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Abstract

One of the most frequently used models for understanding human navigation on the Web is the Markov chain model,
where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another.
Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the
next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in
numerous applications such as Google’s PageRank algorithm and others. Recently, new studies suggested that human
navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history
of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain
models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of
advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses
of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments
reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless
model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a
topical level, where we abstract away from specific page transitions to transitions between topics, we find that the
memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two
types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong
argument for more contextual studies of human navigation in future work.
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Introduction

Navigation represents a fundamental activity for users on the

Web. Modeling this activity, i.e., understanding how predictable

human navigation is and whether regularities can be detected has

been of interest to researchers for nearly two decades – an example

of early work would be work by Catledge and Pitkow [1]. Another

example would be [2], who focused on trying to understand

preferred user navigation patterns in order to reveal users’ interests

or preferences. Not only has our community been interested in

gaining deeper insights into human behavior during navigation,

but also in understanding how models of human navigation can

improve user interfaces or information network structures [3].

Further work has focused on understanding whether models of

human navigation can help to predict user clicks in order to

prefetch Web sites (e.g., [4]) or enhance a site’s interface or

structure (e.g., [5]). More recently, such models have also been

deployed in the field of recommender systems (e.g., [6]).

However, models of human navigation can only be useful to the

extent human navigation itself exhibits regularities that can be

exploited. An early study on user navigation in the Web by

Huberman, Pirolli, Pitkow and Lukose [7], for example, already

identified interesting regularities in the distributions of user page

visits on a Web site. More recently, Wang and Huberman [8]

confirmed these observations and Song, Qu, Blumm and

might be based on the inherent regularities of human behavior in

general.

The most prominent model for describing human navigation on

the Web is the Markov chain model (e.g., [10]), where Web pages

are represented as states and hyperlinks as probabilities of

navigating from one page to another. Predominantly, the Markov

chain model has been memoryless in a wide range of works (e.g.,

Google’s PageRank [11]) indicating that the next state only

depends on the current state of a user’s Web trail. Recently, a

study [12] suggested that human navigation might be better

modeled with memory – i.e., the next page depends on a longer

history of past clicks. However, this finding is preliminary and does

not account for the higher complexity of higher order Markov

chain models which is why the memoryless model is still widely

used.

Research questions
In this paper, we are interested in shedding a deeper light on

regularities in human navigation on the World Wide Web by

studying memory and structure in human navigation patterns. We
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start by investigating memory of human navigational paths over

Web sites by determining the order of corresponding Markov

chains. We are specifically interested in detecting if the benefit of a

larger memory (or higher order Markov chain) can compensate for

the higher complexity of the model. In order to understand

whether and to what extent human navigation exhibits memory

on a topical level, we abstract away from specific page transitions

and study memory effects on a topical level by representing click

streams as sequences of topics (cf. Figure 1) – note that the terms

‘‘topic’’ and ‘‘category’’ should be seen as synonyms throughout

this work. This enables us to (i) move up from the page to topical

level and (ii) significantly reduce the complexity of higher order

models and therefore (iii) gain deeper insights into memory and

structure of human navigational patterns. Finally, we discuss our

findings and demonstrate interesting differences between human

navigation in free browsing vs. more goal-oriented settings.

Methods and Materials
We study memory and structure in human navigation patterns

on three similarly structured datasets: WikiGame (a navigation

dataset with known navigation goals), Wikispeedia (another goal-

oriented navigation dataset) and MSNBC (a free navigation

dataset). For analyzing memory, we use Markov chains to model

human behavior and analyze the appropriate Markov chain order

– i.e., we investigate whether human navigation is memoryless or

not. For model selection – i.e., the process of finding the most

appropriate Markov chain order – we resort to a highly diverse

array of methods stemming from distinct statistical schools: (i)

likelihood [13,14], (ii) Bayesian [15] and (iii) information-theoretic

methods [14,16–19]. We supplement these with a (iv) cross

validation approach for a prediction task [18]. We thoroughly

elaborate each method, put them into relation to each other and

also highlight strengths and weaknesses of each. Such detailed

derivation of model parameters and the model comparison is, for

example, missing in previous work [12], which prevents us from

drawing definite conclusions. We apply these methods to our

human navigational data in order to get an exhaustive picture

about memory in human navigation. Finally, we identify structural

aspects by analyzing transition matrices produced by our Markov

chain analyses.

Contributions
The main contributions of this work are three-fold:

N First, we deploy four different, yet complementary, approaches

for order selection of Markov chain models (likelihood,

Bayesian, information-theoretic and cross validation methods)

and elaborate their strengths and weaknesses. Hence, our work

extends existing studies that model human navigation on the

Web using Markov chain models [12]. By applying these

methods on navigational Web data, our work presents – to the

best of our knowledge – the most comprehensive and

systematic evaluation of Markov model orders for human

navigational sequences on the Web to date. Furthermore, we

make our methods in the form of an open source framework

available online (https://github.com/psinger/PathTools) to

aid future work [20].

N Our empirical results confirm what we inferred from theory: It

is difficult to make plausible statements about the appropriate

Markov chain order having insufficient data but a vast amount

of states, which is a common situation for Web page

navigational paths. All evaluation approaches would favor a

zero or first order because the number of parameters grows

exponentially with the chain order and the available data is too

sparse for proper parameter inferences. Thus, we show further

evidence that the memoryless model seems to be a quite

practical and legitimate model for human navigation on a page

level.

N By abstracting away from the page level to a topical level, the

results are different. By representing all datasets as navigational

sequences of topics that describe underlying Web pages (cf.

Figure 1), we find evidence that topical navigation of humans is

not memoryless at all. On three rather different datasets of

navigation – free navigation (MSNBC) and goal-oriented

navigation (WikiGame and Wikispeedia) – we find mostly

consistent memory regularities on a topical level: In all cases,

Markov chain models of order two (respectively three) best

explain the observed navigational sequences. We analyze the

structure of such navigation, identify strategies and the most

salient common sequences of human navigational patterns and

provide visual depictions. Amongst other structural differences

between goal-oriented and free form navigational patterns,

users seem to stay in the same topic more frequently for our

Figure 1. Example of a navigation sequence in the WikiGame dataset. Bottom row of nodes: A user navigates a series of Wikipedia articles,
which can be represented as a sequence of Web pages. Top row of nodes: Each Wikipedia article can be mapped to a corresponding topic through
Wikipedia’s system of categories. This results in a sequence of topics.
doi:10.1371/journal.pone.0102070.g001
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free form navigational dataset (MSNBC) compared to both of

the goal oriented datasets (Wikigame and Wikispeedia). Our

analysis thereby provides new insights into the memory and

structure that users employ when navigating the Web that can

e.g., be useful to improve recommendation algorithms, web

site design or faceted browsing.

The paper is structured as follows: In the section entitled

‘‘Related Work’’ we review the state-of-the-art in this domain.

Next, we present our methodology and experimental setup in the

sections called ‘‘Methods’’ and ‘‘Materials’’. We present and

discuss our results in the section named ‘‘Results’’. In the section

called ‘‘Discussion we provide a final discussion and the section

called ‘‘Conclusions’’ concludes our paper.

Related Work
In the late 1990s, the analysis of user navigational behavior on

the Web became an important and wide-spread research topic.

Prominent examples are models by Huberman and Adamic [21]

that determine how users choose new sites while navigating, or the

work by Huberman, Pirolli, Pitkow and Lukose [7] who have

shown that strong regularities in human navigation behavior exist

and that, for example, the length of navigational paths on the Web

is distributed as an inverse Gaussian distribution. These first

models of human navigation on the Web set a standard modeling

framework for future research - the majority of navigation models

have been stochastic henceforth. Common stochastic models of

human navigation are Markov chains. For example, the Random

Surfer model in Google’s PageRank algorithm can be seen as a

special case of a Markov chain [11]. Some further examples of the

application of Markov chains as models of Web navigation can be

found in [10,22–29].

In a Markov chain, Web pages are represented as states and

links between the pages are modeled as probabilistic transitions

between the states. The dynamics of a user’s navigation session, in

which she visits a number of pages by following the links between

them, can thus be represented as a sequence of states. Specific

configurations of model parameters – such as transition probabil-

ities or model orders – have been used to reflect different

assumptions about navigation behavior. One of the most

influential assumptions in this field to date is the so-called

Markovian property, which postulates that the next page that a

user visits depends only on her current page, and not on any other

page leading to the current one. This assumption is adopted in a

number of prevalent models of human navigation in information

networks, for example also in the Random Surfer model [11].

However, this property is neglecting the observations stated above

that human navigation exhibits strong regularities which hints

towards longer memory patterns in human navigation. We argue,

that the more consistency human navigation in information

networks displays the higher the appropriate Markov chain order

should be.

The Markovian assumption might be wrong. The prin-

ciple that human navigation might exhibit longer memory patterns

than the first order Markov chain captures has been investigated in

the past (see e.g., [3,10] or [30] for a more general approach of

looking at memory in network flows). However, higher order

Markov chains have been often disputed for modeling human

navigation because the gain of a higher order model did not

compensate for the additional complexity introduced by the model

[10]. Therefore, it was a common practice to focus on a first order

model since it was a reasonable but extremely simple approxima-

tion of user navigation behavior (e.g., [25,27,28,31]).

The discussion about the appropriate Markov chain order was

just recently picked up again by Chierichetti, Kumar, Raghavan

and Sarlos [12]. While the authors’ results again show indicators

that users on the World Wide Web are not Markovian, the study

does not account for the higher complexity of such models and the

possible lack of statistically significant gains of these models.

Technically, the authors analyzed Markov chain models of

different orders by measuring the likelihood of real navigational

sequences given a particular model. In the next step, the authors

compared the models by their likelihoods and found that the

Markovian assumption does not hold for their given data and,

thus, higher order Markov chain models seem to be more

appropriate. As a result, the authors argue that users on the World

Wide Web are not Markovian. However, their results come with

certain limitations, such as the fact that choosing the model with

the highest likelihood is biased towards models with more

parameters. Because lower order models are always nested within

higher order models and as higher order Markov chains have

exponentially more parameters than lower order models (potential

overfitting), they are always a better fit for the data [18]. Thus,

higher order models are naturally favored by their improvements

in likelihoods. A more comprehensive view on this issue shows that

there exists a broad range of established model comparison

techniques that also take into the account the complexity of a

model in question [14–17,19,32,33].

Moreover, the principle objects of interest in the majority of the

past studies are transitions between Web pages. Only a few studies

[27,34,35] investigate navigation as transitions between Web page

features, such as the content or context of those Web pages.

Methods

In the following, we briefly introduce Markov chains before

discussing an expanded set of methods for order selection,

including likelihood, Bayesian, information-theoretic and cross validation

model selection techniques.

Markov Chains
Formally, a discrete (time and space) finite Markov chain is a

stochastic process which amounts to a sequence of random

variables X1,X2,:::,Xn. For a Markov chain of the first order, i.e.,

for a chain that satisfies the memoryless Markov property the

following holds:

P(Xnz1~xnz1DX1~x1,X2~x2,:::,Xn~xn)~

P(Xnz1~xnz1DXn~xn) ð1Þ

This classic first order Markov chain model is usually also called

a memoryless model as we only use the current information for

deriving the future and do not look into the past. For all our

models we assume time-homogeneity – the probabilities do not change

as a function of time. To simplify the notation we denote data as a

sequence D~(x1,x2,:::,xn) with states from a finite set S. With this

simplified notation we write the Markov property as:

p(xnz1Dx1,x2,:::,xn)~p(xnz1Dxn) ð2Þ

As we are also interested in higher order Markov chain models

in this article – i.e., memory models – we now also define a
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Markov chain for an arbitrary order k with k[N – or a chain with

memory k. In a Markov chain of k-th order the probability of the

next state depends on k previous states. Formally, we write:

p(xnz1Dx1,x2,:::,xn)~p(xnz1Dxn,xn{1,:::,xn{kz1) ð3Þ

Markov chains of a higher order can be converted into Markov

chains of order one in a straightforward manner – the set of states

for a higher order Markov chain includes all sequences of length k

(resulting in a state set of size DSDk DSD). The transition probabilities

are adjusted accordingly.

A Markov model is typically represented by a transition

(stochastic) matrix P with elements pij~p(xj Dxi). Since P is a

stochastic matrix it holds that for all i:

X
j

pij~1 ð4Þ

Please note, that for a Markov chain of order the current state

xi can be a compound state of length k – it is a sequence of past k

states. Throughout this paper we use this simpler notation, but one

should keep in mind that xi differs for distinct orders k.

For the sake of completeness, we also allow k to be zero. In such

a zero order Markov chain model the next state does not depend on

any current or previous events, but simply can be seen as a weighted

random selection – i.e., the probability of choosing a state is defined

by how frequently it occurs in the navigational paths. This should

serve as a baseline for our evaluations.

Next, we want to estimate the vector h of parameters of a

particular Markov chain that generated observed data D as well as

determine the appropriate Markov chain order. For a Markov

chain the model parameters are the elements pij of the transition

matrix P, i.e., h~P.

Model Selection
In this article our main goal is to determine the appropriate

order of a Markov chain – i.e., the appropriate length of the

memory. For doing so, we resort to well established statistical

methods. As we want to provide a preferably complete array of

methods for doing so, we present and apply methods from distinct

statistical schools: (i) likelihood, (ii) Bayesian and (iii) information-

theoretic methods. Note that no official classification of statistical

schools is available; some may also argue that there are only the

two competing schools of frequentists (which we do not explicitly

discuss in this article) and Bayesians. The categorization used here

is motivated by a short blog post (see http://labstats.net/articles/

overview.html). We also supplement the methods coming from

these three schools by providing a model selection technique

usually known from machine learning: (iv) cross validation. We

provide an overall ample view of methods and discuss advantages

and limitations of each in the following sections.

Likelihood Method
The term likelihood was coined and popularized by R. A. Fisher

in the 1920’s (see e.g, [13] for a historic recap of the

developments). Likelihood can be seen as a central element of

statistics and we will also see in the following sections that other

methods also resort to the concept. The likelihood is a function of

the parameters h and it equals to the probability of observing the

data given specific parameter values:

P(DDh) ~p(xnDxn{1)p(xn{1Dxn{2):::p(x2Dx1)p(x1)

~p(x1)P
i
P

j
p

nij
ij , ð5Þ

where nij is the number of transition from state xi to state xj in

D.

Fisher also popularized the so-called maximum likelihood estimate

(MLE) which has a very intuitive interpretation. This is the

estimation of the parameters h – i.e., transition probabilities – that

most likely generated data D. Concretely, the maximum likelihood

estimate ĥhMLE are the values of the parameters h that maximize

the likelihood function, i.e., ĥhMLE~ arg maxh P(DDh) (a thorough

introduction to MLE can be found in [36]).

The maximum likelihood estimation for Markov chains is an

example of an optimization problem under constraints. Such

optimization problems are typically solved by applying Lagrange

multipliers. To simplify the calculus we will work with the log-

likelihood function L P DDhð Þð Þ~logP(DDh). Because the log

function is a monotonic function that preserves order, maximizing

the log-likelihood is equivalent to maximizing the likelihood

function. Thus, we have:

L P DDhð Þð Þ~ log p(x1)P
i
P

j
p

nij
ij

� �

~ logp(x1)z
X

i

X
j

nij logpij ð6Þ

Our constraints capture the fact that each transition matrix row

sums to 1:

X
j

pij~1 ð7Þ

We have n rows and therefore we need n Lagrange multipliers

l1,l2,:::,ln. We can rewrite the constraints using Lagrange

multipliers as:

li

X
j

pij{1

 !
~0 ð8Þ

Now, the new objective function is:

f (l, h)~L(P(DDh)){
X

i

li

X
j

pij{1

 !
ð9Þ

To maximize the objective function we set partial derivatives

with respect to li to 0, which gives back the original constraints.

Further, we set partial derivatives with respect to pij to 0 and

solve the equation system for pij . This gives:
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pij~
nijP
j nij

ð10Þ

Thus, the maximum likelihood estimate for a specific pij is the

number of transitions from state xi to state xj divided by the total

number of transitions from state xi to any other state. For

example, in a navigation scenario the maximum likelihood

estimate for a transition from page A to page B is the number

of clicks on a link leading to page B from page A divided by the

total number of clicks on page A.

Our concrete goal is to determine the appropriate order of a

Markov chain. Using the log-likelihoods of the specific order

models is not enough, as we will always get a better fit to our

training data using higher order Markov chains. The reason for

this is that lower order models are nested within higher order

models. Also, the number of parameters increases exponentially

with k which may result in overfitting [18] since we can always

produce better fits to the data with more model parameters. To

demonstrate this behavior, we produced a random navigational

dataset by randomly (uniformly) picking a next click state out of a

list of arbitrary states. One of these states determines that a path is

finished and a new one begins. With this process we could

generate a random path corpus that is close to one main dataset of

this work (Wikigame topic dataset explained in the section called

‘‘Materials’’). Concretely, we as well chose 26 states and the same

number of total clicks. Purely from our intuition, such a process

should produce navigational patterns with an appropriate Markov

chain order of zero or at maximum one. However, if we look at

the log-likelihoods depicted in Figure 2 we can observe that the

higher the order the higher the corresponding log likelihoods are.

This strongly suggests that – as previously explained – looking at

the log-likelihoods is not enough for finding the appropriate

Markov chain order. Hence, we first resort to a well-known

statistical likelihood tool for comparing two models – the so-called

likelihood ratio test.

This test is suited for comparing the fit of two composite

hypothesis where one model – the so-called null model k – is a

special case of the alternative model m. The test is based on the log

likelihood ratio, which expresses how much more likely the data is

with the alternative model than with the null model. We follow the

notation provided by Tong [14] and denote the ratio as kgm:

kgm~{2L P DDhkð Þð Þ{L P DDhmð Þð ÞÞ ð11Þ

To address the overfitting problem we perform a significance

test on this ratio. The significance test recognizes whether a better

fit to data comes only from the increased number of parameters.

The test calculates the p-value of the likelihood ratio distribution.

Whenever the null model is nested within the alternative model

the likelihood ratio approximately follows a x2 distribution with

degrees of freedom specified by (DSDm{DSDk)(DSD{1). If the p-value

is below a specific significance level we can reject the null

hypothesis and prefer the alternative model [32] – note that this

method also utilizes mechanisms usually known from the

frequentist school; i.e., hypothesis testing.

Likelihood ratios and corresponding tests have been shown to

be a very understandable approach of specifying evidence [37].

They also have the advantage of specifying a clear value (i.e., the

likelihood ratio) with can give us intuitive meaning about the

advantage of one model over the other. However, the likelihood-

ratio test also has limitations like that it only works for nested

models, which is fine for our approach but may be problematic for

other use cases. It also requires us to use elements from frequentist

approaches (i.e., the p-value) for deciding between two models

Figure 2. Log-likelihoods for random path dataset. Simple log-likelihoods of varying Markov chain orders would suggest higher orders as the
higher the order the higher the corresponding log-likelihoods are. This suggests that looking at these log-likelihoods is not enough for finding the
appropriate Markov chain order as methods are necessary that balance the goodness-of-fit against the number of model parameters.
doi:10.1371/journal.pone.0102070.g002
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which have been criticized in the past (e.g., [38]). Furthermore, we

are only able to compare two models with each other at a time.

This makes it difficult to choose one single model as the most likely

one as we may end up with several statistical significant

improvements. Also, as we increase the number of hypothesis in

our test, we as well increase the probability that we find at least

one significant result (Type 1 error). We could tackle this problem

by e.g., applying the Bonferroni correction which we leave open for

future work.

Bayesian Method
Bayesian inference is a statistical method utilizing the Bayes’

rule – Rev. Thomas Bayes started to talk about the Bayes theorem

in 1764 – for updating prior believes with additional evidence

derived from data. A general introduction to Bayesian inference

can e.g., be found in [39]; in this article we focus on explaining the

application for deriving the appropriate Markov chain order (see

[15] for further details).

In Bayesian inference data and the model parameters are

treated as random variables (cf. MLE where parameters are

unknown constants). We start with a joint probability distribution

of data D and parameters hk given a model M; that is given a

Markov chain of a specified order k. Thus, we are interested in

P(D,hk DMk).

The joint distribution P(D,hk DMk) can be written as the product

of the conditional probability of data D given the parameters hk

and the marginal distribution of the parameters, or we can write

this joint distribution as the product of the conditional probability

of the parameters given the data and the marginal distribution of

the data.

Solving then for the posterior distribution of parameters given

data and a model we obtain the famous Bayes rule:

P(hk DD,Mk)~
P(DDhk,Mk)P(hk DMk)

P(DDMk)
, ð12Þ

where P(hk DMk) is the prior probability of model parameters,

P(DDhk,Mk) is the likelihood function; that is the probability of

observing the data given the parameters, and P(DDMk) is the

evidence (marginal likelihood). P(hk DD,Mk) is the posterior

probability of the parameters, which we obtain after we update

the prior with the data.

For a more detailed and an in-depth technical analysis of

Bayesian inference of Markov chains we point to an excellent

discussion of the topic in [15].

Likelihood. As previously, we have:

P(DDhk,Mk)~p(x1)P
i
P

j
p

nij
ij ð13Þ

Prior. The prior reflects our (subjective or objective) belief

about the parameters before we see the data. In Bayesian

inference, conjugate priors are of special interest. Conjugate

priors result in posterior distributions from the same distribution

family. In our case, each row of the transition matrix follows a

categorical distribution. The conjugate prior for categorical

distribution is the Dirichlet distribution. Further information on

applying Dirichlet conjugate prior and dealing with Dirichlet

process can be found in [40]. The Dirichlet distribution is defined

as Dir(a):

Dir(a)~
C(
P

j aj)

Pj C(aj)
P

j
x

aj{1

j , ð14Þ

where C is the gamma function, ajw0 for each j and
P

j xj~1

is a probability simplex. The probability outside of the simplex is 0.

The hyperparameters a reflect our assumptions about the

parameters h before we have observed the data. We can think

about the hyperparameters as fake counts in the transition matrix

of a Markov chain. A standard uninformative selection for

hyperparameters is a uniform prior – for example, we set aj~1

for each j.

Thus, for row i of the transition matrix we have the following

prior:

Dir(ai)~
C(
P

j aij)

Pj C(aij)
P

j
p

aij{1

ij ð15Þ

As before, it holds that:

X
j
pij~1 ð16Þ

The prior for the complete transition matrix is the product of

the Dirichlet distributions for each row:

P(hk DMk)~P
i

C(
P

j aij)

Pj C(aij) j
p

aij{1

ij
ð17Þ

Evidence. To calculate the evidence we take a weighted

average over all possible values of the parameters hk. Thus, we

need to integrate out the parameters hk.

P(DDMk)~

ð
P(DDhk,Mk)P(hk DMk)dhk ð18Þ

P(DDMk)~

ð
P(DDhk,Mk)P(hk DMk)dhk

~

ð
p(x1)P

i
P

j
p

nij
ij P

i

C(
P

j aij)

Pj C(aij)
P

j
p

aij{1

ij dhk

~p(x1)P
i

C(
P

j aij)

Pj C(aij)

ð
P

j
p

nij
ij P

j
p

aij{1

ij dhk

~p(x1)P
i

C(
P

j aij)

Pj C(aij)

ð
P

j
p

nijzaij{1

ij dhk
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Please note, that:

ðC(
P

j aj)

Pj C(aj)
P

j
x

aj{1

j dx~1

C(
P

j aj)

Pj C(aj)

ð
P

j
x

aj{1

j dx~1

ð
P

j
x

aj{1

j dx~
Pj C(aj)

C(
P

j aj)

Thus, we have

ð
P

j
p

nijzaij{1

ij dhk~
Pj C(nijzaij)

C(
P

j (nijzaij))
ð19Þ

And thus,

P(DDMk)~p(x1) P
i

C(
P

j aij)

Pj C(xij)

Pj C(nijzaij)

C(
P

j (nijzaij))
ð20Þ

Posterior. For the posterior distribution over the parameters

hk we obtain:

P(hkDD,Mk)~P
i
P

j
p

nij
ij P

i
P

j
p

aij{1

ij

C(
P

j (nijzaij))

Pj C(nijzaij)

~P
i
P

j
p

nijzaij{1

ij

C(
P

j (nijzaij))

Pj C(nijzaij)

This equation is the product of the Dirichlet distributions for

each row with parameters njzaj :

P(hk DD,Mk)~P
i

Dir(nizai) ð21Þ

The posterior distribution is a combination of our prior belief

and the data that we have observed. In fact, the expectation and

the variance of the posterior distribution are:

E½pij �~
nijzaijP
j (nijzaij)

ð22Þ

Var½(pij �~
(nijzaij)(

P
j (nijzaij){(nijzaij))

(
P

j (nijzaij))
2(
P

j (nijzaij)z1)
ð23Þ

We can rewrite the expectation as:

E½pij �~
1P

j (nijzaij)

X
j

nij

nijP
j nij

z
X

j

aij

aijP
j aij

 !
ð24Þ

Setting c~

P
j

nijP
j
(nijzaij )

, we can rewrite the expectation of the

posterior distribution as:

E½pij �~c
nijP
j nij

z(1{c)
aijP
j aij

ð25Þ

Thus, the posterior expectation is a convex combination of the MLE

and the prior. When the number of the observation becomes large

(nij&aij ) then c tends to 1, and the posterior expectation tends to

the MLE.

By setting aij~1 for each i and j we effectively obtain Laplace’s

prior; that is we apply Laplace smoothing [18].

For model selection we adopt once more the Bayesian inference

(again see [15] for a thorough discussion). We have a set M of

models Mk with varying order k and are interested in deciding

between several models (c.f. [41]). We are interested in the joint

probability distribution P(D,Mk) of data D and a model Mk. We

can write the joint distribution as a product of a conditional

probability (of data given a model, or of a model given the data)

and a prior marginal distribution (of data or a model) and by

solving for the posterior distribution of a model given the data we

again obtain the Bayes rule:

P(MkDD)~
P(DDMk)P(Mk)

P(D)
, ð26Þ

where P(D) is the weighted average over all models Mk:

P(D)~
X

k

P(DDMk)P(Mk): ð27Þ

The likelihood of data D given a model Mk is the evidence

P(DDMk) given by Equation 20, which is the weighted average

over all possible model parameters hk given the model Mk.

Following Strelioff, Crutchfield and Hübler [15], we select two

priors over the model set M – a uniform prior and a prior with an

exponential penalty for the higher order models [15]. The uniform

prior assigns the identical probability for each model:

P(Mk)~
1

DM D
: ð28Þ

With the uniform prior we obtain the following expression for

the posterior probability of a model Mk given the data:

P(Mk DD)~
P(DDMk)P
k P(DDMk)

: ð29Þ
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The prior with the exponential penalty can be defined as:

P(Mk)~
e{DSk DP
k e{DSk D , ð30Þ

where DSk D is the number of states of the model Mk and can be

calculated as:

DSk D~DSDk(DSD{1), ð31Þ

with DSD being the number of states of the model of order 1.

After solving for the posterior distribution for the prior with the

exponential penalty we obtain:

P(Mk DD)~
P(DDMk)e{DSk DP
k P(DDMk)e{DSk D : ð32Þ

The calculations are best implemented with log-evidence and

logarithms of the gamma function to avoid underflow since the

numbers are extremely small. To implement the sum for the

normalizing constant in the denominator we apply the so-called

log-sum-exp trick [42]. First, we calculate the log-evidence:

logP(DDMk) and then calculate the logarithm of the normalizing

constant log(C):

log(C)~log(
X

k

elog(P(DDMk ))): ð33Þ

A direct calculation of elog(P(DDMk)) results in an underflow, and

thus we pull the largest log-evidence Emax~max(log(P(DDMk))
out of the sum:

log(C)~Emaxzlog(
X

k

elog(P(DDMk )){Emax ): ð34Þ

One downside of using Bayesian model selection is that it is

frequently difficult to calculate Bayes factors. Concretely, it is often

complicated to calculate the necessary integral analytically and

one needs to resort to various alternatives in order to avoid this

problem. Nowadays, several such methods exist: e.g., asymptotic

approximation or sampling from the posterior (MCMC, Gibbs)

[41]. Also, we need to specify prior distributions for the parameters

of each model. As elaborated by Kass and Raftery [41], one

approach is to use the BIC (see the next section entitled

‘‘Information-theoretic Methods’’) which gives an appropriate

approximation given one specific prior.

Compared to the likelihood ratio test (see section entitled

Likelihood Method), the Bayesian model selection technique does

not require the models to be nested. The main benefit of Bayesian

model selection is that it includes a natural Occam’s razor – i.e., a

penalty for too much complexity – which helps us to avoid

overfitting [41,43–45]. The Occam’s razor is a principle that

advises to prefer simpler theories over more complex ones. Based

on this definition there is no need to include extra complexity

control as we e.g., additionally did for our exponential penalty. We

see this though as a nice further control mechanism for cautiously

penalizing model complexity and for validating the natural

Occam’s razor.

Information-theoretic Methods
Information-theoretic methods are based on concepts and ideas

derived from information theory with a specific focus on entropy. In

the following we will provide a description of the two probably

most well-known methods; i.e., AIC and BIC. A thorough

overview of information-theoretic methods can e.g., be found in

various work by K. P. Burnham [46,47].

Akaike information criterion (AIC). Akaike [16] intro-

duced in 1973 a one dimensional statistic for determining the

optimal model from a class of competing models. The criterion is

based on Kullback-Leibler divergence [48] and the asymptotic

properties of the likelihood ratio statistics described in the section

entitled ‘‘Likelihood Method’’. The approach is based on

minimization of AIC (minimum AIC estimate – MAICE) amongst

several competing models [33] and has been first used for Markov

chains by Tong [14]. Hence, we define the AIC based on the

choice of a loss function proposed by Tong [14]:

AIC(k)~kgm{2(DSDm{DSDk)(DSD{1) ð35Þ

The test represents an asymptotic version of the likelihood ratio

test defined in Equation 11 for composite hypothesis. The idea is

to choose m reasonably high and test lower order models until an

optimal order is found. MAICE chooses the order k which exhibits

the minimum AIC score and tries to balance between overfitting

and underfitting [33].

Bayesian Information Criterion (BIC). In 1978 Schwarz

[19] introduced this criterion which can be seen as an

approximation of the Bayes factor for Bayesian model selection

(see the previous section entitled ‘‘Bayesian Method’’). It is similar

to the AIC introduced above with the difference that it penalizes

higher order models even more by adding an additional

penalization for the number of observations [17]:

BIC(k)~kgm{(DSDm{DSDk)(DSD{1)ln(n) ð36Þ

Again we choose m reasonably high and test lower order models

against it. The penalty function is the degree of freedom multiplied

with the natural logarithm of the number of observations n. This

function converges to infinity at a still slow enough rate and hence,

grants a consistent estimator of the Markov chain order [17].

Frequently, both AIC and BIC suggest the same model.

However, there are certain cases, where they might slightly

disagree. In model selection literature there is a still ongoing

debate of whether one should prefer AIC or BIC over each other –

e.g., see [49] for a critique of the BIC for model selection.

However, as pointed out by Burnham and Anderson [47], each

has its strength and weaknesses in distinct domains. The authors

emphasize that both can be seen as either frequentist or Bayesian

procedures. In case of inequality, Katz [17] suggests to investigate

the patterns further by simulating observations and investigate

distinct sample sizes. In this paper we instead apply additional

model comparison techniques to further analyze the data.

The performance of AIC and BIC has also been investigated in

the terms of determining the appropriate Markov chain order

which is the main goal of this article. R. W. Katz [17] pointed out

that by using AIC there is the possibility of overestimating the true

order independent of how large the data is. Hence, he points out
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that AIC is an inconsistent method. Contrary, he emphasizes that

BIC is a consistent estimator – i.e., if there is a true underlying

model BIC will select it with enough data. Alas, it does not

perform well for small sample sizes (see also [50]). Nonetheless,

AIC is the most used estimator for determining the appropriate

order, maybe due to higher efficiency for smaller data samples, as

elaborated by Baigorri, Gonçalves and Resende [51].

While both AIC and BIC seem at first to be very similar to the

likelihood ratio test (see section entitled ‘‘Likelihood Method) there

are some elementary differences. First and foremost, they can also

be applied for non-nested models [46]. Moreover, they do not

need to resort to hypothesis testing. BIC is also closely related to

Bayesian model selection techniques; specifically to the Bayes

factor (see section called ‘‘Bayesian Method’’). Kass and Raftery

[41] emphasize the advantages of BIC over the Bayes factor by

pointing out that it can be applied even when the priors are hard

to set. Also, it can be a rough approximation to the logarithm of

the Bayes factor if the number of observations is large. BIC is also

declared as being well suited for scientific reporting.

Finally, we want to point out that one could also see AIC as

being best for prediction, while BIC might be better for

explanation. Also, as pointed out by M. Stone [52], AIC is

asymptotically equivalent to cross validation (see the section

entitled ‘‘Cross Validation Method’’) if both use maximum

likelihood estimation.

Cross Validation Method
Another – quite natural – way of determining the appropriate

order of a Markov chain is cross-validation [12,18]. The basic idea

is to estimate the parameters on a training set and validate the

results on an independent testing set. In order to reduce variance

we perform a stratified 10-fold cross-validation. In difference to a

classic machine learning scenario, we refer to stratified as a way of

keeping approximately the equal amount of observations in each

fold. Thus, we keep approximately 10% of all clicks in a single

fold.

With this method we focus on prediction of the next user click.

Markov chains have been already used to prefetch the next page

that the user most probably will visit on the next click. In the

simplest scenario, this prefetched page is the page with the highest

transition probability from the current page. To measure the

prediction accuracy we measure the average rank of the actual

page in sorted probabilities from the transition matrix. Thus, we

determine the rank of the next page xnz1 in the sorted list of

transition probabilities (expectations of the Bayesian posterior) of

the current page xn (see the section named ‘‘Markov Chains’’). We

then average the rank over all observations in the testing set.

Hence, we can formally define the average rank r(Df ) of a fold Df

for some arbitrary model Mk the following way:

r(Df )~

P
i

P
j nijrijP

i

P
j nij

, ð37Þ

where nij is the number of transition from state xi to state xj in

Df and rij denotes the rank of xj in the i-th row of the transition

matrix.

For ranking the states in a row of the matrix, we resort to

modified competition ranking. This means that if there is a tie between

two or more values, we assign the maximum rank of all ties to each

corresponding one; i.e., we leave the gaps before a set of ties (e.g.,

‘‘14445’’ ranking). By doing so, we assign the worst possible ranks

to ties. One important implication of this methodology is that we

include a natural penalty (a natural Occam’s razor) for higher

order Markov chains. The reason for this is that the transition

matrices generally become sparser the higher the order. Hence, we

come up with many more ties and the chance is higher that we

assign higher ranks for observed transitions in the testing data. The

most extreme case happens when we do not have any information

available for observations in the testing set (which frequently

happens for higher orders); then we assign the maximum rank (i.e.,

the number of states) to all states. We finally average the ranks

over all folds for a given order and suggest the model with the

lowest average rank. In order to confirm our findings we also

applied an additional way of determining the accuracy which is

motivated by a typical evaluation technique known from link

predictors [53]. Concretely, it counts how frequently the true next

click is present in the TopK (k = 5) states determined by the

probabilities of the transition matrix. In case of ties in the TopK

elements we randomly draw from the ties. By applying this method

to our data we can mirror the evaluation results obtained by using

the described and used ranking technique. Note that we do not

explicitly report the additional results of this evaluation method

throughout the paper.

This method requires priors (i.e., fake counts; see the section

named ‘‘Bayesian Method’’) – otherwise prediction of unseen

states is not possible. It also resorts to the maximum likelihood

estimate for calculating the parameters of the models as described

in the section entitled ‘‘Likelihood Method’’. Also, as shown in the

previous section called ‘‘Information-theoretic Methods’’ cross

validation has asymptotic equivalence to AIC.

One disadvantage of cross validation methods usually is that the

results are dependent on how one splits the data. However, by

using our stratified k-fold cross validation approach, we counteract

this problem as it matters less of how the data is divided. Yet, by

doing so we need to rerun the complete evaluation k times, which

leads to high computational expenses compared to the other

model selection techniques described earlier and we have to

manually decide of which k to use. One main advantage of this

method is that eventually each observation is used for both

training and testing.

Materials

In this paper, we perform experiments on three datasets. While

the first two datasets (WikiGame and Wikispeedia) are represen-

tatives of goal-oriented navigation scenarios (where the target node

for each navigation sequence is known beforehand), the third

dataset (MSNBC) is representative of free navigation on the Web

(where we have no knowledge about the targets of navigation).

Wikigame dataset
This dataset is based on the online game TheWikiGame (http://

thewikigame.com/). The game platform offers a multiplayer game,

where users navigate from a randomly selected Wikipedia page

(the start page) to another randomly selected Wikipedia page (the

target page). All pairs of start and target pages are connected

through Wikipedia’s underlying network. The users are only

allowed to click on Wikipedia links or on the browser back button

to reach the target page, but they are not allowed to use search

functionality.

In this study, we only considered click paths of length two or

more going through the main article namespace in Wikipedia.

Table 1 shows some main characteristics of our Wikigame dataset.

As motivated in Section ‘‘Introduction’’, we will represent the

navigational paths through Wikipedia twofold: (a) each node in a

path is represented by the corresponding Wikipedia page ID – we
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refer to this as the Wikigame page dataset – and (b) each node in a

path is represented by a corresponding Wikipedia category

(representing a specific topic) – we call this the Wikigame topic

dataset. For the latter dataset we determine a corresponding top

level Wikipedia category (http://en.wikipedia.org/wiki/

Category:Main_topic_classifications) in the following way. The

majority of Wikipedia pages belongs to one or more Wikipedia

categories. For each of these categories we find a shortest path to

the top level categories and select a top level category with the

shortest distance. In the case of a tie we pick a top level category

uniformly at random. Finally, we replace all appearances of that

page with the chosen top level category. Thus, in this new dataset

we replaced each navigational step over a page with an

appropriate Wikipedia category (topic) and the dataset contains

paths of topics which users visited during navigation (see Figure 1).

Figure 3 illustrates the distinct topics and their corresponding

occurrence frequency (A).

Wikispeedia dataset
This dataset is based on a similar online game as the Wikigame

wikispeedia/). Again, the players are presented with two randomly

chosen Wikipedia pages and they are as well connected via the

underlying link structure of Wikipedia. Furthermore, users can

also select their own start and target page instead of getting

randomly chosen ones. Contrary to the Wikigame, this game is no

multiplayer game and you do not have a time limit. Again, we only

look at navigational paths with at least two nodes in the path. The

main difference to the Wikigame dataset is that Wikispeedia is

played on a limited version of Wikipedia (Wikipedia for schools

http://schools-wikipedia.org/) with around 4,600 articles. Some

main characteristics are presented in Table 1. Conducted research

and further explanations of the dataset can be found in [35,54–

56].

As we want to look at transitions between topics we determine a

corresponding top level category (topic) for each page in the

dataset. We do this in similar fashion as for our Wikigame dataset,

but the Wikipedia version used for Wikispeedia has distinct top

level categories compared to the full Wikipedia. Figure 3 illustrates

the distinct categories and their corresponding occurrence

frequency (B).

MSNBC dataset
This dataset (http://kdd.ics.uci.edu/databases/msnbc/msnbc.

html) consists of Web navigational paths from MSNBC (http://

msnbc.com) for a complete day. Each single path is a sequence of

page categories visited by a user within a time frame of 24 hours.

The categories are available through the structure of the site and

include categories such as news, tech, weather, health, sports, etc. In this

dataset we also eliminate all paths with just a single click. Table 1

shows the basic statistics for this dataset and in Figure 3 the

frequency of all categories of this dataset are depicted (C).

Data preparation
Each dataset D consists of a set of paths P. A single path

contains a single game in the Wikigame and Wikispeedia dataset

or a single navigation session in the MSNBC dataset. A path p is

defined as a n-tuple (v1, . . . ,vn) with vi[V ,1ƒiƒn and

(vi,viz1)[E,1ƒiƒn{1 where V is the set of all nodes in P and

E is the set of all observed transitions in P. We also define the

length of a path len(p) as the length of the corresponding tuple

(v1, . . . ,vn). Additionally, we want to define p~ vk Dk~1 . . . nf g as

the set of nodes in a path p. Note that DpDƒn. The finite state set S

needed for Markov chain modeling is originally the set of vertices

V in a set of paths P given a specific dataset D. To prepare the

paths for estimation of parameters of a Markov chain of order k,

we separate single paths by prepending a sequence of k generic

RESET states to each path, and also by appending one RESET

state at the end of each path. This enables us to connect

independent paths and – through the addition of the RESET state

– to forget the history between different paths. Hence, we end up

with an ergodic Markov chain (see [12]). With this artificial

RESET state, the final number of states is DSDz1.

Results

In this section we present the results obtained from analyzing

human navigation patterns based on our datasets at hand

introduced in Section ‘‘Materials’’. We begin by presenting the

results of our investigations of memory – i.e., appropriate Markov

chain order using the Markov chain methods thoroughly

explained in the section called ‘‘Methods’’ – of user navigation

patterns in the section entitled ‘‘Memory’’. Based on these

calculations and observations we dig deeper into the structure of

human navigation and try to find consistent patterns – i.e., specific

sequences of navigated states – in the section named ‘‘Structure’’.

Memory
We start by analyzing human navigation over Wikipedia pages

on the Wikigame page dataset. Afterwards, we will focus on our

topic datasets for getting insights on a topical level.

Page navigation
Wikigame page dataset. The initial Markov chain model

selection results (see Figure 4) obtained from experiments on the

Wikigame page dataset confirm our theoretical considerations. We

observe that the likelihoods are rising with higher Markov chain

orders (confirming what [12] found) which intuitively would

indicate a better fit to the data using higher order models.

However, the likelihood grows per definition with increasing order

and number of model parameters and therefore, the likelihood

based methods for model selection fail to penalize the increasing

model complexity (c.f. Section ‘‘Likelihood Method’’). All other

applied methods take the model complexity into account.

Table 1. Dataset statistics.

Wikigame Wikispeedia MSNBC

#Page Ids 360,417 n/a n/a

#Topics 25 15 17

#Paths 1,799,015 43,772 624,383

#Visited nodes 10,758,242 259,019 4,333,359

doi:10.1371/journal.pone.0102070.t001
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First, we can imply already from the likelihood statistics (B) that

there might be no improvement over the most basic zero order

Markov chain model as we can not find any statistically significant

improvements of higher orders. Both AIC (C) and BIC (D) results

confirm these observations and also agree with each other. Even

though we can see equally low values for a zero, first and second

order Markov chain, we would most likely prefer the most simple

model in such a case – further following the ideas of the Occam’s

razor.

In order to extend these primary observations we used a

uniform Laplace prior and Bayesian inference and henceforth, we

obtain the results illustrated in the first two figures of the bottom

row in Figure 4. The Bayesian inference results again suggest a

zero order Markov chain model as the most appropriate as

indicated by the highest evidence (E) and the highest probability

obtained using Bayesian model selection with and without a

further exponential penalty for the number of parameters (F).

The observations and preference of using a zero order model

are finally confirmed by the results obtained from using 10-fold

cross-validation and a prediction task (G). We can see that the

average position is the lowest for a zero order model approving our

observations made above.

Summary. Our analysis of the Wikigame page dataset

thereby reveals a clear trend towards a zero order Markov chain

model. This is imminent when looking at all distinct model

selection techniques introduced and applied in this article, as they

all agree on the choice of weighted random selection as the

statistically significant most approvable model. This is a strong

approval of our initial hypothesis stating it is highly difficult to

make plausible statements about the appropriate Markov chain

Figure 3. Topic frequencies. Frequency of categories (in percent) of all paths in (A) the Wikigame topic dataset (B) the Wikispeedia dataset and (C)
the MSNBC dataset. The colors indicate the categories we will investigate in detail later and are representative for a single dataset – this means that
the same color in the datasets does not represent the same topic. The Wikigame topic dataset consists of more distinct categories than the
Wikispeedia and MSNBC dataset. Furthermore, the most frequently occuring topic in the Wikigame topic dataset is Culture with around 13%. The
Wikispeedia dataset is dominated by the two categories the most Science and Geography each making up for almost 25% of all clicks. Finally, the
most frequent topic in the MSNBC dataset is the frontpage with a frequency of around 22%.
doi:10.1371/journal.pone.0102070.g003
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order having insufficient data but a vast amount of states. The

higher performance of higher order chains can not compensate the

necessary additional complexity in terms of statistically significant

improvements. However, this may be purely an effect of the data

sparsity in our investigation (i.e., the limited number of observa-

tions compared to the huge amount of distinct states). One can

argue that real human navigation always can be better modeled by

at least an order of one, because – as soon as we have enough data

– links play a vital role in human navigation as humans by

definition follow links when they navigate – except for teleporta-

tion which we do not model in this work. Consequently, we believe

that the memoryless Markov chain model is a plausible model for

human navigation on a page level. Yet, further detailed studies are

necessary to confirm this.

At the same time, one could argue that memory is best studied

on a topical level, where pages are represented by topics.

Consequently, we focus on studying transitions between topics

next, which yields a reduced state space that allows analysis of the

memory and structure of human navigation patterns on a topical

level.

Topics navigation
Wikigame topic dataset. Performing our analyses by

representing Wikipedia pages by their topical categories shows a

much clearer and more interesting picture as one can see in

Figure 5. Similar to above we can see (A) that the log likelihoods

are rising with higher orders. However, in contrast to the

Wikigame page dataset, we can now see (B) that several higher

order Markov chain models are significantly better than lower

orders. In detail, we can see that the appropriate Markov chain

order is at least of order one and we can also observe a trend

towards an order of two or three. Nevertheless, as pointed out in

the section entitled ‘‘Likelihood Method’’, it is hard to concretely

suggest one specific Markov chain order from these pairwise

comparisons which is why we resort to this extended repertoire of

model selection techniques described next.

The AIC (C) and BIC (D) statistics show further indicators –

even though they are disagreeing – that the appropriate model is

of higher order. Concretely, the suggest an order of three or two

respectively by exhibiting the lowest values at these points. Not

surprisingly, AIC suggests a higher order compared to BIC as the

latter model selection method additionally penalized higher orders

by the number of observations as stated in the section called

‘‘Information-theoretic Methods’’.

The Bayesian inference investigations (E, F) exhibit a clear trend

towards a Markov chain of order two. The results in (F) nicely

illustrate the inherent Occam’s razor of the Bayesian model

selection method as both priors – (a) no penalty and (b)

exponential penalty for higher orders – suggest the same order

(both priors agree throughout all our investigations in this article).

Finally, the cross validation results (G) confirm that a second order

Figure 4. Model selection results for the Wikigame page dataset. The top row shows results obtained using likelihood and information
theoretic results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as
well as AIC (C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) evidence and (F) Bayesian model
selection. Finally, the figure presents the results from (G) cross validation. The overall results suggest a zero order Markov chain model.
doi:10.1371/journal.pone.0102070.g004
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Markov chain produces the best results, while a third order model

is nearly as good.

Summary. Overall, we can see that representing Wikigame

paths as navigational sequences of corresponding topics leads to

more interesting results: Higher order Markov chains exhibit

statistically significant improvements, thereby suggesting that

memory effects are at play. Overall, we can suggest that a second

order Markov chain model seems to be the most appropriate for

modeling the corresponding data as it gets suggested by all

methods except for AIC which is known for slightly overestimating

the order. This means, that humans remember their topical

browsing patterns – in other words, the next click in navigational

trails is dependent on the previous two clicks on a topical level.

Wikispeedia dataset. This section presents the results

obtained from the Wikispeedia dataset introduced in the section

entitled ‘‘Materials’’. Similar to the Wikigame topic dataset we

look at navigational paths over topical categories in Wikipedia and

present the results in Figure 6. Again we can observe that the

likelihood statistics suggest higher order Markov chains to be

appropriate (B). Yet, further analyses are necessary for a clear

choice of the appropriate order. The AIC (C) and BIC (D) statistics

agree to prefer a second order model; however, we need to note

that all orders from zero to four have similarly low values. The

Bayesian inference investigations (E, F) show a much clearer trend

towards a second order model. The prediction results (G) agree on

these observations by also showing the best results for a second

order model. This time we can also observe a clear consilience

between the cross validation and AIC results which are – as

described in the section called ‘‘Information-theoretic Methods’’ –

asymptotically equivalent.

Summary. This dataset is similar to the Wikigame topic

dataset and the results are comparable to the previous results on

the first goal-oriented dataset (Wikigame topic). Hence, even

though the game is played on a much smaller set of Wikipedia

articles and also the dataset consists of distinct categories, we can

see the exact same behavior which strongly indicates that human

navigation is not memoryless on a topical level and can be best

modeled by a second order Markov chain model. This strongly

suggests that humans follow common topical strategies while

navigating in a goal-oriented scenario.

MSNBC dataset. In this section we present the results

obtained from the MSNBC dataset introduced in the section

called ‘‘Materials’’. Again we look at navigational paths over

topical categories and henceforth, we only look at categorical

information of nodes and present the results in Figure 7.

Similar to the experiments conducted for the Wikigame and

Wikispeedia topic datasets we can again see, based on the

likelihood ratio statistics (B), that a higher order Markov chain

Figure 5. Model selection results for the Wikigame topic dataset. The top row shows results obtained using likelihood and information
theoretic results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as
well as AIC (C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) shows evidence and (F) Bayesian model
selection. (G) presents the results from cross validation. The overall results suggest that higher order chains seem to be more appropriate for our
navigation paths consisting of topics. In detail, we find that a second order Markov chain model for our Wikigame topic dataset best explains the
data.
doi:10.1371/journal.pone.0102070.g005
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seems to be appropriate. The AIC (C) and BIC (D) statistics

suggest an order of three and two respectively. To further

investigate the behavior we illustrate the Bayesian inference results

(E, F) that clearly suggest a third order Markov chain model.

Finally, this is also confirmed by the cross validation prediction

results (G) which again is in accordance with the AIC.

Summary. By and large, almost all methods for order

selection suggest a Markov chain of order three for the topic

sequence in the MSNBC dataset. Again, we can observe that the

navigational patterns are not memoryless. Even though this

dataset is not a goal-oriented navigation dataset, but is based on

free navigation on MSNBC, we can identify similar memory

effects as above.

Structure
In the previous section we observed memory patterns in human

navigation over topics in information networks. We are now

interested in digging deeper into the structure of human

navigational patterns on a topical level. Concretely, we are

interested in detecting common navigational sequences and in

investigating structural differences between goal-oriented and free

form navigation.

First, we want to get a global picture of common transition

patterns for each of the datasets. We start with the Markov chain

transition matrices, but instead of normalizing the row vectors, we

normalize each cell by the complete number of transitions in the

dataset. We illustrate these matrices as heatmaps to get insights

into the most common transitions in the complete datasets. Due to

tractability, we focus on a first order analysis and will focus on

higher order patterns later on.

The heatmaps are illustrated in Figure 8. Predominantly, we

can observe that self transitions seem to be very common as we

can see from the high transition counts in the diagonals of the

matrices. This means, that users regularly seem to stay in the same

topic while they navigate the Web. Consequently, we might get

better representations of the data by using Markov chain models

that, instead modeling state transitions in equal time steps,

additionally stochastically model the duration times in states

(e.g., semi Markov or Markov renewal models). However, we leave

these investigations open for future work. For the Wikigame (A) we

can observe that the categories Culture and Politics are the most

visited topics throughout the navigational paths. Most of the time

the navigational paths start with a page belonging to the People

topic which is visible by the dark red cell from RESET to People

(remember that the RESET state marks both the start and end of a

path - see Section ‘‘Materials’’). However, as this is a game-based

goal-oriented navigation scenario, the start node is always

predefined. In our second goal-oriented navigation dataset (B)

we can see that the paths are dominated by transitions from and to

the categories Science and Geography and there are fewer transitions

Figure 6. Model selection results for the Wikispeedia dataset. The top row shows results obtained using likelihood and information theoretic
results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as well as AIC
(C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) shows evidence and (F) Bayesian model selection.
(G) presents the results from cross validation. The overall results suggest that higher order chains seem to be more appropriate for our navigation
paths consisting of topics. Concretely, we find that a second order Markov chain model for our Wikispeedia topic dataset best explains the data.
doi:10.1371/journal.pone.0102070.g006
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between other topics. In our MSNBC dataset (C) we can observe

that most of the time users remain in the same topic while they

navigate and globally no topic changes are dominant. This may be

an artifact of the free navigation users practice on MSNBC.

Perhaps unsurprisingly, users start with the frontpage most of the

time while navigating but do not necessarily come back to it in the

end.

As we have now identified global navigational patterns on the

first order transition matrices we turn our attention to models of

higher order. Furthermore, we are now interested in investigating

Figure 7. Model selection results for the MSNBC dataset. The top row shows results obtained using likelihood and information theoretic
results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as well as AIC
(C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) shows evidence and (F) Bayesian model selection.
(G) presents the results from cross validation. The overall results suggest that higher order chains seem to be more appropriate for our navigation
paths consisting of topics. Specifically, the results suggest a third order Markov chain model.
doi:10.1371/journal.pone.0102070.g007

Figure 8. Global structure of human navigation. Common transition patterns of navigational behavior on all three topics datasets (Wikigame,
Wikispeedia and MSNBC). Patterns are illustrated by heatmaps calculated on the first order transition matrices. Each cell is normalized by the total
number of transitions in the dataset. The vertical lines depict starting states and the horicontal lines depict target states. A main observation is that
self transitions – e.g., a transition from Culture to Culture – are dominating all datasets. However, the goal-oriented datasets (Wikigame and
Wikispeedia) exhibit more transitions between distinct categories than the free navigation dataset (MSNBC).
doi:10.1371/journal.pone.0102070.g008
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local transition probabilities – e.g., being at topic Science, what are

the transition probabilities to other states. The transition weights

directly correspond to the transition probabilities from the source

to the target state determined by the MLE (see the section called

‘‘Likelihood Method’’). We illustrate these local transitional

patterns for our Wikigame dataset in Figure 9 (the investigations

on the other goal-oriented Wikispeedia dataset exhibit similar

patterns, but are omitted due to space limitations). Similar to the

observations in Figure 8 we can observe that Culture is the most

visited topic in our Wikigame dataset. We can now also identify

specific prominent topical transition trails. For example, users

seem to navigate between Culture and Politics quite frequently and

also vice versa. Contrary, there seem to be specific unidirectional

patterns too, e.g., users frequently navigate from People to Politics

but not vice versa. Higher order chains also show similar structure,

but on a more detailed level. As previously, the figure also depicts

that the vast amount of transitions is between same categories.

However, we can now observe that this is also the case for higher

order Markov chains – this suggests, that the probability that users

stay in the same topic increases with each new click on that topic.

To further look into this structural pattern, we illustrate the

number of times users stay within the same topic vs. the number of

times they change the topic during navigation in Figure 10. We

can see that the longer the history – i.e., the higher the order of the

Markov chain – the more likely people tend to stay in the same

topic instead of switching to another topic. We can also see

differences regarding this behavior between distinct categories;

e.g., users are more likely to stay in the topic Chronology than in the

topic Politics the higher the order is. For our Wikispeedia dataset

we can observe similar patterns – i.e., the higher the order the

higher the chance to stay in the same topic.

In order to contrast goal-oriented and free-form navigation, we

also depict state transitions in similar fashion derived from the

MSNBC dataset in Figure 11. In this figure we can see that the

Figure 9. Local structure of navigation for the Wikigame topic dataset. The graphs above illustrate selected state transitions from the
Wikigame topic dataset for different k values. The nodes represent categories and the links illustrate transitions between categories. The link weight
corresponds to the transition probability from the source to the target node determined by MLE. The node size corresponds to the sum of the
incoming transition probabilities from all other nodes to that source node. In the left figure the top four categories with the highest incoming
transition probabilities are illustrated for an order of k~1. For those nodes we draw the four highest outgoing transition probabilities to other nodes.
In the middle figure we visualize the Markov chain of order k~2 by setting the top topic (Culture) as the first click; this diagram shows transition
probabilities from top four categories given that users first visited the Culture topic. For example, the links from the red node (Society) in the bottom-
right part of the diagram represent the transition probabilities from the sequence (Culture, Society). Similarly, we visualize order k~3 in the right
figure by selecting a node with the highest incoming probability (Culture, Culture) of order k~2. We then show transition probabilities from other
nodes given that users already visited (Culture, Culture). For example, the links from the brown node (Politics) at the top represent the transition
probabilities from the sequence (Culture, Culture, Politics).
doi:10.1371/journal.pone.0102070.g009
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topic business is the most used. To give a navigational example:

users frequently navigate from business to news and vice versa.

However, there are also navigational patterns just going one

direction. For example, users seem to frequently navigate from

business to sports but not in the opposite direction. Again, higher

order chains show similar patterns. Like in the Wikigame topic

dataset we can as well observe that most of the transitions seem to

be between similar categories. In Figure 12 we depict the number

of times a user stays in the same topic vs. the number of times she

switches the topic for the categories with the highest transition

probabilities. We can again observe that the higher the Markov

chain the more likely people tend to stay in the same topic while

navigating. Nevertheless, an interesting difference to the Wikigame

topic dataset can be observed. Concretely, we can see that the

probability of staying in the same topic is much higher for the

MSNBC dataset. Especially, the topic weather exhibits a very high

probability of staying in the same topic (0:9 for k~1). A possible

explanation is that users navigate on a semantically more narrow

path on MSNBC. If you are interested about the weather you just

check the specific pages on MSNBC while on Wikipedia you

might get distracted by different categories at a higher probability.

So these concrete observations seem to be very specific for the

Web site and domains of the site users navigate on while the

general patterns seem to be applicable for both of our datasets at

hand.

Discussion

Our findings and observations in this article show that simple

likelihood investigations (see e.g., [12]) may not be sufficient to

select the appropriate order of Markov chains and to prove or

falsify whether human navigation is memoryless or not. To

ultimately answer this, we think it is inevitable to look deeper into

the results obtained and to investigate them with a broader

spectrum of model selection methods starting with the ones

presented in this work.

By applying these methods to human navigational data, the

results suggest that on the Wikigame page dataset a zero order

model should be preferred. This is due to the rising complexity of

higher order models and indicates that it is difficult to derive the

appropriate order for finite datasets with a huge amount of distinct

pages having only limited observations of human navigational

behavior. In this article we presented and applied a variety of

distinct model selection that all include (necessary) ways of

penalizing the large number of parameters needed for higher

order models. Yet, we do not necessarily know what would happen

if we would apply the models to a much larger number of

navigational paths over pages. Perhaps higher order models would

then outperform lower ones. As it is unlikely to get hands on such

an amount of data for large websites, a starting point to further test

this could be to analyze a sub-domain with rich data; i.e., a large

number of observations over just a very limited number of distinct

pages. However, due to no current access to such data, we leave

this open for future work.

On the other hand, the results on a topical level are intriguing

and show a much clearer picture: They suggest that the

navigational patterns are not memoryless. Higher order Markov

chains – i.e., second or third order – seem to be the most

appropriate. Henceforth, the navigation history of users seem to

span at least two or three states on a topical level. This gives high

indications that common strategies (at least on a topical level) exist

among users navigating information networks on the Web. It is

certainly intriguing to see similar memory patterns in both goal-

oriented navigation (Wikigame and Wikispeedia) and free form

navigation (MSNBC), and different kinds of systems (encylopedia

vs. news portal).

In order to confirm that these observed memory effects are

based on the actual human navigation patterns we again look at

our random path dataset introduced in the section entitled

‘‘Likelihood Method’’ with the log-likelihoods visualized in

Figure 2. We can recapitalize, that these simple log-likelihoods

would suggest a higher order model for the randomly produced

navigational patterns. However, if we apply our various model

selection techniques the results suggest a zero or at maximum a

first order Markov chain model which is the logic conclusion for

this random process. Hence, this confirms that our observations on

the real nature navigational data are based on human navigational

memory patterns and would not be present in a random process.

Figure 10. Self transition structure of navigation for the Wikigame topic dataset. The number of times users stay within the same topic vs.
the number of times they change the topic during navigation for different orders k for our Wikigame dataset. Only the top three categories with the
highest transition probabilities are shown. With high consistency, the transition probabilities to the same topic increase while those to other
categories decrease with ascending order k.
doi:10.1371/journal.pone.0102070.g010
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Finally, we showed in the section called ‘‘Structure’’ that

common structure in the navigational trails exist among many

users – i.e., common sequences of navigational transitions. First of

all, we could observe that transitions between the same topic are

common among all three datasets. However, they occur more

frequently in our free form navigational data (MSNBC) than in the

goal-oriented navigation datasets (Wikigame and Wikispeedia).

Furthermore, users also seem to be more likely to stay longer in the

same topic while navigating MSNBC while they seem to switch

categories more frequently in both the Wikigame and Wikispeedia

datasets. A possible explanation for this user behavior might be

that users on MSNBC are more driven by specific information

needs regarding one topic. For example, a user might visit the

website to get information about the weather only. Contrary, exact

information goals on Wikipedia might not always be in the same

topic. Suppose, you are located on Seoul which belongs to the

Geography topic and you want to know more about important

inventions made in Seoul. A possible path then could be that you

navigate over a People topic page and finally reach a Science topic

page. However, we need to keep in mind that our goal-oriented

datasets are based on game data with predefined start and target

nodes. This means, that if the target nodes regularly lie in distinct

categories, the user might be forced to switch categories more

frequently. To rule this out, we illustrate the heatmap of our

Wikigame dataset (cf. Figure 8) again by splitting the path corpus

into two parts (see Figure 13): (A) only considering paths where the

start and target node lie in the same topic and (B) only taking paths

with distinct start and target categories. If the bias of given start

and target nodes would influence our observations for specific

structural properties of goal-oriented navigational patterns,

Figure 13 would show strong dissimilarities between both

illustrations which is not the case. Hence, we can state with

strong confidence that the differences between goal-oriented and

free form navigation stated in this section are truly based on the

distinct strategies and navigational scenarios. Nevertheless, we also

need to keep in mind that the website design and inherent link

structure (Wikipedia vs. MSNBC) might also influence this

behavior. For example, a reason could be that Wikipedia has

more direct links between distinct categories in comparison to

MSNBC or that Wikipedia’s historical coverage steers user

Figure 11. Local structure of navigation for the MSNBC dataset. The graphs above illustrate selected state transitions from the MSNBC
dataset for different k values. The nodes represent categories and the links illustrate transitions between categories. The link weight corresponds to
the transition probability from the source to the target node determined by MLE. The node size represents the global importance of a node in the
whole dataset and corresponds to the sum of the outgoing transition probabilities from that node to all other nodes. For visualization reasons we
primarily focus on the top four categories with the highest sum of outgoing transition probabilities – i.e., those with the largest node sizes – for an
order of k~1. For those nodes we draw the four highest outgoing transition probabilities to other nodes. In the middle figure we visualize the
Markov chain of order k~2 by setting the top topic (frontpage) from order k~1 as the first click; this diagram shows transition probabilities from top
four categories given that users first visited the frontpage topic (represented by the dashed transitions in the left figure representing k~1). For
example, the links from the blue node (news) in the top-left corner of the diagram represent the transition probabilities from the sequence
(frontpage, news) to other nodes. Similarly, we visualize order k~3 in the right figure by selecting a node with the highest sum of outgoing transition
probabilities (frontpage, frontpage) and its four highest outgoing transition probabilities from order k~2 (represented by the dashed transitions in
the middle figure representing k~2). We then show transition probabilities from other nodes given that users already visited (frontpage, frontpage).
For example, the links from the red node (sports) at the top represent the transition probabilities from the sequence (frontpage, frontpage, sports) to
other nodes.
doi:10.1371/journal.pone.0102070.g011
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behavior to specific kinds of navigational patterns. To explicitly

rule this possibility out, we would need to investigate the

underlying link networks in greater detail, which we leave open

for future work. We also plan on looking at data capturing

navigational paths over distinct platforms of the Web (e.g., from

toolbar data) which may allow us to make even more generic

statements about human navigation on the Web.

Conclusions

This work presented an extensive view on detecting memory

and structure in human navigational patterns. We leveraged

Markov chain models of varying order for detecting memory of

human navigation and took a thorough look at structural

properties of human navigation by investigating Markov chain

transition matrices.

We developed an open source framework (https://github.com/

psinger/PathTools) [20] for detecting memory of human naviga-

tional patterns by calculating the appropriate Markov chain order

using four different, yet complementary, approaches (likelihood,

Bayesian, information-theoretic and cross validation methods). In

this article we thoroughly present each method and emphasize

strengths, weaknesses and relations between them. By applying this

framework to actual human navigational data we find that it is

indeed difficult to make plausible statements about the appropriate

Figure 12. Self transition structure of navigation for the MSNBC dataset. The number of times users stay within the same topic vs. the
number of times they change the topic during navigation for different values of k. Only the top three categories with the highest transition
probabilities are shown. With high consistency, the transition probabilities to the same topic increase while those to other categories decrease with
ascending order k.
doi:10.1371/journal.pone.0102070.g012

Figure 13. Common global transition patterns of navigational behavior on the Wikigame topic dataset. The results should be compare
with Figure 8. The results are split by only looking at a corpus of paths where each path starts with the same topic as it ends (A) and by looking at a
corpus with distinct start and target categories (B).
doi:10.1371/journal.pone.0102070.g013
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order of a Markov chain having insufficient data but a vast amount

of states which results in too complex models. However, by

representing pages by their corresponding topic we could identify

that navigation on a topical level is not memoryless – an order of

two and respectively three best explain the observed data,

independent whether the navigation is goal-oriented or free-form.

Finally, our structural investigations illustrated that users tend to

stay in the same topic while navigating. However, this is much

more frequent for our free form navigational dataset (MSNBC) as

compared to both of the goal-oriented datasets (Wikigame and

Wikispeedia).

Future attempts of modeling human behavior in the Web can

benefit from the methodological framework presented in this work

to thoroughly investigate such behavior. If one wants to resort to a

single model selection technique, we would recommend to use the

Bayesian approach if computationally feasible.

Our work strongly indicates memory effects of human

navigational patterns on a topical level. Such observations as well

as detailed insights into structural regularities in human navigation

patterns can e.g., be useful for improving recommendation

systems, web site design as well as faceted browsing. In future

work, we want to extend our ideas of representing Web pages with

categories by looking at further features for representation. We

also plan on tapping into the usefulness of further Markov models

like the hidden Markov model, varying order Markov model or

semi Markov model. Also, we want to improve recommendation

algorithms by the insights generated in this work and explore the

implications higher order Markov chain models may have on

ranking algorithms like PageRank.
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