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1. Introduction

Operations management is an area of business concerned with producing goods and
services. It manages the conversion of inputs (such as materials, labor, and energy)
into outputs (in goods and services). It ensures that business operations are efficient in
using as few resources as required and effective in meeting consumer needs (Heizer
et al., 2017). Operations management is responsible for a wide range of decisions,
such as planning capacity for manufacturing plants, designing the structure of supply
chain networks, and developing and operating service systems.

Decision-making in operations management is often reinforced by analytical and al-
gorithmic tools which are based on logic and consider all available data and possible
alternatives. This dissertation focuses on designing different algorithmic approaches
supporting decision-making in operations management. It consists of three articles
that design, implement, and analyze one or several algorithms for distinct practical
problems in operations management. The papers are co-authored by Professor Dr.
Schneider, Professor Dr. Emde, Professor Dr. Boysen, and Professor Dr. Stolletz.
Each article describes the potential motivation of the research, positioning in the litera-
ture, and a detailed problem/model description. In addition, numerical results of each,
generate insights into problems described in every chapter.

The first paper (Chapter 2) presents algorithmic approaches for addressing order pick-
ing in a warehouse setting. The practice of retrieving inventory products from their
storage locations to fulfill customer orders is known as order picking (De Koster et al.,
2007). Order picking is a critical factor for a supply chain’s competitiveness since poor
order picking performance (e.g., long delivery times) leads to customer discontent and
high warehousing expenses (e.g., labor costs) (Wäscher, 2004). The focus of the first
paper is high-density storage. The paper describes a storage setting where mobile
racks are mounted on rails. A strong engine moves whole blocks of racks aside, open-
ing an aisle and enabling access to a specific rack. Moving the heavy racks, takes a
considerable amount of time and, consequently, strongly affects the total pick time. We
formalize the resulting operational picker-routing problem, which aims at routing the
picker such that as few aisles as possible need to be accessed and the total distance
covered is minimal. We also address the interdependent tactical product-location prob-
lem, which deals with deciding on the storage locations of the items to be picked. We
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propose dynamic programming as an exact solution approach and several heuristics
for both problems. In a comprehensive computational study, we apply these algorithms
to explore the interdependencies between product location and picker routing and de-
rive recommendations for suitable storage policies in a mobile rack warehouse. The
computational tests demonstrate that the proposed heuristics for the routing problem
perform pretty well. In addition, the priority rule proposed to address the product-
location problem delivers better results than Chaotic storage policies, i.e., assigning
random locations to SKUs.

Similar to the first Chapter, in the second one we also design an optimization algorithm
for a practical application in operation management. The second article (Chapter 3)
designs a solution procedure for the appointment scheduling problem. In many service
systems such as outpatient clinics, customers must make an appointment before re-
ceiving services. Decision-makers set the appointments such that there is a tradeoff
between customers’ interest which is to have a short waiting time and servers’ prefer-
ence which is to have a short overtime (Gupta and Denton, 2008). The focus of the
second paper is to make scheduling decisions while considering a system’s priority
rules. Appointment systems usually use a particular priority rule to control the patients’
access waiting for being served when no emergency patients are waiting. We identify
two classes of priority rules used in appointment systems: Static and dynamic priority
rules. In static priority rules, the priority of patients does not change depending on
the system’s state; conversely, in a dynamic setting, the priority of a patient depends
on the system’s state. The decision is to optimally schedule outpatients if there are
arrivals of emergency patients and inpatients, given that the system uses either of the
priority rules mentioned above. We propose a simulation optimization approach based
on tabu search with a neighborhood reduction technique to address this problem. The
solution approach uses low-fidelity simulation to rank and pick neighboring solutions.
The findings demonstrate the effectiveness and efficiency of the proposed algorithm in
solving the outpatient scheduling problem. Furthermore, we study the structure of the
optimal schedule of the outpatients when the system has different priority rules. The
results suggest that the optimal solutions differ dependent on priority rules, and thus
decision-makers should consider which priority rules the appointment system applies
to schedule outpatients.

An appointment system can be represented with a time-dependent queueing system,
as we see in Chapter 3. We used the simulation to evaluate the appointment schedul-
ing problem’s schedules (solutions) because of the lack of approximation methods. The
last article (Chapter 4) proposes an approximation method to analyze time-dependent
queueing systems; time-dependent queues are used to represent real-world systems,
such as appointment systems in healthcare. In such systems, the rate of arrivals may
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surpass the service capacity for some time, leading to overloading. We analyze a
single server time-dependent queue with exponentially distributed inter-arrival and ser-
vice time and propose a hybrid approximation method based on the Stationary Backlog
Carryover (SBC) and the Point-wise Stationary Fluid Flow Approximation (PSFFA) ap-
proaches. A mechanism is applied to adjust the parameters of the hybrid proposed
approximation method when the system transfers from an overloaded period to an un-
derloaded one or the other way around. A simulation benchmark confirms that the pro-
posed hybrid method approximates the performance measures of the time-dependent
queueing system for different parameter configurations accurately. Numerical exper-
iments show the quality of the proposed approximation method in comparison with
the SBC, the PSFFA, and the Fluid approximation approaches. The proposed hybrid
method outperforms them for sinusoidal arrival functions and benchmark instances
from the literature for queueing systems.

Chapter 5 discusses some concluding remarks for the dissertation as a whole. The
references for all chapters are listed in a joint bibliography.
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Abstract:

In response to the scarce space in many urban areas, high-density storage has be-
come a widely discussed topic in warehousing research and practice. We investigate
a storage setting where mobile racks are mounted on rails, so that a strong engine
moves whole blocks of racks aside, opening an aisle and enabling access to a specific
rack. Moving the heavy racks takes a considerable amount of time and, consequently,
it strongly affects the total pick time. We formalize the resulting operational picker-
routing problem, which aims at routing the picker such that as few aisles as possible
need to be accessed and the total distance covered is minimal. Moreover, we address
the interdependent tactical product-location problem, which deals with deciding on the
storage locations of the items to be picked. We present suitable exact and heuristic
solution procedures for both problems. In a comprehensive computational study, we
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apply these algorithms to explore the interdependencies between product location and
picker routing, and derive recommendations as to suitable storage policies in a mobile
rack warehouse.
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2.1. Introduction

Two recent trends in particular have made high-density storage a hot topic among
both researchers and practitioners alike. First, the rising population density in many
metropolitan areas has made space for roomy conventional warehouses, e.g., with
single-deep storage racks each separated by a wide aisle, scarce and expensive. For
instance, in Korea even underground food storage is explored due to the limited space
(Choi et al., 2000). Furthermore, increasing ecological awareness of customers exerts
pressure on supply chains to reduce their carbon footprints. Storing inventory more
densely reduces the need for energy to heat, cool, light, and ventilate excess storage
space. Especially in refrigerated warehouses, e.g., for frozen food, considerable sav-
ings in cooling costs of more than 30% can be realized by high-density storage accord-
ing to the Material Handling Industry of America Material Handling Industry of America
(MHIA) (2009) because less warehouse space needs to be cooled to refrigerate the
same amount of product.

In this context, different systems like deep-lane storage (Stadtler, 1996), puzzle-based
storage (Gue and Kim, 2007) or the so-called live-cube system (Zaerpour et al., 2015)
have been investigated. A survey of these systems is provided by Azadeh et al. (2019).
This paper treats an alternative high-density storage system based on mobile racks.
Here, parallel racks are mounted on rails, so that a strong engine can move them
sidewards. Because the length of the rails is only slightly longer than the total width
of the racks, a sidewards movement is required to open an aisle for accessing the
stock-keeping units (SKUs) of a specific rack as depicted in Figure (2.1a). Manually
driven, e.g., with a star handle, mobile racks are often applied for high-density stor-
age of rarely accessed documents in archives or libraries (see Figure 2.1b). However,
engine-driven mobile shelving accessed with some human-operated (man-aboard) or
un-manned storage-and-retrieval vehicle (SRV) are, for instance, often applied in re-
frigerated warehouses for frozen food, flowers, or pharmaceutical products.

Because fully-loaded racks may become very heavy, it takes a considerable amount
of time to move the racks and open an aisle. In a specific system implementation (for
instance, see (Schäfer, 2018)), the racks move only with 4 m/min, which may cause
considerable waiting time for the SRV having a much higher velocity of 115 m/min.
Thus, the effort of order picking is mainly influenced by the number of aisle changes
of the SRV. To keep this effort low, it seems promising to apply a shared storage pol-
icy, which allows storing unit loads of the same SKU in multiple locations (Bartholdi
and Hackman, 2017). In this way, frequently requested SKUs can be stored in multi-
ple racks, so that the probability of having to move the aisle when retrieving a specific
picking order is reduced. Clearly, there is a basic trade-off between the total space re-
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Figure 2.1.: Mobile shelving1

quirement, which increases with a higher multiplicity of SKUs, and the resulting picking
effort, which is reduced the more often SKUs are placed in different racks. It is the
basic aim of this paper to explore this trade-off in our mobile rack setting. To do so,
the following two interdependent decision problems need to be solved (for a survey on
interdependent decision making in warehouses see (van Gils et al., 2018)):

• In a pick-by-order environment, order picking is the short-term task of succes-
sively retrieving all items of a picking order by moving the SRV between the lo-
cations the respective SKUs are stored in and transporting them to the depot (or
I/O point). In our specific setting, where products may be stored in multiple loca-
tions, the main decision is whether a specific aisle is opened, and which SKUs of
the accessed aisle should be retrieved. The optimization goal of this operational
problem is to reduce the total pick time, consisting both of the time for opening
aisles and travelling to storage locations.

• Over a mid-term planning horizon, it has to be decided where each SKU is lo-
cated: the so-called product-location problem deals with assigning SKUs to stor-
age positions. To avoid frequent rack movements when picking orders, SKUs
frequently ordered together should be stored in racks accessible via the same
aisle. Furthermore, our shared storage policy requires to simultaneously define
the number of storage locations that each SKU is allowed to occupy. The goal
of this tactical optimization problem is to allocate space to SKUs such that the
(anticipated) routing problem becomes easier.

1Picture 2.1b is published under the Creative Commons License and its author is AndreasPraefcke.
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Besides modelling and solving these two optimization problems, we also aim to derive
some general insight into what storage policies are particularly promising for mobile
rack warehouse operators who want to improve pick times.

After a review of the related literature (Section 2.2), we formalize both decision prob-
lems for our mobile rack setting and provide different exact and heuristic solution pro-
cedures. Sections 2.3 and 2.4 are dedicated to the picker-routing and product-location
problem, respectively. In Section 2.5, we explore the computational performance of
the developed algorithms and investigate the basic trade-off between space require-
ment and picking effort depending on different levels of product multiplicity. Finally,
Section 2.6 concludes the paper.

2.2. Literature review

Numerous papers on warehousing in general and on optimizing the routing of pickers
and the location of products in racks in particular exist. Instead of trying to summarize
this vast body of literature, we refer to the survey papers published on these topics
over the past years, e.g., (de Koster et al., 2007; Gu et al., 2007, 2010; Boysen et al.,
2019). To emphasize the importance of simultaneously planning picker routes and
product locations, we refer to a recent case study at a distribution center for alcoholic
beverages in Canada: Renaud and Ruiz (2008) calculate an impressive reduction rate
of 27% on the total picking effort when addressing both problems jointly.

In the following, we only survey those studies, which share at least one of the four
elementary characteristics which mainly affect the structure of our two optimization
problems: (i) the application of mobile racks, (ii) a shared storage policy, (iii) the prod-
uct location for reducing the picking effort of a given, deterministic order set, and (iv)
interdependent decision making in warehouses combining multiple decision tasks.

i) Literature on mobile rack storage is rare. This is probably due to the low perfor-
mance gains promised by computerized decision support for manual mobile racks
like they are often applied in libraries (see (Russon et al., 1982)). However, in
recent years, more and more automated mobile rack systems have been erected
mainly for refrigerated warehouses (see (Schäfer, 2018)). To the best of our knowl-
edge, the only three papers having an operational research focus on automated
mobile racks with an SRV are the papers of Chang et al. (2007), Hu et al. (2009),
and Boysen et al. (2017). The former two studies also treat picker routing for iso-
lated picking orders and make similar assumptions to ours. They allow only a
one-sided access of the SRV into an aisle, which leads to routing solutions with a
fairly simple structure. On the other hand, neither a shared storage policy nor the
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product-location problem is treated, and only very basic priority-rule-based heuris-
tics are presented. Given that only one-sided access to the aisles is possible and
the conventional policy of storing each SKU at a single storage position is used,
the picker-routing problem is trivial. To formulate non-trivial problems, Chang et al.
(2007) assume that a product stored in a rack is accessible from both neighboring
aisles, and Hu et al. (2009) additionally introduce a middle (cross-)aisle. Unlike our
paper, the study of Boysen et al. (2017) does not consider the routing of an isolated
order, but treats the scheduling of successive orders. Their aim is to reuse aisles
left open when finishing the previous order and starting the next one.

ii) A shared storage policy allows SKUs to be stored at and picked from multiple
locations. This policy receives considerable attention in real-world warehousing,
because online retailer Amazon applies an extreme form of this policy in many of
its distribution centers. They break down unit loads and spread isolated items all
over the shelves of their warehouse. This policy is also denoted as mixed-shelves
or scattered storage and especially suited if orders demand just a few items, e.g., in
business-to-consumer online retailing (Boysen et al., 2019; Weidinger and Boysen,
2018). In refrigerated warehouses where mobile racks are predominately applied,
however, the low temperatures require SRV support of pickers to quickly handle
SKUs. SRVs are, typically, not able to handle isolated items but only complete
unit loads (e.g., pallets), so that they are kept together in mobile rack warehouses.
Here, shared storage is realized by storing multiple unit loads of the same SKU in
multiple storage positions that are accessible via different aisles. Shared storage
has rarely been treated in previous research. Daniels et al. (1998), for instance,
were the first to consider the picker-routing problem if multiple locations per SKU
are available. They consider traditional warehouse layouts having fixed racks and
multiple cross aisles, so that the problem is modeled as an enriched traveling sales-
man problem. The product-location problem is also combined with shared storage.
However, previous research either considers automated storage and retrieval sys-
tems (ASRS, i.e., high-bay racks accessed with a crane) (Goetschalckx and Ratliff,
1990; Kulturel et al., 1999; Chen et al., 2010) or scattered storage (Weidinger and
Boysen, 2018; Weidinger et al., 2019; Boysen et al., 2019). Shared storage for
mobile rack systems has neither been considered for picker routing nor for the
product-location problem.

iii) With regard to the product-location problem, it is clearly advantageous to store
products often ordered jointly at nearby positions to reduce the necessity of mov-
ing racks out of the way and to reduce the travel distance when picking the orders.
However, the problem of anticipating reliable (short-term) picking orders when plan-
ning the product locations over a mid-term planning horizon remains. In general,
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there are three alternatives of how to deal with this problem: (i) In highly volatile en-
vironments, no information on SKUs ordered jointly may be available, so that only
product specific information is at hand. In this case, for instance, the famous cube-
per-order index (see (Heskett, 1963)) can be applied, to store frequently demanded
products closer to the depot. (ii) Given enough adequate historical data, product
correlations defining the probability of a product pair being jointly ordered may be
obtainable (see (Frazelle and Sharp, 1989; Brynzér and Johansson, 1996)). These
correlations allow for a grouping of product families, so that similar SKUs can be lo-
cated in the same region of the storage area. In this study, we follow van Oudheus-
den and Zhu (1992), Boysen and Stephan (2013) and Kress et al. (2017) and (iii)
presuppose deterministic knowledge on the order set to be retrieved. For instance,
this setting arises in intermediate warehouses where materials and parts need
to be picked for recurrently manufactured production lots (Boysen and Stephan,
2013). Note that even in a truly stochastic environment, the deterministic problem
can be used in a scenario-based approach. To explore the limits of our determinis-
tic approach, we will investigate the robustness of our results in the face of forecast
errors in Section 2.5.

iv) Our research combines the product-location problem, which decides on where to
store the SKUs, and picker routing, which decides on the way of a picker through
the warehouse. The recent survey paper of van Gils et al. (2018) identifies inter-
dependent decision making as a very promising avenue for future research and
reviews the existing combined models in the warehousing literature. They identify
24 papers also combining product location and picker routing. However, the vast
majority of them combine these two problems in traditional picker-to-parts ware-
houses with stationary racks (e.g., (Theys et al., 2010; Chan and Chan, 2011)); a
mobile rack warehouse has not been treated from this perspective. The main dis-
tinction to the traditional warehouse settings is that large parts of the picking effort
is caused by the rack movement, so that picker and racks need to be synchronized
both in product location and picker routing.

It can be concluded that our mobile rack setting combining all four aforementioned
characteristics constitutes a novel application, which has yet not been investigated.
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2.3. Picker routing

2.3.1. Problem definition

In our mobile rack setting, we have shelves storing SKUs, which are only accessible
if the racks are moved such that the adjacent aisle is opened. We assume that there
is only enough space for a single open aisle at a time. Therefore, the total set J =

{1, . . . , n} of SKUs can be subdivided into m subsets Ji ⊂ J defining the products
stored in those two racks accessible via an opened aisle i = 1, . . . ,m. Note that for
a single-picker routing problem, only those SKUs occurring in the current pick list are
relevant. Without loss of generality, we assume that the parallel racks are arranged
from left to right with the (potential) aisles numbered in increasing order, while the
SKUs Ji = {j i1 , . . . , j i|Ji |} in each aisle i are numbered in non-decreasing distance from
the cross-aisle, i.e., the SRV has to move no farther up aisle i to retrieve SKU j ik than
to retrieve SKU j ik+1, ∀k = 1, . . . , |Ji |−1. The depot where each tour of the picker starts
and ends is located somewhere along the cross aisle, as depicted in Figure (2.1a).
Furthermore, we assume that the aisles are only accessible by the SRV from the side
facing the depot, so that we have only a single cross aisle at the front, i.e., the picker
has to enter and leave each aisle via the same entrance point (also denoted as the
“out and back” approach or the “return policy”). Especially in refrigerated warehouses,
where space and energy reduction is a pressing concern, making do with the least
number of cross aisles is a widespread layout choice.

For this warehouse setting, we investigate a picker-to-parts, pick-by-order organization
of the picking process. This means that a picker receives a picking order at the depot,
successively moves to rack positions where the SKUs defined on the current list are
retrieved, and finally returns to the depot where the items are further processed. In our
setting, opening a specific aisle takes considerable time, so that a shared storage policy
is applied. This means that SKUs of the same type may be stored in multiple aisles,
so that there is a higher probability of SKUs ordered together being jointly accessible
via the same aisle without requiring a rack move. We assume that each location where
a unit load, e.g., a pallet, of a specific SKU is stored contains enough units to satisfy
any demanded number of products defined in a picking order. On the one hand, this
allows us to exclude special cases (which considerably complicate the description)
where multiple product locations of a specific SKU need to be accessed in order to
gather enough items in exceptionally high demand. On the other hand, we can define
a picking order as a set of different SKUs P ⊆ J to be retrieved without having to record
the respective number of units demanded.
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Given a specific storage layout (defined by the sets Ji of SKUs per aisle i = 1, . . . ,m),
our picker-routing problem aims to minimize the total retrieval time for a given picking
order P . Because the pick time to retrieve the defined number of items once the picker
has reached a specific shelf does not depend on the routing decision there remain
three parts to be considered:

• The waiting time w of the SRV while an aisle is opened: In the most widespread
system implementation, there is some mechanism, e.g., a light barrier, button or
ripcord, at the front of each rack to initiate the rack movement and open the neigh-
boring aisle. In this setting, the SRV has to wait for w time units once it reaches
its target rack. As a matter of convenience, we will not consider the position of the
open aisle at the beginning of the routing, so that each aisle movement requires
w time units. Certainly, this is a good approximation of reality if there are many
racks and few items on the pick list, because then the probability that an item
can be retrieved from the currently open aisle becomes negligible. Note that fully
automated rack shifts that are automatically synchronized with SRV movements
are rare in current industrial practice although they are technically possible. In
such an automated system, a rack move is initiated once the SRV leaves its pre-
vious aisle. Consequently, a waiting time only occurs if w is larger than the time
it takes the SRV to move from the previous rack to the current one. As the al-
terations required for adapting our solution procedures to this setting are quite
straightforward, we abstain from a detailed description.

• The driving time of the SRV in an aisle: If we assume a constant velocity of
the vehicle, it is the one SKU to be retrieved stored farthest from the depot that
determines the driving effort per aisle. Thus, if dji defines the time to drive from
the frontend of aisle i to the storage location of SKU j (stored in this aisle), then
the time in aisle i to receive a subset of items P ′ ⊆ P ∩ Ji from this aisle requires
the travel to and from the farthest location, i.e., 2 · maxj∈P ′{dji}. Note that we
assume that vertical movement times (if any) are negligible.

• The driving time of the SRV in the cross aisle: The routing aspect in our picker-
routing problem is rather trivial to solve. In the cross aisle, it is obviously an
optimal policy to start with the aisle farthest left and then successively visit all
other aisles from left to right until the aisle farthest right is reached from which
the SRV travels back to the depot. Let A be the set of aisles to be accessed,
∆i the driving time between a specific aisle and the depot, and δii ′ the driving
time between two aisles i and i ′, then the total driving time of the SRV in the
cross aisle amounts to ∆i + δi ,i + ∆i with i = min{i ∈ A} (leftmost aisle) and
i = max{i ∈ A} (rightmost aisle).
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Given these explanations, our specific picker-routing problem can be formally defined
as follows. A route Ω is a set of tuples (i , S ) ∈ Ω, defining the set S of SKUs to be
retrieved from the racks accessed via aisle i . We say Ω is feasible if

1. for each i = 1, . . . ,m, there is at most one (i , S ) ∈ Ω, i.e, each aisle is accessed
either once or not at all,

2. for each tuple (i , S ) ∈ Ω, we have S ⊆ Ji , i.e, a set S of SKUs can only be
retrieved from an aisle i if these SKUs are actually available there,

3. for each pair of tuples (i , S ) ∈ Ω and (i ′, S ′) ∈ Ω with i ̸= i ′, we have S ∩ S ′ = ∅,
i.e., each SKU is retrieved from a unique shelf (and not via multiple aisles), and

4. we have
⋃

(i ,S)∈Ω S = P , i.e., all items of picking order P are retrieved.

Among all feasible routes, we seek one Ω which minimizes the total picking time T (Ω)

defined as follows

T (Ω) = w · |Ω|+
∑

(i ,S)∈Ω

2 ·max
j∈S
{dji}+∆i + δi ,i +∆i , (2.1)

with the leftmost aisle i = min(i ,S)∈Ω{i} and the rightmost aisle i = max(i ,S)∈Ω{i}. The
first, second, and third term define the time required for moving the racks, moving
inside the aisles, and between aisles, respectively.

Note that to reduce our problem setting to the most relevant core, i.e., the rack move-
ment and its synchronization with the picker movement, we exclude further warehous-
ing peculiarities that may extend the problem setting in real life. For instance, inter-
dependencies among pickers, e.g., blocking each other in narrow aisles (Hong et al.,
2012) or the assignment of order batches to pickers (Matusiak et al., 2014), are ex-
cluded. Otherwise a much more complex problem setting having to plan multiple pick-
ers in parallel would arise. Further note that energy savings when moving the heavy
racks can also be an important optimization objective. Since, however, large parts of
our picking effort are caused by the movement of racks, we indirectly also support this
aim with our objective.

Example: Consider a picking order P = {A,B ,C ,D} to be retrieved from a mobile
rack setting with three aisles as is depicted in Figure 2.2. Given the travel times de-
fined there and waiting time w = 2 for opening an aisle, the left-hand and right-hand
solution with Ω = {(1, {A,B}), (3, {C ,D})} and Ω′ = {(1, {B}), (2, {A,C ,D})} amount
to T (Ω) = 26 and T (Ω′) = 21, respectively.

Theorem 1. Our picker-routing problem is strongly NP-hard.
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Figure 2.2.: Two alternative solutions for the example

Proof. If we consider an infinite velocity of the SRV, so that the total picking time is
only determined by the number of aisles accessed, then the transformation from the
minimum set-covering problem, which is well known to be strongly NP-hard (see (Garey
and Johnson, 1979)) is readily available. Given a collection C of subsets of a finite set
Γ, the minimum set-covering problem aims at a subset C ′ ⊆ C such that every element
in Γ belongs to at least one member of C ′, and |C ′| is minimal. We simply have to
transfer all subsets c ∈ C to a unique aisle i with stored items Ji = c, set P = Γ, and
we have a one-to-one mapping of both problems.

2.3.2. Algorithms for the picker-routing problem

In this section, we present a dynamic programming (DP) scheme, which can be ap-
plied to solve our picker-routing problem to optimality. However, due to the NP-hard
nature of the problem, it is unlikely that large instances can be solved to optimality in
a reasonable amount of time. Therefore, we also extend the DP to a heuristic beam
search (BS) approach.

Our DP is divided into m + 1 stages, each stage i = 0, . . . ,m containing states (Q , i),
where Q ⊆ P and i ∈ {0, . . . ,m}. Set Q contains the remaining SKUs still to be
retrieved and i is the last aisle visited by the SRV. The initial state is (P , 0), because
initially all items listed in the picking order are still to be picked, and the SRV is in
the leftmost dummy aisle 0. A transition from state (Q , i) to successor states (Q ′, i ′)

implies that the SRV drives from aisle i straight to aisle i ′, where it picks the SKUs
Q \Q ′. Such a transition exists if the following conditions hold:

• i ′ > i , i.e., aisles are explored from left to right, and the SRV does not take
“zigzag” routes.

• Q ′ = Q \ Ri ′

k , where Ri ′

k = {j i ′l : l = 1, . . . , k}, for some k ∈ {1, . . . , |Ji ′|}. Ri ′

k

is the set of SKUs in aisle i ′ up to the storage position of the SKU that is the
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k -farthest from the depot in that aisle. Note that we consider the SKUs of an aisle
according to non-decreasing distance from the depot, i.e., j i

′
1 , . . . , j

i ′

|Ji′ |
(without

loss of generality, we assume that dj i′k ,i ′ ≤ dj i′k+1,i
′, ∀k = 1, . . . , |Ji ′| − 1, holds).

Therefore, if the SRV traverses aisle i ′ until the position of SKU j i
′

k , it can pick all
the SKUs on the way, i.e., j i ′1 , . . . , j i

′

k .

• Q ′ ⊆
⋃m

i ′′=i ′+1 Ji ′′ because a successor state (Q ′, i ′) and the corresponding tran-
sition from predecessor state (Q , i) should only be generated if the remaining
SKUs Q ′ can actually be picked from the remaining aisles.

The partial objective value f ((Q , i), (Q ′, i ′)) associated with a transition ((Q , i), (Q ′, i ′))

from predecessor state (Q , i) to successor state (Q ′, i ′) is calculated as follows:

f ((Q , i), (Q ′, i ′)) =

∆i ′ + w + 2 ·mink=1,...,|Ji′ |{dj i′k ,i ′ : Q
′ = Q \ Ri ′

k } if Q = P

δi ,i ′ + w + 2 ·mink=1,...,|Ji′ |{dj i′k ,i ′ : Q
′ = Q \ Ri ′

k } otherwise,

where the top equation is relevant only for the first transition when no item has been
picked yet, i.e., Q = P . In this case, the travel time from the depot to the first vis-
ited aisle ∆i ′ must be taken into consideration. For all other transitions, the bottom
expression is relevant.

In this way, we generate transitions and successor states from any state previously
generated and for any SKU j1, . . . , j|Ji′ | successively reached in current aisle i ′. Clearly,
identical states must not be duplicated, so that the respective transition has to be redi-
rected to the existing state. Let Γ(Q ′, i ′) be the set of states from which a transition to
state (Q ′, i ′) exists, then the Bellman equation calculating the picking time Z (Q ′, i ′) for
state (Q ′, i ′) is defined as follows:

Z (Q ′, i ′) = min
(Q ,i)∈Γ(Q ′,i ′)

{Z (Q , i) + f ((Q , i), (Q ′, i ′))}.

If we initialize start state (P , 0) with Z (P , 0) := 0, then solving our picker-routing prob-
lem is equivalent to determining the final state (∅, i∗) with i∗ = argmini=1,...,m {Z (∅, i)+

∆i}, and the optimal solution can be determined by a simple backward recovery along
the optimal path to that state.

Example (cont.): For our example in Figure 2.2, the resulting DP graph is depicted
in Figure 2.3. The bold faced optimal path represents the right-hand solution within
Figure 2.2 and, thus, results in a total picking effort of Z (∅, 2) + ∆2 = 20 + 1 = 21.

The total number of states in our DP is in O(2n · m), and the number of transitions is
bounded by O(m2 ·n ·2n) because the total number of SKUs n is an upper bound of the
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Figure 2.3.: DP graph for the example

SKUs stored per aisle. Because the effort per transition is in O(1) time, our DP runs in
O(m2 · n · 2n) time.

The runtime of the algorithm should be acceptable for small problems with few racks
and short pick lists. However, for larger instances, we extend the DP scheme to a beam
search (BS) heuristic in the following.

2.3.3. Beam search

BS is a search technique which heuristically estimates the θ best nodes on each stage
of a search tree. Only those best nodes are further developed on each stage; all
others are fathomed, making the solution method fast but approximate. This heuristic
was first used in artificial intelligence for the speech recognition problem by Lowerre
(1976). Since then, many applications of BS have been reported in the literature.

In this paper, we turn our DP into BS by calculating the lower bound for each node
of each stage of the DP graph and pruning the ones whose calculated costs are not
among the θ lowest. The lower bound consists of two terms: the first calculates the
minimum number of racks to be moved by dividing the number of remaining SKUs to be
picked by the maximum number of items from the picklist on the racks yet to be visited.
The second calculates the minimum distance that the SRV must travel to pick all the
remaining items by adding the distance to the SKU yet to be picked that is farthest from
the current aisle, i.e.,

LB(Q , i) = w ·
⌈

|Q |
maxi ′=i+1,...,m{|Ji ′|}

⌉
+max

j∈Q

{
min

i ′=i+1,...,m:j∈Ji
{δi ,i ′ + 2 · dji ′ +∆i ′}

}
.

In each stage, we add the calculated lower bound to the current cost of the node at
that stage and then keep the θ best nodes and discard the others.

To make the algorithm more efficient, we also use a modified version of DP and BS by
adding bounds. In this setting, first we obtain an upper bound by solving the problem
by using the set-covering heuristic described below. Then, in the course of search, we
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use the upper bound to prune nodes whose lower bound is not less than that upper
bound.

Example (cont.): Consider the DP graph in Figure 2.3. In state ({C ,D}, 1), the lower
bound is

LB({C ,D}, 1) = 2 · ⌈2/max{3, 2}⌉+max{min{11, 8},min{7, 10}} = 2 + 8 = 10,

where the first summand 2 denotes the minimum effort to move racks, and the second
summand 8 is the minimum travel time of the SRV to retrieve the item farthest from
the current position (aisle 1) and return to the depot. In this example, SKU C is the
farthest: the quickest way to retrieve it is from the first slot of aisle 3, which would incur
a total travel time of 8 (including the return trip to the depot). Seeing that it already
took an effort of Z ({C ,D}, 1) = 14 to pick items A and B , no schedule reached from
state ({C ,D}, 1) can have a lower objective value than Z ({C ,D}, 1)+LB({C ,D}, 1) =
14 + 10 = 24. If an upper bound of 24 or better is already known, the state can be
fathomed.

2.3.4. Set-covering heuristic

Apart from the DP-based schemes described above, we also propose a heuristic that
makes use of the similarity of our problem to set covering (see Theorem 1). We dub this
approach the set-covering heuristic (SCH). The rationale is the following: we assume
that the rack movement time dominates the travel time of the SRV, and therefore, get-
ting a solution with the minimum number of aisles to open should be close to optimal. If
each aisle is considered as a set of SKUs, covering order set P with as few rack sets Ji

as possible also minimizes the number of rack moves. Moreover, to take the travel time
into consideration, the procedure can be started multiple times, where each set gets
a different weight every time based on the distance from the cross aisle to a randomly
selected SKU in the respective aisle, plus a small fraction (1%) of the distance from the
depot to the aisle. The resulting problem is a weighted set-covering problem (WSCP).
More precisely, we first randomly choose a SKU j ∗i ∈ Ji , ∀i = 1, . . . ,m. Then, we set
the weight of set i in the objective function of the WSCP to 2 · dj ∗i ,i + 0.01 ·∆i . The first
part equals the time it takes for the SRV to reach the randomly chosen SKU from the
cross aisle. The second part is used to differentiate the aisles which are close to the
depot from those which are farther. This way, aisles in which SKU j ∗i is close to the
entrance and aisles which are closer to the depot receive a lower weight and are thus
preferred in the set covering solution. By randomly choosing j ∗i , we ensure that the
weights (and solutions) are different every time the procedure is executed, encourag-
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ing heuristic exploration. To this end, we restart this procedure 1000 times, each time
with different random weights, i.e., random j ∗i , and finally return the best found solution.
Note that 1000 iterations turned out to yield a good compromise between runtime and
solution quality in preliminary tests.

Although the WSCP is NP-hard, there are several algorithms and tools which can solve
it quite efficiently for practical problem sizes, see, e.g., (Lan et al., 2007). We solve
the problem using the commercial MIP solver CPLEX 12.6 in its default setting. The
resulting set-covering solution dictates which aisles are to be visited to retrieve which
SKUs. It is thus easy to derive a corresponding schedule Ω.

Example (cont.): Using SCH on the example in Figure 2.2, for each aisle, a set is
created which contains the items in the respective aisle, i.e., there are 3 sets in total. In
each aisle, a SKU is randomly selected; the chosen SKUs in the example are marked
by a star sign in Figure 2.4. Then, each set is assigned a weight by calculating the
distance which the SRV has to cover to retrieve the selected SKU from the cross aisle,
i.e., twice the distance from the cross aisle to the selected SKU. In addition, to take
the distance from the depot into consideration, SCH adds 0.01 · ∆i to the weight of
each set. In this example, the first set has a weight of 4.02 units, the second has a
weight of 8.01 units, and finally the last one has 2.02 units of weight. In the next step,
a weighted set-covering model is created with the corresponding weights for each set.
The following 0-1 integer linear model is generated for this example:

min z = 4.02 · x1 + 8.01 · x2 + 2.02 · x3

s.t.: x1 + x2 ≥ 1 for SKU A

x1 ≥ 1 for SKU B

x2 + x3 ≥ 1 for SKU C

x2 + x3 ≥ 1 for SKU D

xi ∈ {0, 1} ∀i = 1, 2, 3,

where xi is the decision variable to use set (aisle) i . In the optimal solution, x1 = x2 = 1

and x3 = 0, which means that SKU B is picked from aisle 1 and SKUs D, A, and C
are picked from the second aisle, i.e., Ω = {(1, {B}), (2, {A,C ,D})}. This corresponds
to the solution depicted on the right-hand side of Figure 2.2 with an objective value of
T (Ω) = 21.
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Figure 2.4.: SCH in the example; the SKUs which are selected randomly are marked
with a star.

2.4. Product location

2.4.1. Problem description

The picker-routing problem is obviously heavily dependent on the location of the SKUs
to be picked: If the SKUs to be accessed are in the most remote parts of the ware-
house, then even the best route will take a long time to complete, and a lot of unnec-
essary rack moves may be incurred. A clever SKU placement, on the other hand, can
help to significantly reduce the operational picking and rack moving effort later on. To-
day, many warehouses that employ a shared or scattered storage policy use an entirely
random assignment of SKUs to racks (online retailers like Amazon are a prime exam-
ple, see Weidinger and Boysen (2018)). In this section, we investigate the mid-term
product-location problem in a mobile-rack warehouse with the goal of deriving a better
storage policy than purely chaotic storage.

The product-location problem deals with assigning SKUs to storage positions. In our
specific case a SKU of a single type can be stored in multiple storage positions, so that
we additionally have to select how often each SKU should be stored without exceeding
the available storage space. The aim of the product-location problem is to assign SKUs
such that the effort for processing picking orders is minimized. Unfortunately, exact
information on the (short-term) picking orders to be retrieved is typically not available
when assigning the storage locations over a mid-term horizon. Nonetheless, it may be
possible to assemble a representative deterministic set of orders O , e.g., from historical
data, and aim to place the SKUs such that the total picking effort for retrieving set O
is minimized. Certainly, in many industries it is hard to anticipate a representative
order set, so that set O and the resulting product-location plan will be prone to forecast
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errors. We will investigate the robustness of our deterministic approach in the face of
uncertain picking orders in Section 2.5.

Furthermore, we presuppose a unit-load warehouse, i.e., the given mobile rack system
provides a given number of storage positions, e.g., for pallets, at which the given set
of SKUs J = {1, . . . , n} can be stored. Thus, each SKU can be stored at any storage
position. Let S (i) be the set of storage positions in aisle i = 1, . . . ,m. Because we
consider a shared storage policy, we have |

⋃m
i=1 S (i)| ≥ n. We seek an assignment

function g : S (i)→ {1, 2, . . . , n}, ∀i = 1, . . . ,m, i.e., an assignment of SKUs to storage
positions, such that each SKU receives at least one position, that is,∣∣∣∣∣

{
u ∈

m⋃
i=1

S (i) : g(u) = j

}∣∣∣∣∣ ≥ 1 ∀ j ∈ J ,

must hold, and the total picking effort for processing all picking orders o ∈ O is mini-
mized.

Let Ω∗(o, g) be the optimal schedule for processing order o given the storage plan
defined by assignment function g . We seek a feasible assignment function g that mini-
mizes objective value W (g):

W (g) =
∑
o∈O

T (Ω∗(o, g)),

where T (Ω∗(o, g)) is the optimal total picking effort for processing order o given location
assignment g (see Equation (2.1)).

Example: Consider the example depicted in Figure 2.5, where n = 8 SKUs have to
be located in 12 storage positions accessible via m = 2 aisles. If the waiting time for
opening aisles amounts to w = 3, then the total picking effort for retrieving the given
order set O given the depicted product-location plan amounts to W (g) = 58. More
precisely, the first order set includes {A,B ,D}, which is retrieved from the first aisle,
i.e., Ω∗({A,B ,D}, g) = {(1, {A,B ,D})}. The picking time to retrieve this order set is
the sum of the waiting time to open aisle 1, the picking effort from the cross aisle,
and the travel time it takes for the SRV to travel from the depot to the aisle and back,
which is T (Ω∗({A,B ,D}, g)) = 9 (see Equation (2.1)). Similarly, the picking time of
the others are T (Ω∗({B ,F}, g)) = 11, T (Ω∗({D ,C}, g)) = 9, T (Ω∗({E ,G ,H }, g)) = 9,
T (Ω∗({F ,H }, g)) = 9, and T (Ω∗({A,G ,H }, g)) = 11.

Intuitively speaking, the product-location problem also seems to be strongly NP-hard
because it contains our picker-routing problem as a subproblem. However, with the
additional flexibility of selecting the storage locations of SKUs, it may be possible that
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Figure 2.5.: Example for the product-location problem

only trivial routing problems remain. However, this is in fact not the case, as is shown
by Theorem 2.

Theorem 2. Our product-location problem is strongly NP-hard.

Proof. Placing unit loads in racks such that the picking effort for a deterministic order is
minimized has been shown to be strongly NP-hard by Boysen and Stephan (2013) even
if only a single aisle exists, and a shared storage is not allowed. Clearly our problem
setting with multiple aisles operated under a shared storage policy is a generalization
of this problem and, thus, also strongly NP-hard.

2.4.2. Policies

We investigate two product-location policies: chaotic storage and a priority rule. As
mentioned earlier, chaotic storage is a storage policy in which positions are randomly
assigned to each SKU. Usually, this policy is implemented as a shared storage policy.

Our priority-rule-based approach, outlined in Algorithm 1, is built on the following con-
siderations. First, SKUs that are often ordered together are put in the same aisle.
Second, the most frequently ordered SKUs should be kept close to the cross-aisle and
to the depot.
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Algorithm 1 Priority rule to locate products
1: procedure PRIORITY_RULE_HEURISTIC (O)
2: for each aisle i do
3: for each potential location h ∈ S (i) do
4: C (i , h)← ∆i + dhi

5: S ∗ ← Sort(
⋃m

i=1 S (i)) ▷ based on C (i , h), non-decreasing
6: J ∗ ← Sort(J ) ▷ based on their order frequency, non-increasing
7: J ′ ← J ∗ ▷ SKUs yet to be assigned
8: for h ∈ S ∗ do
9: i∗ ← aisle that location h belongs to

10: if no SKU has yet been assigned to aisle i∗ then
11: g(h)← j ∗, such that j ∗ is the most frequently ordered SKU in J ′

12: else
13: for j ∈ J ′ do
14: G∗

j ← |{(h ′, o) | g(h ′) ∈ o ∧ j ∈ o, h ′ ∈ S (i∗), o ∈ O}| ▷ number of
times the SKUs stored in aisle i∗ and SKU j are ordered together

15: g(h)← argmax{G∗
j }

j∈J ′

16: J ′ ← J ′ \ {j}
17: if J ′ = ∅ then
18: J ′ ← J ∗

19: End procedure

In the first loop, each location j in each aisle i is associated with a cost C (i , j ). This
cost is the time it takes the SRV to travel to location j in aisle i starting from the depot.
We first sort the slots non-decreasingly based on the calculated cost, i.e., locations
closer to the depot have more priority. SKUs are sorted depending on their order
frequency (in representative order set O) and are kept in J ∗ (Line 6). For each SKU in
J ′, we calculate G∗

j and then put the SKU with the largest G∗
j in the next best position

of S ∗ (lines 8-13). G∗
j is the number of times SKUs from the current aisle i∗ are ordered

jointly in the current order j in the given order set O .

Effectively, we put the most frequently ordered items at the nearest positions to the
depot and then remove them from J ′. Finally, if there is no SKU left in J ′, the set is
refilled, and the search procedure continues until all storage locations are filled.
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Figure 2.6.: Illustration of the priority rule. (a) Labeling each slot, (b) calculating the
costs, (c) locating products in the first iteration, and (d) locating all products

Example (cont.): Consider the example in Figure 2.5. First, the heuristic calculates
C (i , j ) for all potential locations in all the aisles, which is illustrated in Figures 2.6a
and 2.6b. Numbers within each slot in Figure 2.6b show the calculated costs (lines 2-4).
Consequently, the slots are sorted as S ∗ := ⟨P1,P2,P3, . . . ,P12] (line 5), and the SKUs
are sorted based on their order frequency as J ∗ := J ′ := {H ,A,B ,D ,F ,G ,C ,E}.
The heuristic starts placing the first element of set J ′, which is H , in the first element
of S ∗, which is P1. For position P2, for each SKU j ∈ J ′, the heuristic calculates the
number of times that SKU j and other SKUs which are already put in aisle 1 (so far
only SKU H ) are ordered together. In position P2, G∗

A equals one because in only one
order A and H are ordered together. For the other SKUs, this number is as follows:
G∗

B = 0, G∗
D = 0, G∗

F = 1, G∗
G = 2, G∗

C = 0, and G∗
E = 1. Consequently, SKU G is

selected and put in position P2 because G∗
G is the maximum. After 7 more repetitions,

Figure 2.6c is reached (lines 8-13). Note that when multiple G∗
j for some SKUs in

a certain location are equal, a SKU is selected randomly. The final configuration is
represented in Figure 2.6d. After solving the picker-routing problem for the given order
set on this configuration, the total picking effort for retrieving the order set O is W (g) =

58.

2.5. Computational experiments

In this section, we present the numerical experiments to evaluate the proposed algo-
rithms. In Section 2.5.1.1, we discuss how we generate instances for the picker-routing
problem, and Section 2.5.1.2 concentrates on the computational results. Finally, we
generate the instances for the product-location problem (Section 2.5.2.1) and perform
computational tests to analyze the storage rules (Section 2.5.2.2).

23



2.5.1. Picker-routing algorithms

2.5.1.1. Benchmark generation and testing environment

In this section, we outline the generation of test data to evaluate the solution methods
proposed in this paper. Because no adequate benchmark instances for the picker-
routing problem in mobile rack warehouses exist in the literature, we generate a set of
instances with different sizes and different features. Generally speaking, we assume
the basic warehouse layout that is introduced in Section 2.3.1.

The set of instances consists of three main groups, which differ with regard to the num-
ber of aisles and SKUs. Within each group, instances are divided into two subgroups
based on the density of SKUs in the warehouse. Specifically, we have two classes
called medium and high. In class medium, 50% of the slots in all racks are occupied by
SKUs of the order set. The other remaining locations either are not available, empty,
or belong to other SKUs which are not part of the order set. Class high indicates that
75% of all locations include SKUs of the order set.

Rack and SRV movement times are uniformly distributed in the following intervals:
according to (Schäfer, 2018), the reported velocity of a fully-loaded rack is 4 m/min. Al-
lowing for different types of equipment and loads, this corresponds to a rack movement
time within the interval of [30, 90] seconds. We generate three classes of instances
which differ with regard to the ratio of the time of rack movement and the travel speed.
To this end, the rack movement time for each subgroup is in {30, 60, 90} seconds. The
comparatively fast-moving SRV can travel from one aisle to its neighbor with the aver-
age speed of 1m

s
. For every subgroup, we create 20 instances, which are formed by

randomly distributing the SKUs in the racks following a uniform distribution. Note that
this corresponds to a chaotic storage policy. The distance between two consecutive
aisles is a random number in {0.5, 1, 1.5, 2} meters. In the process of the generation of
the test data, to select the location of the depot, first, an aisle is selected randomly and
then it is assumed that the depot is immediately underneath it. Therefore, the distance
between that aisle and the depot is zero. The distance from the other aisles to the
depot can be calculated accordingly.

Thus, we have 3 (aisle counts) × 2 (densities) × 3 (rack movement times) × 20 (gen-
erated instances per group) = 360 benchmark instances in total. Table 2.1 summarizes
the parameter ranges for the different instance sets. The latter are named in a specific
way such that the first number shows the number of aisles, the second number states
the number of SKUs in the order set, and the third part is the density of the problem.

To make the instance design more tangible, consider instance group 30-30-high as an
example. In this group, there are 20 different instances. Figure 2.7 depicts the graphical
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Instance set no. aisles
no. different

SKUs
no. locations in

each aisle
time rack

movement density (%)

10-30-medium 10 5 10 30 50
10-30-high 10 5 10 30 75
10-60-medium 10 5 10 60 50
10-60-high 10 5 10 60 75
10-90-medium 10 5 10 90 50
10-90-high 10 5 10 90 75

30-30-medium 30 20 20 30 50
30-30-high 30 20 20 30 75
30-60-medium 30 20 20 60 50
30-60-high 30 20 20 60 75
30-90-medium 30 20 20 90 50
30-90-high 30 20 20 90 75

100-30-medium 100 70 30 30 50
100-30-high 100 70 30 30 75
100-60-medium 100 70 30 60 50
100-60-high 100 70 30 60 75
100-90-medium 100 70 30 90 50
100-90-high 100 70 30 90 75

Table 2.1.: Characteristics of generated benchmark instances.

layout of one of the instances in this group. There are 30 aisles with 20 locations in
each aisle, and the order set to retrieve is O = {1, . . . , 20}. The time it takes for an aisle
to be opened is 30 seconds, and the driving time between two consecutive aisles is 1
second. In this instance group, almost 75% of all locations includes SKUs in set order
O . Even so, rack movement times can be expected to dominate SRV travel times:
even going to the farthest location inside an aisle and back takes at most 20 seconds,
whereas opening the aisle in the first place takes 30 seconds.

D
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Figure 2.7.: The illustrative example of an instance in instance group 30-30-high.
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All solution methods are coded in Java. The commercial solver CPLEX 12.6 is used to
solve the mathematical models of the set-covering heuristic. All tests are performed on
a standard desktop computer with an Intel Core 2 Quad Processor at 2.83 GHz, using
16 GB of RAM, and running Windows 7 Professional.

2.5.1.2. Performance of picker-routing algorithms

The results obtained for our solution methods on the small, medium-sized and large
instances described above are presented in Table 2.2. The table reports the name of
the instance set and the best known solution (BKS) as the average of the best objec-
tive function value found for the individual instances in the set by any of the solution
methods. In case all instances in a set could be solved to optimality, we indicate this
using an asterisk. The solution methods are abbreviated as follows: SCH stands for
the set-covering heuristic, BBS for the bounded BS heuristic, and DP for our DP ap-
proach given a 6-hour time limit to solve each instance. In case of BBS, the number
after the dash denotes the beam width. For each method, we report the average of the
relative gaps of the objective value found by the respective solution method to the best-
known solution in column “Gap”. “CPU” reports the rounded up, average CPU time in
seconds. In case DP cannot solve all instances of a set within the given time limit,
no gap or run-time values are reported for DP. This is the case for the medium-sized
and the large instances. Note that the CPU time for BBS includes the time it takes to
calculate the initial upper bound via SCH.

BBS-1000 performs remarkably well in comparison with other solution methods with
respect to solution quality. It finds the best solution for all but four instance sets, and its
average gap to the BKS is 0.00% for the small and medium instances, and 0.52% for
the large ones. However, especially for the large instances, run-times are quite long,
exceeding three hours on average. SCH is able to obtain solutions of decent quality
much quicker, taking less than four minutes of CPU time on average even for the large
instances. It finds the best solution for only 5 out of 45 instances, and the average gaps
are 2.16%, 2.85%, and 1.07% for the small, medium, and large instances, respectively.
Finally, the performance of BBS-100 and BBS-10 are not convincing: on the small
instances, no run-time benefits can be obtained, on the medium-sized instances, it
is roughly faster by a factor of three compared to BBS-1000 but with a significantly
reduced solution quality, and on the large instances, it is dominated by SCH, the latter
achieving better solution quality within shorter run-times.

Since the total pick times consist of travel time, when the picker moves from aisle to
aisle or inside the aisles, and waiting time, when the picker has to wait for an aisle to
open, we are interested in analyzing the proportion of waiting and travel times to the
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SCH BBS-10 BBS-100 BBS-1000 DP

Instance set BKS Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

10-30-medium 53.55∗ 4.38 5.4 0.19 5.4 0.00 5.3 0.00 5.3 0.00 0.0
10-60-medium 96.35∗ 2.77 5.8 0.26 5.8 0.00 5.7 0.00 5.6 0.00 0.0
10-90-medium 121.65∗ 1.42 5.0 0.00 5.0 0.00 4.9 0.00 4.9 0.00 0.0
10-30-high 39.30∗ 2.36 5.4 0.00 5.4 0.00 5.2 0.00 5.2 0.00 0.0
10-60-high 68.70∗ 1.36 4.9 0.15 4.9 0.00 4.7 0.00 4.7 0.00 0.0
10-90-high 99.10∗ 0.65 5.3 0.00 5.3 0.00 5.0 0.00 5.0 0.00 0.0

Avg. Small 2.16 5.3 0.10 5.3 0.00 5.1 0.00 5.1 0.00 0.0

30-30-medium 161.80 3.78 13.1 5.25 15.5 3.80 20.4 0.00 136.8 – –
30-60-medium 259.70 3.49 13.2 4.56 15.2 2.07 15.5 0.00 129.0 – –
30-90-medium 353.20 1.94 13.6 1.94 16.1 2.05 15.6 0.00 127.7 – –
30-30-high 110.45 4.12 24.2 3.49 25.2 2.08 29.9 0.00 219.0 – –
30-60-high 168.20 2.27 22.4 2.20 24.6 2.41 27.0 0.00 204.3 – –
30-90-high 236.05 1.48 22.2 1.46 24.0 1.19 26.3 0.00 211.0 – –

Avg. Med. 2.85 18.1 3.15 20.1 2.27 22.5 0.00 171.3 – –

100-30-medium 615.40 0.00 150.1 0.89 153.6 0.67 243.1 0.20 7729.0 – –
100-60-medium 872.10 1.71 148.5 3.69 155.7 3.14 243.8 0.00 8289.1 – –
100-90-medium 1182.90 0.00 144.1 3.78 150.7 2.07 236.5 0.75 8253.7 – –
100-30-high 441.10 0.00 269.1 1.47 306.4 2.80 434.3 1.70 14758.8 – –
100-60-high 618.70 0.00 292.9 2.31 335.6 4.78 463.0 0.44 15193.1 – –
100-90-high 781.90 4.73 280.5 6.86 319.4 6.09 447.4 0.00 14851.5 – –

Avg. Large 1.07 214.2 3.17 236.9 3.26 344.7 0.52 11512.5 – –

Total Avg. 2.03 79.2 2.14 87.4 1.84 124.0 0.17 3896.3 – –

Table 2.2.: Comparison of solution methods on small, medium-sized, and large in-
stances.

total order pick times for the best found solutions in each instance group. Table 2.3
reports the percentage shares of travel times and waiting times of the total pick times.
The waiting time dominates the travel time in 16 out of 18 instance groups. On average,
71% of the total pick time is spent waiting for aisles to open.
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Waiting time Travel time

Instance set BKS Share % Share %

10-30-medium 53.55∗ 73 27
10-60-medium 96.35∗ 84 16
10-90-medium 121.65∗ 89 11
10-30-high 39.30∗ 76 24
10-60-high 68.70∗ 87 13
10-90-high 99.10∗ 91 09

Avg. Small 83 17

30-30-medium 161.80 58 42
30-60-medium 259.70 72 28
30-90-medium 353.20 80 20
30-30-high 110.45 54 46
30-60-high 168.20 71 29
30-90-high 236.05 78 22

Avg. Med. 69 31

100-30-medium 615.40 47 53
100-60-medium 872.10 64 36
100-90-medium 1182.90 72 28
100-30-high 441.10 44 56
100-60-high 618.70 59 41
100-90-high 781.90 73 27

Avg. Large 60 40

Total Avg. 71 29

Table 2.3.: The share of waiting and travel time of the total pick time.
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In Table 2.4, we investigate the effect of adding weights to each aisle (set) to improve
the performance of SCH as proposed in Section 2.3.4. More precisely, we compare
the performance of SCH with that of a variant of SCH using uniform weights (i.e., every
set has the same weight of 1), denoted as SCH-uniform. The results show that adding
weights dramatically improves the solution quality. On the other hand, the CPU times
for SCH-uniform are much shorter because the set-covering problem only needs to be
solved once. However, this speed-up cannot compensate for the significantly reduced
solution quality.

SCH SCH-uniform

Instance set BKS Gap (%) CPU (s) Gap (%) CPU (s)

10-30-medium 53.55∗ 4.38 5.4 25.63 0.0
10-60-medium 96.35∗ 2.77 5.8 16.65 0.0
10-90-medium 121.65∗ 1.42 5.0 11.72 0.0
10-30-high 39.30∗ 2.36 5.4 34.50 0.0
10-60-high 68.70∗ 1.36 4.9 28.03 0.0
10-90-high 99.10∗ 0.65 5.3 17.07 0.0

Avg. Small 2.16 5.3 22.27 0.0

30-30-medium 161.80 3.78 13.1 34.90 0.0
30-60-medium 259.70 3.49 13.2 23.77 0.0
30-90-medium 353.20 1.94 13.6 17.47 0.0
30-30-high 110.45 4.12 24.2 36.52 0.0
30-60-high 168.20 2.27 22.5 26.81 0.0
30-90-high 236.05 1.48 22.2 19.31 0.0

Avg. Med. 2.85 18.1 26.46 0.0

100-30-medium 615.40 0.00 150.1 27.81 0.2
100-60-medium 872.10 1.71 148.5 15.87 0.1
100-90-medium 1182.90 0.00 144.1 7.84 0.2
100-30-high 441.10 0.00 269.1 26.90 0.2
100-60-high 618.70 0.00 292.9 19.11 0.2
100-90-high 781.90 4.73 280.5 14.90 0.2

Avg. Large 1.07 214.2 18.74 0.2

Total Avg. 2.03 79.2 22.49 0.1

Table 2.4.: Effect of adding weights to SCH

Finally, Table ?? studies the effect of using upper bounds obtained via SCH to prune
states in BS as explained in Section 2.3.2. We report aggregated values over the
groups of instance sets for different versions of BS using bounds (called BBS) or not
using bounds (called BS). As for the results, using bounds improves the solution quality
in most cases, especially when low beam widths are used. On the downside, CPU
times increase to some extent. However, the impact is not huge compared to the often
significantly improved solution quality.
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BBS-100 BS-100 BBS-1000 BS-1000

Instance set Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

Avg. Small 0.00 5.1 0.01 0.0 0.00 5.1 0.00 0.0
Avg. Med. 2.27 22.5 14.92 3.3 0.00 171.3 2.30 164.7
Avg. Large 3.26 344.7 15.40 133.8 0.52 11512.5 3.45 11529.7

Table 2.5.: Effect of using bounds in beam search

2.5.2. Product-location problem

2.5.2.1. Testing environment

In this part of our computational study, we investigate the product-location problem in-
troduced in Section 2.4. Specifically, we seek to answer the question which of the dis-
cussed product-location policies is most suitable for facilitating the subsequent picker-
routing problem. Clearly, both problems are interdependent: depending on how SKUs
to be picked are distributed in the warehouse, even optimal picker routes can be longer
or shorter.

For this series of tests, we generate a new data set with 16 instances. The layout of
the warehouse and the distances between aisles and depot are exactly as described
in Section 2.5.1.1. We investigate four different warehouse settings and generate four
instances for each setting. A setting is defined by a tuple (m, k , |J |, |O |,M ) with m

the number of aisles in the warehouse, k the number of locations in each aisle, |J |
the maximum number of different SKUs to store in the warehouse, |O | the number of
orders in the main order set, and M the maximum number of SKUs in each single
order in the order set. The settings (5, 5, 10, 5, 5), (10, 10, 20, 10, 7), (20, 15, 40, 15, 15),
and (20, 15, 40, 15, 15) are studied. In the order set O , we have |O | different individual
orders, and each order can consist of a maximum of M different SKUs, which are
drawn randomly from an exponential distribution with a mean of 10. The exponential
distribution is chosen because in many real-world warehouses a small set of SKUs
are substantially more popular than others, e.g., (Bartholdi and Hackman, 2008). Note
that some SKUs might not be in the order set at all, e.g., if an instance is supposed
to contain 80 different SKUs, but only 78 are actually part of any order (due to the
exponential distribution). These SKUs are still considered part of the problem, however,
and will be assigned to storage locations.

For each instance, to assign the SKUs to storage locations, we employ two policies:
chaotic storage, where SKUs are assigned randomly to storage locations, as well as
the priority rule we proposed in Section 2.4. To evaluate the quality of a given loca-
tion assignment, we subsequently solve the picker-routing problem on one of two order
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sets. The first one is called the historical order set, which means that the exact same
orders that were used to determine product locations are also actually realized. Re-
call that this setting comes close to reality in intermediate warehouse where recurrent
part and material demands for cyclically repeated production lots need to be satis-
fied. In other warehouse settings, however, it is not necessarily realistic to assume that
the exact composition of future orders is already known when the location problem is
solved. To emulate such a setting we also use an anticipated order set to solve the
picker-routing problem. This order set is randomly generated as described in the pre-
vious paragraph, using the same probability distribution (exponential distribution with
a mean of 10) but using a new random seed. In other words, this order set obeys the
anticipated distribution, but it is not exactly equal to the original order set used to solve
the product-location problem.

Finally, we also propose an integrated MIP model in the appendix. Using a default
solver (CPLEX 12.6), the model solves the joint product location and picker routing
problem to optimality. In other words, this model operates under the assumption that
the exact pick list is already known at the time the shelves are stocked, which is not
realistic in most cases but yields the very best objective value under perfect information,
which may serve as a bound to compare the other product location policies against.

Due to the randomness of the chaotic storage policy, we re-assign storage locations
100 times and only the best objective value out of these runs is reported. CPU times
are cumulative for all runs, however. Moreover, there is a time limit of 3 hours for the
policies (including both the location as well as routing phases). After exceeding the
time limit, the best found solution is returned. To solve the routing problem, we use DP
for the smaller warehouse settings (instances 1 through 8). For the larger instances,
we employ SCH (instances 9 through 16). Note that both chaotic assignment as well
as the priority rule heuristic take negligible CPU time for all our test problems, i.e.,
substantially less than one second in all cases. We therefore do not explicitly mention
CPU times in the following tables. Solving the subsequent picker routing problems
can take a significant amount of time. As the CPU time is independent of the product
locations, however, we refer the reader to Section 2.5.1.2 for details.

2.5.2.2. Performance of location assignment policies

Table 2.6 illustrates the results obtained with the proposed storage policies, i.e., the
priority rule (P-R) and chaotic storage (Chaotic). Column BKS reports the best known
solution, columns Gap the percentage gap of the total pick time for all orders in the
order set for both historical and anticipated (columns labeled (antc)) order sets. Finally,
the average relative gaps of the integrated MIP model to the proposed priority rule and
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chaotic storage policy are reported in column Int. MIP. Since the integrated MIP opti-
mizes product locations and picker routes jointly, whereas the other policies optimize
both problems successively, the gaps cannot be positive – the integrated solution must
be at least as good as the best successive solution. Note that the integrated MIP model
can only solve the small instances for the historical order set within a 3-hour time limit.

Warehouse setting P-R P-R (antc) Chaotic Chaotic (antc) Int. MIP

Instance m k |J | |O | M BKS Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

1

5 5 10 5 5

301.00 1.00 1.99 0.00 1.00 -1.33
2 300.00 4.33 1.33 4.33 0.00 -1.92
3 301.00 2.99 0.00 4.32 1.00 -0.97
4 306.00 0.00 1.31 0.33 0.98 -1.63

Avg. Small 2.08 1.16 2.24 0.74 -1.46

5

10 10 20 10 7

872.00 0.00 3.44 16.51 9.86 –
6 856.00 0.00 6.54 7.01 14.72 –
7 842.00 1.43 1.43 9.26 0.00 –
8 858.00 0.00 1.86 7.93 4.43 –

Avg. Mid. 0.36 3.32 10.18 7.25 –

9

20 15 40 15 15

1437.00 0.00 33.33 21.99 42.38 –
10 1660.00 0.00 3.61 13.31 3.55 –
11 1500.00 0.00 13.40 17.67 18.33 –
12 1383.00 0.00 19.45 32.10 27.40 –

Avg. Large 0.00 17.45 21.27 22.92 –

13

40 20 80 20 30

3219.00 0.00 16.43 30.41 28.18 –
14 3502.00 0.00 20.99 22.96 27.41 –
15 3682.00 0.00 15.15 26.18 21.94
16 3171.00 0.00 24.06 26.58 35.26 –

Avg. Very large 0.00 19.16 26.53 28.20 –

Total Avg. 0.61 10.27 15.06 14.78 –

Table 2.6.: Comparing priority rule, chaotic storage policy and integrated storage and
routing.

Comparing the priority rule and the chaotic storage policy, the priority rule-based prod-
uct location policy fails to produce the shortest pick time only in one single instance. In
all other cases, it is clearly superior to chaotic storage. This holds true regardless of
whether the historical or the anticipated order set is used to evaluate product locations.
Regarding this distinction, unsurprisingly, the priority rule works best if the historical
data is also used for evaluation. In practice, this would, however, imply that the plan-
ner already knows the precise customer orders when the product-location problem is
solved. Due to the different planning horizon of these two steps, this is unlikely to be
the case in most branches of industry. It is therefore encouraging to see that the prior-
ity rule still delivers substantially better results than chaotic storage even if merely the
probability distribution of future orders is known, i.e., the anticipated order set is used
in the routing phase.
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So far, we assumed that shared storage of SKUs is allowed, meaning that the same
SKU may be put in multiple locations. However, for organizational reasons and to make
routes less confusing for human pickers, it may be expedient for warehouse operators
to assign fixed (or dedicated, see (Bartholdi and Hackman, 2017)) storage locations
to SKUs, i.e., each SKU is assigned to exactly one location. To compare the shared
and fixed storage schemes, we employ the priority rule and the chaotic storage policy
using both schemes. Specifically, under a fixed storage policy, a SKU is removed from
consideration once it has been assigned to a storage position by either the priority rule
of the random number generator (in case of chaotic storage). Under a shared storage
policy, the same SKU can be assigned multiple times as long as there is space left and
each SKU is in at least one position. Table 2.7 compares the total pick time, calculated
as before. The column headers are the same as in Table 2.6, but in the columns
labeledfixed the results obtained using fixed assignment of each SKU to one unique
location are listed; the other columns contain the results under the shared storage
scheme, as in Table 2.6.

Regarding the results, expectedly, fixed assignment performs worse than shared. How-
ever, the size of the gap is astonishing: the average pick time is almost 3 times as large
under a fixed assignment for the chaotic strategy. If the more sophisticated priority rule
is used, the gap is clearly lower, at about 33% additional picking effort over the best
known (shared) solution. The size of the gap is probably due to the slow movement
speed of the racks: if SKUs are only stored in a single location, it becomes much more
likely that a greater number of aisles must be opened, which is heavily penalized by
long waiting times. Since our priority rule tends to cluster SKUs that are often ordered
together in the same aisles, the penalty is substantially lower. This strongly suggests
that chaotic storage paired with fixed storage locations is not a good fit at all for mobile
rack warehouses.
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Warehouse setting P-R P-R (fixed) Chaotic Chaotic (fixed)

Instance m k |J | |O | M BKS Gap (%) Gap (%) Gap (%) Gap (%)

1

5 5 10 5 5

301.00 1.00 36.54 0.00 2.66
2 300.00 4.33 41.33 4.33 47.00
3 301.00 2.99 39.20 4.32 48.50
4 306.00 0.00 17.97 0.33 27.78

Avg. Small 2.08 33.76 2.24 31.49

5

10 10 20 10 7

872.00 0.00 0.00 16.51 239.68
6 856.00 0.00 0.00 7.01 154.21
7 842.00 1.43 1.43 9.26 183.73
8 858.00 0.00 0.00 7.93 149.07

Avg. Med. 0.36 0.36 10.18 183.73

9

20 15 40 15 15

1437.00 0.00 68.06 21.99 258.32
10 1660.00 0.00 56.99 13.31 234.28
11 1500.00 0.00 64.00 17.67 228.73
12 1383.00 0.00 55.60 32.10 260.09

Avg. Large. 0.00 61.16 21.27 245.35

13

40 20 80 20 30

3219.00 0.00 33.15 30.41 317.46
14 3502.00 0.00 35.55 22.96 302.14
15 3682.00 0.00 45.82 26.18 286.69
16 3171.00 0.00 25.70 26.58 285.59

Avg. Very large 0.00 35.05 26.53 297.97

Total Avg. 0.61 32.58 15.06 189.12

Table 2.7.: Comparing shared and fixed policies for the priority rule and the chaotic
strategy
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2.6. Conclusion

In this paper, we investigated the picker routing as well as the interrelated product-
location problem as it arises in warehouses with moveable racks, designed for space
efficiency. The routing problem is made more complicated in such warehouses than
in many classic warehouses, especially in case of scattered storage, due to the added
difficulty of having to move racks out of the way to open aisles. To solve this prob-
lem, we proposed a dynamic programming and a beam search scheme, as well as a
set-covering-based heuristic. For the product-location problem, which concerns itself
with placing SKUs in the storage area such that subsequent pick times are as short
as possible, we investigated two different policies, and compared the performance of
shared as well as fixed storage space allocation.

Our computational tests reveal that the proposed heuristics for the routing problem
perform quite well, although there is a distinct tradeoff regarding solution time and
quality. The dynamic programming scheme cannot reasonably solve larger instances,
whereas both beam search as well as the set-covering heuristic have proven quite
adept. Beam search, however, while delivering good results, may take a long time
to reach that solution in many instances. The set-covering heuristic is very fast but
exhibits non-negligible gaps regarding the best solutions known.

Regarding managerial insights, our tests reveal the following take-home messages:

• Chaotic storage, i.e., assigning random locations to SKUs, delivers suboptimal
results, and leads to unnecessarily long pick times. Even with the comparatively
simple priority rule presented in this paper, significantly better results are possi-
ble, i.e., up to 15%.

• Fixed storage, i.e., assigning a single storage location to each SKU, is not ad-
visable in a mobile rack warehouse. It leads to a much greater number of rack
movements, which should be avoided due to the low movement speed. Savings
upwards of 30% are possible.

• The priority rule for the location problem introduced in this paper works quite well
even if the exact composition of future orders is not known. It suffices to have an
idea about the distribution of future SKU demands. Significant savings compared
to chaotic storage are possible.

Future research should focus on designing more sophisticated solution methods for
the product-location problem. Seeing that mobile racks are often used in refrigerated
warehouses, it may also be relevant to explicitly consider perishable products requiring
just-in-time operations. Furthermore, it may make sense to schedule replenishment
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activities concurrently with retrievals, seeing that the rack movements are so slow; this
can also be incorporated in future models. Since our computational experiments show
that a substantial share of the total pick time consists of waiting for the racks to move,
investigating systems with more than one open aisle may also be a promising avenue
of future research. Finally, in our paper we assume that each unit load contains enough
items to satisfy each customer order. In a business-to-business (B2B) setting, however,
extraordinarily large orders may occur, so that multiple storage positions of the same
SKU have to be visited to gather enough items. In this case, our dynamic programming
scheme no longer works, because the remaining items per storage position have to be
recorded in the states. Designing algorithms, e.g., integer programming approaches,
for this extended problem setting is also a challenging task for future research.
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Abstract:

Many service providers that use appointment systems, such as radiology departments
in hospitals, experience walk-ins in addition to scheduled appointments. Among the
former, emergency patients must be served as soon as possible, and other types of
patients are mostly given lower priority to be served. The system usually uses a cer-
tain priority rule to control the access of the patients waiting for being served when
no emergency patients are waiting. Two groups of priority rules, namely, static and dy-
namic priority rules, are used in appointment systems. In static priority rules, the priority
of patients does not change depending on the state of the system; conversely, in dy-
namic priority rules, the priority of a patient depends on the state of the system. Using
a specific priority rule may lead to a disruption of the initially scheduled appointments
and affect the system’s performance. In this paper, we determine when outpatients
should be scheduled if there are arrivals of emergency patients and inpatients and a
certain priority rule is used by the system.

To address this problem, a simulation optimization approach based on tabu search
with a neighborhood reduction technique is proposed. It uses low-fidelity simulation
to rank and pick neighboring solutions. The findings demonstrate the effectiveness
and efficiency of the proposed algorithm in solving the outpatient scheduling problem
with walk-ins and no-shows. Furthermore, the structure of the optimal schedule of the
outpatients when the system has different priority rules is studied. The results suggest
that to schedule outpatients, decision-makers should consider which priority rules the
appointment system applies.
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3.1. Introduction

Outpatient service providers face a rapidly increasing demand to satisfy within a limited
time frame or with a limited capacity of facilities (Froehle and Magazine (2013)). There-
fore, improving access to health care services is an important goal for these providers.
Timely access influences the quality of the service encounters of patients and health
care providers (Cayirli and Veral (2003)). It also improves health care providers’ con-
tentment and earnings and patients’ satisfaction (Gupta and Denton (2008)). Schedul-
ing the appointments of outpatients trades off patients’ long waiting times and tech-
nicians’ overtime (Ahmadi-Javid et al. (2017)). Outpatient appointment scheduling
consists of determining the arrival times of scheduled outpatients on a particular day,
wherein some patients can share the same arrival time. This task may be further com-
plicated by outpatient no-shows, the stochastic nature of arrivals of walk-ins, and the
use of a particular priority rule in the system.

Health care systems consider different classifications of patients who are served ac-
cording to priority rules. Jaiswal (1968) defined the priority as the “measure of im-
portance” that distinguishes the different groups of arrivals. For example, in radiology
departments in hospitals, three patient classes–emergency patients, outpatients, and
inpatients–receive services. If there is an emergency demand request, it receives the
highest priority. Since inpatients are available for a greater period, they are given a
lower priority than outpatients (Green et al. (2006)).

Jaiswal (1968) also explained that each priority rule always specifies which unit is
served once the server is free and whether to continue or discontinue the service of
the unit being served. Priority rules provide real-time control of access to the facility
for potentially competing patient classes (Green et al. (2006)). For example, in radiol-
ogy departments in hospitals, at each point in time, there may be waiting patients from
more than one class. In the absence of emergency patients, the predetermined priority
rule decides whether an outpatient or an inpatient is served next. When an outpatient
appointment system has a specific priority rule, the selection of an appointment sched-
ule affects the likelihood and timing of the delays of different patient classes, which
impacts the overall performance of the service facility. Therefore, it is important and
challenging to make scheduling decisions while considering a system’s priority rules.

When a system is remarkably underloaded, the optimal schedule for outpatients does
not depend on the priority rule. This exists because the probability of having different
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types of patients waiting at a certain point in time is low regardless of the system’s
priority rule. The question that arises is when the load of the system is high, does the
optimal schedule differ with different priority rules?

To address how the priority rules affect the optimal appointment schedule of outpa-
tients, a simulation optimization approach with tabu search enhanced with a multifidelity
simulation-based neighborhood reduction method is proposed. Simulation provides a
highly accurate estimate of an expected performance measure in a system and has
high flexibility in modeling and analyzing complex systems. Tabu search guides local
search heuristics to escape from local optima and provides optimal or near-optimal
solutions by applying an adaptive form of memory (Glover (1986)). Tabu search is a
strong metaheuristic that is used in many studies in several applications, as shown in
Klassen and Yoogalingam (2009) and Schneider et al. (2017).

The proposed tabu search is enhanced by a neighborhood reduction technique. Neigh-
borhood size reduction techniques have been widely studied in the literature. For ex-
ample, Schneider et al. (2017), Toth and Vigo (2003), and Potvin et al. (1996) con-
sider the limited list of promising neighbors in their proposed solution methods. In
another example, Xiao et al. (2011) consider a reduced distance-based neighborhood
structure for the proposed variable neighborhood search procedure. In our study, a
neighborhood reduction method based on the study of Xu et al. (2014) for multifidelity
approximation methods is used. There are several studies related to simulation opti-
mization approaches that apply frameworks to use multifidelity approximation methods,
such as Lin et al. (2019, 2020).

The reminder of this paper is organized as follows: Section 3.2 explains priority rules
and provides an overview of the literature on appointment scheduling for these rules.
Section 3.3 describes the studied problem. The proposed simulation optimization with
tabu search is explained in Section 3.4. The numerical studies are described in Section
3.5. Finally, the last section concludes this paper and presents possible future research
directions.

3.2. Literature review

Appointment scheduling has received considerable attention from academics, as
shown in the literature reviews Cayirli and Veral (2003), Gupta and Denton (2008), and
Ahmadi-Javid et al. (2017). This section reviews the papers on appointment systems
with heterogeneous patient groups, where access to service is controlled by priority
rules. Priority rules have been studied extensively due to their numerous applications
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in many service facilities, such as telecommunications (Stidham Jr (2002)) and health
care (Lakshmi and Iyer (2013)).

Subsection 3.2.1 reviews the appointment systems with static priority rules, and Sub-
section 3.2.2 describes the appointment scheduling studies considering dynamic pri-
ority rules.

3.2.1. Appointment systems with a static priority rule

In appointment systems having a static priority rule, the priority of patient groups does
not change depending on the state of the system. Different priorities are given to pa-
tient groups based on the urgency of their treatment. The server always picks the
waiting patient with the highest priority to serve. When the priority rule is preemptive,
the service of low priority patients is interrupted to serve an arriving higher priority pa-
tient. For example Luo et al. (2012) address this issue with two patient groups. The
remaining papers in appointment systems that are reviewed here consider nonpreemp-
tive service, where the server always finishes the current treatment.

Many papers in the appointment scheduling literature studying two patient groups have
a static priority rule, such as Koeleman and Koole (2012) and Begen et al. (2012). In
this subsection, we focus on papers that consider at least three classes of patients.
Rising et al. (1973) study a university health service clinic. They model three patient
classes, including emergency, scheduled, and walk-in patients, where emergency pa-
tients have the highest priority and walk-ins have the lowest priority. They use simu-
lation and historical data from the university clinic to evaluate different scheduled ap-
pointments. In Peng et al. (2014), the appointment system in a clinic with prebooked,
open-access, and walk-in patients was analyzed. Prebooked patients already have an
appointment and have the highest priority. The second priority belongs to open-access
patients who ask for same-day appointments. The model optimizes the schedule of
prebooked and open-access patients while minimizing the patients’ expected waiting
times and the health care provider’s idle time and overtime. They propose simulation
optimization using a genetic algorithm solution approach. The study of Bhattacharjee
and Ray (2016) is a case study of the radiology department of a hospital in India. The
authors model four different patient classes where the highest priority is emergency pa-
tients and the lowest priority is walk-ins. The priorities of the other patient groups are
the same, and the first-come-first-served discipline is applied to control their access to
service. The simulation is used to examine different appointment rules with data drawn
from the studied hospital.
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3.2.2. Appointment systems with a dynamic priority rule

Dynamic priority rules depend on the state of the system. There are two different state-
dependent priority rules that are considered in the literature. We call the first group the
substitutive priority rule, and the second group is called the threshold priority rule.

In the substitutive priority rule, if a scheduled patient does not show up for her ap-
pointment (at a certain point in time), the priority of the patient from a lower priority
class, such as a nonurgent walk-in, which has the largest waiting time becomes higher
than other scheduled patients who enter the system after that time. In other words,
the position of the no-show in the queue is given to that nonurgent patient and she is
substituted with the no-show patient.

Liu and Ziya (2014) discuss a queueing model (M (t)/D/1) to examine an appoint-
ment system with scheduled patients and walk-ins, where scheduled patients have
higher priority. The model optimizes the total number of patients treated and the level
of overbooking. The authors analytically solve the problem and gain insights into the
structure of the optimal solution. Kortbeek et al. (2014) propose two models to evaluate
the schedule of patients to design an appointment system for a clinic. The proposed
models optimize the appointment day and time of each scheduled patient while simul-
taneously maximizing number of nonurgent patients served. The optimal schedules of
their models have to meet a predefined target for the access time service level. Nonur-
gent patients are served in free appointment slots and in reopened appointment slots
of no-show patients. This study employs a full enumeration procedure and a heuristic
solution approach to numerically solve the problems.

In the threshold priority rule, when a low priority patient waits for a certain amount of
time or the queue length reaches a threshold, she obtains a higher priority compared
to that of some or all other patient groups.

Borgman et al. (2018) study an appointment system in a radiology department in a
Dutch hospital with scheduled patients and walk-ins with a threshold priority rule. If the
waiting time of each walk-in patient reaches its threshold, their priority becomes higher
than that of scheduled patients. Their model minimizes the expected waiting time, idle
time, and overtime costs. They apply a simulation optimization approach using a lo-
cal search to explore the solution space. Green et al. (2006) examine the appointment
scheduling problem in a radiology department with emergency patients, scheduled out-
patients, and inpatients. The authors model the problem as a Markov decision process
and propose a linear capacity allocation heuristic. Their model schedules outpatients
for each period and dynamically selects the next patient to be served at the beginning
of every period. The model maximizes the total expected profits of serving inpatients
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and outpatients. Gocgun et al. (2011) extend the study of Green et al. (2006) and
consider more patient types in a radiology department with two scanners. They also
apply a Markov decision process to obtain the optimal policy of selecting the next pa-
tient to be served at the beginning of each period. In Kolisch and Sickinger (2008), an
appointment system in a radiology department with two CT scanners in which three
patient types (emergency, scheduled outpatients, and inpatients) were served was ex-
amined. The problem is modeled as a Markov decision process. The proposed model
decides which patient type to choose to serve in each period. They compare the ob-
tained optimal solution with given schedules as appointment rules over data from their
field studies.

To summarize, all the studies considering an appointment system with distinguished
patient groups, whether optimization or simulation studies, consider only one priority
rule. No paper studies the importance of the priority rules used in the system while
optimizing a decision variable or evaluating performance measures. Moreover, ap-
pointment systems with at least three patient groups have received limited coverage in
the research literature. We fill this gap by analyzing the structure of the optimal sched-
ule of an appointment system with three patient groups and comparing the schedules
for priority rules.

3.3. Problem description

In this section, we describe the studied system and the optimization problem. We
analyze static (P1), substitutive (P2), and threshold (P3(ω)) priority rules with ω as the
predefined threshold for waiting time.

The appointment system is represented as a single server queue with three patient
groups, as shown in Figure 3.1. Let us assume that the treatment room is operational in
periods t ∈ {1, · · · ,T} with a length of d each. The service time is generally distributed
with a service rate of µ and a coefficient of variation of cvs . In radiology departments,
service is usually nonpreemptive. If a patient is not yet served during the planning
horizon, she can be served using overtime.

We distinguish between three independent heterogeneous patient groups. Let i be the
index of each patient type. The first queue, which represents the arrival of emergency
patients (i = 1), has the highest priority regardless of the system’s priority rule. It
has a given distribution for the interarrival time with an arrival rate of λ1 and a related
coefficient of variation of cva1 . The second arrival process (i = 2) represents the arrival
of the scheduled outpatients with a rate of λ2(t) = X (t) at the beginning of each period.
The aim of the studied optimization problem is to schedule N outpatients.
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The actual number of outpatients is stochastic since each scheduled patient has a
probability of ρ of not showing up to her appointment or canceling late. In the reminder
of the paper, we use the term scheduled patients and outpatients interchangeably. The
last queue represents the arrival of inpatients (i = 3) with an arrival rate of λ3 and a
coefficient of variation of cva3.

In our study, when the static priority rule is applied for the system, the priority of sched-
uled outpatients is higher than that of inpatients. Moreover, while using the substitutive
priority rule in the system, inpatients have lower priority than outpatients, and they are
replaced by no-show outpatients. Finally, in the threshold priority rule, when the waiting
time of an inpatient reaches her threshold, her priority increases compared to that of
outpatients, and she will be served as soon as the server is empty and no emergency
patients are waiting.

𝜇, 𝑐𝑣𝑠𝜆2(𝑡)𝐷

No-show with rate 𝜌

𝜆1, 𝑐𝑣𝑎1
𝐺

𝜆3, 𝑐𝑣𝑎3
𝐺

Queue2: 
Outpatients

Queue1:
Emergency patients

Queue3:
Inpatients

Figure 3.1.: Queueing system description

X (t) is the main decision variable of the optimization problem. The objective func-
tion consists of the expected overtime costs E [O(X (t))] and the aggregate expected
waiting costs related to each type of patient E [Wi(X (t))]. Let cover per hour be the
overtime cost coefficient. The patients’ waiting cost coefficients for each type i are cwi .
The optimization problem for a given priority rule is stated as follows:

Min Z = coverE [O(X (t))]︸ ︷︷ ︸
overtime cost

+
∑

i∈{1,2,3}

(
cwi E [Wi(X (t))]︸ ︷︷ ︸

waiting costs

)
(3.1)

s.t:
T∑
t=1

X (t) = N (3.2)

X (t) ∈ Z+ ∀t (3.3)

The objective function (3.1) minimizes the expected costs. The first part is the ex-
pected overtime costs of the server. The reminder is the expected costs caused by
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waiting for different patient types. Constraint (3.2) assures that exactly N outpatients
are scheduled. The last constraint defines the domain of the variables.

The used notation is summarized in Table 3.1.

Table 3.1.: Table of notations for the problem description

Notation Type Description

t Index Index of periods
i Index Type of patients
T Parameter Number of periods
d Parameter Intervals length
N Parameter Number of scheduled patients to be served
ω Parameter Threshold for changing the priority in threshold priority
µ Parameter Service rate
cv 2 Parameter Coefficient of variation of service time
λ1 Parameter Arrival rate of emergency patients
λ2(t) Parameter Arrival rate of scheduled patients at period t
λ3 Parameter Arrival rate of inpatients
cva1 Parameter Coefficient of variation of emergency patients’ inter-arrival time
cva3 Parameter Coefficient of variation of inpatients’ inter-arrival time
ρ Parameter No-show probability of each outpatient
cwi Parameter Waiting time cost coefficient for patient type i
cover Parameter Overtime cost coefficient
X (t) Decision Number of scheduled patients at the beginning of period t
Z Decision Objective value
E [Wi ] Decision Aggregate expected waiting time of patients of type i
E [O] Decision Expected server’s overtime

3.4. Simulation optimization with tabu search

Simulation optimization has been used in a wide range of optimization studies, as
shown in the review of Amaran et al. (2016). We propose simulation optimization with
tabu search to solve the appointment scheduling problem presented in Section 3.3.
As shown previously, the studied system has high complexity, and thus simulation is a
proper choice to accurately evaluate an incumbent solution’s performance measures.
However, simulation is time-consuming. Therefore, applying a local search that only
can evaluate one solution per iteration will slow down the optimization algorithm dra-
matically. Therefore, a tabu search is used which guides the search for an optimum.
To more speed up the proposed algorithm, we implement multifidelity simulations (with
a high and low number of replications) within a neighborhood reduction method.
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A solution X (t) = (X (1), X (2), · · · ,X (T )) represents the number of outpatients sched-
uled at the start of each period. To construct an initial solution, each outpatient is
assigned to a random slot t . Then, the expected waiting time of each patient group
E [Wi(X (t))] and the expected overtime E [O(X (t))] are evaluated by high-fidelity sim-
ulation (simulations with a high number of replications).

In every iteration, the neighborhood N (S ) is built by applying a set of neighborhood
operators or moves to the incumbent solution S . We discuss the structure of the
neighborhood for the search in Section 3.4.1. Section 3.4.2 introduces a neighbor-
hood reduction scheme in which low-fidelity simulation (simulations with a low number
of replications) is applied and a subset Nr(S ) ⊆ N (S ) of neighboring solutions is se-
lected. Nr(S ) is evaluated by high-fidelity simulation, and the best nontabu solution is
chosen.

To diversify the search, two mechanisms called the “probabilistic phase” and “randomly
chosen phase” are applied. Each mechanism is activated when a certain criterion is
fulfilled. The diversification methods and the criteria in which they are activated are
explained in Section 3.4.3. After selecting the new incumbent solution, the tabu list
and the best-so-far solution (BSF) are updated; and the decision of whether to start,
continue, or terminate a diversification mechanism is made. Whenever the algorithm
finds a new BSF solution, an aspiration criterion permits clearing the tabu list. Finally,
when the BSF is not improved during the last ηmax iterations, the search terminates.

3.4.1. Neighborhood structure and tabu list

The improvement part of the algorithm uses a composite neighborhood N (S ) obtained
by combining left-shift and right-shift operators. The left-shift operator is derived from
the study of Kaandorp and Koole (2007), in which an outpatient moves from time slot
t to time slot t − 1. If the patient is at the first time slot of the planning horizon, i.e.,
t = 1, she moves to the last time slot (t = T ). For the right-shift operator, an outpatient
is moved from time slot t to time slot t + 1. Both moves are executed only if there is at
least one patient scheduled at time slot t . Applying these two moves results in at most
2 · T different neighboring solutions to S .

Regarding tabu list management, we define the solution that is once selected as an
incumbent solution as a tabu for a tabu tenure of ϑ iterations. Therefore, the moves
that result in the solution in the tabu list are forbidden from being executed. The tabu
tenure is set to a uniform random value in [ϑmin , ϑmax ] for every solution inserted into
the tabu list. The tabu list is cleared as an aspiration criterion every time the algorithm
finds a new BSF solution.
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3.4.2. Neighborhood reduction method

Given a list of all neighboring solutions N (S ), a restricted neighborhood Nr(S ) with
only θ% of all neighboring solutions is selected.

To define Nr(S ), we apply a framework similar to that of Xu et al. (2014) for a multifi-
delity simulation optimization algorithm. First, we evaluate all the neighboring solutions
in N (S ) by low-fidelity simulation and rank them according to their objective values.
They are partitioned into a given number of groups (K ) based on their relative ranks.
Because of the potentially significant errors in low-fidelity models and the possibility
that the best nontabu neighboring solution exists in a nontop group, a certain number
of best solutions is selected from each group.

The iterative procedure to pick solutions from each group is based on the mean and
variance of objective values within a group and based on the distance in the mean
between two groups, see Appendix B.

3.4.3. Diversification mechanism

A crucial component in the design of an efficient solution method is the inclusion of
a diversification mechanism that helps to explore the unvisited solution space. We
use two main diversification methods, which are called the “probabilistic phase” and
“randomly chosen phase” (Schneider et al., 2017).

For the probabilistic phase, a nontabu solution among reduced neighboring solutions
is randomly chosen. The probabilistic phase is started as soon as there is no improve-
ment for the BSF solution for the past ηdiv iterations. Once started, the probabilistic
phase runs for at most ηprob iterations or it is stopped earlier if a new BSF solution is
found.

In the randomly chosen phase, the next solution to visit is constructed randomly. The
tabu list is restarted, and thus, it may help to escape situations in which the algorithm
gets stuck in local optima. This diversification mechanism terminates after one itera-
tion. Note that the search is very likely to take a different path than before because it
is restricted with different tabu list entities.

In summary, Algorithm 2 shows the pseudocode of the proposed algorithm to solve the
optimization problem for a given priority rule.
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Algorithm 2 Pseudocode Overview of Tabu Search
1: procedure TABU SEARCH
2: Initialize tabuList
3: S ← initial solution created by RANDOM PROCEDURE
4: S ← S ∗

5: probabilisticPhase ← false
6: randomlyChosenPhase ← false
7: while termination criteria not satisfied do
8: if randomlyChosenPhase then
9: S ← solution created by RANDOM PROCEDURE

10: else if probabilisticPhase then
11: S ← select a random solution in Nr(S ) ⊂ N (S )/tabuList
12: else
13: S ← select best solution in Nr(S ) ⊂ N (S )/tabuList

14: update tabuList , S ∗, probabilisticPhase , and randomlyChosenPhase

15: Return S ∗

3.5. Numerical study

In this section, we present numerical experiments. In Section 3.5.1, we first explain how
the analytical instances are generated and how the algorithm parameters are selected.
In Section 3.5.2, the performance of the algorithm compared with a full enumeration
procedure is discussed. In Section 3.5.3, sensitivity analyses for arrival parameters are
conducted to study the structure of the solution for the three priority rules.

3.5.1. Instance generation and parameter selection

We generate instances with one service provider. The planning horizon is divided into
periods with length of d = 30 min. In the following, we summarize the parameter
choices in the base instance benchmark based on case studies reported in the litera-
ture.

We use a gamma distribution with a given service rate of µ ∈ {1, 2} per hour and
cv 2

s = 0.4 based on Yang et al. (1998) and Cayirli and Veral (2003). The interarrival
time is assumed to be exponentially distributed with rates of λ1 = 0.1 1

h
and λ3 = 0.2 1

h

for arrival of emergency patients and inpatients according to Green et al. (2006), Peng
et al. (2014), and Rising et al. (1973) . We choose ρ = 0.2 for the no-show rate based
on Peng et al. (2014). According to Cayirli and Veral (2003), the waiting cost ratio of

emergency patients over that of outpatients is set as three (
cw1
cw2

= 3), that for inpatients
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is 0.7 (
cw3
cw2

= 0.7), and that for overtime costs is 15 (
cover

cw2
= 15). Therefore, we select

cw1 = 90, cw2 = 30, cw3 = 21, and cover = 450.

For the threshold priority rule (P3), the threshold parameter ω = 1 h is selected based
on Borgman et al. (2018). Instances are distinguished from each other by the number
of total outpatients to schedule (N ) and the number of periods in the planning horizon
(T ).

Table 3.2.: Overview of the parameter setting of the proposed algorithm
Tabu Search Diversification Neighborhood reduction

Parameter Range Final choice Parameter Range Final choice Parameter Range Final choice

ηmax [100, 1500] 500 ηdiv [10, 500] 25 θ [0.3, 0.5] 0.4
ϑmin [1, 5] 2 ηprob [5, 300] 10 K [1, 10] 3
ϑmax [3, 10] 5 ηreset [50, 100] 50

To specify the parameters for the algorithm, an extensive prenumerical study results in
the parameters shown in Table 3.2. For each parameter, the analyzed range and the
final choice are given.

To choose the appropriate combination of the number of replications for high- and
low-fidelity simulation, we analyze instances as described above with a service rate
of µ = 1 ( 1

h
), N ∈ {5, · · · , 10} patients, and T = 10 periods (i.e., six distin-

guished instances). We test nine different combinations of the number of replica-
tions for high-fidelity simulation (HF ∈ {1000, 2000, 5000}) and for low-fidelity simulation
(LF ∈ {50, 100, 250}). The number of replications for high-fidelity simulation is based
on the literature on simulation optimization in appointment systems, such as Klassen
and Yoogalingam (2019). Each instance is solved with the proposed algorithm using
the respective combination of HF and LF . Each instance’s obtained solution is finally
evaluated by simulation with 150000 replications.

Table 3.3 indicates the results. For each instance, “BKS” is the objective value of the
best-know solution, and the “Gap” columns show the rounded-up percentages of the
deviation from BKS for the objective value of the solution with the respective combina-
tion of LF and HF . Please note that the best-know solution is the final schedule found
by the algorithm for each instance, where its objective value is reported in the table.
The proposed algorithm’s run time in seconds is reported in “CPU (s).” Finally, “Pri.”
displays the priority rule used.

In Table 3.3, when the algorithm uses HF = 5000, it is very accurate but needs con-
siderable CPU time. In general, the CPU time increases in LF . The combination of
HF = 2000 and LF = 100 also shows only minor differences in the objective value
compared to BKS, and it is fast. To conclude, we use the combination of HF = 2000
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and LF = 100 in the upcoming analyses because it is fast, and, on average, the relative
gap is very low.

It should be noted that the seed values for all high-fidelity simulation runs are equal.
In addition, all low-fidelity simulation runs have the same seed value. The proposed
solution approach is coded in Java. All tests are performed on a standard desktop com-
puter with an Intel Core(TM) i7 Processor at 3.33 GHz, 32 GB of RAM, and Windows
7 Professional.

3.5.2. Performance of the algorithm

In this section, we analyze the reliability of the proposed algorithm by comparison with
a full enumeration procedure combined with simulation with 2000 replications. The full
enumeration procedure terminates if all feasible schedules (

(
N+T−1

N

)
) are evaluated or

the time limit is reached. The best solution is reported as its outcome. Note that both
solution approaches use simulation with 2000 replications, and simulation with 150000

replications are not applied due to comparison issues.

We test small and large instances with a service rate of µ = 1 ( 1
h
) and all of the

other parameters as described above. For small instances, N ∈ {5, · · · , 10} patients
and T = 10 periods are used; and for large instances, N ∈ {10, 15, 20} patients and
T ∈ {10, 15, 20} periods are employed.

The results related to the comparison of the full enumeration procedure and the pro-
posed algorithm are reported in Table 3.4 for small instances and in Table 3.5 for
large instances. For each instance, the tables report the objective value of the best
known solution found by any of the solution methods (in column BKS). For each so-
lution method, the running time in seconds is reported in “CPU (s).” The labels “Alg.”
and “F_E” refer to the proposed algorithm and the full enumeration procedure, respec-
tively. The time limit for solving each instance is 24 hours. For large instances, the
percentages of deviation from the BKS for each solution method are reported in “Gap.”

Table 3.4 shows that the proposed algorithm can find the optimal solutions for all small
instances. The CPU time of the algorithm is significantly smaller than that of full enu-
meration. It shows a good first sign of the solution quality.

In Table 3.5, the full enumeration approach cannot finish within 24 hours except for one
instance with N = 10 and T = 10. For the first instance, the solution of the proposed
algorithm and the full enumeration approach is equal. For the other instances, the
proposed algorithm finishes with better solutions than the full enumeration procedure
after 24 hours, whose average relative gap is more than 38%. The CPU time for the
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Table 3.4.: The evaluation of the algorithm performance- small instances

Pri. N T BKS Alg. F_E

CPU (s) CPU (s)

P1

5 10 705.46 48.9 125.4
6 10 1019.93 80.5 357.7
7 10 1409.40 111.6 921.8
8 10 1807.47 151.2 1832.7
9 10 2231.84 195.2 4766.2
10 10 2734.95 279.4 9396.7

Ave. 144.5 2900.1

P2

5 10 707.28 48.4 154.3
6 10 1023.58 86.9 435.7
7 10 1414.65 124.3 1127.3
8 10 1815.55 161.9 2099.4
9 10 2245.87 207.1 5535.5
10 10 2752.13 236.9 11372.4

Ave. 144.3 3454.1

P3(1)

5 10 712.11 49.2 138.2
6 10 1033.22 75.9 389.2
7 10 1427.42 106.3 997.2
8 10 1830.07 156.2 1921.1
9 10 2265.09 182.6 4978.9
10 10 2773.73 225.9 9978.4

Ave. 132.7 3067.2
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Table 3.5.: The evaluation of the algorithm performance- large instances

Pri. N T BKS Alg. F_E

Gap(%) CPU (s) Gap(%) CPU (s)

P1

10 10 2734.95 0.00 262.4 0.00 9396.7
15 10 5309.48 0.00 631.4 10.15 86400.0
20 10 8231.87 0.00 1337.3 11.38 86400.0
10 15 1971.69 0.00 473.8 43.98 86400.0
15 15 4335.63 0.00 968.7 36.08 86400.0
20 15 7068.09 0.00 2622.7 30.65 86400.0
10 20 1421.79 0.00 416.4 103.87 86400.0
15 20 3487.02 0.00 1836.5 69.90 86400.0
20 20 6192.29 0.00 3500.7 52.51 86400.0

Ave. 0.00 1338.9 39.84 77844.1

P2

10 10 2752.13 0.00 222.9 0.00 11372.4
15 10 5346.05 0.00 725.9 9.97 86400.0
20 10 8296.22 0.00 1488.1 11.20 86400.0
10 15 1987.65 0.00 504.7 44.06 86400.0
15 15 4380.08 0.00 929.0 35.40 86400.0
20 15 7153.33 0.00 2366.1 29.81 86400.0
10 20 1435.24 0.00 634.1 103.15 86400.0
15 20 3534.01 0.00 2095.3 68.42 86400.0
20 20 6283.27 0.00 3533.3 51.21 86400.0

Ave. 0.00 1388.8 39.25 78063.6

P3(1)

10 10 2773.73 0.00 206.2 0.00 9978.5
15 10 5375.40 0.00 566.8 9.86 86400.0
20 10 8326.95 0.00 1433.2 11.10 86400.0
10 15 2016.50 0.00 529.2 43.28 86400.0
15 15 4419.08 0.00 1439.6 34.80 86400.0
20 15 7207.70 0.00 2991.7 29.27 86400.0
10 20 1467.43 0.00 603.2 100.48 86400.0
15 20 3585.28 0.00 1685.6 66.73 86400.0
20 20 6348.95 0.00 3622.1 50.17 86400.0

Ave. 0.00 1453.1 38.41 77908.7
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proposed solution method is on average 1393.9 seconds and increases in N and T .
However, an increase in N has a stronger impact than an increase in T .

To summarize, the proposed algorithm is highly efficient and can find a good-quality
solution (optimal for all small instances) faster than full enumeration.

3.5.3. Sensitivity analysis of the arrival parameters of patient
classes

In this section, we compare the obtained schedule of outpatients for three priority rules.
The instance benchmark is based on Section 3.5.1, with a service rate of µ = 2 1

h
,

T = 16 periods, and N = 11 outpatients to schedule. We conduct sensitivity analysis
for one arrival parameter of the patient classes (either λ1, N , or λ3) by increasing them
while keeping the other values constant.

The expected load of the system ρ̂ is calculated by Equation 3.4.

ρ̂ =
N · (1− ρ)

µ · T · d
+

λ2 + λ3

µ
(3.4)

, where the first part is the mean load generated by serving all outpatients in a planning
horizon. The second part is the load generated by the arrival of emergency patients
and inpatients together. Tables 3.6 to 3.8 display the results for varying the arrival pa-
rameters of inpatients, emergency patients, and outpatients. In all tables, the changes
in the arrival parameters result in ρ̂ ranging from 0.7 to 1.35 with a step size of 0.05.
In those tables, the last columns show the obtained cumulative number of outpatients
in each period. The numbers in white highlight the difference in the structure of the
solution in the associated period, where the appointment system uses different priority
rules.

In Table 3.6, in the slots where the cumulative scheduled outpatients are different (the
white numbers), the following findings are noted. When the threshold priority rule P3(1)

is used, outpatients are scheduled closer to the end of the planning horizon compared
to the case where the static priority rule P1 is applied. The main reason is that the
former is likely to have waiting inpatients who reach their threshold. Therefore, it is cost-
beneficial to schedule outpatients later and incur lower costs for a waiting outpatient.
In addition, the table clearly shows that priority rule P2 sometimes has the same effect
as priority rule P1 on the obtained outpatient schedule and sometimes affects them in
a manner similar to priority rule P3(1). The reason is the similarity of the substitutive
priority rule and the threshold priority rule for giving an inpatient the priority higher than
that of outpatients.
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Table 3.6.: The effects of inpatient arrival rates on the structure of the optimal schedule
where the system uses different priority rules

λ3 ρ̂ Pri. Cumulative number of patients in each period

0.2 0.70
P1 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11
P2 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11
P3(1) 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11

0.3 0.75
P1 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11
P2 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11

0.4 0.80
P1 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11
P2 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11
P3(1) 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11

0.5 0.85
P1 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11
P2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11

0.6 0.90
P1 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11 11
P2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11

0.7 0.95
P1 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11
P2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11

0.8 1.00
P1 2 3 4 5 5 6 7 7 8 8 9 9 10 10 11 11
P2 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11
P3(1) 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11

0.9 1.05
P1 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11 11
P2 2 3 4 4 5 6 6 7 7 8 9 9 10 10 11 11
P3(1) 2 3 4 4 5 6 6 7 7 8 9 9 10 10 11 11

1.0 1.10
P1 2 3 4 5 5 6 7 7 8 8 9 9 10 10 11 11
P2 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11 11
P3(1) 2 3 4 5 5 6 6 7 7 8 9 9 10 10 11 11

1.1 1.15
P1 2 3 4 5 5 6 6 7 7 8 8 9 9 10 11 11
P2 2 3 4 5 5 6 6 7 7 8 8 9 9 10 11 11
P3(1) 2 3 4 5 5 6 6 7 7 8 8 9 9 10 11 11

1.2 1.20
P1 2 3 4 5 5 6 6 7 7 8 8 9 9 10 11 11
P2 2 3 4 5 5 6 6 7 7 8 8 9 9 10 10 11
P3(1) 2 3 4 5 5 6 6 7 7 8 8 9 9 10 10 11

1.3 1.25
P1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11
P2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11
P3(1) 2 3 4 4 5 5 6 6 6 7 7 8 8 9 10 11

1.4 1.30
P1 2 3 4 5 5 5 6 6 7 7 8 8 9 9 10 11
P2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11
P3(1) 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11

1.5 1.35
P1 2 3 4 4 5 5 6 6 6 7 7 8 8 9 10 11
P2 2 3 4 4 5 5 5 6 6 7 7 8 8 9 9 11
P3(1) 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11

54



There is one counterexample, the instance with ρ̂ = 1.1, in which for the appointment
system with priority rule P2, the white numbers are larger than those for P1 and P3(1),
meaning that the outpatients are scheduled one slot sooner compared to when other
priority rules are applied. This is because of the simulation and the proposed algorithm
errors, which can be solved by increasing the number of replications for low-fidelity and
high-fidelity simulations, as described in Section 3.5.1. We reran that instance with
LF = 500 and HF = 150000 to check this; and we observed that the same structure
occurred as for the effects of the priority rules P1, P2, and P3(1) on the obtained solution
which are explained sooner.

Tables 3.7 and 3.8 show the results of the sensitivity analyses of λ1 and N , respectively.
The findings are similar to what we explain for Table 3.6.

Comparing all tables together, we detect that a high inpatient arrival rate impacts the
schedule more than a high emergency arrival rate or a high number of outpatients to
schedule for different priority rules. When the inpatient rate increases, more inpatients
wait. In P3(1), inpatients reach the threshold more often. Additionally, when the system
has priority rule P2, in the case of a no-show, it is more likely that an inpatient exists
and waits in the system so that she can be substituted.

In summary, we can conclude that to optimize the outpatients’ schedule, a manager has
to consider which priority rule the system uses because different priority rules result in
having different schedules. We also show that at higher loads, the differences between
the schedules are more vivid, specifically when the change in the load is caused by
inpatients. Generally, when the threshold priority rule is applied, the solution tends to
schedule one outpatient closer to the end of the planning horizon, to incur less costs
for outpatient waiting even though penalizing overtime costs more.

3.6. Conclusion and further research

In this paper, we investigate the outpatient scheduling problem when the system has a
specific priority rule as it arises in radiology departments. The priority rules are used
to control the access of patients who are waiting to be served. When the appointment
system uses a specific priority rule, it may disrupt the initial schedule and affect the
system’s performance. To study the effects of the priority rules on the schedule of
outpatients, a simulation optimization approach with a tabu search is designed. The
proposed algorithm uses a neighborhood reduction technique in which low-fidelity sim-
ulation is applied to speed up the procedure of finding the optimal solution. In every
iteration, the neighborhood is built by applying a set of moves to the incumbent solu-
tion. Then, low-fidelity simulation is applied to select a subset of neighboring solutions
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Table 3.7.: The effects of emergency arrival rates on the structure of the optimal sched-
ule where the system uses different priority rules

λ1 ρ̂ Pri. Cumulative number of patients in each period

0.1 0.70
P1 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11
P2 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11
P3(1) 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11

0.2 0.75
P1 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11
P2 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11

0.3 0.80
P1 2 3 4 4 5 6 7 7 8 8 9 10 10 11 11 11
P2 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 3 4 5 6 6 7 8 8 9 10 10 11 11 11

0.4 0.85
P1 2 3 4 5 5 6 6 7 8 8 9 10 10 11 11 11
P2 2 3 4 5 5 6 6 7 8 8 9 10 10 11 11 11
P3(1) 2 3 4 5 5 6 6 7 8 8 9 10 10 11 11 11

0.5 0.90
P1 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 11
P2 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11 11
P3(1) 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11 11

0.6 0.95
P1 2 3 4 5 5 6 6 7 8 8 9 9 10 11 11 11
P2 2 3 4 5 5 6 7 7 8 9 9 10 10 11 11 11
P3(1) 2 3 4 5 5 6 6 7 8 8 9 9 10 11 11 11

0.7 1.00
P1 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11
P2 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11
P3(1) 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11

0.8 1.05
P1 2 3 4 5 5 6 7 7 8 8 9 9 10 10 11 11
P2 2 3 4 5 5 6 7 7 8 8 9 9 10 10 11 11
P3(1) 2 3 4 5 5 6 7 7 8 8 9 9 10 10 11 11

0.9 1.10
P1 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11
P2 2 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11
P3(1) 2 3 4 5 5 5 6 7 7 8 8 9 10 10 11 11

1.0 1.15
P1 2 3 4 4 5 6 6 7 7 8 8 9 9 10 11 11
P2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11
P3(1) 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11

1.1 1.20
P1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11
P2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11
P3(1) 2 3 4 4 5 5 5 6 6 7 7 8 8 9 10 11

1.2 1.25
P1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 11
P2 2 3 4 4 5 5 5 6 6 7 7 8 8 9 9 11
P3(1) 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 11

1.3 1.30
P1 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11
P2 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11
P3(1) 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11

1.4 1.35
P1 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11
P2 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11
P3(1) 2 3 4 4 5 5 5 6 6 6 7 7 8 8 9 11
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Table 3.8.: The effects of the number of outpatients to schedule on the structure of the
optimal schedule where the system uses different priority rules

N ρ̂ Pri. Cumulative number of patients in each period

11 0.70
P1 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11
P2 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11
P3(1) 1 2 3 4 5 5 6 7 8 8 9 10 10 11 11 11

12 0.75
P1 2 3 4 4 5 6 7 8 8 9 10 11 11 12 12 12
P2 2 3 4 4 5 6 7 8 8 9 10 11 11 12 12 12
P3(1) 2 3 4 4 5 6 7 8 8 9 10 11 11 12 12 12

13 0.80
P1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 13 13
P2 2 3 4 5 6 7 7 8 9 10 11 11 12 13 13 13
P3(1) 2 3 4 5 6 7 7 8 9 10 11 11 12 13 13 13

14 0.85
P1 2 3 4 5 6 7 8 9 9 10 11 12 13 13 14 14
P2 2 3 4 5 6 7 8 8 9 10 11 12 13 13 14 14
P3(1) 2 3 4 5 6 7 8 8 9 10 11 12 13 13 14 14

15 0.90
P1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 15
P2 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 15
P3(1) 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 15

16 0.95
P1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16
P2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16
P3(1) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16

17 1.00
P1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17
P2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17
P3(1) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17

18 1.05
P1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
P2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
P3(1) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 1.10
P1 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19
P2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19
P3(1) 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19

20 1.15
P1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20
P2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20
P3(1) 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20

21 1.20
P1 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 21
P2 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 21
P3(1) 3 4 5 6 8 9 10 11 12 13 14 15 16 17 19 21

22 1.25
P1 3 4 5 7 8 9 10 11 12 13 14 15 16 18 19 22
P2 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 22
P3(1) 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 22

23 1.30
P1 3 4 5 6 8 9 10 11 12 13 14 16 17 18 19 23
P2 3 4 5 6 8 9 10 11 12 13 14 16 17 18 19 23
P3(1) 3 4 5 6 8 9 10 11 12 13 14 16 17 18 19 23

24 1.35
P1 3 4 6 7 8 9 10 11 12 13 14 15 16 18 19 24
P2 3 4 6 7 8 9 10 11 12 13 14 15 16 18 19 24
P3(1) 3 4 6 7 8 9 10 11 12 13 14 15 16 18 19 24
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to finally be evaluated by high-fidelity simulation. Two diversification mechanisms, the
probabilistic phase and randomly chosen phase, are applied to explore the unvisited
solution space.

Our computational tests reveal the effectiveness and efficiency of the proposed algo-
rithm to solve the problems by comparing the solutions obtained from a full enumeration
procedure. The numerical results indicate that when decision-makers want to optimize
the timely schedules of outpatients, they must consider what priority rules the system
uses. Specifically, when the system experiences a high load, the optimal schedule of
outpatients differs depending on the priority rule used by the system. More precisely,
for the higher load triggered by inpatients, the optimal schedule is more likely to be dif-
ferent. The results also show that if the threshold priority rule is used, in the obtained
solution, outpatients are scheduled near the end of the planning horizon, resulting in
lower outpatient waiting costs, even when incurring further overtime costs.

Further research may study other system assumptions, such as patient abandonment.
Some studies indicate that patients are not eager to wait too long for their service, and
they might leave the system without being served. Another issue to analyze is how to
include patients who arrive earlier or later than their appointment times. Unpunctuality
of patients is a major problem as it disrupts the smooth running of various clinical
specialties.

From the method perspective, one should focus on designing alternative solution meth-
ods and alternative evaluation methods. For the latter, low- or high-fidelity simulations
to evaluate the performance of the system can be replaced by approximation methods.
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Abstract:

Time-dependent queues are used to represent real-world systems, such as appoint-
ment systems in healthcare or runway systems in airports. In these systems, the rate
of arrivals may temporarily surpass the service capacity, leading to overloading. This
paper analyzes a single server time-dependent queue with exponentially distributed
inter-arrival and service time. We propose a hybrid approximation method which is on
basis of the Stationary Backlog Carryover (SBC) and the Point-wise Stationary Fluid
Flow Approximation (PSFFA) approaches. A mechanism is applied to adjust the pa-
rameters of the proposed approximation method when the system transfers from an
overloaded period to an underloaded one or the other way around.

A simulation benchmark confirms that the proposed hybrid method approximates the
performance measures of the time-dependent queueing system for different parameter
configurations well. The results suggest tuning the parameters of the approximation
method dramatically increases its accuracy. Numerical experiments show the quality
of the proposed approximation method in comparison with the SBC, the PSFFA, and
the Fluid approximation approaches. The proposed hybrid method outperforms them
for queueing systems with sinusoidal arrival functions and for benchmark instances
from the literature.
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4.1. Introduction

Queueing systems with time-dependent parameters are used for modeling real-world
systems containing queues. For example, runway systems in airports or appointment
systems in outpatient clinics can be modeled by time-dependent queueing systems
(Stolletz, 2008b; Brahimi and Worthington, 1991). In such systems, the arrival rates
may exceed the service capacity (rate) for some extended time, which leads to over-
loading. For a runway system in an airport, redirecting the flights from a neighboring
airport or changing the weather conditions may cause temporarily overloading. In an
outpatient clinic, the arrival rate of patients may rise more than the provided capacity
during winters or pandemics. When the system is in overload, queues form fast, and
arrivals are served after waiting for a potentially long wait.

Time-dependent queues are difficult to analyze, even for the Markovian setting. The
closed-form and explicit solutions for them are only obtained for special cases (Schwarz
et al., 2016). Simulation provides a highly accurate estimate of the expected perfor-
mance measures in time-dependent queueing systems, but its computational time is
long. Compared with simulation, approximation methods are more computationally ef-
ficient (Moore, 1975). Furthermore, fast and accurate performance approximations for
decision support are needed. They can be integrated into optimization approaches,
where a solution is evaluated. If the queueing model is just one component of a larger
model (e.g., dynamic control) or is being used as part of an iterative computation sys-
tem, it might be desirable to have an approximation approach that is fast enough to
keep the cost of computation within reasonable bounds (Rider, 1976).

The analysis of time-dependent queueing systems has a long tradition dating back to
the paper of Kolmogrov (1931). Since then, it has received considerable attention from
academics, as shown in the literature reviews such as Ingolfsson et al. (2007) and
Schwarz et al. (2016). It is demonstrated that only a limited subset of approximation
approaches address time-dependent queues with overload, where they need special
conditions held to approximate accurately.

The purpose of this paper is to design an approximation method that fast and accu-
rately analyzes an M (t)/M /1 queue where overloading situations occur. A hybrid
approximation method that combines the Stationary Backlog Carryover (SBC) and
the Point-wise Stationary Fluid Flow Approximation (PSFFA) approaches is proposed.
The literature demonstrates that the SBC approach approximates the time-dependent

60



queues in underload accurately, for example see Stolletz (2008a); Selinka et al. (2016).
The PSFFA approach is based on the Fluid approximation method. The Fluid approxi-
mation performs very well for approximating the queues with overloading, for example
see Wang et al. (1996); Mandelbaum et al. (1998); Jiménez and Koole (2004). In
this paper, we improve the PSFFA approach within the proposed hybrid approximation
method to increase its effectiveness. The approximated expected utilization used in the
core of the algorithm is modified. The proposed hybrid approximation method applies
the SBC approach for underloaded periods and the modified PSFFA approach for over-
loaded ones. A mechanism is also used to adjust the approximation parameters when
a transition from an overloaded period to underloaded one, or the other way around,
happens. More precisely, in transitions, the output of one of the approximation method
adjusted such that it becomes the input of the another approximation method.

The quality of the proposed hybrid method is evaluated by comparing the resulting per-
formance measures from simulation. A simulation benchmark confirms that the pro-
posed method approximates the performance measure of the time-dependent queue-
ing system with overload situations very well. We analyze the quality of the proposed
hybrid method for different parameter configurations and compare them with simula-
tion. The results suggest tunning the parameters of the approximation method dra-
matically increases its accuracy. In addition, numerical experiments indicate the high
quality of the proposed hybrid approximation method in comparison with the SBC, the
PSFFA, and the Fluid approximation approaches in isolation.

The remaining sections of this paper are structured as follows: Section 4.2 reviews the
literature. In Section 4.3, we describe the SBC, the PSFFA, and the Fluid approxima-
tion approaches. We also comprehensively explain the proposed hybrid approximation
method. Numerical studies are performed and the results are presented in Section 4.4.
Finally, Section 4.5 draws some conclusions from this study.

4.2. Literature review

In this section, we review the literature on performance approximation approaches for
time-dependent queues. We consider the approximation methods that can evaluate
the queues in which overloading occurs in some extended time. The papers reviewed
consider a single-stage queue that features: 1- unlimited waiting room capacity, 2-
stochastic arrivals with time-dependent rates, 3- homogeneous arrivals (i.e., no differ-
ent classes of arrivals and no priority queues), and 4- the server(s) serving all arrivals
(i.e., no retrial or abandonment). We apply a structure similar to what is introduced in
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Schwarz et al. (2016) to categorize the papers that fit the previous selecting criteria.
They classify the literature for time-dependent queues into three main categories:

• Analytical solution approaches

• Approaches based on modified system characteristics

• Approaches based on models with piecewise constant parameters

1- Analytical solution approaches are based on ordinary differential equations (ODE),
which can be numerically solved for Markovian systems (Kleinrock, 1975). The ap-
proach forms the Chapman-Kolmogorov equations (CKEs), and it solves them. Kol-
mogrov (1931) proposed the approach for the M (t)/M /c queue. It is usually used as a
benchmark to compare the approximation method, such as in Rider (1976); Green and
Kolesar (1991, 1995); Ingolfsson et al. (2007). The computational time of ODE solvers
is long.

2- Approaches based on modified system characteristics replace a deterministic con-
tinuum with arriving discrete jobs. The Fluid approximation proposed by Newell (1971)
is a prime example. Jung and Lee (1989) model repair facilities in a military context by
a G(t)/G/c(t) queue and use the Fluid approximation. Jiménez and Koole (2004) an-
alyze the M (t)/M /c queues and improve the approximation limits proposed by Newell
(1971) and Mandelbaum et al. (1998). The main advantage of the Fluid approximation
is to provide a good approximation for the performance measure when the system is
in overload. However, when the system is underloaded or critically loaded, it performs
poorly, see Mandelbaum et al. (1998) for more detailed discussion.

The Fluid approximation also gains additional relevance as an integral part of other ap-
proximation approaches, namely, the PSFFA approach and Coordinate Transformation
Technique (CTT), which will be described next.

The PSFFA approach coined by Wang et al. (1996) is a similar approach to the Fluid
approximation. It is modified such that the outflow from the system depends on the
server utilization. The PSFFA approach combines the deterministic Fluid approxima-
tion with the steady-state expected utilization formula to integrate random variation.
Agnew (1976) reports the first ideas of relating the outflow of a fluid queue to the
expected number of jobs in the system for an G(t)/G/1 queue. Filipiak (1984) con-
sidered a traffic assignment problem with a M (t)/M /1 queue and applies the PSFFA
approach in the proposed optimization approach. It is demonstrated that it performs
well for systems in underload and it becomes similar to the Fluid approximation in
overloaded periods. However, it reaches the steady-state too rapidly. This leads to an
overestimation of peaks and underestimation of valleys for quickly varying input rates.
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3- One of the successful algorithms among approaches based on models with piece-
wise constant parameters is the SBC approach. It is developed by Stolletz (2008a) for
the M (t)/M /c(t) queues. It divides the planning horizon into non-overlapping equal-
sized intervals. The SBC approach consists of two steps. In the first step, the backlog
of unserved arrivals based on the stationary loss system is calculated and the ex-
pected utilization is approximated. In the second step, the approach uses the formula
for the stationary approximation by employing a modified arrival rate which results from
the expected utilization from the first step. Stolletz (2008b) models runway systems in
airports by a M (t)/G(t)/1 queueing system and extends the SBC approach to ana-
lyze it. M (t)/G/c(t) queueing systems are considered by Stolletz (2011). The SBC
approach considers the dependencies between successive intervals. It also performs
well for the underloaded and temporarily overloaded queues. However, it does not per-
form remarkably when the overloaded periods are extended or overloading starts at
the beginning.

The discrete-time methods (DTMs) are based on the idea of exchanging continuous
time with discrete points in time. In these approaches, the planning horizon is split into
equal-sized intervals. They allow various arrival processes, e.g. time-dependent or
batch arrivals, as long as the probability of the number of arrivals can be calculated for
each time interval. Alfa (1990) and Alfa and Chen (1991) apply the DTM for M (t)/D/1

and M (t)/G/1 queues, respectively. They modify the DTM to avoid using computa-
tionally expensive auxiliary variables to speed up the approximation approach. The
main advantages of DTMs are their accuracy and their flexibility. However, their state
space rapidly grows with an increasing waiting room capacity. It is time-consuming and
it incurs approximation errors if the system does not operate with time slots.

CTT is proposed by Kimber and Hollis (1977) for an M (t)/M /1 system. As mentioned
previously, the core idea of CTT is to combine the Fluid approximation and the Point-
wise Stationary Approximation (PSA) approaches. This approach fits this group better
based on its features, rather than approaches based on modified system characteris-
tics. In CTT, a transformation of a steady-state queueing formula is used to calculate an
interval’s performance. The transformation converges to the steady-state formula using
the PSA approach for decreasing traffic intensities and to a deterministic Fluid approx-
imation for increasing traffic intensities. Catling (1977) studies an M (t)/G/1 system
using CTT and in Kimber and Daly (1986), CTT is used to analyze a G(t)/G(t)/1

queueing system. The PSA worsens as the maximum traffic intensity increases, which
impacts the quality of CTT, see Green and Kolesar (1991).

It is observed in the relevant literature (meeting the features introduced at the begin-
ning of this section) on the performance approximation methods for time-dependent
queueing systems with overload have limited coverage. The exact and accurate ap-
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proximation methods, such as analytical approaches and DTMs, require a long time to
execute. The fast approximation approaches require certain criteria to hold in order to
accurately perform. This leads to a reduction of the quality of the approximated solu-
tion when those criteria are not met, such as the Fluid approximation in systems with
underload and the SBC approaches for queueing systems where overloading starts at
the beginning. The literature lacks an accurate and fast approximation method that is
flexible enough to be used in different configurations. This paper aims at filling this gap
by introducing the approximation method that combines the SBC approach with the
modified PSFFA approach.

4.3. Performance approximation method

In this section, we describe the studied M (t)/M /1 queueing system and explain the
proposed method to approximate the performance measures. The planning horizon
is considered between [0,T ] and it is divided into a set of non-overlapping periods

i ∈ {1, · · · , I } with a length of d =
T

I
each, meaning that period i starts from time

ti−1 to time ti = ti−1 + d . The arrival rates are time-dependent and are assumed to
be piecewise constant. More precisely, during period i , the inter-arrival time is ex-
ponentially distributed with a known rate of λi ≥ 0 per time unit. The service time is
exponentially distributed (i.i.d) with a rate of µ > 0 per time unit. Items are served based
on a first-come-first-served discipline. If the server is busy, arrivals wait in the waiting

room with unlimited capacity. We refer to period i where
λi

µ
< 1 as “underloaded,” and

accordingly, period i as “overloaded” if
λt

µ
≥ 1.

Subsection 4.3.1 explains the SBC approach to approximate the M (t)/M /1 queues.
Subsection 4.3.2 presents the core ideas of the Fluid approximation and the PSFFA ap-
proaches. The modifications for the PSFFA approach are described in this subsection.
Finally, Subsection 4.3.3 comprehensively explains the proposed hybrid method that
combines the SBC and modified PSFFA approaches to approximate time-dependent
queues when overload situations occur during some periods.

4.3.1. The core ideas of the SBC approach

In the SBC approach, periods are further divided into smaller intervals j ∈ J of an
equal length of l and with constant arrival rates of λi (Stolletz, 2008a). We use the
average processing time (l = µ−1) for the interval length, as originally proposed by
Stolletz (2008a). The SBC approach consists of two steps: In Step 1, the expected
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utilization is approximated. In Step 2, the waiting-based performance measures are
calculated based on the approximated expected utilization:

Step 1: In each interval (j ), the SBC approach applies a stationary loss model, i.e.,
M /M /1/1, with an artificial arrival rate λ̃i ,j . This yields an artificial probability of block-
ing (PBL

i ,j ). A backlog rate (bi ,j ) is generated from (artificially) blocked jobs. These
artificially blocked jobs are carried over as additional arrivals in the subsequent interval
(i , j + 1) or the first interval of the next period (i + 1, 1) if j is the last interval of period
i (j = |J |).

The artificial arrival rate is calculated by summing the original arrival rate in period i

(λi ) and the backlogged rate from previous interval (Equation (4.1)).

λ̃i ,j = λi + bi ,j−1 ∀i , j , b1,0 = 0, bi>1,0 = bi−1,|J | (4.1)

Then, the blocking probability of an arriving item for an M /M /1/1 queue is approxi-
mated via Equation (4.2) (Gross et al., 2008).

PBL
i ,j =

λ̃i ,j

λ̃i ,j + µ
∀i , j (4.2)

Based on the blocking probability, the backlog rate (bi ,j ) of (artificially) blocked arrivals
in the loss model is approximated (Equation (4.3)). This value will be carried over as
an additional arrival rate into the subsequent interval.

bi ,j = λ̃i ,jP
BL
i ,j ∀i , j (4.3)

Finally, the expected utilization E [Ui ,j ] for a stationary loss model M /M /1/1 is approx-
imated through Equation (4.4).

E [Ui ,j ] =
λ̃i ,j (1− PBL

i ,j )

µ
∀i , j (4.4)

Step 2: A stationary waiting model (i.e., M /M /1/∞) is used in each interval to ap-
proximate the waiting-based performance measures. To obtain approximations of the
performance measures of interest, the modified arrival rates (λMAR

i ,j ) serve as input to
the stationary queueing model. λMAR

i ,j is set such that the approximated expected uti-
lization (E [Ui ,j ]) of Step 1 is reached (Equation 4.5).

λMAR
i ,j = E [Ui ,j ]µ ∀i , j (4.5)
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This modified arrival rate is used to approximate the expected work-in-process (E [Li ,j ])
and the expected waiting time (E [W q

i ,j ]) of a stationary M /M /1 queue via Equations
(4.6) and (4.7).

E [Li ,j ] =
λMAR
i ,j

(µ− λMAR
i ,j )

∀i , j (4.6)

E [W q
i ,j ] =

λMAR
i ,j

µ(µ− λMAR
i ,j )

∀i , j (4.7)

One of the advantages of the SBC approach is that it can be combined with any perfor-
mance evaluation approach for stationary queues in both steps. It also approximates
the performance measures very well for systems in underload, provided that the “right”
length for intervals is chosen (Stolletz and Lagershausen, 2013). Choosing a too short
interval length results in underestimation of the performance measures in transient
phases and choosing a too long value will result in overestimation.

4.3.2. The core ideas of the Fluid approximation and the PSFFA
approaches

The Fluid approximation and the PSFFA approaches replace discrete jobs with a con-
tinuum. Their core idea is based on “fluid dynamic flow equation,” which states that
according to the flow conservation principle, the rate of change equals the difference
between aggregate inflow and outflow in every point of time (Newell, 1971; Wang et al.,
1996).

Let t be a point of time in period i (i.e., ti−1 ≤ t < ti ). We define x (t) as the ensemble
expected number of items in the system at time t . Given two functions fin(t) and fout(t),
the ensemble average flow in and flow out of the system at time t , respectively, the fluid
flow equation can be shown by:

dx (t)

dt
= fin(t)− fout(t), (4.8)

where
dx (t)

dt
is the rate of change of the number of items in the system with respect to

time.

Given the fluid flow Equation (4.8), Newell formulated the deterministic Fluid approxi-
mation for a single server queue as follows (Newell, 1971):
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dE [Li(t)]

dt
=

λi − µ E [Li(t)] > 0

max
(
0, λi − µ

)
E [Li(t)] = 0

∀i , ti−1 ≤ t < ti , (4.9)

where
dE [Li(t)]

dt
is the rate of change of the number of items in the system with respect

to time in period i . It shows clearly that in underloaded periods, the rate of change
becomes negative. This results in only serving the delayed jobs in those periods. After
serving all of them, the expected number of items in the system becomes zero. The
differential Equation (4.9) needs to be solved numerically to approximate the expected
number of items at each instant of time.

The PSFFA approach combines the deterministic Fluid approximation with the steady-
state expected utilization formula to integrate random variation (Wang et al., 1996).
Concerning Equation (4.8), when the queueing system has infinite queue length ca-
pacity, the inflows are only shaped by arrivals with a rate of λi . The outflow function is
expressed through the approximated expected utilization at point time t (i.e., E [Ui(t)])
multiplied by the service rate µ. The general idea is to determine the values for E [Ui(t)]

at particular instants of time by a point-wise mapping from the current value of E [Li(t)]

into E [Ui(t)] using the steady state queue. Explicitly, the expected utilization is approx-
imated by the inverse of stationary queueing formulas such that the expected utilization
becomes a function of the expected number of jobs in the system. Hence, the PSFFA
approach models the fluid flow equation for an M (t)/M /1 queue as follows:

dE [Li(t)]

dt
= λi − µE [Ui(t)] = λi − µ

E [Li(t)]

E [Li(t)] + 1
∀i , ti−1 ≤ t < ti (4.10)

To approximate the expected number of jobs in the system at each point in time, Equa-
tion (4.10) has to be solved numerically.

Comparing Equations (4.9) and (4.10), we simply identify that the difference between
the fluid flow equations formulated by the Fluid approximation and the PSFFA approach
is the inclusion of the expected utilization function. More precisely, it can be expressed

by the function
E [Li(t)]

E [Li(t)] + ω
. The PSFFA approach uses the parameter ω = 1, and in

the Fluid approximation, ω = 0 is applied.

The PSFFA approach reaches the steady-state too rapidly. This leads to an overesti-
mation of peaks and underestimation of valleys for quickly varying input rates. Accord-
ingly, in overload situations, it fails to exactly approximate the expected utilization. The
approximated utilization is underestimated and it results in the overestimation in ap-
proximating the expected number of items in the system (see Equation (4.10)). On the
other hand, the Fluid approximation underestimates the approximated performance,
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because it does not capture the randomness. See Mandelbaum et al. (1998); Altman
et al. (2001); Jiménez and Koole (2004) for more detailed explanations.

We believe that different values of ω can result in better approximation in overload
situations. Therefore, we propose a modified PSFFA approach with different values of
ω to be used in overload periods.

4.3.3. The hybrid approximation method

In this subsection, we comprehensively explain the proposed hybrid approximation
method. Generally speaking, the hybrid approximation method combines the SBC ap-
proach with the modified PSFFA approach to approximate the performance measure
of the queues where overloading occurs. The SBC approach is used in underloaded
periods and the modified PSFFA approach is used to approximate the performance
measure when the period is overloaded. A mechanism for adjusting the SBC and the
modified approaches is designed when a transition from underload to overload (or the
other way around) happens.

The underloaded period i is further divided into non-overlapping intervals (j ∈ J ) with
equal sizes (l = µ−1). Equations from (4.1) to (4.4) are applied to approximate the
expected utilization in the j th interval of period i . The value of the modified arrival rate
(λMAR

i ,j ) is calculated by Equation (4.5). The proposed hybrid approximation method
uses the Equations (4.6) and (4.7) to approximate the expected number of items in the
system and the expected waiting time at the end of interval j in period i , respectively.

At the beginning of each period, three scenarios may happen. For period i = 1, the
initial amount of the backlog rate at the beginning of this period (b1,0) equals zero. If
period i > 1 and period i − 1 are both underloaded, these artificially blocked jobs are
carried over from the last interval of the previous period, i.e., bi ,0 = bi−1,|J |. Finally, if
i > 1 is an underloaded period and i − 1 is an overloaded period, an adjustment to
backlog rate is needed. The initial backlog rate (bi ,0) is modified such that the expected
number of items in the end of the previous period is resulted. Considering Equations
(4.1) to (4.4) for each j , one can find a closed-form solution for the expected number
of items in the system represented by artificial arrival rate and the service rate as:

λ̃i ,j = E [Li ,j ]µ ∀i , j (4.11)
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Therefore, the backlog rate which is carried over into the first interval of period i (i.e.,
j = 1) is calculated by:

bi ,0 = E [Li−1]µ− λi ∀i > 1|λi

µ
< 1&

λi−1

µ
≥ 1, (4.12)

where E [Li−1] is the expected number of items at the end of period i − 1 and is calcu-
lated by the modified PSFFA approach, which will be explained next.

Let t be a point of time in period i (i.e., ti−1 ≤ t < ti ). If period i is overloaded, then
the approximation method uses the modified PSFFA to approximate the performance
measures. The approximation method models the fluid flow equation as follows:

dE [Li(t)]

dt
= λi − µ

E [Li(t)]

E [Li(t)] + ω
∀i , ti−1 ≤ t < ti (4.13)

The Euler method is applied to solve the differential Equation (4.13). The Euler method
divides period i into very small time steps with the length of ∆t . The initial value to plug
in the Euler method is given as the expected number of items at the end of previous
period (i − 1) (i.e., E [Li−1]). More precisely, in the first interval

[
ti−1, ti−1 + ∆t

)
, the

expected number of items in the system at the end of the time interval is as follows:
E [Li(ti−1 +∆t)] = E [Li−1] + (λi − µ E [Li−1]

E [Li−1]+ω
)∆t . The amount of E [Li(ti−1 +∆t)] then

becomes the initial value for the next time step, i.e., [ti−1 + ∆t , ti−1 + 2∆t ], and then
E [Li(ti−1 + 2∆t)] = E [Li(ti−1 + ∆t)] + (λi − µ E [Li (ti−1+∆t)]

E [Li (ti−1+∆t)]+ω
)∆t . This procedure is

repeated for each time step (∆t) in period i .

For period i = 1, the initial value to plug in the Euler method is a small value of ϵ. If
there is a transition from an underloaded period to an overloaded one, the initial value
to use in the Euler method is the expected number of items calculated by the SBC
approach in the last interval of the previous period as E [Li−1,|J |].

To summarize, the pseudocode of the proposed hybrid approximation method is given
by Algorithm 3, see the source codes in Appendix D. First, the parameters of the algo-
rithm are initialized (line 3). The algorithm iterates over periods (line 4). If period i is
underloaded (line 5), the hybrid approximation method uses the SBC approach to ap-
proximate the expected work-in-process and the expected waiting time (lines 6 to 19).
If there is a transition from an overloaded period to an underloaded one, to (re-)start
the SBC approach, the backlog rate is derived from the expected number of items in
the previous items (line 7). If period i is overloaded (line 21), the modified PSFFA
approach is used by the proposed hybrid approximation method (lines 22 to 30). The
Euler method solves the differential Equation (4.13) (lines 25 to 29). If there is a transi-
tion from an underloaded period to an overloaded one, the expected number of items
in the last interval of the previous period is used as the initial value to plug in the Euler
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method to solve the differential Equation (4.13) (line 23). The outcome of the algorithm
is the approximated expected work-in-process and the approximated expected waiting
time at the end of each period. Additionally, all the notation used in this section are
collected in Table 4.1.

Algorithm 3 Pseudocode Overview of proposed hybrid approximation method
1: procedure HYBRID APPROXIMATION METHOD
2: Input: λi , µ, ω
3: Initialize b1,0, ϵ,∆t
4: for each period i do
5: if λi

µ
< 1 then

6: if from overloaded to underloaded period then
7: adjust bi ,0 ▷ Equation (4.12)
8: for each interval j do
9: λ̃i ,j = λi + bi ,j−1

10: procedure M /M /1/1(λ̃i ,j , µ) ▷ Step 1 of the SBC approach
11: return PBL

i ,j ,E [Ui ,j ]

12: bi ,j = PBL
i ,j λ̃i ,j

13: λMAR
i ,j = E [Ui ,j ]µ

14: procedure M /M /1/∞(λMAR
i ,j , µ) ▷ Step 2 of the SBC approach

15: return E [Li ,j ],E [W Q
i ,j ]

16: if λi

µ
≥ 1 then

17: if from underloaded to overloaded period then
18: adjust E [Li(ti−1)] ▷ E [Li(ti−1)] := E [Li−1,|J |]

19: t := ti−1

20: while t < ti do
21: E [Li(t +∆t)] = E [Li(t)] + (λi − µ E [Li (t)]

E [Li (t)]+ω
)∆t ▷ Euler method

22: t := t +∆t

23: return E [Li(t)]
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Table 4.1.: The summary of the notation used for the system description and proposed
hybrid approximation method

Notation Description

t (t ∈ [0,T ]) time
i (i ∈ {1, · · · , I }) the index of periods
j (j ∈ J = {1, · · · , ⌈µ⌉}) the index of intervals
d Period length
l Interval length (in the SBC approach)
λi Arrival rate in period i
µ Service rate
bi ,j Backlog rate for arrivals in period i interval j
PBL
i ,j Probability of items being backlogged in period i interval j

λ̃i ,j Artificial arrival rate in period i interval j
λMAR
i ,j Modified arrival rate in period i interval j

E [Ui ,j ] Expected utilization in period i interval j
E [Li ,j ] Expected number of items in period i interval j
E [W Q

i ,j ] Expected waiting time in period i interval j
E [Ui(t)] Expected utilization in period i at time t (ti−1 ≤ t < ti )
E [Li(t)] Expected number of items in period i at time t (ti−1 ≤ t < ti )
x (t) Ensemble expected number of items in the system in period i at time t (ti−1 ≤ t < ti )
ϵ Small pre-defined value to plug in the Euler approach
∆t Time step length in the Euler approach
ω Pre-defined parameter used in modified PSFFA approach
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4.4. Numerical study

The numerical studies are explained in this section. Subsection 4.4.1 studies the im-
pacts of parameter ω used in the proposed hybrid approximation method in M (t)/M /1

queues. Subsection 4.4.2 evaluates the quality of the proposed hybrid approxima-
tion method in comparison with simulation and three performance approximation ap-
proaches from the literature.

The proposed hybrid approximation method is coded in Java and all the experiments
are performed on an Intel core i5-6300U CPU.

4.4.1. The effects of parameter ω in time-dependent queues

In this subsection, we examine the performance of the proposed hybrid approximation
method for different values of parameter ω. In the modified PSFFA approach, ω plays
a crucial role. If ω = 0, it underestimates the expected performance measure and if it
equals one (i.e., ω = 1), overestimation happens, see Section 4.3.2. We compare the
performance of the proposed hybrid approximation method when ω ∈ {0.1, 0.3, 0.7}. In
addition to this, all the numerical studies to analyze the transient behavior of the pro-
posed hybrid approximation method and the effects of parameter ω on its performance
are presented in Appendix C.

To that end, instances with sinusoidal arrival rates are generated. Sinusoidal ar-
rival rates are commonly used in the literature of the performance approximation ap-
proaches for time-dependent queues, for example see Green et al. (1991); Eick et al.
(1993); Green and Kolesar (1998); Whitt (2014). One of the main features of queueing
systems with such arrival rates is their ongoing changes. The queueing system with
such arrival rates can alternate between underloaded and overloaded periods. We
examine two sinusoidal arrival functions for an M (t)/M /1 queueing system with the
service rate of one per time unit. The first function is λt = sin (0.2(t + 20)) + 1.1. The
system starts with underloaded periods and transfers to overload after several periods.
The second arrival function is λt = sin (0.2(t + 5)) + 1.1, in which the system starts
in overload and it later shifts to underloaded periods. They both are transferred to a
piecewise arrival rate for one time unit by taking the value of the sinus equations at the
beginning of each interval. Figures 4.1 and 4.2 show the arrival rates and the service
rate of these two instances.

We use another instance, where an M (t)/M /1 queueing system is modeled with 15

periods (i ∈ {1, · · · , 15}) with a length of one time unit and the average service time
of µ−1 = 3 time unit. The arrival rates are adjusted such that the system has a traffic
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Figure 4.1.: The arrival rate and the service rate of instance with sinusoidal arrival rate
with function λt = sin (0.2(t + 20)) + 1.1

Figure 4.2.: The arrival rate and the service rate of instance with sinusoidal arrival rate
with function λt = sin (0.2(t + 5)) + 1.1
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intensity of 0.5 in the first five periods. The peak occurs in the sixth period with a traffic
intensity of 1.2 and lasts until the end of period 10. Finally, the system comes back to
underload with the traffic intensity of 0.8. The arrival rates and the service rate of this
instance are depicted in Figure 4.3.

Simulation is applied as a benchmark. Figures 4.4 to 4.6 depict the value of the ex-
cepted work-in-process from the proposed hybrid approximation method with different
values of ω.

The proposed hybrid approximation method with ω = 0.3 works very well when the
system starts from an underloaded period. In Figure 4.4, when the system transfers
into the overloaded period, the hybrid approximation method with ω = 0.7 always over-
estimates the expected value of the work-in-process. ω = 0.1 always results in an
underestimation of the proposed hybrid approximation method for the expected work-
in-process.

In Figure 4.5, the hybrid approximation method with ω = 0.1 is better than others in
the first half of the planning horizon. The hybrid approximation method with ω = 0.7

is the worst in comparison with others. The proposed hybrid approximation method
with ω = 0.3 overestimates the performance measure up to period 30. However, after
the transition into an underloaded period, the approximation errors of the proposed
hybrid approximation method reduce and it outperforms others. In Figure 4.6, ω = 0.3

results the best in comparison with others. The high value of the expected number of
jobs in the system when the transition to an overloaded period happens causes the
differences to disappear after a small amount of time.

In summary, the proposed hybrid approximation method performs very well, given that
the “right” value of ω is used. Based on the results presented in this subsection and
in Appendix C, the value is recommended to be ω = 0.3, because it increases the
accuracy of the proposed hybrid approximation method.

4.4.2. Evaluation of the approximation method

As mentioned in previous sections, our proposed hybrid approximation method com-
bines two approximation methods, namely, the SBC approach and the modified PSFFA
approach. Each of these approximation methods performs well in different situations.
In this subsection, we benchmark our approach against the SBC and the PSFFA ap-
proaches in isolation. The Fluid approximation is also selected because of its high
performance when the system is in overload. Simulation results act as benchmarks for
comparison. The first instance with the Sinusoidal arrival rates introduced in the previ-
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Figure 4.3.: The arrival rate and the service rate of instance with one peak

Figure 4.4.: The effects of ω on the quality of the approximation method for instance
with sinusoidal arrival rate with function λt = sin (0.2(t + 20)) + 1.1

Figure 4.5.: The effects of ω on the quality of the approximation method for instance
with sinusoidal arrival rate with function λt = sin (0.2(t + 5)) + 1.1
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Figure 4.6.: The effects of ω on the quality of the approximation method for instance
with one peak

ous subsection (Figure 4.1) is chosen. Figures 4.7 and 4.8 illustrate the results for the
expected waiting time and the expected number of items in the system, respectively.

The performance of the approximation method is well in comparison with simulation. It
also outperforms the SBC, the PSFFA, and the Fluid approximation approaches in iso-
lation. The SBC and the PSFFA approaches overestimate the performance measure
of the overloaded periods. This causes further approximation errors to occur when the
system transfers back to the underloaded periods. The rationale for that is in the SBC
approach, the artificial arrival rates grow very fast in overloaded periods and it causes
overestimation. In the PSFFA approach, the expected utilization is not approximated
well when parameter ω equals one, also see 4.4.1 and Appendix C. The Fluid approx-
imation method underestimates the performance measure when the system transfers
into an underloaded period. In general, the Fluid approximation acts as a lower bound
for the performance measure, also see Jiménez and Koole (2004). Further investiga-
tions are depicted in Figures 4.9 and 4.10. We show the absolute value of the deviation
from simulation and all approximation methods in each period by a box-plot diagram.
The proposed hybrid approximation method outperforms others.

In the next experiments, we analyze systems introduced in the literature for time-
dependent queues with overload situations. We generate the instances by keeping
the shape of the arrival rates the same as they are introduced, and we adjust the ser-
vice rates.

The first instance is derived from the study of Jiménez and Koole (2004). They analyze
a customer service system (call center) having exponential service time and a time-
dependent exponential inter-arrival time. In the first 30 minutes, the arrival rate is 11.03

per minute. It becomes 7.43 per minute for the second and 5.4 per minute for the last
30 minutes. The system has the traffic intensity of ρ = 1.37 for the first, ρ = 0.92 for the
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Figure 4.7.: The comparison of the proposed hybrid approximation method with simu-
lation, SBC, PSFFA, and Fluid for the expected waiting time

Figure 4.8.: The comparison of the proposed hybrid approximation method with sim-
ulation, SBC, PSFFA, and Fluid for the expected number of items in the
system

77



Figure 4.9.: The box-plot of the absolute values of deviation from simulation for the
expected waiting time
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Figure 4.10.: The box-plot of the absolute values of deviation from simulation for the
expected number of items
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second, and ρ = 0.67 for the last 30 minutes. The system starts in an overload situation
and it transfers to the underloaded periods after 30 minutes. We create an instance
out of it. The instance consists of a single server queue with exponentially distributed
service time with a rate of eight per minute (µ = 8 1

min
) and the same arrival rates.

Therefore, the traffic intensity of the system is the same as the introduced instance.
The rate of arrivals as well as service are shown in Figure 4.11.

The results of the approximation method, simulation, the SBC, the PSFFA, and the
Fluid approaches for the expected waiting time and the expected work-in-process are
illustrated in Figures 4.12 and 4.13 for modified instances from Jiménez and Koole
(2004).

The second instance is derived from Stolletz (2008a). We create an instance as an
M (t)/M /1 queue such that the shape of the arrival rates is kept the same as it is in-
troduced in Stolletz (2008a). The service rate is chosen to be five ( i.e., µ = 5 1

min
).

It results in overload situations occurring in the system. The system starts from the
underloaded period. In the eighth period (i = 8), there is a “jump” from an under-
loaded period to an overloaded one. The system is overloaded at several periods with
a maximum traffic intensity of 1.64. From periods i = 25 to 28, the load of the system
is 0.95; ultimately, it reduces more. The shape of the arrival rates, service rate, and the
evaluated performance of the system by the proposed hybrid approximation method,
simulation, the SBC, the PSFFA, and the Fluid approaches are depicted in Figures
4.14 to 4.16.

The proposed hybrid approximation method performs very well in comparison with sim-
ulation. It also outperforms the SBC, the PSFFA, and the Fluid approximation ap-
proaches. It is demonstrated that in all of the instances when there is a shift from an
overloaded period to an underloaded one, the proposed hybrid approximation method
overestimates it. However, this approximation error can be neglected, as they are low
in value.

In summary, the quality of the proposed hybrid approximation method for the perfor-
mance evaluation of time-dependent queues is high. It can be used as a substitute for
simulation since it is accurate and it is fast because it is the combination of the SBC
approach, PSFFA, and a calibration procedure.
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Figure 4.11.: The rate of arrivals and the service derived from Jiménez and Koole
(2004)

Figure 4.12.: The comparison of the proposed hybrid approximation method with sim-
ulation, SBC, PSFFA, and Fluid over modified benchmark from Jiménez
and Koole (2004) for expected waiting time
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Figure 4.13.: The comparison of the proposed hybrid approximation method with sim-
ulation, SBC, PSFFA, and Fluid over modified benchmark from Jiménez
and Koole (2004) for the expected number of items in the system

Figure 4.14.: The rate of arrivals and the service derived from Stolletz (2008a)
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Figure 4.15.: The comparison of the proposed hybrid approximation method with sim-
ulation, SBC, PSFFA, and Fluid over modified benchmark from Stolletz
(2008a) for expected waiting time

Figure 4.16.: The comparison of the proposed hybrid approximation method with sim-
ulation, SBC, PSFFA, and Fluid over modified benchmark from Stolletz
(2008a) for the expected number of items in the system
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4.5. Conclusion and further research

Many real-world systems can be represented by time-dependent queues. In such sys-
tems, the rate of arrivals may surpass the service capacity for some time periods,
which causes the system to be in overload. In this paper, we analyze a single server
time-dependent queue with exponentially distributed inter-arrival and service time. The
hybrid approximation method combines the SBC approach with the PSFFA approach to
approximate the performance measure of the queues where overloading occurs. Some
modifications are made to the PSFFA approach within the proposed hybrid method.
The SBC approach is used in underloaded periods and the modified PSFFA approach
is used to approximate the performance measure when the period is overloaded. A
mechanism for adjusting the parameters of the SBC and the modified approaches is
designed when a transition from underload to overload (or the other way around) hap-
pens.

The effects of the proposed hybrid approximation method’s parameters are numerically
examined. Numerical experiments show that the quality of the approximation method
in comparison with simulation is very high. In addition, it outperforms the SBC ap-
proach, the PSFFA, and the Fluid approximation approaches in isolation for different
time-dependent queueing instances.

We believe the proposed approximation method is flexible enough to be adjusted for the
evaluation of different time-dependent queues, specifically for those queueing systems
where the SBC approach and the Fluid approximation are employed successfully. For
example, considering the time-dependent multiple servers cannot dramatically change
the proposed algorithm. The only measure to perform is to modify the SBC- and Fluid
approximation-related equations from a single server to multiple servers. Likewise,
queueing systems with general distributions for service and inter-arrival times can eas-
ily be approximated by the proposed approximation method, only if the performance
evaluation approaches related to general distribution are plugged into the SBC ap-
proach, and the expected utilization function of the modified PSFFA has changed ac-
cordingly. These ideas are suitable to study more in the future. In addition, applying
the presented idea to the other queueing systems such as queueing systems with het-
erogeneous arrivals, those with a retrial, those with limited waiting room capacity, and
those with batch arrivals is left for future research.

The proposed hybrid approximation method also can be used for decision support
since it is fast and accurate. It can be integrated into optimization approaches, where
a solution is evaluated. In addition, in simulation-optimization approaches, simulation
can be substituted for the proposed hybrid approximation method. Further research
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has to be conducted on applying different period length adjustments in M (t)/M /1 to
improve the quality of the approximation method, specifically when it transfers from an
overloaded system to an underloaded one.

85



5. Conclusions and outlooks

5.1. Conclusion

This dissertation proposes several algorithmic methods to reinforce operations man-
agement decision-making. It includes three papers that design and analyze analytical
methods to address practical applications in operations management.

In the first paper, we investigate the picker routing problem and the interrelated product-
location problem as they arise in warehouses with mobile racks designed for space ef-
ficiency. We present dynamic programming, beam search algorithm, and set-covering-
based heuristics to solve the picker routing problem. We evaluate two solution ap-
proaches and compare the product-location problem’s shared and fixed storage space
allocation performance. Our computational tests reveal that the proposed heuristics
for the picker routing problem perform pretty well, although there is a distinct tradeoff
regarding solution time and quality. The dynamic programming scheme cannot rea-
sonably solve larger instances, whereas beam search and the set-covering heuristic
have proven quite adept. Beam search, however, while delivering good results, may
take a long time to reach that solution in many instances. The set-covering heuristic
is very fast but exhibits non-negligible gaps regarding the best-known solutions. The
managerial insights obtained are as follows: 1- Chaotic storage, i.e., assigning random
locations to SKUs, delivers suboptimal results and leads to unnecessarily long pick
times. With the proposed priority rule, significantly better results are achievable. 2-
Fixed storage, i.e., assigning a single storage location to each SKU, is not advisable
in a mobile rack warehouse. It leads to a much greater number of rack movements,
which should be avoided due to the low movement speed. 3- The priority rule suf-
fices to know the distribution of future SKU demands. Significant savings compared to
chaotic storage are possible.

The second paper analyzes the outpatient scheduling problem with priority rules. The
priority rules control the access of patients waiting to be served. We design a sim-
ulation optimization approach with a tabu search to study the effects of the priority
rules on the schedule of outpatients. The proposed algorithm uses a neighborhood
reduction technique in which low-fidelity simulation is applied to speed up searching
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for the optimal solution. Our computational tests reveal the effectiveness and efficiency
of the proposed algorithm to solve the problems by comparing the solutions obtained
from a full enumeration procedure. The numerical results indicate that when decision-
makers attempt to optimize the timely schedules of outpatients, they must consider
what priority rules the system uses. Specifically, when the system experiences a high
load, the optimal schedule of outpatients differs depending on the priority rule used.
Furthermore, the optimal schedule is more likely to differ for the higher load triggered
by inpatients. Additionally, the results demonstrate that if the threshold priority rule is
used, the outpatients are scheduled near the end of the planning horizon, resulting in
lower outpatient waiting costs, even while incurring further overtime costs.

The last paper considers a time-dependent single server queueing system in which the
rate of arrivals surpasses the service capacity for some periods, resulting in the system
being overloaded. The hybrid approximation method combines the SBC approach
with the modified PSFFA approach to approximate the performance measure of the
queues where overloading occurs. Numerical experiments show that the quality of
the approximation method in comparison with simulation is very high. It outperforms
the SBC approach, the PSFFA, and the Fluid approximation approaches in isolation
for different time-dependent queueing instances. The proposed hybrid approximation
method can be used for decision support since it is fast and accurate. It also can be
integrated into optimization approaches, where a solution is evaluated.

5.2. Further research directions

In this subsection, we summarize the suggestions for further research in each chapter
and, as a whole, give several new directions for research.

In Chapter 2, for the proposed high-density storage setting, we assume the aisles are
approachable only from one side. However, one can analyze other settings where the
aisles are approachable from both sides, and thus different tour strategies (starting
from and ending at a central depot), such as S-shape and midpoint, can be applied.
From a practical standpoint, it is probably desirable to research the usage of mobile
racks in refrigerated warehouses. It is interesting to investigate perishable items that
require just-in-time operations. It can be embodied in future models by adding con-
straints (such as including the due date for storing goods) and objective functions (such
as including penalties for deviation from the due date). In addition, scheduling the re-
plenishment and retrievals activities is another direction of research in such a storage
setting. Finally, a dynamic order picking setting in warehouses with mobile racks, where
the information about the incoming orders is unknown at the beginning of the planning
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period, is another direction for research. As for the analytical approaches, an interest-
ing topic for future research is incorporating neighborhood reduction techniques in the
solution approaches. We already showed how to benefit from the inclusion of the neigh-
borhood reduction techniques in a solution approach in Chapter 3. There is still room
for investigating the exact solution approaches for the order picking in high-density stor-
age with mobile racks. Considering the product-location problem, one can incorporate
accurate statistical approaches and solve the problem precisely because the order sets
are, in reality, stochastic. Machine learning models embodied in optimization tools and
stochastic optimization approaches can be regarded as a good option in such settings.

In Chapter 3, considering other assumptions such as patient abandonment, patient’s
unpunctuality, and patient’s preferences are exciting topics to further research. In re-
ality, the arrival of emergency patients and inpatients are time-dependent. In addition,
the service time distribution differs for patient types. Incorporating these practical as-
sumptions is one direction for future research. In some hospitals, there is tension
between serving inpatients and outpatients. Simultaneously scheduling inpatients and
outpatients to resolve this tension, apart from prioritizing them, would be a potential
research outlook. From the method standpoint, as appointment scheduling can be rep-
resented by time-dependent queueing systems, integrating the approximation methods
for time-dependent queues into solution approaches would be an interesting topic to in-
vestigate. Machine learning models can be embodied to design more practical solution
approaches. Various stochastic optimization techniques (such as 1- variance reduction
techniques and 2- parallel computing techniques for optimization and evaluation) can
be applied and compared to obtain analytical insights.

Finally, in Chapter 4, one can investigate and modify the proposed approximation
method for other queueing systems such as queues with time-dependent number
of servers, queues with abandonment and retrials, queues with generally-distributed
rates, and queues with limited capacity. In addition, as explained above, the proposed
approximation method for time-dependent queueing systems can be integrated into
solution methods where the system experience overloading periods, such as the so-
lution method to solve the proposed appointment scheduling. Analytically interpreting
the parameter ω in the proposed approximation method can be another direction for
research.

To summarize, we believe that our dissertation sheds light on the importance of algo-
rithmic approaches for supporting decision-making in operations management. With
the aid of analytical methods used to analyze practical applications in our disserta-
tion, we have made some headway toward a better understanding of routing decisions
for warehouses with mobile racks, timing decisions for hospitals, and approximation of
time-dependent queues with overloading.
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A. Mathematical model (Chapter 2)

For the MIP model, let the set of all locations be denoted by V. Furthermore, B is
the set of orders and S is the set of all SKUs. Each shelf can be accessed from two
sides, depending on which aisle is open, i.e., every location can be reached by the
picker either from the left aisle or the right aisle. Let set K = {left, right} indicate the
possible sides. In the following, the indices of the sets, the parameters, and variables
are summarized.

Indices:
i , j ∈ V Locations with i = 1 as the depot
b ∈ B Orders
s ∈ S SKUs
k , t ∈ K = {left, right} Accessible sides

Parameters:
t(i ,k)(j ,t) The distance from location i side k to location j side t

pb Number of SKUs in order b
qb,s 1 if order b includes SKU s; 0, otherwise

Variables:
x b
(i ,k)(j ,t) 1 if order b is picked via the path from location i side k to location j side t

αb,s,i 1 if SKU s is in location i for order b
ub,i Auxiliary variables for subtour elimination

The optimization model is defined as follows.

Min
∑
b∈B

∑
i∈V

∑
j∈V:
j ̸=i

∑
k∈K

∑
t∈K

x b
(i ,k)(j ,t)t(i ,k)(j ,t) (A.1)

s.t.∑
k∈K

∑
j∈V:
j ̸=i

∑
t∈K

x b
(i ,k)(j ,t) =

∑
s∈S

αb,s,i ∀i ∈ V , b ∈ B, i > 1

(A.2)∑
i∈V:
j ̸=i

∑
k∈K

∑
t∈K

x b
(i ,k)(j ,t) =

∑
s∈S

αb,s,j ∀j ∈ V , b ∈ B, j > 1

(A.3)
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∑
i∈V:
j ̸=i

∑
k∈K

x b
(i ,k)(j ,t) =

∑
i∈V:
j ̸=i

∑
k∈K

x b
(j ,t)(i ,k) ∀j ∈ V , b ∈ B, t ∈ K

(A.4)∑
i∈V:
i>1

∑
k∈K

∑
t∈K

x b
(i ,k)(1,t) = 1 b ∈ B

(A.5)∑
k∈K

∑
j∈V:
j>1

∑
t∈K

x b
(1,k)(j ,t) = 1 b ∈ B

(A.6)

ub,i − ub,j +

(
pb
∑
k∈K

∑
t∈K

x b
(i ,k)(j ,t)

)
≤ pb − 1 ∀i , j ∈ V , b ∈ B, i > 1, j > 1, i ̸= j

(A.7)

0 ≤ ub,i ≤ pb − 1 ∀i ∈ V , b ∈ B
(A.8)∑

s∈S

αb,s,i ≤ 1 ∀i ∈ V , b ∈ B, i > 1

(A.9)

αb,s,i + αb′,s′,i ≤ 1 ∀b, b ′ ∈ B, s , s ′ ∈ S, i ∈ V , i > 1, s ̸= s ′, b ̸= b ′

(A.10)∑
i∈V

αb,s,i = qb,s ∀b ∈ B, s ∈ S

(A.11)

x b
(i ,k)(j ,t) ∈ {0, 1} ∀i , j ∈ V , k , t ∈ K, i ̸= j

(A.12)

αb,s,i ∈ {0, 1} ∀i ∈ V , s ∈ S, b ∈ B
(A.13)

Objective function (A.1) minimizes the total time for picking orders. Note that, to con-
struct contiguous tours, we must keep track of whether a given location is accessed
from the left or the right aisle; hence the need to sum over k ∈ K = {left, right}.
However, this is immaterial for the distances. Our assumption is that aisles are suf-
ficiently narrow that the picker can pick from either side without traversing the aisle.
Consequently, the distance from the right side of some shelf to the left side of the shelf
opposite it in the same aisle can be set to 0. Also note that the distance matrix ttt con-
tains the rack movement time when the picker has to switch aisles. Constraints (A.2)
and (A.3) ensure that if a SKU s is part of order set b and actually at a given location
i (i.e., αb,s,i = 1), the location is visited. Constraint (A.4) enforces that if location j is
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visited from side t , it has to be exited from the same side. Constraints (A.5) and (A.6)
show that all tours start from the depot and end at the depot. Constraints (A.7) and
(A.8) are subtour elimination constraints for each order in the order set. Constraints
(A.9), (A.10), and (A.11) ensure that each shelf location contains at most one SKU and
that one specific SKU location is assigned to an order if that order actually contains
the SKU (i.e., qb,s = 1). Note that this does not preclude multiple copies of the same
SKU to be placed in different locations (i.e., shared storage). Constraints (A.11) only
enforce that one specific location must be chosen for each order b. Different orders
may take the same SKU from different locations, however. The remaining constraints
define the domain of the variables.
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B. Simulation-optimization tabu
search (Chapter 3)

B.1. Multi-fidelity simulations in the neighborhood

reduction method

Xu et al. (2014) propose a framework called “ordinal transformation and optimal sam-
pling” within a simulation-optimization algorithm. They use a low-fidelity model to rank
all the solutions into several groups. Then, a so-called “optimal sampling” procedure
is applied to choose a certain number of candidate solutions from each group for con-
ducting high-fidelity simulation on them. The best-obtained result from high-fidelity
simulation is reported as the (near) optimal solution for the studied problem.

In our proposed neighborhood reduction method, given N (S ), the list of all unique
neighboring solutions of an incumbent solution S , a low-fidelity simulation run is con-
ducted to evaluate the cost of all neighboring solutions based on objective function
3.1, Section 3.3. Let j ∈ J = {1, · · · , |N (S )|} be the index of all neighboring solutions
ranked after the low-fidelity simulation run. The solution deemed to be the best receives
a rank of one (j = 1), and the worst receives the rank of |N (S )| (j = |N (S )|). The
sorted N (S ) is partitioned into a given number of |K | groups (k ∈ K = {1, · · · , |K |}) of

size m = ⌈|N (S )|
|K |

⌉, except the last group with the size of m or fewer than m. Let Z k

be the mean value and σ2
k the variance of the objective values of solutions (Z ′(Xj )) in

group k calculated by Equations B.1 to B.4. The group distance in mean value between
two groups (δk1,k2) is calculated by Equation B.5.

Z k =
1

m

km∑
j=(k−1)m+1

Z ′(Xj ) k ̸= |K | ∈ K (B.1)

Z k =
1

|N (S )| − (m − 1)|K |

|N (S)|∑
j=(k−1)m+1

Z ′(Xj ) k = |K | (B.2)
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σ2
k =

1

m − 1

km∑
j=(k−1)m+1

(
Z ′(Xj )− Z k

)2
k ̸= |K | ∈ K (B.3)

σ2
k =

1

|N (S )| − (m − 1)|K | − 1

|N (S)|∑
j=(k−1)m+1

(
Z ′(Xj )− Z k

)2
k = |K | (B.4)

δk1,k2 =
∣∣∣Z k1 − Z k2

∣∣∣ k1, k2 ∈ K (B.5)

Xu et al. (2014) recommend avoiding selecting solutions only from the best group, the
one with the index of k = 1 which contains lower ranked solutions. The rationale behind
this is the unknown and potentially significant errors in low-fidelity models. In addition,
the optimal solution (and for our case, the best non-tabu neighboring solution) might
have a higher rank or might be in a non-top group. Therefore, they use a selecting pro-
cedure called “optimal sampling” to choose the candidate solutions from each group
for conducting high-fidelity simulation on them. We modify their optimal sampling pro-
cedure and proposed an iterative algorithm depicted by Algorithm 4 to calculate the
number of top solutions from each group.

Algorithm 4 Pseudocode Overview for modified selecting procedure
1: procedure MODIFIED SELECTING PROCEDURE
2: B ← 0
3: Bpast ← 0
4: Initialize N|K |
5: Calculate Nk |(k ∈ K&k ̸= 1, |K |) based on N|K |
6: Calculate N1

7: Calculate B
8: if B < θ then
9: update Bpast and N past

k

10: Increase N|K | and go to 3
11: else
12: if |θ − Bpast | ≤ |θ − B | then
13: create Nr(S ) based on ⌈N past

k ⌉
14: else
15: create Nr(S ) based on ⌈Nk⌉
16: return Nr(S )

The goal of the algorithm is to select θ neighboring solutions from N (S ). Let B and
Bpast be the total number of solutions chosen in the current iteration and the previous
iteration, respectively. They are initialized on lines 2 and 3. Also, let Nk and N past

k be
the number of solutions chosen from each group k ∈ K , in the current and previous
iteration. To calculate Nk , first, we set N|K | = 1 (line 4). Then, at line 5, the number of
solutions from each group, except for the best group, is calculated by Equation B.6. In
Equation B.6, the larger the group distance between the best group and group k , the
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smaller the number of high-fidelity evaluations allocated to group k . It is because such
a group is unlikely to contain better solutions. In addition, if the group variance is high,
that group receives more high-fidelity evaluations because there is more uncertainty
about the objective value of the solution in this group.

On line 6, the number of solutions from the best group (k = 1) is calculated by Equation
B.7. Subsequently, at line 7, the total number of solutions picked is calculated using
Equation B.8. If this number is less than the aimed number of θ, then the algorithm
increases the initial number of solutions of the last group (N|K |) and does the whole
steps for calculation of Nk again. However, it memorizes the currently obtained results
and updates the values of Bpast and N past

k (line 9). If the total number of solutions
is higher than θ, the algorithm stops. Then, the algorithm reports the values of Nk if
|θ − B | < |θ − Bpast |; otherwise, the values of N past

k are reported (lines 12-15).

Nk =

⌈
N|K | ·

(δ1,|K |/σ|K |

δ1,k/σk

)2⌉
k ̸= 1 &|K | ∈ K (B.6)

N1 =

⌈
σ1

√√√√ |K |∑
k=2

N 2
k

σ2
k

⌉
(B.7)

B =

|K |∑
k=1

Nk (B.8)

B.2. Performance of the algorithm

B.2.1. Value of moves

In this subsection, the value of moves, as an improvement part of the algorithm, is
studied. In Section 3.4.1, two moves, namely right-shift and left-shift are introduced to
create the proposed composed neighborhood structure. In the literature related to the
tabu search algorithm, when using the similar structure to represent the solution, see
Section 3.4.1, another move called “exchange” can be used, in which the amount of
X (t) and X (T − t) are swapped, see Cordeau et al. (2001).

We apply seven different combinations of right-shift, left-shift, and exchange moves
in the proposed algorithm and compare their performance with each other for small
instances from 3.5.2. In Table B.1, columns containing “E” show that the exchange
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move is included in the set of moves. Columns “L” and “R” show right-shift and left-shift
are included in the move set, respectively.

As shown in Table B.1, when these two moves are used together, the algorithm can
find all the BKSs. It occurs even when exchange move is included in the set of moves
with them. Additionally, when we use only right-shift together with left-shift, the CPU
time decreases in comparison with when exchange move is included, for all instances
except two. Apart from that, Table B.1 shows that for some instances, if right-shift and
left-shift are not included in the move set together, the algorithm gets stuck in a local
optima even with larger CPU time. To sum up, the importance of using moves right-shift
and left-shift together is vivid.

To more investigate the effects of the exchange move specifically, we test only two
sets of moves, namely right-shift together with left-shift (R-L) and all of them together
(R-L-E), for large instances. It should be noted that we investigated the effects of
other combinations on solving the large instances in the pre-numerical studies and we
observed the similar results and conclusions which are explained for Table B.1. Table
B.2 presents the obtained results.

We find that using only right-shift and left-shift moves together can result in finding
the best-known solution for all cases but one. In instance with N = 10, T = 20, and
α = P1, the relative gap with the BKS is 0.01%. On the other hand, while using all moves
together, still the algorithm performs very well and can find the BKS for all instances,
except for only one. The relative gap to the BKS for instance with N = 20, T = 20,
and α = P3(1), is 0.03%. It also shows that using all of the moves together is more
time-costly than when only right-shift and left-shift moves are used.

Considering all tables together, we can conclude that using the exchange move is not
beneficial for all cases but one. Even, in some instances, using the exchange move
misleads the search procedure to a local optima with low quality. This is because the
number of different new neighboring solutions from the incumbent solution while using
exchange move is less than that of right-shift as well as left-shift moves and it causes
less intensifying the search.

It should be noted that there is no direct link between the number of moves and the
quality of the final obtained solution, however, for our specific studied appointment
scheduling problem, the importance of right-shift and left-shift moves together is clear.
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Table B.2.: The comparison of the effects of the moves in the algorithm’s performance-
large instances- only for sets {Right-shift, left-shift, exchange} and {Right-
shift, left-shift}

Pri. N T BKS R-L R-L-E

Gap(%) CPU (s) Gap(%) CPU (s)

P1

10 10 2734.95 0.00 262.4 0.00 251.8
15 10 5309.48 0.00 631.4 0.00 833.1
20 10 8231.87 0.00 1337.3 0.00 1120.1
10 15 1971.69 0.00 473.8 0.00 659.5
15 15 4335.63 0.00 968.7 0.00 1680.7
20 15 7068.09 0.00 2622.7 0.00 2477.4
10 20 1421.58 0.01 416.4 0.00 542.2
15 20 3487.02 0.00 1836.5 0.00 1611.3
20 20 6192.29 0.00 3500.7 0.00 4289.2

Ave. 0.00 1338.9 0.00 1496.1

P2

10 10 2752.13 0.00 222.9 0.00 429.1
15 10 5346.05 0.00 725.9 0.00 727.4
20 10 8296.22 0.00 1488.1 0.00 1375.6
10 15 1987.65 0.00 504.7 0.00 448.6
15 15 4380.08 0.00 929.0 0.00 1441.6
20 15 7153.33 0.00 2366.1 0.00 2720.5
10 20 1435.24 0.00 634.1 0.00 882.6
15 20 3534.01 0.00 2095.3 0.00 2313.6
20 20 6283.27 0.00 3533.3 0.00 4447.5

Ave. 0.00 1388.8 0.00 1643.0

P3(1)

10 10 2773.73 0.00 206.2 0.00 281.5
15 10 5375.40 0.00 566.8 0.00 908.0
20 10 8326.95 0.00 1433.2 0.00 1156.8
10 15 2016.50 0.00 529.2 0.00 426.1
15 15 4419.08 0.00 1439.6 0.00 1344.7
20 15 7207.70 0.00 2991.7 0.00 2801.3
10 20 1467.43 0.00 603.2 0.00 694.3
15 20 3585.28 0.00 1685.6 0.00 2532.6
20 20 6348.95 0.00 3622.1 0.03 4080.4

Ave. 0.00 1453.1 0.00 1580.6
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C. Effects of the parameters of the
approximation method: Effects of
ω (Chapter 4)

In the underloaded periods, the parameters related to SBC for different queues are
well-studied in the literature, for example see Stolletz (2008a,b); Stolletz and Lager-
shausen (2013). For overloaded periods and for when there is a transition from an
overloaded period to an underloaded period, we analyze the effects of the parame-
ters of the proposed hybrid approximation method on the quality of the approximated
performance measure in this Section.

In the proposed hybrid approximation method for overloaded periods, the approximated
expected utilization is multiplied by the service rate to calculate the amount of flow out
in the fluid flow formula, see Section 4.3 Equation (4.8). In the PSFFA approach, for an
M (t)/M /1 queue, the value of the ω is one. However, the pretests show that ω = 1 is
not a proper choice when the system is in overload situation. In this subsection, we an-
alyze parameter ω for different traffic intensity values equal and larger than one on the
performance of the proposed hybrid approximation method. We increase the value of
parameter ω step by step and compare the performance of the approximation method
with that of simulation for the expected work-in-process (E [L]), while the queueing sys-
tem starts empty. The period length (d ) is selected to be one time unit and the service
rate is µ = 1 per time unit. Figures C.1 to C.6 show the transient behavior of the pro-
posed hybrid approximation method in overloaded situations. The absolute value of
the relative gaps between E [L] from the proposed hybrid approximation method and
that from the simulation are also depicted.

When the load of the system is one (ρ = 1), ω = 0.7 outperforms other values of
ω. For ρ = 3.5, on the other hand, a range of values of ω from 0.1 to 0.6 makes the
approximation method perform well. We can observe that in the high traffic intensities,
the larger range of values of ω results well in terms of the absolute value of the relative
gap. The reason is in high loads, the queues form faster and when the expected
number of jobs in the system is very high, the value of the approximated expected
utilization in Equation (4.13) for an arbitrary t becomes very close to each other for
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Figure C.1.: The effects of ω on the quality of the approximation method in overloaded
systems with ρ = 1 and µ = 1

Figure C.2.: The effects of ω on the quality of the approximation method in overloaded
systems with ρ = 1.5 and µ = 1

Figure C.3.: The effects of ω on the quality of the approximation method in overloaded
systems with ρ = 2 and µ = 1
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Figure C.4.: The effects of ω on the quality of the approximation method in overloaded
systems with ρ = 2.5 and µ = 1

Figure C.5.: The effects of ω on the quality of the approximation method in overloaded
systems with ρ = 3 and µ = 1

Figure C.6.: The effects of ω on the quality of the approximation method in overloaded
systems with ρ = 3.5 and µ = 1
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more values of ω, and then the approximated E [L] by the proposed method is near the
approximated E [L] by simulation.

When the values of ω are smaller than one, the performance of the approximation
method for overloaded periods with a high value of ρ is well. If the system is critically
loaded and starts empty, the value of ω should be 0.7. In this experiment, a range of
values from ω = 0.3 to ω = 0.5 outperform other values of ω when ρ is larger than one.
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D. Java codes of the hybrid
approximation method (Chapter 4)

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Approach;

import Mannheim.Instance.Instance;

import Mannheim.core.Solution;

/**

*

* @author Amir

*/

abstract public class Approach

{

public Instance instance;

public Solution solution;

public double[] length_period_app;

public void setInstance(Instance instance)

{

this.instance = instance;

}

public Instance getInstance()

{

return this.instance;

}

public void setSolution(Solution solution)

{

this.solution = solution;

}

public Solution getsolution()

{

return this.solution;

}

abstract public void run();

}
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/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Approach;

import Mannheim.Queue.MMc_over;

/**

*

* @author Amir

*/

public class Fluid_M_M_c extends Approach

{

@Override

public void run()

{

MMc_over mmc_over = new MMc_over(0.00001);

mmc_over.setOmega(1);

//constant mu is assumed

double mu = instance.ser_rate;

double lambda;

int c;

int k;

double timeStep = 1.0 / mu;

//the time where the last phase ends

double endTime = instance.pla_hor;

//the number of time steps to initialize the arrays with the correct length

int nrTimeSteps = (int) (Math.ceil(endTime / timeStep));

//the current time considered in the loop

double currentTime = 0;

double x_0 = 0;

double x = 0;

double y = 0;

double timeStep_psfa = 0.0001;

double util = 0;

int nrTimeStepsPSFA = (int) Math.ceil(timeStep / timeStep_psfa);

//the arrays are initialized

solution.utilization = new double[nrTimeSteps];

solution.expWaitingTime = new double[nrTimeSteps];

solution.expCycleTime = new double[nrTimeSteps];

solution.expNoWaiting = new double[nrTimeSteps];

solution.expNoInSystem = new double[nrTimeSteps];

solution.time = new double[nrTimeSteps];

//Loop: for each station and time the performance values are calculated

for (int t = 0; t < solution.time.length; t++) {

//the current time is saved

if (Math.ceil(currentTime) - currentTime <= 0.0001) {

solution.time[t] = Math.ceil(currentTime);

} else {

solution.time[t] = currentTime;

}
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//time bigger then the end time of the last phase should not be considered.

//Therefore we set the last time considered as end time. After this run the loop

will stop.

if (solution.time[t] > endTime) {

solution.time[t] = endTime;

}

//updating the parameters

int currentPhase = (int) Math.min(Math.floor(solution.time[t] /

instance.len_period), instance.arr_rate.length - 1);

lambda = instance.arr_rate[currentPhase];

c = instance.ser_num[currentPhase];

// the max queuing length is equal then the server number because we use the mmcc

model

k = c;

//using stationary MMcc (phase 1)

if (t == 0) {

x_0 = lambda / (mu * c);

mmc_over.resetQueue(x_0);

double rho = 0;

for (int i = 0; i < nrTimeStepsPSFA; i++) {

mmc_over.resetQueue(x_0);

rho = 1;

x = x_0 + (lambda - mu * rho * c) * timeStep_psfa;

x = Math.max(0, x);

x_0 = x;

}

} else {

mmc_over.resetQueue(x_0);

double rho = 0;

for (int i = 0; i < nrTimeStepsPSFA; i++) {

mmc_over.resetQueue(x_0);

rho = 1;

x = x_0 + (lambda - mu * rho * c) * timeStep_psfa;

x = Math.max(0, x);

x_0 = x;

y = x/mu;

}

}

solution.expNoInSystem[t] = x;

solution.expWaitingTime[t] = y;

// System.out.println("t: " + t);

// System.out.println("time: " + solution.time[t]);

// System.out.println("artificialLambda " + artificialLambda);

// System.out.println("modifiedLambda " + modifiedLambda);

// System.out.println("backlogRate(in t-1): " + backlogRate);

// System.out.println("WIP:" + solution.expNoInSystem[t]);

//

System.out.println("_______________________________________________________________________________________________");

currentTime = currentTime + timeStep;

/**

* Normal PSFA.

*/
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}

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Approach;

import Mannheim.Queue.MMc;

import Mannheim.Queue.MMcc;

import Mannheim.Queue.MMcK;

import Mannheim.Queue.MMc_over;

import Mannheim.Run.Runner;

/**

*

* @author Amir Foroughi <aforough at mail-mannheim.de>

*/

public class Hybrid_M_M_c_BacklogColib extends Approach

{

// double WIP_from_sa = Runner.WIP_from_run_sa;

@Override

public void run()

{

//The mmcc is used to calculate the expected utilization ( k = c)

MMcc mmcc = new MMcc(instance.arr_rate[0], instance.ser_rate, instance.ser_num[0],

instance.ser_num[0]);

//The mmc is used to calculate the expected waiting time

MMc mmc = new MMc(instance.arr_rate[0], instance.ser_rate, instance.ser_num[0]);

MMc_over mmc_over = new MMc_over(0.1);

double initial_WIP = 0.00001;

/**

* OMEGA HERE.

*/

mmc_over.setOmega(0.3);

int counter_of_iteration = 0;

double parameters = 0.999;

double backlogRate = 0;

double artificialLambda = 0;

double modifiedLambda = 0;

//constant mu is assumed

double mu = instance.ser_rate;

double lambda;

int c;

int k;

double timeStep = 1.0 / mu;

//the time where the last phase ends

double endTime = instance.pla_hor;

//the number of time steps to initialize the arrays with the correct length

int nrTimeSteps = (int) (Math.ceil(endTime / timeStep));
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//the current time considered in the loop

double currentTime = 0;

double x_0 = 0;

double x = 0;

double y_0 = 0;

double y = 0;

double timeStep_psfa = 0.0001;

double util = 0;

int nrTimeStepsPSFA = (int) Math.ceil(timeStep / timeStep_psfa);

//the arrays are initialized

solution.utilization = new double[nrTimeSteps];

solution.expWaitingTime = new double[nrTimeSteps];

solution.expCycleTime = new double[nrTimeSteps];

solution.expNoWaiting = new double[nrTimeSteps];

solution.expNoInSystem = new double[nrTimeSteps];

solution.time = new double[nrTimeSteps];

boolean if_prv_period_overloaded = false;

//Loop: for each station and time the performance values are calculated

for (int t = 0; t < solution.time.length; t++) {

//the current time is saved

if (Math.ceil(currentTime) - currentTime <= 0.0001) {

solution.time[t] = Math.ceil(currentTime);

} else {

solution.time[t] = currentTime;

}

//time bigger then the end time of the last phase should not be considered.

//Therefore we set the last time considered as end time. After this run the loop

will stop.

if (solution.time[t] > endTime) {

solution.time[t] = endTime;

}

//updating the parameters

int currentPhase = (int) Math.min(Math.floor(solution.time[t] /

instance.len_period), instance.arr_rate.length - 1);

lambda = instance.arr_rate[currentPhase];

c = instance.ser_num[currentPhase];

// the max queuing length is equal then the server number because we use the mmcc

model

k = c;

//using stationary MMcc (phase 1)

artificialLambda = lambda + backlogRate;

mmcc.resetQueue(artificialLambda, mu, c, c);

util = artificialLambda * (1 - mmcc.getPn(k)) / (c * mu);

if (lambda / (mu * c) < 1) {

// if (true) {

if (!if_prv_period_overloaded) {

//using stationary MMc (phase 2)

solution.utilization[t] = util;

modifiedLambda = solution.utilization[t] * k * mu;
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mmc.resetQueue(modifiedLambda, mu, c);

//saving the results of the calculation in two dimensional arrays

solution.expWaitingTime[t] = mmc.getExpWaitingTime();

solution.expCycleTime[t] = mmc.getExpCycleTime();

solution.expNoWaiting[t] = mmc.getExpNoWaiting();

solution.expNoInSystem[t] = mmc.getExpNoInSystem();

x_0 = solution.expNoInSystem[t];

y_0 = solution.expNoWaiting[t];

if_prv_period_overloaded = false;

// System.out.println("t: " + t);

// System.out.println("time: " + solution.time[t]);

// System.out.println("artificialLambda " + artificialLambda);

// System.out.println("modifiedLambda " + modifiedLambda);

// System.out.println("backlogRate(in t-1): " + backlogRate);

// System.out.println("pn " + mmcc.getPn(k));

// System.out.println("Util: " + solution.utilization[t]);

// System.out.println("WIP:" + mmc.getExpNoInSystem());

//

System.out.println("_______________________________________________________________________________________________");

} else {

if (counter_of_iteration % 50 == 0) {

parameters = parameters - 0.005;

}

modifiedLambda = util * k * mu;

mmc.resetQueue(modifiedLambda, mu, c);

t = t - 1;

currentTime = currentTime - timeStep;

// if_change = true;

if (x >= mmc.getExpNoInSystem()) {

if_prv_period_overloaded = false;

counter_of_iteration = 0;

parameters = 0.999;

}

artificialLambda *= parameters;

// System.out.println("x = " + x);

// System.out.println(mmc.getExpNoInSystem());

// System.out.println("artificialLambda: " + artificialLambda);

// System.out.println("modifiedLambda: " + modifiedLambda);

// System.out.println("util: " + util);

counter_of_iteration++;

}

//updating the backlog rate

// backlogRate = artificialLambda * mm11.getPn(k);

//updating the current time

// currentTime = currentTime + timeStep;

} /**

* Normal PSFA.

*/

else {

if (t == 0) {

x_0 = lambda / (mu * c);

// x_0 = initial_WIP;

y_0 = 0.005;
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mmc_over.resetQueue(x_0);

// double omegaa = 0.7 * c;

// mmc_over.setOmega(omegaa);

double rho = 0;

for (int i = 0; i < nrTimeStepsPSFA; i++) {

mmc_over.resetQueue(x_0);

rho = mmc_over.getRho();

x = x_0 + Math.max(0, lambda - mu * rho * Math.min(c, x)) * timeStep_psfa;

x_0 = x;

mmc_over.resetQueue(y_0);

rho = mmc_over.getRho();

y = y_0 + (lambda - mu * rho * c) * timeStep_psfa;

y_0 = y;

}

} else {

mmc_over.resetQueue(x_0);

// double omegaa;

// if (mu == 1) {

// omegaa = 0.7;

// } else {

// omegaa = (0.2 * Math.exp(-.8 * (lambda / (c * mu))) + 0.1) * mu / 4;

// }

// mmc_over.setOmega(omegaa);

double rho = 0;

for (int i = 0; i < nrTimeStepsPSFA; i++) {

mmc_over.resetQueue(x_0);

rho = mmc_over.getRho();

x = x_0 + Math.max(0, lambda - mu * rho * Math.min(c, x)) * timeStep_psfa;

x_0 = x;

mmc_over.resetQueue(y_0);

rho = mmc_over.getRho();

y = y_0 + (lambda - mu * rho * c) * timeStep_psfa;

y_0 = y;

}

}

solution.expNoInSystem[t] = x;

solution.expNoWaiting[t] = y;

// System.out.println("t: " + t);

// System.out.println("time: " + solution.time[t]);

// System.out.println("artificialLambda " + artificialLambda);

// System.out.println("modifiedLambda " + modifiedLambda);

// System.out.println("backlogRate(in t-1): " + backlogRate);

// System.out.println("WIP:" + solution.expNoInSystem[t]);

//

System.out.println("_______________________________________________________________________________________________");

if_prv_period_overloaded = true;

}

// if (!if_prv_period_overloaded && !if_change) {

// backlogRate = artificialLambda * mm11.getPn(k);
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// }

// if_change = false;

backlogRate = artificialLambda * mmcc.getPn(k);

currentTime = currentTime + timeStep;

}

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Instance;

import Instances.P;

import Mannheim.core.Phase;

/**

*

* @author Amir

*/

public class Instance

{

public String name;

//<editor-fold defaultstate="collapsed" desc="Important info">

public String queue;

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Session">

public int num_period;

public double len_period;

public double pla_hor;

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Service distribution info">

public String ser_dist;

public double ser_mean;

public double ser_var;

public double ser_st;

public double ser_cv2;

public double ser_rate;

public double[] rho;

public int[] ser_num;

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Arrival distribution info">

public String arr_dist;

public String batch_dist;

public double[] arr_rate;

public double[] batch_cv2;

public double[] batch_mean;

public double[] batch_var;

public double[] distance_batch;

/**

110



* P(X = 1).

*/

public double[] g_1;

//</editor-fold>

void makeInstance()

{

//<editor-fold defaultstate="collapsed" desc="Service distribution info">

pla_hor = num_period * len_period;

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Service distribution info">

ser_mean = (ser_rate > 0 ? 1 / ser_rate : 99999999);

ser_cv2 = 1;

ser_var = ser_cv2 * ser_mean * ser_mean;

ser_st = Math.sqrt(ser_var);

rho = new double[arr_rate.length];

if (queue.equalsIgnoreCase("M_M_1")) {

for (int i = 0; i < arr_rate.length; i++) {

rho[i] = arr_rate[i] / ser_rate;

}

} else {

for (int i = 0; i < arr_rate.length; i++) {

rho[i] = (arr_rate[i] * batch_mean[i]) / ser_rate;

}

}

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Arrival">

if (queue.equalsIgnoreCase("M_M_1_batch")) {

batch_cv2 = new double[batch_mean.length];

batch_var = new double[batch_mean.length];

g_1 = new double[batch_mean.length];

for (int i = 0; i < arr_rate.length; i++) {

/**

* Because in Geometric, we use the probability rate, not average.

* https://en.wikipedia.org/wiki/Geometric_distribution

*/

batch_mean[i] = 1.0/ batch_mean[i];

if (batch_dist.equalsIgnoreCase("Geo")) {

g_1[i] = 1 / batch_mean[i];

batch_var[i] = (1 - g_1[i]) / (Math.pow(g_1[i], 2));

batch_cv2[i] = batch_var[i] / (Math.pow(batch_mean[i], 2));

} else if (batch_dist.equalsIgnoreCase("Det")) {

g_1[i] = (batch_mean[i] == 1 ? 1 : 0);

batch_var[i] = 0;

batch_cv2[i] = 0;

} else {

batch_var[i] = (Math.pow(2 * distance_batch[i] + 1, 2) - 1) / 12;

batch_cv2[i] = batch_var[i] / Math.pow(batch_mean[i], 2);

if (batch_mean[i] - distance_batch[i] <= 1) {

g_1[i] = 1.0 / (2 * distance_batch[i] + 1);

} else {

g_1[i] = 0;

}

}

}

}
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//</editor-fold>

}

public void showInstance()

{

System.out.println("Name: "+ name);

if (queue.equalsIgnoreCase("M_M_1_batch")) {

System.out.println("Queue:\tM(t)^{X(t)}/M/1");

System.out.println("Sesison:\tLength: " + len_period + ",\tNumber of periods: " +

num_period + ",\tPlanning horizon: " + pla_hor);

System.out.println("Arrivals:\tBatch_dist:" + batch_dist);

System.out.println("Rates:");

P.write(arr_rate);

P.write(batch_mean);

System.out.println("Other info:");

P.write(batch_cv2);

System.out.println("Service:\tRate:" + ser_rate);

P.makeItDotted(’-’);

} else {

System.out.println("Queue:\tM(t)/M/1");

System.out.println("Sesison:\tLength:" + len_period + ",\tNumber of periods:" +

num_period + ",\tPlanning horizon:" + pla_hor);

System.out.println("Arrivals:");

System.out.println("Rates:");

P.write(arr_rate);

System.out.println("Other info:");

System.out.println("Service:\tRate:" + ser_rate);

P.makeItDotted(’-’);

}

}

}

package Mannheim.Instance;

import java.io.BufferedReader;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.InputStreamReader;

import java.util.HashMap;

public class MapClassInstance

{

private final HashMap<String, String> data;

private MapClassInstance()

{

data = new HashMap<String, String>();

}

public void init(String path)

{

try {

DataInputStream in = new DataInputStream(new FileInputStream(path));

BufferedReader br = new BufferedReader(new InputStreamReader(in));

String line;

112



while ((line = br.readLine()) != null) {

if (line.indexOf(’#’) != -1) {

line = line.substring(0, line.indexOf(’#’));

}

line = line.trim();

if (!line.isEmpty()) {

parseProperty(line);

}

}

in.close();

} catch (Exception e) {

e.printStackTrace();

}

}

private static class InstanceHolder

{

private static final MapClassInstance INSTANCE = new MapClassInstance();

}

public static MapClassInstance getInstance()

{

return InstanceHolder.INSTANCE;

}

public static double getDouble(String key)

{

return Double.valueOf(getInstance().data.get(key));

}

public static int getInt(String key)

{

return Integer.valueOf(getInstance().data.get(key));

}

public static boolean getBoolean(String key)

{

return getInstance().data.get(key).equals("true");

}

public static String getString(String key)

{

return getInstance().data.get(key);

}

public static String[] getArray(String key)

{

return getString(key).split("\\s*,\\s*");

}

public static int getArrayLength(String key)

{

return getArray(key).length;

}

public void parseProperty(String property)

{

String[] tokens = property.split("=");
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set(tokens[0], tokens[1]);

}

public void set(String key, String value)

{

data.put(key.trim(), value.trim());

}

public void set(String key, Number value)

{

data.put(key.trim(), value.toString());

}

public boolean hasProperty(String key)

{

return data.containsKey(key);

}

}/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Queue;

/**

*

* @author Amir Foroughi <aforough at mail-mannheim.de>

*/

public class MMcc extends Queue

{

public int k;

public MMcc(double lambda, double mu, int c, int k)

{

this.lambda = lambda;

this.mu = mu;

this.c = c;

this.k = k;

this.lambdaeff = getLambdaeff();

}

/**

* This method calculates the value of the expected number waiting.

* @return Returns <code>expNoWaiting</code>

*/

@Override

public double getExpNoWaiting()

{

double expNoWaiting = 0;

for (int n = c; n <= k; n++) {

expNoWaiting = expNoWaiting + (n - c) * getPn(n);

}

return expNoWaiting;

}

/**
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* This method calculates the value of the effective arrival rate.

* @return Returns <code>lambdaeff</code>

*/

public double getLambdaeff()

{

lambdaeff = (1 - getPn(k)) * lambda;

return lambdaeff;

}

/**

* This method calculates the value of the probability p0 of an empty system.

* @return Returns <code>p0</code>

*/

public double getP0()

{

double p0 = 0;

double a = lambda / mu;

double rho = lambda / (c * mu); //this is not the effective utilization of the system!

double sum1 = 1;

//sum a^n / n!

for (int n = 1; n < c; n++) {

// a^n / n!

double prod = 1;

for (int j = 0; j < n; j++) {

prod = prod * (a / (n - j));

}

sum1 = sum1 + prod;

}

// a^c / c!

double prod = 1;

for (int j = 0; j < c; j++) {

prod = prod * (a / (c - j));

}

// sum_{n=c}^{K} rho^(n-c)

double sum2 = 0;

for (int n = c; n <= k; n++) {

sum2 = sum2 + Math.pow(rho, (n - c));

}

p0 = 1 / (sum1 + (prod * sum2));

return p0;

}

/**

* This method calculates the value of the probability of n jobs in system.

* @return Returns <code>pn</code>

*/

public double getPn(int n)

{

double pn = 0;

double a = lambda / mu;

double prod;
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if (n == 0) {

pn = getP0();

}

if (1 <= n && n < c) {

// a^n / n!

prod = 1;

for (int j = 0; j < n; j++) {

prod = prod * (a / (n - j));

}

pn = prod * getP0();

}

if (c <= n && n <= k) {

// a^c / c!

prod = 1;

for (int j = 0; j < c; j++) {

prod = prod * (a / (c - j));

}

// a^(c-n) / c^(n-1)

for (int j = 0; j < c - n; j++) {

prod = prod * (a / c);

}

pn = ((prod * Math.pow(a, (n - c))) / Math.pow(c, (n - c))) * getP0();

}

return pn;

}

public double getProbBlock()

{

double probBlock = 0;

probBlock = getPn(k);

return probBlock;

}

public void resetQueue(double lambda, double mu, int c, int k)

{

this.lambda = lambda;

this.mu = mu;

this.c = c;

this.k = k;

this.lambdaeff = getLambdaeff();

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/
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package Mannheim.Queue;

/**

*

* @author Amir Foroughi <aforough at mail-mannheim.de>

*/

public class MMcK extends Queue

{

public int k;

public MMcK(double lambda, double mu, int c, int k)

{

this.lambda = lambda;

this.mu = mu;

this.c = c;

this.k = k;

this.lambdaeff = getLambdaeff();

}

/**

* This method calculates the value of the expected number waiting.

* @return Returns <code>expNoWaiting</code>

*/

@Override

public double getExpNoWaiting()

{

double expNoWaiting = 0;

for (int n = c; n <= k; n++) {

expNoWaiting = expNoWaiting + (n - c) * getPn(n);

}

return expNoWaiting;

}

/**

* This method calculates the value of the effective arrival rate.

* @return Returns <code>lambdaeff</code>

*/

public double getLambdaeff()

{

lambdaeff = (1 - getPn(k)) * lambda;

return lambdaeff;

}

/**

* This method calculates the value of the probability p0 of an empty system.

* @return Returns <code>p0</code>

*/

public double getP0()

{

double p0 = 0;

double a = lambda / mu;

double rho = lambda / (c * mu); //this is not the effective utilization of the system!

double sum1 = 1;

//sum a^n / n!

for (int n = 1; n < c; n++) {

// a^n / n!
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double prod = 1;

for (int j = 0; j < n; j++) {

prod = prod * (a / (n - j));

}

sum1 = sum1 + prod;

}

// a^c / c!

double prod = 1;

for (int j = 0; j < c; j++) {

prod = prod * (a / (c - j));

}

// sum_{n=c}^{K} rho^(n-c)

double sum2 = 0;

for (int n = c; n <= k; n++) {

sum2 = sum2 + Math.pow(rho, (n - c));

}

p0 = 1 / (sum1 + (prod * sum2));

return p0;

}

/**

* This method calculates the value of the probability of n jobs in system.

* @return Returns <code>pn</code>

*/

public double getPn(int n)

{

double pn = 0;

double a = lambda / mu;

double prod;

if (n == 0) {

pn = getP0();

}

if (1 <= n && n < c) {

// a^n / n!

prod = 1;

for (int j = 0; j < n; j++) {

prod = prod * (a / (n - j));

}

pn = prod * getP0();

}

if (c <= n && n <= k) {

// a^c / c!

prod = 1;

for (int j = 0; j < c; j++) {

prod = prod * (a / (c - j));

}
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// a^(c-n) / c^(n-1)

for (int j = 0; j < c - n; j++) {

prod = prod * (a / c);

}

pn = ((prod * Math.pow(a, (n - c))) / Math.pow(c, (n - c))) * getP0();

}

return pn;

}

public double getProbBlock()

{

double probBlock = 0;

probBlock = getPn(k);

return probBlock;

}

public void resetQueue(double lambda, double mu, int c, int k)

{

this.lambda = lambda;

this.mu = mu;

this.c = c;

this.k = k;

this.lambdaeff = getLambdaeff();

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Queue;

/**

*

* @author Amir Foroughi <aforough at mail-mannheim.de>

*/

public class MMc_over

{

private double omega;

double wip;

public MMc_over(double wip)

{

this.wip = wip;

}

/**

* @param omega the omega to set

*/

public void setOmega(double omega)

{

this.omega = omega;

}

public double getRho()
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{

return (wip / (omega + wip));

}

public void resetQueue(double wip)

{

this.wip = wip;

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Approach;

import Mannheim.Queue.MMc_over;

/**

*

* @author Amir

*/

public class PSFFA_M_M_c extends Approach

{

@Override

public void run()

{

MMc_over mmc_over = new MMc_over(0.001);

/**

* OMEGA HERE.

*/

mmc_over.setOmega(1);

//constant mu is assumed

double mu = instance.ser_rate;

double lambda;

int c;

int k;

double timeStep = 1.0 / mu;

//the time where the last phase ends

double endTime = instance.pla_hor;

//the number of time steps to initialize the arrays with the correct length

int nrTimeSteps = (int) (Math.ceil(endTime / timeStep));

//the current time considered in the loop

double currentTime = 0;

double x_0 = 0;

double x = 0;

double y = 0;

double timeStep_psfa = 0.0001;

double util = 0;

int nrTimeStepsPSFA = (int) Math.ceil(timeStep / timeStep_psfa);

//the arrays are initialized

solution.utilization = new double[nrTimeSteps];

solution.expWaitingTime = new double[nrTimeSteps];

solution.expCycleTime = new double[nrTimeSteps];

solution.expNoWaiting = new double[nrTimeSteps];
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solution.expNoInSystem = new double[nrTimeSteps];

solution.time = new double[nrTimeSteps];

//Loop: for each station and time the performance values are calculated

for (int t = 0; t < solution.time.length; t++) {

//the current time is saved

if (Math.ceil(currentTime) - currentTime <= 0.0001) {

solution.time[t] = Math.ceil(currentTime);

} else {

solution.time[t] = currentTime;

}

//time bigger then the end time of the last phase should not be considered.

//Therefore we set the last time considered as end time. After this run the loop

will stop.

if (solution.time[t] > endTime) {

solution.time[t] = endTime;

}

//updating the parameters

int currentPhase = (int) Math.min(Math.floor(solution.time[t] /

instance.len_period), instance.arr_rate.length - 1);

lambda = instance.arr_rate[currentPhase];

c = instance.ser_num[currentPhase];

// the max queuing length is equal then the server number because we use the mmcc

model

k = c;

//using stationary MMcc (phase 1)

if (t == 0) {

x_0 = lambda / (mu * c);

mmc_over.resetQueue(x_0);

double rho = 0;

for (int i = 0; i < nrTimeStepsPSFA; i++) {

mmc_over.resetQueue(x_0);

rho = mmc_over.getRho();

x = x_0 + (lambda - mu * rho * c) * timeStep_psfa;

x_0 = x;

}

} else {

mmc_over.resetQueue(x_0);

double rho = 0;

for (int i = 0; i < nrTimeStepsPSFA; i++) {

mmc_over.resetQueue(x_0);

rho = mmc_over.getRho();

x = x_0 + (lambda - mu * rho * c) * timeStep_psfa;

x_0 = x;

y= x/mu;

}

}

solution.expNoInSystem[t] = x;

solution.expWaitingTime[t] = y;

// System.out.println("t: " + t);
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// System.out.println("time: " + solution.time[t]);

// System.out.println("artificialLambda " + artificialLambda);

// System.out.println("modifiedLambda " + modifiedLambda);

// System.out.println("backlogRate(in t-1): " + backlogRate);

// System.out.println("WIP:" + solution.expNoInSystem[t]);

//

System.out.println("_______________________________________________________________________________________________");

currentTime = currentTime + timeStep;

/**

* Normal PSFA.

*/

}

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Queue;

/**

*

* @author Amir Foroughi <aforough at mail-mannheim.de>

*/

abstract public class Queue

{

public int c;

public double lambda;

public double lambdaeff;

public double mu;

/**

* This method calculates the value of the expected cycle time.

*

* @return Returns <code>expCycleTime</code>

*/

public double getExpCycleTime()

{

return (getExpNoWaiting() / lambdaeff) + (1 / mu);

// return getWaitingTime()+1/mu;

}

/**

* This method calculates the value of the expected number in system.(WIP)

*

* @return Returns <code>expNoInSystem</code>

*/

public double getExpNoInSystem()

{

return lambdaeff * getExpCycleTime();

}

/**

* This method calculates the value of the expected number waiting.

*
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* @return Returns <code>expNoWaiting</code>

*/

public double getExpNoWaiting()

{

double expNoWaiting = 0;

expNoWaiting = lambdaeff * getExpWaitingTime();

return expNoWaiting;

}

/**

* This method calculates the value of the expected waiting time.

*

* @return Returns <code>waitingTime</code>

*/

public double getExpWaitingTime()

{

return (getExpNoInSystem() / lambdaeff) - (1 / mu);

// return getExpNoWaiting()/lambdaeff;

}

/**

* This method calculates the value of utilization.

*

* @return Returns <code>utilization</code>

*/

public double getTrafficIntensity()

{

return lambda / (c * mu);

}

/**

* This method calculates the value of utilization.

*

* @return Returns <code>utilization</code>

*/

public double getUtilization()

{

return lambdaeff / (c * mu);

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Approach;

import Mannheim.Instance.Instance;

import Mannheim.Queue.*;

import Mannheim.core.Solution;

/**

*

* @author Amir

*/

public class SBC_M_M_c extends Approach

{

/**
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* The current phase

*/

@Override

public void run()

{

//The mmcc is used to calculate the expected utilization ( k = c)

MMcc mmcc = new MMcc(instance.arr_rate[0], instance.ser_rate, instance.ser_num[0],

instance.ser_num[0]);

//The mmc is used to calculate the expected waiting time

MMc mmc = new MMc(instance.arr_rate[0], instance.ser_rate, instance.ser_num[0]);

double backlogRate = 0;

double artificialLambda = 0;

double modifiedLambda = 0;

//constant mu is assumed

double mu = instance.ser_rate;

double lambda;

int c;

int k;

double timeStep = 1.0 / mu;

//the time where the last phase ends

double endTime = instance.pla_hor;

//the number of time steps to initialize the arrays with the correct length

int nrTimeSteps = (int) (Math.ceil(endTime / timeStep));

//the current time considered in the loop

double currentTime = 0;

//the arrays are initialized

solution.utilization = new double[nrTimeSteps ];

solution.expWaitingTime = new double[nrTimeSteps ];

solution.expCycleTime = new double[nrTimeSteps ];

solution.expNoWaiting = new double[nrTimeSteps ];

solution.expNoInSystem = new double[nrTimeSteps ];

solution.time = new double[nrTimeSteps ];

//Loop: for each station and time the performance values are calculated

for (int t = 0; t < solution.time.length; t++) {

//the current time is saved

if (Math.ceil(currentTime) - currentTime <= 0.0001) {

solution.time[t] = Math.ceil(currentTime);

} else {

solution.time[t] = currentTime;

}

//time bigger then the end time of the last phase should not be considered.

//Therefore we set the last time considered as end time. After this run the loop

will stop.

if (solution.time[t] > endTime) {

solution.time[t] = endTime;

}

//updating the parameters

int currentPhase = (int) Math.min(Math.floor(solution.time[t] /

instance.len_period), instance.arr_rate.length - 1);

lambda = instance.arr_rate[currentPhase];

c = instance.ser_num[currentPhase];
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// the max queuing length is equal then the server number because we use the mmcc

model

k = c;

//using stationary MMcc (phase 1)

artificialLambda = lambda + backlogRate;

mmcc.resetQueue(artificialLambda, mu, c, c);

solution.utilization[t] = artificialLambda * (1 - mmcc.getPn(k)) / (c * mu);

//using stationary MMc (phase 2)

modifiedLambda = solution.utilization[t] * k * mu;

mmc.resetQueue(modifiedLambda, mu, c);

// System.out.println("artificialLambda " + artificialLambda);

// System.out.println("modifiedLambda " + modifiedLambda);

// System.out.println("backlogRate(in t-1): " + backlogRate);

// System.out.println("pn " + mmck.getPn(k));

// System.out.println("utilization " + utilization[noElements][t] + " " +

mmck.getUtilization());

// System.out.println("k "+k );

//

System.out.println("_______________________________________________________________________________________________");

//saving the results of the calculation in two dimensional arrays

solution.expWaitingTime[t] = mmc.getExpWaitingTime();

solution.expCycleTime[t] = mmc.getExpCycleTime();

solution.expNoWaiting[t] = mmc.getExpNoWaiting();

solution.expNoInSystem[t] = mmc.getExpNoInSystem();

//updating the backlog rate

backlogRate = artificialLambda * mmcc.getPn(k);

//updating the current time

currentTime = currentTime + timeStep;

}

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.Instance;

import java.io.File;

/**

*

* @author Amir

*/

public class SimpleLoader

{

/**

* @param path

* @return

*/

public static Instance Load(String filename)

{

Instance instance = new Instance();
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try {

initializeMapClassInstance(filename);

instance.name = filename.substring(filename.lastIndexOf(File.separatorChar) + 1,

filename.lastIndexOf(’.’));

instance.queue = MapClassInstance.getString("Queue");

instance.num_period = MapClassInstance.getInt("period");

instance.len_period = MapClassInstance.getDouble("period.length");

/**

* Arrival.

*/

instance.arr_rate = new double[instance.num_period];

String[] st = MapClassInstance.getArray("arr.rate");

String[] st2 = MapClassInstance.getArray("arr.cv2");

for (int i = 0; i < st.length; i++) {

instance.arr_rate[i] = Double.valueOf(st[i]);

}

if (instance.queue.equalsIgnoreCase("M_M_1_batch")) {

instance.batch_mean = new double[instance.num_period];

instance.distance_batch = new double[instance.num_period];

st = MapClassInstance.getArray("arr.num");

st2 = MapClassInstance.getArray("batch.dist");

for (int i = 0; i < instance.batch_mean.length; i++) {

instance.batch_mean[i] = Double.valueOf(st[i]);

instance.distance_batch[i] = Double.valueOf(st2[i]);

}

instance.batch_dist = MapClassInstance.getString("dist.batch");

}

instance.arr_dist = MapClassInstance.getString("dist.arr");

instance.ser_dist = MapClassInstance.getString("dist.ser");

/**

* Service.

*/

instance.ser_rate = MapClassInstance.getDouble("ser.rate");

st = MapClassInstance.getArray("ser.num");

instance.ser_num = new int[st.length];

for (int i = 0; i < st.length; i++) {

instance.ser_num[i] = Integer.valueOf(st[i]);

}

} catch (Exception e) {

e.printStackTrace();

System.err.println("Problems in instances!");

return null;

}

instance.makeInstance();

return instance;

}

private static void initializeMapClassInstance(String propertiesPath)

{

MapClassInstance mapClassInstance = MapClassInstance.getInstance();
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mapClassInstance.init(propertiesPath);

if (!mapClassInstance.hasProperty("threads")) {

mapClassInstance.set("threads", Runtime.getRuntime().availableProcessors());

}

}

}

/*

* To change this license header, choose License Headers in Project Properties.

* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package Mannheim.core;

import Mannheim.Instance.Instance;

/**

*

* @author Amir

*/

public class Solution

{

private Instance instance;

public double[] expCycleTime;

public double[] expNoInSystem;

public double[] expNoWaiting;

public double[] expWaitingTime;

public double[] time;

//the arrays are initialized

public double[] utilization;

public Solution(Instance instance)

{

setInstance(instance);

}

/**

* @return the instance

*/

public Instance getInstance()

{

return instance;

}

/**

* @param instance the instance to set

*/

public void setInstance(Instance instance)

{

this.instance = instance;

}

}
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