
Computation Offloading for Fast and Energy-Efficient

Edge Computing

Inaugural Dissertation

to Obtain the Academic Degree of a Doctor in Business Administration
at the University of Mannheim

submitted by

Martin Breitbach, M.Sc.

Mannheim

Dean: Joachim Lutz
Referent: Prof. Dr. Christian Becker
Correferent: Prof. Dr. Torben Weis

Day of oral examination: February 18, 2022

ii

Abstract

In recent years, the demand for computing power has increased considerably due
to the popularity of applications that involve computationally intensive tasks such
as machine learning or computer vision. At the same time, users increasingly run
such applications on smartphones or wearables, which have limited computational
power. The research community has proposed computation offloading to meet the
demand for computing power. Resource-constrained devices offload workload to
remote resource providers. These providers perform the computations and return
the results via the network. Computation offloading has two major benefits. First,
it accelerates the execution of computationally intensive tasks and therefore reduces
waiting times. Second, it decreases the energy consumption of the offloading
device, which is especially attractive for devices that run on battery. After years in
which cloud servers were the primary resource providers, computation offloading
in edge computing systems is currently gaining popularity. Edge-based systems
leverage end-user devices such as smartphones, laptops, or desktop PCs instead
of cloud servers as computational resource providers. Computation offloading in
such environments leads to lower latencies, better utilization of end-user devices,
and lower costs in comparison to traditional cloud computing.

In this thesis, we present a computation offloading approach for fast and energy-
efficient edge computing. We build upon the Tasklet system — a middleware-
based computation offloading system. The Tasklet system allows devices to offload
heterogeneous tasks to heterogeneous providers. We address three challenges of
computation offloading in the edge. First, many applications are data-intensive,
which necessitates a time-consuming transfer of input data ahead of a remote
execution. To overcome this challenge, we introduce DataVinci — an approach
that proactively places input data on suitable devices to accelerate task execution.
DataVinci additionally offers task placement strategies that exploit data locality.
Second, modern applications are often user-facing and responsive. They require
sub-second execution of computationally intensive tasks to ensure proper user
experience. We design the decentralized scheduling approach DecArt for such
applications. Third, deciding whether a local or remote execution of an upcoming
task will consume less energy is non-trivial. This decision is particularly challenging
as task complexity and result data size vary across executions, even if the source
code is similar. We introduce the energy-aware scheduling approach Voltaire,
which uses machine learning and device-specific energy profiles for making precise
offloading decisions. We integrate DataVinci , DecArt , and Voltaire into the
Tasklet system and evaluate the benefits in extensive experiments.

iii

Acknowledgments

I still remember how I more or less randomly applied for the Bachelor’s seminar
at the chair. On the last day before the deadline, without knowing any of the
supervisors, without having attended a single lecture. I never imagined that this
would lead to the journey that is reaching a milestone today as I write these final
words of my PhD thesis. I would like to thank all the people who supported me
during this incredible time.

First, I would like to thank Prof. Dr. Christian Becker for all the support through-
out the years. A lot has changed since you asked me whether I know the four
deadlock criteria in 2015. Thank you for being my supervisor and for managing
so many things in the background, which made it possible for us PhDs to always
focus on our progress. Apart from your “professional” role as my boss for a
quarter of my life, I would also like to thank you for becoming a good friend.
Thank you for all the memories: For the famous wine evenings at the chair, the
delicious lunches, the biplane flights, and the trips to Kyoto & Singapore. I will
miss all of this very much.

I would like to thank Prof. Dr. Torben Weis for immediately agreeing to be my
second examiner. It is a pleasure for me to discuss my work with “one of the
most intelligent people I know” (quote C. Becker). I would also like to thank
Prof. Dr. Markus Strohmaier for joining the board of examiners.

A big thank you to all my colleagues at the chair. You made these last years
special for me! Thank you to Prof. Dr. Patricia Arias Cabarcos, Prof. Dr. Janick
Edinger, Melanie Feist, Kerstin Goldner, Melanie Heck, Benedikt Kirpes, Dr. Sonja
Klingert, Prof. Dr. Christian Krupitzer, Markus Latz, Michael Matthé, Dr. Jens
Naber, Dr. Martin Pfannemüller, Dr. Felix Maximilian Roth, Dr. Dominik Schäfer,
and Anton Wachner. Thank you to the “old generation” (Patricia, Jens, and
Max) for making the transition from student assistant to PhD student easy for
me. And thank you to Melli and Michael for bringing a breath of fresh air to the
chair. Thank you Kerstin for helping me through all the struggles with paperwork.
Thank you Melanie for proofreading the important parts of this thesis and thank
you for showing the world that management students are the better computer
scientists. It’s amazing how you write entire letters of recommendation faster than
I write my signature. Thank you Sonja for always brightening the atmosphere at
the chair with your smile. Thank you Markus for being my ally in my fights with
the hp support. A big thank you to Martin for the amazing REACT side project
and — more importantly — for being a close friend. You were missed a lot at the
chair after your graduation.

v

It would have been impossible to get this far without my three “mentors”. I would
like to thank Pitzi (aka Prof. Dr. Christian Krupitzer) for all the cooperation
from the first day as a student assistant to today. Thank you for hiring me, for
believing in me from the start, and for all the amazing opportunities, even after
you started having your own group. That meant the world to me. I would like to
thank Dominik (Dr. Schäfer) for being like an older brother for me. Thank you
for introducing me to the Tasklet project, for the amazing writing phase when
we easily met the PerCom’19 deadline, and for good advice on whatever crossed
my mind. You will always be an idol for me. A special thank you to Janick
(Prof. Edinger). I couldn’t have done this without you. Your energy and your
passion for research are unmatched. Thank you for always motivating me, for all
the night shifts, for discussing every idea with me — no matter how crazy — and
of course for your friendship. I am so proud of what we have achieved together.

Thank you to my co-authors, also from other groups and universities. Thank you
Dr. Samy El-Tawab, Niklas Gabrisch, Prof. Dr. Renato Lo Cigno, Siim Kaupmees,
Prof. Dr. Samuel Kounev, Veronika Lesch, Prof. Dr. Amr Rizk, Johannes Saal,
Dr. Bradley Schmerl, Prof. Dr. Andy Schürr, Dr. Michele Segata, Prof. Dr. Gregor
Schiele, Prof. Dr. Heiner Stuckenschmidt, Dr. Timo Sztyler, Prof. Dr. Sven
Tomforde, Heiko Trötsch, Dr. Sebastian VanSyckel, and Dr. Markus Weckesser.
This work was supported by the German Research Foundation (DFG) under grant
BE 2498/10-1 “Tasklets: Ein Ansatz für Best-Effort Computing”. Thank you to
all students who supported the Tasklet project while writing their thesis with
me or working as a student assistant. They are: Jan-Nicklas Adler, Maximilian
Barth, Niklas Bauer, Maurice Bürkle, Philipp Drayß, Yves Ekspenszid, Liam
Goodman, Siim Kaupmees, Mika Koalick, Susanne Koch, Martin Koller, Vladislav
Kozhevnikov, Jonathan Lersch, Luca Mohme, Alicia Rose, Paul Rößling, Sarah
Schmitt, Melissa Speer, Quirin Stahuber, and Heiko Trötsch.

Thank you to my family and friends who have always been there for me. Thank
you to my parents Monika and Thomas for the unconditional love. You always
have my back and you are the reason I can pursue my dreams without any worries.
I love you so much. Thank you to my amazing brother Christian. You are the most
funny person I know. Sharing (almost) all my passions with you is the greatest
thing, even when we’re both upset that our team once again didn’t manage to
get promoted. You will be my best friend forever. I would also like to thank my
grandparents Karola, Margot, and Paul. You are all the reason why I love coming
back to Nickenich whenever possible. Thank you to all my friends, especially the
how-soon gang (Cousienchen, Domme, Felix, and Khaki), Freddy, Kathrin, and
Vio. Thank you for all the laughs, for the trips, and for showing me that there is
a life outside of the chair. Finally, thank you to my wonderful girlfriend Lily. It’s
difficult to express on paper how much you mean to me. Your support helped me
a lot while writing this thesis. I already share so many beautiful memories with
you and I’m looking forward to a future together. I love you.

vi

Contents

Abstract iii

Acknowledgments v

1. Introduction 1
1.1. Problem Definition . 2
1.2. Research Questions . 3
1.3. Contributions . 4
1.4. Structure . 5

2. Fundamentals 7
2.1. Distributed Computing . 7

2.1.1. Cluster Computing . 8
2.1.2. Grid Computing . 9
2.1.3. Cloud Computing . 10
2.1.4. Edge Computing . 12

2.2. Computation Offloading . 13
2.3. Context-Awareness . 18

3. Requirements Analysis 19
3.1. Scenario . 19
3.2. Challenges . 21
3.3. Functional Requirements . 23
3.4. Non-Functional Requirements . 25

4. Related Work 27
4.1. Computation Offloading . 29

4.1.1. Granularity . 29
4.1.2. Mechanism . 30
4.1.3. Provider Types . 33

4.2. Task-Specific Requirements . 35
4.3. Heterogeneity Support . 37
4.4. Context-Awareness . 39
4.5. Edge Support . 40
4.6. Discussion and Summary . 42

vii

Contents

5. The Tasklet System 45
5.1. Design . 45

5.1.1. System Model . 46
5.1.2. Tasklets . 48
5.1.3. Tasklet Middleware . 50
5.1.4. Quality of Computation 53

5.2. Implementation . 57
5.2.1. Tasklet Core System . 57
5.2.2. Tasklet Library . 58
5.2.3. Use Cases . 60
5.2.4. Tasklet Simulator . 61

6. DataVinci 63
6.1. Related Work . 65
6.2. Design . 68

6.2.1. System Model . 68
6.2.2. Data and Task Placement 69

6.3. Data Placement Strategies . 70
6.3.1. Initial Replication of New Data Files 72
6.3.2. Initial Replication of New Data Versions 75
6.3.3. Continuous Replication . 77

6.4. Task Placement Strategies . 78
6.5. Evaluation . 79

6.5.1. Real-World Pilot Study . 80
6.5.2. Large-Scale Simulation . 84
6.5.3. Discussion . 92
6.5.4. Threats to Validity . 94

6.6. Summary . 94

7. DecArt 95
7.1. Related Work . 97
7.2. Design . 101

7.2.1. System Model . 101
7.2.2. DecArt : Decentralized Scheduling with Cache Lists 103

7.3. Decentralized Provider Selection Algorithms 106
7.3.1. Basic Provider Selection Algorithms 106
7.3.2. Drift Provider Selection Algorithm 107
7.3.3. Bandit Provider Selection Algorithm 107

7.4. Evaluation . 109
7.4.1. Experimental Setup . 109
7.4.2. Results . 110
7.4.3. Discussion . 117
7.4.4. Threats to Validity . 119

viii

Contents

7.5. Summary . 119

8. Voltaire 121
8.1. Related Work . 122
8.2. Design . 125

8.2.1. System Model . 125
8.2.2. Energy-Aware Computation Offloading with Voltaire . . . 125

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions . . . 127
8.3.1. Predicting Number of Bytecode Instructions and Result Size128
8.3.2. Integrating Device-Dependent Energy Profiles 131
8.3.3. Estimating Inbound and Outgoing Bandwidth 134

8.4. Evaluation . 134
8.4.1. Experimental Setup . 135
8.4.2. Results . 136
8.4.3. Discussion . 141
8.4.4. Threats to Validity . 143

8.5. Summary . 144

9. Discussion 145
9.1. Functional Requirements . 145
9.2. Non-Functional Requirements . 148

10.Conclusion 153

Bibliography xvii

Appendix xxxvii

A. Results of the DecArt Evaluation xxxix

B. Publications Contained in This Thesis xli

C. Curriculum Vitae xliii

ix

List of Figures

2.1. Design considerations in computation offloading. 14

5.1. The Tasklet system model. 47
5.2. Architecture of the Tasklet system. 50

6.1. DataVinci ’s fundamental design 71
6.2. Function to determine Cflu based on the provider stability value. . 73
6.3. Initial replication in DataVinci 77
6.4. Proactive continuous replication in DataVinci 78
6.5. The testbed used in the pilot study. 81
6.6. Data transfer overhead in the DataVinci pilot study. 83
6.7. Random task placement in the DataVinci pilot study. 83
6.8. Hybrid task placement in the DataVinci pilot study. 84
6.9. System load during an exemplary evaluation run. 87
6.10. Results of Experiment 1 in the large-scale simulation. 88
6.11. Results of Experiment 2 in the large-scale simulation. 89
6.12. Results of Experiment 3 in the large-scale simulation. 91
6.13. Results of Experiment 4 in the large-scale simulation. 91

7.1. Comparison of centralized scheduling and decentralized scheduling 104
7.2. Task distribution with decentralized scheduling 105
7.3. Drift provider selection algorithm 108
7.4. Bandit provider selection algorithm 109
7.5. Drift parameter study . 112
7.6. Bandit parameter study . 113
7.7. Analysis of task completion times 114
7.8. Analysis of job completion times. 115
7.9. Analysis of maximum queue sizes for Drift scheduling. 117

8.1. Energy consumption of four real-world applications. 128
8.2. Three methods to create CPU energy profiles for Voltaire. 132
8.3. Example for a network energy profile. 134
8.4. Exemplary power consumption of the evaluation device. 135
8.5. Deviation of the estimations for the energy consumption. 139
8.6. Improvement of the energy consumption to the status quo. 140
8.7. Crowdsourcing: The effect of training data size on R2 score. . . . 143

xi

List of Tables

4.1. Overview of related computation offloading approaches. 28

6.1. Overview of related data and task placement approaches. 66
6.2. Evaluation devices in the pilot study. 81
6.3. Evaluation applications in the pilot study. 82
6.4. Applications in the large-scale simulation 85
6.5. Setup of the four experiments in the large-scale study. 87

7.1. Overview of decentralized and low-latency scheduling approaches. 98
7.2. DecArt ’s decentralized provider selection algorithms. 106
7.3. Abbreviations used in the evaluation. 111

8.1. Overview of related energy-aware offloading approaches. 124
8.2. Variables influencing the offloading decision. 126
8.3. Machine learning features used for regression analysis. 137
8.4. Average R2 scores for different regression analysis methods in a

5-fold cross validation on all 3,000 tasks per application. 137
8.5. Summary of the energy consumption in the experiments. 140
8.6. The improvement to local execution in the experiments. 140
8.7. Percentage of correction decisions in the experiments. 140

9.1. Verification of functional and non-functional requirements. 145

A.1. Detailed results for basic centralized and decentralized algorithms xxxix
A.2. Detailed results for best centralized and decentralized algorithms . xl

xiii

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

CAN Content-Addressable Network

CPU Central Processing Unit

GPU Graphics Processing Unit

IaaS Infrastructure as a Service

IoT Internet of Things

JVM Java Virtual Machine

LRU Least Recently Used

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform as a Service

PDA Personal Digital Assistant

QoC Quality of Computation

QR Quick Response

RGB Red, Green, Blue

RPC Remote Procedure Call

SaaS Software as a Service

TCP Transmission Control Protocol

TVM Tasklet Virtual Machine

UI User Interface

VM Virtual Machine

VR Virtual Reality

xv

1. Introduction

Mark Weiser’s vision of a world where computers unobtrusively surround and

serve us [1] has in parts become reality. Nowadays, we interact intuitively with

multiple computers per day. In addition, the individual devices have become more

powerful. Modern smartphones have more computing power than most computers

had when Weiser formulated his thoughts in 1991. At the same time, the demand

for computing power of applications has grown analogously. Applications in the

areas of machine learning, Augmented Reality (AR), or computer vision, for

instance, exceed the capabilities of many devices [2]. Users face waiting times and

quick battery drain while running these applications, especially on mobile devices

such as smartphones. Thus, in such situations computing power remains a scarce

resource. This is a paradox: although today’s computing landscape — where

dozens to hundreds of mostly idle devices are connected in distributed systems —

offers more than sufficient computing power, the execution of computationally

intensive applications is limited to the processor cores of the user device only.

Inspired by the above observations, the research community has introduced com-

putation offloading [3–5]. Devices that run computationally intensive applications

— the so-called consumers — offload tasks to other devices that act as remote

resource providers. The providers perform the computation for the consumers and

return the results via the network. This makes the cumulative computing power

of a whole distributed system available to every device. Computation offloading

has three main benefits. First, it accelerates the execution of computationally

intensive tasks if the provider has more computing power than the consumer

or if multiple providers work on the same task simultaneously. In this way,

computation offloading reduces waiting times and improves the user experience.

Second, computation offloading decreases the energy consumption of the consumer

device if transferring a task and receiving the results consumes less energy than

executing the task locally. Making applications more energy-efficient is especially

attractive for mobile devices such as smartphones that run on battery power.

1

1.1. Problem Definition

Third, computation offloading increases device utilization as idle computers can

perform computations for others. This sharing of resources increases sustainability.

In the future, it may be sufficient to own fewer and less powerful devices.

Computation offloading has a long history (cf. [6, 7]). Volunteer computing

projects such as SETI@home [8–10], which searches for extraterrestrial life, and

Folding@home [11], which drew large media attention during the COVID-19 pan-

demic, are two popular example projects. The advent of cloud computing [12–14]

made computation offloading accessible to a broad public. While cloud computing

certainly transformed the way businesses and private persons use computers, it

suffers from several drawbacks. Cloud resources are typically (i) comparably

expensive, (ii) controlled by a central organization, and (iii) topologically far away

from the users, which introduces considerable latencies. In recent years, the edge

computing paradigm [15–17] has therefore emerged as a complement to cloud

computing. Edge computing moves computation from the “core” (e.g., from cloud

data centers) to the “edge” (e.g., desktop PCs) of the network. Thus, end-user

devices such as PCs or laptops are typical resource providers in edge computing

systems. Performing computation offloading in such environments leads to lower

latencies and higher utilization of end-user devices.

1.1. Problem Definition

Implementing computation offloading in edge computing environments is challeng-

ing. In contrast to cloud computing, the pool of resources that act as providers

is highly heterogeneous in terms of hardware, Operating System (OS), software,

and network connection [18]. Various device types including servers, desktop

PCs, laptops, smartphones, and even wearables participate in a single resource

sharing system. As a majority of these devices is user-controlled, fluctuation is

common. Devices join and leave the system spontaneously when, for instance,

users shut off devices or require the whole computing power for their own purposes.

Resources in edge computing systems are therefore unreliable. The diversity of

today’s applications adds further complexity. Modern applications are written in

different programming languages and with varying requirements for the execution

of offloadable application parts. While some applications require a reliable remote

execution, others are particularly time-critical, or operate on large data sets.

2

1.2. Research Questions

The demand for computing power changes continuously depending on the user

behavior. Thus, a proper allocation of tasks to remote resource providers in the

edge is non-trivial.

In this thesis, we design a computation offloading approach with a strong focus

on edge computing. Despite the above challenges, consumers shall be able to

seamlessly exchange tasks and results with heterogeneous resource providers. We

focus on the design of task placement strategies that are capable of achieving

application-specific requirements such as fast execution or energy efficiency under

the special conditions in the edge.

1.2. Research Questions

We derive four research questions from the above problem statement. The objective

of this thesis is to design a computation offloading approach for fast and energy-

efficient edge computing. To achieve this, developing a system that is able to

offload tasks originating from heterogeneous applications to heterogeneous devices

is the first step, which leads to the following research question:

Research Question 1: How to design a computation offloading system that

enables heterogeneous applications to execute tasks on heterogeneous providers?

As far as task completion times are concerned, computation offloading is in general

attractive for computationally intensive tasks with small amounts of input data.

Today, many tasks such as classification or face recognition are, however, data-

intensive. In such cases, the task completion time is dominated by the input

data transfer from consumer to provider, which has to take place before starting

the remote execution. Nonetheless, computation offloading would — neglecting

the data transfer — be beneficial for these applications, too, since they require

considerable computing power. As we aim to design a computation offloading

system that is beneficial for all applications, we derive the research question:

Research Question 2: How can computation offloading in the edge reduce the

completion times of data-intensive tasks?

Many applications such as speech recognition or games are user-facing and, thus,

have to be responsive. Users generally perceive waiting times of up to one second

as acceptable. While computation offloading can help to meet relevant deadlines

3

1.3. Contributions

thanks to the choice of fast providers or parallelization, achieving sub-second task

completion times in the edge remains a challenge. Sending a message to a remote

provider takes dozens of milliseconds, which has a comparably high influence on

short tasks. In addition, task abortions due to provider churn or excessive queuing

before execution are not compensable within the deadlines. Motivated by these

observations, we formulate the third research question:

Research Question 3: How can computation offloading in the edge reduce the

completion times of tasks with sub-second deadlines?

Apart from lowering task completion times, computation offloading can also reduce

the energy consumption of the consumer device. The decision whether a certain

task should be executed locally or remotely to minimize the battery drain is,

however, non-trivial in edge computing systems. A variety of context factors such

as task complexity, input and result data size, available bandwidth, and hardware

of the consumer device have an influence on whether a local or remote execution

consumes less energy. Accordingly, we state the final research question:

Research Question 4: How can computation offloading in the edge minimize

the energy consumption of the consumer device?

1.3. Contributions

This thesis contributes to the state of the art with the design, implementation,

and evaluation of a computation offloading approach for the edge. The basic

artifact is the Tasklet system — a middleware-based computation offloading

system. Consumers offload workload in form of Tasklets. Tasklets are self-

contained units of computation that comprise everything required for a remote

execution including source code and input data. Providers run Tasklet Virtual

Machines (TVMs) that abstract from the local hardware and allow the execution

of Tasklets on a wide range of edge devices. With the help of a well-defined

Application Programming Interface (API), application programmers can launch

Tasklets and receive results from several programming languages. They can specify

Quality of Computation (QoC) goals, which are task-specific requirements such

as reliable, fast, or energy-efficient execution. The Tasklet Middleware enforces

4

1.4. Structure

these QoC goals transparently with multiple QoC mechanisms. The design of the

Tasklet system answers research question 1.

The main contribution of this thesis are three QoC mechanisms tailored to edge

computing environments. The first QoC mechanism is DataVinci — a proactive

data placement approach for data-intensive tasks. DataVinci transfers input data

to one or multiple providers in advance. In this way, it prevents time-consuming

ad-hoc data transfers and prepares providers for an immediate start of the Tasklet

execution. DataVinci therefore answers research question 2. DecArt is the second

QoC mechanism. It is a decentralized scheduling approach for tasks with sub-

second deadlines. DecArt allows consumer to make independent task placement

decisions without prior coordination with other devices or a central resource

manager. This considerably accelerates Tasklet completion times — especially for

sub-second tasks — and answers research question 3. The third QoC mechanism

is Voltaire. It minimizes the energy consumption of the consumer device and

therefore answers research question 4. Voltaire predicts the complexity and the

result data size of an upcoming task. In addition, it monitors other context

dimensions such as the current bandwidth to decide whether a local or remote

execution of a Tasklet consumes less energy.

1.4. Structure

This thesis consists of ten chapters. Following the introduction in this chapter,

Chapter 2 gives an overview of distributed computing, computation offloading,

and context-awareness. Chapter 3 derives seven functional and five non-functional

requirements for computation offloading in edge computing systems. In Chapter 4,

we review related work and identify a research gap since no existing approach

fulfills all requirements. To close this research gap, we present the Tasklet system

for computation offloading in Chapter 5. This includes a brief presentation of

the prototypical implementation. Chapters 6 to 8 contain the core contributions

of this thesis. These chapters introduce and evaluate the approaches DataVinci

(Chapter 6), DecArt (Chapter 7), and Voltaire (Chapter 8) that serve as QoC

mechanisms in the Tasklet system. In Chapter 9, we discuss whether the Tasklet

system fulfills the requirements. We conclude the thesis in Chapter 10.

5

2. Fundamentals

This thesis introduces a novel computation offloading approach for distributed

computing systems with a special focus on edge computing environments. In

this chapter, we present the necessary fundamentals for this. First, we briefly

summarize the most relevant distributed computing paradigms in Section 2.1. This

illustrates the variety of environments in which computation offloading is applied.

Based on this knowledge, we discuss the concept of computation offloading in

more detail in Section 2.2. We concentrate on the decision making perspective

and present the typical design alternatives for offloading approaches. In addition,

we show that modern offloading systems profit from context-awareness. This leads

us to Section 2.3 in which we provide theoretical background about context-aware

and (self-)adaptive systems, also from adjacent research domains.

2.1. Distributed Computing

Modern computers form distributed systems. Van Steen and Tanenbaum define a

distributed system as “a collection of autonomous computing elements that appears

to its users as a single coherent system” [19, p. 968]. This definition highlights

two characteristics of such systems that are essential for this thesis. First, a

distributed system consists of independent computers which may be built for

different purposes, equipped with different software, and owned by different parties.

Second, this potentially complex and heterogeneous system ideally provides value

to users as a transparent unit. Hiding the inherent complexity of a distributed

system is also a major design goal of this thesis.

The purpose of a distributed system varies in practice, from sharing storage to

communicating with geographically dispersed users. In this thesis, however, we

focus on distributed systems designed for distributed computing. Distributed

computing allows devices to harvest computing power from other devices in the

system. In this way, it is possible to augment the computational capabilities of

7

2.1. Distributed Computing

a device. As the alternative is to invest in more powerful hardware, distributed

computing is common in today’s computing landscape. Some applications — for

instance in the scientific domain where petabytes of data have to be analyzed [20] —

even require more computing power than the strongest supercomputer has to offer.

Distributed computing is the only option to cope with such use cases.

In a distributed computing system, devices participate either as consumers, as

providers, or as a combination of both [21]. A consumer runs one or multiple

computationally intensive applications and desires to harvest computing power.

The providers perform the computation for the consumer and return the results

via the network. This high-level organization is the basis of every distributed

computing system. Some approaches additionally require devices that act as

brokers. These central nodes have special responsibilities such as resource manage-

ment or task placement, depending on the respective approach. Over the decades,

several distributed computing paradigms with different interpretations of this

basic organization have been trending. In the following, we briefly summarize

these paradigms that shape our understanding of distributed computing.

2.1.1. Cluster Computing

Cluster computing is a well-established paradigm in which tightly coupled off-

the-shelf computers form a powerful distributed computing system [22]. Usually,

the nodes of a cluster are rather homogeneous and connected via a high-speed

network. In contrast to devices in grid or edge computing, which are typically

owned by end-users, cluster nodes are dedicated resources with the sole purpose

to be a provider in the cluster, often managed in large data centers. The size of

a cluster varies from several computers, e.g., owned by a university department,

to medium-sized clusters such as the bwHPC cluster1 that was used for the

simulations in this thesis to large-scale clusters at Microsoft [23] or Google [24].

While energy-awareness certainly is an influential topic in cluster computing

research [25], the main focus of the community is the reduction of response times

and load balancing. From a software perspective, Google’s MapReduce [26, 27],

which is also available under the name Hadoop as an open-source implementation,

is highly influential. MapReduce is an easy-to-use parallel programming model

1https://www.bwhpc.de/cluster.php, accessed 2021-10-12

8

https://www.bwhpc.de/cluster.php

2.1. Distributed Computing

that is frequently applied in domains such as machine learning [28] or DNA

analysis [29]. Researchers have presented a variety of cluster schedulers that

have been implemented successfully in practice, including Spark [30], Borg [24],

and Dryad [31]. More recent efforts such as Firmament [32] prove the ongoing

relevance of cluster computing. Our decentralized scheduling approach DecArt is

largely inspired by cluster scheduling research (cf. Chapter 7).

2.1.2. Grid Computing

The term grid computing was coined in the 1990s [33]. Similar to the electri-

cal power grid, the idea of grid computing is to supply computing power to

everyone whenever required. The computing power is offered by heterogeneous,

loosely coupled computers from different organizations. This view on distributed

computing is diametrically opposed to cluster computing where resources are

homogeneous, tightly coupled, and usually controlled by a single organization.

Devices participating in grid computing join virtual organizations. To harvest

computing power, the members of a virtual organization perform resource sharing.

Grid computing therefore bases on the reciprocal agreement that consumers will

eventually serve as providers. There is no clear distinction between consumers

and providers unlike in cluster computing.

One of grid computing’s major challenges is to overcome the prevailing hetero-

geneity. Thus, members of a virtual organization have to agree upon software

and protocols [12]. Among the most popular grid computing software for this

purpose is HTCondor [6, 34], which is still regularly updated and extended to-

day2. HTCondor offers resource management and scheduling for the grid. It

is compatible with the Globus toolkit, another grid computing project with a

long history [35,36] that is still commonly used today3. Globus offers lower-level

services for grids such as remote data access or multicast communication services

that implementations like HTCondor can build upon. Other prominent grid

computing systems from the literature are Nimrod/G [37] and AppLeS [38]. Grid

computing is relevant for this thesis as (i) grid scheduling approaches usually

cope with heterogeneous resources (cf. surveys in [39, 40]) and (ii) data-intensive

2https://research.cs.wisc.edu/htcondor/, accessed 2021-10-12
3https://www.globus.org/, accessed 2021-10-12

9

https://research.cs.wisc.edu/htcondor/
https://www.globus.org/

2.1. Distributed Computing

applications are challenging in such environments. Transferring large amounts

of input data in a grid is time-consuming since resources may be spread across

organizations or even continents, unlike in cluster computing. In Chapter 6, we

propose the data-aware scheduling approach DataVinci that is heavily influenced

by data and task placement approaches for grids such as [41,42].

Volunteer computing is a paradigm where providers voluntarily offer their resources

for scientific projects. Grid and volunteer computing share the concept that

providers across organizations contribute to a powerful pool of resources that

appears to the consumers as a transparent unit. A major difference between

both paradigms is the motivation of providers to participate. In grid computing,

providers expect to harvest computing power as consumers in the future, i.e., to

profit from the grid themselves. In volunteer computing, providers “donate” their

resources for a good cause. Thus, the group of consumers (typically the members

of a scientific project) is clearly defined from the start. In addition, volunteer

computing resources originate from private end-users while grid resources often

belong to a certain organization, e.g., a university. Hence, as private end-users

participate as providers, research on volunteer computing has a strong focus on

security, fault-tolerance, usability, and incentive mechanisms. Today, the BOINC

software [43,44] is the de-facto standard for volunteer computing. It is an open-

source middleware that is used by the most popular volunteer computing projects

such as SETI@home [8–10] and Folding@home [11].

2.1.3. Cloud Computing

Cloud computing is the paradigm that fulfills the promise grid computing had

made: a transparent access to scalable computing power. While grid computing

is often limited to scientific use cases, cloud computing is a disruptive technology

that has achieved high market penetration and transformed the way we use

computers. Commercial cloud computing platforms such as Amazon Web Services4

and Microsoft Azure5 are highly popular. According to the National Institute of

Standards and Technology (NIST), “cloud computing is a model for [...] convenient,

on-demand network access to a shared pool of configurable computing resources

4https://aws.amazon.com/, accessed 2021-10-13
5https://azure.microsoft.com/, accessed 2021-10-13

10

https://aws.amazon.com/
https://azure.microsoft.com/

2.1. Distributed Computing

[...] that can be rapidly provisioned and released with minimal management

effort [...].” [45, p. 2]. Grid and cloud computing therefore share the same

goal but achieve it in different ways. Foster et al. compare the two paradigms

extensively in [12]. Armbrust et al. [14] observe three differences between grid and

cloud. First, the cloud provides scalable, almost limitless computing resources on

demand. Second, no prior commitment of the consumers (e.g., by submitting jobs

or reserving providers) is required. Third, consumers pay for the resources in a

“pay-as-you-go” fashion instead of participating in a resource sharing system as

in grid computing. Grossman [13] adds that deploying applications in the cloud

is easier for the users. From an architectural perspective, cloud computing is a

rather centralized distributed computing paradigm. Instead of devices owned by

end-users or university departments that typically serve as providers in a grid,

mainly (commercial) data centers provide cloud resources [46]. Cloud providers

offer their resources for economic benefits, not for profiting from the same system

later as consumers.

Cloud computing approaches usually offer one or multiple of the following ser-

vice models: Software as a Service (SaaS), Platform as a Service (PaaS), or

Infrastructure as a Service (IaaS) [45]. In SaaS, applications run on the provider

devices, i.e., on the cloud infrastructure. Hence, the users transparently access

an application that is running in the cloud via a thin client interface. In PaaS,

consumers have the flexibility to run their own custom applications on the provider

devices. This, however, adds some complexity since users have to tailor the appli-

cation to the respective cloud infrastructure, e.g., with regards to OS or hardware.

In IaaS, consumers are allowed to run arbitrary software in the cloud. This

includes, for instance, the installation of a particular OS, which is not possible in

PaaS. We observe that — independent from the service model — the underlying

hardware and network are entirely transparent to the user.

Mobile cloud computing [47–49] is a variation of cloud computing that allows

mobile devices such as smartphones to access the scalable resources in the cloud. In

this context, the characteristics of mobile devices lead to new research challenges.

For instance, mobile devices may frequently change their location and are not

connected to a constant power supply.

11

2.1. Distributed Computing

2.1.4. Edge Computing

Albeit being a huge success, cloud computing has several disadvantages. First, it

typically requires the setup of a cloud data center consisting of dedicated devices.

Second, it leads to a central collection of data, which is problematic for privacy-

sensitive users. Third, it is comparably expensive for consumers. For instance,

running an Amazon EC2 instance of type a1.2xlarge with 8 cores and 16 GiB

RAM costs 0.23 dollars per hour6. Fourth, it causes considerable communication

latencies between the consumer devices and the cloud infrastructure. Recent

trends such as the Internet of Things (IoT) [50], Virtual Reality (VR), AR, and

machine learning increased the number of applications that require fast processing

of large amounts of data created at the consumers. Analyzing this data in the

cloud does not meet the response time requirements of these applications due to

the high latency [51]. The same applies for highly interactive applications or games

that require fast responses [52]. The edge computing paradigm [15–17, 53–55]

promises to overcome these hurdles by moving the computation from the “core”

(e.g., from cloud data centers) to the “edge” (e.g., desktop PCs) of the network.

Typical providers in edge computing environments are therefore PCs, laptops,

smartphones, or edge servers — servers attached to cellular base stations — that

are topologically closer to the consumer. In addition to low latencies, edge

computing leads to a better utilization of existing hardware (e.g., unused office

PCs) [56,57]. Reference [15] claims that edge computing improves the users’ trust

thanks to the decentralized analysis of potentially sensitive data. Both consumers

and providers may benefit from edge computing economically [57–59]. While

consumers have lower costs, providers may contribute their computing power in

return for a monetary compensation.

The precise definition of “edge computing” is the subject of an ongoing debate in

the research community [55]. Similar to Garcia Lopez et al., we interpret edge

computing as the aforementioned shift of computing power from the core to the

edge of the network. From our point of view, typical providers in edge environments

encompass end-user devices such as smartphones or desktop PCs. This facet of

edge computing is sometimes referred to as (mobile) ad-hoc computing [60–62].

A different form of edge computing is mobile edge computing [4, 63]. Here, only

6https://aws.amazon.com/de/ec2/pricing/on-demand/, accessed 2021-10-19

12

https://aws.amazon.com/de/ec2/pricing/on-demand/

2.2. Computation Offloading

dedicated servers at cellular base stations act as providers. These servers are

reachable for mobile devices with a single hop, which is especially attractive in

5G networks [64]. In contrast to some researchers, we do not limit our definition

of edge computing to such architectures.

Edge computing is closely related to fog computing [65]. Fog computing has a

strong focus on the integration of edge resources, the cloud, and the devices that

are topologically located in between edge and cloud. This leads to fog computing

systems having three layers. The first layer consists of edge devices that produce

data. This data is communicated to the second layer — a set of local fog nodes

that offer computing power and act as a bridge to the cloud. The third layer

represents the cloud that is responsible for higher-level data analysis on a global

(i.e., system-wide) scale. In our perception, edge computing focuses more on

end-user devices while fog computing emphasizes the integration of the cloud.

2.2. Computation Offloading

The distributed computing paradigms introduced in the previous section are able

to offer multiple services to consumers. For instance, cloud or grid infrastructures

can store user data and therefore act as backup servers. In this thesis, however,

we focus entirely on computation offloading in such systems, i.e., the transfer of

computation to providers. Computation offloading has evolved considerably since

its origin as cyber foraging [7] in 2001. Today, many applications in the domains

of Artificial Intelligence (AI), AR, or computer vision require more computing

power than available on the consumer device, especially on “weak” devices such

as smartphones or wearables [2]. In addition to the reduction of response times,

computation offloading may improve the energy consumption of (i) the consumer

device and/or (ii) the whole distributed system. Especially in edge computing

systems, the benefits of computation offloading in terms of response time and

energy consumption are context-dependent. Offloading becomes more attractive

if, for instance, a powerful provider device (e.g., a server) is currently idle or

the bandwidth increases. This example shows that an effective computation

offloading system must make sophisticated, context-aware decisions for every unit

of computation that is potentially offloadable. In the following, we shed light on

the different facets of this decision. We structure this section in the sense of Flores

13

2.2. Computation Offloading

et al. [66] who state that the offloading decision encompasses what, when, where,

and how to offload. Figure 2.1 shows an overview of all design considerations that

are discussed in the remainder of this section.

Computation Offloading

What? When? Where? How?

Granularity

Full offloading

Task/component

Method/thread

Identification

Manual

Automated

Decision
making

Static

Dynamic

Goal/Motivation

Completion time

Energy consumption

Other

#Copies

Single

Multiple

Provider
choice

Static

Dynamic

Mechanism

RPC

VM

Container

Serverless

Figure 2.1.: Design considerations in computation offloading.
(RPC = Remote Procedure Call, VM = Virtual Machine)

What to offload? This dimension of the computation offloading decision —

often referred to as partitioning — selects the parts of an application that will be

offloaded. It determines the granularity of offloading. Lin et al. [5] mention three

options: full offloading, task/component, and method/thread. In full offloading,

the entire application is migrated to the provider. XtremWeb [67], for instance,

offloads application binaries from the consumers to the providers. In [68], the

authors present an architecture where mobile devices are augmented with a Virtual

Machine (VM) in the cloud that acts as an offloading target for whole applications.

Offloading on the level of tasks/components differentiates between parts of an

application and decides for each part whether offloading is beneficial. This

approach is more flexible but requires the careful partitioning of an application into

several tasks or components. Offloading based on methods or threads (cf. [69,70])

is the most fine-granular of the three partitioning options. As we mainly focus on

task-based offloading in this thesis, we henceforth use the term “task” instead of

the broader term “offloadable application (part)”.

Identifying the tasks that qualify for offloading is another challenge. Some tasks

that are, e.g., responsible for the creation of the User Interface (UI), are per se not

offloadable. The first option is to rely on manual identification by the application

programmer, e.g., with annotations in the source code [71]. Application program-

mers should have a good intuition about which tasks are suitable for offloading. As

an alternative, several approaches offer an automated identification [70, 72] based

14

2.2. Computation Offloading

on code analysis or history traces [66]. While such approaches are convenient for

programmers, they are potentially error-prone.

When to offload? The question whether a task that was identified in the

partitioning process benefits from a remote execution is non-trivial. Two high-

level options exist: static and dynamic decision making. Static approaches

always choose either a local or a remote execution for a task, independent from

the context. Strictly offloading a task, for instance, works sufficiently well if

the task — independent from the parameters or the input data — is always

exceptionally computation-heavy. Dynamic approaches decide whether a task

should be offloaded based on the context. Even the same task may be sometimes

executed locally and sometimes remotely. Dynamic decision making is more

complicated but helps to unleash the full potential of offloading.

The design of an offloading system depends on the goal. In the literature, the most

prominent goals are the minimization of task completion times (e.g., [70,73,74]) and

the reduction of the energy consumption on the consumer device (e.g., [71,75,76]).

Offloading reduces the task completion time if

data size

network throughput
+

task complexity

remote throughput
<

task complexity

local throughput
(2.1)

where the data size encompasses all data that must be transmitted before a remote

execution (e.g., code and input data) and after (e.g., a result file). Offloading

becomes more attractive if the network throughput increases. The task complexity

is an abstract metric for the workload that has to be processed either locally or

remotely. Local throughput and remote throughput determine the workload that

the local device and the chosen remote provider, respectively, are able to process

per time unit. How to quantify these metrics depends on the particular offloading

system. As far as the energy consumption of the consumer device is concerned,

offloading saves energy if

powertransmit ∗
data size

network throughput
< powercompute ∗

task complexity

local throughput
(2.2)

where powertransmit and powercompute describe the power for transmitting the data

and the power for computing the task locally. In addition to reducing the energy

consumption of the consumer device, optimizing the cumulative energy consump-

15

2.2. Computation Offloading

tion of a whole distributed computing system is also feasible with offloading.

We omit a detailed discussion of this case here as the remainder of the thesis

concentrates on the energy consumption of the consumer device only. Please

note that the above equations are simplified as, e.g., task abortions may happen.

We present more detailed models of the task completion times and the energy

consumption for the Tasklet system in Section 7.2 and Section 8.2.2, respectively.

Several other offloading goals aside from the reduction of task completion times

and energy consumption are mentioned in the literature. They usually play a

subordinate role. Examples are cost savings by selecting the cheapest provider [76]

or higher precision [77], e.g., by running more simulations thanks to the available

additional computing power.

Where to offload? The placement of a task is crucial in computation offloading

systems. After deciding that a remote execution is beneficial, it is required to

select a single or multiple providers for execution. The number of providers

depends on the level of parallelism and the desired redundancy. If a task consists

of multiple subtasks that can be computed in parallel, it is possible to offload

these subtasks to different providers. The consumer eventually merges the results.

A task that applies a filter to a video of multiple frames, for instance, can be

divided into a large number of subtasks, which each apply the filter to one

distinct frame of the video. This rather extreme example shows that the level of

parallelism is often application-dependent. In addition, redundancy as used in, e.g.

Sparrow [78], requires to choose several providers as execution targets. Especially

in edge environments, where providers leave the system spontaneously, it can be

beneficial to offload the same (sub-)task to multiple providers to ensure proper

task completion times. We observe that the choice set of available providers also

has a strong influence on the question when to offload that we discussed above.

The choice of a provider happens either statically or dynamically. In a purely

cloud-based distributed computing system, the decision is static as all tasks are

offloaded to the cloud. The same applies to systems where each provider serves

fixed consumers such as [68]. Modern edge environments require dynamic decision

making as they contain a variety of potential offloading targets including the cloud,

edge servers, desktop PCs, laptops, or even smartphones. Such environments

necessitate a context-aware choice of the provider [5].

16

2.2. Computation Offloading

How to offload? Remote execution on a provider should yield the same results

as local execution. Technically, multiple alternatives for task execution are

available. We briefly summarize four prominent technologies based on [5]. First,

early approaches such as Spectra [77] or Chroma [79] apply Remote Procedure

Calls (RPCs). The advantage of an RPC is — in addition to its simplicity —

that the execution on the remote device is starting quickly once the server-side

implementation of the code has been deployed. The RPC mechanism, however,

requires two versions of the same code on consumer and provider, which is

cumbersome in heterogeneous systems. Second, offloading systems may use

virtualization with VMs. A VM abstracts from the underlying hardware and

makes it possible to run the same code on different architectures. This is a key

feature for edge computing environments. VM-based offloading is prominently

used in the literature, e.g, in Cuckoo [69], CloneCloud [70], and COMET [73],

which run Java code in either Java Virtual Machines (JVMs) or Android’s (former)

VM Dalvik. Third, container-based virtualization with software such as Docker 7

is a lightweight alternative to VMs. While each VM runs a guest OS on top of

the provider device’s OS, containers share components of the device’s OS. In

this way, containers are typically faster and more flexible than VMs. Rattrap [80]

is an example for a cloud-based offloading system that uses containers. Fourth,

serverless computing is a comparably recent trend in computation offloading. The

idea is that small code snippets that are written in the form of stateless functions

are executed remotely [81]. The concept has similarities with the PaaS service

model in cloud computing (cf. Section 2.1.3). The strength of serverless computing

— and the distinction to PaaS — is transparency. Application developers are able

to focus entirely on the logic of the program, written in a language supported

by the respective serverless computing platform. The execution of the code is

handled transparently by the platform. In [82], Baresi et al. present an offloading

system that applies serverless computing in mobile edge computing environments.

Cicconetti et al. [83,84] also use serverless computing but focus more on pervasive

environments and the IoT. In addition, several commercial serverless computing

platforms such as AWS Lambda8 or Microsoft Azure Functions9 are popular.

7https://www.docker.com/, accessed 2021-10-18
8https://aws.amazon.com/lambda/, accessed 2021-10-18
9https://azure.microsoft.com/en-us/services/functions/, accessed 2021-10-18

17

https://www.docker.com/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/

2.3. Context-Awareness

2.3. Context-Awareness

The previous section demonstrated that today’s distributed computing environ-

ments require increasingly dynamic offloading decisions. Therefore, they are

typically context-aware. Dey and Abowd define context as “any information

that can be used to characterize the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction between a user and

an application, including the user and applications themselves” [85]. Context-

aware applications gather context information about the surrounding computing

environment and are therefore able to react to changes [86]. This makes context-

awareness a fundamental property of self-adaptive software [87], i.e., software that

is able to adjust itself autonomously after context changes [88]. Computation

offloading approaches ideally follow the principles of self-adaptive systems to make

well-informed task scheduling decisions.

As far as context acquisition is concerned, we distinguish between context that

(i) is static and therefore known a priori such as the data size of a task, (ii) can

be measured such as the current bandwidth, and (iii) must be predicted such as

the complexity of a task. A context-aware scheduling approach can consider a

multitude of context dimensions such as provider performance [74,89], provider

reliability [90,91], system load [26,78], task complexity [70,77], task deadlines [37,

92], data size [83, 93], data locality [41, 94], or bandwidth [38, 76]. This list is

not exhaustive. Thus, the challenge is to identify relevant context dimensions,

quantify them, and weight their importance.

18

3. Requirements Analysis

In this chapter, we present requirements for effective computation offloading,

driven by the four research questions from Section 1.2. Section 3.1 describes an

ideal scenario where consumers and providers share resources in an edge computing

system. The goal of this thesis is to design a fast and energy-efficient computation

offloading system that realizes this ideal scenario. In Section 3.2, we introduce

three major challenges of the scenario that we address in this thesis. Section 3.3

and Section 3.4 describe functional requirements and non-functional requirements

derived from the scenario and the challenges.

3.1. Scenario

Modern edge computing systems lead to a paradox. On the one hand, the

cumulative computing power of such systems is ever-increasing and probably

sufficient for all contemporary applications. On the other hand, users still face

waiting times while running computation-intensive applications from domains

such as machine learning, VR, or video processing. The applications typically do

not exploit the computing power of the whole distributed system. Instead, they

are restricted to local processing on their end-user device. As a solution, resource

sharing with computation offloading can unleash the full potential of a distributed

computing system. In a computation offloading system, consumer devices transfer

computationally intensive tasks to provider devices, which return the results via

the network. This process is handled by a middleware that runs on consumer

and provider devices. We identify three essential stakeholder groups: application

users, resource providers, and application programmers.

The application users run an application in a business or private context. They

act as resource consumers in a computation offloading system for two reasons.

First, they face waiting times while using the application. Harvesting computing

power from remote resources can accelerate task execution and, hence, reduce

19

3.1. Scenario

such waiting times. Second, they run the application on mobile devices such

as laptops or smartphones that lack a constant power supply. The application

users’ devices can offload computation to resource providers to reduce battery

drain. Application users do not have to be experts in information technology.

The offloading process is therefore embedded in the application and invisible for

the application user. An application that leverages the computation offloading

middleware has the same usability as a similar application that performs local

processing only. It is transparent whether a task was executed locally or remotely.

In addition, the middleware selects a suitable offloading target transparently in

case of a remote execution. Application users use a multitude of device types,

including desktop PCs, laptops, smartphones, and even wearables. All devices

— independent from hardware, OS, and software — are therefore able to run the

middleware and participate in the computation offloading system.

Resource providers control devices that offer computing power for the consumers.

The provider’s incentives to participate may be, e.g., (i) to contribute to research

for a good cause, (ii) to help family, colleagues, and friends, (iii) to receive a

(monetary) compensation, or (iv) to profit from the excess computing power of

others in the future. Since providers share their resources voluntarily, computation

offloading should not create any disadvantages for them. Thus, the middleware is

secure and prohibits the execution of malicious tasks. The state of the provider

device remains unchanged from task executions as consumer tasks run in a sandbox

environment with restricted access to, e.g., input/output and storage. To ensure

that the device remains usable by the owner while being a provider, processes

launched by the provider device itself have priority over incoming consumer tasks.

The middleware runs in the background and does not negatively influence the

experience while using the device for other purposes. It executes consumer tasks

only if there are currently excess capacities on the provider device. Similar to

the application users, resource providers do not necessarily have to be computer

experts. Installing the middleware and participating as a provider is therefore

possible without prior knowledge. Providers run the middleware on a variety of

device types. Desktop PCs, laptops, smartphones, wearables, edge servers, and

cloud servers are among the potential offloading targets.

The application programmers write the application code that leverages the middle-

ware for computation offloading. Their main motivation to apply computation

20

3.2. Challenges

offloading is to improve the user experience by reducing waiting times and/or

battery drain. Therefore, the middleware’s performance in terms of task comple-

tion times and energy consumption is crucial. Instead of manually implementing

the offloading process for each application, application programmers rely on the

middleware’s features. With an easy-to-use API, they embed computation off-

loading into an application with little effort. Various applications from diverse

domains potentially benefit from computation offloading since they either contain

computationally intensive tasks or drain the consumer device’s battery. The

middleware and the corresponding API therefore provide a generic approach for

integrating computation offloading, independent from the use case.

3.2. Challenges

Computation offloading — as described in the above scenario — is in general

beneficial for all involved stakeholder groups. Nonetheless, we identify three

challenges that must be overcome to realize the full potential of computation

offloading in edge-based distributed computing systems. Designing approaches

that overcome these challenges is the core contribution of this thesis. In this way,

computation offloading unleashes its full potential in terms of task acceleration

and energy efficiency. In the following, we derive three challenges C1 to C3.

Challenges C1 and C2 relate to the reduction of task completion times. Challenge

C3 influences the energy efficiency of computation offloading.

Challenge C1 — Large input data: Many contemporary applications are

data-intensive. In the emerging domains AI and machine learning, it is common

to perform computations on large data sets. The machine learning models

applied in such use cases are often large as well. Processing and editing images

and videos with software such as Adobe Photoshop1 requires the transmission

of the respective images or videos when applying computation offloading. In

the context of the IoT, many applications analyze sensor data, which can also

amount to considerable data sizes. As these exemplary applications require

complex computations, application programmers can use computation offloading

to improve the experience of the application users. However, materializing the

benefits is a challenge as the input data must be present on the provider before

1https://www.adobe.com/products/photoshop.html, accessed 2021-11-09

21

https://www.adobe.com/products/photoshop.html

3.2. Challenges

starting the task execution. In comparison to, for instance, cluster nodes, which

are connected with high-speed links, devices in edge computing systems face

considerable latencies when transferring data. The data transfer time therefore

contributes largely to the overall task completion time of a remote execution.

As data-intensive applications would in general — ignoring the data transfer

times — often benefit from computation offloading, it is an essential challenge for

an effective computation offloading middleware to mitigate the negative influence

of data transfers on task completion times.

Challenge C2 — Sub-second deadlines: Traditionally, computation offloading

is used for applications with long-running, computationally intensive tasks. The

scientific volunteer computing projects SETI@home [8–10] and Folding@home [11]

that rely on the BOINC middleware [43,44] are typical examples. Today, however,

many applications such as face detection and recognition [71, 95] or game AI [71,

95,96] are interactive and user-facing. Application users generally accept delays

of less than one second but consider longer waiting times as unresponsive [97–

99]. Since the advent of mobile devices such as smartphones, users run such

interactive applications on resource-constrained devices. Computation offloading

helps application programmers to achieve the desired response times even on

devices with low computational power. Although the tasks are comparably short,

they benefit from computation offloading as (i) parallelization can accelerate the

execution considerably, (ii) providers have a higher throughput than the consumer

device, or (iii) the consumer device may be busy running other tasks.

Meeting sub-second deadlines with computation offloading in the edge introduces

new challenges. First, communication latencies contribute notably to the task

completion time. Even if the input data is small, sending a Transmission Control

Protocol (TCP)-based message to a remote provider takes dozens to hundreds

of milliseconds, which has a high influence if task deadlines are short. Second,

task abortions, e.g., due to a provider leaving the system, lead to costly re-

transmissions of the task from the consumer to another provider. Detecting

the failure and re-transmitting the task amounts to a large percentage of the

time before a sub-second deadline. Third, if a provider is unable to execute a

task immediately, e.g., due to task queuing, deadlines are presumably violated.

Queuing is especially harmful if the queue contains one or multiple long-running

tasks that block the resource for several seconds or even minutes. We therefore

22

3.3. Functional Requirements

conclude that sub-second tasks require particular attention when making task

placement decisions.

Challenge C3 — Energy consumption: Reducing the energy consumption of

the consumer device is a major motivation for computation offloading [71,75,76].

The consumer device benefits from a remote execution if the energy consumption

of sending task and input data as well as receiving the results is lower than the

energy consumption of local processing (cf. Equation 2.2). Whether this is the

case depends on the characteristics of each individual task. Complex tasks that

require less input data should typically be executed on a provider device; less

complex tasks with comparably large input data on the consumer device.

In edge computing systems, deciding whether a particular task should be executed

locally or remotely is challenging as the right decision depends on the context.

Several context dimensions related to (i) the task such as task complexity, input

data size, and result data size, (ii) the consumer device such as energy efficiency

or computational power, and (iii) the network connection such as bandwidth

influence whether a task benefits from a remote execution (cf. Section 2.2). Some

of the aforementioned context dimensions (input data size, computational power

of the consumer) are known a priori. Others, however, need to be measured

(bandwidth) or predicted (task complexity, result data size). Thus, even for tasks

that originate from the same application, a situation-dependent choice of local or

remote execution based on accurate measurements and predictions is required.

3.3. Functional Requirements

We formulate seven functional requirements. Requirements RF1 to RF4 are

derived directly from the ideal scenario in Section 3.1. Requirements RF5 to RF7

address challenges C1 to C3 from Section 3.2.

RF1 — Computation offloading: The fundamental requirement is that the

system will perform computation offloading. This encompasses the execution

of tasks on remote providers and the reception of the results via the network.

Application programmers shall be able to offload computationally intensive tasks

from their preferred programming language with low programming effort. Whether

tasks are executed locally or remotely should be transparent for both application

23

3.3. Functional Requirements

programmer and user. The system shall make task placement decisions that

realize the benefits of computation offloading such as accelerated task execution

or energy efficiency.

RF2 — Task-specific requirements: The computation offloading system

shall allow application programmers to formulate specific requirements for each

task. This is crucial due to the heterogeneous pool of applications that benefit

from computation offloading. Exemplary requirements are reliability, low task

completion time, or energy efficiency. Application programmers shall be able

to select these requirements programmatically and, hence, context-dependent

for each task separately. The system shall make fine-granular task placement

decisions based on the respective requirements and the current context.

RF3 — Heterogeneity support: All types of devices including laptops, desktop

PCs, smartphones, edge servers, and cloud servers will serve as consumer or

provider devices. The computation offloading system therefore shall be executable

on all of these devices, independent from hardware, OS, software, or network

connection. In addition, heterogeneous applications written in different languages

shall be able to offload tasks that are itself heterogeneous in terms of data intensity,

task complexity, or completion time requirements. The computation offloading

system should provide a uniform abstraction that overcomes all the aforementioned

facets of heterogeneity in the edge.

RF4 — Context-awareness: The computation offloading system shall measure

context dimensions about the tasks, the devices, and the network. It should

use this knowledge for implementing a well-informed task placement that fulfills

task-specific requirements under various environmental conditions.

RF5 — Data placement: The computation offloading system shall place input

data proactively on providers to achieve low completion times when offloading

data-intensive tasks. Proactive data placement ensures that task execution can

start immediately as the time-consuming data transfer, which may otherwise

dominate the overall task completion time, has happened in advance. Depending

on the context, this will include the creation and distribution of multiple copies

(i.e., replicas) of an input data file to make the concurrent execution of tasks that

require the same input data possible. The system shall determine the number of

replicas individually for each data file to properly manage the tradeoff between

24

3.4. Non-Functional Requirements

task completion time and data transfer overhead. In addition, it should select

the provider that will store a new replica carefully based on the context. This

requirement overcomes challenge C1 and makes computation offloading beneficial

even for data-intensive applications.

RF6 — Decentralized scheduling: The computation offloading system shall

allow consumers to make independent, decentralized task placement decisions in

certain cases. Decentralized scheduling eliminates the need for coordination (e.g.,

with a central resource manager or other peers) before offloading a task. Thus, it

accelerates the offloading process. Especially for tasks with sub-second deadlines,

decentralized scheduling is essential as the time overhead for coordination in edge

computing systems — where nodes may face latencies of more than 100ms —

would amount to a large percentage of the remaining time before the deadline.

The decentralized scheduling approach integrated into the computation offloading

system shall place tasks on reliable, fast, and idle providers. It shall avoid situations

where many consumers offload tasks to the same providers as this leads to either

task abortions or excessive task queuing. This requirement overcomes challenge

C2 and makes computation offloading attractive for responsive applications.

RF7 — Energy-awareness: When the application programmer requests an

energy-efficient execution of a task, the system shall decide whether a local or

a remote execution consumes less energy and place the task accordingly. This

encompasses the monitoring of relevant context dimensions and the accurate

prediction of task complexity and result data size. The computation offloading

system shall make this decision for each task individually based on the context.

This requirement overcomes challenge C3 and maximizes energy efficiency.

3.4. Non-Functional Requirements

We identify five non-functional requirements for the computation offloading system.

RNF1 — Performance: Multiple metrics can describe the performance of a

computation offloading system. The two major benefits of computation offloading

are shorter task completion times and lower energy consumption. The degree to

which a certain system achieves these benefits is therefore the essential quality

metric that we apply in this thesis. Alternative performance metrics would be,

25

3.4. Non-Functional Requirements

e.g., the number of successfully executed tasks, the communication overhead, or

the memory footprint.

RNF2 — Scalability: Scalability assesses whether the computation offloading

system works properly when increasing the system load. The load depends on

multiple factors such as the number of participating devices, the number of tasks,

and the network conditions. The simplest computation offloading system consists

of one consumer and one provider device. In practice, however, systems may

connect hundreds to thousands of devices that frequently exchange tasks. The

system shall therefore cope with high loads and achieve satisfactory performance

under real-world system sizes.

RNF3 — Robustness: Computation offloading in the edge is error-prone due

to fluctuation, communication link failures, malicious behavior, and user control

over devices. Although it is impossible to eliminate such errors entirely, the

computation offloading system should continue working properly after an error.

In addition, it shall recover from errors transparently, i.e., without noticeable

interruptions for the application users.

RNF4 — Usability: We identified three stakeholder groups: application users,

resource providers, and application programmers. For all groups, using the system

shall be convenient and as self-explanatory as possible. Applications that leverage

the computation offloading approach should be as usable as applications that rely

on local processing only. Providers shall profit from an easy installation process.

Task execution on the provider device shall not interfere with local processes nor

decrease the user experience of the device owner in any way. The application

programmer shall require only minimal training before programming applications

that leverage computation offloading. The usability requirement defines the extent

to which the system meets these goals.

RNF5 — Extensibility: Distributed computing is subject to constant change.

While the computation offloading system may have a suitable design for current

edge computing systems, it may be unusable in a future distributed comput-

ing environment. The system shall be extensible and therefore adjustable to

change. This includes, for instance, the integration of new devices, OS, or network

technologies. Moreover, adding new features such as additional task placement

algorithms shall be easy. This necessitates a modular design of the system.

26

4. Related Work

The previous chapter discusses requirements for computation offloading in the

edge. This chapter assesses related work in terms of these requirements and,

hence, identifies the research gap. We focus on full-fledged computation offloading

systems. Approaches that consider, for instance, only application partitioning or

transfer of input data are thus out of this overview’s scope. We further limit our

discussion to general purpose approaches, i.e., computation offloading systems

that are usable with a wide range of applications. Approaches that are designed

for a particular use case like Kahawai [100] — a Graphics Processing Unit (GPU)

offloading approach for game rendering — are therefore excluded. In total, we

review 30 computation offloading approaches.

We structure this chapter along the seven functional requirements gathered in

Section 3.3. Section 4.1 gives an overview of how related approaches imple-

ment computation offloading (requirement RF1). It considers the granularity of

offloading, the mechanism, and the provider types. Section 4.2 analyzes which

task-specific requirements related approaches are able to enforce (RF2). Section 4.3

describes whether the approaches overcome heterogeneity in terms of hardware,

OS, programming language, and network access (RF3). As effective computation

offloading requires the acquisition and exploitation of context (RF4), Section 4.4

reviews whether existing approaches are context-aware. Section 4.5 covers data

placement (RF5), decentralized scheduling (RF6), and energy-awareness (RF7),

which are specific to edge computing environments. The main contributions of

this thesis — DataVinci , DecArt , and Voltaire — address requirements RF5,

RF6, and RF7. In Chapters 6 to 8, in which we present DataVinci , DecArt ,

and Voltaire, we provide an additional in-depth review of related work for the

respective approach. These overviews cover more than full-fledged computation

offloading systems as they also discuss approaches from adjacent research areas

such as replication or low-latency scheduling, which are out of the scope of this

chapter. Table 4.1 summarizes our findings.

27

4. Related Work

Granul. Mechan. Provider TSR HS CA Edge

Author/System Year

F
u
ll

o
ffl

o
a
d
in

g

T
a
sk

/
c
o
m

p
o
n
e
n
t

M
e
th

o
d
/
th

r
e
a
d

R
P
C

B
in

a
r
ie
s

V
M

C
o
n
ta

in
e
r

S
e
r
v
e
r
le
ss

M
o
b
il
e
d
e
v
ic
e

S
ta

ti
c
d
e
v
ic
e

E
d
g
e
se

r
v
e
r

C
lo
u
d

R
e
li
a
b
il
it
y

C
o
m

p
le
ti
o
n

ti
m

e

E
n
e
r
g
y

H
a
r
d
w
a
r
e

O
S

L
a
n
g
u
a
g
e

N
e
tw

o
r
k

a
c
c
e
ss

D
e
v
ic
e

T
a
sk

N
e
tw

o
r
k

D
a
ta

p
la
c
e
m

e
n
t

D
e
c
e
n
tr
a
li
z
e
d

sc
h
e
d
u
li
n
g

E
n
e
r
g
y
-a
w
a
r
e
n
e
ss

HTCondor [6, 34] 1987* • • • • • • • • • • • • ◦
XtremWeb [67] 2001 • • ◦ • • • • •
Spectra [77] 2002 • • • • • • • • ◦ •
Chroma [79] 2003 • • • • • • • • ◦

Entropia [101,102] 2003* • • ◦ • • • • • •
BOINC [43, 44] 2004* • • • • • • • • • • • • •
OurGrid [103] 2006 • • • • • • ◦ •
Cloudlets [2] 2009 • • • • • • •
MAUI [71] 2010 • • • • • • • • • • •
Cuckoo [69] 2010 • • • • • • • • • • • •

CloneCloud [70] 2011 • • • • • • • • •
MACS [104] 2012 • • • • • • • • • • • • • •
COMET [73] 2012 • • • • • • • ◦ ◦ •
COCA [105] 2012 • • • • • ◦ ◦ ◦

Serendipity [106] 2012 • • • • • • • ◦
ThinkAir [76] 2012 • • • • • • • • • • •

Aneka [107,108] 2012 • • • • • • • • • • •
Clone2Clone [68] 2013 • • • • • • •
CMcloud [109] 2014 • • • • • • • •
Jade [110,111] 2014* • ◦ • • • • • • • •
Sapphire [112] 2014 • • • • • • • • • • • • • ◦
COSMOS [113] 2014 • • • • • • • • • ◦ ◦

FemtoClouds [114] 2015 • • • • • •
Avatar [115] 2015 • • • • ◦ ◦ •
Rattrap [80] 2017 • • • • • ◦
Nebula [74] 2017 • • • • • • • • • • • •

CloudAware [116] 2018 • • • • • • • • • • • ◦
EMCO [75] 2018 • • • • • • • • •
Echo [117] 2019 • • • • • • • • • • ◦

Cicconetti [83, 84] 2019* • • • • • • • • • • • • • •

Table 4.1.: Overview of related computation offloading approaches. For all ap-
proaches marked with *, papers published in later years were considered
as well. The year in the table refers to the publication date of the
respective first paper considered for this overview.
(Granul. = Granularity, Mechan. = Mechanism, TSR = Task-specific
requirements, HS = Heterogeneity support, CA = Context-awareness)
• fulfilled ◦ partially fulfilled

28

4.1. Computation Offloading

4.1. Computation Offloading

The approaches that we examine in this chapter all allow consumers to offload

workload to providers. Thus, they all fulfill requirement RF1. This section reviews

how related approaches meet the requirement. It includes information about the

granularity of offloading, the mechanism, and the provider types. In Table 4.1, the

columns Granul., Mechan., and Provider cover this information.

4.1.1. Granularity

We categorize the literature into approaches that perform (i) full offloading —

running a whole application on a provider —, (ii) offloading on the task/component

level, and (iii) offloading on the method/thread level as described in Section 2.2.

Only five of the 30 reviewed approaches perform full offloading. We briefly

present Clone2Clone [68] as a representative of these approaches. Clone2Clone is

a platform that allows Android devices to run whole applications in the cloud.

Each mobile device is associated with an individual “clone” — a VM in the cloud

that also runs Android. This clone can execute arbitrary applications for the

consumer. Whenever required by the application, the clone communicates updates

(i.e., results) back to the consumer. As all clones are hosted in the cloud, they

can easily communicate with each other, which can be a valuable alternative

to direct and unreliable connections between the mobile devices. Clone2Clone

requires applications to be aware of this special architecture. The application

programmer is therefore responsible for designing the applications such that they

are executable on the clone, communicate with other clones, and transfer results

to the consumer.

Performing offloading on the task/component level is the most common design (18

out of 30 approaches). Either the application programmer or a special software

— integrated into the offloading approach or developed separately — partitions

the application into several tasks or components, which are offloaded separately.

Chroma [79] is an example for a grid computing approach that applies offloading

with this granularity. It offers a domain-specific language that allows application

programmers to formulate so-called tactics. A tactic encompasses a meaningful

series of sequential and/or parallel application components. Thus, each tactic

29

4.1. Computation Offloading

describes a successful execution of the application. An application typically has

multiple tactics. Chroma automatically chooses the tactic that maximizes the

application programmer’s goal such as fast execution at runtime depending on the

context. For each component of the chosen tactic, it furthermore decides whether

a local or a remote execution is more beneficial.

The most fine-granular offloading approaches work on the method/thread level

(implemented by ten of 30 approaches). CloneCloud [70], for instance, is able to

migrate a thread from an Android device to an arbitrary remote provider. Later,

the thread may migrate back to the consumer and continue execution there. On the

provider, CloneCloud creates a VM-based execution environment that is similar to

the one on the consumer device. CloneCloud automatically scans the application’s

source code for points where a thread can potentially migrate to or from the

provider. Thus, manual annotations are not required. To gather a sufficient

data basis for decision making, CloneCloud runs the application several times

on consumer and provider to measure completion times and energy consumption

between two subsequent migration points. Based on this data, it optimizes future

executions by deciding at each migration point whether or not the thread should

migrate to or from the consumer. CloneCloud ’s approach is closely related to

COMET [73], which also uses thread-level migration in Android. The main unique

characteristic of COMET is that it relies on distributed shared memory. COMET

synchronizes the VM-based execution environments on the consumer and the

provider such that a thread migration is possible at any time with low overhead. In

contrast to CloneCloud, which concentrates on application partitioning, COMET

focuses on designing an effective offloading mechanism with low communication

overhead, i.e., less frequent and less heavy state synchronization.

4.1.2. Mechanism

A large majority of the reviewed approaches gives an implicit or explicit de-

scription of how computation is offloaded from consumer to provider. Only the

FemtoClouds project [114] identifies the choice of the exact mechanism as an

ongoing challenge in a recent publication [118]. We observe offloading based on

(i) RPCs, (ii) execution of binaries, (iii) VMs, (iv) containers, and (v) serverless

computing. This categorization is largely inspired by Lin et al. [5] (cf. Section 2.2).

30

4.1. Computation Offloading

Spectra [77], Chroma [79], MAUI [71], and Sapphire [112] rely on traditional

RPCs. The advantage of an RPC is that it is both simple and fast once the

provider-side implementation of the code has been deployed. Only the volunteer

computing approaches XtremWeb [67] and BOINC [44] transfer binaries that

are compiled for the specific target provider. In XtremWeb [67], for instance,

providers execute such pre-compiled binaries. While this mechanism — similar to

RPCs — minimizes the level of required virtualization, it necessitates the creation

of several binaries of the same application. This introduces considerable overhead

to the offloading process, especially in highly heterogeneous environments. In

XtremWeb, the broker stores the binaries from all consumers centrally. To offload

an application, it transfers the binary that matches the respective execution

environment to the provider.

Offloading to VMs it the most common design, which 21 of 30 approaches follow.

Using a VM-based design is attractive as it creates the same execution environment

on both consumer and provider, which makes it possible to execute tasks on

heterogeneous providers without large modifications to the application code. Being

a commercial grid computing solution, Entropia [101] must include an execution

environment on the provider that is secure and unobtrusive. The Entropia

VM [102] is able to run arbitrary Windows applications without modifications.

It provides a sandbox environment, which guarantees that the application is not

able to modify the local disk or to make malicious system calls. In addition, it

monitors the system load on the provider and suspends task execution if the device

owner requires the computing power for other purposes. To ensure security for the

consumer, Entropia stores input data encrypted on the provider. In Avatar [115],

every mobile device user has access to a VM in the cloud. This design is similar

to Clone2Clone [68] presented in the previous section. In Avatar, however, every

VM is associated with one user — who may control several devices — instead of

one particular device as in Clone2Clone. VM-based computation offloading would

in practice considerably increase the workload that the cloud infrastructure has

to process. Avatar ’s authors explicitly discuss this disadvantage of heavyweight

VMs in [115]. A cloud infrastructure that, for instance, provides one VM for each

device has to utilize the available resources in the data center such as storage

capacity efficiently to cope with the large number of VMs running in parallel.

31

4.1. Computation Offloading

Instead of optimizing the management of the VMs, Wu et al. propose to replace

VMs with lightweight containers [80]. They develop the computation offloading

system Rattrap, which relies on containers that provide a mobile OS environment

on top of the cloud servers’ OS. Rattrap’s prototypical container only encompasses

the subset of the Android OS that is required for remote execution. This excludes,

for instance, camera or sensor drivers. Additionally, the authors optimize, e.g.,

boot process and storage usage.

The approach by Cicconetti et al. [83, 84] is the only reviewed approach that uses

serverless computing. It is able to offload stateless methods to edge devices or

servers. The approach shows that it is occasionally difficult to assign the offloading

mechanisms in the literature to distinct categories as the approach’s serverless

computing architecture builds upon RPCs and VMs/containers. The consumers

execute an RPC on a broker, which selects the provider for task execution. The

broker relays the RPC to the provider that executes the stateless method in a

VM/container. While serverless computing approaches typically offer additional

services such as scaling of containers or fault tolerance, they may internally rely

on, e.g., RPCs or VMs as this example illustrates.

The approaches presented so far in this section have in common that they rely

on one particular offloading mechanism. Of all 30 reviewed approaches, only

BOINC [44] includes multiple alternatives. BOINC is a middleware for volunteer

computing. Since its origins in 2002, it has become the de-facto standard for

volunteer computing and one of the biggest success stories in distributed computing

in general. Application programmers — mainly from the scientific domain — can

publish projects that rely on the BOINC middleware. The providers install the

BOINC client and select the projects that they prefer to donate computing power

to. Whenever excess capacities on the provider device exist, the BOINC client

requests workload from the central BOINC server. BOINC offers three offloading

mechanisms. First, it is able to offload binaries to devices with the respective

OS and hardware. Second, it can offload applications that run in VirtualBox 1

VMs. Third, it can handle container-based applications that use Docker. This

versatility eases the application programmers’ development process as they can

choose their preferred offloading mechanism.

1https://www.virtualbox.org/, accessed 2021-11-26

32

https://www.virtualbox.org/

4.1. Computation Offloading

4.1.3. Provider Types

Various device types can act as providers. We assess whether related approaches

offload workload to providers from the following categories: (i) mobile devices such

as smartphones or laptops, (ii) static devices such as desktop PCs or privately

owned servers, (iii) edge servers in the consumer’s proximity, e.g., attached to

cellular base stations, and (iv) cloud servers.

Twelve of the 30 reviewed approaches consider offloading to mobile devices.

The potential of hand-held mobile devices as providers was already recognized

by the XtremWeb [67] project in 2001. The authors anticipated major future

developments and planned to use mobile devices such as Personal Digital Assistants

(PDAs) as providers. After the advent of powerful smartphones, multiple projects

such as Cuckoo [69] and CloneCloud [70] have considered such devices as providers.

Serendipity [106] is a computation offloading approach that explicitly considers

only mobile devices as providers. The system is designed for situations where such

devices move and, hence, frequently lose connection. Serendipity ’s focus is thus to

offer task placement strategies that enable effective computation offloading in such

“hostile” environments. The prototypical implementation is able to offload Java

application parts from and to Android smartphones. Similarly, Jade [110, 111]

also performs computation offloading to mobile devices that run Android. This

system is motivated by the observation that many people own multiple devices

such as smartphones and tablets, which are often located in close proximity. Jade

connects these devices in a peer-to-peer fashion via Wifi or Bluetooth. In contrast

to Serendipity, Jade does not assume frequent connection losses as both consumer

and provider are controlled by the same person.

Offloading to static devices (18 approaches) or the cloud (17 approaches) is even

more prominent in the literature than offloading to surrounding mobile devices.

When we analyze our findings in Table 4.1, we observe a shift from static devices

to cloud servers over time as described in Section 2.1. In the early decades of

computation offloading research, grid computing and, hence, offloading to static

devices was the dominating paradigm. Popular approaches for the grid include

HTCondor [6,34] and Entropia [101,102]. Over the years, cloud computing became

well-established. COCA [105] is an approach that relies on cloud computing. The

system offloads Java methods from Android devices to cloud servers. First,

33

4.1. Computation Offloading

COCA identifies all pure functions — methods that only access input variables,

output variables, and variables declared inside the method body — as offloadable

methods. It then measures the completion times and the memory footprints

of these methods on the mobile device. In addition, COCA estimates these

metrics for a remote execution in the cloud based on an emulation with the values

measured on the mobile device and the bandwidth given as parameters. In the

next step, the application programmer uses the measurements and the estimates

to manually select the methods that will be executed in the cloud in the future.

Eventually, COCA creates two application versions for mobile device and cloud.

At runtime, the COCA software in the cloud waits for offloading requests and

runs the respective methods accordingly.

While offloading to the cloud promises unlimited access to computing power, it

has two major disadvantages that are discussed in related work. First, using

public cloud resources leads to monetary costs for the consumers. Second, cloud

resources are topologically far away from the consumer devices, which induces

considerable latencies. CMcloud [109] is a cloud-based computation offloading

approach that addresses the first disadvantage. It pursues two goals. It minimizes

the server costs of the cloud provider (i.e., it maximizes the utilization of the

servers) while simultaneously ensuring the execution of offloaded tasks before

an application-specific deadline. Initially, CMcloud places a task on the cloud

server that (i) is able to meet the deadline and (ii) has the highest utilization. In

addition, it continuously monitors the execution on the server and migrates the

task to a less loaded server if timely execution before the deadline is at risk.

Aneka [107, 108] is another approach that reduces the monetary costs of using

cloud resources. To achieve this, Aneka combines cloud computing with grid

computing. One of the main contributions of Aneka is a container that runs

on heterogeneous hardware with heterogeneous OS. This abstraction allows the

approach to include both grid and cloud resources in one system. To reduce

costs, Aneka places tasks on grid resources whenever possible. Only if a task’s

resource demand — defined by a task-specific deadline — exceeds the capabilities

of the grid environment, Aneka offloads it to the public cloud. Thus, Aneka

provides scalable computing power while minimizing the monetary costs, similar

to CMcloud.

34

4.2. Task-Specific Requirements

The main motivation of approaches that rely on edge servers (twelve out of

30 approaches) is to reduce latencies between consumers and providers — the

second disadvantage of cloud computing mentioned above. Satyanarayanan et al.

introduce Cloudlets [2]. Cloudlets are small data centers that are reachable for

the consumers with one fast hop. The consumers connect to the nearest cloudlet

similar to Wifi access points and offload applications to VMs on this cloudlet. As

this idea was already published in 2009, cloudlets are a forerunner of the now

popular edge computing paradigm. More recent publications [119,120] integrate

cloudlets into hybrid architectures that run some services in the more stable and

powerful cloud environment and some services on cloudlets in the edge.

The FemtoClouds [114] approach builds upon the idea of cloudlets. Similar to

Serendipity or Jade, a FemtoCloud consists of mobile devices that are located in

proximity to each other. These devices perform resource sharing. The offloading

process is orchestrated by the cloudlet that is closest to the consumer. The cloudlet

is responsible for, e.g., making task placement decisions. Thus, the cloudlet only

hosts the broker software instead of executing tasks itself. This approach paves the

way for new business models. Owners of cafés or public transport operators can

install a cloudlet infrastructure with less powerful and, hence, cheaper hardware.

The devices in proximity mutually share computing resources, which leads to

low-cost access to scalable computing power.

4.2. Task-Specific Requirements

We analyze whether existing approaches allow application programmers to select

task-specific requirements with regards to (i) reliability, (ii) task completion time,

and (iii) energy consumption (RF2). In Table 4.1, column TSR shows our findings.

We consider requirement RF2 to be fulfilled by an approach if the application

programmer can explicitly set a requirement, goal, or deadline for each task. Thus,

computation offloading approaches that always optimize a metric such as energy

consumption for all tasks do not fulfill this requirement. The Echo system [117] is

a good representative for such approaches. Echo either performs local execution

or offloads computation to edge or cloud servers. Reducing the task completion

time is the only goal in the Echo system. Thus, it does not allow application

programmers to specify task-specific requirements but treats all tasks equally.

35

4.2. Task-Specific Requirements

We observe that no existing approach considers task-specific requirements with

regards to reliability. The reliable execution of tasks itself is considered by some

approaches. However, no approach allows the application programmer to choose

whether the overhead of such a reliable execution is even necessary. For instance,

Nebula [74] — a computation offloading system for the edge — always executes a

re-transmission mechanism after task abortions to ensure a reliable execution.

Setting task-specific requirements related to completion time and energy con-

sumption is offered by 13 and five of the 30 approaches, respectively. As far

as task completion times are concerned, several approaches such as MAUI [71]

allow application programmers to set a deadline. Only the providers that are

expected to meet this deadline are considered as offloading targets. Among these

options, MAUI chooses the most energy-efficient. Although MAUI is a seminal

energy-aware computation offloading approach, it does not offer any options to

quantify an energy consumption goal or to deactivate energy-aware scheduling

for a particular task. In addition to deadlines, there are other task-specific re-

quirements that are often only used in a single approach. The COSMOS [113]

system, for instance, allows application programmers to set a risk value for their

application. COSMOS [113] offloads workload from Android devices to the cloud.

The consumer may lose connection to the cloud provider due to the mobility of

Android devices such as smartphones. Thus, remote execution in the cloud is less

predictable and, hence, riskier than local execution with regard to task completion

times. The system adapts its task placement strategy to the respective risk value.

If the application programmer accepts a high risk to realize the full potential of

frequent offloading, COSMOS is more likely to execute a task remotely.

In contrast to MAUI and COSMOS — where application programmers can only

specify requirements of a certain pre-defined type —, the HTCondor project [6,

34] includes a flexible approach to formulate custom task-specific requirements.

Providers advertise their resources with so-called Machine ClassAds, which specify

the characteristics of the device including, e.g., OS and storage capacity. The

consumers analogously formulate the task requirements in a Job ClassAd. There

are no restrictions on the content of a ClassAd, which is an advantage compared to

having a list of distinct task-specific requirements that the computation offloading

system offers. HTCondor ’s matchmaker then compares the Job ClassAd and all

availableMachine ClassAds to find the best match. While this approach offers high

36

4.3. Heterogeneity Support

flexibility as ClassAds can potentially contain arbitrary information, the approach

also has its limitations. It focuses rather on the provider characteristics instead

of the task execution’s characteristics. Requesting an energy-efficient execution,

for instance, is difficult to achieve with ClassAds as the energy consumption of

a task does not solely depend on static characteristics of a provider but also on

dynamic context of the network or even the task itself. Incorporating this into a

ClassAd would be inconvenient for the application programmer and would require

frequent updates of the advertisements to react to context changes.

Approaches that allow multiple task-specific requirements have to determine how

these requirements are weighted and how conflicts can be resolved. HTCondor ’s

Job ClassAds can additionally contain a function to rank providers based on their

characteristics, which can be interpreted as a custom utility function specifiable

for each task. Spectra [77] and Chroma [79] follow a similar concept. Spectra

considers the three metrics task completion time, energy consumption, and fidelity.

Fidelity describes the quality of a task execution, e.g., the precision of a simulation.

It is, therefore, an application-specific value. The application programmer can

specify a utility function that weights the three metrics for an upcoming task.

Spectra then selects the provider for execution that is expected to maximize

utility. An almost identical approach is used in Chroma [79]. The fine-granular

weighting of task-specific requirements is both a blessing and a curse. On the one

hand, it offers a sophisticated approach for application programmers to express

requirements. On the other hand, the effort may exceed the benefits as the

application programmer must provide a function that describes the desirability of

each fidelity value and a function for weighting the three objectives. This might

be a cumbersome procedure in practice, especially since expressing preferences in

percentage values may be unintuitive for many application programmers.

4.3. Heterogeneity Support

An effective computation offloading approach needs to overcome the inherent

heterogeneity of today’s distributed systems (RF3). To meet requirement RF3,

an approach must overcome heterogeneity in terms of (i) hardware, (ii) OS,

(iii) programming language, and (iv) network access. Column HS in Table 4.1 lists

our findings. A large majority of the reviewed approaches (28 out of 30) considers

37

4.3. Heterogeneity Support

hardware heterogeneity. Devices with different hardware are able to participate

as consumers and/or providers in the same system thanks to, e.g., virtualization

with VMs. Several approaches (15 out of 30) overcome OS heterogeneity but

only a few (nine out of 30) are not restricted to a certain programming language

for the application. A common design is computation offloading from Android

devices to VMs in the cloud via Wifi or cellular. Exemplary approaches for this

design are COSMOS [113], COCA [105], and CMcloud [109]. Such approaches

are usable with varying underlying hardware and at least two types of network

connections. Consumer devices, however, are required to run the Android OS. In

addition, these approaches can typically only offload tasks from Java applications.

Overcoming heterogeneity is a major focus of Sapphire [112]. Sapphire includes

an object-oriented programming model that allows application programmers to

declare objects as Sapphire objects. The location of these objects is managed

transparently by Sapphire. The objects may be invoked locally or at an arbitrary

remote provider, which is invisible to the application. Sapphire encompasses a

deployment kernel, which runs on all devices, including mobile devices and servers.

The deployment kernel is responsible for overcoming heterogeneity. It offers lower-

level services such as an RPC mechanism and Sapphire object location. On top of

this deployment kernel, application programmers can select at most one deployment

manager for each Sapphire object. Deployment managers exploit the low-level

services provided by the deployment kernel to achieve the behavior desired by

the application programmer. Sapphire includes a library of standard deployment

managers for, e.g., computation offloading, replication, load balancing, or fault

tolerance. In addition, application programmers can create custom deployment

managers with the API offered by Sapphire’s deployment kernel. Thus, Sapphire

is a distributed computing platform in a wider sense, with computation offloading

being only one of several use cases.

Cuckoo [69] is a computation offloading approach that overcomes network access

heterogeneity. With Cuckoo, Android smartphones can offload workload to

heterogeneous providers such as laptops, desktop PCs, and cloud servers. As

smartphones offer several communication channels, Cuckoo supports Wifi, cellular,

and Bluetooth. Cuckoo exploits the Ibis communication middleware [121] for

this purpose. Application programmers are able to work with Cuckoo’s API

while Ibis manages the underlying network communication transparently. The

38

4.4. Context-Awareness

matchmaking between consumers and providers works with Quick Response (QR)

codes. Each provider that runs the Cuckoo software can display a unique QR code.

The consumer smartphones scan the code, which establishes a consumer-provider

connection between the devices.

With the Jade system [110, 111], offloading to devices in proximity is possible

via direct Wifi or Bluetooth connections. Jade therefore also considers network

access heterogeneity. The system includes a comparably simple mechanism to

decide which connection type reduces the consumer’s energy consumption. Before

transfer, Jade puts all data in a buffer. Jade uses Wifi if the buffer size exceeds a

threshold because in this case either the amount of data or the frequency with

which data is added to the buffer is high. Wifi is more energy-efficient under

these circumstances. Analogously, Jade uses Bluetooth if the buffer size is below

a second threshold. In this case, Bluetooth consumes less energy as only small

amounts of data have to be transferred at a low frequency. If the buffer size is

between the two thresholds, Jade continues to use the current connection type.

4.4. Context-Awareness

Requirement RF4 defines that computation offloading systems should be context-

aware. Due to changing environmental conditions, they should monitor the

context and behave accordingly, which is especially important for effective task

placement decisions. As shown in column CA of Table 4.1, several approaches

fulfill requirement RF4 and consider context from all three categories that we

cover in this chapter: (i) device context such as a provider’s throughput, (ii) task

context such as input data size, and (iii) network context such as bandwidth. The

MACS middleware [104], for instance, uses context information from all three

categories to make task placement decisions. It is able to minimize task completion

times, energy consumption, or memory usage. To decide whether a local or a

remote execution of a specific application part is more beneficial, MACS gathers

information about the (i) consumer device (energy profile, available memory, and

local throughput), (ii) provider device (remote throughput), (iii) task (memory

consumption, code size, input data size, and result data size), and (iv) network

(bandwidth). The number of instructions — a crucial influence on both task

completion time and energy consumption — is assumed to be proportional to the

39

4.5. Edge Support

code size. In Chapter 8, we demonstrate that this assumption is overly simplistic

in many use cases, which may lead to inaccurate decision making.

ThinkAir [76] is another context-aware approach. It offers VM-based computation

offloading from Android smartphones to the cloud. The application programmer

can select multiple goals such as low task completion time, low energy consumption,

or low monetary cost for the cloud resources. ThinkAir decides for each method

invocation at runtime whether a remote execution is suitable. This approach

differs from related work such as COCA [105] where the placement decision is made

statically for each method at design time. Unlike most other approaches, ThinkAir

considers a large variety of context dimensions to make the offloading decision.

First, it monitors the Central Processing Unit (CPU) state, screen brightness, and

network connection (Wifi vs. cellular) on the consumer device. Second, it stores

data about past executions of a method including completion time, number of

instructions, or garbage collector invocation count. Third, it profiles the network

including uplink data rate and uplink channel rate for both Wifi and cellular.

Especially network monitoring is comparably simple in ThinkAir ’s system model

as all consumers offload to the cloud and do not share resources with each other,

which would necessitate monitoring the connection from each consumer to various

instead of only one static provider.

The CloudAware [116] system applies context prediction for minimizing task

completion times. CloudAware considers context information about the consumer

device that is not used in any other of the reviewed approaches such as loca-

tion, calendar events, call history, and application usage. Based on this data,

CloudAware predicts, for instance, the task completion time on a provider, the

available bandwidth, and the probability that a task will be executed successfully

on a provider. CloudAware’s prediction approach is extensible and offers generic

interfaces for both machine learning classification and regression.

4.5. Edge Support

Edge computing systems are the major focus of this thesis. Computation offloading

in the edge has to fulfill novel requirements including (i) data placement for data-

intensive applications (RF5), (ii) decentralized scheduling for responsive sub-second

40

4.5. Edge Support

tasks (RF6), and (iii) energy-awareness for reducing the consumer device’s energy

consumption (RF7). Column Edge in Table 4.1 summarizes whether the reviewed

approaches fulfill requirements RF5 to RF7. As meeting these requirements is the

major contribution of this thesis, we review further related work that goes beyond

general purpose offloading systems when we introduce our approaches DataVinci ,

DecArt , and Voltaire in Chapters 6 to 8.

We observe that only Nebula [74] completely satisfies requirement RF5. Nebula

distinguishes explicitly between devices that provide computing power and devices

that offer data storage. The authors develop several data placement strategies

that, for instance, minimize the duration of data transfers from storage nodes

to providers. Nebula additionally applies data replication for fault tolerance and

performance reasons. The system’s centralized task placement strategies reduce

task completion times while considering the current location of the input data.

Requirement RF6 demands that consumers can autonomously select the exact

provider for each task. Several approaches such as MAUI [71] or ThinkAir [76]

allow consumers to choose between local and remote execution. The exact choice

of the provider is either fixed, e.g., in cloud-based approaches or made by a central

instance. Only OurGrid [103] and the approach by Cicconetti et al. [84] realize

decentralized scheduling in the sense of requirement RF6. We exemplary discuss

OurGrid here. OurGrid [103] is a former open source grid computing approach

that relies on decentralized scheduling. Typically, providers participate in a grid if

they (i) are part of the same organization as the consumer or (ii) profit financially.

Incentivizing providers with the first option is only possible in small grids that

do not span across multiple organizations. The second option — a monetary

incentive system — requires the design of a fair, secure, and reliable accounting

system, which is challenging. Motivated by the disadvantages of the two options,

OurGrid introduces a third option. It includes an incentive mechanism that relies

on resource sharing with a so-called network of favors, where each peer is both

consumer and provider at the same time. Every peer keeps one individual favor

score for each other peer in the system. Whenever a peer executes a task, the

consumer peer increases its local favor score of the respective provider peer, i.e.,

the consumer now owes the provider a favor. If multiple consumers request to

execute tasks on the same provider, the provider prioritizes consumers to which it

owes favors. This decision making happens in a decentralized peer-to-peer system

41

4.6. Discussion and Summary

without a central resource manager. All favor scores are local values as they

represent a particular one-to-one relationship between peers. While OurGrid ’s

approach to use favor scores as the central metric for decision making is simple

and scalable, it potentially leads to non-optimal task completion times.

The final requirement RF7 considers energy-awareness. Several projects such as

Serendipity [106], CloudAware [116], and Rattrap [80] mention energy efficiency as

a benefit of computation offloading and evaluate their approaches with respect to

energy consumption. These approaches, however, do not include any mechanisms

to improve energy efficiency explicitly. They rather discuss energy efficiency as a

side effect of minimizing task completion times. Nonetheless, a few approaches

(seven out of 30) satisfy requirement RF7. We exemplarily describe EMCO [75]

in the following. EMCO applies crowdsourcing to gather information about past

executions of an application. Based on this data, which includes task completion

time, energy consumption, and context of past executions, EMCO learns a model

that describes the circumstances under which offloading is beneficial. EMCO ’s

prototypical implementation, for instance, trains decision trees which classify

the current context into situations where a local execution should be chosen

and situations where a remote execution is expected to perform better, e.g., to

reduce the energy consumption. In contrast to energy-aware offloading approaches

such as MAUI — where the offloading decision is mainly made by the consumer

device — EMCO trains the decision model centrally with the crowdsourced data.

EMCO transfers the trained model to the consumers, which solely need to apply

it for classifying the context.

4.6. Discussion and Summary

The literature review provides three key insights. First, we observe an insufficient

consideration of task-specific requirements. Fewer than half of the reviewed

approaches allow application programmers to select task-specific requirements at

all. Moreover, only five of those approaches offer a specification of requirements

that address both task completion time and energy consumption. Second, merely

a few approaches (four out of 30) overcome heterogeneity in terms of hardware,

OS, application programming language, and network access. Especially the

independence from a certain programming language is a challenge that typically

42

4.6. Discussion and Summary

remains unresolved. We address these two observations by using the Tasklet system

— an effective VM-based computation offloading system. The Tasklet system allows

application programmers to offload fine-granular tasks from multiple programming

languages to heterogeneous providers. In addition, application programmers can

specify QoC goals such as reliability, fast execution, or energy-awareness. The

Tasklet system enforces these goals with various QoC mechanisms. We describe

the design and prototypical implementation of the system in the next chapter.

As a third key insight, we observe that the three challenges of edge computing

systems that we identify in Section 3.2 are barely addressed in the literature.

No existing approach properly supports data-intensive applications, responsive

applications with sub-second deadlines, and energy-aware applications in the

edge. In this thesis, we close this research gap. We extend the Tasklet system

with sophisticated QoC mechanisms that achieve fast and energy-efficient edge

computing even for the aforementioned challenging applications. We contribute to

the state of the art by introducing three QoC mechanisms — DataVinci , DecArt ,

and Voltaire. DataVinci performs proactive data placement for data-intensive

applications in the edge. DecArt is a decentralized scheduling approach for

responsive applications with sub-second deadlines. Voltaire makes context-aware

task placement decisions that reduce the energy consumption of the consumer

device. We integrate DataVinci , DecArt , and Voltaire into the Tasklet system

and present them in Chapters 6 to 8.

43

5. The Tasklet System

The Tasklet system is the basic artifact of this thesis. Its design answers research

question 1. The Tasklet system is a computation offloading approach for hetero-

geneous distributed computing environments. It integrates the three scheduling

approaches DataVinci , DecArt , and Voltaire, which are the main contributions

of this thesis and which answer research questions 2 to 4. While this chapter

presents the basic design of the Tasklet system, the subsequent Chapters 6 to 8

introduce DataVinci , DecArt , and Voltaire in detail. First, we describe the design

of the Tasklet system in Section 5.1. Second, we introduce the implementation

that is used as the primary prototype for evaluation throughout this thesis in

Section 5.2. This implementation encompasses a computation offloading system

for real-world testbeds — the Tasklet Core System — and the Tasklet Simulator,

which is a realistic representation of the Tasklet system for large-scale simulations.

This chapter partly bases on [122].

5.1. Design

The vision of the Tasklet system is that computing power is available for everyone

whenever needed. Thus, there are no limitations anymore for a participating

device. Instead of being limited to the computing power of the built-in CPU,

every device can harvest computing power from the surrounding distributed

computing environment. The computing resources are offered by the providers

in the Tasklet system on demand and in a scalable fashion. While this sounds

similar to the goal of grid computing, the Tasklet system is able to achieve this

goal in edge computing environments. The Tasklet system is flexible. It is not

constrained to a specific type of application, which is the case for many grid

computing systems. In addition, it imposes no restrictions on the participating

devices. A Tasklet-based distributed computing environment can contain cloud

servers, edge servers, end-user devices, and even wearables in one system as we

45

5.1. Design

demonstrate, e.g., in [123]1. These devices can act as consumers, providers, or

both. With Tasklets, a consumer performs computation offloading with the same

effort as local execution. Edge computing environments lead to many obstacles

on the path towards this vision. Such environments typically contain a multitude

of devices with heterogeneous hardware, software, and network connection [18].

Since many of these devices are user-controlled, fluctuation (i.e., devices joining

and leaving the system) is common. In this section, we show how the Tasklet

system overcomes these hurdles. The main idea is to bridge the gap between the

set of heterogeneous applications and the pool of heterogeneous resources with

an abstraction: the Tasklet. Tasklets are self-contained units of computation

that include everything required for either a local or a remote execution. Before

presenting the idea of Tasklets in more detail, we now proceed with a description

of the underlying system model.

5.1.1. System Model

The Tasklet system is a general purpose computation offloading system. It can be

deployed in stable cloud computing environments, in unreliable edge computing

environments, and even in hybrid combinations of cloud and edge [123]. This

flexibility is reflected in the system model, which does not imply constraints on

the participating devices and only minimal constraints on the applications.

Applications offload workload in form of Tasklets. We introduce the concept of

a Tasklet in detail in Section 5.1.2. All participating devices in the distributed

computing environment run the Tasklet Middleware. The Tasklet Middleware is a

software that is responsible for creating Tasklets, offloading them, and receiving the

results. In addition, it provides an abstraction from the local hardware. To create

a homogeneous execution environment, the Tasklet system uses virtualization by

VMs. The TVM runs on every device that offers computing resources, i.e., on

every provider. A provider may run several TVMs in parallel to offer multiple

concurrent Tasklet executions. Thanks to the TVM concept, the heterogeneity

of the devices is irrelevant from the perspective of a scheduler. Each device that

offers one or multiple TVMs is a potential offloading target. We provide an

in-depth presentation of the Tasklet Middleware in Section 5.1.3.

1Reference [123] is joint work with D. Schäfer, J. Edinger, J. Eckrich, and C. Becker.

46

5.1. Design

The Tasklet system consists of consumers, providers, and brokers. Consumers run

applications that use Tasklets for computation offloading. Providers offer their

computing power in form of TVMs. The brokers perform resource management

and Tasklet scheduling. One device can fulfill multiple roles. For instance, a

common combination is that one device acts as a consumer and a provider at the

same time. While parts of the workload of an application are offloaded to remote

providers, the device’s local TVMs also compute Tasklets. Figure 5.1 illustrates

the three entities.

Broker

Broker

Broker

P/CC
P/C

P/C

P

P/C
P/C

P/C

C
P

P

P/C

C

P/C

P/C
P/C

P/C

P

P/C

PResource
Provider

Resource
Consumer

C P/C
Tasklet
TVM

Resource Provider
and Consumer

Figure 5.1.: The Tasklet system consists of consumers (C), providers (P), and
brokers. Consumers offload workload in form of Tasklets to providers.
Providers offer one or multiple TVMs for Tasklet execution. Brokers
perform resource management and matchmaking between consumers
and providers. Figure taken from [124].

Before offloading a Tasklet, a consumer sends an execution request to a broker.

The broker performs the task scheduling, selects a provider for execution, and

communicates this task placement decision to the consumer. The consumer sends

the Tasklet directly to the chosen provider in a peer-to-peer fashion. After the

execution on the TVM, the provider sends the results of the Tasklet back to the

consumer, which concludes the offloading process. As, for instance, task abortions

may occur, the lifecycle of a Tasklet can be more complex in practice.

The Tasklet system is a hybrid peer-to-peer system. While offloading the Tasklet

and receiving the results happen directly between consumer and provider, the

47

5.1. Design

brokers act as central nodes with special responsibilities for matchmaking. The

central role of the broker reduces the communication overhead in comparison

to a purely decentralized peer-to-peer system. In large systems, several brokers

can co-exist. They are each responsible for a subset of the participating devices.

Brokers can share information about the providers and, hence, perform load

balancing. There are — in theory — no restrictions on the devices that act as

brokers. Ideally, they should be reliable and capable of handling the overhead of

running the broker software. Therefore, it is possible to launch new brokers on

demand. This procedure as well as systems with multiple brokers in general are,

however, out of the scope of this thesis.

The Tasklet system works in a best-effort fashion. Thus, there are no guarantees

for the execution of Tasklets. Tasklets may be aborted at any time, e.g., due to

a provider leaving the system. In addition, task placement happens randomly.

This simple model may satisfy the requirements of some applications. For all

applications that require additional guarantees, we introduce the concept of

QoC. Application programmers can specify QoC goals for particular Tasklets.

These goals are realized transparently by the Tasklet Middleware. For instance,

application programmers are able to request an energy-aware execution. As

the programmers know that their application is mostly used on smartphones

with a mobile data connection, they want to minimize the energy consumption

of the consumer. The Tasklet Middleware incorporates this information into

the execution request and the broker performs task placement accordingly. We

introduce the concept of QoC in more detail in Section 5.1.4. The design of QoC

mechanisms for challenging applications in edge computing environments is the

main contribution of this thesis.

5.1.2. Tasklets

A Tasklet is a fine-grained and self-contained unit of computation. The core idea

of the Tasklet system is that all devices are able to create Tasklets and to execute

them, independent from the device type, OS, or network connection. A Tasklet

is an encapsulated unit that contains everything required for execution. First,

it includes the source code, compiled as bytecode that is executable on TVMs.

Second, it includes (optional) parameters of the source code. For instance, if a

48

5.1. Design

Tasklet calculates whether a specific number is prime, this number is passed as a

parameter. Third, a Tasklet includes the input data. While the prime number

calculation would not require input data, many Tasklets, e.g., for image processing

or machine learning contain input data such as images, videos, or text. Fourth,

a Tasklet contains metadata such as a unique identifier and the QoC goals that

were chosen by the application programmer. Thanks to the design of a Tasklet,

any provider is able to execute arbitrary Tasklets without any preparation.

Tasklets are independent. Different Tasklets do not interact with each other,

neither by sharing memory, nor by passing messages. Therefore, the execution of

a Tasklet always yields the same result even when other Tasklets are executed in

parallel on the same device. This design choice allows the broker to make task

placement decisions without dependencies between Tasklets. Nonetheless, many

applications implicitly lead to a specific workflow. For instance, tasks should

be executed in parallel or after each other with the input of the second task

depending on the result of the first task. Such workflows are easily realizable with

Tasklets. Parallel tasks can be offloaded with several Tasklets that are launched

simultaneously. A sequential execution is achieved by launching a new Tasklet

after the result of the first Tasklet has arrived at the consumer.

A Tasklet can contain a small code snippet, a method, or multiple methods

that call each other. In Section 2.2, we categorize partitioning alternatives from

the literature into full offloading, task/component, or method/thread [5]. Since

Tasklets always represent a part of an application and not a whole application,

the Tasklet system is usable for offloading on the level of task/component and

of method/thread. The execution time of a Tasklet may therefore range from

milliseconds to several hours. Tasklets are embedded into an application. Ap-

plication programmers are able to write this so-called host application in their

preferred language, which acts as the host language. With an easy-to-use API,

programmers can launch Tasklets from the host application. The offloading

process and the reception of the results is entirely transparent. Handling the

offloading process and, hence, achieving this transparency is the responsibility of

the Tasklet Middleware, which we describe in the next section.

49

5.1. Design

5.1.3. Tasklet Middleware

The Tasklet Middleware is the software that runs on consumer and provider

devices. It handles the offloading process. The Tasklet Middleware consists of

three layers: construction layer, distribution layer, and execution layer. The

construction layer of the consumer is responsible for the communication with the

application that offloads Tasklets. It creates Tasklets upon request and forwards

them to the distribution layer. The distribution layer handles the offloading itself.

It communicates with the broker and the distribution layer of the provider. The

execution layer is able to execute Tasklets on TVMs. The results are forwarded

to the application via the distribution and the construction layer. Figure 5.2

depicts the layered architecture of the Tasklet Middleware. We observe that a

pure consumer device without local TVMs does not require an execution layer.

Analogously, a device that solely acts as a provider does not run the construction

layer. If a device acts as a consumer and a provider, it hosts all three layers.

TVM Manager

Orchestration Orchestration

Execution

Construction

Distribution

Factory

User Application

Tasklet
Library

Orchestration

Consumer Provider Provider/Consumer

Factory

User Application

Tasklet
Library

TVM Manager

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Tasklet Virtual
Machines

Figure 5.2.: The Tasklet system consists of three layers. The execution layer
communicates with the application that offloads Tasklets. It creates
the Tasklet and forwards it to the distribution layer, which handles
the communication with other devices in the system. This layer
orchestrates the offloading process. The execution layer is responsible
for executing Tasklets on TVMs. A pure consumer device does not
require an execution layer. A pure provider device does not use the
construction layer.

50

5.1. Design

Construction Layer

The construction layer is only present on a consumer device. It is responsible

for the communication with the user application and, hence, the creation of

Tasklets. The application itself can be written in the programmer’s favorite

language. Components such as the UI and the communication with the user via

mouse or keyboard, as well as other types of input/output always have to run on

the local device. These parts do not qualify for offloading. It is reasonable that

programmers use their favorite programming language for such application parts.

Only the computation-intensive parts, which potentially benefit from offloading,

have to be written in the Tasklet language C--, which was explicitly designed

for this purpose. This separation allows for an easy integration of Tasklets into

legacy systems. Large parts of the existing application code remain untouched.

The Tasklet language C-- is a procedural programming language that is designed

for computation offloading. It has a comparably small set of features including

primitive data types, loops, conditions, and methods. The language allows

programmers to add parameters to a Tasklet code and to specify an arbitrary

number of results that will be transferred back to the consumer.

The programmer starts Tasklets from the host language with the help of the Tasklet

Library — an easy-to-use API. The library connects the application code to the

Tasklet code. It offers developers convenient methods in their favorite language to

create Tasklets and to add parameters, QoC goals, and input data. The Tasklet

Library transforms this information into a language-independent representation

that is handed over to the Tasklet Factory. Moreover, the Tasklet Library

offers methods to launch Tasklets and to receive results. In theory, application

programmers could also create the language-independent representation of a

Tasklet without the help of the library. While this makes the Tasklet system

usable with all programming languages, it is rather cumbersome to do in practice.

The Tasklet Factory is the part of the Tasklet Middleware that receives the

information from the Tasklet Library. It compiles the source code into bytecode.

Together with the input data and metadata such as the QoC goals, the bytecode

is transformed into the final representation of a Tasklet. The Tasklet Factory

forwards this representation to the distribution layer.

51

5.1. Design

Distribution Layer

The Orchestration component in the distribution layer is responsible for the

placement of the Tasklet in the system. First, it decides whether a remote

execution is possible for a Tasklet. Certain QoC goals, for instance, prevent a

remote execution from the beginning. The Orchestration forwards the Tasklet to

the local execution layer if a remote execution is not an option. Otherwise, the

Orchestration requests resources at the broker.

The broker is the central authority for resource management and task placement.

All providers register at the broker while joining the system. They announce the

number of TVMs that they offer and their computing power based on a benchmark

computation. Providers periodically send heartbeat messages to the broker. If the

broker does not receive heartbeats from a provider for a specific time interval, it

considers this provider to be unavailable. Whenever the broker allocates a Tasklet,

it decrements the provider’s number of idle TVMs. After a provider finished a

Tasklet execution, it informs the broker that an additional idle TVM is available

now. Thus, the broker has an up-to-date view of the current system. It is able

to make well-informed task placement decisions based on this view. The task

placement depends on the QoC goals of the Tasklet. Without any QoC goals, a

Tasklet is randomly scheduled to a provider.

After making the task placement decision, the broker communicates the provider

choice to the consumer’s distribution layer. Subsequently, the Orchestration

offloads the Tasklet to the chosen provider in a peer-to-peer fashion. The provider’s

distribution layer receives the Tasklet and forwards it to the execution layer.

Execution Layer

The execution layer contains the TVM Manager and one or multiple TVMs. The

TVM Manager administrates the TVMs of one device. Per default, it launches one

TVM per CPU core. The TVM Manager receives Tasklets from the distribution

layer and schedules them on idle TVMs. The TVM is able to interpret the

bytecode that was created by the Tasklet Factory. It is a lightweight VM with a

small memory footprint. Therefore, the TVM is executable on many device types,

which is beneficial in today’s computing landscape. A TVM always executes

52

5.1. Design

Tasklets sequentially without preemption. The Tasklet language C-- does not offer

system calls, which ensures that the provider’s state remains untouched during

Tasklet execution. TVMs can be started and stopped spontaneously by the user

of the provider device, e.g., if other applications require more computing power.

After Tasklet execution, the results are forwarded to the distribution layer, which

transfers them to the consumer. This concludes the lifecycle of a Tasklet.

5.1.4. Quality of Computation

The Tasklet system works in a best-effort fashion without any execution guar-

antees. Tasklets, however, may be aborted if a provider leaves the system or

may be scheduled on slow providers. Such a behavior is not acceptable for many

applications. In such cases, the Tasklet system therefore allows the application

programmer to tailor the Tasklet execution to the application requirements by

setting QoC goals. Exemplary QoC goals are reliable execution, fast execution, or

energy-efficient execution. A single Tasklet can have multiple QoC goals. With

the Tasklet Library, the application developer can easily add or remove QoC

goals programmatically. Thus, the Tasklets launched by one application can have

different QoC goals.

QoC Design

Thanks to the QoC concept, the Tasklet system is able to cope with the highly

heterogeneous pool of user applications. These heterogeneous applications, how-

ever, are applied in a variety of distributed computing environments. The same

application, for instance, may be deployed in a stable cloud environment or in

an unreliable edge computing environment that only consists of mobile devices.

Enforcing a specific QoC goal such as a reliable execution in these two exemplary

computing environments is a challenge. Whereas the best-effort approach of the

Tasklet system may already lead to a reliable execution in the cloud environment,

achieving reliability in the edge environment may require additional measures

such as a redundant offloading of two copies of a Tasklet code. At design time,

the application programmer is not aware of the exact environments in which

the application will potentially run. The Tasklet approach therefore separates

QoC goals and QoC mechanisms. The programmer sets the goals. The Tasklet

53

5.1. Design

Middleware observes the current environment and applies the suitable mechanism

to achieve the QoC goal under the particular circumstances. This decoupling of

QoC goals and QoC mechanisms additionally leads to extensibility. It is possible to

implement new mechanisms in the Tasklet Middleware or the broker software for

existing QoC goals. This happens transparently for the application programmer.

Even legacy Tasklets would be able to profit from the new mechanism, without

any changes in the user application or Tasklet code. Analogously, new QoC goals

could be enforced by existing mechanisms or a new combination of QoC goal and

mechanism could be added with low effort. In the following, we summarize the

essential QoC goals and QoC mechanisms in the Tasklet system. A more detailed

perspective on the QoC concept is given in [125].

QoC Goals

Extensibility is a major strength of the QoC concept. Thus, the list of QoC goals

will grow further in the future. In this section, we present four QoC goals that are

essential for this thesis. The Tasklet Middleware applies various mechanisms to

achieve the QoC goals depending on the context. We introduce the mechanisms

in the next section.

Reliability: Especially in unreliable edge computing environments, offloading a

Tasklet, executing it, or transmitting the results may fail. With this QoC goal,

developers request a guaranteed execution of a Tasklet. This also encompasses

the successful transmission of the results to the consumer.

Speed: Setting the QoC goal Speed requests a low Tasklet completion time. As

the completion time largely depends on the distributed computing system, i.e.,

the resources that are available, the Tasklet Middleware does not provide any

guarantees to meet a deadline. Instead, it schedules the Tasklet to achieve the

lowest possible completion time in the current environment.

Sub-second deadline: Some user-facing applications such as face detection,

game AI, or speech recognition require sub-second response times for a satisfactory

user experience. Thanks to parallelization and the choice of powerful providers,

offloading is beneficial in these cases although the communication latencies may

be as high as the task execution times. The QoC goals Speed and Sub-second

deadline are similar since they both lead to low completion times. Sub-second

54

5.1. Design

response times, however, require different QoC mechanisms (cf. Chapter 7). As

the complexity of a task is difficult to predict in advance, we therefore offer

a separate QoC goal Sub-second deadline to be able to select the proper QoC

mechanisms for responsive applications.

Energy: Reducing the energy consumption of the consumer device is one of the

main motivations of computation offloading. The QoC goal Energy ensures that

the Tasklet Middleware chooses either local or remote execution, depending on

the estimated energy consumption of both options.

QoC Mechanisms

The Tasklet Middleware offers various QoC mechanisms to achieve the QoC goals.

In the following, we present a selection of these mechanism that is relevant for

implementing the four aforementioned QoC goals.

Redundancy: The Tasklet Middleware creates multiple copies of the same

Tasklet. These copies are identical in source code, input data, and parameters. The

broker schedules the copies independently, e.g., on different providers. With every

copy, the probability that at least one Tasklet completes successfully increases.

This mechanism therefore helps to achieve the Reliability QoC goal. In addition,

it contributes towards low task completion times. After receiving the results of

the first Tasklet, the consumer can continue with the application logic and discard

the results of the other copies.

Retransmission: If a Tasklet fails, e.g, due to a provider leaving the system,

the Tasklet Middleware detects the failure and starts a new copy of the same

Tasklet. Thus, this mechanism is important for the reliable execution of Tasklets.

To enable retransmission, the provider establishes a heartbeat channel to the

consumer after receiving a Tasklet. The consumer is able to detect a task abortion

when it does not receive any heartbeats for a specific period of time.

Fault-avoidance: The previous mechanism is able to cope with task abortions.

Ideally, such cases do not occur in the first place. In edge computing systems, it

is unfeasible to determine exactly whether a provider will leave the system soon

or whether a communication link will fail. Nonetheless, the Tasklet Middleware is

able to predict whether a provider will remain reliable based on its past behavior.

55

5.1. Design

With this prediction, the Tasklet Middleware can allocate Tasklets to the most

reliable providers. This mechanism for fault-avoidance is published in [90].

Migration: In the worst case, the provider that is currently executing a Tasklet

leaves the system just before finishing the computation. All the progress is lost and

the Tasklet might be restarted by the retransmission mechanism. We introduce

Tasklet migration in [126]2 to preserve as much computing progress as possible in

case of task abortions. This includes reactive migration and proactive migration.

Reactive migration creates a snapshot of the TVM state before a provider performs

an explicit leave. This snapshot is sent to the consumer, which migrates the state

to another provider. Thus, reactive migration prevents the loss of Tasklet progress

at the cost of communication delays during the migration process. To cover cases

where an explicit leave is not possible, e.g, when users turn off their devices, we

introduce proactive migration. Proactive migration creates snapshots of the TVM

state periodically and sends them to the consumer. In this way, only a small part

of the progress is lost.

Speed filter: The throughput of the provider is an essential influence on Tasklet

completion times. This mechanism defines a threshold value for the processing

speed. Only providers that have a higher throughput than the threshold are

considered for the task placement decision.

Workload partitioning: Many applications launch multiple Tasklets that belong

to the same job concurrently. A photo filter application, for instance, may launch

four Tasklets that apply the same filter to a quarter of the image each. Such a

parallelization reduces the job completion time — the time to apply the filter

to the whole image — by up to 75%. In edge computing environments, the

throughput of providers differs considerably. Static devices such as edge servers

or desktop PCs are expected to be faster than, e.g., smartphones. With workload

partitioning, the Tasklet Middleware autonomously adapts the workload of a

provider to its throughput such that all Tasklets of one job return their results

approximately at the same time. We present workload partitioning with Tasklets

in more detail in [126].

Data and task placement with DataVinci : Data-intensive applications are

challenging for computation offloading systems as input data has to be transferred

2Reference [126] is joint work with D. Schäfer, J. Edinger, and C. Becker.

56

5.2. Implementation

to the providers. This prolongs task completion times. DataVinci is a scheduling

approach that proactively distributes input data on providers. The Tasklet

execution can then happen without delays for ad-hoc data transfers. DataVinci

— presented in Chapter 6 — therefore constitutes a valuable QoC mechanism for

data-intensive applications.

Decentralized scheduling with DecArt : Similar to DataVinci , DecArt is a

sophisticated QoC mechanism for particular use cases. If the Tasklet Middleware

activates DecArt for a Tasklet, it uses decentralized scheduling without contacting

the broker for task placement. This is particularly attractive for user-facing,

responsive applications. Thus, DecArt is a QoC mechanism that achieves the

Sub-second deadline QoC goal. We introduce DecArt in Chapter 7.

Energy-aware scheduling with Voltaire: Voltaire is a QoC mechanism that

runs on the broker. Based on machine learning, Voltaire predicts the complexity

of an upcoming Tasklet. Voltaire is able to approximate the energy consumption

of a local or a remote execution with the expected Tasklet complexity and device-

specific energy profiles. Voltaire therefore implements the Energy QoC goal. We

describe Voltaire in detail in Chapter 8.

5.2. Implementation

We use a prototypical implementation — the Tasklet Core System — for the

experiments in this thesis. In Section 5.2.1, we introduce the main features

of this prototype. Section 5.2.2 describes the implementation of the Tasklet

Library that allows programmers to launch Tasklets from a host language. For

the experiments, we create several exemplary applications that apply computation

offloading with Tasklets. We give a brief overview of these use cases in Section 5.2.3.

In addition to the Tasklet Core System, we implement a simulator that is an

accurate representation of the Tasklet system. We present this helpful addition

for large-scale experiments in Section 5.2.4.

5.2.1. Tasklet Core System

The Tasklet Core System is a prototypical implementation of the design in

Section 5.1. It consists of the Tasklet Middleware and the broker software, both

57

5.2. Implementation

implemented in C. The prototype of the Tasklet Middleware includes all three

layers of the architecture in Figure 5.2. This encompasses an implementation

of the TVM that is able to interpret Tasklet bytecode and, hence, to execute

Tasklets. Interested readers may refer to [127] for more information about the

implementation. The Tasklet Core System is a fully-fledged and operational

computation offloading system. In a recent experiment, whose results are out

of the scope of this thesis, we deployed the Tasklet Core System on more than

100 devices including cloud servers, desktop PCs, laptops, and smartphones. The

Tasklet Core System is executable on Windows, macOS, Linux, Android, and iOS.

Application programmers implement Tasklet code with the programming language

C-- in files with the ending .cmm. We describe the application development process

with Tasklets in [128]3 and [129]4. Listing 5.1 shows an exemplary C-- code. The

Tasklet returns all prime numbers from low to high, with low and high being

input parameters. Line 1 contains the declaration of global variables. Lines 3 to 11

encompass a method that checks whether variable a is a prime number. After all

methods (or one method in this case), the main part of the Tasklet starts. Thus,

line 13 is the entry point where the Tasklet execution begins. The >> operator

connects the C-- code to the parameters that are added with the Tasklet Library

from the host language. Here, lines 13 and 14 read the parameters low and high.

The << operator analogously determines the variables or values that are returned

to the host application as a result. In the example, all prime numbers are declared

as results of the Tasklet in line 19.

5.2.2. Tasklet Library

The Tasklet Library provides the link between the user application written in the

host language and the Tasklet code written in C--. Currently, implementations

of the Tasklet Library in Java, C#, and Dart exist. Listing 5.2 is an exemplary

Java code snippet that uses the Tasklet Library to launch a Tasklet and to receive

the results. Line 1 creates a new Tasklet with the C-- code stored in primes.cmm.

Lines 2 to 4 add two integer parameters to the Tasklet. These have to match

the variables that follow the >> operator in the .cmm file. Lines 5 and 6 add

3Reference [128] is joint work with D. Schäfer, J. Edinger, and C. Becker.
4Reference [129] is joint work with J. Edinger, D. Schäfer, and C. Becker.

58

5.2. Implementation

the Reliability QoC goal to this Tasklet, which will be enforced by the Tasklet

Middleware. Line 7 launches the Tasklet. Line 9 is a blocking call that waits

for the Tasklet results. We observe that the offloading process is completely

transparent for the application programmer. It is, for instance, not visible whether

a local TVM or a remote provider executes the Tasklet or whether retransmissions

occur. Line 10 converts the TaskletResult object into a Java ArrayList. Now,

the host application continues with the application logic and processes the results.

1 int low ,high ,result;

2

3 procedure int checkprime (int a){

4 int c;

5 c:=2;

6 while(c<=(a-1)){

7 if((a%c)=0){return 0;}

8 c:=c+1;

9 }

10 if(c=a){return a;}

11 }

12

13 >>low;

14 >>high;

15

16

17 while(low <high){

18 result := checkprime(low);

19 if(result # 0){<<result ;}

20 low:=low +1;

21 }

Listing 5.1: An exemplary prime number calculation in C--.

1 Tasklet tasklet = Tasklet.fromFile("primes.cmm");

2 TaskletParameterList parameters = tasklet.getParameterList ();

3 parameters.addInt("low", 2);

4 parameters.addInt("high", 10000);

5 QoCList qoc = tasklet.getQoCList ();

6 qoc.setReliable ();

7 tasklet.start ();

8

9 TaskletResult results = tasklet.waitForResult ();

10 ArrayList <Object > resultList = results.getResultItems ();

Listing 5.2: An exemplary Java code snippet that uses the Tasklet Library to

launch a Tasklet and to receive the results.

59

5.2. Implementation

5.2.3. Use Cases

We implement a variety of real-world applications that perform computation

offloading with Tasklets. We run these applications in the experiments or model

their behavior in the Tasklet Simulator.

Mandelbrot set: This application creates a visualization of the famous Man-

delbrot set. Every pixel of the resulting image represents a complex number.

The color of the pixel is determined by applying a mathematical algorithm. The

application is interactive as users are able to scroll and zoom in the image, which

leads to new calculations.

Option pricing: The user enters different parameters about a financial option

such as strike price and volatility. The application then applies Monte Carlo

simulation to approximate the fair value of the option. As the accuracy of

the simulation increases with more simulation runs, computation offloading is

attractive for this use case. Similar to the Mandelbrot set, the option pricing

application benefits considerably from a parallel execution of many Tasklets.

Ray tracing: The ray tracing technology is commonly used for the generation of

digital images, e.g., in computer games. The user is able to define a set of spheres

in terms of size, color, transparency, reflectiveness, and location in the image. The

application uses this information to render the image. Being a computation-heavy

rendering technology, ray tracing profits considerably from computation offloading.

Photo filter: The grayscale photo filter may be used in photo editing or social

media apps. Users choose Red, Green, Blue (RGB) color ranges (e.g., via a range

slider) and the filter application converts all pixels of an image that differ from

the specified color range to grayscale.

K-means clustering: This unsupervised machine learning method clusters a

data set such that members of a cluster are more similar to each other than to

data points outside of the cluster. Users can choose input data sets that vary in

dimensionality and size. With the help of computation offloading with Tasklets,

k-means clustering assigns all data points to a user-defined number of clusters.

Decision tree classifier: The decision tree classifier — the second typical

machine learning application — is useful in, e.g., pervasive healthcare use cases.

For instance, it may perform classification on physiological data collected by

60

5.2. Implementation

wearables or smartphones to determine the health condition of a user. This

application offloads a trained decision tree model and a data set to a provider.

Speech detection: The speech detection application identifies the periods of an

audio file where people talk, similar to, e.g., Matlab’s voiceActivityDetector.

This application may be the basis for many pervasive applications such as speech

enhancement for accessibility, speech coding, and speech recognition.

Further applications: The aforementioned applications are commonly used in

the experiments described in this thesis. Throughout the years, we implemented

additional applications from the domains of mathematics (prime number finder,

π approximation, matrix multiplication), game AI (Connect Four, nine men’s

morris), chess problems (eight queens puzzle, knight’s tour), face recognition, and

ant colony optimization.

5.2.4. Tasklet Simulator

While the Tasklet Core System is suitable for real-world experiments, the Tasklet

Simulator is useful for large-scale studies with dozens of applications, hundreds

of providers, and millions of Tasklets. It is a representation of the Tasklet Core

System in the OMNeT++5 discrete event simulator. We validated the Tasklet

Simulator to ensure that it behaves like the Tasklet Core System. Both instances

use the same communication protocol. We monitored the behavior (online time,

CPU, and memory utilization) of multiple office and personal computers over

several weeks and developed models based on these measurements, which we fed

into the simulation environment. Devices enter and leave the system based on a

normal distribution modeled for each device type. We let the actual performance of

each single device fluctuate to account for varying utilization (CPU, memory) based

on the observed usage patterns. We measured latencies in real-world networks

including the time to establish a TCP connection to model transmission times.

We measured the throughput of different device types for actual computing tasks

to account for heterogeneity in the system. We performed basic measurements on

both, the Tasklet Simulator and the Tasklet Core System to compare execution and

transmission times. Eventually, we are confident that the simulation environment

reliably reflects the behavior of the Tasklet Core System.

5https://omnetpp.org/, accessed 2021-10-26

61

https://omnetpp.org/

6. DataVinci

In the previous chapter, we introduced the Tasklet system. The middleware allows

devices to exchange Tasklets — self-contained computational units consisting of

code, parameters, and input data. Offloading of such closures leads to satisfactory

completion times when tasks require no or only small amounts of input data. The

more data is required for the execution, the longer it takes to offload the workload.

This leads to unacceptable delays and a worse user experience. In this chapter, we

present the DataVinci data and task placement approach. DataVinci is a QoC

mechanism in the Tasklet system to achieve the Speed QoC goal for data-intensive

tasks. To achieve fast response times even for such tasks, we slightly alter the

abstraction of a Tasklet. Now, the input data is not shipped together with the

task, but is independently exchanged in the system. Thus, DataVinci is able to

proactively distribute the required input data to avoid latency caused by ad-hoc

data transfers, i.e., data files that are sent along with the task.

Scheduling for data-intensive applications has been extensively researched in grid

and cloud environments where resources are homogenous, reliable, and monitored

by an omniscient controller. Results show that careful data and task placement

can lead to reduced task completion times [130,131]. Scheduling of data-intensive

tasks in edge computing, however, has received little attention in research so far.

In contrast to a cloud infrastructure, an individual device is not scalable but has

limited storage and computing resources. Therefore, it is neither an option to send

all data files to all devices, nor to send all tasks to a single computer. Instead, a

performant scheduler needs to make data and task placement decisions that keep

task completion time as well as data transfer at a minimum.

The complexity of scheduling decisions in edge computing is driven by multiple

factors. First, there are heterogeneous resource providers that do not only vary

in their computational performance but may also enter and leave the system

at any time. Therefore, the scheduler must on the one hand frequently adjust

the data placement and on the other hand select the best provider for a task

63

6. DataVinci

depending on the current context. Second, users expect a timely task execution

despite a varying load in the system. Thus, the scheduler should be robust to load

changes in the system and adaptively choose suitable providers for data and task

placement. Finally, numerous applications might simultaneously offload tasks

with different data requirements that may change over time.

Data-intensive applications in edge computing such as machine learning or face

recognition typically require a combination of up-to-date “private” data created

by the consumer and “public” data, which is shared among multiple users and

often stored in the cloud. For instance, offloading a machine learning task requires

the resource provider to store both a potentially large classifier as well as the

input data to be classified. On the example of image detection, classifiers easily

reach a size of several hundreds of megabytes such as a pre-trained model of

the convolutional neural network architecture VGG16 (490MB). This model is

publicly available and can be downloaded, e.g., from the cloud. In contrast, private

data which needs to be classified differs for each user but might also add up to tens

or hundreds of megabytes. Public and private data may be reused for multiple

tasks when different parameter settings are evaluated for the classification. We

argue that proactive data placement can reduce latencies that otherwise occur

when data has to be transferred ad-hoc, i.e., when a task is started.

DataVinci is a QoC mechanism in the Tasklet system that addresses the afore-

mentioned challenges. It carefully adjusts the number of copies and maintains

sufficient replicas in the system to achieve timely task completion. We present

DataVinci in this chapter. In Section 6.1, we review related work. In Section 6.2,

we first summarize the underlying system model. The major part of the section

is, however, dedicated to DataVinci ’s design, which consists of a data placement

level and a task placement level. In Section 6.3 and Section 6.4, we describe

DataVinci ’s strategies for data placement and task placement, respectively. Sec-

tion 6.5 extensively evaluates DataVinci . We conduct a pilot study in a real-world

experiment and assess DataVinci ’s effectiveness on a larger scale in a simulation.

Section 6.6 concludes the chapter with a brief summary. This chapter bases

on [124]1 and [132]2. It answers research question 2.

1Reference [124] is joint work with D. Schäfer, J. Edinger, and C. Becker.
2Reference [132] is joint work with J. Edinger, D. Schäfer, and C. Becker.

64

6.1. Related Work

6.1. Related Work

Across all distributed computing paradigms, the question of how to place input

data in the system as effectively as possible always remains a major focus in

computation offloading research. In this section, we review data and task placement

approaches in grid, cluster, cloud, and edge environments. We concentrate entirely

on the decision making perspective, i.e., the strategic planning of where to

place data and task. Therefore, we omit approaches such as HTCondor ’s [133]

Stork [34] scheduler, Reference [134], or Reference [135] that are designed to

realize a desired pre-defined data distribution in a system efficiently. In addition,

we omit architectures with a fixed data flow such as [136]. Table 6.1 gives an

overview of related work.

In general, we categorize the literature into approaches that consider (i) data

placement only, (ii) task placement only, or (iii) a combination of data and

task placement similar to DataVinci . As far as data placement is concerned,

approaches either rely on (i) caching, (ii) static replication, (iii) reactive replication,

or (iv) proactive replication. When applying caching, providers explicitly store

input data (or results) that were required by a past task execution. Thus, the data

can potentially be reused in the future. Such approaches are often enriched with

algorithms that decide which data file to keep, e.g., based on popularity [94,149]

or a Least Recently Used (LRU) heuristic [140]. Static replication encompasses

strategies that distribute data in the system once. This is sufficient in scenarios

where the whole future workflow is known a priori (e.g., [143] or [155]). Reactive

replication strategies adjust the data placement in response to a trigger event.

Potential triggers include peaks in the offloading demand [140, 144, 148], provider

joins and leaves [74], or bottlenecks (cf. dynamic replication in Section 6.5.2).

All reactive strategies have in common that they observe the system state for

a certain time period before becoming active. In contrast, proactive replication

as used in DataVinci adjusts the data placement before the event that would

potentially trigger a reactive approach even happens. This comes at the cost of

data transfer and monitoring overhead. Independent from the replication strategy,

it is beneficial to observe the history of a certain data file to make well-informed

data placement decisions. This is especially relevant for new versions of data

files as described extensively in this chapter. While some approaches analyze the

65

6.1. Related Work

Data Task Context Ev.

Author/System Year

C
a
ch

in
g

S
ta

ti
c

R
e
a
c
ti
v
e

P
ro

a
c
ti
v
e

V
e
rs
io
n
s/

H
is
to

ry

D
a
ta

-a
w
a
re

P
e
rf
o
rm

a
n
c
e
-a
w
a
re

D
a
ta

si
z
e

S
to

ra
g
e

F
lu
c
tu

a
ti
o
n

A
p
p
.
re

q
u
ir
e
m
e
n
ts

P
e
rf
o
rm

a
n
c
e

P
ro

v
id
e
r
lo
a
d

S
im

u
la
ti
o
n

R
e
a
l-
w
o
rl
d

te
st
b
e
d

Alhusaini [137] 1999 • • ◦ ◦ ◦ •
APST [138,139] 2000 • • • • • •

Braun [89] 2001 • • ◦ • • •
Ranganathan [140] 2002 • • ◦ • • •

He [141] 2003 ◦ • ◦ • • •
Cameron [142] 2004 • ◦ • ◦ • • •
Blythe [42] 2005 • • • ◦ • • •

Desprez [143] 2005 • • • • • • •
Tang [144] 2006 • • • ◦ • • • • • • •
Chang [145] 2006 • • ◦ ◦ • • • •

Venugopal [146] 2006 • • • • •
DIANA [41] 2007 • • • ◦ • • •

Chervenak [147] 2007 • ◦ ◦ ◦ • ◦ ◦ •
Ramakrishnan [130] 2007 • • • • • •

DistReSS [148] 2008 • ◦ • • • • • • •
Nukarapu [149] 2011 • • • • •

Liu [150] 2012 • • • • • •
Van Den Bossche [151] 2013 • • • ◦ • ◦ •

JDS-BC [152] 2013 • • • • • • • • •
Choudhury [153] 2015 ◦ • • • • ◦ •

Li [154] 2016 • • • •
Nebula [74] 2017 • • • • • • • • • • •
BaRRS [155] 2017 • • ◦ • • • • • •
Elbamby [94]* 2017 • ◦ • • • • ◦ • • •
iFogStor [156] 2017 • • • •
ECS [157] 2018 • • •
D-ReP [158] 2018 • ◦ • •
Cicconetti [83] 2019 • • • ◦ • • • •
Braud [93] 2020 • • • • • • • • •
DataVinci • • • • • • • • • • • • • •

Table 6.1.: Overview of related data and task placement approaches.
* Although the authors describe the approach in [94] as proactive, it
does not match the definition of proactive replication applied in this
thesis. The approach caches results of tasks to have the data available
for the next request. It is therefore categorized as a caching approach.
(App. = Application, Ev. = Evaluation)
• fulfilled ◦ partially fulfilled

66

6.1. Related Work

past usage of a data file to infer its popularity (e.g., [158]), none of the reviewed

approaches explicitly consider different versions of data files.

In terms of task placement, we distinguish between data-aware and performance-

aware strategies. Data-aware task placement strategies consider the location of

data in the scheduling process; performance-aware strategies the computational

capabilities (or throughput) of a provider. We observe that most approaches

that offer task placement consider both data locality and provider performance

in their decision making. An intuitive way to combine both in a single decision

function is to model and estimate the task completion time at each provider

and choose the one with the lowest estimate (e.g., [42,83,93]). Only two of the

approaches [140, 154] schedule tasks independent from the throughput of the

providers, which is only reasonable in purely homogeneous systems.

Edge computing systems consist of heterogeneous devices that run a large variety

of applications. In addition, devices join and leave such systems frequently and

without restrictions. Therefore, we argue that proper data and task placement

in such environments considers the context for adaptive decision making. We

review the literature with regards to context-awareness and assess whether the

approaches consider the data size, storage capacity, fluctuation (i.e., provider

stability), application requirements, provider performance, and provider load. We

observe that a majority monitors the data size and also incorporates the context of

the provider (performance and/or load) in the decision making. Many approaches

also consider the storage capacity of the devices. This context dimension, however,

is usually interpreted as a binary variable — (i) no storage left or (ii) sufficient

storage left — instead of a continuous value to establish a “fair” data placement

among providers. The treatment of application requirements including degree

of parallelism [42, 93, 147, 150, 152, 153, 155], task complexity [41, 42, 93, 94, 150–

152,155], deadlines [93,151], or QoC constraints such as security, bandwidth, or

reliability [74, 141, 150] is rather diverse in the literature. An exemplary approach

with a strong focus on application requirements is [93]. In this paper, Braud et

al. explicitly exploit application characteristics for an AR offloading approach

that uses other mobile devices, edge servers, and cloud servers as providers. We

observe that only Nebula [74] and the approach by Braud et al. [93] consider

fluctuation. Remarkably, these are recent approaches designed for edge computing

67

6.2. Design

environments. As such systems are highly dynamic, we argue that it is vital to

monitor fluctuation and consider it in the data and task placement decisions.

Except for [146], all reviewed approaches have been evaluated in a simulation or

a real-world testbed. While we acknowledge the effort that is required to assess a

strategy under real-world conditions, we still argue that such experiments provide

essential insights on the way towards an implementation in practice. Similar to

the evaluation of DataVinci later in this chapter, Cicconetti et al. first apply

their approach for serverless computing [83] in a real-world mobile edge testbed

before scaling the experiments up in a simulation. Casanova et al. use a different

methodology. They first verify APST in a simulation [139] before deploying it in

a real-world scenario in [138].

We conclude from our literature review that data-aware task placement is well-

studied in comparison to data placement. In this chapter, we propose DataVinci

— a scheduler with a strong focus on data placement. In contrast to related

work, DataVinci applies proactive replication. DataVinci is one of only a few

context-aware approaches that consider a broad variety of context dimensions.

We evaluate DataVinci in a real-world testbed and in a simulation.

6.2. Design

In this section, we first the underlying system model and DataVinci ’s fundamental

design, which consists of a data placement and a task placement level.

6.2.1. System Model

Applications in the system consist of two parts. First, the application logic

contains executable, computationally intensive parts of the application that can

be executed on the TVM as Tasklets. Second, applications have data dependencies

which determine the data files that are required to exist on the machine where

the task is to be executed. Data requirements from applications can be divided

into two categories: public and private data files. Public data files are shared

by all users of this application and are downloadable for the providers from

well-connected data clouds. Private data files are unique for each user and are

68

6.2. Design

exchanged directly between consumers and providers. Applications can require

either public or private data, or both. A provider is able to start the execution

of a task as soon as it stores all required data. Once a data file has been sent,

it is stored until the provider leaves the system. Multiple identical copies of the

same data files (so-called replicas) may exist on different devices. Both public

and private data can be reused for multiple tasks, e.g., for object detection tasks

with different parameters. The data files for applications might change over time,

leading to different data file versions. Once the data file is updated, applications

require the new version for the execution of their tasks. Public and private data

files might get updated independently from each other at any time. Outdated

versions of the data files are not required anymore and might be deleted.

6.2.2. Data and Task Placement

DataVinci is an integrated scheduling approach that manages both, data place-

ment and task placement. This integration into one scheduler leads to better

optimization of the system state and less overhead for negotiation between two in-

dependent schedulers. In addition, the integrated design avoids oscillation effects,

that might occur if separated data and task schedulers repeatedly counteract

each other’s decisions. DataVinci does not assume knowledge about the future

workflow or dependencies between data files and certain tasks. This uncertainty

necessitates a separation of data and task placement in the scheduler.

As far as data placement is concerned, DataVinci uses initial replication, which

is triggered as soon as new data files or new versions of existing data files enter

the system, such as when a new pre-trained classifier becomes available. Here,

DataVinci differentiates between (i) an entirely new data file and (ii) a new

version of an existing data file. For new data files, DataVinci offers context-aware

replication. This strategy monitors several context dimensions such as data size

or application requirements to approximate the suitable number of replicas. As

far as new versions of an existing data file are concerned, DataVinci is able to

exploit knowledge about the previous versions to make even better decisions.

The strategies for such cases analyze usage patterns of old versions to determine

a suitable number of replicas for the new version. We have coined the term

history-based replication for these strategies.

69

6.3. Data Placement Strategies

In addition to initial replication with its two facets, DataVinci further uses

continuous replication, which permanently adapts the data distribution to the

current system state. Continuous replication copes with bottlenecks that result

from an insufficient data distribution. Due to varying system load or device

fluctuation, it is necessary to create new replicas of certain data files over time in

order to maintain timely task execution, even if initial replication works properly.

Static replication is a continuous replication strategy that maintains a stable

number of replicas. It distributes new replicas if devices that stored certain data

files leave the system. Reactive continuous replication distributes new copies if

it detects bottlenecks that occur when data files are sent along with the task.

Proactive continuous replication avoids bottlenecks in the first place. For each

data file, the strategy constantly ensures a certain amount of idle resources to

prevent ad-hoc data transfers.

Ideally, task placement exploits the current data distribution to minimize task

completion times. DataVinci offers four task placement strategies. In contrast

to random task placement, a performance-aware strategy allocates tasks to the

fastest idle provider. In data-intensive scenarios, performance differences among

providers may be less severe than latencies of ad-hoc data transfers. Thus, data-

aware task placement schedules tasks on providers that already store the required

input data files. DataVinci further introduces hybrid task placement, which

combines data-aware and performance-aware scheduling. Figure 6.1 summarizes

DataVinci ’s strategies, which we discuss in greater detail in Section 6.3 (data

placement) and Section 6.4 (task placement).

6.3. Data Placement Strategies

DataVinci ’s data placement level optimizes the distribution of new data or new

data versions in the system by applying replication, i.e., the management of various

copies of the same data distributed on different computers [159]. DataVinci uses

replication to proactively distribute data files on multiple providers. These

providers are then suitable offloading targets for future executions of tasks that

require these data files. Hence, DataVinci improves task completion times of

data-intensive applications by avoiding ad-hoc data transfers.

70

6.3. Data Placement Strategies

Data Placement Task Placement

context-
aware

history-
based

average mode steadymax

How many replicas
are required

initially?

static reactive proactive

Does the number of
replicas need to be

adjusted?
random

performance-
aware

hybrid

data-
aware

Where to place a
task?

1 2 3

Initial
Replication

Continuous
Replication

New
data file

New
version

constant

Figure 6.1.: DataVinci makes three types of decisions. 1 When new data files
or new versions of existing data files enter the system, the sched-
uler decides how many replicas need to be placed on remote devices.
2 When the context changes (e.g., because devices leave the system
or the system load increases), DataVinci might adjust the number
of replicas. This adjustment can either keep the number of repli-
cas stable (static), react to bottlenecks in the system (reactive), or
avoid bottlenecks (proactive). 3 For each task, DataVinci selects a
provider either randomly or based on the computational performance
of the providers, the data distribution, or both.

The design of a replication-based scheduling strategy needs to consider the tradeoff

between low task completion times and data transfer overhead. Two extreme

strategies exist: no replication where no data files are distributed proactively and

full replication where all data files are sent to all devices. However, between those

two extremes, strategies that balance data transfer overhead and task completion

times exist. The design of such as strategy has to address two questions in

particular: (i) how many replicas should the environment store in total and (ii)

which providers are most suitable to store these replicas?

DataVinci applies replication in three cases: (i) when a new data file becomes

available, (ii) when a new version of an existing data file becomes available, and (iii)

when the current context requires an adjustment of the data distribution. When

a new data file or a new version becomes available, DataVinci performs initial

replication. We introduce several strategies for choosing an adequate number of

replicas for initial replication in Section 6.3.1 (new data file) and in Section 6.3.2

(new version). As it is necessary to continuously adjust the number of replicas

71

6.3. Data Placement Strategies

according to the current context, DataVinci performs continuous replication using

one of the strategies presented in Section 6.3.3.

6.3.1. Initial Replication of New Data Files

Designing a proper data placement strategy for an entirely new data file is

challenging as the information that is available for decision making is comparably

scarce. It is, for instance, uncertain how many consumers will offload tasks

that require the new file or how long the execution times of these tasks will

be. Nonetheless, DataVinci includes a context-aware replication strategy that

considers several context dimensions to approximate the optimal number and

placement of replicas. Context-aware replication encompasses two decisions for

each new data file d. First, it needs to determine the number of replicas n. Second,

the strategy chooses the providers that will store the replicas. A separation of these

two steps ensures a reasonable number of replicas during execution without relying

on device monitoring or assuming certain device characteristics. Concerning the

first decision, four context variables play a major role. The appropriate number

of replicas depends on the data size, the remaining storage capacity of the system,

the current fluctuation, and the application. DataVinci models the current state

of these four variables with normalized coefficients ranging from 0 to 1. The

coefficient Cdata describes the relative data size by comparing the absolute data

size sd to the maximum allowed data size in the system smax. In a system with k

providers p1, ..., pk, the coefficient for the remaining storage capacity, Ccap, is the

sum of the free storage cf of all devices divided by the sum of the total storage ct

of each device.

The influence of the current fluctuation on the desired number of replicas is

modeled in the coefficient Cflu. To calculate this coefficient, DataVinci applies

a sliding window approach and determines the mean residence times for each

provider that has been part of the system in this time window. The average of these

mean residence times quantifies the current provider stability Stabprov. There is,

however, no linear relation between provider stability and the appropriate number

of replicas. A high number of replicas is beneficial in systems with moderate

stability values. In unstable systems with high fluctuation, fewer replicas should

be chosen since replicas are likely to leave the system before any task execution

72

6.3. Data Placement Strategies

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Stabprov in min

C
f
lu

Figure 6.2.: Function to determine Cflu based on the provider stability value.

can happen on the device that stores the replica. Additionally, systems with high

stability values also require less replicas. Devices barely leave the system which

makes having another copy inefficient. To model this non-linear relation, we apply

a polynomial function as shown in Figure 6.2. This function represents an example

and can be exchanged depending on system or application characteristics.

Moreover, the application characteristics influence replication. To incorporate

these application-specific characteristics into the replication decision, the coefficient

Capp represents whether the application might require a higher number of replicas.

DataVinci calculates this coefficient as the average of the data availability factor

fava and the parallelism factor fpar of the application that entered the data into

the system. Applications with a high data availability factor benefit from having

multiple replicas since they require to continuously have an available copy on

a provider to ensure fast execution. A high parallelism factor models that an

application runs parallel tasks on the same data, which also requires multiple

replicas. These two factors, ranging from 0 to 1, may be transmitted to DataVinci

by the application itself or observed at runtime. The equations for calculating the

three coefficients Cdata, Ccap, and Capp are as follows:

Cdata =
sd

smax

;Ccap =

∑k
i=1 cfi∑k
i=1 cti

;Capp =
fava + fpar

2
(6.1)

The relative importance of the four context coefficients can vary, depending on

system and application state. Therefore, we multiply weights α1 to α4 to the

73

6.3. Data Placement Strategies

coefficients. The sum of these weights further determines the maximum number

of replicas in the system. In edge environments, k — the number of devices in the

system — changes and does not necessarily equal the norm size of the system that

was used during design time (k0). Hence, we scale the resulting number of replicas

depending on the relative size of the current system compared to the norm size.

The final equation to calculate the number of replicas n then looks as follows:

n = (α1 ∗ Cdata + α2 ∗ Ccap + α3 ∗ Cflu + α4 ∗ Capp) ∗
k

k0
(6.2)

The weights allow system designers to adjust the replication strategy to the needs

of their system. For instance, in systems with large bandwidths that focus on

fast execution of time-critical tasks, α1 might be positive. With increasing data

size, the number of replicas also increases as migrating aborted tasks becomes

particularly costly. Systems with low bandwidth or limited storage capacities

may use a negative α1 to decrease the data transfer overhead. A proper choice of

the weights is crucial for the effectiveness of the replication strategy. Unsuitable

weights may lead to unsatisfactory results such as a constant shortage of replicas.

Using a control structure that adapts the weights dynamically at runtime can

reduce the risk of choosing unsuitable weights in the first place.

So far, we have considered context dimensions of the data file and the system itself

to determine an adequate number of replicas. For the decision on where to store

the replicas, DataVinci additionally takes the characteristics of the providers into

account. If possible, replicas should be stored on devices that will not leave the

system until the data transfer was worthwhile. Thus, the stability of the providers

is an important context variable. We characterize the stability by considering

mean µp and variance σ2
p of the devices’ residence times. The mean residence

time is a relevant context dimension as it helps to predict whether a provider

remains connected for a longer time on average. However, some devices may be

connected for a long time on average but still leave the system after a short while

in some cases. To consider this behavior in the decision, we add the variance

of the residence time as a context variable to distinguish stable resources from

unpredictable resources. DataVinci estimates the values for µp and σ2
p based on

the past residence times of the providers in the system. Further, it monitors the

current residence time tp.

74

6.3. Data Placement Strategies

In addition, the storage load cp of the providers is a relevant context variable. If a

device faces a high storage load, replicating additional data on this resource may

not be beneficial. Further, DataVinci also takes the data queue sizes qp of the

providers into account. Devices that store a large amount of replicas will likely

execute a larger number of tasks in the future. New replicas should be stored on

devices that store less data to avoid task queues and to allow a timely execution of

the associated task for this replica. Finally, the relative performance index RPI

of a device determines its computational performance compared to the average

performance of the current environment based on a benchmark measurement. A

provider with a high RPI stores more replicas due to the processing performance.

Combining all of these context variables into an equation to calculate a provider’s

utility Up leads to the following function:

Up = β1 ∗ (µp − tp) + β2 ∗ σ2
p + β3 ∗ cp − β4 ∗ qp + β5 ∗RPI (6.3)

Context-aware replication now places the new replicas on the n providers with the

highest utility value. Similar to Equation 6.2, the context variables are attached

with weights β1 to β5 to allow a customization of the function. Since the choice

of relevant context dimensions does not claim to be exhaustive for all use cases,

Equations 6.2 and 6.3 both allow to integrate further context dimensions as

addends if required.

6.3.2. Initial Replication of New Data Versions

The previous section shows how DataVinci approximates the optimal number

of replicas for a new data file. If a new version of a data file becomes available,

DataVinci ’s decision making has more information available. The scheduler is

able to analyze the data distribution of the previous version in the system over

time and use this information for the current decision. DataVinci includes two

basic strategies to select the suitable number of replicas for new versions: constant

replication and history-based replication. These strategies differ in how they

determine the number of replicas. For the choice of the providers that store these

replicas, they reuse the utility-based approach introduced in the previous section.

The constant replication strategy creates a fixed number of replicas n, where n is

a parameter adjustable by the system administrator or the value determined by

75

6.3. Data Placement Strategies

context-aware replication. This strategy does not consider the usage of the prior

version for decision making. DataVinci sends the application data along with the

task if n is set to 0 and continuous replication is deactivated. Thus, setting n to 0

optimizes initial data transfer overhead. However, it leads to high task execution

times as each execution will always include the latency for the data transmission.

We propose history-based replication, a data placement strategy that analyzes

the data distribution of the previous version in the system over time. In many

cases, the number of providers that store a certain data file is not stable during

the lifespan of a version. The number may change after the initial placement

due to provider fluctuation or peak demand, which might necessitate placing

additional copies of the data file on other providers. As history-based strategies,

we introduce average-based, mode-based, maximum-based, and steady replication.

In average- and mode-based replication, DataVinci monitors the current number

of replicas in the system at each time step and aggregates this information into

an average or mode value that describes the whole period for the latest version.

Then, DataVinci selects the average or the mode of the monitored number of

replicas as the desired number of replicas for the new version. These two strategies

aim at providing a suitable data distribution for the majority of task executions

without creating heavy data transmission overhead. In contrast, maximum-based

replication selects the maximum number of replicas observed during the lifespan

of the prior version as the initial number of replicas for a new version. Maximum-

based replication ensures — assuming that the demand for the particular data

file remains similar — a sufficiently large number of replicas for parallel, fast task

execution even in times of peak demand. A higher number of replicas, however,

requires more data transfer. The steady replication strategy relies on the outcome

of the continuous replication. When a new version becomes available, the scheduler

restores the current number of copies in the system. The strategy assumes that

continuous replication performs well and that it is not biased by short term peaks

in the demand. Figure 6.3 depicts the number of replicas chosen by DataVinci ’s

strategies for an exemplary data file when a new version becomes available.

76

6.3. Data Placement Strategies

0

1

2

3

4

5

6

7

8

9

10

11

12

13

time
new version

constant
(with n = 4)

mode = 7
average = 8

steady = 11
max = 12

N
u
m

b
er

of
re

p
li
ca

s

Over time, the current number of replicas is
affected by fluctuation, ad-hoc data transfer, and

continuous replication.

(Initial replication)

Figure 6.3.: Initial replication: An exemplary development of the number of
replicas for one data file version. The resulting number of replicas for
a new version under different strategies is shown on the right.

6.3.3. Continuous Replication

DataVinci uses continuous replication, which adjusts the current data distribution

if required. Device fluctuation, different user behavior, and the uncertainty during

initial replication may necessitate changes. Adjusting the data placement has

proven to be effective in several related approaches [142, 144, 145]. DataVinci

offers proactive continuous replication, which aims at avoiding bottlenecks in

advance. DataVinci monitors the providers including the data files they store, the

computational resources they offer, and the tasks that they are currently running.

Here, resources may be any kind of computing instances that can be measured in

discrete units such as idle processor cores or idle TVMs. Based on this overview

of the system state, proactive replication ensures that a certain number of idle

resources (“buffer”) is continuously available for all data files. DataVinci triggers

the creation of one or more new replicas if it detects that an insufficient number of

idle resources is able to perform tasks on the data file. Thus, even in times of rising

demand for computation involving certain data files, tasks can be scheduled on

the buffer resources while proactive continuous replication creates new replicas in

the background. Setting a high buffer ensures that sufficient replicas are available

but also increases the amount of data transfer. Figure 6.4 illustrates proactive

continuous replication in an exemplary case.

77

6.4. Task Placement Strategies

∎

∎

⋆
∘

∎

⋆

∘

∘

Consumer

𝑡0
∎

⋆
∘

∎

⋆

∘

∘

Consumer

𝑡1

Figure 6.4.: Proactive continuous replication with a buffer value of 1 in an example
with data files ⋆, ◦, and ■. At t0, continuous replication is triggered
as the number of idle resources that store ■ falls below the buffer
value. DataVinci distributes a new replica to the most suitable
provider at t1.

6.4. Task Placement Strategies

The superior goal of DataVinci is to improve the task completion times of data-

intensive applications. The data placement that is realized with the strategies

presented in the previous sections is only effective with regards to this goal if the

task placement exploits the data distribution that is created and maintained. To

achieve this, DataVinci offers a variety of task placement strategies: random, data-

aware, performance-aware, and hybrid task placement. Random task placement

allocates tasks randomly to idle providers. Since tasks are scheduled independently

from the current data distribution in the system, additional data transfers may

happen while using this strategy, even if the data files are present on other

providers in the system. Data-aware task placement exploits the data distribution

that has resulted from data replication. It analyzes the data requirements of a

task and divides the providers into those that store all data files required for the

task and those that lack data files. At first, the data-aware scheduling strategy

randomly chooses providers from the group of idle providers that store all required

data files. Only if the providers in this group do not offer sufficient resources, the

strategy considers idle providers without all data files.

Performance-aware task placement sorts the idle providers based on their through-

put. DataVinci then allocates the tasks to the fastest idle provider, independent

from the data files stored on this provider. Hybrid task placement (Algorithm 1)

takes both data distribution and provider performance into account. It first

78

6.5. Evaluation

divides the providers into the group of idle providers that store all input data files

and the group of idle providers that lack certain data files, similar to data-aware

task placement. The providers that already store the data files are sorted by

throughput. The other providers are sorted by the total amount of data that is

missing for the task execution to keep additional data transfer at a minimum.

The scheduling strategy would prefer a provider that stores all but one input data

file over a provider that stores none of the required data files if a task requires

multiple data files of various sizes.

Algorithm 1 Hybrid Task Placement (Task T with data requirements DT)

1: let Pidle,data and Pidle,noData be empty provider lists
2: for all Providers p do
3: if p is idle then
4: if p stores all data files d ∈ DT then
5: add p to Pidle,data

6: else
7: add p to Pidle,noData

8: sort Pidle,data by throughput in descending order
9: for all Provider p in Pidle,noData do
10: dataStoredp ←

∑
size((d ∈ DT)|(p stores d))

11: sort Pidle,noData by dataStoredp in descending order
12: while T requires more resources do
13: if Pidle,data is not empty then
14: select first provider p from Pidle,data

15: remove p from Pidle,data

16: else
17: select first provider p from Pidle,noData

18: remove p from Pidle,noData

6.5. Evaluation

We evaluate DataVinci in two steps. First, we deploy it in a small-scale real-world

experiment (Section 6.5.1). This pilot study provides valuable insights that are

used in the second step — a large-scale simulator-based experiment (Section 6.5.2).

In Section 6.5.3, we discuss the evaluation results obtained from the two studies.

We present potential threats to validity in Section 6.5.4.

79

6.5. Evaluation

6.5.1. Real-World Pilot Study

We deploy DataVinci in a real-world testbed for this pilot study. The study

focuses on the initial replication of new data files with the context-aware repli-

cation strategy. We investigate the long-term effects of new data versions and

a comparison of the different initial replication strategies for new data versions,

continuous replication strategies, and system parameters (e.g., system load or

buffer value for proactive continuous replication) in the large-scale study presented

in the next section.

The usage of a real-world testbed in this study allows us to show the practical

feasibility of the approach and to gather real-world data about latencies or

computational power for the subsequent study. Moreover, environmental details

and realistic characteristics of the network layer influence the measurements. This

comes at the cost of less controllability and natural variances compared to a

simulator-based evaluation approach, which we use for the large-scale study.

Experimental Setup

We implemented a prototype of DataVinci in Java. To avoid possible influences of

performance fluctuations or side effects of the Tasklet Middleware, we connected

our prototype to a Tasklet system emulator. This emulator shows equivalent

behavior as the Tasklet system but allows a more controlled and steady setup.

To deploy the prototype, we created a real-world testbed consisting of eleven

physical devices. One of the devices acts as the consumer and hosts the broker.

The other ten devices are resource providers. To exclude hardware influences,

we used homogeneous devices and configured them to have the characteristics of

desktop PCs, laptops, and smartphones in terms of computational performance

and fluctuation (cf. Table 6.2). Now, the setup resembles an office environment

in the academic sector with three office rooms and a student lab depicted in

Figure 6.5. Leaving devices delete all of their data and reenter the system after a

randomly chosen time interval.

As shown in Table 6.3, we run three applications in a 60-minutes-workflow in

this setup. The workflow contains 303 Tasklet executions. To compare the

performance of the strategies, we measure the Tasklet completion time, the

80

6.5. Evaluation

Office 1

Office 3

Office 2 Computer Lab

Conference Room

Elevators

Corridor

Figure 6.5.: The testbed used in the pilot study represents a typical office environ-
ment in the academic sector. Ten devices act as resource providers
with different characteristics (cf. Table 6.2). In the evaluation, this
edge computing environment runs three applications (cf. Table 6.3).

Device Benchmark µ (in h) σ (in h)
3 x PC 7 7 2.5
2 x Laptop 10 4 2.7
3 x Phone (stable) 20 1.5 1
2 x Phone(unstable) 20 0.5 0.5

Table 6.2.: The ten evaluation devices in the pilot study with their benchmark
performance, mean residence time µ and standard deviation of the
residence time σ.

queuing time, the execution time, and the data transfer overhead. The queuing

time quantifies the time span between the arrival of the Tasklet at the provider

and the execution start. We assess context-aware replication in comparison to

three baseline approaches: (i) no replication, (ii) a static replication strategy

that always creates one replica (“1-replication”), and (iii) full replication. As the

importance of a proper mechanism for initial replication of new data versions

and continuous replication increases with the time horizon, we study the different

strategy options only in the large-scale simulation in the next section.

We run the prototype with three applications of varying data and computational

intensity in the academic office environment (cf. Table 6.3). First, a face recog-

nition workflow consists of events that occur if cameras at the entrance of the

office building use face recognition to grant access. Face recognition compares the

current camera image to entries of a comparatively large database file. Second, a

81

6.5. Evaluation

Application # Tasks
Task completion
times (in s)

Input data
(in MB)

Face detection 243 4 120
Machine learning 40 30, 60, 120, 180 10, 15, 20, 25, 30
Monte Carlo simulation 20 300 5
Combined 303 -all- -all-

Table 6.3.: In the evaluation, the edge computing environment runs three applica-
tions with different characteristics concerning number of tasks, task
complexity, and data intensity.

researcher in office 2 tests different machine learning algorithms on multiple input

files of varying sizes. Third, students in the computer lab perform computationally

intensive simulations on comparatively small input files. A poisson point process

is used to generate realistic timing of task events in these workflows. To avoid

unintended variations in the execution of the Tasklets, the prototype uses emulated

Tasklets with fixed complexities.

Results

The initial replication of a new data file leads to a data transfer overhead. Fig-

ure 6.6 shows the total amount of data shipped from the consumer to the providers

for all initial replication approaches. It becomes visible that the full replication

strategy, which is most promising from a Tasklet completion time perspective, also

leads to high data transfer overhead in the pre-execution phase. While applying a

task placement strategy that considers the data placement, no data transfers occur

during runtime for 1-replication, full replication, and context-aware replication.

Contrary, the no replication strategy does not require initial data transfers but

leads to a considerable amount of transferred data during runtime, i.e., ad-hoc

data transfers. Since the number of tasks is higher than the number of providers,

coupling data and tasks in the no replication strategy is considerably more costly

in terms of data transfer compared to any other strategy.

After having distributed the data in the system according to the data placement

strategy, DataVinci allocates tasks to resources. First, we apply the random

task placement strategy as a baseline. Figure 6.7 depicts the average Tasklet

completion times for each of the four initial replication strategies. As expected, a

full replication strategy performs best in this setting. Since all providers already

82

6.5. Evaluation

31.61 0.28

2.36

1.04

0

1

2

3

4

No Rep. 1-Rep. Full Rep. CA Rep.

d
a
ta

tr
a
ff
ic

(G
B

)

Figure 6.6.: The initial data transfer overhead for creating a 1-replication, a full
replication, and a context-aware replication in comparison to the
overhead of transferring the data coupled with the tasks.

234.4
264.7

195.3

236.6

0

50

100

150

200

250

300

No Rep. 1-Rep. Full Rep. CA Rep.

a
v
er

a
ge

 c
o
m

p
le

ti
on

 t
im

e
(s

)

Figure 6.7.: Average task completion times for the different initial replication
strategies when applying random task placement.

store the data, no data transfers are necessary and completion times only consist of

queuing time and execution time. No replication, 1-replication, and context-aware

replication perform substantially worse.

Now, we apply hybrid task placement. As depicted in Figure 6.8, the combination

of context-aware data replication and hybrid task scheduling now reaches similar

task completion times to the optimal combination of a constant full replication

and hybrid task scheduling. Average task completion times are 32.7 s compared

to 28.8 s in a full replication. Thus, context-aware replication together with

appropriate task placement can be comparably as effective as a full replication

while requiring a substantially lower data transfer overhead.

83

6.5. Evaluation

234.4

118.6

28.8 32.7

0

50

100

150

200

250

No Rep. 1-Rep. Full Rep. CA Rep.

a
v
er

a
ge

 c
o
m

p
le

ti
on

 t
im

e
(s

)

Figure 6.8.: Average task completion times for the different initial replication
strategies when applying hybrid task placement.

6.5.2. Large-Scale Simulation

The previous section presents the small-scale evaluation of context-aware repli-

cation in a real-world testbed. It shows the effectiveness of DataVinci ’s initial

replication strategy for new data files. Now, we assess DataVinci ’s potential over

a larger time horizon in a subsequent large-scale study. In this study, we focus on

a comparison of initial replication strategies, continuous replication strategies, and

system parameters (e.g., system load or the buffer value of proactive continuous

replication). This complements the findings from the small-scale pilot study.

To meet the requirements of such a large-scale experiment with a high number

of different settings, a simulation-based approach is most suitable. Thus, we

implemented a prototype of DataVinci in the Tasklet Simulator, which allows us

to assess the scheduling strategies with a high number of nodes in a controlled

and reproducible setup. Additionally, we are able to evaluate the effects of several

applications with different characteristics running on consumers in parallel. To

parametrize the characteristics of the underlying network in the simulator with

realistic values for, e.g., communication delay and bandwidth, we refer to observed

values from the pilot study.

We designed ten applications that vary in the number of Tasklets per job, Tasklet

complexity, and the rate in which they produce Tasklets. These applications have

different requirements in terms of private and public data. Whereas the private

data is always unique for each consumer, the public data is shared among all

consumers. Both private and public data update after a certain interval. In a face

84

6.5. Evaluation

recognition application, for instance, the database of known faces would change at

times. We set these application parameters according to the behavior of typical

offloading applications such as ray tracing, financial option pricing, and clustering

that we developed for the Tasklet Core System (cf. Section 5.2.3). Table 6.4 gives

an overview of the ten applications.

Application A B C D E F G H I J

Parallel
Tasklets

4 2 12 4 3 4 6 10 2 5

Minimal
complexity

480 10,000 7,200 2,200 4,000 400 6,000 600 2,000 10,000

Maximal
complexity

800 14,000 12,000 3,000 8,000 500 12,000 800 3,000 12,000

Tasklet
interval

120 600 2,000 500 750 80 1,000 200 400 680

Data size
(public)

400 none
500, 500,
500

300 100 60
50,
200

370
50,
240

80

Data size
(private)

50
100,
200

none
60,
120

10,
20, 30

15,
25

30,
70

45 75 none

Update
interval
(public)

2,400 - 20,000 5,000 10,000 1,200 2,000 4,000 2,900 10,000

Update
interval
(private)

1,200 3,600 - 2,500 5,000 600 1,000 2,000 1,450 -

Table 6.4.: Consumers run applications from this pool of ten applications. Minimal
and maximal complexity are abstract integer values that represent the
computational complexity of a Tasklet. Tasklet interval and update
interval are average values in seconds. The entries for public and
private data sizes are in MB.

Experimental Setup

The OMNeT++ simulation environment contains 200 providers and 25 consumers.

One additional node acts as the central broker that runs DataVinci . A data

cloud stores and offers the public data files. This system size resembles an

edge computing scenario in an office building, a university department, or a

public place with adjoining houses. Having more providers than consumers

might seem counter-intuitive at first, but resembles the usage patterns that we

have observed on multiple devices over several weeks. Provider and consumer

nodes are configured to have the characteristics of three real-world device groups:

85

6.5. Evaluation

smartphones, desktop PCs, and laptops. The smartphone group contains twice

as many nodes as the groups of desktop PCs and laptops, which are of equal

size. Each time providers enter the system, they draw their residence time from a

normal distribution with a mean of 420min and a standard deviation of 150min

for desktop PCs, 240min/162min for laptops, and 60min/60min for smartphones.

Devices that leave the system delete all their data files and reenter the system

after a randomly chosen time interval. Each node has an individual performance

value that quantifies its throughput. The fastest devices in the evaluation are

four times faster than the slowest devices, which corresponds to the ratio that we

observed during real-world measurements with the Tasklet system [126]. Providers

host four TVMs. Each consumer runs between one and three randomly chosen

applications from the pool of ten applications. The bandwidth between consumers

and providers is 10 MBit/s. The download speed from the data cloud is 100

MBit/s. The latency varies between 50 and 250 ms including a TCP handshake.

In total, we evaluate 464 combinations of initial replication, continuous replication,

and task placement strategies. Each combination is simulated for eight hours,

which resembles one day of work. We evaluate each combination with 25 different

system loads. Figure 6.9 depicts an exemplary progress of the system load over

time for one of the 25 runs. This simulates the fluctuation of offloading demand

over the day in an office, a university department, or a public space. Due to the

varying system load, the consumer nodes start between 17,177 and 65,842 Tasklets

per eight hour run, leading to a total of around 13,000,000 Tasklet executions.

To compare the performance of the strategies, we measure Tasklet completion

time and data transfer overhead. The Tasklet completion time is divided into

data queuing time — the time span a Tasklet waits for required data files on the

provider — and execution time. In our prototype, data transfers can result from

initial replication, continuous replication, or from data enclosed to Tasklets.

We perform four experiments. In each experiment, we test all four task placement

strategies in combination with different data replication strategies. In experiment 1,

we compare the different continuous replication strategies. In experiment 2, we vary

the buffer size for the proactive continuous replication strategy. In experiment 3,

we vary the number of replicas for the constant initial replication strategy. In

experiment 4, we evaluate different initial replication strategies. The setup of the

experiments is summarized in Table 6.5.

86

6.5. Evaluation

50

0 50 100 150 200 250 300 350 400
Time [min]

N
o
.
o
f
T

as
k
le

ts
p
er

 m
in

u
te

0

100

150

Figure 6.9.: System load during an exemplary evaluation run.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Initial replication none none constant avg, mode,
max, steady

Number of replicas - - 1,2,4,8,16,32 -
Continuous
replication

none, static,
reactive,
proactive

proactive proactive proactive

Buffer size -,-,-,4 2,4,8,16,32 4 4
Task placement random, data-aware, performance-aware, hybrid
Figure 6.10 6.11 6.12 6.13

Table 6.5.: Setup of the four experiments in the large-scale study.

Results

In the following, we discuss the results of the four experiments, which are vi-

sualized in Figures 6.10-6.13. In the upper half, each figure shows the mean

completion time of the Tasklets for different strategies. The lower half shows the

overall amount of data that is transferred in each setting. All figures consist of

four columns, each representing one of the four task placement strategies.

Experiment 1 (Continuous Replication): We first evaluate the system’s be-

havior without initial replication. This allows us to isolate the effect of DataVinci ’s

continuous replication. In this experiment, we compare the performance of proac-

tive continuous replication to static and dynamic replication. Static replication

distributes a new replica if a provider previously storing a replica went offline.

Dynamic replication is a reactive strategy that distributes a new replica if the

87

6.5. Evaluation

completion time of a previous task contains a proportion of data queuing time

that is above a certain limit such as 25%.

The results in Figure 6.10 (left column) show that all continuous replication

strategies have a negligible effect if they are used together with random task

placement. This confirms the results from the pilot study. In this case, continuous

replication distributes a sufficient number of replicas, but the task placement

strategy does not exploit the data distribution. The amount of transferred data

is high due to many ad-hoc data transfers. When applying any of the three other

task placement strategies (data-aware, performance-aware, hybrid), proactive

continuous replication is faster than static and reactive replication.

Figure 6.10.: Experiment 1: Comparison of Tasklet completion times and total
data transfer overhead for static, reactive, and proactive continuous
replication, depending on the task placement strategy (random, data-
aware, performance-aware, or hybrid). Initial replication is disabled.

The results of this experiment provide four important insights. First, the proactive

continuous replication strategy outperforms all other strategies in terms of task

completion times. Thus, we always apply the proactive continuous replication

strategy in the remaining experiments. Second, a decrease in the task completion

time comes along with an increased amount of data transfer. Third, the majority

of the additional data transfer is caused by continuous replication instead of ad-hoc

data transfers, which indicates that the required data is often already present at

the respective provider. Fourth, the combination of hybrid task scheduling and

no continuous replication minimizes the data transfer but results in above average

execution times.

88

6.5. Evaluation

Experiment 2 (Varied Buffer): Next, we study the effect of a varied buffer size

for the proactive continuous replication strategy. The buffer parameter defines

the number of idle resources (TVMs) that need to be available in the system for

each data file. A sufficient buffer avoids situations where Tasklets need to wait

for data at providers. When the number of idle resources for one data file falls

below the buffer threshold, the scheduler distributes new replicas.

Figure 6.11 shows a clear trend when increasing the buffer from 2 to 32 idle

resources. On the one hand, the mean task completion time is decreased, which

is a consequence of the reduced data queuing time. On the other hand, increasing

the buffer leads to more data transfer as the scheduler distributes more copies of

each data file. As the configuration of the buffer results in a tradeoff between task

completion time and data transfer, we argue that the optimal choice of n depends

on the subjective preference of each system administrator. For the remaining

experiments, we set the buffer size to 4. In terms of task placement, the hybrid

strategy outperforms the random and performance-aware strategy as it delivers

faster results while avoiding data transfer. The data-aware strategy also achieves

low execution times and results in less data transfer than the hybrid strategy.

Thus, the choice of the optimal strategy depends on personal preferences.

Figure 6.11.: Experiment 2: Comparison of average Tasklet completion times
and total data transfer overhead for different buffer values in proac-
tive continuous replication, depending on the task placement strategy
(random, data-aware, performance-aware, or hybrid). Initial replica-
tion is disabled.

89

6.5. Evaluation

Experiment 3 (Constant Initial Replication): So far, we have not applied

initial replication, which distributes replicas whenever a new version of a data

file becomes available. Without initial replication, for each new version, the

data allocation has to be established gradually by continuous replication. Initial

replication can help to avoid delays in Tasklet execution since providers hold

copies even of recently updated data files. In this setup, we evaluate the constant

initial replication strategy which distributes n copies of each data file to providers,

where n is set by the system administrator.

The results in Figure 6.12 show that increasing the number of replicas n has a

positive effect on the task completion time. The more copies are distributed, the

lower is the queuing time for Tasklets at the providers. Here, we observe the

fastest average task completion time of the whole evaluation (13.2 s for n = 32

and hybrid task scheduling). The more important finding here, however, is that

the introduction of initial replication does not only accelerate the execution of

Tasklets, but also reduces the data transfer. For the hybrid task scheduling

strategy, it even holds that a higher n is beneficial for both task completion time

and data transfer for n ≤ 8. Even though initial replication requires some data

transfer, this is outweighed by the lower demand of the continuous replication. At

n = 16, this effect turns around and a higher n leads to a higher demand of data

transfer. The data-aware strategy requires less data transfer than the hybrid task

scheduling strategy, but does not perform as well in terms of the task completion

time, similar to our findings in experiment 2.

Experiment 4 (History-Based Initial Replication): The previous experiment

shows that the choice of the number of replicas n has a great impact on the

performance of the initial replication strategy. Setting n too small does not

leverage the full potential of the strategy in terms of time and data transfer

savings. Setting n too high might result in unnecessary data transfer while

not further improving the task completion time. Thus, adjusting the constant

initial replication parameter to a particular edge computing system is difficult for

system administrators since they have to actively manage the tradeoff between

task completion times and data transfer. Further, depending on applications or

demand, the ideal n varies over time. The suitable number of replicas may also

differ between highly demanded data files and less frequently used data files.

90

6.5. Evaluation

Figure 6.12.: Experiment 3: Comparison of average Tasklet completion times
and total data transfer overhead for constant initial replication with
different predefined numbers of replicas, depending on the task
placement strategy (random, data-aware, performance-aware, or
hybrid). Proactive continuous replication is applied.

Figure 6.13.: Experiment 4: Comparison of average Tasklet completion times
and total data transfer overhead for average-, mode-, maximum-
based, and steady initial replication, depending on the task place-
ment strategy (random, data-aware, performance-aware, or hybrid).
Proactive continuous replication is applied.

91

6.5. Evaluation

To address these challenges, DataVinci offers history-based initial replication

strategies (average, mode, max, steady). The strategies determine n dynamically

based on the most recent usage statistics of each individual data file. The results

in Figure 6.13 show that history-based initial replication performs equal or better

than constant initial replication. The four strategies perform comparably well and

only show minor tradeoffs between task completion time and data transfer. Thus,

the results demonstrate that no manual configuration for the initial replication

strategy is required and that DataVinci can adapt to varying load.

Overall, the four experiments show that proactive data placement and suitable task

placement with DataVinci considerably reduce task completion times compared

to a naive scheduler while keeping the amount of transferred data constant. For

instance, using history-based initial replication, proactive continuous replication,

and hybrid task placement reduces the average Tasklet completion time from

38.5 s to 14.0 s, which constitutes a relative performance gain of 63.6%.

6.5.3. Discussion

In the evaluation, we have demonstrated the benefits of proactive data placement

with DataVinci in the Tasklet system. In the pilot study, we showed the practical

feasibility of the approach and the effectiveness of context-aware replication for

the placement of new data files. In the subsequent simulation-based study, we

assessed DataVinci on a larger scale. This study reveals the benefits of proactive

continuous replication and the history-based replication strategies for new data

versions. Therefore, we conclude that — with the DataVinci QoC mechanism —

the Tasklet system is able to achieve fast task completion times even for data-

intensive applications, which answers research question 2. In the following, we

briefly discuss the impact of the results on data-intensive applications.

Is proactive replication always the best strategy? This depends on the

goal of the respective use case (task completion time vs. data transfer overhead).

In combination with data-aware, performance-aware, or hybrid task scheduling,

proactive replication consistently outperforms the other replication strategies in

terms of completion times. However, proactive replication leads to more data

overhead. In combination with history-based initial replication, it leads to fast

executions and a data transfer that is comparable to a naive scheduler.

92

6.5. Evaluation

How consistent are the results? We argue that a large number of applications

benefits from DataVinci . We have evaluated each of the 10 applications individu-

ally for each of the 25 system loads in the large-scale simulation. The applications

vary in data size, data version update intervals, degree of parallelization, task

complexity, and task frequency (cf. Table 6.4). The load in the system fluctuates

heavily between 20 and 140 Tasklets per minute. Nevertheless, the combination

of proactive data placement and hybrid task placement performed best among all

strategies in more than 75% of the 250 cases and in 90% of the cases it performs

within 5% of the best strategy. Thus, we argue that the choice of the optimal

strategy depends neither on the application nor on the execution environment.

Is the approach fair? We performed an analysis over all 25 consumers in the

simulation for each of the 25 different system loads and compared the average

throughput of the providers, which were assigned to each consumer for their tasks.

A high deviation in this metric would indicate an unfair system. We observe that

97% are within a 6% range. Thus, the strategy can be considered highly fair.

How complex is the configuration of the parameters? As far as context-

aware replication is concerned, the choice of the weights in Equations 6.2 and 6.3

is crucial for the effectiveness of the approach. We acknowledge that it is in

general difficult to determine proper weights for complex utility functions. In

the pilot study, we did not perform any parameter tuning or optimization but

used weights of either “0” or “1”. Thanks to the results of the pilot study, we

therefore argue that system administrators should be able to select proper weights

without exceptional effort. In the large-scale simulation, we were able to show that

proactive data replication in combination with hybrid task scheduling outperforms

other strategies if it is configured properly. Two parameters can be changed.

First, the number of replicas is configurable if constant initial replication is used

(Experiment 3). However, this parameter becomes obsolete since history-based

initial replication (Experiment 4) performs as well as constant initial replication

but does not need to be configured. Second, the buffer size for proactive replication

is also configurable (Experiment 2). Figure 6.11 shows the tradeoff between low

data transfer overhead (for small buffer sizes) and a fast task completion (for large

buffer sizes). Thus, the buffer size may either be selected by personal preferences

or may be determined self-adaptively depending on the load [160].

93

6.6. Summary

6.5.4. Threats to Validity

This chapter presents an extensive evaluation of DataVinci in two studies. The

pilot study uses emulated Tasklets instead of the Tasklet Core System. Although

we are confident that both versions of the system behave identically, this is

a potential threat to validity. The large-scale study suffers from the typical

weaknesses of simulation-based experiments such as artificial workload, artificial

applications, or potentially inaccurate modeling of application and device behavior.

While we are convinced that the results are reliable thanks to the extensive

validation procedure described in Section 5.2.4, a large-scale evaluation in a real-

world testbed is an important avenue for future work. Such an evaluation should

also assess the influence of different system sizes on the results, which was omitted

in both the pilot study and the large-scale evaluation.

6.6. Summary

This chapter presents DataVinci — a scheduler for edge computing systems that

is able to reduce the task completion times of data-intensive applications while

maintaining a reasonable data transfer overhead. DataVinci can be used as a

QoC mechanism in the Tasklet system to achieve the Speed QoC goal. DataVinci

determines the number of data replicas in the system, places them proactively on

providers, and schedules tasks accordingly. For the replication of new data files,

DataVinci offers a context-aware replication strategy that approximates the ideal

number of replicas. DataVinci further includes replication strategies for new data

versions that analyze the usage patterns of the data file in the past. Additionally,

it proactively adjusts the data placement to avoid bottlenecks even in peak times.

Eventually, DataVinci ’s task placement strategies exploit the data placement to

minimize task completion times. We evaluate the performance in a (i) pilot study

in a real-world testbed and a (ii) large-scale simulation. Both studies show that

DataVinci considerably reduces task completion times compared to scheduling

approaches without data focus while keeping the data transfer overhead constant.

94

7. DecArt

Prominent projects such as SETI@home [8–10] or Folding@home [11] have shaped

the common perception of computation offloading as a technology that is particu-

larly helpful for long-running tasks, often from a scientific background. In this

chapter, we show that computation offloading in edge computing is also suitable

for interactive applications. While using such user-facing applications, response

times that exceed one second are usually considered as unacceptable [97–99].

In their groundbreaking work, Ousterhout et al. motivate the need for low-

latency scheduling for sub-second tasks in clusters [78]. The authors develop

an approach to schedule a large number of tasks with minimal delay that en-

ables the deployment of user-facing services on clusters. The proposed solution

achieves a significantly higher throughput than previous approaches by applying

decentralized, randomized sampling.

Today, eight years later — with the advent of interactive and computationally

intensive mobile applications — the demand for low-latency scheduling is still

present. The requirements of these applications, which run on mobile or wearable

devices, often exceed the local processing capability. Fine-grained computation

offloading to remote providers can help to mitigate this bottleneck [161]. In this

chapter, we focus on jobs with comparably short soft-real time constraints of

several hundreds of milliseconds, such as face detection and recognition [71,95]

and natural language processing [77, 96]. Even for these jobs with rather low

complexity, a remote execution in the edge is preferable to a local execution since

(i) the job can be split up into multiple independent parallel tasks, (ii) the remote

devices have a substantially higher processing speed, and/or (iii) the local device

might be busy running other processes.

Low-latency scheduling in edge computing faces three new challenges compared to

cloud or cluster computing. First, devices are heterogeneous in their nature which

results in different computing capabilities. Thus, the computation time varies

depending on the processing power of each individual device. Second, devices

95

7. DecArt

are unreliable and randomly join and leave the system. In contrast to resources

in cloud or cluster computing, edge devices are not administered centrally but

might be shut down by individual users. As a result, these devices have a limited

availability and reliability, might not be reachable by other devices, and might

drop the computation of a task at any time. Third, the devices are geographically

distributed which results in considerable communication latencies of 100 millisec-

onds and more [162]. The characteristics of edge computing environments place a

high demand on task schedulers that select suitable providers for task execution

in user-facing applications.

Previous approaches to schedulers for grid and cluster environments such as the

one by Ousterhout et al. [78] apply, e.g., random probing based on the power

of two choices technique [163]. While this solution works well in environments

where the communication delay is one or multiple magnitudes lower than the task

execution time, probing is not applicable to low-latency edge computing where

network latencies are in the same order as execution times. Other approaches

use task serialization [164] and finish time estimation [165]. They are effective

in environments where tasks can be moved across queues of tightly connected

compute nodes but are not directly applicable to geographically distributed

end-user devices.

In this chapter, we present DecArt (short for “decentralized scheduling is an

art”) — a novel decentralized low-latency task scheduling approach for edge

computing environments. DecArt is designed as a QoC mechanism to achieve

the Sub-second deadline QoC goal in the Tasklet system. It therefore answers

research question 3. The basic idea is that consumers do not need to request

resources from a central broker but can make independent provider selection

decisions. The broker monitors the status of the providers and periodically

forwards this information to consumers in form of cache lists. Thus, consumers

can perform the provider selection locally. As there is no coordination among

the schedulers, however, a tradeoff arises with respect to scheduling collisions

and task execution times, i.e., consistently selecting fast providers may well

result in frequent collisions with tasks from other consumers, especially under

high load. Conversely, load balancing, i.e., evenly distributing the load on the

providers, reduces the risk of collisions at the price of task execution times in a

heterogeneous environment, which also includes slow providers. DecArt includes

96

7.1. Related Work

two novel decentralized provider selection algorithms Drift and Bandit, which

carefully manage this tradeoff. Both algorithms outperform centralized scheduling

and basic decentralized algorithms under varying system load. Thus, DecArt is

the first scheduler that enables low-latency edge computing on end-user devices.

The remainder of this chapter is structured as follows. We first discuss related

work in Section 7.1. Section 7.2 summarizes the underlying system model and

presents DecArt ’s design. Section 7.3 describes the provider selection algorithms

in more detail. Section 7.4 evaluates DecArt in a large-scale simulation. It shows

that the scheduler performs within a 9% range of a hypothetical omniscient

scheduler that serves as a benchmark. The chapter is concluded with a brief

summary in Section 7.5. This chapter bases on [166]1.

7.1. Related Work

We review related work from two research streams: (i) decentralized scheduling

and (ii) low-latency scheduling. The two research streams do not entirely overlap

as decentralized scheduling can be motivated by scalability or fault-tolerance

instead of shorter task completion times. Similarly, not all low-latency approaches

rely on decentralized scheduling. Table 7.1 summarizes related approaches.

In centralized scheduling, the broker has a global up-to-date view on all resources

in the system. Consumers and providers report their context, e.g., piggybacked to

heartbeat messages. The simplest way to provide this knowledge to all schedulers

in a decentralized setting is flooding [169]. Due to poor scalability, the majority

of the reviewed approaches, however, organizes the nodes in a certain way to

decrease the communication overhead. The most common approach is to create

an overlay structure on top of the physical network. In [167, 170, 171, 175, 188],

consumers have detailed information only about their neighboring nodes in the

overlay. These neighbors are the potential providers for computation offloading

or can be used to forward tasks to their neighbors as relay nodes. Shehory uses

a list of known nodes, which is similar to a neighborhood-based approach [168].

Another option for an overlay is to apply a tree structure [172, 174, 184, 185].

The child-parent-relationships can be used, for instance, to pass tasks onto the

1Reference [166] is joint work with J. Edinger, N. Gabrisch, D. Schäfer, C. Becker, and A. Rizk.

97

7.1. Related Work

Orga. Opti. Edge Ev.

Author/System Year
O
v
e
rl
a
y
st
ru

c
tu

re

P
ro

b
in
g

A
u
c
ti
o
n

C
a
ch

e
li
st
s

L
a
te

b
in
d
in
g

W
o
rk

st
e
a
li
n
g

G
ro

u
p
in
g

H
o
p

m
in
im

iz
a
ti
o
n

F
lu
c
tu

a
ti
o
n

H
e
te
ro

g
e
n
e
it
y

S
u
b
-s
e
c
o
n
d

ta
sk

s

S
im

u
la
ti
o
n

R
e
a
l-
w
o
rl
d

te
st
b
e
d

NWIRE [167] 1999 •
Shehory [168] 1999 • • • • •

Subramani [169] 2002 ◦ • • ◦ •
Ogston [170,171] 2004 • •
OurGrid [103] 2006 • • • • •
Kim [172] 2006 • • • •

Ranjan [173] 2008 • • •
LATE [165] 2008 • • •
Celaya [174] 2011 • • • •
Dong [175] 2011 • • ◦ • •
Omega [176] 2013 • •
Sparrow [78] 2013 • • • ◦ •
CASA [177] 2013 • • • • • •
Apollo [23] 2014 • • ◦ • •

Jackson [178] 2014 • • • • • • •
SocialCloud [179] 2014 • • • •
Hopper [180] 2015 • • ◦ • •
Borg [24] 2015 • • • •
Hawk [181] 2015 • • • ◦ • • •

Mercury [182] 2015 • • ◦ •
Duan [183] 2017 • • • •

Organic Grid [184,185] 2017 • • • • •
Aral [186,187] 2019 • • • • •
Cicconetti [84] 2021 • • • • • ◦
MILP [188] 2021 • • •
DecArt • • • • • •

Table 7.1.: Overview of decentralized and low-latency scheduling approaches.
(Orga. = Organization, Opti. = Optimization, Ev. = Evaluation)
• fulfilled ◦ partially fulfilled

98

7.1. Related Work

parent node if the child is not able to execute the task itself [172, 174]. Two

approaches [172, 178] implement a Content-Addressable Network (CAN) [189],

which helps to identify the node that is responsible for the execution of a task.

SocialCloud [179] forms the overlay according to trust relationships, similar to

popular social networks. Nodes that are connected in the social overlay (i.e.,

friends) are willing to share their computational resources. In general, overlays

are useful to reduce the number of nodes about which a decentralized scheduler

requires to have detailed context information. This, however, comes at the cost of

worse scheduling decisions when considering only a subset of all nodes as providers.

Probing is an alternative to overlays. The idea is to request context information

from multiple random providers. The schedulers then offload tasks to the most

promising of these providers, e.g, the provider with the shortest task queue.

Probing is especially powerful in large clusters, where communication latencies

are low. Therefore, it is not surprising that the prominent cluster computing

approaches Sparrow [78], Hopper [180], Borg [24], and Hawk [181] apply probing.

As the communication latencies in edge computing are considerably higher, probing

is not applicable for sub-second tasks in such environments.

CASA [177] and the approach by Duan et al. [183] allocate tasks to providers

with an auction mechanism. In [183], for instance, consumers start an auction for

a task by informing potential providers. The providers bid for the task, based

on their capabilities and context. The consumer eventually chooses a winner and

offloads the task. Similar to probing, auctions are too communication-heavy for

edge computing applications with strict sub-second deadlines.

Some approaches such as Cicconetti et al. [84] and CASA [177] rely on cache lists,

similar to DecArt . In this case, a central instance (i.e., the broker) periodically

informs the decentralized schedulers about the current context. Unlike in most

approaches that rely on overlays, the decentralized schedulers may thus select

the most suitable provider among all providers in the system, not just from a

subset. The distributed system context — the cache list — may, however, contain

outdated entries. We show the advantages of cache lists for our use case in more

detail in Section 7.2.2.

Independent from the chosen organization of the nodes, many related approaches

perform certain optimizations to achieve lower task completion times. Especially

99

7.1. Related Work

in cluster computing — where a high utilization of the providers is desirable —

late binding is common (cf. [23, 78, 103,165,178,180,181]). The schedulers offload

multiple identical copies of a task to different providers. This happens either

for all tasks or just for stragglers, i.e., tasks that run considerably longer than

expected. All but one execution are later canceled or removed from the queue,

e.g., after the first copy finished or the first copy was successfully scheduled.

Although it is proven that late binding mitigates stragglers, it is not applicable in

edge computing environments due to two reasons. First, a high utilization is not

beneficial on user-owned devices. Second, communication latencies complicate a

timely killing of duplicate tasks. Another potential optimization is work stealing.

Providers that finished all of their tasks “steal” tasks from slower providers with a

large task queue. Popular variations of work stealing are queue balancing or load

shedding [182]. In edge computing environments with sub-second tasks, queue sizes

vary rapidly and communication latencies are high. Therefore, work stealing is not

applicable. Grouping of providers helps to reduce the complexity of scheduling.

The scheduler only has to choose among groups of providers, not single providers

(cf. [186]). Intra-group scheduling may, e.g., happen randomly. Grouping is also

helpful to reduce the amount of context information that has to be distributed to

each provider. Celaya and Arronategui [174], for instance, aggregate the context

information about the subtree at each parent of their tree overlay. In DecArt , we

apply hop minimization, i.e., a conscious reduction of all communication required

for the scheduling decision. This is a beneficial optimization in scenarios where

latencies contribute considerably to the completion time of a task. Only a few

related approaches [84,169,179] also minimize hops.

We design DecArt as a decentralized scheduling approach for edge computing en-

vironments. Three challenges arise in particular: (i) fluctuation, (ii) heterogeneity,

and (iii) sub-second tasks. While comparably many approaches from the literature

consider heterogeneity in the scheduling process — for example by preferring fast

providers — fluctuation is often neglected. Especially in decentralized scheduling,

providers joining and leaving the system influence the scheduling effectiveness, as,

e.g., cache list information may be outdated.

We observe a dominance of simulations as far as the evaluation of approaches is

concerned. Most of the experiments in real-world testbeds happen in the context of

cluster computing. The experiments assessing cluster schedulers such as Apollo [23],

100

7.2. Design

Hawk [181], or Mercury [182] therefore neglect the typical characteristics of edge

environments, but are notwithstanding impressive. Cicconetti et al. [84] emulate

an edge network. We argue that large-scale simulations that build upon real-world

measurements of latencies or computing power are an effective instrument to

evaluate decentralized scheduling approaches for edge computing, as they combine

the best of two worlds: (i) they are easily scalable to a large number of providers

and (ii) they reflect realistic behavior of edge networks and devices.

We conclude from the literature review that decentralized scheduling and low-

latency scheduling are prominent research areas in cluster, grid, and edge com-

puting. In this chapter, we propose DecArt , a decentralized scheduling approach

that relies on cache lists and hop minimization. In addition, it is specifically

designed for edge computing networks. DecArt is most related to the approach by

Cicconetti et al. [84]. This approach, however, focuses less on collision prevention

for sub-second tasks, which is one of the core contributions of DecArt .

7.2. Design

This section first summarizes the underlying system model. Based on this sys-

tem model, we propose DecArt and outline its fundamental idea: decentralized

scheduling with cache lists.

7.2.1. System Model

When an application creates a task, the consumer selects a provider for execution.

The consumer sends the task to the selected provider, which executes it and

returns the result to the consumer. Thus, the task completion time T amounts to:

T = S +Q+ U, (7.1)

with the scheduling time S, the computation time Q, and the result handling

time U , which is required to send the result to the consumer. The scheduling time S

is composed of the broker request time B and the task transfer time V . Since user-

owned resources are unreliable, task failures may happen during computation. In

this case, the consumer detects the failure through a timeout and offloads the task

101

7.2. Design

to another provider. The completion time for a particular task that experiences n

task failures is increased by the scheduling times Si with i ∈ {1, ..., n} and the

computation times Q′
i that passed in vain before the ith failure as well as the

detection times Di that the consumer requires to detect that the task has failed

via implicit or explicit feedback:

T = S +Q+ U +
n∑

i=1

(Si +Q′
i +Di) (7.2)

Resource Management

In the Tasklet system, the central broker keeps track of all available devices.

Providers register at the broker and share information such as their number of

resources and task throughput rate. This rate is statically benchmarked and serves

as an approximation for the throughput of the provider. As providers periodically

send heartbeats, the broker recognizes a leave within a few seconds. Consumers

register at the broker to receive information about available computing resources.

Interactive Applications

In this chapter, we focus on user-facing applications that require a sub-second job

completion time to ensure a smooth user experience. Example applications are

face detection and recognition [71,95], natural language processing [77,190], game

AI [71, 95, 96], speech recognition [71, 77], document preparation [77, 191], ray

tracing [192], and object recognition [193]. These applications have in common

that they do not have strict real-time requirements but depend on timely task

executions to contribute to a positive user experience. Response times that exceed

one second are generally considered unacceptable and disrupt the feeling of a

smooth application flow [97–99]. In our system, each user request issues one job

that is split up into n parallel tasks, i.e. Tasklets, where the longest-running task

determines the overall job completion time. Thus, an efficient scheduler does not

only minimize task completion times but also mitigates stragglers [194].

102

7.2. Design

Status Quo in the Tasklet System: Centralized Task Scheduling

As the central broker has global knowledge about all entities in the Tasklet system,

it can make well-informed scheduling decisions. We use three centralized provider

selection algorithms — Random, Greedy, and Proportional — as baselines for our

decentralized scheduling approach. Random centralized provider selection allocates

a task to a uniform randomly chosen provider from the set of providers that are

currently idle. Greedy centralized provider selection always selects the fastest idle

provider and thus minimizes the computation time Q. In proportional centralized

provider selection, the probability to select a certain provider is proportional to its

benchmark throughput. To inform the broker about their currently idle resources,

providers send a notification to the broker upon finishing a task execution. Before

a consumer offloads tasks of a job, it sends a resource request to the broker,

which selects suitable providers for execution and returns this information to

the consumer. Figure 7.1 (left) shows the task offloading procedure with a

central scheduler. Despite the benefits of the broker, this centralized solution

for scheduling and resource management has several downsides. Central entities

constitute a performance bottleneck and single point of failure. Further, each

broker downtime results in a complete standstill of the offloading system. Finally,

communication latencies impact the task completion time as the broker request

time B sums up to 2δ given an average communication delay between consumers

and broker of δ. To address these downsides of the centralized scheduler, next, we

suggest DecArt — a decentralized task scheduling approach for edge computing.

7.2.2. DecArt : Decentralized Scheduling with Cache Lists

DecArt is a decentralized scheduler that is located at each consumer. It makes

task allocation decisions without prior negotiation with a central entity. This

mitigates the single point of failure problem, reduces the workload for the broker,

and eliminates the round-trip time (2δ) that is required for the resource request

(B = 0). However, the decentralized scheduler needs to have information about

the available resources in the system that can be highly volatile. Keeping this

information up to date requires a considerable overhead not only for each consumer

but also for the providers. Therefore, we suggest a scheduling model where the

resource management is performed by the central broker while scheduling decisions

103

7.2. Design

Broker Consumer

ProviderConsumer

134.155.23.190
134.155.23.194
134.155.23.178
134.155.23.192
134.155.23.14

Cache List

Cache List
Task Result

Broker Consumer

ProviderConsumer

Task Result

Request

Response
134.155.23.178

134.155.23.178
134.155.23.192
134.155.23.14
134.155.23.160
134.155.23.111
134.155.23.132
134.155.23.99
134.155.23.10

Centralized Scheduling Decentralized Scheduling

134.155.23.178
134.155.23.192
134.155.23.14
134.155.23.160
134.155.23.111
134.155.23.132
134.155.23.99
134.155.23.10

134.155.23.190
134.155.23.194
134.155.23.178
134.155.23.192
134.155.23.14

134.155.23.190
134.155.23.194
134.155.23.178
134.155.23.192
134.155.23.14

134.155.23.190
134.155.23.194
134.155.23.178
134.155.23.192
134.155.23.14

Figure 7.1.: In centralized scheduling, consumers request resources at the broker
before offloading a task. In decentralized scheduling, the broker
proactively distributes cache lists with active providers. Consumers
schedule from these lists by themselves.

are made locally at the consumer. To share information about the current system

state, the broker sends a list of all available providers to each consumer. For each

task allocation, the consumers select one provider from these cached resource

lists (or cache lists for short). As the cache lists become stale, the broker sends

updates to the consumers periodically. The cache list distribution runs in parallel

to the scheduling and, thus, is not added to the scheduling time. In contrast

to centralized scheduling, a system that runs DecArt remains operational if the

broker is temporarily unavailable since stale cache lists are still usable. Figure 7.1

(right) shows the approach.

The decentralized schedulers do not monitor the current load on each provider.

This leads to collisions when a single provider receives more tasks than it can

process. In this case, this provider rejects the excess tasks and the consumers need

to reschedule. This results in a penalty of 2δ (round-trip time between provider

and consumer). For each rejection k out of total r ≥ 0 rejections, the scheduling

time is increased by an additional task transfer time Vk, and the rejection time

Rk, i.e., the time the negative acknowledgment of the provider takes to arrive at

the consumer. Rejections may also occur when providers have left the system

and cannot be reached anymore. In both cases, the rejection time Rk amounts

to a full round-trip time. In total, the scheduling time S in our decentralized

scheduling approach thus amounts to:

104

7.2. Design

S =
r∑

k=1

(Bk + Vk +Rk) +B + V (7.3)

Equations 7.2 and 7.3 show the effect of decentralized provider selection on an

individual task. The task completion time T in Equation 7.2 increases through

an increased S, i.e., with the amount of scheduling failures (rejections) r as given

in Equation 7.3 and decreases when a fast provider is selected (decreased Q). To

minimize the task completion time T , a decentralized scheduler thus needs to

select the fastest provider that is currently available. However, as there is no

coordination among the consumers, the decentralized schedulers face a tradeoff

between selecting a fast provider and risking a collision as other consumers also

tend to pick a fast provider.

Figure 7.2 visualizes this tradeoff. In Scenario 1, consumers send most tasks to

fast providers, which minimizes the computation time Q but results in multiple

rejections r due to congested providers. In Scenario 3, consumers uniformly

distribute their tasks, which reduces the risk of collisions r but leads to long-

running tasks on slow providers. The target distribution of tasks in Scenario 2

harmonizes the two goals. Achieving this distribution in a decentralized setting is

non-trivial. DecArt therefore includes two novel algorithms for provider selection

to approximate the target distribution.

Scenario 1
Congestion

20 40 60 80
0

N

N
um

be
r

of
 T

as
ks

Scenario 2
Target

20 40 60 80
Provider # (in order of average service rate)

Executed
Rejected

Scenario 3
Stragglers

20 40 60 80

Figure 7.2.: Consumers try to minimize the task completion time T by selecting
fast providers and at the same time avoiding collisions. In Scenario 1,
consumers schedule most tasks to fast providers which leads to con-
gestion and a high number of rejections. In Scenario 3, tasks are
randomly distributed, which results in long execution times on slow
providers. Scenario 2 shows an ideal distribution that always selects
the fastest available provider. Approximating this target distribution
is the goal of DecArt .

105

7.3. Decentralized Provider Selection Algorithms

7.3. Decentralized Provider Selection Algorithms

Consumers periodically receive cache lists from the broker. These cache lists

contain currently active providers that offer their computational resources. Based

on this choice set, the consumer allocates tasks to providers. The consumer is

only able to exploit its local knowledge for the provider selection and does not

know about allocated tasks from other consumers to any of the providers. The

consumer deletes a provider from its cache list when the provider turns out to be

unreachable, i.e, when it has left the system. In this section, we present three basic

provider selection algorithms (Random, Greedy, and Proportional) and propose

two novel algorithms for decentralized provider selection, namely Drift and Bandit.

Table 7.2 offers an overview of DecArt ’s algorithms.

Algorithm Description
Greedy Selection of the fastest provider in the cache list.
Random Uniform random choice from all providers in cache list.
Proportional Probability of selecting a provider is proportional to its throughput.

Drift
Uniform random choice from providers in an adaptive scheduling window
of varying size.

Bandit
Provider selection from one of multiple disjoint buckets; Bucket selection
probability depends on the task throughput distribution.

Table 7.2.: DecArt ’s decentralized provider selection algorithms.

7.3.1. Basic Provider Selection Algorithms

We introduce Greedy, Random, and Proportional provider selection as basic

algorithms. Greedy provider selection chooses the fastest provider from the

cache list, i.e., the provider with the highest task throughput, for execution.

The consumer allocates the task to the next fastest provider if it was rejected

previously. Random scheduling allocates a task to a uniform randomly chosen

provider from the cache list. Proportional provider selection uses probabilities.

The probability of a provider to be chosen for execution is equal to its relative

performance. If a particular provider is expected to finish a task twice as fast as

another provider, the probability of selecting this provider is twice as high as well.

106

7.3. Decentralized Provider Selection Algorithms

7.3.2. Drift Provider Selection Algorithm

In essence, the Drift selection algorithm uses a window that contains the w fastest

providers taken from the top of the provider list that is sorted by throughput. Only

providers inside the window are potential offloading targets whereas all providers

outside of the window are per se excluded from the selection. The algorithm selects

providers uniformly at random from this window. Each consumer maintains its

own scheduling window that might differ from other consumers’ windows.

A simple version of the Drift algorithm might use a fixed window size w. For

example, the ten fastest providers might always be the choice set for task allocation.

However, in edge computing systems, context variables such as latency, number

of providers, or overall system load change continuously. Therefore, we propose

an adaptive approach to change the window size w at runtime. This adaptive

approach can be parameterized using the scheduling history and two threshold

parameters referred to as ηi and ηr, where the subscripts i, r denote increasing or

reducing the window size w, respectively.

Each consumer maintains a scheduling history of size h containing its last h task

requests in addition to whether each task was successfully scheduled or rejected

(i.e., it was a scheduling fail). The consumer increases the scheduling window size

w if the last h task requests contain more than ηi rejections and it decreases the

window size w if the last h task requests contain less or equal than ηr rejects. The

rationale behind this dynamics is based on increasing the chance of successful

task scheduling at the expense of a higher expected task execution time (through

inflating w). Reducing w at low numbers of scheduling failures provides a drift

towards choosing the fastest provider, i.e., minimizing the expected task execution

time. Figure 7.3 illustrates the approach.

7.3.3. Bandit Provider Selection Algorithm

The Bandit provider selection algorithm separates the providers from the cache

list into disjoint buckets. It is inspired by the multi-armed stochastic bandit

model [195]. System administrators can parametrize the algorithm with the

number of buckets N and choose the bucket creation heuristic that determines

how providers are allocated to buckets. We propose and evaluate leapfrogged

107

7.3. Decentralized Provider Selection Algorithms

P
ro

b
a
b
il
it
y

Provider Speed slowest
provider

fastest
provider

Scheduling
window at 𝑡0 Scheduling

window at 𝑡1

Scheduling
window at 𝑡1

′

Figure 7.3.: Drift provider selection chooses providers for execution uniformly from
the scheduling window. The scheduling window increases adaptively
in width if the last h scheduling attempts have lead to more than ηi
rejections. It decreases in width for less or equal than ηr rejections in
the last h attempts.

and performance-aware bucket creation. In both, the consumer maintains a

list of all providers sorted by throughput. Leapfrogged bucket creation then

uses the leapfrogged series of providers from this list, i.e., bucket #1 contains

the providers {1, N + 1, 2N + 1, . . . } while bucket #2 contains the providers

{2, N + 2, 2N + 2, . . . }. Thus, the computing power of the whole system is

approximately evenly distributed among the buckets. Performance-aware bucket

creation uses the original series of providers sorted by throughput, i.e., bucket

#1 contains the providers {1, . . . , N} while bucket #2 contains the providers

{N + 1, . . . , 2N}. Some buckets therefore contain considerably more powerful

resources than other buckets.

To allocate a task, the Bandit algorithm first selects a bucket and then selects a

provider out of this bucket for task execution. The choice of a bucket is based on

a bucket-specific performance metric that results from past task executions in this

bucket. When a consumer receives a task result, it uses the task completion time

to update the performance value of the respective bucket. Once the performance

value of the current bucket falls below the performance of another bucket, the

algorithm starts using the other bucket for scheduling. Figure 7.4 depicts how the

performance values of the buckets vary over time in an exemplary run from our

evaluation. After selecting the bucket, the algorithm chooses among the providers

in this bucket proportionally similar to Proportional selection.

108

7.4. Evaluation

1 2 3 4
Bucket

0.4

0.5

0.6

T
as

k
C

om
pl

et
io

n
T

im
e

[s
]

Time t1

1 2 3 4
Bucket

0.4

0.5

0.6

T
as

k
C

om
pl

et
io

n
T

im
e

[s
]

Time t2

Figure 7.4.: The Bandit algorithm divides providers into buckets (here four). Each
bucket’s performance value (y-axis) is determined based on the task
completion times in this bucket in the past. The bucket with the
best performance value is chosen for scheduling. At t1, the scheduler
thus selects a provider from bucket 1. At t2, bucket 3 has a better
performance value and is therefore used for task execution this time.

Bandit provider selection has to balance exploration and exploitation. On the

one hand, the algorithm should always select providers from the most promising

bucket. On the other hand, it has to update the performance values of less

attractive buckets to have an up-to-date basis for decision-making. Changes in

the environment such as decreasing offloading demand can make a change of the

bucket beneficial, even if the performance value of the current bucket is improving.

Thus, a certain amount of exploration tasks is scheduled on providers of buckets

that do not have the highest performance value.

7.4. Evaluation

In this section, we evaluate DecArt in a large-scale experiment. For better

controllability, scalability, and reproducibility, we use the Tasklet Simulator.

Section 7.4.1 describes the experimental setup. Section 7.4.2 offers an extensive

overview of the results. The evaluation concludes with a discussion of the results

in Section 7.4.3 and potential threats to validity in Section 7.4.4.

7.4.1. Experimental Setup

The OMNeT++ implementation simulates 200 providers, 100 consumers, and

one broker. This system size resembles an edge computing scenario in an office

building, a university department, or a public place with adjoining houses. Of

the 200 provider nodes, 59 behave like desktop PCs, 53 like laptops, and 88

109

7.4. Evaluation

like smartphones in terms of churn and computing power. Each time providers

enter the system, they draw their residence time from a normal distribution

with a mean of 420min and a standard deviation of 150min for desktop PCs,

240min/162min for laptops, and 60min/60min for smartphones. Devices that

leave the system cancel all running tasks and reenter the system after a randomly

chosen time interval. All providers are able to execute four tasks in parallel. The

broker distributes cache lists every 30 s if decentralized scheduling is applied. The

network latency varies between 100 and 200ms including a TCP handshake.

Each consumer node runs one application chosen from a pool of ten applications

available in total. Consumers do not submit jobs consistently but only during

active periods (approximately 10% of the total time). This resembles a typical

application usage on mobile devices. Each algorithm configuration is simulated

for 60min. We run each configuration in five load scenarios with job intervals in

active periods of {0.9, 0.6, 0.4, 0.3, 0.2} s on average. Each scenario is simulated

20 times, with a random walk that varies the system load. The resulting loads are

constant across algorithm configurations, but change for each of the 20 repetitions.

7.4.2. Results

In our experiments, we compare centralized scheduling in the Tasklet system to

decentralized scheduling with DecArt . For the central scheduler, we use Random

(C-RND) and Greedy (C-GRD) provider selection. With DecArt , we test the three

basic algorithms Random (D-RND), Proportional (D-PRP), and Greedy (D-GRD)

as well as the two advanced algorithms Drift (D-DFT) and Bandit (D-BND). As

a benchmark, we have further implemented an omniscient decentralized scheduler

(D-OMNI) that has a global view on all providers in the system and knows

immediately when resources become available. Thus, a consumer can directly

send the next task to the fastest available provider. In reality, this hypothetical

scheduler is not feasible due to communication latencies but, here, it serves as

the benchmark. We perform four experiments. In experiment 1, we conduct

a parameter study of the two advanced algorithms Drift (D-DFT) and Bandit

(D-BND). In experiment 2 and 3, we assess DecArt with regards to task completion

times (experiment 2) and job completion times (experiment 3). In experiment 4,

110

7.4. Evaluation

we evaluate the effect of queuing on DecArt ’s performance. Table 7.3 provides an

overview of the abbreviations that are used throughout the experiments.

Abbr. Explanation
C-RND Centralized scheduling, Random provider selection
C-GRD Centralized scheduling, Greedy provider selection
D-GRD Decentralized scheduling, Greedy provider selection
D-RND Decentralized scheduling, Random provider selection
D-PRP Decentralized scheduling, Proportional provider selection
D-DFT(-n) Decentralized Drift scheduling (max. queue size = n)
D-BND(-n) Decentralized Bandit scheduling (max. queue size = n)
D-OMNI An omniscient, decentralized scheduler as baseline

Table 7.3.: Abbreviations used in the evaluation.

Experiment 1 (Drift and Bandit Parameter Study)

We conduct an extensive parameter study to understand the effect of the parame-

ters on the performance of the two algorithms. Both advanced algorithms depend

on a set of parameters (cf. Section 7.3) that can be used to configure DecArt

for each individual environment. We first analyze the Drift algorithm which is

adjustable with the number of rejections that reduces the scheduling window size

ηr, the number of rejections that increases the scheduling window size ηi, and the

number of previous tasks in the scheduling history h. In this experiment, we set

the history length to h = 100. We observed similar patterns for other history

lengths in supplementary tests (h = 10, 20, 50). Figure 7.5 depicts job completion

times for different ηr and ηi in the five load scenarios. Similar patterns are visible

as far as deadline misses are concerned. In general, job completion times are

reduced with cautious window reduction, i.e., only when the number of rejections

is very low the target window is reduced. Further, we observe that the optimal

ηi increases with the load. This happens because a small ηi quickly extends the

window w which results in a larger task execution time.

We now perform a parameter study for the Bandit provider selection algorithm. We

vary two parameters: the bucket creation heuristic (leapfrogged vs. performance-

aware) and the bucket size. Figure 7.6 provides an overview of the job completion

times for both heuristics and different bucket sizes under different loads. We

first observe that the bucket size has a smaller influence for leapfrogged buckets.

In general, leapfrogged bucket creation increases the mean and variance of job

111

7.4. Evaluation

0 1 3 5

r

1
5

10
15
20

i
Lowest Load

0 1 3 5

r

1
5

10
15
20

Low Load

0 1 3 5

r

1
5

10
15
20

Medium Load

0 1 3 5

r

1
5

10
15
20

High Load

0 1 3 5

r

1
5

10
15
20

Highest Load

0.5

0.6

0.7

NaN

Figure 7.5.: Analysis of decentralized Drift scheduling. We study the impact of
ηi and ηr on the average job completion time. Recall that ηi > ηr.
For a fixed scheduling history size of h = 100, the scheduling window
size is reduced if the algorithm observes less rejections than ηr. More
rejections than ηi result in an increasing window size. We observe
that, in general, low values for ηr, i.e., cautious window reduction, i.e.,
reduction only when the number of rejections is very low, yields lower
job completion times. Further, we observe a shift in ηi for increasing
load towards larger values which is because a small ηi quickly extends
the window w and slower providers are selected.

completion times. This is due to the fact that all buckets also contain slow providers

which are selected when a consumer sends out multiple tasks. Performance-aware

bucket creation outperforms leapfrogged bucket creation in terms of job completion

times. In the highest load scenario, performance-aware (480ms, with bucket size

5) is 46% faster than leapfrogged bucket creation (768ms, with bucket size 20).

In contrast to leapfrogged bucket creation, performance-aware bucket creation

is sensitive to the bucket size parameter. Across all load scenarios, there is a

tendency that small buckets perform better than larger bucket sizes. In the

following, we use the optimal parameters from this study (Drift : h = 100, ηr = 0,

ηi = 10, Bandit : performance-aware bucket creation, N = 5).

Experiment 2 (Task Completion Times)

Figure 7.7 shows the results for all strategies under the five different loads2. It

displays the mean task completion times and how these times are composed.

The most notable result is that centralized scheduling (C-RND and C-GRD) is

outperformed by all decentralized algorithms. Under low and medium load, central

scheduling takes about 250ms for the consumer to request a resource from the

2More details are available in Table A.1 and Table A.2 in the appendix.

112

7.4. Evaluation

0

0.5

1

1.5

Lowest
Load

Performance-aware

0

0.5

1

1.5

Low
Load

0

0.5

1

1.5

Medium
Load

0

0.5

1

1.5

High
Load

5 10 20 25 50 100

Bucket Size

0

0.5

1

1.5

Highest
Load

0

0.5

1

1.5
Leapfrogged

0

0.5

1

1.5

0

0.5

1

1.5

Jo
b

C
om

pl
et

io
n

T
im

e
[s

]

0

0.5

1

1.5

5 10 20 25 50 100

Bucket Size

0

0.5

1

1.5

Figure 7.6.: Analysis of bucket creation heuristic (performance-aware vs.
leapfrogged) and bucket size of the Bandit algorithm in different
load scenarios. Performance-aware bucket creation leads to faster job
completion times than leapfrogged bucket creation if the bucket size
is set to small values. The leapfrogged creation generates buckets
with comparable execution speeds.

broker, which resembles the average round-trip time in the system (2δ) including

a TCP handshake. The time for resource requests increases dramatically under

high loads because the broker cannot find idle resources. Instead, it has to wait

for providers to send status updates about their available TVMs. This leads to a

congested system and task completion times of up to 20 s for central scheduling

(exceeds the limits of the plot).

In decentralized scheduling, DecArt ’s advanced provider selection algorithms

(D-DFT and D-BND) outperform the three basic strategies (D-RND, D-PRP, and

D-GRD). The greedy algorithm (D-GRD) causes a high number of rejections as

it always allocates tasks to the fastest providers which then become congested.

The random algorithm (D-RND) suffers from a high execution time because it

arbitrarily chooses among slow and fast providers. The proportional algorithm

113

7.4. Evaluation

Lowest Load

C
-R

N
D

C
-G

R
D

D
-G

R
D

D
-R

N
D

D
-P

R
P

D
-D

F
T

D
-B

N
D

D
-O

M
N

I0

1

2

M
ea

n
T

as
k

C
om

pl
et

io
n

T
im

e
[s

] Low Load

C
-R

N
D

C
-G

R
D

D
-G

R
D

D
-R

N
D

D
-P

R
P

D
-D

F
T

D
-B

N
D

D
-O

M
N

I

Medium Load

C
-R

N
D

C
-G

R
D

D
-G

R
D

D
-R

N
D

D
-P

R
P

D
-D

F
T

D
-B

N
D

D
-O

M
N

I

High Load

C
-R

N
D

C
-G

R
D

D
-G

R
D

D
-R

N
D

D
-P

R
P

D
-D

F
T

D
-B

N
D

D
-O

M
N

I

Highest Load

C
-R

N
D

C
-G

R
D

D
-G

R
D

D
-R

N
D

D
-P

R
P

D
-D

F
T

D
-B

N
D

D
-O

M
N

I

Resource Request Transfer Detection Rejection Execution Result

Figure 7.7.: Analysis of the task completion times. Only centralized scheduling
requires time for the resource request. Decentralized scheduling
algorithms select resource providers from their local cache lists. Our
proposed scheduling algorithms (D-DFT & D-BND) successfully avoid
congested providers (which leads to rejections) and selecting slow
providers (which leads to long execution times). They perform within
a 10% range of an omniscient scheduler (D-OMNI).

(D-PRP) manages the workload quite well but cannot compete with D-DFT and

D-BND in terms of execution times. The latter two perform within 5 to 10%

of the omniscient scheduler and produce comparable results under all five loads.

These findings indicate that decentralized scheduling can handle low-latency

requirements for individual tasks even under high loads.

Experiment 3 (Job Completion Times)

Next, we focus on job completion times. As described in Section 7.4.1, applications

issue jobs with 6 to 16 parallel tasks. A job is only completed when all its tasks

are finished, which means that the job completion time equals the maximum

completion time of its tasks. In practice, job completion times are often more

relevant than task completion times, as job completion times are directly visible

to the user. This highlights the importance of avoiding stragglers. We consider

jobs with a duration of more than 1 s as a deadline miss. Figure 7.8 shows the

distribution of job completion times for each algorithm under all five loads. Each

plot contains four types of information: First, the histogram shows the distribution

of job completion times between 0.2 and 1 s. Second, the bar at the very right

indicates the number of deadline misses, i.e., jobs that were completed after 1 s.

The percentage in the upper right states the percentage of deadline misses in

relation to all completed jobs. Third, the blue line shows the mean of all job

completion times. A missing line signals that the mean is greater than 1 s. Fourth,

the red dotted line shows the median of all job completion times.

114

7.4. Evaluation

46.5%
Lowest Load

0.2 0.4 0.6 0.8 1
0

5

10
104

C-RND

46.6%
Low Load

0.2 0.4 0.6 0.8 1
0

5

10
104 46.3%

Medium Load

0.2 0.4 0.6 0.8 1
0

5

10
104 50.8%

High Load

0.2 0.4 0.6 0.8 1
0

5

10
104 62.5%

Highest Load

0.2 0.4 0.6 0.8 1
0

5

10
104

0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104

C-GRD

0.1%

0.2 0.4 0.6 0.8 1
0

5

10
104 1.3%

0.2 0.4 0.6 0.8 1
0

5

10
104 9.8%

0.2 0.4 0.6 0.8 1
0

5

10
104 30.8%

0.2 0.4 0.6 0.8 1
0

5

10
104

29.5%

0.2 0.4 0.6 0.8 1
0

5

10
104

D-RND

32.2%

0.2 0.4 0.6 0.8 1
0

5

10
104 34.6%

0.2 0.4 0.6 0.8 1
0

5

10
104 38.6%

0.2 0.4 0.6 0.8 1
0

5

10
104 44.8%

0.2 0.4 0.6 0.8 1
0

5

10
104

17.3%

0.2 0.4 0.6 0.8 1
0

5

10
104

D-PRP

17.6%

0.2 0.4 0.6 0.8 1
0

5

10
104 17.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 17.2%

0.2 0.4 0.6 0.8 1
0

5

10
104 17.5%

0.2 0.4 0.6 0.8 1
0

5

10
104

34.5%

0.2 0.4 0.6 0.8 1
0

5

10
104

D-GRD

49.3%

0.2 0.4 0.6 0.8 1
0

5

10
104 65.2%

0.2 0.4 0.6 0.8 1
0

5

10
104 75.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 81.5%

0.2 0.4 0.6 0.8 1
0

5

10
104

0.3%

0.2 0.4 0.6 0.8 1
0

5

10
104

D-DFT

0.3%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.5%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.7%

0.2 0.4 0.6 0.8 1
0

5

10
104 4.5%

0.2 0.4 0.6 0.8 1
0

5

10
104

0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104

D-BND

0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.1%

0.2 0.4 0.6 0.8 1
0

5

10
104 1.1%

0.2 0.4 0.6 0.8 1
0

5

10
104

0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104

D-OMNI

0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.0%

0.2 0.4 0.6 0.8 1
0

5

10
104 0.2%

Job Completion Time [s]
0.2 0.4 0.6 0.8 1
0

5

10
104

Mean Median

Figure 7.8.: Empirical job completion times for centralized and decentralized
scheduling. The histograms show the distribution of the job com-
pletion times. The utter right bars count jobs that exceed the 1 s
deadline. The percentage of missed deadlines is shown in the upper
right corner of each plot. Our two proposed scheduling algorithms
(D-DFT and D-BND) have a low mean and median job completion
time and minimize the number of missed deadlines.

We observe that each algorithm results in a characteristic shape for the distribution

of job completion times. Centralized random scheduling (C-RND) cannot meet

the deadlines under any load as it chooses slow providers in many cases. The

centralized greedy algorithm (C-GRD) shows job completion times symmetrically

clustered around 0.6 s. The higher the load, the more jobs miss the deadline

and, eventually, the mean increases to more than 1 s. Decentralized random

and proportional (D-RND and D-PRP) manage to keep mean and median job

completion times below or close to 1 s. However, their percentage of deadline

misses range between 17 and 44.8% since tasks are scheduled to slow providers

even though fast providers are not running at full capacity. Decentralized greedy

115

7.4. Evaluation

(D-GRD) performs worst among all decentralized algorithms with up to 81.5%

deadline misses. In contrast to centralized greedy selection, the decentralized

equivalent leads to collisions and re-scheduling due to the missing coordination of

the decentralized schedulers, which all behave greedily with their limited, local

view. Our proposed decentralized algorithms Drift and Bandit (D-DFT and

D-BND) achieve both goals. They keep mean and median job completion times

low and avoid deadline misses. Among the two, D-BND performs better and

achieves results within 7 and 20% of the omniscient algorithm (D-OMNI).

Even though the three basic decentralized algorithms (D-RND, D-PRP, and

D-GRD) seem to be able to compete with the Drift and Bandit algorithms with

respect to task completion time, they fail to consistently meet the job deadline of

1 s as they suffer from delayed tasks. In contrast, Drift and Bandit are robust

to stragglers and, thus, enable the execution of responsive applications in edge

computing environments with user-controlled devices as resource providers.

Experiment 4 (Queuing)

We observe that even under the highest load, the fast providers are not working to

full capacity. Once they have finished the execution of a task, they have to wait

for the next one to arrive. In the worst case, this happens just after a provider

has rejected a task because it did not have any idle TVMs. Thus, we perform an

additional experiment that introduces task queues at the resource providers. Task

queues avoid idle times and allow the TVMs to seamlessly execute one task after

another. As a downside, a long queue might increase the task completion time as

it introduces queuing delays. We experiment with different queue sizes between

one and five tasks for both the Drift and the Bandit algorithm. Providers with full

queues reject incoming tasks. Figure 7.9 shows the results for the Drift algorithm.

The results for the Bandit algorithm look similar. To better demonstrate the effect

of queuing on the task completion time, we remove transfer and result handling

times from the figure as they are similar across all settings.

We observe that a larger queue size increases the queuing time because tasks

need to wait until they are processed. However, the execution time decreases

with the queue size because fast providers can be used more efficiently. These

opposing effects result in decreasing task and job completion times for small queue

116

7.4. Evaluation

Lowest Load

D
-D

F
T

-0
D

-D
F

T
-1

D
-D

F
T

-2
D

-D
F

T
-3

D
-D

F
T

-4
D

-D
F

T
-5

0

0.02

0.04

0.06

0.08

0.1

0.12

M
ea

n
T

im
e

[s
]

Low Load

D
-D

F
T

-0
D

-D
F

T
-1

D
-D

F
T

-2
D

-D
F

T
-3

D
-D

F
T

-4
D

-D
F

T
-5

Medium Load

D
-D

F
T

-0
D

-D
F

T
-1

D
-D

F
T

-2
D

-D
F

T
-3

D
-D

F
T

-4
D

-D
F

T
-5

High Load

D
-D

F
T

-0
D

-D
F

T
-1

D
-D

F
T

-2
D

-D
F

T
-3

D
-D

F
T

-4
D

-D
F

T
-5

0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Jo

b
C

om
pl

et
io

n
T

im
e

[s
]

Highest Load

D
-D

F
T

-0
D

-D
F

T
-1

D
-D

F
T

-2
D

-D
F

T
-3

D
-D

F
T

-4
D

-D
F

T
-5

Rejection Queueing Execution

Figure 7.9.: Analysis of maximum queue sizes and their impact on task completion
times (stacked bars) and job completion times (blue markers) for
Drift scheduling. We observe that queuing reduces job completion
times, especially in high load scenarios. Increasing the maximum
queue size leads to lower execution times at the cost of increasing
queuing times. We observe similar effects for Bandit scheduling.

sizes. Under high load, this effect reverses for larger queue sizes. The second

effect of queuing is a substantial decrease in deadline misses. Whereas the Drift

algorithm without queuing resulted in 4.51% of deadline misses under the highest

load, increasing the queue size led to 1.38% misses for D-DFT-1 and 1.77% for

D-DFT-5. For the Bandit algorithm these numbers range from 0.23% (D-BND-1)

to 0.02% (D-BND-5). In summary, queuing does not only reduce the mean job

completion time but further eliminates most deadline misses.

7.4.3. Discussion

The empirical evaluation in the previous section shows that DecArt is able to

manage the tradeoff between selecting fast providers and avoiding collisions. We

come to three conclusions: First, DecArt decreases job completion times by at least

30% (D-DFT) and 34% (D-BND) compared to a central scheduler. Second, the

algorithms perform within a range of 17−23% (D-DFT) and 5−10% (D-BND) of

a hypothetical omniscient decentralized scheduler. Third, the algorithms eliminate

most deadline misses even under very high system load. Thus, in this chapter

we show that DecArt is the first approach to allow low-latency task offloading

117

7.4. Evaluation

in edge environments for user-facing applications. The remainder of this section

briefly discusses practical implications of the approach.

Is decentralized scheduling always superior to centralized scheduling?

As far as task and job completion times of responsive applications are concerned,

we observe that decentralized scheduling is always faster than centralized schedul-

ing with the broker. Nonetheless, the results in Figure 7.8 suggest that the

careful choice of the provider selection algorithm is crucial. For instance, the

decentralized version of the greedy provider selection performs worse than the

centralized equivalent. In addition, decentralized scheduling has the drawback

that computationally intensive provider selection algorithms run on the consumer

device instead of the broker, which is on average a more powerful resource con-

nected to a constant power supply. While DecArt ’s scheduling algorithms are

of comparably low computational complexity, the algorithm applied in Voltaire

described in the following chapter shows that centralized scheduling approaches

still have their merits.

Is it better to apply the Drift or the Bandit algorithm? In our evaluation,

the Bandit algorithm outperforms the Drift algorithm by a small margin in many

metrics. Without queuing, the Bandit algorithm leads to 1.1% deadline misses

under the highest load while the Drift algorithm cannot prevent that 4.5% of the

deadlines are missed. In addition, the parameter study in Section 7.4.2 reveals

that the optimal parameters for the Bandit algorithm are the same throughout

the study whereas the configuration of the Drift algorithm has to be adapted to

the load. For a final decision, a long-term comparison of the two algorithms in a

real-world testbed or even a real-world deployment is important future work.

What is the effect of the cache list interval on the performance? In

all experiments, the broker distributes cache lists every 30 s if decentralized

scheduling is applied. Selecting a proper cache list interval is non-trivial as a

tradeoff between up-to-dateness of the cache list information and distribution

overhead exists. The resource management and cache list distribution itself,

however, run asynchronously and have no direct effect on the scheduling times.

We experimented with shorter and longer intervals but this did not have a

significant effect on the completion times. Each cache list has a size of about 3 kB,

which results in about 1MB traffic for the broker per minute in our experiments.

118

7.5. Summary

Considering that the simulated system is comparably large, we argue that it is

feasible to maintain up-to-date cache lists with manageable overhead in practice.

Would a context-aware choice of the strategy be a valuable addition?

Similar to the evaluation of DataVinci in the previous chapter, we observe that an

adaptive choice of the scheduling approach (decentralized vs. centralized) and the

parametrization of algorithms such as Drift or Bandit provider selection based

on the context is an essential avenue for future work. The QoC concept of the

Tasklet system is already a first step, as the application programmer can select the

respective QoC goal for each Tasklet separately. This enables the parallel usage

of several approaches even in the same application. Nonetheless, self-adaptation

remains an open challenge.

7.4.4. Threats to Validity

The evaluation in this chapter bases on a large-scale simulation. Although we

validated the simulation carefully as described in Section 5.2.4, potential threats to

validity encompass an inaccurate modeling of real-world applications, inaccurate

device models, and unrealistic system loads. Furthermore, the evaluation only

assesses sub-second tasks. An interplay with long-running tasks in the system

could potentially — but unlikely — influence the results. DecArt does not consider

the communication latency to providers in its decision making so far. In scenarios

where the bandwidth or the communication channel to some providers differ

considerably, this context dimension may have a notable influence. We compare

the performance of DecArt with an omniscient scheduler that knows immediately

when resources become available. Future work could compare DecArt with an

ideal scheduler, i.e., a scheduler that — in hindsight — always makes the perfect

scheduling decision to minimize completion times.

7.5. Summary

This chapter presents DecArt — a decentralized scheduling approach for low-

latency computation offloading in edge computing environments. The approach

is designed for responsive user-facing applications that require sub-second task

completion times. Instead of requesting resources at a central broker before

119

7.5. Summary

each task execution, consumers schedule from previously distributed cache lists

by themselves. As there is no coordination among the consumers, this leads

to a tradeoff between selecting a fast provider and risking a collision as other

consumers also tend to pick a fast provider. To balance this tradeoff, we propose

two advanced provider selection algorithms. We present the Drift algorithm where

resource consumers maintain and utilize an individual adaptive scheduling window

of resource providers and the Bandit algorithm that allocates providers to disjoint

groups for which resource consumers calculate selection probabilities based on the

history of observed task execution times. In an extensive simulation-based study,

we show how DecArt significantly decreases the task and job completion times by

more than 30% in comparison to the centralized scheduler of the Tasklet system.

In addition, DecArt performs within a 9% range of a hypothetical omniscient

scheduler that serves as a benchmark.

120

8. Voltaire

Battery constraints have become a key challenge with the advent of mobile

computing and smartphones [7]. In addition to performance gains, computation

offloading helps to reduce the energy consumption of mobile devices if the cost

of transferring a task and receiving the results is lower than the cost of a local

execution. Thus, a remote execution is in general beneficial for computationally

intensive tasks with small input and result data. Analogously, less complex tasks

with large input and result data are to be executed on the mobile device.

In edge computing systems, the decision whether to execute a task remotely or

locally is non-trivial due to uncertainty. First, in contrast to a traditional batch

system, the completion time of a task is not known a priori. Second, similar to the

completion time, the size of the execution output might vary for each execution.

This results in different transmission costs. Both task completion time and result

size may even change for different executions of the same source code, as varying

parameters and input data have a considerable influence. Third, important context

variables such as connection type or bandwidth change frequently and need to be

monitored at runtime [196].

Energy-aware offloading has received much attention in research [197]. Most

notably, in MAUI, Cuervo et al. show the effect of different network interfaces

on the energy consumption [71]. In CloneCloud, Chun et al. apply dynamic

profiling to create profile trees that explore the impact of input parameters on

the energy consumption of the task [70]. In ThinkAir, Kosta et al. build upon

the two previous approaches and add elasticity and scalability of the remote

resources [76]. However, none of the approaches focus on reducing the uncertainty

in the prediction of the energy consumption from the devices’s view. Instead,

rather straightforward estimators are applied.

In this chapter, we design a QoC mechanism for the Tasklet system that minimizes

the energy consumption of the consumer device, i.e., that achieves the Energy QoC

goal. We propose Voltaire — a centralized scheduler that applies machine learning

121

8.1. Related Work

methods for regression analysis based on crowd-sourced data of past executions of

similar tasks. This enables Voltaire to accurately predict the complexity and the

result size of an upcoming task. Furthermore, Voltaire integrates device-specific

energy profiles, which model the influence of CPU and network activity on the

energy consumption. With additional context knowledge about the input data

size of a task and the current bandwidth, Voltaire is able to dynamically decide

for each Tasklet whether to offload or execute locally. Thus, Voltaire improves

energy consumption from the perspective of a mobile device rather than a global

system perspective for energy efficiency. We deploy Voltaire in the real world to

extensively evaluate its effectiveness in realistic settings with three user-facing

applications. The experiments show that Voltaire is able to predict the complexity

and the result size of a task precisely. We observe that Voltaire reduces the

consumer device’s energy consumption for task execution by 12.5% compared to

the existing scheduler of the Tasklet system.

In the remainder of this chapter, we first discuss related work in Section 8.1.

Section 8.2 describes the underlying system model and Voltaire’s fundamental

design. A detailed description of the design is then presented in Section 8.3. Before

concluding the chapter with a summary in Section 8.5, we extensively evaluate

Voltaire in a real-world testbed in Section 8.4. This chapter bases on [198]1.

8.1. Related Work

Making energy-aware offloading decisions under uncertainty is a well-known prob-

lem in practice and academia. Previous approaches estimate context parameters,

profile applications, and monitor network states to find strategies that “make

smartphones last longer” [71, p.1]. A recent survey of energy-aware approaches in

edge computing can be found in [197]. Despite all these valuable achievements,

several issues remain unresolved and are, therefore, addressed in this chapter.

Multiple approaches do not consider all relevant context dimensions or make

assumptions about them that conflict with real-world applications. Examples can

be found in [70], [77], and [199] that consider the result size as static, which is not

true for many real-world applications. Further, differences across devices in the

1Reference [198] is joint work with J. Edinger, S. Kaupmees, H. Trötsch, C. Krupitzer, and C.
Becker.

122

8.1. Related Work

amount of energy consumed per instruction are often neglected. Previous works

differ in their approaches to predict context dimensions such as the complexity

of tasks or the required data transfer. Some approaches perform a static code

analysis without taking the effect of input parameters into account [200]. Several

strategies include the computation of averages or linear models based on past

executions [71,104,201]. We argue that machine learning can help to determine

complex relationships between input parameters and the estimates that go beyond

simple dependencies [202, 203]. The calculation whether a number is prime

illustrates this phenomenon. The complexity of this task increases with the input

n, e.g., 73 is more complex to test than 11. However, each even number is trivial

to test as it is divisible by the number 2. While a manual definition of these rules

is cumbersome, machine learning can detect these patterns autonomously.

Typically, the offloading decision is made on the mobile device. As this causes

additional overhead and thus energy consumption, the decision making process is

often kept as lightweight as possible. A remote decision making allows for more

complex algorithms [204,205]. An additional benefit of remote decision making is

the number of samples that the scheduler can observe to create execution statistics

for an application. This number is not limited to the execution statistics of a single

device. A central decision maker can apply crowdsourcing and collect usage data

from multiple devices. Only a subset of prior approaches is evaluated in real-world

testbeds with actual energy monitoring. This makes the results which are gained

through simulations complex to translate to actual energy savings (e.g., [206]

and [207]). Most approaches are not integrated into offloading frameworks which

raises questions about their generalizability and applicability in the physical

world [111, 208, 209]. Furthermore, some of the previous works do not run real

applications for the evaluations [210,211]. We argue that real applications increase

the validity of suggested approaches. Table 8.1 summarizes existing works.

We propose Voltaire — a QoC mechanism in the Tasklet system that applies

machine learning methods on crowdsourced data to make well-informed offloading

decisions. In addition, it monitors multiple context dimensions such as device

type, bandwidth, and input data size to accurately decide whether to offload a

task or to execute it locally. We integrate Voltaire into the Tasklet Core System

to evaluate its effectiveness with real-world applications in a realistic setting.

123

8.1. Related Work

Context Prediction Dec. Eval.

Author/System Year
T
a
sk

c
o
m
p
le
x
it
y

D
a
ta

tr
a
n
sf
e
r

N
e
tw

o
rk

D
e
v
ic
e

S
ta

ti
c
a
n
a
ly
si
s

C
o
st

g
ra

p
h
s/

ta
b
le
s

A
v
e
ra

g
e
s

L
in
e
a
r
m
o
d
e
ls

M
a
ch

in
e
le
a
rn

in
g

M
o
b
il
e
d
e
v
ic
e

C
lo
u
d
/
B
ro

k
e
r

C
ro

w
d
so

u
rc
in
g

R
e
a
l-
w
o
rl
d

te
st
b
e
d

O
ffl
o
a
d
in
g
fr
a
m
e
w
o
rk

R
e
a
l-
w
o
rl
d

a
p
p
li
c
a
ti
o
n
s

Othman [212] 1998 • • • • • •
Rudenko [213] 1998 • •
Spectra [77] 2002 • ◦ • • • • • • •
Xian [208] 2007 • • • • • •
MAUI [71] 2010 • ◦ • • • • • • • •

CloneCloud [70] 2011 • • • • • •
Giurgiu [214] 2012 • • • • • • • •
ThinkAir [76] 2012 • ◦ • • • • •
MACS [104] 2012 • ◦ ◦ ◦ • • • • • •

SP Energizer [215] 2013 • • • • • • • • • •
TDM [216] 2013 • • • • • • • •

Magurawalage [204] 2014 ◦ ◦ ◦ ◦ • • •
Niu [206] 2014 ◦ • • •
Ravi [200] 2014 ◦ • • • •

DREAM [217] 2015 ◦ ◦ • • • • • • •
Jade [110,111] 2015 ◦ ◦ • • • • • •
Saab [209] 2015 ◦ • • • • •

EECOF [218] 2015 ◦ • • • •
Zhou [201] 2015 • ◦ • • • • • • •
Wu [207] 2016 • ◦ • • •

EECO [210] 2016 • • • • •
EA-OSGi [211] 2017 ◦ ◦ ◦ ◦ • •
Karim [202] 2017 ◦ • •

Crutcher [203] 2017 ◦ • • •
EMCO [75] 2018 ◦ ◦ • ◦ • • • • • • •
Jadad [205] 2018 • • ◦ • • •
Hao [219] 2018 • ◦ • • •
Lyu [220] 2018 • ◦ • ◦ • •

HetNet [221] 2019 ◦ ◦ • • •
Nguyen [222] 2019 ◦ • • •
Xu [223] 2019 • • • •
Voltaire • • • • • • • • • • •

Table 8.1.: Overview of related energy-aware offloading approaches.
(Dec. = Decision making, Eval. = Evaluation)
• fulfilled ◦ partially fulfilled

124

8.2. Design

8.2. Design

This section first describes the system model that we use for our approach. After

that, we outline Voltaire’s basic design.

8.2.1. System Model

Voltaire is a scheduler for an environment where a mobile device offloads tasks

to remote resource providers to reduce local battery consumption. A consumer

runs several applications which issue tasks. Tasks logically consist of a type,

i.e., underlying source code, and parameters. Additionally, tasks may require

input data, such as images for face recognition, that have to be transferred to

the providers. We assume that both consumers and providers run TVMs. Thus,

a local execution is possible. In the system, a central broker performs resource

management, i.e., decides whether and to which device to offload a task.

8.2.2. Energy-Aware Computation Offloading with Voltaire

Voltaire reduces the energy consumption of the consumer device by deciding

whether a task is offloaded or not. In contrast to related work that minimizes

the total energy consumption of a whole distributed computing system [210,

224], we focus on improving the energy consumption of a battery-constrained

consumer device only, since cloud or edge computing environments typically

contain offloading targets with constant power supply.

Voltaire suggests to offload a task when the energy required for remote execution is

expected to be smaller than the energy required for a local execution, i.e. Eoffload <

Elocal. The energy consumption for a local execution can be approximated by the

task complexity measured by the number of bytecode instructions that have to be

executed (Itask) and the average energy required for a single bytecode instruction

(Ei) in mJ. The energy consumption for a remote execution is determined by

the size of the input data in bytes (Dinput), the result size in bytes (Dresult), the

inbound and outgoing bandwidths βin and βout of the consumer device in bytes/s,

and the power for data transmission and data reception in mW (Ptransmit and

Preceive). Thus, the offloading decision is:

125

8.2. Design

Dinput

βout

∗ Ptransmit +
Dresult

βin

∗ Preceive < Itask ∗ Ei (8.1)

Precisely knowing all the variables prior to task execution is not feasible in practice

due to three reasons. First, the number of bytecode instructions and the size of

the result data need to be predicted for each upcoming task execution. Due to a

different parametrization, even tasks of the same type may vary in their number

of executed instructions as well as in the sizes of their result data. Second, the

energy consumption for sending and receiving data, as well as for executing code

is highly device-dependent. Third, edge computing systems can be highly mobile,

resulting in constantly changing context situations. Even a stationary system

might be affected by the dynamic nature of its environment such as a varying

bandwidth. Thus, the offloading decision is non-trivial.

Variable Definition In
Dinput Size of the input data in bytes known a priori
Dresult Size of the result data in bytes Section 8.3.1
Itask Number of bytecode instructions of a task Section 8.3.1

Ei
Average energy consumption of 1 bytecode instruction
on the consumer in mJ

Section 8.3.2

Ptransmit Energy consumption per s data transmission in mW Section 8.3.2
Preceive Energy consumption per s data reception in mW Section 8.3.2
βout Outgoing bandwidth in bytes/s Section 8.3.3
βin Inbound bandwidth in bytes/s Section 8.3.3

Table 8.2.: Variables influencing the offloading decision (see Eq. 8.1).

We design Voltaire on the basis of Equation 8.1. Voltaire’s goal is to determine

accurate values for all variables in the equation (cf. Table 8.2). This results in

three tasks:

Predicting the number of bytecode instructions and the result size. Prior

to task execution, the application informs Voltaire about task type, parameters,

and size of the input data Dinput. Based on crowd-sourced data of past executions

of the same task, Voltaire predicts the number of bytecode instructions Itask, as

well as the size of the result data Dresult. In Section 8.3.1, we present how Voltaire

integrates different regression analysis methods from machine learning for this.

Integrating device-dependent energy profiles. The power for sending and

receiving data (Ptransmit and Preceive) and the average cost for executing a bytecode

instruction locally (Ei) depend on the consumer device that issues the task and

126

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

the context. In Section 8.3.2, we show how Voltaire uses device-specific energy

profiles to retrieve these values.

Estimating inbound and outgoing bandwidth. Voltaire estimates inbound

bandwidth βin and outgoing bandwidth βout with low overhead by analyzing past

data transmissions in the system. Section 8.3.3 describes this in more detail.

8.3. An Energy-Aware Scheduler for Precise Offloading

Decisions

Voltaire is a centralized scheduler that runs on the broker of the Tasklet system.

A centralized approach avoids massive communication overhead and is able to

collect and reason on more data. Additionally, running on the broker allows

Voltaire to apply more complex prediction and decision making mechanisms

compared to approaches such as [71] and [215], where the offloading decision is

made by the consumer device itself and kept simple to save energy. As a central

instance for resource management, the broker ideally runs on a stable and powerful

machine, which is in most cases connected to a constant power supply. Voltaire’s

computationally intensive parts (e.g., updating the machine learning models) run

mostly asynchronously to the offloading process, which reduces the influence on

task completion times.

As Voltaire uses machine learning techniques that may be computationally inten-

sive, a scalable deployment is important. Thus, it might be necessary to replicate

Voltaire on several cloud or edge servers, which is a non-trivial task. Further

options are to reduce the number of machine learning models per application, to

update the models less frequently, or to limit the training data sets to a certain

size. The realization of scalability is part of future work.

For each task, the mobile device sends a request to the broker. Voltaire analyzes

the incoming request and decides whether to execute the task on the consumer

device’s TVMs or remotely. Figure 8.1 compares the energy consumption on

the consumer device of four real-world applications from our experiments when

executed locally or remotely. We observe that some applications such as the ray

tracing-based image rendering always benefit from a remote (or local) execution.

Due to its accurate predictions, Voltaire is, however, especially attractive for

127

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

applications that sometimes benefit from a remote execution and sometimes from a

local execution, depending on the task and the context. Here, offloading decisions

are particularly complex. Voltaire’s offloading decision is not only based on the

knowledge of previous task executions from this particular mobile device but from

all consumers together. Voltaire thus exploits crowd-sourced data for the offloading

decision. The broker chooses an appropriate provider for remote execution if

Voltaire suggested a remote execution. The exact choice of the provider is out of

this chapter’s scope and does not affect the consumer’s energy consumption if we

assume a similar network connection to all providers. In the following sections,

we show how Voltaire performs three basic tasks to determine the variables for a

well-informed offloading decision from Equation 8.1 and Table 8.2.

(a) Photo filter (b) Decision tree

(c) Speech detection (d) Image Rendering

Figure 8.1.: Four real-world applications from our experiments. Each point rep-
resents the energy consumption of a local execution (Elocal) and the
energy consumption of a remote execution (Eoffload). Thus, points
in the gray area should be executed remotely and points above the
line locally. Voltaire is especially attractive for applications (a) to (c)
that sometimes benefit from a remote and sometimes from a local
execution, based on task and context.

8.3.1. Predicting Number of Bytecode Instructions and Result Size

The three variables (i) number of bytecode instructions Itask, (ii) input data size

Dinput, (iii) and result size Dresult differ for every task execution. Whereas the

128

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

input data size Dinput is known beforehand and reported from the consumer to

Voltaire, Voltaire needs to predict the number of bytecode instructions Itask and

the result size Dresult. We propose to leverage feedback from past executions of

the same task type to predict these two variables. Several executions of the same

code may still vary considerably in the number of instructions that are executed

and the result size due to different parameters and input data. To collect a larger

data basis, Voltaire crowd-sources information about all previous executions of

this task type in the whole system instead of only considering past executions by

the current consumer device. The providers report a feedback after task execution

to Voltaire including the task type, the number of bytecode instructions, and the

result size. Crowd-sourced information is helpful for the current decision since the

number of instructions and the result size are device-independent. Other devices

may run the same application and, hence, execute tasks of the same type, which

is valuable data for prediction. This is especially effective if the behavior of a user

barely deviates from the usual usage of an application. Many applications, such

as a photo filter or speech recognition, even do not allow much variance in their

use in the first place. Voltaire integrates three methods for prediction based on

the crowd-sourced data. In addition to the (i) average of prior executions and (ii)

exponential smoothing, we propose to use regression analysis (iii) as a machine

learning method to make precise predictions. In the following, we describe the

prediction of bytecode instructions. Voltaire predicts the result size analogously.

Average

Similar to related work such as MAUI [71] or MACS [104], Voltaire integrates a

strategy that predicts the number of bytecode instructions based on the average

of past executions. This method works well if the number of bytecode instructions

is mostly independent from the parameters or the input data.

Exponential Smoothing

Exponential smoothing [225] is a statistical method where previous executions

are weighted less the older they are. It generally performs well in cases with

periodic fluctuations in the data [226]. This can be expected for the number of

bytecode instructions as consecutive tasks of a similar type often originate from a

129

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

single application that is likely to start similar tasks. Let Sn be the prediction for

instructions executed for the n’th execution and In be the corresponding actual

number of instructions completed. The parameter α with 0 < α < 1 determines

how much weight is assigned to the previous, true value.

Itask = Sn =

I0 for n = 1

Sn−1 ∗ α + In−1 ∗ (1− α) for n ̸= 1
(8.2)

Regression Analysis

In experiments with real-world applications, we observe that executions of the

same source code still vary considerably in terms of required bytecode instructions.

We identify three reasons for these deviations. First, the size of the input data

may differ. Classifying a small data set, for instance, requires less instructions

than applying the same classifier to a larger data set. Second, the parameters

of the particular task execution have a considerable influence. For example,

calculating whether a number — which is passed as a parameter — is prime

requires on average more instructions the higher this number is. Third, the special

characteristics of the input data may affect the number of bytecode instructions.

For instance, a photo filter task that converts all colors but red to grayscale,

may run considerably longer if there are only a few red pixels in the image. To

learn these complex influences of parameters and input data on the bytecode

instructions, we integrate a machine learning module into Voltaire. For each task

type, Voltaire trains three types of regression models based on these three reasons.

T1: Prediction based on the input data size. This type of regression model

uses the input data size as a single feature to predict the number of bytecode

instructions. Some tasks perform operations on all elements of the input data,

e.g., on all pixels of a bitmap. In these cases, the number of instructions may be

well predictable based on the input data size of the upcoming execution and the

knowledge from past executions.

T2: Prediction based on the parameters. In addition to the input data size

as a feature, Voltaire uses each parameter as a separate feature for this type of

model. The input data size and the parameters of earlier executions are known to

Voltaire anyways, which eliminates additional effort for developers.

130

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

T3: Prediction based on application-specific features. Experiments with

real-world applications revealed that the number of bytecode instructions depends

on the characteristics of the input data in some cases. Accurate predictions are

difficult in these cases without any domain knowledge about the task. As an

extreme and rather theoretical example, a task may perform a complex operation

on every pixel of a bitmap, but only if the first pixel has a certain RGB value.

Voltaire’s models of type T3 allow the developer to pass further customized machine

learning features for these complex cases. Some features may be easily computed,

while more sophisticated ones may require more computation and more energy on

the mobile device. A calculation on, e.g., only a fraction of the input data is thus

recommended. In our experiments, we use 0.1% of the input data.

Voltaire performs online learning for all three types of models. When new feedback

is available, Voltaire has a new training sample, consisting of the parameters,

the input size, the number of bytecode instructions, the result size, and — if

provided by the application developer — additional features. Voltaire uses multiple

regression models, including decision tree, random forest, gradient boosting, linear

regression, adaboost, and bayesian ridge. It periodically performs a 5-fold cross

validation for the different regression models on the data and stores the best

model for each task type.

8.3.2. Integrating Device-Dependent Energy Profiles

Voltaire uses device-specific energy profiles to retrieve the average energy consump-

tion of executing one bytecode instruction locally (Ei) and the energy consumption

of sending and receiving data for one second (Ptransmit and Preceive) in the off-

loading process. All three parameters are device-dependent. The energy profile

of a smartphone, for instance, differs from the energy profile of a laptop or a

Raspberry Pi. We perform hardware-based profiling for each device type. For

cases where hardware measurements are infeasible such as certain wearables,

software-based profiling approaches (e.g., [227]) are viable alternatives. In future

work, a combination of hardware- and software-based profiling may further im-

prove accuracy, as, e.g., different OS versions on devices with the same hardware

lead to different energy profiles. Voltaire uses two energy profiles per device type:

a CPU energy profile and a network energy profile.

131

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

CPU Energy Profile

This profile models the energy consumption while executing a single bytecode

instruction on a local TVM (Ei). Our experiments show a tradeoff between

accuracy of the profile and the effort for profile creation. We thus propose three

approaches to create such profiles.

(a) Energy profile P1 (b) Energy profile P2 (c) Energy profile P3

Figure 8.2.: Three methods to create CPU energy profiles for Voltaire based on
(a) a constant value for the individual device type, (b) a fitted curve
for the individual device type, and (c) a fitted curve for the individual
application. The values — originating from exemplary measurements
in the evaluation — show the average energy consumption of a single
bytecode instruction depending on the total number of instructions.
Tasks from the same application are depicted in the same color.

P1: A constant value for the individual device type. We first assume

that each bytecode instruction consumes the same amount of energy. In this case,

a CPU energy profile may consist of a single value Ei that is device-dependent.

Thus, one energy measurement with arbitrary applications is required for each

device type. This method (cf. Figure 8.2a) is rather simple and thus applicable

with low overhead in real-world systems.

P2: A fitted curve for the individual device type. During our measurements,

we observe that the average energy consumption of a single bytecode instruction

depends on the total number of instructions. Shorter tasks with less instructions

also require less energy per instruction, whereas longer tasks with a high number

of instructions tend to require more energy per instruction. To include such effects,

we propose to run multiple applications and measure the energy consumption of

a single instruction depending on the overall number of instructions of a task.

The value for Ei is then calculated as a function of the (predicted) number of

instructions of a task as finstr,device(Itask), where finstr,device is a device-dependent

function fitted on the measurement data (cf. Figure 8.2b).

132

8.3. An Energy-Aware Scheduler for Precise Offloading Decisions

P3: A fitted curve for the individual application. We also observe that

the energy consumption of a fixed number of bytecode instructions varies across

applications. Due to a more complex underlying interpretation by the TVM,

some bytecode instructions run longer and thus consume more energy than others.

This has a measurable effect on the energy consumption of different applications

as the frequency with which certain instructions are used, varies. Therefore, we

propose to perform energy measurements for each application separately as the

most accurate method to create a CPU energy profile (cf. Figure 8.2c). Whereas

methods P1 and P2 only require one measurement per device type, this method

requires a ∗ d measurements in total, where a is the number of applications and

d is the number of device types. New devices are introduced comparably rarely

to the market, while new applications could be written by any developer at any

time. Hence, we believe that in practice, a >> d holds. To eliminate the need to

perform energy measurements for each new application, we propose an alternative

approach. We observe a linear relation between task completion time and energy

consumption in our experiments. Thus, the average energy consumption of a

single bytecode instruction of a new application Ei,new can be approximated by:

Ei,new = Ei,bench device ∗
rinstr,new

rinstr,bench app

(8.3)

where Ei,bench device is the average energy consumption per instruction of a bench-

mark device, rinstr,new the number of instructions of the new application executed

per second on the benchmark device, and rinstr,bench app the number of instructions

of a benchmark application executed per second on the benchmark device2. With

this approach, no energy measurements are required for a new application. New

applications only have to be executed on a benchmark device with known energy

consumption, which is feasible in real-world use cases.

Network Energy Profile

The network energy profile models the energy consumption of a certain device

per second while transmitting and receiving data (Ptransmit and Preceive). The

energy consumption is independent from the type of data that is transmitted or

2Ei,new and Ei,bench device are both functions of the total number of instructions as in P2. We
omit this in the equation for better readability.

133

8.4. Evaluation

received. Thus, the network energy profile is application-independent. As shown

in Figure 8.3, the network energy profile ideally contains separate energy values

for transmitting and receiving under varying bandwidths.

Figure 8.3.: Network energy profile based on exemplary measurements in the
evaluation. Separate models for transmitting and receiving data
characterize the respective energy consumption per second dependent
on the bandwidth.

8.3.3. Estimating Inbound and Outgoing Bandwidth

Inbound and outgoing bandwidth βin and βout have to be measured at runtime as

they fluctuate [228]. Voltaire uses an approach with low overhead. Consumers

estimate the current bandwidth by measuring the duration of transmitting and

receiving input and result data of known size. Thus, no additional data transfers

are required. The bandwidth estimations are piggybacked to the task request,

such that the broker and, hence, also Voltaire is informed about the recent value.

8.4. Evaluation

In this section, we evaluate Voltaire in a real-world testbed. First, we summarize

the experimental setup in Section 8.4.1. We provide a detailed tutorial that

explains how to reproduce the results in [229]3. Second, we present the evaluation

results in Section 8.4.2. Third, Section 8.4.3 discusses implications of the results.

Fourth, Section 8.4.4 outlines potential threats to validity.

3Reference [229] is joint work with J. Edinger, S. Kaupmees, H. Trötsch, C. Krupitzer, and C.
Becker.

134

8.4. Evaluation

8.4.1. Experimental Setup

We apply Voltaire in a real-world edge computing system that runs the Tasklet

Middleware. We extend the Tasklet system to perform the crowd data collection

at the broker, which hosts Voltaire. In the Tasklet system, providers inform the

broker after task execution about the TVM that has become idle. We piggyback

the task type, number of instructions, and result size to these messages to collect

data for Voltaire with minimal overhead. A Raspberry Pi 4B with a 1.5GHz

ARM Quad Core CPU offloads tasks to providers. The Raspberry Pi works

battery-powered in many use cases and is predestined for computation offloading

due to its limited computational power. Since we aim to improve the battery

consumption of the consumer device, the choice of the provider devices does

not affect the measurements. A UM34C digital voltmeter measures the energy

consumption of the consumer device. In the following, we isolate and discuss the

energy consumption of the applications by subtracting the idle energy consumption

from the energy consumption during the local or remote execution. The devices

communicate over an IEEE 802.11n Wifi network. The net bit rate achieved at the

application layer is 10Mbit/s. We experimented with different setups (e.g., closer

to the access point) and observed similar effects. Figure 8.4 shows an excerpt of a

typical power measurement during the evaluation.

Figure 8.4.: Exemplary power consumption of the evaluation device.

We run three real-world applications in this setup (cf. Section 5.2.3): (i) a

grayscale photo filter, (ii) a decision tree classifier, and (iii) a speech detection.

All applications are offloaded to remote devices or executed locally on TVMs. For

the photo filter application, we collect a database of 3,000 smartphone images of

different sizes that are edited with the filter application in the experiments. We

135

8.4. Evaluation

use 3,000 randomly created decision tree models with 2,500 to 5,000 nodes for the

decision tree classifier use case. Additionally, we created 3,000 random data sets

with 1,000,000 to 5,000,000 samples and 4 to 25 features each. For the speech

detection application, we create 3,000 audio files, ranging from 15 to 150 s. The

audio files originate from a total of 2.5 h of audio recordings that we collected in

a room with five people doing group work.

8.4.2. Results

We perform three experiments that evaluate (i) the effectiveness of regression anal-

ysis for the prediction of the number of bytecode instructions and the result size,

(ii) the influence of the device energy profiling method on prediction quality, and

(iii) Voltaire’s potential to reduce energy consumption in a full-stack evaluation.

Experiment 1 (Predicting Task Complexity and Result Size)

In the first experiment, we evaluate the performance of regression analysis for

predicting the number of bytecode instructions Itask and the result size Dresult

of an upcoming task. Thus, we isolate Voltaire’s machine learning part and

predict the two variables with different regression methods. For each method,

we evaluate the three model types T1 to T3 with 3,000 tasks per application.

Table 8.3 describes the features that were used.

For each application, we perform a 5-fold cross validation with Python’s scikit-

learn [230] library. Table 8.4 shows the respective R2 scores for the prediction of

the number of bytecode instructions. We omit the values for the prediction of the

result size here for reasons of clarity and comprehensibility. In general, the result

size is well-predictable by Voltaire as it is often directly dependent on the input

data size (e.g., for the photo filter).

The R2 scores provide four insights. First, we observe that the quality of the

prediction improves for all applications when extending the feature set from T1 to

T3. The additional features of T2 and T3 help Voltaire to better learn the reasons

for the behavior of certain tasks.

Second, our experiment reveals that the performance of model type T1 varies

considerably for different applications. The number of bytecode instructions

136

8.4. Evaluation

Photo filter
T1 Input data size

T2
Input data size, photo width, photo height, 9 parameters that describe the RGB range
that remains in the original color

T3
Features T2, 4 ratios of pixels that need to be converted (according to the R, G, B,
and RGB values) from a sample of 0.1 percent of all pixels

Decision tree classifier
T1 Input data size
T2 Input data size, tree size, #rows, #features, #tree nodes

T3
Features T2, coefficient describing the balance of the tree, tree height, #nodes in the
tree/maximum #nodes in a tree of this height

Speech detection
T1 Input data size
T2 Input data size, amplitude threshold, #values skipped after speech is detected

T3

Features T2, 12 features from a sample of 0.1 percent of the overall audio file (ratio
of sample values above threshold, average amplitude, a histogram with 10 groups
showing the amplitude distribution of the sample)

Table 8.3.: Machine learning features used for regression analysis.

App/Model
Decision Tree Random Forest Gradient Boost.
T1 T2 T3 T1 T2 T3 T1 T2 T3

Photo filter .838 .834 .967 .857 .916 .985 .860 .919 .986
Decision tree classifier -.191 .994 .997 .129 .996 .998 .398 .997 .999
Speech detection .324 .347 .865 .363 .650 .947 .483 .681 .960

App/Model
Lin. Regression Adaboost Bayesian Ridge
T1 T2 T3 T1 T2 T3 T1 T2 T3

Photo filter .875 .901 .945 .872 .905 .968 .875 .875 .875
Decision tree classifier .411 .997 .999 .406 .994 .994 .411 .997 .997
Speech detection .508 .682 .929 .501 .661 .884 .508 .644 .644

Table 8.4.: Average R2 scores for different regression analysis methods in a 5-fold
cross validation on all 3,000 tasks per application. We highlight the
highest scores for each application in gray.

for executing a photo filter task is strongly related to the input data size as

the algorithm traverses and potentially converts each pixel. Thus, model type

T1 performs comparably well here. Tasks that originate from the decision tree

classifier are difficult to predict for model type T1. For this application, the input

data size can be approximated by r ∗ f , where r is the number of rows and f is

the number of features in the input data set that has to be classified. The same

classifier, however, requires considerably more bytecode instructions to classify a

data set with many samples but a few features in comparison to a data set with

few samples and many features.

137

8.4. Evaluation

Third, we observe that both photo filter and decision tree classifier are well-

predictable with models of type T2. Only the speech detection application requires

additional, application-specific features. We therefore argue that Voltaire is able

to predict the number of bytecode instructions for many tasks very precisely,

without requiring any additional programming effort by the application developer.

Voltaire’s models of type T2 only use input data size and parameters, which are

reported to the broker anyways, as features for an accurate prediction. However,

we also acknowledge that Voltaire requires additional domain knowledge to deliver

high-quality predictions for tasks such as the speech detection tasks. Thus, it is

important to offer application developers an easy-to-use API with the Tasklet

Library to pass such features to Voltaire.

Fourth, this experiment shows that Voltaire is able to predict the number of

instructions with high confidence when using models of type T3, which is an

important step towards precise energy-aware offloading decisions. The cross

validation reveals that gradient boosting is the most accurate regression method

for these applications. In the following experiments, we therefore only show the

results for gradient boosting.

Experiment 2 (Device-Specific Energy Profiles)

Voltaire uses device-specific CPU and network energy profiles. In practice, Voltaire

estimates the energy for local and remote execution based on the predictions of the

regression analysis, i.e., the quality of both regression analysis and energy profiling

has an influence on the quality of Voltaire’s offloading decisions. In this experiment,

we isolate the effect of the energy profiling methods. To achieve this, we calculate

the estimated energy of local and remote execution under the assumption that

the regression method predicted the correct number of instructions and result

size. We compare this estimation with the true energy consumption of local and

remote executions of the task in Figure 8.5.

We observe that the quality of the estimation of a local execution depends on the

CPU energy profiling method. Method P3 performs best for all applications. The

profile is based on application-specific measurements and is thus more accurate

than the more generic approaches P1 and P2. We therefore recommend to create

custom CPU energy profiles for each application with method P3 to unleash

138

8.4. Evaluation

Voltaire’s full potential. Whether method P1 or P2 performs better, depends on

the particular application and its similarity to the applications used to create the

profiles. We additionally observe that the energy consumption of a remote execu-

tion based on profiled values for data transmission Ptransmit and data reception

Preceive is well-predictable (see right part of Figure 8.5).

Figure 8.5.: Average deviation of the estimations for the energy consumption of
local and remote executions with different strategies. This experiment
assumes that the number of instructions is predicted correctly.
(PF= Photo filter, DT= Decision tree, SD = Speech detection).

Experiment 3 (Full-Stack Evaluation)

In the final experiment, we evaluate Voltaire’s energy-saving potential by applying

it to ten workflows of around 2.5 h each. Each workflow consists of 300 tasks

that include 100 photo filter, 100 decision tree classifier, and 100 speech detection

tasks. Figure 8.6 summarizes the average energy consumption per task across all

workflows. Tables 8.5 to 8.7 provide an overview of the energy consumption per

application (Table 8.5), the relative improvement (Table 8.6), and the number of

correct offloading decisions (Table 8.7) in comparison to an ideal scheduler. As a

baseline, we run two scheduling strategies in the Tasklet system that execute all

tasks remotely or all tasks locally, respectively. We observe that for the 3,000 tasks

in the evaluation, a remote execution is on average preferable to a local execution.

Simply offloading all tasks, however, only decreases the energy consumption by

1.8%. We therefore conclude that task-dependent, context-aware, and precise

offloading decisions are necessary to realize the full energy-saving potential of

computation offloading.

139

8.4. Evaluation

Appl.
Energy consumption per task (mJ)
Local Remote Avg. Exp. Sm. GB T3 Ideal

Photo filter 8210 8131 8296 8260 7340 7203
Decision tree classifier 5828 5942 5181 5224 4885 4876
Speech detection 8196 7770 8087 8087 7225 7144

Total 7411 7281 7188 7190 6483 6408

Table 8.5.: Energy consumption in the experiments (Exp. Sm. = Exponential
Smoothing, GB T3 = Gradient boosting with model type T3).

Appl.
Improvement to local execution (%)
Local Remote Avg. Exp. Sm. GB T3 Ideal

Photo filter - 1.0 -1.0 -0.6 10.6 12.3
Decision tree classifier - -2.0 11.1 10.3 16.2 16.3
Speech detection - 5.2 1.3 1.3 11.8 12.8

Total - 1.8 3.0 3.0 12.5 13.5

Table 8.6.: The improvement to local execution (Exp. Sm. = Exponential Smooth-
ing, GB T3 = Gradient boosting with model type T3).

Appl.
Correct decisions (%)
Local Remote Avg. Exp. Sm. GB T3 Ideal

Photo filter 50.5 49.5 45.8 47.0 86.7 100
Decision tree classifier 53.6 46.4 71.6 70.5 96.2 100
Speech detection 43.3 56.7 47.1 47.2 86.6 100

Total 49.1 50.9 54.8 54.9 89.8 100

Table 8.7.: Percentage of correction decisions (Exp. Sm. = Exponential Smooth-
ing, GB T3 = Gradient boosting with model type T3).

Figure 8.6.: Average improvement of the energy consumption by Voltaire in com-
parison to the status quo in the Tasklet system.
(Exp. Sm. = exponential smoothing, GB T1 = gradient boosting
with model type T1).

140

8.4. Evaluation

A first step is to use the average of past executions as a predictor of upcoming

executions, which was proposed in related literature [71, 104] and which is also

possible with Voltaire. We additionally apply an exponential smoothing method

with α = 0.5 as a logical extension that exploits the similarity of consecutive

executions. Both strategies perform better than the baseline strategies with

energy savings of 3.0%. The first experiment led to the conclusion that Voltaire

is able to accurately predict the number of bytecode instructions and the result

size of an upcoming task. The final experiment shows that accurate prediction,

together with precise device profiling, has a considerable positive effect on the

energy consumption. Voltaire’s regression analysis with gradient boosting of

model type T3 reduces the energy consumption by 12.5% in comparison to the

status quo. This is an improvement of 9.0% compared to related work that makes

offloading decisions based on the average of past executions. Voltaire achieves an

energy consumption that is on average only 1.0% worse than a hypothetical, ideal

scheduler that always makes the correct decision. Of 3,000 tasks, a small subset

of 10.2% of the tasks are incorrectly executed on the local or a remote device. We

further observe in Table 8.5 that Voltaire’s performance is especially beneficial

for the photo filter and the decision tree classifier, which confirms the results of

the first experiment. Figure 8.6 underlines that Voltaire’s prediction based on

parameters and application-specific features is a considerable improvement to a

prediction solely on the input data size.

8.4.3. Discussion

In the evaluation, we have demonstrated Voltaire’s effectiveness with three real-

world applications. Voltaire is able to predict the number of bytecode instructions

and the result data size precisely with machine learning. Device-dependent energy

profiles allow Voltaire to estimate the energy consumption of a local and a remote

execution. In this section, we briefly discuss the implications of the results.

How generalizable are the results? Voltaire is an approach that is designed

for neither a particular computation offloading system nor a special use case. We

argue that Voltaire is additionally applicable to a wide range of (i) applications, (ii)

devices, and (iii) transmission technologies. As far as applications are concerned,

we have evaluated Voltaire with three representative real-world applications. We

141

8.4. Evaluation

have shown that the prediction based on the input data size and the parameters

(model type T2) leads to satisfactory results in many cases. For applications

that require further features for the prediction, Voltaire offers a programming

interface. We therefore argue that the results are generalizable to a variety of

applications. We evaluate Voltaire with two Raspberry Pi. To use Voltaire with

different device types, it is required to create energy profiles for the respective

devices. This process is straightforward for all devices that allow hardware-based

energy measurements. For other devices, software-based solutions may be used as

a fallback. Thus, Voltaire is usable with a wide range of devices. Similar reasoning

is applicable to alternative transmission technologies such as 4G or Bluetooth.

The creation of novel network energy profiles is required, but the approach itself

remains unaffected. We are therefore confident that the results are generalizable.

What is the effect of crowdsourcing on the prediction accuracy? The

usage of crowdsourcing is a major design aspect of Voltaire. Instead of only

analyzing past executions of the same task on the same device, Voltaire integrates

crowd-sourced data from all prior executions of the task in the system. Figure 8.7

depicts the R2 score of the gradient boosting models of type T1 to T3 as a function

of the number of training data samples. The models are tested on data from

1,000 task executions for each application. We observe that the prediction quality

improves with an increasing number of samples. Especially an accurate prediction

of the speech detection application requires more samples (R2 = .909 for 200

training samples and R2 = .960 from the cross validation on 3,000 samples from

Table 8.4). Thus, we conclude that applying a crowd-sourcing strategy is able to

improve Voltaire’s prediction quality.

Would it be useful to distinguish between different instruction types?

All types of CPU energy profiles discussed in Section 8.3.2 assume that the average

energy cost of a certain bytecode instruction is constant. Although the accuracy

of the energy profiles is satisfactory even with this assumption, distinguishing

between different instruction types may be an important avenue for future work.

In complementary measurements with the Tasklet system, we have observed that

some bytecode instructions such as simple additions consume less energy than

bytecode instructions that, e.g., load data from the memory. It is likely that this

phenomenon also exists in other VM-based programming languages such as Java.

We could refine Voltaire in two ways. First, the regression models may predict

142

8.4. Evaluation

(a) Photo filter (b) Decision tree

(c) Speech detection

Figure 8.7.: Effect of training data size on R2 score for three types of gradient
boosting models (T1 = prediction on input data size, T2 = prediction
on input data size and parameters, T3 = prediction on input data
size, parameters, and application-specific features). Crowdsourcing
increases the training size in practice. In Figure (b), the curves for
T2 and T3 overlap.

the number of bytecode instructions for each instruction type separately instead

of the total number of instructions only. Second, the CPU energy profiles may

contain separate values for each instruction type. Based on our complementary

measurements and our observations during the experiments, this may be a valuable

addition to Voltaire to further improve its performance.

8.4.4. Threats to Validity

In this chapter, we focus on the energy savings of computation offloading from

a device-driven perspective. In our experiments, we neglect the consideration

of task completion times. If task completion times are important, offloading

offers further opportunities that should be taken into account in the decision

making such as the choice of powerful providers [122]. A thorough analysis of

the interplay of energy-awareness and task completion times is part of future

work. We perform measurements in a real-world testbed with the Tasklet system.

Therefore, measuring errors cannot be ruled out completely. Additionally, future

143

8.5. Summary

work may include an evaluation with other device types, bandwidths, system load,

or connection types such as Bluetooth. The same applies to the choice of machine

learning techniques and energy profiling methods, which was extensive but not

exhaustive. Voltaire’s effectiveness depends on the accuracy of the energy-profiling

method. In the evaluation, we perform hardware-based profiling on the Raspberry

Pi only. Profiling other devices — potentially also with software-based methods —

may be less accurate and thus affect Voltaire’s performance negatively.

8.5. Summary

This chapter presents Voltaire — a scheduler for sophisticated energy-aware off-

loading decisions. Voltaire decides whether local or remote execution is beneficial

for the energy consumption of a mobile device depending on the current context.

Based on crowd-sourced data of past executions, Voltaire is able to accurately

predict the complexity and the result size of an upcoming task with regression

methods from machine learning. In addition, it uses device-dependent energy

profiles that describe the energy consumption while computing and while trans-

ferring data. We apply Voltaire in an extensive real-world evaluation with three

applications: (i) grayscale photo filter, (ii) decision tree classifier, and (iii) speech

detection. During the evaluation, we perform hardware-based energy measure-

ments on a Raspberry Pi. The results indicate that Voltaire reduces the energy

consumption for task execution by 12.5% compared to the status quo.

144

9. Discussion

The previous chapters presented the Tasklet system for computation offloading

and the scheduling approaches DataVinci , DecArt , and Voltaire that serve as

QoC mechanisms for the edge. Both the Tasklet system itself and the three

QoC mechanisms are designed according to the requirements that we gathered in

Chapter 3. In this chapter, we verify whether the artifact fulfills these requirements.

Section 9.1 discusses the functional requirements; Section 9.2 the non-functional

requirements. Table 9.1 summarizes the discussion.

Functional Requirement E Non-Functional Req. E
RF1 — Computation offloading • RNF1 — Performance •
RF2 — Task-specific requirements • RNF2 — Scalability ◦
RF3 — Heterogeneity support • RNF3 — Robustness •
RF4 — Context-awareness • RNF4 — Usability ◦
RF5 — Data placement • RNF5 — Extensibility •
RF6 — Decentralized scheduling •
RF7 — Energy-awareness •

Table 9.1.: Verification of functional and non-functional requirements. Column E
(Evaluation) indicates whether a requirement is fulfilled.
(Req. = Requirement)
• fulfilled ◦ partially fulfilled

9.1. Functional Requirements

We discuss the seven functional requirements from Section 3.3.

RF1 — Computation offloading: The purpose of the Tasklet system is to

offload workload from consumers to providers in form of Tasklets. Tasklets are self-

contained units of computation that consist of executable bytecode, parameters,

input data, and metadata. The Tasklet Middleware handles the exchange of

Tasklets between consumers and providers. The providers run TVMs that execute

145

9.1. Functional Requirements

the Tasklet bytecode. After the execution, the Tasklet Middleware transfers the

results to the consumer via the network. Thanks to the Tasklet Library — an easy-

to-use API — application programmers can launch Tasklets and receive results

from various host languages with low effort. Thus, application programmers

can integrate computation offloading with Tasklets into a variety of applications.

The offloading process is entirely transparent to both application users and

programmers as it is managed by the Tasklet Middleware. The broker is the central

resource management software that performs task placement decisions. In various

experimental evaluations (Section 6.5, Section 7.4, Section 8.4, and [122,123,126]),

we show that the broker’s task placement decisions lead to fast and energy-efficient

computation offloading. We conclude that requirement RF1 is fulfilled.

RF2 — Task-specific requirements: The Tasklet approach allows application

programmers to specify so-called QoC goals, which are specific requirements for

each Tasklet. The Tasklet Middleware applies a best-effort approach that does not

provide any execution guarantees if the application programmer does not select

any QoC goals. If desired, the application programmer can select one or multiple

QoC goals such as Reliability, Speed, or Energy. The Tasklet Middleware enforces

the selected QoC goals with a multitude of QoC mechanisms. It selects the

proper mechanism based on the current context. The selection and the application

of the QoC mechanisms is transparent for application users and programmers.

The three scheduling approaches DataVinci , DecArt , and Voltaire that form

the core contribution of this thesis are QoC mechanisms for data-intensive tasks,

sub-second tasks, and energy-efficient tasks. As the QoC concept permits the

fine-granular selection of QoC goals for each Tasklet, we consider requirement

RF2 to be fulfilled.

RF3 — Heterogeneity support: Overcoming the heterogeneity in the edge

is a major design goal of the Tasklet system. Ideally, all device types shall be

able to share their computing resources. The Tasklet Middleware is executable

on Windows, macOS, Linux, Android, and iOS. The TVM abstracts from the

local hardware and allows Tasklet execution on many device types. In real-

world experiments, we offload Tasklets from and to smartphones [122,123,126],

tablets [122,123], laptops [126], desktop PCs [122,126], cloud servers [122,123],

and single-board computers such as Raspberry Pi [198]. In addition, we evaluate

the Tasklet system with various real-world applications from different domains

146

9.1. Functional Requirements

such as ray tracing or option pricing (cf. Section 5.2.3). These heterogeneous

applications offload Tasklets with different characteristics. Some Tasklets such as

the decision tree classifier are particularly data-intensive, others are rather long-

running tasks with high complexity (ray tracing), or originate from user-facing

and responsive applications with stricter deadlines (game AI, chess problems).

The Tasklet Library, which is currently available in Java, C#, and Dart, allows

application programmers to perform computation offloading without extensive

programming effort. Launching Tasklets is even possible from other host languages

via socket-based inter-process communication. We therefore conclude that the

artifact fulfills requirement RF3.

RF4 — Context-awareness: The Tasklet system is context-aware. The

providers inform the broker about their current state via the heartbeat channel.

The broker exploits this context information while making task placement deci-

sions. Discussing all situations where the Tasklet system uses context information

would exceed the scope of this discussion. We therefore only briefly mention

the context dimensions considered for the QoC mechanisms DataVinci , DecArt ,

and Voltaire. DataVinci monitors context of (i) the task such as input data size,

(ii) the application such as desired availability and level of parallelism, (iii) the

providers such as storage capacity, computational power, residence times, current

load, and data queue size. DecArt makes task placement decisions based on the

providers’ computational power and the scheduling history. Voltaire optimizes the

energy consumption of the consumer by considering (i) characteristics of the task

including input data size and parameters, (ii) characteristics of the providers such

as CPU and network energy profiles, and (iii) the available bandwidth. These

lists of context dimensions do not claim to be exhaustive. Nonetheless, they prove

that the Tasklet system is context-aware and therefore fulfills requirement RF4.

RF5 — Data placement: DataVinci is a QoC mechanism in the Tasklet system

for data-intensive tasks. We introduce it in Chapter 6. DataVinci performs

proactive data placement as specified in requirement RF5. We evaluate DataVinci

in detail in Section 6.5. We show with a real-world testbed that DataVinci ’s

context-aware replication strategy achieves task completion times within 14%

of a full replication while requiring less than 50% of the data transfer overhead

compared to this optimal but practically infeasible replication scheme. In the

large-scale simulation, we additionally show further benefits of DataVinci for

147

9.2. Non-Functional Requirements

new data versions. The approach is able to manage the tradeoff between task

completion times and data transfer overhead autonomously under varying system

loads. DataVinci therefore realizes the benefits of computation offloading for

data-intensive applications, which fulfills requirement RF5.

RF6 — Decentralized scheduling: With DecArt (cf. Chapter 7), consumers

in the Tasklet system are able to perform decentralized scheduling. The broker

periodically informs these consumers about the available providers in form of cache

lists. Based on the cache lists, the consumers make independent task placement

decisions. We develop the provider selection algorithms Drift and Bandit to

achieve low task completion times while avoiding collisions on fast providers. In

the evaluation in Section 7.4, we show that DecArt decreases completion times

of sub-second tasks by more than 30% in comparison to centralized scheduling.

In addition, DecArt performs within a 9% range of a hypothetical omniscient

scheduler. Thus, we conclude that DecArt fulfills requirement RF6.

RF7 — Energy-awareness: Application programmers can set the Energy QoC

goal for tasks that shall lead to minimal energy consumption on the consumer

device. The Tasklet Middleware enforces this QoC goal with Voltaire — the

QoC mechanism for energy-efficient Tasklet execution. We present Voltaire in

Chapter 8. Voltaire uses regression models to predict the task complexity and the

result data size of an upcoming task. With the help of device-dependent CPU and

network energy profiles, it accurately predicts the energy consumption of local

and remote execution, which makes it possible to select the more energy-efficient

option. We apply Voltaire in a real-world experiment with the Tasklet system in

Section 8.4. We set the Energy QoC goal for all Tasklets in this evaluation. As

a result, Voltaire improves the energy consumption of the consumer device by

12.5% in comparison to local executions and by 10.7% in comparison to remote

executions. We therefore consider requirement RF7 to be fulfilled.

9.2. Non-Functional Requirements

We present five non-functional requirements for the Tasklet system in Section 3.4.

We discuss them in the following.

148

9.2. Non-Functional Requirements

RNF1 — Performance: The two essential performance metrics for computation

offloading systems are average task completion time and energy consumption on

the consumer device. The Tasklet system has a strong focus on task completion

times. It offers several optimizations, i.e., QoC mechanisms, to reduce task

completion times. We give an overview of these optimizations in Section 5.1.4. The

optimizations improve different components of the task completion time. DecArt

minimizes the scheduling time. Instead of contacting the broker, consumers

offload tasks autonomously and, hence, faster. DataVinci shortens the time span

for transferring task and input data to providers with proactive data placement.

Workload partitioning [126] adapts the workload of a provider to its computational

power and therefore minimizes the completion time of multi-task jobs. Similarly,

the speed filter ensures that the selected providers have a higher throughput than a

threshold value, which also decreases task execution times. Migration [126] reduces

the amount of computation that is lost after a provider leave. It therefore improves

the task completion times in case of failures. Fault-avoidance with Tasklets [90]

selects reliable providers for execution. This mechanism avoids task abortions

and, hence, also improves the average task completion times. The Tasklet system

therefore has a large spectrum of QoC mechanisms available for fast computation

offloading. It can choose the appropriate mechanism based on the context. The

Tasklet system furthermore optimizes the energy consumption of the consumer

device with Voltaire, which leads to an energy efficiency comparable to an ideal

scheduler (cf. Section 8.4). While we recognize that there are always options for

further improvement, e.g., by making the implementation more efficient, we can

confidently conclude that the Tasklet system fulfills requirement RNF1.

RNF2 — Scalability: The Tasklet system is scalable thanks to its hybrid peer-

to-peer design. The load on the broker is reduced as consumers and providers

directly exchange Tasklets and results. Nonetheless, the broker may become a

bottleneck if the system size grows excessively. This is particularly important if

the broker runs rather complex algorithms such as Voltaire to achieve certain QoC

goals. In such cases, the Tasklet system allows spawning new brokers that are

responsible for a subset of the participating devices each. These brokers form an

overlay structure for coordination. As far as the three proposed QoC mechanisms

for the edge — DataVinci , DecArt , and Voltaire — are concerned, Voltaire is the

least scalable approach. DataVinci relies on heuristics and algorithms with low

149

9.2. Non-Functional Requirements

computational complexity. Even a single broker with decent computational power

is able to handle this workload in systems with hundreds of devices. DecArt is

a decentralized scheduling approach, which already implies good scalability as

coordination among devices is not required. The distribution of the cache lists

by the broker happens asynchronously and with low overhead as we illustrate in

Section 7.4.3. Voltaire requires the execution of online machine learning on the

broker, which is computationally intensive. We briefly discuss some measures to

mitigate the computational complexity such as using fewer regression models in

Section 8.3. If these measures are not sufficient, the remaining option is to spawn

more brokers that share the workload. Thus, we infer that the Tasklet system

is scalable to an extent that is suitable for edge computing systems. However,

we consider requirement RNF2 as only partially fulfilled as the coordination of

multiple brokers was neither implemented nor evaluated so far.

RNF3 — Robustness: Two kinds of failures may occur in the Tasklet system:

provider failures and broker failures. Both can happen if communication links

fail, devices turn off, or users occupy the whole computing power of a device

for their own purposes. Provider failures are more likely as the broker software

typically runs on reliable devices and as the number of providers usually exceeds

the number of brokers. The Tasklet system includes several measures to cope with

provider failures, which we introduce in Section 5.1.4. Fault-avoidance [90] and

migration [126] lead to fewer provider failures during Tasklet execution or to a less

severe impact of such failures, respectively. The Tasklet system additionally re-

schedules aborted Tasklets if the application programmer sets the Reliability QoC

goal. In this case, the system guarantees the correct execution even if multiple

failures occur, which makes the Tasklet system robust to provider failures. Broker

failures are more severe as brokers perform the central matchmaking between

consumers and providers. In case of such failures, the affected consumers and

providers can connect to other brokers that are working correctly. Additionally,

DecArt allows the consumers to offload Tasklets autonomously based on the cache

list. Although the information on the cache list will become outdated eventually,

it is highly likely that at least some of the providers on the list are still available

for a longer period of time. The Tasklet system is therefore also robust to broker

failures and, hence, fulfills requirement RNF3.

150

9.2. Non-Functional Requirements

RNF4 — Usability: We design the Tasklet system to be easy to use for applica-

tion users, resource providers, and application programmers. First, the offloading

process is transparent for all three stakeholder groups. Second, consumers and

providers are able to use their devices as usual while the Tasklet Middleware is

running in the background. Third, application programmers can offload computa-

tion with Tasklets easily from several host languages with the Tasklet Library.

The Tasklet Library offers an intuitive API for sending and receiving Tasklets as

illustrated in Listing 5.2. In addition, application programmers should become

familiar with the Tasklet language C-- quickly thanks to its simplicity and its

resemblance with popular programming languages. While we are confident that

the usability of the Tasklet system is high for all stakeholder groups, conducting a

rigorous user study to prove this claim is part of future work. Thus, we consider

requirement RNF4 to be partially fulfilled.

RNF5 — Extensibility: We attest a high extensibility of the Tasklet system.

First, launching Tasklets from a new host language is in theory possible without

any changes to the Tasklet system code. Application programmers could in theory

create the language-independent representation of a Tasklet without the help of

the Tasklet library and communicate it to the middleware via sockets. Making the

usage of a new host language convenient for the application programmer requires

porting the Tasklet library to the new language, which we did in the past and

which is possible with comparably low effort. Second, Tasklets could in principle

even work with other languages for the Tasklet code apart from C-- if providers

offer the appropriate execution environment. So far, we have experimented with

the alternative programming languages WebAssembly and Lua and we plan to

explore this path further in the future. Third, integrating new device types is

possible by adjusting the Tasklet Middleware implementation. Reference [231]

shows, for instance, how GPUs are able to execute Tasklets. Fourth, the separation

of QoC goals and QoC mechanisms as described in Section 5.1.4 makes it possible

to extend the range of available goals and mechanisms in a modular way. All these

extensions have in common that they do not require any changes in the protocol

or the core characteristics of the Tasklet system. We are currently working on

an open-source release such that other researchers may extend the system in the

future. We conclude that the Tasklet system fulfills requirement RNF5.

151

10. Conclusion

The demand for computing power of software in areas such as AR/VR, machine

learning, or image processing increases. In addition, users often execute such

applications on mobile devices, which offer less computing power than, e.g., desktop

PCs and furthermore suffer from limited battery capacity. Thus, the requirements

of today’s software can exceed the capabilities of the user device. This leads to

unacceptable waiting times for the user and a quick drain of the device’s battery.

Computation offloading is a technology that is able to overcome these challenges.

The user device — the consumer — offloads computationally intensive tasks to

remote resource providers. The providers execute the computation and return the

result via the network.

As we show in Chapter 2, computation offloading has been applied in various

distributed computing paradigms such as cluster or cloud computing. In this

thesis, we propose a computation offloading approach with a strong focus on

modern edge computing environments. In such environments, end-user devices

such as laptops or desktop PCs serve as computational resource providers. This

introduces new challenges such as fluctuation and heterogeneity in terms of

software and hardware. In Chapter 3, we specify requirements for a computation

offloading system that makes edge computing faster and more energy-efficient.

We review related work extensively in Chapter 4 and conclude that no existing

approach fulfills the requirements. Thus, we introduce the Tasklet computation

offloading system in Chapter 5. Tasklets are self-contained units of computation

that can be exchanged seamlessly between consumers and providers with the

Tasklet Middleware. Thanks to virtualization by the TVM, heterogeneous devices

can participate in a single resource sharing system. With the Tasklet Library

— an easy-to-use API — programmers can write applications that launch Tasklets

and process the results. They can conveniently use their preferred programming

language for the application as the Tasklet Library is available for several host

languages. Only the computationally intensive part of the application is written

153

10. Conclusion

in the Tasklet language C-- and offloaded as a Tasklet. To tailor the execution to

application-specific requirements, the application programmer can select one or

multiple QoC goals such as reliability, speed, or energy-awareness for each Tasklet.

The Tasklet Middleware integrates several QoC mechanisms for enforcing these

QoC goals transparently.

In this thesis, we design QoC mechanisms that overcome three main challenges

for computation offloading in the edge. First, data-intensive tasks suffer from

prolonged task completion times due to the time-consuming transfer of input

data to remote providers. We introduce DataVinci in Chapter 6. DataVinci

is a QoC mechanism for the Tasklet system that performs proactive placement

of input data on one or multiple providers. These providers are then able to

immediately start the Tasklet execution without a time-consuming ad-hoc data

transfer. Second, responsive and user-facing tasks with sub-second deadlines

are challenging in edge environments where communication latencies are in the

same order of magnitude as execution times. We therefore present the QoC

mechanism DecArt in Chapter 7. DecArt performs decentralized scheduling based

on previously distributed cache lists. It eliminates the need for coordination with

other peers or a central resource manager before offloading a task. In addition,

DecArt integrates sophisticated provider selection algorithms, which avoid that

powerful providers become congested. Third, optimizing the energy consumption

of the consumer device requires the careful consideration of the context as even

the same task may sometimes consume more energy if executed locally and

sometimes if executed remotely. We design Voltaire — a QoC mechanism for

energy efficiency — in Chapter 8. Voltaire uses regression models to predict the

task complexity and the result data size of an upcoming task. With the help of

device-dependent CPU and network energy profiles, it accurately predicts the

energy consumption of local and remote execution, which makes it possible to

select the more energy-efficient option.

We evaluate all three QoC mechanisms extensively in large-scale simulations

and real-world testbeds. We observe that the Tasklet system in combination

with DataVinci , DecArt , and Voltaire is able to realize the two main benefits of

computation offloading — low task completion times and high energy efficiency

— even in challenging edge computing environments. The discussion in Chapter 9

shows that the Tasklet system fulfills the majority of the requirements.

154

10. Conclusion

Outlook

Although the Tasklet system has proven its benefits in multiple experiments,

opportunities for improvement exist. First, the design and implementation of the

broker overlay in future work as discussed in Chapter 9 will increase the scalability

of the Tasklet system. So far, we have focused on systems with a single broker.

Especially when applying comparably complex QoC mechanisms such as Voltaire,

larger systems may profit from having multiple brokers that are each responsible

for a subset of the devices.

Second, we work towards releasing the Tasklet system as an open-source project.

In the future, we plan to deploy the system in large-scale experiments with real

users. Although we have performed multiple experiments in real-world testbeds,

experiments that include dozens of users interacting with applications in their

natural way would provide even more insights. We also plan to conduct a user

study that assesses the usability of the Tasklet system for application programmers

and application users. This will fulfill the usability requirement RNF4.

Third, future versions of the Tasklet system should balance multiple objectives.

Instead of optimizing either task completion times or energy consumption, the

system should offer various ways to consider both metrics. A deadline approach,

where the system optimizes the energy consumption as long as a certain deadline

is not violated, is a conceivable alternative. Another approach is to monitor

context dimensions such as the battery percentage to automatically select fast or

energy-efficient execution.

Fourth, future work will address the incentivization of users. This thesis concen-

trates solely on the technical aspects of computation offloading. To achieve high

market penetration in practice, however, user acceptance and participation are

essential. Computation offloading in the edge only works if sufficiently many users

share the computing power of their devices. A first step towards an incentive

mechanism for the Tasklet system is presented in [232]. Quantifying the economic

viability of the Tasklet system and assessing business models for a deployment in

practice is another important avenue for future research that is closely connected

to incentive mechanisms.

155

Bibliography

[1] M. Weiser, “The Computer for the 21st Century,” Scientific American, vol.

265, no. 3, 1991.

[2] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for VM-

Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput., vol. 8,

no. 4, 2009.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation

Offloading for Mobile Systems,” Mobile Netw. Appl., vol. 18, 2013.

[4] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture

and Computation Offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3,

2017.

[5] L. Lin, X. Liao, H. Jin, and P. Li, “Computation Offloading Toward Edge

Computing,” Proc. IEEE, vol. 107, no. 8, 2019.

[6] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - A Hunter of Idle

Workstations,” University of Wisconsin, Tech. Rep., 1987.

[7] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,” IEEE

Pers. Commun., vol. 8, no. 4, 2001.

[8] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,

“SETI@home - Massively Distributed Computing for SETI,” Comput. Sci.

Eng., vol. 3, no. 78, 2001.

[9] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,

“SETI@home: An Experiment in Public-Resource Computing,” Commun.

ACM, vol. 45, no. 11, 2002.

[10] E. J. Korpela, “SETI@home, BOINC, and Volunteer Distributed Comput-

ing,” Annu. Rev. Earth Planet. Sci., vol. 40, no. 1, 2012.

xvii

Bibliography

[11] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande,

“Folding@home: Lessons From Eight Years of Volunteer Distributed Com-

puting,” in Proc. IPDPS. IEEE, 2009.

[12] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid

Computing 360-Degree Compared,” in Proc. GCE. IEEE, 2008.

[13] R. L. Grossman, “The Case for Cloud Computing,” IT Prof., vol. 11, no. 2,

2009.

[14] M. Armbrust et al., “A View of Cloud Computing,” Commun. ACM, vol. 53,

no. 4, 2010.

[15] P. Garcia Lopez et al., “Edge-centric Computing: Vision and Challenges,”

ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, 2015.

[16] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Comput., vol. 49,

no. 5, 2016.

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and

Challenges,” IEEE Internet Things J., vol. 3, no. 5, 2016.

[18] D. Schäfer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker, “Tasklets:

Overcoming Heterogeneity in Distributed Computing Systems,” in Proc.

ICDCSW. IEEE, 2016.

[19] M. van Steen and A. S. Tanenbaum, “A Brief Introduction to Distributed

Systems,” Comput., vol. 98, 2016.

[20] I. Bird, “Computing for the Large Hadron Collider,” Ann. Rev. Nucl.

Particle Sci., vol. 61, 2011.

[21] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey of

Grid Resource Management Systems for Distributed Computing,” Softw.

Pract. Exper., vol. 32, no. 2, 2002.

[22] M. Baker and R. Buyya, “Cluster Computing: The Commodity Supercom-

puter,” Softw. Pract. Exper., vol. 29, no. 6, 1999.

[23] E. Boutin et al., “Apollo: Scalable and Coordinated Scheduling for Cloud-

Scale Computing,” in Proc. OSDI. USENIX, 2014.

[24] A. Verma et al., “Large-scale Cluster Management at Google with Borg,”

in Proc. EuroSys. ACM, 2015.

xviii

Bibliography

[25] G. L. Valentini et al., “An Overview of Energy Efficiency Techniques in

Cluster Computing Systems,” Cluster Comput., vol. 16, 2013.

[26] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Commun. ACM, vol. 51, no. 1, 2008.

[27] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel Data

Processing with MapReduce: A Survey,” SIGMOD Record, vol. 40, no. 4,

2011.

[28] C.-T. Chu et al., “Map-Reduce for Machine Learning on Multi-Core,” in

Proc. NIPS. MIT Press, 2006.

[29] A. McKenna et al., “The Genome Analysis Toolkit: A MapReduce Frame-

work for Analyzing Next-Generation DNA Sequencing Data,” Genome

Research, vol. 20, no. 9, 2010.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster Computing with Working Sets,” in Proc. HotCloud. USENIX,

2010.

[31] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks,” in Proc. EuroSys.

ACM, 2007.

[32] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand, “Fir-

mament: Fast, Centralized Cluster Scheduling at Scale,” in Proc. OSDI.

USENIX, 2016.

[33] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations,” Int. J. Supercomput. Appl. High Perform.

Comput., vol. 15, no. 3, 2001.

[34] D. Thain, T. Tannenbaum, and L. Miron, “Distributed Computing in

Practice: The Condor Experience,” Concurr. Comput. Pract. Exp., vol. 17,

no. 2, 2005.

[35] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure

Toolkit,” Int. J. Supercomput. Appl. High Perform. Comput., vol. 11, no. 2,

1997.

[36] ——, “The Globus Project: A Status Report,” in Proc. HCW. IEEE, 1998.

xix

Bibliography

[37] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An Architecture for a

Resource Management and Scheduling System in a Global Computational

Grid,” in Proc. HPC-Asia. IEEE, 2000.

[38] F. Berman et al., “Adaptive Computing on the Grid Using AppLeS,” IEEE

Trans. Parallel Distrib. Syst., vol. 14, no. 4, 2003.

[39] M. B. Qureshi et al., “Survey on Grid Resource Allocation Mechanisms,” J.

Grid Comput., vol. 12, no. 2, 2014.

[40] D. K. Patel, D. Tripathy, and C. R. Tripathy, “Survey of Load Balancing

Techniques for Grid,” J. Netw Comput. Appl., vol. 65, 2016.

[41] R. McClatchey, A. Anjum, H. Stockinger, A. Ali, I. Willers, and M. Thomas,

“Scheduling in Data Intensive and Network Aware (DIANA) Grid Environ-

ments,” J. Grid Comput., vol. 5, no. 1, 2007.

[42] J. Blythe et al., “Task Scheduling Strategies for Workflow-based Applications

in Grids,” in Proc. CCGRID. IEEE, 2005.

[43] D. P. Anderson, “BOINC: A System for Public-Resource Computing and

Storage,” in Proc. GRID. IEEE/ACM, 2004.

[44] ——, “BOINC: A Platform for Volunteer Computing,” J. Grid Comput.,

vol. 18, no. 1, 2020.

[45] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National

Institute of Standards and Technology, Tech. Rep., 2011.

[46] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J. M. Pierson, and A. V.

Vasilakos, “Cloud Computing: Survey on Energy Efficiency,” ACM Comput.

Surveys, vol. 47, no. 2, 2015.

[47] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile Cloud Computing: A

Survey,” Futur. Gener. Comput. Syst., vol. 29, no. 1, 2013.

[48] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in Mobile

Cloud Computing: Taxonomy and Open Challenges,” IEEE Commun.

Surveys Tuts., vol. 16, no. 1, 2014.

[49] A. ur Rehman Khan, M. Othman, S. A. Madani, and S. U. Khan, “A Survey

of Mobile Cloud Computing Application Models,” IEEE Commun. Surveys

Tuts., vol. 16, no. 1, 2014.

xx

Bibliography

[50] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”

Comput. Netw., vol. 54, 2010.

[51] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of

Fog Computing in the Context of Internet of Things,” IEEE Trans. Cloud

Comput., vol. 6, no. 1, 2018.

[52] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The Brewing Storm in

Cloud Gaming: A Measurement Study on Cloud to End-User Latency,” in

Proc. NetGames. IEEE, 2012.

[53] L. M. Vaquero and L. Rodero-Merino, “Finding Your Way in the Fog:

Towards a Comprehensive Definition of Fog Computing,” ACM SIGCOMM

Comput. Commun. Rev., vol. 44, no. 5, 2014.

[54] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,

“Challenges and Opportunities in Edge Computing,” in Proc. SmartCloud.

IEEE, 2016.

[55] M. Heck, J. Edinger, D. Schäfer, and C. Becker, “IoT Applications in Fog

and Edge Computing: Where Are We and Where Are We Going?” in Proc.

ICCCN. IEEE, 2018.

[56] R. Hasan, M. M. Hossain, and R. Khan, “Aura: An IoT Based Cloud

Infrastructure for Localized Mobile Computation Outsourcing,” Proc. Mo-

bileCloud, 2015.

[57] E. Miluzzo, R. Cáceres, and Y. F. Chen, “Vision: mClouds - Computing on

Clouds of Mobile Devices,” in Proc. MCS. ACM, 2012.

[58] N. Fernando, S. W. Loke, and W. Rahayu, “Dynamic Mobile Cloud Com-

puting: Ad hoc and Opportunistic Job Sharing,” in Proc. UCC. IEEE,

2011.

[59] A. Mishra and G. Masson, “MoCCA: A Mobile Cellular Cloud Architecture,”

in Proc. Sarnoff. IEEE, 2012.

[60] G. A. McGilvary, A. Barker, and M. Atkinson, “Ad Hoc Cloud Computing,”

in Proc. CLOUD. IEEE, 2015.

[61] I. Yaqoob et al., “Mobile Ad Hoc Cloud: A Survey,” Wirel. Commun. Mob.

Comput., vol. 16, 2016.

xxi

Bibliography

[62] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the Decentralised

Cloud: Survey on Approaches and Challenges for Mobile, Ad Hoc, and Edge

Computing,” ACM Comput. Surv., vol. 51, no. 6, 2019.

[63] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge Computing:

A Survey,” IEEE Internet Things J., vol. 5, no. 1, 2018.

[64] N. Hassan, K. L. A. Yau, and C. Wu, “Edge Computing in 5G: A Review,”

IEEE Access, vol. 7, 2019.

[65] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its

Role in the Internet of Things,” in Proc. MCC. ACM, 2012.

[66] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile

Code Offloading: From Concept to Practice and Beyond,” IEEE Commun.

Magazine, vol. 53, no. 3, 2015.

[67] G. Fedak, C. Germain, V. Néri, and F. Cappello, “XtremWeb : A Generic

Global Computing System,” in Proc. CCGrid. IEEE, 2001.

[68] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “Clone2Clone (C2C):

Peer-to-Peer Networking of Smartphones on the Cloud,” in Proc. HotCloud.

USENIX, 2013.

[69] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a Computation

Offloading Framework for Smartphones,” in Proc. MobiCASE. Springer,

2010.

[70] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:

Elastic Execution Between Mobile Device and Cloud,” in Proc. EuroSys.

ACM, 2011.

[71] E. Cuervo et al., “MAUI: Making Smartphones Last Longer with Code

Offload,” in Proc. MobiSys. ACM, 2010.

[72] G. C. Hunt and M. L. Scott, “The Coign Automatic Distributed Partitioning

System,” in Proc. OSDI. USENIX, 1999.

[73] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,

“COMET: Code Offload by Migrating Execution Transparently,” in Proc.

OSDI. USENIX, 2012.

xxii

Bibliography

[74] A. Jonathan, M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Neb-

ula: Distributed Edge Cloud for Data Intensive Computing,” IEEE Trans.

Parallel Distrib. Syst., vol. 28, no. 11, 2017.

[75] H. Flores et al., “Evidence-Aware Mobile Computational Offloading,” IEEE

Trans. Mob. Comput., vol. 17, no. 8, 2018.

[76] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir: Dynamic

Resource Allocation and Parallel Execution in the Cloud for Mobile Code

Offloading,” in Proc. INFOCOM. IEEE, 2012.

[77] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing Performance, Energy,

and Quality in Pervasive Computing,” in Proc. ICDCS. IEEE, 2002.

[78] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed,

Low Latency Scheduling,” in Proc. SOSP. ACM, 2013.

[79] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi, “Tactics-Based

Remote Execution for Mobile Computing,” in Proc. MobiSys. USENIX,

2003.

[80] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-Based Cloud Platform

for Mobile Computation Offloading,” in Proc. IPDPS. IEEE, 2017.

[81] I. Baldini et al., “Serverless Computing: Current Trends and Open Problems,”

in Research Advances in Cloud Computing, S. Chaudhary, G. Somani, and

R. Buyya, Eds. Springer, 2017.

[82] L. Baresi, F. Mendonça, and M. Garriga, “Empowering Low-Latency Ap-

plications Through a Serverless Edge Computing Architecture,” in Proc.

ESOCC. Springer, 2017.

[83] C. Cicconetti, M. Conti, and A. Passarella, “Low-Latency Distributed

Computation Offloading for Pervasive Environments,” in Proc. PerCom.

IEEE, 2019.

[84] ——, “A Decentralized Framework for Serverless Edge Computing in the

Internet of Things,” IEEE Trans. Netw. Service Manag., vol. 18, no. 2, 2021.

[85] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context

and Context-Awareness,” in Proc. HUC. Springer, 1999.

[86] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applica-

tions,” in Proc. WMCSA. IEEE, 1994.

xxiii

Bibliography

[87] M. Salehie and L. Tahvildari, “Self-Adaptive Software : Landscape and

Research Challenges,” ACM Trans. Autonom. Adapt. Syst., vol. 4, no. 2,

2009.

[88] Y. Brun et al., “Engineering Self-Adaptive Systems through Feedback

Loops,” in Software Engineering for Self-Adaptive Systems, B. H. C. Cheng,

R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer, 2009.

[89] T.D. Braun et al., “A Comparison of Eleven Static Mapping Heuristics

for Mapping a Class of Independent Tasks onto Heterogeneous Distributed

Computing Systems,” J. Parallel Distrib. Comput., vol. 61, 2001.

[90] J. Edinger, D. Schäfer, C. Krupitzer, V. Raychoudhury, and C. Becker,

“Fault-Avoidance Strategies for Context-Aware Schedulers in Pervasive Com-

puting Systems,” in Proc. PerCom. IEEE, 2017.

[91] J. Sonnek, A. Chandra, and J. B. Weissman, “Adaptive Reputation-Based

Scheduling on Unreliable Distributed Infrastructures,” IEEE Trans. Parallel

Distrib. Syst., vol. 18, no. 11, 2007.

[92] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Balles-

teros, “2K: A Distributed Operating System for Dynamic Heterogeneous

Environments,” in Proc. HPDC. IEEE, 2000.

[93] T. Braud, P. Zhou, J. Kangasharju, and P. Hui, “Multipath Computation

Offloading for Mobile Augmented Reality,” in Proc. PerCom. IEEE, 2020.

[94] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive Edge Computing in

Latency-Constrained Fog Networks,” in Proc. EuCNC. IEEE, 2017.

[95] F. Berg, F. Dürr, and K. Rothermel, “Optimal Predictive Code Offloading,”

in Proc. MobiQuitous. ACM, 2014.

[96] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To Offload or Not To Offload: An

Efficient Code Partition Algorithm for Mobile Cloud Computing,” in Proc.

CloudNet. IEEE, 2012.

[97] R. B. Miller, “Response Time in Man-Computer Conversational Transac-

tions,” in Proc. AFIPS FJCC. ACM, 1968.

[98] Z. Chen et al., “An Empirical Study of Latency in an Emerging Class of

Edge Computing Applications for Wearable Cognitive Assistance,” in Proc.

SEC. ACM/IEEE, 2017.

xxiv

Bibliography

[99] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying Interactive

User Experience on Thin Clients,” Computer, vol. 39, no. 3, 2006.

[100] E. Cuervo et al., “Kahawai: High-Quality Mobile Gaming using GPU

Offload,” in Proc. MobiSys. ACM, 2015.

[101] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: Architecture and

Performance of an Enterprise Desktop Grid System,” J. Parallel Distrib.

Comput., vol. 63, no. 5, 2003.

[102] B. Calder, A. A. Chien, J. Wang, and D. Yang, “The Entropia Virtual

Machine for Desktop Grids,” in Proc. VEE. ACM, 2005.

[103] W. Cirne et al., “Labs of the World, Unite!!!” J. Grid Comput., vol. 4, 2006.

[104] D. Kovachev and R. Klamma, “Framework for Computation Offloading in

Mobile Cloud Computing,” Int. J. Artif. Intell. Interact. Multimed., vol. 1,

no. 7, 2012.

[105] H.-Y. Chen, Y.-H. Lin, and C.-M. Cheng, “COCA: Computation Offload to

Clouds using AOP,” in Proc. CCGrid. IEEE, 2012.

[106] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: En-

abling Remote Computing among Intermittently Connected Mobile Devices,”

in Proc. MobiHoc. ACM, 2012.

[107] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The

Aneka Platform and QoS-Driven Resource Provisioning for Elastic Applica-

tions on Hybrid Clouds,” Futur. Gener. Comput. Syst., vol. 28, 2012.

[108] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya, “Deadline-

Driven Provisioning of Resources for Scientific Applications in Hybrid Clouds

with Aneka,” Futur. Gener. Comput. Syst., vol. 28, 2012.

[109] D. Chae et al., “CMcloud: Cloud Platform for Cost-Effective Offloading of

Mobile Applications,” in Proc. CCGrid. IEEE/ACM, 2014.

[110] H. Qian and D. Andresen, “Jade: An Efficient Energy-Aware Computation

Offloading System with Heterogeneous Network Interface Bonding for Ad-

Hoc Networked Mobile Devices,” in Proc. SNPD. IEEE, 2014.

[111] ——, “An Energy-Saving Task Scheduler for Mobile Devices,” in Proc. ICIS.

IEEE, 2015.

xxv

Bibliography

[112] I. Zhang et al., “Customizable and Extensible Deployment for Mobile/Cloud

Applications,” in Proc. OSDI. USENIX, 2014.

[113] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,

“COSMOS: Computation Offloading as a Service for Mobile Devices,” in

Proc. MobiHoc. ACM, 2014.

[114] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto Clouds:

Leveraging Mobile Devices to Provide Cloud Service at the Edge,” in Proc.

CLOUD. IEEE, 2015.

[115] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and H. Debnath,

“Avatar: Mobile Distributed Computing in the Cloud,” in Proc. MobileCloud.

IEEE, 2015.

[116] G. Orsini, D. Bade, and W. Lamersdorf, “CloudAware: Empowering

Context-Aware Self-Adaptation for Mobile Applications,” Trans. Emerging

Tel. Tech., vol. 29, no. 4, 2018.

[117] L. Lin, P. Li, X. Liao, H. Jin, and Y. Zhang, “Echo: An Edge-Centric Code

Offloading System with Quality of Service Guarantee,” IEEE Access, vol. 7,

2019.

[118] H. Gedawy, K. A. Harras, K. Habak, and M. Hamdi, “FemtoClouds Beyond

the Edge: The Overlooked Data Centers,” IEEE Internet Things Mag.,

vol. 3, no. 1, 2020.

[119] M. Satyanarayanan et al., “Edge Analytics in the Internet of Things,” IEEE

Pervasive Comput., vol. 14, no. 2, 2015.

[120] ——, “An Open Ecosystem for Mobile-Cloud Convergence,” IEEE Commun.

Mag., vol. 53, no. 3, 2015.

[121] R. V. Van Nieuwpoort et al., “Ibis: A Flexible and Efficient Java-Based

Grid Programming Environment,” Concurrency Computat.: Pract. Exper.,

vol. 17, 2005.

[122] D. Schäfer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker, “Tasklets

: ”Better than Best-Effort” Computing,” in Proc. ICCCN. IEEE, 2016.

[123] D. Schäfer, J. Edinger, J. Eckrich, M. Breitbach, and C. Becker, “Hybrid

Task Scheduling for Mobile Devices in Edge and Cloud Environments,” in

Proc. PerCom Workshops. IEEE, 2018.

xxvi

Bibliography

[124] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-Aware Data

and Task Placement in Edge Computing Environments,” in Proc. PerCom.

IEEE, 2019.

[125] J. Edinger, “Context-Aware Task Scheduling in Distributed Computing

Systems,” Ph.D. dissertation, University of Mannheim, 2019.

[126] D. Schäfer, J. Edinger, M. Breitbach, and C. Becker, “Workload Partitioning

and Task Migration to Reduce Response Times in Heterogeneous Computing

Environments,” in Proc. ICCCN. IEEE, 2018.

[127] D. Schäfer, “Elastic Computation Placement in Edge-based Environments,”

Ph.D. dissertation, University of Mannheim, 2019.

[128] D. Schäfer, J. Edinger, C. Becker, and M. Breitbach, “Writing a Distributed

Computing Application in 7 Minutes with Tasklets,” in Proc. Middleware

Posters and Demos. ACM, 2016.

[129] J. Edinger, D. Schäfer, M. Breitbach, and C. Becker, “Developing Dis-

tributed Computing Applications with Tasklets,” in Proc. PerCom Work-

shops. IEEE, 2017.

[130] A. Ramakrishnan et al., “Scheduling Data-Intensive Workflows onto Storage-

Constrained Distributed Resources,” in Proc. CCGrid. IEEE, 2007.

[131] T. Kokilavani and D. George Amalarethinam, “Load Balanced Min-Min

Algorithm for Static Meta-Task Scheduling in Grid Computing,” Int. J.

Comput. Appl., vol. 20, no. 2, 2011.

[132] M. Breitbach, J. Edinger, D. Schäfer, and C. Becker, “DataVinci: Proactive

Data Placement for Ad-Hoc Computing,” in Proc. IPDPS Workshops. IEEE,

2021.

[133] T. Kosar and M. Balman, “A New Paradigm: Data-Aware Scheduling in

Grid Computing,” Futur. Gener. Comput. Syst., vol. 25, no. 4, 2009.

[134] B. Allcock et al., “Data Management and Transfer in High-Performance

Computational Grid Environments,” Parallel Comput., vol. 28, no. 5, 2002.

[135] X. Xia, F. Chen, Q. He, J. C. Grundy, M. Abdelrazek, and H. Jin, “Cost-

Effective App Data Distribution in Edge Computing,” IEEE Trans. Parallel

Distrib. Syst., vol. 32, no. 1, 2021.

xxvii

Bibliography

[136] B. Tang et al., “Incorporating Intelligence in Fog Computing for Big Data

Analysis in Smart Cities,” IEEE Trans. Ind. Informatics, vol. 13, no. 5,

2017.

[137] A. H. Alhusaini, V. K. Prasanna, and C. Raghavendra, “A Unified Resource

Scheduling Framework for Heterogeneous Computing Environments,” in

Proc. HCW. IEEE, 1999.

[138] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS Pa-

rameter Sweep Template: User-Level Middleware for the Grid,” in Proc.

SC. ACM/IEEE, 2000.

[139] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics for

Scheduling Parameter Sweep Applications in Grid Environments,” in Proc.

HCW. IEEE, 2000.

[140] K. Ranganathan and I. Foster, “Decoupling Computation and Data Schedul-

ing in Distributed Data-Intensive Applications,” in Proc. HPDC. IEEE,

2002.

[141] X. He, X. Sun, and G. von Laszweski, “QoS Guided Min-Min Heuristic for

Grid Task Scheduling,” J. Comput. Sci. Technol., vol. 18, no. 4, 2003.

[142] D. G. Cameron, A. P. Millar, C. Nicholson, R. Carvajal-Schiaffino,

K. Stockinger, and F. Zini, “Analysis of Scheduling and Replica Opti-

misation Strategies for Data Grids Using OptorSim,” J. Grid Comput.,

vol. 2, 2004.

[143] F. Desprez and A. Vernois, “Simultaneous Scheduling of Replication and

Computation for Data-Intensive Applications on the Grid,” J. Grid Comput.,

vol. 4, no. 1, 2006.

[144] M. Tang, B. S. Lee, X. Tang, and C. K. Yeo, “The Impact of Data Replication

on Job Scheduling Performance in the Data Grid,” Futur. Gener. Comput.

Syst., vol. 22, 2006.

[145] R.-S. Chang, J.-S. Chang, and S.-Y. Lin, “Job Scheduling and Data Repli-

cation on Data Grids,” Futur. Gener. Comput. Syst., vol. 23, 2007.

[146] S. Venugopal, R. Buyya, and L. Winton, “A Grid Service Broker for Schedul-

ing e-Science Applications on Global Data,” Concurr. Comput. Pract. Exp.,

vol. 18, 2006.

xxviii

Bibliography

[147] A. Chervenak et al., “Data Placement for Scientific Applications in Dis-

tributed Environments,” in Proc. GRID. IEEE, 2007.

[148] A. Chakrabarti and S. Sengupta, “Scalable and Distributed Mechanisms

for Integrated Scheduling and Replication in Data Grids,” in Proc. ICDCN.

Springer, 2008.

[149] D. T. Nukarapu, B. Tang, L. Wang, and S. Lu, “Data Replication in Data

Intensive Scientific Applications with Performance Guarantee,” IEEE Trans.

Parallel Distrib. Syst., vol. 22, no. 8, 2011.

[150] H. Liu, A. Abraham, V. Snášel, and S. McLoone, “Swarm Scheduling

Approaches for Work-Flow Applications with Security Constraints in Dis-

tributed Data-Intensive Computing Environments,” Inf. Sci. (Ny)., vol. 192,

2012.

[151] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove, “Online Cost-

Efficient Scheduling of Deadline-Constrained Workloads on Hybrid Clouds,”

Futur. Gener. Comput. Syst., vol. 29, no. 4, 2013.

[152] J. Taheri, Y. Choon Lee, A. Y. Zomaya, and H. J. Siegel, “A Bee Colony

Based Optimization Approach for Simultaneous Job Scheduling and Data

Replication in Grid Environments,” Comput. Oper. Res., vol. 40, no. 6,

2013.

[153] O. Choudhury, D. Rajan, N. Hazekamp, S. Gesing, D. Thain, and S. Em-

rich, “Balancing Thread-level and Task-level Parallelism for Data-Intensive

Workloads on Clusters and Clouds,” in Proc. ICCC. IEEE, 2015.

[154] X. Li, T. Jiang, and R. Ruiz, “Heuristics for Periodical Batch Job Scheduling

in a MapReduce Computing Framework,” Inf. Sci. (Ny)., vol. 326, 2016.

[155] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “A Balanced

Scheduler with Data Reuse and Replication for Scientific Workflows in Cloud

Computing Systems,” Futur. Gener. Comput. Syst., vol. 74, 2017.

[156] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand, “IFogStor:

An IoT Data Placement Strategy for Fog Infrastructure,” in Proc. ICFEC.

IEEE, 2017.

xxix

Bibliography

[157] Y. Li, J. Luo, J. Jin, R. Xiong, and F. Dong, “An Effective Model for

Edge-Side Collaborative Storage in Data-Intensive Edge Computing,” in

Proc. CSCWD. IEEE, 2018.

[158] A. Aral and T. Ovatman, “A Decentralized Replica Placement Algorithm

for Edge Computing,” IEEE Trans. Netw. Service Manag., vol. 15, no. 2,

2018.

[159] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts

and Design, 4th ed. Addison-Wesley, 2005.

[160] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A

Survey on Engineering Approaches for Self-Adaptive Systems,” Pervasive

and Mobile Computing, vol. 17, 2015.

[161] K. Ousterhout et al., “The Case for Tiny Tasks in Compute Clusters,” in

Proc. HotOS Workshop. USENIX, 2013.

[162] M. Satyanarayanan, “The Emergence of Edge Computing,” IEEE Computer,

vol. 50, no. 1, 2017.

[163] M. Mitzenmacher, “The Power of Two Choices in Randomized Load Bal-

ancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, 2001.

[164] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-

ized Task-Aware Scheduling for Data Center Networks,” ACM SIGCOMM

Comput. Commun. Rev., vol. 44, no. 4, 2015.

[165] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Im-

proving MapReduce Performance in Heterogeneous Environments,” in Proc.

OSDI. USENIX, 2008.

[166] J. Edinger, M. Breitbach, N. Gabrisch, D. Schäfer, C. Becker, and A. Rizk,

“Decentralized Low-Latency Task Scheduling for Ad-Hoc Computing,” in

Proc. IPDPS. IEEE, 2021.

[167] U. Schwiegelshohn and R. Yahyapour, “Resource Allocation and Scheduling

in Metasystems,” in Proc. HPCN. Springer, 1999.

[168] O. Shehory, “A Scalable Agent Location Mechanism,” in Proc. ATAL.

Springer, 1999.

xxx

Bibliography

[169] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, “Dis-

tributed Job Scheduling on Computational Grids Using Multiple Simultane-

ous Requests,” in Proc. HPDC. IEEE, 2002.

[170] E. Ogston and S. Vassiliadis, “Local Distributed Agent Matchmaking,” in

Proc. CoopIS. Springer, 2001.

[171] ——, “Matchmaking Among Minimal Agents Without a Facilitator,” in

Proc. AGENTS. ACM, 2004.

[172] J. S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman,

“Resource Discovery Techniques in Distributed Desktop Grid Environments,”

in Proc. ICGRID. ACM/IEEE, 2006.

[173] R. Ranjan, M. Rahman, and R. Buyya, “A Decentralized and Cooperative

Workflow Scheduling Algorithm,” in Proc. CCGrid. IEEE, 2008.

[174] J. Celaya and U. Arronategui, “A Highly Scalable Decentralized Scheduler

of Tasks with Deadlines,” in Proc. Grid. IEEE/ACM, 2011.

[175] Z. Dong, Y. Yang, C. Zhao, W. Guo, and L. Li, “Computing Field Scheduling:

A Fully Decentralized Scheduling Approach for Grid Computing,” in Proc.

ChinaGrid. IEEE, 2011.

[176] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega:

Flexible, Scalable Schedulers for Large Compute Clusters,” in Proc. EuroSys.

ACM, 2013.

[177] Y. Huang, N. Bessis, P. Norrington, P. Kuonen, and B. Hirsbrunner, “Ex-

ploring Decentralized Dynamic Scheduling for Grids and Clouds Using the

Community-Aware Scheduling Algorithm,” Futur. Gener. Comput. Syst.,

vol. 29, no. 1, 2013.

[178] G. Jackson, P. Keleher, and A. Sussman, “Decentralized Scheduling and

Load Balancing for Parallel Programs,” in Proc. CCGrid. ACM/IEEE,

2014.

[179] A. Mohaisen, H. Tran, A. Chandra, and Y. Kim, “Trustworthy Distributed

Computing on Social Networks,” IEEE T. Serv. Comput., vol. 7, no. 3,

2013.

xxxi

Bibliography

[180] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper: De-

centralized Speculation-Aware Cluster Scheduling at Scale,” in Proc. SIG-

COMM. ACM, 2015.

[181] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk: Hybrid

Datacenter Scheduling,” in Proc. ATC. USENIX, 2015.

[182] K. Karanasos et al., “Mercury: Hybrid Centralized and Distributed Schedul-

ing in Large Shared Clusters,” in Proc. ATC. USENIX, 2015.

[183] Z. Duan, W. Li, and Z. Cai, “Distributed Auctions for Task Assignment

and Scheduling in Mobile Crowdsensing Systems,” in Proc. ICDCS. IEEE,

2017.

[184] A. J. Chakravarti, G. Baumgartner, and M. Lauria, “The Organic Grid:

Self-Organizing Computation on a Peer-to-Peer Network,” IEEE Trans.

Syst., Man, Cybern. A, Syst. Humans, vol. 35, no. 3, 2005.

[185] B. Peterson, G. Baumgartner, and Q. Wang, “A Decentralized Scheduling

Framework for Many-Task Scientific Computing in a Hybrid Cloud,” Serv.

Trans. Cloud Comput., vol. 5, no. 1, 2017.

[186] A. Aral, I. Brandic, R. B. Uriarte, R. De Nicola, and V. Scoca, “Addressing

Application Latency Requirements through Edge Scheduling,” J. Grid

Comput., vol. 17, no. 4, 2019.

[187] V. Scoca, A. Aral, R. De Nicola, and R. B. Uriarte, “Scheduling

Latency-Sensitive Applications in Edge Computing,” in Proc. CLOSER.

SCITEPRESS, 2018.

[188] X. Wang, Z. Ning, and S. Guo, “Multi-Agent Imitation Learning for Perva-

sive Edge Computing: A Decentralized Computation Offloading Algorithm,”

IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, 2021.

[189] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network,” in Proc. SIGCOMM. ACM, 2001.

[190] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactor-

ing Android Java Code for On-Demand Computation Offloading,” ACM

SIGPLAN Notices, vol. 47, no. 10, 2012.

xxxii

Bibliography

[191] M. A. Hassan and S. Chen, “Mobile MapReduce: Minimizing Response

Time of Computing Intensive Mobile Applications,” in Proc. MobiCom.

Springer, 2011.

[192] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A Fast Hybrid Multi-

Site Computation Offloading for Mobile Cloud Computing,” J. Netw. and

Comput. Appl., vol. 80, 2017.

[193] R. Kemp et al., “eyeDentify: Multimedia Cyber Foraging from a Smart-

phone,” in Proc. ISM. IEEE, 2009.

[194] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective

Straggler Mitigation: Attack of the Clones,” in Proc. NSDI. USENIX,

2013.

[195] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the

Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 2, 2002.

[196] C. Becker and G. Schiele, “Middleware and Application Adaptation Re-

quirements and Their Support in Pervasive Computing,” in Proc. ICDCSW.

IEEE, 2003.

[197] C. Jiang et al., “Energy Aware Edge Computing: A Survey,” Comput.

Commun., vol. 151, 2020.

[198] M. Breitbach, J. Edinger, S. Kaupmees, H. Trötsch, C. Krupitzer, and

C. Becker, “Voltaire: Precise Energy-Aware Code Offloading Decisions with

Machine Learning,” in Proc. PerCom. IEEE, 2021.

[199] D. Huang, P. Wang, and D. Niyato, “A Dynamic Offloading Algorithm for

Mobile Computing,” IEEE Trans. Wirel. Commun., vol. 11, no. 6, 2012.

[200] A. Ravi and S. K. Peddoju, “Handoff Strategy for Improving Energy Ef-

ficiency and Cloud Service Availability for Mobile Devices,” Wirel. Pers.

Commun., vol. 81, 2015.

[201] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya, “A

Context Sensitive Offloading Scheme for Mobile Cloud Computing Service,”

in Proc. CLOUD. IEEE, 2015.

[202] S. A. Karim and J. J. Prevost, “A Machine Learning Based Approach to

Mobile Cloud Offloading,” in Proc. SAI Computing Conference. IEEE,

2017.

xxxiii

Bibliography

[203] A. Crutcher, C. Koch, K. Coleman, J. Patman, F. Esposito, and P. Calyam,

“Hyperprofile-Based Computation Offloading for Mobile Edge Networks,” in

Proc. MASS. IEEE, 2017.

[204] C. M. Sarathchandra Magurawalage, K. Yang, L. Hu, and J. Zhang, “Energy-

Efficient and Network-Aware Offloading Algorithm for Mobile Cloud Com-

puting,” Comput. Networks, vol. 74, 2014.

[205] H. Jadad, A. Touzene, K. Day, and N. Alzeidir, “A Cloud-Side Decision

Offloading Scheme for Mobile Cloud Computing,” Int. J. Mach. Learn.

Comput., vol. 8, no. 4, 2018.

[206] J. Niu, W. Song, and M. Atiquzzaman, “Bandwidth-Adaptive Partitioning

for Distributed Execution Optimization of Mobile Applications,” J. Netw.

Comput. Appl., vol. 37, 2014.

[207] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An Optimal Offloading Par-

titioning Algorithm in Mobile Cloud Computing,” in Proc. QEST. Springer,

2016.

[208] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive Computation Offloading for Energy

Conservation on Battery-Powered Systems,” in Proc. ICPADS. IEEE,

2007.

[209] S. A. Saab, F. Saab, A. Kayssi, A. Chehab, and I. H. Elhajj, “Partial Mobile

Application Offloading to the Cloud for Energy-Efficiency with Security

Measures,” Sustain. Comput. Informatics Syst., vol. 8, 2015.

[210] K. Zhang et al., “Energy-Efficient Offloading for Mobile Edge Computing

in 5G Heterogeneous Networks,” IEEE Access, vol. 4, 2016.

[211] S.-J. Lee and X. Lin, “Energy-Aware Paired Sampling-Based Decision Model

for Dynamic Mobile-to-Mobile Service Offloading,” IEEE Access, vol. 5,

2017.

[212] M. Othman and S. Hailes, “Power Conservation Strategy for Mobile Com-

puters Using Load Sharing,” ACM SIGMOBILE Mob. Comput. Commun.

Rev., vol. 2, no. 1, 1998.

[213] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving Portable

Computer Battery Power through Remote Process Execution,” ACM SIG-

MOBILE Mob. Comput. Commun. Rev., vol. 2, no. 1, 1998.

xxxiv

Bibliography

[214] I. Giurgiu, O. Riva, and G. Alonso, “Dynamic Software Deployment from

Clouds to Mobile Devices,” in Proc. Middlew. ACM/IFIP/USENIX, 2012.

[215] A. Khairy, H. H. Ammar, and R. Bahgat, “Smartphone Energizer: Extending

Smartphone’s Battery Life with Smart Offloading,” in Proc. IWCMC. IEEE,

2013.

[216] Y. D. Lin, E. T. Chu, Y. C. Lai, and T. J. Huang, “Time-and-Energy-Aware

Computation Offloading in Handheld Devices to Coprocessors and Clouds,”

IEEE Syst. J., vol. 9, no. 2, 2015.

[217] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic Resource and

Task Allocation for Energy Minimization in Mobile Cloud Systems,” IEEE

J. Sel. Areas Commun., vol. 33, no. 12, 2015.

[218] M. Shiraz, A. Gani, A. Shamim, S. Khan, and R. W. Ahmad, “Energy

Efficient Computational Offloading Framework for Mobile Cloud Computing,”

J. Grid Comput., vol. 13, no. 1, 2015.

[219] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy Efficient

Task Caching and Offloading for Mobile Edge Computing,” IEEE Access,

vol. 6, 2018.

[220] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-

Efficient Admission of Delay-Sensitive Tasks for Mobile Edge Computing,”

IEEE Trans. Commun., vol. 66, no. 6, 2018.

[221] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, “Energy-Aware

Mobile Edge Computation Offloading for IoT over Heterogenous Networks,”

IEEE Access, vol. 7, 2019.

[222] T. T. Nguyen, L. Le, and Q. Le-Trung, “Computation Offloading in MIMO

Based Mobile Edge Computing Systems Under Perfect and Imperfect CSI

Estimation,” in IEEE Trans. Serv. Comput., 2019.

[223] X. Xu et al., “An Energy-Aware Computation Offloading Method for Smart

Edge Computing in Wireless Metropolitan Area Networks,” J. Netw. Com-

put. Appl., vol. 133, 2019.

[224] W. Zhang, Y. Wen, and H.-H. Chen, “Toward Transcoding as a Service:

Energy-Efficient Offloading Policy for Green Mobile Cloud,” IEEE Netw.,

vol. 28, no. 6, 2014.

xxxv

Bibliography

[225] R. G. Brown and R. F. Meyer, “The Fundamental Theorem of Exponential

Smoothing,” Oper. Res., vol. 9, no. 5, 1961.

[226] S. Casolari and M. Colajanni, “On the Selection of Models for Runtime

Prediction of System Resources,” in Run-time Models for Self-managing

Systems and Applications, D. Ardagna and L. Zhang, Eds. Springer, 2010.

[227] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De

Lucia, “Software-Based Energy Profiling of Android Apps: Simple, Efficient

and Reliable?” in Proc. SANER. IEEE, 2017.

[228] R. Süselbeck, G. Schiele, P. Komarnicki, and C. Becker, “Efficient Bandwidth

Estimation for Peer-to-Peer Systems,” in Proc. P2P. IEEE, 2011.

[229] M. Breitbach, J. Edinger, S. Kaupmees, H. Trötsch, C. Krupitzer, and

C. Becker, “Artifact: Voltaire: Precise Energy-Aware Code Offloading

Decisions with Machine Learning,” in Proc. PerCom Workshops. IEEE,

2021.

[230] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach.

Learn. Res., vol. 12, 2011.

[231] D. Schäfer, J. Edinger, and C. Becker, “GPU-Accelerated Task Execution

in Heterogeneous Edge Environments,” in Proc. ICCCN. IEEE, 2018.

[232] J. Edinger, L. M. Edinger-Schons, D. Schäfer, A. Stelmaszczyk, and

C. Becker, “Of Money and Morals - The Contingent Effect of Monetary

Incentives in Peer-to-Peer Volunteer Computing,” in Proc. HICSS. Schol-

arSpace, 2019.

xxxvi

Appendix

xxxvii

A. Results of the DecArt Evaluation

Load Algorithm
Tasks Jobs

Total Exec. Mean Median % Misses

Lowest

C-RND 0.794 0.265 1.111 0.976 46.39
C-GRD 0.588 0.060 0.639 0.632 0.01
D-RND 0.550 0.257 0.910 0.786 29.39
D-PRP 0.413 0.139 0.756 0.646 17.24
D-GRD 0.524 0.055 0.893 0.866 34.39

Low

C-RND 0.789 0.261 1.109 0.976 46.51
C-GRD 0.592 0.064 0.646 0.638 0.06
D-RND 0.553 0.251 0.932 0.818 32.14
D-PRP 0.414 0.140 0.757 0.647 17.58
D-GRD 0.576 0.055 1.035 0.990 49.18

Medium

C-RND 0.795 0.249 1.134 0.974 46.15
C-GRD 0.615 0.073 0.690 0.649 1.30
D-RND 0.552 0.237 0.958 0.855 34.56
D-PRP 0.412 0.137 0.752 0.644 16.96
D-GRD 0.635 0.055 1.216 1.161 65.18

High

C-RND 1.928 0.242 3.612 1.006 50.71
C-GRD 1.744 0.093 3.139 0.669 9.78
D-RND 0.558 0.229 0.995 0.896 38.47
D-PRP 0.413 0.138 0.755 0.647 17.17
D-GRD 0.678 0.056 1.391 1.315 74.96

Highest

C-RND 20.116 0.230 40.504 1.158 62.40
C-GRD 19.921 0.133 39.986 0.735 30.74
D-RND 0.568 0.216 1.049 0.954 44.66
D-PRP 0.414 0.138 0.763 0.655 17.42
D-GRD 0.715 0.056 1.585 1.476 81.45

Table A.1.: Task and job metrics for basic centralized and decentralized scheduling
algorithms (Highlighted: lowest task completion times, lowest job
completion times, and fewest deadline misses per load).

xxxix

Load Algorithm
Tasks Jobs

Total Exec. Mean Median % Misses

Lowest

D-OMNI 0.330 0.056 0.379 0.369 0.00
C-GRD 0.588 0.060 0.639 0.632 0.01
DFT 0.348 0.059 0.442 0.401 0.21
BND 0.346 0.072 0.419 0.398 0.01

Low

D-OMNI 0.332 0.058 0.381 0.372 0.00
C-GRD 0.592 0.064 0.646 0.638 0.06
DFT 0.352 0.061 0.451 0.408 0.30
BND 0.346 0.073 0.419 0.399 0.01

Medium

D-OMNI 0.333 0.059 0.385 0.374 0.00
C-GRD 0.615 0.073 0.690 0.649 1.30
DFT 0.354 0.063 0.462 0.415 0.51
BND 0.345 0.071 0.418 0.397 0.01

High

D-OMNI 0.336 0.062 0.392 0.379 0.01
C-GRD 1.744 0.093 3.139 0.669 9.78
DFT 0.360 0.068 0.476 0.426 0.77
BND 0.346 0.072 0.421 0.400 0.01

Highest

D-OMNI 0.343 0.070 0.405 0.386 0.17
C-GRD 19.921 0.133 39.986 0.735 30.74
DFT 0.369 0.075 0.500 0.445 1.30
BND 0.347 0.071 0.427 0.404 0.02

Table A.2.: Task and job metrics for best centralized and decentralized scheduling
algorithms in comparison to the omniscient decentralized scheduler.

xl

B. Publications Contained in This Thesis

[123] D. Schäfer, J. Edinger, J. Eckrich, M. Breitbach, and C. Becker, “Hybrid Task

Scheduling for Mobile Devices in Edge and Cloud Environments,” in Proc. PerCom

Workshops. IEEE, 2018.

[124] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-Aware Data and

Task Placement in Edge Computing Environments,” in Proc. PerCom. IEEE,

2019.

[126] D. Schäfer, J. Edinger, M. Breitbach, and C. Becker, “Workload Partitioning

and Task Migration to Reduce Response Times in Heterogeneous Computing

Environments,” in Proc. ICCCN. IEEE, 2018.

[128] D. Schäfer, J. Edinger, C. Becker, and M. Breitbach, “Writing a Distributed

Computing Application in 7 Minutes with Tasklets,” in Proc. Middleware Posters

and Demos. ACM, 2016.

[129] J. Edinger, D. Schäfer, M. Breitbach, and C. Becker, “Developing Distributed

Computing Applications with Tasklets,” in Proc. PerCom Workshops. IEEE,

2017.

[132] M. Breitbach, J. Edinger, D. Schäfer, and C. Becker, “DataVinci: Proactive Data

Placement for Ad-Hoc Computing,” in Proc. IPDPS Workshops. IEEE, 2021.

[166] J. Edinger, M. Breitbach, N. Gabrisch, D. Schäfer, C. Becker, and A. Rizk,

“Decentralized Low-Latency Task Scheduling for Ad-Hoc Computing,” in Proc.

IPDPS. IEEE, 2021.

[198] M. Breitbach, J. Edinger, S. Kaupmees, H. Trötsch, C. Krupitzer, and C. Becker,

“Voltaire: Precise Energy-Aware Code Offloading Decisions with Machine Learning,”

in Proc. PerCom. IEEE, 2021.

[229] M. Breitbach, J. Edinger, S. Kaupmees, H. Trötsch, C. Krupitzer, and C. Becker,

“Artifact: Voltaire: Precise Energy-Aware Code Offloading Decisions with Machine

Learning,” in Proc. PerCom Workshops. IEEE, 2021.

xli

C. Curriculum Vitae

Since 08/2018 Research Assistant

Chair of Information Systems II

Universität Mannheim

09/2016 – 06/2018 Master of Science Mannheim Master in Management

Universität Mannheim

09/2013 – 06/2016 Bachelor of Science Business Informatics

Universität Mannheim

xliii

	Abstract
	Acknowledgments
	Introduction
	Problem Definition
	Research Questions
	Contributions
	Structure

	Fundamentals
	Distributed Computing
	Cluster Computing
	Grid Computing
	Cloud Computing
	Edge Computing

	Computation Offloading
	Context-Awareness

	Requirements Analysis
	Scenario
	Challenges
	Functional Requirements
	Non-Functional Requirements

	Related Work
	Computation Offloading
	Granularity
	Mechanism
	Provider Types

	Task-Specific Requirements
	Heterogeneity Support
	Context-Awareness
	Edge Support
	Discussion and Summary

	The Tasklet System
	Design
	System Model
	Tasklets
	Tasklet Middleware
	Quality of Computation

	Implementation
	Tasklet Core System
	Tasklet Library
	Use Cases
	Tasklet Simulator

	DataVinci
	Related Work
	Design
	System Model
	Data and Task Placement

	Data Placement Strategies
	Initial Replication of New Data Files
	Initial Replication of New Data Versions
	Continuous Replication

	Task Placement Strategies
	Evaluation
	Real-World Pilot Study
	Large-Scale Simulation
	Discussion
	Threats to Validity

	Summary

	DecArt
	Related Work
	Design
	System Model
	DecArt: Decentralized Scheduling with Cache Lists

	Decentralized Provider Selection Algorithms
	Basic Provider Selection Algorithms
	Drift Provider Selection Algorithm
	Bandit Provider Selection Algorithm

	Evaluation
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Summary

	Voltaire
	Related Work
	Design
	System Model
	Energy-Aware Computation Offloading with Voltaire

	An Energy-Aware Scheduler for Precise Offloading Decisions
	Predicting Number of Bytecode Instructions and Result Size
	Integrating Device-Dependent Energy Profiles
	Estimating Inbound and Outgoing Bandwidth

	Evaluation
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Summary

	Discussion
	Functional Requirements
	Non-Functional Requirements

	Conclusion
	Bibliography
	Appendix
	Results of the DecArt Evaluation
	Publications Contained in This Thesis
	Curriculum Vitae

