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Abstract

This article constructs and examines enhanced global return factors. I focus on three different
enhancement approaches. First, I incorporate information about the covariance structure in
the cross-section of stock returns. Second, I employ volatility-reducing techniques in the time
series. Third, I exploit diversification benefits. I form six categorical factors by aggregating
information from 214 characteristics. Further, I diversify across factors. The enhancement
mechanisms are largely successful andwhen jointly applied increase the optimal Sharpe ratio
on average by a factor of 1.96 compared to the traditional factors. My results point to the
importance of employing efficient factors in asset pricing studies.

I. Introduction

One of the fundamental assumptions in finance is the existence of a stochastic
discount factor that prices all assets. If a linear relationship between returns and their
sources of common variation is assumed, the stochastic discount factor can be
interpreted as a set of factor portfolios that span themean–variance efficient frontier
and that should be able to explain asset returns. In this line of reasoning, various
multifactor models have been proposed to explain the cross-section of returns. A
string of literature, prominently represented by Daniel, Mota, Rottke, and Santos
(2020), questions whether these models correctly capture sources of common
variation as implied by economic theory. Specifically, a concern is that the included
factors might not be efficient with respect to how they capture these sources of
common variation.

With this article, I aim at examining whether I can create more efficient factors
internationally by constructing enhanced global factor versions. I build on the

This article greatly benefited from significant contributions of SebastianMüller. The idea of employ-
ing cross-sectional enhancement and volatility scaling on return factors in international markets has been
developed inmany common discussions for which I am very thankful, as theymade this project possible.
In that regard, I kindly thank SebastianMüller for providing the international stock market data and data
on international return predictors. I further thank an anonymous referee, Hendrik Bessembinder (the
editor), Scott Cederburg (a referee), Ralph Koijen, Simon Rottke, Oliver Spalt, Erik Theissen, Jiri Tresl,
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existing literature that suggests different approaches for enhancing return factors
with respect to their efficiency. Factor efficiency is judged on the (squared) Sharpe
ratio. I primarily focus on three different enhancement approaches. First, I enhance
factors by incorporating information about the covariance structure in the cross-
section of returns following Daniel and Titman (1997) and Daniel et al. (2020).
They suggest that factors that are solely sorted on characteristics are not efficient, as
they load on common sources of variation in expected returns and on unpriced risk.
Second, I employ volatility-reducing techniques in the time series. Barroso and
Santa-Clara (2015) and Daniel and Moskowitz (2016) suggest that volatility-
scaling of a momentum strategy attenuates crashes and improves the Sharpe ratio.
Similar to Moreira and Muir (2017) and Cederburg, O’Doherty, Wang, and Yan
(2020), I extend the approach to further factors.

My third enhancement approach is constituted by the exploitation of diversi-
fication effects. I make use of the fact that factors and anomalies proposed in the
financial literature can be categorized into different groups. Barillas and Shanken
(2018) suggest a categorical factor model that consists of a market, size, value,
investment, profitability, and momentum factor. The factors are referred to as
categorical as each factor represents a specific category of firm characteristics.1

Accordingly, I create composite categorical factors by aggregating 214 firm char-
acteristics into 6 categories, while following the categorization of Hou et al. (2020):
value, investment, profitability,momentum, intangibles, and frictions. To obtain the
corresponding trading signal for each category, I thus diversify over multiple
characteristics to improve the measurement accuracy for each category and to
reduce the noise of each signal. By employing international return and accounting
data, I make use of the opportunity to study the enhanced factors in different
geographical areas. I create global factors for each of 5 regions according to
classifications of Morgan Stanley Capital International (MSCI): North America,
Europe, Japan, Asia-Pacific, and Emerging Markets. I then examine how the first
two enhancement approaches, which essentially constitute ways of risk manage-
ment, workwhen applied to the composite categorical factors andwhen compared
across regions.

To examine whether the studied enhancement approaches add value with
respect to the explanatory power of factor models, I test how well the 241 interna-
tional anomalies employed in Jacobs and Müller (2018) and Jacobs and Müller
(2020) can be explained by four versions of a categorical factor model consisting of
a regional market factor and a value, investment, profitability, momentum, intan-
gibles, and frictions factor. The four model versions I study are representative of
different examined types of enhanced factors: traditional factors, cross-sectionally
enhanced factors, volatility-scaled factors, and factors on which both enhancement
approaches are applied. I thus start with a factor model that aggregates similar
information as studied in the academic literature. The traditionally constructed
factors, however, might be inefficient and although important sources of common
variation might be captured, conclusions drawn from analyses based on these

1These categories are similar to those used in various anomaly studies (see Hou, Xue, and Zhang
(2015), Harvey, Liu, and Zhu (2016), Cederburg et al. (2020), Hou, Xue, and Zhang (2020), and Jacobs
and Müller (2020)), which jointly draw conclusions for all factor and anomalies within each category.
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factors might be impaired. While one could object that the focus on only one
specific factor model might be rather arbitrary, I believe that my factors represent
a convenient choice for testing the effect of the cross-sectional and time-series
enhancement approach and of corresponding diversification effects in an interna-
tional setting, instead of preselecting one of the multiple proposed factor models.

Generally, for most factors in the studied regions, either the cross-sectional
enhancement approach or volatility-reducing enhancement techniques in the time
series lead to an improvement in Sharpe ratios and thus in factor efficiency. While
cross-sectional enhancement on average proves successful for all factors except
for the composite momentum factor, volatility management, in contrast, works
consistently well for the momentum factor only, consistent with the findings of
Cederburg et al. (2020). Combining the cross-sectional and time-series enhance-
ment approaches does often lead to further, albeit only mild improvements in
Sharpe ratios. Only for the market factor, I can observe that both approaches
work consistently well, both individually and in combination. I, therefore, con-
clude that if characteristics-based factors are not mean–variance efficient, then
this is most likely the case because either a relatively large fraction of cross-
sectional or time-series information is not incorporated in the construction pro-
cess. Results do generally not indicate that both types of information have on
average similar effects on most factors.

The findings suggest that the source of common variation that affects momen-
tum might be inherently different from the source affecting the other factors. If the
exposure to this source can be related to past volatility, then it can be accounted for
by volatility management. If the exposure to this source, however, is correlated with
some unpriced factor, then it can be accounted for by cross-sectional enhancement.
I do not further investigate into a theoretical explanation, as my objective lies on
showing the empirical consequences of these findings. Further, I point out that the
examined factors themselves are observable and not latent.2 Practical implemen-
tation is thus feasible, as the composition of all underlying portfolios is known.
Portfolio rebalancing and the leverage needed for implementation, however, will
likely incur significant transaction costs. Similar to the previous point, I do not
investigate their impact further, as my objective lies on understanding the eco-
nomic effects of factor enhancement.

In the light of my results, the question might come forward why it should be
important to obtain more efficient factors. I, therefore, investigate their implications
for traditionally constructed factor models. Return factors and factor models are
an important input in many applications of financial research. They are used as
benchmark models in anomaly studies to calculate the alpha of a newly proposed
factor, in event studies to account for abnormal returns, as expected returnmodel for
cost of equity in cost of capital calculations, or to conduct performance evaluation
of mutual fundmanagers. I argue that it is important to employ a factor model that is
as close as possible to spanning the mean–variance efficient frontier, in order to
derive proper conclusions from these analyses. If this is not the case, one might run

2This point for instance holds for papers, which obtain their factors from principal component
analysis. See Kozak, Nagel, and Santosh (2018), (2019), Kelly, Pruitt, and Su (2019), Lettau and Pelger
(2020b), Cooper, Ma, Maio, and Philip (2021), and Kim, Korajczyk, and Neuhierl (2021).
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into danger of encountering a false positive because the factor model is either
incorrectly specified or the employed factors are inefficient. This would also imply
that the power of the asset pricing test is negatively affected.

Indeed, when studying the explanatory power of different factor model ver-
sions for 241 international anomalies, I find that across all regions the enhanced
factor models can explain a significantly larger fraction of anomalies than the
traditional models. The model that combines enhancement approaches by applying
volatility-scaling on the cross-sectionally enhanced factors yields the lowest
number of significant anomaly alphas across all regions, accompanied by lower
average t-statistics. Across all regions, the enhanced model can explain an aver-
age of 15 more anomalies than the traditional model, which corresponds to an
average increase in explained anomalies of 35%. This finding is not contradictory
to the statement that either cross-sectional or time-series information is important
for enhancing factors. By employing both enhancement approaches, it is ensured
that on each factor a method is applied that effectively improves its efficiency.
Further, I observe that the ex post optimal maximum Sharpe ratio achievable by
combining the factors, and thus by targeting efficiency by reducing volatility
through diversification across factors, is always quantitatively larger with enhanced
factors than with traditional factors. In most cases this difference is statistically
significant, supporting the premise that the set of enhanced factor is closer to
spanning the mean–variance efficient portfolio.

I contribute to the literature in multiple ways. Generally, I contribute to the
global factor literature, as I study the efficiency of return factors in international
stock markets. My study is the first to employ the methodology of Daniel et al.
(2020) in an international setting. The exercise thus enables me to assess whether
the procedure can successfully be replicated in international equity markets and
can successfully be implemented for different groups of characteristics. Further,
I combine the cross-sectional enhancement approach of Daniel et al. (2020) with
the time-series enhancement approach of Barroso and Santa-Clara (2015) and
Daniel andMoskowitz (2016) by performing volatility-scaling on the cross-sectionally
enhanced factors. This enables us to determine whether volatility-reducing tech-
niques work across different groups of characteristics, similar to Cederburg et al.
(2020), and to assess how much value volatility-scaling adds in improving factor
efficiency compared to cross-sectional enhancement. Moreover, this study inves-
tigates the implication of enhancing factors for the application of factor models in
asset pricing studies and shows the consequences of using enhanced instead of
traditional factors. The findings have important implications for anomaly studies, as
they suggest to be more careful in assessing results. By showing that enhancement
techniques improve the efficiency of return factors, I present a way to improve
factors such that conclusions based on factor model analyses can be more robust.

The remainder of this article is organized as follows: Section II describes
the data and the construction of the categorical factors. Section III focuses on the
benefits of the cross-sectional enhancement approach and Section IV focuses on the
benefits of employing volatility-scaling in the time series. Section V first compares
the Sharpe ratios of traditional and enhanced factors and the maximum Sharpe
ratios of different factor models and then compares the explanatory power of
traditional and enhanced factor model versions. Section VI concludes the article.
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II. Data and Factor Construction

The main empirical exercises of this article apply cross-sectional and time-
series factor enhancement on international return factors and test the implications of
these enhancement approaches for the application of the return factors on a global
scale. As multiple factor models have been proposed in the literature, I could start
by choosing one arbitrary model out of the set of available factor models and test
the enhancement approaches on this model. However, I do not want to take a stance
on a specific factor model. Moreover, my objective lies on determining whether
an enhanced model generally is closer to spanning the mean–variance efficient
portfolio. I, therefore, seek to start with a model that represents dimensions which
are independent of each other and which are relevant to explain the cross-section
of returns. I start by observing which group of characteristics have been studied
independently of each other in the literature and thus constitute independent cate-
gories of interest. I choose this approach to improve the measurement accuracy
and reduce the noise of the trading signal for each category. In the following, the
construction of these international factors is explained in detail.

The data employed are from three different databases. I employ global stock
market data, where I measure returns based on values in US-Dollars, from Refinitiv
Datastream. The global accounting data is from Worldscope. Moreover, analyst-
related data is from Institutional Brokers’ Estimate System (I/B/E/S). The final
data period for which there are sufficient stock market data available spans from
Jan. 1989 to June 2019. The period eventually studied in the empirical analyses is
determined by the required amount of daily data in the cross-sectional enhancement
approach. The approach comprises two steps and each consists of computing
specific types of betas from daily data. For the Frazzini and Pedersen (2014)method
as employed by Daniel et al. (2020), each step requires at least 3 years of daily data.
Therefore, the corresponding analyses employ data spanning from Jan. 1995 until
June 2019. As a robustness check, I also implement the approach using Dimson
(1979) betas, which only require 1 year of data in each step. However, as I employ
many variables based on quarterly accounting data and this data is only available
starting in 1992, the corresponding analyses with Dimson betas extend from July
1992 until June 2019.

Filters and screens generally follow Jacobs and Müller (2018), (2020), and
Huber, Jacobs, Müller, and Preissler (2021). I use all firms that have a nonmissing
Datastream andWorldscope identifier and that are listed in Datastream for the stock
market of a specific country. In the case of US firms, I also require stocks to be listed
at one of the three major exchanges NYSE, NASDAQ, or AMEX. Further, the
generic filter rules proposed by Griffin, Kelly, and Nardari (2010) to exclude
noncommon equity are used, to include delisted stocks only up to the point of
their actual delisting the methodology of Ince and Porter (2006) is used, and to
eliminate remaining data errors returns are screened as proposed in Hou, Karolyi,
and Kho (2011).

I conduct my analysis on the regional level, similar to Fama and French (2012)
and Jacobs and Müller (2018). I start with country-level stock returns and assign
44 countries to regions based on theMSCI global investablemarket indexes (GIMI)
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methodology country classification.3 Eventually, I examine 5 different regions:North
America, Europe, Japan, Asia-Pacific, and Emerging Markets. I exclude Frontier
Markets due to weak data coverage, especially in the earlier years. To determine
the firm characteristics to include for the construction of the factors, I start with the
same 241 characteristics examined by Jacobs and Müller (2018). They explore
which anomalies based on firm characteristics examined with US data can be
reconstructed with international data. I exclude all binary indicator variables that
assign a dummy variable to stocks depending on whether they fulfill a certain
condition or not. This leaves us with 214 firm characteristics. The construction
and adjustment of all variables with Datastream and Worldscope data follow
Jacobs and Müller (2018).

To aggregate the predictive information in firm characteristics, I sort firms into
deciles on the country-level based on each of the 214 characteristics and aggregate
the country-level decile ranks on the regional level. For each firm characteristic,
I compute the regional top minus bottom portfolio return and reverse the ranking
if the long–short return is significantly negative.4 Subsequently, for each firm,
I calculate a composite category score by computing the average adjusted decile
rank overall firm characteristics assigned to a specific category. My approach thus
resembles the approach of Stambaugh and Yuan (2017) to aggregate information
to build portfolios. They obtain a composite mispricing measure by ordering
individual firm characteristics and computing an aggregate rank. I also construct
portfolios based on aggregated ranks.5

To use a starting point grounded in the literature, I followHou et al. (2020) and
use the same 6 categories as these authors: value, investment, profitability, momen-
tum, intangibles, and frictions. Each firm characteristic in my list is assigned to
categories as suggested in this article. If a characteristic in my list is not in the list
of Hou et al. (2020), I assign the variable by checking to which category the
reference paper assigns the characteristics or to which category similar variables
have been assigned to.6

My assignments might be perceived as ad hoc. For instance, one could
further subcategorize certain groups. I argue that by choosing to study 6 catego-
ries I include a reasonable number of factors that encompass enough relevant
dimensions. Many factor models proposed in the literature that form factors on
single characteristics encompass 5 or 6 factors and represent similar categories
as included in my model. These models include the Fama and French (2015),
(2018) 5- and 6-factor model, the Hou et al. (2015) q- and Hou, Mo, Xue, and
Zhang (2021) q5-model, or the Barillas and Shanken (2018) categorical factor

3The assignments are obtained from the MSCI website.
4If a return premium is negative, then a high value in the underlying characteristic is indicative of

a low expected return. By reversing the ranking I ensure that such firms get assigned to the bottom
portfolio.

5Novy-Marx (2016) argues to be careful when using multiple signals to form strategies with the
objective to generate strong backtesting results. My objective, however, is not on suggesting a superior
factor model or strategy, but on improving the efficiency of representative factors.

6A list of all firm characteristics that are employed and the corresponding category assignments can
be found in the Supplementary Material.
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model.7 Although the practical implementation of the enhanced factors I exam-
ine is relatively complex compared to the traditional factors, the enhanced
factors are observable as well. My article thus fits into the literature on factors
based on investable portfolios.

Furthermore, there is a string of literature that uses different approaches based
on principal component analysis (PCA) to undertake a structured search for latent
factors. Kim et al. (2021) employ projected principal components analysis (PPCA)
to form an arbitrage portfolio based on the component that represents the return that
cannot be attributed to the predictive power of characteristics for factor loadings.
Whenmore than six eigenvectors, representing return factors, are used, themonthly
performance of the arbitrage portfolio does not improve. In a related paper, Kelly
et al. (2019) use instrumented principal component analysis (IPCA) that allows
factor loadings to dynamically depend on firm characteristics. Amodelwith 5 IPCA
factors explains a large fraction of variation in average stock returns. Cooper et al.
(2021) use asymptotic principle component analysis on 42 equity anomalies.
They eventually arrive at a model with six factors of economic meaning. Lettau
and Pelger (2020b) employ risk-premium PCA (RP-PCA) proposed in Lettau and
Pelger (2020a), which in contrast to PCA incorporates information in the first and
second moments of the data and takes cross-sectional pricing errors into account.
They conclude that there are five significant factors that capture most of the time-
series variation in the data. Although I do not have to deal with the issues related to
latent and not directly observable factors, the number of factors I employ is thus
largely consistent with the results of these studies.

Next, I obtain categorical factor returns. If no enhancement method is applied
to these factors, I refer to them as “traditional.” I follow a standard way of factor
construction. First, I sort firms into quintile portfolios on the country-level, based on
each composite score. I then aggregate all firms within a region into regional
category quintiles, for which I compute the respective value-weighted portfolio
level return, where I transform all stock market data into US-Dollars first for better
comparability.8 Moreover, I only focus on value-weighted portfolio returns as
suggested by Green, Hand, and Zhang (2017) or Hou et al. (2020), in order to
mitigate issues with respect to micro-cap stocks.

Many characteristics used to construct the trading signals are updatedmonthly,
which accordingly applies to the category scores. The categorical factors are thus
also rebalanced each month. I slightly deviate from the construction of Fama and
French (1993)-type factors by refraining from using size as sorting dimension and
by employing quintile sorts instead of sorts on the 30th and 70th percentile. Size
is one of the firm characteristics in the frictions category. Further, I use quintiles,
as I want my factors to depend more strongly on the extreme portfolios. My final
factors are long the top quintile and short the bottom quintile, such that the expected
return for each categorical factor is positive. Effectively, the factors are normalized

7See Ahmed, Bu, and Tsvetanov (2019) or Hou, Mo, Xue, and Zhang (2019) for a model
comparison.

8I do not follow Griffin (2002) in computing factors as dollar-denominated market capitalization-
weighted averages of country-level factors, as I would not obtain sufficiently diversified portfolios for
many countries when computing hedge factors in the cross-sectional enhancement approach.
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to a positive mean, as the top quintile does not always contain the firms with
the highest values of the characteristics underlying the corresponding score. For
instance, the investment and frictions factors are on average long low investment
and frictions characteristics and short high investment and frictions characteristics,
as most underlying anomalies have a negative long–short mean return. Table 1
shows monthly summary statistics for the market factor and for each categorical
factor by region.

Most factors are of a significant economic magnitude and almost all factors
are statistically significant at the 10%-level or lower. The only exceptions are the
value factor in North America, the investment factor in Japan, the intangibles factor
in Europe, and the friction factor in Emerging Markets. Interestingly, I observe a
significant momentum factor return in Japan, which can be attributed to the fact that

TABLE 1

Summary Statistics for Traditional Factors

Table 1 displays summary statistics for traditional composite categorical factors and the market factor. First, firms are sorted
into deciles on the country-level, on each of 214 firm characteristics. Subsequently, for each firm, a composite category score
is computed as the average decile to which a firms has been assigned to within a category. Next, firms are sorted into quintiles
on the country-level based on the composite category score. The country-level quintile assignments are then aggregated
to regional quintile portfolios. Regional assignments of countries are based on the MSCI global investable market indexes
(GIMI) methodology country classification. Value-weighted quintile portfolio returns are then computed on the regional level,
with market capitalization weights based on values transferred to US-Dollars. The respective categorical factors go long
the regional top quintile portfolio and short the regional bottom quintile portfolio. The table shows themean, median, standard
deviation, standard error, minimum, maximum, and skewness of monthly factor returns. The sample period extends from Jan.
1995 to June 2019.

Factor Region Mean Median Std. Dev. SE Minimum Maximum Skewness

MARKET NA 0.927 1.501 4.411 0.257 �18.867 11.781 �0.782
EU 0.779 1.105 5.006 0.292 �21.783 14.746 �0.607
JA 0.281 0.426 4.895 0.285 �13.087 15.197 0.075
PA 0.848 1.192 5.785 0.337 �25.118 19.216 �0.507
EM 0.580 0.862 5.944 0.347 �28.171 15.486 �0.777

VALUE NA 0.424 �0.041 6.096 0.356 �28.925 31.996 0.421
EU 0.598 0.632 4.627 0.270 �24.175 17.944 �0.785
JA 0.957 1.007 4.951 0.289 �17.847 26.416 0.137
PA 1.168 1.185 5.992 0.349 �41.984 27.752 �0.807
EM 0.693 0.527 3.690 0.215 �15.267 15.997 0.155

INVESTMENT NA 0.397 0.422 3.142 0.183 �10.328 18.188 0.816
EU 0.451 0.340 2.514 0.147 �8.134 11.189 0.512
JA 0.145 0.173 3.333 0.194 �12.110 11.427 �0.293
PA 0.535 0.387 4.457 0.260 �20.720 22.890 0.179
EM 0.379 0.238 2.209 0.129 �7.319 13.421 0.486

PROFITABILITY NA 0.818 0.625 5.490 0.320 �22.371 25.472 0.081
EU 0.550 0.790 4.964 0.289 �26.224 15.482 �0.860
JA 0.469 0.692 3.852 0.225 �12.260 18.326 0.084
PA 1.163 1.030 6.325 0.369 �40.121 24.909 �0.858
EM 0.582 0.403 2.987 0.174 �11.946 11.509 �0.069

MOMENTUM NA 0.914 0.834 5.491 0.320 �22.572 22.814 �0.267
EU 1.267 1.366 5.541 0.323 �27.320 21.872 �0.699
JA 0.711 0.771 5.694 0.332 �23.911 19.267 �0.155
PA 1.595 1.367 5.035 0.294 �18.579 14.539 �0.288
EM 1.160 1.396 3.245 0.189 �9.348 12.049 �0.168

INTANGIBLES NA 0.690 0.459 3.336 0.195 �12.600 16.529 0.225
EU 0.309 0.172 2.916 0.170 �12.447 12.185 0.203
JA 0.347 0.254 3.229 0.188 �10.865 9.541 �0.204
PA 0.670 0.538 3.520 0.205 �10.007 15.168 0.383
EM 0.664 0.433 2.506 0.146 �6.964 12.285 0.853

FRICTIONS NA 0.561 0.317 6.064 0.354 �31.263 26.130 �0.101
EU 1.349 1.130 5.680 0.331 �37.761 51.287 1.537
JA 0.809 0.847 4.020 0.234 �14.635 16.788 0.006
PA 1.147 1.111 5.098 0.297 �17.815 16.770 �0.233
EM 0.833 0.889 3.339 0.195 �10.744 12.294 �0.047

Zimmermann 2699

https://doi.org/10.1017/S0022109022001090  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022001090


the momentum score combines price-based and earnings-based momentum mea-
sures, as well as the effects of earnings announcements. While pure price momen-
tum is also not priced in my Japanese sample (mean 0.2% with t-stats 0.5), a factor
combining the different types of momentum, in contrast, is priced. Moreover,
momentum returns are negatively skewed in all regions. Except for the market
factor, the other factors do not exhibit any specific relation to skewness. Overall, my
factors thus generate significant return spreads, which I require for the factors to
capture information about the return cross-section.

III. The Benefits of Cross-Sectional Enhancement

The rationale behind factor pricing is that the expected return of a stock should
depend on the stock’s exposure to a set of risk factors that price the return cross-
section. However, there is evidence that a higher loading on a return (risk) factor is
not rewarded with higher returns. Specifically, Daniel and Titman (1997) investi-
gate the questions of whether there is a compensation for firms with higher loadings
on factors as introduced by Fama and French (1993) in their seminal paper, and
what the respective findings imply for risk premia associated with these factors.
They show that sorting on factor betas does not lead to excess returns of corre-
sponding long–short portfolios, suggesting that factor loadings do not explain
returns, but the characteristics themselves. These results suggest that factor loadings
do not seem to represent the true factor exposure.

Subsequent papers revisit the relation of covariances and returns for further
factors and factor models. Chen, Liu,Wang,Wang, and Yu (2020a) study portfolios
obtained by sorting on the loadings of 13 popular factors. They find that for none of
the examined factors a significant relation between the respective factor loadings
and returns can be determined. In a further paper, Chen, Liu,Wang,Wang, and Yu
(2020b) argue that if low and high sentiment periods are studied separately, a
significant return spread between high and low loadings portfolios can be observed.
While Chen et al. (2020a) are more concerned with the implication for performance
evaluation, I are interested in the general implications for the efficiency of factors
on an international level.

A further paper related to ours is Murray (2020). Motivated by the arbitrage-
pricing theory (APT) he creates “arbitrage” portfolios that profit from the flatness
of the security market plane, reflected in the return difference of portfolios with
different factor betas. The article is similar to Daniel et al. (2020) in that it creates
hedge factors from portfolios obtained from preformation betas and that it uses
those portfolios to lower the factor risk exposure while maintaining the expected
return. The author, however, employs a different way to construct and obtain the
hedge factors and hedged portfolios.

I implement the cross-sectional enhancement approach as suggested by
Daniel et al. (2020) to improve factor efficiency, who make use of the fact that
there is cross-sectional variation in loadings that is unrelated to average returns.
The authors develop a theoretical concept for why characteristics, but not loadings
are related to returns. I first summarize the rational of the approach and then
explain how I specifically implement it with international data.
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The traditional factors, as proposed by Fama and French (1993), are sorted on
characteristics as book-to-market or size. However, Daniel et al. (2020) argue that
these factors are not mean–variance efficient (MVE), as they do not incorporate the
full information about the covariance structure of returns. Let βi be the true future
loading and λ the corresponding risk price, such that E ri,t½ �= μi,t = βi� λ. According
to economic theory, it thus should be expected that higher loadings are awarded
with higher returns. By sorting on characteristics, I assume that these characteristics
ci are proportional to expected returns μi,t, such that μi,t = ci,t�ρ, where ρ is the
return premium associated with ci,t. If the firm characteristic ci is supposed to
capture risk, that is if ci is a perfect proxy for future loadings, then the true beta
βi needs to be proportional to the characteristic: β = ρ=λð Þ�c⇔β∝c. However, this
will not hold true if a factor is exposed to unpriced risk. In that case, the estimated
loading need not be equivalent to the true risk exposure. This can be demonstrated
by observing the following relation for realized excess returns:

ri,t = βi,t�1 f tþ λt�1ð Þþβνi,t‐1 f
ν
t þ εi:(1)

According to the above relation, a factor f c, obtained from a standard sorting
procedure on the characteristic c, with return ri, can thus load on i) common source
of variation ( b= risk) f þ λ and ii) an unpriced factor f ν. f ν is a factor with zero
expected return and positive variance and is thus exposed to unpriced risk. The
factors will be rendered inefficient if they are exposed to unpriced factor risk, which
will be the case if there is a significant correlation between the characteristic c and
the loadings on the unpriced factor βν. The reason is that the same expected return
with a lower exposure to risk is achievable. The factor portfolio will accordingly not
be mean–variance efficient.

From the framework, it follows that a characteristics-based factor f c can be
enhanced by hedging out unpriced risk. Daniel et al. (2020) suggest to combine the
factor portfolio with a hedge portfolio h that has zero exposure to the characteristic
c and conditional on the null exposure the maximum correlation with the charac-
teristic sorted portfolio. If we assume that characteristics proxy for the true beta,
we would need that characteristics line up with the loadings on the characteristics
sorted portfolios in order for f c to be MVE, as shown above. If this is not the case
and firms with the same levels of characteristics would encounter different loadings
on f c, loadings sorted portfolios can be used to construct the hedge factor. Differ-
ences in factor loadings should then stem from different exposure to the unpriced
risk factor. Hedge factors can be constructed in a double-sort procedure as a
combination of portfolios long in low-loading stocks and short in high-loading
stocks, where the respective portfolio stocks have similar characteristic values.
As the hedge portfolio should capture exposure to unpriced risk, its expected
return will be zero.

To compute the factor loadings that are subsequently used to construct
the hedge portfolios, I employ the current portfolio method, which builds upon
the initial idea of Daniel and Titman (1997). Daniel et al. (2020) also refer to the
procedure as high power methodology. I make use of the fact that characteristics
and factor loadings can be observed ex ante. I start with the market factors and the
six categorical factors introduced in Section II. Each regional factor is enhanced
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separately. First, I compute the factor portfolio returns for each month t and store
the corresponding long and short portfolio assignments, as well as the portfolio
weights. The current portfolio method traces-back the current month t portfolio
assignments and portfolio weights to each of the past 60 months. Subsequently,
those assignments and weights are used to calculate backward-looking past daily
returns for the current portfolio. I thus obtain the returns the current portfolio
would have yielded if an investor would have invested in it with month t
assignments and weights.

In my main analyses, these backward-looking portfolios are used to obtain
factor loadings similar to Frazzini and Pedersen (2014) (FP). Specifically, I com-

pute those loadings as βi = ρi,f c
σ ið Þ
σ f cð Þ. Correlation coefficients ρi,f c are from 5-year

windows with overlapping 3 day log-returns and variances are from 1-year win-
dows with daily log-returns. The different time windows are used based on the
argument that correlations are more persistent than volatilities (e.g., De Santis and
Gerard (1997)). For correlation coefficients, at least 3 years of data are required,
which constitutes the first constraint for the final sample period.

There might be concerns whether results employing FP betas are robust or
whether this approach to compute loadings might cause issues. Novy-Marx and
Velikov (2021) demonstrate that the FP estimate of the stock market’s beta (which
should be one at all times by definition) exhibits significant fluctuations over time.
They also show that Dimson (1979) betas generate (though only slightly) larger
beta spreads than FP betas. While I only follow one of the three points criticized
by Novy-Marx and Velikov (2021) (I do not use rank weighting or hedging by
leveraging), I want to ensure that my results are robust to the beta estimation
procedure. For that reason, in addition, I implement all relevant analyses with
Dimson (1979) betas, calculated by combining the loadings on contemporaneous,
one-day lagged, and one-day forward daily market returns. Further, as betas are
estimated they are subject to estimation error. By applying the Dimson estimation
procedure, I can also control for and mitigate a potential errors-in-variables
problem. Last, the Dimson (1979) betas only require 1 year of daily data in each
estimation step. The approach can thus be regarded as an additional robustness
check considering the time window to sharpen inferences in some tests that poten-
tially could have relatively lower power. In that case, the analyses can be extended
(restricted by the availability of quarterly accounting data) to start in July 1992
instead of Jan. 1995.

To construct the hedge portfolios, I first sort firms into quintiles based on the
composite category scores on the country-level. Within each quintile, I sort firms
into terciles based on estimated preformation factor loadings. The portfolio assign-
ments are then aggregated on the regional level. This double-sort procedure results
in a total of 15 portfolios within each region. For each portfolio, I calculate value-
weighted returns. The hedge portfolio h is long an equal-weighted combination of
all low-loading portfolios and short an equal-weighted combination of all high-
loading portfolios. I deviate from Daniel et al. (2020) in the construction of my
hedge portfolios for practical reasons. They rely on a 3 � 3 � 3 sort on the
respective firm characteristic, size, and the factor loading. However, I sort firms
into portfolios on the country-level, before aggregating the assignments to regional
levels. If my approachwould be based on 27 portfolios similar to Daniel and Titman
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(1997) and Daniel et al. (2020), I would be at risk to obtain a poor assignment
quality. By eventually basing my hedge portfolios on fewer portfolios, I ensure that
there are sufficient assignments on the country levels.

An important precondition for the application of the hedge portfolios is a
significant spread in loadings for firms with similar characteristic values. Table 2
shows postformation factor loadings for each of the 15 portfolios obtained with
loadings based on the FP procedure. Results are shown for each of the six categor-
ical factors. I obtain the loadings by running full-sample time-series regressions of
each of the 15 portfolio returns on a combination of the six traditional categorical
factors and the market factor. The reported loading is the coefficient on the corre-
sponding categorical factor. The table presents the global average values of the
regression coefficients and the respective t-statistics. The bottommost row for
each panel eventually shows the average postformation loading across all 5 low,
medium, or high preformation beta portfolios.

TABLE 2

Postformation Factor Loadings

Table 2 presents global postformation factor loadings for 15portfolios obtained fromsortingon the composite category scores
and on the preformation βs. First, categorical regional factors are computed and the portfolio assignments and weights are
stored. Subsequently, preformation βs are obtained by applying the current portfolio method on the categorical factors.
Backward-looking daily portfolio returns for the current portfolios are computed back to 60 months in the past and the returns
are used to compute the preformation βs in a similar manner as Frazzini and Pedersen (2014).Within each score quintile, firms
are sorted into preformation β terciles on the country-level and then aggregated into regional portfolios. Value-weighted
portfolio returns for each of the 15 portfolios are then calculated on the regional level. The postformation factor loadings are
obtained by regressing the respective portfolio return on a combination of the corresponding traditional categorical factor, the
market factor, and the five remaining categorical factors. The table shows the full sample beta coefficients on the traditional
factor and the corresponding t-statistics below in parentheses.

Score Preformation β

1 2 3 1–3

Panel A. Value Score

1 �0.777 �0.276 0.142 �0.919
(36.393) (12.553) (5.535) (26.070)

2 �0.280 �0.096 0.153 �0.433
(12.644) (5.221) (7.536) (13.682)

3 �0.144 0.044 0.231 �0.376
(7.239) (2.610) (13.139) (13.411)

4 �0.013 0.060 0.292 �0.305
(0.614) (3.510) (17.253) (10.710)

5 0.149 0.192 0.523 �0.374
(6.084) (11.371) (34.710) (11.715)

β �0.213 �0.015 0.268 �0.481

Panel B. Investment Score

1 0.114 0.279 0.719 �0.605
(4.220) (13.248) (34.092) (16.007)

2 �0.075 0.180 0.401 �0.476
(3.420) (8.468) (15.725) (12.861)

3 �0.175 0.119 0.357 �0.532
(7.376) (5.526) (14.127) (13.641)

4 �0.276 0.044 0.289 �0.565
(11.507) (1.981) (11.005) (14.300)

5 �0.709 �0.044 0.083 �0.792
(34.858) (1.898) (2.988) (21.727)

β �0.224 0.116 0.370 �0.594

(continued on next page)
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Spreads in postformation loadings are generally significant. However, the
magnitude of the spreads differs across categories. The comparatively lowest
spread is obtained for the momentum factor. The average difference in loadings is
only 0.26, compared to values in the range of 0.48 to 0.83 in case of the other

TABLE 2 (continued)

Postformation Factor Loadings

Score Preformation β

1 2 3 1–3

Panel C. Profitability Score

1 �1.083 �0.352 0.017 �1.100
(46.623) (12.343) (0.560) (26.337)

2 �0.526 �0.077 0.217 �0.743
(19.184) (3.757) (8.410) (18.410)

3 �0.367 �0.082 0.254 �0.621
(16.011) (4.465) (11.431) (16.985)

4 �0.284 0.062 0.277 �0.561
(13.309) (3.938) (14.287) (16.762)

5 �0.168 0.081 0.368 �0.535
(7.426) (4.810) (23.484) (16.899)

β �0.486 �0.074 0.227 �0.712

Panel D. Momentum Score

1 �0.774 �0.435 �0.375 �0.398
(46.643) (26.269) (16.746) (12.862)

2 �0.400 �0.190 �0.092 �0.309
(20.698) (11.469) (4.758) (10.581)

3 �0.208 �0.067 0.013 �0.221
(12.073) (4.537) (0.800) (8.423)

4 �0.058 0.031 0.143 �0.201
(3.484) (2.245) (9.308) (8.153)

5 0.186 0.211 0.389 �0.203
(10.555) (14.546) (29.350) (8.545)

β �0.251 �0.090 0.016 �0.266

Panel E. Intangible Score

1 �0.831 �0.266 0.108 �0.939
(33.009) (11.336) (3.642) (21.149)

2 �0.477 �0.132 0.261 �0.739
(16.888) (5.939) (8.856) (16.393)

3 �0.398 �0.111 0.361 �0.759
(15.419) (5.278) (15.026) (18.953)

4 �0.272 �0.086 0.447 �0.719
(10.753) (4.161) (18.822) (18.355)

5 �0.250 0.111 0.764 �1.014
(9.080) (5.126) (38.478) (26.305)

β �0.446 �0.097 0.388 �0.834

Panel F. Frictions Score

1 �0.037 0.094 0.396 �0.433
(1.737) (5.818) (25.139) (14.759)

2 �0.149 0.043 0.238 �0.386
(6.966) (2.663) (13.176) (12.459)

3 �0.272 0.003 0.225 �0.498
(11.875) (0.174) (11.149) (14.720)

4 �0.372 �0.080 0.224 �0.596
(14.295) (3.863) (8.582) (14.905)

5 �0.871 �0.295 �0.058 �0.814
(34.138) (14.081) (2.471) (21.494)

β �0.340 �0.047 0.205 �0.545
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factors. In this respect, I would expect the weakest effect of cross-sectional
enhancement for the momentum factor. Further, it can be seen that the coefficients
on the 15 portfolios mostly havemagnitudes in the range between�0.8 and 0.8 and
are approximately equally distributed across positive and negative values. Remem-
ber that the factors are normalized to a positive mean. While the notation 5 is long
and 1 is short for every category, the long portfolios for the frictions and investment
score mostly consist of firms with low values in the underlying characteristics.
Correspondingly, beta estimates are monotonically decreasing in scores for these
two categories, while they are increasing for the other categories. Table A1 reports
loadings and beta spreads for the market factor and with preformation loadings
obtained as Dimson (1979) betas. Spreads are generally similar for both estimation
procedures. Overall, the results support the use of Frazzini and Pedersen (2014)
type loadings as baseline case.

The preceding analysis has shown that hedge portfolios capture differences
in factor loadings, while having the same exposure to characteristics. I make use
of these hedge factors h to construct enhanced characteristic-efficient factors. The
objective is to construct the enhanced factor f hc such that is has no exposure to the
unpriced factor f ν. The perfect hedge will be obtained by combining f c and h such
that the variance of the enhanced factor f hc isminimized. I hedge by forming a linear
combination of f c and h:

f hct = f ct � γct�1
0ht:(2)

To minimize the variance of f hc , the variances and covariances of the char-
acteristic sorted factor f c and the hedge factor h are taken into account. The hedge
ratio γ is thus defined corresponding to a loading of f c on the hedge factor

h: bγct�1 = ρf c,h
σ f ctð Þ
σ htð Þ . To obtain the hedge ratio γ, I use the current portfolio method

in the same manner as in case of preformation loadings. In the main analysis,
I again employ the Frazzini and Pedersen (2014) procedure for computation of
these loadings. I compute backward-looking daily returns using the current hedge
portfolio assignments and weights and use a 5-year window to compute correla-
tions, requiring at least 3 years of data, and a 1-year window to compute volatil-
ities. The analyses that are based on preformation factor loadings obtained by the
Dimson (1979) method also use γ obtained by the Dimson procedure, employing
1 year of daily data for the corresponding regressions.

In the first step, I hedge each categorical factor with respect to its own hedge
factor only. Afterward, I consider enhanced factors that are hedged with respect to
the hedge factors of the market factor and all six categorical factors.9 In this case,
I need to obtain a separate γ for each categorical factor – hedge factor combination.
Table 3 shows time-series averages of monthly returns of the traditional factors,
hedge factors, and enhanced factors and corresponding t-statistics, by category and
region. In this case, enhanced factors are only hedged with respect to their own
hedge factor.

9The market hedge factor is computed as equal-weighted mean of six hedge factors obtained from
double sorts on the market beta and the six corresponding composite scores.
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Hedge factors are supposed to capture unpriced risk. Expected returns of the
hedge factors should thus be insignificant. The second row for each category in
Table 3 shows that the average return of most regional hedge factors is indeed close
to zero. Table 5, which examines the market factor separately, shows that it also
holds true for the market hedge factors. No hedge factor, except the value hedge
factor in Emerging Markets, exhibits a statistically significant return. Also, the
economic significance stays within reasonable limits. Mostly, the monthly mean

TABLE 3

Cross-Sectionally Enhanced Factor Returns

Table 3 shows monthly average returns of traditional factors, hedge-portfolios, and factors cross-sectionally enhanced
according to Daniel et al. (2020). Traditional factors f c are obtained from quintile sorts on the respective category score.
Preformation βs used to obtain the hedge portfolios and γs used for hedging are obtained by the current portfolio method,
which employs backward-looking factor and hedge-portfolio returns to compute covariances andvolatilities. Hedgeportfolios
are basedon 15portfolios that are obtained fromsorting firmswithin each score quintile into preformation β terciles. The hedge
factor is long an equal-weighted combination of the low-loading portfolios and short an equal-weighted combination of the
high-loading portfolios. The hedged factor f hc is obtained by hedging the traditional factor with respect to the hedge factor as
in equation (2). Enhanced factors are only hedged with respect to their own hedge factor. Newey and West (1987) adjusted
t -statistics are in parentheses. ***, **, and * indicate statistical significance at 1%, 5%, and 10% level, respectively.

Category Factor Region

North America Europe Japan Asia Pacific Emerging Markets

VALUE Fc traditional 0.424 0.598* 0.957*** 1.168*** 0.693***
(0.973) (1.907) (2.874) (2.924) (3.582)

Hedge-portfolio h 0.182 �0.074 0.043 �0.027 0.533*
(0.797) (�0.302) (0.216) (�0.100) (1.955)

Fhc enhanced 0.542* 0.560** 0.978*** 1.129*** 0.927***
(1.825) (2.215) (4.035) (3.489) (4.730)

INVESTMENT Fc traditional 0.397* 0.451*** 0.145 0.535* 0.379***
(1.954) (2.621) (0.737) (1.782) (2.673)

Hedge-portfolio h 0.183 0.041 �0.070 �0.059 �0.111
(0.800) (0.352) (�0.268) (�0.263) (�0.481)

Fhc enhanced 0.530*** 0.489*** 0.117 0.520** 0.325**
(3.261) (3.298) (0.945) (1.990) (2.556)

PROFITABILITY Fc traditional 0.818** 0.550** 0.469* 1.163*** 0.582***
(2.330) (1.995) (1.801) (2.800) (3.392)

Hedge-portfolio h �0.296 �0.124 �0.049 �0.064 �0.096
(�0.786) (�0.526) (�0.189) (�0.238) (�0.245)

Fhc enhanced 0.731*** 0.476** 0.450** 1.120*** 0.553***
(3.248) (2.474) (2.500) (3.359) (3.810)

MOMENTUM Fc traditional 0.914*** 1.267*** 0.711* 1.595*** 1.160***
(2.977) (3.859) (1.912) (5.161) (5.192)

Hedge-portfolio h �0.233 �0.124 �0.140 �0.023 �0.390
(�1.380) (�0.723) (�0.750) (�0.124) (�1.624)

Fhc enhanced 0.790*** 1.200*** 0.645** 1.590*** 0.992***
(2.621) (4.101) (1.981) (5.357) (4.697)

INTANGIBLES Fc traditional 0.690*** 0.309 0.347* 0.670*** 0.664***
(3.222) (1.483) (1.852) (3.056) (3.937)

Hedge-portfolio h 0.078 0.199 �0.196 �0.124 �0.016
(0.265) (0.786) (�1.040) (�0.447) (�0.067)

Fhc enhanced 0.763*** 0.444*** 0.238 0.569*** 0.673***
(5.083) (3.022) (1.358) (3.006) (4.716)

FRICTIONS Fc traditional 0.561 1.349*** 0.809*** 1.147*** 0.833***
(1.593) (4.718) (2.834) (3.343) (4.416)

Hedge-portfolio h 0.003 �0.142 0.004 �0.175 0.219
(0.009) (�0.737) (0.021) (�0.708) (0.561)

Fhc enhanced 0.605*** 1.244*** 0.801*** 1.008*** 0.891***
(3.301) (3.967) (4.056) (3.941) (4.689)
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return is below 0.2%. Especially in Emerging Markets, the magnitude tends to be
higher, as indicated by the value (0.53%) andmomentum hedge factor (�0.39%).10

I proceed by comparing traditional and enhanced factors. I take two aspects
into account: First, the general magnitude of returns, and second the significance
level, represented by the t-statistics. The objective is to improve upon the efficiency
of factors and those statistics can be first indicators to determine whether a potential
effect is due to an increase in returns or due to reduction in volatility. Based on the
underlying theory, one would expect that primarily significance levels are affected.
Indeed, on average the enhanced versions of the value, investment, profitability,
intangibles, and frictions factors exhibit returns relatively similar to their traditional
counterparts, while their t-statistics are larger. This finding indicates an improve-
ment in efficiency, although there are exceptions, especially within North America
and Japan. The cross-sectional enhancement approach does generally not work for
the momentum factor. Either returns or t-statistics decrease, leading to an overall
worse performance.

For further comparison of performance, I conduct spanning tests of the
enhanced factor portfolios. For each region and each factor, I use two different
specifications. In the first specification, I regress the enhanced factor on its tradi-
tional factor version. In the second specification, I regress the enhanced factor on
a combination of the traditional factor version, the enhanced market factor, and
the five other enhanced categorical factors. I present the alphas for the categorical
factors in Table 4 and for the market factor in Table 5. I make use of two versions of
enhanced factors as dependent variables in the spanning regressions. The factors in
Panel A are enhanced with respect to their own hedge factor only. Panel B instead
uses factors enhanced with respect to the hedge factors of all factors.

A significant alpha implies that the enhanced factor is different from the
traditional factor version and generates an excess return. For factors enhanced with
respect to their own hedge factor, I can observe significant factor alphas in at least
four regions for the value, profitability, frictions, andmarket factor. The regions that
have the lowest number of significant alphas are Japan and Asia-Pacific and they
contribute to the weaker results of the investment and intangibles factor. North
America is the regionwith the highest number of significant alphas. The benchmark
consisting of a factor combination is strictest to the profitability factor, as most
factor alphas are no longer significant when it is employed. Alphas of the momen-
tum factor are significant only in Europe or with the factor combination as bench-
mark, further supporting the finding that cross-sectional enhancement is not
effective in this case.When using factors enhancedwith respect to all hedge factors,
results are weaker and a considerably lower number of significant alphas can be
observed, indicating that the additional hedging does not add value. However, some
alphas tend to be of larger economic magnitude.

I further conduct a large-scale analysis and comparison of all potential
methods and procedures to construct hedge factors and cross-sectionally hedged
factors. These procedures encompass the following choices: Returns from current

10In the Supplementary Material, I show that hedge factors based on Dimson (1979) betas provide
relatively similar results.
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TABLE 4

Spanning Tests of the Cross-Sectionally Enhanced Factor Portfolios

Table 4 presents the results for spanning tests of the cross-sectionally enhanced composite factor portfolios with respect to their traditional factor version (F c ) or to a combination of the traditional factor (F c ), the
enhanced market factor, and the other enhanced composite categorical factors (FHC cf g ) by running monthly time-series regressions of the enhanced factor returns on the reference factor sets. Regressions are
conducted for each region separately. The table shows regression alphas for two versions of enhanced factors. Panel A shows results when the traditional factor is enhanced with respect to its own hedge factor only.
Panel B shows results when the traditional factor is enhancedwith respect to the hedge factors of all categorical factors and themarket hedge factor. Newey andWest (1987) adjusted t-statistics are in parentheses. ***,
**, and * indicate statistical significance at 1%, 5%, and 10% level, respectively.

FACTOR VALUE INVESTMENT PROFITABILITY MOMENTUM INTANGIBLES FRICTIONS

Factor F c MKT þ F c F c MKT þ F c F c MKT þ F c F c MKT þ F c F c MKT þ Fc F c MKT þ F c

Region Set þFHC∖ cf g þFHC∖ cf g þFHC∖ cf g þFHC∖ cf g þFHC∖ cf g þFHC∖ cf g

Panel A. Dependent Variable = Return to Factor Portfolio Cross-Sectionally Enhanced With Respect to the Factor’s Hedge Factor Only

North America bα 0.328** 0.411*** 0.291*** 0.165* 0.368*** 0.291** 0.035 0.161* 0.466*** 0.206** 0.391*** 0.308*
t (bα) (2.395) (2.616) (3.149) (1.877) (2.647) (2.223) (0.364) (1.650) (4.473) (2.027) (2.711) (1.893)

Europe bα 0.151 0.501*** 0.166*** 0.152** 0.148 0.004 0.161** 0.240*** 0.276*** 0.128 0.087 �0.072
t (bα) (1.162) (4.056) (2.897) (2.372) (1.420) (0.040) (1.968) (2.911) (2.962) (1.238) (0.535) (�0.454)

Japan bα 0.424*** 0.343*** 0.045 �0.075 0.206** 0.174 0.095 0.313*** 0.011 0.054 0.288*** 0.402***
t (bα) (3.610) (2.723) (0.467) (�0.692) (2.109) (1.588) (0.830) (2.615) (0.101) (0.506) (2.888) (3.858)

Asia bα 0.286* 0.335** 0.092 0.127 0.278* �0.018 0.120 0.208** 0.125 0.063 0.242** 0.137
Pacific t (bα) (1.819) (2.166) (0.971) (1.379) (1.672) (�0.110) (1.217) (2.240) (1.118) (0.527) (2.166) (1.185)
Emerging bα 0.471*** 0.600*** 0.045 0.037 0.224** �0.078 �0.053 �0.155 0.198** 0.276*** 0.381*** 0.164
Markets t (bα) (4.011) (5.038) (0.650) (0.504) (1.960) (�0.680) (�0.550) (�1.534) (2.456) (3.073) (2.583) (1.111)

Panel B. Dependent Variable = Return to Factor Portfolio Cross-Sectionally Enhanced With Respect to the Hedge Factors of All Factors

North America bα 0.985 �0.221 1.054** 0.379 1.766*** 0.824*** 0.779* 0.371 1.973*** 0.320 1.359** 0.142
t (bα) (1.384) (�0.602) (2.529) (1.295) (3.344) (2.635) (1.707) (0.786) (3.708) (1.006) (2.155) (0.435)

Europe bα 0.023 0.218 0.499*** 0.507*** 0.490 �0.089 0.901*** 0.712*** 0.937** 1.143*** 0.085 �0.796
t (bα) (0.053) (0.809) (2.645) (2.587) (1.074) (�0.325) (2.637) (2.589) (2.497) (4.584) (0.125) (�1.343)

Japan bα 0.748 0.701* 0.152 0.339 0.465 0.488** 0.712 0.630 0.000 �0.208 �0.058 �0.198
t (bα) (1.630) (1.729) (0.360) (0.844) (1.192) (2.314) (1.397) (1.375) (0.001) (�0.711) (�0.121) (�0.586)

Asia bα 1.097* �0.104 0.110 �0.109 0.648 �1.187*** �0.068 �0.242 0.450 �0.348 1.262** 0.185
Pacific t (bα) (1.708) (�0.310) (0.242) (�0.384) (1.148) (�4.356) (�0.217) (�0.861) (1.101) (�1.501) (2.283) (0.550)
Emerging bα 0.780*** 0.902*** �0.015 �0.449*** 0.679* �0.692*** 0.149 �0.289 0.289 0.375** 0.799 �0.080
Markets t (bα) (3.339) (5.361) (�0.090) (�2.597) (1.850) (�3.053) (0.564) (�1.378) (1.510) (2.182) (1.615) (�0.261)
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method versus regular historical returns for computation of β and γ loadings, FP
versus Dimson procedure for computation of loadings, and hedging with respect to
own hedge factor only versus hedging with respect to all seven hedge factors.
Results are reported in Table A2. Taken all together, hedging with respect to the

TABLE 5

Market Factor Analysis

Table 5 conducts the analyses concerning cross-sectional end time-series enhancement for the market factor. Panel A shows monthly
average returns of the traditional regional market factors, their hedge portfolios, their cross-sectionally enhanced versions, and their
volatility-managedmarket factor versions, as in Tables 3 and6. Panel B shows results for spanning tests of the cross-sectionally enhanced
or volatility-managed market factors with respect to their traditional factor version (F c ) or to a combination of the traditional market factor
(F c ), and the other enhanced composite categorical factors (FHC ∖ cf g), as in Tables 4 and 7, by running monthly time-series regressions of
the enhanced factor returns on the reference factor sets. ***, **, and * indicate statistical significance at 1%, 5%, and 10% level,
respectively.

Panel A. Time-Series Statistics

Factor Region

North
America Europe Japan

Asia
Pacific

Emerging
Markets

Fc traditional 0.927*** 0.779** 0.281 0.848** 0.580
(3.359) (2.298) (0.838) (2.210) (1.332)

Cross-sectionally enhanced factors
Hedge-portfolio h 0.082 0.137 0.274 �0.040 �0.069

(0.286) (0.600) (1.014) (�0.155) (�0.178)

Fhc enhanced 0.955*** 0.915*** 0.495** 0.812*** 0.505
(5.666) (3.802) (2.328) (3.014) (1.470)

Time-series managed factors
12% 0.875*** 0.770*** 0.143 0.771*** 0.538

(4.029) (3.016) (0.657) (2.893) (1.486)

TS-Vol 0.400*** 0.420*** �0.004 0.487*** 0.405*
(3.319) (2.984) (�0.037) (2.789) (1.731)

Dynamic 1.129*** 1.106*** 0.174 1.401*** 1.156*
GJR (4.130) (2.859) (0.366) (2.745) (1.794)
Dynamic 0.985*** 0.871** 0.117 1.021*** 0.624
OOS (3.652) (2.592) (0.613) (2.826) (1.497)

Panel B. Factor-Spanning Regressions

Factor F c
MKT þ F c F c

MKT þ F c

Region Set þF ScC∖ cf g þFScC∖ cf g

Dependent Variable = Cross-Sectionally Enhanced Market Portfolio

ONLY_MARKET_HEDGE_FACTOR ALL_HEDGE_FACTORS

North bα 0.662*** 0.691*** 2.429*** 1.303***
America t (bα) (4.417) (4.117) (3.552) (2.913)

Europe bα 0.583*** 0.461*** 2.240*** 1.641***
t (bα) (3.785) (2.850) (3.450) (4.487)

Japan bα 0.367** 0.334* 1.168* 1.304***
t (bα) (2.369) (1.880) (1.842) (3.333)

Asia bα 0.448*** 0.386** 1.101** 0.845**
Pacific t (bα) (2.615) (2.035) (2.018) (1.966)
Emerging bα 0.182 0.112 0.283 1.050***
Markets t (bα) (0.924) (0.541) (0.701) (2.873)

Dependent Variable = Volatility-Scaled Market Portfolio

CONSTANT_SCALING DYNAMIC_SCALING

North bα 0.348** 0.231** 0.310** 0.189*
America t (bα) (2.336) (2.085) (1.976) (1.646)

Europe bα 0.385** 0.257** 0.304 0.110
t (bα) (2.074) (2.351) (1.520) (0.958)

Japan bα �0.192 �0.026 �0.148 �0.003
t (bα) (�1.393) (�0.382) (�0.996) (�0.050)

Asia bα 0.408* 0.208* 0.320 0.072
Pacific t (bα) (1.713) (1.849) (1.237) (0.609)
Emerging bα 0.363 0.083 0.440 0.065
Markets t (bα) (1.415) (0.606) (1.544) (0.436)
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factor’s own hedge factor outperforms hedging with respect to all hedge factors, as
suggested by results in Table 4. The current portfolio method delivers better results
than the regular approach, especially when FP type loadings are employed. Lastly,
FP type loadings generate slightly better results than Dimson-type loadings. The
difference is most pronounced in the Asia-Pacific region. Therefore, in the main
analysis, I focus on one specification consisting of cross-sectionally enhanced
factors hedged with respect to their own hedge factor that use the current method
and the FP procedure to estimation loadings.

IV. The Benefits of Time-Series Enhancement

The preceding chapter has shown that cross-sectional information can have
significant implications for returns. In this chapter, I show that this can likewise
hold for time-series variation and information. To start with, it is a well-established
fact that the momentum strategy as introduced by Jegadeesh and Titman (1993)
exhibits strong crashes. These crashes are characterized by strongly negative
returns within a short time period, implying a negatively skewed distribution of
returns. Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) intro-
duce volatility-managing time-series techniques in order to minimize the crash risk
associated with the momentum strategy. I am interested in understanding whether
these approaches might also help in enhancing international categorical factors.

Volatility-management studies do not only have investigated and focused on
the momentum factor. Moreira and Muir (2017) investigate the effect on 9 further
return factors and conclude that for most other factors volatility management
improves Sharpe ratios as well. While they employ time-series regressions to
estimate the effect on the Sharpe ratio (similar to me in Tables 4 and 7), Cederburg
et al. (2020) investigate 103 managed strategy returns directly and conclude in
contrast that volatility management only works consistently for characteristics
in the momentum category.11 Analyzing whether time-series volatility manage-
ment enhances international categorical factors can thus give me an indication
for which group of characteristics volatility management works and whether I
can thus support either the results of Moreira and Muir (2017) or Cederburg et al.
(2020) internationally.

An important observation concerning momentum crashes is that they occur
when volatility was recently high. Correspondingly, Barroso and Santa-Clara (2015)
show that past realized volatility predicts momentum returns. I confirm this result
by running pooled OLS regressions across regions of traditional and cross-
sectionally enhanced factor returns on past 6- and 1-month realized volatility,
presented in Table A3. For all momentum factor versions, the regression coeffi-
cients are significantly negative. Apart from that, negative coefficients can only
be observed for the market factor, but not for the other factors. The meaning of a

11Further papers that implement volatility management successfully are Barroso, Detzel, and Maio
(2021) for the betting-against beta strategy and the Hou et al. (2015) ROE factor, or Eisdorfer andMisirli
(2020) for the financial distress measure of Campbell, Hilscher, and Szilagyi (2008) and the correspond-
ing healthy-minus-distress strategy.
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significant and negative coefficient for time-series enhancement is similar to the
meaning of a large postformation beta spread for cross-sectional enhancement. In
this respect, I would expect the strongest effect of time-series enhancement for the
momentum and market factor.

The general idea of volatility management is to either take a levered or
conservative position in the factor, depending on past volatility. Investments are
thus reduced when volatility has recently been high and scaled up in low-volatility
periods. Barroso and Santa-Clara (2015) suggest a constant scaling strategy. They
usemonthly realized volatilitybσ from past 6month daily returns and scale the factor
to a target level of volatility of 12%:

f σ∗ct =
cbσt�1

f ct with c= σtarget:(3)

In subsequent studies, Moreira and Muir (2017) and Cederburg et al. (2020)
employ a similar scaling approach. However, their approach differs in that they
chose c such that the traditional factor f ct and the managed factor f σ∗ct have the same
variance. They also diverge in how they compute past volatility, as they only use
daily returns of the preceding month.

Daniel and Moskowitz (2016) take a different approach by employing a
dynamic scaling strategy using both volatility and predicted returns as input param-
eters for scaling. Predicted returns are obtained by first conducting an OLS regres-
sion of monthly returns on an interaction term between a bear market indicator,
equal to 1 if the cumulative market return over the past 24 months is negative, and
the market variance computed from past 6 months daily returns. Parameter esti-
mates are then used to compute the expected returns μt�1. Together with an estimate
of expected variance, the strategy is scaled such that the conditional Sharpe ratio
is maximized12:

f σ∗ct =w∗
t�1f

c
t with w∗

t�1 =
1

2λ

� �
μt�1bσt�1

:(4)

Daniel and Moskowitz (2016) use both an in-sample and out-of-sample
approach. For the in-sample version, they use a GJR-GARCH model to forecast
the volatility as proposed by Glosten, Jagannathan, and Runkle (1993) (GJR).13

The GJR estimate and past 6 months realized volatility are then fitted on realized
volatility of daily returns in the subsequent month to obtain the final estimate. The
out-of-sample approach uses data from the start of the sample up to the preceding
month in predictive OLS regressions and only realized volatility from past 6 month
daily returns as input for expected volatility.14

12λ in this equation is a time-constant scalar.
13The variance process is described as σ2t = β0þβ1σ

2
t�1þ γ1ε

2
t�1þ γ2I εt�1 < 0ð Þε2t�1 and parameters

are estimated by maximum likelihood on the full sample.
14Ehsani and Linnainmaa (2021) suggest time-series efficient factors based on the exploitation of

factor autocorrelation. They thus include a (factor) momentum effect in their construction method, while
I examine momentum separately. Further, their way of estimating means, volatilities, and autocorrela-
tions imposes a further time constraint. Results that are reported in the Supplementary Material suggest
that on average there is no further improvement when their method is employed.
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In a first step, I compare raw returns of traditional factors to returns obtained by
the constant scaling approaches as employed inBarroso and Santa-Clara (2015) and
Moreira and Muir (2017), and to returns obtained by the dynamic in-sample and
dynamic out-of-sample approach as proposed by Daniel and Moskowitz (2016).
Tables 5 and 6 show monthly average returns and the corresponding t-statistics for
these 5-factor versions for the market and the categorical factors, respectively.

Similar as in the case of cross-sectional enhancement, again I take both the
magnitude and significance levels of returns into account. The only composite
factor for which there is a consistent and significant improvement is the momentum
factor. Although the factor signal is not only composed of price-based measures,
I can observe an increase in both returns and especially significance levels within all
regions. The picture for the other factors is much less clear. For the value, profit-
ability and intangibles factors there is amixture of slightly lower and less significant
and slightly higher and more significant returns across regions. For the investment
and frictions factors, there is mostly no real effect observable. However, there is a
tendency for an improvement in the market factor. Whether an effect is due to an
increase in returns or due to reduction in volatility could potentially also depend on
how the factor is scaled. Both the constant and dynamic scaling approaches gen-
erally lead to similar enhancement effects. In the following, I will therefore focus on
one constant scaling approach, where I scale to the time-series average volatility
level, and the dynamic scaling out-of-sample approach, as it better represents the
real-time experience of an investor.

Table 7 conducts factor-spanning regressions, analogous to Table 4. Regres-
sions are run with respect to the traditional factor version or to a combination of
the traditional factor version, the scaled market factor, and the other five scaled
categorical factors. For the momentum factor, I can observe a significant alpha
for almost all regional specifications. Only the specification using the benchmark
consisting of a factor combination on the regional Asian-Pacific factor that employs
constant scaling yields statistically insignificant results. The effect of the constant
and dynamic scaling approach is relatively similar. The dynamic scaling approach
mostly comes with a higher economic magnitude of the alphas, except for North
America. The other categorical factors domostly not show significant alphas. There
are only a few exceptions that are consistent over scaling approaches (the invest-
ment factor in Emerging Markets and the profitability factor in Europe and Emerg-
ing Markets). For the market factor, significant alphas across scaling approaches
can only be observed for North America.

Generally, there is pervasive evidence that volatility scaling leads to an
improvement in performance for the categorical momentum factor internationally.
Based on the results, I can also conclude that volatility-scaling is not consistently
successful for all categories except momentum, supporting the conclusion of
Cederburg et al. (2020).

V. Comparing Factor Performance

In the two previous sections, I have introduced and implemented two different
factor enhancement techniques: Cross-sectional enhancement of factors by incor-
porating information about the covariance structure in the cross-section of stock
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TABLE 6

Time-Series Managed Factor Returns

Table 6 shows monthly average returns of traditional and volatility-managed categorical factors. The raw returns of the unmanaged traditional factors and of four types of managed factors are shown, were the approaches of Barroso and
Santa-Clara (2015), Moreira and Muir (2017), Cederburg et al. (2020), and Daniel and Moskowitz (2016) are employed, respectively. The first approach scales the strategy to an annualized target volatility of 12%, following Barroso and
Santa-Clara (2015) (12%). The second approach scales the annualized target volatility to the time-series average volatility of the respective factor as in Moreira and Muir (2017) and Cederburg et al. (2020) (TS-Vol). Dynamic scaling
according to Daniel andMoskowitz (2016) additionally includes an estimate of expected returns in scaling the strategy. The first dynamic approach combines an in-sample volatility estimate basedon theGlosten et al. (1993)GJR-GARCH
with realized volatility (GJR). The second dynamic out-of-sample approach only uses realized volatility based on past information as volatility estimate (OOS). Newey andWest (1987) adjusted t-statistics are in parentheses. ***, **, and *
indicate statistical significance at 1%, 5%, and 10% level, respectively.

Category Factor Region Category Factor Region

North America Europe Japan Asia-Pacific Emerging Markets North America Europe Japan Asia-Pacific Emerging Markets

VALUE Trad 0.424 0.598* 0.957*** 1.168*** 0.693*** MOMENTUM Trad 0.914*** 1.267*** 0.711* 1.595*** 1.160***
(0.973) (1.907) (2.874) (2.924) (3.582) (2.977) (3.859) (1.912) (5.161) (5.192)

12% 0.047 0.424 0.671** 0.703** 0.886*** 12% 1.045*** 1.635*** 0.744** 1.677*** 1.842***
(0.194) (1.393) (2.508) (2.509) (3.568) (4.057) (5.444) (2.582) (6.487) (6.057)

TS-Vol 0.093 0.637* 1.243*** 1.367*** 0.977*** TS-Vol 1.488*** 2.315*** 1.473*** 2.389*** 2.164***
(0.208) (1.896) (3.283) (2.907) (3.367) (3.718) (6.538) (2.882) (5.640) (6.068)

Dynamic �0.046 0.343 0.633** 0.941** 0.825*** Dynamic 1.335*** 1.948*** 1.152*** 2.136*** 1.589***
GJR (�0.145) (1.194) (2.358) (2.508) (3.514) GJR (4.394) (5.763) (3.072) (7.194) (6.497)
Dynamic �0.096 0.208 0.455** 0.749** 0.961*** Dynamic 0.887*** 1.363*** 1.230*** 2.598*** 1.965***
OOS (�0.426) (0.988) (2.247) (2.269) (3.220) OOS (3.808) (5.149) (2.635) (6.735) (6.265)

INVESTMENT Trad 0.397* 0.451*** 0.145 0.535* 0.379*** INTANGIBLES Trad 0.690*** 0.309 0.347* 0.670*** 0.664***
(1.954) (2.621) (0.737) (1.782) (2.673) (3.222) (1.483) (1.852) (3.056) (3.937)

12% 0.318 0.540** 0.150 0.429* 0.851*** 12% 0.893*** 0.405 0.434* 0.570** 0.950***
(1.446) (2.364) (0.596) (1.672) (3.025) (4.025) (1.541) (1.749) (2.479) (4.352)

TS-Vol 0.324 0.492*** 0.356 0.564 0.659*** TS-Vol 0.908*** 0.273 0.449* 0.656*** 1.010***
(1.485) (2.734) (1.216) (1.639) (3.086) (3.539) (1.402) (1.678) (2.627) (3.934)

Dynamic 0.267 0.340** 0.071 0.425 0.565*** Dynamic 0.821*** 0.291 0.301 0.572*** 0.759***
GJR (1.534) (2.337) (0.395) (1.408) (3.213) GJR (4.482) (1.476) (1.589) (2.663) (4.253)
Dynamic 0.095 0.245* 0.095 0.445 0.750*** Dynamic 0.745*** 0.186 0.173 0.385* 0.825***
OOS (0.599) (1.826) (0.592) (1.277) (2.941) OOS (4.327) (1.148) (1.196) (1.691) (4.153)

PROFITABILITY Trad 0.818** 0.550** 0.469* 1.163*** 0.582*** FRICTIONS Trad 0.561 1.349*** 0.809*** 1.147*** 0.833***
(2.330) (1.995) (1.801) (2.800) (3.392) (1.593) (4.718) (2.834) (3.343) (4.416)

12% 0.717*** 0.829*** 0.573* 0.942*** 0.879*** 12% 0.339 1.107*** 0.670*** 0.924*** 0.918***
(2.608) (2.945) (1.957) (2.774) (3.673) (1.593) (4.983) (2.712) (3.364) (4.329)

TS-Vol 1.072** 0.742** 0.663* 1.805*** 0.928*** TS-Vol 0.409 1.307*** 0.979*** 1.452*** 0.930***
(2.542) (2.255) (1.922) (2.889) (3.746) (1.058) (3.679) (3.197) (3.565) (3.610)

Dynamic 0.826** 0.959*** 0.456** 1.282*** 0.739*** Dynamic 0.536* 1.424*** 0.638** 1.222*** 0.835***
GJR (2.354) (3.418) (1.981) (3.219) (3.746) GJR (1.755) (4.789) (2.276) (3.829) (4.150)
Dynamic 0.696** 0.668*** 0.347** 1.278*** 0.942*** Dynamic 0.261 1.235*** 0.589** 1.103*** 0.888***
OOS (2.255) (3.208) (2.050) (2.666) (3.702) OOS (1.084) (4.653) (2.515) (2.976) (3.797)
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TABLE 7

Spanning Tests of the Volatility-Scaled Factor Portfolios

Table 7presents the results for spanning tests of the volatility-scaled composite factor portfolioswith respect to the traditional factor (Fc ) or to a combination of the traditional factor (Fc ), the volatility-scaledmarket factor,
and the other volatility-scaled composite categorical factors (FHC∖ cf g ) by running monthly time-series regressions of the enhanced factor returns on the reference factor sets. Regressions are conducted for each region
separately. The table shows regression alphas for two versions of volatility-scaled factors. Panel A shows results when constant scaling is applied on the factors, by scaling the factors to their time-series average
volatility as inMoreira andMuir (2017) andCederburg et al. (2020). Panel B shows resultswith dynamic out-of-sample volatility scaling as inDaniel andMoskowitz (2016). Newey andWest (1987) adjusted t-statistics are
in parentheses. ***, **, and * indicate statistical significance at 1%, 5%, and 10% level, respectively.

FACTOR VALUE INVESTMENT PROFITABILITY MOMENTUM INTANGIBLES FRICTIONS

Factor F c MKT þ F c F c MKT þ F c F c MKT þ F c F c MKT þ F c F c MKT þ F c F c MKT þ F c

Region Set þF ScC∖ cf g þF ScC∖ cf g þFScC∖ cf g þF ScC∖ cf g þFScC∖ cf g þFScC∖ cf g

Panel A. Dependent Variable = Return to Factor Portfolio Constant Volatility-Scaled to Time-Series Average Volatility

North bα �0.310 �0.048 �0.026 �0.074 0.387 0.311 0.592** 0.474** 0.154 0.026 �0.056 �0.020
America t(bα) (�1.224) (�0.173) (�0.190) (�0.541) (1.354) (1.154) (2.507) (2.053) (1.137) (0.180) (�0.238) (�0.081)

Europe bα 0.052 0.112 0.061 0.113 0.269* 0.196 1.191*** 1.160*** 0.009 0.075 �0.146 �0.257
t(bα) (0.321) (0.597) (0.673) (1.123) (1.666) (1.128) (5.988) (5.524) (0.095) (0.722) (�0.858) (�1.355)

Japan bα 0.225* 0.220 0.161 0.090 0.090 �0.014 0.633** 0.459* 0.038 �0.079 0.113 0.083
t(bα) (1.685) (1.589) (1.442) (0.744) (0.606) (�0.103) (2.365) (1.703) (0.327) (�0.663) (0.781) (0.539)

Asia bα 0.108 �0.182 0.059 �0.081 0.288 �0.178 0.520** 0.338 �0.087 �0.225** 0.230 0.025
Pacific t(bα) (0.493) (�0.863) (0.346) (�0.446) (0.974) (�0.618) (2.393) (1.523) (�0.870) (�2.151) (1.166) (0.136)
Emerging bα 0.185 0.007 0.163* 0.049 0.208** 0.052 0.540*** 0.559*** 0.010 0.043 �0.062 �0.197
Markets t(bα) (1.346) (0.047) (1.796) (0.506) (2.408) (0.546) (3.531) (3.472) (0.111) (0.436) (�0.559) (�1.617)

Panel B. Dependent Variable = Return to Factor Portfolio Volatility Scaled With Dynamic Out-of-Sample Approach

North bα �0.275 �0.073 �0.112 �0.184 0.422 0.076 0.572*** 0.380** 0.309** 0.255* 0.053 0.215
America t(bα) (�1.449) (�0.431) (�0.889) (�1.477) (1.492) (0.337) (2.917) (2.535) (2.238) (1.889) (0.257) (1.163)

Europe bα �0.128 �0.119 �0.043 �0.051 0.556*** 0.058 0.987*** 0.618*** 0.013 �0.046 0.361* 0.174
t(bα) (�0.863) (�0.706) (�0.453) (�0.474) (2.918) (0.341) (4.112) (3.231) (0.117) (�0.414) (1.949) (0.870)

Japan bα 0.029 �0.148 0.029 0.044 0.146 0.103 0.796* 0.793** 0.021 �0.198** 0.106 0.066
t(bα) (0.183) (�1.101) (0.236) (0.352) (1.363) (1.265) (1.917) (2.001) (0.193) (�2.064) (0.606) (0.400)

Asia bα �0.048 �0.378* 0.114 �0.326 0.352 �0.494 1.444*** 1.000*** �0.208 �0.430*** 0.156 �0.188
Pacific t(bα) (�0.206) (�1.818) (0.372) (�1.066) (0.953) (�1.621) (4.262) (3.207) (�1.477) (�3.606) (0.540) (�0.823)
Emerging bα 0.292 0.057 0.400** 0.094 0.336* �0.039 0.883*** 0.687*** 0.091 0.223 0.103 �0.078
Markets t(bα) (1.498) (0.289) (1.996) (0.443) (1.917) (�0.205) (3.872) (2.904) (0.643) (1.415) (0.671) (�0.492)
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returns and volatility-management techniques in the time series. As outlined,
the main objective of enhancement is to improve the efficiency of factors. In the
following, I thus want to determine which effective efficiency gains can be achieved
by implementing factor enhancement.

First, I focus on the Sharpe ratio as a measure for efficiency. There is a clear
intuition behind this choice. Optimally, I observe a set of factors that span themean–
variance efficient frontier. Factor enhancement is supposed to make factors more
efficient, such that the optimal combination of the enhanced factors will be closer
to the efficient frontier. This effect should eventually be reflected in an increase in
the Sharpe ratio, both of the individual enhanced factors, as well as of the optimal
in-sample Markowitz portfolio.

Subsequently, I focus on explanatory power. If researchers find a significant
alpha with respect to a benchmarkmodel in an anomaly study, they usually interpret
this as evidence that there might be a further factor that explains the cross-section
of returns beyond the factors already known. Hou et al. (2020) show that many of
those anomalies are not significant out-of-sample, even without controlling for
any benchmark model. I hypothesize that with more rigorous testing by relying
on a more efficient benchmark factor model, there might be less anomalies that
survive. I, therefore, test the explanatory power of different factor model versions
for a multitude of anomalies.

A. Comparing Sharpe Ratios

To compare the efficiency of factors, I consider six versions of each categor-
ical factor and the market factor, obtained by applying both introduced enhance-
ment approaches. First, I distinguish between unhedged and hedged factors. For
the hedged factors, I apply cross-sectional enhancement as in Daniel et al. (2020)
by hedging the categorical factors with respect to their own hedge factor only.
Next, I perform volatility-scaling on both the unhedged and hedged factor ver-
sions. By scaling the cross-sectionally hedged factors, I combine both enhance-
ment approaches. For volatility management, I employ both constant scaling as in
Moreira and Muir (2017) and Cederburg et al. (2020) and dynamic out-of-sample
scaling as in Daniel and Moskowitz (2016). I compute the compounded annual-
ized factor return and the corresponding annualized Sharpe ratio for all factor
versions. Table 8 reports the results for the market factor and each categorical
factor by region.15

After cross-sectional enhancement, a clear quantitative improvement in the
Sharpe ratio of the value and profitability factor in all regions can be observed. The
Sharpe ratio of the investment factor improves in all regions except for Emerging
Markets. There, however, the factor profits from a combination of enhancement
approaches. The effect on the intangibles and friction factor is more regionally
diverse. In each case, cross-sectional enhancement leads to an increases in the
Sharpe ratio in 3 out of 5 regions. For these five categorical factors in the majority
of cases, an increase in the Sharpe ratio of significant economic magnitude can

15Here, I use annually compounded returns for computation of Sharpe ratios, unlike various papers in
the literature, which multiply the monthly average return by 12 for annualization. A comparison of both
annualization approaches and their resulting Sharpe ratios can be found in the Supplementary Material.
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TABLE 8

Sharpe Ratio Improvement

Table 8 compares Sharpe ratios of traditional factors with Sharpe ratios of enhanced factors. For each region and each composite categorical factor, as well as the market factors, the compounded annualized returns
and the corresponding Sharpe ratio are shown. Six different factor versions are compared: The unhedged traditional factors, the cross-sectionally hedged factors, the unhedged volatility-managed factors, where I
apply both the constant scaling approach of Moreira and Muir (2017) and Cederburg et al. (2020) and the dynamic scaling out-of-sample approach of Daniel and Moskowitz (2016), and the cross-sectionally hedged
volatility-managed factors, where I apply the same constant and dynamic scaling approach as for the unhedged factors.

CATEGORY MARKET VALUE INVESTMENT

Region Factor Unhedged Hedged Unhedged Hedged Unhedged Hedged

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

North America Unscaled 11.715 0.676 11.648 1.014 7.746 0.194 8.312 0.323 5.170 0.358 6.955 0.608
Scaled TS-Vol 15.184 0.774 16.558 0.974 2.163 0.068 9.430 0.304 4.166 0.316 5.547 0.627
Scaled dynamic 13.244 0.628 9.611 0.920 �1.193 �0.093 6.106 0.350 1.201 0.134 3.696 0.451

Europe Unscaled 10.006 0.491 11.977 0.772 7.920 0.379 7.084 0.457 5.395 0.492 5.865 0.596
Scaled TS-Vol 15.649 0.569 19.043 0.855 8.289 0.389 6.534 0.390 5.786 0.508 6.337 0.670
Scaled dynamic 14.109 0.590 15.279 0.843 2.624 0.227 2.332 0.227 2.476 0.338 3.045 0.505

Japan Unscaled 4.241 0.188 5.926 0.443 12.630 0.628 12.916 0.839 2.104 0.167 1.451 0.192
Scaled TS-Vol 3.953 0.124 5.980 0.294 16.941 0.694 18.752 0.938 5.105 0.273 3.114 0.285
Scaled dynamic 6.305 0.319 7.171 0.537 6.178 0.471 7.349 0.695 1.453 0.153 0.885 0.164

Asia Pacific Unscaled 10.935 0.445 10.635 0.571 15.945 0.531 14.952 0.662 7.263 0.360 6.847 0.412
Scaled TS-Vol 19.527 0.520 23.709 0.662 18.995 0.526 23.865 0.627 8.023 0.363 9.048 0.471
Scaled dynamic 12.121 0.553 17.463 0.642 9.966 0.445 14.229 0.618 6.547 0.294 6.903 0.385

Emerging
markets

Unscaled 8.437 0.299 7.108 0.319 8.940 0.723 12.411 0.928 4.674 0.512 4.027 0.503
Scaled TS-Vol 18.592 0.387 20.100 0.386 13.356 0.657 18.234 0.895 8.297 0.593 7.125 0.590
Scaled dynamic 8.963 0.352 9.235 0.365 13.415 0.676 15.805 0.865 9.813 0.577 8.283 0.610

(continued on next page)
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TABLE 8 (continued)

Sharpe Ratio Improvement

Category PROFITABILITY MOMENTUM INTANGIBLES FRICTIONS

Region Factor Unhedged Hedged Unhedged Hedged Unhedged Hedged Unhedged Hedged

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

Ann.
Return

Sharpe
Ratio

NA Unsc. 11.171 0.426 9.864 0.582 11.326 0.588 10.228 0.505 9.301 0.607 10.006 0.968 6.731 0.273 7.278 0.570
ScVol 15.479 0.506 8.942 0.548 20.139 0.712 16.590 0.614 12.365 0.709 11.794 1.092 4.865 0.203 6.510 0.383
ScDyn 10.134 0.448 6.105 0.479 11.612 0.701 10.924 0.612 9.784 0.855 9.474 1.251 2.847 0.197 5.015 0.377

EU Unsc. 6.238 0.381 5.657 0.484 15.526 0.806 14.738 0.859 4.138 0.318 5.855 0.576 16.458 0.864 15.287 0.756
ScVol 9.088 0.428 6.140 0.427 30.858 1.231 29.607 1.227 3.678 0.291 5.260 0.547 15.643 0.664 20.290 0.699
ScDyn 8.455 0.564 5.996 0.553 18.338 0.832 15.313 0.839 2.865 0.249 4.489 0.552 14.719 0.918 13.978 0.894

JA Unsc. 5.927 0.350 5.552 0.455 9.094 0.416 8.556 0.430 4.212 0.365 2.947 0.308 10.703 0.523 10.373 0.790
ScVol 8.345 0.381 4.817 0.456 20.489 0.572 17.297 0.546 5.906 0.326 4.153 0.350 12.864 0.623 11.313 0.837
ScDyn 4.535 0.371 2.912 0.431 18.439 0.450 15.983 0.468 2.471 0.246 1.237 0.237 8.389 0.465 6.539 0.565

PA Unsc. 14.819 0.497 14.022 0.610 20.643 1.106 20.739 1.183 8.605 0.573 7.264 0.585 15.203 0.641 12.975 0.749
ScVol 25.017 0.517 25.473 0.618 33.228 1.098 37.402 1.136 8.330 0.521 7.025 0.558 19.421 0.684 17.122 0.750
ScDyn 16.577 0.475 17.503 0.551 36.940 1.172 35.921 1.123 4.770 0.352 5.711 0.546 14.479 0.592 12.286 0.604

EM Unsc. 7.063 0.620 6.668 0.740 15.257 1.039 12.819 0.946 8.388 0.725 8.508 0.913 10.476 0.829 11.041 0.884
ScVol 11.813 0.670 8.767 0.743 30.679 1.119 29.487 1.022 12.610 0.715 13.180 0.950 12.193 0.698 17.640 0.865
ScDyn 11.978 0.644 8.552 0.585 27.523 1.110 27.331 0.979 10.295 0.747 10.808 1.076 11.468 0.712 17.893 0.917
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thus be achieved by incorporating information about the return cross-section.
There are only few cases in which volatility management improves their Sharpe
ratio, such as the profitability factor in Europe and the intangibles factor in North
America. Combining both enhancement approaches does often lead to further,
albeit mostly only mild improvements in their Sharpe ratios.

The market factor is the only factor where a combination of enhancement
approaches is consistently and markedly successful. While cross-sectional
enhancement achieves strong results for the market factor in all regions except
for EmergingMarkets, also volatility-management improves the market factor’s
Sharpe ratio, however, the effect is less pronounced. In contrast, combining the
enhancement approaches leads to the strongest increases in the Sharpe ratio
of the market factor.

The momentum factor can be regarded as the most unique among the six
studied categorical factors. By employing volatility-scaling, the Sharpe ratio can be
significantly improved in North America, Europe, Japan, and Emerging Markets.
For theAsian-Pacificmomentum factor, I do not observe a clear effect, however, the
Sharpe ratio of the traditional factor is already comparatively high (1.1). Generally,
it holds that the constant and dynamic scaling approach generate relatively similar
results, with each having an advantage in different regions.16 Cross-sectional
enhancement mostly deteriorates the momentum factor’s Sharpe ratio or leaves
it unchanged at best.

The comparison of efficiency of traditional and enhanced factors has so far
relied on scrutinizing the economic magnitude of Sharpe ratios. To obtain a more
complete picture of the significance and consistency of the effects of factor
enhancement, I conduct a formal Sharpe ratio analysis following Barillas, Kan,
Robotti, and Shanken (2020). My formal comparison analysis is carried out
for squared Sharpe ratios, assuming that the studied factors are observable. The
enhanced factors are based on traded portfolios (traditional and hedge factors)
and employ leverage (implied by scaling). Both features are implementable,
which makes my factors realistically tradable. Barillas et al. (2020) show how

to compare the squared Sharpe ratio bθ2 of two nonnested factor models i and j
and propose an asymptotic distribution for the difference in sample squared

Sharpe ratios bθ2i �bθ2j . I implement the procedure based on the assumption that

I compare non-nested 1-factor models.
Table 9 reports the results of tests of equality of squared Sharpe ratios of

traditional factors and their corresponding enhanced factor versions. I report both
the difference in squared Sharpe ratios and the corresponding t-statistics based
on the asymptotic variance from proposition (1) in Barillas et al. (2020). For the
sake of brevity, in this analysis, I only focus on the constant volatility-scaling
approach. Generally, the results confirm the conclusion that cross-sectional enhance-
ment works well in case of international factors, except for the momentum factor.
Corresponding to the preceding Sharpe ratio analysis, the findings suggest significant

16A comparison of results for the constant scaling approach of Barroso and Santa-Clara (2015) and
the in-sample dynamic scaling approach of Daniel and Moskowitz (2016) can be found in the Supple-
mentary Material.
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TABLE 9

Tests of Equality of Squared Sharpe Ratios

Table 9 shows pairwise test of equality of squared Sharpe ratios of traditional and enhanced factors following Barillas et al. (2020). The left column for each region reports the difference bθ2i �bθ2j between the sample
squaredSharpe ratio of the enhanced factor version i (applied enhancementmethodas indicated in each row) and the traditional factor version j. The right column for each region reports the associated t-statistics for the
test of H0: bθ2i =bθ2j . ***, **, and * indicate statistical significance at 1%, 5%, and 10% level, respectively.

North America Europe Japan Asia-Pacific Emerging Markets

bθ2i �bθ2j t bθ2i �bθ2j t bθ2i �bθ2j t bθ2i �bθ2j t bθ2i �bθ2j t

MARKET Hedged 0.572*** 4.470 0.355*** 4.575 0.160*** 4.459 0.128*** 3.702 0.012 0.660
Scaled 0.142*** 3.124 0.082*** 2.967 �0.020** �2.484 0.072*** 3.251 0.061*** 3.884
Combined 0.492*** 4.254 0.489*** 7.297 0.051** 2.295 0.241*** 5.752 0.060*** 2.888

VALUE Hedged 0.067*** 5.633 0.065*** 2.590 0.310*** 4.884 0.156*** 4.118 0.338*** 5.290
Scaled �0.033*** �3.294 0.008 0.391 0.087*** 2.662 �0.005 �0.215 �0.091*** �2.594
Combined 0.054*** 4.215 0.009 0.341 0.486*** 6.198 0.110*** 2.656 0.278*** 4.091

INVESTMENT Hedged 0.241*** 6.327 0.113*** 4.327 0.009 0.552 0.040** 2.240 �0.008 �0.217
Scaled �0.028* �1.709 0.015 0.825 0.047*** 2.828 0.002 0.118 0.090*** 3.829
Combined 0.265*** 3.990 0.207*** 4.877 0.053** 2.228 0.092*** 2.751 0.086** 1.979

PROFITABILITY Hedged 0.157*** 4.370 0.088** 2.292 0.085*** 3.379 0.124*** 3.459 0.163** 2.048
Scaled 0.074*** 2.695 0.037* 1.905 0.023 1.545 0.020 0.870 0.064*** 3.377
Combined 0.119** 2.555 0.037 1.088 0.086** 2.550 0.134*** 3.315 0.167** 2.041

MOMENTUM Hedged �0.090*** �3.475 0.088*** 2.738 0.011 0.658 0.177** 2.514 �0.186*** �3.934
Scaled 0.161*** 4.268 0.866*** 7.808 0.153*** 6.069 �0.018 �0.155 0.173*** 2.629
Combined 0.032 0.864 0.856*** 9.085 0.125*** 4.734 0.068 0.530 �0.034 �0.394

INTANGIBLES Hedged 0.568*** 8.244 0.231*** 5.676 �0.038 �1.525 0.014 0.368 0.309*** 3.365
Scaled 0.133*** 2.783 �0.016 �1.149 �0.027* �1.722 �0.057*** �3.226 �0.013 �0.339
Combined 0.824*** 7.563 0.198*** 3.933 �0.011 �0.398 �0.017 �0.369 0.378*** 3.786

FRICTIONS Hedged 0.250*** 5.705 �0.174** �2.540 0.350*** 6.336 0.149*** 4.011 0.093 0.834
Scaled �0.033** �2.393 �0.305*** �6.021 0.114*** 3.173 0.057* 1.651 �0.201*** �4.397
Combined 0.072* 1.921 �0.258*** �4.224 0.427*** 5.428 0.151** 2.569 0.060 0.597
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efficiency gains for the value and profitability factor in all regions (largest bθ2i �bθ2j of
0.57 and 0.16) and for the investment, intangibles, and frictions factor in 3 out of
5 regions. Similarly, there are also some cases in which volatility scaling leads to

improvements in efficiency, albeit their economic significance is rather low (bθ2i �bθ2j
between 0.04 and 0.13).

As suggested by previous results, volatility scaling works consistently well for
the momentum factor only. There are significant efficiency gains in all regions

(bθ2i �bθ2j between 0.16 and 0.87), besides Asia-Pacific (here the dynamic-scaling

approach, however, would lead to an improvement). In comparison, no other
categorical factor can be systematically enhanced by volatility-scaling. For the
market factor both the cross-sectional and time-series enhancement approach give
significant efficiency gains in 4 out of 5 regions, while the factor versions based on a
combination of both enhancement approaches achieve these gains in all regions.
This finding confirms the important role of the combination for the market factor.

Overall, results are mostly consistent across regions and suggest that it depends
on the category a factor belongs to which enhancement approach is appropriate to
improve upon the Sharpe ratio and to increase factor efficiency.

B. Benefits of Diversification

I have stated that it is important to employ a factor model that is as close
as possible to spanning the mean–variance efficient frontier when studying the
significance of a new anomaly or of a profitable trading strategy in order to
derive sound conclusions. After having studied the individual effect of cross-
sectional and time-series enhancement on different return factors, I thus formally
examine whether there are benefits of diversification over factors by computing
the in-sample Markowitz optimal combination of the different versions of the
7-factor portfolios. The Sharpe ratio should be higher if the factors are closer to
spanning the mean–variance efficient frontier. Table 10 reports the maximum ex
post squared Sharpe ratio and the corresponding annualized Sharpe ratio. I report
results when including all factors and when excluding the market factor. As
before, I test the significance in the difference in squared Sharpe ratios following
Barillas et al. (2020).

The optimal combination of cross-sectionally enhanced factors mostly gener-
ates a higher ex post Sharpe ratio than the combination of traditional factors and the
improvement is quantitatively stronger if the market factor is excluded. The only
exception is Emerging Markets. In contrast, ex post Sharpe ratios of the volatility-
scaled factor combination are similar to those of the traditional combination. In
North America, Europe, and Emerging Markets, the factor combination consisting
of factors on which both enhancement approaches have been applied obtains the
quantitatively strongest and most significant improvement in ex post Sharpe ratios
compared to its traditional counterpart. The improvement is also positive and
economically substantial in the other two regions, however only statistically sig-
nificant in Asia-Pacific and when the market factor is excluded. This effect could
potentially be improved by a preselection of enhancement approaches on specific
factors, such that only the method is applied that has been shown to be successful in
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a preceding analysis. However, I do not further focus on such an approach, as I want
my comparison to treat all factors equally across regions.

Eventually, I compute a global portfolio GL, which consists of the optimal
combination of seven global factors that each invests an equal share in the corre-
sponding regional categorical or market factors. In this case, I can observe an ex
post optimal Sharpe ratio of up to 3.515, corresponding to an average increase by a
factor of 1.96 compared to the optimal Sharpe ratio of the regional traditional
factors. In total, results thus suggest that the enhanced set of factors is closer to
spanning themean variance efficient portfolio, especially if enhancement approaches
are combined.

C. Comparing Traditional and Enhanced Factor Models

While I have shown that the Markowitz optimal ex post portfolios consist-
ing of enhanced factors generate higher Sharpe ratios, enhanced factors that are
more efficient should also perform better when studying the significance of a
new anomaly or trading strategy implementable in real-time. In this regard, there
is the possibility to run into the issue of encountering a false positive. A new
strategy would then be considered a novel anomaly, although it possibly is not.
One reason could be that the factor model might be incorrectly specified, but I do
not consider this option. I focus on the issue that the employed factors might
be inefficient.

I, therefore, test howmany anomalies can be explained by different versions of
the categorical factor model that consists of the market factor and of the categorical
value, investment, profitability, momentum, intangibles, and frictions factor. I start
with the 214 anomalies I use to construct the categorical factors. I further add
27 anomalies that are based on intermediate past returns, which I neither attribute to

TABLE 10

Sharpe Ratios of Optimal Factor Portfolios

Table 10 shows ex post Sharpe ratios of Markowitz optimal factor portfolios. I compute the in-sample Markowitz optimal
combination of the different versions of the 7-factor portfolios and report the maximum ex post squared Sharpe ratio and the
corresponding annualizedSharpe ratio. Results are reportedwhen including all factors andwhen excluding themarket factor.
Significance in the difference in squared Sharpe ratios is tested following the methodology of Barillas et al. (2020) and
associated t-statistics are shown in the third column of the respective enhancement approaches. ***, **, and * indicate
statistical significance at 1%, 5%, and 10% level, respectively.

Enhancement Traditional Cross-Sectional Time Series Combination

Region Factors SR2 Ann SR SR2 Ann SR SR2 Test SR2 Ann SR SR2 Test SR2 Ann SR SR2 Test

NA All 0.251 1.734 0.318 1.952 1.368 0.278 1.825 0.567 0.360 2.078 2.064**
Excl. MKT 0.134 1.267 0.171 1.434 1.884* 0.184 1.487 1.354 0.215 1.605 2.285**

EU All 0.286 1.852 0.354 2.062 1.973** 0.369 2.105 1.353 0.498 2.444 3.160***
Excl. MKT 0.170 1.429 0.231 1.667 2.068** 0.305 1.913 2.435** 0.369 2.105 3.145***

JA All 0.185 1.490 0.259 1.761 1.791* 0.141 1.303 �0.929 0.250 1.732 1.180
Excl. MKT 0.130 1.247 0.221 1.628 2.168** 0.105 1.125 �0.643 0.195 1.532 1.334

PA All 0.256 1.751 0.294 1.878 0.827 0.243 1.706 �0.284 0.299 1.894 0.752
Excl. MKT 0.150 1.343 0.205 1.567 1.929* 0.210 1.589 1.471 0.257 1.757 2.370**

EM All 0.442 2.302 0.441 2.300 �0.010 0.484 2.410 0.695 0.588 2.656 1.850*
Excl. MKT 0.331 1.993 0.384 2.148 1.049 0.400 2.190 1.285 0.570 2.615 3.102***

GL All 0.647 2.787 0.805 3.109 2.222** 0.658 2.810 0.126 1.030 3.515 3.540***
Excl. MKT 0.461 2.353 0.616 2.719 2.664*** 0.526 2.512 0.856 0.881 3.251 3.877***
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the value nor momentum category or on dummy variables. The dummy variables
indicate whether a firm is exposed to a specific event or feature. The corresponding
value-weighted strategies go long a portfolio of firms to which the signal applies
and short a portfolio of firms to which the signal does not apply. In total, there are
241 left-hand side anomalies.17 For each anomaly and each region, I conduct a
time-series regression of the anomaly return on the categorical factor model. I then
test the significance of all regression alphas employing Newey and West (1987)
adjusted standard errors. Table 11 shows the number of anomalies significant at
the 5%-level and the average absolute t-statistic of the alphas, in aggregate over
all anomalies and separately for each category.

For comparative reasons I also include the CAPM as a benchmark model,
denoted market. The CAPM clearly performs worst. The traditional categorical
factor model version works significantly better and cuts the number of significant
anomalies in North America, Europe, the Asia-Pacific region, and in Emerging
Markets more than in half. Cross-sectional enhancement of factors yields better
results compared to the traditional model only in the Asia-Pacific region and in
Emerging Markets. In North America, the number of significant alphas is even

TABLE 11

Comparative Performance of Traditional and Enhanced Factor Models

Table 11 reports comparative performance in the explanatory power for anomalies across regions for the categorical factor model based
on different versions of enhanced factors. As comparative statistics, the number of alphas significant at the 5% level and the average
absolute t-values are used. The table shows the aggregate performance for all anomalies and for each category of anomalies separately.
The values for all anomalies includes 24 anomalies based on dummy variables that have not been employed previously. The table shows
results for the CAPM based on the regional market factor and for four versions of the categorical factor model that consists of the market
factor and the six categorical factors. A factor model version is included with the unhedged traditional factors, the cross-sectionally
hedged factors, the unhedged volatility-scaled factors and the factors that combine both enhancement approaches,
respectively.

Category ALL VALUE INV PROF MOM INT FRIC ALL VALUE INV PROF MOM INT FRIC

Region Enhancement #pα<5% ∣t ∣

North America Market 103 14 21 17 16 10 14 1.91 1.99 2.41 2.15 2.19 1.43 1.64
Traditional 34 3 5 3 2 7 9 1.15 1.15 1.13 0.88 1.07 1.38 1.17
Cross-sectional 59 7 7 7 5 15 13 1.44 1.37 1.22 1.31 1.28 1.80 1.52
Time series 37 6 6 6 3 4 8 1.15 1.35 1.40 1.04 0.93 1.04 1.22
Combined 18 2 2 2 3 4 3 0.91 0.71 0.94 0.90 0.95 1.06 0.86

Europe Market 88 9 13 18 15 6 16 1.73 1.42 1.73 2.35 2.32 1.13 1.62
Traditional 31 2 2 3 4 10 7 1.04 0.69 0.88 1.15 1.11 1.31 1.03
Cross-sectional 41 2 5 5 3 14 8 1.18 0.84 1.05 1.13 1.24 1.44 1.35
Time series 25 3 2 4 2 5 6 0.97 0.78 0.83 1.13 0.96 0.94 1.05
Combined 20 1 0 2 3 7 5 0.94 0.76 0.78 1.04 0.97 1.07 1.01

Japan Market 30 5 2 3 5 4 8 1.03 1.12 0.80 0.89 1.19 0.96 1.23
Traditional 31 4 3 6 0 9 7 1.03 1.08 0.95 1.11 1.02 1.04 1.03
Cross-sectional 34 6 4 5 1 7 9 1.09 1.05 0.92 0.99 1.18 1.17 1.20
Time series 36 8 6 6 2 5 8 1.03 1.20 1.04 1.13 0.91 1.02 1.06
Combined 13 1 1 0 1 4 5 0.81 0.77 0.70 0.82 0.84 0.98 0.85

Asia Pacific Market 87 14 13 18 15 7 14 1.69 1.62 1.72 2.02 2.73 1.19 1.65
Traditional 46 2 3 3 9 13 13 1.17 0.87 0.72 0.83 1.48 1.56 1.58
Cross-sectional 40 2 2 1 10 8 15 1.14 0.91 0.70 0.79 1.52 1.40 1.62
Time series 35 5 5 2 12 4 7 1.19 0.92 1.21 1.13 1.77 1.13 1.35
Combined 32 1 5 2 12 4 7 1.10 0.83 1.00 1.02 1.85 1.01 1.27

Emerging
markets

Market 67 17 6 9 9 5 13 1.50 1.99 1.20 1.50 1.72 1.14 1.55
Traditional 32 7 1 6 5 4 7 1.07 1.14 0.76 1.25 1.17 0.92 1.24
Cross-sectional 24 3 1 4 2 3 6 0.98 0.81 0.84 0.79 0.94 0.90 1.30
Time series 22 6 0 3 1 2 7 1.05 1.24 0.77 1.07 1.12 0.91 1.29
Combined 19 2 0 2 1 4 8 0.94 0.78 0.68 0.78 0.95 1.05 1.26

17The Supplementary Material contains the full list of the 214 variables used to construct the factors
and the additional 27 variables used in the regressions.
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inflated. This might seem odd at first, but can be most likely attributed to the fact
that cross-sectional enhancement does not improve efficiency equally across cat-
egories. Similar observations can be made for volatility-scaling, where only in
Europe, the Asia-Pacific region, and Emerging Markets the corresponding factor
model works slightly better than its traditional counterpart. The model that delivers
the lowest number of significant alphas within all regions is the categorical factor
model employing factors on which both cross-sectional and time-series enhance-
ment is applied. With this factor model version across all regions on average
15 additional anomalies (only 11 in Europe) can be explained compared to the
traditional version.

I conclude that by employing both enhancement approaches, on each factor a
method is applied that effectively improves efficiency. For instance, in case of the
momentum factor volatility-scaling of the cross-sectionally enhanced factors can-
cels out the negative effect of the later procedure and leads to an overall improve-
ment in efficiency. To contribute to the big picture, I conduct the same analysis
with cross-sectional enhancement based on Dimson-type loadings for an extended
time period. Results, presented in Table A4, are generally similar across regions.
On average 11 additional anomalies (interestingly only 2 in EmergingMarkets) can
be explained compared to the traditional factor model.

Further, I note that there is some difference in improvement in explanatory
power of the factor models across categories and regions. For the value, investment,
and profitability category the improvement is relatively similar across regions,
ranging between 1 and 6 additionally explained anomalies. In case of the intangi-
bles and frictions category, the enhanced model significantly improves the number
of explained anomalies in all regions except for Emerging Markets. In the momen-
tum category, the number of explained anomalies differs between 3 less (Asia-
Pacific) and 4 more (Emerging Markets). Interestingly, while the enhanced factor
model works less well in Emerging Markets for explanation of anomalies in the
intangibles and frictions categories, it works better in the momentum category.

Generally, the enhanced factor versions improve the explanatory power with
respect to a large number of anomalies. The results thus suggest that enhancement
techniques improve efficiency of return factors, which correspondingly implies that
factor enhancement can help to improve the validity of conclusions drawn based on
factor model analyses.

VI. Conclusion

This article investigates enhancement approaches for return factors and exam-
ines whether they improve factor efficiency on an international scale. Three distinct
enhancement mechanism are employed: cross-sectional enhancement as suggested
by Daniel et al. (2020), volatility-scaling based on time-series information as
suggested by Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016),
and the exploitation of diversification effects. Specifically, I construct enhanced
global versions of categorical factors formed from 214 firm characteristics across
44 countries. These characteristics are aggregated to six category scores (based on

Zimmermann 2723

https://doi.org/10.1017/S0022109022001090  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022001090


the classification of Hou et al. (2020)), from which regional factor portfolios are
constructed.

Generally, cross-sectional enhancement is successful in improving factor
efficiency for all factors, except the momentum factors. Volatility management,
in contrast, only works consistently well for the momentum factors, consistent with
the findings of Cederburg et al. (2020). Results thus indicate that either cross-
sectional or time-series informationmatter for the improvement of factor efficiency.
Further, I show that amodel that makes use of enhanced factors has a higher optimal
ex post Sharpe ratio and is able to explain a larger number of anomalies than a
traditional model.

I consider the findings as support for my suggestion to be more careful in
assessing results of anomaly studies, for both conducted on theUS and international
level. Taken all together, I demonstrate that factor efficiency can be improved to
point out that results where factor models are used as benchmark models need to be
treated with care.

Appendix

TABLE A1

Postformation Factor Loadings

Table A1 presents global postformation factor loadings for portfolios obtained from sorting on the composite category scores
and on the preformation market βs and for portfolios obtained from sorting on the composite category scores and on the
preformation Dimson βs. First, the categorical regional factors are computed and the portfolio assignments and weights are
stored. Subsequently, preformation βs are obtainedby applying the current portfoliomethod. Backward-looking daily portfolio
returns for the current portfolios are computed back to 60 months in the past and the returns are used to compute the
preformation βs. In case of preformation market βs, they are computed in the manner of Dimson (1979) and Frazzini and
Pedersen (2014). In case of preformation βs on categorical factors, they are computed in the manner of Dimson (1979) only.
Within each score quintile, firms are sorted into preformation β terciles on the country level and then aggregated into regional
portfolios. In case of themarket βs, value-weighted portfolio returns are calculated for each of the 15 portfolios for each score/
beta combination on the regional level. The portfolio returns are then averaged across score portfolios. In case of βs on
categorical factors, returns are calculated for each of the 15 portfolios obtained from combining the specific category score
with this beta. The postformation factor loadings are obtained by regressing the respective portfolio return on a combination of
the traditional market factor and the six categorical factors. The table shows the full sample beta coefficients on the
corresponding traditional factor and the corresponding t-statistics below in parentheses.

Panel A. Market – Frazzini/Pedersen Betas

Score Preformation β

1 2 3 1–3

1 0.619 0.867 1.233 �0.614
(48.379) (80.960) (91.362) (28.382)

2 0.619 0.862 1.208 �0.589
(50.840) (83.361) (97.922) (28.956)

3 0.625 0.853 1.198 �0.574
(50.333) (83.584) (104.237) (28.808)

4 0.623 0.867 1.211 �0.588
(51.806) (88.733) (105.791) (30.472)

5 0.639 0.863 1.197 �0.558
(52.526) (89.086) (110.601) (28.838)

β 0.625 0.862 1.209 �0.585

(continued on next page)
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TABLE A1 (continued)

Postformation Factor Loadings

Score Preformation β

1 2 3 1–3

Panel B. Market – Dimson Betas

1 0.631 0.864 1.215 �0.584
(49.376) (101.634) (112.631) (29.372)

2 0.624 0.865 1.203 �0.579
(51.865) (99.461) (118.038) (30.507)

3 0.649 0.862 1.203 �0.555
(54.662) (96.895) (121.719) (29.617)

4 0.652 0.864 1.215 �0.563
(57.083) (101.839) (122.643) (30.806)

5 0.662 0.869 1.202 �0.540
(55.195) (105.298) (122.760) (28.481)

β 0.644 0.865 1.208 �0.564

Panel C. Value Score

1 �0.868 �0.271 0.045 �0.914
(46.140) (15.232) (2.001) (28.078)

2 �0.306 �0.070 0.174 �0.480
(15.105) (4.386) (9.333) (16.164)

3 �0.143 0.058 0.249 �0.392
(7.809) (3.905) (14.733) (14.284)

4 0.020 0.119 0.291 �0.271
(1.040) (8.390) (17.589) (9.770)

5 0.176 0.222 0.581 �0.405
(8.080) (14.490) (38.767) (13.654)

β �0.224 0.012 0.268 �0.492

Panel D. Investment Score

1 0.081 0.300 0.746 �0.666
(3.349) (16.751) (36.567) (18.455)

2 �0.109 0.143 0.360 �0.468
(5.211) (7.747) (15.915) (13.973)

3 �0.196 0.100 0.318 �0.515
(9.335) (5.664) (14.239) (14.536)

4 �0.286 �0.004 0.244 �0.530
(12.724) (0.232) (10.571) (14.902)

5 �0.763 �0.177 0.028 �0.791
(43.004) (9.131) (1.176) (23.792)

β �0.255 0.072 0.339 �0.594

Panel E. Profitability Score

1 �1.132 �0.335 �0.045 �1.086
(54.821) (16.937) (1.713) (27.887)

2 �0.564 �0.112 0.204 �0.768
(24.142) (6.143) (8.545) (20.802)

3 �0.395 �0.035 0.251 �0.646
(19.054) (2.175) (11.975) (19.196)

4 �0.296 0.090 0.279 �0.575
(15.350) (6.044) (16.046) (18.691)

5 �0.203 0.117 0.434 �0.637
(10.138) (7.945) (28.448) (21.174)

β �0.518 �0.055 0.225 �0.742

(continued on next page)
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TABLE A1 (continued)

Postformation Factor Loadings

Score Preformation β

1 2 3 1–3

Panel F. Momentum Score

1 �0.796 �0.429 �0.319 �0.477
(52.500) (28.816) (16.553) (17.346)

2 �0.380 �0.161 �0.059 �0.321
(21.622) (11.256) (3.397) (12.470)

3 �0.198 �0.048 0.053 �0.251
(12.277) (3.764) (3.399) (10.401)

4 �0.052 0.047 0.175 �0.227
(3.104) (3.883) (12.573) (9.923)

5 0.249 0.219 0.439 �0.190
(14.945) (18.064) (35.293) (8.391)

β �0.235 �0.074 0.058 �0.293

Panel G. Intangible Score

1 �0.859 �0.289 0.068 �0.927
(43.347) (16.279) (2.619) (24.664)

2 �0.483 �0.146 0.209 �0.691
(18.785) (7.636) (8.327) (16.919)

3 �0.386 �0.088 0.339 �0.725
(15.419) (4.717) (14.205) (18.289)

4 �0.285 �0.012 0.450 �0.735
(12.541) (0.682) (19.736) (20.244)

5 �0.130 0.181 0.788 �0.918
(5.327) (9.872) (41.149) (25.432)

β �0.429 �0.071 0.371 �0.799

Panel H. Frictions Score

1 �0.034 0.151 0.419 �0.453
(1.779) (10.734) (28.079) (16.935)

2 �0.136 0.063 0.261 �0.397
(6.521) (4.284) (15.297) (13.080)

3 �0.298 0.004 0.225 �0.524
(13.789) (0.267) (11.872) (16.528)

4 �0.372 �0.072 0.203 �0.575
(15.262) (4.199) (8.385) (15.622)

5 �1.054 �0.274 �0.095 �0.959
(48.501) (14.891) (4.524) (27.028)

β �0.379 �0.026 0.203 �0.582
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TABLE A2

Sharpe Ratios Across Different Types of Cross-Sectionally Enhanced Factors

TableA2 shows annualized returns andSharpe ratios for cross-sectionally enhanced factors, where the factors differ in the choice of their respective enhancementmethod andprocedure. I distinguish betweenDimson (1979) and Frazzini
and Pedersen (2014) factor loadings and hedge factor gammas, between hedging with respect to the categorical factor’s own hedge factor only or with respect to all seven hedge factors, and in the choice of the computation method for
returns used to obtain loadings (current method with back-tracing of current portfolio returns or regular method with historical returns). The corresponding returns are presented for each region and for the market factor and all six
categorical factors. The time period extends from Jan. 1995 until June 2019.

Category Factor Loading Hedge Factor Covariance Portfolio Loadings Method North America Europe Japan Asia Pacific Emerging Markets

Ann. Ret SR Ann. Ret SR Ann. Ret SR Ann. Ret SR Ann. Ret SR

MARKET Unhedged 11.124 0.728 9.343 0.539 3.371 0.199 10.170 0.508 6.956 0.338
FP Only own Current 11.462 1.117 10.985 0.996 5.935 0.447 9.745 0.755 6.062 0.387

Regular 11.885 1.163 11.261 1.020 6.598 0.498 10.156 0.785 10.316 0.669

All hedge Current 11.667 0.256 13.329 0.291 11.780 0.258 12.491 0.421 5.645 0.244
factors Regular 13.812 0.265 13.550 0.257 14.829 0.327 13.416 0.430 14.060 0.605

Dimson Only own Current 10.029 1.006 7.534 0.705 4.825 0.366 8.050 0.614 3.268 0.186
Regular 10.852 1.120 8.422 0.802 5.983 0.453 9.864 0.775 8.360 0.513

All hedge Current 1.673 0.032 3.082 0.062 5.603 0.144 11.105 0.261 �2.101 �0.062
factors Regular 2.939 0.055 2.645 0.049 12.561 0.275 15.914 0.355 11.653 0.363

VALUE Unhedged 5.087 0.241 7.173 0.448 11.478 0.669 14.022 0.676 8.315 0.651
FP Only own Current 6.500 0.473 6.718 0.504 11.738 0.950 13.546 0.775 11.119 1.056

Regular 5.946 0.418 4.230 0.296 9.715 0.644 12.256 0.695 7.838 0.694

All hedge Current 3.088 0.052 1.097 0.043 5.574 0.205 10.600 0.281 12.210 0.873
factors Regular �5.394 �0.072 �5.730 �0.230 �2.013 �0.065 6.140 0.162 3.941 0.246

Dimson Only own Current 6.884 0.504 5.339 0.421 12.054 1.002 9.440 0.592 9.649 0.962
Regular 4.378 0.304 3.831 0.295 8.078 0.587 7.036 0.402 8.832 0.872

All hedge Current 6.209 0.100 �10.538 �0.324 10.011 0.285 �8.768 �0.198 13.397 0.853
factors Regular �5.401 �0.061 �16.270 �0.403 �6.655 �0.132 �18.283 �0.345 6.748 0.274

INVESTMENT Unhedged 5.406 0.621 5.406 0.621 1.738 0.150 6.419 0.416 4.547 0.594
FP Only own Current 5.780 0.494 5.870 0.826 1.399 0.164 6.239 0.462 3.899 0.581

Regular 2.345 0.149 4.796 0.628 1.369 0.141 5.873 0.430 4.337 0.596

All hedge Current 6.864 0.267 5.780 0.494 0.115 0.004 2.783 0.116 2.435 0.225
factors Regular 5.439 0.144 2.345 0.149 1.434 0.051 2.450 0.102 4.061 0.514

Dimson Only own Current 2.991 0.184 5.545 0.775 1.267 0.148 5.247 0.396 3.997 0.569
Regular 2.841 0.105 5.157 0.719 1.657 0.177 5.475 0.441 4.275 0.623

All hedge Current 8.783 0.280 2.991 0.184 �1.924 �0.063 �4.312 �0.167 3.088 0.052
factors Regular 9.489 0.210 2.841 0.105 �1.841 �0.054 �3.093 �0.078 �5.394 �0.072

(continued on next page)
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TABLE A2 (continued)

Sharpe Ratios Across Different Types of Cross-Sectionally Enhanced Factors

Category Factor Loading Hedge Factor Covariance Portfolio Loadings Method North America Europe Japan Asia Pacific Emerging Markets

Ann. Ret SR Ann. Ret SR Ann. Ret SR Ann. Ret SR Ann. Ret SR

PROFITABILITY Unhedged 9.814 0.516 6.594 0.383 5.630 0.422 13.958 0.637 6.983 0.675
FP Only own Current 8.770 0.792 5.708 0.487 5.398 0.574 13.435 0.743 6.641 0.781

Regular 7.199 0.696 6.323 0.530 6.505 0.602 13.112 0.709 6.484 0.752

All hedge Current 8.457 0.207 2.305 0.087 2.353 0.092 9.691 0.310 5.291 0.242
factors Regular �3.599 �0.071 5.949 0.196 5.707 0.188 8.921 0.361 7.464 0.514

Dimson Only own Current 8.166 0.749 6.293 0.536 5.695 0.603 7.309 0.459 7.468 0.859
Regular 8.165 0.794 6.978 0.586 6.912 0.698 9.221 0.530 5.899 0.725

All hedge Current 6.159 0.105 4.202 0.127 4.870 0.156 �8.075 �0.217 8.129 0.286
factors Regular �0.535 �0.007 9.258 0.260 10.857 0.260 �2.697 �0.079 5.949 0.255

MOMENTUM Unhedged 10.971 0.577 15.202 0.792 8.528 0.432 19.143 1.098 13.923 1.239
FP Only own Current 9.480 0.573 14.395 0.883 7.736 0.468 19.076 1.108 11.909 1.081

Regular 12.215 0.680 17.132 0.995 11.087 0.595 19.930 1.155 13.995 1.237

All hedge Current 5.347 0.170 8.287 0.426 6.101 0.203 14.805 0.637 11.098 0.697
factors Regular 12.818 0.329 23.103 0.659 14.118 0.381 22.020 1.088 15.344 1.264

Dimson Only own Current 9.821 0.623 13.800 0.893 7.715 0.479 17.146 1.073 11.312 0.999
Regular 12.416 0.746 17.891 1.138 12.830 0.742 20.513 1.180 13.783 1.200

All hedge Current 4.745 0.109 7.284 0.244 1.105 0.030 9.655 0.439 15.445 0.788
factors Regular 12.342 0.189 27.529 0.451 19.973 0.285 19.407 0.563 14.973 0.704

INTANGIBLES Unhedged 8.282 0.717 3.708 0.367 4.164 0.372 8.040 0.659 7.971 0.918
FP Only own Current 9.155 1.186 5.331 0.715 2.856 0.310 6.825 0.660 8.073 1.021

Regular 8.693 1.051 5.024 0.651 2.141 0.209 8.214 0.754 7.471 0.935

All hedge Current 9.947 0.279 8.816 0.404 0.414 0.022 4.668 0.215 7.066 0.561
factors Regular 11.689 0.305 9.873 0.410 0.216 0.014 8.360 0.523 6.564 0.607

Dimson Only own Current 9.341 1.156 6.040 0.792 3.845 0.408 4.660 0.423 6.064 0.761
Regular 8.227 1.018 5.585 0.723 1.812 0.194 4.729 0.478 6.599 0.863

All hedge Current 12.312 0.364 17.366 0.605 2.778 0.115 �6.349 �0.208 1.521 0.097
factors Regular 11.235 0.257 17.894 0.592 �4.087 �0.183 �2.863 �0.129 4.656 0.298

FRICTIONS Unhedged 6.729 0.320 16.192 0.823 9.705 0.697 13.766 0.780 10.001 0.865
FP Only own Current 7.261 0.630 14.926 0.784 9.615 0.876 12.098 0.888 10.690 1.032

Regular 7.329 0.631 14.431 0.685 8.606 0.671 11.850 0.789 9.815 1.011

All hedge Current 3.487 0.062 9.862 0.226 0.492 0.017 12.764 0.391 5.906 0.224
factors Regular �2.028 �0.025 12.127 0.288 �1.376 �0.062 8.586 0.312 11.027 0.566

Dimson Only own Current 7.802 0.650 9.746 0.535 9.657 0.839 9.218 0.704 11.838 1.134
Regular 5.940 0.514 11.770 0.648 8.229 0.630 9.413 0.672 11.829 1.233

All hedge Current 6.780 0.106 0.081 0.002 4.875 0.149 �4.408 �0.115 9.690 0.283
factors Regular �0.855 �0.009 2.274 0.050 �6.286 �0.153 �6.631 �0.167 10.718 0.401
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TABLE A3

Performance of Factors Conditional on Volatility

Table A3 presents results of pooled OLS regressions of factor returns across regions on realized volatility in the previous
6 months and the previous month, respectively. Volatility is calculated as in Barroso and Santa-Clara (2015) and Moreira and
Muir (2017.Dependent variables are traditional or cross-sectionally enhanced factor returns,where factors resulting fromboth
enhancementwith theDimson (1979) andFrazzini andPedersen (2014)method for betas estimation are employed. ***, **, and
* indicate statistical significance at 1%, 5%, and 10% level, respectively.

Enhancement Traditional Frazzini/Pedersen Dimson

Time Window 6 Months 1 Month 6 Months 1 Month 6 Months 1 Month

MARKET �0.008 �0.006* �0.045* �0.011 �0.030 �0.003
(�0.397) (�1.848) (�1.750) (�1.475) (�1.201) (�0.416)

VALUE 0.107*** 0.012*** 0.072*** 0.008 0.065 0.005
(4.027) (2.584) (3.061) (1.450) (1.567) (1.098)

INVESTMENT 0.054** 0.014*** 0.017 0.006 0.005 0.005
(2.412) (3.376) (0.655) (0.806) (0.176) (0.638)

PROFITABILITY 0.012 0.008* 0.031 0.013** 0.002 0.008
(0.502) (1.783) (1.245) (2.519) (0.085) (1.266)

MOMENTUM �0.069*** �0.012** �0.073*** �0.012** �0.101*** �0.013*
(�3.024) (�2.175) (�2.894) (�2.012) (�3.640) (�1.717)

INTANGIBLES 0.032 0.006** 0.030 0.005** 0.033 0.008***
(1.441) (2.415) (1.375) (2.032) (1.194) (2.851)

FRICTIONS 0.029 0.003 0.016 0.002* 0.005 0.001
(1.500) (1.496) (0.850) (1.842) (0.287) (0.738)

TABLE A4

Comparative Performance of Traditional and Enhanced Factor Models with Dimson Beta
Enhancement

Table A4 reports comparative performance in the explanatory power for anomalies across regions for the categorical factor
model based on different versions of enhanced factors. In contrast to Table 11, cross-sectionally enhanced factors are based
onDimsonbetas. As comparative statistics, the number of alphas significant at the 5% level and the average absolute t-values
are used. The table shows the aggregate performance for all anomalies and for each category of anomalies separately. The
values for all anomalies include 24 anomalies based on dummy variables that have not been employed previously. The table
shows results for the CAPM based on the regional market factor and for four versions of the categorical factor model that
consists of the market factor and the six categorical factors. A factor model version is included with the unhedged traditional
factors, the cross-sectionally hedged factors, the unhedged volatility-scaled factors, and the factors that combine both
enhancement approaches, respectively. The time period extends from July 1992 until June 2019.

Category All Value Inv Prof Mom Int Fric All Value Inv Prof Mom Int Fric

Region Enhancement #pα<5% ∣t ∣

North America Market 100 15 20 16 15 9 14 1.92 1.99 2.52 2.03 2.26 1.40 1.65
Traditional 38 3 5 2 3 7 12 1.16 1.15 1.16 0.86 1.08 1.35 1.26
Cross-sectional 55 8 7 7 4 13 12 1.37 1.25 1.25 1.23 1.25 1.64 1.60
Time series 39 8 6 4 4 3 10 1.16 1.40 1.40 1.02 0.97 0.99 1.24
Combined 18 2 2 0 4 3 4 0.92 0.74 1.02 0.90 1.00 0.95 0.91

Europe Market 92 8 16 18 16 6 17 1.78 1.48 1.90 2.35 2.39 1.18 1.59
Traditional 32 3 1 4 5 8 8 1.06 0.77 0.82 1.16 1.25 1.31 1.04
Cross-sectional 33 2 2 4 5 8 9 1.09 0.78 0.90 1.03 1.22 1.29 1.28
Time series 28 2 1 3 4 7 7 1.00 0.86 0.97 1.11 1.06 0.92 1.09
Combined 24 2 0 2 4 6 7 0.93 0.87 0.89 0.94 0.95 0.93 0.99

Japan Market 36 8 3 2 5 3 11 1.06 1.18 0.83 0.86 1.19 0.94 1.31
Traditional 30 5 1 4 1 8 9 1.01 1.00 0.91 1.04 1.13 1.06 1.03
Cross-sectional 23 1 2 1 3 8 6 1.00 0.92 0.85 0.94 1.21 1.08 1.04
Time series 25 4 3 4 2 5 6 0.94 0.99 0.78 0.97 1.02 1.06 1.02
Combined 18 3 1 1 2 5 5 0.84 0.84 0.68 0.85 0.97 0.94 0.82

Asia Pacific Market 85 13 14 18 15 6 13 1.75 1.67 1.89 2.06 2.72 1.22 1.73
Traditional 50 2 3 4 8 14 15 1.22 0.91 0.79 0.89 1.45 1.66 1.65
Cross-sectional 40 5 2 4 6 13 10 1.16 0.97 0.79 0.95 1.46 1.50 1.45
Time series 36 5 5 2 11 5 8 1.20 0.92 1.29 1.08 1.78 1.19 1.34
Combined 41 7 7 3 12 4 6 1.16 0.98 1.20 1.10 1.70 1.17 1.23

Emerging markets Market 75 18 8 12 11 3 14 1.51 2.11 1.22 1.47 1.76 1.08 1.48
Traditional 33 4 2 6 5 4 8 1.10 1.12 0.94 1.26 1.15 0.86 1.31
Cross-sectional 47 3 2 5 4 5 16 1.22 0.94 0.99 1.07 1.09 1.01 1.65
Time series 28 8 3 3 3 2 8 1.10 1.25 0.98 1.08 1.12 0.94 1.27
Combined 31 4 2 3 1 4 12 1.08 0.94 0.84 1.04 0.94 0.99 1.38
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