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a b s t r a c t

Understanding how attentional resources are deployed in visual processing is a fundamental and highly
debated topic. As an alternative to theoretical models of visual search that propose sequences of
separate serial or parallel stages of processing, we suggest a queueing processing structure that entails
a serial transition between parallel processing stages. We develop a continuous-time queueing model
for standard visual search tasks to formalize and implement this notion. Specified as a finite-time,
single-line, multiserver queueing system, the model accounts for both accuracy and response time
(RT) data in visual search on a distributional level. It assumes two stages of processing. Visual stimuli
first go through a massively parallel preattentive stage of feature encoding. They wait if necessary and
then enter a limited-capacity attentive stage serially where multiple processing channels (‘‘servers’’)
integrate features of several stimuli in parallel. A core feature of our model is the serial transition from
the unlimited-capacity preattentive processing stage to the limited-capacity attentive processing stage.
It enables asynchronous attentive processing of multiple stimuli in parallel and is more efficient than
a simple chain of two successive, strictly parallel processing stages. The model accounts for response
errors by means of two underlying mechanisms, namely, imperfect processing of the servers and, in
addition, incomplete search adopted by the observer to maximize search efficiency under an accuracy
constraint. For statistical inference, we develop a Monte-Carlo-based parameter estimation procedure,
using maximum likelihood (ML) estimation for accuracy-related parameters and minimum distance
(MD) estimation for RT-related parameters. We fit the model to two large empirical data sets from two
types of visual search tasks. The model captures the accuracy rates almost perfectly and the observed
RT distributions quite well, indicating a high explanatory power. The number of independent parallel
processing channels that explain both data sets best was five. We also perform a Monte-Carlo model
uncertainty analysis and show that the model with the correct number of parallel channels is selected
for more than 90% of the simulated samples.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A key question in attention research involves the allocation
f cognitive processing resources to stimuli in the environment.
widely-used experimental paradigm to study visual attention

s the standard visual search task (e.g., Geng & Behrmann, 2003;
olfe, 2018), sometimes also referred to as the single-frame
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search task in the literature (e.g., Fisher, 1982). In a standard
visual search experiment, participants are required to look for a
single, predefined target among several isolated visual objects in
the display. They are instructed to indicate as quickly and as accu-
rately as possible whether the target is present or not. The display
remains visible and static until a response is made. To infer how
cognitive processing resources are allocated, the relation between
stimulus inputs (i.e., task demands) and responses (i.e., processing
performance) is investigated. The number of items in the display,
called set size, is typically manipulated. The response time (RT)
is recorded as a core performance measure. In the literature,
the label ‘‘RT-method’’ (e.g., Wolfe, 2018) is also used for this
paradigm. Accuracy rates are also recorded but usually treated
as control variables to check for trade-offs between speed and
accuracy. In past research, trials with incorrect responses were
typically excluded, and the analysis has focused on the slope of
the regression line of the mean RTs of correct responses on the set
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ize, denoted as ‘‘the mean RT × set size slope’’ (cf. Wolfe, 2018).
his slope characterizes the input–output relation observed under
he target-present or target-absent condition. Once the process-
ng structure is specified, explicit predictions on the slope can
e derived. For instance, in serial exhaustive searches, the slope
rovides a rough estimate of the incremental time required to
rocess each item added to the search set. Because different
rocessing structures propose different explanations for the mean
T × set size slope, this slope has been considered one of the key
xplananda in the serial/parallel debate.
On the theoretical level, the serial/parallel debate is an en-

uring controversy in the visual search literature, focusing on
he existence of an attentional ‘‘bottleneck’’, in particular among
heoretical models that conceive visual processing as a sequence
f serial and/or parallel stages. According to Moore and Wolfe
2001), serial and parallel accounts of visual search diverge on the
uestion of whether accomplishing a visual search task involves
ny mandatory serial processing stage. Serial accounts assume
t least one mandatory stage in visual search that requires an
bject-by-object processing by a single processing unit, whereas
arallel accounts maintain that more than one item can be pro-
essed at any time and any level of processing, using parallel
ines and parallel processing units. Accordingly, many prominent
isual attention theories and models (e.g., Bundesen, 1990; Dun-
an & Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994),
mong others, those that are composed of a series of processing
tages, are linked to either the serial or the parallel account.
lthough there are several sets of empirical findings in line with
ither account, the body of existing empirical research did not
ield a conclusive result on this debate. Neither account can
ully explain all empirical findings (Moore & Wolfe, 2001; Wolfe,
021). For example, although the well-replicated finding of posi-
ive and steep mean RT × set size slopes (in the range of 20–60
s/item, e.g., Treisman & Gelade, 1980; Wolfe, 1998) is consistent
ith the serial account, a limited-capacity parallel model with
equential sampling can also account for the same pattern (e.g.,
ownsend, 1971, 1990; Townsend & Nozawa, 1995). Resembling
ypical visual search findings, attentional dwell time, that is, the
inimal time period during which attention is occupied once it

s committed to a certain location or object (Duncan, Ward, &
hapiro, 1994), also does not discriminate between serial and
arallel processing conclusively and complicates matters even
urther. Attentional dwell time estimates typically fall between
00 to 500 ms (e.g., Duncan et al., 1994; Moore, Egeth, Berglan,
Luck, 1996; Theeuwes, Godijn, & Pratt, 2004). Obviously, this

inding is difficult to reconcile with the rapid rate of processing
uggested by the mean RT × set size slope, assuming exhaustive,
trictly serial processing.
Against this background, Moore and Wolfe (2001) explained

ow a hybrid structure that integrates serial and parallel features
ould resolve this paradox. As illustrated in the lower part of
ig. 1, a hybrid structure in the sense of Moore and Wolfe (2001)
eceives stimuli in a critical stage in series, yet several stimuli
an be processed in parallel after entry. Clearly, this notion ‘‘is
ot a proposal for distinct serial and parallel stages of processing’’
Moore & Wolfe, 2001, p. 191). However, such a hybrid structure
esembles serial models because the deployment of attention can
appen to only one stimulus at a time. This notwithstanding,
t also resembles parallel models because the identification of
everal stimuli can take place simultaneously. These similarities
ight be seen as reasons for classifying models with such a
tructure as serial or parallel. However, we agree with Moore
nd Wolfe (2001) that they belong neither to the classically serial
or to the classically parallel camp. Importantly, such hybrid
tructures differ from serial structures by allowing subsequent

timuli to receive attention before the processing of precedent

2

stimuli has finished. They also differ fundamentally from standard
parallel structures because stimuli attain attentional resources
one at a time, resulting in asynchronous beginnings of attentive
processing. These properties also discriminate between hybrid
models in the sense of Moore and Wolfe (2001) and alternative
structures that have been called ‘‘hybrid’’ in a broader sense
(cf. Townsend, 1971) to indicate chains of successive processing
stages that include both purely serial and parallel ones (e.g., Bun-
desen, 1990; Hoffman, 1978; Treisman & Gelade, 1980). Moore
andWolfe (2001) argued that the hybrid structure they advocated
(i.e., serial entry and subsequent parallel processing of stimuli)
is compatible with existing empirical findings. For example, if
stimuli enter an attentive processing stage one-by-one every
50 ms and stay there for about 300 ms, it is possible to observe a
‘‘processing rate’’ of 50 ms/item along with a dwell time around
300 ms.

This notion seems promising in view of the results reported
by Wolfe (2021) and Fisher (1982); however, it has yet to be for-
malized and elaborated into a model that can make quantitative
and testable predictions and is equipped with suitable parameter
estimation procedures for rigorous empirical tests. In the latest
version (6.0) of the Guided Search model, Wolfe (2021) incorpo-
rated an asynchronous diffusion component to represent a hybrid
selection and recognition process. He demonstrated through sim-
ulation that the model is capable of mimicking basic patterns
found in RT and accuracy data. There are other precedent theories
and models that conceptualize cognitive processing as being both
serial and parallel, for instance, the models proposed by Harris,
Shaw, and Bates (1979); Fisher (1982, 1984); Miller (1993); Liu
(1996, 2013); Liu, Feyen, and Tsimhoni (2006); and Wu and Liu
(2008). Some of them have been stated as quantitative models,
but the time-dependent limited-channel model by Fisher (1982)
is the only one developed specifically for visual search. Fisher
(1982) derived expected values of RTs assuming error-free pro-
cessing. By minimizing the sum of squared differences between
expected values and data, he estimated the model parameters
from empirical mean RTs of correct responses and demonstrated
a good model fit.

In this paper, we propose a mathematical model that im-
plements the notion of a hybrid structure with both serial and
parallel features — a continuous-time queueing model of visual
search that accounts for RTs of both correct and incorrect re-
sponses on a distributional level. So far, the statistical analysis
of RT in visual search has focused on the mean RT of correct
responses. This does not provide a rigorous test of visual selective
attention theories because many models can be shown to produce
patterns of mean RTs as a function of set size that are similar
to the empirically observed ones (see e.g., Palmer, Horowitz,
Torralba, & Wolfe, 2011; Wolfe, Palmer, & Horowitz, 2010). Our
model, in contrast, makes full use of the information contained in
the RT data by modeling entire RT distributions. It thus enables a
more comprehensive comparison of the theoretical RTs obtained
from the model with empirical data, and provides a more rigorous
test of the model’s validity.

In addition to RT distributions, our model also accounts for
accuracy data. Previous studies in visual search usually excluded
incorrect trials from the analysis of RTs. The analysis of accuracy
data in visual search has rarely been addressed, leaving sources
of response errors and the consequences of excluding incorrect
trials undiscovered. However, response errors in standard visual
search appear systematic because particular patterns depending
on set sizes have consistently been found (Wolfe et al., 2010),
see Section 2.2 for details. To our knowledge, only a few papers
addressed error rates of responses in standard visual search tasks
specifically (e.g., Moran, Zehetleitner, Liesefeld, Müller, & Usher,

2016; Moran, Zehetleitner, Müller, & Usher, 2013; Zenger & Fahle,
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Fig. 1. Illustration of a strictly serial system (top), a limited-capacity parallel system with sequential sampling (middle), and a hybrid structure with both serial and
parallel properties (bottom). Dotted tubes within cuboids illustrate parallel processing channels.
t
F

1997). Further authors modeled the RTs of incorrect responses in
visual search but not the error rates themselves (e.g., Cousineau
& Shiffrin, 2004; Donkin & Shiffrin, 2011). Still others adapted
quantitative models of speed-accuracy trade-off from other fields,
for instance, Ratcliff’s (1978) diffusion model, to visual search
data with a single, fixed set size (e.g., Corbett & Smith, 2020;
Thornton & Gilden, 2007). Despite these achievements, fully ex-
plaining observed error patterns in a psychologically meaningful
way remains challenging. We tackle this problem by model-
ing error probabilities using two underlying principles, namely,
premature search termination and misidentification. Embedded
in the framework of a queueing process, these two principles
also constitute the final pieces of the puzzle required for the
derivation of the joint distribution of responses and RTs.

On a more general level, our goal is to develop an alternative
ormal model framework for standard visual search tasks that
oes beyond the idea of a simple chain of serial or parallel
rocessing stages. This new model framework is intended to
ccount for the joint distributions of responses and RTs for dif-
erent set sizes, thereby extending the empirical scope of existing
odels. In substantive terms, the proposed framework formal-

zes a generalized version of the feature integration theory of
isual attention (Treisman & Gelade, 1980) by connecting par-
llel processing within the feature-encoding and the subsequent
eature-integration stage via a single-line queueing mechanism,
hereby enriching the explanatory power of a classical theory in
he field.

This paper is structured as follows. In the subsequent section,
e formalize the proposed theory of visual search as a stochastic
rocess model using standard terms of queueing theory. From
he mathematical model, we derive formulas for the joint dis-
ributions of responses and RTs. To enable data fitting, we then
evelop appropriate parameter estimation procedures in Sec-
ion 3. In Section 4, we evaluate the model empirically by fitting
t to two large prototypical data sets collected and published
y Wolfe et al. (2010). Finally, we perform a model uncertainty
nalysis using bootstrap methods in Section 5 to test whether
odel-based analyses can identify the number of servers in a
ingle-line queueing model reliably. Appendix A delivers detailed
erivations and comments on the subsequent equations.
 a

3

2. Mathematical framework

In a queueing system, customers arrive as discrete units for
service, wait in line if necessary and leave after being served.
Queueing systems are widely used and are fully described by six
characteristics (see e.g., Bhat, 2015; Gross, Shortle, Thompson, &
Harris, 2008; Stewart, 2009): the interarrival times A between
successive arrivals, the service times S of servers, the number of
parallel servers c , the waiting room capacity, the total number of
customers k, k ∈ N∪ {∞}, and the queue discipline, for example,
the first-come-first-served (FCFS) discipline.

In our model, a continuous-time queueing process represents
the course of visual search on a single trial. The k visual stimuli
in the display correspond to the customers who compete for
limited attentional resources. The queueing system determines
when and which stimulus gets the service of being identified
as target or non-target. Every stimulus is allowed to enter the
queueing system once. This assumption of a non-recurrent cus-
tomer source corresponds to perfect inhibition of return in visual
search (e.g., Klein, 1988, but see also Horowitz & Wolfe, 1998;
Wolfe, 2012 for different viewpoints). Furthermore, our model
deliberately ignores processes that might be involved in visual
search experiments, but lack a visual processing component, such
as pure guessing or motor execution errors. The reasons for this
choice will be elaborated in Section 2.2.

2.1. Model specification

The processing of a single stimulus is described assuming two
stages, namely, preattentive processing and attentive processing
(Treisman, 1986; Treisman & Gelade, 1980). In the preatten-
tive stage, features of visual objects are extracted and encoded.
Feature encoding is hypothesized to occur prior to attentive pro-
cessing, automatically without attentional control, and simul-
taneously across the entire visual field, that is, in a massively
parallel manner. In our model, the arrival process in the queue
corresponds to feature encoding. The beginning of the arrival
process, t0, is defined as the time of stimulus onset. At this point,
here is no customer in the queueing system, as illustrated in
ig. 2.
An item ‘‘arrives’’ in the queue at the precise instant that
ll features necessary to construct a representation of it have
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c

Fig. 2. Visual information in a paradigmatic queueing system at stimulus onset t0 . A total of k = 4 visual stimuli are denoted unambiguously by the coordinates
(xi, yi) of their locations in the display, respectively, for i = 1, . . . , k. The stimuli are characterized by two features each, orientation (horizontal vs. vertical) and color
(red vs. green), but have not been processed so far. The dashed ellipse illustrates the waiting room for the queue, the rectangle the server system, and the dashed
circles the c = 2 parallel processing channels (i.e., servers) in the server system.
Fig. 3. Visual information in the queueing system when the first item arrives in the queue. The first stimulus with the coordinate (x1, y1) is ready for being served
since both features (i.e., vertical, red) have been encoded. In contrast, none of the other stimuli has arrived because only one feature (i.e., red) has been encoded for
stimulus (x3, y3), which stays in front of the waiting room, and no feature at all for the remaining two stimuli.
been encoded (cf. Treisman, 1986, 1988). This is illustrated in
Fig. 3. Let nA(t) denote the cumulative number of arrivals up to
time t . Then, the stochastic process nA takes values in {0, . . . , k},
has a jump at each arrival epoch, and remains constant until
the next arrival occurs. It can be assumed to be càdlàg (right-
continuous with left limits; see e.g., Protter, 2005). Regarding t0
as the moment of ‘‘arrival’’ for i = 0, the interarrival time Ai
between the (i − 1)th and ith arrival for i = 1, . . . , k is assumed
to be exponentially distributed with mean 1/ (λ (k − (i − 1))),
where λ is a positive constant. Furthermore, Ai is assumed to be
onditionally independent of Ai−1 given nA(t) = i−1. This implies
an effective arrival rate λ(k − nA(t)) at time t . Note that such
a state-dependent arrival pattern mirrors the massively parallel
processing in the preattentive stage because, at any instant, the
number of arrivals per unit time is proportional to the number of
stimuli that are still undergoing feature encoding, that is, stimuli
that have not yet arrived in the queue. We further assume that
any arrival order is equiprobable.

If there are no attentional resources (i.e., no free servers)
available upon arrival, an item has to wait in the waiting room,
4

as illustrated in Fig. 4. The waiting room is assumed to have
unlimited capacity and consists of a single queueing line, which
corresponds to an attentional bottleneck. Once processing capac-
ity becomes available again (i.e., a server is free for service), the
first item in the line is assigned to this server (i.e., FCFS). At this
moment, the item advances to the attentive stage of processing.

According to Treisman (1986) and Treisman and Gelade (1980),
the attentive stage selects features present at particular locations
and integrates them to form coherent object representations. It is
hypothesized to be more sophisticated, to require focal attention
and to have limited processing capacity. In our model, the service
process corresponds to the identification of an item by a server
based on the integration of its features. Our model assumes c
parallel, independent servers, with c ∈ N fixed but unknown. In
visual search, the number of parallel processing units that require
attention is considered limited by the capacity of the visual short
term memory (Bundesen, 1990; Duncan & Humphreys, 1989).
Thus, we restrict the range of c to 1, . . . , 10. At any server,
the service time Si of the ith identification, i = 1, . . . , k, is
assumed to be i.i.d. exponentially distributed with mean µ−1.
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Fig. 4. Visual information in the queueing system at the moment when the third item (x3, y3) arrives in the waiting room of the queue with both features encoded.
Because the two available servers are occupied by the first two stimuli (x1, y1) and (x2, y2), the third stimulus has to wait. Only the color but not the orientation of
the fourth stimulus (x4, y4) has been encoded at this point, thus it is not ready for entering the queue.
Fig. 5. Visual information in the queueing system at the first departure epoch, that is, when the first item (x1, y1) has been identified by a server and leaves the
ystem. Since this server is free now, the same server can now process the next item in the queue, (x3, y3). Stimulus (x4, y4) has to stay in the waiting room with
both features encoded because the second server is still occupied by stimulus (x2, y2).
Once the identification is completed, the item is released from
the queueing system, as illustrated in Fig. 5. This instant is then
a departure epoch. Although services start in the same order as
arrivals because of the FCFS queue discipline, items may depart in
a different order due to service time variations at parallel servers
(cf. Wolfe, 2021). The assumptions on the service pattern imply
that the effective departure rate of the whole system at time t
is given by µmin{Q (t), c}, where Q (t) denotes the number of
customers in the system, that is, at a server or in the waiting
room, at time t . The stochastic process Q is also càdlàg.

The above assumptions fully describe the probabilities of ar-
rivals and departures at any moment t in continuous time, that
is, the transitions between different system states (nA(t),Q (t)).
Consequently, the time course of any event defined in terms of
the queueing model, in particular the departure epochs, can be
derived based on the parameter vector (λ, µ, c).

In sum, the queueing model of visual search proposes that
each item that has been identified in visual search experiments
typically passes through two stages, namely, (1) arrival in the
queue, which is achieved by the completion of feature encoding,
and (2) processing by one of the c servers of the system to
5

form an integral object representation. In between, there might
or might not be an intermediate state, where the processing
is suspended in the waiting room. The first stage corresponds
to the preattentive stage and the second stage to the attentive
stage of processing. Cognitive processing occurs only in these
two stages and is characterized by unlimited-capacity parallel
processing (i.e., automatic feature encoding) in the first stage and
limited-capacity parallel processing (i.e., attention-based stim-
ulus identification) in the second stage. The waiting room, in
contrast, does not involve cognitive processing, although staying
there takes some time in case all servers are occupied. It is
best understood as a serial transition from the preattentive to
the attentive stage of stimulus identification. Due to the FCFS
discipline, the time any item has spent in the waiting roomwill be
reflected in the departure times of those items that arrive after it.
Thus, the waiting time is considered part of the visual processing
time.

The theoretical construct of the waiting room is a core feature
of our model. The serial transition from the preattentive to the
attentive stage is not a designed property of this waiting room,
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ut rather a natural consequence of arrival and subsequent ser-
ice processes in continuous time. To see this, suppose there are
wo or more stimuli in the waiting room. This implies that all
ervers must be currently occupied. The next transition of an item
rom the waiting room to the attentive stage of processing will
appen at the same moment an item departs from the attentive
tage so that the respective server becomes available again. Since
he probability of two or more departures occurring at exactly
he same instant is zero, no more than one server will become
vailable at a time.
Note that this one-by-one transition is more efficient than a

hain of two successive strictly parallel processing stages. This
s because standard synchronous parallel processing stages (cf.
ownsend, 1971) must necessarily postpone the start of attentive
rocessing for those stimuli that arrived earlier in the queue
ntil the required number of servers becomes available. This
efers, for example, to visual search models that postulate atten-
ional selection as the result of parallel competition among stimu-
us representations (e.g., Bundesen, 1990; Duncan & Humphreys,
989). Such models necessitate a simultaneous start of parallel
rocessing for the stimulus representations that take part in the
ompetition.

.2. System responses and theoretical RT

The courses of visual search on the trials of a standard visual
earch experiment are modeled as independent realizations of
he same queueing process with the transition structure char-
cterized by (λ, µ, c), as described above. For each experimental

trial, we denote the set size by k and the objective status of the
target by q, with q = 1 for presence and q = 0 for absence of
the target in the stimulus display. The RTs, Xk,q, and responses,
Yk,q, observed on different trials under the same experimental
condition (k, q) are considered i.i.d. The experimental manipula-
tion of the factors k and q is assumed to impact the outcomes of
identification at individual servers, which then jointly determine
the stopping time of the queueing process and the final system
response. Thus, to model RT and response jointly as a random
vector (Xk,q, Yk,q), we need to specify how a queue terminates
under each level combination (k, q).

Assumption A1 (Termination Rules). The entire queueing pro-
cess is assumed to terminate in finite time under two mutually
exclusive conditions:

C1. The system finishes serving an item classified as a target.
Since target detection is conceived as a self-terminating pro-
cess, this instantly triggers a target-present (TP) response.

C2. The system finishes serving l items (0 ≤ l ≤ k) and classifies
them all as distractors. This triggers a target-absent (TA)
response.

The termination criterion l = l(k) is a function of set size k
and is determined based on the maximization of search efficiency
under an accuracy constraint (see Section 2.3 for details). We
denote the occurrence of a TP and a TA response under condition
(k, q) by Yk,q = 1 and Yk,q = 0, respectively. Note that Assump-
tion A1 implies an asymmetry between a TA and a TP response.
Given insufficient evidence for the presence of the target, TA
is always the ‘‘default’’ response. This differs conceptually from
models that attribute bias between positive and negative re-
sponses completely to asymmetric boundaries for gradual, noisy
evidence-accumulation processes (e.g., Ratcliff, 1985).

Assumption A1 implies that an incorrect response can result
from (a) omission due to early search termination (i.e., l < k) or
(b) an erroneous service outcome, that is, the misidentification
of an item. An omission occurs on a target-present trial when
6

the target is not included in the first l items searched. If, in
addition, these l non-target items are processed in an error-free
manner, an incorrect TA response will be triggered automatically,
without any intrinsic errors in the attentive stage. The subsequent
assumption (Assumption A2) specifies how a misidentification at
a server (i.e., a false positive or a false negative classification) is
invoked. For the service outcome of any item i on a trial, we use
the term ‘‘Ti = 1’’ | Ti = 0 to indicate a false positive classification
of item i, i.e., mistaking a distractor for the target, and ‘‘Ti = 0’’ |
Ti = 1 to indicate a false negative classification, i.e., mistaking
the target for a distractor. Note that ‘‘Ti = 1’’ | Ti = 0 for
any item i in a target-absent display necessarily results in a false
alarm Yk,0 = 1 because the search process is assumed to be self-
terminating. Conversely, ‘‘Ti = 0’’ | Ti = 1 does not imply a miss
Yk,1 = 0 in target-present displays because another item in the
queueing system might still be classified as a target by any of the
c servers.

Assumption A2 (Misidentification Probabilities). For any fixed set
size k, ‘‘Ti = 1’’ | Ti = 0 and ‘‘Ti = 0’’ | Ti = 1 emerge at each
server independently with probabilities p1 and p2, respectively,
for each item i in the system.

The probabilities p1 and p2 are functions of set size k and
are determined by a threshold adaptation. Adjourning further
specifications of the dependencies of l, p1, and p2 on set size k
to Sections 2.3 and 2.4, we can now derive the error probabilities
of the responses from Assumptions A1 and A2 (cf. Appendix A.1
for comments on the derivation):

π1(k; l, p1, p2) := P(Yk,0 = 1) = 1 − (1 − p1)l; (1)

π2(k; l, p1, p2) := P(Yk,1 = 0) = (1 − p1)l
k − l
k

+ (1 − p1)l−1 p2
l
k
.

(2)

We consider omission and misidentification as sources of in-
correct responses because such unobservable errors are not only
plausible from a psychological perspective, but are also nec-
essary to fully reproduce the patterns of response errors con-
sistently found in empirical data (Wolfe et al., 2010; see also
Fig. 9 in Section 4). Specifically, the following patterns have been
observed:

(a) the miss rate P
(
Yk,1 = 0

)
increases with increasing set size

k;
(b) the false alarm rate P

(
Yk,0 = 1

)
remains approximately

constant with a slight downward trend when k increases;
(c) for a given set size, the miss rate tends to be higher than

the false alarm rate;
(d) there is evidence for an acceleration in the growth of the

miss rate with increasing set size (e.g., also in data of
Zenger & Fahle, 1997), resulting in a convex shape of the
graph of the miss rate on set size.

As we will show in the following two subsections, with our
specifications of l, p1, and p2, Assumptions A1 and A2 capture
these patterns. In contrast, the premise of an exhaustive search
on trials with two or more adjacent set size levels is clearly inap-
propriate regardless of the processing structure, as the following
considerations show. If we assume exhaustive search along with
p1 and p2 being constant, then the expected frequencies given
by the model are contrary to patterns (a), (b), and (c). Other-
wise, if we assume straightforward dependencies of p1 and p2
on k, then the model either conflicts with pattern (c) or the
expected frequencies deviate systematically from patterns (b) and
(d) (see Li, 2019, pp. 71–74 for details; cf. Zenger and Fahle, 1997).

Importantly, our model regards omission and misidentifica-

tion as the only error sources for two reasons. First, excluding
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ther types of unobservable error keeps the model simpler while
aintaining its ability to account for the essential patterns of
bserved response errors. Second, Assumption A1 specifies a one-
o-one correspondence between the termination conditions C1
nd C2 and the response types TP and TA. Hence, the condition
nder which the queue has terminated is implied by the observed
esponse. This allows us to determine the time course underlying
ither type of response. According to this property, the latent
ystem response time underlying a TP or TA judgment in a k-
customer queueing system, denoted by T 1

k and T 0
k , respectively,

s given by the time that elapses between stimulus onset t0 and
ermination of the queueing process under C1 or C2. Note that
he time each identified item spent in the two processing stages
nd the waiting room is encompassed in T 1

k and T 0
k .

We model the RT observed on a trial as the sum of the system
esponse time T q

k , q ∈ {0, 1}, and a residual time. The residual
ime is defined as the time not spent on collecting and analyzing
isual information, such as motor reaction time. It is modeled by
n additive constant that depends only on the response types TP
nd TA, denoted by τ1 and τ0, respectively. We assume different
esidual time parameters for different response types because the
xecution may be affected by additional factors associated with
he decision, such as readiness to either response type (cf. Fisher,
982). Accordingly, our model entails the RTs observed under
ifferent conditions in a visual search experiment as follows:

k,q =

{
T 1
k + τ1 if the system terminates under C1,

T 0
k + τ0 if the system terminates under C2,

(3)

here τ1, τ0 ≥ 0.
Under Assumption A1, Eq. (3) implies that, for a given level

ombination (k, q), the RT distribution is determined once the
alue of the associated response is known. More specifically, if
k,q = 0, the queue must have stopped at the lth departure epoch,
e the response a correct rejection or a miss. If Yk,q = 1, the
ueue may have stopped at any of the first l departure epochs,
epending on the position of the item classified as a target in the
eparture order. Hence, T 1

k follows a finite mixture distribution
onsisting of the distributions of the first l departure epochs,
enoted by Tj, j = 1, . . . , l, respectively. The associated prob-
bilities (i.e., the mixture weights of the l components) depend
n the condition (k, q) and the auxiliary parameters l, p1, and p2,
ccording to Assumptions A1 and A2.
As the distribution of any departure epoch Tj is fully specified

y the parameters (λ, µ, c), the model implies the conditional
umulative distribution function (CDF) of the RT, Xk,q, given the
esponse, Yk,q, to be

Xk,q|Yk,q (t | y; l, p1, p2)

=

⎧⎪⎪⎨⎪⎪⎩
l∑

j=1

vj,k,q(l, p1, p2)FTj (t − τ1; λ, µ, c) if y = 1,

FTl (t − τ0; λ, µ, c) if y = 0,

(4)

here y ∈ {0, 1} denotes the values of the random variable Yk,q
nd FTj is the CDF of the jth departure epoch Tj, j ∈ {1, . . . , l}. The
eights vj,k,q of the mixture components are given by

j,k,0(l, p1, p2) = (1 − p1)j−1p1/π1(k; l, p1, p2),

j,k,1(l, p1, p2)

=
(j − 1)p2(1 − p1)j−2p1 + (1 − p1)j−1 (1 − p2 + (k − j)p1)

k(1 − π2(k; l, p1, p2))
,

here π1 and π2 are given by Eqs. (1) and (2). The weights vj,k,1 of
the target-present case are derived by calculating the conditional
probability that the jth departing item is classified as a target
given that the actual target appears in the ith position in the
7

departure order, i ∈ {1, . . . , k}. For details of the derivation of
vj,k,q, see Appendix A.2.

From Eqs. (1), (2), and (4), it is apparent that once l, p1, and
p2 are determined, we obtain the marginal distribution of Yk,q as
well as the conditional distribution of Xk,q given Yk,q. These three
quantities are auxiliary parameters because their dependencies
on set size k need to be further specified to account for patterns
in the data in a psychologically meaningful manner. As detailed
in the following two subsections, these specifications follow from
the assumptions of incomplete search and imperfect processing.
The charm of these assumptions is the simplicity of both the
approach and the resulting specification of l. At the same time the
latter accounts for many empirical findings, such as the patterns
in accuracy data.

2.3. Incomplete search

We consider efficiency optimization as the principle underly-
ing premature search termination and model it by means of the
foraging theory (e.g., Stephens & Krebs, 1986). A human observer
performing a visual search task is assumed to decide when to
quit search analogous to a forager searching for food in patches of
various sizes. In accordance with Assumption A1, we define the
set of possible stopping policies by counting, that is, ‘‘stop and
respond TP once the target is found, otherwise stop and respond
TA after examining l items’’. Since this set is bijectively mapped
to the set of all possible l ∈ {0, . . . , k}, we simply use l to indicate
the corresponding stopping policy. According to foraging theory,
for all possible stopping policies, the long term mean reward
rate is calculated considering the environment structure; then the
best policy is chosen (see e.g., McNamara, 1982). In addition, we
assume that participants impose a high subjective standard z of
acceptable performance and try to maximize the mean reward
rate of the entire experiment while achieving an average accuracy
rate not below this standard. This is reasonable for two reasons.
First, laboratory visual search tasks are usually designed to be
easy for most people, such that obtaining a low accuracy rate
would make participants feel uncomfortable. Second, participants
usually understand that their search behavior is of interest and
aim at showing high compliance.

Given set size k, we define the long term mean reward rate
γk(l) under a stopping policy l as the ratio of the expected number
of correct responses to the expected number of items examined
until search termination (cf. McNamara, 1982). For the sake of
simplicity, our calculations in Appendix A.3 assume a balanced
design and ignore the very rare misidentifications. Assume now
that the experiment has m set size levels k = (k1, . . . , km), each
appearing with equal probability. We assume without loss of gen-
erality that k1 < k2 < · · · < km. Assume further that the observer
adopts stopping policies l = (l1, . . . , lm) for the respective levels.
On any random trial, let Rk(l) denote the random variable that
indicates a correct response, and Nk(l) the random variable of the
number of items examined until termination. Then the long term
mean reward rate is given by

γk(l) =
E (Rk(l))
E (Nk(l))

=

∑m
i=1

li+ki
2ki∑m

i=1
4ki li−l2i +li

4ki

. (5)

The optimization problem can now be formulated as

γk(l) = max
l1,...,lm

! (6)

under the natural constraints 0 ≤ li ≤ ki for i = 1, . . . ,m
and the accuracy constraint E

(
Rk(l)

)
≥ z. Here, max! indicates

maximization of the function on the left side with respect to l,
subject to the specified constraints. Without loss of generality, we



Y. Li, M. Schlather and E. Erdfelder Journal of Mathematical Psychology 115 (2023) 102766

m
z

b

o
b
T

r

s
c
i
t

p

f
T
c

o
e
p
A

A
d
g
a
T
s
d

˜

ay assume that z ∈ [1/2, 1]; in practical applications, we have
∈ (1/2, 1) with z typically close to 1.
In case z ≥ 1− (2m)−1, the optimal solution to Eq. (6) is given

y(
l∗1, l

∗

2, . . . , l
∗

m

)
= (k1, k2, . . . , km−1, km (1 − 2m(1 − z))) , (7)

implying the search proportions(
r∗

1 , . . . , r∗

m

)
:=

(
l∗1/k1, . . . , l

∗

m/km
)

= (1, . . . , 1, 1 − 2m(1 − z)) .

The above two equations formalize the following rule: Unless
the target is found, perform an exhaustive search on the smaller
set sizes to achieve maximum accuracy; only on the trials with
the largest set size, terminate the search so early that the mini-
mum required accuracy to reach an average accuracy of z can be
btained. For the derivation of the optimal stopping policy given
y Eq. (7) under rather general assumptions, see Appendix A.3.
he inequality z ≥ 1− (2m)−1 is, for instance, satisfied for m = 4

and z ≥ .875, or for m = 5 and z ≥ .9. Since most visual search
tasks use less than five set size levels and are designed in a way
that high accuracy is facilitated, the case z ≥ 1 − (2m)−1 is most
relevant for empirical applications.

In reality, of course, participants hardly perform such a formal
analysis deliberately and implement the optimal stopping policy
exactly as given by Eq. (7). Moreover, an exhaustive search under
two or more adjacent set sizes conflicts with patterns in empirical
accuracy data, as discussed in Section 2.2. Nevertheless, it seems
plausible that the actual search termination behavior is largely
shaped by the optimal stopping policy, but with some added
flexibility (i.e., performing nearly exhaustive searches on trials
with smaller set sizes and reducing search proportions to some
degree when set size is large). Accordingly, we model the actual
termination by an approximation of the optimal stopping policy
using a smoothing approach, see Section 2.5.

2.4. Imperfect processing

Incomplete search alone does not suffice to account for all the
patterns (a) to (d) in accuracy data (see pattern (b) in Section 2.2).
An adaptation of the identification threshold to the set size is
necessary to fully capture these patterns. For this purpose, the
dependencies of p1 and p2 on k need to be specified.

Thanks to Eq. (1), pattern (b) reveals unique information with
egard to p1. Recall that the empirically observed false alarm
rates, that is, the realizations of π1, remain approximately con-
tant with a slight decreasing trend as k increases. If π1 were
onstant, we could solve Eq. (1) for p1. Taking the slight decline
nto account, we conclude in Appendix A.4 that it is reasonable
o specify the dependency of p1 on k by

1(k) = a1k−b (8)

or some a1 ∈ [0, 1] and b > 0 with a1/b1 < k1 = min{k1, . . . , km}.
he derivation in Appendix A.4 also implies that, more specifi-
ally, a1 should be close to 0 and b slightly larger than 1.
This power law relationship is convincingly supported by an

bservation based on the two sets of accuracy data from Wolfe
t al. (2010). A naive estimate of p1 appears to follow indeed a
ower law of set size k for each data set, as Fig. 6 shows. See
ppendix A.4 for details.
Although a similar approach does not work for p2 (see again

ppendix A.4 for details), it is reasonable to also allow p2 to
epend on k for two reasons. First, for a binary classifier in
eneral, suppressing the Type I error rate P(‘‘Ti = 1’’ | Ti = 0) is
ssociated with an increase of the Type II error rate P(‘‘Ti = 0’’ |
i = 1) and vice versa. Second, assuming a constant p2 predicts a
lightly slower growth of the miss rate than observed in empirical
ata. This discrepancy diminishes when we assume that p varies
2

8

Fig. 6. Log–log plot of the naive estimates of p1 on set size k for conjunction
search data (top) and spatial configuration data (bottom) collected by Wolfe
et al. (2010).

as a power function of k, resulting in a better approximation of
pattern (d). More precisely, we assume that p2(k) = a2kb2 for
some b2 > 0 and a2 > 0. We further infer from an analysis of
the Receiver Operating Characteristic curve that p2 most likely
increases with k at a similar speed as p1 falls (i.e., b2 = b), and
accordingly,

p2(k) = a2kb, where a2, b > 0 and a−1/b
2 > km. (9)

2.5. Full model accounting for accuracy and latency jointly

As mentioned in Section 2.3, we model the termination by a
smooth approximation of the optimal stopping policy. We suggest
to approximate l∗k by

l(k) := k (1 − exp(βk + α)) for − α/β ≥ k and β > 0. (10)

The goodness of the proposed approximation is best illustrated
by the corresponding search proportions

(
r∗

1 , . . . , r∗
m

)
and the

graph of r̃(k) := l̃(k)/k = 1−exp(βk+α), see Fig. 7. The parameter
β represents the steepness of the curve and can be interpreted
as the extent to which the search proportions r̃(ki) for different
set size levels ki are polarized. Here, ‘‘polarization’’ indicates that
parameters r̃(k1), . . . , r̃(km−1) are close to 1 while r̃(km) is close
to 0. Specifically, the larger β , the steeper the curve of r̃(ki), thus
the larger the jump at the largest set size level.

We choose this specific form for two reasons. First, it results
in decreasing search proportions r̃(k) for increasing k, which is
necessary to capture pattern (a). Second, it leads to a convex form
of the miss probability P(Yk,1 = 0), in line with pattern (d) found
in empirical data.

Combining Eq. (10) with Eqs. (8) and (9), we obtain the fol-
lowing explicit equations for the error probabilities of responses:

π1(k) = 1 −
(
1 − a1k−b)k(1−exp(α+βk))

; (11)

π2(k) =
[(
1 − a1k−b) exp(α + βk) + a2kb (1 − exp(α + βk))

]
·
(
1 − a k−b)k(1−exp(α+βk))−1

. (12)
1



Y. Li, M. Schlather and E. Erdfelder Journal of Mathematical Psychology 115 (2023) 102766

a

t
Y

P

w
a
a

a
t
a
d
l
t
a
t
v
t
t
w
l̃
b

F

w
E
o
t
i
t

s
r
t
e
a

3

t
a
t

Fig. 7. The search proportions (r∗

1 , r∗

2 , r∗

3 , r∗

4 ) = (1, 1, 1, 0.8) that correspond to the theoretically optimal stopping policy under the accuracy constraint z = 0.95 in
n experiment with set size levels (3, 6, 12, 18). The search proportions are approximated by the function r̃(k) = 1 − exp(0.6k − 12.38).
l
a
d
c
t
M
p
m
o
p
a
t
e
p
2
f
(

3

s
a
n
{

B(

}.
Given our specification of the emergence of response errors,
he model hypothesizes the marginal distribution of the response,
k,q, as

Yk,q (y) = (1 − q)π y
1 (1 − π1)

1−y
+ q (1 − π2)

y π
1−y
2 , (13)

here q, y ∈ {0, 1}. The model parameters (α, β, a1, a2, b) in π1
nd π2, which we refer to as accuracy-related parameters, as well
s set size k, are omitted for clarity.
As discussed in Section 2.2, by determining l, p1 and p2, we

lso obtain the distributions of T 1
k and T 0

k in Eq. (3), and thus
he conditional distribution of Xk,q given Yk,q. However, there is
technical issue that needs to be resolved: While Eq. (10) intro-
uces non-integer values of l, Assumption A1 implicitly requires
to be a natural number in order to model Xk,q. Simply rounding
he value of l̃ obtained from Eq. (10) to a natural number leads to
considerable bias. Therefore, we adopt a probabilistic approach:
he termination criterion in Assumption A1 functions as a random
ariable that takes the value ⌈l̃⌉ with probability l̃ − ⌊l̃⌋ and
he value ⌊l̃⌋ with probability 1 − (l̃ − ⌊l̃⌋). In other words, the
ermination criterion is modeled by a two-point random variable
ith the floor ⌊l̃⌋ and the ceiling ⌈l̃⌉ of l̃ as possible outcomes and
as the expected value. The distributions of T 1

k and T 0
k can thus

e determined as finite mixture distributions. In particular,

˜Xk,q|Yk,q (t | y) = (1 + ⌊l̃⌋ − l̃)FXk,q|Yk,q (t | y; ⌊l̃⌋, p1, p2)

+ (l̃ − ⌊l̃⌋)FXk,q|Yk,q (t | y; ⌈l̃⌉, p1, p2),
(14)

here FXk,q|Yk,q is given by Eq. (4) with l̃, p1, p2 as specified in
qs. (10), (8), and (9). Again, the parameters (α, β, a1, a2, b) are
mitted for clarity. In addition to these accuracy-related parame-
ers, the model RTs also depend on (λ, µ, c, τ1, τ0), which can be
nferred solely from the RT data, cf. Section 2.2. We therefore call
hem RT-related parameters.

Hence, our model explicitly and completely specifies the re-
pective dependencies of PYk,q and F̃Xk,q|Yk,q on set size k. As a
esult, regardless of the specific set size ki on a visual search
rial or the total number m of set size levels studied in the
xperiment, the number of free parameters — both RT-related and
ccuracy-related — remains constant.

. Parameter estimation

The proposed queueing model has 10 free parameters in
otal: α, β, a1, a2, b, λ, µ, c, τ1, τ0. Since our model specifies an
nalytical closed form for π1 and π2 in Eq. (13), we estimate
he accuracy-related parameters α, β, a , a , b using a maximum
1 2

9

ikelihood (ML) estimation approach. An estimator with explicit
nalytical form is not available for FTi , hence also not for F̃Xk,q|Yk,q ,
ue to the non-standard assumptions in our model, e.g., the non-
onstant arrival intensity. Therefore, with respect to modeling
he RTs on a distributional level, we approximate F̃Xk,q|Yk,q by
onte-Carlo simulation. Accordingly, we estimate the RT-related
arameters λ, µ, c, τ1, τ0 using a minimum distance (MD) esti-
ation approach. In accordance with the respective dependencies
f π1, π2 and F̃Xk,q|Yk,q on the parameters, the accuracy-related
arameters are estimated ahead of the RT-related parameters
nd their ML estimates are used as input for the MD estima-
ion procedure. For technical details of the complete parameter
stimation procedure, we refer to Chapter 6 in Li (2019). The
arameter estimation has been implemented in R (R Core Team,
021) by Schlather and Li (2022). The full reproducible R scripts
or data fitting are available at the Open Science Framework
https://osf.io/k9573/).

.1. ML estimation for accuracy-related parameters

Assume a balanced two-factorial within-subject design of m
et size levels (k1, . . . , km) crossed with target presence versus
bsence in a display (q = 1 versus q = 0, respectively). Let
k,q,y denote the number of observations of Yk,q = y, y ∈

0, 1}, on trials with set size k and objective target status q.
ased on Eq. (13), the log-likelihood ℓ of the response pattern
nki,1,1, nki,1,0, nki,0,1, nki,0,0

)
is given by

ℓ(α, β, a1, a2, b) =

m∑
i=1

[
nki,1,1 ln (1 − π2(ki)) + nki,1,0 ln (π2(ki))

+ nki,0,1 ln (π1(ki)) + nki,0,0 ln (1 − π1(ki))
]

+ C,

where C is a constant, and π1 and π2 are given by Eqs. (11) and
(12).

To ensure that estimated probabilities are in [0, 1], we repa-
rameterize the model by β̃ = −βkm/α and b̃ = −b ln(km)/ ln(a2).
Note that, by assumption, km is the greatest element of {k1, . . . , km
To refine the estimation, we apply a technique of profiling (see
e.g., Severini & Wong, 1992) to β̃ .

3.2. MD estimation for RT-related parameters

The MD estimation approach searches for the parameter val-
ues that minimize the distance between the CDFs of the model

https://osf.io/k9573/
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Fig. 8. Two examples of search displays used in Wolfe et al. (2010), a con-
junction search task (left, target = vertical red bar) and a spatial configuration
search task (right, target = 2). From ‘‘Serial_Conj’’, by Visual Attention Lab, 2010,
Retrieved from http://search.bwh.harvard.edu/new/data_set_files.html. Copyright
2010 by Visual Attention Lab.

RT and the empirical data (see e.g., Basu, Shioya, & Park, 2011).
The distance is measured by the Wasserstein metric of order 1
(Vallender, 1974):

W (Gn, Fθ ) =

∞∫
−∞

|Gn(x) − Fθ (x)| dx,

where Fθ is a parametric model CDF with parameter θ and Gn the
empirical CDF of the observed data with sample size n.

As stated above, the conditional CDFs of RTs given by Eq. (14)
are approximated numerically using Monte-Carlo simulation. We
developed an algorithm (see Appendix B) for the simulation of
a queueing process as specified in Section 2. Each simulation run
returns a TP or TA response and the associated RT based on Eq. (3)
for a given level combination and a given parameter vector. We
call the data simulated or collected under a level combination
(k, q) a sub-data set. Each simulated sub-data set consists of 105

simulation runs, which are batched into a block. To ensure that
the distance calculation returns the same value for the same set
of parameter inputs, the random seed is reset to 0 once at the
beginning of the block of simulation runs for a sub-data set.

Taking RTs of both correct and incorrect responses on both
target-present and target-absent trials into account means that
a data set with m set size levels results in 4m comparisons
between the model and empirical CDFs and thus 4m distances
for the entire experiment. From a psychological viewpoint, it is
reasonable to assume that the same parameter values underlie
the data observed under different conditions in the same vi-
sual search experiment. This constraint requires to search for
common parameter values for all sub-data sets that minimize a
global distance, which is best defined as the weighted sum of in-
volved distances, using the relative informativeness of the data as
weights, as detailed below. However, simply fitting the model to
all sub-data sets at once leads to overparameterization and causes
identifiability issues, making parameter estimates unstable.

In order to combine the information across sub-data sets in
an efficient way and to cope with the identifiability issues, we
develop a hierarchical, iterative parameter estimation procedure
(see Appendix C). This procedure integrates information from in-
dividual sub-data sets to find better estimates step by step along a
hierarchical structure. First, each sub-data set is fitted separately
with the profiling technique (see e.g., Severini & Wong, 1992)
applied to λ−1, the parameter for interarrival times. The estimates
of individual sub-data sets are then averaged to obtain the initial
values for the joint fitting of sub-data sets. The distances involved
in the calculation of each step are weighted by the relative in-
formativeness of the data they are based on. When the model is
fitted to correct and incorrect RTs of a sub-data set jointly, either
distance is weighted by the relative frequency of the respective
10
Table 1
ML estimates of accuracy-related parameters and corresponding log-likelihoods
for the conjunction search and spatial configuration search data of Wolfe et al.
(2010).

α̂ β̂ â1 â2 b̂ log-likelihood

CS −4.01 .0531 .0262 1.00 × 10−5 1.28 −27.69
SC −4.41 .114 .0182 1.21 × 10−5 1.11 −31.76

Note. CS = conjunction search; SC = spatial configuration search. The ML
estimates are rounded to three significant digits.

responses within this sub-data set. For the sub-data set obtained
in condition (k, q), we denote the frequency-weighted sum of
the resulting distances by Wk,q. When different sub-data sets are
fitted jointly, eachWk,q is additionally divided by the lowest value
(i.e., the best individual fit) obtained in the first step for the
corresponding sub-data set. The global distance in the second
step is then the sum of the relativized Wk,q. This relativization
prevents sub-data sets with large individual distances, which in-
dicate comparatively bad fits, from dominating the optimization.
To deal with over-parameterization, a subset of parameters is
held fixed when the complementary set is estimated. The process
is iterated alternatingly with exchanged roles of the two subsets.
Because c , the number of servers, has discrete values, it is held
fixed when using this procedure to estimate other parameters.
The entire procedure is applied for each c = 1, . . . , 10 to find the
best fitting c.

4. Data fitting

4.1. Brief description of the experiments by Wolfe et al. (2010)

Our model was fitted to data aggregated across individual
participants collected in two standard visual search experiments
by Wolfe et al. (2010). Ten and nine participants performed a
conjunction search task and a spatial configuration search task,
respectively. Each participant completed a total of 4000 experi-
mental trials. The experiments followed a factorial within-subject
design of set size (3, 6, 12, or 18) and the objective status of
the target (absence or presence). On each trial, the levels of both
factors were selected randomly and independently with equal
probabilities of 1/4 and 1/2, respectively. Fig. 8 illustrates two
examples of the search displays. With a delay of 500 ms, the
search display appeared and remained visible and unchanged
until the participant responded. Whenever a key was pressed,
indicating either a target-present or a target-absent response, a
feedback was shown for 500 ms. Participants were instructed to
respond as quickly and accurately as possible. Following Palmer
et al. (2011) and Wolfe et al. (2010), we excluded trials with RT
< 200 ms.

4.2. Results

For both task types, the ML estimates of the accuracy-related
parameters (Table 1) resulted in predicted relative frequencies
very similar to the empirically observed error rates, see Fig. 9.

Based on the accuracy-related parameters in Table 1, we ob-
tained MD estimates for the RT-related parameters using the
Monte-Carlo-based procedure described in Section 3.2. For the
conjunction search response latencies, a generally good fit was
already obtained when all parameters were kept invariant across
experimental conditions. For the spatial configuration search la-
tencies, this restriction led to a sufficiently good fit only for some
of the sub-data sets. However, allowing µ−1 to depend on set size
improved the fit markedly. For both task types, the best overall
fit was observed for c = 5 with the corresponding MD estimates

http://search.bwh.harvard.edu/new/data_set_files.html
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Fig. 9. Comparison of observed false alarm (left column) and miss (right column) rates and the corresponding frequencies expected from the model, separately for
onjunction search data (upper row) and spatial configuration search data (lower row) of Wolfe et al. (2010).
Table 2
MD estimates of RT-related parameters in milliseconds and corresponding sums of distances for
the conjunction search and spatial configuration search data sets from Wolfe et al. (2010).

ĉ λ̂−1 µ̂−1
3 µ̂−1

6 µ̂−1
12 µ̂−1

18 τ̂0 τ̂1
∑

i Wki,0
∑

i Wki,1

CS 5 23 151 151 151 151 245 353 407 144
SC 5 81 235 361 493 501 285 388 453 158

Note. CS = conjunction search; SC = spatial configuration search. The subscript next to µ indicates
the set size level it applies to. The constraint µ3 = µ6 = µ12 = µ18 was applied to the data fitting
for conjunction search. The numbers are rounded to the nearest integer.
o
R
o
f
o
s
t

s
i

isplayed in Table 2. As illustrated in Figs. 10, 11, 12, and 13, the
onditional RT distribution expected under the model deviated
ess from the empirical one for small set sizes than for large ones.
he same was true for target-present versus target-absent trials,
orrect versus incorrect responses, and conjunction search versus
patial configuration search tasks, respectively.

.3. Discussion

Fig. 9 demonstrates that the model is able to reproduce
arginal error rates of responses in both task types almost
erfectly. The minor deviations do not exhibit any systematic
attern. Figs. 10 to 13 show that the model is able to capture the
onditional RT distributions quite well, even for the rare incorrect
esponses. However, the deviations show certain patterns. The
ost noticeable one is that for large set sizes, the empirical RTs
11
f correct rejections and misses have bigger tails than the model
Ts. If this was the result of a larger variability in processing times
f single stimuli, the same pattern should be observed for hits and
alse alarms. Yet this is not the case. Thus, the underestimation
f extreme latencies may arise from larger variability in empirical
earch terminations for target-absent responses than implied by
he model.

Both task types share the same estimate for the number of
ervers in the queueing system, that is, the maximum number of
tems allowed in the identification stage at the same time (ĉ = 5).
Notably, this estimate of the number of parallel processing chan-
nels available for controlled processing is roughly in line with
previous studies and alternative models of visual information
processing. For example, in the time-dependent limited-channel
model (Fisher, 1982), the number of channels that best fitted the
empirical mean visual search RTs ranged between three and five.



Y. Li, M. Schlather and E. Erdfelder Journal of Mathematical Psychology 115 (2023) 102766

e

F
f
w
(
s
i
f
&
p
t
i

r
τ

a
w
d
d

Fig. 10. Comparison of the empirical and the model-based conditional distributions of the RT given the response is correct in the conjunction search data from Wolfe
t al. (2010) for c = 5, separately for target presence vs. absence and different set sizes.
w
c
l

isher (1984) obtained the same range based on the results of
itting the steady-state limited-channel model to data collected
ith the multiple-frame paradigm. The Theory of Visual Attention
Bundesen, 1990) assumes a capacity limit of four items. In the
ame vein, based on different empirical procedures, visual work-
ng memory has been argued to have a capacity limit of three to
ive items in young adults (Cowan, 2001; Isbell, Fukuda, Neville,
Vogel, 2015; Luck & Vogel, 1997; Pashler, 1988). Thus, the pro-
osed queueing model provides converging evidence concerning
he number of available attentive processing channels for visual
nformation.

Moreover, the estimates for the residual times τ1 and τ0 are
emarkably similar across both task types as well. The finding
1̂ ≈ τ̂0 + 100 may reflect a stronger readiness for the target-
bsent response regardless of task type. This finding is also in line
ith the viewpoint that deciding to respond TP might induce ad-
itional processes, such as saccade planning, compared to simply

eciding to respond TA (Wolfe et al., 2010).

12
The estimates of the remaining parameters are consistent
ith the subjectively experienced higher difficulty of the spatial
onfiguration task compared to the conjunction task. The clearly
arger values of λ̂−1 and µ̂−1 for the former indicate longer
processing times in both the preattentive stage and the atten-
tive stage. An intriguing finding is that relaxing the constraint
on µ−1 improves model fit noticeably for spatial configuration
search data, and that µ̂−1 increases with set size (see Table 2).
One possible explanation is that adaptation of the identification
threshold to set size demands more attentional resources for
spatial configuration stimuli than for conjunction stimuli. If this
is the case, the adaptation should be more restricted due to the
higher costs. This reasoning is in line with the finding that the
value of b̂ is smaller for the spatial configuration task, indicating
that p1 and p2 are less sensitive to set size. In sum, compared
to conjunction stimuli, identification of individual spatial config-
uration stimuli appears to require more cognitive resources. In
addition, its adaptation to set size is possibly more costly. As a
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Fig. 11. Comparison of the empirical and the model-based conditional distributions of RT given the response is incorrect in the conjunction search data from Wolfe
t al. (2010) for c = 5, separately for target presence vs. absence and different set sizes.
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ounterbalance, the termination criterion more strongly depends
n set size, as indicated by the larger value of β̂ . That is, during
patial configuration search, participants search more thoroughly
n small trials but more hastily on large trials.

. Model uncertainty analysis

Since c represents the number of parallel, independent pro-
cessing channels in the attentive stage, it is the most significant
structural parameter of the proposed queueing model. Thus, we
used a bootstrap approach to assess the extent to which the
model fit, as measured by the Wasserstein metric, can reflect a
misspecification regarding c. We compared the proposed hybrid
odel with a standard serial model, focusing on the most relevant
spect: the ability to distinguish between a single-server system,
= 1, which represents strictly serial attentive processing, and
multiserver system, c = 5, which fits Wolfe et al.’s (2010) data
13
best. The R-scripts and data for the uncertainty analysis are also
vailable at the Open Science Framework (https://osf.io/k9573/).
We used the best-fitting parameter values to the conjunction

earch data given c = 1 and c = 5 to simulate 600 samples
n each case. Each sample contained 40,000 trials, assuming the
ame experimental design as Wolfe et al. (2010). We then fitted
he simulated data sets to the queueing model with the constraint
3 = µ6 = µ12 = µ18. Similarly, for the model variant without
he constraint of a common µ, we simulated 618 samples for
c = 1 and c = 5 each, using the corresponding best-fitting
arameter values to the spatial configuration search data.
As displayed in Table 3, the model with the correct number

f servers was selected in more than 90% of the cases. As shown
n Figs. D.14 and D.15 in Appendix D, fitting the data originating
rom a single-server system to any multiserver system results in
clearly larger misfit that increases with increasing ĉ , with or

without the constraint of a common µ. Similarly, fitting the data

https://osf.io/k9573/
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Fig. 12. Comparison of the empirical and the model-based conditional distributions of RT given the response is correct in the spatial configuration search data from
Wolfe et al. (2010) for c = 5, separately for target presence vs. absence and different set sizes.
originating from a five-server system to a single-server system
produces a notably larger misfit. Again, fitting multiserver models
with 1 < ĉ < 5 results in somewhat smaller but still obvious
misfit. These results indicate that a model misspecification re-
garding c can be well reflected in the total distance and identified
correctly in almost all cases. Notably, we did not observe a single
sample generated from a single-server system that was classified
as best-fitting a five-server system.

6. Conclusion

The existing empirical findings on visual search do not allow
for a coherent theoretical conclusion on the serial/parallel debate.
Serial models are in line with some findings and in conflict
with others; the same applies to parallel models. Moore and
Wolfe (2001) explained how a hybrid structure that combines
serial and parallel features could accommodate the apparently
14
Table 3
Frequencies of bootstrap samples generated from a c server system and
best-fitting a ĉ server system.

With constraint on µ Without constraint on µ

ĉ = 1 2 5 6 1 4 5 6

c = 1 598 2 0 0 618 0 0 0
c = 5 0 0 595 5 0 58 559 1

conflicting findings. We formalize and implement this notion as
a single-line, multiserver queueing model in continuous time.
This model is well embedded in the theoretical framework of
two processing stages in visual search (Treisman, 1986; Treisman
& Gelade, 1980) and accounts for responses and RTs jointly on
a distributional level. We incorporate two psychological mech-
anisms to explain the emergence of incorrect responses in the
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Fig. 13. Comparison of the empirical and the model-based conditional distributions of RT given the response is incorrect in the spatial configuration search data from
olfe et al. (2010) for c = 5, separately for target presence vs. absence and different set sizes.
ueueing system, namely, a threshold adaptation that accounts
or genuine processing errors and a quasi-optimal stopping rule
hat accounts for omission errors. In addition to proposing a
aximum-likelihood method for fitting accuracy data, we solve

he problem of the lack of an explicit analytical form for the
onditional CDF of the model RT by developing a numerically
table, well-performing minimum-distance parameter estimation
rocedure based on Monte-Carlo simulation.
We fitted the model to two prototypical empirical data sets of
olfe et al. (2010), obtained with conjunction search and spatial

onfiguration search tasks, respectively. The proposed queueing
odel captures the accuracy rates almost perfectly for both data
ets. Regarding the RT distributions, a generally good fit is found
or the model with five servers. The model uncertainty analysis
learly shows that such a good model fit cannot be achieved
hen the data originate from a strictly serial processing system.
hus, the results provide convincing empirical support for the
15
proposed hybrid structure beyond the dichotomy of serial and
parallel processing.

Our results show that a mechanism that exhibits both se-
rial and parallel aspects underlies selective attention in standard
visual search tasks with different stimulus types. The serial char-
acter of our model rests on the single waiting line that represents
an attentional bottleneck, while subsequent attentive processing
of items can be seen as asynchronous-parallel with limited ca-
pacity. Furthermore, the results also demonstrate that accuracy
data and the RTs of both correct and incorrect responses are
very important for a comprehensive account of visual search
performance.

On the theoretical level, our model provides a novel approach
to account for the ‘‘bottleneck’’ phenomenon in visual attention
data. Since most theories and models of visual attention ac-
knowledge the existence of at least one parallel stage in visual

processing, the core of the serial/parallel debate essentially is



Y. Li, M. Schlather and E. Erdfelder Journal of Mathematical Psychology 115 (2023) 102766

h

(

t

π

n
p
s

t
w
e
c
w

ow to explain the positive mean RT × set size slopes found in
empirical data. A serial model explains them as a direct conse-
quence of a mandatory serial processing stage, whereas a limited-
capacity parallel model proposes sequential sampling of visual
stimuli. In contrast, our model explains the positive slope by a
serial transition between two parallel processing stages with dif-
ferent capacities. Accordingly, the attentional ‘‘bottleneck’’ arises
as an emergent property of a single-line queueing system that
enables efficient information flow between a massively parallel
preattentive stage and a limited-capacity parallel attentive stage
of processing.

Several aspects need to be considered for further develop-
ments and extensions of the model. First, possible extensions
of the model should take guidance in visual search (e.g., Wolfe,
1994, 2021) into account. For instance, the assumption of
equiprobable arrival orders can be replaced by a prioritized ar-
rival order, so that an item with a salient feature has a higher
probability of being among the first to get through the preat-
tentive stage (bottom-up guidance). Likewise, the FCFS discipline
can be replaced with a priority queueing discipline, allowing
an item with a goal feature to be served ahead of other items
in the waiting room (top-down guidance). Second, inhibition of
return should be modeled in a more realistic manner. Wolfe
(2012) pointed out that there is sufficient inhibition of return to
locations searched previously but no perfect memory for rejected
items. Taking non-perfect inhibition of return into account may
improve the fit at the right tail of RT distributions for large set
sizes. Third, the calculation of the reward rate should probably
incorporate expenditure resulting from key pressing and waiting
for the next display as factors that affect effort. Fourth and most
importantly, the generalizability of the model needs to be investi-
gated. Fisher (1982, 1984) specified different queueing models to
account for RT data obtained by different RT methods (see Wolfe,
2018) and accuracy data obtained by several accuracy methods,
respectively. Ultimately, the question arises whether data from
different visual attention paradigms can be explained within a
unified model framework, especially the attentional dwell time
findings combined with visual search findings.

In addition, we regard the development of appropriate, well-
understood goodness-of-fit tests and model-selection measures
for combined accuracy and latency data as the most important
statistical advancement for future applications of the queueing
model and its variants. Based on such statistical methods, selec-
tive manipulations of specific cognitive processes underlying the
model parameters could then be conducted to evaluate whether
an experimental manipulation maps on the corresponding model
parameter correctly. If successful, such analyses would lend fur-
ther support to the psychological validity of the proposed queue-
ing model of visual search in general and of its parameters in
particular.

Data availability

Data and R code related to this article can be found at the Open
Science Framework at https://osf.io/k9573/.
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Appendix A. Comments on and derivations of selected equa-
tions

A.1. Comments on the error probabilities of responses, Eqs. (1) and
2)

In our model, a false alarm error can arise only from misiden-
ification. To see

1(k; l, p1, p2) := P(Yk,0 = 1) = 1 − (1 − p1)l,

ote that we have P(Yk,0 = 0) = (1 − p1)l, where 1 − p1 is the
robability of a correct classification of a distractor. The search is
topped immediately after correctly identifying l distractors.
A miss error can arise from omission or misidentification. If

he target is not within the first l departing items (which happens
ith probability (k − l)/k), an omission occurs. In this case, the
vent Yk,1 = 0 occurs if and only if all the l distractors are
orrectly detected. That is, the miss error arises from omission
ith probability (1 − p1)l (k− l)/k. In the complemental case, the

target can be in any of the l positions of the departing sequence.
For each of these l subcases, the event Yk,1 = 0 occurs if and
only if the target is misidentified (with probability p2) and l − 1
distractors are correctly identified. That is, the miss error arises
from misidentification with probability (1 − p1)l−1 p2l/k.

A.2. Derivation of the conditional CDF within Eq. (4)

In principle, we should distinguish four cases, Yk,0 = 1, Yk,1 =

1, Yk,0 = 0, Yk,1 = 0. By Assumption A1, in case of Yk,0 = 0 or
Yk,1 = 0, the RT is the processing time of l items plus a residual
time τ0, which does not involve collecting and analyzing visual
information.

In case of Yk,0 = 1 or Yk,1 = 1, the conditional RT given
Yk,q = 1 is — in contrast to the event Yk,0 = 0 or Yk,1 = 0 —
a finite mixture distribution consisting of the CDFs of the jth
departure epoch, j ≤ l. The weights vj,k,q are the conditional
probabilities that the queue terminates at the jth departure epoch
given Yk,q = 1.

Consider first the case Yk,0 = 1. Since there are only distrac-
tors in the display, the response is a false alarm, i.e., P(Yk,0 =

1) = π1 by definition of π1. The search terminates at the jth
departure epoch if and only if the first j − 1 departing items are
correctly classified as distractors and the jth departing distractor
is misidentified as the target. Therefore, the probability that the
queue terminates at the jth departure epoch given Yk,0 = 1 is

vj,k,0 = (1 − p1)j−1p1/π1(k; l, p1, p2).

Now, consider the case Yk,1 = 1. Here, P(Yk,1 = 1) = 1 − π2
by definition of π2. We have to distinguish three cases:

1. The target is correctly identified at position j ≤ l in the
departure order.
Since equiprobable arrival orders imply equiprobable de-
parture orders, the target appears at position j of the de-
parting sequence with probability 1/k. As the target as well
as the j − 1 distractors must be classified correctly, the
probability that the queue terminates at the jth departure
epoch with the event Yk,1 = 1 is

k−1(1 − p )j−1(1 − p ).
1 2

https://osf.io/k9573/
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2. The target is misidentified at a position i < j in the depar-
ture sequence and a distractor is misidentified at position
j.
Then there are j − 1 possible positions for the target and
j − 2 distractors must have been identified correctly. This
gives

k−1(j − 1)p2(1 − p1)j−2p1.

3. The target is in a position i > j and a distractor is misiden-
tified at position j.
Then the target may take k− j possible positions and j− 1
distractors have to be identified correctly. This gives

k−1(k − j)(1 − p1)j−1p1.

A.3. Derivation of the mean reward rate, Eq. (5), and the solution to
the optimal stopping problem, Eq. (7)

In accordance with the notation usage in the main text, Yk,q =

1 and Yk,q = 0 denote the TP and TA responses, respectively,
observed on trials with set size k and objective target status q.
Throughout the derivation, we assume that the misidentification
probabilities p1 and p2 are zero. This is in accordance with the
resumption that observers decide about their optimal stopping
olicy in ignorance of their own genuine processing errors.
First, consider set size k as given and fixed. Equiprobable

rrival orders imply equiprobable departure orders due to the
roperties of permutations. Hence, on target-present trials, any
eparture position i of the target is equiprobable. Under the
ssumption p1 = p2 = 0 and in case of a target-present trial, the
robability of observing a TP response under the stopping policy
= l(k) is

(Yk,1 = 1)

=

l∑
i=1

P (the ith departure is target | q = 1) =

l∑
i=1

1
k

=
l
k

= 1 − P(Yk,1 = 0).

Let Nk(l) denote the random variable of the number of items
xamined until termination, regardless of the outcome response
nder the stopping policy l on a trial with set size k. For l ≤ k,
he expected value of Nk(l) on target-present trials is then

(Nk(l) | q = 1)

=

l∑
i=1

P (quitting after examining i items | q = 1) · i

=

l∑
i=1

i ·
1
k

+ l · P(Yk,1 = 0) =
2kl − l2 + l

2k
.

On target-absent trials, due to the assumed absence of genuine
rocessing errors, processing will always terminate with a correct
arget-absent response after searching l items: P(Yk,0 = 0) = 1
and P(Yk,0 = 1) = 0. Accordingly, the expected value of Nk(l) on
arget-absent trials is E(Nk(l) | q = 0) = l. Then the expected
alue of Nk(l) on any trial can be calculated:

(Nk(l))
= E (Nk(l) | q = 1) · P (q = 1) + E (Nk(l) | q = 0) · P (q = 0)

=
2kl − l2 + l

2k
·
1
2

+ l ·
1
2

=
4kl − l2 + l

4k
.

Let the random variable Rk(l) equal 1 if the response is correct
nder the stopping policy l on a trial with k items. Otherwise,
17
Rk(l) shall be 0. Then the expected value of Rk(l) under a target
prevalence of 50% is given by

E (Rk(l))
= P

(
Yk,1 = 1

)
· P (q = 1) + P

(
Yk,0 = 0

)
· P (q = 0)

=
l
k

·
1
2

+ 1 ·
1
2

=
l + k
2k

.

Assume that the experiment has m set size levels k =

(k1, . . . , km) with k1 < k2 < · · · < km. Consider the set size
k as a random variable that takes the m values k1, . . . , km with
equiprobability 1/m. Assume further that the observer adopts
stopping policies l := (l1, . . . , lm) for the respective levels. For

single random trial, we denote by Rk (l) the indicator func-
ion of a correct response and by Nk (l) the number of items
earched until search termination. Then, the expected numbers
qual

E (Rk(l)) =
1
m

m∑
i=1

E
(
Rki (li)

)
;

(Nk(l)) =
1
m

m∑
i=1

E(Nki (li)).

Let γk(l) be the mean reward rate in a long series of repeated,
independent trials. More precisely, with respect to the weak law
of large numbers, define

γk(l) =
E (Rk(l))
E (Nk(l))

.

Hence,

γk(l) =

∑m
i=1

li+ki
2ki∑m

i=1
4ki li−l2i +li

4ki

,

and our optimization problem reads∑m
i=1

4ki li−l2i +li
ki∑m

i=1
li+ki
ki

= min
0≤li≤ki,mz≤

∑m
i=1

li+ki
2ki

!,

where min! indicates minimization of the function on the left side
with respect to (l1, . . . , lm), subject to the constraints specified
underneath, cf. Eq. (6). With ri := li/ki ∈ [0, 1], this is equivalent
to

f (r) :=

∑m
i=1(4kiri − kir2i + ri)

m +
∑m

i=1 ri
= min

0≤ri≤1,(2z−1)m≤
∑m

i=1 ri
!,

here r = (r1, . . . , rm).
To solve the optimization problem, we first show that f (ωr) <

(r) for ω ∈ [0, 1) and ri ∈ [0, 1] with r ̸= 0. Let u := m−1 ∑m
i=1 ui

or any m-dimensional vector u. Then,

(r) =
4kr − kr2 + r

1 + r
,

where kr = (k1r1, . . . , kmrm), kr2 = (k1r21 , . . . , kmr
2
m), and

(4ωkr − ω2kr2 + ωr)(1 + r) < (4kr − kr2 + r)(1 + ωr)
4ωkr − ω2kr2 + ωr − ω2kr2 · r < 4kr − kr2 + r − ωkr2 · r

⇔ 0 < 4(1 − ω)kr + (1 − ω)r − (ω − ω2)kr2 · r − (1 − ω2)kr2

0 < 4(1 − ω)kr + (1 − ω)r − (1 − ω)ωkr2 · r
−(1 − ω)(1 + ω)kr2

⇔ 0 < 4kr + r − (1 + ω + ωr)kr2.

As kr2 ≤ kr , we have

4kr + r − (1 + ω + ωr)kr2 > 4kr + r − 3kr = kr + r > 0
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nd the inequality f (ωr) < f (r) is shown. Furthermore, f (r) ≥ 0
nd f (r) = 0 if and only if r = 0. Now, it follows readily by
ontradiction, that the equality r = 0 or (2z − 1)m =

∑m
i=1 ri

olds in the optimum. Hence, it suffices to consider

∗(r) :=

m∑
i=1

kiri(4 − ri)

nstead of f (r). Let r∗
:= (r∗

1 , . . . , r∗
n ) ̸= 0, r∗

i ∈ [0, 1], be
solution of the minimization problem, and ϕi = r∗

i (4 − r∗

i ).
Assume that some j > i exist with r∗

j > r∗

i . Then ϕj > ϕi, hence
kiϕj + kjϕi < kiϕi + kjϕj, which is a contradiction to r∗ being
optimal. Assume now, that 0 < r∗

j ≤ r∗

i < 1 for some j > i. Then,
for any 0 < ε ≤ min{r∗

j , 1 − r∗

i }, we have

ki(r∗

i + ε)(4 − r∗

i − ε) + kj(r∗

j − ε)(4 − r∗

j + ε) < kiϕi + kjϕj,

which is again a contradiction to r∗ being optimal. Consequently,

r∗

i =

⎧⎨⎩
1, i ≤ (2z − 1)m,

(2z − 1)m − ⌊(2z − 1)m⌋, i = ⌊(2z − 1)m⌋ + 1,
0, i > ⌊(2z − 1)m⌋ + 1,

here ⌊x⌋ is the largest integer not greater than x for any x ∈ R.
ote that if z > 1 − (2m)−1, then all r∗

i are positive.

.4. Derivation of p1 and p2, Eqs. (8) and (9)

We assume here that the optimal strategy l∗ is applied and
hat z is very close to one. Hence, l∗(k) can be considered to be
qual to k for all k.
Now, Eq. (1) states that

1 = 1 − (1 − p1)l
∗

,

eplacing l by l∗. According to pattern (b), π1 ≈ h1(k) for some
unction h1(k), which is constant in k or slightly decreasing.
olving for p1 results in

1(k) = 1 − (1 − h1(k))1/k.

ince π1, hence h1(k), is close to zero in empirical data of visual
earch, the Taylor expansion about the point h1(k) = 0, see Eq.
.110 in Gradshteyn and Ryzhik (2000), yields

1 − h1(k))1/k ≈ 1 −
h1(k)
k

with only a very small error). Hence,

1(k) ≈
h1(k)
k

.

Now, h1 can be slightly decreasing with increasing k. A simple,
atural approach to model this fact is to assume that h1(k) =

1k−ε for some ε > 0 and a1 > 0. Accordingly, we model p1
y

1(k) ≈ a1k−b

or some b ≥ 1 and a1 > 0.
Fig. 6 confirms greatly our approach and has been obtained

s follows. For each k, we first obtain a rough estimate of l̃(k)
s specified in Eq. (10) in Section 2.5 based on the visual fit
o the empirical miss rate. Then we substitute this estimate in
(Yk,0 = 1) = 1−(1−p1)k(1−exp(α+βk)) and solve it for p1. The naive
stimates of p1 obtained in this way appear to follow a power
aw of set size k for both data sets, as Fig. 6 shows. Moreover,
ince the rough estimates of l̃(k) turn out to satisfy l̃(k) < k, this
bservation indicates that the explanatory power of the power
aw relationship is not restricted by the replacement of l with k
n the derivation.
18
Note that a mathematical derivation of the behavior of p2 is
ot possible without further assumptions, since, for l = l∗ = k
n Eq. (2),

2 =
(
1 − a1k−b)k−1

p2.

umerical evaluations of
(
1 − a1k−b

)k−1 show that this term
which is less than, but close to 1) is approximately constant in
if all parameters are in the range of interest (i.e., if a1 is close

o 0, k between 3 and 18 and b not much greater than 1), that is,
hen p1 = a1k−b is close to 0. Note that the ranges considered
ere are in line with typical data in visual search experiments.
t follows that π2 = h2(k)p2 for some h2(k) which is roughly
onstant in k, and h2(k)p2 is roughly independent of p1. Hence,
ased on this alone, it is not possible to infer the form of p2
niquely because several functions can produce pattern (a), (c),
nd (d), which involve characteristics of π2.

ppendix B. Algorithm for the simulation of a queueing pro-
ess

Algorithm 1 (part 1): Simulation of a system response
Input: (α, β , a1, a2, b, k, q)
Output: (response, termination)

1 set l = k(1 − exp(α + βk)) ;
2 generate ∆L ∼ Bernoulli

(
l − ⌊l⌋

)
;

3 set L = ⌊l⌋ + ∆L ;
4 set p1 = a1k−b, p2 = a2kb ;

5 generate G1,...,k
i.i.d.
∼ Bernoulli(p1), H ∼ Bernoulli

(
p2

)
;

6 if q = FALSE then
7 if Gi = 0 ∀i = 1, . . . , L then
8 set termination = L ;
9 set response = FALSE ;

10 else
11 set termination = min{ j | Gj = 1 };
12 set response = TRUE ;
13 end if
14 else
15 generate Ptarget ∼ unif

{
1, . . . , k

}
;

16 set GPtarget = 0 ;
17 if Gi = 0 ∀i = 1, . . . , L then
18 if H = 0 and Ptarget ≤ L then
19 set termination = Ptarget ;
20 set response = TRUE ;
21 else
22 set termination = L ;
23 set response = FALSE ;
24 end if
25 else
26 set response = TRUE ;
27 if H = 0 then
28 set termination = min{ Ptarget, min{ j | Gj = 1 }}

;
29 else
30 set termination = min{ j | Gj = 1 } ;
31 end if
32 end if
33 end if
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Algorithm 1 (part 2): Simulation of a system response
time (main body)

Data structures:
input = (λ, µ, c , τ0, τ1, k, response, termination)
state = (t , nA, nD, nS)

out =
(
A1 . . . AnD AnD+1 . . . AnA
D1 . . . AnD +∞ . . . +∞

)
event list = (tA, tDS1 , tDS2 , . . . , tDSc )
service id = (x1, . . . , xc)
Output: (system rt, response)

1 initialization
2 set state = (0, 0, 0, 0) ;

3 set out =

(
·

·

)
;

4 set service id = (0, . . . , 0) ;
5 set dep id = 0, dep server= 0 ;
6 generate I1 ∼ Exp

(
kλ

)
;

7 set tA = I1 ;
8 set event list = (tA, +∞, . . . ,+∞) ;
9 set STOP = FALSE ;

10 simulation loop
11 while not STOP do
12 if tA = min{ tA, tDS1 , tDS2 , . . . , tDSc } then
13 execute subroutine UPDATE ARRIVAL ;
14 else
15 execute subroutine UPDATE DEPARTURE ;
16 end if
17 if tA = tDS1 = · · · = tDSc = +∞

18 or (response = FALSE and nD ≥ termination)
19 or (response = TRUE and dep id = termination)

then
20 STOP = TRUE ;
21 end if
22 end while
23 set system rt= t + τ0 + response · (τ1 − τ0) ;
24 set output = (system rt, response) ;

Procedure: UPDATE ARRIVAL

1 set t = tA, update nA by nA + 1 , update nS by nS + 1 ;

2 set AnA = t , out =
(
out,

(
AnA
+∞

))
;

3 if nA < k then
4 generate InA+1 ∼ Exp

(
(k − nA)λ

)
;

5 set tA = t + InA+1 ;
6 else
7 set tA = +∞ ;
8 end if
9 set free servers = { j | xj = 0 } ;

10 if nS ≤ c and free servers ̸= ∅ then
11 generate S ∼ Exp

(
µ

)
;

12 set i = min(free servers) ;
13 set tDSi = t + S, xi = nA ;
14 end if
19
Procedure: UPDATE DEPARTURE

1 set t = min{ tA, tDS1 , tDS2 , . . . , tDSc }, nD + +, nS − − ;
2 set DnD = t ;
3 set dep server = j such that

tDSj = min{ tA, tDS1 , tDS2 , . . . , tDSc } ;
4 set dep id = xdep_server, out2,dep_id = DnD ;
5 set xdep_server = 0, free servers= { j | xj = 0 } ;
6 if nS ≥ c then
7 set i = min(free servers) ;
8 set xi = nD + (c − |free_servers|) + 1 ;
9 generate S ∼ Exp

(
µ

)
;

10 set tDSi = t + S ;
11 else
12 set tDSj = +∞ ∀j ∈ free servers;
13 end if

Appendix C. Flow chart of the parameter estimation proce-
dure

sub-data set with ki , TA sub-data set with ki , TP

fit model to correct responses only;
initial value IV = (ivj, 500, 500)

fit model to correct responses only;
initial value IV = (ivj, 500, 500)

(
λ̂−1

ki,TA,1,j, µ̂−1
ki,TA,1,j, τ̂0ki,1,j

) (
λ̂−1

ki,TP,1,j, µ̂
−1

ki,TP,1,j, τ̂1ki,1,j

)
fit model to complete sub-data set

with τ1 held fixed to τ̂1ki,1,j;
IV =

(
λ̂−1

ki,TA,1,j, µ̂−1
ki,TA,1,j, τ̂0ki,1,j

) fit model to complete sub-data set
with τ0 held fixed to τ̂0ki,1,j;

IV =

(
λ̂−1

ki,TP,1,j, µ̂
−1

ki,TP,1,j, τ̂1ki,1,j

)
(
λ̂−1

ki,TA,2,j, µ̂−1
ki,TA,2,j, τ̂0ki,2,j

) (
λ̂−1

ki,TP,2,j, µ̂
−1

ki,TP,2,j, τ̂1ki,2,j

)

select j∗ withWj∗ = min
j∈{1,...,10}

Wj , whereWj =
∑

i(Wki,TA,j + Wki,TP,j);

λ̂−1
2 := (2m)−1 ∑

i

(
λ̂−1

ki,TA,2,j∗ + λ̂−1
ki,TP,2,j∗

)
,

µ̂−1
2 := (2m)−1 ∑

i

(
µ̂−1

ki,TA,2,j∗ + µ̂−1
ki,TP,2,j∗

)
,

τ̂02 := m−1 ∑
i

(
τ̂0ki,2,j∗

)
, τ̂12 := m−1 ∑

i

(
τ̂1ki,2,j∗

)
fit model to complete data of all sub-data sets jointly with

(λ−1, µ−1) held fixed to
(
λ̂−1

n+2, µ̂−1
n+2

)
; IV =

(
τ̂0n+2, τ̂1n+2

)
(
τ̂0n+3, τ̂1n+3

)
fit model to complete data of all sub-data sets jointly with

(τ0, τ1) held fixed to
(
τ̂0n+3, τ̂1n+3

)
; IV =

(
λ̂−1

n+2, µ̂−1
n+2

)
(
λ̂−1

n+3, µ̂−1
n+3

)

layer 1

layer 2

iterate for n = 0, · · · , 30 or until stabilized

Appendix D. Densities of the total distances resulting from
model uncertainty analysis

See Figs. D.14 and D.15.
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Fig. D.14. Densities of the total distances resulting from fitting the queueing models with c = 1, . . . , 10 to 600 data sets simulated by a single-server system (top)
and a five-server system (bottom). The constraint µ3 = µ6 = µ12 = µ18 was applied to both the models that generated the data and the models that were fitted
to the simulated data.

Fig. D.15. Densities of the total distances resulting from fitting the queueing models with c = 1, . . . , 10 to 618 data sets simulated by a single-server system (top)
and a five-server system (bottom). The service rate µ was allowed to vary across set sizes for both the models that generated the data and the models that were
fitted to the simulated data.

20
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