
Translation Grids for Multi-way Join Size Estimation

Magnus Müller
magnus.mueller@uni-mannheim.de

University of Mannheim
Mannheim, Germany

Guido Moerkotte
guido.moerkotte@uni-mannheim.de

University of Mannheim
Mannheim, Germany

ABSTRACT

We present a novel approach to estimate query result sizes for
queries containing multiple joins. Our approach relies on (1)
enhanced AKMV sketches and (2) a novel data structure called
translation grid. In essence, we obtain estimates by connecting
hashes from AKMV sketches via a translation grid.

1 INTRODUCTION

In query optimization, cardinality estimates, i.e., estimates for
query result sizes, play an important role [8]. For instance, given
a query for which an execution plan must be found, cardinality
estimates are used to decide on the join order and whether to
re-partition or broadcast tables in a distributed hash join.

In this paper, the problem we solve is to estimate the result
cardinality of queries containing multiple joins. Consider, for
instance, a star query in which the two dimension tables D1, D2

join with the fact table F:
SELECT count(*) FROM D1 JOIN F ON D1.A = F.A JOIN D2

ON D2.B = F.B AND D1.X < 5 AND D2.Y != "foo"

Our approach to derive estimates relies on two data struc-
tures: (1) Well established AKMV sketches [2], which we present
in Section 2 and enhance with new operations, including opera-
tions for two-way joins, in Section 3. As well as (2) the translation
grid (Section 4), a novel data structure that helps to estimate the
size of multi-way joins. To motivate translation grids, observe
that in the above example query, the joint frequency distribu-
tion between F.A and F.B influences the size of the three-way
join. Here, translation grids come into play. Translation grids
allow to determine attribute value pairs that exist, with non-zero
frequency, in a joint frequency distribution. We refer to this ex-
istence criterion as joint existence distribution (JED). However,
instead of operating on actual attribute values, translation grids
operate on hashes. In particular, translation grids track pairs of
hashes that exist, or might exist, in a pair of AKMV sketches.

2 PRELIMINARIES

This section presents preliminaries on which we build in later
sections. In particular, we introduce the established KMV and
AKMV sketches. As part of the following discussion, we use
relations 𝑅 and 𝑇 with attribute sets 𝐶 and 𝐷 , respectively.

The k minimum value sketch (KMV) [1] is a synopsis that
allows to estimate the number of distinct values (NODV) in a
multiset. In our context, the multiset under consideration consists
of the values in 𝑅.𝐶 . A KMV is constructed in a single pass over
𝑅.𝐶 and requires only a constant amount of memory. The basic
idea is simple: To construct a KMV, hash each entry in𝑅.𝐶 to [0, 1]
and keep track of the 𝑘 smallest hashes, where 𝑘 is some fixed
number. We refer to the tracked hashes by the totally ordered
setH := {ℎ1 < ℎ2 < · · · < ℎ𝑘 }. Then, to estimate the NODV in

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

𝑅.𝐶 , use ℎ𝑘 as an indicator. In particular, a large ℎ𝑘 indicates few
distinct entries in 𝑅.𝐶 and, vice versa, a small ℎ𝑘 indicates many
distinct input entries in 𝑅.𝐶 . As a formula, the KMV estimate for
the NODV is

𝑑KMV =

{
𝑘/ℎ𝑘 , if 𝑑 > 𝑘

𝑘 , else
(1)

where 𝑑 := |𝑅.𝐶 |𝑑 , and throughout the paper we use |𝑥 |𝑑 for
the number of distinct entries in expression 𝑥 . As the formula
suggests, for fewer than 𝑘 distinct values, the estimate is the true
value. For simplicity, throughout this paper, we use only one
deterministic global hash function 𝐻 : ◦ → [0, 1] that is capable
of hashing any input to [0, 1]. To simplify the exposition, we
always assume the common case 𝑑 > 𝑘 . In this paper, unless ex-
plicitly stated otherwise, all KMVs/AKMVs share the same fixed
parameter 𝑘 .

The augmented KMV (AKMV) by Beyer et al. [2] is an exten-
sion of KMV. The main idea of AKMV is to augment the KMV by
counters to track the multiplicity by which each hash is seen dur-
ing construction. The counters enable one to estimate the NODV
in a multiset that is the intersection, union, or difference of other
multisets. For instance, three AKMVs can be used to estimate the
NODV in the intersection of three multisets. In the following, we
formally define AKMVs, introduce the multiset operations they
support, and show how AKMVs are used for NODV estimation.

We formally define an AKMV for 𝑅.𝐶 as S𝑅.𝐶 := (H𝑅.𝐶 , 𝜂𝑅.𝐶),
where H𝑅.𝐶 denotes the set of the 𝑘 smallest hashes we know
fromKMV, and the function𝜂𝑅.𝐶 : [0, 1] → N returns the tracked
multiplicity of ℎ if ℎ ∈ H𝑅.𝐶 . Otherwise, if ℎ ∉ H𝑅.𝐶 , we define
𝜂𝑅.𝐶 (ℎ) = 0.

AKMVs support the multiset operations union ∪, intersec-
tion ∩, and multiset difference \. Let S𝑅.𝐶 ,S𝑇 .𝐷 be two AKMVs.
The result of S𝑅.𝐶 ◦ S𝑇 .𝐷 , where ◦ ∈ {∪,∩, \}, is a new AKMV
S𝑅.𝐶◦𝑇 .𝐷 . For brevity, let 𝐸 := 𝑅.𝐶 ◦𝑇 .𝐷 . The set of hashesH𝐸

in S𝐸 is defined as the 𝑘 smallest hashes in H𝑅.𝐶 ∪ H𝑇 .𝐷 and
each ℎ ∈ H𝐸 has multiplicity

𝜂𝐸 (ℎ) =

𝜂𝑅.𝐶 (ℎ) + 𝜂𝑇 .𝐷 (ℎ) , if ◦ = ∪

min(𝜂𝑅.𝐶 (ℎ), 𝜂𝑇 .𝐷 (ℎ)) , if ◦ = ∩

max(𝜂𝑅.𝐶 (ℎ) − 𝜂𝑇 .𝐷 (ℎ), 0) , if ◦ = \

(2)

Note that intersect and subtract operations can cause hashes with
a multiplicity of zero. In case of intersection, this indicates that
some entry was present only in one of 𝑅.C and 𝑇 .𝐷 .

The appropriate NODV estimate for an arbitrary AKMV S

must reflect the number of hashes with multiplicity greater zero,
to which we refer as 𝑝 := |{ℎ𝑖∈H | 𝜂 (ℎ𝑖) > 0}|. Equation 1 is
not applicable for AKMVs, since 𝑝 is not reflected. Instead, the

formula to compute the NODV estimate 𝑑AKMV of S is

𝑑AKMV =
𝑝

𝑘
·

𝑘 − 1

max(H)
(3)

In the formula, the first fraction is the ratio of tuples with mul-
tiplicity greater zero. The second fraction is almost the KMV

Short Paper

Series ISSN: 2367-2005 378 10.48786/edbt.2022.25

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.25

estimate from Equation 1 - Beyer et al. have shown that decre-
menting the numerator by 1 is necessary to make the estimator
unbiased [2].

Example: Consider AKMV S = (H , 𝜂) = ({0.0002 < 0.003 <

0.008 < 0.015}, (30, 50, 0, 40)). Observe that max(H)=0.015 and
𝑝=3 hashes have multiplicity greater zero. Hence, assuming 𝑘=4,

the NODV estimate 𝑑AKMV of S is 3/4 · (4−1)/0.015 = 150.

3 NEW OPERATIONS FOR AKMV SKETCHES

This section presents two new estimators and one new operation
for AKMVs.

For an AKMVS𝐸 constructed on some expression 𝐸, we define
its distinct ratio as the fraction of tracked hashes, i.e. 𝑘/|𝐸 |𝑑 .
We say that an AKMV with distinct ratio 𝑥 is an 𝑥-AKMV. In
Section 4.4, we apply the distinct ratio as a scaling factor. The
following lemma shows how to estimate the distinct ratio of S𝐸 .

Lemma 3.1. An estimate for the distinct ratio of some AKMV

S𝐸 is
𝑝𝐸

𝑑𝐴𝐾𝑀𝑉
.

The rationale behind the estimate is simple. As mentioned
above, when S𝐸 was constructed on 𝐸, its distinct ratio is 𝑘/|𝐸 |𝑑
and we simply substitute |𝐸 |𝑑 by its estimate 𝑑𝐴𝐾𝑀𝑉 . The numer-
ator reflects cases where S𝐸 is the result of a multiset operation
of two AKMVs. Then, some hashes in H𝐸 might have multi-
plicity 0. To reflect that hashes with multiplicity zero have no
corresponding attribute values in 𝐸, we use 𝑝𝐸 in the numerator.

Next, we define a multiplication operation for AKMV sketches.
The result of multiplying two AKMVsS𝑅.C,S𝑇 .𝐷 gives an AKMV
for the expression 𝜋𝐶 (𝑅 ⊲⊳𝐶=𝐷 𝑇), or, equivalently, 𝜋𝐷 (𝑅 ⊲⊳𝐶=𝐷

𝑇).

Definition 3.2. Let S𝑅.C,S𝑇 .𝐷 be two AKMVs. Their product
S𝑅.C · S𝑇 .𝐷 gives a new AKMV S𝐸 , where H𝐸 contains the 𝑘
smallest hashes in H𝑅.C ∪ H𝑇 .𝐷 and the multiplicity of each
ℎ ∈ H𝐸 is 𝜂𝐸 (ℎ) = 𝜂𝑅.C (ℎ) · 𝜂𝑇 .𝐷 (ℎ).

AKMV multiplication allows us to derive AKMVs for join
results from base table AKMVs. However, note that the derived
AKMV S𝐸 is not necessarily equal to an AKMV constructed
on 𝜋𝐶 (𝑅 ⊲⊳𝐶=𝐷 𝑇), since only S𝐸 might contain hashes with
multiplicity zero.

Next, we observe that, in addition to NODV estimation, an
AKMV S𝐸 can be used to estimate the cardinality 𝑐 := |𝐸 |, i.e.,
the number of not necessarily distinct values in 𝐸.

Lemma 3.3 (cardinality estimate). Let𝑀𝐸 :=
∑
ℎ∈H𝐸

𝜂𝐸 (ℎ)

be the summed multiplicities of the hashes inH𝐸 of AKMV S𝐸 . An

estimate for the cardinality 𝑐 of relational algebra expression 𝐸 is

�̂�𝐴𝐾𝑀𝑉 :=
𝑀𝐸

𝑘
·

𝑘 − 1

max(H𝐸)

Note that �̂�𝐴𝐾𝑀𝑉 is the simplified expression one receives

from scaling 𝑑𝐴𝐾𝑀𝑉 by the average multiplicity of the hashes
with non-zero multiplicity inH𝐸 . The estimate �̂�𝐴𝐾𝑀𝑉 is unbi-
ased, in the sense that E[�̂�𝐴𝐾𝑀𝑉] = 𝑐 , since hashes with small
multiplicities have the same probability of being included in H𝐸

as hashes with large multiplicities. In particular, according to
Beyer et al. [2], the hashes in H𝐸 constitute a random sample of
the hashed values in 𝐸.

Corollary 3.4. �̂�𝐴𝐾𝑀𝑉 of S𝑅.C · S𝑇 .𝐷 is an unbiased estimate

for |𝜋𝐶 (𝑅 ⊲⊳𝐶=𝐷 𝑇) |

Algorithm 1 Translation grid construction.

Construct(𝑅,𝐴, 𝐵, 𝑚, 𝑛, ℎ𝐴𝑚𝑎𝑥 , ℎ𝐵𝑚𝑎𝑥)

Input: Relation 𝑅,
attribute sets𝐴, 𝐵 of 𝑅
two numbers𝑚, 𝑛
largest hash values ℎ𝐴𝑚𝑎𝑥 , ℎ𝐵𝑚𝑎𝑥 in AKMVs of 𝑅.𝐴 and 𝑅.𝐵

Output: Translation grid T(𝑅.𝐴, 𝑅.𝐵)
1 Let T be a translation grid of𝑚 × 𝑛 tiles
2 for 𝑡 ∈ 𝑅
3 hA = 𝐻 (𝑡 .𝐴)
4 hB = 𝐻 (𝑡 .𝐵)
5 if hA > hAmax or hB > hBmax : continue
6 tile = T .tile_ref(hA, hB)
7 tile.BA .insert(hA)
8 tile.BB .insert(hB)
9 return T

Hence, the size of an equi-join can be estimated from two
AKMVs constructed for the join attributes in the base tables.
Note that |𝜋𝐶 (𝑅⊲⊳𝐶=𝐷𝑇) | = |𝜋𝐷 (𝑅⊲⊳𝐶=𝐷𝑇) | = |𝑅⊲⊳𝐶=𝐷𝑇 |.

Example: Suppose S𝑅.C = ({0.0002<0.003<0.015<0.05}, (3,

5, 4, 8)) and S𝑇 .𝐷 = ({0.0002< 0.003< 0.008< 0.015}, (10, 10, 10,

10)). The product of S𝑅.C · S𝑇 .𝐷 is S𝐸 = ({0.0002 < 0.003 <

0.008<0.015}, (30, 50, 0, 40)). Since 𝑀𝐸 = 120 is the sum of the
multiplicities, the join size |𝑅⊲⊳𝐶=𝐷𝑇 | is estimated as �̂�𝐴𝐾𝑀𝑉 =

120/4 · (4−1)/0.015 = 6000.

4 TRANSLATION GRIDS

This section presents the translation grid, a data structure that
approximates the JED, cf. Section 1, of a pair of attributes/ at-
tribute sets. Translation grids, like AKMVs, entirely operate on
the hashes of attribute values. We use translation grids to connect
hashes from two AKMVs.

The example query from the introduction describes a situa-
tion where translation grids are useful. Given AKMVs for each
column 𝐷1.𝐴, 𝐷2.𝐵, 𝐹 .𝐴, 𝐹 .𝐵, we can apply AKMV multiplication
to obtain AKMVs S𝐷1.𝐴⊲⊳𝐹 .𝐴, S𝐷2.𝐵⊲⊳𝐹 .𝐵 for the two-way joins.
Then, the translation grid connects hashes in S𝐷1.𝐴⊲⊳𝐹 .𝐴 with
hashes in S𝐷2.𝐵⊲⊳𝐹 .𝐵 such that the JED between 𝐹 .𝐴 and 𝐹 .𝐵 is
captured.

4.1 Structure

A translation grid T (𝑅.𝐴, 𝑅.𝐵) is a two-dimensional grid of𝑚×𝑛

tiles. For each tuple 𝑡 ∈ 𝑅, the pair of hashes (𝐻 (𝑡 .𝐴), 𝐻 (𝑡 .𝐵)),
where𝐻 is the same hash function as for AKMV, maps to one tile.
Each tile maintains two Bloom filters B𝑅.𝐴,B𝑅.𝐵 . All (𝐻 (𝑡 .𝐴),

𝐻 (𝑡 .𝐵)) corresponding to the same tile are inserted into the re-
spective Bloom filters B𝑅.𝐴,B𝑅.𝐵 of that tile. As we will see, the
fact that we insert hashes into the Bloom filters of the tiles of
translation gridT (𝑅.𝐴, 𝑅.𝐵), allows us to test whether a hash pair
(ℎ𝐴, ℎ𝐵) from two AKMVs S𝑅.𝐴,S𝑅.𝐵 corresponds to attribute
values in 𝑅.

4.2 Construction

The construction of translation grid T (𝑅.𝐴, 𝑅.𝐵) happens in a
single run over relation 𝑅. The construction of T (𝑅.𝐴, 𝑅.𝐵) takes
place after the construction of AKMVs S𝑅.𝐴,S𝑅.𝐵 . Algorithm 1
describes the translation grid construction process. For an illus-
tration see Figure 1. The arguments are relation 𝑅, with attribute
sets𝐴 and 𝐵, and the desired dimensions of T (𝑅.𝐴, 𝑅.𝐵) specfied
by𝑚 and 𝑛. In addition, the parameters hA𝑚𝑎𝑥 and hB𝑚𝑎𝑥 are
the largest hash values found in any AKMV of 𝑆.𝐴 and 𝑆.𝐵, re-
spectively. In line 1, T (𝑅.𝐴, 𝑅.𝐵) is initialized with the bits of the

379

R

A B
a 2

b 3

b 1

c 2
00

H(b)=0.002, H(3)=0.001

Figure 1: Construction of translation grid.

two Bloom filters of each tile set to zero. Then, we iterate over
each tuple 𝑡 ∈ 𝑅 and hash each 𝑡 .𝐴 and 𝑡 .𝐵. In line 5, all hash
pairs (ℎ𝐴,ℎ𝐵) with hA>hAmax ∨ hB>hBmax are discarded, i.e.,
we discard all hash combinations that are definitely not tracked
by AKMVs. Filtering unnecessary (hA, hB) values helps to sig-
nificantly reduce the size of a translation grid, or, equivalently,
increase the accuracy it delivers for a given space consumption.
For the remaining hash pairs (hA, hB), the corresponding tile is
identified, and each hash is inserted in its respective Bloom filter.
Finally, T (𝑅.𝐴, 𝑅.𝐵) is returned.

4.3 Translation

By translating, we denote the process of finding combinations
of hashes from two input AKMVs S𝑅.𝐴,S𝑅.𝐵 that T (𝑅.𝐴, 𝑅.𝐵)

has seen during construction. All qualifying combinations of
hashes are output in two new AKMVs S′

𝑅.𝐴,S
′
𝑅.𝐵 . Note that,

in the context of multi-way join size estimation, the input AK-
MVs S𝑅.𝐴,S𝑅.𝐵 are each the result of an intersect or multiply
operation with another AKMV.

Algorithm 2 describes how to translate two input AKMVs
using a translation grid. For each combination of hashes (ℎ𝐴,ℎ𝐵)
with multiplicity greater zero, i.e., 𝜂𝑅.𝐴 (ℎ𝐴)>0 ∧ 𝜂𝑅.𝐵 (ℎ𝐵)>0 ,
the corresponding tile is identified in line 4. Then, in line 5, we test
ifℎ𝐴 exists inB𝐴 and ifℎ𝐵 exists inB𝐵 of the identified tile. Note
that, as always with Bloom filters, false positives are possible. All
combinations of hashes (ℎ𝐴,ℎ𝐵) that pass the test are tracked
in the two output AKMVs S′

𝑅.𝐴,S
′
𝑅.𝐵 . Essentially, the output

AKMVs S′
𝑅.𝐴,S

′
𝑅.𝐵 , as returned in line 8, are filtered versions

of S𝑅.𝐴,S𝑅.𝐵 . As we will see in the next section, S′
𝑅.𝐴,S

′
𝑅.𝐵

are proper AKMVs that can be used for cardinality estimation.

4.4 Estimation Properties of Translation grids

This section presents two Lemmata that describe how translation
grids can be used, in conjunction with AKMVs, for cardinality
estimation.

First, we define an ideal translation grid to which we refer as
a lossless translation grid.

Definition 4.1 (Lossless translation grid). A lossless translation
grid T (𝑅.𝐴, 𝑅.𝐵), correctly determines for each ℎ𝐴 ∈ S𝑅.𝐴, ℎ𝐵 ∈

S𝑅.𝐵 iff (ℎ𝐴, ℎ𝐵) corresponds to a tuple in R. There are no false-
positives in a lossless translation grid.

A lossy translation grid is one that is not lossless (produces
false-positives).

In the following lemma, we combine a lossless translation grid
together with two AKMVs. To understand the Lemma, recall that
by a 𝑥-AKMV we refer to an AKMV that tracks a fraction 𝑥 of
the hashes seen during construction.

Lemma 4.2. LetT (𝑅.𝐴, 𝑅.𝐵) be a lossless translation grid of rela-

tion 𝑅 with |𝑅 |=|𝑅.𝐴|𝑑=|𝑅.𝐵 |𝑑 . When a 𝑥-AKMV S𝑅.𝐴 , 𝑥 ∈ [0, 1],

and a 1.0-AKMV S𝑅.𝐵 are translated by T (𝑅.𝐴, 𝑅.𝐵), then each

Algorithm 2 Translation grid, translation of AKMVs.

Translate(T, S𝑅.𝐴, S𝑅.𝐵)

Input: Translation grid T ,
two input AKMVs S𝑅.𝐴, S𝑅.𝐵

Output: Two output AKMVs S′
𝑅.𝐴, S

′
𝑅.𝐵

1 Let S′
𝑅.𝐴, S

′
𝑅.𝐵 be two empty AKMVs

2 for ℎ𝐴 ∈ S𝑅.𝐴 with 𝜂𝑅.𝐴 (ℎ𝐴) > 0

3 for ℎ𝐵 ∈ S𝑅.𝐵 with 𝜂𝑅.𝐵 (ℎ𝐵) > 0

4 tile = T .tile_ref(ℎ𝐴,ℎ𝐵)
5 if tile.B𝐴 .contains(ℎ𝐴) and tile.B𝐵 .contains(ℎ𝐵)
6 S′

𝑅.𝐴 .insert(ℎ𝐴)
7 S′

𝑅.𝐵 .insert(ℎ𝐵)
8 return S′

𝑅.𝐴, S
′
𝑅.𝐵

hash ℎ ∈ S𝑅.𝐴 necessarily finds its correct matches in T (𝑅.𝐴, 𝑅.𝐵)

(but no false positive). For the output AKMV S′
𝑅.𝐴 , it follows that

E[𝑑AKMV (S
′
𝑅.𝐴)] = E[�̂�AKMV (S

′
𝑅.𝐴)] = |𝑅 |.

Essentially, what Lemma 4.2 states is that, in the above setting,
S𝑅.𝐴 = S′

𝑅.𝐴 . The same is not true for S′
𝑅.𝐵 , though. How-

ever, we clearly do not want to rely on 1.0-AKMVs. Luckily, the
following lemma comes to the rescue.

Lemma 4.3. Suppose the same setting as in Lemma 4.2, but this

time S𝑅.𝐵 is a 𝑦-AKMV, where 𝑦 ∈ [0, 1]. In expectation, each

ℎ ∈ S𝑅.𝐴 finds a ratio of 𝑦 of its correct matches in T (𝑅.𝐴, 𝑅.𝐵)

(but no false positive). It follows that E
[
�̂�AKMV (S

′
𝑅.𝐴)

𝑦

]
= |𝑅 |.

Note that, from symmetry, also E
[
�̂�AKMV (S

′
𝑅.𝐵)

𝑥

]
= |𝑅 | holds.

In our evaluation, we present an experiment to illustrate Lemma 4.3.
Observation: Lemma 4.3 is applicable for multi-way join size

estimation. For instance, let 𝐸1, 𝐸2 be relational expressions with
key attributes𝐴, 𝐵, respective, and T (𝐹 .𝐴, 𝐹 .𝐵) a translation grid
for a relation 𝐹 with foreign key attributes 𝐴, 𝐵. Assume AKMVs
S𝐸1.𝐴,S𝐹 .𝐴,S𝐹 .𝐵,S𝐸2.𝐵 exist. Applying Lemma 4.3 to the output
AKMVs of Translate(T (𝐹 .𝐴, 𝐹 .𝐵), S𝐹 .𝐴 · S𝐸1.𝐴, S𝐹 .𝐵 · S𝐸2.𝐵)

gives an estimate for |𝐸1 ⊲⊳𝐸1.𝐴=𝐹 .𝐴 𝐹 ⊲⊳𝐹 .𝐵=𝐸2.𝐵 𝐸2|. Section 5
presents an experiment on multi-way join size estimation.

5 EVALUATION

In our evaluation, we present two experiments. The first experi-
ment demonstrates the validity and precision of Lemma 4.3. In the
second experiment, we estimate result cardinalities of three-way
joins.

Experiment 1: Let 𝑅: [{𝐴, 𝐵}] with |𝑅 |=|𝑅.𝐴|𝑑=|𝑅.𝐵 |𝑑=1000.
We construct S𝑅.𝐴 as 0.3-AKMV and S𝑅.𝐵 is a y-AKMV as speci-
fied in Table 1. The lossless translation gridT (𝑅.𝐴, 𝑅.𝐵) is approx-
imated by |𝑅.𝐴|𝑑 × |𝑅.𝐵 |𝑑 tiles. We denote 𝑐𝐴 := �̂�𝐴𝐾𝑀𝑉 (S

′
𝑅.𝐴)

and 𝑐𝐵 := �̂�𝐴𝐾𝑀𝑉 (S
′
𝑅.𝐵). Clearly, if Lemma 4.3 holds, we expect

𝑐𝐴/𝑦 ≈ 𝑐𝐵/0.3 ≈ 1000. Table 1 shows the result. Indeed, even for
𝑦=0.1, we have 𝑐𝐴/𝑦 ≈ 1000. For comparison, we include 𝑐𝐴, 𝑐𝐵.
Note how 𝑐𝐴 decreases as𝑦 decreases, since each ℎ ∈ S′

𝑅.𝐴 finds
fewer and fewer matches in T (𝑅.𝐴, 𝑅.𝐵).

How many hash pairs (ℎ𝐴,ℎ𝐵) are inserted into T (𝑅.𝐴, 𝑅.𝐵)

during construction? By line 5 in Algorithm 1, only hashes possi-
bly tracked by AKMVs are inserted into T (𝑅.𝐴, 𝑅.𝐵). Hence, we
expect 0.3 · 𝑦 · |𝑅 | many inserts, cf. the last column of Table 1.
The second to last column shows the actual number of inserts.
Observe that the actual number is both small and close to the
expected number.

Experiment 2: Recall the star query from the introduction.
For varying selection predicates, we estimate its result cardinality,
i.e., |𝜎𝑝𝐷1

(𝐷1) ⊲⊳𝐷1.𝐴=𝐹 .𝐴 𝐹 ⊲⊳𝐹 .𝐵=𝐷2.𝐵 𝜎𝑝𝐷2
(𝐷2) |. The dimen-

sion tables have |𝐷1|=1000 and |𝐷2|=2000 rows, respectively,

380

1e+04

1e+05

1e+06

1e+04 1e+05 1e+06

Joinsize

E
s
ti
m

a
te

0

10

20

30

Lossless
Lossy

SystemR

E
rr

o
r

0

10

20

30

Lossless
Lossy

SystemR

E
rr

o
r

Lossless Lossy SystemR

Figure 2: Results of Experiment 2: Scatterplot (left), errors over all queries (middle), errors over selective queries (right).

Table 1: Results of Exper. 1. As expected 𝑐𝐴
𝑦 ≈ 𝑐𝐵

𝑥 ≈ 1000.

y 𝑐𝐴 𝑐𝐴/𝑦 𝑐𝐵 𝑐𝐵/0.3 ins. exp. ins.
1 1075.48 1075.48 300.471 1001.57 300 300
0.9 949.591 1055.1 291.39 971.3 265 270
0.8 838.086 1047.61 295.724 985.746 234 240
0.7 715.79 1022.56 288.319 961.063 200 210
0.6 600.688 1001.15 287.529 958.431 168 180
0.5 504.093 1008.19 288.892 962.974 141 150
0.4 414.077 1035.19 297.449 991.497 116 120
0.3 316.527 1055.09 296.691 988.969 87 90
0.2 209.791 1048.95 317.068 1056.89 58 60
0.1 111.541 1115.41 326.231 1087.44 30 30

and the attributes 𝐴, 𝐵 refer to their respective primary key. The

fact table 𝐹 := {[𝑖, 𝑗] |𝑖∈[0, |𝐷1|), 𝑗∈[0, |𝐷2|), 𝑖
|𝐷1 |

≥
𝑗

|𝐷2 |
} has the

skewed foreign key attributes 𝐹 .𝐴, 𝐹 .𝐵 that are correlated with
each other. Its size is |𝐹 |=1, 000, 000. The cardinality of a query
result is influenced by the selection predicates 𝑝𝐷1 ≡ 𝐷1.𝐴<𝑐1,

𝑝𝐷2 ≡ 𝐷2.𝐵≥𝑐2, where we compute results for all combinations
with non-zero cardinality of 𝑐1∈{100, 200, . . . , 1000}, 𝑐2∈{0, 200,
400, . . . , 1800}. Hence, the true cardinality varies between 10k
and 1M. We make the following assumption: Since 𝐷1, 𝐷2 are
small, AKMVs S𝜋𝑟 (𝜎𝑝𝐷1

(𝐷1)) ,S𝜋𝑡 (𝜎𝑝𝐷2
(𝐷2)) can be built on the

fly. Since 𝐹 is large, S𝐹 .𝐴,S𝐹 .𝐵 and T (𝐹 .𝐴, 𝐹 .𝐵) must be com-
puted offline, i.e. not per query. All AKMVs are of size 𝑘=100.
An estimate for the query result size is obtained in three steps:
(1) Compute S𝐽 1 := S𝐹 .𝐴 · S𝜋𝑟 (𝜎𝑝𝐷1

(𝐷1)) and S𝐽 2 := S𝐹 .𝐵 ·

S𝜋𝑡 (𝜎𝑝𝐷2
(𝐷2)) , (2) Obtain (S′

𝐽 1,S
′
𝐽 2) = Translate(T (𝐹 .𝐴,

𝐹 .𝐵),S𝐽 1,S𝐽 2), and (3) estimate the cardinality as �̂�𝐴𝐾𝑀𝑉 (S
′
𝐽 1)/̂𝑟 ,

where �̂� is the estimated distinct ratio of S′
𝐽 2, cf. Lemma 3.1. In

Figure 2, for each query, we show three different cardinality es-
timates. (1) An estimate obtained by a lossless translation grid,
which tracks only 5200 ≈ 0.5% · |𝐹 | pairs of hashes. The size
of only 5200·2·4𝐵 = 41.6KB demonstrates the practicability of
lossless translation grids. (2) A lossy 100 × 100 translation grid,
in which only 2600 tiles are actually used. Each tile contains
only two 32-bit Bloom filters. Hence, the used tiles consume only
2600·2·4𝐵 = 20.8KB, corresponding to only 0.26% of 𝐹 ’s memory
footprint, assuming each tuple in 𝐹 consists of 2 integers of 32-
bit. (3) For comparison, we show the System R [12] estimator,
as implemented in Postgres version 13.2. In Figure 2, the scat-
terplot on the left shows the correlation between the observed
and estimated cardinality. The best estimates are obtained using
the lossless translation grid, the lossy translation grid produces
slightly worse estimates. System R significantly overestimates,
since its assumptions do not hold. The boxplots in the middle
of Figure 2, illustrate the estimation errors for each estimator

from the scatterplot. The estimation error is measured by the

q-error [9], defined asmax(𝑥𝑥 ,
𝑥
𝑥
) for a value 𝑥 and its estimate 𝑥 .

The boxplots on the right are restricted to only the challenging
queries with selectivity of 𝑝𝐷1 less than 0.5. Note how the er-
rors significantly worsen for System R when looking only at the
more selective queries. The estimates by the lossless and lossy
translation grid are less affected.

6 RELATED WORK

The most notable related work is a recent paper by Izenov et
al. [6]. Just as we do, Izenov et al. focus on multi-way join size
estimation. However, instead of AKMV sketches and translation
grids, they rely on fast-AGMS sketches and a technique they call
sketch merging.

The concept of JED, introduced in Section 1, is related to fre-
quency matrices [5, 11].

The earliest approach to join size estimation, and cardinality
estimation in general, is System R [12]. More recent approaches
rely on sampling [3, 13] or machine learning [7].

Using AKMVs in conjunction with bucket sketches [10], where
the AKMVs replace HyperLogLogs [4] as the underlying sketch,
allow us to obtain AKMVs for a subset of some relation after

AKMVs were constructed on the complete table.

7 CONCLUSION

We presented a novel approach to estimate query result sizes for
queries containing multiple joins. Our approach relies on two
novelties. (1) New operations for AKMV sketches, in particu-
lar distinct ratio estimation, AKMV multiplication for two-way
join approximation, and cardinality estimation. (2) A novel data
structure called translation grid that partitions the hash space of
AKMVs and tracks combinations of hashes from two AKMVs in
such a way that they approximate the joint existence distribution
of two attributes/attribute sets. In our evaluation, we demon-
strated that our approach allows to estimate the cardinality of
three-way joins. For future work, we hope to consider even more
joins. Here, similar to sampling-based approaches, a major chal-
lenge is to prevent AKMVs from having a multiplicity of zero for
all tracked hashes.

REFERENCES
[1] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In International Workshop on
Randomization and Approximation Techniques in Computer Science. Springer,
1ś10.

[2] Kevin Beyer, Peter J Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. 2007. On synopses for distinct-value estimation under multiset

381

operations. In Proceedings of the 2007 ACM SIGMOD international conference
on Management of data. 199ś210.

[3] Yu Chen and Ke Yi. 2017. Two-level sampling for join size estimation. In
Proceedings of the 2017 ACM International Conference on Management of Data.
759ś774.

[4] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm. In
Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 137ś156.

[5] Yannis E Ioannidis. 1993. Universality of serial histograms. In VLDB, Vol. 93.
Citeseer, 256ś267.

[6] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COM-
PASS: Online Sketch-based Query Optimization for In-Memory Databases.
In Proceedings of the 2021 International Conference on Management of Data.
804ś816.

[7] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[8] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kem-
per, and Thomas Neumann. 2015. How good are query optimizers, really?
Proceedings of the VLDB Endowment 9, 3 (2015), 204ś215.

[9] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing
bad plans by bounding the impact of cardinality estimation errors. Proceedings
of the VLDB Endowment 2, 1 (2009), 982ś993.

[10] Magnus Müller, Daniel Flachs, and Guido Moerkotte. 2021. Memory-Efficient
Key/Foreign-Key Join Size Estimation via Multiplicity and Intersection Size.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
984ś995.

[11] Neoklis Polyzotis. 2005. Selectivity-based partitioning: A divide-and-union
paradigm for effective query optimization. In Proceedings of the 14th ACM
international conference on Information and knowledge management. 720ś727.

[12] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1989. Access path selection in a relational database
management system. In Readings in Artificial Intelligence and Databases.
Elsevier, 511ś522.

[13] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P
Chakkappen. 2015. Join size estimation subject to filter conditions. Proceedings
of the VLDB Endowment 8, 12 (2015), 1530ś1541.

382

