
Efficient Methods for Optimal
Control Problems Subject to
Partial Differential Equations
With Uncertain Coefficients

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Philipp Arthur Guth
aus Mosbach

Mannheim, 2022
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Abstract

In this thesis, we develop and analyze methods to efficiently solve optimization problems
under uncertainty, constrained by partial differential equations (PDEs). The uncertain-
ties may arise due to noisy measurements, unknown or unobservable parameters, model
ambiguity, or intrinsic randomness of systems. The goal is to find a control which is
robust with respect to variations in the uncertain parameters. We prove error bounds
and convergence rates for the developed methods, confirm the theoretically derived results
through numerical experiments, and examine the developed concepts with regard to their
efficiency.
The focus of this work is the application and analysis of quasi-Monte Carlo methods, as
well as the use of surrogate models for computationally intensive systems in conjunction
with a penalty strategy.
We first analyze a general formulation of the optimal control problem for the existence
and uniqueness of solutions, and then focus on three example problems of optimal control
under uncertainty. The regularity of the problems with respect to the uncertain parameters
plays a crucial role in the development and the error analysis of the methods.
The numerical treatment of the considered problems requires different approximation
methods. The total approximation error is decomposed into its components and each
error contribution is then studied separately in a chapter. The error estimates and con-
vergence results developed in these chapters are not limited to problems of optimal control
subject to PDE constraints with uncertain coefficients.
In addition, further strategies to increase the efficiency of the methods are investigated,
such as multilevel strategies and the simultaneous solving of the optimal control problem
and learning of surrogate models for computationally intensive models.

Zusammenfassung

In dieser Arbeit entwickeln und analysieren wir effiziente Methoden zur Lösung von Proble-
men der optimalen Steuerung mit partiellen Differentialgleichungen (pDGL), die unsichere
oder zufällige Koeffizienten haben, als Nebenbedingungen. Die Unsicherheiten können
aufgrund von verrauschten Messungen, unbekannten oder nicht beobachtbaren Parame-
tern, Mehrdeutigkeit des Modells oder intrinsischer Zufälligkeit von Systemen entstehen.
Gesucht ist dann eine Steuerung, die robust gegenüber Variationen der unsicheren Param-
eter ist. Ziel der Arbeit ist es, einerseits Fehlerschranken und Konvergenzraten für die en-
twickelten Methoden zu beweisen und andererseits die theoretisch hergeleiteten Resultate
durch numerische Experimente zu bestätigen und die entwickelten Konzepte hinsichtlich
ihrer Effizienz zu untersuchen.
Schwerpunkte dieser Arbeit sind die Anwendung und Analyse von quasi-Monte Carlo
Methoden, sowie das Verwenden von Ersatzmodellen für kostenintensive Systeme in Ver-
bindung mit einer Penalisierungsstrategie.
Wir untersuchen zunächst eine allgemeine Formulierung des Optimalsteuerungsproblems
auf Existenz und Eindeutigkeit von Lösungen. Anschließend werden drei beispielhafte
Probleme der optimalen Steuerung unter Unsicherheit betrachtet. Eine entscheidende
Rolle für die Entwicklung und die Fehleranalyse der Methoden spielt die Regularität der
Probleme bezüglich den unsicheren Parametern.
Für das numerische Lösen der betrachteten Probleme werden verschiedene Approxima-
tionsverfahren benötigt. Der Gesamtfehler der Approximation wird in dessen Bestandteile
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zerlegt und jeweils separat in einem Kapitel untersucht. Die in diesen Kapiteln hergeleit-
eten Fehlerabschätzungen und Konvergenzresultate sind nicht beschränkt auf Probleme
der optimalen Steuerung mit pDGL-Nebenbedingungen mit unsicheren Koeffizienten.
Zudem werden weitere Strategien zur zusätzlichen Steigerung der Effizienz untersucht, wie
beispielsweise multilevel Strategien und das simultane Lösen des Optimalsteuerungsprob-
lems und Lernen von Ersatzmodellen für rechenintensive Modelle.
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at conferences and workshops in Zürich, Trier, Linz, Sydney, Berlin, Trondheim, Poznan,
Konstanz, Oulu, Luminy, Bonn, and Oslo, and in many online events. I became friends
with numerous great researchers. Especially, I want to thank Vesa Kaarnioja, Frances
Kuo, Claudia Schillings, Ian Sloan, Andreas Van Barel, and Simon Weissmann for the
joint work and a wonderful time, which gave rise to several research articles and finally
this thesis.
I would also like to thank all colleagues at the Institute of Mathematics, and especially my
office mates Niklas, Lukas, Simon, Matei, Vicky, Eneas, and Vesa for interesting discussions
on mathematical subjects, and for entertainment during our breaks.
My special thanks goes to my family. In particular, I am deeply grateful for my parents
Anita and Erwin, who encouraged me to always be curious, for Martin and for my siblings
Katharina and Michael for all their support and especially for my wonderful girlfriend
Paola.
Finally, I am very grateful to the “RTG 1953 - Probability & Statistics group Heidelberg-
Mannheim” funded by the Deutsche Forschungsgesellschaft for funding my research. I am
thankful for the travel support I was granted by the HCM Bonn, RICAM Linz, ALOP
Trier, and especially the IPID4all grant for funding towards travel and expenses related
to a research visit at University of New South Wales, Sydney, Australia. Moreover, I ac-
knowledge support by the state of Baden-Württemberg through bwHPC and the Research
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1 Introduction

Many complex systems in science and engineering can be modeled as partial differential
equations (PDEs). For instance, PDEs are foundational in the understanding of sound,
heat, diffusion, electrostatics, electro-, thermo-, and fluid dynamics, elasticity, and many
more. Hence, they are ubiquitous in airfoil, in problems concerning groundwater flow, in
weather simulations, in computer tomography, and in microelectronics – to name only a
few applications. The mathematical optimization of processes and systems that can be
modeled by PDEs is an essential task for scientists and engineers across disciplines.

If not taken into account, limited knowledge or intrinsic randomness of parameters in the
PDE model, such as material properties, external conditions, or reaction constants, have
the potential to render worthless any solutions obtained using state-of-the-art methods
for deterministic problems. The careful analysis of the uncertainty in PDE-constrained
optimization problems is hence indispensable and has become a growing field of research.

Supposing that the practitioner has some control over the uncertain state of the system,
the goal is to determine the optimal control input (if it exists) for the uncertain system.
The quality measure is given by a cost functional which is composed with a risk measure
taking the uncertainties into account.

The uncertainties often manifest themselves as random fields, which can be represented by
a countably infinite number of random parameters. For the numerical treatment of such
problems, a natural first step is the truncation of the representation at a finite (possibly
very large) number of random parameters. The resulting error is analyzed in Chapter 5.

In order to robustify the optimal control with respect to the uncertainty, a risk measure
is applied which involves integrals over the high-dimensional domain of the parameters.
While being dimension independent, Monte Carlo methods obtain a notoriously slow con-
vergence rate. Moreover, for sufficiently regular integrands in the presented setting it is
possible to construct quasi-Monte Carlo (QMC) rules with error bounds not depending
on the number of stochastic variables, while attaining faster convergence rates compared
to Monte Carlo methods. Moreover, QMC approximations are particularly well suited
for optimization since they preserve convexity due to their nonnegative (equal) cubature
weights as opposed to sparse grid methods, for instance. QMC methods are discussed in
Chapter 6.

To further reduce the computational cost we consider a multilevel QMC method that
efficiently distributes the number of samples across different discretization levels of the
underlying PDE. Moreover, the simultaneous learning of surrogates, such as polynomial
expansions or neural networks, for the computational intensive PDE solution is investi-
gated in a one-shot optimization framework.
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1 Introduction

1.1 Outline

We describe the structure of this thesis together with a brief outline of the following
chapters.

Chapter 2

We start this thesis with a collection of definitions, notational conventions, and well-known
results in order to embed the results in the following chapters into a rigorous mathematical
setting. Thereby we focus on functional analysis and integration theory.

Chapter 3

We formulate the optimal control problem with PDE constraints under uncertainties in
a very general setting. We list popular risk measures and classify them according to de-
sirable properties. We then derive moderate conditions on the risk measure, the random
variable objective function, and the PDE constraint for the existence and optimality of
solutions in the general setting. For well-posed forward problems one can reformulate
the optimal control problem in the so-called reduced formulation. Moreover, in the set-
ting of parametric linear forward operators we show equivalence between the almost sure
formulation of the constraints and the weak formulation in the parameter space.

Chapter 4

We consider three examples of optimal control problems. In all three example problems,
we consider a tracking type objective functional composed with different risk measures:

• In Section 4.1 the risk measure is the expected value and the optimal control problem
is subject to an elliptic PDE with a random diffusion coefficient. We suppose to have
control over the source term of the PDE.

• In Section 4.2 the risk measure is either the expected value or the entropic risk
measure. The constraint is a parabolic PDE with an uncertain diffusion coefficient,
and we control the source term of the PDE for a given initial condition.

• In Section 4.3 the risk measure is again either the expected value or the entropic
risk measure. The constraint is an abstract parametric linear operator equation with
affine parameter dependence. In particular, the problems Section 4.1 and Section 4.2
fit into this framework. Nevertheless, we chose to present the elliptic and parabolic
examples for better illustration.

In all examples we discuss the function space setting of the PDEs (operator equation,
respectively), present their parametric weak formulation, and derive optimality conditions,
that are based on the adjoint states, of the reduced formulation of the problem. We note
that all examples fit into the abstract framework presented in Chapter 3, but the results are
derived for the examples for clarity. Furthermore, we present a well-known optimization
algorithm which can be used to solve the three example problems, and illustrate how the
total discretization error can be decomposed into its contributions. The different error
contributions are then analyzed separately in Chapter 5, Chapter 6, and Section 7.1.
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1.1 Outline

The heart of the following error analysis is the parametric structure and the parametric
regularity of the PDEs or operators, respectively. To this end, we investigate the regularity
of the example problems with respect to the uncertain parameters.
This chapter is based on joint work Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings,
and Ian H. Sloan and the two corresponding articles:

• A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty. SIAM/ASA
J. Uncertain. Quantif., 9(2): 354–383, 2021.
https://doi.org/10.1137/19M1294952.

• Parabolic PDE-constrained optimal control under uncertainty with entropic risk
measure using quasi-Monte Carlo integration, 2022. Preprint at https://arxiv.

org/abs/2208.02767.

Chapter 5

This chapter is devoted to the dimension truncation error, which is a natural error con-
tribution arising in the discretization of infinite-dimensional integration problems. The
problem is formulated in the general setting of integrands that belong to separable Ba-
nach spaces with generalized β-Gaussian distributed random parameters. Hence, the
results presented in this chapter are not at all restricted to optimal control problems. In
particular, we derive a set of sufficient conditions that guarantee convergence with a rate
that appears to be superior to the existing literature for some values of β. Furthermore,
since our results are stated in separable Banach spaces, they directly apply to PDE solu-
tions discretized by conforming finite elements. Moreover, the setting is not restricted to
PDEs, but only based on the parametric regularity of the Banach space-valued integrands.
We can thus, for instance, compose an element in a separable Banach space (possibly a
PDE solution) with an arbitrary nonlinear quantity of interest as long as the composition
with the quantity of interest satisfies the hypothesis of our results.
This chapter is based on joint work with Vesa Kaarnioja and the corresponding article:

• Generalized dimension truncation error analysis for high-dimensional numerical in-
tegration: lognormal setting and beyond, 2022. Preprint at https://arxiv.org/

abs/2209.06176.

This chapter and the corresponding article were motivated by the joint work with Vesa
Kaarnioja, Frances Y. Kuo, Claudia Schillings, and Ian H. Sloan and the two corresponding
articles listed in the outline of Chapter 4.

Chapter 6

We provide a brief introduction to quasi-Monte Carlo methods and particularly to ran-
domly shifted rank-1 lattice rules in Chapter 6. The main contribution of this chapter is
the generalization of existing error bounds and convergence rates for real-valued integrands
to the general setting of integrands in separable Banach spaces. This generalization opens
up many new areas of application for QMC methods, such as optimal control problems
with PDE constraints under uncertainty. This chapter is based on the joint work with Vesa
Kaarnioja, Frances Y. Kuo, Claudia Schillings, and Ian H. Sloan and the corresponding
article
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1 Introduction

• Parabolic PDE-constrained optimal control under uncertainty with entropic risk
measure using quasi-Monte Carlo integration, 2022. Preprint at https://arxiv.

org/abs/2208.02767.

Chapter 7

This chapter concentrates on the spatial discretization of the PDE constraints. In Sec-
tion 7.1, we provide a brief overview of the finite element method (FEM) that is used
in the numerical experiments throughout this thesis. We derive an error bound and a
convergence rate for the elliptic example, which – together with the truncation error and
cubature error – completes the error analysis presented in Section 4.5. Parts of this chap-
ter are based on joint work with Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings, and
Ian H. Sloan and the corresponding article:

• A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty. SIAM/ASA
J. Uncertain. Quantif., 9(2): 354–383, 2021.
https://doi.org/10.1137/19M1294952.

The second part of this chapter is about a multilevel strategy that efficiently distributes
samples across different FE discretization levels. More precisely, we analyze the application
of a multilevel quasi-Monte Carlo (MLQMC) method to the optimal control problem
in combination with the circulant embedding method in order to sample the lognormal
random field. The MLQMC part of this chapter is based on joint work with Andreas Van
Barel and the corresponding article:

• Multilevel Quasi-Monte Carlo for Optimization under Uncertainty, 2021. Preprint
at https://arxiv.org/abs/2109.14367.

Chapter 8

Novel results on the use of machine learning techniques motivated Chapter 8. In partic-
ular, we reformulate the PDE-constrained optimization problem under uncertainty as an
unconstrained optimization problem by adding a quadratic penalty on the PDE residual to
the objective function. We then replace the computational intense solution of the state of
the system with a surrogate. The surrogate parameters are learned simultaneously during
the optimization, and hence the surrogate only needs to be trained for the optimal control.
Opposed to the simultaneous training, training of the surrogate parameters before the op-
timization must lead to a good surrogate for all feasible controls. Section 8.1 is based
on the joint work with Claudia Schillings and Simon Weissmann and the corresponding
article

• A General Framework for Machine Learning based Optimization Under Uncertainty,
2021. Preprint at https://arxiv.org/abs/2112.11126.

In the second part of this chapter we transfer the ideas of Section 8.1 to the setting of
Bayesian inverse problems. Establishing a connection between the Bayesian approach and
the one-shot formulation allows to interpret the penalization parameter as the level of
model error in the forward problem, i.e., increasing the penalization parameter on the
quadratic model residual corresponds to vanishing model noise in the Bayesian setting.
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1.1 Outline

Furthermore, we show that the ensemble Kalman inversion is an efficient method to solve
the resulting optimization problem. Section 8.2 is based on the joint work with Claudia
Schillings and Simon Weissmann and the corresponding article

• 14 Ensemble Kalman filter for neural network based one-shot inversion. In Optimiza-
tion and Control for Partial Differential Equations: Uncertainty quantification, open
and closed-loop control, and shape optimization edited by R. Herzog, M. Heinken-
schloss, D. Kalise, G. Stadler, E. Trélat, pp. 393–418. Berlin, Boston: De Gruyter,
2022. https://doi.org/10.1515/9783110695984-014.

5
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2 Selected facts from functional analysis
and measure theory

We will discuss, analyze, and solve constrained optimization problems with uncertainties
entering the problem through the constraint. In this section we begin with the mathemat-
ical description of the problems studied in this manuscript.

To introduce the notation, we begin by recalling some basic results from functional analysis
and measure theory. Most of the results presented in this chapter are well-known and can
be found in textbooks like [13, 32, 42, 81, 90, 104, 135, 139, 140, 145].

2.1 Fundamental functional analysis

Linear space By R and C we will always denote the field of real numbers and the field
of complex numbers respectively. An element in the scalar field K P tR,Cu will be called
scalar. A linear space (or vector space) over K is a set X, consisting of elements that
are called vectors, and in which addition (A1-A4) and scalar multiplication (M1-M3) are
defined by the following algebraic properties:

A1 For all vectors x, y, and z P X, it holds px` yq ` z “ x` py ` zq.

A2 For all vectors x, y P X, it holds x` y “ y ` x.

A3 X contains a unique vector 0, such that x` 0 “ x for every x P X.

A4 To each x P X corresponds a unique vector ´x, such that x` p´xq “ 0.

A1 and A2 are called associative property and commutative property, respectively. The
vector 0 in A3 is called the neutral element of vector addition and the vector ´x in A4 is
called the inverse element.

M1 For each α, β P K and x, y P X we have αpx`yq “ αx`αy and pα`βqx “ αx`βx.

M2 For each α, β P K and x P X we have pαβqx “ αpβxq

M3 For each x P X we have for 1 P K that 1x “ x

M1 and M2 are called distributative property and associative property, respectively. The
element 1 in M3 is called neutral element of scalar multiplication.
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2 Selected facts from functional analysis and measure theory

Normed space A linear space X is called a normed space, or normed linear space, if to
every x P X there is assigned a nonnegative real number }x}, called the norm of x. A
norm } ¨ } : X Ñ r0,8q is a mapping with the properties

(i) For all x P X it holds that }x} “ 0 implies x “ 0.

(ii) For all x P X and α P K it holds that }αx} “ |α|}x}.

(iii) For all x, y P X it holds that }x` y} ď }x} ` }y}.

The property (i) is called positive definiteness, (ii) is called absolute homogeneity and (iii)
is the triangle inequality or subadditivity.
We will later often use the notation } ¨ }X if the space X is not clear from the context.
Moreover by the absolute value (or modulus) |x| of x is a norm on the one-dimensional
linear space formed by the real or complex numbers.

Linear operator A mapping A : X Ñ Y from a normed space X to a normed space Y is
called operator. The operator A is called bounded if

}A}YÐX :“ sup
xPX: }x}ď1

}Tx}Y ă 8 .

We call }A}YÐX the operator norm of the operator A.
The set of all bounded linear operators A : X Ñ Y will be denoted by LpX,Y q. Together
with the operator norm } ¨ }YÐX , the space of all bounded linear operators LpX,Y q is a
normed space, see [135, Theorem 4.1]. If X “ Y , we will use the abbreviation LpXq instead
of LpX,Xq. Moreover, on a normed space X, we denote the identity by IX P LpXq. The
mapping A´1 is called the inverse operator of the mapping A P LpX,Y q if it holds that
AA´1 “ IY and A´1A “ IX .

Isomorphism Let X,Y be two linear spaces over the same field K. A bijective mapping
A : X Ñ Y , i.e., a mapping that is injective (Ax1 “ Ax2 implies x1 “ x2) and surjective
(for all y P Y there exists an x P X with Ax “ y), which preserves the algebraic properties
of the linear space, is called an isomorphism. Moreover, if there is an isomorphism between
two linear spaces X,Y , we say X and Y are isomorphic and write X – Y . If X,Y are
normed spaces and it holds in addition that }Ax}Y “ }x}x for all x P X, we call A an
isometric isomorphism.

Metric space Every normed space X can be considered as a metric space, in which
the distance, or metric, dpx, yq between two elements x and y is defined by the norm
dpx, yq :“ }x ´ y}. A metric d : X ˆ X Ñ r0,8q is characterized by the following
properties:1

(i) It holds that dpx, yq “ 0 if and only if x “ y.

(ii) For all x, y, and z P X it holds that dpx, zq ď dpx, yq ` dpy, zq.

(iii) For all x, y P X it holds that dpx, yq “ dpy, xq.

The property (i) is called positive definiteness, (ii) is called triangle inequality and (iii) is
called symmetry.

1The symbol ˆ denotes the Cartesian product, i.e., XˆY is the set of all ordered pairs px, yq with x P X
and y P Y .
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2.1 Fundamental functional analysis

Density A subset M of a metric space X is called a dense subset of X if the closure of
M , M , is equal to the superset X. That is every point in X either belongs to M or is
a limit point of M , i.e., for every x P X there is a sequence pxnqnPN in M such that the
limit is also in M : limnÑ8 xn “ x.
A metric space X is called separable, if it contains a countable and dense subset E “ ten :
n P Nu.
In any metric space X one can define the open ball centered at x P X, and with radius
r ě 0, as the set

Brpxq :“ ty : dpx, yq ă ru .

In particular, if X is a normed space, the sets

Brp0q “ tx : }x} ă 1u and B̄rp0q “ tx : }x} ď 1u

are the open and closed unit ball in X, respectively.

Topology By declaring a subset of a metric space to be open if and only if it is a (possibly
empty) union of open balls, we obtain a topology. A topological space is a set X containing
a collection τ of subsets satisfying the following proerties

(i) The empty set H and X itself belong to τ .

(ii) Any union of members of τ belongs to τ .

(iii) The intersection of any two members of τ belongs to τ .

Such a collection τ is called topology on X and the elements of τ are called open sets.
Moreover a subset A Ă X is called closed if and only if its complement XzA is open.
If τ1, τ2 are two topologies on a common space X, we say that τ1 is weaker than τ2 (or
equivalently τ2 is stronger than τ1) if τ1 Ă τ2.
Let J be an arbitrary index set, let Xj for j P J be a topological space, and let X “
ś

jPJ Xj be the Cartesian product of the Xj . For each j P J we call Pj : X Ñ Xj

the canonical projection. The weakest topology τ such that all canonical projections are
continuous with respect to τ is called the product topology. The pair pX, τq is called
product space.
A topological space is said to be compact if each of its open covers has a finite subcover.
That is, X is compact if for every collection A1 of open sets of X with X “

Ť

xPA1
x, there

is a finite subcollection A2 Ď A1 such that X “
Ť

xPA2
x.

By Tychonov’s theorem [135, Theorem A3], the caresian product of any nonempty collec-
tion of compact spaces pXjqjPJ is compact. Here J is again an arbitrary index set.

Complete metric space A sequence pxnqnPN of elements of a metric space X is called
Cauchy sequence if for all ε ą 0, there exists N P N such that for all n,m ě N it holds for
the distance dpxn, xmq ă ε. Moreover the sequence pxnqnPN converges to x P X if for all
ε ą 0 there exists N P N such that for all n ě N it holds for the distance dpxn, xq ă ε. A
metric space is called complete if every Cauchy sequence converges.

Banach space A normed space which is complete in the metric induced by its norm is
called a Banach space.
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2 Selected facts from functional analysis and measure theory

Linear isomorphism between Banach spaces Let X,Y be two Banach spaces. Then for
any operator A P LpX,Y q that is bijective, i.e., injective (Ax1 “ Ax2 implies x1 “ x2) and
surjective (for all y P Y there exists an x P X with Ax “ y), the operator A´1 P LpY,Xq
exists. This is a consequence of the open mapping theorem [135, Corollary 2.12].

Embeddings Let X,Y be two normed spaces with X Ă Y . Clearly the embedding (or
injection) I : X Ñ Y , defined by Ix “ x for all x P X is linear. We say X is continuously
embedded in Y if I is also bounded, i.e., }x}Y “ }Ix}X ď C}x}X for all x P X and a
constant C ą 0. Moreover, if X is dense in Y , we say X is densely and continuously
embedded in Y .

Dual space For a normed linear space over a field K P tR,Ku, we call the space of all
bounded linear mappings (or functionals)

X 1 “ LpX,Kq

the dual space X 1 of X. Equipped with the norm

}x1}X 1 :“ sup
xPX: }x}Xď1

|x1pxq| (2.1)

the dual space X 1 of X is a Banach space.2 For x1pxq we will also write

xx, x1yX,X 1 “ xx
1, xyX 1,X :“ x1pxq ,

where we call x¨, ¨yX,X 1 and x¨, ¨yX 1,X dual forms or duality pairings.
If a normed linear space X is continuously embedded in a normed linear space Y , then
Y 1 Ă X 1 is continuously embedded, see [140, Lemma 2.2.11]

Dual Operator Let X,Y be two normed spaces. For each A P LpX,Y q there is a unique
dual operator A1 P LpY 1, X 1q satisfying xAx, yyY,Y 1 “ xx,A1y1yX,X 1 for all x P X and
y1 P Y 1. Furthermore, their operator norms are identical: }A}LpX,Y q “ }A

1}LpY 1,X 1q.
As a consequence of the Hahn–Banach theorem [135, Theorem 3.5], we can write by [135,
Theorem 4.3] the following

}x}X “ sup
x1PX 1: }x1}ď1

|xx, x1yX,X 1 | .

Using the dual space X 1 one can define a topology on X:

(i) The weak topology is the weakest topology on X that makes all maps x1p¨q “
x¨, x1yX,X 1 : X Ñ K continuous, as x1 ranges over X 1.

(ii) The weak˚ topology is the weakest topology on X 1 that makes all maps xx, ¨yX,X 1 :
X 1 Ñ K continuous, as x ranges over X.

We say a sequence pxjqjPN converges weakly (or in weak topology) to x P X, denoted
by xj á x, if φpxjq Ñ φpxq for all φ P X 1. Clearly, convergence in the (stronger) norm
topology implies convergence in the weak topology. The reverse holds for instance if

2In fact, for two normed spaces X and Y , the space of bounded linear operators LpX,Y q equipped with
the operator norm } ¨ }YÐX is a normed space. If Y is in addition a Banach space, then so is LpX,Y q.
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2.1 Fundamental functional analysis

dimpXq ă 8, but is not true in general. The weak˚ topology is important, since the
Banach–Alaoglu theorem [135, Theorem 3.15] implies that the closed unit ball in the dual
space X 1 of a normed space X is compact with respect to the weak˚ topology. Note that,
if X 1 is infinite-dimensional, the closed unit ball cannot be compact with respect to the
norm topology. This is a consequence of Riesz’ lemma, which tells us that the unit ball
in a normed linear space X 1 is compact if and only if X 1 is finite-dimensional, see [42,
Theorem 4 in Chapter I].

Bidual space and reflexivity The dual space X 1 of a Banach space X over a field K is
itself a Banach space and thus has its own dual space X2, called the bidual space of X.
Hence, the bidual space of X is defined by X2 “ LpX 1,Kq. Moreover, a consequence of
[135, Theorem 4.3] is, that every x P X and x1 P X 1 defines a unique φx P X2 by the
equation

xx, x1yX,X 1 “ xx
1, φxyX 1,X2 (2.2)

and, for all x P X, that

}φx} “ }x} .

Hence, φ : X Ñ X2 is a linear isometry. Since X is complete, φpXq is closed in X2. Hence
φ is an isometric isomorphism of X onto a closed subspace of X2. In this case X is usually
identified with φpXq, a subspace of X2. Note that φpXq contains the linear functionals on
X 1 that are continuous relative to its weak˚ topology. It may therefore happen that φpXq
is a proper subspace of X2 as the norm topology of X 1 is stronger. The spaces for which
the mapping φ is bijective with φpXq “ X2 are called reflexive. Note that the existence
of some isometric isomorphism φ is not sufficient for X to be reflexive, but it is essential
that (2.2) is satisfied by φ.

Inner product space We call a linear space X an inner product space if to each ordered
pair of vectors x and y in X, a scalar xx, yyX , called the inner product of x and y, is
associated, which has the following properties:

(i) For all vectors x, y P X it holds that xy, xyX “ xx, yyX
3

(ii) For all vectors x, y, and z P X it holds that xx` y, zyX “ xx, zy ` xy, zyX .

(iii) For all scalar α P K and vectors x, y P X it holds that xαx, yyX “ αxx, yyX .

(iv) For all x P X it holds xx, xyX ě 0.

(v) It holds that xx, xyX “ 0 if and only if x “ 0.

Here the first property is called conjugate symmetry. The properties (ii) and (iii) describe
linearity in the first argument and the last two properties are sometimes referred to as
positive definiteness.
If xx, yyX “ 0 we say that x is orthogonal to y and sometimes use the notation x K y.
Moreover, we use the notation E K F for E,F Ă X, to denote that x K y whenever x P E
and y P F . The set of all y P X that are orthogonal to every x P E is denoted by EK.

3Here ᾱ denotes the complex conjugate of α, i.e., ᾱ “ a ´ b ¨ i for α “ a ` b ¨ i, where a, b P R and i
denotes the imaginary unit.
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2 Selected facts from functional analysis and measure theory

Hilbert space Every inner product space X can be normed by

}x}X “
a

xx, xyX

for all x P X, see [135, Theorem 12.2]. In case the resulting normed space is complete, it
is called a Hilbert space. Some important properties of Hilbert spaces are:

(i) The Cauchy–Schwarz inequality holds: |xx, yyX | ď }x}X}y}X for all x, y P X.

(ii) For E Ă X, the orthogonal complement EK is a closed subspace of X.

(iii) Let E be a closed subspace of a Hilbert space X with orthogonal complement EK.
Then it holds that X “ E ‘EK, that is any x P X can uniquely be decomposed by
x “ u` v with u P E and v P EK, and it holds }x}2X “ }u}

2
X ` }v}

2
X .

(iv) Let Y be a closed subspace of the Hilbert space X. For x P X there exists a unique
ŷpxq P Y with

}x´ ŷ}X “ min
yPY

}x´ y}X .

The mapping Px :“ ŷpxq is called an orthogonal projection. The projection operator
P is linear, bounded, self-adjoint (xPx, yyX “ xx, PyyX) and idempotent (P 2 “ P ).

Riesz’ representation theorem Let X be a Hilbert space over a field K. For any y P X
the mapping

fyp¨q :“ x¨, yyX : X Ñ K

is a bounded linear functional. Hence, it holds that fyp¨q P X 1 and }fy}X 1 “ }y}X .
The converse result is known as Riesz’ representation theorem: For all bounded linear
functionals f P X 1 there exists a unique vector yf P X that satisfies

fpxq “ xx, yf yX for all x P X and }f}X 1 “ }yf }X .

Some important consequences of this result are:

(i) There exists a bounded, invertible conjugate linear4 mapping RX : X Ñ X 1 with
RXy “ fy and R´1

X f “ yf . Moreover, the mapping RX is an isometry: }RX}XÑX 1 “
}R´1

X }X 1ÑX “ 1.

(ii) The dual space X 1 is a Hilbert space with inner product xx1, y1yX 1 :“ xR´1
X x1, R´1

X y1yX
and the norm in (2.1) equal to }x1}X 1 “

a

xx1, x1yX 1 .

(iii) X – X2 with xpx1q :“ x1pxq, we can identify X with X2, and in particular any
Hilbert space X is reflexive. Moreover, it holds that RX 1 “ R´1

X , RX “ pRXq
1, and

A2 “ A for A P LpX,Y q if Y “ Y 2 and if both are Hilbert spaces.

4A mapping f : X Ñ Y between to linear spaces over K P tR,Cu is conjugate linear if fpαx ` βyq “
αfpxq ` βfpyq for all x, y P X and all α, β P K.
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2.1 Fundamental functional analysis

(iv) If K “ R the spaces X and X 1 can be identified due to the isomorphism RX , i.e.,
X :“ X 1 implies RX “ I. If K “ C one can choose an orthonormal basis5 pxiqiPS
in X and define the complex conjugation by Cx :“ x :“

ř

jPS xx, xjyXxv. Then

C “ C´1 and C,C´1 are conjugate linear isometries. Hence RX :“ RXC is an
isometric isomorphism and one can identify any Hilbert space over K “ C with its
own dual.

(v) The adjoint operator A˚ of an operator A P LpX,Y q between two Hilbert spacesX,Y
can be defined in terms of RX as follows: A˚ :“ R´1

X A1RY P LpY,Xq. Moreover, we
have }A}LpX,Y q “ }A

˚}LpY,Xq and xAx, yyY “ xx,A
˚yyX for all x P X and all y P Y .

Gelfand triplet Let X,Y be two Hilbert spaces and let X Ă Y be continuously and
densely embedded. Then Y 1 Ă X 1 is also continuously and densely embedded, see e.g.
[140, Proposition 2.1.22]. One can identify Y with its own dual Y 1 and obtain the Gelfand
triple

X Ă Y Ă X 1 ,

where both embeddings are continuous and dense. By this identification, the inner product
xx, yyY can also be interpreted as the duality pairing xx, yyY,Y 1 . For x P X Ă Y , we have
ypxq “ xx, yyX,X 1 “ xx, yyY for all y P Y Ă X 1. Since the embedding Y Ă X 1 is continuous
and dense, the inner product x¨, ¨yY can be extended continuously to the duality pairing
x¨, ¨yX,X 1 .

Sesquilinear and bilinear form Let X,Y be linear spaces over K. A mapping ap¨, ¨q :
X ˆ Y Ñ K is called sesquilinear form if for all x1, x2 P X, for all y1, y2 P Y and all α P K
it holds that

apx1 ` αx2, y1q “ apx1, y1q ` αapx2, y1q ,

apx1, y1 ` αy2q “ apx1, y1q ` αapx1, y2q .

If K “ R we call ap¨, ¨q : X ˆ Y Ñ R a bilinear form. In the case when X,Y are normed
spaces, we say a sesquilinear form is continuous (or bounded) if there is a positive constant
C ă 8 such that

|apx, yq| ď C}x}X}y}Y ,

for all x P X, y P Y . The norm of the sesquilinear form ap¨, ¨q is the smallest such constant:

}a} :“ sup
xPXzt0u

sup
yPY zt0u

|apx, yq|

}x}X}y}Y
.

Bilinear form and linear operator To each continuous bilinear form ap¨, ¨q : X ˆ Y Ñ R
we can uniquely associate an operator A P LpX,Y 1q such that

apx, yq “ xAx, yyY 1,Y @x P X, y P Y ,

and

}A}LpX,Y 1q “ }a} .
5A system of orthonormal vectors pxiqiPS in a Hilbert space X is an orthonormal basis of X if, for every
x P X, the (Fourier) expansion x “

ř

iPSxx, xiyXxi convergens.
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2 Selected facts from functional analysis and measure theory

Proof. From the continuity of ap¨, ¨q : X ˆ Y Ñ R we get for arbitrary x P X, that
φxpyq :“ apx, yq defines a bounded linear functional on Y , i.e., φxp¨q P Y

1. In particular,
we get }φx}Y 1 ď C}x}X for all x P X and a constant 0 ă C. Defining Ax :“ φx for all
x P X, A is clearly linear, and we obtain }Ax}Y 1 ď C}x}X for all x P X, and the same
C, hence A P LpX,Y 1q. Conversely, let A P LpX,Y 1q. Then apx, yq :“ xAx, yyY 1,Y is a
bilinear form with

|xAx, yyY 1,Y | ď }Ax}Y 1}y}Y ď }A}LpX,Y 1q}x}X}y}Y .

The equality of the norms then follows per definition:

}A}LpX,Y 1q “ sup
xPXzt0u

}Ax}Y 1

}x}X
“ sup

xPXzt0u
sup

yPY zt0u

|xAx, yyY 1,Y |

}x}X}y}Y
“ }a} .

Weak formulation of the problem and operator equation Let X,Y be normed spaces,
ap¨, ¨q : X ˆ Y Ñ R be a continuous bilinear form, and f : Y Ñ K a continuous linear
functional. The weak problem is: Find x P X such that

apx, yq “ fpyq @y P Y .

Many differential and integral equations can be formulated as weak problems. By replacing
the sesquilinear form with the associated operator we observe that the weak problem can
be equivalently stated as an operator equation in Y 1:

xAx, yyY 1,Y “ xf, yyY 1,Y or equivalently Ax “ f in Y 1 . (2.3)

Inf-sup-conditions We say the bilinear form ap¨, ¨q satisfies the inf-sup-conditions if there
is a κ ą 0 such that

inf
xPXzt0u

sup
yPY zt0u

|apx, yq|

}x}X}y}Y
ě κ , (2.4a)

inf
yPY zt0u

sup
xPXzt0u

|apx, yq|

}x}X}y}Y
ě κ . (2.4b)

For a bilinear form over two reflexive Banach spaces X and Y , we get the following relation
between the inf-sup-conditions and the invertibility of the operator associated with the
bilinear form:

Theorem 2.1.1 (Well-posed operator equation). Let X and Y be two reflexive Banach
spaces and A P LpX,Y 1q the bounded linear operator associated with the bilinear form in
(2.4). Then A´1 P LpY 1, Xq with }A´1}LpY 1,Xq ď κ´1 if and only if (2.4a) and (2.4b)
hold. In this case, for any f P Y 1, the operator equation Ax “ f (or equivalently the weak
problem, see (2.3)) has a unique solution x P X, which satisfies the a-priori bound

}x}X ď
}f}Y 1

κ
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2.2 Derivatives in function spaces

2.2 Derivatives in function spaces

Let F : X Ă X Ñ Y be an operator between Banach spaces X ,Y, and X ‰ H open.

(i) F is (Gâteaux) directionally differentiable at x P X if the limit

dF px, hq “ lim
tŒ0

F px` thq ´ F pxq

t
P Y

exists for all h P X . In this case, dF px, hq is called directional derivative of F at x
in the direction h.

(ii) F is Gâteaux differentiable at x P X if F is directionally differentiable at x and
the directional derivative F 1pxq : X Q h ÞÑ dF px, hq P Y is bounded and linear, i.e.,
F 1pxq P LpX ,Yq.

(iii) F is Hadamard directionally differentiable at x P X if the limit

F 1px, hq “ lim
tŒ0
h1Ñh

F px` th1q ´ F pxq

t
P Y

exists for all h P X .

(iv) F is Fréchet differentiable at x P X if F is Gâteaux differentiable at x and if the
following approximation condition holds:

lim
}h}XÑ0

1

}h}X
}F px` hq ´ F pxq ´ F 1pxqh}Y “ 0 .

(v) If F is directionally/Gâteaux/Hadamard/Fréchet differentiable at every x P rX, rX Ă

X open, then F is called directionally/Gâteaux/Hadamard/Fréchet differentiable on
rX.

Higher derivatives are defined as follows: Let F be Gâteaux differentiable in a neighbor-
hood X of x and F 1 : X Ñ LpX ,Yq is itself Gâteaux differentiable at x, then F is called
twice Gâteaux differentiable at x. We denote the second Gâteaux derivative of F at x by
F 2pxq P LpX ,LpX ,Yqq. Analogously, one defined the k-th order Gâteaux derivative, as
well as the k-th order Fréchet derivative.

Proposition 2.2.1 (See [89] and [150]). Let X ,Y,Z be Banach spaces and F : X Ă X Ñ
Y, G : Y Ă Y Ñ Z, and X,Y ‰ H open.

(i) For locally Lipschitz mappings in normed spaces, Hadamard and (Gâteaux) direc-
tional derivatives are equivalent.

(ii) Let F be Hadamard (Gâteaux) directionally differentiable at x P X, and let G be
Hadamard directionally differentiable at y “ F pxq. Then, the composite mapping
G˝F is Hadamard (Gâteaux) directionally differentiable at x P X and the chain rule
holds:

BxpG ˝ F qpx, hq “ ByG ˝ BxF ,

where B denotes the Hadamard and (Gâteaux) directional derivatives, respectively.
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(iii) Let F be Fréchet (Gâteaux) differentiable at x and let G be Fréchet differentiable at
F pxq. Then, G ˝ F is Fréchet (Gâteaux) differentiable at x P X and the chain rule
holds:

pG ˝ F q1pxq “ G1pF pxqqF 1pxq .

(iv) If H : XˆY Ñ Z is Fréchet differentiable at px, yq P XˆY , then F p¨, yq and F px, ¨q
are Fréchet differentiable at x and y, respectively. These derivatives are called partial
derivatives of F with respect to x and y, and denoted by BxF px, yq and ByF px, yq,
respectively. Moreover, it holds that

F 1px, yqphx, hyq “ BxF px, yqhx ` ByF px, yqhy ,

for phx, hyq P X ˆ Y.

(v) If F is Gâteaux differentiable on a neighborhood of x P X and F 1 is continuous at x
then F is Fréchet differentiable at x.

(vi) If F is Gâteaux differentiable in a neighborhood X̃ of x, then for all h P X with
tx` th : t P r0, 1su Ă X̃, the following holds:

}F px` hq ´ F pxq}Y ď sup
tPp0,1q

}F 1px` thqh}Y .

2.3 Parametric operator equations

As mentioned briefly in the preceding section, many differential equations can be for-
mulated as variational problems, or equivalently as operator equations. The optimiza-
tion problems that will be studied later in this manuscript, are subject to such operator
equations. Uncertainties, which enter these problems through the operator equation con-
straints, are typically parameterized, resulting in so-called parametric operator equations
as constraints. We start this section by introducing some multiindex notation.

Multiindex notation Here and in the following we will use the following multiindex
notation: for a multiindex ν “ pνjqjPN with νj P N0, where N0 :“ N Y t0u, we denote its
order |ν| :“

ř

jPN νj and its support as supppνq :“ tj P N : νj ě 1u. Moreover, we denote
the countable set of all finitely supported multiindices by

F :“ tν P NN
0 : | supppνq| ă 8u .

Let y :“ pyjqjPN be a countably infinite sequence of real numbers taking values in a
bounded domain U Ă RN. Hereby we use the notational conventions

(i) For m,ν P F it holds m “ ν if and only if mj “ νj for all j P N.

(ii) For m,ν P F it holds m ď ν if and only if mj ď νj for all j P N.

(iii) For m,ν P F we define m` ν :“ pmj ` νjqjPN for all j P N.

(iv) For m P F we define m! :“
ś

jPNmj !.

(v) For m,ν P F we define
`

ν
m

˘

:“ ν!
pν´mq!m! “

ś

jPN
`

νj
mj

˘

.
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(vi) bν :“
ś

jPN b
νj
j , and 00 :“ 1.

(vii) Bνy :“
ś

jPsupppνq
B
νj

By
νj
j

.

In particular, in a Banach space X the νj-th partial (Gâteaux directional) derivative of
an X-valued function upyq : U Ñ X, that depends on countably many parameters y P U ,
is defined as

B
νj
yjupyq “ lim

tŒ0

upy ` tejq ´ upyq

t
P X,

where ej :“ p0, . . . , 0, 1, 0, . . .q has value 1 in the j-th component and 0 otherwise.
We are interested in parametric families of bounded linear operators tApyq P LpX,Y 1q :
y P Uu. Later each yj will be a realization of an independent random variable, cf.,
Example 2.4.1 and Chapter 3 – Section 7.2.
The precise dependence of the operators Ap¨q on the parameter sequence y is crucial for
our regularity and approximation results later in this manuscript. Therefore we require
Apyq to be real analytic. Recall that a real analytic function is infinitely differentiable and
coincides, in an open, nonempty neighborhood of each point, with its Taylor series about
that point. This is detailed in the following, see also [111].

Assumption 2.3.1. The parametric operator family tApyq P LpX,Y 1q : y P Uu is a
regular p-analytic operator family for some 0 ă p ď 1, that is

(i) The operator Apyq is invertible for every y P U with uniformly bounded inverse
A´1pyq P LpY 1, Xq, i.e., there exists C ą 0 such that

sup
yPU

}Apyq´1}LpY 1,Xq ď C .

(ii) For each y P U , the operator Apyq is a real analytic function with respect to y.
Precisely, this means there exists a nonnegative sequence b “ pbjqjPN P `

ppNq6 such
that for all ν P Fzt0u it holds that

sup
yPU

}Ap0q´1BνyApyq}LpX,Xq ď Cbν (2.5)

for the same C as in (i).

Affine parameter dependence The case in which the operator depends affine on the
parameters is well studied in the literature. This dependence structure arises for instance
in diffusion problems with diffusion coefficients parameterized in terms of a Karhunen-
Loève expansion. The operator Apyq can then be written in terms of a family of operators
pAjqjPN0 such that

Apyq “ A0 `
ÿ

jPN
yjAj @y P U . (2.6)

We will now present conditions under which the operator family (2.6) satisfies Assump-
tion 2.3.1.

6Here and in the following, for 0 ă p ă 8, we denote sequence spaces by `ppNq :“ tpxjqjPN :
ř

jě1 |xj |
p
ă

8u. Defining }pxjqjPN}
p
`ppNq “

ř

jě1 |xj |
p for p P r1,8q and }pxjqjPN}

p
`ppNq “ supjPN |xj | for p “ 8,

the `ppNq spaces are Banach spaces which satify `ppNq Ă `qpNq for 1 ď p ă q ď 8 and the duality
`ppNq1 “ `qpNq for 1 ă p, q ă 8 with p´1

` q´1
“ 1 as well as `1pNq1 “ `8pNq. Moreover, `ppNq is

reflexive for 1 ă p ă 8, separable for 1 ď p ă 8, and a Hilbert space for p “ 2.

17



2 Selected facts from functional analysis and measure theory

Assumption 2.3.2. The operator family pAjqjPN0 in (2.6) satisfies

(i) The bilinear form associated with A0 P LpX,Y 1q satisfies the inf-sup-conditions (2.4)
with constant γ0 ą 0.

(ii) The operators pAjqjPN are small with respect to A0 in the following sense: There
exists a constant 0 ă κ ă 1 such that

ÿ

jPN
}A´1

0 Aj}LpXq ď κ .

Theorem 2.3.3. Under Assumption 2.3.2, for each y P U , the parametric operator Apyq
satisfies the inf-sup-conditions (2.4) with γ “ p1´ κqγ0 ą 0.
In particular, for f P Y 1, and for every y P U , the parametric operator equation

Apyqupyq “ f

admits a unique solution upyq which satisfies the a-priori bound

sup
yPU

}upyq}X ď
}f}Y 1

γ
. (2.7)

Proof. [111, Theorem 2]

Corollary 2.3.4. The affine parametric operator family pAjqjPN0 in (2.6) satisfies As-
sumption 2.3.1 with p “ 1 and

C “
1

p1´ κqγ0
and bj “

}Aj}LpX,Y 1q

p1´ κqγ0
for all j ě 1 .

The solution u P X of the operator equation Apyqupyq “ f clearly depends on y. The
precise dependence is studied in the next paragraph.

Analytic dependence of solutions We will now present a result on the regularity of the
solution u of the parametric operator equation with respect to the parameters, which later
allows us to prove a-priori estimates for approximation and integration of the solution upyq
with respect to the parameters y P U . In fact, it can be shown that the dependence of
upyq on the parameter sequence is analytic.

Theorem 2.3.5. Let the parametric family of operators tApyq P LpX,Y 1q : y P Uu satisfy
Assumption 2.3.1 for some 0 ă p ď 1. Then, for f P Y 1, and every y P U there exists a
unique solution upyq P X of the parametric operator equation

Apyqupyq “ f (2.8)

and the parametric solution family upyq depends analytically on the parameters y P U ,
with partial derivatives satisfying

sup
yPU

}Bνyupyq}X ď C}f}Y 1 |ν|!
bν

pln 2q|ν|
,

where b is defined in (2.5).
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2.4 Measure and integration theory

Proof. [111, Theorem 4].

Corollary 2.3.6. The affine parametric operator family pAjqjPN0 in (2.6) satisfies

sup
yPU

}Bνyupyq}X ď C}f}Y 1 |ν|!b
ν , (2.9)

where C and b are defined in Corollary 2.3.4.

Proof. We prove the result by induction with respect to |ν|. If |ν| “ 0, then ν “ 0 and the
result follows from Corollary 2.3.4 and the a-priori bound (5.13). Given any multiindex
ν P F with |ν| ě 1, suppose the result holds for any multiindex of order |ν| ´ 1. For
0 ‰ ν P F we take the partial derivative Bνy of (2.8). By the Leibniz product rule we get

ÿ

mďν

ˆ

ν

m

˙

pBmy ApyqqpB
ν´m
y upyqq “ 0 .

Separating out the m “ 0 term, we obtain

ApyqpBνyupyqq “ ´
ÿ

mďν,m‰0

ˆ

ν

m

˙

pBmy ApyqqpB
ν´m
y upyqq .

By Corollary 2.3.4 and taking the norm we get

}Bνyupyq}X ď C
ÿ

mďν,m‰0

ˆ

ν

m

˙

}Bmy Apyq}LpXq}B
ν´m
y upyq}X .

From (2.6) we infer that

BmApyq “

$

’

&

’

%

Apyq if m “ 0,

Aj if m “ ej ,

0 otherwise.

Corollary 2.3.4 again leads to

}Bνyupyq}X ď
ÿ

jě1

νjbj}B
ν´ej
y upyq}X .

The induction hypothesis gives

}Bνyupyq}X ď
ÿ

jPě1

νjbjC}f}Y 1 |ν ´ ej |b
ν´ej “ C}f}Y 1 |ν|!b

ν .

2.4 Measure and integration theory

In the previous section we specified the dependence of the solution of the parameterized
operator equation on the parameter sequence. In this section we will introduce measures
of risk, that associate to each set of outcomes a real number, which quantifies the cost of
this particular outcome.
We start this section with some facts from measure theory. Let Ω be a set. Let PpΩq be
the power set of Ω, i.e., the set of all subsets of Ω, including the set itself and the empty
set. A collection of subsets Σ Ă PpΩq is called σ-algebra on Ω if
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2 Selected facts from functional analysis and measure theory

(i) Ω P Σ.

(ii) A P Σ implies AA :“ ΩzA P Σ.

(iii) pAjqjPN P Σ implies YjPNAj P Σ.

The pair pΩ,Σq is called a measurable space, and elements of Σ are called measurable
sets. A subset Σ1 Ă Σ which is a σ-algebra is called a sub-σ-algebra of Σ. An important
example is the Borel-σ-algebra BpΩq on a topological space Ω, which is the smallest σ-
algebra that is generated by all open subsets of Ω. The Borel-σ-algebra on Rd is generated
by tpa1, b1qˆ ¨ ¨ ¨ ˆ pad, bdq : aj ă bj for all j P t1, . . . , duu, and similar if the open intervals
are replaced by half-open or closed intervals.

Measure space A measure on the measurable space pΩ,Σq is a mapping µ : Σ Ñ r0,8s
with µpHq “ 0 and

µ

ˆ

ď

jPN
Aj

˙

“
ÿ

jPN
µpAjq , (2.10)

for all sequences pAjqjPN Ă Σ of mutually disjoint sets An X Am “ H for n ‰ m. The
triplet pΩ,Σ, µq is called measure space. The measure space and the measure µ are called
finite if µpΩq ă 8 and σ-finite if Ω “

Ť

jPNAj with Aj P Σ, and µpAjq ă 8 for all

j P N. An important exampe is the Lebesgue measure λ on Rd, which is the unique
translation-invariant measure on the Borel-σ-algebra on Rd with λppa1, b1sˆ¨ ¨ ¨ˆpad, bdsq “
pb1 ´ a1q ¨ ¨ ¨ pbd ´ adq.

Null sets Let pΩ,Σ, µq be a measure space. A measurable set A P Σ is called a (µ-)null
set if µpAq “ 0. A property depending on x P Ω is said to hold µ-almost everywhere
(µ-a.e.) or for µ-almost every x P Ω (µ-a.e. x P Ω) if there is a null set A P Σ such that
the property holds for all x P ΩzA.
The measure space pΩ,Σ, µq is called complete if every subset of any null set is measurable,
i.e., if for all A1 P PpΩq with A1 Ă A for A P Σ with µpAq “ 0, it holds that A1 P Σ.

Measurability For two measurable spaces pΩ,Σq, pΩ1,Σ1q, a function f : Ω Ñ Ω1 is called
Σ-Σ1-measureable (or just measurable if the corresponding σ-algebras are clear from the
context) if f´1pA1q P Σ for all A1 P Σ1.
Let pΩ,Σ, µq be a measure space and pΩ1,Σ1q be a measurable space. A measurable
function f : Ω Ñ Ω1 defines a measure

µf pA1q :“ µpf´1pA1qq , A1 P Σ1 , (2.11)

on pΩ1,Σ1q, which is called the image measure of µ under f .

Probability space Let pΩ,Σ, µq be a measure space. If µpΩq “ 1, then µ is called a
probability measure, and pΩ,Σ, µq is called a probability space.
For a probability space pΩ,Σ, µq, and a measurable space pΩ1,Σ1q, a Σ-Σ1-measureable
function f : Ω Ñ Ω1 is called a pΩ1,Σ1q-valued random variable.
Let D be a set. A function f : ΩˆD Ñ Ω1, such that fp¨, xq is a random variable for each
x P D, is called a random field. In this work the set D will be a domain, i.e., a nonempty,
connected, and open set in Rd.
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2.4 Measure and integration theory

The image measure µf , see (2.11), of a probability measure µ on pΩ,Σq under a measure-
able function f : Ω Ñ Ω1 (or random variable) is a probability measure on the image space
pΩ1,Σ1q. In this case µf is called the (probability) distribution of f under µ.

Stochastic independence Let pΩ,Σ, µq be a probability space, and let pΩ1j ,Σ
1
jqjPt1,2u be

two measurable spaces. Two random variables pyjqjPt1,2u, with yj : pΩ,Σ, µq Ñ pΩ1j ,Σ
1
jq

for each j P t1, 2u, are called independent, if for every Aj P Σ1j , j P t1, 2u, we have

µptx P Ω : y1pxq P A1 and y2pxq P A2uq “
ź

jPt1,2u

µptx P Ω : yjpxq P Ajuq .

As shorthand notation, we say that two random variables pyjqjPt1,2u are i.i.d (for indepen-
dent and identically distributed) if pyjqjPt1,2u are independent and if the have the same
distribution µy1 “ µy2 .

The concept of stochastic independence can be readily generalized to finite families of
random variables. The existence of infinitely many independent random variables can
be shown using the results in the paragraph “Countably infinite product of probability
spaces” below.

Lebesgue space Integration of a measurable function with respect to a measure is called
Lebesgue integration. Let pΩ,Σ, µq be a measure space. A function f : Ω Ñ K is called
simple if f “

řn
j“1 αjIAj for some scalars pαjqjPt1,...nu P K and mutually disjoint mea-

surable sets pAjqjPt1,...,nu P Σ with µpAjq ă 8 for all j P t1, . . . , nu, where IApxq is the
indicator function which is 1 if x P A for a set A P Σ and 0 otherwise. The Lebesgue
integral of a simple function is defined as

ż

Ω
f dµ :“

n
ÿ

j“1

αjµpAjq .

Then we can define the integral of nonnegative measurable functions f : Ω Ñ r0,8s by

sup

"
ż

Ω
φ dµ : φ : Ω Ñ R is a simple function, and 0 ď φpxq ď fpxq for µ-a.e. x P Ω

*

.

Finally, the integral of a function f : Ω Ñ K P tR,Cu is defined through integration of
positive and negative parts, and real and imaginary parts, respectively:

ż

Ω
f dµ :“

ż

Ω
f` dµ´

ż

Ω
f´ dµ ,

where f` :“ maxtf, 0u and f´ :“ maxt´f, 0u if K “ R and

ż

Ω
f dµ :“

ż

Ω
Repfq dµ` i

ż

Ω
Impfqdµ ,

if K “ R. We say the function f is µ-integrable if
ş

Ω |f | dµ ă 8.

If two functions f, g : Ω Ñ K are µ-almost everywhere identical, i.e., fpxq “ gpxq for µ-
a.e. x P Ω, then integration with respect to the measure µ cannot distinguish between the
functions f and g. (µ-)Almost everywhere equality hence defines an equivalence relation
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among µ-measurable functions and we locally denote the equivalence class of f by rf sµ to
clarify the distinction between functions and equivalence classes.7

Let pΩ,Σ, µq be a measure space. For 1 ď p ď 8 we define the Lebesgue space by

LppΩ,Σ, µ,Kq :“ trf sµ : Ω Ñ K : f is measurable and }f}Lp ă 8u , (2.12)

where }f}Lp is defined by

}f}Lp :“

ˆ
ż

Ω
|fpxq|p dµ

˙
1
p

, (2.13)

for 1 ď p ă 8, and by

}f}L8 :“ ess sup
xPΩ

|fpxq| . (2.14)

The values of (2.13) and (2.14) coincide for functions which are equal µ-a.e., i.e., for
all representatives of the equivalence class rf sµ. Hence, LppΩ,Σ, µ,Kq is well-defined by
(2.12). Moreover, by the identification of µ-a.e. identical functions, the expressions (2.13)
and (2.14) become norms. In the following we will always make this identification, and
not make the distinction between functions f and equivalence classes explicit. Moreover,
we will usually use the abbreviations LppΩq “ LpµpΩq “ LppΩ,Σ, µ,Kq when the omitted
notation is clear from the context.
Some properties of the Lebesgue spaces are the following:

(i) For 1 ď p ď 8, the Lp spaces are Banach spaces.

(ii) For 1 ă p ă 8 the Lp spaces are reflexive, with pLpq1 – Lq for q´1 “ 1 ´ p´1.
Moreover, pL1q1 – L8.

(iii) For p “ 2 the Lp space is a Hilbert space.

(iv) Using Hölder’s inequality one can show that on finite measure spaces pΩ,Σ, µq, 1 ď
p ă q ď 8 implies that Lp Ă Lq.

(v) Let pΩ,Σq be separable, then Lp is separable for 1 ď p ă 8.

Lebesgue–Bochner space The solution of a parametric operator equation in general
takes values in a Banach space. A generalization of the Lebesgue integral to integrals over
Banach space-valued functions is the Bochner-integral, which is defined as follows:
Let pΩ,Σ, µq be a σ-finite measure space and X a Banach space. A function f : Ω Ñ X
is called simple if f “

řn
j“1 xjIAj for some pxjqjPt1,...,nu P X and mutually disjoint µ-

measurable sets pAjqjPt1,...,nu P Σ with µpAjq ă 8 for all j P t1, . . . , nu, where IApxq is
the indicator function which is 1 if x P A for a set A P Σ and 0 otherwise. The X-valued
Bochner integral with respect to µ over measurable sets A P Σ of the simple function f is
defined as

ż

A
f dµ :“

n
ÿ

j“1

xjµpAXAjq . (2.15)

7A binary relation „ on a nonempty set A, which associates two elements a P A and b P A, is a set of
ordered pairs pa, bq and hence a subset of the Cartesian product A ˆ A. A binary relation is called
equivalence relation if pa, aq P„ for all a P A, and pa, bq P„ implies pb, aq P„, and pa, bq P„ and pb, cq P„
implies pa, cq P„ for all a, b, c P A. We define the subset ras„ :“ tb P A : pb, aq P„u and call it the
equivalence class of a.
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2.4 Measure and integration theory

A function f : Ω Ñ X is called Bochner-measurable (or strongly µ-measurable) if there
exists a sequence pfjqjPN of simple functions such that limjÑ8 fjpxq “ fpxq for µ-a.e. x P Ω.
If the approximating sequence pfjqjPN of simple functions satisfies

lim
jÑ8

ż

Ω
}f ´ fj}X dµ “ 0 ,

then f is called Bocher-integrable and the Bochner integral is defined by
ż

Ω
f dµ “ lim

jÑ8

ż

Ω
fj dµ .

Note that the limit is independent of the approximating sequence.
In order to ensure the ability to approximate every element f P X of a Banach space X
by a countable family pfjqjPN, we will in the following chapters mostly assume that the
Banach space X is separable.
A Bochner measurable function f : Ω Ñ X is Bochner integrable if and only if the function
}f}X : Ω Ñ R is µ-integrable and it holds, [90, Proposition 1.2.2]

›

›

›

›

ż

Ω
f dµ

›

›

›

›

X

ď

ż

Ω
}f}X dµ .

Moreover, for an operator A P LpX,Y q between two Banach spaces X,Y , and a Bochner
integrable function f : Ω Ñ X, Af is a Y -valued Bochner integrable function, and

ż

Ω
Af dµ “ A

ż

Ω
f dµ . (2.16)

Almost everywhere equality again defines an equivalence relation among strongly
µ-measurable functions. In the following definition, let rf sµ denote again the equivalence
class of the function f .
For 0 ă p ď 8 the Lebesgue–Bochner space is

LppΩ,Σ, µ,Xq :“ trf sµ : Ω Ñ K : f is strongly measurable and }f}LppΩ,Xq ă 8u ,

where

}f}LppΩ,Xq :“

ˆ
ż

Ω
}f}pX dµ

˙
1
p

for 0 ă p ă 8 and

}f}L8pΩ,Xq :“ ess sup
xPΩ

}fpxq}X .

We will usually use the abbreviations LppΩ, Xq “ LpµpΩ, Xq “ LppΩ,Σ, µ,Xq when the
omitted notation is clear from the context.
Some properties of the Lebesgue spaces are the following:

(i) For 1 ď p ď 8, the LppΩ, Xq spaces are Banach spaces.

(ii) For 1 ă p ă 8 the LppΩ, Xq spaces are reflexive if the underlying Banach spaces
X are reflexive or X 1 is separable, with LppΩ, Xq1 – LqpΩ, X 1q for q´1 “ 1 ´ p´1.
Moreover, L1pΩ, Xq1 – L8pΩ, X 1q if µ is σ-finite, see [90, Corollary 1.3.22].
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(iii) For p “ 2 the LppΩ, Xq space is a Hilbert space.

(iv) Using Hölder’s inequality one can show that on finite measure spaces pΩ,Σ, µq, for
1 ď p ă q ď 8 implies that LppΩ, Xq Ă LqpΩ, Xq.

Let pΩ,Σ, µq be a measure space, let 1 ď p ă 8, and let X be a Banach space. If
dimpLppΩ, Xqq ě 1, the following assertions are equivalent, see [90, Proposition 1.2.29]:

(i) LppΩ, Xq is separable.

(ii) The space X is separable and there is a disjoint decomposition Ω “ Ω1 Y Ω2 in
Σ such that µ|Ω1pAq P t0,8u for all A P Σ|Ω1 and pΩ2,Σ|Ω2 , µ|Ω2q is µ-countably
generated. That is, there is a sequence pΩjqjě1 in Σ, consisting of sets with finite
measure, such that for all A P Σ there is a set A1 in the σ-algebra that is generated
by pΩjqjě1 such that µppAzA1q Y pA1zAqq “ 0.8

Pettis integral and weak measurability In spaces that are not separable, like the Banach
space of bounded, measurable functions L8pDq, the notion of strong measurability and
Bochner integrability is not immediately available. Let pΩ,Σ, µq be a measure space and X
a Banach space. A function f : Ω Ñ X is called weakly Σ-measurable if, for every φ P X 1,
the mapping φpfq : Ω Ñ R is Σ-measurable. The mapping f is weakly µ-integrable if for
all φ P X 1, the mapping φpfq : Ω Ñ R is µ-integrable. For a separable9 Banach space X,
the notions of strong µ-measurability, weak Σ-measurability coincide.

For a fixed, weakly µ-integrable f : Ω Ñ X, we define Sf : X 1 Ñ L1
µpΩq : φ ÞÑ φpfq. Using

the closed graph theorem it can be shown that Sf is bounded, see [90, Lemma 1.2.18].
The dual of Sf is called the Dunford operator Tf :“ S1f : pL1

µpΩqq
1 Ñ X2. By identifying

pL1
µpΩqq

1 with L8µ pΩq, we get for every g P L8µ pΩq and every φ P X 1 that

xφ, Tfgy “ xSfφ, gy “

ż

Ω
pφpfqqg dµ .

Applying Tf to the indicator function IA, we can define the so-called Dunford Integral of
f over A P Σ as

ż

A
f dµ :“ Tf IA P X2 , A P Σ , (2.17)

Note that the Dunford integral is in general an element of X2. In view of the canonical
embedding X Ă X2, we say that a weakly µ-integrable function f is Pettis integrable if
for every A P Σ its Dunford integral

ş

A f dµ belongs to X. In this case (2.17) is called
Pettis integral of f over A P Σ with the interpretation of elements of X2 as elements of X
characterized by

B

φ,

ż

A
fdµ

F

“

ż

A
φpfqdµ @φ P X 1 . (2.18)

8For A P Σ we denote A|Σ “ tA X A1 : A1 P Σu “ tA1 P Σ : A1 Ď Σu. The restriction of µ to ΣA is
denoted by µ|A.

9The result can be stated more generally by replacing the assumption of a separable Banach space with
the condition that there is a µ-null set N Ă Ω such that the image fpΩzNq Ă X is separable, since this
is always true if X is a separable Banach space, see [90, Theorem 1.1.20]
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Clearly the Dunford and Pettis integrals coincide if X is reflexive. Moreover, for a Bochner
integrable f : Ω Ñ X, and for an approximating sequence pfjqjPN Ă X of simple functions,
by (2.18) each fj is Pettis integrable with Pettis integral of fj over A given by (2.15).
Taking the limit j Ñ 8, we obtain that f is also Pettis integrable. Moreover, by the
definition of Bochner integral, for this f the Bochner and the Pettis integral coincide.
Hence the Pettis integral is a consistent extension of the Bochner integral.

Product measures Let pΩ1,Σ1q and pΩ2,Σ2q be two measurable spaces. The so-called
product σ-algebra Σ1 b Σ2 on Ω1 ˆ Ω2 is the σ-algebra generated by the boxed A1 ˆA2

with A1 P Σ1 and A2 P Σ2. For two measures µ1 on pΩ1,Σ1q and µ2 on pΩ2,Σ2q there
exists a unique measure µ1 b µ2 on pΩ1 ˆΩ2,Σ1 bΣ2q, called the product measure, such
that

µ1 b µ2pA1 ˆA2q “ µ1pA1qµ2pA2q @A1 P Σ1, @A2 P Σ2 .

Fubini’s theorem An important result about the product of two probability spaces is
Fubini’s theorem: Let pΩ1,Σ1, µ1q and pΩ2,Σ2, µ2q be two σ-finite measure spaces. Let
X be a Banach space, and let f : Ω1 ˆ Ω2 Ñ X be µ1 b µ2-Bochner integrable. Then
fpx1, ¨q is µ2-Bochner integrable for µ1-a.e. x1 P Ω1 and x1 ÞÑ

ş

Ω2
fpx1, ¨qdµ2 is µ1-Bochner

integrable, see [90, Proposition 1.2.7]. Analogously, fp¨, x2q is µ1-Bochner integrable for
µ2-a.e. x2 P Ω2 and x2 ÞÑ

ş

Ω1
fp¨, x2qdµ1 is µ2-Bochner integrable. In particular we have

ż

Ω1ˆΩ2

f dµ1 b µ2 “

ż

Ω1

ˆ
ż

Ω2

fpx1, ¨qdµ2

˙

dµ1px1q “

ż

Ω2

ˆ
ż

Ω1

fp¨, x2q dµ1

˙

dµ2px2q .

Fubini’s theorem holds also for Lebesgue integrable functions in the case X “ K.

Countably infinite product of probability spaces Let pΩj ,Σj , µjqjPN be a countably
infinite family of probability spaces, and let pΩ,Σq be the product of the measurable
spaces pΩj ,ΣjqjPN. That is, Ω is the set of all sequences pxjqjPN such that xj P Ωj for
each j P N.10 Moreover, for each j we define the coordinate projection yj : Ω Ñ Ωj by
yjpxq :“ xj , then the product σ-algebra Σ is the smallest σ-algebra on Ω that makes all
these coordinate projections measurable, i.e., Σ “ σpty´1

j pAjq, j P Nuq. Moreover, there
is a unique probability measure µ on pΩ,Σq such that

µ
´

A1 ˆ ¨ ¨ ¨An ˆ
8
ą

j“n`1

Ωj

¯

“

n
ź

k“1

µkpAkq

for Ak P Σk, k “ 1, . . . , n and n P N0. The probability measure µ is called the product
of the measures pµjqjPN and we write µ “ bjPNµj . Furthermore, for each j P N the
distribution of yj is µj and the random variables pyjqjPN are independent. A proof can
be found, e.g., in [32, Proposition 10.6.1], or [81, Sec. 38, Theorem B]. This result is
a corollary to Ionescu-Tulcea’s theorem, see [104, Corollary 14.33]. Generalizations to
uncountable index sets are Kolmogorov’s extension theorem [104, Theorem 14.13] and the

10For general index sets J one defines the Cartesian product Ω “
Ś

jPJ Ωj as the set of maps x : J Ñ
Ť

jPJ Ωj such that xpjq P Ωj for all j P J.
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2 Selected facts from functional analysis and measure theory

more general Andersen–Jessen theorem, see [145, Chapter 10.6]. Note that these results
prove the existence of infinitely many independent random variables.

It can then be readily verified that if an arbitrary set of indices J is split into two disjoint
parts J1 and J2 giving µ1 “ bjPJ1µj and µ2 “ bjPJ2µj , then µ1 b µ2 “ bjPJµj , see [13,
Chapter 3.5].

Example 2.4.1. Let Ωj “ r´1, 1s, and let µj be a probability measure on pΩj ,BpΩjqq.
Clearly pr´1, 1s, | ¨ |q is a separable11 metric space. Hence, by the more general result [13,
Lemma 6.4.2.] we have Bpˆjě1Ωjq “ bjě1BpΩjq and the countable product of the mea-
sure spaces pΩj ,BpΩjqqjPN is given by pr´1, 1sN,Bpr´1, 1sNqq, where r´1, 1sN “ ˆjPNΩj,
see also [13, Example 7.6.1.]. Together with the product measure µ “ bjPNµj we define
the product probability space

pr´1, 1sN,Bpr´1, 1sNq, µq . (2.19)

We usually deal with continuous functions that have compact domain. Such functions are
Bochner-integrable, see [165, Lemma A.1.5]. Let X be a Banach space, and let pΩ,B, µq
be a finite measure space, where Ω is a compact topological space. Then any continuous
f : pΩ,Bq Ñ pX,BpXqq is µ-Bochner-integrable.

Example 2.4.2. Let X be a Banach space. Observe that r´1, 1s is compact and thus,
by Tychonov’s theorem [135, Theorem A3], the Cartesian product r´1, 1sN “ ˆjPNr´1, 1s
is compact with respect to the product topology. By [165, Lemma A.1.5], any continuous
function f : pr´1, 1sN,Bpr´1, 1sNqq Ñ pX,BpXqq is µ-Bochner integrable, where µ “ bjPN
is the probability measure in (2.19).

Vector measure A vector measure is the natural extension to Banach space-valued mea-
sures: Let pΩ,Σq be a measurable space and let X be a Banach space. Then a vector
measure is a mapping λ : Σ Ñ X, that satisfies λpHq “ 0 and

λpYjPNAnq “
ÿ

jPN
λpAjq ,

for all sequences pAjqjPN Ă Σ of mutually disjoint sets An X Am “ H for n ‰ m. Note
that the convergence of the series on the right-hand side is understood to be in the norm
of the Banach space X.

A vector measure λ is said to have bounded variation if

|λ|pAq “ sup
!

n
ÿ

i“1

}λpAiq}X : tA1, . . . ,Anu a partition of A
)

ă 8

for each A P Σ, where a partition of A is a finite set of mutually disjoint measurable sets
whose union is A.

The vector measure λ : Σ Ñ X is said to be absolutely continuous with respect to the
finite measure µ on Σ if and only if λpEq implies µpAq “ 0 for all A P Σ.

A Banach space X is said to have the Radon–Nikodým property if the following result is
valid in the Banach space X:

11Indeed the countable set QX r0, 1s is a dense subset of r0, 1s.
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2.4 Measure and integration theory

Radon–Nikodým property LetX be a Banach space, pΩ,Σq a measurable space equipped
with a finite measure µ, i.e., pΩ,Σ, µq is a finite measure space. Let λ be a vector measure
of bounded variation, that is absolutely continuous with respect to the measure µ. Then
there exists a µ-Bochner integrable function f : Ω Ñ X such that

λpAq “
ż

A
f dµ

for every A P Σ.

This result is not true in arbitrary Banach spaces, for a counterexample see [139, Example
5.15]. Using the notion of Radon–Nikodým property one can characterize reflexivity of
the Lebegue–Bochner spaces. Let pΩ,Σ, µq be a σ-finite measure space, let X be a Banach
space, and let 1 ď p ă 8 with p´1 ` q´1 “ 1. The following assertions are equivalent, see
[90, Theorem 1.3.10]:

• X 1 has the Radon–Nikodým property.

• The mapping g ÞÑ φg from LqpΩ, X 1q Ñ pLppΩ, Xqq1 defined by

xf, gy :“

ż

Ω
xf, gydµ f P LppΩ, Xq

establishes an isometric isomorphism between the Banach spaces LqpΩ, X 1q
– pLppΩ, Xqq1.12

Note that a Banach space X has the Radon–Nikodým property with respect to every σ-
finite measure space, [90, Theorem 1.3.21] if X is reflexive or X is separable dual space.

Expected value Let pΩ,Σ, µq be a probability space and X be a Banach space. The
mean or expectation of a random variable y : Ω Ñ X is my P X such that

φpmyq “ Erφpyqs “
ż

Ω
φpyqdµ @φ P X 1 .

If Er}y}Xs “
ş

Ω }y}X dµ ă 8, we conclude from φpmyq “ Erφpyqs “ φpErysq and the
Hahn–Banach theorem, that

my “ Erys “
ż

Ω
y dµ P X .

Note that in Banach spaces the mean my of y is in general an element of the bidual
space X2 of X, and given by mypφq :“ Erφpyqs, φ P X 1. The integrability assumption
Er}y}Xs ă 8 is sufficient but not necessary for the existence of my in X. For instance, if X
is reflexive and Erφpyqs ă 8 for all φ P X 1, the Gelfand–Pettis theorem implies continuity
of the linear map φ ÞÑ Erφpyqs on X 1, and hence my P X

2 “ X, see [156, Chapter II.3].

12The assumption of σ-finite µ is only necessary for p “ 1, i.e., can be dropped for 1 ă p ă 8, see [90,
Corollary 1.3.22].
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Moments Let pΩ,Σ, µq be a probability space and let X be a Banach space. For k P N
the k-th moment of the random variable y : Ω Ñ X is the map Mk : Ωk Ñ R,

Mk
ypφ1, . . . , φkq :“ Erφ1pyq, . . . , φkpyqs “

ż

Ω
φ1pyq ¨ ¨ ¨φkpyqdµ .

If Er}y}kXs “
ş

Ω }y}
k
X dµ ă 8, then µk is a conitinuous symmetric k-linear form13 on X 1.

In particular, the covariance of y is Covy :“M2
y´my , i.e., for φ P X 1

Covypφ1, φ2q “ Erφ1py ´myqφ2py ´myqs “

ż

Ω
φ1py ´myqφ2py ´myqdµ .

If Er}y}2Xs “
ş

Ω }y}
2
X dµ ă 8, then M2

y and Covy are continuous, symmetric, positive
bilinear forms on X 1, and

Covypφ1, φ2q “M2
ypφ1, φ2q ´ φ1pmyqφ2pmyq @φ1, φ2 P X

1 .

Proof. Continuity of Mk
y follows from

|Mk
ypφ1, . . . , φkq| ď Er|φ1pyq| ¨ ¨ ¨ |φkpyq|s

ď Er}y}kXs}φ1pyq}X 1 ¨ ¨ ¨ }φkpyq}X 1 @φ1, . . . , φk P X
1 .

Symmetry follows from Mk
ypφπp1q, . . . , φπpkqq “Mk

ypφ1, . . . , φkq for all permutations π of
t1, . . . , ku. Moreover, for k “ 2, positivity M2

kpφ, φq “ Erφpyq2s ě 0 follows by definition.
Since Covy :“M2

y´my these properties hold also for the covariance. Moreover, for φ1, φ2 P

X 1 we have
ż

Ω
φ1py ´myqφ2py ´myqdµ

“

ż

Ω

`

φ1pyq ´ φ1pmyq
˘`

φ2pyq ´ φ2pmyq
˘

dµ

“

ż

Ω
φ1pyq

`

φ2pyq ´ φ2pmyq
˘

dµ´

ż

Ω
φ1pmyq

`

φ2pyq ´ φ2pmyq
˘

dµ

“

ż

Ω
φ1pyqφ2pyqdµ´

ż

Ω
φ1pyqdµφ2pmyq ´ φ1pmyq

ż

Ω
φ2pyq dµ` φ1pmyqφ2pmyq

“

ż

Ω
φ1pyqφ2pyqdµ´ φ1pmyqφ2pmyq .

Change of variables Let pΩ,Σ, µq be a measure space, let pΩ1,Σ1q be a measurable space,
and let X be a Banach space. Let Y : Ω Ñ Ω1 be measurable and let u : Ω1 Ñ X be
strongly measurable. Let µY “ µpY ´1q be the image measure of µ under Y . Then, see
[90, Proposition 1.2.6], fpφq is Bochner integrable with respect to µ if and only if f is
Bochner integrable with respect to µY , and then

ż

Ω
fpY q dµ “

ż

Ω1
f dµY . (2.20)

13A mapping Mk :
Śk

j“1 Ωj Ñ K is called k-linear form if it is linear in each argument, i.e., for all λ P K, for

all n P Ωi, and for all i “ 1, . . . , k, it holds that Mk
pm1, . . . , λmi, . . . ,mkq “ λMk

pm1, . . . ,mi, . . . ,mkq

and Mk
pm1, . . . ,mi ` n, . . . ,mkq “Mk

pm1, . . . ,mi, . . . ,mkq `Mk
pm1, . . . , n, . . . ,mkq.
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3 A general formulation of optimal control
problems under uncertainty

In this section we formulate the optimal control problem in a very general form and embed
existing results from the literature into the general framework. We analyze the general
problem under different sets of assumptions on the risk measure, the random variable cost
functional, the constraint and the uncertainty.

The structure of this chapter is as follows. We discuss several risk measures and classify
them according to their properties. Afterwards, we focus on the cost functional, which in
the context of optimal control problems under uncertainty, is a random variable. In par-
ticular, we present conditions which ensure differentiability of the risk measure composed
with the random variable cost functional.

Based on the results for the risk measure and the cost functional, we derive results about
the existence and uniqueness of solutions to the optimal control problem under a set of
assumptions about the constraint. Similarly, we can reformulate the problem in its so-
called reduced form provided that the forward operator fulfills certain conditions. Finally,
we are able to present optimality conditions for the general optimal control problem under
uncertainty.

At the end of this chapter we briefly focus on parametric linear forward operators, which
will play a central role in the remainder of this thesis. In particular, we establish a setting
which allows us to replace the almost surely formulation of the constraint by the weak
formulation in the uncertain parameters. This equivalence is used in Chapter 8 to derive
one-shot methods based on a penalization of the model residual.

In the following sections we develop efficient methods for optimal control problems that
have sufficiently high regularity with respect to the uncertain variables. We analyze the
different error contributions of our methods and verify our theoretical findings in numerical
experiments. In the last chapters we discuss further improvement of the solvers in terms
of efficiency. To do so, we impose appropriate assumptions on the risk measure, the cost
functional, the constraint, the uncertainty, and the regularization throughout this thesis.

However, most of the results presented in this section are not restricted to problems with
high regulartiy with respect to the uncertain variables. In fact, we only make few assump-
tions about the structure or distribution of the uncertainty in this chapter. Moreover, we
make few assumptions about the constraints, allowing for nonlinear constraints in many
results. Furthermore, only a few assumptions are made on the regularization and we em-
ploy moderate assumptions on the random variable cost functional. Hence, the presented
formulation covers a wide range of optimal control problems.

We start this chapter with the problem formulation and a detailed list of the most impor-
tant components of the optimal control problems under uncertainty.
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3 A general formulation of optimal control problems under uncertainty

3.1 Problem formulation

Let X ,Y and Z be Banach spaces, let pΩ,Σ,Pq be a probability space, let U be a compact
topological space, and let pU,BpUqq be a separable metric space.
The optimal control problem under uncertainty has the following ingredients:

Uncertainty. The inherent randomness of the problem is described by a random variable
Y : Ω Ñ U . In many cases the random influence is parameterized, which leads to
product probability spaces of the form pΩ,Σ,Pq “ pˆjPNΩj ,ˆjPNΣj ,bjPNPjq and
pU,BpUq, µq “ pˆjPNUj ,BpˆjPNUjq,bjPNµjq. In this case the randomness is de-
scribed by the countably infinite sequence of i.i.d. random variables Y “ pYjqjPN :
Ωj Ñ Uj with realization y “ pyjqjPN P U . Note that the realization of the random
variable is usually denoted by y P U . The change of variables formula (2.20) allows
us to work in the image space pU,BpUqq of the random variable Y equipped with
the image measure µ. When dealing with the realizations y P U , we will oftentimes
call them stochastic variables, parametric variables, or parameters.

Control. A fundamental component of an optimal control problem is the so-called control
or control variable z P Z. The space Z is called the control space. The control z is
a deterministic quantity, chosen by a controller and hence does not depend on the
stochastic variables y P U .

State. The state or state variable u can be steered using the control z P Z. For a fixed
control z P Z, the state maps the uncertainty y P U into the state space X . Hence the
state is typically a random field in some Lebesgue–Bochner space LqpU,BpUq, µ,X q
for q P r1,8s. The dependence of the state u P X on the uncertainty y P U and the
control z P Z is described by the model.

Model. The underlying model is mathematically described by the mapM : U ˆX ˆZ Ñ
Y 1. In particular, the so-called model equation or constraint Mpy, upyq, zq “ 0
relates the control to the state of the system. Moreover, for fixed control z P Z, the
state of the system is subject to the randomness. In most of our applications the
state u P X depends linearly on the control z P Z and analytically on the stochastic
variables y P U .

Cost functional. The cost functional J : U ˆ X Ñ R associates a nonnegative cost to
each pair of y P U and upyq P X . For u : U Ñ X , we refer to the Nemytskii
(superposition) operator

J puqpyq “ Jpy, upyqq , y P U (3.1)

as the random variable objective function. The Nemytskii operator assigns a function
J puq : U Ñ R to the state up¨q : U Ñ X . In order to account for the randomness
the objective function is composed with a risk measure.

Risk measure. For a given state u : U Ñ X , for p P r1,8q, the risk measure R :
LppU,BpUq, µ,Rq Ñ r0,8s associates a nonnegative real number to the random
variable objective function J puqp¨q.

Regularization. For stability reasons we introduce a regularization Rpzq : Z Ñ r0,8s on
the control z P Z. In general a regularization can be viewed as a penalization of the
control variable in order to ensure desirable properties of the control.
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3.2 Risk measures

Control constraint. We also may impose additional direct constraints on the control z P Z,
i.e., the controls are elements of the admissible set Zad Ď Z.

For α ą 0, we consider optimization problems of the general form

min
uPLqpX q,zPZad

RpJ puqq ` αRpzq (3.2)

subject to

Mp¨, up¨q, zq “ 0 in LqpY 1q , (3.3)

for 1 “ 1
q `

1
r . We abbreviated LqpX q “ LqpU,BpUq, µ,X q for q P r1,8s, and analogously

for r. Typically, it will be the case that X Ă Y are reflexive Banach spaces.
This includes a wide range of optimal control problems, particularly very general con-
straints, various cost functionals, several risk measures, different input uncertainties, and
various regularizations. We do not cover constraints on the states, which will be subject
to future work.
Other possible formulations include the replacement of the random input quantity, e.g.,
with its mean. As a result, only one deterministic optimal control problem needs to be
solved. However, the solution obtained with this approach is in general not robust with
respect to the randomness of the problem. A further possible formulation of the problem
is the path-wise solution of many optimal control problems, and then computing statistics
of the obtained result afterwards. In general the obtained solution is not a solution of an
optimal control problem and has limited meaning. Moreover, in some applications it can
make sense to have a stochastic control, i.e., a control z which depends directly on y P U ,
see, e.g., [4, 24, 108, 111]. We do not consider such cases and rather suppose a controller is
interested in a single deterministic control of the system. Thus we focus on the approach
that leads to a robust solution of the optimal control problem (3.2) – (3.3) with respect
to variations of the uncertain variables, cf., e.g., [75, 76, 77, 105, 106, 157, 158] and many
others.

3.2 Risk measures

The presence of uncertainty or randomness in the optimization problem leads to a random
variable objective function. Since there is no total order on random variables, one cannot
minimize a random variable directly, but needs to define a meaningful order, as for exam-
ple, by the introduction of a risk measure R : LppU,BpUq, µ,Rq Ñ R Y t8u, that maps
the random variable objective function to the extended real numbers. While the possible
choices for R are virtually limitless, in this section we discuss sensible properties for mea-
sures of risk and derive optimality conditions. The proper choice of the risk measure and
its desired properties may depend on the problem at hand.
Perhaps the most straightforward way to account for the risk in the optimization problem is
considering the expected value R “ E as a risk measure, which is oftentimes referred to as
the risk-neutral case. A solution, if it exists, optimizes the random outcome Jpupyq,yq on
average. This is justified, for instance, when one is interested in the long-term performance,
irrespective of the fluctuations of specific outcome realizations. Based on this definition
we characterize risk-aversion as follows: we say a risk measure R : LppU,BpUq, µ,Rq Ñ
RY t8u is called risk-averse (see, [136]) if

RpXq ą ErXs (3.4)
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3 A general formulation of optimal control problems under uncertainty

for all nonconstant X P LppU,BpUq, µ,Rq.
Since the concept of risk measures is not limited to the application in optimal control
problems, in this section we use the generic notation X P LppU,BpUq, µ,Rq for a random
variable. However, one can think of X being the random variable objective function (3.1).
A risk measure R is called regular if it satisfies (3.4) and if it

(D1) is proper, that is RpXq ą ´8 for all X P LppU,BpUq, µ,Rq and

dompRq :“ tX P LppU,BpUq, µ,Rq : RpXq ă 8u ‰ H.

(D2) is lower semicontinuous or closed, that is its epigraph

epipRq :“ tpX, ηq P LppU,BpUq, µ,Rq ˆ R : RpXq ď ηu

is closed in the product topology on LppU,BpUq, µ,Rq ˆ R,

(D3) is convex, that is RpλX ` p1´ λqX̃q ď λRpXq ` p1´ λqRpX̃q, for all λ P r0, 1s and
all X, X̃ P LppU,BpUq, µ,Rq.

(D4) satisfies RpCq “ C for all constant random variables C P R.

As we will see in the following subsection, regular risk measures provide a minimal set of
assumptions to ensure that many essential properties hold. Note, that (3.4) suggests that
the expected value is not capable of adequately representing risk in many applications. To
this end we introduce risk-averse measures.

3.2.1 Mean based risk measures

The idea of mean based risk models is to characterize the uncertain outcome by the mean
E, and a second scalar characteristic D describing the risk or dispersion. This approach
allows to formulate the problem as a parametric optimization problem, and it facilitates
the trade-off analysis between mean and risk. For c ě 0, we consider

RpXq “ ErXs ` cDpXq ,

for a proper random variable X. In the case of the variance D :“ V for example, we chose
X P L2pU,BpUq, µ,Rq. The variance treats the excess over the mean as the shortfall, i.e.,
positive and negative deviations from the mean equally. In minimization problems, we are
not concerned if a particular realization of the random variable objective J is significantly
below the mean of J , however we do not want it to be large. Two particular classes of
risk functionals, which we discuss next, play an important role in the theory of mean-risk
models.

Semideviations

An important group of risk functionals (representing dispersion measures) are central
semideviations. The upper semideviation of order p is defined as

σ`p pXq :“
`

E
“

pX ´ ErXsqp`
‰˘

1
p

where p P r1,8q is a fixed parameter, and pxq` :“ max t0, xu. The upper semideviation
is well defined and finite valued for all X P LppU,BpUq, µ,Rq.
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3.2 Risk measures

The upper semideviation measure is appropriate for minimization problems as it penalizes
excess of X over its mean. For maximization problems one would consider

σ´p pXq :“ ´
`

E
“

pErXs ´Xqp`
‰˘

1
p .

In the special case of p “ 1, first order semideviations are related to the mean absolute
deviation, in particular it holds σ`1 pXq “ σ´1 pXq “

1
2σ1pXq for all X P L1pU,BpUq, µ,Rq,

where
σ1pXq :“ E |X ´ ErXs| .

Quantiles and Value-at-Risk

Let FXpxq “ µpX ď xq be the cumulative distribution function of the real valued random
variable X and let α P p0, 1q. We define the left-side α-quantile of FX by

F´1
X pαq :“ inf

tPR
tt : FXptq ě αu ,

and the right-side α-quantile by

sup
tPR
tt : FXptq ď αu .

If X represents losses, as is the case in the minimization problems in this work, the left-side
quantile F´1

X pαq is also called Value-at-Risk with confidence level α and denoted by

V@RαpXq :“ F´1
X pαq “ inf

tPR
tt : µpX ď tq ě αu

“ inf
tPR
tt : µpX ą tq ď 1´ αu

(3.5)

It has the following interpretation: losses larger than V@RαpXq occur with probability
not exceeding 1´ α.

Weighted Mean Deviations from Quantiles

For X P L1pU,BpUq, µ,Rq we define the weighted mean deviation from a quantile as

Wα :“ E
“

max tp1´ αqpF´1
X pαq ´Xq, αpX ´ F´1

X pαqqu
‰

.

Defining φptq :“ Ermax tp1´ αqpt´Xq, αpX ´ tqus one gets the alternative representation

Wα “ min
tPR

φptq.

Indeed, the right- and left-side derivatives14 φ1`ptq and φ1´ptq of φ at a minimizer t are

φ1`ptq “ p1´ αqµpX ď tq ´ αµpX ą tq ě 0 ,

φ1´ptq “ p1´ αqµpX ă tq ´ αµpX ě tq ď 0 ,

and thus µpX ă tq ď α ď µpX ď tq, i.e., every α-quantile is a minimizer of φ. As we shall
see in the next paragraph, the mean deviation from a quantile is related to the Average
Value-at-Risk.
14Let f : I Ñ R be a real-valued function defined on a subset I Ă R. Let a be a limit point of the

set tx P D : x ą au. Then f 1`paq is the right-side derivative of f at a if it is the right-sided limit

f 1`paq :“ limxŒa
fpxq´fpaq

x´a
. A point x in a subset S of a topological space X is called limit point of S,

if every neighborhood (a set including an open set that contains x) of x contains at least one point of
S different from x itself. The right-sided limit is defined as the real number L, if for all ε ą 0 there is
a δ ą 0 such that for all x P I with 0 ă x´ a ă δ it holds that |fpxq ´L| ă ε. The left-sided limit and
derivative is defined analogously.
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3 A general formulation of optimal control problems under uncertainty

Average Value-at-Risk

Suppose one wants to satisfy the (chance) constraint

V@R1´αpXq ď 0 . (3.6)

Recalling (3.5), this is equivalent to the constraint µpX ď 0q ě 1 ´ α and hence can be
written as

E
“

1p0,8qpXq
‰

ď α ,

where 1p0,8qpxq “ 0 if x ď 0, and 1p0,8qpxq “ 1 if x ą 0.
Such constraints are difficult to handle, since the step function 1p0,8qpXq is not convex,
and discontinuous at zero. As a result, chance constraints are often nonconvex, even if
the function z ÞÑ JpSpyqzq “ X is convex almost surely. To avoid these difficulties such
problems are often approached by constructing a convex approximation of E

“

1p0,8qpXq
‰

.
Let φ : RÑ R be a nonnegative valued, nondecreasing, convex function such that φpxq ě
1p0,8qpxq for all x P R. Noting that 1p0,8qpxtq “ 1p0,8qpxq for any t ą 0 and x P R, we
have that φptxq ě 1p0,8qpxq, and hence the following inequality holds:

inf
tą0

ErφptXqs ě Er1p0,8qpXqs .

We obsere that the constraint

inf
tą0

ErφptXqs ď α (3.7)

is a conservative approximation of (3.6) in the sense that the feasible set defined by (3.7)
is contained in the feasible set defined by (3.6).
Aiming to make the upper bound as tight as possible, we take a piecewise linear function
φpxq “ max t1` γx, 0u for some γ ą 0. Since (3.7) is invariant with respect to change of
φpγxq to φpxq, we have that φpxq :“ max t1` x, 0u gives the best choice of such a function.
For this choice of φ, we have that (3.7) is equivalent to

inf
tą0
ttErmaxtt´1 `X, 0us ´ αu ď 0 ,

or equivalently after replacing t with ´t´1

inf
tă0
tt` α´1 ErmaxtX ´ t, 0usu ď 0 . (3.8)

For X P L1pU,BpUq, µ,Rq we define the Average Value-at-Risk of X at level 1´ α by

AV@R1´αpXq :“ inf
tPR
tt` α´1 ErmaxtX ´ t, 0usu .

Observe that ψptq :“ t`α´1 ErmaxtX´t, 0us is a convex function, with derivative ψ1ptq “
1 ` α´1pFXptq ´ 1q if FXptq is continuous at t. In case FX is not continuous at t, the
right- and left-sided derivatives are given by the same formula with FXptq replaced by
the right- and left-sided limits, respectively. Thus ψ attains a minimum on the interval
rinftt : FXptq ě 1´ αu, suptt : FXptq ď 1´ αus. For any minimizer t˚ of ψ we have

AV@R1´αpXq “ t˚ ` α´1ErmaxtX ´ t˚, 0us , (3.9)

where the second summand is clearly nonnegative. Thus AV@R1´αpXq ď 0 implies t˚ ď 0,
and hence (3.8) is equivalent to AV@R1´αpXq ď 0, and provides a conservative approxi-
mation of (3.6). Note that (3.9) holds for t˚ “ V@R1´αpXq.
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3.2 Risk measures

Lemma 3.2.1. Let F pXq be convex and monotone, i.e., F pxq ě F pyq for x ě y, and let
Gpxq be convex. Then F pGpXqq is convex.

Proof. By convexity of G and monotonicity of F we have

F pGpλx` p1´ λqyqq ď F pλGpxq ` p1´ λqGpxqq ,

and thus by convexity of F

F pGpλx` p1´ λqyqq ď λF pGpxqq ` p1´ λqF pGpxqq .

Since AV@R1´αpXq is convex and monotone, the mapping z ÞÑ AV@R1´αpJpSpyqzqq
is convex provided z ÞÑ JpSpyqzq is convex, and hence AV@R1´αpXq ď 0 is a convex,
conservative approximation of the chance constraint (3.6).
Moreover, there is a relation between the Average Value-at-Risk and the weighted mean
deviations from quantiles.

Theorem 3.2.2. Let X P L1pU,BpUq, µ,Rq with cumulative distribution function FX .
Then it holds

AV@RαpXq “
1

1´ α

ż 1

α
V@Rτ pXq dτ “ ErXs `

1

1´ α
WαpXq .

Moreover, if FXpxq is continuous at x “ V@RαpXq, then

AV@RαpXq “
1

1´ α

ż 8

V@RαpXq
x dFXpxq “ ErX|X ě V@RαpXqs .

Proof. See [137, Theorem 6.2].

Thus we have For α “ 0 we get

AV@RαpXq “

ż 1

0
V@Rτ pXqdτ “

ż 1

0
F´1
X pτqdτ “

ż

R
x dFXpxq “ ErXs ,

and

lim
αÕ1

1

1´ α

ż 1

1´α
F´1
X pτq dτ “ ess suppXq .

Moreover, AV@RαpXq is continuous and monotonically increasing in α P r0, 1q. Thus we
have

ErXs ď AV@RαpXq ď ess suppXq .

and

V@RαpXq ď AV@RαpXq

for α P r0, 1q and X P L1pU,BpUq, µ,Rq.
Figure 3.1 illustrates the relationship between the V@RαpXq and the V@RαpXq for X „

Upr0, 1sq.
One can show, see, e.g., [133] that the Average Value-at-Risk has certain properties that
characterize the class of coherent risk measures.
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1

0.4

V@Rα(X) AV@Rα(X)E[X ]

0.5

0.7

1

x

Figure 3.1: Let X „ Upr0, 1sq be uniformly distributed in the unit interval and α “ 0.4.
Then we have V@RαpXq “ 0.4, ErXs “ 0.5, and AV@RαpXq “ 0.7. In general
the AV@RαpXq is the average of the (here red) area between the cumulative
distribution function y “ FXpxq (here blue) and y “ 1, to the right of the
V@RαpXq.

3.2.2 Coherent risk measures

A popular class of risk measures is the class of coherent risk measures, which is character-
ized by the following conditions (see [7]). A functional R : LppU,BpUq, µ,Rq Ñ RY t8u,
for p P r1,8q, is said to be a coherent measure of risk if the following conditions hold: For
X, X̃ P LppU,BpUq, µ,Rq it holds

(R1) (Convexity) RpλX ` p1´ λqX̃q ď λRpXq ` p1´ λqRpX̃q, for all λ P r0, 1s.

(R2) (Translation equivariance) RpX ` cq “ RpXq ` c, for all c P R.

(R3) (Monotonicity) If X ď X̃ µ-a.e., then RpXq ď RpX̃q.

(R4) (Positive homogeneity) RptXq “ tRpXq for all t ě 0.

If a risk measure R satisfies only conditions (R1) - (R3) it is called convex risk measure.

Note that the condition (R1) implies RpX1`X2
2 q ď

RpX1q`RpX2q

2 , and thus with (R4) it
follows that

RpX ` X̃q ď RpXq `RpX̃q , (3.10)

for X, X̃ P LppU,BpUq, µ,Rq. The property (3.10) is called subadditivity. Subadditivity
and positive homogeneity (R4) imply in turn the convexity (R1) of a risk measure R. Thus
the convexity condition (R1) can be replaced by 3.10 in the characterization of coherent
risk measures.
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3.2 Risk measures

Moreover, subadditivity has the interpretation that the risk of the sum of two quantities of
interest X and X̃ is less or equal to the sum of the risk of X1, X2. By adding uncertainty
X̃ to X the total risk increases at most by the risk of X̃, i.e., the effect of diversification on
risk is considered. The translation equivariance (R2) means that the addition of a risk-free
quantity c to the loss X, changes the risk of X exactly by c. For condition ((R3)) it is
assumed that X̃ is larger than X for any possible outcome, that is X̃ is always a higher
loss than X. The monotonicity of a risk measure ensures that in this case X̃ has a higher
risk than X. Positive homogeneity ensures that a loss X̃ “ tX for t ě 0 taking t times
the value of X has t times the risk of X.

Remark 3.2.3. In the case when the random objective function represents a reward that
is to be maximized instead of a loss that is to be minimized, large realizations are preferred,
and we can define a risk measure R̃pXq “ Rp´Xq, where R satisfies (R1) - (R4). In this
case R̃ satisfies (R1) and (R4) and

(R1’) (Translation equivariance) RpX ` cq “ RpXq ´ c, for all c P R.

(R2’) (Monotonicity) If X ď X̃ µ-a.e., then RpXq ď RpX̃q.

Hence all statements regarding risk measure satisfying (R1) - (R4) have their trivial coun-
terparts for risk measures satisfying (R1), (R1’), (R2’), (R4).

The axioms characterizing coherent risk measures guarantee a number of desirable prop-
erties to told:

Lemma 3.2.4 ([137, Proposition 6.5]). Let R : LppU,BpUq, µ,Rq Ñ R with p P r1,8s,
satisfy (R1) and (R3). Then R is continuous and subdifferentiable15 on LppU,BpUq, µ,Rq.

Lemma 3.2.5 ([137, Proposition 6.7]). Let R : LppU,BpUq, µ,Rq Ñ R Y t˘8u with
p P r1,8q be a proper risk measure satisfying (R1), (R2) and (R3), with dompRq having
nonempty interior.16 Then R is finite valued and continuous on LppU,BpUq, µ,Rq.

Besides the above continuity properties, the Fenchel–Moreau theorem, see, e.g., [137,
Theorem 7.82] allows the identification R “ R˚˚ of R with its biconjugate R˚˚, defined
by

R˚˚pXq “ sup
ξPLqpU,BpUq,µ,Rq

txξ,XyLqpU,BpUq,µ,Rq,LppU,BpUq,µ,Rq ´R˚pξqu

where the so-called conjugate R˚ of R is defined as

R˚pξq :“ sup
XPLppU,BpUq,µ,Rq

txξ,XyLqpU,BpUq,µ,Rq,LppU,BpUq,µ,Rq ´RpXqu

and 1
p `

1
q “ 1. Particularly we have for R proper, convex, and lower semicontinuous, that

it has the representation

RpXq “ sup
ξPdompR˚q

txξ,XyLqpU,BpUq,µ,Rq,LppU,BpUq,µ,Rq ´R˚pξqu .

15A vector x˚ is said to be the subgradient of a convex function f at a point x if fpyq ě fpxq` xx˚, y´xy
for all y P Rn. The set of all subgradients of f at x is called subdifferential of f at x and denoted by
Bfpxq. If Bfpxq is nonempty, f is called subdifferentiable at x.

16see also (D1).
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3 A general formulation of optimal control problems under uncertainty

Moreover, we have that the condition (R3) is equivalent to ξ ě 0 µ-a.e. for all ξ P
LqpU,BpUq, µ,Rq, and that (R2) is equivalent to Erξs “ 1 for all ξ P dompR˚q, and
that (R4) holds if and only if R can be represented for all X P LppU,BpUq, µ,Rq by
RpXq “ supξPdompR˚qxξ,XyLqpU,BpUq,µ,Rq,LppU,BpUq,µ,Rq, see [137, Theorem 6.5]. In the case
p “ 8 the space LppU,BpUq, µ,Rq is equipped with the weak˚-topology and paired with
L1pU,BpUq, µ,Rq. For an analogous dual representation one needs the additional assump-
tion that R is lower semicontinuous in the weak˚-topology. For this special case we refer
to [137, Chapter 6.3].

3.2.3 Entropic risk measure and entropic Value-at-Risk

For θ ą 0 the entropic risk measure is defined by

RpXq “ 1

θ
ln pE rexp pθXqqsq .

Observe that RpXq ă 8 can be ensured for X P LppU,BpUq, µ,Rq with p “ 8. It is
shown next, that R satisfies (R1) - (R3), and thus by Lemma 3.2.4 is continuous and
subdifferentiable on L8pU,BpUq, µ,Rq. Using Hölder’s inequality one gets

ErXY s ď pEr|X|rsq
1
r pEr|Y |ssq

1
s ,

for any 1 ď r, s ď 8 satisfying 1
r `

1
s “ 1. Setting X “ exp pp1´ λqθXq and Y “

exp pλθY q, r “ 1
1´λ , s “ 1

λ for any λ P r0, 1s, gives

Erexp pp1´ λqθX ` λθY qs ď pE rexp pθXqsq1´λ pE rexp pθY qsqλ .

Taking the ln and dividing by θ on both sides gives

1

θ
lnpErexppp1´ λqθX ` λθY qsq ď p1´ λq

1

θ
lnpE rexppθXqsq ` λ

1

θ
lnpE rexppθY qsq ,

and thus the convexity (R1) of R.
The entropic risk measures are translation equivariant (R2), since for c P R it holds that

RpX ` cq “ 1

θ
ln pE rexp pθpX ` cqqqsq “

1

θ
ln pE rexp pθXqqs exp pθcqqq “ RpXq ` c .

From the monotonicity of ln and exp it follows that the entropic risk measures R are
monotonic, i.e., satisfy (R3). Moreover, we have

ErXs ď
1

θ1
ln pE rexp pθ1Xqqsq ď

1

θ2
ln pE rexp pθ2Xqqsq ď ess suppXq , (3.11)

for 0 ď θ1 ď θ2. For nonconstant X P LppU,BpUq, µ,Rq and 0 ă θ1 ă θ2, (3.11) holds
with strict inequality, see, e.g., [50].
The entropic risk measures are not positively homogeneous, i.e., do not satisfy (R4). This
deficiency is overcome by the so-called entropic Value-at-Risk, at level α defined by

EV@RαpXq “ inf
θą0

1

θ
ln

ˆ

1

1´ α
E rexp pθXqqs

˙

,

for α P r0, 1q and EV@RαpXq “ ess suppXq for α “ 1.
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3.2 Risk measures

The EV@Rα satisfies (R1) - (R4) and is thus a coherent risk measure. Moreover it is an
upper bound on the AV@Rα, and it holds

V@RαpXq ď AV@RαpXq ď EV@Rα ď ess suppXq

and

ErXs ď AV@RαpXq ď EV@Rα ď ess suppXq .

Figure 3.2 illustrates the behaviour of V@RαpXq, AV@RαpXq, and EV@RαpXq for dif-
ferent values of α and X „ Upr0, 1sq being uniformly distributed in the unit interval, cf.,
[3].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
V@R
AV@R
EV@R

Figure 3.2: Comparison of V@RαpXq, AV@RαpXq, and EV@RαpXq for different values of
α and X „ Upr0, 1sq uniformly distributed in the unit interval.

We will later see in Section 4.6.3 that the entropic risk measures have certain regularity
properties, and hence they are well suited for the application of higher-order cubature
rules.

(R1) (R2) (R3) (R4)

ErXs Yes Yes Yes Yes

ErXs ` cErpX ´ ErXsqp`s
1
p Yes Yes If c P r0, 1s Yes

V@RαpXq No Yes Yes Yes
AV@RαpXq Yes Yes Yes Yes
EV@RαpXq Yes Yes Yes Yes
1
θ ln pErexp pθXqsq Yes Yes Yes No
ess suppXq Yes Yes Yes Yes

Table 3.1: For α P p0, 1q, θ ą 0, and c ě 0.
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3 A general formulation of optimal control problems under uncertainty

Remark 3.2.6. It is easy to see that all risk measures in Table 3.1, except the V@Rα and
the expected value, E, are risk-averse. Hence ErXs ą ´8 for all X P LppU,BpUq, µ,Rq,
and tX P LppU,BpUq, µ,Rq : ess suppXq ă 8u ‰ H are sufficient conditions ensuring
that all risk measures in Table 3.1 are proper, i.e., satisfy (D1). Furthermore, all risk
measures in Table 3.1 satisfy (D4). For risk measures satisfying (R1) and (R3) continuity
(and hence lower semicontinuity (D2)) follows from Lemma 3.2.4. We conclude that the
risk measures in Table 3.1 are regular ones, except for the expected value (not risk-averse)
and the V@Rα (not risk-averse, not convex).

A major focus of this work is the design and application of efficient numerical methods for
the approximation of high-dimensional integrals introduced by the risk measures to the
optimal control problems. These methods heavily rely on the parametric regularity of the
integrands. For this reason, we focus on smooth risk measures, that inherit the parametric
regularity, such as the expected value and the entropic risk measures. The expected value
is in addition a coherent measure of risk and the coherent entropic Value-at-Risk can
easily be recovered from the entropic risk measures in an optimization problem by the
additional minimization with respect to the risk-aversion parameter θ, see Section 4.2.5.
Approximations of other risk-measures typically rely on Monte Carlo methods, as for
instance in [157], where the authors consider a combination of the expected value and the
variance in conjunction with a multilevel Monte-Carlo method.

We note that recent work on smoothing by preintegration [61] might enable the appli-
cation of efficient methods, that exploit the parametric regularity of the integrands, to
nonsmooth risk measures. While smoothing of risk measures, such as the AV@Rα in [105],
has successfully been applied to PDE-constrained optimal control problems under uncer-
tainty, smoothing by preintegration of risk measures in optimal control problems under
uncertainty remains for future research.

3.3 Random variable objective function

The parameterized cost functional J : U ˆ X Ñ R associates a nonnegative cost to each
pair of y P U and upyq P X . Recall from (3.1), that for u : U Ñ X we refer to the
Nemytskii (superposition) operator

J puqpyq “ Jpupyq,yq , y P U

as the random variable objective function. The Nemytskii operator assigns a function
J puq : U Ñ R to the state up¨q : U Ñ X . Recalling that

u P LqpU,B, µ,X q and J P LppU,B, µ,Rq , (3.12)

we conclude that the Nemytskii operator maps from LqpU,B, µ,X q into LppU,B, µ,Rq.
In this section, we show that from the following assumptions on the objective function
various desirable properties of the objective function follow.

Assumption 3.3.1.

(i) The mapping J : U ˆ X Ñ R is Carathéodory, that is Jp¨,yq is continuous for
µ-a.e. y P U and Jpu, ¨q is measurable for all u P X .
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3.3 Random variable objective function

(ii) For 1 ď p, q ă 8 in (3.12), there is v P LppU,BpUq, µ,Rq with v ě 0 µ-a.e. and a
constant C ą 0 such that

|Jpu,yq| ď vpyq ` C}u}
q
p

X . (3.13)

For q “ 8 and 1 ď p ă 8 in (3.12), it holds that for all C ą 0 there exists
b “ bpCq P LppU,BpUq, µ,Rq such that

|Jpu,yq| ď bpyq µ-a.e. @u P X , }u}X ď C .

For q “ p “ 8 in (3.12), it holds that for all C ą 0 there is dpCq such that

|Jpu,yq| ď d for almost all y P U and for all u P X , }u}X ď C. (3.14)

(iii) For µ-a.e. y P U , Jp¨,yq is convex.

Common objective functions are so-called tracking-type objective functionals.

Example 3.3.2. Consider a tracking-type functional based on LqpU,BpUq, µ,X q for q “ 2
and let X ãÑ Y in a Hilbert space Y with pu P Y. Then there is a constant C ą 0 such that
for all u P X it holds that

0 ď Jpy, uq :“
1

2
}upyq ´ pu}2Y ď }upyq}

2
Y ` }pu}

2
Y ď }upyq}

2
X ` }pu}

2
Y . (3.15)

By setting vpyq “ }pu}2Y P L
8pU,BpUq, µ,Rq Ă LppU,BpUq, µ,Rq for p “ 1, the condition

(3.13) is satisfied. Moreover, for given y P U the mapping Jp¨,yq : X Ñ R is continuous
as the composition of continuous mappings. If upyq is Bochner integrable, }upyq}X is
Lebesgue-integrable, and hence it is in particular measurable. Thus Jpu, ¨q is measurable
for all u P X . For given y P U , it is easy to verify the convexity of Jp¨,yq. For given
y P U , the norm } ¨ ´pu}X : X Ñ R is convex, because of the absolute homogeneity and
the triangle inequality of the norm, see Section 2.1. Clearly the function x ÞÑ x2 is convex
and monotonically increasing for x ě 0, and hence by Lemma 3.2.1 Jp¨,yq is convex for
given y P U , which in turn implies Assumption 3.3.1 (iii).

Theorem 3.3.3 ([106, Theorem 3.5]). Let Assumption 3.3.1 (i) - (ii) hold. Then the
Nemytskii operator J : LqpU,BpUq, µ,X q Ñ LppU,BpUq, µ,Rq is continuous.

Corollary 3.3.4. Let R : LppU,BpUq, µ,Rq Ñ R with p P r1,8s satisfy (R1) and (R3),
and let Assumption 3.3.1 (i) - (ii). Then the composite functional R ˝ J is continu-
ous. If in addition Assumption 3.3.1 (iii) holds, then R ˝ J is convex and weakly lower
semicontinuous.

Proof. Continuity of R ˝ J follows from the preceeding theorem and Lemma 3.2.4. Con-
vexity of R ˝ J follows from Lemma 3.2.1. Thus the composite functional is convex and
continuous on a Banach space and hence it is weakly lower semicontinuous (see, e.g., [155,
Theorem 2.12]).

Theorem 3.3.5. Let the conditions of the preceeding corollary hold. In addition, let
R ˝ J : LqpU,BpUq, µ,X q Ñ LppU,BpUq, µ,Rq be coercive, as well as 1 ă q ă 8 and X
be a reflexive Banach space. Then there exists u˚pyq P LqpU,BpUq, µ,X q with

RpJ pu˚qpyqq “ inf
uPLqpU,BpUq,µ,X q

RpJ puqpyqq
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3 A general formulation of optimal control problems under uncertainty

Proof. The composite objective functional R ˝ J is weakly lower semicontinuous and
coercive on a reflexive Banach space. It is well-known (see, e.g., [9, Theorem 1.5.6]) that
there exists a minimizer u˚pyq P LqpU,BpUq, µ,X q of R ˝ J .

Example 3.3.6. Let R “ E and let J be a tracking-type functional, see (3.15). Then
there exists u˚ P LqpU,BpUq, µ,X q, with q “ 2, such that

E
„

1

2
}u˚pyq ´ pu}2Y



“ inf
uPLqpU,BpUq,µ,X q

E
„

1

2
}upyq ´ pu}2Y



.

We know that E is coherent and the tracking-type functional satisfies Assumption 3.3.1 (i)
- (ii). Thus R˝J is weakly lower semicontinuous. Moreover, the space X is reflexive since
it is a Hilbert space. Thus LqpU,BpUq, µ,X q is reflexive for 1 ă q ă 8, i.e., in particular
for q “ 2. Finally, it is easy to see, that RpJ q is coercive, i.e., }u}LqpU,BpUq,µ,X q Ñ 8

implies |RpJ puqq| Ñ 8.

Theorem 3.3.7 ([106, Theorem 3.9]). Let Assumption 3.3.1 (i) - (iii) hold. Then J
is Gâteaux directionally differentiable. If J is in addition locally Lipschitz17 continuous,
then J is Hadamard directionally differentiable.

Theorem 3.3.8 ([106, Theorem 3.11]). Suppose Jpy, ¨q is continuously Fréchet differ-
entiable with respect to u P X for µ-a.e. y P U , and there exists an α ą 0 and K P

LspU,BpUq, µ,Rq with

s “

#

pq{pq ´ p1` αqpq if q ą p1` αqp ,

8 if q “ p1` αqp

such that

|BuJpy, uq ´ BuJpy, vq| ď Kpyq}u´ v}αU

for µ-a.e. y P U , where BuJ denotes the partial derivative with respect to u.

Then J is Fréchet differentiable from LqpU,BpUq, µ,X q into LppU,BpUq, µ,Rq. More-
over, the derivative of J is

J 1puq “ BuJp¨, up¨qq for u P LqpU,BpUq, µ,X q .

In this section we discuss which of the discussed risk measures are Fréchet differentiable.
In this regard, an important result is the following.

Theorem 3.3.9 ([107, Theorem 7]). Let X be a real Banach space and F : X Ñ R be
proper, convex, closed and positively homogeneous satisfying F p0q ă 8. Then the following
statements are equivalent:

(i) F is Gâteaux differentiable at zero.

(ii) F is Gâteaux differentiable everywhere on X .

17Let pX, dxq and pY, dyq be two metric spaces. A function f : X Ñ Y is called Lipschitz (continuous)
if there exists a real constant L ě 0 such that dY pfpx1q, fpx2qq ď LdXpx1, x2q for all x1, x2 P X. A
function f is locally Lipschitz (continuous) if for every x P X there exists a neighborhood U of x such
that f restricted to U is Lipschitz.
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3.3 Random variable objective function

(iii) F is a bounded linear functional on X .

From this theorem we directly obtain the following result.

Theorem 3.3.10 ([107, Theorem 1]). Let pU,BpUq, µq be a probability space and let
LppU,BpUq, µ,Rq with p P r1,8q. If R : LppU,BpUq, µ,Rq Ñ R is a coherent risk mea-
sure, then R is Fréchet differentiable if and only if there exists ϑ P LppU,B, µ,Rq1 with
ϑ ě 0 µ-a.e., Erϑs “ 1, and RpXq “ ErϑXs for all X P LppU,B, µ,Rq.

Thus the only Fréchet differentiable coherent risk measures are linear functionals. This
includes the expected value.

Theorem 3.3.11 ([56, Lemma C3]). Let Y be an open subset of a Banach space X and
let J : U ˆ X Ñ R be a parameterized random variable functional with expected value
j : X Ñ R, given by

jpuq “

ż

U
Jpy, uq dµ .

Suppose that Jpy, uq P L1pU,BpUq, µ,Yq, and for a.e. y P U let Jpy, ¨q be Fréchet dif-
ferentiable at u, with derivative BuJpy, uq. Moreover, let Cp¨q P L1pU,BpUq, µ,Rq such
that for all v P Y and almost every y P U it holds that }BuJpy, uq}X 1 ď Cpyq . Then j is
Fréchet differentiable at u and

j1puq “ ErBuJpy, uqs .

Example 3.3.12. The tracking-type objective functional considered in (3.15) is Fréchet
differentiable at u for every y P U , with Fréchet derivative

BuJpy, uqh :“ xupyq ´ pu, hyY .

This is true since

1

2
}upyq ` h´ pu}2Y “

1

2
}upyq ´ pu}2Y ` xupyq ´ pu, hyY `

1

2
}h}2Y

and thus

Jpy, u` hq ´ Jpy, uq ´ J 1py, uqh “
1

2
}h}2Y “: rph, uq

satisfies

rph, uq

}h}Y
“

1
2}h}

2
Y

}h}Y
“

1

2
}h}Y Ñ 0 as }h}Y Ñ 0 .

Theorem 3.3.13. Let Jpy, uq be the tracking-type objective functional considered in (3.15)
and let RpJp¨, uqq “ 1

θ ln pErexp pθJp¨, uqsq be the entropic risk measure for some θ P p0,8q.
Furthermore, assume exp pθJp¨, uqq P L1pU,BpUq, µ,Yq and exp pθJpy, uqqBuJpy, uq ď
Cpyq for some C P L1pU,BpUq, µ,Yq, where for a.e. y P U , BuJpy, uq denotes the Fréchet
derivative of Jpy, uq at u. Then the Fréchet derivative at u of the composite functional
RpJp¨, uqq is given by

BuRpJp¨, uqq “
1

E rexp pθ Jp¨, uqqs
Erexppθ Jp¨, uqqBuJp¨, uqs . (3.16)
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3 A general formulation of optimal control problems under uncertainty

Proof. The application of the chain rule gives

BuRpJp¨, uqq “
1

E rexp pθ Jp¨, uqqs
Bu
`

Erexppθ Jp¨, uqqs
˘

.

From Example 3.3.12 and the chain rule we obtain the Fréchet derivative of the integrand
Bu exppθ Jpy, uqq “ exppθ Jpy, uqqBuJpy, uq for a.e. y P U . Moreover, by assumption we
have Erexppθ Jp¨, uqqs P L1pU,BpUq, µ,Yq and exp pθJpy, uqqBuJpy, uq ď Cpyq for some
C P L1pU,BpUq, µ,Yq. Thus, from Theorem 3.3.11 we conclude that

Bu
`

Erexppθ Jp¨, uqqs
˘

“ Erexppθ Jp¨, uqqBuJp¨, uqs ,

as required.

3.4 Existence and uniqueness of solutions

In this section we will discuss conditions that guarantee existence and uniqueness of solu-
tions of the problem (3.2) - (3.3).
Let Z,X and Y be reflexive Banach spaces and j : LqpX q ˆ Z Ñ R, with jpu, zq :“
RpJ puqpyqq ` αRpzq and M : U ˆ X ˆ Z be continuous for almost all y P U .

Assumption 3.4.1.

(i) Zad Ă Z is convex and closed.

(ii) Xad Ă LqpX q is convex and closed, such that the feasible set is nonempty.

Fad :“ tpu, zq P Zad ˆ Xad : Mp¨, up¨q, zq “ 0 P LqpY 1qu ‰ H .

(iii) The model equation Mp¨, up¨q, zq “ 0 P LqpY 1q has a bounded solution operator Zad Q
z ÞÑ u P LqpX q.

(iv) LqpX q ˆ Z Q pu, zq ÞÑMp¨, up¨q, zq P LqpY 1q is continuous under weak convergence.

(v) Assume that jpu, zq :“ RpJ puqq ` αRpzq is weakly sequentially18 lower semicontin-
uous, i.e., puk, zkq á pu, zq implies jpu, zq ď lim infkÑ8 jpuk, zkq.

Remark 3.4.2. In view of Corollary 3.3.4, Assumption 3.4.1 (v) is true if Assump-
tion 3.3.1 holds for J , if R satisfies (R1) and (R3), and if Rpzq is weakly (sequentially)
lower semicontinuous. This follows from the superadditivity of the limit inferior:

pf ` gqpu, zq ď lim inf
kÑ8

fpuk, zkq ` lim inf
kÑ8

gpuk, zkq ď lim inf
kÑ8

pf ` gqpuk, zkq ,

for puk, zkq á pu, zq and weakly (sequentially) lower semicontinuous functionals f, g.

Theorem 3.4.3. Let Assumption 3.4.1 hold and let Zad be bounded or j be coercive. Then
(3.2) – (3.3) has a solution.
18On a metric space X, (weak) sequential lower semicontinuity at x P X, defined by fpxq ď

lim infkÑ8 fpxkq for xk Ñ x (weakly, i.e., xk á x), is equivalent to (weak) lower semicontinuity,
defined by tx P X : fpxq ď cu being closed (in the weak topology) for all c P R. For convex functions, a
well-known consequence of the Hahn–Banach theorem (see, e.g., [135, Theorem 3.2]) is that, the lower
semicontinuity with respect to the strong topology of X is equivalent to the weak (or weak sequential)
lower semicontinuity.
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3.5 Reduced formulation of the optimization problem

Proof. Let puk, zkq Ă Fad be a minimizing sequence, i.e.,

lim
kÑ8

jpuk, zkq “ j˚ :“ inf
pu,zqPFad

jpu, zq ě ´8 ,

where j is defined in Assumption 3.4.1 (v). The minimizing sequence (of controls) is
bounded, since either Zad or jpu, zq is coercive. The boundedness of the control-to-state
mapping (see, (iii)) ensures the boundedness of the state sequence. From the reflexivity of
ZˆLqpX q we conclude that there is a weakly convergent subsequence puki , zkiq Ă puk, zkq
and pu˚, z˚q with puki , zkiq á pu˚, z˚q as i Ñ 8.19 By Assumption 3.4.1 (i) and (ii), the
sets Zad and Xad are weakly sequentially20 closed as they are convex and closed sets in
Banach spaces, see, e.g., [5, Theorem 3.7]. This implies together with the continuity under
weak convergence of the model, Assumption 3.4.1 (iv), that the feasible set Fad is weakly
sequentially closed and thus pu˚, z˚q P Fad. By Assumption 3.4.1 (v) we obtain

j˚ “ lim
iÑ8

jpuki , zkiq ě jpu˚, z˚q ě j˚ ,

where the last inequality follows from the feasibility of pu˚, z˚q. In particular, we have
j˚ ą ´8.

Theorem 3.4.4. Let the assumptions of the preceeding theorem hold. The solution is
unique if α ą 0 and Rpzq is strictly convex and if the state-to-control mapping A : u ÞÑ z
is injective or RpJ puqq is strictly convex.

Proof. We know that RpJ puqq is convex in u and Rpzq is strictly convex in z. Assume
there are two minimizers pu1, z1q and pu2, z2q, i.e., jpu1, z1q “ jpu2, z2q ď jpu, zq @pu, zq P
Xad ˆ Zad, where j is defined in Assumption 3.4.1 (v). Let pũ, z̃q :“ pu1`u2

2 , z1`z22 q and
RpJ puqq be strictly convex, then

jpũ, z̃q “ RpJ pũqq ` αRpz̃q ă 1

2
pRpJ pu1qq ` αRpz1qq `

1

2
pRpJ pu2qq ` αRpz2qq

“
1

2
jpu1, z1q `

1

2
jpu2, z2q

“ jpu1, z1q ,

which contradicts the assumption of two minimizers. If RpJ puqq is only convex and
z1 ‰ z2, then the above inequality remains true. If z1 “ z2 the injectivity of A implies
u1 “ u2 and thus gives uniqueness.

3.5 Reduced formulation of the optimization problem

Assume that our mathematical modelM is well-posed. That is, there exists a unique solu-
tion u P LqpX q such that for z P Z the constraint holds with equality, i.e.,Mp¨, up¨q, zq “ 0
in LqpY 1q. We call the operator Spzq : U Ñ LqpX q defined by upyq “ Spzqpyq for each
z P Z, the solution operator of the model M. The formulation of the so-called reduced

19Every bounded sequence in a reflexive Banach space has a weakly convergent subsequence, see, e.g., [89,
Theorem 1.17]

20Weakly sequentially closed and weakly closed in the sense of weak topology are equivalent in reflexive
Banach spaces
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3 A general formulation of optimal control problems under uncertainty

problem is based on the substitution of the state u P LqpX q by the solution operator for
given control Spzq. For α ą 0, the reduced optimization problem is of the general form

min
zPZad

RpJ pSzqq ` αRpzq . (3.17)

In order to ensure well-posedness we make the following assumptions.

Assumption 3.5.1.

(i) The mapping Spzq : U Ñ X is strongly µ-measurable for all z P Zad.

(ii) There exists a nonnegative increasing function ρ : r0,8q Ñ r0,8q, and a nonnegative
random variable C P LppU,BpUq, µ,X q with p P r1,8s satisfying

}Spzq}X ď Cρp}z}Zq µ-a.s. ,

for all z P Zad.

(iii) Weak convergence of control sequences zj á z P Zad implies weak convergence of the
soutions Spzjq á Spzq in X µ-a.s.

(iv) There exists an open set E Ă Z with Zad Ă E such that the solution map z ÞÑ Spzq :
E Ñ LqpU,BpUq, µ,X q is continuously Fréchet differentiable.

By Assumption 3.5.1 (i) – (ii) it holds that Spzq P LqpX q is bounded for z P Zad. If in
addition, Assumption 3.5.1 (iii) holds, we have weak convergence Spznq á Spzq in LqpX q.

Theorem 3.5.2 ([106, Proposition 3.8]). Let Assumption 3.5.1 (i) – (iii) and Assump-
tion 3.3.1 hold. If R is proper, closed, monotonic, convex, and subdifferentiable at J pSpzqq
for some z P Zad, then the composite functional pR ˝ J ˝ Sq : Zad Ñ R is weakly lower
semicontinuous at z.

Assumption 3.5.3.

(i) Zad Ă Z is convex and closed.

(ii) Let the feasible set

rFad :“ tz P Zad : Mp¨, Spzqp¨q, zq “ 0 P LqpY 1q , Spzq P Xadu ‰ H

be nonempty.

(iii) Z Q z ÞÑMp¨, Spzqp¨q, zq P LqpY 1q is continuous under weak convergence.

Theorem 3.5.4 ([106, Proposition 3.12]). Let Assumption 3.5.3, Assumption 3.5.1 (i)
– (iii) and Assumption 3.3.1 hold. Let R :  LppX q Ñ R be a proper, closed, convex, and
monotonic risk measure, taking values in R and let R : Z Ñ R be proper, closed, and
convex. Suppose that Zad is bounded or RpJ pSzqq `αRpZq is coercive, then (3.17) has a
solution.

Proof. Since R takes values in R and fulfills the axioms (R1) and (R3), it is continuous
and subdifferentiable by Lemma 3.2.4. In particular, R is subdifferentiable at J pSpzqq for
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3.6 Optimality conditions

any z P Zad. By Theorem 3.5.2, the composite functional pR ˝J ˝Sq : Zad Ñ R is weakly
(sequentially) lower semicontinuous. Let zk Ă rFad be a minimizing sequence with

lim
kÑ8

RpJ pSpzkqqq ` αRpzkq “ j˚ :“ inf
zP rFad

RpJ pSpzqqq ` αRpzq .

The minimizing sequence is bounded, since either Zad is bounded or RpJ pSzqq ` αRpZq
is coercive. From the reflexivity of Z we conclude that there is a weakly convergent
subsequence zki Ă zk and z˚ with zki á z˚ as i Ñ 8. By Assumption 3.5.3 the feasible

set rFad is weakly sequentially closed and thus z˚ P rFad. Since RpJ pSpzqqq ` αRpzq is
weakly sequentially lower continuous, we obtain

j˚ “ lim
iÑ8
RpJ pSpzkiqqq ` αRpzkiq ě RpJ pSpz˚qqq ` αRpz˚q ě j˚ ,

where the last inequality follows from the feasibility of z˚. In particular j˚ ą ´8.

Remark 3.5.5. Let z˚ be a minimizer of the reduced problem (3.17), then pSpz˚q, z˚q is
a solution of (3.2) – (3.3). Thus, solving the reduced problem is equivalent to solving (3.2)
– (3.3). In the following discussions we will hence only consider the reduced problem.

3.6 Optimality conditions

Recall that the objective functional in our optimization problem (3.17) has the form pR ˝
J ˝ Sq : Zad Ñ R. In order to apply the chain rule, the outer functional R must be at
least Hadamard directionally differentiable, whereas the inner mapping pJ ˝ Sq must be
at least Gâteaux directionally differentiable. Therefore, under Assumption 3.5.1 (iv) and
Assumption 3.3.1, the composite functional will be Gâteaux directionally differentiable
provided J is locally Lipschitz.

Theorem 3.6.1 ([106, Proposition 3.13]). Let Zad Ă Z be a nonempty and convex subset
of a Banach space and z˚ P Zad be a solution of (3.17). Let R be Hadamard directionally
differentiable at J pSpz˚qq and J be Gâteaux directionally differentiable at Spz˚q and locally
Lipschitz. Moreover let Assumption 3.5.1 (iv) and Assumption 3.3.1 hold, and let Rpzq be
Gâteaux directionally differentiable. Then the following optimality condition holds:

sup
ξPBRpJ pSpz˚qqq

Erxξ,J 1pSpz˚q;Spz˚q1δzys ` αR1pz˚; δzq ě 0 @δz P TZad
pz˚q ,

where TZad
pz˚q denotes the tangent cone of Zad at z˚, defined by

TZad
pz˚q :“ td P Z : Dτk Œ 0 , Ddk Ñ d in Z : z˚ ` τkdk P Zad @ku .

If composite functional is Gâteaux differentiable, then the variational inequality holds.

Theorem 3.6.2 ([89, Theorem 1.46]). Let Z be a Banach space and Zad be nonempty
and convex. Moreover, let J : rZ Ñ R be defined on an open neighborhood of Zad. Let z˚

be a local solution of

min
zPZ

Jpzq s.t. z P Zad ,

and let J be Gâteaux differentiable at z˚. Then it holds for z˚ P Zad

xJ 1pz˚q, z ´ z˚yZ 1,Z ě 0 @z P Zad .

Furthermore, if in addition
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3 A general formulation of optimal control problems under uncertainty

• J is convex on Zad, then this condition is necessary and sufficient for global opti-
mality.

• J is strictly convex on Zad, then there is at most one solution z˚.

• Z is reflexive, Zad is closed and convex and J is convex and continuous with
limzPZad,}z}ZÑ8 Jpzq “ 8, then there exists a (global) solution.

• Z is a Hilbert space, Zad is closed and convex, then denoting the orthogonal projection
P onto Zad

21 the following conditions are equivalent for z˚, y P Zad and γ ą 0

xy, z ´ z˚yZ ě 0 @z P Zad

z˚ ´ P pz˚ ´ γyq “ 0 .

3.7 Parametric linear forward operators

In this section we consider linear model constraints, i.e., constraints of the form

Mp¨, up¨q, zq “ Ap¨qup¨q ´ Bz “ 0 in LqµpY 1q , (3.18)

for bounded and linear operators A : LqµpX q Ñ LqµpY 1q and B : Z Ñ Y 1. Note that we
assume that z is constant in y, i.e., y ÞÑ zpyq “ z for all y P U . Oftentimes the solution
operator of the model equation is more regular with respect to the parameters y P U , e.g.,
it is continuous. To this end, let U be a nonempty topological space and let the parametric
linear operator from X to Y 1 with parameter domain U be a continuous map

A : U Ñ LpX ,Y 1q , y ÞÑ Apyq .

In this case one can impose the model constraint pointwise for all y P U :

xApyqupyq, vyY 1,Y “ xBz, vyY 1,Y @v P Y ,@y P U . (3.19)

or equivalently

Mpy, upyq, zq “ Apyqupyq ´ Bz “ 0 @y P U ,

Theorem 3.7.1 ([64, Theorem 1.1.1 and Lemma 1.1.3]). Let Apyq be bijective for all
y P U . Then (3.19) has a unique solution u : U Ñ X . The solution y ÞÑ upyq is
continuous if y ÞÑ zpyq is continuous. Moreover, if U is a compact Hausdorff space, then
there exists amin, amax ą 0 such that

}Apyq}LpX ,Y 1q ď amax and }Apyq´1}LpY 1,X q ď 1{amin @y P U .

One can show that under the measure µ the parametric model constraint (3.19) is equiva-
lent to the weak parameter form of the model constraint (3.18). This is discussed in more
detail in the following subsection.

21see Chapter 2
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3.7 Parametric linear forward operators

3.7.1 Equivalence between parametric and weak parameter formulation

We will extend the parametric linear operators to operators between Lebesgue spaces of
vector-valued functions. To this end, not that the operators

A : CpU,X q Ñ CpU,Y 1q, v ÞÑ ry ÞÑ Apyqvs (3.20)

A´1 : CpU,Y 1q Ñ CpU,X q, w ÞÑ ry ÞÑ pApyqq´1ws

are well-defined, inverse to eachother with norms }A} ď amax and }A´1} ď 1{amin. This
result can be extended to Lebesgue spaces of vector-valued functions. To this end, let
BpUq be the Borel σ-algebra on U , and let µ be a finite measure on pU,BpUqq.

Theorem 3.7.2 ([64, Corollary 1.1.6]). For all 1 ď q ă 8, the operator A in (3.20)
extends uniquely to a boundedly invertible operator on the Lebesgue–Bochner spaces

A : LqµpU,X q Ñ LqµpU,Y 1q . (3.21)

The norms of A and A´1 are bounded by amax and 1{amin, respectively.

The applications of the operators A on LqpU,X q and A´1 on LqpU,Yq is equal to pointwise
application of Apyq on X and Apyq´1 on Y 1 up to µ-equivalence. As a corollary to this
result we get:

Corollary 3.7.3 ([64, Corollary 1.1.8]). Let X and Y be separable Banach spaces, 1 ď
r ă 8, and let q be the Hölder conjugate of r. If Bz P LqµpU,Y 1q, then there is a unique
ũ P LqµpU,X q such that

ż

U
xApyqũpyq, wpyqyY 1,Y dµpyq “

ż

U
xBz, wpyqyY 1,Y dµpyq , @wpyq P LrµpU,Yq . (3.22)

Moreover, the solution uy of (3.19) is a version of ũy, i.e., }u´ ũ}LqµpU,X q “ 0, or equiv-
alently u “ ũ µ-a.e. in X .

This result shows the equivalence between (3.18) and (3.19).
Since the measure µ cannot distinguish between the states obtained for both formulations
of the constraint, in many cases the deterministic solution of the optimal control problem
under uncertainty is equal for both formulations. We illustrate this using a linear quadratic
optimal control problem.

3.7.2 Linear quadratic optimal control

We are interested in solving an optimal control problem in the presence of uncertainty by
minimizing the averaged least square difference of the state u and a desired target state pu.
The state u is the solution of a linear operator equation, steered by a control function, and
depends on a parameter vector. The parameter vector is in principle infinite-dimensional,
and in practice might need a large finite number of terms for accurate approximation.
Our goal of computation is the following optimal control problem

min
zPZad,uPXad

Jpu, zq , Jpu, zq :“
1

2

ż

U
}Qu´ pu}2J dµpyq `

α

2
}z}2Z , (3.23)

subject to the linear operator equation in LqµpU,Y 1q

Au “ Bz , (3.24)
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3 A general formulation of optimal control problems under uncertainty

for 1 ď q ă 8, a Hilbert space Z with Zad Ă Z, Xad Ă LqµpU,X q, and a Hilbert space J,
pu P J, Q P LpX , Jq, B P LpZ,Y 1q. In particular, the operators B and Q are not dependent
on y and thus can be uniformly bounded for all y, i.e., }B}LpZ,Y 1q ď C1 and }Q}LpX ,Jq ď C2

for some C1, C2 ą 0 and all y P U . This implies in particular, that Bz P LpµpU,Y 1q for all
p and all deterministic controls z P Z and Qu P LpµpU, Jq for all u P LpµpU,X q.

Theorem 3.7.4. Let α ě 0, Zad Ă Z convex, closed and in the case α “ 0 bounded. Let
Xad Ă LqµpU,X q with q “ 2 be convex and closed, such that (3.24) has a feasible point.
Then problem (3.23) – (3.24) has a solution pz˚, u˚q. If α ą 0 then the solution is unique.

Proof. Observe that the objective function can be written as Jpu, zq “ 1
2}Qu´ pu}2L2pU,Jq`

α
2 }z}

2
Z , and L2pU, Jq is a Hilbert space. Since A has a bounded inverse, the result follows

from [89, Theorem 1.43].

Substituting u “ A´1Bz into J gives Ĵpzq :“ JpA´1Bz, zq and leads to the equivalent
formulation of problem (3.23) – (3.24)

min
zPẐad

Ĵpzq , Ĵpzq :“
1

2

ż

U
}QA´1Bz ´ pu}2J dµpyq `

α

2
}z}2Z , (3.25)

where Ẑad :“ tz P Z : z P Zad,A´1Bz P Xadu.

Remark 3.7.5. From Corollary 3.7.3 we know that the solutions of (3.19) and the solution
of (3.24) are µ-almost everywhere identical. In consequence, the problem (3.23) subject
to (3.24) is equivalent to (3.23) subject to (3.19) in the sense that they have the same
solution.
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4 Examples of optimal control problems

In this chapter we present three optimal control problems that fit into the framework of
the previous chapter. The first example is an optimal control problem with an elliptic
PDE constraint, with quadratic tracking-type objective functional, and with expected
value as a risk measure. This example is based on [76]. The second example is an optimal
control problem that is subject to a parabolic PDE constraint. The objective function
is a tracking-type functional composed with the expected value or the more conservative
entropic risk measure. This example is based on [77]. In both problems, we employ
additional constraints on the control. The objective function of the third problem is again
a tracking-type functional composed with the expected value or the entropic risk measure,
and the constraint is an abstract parametric linear operator equation.

The novelty of this chapter lies in the generalization of the results we derived for elliptic and
parabolic problems in [76], [77] to abstract analytic parametric linear operator equations.

Optimal control problems subject to parametric linear operator equations have been con-
sidered in [111] in conjunction with the expected value as a risk measure and without
additional constraints on the control. Hence, the problem in [111] can be formulated as
a saddle-point problem and be solved efficiently. Additional control constraints lead to
a projection operator in the optimality conditions. Due to the projection, the resulting
system of equations is no longer linear and hence the results obtained in [111] do not apply
directly. Neither cover the results therein nonlinear risk measures, such as the entropic
risk measure, which is considered in this chapter.

We restrict the analysis in this chapter to these two risk measures, since they are smooth
and inherit the parametric regularity of the integrands, as we will see. Moreover, the
expected value is a coherent measure of risk and the coherent entropic Value-at-Risk can
be recovered from the entropic risk measure by the additional minimization with respect
to the risk aversion parameters.

We emphasize that the theory about the existence and uniqueness of solutions devel-
oped in the previous chapter applies to all three example problems, and the elliptic and
parabolic problems are special cases of the problem with abstract linear operator equa-
tion constraints. However, for better illustration, we provide the complete analysis for all
examples.

4.1 Elliptic PDE constraint

Let D Ă Rd, d P t1, 2, 3u denote a bounded domain with Lipschitz boundary BD and let
U “ r´1

2 ,
1
2 s

N denote a space of parameters. Let α ě 0 and Zad Ă Z “ L2pDq be closed,
convex and in the case α “ 0 bounded. Let pu P L2pDq and consider the optimal control
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4 Examples of optimal control problems

problem

min
zPL2pDq,uPL2

µpU,V q
Jpu, zq , Jpu, zq :“

1

2

ż

U
}up¨,yq ´ pu}2L2pDq dµpyyyq `

α

2
}z}2L2pDq , (4.1)

subject to

´∇ ¨ papx,yq∇upx,yqq “ zpxxxq xxx P D, yyy P U, (4.2)

upx,yq “ 0 xxx P BD, yyy P U, (4.3)

zminpxq ď zpxq ď zmaxpxq a.e. in D. (4.4)

To ensure wellposedness of (4.1)-(4.3) we make the following assumtions:

(AE1) Let zmin, zmax P L
2pDq with zmin ď zmax a.e. in D. Then the feasible set of controls

Zad :“ tz P L2pDq : zmin ď z ď zmax a.e. in Du

(AE2) The sequence of parameters yyy “ pyjqjě1 is independently and identically dis-
tributed (i.i.d.) uniformly in r´1

2 ,
1
2 s for each j P N, i.e., yyy is distributed on U

with probability measure µ, where µpdyyyq “
Â

jě1 dyj “ dyyy.

(AE3) The input uncertainty is described by the diffusion coefficient apx,yq in (4.2),
which is assumed to depend linearly on the parameters yj , i.e.

apx,yq :“ a0pxq `
ÿ

jě1

yjψjpxq , x P D , y P U . (4.5)

(AE4) Let a0p¨q P L
8pDq, ψjp¨q P L

8pDq for all j ě 1, and p}ψj}L8qjě1 P `
1pNq.

(AE5) The uniform ellipticity assumption holds, i.e.

0 ă amin ď apx,yq ď amax ă 8 , xxx P D , yyy P U ,

for some positive real numbers amin and amax.

4.1.1 Weak formulation

We define V :“ H1
0 pDq and its (topological) dual space V 1 :“ H´1pDq, and identify L2pDq

with its own dual. Let x¨, ¨yV 1,V denote the duality pairing between V 1 and V . The norm
and inner product in V are defined as usual by

}v}V :“ }∇v}L2pDq, xv1, v2yV :“ x∇v1,∇v2yL2pDq.

We introduce the continuous embedding operators E1 : L2pDq Ñ V 1 and E2 : V Ñ L2pDq,
with the embedding constants c1, c2 ą 0 for the norms

}E1v}V 1 ď c1}v}L2pDq (4.6)

}E2v}L2pDq ď c2}v}V . (4.7)

Based on this function space setting, the PDE (4.2) and (4.3) can be stated in the para-
metric variational form: For fixed yyy P U and given E1z P V

1, find upyq P V such that
ż

D
apx,yq∇upx,yq ¨∇vpxxxqdxxx “ xE1z, vyV 1,V @v P V . (4.8)
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4.1 Elliptic PDE constraint

Note that by the identification of L2pDq with its dual pL2pDqq1, we have xE1z, vyV 1,V “
ş

D z E2v dxxx. Moreover, by (AE5), the parametric bilinear form, defined as

bpy, w, vq :“

ż

D
apx,yq∇wpx,yq ¨∇vpxxxq dxxx, @w, v P V, (4.9)

is continuous and coercive on V ˆ V , i.e.,

bpy, v, vq ě amin}v}V , and bpy, u, wq ď amax}w}V }v}V ,

for all y P U and all w, v P V . Hence, by the Lax–Milgram lemma (see, e.g., [47, Theorem 1
in Chapter 6]) the parametric variational problem (4.8) admits a unique solution upyq P V
for each z P V 1 and fixed y P U , which satisfies the a-priori bound

}upyq}H1
0 pDq

ď
}E1z}H´1pDq

amin
ď
c1}z}H´1pDq

amin
. (4.10)

In particular, the operator Apyq P LpV, V 1q that can be associated with the bilinear form
in (4.8), i.e.

xApyqw, vyV 1,V “ bpy, w, vq, @w, v P V, (4.11)

satisfies }Apyq}LpV,V 1q ď amax and }Apyq´1}LpV 1,V q ď 1{amin.

4.1.2 Reduced problem

We reformulate the optimal control problem (4.1), (4.2), (4.3), and (4.4) into the reduced
formulation, i.e., a problem that only depends on the control.
In view of (4.6), (4.7) and (4.11) we can interpret the solution operator Sy of (4.8) as a
linear continuous operator in L2pDq

Sy “ E2Apyq
´1E1 (4.12)

The operator Sy : L2pDq Ñ L2pDq is the unique mapping, which for every y P U assigns
to each f P L2pDq the unique solution g P L2pDq of the weak problem: find g P V such
that

bpy, g, vq “ xf, vy @v P V.

Clearly the solution operator depends on the parameter y P U as indicated by the sub-
script. Moreover, it is a self-adjoint operator, i.e.,

Sy “ S˚y, (4.13)

where S˚y is the adjoint operator of Sy defined by xS˚yg, fy “ xg, Syfy @f, g P L
2pDq. This

is easily verified as for all f, g P L2pDq we have xS˚yg, fy “ xg, Syfy “ bpyyy;Syyyg, Syyyfq “
xSyg, fy. Thus, in the following we will omit the superscript ˚ in the notation for the
adjoint operator S˚y.
By (4.12) and (4.8) it clearly holds that up¨,yq “ Syz for every y P U . Therefore, for each
y P U we can write the state u as a function of the control z P Z:

up¨,y, zq :“ Syz. (4.14)

We call up¨,y, zq the state corresponding to the control z P L2pDq. The optimal control
problem (4.1), (4.2), (4.3), and (4.4) then becomes a quadratic problem in the Hilbert
space L2pDq: find

min
zPZ

Jpzq , Jpzq :“
1

2

ż

U
}Syz ´ pu}2L2pDq dyyy `

α

2
}z}2L2pDq . (4.15)
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4.1.3 Derivatives and adjoint problem

We observe that }Syz ´ pu}2L2pDq ď
c1c2
amin

}z}L2pDq ` }pu}L2pDq is integrable. Furthermore, for

each y P U , using (4.13), the Riesz representation of the Fréchet derivative of F pzq :“
}Syz ´ pu}2L2pDq is given by ∇F pzq “ SypSyz ´ puq, which is bounded from above by
c1c2
amin

p c1c2amin
}z}L2pDq ` }pu}L2pDqq. The same upper bound holds for the Fréchet derivative

since the Riesz operator is an isometry. From Theorem 3.3.11 we conclude that the Riesz
representation of the Fréchet derivative of Jpzq is given by

∇Jpzq “
ż

U
SypSyz ´ puq dy ` αz. (4.16)

We use the symbol∇J to emphasize that (4.16) is the Riesz representation (see Section 2.1)
of the Fréchet derivative J 1 of J . Note that in general the Fréchet derivative J 1 at z P Z
of a functional J : Z Ñ R is an element of the dual space Z 1, i.e., J 1pzq P LpZ,Rq. We
also call ∇Jpzq the gradient of J at z.
Recalling that Sy is the solution operator of a PDE, and defining fadjoint :“ Syz ´ pu, it
is easy to see that (4.16) can be computed by solving a second PDE, namely the adjoint
PDE Syfadjoint. The solution qpyq of the adjoint PDE is called the adjoint state. Clearly,
for each y P U we can write the adjoint state as a function of the control z P Z:

qp¨,y, zq :“ SypSyz ´ puq, (4.17)

which we call the adjoint state corresponding to the control z P L2pDq. Using the adjoint
state, the Fréchet derivative (4.16) can be written as

∇Jpzq “
ż

U
qp¨,y, zq dy ` αz.

4.1.4 Optimality conditions

Existence of an optimal control z˚ P Zad follows from Theorem 3.7.4. If in addition the
regularization parameter α ą 0, then the optimal control z˚ is the unique minimizer.
Since Fréchet differentiability implies Gâteaux differentiability, we obtain the following
optimality conditions from Theorem 3.6.2: a control z˚ P Zad is the unique solution of
(4.1), (4.2), (4.3), and (4.4) if and only if

up¨,y, z˚q “ Syz
˚

qpy, ¨, z˚q “ Sypup¨,y, z
˚q ´ puq

*

@y P U,

B
ż

U
qp¨,y, z˚qdy ` αz˚, z ´ z˚

F

L2pDq

ě 0 @z P Zad,

where the first two equations are the state PDE and adjoint PDE, respectively, and the last
condition is called variational inequality, which is equivalent to the following conditions:

• for arbitrary γ ą 0, and PZad
“ min pmax pzmin, z

˚q, zmaxq it holds for z˚ P Zad that

z˚ ´ PZad
pz˚ ´ γ∇Jpz˚qq “ 0,

• for z˚ P Zad it holds that

∇Jpz˚qpxq

$

’

&

’

%

“ 0, if zminpxq ă z˚pxq ă zmaxpxq,

ě 0, if zminpxq “ z˚pxq ă zmaxpxq, for a.e. x P D.

ď 0, if zminpxq ă z˚pxq “ zmaxpxq,
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4.2 Parabolic PDE constraint

• there exist µmin, µmax P L
2pDq with

∇Jpz˚q ` µmax ´ µmin “ 0,

zmin ď z˚ ď zmax,

µmax, µmin ě 0,

µmaxpzmax ´ z
˚q “ µminpz

˚ ´ zminq “ 0.

4.2 Parabolic PDE constraint

Let D Ă Rd, d P t1, 2, 3u, denote a bounded physical domain with Lipschitz boundary,
let I :“ r0, T s denote the time interval with finite time horizon 0 ă T ă 8, and let
U :“ r´1

2 ,
1
2 s

N denote a space of parameters. Given a target state pu P X and, that the
regularization constants α1, α2 are nonnegative with α1 ` α2 ą 0 and α3 ą 0, we study
the problem of minimizing the following objective function:

rJpu, zq :“ R
´α1

2
}uy ´ pu}2L2pV ;Iq `

α2

2
}uyp¨, T q ´ pup¨, T q}2L2pDq

¯

`
α3

2
}z}2L2pV 1;Iq , (4.18)

subject to the control constraint

z P Zad (4.19)

and the heat equation over the time interval I “ r0, T s

B
Btu

ypx, tq ´∇ ¨
`

aypx, tq∇uypx, tq
˘

“ zpx, tq, x P D, t P I,
uypx, tq “ 0, x P BD, t P I,
uypx, 0q “ u0pxq, x P D,

(4.20)

for all y P U . Here zpx, tq is the control and u0 P L
2pDq denotes the initial heat dis-

tribution. We denote the input functions collectively by f :“ pz, u0q. We have imposed
homogeneous Dirichlet boundary conditions.
To ensure wellposedness of (4.1)-(4.3) we make the following assumtions:

(AP1) the feasible set of controls Zad Ď Z “ L2pV 1; q is nonempty, bounded, closed and
convex.

(AP2) The sequence of parameters yyy “ pyjqjě1 is i.i.d. uniformly in r´1
2 ,

1
2 s for each j P N,

i.e., yyy is distributed on U with probability measure µ, where µpdyyyq “
Â

jě1 dyj “ dyyy.

(AP3) The input uncertainty is described by the diffusion coefficient apyyy,xxxq in (4.2), which
is assumed to depend linearly on the parameters yj , i.e., let

aypx, tq :“ a0px, tq `
ÿ

jě1

yj ψjpx, tq, x P D, y P U, t P I, (4.21)

be an uncertain (thermal) diffusion coefficient.

(AP4) For a.e. t P I we have a0p¨, tq P L
8pDq, ψjp¨, tq P L

8pDq for all j ě 1, and that we
have psuptPI }ψjp¨, tq}L8pDqqjě1 P `

1;

(AP5) The mapping t ÞÑ aypx, tq is measurable on I;

55



4 Examples of optimal control problems

(AP6) The uniform ellipticity assumption holds, i.e.,

0 ă amin ď aypx, tq ď amax ă 8, x P D, y P U, a.e. t P I,

for some positive constants amin and amax.

Time-varying diffusion coefficients occur e.g., in finance, cancer tomography. However, the
presented setting clearly also includes time-constant diffusion coefficients, i.e., aypx, tq “
aypxq @t P I. By R in eq. (4.18) we denote a risk measure, which is a functional that
maps a set of random variables into the extended real numbers. Specifically, R will in this
section be either the expected value or the entropic risk measure.
We will first introduce a function space setting to describe the problem properly, including
the definition of the L2pV ; Iq and L2pV 1; Iq norms. To this end, we define V :“ H1

0 pDq
and its (topological) dual space V 1 :“ H´1pDq, and identify L2pDq with its own dual. Let
x¨, ¨yV 1,V denotes the duality pairing between V 1 and V . The norm and inner product in
V are defined as usual by

}v}V :“ }∇v}L2pDq, xv1, v2yV :“ x∇v1,∇v2yL2pDq.

We shall make use of the Riesz operator RV : V Ñ V 1 defined by

xRV v1, v2yV 1,V “ xv1, v2yV @ v1, v2 P V, (4.22)

as well as its inverse R´1
V : V 1 Ñ V satisfying R´1

V w “ v ô w “ RV v @v P V, w P V
1. It

follows from (4.22) that

xw, vyV 1,V “ xR
´1
V w, vyV @ v P V,w P V 1. (4.23)

In turn we define the inner product in V 1 by

xw1, w2yV 1 :“ xR´1
V w1, R

´1
V w2yV .

The norm induced by this inner product is equal to the usual dual norm: indeed we have

}w}V 1 :“ sup
0‰vPV

|xw, vyV 1,V |

}v}V
“ sup

0‰vPV

|xR´1
V w, vyV |

}v}V
ď }R´1

V w}V ,

where we used (4.23) and Cauchy–Schwarz inequality; similar arguments yield

}R´1
V w}2V “ xR

´1
V w,R´1

V wyV “ xw,R
´1
V wyV 1,V ď }w}V 1 }R

´1
V w}V ,

leading to }w}V 1 “ }R
´1
V w}V “

a

xw,wyV 1 as claimed.
We use analogous notations for inner products and duality pairings between function
spaces on the space-time cylinder D ˆ I. The space L2pV ; Iq consists of all measurable
functions v : I Ñ V with finite norm

}v}L2pV ;Iq :“
´

ż

I
}vp¨, tq}2V dt

¯1{2
.

Note that pL2pV ; Iqq1 “ L2pV 1; Iq, with the duality pairing given by

xw, vyL2pV 1;Iq,L2pV ;Iq “

ż

I
xwp¨, tq, vp¨, tqyV 1,V dt.
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4.2 Parabolic PDE constraint

We extend the Riesz operator RV to RV : L2pV ; Iq Ñ L2pV 1; Iq so that

xv1, v2yL2pV ;Iq “

ż

I
xv1p¨, tq, v2p¨, tqyV dt “

ż

I

@

RV v1p¨, tq, v2p¨, tq
D

V 1,V
dt

“
@

RV v1, v2

D

L2pV 1;Iq,L2pV ;Iq
@ v1, v2 P L

2pV ; Iq,

and we extend the inverse R´1
V : L2pV 1; Iq Ñ L2pV ; Iq analogously.

We define the space of solutions uy for y P U by

X :“
!

v P L2pV ; Iq : B
Btv P L

2pV 1; Iq
)

,

which is the space of all functions v in L2pV ; Iq with (distributional) derivative B
Btv in

L2pV 1; Iq, and which is equipped with the (graph) norm

}v}X :“
´

ż

I

´

}vp¨, tq}2V ` }
B
Btvp¨, tq}

2
V 1

¯

dt
¯1{2

“

´

}v}2L2pV ;Iq ` }
B
Btv}

2
L2pV 1;Iq

¯1{2
.

Finally, because there are two inputs in equation (4.20), namely z P L2pV 1; Iq and u0 P

L2pDq, it is convenient to define the product space Y :“ L2pV ; Iq ˆ L2pDq, and define its
dual space by Y 1 :“ L2pV 1; Iq ˆ L2pDq, with the norms

}v}Y :“
´

ż

I
}v1p¨, tq}

2
V dt` }v2}

2
L2pDq

¯1{2
,

}w}Y 1 :“
´

ż

I
}w1p¨, tq}

2
V 1 dt` }w2}

2
L2pDq

¯1{2
.

In particular, we extend X to Y as follows. For all v P X we interpret v as an element of Y
as v “ pvpx, tq, vpx, 0qq. This gives X Ď Y. We further know from [47, Theorem 5.9.3] that
X ãÑ CpL2pDq; Iq and maxtPI }vp¨, tq}L2pDq ď C1p}v}L2pV ;Iq ` }

B
Btv}L2pV 1;Iqq ď

?
2C1}v}X

for v P X , where C1 depends on T only. Hence we obtain for all v P X that

}v}2Y “ }v}
2
L2pV ;IqˆL2pDq “ }v}

2
L2pV ;Iq ` }vp¨, 0q}

2
L2pDq

ď }v}2L2pV ;Iq `

´

max
tPI

}vp¨, tq}L2pDq

¯2
ď }v}2X ` 2C2

1}v}
2
X “ p1` 2C2

1 q}v}
2
X ,

and thus we get that X is continuously embedded into Y, i.e., X ãÑ Y.

4.2.1 Weak formulation

Based on these spaces, using integration by parts with respect to x we can write (4.20) as
a variational problem as follows. Given the input functions f “ pz, u0q P Y 1 and y P U ,
find a function uy P X such that

bpy;uy, vq “ xf, vyY 1,Y @ v “ pv1, v2q P Y , (4.24)

where for all w P X , v “ pv1, v2q P Y and y P U ,

bpy;w, vq :“ xByw, vyY 1,Y

:“

ż

I

@

B
Btw, v1

D

V 1,V
dt`

ż

I

ż

D

`

ay∇w ¨∇v1

˘

dxdt
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“: xBy1 w,v1yL2pV 1;Iq,L2pV ;Iq

`

ż

D
wp¨, 0q v2 dx

loooooooomoooooooon

“: xBy2 w,v2yL2pDq

, (4.25)
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xf, vyY 1,Y :“

ż

I
xz, v1yV 1,V dt`

ż

D
u0 v2 dx ,

with operators By : X Ñ Y 1, By1 : X Ñ L2pV 1; Iq, By2 : X Ñ L2pDq, and Byw “

pBy1w,B
y
2wq. For better readability we have omitted the parameter dependence v “

pv1px, tq, v2pxqq, f “ pzpx, tq, u0pxqq, w “ wpx, tq and ay “ aypx, tq. Note that a solution
of (4.24) automatically satisfies uyp¨, 0q “ u0, as can be seen by setting v1 “ 0 and allowing
arbitrary v2.
The parametric family of parabolic evolution operators tBy, y P Uu associated with this
bilinear form is a family of isomorphisms from X to Y 1, see, e.g., [36]. In [147] a shorter
proof based on the characterization of the bounded invertibility of linear operators between
Hilbert spaces is presented, together with precise bounds on the norms of the operator
and its inverse: there exist constants 0 ă β1 ď β2 ă 8 such that

sup
yPU

}pByq´1}Y 1ÑX ď
1

β1
and sup

yPU
}By}XÑY 1 ď β2 , (4.26)

where β1 ě
mintamina

´2
max,aminu

b

2 maxta´2
min,1u`%

2
and β2 ď

a

2 maxt1, a2
maxu ` %

2 with % :“ sup
wPX

}wp0,¨q}L2pDq

}w}X
,

and hence for all y P U we have the a priori estimate

}uy}X ď
}f}Y 1

β1
“

1

β1
}pz, u0q}Y 1 “

1

β1

`

}z}2L2pV 1;Iq ` }u0}
2
L2pDq

˘1{2
. (4.27)

For our later derivation of the optimality conditions for the optimal control problem, it is
helpful to write the weak form of the PDE (4.24) as an operator equation using (4.25):

Byuy “ pBy1 u
y, By2 u

yq “ pz, u0q in Y 1 , (4.28)

with By1 : X Ñ L2pV 1; Iq and By2 : X Ñ L2pDq given by

By1 “ Λ1B
y and By2 “ Λ2B

y ,

where Λ1 : Y 1 Ñ L2pV 1; Iq and Λ2 : Y 1 Ñ L2pDq are the restriction operators defined, for
any v “ pv1, v2q P Y 1, by

Λ1pv1, v2q :“ v1 and Λ2pv1, v2q :“ v2 .

For the definition of a meaningful inverse of the operators By1 and By2 , we first define the
trivial extension operators Ξ1 : L2pV 1; Iq Ñ Y 1 and Ξ2 : L2pDq Ñ Y 1, for any v1 P L

2pV 1; Iq
and v2 P L

2pDq, by

Ξ1v1 :“ pv1, 0q and Ξ2v2 :“ p0, v2q .

We observe that P1 :“ Ξ1Λ1 is an orthogonal projection on the L2pV 1; Iq-component in Y 1
and analogously P2 :“ Ξ2Λ2 is an orthogonal projection on the L2pDq-component in Y 1.
This is verified as follows. For all v, u P Y 1 it is true that

xpIY 1 ´ P1qv, P1uyY 1 “ 0 and xpIY 1 ´ P2qv, P2uyY 1 “ 0 ,

where IY 1 denotes the identity operator on Y 1. We clearly have IY 1 “ P1 ` P2. Therefore
we can write any element v in Y 1 as v “ P1v ` P2v in Y 1, and by linearity of pByq´1 we
get

pByq´1v “ pByq´1pP1v ` P2vq “ pB
yq´1P1v ` pB

yq´1P2v .

58



4.2 Parabolic PDE constraint

A meaningful inverse of the operators By1 : X Ñ L2pV 1; Iq and By2 : X Ñ L2pDq are then
given by pBy1 q

: : L2pV 1; Iq Ñ X and pBy2 q
: : L2pDq Ñ X , defined as

pBy1 q
: :“ pByq´1Ξ1 and pBy2 q

: :“ pByq´1Ξ2 . (4.29)

We call the operator pBy1 q
: the pseudoinverse of By1 and the operator pBy2 q

: the pseudoin-
verse of By2 . Clearly, the pseudoinverse operators are linear and bounded operators.

Lemma 4.2.1. The pseudoinverse operators pBy1 q
: and pBy2 q

: defined by (4.29) satisfy

IL2pV 1;Iq “ By1 pB
y
1 q
: , IL2pDq “ By2 pB

y
2 q
: , and

IX “ pBy1 q:By1 ` pBy2 q:By2 , (4.30)

which are the identity operators on L2pV 1; Iq, L2pDq, and X , respectively.

Proof. From the definition of various operators, we have

By1 pB
y
1 q
: “ Λ1B

ypByq´1Ξ1 “ Λ1IY 1Ξ1 “ Λ1Ξ1 “ IL2pV 1;Iq ,

By2 pB
y
2 q
: “ Λ2B

ypByq´1Ξ2 “ Λ2IY 1Ξ2 “ Λ2Ξ2 “ IL2pDq ,

pBy1 q
:By1 ` pB

y
2 q
:By2 “ pB

yq´1Ξ1Λ1B
y ` pByq´1Ξ2Λ2B

y

“ pByq´1pP1 ` P2qB
y “ pByq´1IY 1By “ IX ,

as required.

Lemma 4.2.2. For y P U and given pz, u0q P Y 1, the solution uy of the operator equation
(4.28) can be written as

uy “ pByq´1pz, u0q “ pBy1 q
:z ` pBy2 q

:u0 in X . (4.31)

Proof. From (4.30) we have uy “ pBy1 q
:By1 u

y ` pBy2 q
:By2 u

y “ pBy1 q
:z ` pBy2 q

:u0, as
required.

4.2.2 Dual problem

In the following we will need the dual operators pByq1, pBy1 q
1 and pBy2 q

1 of By, By1 and
By2 , respectively, which are formally defined by

xw, pByq1vyX ,X 1 :“ xByw, vyY 1,Y

xw, pBy1 q
1v1yX ,X 1 :“ xBy1w, v1yL2pV 1;Iq,L2pV ;Iq

xw, pBy2 q
1v2yX ,X 1 :“ xBy2w, v2yL2pDq

for all w P X , v “ pv1, v2q P Y and y P U , with pByq1v “ pBy1 q
1v1 ` pB

y
2 q
1v2.

The dual problem to (4.24) (or equivalently (4.28)) is as follows. Given the input function
fdual P X 1 and y P U , find a function qy “ pqy1 , q

y
2 q P Y such that

xw, pByq1qyyX ,X 1 “ xw, fdualyX ,X 1 @w P X , (4.32)

or in operator form pByq1qy “ fdual, which has the unique solution qy “
`

pByq1
˘´1

fdual .
Existence and uniqueness of the solution of the dual problem follow directly from the
bounded invertibility of By. We know that its inverse, pByq´1, is a bounded linear opera-
tor and thus the dual of pByq´1 is (uniquely) defined (see, e.g., [164, Theorem 1 and Defi-
nition 1, Chapter VII]). The operator pByq´1 and its dual operator ppByq´1q1 “ ppByq1q´1
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are equal in their operator norms (see, e.g., [164, Theorem 2, Chapter VII]), i.e., the op-
erator norms of the dual operator pByq1 and its inverse are bounded by the constants β2

and 1
β1

in (4.26).
Applying integration by parts with respect to the time variable in (4.25), the left-hand
side of the dual problem (4.32) can be written as

xw, pByq1qyyX ,X 1 “ xB
yw, qyyY 1,Y

“

ˆ
ż

I
xw,´ B

Btq
y
1 yV,V 1 dt`

ż

I

ż

D
pay∇w ¨∇qy1 qdx dt

`

ż

D
wp¨, T q qy1 p¨, T qdx´

ż

D
wp¨, 0q qy1 p¨, 0q dx

˙

`

ż

D
wp¨, 0q qy2 dx (4.33)

“
@

w, pBy1 q
1qy1

D

X ,X 1 `
@

w, pBy2 q
1qy2

D

X ,X 1 .

We may express the solution qy “ pqy1 , q
y
2 q P Y of the dual problem (4.32) in terms of the

dual operators of the pseudoinverse operators pBy1 q
: and pBy2 q

:. This is true because we
get an analogous result to Lemma 4.2.1 in the dual spaces.

Lemma 4.2.3. The dual operators ppBy1 q
:q1 and ppBy2 q

:q1 of the pseudoinverse operators
defined in (4.29) satisfy

IL2pV ;Iq “ ppB
y
1 q
:q1pBy1 q

1 , IL2pDq “ ppB
y
2 q
:q1pBy2 q

1 , and

IX 1 “ pBy1 q1ppBy1 q:q1 ` pBy2 q1ppBy2 q:q1 , (4.34)

which are the identity operators on L2pV ; Iq, L2pDq and X 1, respectively.

Proof. For all v1 P L
2pV 1; Iq, w1 P L

2pV ; Iq, v2, w2 P L
2pDq, it follows from (4.30) that

xv1, w1yL2pV 1;Iq,L2pV ;Iq “
@

By1 pB
y
1 q
:v1, w1

D

L2pV 1;Iq,L2pV ;Iq

“
@

v1, ppB
y
1 q
:q1pBy1 q

1w1

D

L2pV 1;Iq,L2pV ;Iq
, and

xv2, w2yL2pDq “
@

By2 pB
y
2 q
:v2, w2

D

L2pDq
“
@

v2, ppB
y
2 q
:q1pBy2 q

1w2

D

L2pDq
.

Similarly, for all v P X and w P X 1 we have

xv, wyX ,X 1 “
@`

pBy1 q
:By1 ` pB

y
2 q
:By2

˘

v, w
D

X ,X 1

“
@

pBy1 q
:By1 v, w

D

X ,X 1 `
@

pBy2 q
:By2 v, w

D

X ,X 1

“
@

v, pBy1 q
1ppBy1 q

:q1w
D

X ,X 1 `
@

v, pBy2 q
1ppBy2 q

:q1w
D

X ,X 1

“ xv,
`

pBy1 q
1ppBy1 q

:q1 ` pBy2 q
1ppBy2 q

:q1
˘

wyX ,X 1 .

This completes the proof.

Lemma 4.2.4. Given the input function fdual P X 1 and y P U , the (unique) solution of
the dual problem (4.32) is given by

qy “ pqy1 , q
y
2 q “

`

ppBy1 q
:q1fdual, ppB

y
2 q
:q1fdual

˘

in Y . (4.35)

Proof. Existence and uniqueness follow from the bounded invertibility of pByq1, see Sec-
tion 4.2.1. Thus, we only need to verify that (4.35) solves the dual problem (4.32). It
follows from (4.34) that

fdual “
`

pBy1 q
1ppBy1 q

:q1 ` pBy2 q
1ppBy2 q

:q1
˘

fdual
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4.2 Parabolic PDE constraint

“ pBy1 q
1ppBy1 q

:q1fdual ` pB
y
2 q
1ppBy2 q

:q1fdual

“ pBy1 q
1qy1 ` pB

y
2 q
1qy2 “ pB

yq1qy ,

as required.

We will see in the next section that, with the correct choice of the right-hand side fdual,
the Fréchet derivative of the objective function (4.18) can be computed using the solution
qy of the dual problem.

4.2.3 Reduced problem

We want to analyze the problem in its reduced form, i.e., expressing the state uy “
pByq´1pz, u0q in (4.18) in terms of the control z. This reformulation is possible because
of the bounded invertibility of the operator By for every y P U , see Section 4.2.1 and the
references therein. We therefore introduce an alternative notation upzq “ puypzqqpx, tq “
uypx, tq. Clearly, uy depends also on u0, which is assumed to be given. The reduced
problem is then to minimize

Jpzq :“ rJ
`

upzq, z
˘

“ R
´α1

2

›

›uypzq ´ pu
›

›

2

L2pV ;Iq
`
α2

2

›

›ET
`

uypzq ´ pu
˘›

›

2

L2pDq

¯

`
α3

2
}z}2L2pV 1;Iq, (4.36)

where ET : X Ñ L2pDq is the bounded linear operator (see, e.e., [47, Chapter 5, Theorem
3]) defined by v ÞÑ vp¨, T q for some fixed terminal time T ą 0.
Defining

Φypzq :“
α1

2

›

›pByq´1pz, u0q ´ pu
›

›

2

L2pV ;Iq
`
α2

2

›

›ET
`

pByq´1pz, u0q ´ pu
˘

}2L2pDq, (4.37)

we can equivalently write the reduced problem as

min
zPZad

´

RpΦypzqq ` α3

2
}z}2L2pV 1;Iq

¯

. (4.38)

With the uniformly boundedly invertible forward operator By, our setting fits into the
framework of theorem 3.5.4. In particular, the forward operator By, the regularization
term α3

2 }z}
2
L2pV 1;Iq and the random variable tracking-type objective function Φy satisfy

assumption 3.5.1, assumption 3.5.3 and assumption 3.3.1. We obtain the following result.

Corollary 4.2.5. Let α1, α2 ě 0 and α3 ą 0 with α1`α2 ą 0 and let R be proper, closed,
convex and monotonic, then there exists a unique solution of (4.38).

Proof. The existence of the solution follows from theorem 3.5.4. We thus only prove
the strong convexity of the objective function, which implies strict convexity and hence
uniqueness of the solution. Clearly α3

2 }z}
2
L2pV 1;Iq is strongly convex. Since the sum of a

convex and a strongly convex function is strongly convex it remains to show the convexity
of RpΦypzqq. By the linearity and the bounded invertibility of the linear forward operator
By, the tracking-type objective functional Φypzq is quadratic in z and hence convex, i.e.,
we have for z, z̃ P L2pV 1; Iq and λ P r0, 1s that Φypλz`p1´λqz̃q ď λΦypzq`p1´λqΦypz̃q.
Then, by lemma 3.2.1 we obtain that RpΦypzqq is convex.

Having ensured the existence of a unique optimal control z˚ P Zad, we derive necessary
and sufficient optimality conditions. To this end, we compute derivatives of the reduced
objective function eq. (4.36).

61



4 Examples of optimal control problems

4.2.4 Derivatives for linear risk measures, including the expected value

First we derive a formula for the Fréchet derivative of (4.36) when R is linear, which
includes the special case Rp¨q “

ş

U p¨q dy.

Lemma 4.2.6. Let R be linear. Then the Fréchet derivative of (4.36) as an element of
pL2pV 1; Iqq1 “ L2pV ; Iq is given by

J 1pzq “ R
´

`

pBy1 q
:
˘1`

α1RV ` α2E
1
TET

˘`

uypzq ´ pu
˘

¯

` α3R
´1
V z (4.39)

for z P L2pV 1; Iq.

Proof. For z, δ P L2pV 1; Iq, we can write

Jpz ` δq “ R
´α1

2

›

›uypz ` δq ´ uypzq ` uypzq ´ pu
›

›

2

L2pV ;Iq

`
α2

2

›

›ET
`

uypz ` δq ´ uypzq ` uypzq ´ pu
˘›

›

2

L2pDq

¯

`
α3

2
}z ` δ}2L2pV 1;Iq

“ R
´α1

2

›

›pBy1 q
:δ `

`

uypzq ´ pu
˘›

›

2

L2pV ;Iq

`
α2

2

›

›ET pB
y
1 q
:δ ` ET

`

uypzq ´ pu
˘
›

›

2

L2pDq

¯

`
α3

2
}z ` δ}2L2pV 1;Iq,

where we used (4.31) to write uypz` δq´ uypzq “ rpBy1 q
:pz` δq` pBy2 q

:u0s ´ rpB
y
1 q
:pzq`

pBy2 q
:u0s “ pBy1 q

:δ. Expanding the squared norms using }v ` w}2 “ xv ` w, v ` wy “
}v}2 ` 2xv, wy ` }w}2, we obtain

Jpz ` δq “ Jpzq ` pBzJpzqq δ ` opδq,

with the Fréchet derivative BzJpzq : L2pV 1; Iq Ñ R defined by

pBzJpzqq δ :“ R
´

α1

“: Term1
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

@

pBy1 q
:δ, uypzq ´ pu

D

L2pV ;Iq

` α2

@

ET pB
y
1 q
:δ, ET

`

uypzq ´ pu
˘D

L2pDq
looooooooooooooooooooomooooooooooooooooooooon

“: Term2

¯

` α3 xz, δyL2pV 1;Iq
loooooomoooooon

“: Term3

.

It remains to simplify the three terms. Using the extended Riesz operator RV : L2pV ; Iq Ñ
L2pV 1; Iq, we have

Term1 “
@

uypzq ´ pu, pBy1 q
:δ
D

L2pV ;Iq
“

@

RV
`

uypzq ´ pu
˘

, pBy1 q
:δ
D

L2pV 1;Iq,L2pV ;Iq

“
@

RV
`

uypzq ´ pu
˘

, pBy1 q
:δ
D

X 1,X “
@`

pBy1 q
:
˘1
RV

`

uypzq ´ pu
˘

, δ
D

L2pV ;Iq,L2pV 1;Iq
,

where the third equality follows since pBy1 q
:δ P X ãÑ L2pV ; Iq, and the fourth equality

follows from the definition of the dual operator ppBy1 q
:q1 : X 1 Ñ L2pV ; Iq, noting that

pL2pV 1; Iqq1 “ L2pV ; Iq.
Next, using the definition of the dual operator pET q

1 : L2pDq Ñ X 1, we can write

Term2 “
@

ET
`

uypzq ´ pu
˘

, ET pB
y
1 q
:δ
D

L2pDq
“

@

E1TET
`

uypzq ´ pu
˘

, pBy1 q
:δ
D

X 1,X

“
@`

pBy1 q
:
˘1
E1TET

`

uypzq ´ pu
˘

, δ
D

L2pV ;Iq,L2pV 1;Iq
.

62



4.2 Parabolic PDE constraint

Finally, using the definition of the L2pV 1, Iq inner product and the extended inverse Riesz
operator R´1

V : L2pV 1; Iq Ñ L2pV ; Iq, we obtain

Term3 “ xz, δyL2pV 1;Iq “ xR´1
V z,R´1

V δyL2pV ;Iq “
@

R´1
V z, δ

D

L2pV ;Iq,L2pV 1;Iq
.

Writing pBzJpzqq δ “ xJ
1pzq, δyL2pV ;Iq,L2pV 1;Iq and collecting the terms above leads to the

expression for J 1pzq in (4.39).

Next, we show that the Fréchet derivative J 1pzq of Jpzq can be computed using the solution
of the dual problem (4.32) with

fdual :“ pα1RV ` α2E
1
TET qpu

y ´ puq P X 1 . (4.40)

We show this first for the special case when R is linear.

Lemma 4.2.7. Let α1, α2 ě 0 and α3 ą 0, with α1 ` α2 ą 0. Let f “ pz, u0q P Y 1 and
pu P X . For every y P U , let uy P X be the solution of (4.20) and then let qy P Y be the
solution of (4.32) with fdual given by (4.40). Then for R linear, the Fréchet derivative of
(4.36) is given as an element of L2pV ; Iq by

J 1pzq “ Rpq1q ` α3R
´1
V z (4.41)

for z P L2pV 1; Iq.

Proof. This follows immediately from (4.40), Lemma 4.2.6 and Lemma 4.2.4.

Proposition 4.2.8. Under the conditions of Lemma 4.2.7, with fdual given by (4.40), the
dual solution qy “ pqy1 , q

y
2 q P Y satisfies

qy2 “ qy1 p¨, 0q.

Consequently, the left-hand side of (4.32) reduces to

ż

I

@

w,´ B
Btq

y
1

D

V,V 1
dt`

ż

I

ż

D

`

ay∇w ¨∇qy1
˘

dxdt`

ż

D
wp¨, T q qy1 p¨, T qdx , (4.42)

and hence qy1 is the solution to

$

’

&

’

%

´ B
Btq

y
1 px, tq ´∇ ¨

`

aypx, tq∇qy1 px, tq
˘

“ α1RV
`

uypx, tq ´ pupx, tq
˘

qy1 px, tq “ 0

qy1 px, T q “ α2

`

uypx, T q ´ pupx, T q
˘

,

(4.43)

where the first equation holds for x P D, t P I, and the second equation holds for x P BD,
t P I, and the last equation holds for x P D.

Proof. Since (4.32) holds for arbitrary w P X , it holds in particular for the special case

w “ wnpx, tq :“

#

`

1´ nt
T

˘

vpxq for t P
“

0, Tn
‰

,

0 for t P
`

T
n , T

‰

,

with arbitrary v P V . For fdual given by (4.40), the right-hand side of (4.32) becomes

xwn, fdualyX ,X 1
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“
@

wn, α1RV pu
y ´ puq

D

X ,X 1 `
@

wnp¨, T q, α2

`

uyp¨, T q ´ pup¨, T q
˘D

L2pDq

“

ż T
n

0

ż

D

`

1´ nt
T

˘

v α1RV pu
y ´ puq dx dt Ñ 0 as nÑ8 .

From (4.33) the left-hand side of (4.32) is now

xwn, pB
yq1qyyX ,X 1

“

ż T
n

0

`

1´ nt
T

˘@

v,´ B
Btq

y
1

D

V,V 1
dt`

ż T
n

0

ż

D

`

1´ nt
T

˘`

ay∇v ¨∇qy1
˘

dxdt

´

ż

D
v qy1 p¨, 0qdx`

ż

D
v qy2 dx

Ñ

ż

D
v
`

qy2 ´ q
y
1 p¨, 0q

˘

dx as nÑ8 .

Equating the two sides, letting n Ñ 8, and noting that v P V is arbitrary, we conclude
that necessarily qy2 “ qy1 p¨, 0q.
Hence, the left-hand side of (4.32) reduces to (4.42). By analogy with the weak form
of (4.20), using the transformation t ÞÑ T ´ t, we conclude that qy1 is the solution to
(4.43).

4.2.5 Derivatives of the entropic risk measure

The expected value is risk neutral. Next, we consider the risk averse entropic risk measure
(see section 4.2.5):

RepY pyqq :“
1

θ
ln
´

ż

U
exp

`

θ Y pyq
˘

dy
¯

,

for an essentially bounded random variable Y pyq and some θ P p0,8q. Using R “ Re in
(4.36), the optimal control problem becomes minzPZ Jpzq, with

Jpzq “
1

θ
ln
´

ż

U
exp

`

θΦypzq
˘

dy
¯

`
α3

2
}z}2L2pV 1;Iq , (4.44)

for some θ P p0,8q and Φy defined in (4.37).
In the following we want to compute the Fréchet derivative of Jpzq with respect to z P
L2pV 1; Iq. To this end, we verify that Φypzq ď C ă 8 is uniformly bounded in y P U for
any z P L2pV 1; Iq, i.e. the constant C ą 0 is independent of y P U .

Lemma 4.2.9. Let f “ pz, u0q P Y 1 and pu P X , and let α1, α2 ě 0 with α1 ` α2 ą 0.
Then for all y P U , the function Φy defined by (4.37) satisfies

0 ď Φy ď
α1 ` α2 }ET }

2
XÑL2pDq

2

´

}f}Y 1

β1
` }pu}X

¯2
ă 8. (4.45)

Thus for all θ ą 0 we have

1 ď exp
`

θΦy
˘

ď eσ ă 8, with (4.46)

σ :“
α1 ` α2 }ET }

2
XÑL2pDq

2

´

}f}Y 1

β1
` }pu}X

¯2
θ. (4.47)
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4.2 Parabolic PDE constraint

Proof. We have from (4.37) that

Φypzq ď
α1

2

›

›pByq´1f ´ pu
›

›

2

X `
α2

2
}ET }

2
XÑL2pDq

›

›pByq´1f ´ pu
›

›

2

X

ď
α1 ` α2 }ET }

2
XÑL2pDq

2

`›

›pByq´1f
›

›

X ` }pu}X
˘2
,

which yields (4.45) after applying (4.27).

Using the preceding lemma, we compute the Fréchet derivative of (4.44).

Lemma 4.2.10. Let α1, α2 ě 0 and α3 ą 0, with α1 ` α2 ą 0, and let 0 ă θ ă 8. Let
f “ pz, u0q P Y 1 and pu P X . For every y P U , let uy P X be the solution of (4.20) and
then let qy “ pqy1 , q

y
2 q P Y be the solution of (4.32) with fdual given by (4.40). Then the

Fréchet derivative of (4.44) is given as an element of L2pV ; Iq for z P L2pV 1; Iq by

J 1pzq “
1

ş

U exp
`

θΦypzq
˘

dy

ż

U
exp

`

θΦypzq
˘

qy1 dy ` α3R
´1
V z (4.48)

where Φypzq is defined in (4.37).

Proof. The application of the chain rule gives

BzRepΦ
ypzqq “

1

θ
ş

U exp
`

θΦypzq
˘

dy
Bz

´

ż

U
exp

`

θΦypzq
˘

dy
¯

.

Lemma 4.2.9 implies that 1 ď
ş

U exp
`

θΦypzq
˘

dy ă 8. Then the integral is a bounded
and linear operator and hence its Fréchet derivative is the operator itself. Exploiting this
fact, we obtain that Bz

`ş

U exp
`

θΦypzq
˘

dy
˘

“
ş

U

`

Bz exp
`

θΦypzq
˘˘

dy. By the chain rule
it follows for each y P U that Bz exp

`

θΦypzq
˘

“ θ exp
`

θΦypzq
˘

BzΦ
ypzq . Recalling from

the previous subsection that Bzp
α3
2 }z}

2
L2pV 1;Iqq “ α3R

´1
V z and BzΦ

ypzq “
`

pBy1 q
:
˘1
pα1RV `

α2E
1
TET qpu

ypzq ´ puq “ qy1 , and collecting terms gives (4.48).

4.2.6 Optimality conditions

In the case when the feasible set of controls Zad is a nonempty and convex set, we know
(see, e.g., theorem 3.6.2) variational inequality

xJ 1pz˚q, z ´ z˚yL2pV ;Iq,L2pV 1;Iq ě 0 @z P Zad . (4.49)

For convex objective functionals Jpzq, like the ones considered in this work, the variational
inequality is a necessary and sufficient condition for optimality. The complete optimality
conditions are then given by the following result.

Theorem 4.2.11. Let R be the expected value or the entropic risk measure. A control
z˚ P Zad is the unique minimizer of (4.18) subject to (4.19) and (4.20) if and only if it
satisfies the optimality system:

xByuy, pv1, v2qyY 1,Y “ xz˚, v1yL2pV 1;Iq,L2pV ;Iq ` xu0, v2yL2pDq @ v P Y,
xw, pByq1qyyX ,X 1 “ xw,α1RV pu

y ´ puqyX ,X 1

`xwpT q, α2pu
ypT q ´ pupT qqyL2pDq @w P X ,

,

.

-

@y P U,

xJ 1pz˚q, z ´ z˚yL2pV ;Iq,L2pV 1;Iq ě 0 @z P Zad ,

where J 1pzq is given by (4.41) for the expected value, or (4.48) for the entropic risk measure.
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Observe that the optimality system in Theorem 4.2.11 contains the variational formula-
tions of the state PDE (4.24) and the dual PDE (4.32) in the first and second equation,
respectively.
It is convenient to reformulate the variational inequality (4.49) in terms of an orthogonal
projection onto Zad. The orthogonal projection onto a nonemtpy, closed and convex subset
Zad Ă H of a Hilbert space H, denoted by PZad

: Zad Ñ H, is defined as

PZphq P Z , }PZphq ´ h}H “ min
vPZ

}v ´ h}H , @h P H .

Then, see, e.g., [89, Lemma 1.11], for all h P H and γ ą 0 the condition h P Zad,
xh, v ´ zyH ě 0@v P Z is equivalent to z ´ PZpz ´ γhq “ 0. Using the definition of the
Riesz operator and H “ L2pV 1; Iq, we conclude that (4.49) is equivalent to

z˚ ´ PZad
pz˚ ´ γRV J

1pz˚qq “ 0 .

This equivalence can then be used to develop projected descent methods to solve the
optimal control problem, see, e.g., [89, Chapter 2.2.2].

Remark 4.2.12. If Zad is the closed ball with radius r ą 0 in a Hilbert space H, then the
orthogonal projection PZad

onto Zad is given by

PZad
phq “ min

´

1,
r

}h}H

¯

h for all h P H.

4.3 Analytic parametric linear operator constraints

Let U “ r´1
2 ,

1
2 s

N be the space of parameters and assume that the sequence of parameters
y “ pyjqjě1 is i.i.d. uniformly in r´1

2 ,
1
2 s for each j P N, i.e., y is distributed on U with

probability measure µ, where µpdyyyq “
Â

jě1 dyj “ dyyy. Let α ą 0 and Zad Ď Z be closed
and convex. Given a target state pu, our goal of computation is the following optimal
control problem

min
zPZad,uPXad

Ĵpu, zq , Ĵpu, zq :“
1

2
R
`

}Qu´ pu}2J
˘

`
α

2
}z}2Z , (4.50)

subject to the parametric linear operator equation in Y 1

Apyqu “ Bz , (4.51)

for 1 ď q ă 8. Let Z be a Hilbert space, and Xad Ă X , where X is a separable, reflexive
Banach space. Moreover, let J be a Hilbert space, pu P J, and Q P LpX , Jq, B P LpZ,Y 1q.
In particular, the operators B and Q are not dependent on y and thus can be uniformly
bounded for all y, i.e., }B}LpZ,Y 1q ď CB and }Q}LpX ,Jq ď CQ for some C1, C2 ą 0 and all
y P U . The risk measure R will again be either the expected value or the entropic risk
measure.
Assume that the parametric family of operators Apyq P tLpX ,Y 1q : y P Uu satisfies
Assumption 2.3.1, i.e., is a regular p-analytic operator family for some 0 ă p ď 1. This
implies in particular that the constraint (4.51) is well-posed, that is for each z P Z there
exists a unique u P X such that (4.51) is true for all y P U .
Hence, we can substitute u “ A´1pyqBz into J , which gives Jpzq :“ JpA´1pyqBz, zq and
leads to the reduced formulation of problem (4.50) – (4.51)

min
zPZad

Jpzq , Jpzq :“
1

2
R
`

}QA´1pyqBz ´ pu}2J
˘

`
α

2
}z}2Z , (4.52)

where Zad :“ tz P Z : z P Zad, A
´1pyqBz P Xadu.
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4.3 Analytic parametric linear operator constraints

4.3.1 Derivatives and dual problem

For linear risk measures R, the Fréchet derivative of J at z is given by

J 1pzq “ R
`

B1pA´1pyqq1Q1RJpu
ypzq ´ puq

˘

` αRZz. (4.53)

Jpz ` δq “
1

2
R
`

}QA´1pyqBδ `Qupzq ´ pu}2J
˘

`
α

2
}z ` δ}2Z

Expanding the squared norms using }v ` w}2 “ xv ` w, v ` wy “ }v}2 ` 2xv, wy ` }w}2,
we obtain

Jpz ` δq “ Jpzq ` pBzJpzqq δ ` opδq,

with the Fréchet derivative BzJpzq : Z Ñ R at z P Z defined by

pBzJpzqq δ :“ R
´

@

QA´1pyqBδ, uypzq ´ pu
D

J

¯

` αxδ, zyZ

“ R
´

@

δ,B1pA´1pyqq1Q1RJpu
ypzq ´ puq

D

Z,Z 1

¯

` αxδ,RZzyZ,Z 1

where RZ : Z Ñ Z 1 denotes the Riesz operator xv, wyZ “ xv,RZwyZ,Z 1 for arbitrary
v, w P Z, and RJ : J Ñ J1 denotes the Riesz operator xv, wyJ “ xv,RJwyJ,J1 for arbitrary
v, w P J.

Defining

qpyq :“ pA´1pyqq1Q1RJpu
ypzq ´ puq P Y, (4.54)

we observe that qpyq for each y P U solves the dual PDE problem in X 1

Apyq1qpyq “ Q1RJpu
ypzq ´ puq. (4.55)

Moreover, the Fréchet derivative for linear risk measures (4.53) can directly be computed
using (4.55)

J 1pzq “ R
`

B1qpyq
˘

` αRZz. (4.56)

In order to derive the Fréchet derivative of J with the entropic risk measure R “ Re,
we observe that the random variable objective funciton can be uniformly bounded for all
y P U by

}Quypzq ´ pu}2J ď 2}Quypzq}2J ` 2}pu}2J ď 2CQCCB}z}Z ` 2}pu}2J.

Together with the chain rule, this leads

J 1pzq “
1

ş

U exp pθ}Quypzq ´ pu}2Jqdy

ż

U
exp pθ}Quypzq ´ pu}2JqB1qydy ` αRZz. (4.57)
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4.3.2 Optimality conditions

The uniformly boundedly invertible forward operator Apyq, fits into the framework of
Theorem 3.5.4. In particular, the forward operator Apyq, the regularization term α

2 }z}
2
Z

and the random variable tracking-type objective function }Quypzq ´ pu}2J satisfy Assump-
tion 3.5.1, Assumption 3.5.3 and Assumption 3.3.1. We obtain the following result.

Corollary 4.3.1. Let α ą 0 and let R be proper, closed, convex and monotonic, then
there exists a unique solution of (4.52).

Proof. The existence of the solution follows from Theorem 3.5.4. We thus only prove
the strong convexity of the objective function, which implies strict convexity and hence
uniqueness of the solution. Clearly the regularization α

2 }z}
2
Z is strongly convex. Since the

sum of a convex and a strongly convex function is strongly convex it remains to show the
convexity of Rp}Quypzq´pu}2Jq. By the linearity and the bounded invertibility of the linear
forward operator By, the tracking-type objective functional }Quypzq´pu}2J is quadratic in z
and hence convex. Then, by Lemma 3.2.1 we obtain that Rp}Quypzq´ pu}2Jq is convex.

Having ensured the existence of a unique optimal control z˚ P Zad, we derive necessary
and sufficient optimality conditions. Therefore, let the feasible set of controls Zad be
nonempty and convex set, then we know (see, e.g., Theorem 3.6.2) that the variational
inequality holds for an optimal control z˚ P Zad:

xJ 1pz˚q, z ´ z˚yZ 1,Z ě 0 @z P Zad . (4.58)

For convex objective functionals Jpzq, like the ones considered in this work, the variational
inequality is a necessary and sufficient condition for optimality. The complete optimality
conditions are then given by the following result.

Theorem 4.3.2. Let R be the expected value or the entropic risk measure. A control
z˚ P Zad is the unique minimizer of (4.52) if and only if it satisfies the optimality system:

Apyqupyq “ Bz˚
Apyq1qpyq “ pA´1pyqq1Q1RJpu

ypzq ´ puq

*

@y P U,

xJ 1pz˚q, z ´ z˚yZ 1,Z ě 0 @z P Zad ,

where J 1pzq is given by (4.56) for the expected value, or (4.57) for the entropic risk measure.

The optimality system in Theorem 4.3.2 contains the forward problem and the dual prob-
lem in the first and second equation, respectively.

It is convenient to reformulate the variational inequality (4.58) in terms of an orthogonal
projection onto Zad. Using the definition of the Riesz operator, we conclude that (4.58)
is equivalent to

z˚ ´ PZad
pz˚ ´ γRZJ

1pz˚qq “ 0 .

This equation can then be used to develop algorithms, such as the projected descent
method, to solve the optimal control problem, see, e.g., Section 4.4 or [89, Chapter 2.2.2].
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4.4 Projected gradient descent

4.4 Projected gradient descent

Consider an abstract optimal control problem

min
zPZad

fpzq (4.59)

with control constraints z P Zad, where Zad is a closed and convex subset of a Hilbert
space Z, and where f : Z Ñ R is continuously Fréchet differentiable.
The application of a standard gradient descent step to feasible zi might lead to infeasibility
of zi ´ η∇Jpziq even for small stepsizes η ą 0. On the other hand, considering only those
η ą 0 for which zi ´ η∇Jpziq stays feasible is not viable since this might result in very
small step sizes η. The following algorithms are based on the orthogonal projection onto
Zad and can be used to compute a minimizer of (4.59).

Algorithm 1 Projected gradient descent

Input: feasible starting value z P Z
1: while }z ´ PZad

pz ´∇Jpzqq}Z ąTOL do
2: find step size η using Algorithm 2
3: set z :“ PZad

pz ´ η∇Jpzqq
4: end while

Algorithm 2 Projected Armijo rule

Input: current z, parameters β, γ P p0, 1q
Output: step size η ą 0

1: set η :“ 1
2: while JpPZad

pz ´ η∇Jpzqqq ´ Jpzq ą ´γ
η }z ´ PZad

pz ´ η∇Jpzqq}2Z do
3: set η :“ βη
4: end while

Theorem 4.4.1. Let Zad be nonempty and let f be bounded from below. If ∇f is α-Hölder
continuous on tw ` s : fpwq ď fpwp0qq, }s}Z ď ρu for some α ą 0 and some ρ ą 0, then
the sequence tziu generated by Algorithm 1 satisfies

lim
iÑ8

}zi ´ PZad
pzi ´∇Jpziqq}Z “ 0 ,

where PZad
is defined by (4.60). Moreover, the sequence tziu converges to the unique

solution z˚ of (4.59).

Proof. See. e.g., [89, Theorem 2.4].

Both, the elliptic example and the parabolic example fit into this framework: consider
now problem (4.15) with

´8 ă zmin ă zmax ă 8 a.e. in D ,

i.e., Zad Ĺ Z “ L2pDq.
To incorporate these constraints we use the projection PZad

onto Zad given by

PZad
pzqpxxxq “ Przminpxxxq,zmaxpxxxqspzpxxxqq “ maxpzminpxxxq,minpzpxxxq, zmaxpxxxqqq , (4.60)
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and perform a line search along the projected path tPZad
pzi´η∇Jpziqq : η ą 0u. Using the

optimality condition z˚ ´ PZad
pz˚ ´∇Jpz˚qq “ 0 leads to the projected gradient descent

algorithm Algorithm 1, which is justified by Theorem 4.4.1.

Proof. For the proof of we refer to [89, Theorem 2.4].

Consider now problem (3.25) with Zad “ Brp0q Ă L2pV 1; Iq being the closed ball in V 1

with radius r ą 0 centered at the origin. In view of Remark 4.2.12 we use the orthogonal
projection

PZad
pzqpxq “ min

ˆ

1,
r

}h}Z

˙

z, @z P Z, (4.61)

to incorporate the control constraints. Using the Riesz operator RV (see (4.22)), we can
define the Riesz representation ∇J of the Fréchet derivative J 1 of J by

x∇Jpzq, hyL2pV 1;Iq,L2pV 1;Iq “ xRV J
1pzq, hyL2pV 1;Iq,L2pV 1;Iq, for all z, h P L2pV 1; Iq.

Hence, we can use Algorithm 1 together with Algorithm 2 to find the optimal control
z˚ P Zad.

Remark 4.4.2. In the cases without control constraints, i.e., zmin “ ´8, zmax “ 8 in
(4.60) and r “ 8 in (4.61), the projection becomes the identity.

For more sophisticated methods, such as Newton-type methods, we refer the reader to [89,
Chapter 2].

4.4.1 Numerical experiments

In the following we apply the gradient descent method and its projected version to solve
the optimal control problems described in Section 4.1 and Section 4.2.

Elliptic example

We consider the optimal control problem described in Section 4.1, i.e., the problem of
finding the optimal control z P Zad that minimizes (4.1) subject to the elliptic state PDE
(4.2) – (4.3) and the control constraints (4.4). Suppose the PDE is defined in the two-
dimensional physical domain D “ p0, 1q2, and equipped with the diffusion coefficient (4.5).
We set a0pxq ” 1 as the mean field and use the parameterized family of fluctuations

ψjpxq “
1

pk2
j ` `

2
j q
ϑ

sinpπkjx1q sinpπ`jx2q for ϑ ą 1 and j P N, (4.62)

where the sequence pkj , `jqjě1 is an ordering of the elements of NˆN, so that the sequence
p}ψj}L8pDqqjě1 is non-increasing. This implies that }ψj}L8pDq „ j´ϑ as j Ñ8 by Weyl’s
asymptotic law for the spectrum of the Dirichlet Laplacian (cf. [152] as well as the examples
in [39, 53]). The target state is chosen to be pupxq “ x2

1 ´ x
2
2 for x “ px1, x2q P D.

We use piecewise linear finite elements with mesh width h “ 2´6 to discretize the spatial
domain D “ p0, 1q2, see Section 7.1 for more details on the FE method. The integrals over
the parametric domain U are discretized using a lattice rule with a single fixed random
shift with n “ 215 points and the truncation dimension s “ 212, see Chapter 5 and
Chapter 6 for the details. More precisely, the lattice QMC rule was generated by using
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4.4 Projected gradient descent

the fast component-by-component (CBC) implementation of the QMC4PDE software [113,
114], with the weights chosen to appropriately accommodate the fluctuations (4.62) in
accordance with theorem 6.2.7 (see Chapter 6 for details on quasi-Monte Carlo methods).
In particular, we note that while all the lattice rules in the subsequent numerical examples
were designed with the adjoint solution q in mind, the same lattice rules have been used
in the sequel to analyze the behavior of the state PDE u as well.
We set ϑ “ 1.5, and fix the space of admissible controls Zad “ tz P L

2pDq : zmin ď z ď
zmax a.e. in Du with

zminpxxxq “

$

’

&

’

%

0 xxx P
“

1
8 ,

3
8

‰

ˆ
“

5
8 ,

7
8

‰

,

0 xxx P
“

5
8 ,

7
8

‰

ˆ
“

5
8 ,

7
8

‰

,

´1 otherwise

and zmaxpxxxq “

$

’

&

’

%

0 xxx P
“

1
8 ,

3
8

‰

ˆ
“

1
8 ,

3
8

‰

,

0 xxx P
“

5
8 ,

7
8

‰

ˆ
“

1
8 ,

3
8

‰

,

1 otherwise.

We consider the regularization parameters α P t0.1, 0.01u for the minimization problem.
To minimize the discretized target functional, we use the projected gradient descent al-
gorithm (Algorithm 1) in conjunction with the projected Armijo (Algorithm 2) rule with
control parameter γ “ 10´4 and backtracking from η “ 1 with the update η Ð 0.5η.
For both experiments, we used z0pxq “ z0px1, x2q “ PZp0, x2q, with PZad

pzqpx1, x2q :“
maxpzminpx1, x2q,minpzpx1, x2q, zmaxpx1, x2qqq, as the initial guess and track the averaged
least square difference of the state u and the target state pu. The results are displayed in
Figure 4.1. We observe that for a larger value of α the algorithm converges faster and the
averaged difference between the state u and the target state pu increases.
The same behaviour is observed in the unconstrained case with Zad “ L2pDq. We fix
the same parameters as before and use the gradient descent algorithm together with the

Figure 4.1: Left: Averaged least square difference of the state u and the target state
pu at each step of the projected gradient descent algorithm

ş

Us
}up¨,y, zkq ´

pu}2L2pDq dy for different values of the regularization parameter α. Right: The
control corresponding to α “ 0.1 after 152 projected gradient descent itera-
tions.
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Figure 4.2: Left: Averaged least square difference of the state u and the target state
pu at each step of the gradient descent algorithm

ş

Us
}up¨,y, zkq ´ pu}2L2pDq dy

for different values of the regularization parameter α. Right: The control
corresponding to α “ 0.1 after 152 gradient descent iterations.

Armijo rule with control parameter γ “ 10´4 and backtracking from η “ 1 with the update
η Ð 0.5η. Again we refer to [89] for details on the algorithm and convergence results. We
choose z0pxq “ x2 as the initial guess and track the averaged least square difference of the
state u and the target state pu. The results are displayed in Figure 4.2.

Parabolic example

We consider the optimal control problem in Section 4.2, i.e., we aim to minimize (4.38). We
fix the physical domain D “ p0, 1q2 and the terminal time T “ 1. The uncertain diffusion
coefficient, defined as in (4.21), is independent of t, and parameterized with mean field
a0pxq ” 1 and the fluctuations

ψjpxq “
1

2
j´ϑ sinpπjx1q sinpπjx2q for ϑ ą 1 and j P N.

We use the implicit Euler finite difference scheme with step size ∆t “ T
500 “ 2 ¨ 10´3 to

discretize the PDE system with respect to the temporal variable22. The spatial part of the
PDE system is discretized using a first order finite element method with mesh size h “ 2´5

(see Section 7.1 for details) and the Riesz operator in the loading term of the adjoint PDE
can be evaluated using (4.22). The integrals in the experiments are approximated using
lattice rules (see Chapter 6 for details) that are generated using the fast CBC algorithm
with weights chosen as in Theorem 6.2.7, where we used the parameter value β1 “ 1
in (4.86). As the target state we choose

pupx, tq :“ χ}x´pc1ptq,c2ptqq}8ď 1
10
pxq pu1px, tq ` χ}x`pc1ptq,c2ptqq´p1,1q}8ď 1

10
pxq pu2px, tq,

22We refer to [154, Chapter 12] for details on discontinuous Galerkin FEM and the connection to the
implicit Euler scheme.
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where

pu1px, tq :“ 10240

ˆ

x1 ´ c1ptq ´
1

10

˙ˆ

x2 ´ c2ptq ´
1

10

˙

ˆ

ˆ

x1 ´ c1ptq `
1

10

˙ˆ

x2 ´ c2ptq `
1

10

˙

,

pu2px, tq :“ 10240

ˆ

x1 ` c1ptq ´
11

10

˙ˆ

x2 ` c2ptq ´
11

10

˙

ˆ

ˆ

x1 ` c1ptq ´
9

10

˙ˆ

x2 ` c2ptq ´
9

10

˙

,

c1ptq :“
1

2
`

1

4
p1´ t10q cosp4πt2q and c2ptq :“

1

2
`

1

4
p1´ t10q sinp4πt2q.

Moreover, we set the parameters appearing in the objective functional (4.18) and adjoint
equation (4.43) to α1 “ 10´3, α2 “ 10´2, and α3 “ 10´7. Furthermore, the initial state is

u0pxq “ sinp2πx1q sinp2πx2q

.
We consider the problem of finding the optimal control z P Zad that minimizes (4.18)
subject to the PDE constraint (4.20). We consider constrained optimization over Zad “

tz P L2pV 1; Iq : }z}L2pV 1;Iq ď 2u and compare our results with the reconstruction obtained
by carrying out unconstrained optimization over Z “ L2pV 1; Iq. To this end, we define
the projection operator

PZad
pwq :“ min

"

2,
2

}w}L2pV ;Iq

*

w for w P L2pV ; Iq

which is used in the constrained setting, while in the unconstrained setting we use PZad
:“

IL2pV ;Iq.

Algorithm 3 Projected gradient descent

Input: feasible starting value w P L2pV ; Iq such that z “ RV w P Z
1: while }w ´ PZad

pw ´ J 1pRV wqq}L2pV ;Iq ąTOL do
2: find step size η using Algorithm 4
3: set w :“ PZad

pw ´ ηJ 1pRV wqq
4: end while

Algorithm 4 Projected Armijo rule

Input: current w P L2pV ; Iq, parameters β, γ P p0, 1q and η0 ą 0
Output: step size η ą 0

1: set η :“ η0

2: while
3: JpPZad

pw ´ ηJ 1pRV wqqq ´ JpRV wq ą ´
γ
η }w ´ PZad

pw ´ ηJ 1pRV wqq}
2
L2pV ;Iq do

4: set η :“ βη
5: end while

To be able to handle elements of Zad Ď L2pV 1; Iq numerically, we apply the projected
gradient method as described in Algorithm 3 together with the projected Armijo rule
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stated in Algorithm 4. Note that, Algorithm 3 and Algorithm 4 coincide with Algorithm 1
and Algorithm 2. However, Algorithm 3 and Algorithm 4 are presented to illustrate the
precise application of the Riesz operator RV . Moreover, evaluating JpRV wq and J 1pRV wq
in Algorithm 3 and Algorithm 4 requires solving the state PDE with the source term
RV w. In particular, the Riesz operator appears in the loading term after finite element
discretization and can thus be evaluated using (4.22). We use the initial guess w0 “ 0.
The parameters of the gradient descent method were chosen to be η0 “ 100, γ “ 10´4,
and β “ 0.1.

We consider the entropic risk measure with θ “ 10 and set ϑ “ 1.3. The reconstructed
optimal control obtained using the bounded set of feasible controls Zad is displayed in
Figure 4.3. The reconstructed optimal control at the terminal time T “ 1 and its pointwise
difference to the control obtained without imposing control constraints are displayed in
Figure 4.4. Finally, the evolution of the objective functional as the number of gradient
descent iterations increases is plotted in Figure 4.5 for the constrained and unconstrained
optimization problems.

0
0.104
0.208
0.312
0.416
0.520
0.624

Figure 4.3: The inverse Riesz transform R´1
V z˚ of the reconstructed optimal control z˚

using the entropic risk measure for several values of t in the constrained setting.

Figure 4.4: Left: the inverse Riesz transform of the control at time t “ 1 in the con-
strained setting after 25 iterations of the projected gradient descent algorithm
using the entropic risk measure. Right: The difference between the reconstruc-
tion obtained in the constrained setting and the corresponding solution in the
unconstrained setting.
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○
○
○○○○○○○○○○○○○○○○○○○○○○○

△
△
△△△△△△△△△△△△△△△△△△△△△△△

○
△

Figure 4.5: The value of the objective functional for each gradient descent iteration. The
results corresponding to the constrained setting and the unconstrained setting
are plotted in blue and red, respectively.

4.5 Error contributions and error expansion

In this section we start the error analysis of the optimal control problems by decomposing
the overall error into its contributions. More precisely, we use the convexity of the objective
functional of the optimal control problems to derive bounds on the error in the optimal
control in terms of the corresponding adjoint states. The error in the adjoint states is then
decomposed into its contributions and analyzed separately in Chapter 5, Chapter 6, and
Section 7.1. In fact, the theoretical results for the different error contributions developed
in this thesis are not limited to the application to optimal control problems, but cover
a much broader class of problems, see Chapter 5, Chapter 6, and Section 7.1 for further
details.
Let X be a separable Banach space and let the dimensionally truncated sequence y P U
be denoted by

yďs :“ py1, y2, . . . , ys, 0, 0, . . .q.

In the case of an affine parameterization of the random input field (4.5) or (4.21) this
corresponds to a truncation of the series at s terms, i.e.,

apx,yq “ a0pxq `
ÿ

jě1

yjψjpxq « a0pxq `
s
ÿ

j“1

yjψjpxq “ apx,yďsq, x P D.

The involved integrals then become integrals over a finite-dimensional domain Us, i.e.,

Ipfq :“

ż

U
fpyqµpdyq «

ż

Us

fpyďsqµpdyďsq “: Ispfq, f P L1
µpU,X q.

Dimensionally truncated quantities are denoted with the subscript s, e.g., uspyq :“ upyďsq.
In Section 5.3 we provide error bounds and convergence rates for the dimension truncation
error in a very general setting.
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Once the dimension of the parameterization has been truncated, we employ an n-point
cubature rule to approximate the s-dimensional integrals, i.e.,

Ispfq “

ż

Us

fpyďsqµpdyďsq «
n
ÿ

i“1

αifpy
piqq “: Qs,npfq, f P L1

µpUs,X q

for cubature weights αi P R for each i “ 1, . . . , n and nodes ypiq P Rs carefully chosen
according to a cubature rule. In this work we focus on randomly shifted rank-1 lattice rules,
which are quasi-Monte Carlo rules for integration, see Section 7.2.2 for a precise describtion
of the methods with rigorous error bounds and convergence rates. QMC methods are
particularly well-suited for optimization since they preserve convexity due to their equal
weights, i.e., αi “

1
n for all i “ 1, . . . , n.

Quantities that depend on the number of cubature points n will be denoted with the
subscript n.
Finally, one can use, e.g., finite element methods to discretize the PDEs in the spatial
variables. Spatially discretized objects will be denoted with the subscript h, e.g., zh
denotes the discretized control on a finite element subspace.

4.5.1 Elliptic PDE constraint

In the following we consider a discretization of problem (4.1), (4.2), (4.3), and (4.4). Given
s P N and y P U , we truncate the sum in (4.5) after s terms, i.e., we set yj “ 0 for j ě s`1.
For every y P U and every control z P L2pDq we denote by

uspy, ¨, zq :“ upyďs, ¨, zq

the dimensionally truncated state, i.e., the unique solution of the parametric weak problem
(4.8) corresponding to the dimensionally truncated diffusion coefficient aspyq :“ apyďsq.
Similarly we write qspy, ¨, zq :“ qpyďs, ¨, zq for any y P U and any z, pu P L2pDq for
the unique solution of the adjoint parametric weak problem (4.17) corresponding to the
dimensionally truncated diffusion coefficient and truncated right-hand side uspy, ¨, zq ´ pu.
We further assume that we have access only to a finite element discretization us,hpy, ¨, zq
of the truncated state, to be defined precisely in Section 7.1. We write qs,hpy, ¨, zq for the
finite element discretization of the truncated adjoint state corresponding to us,hpy, ¨, zq.
We also write uspy, ¨, zq “ Syďz and qspy, ¨, zq “ Syďpuspy, ¨, zq ´ puq in conjunction with
us,hpy, ¨, zq “ Syďs,hz and qs,hpy, ¨, zq “ Syďs,hpus,hpy, ¨, zq ´ puq.
Finally we use an n-point quasi-Monte Carlo approximation for the integral over Us leading
to the following discretization of (4.15)

min
zPZad

Js,h,npzq , Js,h,npzq :“
1

2n

n
ÿ

i“1

}Sypiq,hz ´ pu}2L2pDq `
α

2
}z}2L2pDq , (4.63)

for quadrature points ypiq P Us, i P t1, . . . , nu, to be defined precisely in Section 7.2.2. Since
the error splitting will be based on the convexity of the problem, it is important to use
cubature methods with positive weights in order to retain the convexity after discretization.
In analogy to (4.16) it follows that the gradient of Js,h,n, i.e., the representer of the Fréchet
derivative of Js,h,n is given by

∇Js,h,npzq “
1

n

n
ÿ

i“1

qs,hpy
piq, ¨, zq ` αz .
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Due to the positive weights of the quadrature rule, (4.63) is still a convex minimization
problem. Existence and uniqueness of the solution z˚s,h,n of (4.63) follow by the previous
arguments.
We note that the optimal control z˚s,h,n is implicitly discretized in terms of the FE dis-
cretization of the solution operator, see [88].

Lemma 4.5.1. Let z˚ be the unique minimizer of (4.15) and let z˚s,h,n be the unique
minimizer of (4.63). Then, we have

}z˚ ´ z˚s,h,n}L2pDq ď
1

α

›

›

›

›

ż

U
qpy, ¨, z˚q dy ´

1

n

n
ÿ

i“1

qs,hpy
piq, ¨, z˚q

›

›

›

›

L2pDq

, (4.64)

for quadrature points ypiq P
“

´1
2 ,

1
2

‰s
, i P t1, . . . , nu.

Proof. By the optimality of z˚s,h,n it holds that x∇Js,h,npz˚s,h,nq, z ´ z˚s,h,nyL2pDq ě 0 for all
z P Zad, and thus in particular x∇Js,h,npz˚s,h,nq, z˚´ z˚s,h,nyL2pDq ě 0. Similarly it holds for
all zZad that x∇Jpz˚q, z´z˚yL2pDq ě 0 and thus in particular x´∇Jpz˚q, z˚´z˚s,h,nyL2pDq ě

0. Adding these inequalities leads to

x∇Js,h,npz˚s,h,nq ´∇Jpz˚q, z˚ ´ z˚s,h,nyL2pDq ě 0 .

Thus

α}z˚ ´ z˚s,h,n}
2
L2pDq ď α}z˚ ´ z˚s,h,n}

2
L2pDq `

@

∇Js,h,npz˚s,h,nq ´∇Jpz˚q, z˚ ´ z˚s,h,n
D

L2pDq

“
@

∇Js,h,npz˚s,h,nq ´ αz˚s,h,n ´∇Jpz˚q ` αz˚, z˚ ´ z˚s,h,n
D

L2pDq

“
@

∇Js,h,npz˚s,h,nq ´ αz˚s,h,n ´∇Js,h,npz˚q ` αz˚, z˚ ´ z˚s,h,n
D

L2pDq

`
@

∇Js,h,npz˚q ´ αz˚ ´∇Jpz˚q ` αz˚, z˚ ´ z˚s,h,n
D

L2pDq

ď

B

1

n

n
ÿ

i“1

qs,hpy
piq, ¨, z˚q ´

ż

U
qpy, ¨, z˚qdy, z˚ ´ z˚s,h,n

F

L2pDq

ď

›

›

›

›

1

n

n
ÿ

i“1

qs,hpy
piq, ¨, z˚q ´

ż

U
qpy, ¨, z˚q dy

›

›

›

›

L2pDq

}z˚ ´ z˚s,h,n}L2pDq ,

where in the fourth step we used the strong convexity of the objective function, i.e., we
used x∇Js,h,npz˚s,h,nq´∇Js,h,npz˚q`αpz˚´z˚s,h,nq, z˚´z˚s,h,ny ď 0. The result then follows
from α ą 0.

We can split up the error on the right-hand side in (4.64) into dimension truncation error,
FE discretization error and QMC cubature error as follows

ż

U
qpy,x, zq dy ´

1

n

n
ÿ

i“1

qs,hpy
piq,x, zq “

ż

U
pqpy,x, zq ´ qspy,x, zqq dy

looooooooooooooooooomooooooooooooooooooon

truncation error

(4.65)

`

ż

Us

pqspy,x, zq ´ qs,hpy,x, zqq dyďs
looooooooooooooooooooooomooooooooooooooooooooooon

FE discretization error

`

ż

Us

qs,hpy,x, zq dyďs ´
1

n

n
ÿ

i“1

qs,hpy
piq,x, zq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

QMC quadrature error

.

These errors can be controlled as shown in Section 5.3, Section 7.1 and Section 7.2.2 below.
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4 Examples of optimal control problems

4.5.2 Parabolic PDE constraint

Let z˚ denote the solution of (4.38) and let z˚s,n be the minimizer of

Js,npzq :“ Rs,npΦys pzqq `
α3

2
}z}2L2pV 1;Iq,

where Φys pzq “ Φyďspzq is the truncated version of Φypzq defined in (4.37), and Rs,n
is an approximation of the risk measure R, for which the integrals over the parameter
domain U “ r´1

2 ,
1
2 s

N are replaced by s-dimensional integrals over Us “ r´
1
2 ,

1
2 s
s and then

approximated by an n-point randomly-shifted QMC rule:

Rs,npΦys pzqq “

$

’

’

’

&

’

’

’

%

1

n

n
ÿ

i“1

Φy
piq

s pzq for the expected value,

1

θ
ln
´ 1

n

n
ÿ

i“1

exp
`

θΦy
piq

s pzq
˘

¯

for the entropic risk measure,

for some risk aversion parameter θ P p0,8q, and for carefully chosen QMC points ypiq,
i “ 1, . . . , n, involving a uniformly sampled random shift ∆ P r0, 1ss, see Section 7.2.2.
We have seen in the proof of Corollary 4.2.5 that the risk measures considered in the
example for the parabolic PDE constraint are convex and the objective function J , see
(4.36), is thus strongly convex. It is important to note that the n-point QMC rule preserves
the convexity of the risk measure, so Js,n is a strongly convex function, because it is a
sum of a convex and a strongly convex function. Similar to the elliptic example, we
therefore have the optimality conditions xJ 1s,npz

˚
s,nq, z ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq ě 0 for all

z P Zad and thus in particular xJ 1s,npz
˚
s,nq, z

˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq ě 0. Similarly, we have
xJ 1pz˚q, z´ z˚yL2pV ;Iq,L2pV 1;Iq ě 0, and in particular x´J 1pz˚q, z˚´ z˚s,nyL2pV ;Iq,L2pV 1;Iq ě 0.
Adding these inequalities gives

xJ 1s,npz
˚
s,nq ´ J

1pz˚q, z˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq ě 0 .

Hence

α3}z
˚ ´ z˚s,n}

2
L2pV 1;Iq

ď α3}z
˚ ´ z˚s,n}

2
L2pV 1;Iq ` xJ

1
s,npz

˚
s,nq ´ J

1pz˚q, z˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq

“ xJ 1s,npz
˚
s,nq ´ α3R

´1
V z˚s,n ´ J

1pz˚q ` α3R
´1
V z˚, z˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq

“ xJ 1s,npz
˚
s,nq ´ α3R

´1
V z˚s,n ´ J

1
s,npz

˚q ` α3R
´1
V z˚, z˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq

` xJ 1s,npz
˚q ´ α3R

´1
V z˚ ´ J 1pz˚q ` α3R

´1
V z˚, z˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq

ď xJ 1s,npz
˚q ´ α3R

´1
V z˚ ´ J 1pz˚q ` α3R

´1
V z˚, z˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq

ď }J 1s,npz
˚q ´ α3R

´1
V z˚ ´ J 1pz˚q ` α3R

´1
V z˚}L2pV ;Iq}z

˚ ´ z˚s,n}L2pV 1;Iq ,

where we used the α3-strong convexity of J 1s,n in the fourth step, i.e.,

xJ 1s,npz
˚
s,nq ´ J

1
s,npz

˚q ´ α3R
´1
V pz

˚ ´ z˚s,nq, z
˚ ´ z˚s,nyL2pV ;Iq,L2pV 1;Iq ď 0 .

It follows

}z˚ ´ z˚s,n}L2pV 1;Iq ď
1

α3
}J 1pz˚q ´ J 1s,npz

˚q}L2pV ;Iq.
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4.5 Error contributions and error expansion

We will next expand this upper bound in order to split it into the different error contribu-
tions: dimension truncation error and QMC error. The different error contributions are
then analyzed separately in the Chapter 5 and Chapter 6 for both risk measures.
In the case of the expected value, it follows from (4.41) that

E∆}z
˚ ´ z˚s,n}

2
L2pV 1;Iq ď

1

α2
3

E∆

›

›

›

ż

U
qy1 dy ´

1

n

n
ÿ

i“1

qy
piq

1,s

›

›

›

2

L2pV ;Iq

ď
2

α2
3

›

›

›

ż

U
pqy1 ´ q

y
1,sqdy

›

›

›

2

L2pV ;Iq
`

2

α2
3

E∆

›

›

›

ż

Us

qy1,s dy ´
1

n

n
ÿ

i“1

qy
piq

1,s

›

›

›

2

L2pV ;Iq
, (4.66)

where qy1,s :“ q
yďs
1 denotes the truncated version of qy1 , and E∆ denotes the expected value

with respect to the random shift ∆ P r0, 1ss.
In the case of the entropic risk measure, we recall that J 1pzq is given by (4.48). Let

T :“

ż

U
exp

`

θΦypz˚q
˘

dy , Ts,n :“
1

n

n
ÿ

i“1

exp
`

θΦy
piq

s pz˚s,nq
˘

,

S :“

ż

U
exp

`

θΦypz˚q
˘

qy1 pz
˚q dy , Ss,n :“

1

n

n
ÿ

i“1

exp
`

θΦy
piq

s pz˚s,nq
˘

qy
piq

1,s pz
˚
s,nq,

then we have

α3

›

›z˚ ´ z˚s,n
›

›

L2pV 1;Iq
ď

›

›

›

S

T
´
Ss,n
Ts,n

›

›

›

L2pV ;Iq
“

›

›S Ts,n ´ Ss,n T
›

›

L2pV ;Iq

T Ts,n

“

›

›S Ts,n ´ S T ` S T ´ Ss,n T
›

›

L2pV ;Iq

T Ts,n

ď

›

›S
›

›

L2pV ;Iq

ˇ

ˇT ´ Ts,n
ˇ

ˇ

T Ts,n
`

›

›S ´ Ss,n
›

›

L2pV ;Iq

Ts,n

ď µ
ˇ

ˇT ´ Ts,n
ˇ

ˇ`
›

›S ´ Ss,n
›

›

L2pV ;Iq
, (4.67)

where we used T ě 1 and Ts,n ě 1 and, using the abbreviation gypx, tq :“
exppθΦypzqq qy1 px, tq we get

}S}2L2pV ;Iq “

ż

I

›

›

›

ż

U
gyp¨, tqdy

›

›

›

2

V
dt “

ż

I

ż

D

ˇ

ˇ

ˇ
∇
´

ż

U
gypx, tq dy

¯ˇ

ˇ

ˇ

2
dx dt

ď

ż

U

ż

I

ż

D

ˇ

ˇ∇gypx, tq
ˇ

ˇ

2
dxdt dy “

ż

U

›

›gy
›

›

2

L2pV ;Iq
dy ď µ2 ,

where we used Theorem 4.6.12 with ν “ 0.
We can write

E∆

›

›

›

S

T
´
Ss,n
Ts,n

›

›

›

2

L2pV ;Iq
ď 2µ2 E∆

ˇ

ˇT ´ Ts,n
ˇ

ˇ

2
` 2E∆

›

›S ´ Ss,n
›

›

2

L2pV ;Iq
. (4.68)

For the first term on the right-hand side of (4.68) we obtain

E∆

ˇ

ˇT ´ Ts,n
ˇ

ˇ

2
ď 2

ˇ

ˇT ´ Ts
ˇ

ˇ

2
` 2E∆

ˇ

ˇTs ´ Ts,n
ˇ

ˇ

2
, (4.69)

and for the second term we have

E∆}S ´ Ss,n}
2
L2pV ;Iq ď 2}S ´ Ss}

2
L2pV ;Iq ` 2E∆}Ss ´ Ss,n}

2
L2pV ;Iq. (4.70)
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4 Examples of optimal control problems

Remark 4.5.2. Since we have }v1}L2pV ;Iq ď }v}Y for all v “ pv1, v2q P Y by definition,
and thus in particular }

ş

U pq
y
1 ´ qy1,sq dy}L2pV ;Iq ď }

ş

U pq
y ´ qys qdy}Y , we can replace

qy1 , q
y
1,s P L

2pV ; Iq in (4.66) and (4.70) by qy, qys P Y. In order to obtain error bounds and
convergence rates for (4.66) and (4.70), it is then sufficient to derive the results in the
Y-norm, which is slightly stronger than the L2pV ; Iq-norm.

The errors can be controlled as shown in Section 5.3 and Section 7.2.2.
For the parabolic PDE constraint and the parametric operator equation constraints, we
leave out the spatial discretization and instead analyze the remaining error contributions
directly in the respective function space. This technique has the advantage that, in the
presented setting, the derived error bounds and convergence results immediately carry
over to finite element discretizations belonging to conforming finite element subspaces of
the respective function space.

4.5.3 Parametric linear operator constraints

Let z˚ denote the solution of (4.52) and let z˚s,n be the minimizer of

Js,npzq :“
1

2
Rs,n

´

}QA´1pypiqqBz ´ pu}2J
loooooooooooomoooooooooooon

“:rΦy
piq
s pzq

¯

`
α

2
}z}2Z

where, analogously to the setting with the parabolic PDE constraint,Rs,n is an approxima-
tion of the risk measureR, for which the integrals over the parameter domain U “ r´1

2 ,
1
2 s

N

are replaced by s-dimensional integrals over Us “ r´
1
2 ,

1
2 s
s and then approximated by an

n-point randomly-shifted QMC rule:

Rs,npΦys pzqq “

$

’

’

’

&

’

’

’

%

1

n

n
ÿ

i“1

rΦy
piq

s pzq for the expected value,

1

θ
ln
´ 1

n

n
ÿ

i“1

exp
`

θ rΦy
piq

s pzq
˘

¯

for the entropic risk measure,

for some risk aversion parameter θ P p0,8q, and for carefully chosen QMC points ypiq,
i “ 1, . . . , n, involving a uniformly sampled random shift ∆ P r0, 1ss, see Section 7.2.2.
Since the two considered risk measured are convex and thus the objective function J ,
see (4.52), is strongly convex. The n-point QMC rule preserves the convexity of the risk
measure, so Js,n is a strongly convex function. Analogously to the elliptic and the parabolic
examples, we therefore have the optimality conditions xJ 1s,npz

˚
s,nq, z ´ z˚s,nyZ 1,Z ě 0 for

all z P Zad and thus in particular xJ 1s,npz
˚
s,nq, z

˚ ´ z˚s,nyZ 1,Z ě 0. Similarly, we have
xJ 1pz˚q, z ´ z˚yZ 1,Z ě 0, and in particular x´J 1pz˚q, z˚ ´ z˚s,nyZ 1,Z ě 0. Adding these
inequalities gives

xJ 1s,npz
˚
s,nq ´ J

1pz˚q, z˚ ´ z˚s,nyZ 1,Z ě 0 .

Hence, by the same arguments as in the elliptic and parabolic examples, we obtain

}z˚ ´ z˚s,n}Z ď
1

α
}J 1pz˚q ´ J 1s,npz

˚q}Z 1 .

In order to analyzed the error contributions separately in Section 5.3 and Section 7.2.2 we
will expand this upper bound for both risk measures.
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4.5 Error contributions and error expansion

In the case of the expected value, it follows from (4.53) that

E∆}z
˚ ´ z˚s,n}

2
Z ď

1

α2
E∆

›

›

›

ż

U
B1qy dy ´

1

n

n
ÿ

i“1

B1qypiqs

›

›

›

2

Z
ď
C2
B1

α2
E∆

›

›

›

ż

U
qy dy ´

1

n

n
ÿ

i“1

qy
piq

s

›

›

›

2

Z

ď
2C2

B
α2

›

›

›

ż

U
pqy ´ qys qdy

›

›

›

2

Y
`

2C2
B

α2
E∆

›

›

›

ż

Us

qys dy ´
1

n

n
ÿ

i“1

qy
piq

s

›

›

›

2

Y
, (4.71)

where C “ }B1}LpY,Z 1q and qys :“ qyďs denotes the truncated version of qy, defined in
(4.54), and E∆ denotes the expected value with respect to the random shift ∆ P r0, 1ss.

In the case of the entropic risk measure, we recall that J 1pzq is given by (4.57). Let

T :“

ż

U
exp

`

θ rΦypz˚q
˘

dy , Ts,n :“
1

n

n
ÿ

i“1

exp
`

θ rΦy
piq

s pz˚s,nq
˘

,

S :“

ż

U
exp

`

θ rΦypz˚q
˘

B1qypz˚q dy , Ss,n :“
1

n

n
ÿ

i“1

exp
`

θ rΦy
piq

s pz˚s,nq
˘

B1qypiqs pz˚s,nq,

then we have

›

›z˚ ´ z˚s,n
›

›

L2pV 1;Iq
ď

›

›

›

S

T
´
Ss,n
Ts,n

›

›

›

Z 1
“

›

›S Ts,n ´ Ss,n T
›

›

Z 1

T Ts,n

“

›

›S Ts,n ´ S T ` S T ´ Ss,n T
›

›

Z 1

T Ts,n

ď

›

›S
›

›

Z 1
ˇ

ˇT ´ Ts,n
ˇ

ˇ

T Ts,n
`

›

›S ´ Ss,n
›

›

Z 1

Ts,n

ď µ
ˇ

ˇT ´ Ts,n
ˇ

ˇ`
›

›S ´ Ss,n
›

›

Z 1 , (4.72)

where we used T ě 1 and Ts,n ě 1 and, using the abbreviation gypx, tq :“
exppθΦypzqqB1qypx, tq we get

}S}2Z 1 “
›

›

›

ż

U
exp

`

θ rΦypz˚q
˘

B1qypz˚qdy
›

›

›

Z 1
“

ż

U

›

›

›
exp

`

θ rΦypz˚q
˘

B1qypz˚q
›

›

›

Z 1
dy

“

ż

U

›

›gy
›

›

2

Z 1 dy ď µ2 ,

where we used Theorem 4.6.19 with ν “ 0.

We can write

E∆

›

›

›

S

T
´
Ss,n
Ts,n

›

›

›

2

Z 1
ď 2µ2 E∆

ˇ

ˇT ´ Ts,n
ˇ

ˇ

2
` 2E∆

›

›S ´ Ss,n
›

›

2

Z 1 . (4.73)

For the first term on the right-hand side of (4.73) we obtain

E∆

ˇ

ˇT ´ Ts,n
ˇ

ˇ

2
ď 2

ˇ

ˇT ´ Ts
ˇ

ˇ

2
` 2E∆

ˇ

ˇTs ´ Ts,n
ˇ

ˇ

2
, (4.74)

and for the second term we have

E∆}S ´ Ss,n}
2
Z 1 ď 2}S ´ Ss}

2
Z 1 ` 2E∆}Ss ´ Ss,n}

2
Z 1 . (4.75)
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4 Examples of optimal control problems

The different errors can be controlled as shown in Section 5.3 and Section 7.2.2. Recall
that B1 is a bounded linear operator and can be pulled out before the error estimation,
i.e.,

}S ´ Ss,n}Z 1 “

›

›

›

›

›

ż

U
exp

`

θ rΦypz˚q
˘

B1qypz˚qdy ´
1

n

n
ÿ

i“1

exp
`

θ rΦy
piq

s pz˚s,nq
˘

B1qypiqs pz˚s,nq

›

›

›

›

›

Z 1

ď CB

›

›

›

›

›

ż

U
exp

`

θ rΦypz˚q
˘

qypz˚q dy ´
1

n

n
ÿ

i“1

exp
`

θ rΦy
piq

s pz˚s,nq
˘

qy
piq

s pz˚s,nq

›

›

›

›

›

Y

.

4.6 Regularity analysis

In the previous section we have seen that the error in the optimal control can be bounded
by the error in the derivative of the objective functional. This derivative typically involves
a function of the adjoint or dual PDE solution. By a simple application of the triangle
inequality, the overall error can then be decomposed into its different contributions. The
error bounds and convergence rates for the different error contributions rely fundamentally
on the parametric regularity of the quantity of interest. In preparation for the application
of the theoretical results derived in Chapter 5 and Chapter 6 to the optimal control
problems described in Chapter 4, we investigate the parametric regularity of the integrands
in the bounds of the errors in the optimal control appearing in (4.64), (4.66), (4.67), (4.71),
and (4.72).
We start this section with recalling some well-known and frequently used results. An
important result for the differentiation is Leibniz generalized product rule: Let ν,m P F .
Then it holds for sufficiently regular functions f, g, that

Bνpfgq “
ÿ

mďν

ˆ

ν

m

˙

BmfBν´mg .

Another frequently used result is the following recursive bound.

Lemma 4.6.1 ([119, Lemma 5]). Given a sequence of nonnegative numbers b “ pbjqjPN0,
let pAνqνPF and pBνqνPF be nonnegative numbers satisfying for any ν P F the inequality

Aν ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

bν´mAm ` Bν .

Then

Aν ď
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|
bkBν´k

for all ν P F .

In the regularity analysis we will frequently use a number of combinatorial identities, which
are listed below. As stated in [113, equation (9.3)] the identity

ÿ

mďν,|m|“i

ˆ

ν

m

˙

“

ˆ

|ν|

i

˙

“
|ν|!

i!p|ν| ´ iq!
. (4.76)
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4.6 Regularity analysis

follows from considering the number of ways to pick i objects from a set of bags containing
in total |ν| objects. It then follows that

ÿ

mďν

ˆ

ν

m

˙

|m|!|ν ´m|! “

|ν|
ÿ

i“0

ÿ

mďν,|m|“i

ˆ

ν

m

˙

i!p|ν| ´ iq! “

|ν|
ÿ

i“0

|ν|! “ p|ν| ` 1q!, (4.77)

as can be found in [113, equation (9.4)]. Moreover, it follows that

ÿ

mďν

ˆ

ν

m

˙

|m|!

pln 2q|m|
“

|ν|
ÿ

i“0

ÿ

mďν,|m|“i

ˆ

ν

m

˙

i!

pln 2qi
“

|ν|
ÿ

i“0

|ν|!

p|ν| ´ iq!

1

pln 2qi

“ |ν|!

ˆ

1

0!pln 2q|ν|
`

1

1!pln 2q|ν|´1
` . . .`

1

|ν|!pln 2q0

˙

ď
|ν|!

pln 2q|ν|

ˆ

1

0!pln 2q0
`

1

1!pln 2q´1
` . . .`

1

|ν|!pln 2q´|ν|

˙

ď
|ν|!

pln 2q|ν|
eln 2 “ 2

|ν|!

pln 2q|ν|
(4.78)

and

ÿ

mďν,m‰ν

ˆ

ν

m

˙

p|m| ` 1q!

pln 2q|m|
“

|ν|´1
ÿ

i“0

ÿ

mďν,|m|“i

ˆ

ν

m

˙

pi` 1q!

pln 2qi

“ |ν|!

|ν|´1
ÿ

i“0

i` 1

p|ν| ´ iq!pln 2qi

“ |ν|!

ˆ

|ν|

1!pln 2q|ν|´1
`

|ν| ´ 1

2!pln 2q|ν|´2
` . . .`

1

|ν|!pln 2q0

˙

ď
|ν|!

pln 2q|ν|

ˆ

|ν|

1!pln 2q´1
`

|ν|

2!pln 2q´2
` . . .`

|ν|

|ν|!pln 2q´|ν|

˙

ď
|ν|!|ν|peln 2 ´ 1q

pln 2q|ν|
ď
p|ν| ` 1q!

pln 2q|ν|
, (4.79)

By adding the m “ ν term on both sides of (4.79) we get

ÿ

mďν

ˆ

ν

m

˙

p|m| ` 1q!

pln 2q|m|
ď 2

p|ν| ` 1q!

pln 2q|ν|
. (4.80)

4.6.1 Elliptic PDE

In this subsection we will derive bounds on the mixed first partial derivatives of the
parametric solution u as well as bounds on the mixed first partial derivatives of the adjoint
parametric solution q. For the solution up¨,y, zq of the state equation (4.8) the following
result is well-known.

Lemma 4.6.2. For every z P V 1, every y P U and every ν P D we have

}pBνuqp¨,y, zq}V :“ }∇pBνuqp¨,y, zq}L2pDq ď |ν|! b
ν }z}V 1

amin
.
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This lemma can be found, e.g., in [31].
In contrast to the parametric weak problem (4.8), the right-hand side of the adjoint para-
metric weak problem (4.17) depends on the parameters y P U . In particular, the problem
is of the following form: for every y P U , find qp¨,y, zq P V such that

ż

D
apx,yq∇qpx,y, zq ¨∇vpxq dx “

ż

D
f̃px,y, zqvpxqdx , v P V , (4.81)

where the right-hand side f̃px,y, zq :“ upx,y, zq´ pupxq depends on z P L2pDq and y P U .
Lemma 4.6.3 below gives a bound for the mixed derivatives of the solution qp¨,y, zq P
V of (4.81). Similar regularity results to the following can be found in [111] (uniform
case) and [24] (log-normal case) for problems with stochastic controls z, depending on
y. In particular, in the unconstrained case Zad “ L2pDq the optimality conditions in
Section 4.1.4 reduce to an affine parametric linear saddle point operator and the theory,
e.g., from [111, 146] can be applied.

Lemma 4.6.3. For every z P L2pDq, every y P U and every ν P F , we have for the
corresponding adjoint state qp¨,y, zq that

}pBνqqp¨,y, zq}V ď p|ν| ` 1q! bν Cq p}z}L2pDq ` }pu}L2pDqq ,

where Cq :“ max t c1
amin

,
c21c2
a2

min
u.

Proof. The case ν “ 0 follows from the uniform bounded invertibility of Sy

}qp¨,y, zq}V ď Cqp}z}L2pDq ` }pu}L2pDqq. (4.82)

Now consider ν ‰ 0. Applying the mixed derivative operator Bν to (4.81) and using the
Leibniz product rule, we obtain the identity

ż

D

˜

ÿ

mďν

ˆ

ν
m

˙

pBmaqpx,yq∇pBν´mqqpx,y, zq ¨∇vpxq
¸

dx (4.83)

“

ż

D
pBν f̃qpx,y, zq vpxq dx @v P V .

Due to the linear dependence of apx,yq on the parameters y, the partial derivative Bm of
a with respect to y satisfies

pBmaqpx,yq “

$

’

&

’

%

apx,yq if m “ 0 ,

ψjpxq if m “ ej ,

0 else .

Setting v “ pBνqqp¨,y, zq and separating out the m “ 0 term, we obtain

ż

D
apx,yq|∇pBνqqpx,y, zq|2 dx

“ ´
ÿ

jPsupppνq

νj

ż

D
ψjpxq∇pBν´ejqqpx,y, zq ¨∇pBνqqpx,y, zqdx

`

ż

D
pBν f̃qpx,y, zqpBνqqpx,y, zq dx ,
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which yields

amin}pB
νqqp¨,y, zq}2V ď

ÿ

jě1

νj}ψj}L8pDq}pB
ν´ejqqp¨,y, zq}V }pB

νqqp¨,y, zq}V

` }pBν f̃qp¨,y, zq}V 1}pB
νqqp¨,y, zq}V

“
ÿ

jě1

νj}ψj}L8pDq}pB
ν´ejqqp¨,y, zq}V }pB

νqqp¨,y, zq}V

` }pBν f̃qp¨,y, zq}V 1}pB
νqqp¨,y, zq}V ,

and hence

}pBνqqp¨,y, zq}V ď
ÿ

jě1

νjbj}pB
ν´ejqqp¨,y, zq}V `

}pBν f̃qp¨,y, zq}V 1

amin
,

where bj :“
}ψj}L8pDq

amin
for j P N. With f̃p¨,y, zq “ up¨,y, zq ´ pup¨q this reduces to

}pBνqqp¨,y, zq}V ď
ÿ

jě1

νjbj}pB
ν´ejqqp¨,y, zq}V `

}pBνuqp¨,y, zq}V 1

amin
. (4.84)

With Lemma 4.6.2 we get

}pBνuqp¨,y, zq}V 1 ď c1c2}pB
νuqp¨,y, zq}V ď c1c2 |ν|! b

ν }z}V 1

amin
,

where c1, c2 ą 0 are embedding constants, see (4.6) and (4.7). Then (4.84) becomes, for
ν ‰ 0,

}pBνqqp¨,y, zq}V ď
ÿ

jě1

νjbj}pB
ν´ejqqp¨,y, zq}V ` c1c2 |ν|! b

ν }z}V 1

a2
min

.

Now we apply Lemma 4.6.1 to obtain the final bound. For this to work we need the above
recursion to hold also for the case ν “ 0, which is not true when we compare it with the
a-priori bound (4.82). We therefore enlarge the constants so that the recursion becomes

}pBνqqp¨,y, zq}V ď
ÿ

jě1

νjbj}pB
ν´ejqqp¨,y, zq}V ` |ν|! b

ν Cq p}z}L2pDq ` }pu}L2pDqq ,

which by Lemma 4.6.1 gives

}pBνqqp¨,y, zq}V ď
ÿ

mďν

ˆ

ν
m

˙

|m|! bm |ν ´m|! bν´mCq p}z}L2pDq ` }pu}L2pDqq

“ bν Cq p}z}L2pDq ` }pu}L2pDqq
ÿ

mďν

ˆ

ν
m

˙

|m|! |ν ´m|!

“ bν Cq p}z}L2pDq ` }pu}L2pDqq p|ν| ` 1q! ,

where the last equality follows from (4.77).
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4.6.2 Parabolic PDE

The idea of the proofs in the regularity analysis of the parabolic PDE follow mainly the
ideas of the proof of the elliptic PDE. A novelty is the regularity analysis of the solution
of the adjoint state in conjunction with the entropic risk measure.
The following regularity result for the state uy was proved in [111].

Lemma 4.6.4. Let f “ pz, u0q P Y 1. For all ν P F and all y P U , we have

}Bνyu
y}X ď

}f}Y 1

β1
|ν|! bν , (4.85)

where β1 is as described in (4.26) and the sequence b “ pbjqjě1 is defined by

bj :“
1

β1
sup
tPI
}ψjp¨, tq}L8pDq. (4.86)

Parametric regularity of the adjoint state

In this subsection we derive an a-priori bound for the adjoint state and the partial deriva-
tives of the adjoint state with respect to the parametric variables. Existing results, e.g.,
[111, Theorem 4], do not directly apply to our case, since the right-hand side of the affine
linear, parametric operator equation depends on the parametric variable, more specifically

pByq1qy “ pα1RV ` α2E
1
TET qpu

y ´ puq.

Lemma 4.6.5. Let α1, α2 ě 0 and α3 ą 0, with α1 ` α2 ą 0. Let f “ pz, u0q P Y 1 and
pu P X . For every y P U , let uy P X be the solution of (4.20) and then let qy P Y be the
solution of (4.32) with fdual given by (4.40). Then we have

}qy}Y ď
α1 ` α2 }ET }

2
XÑL2pDq

β1

ˆ

}f}Y 1

β1
` }pu}X

˙

,

where β1 is described in (4.26).

Proof. By the bounded invertibility of By and its dual operator, we have

}qy}Y ď }ppB
yq1q´1}X 1ÑY }pα1RV ` α2E

1
TET qpu

y ´ puq}X 1 ,

with }ppByq1q´1}X 1ÑY ď 1{β1,

}RV pu
y ´ puq}X 1 ď }RV pu

y ´ puq}L2pV 1;Iq “ }u
y ´ pu}L2pV ;Iq ď }u

y ´ pu}X ,

}E1TET pu
y ´ puq}X 1 ď }ET }

2
XÑL2pDq }u

y ´ pu}X ,

}uy ´ pu}X ď }u
y}X ` }pu}X ď

}f}Y 1

β1
` }pu}X ,

where we used (4.27). Combining the estimates gives the desired result.

Theorem 4.6.6. Let α1, α2 ě 0 and α3 ą 0, with α1 ` α2 ą 0. Let f “ pz, u0q P Y 1 and
pu P X . For every y P U , let uy P X be the solution of (4.20) and then let qy P Y be the
solution of (4.32) with fdual given by (4.40). Then for every ν P F we have

}Bνyq
y}Y ď

α1 ` α2 }ET }
2
XÑL2pDq

β1

´

}f}Y 1

β1
` }pu}X

¯

p|ν| ` 1q! bν ,

where β1 is described in (4.26) and the sequence b “ pbjqjě1 is defined in (4.86).
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Proof. For ν “ 0 the assertion follows from the previous lemma. For ν ‰ 0 we take
derivatives Bνy ppB

yq1qyq “ Bνy ppα1RV ` α2E
1
TET qpu

y ´ puqq and use the Leibniz product
rule to get

ÿ

mďν

ˆ

ν

m

˙

`

Bmy pB
yq1

˘`

Bν´my qy
˘

“ pα1RV ` α2E
1
TET q

`

Bνy pu
y ´ puq

˘

.

Separating out the m “ 0 term, we obtain

pByq1pBνyq
yq

“ ´
ÿ

0‰mďν

ˆ

ν

m

˙

`

Bmy pB
yq1

˘`

Bν´my qy
˘

` pα1RV ` α2E
1
TET q

`

Bνy pu
y ´ puq

˘

.

By the bounded invertibility of pByq1, we have }ppByq1q´1}X 1ÑY ď
1
β1

and

}Bνyq
y}Y ď

ÿ

0‰mďν

ˆ

ν

m

˙

}ppByq1q´1Bmy pB
yq1}YÑY }B

ν´m
y qy}Y

` }ppByq1q´1}X 1ÑY }pα1RV ` α2E
1
TET qpB

ν
y pu

y ´ puqq}X 1

ď
ÿ

0‰mďν

ˆ

ν

m

˙

1

β1
}Bmy pB

yq1}YÑX 1 }B
ν´m
y qy}Y

`
α1 ` α2 }ET }

2
XÑL2pDq

β1
}Bνy pu

y ´ puq}X .

Recall that

xv, pByq1wyX ,X 1

“

ż

I
xv,´ B

BtwyV,V 1 dt`

ż

I

ż

D
ay∇v ¨∇w dx dt`

ż

D
ETwET v dx.

For m ‰ 0, we conclude with (4.21) that xv, BmpByq1wyX ,X 1 “
ş

I

ş

D ψj ∇v ¨ ∇w dx dt if
m “ ej , and otherwise it is zero. Hence for m “ ej we obtain for all v P Y that

}BmpByq1v}X 1 “ sup
wPX

|xv, BmpByq1wyX ,X 1 |

}w}X
“ sup

wPX

|
ş

I

ş

D ψj ∇v ¨∇w dx dt|

}w}X

ď bj sup
wPX

}v}L2pV ;Iq }w}L2pV ;Iq

}w}X
ď bj}v}Y .

Hence

}Bνyq
y}Y ď

ÿ

jPsupppνq

νj bj }B
ν´ej
y qy}Y `

α1 ` α2 }ET }
2
XÑL2pDq

β1
}Bνy pu

y ´ puq}X .

By Lemma 4.6.5 this recursion is true for ν “ 0 and we may apply Lemma 4.6.1 to get

}Bνyq
y}Y ď

ÿ

mďν

ˆ

ν

m

˙

|m|! bm
´α1 ` α2 }ET }

2
XÑL2pDq

β1
}Bν´my puy ´ puq}X

¯

.
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From (4.27) and (4.85) we have

}Bνy pu
y ´ puq}X ď

#

1
β1
}f}Y 1 ` }pu}X if ν “ 0,

1
β1
}f}Y 1 |ν|! b

ν if ν ‰ 0.

We finally arrive at

}Bνyq
y}Y ď

ÿ

mďν
m‰ν

ˆ

ν

m

˙

|m|! bm
α1 ` α2 }ET }

2
XÑL2pDq

β1

}f}Y 1

β1
|ν ´m|! bν´m

` |ν|! bν
α1 ` α2 }ET }

2
XÑL2pDq

β1

´

}f}Y 1

β1
` }pu}X

¯

“ p|ν| ` 1q! bν
α1 ` α2 }ET }

2
XÑL2pDq

β1

}f}Y 1

β1

` |ν|! bν
α1 ` α2 }ET }

2
XÑL2pDq

β1
}pu}X

ď p|ν| ` 1q! bν
α1 ` α2 }ET }

2
XÑL2pDq

β1

´

}f}Y 1

β1
` }pu}X

¯

,

where the equality follows from (4.77).

Regularity analysis for the entropic risk measure

Our goal is to use QMC to approximate the following high-dimensional integrals appear-
ing in the denominator and numerator of the gradient (4.48). To this end, we develop
regularity bounds for the integrands.

Lemma 4.6.7. Let θ ą 0, α1, α2 ě 0, with α1 ` α2 ą 0. Let f “ pz, u0q P Y 1 and pu P X .
For every y P U , let uy P X be the solution of (4.20) and let Φy be as in (4.37). Then for
all ν P F we have

|BνyΦy| ď
α1 ` α2 }ET }

2
XÑL2pDq

2

ˆ

}f}Y 1

β1
` }pu}X

˙2

p|ν| ` 1q! bν ,

where the sequence b “ pbjqjě1 is defined by (4.86).

Proof. The case ν “ 0 is precisely (4.45). Consider now ν ‰ 0. We estimate the partial
derivatives of Φy by differentiating under the integral sign and using the Leibniz product
rule in conjunction with the Cauchy–Schwarz inequality to obtain

|BνyΦy| ď
α1 ` α2 }ET }

2
XÑL2pDq

2

ÿ

mďν

ˆ

ν

m

˙

}Bmpuy ´ puq}X }B
ν´mpuy ´ puq}X .

Separating out the m “ 0 and m “ ν terms and utilizing (4.85), we obtain

ÿ

mďν

ˆ

ν

m

˙

}Bmpuy ´ puq}X }B
ν´mpuy ´ puq}X

“ 2 }uy ´ pu}X }B
νuy}X `

ÿ

mďν
0‰m‰ν

ˆ

ν

m

˙

}Bmuy}X }B
ν´muy}X
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ď 2

ˆ

}f}Y 1

β1
` }pu}X

˙

}f}Y 1

β1
|ν|! bν `

ˆ

}f}Y 1

β1

˙2

bν
ÿ

mďν
0‰m‰ν

ˆ

ν

m

˙

|m|! |ν ´m|!,

where the sum over m can be rewritten as

|ν|´1
ÿ

`“1

`! p|ν| ´ `q!
ÿ

mďν, |m|“`

ˆ

ν

m

˙

“

|ν|´1
ÿ

`“1

`! p|ν| ´ `q!

ˆ

|ν|

`

˙

“ |ν|! p|ν| ´ 1q,

where we used the identity (4.76). Combining the estimates yields the required result.

We state a recursive form of Faà di Bruno’s formula [141] for the exponential function.

Theorem 4.6.8. Let G : U Ñ R. For all y P U and ν P Fzt0u, we have

Bνy exppGpyqq “ exppGpyqq

|ν|
ÿ

λ“1

αν,λpyq,

where the sequence pαν,λpyqqνPF ,λPN0 is defined recursively by αν,0pyq “ δν,0, αν,λpyq “ 0
for λ ą |ν|, and otherwise

αν`ej ,λpyq “
ÿ

mďν

ˆ

ν

m

˙

pBν´m`ejGqpyqαm,λ´1pyq, j ě 1.

Proof. This is a special case of [141, Formulas (3,1) and (3.5)] in which f is the exponential
function and m “ 1 so that λ is an integer.

Lemma 4.6.9. Let the sequence pAν,λqνPF , λPN0 satisfy Aν,0 “ δν,0, Aν,λ “ 0 for λ ą |ν|,
and otherwise satisfy the recursion

Aν`ej ,λ ď
ÿ

mďν

ˆ

ν

m

˙

cρν´m`ej p|ν| ´ |m| ` 2q!Am,λ´1, j ě 1, (4.87)

for some c ą 0 and a nonnegative sequence ρ. Then for all ν ‰ 0 and 1 ď λ ď |ν| we
have

Aν,λ ď cλ ρν
λ
ÿ

k“1

p´1qλ`k p|ν| ` 2k ´ 1q!

p2k ´ 1q! pλ´ kq! k!
. (4.88)

The result is sharp in the sense that both inequalities can be replaced by equalities.

Proof. We prove (4.88) for all ν ‰ 0 and 1 ď λ ď |ν| by induction on |ν|. The base case
Aej ,1 is easy to verify. Let ν ‰ 0 and suppose that (4.88) holds for all multi-indices m of
order ď |ν| and all 1 ď λ ď |m|. The case Aν`ej ,1 is also straightforward to verify. We
consider therefore 2 ď λ ď |ν| ` 1. Using (4.87) and the induction hypothesis, we have

Aν`ej ,λ

ď
ÿ

0‰mďν

ˆ

ν

m

˙

cρν´m`ej p|ν| ´ |m| ` 2q!

ˆ

ˆ

cλ´1 ρm
λ´1
ÿ

k“1

p´1qλ´1`k p|m| ` 2k ´ 1q!

p2k ´ 1q! pλ´ 1´ kq! k!

˙
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“ cλ ρν`ej
|ν|
ÿ

`“1

ÿ

mďν
|m|“`

ˆ

ν

m

˙ λ´1
ÿ

k“1

p´1qλ´1`k p|ν| ´ `` 2q! p`` 2k ´ 1q!

p2k ´ 1q! pλ´ 1´ kq! k!

“ cλ ρν`ej
2 |ν|! p´1qλ´1

pλ´ 1q!

λ´1
ÿ

k“1

p´1qk
ˆ

λ´ 1

k

˙ |ν|
ÿ

`“1

ˆ

|ν| ´ `` 2

|ν| ´ `

˙ˆ

`` 2k ´ 1

`

˙

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

“:T

, (4.89)

where we used (4.76) and then regrouped the factors as binomial coefficients. Next we
take the binomial identity [128, Equation (5.6)]

|ν|
ÿ

`“0

ˆ

|ν| ´ `` 2

|ν| ´ `

˙ˆ

`` 2k ´ 1

`

˙

“

ˆ

|ν| ` 2k ` 2

|ν|

˙

,

separate out the ` “ 0 term, and use
řλ´1
k“1p´1qk

`

λ´1
k

˘

“
řλ´1
k“0p´1qk

`

λ´1
k

˘

´ 1 “ ´1, to
rewrite T as

T “
λ´1
ÿ

k“1

p´1qk
ˆ

λ´ 1

k

˙„ˆ

|ν| ` 2k ` 2

|ν|

˙

´

ˆ

|ν| ` 2

|ν|

˙

“

λ´1
ÿ

k“1

p´1qk
ˆ

λ´ 1

k

˙ˆ

|ν| ` 2k ` 2

|ν|

˙

`

ˆ

|ν| ` 2

|ν|

˙

“

λ´1
ÿ

k“0

p´1qk
ˆ

λ´ 1

k

˙ˆ

|ν| ` 2k ` 2

|ν|

˙

“

λ
ÿ

k“1

p´1qk´1

ˆ

λ´ 1

k ´ 1

˙ˆ

|ν| ` 2k

|ν|

˙

.

Substituting this back into (4.89) and simplifying the factors, we obtain

Aν`ej ,λ ď cλ ρν`ej
λ
ÿ

k“1

p´1qλ`k p|ν| ` 2kq!

p2k ´ 1q! pλ´ kq! k!
,

as required.

Theorem 4.6.10. Let θ ą 0, α1, α2 ě 0, with α1 ` α2 ą 0. Let f “ pz, u0q P Y 1 and
pu P X . For every y P U , let uy P X be the solution of (4.20) and let Φy be as in (4.37).
Then for all ν P F we have

|Bνy exppθΦyq| ď emaxpσ, σe2`2σ´1q |ν|! pebqν ,

where the sequence b “ pbjqjě1 is defined by (4.86) and σ is defined by (4.47).

Proof. For ν “ 0 we have from (4.46) that | exppθΦyq| ď eσ, which satisfies the required
bound. For ν ‰ 0, from Faà di Bruno’s formula (Theorem 4.6.8) we have

|Bνy exppθΦyq| ď exppθΦyq

|ν|
ÿ

λ“1

|αν,λpyq|, (4.90)

with αν,0pyq “ δν,0, αν,λpyq “ 0 for λ ą |ν|, and

|αν`ej ,λpyq| ď
ÿ

mďν

ˆ

ν

m

˙

θ |B
m`ej
y Φy| |αν´m,λ´1pyq|
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ď
ÿ

mďν

ˆ

ν

m

˙

σ p|m| ` 2q! bm`ej |αν´m,λ´1pyq|,

where we used Lemma 4.6.7. Applying Lemma 4.6.9 we conclude that

|αν,λpyq| ď σλ bν
λ
ÿ

k“1

p´1qλ`k p|ν| ` 2k ´ 1q!

p2k ´ 1q! pλ´ kq! k!
. (4.91)

We have

|ν|
ÿ

λ“1

σλ
λ
ÿ

k“1

p´1qλ`k p|ν| ` 2k ´ 1q!

p2k ´ 1q! pλ´ kq! k!
“

|ν|
ÿ

k“1

p|ν| ` 2k ´ 1q!

p2k ´ 1q! k!

|ν|
ÿ

λ“k

p´1qλ`k σλ

pλ´ kq!

“ |ν|!

|ν|
ÿ

k“1

σk

k!

ˆ

|ν| ` 2k ´ 1

2k ´ 1

˙ |ν|´k
ÿ

`“0

p´σq`

`!
ď |ν|!

|ν|
ÿ

k“1

σk

k!
e|ν|`2k´1eσ (4.92)

ď |ν|! e|ν|`σe
2`σ´1,

where we used
`

n
m

˘

ď nm{m! ď en. Combining (4.90), (4.91), (4.92) and (4.45) gives

|Bνy exppθΦyq| ď exppσq bν |ν|! e|ν|`σe
2`σ´1 “ eσe

2`2σ´1 |ν|! pebqν ,

as required.

Remark 4.6.11. In the proof of Theorem 4.6.10, a different manipulation of (4.92) can
yield a different bound 2c e|ν|`σe

2`σ`1p|ν|´1q! for ν ‰ 0, leading to a tighter upper bound
for large |ν| at the expense of a bigger constant,

|Bνy exppθΦyq| ď 2σ eσe
2`2σ`1 p|ν| ´ 1q! pebqν .

This leads to a more complicated bound for Theorem 4.6.12 below. Hence we have chosen
to present the current form of Theorem 4.6.10 to simplify our subsequent analysis.
Interestingly, the sum in (4.91) can also be rewritten as a sum with only positive terms:
denoting v “ |ν|,

λ
ÿ

k“1

p´1qλ`kpv ` 2k ´ 1q!

p2k ´ 1q!pλ´ kq!k!
“
v!

λ!

λ
ÿ

k“0

ˆ

λ

k

˙ˆ

v ´ 1

v ´ λ´ k

˙

2λ´k

“ 2λ
ˆ

v ´ 1

v ´ λ

˙ λ
ÿ

k“0

`

λ
k

˘`

v´λ
k

˘

`

λ`k´1
k

˘ 2´k,

which is identical to the sequence [17, Proposition 7] and the sequence A181289 in the
OEIS (written in slightly different form). However, we were unable to find a closed form
expression for the sum; neither [67] nor [128] were useful to us in this case. The hope is to
obtain an alternative bound for (4.92) that does not involve the factor e|ν|, which remains
open for future research.

Theorem 4.6.12. Let θ ą 0, α1, α2 ě 0, with α1 ` α2 ą 0. Let f “ pz, u0q P Y 1 and
pu P X . For every y P U , let uy P X be the solution of (4.20) and Φy be as in (4.37), and
then let qy “ pqy1 , q

y
2 q P Y be the solution of (4.32) with fdual given by (4.40). Then for

all ν P F we have
›

›Bνy

`

exppθΦyq qy1
˘›

›

L2pV ;Iq
ď

›

›Bνy

`

exppθΦyq qy
˘›

›

Y ď
µ

2
p|ν| ` 2q! pebqν ,
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4 Examples of optimal control problems

where the sequence b “ pbjqjě1 is defined by (4.86), σ is defined by (4.47) and

µ :“ emaxpσ, σe2`2σ´1q
´α1 ` α2 }ET }XÑL2pDq

β1

¯´

}f}Y 1

β1
` }pu}X

¯

.

Proof. Using the Leibniz product rule and Theorem 4.6.10 with Theorem 4.6.6, we obtain

›

›Bνy

`

exppθΦyq qy
˘›

›

Y ď
ÿ

mďν

ˆ

ν

m

˙

ˇ

ˇBmy exppθΦyq
ˇ

ˇ

›

›Bν´my qy
›

›

Y

ď
ÿ

mďν

ˆ

ν

m

˙

emaxpσ,σ e2`2σ´1q |m|! pebqm

ˆ

´α1 ` α2 }ET }
2
XÑL2pDq

β1

¯´

}f}Y 1

β1
` }pu}X

¯

bν´m p|ν| ´ |m| ` 1q!

ď µ pebqν
ÿ

mďν

ˆ

ν

m

˙

|m|! p|ν| ´ |m| ` 1q! “ µ pebqν
p|ν| ` 2q!

2
,

with the last equality due to [113, Formula (9.5)].

4.6.3 Analytic parametric linear operators

From Theorem 2.3.5 we know that the solution upyq of an analytic linear operator equation
Apyqupyq “ f is again analytic. In the optimization problems studied in this manuscript,
there arise operator equations in which also the right-hand side depends (analytically) on
the parametric variables, see, e.g., the adjoint problem (4.55). The following result shows
that in this case the dependence of upyq on the parameter sequence is again analytic, i.e.,
it generalized Theorem 2.3.5 to problems of the form Apyqupyq “ fpyq, when f depends
analytically on y P U .

Theorem 4.6.13. Let the parametric family of operators tApyq P LpX,Y 1q : y P Uu
satisfy Assumption 2.3.1 for some 0 ă p ď 1. Then, for fpyq P Y 1, with }Bνyfpyq}Y 1 ď

C|ν|!bν{pln 2q|ν| for all finitely supported multiindices ν P F , and every y P U there exists
a unique solution upyq P X of the parametric operator equation

Apyqupyq “ fpyq (4.93)

and the parametric solution family upyq depends analytically on the parameters y P U ,
with partial derivatives satisfying

sup
yPU

}Bνyupyq}X ď Cp|ν| ` 1q!
bν

pln 2q|ν|
.

Proof. We prove the result by induction with respect to |ν|. If |ν| “ 0, then ν “ 0 and
the result follows from Assumption 2.3.1 (i) and the a-priori bound (5.13). For 0 ‰ ν P F
we take the partial derivative Bνy of (4.94). By the Leibniz product rule we get

ÿ

mďν

ˆ

ν

m

˙

pBν´my ApyqqpBmy upyqq “ B
ν
yfpyq

Separating out the ν “m term, we obtain

ApyqpBνyupyqq “ ´
ÿ

mďν,m‰ν

ˆ

ν

m

˙

pBν´my ApyqqpBmy upyqq ` B
ν
yfpyq .
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4.6 Regularity analysis

By Assumption 2.3.1 (i) we have

}Bνyupyq}X ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

}Apyq´1Bν´my Apyq}LpXq}B
m
y upyq}X

` }Apyq´1}LpY 1,Xq}B
ν
yfpyq}Y 1

ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

Cbν´m}Bmy upyq}X ` C}B
ν
yfpyq}Y 1 .

where we concluded from Assumption 2.3.1 that for all ν P F

sup
yPU

}Apyq´1BνyApyq}LpXq ď sup
yPU

}Apyq´1Ap0q}LpXq sup
yPU

}Ap0q´1BνyApyq}LpXq ď Cbν .

From Lemma 4.6.1 we conclude that

}Bνyupyq}X ď C
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|
bk}Bν´ky fpyq}Y 1 .

By the assumption on f we obtain

}Bνyupyq}X ď C
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|
bkC

bν´k

pln 2q|ν´k|
|ν ´ k|!

“ Cp|ν| ` 1q!
bν

pln 2q|ν|
.

Similar to Corollary 2.3.6 one can proof the following result for affine parametric linear
operators.

Corollary 4.6.14. Let the parametric family of operators tApyq P LpX,Y 1q : y P Uu
satisfy Assumption 2.3.1 for some 0 ă p ď 1 and in addition Assumption 2.3.2. Then, for
fpyq P Y 1, with }Bνyfpyq}Y 1 ď C|ν|!bν for all finitely supported multiindices ν P F , and
every y P U there exists a unique solution upyq P X of the parametric operator equation

Apyqupyq “ fpyq (4.94)

and the parametric solution family upyq depends analytically on the parameters y P U ,
with partial derivatives satisfying

sup
yPU

}Bνyupyq}X ď Cp|ν| ` 1q!bν .

In optimization problems, operator equations with analytic right-hand sides typically stem
from the adjoint problem, see, e.g., (4.55). The following result shows that the dual
operator (and hence the adjoint operator) admits the same parametric regularity as the
operator itself.

Lemma 4.6.15. The dual operator Apyq1 of an operator Apyq that satisfies Assump-
tion 2.3.1 admits the same regularity, i.e., for all ν P F it holds that

}BνyApyq}LpX,Y 1q “ }B
ν
yApyq

1}LpY,X 1q . (4.95)

93



4 Examples of optimal control problems

Proof. We have

}BνyApyq}LpX,Y 1q “ sup
vPX

sup
wPY

|xBνyApyqv, wyY 1,Y |

}v}X}w}Y
“ sup

vPX
sup
wPY

|BνyxApyqv, wyY 1,Y |

}v}X}w}Y

“ sup
vPX

sup
wPY

|Bνyxv,Apyq
1wyX,X 1 |

}v}X}w}Y
“ sup

vPX
sup
wPY

|xv, BνyApyq
1wyX,X 1 |

}v}X}w}Y

“ sup
wPY

}BνyApyq
1w}X 1

}w}Y
“ }BνyApyq

1}LpY,X 1q .

In the case with the expected value as a risk measure, we have

qpyq :“ pA´1pyqq1Q1RJpA
´1pyqBz ´ puq P Y, (4.96)

From Corollary 2.3.6 we conclude that

}BνyQupyq}J “ }BνyQpA´1pyqBz}J ď CQCCB}z}Z |ν|!b
ν ,

where C is defined in Assumption 2.3.2. Using this bound and Lemma 4.6.15, we can
apply Corollary 4.6.14 and obtain

Lemma 4.6.16. Let Apyq, y P U satisfy Assumption 2.3.2. Then, under the assumptions
in Section 4.3, it holds

}Bνyqpyq}Y ď CQCCBp|ν| ` 1q!bνp}z}Z ` }pu}Jq,

where the constant C is defined in Assumption 2.3.2.

The preceeding lemma holds with bν replaced by bν{pln 2q|ν| for general non-affine oper-
ators that satisfy Assumption 2.3.1.

Regularity analysis for the entropic risk measure

We investigate the parametric regularity in the case of the entropic risk measure in con-
junction with analytic parametric operator equations. To this end, we denote

rΦy :“ }QA´1pyqBz ´ pu}2J. (4.97)

Lemma 4.6.17. Let rΦy be as in (4.97). Then for all ν P F we have

|Bνy
rΦy| ď pCQCCB}z}Z ` }pu}X q

2 p|ν| ` 1q! bν ,

where the sequence b “ pbjqjě1 is defined in Assumption 2.3.1.

Proof. Let ν “ 0, then

|rΦy| ď p}QA´1pyqBz}J ` }pu}Jq2 ď pCQCCB}z}Z ` }pu}Jq
2 ,

where C is the constant from Assumption 2.3.1. Consider now ν ‰ 0. We estimate the
partial derivatives of rΦy by differentiating under the integral sign and using the Leibniz
product rule in conjunction with the Cauchy–Schwarz inequality to obtain

|Bνy
rΦy| ď

ÿ

mďν

ˆ

ν

m

˙

}BmpQuy ´ puq}J }B
ν´mpQuy ´ puq}J.
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4.6 Regularity analysis

Separating out the m “ 0 and m “ ν terms and utilizing (4.85), we obtain

ÿ

mďν

ˆ

ν

m

˙

}BmpQuy ´ puq}J }B
ν´mpQuy ´ puq}J

“ 2 }Quy ´ pu}J }B
νQuy}J `

ÿ

mďν
0‰m‰ν

ˆ

ν

m

˙

}BmQuy}J }Bν´mQuy}J

ď 2 pCQCCB}z}Z ` }pu}X qCQCCB}z}Z |ν|! b
ν

` pCQCCB}z}Zq
2bν

ÿ

mďν
0‰m‰ν

ˆ

ν

m

˙

|m|! |ν ´m|!,

where the sum over m can be rewritten as

|ν|´1
ÿ

`“1

`! p|ν| ´ `q!
ÿ

mďν, |m|“`

ˆ

ν

m

˙

“

|ν|´1
ÿ

`“1

`! p|ν| ´ `q!

ˆ

|ν|

`

˙

“ |ν|! p|ν| ´ 1q,

where we used the identity (4.76) again.

Defining

rσ :“ θpCQCCB}z}Z ` }pu}Jq
2 , (4.98)

we obtain the following result.

Theorem 4.6.18. Let θ ą 0. Let rΦy be as in (4.97). Then for all ν P F we have

|Bνy exppθ rΦyq| ď emaxprσ, rσe2`2rσ´1q |ν|! pebqν ,

where the sequence b “ pbjqjě1 is defined in Assumption 2.3.1.

Proof. The steps of the proof are exactly the same is in Theorem 4.6.10.

Theorem 4.6.19. Let rΦy be as in (4.97), and let qy P Y be as in (4.96). Then for all
ν P F we have

›

›Bνy

`

exppθ rΦyq qy
˘
›

›

Y ď
µ

2
p|ν| ` 2q! pebqν ,

where the sequence b “ pbjqjě1 is defined in Assumption 2.3.1, rσ is defined by (4.98) and

µ :“ emaxprσ, rσe2`2rσ´1qCQCCBp}z}Z ` }pu}Jq.

Proof. Using the Leibniz product rule and Theorem 4.6.18 with Lemma 4.6.16, we obtain

›

›Bνy

`

exppθ rΦyq qy
˘
›

›

Y ď
ÿ

mďν

ˆ

ν

m

˙

ˇ

ˇBmy exppθrΦyq
ˇ

ˇ

›

›Bν´my qy
›

›

Y

ď
ÿ

mďν

ˆ

ν

m

˙

emaxprσ, rσe2`2rσ´1q |m|! pebqm

ˆ CQCCBp}z}Z ` }pu}Jq b
ν´m p|ν| ´ |m| ` 1q!

ď µ pebqν
ÿ

mďν

ˆ

ν

m

˙

|m|! p|ν| ´ |m| ` 1q! “ µ pebqν
p|ν| ` 2q!

2
,

with the last equality due to [113, Formula (9.5)].

95





5 Truncation of the parametric dimension

We have seen in Section 4.5 that the overall discretization error of the optimal control can
be decomposed into dimension truncation error, cubature error, and spatial discretization
error of the gradients of the objective function. In this chapter, which is strongly based
on the joint work with Vesa Kaarnioja [74], we focus on the analysis of the dimension
truncation error for integral quantities. The dimension truncation error is analyzed in
an abstract setting, leading to results that apply to a wide range of problems in the
field of uncertainty quantification, including optimal control problems under uncertainty.
In fact, the contribution of dimension truncation error is independent of the numerical
scheme chosen for the cubature operator or spatial discretization, which allows us to
approach the problem from a general vantage point—for instance, we do not need to
restrict our analysis to a specific numerical cubature method, spatial discretization scheme
or even a specific mathematical model problem. Instead, we derive general conditions
under which it is possible to derive explicit rates for the dimension truncation error. We
begin this chapter with analyzing the dimension truncation error for abstract uncertainty
quantification problems, and then apply the developed results to optimal control problems
under uncertainty.

In the field of uncertainty quantification it is common to consider mathematical models
where uncertain inputs are parameterized by infinite sequences of random variables. For
instance, consider an abstract mathematical model M : X ˆ U Ñ Y such that

Mpgpyq,yq “ 0,

where X and Y are separable Banach spaces and U is a nonempty subset of an infinite-
dimensional sequence space of parameters RN. If there exists a solution gpyq P X for all
y P U , then a natural quantity to investigate is the expected value

Ipgq :“

ż

U
gpyqµpdyq, (5.1)

where µ is a probability measure over U . In many applications, µ is either chosen as the
uniform probability measure over U “ r´1, 1sN or a Gaussian probability measure over
U “ RN. In the setting of optimal control problems under uncertainty the mathematical
model is the constraint and integrals of the form (5.1) appear in the objective function
and the derivatives of the objective function, see Section 3.1.

For the numerical treatment of (5.1), a natural first step is to consider a dimensionally-
truncated model Ms : X ˆ Us Ñ Y such that

Mspgspyďsq,yďsq “ 0, (5.2)
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5 Truncation of the parametric dimension

where ∅ ‰ Us Ď Rs and gspyďsq P X for all yďs P Us. The corresponding expected value
in this case is then given by

Ispgsq :“

ż

Us

gspyďsqµďspdyďsq,

where µďs denotes an appropriate probability measure on Us. By considering Ispgsq
instead of Ipgq, we have introduced a dimension truncation error

}Ipgq ´ Ispgsq}X .

In many practical problems involving partial differential equations (PDEs), such as optimal
control problems subject to PDEs with uncertain coefficients, there are also other sources
of errors: for example, the integral operator Is may need to be approximated by a cubature
rule Qs,n with n nodes and, in practice, we may only have access to, e.g., a finite element
approximation gs,h of the solution to (5.2) in some finite-dimensional subspace Xh of X .
The overall error can typically be estimated via an error decomposition of the form

}Ipgq ´Qs,npgs,hq}X ď }Ipgq ´ Ispgsq}X ` }Ispgs ´ gs,hq}X ` }Ispgs,hq ´Qs,npgs,hq}X ,

where the last two terms correspond to finite element discretization error and cubature
error, which are analyzed in the following chapters.
Dimension truncation error rates are typically studied in the setting of elliptic PDEs with
random coefficients. In [116] the authors derive a dimension truncation rate for the ellip-
tic PDE problem in conjunction with an affine parameterization of the uncertain diffusion
coefficient, see Section 4.1. This result was improved by [53], where dimension truncation
in the context of affine parametric operator equations is studied. Dimension truncation
has also been analyzed for coupled PDE systems arising in optimal control problems under
uncertainty [76] as well as in the context of the so-called “periodic model” of uncertainty
quantification for both numerical integration [94] and kernel interpolation [95]. A com-
mon feature in these works is the use of Neumann series, which is a suitable tool for
dimension truncation analysis provided that the uncertain parameters affinely enter the
PDE. However, when the dependence of the PDE operator on the random variables is
sufficiently nonlinear, the Neumann approach may produce only suboptimal dimension
truncation rates: this is the case for lognormally parameterized diffusion coefficients for
elliptic PDEs [70] or when the quantity of interest is a nonlinear functional of the PDE
response [41, 86].
In contrast to the Neumann series approach, the use of Taylor series was considered in [60]
to obtain dimension truncation error rates in the context of a spectral eigenvalue problem
for an elliptic PDE with a random coefficient. The use of Taylor series allows to exploit
the underlying parametric regularity of the model problem in order to derive dimension
truncation rates, as opposed to Neumann series which is fundamentally dependent on the
parametric structure of the PDE problem. Motivated by the paper [60], a similar Taylor
series approach is used to derive a dimension truncation rate for a smooth nonlinear
quantity of interest subject to an affine parametric parabolic PDE in [77].
The available literature provides some numerical evidence concerning dimension trunca-
tion rates for nonlinear parameterizations of PDE problems. For instance, [52] contains
numerical experiments suggesting that the dimension truncation error rates for certain
non-affine parametric PDE problems are significantly better than the theoretical bounds
derived using the Neumann series approach.Furthermore, it is known in the context of
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5.1 Problem setting

lognormal parameterizations for diffusion coefficients of parametric elliptic PDEs that the
use of special Matérn covariances can yield even exponentially convergent dimension trun-
cation errors (cf. [22, Section 7.2] and [51, 148]).

5.1 Problem setting

Let gpyq be an element of a separable Banach space X for each y P Uα, where

Uα :“

"

y P RN :
ÿ

jě1

αj |yj | ă 8

*

for a given sequence α :“ pαjqjě1 P `
1pNq such that αj P r0,8q for all j P N.

Let us define gspyq :“ gpyďs,0q :“ gpy1, . . . , ys, 0, 0, . . .q. We consider the dimension
truncation error

›

›

›

›

ż

RN
pgpyq ´ gspyqqµβpdyq

›

›

›

›

X
,

where

µβpdyq :“
â

jě1

Nβp0, 1q (5.3)

and Nβp0, 1q denotes the univariate β-Gaussian distribution with density

ϕβpyq :“
1

2β
1
β Γp1` 1

β q

e
´
|y|β

β , y P R,

where we restrict to the case β ě 1. Importantly, in the case β “ 2 the probability
measure (5.3) is Gaussian and in the case β “ 1 it corresponds to the Laplace distribution.
Formally, the case β “ 8 corresponds to the uniform probability measure on r´1, 1sN,
which we denote by

γpdyq :“
â

jě1

dy

2
.

To this end, we will consider dimension truncation subject to β-Gaussian probability
measures and the uniform probability measure, equipped with their respective sets of
assumptions.

β-Gaussian probability measures In the β-Gaussian setting, we will work under the
following assumptions:

(A1) It holds for a.e. y P Uα that

}gpyq ´ gspyq}X Ñ 0 as sÑ8.

(A2) Let pΘkqkě0 be a sequence of nonnegative numbers, let b :“ pbjqjě1 P `
ppNq for some

p P p0, 1q, and let b1 ě b2 ě ¨ ¨ ¨ ě 0. We assume that the integrand g is continuously
differentiable up to order k ` 1, with

}Bνgpyq}X ď Θ|ν|b
ν
ź

jě1

eαj |yj | ă 8

for all y P Uα and all ν P Fk :“ tν P NN
0 : |ν| ď k ` 1u, where k :“ r 1

1´p s. In the
case β “ 1, we assume in addition that αj ă 1 for all j P N.
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5 Truncation of the parametric dimension

Uniform probability measure In this setting, we suppose that gpyq P X for each y P
r´1, 1sN and we will work under the following assumptions:

(A1’) It holds for a.e. y P r´1, 1sN that

}gpyq ´ gspyq}X Ñ 0 as sÑ8.

(A2’) Let pΘkqkě0 be a sequence of nonnegative numbers, let b :“ pbjqjě1 P `
ppNq for some

p P p0, 1q, and let b1 ě b2 ě ¨ ¨ ¨ ě 0. We assume that the integrand g is continuously
differentiable up to order k ` 1, with

}Bνgpyq}X ď Θ|ν|b
ν

for all y P r´1, 1sN and all ν P Fk :“ tν P NN
0 : |ν| ď k ` 1u, where k :“ r 1

1´p s.

5.2 Infinite-dimensional integration

If (A2) holds, then gpyq P X for each y P Uα and we infer that y ÞÑ Gpgpyqq for all
G P X 1 is continuous as a composition of continuous mappings. Hence y ÞÑ Gpgpyqq is
measurable for all G P X 1, i.e., y ÞÑ gpyq is weakly measurable. Since X is assumed to
be a separable Banach space, by Pettis’ theorem (cf., e.g., [164, Chapter 4]) we obtain
that y ÞÑ gpyq is strongly measurable. The µβ-integrability of the upper bound in (A2)
is proved in [86, Proposition 3.2] for β P r1, 2s and can be proved mutatis mutandis for
β ą 2. Thus we conclude from Bochner’s theorem (cf., e.g., [164, Chapter 5]) and (A2)
that g is µβ-integrable over Uα. Bochner’s theorem can also be used to ensure that a

function gpyq P X , y P r´1, 1sN, is γ-integrable provided that (A2’) holds.
The following lemma has been adapted from [65, Lemma 2.28] to our setting.

Lemma 5.2.1. It holds that Uα P BpRNq, where B denotes the Borel σ-algebra and
µβpUαq “ 1.

Proof. The first statement follows from

Uα “
ď

Ně1

č

Mě1

"

y P RN :
ÿ

1ďjďM

αj |yj | ď N

*

.

By the monotone convergence theorem, we deduce that

ż

RN

ÿ

jě1

αj |yj |µβpdyq “
ÿ

jě1

αj

ż

RN
|yj |µβpdyq “

Γp 2
β q

β
1´ 1

β Γp1` 1
β q

ÿ

jě1

αj ă 8,

for all β ą 0, where we used [68, formula 3.326.2].

From the above lemma we conclude that we can restrict to y P Uα since

ż

RN
gpyqµβpdyq “

ż

Uα

gpyqµβpdyq,

for any g satisfying (A2). Thus in the β-Gaussian setting, the domain of integration RN

is interchangeable with Uα.
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5.3 Dimension truncation error

Lemma 5.2.2 ([118, Theorem 1] and [81, Section 26]). From Lebesgue’s dominated con-
vergence theorem, we infer the following results.

(i) Let F : RN Ñ R be a µβ-integrable function, which satisfies

lim
sÑ8

F pyďs,0q “ F pyq for a.e. y

and

|F pyďs,0q| ď |hpyq| for a.e. y

for some µβ-integrable h. Then

lim
sÑ8

ż

Rs
F pyďs,0qµβpdyďsq “

ż

RN
F pyqµβpdyq.

(ii) Let F : r´1, 1sN Ñ R be a γ-integrable function, which satisfies

lim
sÑ8

F pyďs,0q “ F pyq for a.e. y

and

|F pyďs,0q| ď |hpyq| for a.e. y

for some γ-integrable h. Then

lim
sÑ8

ż

r´1,1ss
F pyďs,0qγpdyďsq “

ż

r´1,1sN
F pyqγpdyq.

In the case where F pyq :“ xG, gpyqyX 1,X for some G in the topological dual space of X , it
holds that

F pyq ´ F pyďs,0q “ xG, gpyq ´ gpyďs,0qyX 1,X ď }G}X 1}gpyq ´ gpyďs,0q}X ,

and

|F pyďs,0q| ď }G}X 1}gpyďs,0q}X ,

which can be bounded by taking ν “ 0 in (A2) or (A2’), respectively. Thus, the preceding
result holds due to (A1) in the β-Gaussian setting and due to (A1’) in the uniform setting.

5.3 Dimension truncation error

The following lemma is commonly used in the analysis of best N -term approximations
(cf., e.g., [37]), and it will be highly useful in our treatment of the dimension truncation
error.

Lemma 5.3.1 (Stechkin’s lemma). Let 0 ă p ď q ă 8 and let pakqkě1 be a sequence of
real numbers ordered such that |a1| ě |a2| ě ¨ ¨ ¨ . Then

ˆ 8
ÿ

kąN

|ak|
q

˙
1
q

ď N
´ 1
p
` 1
q

ˆ

ÿ

kě1

|ak|
p

˙
1
p

.
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5 Truncation of the parametric dimension

Proof. For an elementary proof of this result, see, e.g., [110, Lemma 3.3].

The main result about the dimension truncation error is given below.

Theorem 5.3.2. Suppose that assumptions (A1) and (A2) hold. Then

›

›

›

›

ż

RN
pgpyq ´ gspyqqµβpdyq

›

›

›

›

X
ď Cs

´ 2
p
`1
,

where the constant C ą 0 is independent of the dimension s.

Let G P X 1 be arbitrary. Then

ˇ

ˇ

ˇ

ˇ

ż

RN
Gpgpyq ´ gspyqqµβpdyq

ˇ

ˇ

ˇ

ˇ

ď Cs
´ 2
p
`1
,

where the constant C ą 0 is independent of the dimension s.

Proof. Let s˚ be the smallest integer such that
ř

jąs˚ bj ď
1
2 . Clearly,

›

›

›

›

ż

RN
pgpyq ´ gspyqqµβpdyq

›

›

›

›

X
ď 2Θ0

ź

jě1

ż

R
eαj |yj |ϕβpyjqdyj “: Cinit ă 8,

where we used Lemma 5.2.2 and Fubini’s theorem. Therefore
›

›

›

›

ż

RN
pgpyq ´ gspyqqµβpdyq

›

›

›

›

X
ď

Cinit

ps˚q
´ 2
p
`1
s
´ 2
p
`1

for all 1 ď s ď s˚.

Thus it is enough to prove the claim for sufficiently large s. In what follows, we assume
that s ą s˚, let G P X 1 be arbitrary, and define

F pyq :“ xG, gpyqyX 1,X for all y P Uα.

Let k be specified as in (A2) (note that it always holds that k ě 2). Then

BνF pyq “ xG, BνgpyqyX 1,X for all ν P Fk and y P Uα

and it follows from our assumptions that

|BνF pyq| ď }G}X 1Θ|ν|b
ν
ź

jě1

eαj |yj | for all ν P Fk and y P Uα.

Let y P Uα be arbitrary. We develop the Taylor expansion around the point pyďs,0q,
which yields

F pyq “ F pyďs,0q `
k
ÿ

`“1

ÿ

|ν|“`
νj“0 @jďs

yν

ν!
BνF pyďs,0q

`
ÿ

|ν|“k`1
νj“0 @jďs

k ` 1

ν!
yν

ż 1

0
p1´ τqkBνF pyďs, τyąsq dτ.
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5.3 Dimension truncation error

Rearranging this equation and integrating both sides against the β-Gaussian product
measure yields

ż

RN
pF pyq ´ F pyďs,0qqµβpdyq

“

k
ÿ

`“1

ÿ

|ν|“`
νj“0 @jďs

1

ν!

ż

RN
yνBνF pyďs,0qµβpdyq

`
ÿ

|ν|“k`1
νj“0 @jďs

k ` 1

ν!

ż

RN

ż 1

0
p1´ τqkyνBνF pyďs, τyąsqdτ µβpdyq.

If there exists a single component νk “ 1 with k ą s, then the summand in the first term
vanishes since, by Lemma 5.2.2 and Fubini’s theorem,

ż

RN
yνBνF pyďs,0qµβpdyq

“

ˆ
ż

Rs
BνF pyďs,0q

s
ź

j“1

ϕβpyjq dyďs

˙̂
ż

R
ykϕβpykq dyk

˙

looooooooooomooooooooooon

“0

ˆ
ż

RN
yνµβpdyts`1:8uztkuq

˙

“ 0.

Hence
ˇ

ˇ

ˇ

ˇ

ż

RN
pF pyq ´ F pyďs,0qqµβpdyq

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

`“2

ÿ

|ν|“`
νj“0 @jďs
νj‰1 @jąs

1

ν!

ż

RN
|yν | ¨ |BνF pyďs,0q|µβpdyq (5.4)

`
ÿ

|ν|“k`1
νj“0 @jďs

k ` 1

ν!

ż

RN

ż 1

0
p1´ τqk|yν | ¨ |BνF pyďs, τyąsq|dτ µβpdyq. (5.5)

We start our estimation by splitting the terms in (5.4):

ż

RN
|yν | ¨ |BνF pyďs,0q|µβpdyq ď }G}X 1Θ|ν|b

ν

ż

RN
|yν |

s
ź

j“1

eαj |yj |µβpdyq

ď }G}X 1Θ|ν|b
ν

ż

RN
|yν |

ź

jě1

eαj |yj |µβpdyq

“ }G}X 1Θ|ν|b
ν

ˆ

ź

jPsupppνq

ż

R
|yj |

νjeαj |yj |ϕβpyjqdyj

loooooooooooooooooooomoooooooooooooooooooon

“:term1

˙̂

ź

jRsupppνq

ż

R
eαj |yj |ϕβpyjqdyj

loooooooooooooooomoooooooooooooooon

“:term2

˙

,

where the final step follows from Lemma 5.2.2 and Fubini’s theorem. In order to bound
term1, note that

Cαj ,β,νj :“

ż

R
|yj |

νjeαj |yj |ϕβpyjq dyj ă 8
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5 Truncation of the parametric dimension

since we assumed that β ě 1 and αj ă 1 in the case β “ 1. We define an auxiliary
constant Aαj ,β,` :“ max1ďkď`Cαj ,β,k. Clearly, Cαj ,β,νj ď Aαj ,β,|ν| ă 8 and Cα,β,ν ď
Cα1,β,ν whenever α ď α1 with β, ν fixed. In particular,

term1 ď
ź

jPsupppνq

Cαj ,β,νj ď
ź

jPsupppνq

C}α}8,β,νj ď
ź

jPsupppνq

A}α}8,β,|ν|

ď max t1, A}α}8,β,|ν|u
|ν|,

where }α}8 :“ supjě1 |αj | is finite since α P `1pNq by assumption. To bound term2, we

note that there is an index j1 P N such that αj ď
1
2 for all j ą j1. Hence

term2 “

ˆ

ź

jRsupppνq
1ďjďj1

ż

R
eαj |yj |ϕβpyjq dyj

˙ˆ

ź

jRsupppνq
jąj1

ż

R
eαj |yj |ϕβpyjq dyj

˙

ď maxt1, C}α}8,β,0u
j1
ˆ

ź

jRsupppνq
jąj1

ż

R
eαj |yj |ϕβpyjq dyj

˙

,

using a similar argument as before. In order to ensure that the remaining factor is finite,
we argue similarly to [86, Proposition 3.2].
Let us first consider the case β ą 1. Young’s inequality states, for all x, y ě 0 and
θ P p0, 1q, that

xy “ xθx1´θy ď
β ´ 1

β
x
θ β
β´1 `

1

β
xp1´θqβyβ,

where β ą 1. The special choice θ “ β´1
β yields

xy ď
β ´ 1

β
x`

1

β
xyβ for all x, y ě 0.

Thereby
ż

R
eαj |yj |ϕβpyjq dyj ď e

β´1
β
αj

ż

R
e
αj
β
|yj |

β

ϕβpyjqdyj

“
e
β´1
β
αj

2β
1
β Γp1` 1

β q

ż

R
e
´p1´αjq

|yj |
β

β dyj “
e
β´1
β
αj

p1´ αjq
1
β

,

where we used
ş

R e
´p1´αjq

|yj |
β

β dyj “ 2β
1
β p1´ αjq

´ 1
β Γp1` 1

β q. Furthermore, since

1

1´ x
“ 1`

x

1´ x
ď exp

ˆ

x

1´ x

˙

for all x P r0, 1q,

we obtain
ż

R
eαj |yj |ϕβpyjq dyj ď exp

ˆ

β ´ 1

β
αj

˙

exp

ˆ

1

β

αj
1´ αj

˙

ď exp

ˆ

β ` 1

β
αj

˙

since we assumed αj ď
1
2 for all j ą j1. Therefore

ź

jRsupppνq
jąj1

ż

R
eαj |yj |ϕβpyjqdyj ď exp

ˆ

β ` 1

β

ÿ

jRsupppνq
jąj1

αj

˙

ď exp

ˆ

β ` 1

β

ÿ

jě1

αj

˙

“: rCβ,
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5.3 Dimension truncation error

where rCβ ă 8 since α P `1pNq. The special case β “ 1 follows since we assumed αj ă 1
for all j ě 1 and it holds that

ż

R
eαj |yj |ϕ1pyjqdyj “

1

1´ αj
ď exp

ˆ

αj
1´ αj

˙

ď expp2αjq

for j ą j1. Thus

ź

jRsupppνq
jąj1

ż

R
eαj |yj |ϕ1pyjqdyj ď exp

ˆ

2
ÿ

jRsupppνq
jąj1

αj

˙

ď exp

ˆ

2
ÿ

jě1

αj

˙

“: rC1 ă 8

since α P `1pNq. Combining the estimates for term1 and term2 gives

ż

RN
|yν | ¨ |BνF pyďs,0q|µβpdyq

ď rCβ}G}X 1 maxt1, C}α}8,β,0u
j1Θ|ν|b

ν max t1, A}α}8,β,|ν|u
|ν|.

Similarly we split the terms in (5.5),

ż

RN

ż 1

0
p1´ τqk|yν | ¨ |BνF pyďs, τyąsq|dτ µβpdyq

ď }G}X 1Θ|ν|b
ν

ˆ

ź

jPsupppνq

ż

R
|yj |

νjeαj |yj |ϕβpyjqdyj

˙ˆ

ź

jRsupppνq

ż

R
eαj |yj |ϕβpyjqdyj

˙

ď rCβ}G}X 1Θ|ν|maxt1, C}α}8,β,0u
j1bν max t1, A}α}8,β,|ν|u

|ν|,

where we used

|BνF pyďs, τyąsq| ď }G}X 1Θ|ν|b
ν

ˆ s
ź

j“1

eαj |yj |
˙ˆ

ź

jąs

eταj |yj |
˙

ď }G}X 1Θ|ν|b
ν

ˆ

ź

jě1

eαj |yj |
˙

.

These inequalities allow us to estimate

ˇ

ˇ

ˇ

ˇ

ż

RN
pF pyq ´ F pyďs,0qqµβpdyq

ˇ

ˇ

ˇ

ˇ

ď rCβ}G}X 1 maxt1, C}α}8,β,0u
j1

k
ÿ

`“2

ÿ

|ν|“`
νj“0 @jďs
νj‰1 @jąs

Θ`

ν!
bν maxt1, A}α}8,β,`u

`

` rCβ}G}X 1 maxt1, C}α}8,β,0u
j1

ÿ

|ν|“k`1
νj“0 @jďs

k ` 1

ν!
Θk`1b

ν maxt1, A}α}8,β,k`1u
k`1

ď rCβ}G}X 1 maxt1, C}α}8,β,0u
j1
`

max
2ď`ďk

pΘ` maxt1, A}α}8,β,`u
`q
˘

k
ÿ

`“2

ÿ

|ν|“`
νj“0 @jďs
νj‰1 @jąs

bν (5.6)
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5 Truncation of the parametric dimension

` rCβ}G}X 1 maxt1, C}α}8,β,0u
j1Θk`1pk ` 1qmaxt1, A}α}8,β,k`1u

k`1
ÿ

|ν|“k`1
νj“0 @jďs

bν . (5.7)

To bound the term (5.6), we argue similarly to [53, Theorem 1] by noting that it follows
from our definition of s˚ that

ˆ

ÿ

kąs

bk

˙2

ď
1

4
and bj ď

1

2
for all j ą s.

This leads us to estimate

k
ÿ

`“2

ÿ

|ν|“`
νj“0 @jďs
νj‰1 @jąs

bν “
ÿ

2ď|ν|ďk
νj“0 @jďs
νj‰1 @jąs

bν ď
ÿ

0‰|ν|8ďk
νj“0 @jďs
νj‰1 @jąs

bν “ ´1`
ź

jąs

ˆ

1`
k
ÿ

`“2

b`j

˙

“ ´1`
ź

jąs

ˆ

1`
1´ bk´1

j

1´ bj
b2j

˙

ď ´1`
ź

jąs

ˆ

1` 2b2j

˙

ď ´1` exp

ˆ

2
ÿ

jąs

b2j

˙

ď 2pe´ 1q
ÿ

jąs

b2j ,

where the final inequality is a consequence of Bernoulli’s inequality p1` xqr ď 1` rx for
all 0 ď r ď 1 and x ě ´1. It is an immediate consequence of Lemma 5.3.1 that

ÿ

jąs

b2j ď s
´ 2
p
`1

ˆ

ÿ

jě1

bpj

˙
2
p

(5.8)

since b was assumed to be a nonincreasing sequence such that b P `ppNq for some p P p0, 1q.
We estimate the term (5.7) similarly to the approach taken in [60, Theorem 4.1]. By the

trivial bound |ν|!
ν! ě 1 and the multinomial theorem, we obtain

ÿ

|ν|“k`1
νj“0 @jďs

bν ď
ÿ

|ν|“k`1
νj“0 @jďs

|ν|!

ν!
bν “

ˆ

ÿ

jąs

bj

˙k`1

ď s
p´ 1

p
`1qpk`1q

ˆ

ÿ

jě1

bpj

˙pk`1q{p

, (5.9)

where the final inequality follows immediately from Lemma 5.3.1 and our assumption that
b is a nonincreasing sequence such that b P `ppNq for some p P p0, 1q.
Putting the inequalities (5.8) and (5.9) together and utilizing k “ r 1

1´p s we obtain

ˇ

ˇ

ˇ

ˇ

ż

RN
pF pyq ´ F pyďs,0qqµβpdyq

ˇ

ˇ

ˇ

ˇ

ď Cps
´ 2
p
`1
` s

p´ 1
p
`1qpk`1q

q ď Cs
´ 2
p
`1

for some constant C ą 0 independent of s. Finally, by recalling that F pyq “ xG, gpyqyX 1,X
and G P X 1 was arbitrary, we can take the supremum over tG P X 1 : }G}X 1 ď 1u to obtain

sup
GPX 1:}G}X 1ď1

ˇ

ˇ

ˇ

ˇ

ż

RN
pF pyq ´ F pyďs,0qqµβpdyq

ˇ

ˇ

ˇ

ˇ

“ sup
GPX 1:}G}X 1ď1

ˇ

ˇ

ˇ

ˇ

ż

RN
xG, gpyq ´ gpyďs,0qyX 1,X µβpdyq

ˇ

ˇ

ˇ

ˇ
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“ sup
GPX 1:}G}X 1ď1

ˇ

ˇ

ˇ

ˇ

B

G,

ż

RN
pgpyq ´ gpyďs,0qqµβpdyq

F

X 1,X

ˇ

ˇ

ˇ

ˇ

“

›

›

›

›

ż

RN
pgpyq ´ gspyqqµβpdyq

›

›

›

›

X
ď Cs

´ 2
p
`1

as desired.

We also state the corresponding dimension truncation result in the uniform case formally
corresponding to β “ 8.

Theorem 5.3.3. Suppose that assumptions (A1’) and (A2’) hold. Then

›

›

›

›

ż

r´1,1sN
pgpyq ´ gspyqqγpdyq

›

›

›

›

X
ď Cs

´ 2
p
`1
,

where the constant C ą 0 is independent of the dimension s.

Let G P X 1 be arbitrary. Then

ˇ

ˇ

ˇ

ˇ

ż

r´1,1sN
Gpgpyq ´ gspyqqγpdyq

ˇ

ˇ

ˇ

ˇ

ď Cs
´ 2
p
`1
,

where the constant C ą 0 is independent of the dimension s.

Proof. The steps are completely analogous to Theorem 5.3.2 in the special case αj “ 0
for all j ě 1 and by restricting the domain of integration to r´1, 1sN. In the special case
Θ|ν| “ p|ν| ` r1q!, r1 P N0, the proof works as in [77, Theorem 6.2].

Remark. The conditions (A2) and (A2’) are formulated as sufficient conditions. The form
in which the regularity bounds are postulated in (A2) and (A2’) is an important ingre-
dient for the Taylor series argument. However, it is known that (A2’) is not a necessary
condition: an example is given in [94, Lemma 2.4], where the authors obtain the dimen-

sion truncation rate Ops´
2
p
`1
q for a problem which satisfies a more general parametric

regularity bound than (A2’).

5.4 Application to parametric PDEs and optimal control

In this section, we illustrate how to apply the main dimension truncation results proved
in Section 5.3 to parametric elliptic PDE model problems. We consider uniform and
affine (see Section 4.1) as well as lognormal parameterizations of the input random field.
The rate we obtain for the uniform and affine model coincides with the well-known rate
in the literature [53] and is not a new result, however, we present it for completeness.
Remarkably, the dimension truncation rate we obtain for the lognormal model using our
method improves the rates in the existing literature (cf., e.g., [70, 113]). Finally, we
give an example on how our results can be applied to assess dimension truncation rates
corresponding to PDE solutions composed with nonlinear quantities of interest.

Similar to Section 4.1, we consider the problem of finding u : D ˆ U Ñ R such that

´∇ ¨ papx,yq∇upx,yqq “ fpxq, x P D, y P U,

upx,yq “ 0, x P BD, y P U,
(5.10)
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5 Truncation of the parametric dimension

in some bounded Lipschitz domain D Ă Rd, d P t1, 2, 3u, for some given source term
f : D Ñ R and diffusion coefficient a : DˆU Ñ R. The parameter set U is assumed to be
a nonempty subset of RN.

The relevant function spaces for the elliptic PDE problem (5.10) are X :“ H1
0 pDq and its

dual X 1 “ H´1pDq, which we understand with respect to the pivot space H :“ L2pDq.
The space H is identified with its own dual and we set }v}X :“ }∇v}H for v P X , as
we did in Section 4.1. The weak formulation of (5.10) is to find, for all y P U , a solution
up¨,yq P X such that

ż

D
apx,yq∇upx,yq ¨∇vpxq dx “ xf, vyX 1,X for all v P X , (5.11)

where f P X 1 and x¨, ¨yX 1,X denotes the duality pairing between elements of X 1 and X .

Note that (5.11) is more general than the elliptic PDE in Section 4.1: in (5.11) we do
not restrict to an affine parameter dependece (AE3) – (AE4), we allow other than uni-
form distributions of the parameters (AE2), and we do not restrict to uniform bounded
diffusion coeffiecients (AE5). In particular, (M2) below coincides with the assumptions in
Section 4.1.

The following lemma collects basic, well-known results about the existence of a unique
solution to (5.11) (Lax–Milgram lemma), the continuity of the PDE solution with respect
to the right-hand side of (5.11) (a priori bound), and the continuity of the PDE solution
with respect to the diffusion coefficient (the second Strang lemma).

Lemma 5.4.1. Let D Ă Rd, d P t1, 2, 3u, be a bounded Lipschitz domain, ∅ ‰ U Ď RN,
f P X 1, and suppose that there exist aminpyq :“ minxPD apx,yq P L

8
` pDq and amaxpyq :“

maxxPD apx,yq P L
8
` pDq such that

0 ă aminpyq ď apx,yq ď amaxpyq ă 8 for all x P D and y P U, (5.12)

where ap¨,yq P L8` pDq, y P U , is the diffusion coefficient in (5.11). We define asp¨,yq :“
ap¨, pyďs,0qq, a

s
minpyq :“ aminpyďs,0q, and usp¨,yq :“ up¨, pyďs,0qq. Then there exists a

unique solution to (5.11) such that

}up¨,yq}X ď
}f}X 1

aminpyq
for all y P U (5.13)

and

}up¨,yq ´ usp¨,yq}X ď
1

aminpyqasminpyq
}ap¨,yq ´ asp¨,yq}L8pDq}f}X 1 for all y P U.

(5.14)

Proof. The existence of a unique solution to (5.11) is an immediate consequence of the
Lax–Milgram lemma due to the ellipticity assumption (5.12), while the bound (5.13)
follows from

aminpyq}up¨,yq}
2
X ď

ż

D
apx,yq∇upx,yq ¨∇upx,yqdx “ xf, up¨,yqyX 1,X

ď }f}X 1}up¨,yq}X

for all y P U .
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To prove (5.14), we let y P U and begin by observing that
ż

D
apx,yq∇upx,yq ¨∇vpxq dx “

ż

D
fpxqvpxq dx,

ż

D
aspx,yq∇uspx,yq ¨∇vpxq dx “

ż

D
fpxqvpxq dx,

for all v P X . Taking the difference of these two equations, we are left with

0 “

ż

D
papx,yq∇upx,yq ´ aspx,yq∇uspx,yqq ¨∇vpxq dx

“

ż

D
papx,yq ´ aspx,yqq∇upx,yq ¨∇vpxq dx

`

ż

D
aspx,yq∇pupx,yq ´ uspx,yqq ¨∇vpxq dx.

Rearranging this equation and setting v “ up¨,yq ´ usp¨,yq P X yields

asminpyq}up¨,yq ´ usp¨,yq}
2
X

ď

ż

D
aspx,yq|∇pupx,yq ´ uspx,yqq|2 dx

“ ´

ż

D
papx,yq ´ aspx,yqq∇upx,yq ¨∇pupx,yq ´ uspx,yqqdx

ď }ap¨,yq ´ asp¨,yq}L8pDq}up¨,yq}X }up¨,yq ´ usp¨,yq}X

ď
}ap¨,yq ´ asp¨,yq}L8pDq

aminpyq
}up¨,yq ´ usp¨,yq}X }f}X 1 ,

where we used the a priori bound (5.13) established above. The claim directly follows.

Studies in uncertainty quantification for PDEs typically consider one of the following two
models for the input random field.

(M1) The diffusion coefficient is parameterized by

apx,yq “ a0pxq exp

ˆ 8
ÿ

j“1

yjψjpxq

˙

, yj P R,

for a0 P L
8
` pDq, ψj P L

8pDq for all j ě 1 with p}ψj}L8q P `
ppNq for some p P p0, 1q,

and U “ RN, such that

0 ă aminpyq ď apx,yq ď amaxpyq ă 8 for all x P D and y P U,

where aminpyq “ minxPD apx,yq and amaxpyq “ maxxPD apx,yq.

(M2) The diffusion coefficient is parameterized by

apx,yq “ a0pxq `
8
ÿ

j“1

yjψjpxq, yj P r´1, 1s,

for a0 P L
8pDq, ψj P L

8pDq for all j ě 1 with p}ψj}L8q P `
ppNq for some p P p0, 1q,

and U “ r´1, 1sN, such that

0 ă amin ď apx,yq ď amax ă 8 for all x P D and y P U,

for some constants amax ě amin ą 0 independent of x P D and y P U .
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5 Truncation of the parametric dimension

Let b :“ pbjqjě1 with bj :“ }ψj}L8 . In addition, we assume that b1 ě b2 ě ¨ ¨ ¨ .
Recall that usp¨,yq “ up¨, pyďs,0qq for y P U . In the context of high-dimensional numerical
integration, it is germane in the setting (M1) to quantify the dimension truncation error

›

›

›

›

ż

U
pup¨,yq ´ usp¨,yqqµβpdyq

›

›

›

›

X
, with U “ RN,

and in the setting (M2), the dimension truncation error

›

›

›

›

ż

U
pup¨,yq ´ usp¨,yqqγpdyq

›

›

›

›

X
, with U “ r´1, 1sN.

Lognormal model and its generalizations The model (M1) is the lognormal model (cf.,
e.g., [63, 70, 69, 72, 84, 119, 148]) when the uncertain parameter y P RN is endowed with
the β-Gaussian probability measure with β “ 2 and αj “ bj for all j ě 1. However, the
dimension truncation analysis in Section 5.3 covers the more general setting where we have
arbitrary α P `1pNq and either β P p1,8q or β “ 1 with αj ă 1 for all j ě 1. We remark
that the latter case corresponds to random variables distributed according to the Laplace
distribution. By (5.14), condition (A1) holds because

}ap¨,yq ´ asp¨,yq}L8pDq
sÑ8
ÝÝÝÑ 0 for all y P Ub.

On the other hand, condition (A2) holds due to the well-known parametric regularity
bound

}Bνup¨,yq}X ď
}f}X 1

minxPD a0pxq

|ν|!

plog 2q|ν|
bν

ź

jě1

ebj |yj | for all y P Ub, ν P F .

Especially, this corresponds to our setting with the special choice αj “ bj for all j ě 1.
By Theorem 5.3.2, we obtain that

›

›

›

›

ż

RN
pup¨,yq ´ usp¨,yqqµβpdyq

›

›

›

›

X
ď Cs

´ 2
p
`1
,

where the implied coefficient is independent of the dimension s.
Let D be a convex and bounded polyhedron and suppose that tXhuh is a family of con-
forming finite element subspaces Xh Ă X, indexed by the mesh size h ą 0 (see Section 7.1
for more details on the finite element method). Let uhp¨,yq P Xh and us,hp¨,yq P Xh denote
the finite element discretized solutions corresponding to up¨,yq and usp¨,yq, respectively.
Then it also holds that

›

›

›

›

ż

RN
puhp¨,yq ´ us,hp¨,yqqµβpdyq

›

›

›

›

X
ď Cs

´ 2
p
`1
,

where the implied coefficient is again independent of the dimension s.

Uniform and affine model The model (M2) is known as the uniform and affine model
(cf., e.g., [31, 40, 39, 54, 65, 116, 117, 146]) when the uncertain parameter y P r´1, 1sN is
endowed with the uniform probability measure. By (5.14), condition (A1’) holds since

}ap¨,yq ´ asp¨,yq}L8pDq
sÑ8
ÝÝÝÑ 0 for all y P r´1, 1sN.
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5.4 Application to parametric PDEs and optimal control

Moreover, condition (A2’) holds due to the well-known parametric regularity bound

}Bνup¨,yq}X ď
}f}X 1

a
|ν|`1
min

|ν|!bν for all y P r´1, 1sN, ν P F . (5.15)

It follows from Theorem 5.3.3 that
›

›

›

›

ż

r´1,1sN
pup¨,yq ´ usp¨,yqqγpdyq

›

›

›

›

X
ď Cs

´ 2
p
`1
,

where the implied coefficient is independent of the dimension s. The same result holds if
u and us are replaced by finite element solutions belonging to a conforming finite element
subspace of X (see Section 7.1 for more details on the finite element method).
Finally, we present an example illustrating how our results can be applied to nonlinear
quantities of interest of the PDE response.

Example 5.4.2. Consider the uniform and affine model (M2) with U “
“

´ 1
2 ,

1
2

‰N
and

suppose that we are interested in analyzing
ˇ

ˇ

ˇ

ˇ

ż

“

´
1
2 ,

1
2

‰NpGpup¨,yqq ´Gpusp¨,yqqqdy

ˇ

ˇ

ˇ

ˇ

, (5.16)

where u and us denote the parametric PDE solution and its dimension truncation in
X “ H1

0 pDq, respectively. Suppose that the quantity of interest is the nonlinear functional

Gpvq :“ exp

ˆ
ż

D
vpxq2 dx

˙

, v P X . (5.17)

Let ν P F and y P r´1
2 ,

1
2 s

N. It follows by an application of the Leibniz product rule and
the regularity bound (5.15) that

}Bνup¨,yq2}X “

›

›

›

›

ÿ

mďν

ˆ

ν

m

˙

Bmup¨,yq ¨ Bν´mup¨,yq

›

›

›

›

X

ď
}f}2X 1

a
|ν|`2
min

bν
ÿ

mďν

ˆ

ν

m

˙

|m|! |ν ´m|!

“
}f}2X 1

a
|ν|`2
min

bν
|ν|
ÿ

`“0

`! p|ν| ´ `q!
ÿ

mďν
|m|“`

ˆ

ν

m

˙

“
}f}2X 1

a
|ν|`2
min

p|ν| ` 1q! bν ,

where we used the generalized Vandermonde identity
ř

mďν, |m|“`

`

ν
m

˘

“
`

|ν|
`

˘

. In complete
analogy with the regularity analysis presented in [77, Section 5], which can be found also
in Section 4.6, it follows that

|BνGpup¨,yqq| À

ˆ

e

amin

˙|ν|

|ν|! bν ,

where the implied coefficient only depends on }f}X and amin. Moreover, we have
ż

“

´
1
2 ,

1
2

‰NpGpup¨,yqq ´Gpusp¨,yqqqdy “

ż

r´1,1sN
pGpup¨, 1

2yqq ´Gpusp¨,
1
2yqqqγpdyq
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5 Truncation of the parametric dimension

with

|BνGpup¨, 1
2yqq| À

ˆ

e

2amin

˙|ν|

|ν|! bν .

It follows from Theorem 5.3.3 that the term (5.16) decays according to Ops´
2
p
`1
q.

Elliptic optimal control problem The problem (4.1) – (4.4) in Section 4.1 is formulated
under the assumptions of model (M2). Hence, by (5.14), condition (A1’) holds for the
state PDE since

}ap¨,yq ´ asp¨,yq}L8pDq
sÑ8
ÝÝÝÑ 0 for all y P r´1

2 ,
1
2 s

N.

Similarly condition (A1’) can be verified for the adjoint PDE. Moreover, condition (A2’)
holds due to the parametric regularity bounds obtained in Lemma 4.6.2 and Lemma 4.6.3
for the state and the adjoint PDE, respectively. Setting bj :“ }ψj}L8{amin and assuming
that b1 ě b2 ě . . ., it follows from Theorem 5.3.3 that

›

›

›

›

ż

r´ 1
2
, 1
2
sN
pup¨,yq ´ usp¨,yqqdy

›

›

›

›

V

ď Cs
´ 2
p
`1
,

and for the first term in (4.65) that

›

›

›

›

ż

r´ 1
2
, 1
2
sN
pqp¨,yq ´ qsp¨,yqqdy

›

›

›

›

V

ď Cs
´ 2
p
`1
,

where the implied coefficient is independent of the dimension s. The same result holds
if u and us as well as q and qs are replaced by finite element solutions belonging to a
conforming finite element subspace of X (see Section 7.1 for more details on the finite
element method).

Parabolic optimal control problem The optimal control problem (4.38) in Section 4.2
is formulated in the affine and uniform setting. Similar to the elliptic case one can show
the continuity of the PDE solution uy with respect to the diffusion coefficient, i.e., verify
(A1’) using

sup
tPI
}ap¨,yq ´ asp¨,yq}L8pDq

sÑ8
ÝÝÝÑ 0 for all y P r´1

2 ,
1
2 s

N.

By a similar argument (A1’) can be verified for the adjoint PDE and by continuity also
for S and T , which are defined in Section 4.2.

Moreover, condition (A2’) holds due to the parametric regularity bounds obtained in
Lemma 4.6.4, Theorem 4.6.6, Theorem 4.6.12 and Theorem 4.6.10 for the state PDE uy,
the adjoint PDE qy, and S, and T , respectively. The following theorem then follows
immediately from Theorem 5.3.3.

Theorem 5.4.3. Let f “ pz, u0q P Y 1. For every y P U , let uy P X be the solution of
(4.20) and Φy be as in (4.37), and then let qy P Y be the solution of (4.32) with fdual

given by (4.40). Suppose the sequence b “ pbjqjě1 defined by (4.86) satisfies b1 ě b2 ě ¨ ¨ ¨ .
Then for every s P N, the truncated solutions uys , qys and Φys satisfy

›

›

›

ż

U
puy ´ uys qdy

›

›

›

X
ď C s

´ 2
p
`1
,
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5.5 Numerical experiments

›

›

›

ż

U
pqy ´ qys q dy

›

›

›

Y
ď C s

´ 2
p
`1
,

}S ´ Ss}L2pV ;Iq “

›

›

›

ż

U

`

exp
`

θΦy
˘

qy ´ exp
`

θΦys
˘

qys
˘

dy
›

›

›

Y
ď C s

´ 2
p
`1
,

|T ´ Ts| “
ˇ

ˇ

ˇ

ż

U

`

exp
`

θΦy
˘

´ exp
`

θΦys
˘˘

dy
ˇ

ˇ

ˇ
ď C s

´ 2
p
`1
.

In each case we have a generic constant C ą 0 independent of s, but depending on z, u0,
pu and other constants as appropriate.

In particular, the above theorem provides bounds for the first terms in (4.66), (4.69), and
(4.70).

Optimal control problem subject to analytic linear operator equations By continuity
we get that }Apyďsq ´ Apyq}LpX,Y 1q Ñ 0 as s Ñ 8. Using a similar strategy as in the
Strang lemma (see Lemma 5.4.1) one can verify (A1’) for the state. Similarly, (A1’) can
be verified for the adjoint state and S and T as defined in Section 4.3. Furthermore,
(A2’) holds due to Corollary 4.6.14, Lemma 4.6.15, Lemma 4.6.16, Theorem 4.6.18, and
Theorem 4.6.19. The following theorem then follows immediately from Theorem 5.3.3.

Theorem 5.4.4. Let f “ Bz P Y 1. For every y P U , let uy P X be the solution of (3.24)
and rΦy be as in (4.97), and then let qy P Y be the solution of (4.54). Suppose the sequence
b “ pbjqjě1 defined in Corollary 2.3.4 satisfies b1 ě b2 ě ¨ ¨ ¨ . Then for every s P N, the

truncated solutions uys , qys and rΦys satisfy

›

›

›

ż

U
puy ´ uys qdy

›

›

›

X
ď C s

´ 2
p
`1
,

›

›

›

ż

U
pqy ´ qys q dy

›

›

›

Y
ď C s

´ 2
p
`1
,

}S ´ Ss}Y “
›

›

›

ż

U

`

exp
`

θΦy
˘

qy ´ exp
`

θΦys
˘

qys
˘

dy
›

›

›

Y
ď C s

´ 2
p
`1
,

|T ´ Ts| “
ˇ

ˇ

ˇ

ż

U

`

exp
`

θΦy
˘

´ exp
`

θΦys
˘˘

dy
ˇ

ˇ

ˇ
ď C s

´ 2
p
`1
.

In each case we have a generic constant C ą 0 independent of s, but depending on z, CB,
pu and other constants as appropriate.

In particular, the above theorem provides bounds for the first terms in (4.71), (4.74), and
(4.75).

5.5 Numerical experiments

In this section we verify numerically the dimension truncation error rates for in the log-
normal setting, for a smooth, nonlinear quantity of interest applied to the PDE solution
in the affine and uniform setting, and for the state PDEs and derivatives of the optimal
control problems in Section 4.1 and Section 4.2. This section includes computations using
the computational cluster Katana supported by Research Technology Services at UNSW
Sydney [101].
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5 Truncation of the parametric dimension

5.5.1 Lognormal input random field

We consider the PDE problem (5.10) over the spatial domain D “ p0, 1q2 with the source
term fpxq “ x2. The PDE (5.10) is discretized spatially using a finite element method
with piecewise linear basis functions and mesh size h “ 2´5 (see Section 7.1 for details on
the finite element method). We let U “ RN and endow the PDE problem (5.10) with the
lognormal diffusion coefficient

apx,yq “ exp

ˆ

ÿ

jě1

yjj
´ϑ sinpjπx1q sinpjπx2q

˙

, x P D, y P RN, ϑ ą 1.

To estimate the dimension truncation error, we compute the quantity

›

›

›

›

ż

Rs1
pus1p¨,yq ´ usp¨,yqq

s
ź

j“1

ϕ2pyjqdy

›

›

›

›

H1
0 pDq

“

›

›

›

›

ż

p0,1qs1
pus1p¨,Φ

´1ptqq ´ usp¨,Φ
´1ptqqq dt

›

›

›

›

H1
0 pDq

, (5.18)

where s1 " s and Φ´1 is the inverse cumulative distribution function of
śs1

j“1 ϕ2pyjq.
The high-dimensional integral appearing in (5.18) was approximated by using a randomly
shifted rank-1 lattice rule (see Chapter 6 belows for more details on the quasi-Monte Carlo
method) with 220 cubature nodes and a single random shift. The integration lattice was
tailored for each value of the decay parameter ϑ by using the QMC4PDE software [114, 113]
and the same random shift was used for each ϑ. As the reference, we use the solution
corresponding to s1 “ 211. The numerical results are displayed in Figure 5.1 for dimensions
s P t2k : k P t1, . . . , 9uu and decay rates ϑ P t1.5, 2.0, 3.0u. The corresponding theoretical
convergence rates are ´2.0, ´3.0, and ´5.0, respectively, and they are displayed alongside
the numerical results. The observed dimension truncation rates corresponding to ϑ P

Figure 5.1: The dimension truncation errors corresponding to a lognormally parameterized
input random field with decay parameters ϑ P t1.5, 2.0, 3.0u. The expected
dimension truncation error rates are ´2.0, ´3.0, and ´5.0, respectively.
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5.5 Numerical experiments

t1.5, 2.0u start off with slower convergence rates and reach the theoretically predicted
convergence rates approximately when s ą 16. This behavior appears to be the most
extreme in the experiment with ϑ “ 3.0, where the initial convergence rate for small
values of s is slightly slower than the theoretically predicted rate. Moreover, we note that
the dimension truncation convergence rate appears to degenerate for large values of s in
the case ϑ “ 3.0, which may be attributed to cubature error when approximating the
high-dimensional integral in (5.18).

5.5.2 Nonlinear quantity of interest

We consider again the PDE problem (5.10) over the spatial domain D “ p0, 1q2 with the
source term fpxq “ x2 with the same spatial discretization as in the lognormal case. We
revisit Example 5.4.2: let U “ r´1

2 ,
1
2 s

N and endow the PDE problem (5.10) with the
affine random coefficient

apx,yq “
3

2
`

ÿ

jě1

yjj
´ϑ sinpjπx1q sinpjπx2q, x P D, y P r´1

2 ,
1
2 s

N, ϑ ą 1.

To estimate the dimension truncation error, we compute

ˇ

ˇ

ˇ

ˇ

ż

“

´
1
2 ,

1
2

‰s1
pGpus1p¨,yqq ´Gpusp¨,yqqqdy

ˇ

ˇ

ˇ

ˇ

,

where s1 " s and G is the nonlinear quantity of interest defined by (5.17). The high-
dimensional integrals were again approximated using tailored randomly shifted rank-1
lattice rules with 220 cubature nodes and a single random shift, with the same random
shift used for each ϑ. The solution corresponding to s1 “ 211 was used as the reference.

The numerical results are displayed in Figure 5.2 for dimensions s P t2k : k P t1, . . . , 9uu
and decay rates ϑ P t1.5, 2.0, 3.0u alongside their respective theoretical convergence rates

Figure 5.2: The dimension truncation errors corresponding to a nonlinear quantity of in-
terest with decay parameters ϑ P t1.5, 2.0, 3.0u. The expected dimension trun-
cation error rates are ´2.0, ´3.0, and ´5.0, respectively.
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5 Truncation of the parametric dimension

´2.0, ´3.0, and ´5.0. The obtained results agree nicely with the theory, and the numerical
results corresponding to ϑ “ 3.0 exhibit a saturation effect similar to the one observed in
the lognormal setting for larger values of s.

5.5.3 Elliptic optimal control problem

We consider the elliptic state PDE (4.2) – (4.3) and adjoint PDE (4.17) from Section 4.1
in the two-dimensional physical domain D “ p0, 1q2 equipped with the diffusion coefficient
(4.5). We set a0pxq ” 1 as the mean field and use the parameterized family of fluctuations
(4.62), as we did in the numerical experiment Section 4.4.1.We fix the source term zpxq “
x2 and set rupxq “ x2

1 ´ x
2
2 for x “ px1, x2q P D.

The dimension truncation error was estimated by approximating the quantities

›

›

›

›

ż

U
pup¨,y, zq ´ usp¨,y, zqqdy

›

›

›

›

L2pDq

and

›

›

›

›

ż

U
pqp¨,y, zq ´ qsp¨,y, zqqdy

›

›

›

›

L2pDq

using a lattice quadrature rule (see Chapter 6) with n “ 215 nodes and a single fixed ran-
dom shift to evaluate the parametric integrals. The coupled PDE system was discretized
using the mesh width h “ 2´5 and, as the reference solutions u and q, we used the FE
solutions corresponding to the parameters s “ 211 and h “ 2´5. The obtained results are
displayed in Figure 5.5 for the fluctuation operators pψjqjě1 corresponding to the decay
rates ϑ P t1.5, 2.0u and dimensions s P t2k : k P t1, . . . , 9uu. The numerical results are
accompanied by the corresponding theoretical rates, which are Ops´2q for ϑ “ 1.5 and
Ops´3q for ϑ “ 2.0 according to Theorem 5.3.2.

In all cases, we find that the observed rates tend toward the expected rates as s increases.
In particular, by carrying out a least squares fit for the data points corresponding to the
values s P t25, . . . , 29u, the calculated dimension truncation error rate for the state PDE is
Ops´2.00315q (corresponding to the decay rate ϑ “ 1.5) and Ops´2.83015q (corresponding to
the decay rate ϑ “ 2.0). For the adjoint PDE, the corresponding rates are Ops´2.0065q and
Ops´2.72987q, respectively. The discrepancy between the obtained rate and the expected
rate in the case of the decay parameter ϑ “ 2.0 may be explained by two factors: the
lattice quadrature error rate is at best linear, so the quadrature error is likely not com-
pletely eliminated with n “ 215 lattice quadrature points. Moreover, the rate obtained in
Theorem 5.3.3 is sharp only for potentially high values of s. This phenomenon may also
be observed in the slight curvature of the data presented in Figure 5.3.
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Figure 5.3: The computed dimension truncation errors displayed against the expected
rates.

5.5.4 Parabolic optimal control problem

We consider the optimal control problem in Section 4.2, that is we aim to minimize (4.38),
i.e., the state PDE uy and adjoint PDE qy are given by (4.20) and (4.43), respectively. We
fix the physical domain D “ p0, 1q2 and the terminal time T “ 1. The uncertain diffusion
coefficient, defined as in (4.21), is independent of t, and parameterized in all experiments
with mean field a0pxq ” 1 and the fluctuations as in Section 4.4.1.
The initial state, the target state, the objective functional, as well as the FE method are
chosen as in Section 4.4.1.
The dimension truncation errors in the parabolic optimal control problem under uncer-
tainty are estimated by approximating the quantities

›

›

›

›

ż

Us1

puys1 ´ u
y
s q dy

›

›

›

›

L2pV ;Iq

and

›

›

›

›

ż

Us1

pqys1 ´ q
y
s qdy

›

›

›

›

L2pV ;Iq

as well as
}Ss1 ´ Ss}L2pV ;Iq and |Ts1 ´ Ts|

for s1 " s, by using a tailored lattice cubature rule generated using the fast CBC algorithm
with n “ 215 nodes and a single fixed random shift to compute the high-dimensional
parametric integrals. The obtained results are displayed in Figures 5.4 and 5.5 for the
fluctuations pψjqjě1 corresponding to decay rates ϑ P t1.3, 2.6u and dimensions s P t2k |
k P t1, . . . , 9uu. We use θ “ 10 in the computations corresponding to Ss and Ts. As the
reference solution, we use the solutions corresponding to dimension s1 “ 2048 “ 211.
The theoretical dimension truncation rate is readily observed in the case ϑ “ 1.3. We note
in the case ϑ “ 2.6 that the dimension truncation convergence rates degenerate for large
values of s, which is possibly due to the fact that the QMC cubature with n “ 215 nodes
has an error around 10´8 (see Figure 6.2 in Section 6.3.2). For smaller values of s, the
higher order convergence is also apparent in the case ϑ “ 2.6.
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5 Truncation of the parametric dimension

Figure 5.4: The approximate dimension truncation errors corresponding to the state and
adjoint PDEs.

Figure 5.5: The approximate dimension truncation errors corresponding to }Ss1´Ss}L2pV ;Iq

and |Ts1 ´ Ts|.
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6 Quasi-Monte Carlo methods

We are interested in computing s-dimensional Bochner integrals of the form

Ispgq :“

ż

Us

gpyqdy,

where gpyq is an element of a separable Banach space Z for each y P Us :“
“

´1
2 ,

1
2

‰N
. As

our estimator of Ispgq, we use a cubature rule of the form

Qs,npgq :“
n
ÿ

i“1

αi gpy
piqq ,

with weights αi P R and cubature points ypiq P Us. In particular, we are interested in
QMC rules (see, e.g., [38, 113]), which are cubature rules characterized by equal weights
αi “ 1{n and carefully chosen (deterministic) points ypiq for i “ 1, . . . , n.
We shall see that for sufficiently smooth integrands, randomly shifted rank-1 lattice rules,
which are particular QMC rules, lead faster convergence rates compared to Monte Carlo
methods. Moreover, under moderate assumptions on the anistropy of the problem with
respect to the integration variables, the convergence rate is not dependent on the dimension
of the parameter space. In our applications we will hence focus on randomly shifted rank-1
lattice rules.

6.1 Randomly shifted rank-1 lattice rules for real-valued
functions

Randomly shifted rank-1 lattice rules are cubature rules over the s-dimensional unit cube
rUs “ r0, 1s

s with cubature points

ry
piq
∆ :“ frac

´ iz

n
`∆

¯

, i “ 1, . . . , n ,

where z P Ns is known as the generating vector, ∆ P r0, 1ss is the random shift and
fracp¨q returns the fractional part of each component in the vector. For integration over
Us “

“

´1
2 ,

1
2

‰s
, consider the obvious adjustment

y
piq
∆ :“ frac

´ iz

n
`∆

¯

´

´1

2
, . . . ,

1

2

¯

, i “ 1, . . . , n . (6.1)

Integration over different domains and with respect to different measures is possible. For
example, by the change of variables ξ “ Φ´1pyq for y P p0, 1qs, and the Φp¨q the element-
wise cumulative normal distribution, one can obtain a QMC approximation of the integral
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6 Quasi-Monte Carlo methods

over Rs with respect to a Gaussian measure, see Section 7.2.2. To keep the analysis in
this section simple, we restrict to the case with uniformly distributed parameters yj over
r´1

2 ,
1
2 s.

In order to get an unbiased estimator, in practice we take the mean over R uniformly
drawn random shifts, i.e., we estimate Ispgq using

Qs,npgq :“
1

R

R
ÿ

r“1

Qprqs,npgq, with Qprqs,npgq :“
1

n

n
ÿ

i“1

gpy
piq

∆prqq. (6.2)

In order to quantify the quality of an equal weighted cubature rule, which is determined
by its point set, we define the worst-case error of a QMC rule and a point set P “

typ1q, . . . ,ypnqu in a normed space Z by

en,spP ;Zq :“ sup
}g}Zď1

|Ispgq ´Q
prq
s,npgq|.

For any function g P Z, we have by linearity

|Ispgq ´Q
prq
s,npgq| ď en,spP ;Zq}g}Z ,

and

esh
s,n :“

b

E∆|Ispgq ´Q
prq
s,npgq|2 ď

b

E∆re2
n,spP `∆;Zqs}g}Z , (6.3)

where P `∆ “ tfracpypiq `∆q : i “ 1, . . . , nu. The shift-averaged worst case error esh
s,n

serves as a quality measure for the QMC rules.

Worst-case errors are in general hard to compute, however for certain function spaces, such
as reproducing kernel Hilbert spaces (RKHS) (see [38, Theorem 5.3]), there are explicit
formulas for the shift-averaged worst case error.

Let us consider real-valued functions

g :
“

´1
2 ,

1
2

‰s
Ñ R

that belong to the weighted Sobolev spacesWs,γ with square integrable mixed first deriva-
tives, and which is equipped with norm

}g}2Ws,γ
“

ÿ

uĎt1:su

1

γ u

ż

r0,1s|u|

ˇ

ˇ

ˇ

ˇ

ż

r0,1ss´|u|

B|u|g

Byu
pyu;yt1:suzuqdyt1:suzu

ˇ

ˇ

ˇ

ˇ

2

dyu .

From [38, Lemma 5.5] we know that the (squared) shift-averaged worst case error for a
rank-1 lattice rule in Ws,γ is given by

esh
s,n,γpzq

2 “
1

n

n´1
ÿ

k“0

ÿ

∅‰uĎt1:su

γu
ź

jPu

ω
´

frac
´

kzj
n

¯¯

, where ωpxq “ x2 ´ x`
1

6
.

Considering (6.1), for given s and n, the entire point set is thus determined by the gen-
erating vector z. Hence, finding a good generating vector is essential to construct good
lattice rules. Thus we aim to minimize the the quality measure of the QMC rule, which
is the shift-averaged worst case error, with respect to the generating vector.
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6.1 Randomly shifted rank-1 lattice rules for real-valued
functions

Note that the components of the generating vector z can be restricted to the set

Un :“ tz P Z : 1 ď z ď n´ 1 and gcdpz, nq “ 1u,

which has cardinality given by the Euler totient function φtotpnq :“ |Un|. Here gcd stands
for greatest common divisor. When n is prime, then φtotpnq takes its largest value n´ 1,
and hence there are up to pn ´ 1qs possible choices for z, which is too many for an
exhaustive search for the best generating vector z. The component-by-component (CBC)
construction is a feasible method to find a good generating vector.

Algorithm 5 CBC construction

Input: n, smax, and weights γu.

1: Set z1 “ 1.
2: for For s “ 2, 3, . . . , smax do
3: Choose zs in Un to minimize esh

s,n,γpz1, . . . , zsq
2

4: end for

For general weights γu, the cost of the CBC algorithm is prohibitively expensive, hence we
shall be interested in special structures of the weights, such as product weights, or product
and order dependent (POD) ones. Since the CBC construction is not the focus of this
work, we refer the interested reader for efficient implementations of the CBC construction
to [33, 93, 113, 124, 125].
The weights γu are said to be of product and order dependent form if they can be written
as

γu “ Γ|u|
ź

jPu

γj ,

for two sequences γ1, γ2, . . . and Γ1,Γ2, . . . of nonnegative numbers. We have seen in
Section 4.6 that POD weights arise naturally in the regularity analysis of PDEs with
random coefficients. The computational cost of the fast CBC construction with POD
weights is of order Opsn log n` s2nq.

Theorem 6.1.1 ([38, Theorem 5.8]). The generating vector z P Usn constructed by the
CBC algorithm, with the squared shift-averaged worst case error esh

s,n,γpzq
2 for the weighted

Sobolev space Ws,γ , satisfies

esh
s,n,γpzq

2 ď

¨

˝

1

φtotpnq

ÿ

H‰uĎt1:su

γλu

ˆ

2ζp2λq

p2π2qλ

˙|u|
˛

‚

1
λ

,

for all λ P p1
2 , 1s, where ζpxq :“

ř8
h“1

1
hx for x ą 1 is the Riemann zeta function, and

φtotpnq “ |Usn| is the Euler totient function.

This directly leads to

Theorem 6.1.2 ([38, Theorem 5.10]). Let g P Ws,γ . Then a generating vector z can be
constructed using a CBC algorithm such that, for all λ P p1

2 , 1s,

b

E∆|Ispgq ´Q
prq
s,npgq|2 ď

¨

˝

1

φtotpnq

ÿ

H‰uĎt1:su

γλu

ˆ

2ζp2λq

p2π2qλ

˙|u|
˛

‚

1
2λ

}g}Ws,γ ,
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6 Quasi-Monte Carlo methods

where ζpxq “
ř8
h“1

1
hx for x ą 1 is the Riemann zeta function, and φtotpnq “ |Usn| is the

Euler totient function.

In PDE-constrained optimization problems that are subject to uncertainty, the integrals
appearing in the objective function and derivatives are typically high-dimensional integrals
over Banach space-valued functions. In the next section we thus generalize the well-
known results presented in this section to integrals over Banach space-valued functions,
i.e., Bochner integrals.

6.2 Randomly shifted rank-1 lattice rules for Bochner inte-
grals

In this section we generalize the results from the previous section to Bochner integrals
and apply them to bound the cubature errors in Section 4.5. We first prove a new general
result which holds for any cubature rule in a separable Banach space setting.

Theorem 6.2.1. Let Us “ r´
1
2 ,

1
2 s
s and letWs be a Banach space of functions F : Us Ñ R,

which is continuously embedded in the space of continuous functions. Consider an n-point
cubature rule with weights αi P R and points ypiq P Us, given by

IspF q :“

ż

Us

F pyq dy «
n
ÿ

i“1

αi F py
piqq “: Qs,npF q,

and define the worst case error of Qs,n in Ws by

eworpQs,n;Wsq :“ sup
FPWs,
}F }Wsď1

|IspF q ´Qs,npF q|.

Let Z be a separable Banach space and let Z 1 denote its dual space. Let g : y ÞÑ gpyq be
continuous and gpyq P Z for all y P Us. Then

›

›

›

ż

Us

gpyqdy ´
n
ÿ

i“1

αi gpy
piqq

›

›

›

Z
ď eworpQs,n;Wsq sup

GPZ1
}G}Z1ď1

}Gpgq}Ws . (6.4)

Proof. From the separability of Z and the continuity of gpyq we get strong measurability
of gpyq. Moreover, from the compactness of Us and the continuity of y ÞÑ gpyq we
conclude that supyPUs }gpyq}Z ă 8 and hence

ş

Us
}gpyq}Z dy ă 8, which in turn implies

}
ş

Us
gpyq dy}Z ă 8. Thus gpyq is Bochner integrable.

Furthermore, for every normed space Z, its dual space Z 1 is a Banach space equipped
with the norm }G}Z1 :“ supgPZ, }g}Zď1 |xG, gyZ1,Z |. Then it holds for every g P Z that
}g}Z “ supGPZ1, }G}Z1ď1 |xG, gyZ1,Z |. This follows from the Hahn–Banach Theorem, see,
e.g., [135, Theorem 4.3].
Thus we have
›

›

›

ż

Us

gpyqdy ´
n
ÿ

i“1

αi gpy
piqq

›

›

›

Z
“ sup

GPZ1
}G}Z1ď1

ˇ

ˇ

ˇ

A

G,

ż

Us

gpyq dy ´
n
ÿ

i“1

αi gpy
piqq

E

Z1,Z

ˇ

ˇ

ˇ

“ sup
GPZ1
}G}Z1ď1

ˇ

ˇ

ˇ

ż

Us

xG, gpyqyZ1,Z dy ´
n
ÿ

i“1

αi xG, gpy
piqqyZ1,Z

ˇ

ˇ

ˇ
,

(6.5)
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6.2 Randomly shifted rank-1 lattice rules for Bochner integrals

where we used the linearity of G and the fact that for Bochner integrals we can swap the
integral with the linear functional, see (2.16).
From the definition of the worst case error of Qs,n in Ws it follows that for any F P Ws

we have
|IspF q ´Qs,npF q| ď eworpQs,n;Wsq }F }Ws .

Applying this to the special case F pyq “ Gpgpyqq “ xG, gpyqyZ1,Z in (6.5) yields (6.4).

Theorem 6.2.2. Let the assumptions of the preceding Theorem hold. In addition, suppose
there exist constants C0 ą 0, r1 ě 0, r2 ą 0 and a positive sequence ρ “ pρjqjě1 such that
for all u Ď t1 : su and for all y P Us we have

›

›

›

B|u|

Byu
gpyq

›

›

›

Z
ď C0 p|u| ` r1q!

ź

jPu

pr2 ρjq. (6.6)

Then, a randomly shifted rank-1 lattice rule can be constructed using a CBC algorithm
such that

E∆

›

›

›

ż

Us

gpyqdy ´
1

n

n
ÿ

i“1

gpypiqq
›

›

›

2

Z
ď Cs,γ,λ rφtotpnqs

´1{λ for all λ P p1
2 , 1s,

where φtotpnq is the Euler totient function, with 1{φtotpnq ď 2{n when n is a prime power,
and

Cs,γ,λ :“ C2
0

ˆ

ÿ

H‰uĎt1:su

γλu

ˆ

2ζp2λq

p2π2qλ

˙|u|˙ 1
λ
ˆ

ÿ

uĎt1:su

rp|u| ` r1q!s
2
ś

jPupr2 ρjq
2

γu

˙

. (6.7)

Proof. We consider randomly shifted rank-1 lattice rules in the unanchored weighted
Sobolev space Ws,γ with norm

}F }2Ws,γ
:“

ÿ

uĎt1:su

1

γu

ż

r´ 1
2
, 1
2
s|u|

ˇ

ˇ

ˇ

ż

r´ 1
2
, 1
2
ss´|u|

B|u|

Byu
F pyu;yt1:suzuq dyt1:suzu

ˇ

ˇ

ˇ

2
dyu

ď
ÿ

uĎt1:su

1

γu

ż

Us

ˇ

ˇ

ˇ

B|u|

Byu
F pyq

ˇ

ˇ

ˇ

2
dy.

We have seen in the preceding section that CBC construction yields a lattice generating
vector satisfying

E∆re
worpQs,n;Wqs2 ď

´ 1

φtotpnq

ÿ

H‰uĎt1:su

γλu

´2ζp2λq

p2π2qλ

¯|u|¯ 1
λ

for all λ P p1
2 , 1s.

We have from (6.4) that

E∆

›

›

›

ż

Us

gpyqdy ´
1

n

n
ÿ

i“1

gpypiqq
›

›

›

2

Z
ď E∆re

worpQs,n;Wqs2 sup
GPZ1

}G}Z1ď1

}Gpgq}2Ws,γ
.

Using the definition of the Ws,γ-norm, we have

}Gpgq}2Ws,γ
ď

ÿ

uĎt1:su

1

γu

ż

Us

ˇ

ˇ

ˇ

B|u|

Byu
Gpgpyqq

ˇ

ˇ

ˇ

2
dy
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6 Quasi-Monte Carlo methods

“
ÿ

uĎt1:su

1

γu

ż

Us

ˇ

ˇ

ˇ
G
´

B|u|

Byu
gpyq

¯ˇ

ˇ

ˇ

2
dy ď

ÿ

uĎt1:su

1

γu

ż

Us

}G}2Z1
›

›

›

B|u|

Byu
gpyq

›

›

›

2

Z
dy .

We can now use the assumption (6.6) and combine all of the estimates to arrive at the
required bound.

We now apply this general result to bound the cubature errors in Section 4.5. We start
with the elliptic example, i.e., to the third term in (4.65).

Theorem 6.2.3. Let z P L2pDq. For every y P U and s P N, let uys P H1
0 pDq be the

truncated solution of (4.8), and then let qys P H1
0 pDq be the truncated solution of (4.17).

Then a randomly shifted rank-1 lattice rule can be constructed using a CBC algorithm such
that for all λ P p1

2 , 1s we have

E∆

›

›

›

ż

Us

uys dy ´
1

n

n
ÿ

i“1

uy
piq

s

›

›

›

2

L2pDq
ď Cs,γ,λ rφtotpnqs

´1{λ ,

E∆

›

›

›

ż

Us

qys dy ´
1

n

n
ÿ

i“1

qy
piq

s

›

›

›

2

L2pDq
ď Cs,γ,λ rφtotpnqs

´1{λ ,

where φtotpnq is the Euler totient function, with 1{φtotpnq ď 2{n when n is a prime power.
Here Cs,γ,λ is given by (6.7), with r1 “ 1, r2 “ 1, ρj “ }ψj}L8pDq{amin, and C0 ą 0 is
independent of s, n, λ and weights γ but depends on z, pu, CB, CQ, and other constants.

Remark 6.2.4. For conforming FE methods, i.e., when the FE spaces Vh are subspaces
of the solution space V , and the FE error bounds are independent of the parameters y P U ,
which is the case in the uniform setting considered in this section, then the Banach space
QMC error bound directly applies to the FE discretizations. In Theorem 6.2.3 we can
replace uys and qys by their FE approximations uys,h and qys,h.

We next apply the general result Theorem 6.2.2 to the second terms in (4.66), (4.69)
and (4.70).

Theorem 6.2.5. Let f “ pz, u0q P Y 1 and pu P X . For every y P U and s P N, let
uys P X be the truncated solution of (4.20) and Φys be as in (4.37), and then let qys P Y
be the truncated solution of (4.32). Then a randomly shifted rank-1 lattice rule can be
constructed using a CBC algorithm such that for all λ P p1

2 , 1s we have

E∆

›

›

›

ż

Us

uys dy ´
1

n

n
ÿ

i“1

uy
piq

s

›

›

›

2

X
ď Cs,γ,λ rφtotpnqs

´1{λ, (6.8)

E∆

›

›

›

ż

Us

qys dy ´
1

n

n
ÿ

i“1

qy
piq

s

›

›

›

2

Y
ď Cs,γ,λ rφtotpnqs

´1{λ, (6.9)

E∆}Ss ´ Ss,n}
2
L2pV ;Iq ď E∆

›

›

›

ż

Us

exppθΦys q q
y
s dy ´

1

n

n
ÿ

i“1

exppθΦy
piq

s q qy
piq

s

›

›

›

2

Y

ď Cs,γ,λ rφtotpnqs
´1{λ, (6.10)

E∆|Ts ´ Ts,n|
2 ď E∆

ˇ

ˇ

ˇ

ż

Us

exppθΦys qdy ´
1

n

n
ÿ

i“1

exppθΦy
piq

s q

ˇ

ˇ

ˇ

2

ď Cs,γ,λ rφtotpnqs
´1{λ, (6.11)

124



6.2 Randomly shifted rank-1 lattice rules for Bochner integrals

where φtotpnq is the Euler totient function, with 1{φtotpnq ď 2{n when n is a prime power.
Here Cs,γ,λ is given by (6.7), with r1 “ 2, r2 “ e, ρj “ bj defined in (4.86), and C0 ą 0
is independent of s, n, λ and weights γ but depends on u0, z, pu, and other constants.

Proof. This follows directly from Theorem 6.2.2 by applying the regularity bounds in
Lemma 4.6.4, Theorem 4.6.6, Theorem 4.6.12 and Theorem 4.6.10. For simplicity we set
C0, r1 and r2 to be the largest values arising from the four results.

We get an analogous result for the optimal control problem with parametric linear operator
constraints, which can be applied to the second terms in (4.71), (4.74) and (4.75).

Theorem 6.2.6. Let Bz P Y 1. For every y P U and s P N, let uys P X be the truncated
solution of (3.24) and rΦys be as in (4.97), and then let qys P Y be the truncated solution
of (4.54). Then a randomly shifted rank-1 lattice rule can be constructed using a CBC
algorithm such that for all λ P p1

2 , 1s we have

E∆

›

›

›

ż

Us

uys dy ´
1

n

n
ÿ

i“1

uy
piq

s

›

›

›

2

X
ď Cs,γ,λ rφtotpnqs

´1{λ, (6.12)

E∆

›

›

›

ż

Us

qys dy ´
1

n

n
ÿ

i“1

qy
piq

s

›

›

›

2

Y
ď Cs,γ,λ rφtotpnqs

´1{λ, (6.13)

E∆}Ss ´ Ss,n}
2
Y ď E∆

›

›

›

ż

Us

exppθΦys q q
y
s dy ´

1

n

n
ÿ

i“1

exppθΦy
piq

s q qy
piq

s

›

›

›

2

Y

ď Cs,γ,λ rφtotpnqs
´1{λ, (6.14)

E∆|Ts ´ Ts,n|
2 ď E∆

ˇ

ˇ

ˇ

ż

Us

exppθΦys qdy ´
1

n

n
ÿ

i“1

exppθΦy
piq

s q

ˇ

ˇ

ˇ

2

ď Cs,γ,λ rφtotpnqs
´1{λ, (6.15)

where φtotpnq is the Euler totient function, with 1{φtotpnq ď 2{n when n is a prime power.
Here Cs,γ,λ is given by (6.7), with r1 “ 2, r2 “ e, ρj “ bj defined in Corollary 2.3.4, and
C0 ą 0 is independent of s, n, λ and weights γ but depends on z, pu, CB, CQ, and other
constants.

Proof. This follows directly from Theorem 6.2.2 by applying the regularity bounds in
Corollary 4.6.14, Lemma 4.6.15, Lemma 4.6.16, Theorem 4.6.18, and Theorem 4.6.19. For
simplicity we set C0, r1 and r2 to be the largest values arising from the four results.

Theorem 6.2.7. With the choices

λ “

#

1
2´2δ for all δ P p0, 1q if p P p0, 2

3 s ,
p

2´p if p P p2
3 , 1q ,

γu “ γ˚u :“

ˆ

p|u| ` r1q!
ź

jPu

r2 ρj
a

2ζp2λq{p2π2qλ

˙2{p1`λq

,

we have that Cs,γ˚,λ is bounded independently of s. pHowever, Cs,γ˚, 1
2´2δ

Ñ 8 as δ Ñ 0

and Cs,γ˚, p
2´p

Ñ 8 as p Ñ p2{3q`.q Consequently, under the assumption b1 ě b2 ě . . .,
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6 Quasi-Monte Carlo methods

the above three mean-square errors in Theorem 6.2.3, Theorem 6.2.5, and Theorem 6.2.6
are of order

#

rφtotpnqs
´p2´2δq for all δ P p0, 1q if p P p0, 2

3 s ,

rφtotpnqs
´p2{p´1q if p P p2

3 , 1q .
(6.16)

Proof. We know from [116, Lemma 6.2] that for any λ, Cs,γ,λ defined in (6.7) is minimized
by γu “ γ˚u . By inserting γ˚ into Cs,γ,λ we can then derive the condition p ă 2λ

1`λ ă 1 for

which Cs,γ˚,λ is bounded independently of s. This condition on λ, together with λ P p1
2 , 1s

and p P p0, 1q yields the result.

6.3 Numerical experiments

In this section we numerically verify the theoretical QMC error rates for the optimal
control problems with the elliptic and the parabolic PDE constraints which we obtained
in Theorem 6.2.3 and Theorem 6.2.5.

6.3.1 Elliptic optimal control problem

We assess the rate in Theorem 6.2.3 by using the root-mean-square approximation

g

f

f

eE∆

›

›

›

›

ż

Us

qs,hp¨,yt1:su, zq dyt1:su ´
1

n

n
ÿ

i“1

qs,hp¨, tt
piq `∆u ´ 1

2 , zq

›

›

›

›

2

L2pDq

«

g

f

f

e

1

RpR´ 1q

R
ÿ

r“1

›

›Qs,n ´Q
prq
s,n

›

›

2

L2pDq
,

where Q
prq
s,n :“ 1

n

řn
i“1 qs,hp¨, tt

piq `∆prqu ´ 1
2 , zq and Qs,n “

1
R

řR
r“1Q

prq
s,n, for a randomly

shifted rank-1 lattice rule with n “ 2m, m P t7, . . . , 15u, lattice points ptpiqqni“1 in r0, 1ss and
R “ 16 random shifts ∆prq drawn from the uniform distribution Upr0, 1ssq with s “ 100.
The FE solutions were computed using the mesh width h “ 2´6, see Section 7.1 for the
details. The results are displayed in Figure 6.1. For our experiments we fix the source
term zpxq “ x2 and otherwise the setup is the same as in Section 4.4.1. In both cases, the
theoretical rate is Opn´1`δq, δ ą 0. For the decay rate ϑ “ 1.5 (see (4.62)), we observe
the rates Opn´0.984193q for the state PDE and Opn´0.987608q for the adjoint PDE. When
the decay rate is ϑ “ 2.0, we obtain the rates Opn´1.01080q and Opn´1.012258q for the state
and adjoint PDE, respectively.
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6.3 Numerical experiments

Figure 6.1: The computed root-mean-square errors for the randomly shifted rank-1 lattice
rules.

6.3.2 Parabolic optimal control problem

We investigate the QMC error rate obtained in Theorem 6.2.5 by computing the root-
mean-square approximations
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¨
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g

f

f

e

1

RpR´ 1q

R
ÿ

r“1

|pQs,n ´Q
prq
s,nqpexppΦ¨sqq|

2,

corresponding to (6.8) – (6.11), where Qs,n and Qprq are as in (6.2) for a randomly shifted
rank-1 lattice rule with cubature nodes (6.1), where the random shift ∆ is drawn from the
uniform distribution Upr0, 1ssq. As the generating vector, we use lattice rules constructed
using the fast CBC algorithm with n “ 2m, m P t4, . . . , 15u, lattice points and R “ 16
random shifts, and s “ 100. We carry out the experiments using two different decay
rates ϑ P t1.3, 2.6u for the input random field, and fix the source term zpx, tq “ 10x1p1´
x1qx2p1´x2q. Otherwise the setup is the same as in Section 4.4.1. The results are displayed
in Figure 6.2. The root-mean-square error converges at a linear rate in all experiments,
which is consistent with the theory.
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6 Quasi-Monte Carlo methods

Figure 6.2: Left: The approximate root-mean-square error for QMC approximation of
the integrals

ş

Us
uys dy and

ş

Us
qys dy. Right: The approximate root-mean-

square error for QMC approximation of quantities Ss and Ts. All computations
were carried out using R “ 16 random shifts, n “ 2m, m P t4, . . . , 15u, and
dimension s “ 100.
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7 Discretization and multilevel methods

In this section we briefly present a finite element method. Particular we focus on piecewise
linear finite elements and establish error bounds and a convergence rate for the optimal
control problem with elliptic PDE constraint.

The second part of this chapter is devoted to a multilevel QMC (MLQMC) estimator of
the gradient in the optimal control problem with elliptic PDE constraint. We show that
the proposed MLQMC method outperforms a multilevel Monte-Carlo (MLMC) method
and the (single level) QMC method.

7.1 Finite element discretization

In this section we apply a basic finite element method to the elliptic example (4.1) – (4.4).
In particular, we derive an error bound and a convergence rate for the second term in
(4.65). To this end, we briefly recall the basic concept of finite element (FE) methods.

FE methods are numerical schemes for solving PDEs in the spatial variable x P D. To
solve a PDE problem, the domain D is divided into subdomains, so-called finite elements.
Each subdomain is represented by a set of equations, which are combined to approximate
the global solution of the PDE on the domain D.

We present the application to the elliptic PDE problem here for two reasons: we want to
complete the error analysis, see (4.65), and we want to introduce the method to better
understand how a multilevel method (see Section 7.2 below) uses a discretization scheme
to reduce the computational complexity of the problem.

However, since the FE approximation is not the focus of this work and requires mainly
well-known results from the literature, we only present the FE error analysis the elliptic
PDE example (4.1) – (4.4).

In order to keep the analysis simple and obtain convergence rates of the finite element
solutions we make the following additional assumptions (cp. [116, 76])

(AE6) D Ă Rd is convex bounded polyhedron with plane faces

(AE7) a0 PW
1,8pDq ,

ř

jě1 }ψj}W 1,8pDq ă 8,

where }v}W 1,8pDq :“ maxt}v}L8pDq , }∇v}L8pDqu. The assumption that the geometry of
the computational domain D is approximated exactly by the FE mesh simplifies the forth-
coming analysis, however, this assumption can substantially be relaxed. For example, stan-
dard results on FE analysis as, e.g., in [27] will imply corresponding results for domains
D with curved boundaries.

By tVhuh we denote a family of subspaces Vh Ă V of dimensions Mh ă 8, where Mh

is of order h´d, with d P t1, 2, 3u denoting the dimension of D. We think of the spaces
Vh as spaces spanned by continuous, piecewise linear finite element basis functions on a
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7 Discretization and multilevel methods

sequence of regular, simplicial meshes in D obtained from an initial, regular triangulation
of D by recursive, uniform bisection of simplices. Then it is well known (see details, e.g.,
in [59, 116]) that for functions v P V XH2pDq there exists a constant C ą 0, such that as
hÑ 0

inf
vhPVh

}v ´ vh}V ď C h }v}VXH2pDq , (7.1)

where }v}VXH2pDq :“ p}v}2L2pDq ` }∆v}
2
L2pDqq

1{2. Note that we need the additional reg-
ularity to derive the asymptotic convergence rate as h Ñ 0. For any y P U and every
z P L2pDq (and E1z P V

1, see (4.6)), we define the parametric finite element approxima-
tions uhp¨,y, zq P Vh and qhp¨,y, zq P Vh by

ż

D
apx,yq∇uhpx,y, zq ¨∇vhpx,yqdx “ xE1z, vhy @vh P Vh , (7.2)

and then
ż

D
apx,yq∇qhpx,y, zq ¨∇whpx,yq dx “ xuhp¨,y, zq ´ pu,why @wh P Vh , (7.3)

We note that the FE approximation (7.2) and (7.3) are defined pointwise with respect to
y P U so that the application of a QMC rule to the FE approximation is well defined. To
stress the dependence on s for truncated parameters y “ py1, . . . , ys, 0, 0, . . .q P U we write
us,h and qs,h instead of uh and qh, respectively.

More precisely, let pφiq
Mh
i“1 be a basis of Vh. Substituting

uhpx,y, zq “
Mh
ÿ

i“1

uipy, zqφipxq

into (7.2) with vh “ φj gives

Mh
ÿ

i“1

ui

ż

D
apx,yq∇φipxq ¨∇φjpxqdx “

ż

D
E1zpxqφjpxq dx ,

which is equivalent to solving the system of linear equations

Ku “ z ,

where the stiffness matrix K and the load vector z are given as

Ki,j :“

ż

D
apx,yq∇φipxq ¨∇φjpxq dx and z :“

ż

D
E1zpxq ¨ φjpxqdx .

This system of linear equations can be solved efficiently if the stiffness matrix is sparse.
Choosing basis functions with small support supppφjq :“ tx P D : φj ‰ 0u favors sparsity
in the stiffness matrix K. Let τ P T be a triangle and let T be a set of disjoint triangles
such that D “

Ť

τPT τ . Denoting by vert1, . . . , vertMh
the vertices of the triangles we

uniquely define the piecewise linear basis functions as

φjpvertiq “

#

1 if i “ j,

0 otherwise,

and being linear in each triangle τ P T . In this case it holds that Ki,j ‰ 0 if and only if
verti and vertj are neighbouring vertices. The vertices verti and vertj are neighbouring if
there exists a τ P T such that verti, vertj P τ .
We obtain the following result for the second term in the error expansion (4.65).
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Figure 7.1: From left to right: sequence of regular, triangular meshes in D “ r0, 1s2 ob-
tained by recursive, uniform bisection of simplices of an initial, regular trian-
gulation of D.

Figure 7.2: Basis function φj for vertj “ p0.5, 0.5q

Theorem 7.1.1. Under Assumptions (AE6) and (AE7), for z P Z, there holds the asymp-
totic convergence estimate as hÑ 0

sup
yPU

}qp¨,y, zq ´ qhp¨,y, zq}L2pDq ď Ch2
`

}z}L2pDq ` }pu}L2pDq

˘

,

and
›

›

›

›

ż

U
pqp¨,y, zq ´ qhp¨,y, zqq dy

›

›

›

›

L2pDq

ď Ch2
`

}z}L2pDq ` }pu}L2pDq

˘

,

where C ą 0 is independent of h, z and pu and y.

For truncated y “ py1, . . . , ys, 0, 0, . . .q P U , the result of Theorem 7.1.1 clearly holds with
q and qh replaced by qs and qs,h, respectively.
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7 Discretization and multilevel methods

Proof. Let Sy,h be the self-adjoint solution operator defined analogously to (4.12); which
for every y P U assigns to each function f P L2pDq the unique solution ghp¨,yq P Vh Ă
V Ă L2pDq. In particular Sy,h is the solution operator of the problem: find gh P Vh such
that bpy; gh, vhq “ xf, vhy @vh P Vh. Note that Sy,h is a bounded and linear operator for
given y P U . For every y P U , we can thus estimate

}qp¨,y, zq ´ qhp¨,y, zq}L2pDq “ }Sypup¨,y, zq ´ puq ´ Sy,hpuhp¨,y, zq ´ puq}L2pDq

ď }Sypup¨,y, zq ´ puq ´ Sy,hpup¨,y, zq ´ puq}L2pDq

` }Sy,hup¨,y, zq ´ Sy,huhp¨,y, zq}L2pDq

ď }pSy ´ Sy,hqpup¨,y, zq ´ puq}L2pDq

`
c1c2

amin
}up¨,y, zq ´ uhp¨,y, zq}L2pDq . (7.4)

The last step is true because (4.10) holds for all v P V and therefore it holds in particular
for uh P Vh Ă V . Hence we can bound }Sy,h}LpL2pDqq ď

c1c2
amin

. We can now apply the

Aubin–Nitsche duality argument (see, e.g., [59]) to bound (7.4): for w P L2pDq it holds
that

}w}L2pDq “ sup
gPL2pDqzt0u

xg, wy

}g}L2pDq
. (7.5)

From (4.8) and (7.2) follows the Galerkin orthogonality: bpy;up¨,y, zq´uhp¨,y, zq, vhq “ 0
for all vh P Vh, where the parametric bilinear form bpy; ¨, ¨q is defined in (4.9). Further,
given g P L2pDq, we define ugp¨,yq for every y P U as the unique solution of the problem:
find ugp¨,yq P V such that

bpy;ugp¨,yq, wq “ xg, wy @w P V ,

which leads together with the choice w :“ u ´ uh and the Galerkin orthogonality of the
FE discretization to

xg, up¨,y, zq ´ uhp¨,y, zqy “ bpy;ugp¨,yq, up¨,y, zq ´ uhp¨,y, zqq

“ bpy;ugp¨,yq ´ vh, up¨,y, zq ´ uhp¨,y, zqq

ď amax}ugp¨,yq ´ vh}V }up¨,y, zq ´ uhp¨,y, zq}V .

With (7.5) we get for every y P U that

}up¨,y, zq ´ uhp¨,y, zq}L2pDq “ sup
gPL2pDqzt0u

xg, up¨,y, zq ´ uhp¨,y, zqy

}g}L2pDq

ď amax}up¨,y, zq ´ uhp¨,y, zq}V sup
gPL2pDqzt0u

#

inf
vhPV

}ugp¨,yq ´ vh}V
}g}L2pDq

+

.

Now from (7.1) we infer for every y P U that

inf
vhPV

}ugp¨,yq ´ vh}V ď C3 h }ugp¨,yq}VXH2pDq ď C4C3 h }g}L2pDq ,

where C3 is the constant in (7.1). The last step follows from [116, Theorem 4.1] with
t “ 1, and C4 is the constant in that theorem. For every y P U , we further obtain with
Céa’s lemma, (7.1) and [116, Theorem 4.1]

}up¨,y, zq ´ uhp¨,y, zq}V ď
amax

amin
inf
vhPV

}up¨,y, zq ´ vh}V
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7.1 Finite element discretization

ď
amax

amin
C3 h }up¨,y, zq}VXH2pDq ď

amax

amin
C4C3 h }z}L2pDq .

Thus for every y P U it holds that

}up¨,y, zq ´ uhp¨,y, zq}L2pDq ď
a2

max

amin
C2

4C
2
3 h

2 }z}L2pDq . (7.6)

By the same argument we get for every y P U that

}pSy ´ Sy,hqpup¨,y, zq ´ puq}L2pDq ď
a2

max

amin
C2

4C
2
3 h

2

ˆ

c1c2

amin
}z}L2pDq ` }pu}L2pDq

˙

. (7.7)

Combining (7.6) and (7.7) in (7.4) leads for every y P U to

}qp¨,y, zq ´ qhp¨,y, zq}L2pDq ď
a2

max

amin
C2

4C
2
3 h

2

ˆ

2 c1c2

amin
}z}L2pDq ` }pu}L2pDq

˙

.

The second result easily follows from the first result since
›

›

›

›

ż

U
pqp¨,y, zq ´ qhp¨,y, zqq dy

›

›

›

›

2

L2pDq

ď

ż

U
}qp¨,y, zq ´ qhp¨,y, zq}

2
L2pDq dy .

Remark 7.1.2. In this work the optimal control z˚ will always be implicitly discretized in
terms of the FE discretization Sy,h of the solution operator Sy, see [88].

Numerical experiments

We validate the FE error bounds given in Theorem 7.1.1 numerically. To this end, we
consider the coupled PDE system (7.2) – (7.3) in the two-dimensional physical domain
D “ p0, 1q2 equipped with the diffusion coefficient eq. (4.5), chosen as in Section 4.4.1.
We fix the source term zpxq “ x2 and set pupxq “ x2

1 ´ x
2
2 for x “ px1, x2q P D.

Two numerical experiments were carried out:

(a) The L2 errors }usp¨,y, zq ´ us,hp¨,y, zq}L2pDq and }qsp¨,y, zq ´ qs,hp¨,y, zq}L2pDq of
the FE solutions to the state and adjoint PDEs, respectively, were computed using
the parameters s “ 100 and h P t2´k : k P t2, . . . , 9uu for a single realization of the
parametric vector y P r´1{2, 1{2s100 drawn from Upr´1{2, 1{2s100q.

(b) The terms
›

›

ş

Uspusp¨,y, zq ´ us,hp¨,y, zqqdy
›

›

L2pDq
and

›

›

ş

Uspqsp¨,y, zq ´

qs,hp¨,y, zqqdy
›

›

L2pDq
were approUmated by using a lattice rule with a single fixed

random shift to evaluate the parametric integrals with dimensionality s “ 100,
n “ 215 nodes and mesh width h P t2´k : k P t2, . . . , 6uu.

The value ϑ “ 2.0 was used in both experiments as the rate of decay for the fluctua-
tions (4.62). As the reference solutions us and qs, we used FE solutions computed using
the mesh width h “ 2´10 for experiment (a) and h “ 2´7 for experiment (b). The L2 er-
rors were computed by interpolating the coarser FE solutions onto the grid corresponding
to the reference solution. The numerical results are displayed in Figure 7.3. In the case
of a single fixed vector y P r´1{2, 1{2s100, we obtain the rates Oph2.01688q and Oph2.00542q

for the state and adjoint solutions, respectively. The corresponding rates averaged over
n “ 215 lattice quadrature nodes are Oph2.04011q for the state PDE and Oph2.01617q for the
adjoint PDE. In both cases, the observed rates adhere nicely with the theoretical rates
given in Theorem 7.1.1.
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7 Discretization and multilevel methods

Figure 7.3: The computed finite element errors displayed against the theoretical rates.

7.2 Multilevel quasi-Monte Carlo for optimal control prob-
lems

In this chapter, we apply a multilevel method to approximate the gradient of an optimal
control problem in order to reduce the computational cost of finding the optimal control
using a gradient based method. In particular, we consider the elliptic model problem
(see (4.15)) with a lognormally distributed diffusion coefficient and use a multilevel quasi-
Monte Carlo (MLQMC) estimator to approximate the expected value appearing in the
gradient.

Similar to Section 4.1 we consider the optimal control problem

min
zPL2pDq

Jpzq , Jpzq :“
1

2

ż

Ω
}upzq ´ pu}2L2pDq dP`

α

2
}z}2L2pDq ,

where α ą 0 is a regularization parameter and u as a function of the control z solves the
elliptic equation

ż

D
apx, ωq∇upx, ωq ¨∇vpxq dx “

ż

D
zpxqvpxq dx, @v P H1

0 pDq . (7.8)

for a.e. ω P Ω. The spatial domain D Ă Rd with d “ 1, 2 or 3 is a bounded Lipschitz
domain and we consider Dirichlet boundary conditions, i.e., up¨, ωq P H1

0 pDq “: V has zero
trace for a.e. ω P Ω, as in Section 4.1.

In this chapter, the random input is assumed to be lognormally distributed as opposed
to the uniformly distributed parameters in Section 4.1. We use the notation apx, ωq
to indicate that the diffusion coefficient is stochastic, i.e., dependends on some random
influence ω P Ω, where in general ω is an element of the set of events Ω in a suitable
probability space pΩ,A,Pq. Provided that the PDE is uniquely solvable, any deterministic
control z P L2pDq then leads to a solution u that also depends on ω. As we do not assume
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

additional constraints on the control, the optimality conditions are

ż

D
apx, ωq∇upx, ωq ¨∇vpxqdx “

ż

D
zpxqvpxqdx, @v P V, (7.9)

ż

D
apx, ωq∇qpx, ωq ¨∇vpxqdx “

ż

D
pupx, ωq ´ pupxqq vpxqdx, @v P V, (7.10)

∇Jpzq “ Erqs ` αz “ 0. (7.11)

In this section, we address the problem of obtaining an estimate for Erqs and therefore
∇Jpzq using a multilevel quasi-Monte Carlo method. The resulting gradient could be used
in a gradient based optimization problem to find a solution, see Section 4.4.

This section is based on the joint work with Andreas Van Barel [75] in which we draw
upon ideas from several previous works. First, the single level quasi-Monte Carlo method
was investigated and analyzed for this problem in [76]. Secondly, [116, 119] discusses the
application of the MLQMC method to the forward problem (7.8). Both [76] and [116, 119]
build on previous papers applying the QMC method to the forward PDE problem; see, e.g.,
[69, 113]. Next, the application of multilevel Monte Carlo for the optimization problem at
hand can be found in [157]. It is itself based on [62, 29] where the MLMC method is applied
to the forward problem. In this section we attempt to combine these ideas by employing
a MLQMC for the estimation of Erqs in (7.11). In [76, 119, 157], the uncertain coefficient
a is sampled using the Karhunen–Loève (KL) expansion. However, in this manuscript we
follow [72], which uses the circulant embedding (CE) method with QMC. Using the CE
method, we obtain exact realizations of the random field on a finite set of points and hence
there is no truncation error. However, since the FE quadrature points typically do not
match the CE grid, we need to interpolate the realizations of the random field. The use of
a MLQMC estimator in conjunction with the CE method is new for the optimal control
problem as well as for the forward PDE problem.

In this section, we show that the use of QMC points leads to a faster rate of convergence
than the ordinary Monte Carlo points. Using the multilevel strategy can further reduce
the computational cost. The theoretical convergence rate, as derived in the analysis below,
is easily observed in practice. Moreover, the method has little storage costs and is easily
parallelizable.

7.2.1 Sampling and discretization

The random field is assumed to be lognormal, i.e., of the form

apx, ωq “ exppZpx, ωqq ,

where ω is an element of the set of events Ω in the probability space pΩ,A,Pq and Zpx, ωq is
a Gaussian random field with prescribed mean Z̄ “ ErZpx, ¨qs and covariance rcovpx,x

1q :“
Cov rZpx, ¨q, Zpx1, ¨qs “ E

“

pZpx, ¨q ´ ZqpZpx1, ¨q ´ Zq
‰

,@x,x1 P D.

One could sample the underlying Gaussian stochastic field using the KL expansion [100,
121] of Z:

Zpx, ωq “ ErZpx, ¨qs `
8
ÿ

n“1

a

θnξnpωqfnpxq, x P D, ω P Ω. (7.12)

The KL expansion is the unique expansion of the above form (with }ξn}L2pΩq “ }fn}L2pDq “

1) that minimizes the total mean square error if the expansion is truncated to a finite
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7 Discretization and multilevel methods

number of terms [58]. This sampling method is widely used, see e.g., [15, 16, 25, 29, 69,
76, 119, 157]. The advantage is that the expansion represents the field Z and therefore
a :“ exppZq at all points in the domain D. In practice, one must however truncate the
expansion at some point, introducing a truncation error, see Section 5.3.
Alternatively, one can generate exact realizations of the field in a finite set of m discretiza-
tion points x1, . . . ,xm which we collect in the vector

Zpωq :“ rZpx1, ωq, . . . , Zpxm, ωqs
J.

To that end, consider the resulting covariance matrix Σ “ prcovpxi,xjqq
m
i,j“1 and a fac-

torization of the form Σ “ BBJ, where B P Rmˆs with s ě m. Defining Z :“
rErZpx1, ¨qs, . . . ,ErZpxm, ¨qssJ,

Zpωq “ BY pωq `Z, Y „ N p0, Isˆsq (7.13)

then has the desired mean ErZpωqs “ Z and covariance

E
“

pZ ´ZqpZ ´ZqJ
‰

“ E
“

BY Y JBJ
‰

“ BE
“

Y Y J
‰

BJ “ BBJ “ Σ.

Generating a factorization Σ “ BBJ costs in general Opm3q operations. However, in what
follows we suppose the grids and stochastic fields satisfy the following conditions:

• The set of points x1, . . . ,xm forms a regular rectangular (also referred to as a uniform
rectilinear) grid of points in Rd, with d the dimension.

• The covariance function rcovpx,x
1q of the stochastic field is homogeneous, meaning

that it is a function of x ´ x1 only. The resulting stochastic field is said to be
stationary [1].

In this case, the CE method [21, 43, 69, 161] can be used to very efficiently sample the
stochastic field in the given regular rectangular grid of points. In the case d “ 2, Σ
is then block-Toeplitz with Toeplitz blocks and can be embedded in a block-circulant
matrix C with circulant blocks, which is the reason for the name of the method. This
generalizes to more than two dimensions. The required circulant structure, and the amount
of additional padding that may be necessary to ensure positive definiteness determine the
size s of C P Rsˆs. Usually, s is of the same order of magnitude as m. A real eigenvalue
factorization C “ GΛGJ of this symmetric nested circulant matrix can be obtained using
the multidimensional fast Fourier transform, see, e.g., [69]. Since Σ is embedded in a
positive definite C, this leads to the desired factorization Σ “ BBJ with B P Rmˆs the
first m rows of G

?
Λ. For some given realization Y pωq of Y , a realization

Zpωq “ BY pωq `Z (7.14)

can then be obtained in Ops log sq operations. Some additional details about employing
quasi-Monte Carlo values to sample Y follow in Section 7.2.4. The CE method is used in
the remainder of this section and allows us to avoid an analysis of the truncation error for
the MLQMC estimator. However, the numerical results and the associated analysis of the
MLQMC method are not fundamentally dependent on the use of the CE method.
We denote realizations Y pωq of the random vector Y by y “ py1, . . . , ysq. Since samples
of a depend on ω through Y pωq, we employ the notational convention

apx, ωq “ aspx,yq “ ays pxq, x P tx1, . . . ,xmu.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

So far, the sample ays pxq of the lognormal random field is only defined (and exact) at any
of the uniform CE grid points txiu

m
i“1. For the i-th point xi, this definition is

ays pxiq :“ exp
`

s
ÿ

j“1

Bi,jyj ` Zi
˘

. (7.15)

In general these points do not match the quadrature points of the finite element triangula-
tion. Hence an interpolation operator I is needed. Values of the random field at arbitrary
points x P D are obtained by a multilinear interpolation, i.e., a convex combination of the
vertex values txk,xu

2d

k“1 surrounding x P D Ă Rd. The resulting approximated sample of
apx, ωq is denoted by ays pxq or aspx,yq, and is then defined for all x P D and y P Rs as

ays pxq :“ Ipays ; txiu
m
i“1qpxq :“

2d
ÿ

k“1

wk,xa
y
s pxk,xq , (7.16)

with
ř2d

k“1wk,x “ 1 and 0 ď wj,x ď 1 for all k “ 1, . . . , 2d. The subscript s indicates the
dimension of the random vector y P Rs that is used to generate an approximate sample of
a. Using this definition the interpolated field matches the exact field at the points txiu

m
i“1.

Moreover, we observe that the following important properties of the exact sample hold for
the interpolated field as well:

• If ays is Lipschitz in txiu
m
i“1, then ays is Lipschitz in all x P D with the same constant.

• If aminpωq ď apx, ωq ď amaxpωq holds for all x P txiu
m
i“1, then the same bounds also

hold for all x P D.

In Section 7.2.5 (below) the stochastic field properties are discussed in more detail.
Additionally, since we will be employing a multilevel method, it is convenient to be able to
generate a sample of a on two different grids starting from a single realization y. Consider a
first uniform rectilinear grid tx1

1, . . . , x
1
m1
u with m1 points and a second one tx0

1, . . . , x
0
m0
u

consisting of m0 points. Let us assume the second grid to be coarser, i.e., m0 ă m1.
Assume that the CE method requires the vector y to be of dimension s1 for the fine grid
and s0 for the coarse grid. In the previous paragraph we defined ays1 for y P Rs1 and ays0
for y P Rs0 . We now overload this notation to define ays0 for y P Rs1 by

ays0pxq :“ Ipays1 ; tx0
i u
m0
i“1qpxq. (7.17)

This means that for a given y P Rs1 , first the stochastic field sample ays1 is found following
(7.16), which is then evaluated in the coarse grid points tx0

i u
m0
i“1 and used to generate

ays0pxq by linear interpolation between those coarse grid points.
We have two very important properties:

• For a given y P Rs1 , the field samples ays1 and ays0 are highly correlated.

• if the coarser grid is nested, i.e., if tx0
i u
m0
i“1 Ď tx1

i u
m1
i“1, then for either y P Rs1 or

y P Rs0 , a sample ays0 is exact in the coarse grid points and interpolated in between.
This implies that the distribution of aYs0 with Y „ N p0, Is1ˆs1q is identical to the
distribution of aYs0 with Y „ N p0, Is0ˆs0q. If only nested grids are considered, an
expression such as E

“

aYs0
‰

is then unambiguous, even if the size of Y is not explicitly
stated.
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Other random variables and random fields in this text depend on ω through their de-
pendence on the stochastic field a. Therefore, we analogously define usp¨,yq “ uys and
qsp¨,yq “ qys as realizations of the state u and adjoint q obtained by the interpolated
stochastic field ays , i.e.,

ż

D
ays∇uys ¨∇v dx “

ż

D
z v dx, @v P V (7.18)

ż

D
ays∇qys ¨∇v dx “

ż

D
puys ´ puq v dx, @v P V . (7.19)

Finally the PDEs (7.18) – (7.19) are assumed to be solved using a FE method. Thereby
let h be the maximum mesh diameter of the FE grid. The FE solutions of the state and
adjoint are denoted as uyh,s and qyh,s respectively and defined as

ż

D
ays∇uyh,s ¨∇vh dx “

ż

D
zvh dx, @v P Vh Ă V (7.20)

ż

D
ays∇qyh,s ¨∇vh dx “

ż

D
puyh,s ´ puq vh dx, @vh P Vh Ă V , (7.21)

where Vh Ă V is the FE space of continuous piecewise linear functions that vanish on the
boundary BD, see Section 7.1.

7.2.2 Multilevel quasi-Monte Carlo quadrature

As we have seen in the chapter Chapter 6, quasi-Monte methods are equal weight quadra-
ture rules integrating over the s-dimensional unit cube r0, 1ss. However, in this section
we are interested in finding an approximation for Erqh,spx,yqs where y follows a normal
distribution. Thus it is necessary to perform the change of variables y “ Φ´1pξq, with
Φp¨q the element-wise cumulative normal distribution to obtain

Erqh,spx,yqs “
ż

Rs
qh,spx,yqdΦpyq “

ż

r0,1ss
qh,spx,Φ

´1pξqqdξ. (7.22)

To approximate Erqh,spx,yqs, we employ the n-point shifted rank-1 lattice rule QN defined
as

QN pqh,spx, ¨q; ∆q :“
1

n

n
ÿ

i“1

qh,s

ˆ

x,Φ´1

ˆ

frac

ˆ

iz

n
`∆

˙˙˙

, (7.23)

where z P Ns denotes the generating vector and ∆ P r0, 1ss denotes the shift.

For any a priori choice of the shift ∆, the rule (7.23) is a biased estimator for Erqh,spx,yqs.
This bias can be removed by instead considering shifts that are uniformly distributed over
r0, 1ss. The resulting QMC points ξi “ frac

`

iz
n `∆

˘

, i “ 1, . . . , N are then also uniformly
distributed over the unit cube. The rule is then an unbiased estimator for Erqh,spx,yqs
since

E∆rQnpqh,spx, ¨q; ∆qs “
ż

r0,1ss

1

n

n
ÿ

i“1

qh,s

ˆ

x,Φ´1

ˆ

frac

ˆ

iz

n
`∆

˙˙˙

d∆

“
1

n

n
ÿ

i“1

ż

r0,1ss
qh,s

`

x,Φ´1 pξiq
˘

dξi “ Erqh,spx,yqs.
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The notation E∆r¨s emphasizes that the expected value is taken w.r.t. the random shifts.
By taking the sample average over R samples of the random shift ∆, and therefore of
Qnpqh,spx, ¨q; ∆q, one obtains the randomly shifted lattice rule

Qn,Rpqh,spx, ¨qq :“
1

R

R
ÿ

r“1

Qnpqh,spx, ¨q; ∆rq. (7.24)

Another purpose of the random shifts is to facilitate the error estimation. The randomly
shifted lattice rule is stochastic, so its root mean square error (RMSE) can be defined as

εpQn,Rpqh,sqq :“
b

E∆r}Qn,Rpqh,sq ´ Erqs}2
L2pDq

s. (7.25)

Since the means Erqh,ss and Erqs are deterministic, it is easily verified that the MSE ε2

can be expressed as

E∆r}Qn,Rpqh,sq ´ Erqs}2L2pDqs “ E∆r}Qn,Rpqh,sq ´ Erqh,ss ` Erqh,ss ´ Erqs}2L2pDqs

“ E∆r}Qn,Rpqh,sq ´ Erqh,ss}2L2pDqs
loooooooooooooooooooomoooooooooooooooooooon

QMC quadrature error

`}Erqh,s ´ qs}2L2pDq
loooooooooomoooooooooon

Bias

.

(7.26)

The first term is due to the error incurred by the QMC quadrature. It is related to the
variance of the randomly shifted lattice rule since

E∆r}Qn,Rpqh,sq ´ Erqh,ss}2L2pDqs “

ż

D
E∆rpQn,Rpqh,sq ´ ErQn,Rpqh,sqsq2sdx

“

ż

D
V∆rQn,Rpqh,sqsdx “

ż

D

1

R
V∆rQnpqh,s; ∆qsdx,

(7.27)

where we introduced the notation V∆r¨s for the variance w.r.t. the random shifts. The R
samples of the shift in (7.24) allow the easy estimation

V∆rQn,Rpqh,sqs “
1

R
V∆rQnpqh,s; ∆qs «

1

RpR´ 1q

R
ÿ

r“1

pQnpqh,s; ∆rq ´Qn,Rpqh,sqq2.

(7.28)
This QMC quadrature error depends on the number of QMC points n and the generating
vector z in (7.23). The second term in (7.26) is the bias w.r.t. Erqs, due to the discretization
error incurred by numerically solving the PDEs. It can be decreased by considering a finer
discretization mesh width h.
The multilevel quasi-Monte Carlo (MLQMC) estimator for Erqs combines estimators of the
form (7.24) on a hierarchy of levels ` P t0, 1, . . . , Lu, with level 0 being the coarsest level and
L the finest. For each level, we consider a discretization mesh width h`, with h` ă h`´1,
and corresponding spaces Vh0 Ă Vh1 Ă . . . Ă VhL Ă V “ V in which approximations uh
for the state and qh for the adjoint exist.
We define q` :“ qh`,s` , ` “ 0, . . . , L. Using a telescopic sum and the linearity of the
expected value operator, we observe that the expected value on the finest discretization
level is equal to the expected value on the coarsest level plus a series of corrections, i.e.,

ErqLs “ Erq0s `

L
ÿ

`“1

Erq` ´ q`´1s “

L
ÿ

`“0

Erq` ´ q`´1s , (7.29)
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where we follow the convention q´1 :“ 0. The multilevel quasi-Monte Carlo estimator for
Erqs is obtained by estimating each of the terms in the right-hand side with a randomly
shifted lattice rule (7.24), yielding

QML
n,Rpqq :“

L
ÿ

`“0

Qn`,R`pq` ´ q`´1q “

L
ÿ

`“0

1

R`

R
ÿ̀

r“1

1

n`

n
ÿ̀

i“1

`

q`p¨,y
pi,rq
` q ´ q`´1p¨,y

pi,rq
` q

˘

,

where y
pi,rq
` :“ Φ´1pfracpiz`n

´1
` `∆`,rqq P Rs` , with z` P Ns` the generating vector on

level ` and s` the stochastic dimension on level `. All random shifts ∆`,r are independent.
Both s` and z` are in general different from level to level.
It is important that both terms q`p¨,y

pi,rq
` q and q`´1p¨,y

pi,rq
` q are evaluated for the same

approximate realization as`p¨,y
pi,rq
` q of the stochastic field. Note that if s`´1 ă s`, then

q`´1p¨,y
pi,rq
` q “ qh`´1,s`´1

p¨,ypi,rq` q is evaluated as stated by (7.17): first as`p¨,y
pi,rq
` q is

evaluated in the CE grid points corresponding to level `´1 and then as`´1
p¨,ypi,rq` q is formed

by linear interpolation between those grid points. The quantity q`´1p¨,y
pi,rq
` q is the adjoint

solution corresponding to that interpolated diffusion coefficient as`´1
p¨,ypi,rq` q. Now, in

order to ensure ErQML
n,Rpqqs “ ErqLs through the telescopic sum (7.29), the distribution

of q`´1p¨,y
pi,rq
` q must equal the distribution of q`´1p¨,y

pi,rq
`´1 q, and therefore the distribution

of a`p¨,y
pi,rq
`´1 q equals the distribution of a`´1p¨,y

pi,rq
`´1 q. As discussed in Section 7.2.1, this

necessitates that the uniform rectilinear grids involved in the CE sampling of the diffusion
coefficient are nested. If we denote the m` point CE grid at level ` by tx`iu

m`
i“1, we therefore

must choose grids such that tx0
i u
m0
i“1 Ď tx

1
i u
m1
i“1 Ď . . . Ď txLi u

mL
i“1 and therefore we also have

s0 ď s1 ď . . . ď sL.

7.2.3 Error and cost

Analogous to (7.25), and due to the independence of the random shifts used for each level,
the RMSE of the MLQMC estimator can be shown to equal

εpQML
n,Rpqqq

2 :“
L
ÿ

`“0

V` ` }ErqL ´ qs}2L2pDq, (7.30)

with

V` :“

ż

D
V∆rQn`,R`pq` ´ q`´1qsdx. (7.31)

As in (7.26), the first term quantifies the quadrature errors of the QMC methods on all
levels. They can be estimated using the sample variance of the R` samples as demonstrated
in (7.28). The second term is the bias, which coincides with the single-level bias term in
(7.26) for h “ hL.
The basic cost and convergence theorems are presented following [119], but applied to our
specific case where the circulant embedding method is used as opposed to the KL expan-
sion. To that end, we first formulate a set of general assumptions about the convergence
rate of the PDE discretization, the RMSE of the QMC estimator and the computational
cost of the sample generation. We introduce the notation a À b implies that a ď cb with
c ą 0 some constant independent of a and b, and a h b as a À b and b À a.
Let M` :“ dimpVh`q denote the number of degrees of freedom associated with the FE
approximation of the PDE at level `. We assume that

Assumption 7.2.1. M` » h´d` and s` ÀM` logM`.
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The first part of the assumption holds for a variety of mesh families, including locally or
anisotropically refined meshes [72]. The second part here details the refinement of the CE
grid in relation to the refinement of the FE grid. The assumption allows the CE grid to
contain all the quadrature points in the FE triangulation. Even if the FE grid is not a
subgrid of the CE grid, it allows the mesh width of the CE grid to be proportional to
the FE mesh width, which is a straightforward choice in practice. In those cases, due to
the padding requirements in general being dependent on the grid refinement, this leads
to a stochastic dimension s` at level ` proportional to M` logM`; see [71] for a detailed
analysis. If no padding is required in the CE method, then s` »M`. The assumption then
trivially also covers the case where the CE grid is refined more slowly than the FE grid.
Finally, also covered is the case where the CE grid is refined until some predetermined
maximum refinement level Lmax is reached. In that case, s` “ sLmax for ` ě Lmax.

We assume that the hierarchy of discretization levels for the PDE (7.8) has a weak order
of convergence ρ, i.e.,

Assumption 7.2.2. }Erq` ´ qs}L2pDq À hρ` for some constant ρ ą 0.

This assumption and the next two are stated in terms of h`. Due to Assumption Assump-
tion 7.2.1, any possible dependence on s` is incorporated into a dependence on h`. For
elliptic problems such as the Laplace problem described in this section, one expects ρ “ 2,
at least for diffusion coefficients that are smooth enough. However, the simultaneous
refining of the random field itself may lead to an order ρ “ 1.

Next we make an assumption on the variance of the QMC estimator, the justification of
which is the subject of the analysis later in this section.

Assumption 7.2.3. V` À R´1
` n

´1{λ
` hϕ` for some constants λ, ϕ ą 0, with V` as defined in

(7.31).

Usually one expects ϕ “ 2ρ. For a standard Monte Carlo method, one would have λ “ 1,
i.e., the variance would be inversely proportional to the number of Monte Carlo samples.
We will see that the QMC method yields a better rate of convergence. The theoretical
results in Section 7.2.5 show that λ P p1{2, 1s can be attained.

Finally, let the cost to compute a sample q`p¨,y`q with y` P Rs` on level ` be denoted as
C`. We assume

Assumption 7.2.4. The computational cost for a single sample, denoted C`, satisfies
C` À h´κ` for some constant κ.

The cost C` consists of two parts. First, there is the cost CFE
` of the FE solver. If a multigrid

solver is used, this cost is typically at most of the order OpM` logM`q and typically of
the order OpM`q. Next, there is a cost CCE

` of Ops` log s`q operations for generating the
diffusion coefficient sample through the CE method. Due to Assumption 7.2.1, CCE

` “

OpM`plogM`q
2q. Assumption 7.2.4 then holds with κ “ d`δ for an arbitrary small δ ą 0.

Supposing that constants λ, ρ, ϕ, κ ą 0 exist such that Assumption 7.2.1 – Assump-
tion 7.2.4 hold for ` “ 0, . . . , L, it follows immediately from the (7.30) and the discussion
of the cost above that

εpQML
n,Rpqqq

2 À h2ρ
L `

L
ÿ

`“0

R´1
` n

´1{λ
` hϕ` and CpQML

n,Rpqqq À
L
ÿ

`“0

R`n`h
´κ
` . (7.32)
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Theorem 7.2.5. Suppose that constants λ, ρ, ϕ, κ ą 0 exist such that Assumption 7.2.1
– Assumption 7.2.4 hold for ` “ 0, . . . , L. If the meshes have mesh widths h` » q´` for
some q ą 1 and the choice R` “ R is made for some R P R, then for any ε ą 0, there
exists a choice of L and of N0, . . . , NL such that

εpQML
n,Rpqqq

2 À ε2 and CpQML
n,Rpqqq À

$

’

&

’

%

ε´2λ if ϕλ ą κ,

ε´2λplog2 ε
´1qλ`1 if ϕλ “ κ,

ε´2λ´pκ´ϕλq{ρ if ϕλ ă κ.

(7.33)

The proof is analogous to the one presented in [119, Corollary 2]. In fact, Theorem 7.2.5
can be understood as equivalent to [119, Theorem 1 and Corollary 2] with the constants
α1 and β1 defined there equal to ´8 and the dimension d there, due to the assumptions
in this section being slightly different, replaced by our κ.

7.2.4 Numerical experiments

In this section we present numerical evidence that the MLQMC method outperforms the
MLMC method and the single level QMC and MC methods for gradient calculations
involving the elliptic model problem. Assumption 7.2.3 is verified numerically to hold for
λ smaller than 1, thus outperforming standard Monte Carlo methods. Practical aspects
and implementational details are also briefly discussed.

Problem specification

We consider a spatial domain D “ p0, 1q2. The gradient is calculated for the target
function

pupxq “

#

1 x P r0.25, 0.75s ˆ r0.25, 0.75s,

0 otherwise,

in the control point zpxq “ 5p1´cosp2πx1qqp1´cosp2πx2qq, see Figure 7.4. The stochastic
diffusion coefficient has a Matérn covariance

rcovpx,x
1q “ σ2 21´ν

Γpνq

´?
2ν
}x´ x1}2

λc

¯ν
Kν

´?
2ν
}x´ x1}2

λc

¯

, (7.34)

where Γ is the gamma function and Kν is the modified Bessel function of the second kind.
Here, σ2 is the variance, λc the correlation length and ν a parameter determining the
smoothness of the resulting field samples. We choose σ2 “ 0.1, λc “ 1 and consider two
values for ν. Problem 1 has ν “ 0.5, which yields an exponential covariance, and Problem
2 has ν “ 2.5. These particular parameters were also investigated in a MLQMC context
in [119].

Level definitions, CE and FE details

We consider 7 levels for which the FE grids are regular rectangular grids having size
p22```1qˆp22```1q, ` “ 0, . . . , 6, including the boundary points. For the CE, we consider
coarser regular rectangular grids of size p2` ` 1q ˆ p2` ` 1q, ` “ 0, . . . , 6. The resulting
FE and stochastic CE dimensions are shown in Figure 7.5a. The stochastic dimension
is different for the two model problems since the different stochastic field parameters
necessitate a different amount of padding in the CE method. The resulting computational
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Figure 7.4: Target g, control z and gradient ∇Jpzq.
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Figure 7.5: CE and FE details. Problem 1 is marked by blue ˆ, Problem 2 by red ˝.

single threaded performance on an Intel R© Core i5–4690K CPU @ 3.50GHz is shown in
Figure 7.5b. These costs are only important relative to one another; the scaling of the
figure has no further consequence. The CE and FE costs are comparable, which is the
reason for choosing the CE grid slightly coarser than the FE grid.

As indicated in (7.30), the RMSE is composed of a variance term, due to the QMC
quadrature error, and a bias term due to the FE discretization. The maximum level L
determines the bias. For the numerical experiments in this section however, we make
abstraction of the FE error and study only the QMC quadrature error. The levels we
use and thus L are fixed. This does not fundamentally alter the computational cost
for a multilevel methods (MLQMC or MLMC), since the number of samples is small on
any additional fine levels. Furthermore, in a context of optimization, fixing the levels is
a natural thing to do since it allows an optimization algorithm access to gradients at a
known and consistent discretization level, independent of the requested tolerance ε, which,
for performance reasons, may differ from optimization step to optimization step [157].

QMC details

We use R “ R` “ 10 random shifts for the single level QMC estimator, as well as for
each level in the MLQMC estimator. We use an embedded lattice rule with a generating
vector that can be found online at [112, lattice-32001-1024-1048576.3600.txt]. This rule
works optimally for a number of QMC points n` P r2

10, 220s “ r1024, 1048576s. Note
that this lattice rule is not specifically tuned to the problem at hand, as one could do by
incorporating information about certain constants in Section 7.2.5. Even though there is
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thus no theoretical justification to use this particular lattice rule, numerical experiments
in [70] and [119] show that such generic lattice rules have comparable performance. An
issue is that the generating vector provided here has length 3600, making it only usable for
integrals of dimension up to 3600. Due to the circulant embedding method, the stochas-
tic dimension s` grows with `, see Assumption 7.2.1. In the experiments that follow, a
stochastic dimension in the millions is not uncommon, see Figure 7.5a. The construction
of a custom lattice rule tuned to our problem with POD weights (see Section 7.2.5) for
all stochastic dimensions is not feasible as the cost of constructing the generating vector
using a CBC algorithm scales as Ops2

`n` ` s`n` log n`q, with s` the stochastic dimension
on level `, see e.g., [72]. Therefore, the generating vector [112] is appended with as many
as necessary independent uniformly distributed random integers between 1 and 220 ´ 1.
Before applying the QMC method, the stochastic dimensions are sorted from most impor-
tant to least important. The most important dimensions are then handled by the first,
high quality elements of the random vector. The importance of a stochastic dimension is
taken to be proportional to the corresponding eigenvalue of the circulant matrix C, see
Section 7.2.1. As suggested in, e.g., [119], the optimal number of samples to take at each
of the L levels, given a tolerance on the QMC quadrature error ε, is attained dynamically
by Algorithm 6. It ensures that V` » n`C`, i.e., it ensures that the computational effort
required to further reduce the variance contribution V` at any level is comparable.

Algorithm 6 Determining N “ pN0, . . . , NLq

1: Set N0 “ N1 “ . . . “ NL “ 1.
2: Estimate V0, . . . ,VL using (7.28)
3: if

řL
`“1 V` ą ε2 then

4: Double n` at ` where V`{pn`C`q is largest.
5: end if
6: (An algorithm with adaptive L could estimate and check the bias here.)

Results

The performance for both problems is shown in Figure 7.6. Clearly, the MLQMC method
outperforms the other methods. Note that due to the fixed number of levels L, the MC and
MLMC methods follow the typical convergence rate of Opε´2q. If L were not fixed, then
smaller and smaller tolerances on ε would eventually prompt a refinement of the single grid
at which all samples are taken, resulting in a sudden massive increase in computational
cost. The rate at which the single level methods become more expensive with decreasing
ε is thus underestimated in the results shown. This in contrast to the multilevel methods,
for which an increase in L would at most incur a moderate cost increase. The flat costs
for the multilevel methods for large ε are due to warm-up samples.

Section 7.2.4 illustrates Assumption 7.2.4. Shown is R`V` since that quantity does not de-
pend on the chosen number of shifts. Remark that of course the precision of the numerical
estimation (7.28) of V` does depend on R`. Clearly, the variance contributions for each
of the levels go down faster than the MC rate of n´1

` . Furthermore, the variances decay
with ` as some power of h`. Curiously, for ` “ 0, the variances take a large N0 before
their faster decay starts. Should this be a problem in practice, a method different from
the QMC method could be used to estimate at the coarsest level, especially considering
that the stochastic dimension there is very small (4 in this case), see Figure 7.5a.

144



7.2 Multilevel quasi-Monte Carlo for optimal control problems

10´6 10´5 10´4 10´3

102

104

1.39

RMSE ε

C
os

t
Cp
εq

MLQMC
QMC
MLMC
MC

(a) Problem 1: ν “ 0.5, σ2 “ 0.1, λc “ 1.

10´6 10´5 10´4 10´3

102

104

1.33

RMSE ε

C
o
st
Cp
εq

MLQMC
QMC
MLMC
MC

(b) Problem 2: ν “ 2.5, σ2 “ 0.1, λc “ 1.

Figure 7.6: Performance of the MLQMC method compared with the MLMC method and
their single level counterparts. The cost is expressed in equivalent finest level
PDE solves.
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(a) Problem 1: ν “ 0.5, σ2 “ 0.1, λc “ 1.
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(b) Problem 2: ν “ 2.5, σ2 “ 0.1, λc “ 1.

Figure 7.7: MSE contribution V` as a function of the number of QMC samples n` used for
each of the R` “ R “ 10 shifts. Shown is R`V`, since this quantity does not
depend on R`. Lower lines correspond to finer levels, except in the case ` “ 0
for low N0.
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Figure 7.8: MSE contribution V` as a
function of the total number
of QMC samples Rn` (full
line). The analogue for the
MC method is also provided
(dashed line). Shown for prob-
lem 1 (ν “ 0.5, σ2 “ 0.1, λc “
1).
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Figure 7.9: MSE contribution V` as a
function of the total number
of QMC samples Rn` (full
line). The analogue for the
MC method is also provided
(dashed line). Shown for prob-
lem 1 (ν “ 0.5, σ2 “ 0.1, λc “
1).

7.2.5 Convergence analysis

This section provides a theoretical justification for Assumption 7.2.3. In this analysis, we
confine ourselves to the following assumption:

Assumption 7.2.6. There exists some Lmax P N such that s``1 “ s` for all ` ě Lmax,
i.e., there is a finest CE grid with sLmax points.

This is a stronger assumption on s` than Assumption 7.2.1. The FE grid can still be
refined for ` ě Lmax. A similar assumptions is made in [119], where the authors analyze a
MLQMC method to approximate expected values of elliptic PDEs with lognormal random
inputs parameterized by a Karhunen–Loève expansion with a fixed number of terms. Our
restriction is less strict in the sense that our analysis allows simultaneous refinement of
the CE grid up to a fixed arbitrary fine level Lmax.

The novelties in the regularity analysis are the following. Firstly, we analyze the adjoint
equation, which has a right-hand side that depends on the uncertain variables through
the solution of the state equation. Moreover, our integration error is stated in terms of
L2 errors over the spatial domain D, we do not apply a bounded linear functional to the
PDE solution. Both aspects occur in [76], where the regularity analysis for the solution
of the adjoint equation is provided with a complete error analysis for the single level
method with uniformly distributed parameters. In this manuscript we study lognormally
distributed parameters using a multilevel estimator. While multilevel methods are well
studied for problems with deterministic right-hand sides, the regularity anaylsis for a
multilevel method has not been studied for the problem class considered in this manuscript.
Secondly, we sample the random field using the circulant embedding method instead of
a series expansion. We therefore first show that the linearly interpolated random field
inherits important properties from the true random field.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Properties of the random field

For β P p0, 1s, we denote by CβpDq the space of Hölder continuous functions on D with
exponent β and norm }v}CβpDq :“ supxPD |vpxq| ` |v|CβpDq with seminorm |v|CβpDq :“

supx1,x2PD,x1‰x2
|vpx1q´vpx2q|{}x1´x2}

β ă 8. The space LppΩ, Xq denotes the Bochner
space of all random fields in a separable Banach space X with bounded p-th moments over
Ω, i.e., LppΩ, Xq contains strongly measurable functions that have finite norm given by

}v}LppΩ,Xq :“

#

` ş

Ω }v}
p
XdP

˘1{p
, for p ă 8 ,

ess supωPΩ}v}X , for p “ 8 .

The variational form (7.8) is based on the Sobolev space V with norm

}v}V :“ }∇v}L2pDq

and dual space H´1pDq :“ V 1. By | ¨ | we denote the Euclidean norm in Rn.
We suppose that the stochastic field has the property

Zp¨, ωq P CβpDq, for some β P p0, 1s P-a.s. (7.35)

Then, using Fernique’s Theorem, one can show (see [23]), that a P LppΩ, CβpDqq for all
p P r1,8q and furthermore that

amaxpωq :“ max
xPD

apx, ωq P LppΩq and
1

aminpωq
:“

1

minxPD apx, ωq
P LppΩq ,

for all p P r1,8q, i.e., 0 ă aminpωq ď amaxpωq ă 8 P-a.s. Clearly, for x in any set of points
txiu

m
i“1 Ă D, we have

0 ă aminpωq ď min
xPtxiumi“1

apx, ωq ď max
xPtxiumi“1

apx, ωq ď amaxpωq ă 8 P-a.s.

Hence for any realization of the linearly interpolated field ays pxq (see (7.16)), which is
exact on txiu

m
i“1, the bounds can only be tighter

0 ă aymin ď min
xPtxiumi“1

ays pxq ď min
xPD

ays pxq ď max
xPD

ays pxq ď max
xPtxiumi“1

ays pxq ď aymax ă 8 ,

where we use the convention aymin :“ aminpωq and aymax :“ amaxpωq.
The piecewise linear interpolant ays pxq is clearly Lipschitz, i.e., ays pxq P CβpDq for β “ 1
(and thus also for all β ă 1). In fact, since wk,x in (7.16) are first-order polynomials in x,

|ays |C1pDq ď }a
y
s }W 1,8pDq “ max t}ays }L8pDq, }∇ays }L8pDqu

ď max

"

aymax,
2d
ÿ

k“1

}∇wk,x}L8pDqaymax

*

“ Cda
y
max, (7.36)

where Cd :“ max t1,
ř2d

k“1 }∇wk,x}L8pDqu.
In order to analyze the regularity w.r.t. the uncertain variables, we will denote

b :“ pb1, . . . , bsq with bj :“ }B¨,j}max, (7.37)
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i.e, the maximum of the j-th column of the matrix B in (7.13).
Since ays pxiq “ exp

`
řs
j“1Bi,jyj ` Zi

˘

ě 0 for any of the uniform CE grid points xi P

txiu
m
i“1, see (7.15), the chain rule results in |Bνays pxiq| “ ays pxiq

śs
j“1 |B

νj
i,j | ď ays pxiq b

ν .
With the intermediate points included, the random field is specified by the interpolation
(7.16). Since wk,x ě 0 for all k “ 1, . . . 2d and x P D, this result generalizes to all x P D:

|Bνays pxq| “
2d
ÿ

k“1

wk,x|B
νays pxk,xq| ď

2d
ÿ

k“1

wk,xa
y
s pxk,xqb

ν “ ays pxqb
ν . (7.38)

It then follows immediately that
›

›

›

›

Bνays pxq

ays pxq

›

›

›

›

L8pDq

ď bν . (7.39)

Furthermore,
›

›

›

›

∇
ˆ

Bνays pxq

ays pxq

˙›

›

›

›

L8pDq

“

›

›

›

›

ays pxq∇pBνays pxqq ´∇ays pxqBνays pxq
pays pxqq2

›

›

›

›

L8pDq

ď

›

›

›

›

›

ays pxq∇
`

ays pxqb
ν
˘

pays pxqq2

›

›

›

›

›

L8pDq

`

›

›

›

›

›

∇ays pxq
`

ays pxqb
ν
˘

pays pxqq2

›

›

›

›

›

L8pDq

“

›

›

›

›

›

∇
`

ays pxqb
ν
˘

ays pxq

›

›

›

›

›

L8pDq

`

›

›

›

›

∇ays pxqbν
ays pxq

›

›

›

›

L8pDq

“ 2

›

›

›

›

∇ays pxqbν
ays pxq

›

›

›

›

L8pDq

“ 2

›

›

›

›

∇ays pxq
ays pxq

›

›

›

›

L8pDq

bν ď 2bν
Cda

y
max

aymin

,

(7.40)

where the last inequality follows from (7.36).
The following lemma is based on [72, Lemma 1] and bounds the interpolation error for
functions in CβpDq for some β P p0, 1s.

Lemma 7.2.7. Let a P CβpDq for some β P p0, 1s. Let b be the linear interpolant of
a in interpolation points txiu

m
i“1 forming some uniform mesh with mesh width ĥ, i.e.,

bpxq “ Ipa; txiu
m
i“1qpxq. Then we have for any x P D that

|apxq ´ bpxq| ď p
?
dĥqβ|a|CβpDq.

Proof. The statement follows from

|apxq ´ bpxq| “ |apxq ´
2d
ÿ

k“1

wk,xapxk,xq| “ |
2d
ÿ

k“1

wk,xpapxq ´ apxk,xqq|

ď

2d
ÿ

k“1

wk,x|apxq ´ apxk,xq| ď
2d
ÿ

k“1

wk,x|a|CβpDq|x´ xk,x|
β

ď

2d
ÿ

k“1

wk,x|a|CβpDqp
?
dĥqβ ,

since
ř2d

k“1wk,x “ 1.
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The above lemma can be applied to the diffusion coefficient and its interpolation. Taking
a above to be the exact diffusion coefficient ap¨, ωq for some ω and b its interpolation ays ,
as defined in (7.16), we find

|apx, ωq ´ ays pxq| ď p
?
dĥqβ|ap¨, ωq|CβpDq.

The quantity ĥ is then the mesh width of the uniform CE mesh on which the diffusion
coefficient is sampled exactly. Furthermore, since we use nested but not necessarily equal
CE grids, the mesh width depends on `. Denoting the CE mesh width at level ` by ĥ`, we
have by the above lemma that

|apx, ωq ´ ays`pxq| À p
?
dĥ`q

β|ap¨, ωq|CβpDq. (7.41)

Lemma 7.2.8. Let ays` be generated with the CE method from y and let ays`´1 be its

interpolation in the points txiu
m`´1

i“1 forming some uniform mesh with mesh width ĥ`, i.e.,
ays`´1pxq “ Ipays` ; txiu

m`´1

i“1 qpxq. Then we have for any x P D that

|Bνpays`pxq ´ a
y
s`´1

pxqq| ď ĥ`
?
dCda

y
maxb

ν .

Proof. By linearity we obtain

Bνays`pxq “ B
νIpays` ; txiu

m`
i“1qpxq “ B

ν
2d
ÿ

k“1

wk,xa
y
s`
pxk,xq “

2d
ÿ

k“1

wk,xB
νays`pxk,xq

“ IpBνays` ; txiu
m`
i“1qpxq,

where points xk,x denote the vertex values surrounding x P D. In particular, the ν-th
partial derivative of the piecewise linear interpolation of the field remains piecewise linear
and is hence Lipschitz continuous. Moreover, we have

Bνays`´1
pxq :“ IpBνays` ; txiu

m`´1

i“1 qpxq.

We conclude that

|Bνpays`pxq ´ a
y
s`´1

pxqq| “ |Bνpays`pxq ´ Ipa
y
s`

; txiu
m`´1

i“1 qpxqq|

“ |Bνays`pxq ´ B
νIpays` ; txiu

m`´1

i“1 qpxq|

“ |Bνays`pxq ´ IpB
νays` ; txiu

m`´1

i“1 qpxq|.

Since Bνays`pxq P C
β, by Lemma 7.2.7, we have

|Bνpays`pxq ´ a
y
s`´1

pxqq| ď p
?
dĥ`q

β|Bνays` |CβpDq ă 8,

which is particularly true for β “ 1. It remains to find a bound for |Bνays` |CβpDq in terms

of aymax. To this end, we note

|Bνays` |CβpDq ď }B
νays`}W 1,8pDq “ max t}Bνays`}L8pDq, }∇B

νays`}L8pDqu.

We have

}Bνays`}L8pDq ď

›

›

›

›

2d
ÿ

k“1

wk,xB
νays`pxk,xq

›

›

›

›

L8pDq
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“

›

›

›

›

2d
ÿ

k“1

wk,xa
y
s`
pxk,xq

s
ź

j“1

B
νj
pk,xq,j

›

›

›

›

L8pDq

ď aymaxb
ν ,

and

›

›

›

›

∇Bνays`
›

›

›

›

L8pDq

ď

›

›

›

›

∇
2d
ÿ

k“1

wk,xB
νays`pxk,xq

›

›

›

›

L8pDq

“

›

›

›

›

2d
ÿ

k“1

∇wk,xays`pxk,xq
s
ź

j“1

B
νj
pk,xq,j

›

›

›

›

L8pDq

ď

2d
ÿ

k“1

}∇wk,x}L8pDqaymaxb
ν .

Combining the two estimates, we get

|Bνays` |CβpDq ď }B
νays`}W 1,8pDq “ max t}Bνays`}L8pDq, }∇B

νays`}L8pDqu

ď

ˆ

1`
2d
ÿ

k“1

}∇wk,x}L8pDq
˙

aymaxb
ν .

as required.

Remark 7.2.9. The constant Cd “ max t1,
ř2d

k“1 }∇wk,x}L8pDqu might depend inversely

proportional on ĥ` through the term ∇wk,x. Due to Assumption 7.2.6, Cd can be chosen

as the minimum of max t1,
ř2d

k“1 }∇wk,x}L8pDqu over all levels ` “ 1, . . . , Lmax.

Bounds on partial derivatives of uys and qys

The error estimates for the QMC method require bounds on the partial derivatives of the
integrands in (7.29), as we will see in Section 7.2.5 below. We introduce the frequently
used notation

Cyq :“ max p1,
c1c2

aymin

q and Czg :“ p}z}V 1 ` }pu}V 1q ,

where c1, c2 ą 0 are the embedding constants from (4.6) – (4.7). Note that Cyq ď 1` c1c2
aymin

P

LppΩq because 1{aymin P L
ppΩq for all p P r1,8q.

Lemma 7.2.10. Let uys and qys be as defined previously in (7.18) – (7.19). Then

}Bνuys }V ď |ν|!
bν

pln 2q|ν|
}z}V 1

aymin

, (7.42)

}Bνqys }V ď p|ν| ` 1q!
bν

pln 2q|ν|
Cyq
aymin

p}z}V 1 ` }pu}V 1q ,

with b as defined in (7.37).
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Proof. Let fy :“ uys´pu, then taking the ν-th derivative of (7.19) yields by Leibniz product
rule

ÿ

mďν

ˆ

ν
m

˙
ż

D
Bν´mays pxq∇Bmqys pxq ¨∇vpxq dx “

ż

D
Bνfypxq vpxqdx

for all v P V . Setting v “ Bνqys and separating out the ν “m term gives
ż

D
ays pxq|∇Bνqys pxq|2 dx (7.43)

“ ´
ÿ

mďν,m‰ν

ˆ

ν
m

˙
ż

D
Bν´mays pxq∇Bmqys pxq ¨∇Bνqys pxq dx

`

ż

D
BνfypxqBνqys pxq dx

“ ´
ÿ

mďν,m‰ν

ˆ

ν
m

˙
ż

D

ˆ

Bν´mays
ays

˙

ays pxq∇Bmqys pxq ¨∇Bνqys pxqdx

`

ż

D
BνfypxqBνqys pxq dx

ď
ÿ

mďν,m‰ν

ˆ

ν
m

˙›

›

›

›

Bν´mays
ays

›

›

›

›

L8pDq

ˇ

ˇ

ˇ

ˇ

ż

D
ays pxq∇Bmqys pxq ¨∇Bνqys pxq dx

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

D
BνfypxqBνqys pxq dx

ˇ

ˇ

ˇ

ˇ

. (7.44)

We can now use the Cauchy–Schwarz inequality on both integrals above. For the right-
hand side in particular we get, |

ş

D B
νfypxqBνqys pxq dx| ď }Bνfν}V 1}B

νqys }V and further-
more

}Bνqys }V “

ˆ
ż

D
|∇Bνqys pxq|2dx

˙1{2

ď
1

payminq
1{2

ˆ
ż

D
ays pxq|∇Bνqys pxq|2dx

˙1{2

(7.45)

such that (7.44) can be bounded using (7.39) by

ż

D
ays pxq|∇pBνqys pxqq|2 dx

ď
ÿ

mďν,m‰ν

ˆ

ν
m

˙

bν´m
ˆ
ż

D
ays pxq|∇pBmqys pxqq|2dx

˙1{2ˆż

D
ays pxq|∇pBνqys pxqq|2dx

˙1{2

` }Bνfν}V 1
1

payminq
1{2

ˆ
ż

D
ays pxq|∇pBνqys pxqq|2dx

˙1{2

.

Noting that
ş

D a
y
s pxq|∇pBνqys pxqq|2 dx “ }pays q1{2∇pBνqys q}2L2pDq and cancelling out a com-

mon factor, we obtain

}pays q
1{2∇pBνqys q}L2pDq

looooooooooooomooooooooooooon

Aν

ď
ÿ

mďν,m‰ν

ˆ

ν
m

˙

bν´m }pays q
1{2∇pBmqys q}L2pDq

loooooooooooooomoooooooooooooon

Am

` payminq
´1{2 p}Bνfy}V 1q

loooooooooooomoooooooooooon

Bν

. (7.46)
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We may apply Lemma 4.6.1 to get

}pays q
1{2∇pBνqys q}L2pDq

ď
ÿ

kďν

ˆ

ν
k

˙

|k|!

pln 2q|k|
bk

1

payminq
1{2

´

}Bν´kfy}V 1
¯

ď
ÿ

kďν

ˆ

ν
k

˙

|k|!

pln 2q|k|
bk

1

payminq
1{2

´

}Bν´kuys }V 1 ` }B
ν´k

pu}V 1
¯

ď
ÿ

kďν

ˆ

ν
k

˙

|k|!

pln 2q|k|
bk

1

payminq
1{2

´

c1c2}B
ν´kuys }V ` }B

ν´k
pu}V 1

¯

(7.47)

for all multi-indices ν P Ns0. In order to further estimate (7.47), we need an estimate for
the partial derivatives of the state PDE solution uys . This can be obtained as follows:
beginning this proof with the ν-th partial derivatives of the weak formulation of (7.18)
(instead of (7.19)), one gets an analogous recursion to (7.46) with qys replaced by uys and
fy replaced by the control z:

}pays q
1{2∇pBνuys q}L2pDq

looooooooooooomooooooooooooon

Aν

ď
ÿ

mďν,m‰ν

ˆ

ν
m

˙

bν´m }pays q
1{2∇pBmuys q}L2pDq

loooooooooooooomoooooooooooooon

Am

`
}Bνz}V 1

payminq
1{2

loooomoooon

Bν

.

In this case, the application of Lemma 4.6.1 gives

}pays q
1{2∇pBνuys q}L2pDq ď

ÿ

kďν

ˆ

ν
k

˙

|k|!
bk

pln 2q|k|
}Bν´kz}V 1

payminq
1{2

“ |ν|!
bν

pln 2q|ν|
}z}V 1

payminq
1{2

.

Then, (7.42) follows directly from payminq
1{2}Bνuys }V ď }pays q1{2∇pBνuys q}L2pDq. Using

(7.42) we can now further estimate (7.47) to get

}pays q
1{2∇pBνqys q}L2pDq

ď
ÿ

kďν

ˆ

ν
k

˙

|k|!

pln 2q|k|
bk

1

payminq
1{2

ˆ

c1c2|ν ´ k|!
bν´k

pln 2q|ν´k|
}z}V 1

amin
` }Bν´kpu}V 1

˙

.

Note that g is independent of y, i.e., we have for ν ď k

}Bν´kpu}V 1 “

#

}pu}V 1 ν “ k

0 else

ď |ν ´ k|!
bν´k

pln 2q|ν´k|
}pu}V 1 .

This and setting Cyq :“ max
`

c1c2
aymin

, 1
˘

and Czg :“ }z}V 1 ` }pu}V 1 gives

}pays q
1{2∇pBνqys q}L2pDq ď

ÿ

kďν

ˆ

ν
k

˙

|k|!
bk

pln 2q|k|
|ν ´ k|!

bν´k

pln 2q|ν´k|
Cyq

payminq
1{2
Czg

“ p|ν| ` 1q!
bν

pln 2q|ν|
Cyq

payminq
1{2
Czg ,

where the last equality follows from (4.77). The assertion then follows from (7.45).
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Lemma 7.2.11. Let ∆ be the Laplace operator. Under the assumptions of the previous
lemma, it holds that

}∆pBνqys q}L2pDq ď
bν

pln 2q|ν|
p|ν| ` 4q!

p|ν| ` 2qp|ν| ` 3q

rCyCyq
aymin

p}z}V 1 ` }pu}V 1q ,

where rCy “ max
`

1, 2 Cda
y
max

aymin

˘

.

Proof. We have

Bνfypxq “ Bν
`

´∇ ¨ pays pxq∇qys pxqq
˘

“ ´∇ ¨ Bνpays pxq∇qys pxqq .

Thus we get by Leibniz product rule that

´∇ ¨ Bνpays∇qys q “ ´∇ ¨
ˆ

ÿ

mďν

ˆ

ν

m

˙

pBν´mays q∇pBmqys q
˙

“ Bνfy.

Separating out the m “ ν term yields

kν :“∇ ¨ pays∇pBνqys qq

“ ´∇ ¨
ˆ

ÿ

mďν,m‰ν

ˆ

ν

m

˙

pBν´mays q∇pBmqys q
˙

´ Bνfy

“´
ÿ

mďν,m‰ν

ˆ

ν

m

˙

∇ ¨
ˆ

Bν´mays
ays

pays∇pBmqys qq
˙

´ Bνfy

“´
ÿ

mďν,m‰ν

ˆ

ν

m

˙ˆ

Bν´mays
ays

km `∇
ˆ

Bν´mays
ays

˙

¨ pays∇pBmqys qq
˙

´ Bνfy ,

where we used ∇ ¨ pABq “ A∇ ¨ B `∇A ¨ B in the last equality. We can multiply kν by
pays q´1{2 and obtain the bound

}pays q
´1{2kν}L2pDq ď

ÿ

mďν,m‰ν

ˆ

ν

m

˙ˆ›

›

›

›

Bν´mays
ays

›

›

›

›

L8pDq

}pays q
´1{2km}L2pDq

`

›

›

›

›

∇
ˆ

Bν´mays
ays

˙›

›

›

›

L8pDq

}pays q
1{2∇pBmqys q}L2pDq

˙

` }pays q
´1{2Bνfy}L2pDq.

From the assumption that g P L2pDq and z P V 1 implies k0 P L
2pDq. From the inequality

above we then deduce by induction w.r.t. |ν| that pays q´1{2kν and thus by (7.35) also
kν P L

2pDq for all multi-indices ν P Ns0. Using the properties (7.39) and (7.40) of ays ,
allows to reformulate the previous inequality as

}pays q
´1{2kν}L2pDq

loooooooooomoooooooooon

Aν

ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

bν´m }pays q
´1{2km}L2pDq

loooooooooomoooooooooon

Am

` B1ν ,

with

B1ν :“
ÿ

mďν,m‰ν

ˆ

ν

m

˙ˆ

2bν´m
Cda

y
max

aymin

}pays q
1{2∇pBmqys q}L2pDq

˙

` }pays q
´1{2Bνfy}L2pDq.
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In the next section of the proof we first find a simple expression Bν such that B1ν ď Bν
and then apply Lemma 4.6.1 to obtain

Aν ď
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|
bkBν´k. (7.48)

Introducing Cy :“ 2 Cda
y
max

aymin
to ease readability, we find, using Lemma 7.2.10,

B1ν ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙ˆ

Cybν´m bm
p|m| ` 1q!

pln 2q|m|
Cyq

payminq
1{2
Czg

˙

` }pays q
´1{2Bνfy}L2pDq

“
CyCyq Czg

payminq
1{2
bν

ÿ

mďν,m‰ν

ˆ

ν

m

˙

p|m| ` 1q!

pln 2q|m|
` }pays q

´1{2Bνfy}L2pDq .

Using (4.79) finally leads to

B1ν ď Bν :“
CyCyq Czg

payminq
1{2
bν
p|ν| ` 1q!

pln 2q|ν|
` }pays q

´1{2Bνpuys ´ gq}L2pDq.

Now we apply Lemma 4.6.1, yielding

Aν ď
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|
bk
ˆ

CyCyq Czg

payminq
1{2
bν´k

p|ν ´ k| ` 1q!

pln 2q|ν´k|
` }pays q

´1{2Bν´kpuys ´ gq}L2pDq

˙

ď
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|
bk
ˆ

CyCyq Czg

payminq
1{2
bν´k

p|ν ´ k| ` 1q!

pln 2q|ν´k|
` |ν ´ k|!

bν´k

pln 2q|ν´k|
Cyq Czg

payminq
1{2

˙

ď
Cyq Czg

payminq
1{2

max pCy, 1q bν
ÿ

kďν

ˆ

ν

k

˙

|k|!

pln 2q|k|

ˆ

p|ν ´ k| ` 1q!

pln 2q|ν´k|
`

|ν ´ k|!

pln 2q|ν´k|

˙

ď
Cyq Czg

payminq
1{2

max pCy, 1q
bν

pln 2q|ν|

ˆ

p|ν| ` 2q!` p|ν| ` 1q!

˙

“
Cyq Czg

payminq
1{2

max pCy, 1q
bν

pln 2q|ν|
p|ν| ` 3q!

|ν| ` 2
.

Since pays q´1{2kν “ pa
y
s q
´1{2∇ ¨ pays∇pBνqys qq “ pays q1{2∆pBνqys q ` pa

y
s q
´1{2∇ays ¨∇pBνqys q,

we have

}pays q
1{2∆pBνqys q}L2pDq ď }pa

y
s q
´1{2kν}L2pDq ` }pa

y
s q
´1{2p∇ays ¨∇pBνqys qq}L2pDq

ď
Cyq Czg

payminq
1{2

max pCy, 1q
bν

pln 2q|ν|
p|ν| ` 3q!

|ν| ` 2
`
Cda

y
max

aymin

}pays q
1{2∇pBνqys q}L2pDq

ď
Cyq Czg

payminq
1{2

max pCy, 1q
bν

pln 2q|ν|
p|ν| ` 3q!

|ν| ` 2
`
Cda

y
max

aymin

p|ν| ` 1q!
bν

pln 2q|ν|
Cyq Czg

payminq
1{2

ď max
`

1, Cy, Cda
y
max

aymin

˘ bν

pln 2q|ν|
p|ν| ` 4q!

p|ν| ` 2qp|ν| ` 3q

Cyq Czg

payminq
1{2

“ rCy
bν

pln 2q|ν|
p|ν| ` 4q!

p|ν| ` 2qp|ν| ` 3q

Cyq Czg

payminq
1{2

,

with rCy “ max p1, Cy, C
y

2 q “ max p1, Cyq. The third inequality above follows from
Lemma 7.2.10.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Note that rCy “ max
`

1, 2 Cda
y
max

aymin

˘

ď 1` 2Cda
y
max

aymin
P LppΩq because 1

aymin
and aymax are both

in LppΩq for all p P r1,8q.

Lemma 7.2.12. Let qys,h be the unique solution of (7.21). Then, under the assumptions
of the previous lemma, it holds that

payminq
1{2}Bkpqys ´ q

y
s,hq}V ď }pa

y
s q

1{2∇Bkpqys ´ qys,hq}L2pDq

À h
bk

pln 2q|k|
p|k| ` 2q!p|k| ` 6q

3

Cyq rCypaymaxq
1{2

aymin

Czg .

Proof. Let Ph “ Phpyq : V Ñ Vh : w ÞÑ wh denote the parametric FE projection onto Vh
which is defined, for arbitrary w P V , by

ż

D
ays ∇pPhpyqw ´ wq ¨∇vhdx “ 0, @vh P Vh. (7.49)

In particular, we have Phpyqw “ wh in Vh and P 2
h pyq “ Phpyq. We conclude, using

Bνwh P Vh for every ν P Ns0, that pId´ PhpyqqpB
νwyhq “ 0. We stress here that, since the

parametric FE projection Phpyq depends on y, in general

Bνpwy ´ wyhq ‰ pId´ PhpyqqpB
νwyq.

Thus

}pays q
1{2∇Bkpqys ´ qys,hq}L2pDq

“ }pays q
1{2∇PhpyqBkpqys ´ qys,hq ` pays q1{2∇pId´ PhpyqqBkpqys ´ q

y
s,hq}L2pDq

ď }pays q
1{2∇PhpyqBkpqys ´ qys,hq}L2pDq ` }pa

y
s q

1{2∇pId´ PhpyqqBkqys }L2pDq.

(7.50)

Now applying Bk to
ż

D
ays∇pqys ´ qys,hq ¨∇vh dx “ 0 @ v P Vh ,

and separating out the m “ k term, we get for all vh P Vh
ż

D
ays∇Bkpqys ´ qys,hq ¨∇vhdx “ ´

ÿ

mďk,m‰k

ˆ

k
m

˙
ż

D
pBk´mays q∇Bmpqys ´ qys,hq ¨∇vh dx.

Choosing vh “ PhB
kpqys ´ q

y
s,hq, the left-hand side becomes

ż

D
ays |∇PhBkpqys ´ qys,hq|2dx`

ż

D
ays∇pId´ PhqBkpqys ´ qys,hq ¨∇PhBkpqys ´ q

y
s,hqdx,

where the second term cancels due to the projection definition (7.49). Dividing and mul-
tiplying the right-hand side by ays and using the Cauchy–Schwarz inequality, one obtains

ż

D
ays |∇PhBkpqys ´ qys,hq|2dx ď

ÿ

mďk,m‰k

ˆ

k
m

˙
›

›

›

›

Bk´mays
ays

›

›

›

›

L8pDq

ˆ

ˆ
ż

D
ays |∇Bmpqys ´ qys,hq|2dx

˙1{2ˆż

D
ays |∇PhBkpqys ´ qys,hq|2dx

˙1{2

.
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7 Discretization and multilevel methods

Cancelling the common factor in both sides and using (7.39) we arrive at

}pays q
1{2∇PhBkpqys ´ qys,hq}L2pDq ď

ÿ

mďk,m‰k

ˆ

k
m

˙

bk´m}pays q
1{2∇Bmpqys ´ qys,hq}L2pDq.

Substituting this into (7.50) we obtain

}pays q
1{2∇Bkpqys ´ qys,hq}L2pDq

loooooooooooooooooomoooooooooooooooooon

Ak

ď
ÿ

mďk,m‰k

ˆ

k
m

˙

bk´m }pays q
1{2∇Bmpqys ´ qys,hq}L2pDq

loooooooooooooooooomoooooooooooooooooon

Am

` }pays q
1{2∇pId´ PhqBkqys }L2pDq

looooooooooooooooooomooooooooooooooooooon

Bk

leading by Lemma 4.6.1 to

}pays q
1{2∇Bkpqys ´ qys,hq}L2pDq

ď
ÿ

mďk

ˆ

k
m

˙

|m|! bm

pln 2q|m|
}pays q

1{2∇pId´ PhqBk´mqys }L2pDq

À h paymaxq
1{2

ÿ

mďk

ˆ

k

m

˙

|m|! bm

pln 2q|m|
}∆pBk´mqys q}L2pDq

ď h paymaxq
1{2

ÿ

mďk

ˆ

k

m

˙

|m|! bm

pln 2q|m|
rCy

bk´m

pln 2q|k´m|
p|k ´m| ` 4q!

p|k ´m| ` 2qp|k ´m| ` 3q

Cyq
aymin

Czg

“ h
bk

pln 2q|k|

ÿ

mďk

ˆ

k

m

˙

|m|!
p|k ´m| ` 4q!

p|k ´m| ` 2qp|k ´m| ` 3q

rCyCyq pa
y
maxq

1{2

aymin

Czg

“ h
bk

pln 2q|k|
p|k| ` 2q!p|k| ` 6q

3

rCyCyq pa
y
maxq

1{2

aymin

Czg .

In order to justify the second inequality, note that by the product rule qys satisfies the
following PDE

´∆qys “
1

ays
puys ´ g `∇ays ¨∇qys q ,

allowing us to derive H2pDq-regularity

}qys }H2pDq :“ }∆qys }L2pDq ď
1

aymin

ˆ

1`
Cda

y
max

aymin

˙

}uys ´ pu}L2pDq

ď
1

aymin

ˆ

1`
Cda

y
max

aymin

˙

Cyq
`

}z}L2pDq ` }pu}L2pDq

˘

.

Classical results from FE theory for H2pDq-regular functions on a convex domain D (see,
e.g., [59]) lead, as hÑ 0, to

inf
vPVh`

}qys ´ v}V À h`}∆q
y
s }L2pDq .

This result together with Céa’s lemma and the definition of aymax then proves

}pays q
1{2∇pqys ´ qys,h`q}L2pDq À h`pa

y
maxq

1{2}∆qys }L2pDq .

as required.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Note that one can apply a standard Aubin–Nitsche duality argument to obtain quadratic
convergence in the meshwidth h measured in the L2pDq-norm.
Let uys` be the solution of

ż

D
ays`∇u

y
s`
¨∇v dx “

ż

D
zv dx, @v P V (7.51)

and uys`´1 be the solution of

ż

D
ays`´1

∇uys`´1
¨∇v dx “

ż

D
zv dx, @v P V . (7.52)

Subtracting (7.52) from (7.51) we get

0 “

ż

D
ays`p∇u

y
s`
´∇uys`´1

q ¨∇v dx`

ż

D
pays` ´ a

y
s`´1

q∇uys`´1
¨∇v dx . (7.53)

This is used in [31] to show, that

}uys` ´ u
y
s`´1

}V ď }a
y
s`
´ ays`´1

}L8pDq
}z}V 1

payminq
2
.

We are next going to show an analogous result for the ν-th partial derivatives with respect
to the uncertain variable.

Lemma 7.2.13. Let uys` be the unique solution of (7.51) and uys`´1 the unique solution of
(7.52). Then, under the assumptions of the previous lemma, it holds that

}Bνpuys` ´ u
y
s`´1

q}V ď ĥ`2
?
dCd

bν

pln 2q|ν|
p|ν| ` 1q!

aymax

payminq
3{2
}z}V 1 .

Proof. Taking the ν-th partial derivative on both sides of (7.53), we get with Leibniz
product rule

ÿ

mďν

ˆ

ν

m

˙
ż

D
Bν´mays`∇pB

mpuys` ´ u
y
s`´1

qq ¨∇v dx

“ ´
ÿ

mďν

ˆ

ν

m

˙
ż

D
Bν´mpays` ´ a

y
s`´1

q∇pBmuys`´1
q ¨∇v dx .

Introducing the notation wy :“ uys`´u
y
s`´1 , separating out them “ ν term on the left-hand

side and setting v “ Bνwy gives

ż

D
ays` |∇pB

νwyq|2dx

“´
ÿ

mďν,m‰ν

ˆ

ν

m

˙
ż

D
Bν´mays`∇pB

mwyq ¨∇pBνwyq dx

´
ÿ

mďν

ˆ

ν

m

˙
ż

D
Bν´mpays` ´ a

y
s`´1

q∇pBmuys`´1
q ¨∇pBνwyq dx

“´
ÿ

mďν,m‰ν

ˆ

ν

m

˙
ż

D

Bν´mays`
ays`

ays`∇pB
mwyq ¨∇pBνwyqdx
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´
ÿ

mďν

ˆ

ν

m

˙
ż

D
Bν´mpays` ´ a

y
s`´1

q∇pBmuys`´1
q ¨∇pBνwyqdx

ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

bν´m}pays`q
1{2∇pBmwyq}L2pDq}pa

y
s`
q1{2∇pBνwyq}L2pDq

`
ÿ

mďν

ˆ

ν

m

˙

}Bν´mpays` ´ a
y
s`´1

q}L8pDq }∇pBmuys`´1
q}L2pDq}pa

y
s`
q1{2∇pBνwyq}L2pDq .

Cancelling one common factor on both sides we obtain

}pays`q
1{2∇pBνwyq}L2pDq

loooooooooooooomoooooooooooooon

Aν

ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

bν´m }pays`q
1{2∇pBmwyq}L2pDq

looooooooooooooomooooooooooooooon

Am

`
ÿ

mďν

ˆ

ν

m

˙

}Bν´mpays` ´ a
y
s`´1

q}L8pDq }∇pBmuys`´1
q}L2pDq

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Bν

.

We know that

}∇pBmuys`´1
q}L2pDq “ }B

muys`´1
}V ď |m|!

bm

pln 2q|m|
}z}V 1

aymin

,

and using Lemma 7.2.8 we get

Bν ď
ÿ

mďν

ˆ

ν

m

˙

ĥ`
?
dCda

y
maxb

ν´m|m|!
bm

pln 2q|m|
}z}V 1

aymin

ď bν ĥ`
?
dCda

y
max

}z}V 1

aymin

ÿ

mďν

ˆ

ν

m

˙

|m|!

pln 2q|m|

ď
|ν|!

pln 2q|ν|
bν2ĥ`

?
dCda

y
max

}z}V 1

aymin

,

where we used (4.78). We can now apply Lemma 4.6.1 to get

}pays`q
1{2∇pBνwyq}L2pDq ď

ÿ

mďν

ˆ

ν

m

˙

|m|!

pln 2q|m|
bm

|ν ´m|!

pln 2q|ν´m|
bν´m2ĥ`

?
dCda

y
max

}z}V 1

aymin

“ 2ĥ`
?
dCda

y
max

}z}V 1

aymin

bν

pln 2q|ν|

ÿ

mďν

ˆ

ν

m

˙

|m|!|ν ´m|!

“ 2ĥ`
?
dCda

y
max

}z}V 1

aymin

bν

pln 2q|ν|
p|ν| ` 1q! ,

as required.

A similar result holds for the adjoint variable. Therefore let qys` be the solution of
ż

D
ays`∇q

y
s`
¨∇v dx “

ż

D
puys` ´ gqv dx, @v P V (7.54)

and qys`´1 be the solution of

ż

D
ays`´1

∇qys`´1
¨∇v dx “

ż

D
puys`´1

´ gqv dx, @v P V . (7.55)
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Subtracting (7.55) from (7.54) we get

0 “

ż

D
ays`p∇q

y
s`
´∇qys`´1

q ¨∇v dx`

ż

D
pays` ´ a

y
s`´1

q∇qys`´1
¨∇v dx´

ż

D
puys` ´ u

y
s`´1

qv dx .

(7.56)

Lemma 7.2.14. Let qys` be the unique solution of (7.54) and qys`´1 the unique solution of
(7.55). Then, under the assumptions of the previous lemma, it holds that

}Bνpqys` ´ q
y
s`´1

q}V ď ĥ`p|ν| ` 2q!
bν

pln 2q|ν|
2
?
dCd

aymaxC
y
q

payminq
3{2
Czg .

Proof. Taking the ν-th partial derivative on both sides of (7.56), we get by Leibniz product
rule

ÿ

mďν

ˆ

ν

m

˙
ż

D
Bν´mays`∇pB

mpqys` ´ q
y
s`´1

qq ¨∇v dx

“ ´
ÿ

mďν

ˆ

ν

m

˙
ż

D
Bν´mpays` ´ a

y
s`´1

q∇pBmqys`´1
q ¨∇v dx`

ż

D
Bνpuys` ´ u

y
s`´1

qv dx .

Introducing the notation wy :“ qys`´q
y
s`´1 , separating out them “ ν term on the left-hand

side, setting v “ Bνwy and cancelling the common factor }pays`q
´1{2Bνwy}V , gives

}pays`q
1{2∇pBνwyq}L2pDq

loooooooooooooomoooooooooooooon

Aν

ď
ÿ

mďν,m‰ν

ˆ

ν

m

˙

bν´m }pays`q
1{2∇pBmwyq}L2pDq

looooooooooooooomooooooooooooooon

Am

`
ÿ

mďν

ˆ

ν

m

˙

}Bν´mpays` ´ a
y
s`´1

q}L8pDq }∇pBmqys`´1
q}L2pDq `

}Bνpuys` ´ u
y
s`´1q}V 1

payminq
1{2

looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

Bν

,

where we used
ş

D B
νpuys` ´ uys`´1qB

νwy dx “
ş

Dpa
y
s`q

1{2Bνpuys` ´ uys`´1qpa
y
s`q
´1{2Bνwy dx ď

}pays`q
1{2Bνpuys` ´ u

y
s`´1q}V 1}pa

y
s`q
´1{2Bνwy}V in order to cancel the common factors.

We know from Lemma 7.2.10 that

}∇pBmqys`´1
q}L2pDq “ }B

mqys`´1
}V ď p|m| ` 1q!

bm

pln 2q|m|
Cyq
aymin

Czg .

This bound holds because qys`´1 is the adjoint state corresponding to the stochastic field
ays`´1 , which in turn is obtained by interpolating the field ays in the nodes of a coarser CE
method; see Section 7.2.1. Note that in both cases y P Rs. Importantly, the stochastic field
ays`´1 thus originates from the CE method of dimension s. Since the b are characterized
by the CE method, the b in the bound of Lemma 7.2.10 is the same for qys` and qys`´1 .
Furthermore, from Lemma 7.2.13 we know that

}Bνpuys` ´ u
y
s`´1

q}V 1 ď c1c2}B
νpuys` ´ u

y
s`´1

q}V

ď c1c22ĥ`
?
dCd

aymax

payminq
3{2

bν

pln 2q|ν|
p|ν| ` 1q!}z}V 1 .

This and Lemma 7.2.8 gives

Bν ď
ÿ

mďν

ˆ

ν

m

˙

ĥ`
?
dCda

y
maxb

ν´mp|m| ` 1q!
bm

pln 2q|m|
Cyq
aymin

Czg
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`
1

payminq
1{2
c1c22ĥ`

?
dCda

y
max

}z}V 1

payminq
3{2

bν

pln 2q|ν|
p|ν| ` 1q!

ď bν ĥ`
?
dCda

y
max

Cyq
aymin

p}z}V 1 ` }pu}V 1q
ÿ

mďν

ˆ

ν

m

˙

p|m| ` 1q!

pln 2q|m|

`
1

payminq
1{2
c1c22ĥ`

?
dCda

y
max

}z}V 1

payminq
3{2

bν

pln 2q|ν|
p|ν| ` 1q!

ď bν ĥ`
?
dCda

y
max

Cyq
aymin

p}z}V 1 ` }pu}V 1q2
p|ν| ` 1q!

pln 2q|ν|

`
1

payminq
1{2
c1c22ĥ`

?
dCda

y
max

}z}V 1

payminq
3{2

bν

pln 2q|ν|
p|ν| ` 1q!

“ ĥ`p|ν| ` 1q!
bν

pln 2q|ν|

?
dCd

aymax

aymin

`

2Cyq Czg `
2c1c2

aymin

}z}V 1
˘

ď ĥ`p|ν| ` 1q!
bν

pln 2q|ν|
4
?
dCd

aymax

aymin

Cyq Czg ,

where we used (7.36) in the second inequality and (4.80) in the third inequality. We can
now apply Lemma 4.6.1 to get

}pays`q
1{2∇pBνwyq}L2pDq ď

ÿ

mďν

ˆ

ν

m

˙

|m|!

pln 2q|m|
bm
|pν ´m| ` 1q!

pln 2q|ν´m|
bν´m

ˆ ĥ`4
?
dCd

aymax

aymin

Cyq p}z}V 1 ` }pu}V 1q

“ ĥ`
p|ν| ` 2q!

2

bν

pln 2q|ν|
4
?
dCd

aymax

aymin

Cyq p}z}V 1 ` }pu}V 1q ,

where we used the equality
ř

mďν

`

ν
m

˘

|m|!p|ν ´m| ` 1q! “ p|ν|`2q!
2 , which is stated, e.g.,

in [113, equation 9.5]. From

payminq
1{2}Bνwy}V ď }pa

y
s`
q1{2∇pBνwyq}L2pDq,

the claim follows directly.

Integration error on difference of two levels

In this section we analyze the expected (w.r.t. the random shifts) MSE for approximating
the difference of two consecutive levels in the MLQMC estimator. To this end, we introduce
the weighted Sobolev space Ws,γ , with norm given by

}F }2Ws,γ
:“

ÿ

uĎt1:su

1

γu

ż

R|u|

ˆ
ż

Rs´|u|

B|u|F

Byu
pyu,yt1:suzuq

ź

jPt1:suzu

φpyjq dyt1:suzu

˙2
ź

jPu

ψ2
j pyjq dyu .

Here t1 : su is a shorthand notation for the set of indices t1, 2, . . . , su. In the sum,
yu “ pyjqjPu denotes the active variables, while yt1:suzu “ pyjqjRu denotes the inactive
variables. The constants γu are weights, collected formally in γ, and the functions ψj :
R Ñ R` determine the behavior of the functions in the space. For the analysis, based
on [70, 115, 123] to hold, we consider functions ψ2

j pyq “ expp´9αj |y|q with αj ą 0 to be
specified below.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

In the multilevel estimator for our gradient we want to apply the QMC rule to the difference
qys` ´ q

y
s`´1 . On a level ` P t1, . . . , Lu we can use Fubini’s theorem and [70, Theorem 15] to

get

V` “
ż

D
V∆rQn`,R`pqys` ´ q

y
s`´1

qsdx “
1

R`

ż

D
V∆rQn`pqys` ´ q

y
s`´1

qsdx

“ E∆

“

}Qnpqys` ´ q
y
s`´1

q ´ ErF s}2L2pDq

‰

“

ż

D
E∆rpQnpqys` ´ q

y
s`´1

q ´ Erqys` ´ q
y
s`´1

sq2sdx

ď
1

R`

ˆ

ÿ

H‰uĎt1:s`u

γλu
ź

jPu

%jpλq

˙1{λ

pϕtotpNqq
´1{λ

ż

D
}qys` ´ q

y
s`´1

}2Ws`,γ
dx (7.57)

where

%jpλq :“ 2

ˆ

?
2π exppα2

j{η
˚q

π2´2η˚p1´ η˚qη˚

˙λ

ζ

ˆ

λ`
1

2

˙

.

Here η˚ “ p2λ ´ 1q{p4λq, ζpxq denotes the Riemann Zeta function and ϕtotpNq :“ |t1 ď
z ď N | gcdpz,Nq “ 1u| denotes the Euler totient function. In particular, if N is a power
of a prime, it can be shown that 1{ϕtotpNq ď 2{N . By using the shorthand notation
F pyq :“ qys` ´ q

y
s`´1 , we observe that

ż

D
}F }2Ws,γ

dx

“

ż

D

ÿ

uĎt1:su

1

γu

ż

R|u|

ˆ
ż

Rs´|u|

B|u|F

Byu

ź

jPt1:suzu

φpyjqdyt1:suzu

˙2
ź

jPu

ψ2
j pyjqdyudx

ď

ż

D

ÿ

uĎt1:su

1

γu

ż

R|u|

ż

Rs´|u|

ˆ

B|u|F

Byu

˙2
ź

jPt1:suzu

φpyjqdyt1:suzu

ź

jPu

ψ2
j pyjqdyudx

“
ÿ

uĎt1:su

1

γu

ż

R|u|

ż

Rs´|u|

›

›

›

B|u|F

Byu

›

›

›

2

L2pDq

ź

jPt1:suzu

φpyjqdyt1:suzu

ź

jPu

ψ2
j pyjqdyu

ď c2
2

ÿ

uĎt1:su

1

γu

ż

R|u|

ż

Rs´|u|

›

›

›

B|u|F

Byu

›

›

›

2

V

ź

jPt1:suzu

φpyjqdyt1:suzu

ź

jPu

ψ2
j pyjqdyu . (7.58)

Thus we take F “ qys` ´ q
y
s`´1 and plug (7.58) into (7.57) to obtain the following result.

Theorem 7.2.15. Let ψ2
j pyq :“ expp´9αj |y|q for max pbj , αminq ă αj ă αmax for all

j P u Ď t1 : su and some 0 ă αmin ă αmax ă 8. Given s`, n` P N, and weights γ,
a generating vector z P Ns for a randomly shifted lattice rule can be constructed using
a component-by-component algorithm such that the variance V`, defined in (7.31), for
approximating the difference of two consecutive levels in the MLQMC estimator satisfies,
for all λ P p1{2, 1s,

V` ď
1

R`
ϕtotpn`q

´1{λCs`,γ

ˆ

h`´1c2CzgCP expp}Z̄}8q

˙2

exp
´81

2
}b}22 ` 2

9
?

2π
}b}1

¯

,

with CP some constant depending only on c1, c2 and Cd and where

Cs,γ :“

ˆ

ÿ

H‰uĎt1:s`u

γλu
ź

jPu

%jpλq

˙1{λ
ÿ

uĎt1:s`u

1

γu

ˆ

p|u| ` 2q!p|u| ` 6q

3pln 2q|u|

˙2ˆ
ź

jPu

b̃2j
αj ´ bj

˙
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and

%jpλq :“ 2

ˆ

?
2π exppα2

j{η
˚q

π2´2η˚p1´ η˚qη˚

˙λ

ζ

ˆ

λ`
1

2

˙

. (7.59)

Proof. For this proof it is important to recall from Section 7.2.1 that qys`´1 is the adjoint
state corresponding to the stochastic field ays`´1 , which in turn is obtained by interpolating
the field ays` in the nodes of a coarser CE method. In both cases y P Rs` . By the triangle
inequality we have

}Bνpqys`,h` ´ q
y
s`´1,h`´1

q}V (7.60)

ď }Bνpqys`,h` ´ q
y
s`
q}V

loooooooooomoooooooooon

term1

`}Bνpqys` ´ q
y
s`´1

q}V
loooooooooomoooooooooon

term2

`}Bνpqys`´1
´ qys`´1,h`´1

q}V
loooooooooooooomoooooooooooooon

term3

,

which in turn can be estimated using Lemma 7.2.12 (term1 and term3) and Lemma 7.2.14
(term2):

term1 À h`
bν

pln 2q|ν|
p|ν| ` 2q!p|ν| ` 6q

3

paymaxq
1{2

rCyCyq
aymin

p}z}V 1 ` }pu}V 1q

term2 ď ĥ`
bν

pln 2q|ν|
p|ν| ` 2q!

aymaxC
y
q

payminq
3{2

2
?
dCdp}z}V 1 ` }pu}V 1q

term3 À h`´1
bν

pln 2q|ν|
p|ν| ` 2q!p|ν| ` 6q

3

paymaxq
1{2

rCyCyq
aymin

p}z}V 1 ` }pu}V 1q.

For ` ď Lmax we can find a constant such that ĥ` À h`. Due to Assumption 7.2.6 we
have that term2 “ 0 for ` ą Lmax. The precise form of the bound of term2 is then not
important. However, if the constant Cd in Lemma 7.2.8 can be found independent of `
(see Remark 7.2.9), then Assumption 7.2.6 can be omitted. In that case, the form of
term2 and therefore Lemma 7.2.14 are relevant for the remaining analysis. Recalling that
rCy “ max p1, Cyq “ max p1, 2Cda

y
max

aymin
q and Cyq “ max p1, c1c2

aymin
q, we can further estimate

term1 ` term2 ` term3 À h`´1
bν

pln 2q|ν|
p|ν| ` 2q!p|ν| ` 6q

3
p}z}V 1 ` }pu}V 1q

ˆ

ˆ

2
paymaxq

1{2

aymin

´

1` 2Cd
aymax

aymin

¯´

1`
c1c2

aymin

¯

`

´ aymax

payminq
3{2

¯´

1`
c1c2

aymin

¯

˙

, (7.61)

so the bound depends on y only through aymin and aymax. We use

payminq
´1, aymax ď expp}Z̄}8q exppbJ|y|q

to derive the bounds

paymaxq
1{2

aymin

ď
`

expp}Z̄}8q exppbJ|y|q
˘3{2

,

aymax

payminq
3{2
ď

`

expp}Z̄}8q exppbJ|y|q
˘5{2

,

c1c2

aymin

ď c1c2 expp}Z̄}8q exppbJ|y|q,
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2Cd
aymax

aymin

ď 2Cd
`

expp}Z̄}8q exppbJ|y|q
˘2
.

Moreover, we have 1 ď expp}Z̄}8q exppbJ|y|q ď
`

expp}Z̄}8q exppbJ|y|q
˘2

. Using these
estimates we conclude that

(7.61) ď h`´1
bν

pln 2q|ν|
p|ν| ` 2q!p|ν| ` 6q

3
CzgCP

´

expp}Z̄}8q exppbJ|y|q
¯9{2

with CP some constant which depends only on c1, c2 and Cd.

Replacing Bν by B|u|

Byu
with u Ď t1 : s`u in (7.60), i.e., restricting to the case where all νj ď 1

as is the case in the definition of the Ws,γ-norm, we obtain

›

›

›

B|u|

Byu
pqys`,h` ´ q

y
s`´1,h`´1

q

›

›

›

V

ď h`´1

´

ź

jPu

bj

¯

p|u| ` 2q!p|u| ` 6q

3pln 2q|u|
CzgCP

´

expp}Z̄}8q exppbJ|y|q
¯9{2

.

Moreover, the product form of this bound allows us to group the factors in (7.58), with F
taken to be qys`,h` ´ q

y
s`´1,h`´1

, for j P u and j P t1 : s`uzu separately, i.e.,

exp
`9

2
bJ|y|

˘

“
ź

jPu

exp
`9

2
bj |yj |

˘

ź

jPt1:suzu

exp
`9

2
bj |yj |

˘

. (7.62)

We first estimate the factors j P t1 : s`uzu

ż

Rs`´|u|

ˆ

ź

jPt1:s`uzu

exp
`9

2
bj |yj |

˘

˙2
ź

jPt1:s`uzu

φpyjqdyt1:s`uzu

“

ż

Rs`´|u|

ź

jPt1:s`uzu

exp
`

9bj |yj |
˘

ź

jPt1:s`uzu

φpyjqdyt1:s`uzu

“

ż

Rs`´|u|

ź

jPt1:s`uzu

exp
`

9bj |yj |
˘ 1
?

2π
exp

´´y2
j

2

¯

dyt1:s`uzu

“
ź

jPt1:s`uzu

2

ż 8

0
exp

`

9bj |yj |
˘ 1
?

2π
exp

´´y2
j

2

¯

dy

“
ź

jPt1:s`uzu

2

ż 8

0
exp

´81

2
b2j

¯ 1
?

2π
exp

´

´p9bj ´ yjq
2

2

¯

dy

“
ź

jPt1:s`uzu

exp
´81

2
b2j

¯

2

ż 8

0

1
?

2π
exp

´

´p9bj ´ yjq
2

2

¯

dy

“
ź

jPt1:s`uzu

exp
´81

2
b2j

¯

2Φp9bjq

where Φ denotes the univariate cumulative standard normal distribution function.
Secondly, we estimate the factors j P u

ż

R|u|

ź

jPu

expp9bj |yj |qψ
2
j pyjqdyu “

ź

jPu

ˆ
ż 8

´8

expp9bj |y|qψ
2
j pyqdy

˙

.
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With ψ2
j pyq :“ expp´9αj |y|q for max pbj , αminq ă αj ă αmax for all j P u and some

0 ă αmin ă αmax ă 8, we get

ż

R|u|

ź

jPu

expp9bj |yj |qψ
2
j pyjqdyu “

ź

jPu

1

αj ´ bj
.

Defining

b̃j :“
bj

2 expp81
2 b

2
j qΦp9bjq

we arrive at

ż

R|u|

ˆ
ż

Rs`´|u|

ˆ

exp
´9

2
bJ|y|

¯

˙2
ź

jPu

bj
ź

jPt1:suzu

φpyjq dyt1:s`uzu

˙

ź

jPu

ψ2
j pyjq dyu

“

ˆ

ź

jPt1:s`uzu

2 exp
´81

2
b2j

¯

Φp9bjq

˙ˆ

ź

jPu

b2j
αj ´ bj

˙

“

ˆ

ź

jPt1:s`u

2 exp
´81

2
b2j

¯

Φp9bjq

˙ˆ

ź

jPu

b̃2j
αj ´ bj

˙

.

Using 2Φp9bjq “ 1` erf
`9bj?

2

˘

ď 1` 2 9?
2π
bj ď expp2 9?

2π
bjq for all j, where erf denotes the

Gauss error function, we have

ź

jPt1:s`u

2 exp
´81

2
b2j

¯

Φp9bjq ď
ź

jPt1:su

exp
´81

2
b2j

¯

exp
´

2
9
?

2π
bj

¯

ă exp
´81

2

ÿ

jPt1:s`u

b2j ` 2
9
?
π

ÿ

jPt1:su

bj

¯

“ exp
´81

2
}b}22 ` 2

9
?

2π
}b}1

¯

.

We have thus proved the following

ż

D
}qys`,h` ´ q

y
s`´1,h`´1

}2Ws`,γ
dx

ď

ˆ

h`´1c2p}z}V 1 ` }pu}V 1qCP expp}Z̄}8q

˙2

ˆ
ÿ

uĎt1:s`u

1

γu

ˆ

p|u| ` 2q!p|u| ` 6q

3pln 2q|u|

˙2ˆ
ź

jPu

b̃2j
αj ´ bj

˙

exp
´81

2
}b}22 ` 2

9
?

2π
}b}1

¯

,

as required.

Without a careful choice of the weight parameters γu, the quantity Cs`,γ might grow with
increasing s`. To ensure that Cs`,γ is bounded independently of s`, we choose the weight
parameters accordingly. This requires an assumption on the boundedness of }b}p, which
is also made in [72, Section 3.4], where it is discussed in detail.
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Lemma 7.2.16. Let N be a power of a prime number and let the assumptions of the pre-
ceding Theorem hold. Moreover, let λ P p1

2 , 1s and assume that }b}p is uniformly bounded
with respect to s` for p “ 2λ{p1 ` λq. Then, for a particular choice of the weights γ and
α, there is a constant Cpλq ą 0 such that

V` ď
1

R`
h2
`CpλqN

´ 1
λ .

Proof. Since N is a prime power, we have that 1{ϕtotpNq ď 2{N . Due to the preceding
Theorem it is sufficient to find an upper bound on Cs`,γ that is independent of s`. To this
end we choose the weights γ to minimize Cs`,γ . By [70, lemma 18] the “product and order
dependent” (POD) minimizer γ˚ of Cs`,γ is given by

γ˚ “

ˆˆ

p|u| ` 2q!p|u| ` 6q

3pln 2q|u|

˙2
ź

jPu

b̃2j
pαj ´ bjq%jpλq

˙
1

1`λ

.

One can show that

Cs`,γ˚ “ S
1` 1

λ
λ , where Sλ “

ÿ

uĎt1:s`u

„ˆ

p|u| ` 2q!p|u| ` 6q

3pln 2q|u|

˙2
ź

jPu

b̃2j%jpλq
1
λ

αj ´ bj


λ

1`λ

,

hence, it is sufficient to show that Sλ ă 8. To this end we choose the parameters αj
that minimize Sλ. We observe that all terms of Sλ are positive, thus minimizing Sλ, or
equivalently Cs`,γ˚ , with respect to the parameters tajujě1 is equivalent to minimizing

each of the functions
%jpλq

1
λ

αj´bj
with respect to αj . Due to (7.59), %jpλq

1
λ “ c exppα2

j{η
˚q, for

some constant c independent of αj and for η˚ “ p2λ´ 1q{p4λq, leads to

αj “
1

2

ˆ

bj `

c

b2j ` 1´
1

2λ

˙

(7.63)

for the minimizer, see [70, Corollary 21]. Since }b}p is bounded, we also have }b}8 ď bmax

for all s, i.e., bj ď bmax for all j “ 1, . . . , s` and all s`. We denote by αmax the value of
(7.63) with bj replaced by bmax. We have αj ď αmax for all j “ 1, . . . , s` and all s`, and
αj ´ bj ě αmax ´ bmax. Furthermore, %jpλq ď %maxpλq for all j and all s, where %maxpλq is
the value of (7.59) with αj replaced by αmax.
From the definition of b̃j we see that b̃j ď

?
π2bj , so by setting λ “ p

2´p and τλ :“

4π%maxpλq
1
λ

pαmax´bmaxq3pln 2q2
, we have

Sλ ď
ÿ

uĎt1:s`u

`

p|u| ` 2q!p|u| ` 6q
˘p

ź

jPu

pτλb
2
j q

p
2 “

s
ÿ̀

k“0

`

pk ` 2q!pk ` 6q
˘p

ÿ

uĎt1:s`u,|u|“k

ź

jPu

pτλb
2
j q

p
2

ď

s
ÿ̀

k“0

`

pk ` 2q!pk ` 6q
˘p

k!
τ
p
2
k

λ

ˆ s
ÿ̀

j“1

bpj

˙k

ď

8
ÿ

k“0

`

pk ` 2q!pk ` 6q
˘p

k!
τ
p
2
k

λ }b}pkp ă 8 .

The finiteness follows by the ratio test, because p ă 1.
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8 One-shot learning of surrogates

The reduced formulation (3.25) of the optimal control problem (3.23) subject to (3.24) is
fundamentally based on the assumption that the forward problem can be solved exactly in
each iteration, i.e., an existing algorithm for the solution of the state equation is embed-
ded into an optimization loop. Thereby it is usually preferable to compute the gradient
using a sensitivity or adjoint approach, cf., Chapter 4. However, the main drawback of
this approach is that it requires the repeated costly solution of the (possibly nonlinear)
state equation, even in the initial stages when the control variables are still far from their
optimal value. This drawback can be partially overcome by carrying out the early opti-
mization steps with a coarsely discretized PDE and/or only few samples from the space
of parameters, cf., Section 7.2.
In this section, we will follow a different approach, which solves the optimization prob-
lem and the forward problem simultaneously by treating both, the design and the state
variables, as optimization variables. Various names for the simultaneous solution of the
design and state equation exist: all-at-once, one-shot method, piggy-back iterations etc.,
see, e.g., [14].
To be more precise, the state and the control variables are coupled through the constraint,
which is kept explicitly during the optimization. To this end, we will consider the residual
of (3.24)

epu, zq “ Au´ Bz ,
where epu, zq : LqµpU, V q ˆ Z Ñ LqpU,W 1q. In the following we will focus on penalty
methods and refer to [92] and the references therein for other penalization strategies.
A penalty method solves a constrained optimization problem by solving a sequence of
unconstrained problems. Using, for instance, a quadratic penalty method in the present
context, one aims to find a sequence of minimizers pzk, ukq, given by

pzk, ukq “ arg min
zk,uk

ˆ

Jpuk, zkq `
λk
2
}epuk, zkq}

2
LqµpU,W 1q

˙

,

that converges to the minimizer pz˚, upz˚qq of the constrained problem (3.25). The disad-
vantage of penalty methods is that the penalty parameter λk needs to be sent to infinity
which renders the resulting k-th problem increasingly ill-conditioned. This problem can
be avoided by using exact penalty methods, which will be subject to future work.
In the second part of this chapter, we will transer the developed ideas for surrogates in
one-shot optimization to the setting of Bayesian inverse problems, see Section 8.2.

8.1 Surrogates in one-shot optimization under uncertainty

In this section we revisit the optimal control problem described in Section 4.3. We are
interested in the situation, where a high resolution is needed for accurate approximations
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8 One-shot learning of surrogates

of the solution of the operator equation, or a PDE solution, repectively. In this case the
empirical approximation of the risk measure is of high computational costs as for each
data point the underlying operator equation, or PDE model, needs to be solved.

Despite recent advances in PDE-constrained optimization under uncertainty problems,
the incorporation of uncertainty in form of random parameters or random fields is still
not feasible for many PDE models due to the significant increase in the computational
complexity of the resulting optimization or control problems. The use of surrogate models,
i.e., the replacement of the computational expensive solution of the forward model by
approximations which are usually cheap to evaluate, is thus a promising direction in order
to reduce the overall computational effort.

However, the surrogates need to be trained or calibrated in advance. In particular, in
the context of optimization under uncertainty, a surrogate is needed for every feasible
control in order to perform, e.g., for the numerical computation of the optimal control.
One promising remedy to this issue lies in one-shot approaches, see e.g., [78, 144] and
[73], where one-shot ideas are successfully generalized for the training of so-called residual
neural networks.

Our framework is based on one-shot optimization approaches [14], where we reformu-
late the constrained optimal control problem as an unconstrained one via a penalization
method. More precisely, in order to force the feasibility with respect to the model con-
straints, we include a penalty parameter allowing for an increasing weight on the pe-
nalization term. This setting allows the straightforward incorporation of surrogate. We
replace the optimization with respect to the infinite-dimensional PDE solution by a param-
eterized family of functions, where the resulting optimization task is with respect to the
parameters describing the surrogates. Examples of surrogates include polynomial series
representations, neural networks, Gaussian process approximations and low rank approx-
imations. We discuss various choices in Section 8.1.2. However, the suggested approach is
not limited to the surrogates discussed here. Furthermore, we note that from a Bayesian
perspective, this parameter controls the model error, i.e., increasing the penalization pa-
rameter corresponds to vanishing model noise, see Section 8.2 below.

In this section, we analyze the dependence of the optimization error on the number of data
points as well as on the weight on the penalization. Moreover, we propose a stochastic
gradient descent method in order to implement the resulting empirical risk minimization
problem. In this section, we make the following contributions:

• We formulate a penalized empirical risk minimization problem and provide a con-
sistency result in terms of large data limit as well as increasing penalty parameters.
More precisely, we split the error in an error term decreasing with number of data
points independently of the penalty parameter as well as in an error term decreasing
in the strength of penalization independently of the number of data points.

• We formulate a stochastic gradient descent method in order to solve the penal-
ized risk minimization problem where we allow an adaptive increase of the penalty
parameter avoiding numerical instabilities due to high variance. Under suitable as-
sumptions we prove convergence of the proposed stochastic gradient descent method.
We verify the assumptions for linear surrogates.

• We test our proposed approach numerically, where we apply a linear as well as a
nonlinear surrogate model. The linear surrogate model is based on a polynomial
expansion, while the nonlinear surrogate model is described as a neural network.
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8.1 Surrogates in one-shot optimization under uncertainty

8.1.1 Problem formulation

Let us briefly revisit the optimal control problem described in Section 4.3, where we choose
the expected value as a risk measure. Our goal of computation is the following optimal
control problem

min
zPZad,uPYad

Jpu, zq , Jpu, zq :“
1

2

ż

U
}Qu´ pu}2J dµpyq `

α

2
}z}2Z , (8.1)

subject to the parametric linear operator equation in LpµpU,W 1q

Au “ Bz , (8.2)

for p “ 2, a Hilbert space Z with Zad Ă Z, Yad Ă L2
µpU, V q, and a Hilbert space J, pu P J,

Q P LpV, Jq, B P LpZ,W 1q. In particular, the operators B and Q are not dependent on
y and thus can be uniformly bounded for all y, i.e., }B}LpZ,W 1q ď C1 and }Q}LpV,Jq ď C2

for some C1, C2 ą 0 and all y P U . This implies in particular, that Bz P LpµpU,W 1q

for all p and all deterministic controls z P Z and Qu P L2
µpU, Jq for all u P L2

µpU, V q.
Moreover, we assume that Q and B have bounded inverse, i.e., }B´1}LpW 1,Zq ď C3 and
}Q´1}LpJ,V q ď C4 for C3, C4 ą 0. In particular, we assume that A is a boundedly invertible
operator as described in Section 3.7.

We refer to Theorem 3.7.4 for the existence and uniqueness of solutions of the optimal
control problem and to Theorem 4.2.11 for the optimality conditions. Moreover, we recall
from Remark 3.7.5 that the solution of the optimal control problem remains unaffected by
the choice of stating the constraint (8.2) in L2

µpU,W
1q or equivalently for all y P U in W 1.

In the previous chapters we considered the optimal control problems in their reduced
formulations, see, e.g., (4.15), (4.36), or (4.52), assuming that the forward problem can be
solved exactly in each iteration. Hence, for the actual computation, an existing algorithm
for the solution of the state equation is embedded into an optimization loop. This approach
requires the repeated costly solution of the state equation, even in the initial stages when
the design variables are still far from their optimal value.

In this section, we will follow a one-shot approach, which solves the optimization problem
and the forward problem simultaneously by treating both, the control and the state vari-
ables, as optimization variables. The state and the control variables are coupled through
the PDE constraint, which is kept explicitly as a side constraint during the optimization.
Specifically, we define the residual epu, zq : L2

µpU, V q ˆ Z Ñ L2
µpU,W

1q of (8.2) as

epu, zq :“ Au´ Bz ,

and employ a quadratic penalty method. In particular, we solve the constrained optimiza-
tion problem (8.1) subject to (8.2) by solving a sequence of unconstrained optimization
problems, i.e., we aim to find a sequence of (unique, global) minimizers pzk, ukq, given by

pzk, ukq “ arg min
zk,uk

ˆ

Jpuk, zkq `
λk
2
}epuk, zkq}

2
L2
µpU,W

1q

˙

, (8.3)

that converges to the minimizer pz˚, upz˚qq of the constrained problem (8.1) subject to
(8.2).

In the following subsection there is a detailed presentation of different surrogates that
might later be used as substitute for uk in (8.3).
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8 One-shot learning of surrogates

8.1.2 Surrogates

In many applications in the field of uncertainty quantification the forward model is com-
putationally expensive to solve. Consequently, replacing the solution of the forward model
by a surrogate, that is cheap to evaluate, can be a tremendous advantage.

For instance, neural networks (NN) have been successfully applied to various classes of
PDEs, cp. e.g., [11, 57, 82, 120, 126, 149, 163] and also as approximation to the underlying
model [44, 122]. For parametric PDEs, generalized polynomial chaos expansion haven
been extensively studied, cf., [30] for an overview on approximation results. Recently,
Gaussian processes haven been suggested for solving general nonlinear PDEs [26]. Here,
we propose a general framework, which allows to include all different surrogate models in
a one-shot approach.

In the next sections we will analyze the optimization problem in which the parametric
mapping is replaced by a surrogate, i.e., the mapping

uy : U Ñ V

is replaced by a surrogate

upθ,yq : Θˆ U Ñ V

where the θ P Θ are the parameters of the surrogate.

Possible surrogates include for instance

• a power series of the form

upθ,yq “
ÿ

νPF
θνy

ν (8.4)

• an orthogonal series of the form

upθ,yq “
ÿ

νPF
θνPν , Pν :“

ź

jě1

Pνj pyjq , (8.5)

where Pk is the Legendre polynomial of degree k defined on r´1, 1s and normalized
with respect to the uniform measure, i.e., such that

ş1
´1 |Pkptq|

2 dt
2 “ 1.

• a neural network upθ,yq : Θ ˆ U Ñ V , pθ,yq ÞÑ upθ,yq with L P N layers, defined
by the recursion

x0 :“ y ,

x` :“ σpW `x`´1 ` b`q , for ` “ 1, . . . , L´ 1 ,

upθ,yq :“W LxL´1 ` bL . (8.6)

Here the parameters θ P Θ :“ ˆL`“1pRN`ˆN`´1ˆRN`q are a sequence of matrix-vector
tuples

θ “
`

pW`, b`q
˘L

`“1
“

`

W 1, b1q, pW 2, b2q, . . . , pW L, bLq
˘

,

and the activation function σ is applied component-wise to vector-valued inputs.
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8.1 Surrogates in one-shot optimization under uncertainty

• Gaussian process or kernel based approximations. Recently, a general framework
for the approximation of solution of nonlinear pdes has been proposed in [26]. The
authors demonstrate the efficiency of Gaussian processes for nonlinear problems and
derive a rigorous convergence analysis. We refer to [26] for more details, in particular
also to the references therein.

• reduced basis or low rank approaches, which haven been demonstrated to efficiently
approximate the solution of the forward problem even in high- or infinte-dimensional
settings, see e.g., [8, 134].

There has been a lot of research towards efficient surrogates, in particular in the case of
parametric PDEs and the above list is by far not exhaustive. We provide in the following
a general framework to train surrogates simultaneously with the optimization step and
illustrate the ansatz in numerical experiments for polynomial chaos and neural network
approximations.

Based on the smoothness of the underlying function, approximation results of the above
surrogates can be stated. To this end, we recall that the solution upyq of a parametric linear
operator equation (3.19) is an analytic function with respect to the parameters y, if the
linear operators Apyq P LpV,W 1q are isomorphisms and as long as the operator A and the
right-hand side z are parameterized in an analytical way, see e.g., [165, Theorem 1.2.37], or
Theorem 4.6.13, which in addition provides bounds on the partial derivatives with respect
to the parameters. Moreover, recall that analytic functions between Banach spaces admit
holomorphic extensions, i.e., for analytic f : U Ñ Y between two real Banach spaces X
and Y with U Ď X open, there exists an open set Ũ Ď XC

23 and a holomorphic extension
rf : rU Ñ YC such that U Ď rU and rf |U “ f , see [165, Proposition 1.2.33]. To quantify
the smoothness of the underlying function we will use the notion of pb, εq-holomorphy of a
function, which is a sufficient criterion for many approximation results, see [149] and the
referenes therein: Given a monotonically decreasing sequence b “ pbjqjPN of positive real
numbers that satisfies b P `ppNq for some p P p0, 1s, a continuous function uy : U Ñ V is
called pb, εq-holomorphic if for any sequence ρ :“ pρjqjě1 P r1,8q

N, satisfying

ÿ

jě1

pρj ´ 1qbj ď ε ,

for some ε ą 0, there exists a complex extension ru : Bρ Ñ VC of u, where Bρ :“ ˆjPNBρj ,
with rupyq “ upyq for all y P U , such that w ÞÑ rupwq : Bρ Ñ VC is holomorphic as a
function in each variable wj P Bρj , j P N with uniform bound

sup
wPBρ

}upwq}VC ď C .

The sequence b determines the size of the domains of the holomorphic extension, i.e., the
faster the decay in b, the faster the radii ρj may increase. Furthermore, the summability
exponent p of the sequence b P `ppNq will determine the algebraic convergence rates of the
surrogates below.

From [30, Corollary 3.11] we know that a pb, εq-holomorphic function admits an uncondi-
tionally convergent Taylor generalized polynomial chaos expansion, i.e., the series in (8.4)

23For a real Banach space V , its complexification is the space VC :“ V ` iV with the Taylor norm
}v ` iw}VC :“ suptPr0,2πq } cosptqv ´ sinptqw}V for all v, w P V and i denoting the imaginary unit.
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8 One-shot learning of surrogates

with coefficients θν :“ 1
ν!B

ν
yu
y|y“0 converges unconditionally towards uy in L8pU, V q.

Moreover, let Λs be the set of indices that correspond to the s largest }θν}V , then we have

sup
yPU

}uy ´
ÿ

νPΛs

θνy
ν}V ď Cps` 1q

´ 1
p
`1
,

with C “ }p}θν}V qνPF}`p ă 8.
Furthermore, we known from [30, Corollary 3.10] that a pb, εq-holomorphic function admits
an unconditionally convergent Legendre series expansion, i.e., the series in (8.5) with
coefficients θν :“

ş

U u
yLνpyq dy converges unconditionally towards uy in L2

µpU, V q with

}u´
ÿ

νPΛn

θνPν}L2
µpU,V q

ď Cps` 1q
´ 1
p
` 1

2 ,

where C “ }p}θν}V qνPF}`p ă 8 and Λs denotes the indices with the s largest }θν}V .
More recent results [149] show that pb, εq-holomorphic functions, i.e., the parametric so-
lution manifold U Q y ÞÑ uy P V , can be expressed by a neural network of finite size.
In [149] the authors illustrate this for the elliptic example (see Section 4.1) for d “ 1
under the additional regularity assumptions that z P L2pDq and apyq P W 1,8pDq for all
y P U . Therefore, let 0 ă qV ď qX ă 2 and denote pV :“ p1{qV ` 1{2q´1 P p0, 1q and
pX :“ p1{qX ` 1{2q´1 P p0, 1q. Let βV :“ pβV,jqjPN P p0, 1q

N and βX :“ pβX,jqjPN P p0, 1q
N

be monotonically decreasing sequences such that βV P `
qV pNq and βX P `

qX pNq and such
that

›

›

›

›

ř

jPN β
´1
V,j |ψjp¨q|

a0p¨q

›

›

›

›

L8pDq

ă 1 ,

›

›

›

›

ř

jPN β
´1
X,j |ψjp¨q|

a0p¨q

›

›

›

›

L8pDq

ă 1 ,

›

›

›

›

ÿ

jPN
β´1
X,j |ψ

1
jp¨q|

›

›

›

›

L8pDq

ă 8 .

Then (see, [149, Theorem 4.8]) there is a constant C ą 0 such that for every s P N,
there exists a ReLU neural network (i.e., a neural network (8.6) with activation function
σpxq “ max p0,xq) denoted by upθ,yq with s ` 1 input units and for a number N ě s
with r “ min p1, p1` p´1

V q{p1` p
´1
V ´ p´1

X qq, it holds

sup
yPU

}uy ´ upθ,yq}V ď CN´r .

Furthermore, for any s P N the size and depth of the neural network can be bounded by

sizepupθ,yqq ď Cp1`N log pN q log plog pN qqq
depthpupθ,yqq ď Cp1` log pN q log plog pN qqq ,

where the size of neural network is defined as the total number of nodes plus the total
number of nonzero weights sizepupθ,yqq :“ |tpi, j, `q : pWi,jq` ‰ 0u| `

řL
`“0N` and the

depth of a neural network depthpupθ,yqq “ L´ 1 is the number of hidden layers. Setting
b :“ p}ψj}L8pDqqjPN and assuming in addition to (AE2)-(AE5) that b P `ppNq for some
p P p0, 1q, the parametric solution uy of the uniformly elliptic problem (4.8) is pb, εq-
holomorphic, see e.g., [30, 149]. We conclude that, under these additional assumptions,
the convergence results of the polynomial expansions and the approximation result of the
neural network apply to the elliptic PDE problem in Section 4.1. We note also that the
series expansions (8.4) and (8.5) are linear in its parameters θ, whereas the neural network
is nonlinear in its parameters due to the nonlinear activation function σ.
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8.1 Surrogates in one-shot optimization under uncertainty

8.1.3 Consistency analysis

In our consistency analysis, we are going to analyse the proposed penalty method, see
(8.3), with respect to the penalty parameter λk and the number of i.i.d. data points n,
denoted as pyiqni“1, which are used to approximate the expected values with respect to y.
Thereby, we assume that the state uyk has been parameterized by a surrogate upθ,yq, see
Section 8.1.2, and the penalty parameters pλkqkPN are monotonically increasing to infinity.
In particular, we try to connect the following optimization problems:

(cRM) The original constrained risk minimization (cRM) problem

min
z,θ

1

2
Eyr}Qupθ,yq ´ pu}2Js `

α

2
}z}2Z

subjected to

Eyr}epupθ,yq, zq}2W 1s “ 0.

We assume there exists a unique solution of this problem, which we will denote by
pz˚8,θ

˚
8q.

(pRM) The penalized risk minimization (pRM) problem

min
z,θ

1

2
Eyr}Qupθ,yq ´ pu}2Js `

α

2
}z}2Z `

λk
2
Eyr}epupθ,yq, zq}2W 1s. (8.7)

We assume there exists a unique solution denoted by pzk8,θ
k
8q.

(pERM) The penalized empirical risk minimization (pERM) problem

min
z,θ

1

2n

n
ÿ

i“1

}Qupθ,yiq ´ pu}2J `
α

2
}z}2Z `

λk
2

1

n

n
ÿ

i“1

}epupθ,yq, zq}2W 1 (8.8)

We assume there exists a unique solution denoted by pzkn,θ
k
nq.

For simplicity, in the following we denote x “ pz,θq P X :“ ZˆRd and define the functions

f : X ˆ U Ñ R`, with fpx,yq “
1

2
}Qupθ,yq ´ pu}2J `

α

2
}z}2Z ,

g : X ˆ U Ñ R`, with gpx,yq “ }epupθ,yq, zq}2W 1 ,

where we assume here and in the following that W 1 is a Hilbert space, which implies that
L2
µpU,W

1q is a Hilbert space.

Since the dimension truncation error can be controlled by Theorem 5.4.4, we neglect this
error contribution in the present consistency analysis.

To simplify the notation we work in the following of this section with gradients instead
of Fréchet derivatives. The gradient of a functional Ĵ : Z Ñ R is the unique representer
in Z of the Fréchet derivative Ĵ 1pzq of Ĵ , which belongs to Z 1, i.e., Ĵ 1pzq “ RZ∇Ĵ , where
RZ : Z Ñ Z 1 denotes the Riesz operator in the Hilbert space Z given by xz1, RZz2yZ,Z 1 “
xz1, z2yZ,Z .
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8 One-shot learning of surrogates

Convergence of pRM to cRM

We start with the error dependence on the penalty parameter λk. The following is a long
known result (see e.g., [127, Theorem 1]) providing unique existence of solutions as well
as convergence towards the unconstrained problem for increasing penalty parameter λk.

Theorem 8.1.1. Let H1 and H2 be two Hilbert spaces and let fpxq be a functional on H1

and the constraint hpxq be an operator from H1 into H2. Moreover, suppose

• there exists a unique global minimizer x˚ P X of the problem

min
xPX

fpxq s.t. hpxq “ 0 in H2 .

• that ∇xfpxq,∇2
xfpxq and ∇xhpxq,∇2

xhpxq exist with

}∇2
xfpxq ´∇2

xfpyq}LpH1,LpH1,Rqq ď L1}x´ y}H1

and }∇2
xhpxq ´∇2

xhpyq}LpH1,LpH1,H2qq ď L2}x´ y}H1 .

• the linear operator ∇xhpxxq is non-degenerate, i.e., }p∇xhpx˚qq˚y}H2 ě c}y}H2 for
c ą 0 and for all y P H2.

• the self-adjoint operator ∇2
xLpx

˚, y˚q is positive definite, i.e., x∇2
xLpx

˚, y˚qx̃, x̃y ě
m}x̃}2H1

for m ą 0 and all x̃ P H1. Here, the functional L denotes the Lagrangian,
y˚ denotes the Lagrange multiplier corresponding to x˚, and the Lagrange multiplier
rule is applicable because of the first three assumptions.

Then, for sufficiently large λk ą 0, there exists a unique minimizer x˚k of the problem

min
xPH1

fpxq `
λk
2
}hpxq}2H2

which satisfies

}x˚k ´ x
˚}H1 ď

C

2λk
}y˚}H2 and }λkhpx

˚
kq ´ y

˚}H1 ď
C

2λk
}y˚}H2 .

This theorem holds in infinite-dimensional Hilbert spaces H1 and H2, in that case the
derivatives with respect to x P H1 in the theorem are Fréchet derivatives. For our problem
at hand with x “ pz,θq P X “ Z ˆ Rd the assumptions need to be satisfied for fpxq :“
1
2Eyr}Qupθ,yq ´ pu}2Js `

α
2 }z}

2
Z , hpxq “ epupθ,y, zqq and gpxq :“ }hpxq}2W 1 based on the

spaces H1 “ X and H2 “ L2
µpU,W

1q. Here we need the assumption that W 1 is a Hilbert
space, such that L2

µpU,W
1q is a Hilbert space. In this case the H1-norm is just the norm

on X , e.g. }pz,θq}X “ p}z}
2
Z `}θ}

2
2q

1{2, and the H2-norm is } ¨ }L2
µpU,W

1q :“ pEyr} ¨ }2W 1sq
1{2.

If a surrogate satisfies the assumptions of the preceding theorem, the convergence of the
minimizers of the (pRM) problem to the minimizer of the (cRM) problem is guaranteed.

Lemma 8.1.2. Suppose that f and g satisfy the assumptions of Theorem 8.1.1. Then
the solution of the (cRM) problem converges to the solution of the (cRM) problem, in the
sense that there exists C1 ą 0 independent of n such that

}pzk8,θ
k
8q ´ pz

˚
8,θ

˚
8q}

2
X ď

C1

λ2
k

.

174



8.1 Surrogates in one-shot optimization under uncertainty

Convergence of pERM to pRM

The following result describes the error arising due to the empirical approximation of the
risk function uniformly in the penalization.

Lemma 8.1.3. Suppose that f is convex and g is strongly convex, i.e., ∇2
xgpx,yq ą m ¨I

for all x P Z ˆ Rd and y P U . Let λ0 “ 1 and assume that

TrpCovyp∇xpfpx,yqq `
λ0

2
gpx,yqqq ă 8.

Then the solution of the (pERM) problem converges uniformly in λk to the solution of the
(pRM) problem, in the sense that there exists a constant C2 ą 0 independent of λk such
that

Eyr}pzkn,θknq ´ pzk8,θk8q}2X s ď
C2

n
.

Proof. Under the above assumption the objective function in (8.8) is strongly convex. The
unique solution xkn satisfies

1

n

n
ÿ

i“1

∇xfpxkn,yiq `
λk
2

1

n

n
ÿ

i“1

∇xgpxkn,yiq “ 0.

Similarly, the unique minimzer of (8.7) is characterized by

∇xEyrfpxk8,yqs `
λk
2
∇xEyrgpxk8,yqs “ 0.

We are now interested in the discrepancy of xkn and xk8. We define the functions

Ψkpxq “ Eyrfpx,yqs `
λk
2
Eyrgpx,yqs

and its empirical approximation

Ψk
npxq “

1

n

n
ÿ

i“1

fpx,yiq `
λk
2

1

n

n
ÿ

i“1

gpx,yiq.

By the strong convexity of Ψk
n it follows that

}xkn ´ x
k
8}

2
X ď

1

m ¨ λk2
xxkn ´ x

k
8,∇xΨk

npx
k
nq ´∇xΨk

npx
k
8qyX

“
1

m ¨ λk2
xxkn ´ x

k
8,∇xΨkpxk8q ´∇Ψk

npx
k
8qyX

using the stationarity of the minimizers. Applying the Cauchy–Schwarz inequality leads
to

}xkn ´ x
k
8}X ď

1

m ¨ λk2
}∇Ψk

npx
k
8q ´∇xΨkpxk8q}X 1 .

Next, we note that for ψkpxq :“ fpx,yq ` λk
2 gpx,yq

}∇Ψk
npx

k
8q ´∇xΨkpxk8q}

2
X 1
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“ Tr

ˆˆ

1

n

n
ÿ

i“1

∇xψkpxk8,yiq ´ Eyr∇xψkpxk8,yqs
˙

b

ˆ

1

n

n
ÿ

i“1

∇xψkpxk8,yiq ´ Eyr∇xψkpxk8,yqs
˙˙

and by taking the expectation

Er}∇Ψk
npx

k
8q ´∇xΨkpxk8q}

2
X 1s “

1

n
TrpCovp∇xψkpxk8,yqqq.

It holds that

TrpCovp∇xψkpx,yqqq “ TrpCovp∇xfpx,yq `
λk
2
∇xgpx,yqqq

“ TrpCovp∇xfpx,yqq `
λk
2

Covp∇xfpx,yq,∇xgpx,yqq

`
λk
2

Covp∇xgpx,yq,∇xfpx,yqq `
λ2
k

4
Covp∇xgpx,yqqq

ď Trpmaxt1,
λ2
k

4
upCovp∇xfpx,yqq ` Covp∇xfpx,yq,∇xgpx,yqq

`Covp∇xgpx,yq,∇xfpx,yqq ` Covp∇xgpx,yqqq

“ maxt1,
λ2
k

4
uTrpCovp∇xψ0px,yqqq

with λ0 “ 1. Finally, we obtain the bound

Er}xkn ´ xk8}2X s ď Cm,λk
1

n
TrpCovp∇xψ0px,yqqq,

where

Cm,λk :“
1

m2

maxt1,
λ2
k
4 u

λ2
k
4

ď
1

m2
.

8.1.4 Convergence of pERM to cRM

Finally, we are ready to prove consistency in the sense that solutions of the (pERM)
converge to solutions of the original (cRM). We can use Lemma 8.1.3 and Lemma 8.1.2
by applying

Er}pzkn,θknq ´ pz˚8,θ˚8q}2X s ď 2Er}pzkn,θknq ´ pzk8,θk8q}2X s
loooooooooooooooomoooooooooooooooon

pERM to pRM

`2 }pzk8,θ
k
8q ´ pz

˚
8,θ

˚
8q}

2
X

loooooooooooooomoooooooooooooon

pRM to cRM

.

Theorem 8.1.4. Suppose that f and g satisfy the assumptions of Lemma 8.1.2 and
Lemma 8.1.3. Then the the solution pzkn,θ

k
nq is consistent in the sense that there exists

C1, C2 ą 0 such that

Er}pzkn,θknq ´ pz˚8,θ˚8q}2X s ď
C1

λ2
k

`
C2

n
.
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8.1 Surrogates in one-shot optimization under uncertainty

For a surrogate that is linear in its parameters, i.e., upθ, zq “ Byθ, the first assumptions
of Theorem 8.1.1 (and thus Lemma 8.1.2) follows from the strict convexity of f . The
second assumption is clearly satisfied since for a linear surrogate, the constraint h is linear
and hence the objective f is quadratic. The third assumption is true if we have for all
y P L2

µpU,W
1q that

Er}p∇pθ,zqhpθ˚, z˚qq˚y}2X s ě c}y}2L2
µpU,W

1q .

In the setting with linear surrogate the operator p∇pθ,zqhpθ˚, z˚qq˚ : L2
µpU,W

1q Ñ X
simplifies to ppAyByq˚,´B˚qJ, such that Er}ppAyByq˚,´B˚qJy}2X s “ Er}pAyByq˚y}2Rd `
}B˚y}2Z s ě Erpa2

minσminpB
ypByq˚q ` σminpBB˚qq}y}2L2

µpU,W
1q
s. Here σminpBB˚q ą 0 since B

has bounded inverse. Furthermore, from the linearity of the constraint follows that the
Hessian of the Lagrangian simplifies to the Hessian of the objective function ∇2

xfpθ, zq “
diag pErpByq˚Bys, α ¨ B˚Bq. The fourth condition is thus satisfied if σminpErpByq˚Bysq ě
M for some M ą 0 and α ą 0. If σminpErpByq˚Bysq “ 0 the fourth condition can still be
satisfied by introducing a quadratic penalty on the surrogate parameters in the objective
function.

8.1.5 Stochastic gradient descent for pRM problems

In order to solve the (pRM) problem we propose to apply the stochastic gradient descent
(SGD) method. This means, instead of solving the (pERM) problem offline for large but
fixed number of data n, we solve the (pRM) online. Therefore, we further propose to
adaptively increase the penalty parameter λk within the SGD.
We first formulate a general convergence result for the penalized SGD method, which we
then apply to verify the convergence in the setting of our PDE-constrained optimization
problem given by the (cRM) problem.

Algorithm 7 Penalized stochastic gradient descent method with adaptive penalty pa-
rameter.

Require: x0, β “ pβkq
n
k“1, pλkq

n
k“1, i.i.d. sample pykqnk“1 „ y.

1: for k “ 0, 1, . . . , n´ 1 do
2: xk`1 “ xk ´ βk∇xrfpxk,ykq ` λkgpxk,ykqs
3: end for

The sequence of step sizes β is assumed to satisfy the Robbins-Monro condition

8
ÿ

j“1

βk “ 8,
8
ÿ

j“1

β2
k ă 8,

which means that βk converges to zero, but not too fast [132]. In the following theorem
we present sufficient conditions under which the resulting estimate xn from Algorithm 7
converges to the solution of the (pRM) with penalty parameter choice λ̄ " 0, i.e., to

x˚ P arg min
xPX

Ψλ̄pxq, Ψλ̄pxq :“ Eyrfpx,yq `
λ̄

2
gpx,yqs.

Theorem 8.1.5. We assume that the objective function satisfies

xx´ x˚,∇xΨλ̄pxqyX ą c}x´ x˚}2X (8.9)
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8 One-shot learning of surrogates

for all x P Xand some c ą 0 and that for each λk we have

Eyr}∇xrfpx,yq ` λkgpx,yq}2X s ă ak ` bk}x´ x
˚}2X , (8.10)

where pakq and pbkq are monotonically increasing with a0, b0 ą 0 and ak ď ā, bk ď b̄.
Furthermore, we assume that the discrepancy of the penalized stochastic gradients can be
bounded locally by

sup
xPX , }x}XďR

}Eyrpλk ´ λ̄q∇xgpx,yqs}2X ď κ1pRq|λk ´ λ̄|
2, (8.11)

for some κ1pRq ą 0, R ą 0. Suppose that |λk ´ λ̄|2 is monotonically decreasing and
βk ď c{bk, then it holds true that

Er1t}xk}ďRu}xk ´ x
˚}2X s ď

˜

Er}x0 ´ x
˚}2X ` 2ā

8
ÿ

j“1

β2
j

¸

Cn `
2κ1pRq

c2
|λ0 ´ λ̄|

2,

with

Cn :“ min
kďn

maxt
n
ź

j“k`1

p1´ cβjq,
ā

c
βku

converging to zero for n Ñ 8. Further, for an adaptive choice of the penalty parameter
λk such that 2κ1pRq

c2
|λk ´ λ̄|

2 ď Dβk we obtain

Er1t}xk}ďRupxkq}xk ´ x
˚}2X s ď

˜

Er}x0 ´ x
˚}2X ` 2pā`

D

c
q

8
ÿ

j“1

β2
j

¸

Cn.

Proof. The proof is based on a Gronwall-type argument and similar to the proof of Propo-
sition 3.3 in [20] and can be found in [79].

Remark 8.1.6. We note that the restriction boundedness of }xk}X ď R is a techniqual
reason for the proof and can be forced through a projection onto the ball BR “ tx P X |
}x}X ď Ru by

PR : X Ñ BR, with PRpxq “ arg min
x1PBR

}x´ x1}X .

The projected stochastic gradient descent method then evolves through the update

xk`1 “ PR
´

xk ´ βk∇xrfpxk,ykq ` λkgpxk,ykqs
¯

.

The above proof remains the same since the projection operator is nonexpansive in the
sense that

}xk`1 ´ x
˚}X “ }PR

´

xk ´ βk∇xrfpxk,ykq ` λkgpxk,ykqs
¯

´ PRpx˚q}2X
ď }xk ´ βk∇xrfpxk,ykq ` λkgpxk,ykqs ´ x˚}2X .

Moreoever, the presented convergence result in Theorem 8.1.5 indicates how to control the
ratio between the sequence of step sizes pβkq and the penalty parameters pλkq based on the
dependence of κpRq on R ą 0.
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8.1 Surrogates in one-shot optimization under uncertainty

8.1.6 Application to linear surrogate models

In this section we verify that a surrogate, that is linear in its parameters, satisfies the
assumptions of Theorem 8.1.5. Therefore, we assume in this section that the surrogate is
of the following form:

upθ,yq :“ Byθ (8.12)

for surrogate parameters θ P Rd and y-dependent operator By : Rd Ñ V . The following
two lemmas will help to prove this result:

Lemma 8.1.7. Let gpx,yq :“ }epupθ,yq, zq}2, with epupθ,yq, zq :“ Ayupθ,yq ´ Bz “
AyByθ ´ Bz, where x “ pθ, zq, and with bounded largest eigenvalue σmaxpA

yq ď amax for
all y P U . Then it holds that

}∇xgpx,yq}2X ď 4pa2
maxσmaxpB

ypByq˚q ` σmaxpBB˚qq gpx,yq .

Proof. We have

}∇xgpx,yq}2X “ }2pAyByq˚pAyByθ ´ Bzq}2 ` }2B˚pBz ´AyByθ}2Z
ď 4pa2

maxσmaxpB
ypByq˚q ` σmaxpBB˚qq}AyByθ ´ Bz}2L2

µpU,W
1q

“ 4pa2
maxσmaxpB

ypByq˚q ` σmaxpBB˚qqgpx,yq .

Lemma 8.1.8. Let gpx,yq :“ }epupθ,yq, zq}2L2
µpU,W

1q
, with epupθ,yq, zq :“ Ayupθ,yq ´

Bz “ AyByθ´Bz, where x “ pθ, zq, and with bounded largest eigenvalue σmaxpA
yq ď amax

for all y P U . Then it holds that

gpx,yq ď 2pa2
maxσmaxppB

yq˚Byq ` σmaxpB˚Bqq}x}2X .

Proof.

gpx,yq “ }AyByθ ´ Bz}2L2
µpU,W

1q ď 2p}AyByθ}2L2
µpU,W

1q ` }Bz}2L2
µpU,W

1qq

ď 2pa2
maxσmaxppB

yq˚Byq}θ}2Rd ` σmaxpB˚Bqq}z}2Zq
ď 2pa2

maxσmaxppB
yq˚Byq ` σmaxpB˚Bqq}x}2X .

Theorem 8.1.9. Let α ą 0 and σminpErpByq˚Bysq ą 0, then a surrogate of the form
(8.12) satisfies the assumptions of Theorem 8.1.5.

Proof. Firstly, we show that

xx´ x˚,∇xΨλ̄pxqyX ą c}x´ x˚}2X

is true for a constant c ą 0 and all x P X . To verify this assumption, we first show that
Ψλ̄ is c-strongly convex. The c-strong convexity is equivalent to

xx´ x˚,∇xΨλ̄pxq ´∇xΨλ̄px
˚qyX ě c}x´ x˚}2X .
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8 One-shot learning of surrogates

Note that

∇θfpx,yq “ pQByq˚pQByθ ´ puq ∇θ
λ

2
gpx,yq “ λpAyByq˚pAyByθ ´ Bzq

∇zfpx,yq “ αz ∇z
λ

2
gpx,yq “ ´λB˚pAyByθ ´ Bzq

Using the linearity of the surrogate in its parameters, i.e., upθ,yq :“ Byθ, we obtain

xx´ x˚,∇xΨλ̄pxq ´∇x˚Ψλ̄px
˚qyX

“ xpθ ´ θ˚, z ´ z˚q,E
“

ppQByq˚pQByq ` λ̄pAyByq˚pAyByqqpθ ´ θ˚q
´ λ̄pAyByq˚Bpz ´ z˚q, pα` λ̄B˚Bqpz ´ z˚q ´ λ̄B˚AyBypθ ´ θ˚q

‰

yX

“ xθ ´ θ˚q,ErpQByq˚pQByqspθ ´ θ˚qyRd ` λ̄}AyBypθ ´ θ˚q}2L2
µpU,W

1q

´ xθ ´ θ˚, λ̄pAyByq˚Bpz ´ z˚qyRd
` α}z ´ z˚}2Z ` λ̄}Bpz ´ z˚q}2L2

µpU,W
1q ´ xz ´ z

˚, λ̄B˚AyBypθ ´ θ˚qyZ
“ xθ ´ θ˚,ErpQByq˚pQByqspθ ´ θ˚qyRd ` α}z ´ z˚}2Z
` λ̄}Bpz ´ z˚q ´AyBypθ ´ θ˚q}2L2

µpU,W
1q

ě σminpQ˚Qqxθ ´ θ˚,ErpByq˚Byspθ ´ θ˚qyRd ` α}z ´ z˚}2Z
ě c}x´ x˚}2X ,

where c “ min pσminpQ˚QqσminpErpByq˚Bysq, αq. Note that pσminpQ1Qq ą 0 since Q
is assumed to have a bounded inverse. Since α ą 0 and σminpErpByq˚Bysq ą 0) by
assumption, the assertion is true since x˚ is a stationary point of Ψλ̄pxq.
Secondly, we show that

Er}∇x
`

fpx,yq ` λkgpx,yq
˘

}2X s ď ak ` bk}x´ x
˚}2X .

For a stationary point x˚ of Ψλ̄pxq have that

0 “ ∇x
`

fpx˚,yq ` λ̄gpx˚,yq
˘

and thus

}∇x
`

fpx,yq ` λkgpx,yq
˘

}2X “ }∇x
`

fpx,yq ` λkgpx,yq
˘

´∇x
`

fpx˚,yq ` λ̄gpx˚,yq
˘

}2X

“ }∇xfpx,yq ´∇xfpx˚,yq ` λk∇xgpx,yq ´ λ̄∇xgpx˚,yq}2X
ď 2}∇xpfpx,yq ´ fpx˚,yqq}2X
` 2}λk∇xgpx,yq ´ λ̄∇xgpx˚,yq}2X .

For the first summand we have ∇x
`

fpx,yq ´ fpx˚,yq
˘

“
`

pQByq˚pQByqpθ ´ θ˚q, αpz ´
z˚q

˘

and thus

Er2}∇x
`

fpx,yq ´ fpx˚,yq
˘

}2X s ď c̃2}x´ x˚}2X ,

with c̃ “ 2ErσmaxpQ˚QqσmaxppB
yq˚Byqs`α. Moreover, for the second summand we have

∇x
`

λkgpx,yq ´ λ̄gpx
˚,yq

˘

“
`

2pAyByq˚ppAyByqpλkθ ´ λ̄θ
˚q

´ Bpλkz ´ λ̄z˚qq, 2B˚pλkz ´ λ̄z˚q ´AyBypλkθ ´ λ̄θ˚q
˘
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8.1 Surrogates in one-shot optimization under uncertainty

“ ∇xgpλkx´ λ̄x˚,yq .

We can use this together with Lemma 8.1.7 and Lemma 8.1.8 to obtain

Er}∇xgpλkx´ λ̄x˚,yq}2X s
ď Er4pa2

maxσmaxpB
ypByq˚q ` σmaxpBB˚qq gpλkx´ λ̄x˚,yqs

ď Er4pa2
maxσmaxpB

ypByq˚q ` σmaxpBB˚qq
ˆ 2pa2

maxσmaxppB
yq˚Byq ` σmaxpB˚Bqq}λkx´ λ̄x˚}2X s

“
`

8a4
maxErσmaxppB

yq˚ByqσmaxpB
ypByq˚qs ` 8σmaxpBB˚qσmaxpB˚Bq

` σmaxpBB˚qp2a2
maxErσmaxppB

yq˚Byqsq

` 4a2
maxErσmaxpB

ypByq˚qsσmaxpB˚Bq
˘

ˆ }λkx´ λ̄x
˚}2X

“
`

8a4
maxErσmaxppB

yq˚ByqσmaxpB
ypByq˚qs ` 8σmaxpBB˚qσmaxpB˚Bq

` σmaxpBB˚qp2a2
maxErσmaxppB

yq˚Byqsq

` 4a2
maxErσmaxpB

ypByq˚qsσmaxpB˚Bq
˘

ˆ 2
`

λ2
k}x´ x

˚}2X ` pλk ´ λ̄q
2}x˚}2X

˘

.

We conclude that

Er}∇x
`

fpx,yq ` λkgpx,yq
˘

}2X s ď ak ` bk}x´ x
˚}2X

holds for a0 ě ak “ 2Cabpλk ´ λ̄q
2}x˚}2X and bk “ 2c̃2 ` 2Cabλ

2
k, where

Cab “
`

8a4
maxErσmaxppB

yq˚ByqσmaxpB
ypByq˚qs ` 8σmaxpBB˚qσmaxpB˚Bq

` σmaxpBB˚qp2a2
maxErσmaxppB

yq˚Byqsq ` 4a2
maxErσmaxpB

ypByq˚qsσmaxpB˚Bq
˘

.

Thirdly, we show that

sup
xPX ,}x}XďR

}Erpλk ´ λ̄q∇xgpx,yqs}2 ď κ1pRq|λk ´ λ̄|
2 ,

for some κ1 ą 0.

We observe that

}Erpλk ´ λ̄q∇xgpx,yqs}2X ď |λk ´ λ̄|2}Er∇xgpx,yqs}2X
ď |λk ´ λ̄|

2Er}∇xgpx,yq}2X s
ď |λk ´ λ̄|

2Er4pa2
maxσmaxpB

ypByq˚q ` σmaxpBB˚qq gpx,yqs
ď |λk ´ λ̄|

2Er4pa2
maxσmaxpB

ypByq˚q ` σmaxpBB˚qq
2pa2

maxσmaxppB
yq˚Byq ` σmaxpB˚Bqq}x}2X s .

Thus the claim holds with κ1pRq “ Er4pa2
maxσmaxpB

ypByq˚q ` σmaxpBB˚qq
ˆ 2pa2

maxσmaxppB
yq˚Byq ` σmaxpB˚BqqR2s.

Remark 8.1.10. The assumption σminpErpByq˚Bysq ą 0 in theorem 8.1.9 can be dropped
if a quadratic regularization on the surrogate parameters θ is employed.
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8 One-shot learning of surrogates

8.1.7 Numerical experiments

The model problem in our numerical experiments is the Poisson equation, (4.1) – (4.3),
on the unit square D “ p0, 1q2. We use piecewise-linear finite elements on a uniform
triangular mesh with meshwidth h “ 1{8. The random input field is modelled as

aypxq “ a0pxq `
s
ÿ

j“1

yj
1

pπ2pk2
j ` `

2
j q ` τ

2qϑ
sinpπx1kjq sinpπx2`jq ,

where a0pxq “ 0.00001 ` }
řs
j“1

1
pπ2pk2

j``
2
j q`τ

2qϑ
sinpπx1kjq sinpπx2`jq}L8pDq, s “ 4, ϑ “

0.25, τ “ 3, pkj , `jqjPt1,...,su P t1, . . . , su
2 and yj „ Upr´1, 1sq i.i.d. for all j “ 1, . . . , s.

The variance of the resulting PDE solution uy, with right-hand side zpxq “ x2
2 ´ x2

1, is
illustrated in Figure 8.1 and Figure 8.2. The mean and standard deviation is estimated
using 105 Monte Carlo samples.
In the following numerical experiments we solve the (pERM) problem

min
pz,θq

1

n

n
ÿ

i“1

}upθ,yq ´ pu}2 `
α

2
}z}2 ` λk

1

n

n
ÿ

i“1

}Ayupθ,yq ´ z}2 .

where α “ 0.5 and the target state pu is given as pu “ ∆´1100px2
2 ´ x2

1q. We solve the
optimization problem using the so-called ADAM algorithm as implemented in tensorflow

(see, e.g., [103]) and the scipy implementation of the L-BFGS method (see, e.g., [49]).
The initial guess for the optimization routines is pz0,θ0q with z0 “ p0, . . . , 0q P Rn and
θ0 “ p1, . . . , 1q P Rd. In our experiments we compared to two different surrogate models:
the orthogonal Legendre polynomials, which are linear in the parameters θ and a neural
network, which is nonlinear in the parameters θ.

Recall the polynomial expansion from (8.5): upθ,yq “
ř|ν|“`
νPNs0

θνPνpyq of degree ` “ 1, 2, 3,

with Pν “
śs
k“1 Pνkpykq and Pνk is the k-th order Legendre polynomial. The number
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Figure 8.1: Mean of the states (blue)
plus/minus 1 (red) and 2
(orange) standard deviations.
Here only the values in the
interior of the domain D are
plotted for better illustration.
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Figure 8.2: Mean of the states (blue)
plus/minus 1 (red) and 2
(orange) standard deviations.
The variance is zero on the
boundary of the domain BD.
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8.1 Surrogates in one-shot optimization under uncertainty

of parameters θ increases rapidly as the order of the polynomials increases. In fact,
θ P RnFEMˆnPol , where nFEM denotes the number of degrees of freedoms of the finite
element method and nPol denotes the number of polynomials given by nPol “

p``sq!
`!s! , i.e.,

nPol “ 15 if ` “ 2 and nPol “ 35 if ` “ 3 for s “ 4. Consequently, the Legendre polynomial
expansions have 245, 735, and 1715 parameters to be determined during the optimization.

A nonlinear surrogate we are testing is a neural network, as defined in (8.6) of size
r4, 9, 9, 9, 49s, i.e., pW 1, b1q P R9ˆ4 ˆ R9, pW 2, b2q P R9ˆ9 ˆ R9, pW 3, b3q P R9ˆ9 ˆ R9,
pW 4, b4q P R49ˆ9 ˆ R9, and thus with a total number of 715 parameters. The activation
function we are using is the sigmoid function σpxq :“ 1{p1` exp p´xqq.

In our first experiment, we verify Lemma 8.1.3. To this end, we set λk “ 1 for all k
and solve the (pERM) problem multiple times for increasing sample size n “ 2`, with
` “ 1, . . . , 13. In this experiment the surrogate is a Legendre polynomial expansion of
degree 2. The reference solution pzref,θrefq is computed by using nref “ 214 Monte Carlo
samples. The observed rate in Figure 8.3 aligns nicely with the predicted rate in Lemma
8.1.3.

Next, we verify Lemma 8.1.2. We fix the sample size n “ 100 and solve the (pERM)
problem for increasing penalty parameter λk. The surrogate in this experiment is again
the Legendre polynomial expansion of degree 2. In Figure 8.4 we observe the rate predicted
by Lemma 8.1.2. Here the reference solution is computed for λk « 1.7 ¨106. For numerical
stability we regularize the problem in this experiment by adding the term 10´5}θ}2 to
the objective function of the (pERM) problem. In the experiments for Figure 8.3 and
Figure 8.4 we used the L-BFGS method to solve the optimization problems.

As predicted by the theory, we also observe this rate in the following experiment, where
we use the ADAM algorithm as implemented in tensorflow and increase λk linearly
in each iteration k of the ADAM algorithm. The reference solution pzref, u

y
refq of the

(cRM) problem is computed using the L-BFGS as implemented in scipy. We perform
this experiment for the NN and the Legendre polynomial expansions of order 1, 2 and 3.
For each of the surrogates considered, we observe the expected rate of the error in the

101 102 103 104
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10 6

10 7

10 8

10 9

control
surrogate parameters

Figure 8.3: Convergence for increasing
sample size. Squared error of
the optimal controls }z´ zref}

2

and squared error of the
optimal surrogate parameters
}θ ´ θref}

2.

10 4 10 3 10 2 10 1 100 101 102 103 104 105 106
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Figure 8.4: Convergence for increas-
ing penalty parameter λk.
Squared error of the optimal
controls }z´zref}

2 and squared
error of the optimal surrogate
parameters }θ ´ θref}

2.
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Figure 8.5: Mean squared error of control
computed with surrogate and
L-BFGS reference solution of
the control }z ´ zref}
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Figure 8.6: Mean squared error of surro-
gate and L-BFGS reference so-
lution of the state Er}uyθ ´
uyref}

2s

control, see Figure 8.5. Clearly, this error is bounded from below by the approximation
properties of the surrogates. In Figure 8.6 we observe the predicted rate only for the
largest surrogate, the Legendre polynomial approximation of order 3.

In the same experiment we plot the model error and the difference of the surrogates to
the target state pu. We observe that the model error becomes smaller for surrogates with
better approximation properties.

Moreover, due to the nonlinearity introduced by the activation function of the NN, our
convergence theory does not apply to the problem with the NN surrogate. However,
the numerical experiments are demonstrating that the NN can outperform the Legendre
polynomials with a comparable number of optimization parameters.

Finally, we verify that the ADAM algorithm with adaptive choice of the penalty parameter
converges to the solution of the (pERM) problem with large reference value λ̄, see Theorem
8.1.5. We compute the reference solution pzref, u

y
θref
q with λ̄ “ 100 using the L-BFGS

algorithm and plot the error of the ADAM algorithm with adaptive choice of the penalty
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Figure 8.7: Mean squared residual
Er}Ayuyθ ´ z}

2s
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Figure 8.8: Mean squared error Er}uyθ ´
pu}2s of the surrogate uyθ and
the target state pu
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Figure 8.9: Squared error }z´ zref}
2 of the
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Figure 8.10: Mean squared error Er}uyθ ´
uyθref

}2s of the surrogate ob-
tained with ADAM and adap-
tive choice of λk and the ref-
erence surrogate

parameter λk against the iterations k of the ADAM algoritm. We observe convergence for
both, the control and the state variable. The surrogate in this experiment is a Legendre
polynomial expansion of degree 2.

8.2 Application to Bayesian inverse problems

Classical methods to solve inverse problems are based on the so-called reduced optimization
approach of the (regularized) data misfit, which formulate the minimization problem as
an unconstrained optimization problem using the solution operator of (8.13), see e.g.,
[45, 99]. This contrasts the so-called one-shot approaches, which solve the underlying
model equation and the optimality conditions simultaneously. One-shot (or all-at-once)
approaches are well established in the context of PDE-constrained optimization (see, e.g.,
[14]) and have recently been introduced to the setting of inverse problems, see [97, 98].

In the Bayesian setting, the connection between the maximum a posteriori estimation
and the optimization approach to the inverse problem is well established in the finite-
dimensional setting [96], as well as in the infinite-dimensional setting for certain prior
classes, see [2, 28, 35, 83]. For details on the Bayesian approach to inverse problems we
refer to [96, 153].

Recently, data-driven concepts have been applied to inverse problems in order to reduce
the computational complexity in case of highly complex forward models and to improve
models in case of limited understanding of the underlying processes [6]. For instance,
neural networks have been successfully applied in the case of parametric holomorphic
forward models [85] and in the case of limited knowledge of the underlying model [129,
130, 131, 151, 162]. For the training of neural networks, gradient-based methods are
typically used [66]. The ensemble Kalman inversion (EKI) (see e.g., [91, 142, 143]) has
been recently applied as gradient-free optimizer for the training of neural networks in
[80, 109].

In this section, we transfer the idea from Section 8.1 to the setting of inverse problems
using the connection between the maximum a posteriori estimation in Bayesian inverse
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8 One-shot learning of surrogates

problems and the reduced optimization approach. More precisely, we approximate the
solution of the forward problem using neural networks, i.e., the computationally intense
solution of the forward problem is replaced by a neural network, which is cheap to evaluate.
Since training of the neural network in advance for all possible outcomes of a quantity of
interest can be challenging and requires a neural network with large expressive power,
i.e., many parameters. In order to reduce the computational complexity, we propose
to train the neural network simultaneously to solving the inverse problem in a one-shot
framework. This approach has the potential to reduce the overall costs significantly since
in the one-shot optimization the neural network is trained only for the optimal solution
of the inverse problem, whereas it needs to be trained for all possible quantity of interests
in the parameter space if it is trained in advance.

In this section, we mak the following contributions:

• We establish the connection between the inverse problem in a one-shot formulation
and the Bayesian setting. In particular, the Bayesian viewpoint allows the incorpo-
ration of model uncertainty and provides a natural way to define the regularization
parameters. In case of an exact forward model, the vanishing noise can be inter-
preted as a penalty method. This observation allows to establish convergence results
of the solution of the the one-shot formulation to the corresponding (regularized)
solution of the reduced optimization problem (with exact forward model). The nu-
merical approximation of the forward problem is replaced by a neural network in
the one-shot formulation, i.e., the neural network does not have to be trained in
advance.

• We show that the EKI is an efficient method to solve the resulting optimization
problem. We provide a convergence analysis in the linear setting. To enhance
the performance, we modify the algorithm motivated by the continuous version of
the EKI and provide numerical evidence for its superiority. Numerical experiments
demonstrate the robustness of the proposed algorithm, also in the nonlinear setting.

8.2.1 Introduction to inverse problems

In this section we briefly introduce the reader to inverse problems and the notation being
used. In many problems in science and engeneering, the quantity of interest can not be
observed directly, but only indirectly through observations of the underlying system. In
such problems, typically referred to as inverse problems, one has to rely on measurements
of the system to infer information about the quantity of interest. Inverse problems arise
in many areas of application, e.g., biological problems, engineering and environmental
systems. The information obtained from observations of the system can substantially
reduce the uncertainty in predictions of the quantity of interest, and is hence indispensable
in many applications.

Mathematically an inverse problem can be described as follows: recover the unknown
parameter z P Z in an abstract model or system

Mpz, uq “ 0 (8.13)

from a finite number of observation of the state u P X given by

Opuq “ y P Rny , (8.14)
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8.2 Application to Bayesian inverse problems

which might be subject to measurement noise. The parameter space Z and the state
space X are typically Banach spaces and the model equation, often a PDE defined on
some domain D, holds in some Banach space W. By O : X Ñ Rny we denote the
observation operator, mapping the state variables u to the finite-dimensional observations
y P Rny .
A classical approach to solve an inverse problem is to minimize the data misfit in a suitable
norm

min
z,u

}Opuq ´ y}2Γobs
(8.15)

s.t. Mpz, uq “ 0 , (8.16)

with Γobs P Rnyˆny symmetric and positive definit, given that the forward model is sat-
isfied. Oftentimes the problem (8.15) – (8.16) is ill-conditioned, hence a regularization
term on the unknown parameters is introduced in order to stabilize the optimization.
Introducing a regularization the optimization problem becomes

min
z,u
}Opuq ´ y}2Γobs

` α1R1pzq (8.17)

s.t. Mpz, uq “ 0 , (8.18)

where the regularization is denoted by R1 : Z Ñ R and the positive scalar α1 ą 0 is
usually chosen according to prior knowledge on the unknown parameter z. Here and
in the following of this chapter we denote by } ¨ } the Euclidean norm and by x¨, ¨y the
corresponding inner product. For a given symmetric, positive definite matrix A, the
weighted norm } ¨ }A is defined by } ¨ }A “ }A

´1{2 ¨ } and the weighted inner product by
x¨, ¨yA “ x¨, A

´1¨y.
Assuming that the forward model Mpu, pq “ 0 is well-posed, in the sense that for each
parameter z P Z, there exists a unique state u P X such that Mpz, uq “ 0 in W, we
can introducing the solution operator S : Z Ñ X defined by Mpz, Spzqq “ 0. Using the
solution operator, we can reformulate the optimization problems (8.15) – (8.16) and (8.17)
– (8.18) as unconstrained optimization problems

min
zPZ

}OpSpzqq ´ y}2Γobs
, (8.19)

and
min
zPZ

}OpSpzqq ´ y}2Γobs
` α1R1pzq , (8.20)

respectively.

8.2.2 Bayesian approach to inverse problems

Adopting the Bayesian approach to inverse problems, we view the unknown parameters z
as an Z-valued random variable with prior distribution µ0. The noise in the observations
is assumed to enter the observations additive and described by a random variable η „
N p0,Γobsq with Γobs P Rnyˆny symmetric and positiv definit, i.e.,

y “ OpSpzqq ` η , (8.21)

Further, we assume that the noise η is stochastically independent of z. By Bayes’ theorem
(see, e.g., [104]), we obtain the posterior distribution

µ˚pdzq9 exp

ˆ

´
1

2
}OpSpzqq ´ y}2Γobs

˙

µ0pdzq , (8.22)
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8 One-shot learning of surrogates

the conditional distribution of the unknown given the observation y.
While the solutions of (8.19) and (8.20) are point estimates of the unknown parameter z,
the solution of the Bayesian inverse problem is the conditional distribution of the unknown
parameters given the data, the so-called posterior distribution (8.22). Since approxima-
tions of the posterior distribution are prohibitively expensive in many applications, one
often uses point estimates instead. A popular choice is the maximum a posteriori (MAP)
estimate, the most likely point of the unknown parameters under the posterior distribu-
tion. Denoting by ρ0 the Lebesgue density of the prior distribution, the MAP estimate is
defined as

arg max
zPZ

exp

ˆ

´
1

2
}OpSpzqq ´ y}2Γobs

˙

ρ0pzq . (8.23)

Assuming a Gaussian prior distribution, i.e., µ0 “ N pz0, Cq, the MAP estimate is given
by the solution of the following minimization problem

min
zPZ

1

2
}OpSpzqq ´ y}2Γobs

`
1

2
}z ´ z0}

2
C . (8.24)

The Gaussian prior assumption leads to a Tikhonov-type regularization in the objective
function, whereas the specific form of the first term in the objective function is due to the
Gaussian assumption on the noise. Further details on MAP estimates can be found, e.g.,
in [34, 96, 159].

8.2.3 One-shot formulation for inverse problems

While (8.19), (8.20), and (8.23) are based on the reduced formulation of the problem,
in this subsection we will formulate the inverse problem in the one-shot setting. The
introduced one-shot approach solves an abstract inverse problem of the form (8.13) –
(8.14).
Throughout Section 8.2, we derive the methods and theoretical results under the assump-
tion that Z,X and W are finite-dimensional, i.e., we assume that the forward problem
Mpz, uq “ 0 has been discretized by a suitable numerical scheme and the parameter space
is finite-dimensional as well, possibly after dimension truncation. Though most of the ideas
and results can be generalized to the infinite-dimensional setting, we avoid the technicali-
ties arising from the infinite-dimensional setting and focus on the discretized problem, i.e.,
we denote

Z “ Rnz , X “ Rnu , W “ Rnw .

While we usually denote vectors by boldface symbols, we do not follow this convention in
this section.
Following the one-shot ideas, the abstract problem (8.13) – (8.14) can be written as

F pz, uq “

ˆ

Mpz, uq
Opuq

˙

“

ˆ

0
y

˙

“: ỹ , (8.25)

Due to the noise in the observations, we rather consider

y “ Opuq ` ηobs (8.26)

with normally distributed noise ηobs „ N p0,Γobsq, and symmetric and positive definit
matrix Γobs P Rnyˆny . Similarly, we assume that

0 “Mpz, uq ` ηmodel , (8.27)
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8.2 Application to Bayesian inverse problems

i.e., we assume that the model error can be described by ηmodel „ N p0,Γmodelq, and
symmetric and positive definit matrix Γmodel P Rnwˆnw . Combining (8.26) and (8.27), we
obtain the problem

ỹ “ F pz, uq `

ˆ

ηmodel

ηobs

˙

. (8.28)

The MAP estimate can then be computed by the solution of the following minimization
problem

min
z,u

1

2
}F pz, uq ´ ỹ}2Γ ` α1R1pzq ` α2R2puq, (8.29)

where R1 : Z Ñ R and R2 : X Ñ R are regularizations of the parameter z P Z and the

state u P X , α1, α2 ą 0 and Γ “

ˆ

Γmodel 0
0 Γobs

˙

P Rpnw`nyqˆpnw`nyq.

The proposed approach does not rely on a Gaussian noise model for the forward problem,
i.e., non-Gaussian models can be straightforwardly incorporated. In this case, the Bayesian
viewpoint may guide the choice of the regularization parameter or function. The model
error can typically estimated from experimental data or more complex models, cf.,[102, 87].
We focus here on the Gaussian setting since the one-shot approach for inverse problems
is typically formulated in a least-squares fashion (particularly when neural networks are
used as surrogates for the forward problem [129, 130]). The focus of this work will be on
the development of a methodology, which allows to satisfy the forward problem exactly.
This is achieved by the connection to the Bayesian setting and working in the vanishing
noise setting.

8.2.4 Vanishing noise and penalty methods

The case of an exact forward model, i.e., when forward equation is supposed to be satisfied
exactly with Mpz, uq “ 0, can be modeled in the Bayesian setting by vanishing noise. In
order to illustrate this idea we consider a parameterized noise covariance model Γmodel “

γΓ̂model for γ P R` and a given symmetric and positiv definit matrix Γ̂model. The limit
for γ Ñ 0 corresponds to the vanishing noise setting and can be interpret as reducing the
uncertainty in our model. The MAP estimate in the one-shot framework is then given by

min
u,p

1

2
}Opuq ´ y}2Γobs

`
λ

2
}Mpz, uq}2

Γ̂model
` α1R1pzq ` α2R2puq (8.30)

with λ “ 1{γ. This form of the optimization problem reveals the connection to penalty
methods, which attempt to solve constrained optimization problems such as (8.15) – (8.16)
by sequentially solving unconstrained optimization problems of the form (8.30) for a se-
quence of monotonically increasing penalty parameters λ. We present a well-known result
about the convergence of such methods, see, e.g., [10].

Proposition 8.2.1. Let the observation operator O, the forward model M and the reg-
ularization functions R1, R2 be continuous and the feasible set tpz, uq|Mpz, uq “ 0u be
nonempty. For k “ 0, 1, . . . let pzk, ukq denote a global minimizer of

min
z,u

1

2
}Opuq ´ y}2Γobs `

λk
2
}Mpz, uq}2

Γ̂model
` α1R1puq ` α2R2ppq (8.31)

with pλkqkPN Ă R` strictly monotonically increasing and λk Ñ8 for k Ñ8. Then every
accumulation point of the sequence pzk, ukq is a global minimizer of

min
z,u

1

2
}Opuq ´ y}2Γobs

` α1R1pzq ` α2R2puq (8.32)
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8 One-shot learning of surrogates

s.t. Mpz, uq “ 0 . (8.33)

This convergence result ensures the feasibility of the estimates, i.e., physical constraints
can be incorporated and exactly satisfied in the limit in the proposed one-shot approach.
We note that interesting questions for future research arise when considering exact penalty
terms in the objective, which correspond to different noise models in the Bayesian setting.
This setting will be the starting point of the incorporation of neural networks into the
problem. Instead of minimizing with respect to the state u, we will approximate the
solution of the forward problem u by a neural network uθ, where θ denote the parameters of
the neural network to be learned within this framework. Thus, we obtain the corresponding
minimization problem

min
z,θ

1

2
}F pz, uθq ´ ỹ}

2
Γ ` α1R1pzq ` α2R2puθ,θq , (8.34)

where uθ denotes the state approximated by the neural network.

Neural networks in inverse problems

Neural networks experienced a tremendous success in applications related to inverse prob-
lems, leading to a rapid increase in the number of publications in this area of research.
Thus, we can only provide a excerpt of this fast growing research field, and focus on the
most related work.
In [149] the authors show holomorphy of the data-to-QoI map y ÞÑ Eµ˚rQoIs, which relates
observation data to the posterior expectation of an unknown quantity of interest (QoI),
for additive, centered Gaussian observation noise in Bayesian inverse problems. Using the
fact that holomorphy implies fast convergence of Taylor expansions, the authors derived
an exponential expression rate bound in terms of the overall network size.
Our approach differs from the ideas above as we do not approximate the data-to-QoI
map, but instead emulate the state u itself by a DNN. Hence, in our method the input
of the neural network is a point in the spatial domain of the state, x P D. The output
of the neural network is an approximation of the state at this point, uθpxq P R, i.e.,
NL “ 1. Recall that a DNN is defined in (8.6). By a slight abuse of notation we denote by
uθ P X “ Rnu also a vector containing evaluations of the neural network at the nu-many
grid points of the state. In combination with a one-shot approach for the training of the
neural network parameters, our method is closer related to the physics-informed neural
networks (PINNs) in [129, 130]. In [129, 130] the authors consider PDEs of the form

fpt, xq :“ ut `Npu, λq “ 0, t P r0, T s, x P D ,

where N is a nonlinear differential operator parameterized by λ. The authors replace u by
a neural network uθ and use automatic differentiation to construct the function fθpt, xq.
The neural network parameters are then obtained by minimizing the mean squarred error
MSE “ MSEu `MSEf , where

MSEu :“
1

Nu

Nu
ÿ

i“1

|uθpt
i
u, x

i
uq ´ u

i|2 , MSEf :“
1

Nf

Nf
ÿ

i“1

|fθpt
i
f , x

i
f q|

2 ,

and ttiu, x
i
u, u

iu
Nu
i“1 denote the training data and ttif , x

i
fu
Nf
i“1 are collocation points of fθpt, xq.

For the minimization a L-BFGS method is used. The parameters λ of the differential
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operator turn into parameters of the neural network fθ and can be learned by minimizing
the MSE. Based on [129, 130] there has been a tremendous increase in research and
applications of PINNs. For instance in [162], the authors consider so called Bayesian
neural networks (BNNs), where the neural network parameters are updated according to
Bayes’ theorem. Hereby the initial distribution on the network parameters serves as prior
distribution. The likelihood requires the PDE solution, which is obtained by concatenating
the Bayesian neural network with a physics-informed neural network, which they call
Bayesian physics-informed neural networks (B-PINNs). For the estimation of the posterior
distributions they use the Hamiltonian Monte Carlo method and variational inference. In
contrast to the PINNs, the Bayesian framework allows to quantify the aleatoric uncertainty
associated with noisy data. In addition the numerical experiments in [162] indicate that
B-PINNs beat PINNs in case of large noise levels on the observations.
In contrast to that, our proposed method is based on the MAP estimate and remains
exact in the small noise limit. We propose a derivative-free optimization method, the
EKI, which shows promising results without requiring derivatives with respect to the
weights and design parameters.

8.2.5 Ensemble Kalman inversion

The ensemble Kalman inversion (EKI) generalizes the well-known ensemble Kalman Filter
(EnKF) introduced by Evensen and coworker in the data assimilation context [48] to the
inverse setting, see [91] for more details. Since the Kalman filter involves a Gaussian ap-
proximation of the underlying posterior distribution, we focus on an iterative version based
on tempering in order to reduce the linearization error. Recall the posterior distribution
µ˚ given by

µ˚pdvq9 exp
´

´
1

2
}Gpvq ´ y}2Γ

¯

µ0pdvq .

for an abstract inverse problem
y “ Gpvq ` η,

where G maps the unknowns v P Rnv to the observations y P Rny with η „ N p0,Γq, and
symmetric and positiv definit matrix Γ P Rnyˆny . We define the intermediate measures

µnpdvq9 exp
´

´
1

2
nh}Gpvq ´ y}2Γ

¯

µ0pdvq n “ 0, . . . , N (8.35)

by scaling the data misfit by the step size h “ N´1, N P N. The idea is to apply the EnKF
to the resulting artificial time dynamical system in order to evolve the prior distribution
µ0 into the posterior distribution µN “ µ˚ by this sequence of intermediate measures.
We account for the repeated use of the observations by amplifying the noise variance by
N “ 1{h in each step. The intermediate measures µn are then approximated using the

EKI with an ensemble of J particles tv
pjq
0 uJj“1 with J P N

µn »
1

J

J
ÿ

j“1

δpjqvn (8.36)

with δv denoting the Dirac measure centered on v
pjq
n . The particles are transformed in

each iteration by the application of the Kalman update formulas to the empirical mean

v̄n “
1
J

řJ
j“1 v

pjq
n and empirical covariance Cpvnq “

1
J´1

řJ
j“1pv

pjq
n ´ v̄nq b pv

pjq
n ´ v̄nq, i.e.,

v̄n`1 “ v̄n `Knpy ´Gpv̄nqqq , Cpvn`1q “ Cpvnq ´KnC
y,vpvnq , (8.37)
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where Kn “ Cv,ypvnqpC
y,ypvnq `

1
hΓq´1 denotes the Kalman gain, and for v “ tvpjquJj“1,

the operators Cyy and Cvy given by

Cy,ypvq “
1

J

J
ÿ

j“1

`

Gpvpjqq ´ Ḡ
˘

b
`

Gpvpjqq ´ Ḡ
˘

, (8.38)

Cv,ypvq “
1

J

J
ÿ

j“1

`

vpjq ´ v̄
˘

b
`

Gpvpjqq ´ Ḡ
˘

, (8.39)

Cy,vpvq “
1

J

J
ÿ

j“1

`

Gpvpjqq ´ Ḡ
˘

b
`

vpjq ´ v̄
˘

, (8.40)

Ḡ “
1

J

J
ÿ

j“1

Gpvpjqq (8.41)

are the empirical covariances and empirical mean in the observation space. Since this

update does not uniquely define the transformation of each particle v
pjq
n to the next itera-

tion v
pjq
n`1, the specific choice of the transformation leads to different variants of the EKI.

We will focus here on the generalization of the EnKF as introduced by [91] resulting in a
mapping of the particles of the form

v
pjq
n`1 “ vpjqn ` Cv,ypvnqpC

y,ypvnq ` h
´1Γq´1

`

y
pjq
n`1 ´Gpv

pjq
n q

˘

, j “ 1, ¨ ¨ ¨ , J, (8.42)

where
y
pjq
n`1 “ y ` ξ

pjq
n`1

The ξ
pjq
n`1 are i.i.d. random variables distributed according to N p0, h´1Σq with Σ “ Γ

corresponding to the case of perturbed observations and Σ “ 0 to the unperturbed obser-
vations.
The motivation via the sequence of intermediate measures and the resulting artificial time
allows to derive the continuous time limit of the iteration, which has been extensively
studied in [12, 142, 143] to build analysis of the EKI in the linear setting. This limit arises
by taking the parameter h in (8.42) to zero resulting in

dvpjq

dt
“ Cv,ypvqΓ´1py ´Gpvpjqqq ` Cv,ypvpjqqΓ´1

?
Σ
dW pjq

dt
. (8.43)

As shown in [46], the EKI does not in general converge to the true posterior distribution.
Therefore, the analysis presented in [12, 142, 143] views the EKI as a derivative-free
optimizer of the data misfit, which is also the viewpoint we adopt here.

Ensemble Kalman inversion for neural network based one-shot optimiza-
tion

By approximating the state of the underlying PDE by a neural network, we seek to opti-
mize with respect to the unknown parameter z and the parameters of the neural network
θ. The idea is based on defining the function Hpvq :“ Hpu,θq “ F pz, uθq, where uθ
denotes the state approximated by the neural network and v “ pz,θqJ. This leads to the
empirical summary statistics

pz,θqn “
1

J

J
ÿ

j“1

pzpjqn ,θpjqn q, H̄n “
1

J

J
ÿ

j“1

Hpzpjqn ,θpjqn q,
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Czθ,yn “
1

J

J
ÿ

j“1

`

pzpjqn ,θpjqn q
J ´ pz,θq

J

n

˘

b pH
`

zpjqn ,θpjqn q ´ H̄n

˘

,

Cy,yn “
1

J

J
ÿ

j“1

`

Hpzpjqn ,θpjqn q ´ H̄n

˘

b
`

Hpzpjqn ,θpjqn q ´ H̄n

˘

,

and the EKI update

pz
pjq
n`1,θ

pjq
n`1q

J “ pzpjqn ,θpjqn q
J ` Czθ,yn

`

Cy,yn ` h´1Γ
˘´1`

ỹ
pjq
n`1 ´Hpz

pjq
n ,θpjqn q

˘

, (8.44)

where the perturbed observation are computed as before

ỹ
pjq
n`1 “ ỹ ` ξ

pjq
n`1, ξ

pjq
n`1 „ N p0, h´1Σq, (8.45)

with

ỹ “

ˆ

0
y

˙

, Γ :“

ˆ

Γmodel 0
0 Γobs

˙

.

Figure 8.11 illustrates the basic idea of the application of the EKI to solve the neural
network based one-shot formulation.

x

uθ(1)(x)

uθ(J)(x)

(θ
(j)
n )(z

(j)
n )

(z(j), θ(j))� �→ (M(z(j), uθ(j)),O(uθ(j)))
�

Forward and observation model:

EKI update:

(z
(j)
n+1, θ

(j)
n+1)

� = (z(j), θ
(j)
n )� + Czθ,y

n (Cy,y
n + h−1Γ)−1(ỹ

(j)
n+1 −H(z

(j)
n , θ

(j)
n ))

Observations:

(ỹ
(j)
n+1)

Figure 8.11: Description of the EKI applied to solve the neural network based one-shot
formulation.

The EKI (8.44) will be used as a derivative-free optimizer of the data misfit }F pz, uθq´ỹ}
2
Γ .

The analysis presented in [12, 142, 143] shows that the EKI in its continuous form is able
to recover the data with a finite number of particles in the limit t Ñ 8 under suitable
assumptions on the forward problem and the set of particles. In particular, the analysis
assumes a linear forward problem. Extensions to the nonlinear setting can be found,
e.g., in [18, 160]. The limit t Ñ 8 corresponds to the noise-free setting, as the inverse
noise covariance scales with n{N “ nh in (8.35). To explore the scaling of the noise and
to discuss regularization techniques, we illustrate the ideas in the following for a linear
Gaussian setting, i.e., we assume that the forward response operator is linear Hpvq “ Av
with A P LpZˆΘ,Rnw`nyq and µ0 “ N pv0, C0q. Considering the large ensemble size limit
J Ñ8, the mean m and covariance C satisfy the equations

dmptq

dt
“ ´CptqAJΓ´1pAmptq ´ yq (8.46)
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dC

dt
“ ´CptqAJΓ´1ACptq (8.47)

for Σ “ Γ in (8.42). Considering the dynamics of the inverse covariance, it is straightfor-
ward to show that the solution is given by

C´1ptq “ C´1
0 `AJΓ´1At , (8.48)

see, e.g., [55] and the references therein for details. Note that Cp1q corresponds to the
posterior covariance and that Cptq Ñ 0 for tÑ8. Furthermore, the mean is given by

mptq “ pC´1
0 `AJΓ´1Atq´1pAJΓ´1yt` C´1

0 v0q , (8.49)

in particular the mean minimizes the data misfit in the limit t Ñ 8. The application
of the EKI in the inverse setting therefore often requires additional techniques such as
adaptive stopping [143] or additional regularization [19] to overcome the ill-posedness of
the minimization problem. To control the regularization of the data misfit and neural
network individually, we consider the following system

F pz, uθq `

ˆ

ηmodel

ηobs

˙

“ ỹ (8.50)

ˆ

z
θ

˙

`

ˆ

ηparam
ηNN

˙

“ 0 (8.51)

with ηmodel „ N p0, 1{λ Γ̂modelq, ηobs „ N p0,Γobsq, z „ N pz0, 1{α1Cq, θ „ N p0, 1{α2 Iq.
The loss function corresponding to the augmented system (8.50) – (8.50) is given by

1

2
}Opuθq ´ y}

2
Γobs

`
λ

2
}Mpz, uθq}

2
Γ̂model

`
α1

2
}z ´ z0}

2
C `

α2

2
}θ}2 . (8.52)

Assuming that the resulting forward operator

Gpz,θq “

¨

˝

F pz, uθq
z
θ

˛

‚ (8.53)

is linear, the EKI will converge to the minimum of the regularized loss function (8.52), cf.,
[142]. To ensure the feasibility of the EKI estimate (with respect to the underlying forward
problem), we propose the following algorithm using the ideas discussed in Section 8.2.4.

Theorem 8.2.2. Assume that the forward operator G : Z ˆΘ Ñ RnG, nG :“ nw ` ny `
nz ` nθ,

Gpu,θq “

¨

˝

F pu, pθq
u
θ

˛

‚

is linear, i.e., F pz, uθq “ Apz,θqJ with A P LpZ ˆΘ,Rnw`nyq. Let pλkqkPN Ă R` be
strictly monotonically increasing and λk Ñ8 for k Ñ8. Further, assume that the initial
ensemble members are chosen so that spantpzpjqp0q,θpjqp0qqJ, j “ 1, . . . , Ju “ Z ˆΘ.
Then, Algorithm 8 generates a sequence of estimates pz̄k, θ̄kqkPN, where z̄k, θ̄k minimizes
the loss function for the augmented system given by

1

2
}Opuθq ´ y}

2
Γobs

`
λk
2
}Mpz, uθq}

2
Γ̂model

`
α1

2
}z ´ z0}

2
C `

α2

2
}θ}2
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8.2 Application to Bayesian inverse problems

Algorithm 8 Penalty ensemble Kalman inversion for neural network based one-shot
inversion

Require: initial ensemble v
pjq
0 “ pz

pjq
0 ,θ

pjq
0 q

J P Z ˆΘ, j “ 1, . . . J, λ0.
1: for k “ 0, 1, 2, . . . do
2: Compute an approximation of the minimizer pzk,θkq

J of

min
z,θ

1

2
}Opuθq ´ y}

2
Γobs

`
λk
2
}Mpz, uθq}

2
Γ̂model

`
α1

2
}z ´ z0}

2
C `

α2

2
}θ}2 .

by solving

dvpjq

dt
“ CvypvqΓ´1pŷ ´Gpvpjqqq ` CvypvpjqqΓ´1

?
Σ
dW pjq

dt

with ŷ “ p0, y, 0, 0qJ, vpjqp0q “ v
pjq
0 for the system (8.53) and Γ “ diag

´

C, I, 1
α1
C, 1

α2
I
¯

.

3: Set vk “ pzk,θkq
J “ limTÑ8 v̄pT q.

4: Increase λk.

5: Draw J ensemble members v
pjq
0 from N pvk,

´

C 0
0 I

¯

q.

6: end for

with given α1, α2 ą 0. Furthermore, every accumulation point of pz̄k, θ̄kqkPN is the (unique,
global) minimizer of

min
z,θ

1

2
}Opuθq ´ y}

2
Γobs

`
α1

2
}z ´ z0}

2
C `

α2

2
}θ}2

s.t. Mpz, uθq “ 0

Proof. Under the assumption of a linear forward model, the penalty function

1

2
}Opuθq ´ y}

2
Γobs

`
λk
2
}Mpz, uθq}

2
Γ̂model

`
α1

2
}z ´ z0}

2
C `

α2

2
}θ}2

is strictly convex for all k P N, i.e., there exists a unique minimizer of the penalized
problem. Choosing the initial ensemble such that spantpzpjqp0q,θpjqp0qqJ, j “ 1, . . . , Ju “
X ˆ Θ ensures the convergence of the EKI estimate to the global minimizer, see [19,
Theorem 3.13] and [142, Theorem 4]. The convergence of Algorithm 8 to the minimzer of
the constrained problem then follows from Proposition 8.2.1.

Remark 8.2.3. The convergence result Theorem 8.2.2 is based on an assumption on the
size of the ensemble, which is needed to ensure the convergence to the (global) minimizer
of the loss function in each iteration. This is due to the well-known subspace property of
the EKI, i.e., the EKI estimate will lie in the span of the initial ensemble when using the
EKI in its variant. In case of a large or possibly infinite-dimensional parameter / state
space, the assumption on the size of the ensemble can usually not be satisfied in practice.
Techniques such as variance inflation, localization and adaptive ensemble choice are able
to overcome the subspace property and thus might lead to much more efficient algorithms
from a computational point of view.
Furthermore, we stress the fact that the convergence result presented above is based on
the linearity of the forward and observation operator. Thus the assumption is not fulfilled
when considering a neural network with nonlinear activation function as approximation of
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8 One-shot learning of surrogates

the solution of the forward problem. However, numerical experiments (see Section 8.2.6)
show promising results even in the nonlinear setting. The generalization of the theoretical
results, such as Theorem 8.2.2, is subject for future work.

Algorithm 8 requires the solutions of a sequence of optimization problems, i.e., for each λ
the EKI is used to approximate the solution of the corresponding minimization problem.
To avoid the repeated application of EKI, we propose a modified version of the algo-
rithm in Algorithm 9. The idea of Algorithm 9 is to solve a single optimization problem
with increasing regularization parameter λ. This can straightforwardly be incorporated
in the continuous version of EKI by solving an additional differential equation for λ with
nondecreasing right-hand side. The computational effort of Algorithm 9 is thus reduced
compared to Algorithm 8 and numerical experiments suggest a comparable performance
in terms of accuracy. The theoretical analysis of the convergence behavior will be subject
to future work.

Algorithm 9 Simultaneous penalty ensemble Kalman inversion for neural network based
one-shot inversion

Require: initial ensemble v
pjq
0 “ pz

pjq
0 ,θ

pjq
0 q

J P Z ˆΘ, j “ 1, . . . , J, λ0 P Rě0, f : Rě0 Ñ

R`.
1: Compute an approximation of the minimizer of

min
z,θ

1

2
}Opuθq ´ y}

2
Γobs

`
α1

2
}z ´ z0}

2
C `

α2

2
}θ}2

s.t. Mpz, uθq “ 0

by solving the following system

dvpjq

dt
“ CvypvqΓ´1pŷ ´Gpvpjqqq ` CvypvpjqqΓ´1

?
Σ
dW pjq

dt
dλ

dt
“ fpλq

with ŷ “ p0, y, 0, 0qJ, vpjqp0q “ v
pjq
0 for the system (8.53), λp0q “ λ0 and Γ “

diag
´

C, I, 1
α1
C, 1

α2
I
¯

.

8.2.6 Numerical experiments

The following numerical experiments illustrate the one-shot inversion for different inverse
problems. The first example is a one-dimensional problem, for which we compare the
reduced optimization approach, quasi-Newton method (see, e.g., [49]) for the one-shot
inversion, quasi-Newton method for the neural network based one-shot inversion (Algo-
rithm 8), EKI for the one-shot inversion and EKI for the neural networks based one-shot
inversion (Algorithm 9) in the linear setting. Moreover, we numerically explore the con-
vergence behavior of the EKI for the neural networks based one-shot inversion Algorithm 9
also for a nonlinear forward model. The final experiment is concerned with the extension
of the linear model to the two-dimensional problem to investigate the potential of the EKI
for neural network based inversion in the higher-dimensional setting.
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8.2 Application to Bayesian inverse problems

One-dimensional example

We consider the problem of recovering the unknown data u: from noisy observations

y “ Opu:q ` η:,

where u: “ A´1pz:q is the solution of the one-dimensional elliptic equation

´
d2u

dx2
` u “ z: in D :“ p0, πq,

u “ 0 on BD,

(8.54)

with operator O observing the dynamical system at ny “ 23 ´ 1 equispaced observation
points xi “

i
24 ¨ π, i “ 1, . . . , ny.

We approximate the forward-problem (8.54) numerically on a uniform mesh with mesh-
width h “ 2´6 by a finite element method with continuous, piecewise linear ansatz func-
tions. The approximated solution operator will be denoted by S P Rnzˆnz , with nz “ 1{h.
The unknown parameter z is assumed to be Gaussian, i.e., z „ N p0, C0q, with (discretized)

covariance operator C0 “ βp´ d2

dx2 q
´ν for β “ 5, ν “ 1.5. For the inverse problem we

assume a observational noise covariance Γobs “ 0.1 ¨Iny , a model error covariance Γ̂model “

100 ¨ Inz and we choose the regularization parameter α1 “ 0.002, while we turn off the
regularization on u, i.e., we set α2 “ 0. Further, we choose a feed-forward DNN with
L “ 3 layers, where we set N1 “ N2 “ 10 size of the hidden layers and N0 “ NL “ 1
size of the input and output layer. As activation function we choose the sigmoid function
%pxq “ 1

1`e´x
. The EKI method is based on the deterministic formulation represented

through the coupled ODE system

dvpjq

dt
“ CvypvqΓ´1py ´Gpvpjqqq, (8.55)

which will be solved with the MATLAB function ode45 up to time T “ 1010. The ensemble
of particles pzpjqq, pzpjq, upjqq, and pzpjq,θpjqq respectively will be initialized by J “ 150

particles as i.i.d. samples, where the parameters z
pjq
0 are drawn from the prior distribution

N p0, C0q, the states u
pjq
0 are drawn from N p0, 5 Inuq, and the weights of the neural network

are drawn from N p0, Inθq, which are all independent from each other.
We compare the results to a classical gradient-based method, namely the quasi-Newton
method with BFGS updates, as implemented by MATLAB.
We summarize the methods in the following and introduce abbreviations:

1. Reduced formulation: explicit solution (redTik).

2. One-shot formulation: we compare the performance of the EKI with Algorithm 8
(osEKI 1), the EKI with Algorithm 9 (osEKI 2) and the quasi-Newton method with
Algorithm 8 (osQN 1).

3. Neural network based one-shot formulation: we compare the performance of the
EKI with Algorithm 9 (nnosEKI 2) and the quasi-Newton method with Algorithm 8
(nnosQN 1).

Figure 8.12 shows the increasing sequence of the penalty parameter λ used for Algorithm 8
and the quasi-Newton method and Algorithm 9 (over time).
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Figure 8.12: Scaling parameter λ depending on time for Algorithm 8, λk “ k3 for k “
1, 2, . . . , 50, and Algorithm 9, dλ{dt “ 1{λ.

One-shot inversion

In order to illustrate the convergence result of the EKI and to numerically investigate
the performance of Algorithm 9, we start the discussion by a comparison of the one-shot
inversion based on the FEM approximation of the forward problem in the 1-dimensional
example.

Figure 8.13 shows the difference of the estimates given by EKI with Algorithm 8 (osEKI 1),
the EKI with Algorithm 9 (osEKI 2) and the quasi-Newton method with Algorithm 8
(osQN 1) compared to the Tikhonov solution and the truth (on the left-hand side) and
in the observation space (on the right-hand side). All three methods lead to an excellent
approximation of the Tikhonov solution. Due to the linearity of the forward problem, the
quasi-Newton method as well as the EKI with Algorithm 8 are expected to converge to
the regularized solution. The EKI with Algorithm 9 demonstrates a similar performance
while reducing the compuational effort significantly compared to Algorithm 8.

The comparison of the data misfit and the residual of the forward problem shown in
Figure 8.14 reveals a good performance of the EKI (for both algorithms) with feasibility
of the estimates (with respect to the forward problem) in the range of 10´10.
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Figure 8.13: Comparison of parameter estimation given by EKI with Algorithm 8 (os-
EKI 1), the EKI with Algorithm 9 (osEKI 2) and the quasi-Newton method
with Algorithm 8 (osQN 1) compared to the Tikhonov solution and the truth
(on the left-hand side) and in the observation space (on the right-hand side).
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Figure 8.14: Comparison of the data misfit given by EKI with Algorithm 8 (osEKI 1),
the EKI with Algorithm 9 (osEKI 2) and the quasi-Newton method with
Algorithm 8 1 (osQN 1) (on the left-hand side) and residual of the forward
problem (on the right-hand side), both with respect to λ.

One-shot method with neural network approximation

We next replace the solution of the forward problem by a neural network in the one-shot
setting. Due to the excellent performance of Algorithm 9 in the previous experiment, we
focus in the following on this approach for the neural network based one-shot inversion.

The EKI for the neural network based one-shot inversion leads to a good approximation of
the regularized solution (cf., Figure 8.15), whereas the performance of the quasi-Newton
approach is slightly worse, which might be due to the nonlinearity introduced into the
problem by the neural network approximation.

The comparison of the data misfit and residual of the forward problem reveals an excellent
convergence behaviour of the EKI for the neural network based one-shot optimization,
whereas the quasi-Newton method does not converge to a feasible estimate, cf., Figure 8.16.

0 0.5 1 1.5 2 2.5 3 3.5

x

-15

-10

-5

0

5

10

15

truth

redTik

nnosQN_1

nnosEKI_2

0 0.5 1 1.5 2 2.5 3 3.5

x

-3

-2

-1

0

1

2

3

noisy observations

PDE sol.

redTik

nnosQN_1

nnosEKI_2

Figure 8.15: Comparison of parameter estimation given by the EKI with Algorithm 9
(nnosEKI 2) and the quasi-Newton method with Algorithm 8 (nnosQN 1)
for the neural network based one-shot inversion compared to the Tikhonov
solution and the truth (on the left-hand side) and in the observation space
(on the right-hand side).
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Figure 8.16: Comparison of the data misfit given by the EKI with Algorithm 9 (nnosEKI 2)
and the quasi-Newton method with Algorithm 8 (nnosQN 1) for the neural
network based one-shot inversion compared to EKI with Algorithm 9 (os-
EKI 2) from the previous experiment (on the left-hand side) and residual of
the forward problem (on the right-hand side), both with respect to λ.

Nonlinear forward model

We consider in the following a nonlinear forward model of the form

´∇ ¨ pexppz:q ¨∇uq “ 10 in D :“ p0, πq,

u “ 0 on BD .
(8.56)

Note that the mapping from the unknown parameter function to the state is nonlinear. We
use the same discretization as in the linear problem. The unknown parameter z: is assumed
to be Gaussian with zero mean and C0 “ βp´ d2

dx2 q
´ν where we choose β “ 1, ν “ 2.

Furthermore, we set Γobs “ 0.0001 ¨ Iny , Γ̂model “ 10 ¨ Inu , α1 “ 2 and α2 “ 0. The
structure of the DNN remains the same as in the linear case.
We compare the one-shot method with neural network approximation resulting from the
EKI with Algorithm 9 with the Tikhonov solution of the reduced formulation, which has
been approximated by a quasi-Newton method. The scaling parameter λ in Algorithm 9 is
determined by the ODE dλ{dt “ 1, i.e., the scaling parameter grows linearly. Similarly to
the linear case, we find that the one-shot method with neural network approximation leads
to a good approximation of the Tikhonov solution for the reduced model, cf., Figure 8.17.
In Figure 8.18, we observe that the penalty parameter λ drives the estimate towards
feasibilty, i.e. towards the solution of the constrained optimization problem.

Two-dimensional example

Our final numerical example is based on the two-dimensional Poisson equation

´∆u “ z: in D :“ p0, 1q2,

u “ 0 on BD,
(8.57)

for which we consider again the problem of recovering the unknown source term z: from
noisy observations

y “ Opu:q ` η:, (8.58)

with u: denoting the solution of (8.57). We consider an observation operator O observing
ny “ 50 randomly picked observation points xi, i “ 1, . . . , ny, as illustrated in Figure 8.19.

200



8.2 Application to Bayesian inverse problems

0 0.5 1 1.5 2 2.5 3 3.5

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5

x

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 8.17: Comparison of parameter estimation given by the EKI with Algorithm 9 (os-
EKI 2) and the Tikhonov solution (on the left-hand side) and corresponding
PDE solution (on the right-hand side).
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Figure 8.18: Data misfit given by the EKI with Algorithm 9 (osEKI 2) for the neural net-
work based one-shot inversion compared (on the left-hand side) and residual
of the forward problem (on the right-hand side), both with respect to λ.

We numerically approximate the forward model (8.57) with continuous, piecewise linear
finite element basis functions on a mesh with 95 grid points in D and 40 grid points on
BD using the MATLAB Partial Differential Equation Toolbox. We again denote the
approximated solution operator by S P Rnzˆnz , with nu “ 95. Similar as before, we
assume the unknown parameter z to be Gaussian, with (discretized) covariance operator
C0 “ βpτ ¨ id ´∆q´ν for β “ 100, ν “ 2 and τ “ 1. We assume the observational noise
covariance to be Γobs “ 0.01 ¨Iny , whereas we assume a model covariance Γ̂model “ 0.1 ¨Inz .
We set the regularization parameters α1 “ 0.002 and α2 “ 0. The DNN consists of L “ 3
layers, with N1 “ N2 “ 10 hidden neurons, N0 “ 2 input neurons and NL “ 1 output
neuron, and sigmoid activation function. The setting of the EKI is as described above
with J “ 300 particles drawn as i.i.d. sample from the prior. Figure 8.19 shows the truth
and the corresponding PDE solution.

In the following, we compare the neural network based one-shot formulation, solved by the
EKI with Algorithm 9, to the explicit Tikhonov solution of the reduced formulation. The
scaling parameter λ in Algorithm 9 is determined by the ODE dλ{dt “ 1{λ2. Figure 8.20
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demonstartes that the EKI leads to a comparable solution. The proposed approach leads
to a feasible solution with respect to the forward problem, cf. Figure 8.21.
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Figure 8.19: Ground truth (left-hand side) and the corresponding PDE solution (right-
hand side).
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Figure 8.20: Comparison of parameter estimation given by the EKI with Algorithm 9
(osEKI 2) (below) and the Tikhonov solution (above) (on the left-hand side)
and corresponding PDE solution (on the right-hand side).
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Figure 8.21: Data misfit given by the EKI with Algorithm 9 (osEKI 2) for the neural net-
work based one-shot inversion compared (on the left-hand side) and residual
of the forward problem (on the right-hand side), both with respect to λ.
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9 Conclusions and outlook

We close this thesis with a short summary and a brief discussion about interesting future
research directions.

We discussed the PDE-constrained optimization problem under uncertainty in a very
general setting in Chapter 3. Particularly, we presented results about the existence and
optimality of solutions along with optimality conditions under different sets of assumptions
on the risk measure, the cost functional, and the constraint.

For the development of efficient methods to solve the optimal control problem under uncer-
tainty and the error analysis, we focused on tracking-type objective functionals composed
with sufficiently smooth risk measures and constraints that are sufficiently regular with
respect to the uncertainty. We study three optimal control problems in detail in Chap-
ter 4. In particular, we investigate their parametric regularity in order to apply to them
the error bounds and concergence results which are developed in the following chapters.

In fact, many of the presented results, in particular in Chapter 5 and Chapter 6, are
not limited to the application to optimal control problems, but are derived in such a
general setting that they find applications in different areas in uncertainty quantification
and related fields. This proofs that the problems considered in this thesis are not only
interesting on their own, but also have the potential to reveal interesting insights into
research questions arising in related fields.

Chapter 5

Chapter 5 is devoted to the dimension truncation error analysis for a class of high-
dimensional integration problems. A popular approach to derive dimension truncation
error rates in the context of PDEs with random coefficients is based on the Neumann se-
ries. This technique heavily relies on the parametric structure of the problem and is thus
practically constrained to affine parametric operator equations. In contrast to the Neu-
mann series approach, we utilize the parametric regularity of the integration problem to
derive error bounds and convergence rates based on Taylor series. Our proposed technique
appears to be quite robust as we were able to improve dimension truncation convergence
rates even in a non-affine setting, for instance for elliptic PDEs with lognormal random
coefficients. We analyze the dimension truncation error in the general setting of separable
Banach spaces and with respect to the generalized β-Gaussian distribution. Thus our di-
mension truncation error rates immediately apply for spatially discretized PDE solutions
obtained using a conforming finite element method. Furthermore, our proposed method
enables the development of dimension truncation rates for sufficiently smooth nonlinear
quantities of interest of the PDE response, provided that the composition of the nonlin-
ear quantity of interest with the PDE solution satisfies the assumptions of our dimension
truncation result.
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Chapter 6

In Chapter 6 we recall error bounds and convergence rates for randomly shifted rank-1
lattice rules for integration of real-valued functions. By exploiting the concept of duality
in Banach spaces, we succeeded in generalizing these well-known bounds and convergence
rates for real-valued integrands to integrands that take values in separable Banach spaces.
This generalization was motivated by the fact that the integrals involved in optimal con-
trol problems subject to PDE constraints with random coefficients are typically Bochner
integrals, i.e., integrals over Banach space-valued objects. However the derived results are
not at all restricted to optimal control problems and open up many interesting areas of
application for QMC integration. A possible extension of our new results would be the
generalization to different distributions, such as the lognormal or generalized β-Gaussian
distribution. Together with our results from Chapter 5 this would provide a very general
and uniform framework for QMC integration in Banach spaces. In particular, the applica-
tion of QMC integration in the context of PDEs with random coefficients would simplify
to checking the regularity assumptions in our results.

Chapter 7

We presented a MLQMC method for the estimation of gradients for PDE-constrained
optimization problems. Specifically the objective function is a tracking-type functional
composed with the expected value and the constraint is an elliptic PDE with lognormal
random diffusion coefficient. Numerical results for this particular problem show that the
MLQMC method outperforms the MLMC and the QMC method. Its superior performance
is due to the faster decay of the variances of each term in the telescopic sum (7.29)
defining the multilevel method. Based on the parametric regularity of the problem, we
derived a rigorous analysis of our MLQMC method confirming the faster decay of the
relevant variances. While the numerical experiments and the analysis are performed for
the specific elliptic model problem, we expect that the results carry over to other problems
as well, such as the parabolic PDE-constrained optimal control problem. The numerical
and theoretical evidence for a more general problem class remains to be investigated.

Chapter 8

In Chapter 8 we focus on the incorporation of surrogates into the optimization problems.
In particular, we aim to replace the computational intense solution of the underlying
model, typically a PDE, by a surrogate which is cheap to evaluate.

In Section 8.1 we apply this strategy to the PDE-constrained optimal control problem
under uncertainty and in Section 8.2 we transfer the ideas to Bayesian inverse problems.

Our proposed framework is based on a quadratic penalization on the PDE residual and very
flexible in the sense that it allows for different surrogates, such as polynomial expansions,
reduced basis approaches, or neural networks. In our framework the surrogate is trained
only for the optimal control during the optimization of the underlying problem. This
should be contrasted with the expensive offline training, where a surrogate is trained
for all admissible controls and is substituted afterwards into the underlying optimization
problem. The numerical experiments for the optimal control problem subject to the elliptic
PDE constraint show promising results and applications to more complex optimization
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problems under uncertainty will be subject to future work.
We analyzed the stochastic gradient method for the optimization of the penalized problem.
In more complex situations, gradients might not be available due to the use of black-box
solvers or computational limits. In this case, the application of derivative-free optimization
techniques, in particular Kalman based methods, are expected to be efficient in this setting.
We studied the application of the ensemble Kalman filter to a penalized problem in the
context of Bayesian inverse problems in Section 8.2. In this section we demonstrated that
the ensemble Kalman inversion for neural network based one-shot inversion is a promising
method, regarding both estimation quality of the unknown parameter and computational
feasibility. The connection between the penalized optimization problem and the Bayesian
inverse problem setting with vanishing noise allowed to establish a convergence result
in a simplified linear setting. Several directions for future work arise naturally from the
presented ideas. For instance, the theoretical analysis of the neural network based one-shot
inversion using recent results about the expressivity of neural networks in the context of
parametric PDEs is a promising direction for future research. Furthermore, a comparison
to state-of-the-art optimization algorithms in the machine learning community should
be discussed. Moreover, it would be interesting to investigate if the emulation of the
underlying dynamics of the PDEs in the considered problems can be improved by choosing
more sophisticated architectures of neural networks, such as residual neural networks or
convolutional neural networks, see [138].
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