brown &Maydeu-Olivares, 2011, 2018b). This procedure has several
disadvantages: First, possible item interactions are not fully accounted for. Indeed, some
authors reported that item properties differed depending on which items were combined
to blocks (Lin & Brown, 2017; Wetzel & Frick, 2020). Second, for a test constructor, it
is unclear which item to select if the item properties differ depending on which items are
compared. Third, the information for binary outcomes of pairwise comparisons is locally
dependent for block sizes B > 2 (Brown & Maydeu-Olivares, 2011, 2018a). Thus, test
information and estimates of standard errors and reliability based on pairwise comparisons
are biased. Therefore, I argue that information should be computed on the block level
instead (henceforth called block information).
Yousfi (2018) formulated the response probability on the block level (Equation 4) and

proposed to estimate it via numerical integration (using methods developed by Genz, 2004;
Genz & Bretz, 2002). He investigated how this formulation can be used to estimate the
person parameters without local dependencies and showed that it yields unbiased Fisher
information on the test level (Yousfi, 2020). However, to my knowledge, this procedure
was not used to compute Fisher information on the block level so far.
Fisher information for a block and a single rank order r is obtained as the negative of

the Hessian of the response probability P (Xjk = r) in Equation 4:

Ikr = −H (P (Xjk = r))) (9)

where H(f) denotes the Hessian of function f . Expected block information Ik is obtained



26 Chapter 4. Block Information

by weighting with the probability for all R = B! possible rank orders:

Ik =
R∑

r=1

IkrP (Xjk = r) (10)

Block information in Thurstonian IRT models comes with several challenges: First, there
is no closed-form expression for it, so that numerical approximation must be used, both for
the response probability (Equation 4) and for its hessian (Equation 9). Second, because
the Thurstonian IRT model is only identified with multiple blocks (Brown, 2016), block
information is not invertible. Third, block information is a matrix, because in an MFC
test, each block measures multiple traits. Information in matrix form again presents a
challenge for test constructors.
To address these challenges, first, the accuracy of the estimation procedure was eval-

uated in several simulation studies. Second, information summaries were proposed that
transform the block information matrix into a scalar or vector. Third, I examined how
these information summaries can be used for automated test assembly (ATA). In ATA,
items or blocks are selected from a pool to maximize some criterion (in this case, informa-
tion) and to simultaneously fulfill certain restrictions on test design, such as test length,
item keying, trait balancing, or fakability (for an introduction to ATA, see van der Linden,
2005). Thus, ATA can be used to integrate the diverse aspects of MFC test construc-
tion investigated in the three manuscripts of this thesis. Several types of algorithms are
available for ATA. Therefore, I explained which information summaries and algorithms
can be combined. Last, in two ATA simulations, it was investigated how the information
summaries perform in test assembly. For this purpose, each information summary was
combined with an exemplary algorithm and their performance was compared.

4.2 Block Information Summaries

The first information summary proposed was called block R2. Block R2 is computed from
the sampling variances of traits based on the test (or pool) including this block σ2T and
excluding this block σ2T\k:

R2
k = 1− σ2

T

σ2
T\k

(11)

Thus, block R2 summarizes block information on the level of traits, in the familiar R2

metric, and relative to the set of reference blocks T . Figure 10 shows an example of how
block R2 varies across trait levels for a block from a simulated test measuring five traits
with 20 blocks of size B = 3.

The other information summaries proposed are so-called optimality criteria originating
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Figure 10: Block R2 for Trait 5 from a simulated test block. Items 1-3 measured traits
2, 3, and 5, respectively. The simulated item parameters were µ1 ≈ 0.73, µ2 ≈ −0.89,
µ3 ≈ −0.62, λ1 ≈ 0.92, λ2 ≈ −0.90, and λ3 ≈ 0.94.

from the optimal design literature. They summarize an information matrix into a scalar,
that is, for block information, across traits. Optimality criteria have been used for ATA
and for computerized adaptive testing. For example, Debeer et al. (2020) investigated how
well linear approximations to A- and D-optimality perform in multidimensional ATA. A-
and D-optimality performed best in a simulation of computerized adaptive testing in which
items were adaptively combined to MFC blocks of size B = 2 (Lin, 2020). Therefore, A-
and D-optimality were also proposed to be used as block information summaries in this
manuscript. A-optimality is the sum of the sampling variances (i.e., the trace of the inverse
of the information matrix) and D-optimality is the determinant of the information matrix.
To calculate A- and D-optimality, the information matrix must be invertible. As previously
explained, for the Thurstonian IRT model, this is the case only for multiple blocks (i.e.,
for test information).
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If an ATA problem can be framed as a (constrained) linear optimization problem, the op-
timal solution can be found by mixed integer programming (MIP; Debeer et al., 2020; van
der Linden, 2005). A- and D-optimality are not linear (additive) across blocks and therefore
cannot be used in MIP algorithms, but T-optimality can. For this reason, I additionally
proposed to use T-optimality as a block information summary, although it performed worst
in the computerized adaptive testing simulation by Lin (2020). T-optimality is the trace
of the information matrix. Thus, it can be computed on a non-invertible matrix, but it is
not affected by trait correlations.

4.3 Block Information for Test Construction - Simulation
Studies

The first simulation study examined the accuracy of standard errors (SE s). Three types
of SE s were computed: Empirical SE s served as true SE s. Empirical SE s were defined as
SDs of MAP estimates across responses for the same trait levels (persons). Expected and
observed SE s were based on Fisher information. To compute expected SE s, the Hessian
for each rank order was weighted by its probability (Equation 10). To compute observed
SE s, the Hessian was calculated only for the observed rank orders (Equation 9). Across
blocks, this is equivalent to the Hessian at the likelihood of the trait estimate. Both ML
and MAP estimates were obtained. Additionally, the size of factor loadings and test length
were varied. The results showed that empirical SE s were smaller for the MAP estimator
than for the ML estimator, especially with small loadings. However, this gain in accuracy
was not detected by the information-based (expected and observed) SE s, i.e., they were
overestimated for the MAP estimator with small loadings. Overall, expected and observed
SE s were similarly accurate. Hence, if block-level information is not needed, researchers
can obtain observed SE s directly with the trait estimate and save computational time and
resources.
Since A- and D-optimality can only be computed for multiple blocks, I conducted two

ATA simulations, one on test construction and one on test extension. When extending
a test, information for multiple blocks is already available and therefore it is invertible.
Note, however, that as few as three blocks were sufficient in the current simulations. In
the simulation on test construction, the target information curve (flat vs. proportional
to information in the pool) and restrictions (only test length vs. additional restrictions
on trait balancing and item keying) were varied. The performance of T-optimality was
compared to that of block R2 and the mean of loadings within a block (mean loadings).
Mean loadings represent the procedure of using the size of factor loadings as the main
criterion for item or block selection. Block R2 was averaged across traits to obtain a
scalar. For the simulation on test extension, A- and D-optimality were added. Developing
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a sophisticated algorithm for ATA with a non-linear optimization criterion would require
a separate research project (e.g., Kreitchmann et al., 2021; Olaru et al., 2015). Therefore,
A- and D-optimality were combined with a simple (so-called greedy) algorithm and the
condition with more complex restrictions on test design was dropped. For details on the
algorithms, see the main manuscript (Frick, 2021a).
The results of both ATA simulations showed that all criteria performed better than

random block selection, but on par with each other. Therefore, the decision for an infor-
mation summary and an ATA algorithm should be based on other aspects such as whether
trait-level information is of interest or how accurately a target information surface should
be approximated. In sum, the three simulation studies showed that and illustrated how
block information can be used for test construction.
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Figure 11: Correlation between true and estimated traits (r(η, η̂)) by algorithm in the
simulation study on test extension for target information proportional to the block pool. A
= A-optimality, D = D-optimality, T = T-optimality, MIP = Mixed Integer Programming.
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5 General Discussion

In this cumulative thesis, I have developed and investigated IRT methods that can help
to improve the construction of MFC tests. We investigated the effect of test design on
the normativity of trait scores. We found that all positively keyed items were detrimental,
but that suboptimal designs only affected trait recovery with all positively keyed items. I
developed the Faking Mixture Model, which allows to assess the fakability of MFC blocks.
An empirical application showed that it is useful to apply the Faking Mixture model in
addition to matching, due to item interactions. Last, I investigated methods to estimate
and summarize block information and showed how they can be used to automatically
assemble MFC tests. I found that the estimation bias of expected and observed Fisher
information was comparable and small, and that all proposed summaries can be used to
construct MFC tests.

5.1 Recommendations and Methods for MFC Test
Developers

According to the results of our simulation (Frick et al., 2021), it is recommended that
MFC tests include at least some comparisons between items keyed in different directions.
This is in accordance with other simulations that found that trait recovery decreased
drastically with all positively keyed items (Brown & Maydeu-Olivares, 2011; Bürkner et
al., 2019; Schulte et al., 2020). The exact proportion of items keyed in different directions
is likely of minor importance, since it had a negligible effect in our simulation study. If
all items are positively keyed, assessing a high number of traits and assessing traits that
are uncorrelated or negatively correlated can yield better trait recovery. If the numbers
of items per trait are unequal (unbalanced), this will naturally lead to smaller recovery
for traits assessed with fewer items. However, we found no additional decrease in recovery
due to the inseparable design of MFC tests. Moreover, keeping the amount of information
equal, the decrease in precision due to local dependencies with block sizes larger than two
was negligible. If the test should reduce faking, based on the application of the Faking
Mixture model (Frick, 2021b), it is recommended to match items for desirability and in a
second step to examine fakability of the resulting MFC blocks.
Several new methods were developed that can aid MFC test developers: The Faking

Mixture model (Frick, 2021b) allows to estimate fakability on the block level, thereby
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accounting for item interactions. Block information in the Thurstonian IRT model can be
estimated and summarized (Frick, 2021a). Last, blocks can be selected automatically based
on their information while simultaneously taking into account other restrictions on test
design. Selecting blocks instead of items is more expensive in terms of respondent time.
Future MFC test development will show in which cases this is necessary and practical.

5.2 Statistical Analysis of Simulation Studies

Throughout the simulation studies in this thesis, I conducted statistical analyses of the
results to investigate which factors matter for the outcome of interest. For other examples
of this technique, see Plieninger (2017) or Lin (2020). It has been advocated since quite
some time (Harwell et al., 1996; Skrondal, 2000) that simulation results should be analyzed
statistically instead of only visually by examining tables of means and variances across
conditions.
Specifically, I summarized the simulation results in terms of variance explained by the

main factors and by orthogonal contrasts within an ANOVA framework. For example, in
the simulation study on normativity (Frick et al., 2021), I investigated how much variance
in trait recovery was explained by the difference between all positively keyed items and
various levels of mixed keyed items. Several properties of explained variance make it par-
ticularly suited for analyzing simulation studies: It is descriptive and therefore insensitive
to sample size. In simulation studies, sample size (i.e., the number of replications) can be
increased arbitrarily (up to the computational resources available). Further, in contrast
to inferential tests for ANOVA results, explained variance is insensitive to heterogeneous
variances across conditions, which can easily occur in simulation studies. For example,
when test length is manipulated, trait recovery will show higher variance in conditions
with shorter test lengths.
On the downside, explained variance yields only relative information about the compar-

ison of conditions. Therefore, throughout the simulation studies, I additionally reported
means and variances within conditions to evaluate the absolute level of recovery. Alter-
natively, for example, the number of replications can be planned a priori (Feinberg &
Rubright, 2016) so that the design is not over-powered. Or, equivalence testing could be
used to overcome the power problem by including effect sizes of interest in the testing
procedure.
Another issues in the analysis of simulation studies is how to correctly analyze the results

from Bayesian simulation studies (Boykin, 2020). In this thesis, only the second manuscript
(Frick, 2021b) used a truly Bayesian estimation procedure. To summarize the simulation
results, I used coverage rates, which carry the full distributional information, but also
measures such as mean bias, which originate from a frequentist view. Using frequentist
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statistics to summarize Bayesian simulation studies is not uncommon in psychometrics
(e.g., Leng et al., 2019). However, it could be argued that one should be consistent in the
use of inferential frameworks and analyze simulations of Bayesian models in a Bayesian
way (Boykin, 2020).

5.3 About the Relative Nature of MFC Responses

The MFC format is a relative response format: In contrast to single-stimulus formats such
as a rating scale or a true-false format, the response process for the MFC format involves
relative comparisons between the items (Sass et al., 2020). In this thesis, the relative nature
of MFC responses was observed and accounted for in several instances.
The relative response process can result in item interactions: Item properties from single-

stimulus items do not necessarily translate to MFC blocks. Moreover, item properties might
not even be invariant across different block compositions. For example, some authors ob-
served that estimates of item parameters differed depending on which items were combined
into blocks (Lin & Brown, 2017; Wetzel & Frick, 2020). By focusing on the block level,
both the Faking Mixture model (Frick, 2021b) and block information (Frick, 2021a) allow
to capture item interactions. The empirical validation of the Faking Mixture model (Frick,
2021b) contributes to evidence of item interactions: MFC blocks that were matched for
social desirability were still fakable. Thus, in the context of MFC blocks, item desirability
differed from that assessed through ratings of the individual items. Future research could
compare block information (Frick, 2021a) between different block compositions or response
instructions. This would allow to summarize all parameter differences on the block level
and to illustrate at which trait levels (or combinations thereof) item interactions impact
measurement precision.
Moreover, MFC test construction would benefit from being able to predict how items

interact when combined into blocks. Lin and Brown (2017) discussed how item interactions
could be predicted from the item content. In the context of faking and item matching, block
fakability estimates obtained from the Faking Mixture model could be compared to item
desirability estimates and it could be investigated which matching procedures yield smaller
fakability.
Moreover, due to the different response processes, the MFC format and single-stimulus

formats might measure (slightly) different constructs (Guenole et al., 2018; Wetzel & Frick,
2020; Wetzel, Roberts, et al., 2016). This raises the question which construct researchers
actually aim to assess. To better compare validities, future research should use designs
that can represent the specifics of both formats. Two limitations of our empirical study
(Frick et al., 2021) can guide this: First, future research could investigate construct validity
when both constructs are assessed with the same type of response format. For example,
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Wetzel and Frick (2020) found higher correspondence between self- and other-ratings when
both were assessed with an MFC as compared to a rating scale format. Second, future
research could compare criterion validities between absolute and relative response formats
using criteria that truly value differentiation between behaviors. The question of "ipsative"
criteria is not new to MFC research (e.g., Hicks, 1970). However, recent validity research
with normative IRT scoring did not explicitly address the type of criteria investigated
(Brown & Maydeu-Olivares, 2013; Lee et al., 2018; Walton et al., 2019; Watrin et al.,
2019; Wetzel & Frick, 2020; Zhang et al., 2019).
The Faking Mixture model (Frick, 2021b) integrates assumptions and empirical findings

about faking in the MFC format into a formal statistical model. In this way, this thesis
contributed to theories on the nature of faking in the MFC format. The Faking Mixture
model makes the assumption that item desirability is perceived by individuals in the same
way. When respondents disagree about which item to prefer when faking, the response
probability for each rank order is approximately equal and the block fakability is low.
However, empirically, individuals could be strongly convinced that a certain rank order is
desirable and be likely to fake. Future research could empirically investigate the assump-
tions underlying the Faking Mixture model. Moreover, faking good and faking bad can
lead to quite different response patterns (Bensch et al., 2019). This cannot be captured by
the current model formulation. Future research could extend the Faking Mixture model or
develop other modeling approaches to account both for faking good and faking bad.

5.4 Avenues for Psychometric Developments

The Faking Mixture model (Frick, 2021b) is an example of cognitive psychometrics. The
field of cognitive psychometrics tries to bridge the gap between psychometrics and cogni-
tion research by modeling heterogeneity in persons and items (stimuli) in cognitive (re-
sponse) processes (Batchelder, 1998; Riefer et al., 2002). In cognition research, this means
to model IRT-like heterogeneity in cognitive experiments and in assessment to understand
IRT models as models of the response process. Multinomial processing tree models are a
class of models that is especially suited for cognitive psychometrics (Batchelder, 1998). In
these models, nominal outcomes of responses are modeled by splitting the response process
into multiple sub-processes (Erdfelder et al., 2009). Different strategies exist to account for
heterogeneity in persons and/or items in these models (e.g., Klauer, 2010; Matzke et al.,
2015).
Any IRT model that can be represented with a tree structure can be conceived of as a

multinomial processing tree model (Plieninger & Heck, 2018). This applies to the Faking
Mixture model, as depicted in Figure 8. Other examples for IRT models with a tree
structure are item response tree models (Böckenholt, 2012; De Boeck & Partchev, 2012),
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the acquiescence model (Plieninger & Heck, 2018), and the retreive-deceive-transfer model
(Leng et al., 2019). To my knowledge, the Faking Mixture model is the first model for
response biases or - more generally - response processes in the MFC format that has a
tree structure. Future research could develop multinomial processing tree models for other
biases in the MFC format such as careless responding, which is the tendency to respond
without regard to the item content (Meade & Craig, 2012).
Moreover, response process data could be incorporated into IRT models for the MFC

format. Both multinomial processing tree models (e.g., Heck & Erdfelder, 2016; Klauer &
Kellen, 2018) and certain IRT models (e.g., Ulitzsch et al., 2020; van der Linden et al.,
2010) have been extended to incorporate response times. In addition, there are approaches
to modeling response sequences in computerized testing (e.g., Ulitzsch et al., 2021). In a
recent think-aloud study, it was found that respondents used different strategies to respond
to MFC blocks (Sass et al., 2020). Information about the sequence and timing of rank-
ings could be used to improve trait estimation and its reliability or to better disentangle
processes related to faking or careless responding.
In the third manuscript (Frick, 2021a), I investigated methods to automatically assemble

MFC tests. Such methods might prove particularly useful, since constructing an MFC test
is a complex combinatorical endeavor that requires considering several aspects simultane-
ously. Hence, future research should further develop algorithms and optimization criteria
for the automatic assembly of MFC tests. In the manuscript, for the criteria of A- and D-
optimality, I used a very simple greedy heuristic that sequentially selects the next item or
block that is optimal at this point. However, the resulting combination of items or blocks
might not be optimal. Alternatively, local search heuristics that introduce randomness to
keep the search from being trapped in a sub-optimal space can be used. They are often
inspired by natural processes, such as genetic algorithms (e.g., Kreitchmann et al., 2021)
or ant colony optimization (e.g., Olaru et al., 2015). Future research could develop a local
search heuristic, adapt a more sophisticated greedy heuristic (e.g., Luecht, 1998) to MFC
blocks or investigate optimization algorithms for non-linear criteria (e.g., Masoudi et al.,
2019; Masoudi et al., 2017).
Moreover, future research could investigate how block information can be used for CAT.

Two CAT algorithms for the assembly of MFC pairs, based on the Thurstonian IRT model
(Lin, 2020) and based on the generalized graded unfolding model for rank data (Joo et
al., 2020), already exist. Both algorithms make the assumption that item properties are
invariant across block compositions. A CAT algorithm that uses MFC block information
would be a useful complement because it can capture item interactions.
Throughout this thesis, I focused on the Thurstonian IRT model. However, it would be

interesting to compare and investigate other IRT models for the MFC format as well. The
main finding of the simulation study was that trait recovery decreased due to ipsativity
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when all items were keyed in the same direction (i.e., they all had positive factor loadings,
Frick et al., 2021). Similar effects were found with models for ideal-point items when
the item locations were identical (Hontangas et al., 2015; Hontangas et al., 2016). Future
research could develop the theoretical conditions for identifying the scale origin with ideal-
point items in an MFC format and investigate them in simulation studies. As previously
described, the Faking Mixture model could be populated with other IRT models for the
MFC format or for single-stimulus formats. Moreover, the block information summaries
proposed in the third manuscript (Frick, 2021a) could be adapted to other IRT models for
MFC data and it could be examined which algorithms for automated test assembly they
can be combined with.

5.5 Conclusion

In this thesis, I investigated and developed item response theory methods for the multi-
dimensional forced-choice format. I focused on three aspects which are relevant for test
construction: normativity, fakability and reliability. The research presented provides both
guidelines and new tools for MFC test developers. The empirical studies led to new in-
sights about the response process for MFC blocks and highlighted open research questions
in this area. The psychometric developments are a starting point for future research on
modeling response processes and biases and on automated test assembly. In sum, I hope
that the research presented in this thesis will prove valuable for the future construction and
psychometric modeling of tests in both multidimensional forced-choice and other response
formats.
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Abstract

The Thurstonian item response model (Thurstonian IRT model) allows deriving normative
trait estimates from multidimensional forced-choice (MFC) data. In the MFC format,
persons must rank-order items that measure different attributes according to how well
the items describe them. This study evaluated the normativity of Thurstonian IRT trait
estimates both in a simulation and empirically. The simulation investigated normativity
and compared Thurstonian IRT trait estimates to those using classical partially ipsative
scoring, from dichotomous true-false (TF) data and rating scale data. The results showed
that, with blocks of opposite-keyed items, Thurstonian IRT trait estimates were normative
in contrast to classical partially ipsative estimates. Unbalanced numbers of items per trait,
few opposite-keyed items, traits correlated positively or assessing fewer traits did not
decrease measurement precision markedly. Measurement precision was lower than that
of rating scale data. The empirical study investigated whether relative MFC responses
provide a better differentiation of behaviors within persons than absolute TF responses.
However, criterion validity was equal and construct validity (with constructs measured by
rating scales) lower in MFC. Thus, Thurstonian IRT modeling of MFC data overcomes the
drawbacks of classical scoring, but gains in validity may depend on eliminating common
method biases from the comparison.

Keywords: forced-choice format, Thurstonian IRT model, ipsative data, true-false, rating
scale
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Investigating the Normativity of Trait
Estimates From Multidimensional
Forced-Choice Data

In many assessment contexts, it is important to be able to compare persons on certain
attributes or traits. For example, an employer might want to compare the conscientious-
ness levels of applicants. The multidimensional forced-choice (MFC) format1 has become
increasingly popular for such purposes, as evidenced by work-related personality ques-
tionnaires such as TAPAS (Drasgow et al., 2012), OPQ (Brown & Bartram, 2009), and
the personality questionnaire by TalentQ (Holdsworth, 2006). In the MFC format, several
items measuring different attributes are combined into blocks. One type of instruction for
an MFC format is to ask respondents to rank all statements within a block. Panel A of
Figure 1 shows an example of an MFC block with three statements measuring personality
traits.
The MFC format overcomes some of the biases associated with rating scale (RS) items

(for an overview, see Brown & Maydeu-Olivares, 2018a). For example, faking can be re-
duced (Cao & Drasgow, 2019; Pavlov et al., 2019; Wetzel et al., 2021) and halo effects
avoided (Brown et al., 2017). Further, construct validity is mostly similar to rating scales
(Brown & Maydeu-Olivares, 2013; Lee et al., 2018; Walton et al., 2019; Wetzel & Frick,
2020; Zhang et al., 2019). For an overview on the current state of research on MFC versus
rating scales see Wetzel et al. (2020).
However, trait estimates derived from MFC data with classical test theory (CTT) are

not normative, but rather ipsative. Trait estimates are termed fully ipsative when the
total score is constant across persons (Clemans, 1966). Most authors agree that ipsative
trait estimates do not allow inter-individual comparisons (e.g. Closs, 1996; Johnson et
al., 1988). Furthermore, correlations based on fully ipsative trait estimates are mathe-
matically constrained (Clemans, 1966). Consequently, correlation-based analyses such as
reliability and factor structures are biased (Brown & Maydeu-Olivares, 2013; Clemans,
1966; Hicks, 1970). Several procedures have been developed within CTT that allow the to-
tal score to differ between respondents while still retaining some dependency between scale

1The MFC format is both an item format and a response format. For simplicity in comparing it with
true/false and rating scale formats, we refer to it as a response format in the following.
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scores (Hicks, 1970), thereby yielding partially ipsative trait estimates. Partially ipsative
trait estimates can prove useful for the prediction of criteria (Salgado & Táuriz, 2014).
Nevertheless, they are said to retain characteristics of ipsative trait estimates (Brown &
Maydeu-Olivares, 2018b). Several item response theory (IRT) models have been developed
for MFC data; most with the aim to provide normative trait estimates (see Brown, 2016a;
Brown & Maydeu-Olivares, 2018b for an overview and classification).
The purpose of this study was to evaluate the normativity of IRT trait estimates both

in a simulation and empirically in the framework of the Thurstonian IRT model (Brown &
Maydeu-Olivares, 2011). So far, the Thurstonian IRT model is the most widely applicable
IRT model for MFC data (Brown & Maydeu-Olivares, 2018b): First, it can accommo-
date MFC formats with varying block sizes and ranking instructions, such as ranking all
items within a block or selecting the most and/or least preferred item, in contrast to some
other IRT models for MFC data (e.g. Morillo et al., 2016; Stark et al., 2005) . Second, it
assumes dominance response process items which are most common in personality psy-
chology (Hontangas et al., 2016). With a dominance response process, the preference for
an item increases (or decreases) monotonically with increasing trait levels. In contrast,
with an ideal-point response process, the preference for an item is highest at one point of
the trait continuum and decreases with increasing distance from this point. Third, item
parameters can be estimated directly from MFC responses, whereas some other IRT mod-
els for MFC data rely on item parameters obtained from single-stimulus data (e.g. McCloy
et al., 2005). Further, we focused on a full ranking instruction, because full ranking pro-
vides the most information and therefore the highest reliability (Brown, 2016b; Brown &
Maydeu-Olivares, 2018a).

Thurstonian Item Response Model

According to the Thurstonian IRT model, ranking patterns can be encoded with binary
variables representing outcomes of the pairwise comparisons. For example, ranking three
items involves three pairwise comparisons: between items 1 and 2, items 1 and 3, and
items 2 and 3, respectively. The response probability for the outcomes may be calculated
depending on the two latent traits ηa and ηb:

P (yl = 1|ηa, ηb) = Φ


−γl + λiηa − λkηb√

ψ2
i + ψ2

k


 , (1)

where γl denotes the threshold of outcome l, λi and λk denote the loadings of items i
and k, respectively, and ψ2

i and ψ2
k denote their uniquenesses. Φ (x) denotes the cumula-

tive standard normal distribution function evaluated at x. Equation 1 shows that relative
differences between traits impact responses, in contrast to models for single-stimulus data
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(e.g. rating scale or true-false data), in which absolute trait levels impact responses. The
Thurstonian IRT model’s item parameters and trait correlations can be estimated from
thresholds and tetrachoric correlations of the binary outcome variables (i.e., using limited
information methods). Trait estimates can be estimated with previously obtained item
parameters and trait correlations using maximum a posteriori (MAP) or expected a pos-
teriori (EAP) methods. Brown and Maydeu-Olivares (2011, 2012) present details on model
restrictions, identification, and estimation.
In IRT, the precision of trait estimation is captured by the item information and depends

on the level of the latent trait. MFC questionnaires have an inseparable design, meaning
estimation of one trait is dependent on all other traits in the questionnaire (Brown &
Maydeu-Olivares, 2018b). With inseparable designs, item information can be described
by the Fisher information matrix, which is an f × f matrix showing information about
all possible pairs of f traits. Assuming that items i and k measure traits 1 and 2,
respectively, the Fisher information matrix for outcome l is (Brown & Maydeu-Olivares,
2018b):

Il (η1, η2) =
1

ψ2
i + ψ2

k




λ2i −λiλk · · · 0

−λiλk λ2k · · · 0
...

...
. . .

...

0 0 · · · 0




[
ϕ

(
−γl+λiη1−λkη2√

ψ2
i +ψ

2
k

)]2

Pl (η1, η2) [1− Pl (η1, η2)]
, (2)

where ϕ (x) denotes the standard normal density function evaluated at x. Two points
are noteworthy in comparison to single-stimulus data with a simple structure: First, the
matrix has entries for the two measured traits. Thus, the outcome is informative about
those two traits and their combination. In separable designs, each item contributes infor-
mation only to the trait it measures. In MFC questionnaires however, each item contributes
information to several traits compared in the same block, errors of measurement are cor-
related, and therefore measurement precision is generally lower than in separable designs
(Brown & Maydeu-Olivares, 2018b). Second, information is provided per binary outcome.
For example, a block of n = 3 items provides n(n− 1)/2 = 3 bits of information.

Previous research on the normativity of trait estimates in
the MFC format

The key to deriving normative trait estimates is identifying the scale origin for the latent
traits. This depends on the questionnaire design: For the Thurstonian IRT model, Brown
(2016a) showed that the scale origin is identified when there are no linear dependencies
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between item loadings within blocks and between item loadings within traits2. This is in
contrast to ideal-point models, where differences between item locations are necessary to
identify the scale origin (Brown, 2016a).
In simulation studies, any remaining ipsativity will result in bad recovery of the true

parameters. In their simulation studies, Brown and Maydeu-Olivares (2011) found that
recovery of item parameters was worse with all positively keyed items. Similarly, Bürkner,
et al. (2019) and Schulte et al. (2020) found that trait estimates were ipsative when
all items had very similar factor loadings (all positive). Simulation studies employing
other IRT models to generate MFC data found similar results, even with partially ipsative
CTT scoring (Hontangas et al., 2015, 2016; Morillo et al., 2016). Brown and Maydeu-
Olivares pointed out that the low recovery achieved with all positively keyed items and all
positively correlated traits is not a limitation of Thurstonian IRT scoring but applies to
MFC questionnaires more generally. These empirical results comply with the theoretical
rules of identifying the scale origin (Brown, 2016a). Recovery improved when there were
more items, when the trait correlations decreased from positive to negative (for mixed
item keys), and with larger blocks (Brown & Maydeu-Olivares, 2011).
Mixed-keyed item blocks may have empirical implications: First, Bürkner et al. (2019)

argued that only MFC questionnaires with all positively keyed items can be fake-proof.
However, on the group level, MFC questionnaires were found to be less fakable than rating
scale questionnaires even when blocks contained mixed-keyed items (Heggestad et al.,
2006; Wetzel et al., 2021). Second, negatively keyed items and items containing negation
must be distinguished. Whereas negations should be avoided in any questionnaire format,
negatively keyed items might increase cognitive load in MFC questionnaires. In one study
examining the response process to MFC items, participants sometimes reported difficulties
in responding to blocks of mixed keyed items (Sass et al., 2020).
In empirical research, normativity is evaluated by comparing MFC trait estimates to

single-stimulus trait estimates, such as those from RS data. In addition, Thurstonian
IRT trait estimates are compared to (partially) ipsative CTT trait estimates to examine
whether the technically demanding IRT scoring provides an advantage over simple CTT
scoring. For example, Brown and Maydeu-Olivares (2013) investigated how closely MFC
trait estimates approximate normative trait estimates. They compared IRT and CTT scor-
ing of MFC and RS data from a questionnaire that employs both response formats. They
found Thurstonian IRT trait estimates to be more similar to RS trait estimates, both from
IRT and CTT scoring, than to the CTT ipsative MFC trait estimates. Similarly, Lee et al.
(2018) found Thurstonian IRT trait estimates corresponded slightly better to RS trait esti-
mates than trait estimates derived from two partially ipsative scoring methods. Hontangas
et al. (2015) transferred this to a simulation study and generated MFC data assuming an

2Linear dependencies occur when all item loadings within a block are equal or multiples of each other,
or when all loadings for one trait are equal or multiples of each other, see also Brown (2016a).
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ideal-point process and analyzed it with an ideal-point IRT model and with CTT scoring,
which assumes a dominance response process. Hontangas et al. (2016) repeated the same
analyses with data generated under a dominance response process. Thus, in Hontangas et
al.’s 2015 simulation, data generation and analyses mismatched for CTT, whereas in his
2016 simulation they mismatched for IRT.

The present research

In this article, we address research questions on the normativity of Thurstonian trait es-
timates using a simulation study and using an empirical study. The key difference of the
simulation study in the present paper with previously published studies is that we inves-
tigate the role of various factors in suboptimal questionnaire designs systematically, and
evaluate quantitatively their contribution to the normativity of resulting person scores.
While previous studies identified the key factors that influence the trait estimates, they
did not provide the size of impact depending on the levels in these factors, nor were the lev-
els investigated always representative of questionnaires that are commonly applied. To our
knowledge, all previous simulations varied item keying with the levels of 1) all positively
keyed items and 2) half of the outcomes involving comparisons between opposite-keyed
items. Because mixed-keyed blocks are needed to identify the Thurstonian IRT model
parameters, it is especially important to examine levels beyond the optimal balance. Fur-
ther, the number of items per trait was balanced in previous research. This balance of
items per trait and of same and mixed keyed comparisons might be difficult to achieve
when constructing an MFC questionnaire – especially when items are matched for their
social desirability (Wetzel & Frick, 2020). Indeed, several studies employed questionnaires
where the number of items per trait was not balanced (Brown & Maydeu-Olivares, 2013;
Heggestad et al., 2006; Ng et al., 2020). In general, traits measured with fewer items will
have lower reliability. In the MFC format, this may have unknown consequences for per-
son score because estimation of one trait depends on all other traits. Further, the effects
of predominantly positive correlations, which characterize many questionnaires, have not
been examined thoroughly. Previous simulation studies using empirical correlation matri-
ces did not investigate the different levels of positive trait correlations (Bürkner et al.,
2019; Schulte et al., 2020). Simulation studies investigating different levels of correlations
used identical correlations for all traits (Brown & Maydeu-Olivares, 2011; Hontangas et
al., 2015, 2016; Morillo et al., 2016). Moreover, we investigate two factors that have not
been examined thoroughly: block size and number of traits. Previous simulation studies
on trait recovery from MFC questionnaires almost exclusively simulated one fixed block
size (Bürkner et al., 2019; Hontangas et al., 2015, 2016; Schulte et al., 2020). The only
study that varied block size investigated trait recovery only in one replication (Brown &
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Maydeu-Olivares, 2011). Further, it has been long known that the number of traits affects
trait recovery for ipsative scoring (Baron, 1996). However, the effect of number of traits
on Thurstonian IRT trait recovery was examined in a limited number of studies (Brown &
Maydeu-Olivares, 2011; Schulte et al., 2020). The first aim of the simulation study in this
paper was to examine Thurstonian IRT trait estimates systematically, under questionnaire
design conditions that occur in real-world applications.
The second aim of this simulation was to examine Thurstonian IRT trait estimates

using true model parameters. Previous simulation studies confounded the estimation of
item/model parameters and person parameters. This is because empirical underidentifica-
tion might occur in designs with all positively keyed items, (Brown & Maydeu-Olivares,
2012; Bürkner et al., 2019), leading to bias in item parameters and trait correlations. Bias
in item parameters then propagates to trait estimates because in the Thurstonian IRT
model, traits are estimated with previously obtained item parameters and trait correla-
tions using maximum a posteriori (MAP) or expected a posteriori (EAP) methods. To
overcome this confounding effect, we fixed item parameters and trait correlations to their
true values to examine trait score estimation in isolation3. This procedure is similar to op-
erational assessment settings, in which item parameters and trait correlations are obtained
a priori, often from single-stimulus data.
The third aim of this simulation study was to compare Thurstonian IRT trait estimates

to those derived from CTT as well as from RS and true-false (TF) data. To our knowledge,
there has been no simulation study investigating the comparison to single-stimulus data
in detail. However, this is a vital complement to the various validity studies (e.g. Guenole
et al., 2018; Lee et al., 2018). We chose the RS format as a comparison because it is the
standard in self-report questionnaires. However, the same number of items usually provide
more information in the RS than in the MFC format. Therefore, we additionally included
the TF format, because, theoretically, the MFC format with three-item blocks provides
three bits of binary information, one per each pairwise comparison, which is the same
as these three items would provide in the TF format (Brown & Maydeu-Olivares, 2018).
To our knowledge, a simulation study comparing IRT and CTT scoring of MFC responses
when a dominance model underlies both data generation and analysis is missing. However,
as most current MFC questionnaires employ dominance items (Brown & Bartram, 2009;
Maydeu-Olivares & Brown, 2010), this comparison is especially important.
The goal of our empirical study was to examine the differentiation of judgments in

the MFC and the true-false format by evaluating reliability and validity of person scores.
The MFC format elicits relative judgments, as incorporated in choice models for ranking
tasks (Brown, 2016a) and indicated by a think-aloud study (Sass et al., 2020). In contrast,
single-stimulus formats should elicit absolute judgments. The two types of judgments might

3We also carried out a similar simulation in which item and trait parameters were estimated from the
data, see https://osf.io/whv9k/?view_only=1e1fde593a424d13a7bac442017a13ae.
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correspond to different levels of differentiation (Kahnemann, 2011). The MFC format re-
quires participants to weigh different behaviors against each other, providing potentially
more information about the differences between traits, whereas an absolute response for-
mat might elicit fast and heuristic response processes. If this is true, it should translate to
differences in validity between relative and absolute response formats when the amount of
information is held constant. Therefore, we compared latent traits from the MFC and the
TF format with regard to reliability, construct validity, and criterion-related validity to
gain insight into the differentiation of judgments. To our knowledge, there has been no em-
pirical study comparing validity between the MFC and the TF format in a within-subject
design.

Simulation Study

The hypotheses and design of this simulation study were preregistered on the Open Sci-
ence Framework (https://osf.io/exqb2/?view_only=7692f926a8a34e9f930f75ef02fd0ed0,
https://osf.io/uh4t9/?view_only=9e85a4e733fa49f4be2e3dc4aaf8f423). To investigate the
role of the factors noted above, data were simulated under different conditions, namely,
varying the number of traits, trait correlations, the proportion of comparisons involving
opposite-keyed items, the number of items per trait, and block size. MFC data were ana-
lyzed with the Thurstonian IRT model and with CTT. TF and RS data were analyzed with
appropriate IRT models. The aims above translate to the following research questions:

Research Questions (RQ)

1. How do questionnaire design factors (number of traits, trait correlations, item key-
ing, unequal numbers of items per trait, block size) impact Thurstonian IRT trait
recovery?

2. How normative are Thurstonian IRT traits estimated from true item parameters and
trait correlations?

3. How do Thurstonian IRT-estimated traits compare to a) classical (partially) ipsative
scores, b) TF scores, and c) RS scores?

4. Which of the factors influencing Thurstonian IRT trait estimation also impact the
classical ipsative scoring method?

To investigate these questions, we set up the following simulation design.
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A

B

Figure 1: Panel A shows an example for a multidimensional forced-choice format. Panel
B shows an example for a rating scale format. In both examples, the first item assesses
extraversion, the second neuroticism, and the third conscientiousness.
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Simulation Design

Six factors were manipulated and completely crossed: number of traits, trait correlations,
block size, number of items per trait, item keying, and score type, as depicted in Table 14.
The factor number of traits had two levels: five and 15. Five traits are representative of
constructs like the Big Five. Fifteen traits are representative of work-related personality
constructs such as those assessed in TAPAS (Drasgow et al., 2012), O*NET (Peterson
et al., 1999), or Talent-Q (Holdsworth, 2006). The second factor trait correlations had
three levels: uncorrelated, mixed, and all positive. All uncorrelated traits were included
as a neutral benchmark. To increase ecological validity, correlations were based on meta-
analytic correlations of the Big Five (neuroticism, extraversion, openness, agreeableness,
and conscientiousness), as reported by van der Linden et al. (2010): –.36, –.17, –.36, –.43,
.43, .26, .29, .21, .20, .43 for correlations between neuroticism and extraversion, neuroticism
and openness, and so forth. For 15 traits, this means that three traits were negatively
correlated with the 12 other traits, 59% of the correlations were small, 40% were medium
and 1% were negligible (according to Cohen, 1988). To achieve this, absolute values for
correlations were drawn randomly from an inverse Wishart distribution with 100 degrees
of freedom and covariances set to .3. Then, traits 1, 6, and 11 were reversed. For the
mixed correlation condition, the correlations described above were used directly (resulting
in Mean correlation .05 for 5 traits and .08 for 15 traits). For the all positive correlation
condition, for five traits, the correlations with neuroticism (Trait 1) were reversed, turning
neuroticism into its positive counterpart emotional stability (resulting in Mean correlation
.31). For 15 traits, Traits 1, 6, and 11 were reversed (Mean = .29).
The third factor, block size, had three levels: two (pairs), three (triplets), and four

(quads).
The fourth factor, number of items per trait, had three levels: Equal, Unequal 1, and

Unequal 2 (see Tables 2 and 3). For five traits, in Unequal 1, Traits 1 and 4 were mea-
sured with half the number of items than the rest of traits. To obtain Unequal 2, Traits
1 and 2 were switched such that Traits 2 and 4 were measured with fewer items. For
15 traits, in Unequal 1, Traits 1, 4, 6, 9, 11, and 14 were measured with fewer items
and in Unequal 2, Traits 2, 4, 7, 9, 12, and 14 were measured with fewer items. Thus,
the Unequal 1 and Unequal 2 conditions were created to vary the less reliably measured
traits, so that no confounding with the trait correlation factor could occur. The result
of some traits having fewer items had an impact on the balance of pairwise comparisons
in the MFC version. For example, in the unequal versions, some pairwise comparisons
were missing (see Table S1). The full design matrices for all conditions are available from

4Following the suggestion of two reviewers, we extended the simulation design by two factors (number
of traits and block size). In the previous version, we also investigated questionnaire length and 1/3
mixed comparisons. Results of these analyses can be found on https://osf.io/kpumb/?view_only=
3d058747724e4c66999f3d97c376d448.
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https://osf.io/pcnwv/?view_only=35fae1b0ec474d768bf7688a17d16208.
The fifth factor was item keying. Specifically, the proportion of pairwise comparisons

between opposite-keyed items in the MFC format, termed mixed comparisons in the fol-
lowing, was varied. The proportion of mixed comparisons was held constant across all
pairwise trait comparisons. The factor item keying had three levels: 0 (i.e., all items posi-
tively keyed), 1/2, and 2/3 mixed comparisons. Numbers of items were chosen such that
all mixed comparison levels could be constructed5.
The sixth factor, score type, refers to the four response format × scoring method com-

binations: MFC-CTT, MFC-IRT, TF and RS.
For each research question (RQ), we formulated several hypotheses based on the the-

ory of comparative judgements and previous simulation studies. If not otherwise stated,
hypotheses concern the recovery of true scores across traits or pairs of traits. The central
hypotheses are listed below, a few subordinate hypotheses can be found in the supplemen-
tal online material (SOM) as well as the preregistration.

5Under these premises, it was not possible to construct questionnaires with equal and unequal numbers of
items per trait and the same total number of items. For this reason, total numbers of items were selected
with a minimal difference between those questionnaire versions. Furthermore, they were selected to be
representative of the typical lengths of questionnaires.
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Table 2: Number of positively and negatively keyed items per trait in the simulated ques-
tionnaires with 5 traits.

Equal Unequal 1(2)

Block-
size

Mixed
com-

parisons

Item
keying 1 2

Trait
3 4 5 1(2) 2(1)

Trait
3 4 5

2 1/2 - 6 6 6 6 6 4 24 20 4 20

+ 18 18 18 18 18 14 12 16 14 16

2/3 - 8 8 8 8 8 6 24 14 6 22

+ 16 16 16 16 16 12 12 22 12 14

Total 24 24 24 24 24 18 36 36 18 36

120 144

3 1/2 - 3 3 3 3 3 3 4 4 3 4

+ 9 9 9 9 9 6 14 14 6 14

2/3 - 4 4 4 4 4 3 6 6 3 6

+ 8 8 8 8 8 6 12 12 6 12

Total 12 12 12 12 12 9 18 18 9 18

20 24

4 1/2 - 2 2 2 2 2 2 3 4 2 3

+ 6 6 6 6 6 4 9 8 4 9

2/3 - 4 4 4 4 4 3 6 6 3 6

+ 4 4 4 4 4 3 6 6 3 6

Total 8 8 8 8 8 6 12 12 6 12

40 48

Note. Versions 1 and 2 of unequal numbers of items per trait differed in that traits 1 and
2 were switched. Number of items per trait are displayed for the short questionnaires For
all positively keyed items, the total number of items for each trait was positively keyed.
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RQ 1. Questionnaire Design and MFC-IRT Scoring

In RQ 1, we investigated whether questionnaire design factors impact trait recovery. These
hypotheses only concern MFC-IRT. They are seen as supported when they hold true for
correlations between true and estimated scores ( r(θ, θ̂)), mean absolute bias (MAB), and
mean squared error (MSE).

Item Keying

Identification of the scale origin relies on differences in factor loadings (see Brown, 2016a).
Those differences are much smaller than when loadings are allowed to differ in sign, leading
to worse trait recovery. Therefore, we expected that:
H1a: Recovery will be worse with 0 than with 1/2, and 2/3 mixed comparisons.

Trait Correlations

Previous simulations showed that trait recovery improved when trait correlations decreased
from positive to negative (Brown & Maydeu-Olivares, 2011).
H1b: Trait recovery quality will be ordered as follows: mixed > all uncorrelated > all

positive correlations.

Number of Items per Trait

We ran a previous, unpublished simulation with a similar design and with item param-
eters estimated from the data3. In this simulation, trait recovery did not differ between
questionnaires with equal and unequal numbers of items per trait.
H1c: We do not expect recovery to differ between questionnaires with equal and unequal

numbers of items per trait

Number of Traits

Previous simulations (Bürkner et al., 2019; Schulte et al., 2020) and empirical studies
(Baron, 1996) found recovery to improve with more traits even for ipsative scoring meth-
ods. This is because the more traits there are, the less likely the person true scores will be
all high or all low – thus reducing the distortion to most scores by the ipsative centering
on the person mean (Baron, 1996). Therefore, we expect that:
H1g: Trait recovery will be better with 15 than with 5 traits.

Block Size

In blocks of three or more items, there are local dependencies among the pairwise compar-
isons that are ignored in the person score estimation (Brown & Maydeu-Olivares, 2011).
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Thus, it is assumed that each pairwise comparison contributes unique information when
in fact they do not. Therefore, given the same number of pairwise comparisons, smaller
blocks provide more information.
H1h: Trait recovery will be better for smaller blocks, i.e. it will be better for block size

two than three, and better for block size three than four, holding the number of pairwise
comparisons equal.

Item Keying × Trait Correlations

Item loadings interact with trait correlations (Brown & Maydeu-Olivares, 2011). The more
positively the traits correlate, the smaller the variance in trait differences and the higher
the variance in trait sums. Thus, with strongly positively correlated traits, differentiation
between persons is better when comparing opposite-keyed items whereas with strongly
negatively correlated traits, equally-keyed items provide a better differentiation.
H1d.1: The effect in H1a will be larger for all positive than for 0 and mixed correlations.
For each trait correlation level, there will be an optimum (or best performing) level of

item keying (H1d.2-5, see SOM).

Number of Items per Trait × Trait Correlations

The effect of trait correlations should be more pronounced when the negatively correlated
traits are measured with more items (Unequal 2) than with less (Unequal 1) because trait
recovery improves with negatively correlated traits (e.g. Brown & Maydeu-Olivares, 2011;
Morillo et al., 2016; H1e.1-3, see SOM).

Item Keying × Number of Traits

Ipsativity effects are larger with fewer traits (see Number of traits).
H1f.1: The effect in H1a will be larger for 5 than for 15 traits.

Empirical Reliability

H1i: We expect empirical reliability to overestimate true reliability due to local dependen-
cies in blocks of size > 2. Overestimation will be larger for block size 4 than 3.

RQ 2. Normativity of MFC-IRT Scores

In RQ2, we investigated how normative Thurstonian IRT traits estimated from true item
parameters and trait correlations are. These hypotheses only concern MFC-IRT. We used
two indicators to quantify normativity. 1) For fully ipsative trait estimates, the mean inter-
correlation of k traits is constrained to −1/(k − 1)(Clemans, 1966). Therefore, according
to Hicks (1970), the mean trait intercorrelation can be used to quantify the degree of
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normativity in the trait estimates. 2) MFC trait estimates are fully ipsative when the sum
of all trait scores is constant for everyone (Hicks, 1970). In this case, it is impossible to
distinguish between two persons who have the same shape of the trait profile, or in other
words, equal differences between the trait scores, but differ on the absolute location of
the trait profile, i.e. the sum of the trait scores. Therefore, we used the recovery of sums
(absolute trait levels) and differences (relative trait levels) of traits as a second indicator
of normativity.

Mean Correlation

H2a: The mean trait correlation will be unbiased for all item keying levels.
This is because item loadings are drawn such that the scale origin should be identified

for all item keying levels. Empirical underidentification should not occur due to fixed item
parameters and trait correlations.

Sums and Differences

As Equation 2 shows, item information is dependent on the intercept and the difference
between the two traits times their loadings. It follows that item loadings play a crucial role
in measuring sums and differences of traits: Brown and Maydeu-Olivares (2011) showed
that comparisons between items with loadings of the same sign (for example, positive)
contribute to the measurement of differences between traits within a person. In contrast,
comparing items with loadings of opposite signs contributes to the measurement of the
sum of the two traits. The following hypotheses are seen as supported when they hold true
for MAB and MSE.
H2b: Trait recovery for sums of traits and the total score will be better for 1/2 and 2/3

than for 0 mixed comparisons.
H2c: Trait recovery for differences of traits will be better for 0 and 1/2 than for 2/3.

Number of Traits

H2d: The effects in H2b and H2c will be larger for 5 than for 15 traits.

RQ 3. Comparison Between Formats and Scoring Methods

In RQ3, we compared Thurstonian IRT-estimated traits to classical (partially) ipsative
scores, and IRT-estimated TF and RS scores. We expected trait recovery to be ordered
as follows: RS-IRT >> TF-IRT > MFC-IRT >> MFC-CTT, where >> signifies larger
differences than >. This is because 5-point rating scales provide more bits of information
than TF or MFC with three-item blocks. In our design, MFC and TF provide the same
number of bits of information, but for MFC, estimation for all traits is interdependent,
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which should lower information slightly. Recovery for MFC-CTT should be worse because
of ipsativity. This translates to the following hypotheses:
H3a: Trait recovery will be better in RS than in TF and MFC-IRT.
H3b: Trait recovery will be better in TF than in MFC-IRT.
H3c: Trait recovery will be worse in MFC-CTT than in the other score types.
H3d: The differences in H3a and H3c will be larger than those in H3b.

RQ 4. Questionnaire Design and CTT Scoring

In RQ4, we investigated which questionnaire design factors impact scores from MFC-CTT
scoring. Most of these hypotheses are based on the same reasoning as for MFC-IRT (see
above).

Item Keying

Previous research has shown trait recovery to be best with completely balanced number
of comparisons between items keyed in the same direction and between items keyed in the
opposite directions. With this design, both sums and differences of traits are measured
equally well. Therefore, we expected the 1/2 mixed comparisons level to show best trait
recovery.
H4a.1: Trait recovery will be better with 1/2 than with 2/3 mixed comparisons.

For 0 mixed comparisons, MFC-CTT scoring yields fully ipsative trait estimates.
H4a.2: Trait recovery will be worse with 0 than with 1/2 and 2/3 mixed comparisons.
H4a.3: The difference in H4a.2 will be larger than that in H4a.1.

Trait Correlations

H4b: Trait recovery will be ordered as follows: mixed > all uncorrelated > all positive
correlations.

Item Keying × Trait Correlations

H4c: The effect in H4a.2 will be larger for all positive than for 0 and mixed correlations.

Items per Trait × Trait Correlations

Trait correlations play a more important role in Unequal 2 than in Unequal 1 and for
traits that correlate negatively with the rest (H4e.1-3, see SOM).

Normativity

Mean Trait Correlation
H4f.1: We expect the mean trait correlation to be biased in all designs.
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Sums and Differences of Traits
H4f.2: Trait recovery for differences of traits will be better than for sums of traits.

Number of Traits
H4f.3: The bias in the mean trait intercorrelation will be larger for 5 than for 15 traits.
H4f.4: The effect in H4f.2 will be larger for 5 than for 15 traits.

Methods

Data were generated for a sample size of 1000 persons. Samples as large as this allow
more outliers and therefore allow examining cases of unusual score combinations thus
providing less favorable conditions. RS responses were simulated for a five-point scale and
TF responses were simulated as binary in all 162 conditions.
The basic simulation procedure was as follows: First, trait levels and item parameters

were generated for all conditions. Second, MFC, RS, and TF data were simulated with the
generated trait levels and item parameters. IRT trait estimates were estimated based on the
item parameters and trait correlations by maximizing the mode of the posterior likelihood
distribution (maximum a posteriori, or MAP). CTT trait estimates were computed as
mean scores and subsequently z-standardized. Third, indices for trait estimation quality
were computed in each condition. There were 1000 replications per condition. The software
R (R Core Team, 2017) was used for data generation and analysis. In addition, we used the
R packages mvtnorm (Genz et al., 2020), car (Fox & Weisberg, 2019), and psych (Revelle,
2019).
As much as the design allowed, common random numbers were used to reduce overall

variance (Skrondal, 2000), resulting in a three-level hierarchical data structure as depicted
in the left column of Table 1. First, the same trait levels were used for one replication within
one number of traits × trait correlation combination. Second, the same item parameters
were used for one replication within one block size × number of items per trait combination.

Data Generation

Trait levels were drawn from a multivariate normal distribution with means of zero and
standard deviations of one for each trait and the trait correlation levels as appropriate
for the condition (i.e. mixed, all positive, uncorrelated). Following the suggestion of an
anonymous reviewer, we conducted an additional simulation on the size of standard errors
for the IRT-based scoring methods. Here, Trait 2 was fixed to 0, 2 and -2, while the other
traits were drawn from the same multivariate normal distribution, for 300 persons each.
Standard errors were averaged across persons with the same level on Trait 2 and across
the 1000 replications per condition.
Item loadings were drawn from U(.65,.95) and item means (i.e. item intercepts in item
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factor analysis) were drawn from U(–1,1). These are typical values for standardized con-
tinuous item utilities (Brown & Maydeu-Olivares, 2011). The loadings were redrawn until
there were no linear dependencies2 between item loadings within blocks and between item
loadings within traits (for reasons of identification, see Brown, 2016a). This was ensured
for all item keying levels. For the RS format, deviation factors were sampled from U(–1.8,
–0.9), U(–0.6, –0.15), U(0.15, 0.6), and U(0.9, 1.8) for the first, second, third, and fourth
threshold, respectively. Sampling distributions for deviation factors were chosen to be sim-
ilar to empirical datasets and to be symmetrical. RS-thresholds can be calculated with the
item mean as location: item mean + deviation. Uniquenesses were specified as 1–loading2.
Errors were sampled for each person on each item from N(0, uniqueness). Then, con-

tinuous item utilities were generated with the loadings, errors, and item means, according
to a respective factor model. The same utilities were used to generate the data for MFC,
RS, and TF. MFC data were generated under the Thurstonian factor model by computing
pairwise differences of item utilities within each block and dichotomizing them using the
threshold of 0, so that the outcome was 1 if the first utility was greater than the second and
it was 0 otherwise, as the Thurstonian models suggest. TF data were generated under the
normal ogive model (Tucker, 1946) by dichotomizing the item utilities using the threshold
of 0, so that the outcome was 1 if the utility was greater than the item mean and it was
0 otherwise. RS data were generated under the graded response model (Samejima, 1969)
by categorizing the item utilities by the deviation factors.
For MFC-CTT, ranks were transformed to scores using the following procedure: For

positively keyed items, for block size n ranks 1 to n were recoded to n to 0. For
negatively keyed items, ranks 1 to n were recoded to 0 to n, as shown in Table 4 for block
size 3. In this example, the sum score across three items can assume the values of 1, 3, and
5 as opposed to only 3 with all positively keyed items. However, different ranking patterns
can still lead to the same sum score. Then, mean scores were computed for each trait and
z-standardized for comparability with the IRT-based trait estimates.

Data Analysis

Summary measures were computed in each replication for each condition, including or-
dering, bias measures, the Mahalanobis distance, empirical reliability and bias of mean
correlation. Ordering was defined as the correlation between true and estimated trait lev-
els. As bias measures, mean absolute bias (MAB) and mean square error (MSE) were
computed, adapting formulas from Feinberg and Rubright (2016) to the case of multiple
parameters per replication. For d = 1. . .D person parameters with true and estimated
values of ηd and η̂d, respectively, MAB and MSE were defined as follows:
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Table 4: Ipsative and partially ipsative scoring for block size 3.

Item content Trait Keying Respondent A Respondent B

Rank Score Rank Score

Fully ipsative

I get stressed out easily. Neuroticism + 1 2 3 0

I love big parties. Extraversion + 3 0 2 1

I am imaginative. Openness + 2 1 1 2

Sum 3 3

Partially ipsative
I rarely worry. Neuroticism – 3 2 1 0

I love big parties. Extraversion + 2 1 3 0

I am imaginative. Openness + 1 2 2 1

Sum 5 1

MAB =

∑D
d=1 |η̂d − ηd|
D − 1

, (3)

MSE =

∑D
d=1 (η̂d − ηd)2
D − 1

. (4)

Both MAB and MSE are measures of accuracy because they combine systematic and
random error, also known as bias and variance. MSE weights extreme values more strongly
than MAB (Feinberg & Rubright, 2016). Bias measures were computed for single traits,
for the total score (i.e. the sum of all five or 15 traits), and for the sums and differences
of two traits (for all 10 or 105 combinations of two traits).
Analogous to Brown and Maydeu-Olivares (2013), the Mahalanobis distance was used

as a multivariate distance measure between trait profiles that accounts for correlated traits
(Cronbach & Gleser, 1953). The Mahalanobis distance between true and estimated trait
profiles was computed for each simulated person with the true trait correlations as correla-
tions between the axes. To summarize Mahalanobis distances across persons, the mean and
the squared mean (analogous to MAB and MSE), the median, and the standard deviation
were computed.
The correlation between the true and estimated trait score (ordering) was squared to

obtain true reliability. In addition, empirical reliability was computed from the SEs of
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factor scores estimated by the model, using the formula:

rempirical =
Var (η̂)−Mean(SE2)

Var (η̂)
. (5)

Reliabilities above .80 were regarded as acceptable, and above .90 as good (Evers
et al., 2013). Raw bias for the mean correlation was calculated by subtracting the
mean correlation of estimated factor scores from the true mean correlation. The R-
script including all simulation procedures can be found on the Open Science Framework
(https://osf.io/pcnwv/?view_only=35fae1b0ec474d768bf7688a17d16208).
Summary measures were analyzed across traits or pairs of traits, except for H1c.3. For

statistical analysis, the hypotheses were transformed into planned contrasts. Variance ex-
planation within an ANOVA framework was then calculated for each contrast. This allowed
us to evaluate relative effect sizes within the studied conditions. Further, we examined the
absolute levels of the summary measures descriptively. For ANOVAs, we considered ef-
fects with an associated variance explanation of at least 1% to be meaningful. In contrast
to inferential tests, variance explanation is insensitive to heterogeneous variances, which
occurred in some conditions as indicated by Levene’s test. Moreover, it is insensitive to
sample size, which could be arbitrarily increased in simulation studies. For RQs 1 and 2,
ANOVAs were restricted to MFC-IRT, for RQ 3, the ANOVA was run across all four score
types. For RQ 4, it was restricted to MFC-CTT.

Results

Convergence

In total, scores were estimated for 162,000 Thurstonian IRT, normal ogive and graded
response models. For the Thurstonian IRT model, there were 14 runs in which scores for
one person could not be estimated. For the graded response model, 14% of models failed to
estimate scores of up to 13 persons with 7% being only one person. For the binary normal
ogive model, 136 models failed to estimate scores of up to 2 persons. We considered the
estimation problems as minor enough to not warrant any further treatment.

RQ 1. Questionnaire Design and MFC-IRT Scoring

In the following, findings from a preregistered hypothesis are marked with their hypothesis
number; the other reported findings are exploratory. Overall, item keying showed the
largest effect (43% to 47% of total variance, Table 5), followed by the interaction of trait
correlations with item keying (16% to 20%). Residual variances were moderate, namely
between 14% and 19%.
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Item Keying and Trait Correlations. Recovery was worse with 0 mixed comparisons
(e.g. mean MAB = .39) as compared to the other levels (mean MAB = .28; in favor of
H1a, see also Tables 5 and 6). Only for 0 mixed comparisons, recovery for all positively
correlated traits was worse (e.g. mean MAB = .47) than for uncorrelated or mixed trait
correlations (mean MAB = .35; in favor of H1d.1), accounting for the whole interaction
effect. Differences between the other levels of trait correlations and item keying were
negligible (contradicting H1b; see Table S2). Similarly, mean standard errors were larger
with 0 mixed comparisons and more so with positively correlated traits (Table 7).

Number of Traits. Standard errors were larger and recovery was worse for 5 (e.g. mean
MAB = .34) than for 15 traits (mean MAB = .31), in favor of H1g, but only for 0 mixed
comparisons (e.g. mean MAB 15 traits = .37; mean MAB 5 traits = .45, in favor of H1f.1),
accounting for the whole interaction effect.

Block Size. Recovery decreased with increasing block size, explaining 3% of variance
(in favor of H1h). However, the effect of block size was rather small, for example the mean
MAB was .30 for block size two and .32 for block size three (Table 6). Mean standard
errors did not vary by block size (Table 7).

Number of Items per Trait. Recovery was almost identical between equal (e.g. mean
MAB = .33) and unequal numbers of items per trait (mean MAB = .31; Table 6; in favor
of H1c). The effect of trait correlations was equal across the levels of numbers of items per
trait, both overall and for single traits (contradicting H1e.1-3, see Tables 5 and S3). Mean
standard errors for Trait 2 were largest in Unequal 2, followed by Equal and Unequal 1
(Table 7), reflecting the number of items, 9, 12, and 18, respectively.
To summarize, if the questionnaire included both positively and negatively keyed items,

recovery did not vary substantially across different questionnaire designs.

RQ 2. Normativity and MFC-IRT Scoring

Across item keying levels, the mean correlation was negatively biased, as evidenced by
a significant intercept, reflecting the grand mean, of –0.05 (t(161,838) = –2,328.76, p <
.001, 95% Cl [–0.04855; –0.04847], contradicting H2a). Bias for sums of traits and the total
score was smaller for 1/2 and 2/3 (mean MAB = .40; mean MSE = .26) compared to 0
mixed comparisons (mean MAB = .64; mean MSE = .69; in favor of H2b; Tables 8 and
9; see also Figure 2). For differences between traits, bias was larger for 2/3 (mean MAB
= .4, mean MSE = .26) compared to 0 and 1/2 mixed comparisons (mean MAB = .39,
mean MSE = .24), however this effect was rather small (Table 9; in favor of H2c). This
effect was larger for 5 than for 15 traits, but only for sums of traits (Tables 8, 9, S4 and
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Table 5: Contrasts and % of variance in summary measures explained by questionnaire
design within Thurstonian IRT scoring.

Hyp. Factor / Contrast r(θ, θ̂) MAB MSE

H1g Number of Traits 4 3 3

Trait correlations 9 7 9

Block size 3 3 3

Number of items per trait 0 1 0

Item keying 43 47 44

Number of Traits × Item keying 7 5 6

Trait correlations × Item keying 20 16 19

Residuals 14 19 15

Planned Contrasts

H1a 1/2, 2/3 vs. 0 43 47 44

H1d.1
in mixed, uncorrelated vs. in all
positive 20 16 19

H1f.1 many vs. few traits 7 5 6

H1h 2 vs. 3 1 1 1

H1h 3 vs. 4 2 2 2

H1b Mixed vs. uncorrelated 0 0 0

H1b Uncorrelated vs. all positive 9 7 9

H1e.1 in Unequal 1 0 0 0

0 0 0

H1e.1 in Unequal 2 0 0 0

0 0 0

H1e.2 Unequal 2 vs. Unequal 1 in mixed 0 0 0

Note. Hyp. = Hypothesis, MAB = mean absolute bias, MSE = mean squared error. Main
effects are based on the saturated model and are only shown when the associated variance
explanation was above 1%. Horizontal lines separate non-orthogonal contrasts.
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Table 6: Means and standard deviations for relevant conditions of questionnaire design
within Thurstonian IRT scoring.

Factor 1 Factor 2 r(θ, θ̂) MAB MSE

Block size

2 0.92 (0.05) 0.30 (0.07) 0.15 (0.08)

3 0.91 (0.05) 0.32 (0.07) 0.17 (0.08)

4 0.90 (0.05) 0.33 (0.07) 0.18 (0.09)

Trait correlations Item keying

mixed 0 0.90 (0.03) 0.34 (0.04) 0.18 (0.05)

1/2 0.94 (0.02) 0.28 (0.04) 0.12 (0.03)

2/3 0.93 (0.02) 0.28 (0.04) 0.13 (0.03)

positive 0 0.80 (0.05) 0.47 (0.05) 0.36 (0.07)
1/2 0.94 (0.02) 0.28 (0.04) 0.12 (0.03)

2/3 0.93 (0.02) 0.28 (0.04) 0.13 (0.03)

uncorrelated 0 0.89 (0.03) 0.35 (0.05) 0.20 (0.06)

1/2 0.93 (0.02) 0.29 (0.04) 0.13 (0.04)

2/3 0.93 (0.02) 0.29 (0.04) 0.13 (0.04)

Number of Traits Item keying

5 0 0.82 (0.06) 0.45 (0.07) 0.33 (0.10)

1/2 0.93 (0.02) 0.28 (0.04) 0.13 (0.04)

2/3 0.93 (0.02) 0.28 (0.04) 0.13 (0.04)

15 0 0.88 (0.05) 0.37 (0.07) 0.22 (0.08)

1/2 0.93 (0.02) 0.28 (0.04) 0.13 (0.04)

2/3 0.93 (0.02) 0.28 (0.04) 0.13 (0.03)
Number of items per
trait

Trait
correlations

Equal mixed 0.92 (0.02) 0.31 (0.04) 0.15 (0.04)

positive 0.89 (0.07) 0.35 (0.10) 0.21 (0.12)

uncorrelated 0.92 (0.03) 0.32 (0.04) 0.16 (0.04)

Unequal 1 mixed 0.93 (0.03) 0.29 (0.05) 0.14 (0.05)

positive 0.89 (0.07) 0.34 (0.10) 0.20 (0.12)

uncorrelated 0.92 (0.03) 0.30 (0.06) 0.15 (0.06)

Unequal 2 mixed 0.93 (0.03) 0.29 (0.05) 0.14 (0.05)

positive 0.89 (0.07) 0.34 (0.10) 0.20 (0.12)

uncorrelated 0.92 (0.03) 0.30 (0.06) 0.15 (0.06)

Note. MAB = mean absolute bias, MSE = mean squared error. Standard deviations are
given in parentheses.



Normativity of Trait Estimates 29

Table 7: Means standard errors for relevant conditions of questionnaire design within
Thurstonian IRT scoring.

Factor 1 Factor 2 Low Medium High

Block size

2 0.44 0.37 0.44

3 0.44 0.37 0.44

4 0.44 0.37 0.44

Trait correlations
Item
keying

mixed 0 0.48 0.43 0.48

1/2 0.39 0.31 0.39

2/3 0.39 0.31 0.39
positive 0 0.63 0.60 0.63

1/2 0.39 0.31 0.39

2/3 0.39 0.31 0.39

uncorrelated 0 0.50 0.44 0.50

1/2 0.40 0.32 0.40

2/3 0.40 0.32 0.40

Number of Traits
Item
keying

5 0 0.58 0.54 0.58

1/2 0.39 0.31 0.39

2/3 0.40 0.31 0.40

15 0 0.49 0.44 0.49

1/2 0.39 0.32 0.39

2/3 0.39 0.32 0.39
Number of items per
trait

Equal (12 items) 0.45 0.38 0.45

Unequal 1 (18 items) 0.40 0.33 0.40

Unequal 2 (9 items) 0.48 0.41 0.48

Note. Low = –2, medium = 0, high = 2, Mean standard errors are given for Trait 2 which
was measured with 12, 18, and 9 items in Equal, Unequal 1, and Unequal 2, respectively.
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Table 8: Contrasts and % of variance in of sums and differences of traits explained by
questionnaire design within Thurstonian IRT scoring

Hyp. Factor Sums Differences

MAB MSE MAB MSE

Number of Traits 1 2 0 0

Trait correlations 10 13 3 4

Blocksize 2 1 19 19

Number of items per trait 0 0 3 2

Item keying 58 50 6 5
Number of Traits
× Item keying 3 4 0 0

Trait correlations
× Item keying 20 26 0 0

Residuals 5 3 68 69

H2b 1/2, 2/3 vs. 0 58 50

15 vs. 5 3 4

H2c 0, 1/2 vs. 2/3 3 3

15 vs. 5 0 0

Note. MAB = mean absolute bias, MSE = mean squared error.

S5, contradicting H2d). To summarize, we found evidence for ipsativity and bias of trait
sums and showed that this pertained only to the condition with all positively keyed items.
Ipsativity effects were smaller with more traits.

RQ 3. Comparison Between Formats and Scoring Methods

For illustration, Figure 3 depicts the correlation between true and estimated scores for all
score types and questionnaire design factors. The score types were ordered as predicted:
Recovery was highest in RS (e.g. mean MAB = .17), followed by TF (mean MAB =
.26), MFC-IRT (mean MAB = .32) and MFC-CTT (mean MAB = .39; confirming H3a-c;
Tables 10 and 11). The difference between TF and MFC-IRT was smaller than the other
differences (in favor of H3d). The difference between MFC-CTT and the other score types
showed the largest effect.
True reliability was good for RS and acceptable for TF (Table 12). For MFC-IRT and

MFC-CTT, with 1/2 and 2/3 mixed comparisons, it was acceptable, but below acceptable
with 0 mixed comparisons (Table 12). Reliability varied with an SD of .03 to .05, compara-
ble to TF, for 1/2 and 2/3 mixed comparisons, but with an SD of .08 to .11 with 0 mixed
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Table 9: Means and standard deviations for relevant conditions of questionnaire design for
sums and differences of traits within Thurstonian IRT scoring.

Factor 1 Factor 2 Sums Differences
Number
of Traits

Item
keying MAB MSE MAB MSE

5 0 0.82 (0.14) 1.09 (0.39) 0.36 (0.05) 0.21 (0.06)

1/2 0.40 (0.04) 0.26 (0.05) 0.39 (0.04) 0.25 (0.05)

2/3 0.40 (0.04) 0.25 (0.05) 0.41 (0.04) 0.27 (0.05)

15 0 0.63 (0.15) 0.65 (0.32) 0.38 (0.05) 0.23 (0.05)

1/2 0.40 (0.04) 0.26 (0.06) 0.40 (0.04) 0.25 (0.06)

2/3 0.40 (0.04) 0.25 (0.05) 0.40 (0.04) 0.26 (0.05)

Note. MAB = mean absolute bias, MSE = mean squared error. Standard deviations are
given in parentheses.

comparisons. In general, empirical reliability overestimated true reliability, both for MFC
and single-stimulus formats. To gain insight into the size of the overestimation, we Fisher
Z-transformed true and estimated reliability and classified their difference according to
Cohen’s (1988) criteria. On average, for MFC-IRT with 0 mixed comparisons, there was a
small to medium overestimation. As expected, the overestimation was larger for block size
4 (mean difference in Fisher Z = –.16) than for block size 3 (mean difference in Fisher Z
= –.10; Table S6; in favor of H1i). For MFC-CTT with 0 mixed comparisons there was a
medium to large overestimation.
For RS-IRT, mean standard errors were .20 for the Trait 2 level of 0 and .25 for Trait 2

levels of ±2. For TF-IRT, they were .28 for 0 and .44 for ±2. For MFC-IRT, with 1/2 and
2/3 mixed comparisons, they were .31 for 0 and .39 for ±2, comparable to TF-IRT. They
were higher with all positively keyed items, with .49 for 0 and .54 for ±2.
To summarize, reliability for MFC-IRT with both positively and negatively keyed items

was good and close to TF, but lower than for RS. It was clearly lower for MFC-CTT.
Empirical reliability overestimated true reliability in conditions with ipsativity and more
so with increasing block size.

RQ 4. Questionnaire Design and (Partially) Ipsative Scoring

Trait recovery was worse with 0 (e.g. mean MAB = .49) than with 1/2, and 2/3 mixed
comparisons (mean MAB = .34; explaining 48% to 50% of variance, in favor of H4a.2, Table
S7). The difference between 1/2 and 2/3 mixed comparisons was negligible (contradicting
H4a.1, in favor of H4a.3, Table S8). Some effects only occurred with 0 mixed comparisons:
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Table 10: Contrasts and % of variance in summary measures explained by score type and
questionnaire design.

Hyp. Factor r(θ, θ̂) MAB MSE

Trait correlations 2 1 2

Block size 4 6 4
Item keying 12 8 11

Score type 41 57 44

Number of Traits × Item keying 1 1 1

Trait correlations × Item keying 5 2 5

Trait correlations × Score type 3 1 3

Block size × Score type 1 2 1

Item keying × Score type 12 8 12

Number of Traits × Item keying × Score type 1 1 1

Trait correlations × Item keying × Score type 5 3 5

Residuals 11 10 10

H3a RS vs. MFC-IRT, TF 13 21 12

H3b TF vs. MFC-IRT 3 4 2

H3c RS, TF, MFC-IRT vs. MFC-CTT 26 32 29

Note. Hyp. = Hypothesis. MAB = mean absolute bias, MSE = mean squared error, RS
= rating scale format, MFC = multidimensional forced-choice format, TF = true-false
format, IRT = item response theory scoring, CTT = classical test theory scoring. Main
effects are based on the saturated model and are only shown when the associated variance
explanation was above 1%.
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Table 11: Means and standard deviations for relevant conditions of score type and ques-
tionnaire design.

Factor 1 Factor 2 r(θ, θ̂) MAB MSE

0 MFC-IRT 0.87 (0.06) 0.39 (0.08) 0.25 (0.10)

MFC-CTT 0.81 (0.08) 0.49 (0.10) 0.38 (0.15)
RS-IRT 0.98 (0.01) 0.17 (0.04) 0.05 (0.03)

TF-IRT 0.94 (0.03) 0.26 (0.06) 0.12 (0.05)

1/2 MFC-IRT 0.93 (0.02) 0.28 (0.04) 0.13 (0.04)

MFC-CTT 0.91 (0.03) 0.34 (0.05) 0.18 (0.05)

RS-IRT 0.98 (0.01) 0.17 (0.04) 0.05 (0.03)

TF-IRT 0.94 (0.03) 0.26 (0.06) 0.12 (0.05)

2/3 MFC-IRT 0.93 (0.02) 0.28 (0.04) 0.13 (0.03)

MFC-CTT 0.91 (0.02) 0.34 (0.04) 0.19 (0.05)

RS-IRT 0.98 (0.01) 0.17 (0.04) 0.05 (0.03)

TF-IRT 0.94 (0.03) 0.26 (0.06) 0.12 (0.05)

Note. MAB = mean absolute bias, MSE = mean squared error. MFC = multidimensional
forced-choice format, TF = true-false format, IRT = item response theory scoring, CTT
= classical test theory scoring. Standard deviations are given in parentheses.
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Table 12: True and estimated reliability for relevant conditions of score type and question-
naire design.

Scoring
Number
of Traits

Item
keying True Reliability

Estimated
Reliability

Difference
in Fisher Z

Mean SD Mean SD Mean SD

MFC-IRT 5 0 0.67 (0.10) 0.79 (0.10) -0.29 (0.14)

5 12 0.87 (0.04) 0.88 (0.04) -0.03 (0.07)
5 23 0.87 (0.04) 0.88 (0.04) -0.06 (0.08)

15 0 0.78 (0.08) 0.83 (0.07) -0.16 (0.12)

15 12 0.87 (0.04) 0.88 (0.04) -0.03 (0.07)

15 23 0.87 (0.03) 0.88 (0.04) -0.06 (0.09)

MFC-CTT 5 0 0.59 (0.11) 0.86 (0.04) -0.63 (0.15)

5 12 0.84 (0.04) 0.82 (0.05) 0.06 (0.05)

5 23 0.83 (0.04) 0.84 (0.05) -0.05 (0.07)

15 0 0.68 (0.11) 0.83 (0.05) -0.35 (0.18)

15 12 0.82 (0.05) 0.83 (0.05) -0.02 (0.05)

15 23 0.82 (0.04) 0.84 (0.05) -0.09 (0.07)

RS-IRT 5 0 0.95 (0.03) 0.95 (0.03) -0.05 (0.09)

5 12 0.95 (0.03) 0.96 (0.03) -0.08 (0.12)

5 23 0.95 (0.03) 0.96 (0.03) -0.08 (0.12)

15 0 0.95 (0.03) 0.95 (0.03) -0.05 (0.09)

15 12 0.95 (0.03) 0.96 (0.03) -0.08 (0.12)

15 23 0.95 (0.03) 0.96 (0.03) -0.08 (0.12)

TF-IRT 5 0 0.88 (0.05) 0.88 (0.05) -0.02 (0.04)

5 12 0.88 (0.05) 0.88 (0.05) -0.02 (0.04)

5 23 0.88 (0.05) 0.88 (0.05) -0.02 (0.04)

15 0 0.88 (0.05) 0.89 (0.05) -0.02 (0.04)
15 12 0.88 (0.05) 0.89 (0.05) -0.02 (0.04)

15 23 0.88 (0.05) 0.89 (0.05) -0.02 (0.04)

Note. MFC = multidimensional forced-choice format, TF = true-false format, IRT = item
response theory scoring, CTT = classical test theory scoring. Standard deviations are given
in parentheses.
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Figure 2: Means of mean trait correlation and of mean absolute bias for sums and dif-
ferences of two traits. For sums and differences, the results were averaged across the 10
trait pairs. MFC = multidimensional forced choice format; IRT = item response theory
scoring; CTT = classical test theory scoring, mixed = mixed positive and negative trait
correlations, positive = all positive trait correlations, MAB = mean absolute bias.

First, trait recovery was lower for 5 (e.g. mean MAB = .54) than for 15 traits (mean
MAB = .47; in favor of H4.f3). Second, it was lower for all positive trait correlations (e.g.
mean MAB = .59) than for mixed correlations or uncorrelated traits (mean MAB = .43;
in favor of H4c). Third, with mixed correlations bias was smaller in Unequal 2 than in
Unequal 1 (see Tables S7-S9; contradicting H4e.1-3). Overall, trait recovery was higher
with uncorrelated traits (e.g. mean MAB = .36) than with all positively correlated traits
(mean MAB = .42) or with mixed trait correlations (mean MAB = .38; contradicting H4b).
The mean trait correlation was biased as evidenced by a significant intercept, reflecting
the grand mean, of –0.07 (t(161838) = –2406.95; p < .001; 95% CI [–0.658; –0.657]; in
favor of H4f.1). Bias in the mean trait correlation was descriptively larger for 5 than for
15 traits, but only for 0 (mean bias for 5 traits = –.35, mean bias for 15 traits = –.19)
and 2/3 (mean bias for 5 traits = .16, mean bias for 15 traits = .06) mixed comparisons
(contradicting H4f.3). Trait recovery for differences of traits was better than for sums of
traits (13% to 14% of total variance, see Table S10; in favor of H4f.2), but this difference
was not larger for 5 than for 15 traits (contradicting H4f.4, Tables S10 and S11).
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Figure 3: Mean correlation between true and estimated traits (i.e. r(θ, θ̂)) by condition.
The results were averaged across the five traits. MFC = multidimensional forced-choice
format; IRT = item response theory scoring; CTT = classical test theory scoring, Equal
= equal number of items per trait, Unequal 1 (2) = version 1 (2) of unequal numbers
of items per trait, mixed = mixed positive and negative trait correlations, positive = all
positive trait correlations, 5 = 5 traits, 15 = 15 traits, 2(3,4) = block sizes.
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Discussion

In sum, our simulation study showed that Thurstonian IRT trait recovery was acceptable
across various questionnaire designs as long as mixed keyed items were used. Thurstonian
IRT scoring achieved similar trait recovery as TF, but substantially less effective trait
recovery than RS. MFC-CTT trait recovery was clearly worse than the other three and
varied more across factors. In the following, we will first discuss the different factors of
questionnaire design and then the degree of normativity and the comparison to other
response formats and scoring methods. Last, we will discuss the effects of questionnaire
design with partially ipsative scoring.

Questionnaire Design and MFC-IRT Scoring

Item Keying. Concerning the effects of questionnaire design on Thurstonian IRT trait
estimation, item keying was clearly the most relevant factor, explaining about 40% to 50%
of the total variance. Across our analyses, we saw that this was driven by the effect of all
positively keyed items. We remind the reader that in our simulation, the positive factor
loadings were highly similar, varying in the rather small range of 0.65 to 0.95.

Number of Traits. We found trait recovery to be better with more traits. However,
this only pertained to the conditions with all positively keyed items. Trait recovery was
acceptable even with as few as five traits as long as mixed keyed items were used, which
is in line with previous studies (Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019;
Schulte et al., 2020).

Trait Correlations. Apparently, our conditions of mixed and zero correlations between
traits did not differ enough to impact trait recovery differentially. This might have been
because our mixed correlations had a mean of approximately zero. In contrast, all positive
correlations decreased overall recovery and more so with all positively keyed items. Con-
trary to our expectations, there was no optimal item keying level depending on trait corre-
lations. This is in contrast to CAT simulations with the Thurstonian IRT model (Brown,
2012), where optimally selected questionnaires for Big Five correlations contained about
one third mixed comparisons.

Block size. As expected, we found MFC-IRT trait recovery to slightly decrease with
increasing block size, holding the number of pairwise comparisons equal. However, this
effect was rather small. Empirical reliability overestimated true reliability and more so
with increasing block size, but the overestimation was substantial only with all positively
keyed items.
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Number of Items per Trait. As expected, a questionnaire design with unequal num-
bers of items per trait was not detrimental to overall trait estimation. However, we also
did not find differential effects of trait correlations depending on how many comparisons
with negatively correlated traits the questionnaire included. Apparently, if it exists, this
effect was too small to impact recovery within our questionnaire designs and/or to show
up in our analyses.

Normativity and MFC-IRT Scoring

With all positively keyed items, the mean trait correlation was biased towards the negative
as would be expected from ipsative data (Clemans, 1966; Hicks, 1970). This indicates that
the lower recovery with all positively keyed items was a sign of ipsativity. In contrast,
with mixed keyed items, bias for the mean trait correlation was small and close to that
in TF and RS. Similarly, recovery was comparable to the TF format in these conditions.
This illustrates that with mixed keyed items, trait estimates from the Thurstonian IRT
model are indeed normative, to at least the same extent as trait estimates from single-
stimulus formats. In this study, item keying had only a minor impact on the measurement
of trait differences. Thus, trait profiles are generally captured well with comparative data.
In contrast, the measurement of sums of traits was clearly impacted by item keying levels
such that they were measured worse with all positively keyed items (with loadings of similar
magnitudes). Among the different proportions of negatively keyed items, the measurement
of sums and of differences of traits was interdependent. However, those differences were
small compared to the bias in conditions with all positively keyed items.

Comparison Between Formats and Scoring Methods

Reliability in the RS format was almost perfect. This is in accordance with previous
simulation studies without response distortions (e.g. Macdonald & Paunonen, 2002). For
MFC, overall reliability levels mirrored ipsativity issues: They were acceptable to good
except with all positively keyed items. Recovery levels found in this study for IRT scoring of
MFC data are comparable to those found in previous studies (Brown & Maydeu-Olivares,
2011; Bürkner et al., 2019; Hontangas et al., 2015; Morillo et al., 2016). For example,
Brown and Maydeu-Olivares (2011) reported a reliability of .86 for a questionnaire with
five traits, 20 blocks of three items, and 1/2 mixed comparisons, which is similar to the
mean of .86 found in this study in the same condition.

Questionnaire Design and (Partially) Ipsative Scoring

With classically scored MFC responses, there were clearer differences between the item
keying levels than with Thurstonian IRT scoring. This probably reflects an interaction
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between the scoring procedure and the response process for CTT scoring: From the side of
the scoring procedure, the degree of normativity should be strongest when score variability
is largest. In CTT scoring, this is achieved when all blocks contain opposite-keyed items
(corresponding to 2/3 mixed comparisons). However, the Thurstonian IRT model, which
was used to generate the data, favors having both same and mixed keyed comparisons to
measure both sums and differences of traits well. The response process is also reflected in
the interaction between item keying and trait correlations for CTT scoring: With positively
correlated traits, there is more variability in sums than in differences, and this variability is
not captured well by mostly equally-keyed item blocks (1/3 mixed comparisons). Regarding
normativity, with CTT scoring, the mean trait correlation deviated from the true one
across all item keying levels, except for 1/2 of all triplets containing a negatively keyed item
– the completely balanced design of comparisons with equally-keyed and opposite-keyed
items. In addition, differences (trait profiles) were measured better than sums (absolute
trait levels) with CTT scoring.

Empirical Study: Differentiation of Judgments

To complement our simulation study, we conducted an empirical study that inves-
tigated how the relative nature of MFC responses contributes to the measurement
of individual differences. Following Kahnemann (2011), we assume that comparative
judgments as elicited in the MFC format provide more information on the differ-
entiation between behaviors within a person than absolute judgments as elicited in
the TF format. Because the two formats are comparable in terms of information
with three-item blocks, this should translate to differences in validity. The hypothe-
ses and the design of this study were preregistered on the Open Science Framework
(https://osf.io/2673z/?view_only=05ae155a7a5c41f48d2bb4a7a2069c5c).

H1: Big Five latent traits in the MFC format and Big Five latent traits in the TF format
will correlate strongly (r > .50), but not perfectly (r < reliability level6).

H2: Big Five latent traits in the MFC format will show higher convergent validities than
Big Five latent traits in the TF format.

H3: Big Five latent traits in the MFC format will show higher criterion-related validities
than Big Five latent traits in the TF format.

Instead of exploring all possible correlations for differences between MFC and TF, we
tested H2 and H3 with specific relationships between the Big Five and constructs and

6Later, we realized that latent correlations should be compared to 1 not to the reliability level, because
they are not attenuated by reliability.
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Table 13: Study design of the empirical study on differentiation of judgments.

Time 1 MFC first TF first

Big Five Triplets MFC Big Five Triplets TF

Self-report criteria: employment

WHOQOL-BREF

2 – 4 weeks

Time 2

Big Five Triplets TF Big Five Triplets MFC

SWLS

Self-report criteria: social, health, relationships, other

CES-D short form

Note.MFC = multidimensional forced-choice, TF = true-false, WHOQOL-BREF = World
Health Organization Quality of Life BREF, SWLS = Satisfaction with Life Scale, CES-D
short form = Center for Epidemiologic Studies–Depression Scale.

criteria relevant to personality, which are depicted in Table S12. For example, for number
of Facebook friends, we expected a correlation with extraversion but not with neuroticism.
Our expectations were based on meta-analyses or studies with large samples. We expected
all correlations to be small (.10 to .20) to typical (.20 to .30; Gignac & Szodorai, 2016).
Theoretically, reliability in the MFC format is slightly lower than in the TF format,

because latent traits cannot be estimated separately (see Introduction). The comparison
of the reliability of MFC trait estimates and TF trait estimates was exploratory.

Methods

Study Design

The data were collected in a within-subject design. We applied the original MFC version
of the Big Five Triplets (Wetzel & Frick, 2020) and another version in which the items
were presented separately with the response options true and false. Participants filled out
the two versions with an interval of at least two weeks between measurement occasions
(maximum: 31 days, with 70% at 14 days). They were randomly assigned to begin either
with the MFC or the TF version. The criteria and other questionnaires were distributed
across the two measurement occasions (see Table 13).
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Sample

The data were collected with an online access panel (Prolific Academic;
https://www.prolific.co/). Participants were rewarded 0.84 British pounds for each
part. We recruited participants from the United States, United Kingdom, and Canada
to ensure sufficient language proficiency in English. We recruited 1000 participants to
ensure stable model estimation. To achieve a balanced age distribution, we recruited 300
participants between the ages of 18 and 29 and 700 participants between 30 and 65. An
additional 18 participants, who had been dropped via Prolific’s payment regulations at
T1, were mistakenly re-invited to T2. Nine cases (of 1025) and seven cases (of 993) were
removed from T1 and T2, respectively, because their response time was less than –2 SD
below the mean of their questionnaire group. Due to technical issues, five participants
restarted the questionnaire in either T1 or T2. For those, the runs with more complete
data were kept. One participant was removed from T1 on request via email. Nineteen
participants (of 1018) were removed because they failed either one or both instructed
response items, resulting in a final N of 999. Out of those, 491 participants began with
the MFC version. Thirty-six participants provided only data for T1 and three only for
T2.
Sixty percent were female, 39% male and 1% transgender. The mean age was 37 years

(SD = 12 years). As their highest level of education, 13% had completed a high-school
diploma, 29% some college, 35% a Bachelor’s degree, and 17% some graduate school or
higher.

Measures

Big Five Triplets. We used the Big Five Triplets (BFT; Wetzel & Frick, 2020) to
assess the Big Five domains neuroticism, extraversion, openness to experience, agreeable-
ness, and conscientiousness. This MFC questionnaire consists of 20 blocks of three items
(triplets) that are matched for their social desirability. Due to the desirability matching,
the number of items per trait is not balanced with the number of items ranging from seven
for agreeableness to 16 for neuroticism. To construct the TF questionnaire, we used the
same items with the response options true and false, presenting three items per webpage.

Questionnaires. Quality of life was assessed with the World Health Organization Qual-
ity of Life BREF (WHOQOL group, 1996), which contains 26 items rated on a five-point
scale with varying category labels. A sample item reads: “To what extent do you feel that
physical pain prevents you from doing what you need to do?” with scale categories: not
at all, a little, a moderate amount, very much, an extreme amount. We excluded the
first two items from our analysis, because they represent overall ratings of quality of life
and health. Life satisfaction was assessed with the Satisfaction with Life Scale (Diener
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et al., 1985), comprising five items rated on a seven-point scale with category labels 1 =
strongly disagree, 2 = disagree, 3 = slightly disagree, 4 = neither agree nor disagree, 5
= slightly agree, 6 = agree, 7 = strongly agree. A sample item reads: “In most ways my
life is close to my ideal.” Mental health was assessed with the Center for Epidemiologic
Studies–Depression Scale (Cole et al., 2004), comprising ten items. Participants are asked
to indicate how often they have felt a certain way during the past week on a four-point
scale with scale categories rarely or some of the time (less than 1 day), some or little of
the time (1-2 days), occasionally or a moderate amount of time (1-4 days), most or all of
the time (5-7 days). A sample item reads: “I was bothered by things that usually don’t
bother me.”

Criteria. The criteria can be grouped into five areas: social, health, relationships, work,
and other. Social criteria included Facebook (yes/no) and number of Facebook friends.
Health criteria included body mass index (BMI), exercise regularly (at least once a week;
yes/no), frequency of drinking (never/≤ once a month/2-4 times a month/2-3 times a
week/≥ 4 times a week), and smoking (yes/no). Relationship criteria included dura-
tion/begin of relationship (year, month), marriage (yes/no), duration of marriage (mar-
riage date: year, month), divorce (yes/no), time since divorce (divorce date: year, month),
and having broken up with a romantic partner within the past 10 years (yes/no). Work
criteria included supervising people directly (yes/no), number of supervised people, ability
to hire employees (yes/no), ability to fire employees (yes/no), responsibility for a budget
(yes/no), and having changed place of employment within the past 10 years (yes/no).
Other/uncategorized criteria included charity work (yes/no). Table 14 shows descriptive
statistics on the criterion variables.

Analyses

Latent variable models were fit in Mplus (8.2; Muthén & Muthén, 1998-2017). MFC data
were modeled with the Thurstonian IRT model and TF data with the two-parameter
normal ogive model. Rating scale data (from WHOQOL-BREF, CES-D short form, and
SWLS) were modeled with the probit version of the graded response model.
For each construct (life satisfaction, quality of life, depression/mental health), a GRM

fitted to the respective questionnaire was combined with either the Thurstonian IRT for
MFC or the binary normal ogive model for TF7. Similarly, each criterion was regressed
on the Big Five from either the Thurstonian IRT for MFC or the binary normal ogive
model for TF. Regression coefficients were converted to correlations, i.e. we used regression

7Our preregistration indicated that we should fit a joint Thurstonian IRT – normal ogive model. However,
we realized that this would be mis-specified (e.g. uncorrelated errors for the same items) and model
complexity would bear the danger of estimation problems. Therefore, we decided to estimate separate
normal ogive and Thurstonian IRT models.
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Table 14: Descriptive Statistics for the Criterion Variables.

Criterion Mean SD Min Max N

Social

Number of Facebook friends 281.32 392.49 0.00 5000.00 739

Health

Body mass index 26.48 6.61 13.85 59.17 773

Frequency of drinking alcohol 2.88 1.28 1.00 6.00 868

Frequency of smoking 1.79 1.66 1.00 6.00 868

Relationships

Months in serious relationship 155.76 128.57 1.00 585.00 583

Months in marriage 163.94 127.97 1.00 533.00 318

Months since divorce 160.07 101.95 2.00 421.00 82

Work
Number of people supervised 14.19 28.26 1.00 250.00 224

Dichotomous variables % No % Yes N

Social

Facebook account 19 81 961

Health

Exercise regularly 35 65 962

Relationships

Married 63 37 867

Divorced 90 10 864
Broke up with a romantic part-
ner within the past 10 years 58 42 866

Work

Supervises people 64 36 663

Ability to hire employees 78 22 663

Ability to fire employees 82 18 660

In charge of a budget 70 30 663
Changed place of employment
within the past 10 years 34 66 996

Uncategorized/other

Charity 74 26 962

Note. Number of Facebook friends, body mass index and variables measuring time were
log-transformed prior to analysis. Health and relationship criteria were erroneously not
assessed for participants who received the true-false version at T1 and reported having no
Facebook account.
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coefficients standardized for both variables involved. The difference between Fisher Z-
transformed correlations of MFC versus TF latent traits with the construct or criterion
was tested in R.
Heteromethod correlations were estimated in a Thurstonian IRT model for MFC where

a normal ogive model for TF for one trait at a time was added. Error variances involving
the same item were allowed to covary. Empirical reliability was calculated from separate
Thurstonian IRT and normal ogive models with standard errors of MAP trait estimates
obtained from Mplus.

Results

We allowed two openness items to cross-load on neuroticism to improve model fit for the
normal ogive TF model. Those items had a strong content overlap with neuroticism and
high modification indices in the original model. The final model fit well according to the
RMSEA (RMSEA = .043), though other fit indices indicated a less than acceptable fit
(SRMR = .112, CFI = .801). However, note the general limitations of applying arbitrary
model fit cut-off criteria to models of personality data (Hopwood & Donnellan, 2010). For
the Thurstonian IRT model, we started with the same factor structure (i.e. including the
two cross-loadings). Although the Thurstonian IRT model should generally be identified
with mixed keyed comparisons, in our questionnaire, comparisons including opposite-keyed
items almost exclusively involved neuroticism. If this trait is defined in the opposite direc-
tion (i.e. emotional stability), there are only 8/60 (13%) mixed keyed comparisons and all
traits are positively correlated. This might be the reason why the Thurstonian IRT model
produced a Heywood case. We fixed an additional factor loading for agreeableness and
two instead of one residual variance for the first item block. This resulted in a reasonable
model fit: RMSEA = .036, SRMR = .081. (We do not report CFI because cutoffs for CFI
are not appropriate for MFC because the estimation is based on pairwise outcomes which
do not correlate as highly as individual items.) Table S13 displays the standardized factor
loadings for both the Thurstonian IRT and the normal ogive model.
Our first analysis investigated the correlations between the Big Five in the MFC format

and the Big Five in the TF format. Monotrait-heteromethod correlations ranged from .70
for conscientiousness to .93 for neuroticism, confirming H1. The pattern of intercorrelations
between the Big Five within each method, i.e. heterotrait-monomethod correlations was
mostly quite similar between the two versions, although some correlations indicated that
the measured constructs differed slightly. For example, the correlation between neuroticism
and conscientiousness was .28 in the MFC version and –.35 in the TF version (see Figure
S1 for the full multitrait-multimethod matrix). The mean intercorrelation within MFC
(.07) differed slightly from that in TF (.00), but did not indicate ipsativity.
Next, we added one construct or criterion a time to the Thurstonian IRT or normal
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ogive model to compare validity between MFC and TF. Twelve percent of the estimated
correlations went in the direction opposite to our prediction for both MFC and TF or were
around zero. We excluded these from the data analysis because investigating whether the
correlation is larger for MFC or TF is not sensible when either correlation goes in the
wrong direction. For example, the frequency of drinking alcohol correlated negatively with
neuroticism in both formats. As literature predicts a positive correlation, it is unclear
whether a higher or smaller negative correlation would be a sign of higher criterion validity
in this case. Table 15 displays correlations for the constructs and criteria that went in the
predicted direction together with their differences and test statistics8. Table S14 displays
the full correlation table. Correlations with constructs ranged from –.74 for neuroticism
with quality of life to .81 for neuroticism with depression (both in the TF format). For
the constructs, five differences were small and two medium: agreeableness with depression
(rMFC = –.08, rTF = –.41, difference in Fisher Z = 0.33) and agreeableness with quality of
life (rMFC = .11, rTF = .42, difference in Fisher Z = .30). All indicated a higher correlation
for TF, contradicting H2. Correlations with criteria ranged from –.22 for conscientiousness
with BMI to .33 for extraversion with number of Facebook friends (both in the MFC
format). For the criteria, differences between MFC and TF correlations were negligible
except for openness with the ability to fire employees, which correlated higher in MFC than
in TF (rMFC= .14; rTF = .04, difference in Fisher Z = .10), though this difference was not
significant. Thus, H3 predicting higher criterion validity for MFC was not confirmed. For
each construct and criterion, we examined the mean correlation across the Big Five within
each version for ipsativity. For fully ipsative trait estimates, the mean correlation with an
external criterion is constrained to zero (Clemans, 1966). Overall, the mean correlations
did not tend more towards zero in the MFC than in the TF version, indicating no notable
ipsativity.
Empirical reliabilities ranged from .67 for agreeableness to .89 for neuroticism (both in

the TF format). Differences between empirical reliabilities were mostly small except for
neuroticism, for which reliability was higher in the TF format (RelMFC = .83, RelTF =
.89, difference in Fisher Z = .23).

8Due to a programming mistake, health and relationship criteria were skipped for those who filled out
the TF version at T1 and indicated having no Facebook account. For those criteria, we report analyses
from the subgroup who indicated having a Facebook account. Analyses with the subgroup who filled
out the MFC version at T1 led to the same conclusions regarding the differences between MFC and
TF, although there were two small differences in favour of RS.
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Discussion

In sum, the empirical study showed that for the constructs, validities were slightly higher
for TF than for MFC whereas for the criteria, there were mostly no differences. Thus,
contrary to our expectations, we did not observe higher validity in the MFC than in the
TF version. There are some possible explanations for this. First, correlations between
constructs assessed with RS and the TF format might be increased by method biases
common to absolute responses such as acquiescence or social desirability. Some correlations
with constructs, especially for neuroticism, were even higher than might be expected. If
TF correlations were inflated by common method bias, the MFC method with smaller
but meaningful and still significant correlations actually indicated good validity. Second,
we tried to select criteria that could be evaluated more or less objectively and that were
predicted by differences between traits, i.e. a combination of high levels on one and low
on another trait would be predictive (e.g. high conscientiousness and low neuroticism
predicting relationship/marriage duration). However, from previous research it is unclear
whether the criteria we selected truly value differentiation, or whether high levels on one
trait can be compensated for by low levels on another trait. In the latter case, sums
would actually be predictive. Third, Baron (1996) argued that the MFC format should
result in greater differentiation between traits because they facilitate direct comparisons
between indicator behaviors. However, this might not happen in all cases. Participants
sometimes report that multiple items describe them equally well or badly, i.e., their utility
is subjectively identical (Bartram & Brown, 2003; Sass et al., 2020). This could either foster
deeper retrieval or facilitate random responding, thereby diminishing validity. Moreover,
according to a recent study on the response process in the MFC format (Sass et al.,
2020), sometimes participants first evaluate the items in a block in absolute terms without
proceeding to more differentiated comparisons.
Besides the comparison of MFC and true-false, we observed some of correlations that

went into directions opposite to what would be expected from the literature. For example,
the frequency of smoking correlated positively with agreeableness in the true-false version.
This might have been due to specifics of our questionnaire or the sample. For example,
in another study using the same questionnaire and a younger sample, the frequency of
smoking did not correlate significantly with agreeableness, both in a rating scale and the
MFC version (Wetzel & Frick, 2020).
Empirical reliabilities were smaller than would be expected from the simulation study.

However, they were mostly similar between MFC and TF, indicating that the amount of
systematic or unsystematic error might be comparable.
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General Discussion

There is increasing interest in applying the MFC format as an alternative to the rating
scale format. The Thurstonian IRT model has emerged as the most popular choice for
its analysis. However, previous simulation studies investigating Thurstonian IRT trait
recovery (Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019) were limited in terms of
conditions and replications. A key challenge in analyzing MFC data is to derive normative
trait estimates that are comparable between persons. The aim of our simulation study
was to investigate important aspects of normativity under realistic conditions. We found
that Thurstonian IRT model scoring resulted in normative trait estimates with mixed
keyed items, and was only marginally affected by the exact proportion of mixed keyed
items, unbalanced numbers of items per trait, positive trait correlations, number of traits
and block size. With all positively keyed items, Thurstonian IRT trait estimates showed
some properties of ipsative data. For normative trait estimates, recovery was similar to
TF, but lower than RS, which can be improved with longer MFC questionnaires. Bias of
trait correlations indicated that partially ipsative CTT trait estimates retained ipsative
properties in contrast to Thurstonian IRT trait estimates.
To gain insight into whether the relative judgment process underlying MFC responses

provides a higher level of differentiation, we conducted an empirical study, which compared
construct and criterion validity between the MFC and the TF format. Convergent validity
coefficients (with external constructs measured by RS) were generally lower in MFC than
TF, and criterion validities were generally the same. Moreover, we observed slight changes
of constructs. In the following, we discuss the effects of item keying on normativity, the
role of trait correlations, to what extent the MFC format facilitates deeper differentiation
between attributes, and the level of reliability compared to other response formats.

Normativity and Effects of Item Keying

In our simulation study, we observed ipsativity for questionnaires with all positively keyed
items. In previous simulation studies (Brown & Maydeu-Olivares, 2011; Bürkner et al.,
2019) this could have been attributed to empirically non-identified models, manifesting in
biased item parameters and trait correlations (Brown & Maydeu-Olivares, 2012). However,
in this study, we fixed item parameters and trait correlations to their true values, mimicking
the use of values obtained from single-stimulus data in operational assessment. Our results
show that this procedure was not sufficient to overcome ipsativity with all positively keyed
items. Apparently, the differences in loadings, which are required for identification of the
scale origin (Brown, 2016a), were not sufficiently pronounced. To illustrate, we simulated
response probabilities for two persons with identical profile shapes (differences between
traits) but different total scores (sums of traits). Response probabilities for those two
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persons differed by less than .10 for all 60 simulated item pairs in the MFC format when
all items were positively keyed. Thus, persons with similar profile shapes can hardly be
distinguished by their response probabilities in an MFC questionnaire measuring five traits
with all positively keyed items. Possible solutions include increasing the range of loadings
(though this would also affect item information) or introducing distractor items that have
zero loadings on the measured traits but match in terms of social desirability. For instance,
mixed keyed comparisons or different trait profiles led to more pronounced differences in
response probabilities. Future studies may investigate where the best balance lies. Further,
as model identification issues in the empirical application showed, applied researchers
should consider item keying under all possible trait directions.
From an empirical perspective, fixing parameters to values obtained from single-stimulus

response formats bears the danger of masking effects of the MFC format, such as changes
in item parameters depending on how items are assembled to blocks (Lin & Brown, 2017).
Luckily, for applied researchers, our results show that this procedure yields no benefit in
terms of normativity. An MFC questionnaire measuring a few traits with all positively
keyed items is just not recommended – regardless how it is scored. Moreover, classical
scoring is not recommended, because those trait estimates remain ipsative, regardless of
item keying. The only questionnaire design allowing non-biased results with CTT scoring
– all uncorrelated traits and half of comparisons between opposite-keyed items – is difficult
to realize in practice. In contrast, with mixed keyed items, the Thurstonian IRT model
allows deriving trait estimates that are normative, to at least the same extent as trait
estimates from single-stimulus formats.

Trait Correlations, Number of Traits and Number of Items per Trait

Our simulation showed that designing an MFC questionnaire in which all traits correlate
positively and/or measuring few traits can decrease the quality of recovery of true scores
with all positively keyed items, but only slightly with mixed keyed items. To our knowledge,
this simulation study was the first to investigate the effect of designing MFC questionnaires
with unequal numbers of items per trait. This was not detrimental to person score recovery.
Presumably, if the questionnaire includes mixed keyed comparisons, trait estimation might
be relatively insensitive to other questionnaire design factors. Thus, according to our sim-
ulation results, researchers and practitioners designing MFC questionnaires should ensure
that at least some item blocks include both positively and negatively keyed items. As long
as this condition is met, unequal numbers of items per trait, positive trait correlations and
few traits will probably not be detrimental to trait recovery.
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Block size

Our simulation was one of the first to vary block size for the Thurstonian IRT model
systematically (see also Brown &Maydeu-Olivares, 2011). The results showed that, holding
the number of pairwise comparisons constant, trait recovery decreased with larger blocks,
but only to a small extent. However, in comparison to presenting the same number of
items in a true-false format, the amount of information was still larger for block size four.
Moreover, we found that empirical reliability overestimated true reliability and more so
with increasing block sizes. This is in accordance with previous simulations varying block
size, though trait recovery was only examined in one replication there (Brown & Maydeu-
Olivares, 2011). When the Thurstonian IRT model is applied to empirical data, researchers
and practitioners should bear in mind that true reliability is probably slightly lower than
the estimate for block sizes > 2. However, the overestimation was especially pronounced
for all positively keyed items. With mixed keyed items it is probably negligible for practical
purposes.

MFC Responses and Differentiation Between Stimuli

In model-based scoring of MFC data, absolute trait standings are derived from relative item
comparisons (Brown & Maydeu-Olivares, 2018a). Specifically, all response process models
proposed so far, dominance or ideal point alike, can be expressed in terms of pairwise
item utility differences (Brown, 2016a). Predictably, simulation studies implementing other
response process and analysis models (Hontangas et al., 2015, 2016; Morillo et al., 2016)
showed the same results for item keying as the Thurstonian IRT model supporting the
notion that this is a fundamental property of comparative data, not a property of the
Thurstonian IRT model (Brown, 2016a). To gain detailed insight into this issue, in this
study, item keying was varied and bias for sums and differences of traits was computed.
Our results showed that differences were captured well with the MFC response format
across all conditions, but sums only with mixed keyed comparisons included.
We also looked at the relative nature of responses within an empirical study. We found

no evidence of higher predictive validity for the relative MFC responses as compared to
the absolute TF responses. It is likely that the MFC format, with its better measurement
of trait differences, shows the largest advantage for criteria that are predicted by differ-
ences between traits. Previous studies on validity using normative scoring usually observed
similar criterion validity for MFC as for RS (Wetzel, Roberts, et al., 2016; Wetzel & Frick,
2020; Zhang et al., 2019) or TF data (Wetzel, Roberts, et al., 2016). Results are mixed for
ipsative scoring with a meta-analysis showing higher criterion validities for partially ip-
sative trait estimates than for RS data (Salgado & Táuriz, 2014). As our simulation shows,
trait differences are measured better than trait sums with such scoring. This suggests that
there might be contexts in which trait differences are more predictive than trait sums, for
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example, when criteria are more specific to individual traits. A study of organizational 360-
degree appraisals (Brown et al., 2017) found that the MFC format consistently increased
validity, as measured by inter-rater agreement between self- and others’ appraisals. Future
research could investigate whether the benefits of normative scoring of MFC data emerge
more clearly in high-stakes contexts and/or where social desirability is a concern (Guenole
et al., 2018), or when response biases are more present such as in cross-cultural research.
Further, we observed lower convergent validity with similar constructs (all measured by

RS) for MFC than for TF. Previous studies observed lower convergent validity for MFC
compared to RS when there was common method bias on the side of RS (Lee et al., 2018;
Wetzel, Roberts, et al., 2016; Wetzel & Frick, 2020). The same might be true for our study.
Higher convergent validities were observed for MFC as compared to RS in studies when
the constructs were measured with the same format (i.e. MFC-MFC vs. RS-RS; Brown
et al., 2017; Wetzel & Frick, 2020). Some authors concluded that the formats measure
slightly different constructs (Guenole et al., 2018; Wetzel, Roberts, et al., 2016; Wetzel
& Frick, 2020). Our predictions were based on relationships established with absolute
judgment data. If the measured constructs change their meaning with response format,
which is likely given the prevalence of format-specific response biases (Wetzel, Böhnke, et
al., 2016), we do not know what relationships to expect and might have missed out on
some.

Comparing Recovery of True Scores Across Response Formats and
Scoring Methods

For normative questionnaire designs, recovery of true scores in MFC-IRT was clearly lower
than in RS, but only slightly lower than in TF. This is attributed to the amount of infor-
mation: We kept the number of pairwise comparisons constant across block sizes so that it
was equal to the true-false format for block size three: With the Thurstonian IRT model,
three items (per block) provide three bits of binary information (because each pairwise
comparison has one threshold). The same items presented separately with a five-point
RS yield 12 bits of binary information (four thresholds per item). For block size two, the
amount of information was higher and for block size four lower in the TF format than
in MFC. When the number of items was duplicated, reliability was good with MFC-IRT
scoring (see Table S2 and Footnote 4). Similarly, other studies found trait estimation to
improve with longer questionnaires, larger blocks, and more informative ranking instruc-
tions (Brown & Maydeu-Olivares, 2011; Hontangas et al., 2015, 2016; Morillo et al., 2016).
Thus, when applying MFC questionnaires, researchers should bear in mind that precision is
generally lower than with RS questionnaires. When constructing new MFC questionnaires,
precision can be increased through more binary comparisons as with longer questionnaires
or larger blocks, though the expected increase is not linear because dependencies between
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pairwise comparisons also increase, as can be seen from our simulation results (see also
Yousfi, 2019). However, more comparisons might go along with higher cognitive load and
decreased test motivation – though no support was found for the latter in one study (Sass
et al., 2020). Alternatively, one can combine absolute and relative processes with using
graded comparisons (Brown & Maydeu-Olivares, 2018b) or a percentage-of-total format
(Brown, 2016b).

Limitations and Future Research Directions

We analyzed our simulation results with the condition yielding ipsative estimates always
included, conforming to our preregistration. Future research using statistical analyses of
simulation results could examine Thurstonian IRT trait estimation only including norma-
tive questionnaire designs (Frick, 2017).
In our empirical study, we encountered issues with Thurstonian IRT model identification,

similar to reports from other authors (Bürkner et al., 2019; Guenole et al., 2018). When
researchers wish to estimate all MFC parameters freely or single-stimulus data are not
available, guidelines on how to cope with model identification issues in Thurstonian IRT
would be helpful. Using Bayesian estimation procedures might help to identify otherwise
problematic models (Bürkner et al., 2019). Part of our model identification problems might
be due to only 13% of comparisons between opposite-keyed items in our questionnaire when
the direction of neuroticism was reversed. Thus, future questionnaire construction should
consider item keying under different definitions of trait direction.
This simulation study aimed at discovering maximal precision of trait estimation when

no response distortion was present. Thus far, research comparing the MFC and the RS
format based on normative trait estimates under conditions that elicit response distortions
is scarce. Any absolute judgements are open to systematic biases influencing all responses,
and these general factors are often difficult to separate from the true scores, thus artificially
inflating reliability and potentially validity. However, more research is needed to illumi-
nate this question. Moreover, we simulated optimal questionnaires, i.e. with high factor
loadings,– in contrast to other recent simulation studies (Bürkner et al., 2019; Schulte et
al., 2020). Future research could examine how wider ranges of factor loadings and varying
sample sizes might interact with ipsativity and the questionnaire design factors specific to
our simulation study, namely number of items per trait and block size.
In this simulation, we compared trait recovery across different block sizes holding the

number of pairwise comparisons constant. This allowed us to gain insight into the effect
of local dependencies. However, the number of items changed between the block sizes.
To examine the effect of designing MFC questionnaires with different block sizes from
the same item pool, future research could hold the number of items instead of pairwise
comparisons constant, though this changes the amount of information. Moreover, there
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is little empirical research on the effect of different block sizes on participants’ response
processes (Sass et al., 2020) and on the extent of item context effects.
Both in our simulation and in the empirical study, we compared pure MFC with pure

single-stimulus designs. Future research could include comparisons with a graded-response
format (Brown & Maydeu-Olivares, 2018b) or percentage-of-total formats (Brown, 2016b).
Further, the effect of different ranking instructions on trait recovery and on validity, fak-
ability, response processes and item context effects have not been examined thoroughly.

Conclusion

In general, trait estimates from the Thurstonian IRT model were normative in contrast
to trait estimates from CTT scoring. Precision was comparable to the true-false but lower
than the rating scale format. With all positively keyed items and positively correlated
traits, Thurstonian IRT trait estimates displayed ipsative properties despite using true
item parameters and trait correlations for their estimation. Nevertheless, as long as item
keys were mixed, normative trait estimates could be derived and other questionnaire design
factors were less important. Comparing construct and criterion validities between the
multidimensional forced-choice and the true-false format showed that direction and size
of validity coefficients to expect may depend on the response format. It is possible that
criteria that value differentiation or contexts where biases are more pronounced would be
needed for the MFC format to show its advantages.
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Abstract

The multidimensional forced-choice (MFC) format has been proposed to reduce faking
because items within blocks can be matched on desirability. However, the desirability
of individual items might not transfer to the item blocks. The aim of this paper is to
propose a mixture item response theory model for faking in the MFC format that allows
to estimate the fakability of MFC blocks, termed the Faking Mixture model. Given current
computing capabilities, within-subject data from both high- and low-stakes contexts are
needed to estimate the model. A simulation showed good parameter recovery under various
conditions. An empirical validation showed that matching was necessary but not sufficient
to create an MFC questionnaire that can reduce faking. The Faking Mixture model can
be used to reduce fakability during test construction.

Keywords: multidimensional forced-choice, faking, item response theory, mixture model
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Modeling Faking in the Multidimensional
Forced-Choice Format - The Faking
Mixture Model

In many personality assessment contexts, individuals are motivated to obtain certain re-
sults. For example, when personality assessment is used in personnel selection, individuals
may be motivated to distort their responses to make a favorable impression and get a job
offer. In clinical assessment, individuals may be motivated to distort their responses to
obtain a certain diagnosis or compensation. Such distortions are called faking. Although
there is no agreed-upon definition of faking, the consensus is that it is a motivated behav-
ior that occurs as an interaction between a person and a situation, and results in leav-
ing an inaccurate or enhanced impression (MacCann et al., 2011). Thus, faking must be
distinguished from unintentional response distortions such as self-deceptive enhancement
(Paulhus, 2002), careless responding (Curran, 2016; Meade & Craig, 2012) or response
styles (Paulhus, 1991; Wetzel et al., 2016). Most assessments are currently conducted with
rating scale questionnaires. Faking seems to be quite prevalent on rating scales resulting
in increases of .1 to .6 SD in trait estimates (Birkeland et al., 2006; Viswesvaran & Ones,
1999) in real or simulated high-stakes situations.

The Multidimensional Forced-Choice Format as a Remedy

The multidimensional forced-choice (MFC) format has been proposed as an alternative
to rating scales in order to prevent faking. In the MFC format, several items measuring
different attributes are combined into blocks. People have to rank order the items within a
block according to how well the items describe them. There are other variants, for example,
selecting the items that describe oneself most and/or least (for an overview of different vari-
ants of the MFC format and how to model them, see Brown & Maydeu-Olivares, 2018a).
In order to prevent faking in the MFC format, items with equal desirability are combined
into blocks, such that all rank orders of items are equally desirable. In this case, items
cannot be ranked by their desirabilities. This implies that estimates of item desirability
are accurate at the group level and individuals will not differ in their evaluations of item
desirability. By contrast, for rating scales, it is often theoretically obvious that higher (or
lower) response options are indicative of desirable behaviors or traits.
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Overall, using the MFC format has resulted in less evidence of faking than when rating
scales are used (Cao & Drasgow, 2019). This has been particularly apparent when faking
was evaluated on the group level via mean differences between groups that were instructed
to respond honestly compared with groups that were instructed to fake (e.g., Christiansen
et al., 2005; Jackson et al., 2000). So far, only two studies have examined faking on the
individual level by correlating rank orders of individuals between honest and faking con-
ditions (Heggestad et al., 2006; Wetzel et al., 2021). Heggestad et al. (2006) found similar
faking for the MFC format and rating scales. Wetzel et al. (2021) found that rank orders
changed when faking, for both the MFC format and the rating scales. The finding that
MFC questionnaires are still fakable to some extent raises the question of whether item
matching can be improved.

Matching and Item Interactions

Indeed, there is evidence that poorly matched MFC blocks elicit higher agreement as
to the optimal rank order than closely matched blocks (Hughes et al., 2021). Further,
item desirability might differ across contexts. For example, in an instructed faking study,
participants reported higher agreeableness when applying for a job as a nurse compared
to as a manager (Pauls & Crost, 2005). Thus, if desirability values were obtained with
a manager sample, items that are positively keyed towards agreeableness will increase in
desirability and items that are negatively keyed will decrease in desirability when evaluated
by nurse applicants. A questionnaire that is fake-proof for one sample or assessment context
might not necessarily be so for another one.
Current procedures for matching items to MFC blocks are based on the assumption

that item desirability is roughly the same when items are answered separately (i.e., in
single-stimulus formats) or relative to each other (i.e., in an MFC format). However, item
desirability might change or be evaluated in a more differentiated manner within the con-
text of item blocks (Feldman & Corah, 1960; Hofstee, 1970). In line with this idea, some
researchers have argued that desirability should be viewed as a property of response op-
tions rather than of items (Kuncel & Tellegen, 2009). More generally, several researchers
have observed changes in item parameters or slight changes in constructs between single-
stimulus and MFC formats (e.g., Guenole et al., 2018; Wetzel & Frick, 2020) and even
changes in item parameters within the MFC format, depending on which items were com-
bined into blocks (Lin & Brown, 2017). To improve the construction of fake-proof MFC
questionnaires, a method is needed to estimate the fakability of each MFC block (i.e., the
extent to which it can be faked). However, current methods only allow the fakability of
the whole questionnaire to be assessed (i.e., for all blocks simultaneously). Moreover, they
make assumptions that might be wrong.
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Assessing Fakability

The fakability of a questionnaire is most often evaluated by comparing responses and
trait estimates from a real or simulated high-stakes situation with those from a low-stakes
situation. Usually, traits in a high-stakes situation are estimated by fixing the item param-
eters to the estimates obtained in a low-stakes situation (e.g., Wetzel et al., 2021). This
approach, termed the trait shift approach in the following, can be applied to both rating
scales and MFC questionnaires. It shows how estimated traits would change in practice,
when the true model was naively applied. From a modeling perspective, the trait shift
approach assumes a shift in the response process, similar to many models formulated for
response styles (Henninger & Meiser, 2020; Plieninger & Heck, 2018). As a shift model, the
trait shift approach assumes that both the content trait and faking influence all responses.
Specifically, the shift is weighted by the item loading, and, across all items measuring
the same trait, fakers are assumed to increase their trait level to the same extent. These
assumptions might be wrong.
Building on the trait shift approach, Pavlov et al. (2019) proposed that faking scores

should be regressed on honest scores to model both a tendency to fake and moderation
effects on it. One drawback of their approach is that it relies on observed scores, which are
inherently less reliable for MFC than for rating scales (Brown & Maydeu-Olivares, 2018b;
Frick et al., 2021). Further, none of the current modeling approaches for faking in MFC
questionnaires allows the fakability of individual items or blocks to vary. Thus, they allow
faking to vary by person, but fakability is the same for all items or blocks. From a basic
research perspective, this assumption might be wrong. From a practical perspective, these
approaches allow the fakability of the questionnaire to be examined as a whole, but they
do not show how to modify the questionnaire to reduce its fakability.
Within item response theory, Böckenholt (2014) proposed the Retrieve-Edit-Select

Framework in which responses based on initial retrieval are edited in a certain direc-
tion. Leng et al. (2019) proposed the retreive-deceive-transfer model, which incorporates
both the retrieval of socially desirable information and the editing of responses. However,
these models are formulated for single-stimulus items, for which a desirable direction can
clearly be identified. For MFC blocks, a desirable rank-order cannot easily be identified a
priori.
To improve the construction of fake-proof MFC questionnaires, an item response model

for faking tailored to the MFC format is needed. Such a model would allow researchers
to evaluate fakability on the block level and discard or modify blocks accordingly. More
generally, it would show which properties describe less fakable blocks. By focusing on the
block level, it would reflect the MFC response process better than the current approaches.
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Aim

The aim of this paper is to propose a model for faking in the MFC format that allows
the fakability of individual MFC blocks to be evaluated considering that the tendency to
fake varies between individuals. Hence, the main purpose of the model is to help construct
more fake-proof questionnaires.

Effects of Faking on MFC Rank Orders

In a high-stakes situation, respondents do not necessarily fake all items or all traits (Ziegler,
2011). Estimates of how many people fake their answers range from 14% to 40%, with the
consensus being that around 25% fake (MacCann et al., 2011). Therefore, it is appro-
priate to conceptualize the response process in a high-stakes situation as a mixture of
two processes: an honest responding process and a faking process. Both processes have
implications for the rank orders selected on MFC blocks.
In a high-stakes situation respondents might select the same rank order as in a low-stakes

situation for several reasons: (a) they are not motivated to fake, (b) they do not need to
fake, because their responses are already desirable, or (c) the MFC block is closely matched
(i.e., all items are equally desirable). When facing a closely matched block, respondents
might react in several ways: First, respondents might decide to give an honest response
(Berkshire, 1958), or second, they might perceive their honest response as more desirable
(Gordon, 1951).
Alternatively, in a high-stakes situation, respondents might select rank orders that do not

reflect their content trait levels but might instead reflect what they perceive as desirable.
In this case, the distribution of rank orders can show how well the items were matched.
For a closely matched block, respondents who are motivated to fake might either respond
randomly or retrieve more information about the desirabilities of the items. For example,
they might evaluate the item desirabilities in a more differentiated manner (Feldman &
Corah, 1960; Hofstee, 1970) in order to be able to rank the items on the basis of their
desirabilities. To the observer, both choices result in a uniform distribution of rank orders
across respondents. In line with this idea, Kuncel and Borneman (2007) used rating scale
items that showed bivariate or trivariate response distributions under faking instructions
as indicators of faking.
By contrast, respondents facing a poorly matched block will agree on which rank orders

are preferable. To the observer, the distribution of rank orders will be skewed. For example,
there might be one rank order that is clearly most desirable and therefore has the highest
frequency. Or, there might be one item in a block that is most (or least) desirable, leading
to higher frequencies of rank orders that favor (or disfavor) this item. Indeed, in one study,
agreement about which rank order should be preferred was higher the worse the matching
was (Hughes et al., 2021).
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The Faking Mixture model

The proposed model for analyzing faking in the MFC format is a mixture model that
allows the occurrence of faking to vary by block and by person. Therefore, I will call it
the Faking Mixture model in the following. The Faking Mixture model can be used to
estimate the fakability of blocks, the probabilities of different rank orders when faking
and individuals’ faking tendencies. Given current computing capabilities and programs,
within-subject data from both a low- and a high-stakes situation are needed for model
estimation. The current purpose of the model is thus to improve MFC test construction,
but not to correct content trait estimates for faking.

Model Formulation

The proposed model is a mixture model: In a high-stakes situation, individuals base their
responses either on the desirability or on the content trait. By distinguishing between two
response processes, it makes explicit that not all individuals fake all blocks when in a high-
stakes situation. This is in contrast to a shift model, in which both the content trait and
faking influence all responses. For simplicity, in the following, I will use the terms honest
responding for responses that are based on the content trait and faking for responses that
are based on desirability. However, the assessment situation and the sample both shape,
for example, whether honest responding is influenced by socially desirable responding. The
model properties are defined by the following model equations.
The Faking Mixture model models the probability of selecting a certain rank order.

This is in contrast to most IRT models for MFC data that can be expressed in terms of
pairwise preferences (Brown, 2016), for an exception, see Joo et al. (2018). Let k index
the item block within the questionnaire and r = 1 . . . R the possible rank orders (i.e., the
permutations). For a block of size B, there are R = B! possible rank orders (permutations).
For example, if B = 3 the possible rank orders are 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, and
3-2-1. Further, let F be an indicator variable that takes on a value of 1 if a person fakes
and 0 otherwise. Then, the probability that the observed rank order X for person j on
block k takes on a value of r can be described as follows:

P (Xjk = r) = P (Fjk = 1)P (Xk = r|Fjk = 1) + P (Fjk = 0)P (Xjk = r|Fjk = 0) (1)

The probability of selecting rank order r for block k when faking, termed the rank order
probability P (Xk = r|Fjk = 1), varies only by block but not by person. To reflect this,
the person subscript j is dropped. The rank-order probabilities are linked to continuous,
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unconstrained rank-order parameters βkr:

P (Xk = r|Fjk = 1) =
exp(βkr)∑R
u=1 exp(βku)

(2)

For identification, and without loss of generality, the parameter for the first rank order
in each block is fixed to zero: βk1 ≡ 0. As a consequence of this indeterminacy, the
rank-order parameters βkr cannot be interpreted in absolute terms but only relative to
each other. For example, a relatively high rank-order parameter βkr translates into a
high probability of selecting this rank order when faking. It is convenient to focus on
the rank-order probabilities, because they can be interpreted in absolute terms. If the
block is closely matched (i.e., the differences between the item desirabilities are small), the
rank-order probabilities will be approximately equal. If matching is poor, the rank-order
probabilities will be relatively higher for one or several rank orders. The R = B! rank-order
parameters βkr are not linked to the B items; hence, they cannot be expressed in terms
of individual item desirabilities. However, in this way, the rank-order probabilities reflect
differences in item desirabilities within a block and hence capture item interactions and
the relative nature of the MFC responses.
The probability of faking a block depends on the block fakability αk and a faking trait

θj modeled via a probit link:

P (Fjk = 1) = Φ (θj + αk) (3)

The block fakability αk is not an independent parameter but is obtained from the rank-
order parameters βkr. It is the quantile of the standard normal distribution at the sum
of squares of the rank-order probabilities. The quantile is used to transform the sum of
squares from the probability scale into a continuous scale. If Φ(x) denotes the cumulative
standard normal distribution function, evaluated at x, and Φ−1 its inverse, then:

αk = Φ−1
(

R∑

r=1

(P (Xk = r|Fjk = 1)−M [P (Xk|Fjk = 1)])2
)

(4)

Thus, the block fakability αk, and with it the probability of faking a block, increases
with greater variance in the rank-order probabilities. If a preferable ranking can be clearly
identified for a block, the block fakability αk is higher, and respondents are more likely
to fake this block. If items within a block cannot be ranked by desirability, the block
fakability αk is lower, and respondents are more likely to respond honestly (i.e., based on
the content traits).
The faking trait θj captures the propensity to fake, both in terms of the sample mean

and interindividual variation around it. Even for closely matched blocks, a high faking
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trait leads to high faking probabilities. This can capture the fact that a situation might
strongly motivate respondents to fake, even when they differ in which rank orders they
perceive as desirable.
The response probabilities when responding honestly P (Xjk = r|Fjk = 0) follow an IRT

model for MFC data. For my applications, I chose the Thurstonian IRT model (Brown
& Maydeu-Olivares, 2011), because it is the most broadly applicable model and is based
on a linear factor structure, which is commonly assumed for personality questionnaires.
In the Thurstonian IRT model, it is assumed that a latent, continuous value called utility
underlies the responses. For personality questionnaires, the utility reflects how useful the
item is for describing the person. The utility t of person j on item i is a linear function of
a latent content trait ηj , weighted with an item loading λi and having an intercept µi and
an error term εji:

tji = µi + λiηj + εji (5)

The errors of item i are normally distributed with εi ∼ N(0, ψi).
According to Thurstone’s law of comparative judgment (Thurstone, 1927), items within

blocks are ranked according to the magnitude of their utilities. Response probabilities for
rank orders can be calculated by following the formulation by Yousfi (2018):

P (Xjk = r|Fjk = 0) =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
MVN

(
Atjk(r),Aψ2

k(r)
)
dAtjk(r) (6)

Vectors of utilities tjk and of error variancesψ2
k are sorted in descending order, according to

the selected rank order r. Then, the response probability is the area under the multivariate
density where the first utility is larger than the second, the second is larger than the third
and so forth. This order is ensured by the limits of the integral and the comparison matrix
A. For example, for a block of size B = 3:

AB=3 =

(
1 −1 0

0 1 −1

)
(7)

Within a structural equation framework, Thurstonian IRT models can easily be es-
timated via limited information methods (Brown & Maydeu-Olivares, 2011; Maydeu-
Olivares, 1999; Maydeu-Olivares & Brown, 2010). However, estimating item parameters
on the basis of response probabilities for rank orders is hardly feasible with the current
computing capabilities and programs that are available to the usual researcher. The multi-
ple integral in Equation (6) can be solved by numerical integration (Genz & Bretz, 2009),
which is so far implemented only in R, Matlab, and Fortran. However, this numerical
integration is apparently too complex to be used for item parameter estimation as imple-
mented in mirt (Chalmers, 2012), resulting in unreasonable computing times and estimates.
Bayesian estimation programs, such as JAGS (Plummer, 2017) or Stan (Carpenter et al.,
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2017), do not include such a function.
As a solution, response probabilities when responding honestly are estimated with data

that can be assumed to primarily reflect the content traits. For this, item and trait pa-
rameters are estimated in a structural equation framework in a first step and the response
probabilities are calculated with these parameters. The Faking Mixture model is then
estimated in a second step, by using data from the same respondents in a high-stakes sit-
uation, with the response probabilities that occur when the respondents answer honestly
P (Xjk = r|Fjk = 0) fixed to those obtained in the first step.
Filling in the mixture Equation (1) with the above specifications gives the response

probability under the Faking Mixture model, where the P (Xjk = r|Fjk = 0) are calculated
a priori:

P (Xjk = r|θj) = Φ (θj + αk)
exp(βkr)∑R
u=1 exp(βku)

+ (1− Φ (θj + αk))P (Xjk = r|Fjk = 0) (8)

Implementation

The Faking Mixture model is implemented in a Bayesian framework with the following
priors and hyperpriors:

β ∼ N (0, SD(β))

θ ∼ N (M(θ), SD(θ))

M(θ) ∼ N(1, 2)

V ar(θ) ∼ Inverse Gamma(1.5, 1)

V ar(β) ∼ truncated N(5, 10, 0, 15) (9)

Thus, these hyperpriors allow the mean block fakability (determined by Var(β)) and the
mean and the variance of the faking trait to be estimated from the data, thereby reducing
prior sensitivity (Fox, 2010). In preliminary simulations, the priors and hyperpriors were
fine-tuned to ensure model convergence and good recovery under various conditions. The
parameters can be sampled from the posterior (e.g., via Hamiltonian Monte Carlo sampling
as implemented in Stan; Stan Development Team, 2020b). The Stan Code for estimating
the Faking Mixture model can be found at https://osf.io/wfhz4/.

Simulation Study: Parameter Recovery

A small simulation study was conducted to evaluate parameter recovery for the Faking
Mixture model. Response probabilities when responding honestly (P (Xjk = r|Fjk = 0))
were based on the true item and trait parameters. 1,000 replications were conducted. The
R code used to run and analyze the simulation, along with the simulation materials and
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results, can be found at https://osf.io/wfhz4/.

Simulation Design

Responses were simulated for 500 respondents, 20 blocks of three items each, and five
traits. The five traits were drawn from a multivariate normal distribution with a mean
vector of 0, variances of 1, and correlations set to meta-analytic estimates for the Big Five
(neuroticism, extraversion, openness, agreeableness, and conscientiousness) as reported
by van der Linden et al. (2010), see Table 1. The faking trait θ was drawn from a

Table 1: Correlations used in the simulation study
Trait E O A C
N −.36 −.17 −.36 −.43
E .43 .26 .29
O .21 .20
A .43

Note. N = neuroticism, E = extraversion, O = openness, A = agreeableness, C = conscientiousness.
These are meta-analytic correlations between the Big Five as reported by van der Linden et al.,
2010.

normal distribution, independent of the content traits. Note that although this might be
unrealistic, it represents a correctly specified model as long as the faking trait and the
content traits cannot be estimated at the same time.
Three factors were varied and completely crossed, that is, all possible combinations

of the factor levels were realized: fakability, faking trait mean M(θ), and faking trait
variance V ar(θ). The fakability factor was varied with the levels high and low. For high
and low fakability, the rank-order parameters βkr were drawn from U(−4, 4) and U(−2, 2),
respectively. For low fakability, 90% of the highest rank-order probabilities per block are
between .3 and .6 (M = .4, SD = .1). For high fakability, 90% are between .4 and .9
(M = .6, SD = .2). The faking trait mean factor was varied with the levels 0, 1, and 2.
With these levels, across blocks, the mean probability of faking ranges from .15 for low
fakability and M(θ) = 0, mimicking the lower estimate of the propensity to fake from
MacCann et al. (2011), to .90 for high fakability and M(θ) = 2, representing the extreme
end of faking. The faking trait variance factor was varied with the levels 0.2, 0.5, and 1. In
relation to the content trait variance of 1, 0.2 is a typical variance for a trait that captures
response biases (Billiet & McClendon, 2000; Plieninger & Heck, 2018).

Data Generation

To simulate the data for honest responding, item parameters were drawn from the following
distributions: µ ∼ U(−1, 1), λ ∼ U(.65, .95). These are typical values for standardized
item utilities with good measurement properties (Brown & Maydeu-Olivares, 2011). To
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ensure that the loadings allow for the recovery of normative trait levels, they were redrawn
until there were no linear dependencies between loadings within a block. If there are linear
dependencies within a block, for example, because all loadings have approximately the
same size or are multiples of each other, the Thurstonian IRT model is not identified (see
Brown, 2016). In addition, the direction of factor loadings was set such that half of the
pairwise item comparisons within blocks were between differently keyed items (i.e., one
negative, one positive factor loading). This has been shown to aid the recovery of normative
trait levels in simulation studies (e.g., Brown & Maydeu-Olivares, 2011; Bürkner et al.,
2019; Frick et al., 2021). To simulate standardized utilities, the error variances were set
to ψ2

i = 1− λ2i . Errors were drawn from εi ∼ N(0, ψi). Using Equation (5), utilities were
calculated given the traits, item parameters and errors. To obtain the responses when
responding honestly, the rank order of utilities within each block was determined for each
person.
To simulate the data in a high-stakes situation, the parameters for the Faking Mixture

model were drawn according to the respective condition of the simulation design. Next,
the probabilities of faking the blocks were calculated using Equation (3), for each person
and each block. To determine whether a block was faked by a person, a dichotomous
outcome was drawn from a binomial distribution with the respective probability. To obtain
the response for a faked block, a categorical outcome was drawn from a multinomial
distribution with the rank-order probabilities P (Xk = r|Fjk = 1) for this block. To obtain
the responses in a high-stakes situation, for each faked block, the response when responding
honestly was replaced by the respective categorical outcome.
Response probabilities when responding honestly were calculated with Equation (6) with

the true item and trait parameters. Then, the Faking Mixture model was fit to the faking
data, given the response probabilities when responding honestly calculated in the previous
step. R (R Core Team, 2020) was used for data generation and analysis along with the
packages rstan (Stan Development Team, 2020a), MASS (Venables & Ripley, 2002), psych
(Revelle, 2019), and mvtnorm (Genz & Bretz, 2009; Genz et al., 2020). Stan (Carpenter
et al., 2017) was used for model estimation. Three chains were run with 3,500 iterations
out of which the first 750 were discarded. In preliminary simulations, these values were
selected to ensure convergence and sufficient parameter recovery.

Data Analysis

The coverage of 95% posterior intervals was computed along with the correlation between
true and estimated values, mean bias and variance in bias for posterior medians of (a) the
main parameters: rank-order parameters βkr and the faking trait θ, (b) the hyperparam-
eters: faking trait mean M(θ), faking trait variance V ar(θ), and rank order parameter
variance V ar(β), and (c) the derived parameters: block fakabilities αk, and rank-order
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probabilities P (Xk = r|Fjk = 1). Within each condition, I evaluated whether the absolute
levels of parameter recovery were satisfactory. Furthermore, for each dependent variable,
I calculated the explained variance within an ANOVA framework to see whether recovery
varied by the manipulated simulation factors. In contrast to the F -test, explained variance
is descriptive and insensitive to heterogeneous variances, which occurred in some of the
simulation conditions.

Results and Discussion

For all parameters, the coverage of the 95% posterior intervals was almost perfect across
conditions (≥ .95) and did not vary systematically with the manipulated factors (Table
2). Mean bias was generally low in relation to the scale of the respective parameter (Table
3). The hyperparameters, faking trait mean M(θ) and variance V ar(θ), and the variance
of the rank-order parameters V ar(β) were recovered well across the simulated conditions.

Regarding the main parameters, the manipulated factors showed some effects (Table
2). For the faking trait θ, as would be expected for any latent trait, the faking trait
variance factor V ar(θ) explained the largest amount of variance in the correlations (67%,
Table 2) and SDs of the bias (72%): The correlations (see Figure 1) and SDs of the
bias increased (with means of 0.34, 0.44, and 0.54) as the faking trait variance V ar(θ)

increased. Moreover, 18% of the variance in the correlations and 14% in the SDs of the
bias were explained by the faking trait mean factor M(θ) (Table 2): The correlations
(Figure 1) were highest and the SDs of the bias were lowest for a faking trait mean M(θ)

of 1, followed by a means of 0 and 2 (the mean SDs of the bias were: 0.40, 0.43, and 0.48,
for M(θ) = 1, 0, and 2, respectively). Such values are to be expected because differences
in θ are harder to detect the more extreme the mean is, because, for a high (low) faking
trait mean, most (almost no) individuals are predicted to fake.
For the rank-order parameters βkr, the faking trait mean factor M(θ) explained the

largest amount of variance in the correlations (63%, Table 2) and the second largest amount
of variance in the SDs of the bias (24%). The correlations (Figure 1) increased and the
SDs of the bias decreased (with means of 1.07, 0.78, and 0.63) with higher faking trait
means M(θ). Thus, the rank-order parameters are better recovered the more the sample
is inclined to fake. There was a systematic negative bias for the rank-order parameters
βkr: 94% of the mean biases were < 0. This negative bias emerged by design because
the only effect of the βkr is through their transformation into rank-order probabilities
P (Xk = r|Fjk = 1), which add up to 1. Consequently, there is some dependency even
among k − 1 free rank-order parameters βkr. If any of the βkr within a block have a
positive bias, all others must have a negative bias, leading to a negative mean bias. Bias
in absolute terms increased with fakability (with means of -0.13 for low and -0.36 for high
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Table 2: Variance explained in % by the manipulated factors in the simulation study
Factor Main parameters

θfj βkr

r MB SDB 95% r MB SDB 95%

V ar(β) 1 0 1 0 0 31 63 0
Mean(θ) 18 8 14 0 63 4 24 6
V ar(θ) 67 1 72 3 2 0 0 0
V ar(β)×Mean(θ) 8 0 6 0 7 0 0 1
V ar(β)×V ar(θ) 0 0 0 0 1 0 0 0
Mean(θ)×V ar(θ) 1 5 2 0 3 0 1 0
V ar(β)×Mean(θ)×V ar(θ) 0 0 1 0 1 0 0 0
Residuals 6 85 5 96 23 65 13 93

Hyperparameters

Mean(θ) V ar(θ) V ar(β)

B 95% B 95% B 95%

V ar(β) 0 0 0 0 1 0
Mean(θ) 0 0 0 0 4 1
V ar(θ) 0 1 1 1 0 0
V ar(β)×Mean(θ) 0 0 0 0 1 0
V ar(β)×V ar(θ) 0 0 0 0 0 0
Mean(θ)×V ar(θ) 0 0 0 0 0 0
V ar(β)×Mean(θ)×V ar(θ) 0 0 0 0 0 0
Residuals 99 99 99 99 94 99

Derived parameters

αk P (Xk = r|Fjk = 1)

r MB SDB 95% r MB SDB 95%

V ar(β) 30 0 19 0 27 5 18 1
Mean(θ) 18 0 37 0 32 76 62 1
V ar(θ) 0 0 0 0 2 2 2 0
V ar(β)×Mean(θ) 10 0 6 0 18 7 6 0
V ar(β)×V ar(θ) 0 0 0 0 1 1 0 0
Mean(θ)×V ar(θ) 0 0 1 0 3 4 3 0
V ar(β)×Mean(θ)×V ar(θ) 0 0 0 0 2 1 0 0
Residuals 42 99 38 100 16 4 9 98
Note. r = correlation, MB = Mean bias, SDB = SD bias, 95% = coverage of
95% posterior intervals, V ar(β) = fakability.
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Figure 1: Correlations between true and estimated parameters in the simulation study by
condition
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Table 3: Mean bias across conditions in the simulation study
Variable Mean SD lower upper
θfj 0.00 0.05 -0.09 0.08
βkr -0.24 0.20 -0.63 0.01
Mean(θ) 0.00 0.05 -0.08 0.09
V ar(θ) 0.01 0.07 -0.10 0.12
V ar(β) 0.05 1.02 -1.66 1.84
αk 0.00 0.03 -0.05 0.04
P (Xk = r|Fjk = 1) 0.00 0.00 0.00 0.00
Note. lower = 5% quantile, upper = 95% quantile,
V ar(β) = fakability.

fakability), explaining the largest amount of variance (31%, Table 2), because fakability
was operationalized as variance in the rank-order parameters. Similarly, the SDs of the bias
increased with higher fakability (with means of 0.54 and 1.12 for low and high fakability,
respectively), explaining 63% of the variance (Table 2). Still, in absolute terms, the bias
across conditions was small (Table 3) and the correlations between the true and estimated
rank-order parameters were almost perfect (mean of .94, SD = .04, Figure 1). The effects
for the block fakability parameters αk mirrored those found for the rank-order parameters
βkr. For the rank-order probabilities, differences between the conditions were negligible in
size. Additional information on parameter recovery can be found in Figures S1-S161.
To sum up, the simulation showed that the parameters of the Faking Mixture model

could be recovered well across the simulated conditions. As to be expected, the reliability of
the faking trait increased as the variance increased. There was a slight dependency between
the recovery of the faking trait and of the rank-order parameters, such that recovery for the
latter was better with a higher faking trait mean and vice versa. However, this dependency
was small enough to be negligible.

Empirical Validation

To validate the Faking Mixture model and to illustrate its application, I used a dataset that
was already analyzed by Wetzel et al. (2021) with the trait shift approach. Participants
in this sample filled out an MFC personality questionnaire under both instructions to be
honest and instructions to fake good. They were randomly assigned to either a version
of the questionnaire in which all items within blocks were matched for desirability or a
version in which some blocks were not matched (termed mixed blocks in the following).
This dataset allowed the Faking Mixture model to be validated: If the Faking Mixture
model works, mixed blocks should have higher fakability parameters than matched blocks.

1The supplemental online material is available at https://osf.io/wfhz4
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Further, rank-order probabilities for mixed blocks should favor rank orders in which the
most desirable item is ranked highest.
The R code and data used in this empirical validation can be found at

https://osf.io/wfhz4/.

Method

Sample and Procedure

The sample consisted of two subsamples: one laboratory sample and one sample from
an online access panel. In both subsamples, participants were remunerated for their par-
ticipation and some participants were excluded due to data quality checks (for details
see Wetzel & Frick, 2020). The final sample consisted of 1,244 participants. There were
N = 592 participants in the group with the matched version of the questionnaire, called
MFC-matched (M(age) = 23.40, SD(age) = 4.10, 63% female, 0.3% transgender) and
N = 652 participants in the group with the partly mixed version of the questionnaire,
MFC-mixed (M(age) = 23.39, SD(age) = 4.34, 65% female, 0.2% transgender).
The procedure was identical in the two groups. Participants filled out an MFC person-

ality questionnaire first under instructions to be honest. Then, they filled out other per-
sonality questionnaires and questions about external criteria. Afterwards, they received
instructions to fake good and were asked to fill out the following questionnaire in ac-
cordance with the instructions. Then, they filled out the MFC personality questionnaire
again. The fake good instructions asked them to imagine they were interested in a place in
the Master’s program of psychology at a German university and that the following person-
ality questionnaire was part of the application procedure. The instructions detailed which
attributes the university was looking for in their students, which amounted to low levels
of neuroticism and high levels on the other Big Five Traits (i.e., extraversion, openness,
agreeableness and conscientiousness). For a detailed description of the faking instructions,
see Wetzel et al. (2021); for more information about the sample and other measures, see
Wetzel and Frick (2020).

Measures

The Big Five Triplets (BFT; Wetzel & Frick, 2020), an MFC questionnaire measuring
the Big Five traits, were used. The BFT are available in German and English from
https://osf.io/ft9ud/. The BFT consist of 20 blocks of three items each. During test con-
struction, the social desirability of the individual items in a larger item pool was rated by
33 psychology students on a 5-point rating scale. Social desirability was defined as fulfilling
societal norms and expectations, accompanied by three examples. The blocks of the BFT
were matched by these desirability ratings. For example, the first triplet contains items
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that were all rated as socially undesirable. The BFT contain three socially undesirable,
four neutral, and 13 socially desirable blocks. For the MFC-matched version, the original
version of the BFT was used. Hence, the term matched in MFC-matched means that the
items were matched by their desirability ratings. Whether those blocks are matched such
that their true desirabilities are equal is an empirical question examined in the current
study. To obtain the questionnaire version used for MFC-mixed, for each of the seven so-
cially undesirable and neutral triplets, one item was replaced by a socially desirable item
from the larger item pool that was not part of the original MFC-matched version. Thus,
the two versions differed only in these seven items.

Data Analysis

First, the Thurstonian IRT model was fit to the data under the instructions to respond
honestly, separately for MFC-mixed and MFC-matched, using Mplus. In contrast to Brown
and Maydeu-Olivares (2011), the models were fit with a restriction on the intercepts to
make the response probabilities on the block level add up to one. Second, the response
probabilities were calculated with Equation (6). Third, the Faking Mixture model was fit
to the faking data from MFC-mixed and MFC-matched. I will use the Faking Mixture
model that was fit to the data from MFC-matched to illustrate how the model parameters
can be interpreted.
To test whether fakability was higher for blocks with mixed desirability, I fit the Faking

Mixture model to data from both MFC-matched and MFC-mixed. In this model, the
rank-order parameters βkr were set equal for blocks that contained the same items in the
two versions (Blocks 8-20), and they were estimated separately for blocks that differed
between the two versions (Blocks 1-7). The rank-order parameters for blocks containing
different items should not be set equal, but they can still lead to approximately equal block
fakability parameters αk. To test for differences in the block fakability parameters αk (for
Blocks 1-7), these differences were included in the model so that 95%-posterior intervals
could be obtained for them. This is preferable to testing for differences between parameter
estimates outside the model. Next, I examined whether rank orders favoring the desirable
item in MFC-mixed had higher rank-order probabilities than in MFC-matched.

Results

Convergence

The Thurstonian IRT models for MFC-matched and MFC-mixed showed excellent fits
according to the RMSEA, with RMSEA values of .036 and .038, respectively, and accept-
able fits according to the SRMR, with SRMR values of .089 and .093. Therefore, response
probabilities when responding honestly could be calculated with these models. Due to esti-



Faking Mixture Model 21

mation errors in the Mplus parameters, about half of all response probabilities did not add
up to one in the seventh decimal place. Therefore, all response probabilities were rescaled
by dividing them by the sum of the probabilities across the rank orders.
For the Faking Mixture models, to achieve convergence in both MFC-matched and MFC-

mixed, I fixed the faking trait variance V ar(θ) to 0.25, which is a typical variance for a
trait capturing response biases (Billiet & McClendon, 2000; Plieninger & Heck, 2018),
and the variance of the rank-order parameters V ar(β) to 4, which allows both low and
high fakability parameters for individual blocks. Thus, I used a hyperprior only for the
faking trait mean M(θ). Six chains with 5,000 iterations were run, out of which the first
2,500 were discarded. I checked convergence via convergence criteria obtained from rstan,
namely, R̂ < 1.01 and the effective sample size divided by the true sample size larger than
.001. I also visually inspected plots of posterior densities, of the autocorrelation and of the
running mean across iterations. If not otherwise stated, I report posterior medians and
95% posterior intervals.

Descriptive Results

The faking trait θ was distributed with a mean of 2.97 [2.82; 3.14] and a variance of 0.29

[0.26; 0.33]. To better grasp the extent of faking, one can calculate the percentage of faking
probabilities Φ (θj + αk) that were > .5 for each block. This shows how many participants
are predicted to fake. The high faking trait mean along with the percentages of participants
predicted to fake (Table 4) show that the faking instructions were effective in motivating
participants to fake. Due to the low variance in the faking trait, estimates of θj are not very
reliable (see also the simulation study). Therefore, they should not be used to investigate
the validity of the faking trait via correlations with other traits or criteria.
The block fakabilities αk show how well matching was achieved (i.e., whether it was

clear which rank order to prefer when faking). As Table 4 shows, fakability was generally
high, with 99 to 100% of participants predicted to fake for each block, but fakability still
differed between the blocks. The rank-order probabilities provide additional information.
Some exemplary rank-order probabilities are shown in Figure 2. The other rank-order
probabilities are shown in Figures S17-S19. For all blocks, some rank orders were more
desirable than others. Most blocks with intermediate fakability showed a pattern such
as Block 3. Here, ranking the item "I am often sad" first was undesirable, whereas the
remaining rank orders in which this item was ranked second or lowest were still desirable
(Figure 2). Thus, for such blocks, the number of possible rank orders when faking was
limited to four instead of six. Among the highly fakable blocks, there were a few for which
one rank order was more desirable than the other five, such as Block 7. Here, the order
"I tend to be very particular about things," followed by "I have a vivid imagination,"
and finally "I stay in the background" was most desirable. For most of the highly fakable
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Table 4: Block fakabilities αk and percentage of participants predicted to fake in MFC-
matched
Block Median 2.5% 97.5% Predicted

3 -2.01 -2.19 -1.86 99
12 -1.95 -2.11 -1.79 99
1 -1.87 -2.02 -1.74 99
17 -1.86 -2.01 -1.72 99
10 -1.80 -1.95 -1.66 99
16 -1.77 -1.95 -1.62 100
9 -1.70 -1.83 -1.58 100
8 -1.68 -1.81 -1.56 100
11 -1.67 -1.80 -1.54 100
20 -1.61 -1.74 -1.50 100
13 -1.50 -1.65 -1.37 100
15 -1.41 -1.55 -1.29 100
5 -1.26 -1.38 -1.14 100
2 -1.25 -1.38 -1.14 100
14 -1.25 -1.37 -1.13 100
6 -1.17 -1.28 -1.06 100
18 -1.11 -1.23 -1.00 100
7 -1.09 -1.21 -0.97 100
19 -0.98 -1.08 -0.88 100
4 -0.88 -0.97 -0.80 100

blocks, one item (out of three) was clearly preferred or not preferred, limiting the number
of rank orders when faking to two. For example, in Block 4, it was desirable to rank the
item "I like to talk to strangers" first, but it was not clear which of the other two items
"I have difficulty imagining things" and "I worry about things" should be preferred. The
opposite tendency appeared, for example, in Block 5. Here, it was desirable to rank the
item "I love big parties" last. Thus, for some blocks, participants agreed on which item
should be ranked first, whereas for other blocks, they agreed on which item should be
ranked last.

Fakability of Mixed versus Matched Blocks

The block fakability parameters αk were higher in MFC-mixed than in MFC-matched for
all seven mixed blocks (Figure 3). For Block 4, the block fakability parameters αk were
very high in both versions. The difference in block fakability parameters was descriptively
higher for two out of the three socially undesirable Blocks 1 to 3, than for the neutral
Blocks 4 to 7. Again, the rank-order probabilities derived from the rank-order parameters
βkr provide additional information. For all blocks, including a highly socially desirable
item resulted in some rank-order probabilities being close to zero. Figure 4 shows three
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Figure 2: Probabilities for rank orders when faking in MFC-matched
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exemplary patterns (for all blocks, see Figure S20). For some blocks, both rank orders
favoring the highly desirable item were more likely in MFC-mixed than in MFC-matched.
However, the pattern differed only slightly, when the highly desirable item in MFC-mixed
replaced an item that was already desirable in MFC-matched, such as for Block 4 (Figure
4). The pattern differed more markedly, when the highly desirable item in MFC-mixed
replaced an undesirable item in MFC-matched, such as for Block 1. Here, in MFC-matched,
the second item was most desirable and including a highly desirable third item in MFC-
mixed led to overall high probabilities for the rank orders 3-1-2 and 3-2-1 (Figure 4). For
other blocks, only one of the rank orders favoring the highly desirable item was more likely
in MFC-mixed. For example, for Block 6, the rank order 1-3-2 was more likely, but not
the rank order 1-2-3.

Discussion of Empirical Results

The sample had a strong tendency to fake as evidenced by a high faking trait mean. Such
a sample is useful for evaluating maximum fakability during test construction. In real
applicants or in clinical samples and in real instead of instructed faking situations, the
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Figure 3: Differences in block fakability parameters αk between MFC-mixed and MFC-
matched
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tendency to fake will most likely be smaller (MacCann et al., 2011), resulting in fewer
faked responses than in the current study.
The descriptive analysis of the block fakability parameters showed that matching did not

work out for all blocks. Though items within blocks were carefully matched for desirability,
some blocks were highly fakable. This might indicate that participants evaluate item de-
sirability in a more fine-grained manner when items are combined into blocks rather than
presented individually (see also Feldman & Corah, 1960). More generally, this is additional
evidence of item interactions in MFC questionnaires (Lin & Brown, 2017), which make
modeling on the block-level necessary. A second reason for high fakability might be that
the faking scenario (applying for a place in a psychology master program) differed from
the one used to assess item desirability (general social desirability).
Some blocks had intermediate fakability where two rank orders were clearly undesirable.

According to the Faking Mixture model, which of the remaining rank orders to select when
faking is random. However, several empirical phenomena could underlie the randomness
captured by the model: Participants might have ranked the items randomly, according to
differences in perceived desirability that were unsystematic across individuals, or according
to their levels of the content traits. In the last case, blocks with intermediate fakability
are informative about some of the measured traits. This could be investigated via the
construct and criterion validity of traits estimated from blocks with intermediate fakability
in a high-stakes situation. In an exploratory analysis, Wetzel et al. (2021) found decreases
in criterion validity in a simulated high-stakes situation.
The current analysis showed that beyond the overall block fakability αk, the rank-order
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Figure 4: Probabilities for rank orders when faking in MFC-matched versus MFC-mixed
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probabilities provide additional information. They show which items are more desirable
and which comparisons might still remain informative about the content trait. This infor-
mation could be used during questionnaire development to modify blocks by removing or
replacing items or to discard whole blocks. For example, when the rank-order probabilities
show that one item is clearly preferred over the others, this item could be removed from
the block.
The comparison of MFC-mixed and MFC-matched showed two things: First, matching

was worth the effort, because matched blocks were less fakable than mixed blocks in
all seven cases. Second, matching based on the desirability of the individual items was
not sufficient, because item interactions were observed on the block-level. It is therefore
recommended to first match items for desirability and then to examine the fakability of
the resulting MFC blocks.
In line with the trait shift approach to estimating the fakability of MFC questionnaires

(Wetzel et al., 2021), the analysis with the Faking Mixture model showed that the MFC-
matched version of the questionnaire was fakable to some extent and that the MFC-mixed
version was more fakable. Applying the Faking Mixture model additionally showed which
particular blocks were fakable and that it was truly the unmatched items that increased
fakability in MFC-mixed.

General Discussion

In this paper, I developed the Faking Mixture model, which is, to my knowledge, the first
approach to modeling faking in the MFC format that allows the fakability of individual
blocks to vary. A simulation study showed that the parameters of the Faking Mixture
model could be recovered well under relevant conditions. Applying the Faking Mixture
model to empirical data showed that matching based on the desirability ratings of the
individual items was necessary but not sufficient to create an MFC questionnaire that
can optimally reduce faking. Modeling fakability on the block-level allowed item context
effects to be discovered within blocks. The Faking Mixture model can be used to reduce
fakability during MFC test construction.

Faking on the Block-Level

For practical applications, the trait shift approach and the Faking Mixture model com-
plement each other, because the former focuses on the person level and the latter on the
item level: Whereas the trait shift approach can show effects of faking on trait estimates,
the Faking Mixture model can show which blocks are more or less fakable. Moreover, the
Faking Mixture model complements methods of matching and assessing item desirability
because it allows fakability to be estimated on the basis of responses to MFC blocks. The
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empirical validation showed that this approach is necessary because there were desirability
differences that would not have been expected on the basis of the desirability ratings of
the individual items. Using the results of the Faking Mixture model, test constructors can,
for example, decide to keep only blocks with low fakability, or they can modify blocks
by removing or replacing items that differ largely in their desirability from the others.
Whereas the same can be achieved by tabulating frequencies of rank orders for honest
versus faking conditions, the Faking Mixture model accounts for individual differences in
the tendency to fake, which characterize most real assessment situations (Kuncel et al.,
2012).
There are at least two differences between the response process for the rating scale

versus the MFC format that make a mixture model on the block level parsimonious and
necessary: First, because of the complexity of trait estimation, a shift model on the item
level would be difficult if not impossible to identify. Second, a desirable rank-order cannot
reasonably be determined without empirical data because item properties can change when
items are combined into blocks (Lin & Brown, 2017).

Limitations

One limitation of the Faking Mixture model is that the tendency to fake does not differ
across content domains, as there is only one faking trait that is uncorrelated with all
other traits. However, this limitation is probably not very critical because several authors
have argued that when socially desirable responding or faking is present, scales that are
otherwise multidimensional end up showing a one-factor structure (e.g., Guenole et al.,
2018; MacCann et al., 2011; van der Linden et al., 2010). Moreover, differential desirability
of the content traits can still be captured by the rank-order probabilities.
In the Faking Mixture model, as in the current models for the faking of rating scales,

perceived item desirability is fixed across individuals. A model that allows perceived item
desirability to vary across individuals would be difficult to identify, even if the model is
theoretically plausible.
Usually the fakability of a questionnaire is investigated either by using instructed (in-

duced) faking or by comparing two samples (e.g., applicants and incumbents). Instructed
faking allows researchers to estimate maximum fakability, but it is not fully representative
of real applicant situations, for example, because real applicants might have goals other
than faking (Kuncel et al., 2012). Comparing applicants and incumbents allows researchers
to estimate how much faking occurs in real settings, but there is no guarantee that the
differences are due only to faking. To apply the Faking Mixture model, given the current
hardware and software resources, response probabilities under a non-faking situation are
needed. These are most easily obtained with instructed faking. However, there are a few
studies that have used within-subjects data from naturally occurring contexts. Gordon
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and Stapleton (1956) compared the responses of high-school students who first filled out a
questionnaire for guidance on a job search and some months later when they were actually
seeking employment. Trent et al. (2020) compared the responses of army applicants with
their later responses when they had been accepted into the army. Such a design would
be optimal for the Faking Mixture model. Alternatively, a two-step procedure would be
possible: First, instructed faking could be used to obtain estimates of item parameters
and block fakabilities. Second, the faking trait and the content traits of another sample
could be estimated with block and item parameters fixed to the estimates obtained in the
first step. This is possible because, for the second step, only person parameters have to be
estimated, which can be implemented in R. In this way, the Faking Mixture model could
be used to obtain both the faking and the content trait estimates of real applicants.
The faking trait is incorporated in the Faking Mixture model to capture variance between

individuals, but this variance is probably small in most cases, similar to response style traits
(Böckenholt & Meiser, 2017). To assess the validity of the faking trait, a context in which
it shows higher variance and therefore higher reliability is needed.

Future Research Directions

There are several ways to assess item desirability in the literature: Some researchers use
item intercepts, estimated under linear factor models or ideal-point models, or raw item
means, from a previous administration of the item set as indicators of item desirability
(e.g., Guenole et al., 2018). Alternatively, they compute the difference between item inter-
cepts obtained under instructions to respond honestly versus to fake (e.g., Lee et al., 2018;
Ng et al., 2020). Others take a more explicit approach and have an external group rate
the desirability of each item, either in general (e.g., Wetzel & Frick, 2020) or for a specific
scenario, or they combine the two approaches (e.g., Heggestad et al., 2006; Jackson et al.,
2000). The Faking Mixture model could be used to investigate which type of desirability
estimate and matching provide the smallest fakability. Further, it could be used to inves-
tigate the effect of item keying on fakability because this issue has been raised by several
authors (Bürkner et al., 2019; Morillo et al., 2016).
Due to its implementation in a Bayesian framework, the Faking Mixture model is flexible

for incorporating and testing additional assumptions. For example, in the empirical vali-
dation, differences in the fakability of matched versus unmatched blocks were quantified
and tested. Future research could continue this avenue, for example, by testing whether
fakability and rank-order probabilities are similar across different faking contexts.
The Faking Mixture model incorporates the assumption that respondents are more likely

to respond honestly when the block is less fakable. However, it is an empirical question
whether they actually respond honestly, or whether they retrieve further information about
desirability.
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In an exploratory analysis, Wetzel et al. (2021) compared the criterion validity of re-
sponses on rating scales and MFC blocks of matched and mixed desirability under in-
structed faking. To further validate the Faking Mixture model, future research could in-
vestigate whether less fakable blocks show higher criterion or construct validities.
To my knowledge, this is the first mixture model for MFC data with a mixture on the

block level. For rating scales, mixture models were proposed not only for faking and social
desirability (Böckenholt, 2014; Leng et al., 2019) but also for other response biases, such as
acquiescence (Plieninger & Heck, 2018). Models with a discrete mixture (constant across
items) have been used for response styles in general (for an overview, see Henninger &
Meiser, 2020). Future research could develop models for other response biases, such as
careless responding in MFC data with a mixture on the block-level.
Further, the Faking Mixture model could be populated with other IRT models such

as the generalized graded unfolding model for rank data (Hontangas et al., 2015; Lee
et al., 2019), or models for rating scale data. For rating scale data, because the response
probabilities can be estimated in most common software programs, the model could even be
applied to data from a high-stakes context only. However, in this design, the model might
capture not only faking but also other preferences for categories that are also constant
across the sample.
In this paper, I proposed the Faking Mixture model, an IRT model for faking on MFC

questionnaires. The empirical model validation showed that to construct an MFC ques-
tionnaire that can optimally reduce faking, we need to both match items on desirability
and examine the fakability of the resulting MFC blocks. The Faking Mixture model can be
used for the latter and may thus become a valuable tool for MFC test construction. I hope
that the Faking Mixture model can provide avenues for future discussion and research on
item desirability, faking, and the MFC format.
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Abstract

Multidimensional forced-choice (MFC) tests become increasingly popular but their con-
struction is complex. The Thurstonian IRT model is most often used to score MFC tests
with dominance items. Currently, information in the Thurstonian IRT model is computed
for binary outcomes of pairwise comparisons, neglecting stochastic dependencies and item
interactions. In this paper, it is shown how Fisher information on the block-level can
be estimated. Several indices are proposed to summarize block information, which is a
non-invertible matrix without a closed-form expression. A simulation study showed that
standard errors based on block information are unbiased. Two other simulation studies
found comparable performance of several block information summaries in automated test
assembly. Thus, block information can aid the construction of reliable MFC tests.

Keywords: multidimensional forced-choice, Thurstonian item response model, information,
standard errors, automated test assembly
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Block Information in the Thurstonian Item
Response Model

Test constructors aim to measure constructs reliably and valid. Most personality tests
employ rating scales (e.g., strongly disagree, disagree...) for this purpose, but responses to
rating scales are potentially biased, for example, by response styles (Henninger & Meiser,
2020; Krosnick, 1999; Wetzel et al., 2016). As an alternative, the multidimensional forced-
choice (MFC) format is becoming increasingly popular. In the MFC format, several items
measuring different attributes are presented simultaneously in blocks. The respondent’s
task is then to rank the items (for an example see Figure 1) or select those that he or she
prefers most and/or least. This research is concerned with the former, termed full ranking.

Figure 1: Example for the multidimensional forced choice format from the Big Five Triplet
(Wetzel & Frick, 2020). The first item assesses neuroticism (reverse-coded), the second
extraversion and the third openness.

In comparison to rating scales, the MFC format has the advantage to avoid or reduce
several response biases. For example, overall faking is reduced (Cao & Drasgow, 2019;
Wetzel et al., 2021) and uniform response biases such as halo effects are avoided (Brown
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et al., 2017), for an overview see Brown and Maydeu-Olivares (2018a).
As interest in the MFC format increases, it becomes important how to construct such

tests. Besides combinatorics, item interactions make the construction of MFC tests more
complex than that of tests with a single-stimulus format such as the rating scale format.
Item interactions occur because the items in a block are not evaluated independently, but
are weighed against each other in giving a response. Research has found that the measured
constructs slightly change when the same items are presented in an MFC versus a rating
scale format (Guenole et al., 2018; Wetzel & Frick, 2020). Further, item desirability is
evaluated differently in the context of MFC blocks than for single-stimulus items (Feldman
& Corah, 1960; Hofstee, 1970). Most importantly, item parameters from item response
theory (IRT) models differed depending on which items were combined to blocks (Lin &
Brown, 2017).
To appropriately account for item interactions, item information must be calculated

on the block level, henceforth termed block information. For MFC tests with ideal-point
items, that is, where the preference for an item is highest at a certain trait level and
decreases with increasing distance from it, block information can be calculated based on
the generalized graded unfolding model for rank responses (Joo et al., 2018). It has been
shown that this can be used to construct computerized adaptive tests (Joo et al., 2020).
However, most tests employ dominance items, where the preference for an item increases
or decreases monotonically with increasing trait levels. For MFC tests with dominance
items, the Thurstonian item response model (Brown &Maydeu-Olivares, 2011) has become
the most popular and widely applicable IRT model. The Thurstonian IRT model can
incorporate different block sizes and different response instructions, such as ranking all
items in a block or picking one of them.
However, in the Thurstonian IRT model, information is currently calculated for bi-

nary outcomes of pairwise comparisons of items within blocks (Brown, 2016; Brown &
Maydeu-Olivares, 2011). For example, in a block of three items, there are three pairwise
comparisons, namely between items 1 and 2, items 1 and 3, and items 2 and 3. Informa-
tion for binary outcomes of pairwise comparisons has several disadvantages: First, from an
empirical perspective, it does not fully reflect all item interactions within a block. Second,
from a test constructor’s perspective, it is unclear how to use the information for binary
outcomes of pairwise comparisons to select items or blocks. Third, from a statistical per-
spective, information for binary outcomes of pairwise comparisons is problematic because
it is not independent for block sizes larger than two (Brown & Maydeu-Olivares, 2011,
2018b). When test information is calculated based on binary outcomes of pairwise com-
parisons, it is slightly overestimated and accordingly standard errors for person parameter
estimates are slightly underestimated. This effect increases with block size (Yousfi, 2018).
There is a formulation of the Thurstonian IRT model by Yousfi (2018), which allows
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to calculate block information, but so far, it was not used for this purpose. Instead, the
formulation was only used for trait estimation, that is, to calculate the likelihood of re-
sponses across blocks and to compute standard errors for trait estimates (Yousfi, 2018,
2020). Therefore, the aim of this paper is to show how to calculate block information for
ranking responses in the Thurstonian IRT model and how it can be used for test con-
struction. To accomplish this, in the first part, the formulation of the Thurstonian IRT
model based on Yousfi (2018) is presented and formulas for block information are given.
As MFC questionnaires measure several traits per block, block information is a matrix,
which is difficult to interpret and to use for test construction. Therefore, in the second
part, several information summaries are proposed, drawing from multidimensional com-
puterized adaptive testing (CAT), that integrate block information across traits and it is
shown how to plot the information summaries. There is no analytical formula for block
information, instead, two steps of numerical approximation are involved. Therefore, it is
essential to examine the accuracy of the estimation procedure. This is accomplished most
easily by comparing standard errors based on expected and observed information to em-
pirical standard errors. Therefore, the third part is a simulation study on standard error
accuracy. However, the accuracy of standard errors on the questionnaire level is only par-
tially informative about whether block information can be used for test construction. To
approximate the test construction process more closely, automated test assembly (ATA)
is simulated. In ATA, blocks can be selected so that test information is maximized. In
addition, this allows to illustrate which ATA algorithms can be used to assemble MFC
test based on block information and to compare the performance of algorithms and block
information summaries. Hence, the fourth part consists of two simulation studies on ATA
with MFC block information for two different scenarios.

Thurstonian IRT model

In the Thurstonian IRT model, for each item, there is a latent response tendency called
utility. The utility t for person j on item i is a linear function of a latent trait θj :

tij = µi + λiθj + εij (1)

where µi denotes the item intercept, λi the item loading and εij the error term. The latent
traits are assumed to be multivariate normally distributed: Θ ∼ N(Mθ,Σ) and the errors
are independently normally distributed: εi ∼ N(0, ψi).
Following Thurstone’s Law of Comparative Judgment (Thurstone, 1927, 1931), partici-

pants order the items within each block according to the magnitude of their utilities. To
express this mathematically, first, within each block k vectors of utilities tk and of error
variances ψ2

k are sorted in descending order, according to the selected rank order r. Sec-
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ond, differences between consecutive utilities are obtained by a comparison matrix A. For
example, if block size B = 3:

AB=3 =

(
1 −1 0

0 1 −1

)
(2)

With utilities sorted in descending order, each difference between two consecutive util-
ities is positive. Therefore, the probability to select rank order r is the area under the
multivariate normal density of utilities where this applies (Yousfi, 2020):

P (Xjk = r) =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
N
(
Atjk(r),Aψ

2
k(r)

)
dt1dt2 . . . dtB−1 (3)

This multiple integral can be numerically approximated (Genz, 2004; Genz & Bretz, 2002).
Note that, with estimated item parameters, Equation 3 is only true when the item inter-
cepts µi were estimated instead of unrestricted thresholds for binary outcomes of pairwise
comparisons which is the commonly used procedure (Brown & Maydeu-Olivares, 2011).
As Equation 3 shows, the probability to select a certain rank order is dependent on all
latent traits assessed in the block.
The Fisher information for a block and a single rank order r is the negative of the

Hessian of the response probability for the latent traits, where H(f) denotes the Hessian
of function f .

Ikr = −H (P (Xjk = r))) (4)

Obtaining the Hessian for a multidimensional response probability involves differentiating
twice for each pair of traits in both orders. Hence, for F latent traits, Ikr is an F × F
matrix. For example, to obtain the entry in the second row and first column, Ikr(1, 1), the
response probability P (Xjk = r) is first differentiated for Trait 1 and then for Trait 2. As
for the response probability, there is no analytical solution for the Hessian, but numerical
approximation is feasible. Expected block information Ik is calculated across all R = B!

possible rank orders:

Ik =
R∑

r=1

IkrP (Xjk = r) (5)

In the following, I refer to expected block information as block information if not ex-
plicitly indicated otherwise. When each item is only presented in one block, as is typically
done in MFC tests, block information is additive across the test. Expected test information
IexpT is obtained as the sum of expected block information across all k = 1 . . .K blocks:

IexpT =
K∑

k=1

Ik (6)
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Observed test information IobsT is obtained as the sum of block information Ikr for the rank
orders observed:

IobsT =
K∑

k=1

Ikr (7)

Then, standard errors for a trait vector can be calculated by inverting expected or
observed test information and taking the square root of its diagonal:

σT =
√

diag
(
I−1T
)

(8)

Standard errors based on the formulation in Equation 3 are unbiased (Yousfi, 2020) in
contrast to the ones based on the typically used formulation with binary outcomes of
pairwise comparisons.

Information Summaries

Dealing with MFC block information is challenging due to several properties of MFC tests:
First, as outlined above, for F latent traits, the block information is an F × F matrix.
Second, the information matrix for a single block is not invertible, because the latent
trait space is only identified when there are several blocks and no linear dependencies
between factor loadings λ, that is, when the matrix of factor loadings Λ has full rank (for
details, see Brown & Maydeu-Olivares, 2018b). Third, the block information cannot be
linearly approximated, because there is no closed-form expression for it. To cope with this,
I propose several indices to summarize the information matrix for test construction. An R
package implementing the estimation procedure, the information summaries and the ATA
algorithms is available at GitHub: https://github.com/susanne-frick/MFCblockInfo. The
R code for running and analyzing the simulations as well as the simulation results are
available from the same GitHub repository.

Optimality Criteria

Optimality criteria originate from the optimal design literature and have been used in
multidimensional CAT and sometimes in multidimensional ATA (Debeer et al., 2020).
In MFC tests, usually all traits are of interest to the investigator. Therefore, I focus on
those criteria that weigh all traits equally. Out of those, A-optimality and D-optimality
performed best in an MFC CAT simulation (Lin, 2020). A-optimality is the sum of the
sampling variances (Equation 8). D-optimality is the determinant of the information ma-
trix (Equation 6). Hence, both A- and D-optimality depend on the information matrix
being positive-definite. Therefore, with MFC tests, they can only be computed for several
blocks at once (i.e., for test information). In contrast, T-optimality does not depend on
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a positive-definite matrix. T-optimality is the sum of the diagonal entries of the informa-
tion matrix (Equation 5). In such, it ignores the impact of trait correlations (Lin, 2020).
T-optimality performed worst in an MFC CAT simulation (Lin, 2020). However, it has
the advantages that it can be calculated for a single block and that it is additive across
blocks.

Block R2

To quantify how much a block contributes to the measurement of each trait, I propose a
new information summary, which I will call block R2. Block R2 quantifies the proportional
reduction in the sampling variances of the traits achieved by including this block. To
compute block R2, first, test information IT is calculated for two sets of blocks: for a set T
including the respective block and for a set T \ k excluding it. Second, sampling variances
are calculated for both sets following Equation 8. Third, block R2 is obtained such that
higher values indicate higher information:

R2
k = 1− σ2

T

σ2
T\k

(9)

It follows from this procedure that block R2 is relative to the set T of reference blocks. In
practical applications, the set of reference blocks can be all blocks assessed or a subset of
blocks forming a test that should be extended. As can be seen from Equation 9, block R2

is related to A-optimality, but provides a trait-level index in a familiar metric.

Block Information Plots

To visualize block information, I propose 3D plots for block R2 and expected SE s, and
2D plots for expected SE s, similar to Joo et al. (2018). For illustration, a test measuring
five traits with 20 blocks of three items was simulated. The test design and distributions
of the item parameters were identical to the simulation studies described later.
Figure 2 shows a 3D plot of block R2, termed block information plot. The example shows

block R2 for Trait 1, for a block measuring Traits 1, 3, and 4. In each subplot, two traits
measured by this block are varied continuously while the others take on fixed levels. For
example, in the upper row of Figure 2, Traits 1 and 3 are varied on the horizontal axes.
From left to right, Trait 4 is fixed at -1, 0 and 1 reflecting the mean ±1SD. The traits
not measured by this block are fixed (at 0 in the example). In preliminary tests, this later
level influenced the absolute size of block R2 but not the differences between trait levels
that are of interest. The block information plot can show how the size of block information
depends on the traits in interaction. For example, in Figure 2, for low levels of Trait 4,
information is highest for medium levels of Trait 1. However, for medium and high levels
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of Trait 4, information is lowest for medium levels of Trait 1. Thus, this example illustrates
that it can be illuminating to treat information in the MFC format as multidimensional
on the block level instead of considering items in isolation.
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Figure 2: Block R2 for Trait 1 from a simulated test block. Items 1-3 measured traits 1,
3, and 4, respectively. The simulated item parameters were: µ1 ≈ −0.22, µ2 ≈ −0.96,
µ3 ≈ 0.82, λ1 ≈ −0.92, λ2 ≈ 0.77, and λ3 ≈ 0.89. ψ2

i = 1− λ2i .

Figure 3 shows a 3D plot of expected SE s, termed test information plot. Traits are varied
pairwise while all other traits are fixed (at 0 in the example). The example in Figure 3
shows that SE s are lowest for medium trait levels, as to be expected. Dependencies on
the other traits are small and mainly occur for extreme trait levels. For example, SE s for
Trait 1 range from .34 to .41 for a Trait 1 level of 0, depending on the other traits, whereas
they range from .35 to .55 for varying Trait 1 levels.
Figure 4 shows a 2D plot of expected SE s, termed 2D test information plot. Here,

only one trait varies systematically. Levels for the other traits are randomly drawn from a
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Figure 3: Expected SE s for Trait 1 from a simulated test measuring five traits with 20
blocks of block size three.
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multivariate normal distribution for a specified number of respondents (100 in the example)
so that the true trait correlations remain intact. The example in Figure 4 shows that SE s
for Trait 1 are lowest for trait levels around the mean and 0.5 SD below it.
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E

Figure 4: Expected SE s for Trait 1 from a simulated test measuring five traits with 20
blocks of block size three. For each level of Trait 1, SE s were averaged across 100 respon-
dents with trait levels drawn from a multivariate normal distribution with a mean vector
of zero and covariances given in Table 1.

Simulation Study 1: Simulation on Standard Error Accuracy

Both obtaining the response probability (Equation 3) and its Hessian (Equation 4) involve
numerical approximation. Thus, block information is essentially an estimate. Therefore,
in order to evaluate whether block information can be used for test construction, it is
crucial to examine the accuracy of its estimation. The aim of this simulation study was to
evaluate the accuracy of estimated block information. On the block level, there is no clear
reference point for what constitutes accurate information. Instead, the accuracy of test
information as the sum of block information (Equations 6 and 7), inverted to standard
errors (Equation 8) was evaluated. Specifically, it was examined in how far empirical
SE s and those based on observed and expected Fisher information correspond. Good
correspondence provides evidence for the accuracy of estimated block information. The
accuracy of SE s was examined under various conditions of test design influencing the
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amount of information and for two types of estimators – maximum likelihood (ML) and
maximum a posteriori (MAP). The MAP estimator is most often used for Thurstonian
IRT models (e.g., Brown & Maydeu-Olivares, 2011; Wetzel & Frick, 2020).
Empirical SE s were defined as the standard deviation of trait estimates across R re-

sponses of the same person j (i.e., trait levels) to test q (cf., Ippel & Magis, 2020; Paek &
Cai, 2014):

SEq (θj) =

∑R
r=1

(
θ̂jr − ¯̂

θj

)2

R− 1
(10)

Both observed and expected SE s are based on test information at the trait estimate. For
expected information, each possible rank order is weighted by its probability (Equation 5)
and SE s obtained by setting IT = IexpT in Equation 8. Observed information is calculated
only for the rank orders observed (Equation 7). Therefore, observed SE s are the diagonal
of the inverse of the Hessian at the likelihood of the trait estimate. Equivalently, they can
be calculated by setting IT = IobsT in Equation 8.

Methods

MFC responses were simulated for 5 traits, a test with block size three and 1/2 of pairwise
item comparisons across the test involving items keyed in different directions (i.e., one
positive, one negative factor loading). Item keying was chosen so that SE accuracy would
not be confounded with ipsativity. Ipsativity with all positively keyed items was observed
in simulations (e.g., Bürkner et al., 2019; Frick et al., 2021). Item intercepts µi were drawn
from U(−1, 1). Item uniquenesses ψ2

i were calculated as 1 − λ2i . Errors were drawn from
N(0, ψi). For the second trait, trait levels varied from −2 to 2 in steps of .5. The other
traits were fixed at 0. This yields 13 trait levels. Traits were estimated with box constraints
to be within the range of [−3, 3].
Three factors were varied and completely crossed: First, size of factor loadings: High

factor loadings were drawn from U(.65, .95), and low factor loadings were drawn from
U(.45, .75). Second, the type of estimator was either ML or MAP. For the MAP estimator,
a multivariate normal prior with a mean vector of zero and correlations based on meta-
analytic correlations between the Big Five (D. van der Linden et al., 2010) were used. The
correlations are shown in Table 1. Third, test length was either short (20 blocks) or long
(40 blocks).

Simulation Procedure

All data generation and analysis was carried out in R (R Core Team, 2020), involving the
R packages doMPI (Weston, 2017), mvtnorm (Genz et al., 2020), numDeriv (Gilbert &
Varadhan, 2019), psych (Revelle, 2019), gridExtra (Auguie, 2017), and ggplot2 (Wickham,
2016). For each combination of test design, estimator and trait level, 500 tests were simu-
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Table 1: Correlations used in the simulation study
Trait E O A C
N −.36 −.17 −.36 −.43

E .43 .26 .29

O .21 .20

A .43
Note. N = neuroticism, E = extraversion, O = openness, A = agreeableness, C = conscientiousness.
These are meta-analytic correlations between the Big Five as reported by D. van der Linden et al.,
2010.

lated, yielding a total of 2×2×13×500 = 26000 tests. Within each test, item parameters
were drawn according to the test design and R = 500 response vectors were simulated.
Traits were estimated for each response vector. Then, the three types of SE s (empirical,
expected and observed) were computed at the trait estimate. Trait recovery and accuracy
of SE s for the second trait were assessed by mean bias (MB) and root mean square error
(RMSE) according to the following formulas, where ξ denotes the true parameter and ξ̂
its estimate:

MB(ξ) =

∑R
r=1 ξ̂ − ξ
R

(11)

RMSE(ξ) =

√√√√
∑R

r=1

(
ξ̂ − ξ

)2

R
(12)

MB and RMSE were computed for the latent traits θ and their expected and observed
SE s. For the SE s, the empirical SE according to Equation 10 served as true parameter.

Results

Overall, bias was lower and SE s were smaller for medium trait levels and for the long test
(Figure 5). For example, for the short test, the RMSE ranged from .24 to .99, for the long
test it ranged from .18 to .65. The ML estimator showed a slight outward bias (e.g., mean
MB(θ = 2) = .13), the MAP estimator showed a more pronounced inward bias (e.g., mean
MB(θ = 2) = -.43, Figure 5). Both MB and RMSE were smaller for high loadings and for
the MAP estimator. The RMSE was especially high for low loadings combined with the
ML estimator.
For the ML estimator, empirical SE s were smaller for medium trait levels (Figure 5).

For the MAP estimator, empirical SE s were approximately similar across trait levels. This
might be attributed to the inward bias of the estimates. Empirical SE s were highest for
the ML estimator combined with low loadings, similar to RMSE. For both estimators,
empirical SE s were smaller for trait levels of ±2 than for ±1.5. This might be due to the
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box constraints: For true trait levels of ±2, many estimates were ±3, resulting in smaller
standard deviations of the estimates, that is, empirical SE s.
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Figure 5: Trait recovery and empirical SE s in simulation study 1 on standard error accu-
racy. The top row shows results for the short test (20 blocks) and the bottom row shows
results for the long test (40 blocks). Shaded areas show ±1SD around the mean (line). SE
= empirical Standard Error, MB = Mean Bias, RMSE = Root Mean Square Error, ML
= Maximum Likelihood, MAP = Maximum a Posteriori.

In 8% of the cases, the information-based SE s could not be estimated for up to 1114
(out of 2500) cases per condition and test (mean = 23, SD = 113). The MB of the
information-based SE s was generally low (mean = .02, SD=.06, Table 2). The difference
in the MB of observed and expected SE s was negligible, explaining 0% of variance across
trait levels (Table 3, Figures 6 and 7). For the ML estimator, information-based SE s had
a small negative (mean = -.01), for the MAP estimator a small positive MB (mean = .06,
Table 2). The MB of information-based SE s was especially high for the MAP estimator
combined with low loadings. The RMSE of information-based SE s was smaller for longer
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tests, explaining 22% of variance across trait levels (Table 3). Differences related to the
type of estimator and loadings were less pronounced than for MB.

Table 2: Means of bias for information-based standard errors by condition in simulation
study 1 on standard error accuracy
Method Length Estimator Loadings MB RMSE

expected short ML high -0.01 (0.05) 0.09 (0.07)
low -0.01 (0.06) 0.07 (0.03)

MAP high 0.05 (0.05) 0.06 (0.05)
low 0.12 (0.03) 0.12 (0.03)

long ML high -0.02 (0.02) 0.04 (0.03)
low -0.01 (0.02) 0.03 (0.01)

MAP high 0.01 (0.03) 0.03 (0.02)
low 0.05 (0.02) 0.06 (0.02)

observed short ML high 0.00 (0.06) 0.10 (0.10)
low 0.00 (0.06) 0.08 (0.04)

MAP high 0.06 (0.05) 0.06 (0.05)
low 0.10 (0.04) 0.10 (0.04)

long ML high -0.02 (0.02) 0.04 (0.04)
low -0.01 (0.02) 0.03 (0.01)

MAP high 0.01 (0.03) 0.03 (0.02)
low 0.05 (0.02) 0.05 (0.02)

Note. MB = Mean Bias, RMSE = Root Mean Squared Error, ML = Maximum
Likelihood, MAP = Maximum a posteriori. Standard deviations are given in
parentheses.
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Table 3: Variance in bias for information-based standard errors explained in % by the
manipulated factors in simulation study 1 on standard error accuracy

Factor MB RMSE
loadings 5 1

estimator 34 0
length 6 22

loadings×estimator 3 7
estimator×length 3 0

loadings×estimator×length 0 1
Residuals 48 69

Note. MB = Mean Bias, RMSE = Root Mean
Squared Error, ML = Maximum Likelihood,
MAP = Maximum a posteriori. Expected vs.
observed explained less than 1% of variance.
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Figure 6: Bias of observed standard errors in simulation study 1 on standard error accuracy.
The top row shows results for the short test (20 blocks) and the bottom row shows results
for the long test (40 blocks). Shaded areas show ±1SD around the mean (line). MB =
Mean Bias, RMSE = Root Mean Square Error, ML = Maximum Likelihood, MAP =
Maximum a Posteriori.
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Figure 7: Bias of expected standard errors in simulation study 1 on standard error accuracy.
The top row shows results for the short test (20 blocks) and the bottom row shows results
for the long test (40 blocks). Shaded areas show ±1SD around the mean (line). MB =
Mean Bias, RMSE = Root Mean Square Error, ML = Maximum Likelihood, MAP =
Maximum a Posteriori.
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Discussion

As to be expected, the results of this simulation showed that bias was lower and SE s
smaller for medium trait levels, longer tests and higher loadings. Thus, higher loadings
and longer tests are recommended, because both trait estimates and their SE s are more
accurate.
Regarding the comparison of estimators, especially with small loadings, SE s were more

accurate for the MAP estimator than for the ML estimator. Similarly, Lin (2020) recom-
mends using the MAP estimator based on a comparison of several trait estimators under
various test designs with a large multivariate normal sample. In the current simulation,
the accuracy of SE s for the MAP estimator with suboptimal test designs was underesti-
mated by the information methods, that is, estimated SE s were larger than empirical SE s.
Thus, the advantage of the MAP estimator in terms of precision might not be detectable
in empirical applications.
Further, the results showed that observed test information was as accurate as expected

test information. Thus, when only test level information is of interest, researchers can
rely on the observed information at the trait estimate which saves computational time
and resources. However, when block level information is of interest, expected information
might still be preferred.
In this simulation, I focused on test design factors relevant for the level of information,

keeping other design factors such as number of traits, trait correlations, and number of
comparisons between mixed keyed items constant. Future studies varying these test design
factors might yield more pronounced differences between information estimation methods.

Information Summaries for the Automated Assembly of
MFC tests

On the one hand, standard errors are only partially informative about the accuracy of
block information, because their computation involves summing across blocks. Moreover,
the performance of the block information summaries was not evaluated so far. On the
other hand, constructing MFC tests can be a combinatorial challenge, because it may not
only involve maximizing information, but also balancing item keying and the numbers of
items per trait and social desirability matching (e.g., Brown & Maydeu-Olivares, 2011;
Wetzel et al., 2020). Therefore, automated test assembly (ATA) is particularly promising.
In automated test assembly (ATA), items are selected from a pool so that a criterion

is maximized (or minimized) and certain restrictions are fulfilled (W. J. van der Linden,
2005). For example, information is maximized while keeping the number of items per trait
equal. Practical applications of ATA include constructing parallel test forms with similar
information curves or a test with peaked information at a certain trait level for selection
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purposes. For example, employers might be interested in selecting all applicants who score
two standard deviations above the mean. In contrast, in CAT, the focus is on maximizing
information at the trait level of the individual respondent. For an introduction to ATA,
see W. J. van der Linden (2005).
In the following part, I outline which ATA algorithms and block information summaries

can be combined. Two further simulation studies were conducted to compare the per-
formance of the block information summaries in conjunction with ATA algorithms. The
simulation results can provide first insights as to which block information summaries (and
potentially ATA algorithms) should be preferred for test construction.

Information Summaries for Mixed Integer Programming

Mixed integer programming (MIP) algorithms are the first choice for ATA, because they
can find the optimal solution if it exists. Moreover, they can incorporate a maximin crite-
rion, which has good properties and is particularly suited to IRT (W. J. van der Linden,
2005). For MIP, a test assembly problem has to be framed as a (constrained) linear opti-
mization problem. Next, I describe how assembling an MFC test from a block pool can be
framed for MIP with a block information summary as a relative maximin criterion.
First, g = 1, . . . , G trait levels are defined at which information is to be computed.

In the multidimensional case, typically, a grid of trait levels is selected, for example, all
combinations of -1, 0, and 1 across five traits (e.g., Debeer et al., 2020; Veldkamp, 2002).
To obtain a relative criterion, for each grid point, the information summary s is summed
across all K blocks and weighted by this sum for an arbitrary reference grid point, say θ1
to obtain a weight wg:

wg =

∑K
k=1 sk(θg)∑K
k=1 sk(θ1)

(13)

Whether block k is included in the test is encoded in a decision vector x = (x1, . . . , xK)′,
taking on a value of 1 if the block is included and 0 otherwise. Then, the task is to find the
values of x for which the summary y at reference point θ1 is maximized while constraints
ensure that the summary at the other points is close to proportional to their value in the
block pool:

maximize y (14)

subject to
K∑

k=1

(sk(θg)xk)− wgy ≥ 0 for all g (15)

Additional constraints can be added to the ATA problem. The blocks’ values on the
constrained attributes are encoded in a K ×N matrix C and the minimum values for the
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constraints are encoded in a vector d = (d1, . . . dN )′.

K∑

k=1

cknxk ≥ dn for all n (16)

For example, if the first constraint is that the test should include at least 5 blocks
measuring trait 1, the first column of C would take on a value of 1 for all blocks measuring
trait 1 and 0 otherwise and d1 = 5.
However, MIP methods are only applicable to optimization criteria that are linear across

items (or blocks). In the multidimensional case, linear approximations to item information
can be used (e.g., Debeer et al., 2020; Veldkamp, 2002), but linear approximation is not
possible with MFC block information because there is no closed-form expression for it. Of
the optimality criteria described above, only T-optimality can be used to construct MFC
tests with MIP because it is additive (and accordingly linear) across blocks.

Information Summaries for Heuristics

Because T-optimality performed worst in MFC CAT simulations (Lin, 2020), I also in-
vestigate algorithms for ATA that can be used with A- and D-optimality, criteria that
performed well in previous simulations (Brown, 2012; Lin, 2020; Mulder & van der Lin-
den, 2009). These algorithms are heuristics which can be combined with all optimality
criteria described above. In contrast to MIP methods, heuristics are guaranteed to find a
solution, but the solution is not guaranteed to be optimal (W. J. van der Linden, 2005).
The simplest heuristics are constructive heuristics, which sequentially select a locally

optimal item (or block). For example, Veldkamp (2002) compared the performance of a
greedy heuristic for ATA with multidimensional items to that of MIP (with a linear ap-
proximation of item information). More sophisticated heuristics are local search heuristics
which introduce randomness into the selection process to prevent the search from being
trapped in a suboptimal space, often inspired by natural processes. For example, Olaru
et al. (2015) compared amongst others a genetic algorithm and ant colony optimization
for the assembly of a short scale. However, local search heuristics are more specifically
tailored to a certain problem than MIP.
As outlined in the introduction, A- and D-optimality cannot be calculated for a single

block. In ATA, they can only be used to extend an existing test. However, this "existing
test" may be as small as three blocks (see Simulation 3). Hence, similar to some CAT
scenarios, a small number of blocks selected by another method can be used as a starting
point. Then, heuristics for A- and D-optimality can still be used to build the main part of
the test.
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Simulation Studies on Automated Test Assembly

Overview

Having examined theoretically how ATA algorithms and block information summaries can
be combined for different purposes, their performance is compared in two simulation stud-
ies. As heuristics for A- and D-optimality can only be used for test extension, I conducted
two separate simulation studies: Simulation Study 2 on Automated Test Construction and
Simulation Study 3 on Automated Test Extension. Admittedly, test extension is not a
typical ATA scenario so far, however the properties of MFC tests make it quite likely to
occur in practice. In both simulations, the composition of the block pool was ideal with
respect to the balancing of traits and item keying. Thus, the aim of the simulation studies
is to gain a first impression of the performance of the criteria and algorithms in a simple
setting.
Since local search heuristics are specifically tailored to certain problems, in this simula-

tion, I use a simple greedy heuristic instead, to gain a broadly applicable estimate. This
greedy heuristic sequentially selects the block with highest A- or D-optimality, weighted
across trait levels. The results can serve as a benchmark of what might be achieved with
these criteria and a more elaborate local search heuristic.
In both simulations, the performance of the proposed optimality criteria in conjunction

with ATA algorithms is compared to that of mean block R2, mean absolute loadings within
blocks, and random block selection. The mean of absolute loadings within blocks serves
as an approximation to the practice of selecting items (primarily) based on the size of
their loadings. Block R2 is calculated with the whole block pool as references set T , which
makes it independent on the previously selected items. In this setting, the optimal solution
for mean block R2 and mean loadings is the one with the highest values on the respective
criterion. Random block selection serves as a benchmark. Any algorithm should perform
better than random block selection in order to be worth using.

Simulation Study 2: Simulation on Automated Test Construction

The first ATA simulation focuses on the assembly of a new test comparing the performances
of MIP with T-optimality as a criterion, block R2, mean loadings and random block
selection.

Methods

In this simulation, an initial pool of 80 blocks is reduced to 1/4, that is, 20 blocks. The tests
each measured 5 traits, with block size three. Across the block pool, 1/2 of pairwise item
comparisons involved items keyed in different directions (i.e., one positive, one negative
factor loading). Item intercepts µi were drawn from U(−2, 2). Item loadings λi were drawn
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from U(.45, .95). Item uniquenesses ψ2
i were calculated as 1− λ2i . Errors were drawn from

N(0, ψi). The ranges of the item parameter distributions were larger than in simulation
study 1 on SE accuracy so that the algorithms could improve trait recovery as compared
to random block selection. Information was calculated over a grid of points. Trait levels
were set at -1, 0, and 1 and fully crossed for the five traits. This yielded 35 = 243 grid
points.
Two factors of the ATA problem were varied: First, the target information curve was

either proportional to that of the block pool or flat. For the flat target, all trait levels were
weighted equally. Second, the problem was either unconstrained or constrained. In the
unconstrained problem, the only constraint was test length. In the constrained problem, in
addition, the blocks were selected such that the numbers of items per trait were equal, there
were at least 2/3 of blocks including a negatively keyed item and at least one negatively
keyed item per trait.

Algorithms

MIP with T-optimality For MIP with T-optimality (MIP T), a maximin criterion
was chosen to select the combination of blocks so that T-optimality is maximal, while,
across grid points, it is close to proportional to the target T-optimality. The MIP solver
used was lpSolve with the R package lpSolveAPI (lp_solve et al., 2020) as an interface
(see Diao & van der Linden, 2011, for an illustration of how to use lpSolveAPI for MIP
with single-stimulus items).

Block R2 To obtain one value per block, block R2 was averaged across traits. For
the weighted target, instead of using a maximin criterion, block R2 was weighted across
grid points by the sum of sampling variances (i.e., A-optimality) in the block pool. The
20 blocks with the highest weighted mean block R2 were selected.

Mean Loadings For mean loadings, the blocks with the highest mean absolute load-
ings were selected.

Random For random block selection, the blocks were selected randomly.
For all algorithms, the constrained problem was implemented as an MIP problem. This

was possible because selecting the blocks with the highest values on a criterion (for block
R2 and mean loadings) is equivalent to selecting the blocks that maximize the sum of this
criterion across blocks. For random, in the constrained problem, a random value drawn
from U(0, 1) was used as a criterion.
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Procedure 500 replications were conducted. All data simulation and analysis was carried
out in R, using the same R packages as in simulation study 1 on SE accuracy, in addition
to lpSolveAPI. First, item parameters were drawn. Second, information was estimated for
the grid points. Third, a test was assembled by each of the four algorithms. Fourth, for
the weighted target, true trait levels were drawn from a multivariate normal distribution
with a mean vector of 0 and covariances based on meta-analytic correlations between the
Big Five (Table 1) for 500 respondents. For the equal target, the grid points served as trait
levels. To achieve a comparable sample size to the weighted target, each grid point was
duplicated, yielding 486 respondents. Responses for these respondents on the block pool
were simulated. Fifth, trait levels were estimated as MAP estimates for each of the four
assembled tests based on true item parameters and the Big Five correlations. To assess
trait recovery, three summary measures were calculated: the correlation between true and
estimated traits r(θ, θ̂), RMSE (Eq. 12, with ξ = θ), and mean absolute bias (MAB):

MAB(θ) =

∑R
r=1 |θ̂ − θ|
R

(17)

Trait recovery was summarized via means and SDs by condition and variance explanation
for the contrasts between conditions was calculated within an ANOVA framework. For the
ANOVA, r(θ, θ̂) was Fisher Z transformed.

Results

All MIP models converged. Trait recovery was worse for random block selection (e.g.,
mean MAB = 0.37) than for MIP T, mean loadings and block R2 together (mean MAB =
0.30, Table 4, Figure 8), explaining 32% to 46% of total variance (Table 5). Descriptively,
recovery was slightly worse for mean loadings (e.g., mean MAB = 0.31) than for MIP T
and block R2 (mean MAB = 0.30). However, this difference only explained 1% of variance
and was negligible in absolute size. Trait recovery was worse for the equal (mean MAB =
.32) than for the weighted target (mean MAB = .31), explaining 30% of variance in r(θ, θ̂)
and 2% to 3% in MAB and RMSE. The difference between free and constrained problems
and all interactions were negligible.
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Table 5: Variance in trait recovery explained in % by algorithm, target and constraints in
simulation study 2 on test construction

Factor r(θ, θ̂) MAB RMSE
Algorithm vs. Random 32 46 46
Info vs. Mean Loadings 1 1 1

Weighted vs. Equal 30 2 3
Residuals 37 51 50

Note. MAB = Mean Absolute Bias, RMSE = Root
Mean Squared Error, MIP T = Mixed Integer
Programming with T-optimality. r(θ, θ̂) was Fisher Z
transformed.
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Figure 8: Trait recovery by algorithm, for trait levels weighted equally and the constrained
problem, in simulation study 2 on test construction. MIP T = Mixed Integer Programming
with T-optimality, MAB = Mean Absolute Bias, RMSE = Root Mean Square Error.

Discussion

The results of this simulation showed that MIP T, block R2, and mean loadings performed
better than random block selection, thus they are worth using. However, they performed
on par with each other. Surprisingly, at least in the limited conditions examined, the
mean loadings proved as a good alternative to the information summaries to be used in
test construction. The mean loadings do not require any considerable computational effort
(besides model fitting which is needed for any method). Block R2 might be useful when
information is of interest for each trait individually, although this was not examined in this
simulation which focused on increasing precision for all traits simulateneously. T-optimality
in conjuction with an MIP algorithm should be preferred if the other advantages of MIP
are needed, such as matching a test information curve for selection purposes or parallel
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test forms. In these settings, a minimax criterion has better properties than a weighted
criterion (W. J. van der Linden, 2005).
The target information surface with trait levels weighted equally resulted in lower trait

recovery than the target that was proportional to information in the block pool. This is
not surprising because in the latter case there are both many items and many persons
with the same trait level.
Further, the composition of the block pool was rather ideal with all combinations of

three out of five traits occurring equally often and 1/2 of comparisons between mixed
keyed items. Varying the block pool or constraining the ATA problem should have similar
effects on the performance of the algorithms. In this simulation, both a constrained and an
unconstrained ATA problem were simulated. This did not result in differences with respect
to trait recovery or to the performance of the algorithms. Probably, the constraints were
mild and well suited to the block pool.
This simulation only examined a limited set of conditions. Specifically, block size was

fixed to three and five traits were simulated. Although these settings might be representa-
tive for some applied tests (e.g., Brown & Maydeu-Olivares, 2011; Wetzel & Frick, 2020),
more research is needed on how well the proposed methods perform under different test
designs and for more complex ATA problems.

Simulation Study 3: Simulation on Automated Test Extension

In the second ATA simulation the extension of a test was simulated in order to compare
the performances of a greedy algorithm for A- and D-optimality, MIP with T-optimality,
block R2, mean loadings and random block selection. It extends the previous simulation
by including A- and D-optimality, which performed better than T-optimality in previous
ATA and CAT simulations. The conditions with a constrained ATA problem were dropped
because developing a sophisticated greedy algorithm or local search heuristic is beyond the
scope of this paper (for examples of such algorithms, see Kreitchmann et al., 2021; Luecht,
1998; Olaru et al., 2015). In addition, note, that the differences in recovery between the free
and constrained problems were negligible in the previous Simulation 2 on test construction.

Methods

A basis test of three blocks was extended by 17 blocks out of a pool of 77 blocks, yielding a
final test size of 20 blocks. The only constraint was test length. Besides that, the simulation
design and procedure were identical to simulation study 2 on automated test construction.
The three blocks that served as a basis were composed of items loading on Traits a)
1-2-3, b) 1-2(negatively keyed)-4, and c) 1-2(negatively keyed)-5. This was sufficient to
obtain a positive-definite test information matrix, but it left enough room for performance
differences between the algorithms.
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Algorithms

Greedy algorithm based on A-optimality For the greedy algorithm based on A-
optimality (Greedy A), for each block not in the current test, A-optimality achieved by
adding this block to the current test was calculated for each grid point. For the weighted
target, A-optimality was weighted by A-optimality in the block pool for this grid point.
Weighted or unweighted A-optimality was then averaged across grid points, yielding mean
A-optimality. The block with the lowest mean A-optimality was added to the current test.
This procedure was repeated until the final test length of 20 blocks was reached.

Greedy algorithm based on D-optimality The greedy algorithm based on D-
optimality (Greedy D) was identical to that for A-optimality, except that D-optimality
was used instead.

MIP T The MIP algorithm with T-optimality was identical to simulation study 2 on
test construction, except that T-optimality for the basis test of three blocks was added.

Mean loadings and Random The algorithms for mean loadings and random block
selection were identical to simulation study 2 on test construction.

Results

All MIP models converged. The information-based algorithms, block R2 and mean loadings
together performed better (e.g., mean MAB = 0.30) than random block selection (mean
MAB = 0.35), explaining 22 to 32 % of total variance (Table 7). Mean loadings and MIP
T performed slighlty worse (e.g., mean MAB = .30) than Greedy A, Greedy D and block
R2 (mean MAB = .29, Table 6, Figure 9). However the absolute size of this difference
was negligible. Moreover, the difference between mean loadings and the information-based
algorithms explained only 1% of variance (Table 7). Recovery for A- and D-optimality
showed slightly smaller variance (SD MAB = 0.02) than for MIP T, mean loadings and
block R2 (SD MAB = 0.03, Table 7, Figure 9). Trait recovery was worse for the equal
(mean MAB = .31) than for the weighted target (mean MAB = .30), explaining 31% of
variance in r(θ, θ̂) and 4% to 6% in MAB and RMSE. All interactions were negligible.
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Table 6: Mean trait recovery by algorithm in simulation study 3 on test extension
Target Algorithm r(θ, θ̂) r(θ, θ̂)2 MAB RMSE
Equal Greedy A 0.90 (0.01) 0.81 (0.03) 0.28 (0.02) 0.13 (0.02)

Greedy D 0.90 (0.02) 0.81 (0.03) 0.28 (0.02) 0.13 (0.02)
MIP T 0.90 (0.02) 0.80 (0.04) 0.29 (0.03) 0.13 (0.03)
Block R2 0.90 (0.02) 0.81 (0.04) 0.29 (0.03) 0.13 (0.02)
Mean Loadings 0.89 (0.03) 0.79 (0.04) 0.30 (0.03) 0.14 (0.03)
Random 0.85 (0.04) 0.72 (0.06) 0.34 (0.04) 0.19 (0.04)

Weighted Greedy A 0.93 (0.01) 0.86 (0.02) 0.30 (0.02) 0.14 (0.02)
Greedy D 0.93 (0.01) 0.86 (0.02) 0.30 (0.02) 0.15 (0.02)
MIP T 0.92 (0.02) 0.85 (0.03) 0.31 (0.03) 0.15 (0.03)
Block R2 0.93 (0.01) 0.86 (0.03) 0.30 (0.03) 0.15 (0.03)
Mean Loadings 0.92 (0.02) 0.85 (0.03) 0.31 (0.03) 0.16 (0.03)
Random 0.89 (0.02) 0.80 (0.04) 0.36 (0.04) 0.20 (0.04)

Note. MAB = Mean Absolute Bias, RMSE = Root Mean Squared Error, A = A-optimality,
D = D-optimality, MIP T = Mixed Integer Programming with T-optimality. Standard
deviations are given in parentheses.

Table 7: Variance in trait recovery explained in % by algorithm and target in simulation
study 3 on test extension

Factor r(θ, θ̂) MAB RMSE
Algorithm vs. Random 22 31 32
Info vs. Mean Loadings 1 1 1

Weighted vs. Equal 31 4 6
Residuals 46 63 61

Note. MAB = Mean Absolute Bias, RMSE = Root
Mean Squared Error. r(θ, θ̂) was Fisher Z
transformed.
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Figure 9: Trait recovery by algorithm, for trait levels weighted equally in simulation study
3 on test extension. MIP = Mixed Integer Programming, A = A-optimality, D = D-
optimality, T = T-optimality, MAB = Mean Absolute Bias, RMSE = Root Mean Square
Error.

Discussion

The results of simulation study 3 on test extension confirmed the results of simulation
study 2 on test construction. The information-based algorithms and mean loadings per-
formed all on par but better than random block selection. Thus, also A- and D-optimality
proved useful for test construction. Further, the greedy algorithms showed slightly smaller
variance. Like the other algorithms, heuristics can be adapted to include more constraints
in addition to test length. The performance of a greedy algorithm gives a lower-bound
estimate to that of a more elaborate heuristic. Thus, A- and D-optimality are promising
information summaries for the development of a local search heuristic or a more elaborate
constructive heuristic. D-optimality is computationally less intensive than A-optimality.
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General Discussion

In this paper, I have shown how Fisher information in Thurstonian IRT models can be
calculated on the block level. Because Fisher information for a block is a non-invertible
matrix, I have proposed several indices to summarize block information: block R2, A-, D-,
and T-optimality. A simulation study showed that observed and expected standard errors
based on block information were accurate. Two other simulation studies showed that the
proposed information summaries in conjunction with different test assembly algorithms can
be used to create tests that are more reliable than those assembled by chance. In addition,
the mean of absolute item loadings within a block proved to be a good alternative, albeit
it does not allow to weigh precision by trait level. In the following, I will outline possible
applications of block information in research and practice.

Statistical Improvements

With Fisher information on the block level, unbiased expected and observed SE s can
be obtained for block sizes > 2 (Yousfi, 2020). Although the overestimation of reliabil-
ity based on information for binary outcomes of pairwise outcomes is small (Brown &
Maydeu-Olivares, 2011; Frick et al., 2021), it increases with increasing block size. Block
information allows to calculate unbiased optimality criteria that can be used in test con-
struction. Future research could compare the proposed method to results obtained with
the simplifying assumption of local independence.

Focus on the Block Level

The proposed method for estimating Fisher information for Thurstonian IRT blocks ex-
tends previous methods by a focus on the block level. First, a focus on the block level as
compared to the item level better reflects the response options available to participants
and thus captures the relative nature of MFC responses.
Second, relatedly, MFC tests have an inseparable design. Thus, all traits measured in a

block mutually interact at influencing ranking preferences and accordingly Fisher informa-
tion. As illustrated in the section on block information plots, the information summaries
and plots proposed in this manuscript can account for and visualize those mutual influ-
ences.
Third, focusing on the block level allows capturing item interactions. The estimation of

Thurstonian IRT models became possible when rank orders were recoded as binary out-
comes whose dependencies could be modeled in a structural equation framework (Brown &
Maydeu-Olivares, 2011; Maydeu-Olivares, 1999; Maydeu-Olivares & Brown, 2010). How-
ever, items in MFC blocks were sometimes observed to function differently between differ-
ent block compositions (Lin & Brown, 2017) or response contexts, for example, simulated
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low- and high-stakes contexts (Lee & Joo, 2021). At least as long as the extent of item in-
teractions and item parameter invariance between different block compositions is unclear,
a focus on the block level seems a useful supplement.

Investigating the MFC format

Block-level Fisher information can yield further insights into how item content and statis-
tical pecularities of the MFC format influence the precision of trait estimates. For example,
in simulations with MFC tests comprised of all positively keyed items, trait recovery was
decreased (Bürkner et al., 2019; Schulte et al., 2020) and evidence of ipsativity was ob-
served (Frick et al., 2021). Comparing block information between mixed and equally keyed
blocks might yield further insights into how item keying contributes to the recovery of nor-
mative trait levels.
Moreover, differences in item social desirability might lead to certain rank orders being

more frequent. For example, it has been reported that agreement as to which rank order
should be preferred increased the more the items within blocks differed in their social
desirability (Hughes et al., 2021). Certain rank orders being more frequent due to socially
desirable responding might make the whole block less informative about the content traits.
Further empirical studies could investigate the effect of item matching on the size of block
information.

Benefits for MFC Test Assembly

The newly proposed information summaries can be used to assemble MFC tests that max-
imize trait estimation precision. For manual test assembly, block information is easier to
interpret and incorporate than standardized item loadings which may differ by binary
outcome (e.g., Wetzel & Frick, 2020). Moreover, in the current simulations on test con-
struction and test extension, the mean loadings within blocks performed almost as good as
block information. If trait-level information is of interest, for example because the measure-
ment precision for a single trait should be increased, block R2 is the preferred information
summary in an interpretable metric.
Further, the current simulations showed that and illustrated how block information

can be used for the automated assembly of fixed tests. Considering the complexity of
assembling MFC tests, including balancing of traits, item keying and item desirability, au-
tomated test assembly might prove particularly valuable. Examining minimal restrictions
for test composition, the current simulations serve as a proof of concept showing that the
proposed block information summaries can be used for ATA. The full advantages might be
observed with more complex restrictions, more specific test information goals, and more
sophisticated heuristics.
Lastly, the proposed summaries can be used in computerized adaptive testing, where
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tests are assembled for each participant, based on their answers. In later stages of com-
puterized adaptive testing, A- and D-optimality can be used and might be preferable.
These criteria performed best in a simulation on computerized adaptive testing where
MFC blocks were assembled from separate items (Lin, 2020).
A drawback of using information for blocks instead of items is that whole blocks have to

be removed from the item pool. The selection of whole blocks costs more items and there-
with more time of participants and more research funds than newly assembling blocks from
separate items. Future research and applications will show how practicable and necessary
this procedure is.
In this paper, I have proposed a method to estimate Fisher information for multidi-

mensional forced-choice blocks assessed with the Thurstonian IRT model. Several ways to
summarize the information matrix for test construction were presented and evaluated. I
hope this paper will improve the construction of MFC tests and encourage further inves-
tigation of their properties.
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