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Abstract

This paper proposes a game-theoretic model to analyze the strategic behavior of

inc-dec gaming in market-based congestion management (redispatch). We extend exist-

ing models by considering incomplete information about competitors’ costs and a finite

set of providers. We find that these extensions do not dissolve inc-dec gaming, which

already occurs in our setup of two regions. We also benchmark market-based redispatch

against grid investment, cost-based redispatch, and the Vickrey-Clarke-Groves mecha-

nism. The comparison highlights a significant inefficiency of market-based redispatch

and inflated redispatch payments. Finally, we study seven variations of our basic model

to assess whether different market fundamentals or market design changes mitigate inc-

dec gaming. None of these variations eliminate inc-dec gaming entirely.
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1 Introduction

Through much of the 20th century, the power industry was vertically integrated, mostly

fossil-fuel based, and organized regionally. Market liberalization and the energy transition

lead to an increased distance between generators and consumers. Renewable energy plants

are most productive at sites with high resource availability. The expansion of wind turbines

is usually concentrated in windy areas, for example along coastlines. Both wind and solar

power stations are preferably built where land prices are low. Also, during the past decades,

European countries have progressively integrated their electricity markets.

In Europe, electricity markets are organized in large pricing (or “bidding”) zones. Within

a bidding zone, the electricity price is uniform for each time step. This implies that prices

do not reflect intra-zonal network constraints, as if the entire internal network was a copper

plate. While this simplification has helped the integration of the European markets into the

world’s largest electricity market, it imposes new challenges in times of increasing network

congestion.

In zonal markets, transmission system operators relieve the overload of network ele-

ments within zones through out-of-the market measures. The most important instrument is

“redispatching” power stations: some market participants who contribute to network con-

straints alter their generation or consumption such that the power flow on congested lines is

reduced.1 In many European countries, the use of redispatch has increased over the years,

leading to higher costs (ACER & CEER, 2021). How to procure redispatch resources is

subject to an intense debate. While participating in redispatch has often been mandatory,

the European Commission proposed to turn this into voluntary redispatch markets. Here,

system operators procure redispatch resources from market participants through auctions.

This paper proposes a game-theoretic model to study strategic behavior in market-

based redispatch. It has been long understood that firms factor in profit opportunities from

redispatch markets and change their spot market bids accordingly (Hirth & Schlecht, 2019).

Such behavior is known as “inc-dec gaming”. Inc-dec gaming increases network constraints,

and has caused severe problems in the past. Most prominent is the case of California, where

strategic behavior contributed to a series of rolling blackouts in 2000/01 (Alaywan et al.,

2004; Brunekreeft et al., 2005). This eventually led to the introduction of nodal pricing in

2009 (Cramton, 2019). Other cases where inc-dec gaming occurred are the Scottish-English

border, where transmission congestion strongly increased after the rapid expansion of wind

energy in Scotland (Konstantinidis & Strbac, 2015), and the Italian market (Graf et al.,

2021).

Only few authors have so far studied market-based redispatch by analytically solving

1The European Regulation 2019/943 on the internal market for electricity defines the term redispatch as
both generation and consumption control measures for congestion management (EU, 2019).
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for the Nash equilibrium of the game played by market participants. The main reference is

Holmberg and Lazarczyk (2015). They assume a continuum of infinitesimally small genera-

tors, which have full information about all costs. The authors find that the dispatch under

nodal pricing equals the final dispatch of a zonal spot market with uniform pricing followed

by market-based pay-as-bid redispatch,2 which are both an efficient allocation. Also the

local market-based redispatch prices are the same as in markets with nodal pricing. A key

difference in the outcomes of the two market designs is that generators’ total profits are

higher in zonal markets with redispatch. This is for two reasons: first, generators trade

at the higher of the uniform zonal or their local redispatch price. Second, generators at

export-constrained nodes can make a profit without producing electricity: they sell electric-

ity at the zonal price and buy it back at the lower local redispatch price. Hence, one main

result of Holmberg and Lazarczyk (2015) is that inc-dec gaming also occurs in a perfectly

competitive market. This finding is supported by Hirth and Schlecht (2019), who point out

a number of consequences of inc-dec gaming.

Another stream of literature studies inc-dec gaming by using bi-level equilibrium mod-

eling (Sarfati et al., 2019; Sarfati & Holmberg, 2020). These papers have in common that

they assume oligopolistic competition and full information about costs. Their models also

provide evidence for inc-dec gaming in redispatch markets.

Grimm et al. (2022) combine analytical and numerical modeling and find in a full-

information model that market-based redispatch with a cost-minimizing system operator

may result in inefficient (i.e., not welfare-maximizing) outcomes for more than two nodes

or regions.

Our paper extends the analysis by Holmberg and Lazarczyk (2015) by relaxing two of

their strong assumptions: we assume incomplete information about competitors’ costs and

a finite set of providers. The assumption of incomplete information of market participants

about their competitors’ costs is motivated by the increasing market shares of renewable

energy sources and flexible assets such as storage and flexible consumers. The costs of

both types of technologies are difficult to predict for other market participants because the

availability of renewable energy resources varies over time and the costs of flexible market

participants are mainly determined by opportunity costs. Second, we consider cases with a

finite set of generators, reflecting the oligopoly situation in some electricity markets.

We derive three main findings from our model. First, we find that market-based redis-

patch leads to a significant inefficiency resulting from inc-dec gaming. Second, we show that

gaming also occurs when the number of generators goes to infinity or when the uncertainty

about competitors’ costs vanishes. Third, we analyze the effect of three different market

fundamentals (competition and market size, different congestion levels, and the probability

2The outcome is the same whether there is one bid per market stage or with a single bid for both stages.
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of congestion) and four market design changes proposed as mitigation measures in literature

and by practitioners (the possibility to bid differently in spot and redispatch markets, price

caps, and uniform pricing in the redispatch market, and a hybrid model, combining cost-

based and market-based redispatch). We show that inc-dec gaming occurs in all analyzed

setups.

In the next section, we provide background information on redispatch markets and on

inc-dec gaming. Section 3 introduces our basic model as well as its results and highlights the

inefficiency resulting from market-based redispatch. We analyze how gaming opportunities

are affected by fundamental characteristics of power markets in Section 4 and market design

changes in Section 5. Section 6 summarizes and concludes.

2 Background: Markets for redispatch

Redispatch can be organized in multiple ways. In cost-based redispatch, generators are

obliged to participate, hence it is also termed mandatory redispatch. The system operator

appoints assets that must provide redispatch services and compensates them for the incurred

costs. The main problem of this approach is that the incurred costs vary between assets.

Because the system operator has incomplete information on these costs, they need to be

estimated. Such estimations are already difficult for conventional power plants, where costs

depend, among others, on the asset’s efficiency and fuel costs. For flexible demand and

storage facilities, including electric vehicles or heat pumps, such an estimation is nearly

impossible.3 As a result, these assets are usually not considered in cost-based redispatch.

The limited number of assets participating in the redispatch mechanism lowers its economic

efficiency and potentially even renders the redispatch impossible if not enough steerable

units are available in a deficit region.

An alternative approach is voluntary market-based redispatch, which is at the core

of this paper. In this auction-based mechanism, market participants can submit bids to

indicate at which price they are willing to adjust their output or consumption. This facil-

itates the participation of flexible demand and storage facilities consumers. Proponents of

market-based redispatch argue that this mechanism would be more efficient due to the par-

ticipation of flexible assets. The European Commission is among these proponents. In 2016,

it stipulated market-based redispatch as the default mechanism in the Electricity Market

Regulation recast, which became effective in 2019 (EU, 2019).4

3To determine an adequate compensation for these assets, system operators would need to estimate each
consumer’s opportunity costs, i.e., their willingness to pay for electricity.

4Redispatch must be organized via a competitive mechanism, unless one of the following exemptions
apply: no market-based alternative is available, all available market-based resources are exhausted, the
number of available units is too low to ensure effective competition, or the current grid situation leads to
congestion in such a frequent and predictable way that market-based redispatch would result in strategic
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Market-based redispatch can be interpreted as a two-stage market where the first stage is

a zonal short-term market (spot market) and the second stage are local redispatch markets.

These two market stages open opportunities for inc-dec gaming. When network constraints

occur in the spot market allocation, generators in the importing region prefer selling on their

regional redispatch market, where prices are higher than on the zonal spot market, which

does not reflect local scarcity in supply. Thus, generators bid sufficiently high on the spot

market not to be dispatched. Conversely, generators in the export-constraint region can

profit by being downward redispatched. They bid low on the spot market thereby ensuring

being dispatched. On the redispatch market, generators with high generation costs buy the

electricity back at a lower price.

Such inc-dec gaming in market-based redispatch is problematic for multiple reasons.

First, it inflates the volume of redispatch: network congestion increases because generators

in the deficit area increase their bids in the spot market to benefit from higher redispatch

prices. Second, generators that participate in gaming will be able to extract rents, i.e.,

gaming generates windfall profits. Third, gaming is problematic for financial markets, since

the spot market, which serves as underlying for futures and forward contracts, becomes less

meaningful. This reduces the possibility to hedge prices. Finally, gaming provides perverse

investment incentives: it incentivizes the construction of additional generators in surplus

regions. In the extreme, it leads to investments of generation assets in the oversupplied

region with the sole purpose to engage in gaming but never to actually generate electricity.

3 Strategic behavior in market-based redispatch

In this section, we introduce our game-theoretic model to study the behavior of profit-

maximizing generators in the presence of redispatch markets.

3.1 Basic model

The model is chosen such that it captures the relevant characteristics of the strategic sit-

uation of generators under market-based redispatch and at the same time is as simple as

possible to enable analytical tractability and the traceability of results. We focus on the

behavior of generators and assume price inelastic consumers. This reveals the fundamental

incentives under market-based redispatch, which are also transferable to flexible consumers.

The setup of the basic model is depicted in Figure 1. There are n = nA+nB generators,

each of whom can provide one unit of electricity at one of two regions, A and B. This setup

bidding. Currently, many member states apply market-based redispatch, (e.g., Finland, Italy, Sweden, and
the Netherlands), others make use of the exemptions and apply cost-based redispatch (e.g., Germany), and
a third group applies a combination of market-based and cost-based redispatch (e.g., Denmark, France, and
Ireland).
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Figure 1: Setup of the model in the basic case

can be interpreted as one bidding zone in which network congestion occurs only on the

transmission line between the regions A and B. The installed network capacity c for an

exchange between A and B is k units, c = k, k ∈ {1, 2, 3, . . .}.
Regions A and B differ with respect to demand and number of generators. Demand at

A is dA = 0 and demand at B is dB = 2k. There are nA ≥ 2k + 1 generators in A and

nB = 2k generators in B. Thus, generators in B are able to satisfy demand, but there is

competition from A, which can satisfy up to half of the demand (due to the transmission

constraint).5

The game has two stages: In the first stage, generators submit a bid in the spot market,

and, depending on the spot market outcome, redispatch markets are conducted in which

generators can submit a second bid.

We assume that generators are profit-maximizing and sequentially rational. Each provider

knows its generation costs and their relative position in the distribution of generators’ costs.

Generation costs are private information, i.e., providers do not know their competitors’ costs.

This is modeled as follows. Generation costs are i.i.d. random variables Xi,

i ∈ {1, 2, . . . , n}, with the cumulative distribution function F with full support on the

interval [x, x̄], which is normalized to [x, x̄] = [0, 1] for convenience. The probability den-

sity function is denoted by f . The realization xi of Xi is private information of generator

i (independent private values approach). We also use the conditional random variable

Xi | Xi < y, whose cumulative distribution function and probability density function are

given by G(x | y) = F (x)/F (y) and g(x | y) = f(x)/F (y). The jth order statistic of n

draws is denoted by X(j,n) or X(j,n) | X(j,n) < y, and their respective cumulative distribution

function and probability density function by F(j,n) and f(j,n) or G(j,n) and g(j,n).
6

5We vary demand (relative to k) and certainty of demand in sections 4.2 and 4.3. The case nA = 2k is
analyzed separately in Section 4.1.

6Notation: X(1,n) ≤ X(2,n) ≤ . . . ≤ X(n,n), i.e., the first order statistic X(1,n) is the smallest, X(1,n) =
min{X1, X2, . . . , Xn} (Ahsanullah et al., 2013).
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Consequently, the generators with the lowest costs can be in any of the two regions.

The basic model captures both the case that generators’ costs are such that cost-minimizing

dispatch makes full use of the transmission capacity and the case that no congestion occurs.

Regions are asymmetric in the sense that congestion of a transmission line is possible only

in one direction. Thus, an efficient dispatch only sometimes involves network congestion

(depending on the realized costs), but if a congestion occurs, its direction is always the

same.7

Maximum bids at the spot market and the market for upward redispatch are limited to

r, where r ≥ 1, and minimum bids at the market for downward redispatch to r = 0. These

boundaries enable all generators to bid up to or down to their costs. At the spot market,

each generator i submits a price bid bSAi or bSBi, where the notation indicates region A or

B. Bids are sorted in ascending order and the lowest bids win. The spot market price p

is determined by the lowest rejected bid. With dB = 2k, the 2k lowest bids win, and the

(2k + 1)-lowest bid determines the clearing price.

Market-based redispatch is conducted if the spot market allocation is not feasible due to

the grid constraint. In our basic model, in which transmission capacity is limited to c = k,

ℓ units of electricity will be redispatched when k + ℓ generators with a winning bid in the

spot market are located in A. Then, in region A, k + ℓ generators with a winning bid in

the spot market compete for downward redispatch of ℓ units by submitting bids bRAi. In B,

generators without a winning bid in the spot market compete for upward redispatch of ℓ

units by submitting bids bRBi.

The redispatch markets are organized as auctions with pay-as-bid pricing.8 At the

auction for downward redispatch, the highest bids win and the winners pay their bid (i.e.,

the provider buys the electricity back); at the auction for upward redispatch, the lowest

bids win and the winners are paid their bid (i.e., the provider sells the electricity). Thus, a

provider that is downward redispatched has a profit (payoff) equal to the spot market price

minus the provider’s redispatch bid; a provider that is upward redispatched has a profit

equal to the provider’s redispatch bid minus generation costs.

This model has a Perfect Bayesian Equilibrium in which only generators in A win in

the spot market and redispatch is always necessary. Since in both A and B the equilibrium

bidding function is symmetric, we omit the provider index i. The proposition is proven in

Appendix A.

7This assumption can be justified by real-world network characteristics in which congestion occurs usually
in the same direction (until the network may finally be enforced) or by predictability of the direction of a
congestion for specific market time units.

8In Section 5.3, we will show that uniform pricing leads to the same outcome.
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Proposition 1. The game has a Perfect Bayesian Equilibrium in which only generators in

A are dispatched in the spot market, redispatch is always necessary, and the final dispatch

is inefficient.

The equilibrium bidding functions βS
A(x) and βS

B(x) in the spot market are

βS
A(x) =

∫ x

0
tg(k,2k−1)(t | x)dt = E[X(k,2k−1) | X(2k−1,2k−1) < x] for all x ∈ (0, 1], (1)

βS
B(x) ∈ [E[X(k,2k−1)], r] arbitrary for all x ∈ [0, 1]. (2)

The equilibrium bidding functions βR
A(x) and βR

B(x) in the redispatch markets comprise

βR
A(x) =

∫ x
0 tg(k,2k−1)(t | y)dt
G(k,2k−1)(x | y)

= E[X(k,2k−1) | X(k,2k−1) < x,X(2k−1,2k−1) < y] (3)

for all x ∈ (0, y], where y = (βS
A)

−1(p) and p is the spot market price,

βR
B(x) =

∫ x
0 tf(k,2k−1)(t)dt

1− F(k,2k−1)(x)
= E[X(k,2k−1) | X(k,2k−1) > x] for all x ∈ [0, 1). (4)

Boundary bids are βS
A(0) = 0, βR

A(0) = 0, and βR
B(1) = 1.9

In the equilibrium, all spot market bids of generators in A are lower than the bids of

generators in B, βS
A(x) ≤ E[X(k,2k−1)] for all x. Thus, 2k generators in A win at the spot

market, and the redispatch of k units is always necessary. Note that the probability for

network congestion would be much lower if generators did not engage in gaming and bid

their generation costs at the spot market (βS(x) = x). For k = 1, redispatch would occur

only with probability
(

nA
nA−2

)
/
(
nA+2
nA

)
, e.g., 30% if nA = 3.

The equilibrium bidding functions βS
A(x), β

R
A(x), and βR

B(x) are strictly increasing in x.

Thus, the 2k generators with the lowest costs in A win at the spot market, and the spot

market price p is determined in A by the provider with the (2k + 1)th-lowest costs. In the

redispatch markets, in A the k generators with the higher costs among the 2k generators

that win at the spot market are downward redispatched, and in B, the k generators with

the lowest costs are upward redispatched.

As βS
A(x) < x for all x ∈ (0, 1], the spot market price is below the costs of the price-

setting provider. Bidders in A bid weakly lower in the spot market than in the redispatch

market: βS
A(x) = βR

A(x) for x ∈ [0, y] and k = 1, and βS
A(x) < βR

A(x) for x ∈ (0, y) and

k ≥ 2. However, their bid in the redispatch market is of course lower than the spot market

price, βR
A(x) ≤ p.

The intuition behind the equilibrium is as follows. First consider the second stage, the

redispatch markets. At the redispatch market in region A, the 2k spot market winners

9The off-the-equilibrium-path parts of the equilibrium bidding strategies, which are complete bidding
plans for each type and each contingency, are described in Appendix A.
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compete for buying (back) k units and saving their costs. The bidding function βR
A(x)

is the same as in a pay-as-bid forward auction with k units and 2k generators (Krishna,

2010), with costs distributed between 0 and y, the costs of the price-setting provider in

the spot market. That is, generators bid the (conditional) expected costs of their median

competitor under the condition that these expected costs are below the own costs.10 At

the redispatch market in B, generation must be increased compared to the spot market

clearing. 2k generators compete for selling k units and, thus, the bidding function βR
B(x) is

the same as in a pay-as-bid reverse (procurement) auction with k units and 2k generators.

That is, generators bid the expected costs of their median competitor under the assumption

that these are above their own costs. At the spot market, generators in A compete for the

spot market payment, which either implies incurring their costs (if they are among the spot

market winners with the lower costs) or buying back their electricity at the price βR
A(x) (if

they are among the spot market winners with the higher costs). Generators in B abstain

from competing at the spot market because there is less competition for the k units at their

redispatch market than at the spot market.

A provider who wins at the worst spot market price conditional on winning, i.e., a price

equal to the provider’s bid, knows the price-setting provider has the same type, y = x.

Such a provider bids at the redispatch market as in the spot market, βR
A(x) = E[X(k,2k−1) |

X(k,2k−1) < x,X(2k−1,2k−1) < x] = E[X(k,2k−1) | X(2k−1,2k−1) < x] = βS
A(x). Then this

provider will win in the redispatch market and buy back the electricity at the same price

as the spot market price, so the profit is zero, as if the provider had not won in the spot

market. A provider who has bid below the spot market price will have a probability of less

than one of winning the redispatch market and buying back the electricity at a positive

profit (as the spot market price is higher than that supplier’s redispatch bid), and also has

a positive probability of having to produce and making a loss.

In both regions, the expected profit of generators with x ∈ [0, 1) is positive and decreases

with their costs. Moreover, the expected profit of a provider in B with costs x ∈ [0, 1) is

higher than of a provider in A with the same costs. Unlike the generators in B, the generators

in A with x > 0 run the risk of incurring a loss because they bid below their costs on the

spot market, βS
A(x) < x for x ∈ (0, 1]. Therefore, it is possible for a provider to win in

the spot market at a price p below x, but not win in the redispatch market. This provider

suffers a loss of p− x.

In this setting, the generators’ uncertainty about the competitors’ costs requires them

to trade off the different potential outcomes that may result from their bid, making their

decisions risky. As a result of the uncertainty, the final dispatch may not be efficient, i.e., it

10The order statistic X(k,2k−1) is the random variable of the median of the sample of 2k − 1 independent
draws from F . Thus, the bids βS

A(x), β
R
A(x), and βR

B(x) are equal to an expected value of the sample median
conditional on x.
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is not the cost-optimal subset of generators that operate. An inefficiency occurs whenever

more than k of the 2k suppliers with the lowest costs are located in region B. In this case,

the efficient outcome would be that all suppliers in B generate electricity if their costs are

among the 2k lowest costs, but in equilibrium only k do so. Thus, inc-dec gaming in an

incomplete information setup adds a source of inefficiency not present in a full information

model with atomistic generators, for which Grimm et al. (2022) find an inefficient dispatch

only for settings with at least three regions.

3.2 Benchmarking market-based redispatch

To assess the generation costs and electricity payments in case of market-based redispatch

with strategic behavior, we compare it with three theoretical benchmarks: grid investment,

optimal cost-based redispatch, and the Vickrey-Clarke-Groves mechanism, which incents

truthful bidding and results in a cost-efficient dispatch.The comparisons in this section also

hold for uniform pricing in the redispatch markets and a single bid for spot and redispatch

markets because these are outcome-equivalent to the basic model.

As first benchmark, we compare market-based redispatch with the alternative of grid

investment. Redispatch becomes dispensable when the network is expanded to the extent

that congestion no longer occurs. Then, generators have an incentive to bid their marginal

costs on the spot market, β(x) = x. In our model, a grid capacity of c ≥ 2k satisfies this

criterion. Whether this is economically efficient depends on the costs of network expansion,

which we do not consider in this comparison. In practice, it is usually efficient to accept a

certain share of network congestion in order to not expand transmission infrastructure for

rare events (R. Green, 2003).

The second benchmark is the theoretical case of optimal cost-based redispatch. This

benchmark case represents a situation in which the system operator has full information

about costs and makes use of it. In this case, generators have an incentive to bid their

costs at the spot market, β(x) = x, for the following reasons. A provider that is upward

redispatched is paid its costs, which, deviating from the basic model, are assumed to be

known to the system operator. Thus, there is no gain from being redispatched up. This

provider prefers to win in the spot market if the costs are below the price. A provider that

is downward redispatched has a payoff equal to the spot market price minus the costs. By

bidding above costs at the spot market, the provider decreases the probability of winning.

By bidding below costs, the provider increases the chance of winning but wins only in

additional cases where the spot market price is below the costs. Hence, the provider makes

a loss either from producing or from being redispatched down and paying the costs.

The third benchmark is the Vickrey-Clarke-Groves (VCG) mechanism. This one-step

mechanism determines an efficient (cost-minimizing) dispatch given the transmission con-
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Table 1: Generation costs and payments under market-based redispatch and the three
theoretical benchmarks for uniformly distributed costs (X ∼ U [0, 1]), k = 1, nA ≥ 3

Scenario Generation
costs

Spot market
payments

Redispatch
payments

Energy
payments

Market-based
redispatch

1
3 + 1

nA+1 2· 3
2(nA+1)

2
3 − 1

nA+1
2
3 + 2

nA+1

Grid
investment

3
nA+3 2· 3

nA+3 – 6
nA+3

Cost-based
redispatch

n2
A+8nA+18

3(nA+2)(nA+3) 2 · 3
nA+3

nA(nA−1)
3(nA+2)(nA+3)

n2
A+17nA+36

3(nA+2)(nA+3)

VCG mecha-
nism

n2
A+8nA+18

3(nA+2)(nA+3) – –
2(n2

A+8nA+18)
3(nA+2)(nA+3)

straints and provides a robust incentive (a weakly dominant strategy) to bid the costs,

β(x) = x (Clarke, 1971; Groves, 1973; Krishna, 2010; Vickrey, 1961).11 It thus provides

the theoretical benchmark of an efficient allocation in our setting with incomplete infor-

mation and non-atomistic generators.12 In the VCG mechanism, each provider is paid the

difference between the sum of the other generators’ (reported) costs in the cost-minimizing

allocation without this provider and the sum of the (reported) costs of the other generators

in the cost-minimizing allocation with this provider. In contrast to cost-based redispatch,

the auctioneer is not assumed to have and use information about the generators’ costs be-

fore conducting the mechanism. Thus, while the generation costs are the same under the

VCG mechanism and under cost-based redispatch, total electricity payments with VCG are

higher because firms receive an information rent.

Table 1 provides an overview of expected generation costs and electricity payments in

the spot and the redispatch markets; the associated calculations are provided in Appendix

B. The electricity payments are the spot market payments (two times the spot market price)

plus the redispatch payments. To simplify the comparison, we assume a uniform distribution

(X ∼ U [0, 1]) and set k = 1 (i.e., demand in B in the basic model is dB = 2). Figure 2

visualizes the costs and payments for nA = 3.

Generation costs are highest with market-based redispatch due to the inefficient final

dispatch in the case when the two cheapest generators are located in B. Optimal cost-

based redispatch and the VCG mechanism allocate efficiently, i.e., they lead to the lowest

generation costs given the transmission constraint c = 1, which requires generation of at

11The VCG mechanism is the unique mechanism with these properties. Only fixed transfers added to the
payments resulting from a VCG mechanism, would also not affect the incentives (J. Green & Laffont, 1979;
Holmstrom, 1979).

12In contrast to locational marginal pricing (nodal pricing), generators cannot profit from inducing a
transmission constraint by misstating costs in the VCG mechanism.

10



Figure 2: Costs and payments in cost-based redispatch and the benchmark scenarios for
X ∼ U [0, 1], k = 1, nA = 3

least one unit in B. Generation costs are lowest with grid investment, because it results in

an efficient dispatch of generators and does not encounter transmission constraints. The

difference in generation costs between market-based redispatch and the VCG mechanism is

the efficiency loss caused by the strategic behavior under market-based redispatch. As nA

increases, the generation costs of market-based redispatch, optimal cost-based redispatch,

and the VCG mechanism converge because it becomes more likely that generation by only

one unit in B is efficient; in the limit (nA to infinity), generation costs are zero in A and

1/3 in B. The cost advantage of grid investment increases in nA.

The spot market price with market-based redispatch differs from the benchmark scenar-

ios because it is determined by the competitive bids in region A. In the example, the spot

market price is lower with market-based redispatch. As nA goes to infinity, the spot market

price in each scenario converges to zero due to intense competition.

Total energy payments with market-based redispatch are higher than in the benchmark

scenarios due to the additional redispatch payments. The difference in energy payments be-

tween market-based redispatch and the VCG mechanism is the additional payment caused

by the strategic behavior under market-based redispatch. As nA increases, the difference

in payments between the scenarios with c = 1 and the scenario with grid investment (with

c = 2) increases, such that grid investment becomes more profitable. As nA goes to infinity,

redispatch payments with cost-based redispatch converge to 1/3, which equals the expected

generation costs of the redispatched provider in B, and redispatch costs with market-based

redispatch converge to 2/3 (the expected generation costs of the provider that does not

produce) due to the information rent to the producing provider in B. With the VCG mech-
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anism, the information rent in the limit is also 2/3. Even in the limit, generators in B make

a profit under market-based redispatch and the VCG mechanism because the transmission

constraint limits competition from region A. Total energy payments converge to zero with

grid investment, to 1/3 with cost-based redispatch, and to 2/3 with market-based redispatch

and with the VCG mechanism.

4 Impact of market fundamentals

This section focuses on market fundamentals that might influence the likelihood of inc-

dec gaming. To this end, we analyze variants and extensions of the basic model. Formal

derivations of the results are given in Appendix C.

4.1 Competition and market size

To assess the impact of competition and market size, we vary the number of generators nA

and investigate the limit cases of nA or k going to infinity.

In the basic model, we have excluded the case nA = 2k, which differs from the case

nA > 2k in that there is no competition within A for the 2k units. The bidding functions

given in Proposition 1 form also an equilibrium in case nA = 2k. However, then a bid

βS
B from market B determines the spot market price, which can therefore be very high.

Furthermore, in this case, bids βS
A just need to be sufficiently low to prevent spot market

competition from region B and to assure winning 2k units (i.e., βS
A(x) ≤ E[X(k,2k−1)] given

βS
B from (2)).

Next, consider the case of nA growing infinitely large. The basic model comprises all

nA ≥ 2k + 1, and the equilibrium bidding functions are independent of the number of

generators. This is because competition in A boils down to competition between (the best)

2k generators at the redispatch market for avoiding to produce k units. If nA goes to

infinity, although bidding functions are unchanged, the spot market price and the profits

of generators in A go to zero due to the selection of the generators with the lowest costs.

Thus, an increase in competition lowers the effect of inc-dec gaming but does not dissolve

its incentives.

Now consider the case of k going to infinity, where varying k changes the market size.

An increase in k increases both the number of units supplied and demanded, as well as the

number of units that can be transported; in the limit, when k goes to infinity, generators

become atomistic. With nA ≥ 2k + 1, the lower bound on nA increases with k, so that in

the limit as k goes to infinity we have that 2k/nA goes to some value κ ∈ (0, 1]. If k goes

to infinity, according to (5), the equilibrium bid βS
A(x) in (1) converges to the median of

the conditional distribution F (s | s ≤ x), which is equal to F−1(F (x)/2). Thus, if 2k of nA

12



generators in A win on the spot market, the spot market price p converges to F−1(κ/2).

According to (7), the redispatch bid βR
A(x) in (3) converges to x for all x ≤ p, and converges

to p for all x > p. According to (8), the redispatch bid βR
B(x) in (4) converges to the median

of F , which is equal to F−1(1/2), for all generators with costs below the median and to x

for all generators with costs higher than the median.

lim
k→∞

βS
A(x) = F−1

(
F (x)
2

)
for x ∈ [0, 1], (5)

lim
k→∞

βS
B(x) ∈

[
F−1

(
1
2

)
, r
]
, (6)

lim
k→∞

βR
A(x) =

x if x ∈
[
0, F−1

(
κ
2

)]
,

F−1
(
κ
2

)
if x ∈

(
F−1

(
κ
2

)
, F−1(κ)

]
,

(7)

lim
k→∞

βR
B(x) =

F−1
(
1
2

)
if x ∈

[
0, F−1

(
1
2

)]
,

x if x ∈
(
F−1

(
1
2

)
, 1
]
.

(8)

In the limit, generators in A with costs below p deliver electricity, while those with

costs higher than p are redispatched or do not win at the spot market. Thus, the profits

of the producing generators are positive in the limit, while the profits of the redispatched

generators go to zero. A profit of zero is also made by generators whose costs are higher

than F−1(κ/2) who thus are not dispatched on the spot market. Generators in B with

costs below the median F−1(1/2) deliver electricity, while those with costs higher than the

median do not. The profits of the redispatched generators are positive, while the profit of

the other generators in B is zero.

When k goes to infinity, given the transmission constraint, the outcome is efficient

because the marginal generator in A does not have higher costs than the marginal generator

in B (κ/2 ≤ 1/2).

In the limit, our model is one of full information with an infinite amount of atomistic

generators, and, thus, the equilibrium outcome is the same as in the equilibrium identified

by Holmberg and Lazarczyk (2015). Thus, even a setting where inc-dec gaming does not

lead to inefficiency and increased payments under perfect competition still involves these

negative properties if we move to incomplete information and a finite number of generators.

4.2 Varying cost-related congestion

We vary cost-related congestion by varying both the probability of cost-related congestion

(i.e., the probability of generation costs for which the transmission capacity prevents that

the generators with the lowest costs satisfy the demand) and the cost-related congestion

level (i.e., the maximum amount to be redispatched max{nA, dB}− k). In the basic model,

the maximum amount to be redispatched is one unit and, whereas congestion always occurs

13



in equilibrium, the probability of cost-related congestion is less than one (see Section 3.1).

We extend our analysis by also studying scenarios where this is not the case, i.e., where

congestion occurs with probability zero, or where the congestion level is higher than in the

basic model. For this purpose, we vary the demand. Since we want to identify and illustrate

the basic effects of varying congestion, for simplicity we set k = 1 and consider the two cases

dB = 1 and dB = 3.

If dB = 1, congestion is impossible because total demand can be covered by any provider.

Any spot market outcome is feasible and the redispatch stage can be discarded. Therefore,

the spot market corresponds to a second-price auction, in which bidding the costs is a weakly

dominant strategy. Thus, βS
A(x) = x and βS

B(x) = x constitute an equilibrium.

If dB = 3, one unit of electricity must be produced in A to cover the total demand, while

the other two units of electricity must be produced in B due to the transmission constraint

c = 1. Therefore, both generators in B will deliver electricity no matter which bids they

submit. Assuming nA > 3,13 the equilibrium bidding functions are

βS
A(x) =

∫ x

0
tg(1,2)(t | x)dt for all x ∈ (0, 1], (9)

βS
B(x) ∈ [E[X(1,2)], r] arbitrary for all x ∈ [0, 1], (10)

βR
A(x) =

∫ x
0 tg(1,2)(t | y)dt
G(1,2)(x | y)

for all x ∈ (0, 1], (11)

βR
B(x) = r for all x ∈ [0, 1], (12)

where y = (βS
A)

−1(p) > x denotes the costs of the price-setting provider in the spot market.

The boundary bids are βS
A(0) = 0 and βR

A(0) = 0.

Note that bidding at the redispatch market in region A can also be expressed as βR
A(x) =

E[X(1,2) | X(1,2) < x,X(2,2) < y]. Thus, generators bid the expected costs of the lower of

their two competitors (whom they have to beat), given that the lower of the two competitors’

costs is less than x and the higher of the two competitors’ costs is less than y. Similarly,

their bids at the spot market can be expressed as βS
A(x) = E[X(1,2) | X(2,2) < x], with the

intuition identical to that in the basic model (in the worst case conditional on winning,

where y = x and the spot market price is βS
A(x), the provider is just indifferent between

winning and losing at the spot market). In B, the two generators face no competition at

the redispatch market and thus bid the maximum bid r. At the spot market they bid such

that they do not win, as in the basic model.

Comparing the cases dB ∈ {1, 2, 3}, we find that generators in A react to higher demand

(i.e., higher congestion) by bidding more aggressively (i.e., lower) in the spot market, but

13For nA = 3, the bidding functions in the redispatch markets are the same as for nA > 3. Bidding in the
spot market assures that generators from A win, but the spot price is determined by a bid from region B.
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generators in B bid competitively in the spot market only if dB = 1. Redispatch is necessary

only if dB ∈ {2, 3}. With higher demand, the redispatched amount is higher and therefore

competition at the redispatch markets is lower. Thus, bids in the forward redispatch market

in region A decrease and bids in the reverse redispatch market in region B increase. These

bids feed back into the spot market. Notably, expected payoffs of generators in A do not

vary with dB ∈ {2, 3} because in each case one unit is generated in A.14

4.3 Uncertainty about congestion

As a further variation of the model, we study the case of uncertainty about congestion in

the network. One motivation for this sensitivity analysis is the claim that inc-dec gaming

would only occur when network congestion is well predictable.

Methodologically, we implement the uncertainty about network congestion as stochastic

demand, i.e., generators do not know the level of demand when submitting their bids in

the spot market. This is equivalent to uncertainty about network congestion because the

level of demand determines whether and how much the network is congested. The results

of the models are given in Appendix C.3. For simplicity we again set k = 1, and examine

the case that demand dB is stochastic in {2, 3} each with probability 1/2 and the case that

dB ∈ {1, 2} each with probability 1/2.

In both cases, at the redispatch stage, demand for upward and downward redispatch is

known. Therefore, the redispatch bidding functions of the basic model (3) and (4) apply

when one unit of redispatch is required, and bidding functions of the case dB = 3 apply

when there is demand for two units of redispatch.

At the spot market, if demand is stochastic with dB ∈ {2, 3} and nA > 3, generators

in A choose bids that lie in-between those in the cases dB = 2 and dB = 3. Generators

with low costs bid more closely to the case dB = 2 whereas those with high costs bid more

closely to the case dB = 3. As nA increases, the bidding function converges to that of case

dB = 3. Generators in B bid such that they do not win at the spot market. Depending on

the realized demand, there is one or two units of redispatch. Expected payoffs of generators

in A are as in the cases dB ∈ {2, 3}, which are equal.

Similarly, if demand is stochastic with dB ∈ {1, 2} and nA is sufficiently high, generators

in A choose bids that lie in between those in the cases dB = 1 and dB = 2 and those in B

bid such that they do not win at the spot market. Depending on realized demand, there is

either no or one unit of redispatch.

The analysis reveals that uncertainty about network congestion does not necessarily

reduce the occurrence of strategic behavior. A reduction in the probability of a binding

14The revenue equivalence theorem applies to comparing cases dB ∈ {2, 3} because in each case only
the provider with the lowest costs generates and the worst-off provider type, the one with costs 1, has an
expected payoff of zero.
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transmission constraint is effective if it is not strong enough (a reduction by 50% in our

model is ineffective) or may have unintended consequences (it prevents the existence of

pure-strategy equilibria)

5 Impact of market design

In this section, we analyze regulatory changes to the market design that have been brought

forward as a means to mitigate inc-dec gaming: a single bid for spot and redispatch markets,

price caps, uniform pricing in the redispatch market.15 We expand our model accordingly

and provide formal derivations of the results in Appendix C. In addition, we qualitatively

discuss a hybrid model combining market-based and cost-based redispatch.

5.1 Single bid for spot and redispatch market

This change relates to the argument that the possibility to adjust the bid of the spot market

for the redispatch market is problematic. The rationale is that if generators could not adjust

their bid, they would be unable to engage in gaming. To assess this claim, we extend the

basic model accordingly: We allow only one bid per provider that is used both for the spot

market and, if relevant, the respective redispatch market.

With only one bid and k = 1, equilibrium payoffs and final allocation are identical as

in the basic model in Section 3.1. Intuitively, the bidding functions (3) and (4) form an

equilibrium because bidding according to these functions both at the spot and the redispatch

market is according to Proposition 1 an equilibrium even if the generators are allowed

to submit different bids at the two markets. Thus, this restriction of generators’ bids is

inconsequential. The same holds in the case of full information, as has been shown by

Holmberg and Lazarczyk (2015).16

However, such invariance of bidding functions when only one bid is feasible does not

hold in general. As shown in Section 3.1, βS
A(x) < βR

A(x) for k ≥ 2, and, thus, bidding

functions differ. In Appendix C.4, we exemplary show for k = 2 the equilibrium bidding

function in A for the single-bid case. This is also true for the case k = 1 and dB = 3 (see

Section 4.2, where the equilibrium bidding function in A in the spot market (9) differs from

that in the redispatch market (11)).

Therefore, for these cases, the expected spot market price and the expected redispatch

payments with only one bid are different from those in the corresponding case of the basic

model. However, the final allocation is identical to that of the basic model, and in both

A and B the expected payoff of the provider with x = 1 is zero. Thus, overall payoff

equivalence applies (e.g., Krishna, 2010, propositions 3.1. and 5.2).

15For an extensive overview of mitigation measures see Klóters et al. (2022).
16Their equilibrium is outcome equivalent to our equilibrium as k goes to infinity (see Section 4.1).
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Accordingly, the one-shot game with a single bid for both markets has no advantage

over the approach with two bids.

5.2 Price caps

Price caps in spot and redispatch markets are proposed to restrict profits from gaming and

thus make it less attractive (Klempp et al., 2020). In the basic model, we assume price

caps that do not undercut the variable costs of the most expensive generator, i.e., the cap

is set at r ≥ 1. The outcome is the same for all these price caps. The only supply reduction

due to bids above costs is by generators with low costs in market B (as those with costs

below E[X(k,2k−1)] bid this amount or more), so overly high bids are not at the core of the

problem.

Furthermore, a price cap at the spot market changes the outcome only if it is below the

expected median costs, r < E[X(k,2k−1)]. Such a restrictive price cap at the spot market

as well as price caps r < 1 at the redispatch market in B may prevent a feasible allocation

(matching supply and demand) and thus have a negative effect on efficiency.

In the absence of market power, price caps are hence not an adequate mitigation option

for inc-dec gaming because gaming relies on bids in the range of the variable generation

costs to take advantage of arbitrage opportunities.

5.3 Uniform pricing in the redispatch market

The basic model assumes pay-as-bid pricing in the redispatch markets, as it is usually applied

in practice. However, changing the price rule in the redispatch markets to uniform pricing

yields the same results. Under uniform pricing, the highest rejected bid determines the price

in the auction for downward redispatch and the lowest rejected bid determines the price in

the auction for upward redispatch. In this setting, it is weakly dominant for generators to

bid their costs at their redispatch market, βR
A(x) = x and βR

B(x) = x. With these bidding

functions, generators’ expected payments and winning probabilities in the redispatch stage

are the same as in the basic model. Therefore, they bid at the spot market as in the basic

model, i.e., as in (1) and (2). As a result, the expected payoffs for all generators and the

dispatch are the same under uniform pricing as under pay-as-bid pricing.17

5.4 Hybrid model

Another approach is a hybrid redispatch model: a combination of cost-based redispatch for

generation units and market-based redispatch for all other flexibility units. This approach

integrates all redispatch potentials in one joint merit-order. Market-based bids are used only

17The payoff equivalence at the second stage and the overall payoff equivalence can also be derived using
the payoff equivalence theorem (e.g., Krishna, 2010, propositions 3.1. and 5.2).
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if they are cheaper than their regulated cost-based counterparts (Cramton, 2019). In the

following, we illustrate a case where the hybrid approach reduces the incentives for inc-dec

gaming and its effects.

For the analysis of a hybrid model, we consider the basic model in Section 3.1 and

assume that the costs of all 2k bidders in B are known. On this basis, we assume cost-

based redispatch for the generation units in B and market-based redispatch for the units in

A. Because the profit of generators in B in the second stage is zero regardless of whether

they are upward redispatched or not, it is optimal for them to bid their costs on the spot

market with uniform pricing. Compared to the basic model, this increases competition for

the nA suppliers from A in the spot market and may result in no need for redispatch. The

latter happens when k or more suppliers from B win on the spot market. This reduces the

probability of a provider from A to make a profit with redispatch compared to the basic

model where redispatch always occurs. This also reduces the effect of expected redispatch

profits on the spot market bid of generators from A, and thus reduces the extent of inc-dec

gaming in the form of a strategic deviation from bidding the costs in the spot market.

In conclusion, the example shows that the hybrid model reduces the incentives for inc-dec

gaming compared to market-based redispatch.

6 Conclusion

We propose a game-theoretic model to study strategic behavior in redispatch markets.

Our model comprises a setting with two interconnected regions within one pricing zone.

We extend existing models by considering incomplete information about competitors’ costs

and a finite set of generators. We identify an equilibrium in which the final dispatch is

inefficient due to the strategic behavior of inc-dec gaming. By benchmarking market-based

redispatch against grid investment, optimal cost-based redispatch, and the Vickrey-Clarke-

Groves mechanism we find that market-based redispatch leads to a significant inefficiency

due to the large redispatch payments. Finally, we study seven variations of our basic

model to assess which market are most susceptible to gaming in redispatch markets and

whether market design changes mitigate inc-dec gaming. Our assessment reveals that inc-

dec gaming can also occur in markets with high competition and with uncertainty about

network congestion. The analyzed market design changes comprise single bids for spot and

redispatch markets, price caps, uniform pricing in the redispatch markets, and a hybrid

model. None of these market design changes prevents inc-dec gaming entirely.

Our proposed model is not suitable to study other mitigation options within the design

of redispatch markets, as for example a capacity-based remuneration with more long-term

contracts. This could be an interesting avenue for further research.
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Appendix

A The equilibrium of the basic model

We prove Proposition 1, which considers the basic model in which dB = 2k, c = k, nA ≥
2k + 1, nB = 2k, k ∈ N, and we have pay-as-bid pricing in the redispatch markets.

We determine a Perfect Bayesian Equilibrium of the two-stage game (spot market fol-

lowed by redispatch markets). We consider an equilibrium (see Proposition 1) in which the

bidders’ bidding strategies βS
A, β

R
A , β

S
B, and βR

B at the spot market (S) and the redispatch

markets (R) are strictly increasing and in which βS
A and βS

B have non-overlapping image at

the spot market, that is, βS
A and βS

B are such that bids in region A are always smaller than

bids in region B. To determine the equilibrium, we apply standard techniques from auction

theory (e.g., Krishna, 2010).

Our analysis begins with determining the bidding strategies for the redispatch markets

on the second stage of the game. In the equilibrium in Proposition 1 that we are going to

prove, 2k bidders from region A and none from region B win in the spot market. Thus, the

amount to be downward redispatched at A is k and there are 2k generators that compete to

be redispatched; the amount to be upward redispatched at B is k and there are 2k generators

that compete to be redispatched.

Consider first a representative bidder with costs x ∈ [0, 1] in region A. Assume that

other bidders in A in this redispatch market bid according to βR
A . The representative bidder

also uses βR
A but pretends to have costs z. That is, the bidder submits βR

A(z), where z is

the bidder’s decision variable. The bidder’s expected payoff in the redispatch market in A

from either buying back the electricity or producing the electricity is

πR
A(x, z) = −G(k,2k−1)(z | y)βR

A(z)−
(
1−G(k,2k−1)(z | y)

)
x, (A.1)

where G(z | y) = F (z)/F (y) and y = (βS
A)

−1(p), where y are the costs of the price-

determining bidder in the redispatch market in A. These can be derived from the observed

spot market price p, which is determined in the spot market by the representative bidder’s

competitor with the 2kth-lowest costs. The first-order condition (FOC) of maximizing the

profit in (A.1) with respect to z is

∂πR
A(x, z)

∂z
= − g(k,2k−1)(z | y)βR

A(z)−G(k,2k−1)(z | y)(βR
A)

′(z) + xg(k,2k−1)(z | y) = 0.

To find symmetric equilibrium bidding functions for region A, we set z = x and obtain the
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ordinary differential equation (ODE)

g(k,2k−1)(x | y)βR
A(x) +G(k,2k−1)(x | y)(βR

A)
′(x) = xg(k,2k−1)(x | y).

With the boundary condition βR
A(0) = 0 we have

βR
A(x) =

∫ x
0 tg(k,2k−1)(t | y)dt
G(k,2k−1)(x | y)

(A.2)

= E[X(k,2k−1) | X(k,2k−1) < x,X(2k−1,2k−1) < y], (A.3)

where βR
A(x) < x. The derivative of βR

A(x) is

(βR
A)

′(x) =
g(k,2k−1)(x | y)[xG(k,2k−1)(x | y)−

∫ x
0 tg(k,2k−1)(t | y)dt]

(G(k,2k−1)(x | y))2
> 0 ∀x ∈ (0, y],

so βR
A(x) is strictly increasing and the maximum is βR

A(1) =
∫ 1
0 tf(k,2k−1)(t)dt = E[X(k,2k−1)].

Thus, bidders in A submit bids between 0 and E[X(k,2k−1)]. With the second derivative

(βR
A)

′′(x) =
g′(k,2k−1)(x | y)[xG(k,2k−1)(x | y)−

∫ x
0 tg(k,2k−1)(t | y)dt]

(G(k,2k−1)(x | y))2
+

g(k,2k−1)(x | y)
G(k,2k−1)(x | y)

−
2(g(k,2k−1)(x | y))2[xG(k,2k−1)(x | y)−

∫ x
0 tg(k,2k−1)(t | y)dt]

(G(k,2k−1)(x | y))3
,

the second derivative of πR
A(x, z) becomes

∂2πR
A(x, z)

∂z2
= g′(k,2k−1)(z | y)(x−βR

A(z))−2g(k,2k−1)(z | y)(βR
A)

′(z)−G(k,2k−1)(z | y)(βR
A)

′′(z),

which evaluated at z = x becomes −g(k,2k−1)(x | y) < 0. Thus, βR
A(x) in (A.2) is the

optimal bid in the range [0,E[X(k,2k−1)]] if the other bidders bid according to βR
A . Deviating

to a bid above E[X(k,2k−1)] is not profitable because compared to bidding E[X(k,2k−1)] the

winning probability does not change but the bidder’s payment to the auctioneer increases.

The expected equilibrium payoff of a bidder in the redispatch market in A is denoted by

πR
A(x) and is given by

πR
A(x) = −

∫ x

0
tg(k,2k−1)(t | y)dt−

(
1−G(k,2k−1)(x | y)

)
x. (A.4)

Consider a representative bidder with costs x ∈ [0, 1] in the redispatch market in B using

βR
B(z), and the other bidders in B using βR

B . The bidder’s expected profit is

πR
B(x, z) = (1− F(k,2k−1)(z))(β

R
B(z)− x). (A.5)
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The FOC of maximizing (A.5) is

∂πR
B(x, z)

∂z
= (βR

B)
′(z)− f(k,2k−1)(z)β

R
B(z)− F(k,2k−1)(z)(β

R
B)

′(z) + xf(k,2k−1)(z) = 0.

Setting z = x, the ODE becomes

(βR
B)

′(x) + xf(k,2k−1)(x) = f(k,2k−1)(x)β
R
B(x) + F(k,2k−1)(x)(β

R
B)

′(x). (A.6)

Define βR
B(1) = 1. The equilibrium bidding strategy βR

B as a solution of (A.6) is given by

βR
B(x) =

∫ 1
x tf(k,2k−1)(t)dt

1− F(k,2k−1)(x)
(A.7)

=E[X(k,2k−1) | X(k,2k−1) > x],

where βR
B > x. The derivative of βR

B is

(βR
B)

′(x) =
f(k,2k−1)(x)[

∫ 1
x tf(k,2k−1)(t)dt− x(1− F(k,2k−1)(x))]

(1− F(k,2k−1)(x))2
> 0 ∀x ∈ [0, 1),

so βR
B(x) is strictly increasing with the minimum βR

B(0) = E[X(k,2k−1)], i.e., bidders in B

submit bids between E[X(k,2k−1)] and 1. The second derivative of βR
B(x) in (A.7),

(βR
B)

′′(x) = f ′
(k,2k−1)(z)(x− βR

B(z))− 2f(k,2k−1)(z)(β
R
B)

′(z) + (1− F(k,2k−1)(z))(β
R
B)

′′(z),

becomes −f(k,2k−1)(x) < 0 at z = x. Thus, βR
B(x) is the optimal bid in the range

[E[X(k,2k−1)], 1] if the other bidders bid according to βR
B . Deviating to a bid below E[X(k,2k−1)]

is not profitable because compared to bidding E[X(k,2k−1)] the winning probability does not

change but the bidder receives less payment. Deviating to a bid between (1, r] leads to a

zero payoff. The expected equilibrium payoff of a bidder in the redispatch market in B is

πR
B(x) = (1− F(k,2k−1)(x))

(∫ 1
x tf(k,2k−1)(t)dt

1− F(k,2k−1)(x)
− x

)
=

∫ 1

x
(t− x)f(k,2k−1)(t)dt. (A.8)

Given the equilibrium bidding strategies for the redispatch markets, we now consider the

spot market on the first stage of the game. Remember, in the equilibrium we prove, bidding

strategies βS
A and βS

B have non-overlapping image at the spot market. First, we maximize

the overall expected payoff of a representative bidder in A to derive the equilibrium bidding

strategy βS
A for the spot market. Assume that other bidders in A bid according to βS

A and

the considered bidder bids βS
A(z).

To derive this expected payoff, note that a deviation to a bid below βS
A(x), i.e., choosing
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z < x, can change the information the bidder has in the redispatch market as compared to

the equilibrium beliefs used in the above calculations of the best response in the redispatch

market. If the bidder wins in the spot market with such a deviation, the bidder knows that

the opponents in the redispatch market have costs lower than those of the price-determining

bidder (with costs y) in the spot market. Therefore, any bid above βR
A(y) does not change

the winning probability but only increases the bidder’s payment to the auctioneer. As

∂πR
A(x, z)

∂z
= (x− z)g(k,2k−1)(z | y) ∀z ∈ [0, y],

the expected payoff πR
B(x, z) increases in z for all z ≤ y < x, and the bidder chooses the

highest bid in this range, which is βR
A(y). Using this, we can write the expected payoff of

the bidder in A as∫ 1

z

[
βS
A(y)−

∫ min{x,y}

0
tg(k,2k−1)(t | y)dt− (1−G(k,2k−1)(min{x, y} | y))x

]
f(2k,nA−1)(y)dy.

The FOC is(
−βS

A(z) +

∫ min{x,z}

0
tg(k,2k−1)(t | z)dt+ (1−G(k,2k−1)(min{x, z} | z))x

)
f(2k,nA−1)(z) = 0.

Setting z = x, we have

βS
A(x) =

∫ x

0
tg(k,2k−1)(t | x)dt

= E[X(k,2k−1) | X(2k−1,2k−1) < x], (A.9)

which is the expected sample median of a sample of size 2k− 1 drawn from the distribution

with support [0, x]. Since in the equilibrium x ≤ y, (A.9) is smaller than (A.3) and therefore

βS
A(x) ≤ βR

A(x). Note that (βS
A)

′(x) = xg(k,2k−1)(x | x) ≥ 0, so βS
A(x) is strictly increasing

between 0 and E[X(k,2k−1)]. Thus, the costs of a participant in the redispatch market are

lower than y. The individual rationality constraint is satisfied because the expected total

payoff of a bidder in A in equilibrium, denoted by πA(x), is

πA(x) =

∫ 1

x

[
βS
A(y)−

∫ x

0
tg(k,2k−1)(t | y)dt− (1−G(k,2k−1)(x | y))x

]
f(2k,nA−1)(y)dy.

=

∫ 1

x

∫ y

x
(t− x)g(k,2k−1)(t | y)dtf(2,nA−1)(y)dy ≥ 0,

where g(k,2k−1)(t | y) = 0, ∀t > y. Deviating to a bid lower than βS
A(x) does not change the

expected payoff. Assume that the bidder pretends to be of type z = x−a < x, a ∈ (0, x]. If
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y < z < x or z < x < y, the result does not change. In case z ≤ y ≤ x, the bidder receives

with z further payments from the spot market but pays the spot market price back in the

redispatch market. That is, the payoff is changed by∫ x

x−a

[
βS
A(y)−

∫ y

0
tg(k,2k−1)(t | y)dt− (1−G(k,2k−1)(y | y))x

]
f(2k,nA−1)(y)dy = 0. (A.10)

Deviating to a bid larger than βS
A(x) and lower than E[X(k,2k−1)] is not profitable. If

x < z < y, the payoff does not change. If x < y < z or y < x < z, the bidder’s payoff

is zero. Deviating to a bid greater than E[X(k,2k−1)] results in either the same payoff or a

payoff of zero and is therefore also not profitable.

Now consider region B in the spot market. Given that all bidders in A choose βS
A as well

as βR
A , bidders in B can bid arbitrarily between E[X(k,2k−1)] and r in the spot market, since

their bids influence neither the spot market price nor the results of the redispatch market.

The expected total payoff of a bidder in B in equilibrium is

πB(x) = πR
B(x) =

∫ 1

x
(t− x)f(k,2k−1)(t)dt ≥ 0.

If a bidder deviates to a bid z lower than E[X(k,2k−1)], then either the bidder does not win

on the spot market and expects the same non-negative payoff in the redispatch market, or

the bidder wins in the spot market and expects a lower payoff p−x ≤
∫ 1
0 tf(k,2k−1)(t)dt−x ≤

πB(x).

Since a bidding strategy is a complete bidding plan for the entire game, we must also

consider off-the-equilibrium-path behavior in the redispatch markets (e.g., Krishna, 2010).

This comprises the following cases in which the bidder can detect a deviation from equilib-

rium in the spot market (because the bidder has deviated at the spot market or because spot

market price or number of participants at the spot market are impossible in equilibrium)

and the bidder can participate in redispatch.

• The bidder in A with costs x bids βS
A(z) where z < y < x: This case is already

considered in connection with (A.10).

• At A, either k units of electricity are redispatched among 2k bidders and the spot

market price is p > E[X(k,2k−1)], or ℓ (1 ≤ ℓ < k) units of electricity are redispatched

among k + ℓ bidders: The bidder who has won at the spot market bids as in (A.2)

assuming y = 1 and, if there are ℓ units demanded in the redispatch market, adjusting

the order statistics to the observed number of goods ℓ and opponents k + ℓ− 1. The

bidder’s beliefs are that there are 2k or k+ ℓ− 1 opponents with costs drawn from F .

• At B, ℓ, 1 ≤ ℓ < k, units of electricity are redispatched among k + ℓ bidders. The
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bidder who has not won at the spot market bids as in (A.7), adjusting the order

statistics to the observed number of goods ℓ and opponents k + ℓ− 1. His beliefs are

that his opponents are k + ℓ− 1 bidders with costs drawn from F .

With this off-the-equilibrium-path behavior and the on-the equilibrium-path bidding

strategies βS
A, β

S
B, β

R
A , and βR

B , individual deviations are not profitable and we have thus

proven the equilibrium. In this equilibrium, the k bidders with the lowest costs from A

and the k bidders with the lowest costs from B deliver electricity. Because there may be

more than k generators from B among the 2k generators with the lowest costs among all

generators, the final dispatch may be inefficient. This proves Proposition 1.

Further illustrations of the results are as follows. Compare the payoffs πA(x) and πB(x)

for x ∈ [0, 1) to see that a bidder in B expects higher payoffs than a bidder with the same

costs in A:

πA(x) =

∫ 1

x

∫ y

x
(t− x)g(k,2k−1)(t | y)dtf(2,nA−1)(y)dy

=

∫ 1

x
(1− F(k,2k−1)(t))dt−

∫ 1

x

∂
∫ y
x (1−G(k,2k−1)(t | y))dt

∂y
F(2k,nA−1)(y)dy

= πB(x)−
∫ 1

x

∂
∫ y
x (1−G(k,2k−1)(t | y))dt

∂y
F(2k,nA−1)(y)dy < πB(x).

The equilibrium bidding functions and payoffs in the special case k = 1 are:

βS
A(x) =

∫ x
0 tf(t)dt

F (x)
and βS

A(0) = 0, βR
A(x) =

∫ x
0 tf(t)dt

F (x)
and βR

A(0) = 0, (A.11)

βS
B(x) ∈ [E[X], 1] arbitrary, βR

B(x) =

∫ 1
x tf(t)dt

1− F (x)
and βR

B(1) = 1, (A.12)

πA(x) =

∫ 1

x
(1− F (t))nA−1dt, (A.13)

πB(x) = πR
B(x) =

∫ 1

x
(t− x)f(t)dt ≥ 0. (A.14)

B Benchmarking market-based redispatch

Market-based redispatch

• Energy generation costs: E[X(1,2)] + E[X(1,nA)] =
1
3 + 1

nA+1

• Spot market payments: 2 · βS
A(E[X(3,nA)]) = 2 · βS

A(
3

nA+1) = 2 · 3
2(nA+1)

• Redispatch payments: βR
B(E[X(1,2)])−βR

A(E[X(2,nA)]) = βR
B(

1
3)−βR

A(
2

nA+1) =
2
3−

1
nA+1
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Grid investment

• Energy generation costs: E[X(1,nA+2)] + E[X(2,nA+2)] =
3

nA+3

• Spot market payments: 2 · β(E[X(3,nA+2)]) = 2 · E[X(3,nA+2)] = 2 · 3
nA+3

Cost-based redispatch

• Energy generation costs:

(2n+ 1) · (E[X(1,nA+2)] + E[X(2,nA+2)]) +
∑nA−1

i=1 i · (E[X(1,nA+2)] + E[X(nA+2−i,nA+2)])
(nA+1)(nA+2)

2

=
2[(2n+ 1) · 3

nA+3 +
∑nA−1

i=1 i · nA+3−i
nA+3 ]

(nA + 1)(nA + 2)
=

n2
A + 8nA + 18

3(nA + 2)(nA + 3)

• Spot market payments: 2 · β(E[X(3,nA+2)]) = 2 · E[X(3,nA+2)] = 2 · 3
nA+3

• Redispatch payments:∑nA−1
i=1 i · E[X(nA+2−i,nA+2)]−

nA(nA−1)
2 · E[X(2,nA+2)]

(nA+1)(nA+2)
2

=

∑nA−1
i=1 i · nA+2−i

nA+3 − nA(nA−1)
2 · 2

nA+3

(nA+1)(nA+2)
2

=
nA(nA − 1)

3(nA + 2)(nA + 3)

VCG mechanism

• Energy generation costs:
n2
A+8nA+18

3(nA+2)(nA+3) , as in the case of cost-based redispatch

• Energy payments:

2

(nA + 1)(nA + 2)

[
2E[X(3,nA+2)] + 2

nA∑
i=1

(E[X(3,nA+2)] + E[X(i+2,nA+2)])

+

nA+1∑
i=3

nA+1∑
j=i

(E[X(2,nA+2)] + E[X(j+1,nA+2)])


=
2[ 6

nA+3 + nA(nA+11)
nA+3 +

∑nA+1
i=3

∑nA+1
j=i

j+3
nA+3 ]

(nA + 1)(nA + 2)
=

2(n2
A + 8nA + 18)

3(nA + 2)(nA + 3)
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C Model extensions

C.1 Basic model with two bidders in region A (varying competition)

Consider the basic model with k = 1 but with only two bidders in region A, nA = 2.

As there are exactly as many bidders in A as there is demand, the difference between

this model and the basic model in Appendix A is that all bidders in A win on the spot

market. Thus, the spot market price is determined in B rather than in A.

Consider a representative bidder i with costs x in A in the redispatch market. Given

that the other bidder uses βR
A , bidder i’s expected payoff in the redispatch market in A by

bidding βR
A(z) is

πR
A(x, z) = −F (z)βR

A(z)− (1− F (z))x.

By setting z = x in the FOC and defining βR
A(0) = 0, the equilibrium bidding function is:

βR
A(x) =

∫ x
0 tf(t)dt

F (x)
= E[X | X < x], (C.1)

which corresponds to (A.11) in the basic model with k = 1. Thus, βR
A(x) in (C.1) is strictly

increasing from 0 to E[X] and deviating to a other bid is not profitable.

As the spot market is not competitive for the bidders in A, they can bid arbitrarily in

the range [0,E[X]]. Deviating to a bid greater than E[X] either does not change the result

or leads to a losing bid with zero payoff. The expected total payoff of bidders in A depends

on the expected spot market price E[PS ]:

πA(x) = E[PS ]−
∫ x

0
tf(t)dt− (1− F (x))x > 0,

where extreme outcomes like spot market prices pS = r are possible.

For bidders in B, both βR
B(x) and βS

B(x) are the same as in (A.12), and so is the expected

payoff πB(x).

C.2 Model with variation of demand (varying cost-related congestion)

Consider the basic model with k = 1 but with demand dB = 1.

Since the total demand is equal to the transmission capacity for an electricity exchange

between A and B, there is no congestion. That is, A and B can be considered as one per-

fectly interlinked region, any spot market outcome is feasible, and no redispatch will take

place. The spot market corresponds to a second-price auction, in which bidding the costs

is a weakly dominant strategy. Thus, βA(x) = x and βB(x) = x constitute an equilibrium.

The expected payoffs in equilibrium are π(x) =
∫ 1
x (t− x)f(1,nA+1)(t)dt.
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Consider the basic model with k = 1 but with demand dB = 3.

In this case, in order to cover the total demand, one unit of electricity must be produced

in region A, while the other two units of electricity must be produced in region B. As a

result, both bidders in B will deliver electricity no matter which bids they submit. Consider

first the redispatch market in B. As both bidders in B will win, it is optimal to bid the

highest possible bid, r. Thus, πR
B(x) = r − x.

Consider now the redispatch market in A. In case dB = 3 and bidding strategies with

non-overlapping image at the spot market, three bidders with the lowest costs in A win in

the spot market and participate in the redispatch market. Assuming the other bidders in

A use βR
A , the expected payoff of a bidder in A with costs x who bids βR

A(z) is

πR
A(x, z) = −G(1,2)(z | y)βR

A(z)− (1−G(1,2)(z | y))x.

Analogous to the basic model,

βR
A(x) =

∫ x
0 tg(1,2)(t | y)dt
G(1,2)(x | y)

= E[X(1,2) | X(1,2) < x,X(2,2) < y], (C.2)

which is strictly increasing between 0 and E[X(1,2)]. No bidder has an incentive to deviate

from this bidding function and the expected payoff of a bidder in the redispatch market in

A is πR
A(x) = −

∫ x
0 tg(1,2)(t | y)dt− (1−G(1,2)(x | y))x.

Now, consider the equilibrium bidding strategies in the spot market. As shown in

Appendix A, choosing z < x can change the information at the redispatch market, where

the bidder will submit βR
A(x) if x ≤ y and βR

A(y) if x > y. Thus, the expected total payoff

of the bidder in A is∫ 1

z

[
βS
A(y)−

∫ min{x,y}

0
tg(1,2)(t | y)dt− (1−G(1,2)(min{x, y} | y))x

]
f(3,nA−1)(y)dy,

which leads to the bidding function

βS
A(x) =

∫ x

0
tg(1,2)(t | x)dt = E[X(1,2) | X(2,2) < x] < βR

A(x).

βS
A is strictly increasing between 0 and E[X(1,2)]. With the same arguments as in the basic

model we can shown that deviating to a bid lower than βS
A(x) does not change the expected

payoff, while deviating to a larger bid decreases the expected payoff.
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The expected total payoff of a bidder in A in equilibrium is

πA(x) =

∫ 1

x

[∫ y

0
tg(1,2)(t | y)dt−

∫ x

0
(tg(1,2)(t | y)dt− (1−G(1,2)(x | y))x)

]
f(3,nA−1)(y)dy

=

∫ 1

x
(1− F (y))nA−1dy ≥ 0. (C.3)

Now, consider the redispatch market in B. Given βS
A(x), β

R
A(x), and βR

B(x), both bidders

in B can bid arbitrarily between E[X(1,2)] and r in the spot market and expect a payoff of

r − x from the upward redispatch market. They already achieve the maximum possible

expected payoff under the current situation and have thus no incentive to deviate.18

Note that βS
A(x) < βR

A(x) and both functions are smaller than the respective bidding

function in the basic model. That is, bidders bid more aggressively (lower) at the spot

market and less aggressively (lower) at the redispatch market when the demand increases.

Since only the bidder with the lowest bid will deliver electricity, while the other two winning

bidders expect a positive payoff through downward redispatch, the bidders in A bid less to

win on the spot market.

C.3 Model with stochastic demand (uncertainty about congestion)

Consider the basic model with k = 1 but with stochastic demand dB = {50% : 2, 50% : 3}.
At the redispatch stage, spot market demand has realized and bidders participating

in the redispatch markets know the demand for redispatch. So they choose the bidding

strategy as derived in the basic model for dB = 2 and as in the model in Appendix C.2 for

dB = 3 which are labeled by d = 2 and d = 3 in the superscript of the bidding strategy,

respectively. That is, in case dB = 2 (cp. (A.11) and (A.12)), we have

βR,d=2
A (x) =

∫ x
0 tf(t)dt

F (x)
and βR,d=2

B (x) =

∫ 1
x tf(t)dt

1− F (x)
,

and in case dB = 3 (cp. (C.2)),

βR,d=3
A (x) =

∫ x
0 tg(1,2)(t | y)dt
G(1,2)(x | y)

and βR,d=3
B (x) = r.

Given the bidding strategies in the redispatch markets, we now maximize the overall ex-

pected payoff of a representative bidder in A to derive the equilibrium bidding function in

the spot market. We solve for equilibrium bidding strategies with non-overlapping image at

18If nA = 3, analogous to the case nA = 2 in Appendix C.1, the bids in B at the spot market determine
the spot market price, which can take values up to r. Thus, βS

A(x) ∈ [0,E[X(1,2)]] arbitrary. Note that the
interval bounds can also be [0,E[X]] and [E[X], r], as long as βS

A < βS
B .
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the spot market (βS
A(1) ≤ βS

B(0)). As shown in appendices A and C.2, if the bidder deviates

in the spot market to z ≤ y < x, then βR
A(y) will be submitted in the redispatch market in

A. The total expected payoff can be written as

πA(x, z) =
1

2

[∫ 1

z
(βS

A(y)−
∫ min{x,y}
0 tf(t)dt+ (F (y)− F (min{x, y}))x

F (y)
)f(2,nA−1)(y)dy

]

+
1

2

[∫ 1

z
(βS

A(y)−
∫ min{x,y}

0
tg(1,2)(t | y)dt− (1−G(1,2)(min{x, y} | y))x)f(3,nA−1)(y)dy

]
.

FOC:

1

2

(
−βS

A(z) +

∫ min{x,z}
0 tf(t)dt+ (F (z)− F (min{x, z}))x

F (z)

)
f(2,nA−1)(z)

+
1

2

[
−βS

A(z) +

∫ min{x,z}

0
tg(1,2)(t | z)dt+ (1−G(1,2)(min{x, z} | z))x

]
f(3,nA−1)(z) = 0

Setting z = x and simplifying the FOC, we have

βS
A(x) =

(1− F (x))βS,d=2
A (x) + 1

2(nA − 3)F (x)βS,d=3
A (x)

(1− F (x)) + 1
2(nA − 3)F (x)

=βS,d=2
A (x) +

1
2(nA − 3)F (x)(βS,d=3

A (x)− βS,d=2
A (x))

(1− F (x)) + 1
2(nA − 3)F (x)

=βS,d=3
A (x) +

(1− F (x))(βS,d=2
A (x)− βS,d=3

A (x))

(1− F (x)) + 1
2(nA − 3)F (x)

,

Since βS,d=3
A (x) ≤ βS,d=2

A (x), it holds that βS,d=3
A (x) ≤ βS

A(x) ≤ βS,d=2
A (x), that is, the

bidding function in case of stochastic demand lies between the bidding functions in cases

dB = 2 and dB = 3. Moreover, so βS
A(x) is strictly increasing between 0 and E[X(1,2)]. Note

that the upper limit corresponds to the upper limit of βS,d=3
A (x). This means that with

higher costs (close to 1), bids are closer to those in case dB = 3, while bidders with lower

costs bid closely to βS,d=2
A (x). Furthermore, βS

A(x) converges to βS,d=3
A (x) if nA converges to

infinity. This indicates that the bidder submits a relatively low bid (closer to the case dB = 3

than to dB = 2) if the bidder’s costs are unlikely among the lowest costs (as the bidder’s costs

are high or there are many bidders) because if the bidder wins it is unlikely that case dB = 2

has realized. To the contrary, the bidder submits a relatively high bid (closer to dB = 2

than to dB = 3) if the bidder’s costs are likely among the lowest costs. Figure 3 illustrates

these characteristics of the bidding functions, using a uniform distribution (F (x) = x).

As shown in appendices A and C.2, both if dB = 2 and dB = 3, deviating to a lower bid

does not change the expected payoff, while a larger bid than βS
A(x) decreases the expected
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Figure 3: Spot market bidding functions for stochastic and fixed demand

payoff. The expected total payoff of a bidder in A in equilibrium is

πA(x) =
1

2

[∫ 1

x
(βS

A(y)−
∫ 1

x

∫ x
0 tf(t)dt+ (F (y)− F (x))x

F (y)
)f(2,nA−1)(y)dy

]
+

1

2

[∫ 1

x
(βS

A(y)−
∫ x

0
tg(1,2)(t | y)dt− (1−G(1,2)(x | y))x)f(3,nA−1)(y)dy

]
=

∫ 1

x
(1− F (y))nA−1dy ≥ 0.

This expected total payoff is equal to (A.13) in the basic model with k = 1 and to (C.3) in

the model with dB = 3, which corresponds to the revenue equivalence theorem. That is, the

amount of dB does not have an effect on the expected total payoff of a bidder in A, since

only one bidder will supply the electricity and the bidder with costs x = 1 has the same

expected payoff, zero.

Given the bidding strategies of bidders in A, bidders in B can bid arbitrarily between

E[X(1,2)] and 1 on the spot market. As a result, they do not win on the spot market and

both bidders participate in the redispatch market. As stated before, their bids in the spot

market neither have an effect on the spot market price nor on the redispatch price. The

expected total payoff is πB(x) = 1
2

∫ 1
x (t − x)f(t)dt + 1

2(1 − x) ≥ 0. Deviating to a lower

bid z in [0,E[X(1,2)]] is not profitable: either the bidder does not win on the spot market

and the expected payoff does not change, or the bidder wins and expects a lower payoff

p− x ≤ E[X(1,2)]− x ≤ πB(x).

Consider the basic model with k = 1 but with stochastic demand dB = {50% : 1, 50% : 2}.
In case dB = 1, no redispatch is needed. In case dB = 2, the bidders will choose the same
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bidding functions for the redispatch market as in the basic model (see (A.11) and (A.12)):

βR,d=2
A (x) =

∫ x
0 tf(t)dt

F (x)
and βR,d=2

B (x) =

∫ 1
x tf(t)dt

1− F (x)
.

Given the bidding strategies in the redispatch market in A, we now maximize the overall

expected payoff of a representative bidder in A to derive the equilibrium bidding function in

the spot market. We solve for an equilibrium with bidding strategies with non-overlapping

image at the spot market (βS
A(1) ≤ βS

B(0)). As shown in Appendix A, if the bidder deviates

in the spot market to z ≤ y < x, then βR
A(y) will be submitted in the redispatch market in

A. The total expected payoff can be written as

π(x, z) =
1

2

[∫ 1

z
βS
A(y)f(1,nA−1)(y)dy − (1− F(1,nA−1)(z)))x

]
+

1

2

[∫ 1

z
(βS

A(y)−
∫ min{x,y}
0 tf(t)dt+ (F (y)− F (min{x, y}))x

F (y)
)f(2,nA−1)(y)dy

]
.

FOC:

1

2
(x− βS

A(z))f(1,nA−1)(z)

+
1

2

(
−βS

A(z) +

∫ min{x,z}
0 tf(t)dt+ (F (z)− F (min{x, z}))x

F (z)

)
f(2,nA−1)(z) = 0.

Setting z = x and simplifying the FOC, we have

βS
A(x) =

(1− F (x))x+ (nA − 2)
∫ x
0 tf(t)dt

(1− F (x)) + (nA − 2)F (x)
.

It is easy to show that βS,d=2
A (x) =

∫ x
0 tf(t)dt

F (x) ≤ βS
A(x) ≤ x = βS,d=1

A (x) and βS
A(1) = E[X].

Furthermore, βS
A(x) is strictly increasing, since

(βS
A)

′(x) =
1

(1− F (x) + (nA − 2)F (x))2
·[

(1− F (x))2 + (nA − 2)F (x)(1− F (x))

+ (nA − 2)(nA − 3)f(x)

(
xF (x)−

∫ x

0
tf(t)dt

)]
> 0.

For bidders in B we have βS
B(x) ∈ [E[X], 1] and

πB(x) =
1

2
(1− F (x))(βR

B(x)− x). (C.4)
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Note that depending on nA and F bidders in B may have an incentive to deviate to

a bid less than E[X] and, thus, existence of an equilibrium with bidding strategies with

non-overlapping image at the spot market may require that nA is sufficiently large in this

setting with dB = {50% : 1, 50% : 2}. For example, in case of nA = 3 and a uniform

distribution F , if the bidder with x = 0 bids 0, the expected payoff (from selling at the spot

market instead of the redispatch market) is 3
8 > 1

4 = πB(0). However, if nA is sufficiently

large, such an equilibrium exists. Note that βS
A(x) is strictly decreasing in nA, as

∂βS
A(x)

∂nA
=

(1− F (x))(
∫ x
0 tf(t)dt− xF (x))

((1− F (x)) + (nA − 2)F (x))2
< 0 ∀x ∈ (0, 1).

This means that if nA converges to infinity, the expected spot market price converges to 0.

As a result, the potential profitability of a deviation by a bidder in B to a bid less than

E[X] vanishes as nA increases, because the expected payoff in (C.4) is independent of nA

and is strictly positive for all x < 1. Therefore, there exists a finite n (whose minimum size

depends on the distribution) so that for all nA > n, the bidding functions above constitute

an equilibrium.

C.4 Model with a single bid for spot and redispatch market

Consider the basic model with k = 1 but assume bidders can submit only one bid that is

for both the spot and the redispatch market (one-shot game).

We again solve for an equilibrium with bidding strategies with non-overlapping image

at the spot market, that is, βA and βB are such that bids in A are always smaller than bids

in B. Assume that in both regions the bidding strategies βA and βB are strictly increasing.

Consider first a representative bidder with costs x ∈ [0, 1] in A. Assume that the other

bidders in A use βA and all bidders in B use βB. The bidder also uses βA but pretends to

have costs z. That is, the bidder submits βA(z), where z is the bidder’s decision variable.

The bidder’s expected profit is

πA(x, z) =

∫ 1

z
βA(t)f(2,nA−1)(t)dt−

(
1− F(1,nA−1)(z)

)
x−
(
F(1,nA−1)(z)− F(2,nA−1)(z)

)
βA(z).

The FOC is:

−f(1,nA−1)(z)βA(z)− F(1,nA−1)(z)β
′
A(z) + F(2,nA−1)(z)β

′
A(z) + f(1,nA−1)(z)x = 0.

Setting z = x and βA(0) = 0, the ODE is solved by

βA(x) =

∫ x
0 tf(t)dt

F (x)
,
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which corresponds to (A.11) in the basic model, and is thus strictly increasing from 0 to

E[X]. The bidder expects the same payoff πA(x) as in (A.13).

Note that βA(x) = βS
A(x) = βR

A(x) is a special case that occurs with k = 1. For k ≥ 2,

the ODE results in a bidding function βA(x) that depends on nA, so that the equality

relations do not apply. For instance, assume a uniform distribution F , k = 2, and nA = 6.

Then, βS
A(x) =

x
2 while

βR
A(x) =

1− e2x + 2x+ 2x2 + 4x3

4x2
,

which is strictly increasing and overlaps with βS
A(x). Compared to the basic model, this

βR
A(x) leads to a lower expected spot market price 5(163−21e2)

112 < 5
7 . Note that in both models,

the dispatch is the same as the equilibrium bidding functions are strictly increasing, and the

expected payoff for the type x = 1 is 0. According to the revenue equivalence theorem (e.g.,

Krishna, 2010), the expected payoffs in the equilibrium must be the same. Thus, expected

redispatch prices are lower in this model than in the basic model.

Now consider bidders in region B. The equilibrium bidding strategies and the expected

payoffs are the same as in the basic model, see (A.12) and (A.14).

C.5 Uniform pricing in the redispatch market

Consider the basic model with k = 1 but instead of pay-as-bid pricing consider uniform

pricing (UP) in the redispatch market, where the price is determined by the highest (lowest)

rejected bid in the downward (upward) redispatch market.

In general, the expected payoff of each bidder and of the seller in the equilibria of two

auctions are the same if the dispatch is the same and the expected payoff for the weakest

type is the same (revenue equivalence theorem, e.g., Krishna (2010), Proposition 5.2). Thus,

if the dispatch under UP and pay-as-bid is the same and the weakest type (x = 1) earns

0 under UP as under pay-as-bid, the auctions are revenue equivalent. In what follows, we

prove explicitly that the model with UP is payoff-equivalent with our basic model.

As the UP rule is used in the redispatch markets, all bidders have a weakly dominant

strategy to bid their costs, that is, by bidding βR
A(x) = x the bidder is weakly better off than

with any other bid independent of the bids of the opponents. To prove this, we consider

first a representative bidder with costs x ∈ [0, 1] in A. If the bidder bids x, the bidder may

either win or not win at the redispatch market. If the bidder bids x and wins, the payoff is

p− pR, where p is the spot market price and pR, pR ≤ x, is the uniform redispatch price set

by a different bidder. If the bidder deviated to a different bid ≥ pR, the payoff would not

change. If the bidder deviated to a different bid < pR the payoff would become p−x, which

is weakly less than p− pR. If the bidder bids x and does not win, the payoff is p−x and we

have x ≤ pR. If the bidder deviated to a different bid ≤ pR the payoff would not change. If
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the bidder deviated to a different bid > pR, the bidder would win at a price ≥ pR, so the

payoff would become weakly less than p− pR, which is weakly less than p− x. Thus, with

any deviation from βR
A(x) = x the bidder is weakly worse off.

The bidder’s expected payoff in the redispatch market in A if all bidders bid their costs

is πR
A(x) = −

∫ x
0 tg(t | y)dt − (1 − G(x | y))x, which is identical to that in the basic model

(A.4).

Now consider a representative bidder with costs x ∈ [0, 1] in B. The argument to show

that bidding the costs is weakly dominant strategy is essentially the same as for region A.

The expected profit of a bidder in the redispatch market in B if all bidders bid their costs

is πR
B(x) =

∫ 1
x (t− x)f(t)dt, which is identical to that in the basic model (A.8).

Based on the same expected payoffs in the redispatch markets, the equilibrium bidding

strategies in the spot market and, thus, the expected total payoffs are the same as in the

basic model.
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