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Abstract

In this thesis, we develop and analyze methods to efficiently solve optimization problems
under uncertainty, constrained by partial differential equations (PDEs). The uncertain-
ties may arise due to noisy measurements, unknown or unobservable parameters, model
ambiguity, or intrinsic randomness of systems. The goal is to find a control which is
robust with respect to variations in the uncertain parameters. We prove error bounds
and convergence rates for the developed methods, confirm the theoretically derived results
through numerical experiments, and examine the developed concepts with regard to their
efficiency.

The focus of this work is the application and analysis of quasi-Monte Carlo methods, as
well as the use of surrogate models for computationally intensive systems in conjunction
with a penalty strategy.

We first analyze a general formulation of the optimal control problem for the existence
and uniqueness of solutions, and then focus on three example problems of optimal control
under uncertainty. The regularity of the problems with respect to the uncertain parameters
plays a crucial role in the development and the error analysis of the methods.

The numerical treatment of the considered problems requires different approximation
methods. The total approximation error is decomposed into its components and each
error contribution is then studied separately in a chapter. The error estimates and con-
vergence results developed in these chapters are not limited to problems of optimal control
subject to PDE constraints with uncertain coefficients.

In addition, further strategies to increase the efficiency of the methods are investigated,
such as multilevel strategies and the simultaneous solving of the optimal control problem
and learning of surrogate models for computationally intensive models.

Zusammenfassung

In dieser Arbeit entwickeln und analysieren wir effiziente Methoden zur Lésung von Proble-
men der optimalen Steuerung mit partiellen Differentialgleichungen (pDGL), die unsichere
oder zufillige Koeffizienten haben, als Nebenbedingungen. Die Unsicherheiten kénnen
aufgrund von verrauschten Messungen, unbekannten oder nicht beobachtbaren Parame-
tern, Mehrdeutigkeit des Modells oder intrinsischer Zufalligkeit von Systemen entstehen.
Gesucht ist dann eine Steuerung, die robust gegeniiber Variationen der unsicheren Param-
eter ist. Ziel der Arbeit ist es, einerseits Fehlerschranken und Konvergenzraten fiir die en-
twickelten Methoden zu beweisen und andererseits die theoretisch hergeleiteten Resultate
durch numerische Experimente zu bestatigen und die entwickelten Konzepte hinsichtlich
ihrer Effizienz zu untersuchen.

Schwerpunkte dieser Arbeit sind die Anwendung und Analyse von quasi-Monte Carlo
Methoden, sowie das Verwenden von Ersatzmodellen fiir kostenintensive Systeme in Ver-
bindung mit einer Penalisierungsstrategie.

Wir untersuchen zunéchst eine allgemeine Formulierung des Optimalsteuerungsproblems
auf Existenz und Eindeutigkeit von Losungen. Anschlieend werden drei beispielhafte
Probleme der optimalen Steuerung unter Unsicherheit betrachtet. FEine entscheidende
Rolle fiir die Entwicklung und die Fehleranalyse der Methoden spielt die Regularitat der
Probleme beziiglich den unsicheren Parametern.

Fiir das numerische Losen der betrachteten Probleme werden verschiedene Approxima-
tionsverfahren benotigt. Der Gesamtfehler der Approximation wird in dessen Bestandteile



zerlegt und jeweils separat in einem Kapitel untersucht. Die in diesen Kapiteln hergeleit-
eten Fehlerabschitzungen und Konvergenzresultate sind nicht beschrankt auf Probleme
der optimalen Steuerung mit pDGL-Nebenbedingungen mit unsicheren Koeffizienten.
Zudem werden weitere Strategien zur zuséatzlichen Steigerung der Effizienz untersucht, wie
beispielsweise multilevel Strategien und das simultane Losen des Optimalsteuerungsprob-
lems und Lernen von Ersatzmodellen fiir rechenintensive Modelle.
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1 Introduction

Many complex systems in science and engineering can be modeled as partial differential
equations (PDEs). For instance, PDEs are foundational in the understanding of sound,
heat, diffusion, electrostatics, electro-, thermo-, and fluid dynamics, elasticity, and many
more. Hence, they are ubiquitous in airfoil, in problems concerning groundwater flow, in
weather simulations, in computer tomography, and in microelectronics — to name only a
few applications. The mathematical optimization of processes and systems that can be
modeled by PDEs is an essential task for scientists and engineers across disciplines.

If not taken into account, limited knowledge or intrinsic randomness of parameters in the
PDE model, such as material properties, external conditions, or reaction constants, have
the potential to render worthless any solutions obtained using state-of-the-art methods
for deterministic problems. The careful analysis of the uncertainty in PDE-constrained
optimization problems is hence indispensable and has become a growing field of research.

Supposing that the practitioner has some control over the uncertain state of the system,
the goal is to determine the optimal control input (if it exists) for the uncertain system.
The quality measure is given by a cost functional which is composed with a risk measure
taking the uncertainties into account.

The uncertainties often manifest themselves as random fields, which can be represented by
a countably infinite number of random parameters. For the numerical treatment of such
problems, a natural first step is the truncation of the representation at a finite (possibly
very large) number of random parameters. The resulting error is analyzed in Chapter

In order to robustify the optimal control with respect to the uncertainty, a risk measure
is applied which involves integrals over the high-dimensional domain of the parameters.
While being dimension independent, Monte Carlo methods obtain a notoriously slow con-
vergence rate. Moreover, for sufficiently regular integrands in the presented setting it is
possible to construct quasi-Monte Carlo (QMC) rules with error bounds not depending
on the number of stochastic variables, while attaining faster convergence rates compared
to Monte Carlo methods. Moreover, QMC approximations are particularly well suited
for optimization since they preserve convexity due to their nonnegative (equal) cubature
weights as opposed to sparse grid methods, for instance. QMC methods are discussed in
Chapter [6]

To further reduce the computational cost we consider a multilevel QMC method that
efficiently distributes the number of samples across different discretization levels of the
underlying PDE. Moreover, the simultaneous learning of surrogates, such as polynomial
expansions or neural networks, for the computational intensive PDE solution is investi-
gated in a one-shot optimization framework.



1 Introduction

1.1 Outline

We describe the structure of this thesis together with a brief outline of the following
chapters.

Chapter 2

We start this thesis with a collection of definitions, notational conventions, and well-known
results in order to embed the results in the following chapters into a rigorous mathematical
setting. Thereby we focus on functional analysis and integration theory.

Chapter 3

We formulate the optimal control problem with PDE constraints under uncertainties in
a very general setting. We list popular risk measures and classify them according to de-
sirable properties. We then derive moderate conditions on the risk measure, the random
variable objective function, and the PDE constraint for the existence and optimality of
solutions in the general setting. For well-posed forward problems one can reformulate
the optimal control problem in the so-called reduced formulation. Moreover, in the set-
ting of parametric linear forward operators we show equivalence between the almost sure
formulation of the constraints and the weak formulation in the parameter space.

Chapter 4

We consider three examples of optimal control problems. In all three example problems,
we consider a tracking type objective functional composed with different risk measures:

e In Section the risk measure is the expected value and the optimal control problem
is subject to an elliptic PDE with a random diffusion coefficient. We suppose to have
control over the source term of the PDE.

e In Section the risk measure is either the expected value or the entropic risk
measure. The constraint is a parabolic PDE with an uncertain diffusion coefficient,
and we control the source term of the PDE for a given initial condition.

e In Section the risk measure is again either the expected value or the entropic
risk measure. The constraint is an abstract parametric linear operator equation with
affine parameter dependence. In particular, the problems Section [£.T]and Section 4.2
fit into this framework. Nevertheless, we chose to present the elliptic and parabolic
examples for better illustration.

In all examples we discuss the function space setting of the PDEs (operator equation,
respectively), present their parametric weak formulation, and derive optimality conditions,
that are based on the adjoint states, of the reduced formulation of the problem. We note
that all examples fit into the abstract framework presented in Chapter[3] but the results are
derived for the examples for clarity. Furthermore, we present a well-known optimization
algorithm which can be used to solve the three example problems, and illustrate how the
total discretization error can be decomposed into its contributions. The different error
contributions are then analyzed separately in Chapter [5 Chapter [0 and Section



1.1 Outline

The heart of the following error analysis is the parametric structure and the parametric
regularity of the PDEs or operators, respectively. To this end, we investigate the regularity
of the example problems with respect to the uncertain parameters.

This chapter is based on joint work Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings,
and Tan H. Sloan and the two corresponding articles:

e A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty. STAM/ASA
J. Uncertain. Quantif., 9(2): 354-383, 2021.
https://doi.org/10.1137/19M1294952.

e Parabolic PDE-constrained optimal control under uncertainty with entropic risk
measure using quasi-Monte Carlo integration, 2022. Preprint at https://arxiv.
org/abs/2208.02767.

Chapter 5

This chapter is devoted to the dimension truncation error, which is a natural error con-
tribution arising in the discretization of infinite-dimensional integration problems. The
problem is formulated in the general setting of integrands that belong to separable Ba-
nach spaces with generalized g-Gaussian distributed random parameters. Hence, the
results presented in this chapter are not at all restricted to optimal control problems. In
particular, we derive a set of sufficient conditions that guarantee convergence with a rate
that appears to be superior to the existing literature for some values of 5. Furthermore,
since our results are stated in separable Banach spaces, they directly apply to PDE solu-
tions discretized by conforming finite elements. Moreover, the setting is not restricted to
PDEs, but only based on the parametric regularity of the Banach space-valued integrands.
We can thus, for instance, compose an element in a separable Banach space (possibly a
PDE solution) with an arbitrary nonlinear quantity of interest as long as the composition
with the quantity of interest satisfies the hypothesis of our results.

This chapter is based on joint work with Vesa Kaarnioja and the corresponding article:

e Generalized dimension truncation error analysis for high-dimensional numerical in-
tegration: lognormal setting and beyond, 2022. Preprint at https://arxiv.org/
abs/2209.06176.

This chapter and the corresponding article were motivated by the joint work with Vesa
Kaarnioja, Frances Y. Kuo, Claudia Schillings, and Ian H. Sloan and the two corresponding
articles listed in the outline of Chapter

Chapter 6

We provide a brief introduction to quasi-Monte Carlo methods and particularly to ran-
domly shifted rank-1 lattice rules in Chapter [6] The main contribution of this chapter is
the generalization of existing error bounds and convergence rates for real-valued integrands
to the general setting of integrands in separable Banach spaces. This generalization opens
up many new areas of application for QMC methods, such as optimal control problems
with PDE constraints under uncertainty. This chapter is based on the joint work with Vesa
Kaarnioja, Frances Y. Kuo, Claudia Schillings, and Ian H. Sloan and the corresponding
article
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e Parabolic PDE-constrained optimal control under uncertainty with entropic risk
measure using quasi-Monte Carlo integration, 2022. Preprint at https://arxiv.
org/abs/2208.02767.

Chapter 7

This chapter concentrates on the spatial discretization of the PDE constraints. In Sec-
tion we provide a brief overview of the finite element method (FEM) that is used
in the numerical experiments throughout this thesis. We derive an error bound and a
convergence rate for the elliptic example, which — together with the truncation error and
cubature error — completes the error analysis presented in Section Parts of this chap-
ter are based on joint work with Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings, and
Ian H. Sloan and the corresponding article:

e A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty. SIAM/ASA
J. Uncertain. Quantif., 9(2): 354-383, 2021.
https://doi.org/10.1137/19M1294952.

The second part of this chapter is about a multilevel strategy that efficiently distributes
samples across different FE discretization levels. More precisely, we analyze the application
of a multilevel quasi-Monte Carlo (MLQMC) method to the optimal control problem
in combination with the circulant embedding method in order to sample the lognormal
random field. The MLQMC part of this chapter is based on joint work with Andreas Van
Barel and the corresponding article:

e Multilevel Quasi-Monte Carlo for Optimization under Uncertainty, 2021. Preprint
at https://arxiv.org/abs/2109.14367.

Chapter 8

Novel results on the use of machine learning techniques motivated Chapter |8l In partic-
ular, we reformulate the PDE-constrained optimization problem under uncertainty as an
unconstrained optimization problem by adding a quadratic penalty on the PDE residual to
the objective function. We then replace the computational intense solution of the state of
the system with a surrogate. The surrogate parameters are learned simultaneously during
the optimization, and hence the surrogate only needs to be trained for the optimal control.
Opposed to the simultaneous training, training of the surrogate parameters before the op-
timization must lead to a good surrogate for all feasible controls. Section is based
on the joint work with Claudia Schillings and Simon Weissmann and the corresponding
article

e A General Framework for Machine Learning based Optimization Under Uncertainty,
2021. Preprint at https://arxiv.org/abs/2112.11126.

In the second part of this chapter we transfer the ideas of Section to the setting of
Bayesian inverse problems. Establishing a connection between the Bayesian approach and
the one-shot formulation allows to interpret the penalization parameter as the level of
model error in the forward problem, i.e., increasing the penalization parameter on the
quadratic model residual corresponds to vanishing model noise in the Bayesian setting.
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https://doi.org/10.1137/19M1294952
https://arxiv.org/abs/2109.14367
https://arxiv.org/abs/2112.11126

1.1 Outline

Furthermore, we show that the ensemble Kalman inversion is an efficient method to solve
the resulting optimization problem. Section [8.2]is based on the joint work with Claudia
Schillings and Simon Weissmann and the corresponding article

e 14 Ensemble Kalman filter for neural network based one-shot inversion. In Optimiza-
tion and Control for Partial Differential Equations: Uncertainty quantification, open
and closed-loop control, and shape optimization edited by R. Herzog, M. Heinken-
schloss, D. Kalise, G. Stadler, E. Trélat, pp. 393-418. Berlin, Boston: De Gruyter,
2022. https://doi.org/10.1515/9783110695984-014.
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2 Selected facts from functional analysis
and measure theory

We will discuss, analyze, and solve constrained optimization problems with uncertainties
entering the problem through the constraint. In this section we begin with the mathemat-
ical description of the problems studied in this manuscript.

To introduce the notation, we begin by recalling some basic results from functional analysis
and measure theory. Most of the results presented in this chapter are well-known and can
be found in textbooks like [13], 32, [42] 81, 0, 104, 135, 139, 140, 145].

2.1 Fundamental functional analysis
Linear space By R and C we will always denote the field of real numbers and the field
of complex numbers respectively. An element in the scalar field K € {R, C} will be called
scalar. A linear space (or vector space) over K is a set X, consisting of elements that
are called vectors, and in which addition (A1-A4) and scalar multiplication (M1-M3) are
defined by the following algebraic properties:

A1 For all vectors z,y, and z € X, it holds (z +y) + 2z =z + (y + 2).

A2 For all vectors x,y € X, it holds z +y =y + z.

A3 X contains a unique vector 0, such that x + 0 = x for every x € X.

A4 To each x € X corresponds a unique vector —z, such that x + (—z) = 0.
A1l and A2 are called associative property and commutative property, respectively. The
vector 0 in A3 is called the neutral element of vector addition and the vector —z in A4 is
called the inverse element.

M1 For each «, 5 € K and =,y € X we have a(z +y) = ax+ ay and (a+ f)x = ax + fz.

M2 For each «, 5 € K and z € X we have (af)x = a(fSz)

M3 For each x € X we have for 1 e K that 12 =z

M1 and M2 are called distributative property and associative property, respectively. The
element 1 in M3 is called neutral element of scalar multiplication.



2 Selected facts from functional analysis and measure theory

Normed space A linear space X is called a normed space, or normed linear space, if to
every x € X there is assigned a nonnegative real number |z|, called the norm of z. A
norm | - || : X — [0,0) is a mapping with the properties

(i) For all x € X it holds that |z| = 0 implies = 0.
(ii) For all x € X and « € K it holds that |az| = |a||z|.

(iii) For all #,y € X it holds that ||z + y| < |z| + |y|.

The property (i) is called positive definiteness, (ii) is called absolute homogeneity and (iii)
is the triangle inequality or subadditivity.

We will later often use the notation | - |x if the space X is not clear from the context.
Moreover by the absolute value (or modulus) |z| of  is a norm on the one-dimensional
linear space formed by the real or complex numbers.

Linear operator A mapping A : X — Y from a normed space X to a normed space Y is
called operator. The operator A is called bounded if

|Alyex = sup [Tz]y <.
veX: |z <1

We call |Ally—x the operator norm of the operator A.

The set of all bounded linear operators A : X — Y will be denoted by £(X,Y’). Together
with the operator norm | - |y—x, the space of all bounded linear operators £(X,Y) is a
normed space, see [I135], Theorem 4.1]. If X =Y, we will use the abbreviation £(X) instead
of L(X, X). Moreover, on a normed space X, we denote the identity by Zx € £(X). The
mapping A~! is called the inverse operator of the mapping A € £(X,Y) if it holds that
AATT = Ty and A1A = ITx.

Isomorphism Let XY be two linear spaces over the same field K. A bijective mapping
A: X — Y, ie., a mapping that is injective (Ax; = Azo implies 1 = x2) and surjective
(for all y € Y there exists an z € X with Az = y), which preserves the algebraic properties
of the linear space, is called an isomorphism. Moreover, if there is an isomorphism between
two linear spaces X,Y, we say X and Y are isomorphic and write X =~ Y. If X,Y are
normed spaces and it holds in addition that |Az|y = |z, for all x € X, we call A an
isometric isomorphism.

Metric space Every normed space X can be considered as a metric space, in which
the distance, or metric, d(z,y) between two elements x and y is defined by the norm
d(z,y) = |z —yll. A metric d : X x X — [0,00) is characterized by the following
properties

(i) It holds that d(x,y) = 0 if and only if x = y.
(ii) For all x,y, and z € X it holds that d(z,2) < d(z,y) + d(y, 2).
(iii) For all z,y € X it holds that d(z,y) = d(y, ).

The property (i) is called positive definiteness, (ii) is called triangle inequality and (iii) is
called symmetry.

!The symbol x denotes the Cartesian product, i.e., X x Y is the set of all ordered pairs (z,y) with z € X
andyeY.



2.1 Fundamental functional analysis

Density A subset M of a metric space X is called a dense subset of X if the closure of
M, M, is equal to the superset X. That is every point in X either belongs to M or is
a limit point of M, i.e., for every z € X there is a sequence (z,)pen in M such that the
limit is also in M: lim,, o T, = .

A metric space X is called separable, if it contains a countable and dense subset E = {¢,, :
n € N}.

In any metric space X one can define the open ball centered at x € X, and with radius
r = 0, as the set

Br(z) :=A{y :d(z,y) <r}.
In particular, if X is a normed space, the sets
B.(0)={z:|z| <1} and B.(0)={z:|z| <1}

are the open and closed unit ball in X, respectively.

Topology By declaring a subset of a metric space to be open if and only if it is a (possibly
empty) union of open balls, we obtain a topology. A topological space is a set X containing
a collection 7 of subsets satisfying the following proerties

(i) The empty set & and X itself belong to 7.
(ii) Any union of members of 7 belongs to .
(iii) The intersection of any two members of T belongs to 7.

Such a collection 7 is called topology on X and the elements of 7 are called open sets.
Moreover a subset A < X is called closed if and only if its complement X\A is open.
If 71, are two topologies on a common space X, we say that 71 is weaker than 7 (or
equivalently 79 is stronger than 1) if 71 < 73.

Let J be an arbitrary index set, let X; for j € J be a topological space, and let X =
Hjej X; be the Cartesian product of the X;. For each j € J we call P; : X — X
the canonical projection. The weakest topology 7 such that all canonical projections are
continuous with respect to 7 is called the product topology. The pair (X, 7) is called
product space.

A topological space is said to be compact if each of its open covers has a finite subcover.
That is, X is compact if for every collection A; of open sets of X with X = [ J x, there
is a finite subcollection Ay < A; such that X = (. A, T

By Tychonov’s theorem [I35, Theorem A3], the caresian product of any nonempty collec-
tion of compact spaces (X;);es is compact. Here J is again an arbitrary index set.

weAl

Complete metric space A sequence (p)nen Of elements of a metric space X is called
Cauchy sequence if for all € > 0, there exists N € N such that for all n,m > N it holds for
the distance d(x,,x,,) < €. Moreover the sequence (z,)nen converges to x € X if for all
€ > 0 there exists N € N such that for all n > N it holds for the distance d(z,,z) <e. A
metric space is called complete if every Cauchy sequence converges.

Banach space A normed space which is complete in the metric induced by its norm is
called a Banach space.



2 Selected facts from functional analysis and measure theory

Linear isomorphism between Banach spaces Let X,Y be two Banach spaces. Then for
any operator A € £(X,Y") that is bijective, i.e., injective (Ax; = Az implies x; = z3) and
surjective (for all y € Y there exists an x € X with Az = g), the operator A~ € L(Y, X)
exists. This is a consequence of the open mapping theorem [I35], Corollary 2.12].

Embeddings Let X,Y be two normed spaces with X < Y. Clearly the embedding (or
injection) Z : X — Y, defined by Zx = x for all z € X is linear. We say X is continuously
embedded in Y if 7 is also bounded, i.e., |z|y = |Zz|x < C|z|x for all z € X and a
constant C' > 0. Moreover, if X is dense in Y, we say X is densely and continuously
embedded in Y.

Dual space For a normed linear space over a field K € {R, K}, we call the space of all
bounded linear mappings (or functionals)

X' = £(X,K)
the dual space X’ of X. Equipped with the norm

|2’ x = sup  [2'(z)| (2.1)

zeX: |z||x<1

the dual space X’ of X is a Banach spaceE] For 2/(z) we will also write
(z,2)x xr = ' x)x x =2 (x),

where we call {-,-)x x and {-,-)xs x dual forms or duality pairings.
If a normed linear space X is continuously embedded in a normed linear space Y, then
Y’ < X’ is continuously embedded, see [140, Lemma 2.2.11]

Dual Operator Let X,Y be two normed spaces. For each A € £L(X,Y) there is a unique
dual operator A" € L(Y', X') satisfying (Az,y)yy' = {(x,A'y')x x for all x € X and
y' € Y'. Furthermore, their operator norms are identical: [Allzxy) = |42y x7)-

As a consequence of the Hahn—Banach theorem [I135, Theorem 3.5], we can write by [135)],
Theorem 4.3] the following

lzlx = sup  Kz,ahxxl.
zeX!: ||a’|<1

Using the dual space X’ one can define a topology on X:

(i) The weak topology is the weakest topology on X that makes all maps z'(-) =
(-, 2")x x» + X — K continuous, as z’ ranges over X'.

(i) The weak* topology is the weakest topology on X' that makes all maps (z,-)x x-
X’ — K continuous, as x ranges over X.

We say a sequence (x;)jen converges weakly (or in weak topology) to z € X, denoted
by z; — z, if ¢(x;) — ¢(x) for all ¢ € X'. Clearly, convergence in the (stronger) norm
topology implies convergence in the weak topology. The reverse holds for instance if

2In fact, for two normed spaces X and Y, the space of bounded linear operators £(X,Y) equipped with
the operator norm | - ||y—x is a normed space. If Y is in addition a Banach space, then so is £L(X,Y).

10



2.1 Fundamental functional analysis

dim(X) < oo, but is not true in general. The weak* topology is important, since the
Banach—Alaoglu theorem [I35, Theorem 3.15] implies that the closed unit ball in the dual
space X’ of a normed space X is compact with respect to the weak* topology. Note that,
if X’ is infinite-dimensional, the closed unit ball cannot be compact with respect to the
norm topology. This is a consequence of Riesz’ lemma, which tells us that the unit ball
in a normed linear space X’ is compact if and only if X’ is finite-dimensional, see [42]
Theorem 4 in Chapter IJ.

Bidual space and reflexivity The dual space X’ of a Banach space X over a field K is
itself a Banach space and thus has its own dual space X”, called the bidual space of X.
Hence, the bidual space of X is defined by X” = £(X’,K). Moreover, a consequence of
[135, Theorem 4.3] is, that every x € X and 2’ € X’ defines a unique ¢z € X” by the
equation

(r,a"yx xr = (!, pa)xr xv (2.2)

and, for all x € X, that

[z = =] -

Hence, ¢ : X — X" is a linear isometry. Since X is complete, ¢(X) is closed in X”. Hence
¢ is an isometric isomorphism of X onto a closed subspace of X”. In this case X is usually
identified with ¢(X), a subspace of X”. Note that ¢(X) contains the linear functionals on
X' that are continuous relative to its weak* topology. It may therefore happen that ¢(X)
is a proper subspace of X” as the norm topology of X’ is stronger. The spaces for which
the mapping ¢ is bijective with ¢(X) = X” are called reflexive. Note that the existence
of some isometric isomorphism ¢ is not sufficient for X to be reflexive, but it is essential

that (2.2)) is satisfied by ¢.

Inner product space We call a linear space X an inner product space if to each ordered
pair of vectors z and y in X, a scalar {(z,y)x, called the inner product of z and y, is
associated, which has the following properties:

(i) For all vectors z,y € X it holds that (y,z)x = (z, y)xP)

(ii) For all vectors x,y, and z € X it holds that {(x + y, 2)x = {(z,2) + {y, 2)x.

)
)
(iii) For all scalar o € K and vectors x,y € X it holds that {az,y)x = alz,y)x.
(iv) For all z € X it holds {z,z)x > 0.

)

(v) It holds that (x,z)x = 0 if and only if z = 0.

Here the first property is called conjugate symmetry. The properties (ii) and (iii) describe
linearity in the first argument and the last two properties are sometimes referred to as
positive definiteness.

If {x,y)x = 0 we say that = is orthogonal to y and sometimes use the notation =z L y.
Moreover, we use the notation £ 1 F for E, F' c X, to denote that | y whenever z € £
and y € F. The set of all y € X that are orthogonal to every = € F is denoted by E*.

3Here & denotes the complex conjugate of o, i.e., @ = a —b-4 for a« = a + b - i, where a,b € R and i
denotes the imaginary unit.

11
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Hilbert space Every inner product space X can be normed by

|zl x = v/ (z 2)x

for all z € X, see [I35, Theorem 12.2]. In case the resulting normed space is complete, it
is called a Hilbert space. Some important properties of Hilbert spaces are:

(i) The Cauchy—Schwarz inequality holds: |{z,y)x| < |z|x|y|x for all z,y € X.
(ii) For E c X, the orthogonal complement E* is a closed subspace of X.

(iii) Let E be a closed subspace of a Hilbert space X with orthogonal complement EL.
Then it holds that X = E@® E*, that is any 2 € X can uniquely be decomposed by
T =u+v withue E and v € E*, and it holds [z|% = [u|% + [v]%-

(iv) Let Y be a closed subspace of the Hilbert space X. For x € X there exists a unique
9(z) € Y with

|7 — gllx = min |z —y|x .
yeY

The mapping Pz := g(z) is called an orthogonal projection. The projection operator
P is linear, bounded, self-adjoint ((Pz,y)x = {(x, Py)x) and idempotent (P? = P).

Riesz’ representation theorem Let X be a Hilbert space over a field K. For any y € X
the mapping

fy()i=Cyx X =K

is a bounded linear functional. Hence, it holds that f,(-) € X’ and |f,llx = |lylx-
The converse result is known as Riesz’ representation theorem: For all bounded linear
functionals f € X' there exists a unique vector ys € X that satisfies

f(x) =<(@,ypxforallze X and |f|x = |lys]x-
Some important consequences of this result are:

(i) There exists a bounded, invertible conjugate linearﬂ mapping Ry : X — X’ with
Rxy = f, and R;(lf = ys. Moreover, the mapping Ry is an isometry: |Rx|x_x/ =
| Ry xrmx = 1.

(ii) The dual space X’ is a Hilbert space with inner product (z’,y')x := (R 2, Ry y/>x

and the norm in (2.1) equal to |2/||x: = v/{z/,2") x.

(iii) X =~ X" with z(2') := 2/(x), we can identify X with X", and in particular any
Hilbert space X is reflexive. Moreover, it holds that Rx: = R)_(l, Rx = (Rx)', and
A" =Afor Ae L(X,Y)if Y =Y” and if both are Hilbert spaces.

*A mapping f : X — Y between to linear spaces over K € {R,C} is conjugate linear if f(ax + By) =
af(z)+ Bf(y) for all z,y € X and all o, 8 € K.

12
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(iv) If K = R the spaces X and X’ can be identified due to the isomorphism Ry, i.e.,
X := X' implies Rx = Z. If K = C one can choose an orthonormal basiﬁ (%4)ies
in X and define the complex conjugation by Cx := T := Zjes (x,xj)xxy. Then

C = C7! and C,C~! are conjugate linear isometries. Hence Rx := RxC is an
isometric isomorphism and one can identify any Hilbert space over K = C with its
own dual.

(v) The adjoint operator A* of an operator A € L(X,Y’) between two Hilbert spaces X, Y
can be defined in terms of Ry as follows: A* := Ry'A'Ry € L(Y, X). Moreover, we
have Al zxy) = A% £(v,x) and (Az,y)y = (x, A*y)x forallz e X and all y e Y.

Gelfand triplet Let X,Y be two Hilbert spaces and let X < Y be continuously and
densely embedded. Then Y’ < X’ is also continuously and densely embedded, see e.g.
[140), Proposition 2.1.22]. One can identify Y with its own dual Y’ and obtain the Gelfand
triple

XcYcX,

where both embeddings are continuous and dense. By this identification, the inner product
{x,y)y can also be interpreted as the duality pairing (z,y)yys. For x € X < Y, we have
y(z) = (z,y)x,x = {x,y)y forally € Y < X'. Since the embedding Y < X’ is continuous
and dense, the inner product {:,-)y can be extended continuously to the duality pairing

<.7 '>X,X’-

Sesquilinear and bilinear form Let X,Y be linear spaces over K. A mapping a(-,-) :
X xY — K is called sesquilinear form if for all x1,zs € X, for all y1,92 € Y and all « € K
it holds that

a(z1 + axe,y1) = a(ri,y1) + aa(z2,y1),
a(z1,y1 + ay2) = a(ry,y1) + @a(xy, y2) .

If K=R we call a(-,) : X x Y — R a bilinear form. In the case when X,Y are normed
spaces, we say a sesquilinear form is continuous (or bounded) if there is a positive constant
C < oo such that

la(z,y)| < Clzlx]yly

for all z € X, y € Y. The norm of the sesquilinear form a(-, -) is the smallest such constant:

- Nz, y)|
lal| ;== sup  sup .
zex\{0} ye\{o} |2l x[yly

Bilinear form and linear operator To each continuous bilinear form a(-,-) : X xY - R
we can uniquely associate an operator A € £L(X,Y”) such that

a(z,y) = (Az,y)yry VYVreX,yeY,
and

I Al zx,yy = llal -
5 A system of orthonormal vectors (z;)ics in a Hilbert space X is an orthonormal basis of X if, for every
x € X, the (Fourier) expansion x = »,,_.{(x,x;)xx; convergens.

13
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Proof. From the continuity of a(-,-) : X x Y — R we get for arbitrary = € X, that
¢z(y) := a(z,y) defines a bounded linear functional on Y, i.e., ¢5(-) € Y. In particular,
we get ¢y < C|z|lx for all x € X and a constant 0 < C. Defining Az := ¢, for all
x € X, A is clearly linear, and we obtain [|Az|ys < C|z||x for all x € X, and the same
C, hence A € L(X,Y'). Conversely, let A € L(X,Y’). Then a(z,y) := (Az,y)y+y is a

bilinear form with

‘<AJI, y>Y’,Y

< [Az]ylyly < IAlzex vy lzlxlyly -
The equality of the norms then follows per definition:

B |Az]y: [{Az, vy y|
HAHE(X,Y') = sup = sup sup ————— =
sex\fo} 1Zlx  zex\foyyeviioy lzlxlyly

lall-
O

Weak formulation of the problem and operator equation Let X,Y be normed spaces,
a(+,©) : X xY — R be a continuous bilinear form, and f : ¥ — K a continuous linear
functional. The weak problem is: Find xz € X such that

a(r,y) = fly) YyeY.

Many differential and integral equations can be formulated as weak problems. By replacing
the sesquilinear form with the associated operator we observe that the weak problem can
be equivalently stated as an operator equation in Y':

(Az,yyyry ={f,y)y'y orequivalently Az =f inY’. (2.3)

Inf-sup-conditions We say the bilinear form a(-, -) satisfies the inf-sup-conditions if there
is a kK > 0 such that

inf  sup latw, )l > kK, (2.4a)

2eX\(0} yeyrjoy |zl xlyly ~

. ja(z.y)

BEICT VNN (2.4b)
ve\{0} zex\(oy |Zlx |ylly

For a bilinear form over two reflexive Banach spaces X and Y, we get the following relation
between the inf-sup-conditions and the invertibility of the operator associated with the
bilinear form:

Theorem 2.1.1 (Well-posed operator equation). Let X and Y be two reflexive Banach
spaces and A € L(X,Y") the bounded linear operator associated with the bilinear form in

2.4). Then A™t e LY, X) with |A7 gy x) < &7 if and only if ([2.4a)) and (2.4D)
hold. In this case, for any f €Y', the operator equation Ax = f (or equivalently the weak
problem, see (2.3])) has a unique solution x € X, which satisfies the a-priori bound

|y

K

lz]x <

14



2.2 Derivatives in function spaces

2.2

Derivatives in function spaces

Let F': X €« X — Y be an operator between Banach spaces X', ), and X # ¢J open.

(i)

(i)

(iii)

(v)

F is (Gateaux) directionally differentiable at x € X if the limit

dF(z. h) = lim F(z +th) — F(x)

€
t\.0 t Y

exists for all h € X'. In this case, dF'(z, h) is called directional derivative of F' at x
in the direction h.

I is Gateaux differentiable at x € X if F is directionally differentiable at x and
the directional derivative F'(z) : X 3 h — dF(x,h) € Y is bounded and linear, i.e.,
F'(x)e L(X,)).

F' is Hadamard directionally differentiable at x € X if the limit

F/(x,h) = Tim F(z +th') — F(x)

t\,0 t
h'—h

SN

exists for all h e X.

F is Fréchet differentiable at x € X if F is Gateaux differentiable at z and if the
following approximation condition holds:

1
lim ——|F(z+h)— F(z) — F'(z)h|y =0.
o TRl |F'(z + h) = F(x) = F'(x)h[y
If F is directionally /Gateaux/Hadamard/Fréchet differentiable at every z € X, X
X open, then F'is called directionally /Gateaux/Hadamard /Fréchet differentiable on
X.

Higher derivatives are defined as follows: Let F' be Gateaux differentiable in a neighbor-
hood X of z and F' : X — L(X,)) is itself Gateaux differentiable at z, then F' is called
twice Gateaux differentiable at x. We denote the second Gateaux derivative of F' at x by
F'(z) € L(X,L(X,Y)). Analogously, one defined the k-th order Géateaux derivative, as
well as the k-th order Fréchet derivative.

Proposition 2.2.1 (See [89] and [150]). Let X,), Z be Banach spaces and F' : X ¢ X —
V,G:YCY—Z,and X,Y # J open.

(i) For locally Lipschitz mappings in normed spaces, Hadamard and (Gdteaux) direc-

tional derivatives are equivalent.

(ii) Let F' be Hadamard (Gateaux) directionally differentiable at x € X, and let G be

Hadamard directionally differentiable at y = F(x). Then, the composite mapping
GoF is Hadamard (Gateaux) directionally differentiable at x € X and the chain rule
holds:

0x(Go F)(x,h) = 0yG 0 0, F,

where 0 denotes the Hadamard and (Gateaux) directional derivatives, respectively.
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(iii) Let F' be Fréchet (Gateauz) differentiable at x and let G be Fréchet differentiable at
F(z). Then, Go F is Fréchet (Gateaux) differentiable at x € X and the chain rule
holds:

(GoF)(z) = G'(F(x))F'(x).

(iv) If H: X xY — Z is Fréchet differentiable at (x,y) € X xY, then F(-,y) and F(x,")
are Fréchet differentiable at x and y, respectively. These derivatives are called partial
derivatives of F with respect to x and y, and denoted by 0, F (z,y) and 0yF (z,y),
respectively. Moreover, it holds that

F/(xay)(hmhy) = aa:F(xay)hx + ayF(xvy)hya
for (hg,hy) € X x Y.

(v) If F is Gateauz differentiable on a neighborhood of x € X and F' is continuous at x
then F' is Fréchet differentiable at x.

(vi) If F is Gateaux differentiable in a neighborhood X of z, then for all h € X with
{x +th : te[0,1]} = X, the following holds:

|F(z+h) = Fx)ly < sup [F'(z+th)h|y.
te(0,1)

2.3 Parametric operator equations

As mentioned briefly in the preceding section, many differential equations can be for-
mulated as variational problems, or equivalently as operator equations. The optimiza-
tion problems that will be studied later in this manuscript, are subject to such operator
equations. Uncertainties, which enter these problems through the operator equation con-
straints, are typically parameterized, resulting in so-called parametric operator equations
as constraints. We start this section by introducing some multiindex notation.

Multiindex notation Here and in the following we will use the following multiindex
notation: for a multiindex v = (v;);en with v; € Ny, where Ng := N U {0}, we denote its
order |v| =} ;. v; and its support as supp(v) := {j € N: v; > 1}. Moreover, we denote
the countable set of all finitely supported multiindices by

F:={veN): |supp(r)| < ©}.

Let y := (yj)jen be a countably infinite sequence of real numbers taking values in a
bounded domain U < RN. Hereby we use the notational conventions

(i) For m,v € F it holds m = v if and only if m; = v; for all j € N.

)
(ii) For m,v € F it holds m < v if and only if m; < v; for all j € N.
(iii) For m,v € F we define m + v := (m; + v;)jen for all j € N.

)

(iv) For m € F we define m!:= [ ],y m;!.
(v) For m,v € F we define () := sy = [ Lien (17))-
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(vi) b =[]y b;-/j, and 0° := 1.
s AU L et
(Vll) ay = Hjesupp(u) ayj’_’]j'

In particular, in a Banach space X the v;-th partial (Gateaux directional) derivative of
an X-valued function u(y) : U — X, that depends on countably many parameters y € U,
is defined as

where e; := (0,...,0,1,0,...) has value 1 in the j-th component and 0 otherwise.

We are interested in parametric families of bounded linear operators {A(y) € L(X,Y”) :
y € U}. Later each y; will be a realization of an independent random variable, cf.,
Example and Chapter [3] - Section [7.2]

The precise dependence of the operators A(-) on the parameter sequence y is crucial for
our regularity and approximation results later in this manuscript. Therefore we require
A(y) to be real analytic. Recall that a real analytic function is infinitely differentiable and
coincides, in an open, nonempty neighborhood of each point, with its Taylor series about
that point. This is detailed in the following, see also [I11].

Assumption 2.3.1. The parametric operator family {A(y) € L(X,Y') : y € U} is a
reqular p-analytic operator family for some 0 < p < 1, that is

(i) The operator A(y) is invertible for every y € U with uniformly bounded inverse
A Y (y) e LY, X), i.e., there exists C > 0 such that

sup [A(y) M zvrx) < C.
yeU
(ii) For each y € U, the operator A(y) is a real analytic function with respect to y.
Precisely, this means there exists a nonnegative sequence b = (b;)jen € fp(N)ﬂ such

that for all v € F\{0} it holds that
Sup |A(0) ™y A(y) | £(x x) < Cb” (2.5)
ye

for the same C as in (i).

Affine parameter dependence The case in which the operator depends affine on the
parameters is well studied in the literature. This dependence structure arises for instance
in diffusion problems with diffusion coefficients parameterized in terms of a Karhunen-
Loeve expansion. The operator A(y) can then be written in terms of a family of operators
(A;)jen, such that

A(y) = Ao+ D y;A; YyeU. (2.6)
jeN

We will now present conditions under which the operator family (2.6 satisfies Assump-
tion 2.3.11

®Here and in the following, for 0 < p < 00, we denote sequence spaces by ¢7(N) := {(z;)en : s |l <
}. Defining [[(z;)jen|7oy = 251 |57 for p € [1,00) and [(z;)jen|7oqey = supjen|z;| for p = oo,
the ¢P(N) spaces are Banach spaces which satify ¢F(N) < ¢9(N) for 1 < p < ¢ < o and the duality
P(N) = ¢9(N) for 1 < p,q < o0 with p™! +¢7' = 1 as well as £*(N) = ¢*°(N). Moreover, £*(N) is
reflexive for 1 < p < o0, separable for 1 < p < o0, and a Hilbert space for p = 2.
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Assumption 2.3.2. The operator family (A;)jen, in (2.6) satisfies

(i) The bilinear form associated with Ag € L(X,Y") satisfies the inf-sup-conditions (2.4)
with constant vy > 0.

(ii) The operators (Aj)jen are small with respect to Ag in the following sense: There
exists a constant 0 < k < 1 such that

Z A Ajl2ox) < k-
jeN

Theorem 2.3.3. Under Assumption for each y € U, the parametric operator A(y)
satisfies the inf-sup-conditions (2.4) with v = (1 — k)~ > 0.
In particular, for f €Y', and for every y € U, the parametric operator equation

Aly)u(y) = f
admits a unique solution u(y) which satisfies the a-priori bound
sup Ju(y)x < L1 (2.7
yeU i
Proof. [111}, Theorem 2] O

Corollary 2.3.4. The affine parametric operator family (Aj)jen, in (2.6) satisfies As-
sumption with p =1 and

1 A5 2cx,v7
C=——— and bj=—"7""7"-
T (=R

(I =r)v
The solution u € X of the operator equation A(y)u(y) = f clearly depends on y. The
precise dependence is studied in the next paragraph.

forallj = 1.

Analytic dependence of solutions We will now present a result on the regularity of the
solution u of the parametric operator equation with respect to the parameters, which later
allows us to prove a-priori estimates for approximation and integration of the solution u(y)
with respect to the parameters y € U. In fact, it can be shown that the dependence of
u(y) on the parameter sequence is analytic.

Theorem 2.3.5. Let the parametric family of operators {A(y) € L(X,Y") : y € U} satisfy
Assumption for some 0 < p < 1. Then, for f €Y', and every y € U there ewists a
unique solution u(y) € X of the parametric operator equation

Aly)u(y) = f (2.8)

and the parametric solution family u(y) depends analytically on the parameters y € U,
with partial derivatives satisfying
bl/

¥ <C ||! ,
sup 5wl < Clilvli o

where b is defined in (2.5)).
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Proof. [111] Theorem 4]. O
Corollary 2.3.6. The affine parametric operator family (A;)jen, in (2.6) satisfies

sup |0y u(y)|x < C|fly [v|'6”, (2.9)
yeU

where C' and b are defined in Corollary[2.5.7.

Proof. We prove the result by induction with respect to |v|. If [v| = 0, then v = 0 and the
result follows from Corollary and the a-priori bound (5.13)). Given any multiindex

v € F with |v| > 1, suppose the result holds for any multiindex of order |v| — 1. For
0 # v € F we take the partial derivative dy of (2.8). By the Leibniz product rule we get

2 <;) (0y Ay)) (0 ™ u(y)) = 0.

m<v

Separating out the m = 0 term, we obtain

A (@uly) =~ Y (

m<v,m#0

v
m

)@awey ).
By Corollary and taking the norm we get

v v m ry—m
gl <c ¥ (V)i amleold muwl.

m<v,m#0

From (2.6) we infer that

Aly) ifm =0,
c?mA(y) = Aj ifm = ej,
0 otherwise.

Corollary again leads to

lesu(y)|x < . vibjldy “u(y)|x -

i>1
The induction hypothesis gives
loyu(y)lx < 5 vibiClf Iyl — ej[b”~ = C||f |y[v|B” .

je=1

2.4 Measure and integration theory

In the previous section we specified the dependence of the solution of the parameterized
operator equation on the parameter sequence. In this section we will introduce measures
of risk, that associate to each set of outcomes a real number, which quantifies the cost of
this particular outcome.

We start this section with some facts from measure theory. Let € be a set. Let P(£2) be
the power set of 2, i.e., the set of all subsets of §2, including the set itself and the empty
set. A collection of subsets ¥ < P() is called o-algebra on € if
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2 Selected facts from functional analysis and measure theory

(i) Qe X.
(ii) Ae ¥ implies A® := Q\A € .
(iii) (Aj)jeN e implies UjeN.Aj €.

The pair (€2,3) is called a measurable space, and elements of ¥ are called measurable
sets. A subset ¥/ < X which is a o-algebra is called a sub-o-algebra of ¥. An important
example is the Borel-o-algebra B(£2) on a topological space €2, which is the smallest o-
algebra that is generated by all open subsets of Q. The Borel-o-algebra on R? is generated
by {(a1,b1) x - -+ x (aq,bq) : aj < bj for all j € {1,...,d}}, and similar if the open intervals
are replaced by half-open or closed intervals.

Measure space A measure on the measurable space (£2,X) is a mapping u : ¥ — [0, o0]
with u(&) = 0 and

(UA) = X u). (2.10)

jeN jeN

for all sequences (A;)jeny < X of mutually disjoint sets A, N A, = & for n # m. The
triplet (€2, X, 1) is called measure space. The measure space and the measure p are called
finite if u(Q2) < o0 and o-finite if Q@ = (J;enA;j with A; € X, and p(A4;) < oo for all
j € N. An important exampe is the Lebesgue measure A on R? which is the unique
translation-invariant measure on the Borel-o-algebra on R? with A((ay,b1]x- - -x (ag, bq]) =

(b1 —a1) - (ba — aq)-

Null sets Let (€2, %, ) be a measure space. A measurable set A4 € ¥ is called a (u-)null
set if u(A) = 0. A property depending on z € Q is said to hold p-almost everywhere
(u-a.e.) or for p-almost every x € Q (u-a.e. x € Q) if there is a null set .4 € ¥ such that
the property holds for all x € Q\ A.

The measure space (2, %, 1) is called complete if every subset of any null set is measurable,
ie., if for all A" e P(Q2) with A" < A for A e X with u(A) = 0, it holds that A" € 3.

Measurability For two measurable spaces (2, %), (', %), a function f: Q — Q' is called
Y-¥-measureable (or just measurable if the corresponding o-algebras are clear from the
context) if f~1(A’) e ¥ for all A’ e Y.
Let (Q,%,u) be a measure space and (Q,%') be a measurable space. A measurable
function f: Q — Q' defines a measure

pp(A) = p(f7HA), AeX, (2.11)

on (£,%’), which is called the image measure of x under f.

Probability space Let (2,%, 1) be a measure space. If u(Q) = 1, then p is called a
probability measure, and (€2, 3, i) is called a probability space.

For a probability space (€,3, ), and a measurable space (2,Y'), a X-Y/-measureable
function f: Q — Q' is called a (€', ¥')-valued random variable.

Let D be a set. A function f: Q x D — ', such that f(-,z) is a random variable for each
x € D, is called a random field. In this work the set D will be a domain, i.e., a nonempty,
connected, and open set in R%.
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2.4 Measure and integration theory

The image measure py, see (2.11), of a probability measure p on (£2,X) under a measure-
able function f :  — Q' (or random variable) is a probability measure on the image space
(€¥,%'). In this case py is called the (probability) distribution of f under p.

Stochastic independence Let (2, %, 11) be a probability space, and let (02}, 3}) c(1,2) be
two measurable spaces. Two random variables (y;)je(1,2;, With y; : (2,5, p) — (9},%))
for each j € {1,2}, are called independent, if for every A; € E;, j € {1,2}, we have

p{x e Q:yi(x) e A and ya2(x) € As}) = H p({zeQ:y;(z) e Aj}).

je{1,2}

As shorthand notation, we say that two random variables (y;);ef1,2) are i.i.d (for indepen-
dent and identically distributed) if (y;);e(1,2y are independent and if the have the same
distribution piy, = fiy,.

The concept of stochastic independence can be readily generalized to finite families of
random variables. The existence of infinitely many independent random variables can
be shown using the results in the paragraph “Countably infinite product of probability
spaces” below.

Lebesgue space Integration of a measurable function with respect to a measure is called
Lebesgue integration. Let (,X, 1) be a measure space. A function f : Q — K is called
simple if f = 2?:1 a;ll4; for some scalars (j)jeq1,..ny € K and mutually disjoint mea-
surable sets (A;)jef1,..ny € X with u(A;) < oo for all j € {1,...,n}, where [4(z) is the
indicator function which is 1 if z € A for a set A € ¥ and 0 otherwise. The Lebesgue
integral of a simple function is defined as

| rami= Y ajuta.
Then we can define the integral of nonnegative measurable functions f : Q — [0, ] by
sup { J odu ¢ Q — Ris asimple function, and 0 < ¢(x) < f(z) for p-a.e. x € Q} .
Q

Finally, the integral of a function f : Q@ — K € {R,C} is defined through integration of
positive and negative parts, and real and imaginary parts, respectively:

. + 4, -
| s | rran= |
where T := max{f,0} and f~ := max{—f,0} if K =R and
| gaws= | Re(ryau-+i | tm(pan,
Q Q Q

if K =R. We say the function f is p-integrable if {, | f|du < .

If two functions f,g : 2 — K are p-almost everywhere identical, i.e., f(x) = g(z) for p-
a.e. x € ), then integration with respect to the measure p cannot distinguish between the
functions f and g. (u-)Almost everywhere equality hence defines an equivalence relation
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2 Selected facts from functional analysis and measure theory

among p-measurable functions and we locally denote the equivalence class of f by [f], to
clarify the distinction between functions and equivalence classes!]
Let (©,%, 1) be a measure space. For 1 < p < o0 we define the Lebesgue space by

LP(Q,%, 1, K) := {[f]. : @ — K : f is measurable and | f||r» < o0}, (2.12)
where | f| e is defined by

1o = ([ 1@ an) (213)
Q
for 1 < p < o0, and by
| fllze = essEsQup |f(x)]. (2.14)

The values of and coincide for functions which are equal p-a.e., i.e., for
all representatives of the equivalence class [f],. Hence, LP(Q, %, i, K) is well-defined by
. Moreover, by the identification of u-a.e. identical functions, the expressions
and become norms. In the following we will always make this identification, and
not make the distinction between functions f and equivalence classes explicit. Moreover,
we will usually use the abbreviations LP(Q) = LL(Q) = LP(Q, X, 4, K) when the omitted
notation is clear from the context.

Some properties of the Lebesgue spaces are the following:

(i) For 1 < p < oo, the LP spaces are Banach spaces.

(ii) For 1 < p < o the LP spaces are reflexive, with (LP) =~ L9 for ¢=! = 1 —p

Moreover, (L') =~ L*®.

-1

(iii) For p = 2 the LP space is a Hilbert space.

(iv) Using Holder’s inequality one can show that on finite measure spaces (2, X, u), 1 <
p < q < oo implies that LP < L9.

(v) Let (£2,X) be separable, then LP is separable for 1 < p < oo.

Lebesgue—Bochner space The solution of a parametric operator equation in general
takes values in a Banach space. A generalization of the Lebesgue integral to integrals over
Banach space-valued functions is the Bochner-integral, which is defined as follows:

Let (2,%, ) be a o-finite measure space and X a Banach space. A function f: Q — X
is called simple if f = >/, 2;14; for some (z;)je(1,...ny € X and mutually disjoint u-
measurable sets (Aj)jeq1,..ny € X with pu(A;) < oo for all j € {1,...,n}, where I4(z) is
the indicator function which is 1 if z € A for a set A € 3 and 0 otherwise. The X-valued
Bochner integral with respect to u over measurable sets A € ¥ of the simple function f is
defined as

f fdp:=> wiu(AnA). (2.15)
A i1

"A binary relation ~ on a nonempty set A, which associates two elements a € A and b € A, is a set of
ordered pairs (a,b) and hence a subset of the Cartesian product A x A. A binary relation is called
equivalence relation if (a,a) e~ for all a € A, and (a, b) e~ implies (b, a) €~, and (a,b) e~ and (b, c) e~
implies (a,c) e~ for all a,b,c € A. We define the subset [a]~ := {b € A : (b,a) e~} and call it the
equivalence class of a.
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2.4 Measure and integration theory

A function f :  — X is called Bochner-measurable (or strongly p-measurable) if there
exists a sequence ( f;) jen of simple functions such that lim; ., fj(z) = f(z) for p-a.e. z € Q.
If the approximating sequence (f;)jen of simple functions satisfies

hmJHf—ﬁhdu=m
J—90 JO

then f is called Bocher-integrable and the Bochner integral is defined by

ffdu= .1imf fidp.
Q J=0J0

Note that the limit is independent of the approximating sequence.

In order to ensure the ability to approximate every element f € X of a Banach space X
by a countable family (f;);en, we will in the following chapters mostly assume that the
Banach space X is separable.

A Bochner measurable function f :  — X is Bochner integrable if and only if the function
[flx : 2 — R is p-integrable and it holds, [90, Proposition 1.2.2]

‘LﬂﬂL<LUM@L

Moreover, for an operator A € £L(X,Y’) between two Banach spaces X,Y, and a Bochner
integrable function f: Q — X, Af is a Y-valued Bochner integrable function, and

LAfduzAJQfdu. (2.16)

Almost everywhere equality again defines an equivalence relation among strongly
p-measurable functions. In the following definition, let [f], denote again the equivalence
class of the function f.

For 0 < p < o the Lebesgue—Bochner space is

LP(Q, %, p, X) := {[f]u : @ — K : f is strongly measurable and || f|z»o,x) < ©},

where

£l zr,.x) == <JQ 1£115% du> !

for 0 < p < o0 and
| £z (o, x) = ess sup [ f(2)]x -
zel)

We will usually use the abbreviations LP(Q, X) = LE(Q2, X) = LP(Q, %, u, X) when the
omitted notation is clear from the context.
Some properties of the Lebesgue spaces are the following:

(i) For 1 < p < o0, the LP(£2, X) spaces are Banach spaces.

(ii) For 1 < p < oo the LP(, X) spaces are reflexive if the underlying Banach spaces
X are reflexive or X' is separable, with LP(Q, X)" =~ LY(Q, X') for ¢! =1 —-p~L.
Moreover, L' (2, X)' =~ L®(Q, X') if u is o-finite, see [0, Corollary 1.3.22].
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2 Selected facts from functional analysis and measure theory

(iii) For p = 2 the LP(Q2, X) space is a Hilbert space.

(iv) Using Holder’s inequality one can show that on finite measure spaces (2,3, i), for
1 < p < ¢ < oo implies that LP(Q, X) < L1(Q, X).

Let (£2,%, ) be a measure space, let 1 < p < oo, and let X be a Banach space. If
dim(LP(£2, X)) = 1, the following assertions are equivalent, see [90, Proposition 1.2.29]:

(i) LP(Q,X) is separable.

(ii) The space X is separable and there is a disjoint decomposition 2 = Q7 U g in
Y. such that u|o, (A) € {0,00} for all A € ¥|qo, and (Q2,3]|q,, tt|q,) is p-countably
generated. That is, there is a sequence (£2;);>1 in X, consisting of sets with finite
measure, such that for all A € ¥ there is a set A’ in the o-algebra that is generated

by (€2;);>1 such that p((A\A") U (A\A)) = Oﬁ

Pettis integral and weak measurability In spaces that are not separable, like the Banach
space of bounded, measurable functions L* (D), the notion of strong measurability and
Bochner integrability is not immediately available. Let (€2, 3, 1) be a measure space and X
a Banach space. A function f : Q) — X is called weakly Y-measurable if, for every ¢ € X',
the mapping ¢(f) : 2 — R is ¥-measurable. The mapping f is weakly u-integrable if for
all ¢ € X', the mapping ¢(f) : 2 — R is p-integrable. For a separableﬂ Banach space X,
the notions of strong p-measurability, weak Y-measurability coincide.

For a fixed, weakly p-integrable f : @ — X, we define Sy : X’ — LL(Q) 2 ¢ — ¢(f). Using
the closed graph theorem it can be shown that S; is bounded, see [90, Lemma 1.2.18].
The dual of Sy is called the Dunford operator Ty := 5% : (L;,(Q)) — X”. By identifying
(LIE(Q))’ with L;P(€2), we get for every g € L’(Q2) and every ¢ € X' that

wﬂw=@mw=memw.

Applying T to the indicator function I 4, we can define the so-called Dunford Integral of
fover Ae ¥ as

J fdp:=Tidae X", Aex, (2.17)
A

Note that the Dunford integral is in general an element of X”. In view of the canonical
embedding X < X”, we say that a weakly p-integrable function f is Pettis integrable if
for every A € ¥ its Dunford integral § 4/ dp belongs to X. In this case is called
Pettis integral of f over A € ¥ with the interpretation of elements of X” as elements of X
characterized by

<@LﬁM>=LMﬁM Vo e X', (2.18)

8For A € ¥ we denote Als = {An A : A e%} ={A e%: A 3} The restriction of u to L4 is
denoted by 4.

9The result can be stated more generally by replacing the assumption of a separable Banach space with
the condition that there is a p-null set N < Q such that the image f(Q2\N) c X is separable, since this
is always true if X is a separable Banach space, see [90, Theorem 1.1.20]
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2.4 Measure and integration theory

Clearly the Dunford and Pettis integrals coincide if X is reflexive. Moreover, for a Bochner
integrable f : @ — X, and for an approximating sequence (f;);jen © X of simple functions,
by each f; is Pettis integrable with Pettis integral of f; over A given by .
Taking the limit j — oo, we obtain that f is also Pettis integrable. Moreover, by the
definition of Bochner integral, for this f the Bochner and the Pettis integral coincide.
Hence the Pettis integral is a consistent extension of the Bochner integral.

Product measures Let (£21,X%1) and (22, 32) be two measurable spaces. The so-called
product o-algebra ;1 ® Y5 on 21 x s is the o-algebra generated by the boxed A; x As
with A; € 31 and Az € Xo. For two measures p1 on (€1,%1) and pg on (Q2,%s) there
exists a unique measure 3 ® p2 on (21 x Q9,37 ® 3g), called the product measure, such
that

p1 @ pa(Ar x Ag) = p1(Ar)pe(Az) VAL € X, VAr € X

Fubini's theorem An important result about the product of two probability spaces is
Fubini’s theorem: Let (Q3,%1, 1) and (g, 39, p2) be two o-finite measure spaces. Let
X be a Banach space, and let f : 1 x Q2 — X be pu; ® po-Bochner integrable. Then
f(x1,-) is pe-Bochner integrable for pi-a.e. x1 € Q; and z1 — SQQ f(z1,-) dug is p1-Bochner
integrable, see [90, Proposition 1.2.7]. Analogously, f(-,z2) is u1-Bochner integrable for
po-a.e. xo € lo and g — SQl f(-,x2) duy is pe-Bochner integrable. In particular we have

fﬂleQ fdm @ paz = Ll ( 0, flas, ')d/@)dul(%) = LQ < o ('7$2)dul)du2(x2).

Fubini’s theorem holds also for Lebesgue integrable functions in the case X = K.

Countably infinite product of probability spaces Let (Q;,%;, uj)jen be a countably
infinite family of probability spaces, and let (£2,%) be the product of the measurable
spaces (€2, %;)jen. That is, Q is the set of all sequences (z;)jen such that x; € ; for
each j € N ETI Moreover, for each j we define the coordinate projection y; : 2 — Q; by
yj(x) := x;, then the product o-algebra ¥ is the smallest o-algebra on 2 that makes all
these coordinate projections measurable, i.e., ¥ = J({yj_l(Aj),j € N}). Moreover, there
is a unique probability measure p on (£2,3) such that

,u(Al X e Ay X ; Qj> = ﬁuk(Ak)
k=1

j=n+1

for A € X, k =1,...,n and n € Nyg. The probability measure p is called the product
of the measures (;)jeny and we write pt = ®jenp;. Furthermore, for each j € N the
distribution of y; is p; and the random variables (y;);jen are independent. A proof can
be found, e.g., in [32, Proposition 10.6.1], or [81, Sec. 38, Theorem B]. This result is
a corollary to Ionescu-Tulcea’s theorem, see [104, Corollary 14.33]. Generalizations to
uncountable index sets are Kolmogorov’s extension theorem [104, Theorem 14.13] and the

0For general index sets J one defines the Cartesian product = X ez Y as the set of maps z : J —
U,jes §%5 such that z(j) € Q; for all j € J.
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more general Andersen—Jessen theorem, see [145, Chapter 10.6]. Note that these results
prove the existence of infinitely many independent random variables.

It can then be readily verified that if an arbitrary set of indices J is split into two disjoint
parts J1 and Jo giving 1 = ®jey, 1j and po = Qjeg, iy, then p1 @ po = jegpuj, see [13,
Chapter 3.5].

Example 2.4.1. Let Q; = [—1,1], and let pj be a probability measure on (€2;,B(£2;)).
Clearly ([-1,1],||) is a sepambleiﬂ metric space. Hence, by the more general result [13,
Lemma 6.4.2.] we have B(x;>1Q;) = ®;>1B(Q;) and the countable product of the mea-
sure spaces (4, B(Q;))jen is given by ([—1, 11N, B([—1,1]Y)), where [-1,1]N = xjen 2y,
see also [13, Example 7.6.1.]. Together with the product measure i = ®jenp; we define
the product probability space

([_171]N7£B([_1a1]N)7:U)- (2-19)

We usually deal with continuous functions that have compact domain. Such functions are
Bochner-integrable, see [165, Lemma A.1.5]. Let X be a Banach space, and let (2,5, )
be a finite measure space, where €2 is a compact topological space. Then any continuous
f:(9Q,8) — (X,B(X)) is p-Bochner-integrable.

Example 2.4.2. Let X be a Banach space. Observe that [—1,1] is compact and thus,
by Tychonov’s theorem [135, Theorem A3], the Cartesian product [—1,1]N = x jen[—1,1]
is compact with respect to the product topology. By [165, Lemma A.1.5], any continuous
function f: ([-1, 11N, B([-1,1]Y)) — (X, B(X)) is u-Bochner integrable, where i = Qjen
1s the probability measure in .

Vector measure A vector measure is the natural extension to Banach space-valued mea-
sures: Let (£2,%) be a measurable space and let X be a Banach space. Then a vector
measure is a mapping A : ¥ — X, that satisfies A(J) = 0 and

Mujendn) = Y AA;)),

jeN

for all sequences (A;)jen X of mutually disjoint sets A, N A, = & for n # m. Note
that the convergence of the series on the right-hand side is understood to be in the norm
of the Banach space X.

A vector measure A is said to have bounded variation if

n

|A|(A) = sup { Z IANA) | x : {A1, ..., A} a partition of A} < o0

i=1

for each A € 3, where a partition of A is a finite set of mutually disjoint measurable sets
whose union is A.

The vector measure X\ : ¥ — X is said to be absolutely continuous with respect to the
finite measure p on ¥ if and only if A\(£) implies p(A) = 0 for all A € 3.

A Banach space X is said to have the Radon—Nikodym property if the following result is
valid in the Banach space X:

"Tndeed the countable set Q N [0,1] is a dense subset of [0, 1].
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Radon—Nikodym property Let X be a Banach space, (2, ¥) a measurable space equipped
with a finite measure p, i.e., (2, %, u) is a finite measure space. Let A be a vector measure
of bounded variation, that is absolutely continuous with respect to the measure pu. Then
there exists a p-Bochner integrable function f :  — X such that

AMA) = L fdu

for every A € 3.

This result is not true in arbitrary Banach spaces, for a counterexample see [139, Example
5.15]. Using the notion of Radon—-Nikodym property one can characterize reflexivity of
the Lebegue-Bochner spaces. Let (€2, X, ) be a o-finite measure space, let X be a Banach
space, and let 1 < p < o0 with p~! + ¢~! = 1. The following assertions are equivalent, see
[90, Theorem 1.3.10]:

e X' has the Radon—Nikodym property.

e The mapping g — ¢, from L9(Q, X') — (LP(2, X))’ defined by

(frg) = fQ<f, G feIPQ.X)

establishes an isometric isomorphism between the Banach spaces L%(£2, X’)

~ (LP(Q, X)) 7]

Note that a Banach space X has the Radon—Nikodym property with respect to every o-
finite measure space, [90, Theorem 1.3.21] if X is reflexive or X is separable dual space.

Expected value Let (2,%, 1) be a probability space and X be a Banach space. The
mean or expectation of a random variable y : @ — X is m, € X such that

o(my) = E[6(y)] = jﬂ oy)du Ve X'

If E[|y|x] = §g lylx dp < oo, we conclude from ¢(m,) = E[¢(y)] = #(E[y]) and the
Hahn—Banach theorem, that

my = Ely] = LydueX-

Note that in Banach spaces the mean m, of y is in general an element of the bidual
space X” of X, and given by my(¢) := E[¢(y)], ¢ € X’. The integrability assumption
E[lly| x] < oo is sufficient but not necessary for the existence of m,, in X. For instance, if X
is reflexive and E[¢(y)] < oo for all ¢ € X', the Gelfand—Pettis theorem implies continuity
of the linear map ¢ — E[¢(y)] on X', and hence m, € X" = X, see [156, Chapter II.3].

12The assumption of o-finite p is only necessary for p = 1, i.e., can be dropped for 1 < p < o0, see [901
Corollary 1.3.22].
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Moments Let (€2, X, 1) be a probability space and let X be a Banach space. For k € N
the k-th moment of the random variable y : Q — X is the map M* : QF - R,

M (1, 0x) == Elor1(y), -, dr(y)] = JQ o1(y) - or(y) dps.

If E[|ly|%] = S lvl% dp < oo, then p* is a conitinuous symmetric k-linear for on X'.

In particular, the covariance of y is Covy, := Mg_my, ie., for p € X’

Covy (o1, d2) = E[p1(y — my)p2(y —my)] = L ¢1(y — my)pa(y —my) dp.

If E[ly|%] = S ly|3 dp < oo, then ./\/1321 and Cov, are continuous, symmetric, positive
bilinear forms on X', and

Covy(¢1, d2) = My (1, 92) — d1(my)pa(my) V1,69 € X'

Proof. Continuity of M’; follows from

(M (1, 1) <E[lor ()] o (y)]]
Ellyl5]lér @)l x|l x: Yo1,....61€ X .

Symmetry follows from ./\/l’;(qb,r(l), s Pr(r)) = Ml;(th ..., ¢) for all permutations 7 of
{1,...,k}. Moreover, for k = 2, positivity M2 (¢, ¢) = E[¢(y)?] = 0 follows by definition.
Since Cov,, := M;_my these properties hold also for the covariance. Moreover, for ¢1, ¢2 €
X’ we have

f ¢1(y — my)da(y —my) dp
Q

<
<

. fﬂ (61(9) — 61.(my)) (62(y) — da(imy)) dp

- f 61(9) (B2(y) — da(my)) du — f b1 (my) (62(y) — da(my)) ds
Q Q

_ f 61 (y)ba(y) dp — f 61(y) dp da(my) — 61 <my)f G2(y) dpt + b (my)ba(my)
Q Q Q

_ fﬂ 61(4)ba(y) i — b1 (my)a(my)

O

Change of variables Let (2, X, 1) be a measure space, let (', %) be a measurable space,
and let X be a Banach space. Let Y : Q — ' be measurable and let u : ' — X be
strongly measurable. Let uy = u(Y ') be the image measure of  under Y. Then, see
[90, Proposition 1.2.6], f(¢) is Bochner integrable with respect to p if and only if f is
Bochner integrable with respect to py, and then

L FOV)du = fﬂ fduy (2.20)

13 A mapping M* : X§:1 Q; — Kis called k-linear form if it is linear in each argument, i.e., for all A € K, for
alln e Q;, and for alli = 1,...,k, it holds that M*(ma1,..., Ams, ..., my) = AMF(ma, ... oma, o my)
and MF(ma,...,mi+n,...,mg) = M (ma,...,mi,...,me) + MF(ma, ..o on, . my).
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3 A general formulation of optimal control
problems under uncertainty

In this section we formulate the optimal control problem in a very general form and embed
existing results from the literature into the general framework. We analyze the general
problem under different sets of assumptions on the risk measure, the random variable cost
functional, the constraint and the uncertainty.

The structure of this chapter is as follows. We discuss several risk measures and classify
them according to their properties. Afterwards, we focus on the cost functional, which in
the context of optimal control problems under uncertainty, is a random variable. In par-
ticular, we present conditions which ensure differentiability of the risk measure composed
with the random variable cost functional.

Based on the results for the risk measure and the cost functional, we derive results about
the existence and uniqueness of solutions to the optimal control problem under a set of
assumptions about the constraint. Similarly, we can reformulate the problem in its so-
called reduced form provided that the forward operator fulfills certain conditions. Finally,
we are able to present optimality conditions for the general optimal control problem under
uncertainty.

At the end of this chapter we briefly focus on parametric linear forward operators, which
will play a central role in the remainder of this thesis. In particular, we establish a setting
which allows us to replace the almost surely formulation of the constraint by the weak
formulation in the uncertain parameters. This equivalence is used in Chapter [§] to derive
one-shot methods based on a penalization of the model residual.

In the following sections we develop efficient methods for optimal control problems that
have sufficiently high regularity with respect to the uncertain variables. We analyze the
different error contributions of our methods and verify our theoretical findings in numerical
experiments. In the last chapters we discuss further improvement of the solvers in terms
of efficiency. To do so, we impose appropriate assumptions on the risk measure, the cost
functional, the constraint, the uncertainty, and the regularization throughout this thesis.

However, most of the results presented in this section are not restricted to problems with
high regulartiy with respect to the uncertain variables. In fact, we only make few assump-
tions about the structure or distribution of the uncertainty in this chapter. Moreover, we
make few assumptions about the constraints, allowing for nonlinear constraints in many
results. Furthermore, only a few assumptions are made on the regularization and we em-
ploy moderate assumptions on the random variable cost functional. Hence, the presented
formulation covers a wide range of optimal control problems.

We start this chapter with the problem formulation and a detailed list of the most impor-
tant components of the optimal control problems under uncertainty.
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3 A general formulation of optimal control problems under uncertainty

3.1 Problem formulation

Let X',) and Z be Banach spaces, let (2,3, P) be a probability space, let U be a compact
topological space, and let (U,B(U)) be a separable metric space.
The optimal control problem under uncertainty has the following ingredients:

Uncertainty. The inherent randomness of the problem is described by a random variable
Y : Q — U. In many cases the random influence is parameterized, which leads to
product probability spaces of the form (2,%,P) = (X;en$;, X jen2;, ®jenP;) and
(U, BU),n) = (xjenUj, B(xjenUj), @jenpt;). In this case the randomness is de-
scribed by the countably infinite sequence of i.i.d. random variables Y = (Y})jen :
Q); — U; with realization y = (y;)jen € U. Note that the realization of the random
variable is usually denoted by y € U. The change of variables formula allows
us to work in the image space (U,B(U)) of the random variable Y equipped with
the image measure . When dealing with the realizations y € U, we will oftentimes
call them stochastic variables, parametric variables, or parameters.

Control. A fundamental component of an optimal control problem is the so-called control
or control variable z € Z. The space Z is called the control space. The control z is
a deterministic quantity, chosen by a controller and hence does not depend on the
stochastic variables y € U.

State. The state or state variable v can be steered using the control z € Z. For a fixed
control z € Z, the state maps the uncertainty y € U into the state space X. Hence the
state is typically a random field in some Lebesgue-Bochner space LI(U,B(U), u, X')
for ¢ € [1,0]. The dependence of the state u € X on the uncertainty y € U and the
control z € Z is described by the model.

Model. The underlying model is mathematically described by the map M : U x X x Z —
YV'. In particular, the so-called model equation or constraint M(y,u(y),z) = 0
relates the control to the state of the system. Moreover, for fixed control z € Z, the
state of the system is subject to the randomness. In most of our applications the
state u € X depends linearly on the control z € Z and analytically on the stochastic
variables y € U.

Cost functional. The cost functional J : U x X — R associates a nonnegative cost to
each pair of y € U and u(y) € X. For u : U — X, we refer to the Nemytskii
(superposition) operator

J(u)(y) = J(y,u(y)), yeU (3.1)

as the random variable objective function. The Nemytskii operator assigns a function
J(u) : U — R to the state u(-) : U — X. In order to account for the randomness
the objective function is composed with a risk measure.

Risk measure. For a given state u : U — X, for p € [1,00), the risk measure R :
LP(U,B(U),u,R) — [0,00] associates a nonnegative real number to the random
variable objective function J (u)(-).

Regularization. For stability reasons we introduce a regularization R(z) : Z — [0, 0] on
the control z € Z. In general a regularization can be viewed as a penalization of the
control variable in order to ensure desirable properties of the control.
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3.2 Risk measures

Control constraint. We also may impose additional direct constraints on the control z € Z,
i.e., the controls are elements of the admissible set Z,4 < Z.

For a > 0, we consider optimization problems of the general form

ueLq(IP\,’i)gezad R(J(u)) + aR(z) (3.2)

subject to
M(u(-),z) =0 in L)), (3.3)

for1 = % + % We abbreviated LY(X) = LY(U,B(U), u, X) for g € [1, 0], and analogously
for r. Typically, it will be the case that X < ) are reflexive Banach spaces.

This includes a wide range of optimal control problems, particularly very general con-
straints, various cost functionals, several risk measures, different input uncertainties, and
various regularizations. We do not cover constraints on the states, which will be subject
to future work.

Other possible formulations include the replacement of the random input quantity, e.g.,
with its mean. As a result, only one deterministic optimal control problem needs to be
solved. However, the solution obtained with this approach is in general not robust with
respect to the randomness of the problem. A further possible formulation of the problem
is the path-wise solution of many optimal control problems, and then computing statistics
of the obtained result afterwards. In general the obtained solution is not a solution of an
optimal control problem and has limited meaning. Moreover, in some applications it can
make sense to have a stochastic control, i.e., a control z which depends directly on y € U,
see, e.g., [4,24] 108, 1T1]. We do not consider such cases and rather suppose a controller is
interested in a single deterministic control of the system. Thus we focus on the approach
that leads to a robust solution of the optimal control problem — with respect
to variations of the uncertain variables, cf., e.g., [75} [76] [77, 105 106l 157, 158] and many
others.

3.2 Risk measures

The presence of uncertainty or randomness in the optimization problem leads to a random
variable objective function. Since there is no total order on random variables, one cannot
minimize a random variable directly, but needs to define a meaningful order, as for exam-
ple, by the introduction of a risk measure R : LP(U,B(U), u,R) — R u {0}, that maps
the random variable objective function to the extended real numbers. While the possible
choices for R are virtually limitless, in this section we discuss sensible properties for mea-
sures of risk and derive optimality conditions. The proper choice of the risk measure and
its desired properties may depend on the problem at hand.

Perhaps the most straightforward way to account for the risk in the optimization problem is
considering the expected value R = E as a risk measure, which is oftentimes referred to as
the risk-neutral case. A solution, if it exists, optimizes the random outcome J(u(y),y) on
average. This is justified, for instance, when one is interested in the long-term performance,
irrespective of the fluctuations of specific outcome realizations. Based on this definition
we characterize risk-aversion as follows: we say a risk measure R : LP(U,B(U),u, R) —
R U {0} is called risk-averse (see, [130]) if

R(X) > E[X] (3.4)
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3 A general formulation of optimal control problems under uncertainty

for all nonconstant X € LP(U,B(U), 1, R).

Since the concept of risk measures is not limited to the application in optimal control
problems, in this section we use the generic notation X € LP(U,B(U), u, R) for a random
variable. However, one can think of X being the random variable objective function .
A risk measure R is called regular if it satisfies and if it

(D1) is proper, that is R(X) > —oo for all X € LP(U,B(U), u, R) and

dom(R) := {X € L’(U,B(U), 1, R) : R(X) < o0} # &.

(D2) is lower semicontinuous or closed, that is its epigraph
epi(R) := {(X, 1) € LP(U, B(U), 1, R) x R : R(X) < n}
is closed in the product topology on LP(U,B(U), u,R) x R,

(D3) is convex, that is R(AX + (1 — A)X) < AR(X) + (1 — M)R(X), for all A€ [0,1] and
all X, X e LP(U,B(U), i1, R).

(D4) satisfies R(C) = C for all constant random variables C' € R.

As we will see in the following subsection, regular risk measures provide a minimal set of
assumptions to ensure that many essential properties hold. Note, that suggests that
the expected value is not capable of adequately representing risk in many applications. To
this end we introduce risk-averse measures.

3.2.1 Mean based risk measures

The idea of mean based risk models is to characterize the uncertain outcome by the mean
E, and a second scalar characteristic D describing the risk or dispersion. This approach
allows to formulate the problem as a parametric optimization problem, and it facilitates
the trade-off analysis between mean and risk. For ¢ = 0, we consider

R(X) = E[X] + ¢D(X),

for a proper random variable X. In the case of the variance D := V for example, we chose
X e L2(U,B(U), i1, R). The variance treats the excess over the mean as the shortfall, i.e.,
positive and negative deviations from the mean equally. In minimization problems, we are
not concerned if a particular realization of the random variable objective J is significantly
below the mean of J, however we do not want it to be large. Two particular classes of
risk functionals, which we discuss next, play an important role in the theory of mean-risk
models.

Semideviations
An important group of risk functionals (representing dispersion measures) are central

semideviations. The upper semideviation of order p is defined as

o (X) = (E[(X —E[X])2])"

where p € [1,00) is a fixed parameter, and (x)4 := max {0,z}. The upper semideviation
is well defined and finite valued for all X € LP(U,B(U), u, R).
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3.2 Risk measures

The upper semideviation measure is appropriate for minimization problems as it penalizes
excess of X over its mean. For maximization problems one would consider

1
o, (X):= = (E[(E[X] - X)L ]) 7.

In the special case of p = 1, first order semideviations are related to the mean absolute

deviation, in particular it holds o7 (X) = o7 (X) = %al(X) for all X e LY (U, B(U), u, R),

where
o1(X):=E|X — E[X]]|.

Quantiles and Value-at-Risk

Let Fx(x) = u(X < x) be the cumulative distribution function of the real valued random
variable X and let o € (0,1). We define the left-side a-quantile of Fx by

Fit =1inf{t : Fx(t) = )
x (@) %Q]R { (t) = o}
and the right-side a-quantile by

sup {t : Fx(t) < a}.

teR
If X represents losses, as is the case in the minimization problems in this work, the left-side
quantile F )}1(04) is also called Value-at-Risk with confidence level o and denoted by

V@R, (X) := Fyl(a) =inf {t : p(X <t) = a}
ek (3.5)
=inf{t : (X >t) <1—a}
teR
It has the following interpretation: losses larger than V@R, (X) occur with probability
not exceeding 1 — a.

Weighted Mean Deviations from Quantiles
For X € LY(U,B(U), i, R) we define the weighted mean deviation from a quantile as
W i= E [max {(1 - a)(Fg(a) - X),a(X - Fg'(a))}] -
Defining ¢(t) := E[max {(1 — a)(t — X), (X — t)}] one gets the alternative representation

Wy = I{éﬁl ¢(t>

Indeed, the right- and left-side derivativeﬁ ¢, (t) and ¢ (t) of ¢ at a minimizer ¢ are

¢l (t)=(1—a)u(X <t)—au(X >1) >0,
¢ ) =1—-a)u(X <t)—au(X =t)<0,

and thus u(X < t) < a < pu(X <t),ie., every a-quantile is a minimizer of ¢. As we shall
see in the next paragraph, the mean deviation from a quantile is related to the Average
Value-at-Risk.

MTet f : I — R be a real-valued function defined on a subset I — R. Let a be a limit point of the
set {z € D : z > a}. Then f/(a) is the right-side derivative of f at a if it is the right-sided limit
fi(a) = limyq W A point z in a subset S of a topological space X is called limit point of S,
if every neighborhood (a set including an open set that contains x) of  contains at least one point of
S different from z itself. The right-sided limit is defined as the real number L, if for all € > 0 there is
a ¢ > 0 such that for all z € I with 0 < z —a < § it holds that |f(z) — L| < e. The left-sided limit and

derivative is defined analogously.
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3 A general formulation of optimal control problems under uncertainty

Average Value-at-Risk

Suppose one wants to satisfy the (chance) constraint
V@R, _,(X) <0. (3.6)

Recalling (3.5)), this is equivalent to the constraint u(X < 0) > 1 — o and hence can be
written as

E[L(00)(X)] < e,

where 1 ooy(7) = 0 if 2 < 0, and 1(g ) (z) = 1 if x > 0.

Such constraints are difficult to handle, since the step function 1 4)(X) is not convex,
and discontinuous at zero. As a result, chance constraints are often nonconvex, even if
the function z — J(S(y)z) = X is convex almost surely. To avoid these difficulties such
problems are often approached by constructing a convex approximation of E [Il((),OO)(X )]
Let ¢ : R — R be a nonnegative valued, nondecreasing, convex function such that ¢(z) >
Lo,y (z) for all z € R. Noting that 1 o) (7t) = L(g)(x) for any t > 0 and = € R, we
have that ¢(tz) > 1(g,)(7), and hence the following inequality holds:

inf E[¢(¢X)] = E[1(0,00)(X)] -
We obsere that the constraint

inf E[¢(tX)] < o (3.7)

t>0

is a conservative approximation of in the sense that the feasible set defined by
is contained in the feasible set defined by .

Aiming to make the upper bound as tight as possible, we take a piecewise linear function
¢(x) = max {1 + vz, 0} for some v > 0. Since is invariant with respect to change of
d(yz) to ¢(x), we have that ¢(z) := max {1 + x, 0} gives the best choice of such a function.
For this choice of ¢, we have that is equivalent to

%n(f)’{tE[max{t_l +X,0}]—a} <0,
>

or equivalently after replacing t with —¢~!

inf{t + o ' E[max{X —t,0}]} <O0. (3.8)

For X € LY(U,B(U), 1, R) we define the Average Value-at-Risk of X at level 1 — a by
AV@R; (X)) := inf{t + o ' E[max{X —t,0}]}.
€

Observe that ¥(t) := t+a~ ! E[max{X —t,0}] is a convex function, with derivative ¢/ (t) =
1+ a Y(Fx(t) — 1) if Fx(t) is continuous at t. In case Fy is not continuous at t, the
right- and left-sided derivatives are given by the same formula with Fx(t) replaced by
the right- and left-sided limits, respectively. Thus v attains a minimum on the interval
[inf{t : Fx(t) > 1—a},sup{t : Fx(t) <1— a}]. For any minimizer t* of ¢ we have

AVQ@R;_o(X) = t* + a 'E[max{X — t*,0}], (3.9)

where the second summand is clearly nonnegative. Thus AV@QR;_,(X) < 0 implies t* < 0,
and hence (3.8) is equivalent to AV@QR;_,(X) < 0, and provides a conservative approxi-
mation of (3.6). Note that (3.9)) holds for t* = V@QR;_,(X).
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3.2 Risk measures

Lemma 3.2.1. Let F(X) be convex and monotone, i.e., F(z) = F(y) for x =y, and let
G(z) be convex. Then F(G(X)) is convex.

Proof. By convexity of G and monotonicity of F we have
F(GOx + (1 - V) < FOG(2) + (1 - NG (),
and thus by convexity of F
F(GOa + (1 - N)y)) < AF(G(2)) + (1 — NF(G(x)).
O

Since AVQR;_,(X) is convex and monotone, the mapping z — AV@R;_,(J(S(y)z))
is convex provided z — J(S(y)z) is convex, and hence AVAGR;_,(X) < 0 is a convex,
conservative approximation of the chance constraint .

Moreover, there is a relation between the Average Value-at-Risk and the weighted mean
deviations from quantiles.

Theorem 3.2.2. Let X € LY(U,B(U), u,R) with cumulative distribution function Fy.
Then it holds

1 (! 1
Moreover, if Fx(x) is continuous at x = VQR(X), then
1 0
AV@R,(X) = f zdFyx(z) = E[X|X > VAR4(X)].
I —a Jvara(x)
Proof. See [137, Theorem 6.2]. O

Thus we have For a = 0 we get
1 1
AV@R,(X) — f V@R, (X) dr — f Fel(r)dr = f +dFy(z) — B[X],
0 0 R

and

1 1
il/ml T a L_a F' (1) dr = ess sup(X).

Moreover, AV@R,,(X) is continuous and monotonically increasing in « € [0,1). Thus we
have

E[X] < AV@R,(X) < ess sup(X).
and
V@R, (X) < AVAR,(X)

for a € [0,1) and X € L} (U, B(U), u, R).

Figure illustrates the relationship between the V@R, (X) and the VAR, (X) for X ~
u([o, 1]).

One can show, see, e.g., [I33] that the Average Value-at-Risk has certain properties that
characterize the class of coherent risk measures.
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3 A general formulation of optimal control problems under uncertainty

0.7

0.5 T
0.4

[ R R i ——"

Va@R,(X) E[X] AVGR,(X)

Figure 3.1: Let X ~ U([0,1]) be uniformly distributed in the unit interval and o = 0.4.
Then we have V@R, (X) = 0.4, E[X] = 0.5, and AVAQR,(X) = 0.7. In general
the AVQR,(X) is the average of the (here red) area between the cumulative
distribution function y = Fx(z) (here blue) and y = 1, to the right of the
V@R, (X).

3.2.2 Coherent risk measures

A popular class of risk measures is the class of coherent risk measures, which is character-
ized by the following conditions (see [7]). A functional R : LP(U,B(U), u,R) - R u {0},
for p € [1,00), is said to be a coherent measure of risk if the following conditions hold: For
X, X e LP(U,B(U), 1, R) it holds

(R1) (Convexity) R(AX + (1 —A)X) < AR(X) + (1 — M)R(X), for all X e [0,1].
(R2) (Translation equivariance) R(X + ¢) = R(X) + ¢, for all c e R.

(R3) (Monotonicity) If X < X p-a.e., then R(X) < R(X).

(R4) (Positive homogeneity) R(tX) = tR(X) for all ¢t > 0.

If a risk measure R satisfies only conditions - it is called convex risk measure.
Note that the condition |(R1)[ implies R(X1$%2) < R Xl);R(XZ), and thus with (R4)| it
follows that

R(X + X) < R(X) + R(X), (3.10)

for X, X € LP(U,B(U), 1, R). The property ([3.10) is called subadditivity. Subadditivity
and positive homogeneity |(R4)|imply in turn the convexity [(R1)|of a risk measure R. Thus
the convexity condition can be replaced by in the characterization of coherent
risk measures.
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3.2 Risk measures

Moreover, subadditivity has the interpretation that the risk of the sum of two quantities of
interest X and X is less or equal to the sum of the risk of X1, X». By adding uncertainty
X to X the total risk increases at most by the risk of X, i.e., the effect of diversification on
risk is considered. The translation equivariance means that the addition of a risk-free
quantity ¢ to the loss X, changes the risk of X exactly by c¢. For condition ((R3)) it is
assumed that X is larger than X for any possible outcome, that is X is always a higher
loss than X. The monotonicity of a risk measure ensures that in this case X has a higher
risk than X. Positive homogeneity ensures that a loss X =tXfort=>0 taking ¢ times
the value of X has ¢ times the risk of X.

Remark 3.2.3. In the case when the random objective function represents a reward that

is to be mazimized instead of a loss that is to be minimized, large realizations are preferred,
and we can define a risk measure R(X) = R(—X), where R satisﬁes -|(R4)l In this

case R satisfies and and

(R1’) (Translation equivariance) R(X + ¢) = R(X) — ¢, for all ce R,
(R2’) (Monotonicity) If X < X p-a.e., then R(X) < R(X).

Hence all statements regarding risk measure satisfying -|(R4) have their trivial coun-
terparts for risk measures satisfying [(R1), [([R1°), [(R2’), [(R4)

The axioms characterizing coherent risk measures guarantee a number of desirable prop-
erties to told:

Lemma 3.2.4 ([I37, Proposition 6.5]). Let R : LP(U,B(U), u,R) — R with p € [1, 0],
satisfy and|(R3). Then R is continuous and subdiﬁerentmbl@ on LP(U,B(U), u,R).

Lemma 3.2.5 ([137, Proposition 6.7]). Let R : LP(U,B(U),u,R) — R u {0} with
p € [1,0) be a proper risk measure satisfying |(R1), |[(R2) and|(R3), with dom(R) having
nonempty intem’orm Then R is finite valued and continuous on LP(U,B(U), u, R).

Besides the above continuity properties, the Fenchel-Moreau theorem, see, e.g., [137,
Theorem 7.82] allows the identification R = R** of R with its biconjugate R**, defined
by

R*™(X) = sup {¢€ XD LawsW),ur),Lr(UB W) R — R (€)}
EeLa(UB(U),u,R)

where the so-called conjugate R* of R is defined as

R*(E) = sup {¢& XD Lo (), uRr),Lr(UBU),uR) — R(X)}
XeLr(UB(U),uR)

and % +1 = 1. Particularly we have for R proper, convex, and lower semicontinuous, that
it has the representation

R(X) = sup {& X)) ur),Lrs0)umr) — R (€}
gedom(R*)

15 A vector z* is said to be the subgradient of a convex function f at a point = if f(y) > f(z) +{(z*,y — )
for all y € R™. The set of all subgradients of f at x is called subdifferential of f at x and denoted by
of(z). If 0f(x) is nonempty, f is called subdifferentiable at x.

15ee also m
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3 A general formulation of optimal control problems under uncertainty

Moreover, we have that the condition is equivalent to & > 0 p-a.e. for all £ €
LYU,B(U),u,R), and that is equivalent to E[{] = 1 for all £ € dom(R*), and
that holds if and only if R can be represented for all X € LP(U,B(U),u,R) by
R(X) = SUD¢edom(r*)(Es X)La(UBWU)1R),LP(UB (V) uR)> S€€ [137, Theorem 6.5]. In the case
p = oo the space LP(U,B(U), u,R) is equipped with the weak*-topology and paired with
LY (U,B(U), u, R). For an analogous dual representation one needs the additional assump-
tion that R is lower semicontinuous in the weak*-topology. For this special case we refer
to [137, Chapter 6.3].

3.2.3 Entropic risk measure and entropic Value-at-Risk

For 6 > 0 the entropic risk measure is defined by

1
R(X) = gln (E[exp (6X))]) .
Observe that R(X) < oo can be ensured for X € LP(U,B(U), u,R) with p = oo. It is

shown next, that R satisfies [(R1)| - [(R3)| and thus by Lemma is continuous and
subdifferentiable on L*(U,B(U), u, R). Using Holder’s inequality one gets

iy L s L
E[XY] < (BIX["])- (E[Y]])>,
for any 1 < r,s < oo satisfying 2 + 2 = 1. Setting X = exp((1—\)0X) and ¥ =
exp (\Y), r = 15, s = 1 for any A € [0,1], gives

Elexp (1 — A)0X + AY)] < (E [exp (0X)])' ™ (E [exp (6Y)])* .

Taking the In and dividing by 6 on both sides gives
1 1 1
7 In(E[exp((1 — A)0X + \0Y)]) < (1 — )\)5 In(E [exp(0X)]) + )\5 In(E [exp(8Y)]),

and thus the convexity [(R1)[of R.
The entropic risk measures are translation equivariant [(R2)} since for ¢ € R it holds that

R(X +¢) = %ln (E [exp (0(X + ¢)))]) = %ln (E [exp (6X))] exp (6¢))) = R(X) + c.

From the monotonicity of In and exp it follows that the entropic risk measures R are
monotonic, i.e., satisfy |(R3)l Moreover, we have

1 1

E[X] < a—ln (E[exp (61 X))]) < . In (E [exp (A2X))]) < ess sup(X), (3.11)
1 2

for 0 < 61 < 2. For nonconstant X € LP(U,B(U), u,R) and 0 < 0; < 62, (3.11]) holds

with strict inequality, see, e.g., [50].

The entropic risk measures are not positively homogeneous, i.e., do not satisfy [((R4)| This

deficiency is overcome by the so-called entropic Value-at-Risk, at level o defined by

EV@R,(X) = inf éln (

0>0

E [exp wxm) ,

l—«o

for « € [0,1) and EVQR,(X) = ess sup(X) for a = 1.
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3.2 Risk measures

The EV@R,, satisfies (R1)|-[(R4) and is thus a coherent risk measure. Moreover it is an
upper bound on the AV@QR,, and it holds

V@R, (X) < AVAR,(X) < EV@R,, < ess sup(X)
and
E[X] < AV@R,(X) < EVQR, < ess sup(X).

Figure [3.2] illustrates the behaviour of V@R, (X), AV@R,(X), and EV@R,(X) for dif-
ferent values of o and X ~ U([0,1]) being uniformly distributed in the unit interval, cf.,

[3].

1 ‘
— V@R
—AV@R
0.8 EV@R-
0.6 1
0.4 1
0.2} 1
O Il Il Il Il
0 0.2 0.4 0.6 0.8 1

Figure 3.2: Comparison of V@R, (X), AV@R,(X), and EVQR,,(X) for different values of
a and X ~ U([0,1]) uniformly distributed in the unit interval.

We will later see in Section that the entropic risk measures have certain regularity
properties, and hence they are well suited for the application of higher-order cubature

rules.

(R1)[ | |(R2) (R3) (R4)
E[X] Yes | Yes Yes Yes
E[X]+ cE[(X —E[X])2]7 | Yes | Yes | Ifce[0,1] | Yes
V@R, (X) No | Yes Yes Yes
AV@R,(X) Yes | Yes Yes Yes
EVa@R,(X) Yes | Yes Yes Yes
+1n (Efexp (0X)]) Yes | Yes Yes No
ess sup(X) Yes | Yes Yes Yes

Table 3.1: For v € (0,1),0 > 0, and ¢ > 0.
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3 A general formulation of optimal control problems under uncertainty

Remark 3.2.6. It is easy to see that all risk measures in Table[3.1] except the V@R, and
the expected value, E, are risk-averse. Hence E[X]| > —oo for all X € LP(U,B(U), u, R),
and {X € LP(U,B(U),u,R) : ess sup(X) < oo} # J are sufficient conditions ensuring
that all risk measures in Table are proper, i.e., satisfy . Furthermore, all risk
measures in Table satisfy . For risk measures satisfymg@ and continuity
(and hence lower semicontinuz’ty follows from Lemma . We conclude that the
risk measures in Table are regular ones, except for the expected value (not risk-averse)
and the V@R, (not risk-averse, not convez).

A major focus of this work is the design and application of efficient numerical methods for
the approximation of high-dimensional integrals introduced by the risk measures to the
optimal control problems. These methods heavily rely on the parametric regularity of the
integrands. For this reason, we focus on smooth risk measures, that inherit the parametric
regularity, such as the expected value and the entropic risk measures. The expected value
is in addition a coherent measure of risk and the coherent entropic Value-at-Risk can
easily be recovered from the entropic risk measures in an optimization problem by the
additional minimization with respect to the risk-aversion parameter 6, see Section [4.2.5
Approximations of other risk-measures typically rely on Monte Carlo methods, as for
instance in [I57], where the authors consider a combination of the expected value and the
variance in conjunction with a multilevel Monte-Carlo method.

We note that recent work on smoothing by preintegration [61] might enable the appli-
cation of efficient methods, that exploit the parametric regularity of the integrands, to
nonsmooth risk measures. While smoothing of risk measures, such as the AV@QR,, in [105],
has successfully been applied to PDE-constrained optimal control problems under uncer-
tainty, smoothing by preintegration of risk measures in optimal control problems under
uncertainty remains for future research.

3.3 Random variable objective function

The parameterized cost functional J : U x X — R associates a nonnegative cost to each
pair of y € U and u(y) € X. Recall from (3.1), that for u : U — X we refer to the
Nemytskii (superposition) operator

T (u)(y) = J(u(y),y), yeU

as the random variable objective function. The Nemytskii operator assigns a function
J(u) : U = R to the state u(-) : U —> X. Recalling that

ue LY(U,B,u,X) and Je LP(U,B,uR), (3.12)
we conclude that the Nemytskii operator maps from LY(U, B, u, X) into LP(U,B, u,R).
In this section, we show that from the following assumptions on the objective function
various desirable properties of the objective function follow.

Assumption 3.3.1.

(i) The mapping J : U x X — R is Carathéodory, that is J(-,y) is continuous for
p-a.e. y € U and J(u,-) is measurable for all u € X.
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3.3 Random variable objective function

(ii) For 1 < p,q < o0 in (3.12), there is v e LP(U,B(U),u,R) with v = 0 p-a.e. and a
constant C > 0 such that

T ()| < v(y) + Clul} (3.13)

For q = o0 and 1 < p < o in (3.12)), it holds that for all C > 0 there exists
b=0b(C)e LP(U,B(U), 1, R) such that

[J(u,y)| <bly) p-ae. VuedX |ulx<C.
For q = p =0 in (3.12)), it holds that for all C > 0 there is d(C) such that

|J(u,y)| <d for almost all y € U and for allue X, |ul|x < C. (3.14)

(i1i) For p-a.e. ye U, J(-,y) is convez.
Common objective functions are so-called tracking-type objective functionals.

Example 3.3.2. Consider a tracking-type functional based on LY(U,B(U), u, X) forq =2
and let X — Y in a Hilbert space Y with uw € Y. Then there is a constant C' > 0 such that
for all w e X it holds that

1 - - -
0< J(y,u) =5 luly) = aly < Ju@)l3 + [@l3 < Ju@)x + @l - (3.15)

By setting v(y) = |u]3, € LU, BU), u,R) < LP(U,B(U), 1, R) for p =1, the condition
is satisfied. Moreover, for given y € U the mapping J(-,y) : X — R is continuous
as the composition of continuous mappings. If u(y) is Bochner integrable, |u(y)|x is
Lebesgue-integrable, and hence it is in particular measurable. Thus J(u,-) is measurable
for all w € X. For given y € U, it is easy to verify the convexity of J(-,y). For given
y € U, the norm || - —ul|lx : X — R is convex, because of the absolute homogeneity and
the triangle inequality of the norm, see Section . Clearly the function x — x? is convex
and monotonically increasing for x = 0, and hence by Lemma J(-,y) is convex for

giwen y € U, which in turn implies Assumption (i)}

Theorem 3.3.3 ([106, Theorem 3.5]). Let Assumption - hold. Then the
Nemytskii operator J : LY(U,B(U), p, X) — LP(U,B(U), 1, R) s continuous.

Corollary 3.3.4. Let R : LP(U,B(U), u, R) — R with p € [1,00] satisfy|(R1) and|(RS3),

and let Assumption -[(i)). Then the composite functional R o J is continu-
ous. If in addition Assumption holds, then R o J is conver and weakly lower

semicontinuous.

Proof. Continuity of R o J follows from the preceeding theorem and Lemma Con-
vexity of R o J follows from Lemma [3.2.1} Thus the composite functional is convex and
continuous on a Banach space and hence it is weakly lower semicontinuous (see, e.g., [155]
Theorem 2.12]). O

Theorem 3.3.5. Let the conditions of the preceeding corollary hold. In addition, let
RoJ : LYU,BU),u,X)— LP(U,B(U),u,R) be coercive, as well as 1 < g < o0 and X
be a reflexive Banach space. Then there exists u*(y) € LY(U,B(U), p, X) with

RI@I) = it RIT)())
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3 A general formulation of optimal control problems under uncertainty

Proof. The composite objective functional R o J is weakly lower semicontinuous and
coercive on a reflexive Banach space. It is well-known (see, e.g., [9, Theorem 1.5.6]) that
there exists a minimizer u*(y) € LY(U, B(U), u, X) of Ro J. O

Example 3.3.6. Let R = E and let J be a tracking-type functional, see (3.15). Then
there exists u* € LY(U,B(U), u, X), with ¢ = 2, such that

1 ~ : 1 N
- [2|u*(y) - u@] TR [2|u(y) - ug’} '
We know that E is coherent and the tracking-type functional satisfies Assumption
—. Thus RoJ is weakly lower semicontinuous. Moreover, the space X is reflexive since
it is a Hilbert space. Thus LY(U,B(U), u, X) is reflexive for 1 < q < o0, i.e., in particular
for ¢ = 2. Finally, it is easy to see, that R(J) is coercive, i.e., ||l rawsw)ux) — ©
implies |R(J (u))| — oo.

Theorem 3.3.7 ([106, Theorem 3.9]). Let Assumption |3.3.1| - |(#53) hold. Then J
is Gateaux directionally differentiable. If J is in addition locally Lipschitﬂ continuous,
then J is Hadamard directionally differentiable.

Theorem 3.3.8 ([L06, Theorem 3.11]). Suppose J(y,-) is continuously Fréchet differ-
entiable with respect to u € X for p-a.e. y € U, and there exists an a > 0 and K €
L*(U,B(U), i, R) with

s Jpa/la= (1 +a)p) Fqg>{1+a)p,
0 ifq=(1+a)p

such that
|0uJ (Y, u) — uJ (y,v)| < K(y)|u— vl

for pu-a.e. y € U, where 0,J denotes the partial derivative with respect to u.
Then J is Fréchet differentiable from LY(U,B(U), u, X) into LP(U,B(U), u,R). More-
over, the derivative of J is

T (u) = 0y J (-, u(-)) forue LYU,BU),u,X).

In this section we discuss which of the discussed risk measures are Fréchet differentiable.
In this regard, an important result is the following.

Theorem 3.3.9 ([107, Theorem 7]). Let X be a real Banach space and F : X — R be
proper, convez, closed and positively homogeneous satisfying F'(0) < co. Then the following
statements are equivalent:

(i) F is Gateauz differentiable at zero.

(ii) F is Gateaux differentiable everywhere on X.

"Let (X,d,) and (Y, d,) be two metric spaces. A function f : X — Y is called Lipschitz (continuous)
if there exists a real constant L > 0 such that dy (f(z1), f(z2)) < Ldx(x1,22) for all 1,22 € X. A
function f is locally Lipschitz (continuous) if for every x € X there exists a neighborhood U of z such
that f restricted to U is Lipschitz.
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3.3 Random variable objective function

(i1i) F is a bounded linear functional on X.
From this theorem we directly obtain the following result.

Theorem 3.3.10 ([107, Theorem 1]). Let (U, B(U), ) be a probability space and let
LP(U,B(U), p,R) with p € [1,00). If R : LP(U,B(U), u,R) — R is a coherent risk mea-
sure, then R is Fréchet differentiable if and only if there exists O € LP(U,B, u, R)" with
¥ =0 p-a.e., E[¥] =1, and R(X) = E[9X] for all X € LP(U,*B, u, R).

Thus the only Fréchet differentiable coherent risk measures are linear functionals. This
includes the expected value.

Theorem 3.3.11 ([50, Lemma C3]). Let )Y be an open subset of a Banach space X and
let J:U x X — R be a parameterized random variable functional with expected value
j: X > R, given by

ﬂw—Lﬂuww.

Suppose that J(y,u) € LY(U,B(U),u,Y), and for a.e. y € U let J(y,-) be Fréchet dif-
ferentiable at u, with derivative 0,J(y,u). Moreover, let C(-) € LY (U, B(U), u,R) such
that for all v e Y and almost every y € U it holds that ||0yJ(y,u)||x < C(y). Then j is
Fréchet differentiable at u and

§'(u) = E[0u] (y, u)] .

Example 3.3.12. The tracking-type objective functional considered in (3.15) is Fréchet
differentiable at u for every y € U, with Fréchet derivative

0T (g wh = Culy) — @ hyy .

This is true since
() +h— 3 = 7 July) — 13 + Culy) — 2,y + A1}
and thus
1
J(yvu + h) - J(y’u) - ‘],(y7u)h = QHhH%) = T(h, ’LL)
satisfies

r(hyu) _ 5lhl3 1

Inly — nly 2

Theorem 3.3.13. Let J(y,u) be the tracking-type objective functional considered in
and let R(J(-,u)) = 4 In (E[exp (0J(-,u)]) be the entropic risk measure for some 6 € (0, 0).
Furthermore, assume exp (0.J(-,u)) € LY (U, B(U),p1,Y) and exp (0J(y,u))0uJ (y,u) <
C(y) for some C € LY(U,B(U), 1,Y), where for a.e. y € U, 0,J(y,u) denotes the Fréchet
derivative of J(y,u) at w. Then the Fréchet derivative at u of the composite functional

R(J(-,u)) is given by

[y =0 as [hlly — 0.

1
[exp (6 (- u))]

GuR(I () = = Elexp(0 J (-, 1))duJ (-, u)]. (3.16)
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3 A general formulation of optimal control problems under uncertainty

Proof. The application of the chain rule gives

1
[exp (0(-, u))]

From Example and the chain rule we obtain the Fréchet derivative of the integrand
ovexp(l J(y,u)) = exp(0 J(y,u))oyJ(y,u) for a.e. y € U. Moreover, by assumption we
have E[exp(6 J(-,u))] € LY(U,B(U), 1,Y) and exp (0J(y,u))ouJ (y,u) < C(y) for some
Ce LY(U,B(U),u,Y). Thus, from Theorem we conclude that

OWR(J (- u)) = B Ou(Elexp(0 J (-, w))]) .

Ou (E[exp(9 J(,u))]) = Elexp(0 J(-,u))0uJ (-, u)],

as required. ]

3.4 Existence and uniqueness of solutions

In this section we will discuss conditions that guarantee existence and uniqueness of solu-

tions of the problem (3.2) - (3.3]).
Let Z,X and Y be reflexive Banach spaces and j : LI(X) x Z — R, with j(u,z) =
R(J(u)(y)) + aR(z) and M : U x X x Z be continuous for almost all y € U.

Assumption 3.4.1.
(i) Z4q < Z is convex and closed.
(ii) Xyq < L9(X) is convex and closed, such that the feasible set is nonempty.
Fag = {(u,2) € Zaq X Xag : M(-,u(-),2) =0e LYY} # & .
(111) The model equation M (-,u(-),z) = 0€ LY(Y") has a bounded solution operator Z,q 3
z—ue LI(X).
(iv) LUX) x Z 3 (u,z) — M(-,u(-),2) € L1(Y') is continuous under weak convergence.

(v) Assume that j(u,z) := R(J(u)) + aR(z) is weakly sequentiallﬂ lower semicontin-
wous, i.e., (ug, zk) — (u, z) implies j(u,z) < liminfg_o j(ug, 2i).

Remark 3.4.2. In view of Corollary Assumption is true if Assump-
tion holds for J, if R satisfies|(R1) and|[(R3), and if R(z) is weakly (sequentially)

lower semicontinuous. This follows from the superadditivity of the limit inferior:

(f + 9)(u,z) < HUminf f(ug, 2) + Hminf g(ug, 2,) < Hminf(f + g)(ug, 2x) ,
k—00 k—o0 k—0o0

for (ug, zr) — (u, z) and weakly (sequentially) lower semicontinuous functionals f,g.

Theorem 3.4.3. Let Assumption[3.4.1 hold and let Z,4 be bounded or j be coercive. Then
(3-2) — (3.3) has a solution.

80n a metric space X, (weak) sequential lower semicontinuity at z € X, defined by f(z) <
liminfy_o f(zx) for zx — = (weakly, i.e., xx — x), is equivalent to (weak) lower semicontinuity,
defined by {z € X : f(z) < ¢} being closed (in the weak topology) for all ¢ € R. For convex functions, a
well-known consequence of the Hahn—Banach theorem (see, e.g., [135, Theorem 3.2]) is that, the lower
semicontinuity with respect to the strong topology of X is equivalent to the weak (or weak sequential)
lower semicontinuity.
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Proof. Let (ug, zi) € Faq be a minimizing sequence, i.e.,

hm J(ug, zi) = J* inf  j(u,z)>—o0,
k—oo (u,z)eFad

where j is defined in Assumption The minimizing sequence (of controls) is
bounded, since either Z,4 or j(u, z) is coercive. The boundedness of the control-to-state
mapping (see, m ensures the boundedness of the state sequence. From the reﬂexivity of
Z x Lq(X ) we conclude that there is a Weakly convergent subsequence (ug,, 2,) < (Ug, 2k)
and (u*,z*) with (ug,, z,) — (u*, 2*) as i — OOH By Assumption u. (i) and |(ii)} n, the
sets Zad and X,q are Weakly Sequentlally@ closed as they are convex and closed sets in
Banach spaces, see, e.g., [0, Theorem 3.7]. This implies together with the continuity under
weak convergence of the model, Assumption “m that the feasible set F,q is weakly
sequentially closed and thus (u*, z*) € F,q. By Assumption [3.4.1] m- we obtain

g = lim j(ug,, 2,) = j(u*,2%) = j*,
1—00
where the last inequality follows from the feasibility of (u*,2*). In particular, we have
j* > —o0. O

Theorem 3.4.4. Let the assumptions of the preceeding theorem hold. The solution is
unique if a > 0 and R(z) is strictly convex and if the state-to-control mapping A : u — z
is injective or R(J (u)) is strictly convex.

Proof. We know that R(J(u)) is convex in u and R(z) is strictly convex in z. Assume
there are two minimizers (u1, z1) and (u2, 22), ie j(ul,zl) = j(’LLQ,ZQ) < ju,z)V(u,2) €
Xad X Zaq, where j is defined in Assumption Let (@,2) := (%, %) and
R(J (u)) be strictly convex, then

J@,2) = RO (@) +aR(E) < 5(RT () +aR() + 3(RIT (w2)) +aR(z2))
1. L.
- §j(ul,zl) + 5](“2722)
= j('LLl,Zl)v

which contradicts the assumption of two minimizers. If R(J(u)) is only convex and
z1 # z9, then the above inequality remains true. If z;y = 29 the injectivity of A implies
u1 = ug and thus gives uniqueness. ]

3.5 Reduced formulation of the optimization problem

Assume that our mathematical model M is well-posed. That is, there exists a unique solu-
tion u € L4(X') such that for z € Z the constraint holds with equality, i.e., M(-,u(:),z) = 0
in L1()"). We call the operator S(z) : U — L%(X) defined by u(y) = S(z)(y) for each
z € Z, the solution operator of the model M. The formulation of the so-called reduced

YEvery bounded sequence in a reflexive Banach space has a weakly convergent subsequence, see, e.g., [89)
Theorem 1.17]

20Weakly sequentially closed and weakly closed in the sense of weak topology are equivalent in reflexive
Banach spaces
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3 A general formulation of optimal control problems under uncertainty

problem is based on the substitution of the state u € LI(X’) by the solution operator for
given control S(z). For a > 0, the reduced optimization problem is of the general form

min R(J(Sz)) + aR(z). (3.17)

2€Z0d
In order to ensure well-posedness we make the following assumptions.
Assumption 3.5.1.
(i) The mapping S(z) : U — X is strongly u-measurable for all z € Z,q.

(ii) There exists a nonnegative increasing function p : [0,00) — [0, ), and a nonnegative
random variable C' € LP(U,B(U), u, X) with p € [1, 0] satisfying

[5(=)|x < Collzl2)  p-as.,
for all z e Z44.

i11) Weak convergence of control sequences z; — z € Z,q implies weak convergence of the
J
soutions S(zj) — S(z) in X p-a.s.

(iv) There exists an open set E < Z with Z,q < E such that the solution map z — S(z) :
E — LY(U,BU), u, X) is continuously Fréchet differentiable.

By Assumption [3.5.1][(7)] - it holds that S(z) € L4(X) is bounded for z € Z,4. If in
addition, Assumption 3.5.1 holds, we have weak convergence S(z,) — S(z) in LI(X).

Theorem 3.5.2 ([106, Proposition 3.8]). Let Assumption - and Assump-
tion[3.3.1 hold. If R is proper, closed, monotonic, convez, and subdifferentiable at J(S(z))
for some z € Z,q, then the composite functional (Ro J o S) : Z,q — R is weakly lower
semicontinuous at z.

Assumption 3.5.3.
(i) Z4q € Z is convex and closed.
(ii) Let the feasible set
Faa = {2 € Zaa : M(-,5(2)(-),2) =0 € LYV, S(2) € Xaa} # &
be nonempty.

(i11)) Z 3z~ M(-,S(2)(+),2) € LI(Y') is continuous under weak convergence.

Theorem 3.5.4 ([106, Proposition 3.12]). Let Assumption Assumption
- and Assumption hold. Let R : IP(X) — R be a proper, closed, convex, and
monotonic risk measure, taking values in R and let R : Z — R be proper, closed, and
convez. Suppose that Z,q is bounded or R(J(Sz)) + aR(Z) is coercive, then has a

solution.

Proof. Since R takes values in R and fulfills the axioms |(R1)| and |(R3)} it is continuous
and subdifferentiable by Lemma In particular, R is subdifferentiable at 7 (S(z)) for
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any z € Z,q. By Theorem the composite functional (RoJ 0 S) : Z,q — R is weakly
(sequentially) lower semicontinuous. Let z,  F,q be a minimizing sequence with

Jim R(T(S(24))) + aB(z) = 5 = nf R(T(S(2))) + aR(z).

ZEFad

The minimizing sequence is bounded, since either Z,4 is bounded or R(J(Sz)) + aR(Z)
is coercive. From the reflexivity of Z we conclude that there is a weakly convergent
subsequence z, < 2 and 2* with 2, — z* as i — o0. By Assumption the feasible
set Fhq is weakly sequentially closed and thus z* € Foq. Since R(J(S(2))) + aR(z) is
weakly sequentially lower continuous, we obtain

J* = Iim R(T(S(z,))) + aR(zr,) = R(T(S(27) + aR(z") = j*,
where the last inequality follows from the feasibility of z*. In particular j* > —oo. 0

Remark 3.5.5. Let z* be a minimizer of the reduced problem (3.17)), then (S(z*),2*) is

a solution of (3.2) — (3.3). Thus, solving the reduced problem is equivalent to solving (3.2)
— (3.3). In the following discussions we will hence only consider the reduced problem.

3.6 Optimality conditions

Recall that the objective functional in our optimization problem (3.17) has the form (R o
JoS): Z,q — R. In order to apply the chain rule, the outer functional R must be at
least Hadamard directionally differentiable, whereas the inner mapping (J o .S) must be

at least Gateaux directionally differentiable. Therefore, under Assumption and
Assumption the composite functional will be Gateaux directionally differentiable
provided J is locally Lipschitz.

Theorem 3.6.1 ([I06, Proposition 3.13]). Let Z,q < Z be a nonempty and convez subset
of a Banach space and z* € Z,q4 be a solution of (3.17)). Let R be Hadamard directionally
differentiable at J(S(z*)) and J be Gateaux directionally differentiable at S(z*) and locally

Lipschitz. Moreover let Assumption and Assumption hold, and let R(z) be
Gateaur directionally differentiable. Then the following optimality condition holds:

sup E[L& T (S(2%); S(2%)02)) + aR'(2%;62) = 0 Véze Tz, (2%),
EedR(T (5(2%)))

where Tz, (2*) denotes the tangent cone of Z,q at z*, defined by
Tzad(z*) = {de Z o dn\0,3d > d in Z : z* + Tdy € ZadV/{?}.
If composite functional is Gateaux differentiable, then the variational inequality holds.

Theorem 3.6.2 ([89, Theorem 1.46]). Let Z be a Banach space and Z,q be nonempty
and convex. Moreover, let J : Z — R be defined on an open neighborhood of Z,q. Let z*
be a local solution of

min J(z) s.t. 2 € Zaq,
z€Z

and let J be Gateaux differentiable at z*. Then it holds for z* € Z,q
<J/(Z*),Z — Z*>Zl7g >0 VzeZy4.

Furthermore, if in addition
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3 A general formulation of optimal control problems under uncertainty

o J is convexr on Z,q, then this condition is necessary and sufficient for global opti-
mality.

o J is strictly convex on Z,q, then there is at most one solution z*.

o Z is reflexive, Z,q is closed and convex and J is convex and continuous with
lim,cz  |2|5—00 J(2) = 0, then there exists a (global) solution.

o Z is a Hilbert space, Z.q is closed and convezx, then denoting the orthogonal projection
P onto Zaﬂ the following conditions are equivalent for z*,y € Z,q and v > 0

{yyz—2")2=20 Vze Zy
2F—P(*—~y)=0.

3.7 Parametric linear forward operators

In this section we consider linear model constraints, i.e., constraints of the form
M(u(),z) = A()u(-) =Bz =0 in LZ())') , (3.18)

for bounded and linear operators A : LL(X) — L{(Y’') and B : Z — ). Note that we
assume that z is constant in y, i.e., y — z(y) = z for all y € U. Oftentimes the solution
operator of the model equation is more regular with respect to the parameters y € U, e.g.,
it is continuous. To this end, let U be a nonempty topological space and let the parametric
linear operator from X to ) with parameter domain U be a continuous map

AU - LX)Y), y— Aly).
In this case one can impose the model constraint pointwise for all y € U:
(AY)u(y), vy y = {Bz,v)yy Yvel Vyel. (3.19)
or equivalently
M(y, u(y),2) = Aly)uy) =Bz =0 vyeU,

Theorem 3.7.1 ([64, Theorem 1.1.1 and Lemma 1.1.3]). Let A(y) be bijective for all
y e U. Then has a unique solution w : U — X. The solution y — u(y) is
continuous if y — z(y) is continuous. Moreover, if U is a compact Hausdorff space, then
there exists amin, Amax > 0 such that

AW cx ) < amax and [A@Y) | corxy < Vamin Yy eU.
One can show that under the measure u the parametric model constraint (3.19)) is equiva-

lent to the weak parameter form of the model constraint (3.18)). This is discussed in more
detail in the following subsection.

Zlsee Chapter
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3.7 Parametric linear forward operators

3.7.1 Equivalence between parametric and weak parameter formulation

We will extend the parametric linear operators to operators between Lebesgue spaces of
vector-valued functions. To this end, not that the operators
A C(UX) - CUY), v [y— Ay)v] (3.20)
AT C(UY) = CU,X), we [y = (Aly) " ]
are well-defined, inverse to eachother with norms [ A|| < amax and |A™Y| < 1/ampin. This

result can be extended to Lebesgue spaces of vector-valued functions. To this end, let
B(U) be the Borel o-algebra on U, and let p be a finite measure on (U, B(U)).

Theorem 3.7.2 ([64, Corollary 1.1.6]). For all 1 < q < o, the operator A in (3.20)
extends uniquely to a boundedly invertible operator on the Lebesque—Bochner spaces

A LU, &) — LU, V. (3.21)
The norms of A and A~' are bounded by amax and 1/amin, respectively.

The applications of the operators A on L(U, X) and A~! on L(U, D) is equal to pointwise
application of A(y) on X and A(y)~! on )’ up to p-equivalence. As a corollary to this
result we get:

Corollary 3.7.3 ([64, Corollary 1.1.8]). Let X and ) be separable Banach spaces, 1 <
r < o0, and let q be the Holder conjugate of r. If Bz € L{,(U,Y’), then there is a unique
ae L(U,X) such that

fU<A(y>a<y>,w<y>>y,y du(y) = L<Bz,w<y>>y/,y duy), Yuly) e LLU.Y). (3.22)

Moreover, the solution u¥ of (3.19) is a version of @¥, i.e., |lu — @[ (y.x) = 0, or equiv-
alently u = u p-a.e. in X.

This result shows the equivalence between ({3.18) and (3.19)).

Since the measure p cannot distinguish between the states obtained for both formulations
of the constraint, in many cases the deterministic solution of the optimal control problem
under uncertainty is equal for both formulations. We illustrate this using a linear quadratic
optimal control problem.

3.7.2 Linear quadratic optimal control

We are interested in solving an optimal control problem in the presence of uncertainty by
minimizing the averaged least square difference of the state u and a desired target state .
The state u is the solution of a linear operator equation, steered by a control function, and
depends on a parameter vector. The parameter vector is in principle infinite-dimensional,
and in practice might need a large finite number of terms for accurate approximation.
Our goal of computation is the following optimal control problem

. 1 . Qo
win Jwz). I = | |Qu-alfauw) Gl 329

ZEZad,'lLEXad
subject to the linear operator equation in L} (U, )")

Au = Bz, (3.24)
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3 A general formulation of optimal control problems under uncertainty

for 1 < g < 0, a Hilbert space Z with Z,q ¢ Z, X,q < L}(U, X), and a Hilbert space J,
uey, Qe L(X,T), Be L(Z,)). In particular, the operators B and Q are not dependent
on y and thus can be uniformly bounded for all y, i.e., | B sz < C1 and | Q| z(x 3 < C2
for some C1,Cy > 0 and all y € U. This implies in particular, that Bz € L1,(U,)") for all
p and all deterministic controls z € Z and Qu € L,(U,3J) for all u € Li,(U, X).

Theorem 3.7.4. Let a = 0, Z,q4 € Z convex, closed and in the case o = 0 bounded. Let
Xoa © LE(U, X) with ¢ = 2 be convex and closed, such that (3.24]) has a feasible point.
Then problem (3.23) — (3.24)) has a solution (z*,u*). If a > 0 then the solution is unique.

Proof. Observe that the objective function can be written as J(u, z) = 3(|Qu— ﬁH%Q(U:J) +

$|z|%, and L*(U,3J) is a Hilbert space. Since A has a bounded inverse, the result follows
from [89, Theorem 1.43]. O

Substituting « = A~'Bz into J gives J(z) := J(A Bz, z) and leads to the equivalent
formulation of problem (3.23]) — (3.24)

Loa A 1 _ ~ Q
min J(:), J(2) 1= 5 | 1QAT B~ il duty) + G el (3.25)

zeéad
where Zpq = {2 € Z:2€ 2,9, A" Bz € Xoq).

Remark 3.7.5. From Corollary we know that the solutions of (3.19) and the solution
of (3.24) are p-almost everywhere identical. In consequence, the problem (3.23) subject

to (3.24) is equivalent to (3.23|) subject to (3.19) in the sense that they have the same

solution.
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4 Examples of optimal control problems

In this chapter we present three optimal control problems that fit into the framework of
the previous chapter. The first example is an optimal control problem with an elliptic
PDE constraint, with quadratic tracking-type objective functional, and with expected
value as a risk measure. This example is based on [76]. The second example is an optimal
control problem that is subject to a parabolic PDE constraint. The objective function
is a tracking-type functional composed with the expected value or the more conservative
entropic risk measure. This example is based on [77]. In both problems, we employ
additional constraints on the control. The objective function of the third problem is again
a tracking-type functional composed with the expected value or the entropic risk measure,
and the constraint is an abstract parametric linear operator equation.

The novelty of this chapter lies in the generalization of the results we derived for elliptic and
parabolic problems in [76], [T7] to abstract analytic parametric linear operator equations.

Optimal control problems subject to parametric linear operator equations have been con-
sidered in [I11] in conjunction with the expected value as a risk measure and without
additional constraints on the control. Hence, the problem in [I11] can be formulated as
a saddle-point problem and be solved efficiently. Additional control constraints lead to
a projection operator in the optimality conditions. Due to the projection, the resulting
system of equations is no longer linear and hence the results obtained in [111] do not apply
directly. Neither cover the results therein nonlinear risk measures, such as the entropic
risk measure, which is considered in this chapter.

We restrict the analysis in this chapter to these two risk measures, since they are smooth
and inherit the parametric regularity of the integrands, as we will see. Moreover, the
expected value is a coherent measure of risk and the coherent entropic Value-at-Risk can
be recovered from the entropic risk measure by the additional minimization with respect
to the risk aversion parameters.

We emphasize that the theory about the existence and uniqueness of solutions devel-
oped in the previous chapter applies to all three example problems, and the elliptic and
parabolic problems are special cases of the problem with abstract linear operator equa-
tion constraints. However, for better illustration, we provide the complete analysis for all
examples.

4.1 Elliptic PDE constraint

Let D c RY, d € {1,2,3} denote a bounded domain with Lipschitz boundary éD and let
U= [—%, %]N denote a space of parameters. Let a = 0 and Z,q = Z = L?(D) be closed,
convex and in the case o = 0 bounded. Let @ € L?(D) and consider the optimal control
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4 Examples of optimal control problems

problem
min J(u,z),  J(u,2):= 1[ [u( ) = @22 ) dnly) + 5217 (4.1)
el2(D)uel2(UV) 2 )y Y 12(p) ST S lEl L) A%
subject to
-V (a(z,y)Vu(z,y)) = z(x) xeD, yeU, (4.2)
u(x,y) =0 xedD, yeU, (4.3)
Zmin () < 2(2) < Zmax(x) a.e. in D. (4.4)

To ensure wellposedness of (4.1))-(4.3) we make the following assumtions:

(AE1) Let Zmin, Zmax € L2(D) with Zmin < Zmax a.e. in D. Then the feasible set of controls
Zaa:={z¢€ LZ(D) : Zmin < 2 < Zmax a.€. in D}

(AE2) The sequence of parameters y = (y;);>1 is independently and identically dis-

tributed (i.i.d.) uniformly in [—%, %] for each j € N, i.e., y is distributed on U
with probability measure u, where pu(dy) = & i1 dy; = dy.

(AE3) The input uncertainty is described by the diffusion coefficient a(x,y) in (4.2),
which is assumed to depend linearly on the parameters y;, i.e.

a(x,y) := ap(x) + Z yjvi(x), xzeD, yeU. (4.5)

j>1
(AE4) Let ag(-) € L2(D), ;(-) € L*(D) for all j > 1, and ([t 1=)551 € €' (N).
(AE5) The uniform ellipticity assumption holds, i.e.
0 < amin < a(x,y) <amax <0, z€D, yelU,

for some positive real numbers amyin and amax-

4.1.1 Weak formulation
We define V := H} (D) and its (topological) dual space V' := H~1(D), and identify L?(D)
with its own dual. Let (-, )y denote the duality pairing between V' and V. The norm
and inner product in V are defined as usual by
lollv = IVv]Lepy,  {v1,v2)v 1= Vo1, Vua)rz(py.

We introduce the continuous embedding operators Fy : Ly(D) — V' and Es : V — Ly(D),
with the embedding constants cj, cy > 0 for the norms
1By < eillv]z2(py (4.6)

<

cafvllv-

|E2UHL2(D)

Based on this function space setting, the PDE (4.2) and (4.3]) can be stated in the para-
metric variational form: For fixed y € U and given F1z € V', find u(y) € V such that

JD a(z,y)Vu(z,y) - Vo(z)de = (Erz,v)yy YveV. (4.8)
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4.1 Elliptic PDE constraint

Note that by the identification of L?(D) with its dual (L?*(D))’, we have (E1z,v)y/y =
SD z Eyv dz. Moreover, by [(AES)| the parametric bilinear form, defined as

by, w,v) := JD a(z,y)Vw(z,y) - Vo(z)de, Yw,veV, (4.9)

is continuous and coercive on V' x V| i.e.,
b(y,’U,U) = amin”UHV> and b(y,u,w) < a‘maXHw”VHU”\/a

for ally € U and all w,v € V. Hence, by the Lax—Milgram lemma (see, e.g., [47, Theorem 1
in Chapter 6]) the parametric variational problem (4.8]) admits a unique solution u(y) € V
for each z € V' and fixed y € U, which satisfies the a-priori bound

HElZHH—l(D) < Cl”ZHH—l(D)

lu(@) 2oy < (4.10)

Gmin Qmin
In particular, the operator A(y) € L(V,V’) that can be associated with the bilinear form
in (4.8), i.e.

<A(y)w7U>V’,V = b(yawav)a vw?” € V7 (411)

satisfies |A(y)|zv,v) < @max and HA(y)_IHE(V’,V) < 1/@min.

4.1.2 Reduced problem
We reformulate the optimal control problem (4.1)), (4.2), (4.3, and (4.4) into the reduced

formulation, i.e., a problem that only depends on the control.

In view of (4.6, (4.7) and (4.11) we can interpret the solution operator Sy of (4.8) as a

linear continuous operator in L?(D)
Sy = FaA(y) ' Fy (4.12)

The operator Sy : L?(D) — L?(D) is the unique mapping, which for every y € U assigns
to each f € L?(D) the unique solution g € L?(D) of the weak problem: find g € V such
that

b(y,g,v) ={f,v) YveV.

Clearly the solution operator depends on the parameter y € U as indicated by the sub-
script. Moreover, it is a self-adjoint operator, i.e.,

Sy = Sk, (4.13)

where Sy is the adjoint operator of Sy defined by (Syg, f) = {g,Syf) Vf,g € L?(D). This
is easily verified as for all f,g € L?(D) we have Sy, ) =<9, Syf) = b(y; Syg, Syf) =
(Syg, f>. Thus, in the following we will omit the superscript * in the notation for the
adjoint operator Sy.

By and it clearly holds that u(-,y) = Syz for every y € U. Therefore, for each
y € U we can write the state u as a function of the control z € Z:

u(-,y,2) := Syz. (4.14)

We call u(-,y, z) the state corresponding to the control z € L?(D). The optimal control

problem (4.1)), (4.2)), (4.3), and (4.4]) then becomes a quadratic problem in the Hilbert
space L?(D): find
. 1 ~ «
mipJ(:), I = 5 | 1Syz = Al dy+ Gl (1.15)
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4 Examples of optimal control problems

4.1.3 Derivatives and adjoint problem

We observe that ||Syz — 1’Z|\%2(D) < 2|2 z2(py + @l 2(py s integrable. Furthermore, for
each y € U, using (4.13), the Riesz representation of the Fréchet derivative of F(z) :=
|Syz — ﬁH%Q(D) is given by VF(z) = Sy(Syz — u), which is bounded from above by
22 (22 2] 2(py + |ufz2(py). The same upper bound holds for the Fréchet derivative

since the Riesz operator is an isometry. From Theorem [3.3.11| we conclude that the Riesz
representation of the Fréchet derivative of J(z) is given by

VJ(z) = fU Sy(Syz —u) dy + az. (4.16)

We use the symbol VJ to emphasize that is the Riesz representation (see Section
of the Fréchet derivative J’ of J. Note that in general the Fréchet derivative J' at z € Z
of a functional J : Z — R is an element of the dual space Z’| i.e., J'(z) € L(Z,R). We
also call VJ(z) the gradient of J at z.

Recalling that Sy is the solution operator of a PDE, and defining fadjoint := Syz — 4, it
is easy to see that can be computed by solving a second PDE, namely the adjoint
PDE Sy fadjoint- The solution ¢(y) of the adjoint PDE is called the adjoint state. Clearly,
for each y € U we can write the adjoint state as a function of the control z € Z:

q(-,y,2) := Sy(Syz — 1), (4.17)

which we call the adjoint state corresponding to the control z € L?(D). Using the adjoint
state, the Fréchet derivative (4.16]) can be written as

VJ(z) = JU q(-,y,2)dy + az.

4.1.4 Optimality conditions

Existence of an optimal control z* € Z,q follows from Theorem If in addition the
regularization parameter « > 0, then the optimal control z* is the unique minimizer.

Since Fréchet differentiability implies Gateaux differentiability, we obtain the following
optimality conditions from Theorem [3.6.2f a control z* € Z,q is the unique solution of

(1), (2, @3), and (@) if and only if
U(', Yy, Z*)
Q(:% Yy Z*)

<J q(‘,y’z*)dy+az*,2_z>k> =0 vzezadv
U L2(D)

*

Syz
Sy (u(-ry, =) — ) }Vy ok

where the first two equations are the state PDE and adjoint PDE, respectively, and the last
condition is called variational inequality, which is equivalent to the following conditions:

e for arbitrary v > 0, and Pz, = min (max (Zmin, 2*), Zmax) it holds for z* € Z,q that

2* — Pz, (2" —4VJ(z%)) =0,

e for z* € Z,4 it holds that

=0, if zmin(x) < 2*(x) < Zmax(x),
VJ(z*)(x){ =0, if zmin(x) = 2*(x) < 2max(x), for a.e. x € D.
<0, if zmin(x) < 2*(x) = 2max(x),
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4.2 Parabolic PDE constraint

e there exist fimin, fmax € L?(D) with

VJ(Z*) + Umax — MUmin = O;
Zmin S 2 < Zmax
Hmax; Hfmin = 0,

Mmax(zmax - Z*) = Mmin(Z* - Zmin) =0.

4.2 Parabolic PDE constraint

Let D c R%, d e {1,2,3}, denote a bounded physical domain with Lipschitz boundary,
let I := [0,7] denote the time interval with finite time horizon 0 < 7' < o0, and let
U .= [—%, %]N denote a space of parameters. Given a target state 4 € X’ and, that the
regularization constants a1, s are nonnegative with a; + g > 0 and ag > 0, we study
the problem of minimizing the following objective function:

~

T, 2) 1= R(Ga = gy + S (1) = 8 D)) + Sl e (418)
subject to the control constraint

2 € Zog (4.19)
and the heat equation over the time interval I = [0,7]

%uy(m,t) — V- (a¥(z,t)Vu¥(z,t)) = 2(z,t), xeD, tel,
u¥(x,t) =0, xedD, tel, (4.20)
u¥(x,0) = up(x), xeD,

for all y € U. Here z(x,t) is the control and ug € L?(D) denotes the initial heat dis-
tribution. We denote the input functions collectively by f := (z,up). We have imposed

homogeneous Dirichlet boundary conditions.
To ensure wellposedness of (4.1))-(4.3) we make the following assumtions:

(AP1) the feasible set of controls Z,q € Z = L?(V’;) is nonempty, bounded, closed and
convex.

(AP2) The sequence of parameters y = (y;);>1 is i.i.d. uniformly in [—1, 1] for each j € N,
i.e., y is distributed on U with probability measure y, where p(dy) = ), dy; = dy.

(AP3) The input uncertainty is described by the diffusion coefficient a(y,z) in (4.2), which
is assumed to depend linearly on the parameters y;, i.e., let

a¥(x,t) = ag(x,t) + Zijj(m,t), xeD, yeU tel, (4.21)

j=1
be an uncertain (thermal) diffusion coefficient.

(AP4) For a.e. t € I we have ag(-,t) € L®(D), ¢;(-,t) € L(D) for all j > 1, and that we
have (supye; ||¢j('7t)”LOO(D))j>1 et

(AP5) The mapping ¢ — a¥(x,t) is measurable on [;
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4 Examples of optimal control problems

(AP6) The uniform ellipticity assumption holds, i.e.,
0 < amin < a¥(x,t) <amax <0, xeD, yeU, ae tel,
for some positive constants @iy and Gmax.

Time-varying diffusion coefficients occur e.g., in finance, cancer tomography. However, the
presented setting clearly also includes time-constant diffusion coefficients, i.e., a¥(x,t) =
a¥(x)¥t € I. By R in eq. we denote a risk measure, which is a functional that
maps a set of random variables into the extended real numbers. Specifically, R will in this
section be either the expected value or the entropic risk measure.

We will first introduce a function space setting to describe the problem properly, including
the definition of the L?(V;I) and L?(V’;I) norms. To this end, we define V := HZ(D)
and its (topological) dual space V' := H~(D), and identify L?(D) with its own dual. Let
(-, )v,v denotes the duality pairing between V' and V. The norm and inner product in
V' are defined as usual by

lvllv == [Vv[Lepy, <1 vy 1= Vo1, Vo).
We shall make use of the Riesz operator Ry : V — V' defined by
<va1, U2>V’,V = <1)1, 2}2>V Vvl, Vg € V, (4.22)

as well as its inverse Ry,': V! — V satisfying Rj/'w = v < w = Ryv Yo e V,we V. It

follows from that
(w, vyyry = <R‘_/1w, vy VveV,weV'. (4.23)
In turn we define the inner product in V' by
(wy, woyyr 1= <R‘_/1w1, R‘_/lw2>v.
The norm induced by this inner product is equal to the usual dual norm: indeed we have

-1
fwly: = sup Kwvverd g KBy w0yl

< |R'w v
0£veV [v]lv 0#£veV lvllv < v I,

where we used (4.23) and Cauchy—Schwarz inequality; similar arguments yield
|Ry wlf = (Ry'w, Rylwyy = (w, Ry w)vry < Jwllvs Ry wlv,
leading to |wly = | Ry w|y = y/{w, w)y as claimed.
We use analogous notations for inner products and duality pairings between function

spaces on the space-time cylinder D x I. The space L?(V;I) consists of all measurable
functions v : I — V with finite norm

1/2
V| 2y = v(-, t)]% dt .
Poloeqwny = ( | 1oC0l% at)

Note that (L?(V; 1)) = L?(V';I), with the duality pairing given by

<"UJ, U>L2(V’;I),L2(V;I) = L<w(7 t)v ’U(', t)>V’,V dt.
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4.2 Parabolic PDE constraint

We extend the Riesz operator Ry to Ry : L?(V;I) — L?(V'; 1) so that

<’U17 'U2>L2(V;I) = L<v1('v t)a 02('7 t)>V dt = J; <RVU1('a t)> UQ(': t)>v/7v dt
= <RVU1’v2>L2(V’;I),L2(V;I) Vi, v € LQ(Va I)v

and we extend the inverse Ry,' : L2(V’;I) — L2(V; I) analogously.
We define the space of solutions u¥ for y € U by

X = {v e LA(V;I): Sve LQ(V’;I)},
which is the space of all functions v in L*(V;I) with (distributional) derivative %v in
L?(V'; 1), and which is equipped with the (graph) norm

1/2 1/2
ol = ( L (loC O + 15001 ) dt) " = (loBawun + 1§01220mn)

Finally, because there are two inputs in equation (4.20)), namely z € L2(V’;I) and ug €
L?(D), it is convenient to define the product space Y := L?(V; 1) x L?(D), and define its
dual space by )’ := L?(V';I) x L?(D), with the norms

1/2
foly = (| o0l dt + fualagoy)

1/2
fuly = (| Tor 1t + walfagn)

In particular, we extend X to ) as follows. For all v € X we interpret v as an element of Y
asv = (v(z,t),v(x,0)). This gives X < Y. We further know from [47, Theorem 5.9.3] that
X — C(LA(D); 1) and maxier [o(-,1)|2(p) < Cr(l0] 2viny + [ 50l 20vriny) < V2Cilvlx
for v € X, where C] depends on T only. Hence we obtain for all v € X that

||UH§; = HUH%%V;I)XB(D) = HUH%%\/;I) + H’U(HO)”%%D)
2 2 2 211,,[12 2411112
<l + (max o, Dl < ol + 230l = (1+ 26D ol

and thus we get that X is continuously embedded into Y, i.e., X — ).

4.2.1 Weak formulation

Based on these spaces, using integration by parts with respect to @ we can write (4.20]) as
a variational problem as follows. Given the input functions f = (z,u9) € V' and y € U,
find a function v¥ € X such that

bly;u¥,v) = (fyv)yry Yov=(v,m)e), (4.24)
where for all w e X, v = (v1,v2) € Y and y e U,
b(y; w,v) := (BYw, v)yry

= | Gy s | [ @9eva)dedis | wt0nde, (425
I ' 1JD D

_/

={BYwv1) 20y, 1y 12(vin) =:(BJw,v2) 12 py
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<f’ U>y',y = J<za U1>V’,V dt + J Uug V2 diU,
I D

with operators BY : X — )/, BY : X — L*(V';I), BY : X — L*D), and B%w =
(BYw, Bw). For better readability we have omitted the parameter dependence v =
(v1(z, 1), v2(x)), f = (2(x,t),up(x)), w =w(x,t) and a¥ = a¥(x,t). Note that a solution
of automatically satisfies u¥(-,0) = wp, as can be seen by setting v; = 0 and allowing
arbitrary vs.

The parametric family of parabolic evolution operators {BY, y € U} associated with this
bilinear form is a family of isomorphisms from X to )’, see, e.g., [36]. In [I47] a shorter
proof based on the characterization of the bounded invertibility of linear operators between
Hilbert spaces is presented, together with precise bounds on the norms of the operator
and its inverse: there exist constants 0 < 81 < B2 < o such that

_ 1
sup |(B%) "y < - and - sup BV < fo. (4.26)
Yye ye
min{aminar_ngx aamin} 2 2 . L %
where 1 > \/2max{a;?n,1}+g2 and By < /2max{1,a2,,,} + 0? with o := 21612 e
and hence for all y € U we have the a priori estimate
[flly _ 1 1 12
[wlx < =5 = = 5 1z wo)ly = E(HZH%Q(V’;I) + Juol 7)) - (4.27)

For our later derivation of the optimality conditions for the optimal control problem, it is
helpful to write the weak form of the PDE (|4.24]) as an operator equation using (4.25)):

BYuY = (BYuY, BYuY) = (z,up) in ), (4.28)
with BY : X — L2(V';I) and BY : X — L*(D) given by
BZ{} = AlBy and By = AQBy,

where Ay : )" — L*(V'; 1) and Ay : J' — L?(D) are the restriction operators defined, for
any v = (v1,v2) € V', by

Aj(v1,v9) :==v1 and  Ag(vi,v2) :=v9.
For the definition of a meaningful inverse of the operators BY and BY, we first define the

trivial extension operators Z1 : L2(V/;I) — Y and =y : L?(D) — ), for any vy € L2(V'; 1)
and vy € L?(D), by

51111 = (01,0) and EQ’UQ = (0,’02) .

We observe that P := Z1A1 is an orthogonal projection on the L?(V’; I)-component in )’
and analogously P, := Z3A, is an orthogonal projection on the L?(D)-component in ).
This is verified as follows. For all v,u € ) it is true that

<(Iyl — Pl)’l), P1u>y/ =0 and <(Iy/ — PQ)U, P2u>y/ = O,

where Zy» denotes the identity operator on ). We clearly have Zy» = P; + P,. Therefore
we can write any element v in )’ as v = Piv + Pyv in )’, and by linearity of (BY)~! we
get

(BY) v = (BY) " (Pyv + Pyw) = (BY) 'Pv+ (BY) ' Py
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4.2 Parabolic PDE constraint

A meaningful inverse of the operators BY : X — L?(V';I) and BY : X — L?(D) are then
given by (BY)T: L2(V';I) — X and (BY)': L?(D) — X, defined as

(B! .= (BY)™'2; and (BY)':= (BY)'5,. (4.29)
We call the operator (BY)T the pseudoinverse of B and the operator (BY) the pseudoin-
verse of Bé’ . Clearly, the pseudoinverse operators are linear and bounded operators.
Lemma 4.2.1. The pseudoinverse operators (BY)" and (BY)' defined by (4:29) satisfy

Tizvny = BY(BY)', Z2py=BY(BY)', and
Ty = (BY)'BY + (BY)' B, (4.30)
which are the identity operators on L?(V';I), L?*(D), and X, respectively.
Proof. From the definition of various operators, we have
BY(BY)! = A\BY(BY) '21 = M Ty =1 = ME1 = Loy
BY(BY)" = \yBY(BY) 'Z; = ATy Ep = AyZy = I2(py
(BY)'BY + (BY)'BY = (BY)"'2,A,BY + (BY) '2,A,BY
= (BY)"Y (P, + ,)BY = (BY)'7)yBY = Iy,

as required. ]

Lemma 4.2.2. Fory € U and given (z,up) € )', the solution u¥ of the operator equation
(4.28) can be written as

w9 = (BY) Y(z,u0) = (BY) 2+ (BY) uy in X. (4.31)

Proof. From (4.30) we have u¥ = (BY)'BYuY + (BY)'BYuY = (BY)'2 + (BY)Tuo, as
required. O

4.2.2 Dual problem

In the following we will need the dual operators (BY)’, (BY) and (BY)' of BY, BY and
BY, respectively, which are formally defined by

(w, (BY) v)x xr = (BYw,v)yy
(w, (B%),UDX,X' = <Bfw7U1>L2(V';1),L2(V;I)
(w, (By)'v2yx ar 1= (Bjw,v2)12(p)
for all we X, v = (vi,v2) € Y and y € U, with (BY)'v = (BY)v1 + (BY)va.

The dual problem to (4.24) (or equivalently (4.28])) is as follows. Given the input function
faual € X' and y € U, find a function ¢¥ = (¢¥,q¢¥) € YV such that

(w, (BY)'¢¥)x x1 = (W, fawa)x,x7 Ywe X, (4.32)

or in operator form (BY)'qY = f4ual, which has the unique solution ¢¥ = ((By)’)_lfdual.
Existence and uniqueness of the solution of the dual problem follow directly from the
bounded invertibility of BY. We know that its inverse, (BY)~!, is a bounded linear opera-
tor and thus the dual of (BY)~! is (uniquely) defined (see, e.g., [164, Theorem 1 and Defi-
nition 1, Chapter VII]). The operator (BY)~! and its dual operator ((BY)~1) = ((BY)')~!
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4 Examples of optimal control problems

are equal in their operator norms (see, e.g., [164, Theorem 2, Chapter VII]), i.e., the op-
erator norms of the dual operator (BY)" and its inverse are bounded by the constants 35

and i in ([4.26]).
Applying integration by parts with respect to the time variable in (4.25)), the left-hand
side of the dual problem (4.32)) can be written as

(w, (BY)'¢¥)x xr = (BYw, %)y y

- <L<w’ _%(I%V,V/ dt + L JD(awa VgV de dt
+ wa(.,T) ¢ (- T)dx — JDw(.,o) ¢ (-,0) da:) + wa(.,o) ¢ da (4.33)

—<w (BY)'q >XX’+<w (BY)'q >XX"

We may express the solution ¢¥ = (¢¥,¢Y) € Y of the dual problem (4.32) in terms of the
dual operators of the pseudoinverse operators (BY)" and (BY)!. This is true because we
get an analogous result to Lemma in the dual spaces.

Lemma 4.2.3. The dual operators ((BY)") and ((BY)') of the pseudoinverse operators

defined in (4.29) satisfy
Trawvay = (BOY(BY)' ) Ziapy = (BY)')'(BY)' . and
T = (BY)'(BY)T) + (BY) (B, (4.34)
which are the identity operators on L*>(V;I), L*(D) and X', respectively.

Proof. For all vy € L2(V'; 1), wy € L*(V; 1), vo,ws € L?*(D), it follows from (4.30)) that

v, wiyrz vy, reqvin = (BY (BY) Tvl’w1>L2(V’1)L2(VI)

= (v1, ((BY )N'(BY) w1>L2(V’ ), L2(V3I)
<U27w2>L2(D) :<B?QI B2 T'UQ,'Z,U2>L2(D):<'U2, Bg) ) BQy)/w2>L2(D)

and

Similarly, for all v € X and w € X’ we have
o, wyx,a = {((BY)'BY + (Bé’)TB;’)v,w%(,X,
= {(BY)'BYv, w>X w+{(BY )1 BYv, w) X
= (v, (BY)((BY)) w>x v+ (o (B ((BS)) w>x X
= (o, ((BYY((BY)T) + (BY) ((BY)") )wyx.ar -
This completes the proof. ]

Lemma 4.2.4. Given the input function fqua € X' and y € U, the (unique) solution of
the dual problem (4.32)) is given by

¢¥ = (af,4) = (BY)") fauar, (BY)Y) fawat) in Y. (4.35)

Proof. Existence and uniqueness follow from the bounded invertibility of (BY)’, see Sec-
tion m Thus, we only need to verify that (4.35]) solves the dual problem (4.32)). It
follows from (4.34) that

fawar = ((BY)'(BY)") + (B3) ((B))') faua
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4.2 Parabolic PDE constraint

— (BYY((BY) fauat + (BYY (B fauan

= (BY)'af + (BY)'a3 = (BY)'¢",
as required. O
We will see in the next section that, with the correct choice of the right-hand side fqyua,

the Fréchet derivative of the objective function (4.18) can be computed using the solution
q¥ of the dual problem.

4.2.3 Reduced problem

We want to analyze the problem in its reduced form, i.e., expressing the state u¥ =
(BY)"Y(z,up) in in terms of the control z. This reformulation is possible because
of the bounded invertibility of the operator BY for every y € U, see Section and the
references therein. We therefore introduce an alternative notation u(z) = (u¥(z))(x,t) =
u¥Y(x,t). Clearly, u¥ depends also on ug, which is assumed to be given. The reduced
problem is then to minimize

Tu(=),2) = R(Gu () = @l 7aqyp) + S Br(a¥(2) = )12 )

+ EHZHL%V’;I)? (4.36)

J(z):

where Er: X — L?(D) is the bounded linear operator (see, e.e., [47, Chapter 5, Theorem
3]) defined by v — v(-,T') for some fixed terminal time 7" > 0.
Defining

a1 - ~|12 a2 - ~
Y (2) := EH(By) Yz, u0) — uHLQ(V;I) + ?HET((By) Y(z,u0) — ) H%Q(D), (4.37)
we can equivalently write the reduced problem as

. asg 2
Jnin (R((I)y(z)) + EHZHLQ(V/;I)> . (4.38)
With the uniformly boundedly invertible forward operator BY, our setting fits into the
framework of theorem In particular, the forward operator BY, the regularization
term %Hz“%z Vi) and the random variable tracking-type objective function ®¥ satisfy
assumption assumption and assumption We obtain the following result.

Corollary 4.2.5. Let aj, a2 = 0 and ag > 0 with a1 + a9 > 0 and let R be proper, closed,
convex and monotonic, then there exists a unique solution of (4.38]).

Proof. The existence of the solution follows from theorem We thus only prove
the strong convexity of the objective function, which implies strict convexity and hence
uniqueness of the solution. Clearly %Hz”%z(‘/,; 1) 1s strongly convex. Since the sum of a
convex and a strongly convex function is strongly convex it remains to show the convexity
of R(®Y(z)). By the linearity and the bounded invertibility of the linear forward operator
BY, the tracking-type objective functional ®¥(z) is quadratic in z and hence convex, i.e.,
we have for 2,7 € L2(V’;I) and X € [0, 1] that ®¥(Az + (1 —\)2) < APY(2) + (1 —\)DY(2).
Then, by lemma [3.2.1] we obtain that R(®¥(z)) is convex. O

Having ensured the existence of a unique optimal control z* € Z,4, we derive necessary
and sufficient optimality conditions. To this end, we compute derivatives of the reduced

objective function eq. (4.36)).
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4 Examples of optimal control problems

4.2.4 Derivatives for linear risk measures, including the expected value

First we derive a formula for the Fréchet derivative of (4.36)) when R is linear, which
includes the special case R(-) = §,(-) dy.

Lemma 4.2.6. Let R be linear. Then the Fréchet derivative of (4.36)) as an element of
(L2(V'; 1)) = L*(V; 1) is given by
J(z) = R(((Bi’)T)/(alRV + apEpEr) (u¥(2) — @)) +asRy 'z (4.39)

for z e L3(V'; I).

Proof. For z,6 € L*(V';I), we can write
J(z+0) = R(%Huy(z +0) —u¥(z) + u¥(z) — ﬁHiQ(V;I)

+ %HET (u(z + 6) — u¥(2) + u¥(z) — @) H;(D)) + %uz + 822,
= R( GBS+ (¥ (2) = ) 720,

o ~ «@
+ SIEr BN + Br(w(2) = ) 12y ) + G517+ 01Ty

where we used (E31) to write u(= +8) ~u¥(2) = [(BY)'(= +5) + (BY)uo] ~ [(BY)(2) +
(Bg)Tuo] = (B%)T(S. Expanding the squared norms using ||v + w|? = (v + w,v + w) =
[v]? + 2{v,w) + |w|?, we obtain

J(z+6) = J(2)+ (0:J(2)) 0 + 0(9),
with the Fréchet derivative 0,J(z) : L?(V’; 1) — R defined by

=: Term;
N

(2:(2)) 8 = R {(BY)18,u¥ () — ) . Wi
+ 0 (Er(BY)'6, Er(u¥(2) = ) )2 ) + a3z, )2 -

Y
=: Termo =:Terms

It remains to simplify the three terms. Using the extended Riesz operator Ry : L?(V; 1) —
L2(V'; 1), we have

Term; = <uy(z) - a> (Bi/)T5>L2(V;]) = <RV (uy(z) - a)v (B%)T5>L2(V’;I),L2(V;I)
= (Bv (u¥(2) — 1), (B?)T@xax = {(BYN) Ry (w¥(2) — 77)’5>L2(V;1),L2(V';I),

where the third equality follows since (BY)'6 € X < L?(V;I), and the fourth equality
follows from the definition of the dual operator ((BY)Y)" : A’ — L%(V;I), noting that
(L2(V'5 1)) = LA(V; D).
Next, using the definition of the dual operator (Er)’ : L?(D) — X, we can write

Termy = (Ep(u¥(z) — @), ET(B{’)T5>L2(D) = (EpEr(u¥(2) — 0), (B{’)T5>X,7X

- <((B?1J)T)/E/TET (u¥(2) - a)a5>L2(V;I),Lz(v/;1)‘
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4.2 Parabolic PDE constraint

Finally, using the definition of the L?(V’, I) inner product and the extended inverse Riesz
operator Ry': L2(V';I) — L*(V; 1), we obtain

Termg = (2, 0)r2vnny = (Ry'2 Byl O)naviny = CBy'208) gy oy
Writing (0.7 (2)) 0 = {J'(2),0)r2(v.1),02(v7;1) and collecting the terms above leads to the
expression for J'(z) in (4.39). O

Next, we show that the Fréchet derivative J'(z) of J(2) can be computed using the solution
of the dual problem (4.32) with

faual := (Ckle + OéQEé«ET> (uy — ?/,L\) e X, (440)
We show this first for the special case when R is linear.

Lemma 4.2.7. Let aj,as = 0 and ag > 0, with oy + ag > 0. Let f = (z,u9) € V' and
ue X. For everyy € U, let u¥ € X be the solution of (4.20)) and then let ¢¥ € Y be the
solution of (4.32)) with fqua given by (4.40). Then for R linear, the Fréchet derivative of

([4.36)) is given as an element of L*(V; 1) by

J'(2) = R(q1) + asRy 'z (4.41)
for z e LA(V'; I).
Proof. This follows immediately from (4.40)), Lemma and Lemma [4.2.4] O

Proposition 4.2.8. Under the conditions of Lemma with fqua given by (4.40), the
dual solution ¢¥ = (¢¥,4Y) € Y satisfies

Consequently, the left-hand side of (4.32) reduces to

L<w, —a%qi’%/’v, dt + LJD (a?Vw - V¢¥) dedt + JD w(,T) g} (-,T)dz, (4.42)

and hence q’f is the solution to
)
) =0 (4.43)

where the first equation holds for x € D, t € I, and the second equation holds for x € 0D,
t e I, and the last equation holds for x € D.

Proof. Since (4.32) holds for arbitrary w € X, it holds in particular for the special case

(1-")v(z) forte [0,%],
0 for t € (%,T] ,

w = wp(x,t) = {

with arbitrary v € V. For fqua given by (4.40)), the right-hand side of (4.32]) becomes

<wnv fdual>X,X’
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4 Examples of optimal control problems

= (wn, a1 Ry (u =) ),y + Cwn (1), 00 (u? () = (¢, T)) ) o

T
- L"JD (1-2)varRy (v’ —@)dedt — 0 as n — 0.

From (4.33) the left-hand side of (4.32)) is now

T
- [Ta- oG+ || (1= @V0- at) dwa
0 ’ 0 JD

J vqgf(-,O)dm+f vgy dex
D D

va(qzy—q%(-,O))dw as n— 0.
D

Equating the two sides, letting n — o0, and noting that v € V is arbitrary, we conclude
that necessarily ¢¥ = ¢¥(-,0).

Hence, the left-hand side of reduces to . By analogy with the weak form
of , using the transformation ¢ — 1T — ¢, we conclude that qql’ is the solution to
(4.43)). O

4.2.5 Derivatives of the entropic risk measure

The expected value is risk neutral. Next, we consider the risk averse entropic risk measure

(see section [4.2.5)):
RV (W)= gln (| e (07 (w) ).

for an essentially bounded random variable Y (y) and some 6 € (0,00). Using R = R, in
(4.36)), the optimal control problem becomes min,cz J(z), with

1 «
7z = 5 JU exp (08(2)) dy) + 2|32y (4.44)

for some 6 € (0,00) and Y defined in (4.37)).

In the following we want to compute the Fréchet derivative of J(z) with respect to z €
L?(V';1). To this end, we verify that ®¥(z) < C' < o is uniformly bounded in y € U for
any z € L2(V';I), i.e. the constant C' > 0 is independent of y € U.

Lemma 4.2.9. Let f = (z,u9) € V' and u € X, and let ay, a9 = 0 with a1 + ay > 0.
Then for all y € U, the function ®Y defined by (4.37)) satisfies

ar +ax | Er|% / 2
0<dY < Y LAD) (”f“y +alx)” < oo (4.45)
2 B
Thus for all > 0 we have
1<exp(§dY) <e” <o, with (4.46)
a1 + Qo HET“?y_,LQ D ’ N 2
o= : () (fﬁly + HUHX) 0. (4.47)
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4.2 Parabolic PDE constraint

Proof. We have from that
av(z) < S S —al2 + Bre o (BY) 2

o1 + a2 | Bl o ) .
D) ()] + L)

which yields (4.45)) after applying (4.27)). O
Using the preceding lemma, we compute the Fréchet derivative of (4.44]).

S

Lemma 4.2.10. Let aq, a0 = 0 and az > 0, with a; + as > 0, and let 0 < 6 < o0. Let
f=(zu) €Y andue X. For everyy € U, let u¥ € X be the solution of and
then let q¥ = (qf,q3) € Y be the solution of with fqual given by . Then the
Fréchet derivative of is given as an element of L>(V; 1) for z e L>(V'; 1) by

1
- SU exp (9 (Iﬂ/(z)) dy

where ®Y(z) is defined in (4.37)).

Proof. The application of the chain rule gives

1
0;Re(PY(2)) = 07, exp (099 (7)) dy 0- ( JU exp (6 ®Y(2)) dy) .

Lemma implies that 1 < SU exp (9 <I>y(z)) dy < o. Then the integral is a bounded
and linear operator and hence its Fréchet derivative is the operator itself. Exploiting this
fact, we obtain that 0, (§,; exp (6 ¥(2)) dy) = §,; (0. exp (6 ®¥(z))) dy. By the chain rule
it follows for each y € U that 0, exp (§ ®¥(z)) = 6 exp (0 DY(z)) 0.9Y(z) . Recalling from
viny) = azRyz and 0,8 (2) = ((BY)1) (a1 Ry +
o ELEr)(u¥(2) — 4) = ¢¥ , and collecting terms gives (4.48). O

J'(2) JU exp (0 DY (2)) ¢f dy + asz Ry 2 (4.48)

the previous subsection that 0. (%[ 2], (

4.2.6 Optimality conditions

In the case when the feasible set of controls Z,4 is a nonempty and convex set, we know
(see, e.g., theorem [3.6.2) variational inequality

<J,(Z*), z — Z*>L2(V;I),L2(V/;I) = 0 Vze Zad . (449)

For convex objective functionals J(z), like the ones considered in this work, the variational
inequality is a necessary and sufficient condition for optimality. The complete optimality
conditions are then given by the following result.

Theorem 4.2.11. Let R be the expected value or the entropic risk measure. A control

2* € Zaq 1s the unique minimizer of (4.18)) subject to (4.19) and (4.20)) if and only if it

satisfies the optimality system.:

(BYUY, (v1,v2))yy =" v)evnn, 2 + (o, v2)r2py Vv ed,
(w, (BY) ¢ x v = (w,a1Ry (u¥ —0))x a VyeU,
+w(T), ag(u¥(T) — u(T)))r2(p) Vwe X,

<JI(Z*), z — Z*>L2(V;I),L2(V’;[) = 0 VZ € Zad,

where J'(2) is given by (4.41)) for the expected value, or (4.48)) for the entropic risk measure.
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4 Examples of optimal control problems

Observe that the optimality system in Theorem contains the variational formula-
tions of the state PDE (4.24)) and the dual PDE (4.32)) in the first and second equation,
respectively.

It is convenient to reformulate the variational inequality in terms of an orthogonal
projection onto Z,4. The orthogonal projection onto a nonemtpy, closed and convex subset
Z,d4 < H of a Hilbert space H, denoted by Pz, , : Z,q — H, is defined as

Pz(h)e 2, |Pz(h)—hly =min|o—hln, VheH.
ve

Then, see, e.g., [89, Lemma 1.11], for all h € H and v > 0 the condition h € Z,q,
(hyv — z)yg = 0Vv € Z is equivalent to z — Pz(z — vh) = 0. Using the definition of the
Riesz operator and H = L?(V’;I), we conclude that (4.49) is equivalent to

2* — Pz (2" —yRyJ'(2%)) = 0.

This equivalence can then be used to develop projected descent methods to solve the
optimal control problem, see, e.g., [89, Chapter 2.2.2].

Remark 4.2.12. If Z,4 is the closed ball with radius v > 0 in a Hilbert space H, then the
orthogonal projection Pz, , onto Z,q is given by

Pz, ,(h) = min (LW)h for all h e H.

4.3 Analytic parametric linear operator constraints

Let U = [—%, %]N be the space of parameters and assume that the sequence of parameters
y = (yj);>1 is Lid. uniformly in [—3, 3] for each j € N, i.e., y is distributed on U with
probability measure p, where p(dy) = &) j>1dy; = dy. Let o > 0 and Z,q < Z be closed
and convex. Given a target state u, our goal of computation is the following optimal

control problem

N A

. 1 . o
min Ju,z), () = R (1Qu—a13) + 2l (4.50)

ZEZad ,ueXad

subject to the parametric linear operator equation in )’
A(y)u = Bz, (4.51)

for 1 < g < . Let Z be a Hilbert space, and X,q < X, where X is a separable, reflexive
Banach space. Moreover, let J be a Hilbert space, t € J, and Q € L(X,J), Be L(Z,)").
In particular, the operators B and Q are not dependent on y and thus can be uniformly
bounded for all y, i.e., |B|zzy) < Cp and | Q| (x5 < Cg for some C1,C2 > 0 and all
y € U. The risk measure R will again be either the expected value or the entropic risk
measure.
Assume that the parametric family of operators A(y) € {L(X,)’) : y € U} satisfies
Assumption [2.3.1] i.e., is a regular p-analytic operator family for some 0 < p < 1. This
implies in particular that the constraint is well-posed, that is for each z € Z there
exists a unique u € X such that is true for all y € U.
Hence, we can substitute u = A~ (y)Bz into .J, which gives J(z) := J(A™!(y)Bz, z) and
leads to the reduced formulation of problem -
min J(z), J(z) = 2R (JQA~ (g)Bz — al2) + )2l3 . (4.52)
2624 2 2

where Z,q 1= {z€ Z:2z¢€ Z.q, A" (y)Bz € Xog}.
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4.3.1 Derivatives and dual problem

For linear risk measures R, the Fréchet derivative of J at z is given by

J'(z) =R (B'(A N (y))' Q@ Ry(u¥(z) — 4)) + aRzz. (4.53)

1
J(z +0) = SR (|QA™ y)B + Qu(z) — il}) + Tz + 3l

Expanding the squared norms using |[v + w[? = (v + w,v + w) = |[v]? + 2{v,w) + |w|?,
we obtain

J(z+0) = J(z) + (0:J(2)) 0 + 0(9),
with the Fréchet derivative 0,.J(z) : Z — R at z € Z defined by

(0,J(2))8:=R <<QA*1(y)B<5, w¥(z) — a>3) +add, 2>z

~R <<5, B/(A™(y))' Q' Ry (u¥(z) — a>>z’z,) +ald, Rz2)z. 2

where Rz : Z — 2’ denotes the Riesz operator (v,w)z = (v, Rzw)z z for arbitrary
v,we Z, and Ry : J — J' denotes the Riesz operator (v, w)y = (v, Ryw); y for arbitrary
v, W E J.
Defining

q(y) == (A" (y)) QRy(u¥(2) — ) € Y, (4.54)
we observe that ¢(y) for each y € U solves the dual PDE problem in X’
A(y)'q(y) = Q' Ry(u¥(2) — ). (4.55)

Moreover, the Fréchet derivative for linear risk measures (4.53|) can directly be computed

using (L55)

J'(z) =R (Bq(y)) + aRzz. (4.56)
In order to derive the Fréchet derivative of J with the entropic risk measure R = R,
we observe that the random variable objective funciton can be uniformly bounded for all
ye U by

|Qu¥(2) — @l < 21 Qu¥(2)I3 + 2@l < 2CoCCs2| 2 + 2al3.

Together with the chain rule, this leads

J'(2)

1 ~ /
~ §yexp (0] Quy (2) — af2)dy JU exp (1Qu? () ~ BB dy + aRzz.  (457)

67



4 Examples of optimal control problems

4.3.2 Optimality conditions

The uniformly boundedly invertible forward operator A(y), fits into the framework of
Theorem In particular, the forward operator A(y), the regularization term §|z[%
and the random variable tracking-type objective function |QuY(z) — ﬁH‘gj satisfy Assump-

tion Assumption and Assumption We obtain the following result.

Corollary 4.3.1. Let o > 0 and let R be proper, closed, convex and monotonic, then
there exists a unique solution of (4.52)).

Proof. The existence of the solution follows from Theorem We thus only prove
the strong convexity of the objective function, which implies strict convexity and hence
uniqueness of the solution. Clearly the regularization §||z||% is strongly convex. Since the
sum of a convex and a strongly convex function is strongly convex it remains to show the
convexity of R(||QuY(z)—u H%) By the linearity and the bounded invertibility of the linear
forward operator BY, the tracking-type objective functional | Qu¥(z) -3 is quadratic in z
and hence convex. Then, by Lemma we obtain that R (| Qu¥(z) — ﬁH%) is convex. [

Having ensured the existence of a unique optimal control z* € Z,4, we derive necessary
and sufficient optimality conditions. Therefore, let the feasible set of controls Z,q be
nonempty and convex set, then we know (see, e.g., Theorem that the variational
inequality holds for an optimal control z* € Z,4:

<J/(Z*), z— Z*>g/7g >0 Vze Zy4. (458)

For convex objective functionals J(z), like the ones considered in this work, the variational
inequality is a necessary and sufficient condition for optimality. The complete optimality
conditions are then given by the following result.

Theorem 4.3.2. Let R be the expected value or the entropic risk measure. A control
z* € Z,q 18 the unique minimizer of (4.52)) if and only if it satisfies the optimality system:

Aly)uly) = Bz*
A(y)aly) = (A" (y)) Q' Ry(u¥(z) - 1) }Vy v
<J/(Z*),Z — Z*>g/’z >0 Vze 2y,

where J'(2) is given by (4.56) for the expected value, or (4.57)) for the entropic risk measure.

The optimality system in Theorem [£.3.2] contains the forward problem and the dual prob-
lem in the first and second equation, respectively.

It is convenient to reformulate the variational inequality in terms of an orthogonal
projection onto Z,4. Using the definition of the Riesz operator, we conclude that
is equivalent to

2*— Pz (2" —yRzJ'(2%)) = 0.

This equation can then be used to develop algorithms, such as the projected descent
method, to solve the optimal control problem, see, e.g., Section or [89, Chapter 2.2.2].
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4.4 Projected gradient descent

4.4 Projected gradient descent

Consider an abstract optimal control problem

min f(z) (4.59)
2€2,4
with control constraints z € Z,q, where Z,4 is a closed and convex subset of a Hilbert
space Z, and where f: Z — R is continuously Fréchet differentiable.
The application of a standard gradient descent step to feasible z; might lead to infeasibility
of z; —nVJ(z;) even for small stepsizes n > 0. On the other hand, considering only those
n > 0 for which z; — nV.J(z;) stays feasible is not viable since this might result in very
small step sizes 1. The following algorithms are based on the orthogonal projection onto
Z.q and can be used to compute a minimizer of .

Algorithm 1 Projected gradient descent
Input: feasible starting value z € Z
: while |z — Pz, (2 — VJ(2))||z >TOL do
find step size 7 using Algorithm
set z:= Pz, (2 —nVJ(2))
end while

—_

Algorithm 2 Projected Armijo rule

Input: current z, parameters 3, € (0, 1)
Output: step size n >0
1: set p:=1
2: while J(Pz,, (2 —nVJ(2))) — J(z) > = ]|z = Pz,
3: set n := f[n
4: end while

(z =1V J(2)|Z do

Theorem 4.4.1. Let Z,4 be nonempty and let f be bounded from below. If V f is a-Hélder
continuous on {w + s : f(w) < f(w®),|s|z < p} for some a > 0 and some p > 0, then
the sequence {z;} generated by Algom'thm satisfies

lim [z — Pz, (2 = VJ(z))]z = 0,

where Pz, is defined by (4.60). Moreover, the sequence {z;} converges to the unique

solution z* of (4.59).

Proof. See. e.g., [89, Theorem 2.4]. O

Both, the elliptic example and the parabolic example fit into this framework: consider

now problem (4.15)) with

—00 < Zmin < Zmax < 00 a.e.in D,

ie., Z,qa € Z = L*(D).
To incorporate these constraints we use the projection Pz, , onto Z,q4 given by

Pz,4(2)(®) = Pz @).2max (@)] (2(2)) = max(zmin (€), min(z(z), zmax())) , (4.60)
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4 Examples of optimal control problems

and perform a line search along the projected path {Pz_, (2, —nVJ(z;)) : n > 0}. Using the
optimality condition z* — Pz, (2* — VJ(2*)) = 0 leads to the projected gradient descent
algorithm Algorithm [T, which is justified by Theorem

Proof. For the proof of we refer to [89, Theorem 2.4]. O

Consider now problem ([3.25) with Z,q = B,.(0) = L?(V’;I) being the closed ball in V’
with radius » > 0 centered at the origin. In view of Remark we use the orthogonal
projection

Pz (z)(x) = min (1, r)z, Vze Z, (4.61)
L

to incorporate the control constraints. Using the Riesz operator Ry (see (4.22)), we can
define the Riesz representation V.J of the Fréchet derivative J’ of .J by

<VJ<Z), h’>L2(V’;I),L2(V’;]) = <Rvj/(z), h>L2(V’;]),L2(V’;I)7 for all Z, he LQ(V/; I).

Hence, we can use Algorithm [I] together with Algorithm [2| to find the optimal control
z*e Zad-

Remark 4.4.2. In the cases without control constraints, i.e., Zmin = —00, Zmax = 00 in

(4.60) and r = oo in (4.61)), the projection becomes the identity.

For more sophisticated methods, such as Newton-type methods, we refer the reader to [89,
Chapter 2].

4.4.1 Numerical experiments

In the following we apply the gradient descent method and its projected version to solve
the optimal control problems described in Section 4.1| and Section (4.2

Elliptic example

We consider the optimal control problem described in Section [4.1] i.e., the problem of
finding the optimal control z € Z,q that minimizes subject to the elliptic state PDE
— and the control constraints . Suppose the PDE is defined in the two-
dimensional physical domain D = (0, 1), and equipped with the diffusion coefficient .
We set ap(x) = 1 as the mean field and use the parameterized family of fluctuations

pj(x) = sin(mkjz1) sin(wljze) for ¥ > 1 and j e N, (4.62)

(k7 +£3)?
where the sequence (kj, £;);>1 is an ordering of the elements of N x N, so that the sequence
(45l (py)j=1 is non-increasing. This implies that ||z (p) ~ 7Y as j — o by Weyl’s
asymptotic law for the spectrum of the Dirichlet Laplacian (cf. [I52] as well as the examples
in [39,53]). The target state is chosen to be @(x) = 22 — 23 for & = (71,22) € D.

We use piecewise linear finite elements with mesh width 2 = 27 to discretize the spatial
domain D = (0,1)?, see Section for more details on the FE method. The integrals over
the parametric domain U are discretized using a lattice rule with a single fixed random
shift with n = 2' points and the truncation dimension s = 22, see Chapter |5| and
Chapter [6] for the details. More precisely, the lattice QMC rule was generated by using
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4.4 Projected gradient descent

the fast component-by-component (CBC) implementation of the QMC4PDE software [113]
[114], with the weights chosen to appropriately accommodate the fluctuations in
accordance with theorem (see Chapter |§| for details on quasi-Monte Carlo methods).
In particular, we note that while all the lattice rules in the subsequent numerical examples
were designed with the adjoint solution ¢ in mind, the same lattice rules have been used
in the sequel to analyze the behavior of the state PDE u as well.

We set ¥ = 1.5, and fix the space of admissible controls Z,q = {z € L?(D) : zmm < 2z <
Zmax a.€. in D} with

0 zelgg]x[3 gl 0 zelgg] [zl
@ =10 weLIx (LI md sl = {0 ec (3] x (L,
—1 otherwise 1 otherwise.

We consider the regularization parameters o € {0.1,0.01} for the minimization problem.
To minimize the discretized target functional, we use the projected gradient descent al-
gorithm (Algorithm [1f) in conjunction with the projected Armijo (Algorithm [2)) rule with
control parameter v = 10™* and backtracking from n = 1 with the update n <« 0.57.
For both experiments, we used zo(x) = zo(x1,22) = Pz(0,22), with Pz, (2)(z1,22) :=
max(Zmin (21, T2), min(z(x1, £2), Zmax (1, x2))), as the initial guess and track the averaged
least square difference of the state u and the target state u. The results are displayed in
Figure We observe that for a larger value of « the algorithm converges faster and the
averaged difference between the state u and the target state u increases.

The same behaviour is observed in the unconstrained case with Z,q = L?(D). We fix
the same parameters as before and use the gradient descent algorithm together with the

Projected gradient descent
n=2Y 5=212 h=20%andd =15

0.182¢. e a=0.1

0.180 [

0.178

R
Ry
Rty

8 N
Ry
w

0.176

A AT
T
':u,',',"":

L

0.174+

0.172 : : :
0 50 100 150

gradient descent iteration &

Figure 4.1: Left: Averaged least square difference of the state u and the target state
U at each step of the projected gradient descent algorithm SUS u(-,y, zK) —
al2, (py dy for different values of the regularization parameter . Right: The
control corresponding to a = 0.1 after 152 projected gradient descent itera-
tions.
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Unconstrained gradient descent
n=2Y% s=212 h=2%and¥=15

0.182 ¢ e a=0.1
e a=0.05
0.180 f-,
e a=0.01
0.178 +
RN
0 176 RETERIT L LTI 41#@2&@&&%2\:\&
. L LR AT TSNS
) RN
L 0.174 -
0.172 : : :
0 50 100 150

gradient descent iteration k

Figure 4.2: Left: Averaged least square difference of the state u and the target state
u at each step of the gradient descent algorithm §;; [u(:,y,2) — QHQLQ(D) dy
for different values of the regularization parameter «. Right: The control
corresponding to a = 0.1 after 152 gradient descent iterations.

Armijo rule with control parameter v = 10~% and backtracking from 1 = 1 with the update
n < 0.5n. Again we refer to [89] for details on the algorithm and convergence results. We
choose zp(x) = z2 as the initial guess and track the averaged least square difference of the
state u and the target state u. The results are displayed in Figure [4.2

Parabolic example

We consider the optimal control problem in Section i.e., we aim to minimize . We
fix the physical domain D = (0,1)? and the terminal time 7' = 1. The uncertain diffusion
coefficient, defined as in , is independent of ¢, and parameterized with mean field
ap(x) = 1 and the fluctuations

1
Yji(x) = ij_ﬂ sin(mjxzy) sin(mwjzy) for ¥ > 1 and j € N.

We use the implicit Euler finite difference scheme with step size At = WTO =2-1073 to
discretize the PDE system with respect to the temporal variablﬂ The spatial part of the
PDE system is discretized using a first order finite element method with mesh size h = 275
(see Section for details) and the Riesz operator in the loading term of the adjoint PDE
can be evaluated using . The integrals in the experiments are approximated using
lattice rules (see Chapter |§| for details) that are generated using the fast CBC algorithm
with weights chosen as in Theorem [6.2.7] where we used the parameter value 5, = 1
in . As the target state we choose

p

U@, 1) 1= Xjo—(cr (), calt) oo < 5 (B TLZ ) F X (er () catt) (L1 o< 5 (B) W2(, ),

1
10

22We refer to [I54, Chapter 12] for details on discontinuous Galerkin FEM and the connection to the
implicit Euler scheme.
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4.4 Projected gradient descent

where

iy (x, £) = 10240 <x1 —a) - - <x2 —eot) - 1>

1

1
X (:L‘l — Cl(t) + 10)
1

tp(x, t) := 10240 <x1 +a(t) - > <1"2 +ea(t) — 10)

9
X (xl +ci(t) — 10

1 1 1 1
5 + Z(l — 1% cos(4nt?) and ep(t) := = + (1 — t10) sin(4mt?).

2 4

~_ N =
7N\
8
[}
_l’_
Q
[}
=
|
—_
Sle
N—

Moreover, we set the parameters appearing in the objective functional (4.18)) and adjoint
equation ([4.43)) to a3 = 1073, ap = 1072, and a3 = 10~7. Furthermore, the initial state is

up(x) = sin(27rz ) sin(27ze)

We consider the problem of finding the optimal control z € Z,4 that minimizes
subject to the PDE constraint . We consider constrained optimization over Z,q4 =
{ze L2(V';1) : |2|| t2(v,1y < 2} and compare our results with the reconstruction obtained
by carrying out unconstrained optimization over Z = L?(V’;I). To this end, we define
the projection operator

2

Pz, ,(w) := min {2, _
d HwHL2(V;1)

}w for we L*(V; 1)

which is used in the constrained setting, while in the unconstrained setting we use Pz, :=
ILQ (V;I) .

Algorithm 3 Projected gradient descent

Input: feasible starting value w € L2(V; ) such that z = Ryw € Z
1: while |w — Pz_,(w — J'(Ryw))|z2(v;;y >TOL do
2: find step size n using Algorithm
3: set w:= Pz (w—nJ' (Ryw))
4: end while

Algorithm 4 Projected Armijo rule

Input: current w € L?(V; 1), parameters 3,7 € (0,1) and ng > 0

Output: step size n >0

set n:=mng

while

J(Pz,y(w =0 (Ryw))) = J(Ryw) > 2w — Pz, (w —nJ'(Byw))2
set n := fBn

end while

)do

To be able to handle elements of Z,q € L?(V';I) numerically, we apply the projected
gradient method as described in Algorithm [3] together with the projected Armijo rule
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4 Examples of optimal control problems

stated in Algorithm[4] Note that, Algorithm [3]and Algorithm [ coincide with Algorithm I]
and Algorithm 2] However, Algorithm [3] and Algorithm [4] are presented to illustrate the
precise application of the Riesz operator Ry . Moreover, evaluating J(Ryw) and J'(Ryw)
in Algorithm [3] and Algorithm [ requires solving the state PDE with the source term
Ryw. In particular, the Riesz operator appears in the loading term after finite element
discretization and can thus be evaluated using . We use the initial guess wg = 0.
The parameters of the gradient descent method were chosen to be 19 = 100, v = 1074,
and 8 = 0.1.

We consider the entropic risk measure with # = 10 and set ¥ = 1.3. The reconstructed
optimal control obtained using the bounded set of feasible controls Z,4 is displayed in
Figure[4.3] The reconstructed optimal control at the terminal time 7" = 1 and its pointwise
difference to the control obtained without imposing control constraints are displayed in
Figure Finally, the evolution of the objective functional as the number of gradient
descent iterations increases is plotted in Figure [4.5|for the constrained and unconstrained
optimization problems.

t=0.10 t=0.20 t = 0.40 t = 0.50
@ O
@ © - @ ©

@ O 0.624
= 0.520
-0.416
t=0.80 t=0.85 t=0.93 t = 0.96 0.312
0.208
0.104

0

Figure 4.3: The inverse Riesz transform R‘_/lz* of the reconstructed optimal control z*
using the entropic risk measure for several values of ¢ in the constrained setting.

0.1

[}

0.05

{ 0 N0
0 0.5 1 0 0.5 1

Figure 4.4: Left: the inverse Riesz transform of the control at time ¢ = 1 in the con-
strained setting after 25 iterations of the projected gradient descent algorithm
using the entropic risk measure. Right: The difference between the reconstruc-
tion obtained in the constrained setting and the corresponding solution in the
unconstrained setting.
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Figure 4.5: The value of the objective functional for each gradient descent iteration. The
results corresponding to the constrained setting and the unconstrained setting
are plotted in blue and red, respectively.

4.5 Error contributions and error expansion

In this section we start the error analysis of the optimal control problems by decomposing
the overall error into its contributions. More precisely, we use the convexity of the objective
functional of the optimal control problems to derive bounds on the error in the optimal
control in terms of the corresponding adjoint states. The error in the adjoint states is then
decomposed into its contributions and analyzed separately in Chapter [5] Chapter [0, and
Section In fact, the theoretical results for the different error contributions developed
in this thesis are not limited to the application to optimal control problems, but cover
a much broader class of problems, see Chapter [5] Chapter [] and Section for further
details.

Let X be a separable Banach space and let the dimensionally truncated sequence y € U
be denoted by

yés = <y17y27 s 73/370707 .. )

In the case of an affine parameterization of the random input field (4.5) or (4.21) this
corresponds to a truncation of the series at s terms, i.e.,

a(z,y) = ao(@) + Y yjv(@) ~ ao(x) + Y yjy(@) = a(z,y<,), x€D.

j=1 j=1

The involved integrals then become integrals over a finite-dimensional domain Uy, i.e.,

1) = |t ) > | ) nye) = L0, 1 L©.).
Dimensionally truncated quantities are denoted with the subscript s, e.g., us(y) := u(y<,)-

In Section [5.3| we provide error bounds and convergence rates for the dimension truncation
error in a very general setting.
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4 Examples of optimal control problems

Once the dimension of the parameterization has been truncated, we employ an n-point
cubature rule to approximate the s-dimensional integrals, i.e.,

n

L(f) = L Fes) mdy<y) ~ Y aif @) = Qunlf), [e L (Us, X)

i=1

for cubature weights a; € R for each ¢ = 1,...,n and nodes y® € R® carefully chosen
according to a cubature rule. In this work we focus on randomly shifted rank-1 lattice rules,
which are quasi-Monte Carlo rules for integration, see Section for a precise describtion
of the methods with rigorous error bounds and convergence rates. QMC methods are
particularly well-suited for optimization since they preserve convexity due to their equal
weights, i.e., a; = % foralli=1,...,n.

Quantities that depend on the number of cubature points n will be denoted with the
subscript n.

Finally, one can use, e.g., finite element methods to discretize the PDEs in the spatial
variables. Spatially discretized objects will be denoted with the subscript h, e.g., zp
denotes the discretized control on a finite element subspace.

4.5.1 Elliptic PDE constraint

In the following we consider a discretization of problem (4.1)), (4.2), (4.3)), and (4.4). Given
s € Nand y € U, we truncate the sum in (4.5)) after s terms, i.e., we set y; = 0 for j > s+1.

For every y € U and every control z € L?(D) we denote by

us(yv B Z) = u(yésv ) Z)

the dimensionally truncated state, i.e., the unique solution of the parametric weak problem
(4.8) corresponding to the dimensionally truncated diffusion coeflicient as(y) := a(y).
Similarly we write ¢s(y,-,2) = q(y<, -, 2) for any y € U and any z,4 € L?(D) for
the unique solution of the adjoint parametric weak problem corresponding to the
dimensionally truncated diffusion coefficient and truncated right-hand side us(y, -, z) — .
We further assume that we have access only to a finite element discretization u, 4 (y, -, 2)
of the truncated state, to be defined precisely in Section We write g5 n(y, -, 2) for the
finite element discretization of the truncated adjoint state corresponding to usp(y, -, 2).
We also write us(y, -, z) = Sy_z and ¢s(y, -, 2) = Sy_(us(y,,2) — U) in conjunction with
Us,h(ya ) Z) = SySS,hZ and QS,h(y’ ) Z) = Syss,h(us,h(y) " Z) - a)

Finally we use an n-point quasi-Monte Carlo approximation for the integral over U, leading
to the following discretization of

n
Zrenéi Jshn(2),  Jsnn(z) = % 1211 HSy(i)JLZ - aH%%D) + %HZH%%D) ; (4.63)
for quadrature points y € Uy, i € {1,...,n}, to be defined precisely in Section Since
the error splitting will be based on the convexity of the problem, it is important to use
cubature methods with positive weights in order to retain the convexity after discretization.
In analogy to (4.16) it follows that the gradient of Jy j, ,, i.e., the representer of the Fréchet
derivative of J, 5, ,, is given by

1 & ,
VJS,}L,TZ(Z) = ﬁ Z qs,h(y(l)a ) Z) +az.
i=1
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Due to the positive weights of the quadrature rule, is still a convex minimization
problem. Existence and uniqueness of the solution 27, , of follow by the previous
arguments.

We note that the optimal control zs hn is implicitly discretized in terms of the FE dis-
cretization of the solution operator, see [88].

Lemma 4.5.1. Let z* be the unique minimizer of ( - and let z , be the unique
minimizer of - Then, we have

1 1< ;
HZ* - Z:,h,n (D) < - f Q(y) "y Z*) dy - Z qs,h(y(Z)y K Z*) ) (464)
allJu nia L*(D)
for quadrature points y e [—%, %]8, ie{l,...,n}.

Proof. By the optimality of 27, . it holds that (VJsp (23} ,.), 2 — 25, . 002(p) = 0 for all

z € Z,q, and thus in particular (VJsp, (z;"’hm), z* — Z;h,n>L2(D) > 0. Similarly it holds for

all 2Z,q that (VJ(2*), 2—2*)12(p) = 0 and thus in particular (—VJ (%), 2" =27}, Dr2(p) =
0. Adding these inequalities leads to

<VJS,h,n(z:,h,n) - VJ(z"), 2" - z;k,h,n>L2(D) =0.
Thus
alz* — Z:7h7n||%2(D) < alz* — z;h’nH%g(D) + <VJ57h,n(z;"7h7n) —VJ(z%), 2" — Z:7h7n>L2(D)
= (Vs (Zipn) —azip,, — VJ(Z*) + az*, 2" — z:7h7n>L2(D)
= (VIshn(Zinm) = @2ipp — Vspn(2") + az*, 2" — Z:,h,n>L2(D)
+ <VJ57h7n(z*) —az* = VJ(E") +az*, 2" — Z:,hW>L2(D)

1 :
< < 2 QS,h(y(Z)7 K Z*) - J Q(y; B Z*) dya 2% — z;k,h,n>
i3 v L?(D)
1« ;
< H Z QS,h(y(Z)a K Z*) - f Q(y; E Z*) dy
3 v

where in the fourth step we used the strong convexity of the objective function, i.e., we
used (Vs nn(25),) = Vsnn(2%) +a(e* =25, ), 2% — 25, ,,» < 0. The result then follows

s,h,n
from o > 0. O]

|2* — 2z
12(D)

*
S7h7n L2(D) ’

We can split up the error on the right-hand side in (4.64) into dimension truncation error,
FE discretization error and QMC cubature error as follows

| w2y - LY gy, - | e~ ay (4.65)

=1 )
~-

truncation error

+ JU (QS(yv Z, Z) - QS,h(ya €T, Z)) dygs

J

~
FE discretization error

+J Gs,n (Y, @, 2) dy <y — — quh 0 2).
Us

QMC quadrature error

These errors can be controlled as shown in Section [5.3] Section[7.I]and Section[7.2.2] below.
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4.5.2 Parabolic PDE constraint
Let z* denote the solution of (4.38) and let z7,, be the minimizer of

a3
Jon(2) = Rsn(PY(2)) + EHZH%Q(V’;I)v

where ®¥(z) = ®Y<s(z) is the truncated version of ®¥(z) defined in (4.37), and R,
is an approximation of the risk measure R, for which the integrals over the parameter

domain U = [—3, 3]V are replaced by s-dimensional integrals over Us = [—3, £]° and then
approximated by an n-point randomly-shifted QMC rule:

Ly

— Z DY (2) for the expected value,

n —=
Rsn(PY(2)) = 1 =t 1o "
- - y 7 . .
7 In (n lzzl exp (6 @Y (z))) for the entropic risk measure,

for some risk aversion parameter # € (0,00), and for carefully chosen QMC points y¥,
i =1,...,n, involving a uniformly sampled random shift A € [0, 1], see Section

We have seen in the proof of Corollary [£.:2.5] that the risk measures considered in the
example for the parabolic PDE constraint are convex and the objective function J, see
(4.36)), is thus strongly convex. It is important to note that the n-point QMC rule preserves
the convexity of the risk measure, so Js, is a strongly convex function, because it is a
sum of a convex and a strongly convex function. Similar to the elliptic example, we

therefore have the optimality conditions {J ,(2¥,),2 — 25, )r2(v;n),c2(vry = 0 for all

2 € Z,q and thus in particular (J{,, (2% ,), 2* — 22, ) r2(v.0),02(v7 1) = 0. Similarly, we have

<J/(Z*), z— Z*>L2(V;I),L2(V/;I) = 07 and in particular <—J/(Z*), Z* — Z;k,n>L2(V;I),L2(V/;I) = 0.
Adding these inequalities gives

(Ton(z5n) = J'(2%), 2% = 25 02, L2001 = 0.
Hence
agl2® — Z;k,nH%%V';I)
< agllz* — z:,n”%Q(V’;I) + (Jgn(zin) = J'(2%), 2% = 25 02 vin 2 (v
= <J;,n(2:,n) - a33x712:,n —J'(z") + aSRf/lZ*, z* — z:,n>L2(V;I),L2(V’;I)
= (Joa(25,) —asRy'2E, — J0,(2%) + asRy 2%, 2% — 2y n)L2(ViI),L2 (V')
+ (S (%) — Ry 2 = J'(2%) + asRy 2, 2F — 25 n)L2(ViI),L2(V':)
S {JLa(2%) —asRy' 2" — J'(2%) + 3Ry 2%, 2% — 25 0 2 vin 2 v
<

|20 (2%) — asRy 2% = J'(2%) + asRy 2% p2vp12* — 25 |2 vy
where we used the ag-strong convexity of J;n in the fourth step, i.e.,

<J;,n(2:,n) - J;,n(z*) - OZ3R‘71 (Z* - Z;n)ﬂ z* — Z:,n>L2(V;I),L2(V’;I) <0.

It follows

1
I2* = 25 plL2vrny < ;SHJ,(Z*) — Jon(Z) | 2(viny-
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4.5 Error contributions and error expansion

We will next expand this upper bound in order to split it into the different error contribu-
tions: dimension truncation error and QMC error. The different error contributions are
then analyzed separately in the Chapter [5] and Chapter [6] for both risk measures.

In the case of the expected value, it follows from that

()
Eallz* — anL2 v S EA‘J dy——qu

2 Yy Yy 2
QHJ (¢f —qf,)dy

Q)
EHJ d I
L2(ve) a3A %Sy Eq

L2(V3I)

4.
- (4.66)

where qzll’ $ 1= qi’és denotes the truncated version of ¢¥, and Ea denotes the expected value
with respect to the random shift A € [0, 1]°.
In the case of the entropic risk measure, we recall that J'(z) is given by (4.48]). Let

T:= J exp (G(I)y(Z*)) dy, Tsm *ZQXP H(Py()( *n)) ’
U i=1
(3) ()
S ::J exp ((9 (I)y(z*)) Q?(Z*)d% Ss7 = Zexp H(I)y ( . )) q?lJ,s (Z:,n)?
U z 1

then we have
H H S Ss n HSTS’n - Ss,n THLQ(V I)
Zsalznn S |7 TsplL2eviny TTsn
HSTSm - ST+ ST -5,
- TTs,
_18liewin T — T N |s—s

a:;”z*

ﬂbww

sl 2 vy
T Ts,n Ts,n

T = Ton| + |8 = Soin| 2wy (4.67)

X

where we used 77 > 1 and T,, > 1 and, using the abbreviation ¢¥(x,t) :=
exp(0 DY(2)) ¢¥ (z,t) we get

2 2
IS1Z2vir) = f HJ g dyH dt = JJ |v f (1) dy)) de dt
1"JU
S J JJ V9" (a0 dedidy = f 9|52 dy < 12
UJIJD U

where we used Theorem [4.6.12] with v = 0.
We can write

S Ssn|?

Ea|> - v < YPBA|T — Ty ,f* + 2Ea|S — S, (4.68)
For the first term on the right-hand side of we obtain
EA|T = Tou|* < 2T =T + 2Bal|T, — Ty, (4.69)
and for the second term we have
EalS = SsnlZzqry < 218 = SslZ2ray + 2BallSs = Ssalizw.n- (4.70)
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Remark 4.5.2. Since we have |vi| 2,1y < |vly for all v = (vi,v2) € Y by definition,
and thus in particular | §,(¢f — i) dyl 20y < | §5(¢¥ — ¢f) dyly, we can replace
qi’,qis e L2(V;1) in and @ by q¥,q¢ € Y. In order to obtain error bounds and
convergence rates for (4.66) and (4.70), it is then sufficient to derive the results in the
Y-norm, which is slightly stronger than the L?(V'; I)-norm.

The errors can be controlled as shown in Section [5.3] and Section

For the parabolic PDE constraint and the parametric operator equation constraints, we
leave out the spatial discretization and instead analyze the remaining error contributions
directly in the respective function space. This technique has the advantage that, in the
presented setting, the derived error bounds and convergence results immediately carry
over to finite element discretizations belonging to conforming finite element subspaces of
the respective function space.

4.5.3 Parametric linear operator constraints

Let z* denote the solution of (4.52)) and let z7,, be the minimizer of

1 —1/,,() A2 Q2
Jon(z) = 3Ron(|QA" ()82 A} ) + S412
~ (1)
=:0Y" 7 (2)

where, analogously to the setting with the parabolic PDE constraint, R , is an approxima-
tion of the risk measure R, for which the integrals over the parameter domain U = [—%, %]N
are replaced by s-dimensional integrals over Ug = [—%, %]3 and then approximated by an

n-point randomly-shifted QMC rule:

n .
— Z " (2) for the expected value,
n :
Ren(®¥(2)) =14 ="
1 1 ~ () -
—In (— Z exp (6 &Y (z))) for the entropic risk measure,
n :

for some risk aversion parameter § € (0,00), and for carefully chosen QMC points y®,
i =1,...,n, involving a uniformly sampled random shift A € [0, 1]°, see Section
Since the two considered risk measured are convex and thus the objective function J,
see , is strongly convex. The n-point QMC rule preserves the convexity of the risk
measure, so J ,, is a strongly convex function. Analogously to the elliptic and the parabolic
examples, we therefore have the optimality conditions {J ,(2%,),z — 2%,)z/,z = 0 for
all z € Z,q and thus in particular (J{,(25,), 2" — 25,02,z = 0. Similarly, we have
(J'(2%),2 — 2*)zz = 0, and in particular (—J'(2*),2* — 2%, )z =z > 0. Adding these
inequalities gives

<Jé,n(z:,n> - J/(z*)') Z* — z:,n>zl7z = 0.
Hence, by the same arguments as in the elliptic and parabolic examples, we obtain
1
|2 = 2Znllz < Z (") = Tou(z)] 2

In order to analyzed the error contributions separately in Section [5.3|and Section [7.2.2| we
will expand this upper bound for both risk measures.
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4.5 Error contributions and error expansion

In the case of the expected value, it follows from (4.53)) that

(@) C'/ SIOIL
Ealz* — 22,[% < EAM B¢ dy — fZB’ <5 IEAM ¢V dy — Zlqsy
1=

z
20 n 0|2
| [ el [ e 25
1 Yy
where C' = ||B'||z(y,z) and ¢f := ¢¥=s denotes the truncated version of ¢¥, defined in

(4.54]), and Ea denotes the expected value with respect to the random shift A € [0, 1]*.
In the case of the entropic risk measure, we recall that J'(z) is given by (4.57)). Let

T := J exp (0 <T>y(z*)) dy, T = 1 Z exp (0 %g(i)(z;"n)) ,
v 7 s ’
s:jemw%Wf»kuﬂ@,&,ezkm (69" (=2,)) B (22,0),
U =1

then we have

*

* S S n HSTS’n _ e
nz—%wmm@\Wr Tynliz T
_ HST57n—ST—}—ST_Ss,nT||Z/
- TTs,n
81 T = Tun] |5 = Suall5
= TTs,n Ts,n
<p|T = Tom| + |8 = Sanl

(4.72)

Zl?

where we used T > 1 and Ts, > 1 and, using the abbreviation ¢¥(x,t) :=
exp(f DY (2)) B'q¥(x,t) we get

||SH22, = H f exp (0 &)y(z*)) Bg¥(z* = J H exp (0 &)y(z*)) B'g¥(z*) . dy
U U
2 2
= 9|z dy < p
J L2
where we used Theorem [£.6.19 with v = 0.
We can write
S S
Ea|2 - 22| < 242Ea|T — Tyl + 2Ea|S - 5 (4.73)
T T 9 b
For the first term on the right-hand side of (4.73)) we obtain
2 2 2
EA|T = Ton|” < 2|T — To|” + 2EA|Ts — T n|”, (4.74)
and for the second term we have
EalS — Ssnl% < 2S — Sl|% + 2Ea|Ss — Ss.nll%- (4.75)
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4 Examples of optimal control problems

The different errors can be controlled as shown in Section [5.9] and Section [7.2.2l Recall
that B’ is a bounded linear operator and can be pulled out before the error estimation,
ie.,

~ 1 & ~ (i i
|S — Ssmllzr = Hj exp (0 q)y(z*)) Bg¥(z*)dy — - Z exp (0 q)é’( )(z;n)) B'qﬁj’( )(z;n)
U i=1

ZI

~ 1 ¢ ~ () @
<Co| | e (0B ) ay - = Y e (082 (:2,0) 2 5

i=1

y

4.6 Regularity analysis

In the previous section we have seen that the error in the optimal control can be bounded
by the error in the derivative of the objective functional. This derivative typically involves
a function of the adjoint or dual PDE solution. By a simple application of the triangle
inequality, the overall error can then be decomposed into its different contributions. The
error bounds and convergence rates for the different error contributions rely fundamentally
on the parametric regularity of the quantity of interest. In preparation for the application
of the theoretical results derived in Chapter [5] and Chapter [f] to the optimal control
problems described in Chapter[d] we investigate the parametric regularity of the integrands
in the bounds of the errors in the optimal control appearing in (4.64]), (4.66|), (4.67)), (4.71)),
and .

We start this section with recalling some well-known and frequently used results. An
important result for the differentiation is Leibniz generalized product rule: Let v, m € F.
Then it holds for sufficiently regular functions f, g, that

& (fg) = ) (;) o formg.

m<v

Another frequently used result is the following recursive bound.

Lemma 4.6.1 ([I19, Lemma 5]). Given a sequence of nonnegative numbers b = (b;)jen,,
let (Ay)ver and (By)yer be nonnegative numbers satisfying for any v € F the inequality

A< Y <V>b”_mAm+B,,.
m

m<v,m#v

Then

v\ k' 4
A, < Zu <k> (lnz)wb By

forallv e F.

In the regularity analysis we will frequently use a number of combinatorial identities, which
are listed below. As stated in [I13] equation (9.3)] the identity

%)= () =mi 470

m<v,m|=i
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4.6 Regularity analysis

follows from considering the number of ways to pick ¢ objects from a set of bags containing
in total |v| objects. It then follows that

n;y( >|m!'|v—m\v—|i Z <;>i!(’v’—i)!=i|y|!:(’u_|_1)!, (4.77)

1=0 m<v,|m|=i =0

as can be found in [I13] equation (9.4)]. Moreover, it follows that

Zy<y> 1r|17;“m| 2 X (2) (mi!z)i _li yu|y—|' i) (ln12)

m< 1=0 m<v,|m|=1

1 1 1
= | i
o <0!(1n2)lvl T Uy T T |V|!(ln2)0)

_ vl R S 1

T (In2)P\0N(In2)0  1(In2)-t 7 jp|!(In2)- v
Y e, 0l

= (In2)¥l (In 2)I¥|

(4.78)

and

5 ( > (jm| + 1)! ”'21 5 <1/)(z'+1)!
m<tmey \T/ (In2) Im| S0 meiginl—i \T (In2)
lv|—1

7+ 1
= s oim

1=0

= |v|! vl I L B N
A\ 1(In2)lvI=1 " 2(In2)vl=2 7 jp)l(In2)0

V! V| 14 V|
S n2)Wl (1!(1112)—1 22 " \u\!(lnz)—|u>
wlvl(e™? —1) _ (v + D!
(In 2)I¥| = (In2)vl

(4.79)

By adding the m = v term on both sides of (4.79)) we get

v\ (Iml+1)! __(jv]+ 1)
Z <m> (In 2)m <2 (In2)Wl (4.80)

m<v

4.6.1 Elliptic PDE

In this subsection we will derive bounds on the mixed first partial derivatives of the
parametric solution u as well as bounds on the mixed first partial derivatives of the adjoint

parametric solution g. For the solution u(-,y, z) of the state equation (4.8]) the following
result is well-known.

Lemma 4.6.2. For every z € V', every y € U and every v € D we have

VA !
I@0) (. v = V(@) w2z < 16 AV

min
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4 Examples of optimal control problems

This lemma can be found, e.g., in [31].

In contrast to the parametric weak problem , the right-hand side of the adjoint para-
metric weak problem depends on the parameters y € U. In particular, the problem
is of the following form: for every y € U, find ¢(+,y, z) € V such that

J a(xz,y)Vq(x,y,z) - Vo(x)dx = J fz,y,2)v(x)de, veV, (4.81)
D D

where the right-hand side f(z, vy, 2) := u(x, y, z) — G(z) depends on z € L*(D) and y € U.
Lemma below gives a bound for the mixed derivatives of the solution ¢(-,y,z) €
V of (4.81)). Similar regularity results to the following can be found in [I11] (uniform
case) and [24] (log-normal case) for problems with stochastic controls z, depending on
y. In particular, in the unconstrained case Z,q = L?*(D) the optimality conditions in
Section reduce to an affine parametric linear saddle point operator and the theory,
e.g., from [I11] [146] can be applied.

Lemma 4.6.3. For every z € L?(D), every y € U and every v € F, we have for the
corresponding adjoint state q(-,y, z) that

10" a) sy, 2) v < (] + DY Cy (|2 2(p) + [0l 22(p))

h C, = c  ce
where Cy := max {-“—, 4—=1.

QAmi .
min amln

Proof. The case v = 0 follows from the uniform bounded invertibility of S,

laCry: 2)lv < Colllzl 2oy + @l z2(py)- (4.82)

Now consider v # 0. Applying the mixed derivative operator ¥ to (4.81)) and using the
Leibniz product rule, we obtain the identity

jD ( 2 <V> (0™a)(x,y)V(0" ™) (x,y, 2) - Vv(m)) dz (4.83)

m
m<v

:f (@ f)(x,y,2) v(x)de YveV.
D

Due to the linear dependence of a(x,y) on the parameters y, the partial derivative 0™ of
a with respect to y satisfies

a(z,y) ifm=0,
(@"a)(z,y) = { Pj(z) ifm=e;,
0 else.

Setting v = (0¥q)(-,y, z) and separating out the m = 0 term, we obtain
| awwIv@ @y )P de
D

- 3w ene e Ve

jesupp(v

n j (@ (@, y, 2)(@ )@y, 2) de
D
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4.6 Regularity analysis

which yields
amin(279) (-, y, 2)IF < D vill vl Loy 127 ) (9, 2) v (07 9) (- w, 2) v
j>1
+ @ Ny 2 vl (@) ¢y, 2) v
= > ¥l ) 107 ) oy, 2) v (07 a) (- y, 2) v

i>1

+ 1" Oy 2) v 1@ a) (g, 2) v
and hence

1(0¥q) (- y, 2)|lv < Z vibi| (Y% q) (-, y, 2)|lv + 12" )5y, 2) v 7

i>1 Amin

where b; M for j € N. With f(-,y,2) = u(-,y,z) — 4(-) this reduces to

1@ 2lv < X vl q) (o p, o)y + WD 2l (4.80)

j>1 Amin

With Lemma [4.6.2] we get
v /
1@ 0) (o9, 2) v < creal (@) (9 2y < erea lwlt o EIV
Amin

where c1,co > 0 are embedding constants, see and . Then (| - becomes, for
v # 0,

PR z /
10w Dy < 3 bl ia) (o3, v + eres [t b Y

j=1 min

Now we apply Lemma to obtain the final bound. For this to work we need the above
recursion to hold also for the case v = 0, which is not true when we compare it with the
a-priori bound (4.82)). We therefore enlarge the constants so that the recursion becomes

1079) (. 2) v < D vibsl(@ 79 a) (g, 2) v + w18 Cy (2] 20y + 18] 22(0)) »
Jj=1

which by Lemma gives

1 %4 _ ~
0ty < 3 (1) lmlt 7o = mlt 8y oy + [aliegn)

m<v

174 ~ 1 %4
6 Cy |2y + Nile) S (m) mil | — m]!
m<v

= b Cq (Iz] 2p) + [l L2(p)) (] + D!,

where the last equality follows from (4.77)). 0
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4 Examples of optimal control problems

4.6.2 Parabolic PDE

The idea of the proofs in the regularity analysis of the parabolic PDE follow mainly the
ideas of the proof of the elliptic PDE. A novelty is the regularity analysis of the solution
of the adjoint state in conjunction with the entropic risk measure.

The following regularity result for the state u¥ was proved in [I11].

Lemma 4.6.4. Let f = (z,ug) € Y'. For allv e F and all y € U, we have

o < L1 e, (4.85)
o)1
where By is as described in (4.26) and the sequence b = (b;) ;=1 is defined by
1
bj = == sup [¢;(, )] L (D)- (4.86)
Bi ter

Parametric regularity of the adjoint state

In this subsection we derive an a-priori bound for the adjoint state and the partial deriva-
tives of the adjoint state with respect to the parametric variables. Existing results, e.g.,
[T11, Theorem 4], do not directly apply to our case, since the right-hand side of the affine
linear, parametric operator equation depends on the parametric variable, more specifically

(BY)'q¥ = (a1 Ry + ap BT Er)(u¥ — 1),

Lemma 4.6.5. Let aj, a3 = 0 and az > 0, with a1 + as > 0. Let f = (z,ug) € V' and
ue X. For everyy € U, let u¥ € X be the solution of (4.20) and then let ¢¥ € Y be the
solution of (4.32) with fqual given by (4.40) m Then we have

ot ealBrli ||f||y'
Ily < 5 + Il

where By is described in (4.26)).

Proof. By the bounded invertibility of BY and its dual operator, we have
la¥ly < I((BY)) " |amy (a1 Ry + a2 EpEr)(u? —@)| a0,
with [((BY)) ™ |a—y < 1/B1,

| Ry (u¥ = @) ar < Ry (u¥ = @) 2vrry = ¥ =Gl 2y < Ju? =,

|ErBr(u? — @) < | Brl5_pop) I — uHx,

o — il < ¥l + ol < L2+ e,
where we used (4.27)). Combining the estimates gives the desired result. O

Theorem 4.6.6. Let ag, a0 = 0 and as > 0, with aq + as > 0. Let f = (z,ug) € V' and
ue X. For everyy € U, let u¥ € X be the solution of (4.20) and then let ¢¥ € Y be the
solution of (4.32) with fqual given by (4.40). Then for every v € F we have

R L v
|ya¥ly < o ) (v 118,

where By is described in (4.26) and the sequence b = (b;) ;=1 is defined in (4.86)).

86



4.6 Regularity analysis

Proof. For v = 0 the assertion follows from the previous lemma. For v # 0 we take
derivatives 0y ((BY)'q¥) = 0y ((c1 Ry + aa B Er)(u¥ — @) and use the Leibniz product
rule to get

2 (,’;) (@ (BY)) (2 ™¢¥) = (i Ry + azEpEr) (9 (u¥ — @) .

Separating out the m = 0 term, we obtain
(BY) (0yq")

== ) <,';> (0(BY)) (357™q¥) + (a1 Ry + ao EpEr) (0% (u¥ — 0)).

0#m<v

By the bounded invertibility of (BY)’, we have |((BY)") ™! x oy < /3% and

v v —1ym v—m
gy < 3 (I ey 1 el

0£+m<v
+[((BY)) arsy (a1 Ry + asErEr) (0 (u¥ — )|
v 1
< ) ( )II@L”(B*’)’I%M loy™a% |y
0#m<v m ’81
a1 + 02 ”ET”g(—)L?(D)

b1

[0y (u¥ = )]

Recall that
(v, (BY) w)x a

:J<v,—§w>wvzdt+ff ayVU-dexdt+f Erw Epvde.
I 1Jp D

For m # 0, we conclude with ([4.21)) that (v, ™ (BY)wyx x = §;§,1; Vv - Vwdz dt if
m = ej, and otherwise it is zero. Hence for m = e; we obtain for all v € ) that

o™ (BY) ' Vv - Vwdzdt
Ham(By)/UHX’ = sup |<Ua ( )w>X,X ’ _ |SI SD T,Z)] v wax |
weX Jwlx weX Jwlx
HU”L?(V;I) Hw||L2(V;I
wllx

< b; sup L < bjllly.

weX

Hence

o +ag |Er|3_ s

b1

v v—e; D v ~
lovq¥ly < > v |0y ¥y + D) av (¥ — @)

jesupp(v)

By Lemma this recursion is true for v = 0 and we may apply Lemma to get

. v ot az|Erli gy ~
gty < 3 () imiem( A0 g — )]

m<v

87



4 Examples of optimal control problems

From and - we have

1 ~ .

~ = flly + |a|xy ifv =0,
|5"(uy—U)|x<{Bll| e il

LIl b v 20

We finally arrive at

v mo1 o2 1E7|% - r2p 1/l y—m
lova?y < Z <m> |m|! b D) T 1y —mf1b

S~ 61 ﬁl
m;l’
o1+ 02 |Erl3_ 2 py /]y
— Yy
bty SO (L il )
o1 + Qg HETHgf—»L?(D) Hf“ /
=(lv|+1 !bu >
(lv[+1) B B
a1+ oz |BErl3. 2y,
+[v]1b” mm—
a1 + a2 |Erl3 L, 12 p) /)£y
< (jv] + 1)1 5" 5 (5 L),
where the equality follows from (4.77)). -

Regularity analysis for the entropic risk measure

Our goal is to use QMC to approximate the following high-dimensional integrals appear-
ing in the denominator and numerator of the gradient (4.48). To this end, we develop
regularity bounds for the integrands.

Lemma 4.6.7. Let 0 > 0, a1, = 0, with aq + ay > 0. Let f = (2,up) €Y and i € X.
For every y € U, let u¥ € X be the solution of (4.20) and let DY be as in (4.37). Then for
all v € F we have

oroY| <
Y 2 B1

where the sequence b = (bj)j=1 is defined by (4.86).

2 2
o + o | Er ) (anyf .\ \ﬁ\x) (1] + 116

Proof. The case v = 0 is precisely (4.45)). Consider now v # 0. We estimate the partial
derivatives of ®¥ by differentiating under the integral sign and using the Leibniz product
rule in conjunction with the Cauchy—Schwarz inequality to obtain

. ar+ a2 |Brl% 2 p v\ ~ . ~
oyeY| < 3RS (Yo~ @)l o - D)l

m<v

Separating out the m = 0 and m = v terms and utilizing (4.85)), we obtain

3 () 10 - o

m<v
~ v _
=2[u¥ — iy [ u¥]x + D ( ) [0 u¥ | x (|07 uY || x
m
m<v
0#£#m+#vr
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4.6 Regularity analysis

2
(1 ) e () 5 (2

m<v
0#m+#v

where the sum over m can be rewritten as

lv|-1 lv|-1 y
IEICRUIPY (v)- 3 vl - o (") = witw -,

m<v, |m|=¢
where we used the identity (4.76). Combining the estimates yields the required result. [

We state a recursive form of Faa di Bruno’s formula [141] for the exponential function.
Theorem 4.6.8. Let G: U — R. For ally € U and v € F\{0}, we have

V|

0y exp(G(y)) = exp(G(y)) Y v (y)

where the sequence (a, \(Y))ver reN, @5 defined recursively by a, 0(y) = du0, cw A (y) =0
for A > |v|, and otherwise

i@ = X (1)@ OO W amaaw). =1

m<v

Proof. This is a special case of [141, Formulas (3,1) and (3.5)] in which f is the exponential
function and m = 1 so that A is an integer. O

Lemma 4.6.9. Let the sequence (A, \)verF, xen, Satisfy Ay o = 0p.0, Ay x =0 for A > |v],
and otherwise satisfy the recursion

IJ+€],)\ < Z < ) v—m-+te; (|I/| — |m] + 2>!Am,)\717 ] > 1’ (487)

m<v

for some ¢ > 0 and a nonnegative sequence p. Then for allv # 0 and 1 < )\ < |v| we
have

i DM (Jp| 4 2k — 1)!

2k — 1) (A — k)!&!

(4.88)

The result is sharp in the sense that both inequalities can be replaced by equalities.

Proof. We prove for all v # 0 and 1 < A < |v| by induction on |v|. The base case
Ae; 1 is easy to verify. Let v # 0 and suppose that holds for all multi-indices m of
order < [v| and all 1 < A < |m|. The case Ay ¢, 1 is also straightforward to verify. We
consider therefore 2 < A < |v| + 1. Using and the induction hypothesis, we have

A1/+e]-,)\

174
< v—m+te; _ 2|
S (o )enrmeestvl < mi 42

0#m<v

—1 )\ 1+k
A1, (|m|+2k—1)
8 ( Z 2k: A1 k)k!
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4 Examples of optimal control problems

V| -1 A—1+k
e (-1) (lv| =€+ 2)! (0 + 2k —1)!
2o 3 S () e

l= 1‘m|<1/
1 M- |v|
2 ()M A—1 | —0+2\ (0+2k—1
_ A vte _1\k
=" pYte O ];1( 1) i Z_Zl | — ¢ ’ . (4.89)

=T

where we used (4.76) and then regrouped the factors as binomial coefficients. Next we
take the binomial identity [128, Equation (5.6)]
<|u| + 2k + 2)
14 ’

'i | — 0+ 2\ [0+2k—1
lv| —¢ 1
separate out the ¢ = 0 term, and use Zg;%(—l)k()‘gl) = 2;(1)(—1)'“()‘;1) —1=-1, to

B (]2 ()
(M) (2R ()

S () e () ()

Substituting this back into (4.89) and simplifying the factors, we obtain

Il ||
>/ Ed > R‘
»—- — — >—A

A ,\+k
A vte; ‘V‘ + 2k)
AV"FEJ,A xC p Z 2k )\ k)' k"

as required. O

Theorem 4.6.10. Let 0 > 0, aj,ay = 0, with a1 + ag > 0. Let f = (z,up) € V' and
ueX. For every y € U, let u¥ € X be the solution of (4.20) and let ®Y be as in (4.37).
Then for all v € F we have

’az exp(@ @y)| < emax(a, oe?+20-1) |V|' (eb)u,

where the sequence b = (bj)j=1 is defined by (4.86) and o is defined by (4.47).

Proof. For v = 0 we have from (4.46)) that |exp(6 ®¥)| < e?, which satisfies the required
bound. For v # 0, from Faa di Bruno’s formula (Theorem [4.6.8) we have

v
|0y exp(09Y)| < exp(0 DY) D | (y)], (4.90)
A=1

with o 0(y) = 0v.0, aw a(y) = 0 for A > |v|, and

v m-+te;
avren @I = 3 ()01 0 s mrcr()

m<v
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174 .
< 3 (1) o tml+ 25 ool

m<v

where we used Lemma, Applying Lemma we conclude that

A (—D)ME (jp| + 2k — 1)

lawa(y)| < o™ b” ) (4.91)
A2k - 1) (A= k)lk!
We have
'Z‘": i DMF (Jv] + 2k — 1)! i (j| + 2k — 1)! 'i(—n“’fa*
! 2k:—1 A—RIE 2 k-1 & (A=)
V| - vl g
v —|—2l<:— 1 o _
= [v|! 1) —elvl+2h—lo 4.92
i3 5 (M) D G i 3 e (4.92)

< ‘V" 6|V|+O'62+0'—17

where we used (') <n™/m! < e". Combining (4.90), (4.91)), (4.92) and (4.45) gives

|0y exp(0@Y)| < exp(o) b” |v|! elvltoe® o1 _ coe*+20-1 |v|!(eb)”,
as required. O

Remark 4.6.11. In the proof of Theorem 4.6.10, a different manipulation of (4.92) - can
yield a different bound 2¢ elvI+oe? totl(ly| —1)! for v # 0, leading to a tighter upper bound

for large |v| at the expense of a bigger constant,
0% exp(6 ®Y)| < 20 ¢ F27 L (| — 1)! (eb)”.

This leads to a more complicated bound for Theorem[{.6.19 below. Hence we have chosen
to present the current form of Theorem[{.6.10 to simplify our subsequent analysis.
Interestingly, the sum in can also be rewritten as a sum with only positive terms:
denoting v = |v/|,

A

DAME (v + 2k — 1)! v—1 \.\k
]; (2k — I\ — k)!&! )\'Z<)<v—)\—k>2
v—1 A ()\)(v—)\) -

ZQA(U_A>Z (k/\Jrkfl)z g

k=0 k

which is identical to the sequence [17, Proposition 7] and the sequence A181289 in the
OEIS (written in slightly different form). However, we were unable to find a closed form
expression for the sum; neither [67] nor [128] were useful to us in this case. The hope is to
obtain an alternative bound for that does not involve the factor e’ which remains
open for future research.

Theorem 4.6.12. Let 0 > 0, aj,a3 = 0, with a1 + as > 0. Let f = (z,up) € V' and
ueX. For everyy e U, let u¥ € X be the solution of (4.20) and ®Y be as in (4.37), and

then let ¢¥ = (¢¥,d¥) € Y be the solution of (4.32) with faua given by ([£.40). Then for
all v € F we have

|05 (exp(0 %) ¢t | » Vi) S ||aZ(eXp(9(I)y)qy)”y<

=

(Iv] +2)!(eb)”,
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4 Examples of optimal control problems

where the sequence b = (bj);j>1 is defined by (4.86), o is defined by (4.47) and

max(o, oe?+20—1) a + a2 HETHX_’LQ(D) Hf“y/ ~
( b >< B HuHX)'

Proof. Using the Leibniz product rule and Theorem [4.6.10] with Theorem we obtain

ui=-e

o (exp(6 @) ¥) [y, < (:1)\@;;%@(9@)1Ha;—mqyuy

m<v
1 74 2
< max (0,0 e?+20—1) I (eb)™
3 () mi! (eb)
o1+ 02 [Brly 2 ) (1£1y
o v—m - |
< ( 5 ) (M5 + ) 6 (]~ fm| + 1)
v v L (v +2)!
<sletl” 3 (2 )lmit o - i+ 0t = (e 2
m<v m
with the last equality due to [I13, Formula (9.5)]. O

4.6.3 Analytic parametric linear operators

From Theoremwe know that the solution u(y) of an analytic linear operator equation
A(y)u(y) = f is again analytic. In the optimization problems studied in this manuscript,
there arise operator equations in which also the right-hand side depends (analytically) on
the parametric variables, see, e.g., the adjoint problem . The following result shows
that in this case the dependence of u(y) on the parameter sequence is again analytic, i.e.,
it generalized Theorem to problems of the form A(y)u(y) = f(y), when f depends
analytically on y € U.

Theorem 4.6.13. Let the parametric family of operators {A(y) € L(X,Y') : y € U}
satisfy Assumption for some 0 < p < 1. Then, for f(y) € Y', with |0 f(y)[y <

Clv|'b” /(In2)¥! for all finitely supported multiindices v € F, and every y € U there exists
a unique solution u(y) € X of the parametric operator equation

A(y)uly) = f(y) (4.93)

and the parametric solution family u(y) depends analytically on the parameters y € U,
with partial derivatives satisfying
bl/

oy <C Y.
sup [05u(w)x < Cllv] + 1l

Proof. We prove the result by induction with respect to |v|. If |[v| = 0, then v = 0 and
the result follows from Assumption (i) and the a-priori bound (5.13). For 0 # v e F
we take the partial derivative dy of (4.94). By the Leibniz product rule we get

> (2@ mawmnegu) - drw

m<v

Separating out the v = m term, we obtain

A)(@u) =~ Y (V)(agmA(y>)(0TU(y>)+8Zf(y)~
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4.6 Regularity analysis

By Assumption (i) we have

s ()18 ™ AW )l

m<v,m#v

+ A@) o x) 0y f () 1y

< (:f) Co" " oy uly) [ x + Cloy f(y)]y -

m<v,m#v

where we concluded from Assumption that for all v € F

sup [ A(y)™' 25 A(w) ecx) < sup [A(w) ™ A(O) o) sup [A(0) ™25 A(w) x) < CB
yeU yeU yeU

From Lemma [.6.1] we conclude that

Fpuwlx <C 3 ( ) gty )l
By the assumption on f we obtain
, Rl g, BYH ,
lo¥u(y)|x < C Z ( ) 2y C(ln2)|u_k||1/—k|.
bl/
=C .
(Iv] + )(1n2)\vl

O

Similar to Corollary one can proof the following result for affine parametric linear
operators.

Corollary 4.6.14. Let the parametric family of operators {A(y) € L(X,Y') : y € U}
satisfy Assumption[2.51] for some 0 < p < 1 and in addition Assumption[2.3.3 Then, for
f(y) e Y', with |0y f(y)|y: < C|v|'b¥ for all finitely supported multiindices v € F, and
every y € U there exists a unique solution u(y) € X of the parametric operator equation

Aly)uly) = f(y) (4.94)

and the parametric solution family u(y) depends analytically on the parameters y € U,
with partial derivatives satisfying

sup | dyu(y)|x < C(lv| +1)1b”.
yeU

In optimization problems, operator equations with analytic right-hand sides typically stem
from the adjoint problem, see, e.g., . The following result shows that the dual
operator (and hence the adjoint operator) admits the same parametric regularity as the
operator itself.

Lemma 4.6.15. The dual operator A(y) of an operator A(y) that satisfies Assump-
tion admits the same regularity, i.e., for all v € F it holds that

loy AW cexyny = oy Ay) leevxy - (4.95)
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4 Examples of optimal control problems

Proof. We have

|<5VA(?J)U, w>Y’,Y’ |(9”<A(y)u, w>Y/,Y|
|0y A(y)] £(x,yr) = sup sup — = g
veX weY o] x |w]y vexwey  vlxllwly
|0y (v, A(y) w)x x| (v, Oy A(y) w) x x|
= sup sup = p
veX weY ”UHX”wHY veX weY ”UHXHwHY
|10y A(y) w] x ,
=sup ——————— = [0y A(y)'||z Y, X') -
wey  Jwly v X9

In the case with the expected value as a risk measure, we have
q(y) = (A (y)) QRy(A™ (y)Bz — ) € Y, (4.96)
From Corollary we conclude that
|0y Qu(y)lly = |9y QA ()Bz; < CoCCs|z| z|v|”

where C' is defined in Assumption [2.3.2] Using this bound and Lemma we can
apply Corollary [£.6.14) and obtain

Lemma 4.6.16. Let A(y), y € U satisfy Assumption|2.3.2. Then, under the assumptions
in Section[{.3, it holds

[oya(y)y < CoCCh(|v| + 1)107(|2] z + |ull3),
where the constant C is defined in Assumption [2.3.2

The preceeding lemma holds with b” replaced by b”/(In2)/! for general non-affine oper-
ators that satisfy Assumption [2.3.1

Regularity analysis for the entropic risk measure

We investigate the parametric regularity in the case of the entropic risk measure in con-
junction with analytic parametric operator equations. To this end, we denote

&Y .= |QA™ (y)Bz — 2. (4.97)
Lemma 4.6.17. Let ®Y be as in (4.97). Then for all v € F we have
48Y] < (CoCCplz]z + [a2)? (W] + 1)1,
where the sequence b = (bj);>1 is defined in Assumption .
Proof. Let v = 0, then
Y] < (IQA™ ()Bz[; + [l3)* < (CoCCsl2| 2 + [l3)?,

where C' is the constant from Assumption [2.3.1l Consider now v # 0. We estimate the
partial derivatives of ®Y by differentiating under the integral sign and using the Leibniz
product rule in conjunction with the Cauchy—Schwarz inequality to obtain

< 3 (1) 1om@uw - ks oo - )l

m<v
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4.6 Regularity analysis

Separating out the m = 0 and m = v terms and utilizing (4.85]), we obtain

2, (:1) [o™(QuY —a)y ¥~ ™(Qu¥ — @)|3

m<v
= 2[Qu¥ —al; |V Qu¥ [y + (V) [0 Qu¥ |5 0™ QuYl;
m
m<v
0#m+#v

< 2(CoCCp|z|z + |ul x)CoCCB 2| 2[v|' b”

14
+(CoCCal2)2)" Y, <m> m|! | — m],
m<v
0#m+#v

where the sum over m can be rewritten as

-1 |1

;1 AR (;) = ;1 0 (|- o) ("2') = v|l(jv] - 1),

m<v, |m|=¢

where we used the identity (4.76]) again. O
Defining
& :=0(CoCCB|z|z + [al3)?, (4.98)

we obtain the following result.
Theorem 4.6.18. Let 6 > 0. Let ®Y be as in . Then for all v € F we have
|08 exp(6 BY)| < (@021 1 (eb)”,
where the sequence b = (bj);>1 is defined in Assumption .
Proof. The steps of the proof are exactly the same is in Theorem O

Theorem 4.6.19. Let Y be as in (4.97), and let q¥ € Y be as in (4.96). Then for all
v € F we have

|2 (exp(6 @) a¥) |, < & (1v] +2)! (eb),
where the sequence b = (bj);>1 is defined in Assumption o is defined by (4.98) and
max(5, 5e?+26— ~
pi= @I 0o OCK(|12) 2 + [al;).

Proof. Using the Leibniz product rule and Theorem with Lemma we obtain

v T v I~ v—
Hé’y (exp(«9 Y) qy) Hy < Z <m) ’6;" exp(&@y)| H&y mquy

m<v

v max(&, 5e2+25— m
< ) <m)e (0,5€%4+26-1) | |1 (eb)

m<v

x CoCCs(|2] z + [[ul;) 8"~ (] — [m| + 1)!

v v|+2)!
< pu(eb)” ) ( )ym\! (Jv| = |m| + 1)1 = M(eb)uM7
m 2
m<v
with the last equality due to [I13 Formula (9.5)]. O
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5 Truncation of the parametric dimension

We have seen in Section [4.5| that the overall discretization error of the optimal control can
be decomposed into dimension truncation error, cubature error, and spatial discretization
error of the gradients of the objective function. In this chapter, which is strongly based
on the joint work with Vesa Kaarnioja [74], we focus on the analysis of the dimension
truncation error for integral quantities. The dimension truncation error is analyzed in
an abstract setting, leading to results that apply to a wide range of problems in the
field of uncertainty quantification, including optimal control problems under uncertainty.
In fact, the contribution of dimension truncation error is independent of the numerical
scheme chosen for the cubature operator or spatial discretization, which allows us to
approach the problem from a general vantage point—for instance, we do not need to
restrict our analysis to a specific numerical cubature method, spatial discretization scheme
or even a specific mathematical model problem. Instead, we derive general conditions
under which it is possible to derive explicit rates for the dimension truncation error. We
begin this chapter with analyzing the dimension truncation error for abstract uncertainty
quantification problems, and then apply the developed results to optimal control problems
under uncertainty.

In the field of uncertainty quantification it is common to consider mathematical models
where uncertain inputs are parameterized by infinite sequences of random variables. For
instance, consider an abstract mathematical model M : X x U — ) such that

M(g(y),y) =0,

where X and ) are separable Banach spaces and U is a nonempty subset of an infinite-
dimensional sequence space of parameters RY. If there exists a solution g(y) € & for all
y € U, then a natural quantity to investigate is the expected value

I(g) := L 9(y) pn(dy), (5.1)

where p is a probability measure over U. In many applications, p is either chosen as the
uniform probability measure over U = [—1,1]Y or a Gaussian probability measure over
U = RN. In the setting of optimal control problems under uncertainty the mathematical
model is the constraint and integrals of the form appear in the objective function
and the derivatives of the objective function, see Section

For the numerical treatment of , a natural first step is to consider a dimensionally-
truncated model M,: X x Ug — Y such that

MS(QS(ygs)vygs) = Oa (52)
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5 Truncation of the parametric dimension

where @ # Uy € R® and g5(y<,) € X for all y, € Us. The corresponding expected value
in this case is then given by

Is(gs) = J gs(ygs) I‘LSS(dySS)7

Us

where p., denotes an appropriate probability measure on U;. By considering I,(gs)
instead of I(g), we have introduced a dimension truncation error

HI(g) - Is(gs)||/\"

In many practical problems involving partial differential equations (PDEs), such as optimal
control problems subject to PDEs with uncertain coefficients, there are also other sources
of errors: for example, the integral operator I; may need to be approximated by a cubature
rule s, with n nodes and, in practice, we may only have access to, e.g., a finite element
approximation g, 5 of the solution to in some finite-dimensional subspace X}, of X.
The overall error can typically be estimated via an error decomposition of the form

1(g) = Qsn(gsn)lx < (g) = Is(gs) | + [1s(9s = gs.n) |2 + [ Ls(9s.n) = Qs.nlgsn)lx,

where the last two terms correspond to finite element discretization error and cubature
error, which are analyzed in the following chapters.

Dimension truncation error rates are typically studied in the setting of elliptic PDEs with
random coefficients. In [I16] the authors derive a dimension truncation rate for the ellip-
tic PDE problem in conjunction with an affine parameterization of the uncertain diffusion
coeflicient, see Section This result was improved by [53], where dimension truncation
in the context of affine parametric operator equations is studied. Dimension truncation
has also been analyzed for coupled PDE systems arising in optimal control problems under
uncertainty [76] as well as in the context of the so-called “periodic model” of uncertainty
quantification for both numerical integration [94] and kernel interpolation [95]. A com-
mon feature in these works is the use of Neumann series, which is a suitable tool for
dimension truncation analysis provided that the uncertain parameters affinely enter the
PDE. However, when the dependence of the PDE operator on the random variables is
sufficiently nonlinear, the Neumann approach may produce only suboptimal dimension
truncation rates: this is the case for lognormally parameterized diffusion coefficients for
elliptic PDEs [70] or when the quantity of interest is a nonlinear functional of the PDE
response [41], [86].

In contrast to the Neumann series approach, the use of Taylor series was considered in [60]
to obtain dimension truncation error rates in the context of a spectral eigenvalue problem
for an elliptic PDE with a random coefficient. The use of Taylor series allows to exploit
the underlying parametric regularity of the model problem in order to derive dimension
truncation rates, as opposed to Neumann series which is fundamentally dependent on the
parametric structure of the PDE problem. Motivated by the paper [60], a similar Taylor
series approach is used to derive a dimension truncation rate for a smooth nonlinear
quantity of interest subject to an affine parametric parabolic PDE in [77].

The available literature provides some numerical evidence concerning dimension trunca-
tion rates for nonlinear parameterizations of PDE problems. For instance, [52] contains
numerical experiments suggesting that the dimension truncation error rates for certain
non-affine parametric PDE problems are significantly better than the theoretical bounds
derived using the Neumann series approach.Furthermore, it is known in the context of
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5.1 Problem setting

lognormal parameterizations for diffusion coefficients of parametric elliptic PDEs that the
use of special Matérn covariances can yield even exponentially convergent dimension trun-
cation errors (cf. [22, Section 7.2] and [51, 148)]).

5.1 Problem setting

Let g(y) be an element of a separable Banach space X for each y € Uy, where
U = {y e RN : Z ajly;| < oo}
>

for a given sequence a := (;)j>1 € ¢} (N) such that «; € [0,00) for all j € N.
Let us define g5(y) = 9(¥<s0) := g(y1,-..,¥s5,0,0,...). We consider the dimension
truncation error

I

X

JRN (9(y) — 9s(y)) pp(dy)

where

ps(dy) :== Q) N3(0,1) (5.3)

j>1
and N3(0,1) denotes the univariate S-Gaussian distribution with density
1 lu|?

Yy) = T 1
26131—‘(1 + B)

e 7, yeR,

where we restrict to the case § > 1. Importantly, in the case § = 2 the probability
measure ((5.3]) is Gaussian and in the case § = 1 it corresponds to the Laplace distribution.
Formally, the case 8 = o0 corresponds to the uniform probability measure on [—1, 1]N ,
which we denote by

dy

~(dy) == 5

j=1
To this end, we will consider dimension truncation subject to B-Gaussian probability
measures and the uniform probability measure, equipped with their respective sets of
assumptions.

(-Gaussian probability measures In the [-Gaussian setting, we will work under the
following assumptions:

(A1) It holds for a.e. y € Uy, that
l9(y) — gs(y)|x — 0 as s — .

(A2) Let (©k)r=0 be a sequence of nonnegative numbers, let b := (b;),>1 € £P(N) for some
pe (0,1), and let by = by = --- = 0. We assume that the integrand g is continuously
differentiable up to order k + 1, with

Haug(y)”X < @|V|by Heaj\yﬂ e

j=1

for all y € Uy and all v € Fy := {v € N} : [v| < k + 1}, where k := [ﬁ] In the
case f = 1, we assume in addition that a; <1 for all j € N.
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5 Truncation of the parametric dimension

Uniform probability measure In this setting, we suppose that g(y) € X for each y €
[—1,1]Y and we will work under the following assumptions:

(A1%) It holds for a.e. y € [—1,1]" that

lg(y) — gs(y)|lx — 0 ass — .

(A2%) Let (O©f)r=0 be a sequence of nonnegative numbers, let b := (b;),>1 € /(N) for some
€(0,1), and let by = bg = --- = 0. We assume that the integrand g is continuously
differentiable up to order k + 1, with

0¥ g9(y)|x < O, b”

forallye [-1,1]N and all v € Fy, := {v e N} : |v| < k + 1}, where k := [ﬁ]

5.2 Infinite-dimensional integration

If [(A2)] holds, then g(y) € X for each y € Uy and we infer that y — G(g(y)) for all
G € X’ is continuous as a composition of continuous mappings. Hence y — G(g(y)) is
measurable for all G € X/| i.e., y — g(y) is weakly measurable. Since X is assumed to
be a separable Banach space, by Pettis’ theorem (cf., e.g., [164, Chapter 4]) we obtain
that y — g(y) is strongly measurable. The pg-integrability of the upper bound in
is proved in [86, Proposition 3.2] for 5 € [1,2] and can be proved mutatis mutandis for
B > 2. Thus we conclude from Bochner’s theorem (cf., e.g., [164, Chapter 5]) and
that g is pg-integrable over Uy. Bochner’s theorem can also be used to ensure that a
function g(y) € X, y € [—1,1]", is y-integrable provided that |(A2’)| holds.

The following lemma has been adapted from [65, Lemma 2.28] to our setting.

Lemma 5.2.1. It holds that U, € B(RY), where B denotes the Borel o-algebra and
l‘l’B(UOL) =1

Proof. The first statement follows from
Ua:U m{yERN: Z aj‘yjlgN}-
N>1Mz=1 1<j<M

By the monotone convergence theorem, we deduce that

Z
J > ol pg(dy) = Z%J lyilug(dy) = ——— r) " D ay
j=1 j=1 5 T 1 E j=1
for all 5 > 0, where we used [68], formula 3.326.2]. O

From the above lemma we conclude that we can restrict to y € Uy, since

j g(y)uﬁmy):f o(y) 1s(dy),
RN Ua

for any ¢ satisfying Thus in the -Gaussian setting, the domain of integration RN
is interchangeable with Ul,.
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5.3 Dimension truncation error

Lemma 5.2.2 ([118, Theorem 1] and [81, Section 26]). From Lebesgue’s dominated con-
vergence theorem, we infer the following results.

(i) Let F: RN - R be a pg-integrable function, which satisfies

lim F(y<,,0) = F(y) forae. y

5—00

and

|F(y<s,0)] < |h(y)| forae. y

Jor some pg-integrable h. Then

iy [ Pl 0) maldyes) = [ P s(an)

50 Jps
(i) Let F:[—1,1]N — R be a ~v-integrable function, which satisfies

lim F(y<,,0) = F(y) forae. y

§—00

and

[F(y<s; 0)| < |h(y)|  forae. y

for some ~-integrable h. Then

i | P 0)v(dye) = | F)v(ay)
SR I[-1,1]5 [—1,1N

In the case where F(y) := (G, g(y))x".x for some G in the topological dual space of X, it
holds that

F(y) — F(Y<;,0) = (G, 9(Y) — 9(Y<s, 0)xr x < |G| |9(y) — 9(y<s,0)] v,

and

[F(Y<s, 0)| < |Gllarll9(y<s, 0)] x,

which can be bounded by taking v = 0 in or respectively. Thus, the preceding
result holds due to in the f-Gaussian setting and due to in the uniform setting.

5.3 Dimension truncation error

The following lemma is commonly used in the analysis of best N-term approximations
(cf., e.g., [37]), and it will be highly useful in our treatment of the dimension truncation
€rror.

Lemma 5.3.1 (Stechkin’s lemma). Let 0 < p < ¢ < 0 and let (ag)r>1 be a sequence of

real numbers ordered such that |ai| = |ag| = ---. Then
0 1 1
q 1,1 P
( 2 m!") <N”+Q<Z |ak|p) :

k>N k>1
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5 Truncation of the parametric dimension

Proof. For an elementary proof of this result, see, e.g., [I10, Lemma 3.3]. O

The main result about the dimension truncation error is given below.

Theorem 5.3.2. Suppose that assumptions|(A1) and|(A2) hold. Then

where the constant C > 0 is independent of the dimension s.
Let G € X' be arbitrary. Then

2
-241
<Cs p'7,

X

[ o) - swmstan)

RY Glaly) = gs(y))“ﬂ(dy)‘ <Csrt,

where the constant C > 0 is independent of the dimension s.

Proof. Let s* be the smallest integer such that »;

where we used Lemma [5.2.2 and Fubini’s theorem. Therefore

Thus it is enough to prove the claim for sufficiently large s. In what follows, we assume
that s > s*, let G € X’ be arbitrary, and define

st 0 < % Clearly,

JRN (9(y) — 9s(y)) ug(dy)HX <200 [ | fR e1ilp(y;) dy; =: Cinit < o0,

=1

Chnit ~241

< for all 1 < s < s*.

X (50Tt

[ (o) = ) slaw)

F(y) :={(G,g(y))arx forall y e Us.
Let k be specified as in (note that it always holds that k£ > 2). Then
0"F(y) =(G,0"g(y))xrx forallveF, and ye Uy
and it follows from our assumptions that

10V F(y)| < |G|x©),b” Hea”yﬂ" for all v € Fj, and y € Uy,

j=1

Let y € Uy be arbitrary. We develop the Taylor expansion around the point (y,,0),
which yields

Fly) - Py, 00+ S Lovry_,0)

|
=1 =
vj=0 Vj<s
k+1 !
+ D] ” y"f (1= 7)" 0" F(y<y Tys,) dr.
lv|=k+1 : 0
vj=0 Vj<s
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5.3 Dimension truncation error

Rearranging this equation and integrating both sides against the g-Gaussian product
measure yields

=1 |u|:z RY
=0 Vj<s
k + 1
+ 7)Y 0" F(y s, Ty~ ) AT pg(dy).
|u\ k+1 RN
=0 Vj<s

If there exists a single component v = 1 with k£ > s, then the summand in the first term
vanishes since, by Lemma and Fubini’s theorem,

J Yy’ 0" F(yY<s, 0)pp(dy)
RN

- ( 0" F(y<s,0) ﬁ v5(y;) dy<s> <JR ykes(Yr) dyk) URN y”#ﬁ(dy{sﬂzoo}\{k}))

j=1

k
<2 2 1 ) 1971107 F(y <, 0) 15 (dy) (5.4)

1
< (1 =) Y] - 10" F(y <o Ty )l A7 pp(dy). (5:5)

We start our estimation by splitting the terms in (5.4):
S
[ 107110 P 0 mstaw) < 1610010 [ 191 ]e sty
j=1

< |GllOy b fR ¥ T e s (dly)

j=1
|GX'@|u|b"< H f ly; |7 el (y; dw)( H f il os(y; dyﬂ)
JESUPP(V) . J¢supp (v
::tg;ml —termz

where the final step follows from Lemma and Fubini’s theorem. In order to bound
termy, note that

Coy B = JR ;7195 (y;) dy; < o0
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5 Truncation of the parametric dimension

since we assumed that 8 > 1 and a; < 1 in the case 8 = 1. We define an auxiliary
constant Aa; g = maxick<r Gy Clearly, Coj 5., < Aaj g < © and Copgy <
Cy ., Whenever a < o' with 3, v fixed. In particular,

term; <[] C%Bvﬁ [ Cuauao,ﬁ,u]< 11 Auanoc,mu\

jesupp jesupp jesupp

< max {17 A|‘a“oo767|’/|}| "

where [ := sup;>; || is finite since av € ¢}(N) by assumption. To bound terms, we
note that there is an index j' € N such that a; < & for all j > j/. Hence

terms =< H J olvil ©p(Y; dyj>( H f el vp(yj dy])

jé¢supp(v J¢SUPP
1<]<j >y’
< max{1,Clqay, 50} ( H J e®il¥ilpg(y; dy])
J¢SUPP
>y’

using a similar argument as before. In order to ensure that the remaining factor is finite,
we argue similarly to [86, Proposition 3.2].

Let us first consider the case § > 1. Young’s inequality states, for all x,y > 0 and
6 € (0,1), that

0,10y < p—1 B—1 o5 1Jr;x(l 0)8,58.

Ty =2"x
p
where 8 > 1. The special choice 8 = ﬁ ylelds
-1 1
Ty < p z+ —xy® forall z,y > 0.

p B
Thereby

. B=1,. 2 1y8
fReaﬂlyjl@ﬁ(yj>dyj <er JRG" U 05 (y;) dy

B-1.,. B b1,
= —e ? ’ J‘ ei(lia‘j)‘ujﬁl dy] = © ’ ' 1
) “R (1—ay)?

ly;17
where we used {, e (1775 dy; = 26%(1 - aj)féf‘(l + %) Furthermore, since

1 T T
—1 < ) forall 1),
T—= +1 2 exp<1_x> or all z € [0,1)

we obtain

JRe J|y1‘g05(y]) dy; < exp <5B_1aj> exp (; 1 fj ) < exp <Bg104j>

since we assumed «; < % for all j > j'. Therefore

a]'yj‘spﬁ( )dy] exp <ﬁﬁ+1 Z aj) < exp (B;l Z Oéj) =: 5’5,

j¢supp(v) VR J¢supp(v)
>3 Jj>j’
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5.3 Dimension truncation error

where C~'5 < o since a € (}(N). The special case 3 = 1 follows since we assumed a; < 1
for all j = 1 and it holds that

s 1 j

for j > j'. Thus

f eocj|yj‘s01( )dy] exp <2 Z 0(j> < exp <2 Z Oéj> =: 51 < o0

j¢supp(v) * K J¢supp(v)
Ji>J’ J>j

since a € /1(N). Combining the estimates for term; and terms gives
| o1 Py o) st
< CﬁHGHX’ max{l, CHaHoo,ﬁ,O}j @|y|by max {1, AHaHao,ﬁ,|V|}|ul'

Similarly we split the terms in (5.5)),
! k
L [ a=mrw 10wl dar usay)

< |G||X/@|u|b"< f ly; |77 el (y; dyg)( 11 J 2ilvilpg(y dyg)

jesupp(v Jj¢supp(v

< Cgl|Gllar O maX{LCHaIIw,B,O}] b max {1, Aoy, 50} ',

where we used

1 Flyey my.s)| < |GX/@|V|b"<Hew"> (H'>

j=1 j>s
< ||GHX/@|,/|bV < 1_[ eajyj|> .
=1
These inequalities allow us to estimate
L) - Flyc 0 s(an)
k o,
~ , '
< CplGlarmax{l, Clay,p0) ), D —rbYmax{l Aja), 50}
=2 |v|=¢ ’
l/j=0 Vjﬁs
vi#l Vj>s

~ " k+1
+ C3| Gy max{1, Clay 50 D] 1 Or+1b” max{l, Al sk}

lv|=k+1
vj=0 Vj<s

k
CBHG”X/ max{l, CHaHoo,BD}] ( max (@gmax{l Alat)oo,B, ne) Z Z b (5.6)
(=2 |ul=t
v;j=0 Vj<s
llj#l Vj>8
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5 Truncation of the parametric dimension

+ Cgl|Gla max{1, Clay, po} Ors1(k + ) max{l, Ajay, s} D 0. (5.7)
v|=k+1
vj=0 Vj<s

To bound the term (5.6)), we argue similarly to [53, Theorem 1] by noting that it follows
from our definition of s* that

1 1

Ebk < - and b < forall j>s.
4 2

k>s

This leads us to estimate

% D ove 3 ove S wen] (e 30)

(=2 |v|=¢ 2<|v|<k 0#|v|o<k Jj>s

vj=0 Vj<s v;=0 Vj<s vj=0 Vj<s

vj#l Vj>s vi#l Vj>s vi#l Vj>s

1—pht
_ I N V] . 2 o 2
= 1+H<1+ - b]-> < 1+H<1+2bj) < 1+exp<22bj>
7>s J j>s 7>s
<2(e—1) ) b3,
Jj>s

where the final inequality is a consequence of Bernoulli’s inequality (1 + z)" < 1 + rz for
all0 <r <1and x> —1. It is an immediate consequence of Lemma that

2
Y2 <5 < Y b§> ' (5.8)
J>s j=1

since b was assumed to be a nonincreasing sequence such that b € ¢?(N) for some p € (0,1).
We estimate the term (5.7)) similarly to the approach taken in [60, Theorem 4.1]. By the
trivial bound % > 1 and the multinomial theorem, we obtain

! FH (—i+1)(k+1) (k+1)/p
o< ) 'b"_<ij) <s\ 7w (Zzﬁ) . (5.9
lv|=k+1 lv|=k+1 v Jj>s Jj=1
v;=0 Vj<s vj=0 Vj<s

where the final inequality follows immediately from Lemma and our assumption that
b is a nonincreasing sequence such that b € ¢P(N) for some p € (0,1).
Putting the inequalities (5.8)) and (5.9) together and utilizing k = [ﬁ] we obtain

[P @)~ Pl 0 st < 0650 453 00) < 03

for some constant C' > 0 independent of s. Finally, by recalling that F(y) = (G, g(y))x.x
and G € X' was arbitrary, we can take the supremum over {G € X’ : |G||x» < 1} to obtain

sup
GeX":| G| <1

(P - Flye0) s(ay)

= sup
GeX":|G| p<1

| (Cualy) = oy O sl
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5.4 Application to parametric PDEs and optimal control

(6. [ (o) = oty 0 mslaw) )

= sup ’
e |Gl <1 vx
—249
- [ 0w - s ustay)| <5
RN X
as desired. O

We also state the corresponding dimension truncation result in the uniform case formally
corresponding to § = c0.

Theorem 5.3.3. Suppose that assumptions|(A1’) and|(A2’) hold. Then

2
-2
<Cs rp'7,

X

H J[_lm(g (y) — gs()) v(dy)

where the constant C > 0 is independent of the dimension s.
Let G € X' be arbitrary. Then

’ f[l,uN Glo(y) = 9s(y)) “/(dy)‘ <Cs ot

where the constant C > 0 is independent of the dimension s.

Proof. The steps are completely analogous to Theorem in the special case a; = 0
for all j > 1 and by restricting the domain of integration to [—1,1]N. In the special case
O = ([ +71)!, 1 € No, the proof works as in [77, Theorem 6.2]. O

Remark. The conditions |(A2)|and |(A2’) are formulated as sufficient conditions. The form
in which the regularity bounds are postulated in and is an important ingre-
dient for the Taylor series argument. However, it is known that is not a necessary
condition: an example is given in [94, Lemma 2.4], where the authors obtain the dimen-

2
. . —249
sion truncation rate O(s 7" ")

regularity bound than |(A2’)]

for a problem which satisfies a more general parametric

5.4 Application to parametric PDEs and optimal control

In this section, we illustrate how to apply the main dimension truncation results proved
in Section to parametric elliptic PDE model problems. We consider uniform and
affine (see Section as well as lognormal parameterizations of the input random field.
The rate we obtain for the uniform and affine model coincides with the well-known rate
in the literature [53] and is not a new result, however, we present it for completeness.
Remarkably, the dimension truncation rate we obtain for the lognormal model using our
method improves the rates in the existing literature (cf., e.g., [70, 113]). Finally, we
give an example on how our results can be applied to assess dimension truncation rates
corresponding to PDE solutions composed with nonlinear quantities of interest.

Similar to Section we consider the problem of finding v : D x U — R such that

=V (a(z,y)Vu(x,y)) = f(x), zeD, yel,

5.10
u(x,y) =0, xedD, yeU, ( )
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5 Truncation of the parametric dimension

in some bounded Lipschitz domain D < R? d € {1,2,3}, for some given source term
f: D — R and diffusion coefficient a: D x U — R. The parameter set U is assumed to be
a nonempty subset of RY.

The relevant function spaces for the elliptic PDE problem are X := H}(D) and its
dual &’ = H~!(D), which we understand with respect to the pivot space H := L?(D).
The space H is identified with its own dual and we set |v|x := |Vv||g for v € X, as
we did in Section The weak formulation of is to find, for all y € U, a solution
u(-,y) € X such that

J a(xz,y)Vu(z,y) - Vo(z)de = (f,v)r r forallveX, (5.11)
D

where f e X’ and (-, )y x denotes the duality pairing between elements of X’ and X.
Note that is more general than the elliptic PDE in Section in we do
not restrict to an affine parameter dependece [(AE3)| — [(AE4)l we allow other than uni-
form distributions of the parameters and we do not restrict to uniform bounded
diffusion coefliecients In particular, below coincides with the assumptions in
Section 4.1l

The following lemma collects basic, well-known results about the existence of a unique
solution to (5.11) (Lax—Milgram lemma), the continuity of the PDE solution with respect
to the right-hand side of (a priori bound), and the continuity of the PDE solution
with respect to the diffusion coefficient (the second Strang lemma).

Lemma 5.4.1. Let D < R?, d € {1,2,3}, be a bounded Lipschitz domain, & # U < RV,
f e X', and suppose that there exist amin(y) := min_ 5 a(z,y) € LY (D) and amax(y) :=
max, pa(x,y) € LY (D) such that

0 < amin(y) < a(x,y) < amax(y) <0 forallze D and ye U, (5.12)

where a(-,y) € LY (D), y € U, is the diffusion coefficient in (5.11). We define as(-,y) :=
a(; (Y<s,0)), abin(y) = amin(Y<s,0), and us(-,y) := u(-, (y<,,0)). Then there exists a
unique solution to (5.11f) such that

| f]lx

amin(y)

Ju(-,y)|x < forallyeU (5.13)

and

1
0 )Ila(wy) = as(5 Yoy fllar for ally € U.

[ 9) = st )l < ot s
(5.14)

Proof. The existence of a unique solution to (5.11)) is an immediate consequence of the
Lax—Milgram lemma due to the ellipticity assumption (5.12)), while the bound (5.13])

follows from

o) . 0) 3 < | al ) Vo) - Ve ) de = (Ll w)
<l -, w)

forallye U.
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5.4 Application to parametric PDEs and optimal control

To prove , we let y € U and begin by observing that
JD a(z,y)Vu(x,y) - Vo(z)dx = fD f(x)v(x)de,
| aenVue) Viwde - | e da.
for all v e X. Taking the difference of these two equations, we are left with

0= f (a(z,y)Vu(z,y) — as(x,y)Vus(x,y)) - Vo(x) de
D
= JD(a(w, y) — as(z,y))Vu(z,y) - Vo(x) dx

+ JD as(x,y)V(u(z,y) —us(xz,y)) - Vo(z) de.
Rearranging this equation and setting v = u(-,y) — us(+,y) € X yields
i (W) |1, y) — us ()3
< | a@wIVide.y) - ue.y)

= - JD( a(®,y) — as(z,y))Vu(z,y) - V(u(z,y) - us(z, y)) de

< ot y) = asC 9 ey lul Wl ful, y) —us( y) 2
Ha( 7y> aS( Y )HLQO (D)
u .’ y J—
P lu(-y)
where we used the a priori bound ([5.13)) established above. The claim directly follows. [J

us( Y) | x [ flars

S

Studies in uncertainty quantification for PDEs typically consider one of the following two
models for the input random field.

(M1) The diffusion coefficient is parameterized by

CL(QL', y) - CLO exp < Z ij] )7 Y; € Ra

j=1
for ag € LY (D), ¥; € L*(D) for all j = 1 with (|¢)j] ) € £P(N) for some p € (0,1),
and U = RY, such that

0 < amin(y) < a(x,y) < amax(y) <0 forallze D and y € U,
where amin(y) = min_ 5 a(x,y) and amax(y) = max, 5 a(z,y).

(M2) The diffusion coefficient is parameterized by
a(:z:,y = CL[) Z ijj 7 Yj € [_17 1]a

for ap € L*(D), ¢j € L*(D) for all j > 1 with (||¢j|r>) € P(N) for some p € (0,1),
and U = [—1,1]", such that
0 < amin < a(x,y) < amax <0 forallze D and y e U,

for some constants amax = Gmin > 0 independent of x € D and y € U.
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5 Truncation of the parametric dimension

Let b := (b;)j=1 with b; := |¢;]/r». In addition, we assume that by > by > ---.
Recall that us(-, y) = u(-, (y<,, 0)) for y € U. In the context of high-dimensional numerical
integration, it is germane in the setting [(M1)| to quantify the dimension truncation error

and in the setting |(M2)| the dimension truncation error

i

Lognormal model and its generalizations The model [[M1)|is the lognormal model (cf.,
e.g., [63, [70, 69, 72, 84, 119, 148]) when the uncertain parameter y € RY is endowed with
the S-Gaussian probability measure with 3 = 2 and «; = b; for all 7 > 1. However, the
dimension truncation analysis in Section covers the more general setting where we have
arbitrary o € ¢1(N) and either 8 € (1,00) or f =1 with aj; <1 for all j > 1. We remark
that the latter case corresponds to random variables distributed according to the Laplace

distribution. By (/5.14]), condition (A1) holds because

la(-,y) — as('>y)HLw(D) 22,0 for all y € Uy,

., with U = RY,
X

| o) =t motan
U

, with U = [~1,1]".
X

J (u(-,y) — us(-, ) v(dy)
U

On the other hand, condition [(A2)| holds due to the well-known parametric regularity
bound

[FAES !

" u(-, < —
I Wl <

b”Hebj|yj| for all y € Up, v € F.
i1

Especially, this corresponds to our setting with the special choice a;j = b; for all j > 1.
By Theorem [5.3.2] we obtain that

l

where the implied coefficient is independent of the dimension s.

Let D be a convex and bounded polyhedron and suppose that {X}}, is a family of con-
forming finite element subspaces X;, ¢ X, indexed by the mesh size h > 0 (see Section
for more details on the finite element method). Let uy(-,y) € & and ug (-, y) € &), denote
the finite element discretized solutions corresponding to u(-,y) and us(+,y), respectively.
Then it also holds that

where the implied coefficient is again independent of the dimension s.

fRN(u<.,y) — us(-,y)) Mﬁ(dy)HX <Cs ot

JRN(“"("'U) —ush(Y)) N,B(dy)HX <Cs it

Uniform and affine model The model [(M2)is known as the uniform and affine model
(cf., e.g., [B1) 40, 39, 54, 65, (116}, 117, [146]) when the uncertain parameter y e [—1,1]" is
endowed with the uniform probability measure. By (/5.14)), condition [(A1’)| holds since

HCL(,y) - CLS(’, y)”LOC(D) o 0 for all Yye [_17 1]N
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5.4 Application to parametric PDEs and optimal control

Moreover, condition [(A2’)| holds due to the well-known parametric regularity bound

[0¥u(-, y)|lx < H{J"ﬁ o forallye[-1,1]N, ve F. (5.15)
@ min

It follows from Theorem [5.3.3] that

[t - utaan) <o

[—1,1]N X

where the implied coefficient is independent of the dimension s. The same result holds if
u and us are replaced by finite element solutions belonging to a conforming finite element
subspace of X" (see Section for more details on the finite element method).

Finally, we present an example illustrating how our results can be applied to nonlinear
quantities of interest of the PDE response.

Example 5.4.2. Consider the uniform and affine model (M2) with U = [f %, %]N and
suppose that we are interested in analyzing

‘J[_l l]N(G(u(~,y)) — G(us(+,y))) dy|, (5.16)

where u and ugs denote the parametric PDE solution and its dimension truncation in
X = Hol(D), respectively. Suppose that the quantity of interest is the nonlinear functional

Gv) = exp (JD o()? dx), vex. (5.17)

Letve Fand y e [—%, %]N. It follows by an application of the Leibniz product rule and
the reqularity bound (5.15)) that

v v v—
outPle =) 3 (1 )omuta o maty

m<v m X
1F1% . v

< |V|f2b Z m Im|! |l — m]|!
nin msv

_ |f|2)(’bu§€'(| |_€)| Z v

= T2 g : m
Arnin £=0 m<v

|m|=¢

I£13 v

= |V|f2(|1/| +1)!bY,

where we used the generalized Vandermonde identi?y ngy’ m|=¢ (T':L) = ("Zl). In complete
analogy with the regularity analysis presented in [T7, Section 5], which can be found also

in Section[{.6] it follows that

|v|
otals () e,

where the implied coefficient only depends on | f|x and amin. Moreover, we have

|, 4Gt~ Gtomay = | (Gt ) - G b)) v(aw)
[-3.3]

[7171]N

111



5 Truncation of the parametric dimension

with

N
\a"G<u<~7;y>>|s( ) b,

20min
; -241
It follows from Theorem that the term (5.16) decays according to O(s™ » 7).

Elliptic optimal control problem The problem - (4.4)) in Section is formulated

under the assumptions of model [(M2)l Hence, by (5.14), condition |(A1’)| holds for the
state PDE since

Ha(vy) - as('7y)||L°O(D) R 0 for all Yye [_%7 %]N

Similarly condition [(A1’)| can be verified for the adjoint PDE. Moreover, condition |(A2’)]
holds due to the parametric regularity bounds obtained in Lemma and Lemma
for the state and the adjoint PDE, respectively. Setting b; := || 1 /amin and assuming
that by = by > ..., it follows from Theorem that

'U (u(yy) — us(,y)) dy| < Csr7,
[_%v%]N 14
and for the first term in (4.65)) that
_2
U (a(~y) —as(oy))dy| < CspF
[-3.31" 1%

where the implied coefficient is independent of the dimension s. The same result holds
if u and us as well as ¢ and ¢ are replaced by finite element solutions belonging to a
conforming finite element subspace of X (see Section for more details on the finite
element method).

Parabolic optimal control problem The optimal control problem ([4.38) in Section
is formulated in the affine and uniform setting. Similar to the elliptic case one can show
the continuity of the PDE solution u¥ with respect to the diffusion coefficient, i.e., verify

(AT using

sup [a(, y) — as(, 9)l=(p) 250 forallye[—3,5
By a similar argument can be verified for the adjoint PDE and by continuity also
for S and 7', which are defined in Section
Moreover, condition holds due to the parametric regularity bounds obtained in
Lemma [4.6.4], Theorem [£.6.6] Theorem and Theorem for the state PDE u¥,
the adjoint PDE ¢Y, and S, and T, respectively. The following theorem then follows
immediately from Theorem [5.3.3]

"

Theorem 5.4.3. Let f = (z,ug) € V'. For every y € U, let u¥ € X be the solution of

(4.20) and ®Y be as in (4.37), and then let ¢¥ € Y be the solution of (4.32)) with faual
given by (4.40). Suppose the sequence b = (b;);>1 defined by (4.86) satisfies by = by > ---.
Then for every s € N, the truncated solutions u?, q¥ and ®Y satisfy

[ man] <es
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5.5 Numerical experiments

[ @-aayf <oso
U Yy
IS = Sulaviny = | L (exp (03Y) ¢ — exp (03Y) ¢?) dyHy <Os i

|T — Ts| = ’JU (exp (9@3/) — exp (0@?)) dy’ < C:f%“,

In each case we have a generic constant C > 0 independent of s, but depending on z, ug,
u and other constants as appropriate.

In particular, the above theorem provides bounds for the first terms in (4.66)), (4.69)), and
(@70).

Optimal control problem subject to analytic linear operator equations By continuity

we get that |A(y<,) — A(Y)lx,yry — 0 as s — co0. Using a similar strategy as in the
Strang lemma (see Lemma [5.4.1)) one can verify for the state. Similarly, [((A1’)| can
be verified for the adjoint state and S and T as defined in Section Furthermore,

(A2’)| holds due to Corollary [4.6.14] Lemma [4.6.15, Lemma |4.6.16, Theorem [4.6.18, and
Theorem The following theorem then follows immediately from Theorem [5.3.3

Theorem 5.4.4. Let f = Bz € Y'. For every y € U, let u¥ € X be the solution of ([3.24))
and ®Y be as in (4.97)), and then let g¥ € Y be the solution of (4.54]). Suppose the sequence
b = (bj)j=1 defined in Corollary satisfies by = by = ---. Then for every s € N, the

truncated solutions u¥, q¢ and Y satisfy

2
‘J (u¥ —u¥) dy‘ <Cs vt
U X

2
U (¥ —q¥)dy| <Cs ot
U

IS — Sslly = M (exp (69%) ¥ —exp (00%) a¥) dy| | < Cs it
U
|T — Ts| = ‘J (exp (9@?’) — exp (9@2)) dy‘ < C’s*%“_
U

In each case we have a generic constant C > 0 independent of s, but depending on z, Cp,
u and other constants as appropriate.

In particular, the above theorem provides bounds for the first terms in (4.71)), (4.74]), and
@75).

5.5 Numerical experiments

In this section we verify numerically the dimension truncation error rates for in the log-
normal setting, for a smooth, nonlinear quantity of interest applied to the PDE solution
in the affine and uniform setting, and for the state PDEs and derivatives of the optimal
control problems in Section and Section This section includes computations using
the computational cluster Katana supported by Research Technology Services at UNSW
Sydney [101].
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5 Truncation of the parametric dimension

5.5.1 Lognormal input random field

We consider the PDE problem ([5.10]) over the spatial domain D = (0,1)? with the source
term f(x) = z2. The PDE (5.10) is discretized spatially using a finite element method
with piecewise linear basis functions and mesh size h = 275 (see Section for details on
the finite element method). We let U = RY and endow the PDE problem with the
lognormal diffusion coefficient

a(x,y) = exp ( Z yjj_ﬁ sin(jmxy) sin(jwm)), xeD, yeRY 9>1.

=1

To estimate the dimension truncation error, we compute the quantity

l

| s = o [ Tl dy

j=1 L%(D)

J ,(US’(W(I)il(t)) _US(‘v(ﬁl(t)))dt'
(0,1)*

, (5.18)
Hy(D)

where s’ » s and ®! is the inverse cumulative distribution function of Hj/:l ©2(y;)-
The high-dimensional integral appearing in was approximated by using a randomly
shifted rank-1 lattice rule (see Chapter |§| belows for more details on the quasi-Monte Carlo
method) with 22° cubature nodes and a single random shift. The integration lattice was
tailored for each value of the decay parameter ¥ by using the QMC4PDE software [114] [113]
and the same random shift was used for each . As the reference, we use the solution
corresponding to s’ = 2. The numerical results are displayed in Figure for dimensions
se{2¥:ke{l,...,9}} and decay rates ¥ € {1.5,2.0,3.0}. The corresponding theoretical
convergence rates are —2.0, —3.0, and —5.0, respectively, and they are displayed alongside
the numerical results. The observed dimension truncation rates corresponding to 9 €

107*
e =15
5 10°°¢
% a 9=20
% 10-8 o =230
=
> .
- theoretical
% 10710} rate —2.0
=
10-12 theoretical
r rate —3.0
10-14 1 S theoretical
| 10 102 108 rate —5.0

dimension s

Figure 5.1: The dimension truncation errors corresponding to a lognormally parameterized
input random field with decay parameters 9 € {1.5,2.0,3.0}. The expected
dimension truncation error rates are —2.0, —3.0, and —5.0, respectively.

114



5.5 Numerical experiments

{1.5,2.0} start off with slower convergence rates and reach the theoretically predicted
convergence rates approximately when s > 16. This behavior appears to be the most
extreme in the experiment with ¥ = 3.0, where the initial convergence rate for small
values of s is slightly slower than the theoretically predicted rate. Moreover, we note that
the dimension truncation convergence rate appears to degenerate for large values of s in
the case ¥ = 3.0, which may be attributed to cubature error when approximating the

high-dimensional integral in ([5.18]).

5.5.2 Nonlinear quantity of interest

We consider again the PDE problem ([5.10) over the spatial domain D = (0,1)? with the
source term f(x) = w9 with the same spatial discretization as in the lognormal case. We

revisit Example let U = [—%,2]N and endow the PDE problem (5 with the
affine random coefficient

— + Z Yij 7981n (jrxy)sin(jmxs), xe D, ye [—%, %]N, 9> 1.
Jj=1

To estimate the dimension truncation error, we compute

| f 47 G0 0D ~ Gl ) |
2 2

where s’ » s and G is the nonlinear quantity of interest defined by . The high-
dimensional integrals were again approximated using tailored randomly shifted rank-1
lattice rules with 22 cubature nodes and a single random shift, with the same random
shift used for each . The solution corresponding to s’ = 2! was used as the reference.

The numerical results are displayed in Figure for dimensions s € {2¥ : ke {1,...,9}}
and decay rates ¥ € {1.5,2.0, 3.0} alongside their respective theoretical convergence rates

e ¥U=15
—
g A 9=20
Q
% o =230
E
A theoretical
g rate —2.0
&
theoretical
rate —3.0
1020 I 1 theoretical
1 10 102 103 """"" rate _50

dimension s

Figure 5.2: The dimension truncation errors corresponding to a nonlinear quantity of in-
terest with decay parameters 9 € {1.5,2.0,3.0}. The expected dimension trun-
cation error rates are —2.0, —3.0, and —5.0, respectively.
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5 Truncation of the parametric dimension

—2.0, —3.0, and —5.0. The obtained results agree nicely with the theory, and the numerical
results corresponding to ¥ = 3.0 exhibit a saturation effect similar to the one observed in
the lognormal setting for larger values of s.

5.5.3 Elliptic optimal control problem

We consider the elliptic state PDE (4.2) — (4.3]) and adjoint PDE (4.17)) from Section

in the two-dimensional physical domain D = (0, 1)? equipped with the diffusion coefficient
@. We set ag(x) = 1 as the mean field and use the parameterized family of fluctuations

4.62)), as we did in the numerical experiment Section We fix the source term z(x) =

z9 and set U(x) = 23 — 23 for © = (z1,72) € D.

The dimension truncation error was estimated by approximating the quantities

[t =t a

and ' | a2 = a2 ay

L2(D) L*(D)

using a lattice quadrature rule (see Chapter @ with n = 2! nodes and a single fixed ran-
dom shift to evaluate the parametric integrals. The coupled PDE system was discretized
using the mesh width h = 27° and, as the reference solutions u and ¢, we used the FE
solutions corresponding to the parameters s = 2! and h = 27°. The obtained results are
displayed in Figure for the fluctuation operators (¢;);=1 corresponding to the decay
rates ¥ € {1.5,2.0} and dimensions s € {2* : k € {1,...,9}}. The numerical results are
accompanied by the corresponding theoretical rates, which are O(s=2) for ¥ = 1.5 and
O(s73) for ¥ = 2.0 according to Theorem m

In all cases, we find that the observed rates tend toward the expected rates as s increases.
In particular, by carrying out a least squares fit for the data points corresponding to the
values s € {2°,...,2%}, the calculated dimension truncation error rate for the state PDE is
O(s7200315) (corresponding to the decay rate ¥ = 1.5) and O(s~28301%) (corresponding to
the decay rate 9 = 2.0). For the adjoint PDE, the corresponding rates are O(s~2:0965) and
O(s7272987) respectively. The discrepancy between the obtained rate and the expected
rate in the case of the decay parameter ¢ = 2.0 may be explained by two factors: the
lattice quadrature error rate is at best linear, so the quadrature error is likely not com-
pletely eliminated with n = 2'° lattice quadrature points. Moreover, the rate obtained in
Theorem [5.3.3] is sharp only for potentially high values of s. This phenomenon may also
be observed in the slight curvature of the data presented in Figure [5.3
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5.5 Numerical experiments

Dimension truncation error (state PDE) Dimension truncation error (adjoint PDE)
n=2%and h=27°
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T

dimension s dimension s

Figure 5.3: The computed dimension truncation errors displayed against the expected
rates.

5.5.4 Parabolic optimal control problem

We consider the optimal control problem in Section , that is we aim to minimize ,
i.e., the state PDE u¥ and adjoint PDE ¢¥ are given by and , respectively. We
fix the physical domain D = (0,1)? and the terminal time T' = 1. The uncertain diffusion
coefficient, defined as in (4.21)), is independent of ¢, and parameterized in all experiments
with mean field ag(z) = 1 and the fluctuations as in Section [{.4.1]

The initial state, the target state, the objective functional, as well as the FE method are
chosen as in Section .41l

The dimension truncation errors in the parabolic optimal control problem under uncer-
tainty are estimated by approximating the quantities

H (¥, — u¥) dy and \ | at-aay

L2(V;1) L2(V3I)

as well as
ISy — SSHLQ(V;I) and |Ty — Ts|

for s’ » s, by using a tailored lattice cubature rule generated using the fast CBC algorithm
with n = 2! nodes and a single fixed random shift to compute the high-dimensional
parametric integrals. The obtained results are displayed in Figures and for the
fluctuations (1;);>1 corresponding to decay rates ¥ € {1.3,2.6} and dimensions s € {2" |
ke{l,...,9}}. We use # = 10 in the computations corresponding to Ss and Ts. As the
reference solution, we use the solutions corresponding to dimension s’ = 2048 = 2'1.

The theoretical dimension truncation rate is readily observed in the case 9 = 1.3. We note
in the case ¥ = 2.6 that the dimension truncation convergence rates degenerate for large
values of s, which is possibly due to the fact that the QMC cubature with n = 2'® nodes
has an error around 10~% (see Figure in Section . For smaller values of s, the
higher order convergence is also apparent in the case 9 = 2.6.
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5 Truncation of the parametric dimension
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6 Quasi-Monte Carlo methods

We are interested in computing s-dimensional Bochner integrals of the form

L(g) = f o(y) dy,

o=
N[ —

where g(y) is an element of a separable Banach space Z for each y € U := [—
our estimator of I5(g), we use a cubature rule of the form

Qan(9) =Y cig(y!),
i=1

with weights o; € R and cubature points y® € U,. In particular, we are interested in
QMC rules (see, e.g., [38, [113]), which are cubature rules characterized by equal weights
o; = 1/n and carefully chosen (deterministic) points y for i = 1,...,n.

We shall see that for sufficiently smooth integrands, randomly shifted rank-1 lattice rules,
which are particular QMC rules, lead faster convergence rates compared to Monte Carlo
methods. Moreover, under moderate assumptions on the anistropy of the problem with
respect to the integration variables, the convergence rate is not dependent on the dimension
of the parameter space. In our applications we will hence focus on randomly shifted rank-1
lattice rules.

6.1 Randomly shifted rank-1 lattice rules for real-valued
functions

Randomly shifted rank-1 lattice rules are cubature rules over the s-dimensional unit cube
Us = [0,1]° with cubature points

Q(AZ) ::frac(z—i—A), i=1,...,n,
n

where z € N® is known as the generating vector, A € [0,1]° is the random shift and
frac(-) returns the fractional part of each component in the vector. For integration over
Us = [—%, %]8, consider the obvious adjustment

(M) ._ ¢ (ij A)_(l 1) 1 6.1
Yy, = frac n+ 5rg)y R (6.1)
Integration over different domains and with respect to different measures is possible. For

example, by the change of variables £ = ®~!(y) for y € (0,1)*, and the ®(-) the element-
wise cumulative normal distribution, one can obtain a QMC approximation of the integral
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6 Quasi-Monte Carlo methods

over R® with respect to a Gaussian measure, see Section To keep the analysis in
this section simple, we restrict to the case with uniformly distributed parameters y; over
~4 1)

In order to get an unbiased estimator, in practice we take the mean over R uniformly
drawn random shifts, i.e., we estimate I5(g) using

R

Qonle) = 1 2 QU0 with QL) %2 o?). (6.2)

r=1

In order to quantify the quality of an equal weighted cubature rule, which is determined
by its point set, we define the worst-case error of a QMC rule and a point set P =
{yM, ..., y™} in a normed space Z by

en,S(P; Z):= sup |Is(g) — Qg)z(g)‘

lgllz<1

For any function g € Z, we have by linearity

1Is(9) — QU (9)] < ens(P; Z)g]z

and

e = \EAlL(9) — QA (9)P < \/Ealed (P + &; Z)]lglz (6.3

where P + A = {frac(y®) + A) : i = 1,...,n}. The shift-averaged worst case error eSh
serves as a quality measure for the QMC rules.

Worst-case errors are in general hard to compute, however for certain function spaces, such
as reproducing kernel Hilbert spaces (RKHS) (see [38, Theorem 5.3]), there are explicit
formulas for the shift-averaged worst case error.

Let us consider real-valued functions

9: 33 —R

that belong to the weighted Sobolev spaces W, 4 with square integrable mixed first deriva-
tives, and which is equipped with norm

) olul 2
lgllw, ., = JO . —— (YY) Winspu| Yy -

—u 0y,

uC{l S} fqu‘OI \u\

From [38, Lemma 5.5] we know that the (squared) shift-averaged worst case error for a
rank-1 lattice rule in W, 5 is given by

15 _ 1
eil,lnq E 2 Z ’yun<frac<k%>), where w(z) = S -

k=0 g#uc{l:s}  jeu

Considering , for given s and n, the entire point set is thus determined by the gen-
erating vector z. Hence, finding a good generating vector is essential to construct good
lattice rules. Thus we aim to minimize the the quality measure of the QMC rule, which
is the shift-averaged worst case error, with respect to the generating vector.
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6.1 Randomly shifted rank-1 lattice rules for real-valued
functions
Note that the components of the generating vector z can be restricted to the set

Up,:={2€Z:1<z<n-—1 and gecd(z,n)=1},

which has cardinality given by the Euler totient function ¢o(n) := |U,|. Here ged stands
for greatest common divisor. When n is prime, then ¢ (n) takes its largest value n — 1,
and hence there are up to (n — 1)® possible choices for z, which is too many for an
exhaustive search for the best generating vector z. The component-by-component (CBC)
construction is a feasible method to find a good generating vector.

Algorithm 5 CBC construction
Input: n, sSmax, and weights ,,.

1: Set 23 = 1.
2: for For s =2,3,..., Spax do

. . . . h 2
3: Choose z; in Uy, to minimize €}, (21, ..., 2s)
4: end for

For general weights ~,,, the cost of the CBC algorithm is prohibitively expensive, hence we
shall be interested in special structures of the weights, such as product weights, or product
and order dependent (POD) ones. Since the CBC construction is not the focus of this
work, we refer the interested reader for efficient implementations of the CBC construction
to [33, 03, (13, 124 [125].

The weights =, are said to be of product and order dependent form if they can be written

as
Y =Tu] v
Jeu
for two sequences 7y1,7s,... and I'1,I'9,... of nonnegative numbers. We have seen in

Section that POD weights arise naturally in the regularity analysis of PDEs with
random coefficients. The computational cost of the fast CBC construction with POD
weights is of order O(snlogn + s2n).

Theorem 6.1.1 ([38, Theorem 5.8]). The generating vector z € US constructed by the
CBC algorithm, with the squared shift-averaged worst case error eilfn,.y(z)2 for the weighted
Sobolev space W ~, satisfies

1
X

. 1 2¢(20)\
N F i) 73<(2ﬂ2)x) ,

FAuc{l:s}

for all X € (%, 1], where ¢(z) = >, h%c for x > 1 is the Riemann zeta function, and
Grot(n) = |US| is the Euler totient function.

This directly leads to

Theorem 6.1.2 ([38, Theorem 5.10]). Let g € W, ~. Then a generating vector z can be
constructed using a CBC algorithm such that, for all X € (%, 1],

1
2

[u]
VEalL -afor < [ % 2 (E5R) ] lelw..

F#Auc{1:s}
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6 Quasi-Monte Carlo methods

where ((z) = Y| 7 for x > 1 is the Riemann zeta function, and $uor(n) = [U3] is the
Euler totient function.

In PDE-constrained optimization problems that are subject to uncertainty, the integrals
appearing in the objective function and derivatives are typically high-dimensional integrals
over Banach space-valued functions. In the next section we thus generalize the well-
known results presented in this section to integrals over Banach space-valued functions,
i.e., Bochner integrals.

6.2 Randomly shifted rank-1 lattice rules for Bochner inte-
grals

In this section we generalize the results from the previous section to Bochner integrals
and apply them to bound the cubature errors in Section We first prove a new general
result which holds for any cubature rule in a separable Banach space setting.

Theorem 6.2.1. Let U, = [—3 55 2] and let Ws be a Banach space of functions F' : Us — R,
which is continuously embedded in the space of continuous functions. Consider an n-point
cubature rule with weights a; € R and points y@ € Uy, given by

IS(F) = J 2052 an( )
and define the worst case error of Qs in W, by
ewor(stn; Ws) = sup |IS(F) - Qs,n(F)|

FeWs,
£, <1

Let Z be a separable Banach space and let Z' denote its dual space. Let g :y — g(y) be
continuous and g(y) € Z for all y € Us. Then

|| sway=Y 0w, < e (@uiw s (G, 6
s i=1 €
Gz <1

Proof. From the separability of Z and the continuity of g(y) we get strong measurability
of g(y). Moreover, from the compactness of Us; and the continuity of y — g(y) we
conclude that sup,ep, |9(y)|z < c© and hence SUS lg(y)|zdy < oo, which in turn implies
| . 9(y) dy[ z < co. Thus g(y) is Bochner integrable.

Furthermore, for every normed space Z, its dual space Z’ is a Banach space equipped
with the norm |G|z := supgey 4),<1 [KG,9)z7 z|. Then it holds for every g € Z that
lgllz = supgez ||, <1 I{G:9)z" z|. This follows from the Hahn-Banach Theorem, see,
e.g., [135, Theorem 4.3].

Thus we have

s Sesw], = sy (o[ swav-Taow), |

GeZ'
IGlz <1
n
= sw || GgWhzzdy— Y aiG oy sz
GeZz' Us i=1
|Gz <1

(6.5)

122



6.2 Randomly shifted rank-1 lattice rules for Bochner integrals

where we used the linearity of G and the fact that for Bochner integrals we can swap the
integral with the linear functional, see ([2.16|).

From the definition of the worst case error of ), in W, it follows that for any F' € W,
we have

L5 (F) = Qsn(F)] < €™ (Qs,n; Ws) [ Fllw, -
Applying this to the special case F(y) = G(9(y)) = (G, 9(y))z z in (6.5)) yields (6.4). O

Theorem 6.2.2. Let the assumptions of the preceding Theorem hold. In addition, suppose
there exist constants Cop > 0, r1 =0, 72 > 0 and a positive sequence p = (pj)j=1 such that
for allu < {1: s} and for all y € Us we have

H olul H Co (Ju| +71)! H(T‘Q ;) (6.6)

Jjeu

Then, a randomly shifted rank-1 lattice rule can be constructed using a CBC algorithm
such that

Bl [ oy~ 30w O)]] < Conn o] forait Ae (31,
s 1

1=

where ¢ior(n) is the Euler totient function, with 1/t (n) < 2/n when n is a prime power,

and
Coms ::C(%( 5 73<?§<Z)AA>>'“')§< 5 [(lul+m>!]2ﬂj6u(r2pj>2>' 67

J#uc{1:s} uc{l:s} Tu

Proof. We consider randomly shifted rank-1 lattice rules in the unanchored weighted
Sobolev space W, 4 with norm

IFl2, = Y f
Yu

1 l
uc{l:s} 3021

dyu

ol
J_l et ay F(yw Y. s}\u) dy{l :sH\u
272

[u|

1 ol 2
— F

< P
uc{l:s} Tu JUs ' OYu

We have seen in the preceding section that CBC construction yields a lattice generating
vector satisfying

lu|
Bal™ QW < (s % R(550)") fora e (.
© F#u{1:s}

We have from (6.4) that

Bal | sy > o] < Bal™ (Quui WP swp G0y,

£ 4 ’
i=1 GeZ
IGlz <1

Using the definition of the W -norm, we have

alul 2
G(9)l3 f d
6@y < 3 5 12, 9(w))| dy
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6 Quasi-Monte Carlo methods

- ¥ [ o) ¥ L] o]l

uc{L:sy 1 JUs uc{i:s}

al ul ( )HQ ay.

We can now use the assumption and combine all of the estimates to arrive at the
required bound. ]

We now apply this general result to bound the cubature errors in Section We start
with the elliptic example, i.e., to the third term in (4.65]).

Theorem 6.2.3. Let z € L?(D). For everyy € U and s € N, let uy € H}(D) be the
truncated solution of , and then let ¢¢ € HE(D) be the truncated solution of .
Then a randomly shifted rank-1 lattice rule can be constructed using a CBC algorithm such
that for all X € (3,1] we have

Y 1y y|?
IEAH u? dy—ﬁZus
s i=1

L2(D)

Bl [ aray- 131
S S
Us "3

< Cs,'y,)\ [¢tot (n)]_l/A >

Cs,'y,)\ [¢tot (n)] —1/A )

<
L*(D)

where ¢iot(n) is the Euler totient function, with 1/diet(n
Here Cs 4 x 1s given by ., with rp =1, 10 = 1, p;
independent of s, n, A and weights v but depends on z,

) < 2/n when n is a prime power.
= |¥jll Lo (D)/@min, and Co > 0 is
u, Cg, Co, and other constants.
Remark 6.2.4. For conforming FE methods, i.e., when the FE spaces Vy, are subspaces
of the solution space V', and the FE error bounds are independent of the parameters y € U,
which is the case in the uniform setting considered in this section, then the Banach space
QMC error bound directly applies to the FE discretizations. In Theorem we can
replace u¥ and ¢ by their FE approximations ugh and qzh.

We next apply the general result Theorem to the second terms in (4.66)), (4.69)
and (L70).

Theorem 6.2.5. Let f = (z,ug) € V' and u € X. For everyy € U and s € N, let
u? € X be the truncated solution of and DY be as in , and then let ¢ € Y
be the truncated solution of . Then a randomly shifted rank-1 lattice rule can be
constructed using a CBC algorithm such that for all A € (%, 1] we have

IEAU ¥ dy — 2 | < Conalbiam] ™, (6.8)
Bal | atay - nlqy(“ || < Comnlbumtm] ™, (69

E Y\ oY BN vy y® |
allSs =8 )<EAH ., exp( ®Y) ¢¢ dy—ﬁzexp(”s ) 4¢ Hy
s i=1

< Caynr [Brot ()] 712, (6.10)
1« NC
Ball. ~ Tl < Ba| | exp(08?)dy— > Y exp(001”)
Us i=1

< Cymn [Brot ()] 72, (6.11)
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6.2 Randomly shifted rank-1 lattice rules for Bochner integrals

where Gyt (n) is the Euler totient function, with 1/¢ior(n) < 2/n when n is a prime power.
Here Cy 4 x is given by (6.7), with 1 = 2, 72 = e, pj = bj defined in (4.86)), and Cp > 0

is independent of s, n, A and weights v but depends on ug, z, U, and other constants.

Proof. This follows directly from Theorem by applying the regularity bounds in
Lemma Theorem Theorem and Theorem For simplicity we set

Co, 1 and 72 to be the largest values arising from the four results. O

We get an analogous result for the optimal control problem with parametric linear operator

constraints, which can be applied to the second terms in (4.71)), (4.74]) and (4.75).

Theorem 6.2.6. Let Bz € )'. For every y € U and s € N, let ud € X be the truncated
solution of and 5? be as in , and then let g¢ € ) be the truncated solution
of . Then a randomly shifted rank-1 lattice rule can be constructed using a CBC
algorithm such that for all X € (%, 1] we have

L 02 _
Bal [ ardy— 1 310r" [ < Coma [Bun(m)] A (6.12)
Us i X
I 02
Bal [ aay- 3 Y o] < Comnlbrmm] (613)
Us i=1

2

1 & CNINO)
EalSs — Ssnl3 < EAH JU exp(0 7) ¢¥ dy — — Dlexp(02Y") g¥ N
s =1

< Camyn [Brot ()] 772, (6.14)
1 < N
Ball. ~ Tl <Ea| | exp@®)dy— > expo 81”)
Us i=1

< Cymir [Prot(n)] VA, (6.15)

where Gior(n) is the FEuler totient function, with 1/¢iot(n) < 2/n when n is a prime power.

Here Cy 4y is given by (6.7), with r1 = 2, ro = e, pj = b; defined in Corollary and
Cop > 0 is independent of s, n, A and weights v but depends on z, u, Cg, Cg, and other
constants.

Proof. This follows directly from Theorem [6.2.2 by applying the regularity bounds in
Corollary Lemma [4.6.15] Lemma [4.6.16], Theorem and Theorem [4.6.19] For

simplicity we set Cy, r1 and 72 to be the largest values arising from the four results. [
Theorem 6.2.7. With the choices

\ - ﬁforallde(o,l) ifpe(O,%],
S ifpe(3,1),

) 2/(14+X)
T = Va = <(|u| +71)! 2By ) ,
g V20(20)/(2m%)}

we have that Cs o« y is bounded independently of s. (However, C

¥ 55
and C, — 0 as p — (2/3)7.) Consequently, under the assumption by = by > ..

—wasd — 0

p .
77*72*? ’
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6 Quasi-Monte Carlo methods

the above three mean-square errors in Theorem [0.2.5, Theorem |6.2.5, and Theorem
are of order

{[qstot(n)]—(?—%) for all 5 (0,1) ifpe (0,2]
1

[Pot(n)]~ /P~ ifpe (2, )’ (6.16)

Proof. We know from [I16, Lemma 6.2] that for any A, Cs 5\ defined in (6.7)) is minimized

by v = 7. By inserting v* into C, 4\ we can then derive the condition p < 12+7/\>\ < 1 for

which Cs y# » is bounded independently of s. This condition on A, together with A € (%, 1]
and p € (0,1) yields the result. O

6.3 Numerical experiments

In this section we numerically verify the theoretical QMC error rates for the optimal
control problems with the elliptic and the parabolic PDE constraints which we obtained
in Theorem [6.2.3| and Theorem [6.2.5]

6.3.1 Elliptic optimal control problem

We assess the rate in Theorem by using the root-mean-square approximation

2

1 ¢ :
EA‘ f QS,h(') Y{1:s}s z) dy{l:s} - Z qs,h(‘v {t(l) +A} - %’ z)
Us 3 L*(D)

1 & - )12
% m Z:JI HQ&’” - Q‘(Sv")lHLQ(D) )

where Qg})l = %Z?:l gs.h (-, {0 + A(T)} - %, z) and @s,n = % Zf;l Qg%, for a randomly
shifted rank-1 lattice rule with n = 2™, m € {7,..., 15}, lattice points (t("))?:1 in [0, 1]* and
R = 16 random shifts A drawn from the uniform distribution ¢([0,1]*) with s = 100.
The FE solutions were computed using the mesh width A = 275, see Section for the
details. The results are displayed in Figure [6.1] For our experiments we fix the source
term z(x) = x2 and otherwise the setup is the same as in Section In both cases, the
theoretical rate is O(n~17%), § > 0. For the decay rate ¥ = 1.5 (see ([£.62)), we observe
the rates O(n~0-984193) for the state PDE and O(n~09708) for the adjoint PDE. When
the decay rate is ¥ = 2.0, we obtain the rates O(n 191080y and O(n=1012258) for the state
and adjoint PDE, respectively.
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6.3 Numerical experiments
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Figure 6.1: The computed root-mean-square errors for the randomly shifted rank-1 lattice
rules.

6.3.2 Parabolic optimal control problem

We investigate the QMC error rate obtained in Theorem by computing the root-
mean-square approximations

1

RR =T 2 1@en = Q) @ 2y

M=

1

\3
Il

1

\
\RE-1)
\

1@ — Q) (@) 201

M=

,3
Il
—_

1

RE-1) 1@y — QS (exp(®}) 4312, Wy

M=

1

,3
Il

R
\ R(Rl_l) ; Qs — Q) (exp(®,)))2,

corresponding to - , where @&n and Q") are as in for a randomly shifted
rank-1 lattice rule with cubature nodes , where the random shift A is drawn from the
uniform distribution U([0,1]%). As the generating vector, we use lattice rules constructed
using the fast CBC algorithm with n = 2™, m € {4,...,15}, lattice points and R = 16
random shifts, and s = 100. We carry out the experiments using two different decay
rates ¥ € {1.3,2.6} for the input random field, and fix the source term z(x,t) = 10z (1 —
x1)x2(l—x2). Otherwise the setup is the same as in Section The results are displayed
in Figure [6.2l The root-mean-square error converges at a linear rate in all experiments,
which is consistent with the theory.
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Figure 6.2: Left: The approximate root-mean-square error for QMC approximation of
the integrals SUS u¥ dy and SUS ¢’ dy. Right: The approximate root-mean-
square error for QMC approximation of quantities S5 and 7. All computations
were carried out using R = 16 random shifts, n = 2™ m € {4,...,15}, and
dimension s = 100.
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7 Discretization and multilevel methods

In this section we briefly present a finite element method. Particular we focus on piecewise
linear finite elements and establish error bounds and a convergence rate for the optimal
control problem with elliptic PDE constraint.

The second part of this chapter is devoted to a multilevel QMC (MLQMC) estimator of
the gradient in the optimal control problem with elliptic PDE constraint. We show that
the proposed MLQMC method outperforms a multilevel Monte-Carlo (MLMC) method
and the (single level) QMC method.

7.1 Finite element discretization

In this section we apply a basic finite element method to the elliptic example — .
In particular, we derive an error bound and a convergence rate for the second term in
(4.65)). To this end, we briefly recall the basic concept of finite element (FE) methods.
FE methods are numerical schemes for solving PDEs in the spatial variable @ € D. To
solve a PDE problem, the domain D is divided into subdomains, so-called finite elements.
Each subdomain is represented by a set of equations, which are combined to approximate
the global solution of the PDE on the domain D.

We present the application to the elliptic PDE problem here for two reasons: we want to
complete the error analysis, see , and we want to introduce the method to better
understand how a multilevel method (see Section below) uses a discretization scheme
to reduce the computational complexity of the problem.

However, since the FE approximation is not the focus of this work and requires mainly
well-known results from the literature, we only present the FE error analysis the elliptic
PDE example - .

In order to keep the analysis simple and obtain convergence rates of the finite element
solutions we make the following additional assumptions (cp. [116, [76])

(AE6) D c R? is convex bounded polyhedron with plane faces

(AET7) ag € W-(D), Zj;1 H@Z’jHWLOO(D) < 0,

where [|[v|y1.0(py 1= max{||[v]|o(py, [VV|rop)}. The assumption that the geometry of
the computational domain D is approximated exactly by the FE mesh simplifies the forth-
coming analysis, however, this assumption can substantially be relaxed. For example, stan-
dard results on FE analysis as, e.g., in [27] will imply corresponding results for domains
D with curved boundaries.

By {Vi}n we denote a family of subspaces V}, < V of dimensions M}, < oo, where M}
is of order h~¢, with d € {1,2,3} denoting the dimension of D. We think of the spaces
Vi as spaces spanned by continuous, piecewise linear finite element basis functions on a
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7 Discretization and multilevel methods

sequence of regular, simplicial meshes in D obtained from an initial, regular triangulation
of D by recursive, uniform bisection of simplices. Then it is well known (see details, e.g.,
in [59, [116]) that for functions v € V' n H2(D) there exists a constant C' > 0, such that as
h—0

Uig‘f/h lv—vnlv < Chlvlyampy, (7.1)

where |[v]y~p2(py = (HvH%Q(D) + HAUH%z(D))l/z- Note that we need the additional reg-
ularity to derive the asymptotic convergence rate as h — 0. For any y € U and every
ze L?(D) (and E1z € V', see ([4.6))), we define the parametric finite element approxima-

tions up (-, y, 2) € Vi, and ¢x(+,y,2) € V3 by
fD a(x,y)Vup(x,y, z) - Vop(x,y) de = (Erz,v,) Yo € Vp, (7.2)
and then
JD a(z,y)Van(z,y, z) - Vup(z,y) de = (up(-,y, 2) — a,wp)y  Ywp € Vi, (7.3)

We note that the FE approximation ([7.2]) and are defined pointwise with respect to
y € U so that the application of a QMC rule to the FE approximation is well defined. To
stress the dependence on s for truncated parameters y = (y1,...,¥s,0,0,...) € U we write
ug , and g p instead of uy, and gy, respectively.

My,
i=1

More precisely, let (¢;);_"; be a basis of V3. Substituting

My,

un(@,y.2) = 3 uily, 2)éi(@)

i=1

into (7.2) with v, = ¢; gives

My,
i; u; JD a(xz,y)Vei(x) - Vo,(x)dr = JD Eiz(x) ¢j(x)dx,

which is equivalent to solving the system of linear equations
Ku==z,

where the stiffness matrix K and the load vector z are given as
K;j:= f a(x,y)Voi(xz) - Voj(x)de and z:= f Eiz(x) - ¢j(x) de.
D D

This system of linear equations can be solved efficiently if the stiffness matrix is sparse.
Choosing basis functions with small support supp(¢;) := {x € D : ¢; # 0} favors sparsity
in the stiffness matrix K. Let 7 € T be a triangle and let T" be a set of disjoint triangles
such that D = U,er 7. Denoting by verty, ..., verty, the vertices of the triangles we
uniquely define the piecewise linear basis functions as

1 ifi=j,
(vert;) =
%4 2 {0 otherwise,
and being linear in each triangle 7 € T'. In this case it holds that K;; # 0 if and only if
vert; and vert; are neighbouring vertices. The vertices vert; and vert; are neighbouring if
there exists a 7 € T' such that vert;, vert; € 7.
We obtain the following result for the second term in the error expansion (4.65)).
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Figure 7.1: From left to right: sequence of regular, triangular meshes in D = [0, 1]? ob-
tained by recursive, uniform bisection of simplices of an initial, regular trian-
gulation of D.
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Figure 7.2: Basis function ¢; for vert; = (0.5,0.5)

Theorem 7.1.1. Under Assumptions[(AE6) and[(AE7), for z € Z, there holds the asymp-
totic convergence estimate as h — 0

sup la(y,2) — an(- y, 2)l2(py < CR* (|2l r2py + |8l r2(p)) »
ye

and

‘ < CP* (|12l 2oy + il 2(y) -
L2(D)

where C' > 0 is independent of h, z and U and y.

For truncated y = (y1,...,¥s,0,0,...) € U, the result of Theorem clearly holds with
q and g, replaced by g5 and g, p, respectively.

f (q('vyvz> - qh(-,y,z)) dy
U

131



7 Discretization and multilevel methods

Proof. Let Sy 1 be the self-adjoint solution operator defined analogously to ; which
for every y € U assigns to each function f € L?(D) the unique solution g(-,y) € V}, <
V < L?*(D). In particular Sy is the solution operator of the problem: find gj, € V}, such
that b(y; gn,vn) = (f,vn) Yu, € V). Note that Sy is a bounded and linear operator for
given y € U. For every y € U, we can thus estimate

Hq(ayvz> - qh<'7yaz)HL2(D) = HSy( ( Y, % ) y,h(uh( Y, 2) — a)HLQ(D)
< [[Sy(uly,2) - ) Sy.n(u(,y, 2 ) —a)[r2p
+ H‘S’y,hu('vyv ) yhuh( Y, 2 )HL2
< [[(Sy = Syn)(u(-,y,2) = @) 2(p)
6162
a H'LL( Y, 2 ) h(‘7y7z)”L2(D) . (74)

The last step is true because (4.10)) holds for all v € V' and therefore it holds in particular
for up € V5 < V. Hence we can bound |Synlzr2(py) < ¢=. We can now apply the

Aubin-Nitsche duality argument (see, e.g., [59]) to bound (7.4): for w € L?(D) it holds
that

,w
[l = sup I > (7.5)
geL2(D)\{0} ”9HL2

From (4.8]) and (7.2) follows the Galerkin orthogonality: b(y; u(-y,2) —up(-,y,2),v,) =0
for all v, € V},, where the parametric bilinear form b(y;-, ) is defined in (4.9). Further,

given g € L*(D), we define uy(-,y) for every y € U as the unique solution of the problem:
find uy(-,y) € V such that

b(y;ug(,y),w) =g, w) YweV,
which leads together with the choice w := u — u, and the Galerkin orthogonality of the
FE discretization to
(g uly,2) —un( Y, 2)) = by ug( y), ul y, 2) — un(-, Y, 2))
= b(y; ug(-,y) — vn, u(, Y, 2) — un(-,y, 2))
< amaxuug(', y) —vnlv|u(,y, 2) —un(y,2)|v .
With we get for every y € U that

<g,u(-,y, Z) — uh('7y7 Z)>

lu(-y,2) —un( Y, 2)L2(py = sup
geL2(D)\{0} gl z2(py
. ug(-,y) —v
< malu(o 9, 2) —unoy )y swp | g [y oy L
ger2(Dno} |vneV llglzz(p

Now from ([7.1)) we infer for every y € U that
Ulhrg/ lug(;y) —vnlv < Cshlug(,y)|vamz(p) < CaC3h|gllr2(py

where Cj5 is the constant in (7.1)). The last step follows from [116, Theorem 4.1] with
t = 1, and Cy is the constant in that theorem. For every y € U, we further obtain with
Céa’s lemma, (7.1) and [116, Theorem 4.1]

Gmax

inf Ju(-,y,z) —onllv

min Yh€

HU(, Y, Z) - uh('a Y, Z)HV <
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7.1 Finite element discretization

Omax
<

Amax
Cshf[uly. 2)lvanzp) < ——CaCs |22 () -

Gmin min

Thus for every y € U it holds that

2
Qmax
HWW@—%@%Mwm<;%ﬁ@#MWm~ (7.6)

min

By the same argument we get for every y € U that

~ a?nax C1C ~
[(Sy = Syn) (- y,2) =) |2(p) < 2==CFC3 b2 ( |zl 2y + |u|L2<D>) @)

Combining ([7.6) and ([7.7)) in (7.4)) leads for every y € U to
2 2
an C1C9

?ﬁﬁﬁ<

min

419, 2) — a9 2) 2y < el + ram)) .

min

The second result easily follows from the first result since

Remark 7.1.2. In this work the optimal control z* will always be implicitly discretized in
terms of the FE discretization Sy 1, of the solution operator Sy, see [8§].

f (Q("yaz) - qh('7y72>) dy
U

2
< f HCJ(, Yy, Z) - qh(? Yy, Z)H%Q(D) dy :
L2(D) U

O

Numerical experiments

We validate the FE error bounds given in Theorem numerically. To this end, we
consider the coupled PDE system - in the two-dimensional physical domain
D = (0,1)? equipped with the diffusion coefficient eq. , chosen as in Section
We fix the source term z(x) = x2 and set 4(x) = 22 — 23 for & = (21, 22) € D.

Two numerical experiments were carried out:

(a) The L? errors HUS('aya Z) - us,h('7y7z)”L2(D) and ”%(w%z) - QS,h('7y7z)HL2(D) of
the FE solutions to the state and adjoint PDEs, respectively, were computed using
the parameters s = 100 and h € {27% : k € {2,...,9}} for a single realization of the
parametric vector y € [—1/2,1/2]'% drawn from U([—1/2,1/2]%).

(b) The terms H SUS(U,S(-,y,z) — us’h(~,y,z))dyHL2(D) and H SUS(qS(~,y,z) —
qsh(-5 Y, 2)) dy“ 12(p) Were approUmated by using a lattice rule with a single fixed

random shift to evaluate the parametric integrals with dimensionality s = 100,
n = 2'% nodes and mesh width he {277 : k€ {2,...,6}}.

The value ¥ = 2.0 was used in both experiments as the rate of decay for the fluctua-
tions . As the reference solutions us and g5, we used FE solutions computed using
the mesh width h = 2710 for experiment (a) and h = 2=7 for experiment (b). The L? er-
rors were computed by interpolating the coarser FE solutions onto the grid corresponding
to the reference solution. The numerical results are displayed in Figure In the case
of a single fixed vector y € [—1/2,1/2]'%, we obtain the rates O(h?91688) and O(h2-00542)
for the state and adjoint solutions, respectively. The corresponding rates averaged over
n = 219 lattice quadrature nodes are O(h%%4011) for the state PDE and O(h?91617) for the
adjoint PDE. In both cases, the observed rates adhere nicely with the theoretical rates
given in Theorem [7.1.1]
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7 Discretization and multilevel methods

Finite element error Finite element error
fixed y € [-1/2,1/2]100 2a\/eraged over n = 21> QMC nodes (s = 100)
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Figure 7.3: The computed finite element errors displayed against the theoretical rates.

7.2 Multilevel quasi-Monte Carlo for optimal control prob-
lems

In this chapter, we apply a multilevel method to approximate the gradient of an optimal
control problem in order to reduce the computational cost of finding the optimal control
using a gradient based method. In particular, we consider the elliptic model problem
(see (4.15))) with a lognormally distributed diffusion coefficient and use a multilevel quasi-
Monte Carlo (MLQMC) estimator to approximate the expected value appearing in the
gradient.

Similar to Section we consider the optimal control problem

1

. - > 2 a 2
min J(z), J()= 3 L [u(z) = @720y P + S 12172 (p) »

where o > 0 is a regularization parameter and u as a function of the control z solves the
elliptic equation

J a(z,w)Vu(z,w) - Vo(z)de = J z(x)v(x)de, VYve HY(D). (7.8)
D D

for a.e. w € Q. The spatial domain D < R% with d = 1,2 or 3 is a bounded Lipschitz
domain and we consider Dirichlet boundary conditions, i.e., u(-,w) € Hi(D) =: V has zero
trace for a.e. w € €2, as in Section

In this chapter, the random input is assumed to be lognormally distributed as opposed
to the uniformly distributed parameters in Section We use the notation a(x,w)
to indicate that the diffusion coefficient is stochastic, i.e., dependends on some random
influence w € 2, where in general w is an element of the set of events 2 in a suitable
probability space (€2, A, P). Provided that the PDE is uniquely solvable, any deterministic
control z € L?(D) then leads to a solution u that also depends on w. As we do not assume
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

additional constraints on the control, the optimality conditions are

f a(x,w)Vu(z,w) - Vo(x)der = f z(x)v(x)de, YvelV, (7.9)
D D

J a(z,w)Ve(z,w) - Vo(x)de = J (u(z,w) —u(x))v(x)de, YvelV, (7.10)
D D
VJ(z) =E[q] + az = 0. (7.11)

In this section, we address the problem of obtaining an estimate for E[gq] and therefore
VJ(z) using a multilevel quasi-Monte Carlo method. The resulting gradient could be used
in a gradient based optimization problem to find a solution, see Section

This section is based on the joint work with Andreas Van Barel [75] in which we draw
upon ideas from several previous works. First, the single level quasi-Monte Carlo method
was investigated and analyzed for this problem in [76]. Secondly, [116] 119] discusses the
application of the MLQMC method to the forward problem (7.8)). Both [76] and [116} 119]
build on previous papers applying the QMC method to the forward PDE problem; see, e.g.,
[69, 113]. Next, the application of multilevel Monte Carlo for the optimization problem at
hand can be found in [I57]. It is itself based on [62] 29] where the MLMC method is applied
to the forward problem. In this section we attempt to combine these ideas by employing
a MLQMC for the estimation of E[q] in (7.11]). In [76] 119, I57], the uncertain coefficient
a is sampled using the Karhunen—Loeve (KL) expansion. However, in this manuscript we
follow [72], which uses the circulant embedding (CE) method with QMC. Using the CE
method, we obtain exact realizations of the random field on a finite set of points and hence
there is no truncation error. However, since the FE quadrature points typically do not
match the CE grid, we need to interpolate the realizations of the random field. The use of
a MLQMC estimator in conjunction with the CE method is new for the optimal control
problem as well as for the forward PDE problem.

In this section, we show that the use of QMC points leads to a faster rate of convergence
than the ordinary Monte Carlo points. Using the multilevel strategy can further reduce
the computational cost. The theoretical convergence rate, as derived in the analysis below,
is easily observed in practice. Moreover, the method has little storage costs and is easily
parallelizable.

7.2.1 Sampling and discretization

The random field is assumed to be lognormal, i.e., of the form
a(z,w) = exp(Z(z,w))

where w is an element of the set of events 2 in the probability space (2, A, P) and Z(x,w) is
a Gaussian random field with prescribed mean Z = E[Z(z, )] and covariance reoy (2, ') :=
Cov[Z(x, ), Z(x',")] = E|[(Z(z,-) — 2)(Z(x',-) — Z)],V&,x’ € D.

One could sample the underlying Gaussian stochastic field using the KL expansion [100)]
121 of Z:

Z(x,w) =E[Z(z, )] + Y. V/0nn(w)fu(x), @D we. (7.12)
n=1

The KL expansion is the unique expansion of the above form (with ||, [ 2(q) = | falz2(p) =
1) that minimizes the total mean square error if the expansion is truncated to a finite
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7 Discretization and multilevel methods

number of terms [58]. This sampling method is widely used, see e.g., [15] [16], 25] 29] 69,
76, 119, [157]. The advantage is that the expansion represents the field Z and therefore
a := exp(Z) at all points in the domain D. In practice, one must however truncate the
expansion at some point, introducing a truncation error, see Section

Alternatively, one can generate exact realizations of the field in a finite set of m discretiza-
tion points 1, ..., &, which we collect in the vector

Z(W) = [Z(x1,w), ..., Z(xm,w)]".

To that end, consider the resulting covariance matrix ¥ = (reov (s, :cj))?fj:l and a fac-
torization of the form ¥ = BBT, where B € R™*® with s > m. Defining Z :=
[E[Z(wh )]7 s 7]E[Z(wm7 )]

]T
Z(w)=BY (w)+Z,Y ~N(0,Ixs) (7.13)

Y

then has the desired mean E[Z(w)] = Z and covariance
E((Z-Z)(Z-Z)"|=E[BYY'B'|=BE[YY'|B' =BB' =%.

Generating a factorization ¥ = BB costs in general O(m?) operations. However, in what
follows we suppose the grids and stochastic fields satisfy the following conditions:

e The set of points 1, ..., x,, forms a regular rectangular (also referred to as a uniform
rectilinear) grid of points in R?, with d the dimension.

e The covariance function r.o (2, ') of the stochastic field is homogeneous, meaning
that it is a function of @ — x’ only. The resulting stochastic field is said to be
stationary [I].

In this case, the CE method [211, 43| [69] [161] can be used to very efficiently sample the
stochastic field in the given regular rectangular grid of points. In the case d = 2, ¥
is then block-Toeplitz with Toeplitz blocks and can be embedded in a block-circulant
matrix C' with circulant blocks, which is the reason for the name of the method. This
generalizes to more than two dimensions. The required circulant structure, and the amount
of additional padding that may be necessary to ensure positive definiteness determine the
size s of C' € R%*%. Usually, s is of the same order of magnitude as m. A real eigenvalue
factorization C' = GAG" of this symmetric nested circulant matrix can be obtained using
the multidimensional fast Fourier transform, see, e.g., [69]. Since ¥ is embedded in a
positive definite C, this leads to the desired factorization ¥ = BB with B € R™** the
first m rows of Gv/A. For some given realization Y (w) of Y, a realization

Z(w)=BY (w)+2Z (7.14)

can then be obtained in O(slogs) operations. Some additional details about employing
quasi-Monte Carlo values to sample Y follow in Section The CE method is used in
the remainder of this section and allows us to avoid an analysis of the truncation error for
the MLQMC estimator. However, the numerical results and the associated analysis of the
MLQMC method are not fundamentally dependent on the use of the CE method.

We denote realizations Y (w) of the random vector Y by y = (y1,...,¥s). Since samples
of a depend on w through Y (w), we employ the notational convention

a(x,w) = as(x,y) =a¥(x), xe{xy,...,zn}.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

So far, the sample a¥(x) of the lognormal random field is only defined (and exact) at any
of the uniform CE grid points {x;}". For the i-th point «;, this definition is

S
a¥ (x;) = exp ( Z B jy; + Z;). (7.15)
j=1

In general these points do not match the quadrature points of the finite element triangula-
tion. Hence an interpolation operator Z is needed. Values of the random field at arbitrary
points & € D are obtained by a multilinear interpolation, i.e., a convex combination of the
vertex values {mkw}%d:l surrounding « € D < R%. The resulting approximated sample of
a(x,w) is denoted by a¥(x) or as(x,y), and is then defined for all x € D and y € R® as

od
a¥(2) := Z(a¥; {ai}{L) (@) = ) wiaad (@) | (7.16)
k=1

with Zidzl Wge =land 0 Swj, <lforalk=1,..., 2¢. The subscript s indicates the
dimension of the random vector y € R® that is used to generate an approximate sample of
a. Using this definition the interpolated field matches the exact field at the points {x;}" ;.
Moreover, we observe that the following important properties of the exact sample hold for
the interpolated field as well:

e If a¥ is Lipschitz in {@;},, then a¥ is Lipschitz in all & € D with the same constant.

o If amin(w) < a(x,w) < amax(w) holds for all « € {x;}!", then the same bounds also
hold for all x € D.

In Section (below) the stochastic field properties are discussed in more detail.
Additionally, since we will be employing a multilevel method, it is convenient to be able to
generate a sample of @ on two different grids starting from a single realization y. Consider a
first uniform rectilinear grid {z{, ..., ), } with m; points and a second one {z9,..., 29,
consisting of mg points. Let us assume the second grid to be coarser, i.e., mg < my.
Assume that the CE method requires the vector y to be of dimension sy for the fine grid
and sq for the coarse grid. In the previous paragraph we defined a¥, for y € R*! and a¥,

for y € R*. We now overload this notation to define a¥, for y € R by
a¥ (x) == I(a¥; {27 }]2%) (). (7.17)

This means that for a given y € R*!, first the stochastic field sample a¥, is found following
, which is then evaluated in the coarse grid points {z¥ % and used to generate
a? (z) by linear interpolation between those coarse grid points.

We have two very important properties:

e For a given y € R®, the field samples a¥, and a¥, are highly correlated.

e if the coarser grid is nested, i.e., if {z9}I" < {x}}7"}, then for either y € R* or

y € R*0_ a sample a¥, is exact in the coarse grid points and interpolated in between.
This implies that the distribution of azg with Y ~ N(0, I, xs,) is identical to the
distribution of agg with Y ~ N(0, I, xs,). If only nested grids are considered, an
expression such as E[a%] is then unambiguous, even if the size of Y is not explicitly
stated.
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7 Discretization and multilevel methods

Other random variables and random fields in this text depend on w through their de-
pendence on the stochastic field a. Therefore, we analogously define us(-,y) = u¥ and
qs(-,y) = ¢ as realizations of the state v and adjoint g obtained by the interpolated

stochastic field a¥, i.e.,
j ayVu¥ - Vodr = J zvode, YveV (7.18)
D D
f a?Vq¥ - Vodr = J (¥ —u)vde, YveV. (7.19)
D D

Finally the PDEs (7.18) — (7.19)) are assumed to be solved using a FE method. Thereby
let A be the maximum mesh diameter of the FE grid. The FE solutions of the state and
adjoint are denoted as uz s and q,?f s respectively and defined as

J a¥Vuy - Vo, de = J zopdx, YveV,cV (7.20)

D ’ D

f Vg Vo, da = J (uf . —a)vpdz, VuopeV,cV, (7.21)
D b D b

where V},  V is the FE space of continuous piecewise linear functions that vanish on the
boundary @D, see Section

7.2.2 Multilevel quasi-Monte Carlo quadrature

As we have seen in the chapter Chapter [6] quasi-Monte methods are equal weight quadra-
ture rules integrating over the s-dimensional unit cube [0,1]°. However, in this section
we are interested in finding an approximation for E[g, s(,y)] where y follows a normal
distribution. Thus it is necessary to perform the change of variables y = <I>_1(£), with
®(-) the element-wise cumulative normal distribution to obtain

Blons@v)] = | as@y)iew) = | as@e@)a 02

To approximate E[gy, s(, y)], we employ the n-point shifted rank-1 lattice rule Q defined

T cmeras S (re (me(20a)) o

where z € N® denotes the generating vector and A € [0, 1]° denotes the shift.

For any a priori choice of the shift A, the rule is a biased estimator for E[g s(x, y)].
This bias can be removed by instead considering shifts that are uniformly distributed over
[0,1]%. The resulting QMC points §; = frac (% + A), i =1,..., N are then also uniformly
distributed over the unit cube. The rule is then an unbiased estimator for E[gy s(, y)]

fm ths <x o (frac <Z: +A>>)dA

n Z J[O " ans (z, @71 (&) d&; = E[gn s(,y)].
=1 )

A[Qn(Qh,s(x7 '); A)]
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

The notation Ea [-] emphasizes that the expected value is taken w.r.t. the random shifts.
By taking the sample average over R samples of the random shift A, and therefore of
Qn(gns(x,-); A), one obtains the randomly shifted lattice rule

Qn R(th Z Qn th ; 7’)' (724)

Another purpose of the random shifts is to facilitate the error estimation. The randomly
shifted lattice rule is stochastic, so its root mean square error (RMSE) can be defined as

£(Qnr(ans)) = \EallQu.rlans) — Elall32 ) (7.25)

Since the means E[gp, 5] and E[q] are deterministic, it is easily verified that the MSE &2
can be expressed as

allQnr(ans) —EldllZ2p)] = Ball @nr(gns) — Elgn,s] + Elgn.s] — Elg]|72(p)]
= EallQn.rans) — ElanslI72(py) + [Elans — all72(p)

~~

~
QMC quadrature error Bias

(7.26)

The first term is due to the error incurred by the QMC quadrature. It is related to the
variance of the randomly shifted lattice rule since

allQnr(ans) = Elgnsl 2] = JD EA[(Qn,(qhs) — E[Qn r(qn,s)])]dz

- | val@unnlir = | ZVal0.@n A
(7.27)

where we introduced the notation Va[-] for the variance w.r.t. the random shifts. The R
samples of the shift in ([7.24]) allow the easy estimation

1 R
A[Qn,R(q}L,s)] = *VA[Qn(qh,s;A) ~ Z Qn Qh 57 Qn R(Qh s)) .

R

(7.28)
This QMC quadrature error depends on the number of QMC points n and the generating
vector z in . The second term in is the bias w.r.t. E[q], due to the discretization
error incurred by numerically solving the PDEs. It can be decreased by considering a finer
discretization mesh width h.
The multilevel quasi-Monte Carlo (MLQMC) estimator for E[¢] combines estimators of the
form on a hierarchy of levels ¢ € {0, 1, ..., L}, with level 0 being the coarsest level and
L the finest. For each level, we consider a discretization mesh width hy, with h, < hy_q,
and corresponding spaces V;,, < Vj,, < ... € V3, < V =V in which approximations uy,
for the state and ¢ for the adjoint exist.
We define ¢y := qp,5,, £ = 0,...,L. Using a telescopic sum and the linearity of the
expected value operator, we observe that the expected value on the finest discretization
level is equal to the expected value on the coarsest level plus a series of corrections, i.e.,

L

L
Elq.] = Elqo] + ). Elge — qe-1] = D Elge — qe—1], (7.29)
=1 =0
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7 Discretization and multilevel methods

where we follow the convention ¢_; := 0. The multilevel quasi-Monte Carlo estimator for
E[q] is obtained by estimating each of the terms in the right-hand side with a randomly
shifted lattice rule (7.24)), yielding

e

L I Ry ) |
) = Z an,Re(qz — Q- 1 Z Z n— Z QZ 7y£ _ Qe—1(‘,y$’r))) ’
=0 & R Zng &

where yé”) = & frac(izen, ' + Ay,)) € R, with 2, € N* the generating vector on
level £ and s, the stochastic dimension on level /. All random shifts Ay, are independent.
Both s; and z, are in general different from level to level.

It is important that both terms qz(',yéi”")) and qg_1(~,y§”)) are evaluated for the same
approximate realization asl(-,ygi”")) of the stochastic field. Note that if s,_; < sy, then
Q1Y) = ny_y s, (Hy")) is evaluated as stated by (7-17): first as, (-, y§") is
evaluated in the CE grid points corresponding to level /—1 and then as,_, (-, yg )) is formed
by linear interpolation between those grid points. The quantity gy—1( y}z ")) is the adjoint
solution corresponding to that interpolated diffusion coefficient as,_, (- ,yEZ ”)). Now, in
order to ensure E[Q%Ij%(q)] = E[g;] through the telescopic sum (7.29), the distribution
of qo_1(, y} ")) must equal the distribution of g,_; (- ,ygifl)), and therefore the distribution
of ag(-, yy_”) equals the distribution of ay_1( ,y} . As discussed in Section this
necessitates that the uniform rectilinear grids 1nv01ved in the CE sampling of the diffusion
coefficient are nested. If we denote the my pomt CE grid at level £ by {z¢}1",, we therefore
must choose grids such that {20} < {z}}1"Y = ... < {zF}I"4 and therefore we also have
Sp <81 < ...< 8.

7.2.3 Error and cost

Analogous to ([7.25)), and due to the independence of the random shifts used for each level,
the RMSE of the MLQMC estimator can be shown to equal

L
e(QR(0)% == D Ve + |Blar — qll72 (), (7.30)
=0
with
Vi fD VA[Qut (66 — ge_1)]d. (7.31)

As in , the first term quantifies the quadrature errors of the QMC methods on all
levels. They can be estimated using the sample variance of the Ry samples as demonstrated
in (7.28]). The second term is the bias, which coincides with the single-level bias term in
for h = hr.

The basic cost and convergence theorems are presented following [119], but applied to our
specific case where the circulant embedding method is used as opposed to the KL expan-
sion. To that end, we first formulate a set of general assumptions about the convergence
rate of the PDE discretization, the RMSE of the QMC estimator and the computational
cost of the sample generation. We introduce the notation a < b implies that a < ¢b with
¢ > 0 some constant independent of ¢ and b, and a < b asa < b and b < a.

Let M, := dim(V},,) denote the number of degrees of freedom associated with the FE
approximation of the PDE at level £. We assume that

Assumption 7.2.1. M, ~ hzd and sy < Mylog M.

140



7.2 Multilevel quasi-Monte Carlo for optimal control problems

The first part of the assumption holds for a variety of mesh families, including locally or
anisotropically refined meshes [72]. The second part here details the refinement of the CE
grid in relation to the refinement of the FE grid. The assumption allows the CE grid to
contain all the quadrature points in the FE triangulation. Even if the FE grid is not a
subgrid of the CE grid, it allows the mesh width of the CE grid to be proportional to
the FE mesh width, which is a straightforward choice in practice. In those cases, due to
the padding requirements in general being dependent on the grid refinement, this leads
to a stochastic dimension s; at level ¢ proportional to M,log My; see [71] for a detailed
analysis. If no padding is required in the CE method, then s; ~ M,. The assumption then
trivially also covers the case where the CE grid is refined more slowly than the FE grid.
Finally, also covered is the case where the CE grid is refined until some predetermined
maximum refinement level L,y is reached. In that case, sy = sp,. for £ = Lyax.

We assume that the hierarchy of discretization levels for the PDE has a weak order
of convergence p, i.e.,

Assumption 7.2.2. |E[q — ¢]llz2(py S hy for some constant p > 0.

This assumption and the next two are stated in terms of hy. Due to Assumption Assump-
tion [7.2.1] any possible dependence on sy is incorporated into a dependence on hy. For
elliptic problems such as the Laplace problem described in this section, one expects p = 2,
at least for diffusion coefficients that are smooth enough. However, the simultaneous
refining of the random field itself may lead to an order p = 1.

Next we make an assumption on the variance of the QMC estimator, the justification of
which is the subject of the analysis later in this section.

Assumption 7.2.3. V; < R[lne_l/)‘h‘; for some constants \, o > 0, with V, as defined in
(7.31)).

Usually one expects ¢ = 2p. For a standard Monte Carlo method, one would have A = 1,
i.e., the variance would be inversely proportional to the number of Monte Carlo samples.
We will see that the QMC method yields a better rate of convergence. The theoretical
results in Section show that A € (1/2,1] can be attained.

Finally, let the cost to compute a sample g(-,y,) with y, € R on level ¢ be denoted as
Cp. We assume

Assumption 7.2.4. The computational cost for a single sample, denoted Cy, satisfies
Cy < h, ™ for some constant k.

The cost Cy consists of two parts. First, there is the cost C?E of the FE solver. If a multigrid
solver is used, this cost is typically at most of the order O(M;ylog My) and typically of
the order O(M;). Next, there is a cost CCF of O(sglog sy) operations for generating the
diffusion coefficient sample through the CE method. Due to Assumption _ CCE =
O(My(log My)?). Assumption [7.2.4[then holds with x = d 4§ for an arbitrary small 5 > 0.
Supposing that constants )\,p,cp,n > (0 exist such that Assumption — Assump-
tion hold for £ =0, ..., L, it follows immediately from the and the discussion
of the cost above that

5(Q%,Iﬁ(Q)) < th + Z Rz n, UAh(p and C( Q Z Rgnzh (7.32)
=0
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7 Discretization and multilevel methods

Theorem 7.2.5. Suppose that constants \, p, o,k > 0 exist such that Assumption [7.2.]]
- Assumption hold for £ = 0,..., L. If the meshes have mesh widths hy ~ ¢~* for
some q > 1 and the choice Ry = R is made for some R € R, then for any € > 0, there
exists a choice of L and of Ny, ..., N, such that

e 2 if A > K,
£(QnR(0)? 5 € and C(QR(9) < § e P (logy e )M if oA = &, (7.33)
e 2A=(r—p)/p if pA < K.

The proof is analogous to the one presented in [119, Corollary 2]. In fact, Theorem
can be understood as equivalent to [119, Theorem 1 and Corollary 2] with the constants
o/ and (3’ defined there equal to —o0 and the dimension d there, due to the assumptions
in this section being slightly different, replaced by our k.

7.2.4 Numerical experiments

In this section we present numerical evidence that the MLQMC method outperforms the
MLMC method and the single level QMC and MC methods for gradient calculations
involving the elliptic model problem. Assumption is verified numerically to hold for
A smaller than 1, thus outperforming standard Monte Carlo methods. Practical aspects
and implementational details are also briefly discussed.

Problem specification

We consider a spatial domain D = (0,1)2. The gradient is calculated for the target
function

R 1 z€[0.25,0.75] x [0.25,0.75],
u(x) = .

0 otherwise,
in the control point z(z) = 5(1—cos(27z1))(1—cos(2mx2)), see Figure[7.4 The stochastic

diffusion coefficient has a Matérn covariance

217 |z —2"fl2\ |z — 2"]l2
n o2
Teov(®T, &) =0 o) (\/ 2v N ) K, (\/ 2v ~ ), (7.34)

where I' is the gamma function and K, is the modified Bessel function of the second kind.
Here, 02 is the variance, \. the correlation length and v a parameter determining the
smoothness of the resulting field samples. We choose 02 = 0.1, A\, = 1 and consider two
values for v. Problem 1 has v = 0.5, which yields an exponential covariance, and Problem
2 has v = 2.5. These particular parameters were also investigated in a MLQMC context
in [119].

Level definitions, CE and FE details

We consider 7 levels for which the FE grids are regular rectangular grids having size
(2204 1)x (2276 41),£ = 0,.. .., 6, including the boundary points. For the CE, we consider
coarser regular rectangular grids of size (2¢ + 1) x (2° + 1),£ = 0,...,6. The resulting
FE and stochastic CE dimensions are shown in Figure The stochastic dimension
is different for the two model problems since the different stochastic field parameters
necessitate a different amount of padding in the CE method. The resulting computational
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(a) Stochastic dimension sy and FE dimension (b) At each level, the CE sampling cost CCE,
My as a function of level £. M, is the same the FE cost CEE and their sum Cy, mea-
for both problems. sured in run time.

Figure 7.5: CE and FE details. Problem 1 is marked by blue x, Problem 2 by red o.

single threaded performance on an Intel® Core i5-4690K CPU @ 3.50GHz is shown in
Figure These costs are only important relative to one another; the scaling of the
figure has no further consequence. The CE and FE costs are comparable, which is the
reason for choosing the CE grid slightly coarser than the FE grid.

As indicated in , the RMSE is composed of a variance term, due to the QMC
quadrature error, and a bias term due to the FE discretization. The maximum level L
determines the bias. For the numerical experiments in this section however, we make
abstraction of the FE error and study only the QMC quadrature error. The levels we
use and thus L are fixed. This does not fundamentally alter the computational cost
for a multilevel methods (MLQMC or MLMC), since the number of samples is small on
any additional fine levels. Furthermore, in a context of optimization, fixing the levels is
a natural thing to do since it allows an optimization algorithm access to gradients at a
known and consistent discretization level, independent of the requested tolerance €, which,
for performance reasons, may differ from optimization step to optimization step [157].

QMC details

We use R = Ry = 10 random shifts for the single level QMC estimator, as well as for
each level in the MLQMC estimator. We use an embedded lattice rule with a generating
vector that can be found online at [112, lattice-32001-1024-1048576.3600.txt]. This rule
works optimally for a number of QMC points n, € [2!Y,2%20] = [1024,1048576]. Note
that this lattice rule is not specifically tuned to the problem at hand, as one could do by
incorporating information about certain constants in Section Even though there is
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7 Discretization and multilevel methods

thus no theoretical justification to use this particular lattice rule, numerical experiments
in [70] and [I119] show that such generic lattice rules have comparable performance. An
issue is that the generating vector provided here has length 3600, making it only usable for
integrals of dimension up to 3600. Due to the circulant embedding method, the stochas-
tic dimension sy grows with ¢, see Assumption [7.2.I] In the experiments that follow, a
stochastic dimension in the millions is not uncommon, see Figure The construction
of a custom lattice rule tuned to our problem with POD weights (see Section for
all stochastic dimensions is not feasible as the cost of constructing the generating vector
using a CBC algorithm scales as (’)(Slgne + synglogng), with sy the stochastic dimension
on level ¢, see e.g., [72]. Therefore, the generating vector [112] is appended with as many
as necessary independent uniformly distributed random integers between 1 and 22 — 1.
Before applying the QMC method, the stochastic dimensions are sorted from most impor-
tant to least important. The most important dimensions are then handled by the first,
high quality elements of the random vector. The importance of a stochastic dimension is
taken to be proportional to the corresponding eigenvalue of the circulant matrix C, see
Section As suggested in, e.g., [I19], the optimal number of samples to take at each
of the L levels, given a tolerance on the QMC quadrature error ¢, is attained dynamically
by Algorithm [6] It ensures that V; ~ nyCy, i.e., it ensures that the computational effort
required to further reduce the variance contribution V, at any level is comparable.

Algorithm 6 Determining N = (Np,...,Nyp)

1: Set Ng= Ny =...= N = 1.

2: Estimate Vy, ...,V using

3: if 37V, > € then

4: Double n, at ¢ where Vy/(n,Cy) is largest.

5: end if

6: (An algorithm with adaptive L could estimate and check the bias here.)
Results

The performance for both problems is shown in Figure|7.6l Clearly, the MLQMC method
outperforms the other methods. Note that due to the fixed number of levels L, the MC and
MLMC methods follow the typical convergence rate of O(¢~2). If L were not fixed, then
smaller and smaller tolerances on € would eventually prompt a refinement of the single grid
at which all samples are taken, resulting in a sudden massive increase in computational
cost. The rate at which the single level methods become more expensive with decreasing
€ is thus underestimated in the results shown. This in contrast to the multilevel methods,
for which an increase in L would at most incur a moderate cost increase. The flat costs
for the multilevel methods for large € are due to warm-up samples.

Section [7.2.4] illustrates Assumption[7.2.4] Shown is Ry)y since that quantity does not de-
pend on the chosen number of shifts. Remark that of course the precision of the numerical
estimation of Vy does depend on Ry. Clearly, the variance contributions for each
of the levels go down faster than the MC rate of ne_l. Furthermore, the variances decay
with £ as some power of hy. Curiously, for £ = 0, the variances take a large Ny before
their faster decay starts. Should this be a problem in practice, a method different from
the QMC method could be used to estimate at the coarsest level, especially considering
that the stochastic dimension there is very small (4 in this case), see Figure
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(a) Problem 1: v = 0.5,0% = 0.1, A\, = 1. (b) Problem 2: v = 2.5,02 = 0.1,\. = 1.

Figure 7.6: Performance of the MLQMC method compared with the MLMC method and

their single level counterparts. The cost is expressed in equivalent finest level
PDE solves.
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(a) Problem 1: v = 0.5,0% = 0.1,\, = 1. (b) Problem 2: v = 2.5,0% = 0.1, \. = 1.

Figure 7.7: MSE contribution V; as a function of the number of QMC samples n, used for
each of the Ry = R = 10 shifts. Shown is Ry)Vy, since this quantity does not

depend on Ry. Lower lines correspond to finer levels, except in the case £ = 0
for low Njy.
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1). 1).

7.2.5 Convergence analysis

This section provides a theoretical justification for Assumption In this analysis, we
confine ourselves to the following assumption:

Assumption 7.2.6. There exists some Liyax € N such that spi1 = s¢ for all £ = Lpax,
i.e., there is a finest CE grid with sr,,.. points.

This is a stronger assumption on sy than Assumption [7.2.1] The FE grid can still be
refined for £ > Lyax. A similar assumptions is made in [I19], where the authors analyze a
MLQMC method to approximate expected values of elliptic PDEs with lognormal random
inputs parameterized by a Karhunen—Loeve expansion with a fixed number of terms. Our
restriction is less strict in the sense that our analysis allows simultaneous refinement of
the CE grid up to a fixed arbitrary fine level L ax.

The novelties in the regularity analysis are the following. Firstly, we analyze the adjoint
equation, which has a right-hand side that depends on the uncertain variables through
the solution of the state equation. Moreover, our integration error is stated in terms of
L? errors over the spatial domain D, we do not apply a bounded linear functional to the
PDE solution. Both aspects occur in [76], where the regularity analysis for the solution
of the adjoint equation is provided with a complete error analysis for the single level
method with uniformly distributed parameters. In this manuscript we study lognormally
distributed parameters using a multilevel estimator. While multilevel methods are well
studied for problems with deterministic right-hand sides, the regularity anaylsis for a
multilevel method has not been studied for the problem class considered in this manuscript.
Secondly, we sample the random field using the circulant embedding method instead of
a series expansion. We therefore first show that the linearly interpolated random field
inherits important properties from the true random field.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Properties of the random field

For 8 € (0,1], we denote by C?(D) the space of Hélder continuous functions on D with
exponent 8 and norm [v]gs ) = Supgp [v(®)] + [v|csp) With seminorm |v]gs ) =
SUPy, 2oe Dy %o lv(21) —v(2)|/| 1 —22|? < 00. The space LP(£2, X) denotes the Bochner

space of all random fields in a separable Banach space X with bounded p-th moments over
Q, i.e., LP(Q, X) contains strongly measurable functions that have finite norm given by

(SQ HUHI))(dP)l/p, for p < o0,

esssup eqllv|x, forp=o0.

o]l e, x) = {

The variational form (7.8)) is based on the Sobolev space V' with norm
[vllv == Vol 2oy

and dual space H=(D) := V'. By | - | we denote the Euclidean norm in R”.
We suppose that the stochastic field has the property

Z(-,w) e CP(D), for some f € (0,1] P-a.s. (7.35)
Then, using Fernique’s Theorem, one can show (see [23]), that a € LP(Q, C%(D)) for all
p € [1,0) and furthermore that
1 1

max = s LP(Q = L&y ’
“ (W) I;IEE%(CZ(Q? W) © ( ) and amin(w) mlnweﬁa(w’w) ) ( )

for all p € [1,00), i.e., 0 < apmin(w) < amax(w) < 00 P-a.s. Clearly, for « in any set of points
{x;}I", < D, we have

0 < amin(w) < min a(z,w) < max a(x,w) < amax(w) <0 P-a.s.
xe{z; )", xe{z; )",

Hence for any realization of the linearly interpolated field a¥(x) (see (7.16))), which is
exact on {z;}", the bounds can only be tighter

0<aY

b < min a¥(z) < mina¥(x) <maxa¥(x) < max a¥(x) <al, <o,

phinin max
xe{x; )", xeD xeD we{wi L,

. y . y
where we use the convention a’. = amin(w) and afax := Gmax(w).

The piecewise linear interpolant a¥(x) is clearly Lipschitz, i.e., a¥(x) € C?(D) for =1
(and thus also for all 5 < 1). In fact, since wy, 5 in (7.16|) are first-order polynomials in x,

0¥ ey < la¥llwrepy = max{|ad | L= (p), [Vad | Lo ()}

2d
< max {a%ax, Z |vwk‘,a}|Lw(D)a’g‘1aX}
k=1

— Cya? (7.36)

max?

2d
where Cy := max {1, [Vwi z| o p)}-
In order to analyze the regularity w.r.t. the uncertain variables, we will denote

b:= (bl, Ceey bs) with b]’ = ”B-,meax, (737)
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i.e, the maximum of the j-th column of the matrix B in ([7.13).

Since a¥(x;) = exp (Zj \ Bijy; + Z;) = 0 for any of the uniform CE grid points x; €
{x;}1",, see (7.15)), the chain rule results in [0¥a¥ (x;)| = a¥(x;) | |B < a¥(z;) b”.
With the intermediate points included, the random field is specified by the interpolation
. Since wy, =0 forall k =1,... 2d and x € D, this result generalizes to all x € D:

2d 2d
[0V a¥(@)| = Y wi ol a¥(@he)| < ) wh ool (@he)b” = a¥(x)b”. (7.38)
k=1 k=1

It then follows immediately that

‘ avzg(m) <bv. (7.39)
as (x) | p=(p)
Furthermore,
a¥(x) B a?(x)V(¥a¥(x)) — Va¥(x)ova¥ ()
(%) Lo (0) (o (@))? L (o)
a¥ (z)V (af (z)b) Va¥(x)(a¥ (x)b")
T @@L, @@ L,
_ V (a¥ (z)b") ‘Vas(a:)b”
af(x) L (D) @) lre(n)
. Vaé’(ac)b" _ VCL ($) yCdamaX
7 ‘ ag(m) L (D) CL?(.’L‘) L (D) b a’mm 7
(7.40)

where the last inequality follows from ([7.36]).
The following lemma is based on [72, Lemma 1] and bounds the interpolation error for
functions in C#(D) for some € (0, 1].

Lemma 7.2.7. Let a € C?(D) for some § € (0,1]. Let b be the linear interpolant of
a in interpolation points {x;}7", forming some uniform mesh with mesh width h i.e.,
b(x) = Z(a; {x;}1"1)(x). Then we have for any x € D that

a(@) — b(@)| < (Vdh)|al s p)-

Proof. The statement follows from

la(z) — b(z) E]u%maa%m|‘_|§]wkm x) — a(Zhz))|

2d
< 2 wiala(®) — a(@ra)l < ) wialalosple —
k=1
Ewmaw (Vdh)?,
. 24 _
since Zk‘:l Wr,x = 1. -
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The above lemma can be applied to the diffusion coefficient and its interpolation. Taking

a above to be the exact diffusion coefficient a(-,w) for some w and b its interpolation a?,

as defined in ([7.16)), we find
a(@,w) — a(@)] < (VAR |a( )]s )

The quantity h is then the mesh width of the uniform CE mesh on which the diffusion
coefficient is sampled exactly. Furthermore, since we use nested but not necessarily equal
CE grids, the mesh width depends on ¢. Denoting the CE mesh width at level £ by Ay, we
have by the above lemma that

la(@,w) — ¥, (@)] < (Vdhe)®la(w)| s ), (7.41)

Lemma 7.2.8. Let a?

Se
interpolation in the points {:L'i};zefl forming some uniform mesh with mesh width hy, i.e.,
a¥, (x) =Z(a%;{z:};"")(z). Then we have for any x € D that

be generated with the CE method from y and let a¥,_, be its

0¥ (¥, (2) — @, _, ())] < heVdCaal, b”.

Se—1

Proof. By linearity we obtain

2d 2d
o“a¥ (x) = 0" I(a¥; {mi} ") (@) = 0¥ ). wh 0¥, (Tho) = ). Wi o0’ a¥, (Tha)
k=1 k=1

= Z(0”a¥,; {wi}iZy) (@),

where points xj , denote the vertex values surrounding = € D. In particular, the v-th
partial derivative of the piecewise linear interpolation of the field remains piecewise linear
and is hence Lipschitz continuous. Moreover, we have

Ma¥ (@) = T("a¥; {m )" ) (@),

Se—1

We conclude that

0% (a¥,(x) — a¥,_, (®))] = 10" (a¥, () — T(a¥,; {2:};"5 ") ()]
= [0"a¥,(®) — 0" L(a,; {x:} ") ()]
= [0"a¥,(®) = Z("a¥,; {w:} 1) ()]

Since 0¥a¥,(x) € CF, by Lemma we have

0¥ (a¥, (@) — a¥,_, (@))| < (Vdhe)’|0” 6, | o) < 0,

Se—1

which is particularly true for 8 = 1. It remains to find a bound for |”a¥,| C8(D) in terms

of a¥ax. To this end, we note
10 ad,| sy < 100, [wre(py = max {[[0”al, | = (p), [VO”ad, || Lo (D) }-

We have

|0¥a¥, | LoDy < Zwkmauay (Tk,z)

L (D)
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2d s

y vj
Z Wk 203, (Th,z) H B(k,m) J
_ j=1

L*(D)
< a?naxb"
and
2d
HW”@?Z < Hv > wi e a¥, (Th.z)
L*(D) k=1 L*(D)
Z Vwg za¥, (g 2 HBkm )i
*(D)

2d

< Z vak,mHLw( Athaxd”-
k=1

Combining the two estimates, we get

10¥ad,| sy < 107 ad, [wre(p) = max {[[0”af, | = (D), [VO”ad, || e (p)}

2d
< (1 + 2 ’vwkym‘Lw(D)>a%axbu.

k=1

as required. ]

Remark 7.2.9.AThe constant Cgq = max{l,Zidzl IVwg 2| oDy} might depend inversely
proportional on hy through the term Vwy .. Due to Assumption Cy can be chosen

as the minimum of max {1, Ziil IVwi 2| LoDy} over all levels £ =1, ..., Lax.

Bounds on partial derivatives of ¥ and ¢¥

The error estimates for the QMC method require bounds on the partial derivatives of the
integrands in (7.29), as we will see in Section below. We introduce the frequently
used notation

C1C2

Cf i=max(l,—=) and  Cy:= (|zvr + [ufv),

min

where ¢y, ca > 0 are the embedding constants from ([4.6) — (4.7). Note that C§ < 1+ %% €
LP(Q) because 1/a¥. e LP(Q) for all p € [1, ).

Lemma 7.2.10. Let u¥ and q¥ be as defined previously in ([7.18)) — (7.19)). Then
b” Hz v
( >|V| amln

5 b Y
0¥ llv < (lv| +1)! 2 a¥ (|| lve + llafv)

|07 ufllv < |v]! : (7.42)

with b as defined in ([7.37)).
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Proof. Let f¥ := u¥ —1, then taking the v-th derivative of (7.19)) yields by Leibniz product
rule

S (2| & ma@ven i@ Vi@ - | @) @ a

m<v D

for all v e V. Setting v = 0¥¢¥ and separating out the v = m term gives

f oY ()| V¥ ¥ (=) da (7.43)
D

__ ¥ <”) fD M al (@) Ve g (@) - Ve () do

m
m<vV, m#v

+ f " fY(x)0"q¥ (x) dx
D

—— ¥ ()] (B aervemaria) - vet@ a

m<v, m#v

+ J 0" fY¥(x)d"q¥ (x) dx
D

< Z <V> ‘ 0" ag f a?(x)Vo™q¥ (x) - Vi¥¢¥(x) dx
m<vamty m a:g LOO(D) D S S s
+ J " fY(x)0”qY (x) dx| . (7.44)
D

We can now use the Cauchy—Schwarz inequality on both integrals above. For the right-
hand side in particular we get, | §, 0” f¥(x)0”¢¥ (x) dz| < [ f¥|v/||0¥ ¢¥ ||y and further-
more

([ @ @) " s

(a?nin)
such that (7.44]) can be bounded using (7.39) by

j a¥(2)| V(" ¥ ()] da
D

< mg;m#” C;) o (L’ ai’(m)w(amqg(m))pdx) : < JD oY (2)|V (0¥ g (ac))|2d:v> .

1/2
|y = ( JD yvavqg<m>|2dx> -

([ ar@eraepa) -

(a?nin)

+ [0 ¥ v

Noting that §,, a¥(x)|V(0¥¢¢ (x))|* dz = H(a?)l/QV(&"qﬁ’)H%Q(D) and cancelling out a com-
mon factor, we obtain

174 v v—m m
G R S o Ll (P G 1 P

- " m<v,m#v m ~—
Ay A
+ (i) (107 £ 1v). (7.46)
B,
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7 Discretization and multilevel methods

We may apply Lemma, to get

1(@¥) 2V (0% ¢¥) | L2y
ANLITIS -
<k> In 2) iy 0 ()12 (Ha fy\lv')
v k' 1 o e

k! 1 v N
) 11‘12‘ K| k(ay, )1/2 (6102“a kU?HV + 0 kU”V') (7.47)

ko
N

v

&
N

174

k

N

v

for all multi-indices v € N§j. In order to further estimate , we need an estimate for
the partial derivatives of the state PDE solution u¥. This can be obtained as follows:
beginning this proof with the v-th partial derivatives of the weak formulation of
(instead of ), one gets an analogous recursion to with ¢¥ replaced by u¥ and

fY replaced by the control z:

v v v—m m ¥z %
(2@ Doy < 3 ()8 @ T ey + s
&; m<v, m#v Atn mI;n
In this case, the application of Lemma gives
k v—k v
y\1/2 v,y v | b Ha Z”V’ _ ' b HZHV’
) 2T, < 3 e e e el

Then, (7.42)) follows directly from ( mm)l/?y\a" Yy < H(a?)l/QV(al’u?ﬁ)HLg(D). Using
(7.42)) we can now further estimate ) to get

[(@¥)"2V (2 ¢¥)| 12Dy
bl/—k

LY , quv v
S Z < > In 2) Kl b (¥, )12 crezlv — k! (In2)"H a + ||y

Note that g is independent of y, i.e., we have for v < k

N u =k
Hau—ku”‘// _ {|u’V’ v

0 else
v—k
< v = kil il
This and setting Cy — max (gjn‘ii 1) and C.y := |z]y+ + |Gy gives
[(@2) 2 (2" )l 20y < ( >’ ! v — k! L & A
s s ) (In 2)|k\ (In 2)l—Fl (a¥_y1/27%9
(R [PLA—— e

(n2)¥ (aF,,)172

where the last equality follows from (4.77). The assertion then follows from ([7.45|). O
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Lemma 7.2.11. Let A be the Laplace operator. Under the assumptions of the previous
lemma, it holds that

b” (lv|+4)  Cvcy ~
A Yq¥ < ’ 1),
1A (0 qs)HLQ(D) (In2)l (jv +2)(Jv| + 3) d¥, (Izvr + [afv)

~ y
where CY = max (1, 2 %)

Proof. We have

" f¥(m) = 0" (— V- (a¥(x)Ve¥(2)))
= =V " (af(2) Vg ().

Thus we get by Leibniz product rule that
. (YY) = . VY gv—m v m Yy | — oV fY
v-ava) = v (5 (7))@ manveray ) =

Separating out the m = v term yields

ky 1=V - (afV(0”¢Y))

—v (3 (D)emavema) - e

m<v,m#v

v—-m Y
== ) <V>V‘ (0 yas (G?V(amqg))> - fY
m<v,m#v m as

1 %4 6”7"1(1? aVi,,na':'sjl m v

m<v, m#v

where we used V- (AB) = AV - B+ VA - B in the last equality. We can multiply k, by
(a¥)~? and obtain the bound

I@) Phullapy < )] <:z><‘

m<v,m#v
au—may
as

From the assumption that g € L?(D) and z € V' implies kg € L?(D). From the inequality
above we then deduce by induction w.r.t. |v| that (a¥)~'/2k, and thus by also
k, € L?(D) for all multi-indices v € N§. Using the properties and of a¥,
allows to reformulate the previous inequality as

— Yy
ov mas

a¥

[(a¥) ™2kl 2 ()
L*(D)

|<a2>1/2v<amqg>m(m) @) 20 ) e,
L*(D)

N v\, m _
1@ kol 2y < D) (m)b 1)k r2(py + B,

m<v, m#v

Ay Am
with
B = v 2b,/7mcdar%1ax y 1/2v oMY Yy 71/2&.1/ Yy
L=, —g (@) V (0" 2(p) | + ll(a¥) fYlz2(py-
m<v,m#v m @ min
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7 Discretization and multilevel methods

In the next section of the proof we first find a simple expression B, such that B, < B,
and then apply Lemma to obtain

wo= 2 () g Bee (148

k<v

Introducing CY := 2 %%“ to ease readability, we find, using Lemma [7.2.10

min

/ v ypr—m m(’m‘ +1)' Cf?IJ y\—1/2 v ry
B, < ), (m) <C b b (In 2l (agﬁn)mczg + [ (ad) 70" Y] 2D

m<v, m#v

cY C’ Cuy. 0 v m|+ 1)! _ L
- Ot 3 (1)U ) e e

(a¥. )12 - (In2)Im
Using (4.79) finally leads to

cv cycng, (Jv| + 1)!

@ 32 Y g T = gz

B, <B, :=

Now we apply Lemma yielding
v k| CYCY¥Cy ., 1 (v — K|+ 1)! e
A, < Z < >( | | bk( 729y k(| | ) +‘|(a5) 1/28 k:( _g)HL2 )

< k) (In 2)|k\ (a?nin)l/Q (In 2)|,,_k|
—k
<z ( ) (fjfyﬁ/?g v e R éﬁjﬁ%)
! _ | o
< (Snnjig/? max (CY,1) b” k;y (Z) (11|1k;|)'k| <(1(/1n ;;[:kl)' + (1|:2)|f_|k|)
< (CS::SZIQ/Q max (CY, 1) (mb;)h/ <(|V| +2)' + (Jv] + 1)1)
) m max (5 1) (mbgy)iu (||1V/||i?;)!

Since (aé’)*l/QkV = (ag)*lﬂv (a¥V(7¢Y)) = (a?)lpA(&”qg) + (a?)*1/2Va? -V(ovq?),

we have

[(a)' A0 q¥) | 20y < 1(@¥) ™ kol 2oy + [(a¥) "2 (Va¥ - V(0¥ q¥))] 12 (p)

= (agﬁn)l/Q max (C 71) (1n2)“’| |I/| +9 + a%in ”(as) V(a qs)HL2(D)
cve., B (v|+3)  Cyat e T
X T 45 C:’J?l 1 | q ~zg
(@7 M G e g, M Y e, e
v | Y
< max 1,0V, Caghas) (Wl + 4 __CHC,
Gin 7 (In2) 1 (Jv] + 2)([v] + 3) (a¥y, )1/
Cew B (Mear cre,
(2)¥ (jv| +2)(Jv] + 3) (a¥;,)V/2

with C¥ = max (1,CY, %) = max (1,CY). The third inequality above follows from
Lemma [7.2.10] U
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Note that C¥ = max (1, 2 ?:gigm) <1+ 222573”“ € LP(2) because 1} and a¥.x are both
in LP(Q) for all p € [1,00). o o o

Lemma 7.2.12. Let q:‘:’h be the unique solution of (7.21). Then, under the assumptions
of the previous lemma, it holds that

(%) 2105 (a¥ — ¢¥)|v < [(a¥)*V*(q¥ — ¢¥))| L2y
k Yoy (Y \1/2
0 (k[ +2)/(k] +6) Cf C¥(amax) "~

~ (In2)lkl 3 a? =

min

Proof. Let P, = Pp(y) : V — Vj, : w — wy, denote the parametric FE projection onto V},
which is defined, for arbitrary w € V, by

J a? V(Pp(y)w —w) - Vopdz =0, Yo, € V. (7.49)
D

In particular, we have Py(y)w = wy in Vj, and P2(y) = Pu(y). We conclude, using
Y wy, € Vy, for every v € N§, that (Id — Py(y))(0¥w}) = 0. We stress here that, since the
parametric FE projection P (y) depends on y, in general

0" (wY¥ —wy) # (Id — Py(y))(0"wY).
Thus

[(a)! 2V " (@ = a¥p)l2(p)
() 2V Py (y)d* (¢¥ — a¥y) + () PV (Id = Pr(y)*(a¥ — a¥3)12(p)

< [(a¥)*V Py(y)* (¥ — a¥))| L2y + 1(a¥)*V (1d — Pi(y))0*¢¥ | 12(p)-
(7.50)
Now applying 0% to
JD a?V(g¥ — qgh) -Vuopdex =0 YveV,,
and separating out the m = k term, we get for all v, € V},
JD a¥Vek(q¥ —¢¥)) Vopdr = — ) ( 7’;’1 ) JD(akmag)vam(qg —q¥,) - Vo da.

m<km+#k
Choosing vy, = P,d%(¢¥ — ¢¥},), the left-hand side becomes
| anvmt@ - )P+ | arvid- PO - a) - VR - dl)d
D ’ D ’ ’

where the second term cancels due to the projection definition ((7.49). Dividing and mul-
tiplying the right-hand side by a¥ and using the Cauchy-Schwarz inequality, one obtains

k
Yy kiry Y 2
L) a¥|VPo*(¢¥ —¢¢)Pde < ) ( ]>

m<km+#k

1/2
o [ anwemiar —aopas) ([ awneta - dka)

ok—mq¥Y

a¥

L»(D)
1/2
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7 Discretization and multilevel methods

Cancelling the common factor in both sides and using (7.39) we arrive at

k _
@y rt =l < X ()o@ VO — i)

m<km#k

Substituting this into (7.50|) we obtain

k _
@) T - ey < X ()@ e - e
1{ m<k,m+#k ~ Av ~
k m
+ @)V (1d ~ P 2o

v

By

leading by Lemma to
[(a¥)! 2V " (¢¥ — 423 12(p)

< Z( )'m"b |(@¥)2V (1d — Pp)o* ™ ¢¥ | 12y

—<k In 2)Im|

kE\ lm|lb™ —m
< h(a)? Y ( )"m(ak )l

e \m (In 2)lmi
G ISEDY (k)'m“bm o (=) ) e,
= (In2)ml ™ (In2)lk-ml (jk — m| + 2)(|k — m| + 3) a¥,
k Yoy (Y \1/2
_p b Z ( > (|k —m|+4)! CYCE (;zmax) C.y
(In2)lkl < (| —m| +2)(Jk — m| + 3) a?.
b (k) (s +0) ¥ o)
(In 2) k| a¥. =

In order to justify the second inequality, note that by the product rule ¢¢ satisfies the
following PDE

1
_Aqs _7y( _g+vay vqs)?

allowing us to derive H 2(D)—]regularity

Cdamx ~
i) = 1A 120y < 5~ (1+ a)mz—umw)
mln mln
1 Cdamx ~
L (1 4 Catima )c;/uzm(m allzam) -
mln mln

Classical results from FE theory for H2(D)-regular functions on a convex domain D (see,
g., [09]) lead, as h — 0, to

inf |gf —vlv < he|AgY |2
UEVhe

This result together with Céa’s lemma and the definition of a.x then proves
1@) 2V (¥ — %)) r2(p) < he(a¥ax) [ AGY 12y

as required.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Note that one can apply a standard Aubin—Nitsche duality argument to obtain quadratic
convergence in the meshwidth h measured in the L?(D)-norm.
Let u¥, be the solution of

f a Vu¥ - Vodr = f zvde, YveV (7.51)
D D
and u?, | be the solution of

J a¥, Vu¥  -Vuvdz :f zvdz, YveV. (7.52)
D D

Se—1

Subtracting ([7.52)) from (7.51)) we get

0= J a¥ (Vu¥ —Vu¥ ) Vudz + f (a¥ —a¥ )Vu¥  -Vodr. (7.53)
D

Se—1 Se—1
D
This is used in [31] to show, that

Bl
(a%in)Z

We are next going to show an analogous result for the v-th partial derivatives with respect
to the uncertain variable.

[ud, —ug, v <lad, = af,_, L= (D)

Lemma 7.2.13. Let u¥, be the unique solution of (7.51)) and u¥, | the unique solution of
(7.52). Then, under the assumptions of the previous lemma, it holds that

v

b aglax
W(M + 1)!W|\Z”V'~

Proof. Taking the v-th partial derivative on both sides of (7.53)), we get with Leibniz
product rule

|0 (w¥, — ¥ )|y < he2VdCy

e ( min

( )f "aY V(0" (uY, —uY,_ ) Vudr
m<v

= < >J " "™(a¥, —a¥ V(™Y ) Vvdz.
m<v

Introducing the notation w¥ := u¥,—u¥, ., separating out the m = v term on the left-hand

side and setting v = d¥wY gives
fD a? |V (0¥ wY) 2da

- ¥ (”) JD oY~ ™a¥ V(0™ w?) - V(0" wY) de

m
m<v,m#v

=S ( ” F ol —a¥ )V, ) V(PwY) da

m<v

v o ™al m y
=— Z ( ) J;) ——aZ, V(0" wY) - V("wY) dx

m a
m<v,m#v S¢
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7 Discretization and multilevel methods

=S (”)Lav-m(ay —a¥ V(™Y ) V(" uwY)da

m
m<v

v vV—m m 1%
< 3 (2)r ) e e @) )

m<v, m#v

. ( )a” @Y~ 0¥ o) V@™, ) iy (@2) V2V (0¥ |12 -

m<v

Cancelling one common factor on both sides we obtain

v -m m
H(age)l/2V(any)HL2(D) < Z (m) bY H(agz)l/QV((a wy)HLQ(D)

" m<v, m#v

Ay Am
+ < )!(9” "(af, = a¥,_ e V(0™ Y, )lr2(p)
m<v
B,

We know that

V(@™ ug, )2y = 0™

541

and using Lemma we get

b™ /
B, < Z <m>hf\/70damaxby m| |7H HV

m<v

- 2|y v m|!
i, e () m

min oy \1T 1n2)|m\
lv! |2] v
b’ 2h,VdCya ,
= (In2) Oitax a¥.

where we used (4.78]). We can now apply Lemma to get

y\1/2 v,y v ’m|' m |V_m|! v—moi y HZHV’
H(QS[) V(&‘ w )HLQ(D) < T;V (m) (hl 2)|m|b (ln 2)\u—m|b 2h€\/gcdamax a%in

; |2lv: B” v

_ y Hy — ml
2hyVdCya¥,,. & 2 2 \m |m|!|lv — m|!
— b dCyat, L2V Y
e g 2

as required. ]

(vl + 1!,

A similar result holds for the adjoint variable. Therefore let ¢¥, be the solution of
J a? Vq¥ - Vvdr = f (u¥ —gvde, YveV (7.54)
D D
and ¢¥,_, be the solution of

JD a¥, Va3, | Vvdx-ﬁ)(u?e L, —gvdr, YveV. (7.55)
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Subtracting ([7.55|) from (7.54]) we get

0= JD a? (Vq¥, —Vq¥ ) - Vudr + JD(ay —a¥ )V¢?  -Voudr— JD(uy —u¥ Jvdz.
(7.56)

Lemma 7.2.14. Let q¥, be the unique solution of (7.54) and q¥,_, the unique solution of
(7.58). Then, under the assumptions of the previous lemma, it holds that

16(q% — g% v < hullv] + 212 avdo, Sl o
Se Se—1 (1 2)\u| ( Y. )3/2

min

Proof. Taking the v-th partial derivative on both sides of ((7.56), we get by Leibniz product
rule

v —
2 <m> JD 0" ag, V(s — a5, ) - Vede

m<v

= ( >J """ (a¥ —a¥ )V (amq;’el)~Vvdzc+fD5" (¥, —u¥ Jvdzr.
m<v

Introducing the notation w¥ := ¢¥, —¢¥, ., separating out the m = v term on the left-hand
side, setting v = 0¥wY and cancelling the common factor ||(a¥,)~"20%w¥ |y, gives

174 v vV—m m
H(alsle)l/QV(ﬁ wy)HLQ(D)g Z (m)b U(“?Z)l/m(a wy)HLZ(DZ

N~ g m<vV, m#v v
Ay Am

A 0¥ (uy — ud,_))lve

3 ()10t = et e 9@l + 1
m<v min

“

g

B,

where we used {,, 0" (u¥, — u¥,_,)o"w¥ dz = §,(a¥) 20" (u¥, — u¥, ,)(a¥,) V20" w¥ dz <
1(a¥)Y20% (u¥, —u¥,_ )|y |(a?) 20 w¥|y in order to cancel the common factors.
We know from Lemma [7.2.10] that

m Yy m_ Yy b™ C}I/
V(@™ g, 2y = 107a5, v < (jm| +1)! o)l ¥ Cg -

This bound holds because ¢¥,_, is the adjoint state corresponding to the stochastic field
agg_l, which in turn is obtained by interpolating the field a¥ in the nodes of a coarser CE
method; see Section[7.2.1] Note that in both cases y € R®. Importantly, the stochastic field
agg_l thus originates from the CE method of dimension s. Since the b are characterized
by the CE method, the b in the bound of Lemma [7.2.10| is the same for ¢¢, and ¢¥,_,.
Furthermore, from Lemma [7.2.13| we know that

[0” (u¥, — u¥,_ v < crea]d” (uf, — uf,_ )|v

bV
(@) 2l

C1C2Qhé\f0d v+ DY 2]y .

This and Lemma gives
b CY
(In2)lml oY G

mln

Bo< 3 (1 )ievdCuata ™™ (i + 1)
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7 Discretization and multilevel methods

+ cl CQQhZ\deamax

1 Z|\|v! b”
i E (0] + 1)

( min (aglin)3/2 (h’l 2)|y|

v cy v (jm|+1)!
< Ve iCuat Sl + fal) 3 (1)L

min m<v (hl 2)|m|
1 ; [2lv:
+ Wclcgﬂu\/gcda%ax @ 7 )] (vl +1)!

cY v|+1)!
< VRV ACuat (|2l + [y D!

el b |
+ (amm)l/zclcﬂhg\f(;’damax( yin)3/2 I 2)|V|(\1/| +1)!
_ 7 amax y 2c1c9 )
hellv] + 11 2)| ;VdC, gm( CYCea+ g 1el)
he(jv] + 1)! o 2)| |4\chamaxcyczg,

where we used (7.36)) in the second inequality and (4.80]) in the third inequality. We can
now apply Lemma to get

.y v m|l L v-—m[+1)!
2o @) ey < 3 () i am

_— In 2)lmI (In 2)lv—m

(l ~
< etV dCy =Y (Jzlv + )

mln

(v +2)! b e i
—h 4 ov / /
g g YOGy O Izl + alv).

mll’l

i 2)!
where we used the equality >}, (;;)‘m"(’y —m|+ 1) = 4(|”|2Jr )

in [I13 equation 9.5]. From

, which is stated, e.g.,

(afhin) 210" w? v < [[(a2,) 2V (0" wY) | 12,

min

the claim follows directly. O

Integration error on difference of two levels

In this section we analyze the expected (w.r.t. the random shifts) MSE for approximating
the difference of two consecutive levels in the MLQMC estimator. To this end, we introduce
the weighted Sobolev space W, ~, with norm given by

oM
IF Iy, ., == f f — W Yaspa) || 0w) dWinap. H¢?(yj)dyu'
uC{l S} Yu Ju] Rs—lul 5y

je{l:shu Jjeu

Here {1 : s} is a shorthand notation for the set of indices {1,2,...,s}. In the sum,
Yy = (Yj)jen denotes the active variables, while y¢. g\, = (y;)j¢u denotes the inactive
variables. The constants v, are weights, collected formally in «, and the functions 1; :
R — R* determine the behavior of the functions in the space. For the analysis, based
on [70, 115} 123] to hold, we consider functions wf(y) = exp(—9¢;ly|) with a; > 0 to be
specified below.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

In the multilevel estimator for our gradient we want to apply the QMC rule to the difference

q¥,—q¥%_,. Onalevel £ € {1,..., L} we can use Fubini’s theorem and [70, Theorem 15] to
get
1
Ve = fD VA[QnuRe (qg/e - QSyeﬂ)]dx RK VA[QW <q$’é ng—l )]dm

=Ea[lQn(d¥, — ¥ ,) — E[Flli2(p)] = JD Eal(Qn(d¥, — ¢¥, ) —E[¢¥, — ¢¥,_,])*]dx

1 1A .
S R£< >, wll QjO‘)) (1ot (V)" JD la% —a¥_, Iy, ,d= (7.57)

GAuc{lis)  jeu

where

V2mexp(ad /i) )AC (A .\ 1) |

Here n* = (2XA — 1)/(4)), ¢(x) denotes the Riemann Zeta function and ¢ (N) := [{1 <
z < N | ged(z, N) = 1}| denotes the Euler totient function. In particular, if N is a power
of a prime, it can be shown that 1/¢i (V) < 2/N. By using the shorthand notation
F(y) :=q¥, — q¥,_,, we observe that

2
| 1Py, s
1 (J ol p 1_[ 2 )
- Z Y O(y5)dY 1.6\ H¢~(yj)dy dx
J‘DuC{l:s} T JRI R~ Il ayu je{l:sP\u ' jeu ’ !
ol F\ 2 ,
J j J (a ) H ¢(yj)d’y{1;s}\ul_[¢j (yj)dy,dx
uC{l }fVu Rlul JRs—Iul Yu je{lshu ieu
o2
o(y5)dy 1. ¥ (y;)dy
C{l }’}/u J]Rujs [ul ayu L2(D) GH J {1: }\ug J u
ol 2
J j 0 1_[ 9( Yj dy{l s}\unwj y] )dy, . (7.58)
Rlul Jrs—lul | Yy,

C{l ) Y jeflshu

Thus we take F = ¢¥, — ¢¥,_, and plug (7.58)) into (7.57)) to obtain the following result.

Theorem 7.2.15. Let wjz(y) = exp(—9«;ly|) for max (bj, umin) < @ < Qmax for all
jeuc{l: s} and some 0 < apmin < Qmax < 0. Given sp,ny € N, and weights ,
a generating vector z € N° for a randomly shifted lattice rule can be constructed using
a component-by-component algorithm such that the variance Vy, defined in , for
approximating the difference of two consecutive levels in the MLQMC' estimator satisfies,
for all Xe (1/2,1],

1

2
_ - 81
Vi g () 0o (BreaCegCroexn(|Z1) ) exp (1013 + 2

9
—— bl ),
Ré m“ Hl)

with C'p some constant depending only on c1,co and Cyq and where

Csry = ( 2 73H9j(/\)>m 2 ’V1u<(|u| Ji’:(i)llg)ﬂ'JrG))Q(g ajgizb)

F#AuS{1:s0} Jeu uc{lise}
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7 Discretization and multilevel methods

and

(7.59)

V2 exp(ad/n*) )* X ( 1) |
2

Qj(/\) = (71_2_2,7*(1 - n*)n* Atg

Proof. For this proof it is important to recall from Section that ¢¥,_, is the adjoint
state corresponding to the stochastic field aé’zfl, which in turn is obtained by interpolating
the field a¥, in the nodes of a coarser CE method. In both cases y € R*¢. By the triangle
inequality we have

Hau(qu,he N q‘:;lé—l’héfl)HV (7.60)
< [0(af, p, — a¥) v +107(a¥, — a¥,_ v + 10" (¥, — a5, , 4, Dlv,
termy tc;rfnz te;;ng

which in turn can be estimated using Lemma|[7.2.12| (term; and terms) and Lemma|7.2.14]
(termsy):

b (v] +2)!(|v] +6) (abax)/2CYCY

< / alli

term; < hy O 3 7 (lzllv + l@lv)
. bu ay C'!/
| max=q , Tl
termo < hy O (lv| + 2).(aglin)3/2 2\/&@1(“2\\\/ + ||@]y)
v (Jv] +2)!(|v| + 6) (abax)/2CYCY ~

< / ’

terms < hy_1 )" 3 o (lzllv + [@]v)-

For ¢ < Ly.x we can find a constant such that fu < hy. Due to Assumption we
have that termg = 0 for £ > Ly.x. The precise form of the bound of terms is then not
important. However, if the constant C; in Lemma [7.2.8) can be found independent of /¢
(see Remark , then Assumption can be omitted. In that case, the form of
terms and therefore Lemma [7.2.14] are relevant for the remaining analysis. Recalling that
CY = max (1,C¥) = max (1, 2) and Cf = max (1, 5% ), we can further estimate

min

b (vl + 2)X(|v| + 6)

termy + termso + termsg < hy_q (HZHV' + IWHV’)

(In2)¥l 3
(athax)/? Ahax c1co Ahax c1co
x(zay. (1+2055) (1+ 57 )+((ay. )3/2)(1+ay. )). e

so the bound depends on y only through aglin and a¥.x. We use

(a¥:) ™" s < exp(|Z] ) exp(b |yl)
to derive the bounds

a}rqnax 1/2 ~
(i) o (exp(1Z1e) exp(T 1),

min

(hax > 5/2
@y < (ex(1Z]e) exp(Ty) 2
min
C1C2 _
7 < ciczexp((|Z] ) exp(bT|y|),

min

a
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Yy
Amax —
20,52 < 20y (exp((| Z]0) exp(d |y]))>.

min

Moreover, we have 1 < exp(|Z]s) exp(d'|y|) < (exp(|Z]) exp(bT|y\))2. Using these
estimates we conclude that

b (lv|+ 2)/(Jv| + 6)
7.61) < hy_
‘-’ ¢ 1(1112)"4 3

~ 9/2
CuyCr((ex0(|Z]) exp(d ly))

with Cp some constant which depends only on ¢y, co and Cjy.
Replacing 0¥ by %ul with u < {1: s;} in (7.60), i.e., restricting to the case where all v; < 1
as is the case in the definition of the W, 4-norm, we obtain

alul
H qsfvhé quzfl,hgil) %
(Ju] + 2)!(|u| + 6) B . o2
< hg- 1(Hb> 3n2)k ngCP(GXp(HZHOO)eXp(b |y\)>
jeEu

Moreover, the product form of this bound allows us to group the factors in ([7.58]), with F'
taken to be qi’e he — qf{il hy_,» for j€wand j € {l:se}\u separately, i.e.,

9
exp ( bTIyI = Jexp ( blyg ) 1 exp (5b;y;1)- (7.62)
jeu je{l:s}\u

We first estimate the factors j € {1 : s;}\u

2
Jm—hu( H eXp(gbj’ij) H O(Y5) AY 1250\

je{lise}\u je{lise\u
= J o [T expOblyl) [ 6w)dyps e
R e 1iso je{liseP\u

2

1 —Y5
o T i g () i,

sg—ul jeflise P

:je{g}\u J exp (9b;1y;) fexp (—Ty]) dy
_ je{g}\u exp (%bﬁ)z@(gbj)

where ® denotes the univariate cumulative standard normal distribution function.
Secondly, we estimate the factors j € u

leu [ Texp(90;ly;1)e7 (y;)dy, = | | (J

jeu jeu —®

0

exp<9bj|yr>w3-<y>dy) .
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7 Discretization and multilevel methods

With @Z)?(g/) = exp(—9a;ly|) for max (bj, min) < @ < amax for all j € u and some
0 < Omin < Opax < 00, we get

1
[ Texp90; ) )y, = T |
leLI ]Gu ]eu Oé] - b
Defining
b bi
I 2exp(%b§-)q’(9bj)

we arrive at

fmu <Jmu (eXp @bT’yD)ZHbj H ¢(yﬂ')dy{1ssz}\u> ijz(yj)dyu

jeu  je{l:sP\u jeu
81 bj
—( 2 exp (2b§><1>(9bj)><1_[a‘ib>
je{lise\u jew 0
b2
( H 2 exp —b2> (9bj)><1_[ : jb~>'
jeflise) jeu 4970
Using 2®(9b;) = 1+ erf(\f) 1+ Q%b] exp(2\/%bj) for all j, where erf denotes the

Gauss error function, we have

H 2 exp (—bQ) H exp (%b?) exp (2\/27()]')

Je{lise}
<exp< Z b2 27 Z b)

je{l:se} je{l:s}

— oxp (S 1Bl + 2

~_pbl1)
Ve
We have thus proved the following
y Yy 2
jD Hqs&he T D5y g by HWswvdx

2
< <h£—102(”2“V’ + |[allv)Cp eXp(IZIIoo)>

. 2ﬁ(wg(ﬁfé‘)ﬂ%))?(gﬂ)ew( o3 + 22— Ibls).

uc{l:sy

as required. ]

Without a careful choice of the weight parameters +,, the quantity Cs, , might grow with
increasing sy. To ensure that (s, 4 is bounded independently of s;, we choose the weight
parameters accordingly. This requires an assumption on the boundedness of |b|,, which
is also made in [72] Section 3.4], where it is discussed in detail.
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7.2 Multilevel quasi-Monte Carlo for optimal control problems

Lemma 7.2.16. Let N be a power of a prime number and let the assumptions of the pre-
ceding Theorem hold. Moreover, let X € (3,1] and assume that ||b||,, is uniformly bounded
with respect to sy for p = 2\/(1 4+ X). Then, for a particular choice of the weights v and
«, there is a constant C(\) > 0 such that

_l
Vi < Rghgo(x) X

Proof. Since N is a prime power, we have that 1/p(IN) < 2/N. Due to the preceding
Theorem it is sufficient to find an upper bound on Cs, 4 that is independent of sy. To this
end we choose the weights v to minimize Cs, 5. By [0, lemma 18] the “product and order
dependent” (POD) minimizer v* of Cs, 4 is given by

- () ) ™

One can show that

1

1 >\
1 2 /\ L
Con =528 where  Sy= ¥ [((\u! +(1 2\1|1u!|+6 ) H B20;(A) ¥ } |
n

uc{l:sy}

hence, it is sufficient to show that Sy < oo. To this end we choose the parameters o;
that minimize S). We observe that all terms of S are positive, thus minimizing Sy, or
equivalently Cj, o+, with respect to the parameters {a;};>1 is equivalent to minimizing

each of the functions QJ]( )X with respect to ;. Due to (7.59), gj(/\)% = cexp(ajz/n*), for
some constant ¢ mdependent of a;j and for n* = (2X —1)/(4X), leads to

1 / 1

for the minimizer, see [70), Corollary 21]. Since |b||, is bounded, we also have bl < bmax
for all s, i.e., bj < bmax for all j = 1,...,sp and all sy. We denote by amax the value of
(7.63) with b; replaced by bmax. We have aj < amax for all j = 1,...,5s, and all sy, and
aj; —b; amax — bmax. Furthermore, 0;(\) < gmax(A) for all j and all s, where gmax(X) is
the Value of (| with «a; replaced by amax-

From the deﬁnition of Bj we see that Ej < 4/m2bj, so by setting A = 2%10 and 7 :=

1
47 pmax(N) X
(amax _bmax)g(ln 2

yzs We have

S

Sv< Y (W +2u+6) [ [(mo)? = X (k+2)!k+6))" >, [[(mb)?

~

uc{l:se} Jjeu k=0 uc{l:s,},|u|=k jeu
ol ((k:+2)(k:+6 pk
<) o ( Z bp>
k=0
[ee}
(k+2)(k+6))" ok
< 3 D ESOF By oo,
k=0
The finiteness follows by the ratio test, because p < 1. O
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8 One-shot learning of surrogates

The reduced formulation (3.25) of the optimal control problem (3.23) subject to (3.24)) is
fundamentally based on the assumption that the forward problem can be solved exactly in

each iteration, i.e., an existing algorithm for the solution of the state equation is embed-
ded into an optimization loop. Thereby it is usually preferable to compute the gradient
using a sensitivity or adjoint approach, cf., Chapter However, the main drawback of
this approach is that it requires the repeated costly solution of the (possibly nonlinear)
state equation, even in the initial stages when the control variables are still far from their
optimal value. This drawback can be partially overcome by carrying out the early opti-
mization steps with a coarsely discretized PDE and/or only few samples from the space
of parameters, cf., Section
In this section, we will follow a different approach, which solves the optimization prob-
lem and the forward problem simultaneously by treating both, the design and the state
variables, as optimization variables. Various names for the simultaneous solution of the
design and state equation exist: all-at-once, one-shot method, piggy-back iterations etc.,
see, e.g., [14].
To be more precise, the state and the control variables are coupled through the constraint,
which is kept explicitly during the optimization. To this end, we will consider the residual
of

e(u,z) = Au— Bz,
where e(u,z) : LL(U,V) x Z — LY(U,W’'). In the following we will focus on penalty
methods and refer to [92] and the references therein for other penalization strategies.
A penalty method solves a constrained optimization problem by solving a sequence of
unconstrained problems. Using, for instance, a quadratic penalty method in the present
context, one aims to find a sequence of minimizers (zx, ux), given by

(2, up) = arg min (J(ww 2k) + %He(uk, Zk)|%z(U7W/)> 7
kUL
that converges to the minimizer (z*,u(z*)) of the constrained problem (3.25). The disad-
vantage of penalty methods is that the penalty parameter A\ needs to be sent to infinity
which renders the resulting k-th problem increasingly ill-conditioned. This problem can
be avoided by using exact penalty methods, which will be subject to future work.
In the second part of this chapter, we will transer the developed ideas for surrogates in
one-shot optimization to the setting of Bayesian inverse problems, see Section

8.1 Surrogates in one-shot optimization under uncertainty

In this section we revisit the optimal control problem described in Section [£.3] We are
interested in the situation, where a high resolution is needed for accurate approximations
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8 One-shot learning of surrogates

of the solution of the operator equation, or a PDE solution, repectively. In this case the
empirical approximation of the risk measure is of high computational costs as for each
data point the underlying operator equation, or PDE model, needs to be solved.

Despite recent advances in PDE-constrained optimization under uncertainty problems,
the incorporation of uncertainty in form of random parameters or random fields is still
not feasible for many PDE models due to the significant increase in the computational
complexity of the resulting optimization or control problems. The use of surrogate models,
i.e., the replacement of the computational expensive solution of the forward model by
approximations which are usually cheap to evaluate, is thus a promising direction in order
to reduce the overall computational effort.

However, the surrogates need to be trained or calibrated in advance. In particular, in
the context of optimization under uncertainty, a surrogate is needed for every feasible
control in order to perform, e.g., for the numerical computation of the optimal control.
One promising remedy to this issue lies in one-shot approaches, see e.g., [78, 144] and
[73], where one-shot ideas are successfully generalized for the training of so-called residual
neural networks.

Our framework is based on one-shot optimization approaches [14], where we reformu-
late the constrained optimal control problem as an unconstrained one via a penalization
method. More precisely, in order to force the feasibility with respect to the model con-
straints, we include a penalty parameter allowing for an increasing weight on the pe-
nalization term. This setting allows the straightforward incorporation of surrogate. We
replace the optimization with respect to the infinite-dimensional PDE solution by a param-
eterized family of functions, where the resulting optimization task is with respect to the
parameters describing the surrogates. Examples of surrogates include polynomial series
representations, neural networks, Gaussian process approximations and low rank approx-
imations. We discuss various choices in Section 8.1.2] However, the suggested approach is
not limited to the surrogates discussed here. Furthermore, we note that from a Bayesian
perspective, this parameter controls the model error, i.e., increasing the penalization pa-
rameter corresponds to vanishing model noise, see Section below.

In this section, we analyze the dependence of the optimization error on the number of data
points as well as on the weight on the penalization. Moreover, we propose a stochastic
gradient descent method in order to implement the resulting empirical risk minimization
problem. In this section, we make the following contributions:

e We formulate a penalized empirical risk minimization problem and provide a con-
sistency result in terms of large data limit as well as increasing penalty parameters.
More precisely, we split the error in an error term decreasing with number of data
points independently of the penalty parameter as well as in an error term decreasing
in the strength of penalization independently of the number of data points.

e We formulate a stochastic gradient descent method in order to solve the penal-
ized risk minimization problem where we allow an adaptive increase of the penalty
parameter avoiding numerical instabilities due to high variance. Under suitable as-
sumptions we prove convergence of the proposed stochastic gradient descent method.
We verify the assumptions for linear surrogates.

e We test our proposed approach numerically, where we apply a linear as well as a
nonlinear surrogate model. The linear surrogate model is based on a polynomial
expansion, while the nonlinear surrogate model is described as a neural network.
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8.1 Surrogates in one-shot optimization under uncertainty

8.1.1 Problem formulation

Let us briefly revisit the optimal control problem described in Section[4.3] where we choose
the expected value as a risk measure. Our goal of computation is the following optimal
control problem

. 1 . Q
min S, I g [ 10u-Tdut) + GleE ()

Zezad7UEyad
subject to the parametric linear operator equation in L}, (U, W)
Au = Bz, (8.2)

for p = 2, a Hilbert space Z with Z,q0 € Z, Va C Li(U, V), and a Hilbert space J, u € J,
Qe L(V,J), Be L(Z,W). In particular, the operators B and Q are not dependent on
y and thus can be uniformly bounded for all y, i.e., |Bl|lz(z,w) < C1 and [Q[ vz < C2
for some C1,C2 > 0 and all y € U. This implies in particular, that Bz € L (U, W’)
for all p and all deterministic controls z € Z and Qu € Li(U, J) for all u € Li(U, V).
Moreover, we assume that Q and B have bounded inverse, i.e., [B~!| m z) < Cs and
Q! lz@z,v) < Cyafor C3,Cy > 0. In particular, we assume that A is a boundedly invertible
operator as described in Section [3.7

We refer to Theorem for the existence and uniqueness of solutions of the optimal
control problem and to Theorem [£.2.11] for the optimality conditions. Moreover, we recall
from Remark that the solution of the optimal control problem remains unaffected by
the choice of stating the constraint in Li(U , W') or equivalently for all y € U in W’.
In the previous chapters we considered the optimal control problems in their reduced
formulations, see, e.g., , , or , assuming that the forward problem can be
solved exactly in each iteration. Hence, for the actual computation, an existing algorithm
for the solution of the state equation is embedded into an optimization loop. This approach
requires the repeated costly solution of the state equation, even in the initial stages when
the design variables are still far from their optimal value.

In this section, we will follow a one-shot approach, which solves the optimization problem
and the forward problem simultaneously by treating both, the control and the state vari-
ables, as optimization variables. The state and the control variables are coupled through
the PDE constraint, which is kept explicitly as a side constraint during the optimization.
Specifically, we define the residual e(u, z) : Li(U, V) x Z— LZ(U, W') of as

e(u,z) := Au — Bz,

and employ a quadratic penalty method. In particular, we solve the constrained optimiza-
tion problem (8.1 subject to (8.2]) by solving a sequence of unconstrained optimization
problems, i.e., we aim to find a sequence of (unique, global) minimizers (zx, ux), given by

. A
(2k, uy) = arg min (J(uka zk) + ?kHe(uka Zk)|%g(U,W/)> ; (8.3)

2k, Uk

that converges to the minimizer (z*,u(z*)) of the constrained problem (8.1) subject to

=)
In the following subsection there is a detailed presentation of different surrogates that
might later be used as substitute for uy in (8.3)).
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8 One-shot learning of surrogates

8.1.2 Surrogates

In many applications in the field of uncertainty quantification the forward model is com-
putationally expensive to solve. Consequently, replacing the solution of the forward model
by a surrogate, that is cheap to evaluate, can be a tremendous advantage.

For instance, neural networks (NN) have been successfully applied to various classes of
PDEs, cp. e.g., [11], 57, 82, 120} 126}, 149] 163] and also as approximation to the underlying
model [44], [122]. For parametric PDEs, generalized polynomial chaos expansion haven
been extensively studied, cf., [30] for an overview on approximation results. Recently,
Gaussian processes haven been suggested for solving general nonlinear PDEs [26]. Here,
we propose a general framework, which allows to include all different surrogate models in
a one-shot approach.

In the next sections we will analyze the optimization problem in which the parametric
mapping is replaced by a surrogate, i.e., the mapping

uw U -V
is replaced by a surrogate
u(@,y): 0 xU >V

where the 8 € O are the parameters of the surrogate.
Possible surrogates include for instance

e a power series of the form

u(@,y) = ) 0,y” (8.4)
VEF

e an orthogonal series of the form

u@,y) = >. 0,P,, P,:=[][P,), (8.5)
veF 7=1

where Py is the Legendre polynomial of degree k defined on [—1,1] and normalized
with respect to the uniform measure, i.e., such that Sl_l |Pk(t)]2% = 1.

e a neural network u(6,y) : © x U -V, (0,y) — u(0,y) with L € N layers, defined
by the recursion

Lo =Y,
xp:=0Wyxy_1+by), forl=1,...,L—1,
u(0,y) =Wrxr_1+ by, (8.6)

Here the parameters 8 € © := xt%:l (RNexNe—1 5 RN?) are a sequence of matrix-vector
tuples

0 = ((Wf’ bg))jzl = (Wl’ bl)’ (WZa bg), RS (WLa bL)) )

and the activation function o is applied component-wise to vector-valued inputs.
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8.1 Surrogates in one-shot optimization under uncertainty

e Gaussian process or kernel based approximations. Recently, a general framework
for the approximation of solution of nonlinear pdes has been proposed in [26]. The
authors demonstrate the efficiency of Gaussian processes for nonlinear problems and
derive a rigorous convergence analysis. We refer to [26] for more details, in particular
also to the references therein.

e reduced basis or low rank approaches, which haven been demonstrated to efficiently
approximate the solution of the forward problem even in high- or infinte-dimensional
settings, see e.g., [8, [134].

There has been a lot of research towards efficient surrogates, in particular in the case of
parametric PDEs and the above list is by far not exhaustive. We provide in the following
a general framework to train surrogates simultaneously with the optimization step and
illustrate the ansatz in numerical experiments for polynomial chaos and neural network
approximations.

Based on the smoothness of the underlying function, approximation results of the above
surrogates can be stated. To this end, we recall that the solution u(y) of a parametric linear
operator equation is an analytic function with respect to the parameters y, if the
linear operators A(y) € L(V, W') are isomorphisms and as long as the operator A and the
right-hand side z are parameterized in an analytical way, see e.g., [165, Theorem 1.2.37], or
Theorem which in addition provides bounds on the partial derivatives with respect
to the parameters. Moreover, recall that analytic functions between Banach spaces admit
holomorphic extensions, i.e., for analytic f : U — Y between two real Banach spaces X
and Y with U < X open, there exists an open set U < X and a holomorphic extension
f: U — Yg such that U € U and ﬂU = f, see [165, Proposition 1.2.33]. To quantify
the smoothness of the underlying function we will use the notion of (b, €)-holomorphy of a
function, which is a sufficient criterion for many approximation results, see [149] and the
referenes therein: Given a monotonically decreasing sequence b = (b;)jen of positive real
numbers that satisfies b € ¢P(N) for some p € (0, 1], a continuous function ¥ : U — V is
called (b, €)-holomorphic if for any sequence p := (p;);>1 € [1,0)N, satisfying

(=1 <,

i>1

for some € > 0, there exists a complex extension u : B, — V¢ of u, where By, := x jenB),,
with @(y) = u(y) for all y € U, such that w — @(w) : B, — V¢ is holomorphic as a
function in each variable w; € B,,, j € N with uniform bound

sup Ju(w)|v. < C.
webB,

The sequence b determines the size of the domains of the holomorphic extension, i.e., the
faster the decay in b, the faster the radii p; may increase. Furthermore, the summability
exponent p of the sequence b € /P(N) will determine the algebraic convergence rates of the
surrogates below.

From [30}, Corollary 3.11] we know that a (b, €)-holomorphic function admits an uncondi-
tionally convergent Taylor generalized polynomial chaos expansion, i.e., the series in

Z3For a real Banach space V, its complexification is the space V¢ := V + iV with the Taylor norm
[v + dw|ve := 8UPye(o,2x) || cOs(t)v — sin(t)w]v for all v,w € V and i denoting the imaginary unit.
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8 One-shot learning of surrogates

with coefficients 8, := %65uy|y:0 converges unconditionally towards u¥ in L*(U,V).
Moreover, let Ag be the set of indices that correspond to the s largest |0, |y, then we have

_1
supl\uy > 0y lv <Cls+1) ",

veEAs

with C' = ||(|0u|v)ver|w < ©.

Furthermore, we known from [30), Corollary 3.10] that a (b, €)-holomorphic function admits
an unconditionally convergent Legendre series expansion, i.e., the series in with
coefficients 8, := {,; u¥L, (y) dy converges unconditionally towards u¥ in Li(U , V) with

w\»—A

1,
lu — Z 0P| 12wv) <C(s+1)" AR

veA,,

where C' = ||(||0u|v)ver|ew < 0 and As denotes the indices with the s largest |6, |v.
More recent results [I49] show that (b, €)-holomorphic functions, i.e., the parametric so-
lution manifold U 3 y — u¥ € V, can be expressed by a neural network of finite size.
In [149] the authors illustrate this for the elliptic example (see Section for d =
under the additional regularity assumptions that z € L?(D) and a(y) € W1*(D) for all
y € U. Therefore, let 0 < q < gx < 2 and denote py := (1/qy + 1/2)~! € (0,1) and
px = (1/gx +1/2)71 € (0,1). Let By := (Bv,j)jen € (0,1)Y and Bx = (Bx,;)jen € (0, 1)N
be monotonically decreasing sequences such that gy € ¢4 (N) and fx € ¢9%X (N) and such
that

HZjeNBvJI%( )|

< 0.
L*®(D)

‘ 2jeN 5)(,]‘%( |

}:/iX]|¢U |

L"O(D L°O(D) jeN
Then (see, [149, Theorem 4.8]) there is a constant C' > 0 such that for every s € N,
there exists a ReLU neural network (i.e., a neural network with activation function
o(x) = max (0,z)) denoted by w(0,y) with s + 1 input units and for a number N' > s

with r = min (1, (1 + py,') /(1 + pyt — py')), it holds

sup |u¥ —u(0,y)|v < CN™".
yeU

Furthermore, for any s € N the size and depth of the neural network can be bounded by

size(u(0,y)) < C(1 + N log (N) log (log (N)))
depth(u(0,y)) < C(1 + log (N) log (log (N))),

where the size of neural network is defined as the total number of nodes plus the total
number of nonzero weights size(u(0,y)) := |{(i,5,€) : (Wi;)e # 0} + Yiry Ny and the
depth of a neural network depth(u(0,y)) = L — 1 is the number of hidden layers. Setting
b := (|vjllL=(p))jen and assuming in addition to that b € P(N) for some

€ (0,1), the parametric solution u¥ of the uniformly elliptic problem is (b, €)-
holomorphic, see e.g., [30 [149]. We conclude that, under these additional assumptions,
the convergence results of the polynomial expansions and the approximation result of the
neural network apply to the elliptic PDE problem in Section We note also that the
series expansions and are linear in its parameters 6, whereas the neural network
is nonlinear in its parameters due to the nonlinear activation function o.
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8.1 Surrogates in one-shot optimization under uncertainty

8.1.3 Consistency analysis

In our consistency analysis, we are going to analyse the proposed penalty method, see
, with respect to the penalty parameter \p and the number of i.i.d. data points n,
denoted as (yi)?zl, which are used to approximate the expected values with respect to y.
Thereby, we assume that the state UZ has been parameterized by a surrogate u(0,y), see
Section and the penalty parameters (A;)ren are monotonically increasing to infinity.
In particular, we try to connect the following optimization problems:

(cRM) The original constrained risk minimization (cRM) problem

1
min SE,[|Qu(6,y) — al3] + 5 =12

)

subjected to
2
Ey[le(u(®,y), 2)[] = 0.
We assume there exists a unique solution of this problem, which we will denote by

(25, 0%)-

(pPRM) The penalized risk minimization (pRM) problem

min ; yllQu(8,y) — al3] + *H Hz+ Eylle(u(®,y), )] (8.7)

We assume there exists a unique solution denoted by (zoo, 0~ =)

(pERM) The penalized empirical risk minimization (pERM) problem

z,0

. 1 & . - «
min o > lou(d,y) — a3 + EH'ZHQZ Z le( 2) [y (8.8)
i=1

We assume there exists a unique solution denoted by (zF,0%).

For simplicity, in the following we denote x = (2,0) € X := Z x R? and define the functions

. 1 . «
f:X X U_)R-i-v with f(fL',y) = iHQu(avy)_uH%—'_EHzHéa
g: X xU—-R;, with g(z,y) = He(u(@,y),z)”%v/,

where we assume here and in the following that W' is a Hilbert space, which implies that
Li(U ,W') is a Hilbert space.

Since the dimension truncation error can be controlled by Theorem [5.4.4] we neglect this
error contribution in the present consistency analysis.

To simplify the notation we work in the following of this section with gradients instead
of Fréchet derivatives. The gradient of a functional J:Z - Ris the unique representer
in Z of the Fréchet derivative J'(z) of .J, which belongs to 2/, i.e., J'(z) = RzV.J, where
Ry : Z — Z' denotes the Riesz operator in the Hilbert space Z given by (z1, Rgzg>z’zl =
(z1,22)2,2.
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8 One-shot learning of surrogates

Convergence of pRM to cRM

We start with the error dependence on the penalty parameter ;. The following is a long
known result (see e.g., [127, Theorem 1]) providing unique existence of solutions as well
as convergence towards the unconstrained problem for increasing penalty parameter \g.

Theorem 8.1.1. Let Hy and Hy be two Hilbert spaces and let f(x) be a functional on Hy
and the constraint h(x) be an operator from Hy into Hy. Moreover, suppose

e there exists a unique global minimizer x* € X of the problem

min f(x) s.t. h(z) =0 in Hy.
TeX

e that V. f(x),V2f(z) and V h(z), V2h(z) exist with

IV3f () = Vaf W)l oo, com vy
and | V2h(x) = VIR(W) | £, c(my 1)

Li|z —y|m,

<

< Lo|z — ylm, -

e the linear operator Vg h(x®) is non-degenerate, i.e., |(Voh(z*))*y|m, = c|yllm, for
¢ >0 and for all y € Hs.

e the self-adjoint operator V2L(x*,y*) is positive definite, i.e., (V2L(x*,y*)%,T) >
mH:EH%II for m >0 and all & € Hy. Here, the functional L denotes the Lagrangian,
y* denotes the Lagrange multiplier corresponding to x*, and the Lagrange multiplier
rule is applicable because of the first three assumptions.

Then, for sufficiently large A\, > 0, there exists a unique minimizer xj, of the problem

A
min f(z) + 7 [h(x)|3,

:EGHl

which satisfies
C C
|k — 2o < oyl and IAeh(2k) — v o < o1y s -
2k 2k

This theorem holds in infinite-dimensional Hilbert spaces H; and Hs, in that case the
derivatives with respect to x € H; in the theorem are Fréchet derivatives. For our problem
at hand with = (2,0) € X = Z x R? the assumptions need to be satisfied for f(x) :=
LE,[|Qu(B,y) — 2] + $122, h(z) = e(u(8,y, 2)) and g(x) := [A()]3, based on the
spaces H] = X and Hy = Li(U, W’). Here we need the assumption that W’ is a Hilbert
space, such that LZ(U, W’) is a Hilbert space. In this case the Hj-norm is just the norm
on X, e.g. (2, 0)|x = (|=]% + |6]2)/2, and the Hynorm is |- |12 ) = (Ey[]- [1)12.
If a surrogate satisfies the assumptions of the preceding theorem, the convergence of the
minimizers of the (pRM) problem to the minimizer of the (cRM) problem is guaranteed.

Lemma 8.1.2. Suppose that f and g satisfy the assumptions of Theorem [8.1.1. Then
the solution of the (¢cRM) problem converges to the solution of the (¢cRM) problem, in the
sense that there exists C1 > 0 independent of n such that

Cy

(25, 0%) = (2%, 0%) % < 35
k
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8.1 Surrogates in one-shot optimization under uncertainty

Convergence of pERM to pRM

The following result describes the error arising due to the empirical approximation of the
risk function uniformly in the penalization.

Lemma 8.1.3. Suppose that f is convex and g is strongly convez, i.e., V2g(x,y) > m-T
forallze Z xR andye U. Let \g = 1 and assume that

+ 22, )) < 0.

Tr(Covy(Va(f(x,y)) B

Then the solution of the (pERM) problem converges uniformly in A to the solution of the
(pRM) problem, in the sense that there exists a constant Cy > 0 independent of N\, such

that .
Eyll(zF,08) — (25, 05)1%] < =2

Proof. Under the above assumption the objective function in (8.8) is strongly convex. The
unique solution x¥ satisfies

BN koiy o, ML ki
i=1 =1
Similarly, the unique minimzer of is characterized by

Ak

VaEy[f (25, )] + - Vellylg (x5, y)] = 0.

We are now interested in the discrepancy of ¥ and x%. We define the functions

V() = By [f ()] + LBy [glw, )]

and its empirical approximation
_ 1 - PV
— _|_ _
n ; 2 n ;

By the strong convexity of W¥ it follows that

1
k k k k k(. k k(..k
Hmn - mOOH.%C' < ] <wn — Lo, viﬂ\ljn(mn) - lelln(moo)>x

= (@, — @b, Vo U (ah,) — VU (x5,))x

using the stationarity of the minimizers. Applying the Cauchy—Schwarz inequality leads
to

o — af, 2 < n(@h) = Vo Uk (ah)|a.

2

Next, we note that for ¢/*(x) := f(x,y) + )‘2—’“9(56, Y)

|V (@) — Vel (k)|

175



8 One-shot learning of surrogates

1 ;
- T ((n S Vath(ah, y) — By [Var(h, y)])
i=1
1 ¢ :
®<n Z Vaﬂ/fk(wlgm y') — Ey[szpk(:cfo, y)])>
i=1
and by taking the expectation

B[V WA (k) — Vol (@)% = - Tr(Cov(Vaut(ah, 4).

It holds that

Tr(COV(sz/Jk(a:, Y))) Tr(Cov(Vgf(x,y) + %Vmg(w, Y)))

= Tr(Cov(Vaf(z,y)) + % Cov(Vzf(z,y), Vag(x,y))
2
+% Cov(Vag(x,y), Vaf(z,y)) + % Cov(Vzg(z,y)))

2
Tr(max{1, %}(Cov(wa(m, y)) + Cov(Vef(x,y), Vag(z,y))

+ Cov(Vag(x,y), Vaf(z,y)) + Cov(Vag(x,y)))
2
= max{l, %} Tr(Cov(Va(z, y)))

IN

with Ao = 1. Finally, we obtain the bound
1
Ellet — o [3] < Cuuy - TH(Cov(Vat(,))),

where
)\2
o 1 max{l, 3 1

X

m2’

8.1.4 Convergence of pERM to cRM

Finally, we are ready to prove consistency in the sense that solutions of the (pERM)
converge to solutions of the original (cRM). We can use Lemma and Lemma
by applying

E[[ (21, 07) — (3, 05)1%] < 2E[| (=1, 07) — (=5, 05,) 3] +2 (=5, 0%,) — (25, 0%) % -

_ -

~
pERM to pRM pRM to cRM

Theorem 8.1.4. Suppose that f and g satisfy the assumptions of Lemma and
Lemma . Then the the solution (z%,0%) is consistent in the sense that there erists
C1,Cy > 0 such that

Ci  (Cy

E gky _ (% g*\|2] <« 2L
E[[[(zn, 67) (ZOO,OOO)HX]\Ai =,

n»n
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8.1 Surrogates in one-shot optimization under uncertainty

For a surrogate that is linear in its parameters, i.e., u(0, z) = BY0, the first assumptions
of Theorem (and thus Lemma follows from the strict convexity of f. The
second assumption is clearly satisfied since for a linear surrogate, the constraint h is linear
and hence the objective f is quadratic. The third assumption is true if we have for all
y e L2(U,W') that

E[|(V(0,)h(0, ) yl%] = clylLz wwn -

In the setting with linear surrogate the operator (Vg h(0%,2%))* : LZ(U, W - X
simplifies to ((AYBY)*, —B*)T, such that E[||((AYBY)*, —B*)TyH%(] = ]E[H(AyBy)*yH%d +
HB*yH%] > E[(a2;,0min(BY(BY)*) + Omin(BB*))Hy”%i(U,W’)]' Here o (BB*) > 0 since B
has bounded inverse. Furthermore, from the linearity of the constraint follows that the
Hessian of the Lagrangian simplifies to the Hessian of the objective function V2 £ (8, z) =
diag (E[(BY)*BY],« - B*B). The fourth condition is thus satisfied if o, (E[(BY)*BY]) >
M for some M > 0 and o > 0. If opin(E[(BY)*BY]) = 0 the fourth condition can still be
satisfied by introducing a quadratic penalty on the surrogate parameters in the objective
function.

8.1.5 Stochastic gradient descent for pRM problems

In order to solve the (pRM) problem we propose to apply the stochastic gradient descent
(SGD) method. This means, instead of solving the (pERM) problem offline for large but
fixed number of data n, we solve the (pRM) online. Therefore, we further propose to
adaptively increase the penalty parameter A\ within the SGD.

We first formulate a general convergence result for the penalized SGD method, which we
then apply to verify the convergence in the setting of our PDE-constrained optimization
problem given by the (cRM) problem.

Algorithm 7 Penalized stochastic gradient descent method with adaptive penalty pa-
rameter.
Require: zo, 8 = (Br)}_;, (Ak)}_;, i.i.d. sample (y’“)zz1 ~ Y.

1: for k=0,1,...,n—1do

2: Ti1 = ok — BuValf(@r, y*) + Aeg(zr, y*)]
3: end for

The sequence of step sizes [ is assumed to satisfy the Robbins-Monro condition

ee] a0

2
Z ﬁk = 007 Z /Bk; < OO,
7j=1 7j=1

which means that fj converges to zero, but not too fast [I32]. In the following theorem
we present sufficient conditions under which the resulting estimate x,, from Algorithm
converges to the solution of the (pRM) with penalty parameter choice A » 0, i.e., to

)
x* € arg I)I(lin Us(z), Vx(z):=Ey[f(z,y) + 59, y)].

Theorem 8.1.5. We assume that the objective function satisfies

(o —a* Vo Uy (@)a > clz — "% (8.9)
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8 One-shot learning of surrogates

for all x € Xand some ¢ > 0 and that for each A\, we have

Ey[IValf(z. y) + Mg(@,y)|3] < ar + bz — %, (8.10)

where (ai) and (by) are monotonically increasing with ag,by > 0 and a < @, by < b.
Furthermore, we assume that the discrepancy of the penalized stochastic gradients can be
bounded locally by

sup  [Ey[(A — M Vag(@, y)l[5 < si(R) A — AP, (8.11)

aeX, |e|x<R

for some k1(R) > 0, R > 0. Suppose that |\, — A|* is monotonically decreasing and
Br < ¢/by, then it holds true that

0
_ 2k1(R -
E[1 ey |<ry e — 23] < <E[|l‘o — 25 +2a ), B?) Ch + ig Jno — AP,

j=1
with

. = (_I
Cp = irlslgmax{ | H (1—cBy), Eﬁk}
j=k+1

converging to zero for n — oo. Further, for an adaptive choice of the penalty parameter
\; such that 252751%)\)\1: — \? < DBy we obtain

D ¢
E[1L oy <) (@8) |2k — %3] < (E[Hl’o — |} +2(@+ ~) > ﬂ?) Chn.
j=1
Proof. The proof is based on a Gronwall-type argument and similar to the proof of Propo-
sition 3.3 in [20] and can be found in [79]. O

Remark 8.1.6. We note that the restriction boundedness of |xi|x < R is a techniqual
reason for the proof and can be forced through a projection onto the ball B = {x € X |
|zl < R} by

Pr:X — Br, with Pgr(x)=arg min |z —2'|x.
CC,EBR
The projected stochastic gradient descent method then evolves through the update

i1 = Pr (wk — BiValf (@, y®) + Mg(zk, yk)]> -

The above proof remains the same since the projection operator is nonexpansive in the
sense that

|1 = @ | = [P (@1 = BuValF (@r,y") + Mg y")]) — Prla®) 3
< ek = BeValf (@r, y") + Aeg(@r, y")] — 2" |3

Moreoever, the presented convergence result in Theorem[8.1.5 indicates how to control the
ratio between the sequence of step sizes (By) and the penalty parameters (\) based on the
dependence of k(R) on R > 0.
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8.1 Surrogates in one-shot optimization under uncertainty

8.1.6 Application to linear surrogate models

In this section we verify that a surrogate, that is linear in its parameters, satisfies the
assumptions of Theorem Therefore, we assume in this section that the surrogate is
of the following form:

u(0,y) := BYO (8.12)

for surrogate parameters @ € R? and y-dependent operator BY : R¢ — V. The following
two lemmas will help to prove this result:

Lemma 8.1.7. Let g(z,y) = |le(u(0,y),2)|?, with e(u(0,y),2) := AY%u(0,y) — Bz =
AYBYO — Bz, where x = (0, z), and with bounded largest eigenvalue omax(AY) < amax for
allye U. Then it holds that

IVag(@,y)|} < 4(ahaxOmax(BY(BY)") + 0max(BB*)) g(, y) -
Proof. We have
IVag(a, y)|5 = [2(AYBY)* (AYBY0 — Bz)|? + |28 (B2 — AYBY6|%
< (00O (BY(BY)®) + 0 (B ) AVBYO — Bz} 110
= 407 axOmax (BY(BY)*) + omax (BB*))g (2, y) -
O

Lemma 8.1.8. Let g(x,y) = |le(u(0, )HL2 vy, With e(u(0,y),z) = AY%u(0,y) —
Bz = AYBYO—Bz, where x = (6, z), and wzth bounded largest eigenvalue omax(AY) < amax
for ally e U. Then it holds that

9(2,y) < 2(a70x0max((BY)*BY) + 0max(B*B)) [ 3 -
Proof.

9(x,y) = [AYBYO — Bz|1 i) < 2(|AYBYO|L ) + B2l 15 w.w)

< 2(05axOmax((BY)*BY)[0[ 34 + omax(B*B))[ 2 %)
< 2(a maxUmaX((By) BY) + omax(B*B ))HxHX

O]

Theorem 8.1.9. Let o > 0 and owin(E[(BY)*BY]) > 0, then a surrogate of the form
(8.12) satisfies the assumptions of Theorem .

Proof. Firstly, we show that
(& —a* Vol (@)a > clz — "%

is true for a constant ¢ > 0 and all z € X. To verify this assumption, we first show that
Uy is c-strongly convex. The c-strong convexity is equivalent to

(@ — %, Vol (@) = Vo Uy (@)x = o — ™[ .
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8 One-shot learning of surrogates

Note that
Vof(x.y) = (QBY)(QBY0 — i) Volgla.y) = NAVBY) (AVBY0 — B:)
V.f(x,y) = az Vzgg(m, y) = —\B*(AYBY0 — B2)
Using the linearity of the surrogate in its parameters, i.e., u(0,y) := BY6, we obtain

(& —x*, Vo Uy(x) — Ve U5 (")) x
={(6 - 0%, z—2"),E[((QBY)*(QBY) + A\(AYBY)*(AYBY))(6 — 6%)
— MAYBY)*B(z — 2%), (a + AB*B)(z — 2*) — AB*AYBY(0 — ") )x
= (0 - 0),E[(QBY)"(QBY)](0 — ) )ga + A|AVBY(0 — 0%)[ L2 1)
— {0 — %, \(AYBY)*B(z — 2*))ga
+alz = 2% + AB(z = )15 — (2 — 2" AB*AVBY(0 — 6%))z
= (6 — 6 E[(QBY)*(QBY)](6 — 6*))pa + afz — 2*|%
+ Bz — %) = AYBY(0 — 6%) 12 )
Omin(Q* Q)0 — 0%, E[(BY)* BY](0 — 0*))pa + oz — 2*[%

>
> cle —z*|%,

where ¢ = min (0pin(Q*Q)omin (E[(BY)*BY]),a). Note that (opin(Q'Q) > 0 since Q
is assumed to have a bounded inverse. Since o > 0 and omin(E[(BY)*BY]) > 0) by
assumption, the assertion is true since &* is a stationary point of ¥5(x).

Secondly, we show that

E[|Va(f(2,y) + Mg(@,y) 3] < ar + byflz —z*[% .
For a stationary point * of W5(x) have that
0= Va(f(*,y) + Ag(z",y))

and thus

IVa (f(z,y) + Mgl y) |3 = [Va (f(@,9) + Mrg(z,v) — Va (f(@*,y) + Ag(z*, 9)) |3
= |Vaf(2,y) — Vaf (&% y) + MVag(e, y) — A\WVag(a® y) |5
<2|Va(f(z,y) — f(=*,9)%

+ 2|\ Vag(z, y) — AVag(z*, y)|% -

For the first summand we have Va(f(z,y) — f(z*,y)) = ((QBY)*(QBY)(0 — 6%),a(z —
z*)) and thus

E[2|Va (f(z,y) - f(z*,9))|}] < &z —2*(%,
with ¢ = 2E[0max(Q* Q)omax ((BY)*BY)] + . Moreover, for the second summand we have

Va(Arg(z,y) — Ag(@",y)) = (2(AYBY)*((AYBY)(\:0 — A0™)
— B(Akz — A2%)), 2B*(A\pz — Az*) — AYBY ()0 — \6*))
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8.1 Surrogates in one-shot optimization under uncertainty

= vzg()‘km - S\m*a y) .
We can use this together with Lemma [8.1.7 and Lemma [8.1.8| to obtain

E[|[Vag(ew — Ax*,y) 3]
< E[4(ailax0maX(By(By)*) + Omax(BB¥)) g(Apw — Az, y)]
< E[4(a12naxo'max(3y(3y)*) + UmaX(BB*))
% 2(02 1 Omax((BY)* BY) + 0umax (B*B)) | Mz — Aa* (%]
(SamaxE[UmaX((By) BY)omax(BY(B y)*)] +80maX(BB*)UmaX(B*B)
+ Omax(BB*)(2 maXE[UmaX(( Y)*BY)])
+ 4amaxE[0maX(By(By) ) Umax *B))
X [Apz — Az*(%
(8amaXE[0maX((By)*By)omaX(By(By)*)] + 80 max(BB*)omax (B*B)
+ UmaX(BB*)(QamaxE[UmaX(( ) )])
+ 4amaxE[0maX(By(By) )]UmaX(B* ))
< 2(M e — 2" + (= N2 [%)

We conclude that
E[|Va (f(z, y) + Mgz, v)) 3] < ax + bz — *[%
holds for ag = ar = 2Cu (A — 5\)2\\$*\\2X and by, = 262 + 2Cyp\2, where

Cap = (8ahax E[0max((BY)* BY)0umax(BY(BY)*)] + 80 max(BB*)omax (B*B)
+ Omax(BB*) (202, 1 E[0max((BY)*BY)]) + 4a2, . E[0max(BY (BY)*)]omax(B*B)).

Thirdly, we show that

sup  |E[(Ax — A Vag(@,y)][* < w1 (R)Ax = AP,

zeX, |z v <R

for some x1 > 0.
We observe that

IE[(\x = N Vaeg(@, »)IE < A — AP|E[Vag(@, y)]|%

< M = APE[[Vag(z, y)| 3]

< [A = APE[4(a7,0x0max(BY (BY)") + 0max(BB*)) g(, y)]

< Ak — >‘| E[4(amaxamaX(By(By) ) + Omax(BBY))
2(amaxamaX(( Y)*BY) + omax(B*B ))Hng\f] .

Thus the claim holds with 1 (R) = E[4(a2,,,0max(BY(BY)*) + omax(BB*))

x 2(a2, . Omax ((BY)*BY) + omax (B*B)) R?]. O

Remark 8.1.10. The assumption ouwin(E[(BY)*BY]) > 0 in theorem|8.1.9 can be dropped
if a quadratic regularization on the surrogate parameters @ is employed.
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8 One-shot learning of surrogates

8.1.7 Numerical experiments

The model problem in our numerical experiments is the Poisson equation, (4.1) — (4.3)),
on the unit square D = (0,1)2. We use piecewise-linear finite elements on a uniform
triangular mesh with meshwidth & = 1/8. The random input field is modelled as

a¥(x) = ap(x) + Z y] k:2 - £2) 20 sin(rz1k;) sin(rxal;) ,

where ag(x) = 0.00001 + || X37_; Wsin(wxll@)sin(ﬁﬁgﬁj)HLw(D), s =4, 09 =
0.25, 7 = 3, (kj, 4j)jeq1, .5y € {1,...,s}* and y; ~ U([—1,1]) iid. for all j = 1,...,s
The variance of the resulting PDE solution u¥, with right-hand side z(z) = 2% — 22, is
illustrated in Figure and Figure The mean and standard deviation is estimated
using 10° Monte Carlo samples.

In the following numerical experiments we solve the (pERM) problem

n

1 o Qo 1 ¢ 9
in 2@ ) — Al + g [= 4 X 3, 14%u(0,9) =

where a = 0.5 and the target state 4 is given as & = A~1100(23 — 22). We solve the
optimization problem using the so-called ADAM algorithm as implemented in tensorflow
(see, e.g., [103]) and the scipy implementation of the L-BFGS method (see, e.g., [49]).
The initial guess for the optimization routines is (2o, 89) with zg = (0,...,0) € R™ and
0y = (1,...,1) € R% In our experiments we compared to two different surrogate models:
the orthogonal Legendre polynomials, which are linear in the parameters @ and a neural
network, which is nonlinear in the parameters 6.

Recall the polynomial expansion from (8.5): u(0,y) = Z%Nf 0, P,(y) of degree ¢ = 1,2, 3,
with P, = [[;_; Py (yx) and P,, is the k-th order Legendre polynomial. The number

15
1.0
0.5
0.0
-0.5

15
1.0
0.5
0.0
-0.5
-1.0
-15

-1.0
-15

Figure 8.1: Mean of the states (blue) Figure 8.2: Mean of the states (blue)

plus/minus 1 (red) and 2 plus/minus 1 (red) and 2
(orange) standard deviations. (orange) standard deviations.
Here only the values in the The variance is zero on the
interior of the domain D are boundary of the domain 0D.

plotted for better illustration.
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8.1 Surrogates in one-shot optimization under uncertainty

of parameters 6 increases rapidly as the order of the polynomials increases. In fact,

0 € R"FEMXTPol - where npgy denotes the number of degrees of freedoms of the finite
. . !

element method and npy denotes the number of polynomials given by npg = %, ie.,

npol = 15 if £ = 2 and npy = 35 if £ = 3 for s = 4. Consequently, the Legendre polynomial
expansions have 245, 735, and 1715 parameters to be determined during the optimization.

A nonlinear surrogate we are testing is a neural network, as defined in of size
[4,9,9,9,49], i.e., (W, b1) € R4 x RY, (Wa,by) € R%? x RY, (W3, b3) € R%*? x RY,
(W4, by) € RYY x R and thus with a total number of 715 parameters. The activation
function we are using is the sigmoid function o(z) := 1/(1 + exp (—x)).

In our first experiment, we verify Lemma [8.1.3] To this end, we set Ay = 1 for all k
and solve the (pERM) problem multiple times for increasing sample size n = 2¢, with
¢ =1,...,13. In this experiment the surrogate is a Legendre polynomial expansion of
degree 2. The reference solution (zyef, Oref) is computed by using n.f = 2'* Monte Carlo
samples. The observed rate in Figure |8.3| aligns nicely with the predicted rate in Lemma

BI3

Next, we verify Lemma We fix the sample size n = 100 and solve the (pERM)
problem for increasing penalty parameter \;. The surrogate in this experiment is again
the Legendre polynomial expansion of degree 2. In Figure[8.4]we observe the rate predicted
by Lemma Here the reference solution is computed for A\;, ~ 1.7-10%. For numerical
stability we regularize the problem in this experiment by adding the term 107°|0|? to
the objective function of the (pERM) problem. In the experiments for Figure and
Figure we used the L-BFGS method to solve the optimization problems.

As predicted by the theory, we also observe this rate in the following experiment, where
we use the ADAM algorithm as implemented in tensorflow and increase A, linearly
in each iteration k of the ADAM algorithm. The reference solution (zef,u”;) of the
(cRM) problem is computed using the L-BFGS as implemented in scipy. We perform
this experiment for the NN and the Legendre polynomial expansions of order 1,2 and 3.
For each of the surrogates considered, we observe the expected rate of the error in the

101 \‘\ === surrogate parameters 1072
1073
IR e e S
10-5 4
1076
10774
1078
1079
10-10
10-1 4
10-12 4
10-13 4
1071 4 N
10-15 4
10t 102 10° 10¢ 10 107 102 10 10° 10° 102 10° 10° 10° 10°

—— control
=== surrogate parameters

1072 4
1073 4
1074 4
1075 4
1076 B
107 4
1078 4

10-° 4

Figure 8.3: Convergence for increasing Figure 8.4: Convergence  for  increas-
sample size. Squared error of ing penalty parameter M.
the optimal controls |z — 2.f|? Squared error of the optimal
and squared error of the controls |z — z.f|> and squared
optimal surrogate parameters error of the optimal surrogate
|6 — 6.t parameters |0 — 0,q|%.
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8 One-shot learning of surrogates

10° 10t 102 103 104 10° 10°

Figure 8.5: Mean squared error of control Figure 8.6: Mean squared error of surro-
computed with surrogate and gate and L-BFGS reference so-
L-BFGS reference solution of lution of the state E[|up —
the control ||z — zpef|? u? %]

control, see Figure Clearly, this error is bounded from below by the approximation
properties of the surrogates. In Figure we observe the predicted rate only for the
largest surrogate, the Legendre polynomial approximation of order 3.

In the same experiment we plot the model error and the difference of the surrogates to
the target state u. We observe that the model error becomes smaller for surrogates with
better approximation properties.

Moreover, due to the nonlinearity introduced by the activation function of the NN, our
convergence theory does not apply to the problem with the NN surrogate. However,
the numerical experiments are demonstrating that the NN can outperform the Legendre
polynomials with a comparable number of optimization parameters.

Finally, we verify that the ADAM algorithm with adaptive choice of the penalty parameter
converges to the solution of the (pERM) problem with large reference value A, see Theorem
We compute the reference solution (zyef, ugref) with A = 100 using the L-BFGS
algorithm and plot the error of the ADAM algorithm with adaptive choice of the penalty

10! 4 — — Legl — Legl
| Leg2

10° 10t 102 103 104 10° 10° 10° 10t 102 103 104 10° 10°
Figure 8.7: Mean squared residual Figure 8.8: Mean squared error E[||u) —

E[|A¥u} — z|?] a|*] of the surrogate uy and
the target state u
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Figure 8.9: Squared error |z — z.¢|? of the Figure 8.10: Mean squared error E[|u) —
control obtained with ADAM ugrefuz] of the surrogate ob-
and adaptive choice of A\; and tained with ADAM and adap-
the reference solution tive choice of A\; and the ref-

erence surrogate

parameter \j against the iterations k of the ADAM algoritm. We observe convergence for
both, the control and the state variable. The surrogate in this experiment is a Legendre
polynomial expansion of degree 2.

8.2 Application to Bayesian inverse problems

Classical methods to solve inverse problems are based on the so-called reduced optimization
approach of the (regularized) data misfit, which formulate the minimization problem as
an unconstrained optimization problem using the solution operator of , see e.g.,
[45] @9]. This contrasts the so-called one-shot approaches, which solve the underlying
model equation and the optimality conditions simultaneously. One-shot (or all-at-once)
approaches are well established in the context of PDE-constrained optimization (see, e.g.,
[14]) and have recently been introduced to the setting of inverse problems, see [97, [08].
In the Bayesian setting, the connection between the maximum a posteriori estimation
and the optimization approach to the inverse problem is well established in the finite-
dimensional setting [96], as well as in the infinite-dimensional setting for certain prior
classes, see [2, 28, 35, 83]. For details on the Bayesian approach to inverse problems we
refer to [96], [153].

Recently, data-driven concepts have been applied to inverse problems in order to reduce
the computational complexity in case of highly complex forward models and to improve
models in case of limited understanding of the underlying processes [6]. For instance,
neural networks have been successfully applied in the case of parametric holomorphic
forward models [85] and in the case of limited knowledge of the underlying model [129]
130), 131} 151, 162]. For the training of neural networks, gradient-based methods are
typically used [66]. The ensemble Kalman inversion (EKI) (see e.g., [91] 142 143]) has
been recently applied as gradient-free optimizer for the training of neural networks in
[80L 109].

In this section, we transfer the idea from Section to the setting of inverse problems
using the connection between the maximum a posteriori estimation in Bayesian inverse
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8 One-shot learning of surrogates

problems and the reduced optimization approach. More precisely, we approximate the
solution of the forward problem using neural networks, i.e., the computationally intense
solution of the forward problem is replaced by a neural network, which is cheap to evaluate.
Since training of the neural network in advance for all possible outcomes of a quantity of
interest can be challenging and requires a neural network with large expressive power,
i.e., many parameters. In order to reduce the computational complexity, we propose
to train the neural network simultaneously to solving the inverse problem in a one-shot
framework. This approach has the potential to reduce the overall costs significantly since
in the one-shot optimization the neural network is trained only for the optimal solution
of the inverse problem, whereas it needs to be trained for all possible quantity of interests
in the parameter space if it is trained in advance.

In this section, we mak the following contributions:

e We establish the connection between the inverse problem in a one-shot formulation
and the Bayesian setting. In particular, the Bayesian viewpoint allows the incorpo-
ration of model uncertainty and provides a natural way to define the regularization
parameters. In case of an exact forward model, the vanishing noise can be inter-
preted as a penalty method. This observation allows to establish convergence results
of the solution of the the one-shot formulation to the corresponding (regularized)
solution of the reduced optimization problem (with exact forward model). The nu-
merical approximation of the forward problem is replaced by a neural network in
the one-shot formulation, i.e., the neural network does not have to be trained in
advance.

e We show that the EKI is an efficient method to solve the resulting optimization
problem. We provide a convergence analysis in the linear setting. To enhance
the performance, we modify the algorithm motivated by the continuous version of
the EKI and provide numerical evidence for its superiority. Numerical experiments
demonstrate the robustness of the proposed algorithm, also in the nonlinear setting.

8.2.1 Introduction to inverse problems

In this section we briefly introduce the reader to inverse problems and the notation being
used. In many problems in science and engeneering, the quantity of interest can not be
observed directly, but only indirectly through observations of the underlying system. In
such problems, typically referred to as inverse problems, one has to rely on measurements
of the system to infer information about the quantity of interest. Inverse problems arise
in many areas of application, e.g., biological problems, engineering and environmental
systems. The information obtained from observations of the system can substantially
reduce the uncertainty in predictions of the quantity of interest, and is hence indispensable
in many applications.

Mathematically an inverse problem can be described as follows: recover the unknown
parameter z € Z in an abstract model or system

M(z,u) =0 (8.13)
from a finite number of observation of the state u € X given by

O(u) =yeR™, (8.14)

186



8.2 Application to Bayesian inverse problems

which might be subject to measurement noise. The parameter space Z and the state
space X are typically Banach spaces and the model equation, often a PDE defined on
some domain D, holds in some Banach space W. By O : X — R™ we denote the
observation operator, mapping the state variables u to the finite-dimensional observations
y e R,

A classical approach to solve an inverse problem is to minimize the data misfit in a suitable
norm

min |0(u) -yl (8.15)
st. M(z,u) =0, (8.16)

with I'pps € R™*™ symmetric and positive definit, given that the forward model is sat-
isfied. Oftentimes the problem - is ill-conditioned, hence a regularization
term on the unknown parameters is introduced in order to stabilize the optimization.
Introducing a regularization the optimization problem becomes

min [O(u) ~ yIf,,. + a1 Ra(2) (5.17)
s.t. M(z,u) =0, (8.18)

where the regularization is denoted by R; : Z2 — R and the positive scalar a; > 0 is
usually chosen according to prior knowledge on the unknown parameter z. Here and
in the following of this chapter we denote by | - | the Euclidean norm and by {-,-) the
corresponding inner product. For a given symmetric, positive definite matrix A, the
weighted norm | - | 4 is defined by | - ||a = [|[A="/? - | and the weighted inner product by
¢a=1C, A_1'>'

Assuming that the forward model M (u,p) = 0 is well-posed, in the sense that for each
parameter z € Z, there exists a unique state u € X such that M(z,u) = 0 in W, we
can introducing the solution operator S : Z — X defined by M(z,S(z)) = 0. Using the
solution operator, we can reformulate the optimization problems (8.15)) — (8.16|) and (8.17)
— as unconstrained optimization problems

min [O(S(2)) =yl , (8.19)
z€Z
and
min [0(S(2)) ~ ylk,,, + o1 Ra(2). (8.20)
respectively.

8.2.2 Bayesian approach to inverse problems

Adopting the Bayesian approach to inverse problems, we view the unknown parameters z
as an Z-valued random variable with prior distribution pg. The noise in the observations
is assumed to enter the observations additive and described by a random variable n ~
N (0, Tops) with Topg € R™*™ symmetric and positiv definit, i.e.,

y=0(5(2) +n, (8.21)

Further, we assume that the noise 7 is stochastically independent of z. By Bayes’ theorem
(see, e.g., [104]), we obtain the posterior distribution

(@ esp (~310(5() - ol ) rald). (522
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8 One-shot learning of surrogates

the conditional distribution of the unknown given the observation y.

While the solutions of (8.19)) and (8.20)) are point estimates of the unknown parameter z,
the solution of the Bayesian inverse problem is the conditional distribution of the unknown
parameters given the data, the so-called posterior distribution . Since approxima-
tions of the posterior distribution are prohibitively expensive in many applications, one
often uses point estimates instead. A popular choice is the maximum a posteriori (MAP)
estimate, the most likely point of the unknown parameters under the posterior distribu-
tion. Denoting by pg the Lebesgue density of the prior distribution, the MAP estimate is
defined as

ang max exp (~10(3(:) < olR,., ) (o). (329

Assuming a Gaussian prior distribution, i.e., uo = N (29, C), the MAP estimate is given
by the solution of the following minimization problem

1 1
in ~[O(S(2)) — yl} ~|z = 20|% . 8.24
min o |0(5(2)) = ylr,,, + 5]z = 2lc (8.24)
The Gaussian prior assumption leads to a Tikhonov-type regularization in the objective
function, whereas the specific form of the first term in the objective function is due to the
Gaussian assumption on the noise. Further details on MAP estimates can be found, e.g.,

in [34, 06, 159].

8.2.3 One-shot formulation for inverse problems

While (8.19)), , and (8.23) are based on the reduced formulation of the problem,

in this subsection we will formulate the inverse problem in the one-shot setting. The
introduced one-shot approach solves an abstract inverse problem of the form (8.13]) —
(18.14)).

Throughout Section [8.2] we derive the methods and theoretical results under the assump-
tion that Z, X and W are finite-dimensional, i.e., we assume that the forward problem
M (z,u) = 0 has been discretized by a suitable numerical scheme and the parameter space
is finite-dimensional as well, possibly after dimension truncation. Though most of the ideas
and results can be generalized to the infinite-dimensional setting, we avoid the technicali-
ties arising from the infinite-dimensional setting and focus on the discretized problem, i.e.,
we denote

Z=R"™, X =R™, W=R"™,

While we usually denote vectors by boldface symbols, we do not follow this convention in
this section.
Following the one-shot ideas, the abstract problem (8.13)) — (8.14) can be written as

F(z,u) = <MO((ZU;L)> = (2) =9, (8.25)

Due to the noise in the observations, we rather consider
y = O(u) + Tobs (8.26)

with normally distributed noise 7ops ~ N(0,Tops), and symmetric and positive definit
matrix Iyps € R™*™ . Similarly, we assume that

0= M(z,u) + Dmodel s (8.27)
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8.2 Application to Bayesian inverse problems

i.e., we assume that the model error can be described by Nmodel ~ N (0, Timodel), and
symmetric and positive definit matrix I'yoqe1 € R™ %™ . Combining (8.26]) and (8.27)), we
obtain the problem

j = F(z,u) + (”ﬁ:}iﬁ . (8.28)

The MAP estimate can then be computed by the solution of the following minimization
problem

.1 -
min §HF(Z’, u) — |3 + a1R1(2) + aaRy(u), (8.29)
where Ry : Z — R and Ry : X — R are regularizations of the parameter z € Z and the
state u e X, a1, >0 and I' = Pmode 0 ) € R(mwtny)x (nwtny)
0 Fobs

The proposed approach does not rely on a Gaussian noise model for the forward problem,
i.e., non-Gaussian models can be straightforwardly incorporated. In this case, the Bayesian
viewpoint may guide the choice of the regularization parameter or function. The model
error can typically estimated from experimental data or more complex models, cf.,[102] [87].
We focus here on the Gaussian setting since the one-shot approach for inverse problems
is typically formulated in a least-squares fashion (particularly when neural networks are
used as surrogates for the forward problem [129] [130]). The focus of this work will be on
the development of a methodology, which allows to satisfy the forward problem exactly.
This is achieved by the connection to the Bayesian setting and working in the vanishing
noise setting.

8.2.4 Vanishing noise and penalty methods

The case of an exact forward model, i.e., when forward equation is supposed to be satisfied
exactly with M (z,u) = 0, can be modeled in the Bayesian setting by vanishing noise. In
order to illustrate this idea we consider a parameterized noise covariance model I'y,04e1 =
’yfmodel for v € Ry and a given symmetric and positiv definit matrix fmodel. The limit
for v — 0 corresponds to the vanishing noise setting and can be interpret as reducing the
uncertainty in our model. The MAP estimate in the one-shot framework is then given by

LT a1R1(2) + aaRa(u) (8.30)

1 A
min 5 |0(w) ~ ylf,,, + FIME I

with A = 1/4. This form of the optimization problem reveals the connection to penalty
methods, which attempt to solve constrained optimization problems such as (8.15)) — (8.16)
by sequentially solving unconstrained optimization problems of the form for a se-
quence of monotonically increasing penalty parameters A. We present a well-known result
about the convergence of such methods, see, e.g., [10].

Proposition 8.2.1. Let the observation operator O, the forward model M and the reg-
ularization functions Ry, Ro be continuous and the feasible set {(z,u)|M(z,u) = 0} be

nonempty. For k =0,1,... let (zx,ux) denote a global minimizer of
1 2 Ak 2
min - [|O(u) —ylt,,, + - [M(z,u)|; + a1 Ry (u) + agRa(p) (8.31)
zZ,U 2 obs 2 model

with (Ag)ken © Ry strictly monotonically increasing and A\, — o for k — . Then every
accumulation point of the sequence (zk,ux) is a global minimizer of

. 1
min §HO(U) —y|},.. + a1R1(2) + a2 Ra(u) (8.32)
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8 One-shot learning of surrogates

s.t.  M(z,u)=0. (8.33)

This convergence result ensures the feasibility of the estimates, i.e., physical constraints
can be incorporated and exactly satisfied in the limit in the proposed one-shot approach.
We note that interesting questions for future research arise when considering exact penalty
terms in the objective, which correspond to different noise models in the Bayesian setting.
This setting will be the starting point of the incorporation of neural networks into the
problem. Instead of minimizing with respect to the state u, we will approximate the
solution of the forward problem u by a neural network ug, where @ denote the parameters of
the neural network to be learned within this framework. Thus, we obtain the corresponding
minimization problem

1 -
min §||F(27U9) — g + a1Ri(2) + a2Ra(ug, 6) (8.34)

2,

where ug denotes the state approximated by the neural network.

Neural networks in inverse problems

Neural networks experienced a tremendous success in applications related to inverse prob-
lems, leading to a rapid increase in the number of publications in this area of research.
Thus, we can only provide a excerpt of this fast growing research field, and focus on the
most related work.

In [149] the authors show holomorphy of the data-to-Qol map y — E#*[Qol], which relates
observation data to the posterior expectation of an unknown quantity of interest (Qol),
for additive, centered Gaussian observation noise in Bayesian inverse problems. Using the
fact that holomorphy implies fast convergence of Taylor expansions, the authors derived
an exponential expression rate bound in terms of the overall network size.

Our approach differs from the ideas above as we do not approximate the data-to-Qol
map, but instead emulate the state u itself by a DNN. Hence, in our method the input
of the neural network is a point in the spatial domain of the state, z € D. The output
of the neural network is an approximation of the state at this point, ug(z) € R, i.e.,
Ny, = 1. Recall that a DNN is defined in . By a slight abuse of notation we denote by
ug € X = R™ also a vector containing evaluations of the neural network at the n,-many
grid points of the state. In combination with a one-shot approach for the training of the
neural network parameters, our method is closer related to the physics-informed neural
networks (PINNs) in [129, [130]. In [129, 130] the authors consider PDEs of the form

ft,z) :==u+ N(u,\) =0, te[0,T],zeD,

where N is a nonlinear differential operator parameterized by A. The authors replace u by
a neural network ug and use automatic differentiation to construct the function fg(¢,x).
The neural network parameters are then obtained by minimizing the mean squarred error
MSE = MSE, + MSE, where

N, Ny
1 o . 1 i
MSE, = o 3 ot ) — w7, MISEg i= - 33 folt) 2P
Ui =1

and {t!, 2%, u'} " denote the training data and {t’, mlj}}ifl are collocation points of fg(¢,x).
For the minimization a L-BFGS method is used. The parameters A of the differential
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8.2 Application to Bayesian inverse problems

operator turn into parameters of the neural network fg and can be learned by minimizing
the MSE. Based on [129] [I30] there has been a tremendous increase in research and
applications of PINNs. For instance in [162], the authors consider so called Bayesian
neural networks (BNNs), where the neural network parameters are updated according to
Bayes’ theorem. Hereby the initial distribution on the network parameters serves as prior
distribution. The likelihood requires the PDE solution, which is obtained by concatenating
the Bayesian neural network with a physics-informed neural network, which they call
Bayesian physics-informed neural networks (B-PINNs). For the estimation of the posterior
distributions they use the Hamiltonian Monte Carlo method and variational inference. In
contrast to the PINNs, the Bayesian framework allows to quantify the aleatoric uncertainty
associated with noisy data. In addition the numerical experiments in [162] indicate that
B-PINNs beat PINNSs in case of large noise levels on the observations.

In contrast to that, our proposed method is based on the MAP estimate and remains
exact in the small noise limit. We propose a derivative-free optimization method, the
EKI, which shows promising results without requiring derivatives with respect to the
weights and design parameters.

8.2.5 Ensemble Kalman inversion

The ensemble Kalman inversion (EKI) generalizes the well-known ensemble Kalman Filter
(EnKF) introduced by Evensen and coworker in the data assimilation context [48] to the
inverse setting, see [91] for more details. Since the Kalman filter involves a Gaussian ap-
proximation of the underlying posterior distribution, we focus on an iterative version based
on tempering in order to reduce the linearization error. Recall the posterior distribution
u* given by

1
p*(dv)ocexp (= 51G(0) =yl ) noldv).
for an abstract inverse problem
y=G(v) +n,

where G maps the unknowns v € R™ to the observations y € R™ with n ~ A(0,T), and
symmetric and positiv definit matrix I' € R™*™ . We define the intermediate measures

pin (dv)oc exp ( - %nhHG(v) - y||%) po(dv) m=0,...,N (8.35)

by scaling the data misfit by the step size h = N~=!, N € N. The idea is to apply the EnKF
to the resulting artificial time dynamical system in order to evolve the prior distribution
1o into the posterior distribution py = p* by this sequence of intermediate measures.
We account for the repeated use of the observations by amplifying the noise variance by
N = 1/h in each step. The intermediate measures p, are then approximated using the

EKI with an ensemble of J particles {v(()j)}jzl with J e N
1 )
o = = >0 (8.36)

with 0, denoting the Dirac measure centered on o). The particles are transformed in
each iteration by the application of the Kalman update formulas to the empirical mean

Up, = %Z}Ll 117(1]) and empirical covariance C'(vy,) = ﬁ 23-]:1(1)7(3) — Up) ® (vﬁlj) — Up), l.e.,

Tnit = T + Kn(y — G(@2))),  Clons1) = Clun) — KnC¥"(uvy), (8.37)
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where K, = C"¥(v,)(C¥¥(v,) + £T)~! denotes the Kalman gain, and for v = (v}

1
the operators C%Y and C"Y given by ~
J
CVY(v) = % S (GD) - G) ® (GEW) - G), (8.38)
j=1
1, N
Cri(v) = 5 j;(v(]) -7) ® (G(vY)) - G), (8.39)
1 . _ 4
Cr(v) = 5 ;(G(U(J)) ~G)® (v —3), (8.40)
L0 )
~_ T J
G J;G(v ) (8.41)

are the empirical covariances and empirical mean in the observation space. Since this

()

update does not uniquely define the transformation of each particle v,y to the next itera-
tion v,(lll, the specific choice of the transformation leads to different variants of the EKI.
We will focus here on the generalization of the EnKF as introduced by [91] resulting in a

mapping of the particles of the form
oI = o)+ CU (0,)(CV¥ () + BT LY — G, =1, (8.42)

where

(4)
Ypnt1 =Y+ €n+1

The fﬁﬁl are i.i.d. random variables distributed according to AN (0,h™'%) with ¥ = T
corresponding to the case of perturbed observations and ¥ = 0 to the unperturbed obser-
vations.

The motivation via the sequence of intermediate measures and the resulting artificial time
allows to derive the continuous time limit of the iteration, which has been extensively
studied in [12] [142] 143] to build analysis of the EKI in the linear setting. This limit arises
by taking the parameter h in to zero resulting in

do)
dt
As shown in [46], the EKI does not in general converge to the true posterior distribution.
Therefore, the analysis presented in [12| 142, [143] views the EKI as a derivative-free
optimizer of the data misfit, which is also the viewpoint we adopt here.

dW

— ") Yy — GW)) + ¥ (v (8.43)

Ensemble Kalman inversion for neural network based one-shot optimiza-
tion

By approximating the state of the underlying PDE by a neural network, we seek to opti-
mize with respect to the unknown parameter z and the parameters of the neural network
6. The idea is based on defining the function H(v) := H(u,0) = F(z,ug), where ug
denotes the state approximated by the neural network and v = (z,0)". This leads to the
empirical summary statistics

J
2,0 Z ).09)y,  H, =

K( \

J
Z 7). 90,
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J
O30 = 2 S (0,090 - (2.0),) ® (H (=), 00)) - Hy).
j=1
J
Cy = 2 N (HED, 69) - Hy) © (H(Y),09)) — ).
j=1

and the EKI update
(z9),,09) )T = (200,097 4 cz0v(cvv + b)) (1Y), — H(z0),09))),  (8.44)

n+1 Vn+1 »Y'm

where the perturbed observation are computed as before

99, g4 el a0, n 1), (3.45)

n+

g _ 0 = I\model 0
Yy ’ ‘ 0 Lobs ‘

Figure illustrates the basic idea of the application of the EKI to solve the neural
network based one-shot formulation.

with

Forward and observation model:
(Z(j), e(j))T = (]\/[(Z(j)yum.i))7 O(ugm))T

Observations:
. ':' X .0. ~(])
celiie s (ym—l)
..U.) i tj).' EKI update:
(2 (0 (V1 0907 = (29,090 + Catv(opy + h 1) gl — B 6Y)))

Figure 8.11: Description of the EKI applied to solve the neural network based one-shot
formulation.

The EKI will be used as a derivative-free optimizer of the data misfit | F(z, ug)—g|% .
The analysis presented in [12} [142] [143] shows that the EKI in its continuous form is able
to recover the data with a finite number of particles in the limit ¢ — o0 under suitable
assumptions on the forward problem and the set of particles. In particular, the analysis
assumes a linear forward problem. Extensions to the nonlinear setting can be found,
e.g., in [I8, 160]. The limit ¢ — oo corresponds to the noise-free setting, as the inverse
noise covariance scales with n/N = nh in (8.35). To explore the scaling of the noise and
to discuss regularization techniques, we illustrate the ideas in the following for a linear
Gaussian setting, i.e., we assume that the forward response operator is linear H(v) = Av
with A € L(Z x ©,R™*") and py = N (v, Cp). Considering the large ensemble size limit
J — o0, the mean m and covariance C satisfy the equations

dm(t)
dt

—C(H)ATT Y Am(t) — y) (8.46)
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ac
dt

for ¥ =T in (8.42). Considering the dynamics of the inverse covariance, it is straightfor-
ward to show that the solution is given by

= —CHATTTAC() (8.47)

c7lt) = Ccpt+ AT AL, (8.48)

see, e.g., [b5] and the references therein for details. Note that C(1) corresponds to the
posterior covariance and that C(t) — 0 for ¢t — co. Furthermore, the mean is given by

m(t) = (Cot+ AT A) M ATyt + Cytug), (8.49)

in particular the mean minimizes the data misfit in the limit ¢ — oo. The application
of the EKI in the inverse setting therefore often requires additional techniques such as
adaptive stopping [143] or additional regularization [19] to overcome the ill-posedness of
the minimization problem. To control the regularization of the data misfit and neural
network individually, we consider the following system

F(z,ug) + ("m"del> —j (8.50)

Tlobs

z Tlparam
+ =0 8.51
(o) () 63
with Tlmodel ~ N(07 1/)\ IAwrnodel)a Tlobs ~ N(07 1—\obs)y z ~ N(ZO, 1/041 C), 0 ~ N(07 1/0‘2 I)
The loss function corresponding to the augmented system (8.50) — (8.50|) is given by

1 A 1 Qg
S 10(u6) — vl + 210z, up) R Y

2 —_—
||fmodel + 2 H

Assuming that the resulting forward operator
G(z,0) = z (8.53)

is linear, the EKI will converge to the minimum of the regularized loss function (8.52)), cf.,
[142]. To ensure the feasibility of the EKI estimate (with respect to the underlying forward
problem), we propose the following algorithm using the ideas discussed in Section

Theorem 8.2.2. Assume that the forward operator G : Z x © — R"G, ng := ny, +ny +
n, + ng,
F(u,pg)
G(u,0) = u
0

is linear, i.c., F(z,ug) = A(2,0)7 with A € L(Z x ©,R™* ™). Let (A\r)ren < Ry be
strictly monotonically increasing and A\, — o for k — 0. Further, assume that the initial
ensemble members are chosen so that span{(z9)(0),09(0)T,j =1,...,J} = Z x O.
Then, Algom'thm@ generates a sequence of estimates (Ek,ék)keN, where Zj, 01, minimizes
the loss function for the augmented system given by

1 A o a9
210(ug) ~ ylR,,, + M u), + Sz~ w0l + 26

1
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Algorithm 8 Penalty ensemble Kalman inversion for neural network based one-shot
inversion

Require: initial ensemble v(()j) = (z(()j),e(()j))T €EZx0O,5=1,...J, X\o.
1: for £k =0,1,2,... do

2: Compute an approximation of the minimizer (zz,83)" of
min £ |0(ug) ~ 413, + LMz u)l, + Oz~ w0l + 6]
Z,@ 2 FObS 2 ’ 1—‘model 2 c 2
by solving
do(@) . 4 dw @)
STl CY(W)I g — GoW)) + C ()P /E 7

with § = (0,1,0,0)T, v (0) = 0% for the system (8:53) and T = diag (.1, ko A1),
Set v, = (Zk, Hk)T = lim7_ o ’l_)(T).
Increase Ag.

Draw J ensemble members v((]j ) from N (v, ((5 ?))

end for

with given a1, as > 0. Furthermore, every accumulation point of (Zx, O )ren is the (unique,
global) minimizer of

. 1 2 aq 2 Q2 2
min 2[0(u) i, + 21— ol + 6]

)

s.t. M(z,ug) =0

Proof. Under the assumption of a linear forward model, the penalty function

1
9 |z — 20l +

obs

S1000) — k. + M Gruo)lZ + Sl = ol + 21012

is strictly convex for all £ € N, i.e., there exists a unique minimizer of the penalized
problem. Choosing the initial ensemble such that span{(z()(0), 0D (0))7,5=1,...,J} =
X x O ensures the convergence of the EKI estimate to the global minimizer, see [19]
Theorem 3.13] and [142], Theorem 4]. The convergence of Algorithm |8 to the minimzer of
the constrained problem then follows from Proposition [8.2.1 O

Remark 8.2.3. The convergence result Theorem[8.2.9 is based on an assumption on the
size of the ensemble, which is needed to ensure the convergence to the (global) minimizer
of the loss function in each iteration. This is due to the well-known subspace property of
the EKI, i.e., the EKI estimate will lie in the span of the initial ensemble when using the
EKI in its variant. In case of a large or possibly infinite-dimensional parameter / state
space, the assumption on the size of the ensemble can usually not be satisfied in practice.
Techniques such as variance inflation, localization and adaptive ensemble choice are able
to overcome the subspace property and thus might lead to much more efficient algorithms
from a computational point of view.

Furthermore, we stress the fact that the convergence result presented above is based on
the linearity of the forward and observation operator. Thus the assumption is not fulfilled
when considering a neural network with nonlinear activation function as approrimation of
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8 One-shot learning of surrogates

the solution of the forward problem. However, numerical experiments (see Section
show promising results even in the nonlinear setting. The generalization of the theoretical
results, such as Theorem[8.2.9, is subject for future work.

Algorithm [§| requires the solutions of a sequence of optimization problems, i.e., for each A
the EKI is used to approximate the solution of the corresponding minimization problem.
To avoid the repeated application of EKI, we propose a modified version of the algo-
rithm in Algorithm [9] The idea of Algorithm [J]is to solve a single optimization problem
with increasing regularization parameter A. This can straightforwardly be incorporated
in the continuous version of EKI by solving an additional differential equation for A with
nondecreasing right-hand side. The computational effort of Algorithm [9] is thus reduced
compared to Algorithm [8] and numerical experiments suggest a comparable performance
in terms of accuracy. The theoretical analysis of the convergence behavior will be subject
to future work.

Algorithm 9 Simultaneous penalty ensemble Kalman inversion for neural network based
one-shot inversion

Require: initial ensemble v(()j) = (z(()j) 6’((]].))T EZx0,j=1,...,J, MgeRs, f:R59 —
R,.

1: Compute an approximation of the minimizer of

. 1 2 (€3] 2 a2 2
min 5\\0(160) —ylt.,. + 7”2 — 20l + 7”9"

)

st.  M(z,ug) =0

by solving the following system

(9) | | .
dzt = CYW()I g - G(U(]))) 4 Cmy(v(]))F_I\/i dv;/t

dA

a fN)

with § = (0,%,0,0)T, v (0) = v(()j) for the system (8.53), A(0) = Ao and T =

8.2.6 Numerical experiments

The following numerical experiments illustrate the one-shot inversion for different inverse
problems. The first example is a one-dimensional problem, for which we compare the
reduced optimization approach, quasi-Newton method (see, e.g., [49]) for the one-shot
inversion, quasi-Newton method for the neural network based one-shot inversion (Algo-
rithm , EKI for the one-shot inversion and EKI for the neural networks based one-shot
inversion (Algorithm @ in the linear setting. Moreover, we numerically explore the con-
vergence behavior of the EKI for the neural networks based one-shot inversion Algorithm [9]
also for a nonlinear forward model. The final experiment is concerned with the extension
of the linear model to the two-dimensional problem to investigate the potential of the EKI
for neural network based inversion in the higher-dimensional setting.
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8.2 Application to Bayesian inverse problems

One-dimensional example

We consider the problem of recovering the unknown data ' from noisy observations
y =0 +7',
where uf = A71(zT) is the solution of the one-dimensional elliptic equation

d2
Sl iu=2 iD= 0,m),

da? (8.54)

w=0 ondD,

with operator O observing the dynamical system at n, = 23 — 1 equispaced observation
points z; = 2%-7r, t=1,...,ny.

We approximate the forward-problem numerically on a uniform mesh with mesh-
width h = 276 by a finite element method with continuous, piecewise linear ansatz func-
tions. The approximated solution operator will be denoted by S € R"=*"= with n, = 1/h.
The unknown parameter z is assumed to be Gaussian, i.e., z ~ N (0, Cp), with (discretized)
covariance operator Cy = B(—f—;)_” for 8 = 5, v = 1.5. For the inverse problem we
assume a observational noise covariance I'ops = 0.1- I, a model error covariance fmodel =
100 - I,,, and we choose the regularization parameter a; = 0.002, while we turn off the
regularization on wu, i.e., we set ap = 0. Further, we choose a feed-forward DNN with
L = 3 layers, where we set N1 = Ny = 10 size of the hidden layers and Ny = N = 1
size of the input and output layer. As activation function we choose the sigmoid function
o(z) = i +£,z. The EKI method is based on the deterministic formulation represented

through the coupled ODE system

do(@)

= CY () Iy — G(v19))), (8.55)

which will be solved with the MATLAB function ode45 up to time 7' = 10'°. The ensemble
of particles (z2(9)), (200, u@)), and (2(),00)) respectively will be initialized by J = 150
particles as i.i.d. samples, where the parameters zéj )
N(0,Cp), the states u(()] ) are drawn from A/ (0,5 I,,,), and the weights of the neural network
are drawn from N(0, I,, ), which are all independent from each other.

We compare the results to a classical gradient-based method, namely the quasi-Newton
method with BFGS updates, as implemented by MATLAB.

We summarize the methods in the following and introduce abbreviations:

are drawn from the prior distribution

1. Reduced formulation: explicit solution (redTik).

2. One-shot formulation: we compare the performance of the EKI with Algorithm
(osEKI_1), the EKI with Algorithm [J] (osEKI_2) and the quasi-Newton method with
Algorithm 8] (0sQN_1).

3. Neural network based one-shot formulation: we compare the performance of the
EKI with Algorithm [9] (nnosEKI_2) and the quasi-Newton method with Algorithm
(nnosQN_1).

Figure shows the increasing sequence of the penalty parameter A used for Algorithm
and the quasi-Newton method and Algorithm [9] (over time).
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x10*

- — 0sEKI.1 / 0sQN_1
........ osEKI_2

t 10°
Figure 8.12: Scaling parameter A depending on time for Algorithm [8} A\, = k3 for k =
1,2,...,50, and Algorithm @ d\/dt = 1/\.

One-shot inversion

In order to illustrate the convergence result of the EKI and to numerically investigate
the performance of Algorithm [9] we start the discussion by a comparison of the one-shot
inversion based on the FEM approximation of the forward problem in the 1-dimensional
example.

Figure shows the difference of the estimates given by EKI with Algorithrn (osEKI_1),
the EKI with Algorithm [9] (osEKI_2) and the quasi-Newton method with Algorithm
(0sQN_1) compared to the Tikhonov solution and the truth (on the left-hand side) and
in the observation space (on the right-hand side). All three methods lead to an excellent
approximation of the Tikhonov solution. Due to the linearity of the forward problem, the
quasi-Newton method as well as the EKI with Algorithm [§] are expected to converge to
the regularized solution. The EKI with Algorithm [9] demonstrates a similar performance
while reducing the compuational effort significantly compared to Algorithm

The comparison of the data misfit and the residual of the forward problem shown in
Figure reveals a good performance of the EKI (for both algorithms) with feasibility
of the estimates (with respect to the forward problem) in the range of 10719,

¢ noisy observations
PDE sol. ]

—— Tik

= = 0sQN_1

=== 0SEKI_1

— truth k! -1+
—@— redTik

........ 0sEKI_2

0 0.5 1 15 2 25 3 35 0 0.5 1 15 2 25 3 35

Figure 8.13: Comparison of parameter estimation given by EKI with Algorithm |8 (os-
EKI_1), the EKI with Algorithm [J] (0sEKI_2) and the quasi-Newton method
with Algorithm 8] (0sQN_1) compared to the Tikhonov solution and the truth
(on the left-hand side) and in the observation space (on the right-hand side).
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Figure 8.14: Comparison of the data misfit given by EKI with Algorithm |8 (osEKI_1),
the EKI with Algorithm [9] (osEKI_2) and the quasi-Newton method with
Algorithm |8 1 (0sQN_1) (on the left-hand side) and residual of the forward
problem (on the right-hand side), both with respect to A.

One-shot method with neural network approximation

We next replace the solution of the forward problem by a neural network in the one-shot
setting. Due to the excellent performance of Algorithm [J]in the previous experiment, we
focus in the following on this approach for the neural network based one-shot inversion.

The EKI for the neural network based one-shot inversion leads to a good approximation of
the regularized solution (cf., Figure , whereas the performance of the quasi-Newton
approach is slightly worse, which might be due to the nonlinearity introduced into the
problem by the neural network approximation.

The comparison of the data misfit and residual of the forward problem reveals an excellent
convergence behaviour of the EKI for the neural network based one-shot optimization,
whereas the quasi-Newton method does not converge to a feasible estimate, cf., Figure[8.16

O noisy observations |

PDE sol.

=& redTik

= = nnosQN_1

"""" nnosEKI_2
" "

— truth
=& redTik 1
= = nnosQN_1
"""" nnosEKI_2
" "

0 0.5 1 1.5 2 25 3 3.5 0 0.5 1 1.5 2 25 3 3.5

Figure 8.15: Comparison of parameter estimation given by the EKI with Algorithm |§|
(nnosEKI 2) and the quasi-Newton method with Algorithm [8| (nnosQN_1)
for the neural network based one-shot inversion compared to the Tikhonov
solution and the truth (on the left-hand side) and in the observation space
(on the right-hand side).
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Figure 8.16: Comparison of the data misfit given by the EKI with Algorithm@ (nnosEKI_2)
and the quasi-Newton method with Algorithm [§ (nnosQN_1) for the neural
network based one-shot inversion compared to EKI with Algorithm |§| (0s-
EKI_2) from the previous experiment (on the left-hand side) and residual of
the forward problem (on the right-hand side), both with respect to A.

Nonlinear forward model
We consider in the following a nonlinear forward model of the form

—V - (exp(z") - Vu) =10 in D := (0, 7),

(8.56)
u=0 ondD.

Note that the mapping from the unknown parameter function to the state is nonlinear. We

use the same discretization as in the linear problem. The unknown parameter z' is assumed
2

to be Gaussian with zero mean and Cy = B(—dd?)*” where we choose 8 =1, v = 2.

Furthermore, we set I'gps = 0.0001 - I, fmodel =10-1,,, a1 = 2 and az = 0. The
structure of the DNN remains the same as in the linear case.

We compare the one-shot method with neural network approximation resulting from the
EKI with Algorithm [0] with the Tikhonov solution of the reduced formulation, which has
been approximated by a quasi-Newton method. The scaling parameter X in Algorithm [J]is
determined by the ODE d\/dt = 1, i.e., the scaling parameter grows linearly. Similarly to
the linear case, we find that the one-shot method with neural network approximation leads
to a good approximation of the Tikhonov solution for the reduced model, cf., Figure [8.17]
In Figure [8.18] we observe that the penalty parameter A drives the estimate towards
feasibilty, i.e. towards the solution of the constrained optimization problem.

Two-dimensional example
Our final numerical example is based on the two-dimensional Poisson equation

~Au=2" inD:=(0,1)?

(8.57)
u=0 ondD,

for which we consider again the problem of recovering the unknown source term z' from

noisy observations
y =0l +1', (8.58)

with u! denoting the solution of (8.57). We consider an observation operator O observing
ny = 50 randomly picked observation points x;, i = 1,...,n,, as illustrated in Figure
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Figure 8.17: Comparison of parameter estimation given by the EKI with Algorithm |§| (os-
EKI_2) and the Tikhonov solution (on the left-hand side) and corresponding
PDE solution (on the right-hand side).
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Figure 8.18: Data misfit given by the EKI with Algorithm |§| (osEKI_2) for the neural net-
work based one-shot inversion compared (on the left-hand side) and residual
of the forward problem (on the right-hand side), both with respect to A.

We numerically approximate the forward model with continuous, piecewise linear
finite element basis functions on a mesh with 95 grid points in D and 40 grid points on
0D using the MATLAB Partial Differential Equation Toolbox. We again denote the
approximated solution operator by S € R"™2*"z with n, = 95. Similar as before, we
assume the unknown parameter z to be Gaussian, with (discretized) covariance operator
Co = pB(1-id — A)7V for § =100, v = 2 and 7 = 1. We assume the observational noise
covariance to be I'gps = 0.01- 1, , whereas we assume a model covariance I'model = 0.1- I, .
We set the regularization parameters a; = 0.002 and ao = 0. The DNN consists of L = 3
layers, with N; = Ny = 10 hidden neurons, Ny = 2 input neurons and N; = 1 output
neuron, and sigmoid activation function. The setting of the EKI is as described above
with J = 300 particles drawn as i.i.d. sample from the prior. Figure [8.19| shows the truth
and the corresponding PDE solution.

In the following, we compare the neural network based one-shot formulation, solved by the
EKI with Algorithm [9] to the explicit Tikhonov solution of the reduced formulation. The
scaling parameter \ in Algorithm |§| is determined by the ODE d\/dt = 1/)\2. Figure
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8 One-shot learning of surrogates

demonstartes that the EKI leads to a comparable solution. The proposed approach leads
to a feasible solution with respect to the forward problem, cf. Figure |8.21

1,
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Figure 8.19: Ground truth (left-hand side) and the corresponding PDE solution (right-
hand side).
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Figure 8.20: Comparison of parameter estimation given by the EKI with Algorithm |§|
(osEKI_2) (below) and the Tikhonov solution (above) (on the left-hand side)
and corresponding PDE solution (on the right-hand side).

202



8.2 Application to Bayesian inverse problems

10° T T T 10° T T T

Figure 8.21: Data misfit given by the EKI with Algorithm |§| (osEKI_2) for the neural net-
work based one-shot inversion compared (on the left-hand side) and residual
of the forward problem (on the right-hand side), both with respect to A.
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9 Conclusions and outlook

We close this thesis with a short summary and a brief discussion about interesting future
research directions.

We discussed the PDE-constrained optimization problem under uncertainty in a very
general setting in Chapter [3] Particularly, we presented results about the existence and
optimality of solutions along with optimality conditions under different sets of assumptions
on the risk measure, the cost functional, and the constraint.

For the development of efficient methods to solve the optimal control problem under uncer-
tainty and the error analysis, we focused on tracking-type objective functionals composed
with sufficiently smooth risk measures and constraints that are sufficiently regular with
respect to the uncertainty. We study three optimal control problems in detail in Chap-
ter 4l In particular, we investigate their parametric regularity in order to apply to them
the error bounds and concergence results which are developed in the following chapters.
In fact, many of the presented results, in particular in Chapter [5] and Chapter [6] are
not limited to the application to optimal control problems, but are derived in such a
general setting that they find applications in different areas in uncertainty quantification
and related fields. This proofs that the problems considered in this thesis are not only
interesting on their own, but also have the potential to reveal interesting insights into
research questions arising in related fields.

Chapter 5

Chapter [f] is devoted to the dimension truncation error analysis for a class of high-
dimensional integration problems. A popular approach to derive dimension truncation
error rates in the context of PDEs with random coefficients is based on the Neumann se-
ries. This technique heavily relies on the parametric structure of the problem and is thus
practically constrained to affine parametric operator equations. In contrast to the Neu-
mann series approach, we utilize the parametric regularity of the integration problem to
derive error bounds and convergence rates based on Taylor series. Our proposed technique
appears to be quite robust as we were able to improve dimension truncation convergence
rates even in a non-affine setting, for instance for elliptic PDEs with lognormal random
coefficients. We analyze the dimension truncation error in the general setting of separable
Banach spaces and with respect to the generalized 5-Gaussian distribution. Thus our di-
mension truncation error rates immediately apply for spatially discretized PDE solutions
obtained using a conforming finite element method. Furthermore, our proposed method
enables the development of dimension truncation rates for sufficiently smooth nonlinear
quantities of interest of the PDE response, provided that the composition of the nonlin-
ear quantity of interest with the PDE solution satisfies the assumptions of our dimension
truncation result.
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Chapter 6

In Chapter [6] we recall error bounds and convergence rates for randomly shifted rank-1
lattice rules for integration of real-valued functions. By exploiting the concept of duality
in Banach spaces, we succeeded in generalizing these well-known bounds and convergence
rates for real-valued integrands to integrands that take values in separable Banach spaces.
This generalization was motivated by the fact that the integrals involved in optimal con-
trol problems subject to PDE constraints with random coefficients are typically Bochner
integrals, i.e., integrals over Banach space-valued objects. However the derived results are
not at all restricted to optimal control problems and open up many interesting areas of
application for QMC integration. A possible extension of our new results would be the
generalization to different distributions, such as the lognormal or generalized 5-Gaussian
distribution. Together with our results from Chapter [5| this would provide a very general
and uniform framework for QMC integration in Banach spaces. In particular, the applica-
tion of QMC integration in the context of PDEs with random coefficients would simplify
to checking the regularity assumptions in our results.

Chapter 7

We presented a MLQMC method for the estimation of gradients for PDE-constrained
optimization problems. Specifically the objective function is a tracking-type functional
composed with the expected value and the constraint is an elliptic PDE with lognormal
random diffusion coefficient. Numerical results for this particular problem show that the
MLQMC method outperforms the MLMC and the QMC method. Its superior performance
is due to the faster decay of the variances of each term in the telescopic sum
defining the multilevel method. Based on the parametric regularity of the problem, we
derived a rigorous analysis of our MLQMC method confirming the faster decay of the
relevant variances. While the numerical experiments and the analysis are performed for
the specific elliptic model problem, we expect that the results carry over to other problems
as well, such as the parabolic PDE-constrained optimal control problem. The numerical
and theoretical evidence for a more general problem class remains to be investigated.

Chapter 8

In Chapter [8| we focus on the incorporation of surrogates into the optimization problems.
In particular, we aim to replace the computational intense solution of the underlying
model, typically a PDE, by a surrogate which is cheap to evaluate.

In Section [8.1] we apply this strategy to the PDE-constrained optimal control problem
under uncertainty and in Section [8.2] we transfer the ideas to Bayesian inverse problems.
Our proposed framework is based on a quadratic penalization on the PDE residual and very
flexible in the sense that it allows for different surrogates, such as polynomial expansions,
reduced basis approaches, or neural networks. In our framework the surrogate is trained
only for the optimal control during the optimization of the underlying problem. This
should be contrasted with the expensive offline training, where a surrogate is trained
for all admissible controls and is substituted afterwards into the underlying optimization
problem. The numerical experiments for the optimal control problem subject to the elliptic
PDE constraint show promising results and applications to more complex optimization
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problems under uncertainty will be subject to future work.

We analyzed the stochastic gradient method for the optimization of the penalized problem.
In more complex situations, gradients might not be available due to the use of black-box
solvers or computational limits. In this case, the application of derivative-free optimization
techniques, in particular Kalman based methods, are expected to be efficient in this setting.
We studied the application of the ensemble Kalman filter to a penalized problem in the
context of Bayesian inverse problems in Section [8:2] In this section we demonstrated that
the ensemble Kalman inversion for neural network based one-shot inversion is a promising
method, regarding both estimation quality of the unknown parameter and computational
feasibility. The connection between the penalized optimization problem and the Bayesian
inverse problem setting with vanishing noise allowed to establish a convergence result
in a simplified linear setting. Several directions for future work arise naturally from the
presented ideas. For instance, the theoretical analysis of the neural network based one-shot
inversion using recent results about the expressivity of neural networks in the context of
parametric PDEs is a promising direction for future research. Furthermore, a comparison
to state-of-the-art optimization algorithms in the machine learning community should
be discussed. Moreover, it would be interesting to investigate if the emulation of the
underlying dynamics of the PDEs in the considered problems can be improved by choosing
more sophisticated architectures of neural networks, such as residual neural networks or
convolutional neural networks, see [138].

207






Bibliography

[1]

2]

R. J. Adler. The Geometry of Random Fields. Society for Industrial and Applied
Mathematics, 2010. doi: 10.1137/1.9780898718980.

S. Agapiou, M. Burger, M. Dashti, and T. Helin. Sparsity-promoting and edge-
preserving maximum a posteriori estimators in non-parametric Bayesian inverse
problems. Inverse Probl., 34(4):045002, 2018. doi: 10.1088/1361-6420/aaacac.

A. Ahmadi-Javid. Entropic Value-at-Risk: a new coherent risk measure. J. Optim.
Theory Appl., 155(3):1105-1123, 2012. doi: 10.1007/s10957-011-9968-2.

A. A. Ali, E. Ullmann, and M. Hinze. Multilevel Monte Carlo analysis for opti-
mal control of elliptic PDEs with random coefficients. SIAM/ASA J. Uncertain.
Quantif., 5(1):466-492, 2017. doi: 10.1137/16M109870X.

T. S. Angell and A. Kirsch. Optimization Methods in FElectromagnetic Radia-
tion. Springer Monographs in Mathematics. Springer New York, 2006. ISBN
9780387218274. doi: 10.1007/b97629.

S. Arridge, P. Maass, O. Oktem, and C.-B. Schonlieb. Solving inverse problems using
data-driven models. Acta Numer., 28:1-174, 2019. doi: 10.1017/S0962492919000059.

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Math.
Financ., 9(3):203-228, 1999. doi: 10.1111/1467-9965.00068.

M. Bachmayr, A. Cohen, and W. Dahmen. Parametric PDEs: sparse or low-rank
approximations? IMA J. Numer. Anal., 38(4):1661-1708, 09 2017. doi: 10.1093/
imanum/drx052.

M. Badiale and E. Serra. Semilinear Elliptic Equations for Beginners: FExistence
Results via the Variational Approach. Universitext. Springer London, 2010. ISBN
9780857292278. doi: 10.1007/978-0-85729-227-8.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999. ISBN 978-1-
886529-05-2.

K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction
and neural networks for parametric PDEs. J. Comput. Math., 7:121-157, 2021. doi:
10.5802/smai-jem.74.

D. Blomker, C. Schillings, P. Wacker, and S. Weissmann. Well posedness and con-
vergence analysis of the ensemble Kalman inversion. Inverse Probl., 35(8):085007,
2019. doi: 10.1088/1361-6420/ab149c.

209



Bibliography

[13]

[14]

[15]

[19]

[20]

[21]

210

V. Bogachev. Measure Theory, volume 1 of Measure Theory. Springer Berlin Hei-
delberg, 2007. ISBN 9783540345145. doi: 10.1007/978-3-540-34514-5.

A. Borzi and V. Schulz. Computational Optimization of Systems Governed by Partial
Differential Equations. Society for Industrial and Applied Mathematics, USA, 2012.
ISBN 1611972043. doi: 10.1137/1.9781611972054.

A. Borzl and G. von Winckel. Multigrid methods and sparse-grid collocation tech-
niques for parabolic optimal control problems with random coefficients. SIAM J.
Sci. Comput., 31(3):2172-2192, 2009. doi: doi.org/10.1137/070711311.

A. Borzi and G. von Winckel. A POD framework to determine robust controls
in PDE optimization. Comput. Vis. Sci., 14(3):91-103, 2011. doi: 10.1007/
s00791-011-0165-5.

G. Castiglione, A. Frosini, E. Munarini, A. Restivo, and S. Rinaldi. Combinatorial
aspects of L-convex polyominoes. European J. Combin., 28(6):1724-1741, 2007. doi:
10.1016/j.€jc.2006.06.020.

N. K. Chada and X. Tong. Convergence acceleration of ensemble Kalman inversion
in nonlinear settings. Math. Comput., 91(335):1247-1280, 2022. doi: 10.1090/mcom/
3709.

N. K. Chada, A. M. Stuart, and X. T. Tong. Tikhonov regularization within ensemble
Kalman inversion. SIAM J. Numer. Anal., 58(2):1263-1294, 2019. doi: 10.1137/
19M1242331.

N. K. Chada, C. Schillings, X. T. Tong, and S. Weissmann. Consistency analysis of
bilevel data-driven learning in inverse problems. Commun. Math. Sci., 20(1):123 —
164, 2021. doi: 10.4310/CMS.2022.v20.n1.a4.

G. Chan and A. T. Wood. Algorithm AS 312: An algorithm for simulating stationary
Gaussian random fields. J. Appl. Stat., pages 171-181, 1997. doi: 10.1111/1467-9876.
00057.

J. Charrier. Strong and weak error estimates for elliptic partial differential equations
with random coefficients. STAM J. Numer. Anal., 50(1):216-246, 2012. doi: 10.1137/
100800531.

J. Charrier, R. Scheichl, and A. L. Teckentrup. Finite element error analysis of
elliptic PDEs with random coefficients and its application to multilevel Monte Carlo
methods. SIAM J. Numer. Anal., 51(1):322-352, 2013. doi: 10.1137/110853054.

P. Chen and O. Ghattas. Sparse polynomial approximations for affine parametric
saddle point problems. Vietnam J. Math., 2022. doi: 10.1007/s10013-022-00584-1.

P. Chen and A. Quarteroni. Weighted reduced basis method for stochastic optimal
control problems with elliptic PDE constraint. SIAM/ASA J. Uncertain. Quantif.,
2(1):364-396, 2014. doi: 10.1137/130940517.

Y. Chen, B. Hosseini, H. Owhadi, and A. M. Stuart. Solving and learning nonlinear
PDEs with Gaussian processes, 2021. arXiv:2103.12959 [math.NA].



Bibliography

[27]

[28]

[38]

[39]

[40]

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland,
1978. ISBN 978-0-89871-514-9. doi: 10.1137/1.9780898719208.

C. Clason, T. Helin, R. Kretschmann, and P. Piiroinen. Generalized modes in
Bayesian inverse problems. SIAM/ASA J. Uncertain. Quantif., 7(2):652-684, 2019.
doi: 10.1137/18M1191804.

K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte Carlo
methods and applications to elliptic PDEs with random coefficients. Comput. Vis.
Sci., 14(3), 2011. doi: 10.1007/s00791-011-0160-x.

A. Cohen and R. DeVore. Approximation of high-dimensional parametric PDEs.
Acta Numer., 24:1-159, 2015. doi: 10.1017/S0962492915000033.

A. Cohen, R. DeVore, and C. Schwab. Convergence rates of best N-term Galerkin
approximations for a class of elliptic sSPDEs. Found. Comput. Math., 10(6):615-646,
2010. doi: 10.1007/s10208-010-9072-2.

D. Cohn. Measure Theory: Second Edition. Birkhduser Advanced Texts Basler
Lehrbiicher. Springer New York, 2013. ISBN 9781461469568. doi: 10.1007/
978-1-4899-0399-0.

R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules for
multivariate integration. SIAM J. Sci. Comput., 28(6):2162-2188, 2006. doi: 10.
1137/06065074X.

M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems, pages
311-428. Springer International Publishing, 2017. ISBN 978-3-319-12385-1. doi:
10.1007/978-3-319-12385-1_7.

M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. MAP estimators and their con-
sistency in Bayesian nonparametric inverse problems. Inverse Probl., 29(9):095017,
2013. doi: 10.1088/0266-5611/29/9/095017.

R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for
Science and Technology: Volume 5 Ewvolution Problems I. Springer, Heidelberg,
2012. ISBN 10: 354050205X.

R. DeVore. Nonlinear approximation. Acta Numer., 7:51-150, 1998. doi: 10.1017/
S50962492900002816.

J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: the quasi-Monte
Carlo way. Acta Numer., 22:133-288, 2013. doi: 10.1017/S0962492913000044.

J. Dick, F. Y. Kuo, Q. T. L. Gia, D. Nuyens, and C. Schwab. Higher order QMC
Petrov—Galerkin discretization for affine parametric operator equations with random
field inputs. SIAM J. Numer. Anal., 52(6):2676-2702, 2014. doi: 10.1137/130943984.

J. Dick, Q. T. L. Gia, and C. Schwab. Higher order quasi-Monte Carlo integration
for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif.,
4(1):48-79, 2016. doi: 10.1137/140985913.

211



Bibliography

[41]

[47]

[48]

212

J. Dick, R. N. Gantner, Q. T. L. Gia, and C. Schwab. Higher order quasi-Monte
Carlo integration for Bayesian PDE inversion. Comput. Math. Appl., 77(1):144-172,
2019. doi: 10.1016/j.camwa.2018.09.019.

J. Diestel. Sequences and Series in Banach Spaces. Graduate Texts in Mathematics.
Springer New York, 1984. ISBN 9780387908595. doi: 10.1007/978-1-4612-5200-9.

C. R. Dietrich and G. N. Newsam. Fast and exact simulation of stationary Gaus-
sian processes through circulant embedding of the covariance matrix. SIAM J. Sci.
Comput., 18(4):1088-1107, 1997. doi: 10.1137/S1064827592240555.

Dong, Guozhi, Hintermiiller, Michael, and Papafitsoros, Kostas. Optimization with
learning-informed differential equation constraints and its applications. FESAIM:
COCYV, 28:3, 2022. doi: 10.1051/cocv/2021100.

H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems. Math-
ematics and Its Applications. Springer Netherlands, 1996. ISBN 9780792341574.

O. G. Ernst, B. Sprungk, and H.-J. Starkloff. Analysis of the ensemble and polyno-
mial chaos Kalman filters in Bayesian inverse problems. SIAM/ASA J. Uncertain.
Quantif., 3(1):823-851, 2015. doi: 10.1137/140981319.

L. C. Evans. Partial Differential Equations. Graduate studies in mathematics.
American Mathematical Society, 2010. ISBN 9780821849743. doi: 10.1090/gsm/019.

G. Evensen. The ensemble Kalman filter: theoretical formulation and prac-
tical implementation. Ocean Dynamics, 53(4):343-367, 2003. doi: 10.1007/
$10236-003-0036-9.

C. A. Floudas and P. M. Pardalos. FEncyclopedia of Optimization. Encyclope-
dia of Optimization. Springer US, 2008. ISBN 9780387747583. doi: 10.1007/
978-0-387-74759-0.

H. Follmer and T. Knispel. Convex risk measures: basic facts, law-invariance and
beyond, asymptotics for large portfolios, pages 507-554. World Scientific, 2013. doi:
10.1142/8557.

P. Frauenfelder, C. Schwab, and R. Todor. Finite elements for elliptic problems
with stochastic coefficients. Comput. Methods Appl. Mech. Engrg., 194:205-228,
2005. doi: 10.1016/j.cma.2004.04.008.

R. N. Gantner. Computational Higher-Order Quasi-Monte Carlo for Random Partial
Differential Equations. PhD thesis, ETH Zurich, 2017.

R. N. Gantner. Dimension truncation in QMC for affine-parametric operator
equations. In A. B. Owen and P. W. Glynn, editors, Monte Carlo and Quasi-
Monte Carlo Methods 2016, pages 249-264, Stanford, CA, 2018. Springer. doi:
10.1007/978-3-319-91436-7_13.

R. N. Gantner, L. Herrmann, and C. Schwab. Multilevel QMC with product weights
for affine-parametric, elliptic PDEs. In J. Dick, F. Y. Kuo, and H. Wozniakowski, ed-
itors, Contemporary Computational Mathematics - A Celebration of the 80th Birth-
day of Ian Sloan, pages 373-405. Springer International Publishing, 2018. doi:
10.1007/978-3-319-72456-0_18.



Bibliography

[55]

[56]

[64]

[65]

A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin
diffusions: gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn.,
19(1):412-441, 2020. doi: 10.1137/19M1251655.

C. Geiersbach and T. Scarinci. Stochastic proximal gradient methods for nonconvex
problems in Hilbert spaces. Comput. Optim. Appl., 78(3):705-740, 2021. doi: 10.
1007/s10589-020-00259-y.

M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok. Numerical solution
of the parametric diffusion equation by deep neural networks. J. Sci. Comput., 88
(1):22, 2021. doi: 10.1007/s10915-021-01532-w.

R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach.
Courier Corporation, Mineola, NY, 2003. ISBN 978-1-4612-7795-8. doi: 10.1007/
978-1-4612-3094-6.

D. Gilbarg and N. S. Trudinger. FElliptic Partial Differential Equations of Sec-
ond Order. Springer-Verlag, 2001. ISBN 978-3-540-41160-4. doi: 10.1007/
978-3-642-61798-0. Reprint of the 1998 edition.

A. D. Gilbert, I. G. Graham, F. Y. Kuo, R. Scheichl, and I. H. Sloan. Analysis of
quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coeffi-
cients. Numer. Math., 142(4):863-915, 2019. doi: 10.1007/s00211-019-01046-6.

A. D. Gilbert, F. Y. Kuo, and I. H. Sloan. Analysis of preintegration followed
by quasi-Monte Carlo integration for distribution functions and densities, 2021.
arXiv:2112.10308 [math.NA].

M. B. Giles. Multilevel Monte Carlo methods. Acta Numer., 24:259-328, 2015. doi:
10.1017/S096249291500001X.

C. J. Gittelson. Stochastic Galerkin discretization of the log-normal isotropic
diffusion problem. Math. Models Methods Appl. Sci., 20(2):237-263, 2010. doi:
10.1142/S0218202510004210.

C. J. Gittelson. Adaptive Galerkin methods for parametric and stochastic operator
equations. PhD thesis, ETH Zurich, 2011. doi: 10.3929/ethz-a-006380316.

C. J. Gittelson and C. Schwab. Sparse tensor discretizations of high-dimensional
parametric and stochastic PDEs. Acta Numer., 20:291-467, 2011. doi: 10.1017/
50962492911000055.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org (27 September 2022).

H. W. Gould. Combinatorial Identities: A Standardized Set of Tables Listing 500
Binomial Coefficient Summations. Morgantown, 1972.

1. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Aca-
demic Press, Amsterdam, seventh edition, 2007. doi: 10.1016/C2010-0-64839-5.

I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan. Quasi-Monte Carlo
methods for elliptic PDEs with random coefficients and applications. J. Comput.
Phys., 230(10):3668-3694, 2011. doi: 10.1016/j.jcp.2011.01.023.

213


http://www.deeplearningbook.org

Bibliography

[70]

[79]

[80]

214

I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab, and I. H. Sloan.
Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random
coefficients. Numer. Math., 131(2):329-368, 2015. doi: 10.1007/s00211-014-0689-y.

I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan. Analysis of cir-
culant embedding methods for sampling stationary random fields. SIAM J. Numer.
Anal., 56(3):1871-1895, 2018. doi: 10.1137/17M1149730.

I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan. Circulant
embedding with QMC: analysis for elliptic PDE with lognormal coefficients. Numer.
Math., 140(2):479-511, 2018. doi: 10.1007/s00211-018-0968-0.

S. Giinther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger. Layer-
parallel training of deep residual neural networks. SIAM J. Math. Data Sci., 2(1):
1-23, 2020. doi: 10.1137/19M1247620.

P. A. Guth and V. Kaarnioja. Generalized dimension truncation error analysis
for high-dimensional numerical integration: lognormal setting and beyond, 2022.
arXiv:2209.06176 [math.NA].

P. A. Guth and A. van Barel. Multilevel quasi-Monte Carlo for optimization under
uncertainty, 2021. arXiv:2109.14367 [math.NA].

P. A. Guth, V. Kaarnioja, F. Y. Kuo, C. Schillings, and I. H. Sloan. A quasi-Monte
Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain.
Quantif., 9(2):354-383, 2021. doi: 10.1137/19M1294952.

P. A. Guth, V. Kaarnioja, F. Y. Kuo, C. Schillings, and I. H. Sloan. Parabolic
PDE-constrained optimal control under uncertainty with entropic risk measure using
quasi-Monte Carlo integration, 2022. arxiv:2208.02767 [math.NA].

P. A. Guth, C. Schillings, and S. Weissmann. 14 Ensemble Kalman filter for neu-
ral network-based one-shot inversion. In R. Herzog, M. Heinkenschloss, D. Kalise,
G. Stadler, and E. Trélat, editors, Optimization and Control for Partial Differen-
tial Equations: Uncertainty quantification, open and closed-loop control, and shape
optimization, pages 393-418, Berlin, Boston, 2022. De Gruyter. doi: 10.1515/
9783110695984-014.

P. A. Guth, C. Schillings, and S. Weissmann. A general framework for machine
learning based optimization under uncertainty, 2022. arXiv:2112.11126 [math.OC]|.

E. Haber, F. Lucka, and L. Ruthotto. Never look back - a modified EnKF method
and its application to the training of neural networks without back propagation,
2018. arXiv:1805.08034 [math.NA].

P. Halmos. Measure Theory. Graduate Texts in Mathematics. Springer New York,
1976. ISBN 9780387900889. doi: 10.1007/978-1-4684-9440-2.

J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations
using deep learning. Proc. Natl. Acad. Sci. U. S. A., 115(34):8505-8510, 2018. ISSN
0027-8424. doi: 10.1073/pnas.1718942115.



Bibliography

[83]

[91]

[92]

[93]

[94]

[95]

T. Helin and M. Burger. Maximum a posteriori probability estimates in infinite-
dimensional Bayesian inverse problems. Inverse Probl., 31(8):085009, jul 2015. doi:
10.1088/0266-5611/31/8/0850009.

L. Herrmann and C. Schwab. QMC integration for lognormal-parametric, elliptic
PDEs: local supports and product weights. Numer. Math., 141(1):63-102, 2019.
doi: 10.1007/978-1-4684-9440-2.

L. Herrmann, C. Schwab, and J. Zech. Deep ReLLU neural network expression rates
for data-to-Qol maps in Bayesian PDE inversion. Technical Report 2020-02, Seminar
for Applied Mathematics, ETH Ziirich, Switzerland, 2020.

L. Herrmann, M. Keller, and C. Schwab. Quasi-Monte Carlo Bayesian estimation
under Besov priors in elliptic inverse problems. Math. Comp., 90:1831-1860, 2021.
doi: 10.1090/mcom/3615.

D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne. Com-
bining field data and computer simulations for calibration and prediction. SIAM
J. Sci. Comput., 26(2):448-466, Feb. 2005. ISSN 1064-8275. doi: 10.1137/
S51064827503426693.

M. Hinze. A variational discretization concept in control constrained optimization:
the linear-quadratic case. Comput. Optim. Appl., 30:45-61, 01 2005. doi: 10.1007/
$10589-005-4559-5.

M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Con-
straints, volume 23. Springer Netherlands, 2008. ISBN 9781402088391. doi:
10.1007/978-1-4020-8839- 1.

T. Hytonen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach
Spaces: Volume I: Martingales and Littlewood-Paley Theory. Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Math-
ematics. Springer International Publishing, 2016. ISBN 9783319485201. doi:
10.1007/978-3-319-48520-1.

M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse
problems. Inverse Probl., 29(4):045001, 2013. doi: 10.1088/0266-5611/29/4/045001.

K. Ito and K. Kunisch. An augmented Lagrangian technique for variational inequal-
ities. Appl. Math. Optim., 21(1):223-241, 1990. doi: 10.1007/BF01445164.

S. Joe and F. Y. Kuo. Constructing Sobol sequences with better two-dimensional
projections. SIAM J. Sci. Comput., 30(5):2635-2654, 2008. doi: 10.1137/070709359.

V. Kaarnioja, F. Y. Kuo, and I. H. Sloan. Uncertainty quantification using periodic
random variables. SIAM J. Numer. Anal., 58(2):1068-1091, 2020. doi: 10.1137/
19M1262796.

V. Kaarnioja, Y. Kazashi, F. Y. Kuo, F. Nobile, and I. H. Sloan. Fast approximation
by periodic kernel-based lattice-point interpolation with application in uncertainty
quantification. Numer. Math., 150(1):33-77, 2022. doi: 10.1007/s00211-021-01242-3.

215



Bibliography

[96]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

216

J. Kaipio and E. Somersalo. Statistical and computational inverse problems. Applied
mathematical sciences; Volume 160. Springer Science & Business Media, New York,
NY, 2010. ISBN 9781441919649. doi: 10.1007/b138659.

B. Kaltenbacher. Regularization based on all-at-once formulations for inverse prob-
lems. SIAM J. Numer. Anal., 54:2594-2618, 2016. doi: 10.1137/16M1060984.

B. Kaltenbacher. All-at-once versus reduced iterative methods for time dependent in-
verse problems. Inverse Probl., 33(6):064002, 2017. doi: 10.1088/1361-6420/aa6{34.

B. Kaltenbacher, A. Neubauer, and O. Scherzer. [terative Regqularization Methods
for Nonlinear Ill-Posed Problems. De Gruyter, Berlin, New York, 2008. ISBN
9783110208276. doi: 10.1515/9783110208276.

K. Karhunen. Uber lineare methoden in der wahrscheinlichkeitsrechnung. Annales
Academiae Scientiarum Fennicae. Series A. 1, Mathematica-physica, 37:1-79, 1947.

Katana, 2010. doi: 10.26190/669X-A286.

M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. J. R.
Stat. Soc., B: Stat. Methodol., 63(3):425-464, 2001. doi: 10.1111/1467-9868.00294.

D. P. Kingma and J. Ba. Adam: a method for stochastic optimization, 2014.
arXiv:1412.6980 [cs.LG].

A. Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer
London, 2007. ISBN 9781848000483. doi: 10.1007/978-1-4471-5361-0.

D. P. Kouri and T. M. Surowiec. Risk-averse PDE-constrained optimization using
the conditional value-at-risk. SIAM J. Optim., 26(1):365-396, 2016. doi: 10.1137/
140954556.

D. P. Kouri and T. M. Surowiec. Existence and optimality conditions for risk-averse
PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif., 6(2):787-815,
2018. doi: 10.1137/16M1086613.

D. P. Kouri and T. M. Surowiec. Epi-regularization of risk measures. Math. Oper.
Res., 45(2):774-795, 2020. doi: 10.1287/moor.2019.1013.

D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. A
trust-region algorithm with adaptive stochastic collocation for PDE optimization
under uncertainty. SIAM J. Sci. Comput., 35(4):A1847-A1879, 2013. doi: 10.1137/
120892362.

N. B. Kovachki and A. M. Stuart. Ensemble Kalman inversion: a derivative-free
technique for machine learning tasks. Inverse Probl., 35(9):095005, 2019. doi: 10.
1088/1361-6420/ablc3a.

D. Kressner and C. Tobler. Low-rank tensor Krylov subspace methods for
parametrized linear systems. SIAM J. Matriz Anal. Appl., 32(4):1288-1316, 2011.
doi: 10.1137/100799010.



Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

A. Kunoth and C. Schwab. Analytic regularity and GPC approximation for control
problems constrained by linear parametric elliptic and parabolic PDEs. SIAM J.
Control Optim., 51(3):2442-2471, 2013. doi: 10.1137/110847597.

F. Y. Kuo. Lattice rule generating vectors, 2022. https://web.maths.unsw.edu.
au/~fkuo/lattice/index.html (15 July 2022).

F. Y. Kuo and D. Nuyens. Application of quasi-Monte Carlo methods to elliptic
PDEs with random diffusion coeflicients: a survey of analysis and implementation.
Found. Comput. Math., 16(6):1631-1696, 2016. doi: 10.1007/s10208-016-9329-5.

F. Y. Kuo and D. Nuyens. QMC4PDE, 2022. https://people.cs.kuleuven.be/
~dirk.nuyens/qgmcédpde/ (15 July 2022).

F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and B. J. Waterhouse. Randomly
shifted lattice rules with the optimal rate of convergence for unbounded integrands.
J. Complez., 26(2):135-160, 2010. doi: 10.1016/j.jc0.2009.07.005.

F. Y. Kuo, C. Schwab, and I. H. Sloan. Quasi-Monte Carlo finite element methods
for a class of elliptic partial differential equations with random coefficients. STAM
J. Numer. Anal., 50(6):3351-3374, 2012. doi: 10.1137/110845537.

F.Y. Kuo, C. Schwab, and I. H. Sloan. Multi-level quasi-Monte Carlo finite element
methods for a class of elliptic PDEs with random coefficients. Found. Comput.
Math., 15(2):411-449, 2015. doi: 10.1007/s10208-014-9237-5.

F. Y. Kuo, D. Nuyens, L. Plaskota, I. H. Sloan, and G. W. Wasilkowski. Infinite-
dimensional integration and the multivariate decomposition method. J. Comput.
Appl. Math., 326:217-234, 2017. doi: 10.1016/j.cam.2017.05.031.

F. Y. Kuo, R. Scheichl, C. Schwab, I. H. Sloan, and E. Ullmann. Multilevel quasi-
Monte Carlo methods for lognormal diffusion problems. Math. Comp., 86(308):
2827-2860, 2017. doi: 10.1090/mcom/3207.

G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of
deep neural networks and parametric PDEs. Constr. Approx., 2021. doi: 10.1007/
s00365-021-09551-4.

M. Loéve. Fonctions aléatoires de second ordre. Revue Scientifique, pages 195-206,
1946.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators.
Nat. Mach. Intell., 3(3):218-229, 2021. doi: 10.1038/s42256-021-00302-5.

J. A. Nichols and F. Y. Kuo. Fast CBC construction of randomly shifted lattice
rules achieving O(n*”‘s) convergence for unbounded integrands over R* in weighted
spaces with POD weights. J. Complez., 30(4):444-468, 2014. doi: 10.1016/j.jco.2014.
02.004.

D. Nuyens and R. Cools. Fast component-by-component construction of rank-1
lattice rules with a non-prime number of points. J. Complex., 22(1):4-28, 2006. doi:
10.1016/j.jc0.2005.07.002.

217


https://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://web.maths.unsw.edu.au/~fkuo/lattice/index.html
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/

Bibliography

[125]

[126]

[127]

[128]

[129]

[130]

131]

[132]

133

[134]

[135]

[136]

[137]

[138]

218

D. Nuyens and R. Cools. Fast algorithms for component-by-component construction
of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math.
Comp., 75(254):903-920, 2006. ISSN 00255718, 10886842.

J. A. A. Opschoor, P. C. Petersen, and C. Schwab. Deep ReLU networks
and high-order finite element methods. Anal. Appl, 12 2019. doi: 10.1142/
S0219530519410136.

B. T. Polyak. The convergence rate of the penalty function method. USSR Compu-
tational Mathematics and Mathematical Physics, 11(1):1-12, 1971. ISSN 0041-5553.
doi: 10.1016/0041-5553(71)90094-2.

J. Quaintance and H. W. Gould. Combinatorial Identities for Stirling Numbers:
The Unpublished Notes of H. W. Gould. World Scientific Publishing Company,
River Edge, NJ, 2015. doi: 10.1142/9821.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learn-
ing (part I): data-driven solutions of nonlinear partial differential equations, 2017.
arXiv:1711.10561 [cs.Al].

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning
(part II): data-driven discovery of nonlinear partial differential equations, 2017.
arXiv:1711.10566 [cs.Al].

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. J. Comput. Phys., 378:686-707, 2019. doi:
10.1016/j.jcp.2018.10.045.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat.,
22(3):400 — 407, 1951. doi: 10.1214/aoms/1177729586.

R. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distri-
butions. J. Bank. Financ., 26(7):1443-1471, 2002. doi: 10.1016/S0378-4266(02)
00271-6.

G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation and a
posteriori error estimation for affinely parametrized elliptic coercive partial differ-
ential equations. Arch. Comput. Methods Eng., 15(3):229 — 275, Sept. 2008. doi:
10.1007/s11831-008-9019-9.

W. Rudin. Functional Analysis. International series in pure and applied mathemat-
ics. McGraw-Hill, 1991. ISBN 9780071009447.

A. Ruszczynski and A. Shapiro. Optimization of convex risk functions. Math. Oper.
Res., 31(3):433-452, 2006. doi: 10/1287/moor.10500186.

A. Ruszczynski and A. Shapiro. Chapter 6: Risk Averse Optimization, pages 271—
385. MOS-SIAM, 2014. doi: 10.1137/1.9781611973433.ch6.

L. Ruthotto and E. Haber. Deep neural networks motivated by partial differ-
ential equations. J. Math. Imaging Vis., 62(3):352-364, 2020. doi: 10.1007/
$10851-019-00903-1.



Bibliography

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

R. A. Ryan. Introduction to Tensor Products of Banach Spaces. Springer Mono-
graphs in Mathematics. Springer London, 2002. ISBN 9781852334376. doi:
10.1007/978-1-4471-3903-4.

S. A. Sauter and C. Schwab. Boundary Element Methods. Springer Series in Com-
putational Mathematics. Springer Berlin Heidelberg, 2010. ISBN 9783540680925.
doi: 10.1007/978-3-540-68093-2.

T. H. Savits. Some statistical applications of Faa di Bruno. J. Multivariate Anal.,
97(10):2131-2140, 2006. doi: 10.1016/j.jmva.2006.03.001.

C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for in-
verse problems. SIAM J. Numer. Anal., 55(3):1264-1290, 2017. doi: 10.1137/
16M105959X.

C. Schillings and A. M. Stuart. Convergence analysis of ensemble Kalman inversion:
the linear, noisy case. Appl. Anal., 97(1):107-123, 2018. doi: 10.1080/00036811.
2017.1386784.

C. Schillings, S. Schmidt, and V. Schulz. Efficient shape optimization for certain and
uncertain aerodynamic design. Comput. Fluids, 46(1):78-87, 2011. doi: 10.1016/j.
compfluid.2010.12.007.

K. D. Schmidt. Maf$ und Wahrscheinlichkeit. Springer-Lehrbuch. Springer, 2009.
ISBN 9783540897293. doi: 10.1007/978-3-642-21026-6.

C. Schwab. QMC Galerkin discretization of parametric operator equations. In
J. Dick, F. Y. Kuo, G. W. Peters, and 1. H. Sloan, editors, Monte Carlo and Quasi-
Monte Carlo Methods 2012, pages 613629, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-41095-6. doi: 10.1007/978-3-642-41095-6_32.

C. Schwab and R. Stevenson. Space-time adaptive wavelet methods for
parabolic evolution problems. Math. Comp., 78:1293-1318, 2009. doi: 10.1090/
S0025-5718-08-02205-9.

C. Schwab and R. A. Todor. Karhunen—Loéve approximation of random fields by
generalized fast multipole methods. J. Comput. Phys., 217(1):100-122, 2006. doi:
10.1016/j.jcp.2006.01.048.

C. Schwab and J. Zech. Deep learning in high dimension: neural network expression
rates for generalized polynomial chaos expansions in UQ. Anal. Appl., 17(01):19-55,
2019. doi: 10.1142/50219530518500203.

A. Shapiro. On concepts of directional differentiability. J. Optim. Theory Appl., 66
(3):477-487, 1990. doi: 10.1007/BF00940933.

Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization
of physics informed neural networks, 2020. arXiv:2004.01806v2 [math.NA].

M. A. Shubin. Pseudodifferential Operators and Spectral Theory. Springer Ser. Sov.
Math., Springer Verlag, 1987. doi: 10.1007/978-3-642-56579-3.

219



Bibliography

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163]

[164]

[165]

220

A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 19:451-559,
2010. doi: 10.1017/S0962492910000061.

V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer
Series in Computational Mathematics. Springer Berlin Heidelberg, 2007. ISBN
9783540331223. doi: 10.1007/3-540-33122-0.

F. Troltzsch. Optimal Control of Partial Differential Equations: Theory, Methods
and Applications, volume 112. American Mathematical Soc., 2010. ISBN ISBN:
978-1-4704-1174-9. doi: 10.1090/gsm/11.

N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan. Probability Distributions on
Banach Spaces. Mathematics and its Applications. Springer Dordrecht, 1987. ISBN
9789027724960. doi: 10.1007/978-94-009-3873-1.

A. Van Barel and S. Vandewalle. Robust optimization of PDEs with random coeffi-
cients using a multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantif.,
7(1):174-202, 2019. doi: 10.1137/17M1155892.

A. Van Barel and S. Vandewalle. MG/OPT and multilevel Monte Carlo for robust
optimization of PDEs. SIAM J. Optim., 31(3):1850-1876, 2021. doi: 10.1137/
20M1347164.

P. Wacker. MAP estimators for nonparametric Bayesian inverse problems in banach
spaces, 2020. arXiv:2007.12760 [math.PR].

S. Weissmann. Gradient flow structure and convergence analysis of the ensemble
Kalman inversion for nonlinear forward models. Inverse Probl., 38, 2022. doi: 10.
1088/1361-6420/ac8bed.

A. T. Wood and G. Chan. Simulation of stationary Gaussian processes in [0, 1]%. J.
Comput. Graph. Stat., 3(4):409-432, 1994. doi: 10.2307/1390903.

L. Yang, X. Meng, and G. E. Karniadakis. B-PINNs: Bayesian physics-informed
neural networks for forward and inverse PDE problems with noisy data. J. Comput.
Phys., page 109913, 2020. doi: 10.1016/j.jcp.2020.109913.

D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural
Netw., 94:103-114, 2017. doi: 10.1016/j.neunet.2017.07.002.

K. Yosida. Functional Analysis. Springer, Heidelberg, 1980. doi: 10.1007/
978-3-642-61859-8.

J. Zech. Sparse-Grid Approzimation of High-Dimensional Parametric PDEs. PhD
thesis, ETH Zurich, 2018. doi: 10.3929/ethz-b-000340651.



	Introduction
	Outline

	Selected facts from functional analysis and measure theory
	Fundamental functional analysis
	Derivatives in function spaces
	Parametric operator equations
	Measure and integration theory

	A general formulation of optimal control problems under uncertainty
	Problem formulation
	Risk measures
	Mean based risk measures
	Coherent risk measures
	Entropic risk measure and entropic Value-at-Risk

	Random variable objective function
	Existence and uniqueness of solutions
	Reduced formulation of the optimization problem
	Optimality conditions
	Parametric linear forward operators
	Equivalence between parametric and weak parameter formulation
	Linear quadratic optimal control


	Examples of optimal control problems
	Elliptic PDE constraint
	Weak formulation
	Reduced problem
	Derivatives and adjoint problem
	Optimality conditions

	Parabolic PDE constraint
	Weak formulation
	Dual problem
	Reduced problem
	Derivatives for linear risk measures, including the expected value
	Derivatives of the entropic risk measure
	Optimality conditions

	Analytic parametric linear operator constraints
	Derivatives and dual problem
	Optimality conditions

	Projected gradient descent
	Numerical experiments

	Error contributions and error expansion
	Elliptic PDE constraint
	Parabolic PDE constraint
	Parametric linear operator constraints

	Regularity analysis
	Elliptic PDE
	Parabolic PDE
	Analytic parametric linear operators


	Truncation of the parametric dimension
	Problem setting
	Infinite-dimensional integration
	Dimension truncation error
	Application to parametric PDEs and optimal control
	Numerical experiments
	Lognormal input random field
	Nonlinear quantity of interest
	Elliptic optimal control problem
	Parabolic optimal control problem


	Quasi-Monte Carlo methods
	Randomly shifted rank-1 lattice rules for real-valued functions
	Randomly shifted rank-1 lattice rules for Bochner integrals
	Numerical experiments
	Elliptic optimal control problem
	Parabolic optimal control problem


	Discretization and multilevel methods
	Finite element discretization
	Multilevel quasi-Monte Carlo for optimal control problems
	Sampling and discretization
	Multilevel quasi-Monte Carlo quadrature
	Error and cost
	Numerical experiments
	Convergence analysis


	One-shot learning of surrogates
	Surrogates in one-shot optimization under uncertainty
	Problem formulation
	Surrogates
	Consistency analysis
	Convergence of pERM to cRM
	Stochastic gradient descent for pRM problems
	Application to linear surrogate models
	Numerical experiments

	Application to Bayesian inverse problems
	Introduction to inverse problems
	Bayesian approach to inverse problems
	One-shot formulation for inverse problems
	Vanishing noise and penalty methods
	Ensemble Kalman inversion
	Numerical experiments


	Conclusions and outlook
	Bibliography

