
Presentation Adaptation for Multimodal
Interface Systems:

Three Essays on the Effectiveness of
User-Centric Content and Modality

Adaptation

Inaugural Dissertation

to Obtain the Academic Degree of a
Doctor in Business Administration at the

University of Mannheim

submitted by

Melanie Heck, M.Sc.
from Stuttgart



Dean: Joachim Lutz
Referent: Prof. Dr. Christian Becker
Correferent: Prof. Dr. Armin Heinzl

Day of oral examination: March 24, 2023

ii



Abstract

The use of devices is becoming increasingly ubiquitous and the contexts of their
users more and more dynamic. This often leads to situations where one communi-
cation channel is rather impractical. Text-based communication is particularly
inconvenient when the hands are already occupied with another task. Audio
messages induce privacy risks and may disturb other people if used in public
spaces. Multimodal interfaces thus offer users the flexibility to choose between
multiple interaction modalities. While the choice of a suitable input modality lies
in the hands of the users, they may also require output in a different modality
depending on their situation. To adapt the output of a system to a particular con-
text, rules are needed that specify how information should be presented given the
users’ situation and state. Therefore, this thesis tests three adaptation rules that
– based on observations from cognitive science – have the potential to improve the
interaction with an application by adapting the presented content or its modality.
Following modality alignment, the output (audio versus visual) of a smart home
display is matched with the user’s input (spoken versus manual) to the system.
Experimental evaluations reveal that preferences for an input modality are initially
too unstable to infer a clear preference for either interaction modality. Thus,
the data shows no clear relation between the users’ modality choice for the first
interaction and their attitude towards output in different modalities.
To apply multimodal redundancy, information is displayed in multiple modalities.
An application of the rule in a video conference reveals that captions can signifi-
cantly reduce confusion. However, the effect is limited to confusion resulting from
language barriers, whereas contradictory auditory reports leave the participants
in a state of confusion independent of whether captions are available or not. We
therefore suggest to activate captions only when the facial expression of a user –
captured by action units, expressions of positive or negative affect, and a reduced
blink rate – implies that the captions effectively improve comprehension.
Content filtering in movies puts the character into the spotlight that – according
to the distribution of their gaze to elements in the previous scene – the users
prefer. If preferences are predicted with machine learning classifiers, this has the
potential to significantly improve the user’ involvement compared to scenes of
elements that the user does not prefer. Focused attention is additionally higher
compared to scenes in which multiple characters take a lead role.
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1. Introduction

Communication with other humans and the environment has become a naturally
multimodal affair in the course of human evolution (Cherry, 1966; Tomasello,
2010). Humans perceive the world through sight, hearing, touch, smell, and taste
and employ their senses to communicate intentions or manipulate the environment
(Partan, 2013). User interfaces have traditionally focused on manual input and the
visual presentation of information on a display (Karray et al., 2008). While such
interfaces are suitable for most conventional applications, they lack the flexibility
to meet the demands of increasingly ubiquitous technology and smart spaces.
In such environments, the context – and thus the utility of a communication
channel – may change in an instant (Jeng, 2009). A change of context can, for
instance, occur when the user moves to a different location (Want et al., 1992).
It can also be triggered by sudden changes in the external environment, such as
the arrival of other people (Schilit et al., 1994). Multimodal interfaces address
the new requirements that emerge in such dynamic contexts by letting the users
choose the most convenient communication modality – for both system input and
output – given their personal preferences and current situation (Oviatt, 2003b;
Turk, 2014; Yusupov & Ronzhin, 2010).

The history of multimodal interfaces spans several decades. What began as a
purely academic interest at the Massachusetts Institute of Technology (MIT)
with the ‘Put-That-There’ system (Bolt, 1980) – an interface that allows users
to manipulate objects through spoken commands when pointing at them – soon
started to penetrate the consumer market. Commercial appliances include the
iPhone (Apple, 2022b) and Apple Watch (Apple, 2022a), fitness trackers (Fitbit,
2022), the Amazon Echo Show smart display (Amazon, 2022), and in-vehicle
infotainment and entertainment systems (Infineon, 2022; STMicroelectronics,
2022). These developments – most notably smartphones and smartwatches – have
started to turn Mark Weiser’s vision of pervasive computing, where interfaces
‘disappear’ into the background (Weiser, 1991), into a not too distant reality.
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1. INTRODUCTION

Smart devices now accompany and serve users wherever they go and can provide
a seemingly unlimited amount of information (Sezer et al., 2018). Through an
ever increasing diversity of sensors including cameras, microphones, and touch
screens, users can interact with devices in the way that feels most natural to them,
without consciously being aware of using technology (Saha & Mukherjee, 2003).

The consequence, however, is a constant influx of information and incessant
stimulation of all sensory receptors of the human anatomical form. It is often
difficult for the user to distinguish relevant pieces of information from others
that can safely be dismissed (Roetzel, 2019). This, in turn, led to a call for
adaptive systems that take it upon themselves to decide what information is
relevant and how to best present it to the user (Reeves et al., 2004). The call
has been answered by a new stream of research which we will henceforth refer to
as ‘adaptive multimodal interfaces’ (Jameson, 2007; Kong et al., 2011; Langley,
1999; Maybury, 1994). Such systems select an interaction modality (Duarte &
Carriço, 2006) or change the content and its structure (Firmenich et al., 2019) in
response to the (dynamic) state of the users, their task, and the current situation.
Adapting the interface to the user in such a way carries the promise of more
efficient, effective, and natural interactions (Maybury & Wahlster, 1999).

1.1. Problem definition

Defining adaptation strategies for multimodal interfaces is no trivial undertaking.
Characteristics of the device and its available resources (Boll et al., 1999; Elting et
al., 2002; Prabhakaran, 2000) or of the task (Arens et al., 1991; Engen et al., 2014;
Kerpedjiev et al., 1997; Lee et al., 2001) that affect the usability of a modality
have been researched extensively. The challenge in application contexts that are
becoming more and more dynamic and seek to cater the needs of increasingly
diverse users is the impracticability of a one-fits-all approach (Sebe, 2009). People
of all social backgrounds and cultures have access to technology (OECD, 2022),
special solutions for people with physical or cognitive impairments are readily
available (Raja, 2016), senior citizens embrace technology (Anderson & Perrin,
2017), and children are entrusted with it at a very young age (Erikson Institute,
2016). The two key issues are therefore to determine (1) what content is relevant
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1.1. PROBLEM DEFINITION

to a user – considering both individual interests and relevance for achieving an
overarching goal – and (2) through which modality they would like to access it.

Of course, the notion of what information is relevant highly depends on the user’s
personality, goals, current mood, and situation (Shokeen & Rana, 2018). Human
interests are as diverse as their personalities (Ackerman & Heggestad, 1997), and
while one person may appreciate being recommended horror movies on Netflix,
another person could feel unsettled by the trailer being shown on the front page
of their account; Reading a romance novel may be the perfect pastime for a clerk
after a long day in the office, whereas the same person might consider a morning
ride on the tram the perfect opportunity to leaf through the pages of a textbook
on investment strategies.

With regard to the second issue, the disparate physical and intellectual abilities
of the users regulate how they interact with their devices. For example, vision im-
pairments make it difficult or even impossible to understand graphical information,
whereas auditory communication channels are inaccessible to deaf users (Kimura,
2018). People with cognitive impairments benefit from simplified information.
Others have no such constraints in general, but may find themselves in situations
where they cannot or do not wish to use a certain mode of communication. Ex-
amples are noisy places where spoken communication is difficult or, on the other
extreme, quiet spaces such as a library or the rest area in a train where one would
be reprimanded for talking (Cowan et al., 2017). Manual or visual communication,
on the other hand, is impractical when the hands or eyes are needed to perform
another task, for instance while driving (Zue & Glass, 2000). Besides, how users
prefer to interact with a device is highly individual (Oviatt, 1999). Some users
categorically prefer reading the captions of muted videos on social media (Patel,
2016), whereas others even install special software to exclusively listen to the
audio track and save bandwidth (TechViral, 2022).

With the availability of big data and data mining techniques, online service
providers are able to address individual preferences and personalize their services
(Matz & Netzer, 2017). For instance, Netflix, Instagram, and Amazon personalize
feeds and recommendations based on content that the user has interacted with in
the past – be it by looking at it, writing comments and reviews, or submitting
a rating (Anshari et al., 2019). What these applications ignore is the potential
to implicitly and unobtrusively detect the user’s dynamically changing state – a

3



1. INTRODUCTION

potential that is inherently provided by the various input channels of multimodal
interfaces. Making use of the full range of available sensors that collect data from
the user enables adaptive behavior in any application and context, irrespective
of whether the user currently provides active input and, if so, through which
modality. Such a behavior requires rules that specify how the multimodal interface
adapts its interaction modality and/or content. To serve the user, they need to
be aware of what communication modalities are available given the system and
external context and whether information can be filtered without compromising
the overarching goal (Duarte & Carriço, 2006; Maybury & Wahlster, 1999).

Against this backdrop, the objective of this thesis is to define and evaluate user-
centric adaptation rules whose potential to increase usability receives empirical
support from cognitive psychology. We implement different adaptation rules and
systematically study their prospects and limitations. The design process is driven
by the ambition to produce adaptation rules that can be applied to a broad range
of application scenarios and are equally beneficial to all demographic subgroups.
Thus, while the rules are tested on specific use cases, moderation analyses appraise
their utility for different contexts and target groups. In the following, we describe
in more detail the functional requirements (RF ) and non-functional requirements
(RNF ) based on which the adaptation rules are defined and evaluated.

1.2. Requirements analysis

The goal of this thesis is to design and evaluate adaptation rules that personalize
multimodal interfaces in a way that best supports individual users in their current
context. The requirements are driven by the constraints that are set by the research
problem discussed in the previous section. We identify five functional requirements
(RF 1 - RF 5) and three non-functional requirements (RNF 1 - RNF 3).

1.2.1. Functional requirements

The adaptation rules shall meet five functional requirements. They constrain
the configuration space of possible changes that are applied to the interface and
specify demands on the adaptation conditions.

4



1.2. REQUIREMENTS ANALYSIS

RF 1 – Adaptive presentation. The interface shall determine autonomously
whether an adaptation is needed. If the system is not in its target state – defined
by the application designer – a change of the presentation modality or content
is initiated. Thus, the system adapts without any explicit action from the user,
contrasting it to adaptable systems, where the users themselves can tailor the
configurations of a system to their personal preferences (Oppermann, 1994).

RF 2 – User-centricity. Adaptation can be conditioned on the state of the
system (e.g., available hardware resources and task), the physical environment
(e.g., time and location), or the user (Schmidt et al., 1999). While adaptive
applications deployed in the real world should always consider the interplay
between all three context dimensions, this thesis focuses on adaptation strategies
that respond to a model of the user.

RF 3 – Dynamic states. User models typically encompass both static character-
istics like demographics or personality traits that remain the same throughout the
interaction, and dynamic state variables such as emotions or cognitive load that
may change from one instant to another (Firmenich et al., 2019). Since context
changes can happen at any moment, the interface shall be aware of and respond to
the dynamic state of the user. This enables it to cater to the immediate needs and
preferences of the user, instead of assuming that dominant interaction patterns
and preferences remain constant irrespective of the current context.

RF 4 – Non-invasiveness. Data from which inferences are made about the user
shall be collected in the background through non-invasive methods. In contrast
to explicit data collection, such implicit techniques extract information from the
users’ natural interactions with the application, without interrupting their current
task through prompts for feedback (Gauch et al., 2007). Aside from interaction
logs, a variety of data from multiple sensors including cameras, microphones, and
physiological sensors is available in multimodal systems (Sebe, 2009; Turk, 2014).

RF 5 – Ubiquitous deployment. The state monitoring and execution of the
adaptation shall be feasible with consumer-grade devices. In the conception of
this thesis, the term ‘consumer-grade device’ subsumes any personal computer
or mobile device equipped with a common camera and graphical user interface
(GUI) for visual communication, a mouse or touch display for tactile, and a
microphone and audio player for auditory interaction. This excludes adaptation
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1. INTRODUCTION

strategies that manipulate the external environment, e.g., by communicating
with other appliances or using external actuators. It also excludes strategies
that require input data from physiological or ambient sensors, or any other
external hardware components. Eye tracking data – while typically collected
with specialized hardware due to their superior performance – can in theory be
extracted from images captured with a normal camera (Papoutsaki et al., 2016;
Zhang et al., 2019), and is therefore included as a possible input source.

1.2.2. Non-functional requirements

Three non-functional requirements specify general objectives that the adaptation
shall meet. The metrics defined in these requirements form the basis for evaluating
the effectiveness of the adaptation rules.

RNF 1 – Usability. The adaptation shall improve the user’s interaction experience
with the multimodal interface. The International Organization for Standardization
(ISO) defines usability in human-computer interaction as a three-dimensional
construct of efficiency, effectiveness, and satisfaction (Ergonomics of human-system
interaction - Part 11: Usability: Definitions and concepts, 2018). The accuracy
and completeness of the task determine effectiveness, whereas efficiency is defined
by the time, human effort, and financial or material resources that are consumed
in its execution (Tchankue et al., 2011). The latent variables that comprise
satisfaction can be operationalized by means of subjective ratings of usability and
engagement (Maat & Pantic, 2007; Peng et al., 2018).

RNF 2 – Universality. The adaptation rule shall benefit all users – independent of
their abilities, cognitive patterns or preferences, and demographics. An adaptation
can be beneficial to users of a certain subgroup, while being futile or even
detrimental to others. For example, the adaptive enterprise system Gaze-X has
been perceived as useful by novice users, but provides no noticeable benefit for
experts (Maat & Pantic, 2007). In contrast, the claim of a universal adaptation
rule is that it benefits a broad variety of users.

RNF 3 – Robustness. Depending on the user state dimension upon which
the adaptation is based, the required amount of data can range from singular
to prolonged time-series data (Sebe, 2009). Rapid learning algorithms such as
one-shot learning that are specifically tuned to scarce input situations can learn
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1.3. DESIGN SCIENCE RESEARCH METHODOLOGY

the user’s state with a minimal amount of training samples (Vinyals et al., 2016).
However, optimized algorithms have only been developed for a small number of
very specific problems and – even if available – are futile when the user only
passively consumes content and does not actively provide any interaction data
(Wang et al., 2020). This can, for instance, be the case in movie streaming or
reading. We therefore stipulate that, in order to provide robustness, it shall be
possible to apply the adaptation rule even if interaction data is sparse.

1.3. Design science research methodology

The creation of artifacts in disciplines related to systems engineering typically
follows an iterative process (Simon, 1988). This thesis adopts the design science
research methodology by Peffers et al. (2007) which describes the de facto stan-
dard process for the development of software artifacts. The definition of ‘artifact’
encompasses theoretic constructs, models, or methods, as well as concrete instan-
tiations of a resource or its properties. This thesis seeks to define and validate
adaptation rules with the intention to enhance the experience of users interacting
with a multimodal interface. Designing an executable software product is not the
ultimate goal. Nevertheless, in order to evaluate the adaptation rules, they are
integrated into a multimodal interface and tested in the context of prototypical
applications. Figure 1.1 depicts the six steps of the process.

possible research entry points

Step 1

Problem 
Identification & 

Motivation 

Define problem 
& importance.

Step 2

Definition of 
Objectives

What would a 
better artifact 
accomplish?

Step 3

Design & 
Development

Develop the 
artifact.

Step 4

Demonstration

Find suitable 
context & use 

artifact to solve 
problem.

Step 5

Evaluation

How effective & 
efficient is the 

artifact?

Step 6

Communication

Scholarly &
professional 
publications.

problem-
centered 
initiation

objective-
centered 
solution

design & 
development 

centered 
initiation

client/ 
context 
initiated
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FIGURE 1.1: Design science research methodology. Adapted from Peffers et al. (2007). The
development of adaptation rules follows an iterative process, starting with 1 problem identification
& motivation, and culminating in 6 communication of the findings. For each adaptation rule, a new
iteration of 2 definition of objectives, 3 design & development, 4 demonstration, and 5 evaluation
is initiated. Alternative process sequences that were not applied in this thesis are marked in gray.
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1. INTRODUCTION

Following a problem-centered initiation, we identified a lack of empirically vali-
dated adaptation rules that specify how multimodal interfaces should adapt their
communication modality and/or content to the user’s current state in order to
improve the interaction for them. The output of the first step of the process, in
which we defined and motivated the research problem, is presented in Chapter 1.1.
It explains the relevance of interfaces that adapt the presentation of information
to the dynamic needs of their users, and identifies a lack of rules to enable such
adaptive behavior. In the second step, the objectives of the artifact were defined in
the form of requirements (Chapter 1.2). Five functional requirements narrow down
the configuration space of possible interface adaptations and specify demands on
the adaptation conditions. Three additional non-functional requirements define
the desired outcomes of the adaptation. After an adaptation rule was designed
(step 3 ), we integrated it into an application to demonstrate its use in a suitable
context (step 4 ). Using an experimental research design, it was then evaluated
against the metrics defined in the non-functional requirements (step 5 ).

In the first iteration of the process (Chapter 3), we defined an adaptation rule for
modality alignment and integrated it into a smart home display:

ADAPTATION RULE 1: Modality alignment
if preferredInput = speech then

call activateAudioOutput ()
call disableTextOutput ()

else
call disableAudioOutput ()
call activateTextOutput ()

end if

The evaluation revealed that the rule violates the robustness requirement (RNF 3),
as the accurate inference of modality preferences is conditional on prolonged
interactions. Thus, a second iteration of the process, starting with a refinement of
the objectives, was initiated (Chapter 4). In order to overcome the shortcomings
of the first adaptation rule, a stronger emphasis was placed on robustness. The
functional requirements for dynamic user-centric adaptation (RF 1 - RF 3), in
return, were relaxed. Consequently, we implemented a non-adaptive parallel
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1.3. DESIGN SCIENCE RESEARCH METHODOLOGY

activation of two presentation modalities to mitigate confusion and tested it in a
virtual meeting application. It can be applied without having any data about the
user, and is therefore robust to situations with no or little user interaction. The
following rule for multimodal redundancy was defined:

ADAPTATION RULE 2-1: Multimodal redundancy
call activateAudioOutput ()
call activateTextOutput ()

The experimental observations revealed that the benefit of bimodal presentation –
more specifically, a spoken discourse with subtitles – is conditional on its perceived
usefulness, as well as on the origin of the confusion. As a result, we propose to
augment the rule with an adaptive component that deactivates the secondary visual
modality when multimodal redundancy leads to no improvement in performance:

ADAPTATION RULE 2-2: Selective multimodal redundancy
call activateAudioOutput ()

while audioActive do
if confusionAtStart then

call activateCaptions ()
end if

while captionsActive do
if call checkConfusion () >= confusionAtStart then

call disableCaptions ()
end if

end while
end while

Since this violates the universality requirement (RNF 2), a third iteration of
the process was started in which the objectives of robustness and universality
were prioritized (Chapter 5). The adaptation rule for content filtering achieves
robustness by using gaze data to infer user states, which are continuously collected
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1. INTRODUCTION

in the background with no user interactions required. Similar to Rule 1, an
adaptation condition based on personal preferences pledges universality:

ADAPTATION RULE 3: Content filtering
preferredObject = object1

for all objects in scene:
if dwell( Object i) > dwell( preferredObject ) then

preferredObject = object i

end if
end for

call getNextScene ( preferredObject )

The insights gained throughout the process – including the benefits of each
adaptation rule and their limitations – were discussed in multiple workshops and
seminars (cf. Table 1.1). The results from the first and third process iteration
were presented at distinct holdings of the Annual Conference on Intelligent User
Interfaces (IUI) and condensed versions of the research essays were published in
the conference proceedings. The results of the second process iteration are part of
a larger project and are currently in submission.

1.4. Contributions

The three essays presented in this thesis address the research problem by imple-
menting and evaluating the effectiveness of the three adaptation rules defined in
the previous section. Each adaptation responds to the user’s state which, in turn,
is inferred from implicit input. Table 1.1 provides an overview of the essays.
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TABLE 1.1: Overview of the three research essays included in the thesis. The confusion
detected in facial gestures (in italic) is only used as adaptation source in the modified (selective)
multimodal redundancy rule of Essay 2 and was not empirically tested.

Essay 1 Essay 2 Essay 3

Title Does using voice authen-
tication in multimodal
systems correlate with
increased speech interac-
tion during non-critical
routine tasks?

Evaluating the potential
of caption activation to
mitigate confusion in-
ferred from facial gestures
in virtual meetings

EyeDirect: A gaze contin-
gent system for personal-
ized video display

Research
questions

RQ1: Do users perform
authentication and rou-
tine tasks with the same
modality?
RQ2: Does presentation
in a modality that is com-
patible with the user’s
input improve satisfac-
tion?

RQ1: Can auto-
generated captions im-
prove comprehension?

RQ2: Do facial gestures
reveal confusion in virtual
meetings?

RQ1: How can prefer-
ences for video elements
be extracted from gaze?

RQ2: Does personalizing
videos increase engage-
ment?

Context Smart home display Virtual meeting Movie streaming

Adaptation
rule

Modality alignment (Selective) multimodal
redundancy

Content filtering

Adaptation
source (user
state)

Input modality chosen by
the user

Confusion detected in
facial gestures

Preferences identified
with eye tracking

Adaptation
target

Presentation: Audio
versus text output

Presentation: Activa-
tion of captions

Content: Protagonizing
preferred elements

Method Laboratory experiment Laboratory experiment Laboratory experiment

Analytic
strategy

Statistical analysis of
quantitative data

Statistical analysis of
quantitative data

Adaptation simulations
& statistical analysis of
quantitative data

PUBLICATION STATUS (AS OF JANUARY 2023):

Co-authors Shon, Becker Jeong, Becker Edinger, Bünemann,
Becker

Presented 2022: IUI
2022: ACOCA workshop
at Deakin University
(Prof. Zaslavsky)

2022: ACOCA workshop
at Deakin University
(Prof. Zaslavsky)

2021: IUI
2021: Research talk at
SMU (Prof. Misra)
2022: ACOCA workshop
at Deakin University
(Prof. Zaslavsky)

Published Accepted at IUI (CORE
Ranking A)

in submission Accepted at IUI (CORE
Ranking A)
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The methodology for answering the research questions is based on laboratory ex-
periments with primarily quantitative data analysis methods. In each experiment,
one of the three adaptation rules is integrated into a different application, either
from a commercial provider (Essay 2), or implemented specifically for the purpose
of the experiment (Essay 1 and Essay 3). In Essay 1, we implement a smart home
display through which ambient settings can be manipulated. Essay 2 is situated
in the context of a virtual meeting. For the evaluation in Essay 3, we design and
implement a framework for adaptive movie display, called eyeDirect.

1.4.1. Overview of Essay 1

Empirical evidence has firmly established that individuals differ strongly with
regard to their preferences for interaction modalities (Oviatt et al., 2004). Exam-
ples of applications that recognize this variability include messenger application
which may take either keyboard or voice input and present incoming responses as
text or audio messages – whichever best suits the user’s context and preference.
At the same time, a person’s interaction patterns are persistent and can typically
be detected from the first inputs (Oviatt et al., 2003, 2005; Xiao et al., 2002).
Authentication is often the first point of interaction with an application. The
users’ login behavior can thus be used to immediately adapt the communication
modality to their preferences. Yet, given the sensitive nature of authentication,
this interaction may not be representative of the user’s inclination to use speech
input in non-critical routine tasks. In a first step, Essay 1 therefore explores
whether the interactions during authentication differ from non-critical routine
tasks in a smart home application:

RQ1.1 Do users perform authentication and routine tasks with the same
modality?

The results of an experimental study with 41 participants show that the authenti-
cation behavior does not correlate with the observed interaction behavior during
non-critical tasks, nor with the perceived usability of speech input.

In a second step, Essay 1 explores the effectiveness of aligning the presentation
with the modality in which the user provides input (Rule 1). Given the observed
dependence of modality preferences on the task, the effect is assessed for two
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different scenarios: Depending on the scenario, the presentation is compatible
with the input modality that the user chooses to complete (1) authentication, or
(2) routine tasks.

RQ1.2 Does presentation in a modality that is compatible with the user’s
input improve satisfaction?

The evaluations reveal that aligning the presentation modality to user input from
short interactions has no effect on their attitude towards audio presentation,
independent of whether the adaptation responds to input from authentication or
non-critical tasks.

Essay 1 thus demonstrates that predicting modality preferences requires data
from prolonged and extensive interactions, which violates the non-functional
requirement for robustness (RNF 3). Therefore, if the user’s dominant modality
can not reliably be inferred from the available data, fusion and fission techniques
(cf. Section 2.1) should be applied in order to prevent user frustration when they
can no longer communicate with the system in the modality of their choice.

1.4.2. Overview of Essay 2

In many situations, explicit input is not provided or its quantity is not sufficient
to reliably infer the user’s dominant modality. For instance, a user passively
watching a video or attending a virtual meeting with a large number of partic-
ipants is unlikely to interact much. Essay 2 therefore explores whether, under
such circumstances, it can be beneficial to present information through multiple
modalities simultaneously. A non-adaptive strategy is chosen based on empirical
evidence suggesting that static interfaces can be preferred over their adaptive
counterpart if perceived as more comprehensible and predictable (Shneiderman,
1997). Essay 2 investigates the effectiveness of the strategy in the context of a
virtual meeting.

During the COVID-19 pandemic, virtual meetings have become an integral part of
collaboration in industry, academia, and other parts of society and are now likely
to persist and complement our daily routines. Thus, it is important that meeting
participants understand discussed topics as smoothly as in physical encounters.
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However, attendants often experience confusion, but are hesitant to signal their
situation out of timidity or politeness. Essay 2 thus applies multimodal redundancy
(Rule 2) to investigate whether captioning auditory output is a suitable tool for
mitigating confusion:

RQ2.1 Can auto-generated captions improve comprehension?

The results of a study with 45 Google Meet users reveal that multimodal pre-
sentation can be beneficial, but with some reservations that violate the non-
functional requirement for universality (RNF 2). Captions can help overcome
non-understanding due to poor audio quality or language deficiencies – but not
confusion resulting from contradictory or incongruent information – as long as
they are perceived as useful.

To mitigate negative side effects such as occlusion of important visual informa-
tion when captions are not strictly needed, Essay 2 proposes activating them
dynamically in a proactive way only when a user effectively experiences confusion.
Assuming that the non-understanding issues were not a transient state, but rather
caused by persisting auditory or language induced issues, the adaptation seeks
to improve the comprehension of the following spoken discourse. To determine
instances that require captioning, it tests whether the subliminal cues from facial
gestures – specifically blinks, facial action units, and the expression of emotions –
can be used to detect confusion:

RQ2.2 Do facial gestures reveal confusion in virtual meetings?

A quantitative analysis confirms that confusion during purely auditory presen-
tation activates six action units – specific facial regions that are defined by the
fundamental movements of a muscle group (Ekman & Friesen, 1978). With
captioning, it additionally leads to less blinks and expressions of neutral emotion.

1.4.3. Overview of Essay 3

The first two essays reveal important limitations of modality adaptation. Its
effectiveness is contingent on situations in which user data can be readily collected
and the presentation of information in multiple modalities is perceived as useful,
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rather than a distraction. Essay 3 therefore passively monitors the users’ gaze to
create a model of their current state that is robust to low-input situations. Using
the dynamic state information, it investigates whether adaptations that target
the content itself are more universally beneficial to different target groups.

The experimental investigation in Essay 3 is conducted in the context of movie
streaming. The constant distractions from ubiquitous technologies have turned
television into a side event rather than a deliberate pastime. Movie directors thus
struggle to find new ways to sustain the attention of their audience. Interactive
movies usually require the viewer to actively decide how the plot progresses,
creating an experience more akin to video games than film (Netflix, 2021a, 2021b).

Essay 3 therefore evaluates whether tailoring the content of a video to individual
preferences can create higher engagement. Adaptive videos are created with
eyeDirect, a system that analyses gaze data and personalizes the plot of a video
without the viewer’s active intervention. User preferences are inferred from their
gaze distribution to different elements in a scene. The subsequent scene then
dynamically zooms in on the object or person of the user’s predicted preference.

In a laboratory experiment with 175 participants, the adaptation is evaluated
with regard to two research questions:

RQ3.1 How can preferences for video elements be extracted from gaze?

RQ3.2 Does personalizing videos increase engagement?

Essay 3 identifies multiple gaze features that can effectively identify preferences,
and demonstrates that personalized videos have a positive effect on focused
attention and involvement, but not on novelty perception.

The findings from the experimental investigation in Essay 3 have important
implications for the use of content adaptation in movie streaming. Adaptation can
increase involvement and attention to videos by putting into focus the viewer’s
preferred elements.
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1.5. Structure of the thesis

This chapter motivated the research problem that the thesis addresses and defined
the requirements for user-centric adaptation rules in multimodal systems. Further,
it outlined the design process leading to the development of three adaptation rules
and provided an overview of the research essays in which they were communicated.
Chapter 2 lays the conceptual foundations for the thesis, starting with a general
framework for adaptation in multimodal systems. Strategies for user-centric
adaptation of multimodal interfaces in related literature are discussed, and theories
on which the proposed adaptation rules are grounded are introduced. Chapter 3
and Chapter 4 present two research essays that investigate strategies for modality
adaptation. The research essay presented in Chapter 5 discusses the effectiveness
of content adaptation. Chapter 6 concludes the thesis with a summary of the
theoretical contributions and practical implications for the design of adaptation
strategies in multimodal systems. Building on this discussion, the chapter reflects
upon limitations and future research directions.
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2. Theoretical foundations & related literature

Adaptive multimodal interfaces have emerged as an interdisciplinary field in which
adaptivity adds an additional layer of complexity to the challenges of multimodal
interfaces. This chapter lays the theoretical foundations for these systems, starting
with a brief definition of multimodal interfaces and the introduction of a general
framework for their adaptive realization. Theories from cognitive science are
introduced that lay the conceptual foundations for the formulation of promising
user-centric adaptation rules. Finally, concrete implementations are discussed by
means of related literature that presents solutions for a variety of domains.

2.1. Definition of multimodal interfaces

Multimodal systems receive and respond to input through more than one modality
which is typically associated with one of the human senses for visual, touch,
or auditory communication (Turk, 2014). Following the definition proposed by
Sebe (2009), this thesis considers an interface as multimodal only if multiple
communication channels are available for input and/or output. Thus, an interface
that accepts speech and touch input, or can deliver the output as either an
auditory or a written text message is considered multimodal. In contrast, an
interface that extracts gaze data from a commercial eye tracker and a common
camera, or announces messages through a voice assistant and acoustic warning
signals does not classify as multimodal.

The first multimodal system considered as such was developed in 1980 at MIT (Bolt,
1980). The ‘Put-That-There’ interface enables users to identify virtual objects on
a display by pointing at them, and then manipulate the selected object through
speech commands. Over the course of the years, an abundance of architectures for
designing multimodal interfaces have been developed (Dumas et al., 2009; Turk,
2014), most of them following the reference framework for multimodal interaction
of the World Wide Web Consortium (W3C, 2003). Common to all architectures is

17



2. THEORETICAL FOUNDATIONS & RELATED LITERATURE

the integration of components for synchronizing input and output from multiple
modalities. Figure 2.1 depicts the general architectural design that, in compliance
with the W3C framework, typically underlies a multimodal interface (Dumas
et al., 2009). Input from various sensors is aggregated and interpreted by a fusion
component (Lalanne et al., 2009; Sebe, 2009). A fission component determines
the most appropriate output channels with regard to the context and prepares
synchronized content in multiple modalities (Boll et al., 1999; Dalal et al., 1997;
Dumas et al., 2009).
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FIGURE 2.1: Architecture of multimodal interfaces. Adapted from Dumas et al. (2009).
Multimodal input is integrated by a fusion component. A fission component manages multimodal
output by creating and synchronizing content in multiple modalities that are suitable for the context.

As the number – and thus also the diversity of computer users and the variability of
their physical surroundings – increases, the call for making multimodal interfaces
context-aware has grown louder (Kim et al., 2021). In a set of guidelines, Reeves et
al. (2004) specify that modality integration shall take into account user preferences
and abilities, and present output in the most appropriate format for their current
context. Such behavior requires a system with self-adaptive capabilities.

Adaptive multimodal interfaces (Jameson, 2007; Kong et al., 2011; Langley, 1999)
have been introduced under a variety of alternative terms, including ‘intelligent
multimedia interfaces’ (Maybury, 1994) and ‘perceptual interfaces’ (Turk, 2014).
While different names are used to describe the systems, the common idea is to
use the context, including the current state of the user, to represent information
in a way that best supports the execution of a given task.
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2.2. ADAPTATION IN MULTIMODAL INTERFACES

Research in the domain of adaptive multimedia has primarily focused on optimizing
the technical quality of media presentations given the hardware capabilities of the
device and the requirements of the task (Boll et al., 1999; Prabhakaran, 2000).
In contrast, this thesis adopts the user-centric perspective of human-computer
interaction (HCI). Thus, adaptation is driven by characteristics of the users,
including their preferences, abilities and cognitive state (Reeves et al., 2004).
In the following, we discuss how such user-centric adaptive functionalities can
be integrated into multimodal interfaces. A generic framework for self-adaptive
systems is introduced and the relevant design elements for its application to
multi-modal interfaces are defined.

2.2. Adaptation in multimodal interfaces

Weyns et al. (2012) defined self-adaptation of a system as the “capability to adapt
itself to internal dynamics and dynamics in the environment in order to achieve
certain goals." Brun et al. (2009) further specified that “the systems [must] decide
autonomously (i.e., without or with minimal interference) how to adapt or organize
to accommodate changes in their contexts and environments." This behavior is
typically realized through a feedback loop that reacts to changes in the controlled
process (Krupitzer et al., 2015). Most self-adaptive systems are based on the
MAPE-K cycle introduced by Kephart and Chess (2003). It assigns the responsi-
bilities of the adaptation engine to four central components: Monitor, Analyzer,
Planner, and Executor (MAPE). An additional shared Knowledge base (K) stores
information persistently over multiple feedback loops. Figure 2.2 illustrates how
the MAPE-K cycle can be applied to realize adaptivity in multimodal interfaces.

The monitor collects raw data from the managed resource – comprising all software
and hardware components of the adaptable system – and processes it by applying
validation, filtering, and clustering techniques. In multimodal interfaces, data
is typically collected through sensors such as the device camera, a microphone,
or the physiological sensors of wearable devices (Baig & Kavakli, 2019; Karpov
& Yusupov, 2018; Turk, 2014). User input from the keyboard, mouse, or touch
display is another rich source of information (Kim et al., 2021).

The analyzer reasons about the data and decides whether an adaptation is needed
to achieve the objective of the system. In the HCI domain, this typically entails
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FIGURE 2.2: MAPE-K cycle for adaptation in multimodal interfaces. Adapted from Kephart
and Chess (2003). Adaptation responsibilities are divided among an independent monitoring, analysis,
planning, and execution component. All four components are connected to a shared knowledge base.

the construction of a user model. Depending on the objectives, the model may, for
instance, represent the user’s cognitive state (Debie et al., 2021; Mutlu-Bayraktar
et al., 2019), preferences (Gal & Simonson, 2021; Hakim & Levy, 2019), emotions
(D’Mello & Kory, 2015; Dzedzickis et al., 2020), expertise (Kumari et al., 2017),
or personality (Taib et al., 2020). If the user model violates the target state, an
adaptation is triggered. For example, cognitive overload leads to a performance
decrease (Paas et al., 2004). The expected reaction of an adaptive system would
therefore be the initiation of measures that return the user to a healthy state.
In addition, adaptation can be triggered by the environment, time, or system
and task states (Feigh et al., 2012). Two examples for task state triggers will
be discussed in Essay 1 and Essay 3. In Essay 1, adaptation is initiated after
successful login. In Essay 3, decisive scene cuts in a movie trigger the adaptation.
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By drawing on inference rules, the planner determines the configuration space of
possible changes that can be applied to accomplish the system’s objectives given
the state of the user model. If multiple alternative actions are possible, the action
that results in the most desirable state is chosen. According to the taxonomy by
Feigh et al. (2012), adaptation can take place on four different levels: (1) function
allocation (i.e., determining the person or system to perform a task), (2) task
scheduling and prioritization, (3) interaction form and modality, or (4) quality and
quantity of content. The first two levels target system-level adaptations that may
lead to an activity being delayed, delegated to another entity, or not executed at
all. In contrast, task-level interface adaptation targets either the modality (level
3) or the content itself (level 4). In the previous example of a user experiencing
cognitive overload, one possible configuration could be to present the content in
an additional modality, which can reduce extraneous load on the working memory
(Gellevij et al., 2002; Mousavi et al., 1995). Essay 2 discusses how effective such
a strategy is for reducing confusion. An alternative configuration that targets
the reduction of intrinsic load (Paas et al., 2003) by manipulating the amount of
simultaneously presented information is discussed in Essay 3.

The executor orchestrates the adaptation by sending instructions to the effectors
of the managed resource. In case the adaptation plan foresees a modality adap-
tation, a structural change of the system is necessary. This entails activating or
deactivating presentation modalities as specified by the planner. The possibilities
for presentation range from visual and auditory to tactile channels, with some
interfaces even experimenting on olfactory output (Sarter, 2006). The effects of
modality adaptation on the user are studied in Essay 1 and Essay 2. In contrast,
content adaptation requires a change of the context, where context refers to the
activity that the user performs within a multimodal system (Bakkes et al., 2012;
Brusilovsky, 2012). Essay 3 applies content adaptation by tailoring the plot of a
video to the viewer’s personal preferences.

An additional shared knowledge base stores information persistently, thus making
it available to the MAPE components in future feedback loops. Knowledge data
such as adaptation triggers or inference rules have particular relevance for one
specific component. Other knowledge items influence the processes in several
components. Examples are training data that can be used to learn user models (Ng
et al., 2015; Ouyang et al., 2017) or adaptation rules based on the effectiveness of
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past adaptations (Hssina & Erritali, 2019). The sensors and interaction modalities
that are available to the managed resource determine which features the monitor
can extract from the raw data. They also narrow down the configuration space
for the planner. Similarly, both components are influenced by the requirements
of the task. For instance, in order to make inferences from gaze data collected
while contemplating the dynamic visual scene of a movie, additional processing
steps are necessary to remove the bias of motion (Heck et al., 2021). The planner,
for its part, should only consider adaptation strategies that do not compromise
the completion of the main task. A previous study in which we investigated
adaptation strategies for sales terminals demonstrates the significance of this
constraint. We identified four content adaptation techniques that are suitable
in e-commerce settings: prioritization, filtering, recommendation windows, and
product cross-selling (Heck et al., 2019). For self-order terminals in fast food
restaurants, we propose applying a filtering strategy to hide irrelevant menu
options based on attention cues from eye tracking data. In a different setting, such
an approach could be detrimental if content filtering leads to loss of information.
One example are educational systems, where students attempting to learn a
conceptual topic would have lower learning gains if they were only instructed on
a subset of the topic for which they demonstrate interest.

Several frameworks have been developed that specifically focus on handling
adaptive presentation in multimodal interfaces (André, 2000; Duarte & Carriço,
2006; Gutierrez et al., 2005; Kerpedjiev et al., 1997; Martin, 1998). However, the
specification of how the interface reacts to an adaptation trigger is left to the
discretion of the application designer (Maybury & Wahlster, 1999). Since this
thesis seeks to define adaptation rules with a strong theoretical foundation, the
following section provides an overview of theories from cognitive science. The
theories form the pillars on which the adaptation rules presented in the three
research essays are built. Each of them is based on the hypothesized effect of how
content and modality adaptation affects the usability of multimodal systems.
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2.3. Theoretical foundations of adaptation rules

Working memory is a brain system that temporarily stores and manipulates
information to solve complex cognitive tasks, which may then ultimately be
transferred to the more permanent long-term memory (Baddeley, 1992). Since its
capacity is limited, Cognitive Load Theory (Sweller, 1988) investigates techniques
that reduce the load on working memory. It distinguishes between intrinsic,
extraneous, and germane load (Paas et al., 2004).
Intrinsic load increases with the number of logically related elements that have to
be processed simultaneously (Paas et al., 2003). Consequently, content filtering
can reduce intrinsic load. In digital environments, rich media and emotional
designs – often realized through purely decorative elements – generate additional
load, but at the same time promote motivation (Skulmowski & Xu, 2021). Essay 3
therefore investigates how content filtering affects engagement. The filtering
mechanism specified in Adaptation Rule 3 effectively reduces the number of
related media elements while maintaining their richness and emotional character.
This is realized by identifying and prioritizing the user’s preferred elements.

In contrast to intrinsic load, extraneous and germane load can be manipulated by
how information is presented (Paas et al., 2003). Germane load forms when new
information is organized into schemas. While increasing the immediate load on
the working memory, the developed schemas allow to automate and accelerate the
processing of new information in the long run. Extraneous load, in contrast, is the
result of unnecessarily complex instructional material. Redundant information or
cross-references that need to be looked up increase extraneous load (Sweller &
Chandler, 1991). Since it benefits neither immediate comprehension nor long-term
learning, educational material is typically designed to minimize extraneous load
(Klepsch & Seufert, 2020; van Merriënboer & Sweller, 2010).
Working Memory Theory (Baddeley & Hitch, 1974) assumes that the working
memory consists of multiple largely independent sub-systems that process infor-
mation perceived and communicated through different senses. Therefore, while
working memory capacity is limited, processing in a subsystem is not noticeably
disturbed by information from a different modality (Baddeley, 1992).
In multimodal interfaces, the composition of the working memory system leads to
competing effects on extraneous load that Sweller et al. (1998) documented in
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two principles of Cognitive Load Theory. The redundancy principle proposes that
replicating information in another modality – for instance, by transcribing spoken
discourse into text – can increase extraneous load and should thus be avoided
(Kalyuga, 2012). In contrast, the modality principle recommends presenting infor-
mation in multiple modalities in order to use the processing capacity of several
working memory sub-systems (Gellevij et al., 2002; Mousavi et al., 1995). The
improved understanding of captioned videos, which has been observed for both
language learners (Etemadi, 2012; Hayati & Mohmedi, 2011; Perego et al., 2010;
Winke et al., 2010; Zareian et al., 2015) and students studying online lectures
in their native language (Morris et al., 2016; Zheng et al., 2022), supports the
principle. In the evaluation of Adaptation Rule 2, we thus test whether the
expansion of working memory through multimodal presentation is greater than
the additional load imposed by the redundant presentation of content.

Multiple Resource Theory (Wickens, 2002) identifies a limitation of the modality
principle. It states that the functionally separate processes of perceiving system
output and providing input in response to it – even if performed simultaneously –
do not compete for a common resource. Consequently, information processing in
the working memory is not necessarily more efficient when input and output are
communicated in different modalities.
The symmetry principle, which is rooted in Gestalt Theory (Wertheimer, 1938),
even suggests that the working memory can process related input and output of
the same modality more efficiently. Grounded on Aristotle’s claim that “the whole
is greater than the sum of its parts", Gestalt theory posits that the combination
of perceptual elements gives rise to emergent properties. One of its principles –
the principle of symmetry – asserts that humans perceive symmetrical elements as
part of a coherent whole. As a result, grouping elements that are communicated
through the same sensory modality (and are thus considered to be symmetrical)
conserves mental resources (Oviatt et al., 2003).
Further evidence for a beneficial effect of input and output alignment stems
from social psychology. Communication Accommodation Theory is based on
the principle of convergence – a strategy in which individuals assimilate their
communication behavior to that of another person in order to be perceived as
more likable and make the communication more efficient (Giles et al., 1987).
Neurological processes in the mirror and echo neuron systems prepare the human
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organism to respond to the actions of another individual by activating brain
regions that are associated with these actions (e.g., speaking or moving) (Oviatt,
2017). As a result, communication partners are more likely to respond in the same
modality through which they receive information. In human-computer interaction,
humans mimic the language (Iio et al., 2015) and movements (Fujiwara et al.,
2022) of intelligent conversational agents. In turn, agents that adopt such an
assimilation strategy by mimicking the movements of their human communication
partner are more persuasive (Bailenson & Yee, 2005). Grounded on these theories,
Adaptation Rule 1 specifies that output is presented in a modality that is
considered compatible with the user’s input (Schaeffner et al., 2016). Specifically,
spoken requests are answered by a voice assistant, whereas manual input is followed
by text output. Essay 1 tests the effectiveness of the rule.

While existing adaptation approaches for multimodal interfaces seldom consider
the role of cognitive theories, applications have been developed in a variety of
domains. In the following, we review how modality and content adaptation has
been realized in applications with multimodal interfaces that – while not discussing
their theoretical foundations – implement concrete adaptation rules.

2.4. Related literature on user-centric adaptation

Personalized services have been developed for almost all situations in which a
person interacts with an information system, most notably education (Apoki
et al., 2020; Ennouamani & Mahani, 2017), recommender systems (Burke, 2007),
and automotive applications (Murali et al., 2022; Sikander & Anwar, 2019; Wang
et al., 2006). Most often, however, they rely on explicit input that the user has to
provide – for example in the form of a questionnaire – before being able to use
the service (Rothrock et al., 2002). In contrast, the focus of this thesis lies on
adaptation that immediately responds to an implicitly inferred user state. In the
following, we review related literature on applications that adapt to implicitly
inferred, dynamic user states. Some exemplary applications that adapt to the
users’ general preferences – typically identified through long-time observations –
or to explicitly reported user states are discussed briefly. However, the list is by
no means exhaustive and only serves the purpose of giving a complete picture of
the domains that hold potential for adaptive applications.
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TABLE 2.1: Overview of applications with user-centric adaptation rules by application
domain. Survey papers are marked in italic with an asterisk.
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Automotive:
Murali et al. (2022)* • • • • • • • • • • • • • •
Sikander and Anwar (2019)* • • • • • •
Wang et al. (2006)* • • • • •
Tchankue et al. (2011) • • • •
Nass et al. (2005) • • •
Nasoz et al. (2010) • • • • • •
Moniri et al. (2012) • • • •
Manufacturing:
Josifovska et al. (2019) • • • • • • • •
Smart Office:
Adam et al. (2017) • • • •
Maat and Pantic (2007) • • • • •
Vertegaal et al. (2003) • • •
Smart home:
Coelho et al. (2011) • • • • • • • • •
Reithinger et al. (2003) • • • • • •
Education & learning:
Apoki et al. (2020)* • • • • • • • • • •
Brusilovsky (2003)* • • •
Ennoumani et al. (2017)* • • • • • • • • • • • •
Mousavinasab et al. (2021))* • • • • • • • • • • • •
Garcia Barrios et al. (2004) • • • • • •
Duarte and Carriço (2006) • • • • •
Recommender systems:
Mobasher et al. (2000) • • •
Cheng and Liu (2012) • • •
Kozma et al. (2009) • • •
Hardoon et al. (2007) • • •
Salojärvi et al. (2004) • • •
Xu et al. (2008) • • •
Linden et al. (2003) • • •
Kim et al. (2001) • • • • •
Qvarfordt and Zhai (2005) • • •
Duarte and Carriço (2006) • • • • •
Cinematography:
Bolt (1981) • • •
Starker and Bolt (1990) • • •
Hansen et al. (1995) • • •
Vesterby et al. (2005) • • •
Netflix (2018, 2021a, 2021b) • • •
Peng et al. (2018) • • • •
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Table 2.1 summarizes the reviewed applications. Possible forms of adaptation
range from modifying the presentation form over content changes, up to ambient
adjustments. Adaptation targeting the presentation form may select the most
suitable output modality, modify the graphic or vocal design, or augment specific
elements with either additional information or visual and/or acoustic highlighting.
Content changes typically entail some form of ordering and/or selection or hints
through notifications and help dialogues.
The decision on how the interface should adapt to achieve a predefined goal is
based on a user model. Dynamic states that are monitored include interaction
preferences, interests, emotions, fatigue or distraction, incomprehension, and
knowledge. Additionally, the model can store more permanent characteristics
of the user such as demographics, abilities, and cognitive style. While these
variables may change over time, they are unlikely to vary over the course of a
single interaction.
The input for the user model can either be provided explicitly by the user, or
implicitly during their interaction with the application. Implicit cues are typically
collected from the user’s interaction with the application, cursor movements, or
from physical sensors that monitor changes in the user’s voice, expression, gaze,
physiological measurements, or body movements.

2.4.1. Automotive

Car manufacturers are integrating more and more intelligent in-vehicle systems. In
addition to infotainment systems that can switch from manual entry on a graphics
display to spoken dialogues, warning systems that react to fatigue, emotions, or
distraction are emerging (Murali et al., 2022; Sikander & Anwar, 2019; Wang
et al., 2006). A number of alternative responses to critical states have been
proposed, including visual, acoustic, or vibrotactile alerts, engaging conversations,
or ambient adjustments. For example, the multimodal interface for mobile info-
communication (MIMI) developed by Tchankue et al. (2011) infers distraction
from the driver’s performance. In critical situations, the car prompts a warning
sound and blocks phone calls to avoid interruptions.
Based on the empirical finding that drivers are more attentive and have less
accidents when the car’s infotainment system responds in a voice that matches
their emotions, Nass et al. (2005) propose affective voice assistants. While not

27



2. THEORETICAL FOUNDATIONS & RELATED LITERATURE

yet implemented, the authors suggest that emotions may be inferred from facial
expressions, sensors attached to the steering wheel, or vocal cues.
Nasoz et al. (2010) monitor physiological sensor readings from a wristband to infer
emotions. Depending on the driver’s personality traits, the system responds to
emotional states with one out of multiple adaptation options. Possible measures
include changing the radio station, suggesting a rest stop or relaxation exercise,
rolling down the window, splashing water into the driver’s face, telling them to
calm down, and making a joke. Through reinforcement learning, the driver’s
emotional reactions to the applied measures are used to gradually refine the
adaptation strategy.

Although less prevalent, adaptation to static user characteristics has been explored.
Moniri et al. (2012) use acoustic cues from spoken input to infer the gender and
age of drivers in a rental car. Gender information is used to select a voice assistant
that matches the driver’s gender and filter for female parking slots. For senior
drivers, written text is enlarged, the voice assistant speaks at a slower rate, and
warning messages are prompted sooner to account for longer reaction times.

2.4.2. Manufacturing

The smart production plant interface developed by Josifovska et al. (2019) extracts
user information from a Digital Twin to dynamically adapt its navigation, layout,
modality, or complexity of the content. Relevant characteristics stored in the
Digital Twin – if explicitly entered by the user – include demographic data,
communication preferences, as well as physical, cognitive, and sensory abilities.
The authors outline exemplary adaptation rules which include, inter alia, switching
from visual to vocal communication when interacting with a vision impaired user.
Whenever a worker is standing at some distance from the display, the interface
adapts the visual layout or switches to audio presentation if the worker is not
within viewing range. The speed and volume of audio output, as well as the
amount of presented information may be adapted to the worker’s abilities which
are inferred from their age and previous interactions.
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2.4.3. Smart office

Adaptation in enterprise systems aims to reduce the complexity of tasks and
offer proactive support. Adam et al. (2017) developed a framework with generic
guidelines for stress-sensitive adaptive enterprise systems (SSAES). Stress may be
measured through any unobtrusive sensor. While the authors define no concrete
adaptation rules, they propose to implement measures including email filtering,
help dialogues, and decision support elements when the system senses that the
user is stressed.
In Gaze-X (Maat & Pantic, 2007), adaptive support is offered when the user
pauses an activity or looks at an element for a long time. For each event, multiple
adaptation options are defined. For example, when the user tries to open a file
within an application, the system may either highlight recently opened file names,
or launch a desktop search application. When attempting to edit a table, it can
direct the user towards a help tab or table-related menu options. The user’s
preferences for each option are dynamically updated based on explicit feedback or
reactions – inferred from facial expressions – to an adaptation.

To improve communication in geographically distributed work groups, Vertegaal
et al. (2003) present a virtual meeting tool that attenuates the audio output
from attendants that the user is not currently looking at. To enhance visual
communication, an eye tracker monitors the direction of the user’s gaze and the
video stream is transmitted from the camera – selected from three available devices
– that captures the user’s face from a frontal view.

2.4.4. Smart home

GUIDE (Coelho et al., 2011) is a multimodal interface that aims to support
elderly people in tasks such as controlling their television and home appliances,
participating in video conferences and telelearning, as well as media and social
interactions. It maintains a user model of their physical and cognitive abilities,
knowledge, preferences, affective states, and attention. The user model is initialized
with data that the users enter when first accessing the system, and is gradually
refined through interactions with the application. GUIDE adapts the layout
and content, and always presents information in the user’s preferred modality.
Examples include increasing the volume in response to a disoriented user, filtering
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menu options and increasing their size if the user is inactive for a long time, or
deactivating help messages for experienced users.
The smart home application of the embodied agent SmartKom (Reithinger et
al., 2003) distinguishes between two modi. If the user is paying attention to or
interacting with the display, detailed information is projected onto the screen and
a voice assistant only summarizes the details of the user’s requests. Whenever
the user turns away from the screen, SmartKom retrieves only the most relevant
information, presented exclusively through speech.

2.4.5. Education and learning

Adaptive educational hypermedia systems personalize instruction strategies by
adapting content selection, navigation support, and presentation to the student
(Apoki et al., 2020; Brusilovsky, 2003; Ennouamani & Mahani, 2017). Content
selection identifies learning objects that are relevant to the student’s learning goals
and are compatible with their knowledge and background. Navigation support
shows or – depending on the knowledge level – hides links to additional learning
content and arranges them in an order that guides the user to the most relevant
information. Adaptive presentation can manipulate the layout or level of detail of
the learning material, or choose one of several alternative presentation formats
(e.g., text, audio, or video). In addition to learning goals and knowledge levels, the
user model typically maintains information about the student’s content, media,
and layout preferences, cognitive abilities, learning style, or their emotional and
physical state (Apoki et al., 2020; Ennouamani & Mahani, 2017).
Intelligent tutoring systems typically respond to the learners’ performance, knowl-
edge level, and navigation behavior (Mousavinasab et al., 2021). Less frequently,
variables including learning style, preferences, emotions, cognitive factors, or
culture are used to characterize learners. The focus of the adaptation lies on
individualized task selection, feedback and explanations, help dialogues – often
provided in a scaffolded manner – and learning path navigation. Most of the time,
the information is entered explicitly by the student or inferred from completed
learning assignments. One notable exception is AdELE (Garcia Barrios et al.,
2004), a learning platform that collects gaze data to provide adaptive function-
alities. Apart from tracking the students’ attention to the learning material,
gaze patterns give insights into levels of concentration, excitement, and fatigue.
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The authors envision the information to be used, for instance, for providing
additional explanations if understanding difficulties are detected, or suggesting
better learning strategies. However, the implementation of the system has not
been completed.

Duarte and Carriço (2006) apply a generic adaptation framework to a digital
book with adaptive annotations. The framework defines adaptation rules as
matrices that map all possible combinations of input modality (voice/ pointing),
output modality (voice/ graphical), content (e.g., complexity of instructions), and
layout. One adaptation rule stops the display of alerts that hint at supporting
material if the user initially ignores them. Conversely, if the user frequently
consults the indicated content, the interface starts presenting supporting material
without previously issuing alerts. Another rule specifies that the output modality
of annotations shall depend on the user’s preference for their immediate or
delayed display. Immediate display is provided as visual output, whereas delayed
annotations are announced by an audio-visual signal. However, the authors
emphasize that the adaptation rules are only exemplary, and that it is the task of
the designers to specify the adaptation matrix for their application.

2.4.6. Recommender systems

Recommender systems assist users in situations where their knowledge of the
available alternatives is insufficient for making a decision (Resnick & Varian,
1997). An example of an adaptive solution that seeks to improve web browsing is
described by Mobasher et al. (2000). Through embedded links, users can access
other websites that, given their browsing history, might interest them.

Gaze-based search engines identify images (Cheng & Liu, 2012; Kozma et al., 2009)
or documents (Hardoon et al., 2007; Salojärvi et al., 2004) that users dwell on as
relevant and retrieve items with similar attributes. Xu et al. (2008) recommend
videos with content that is related to the key frames of previously watched videos
that particularly attracted the user’s attention.

Online retailers such as Amazon recommend products related to items that the
customer has placed in the shopping cart (Linden et al., 2003). Using a similar
strategy, Kim et al. (2001) propose a solution for personalized advertisements in
online shops based on past transactions and demographic data.
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Smart tourist guides provide assistance for trip planning. For example, iTourist
(Qvarfordt & Zhai, 2005) displays supplementary audio descriptions whenever the
user dwells on a landmark. Duarte and Carriço (2006) implement a tourist guide
that responds to voice or gesture input by, for instance, switching from visual to
audio presentation, and from simple to detailed instructions. The authors specify
presentation modality, instruction complexity, synthesized speech type, and layout
as possible adaptation parameters, but define no concrete adaptation rules.

2.4.7. Cinematography

The groundwork for adaptive cinematography was laid by Bolt (1981) with a setup
of multiple video streams projected simultaneously onto a large screen. When
looking at a stream for several seconds, the window is enlarged and its soundtrack
activated. Starker and Bolt (1990) describe an attentive graphics world that
narrates the story of Saint-Exupéry’s ‘The Little Prince’. If the user looks at the
general scene, a speech-enabled avatar of the little prince tells a general story
about his planet. Whenever the user glances at a specific object for a prolonged
time, the prince starts explaining details about the object.
The vision of full-fledged self-adaptive movies described by Hansen et al. (1995)
was later implemented by Vesterby et al. (2005). Starting with a scene of two
people who leave a room in opposite directions, the person to whom the viewer
pays more attention is shown in the next scene.
In contrast to these subliminal adaptations, interactive Netflix movies pause at
decisive scenes and let the viewer decide how the plot continues (Netflix, 2018,
2021a, 2021b).

Pursuing a different objective, self-reflective movies metaphorize past experiences
of the user. Peng et al. (2018) narrate the adventures of a dog traveling to the
moon. During the week leading up to the presentation of the movie, the users
submit daily reports of their mood and behavior to an online questionnaire. In
the movie, the obstacles and social interactions that the dog encounters along the
journey vary with the user’s reported experiences of the past week. The user’s
mood is reflected by the dog’s behavior and expressions, as well as the visual and
acoustic design of the environment.
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2.5. Summary of theoretical foundations & implications
for further research

The review of related literature identified a respectable number of adaptive
applications, demonstrating their potential in a variety of domains. However,
most of the solutions lack both empirical and theoretical support. An experimental
investigation of how the adaptation affects usability has only been reported for
a few applications from the automotive domain (Tchankue et al., 2011), search
engines (Cheng & Liu, 2012; Kim et al., 2001; Qvarfordt & Zhai, 2005), smart
office solutions (Maat & Pantic, 2007), and cinematography (Peng et al., 2018).

To fill this gap, each of the three essays proposes and evaluates a rule for user-
centric adaptation of multimodal interfaces. The formulation of the adaptation
rules is rooted in empirically supported (and at times self-contradictory) cognitive
theories. Figure 2.3 illustrates how each theory-driven adaptation rule determines
the optimal presentation of content to achieve an adaptation goal. The adaptation
is conditional on a user state, which is inferred from sensor input.
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FIGURE 2.3: Logical connection between adaptation input and output. Theory-driven
adaptation rules determine how output shall be presented given the user’s state – which is inferred from
user input – to achieve an adaptation goal.
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Essay 1 tests whether modality alignment (Rule 1) – grounded in Gestalt Theory
and Communication Accommodation Theory – increases satisfaction by providing
higher usability to the user. If a sensor receives spoken (versus manual) input,
the user’s preferred modality is predicted to be auditory (versus visual-manual).
Consequently, auditory (versus written) output is created.

Essay 2 applies non-adaptive multimodal redundancy (Rule 2), which receives
support from Working Memory Theory and the modality principle of Cognitive
Load Theory. Since the rule does not meet its effectiveness goal of improved
comprehension, a revised version is proposed. With a stronger focus on the
redundancy principle of Cognitive Load Theory, selective multimodal redundancy
(Rule 2-2) captions spoken discourse only if the user’s facial expression reveals
that the multimodal presentation indeed reduces confusion.

Essay 3 tests whether content filtering (Rule 3) increases satisfaction by reducing
intrinsic load, as implied by Cognitive Load Theory. Preferred content in videos is
inferred from gaze and prioritized as the plot progresses.
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3. Essay 1: Does Using Voice Authentication in
Multimodal Systems Correlate With
Increased Speech Interaction During
Non-critical Routine Tasks?

The widespread availability of voice control with software components such as Siri
(Apple, 2021), Cortana (Microsoft, 2021), or Amazon Alexa (Amazon, 2021) have
introduced another convenient interaction method, complementing the traditional
manual input on personal devices. With the redundant implementation of all
available functionalities in different modalities (Oviatt, 2003a), users can easily
switch between multiple interaction options. Multimodal interfaces thus allow
users to interact with their devices in a modality that suits the immediate context.
Given the dynamics of most people’s busy lifestyles, a context may change almost
instantly (Oviatt et al., 2000). Yet, despite a long-standing history of research on
multimodal interfaces (Dumas et al., 2009; Jaimes & Sebe, 2007), their design is
still a challenging task, as each user’s interaction with such a system is different
(Oviatt et al., 2003). While it is possible to activate multiple communication
channels simultaneously, this may not be desirable. For instance, audio output
can be disturbing in public spaces, or even pose a threat to security when the
device reads out loud sensitive information (Cowan et al., 2017). In an attempt
to overcome these issues, adaptive multimodal interfaces use cues from the user’s
chosen input modality to infer the most appropriate output channel in a given
situation (Coelho & Duarte, 2011; Maat & Pantic, 2007).

In most applications, the user’s first point of interaction is authentication. However,
given its sensitivity to security issues, users may log in using a different modality
than they prefer for non-critical routine tasks. In particular, most people have
reservations about speaking a passphrase out of fear of being overheard (Trewin
et al., 2012). We therefore investigate whether the input for authentication differs
from interaction preferences during non-critical tasks. We study this question in
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the context of a smart home application that can be controlled using touch or
speech input. In a user study with 41 participants, we evaluate whether the input
modality that is used during login is continued to be used for the remainder of
the interaction, and whether users who choose voice authentication find speech
input more usable. We further test whether it is beneficial to the user if system
output is displayed in a compatible modality (cf. Schaeffner et al., 2016). Thus,
depending on the input, instructions and system responses are presented as written
or auditory output.

3.1. Related work: Multimodal integration patterns

Previous work that attempts to understand user behavior when interacting with
multimodal systems has mainly focused on studying under which contexts users
prefer multimodal over unimodal input. A consensus exists that the usability of
multimodal interaction is primarily driven by the activity (Morris, 2012; Oviatt,
1997; Oviatt et al., 2004; Williams et al., 2020). However, the views on how
task complexity relates to the suitability of multimodal interaction are conflicting.
Observations from experimental investigations suggest that users prefer unimodal
touch or speech input when executing simple tasks, but revert to multimodal input
as the tasks become more cognitively complex (Oviatt, 1997; Oviatt et al., 2004).
Consistent with these findings, Morris (2012) showed that unimodal interaction is
preferred for issuing simple commands to a speech and gesture controlled television.
When interacting with the considerably more complex image editing application
PixelTone, in contrast, the users preferred multimodal interaction over using only
speech or touch input (Laput et al., 2013). Conversely, elderly users have shown a
preference towards multimodal input for controlling a simple television application
(Coelho et al., 2011) and a recent study by Williams et al. (2020) suggests that a
combination of speech and gestures is more strenuous for complex tasks. Apart
from external task related factors, user specific variables influence the usability
of multimodal interaction (Bubalo et al., 2016; Oviatt et al., 2003). The more
experienced the users are, the more often they use multiple input modalities
(Bubalo et al., 2016). Once a user has developed a preference for unimodal or
multimodal interaction, their integration patterns remain consistent (Oviatt et al.,
2003). When asked explicitly to use both speech and manual input, the modalities
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are used either simultaneously (multimodal) or sequentially (unimodal). Attempts
to change the integration strategy (e.g., by introducing frequent errors) only
strengthened the previous strategy.

Input preferences. When given the choice between multiple interaction modali-
ties, manual input has been found to be preferred over speech in human-robot
(Profanter et al., 2015) and in human-computer interaction including applica-
tions for computer-based drawing (Alibay et al., 2017) and the documentation
of electronic health records in hospitals (Seligman & Dillinger, 2006). Empirical
evidence suggests that the observed preference persists even when speech is more
efficient and effective. Users of an interactive voice response system for reporting
public safety issues judged speech to be more efficient, but most often opted
for keyboard input when given the choice (Breetzke & Flowerday, 2016). In a
study with a smart television (Ibrahim et al., 2001), the traditional remote control
was preferred over speech interaction. Gestures were the modality of choice for
selecting virtual objects in an augmented reality (AR) application (Lee et al.,
2013). While this may be attributed to the higher cognitive load of speech input
(Schaffer et al., 2011), speech can be preferred if the benefits in terms of efficiency
and effectiveness are sufficiently high. Schaffer et al. (2015) report that users of a
restaurant booking application for mobile phones preferred speech when it led to
less interaction steps and had a low recognition error rate. In a study investigating
text input on smartphones, Smith and Chaparro (2015) report the lowest error
rates for speech input and physical keyboards. Both modalities were also ascribed
a high usability by the study participants. In an interactive map application, the
users chose manual input for simple location specifications, but preferred speech
for more extensive and not clearly defined object descriptions (Oviatt, 1997).
Similarly, interaction with the meeting documentation system Archivus suggest
that the mouse is used for simple navigation tasks, whereas speech is preferred
for free text entry (Melichar & Cenek, 2006). Since efficiency and effectiveness
depend on individual factors like demographics and prior knowledge, modality
preferences can differ from person to person (Jokinen & Hurtig, 2006). Dynamic
context variables such as the user’s environment and cognitive load influence the
effectiveness of a modality (Morris, 2012). Ideally, multimodal interfaces should
therefore adapt to the individual user and current situation.
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Output preferences. Preferences for output modalities depend on the interaction
context (Coelho et al., 2011). Adaptive multimodal interfaces therefore use input
from keyboard and mouse, cameras, and microphones to dynamically infer relevant
context variables, including the user’s affective state, attention, and task (Coelho &
Duarte, 2011; Maat & Pantic, 2007). Output is then presented in the modality that
is most appropriate for the situation. While increasing usability for inexperienced
users, output adaptation has not been found to benefit domain experts (Maat &
Pantic, 2007).

Our short glimpse into the research landscape evidences the importance of task
complexity and contextual factors for determining the suitability of a communica-
tion modality. In contrast, the effect of individual preferences on the interaction
behavior during different tasks is a topic that has not been systematically re-
searched. Specifically, little is known about the link between the interaction
modality that a user chooses for authentication and subsequent inputs for non-
critical routine tasks. We therefore analyze whether the behavior during login is
indicative of a user’s preferred modality for non-critical routine tasks.

3.2. The smart home application

We developed a simple prototype for a desktop application of a smart home
display. As telework became the norm during the COVID-19 pandemic, about
75% of office workers now wish to at least partly work from home (Poulton, 2020).
Assuming that the users prefer to control their home appliances through the same
device that they are already using during office hours, we conducted the study
with a desktop application. The application can be operated using touch or speech
input. Adaptive functionalities were integrated following the FAME development
guidelines for adaptive multimodal applications (Duarte & Carriço, 2006):

1. Identify adaptation variables. Which variables introduce variations from
outside of the system? Users can interact with the system through mouse
input or speech. Following the taxonomy of sensory modalities by Turk
(2014), we henceforth use the term ‘touch input’ when referring to mouse
clicks. The available input modalities were chosen to maximize usability
and user confidence. Touch input is still the default control mechanism
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on consumer devices (Hoffmann et al., 2019). However, speech-controlled
digital assistants such as Alexa (Amazon, 2021) or Siri (Apple, 2021) have
penetrated the market, so that most users are now comfortable using speech
commands. In a study investigating the usability of different input modalities
for smart home appliances, users were most experienced with touch and
speech input, and found these modalities the easiest and most enjoyable to
use (Hoffmann et al., 2019). The system adapts exclusively to the input
modality that the user chooses for authentication. Environmental variables
such as background noise do not influence the adaptation.

2. Identify adaptable variables. What variable system components should
respond to outside variations? Instructions and system responses are pre-
sented either as text, or read aloud by the text-to-speech (TTS) engine.

3. Select model attributes. What information requirements should be stored
in models? A user model registers whether speech or touch input was used
during the login task. The interface continuously listens for speech input
throughout the entire interaction. However, the model is static, i.e., it is
initialized when the user logs into the system and is not updated if the user
subsequently communicates in a different modality.

4. Design interaction model templates. How is information and the
relationships between components represented? The speech-to-text (STT)
engine informs the TTS module and the GUI about the modality through
with authentication was completed.

5. Define adaptation rules. What rules and methods define the adaptation?
If speech (touch) is used for login, the TTS module is activated (disabled),
and all text instructions on the GUI are disabled (activated).

The system was implemented in Python. The GUI was realized with Tkinter
which provides convenient functionalities for rapid prototyping (Python Software
Foundation, 2021). TTS conversion was realized with Window’s native Microsoft
Speech API (SAPI 5.3) (Microsoft, 2012). It was accessed through the pyttsx3
Python library. The online Python library SpeechRecognition establishes an
interface to the Google Speech Recognition engine. It has been found to
deliver superior recognition performance compared to other state-of-the-art speech
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recognition engines (Këpuska & Bohouta, 2017). The speech recognition engine
runs in the background and continuously listens for speech input.

3.2.1. Authentication procedure

When starting the application, the experimental instructions are displayed on
the screen and simultaneously read aloud by the system. After 20 seconds, the
participants are automatically routed to the login page. Authentication is a critical
security mechanism for smart homes to protect services such as paid television
channels from unauthorized access (Prange et al., 2021). It is of particular
importance for voice assistants due to the often sensitive nature of their services
and is typically the first point of interaction with the system. Unlike personal
computing devices, smart home applications cannot delegate the authentication
task to password management systems that automatically fill in the password,
because they would grant access to any person inside the house.

We implemented two alternative authentication tasks that are common for con-
sumer devices. Both tasks use a secret (i.e., user-specific knowledge) for authenti-
cation, independent of the chosen input modality. It should be noted that this
text-dependent authentication method differs from biometric voice authentication,
where the user’s identity is verified based on vocal parameters (Sae-Bae et al.,
2019). We chose this approach so that authentication is based on the same type
of credential, independent of whether touch or speech is used. In the study, one
authentication task was selected by the system at random. This allowed us to
investigate whether the choice of the authentication modality was biased by the
task. Login 1 uses identical tasks for touch and speech input. The user enters
the PIN ‘5678’, either on a virtual number pad or by saying the number sequence
out loud. Login 2 uses a different task for each input modality. If choosing touch,
the user draws a simple pattern onto the display. This is similar to the widely
used authentication on Android smartphones (Uellenbeck et al., 2013), and thus
provides both familiarity and high usability. Alternatively, the user can speak
the sentence “I wish to enter". In both tasks, the cognitive effort of touch is
comparable to speech input (cf. Chapter 3.4.1). We can therefore assume that the
choice of the input modality is not influenced by the amount of intrinsic cognitive
load (i.e., the mental effort induced by the task itself).
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By using two authentication tasks (Login 1 versus Login 2 ), we account for a
legacy bias that may be associated with the task. PIN authentication traditionally
requires touch input, since speech can induce a security breach in public spaces.
Users might therefore be more inclined to use touch for PIN authentication on the
smart home display, even though in the safety of their own home, spoken input
does not reveal the secret PIN to unauthorized individuals.

Since numerical digits have an empirically low recognition rate of about 75% (Baig
& Kavakli, 2018), we anticipated performance issues for spoken PIN authentication.
In order to not discourage participants from using speech and thus bias their
modality selection, we applied a Wizard of Oz experimental design in which
authentication verification was omitted. We did not verify whether the spoken
PIN entry was correct. In contrast, speech commands after authentication needed
to be recognized correctly in order for the system to respond.

3.2.2. Smart home functionalities

In our user study, we aimed to obtain a balanced sample of participants using each
of the available input modalities for the routine task. At the same time, we did not
want to bias their choice by using a task that could objectively be accomplished
more conveniently with one modality. The chosen form of interaction should
be entirely the result of a personal preference. Thus, we created a scenario in
which both modalities were equally convenient to use. Given that, in the telework
scenario, the users are already seated in front of their computer, the mouse lies
within easy reach. Speech interaction is typically only preferred under specific
circumstances (Coelho et al., 2011; Melichar & Cenek, 2006; Morris, 2012; Oviatt,
1997). In particular, it has been proven to be especially useful when executing
simple tasks that require only minimal input (Aldridge & Lansdown, 1999; Luger
& Sellen, 2016). The system thus provides control panels for three smart home
appliances that can be navigated with short and simple commands: By selecting
‘Weather Forecast’, the user can request a detailed weather report for one of the
seven days of the week, which is then retrieved with the Python library Pyowm.
The ‘Air Conditioning’ functionality allows the user to increase or decrease the
room temperature by pressing the respective button, or by saying “up" or “down".
In the ‘Light’ control panel, the lights of three rooms can be switched on or off.
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All functionalities can be executed with touch or speech commands, with the
latter corresponding to the button labels. Instructions and system responses to
user actions are provided as audio or text output, depending on the modality
through which authentication was completed.

3.3. Study design: Modality alignment

The objective of the experimental investigation was to test whether users who
favor voice over touch authentication on a multimodal interface also find speech
more useful during non-critical routine tasks:

H 1A. Voice authenticators are more inclined to use speech input in non-
critical tasks.

The hypothesis is based on the empirical finding that ease of use is the most
important criterion when selecting the modality for authentication, even more so
than confidence and privacy (Toledano et al., 2006). Since this is also the case
for non-critical tasks (Connell & Lynott, 2011), H 1A assumes that the same
modality is preferred for authentication and non-critical tasks.

Modality switches induce additional cognitive load (Connell & Lynott, 2011;
Sandhu & Dyson, 2012). Buisine and Martin (2003a) therefore suggest that
system output must be presented in audio format if the user of a multimodal
system chooses speech input (symmetry principle). Symmetric multimodality has
been applied to multimodal systems (Wahlster, 2003), but there is still a lack
of evidence on how it affects usability. We thus investigated whether those who
communicate through speech prefer audio output over written text. We formulate
the following hypothesis:

H 1B. Users prefer system output in the same modality they use for input
commands.

To test the hypotheses, a between-subjects experimental design with one treatment
group and one control group was adopted. Participants could authenticate
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themselves using either touch or speech. In the treatment group, system output
was presented in a modality that is compatible with the input from the login
task (Schaeffner et al., 2016). Thus, participants who authenticated themselves
by touch received exclusively visual output. For those who had logged into the
system using speech, the TTS engine converted all text elements into audio output
and written text was removed. For example, if a user logged in using speech
input, the weather forecast was presented exclusively as a spoken report. In the
control group, in contrast, system output was presented in the opposite – and
thus incompatible – modality of authentication (Schaeffner et al., 2016).

3.3.1. Apparatus

Participants were seated in front of an HP laptop with a 1.6 GHz i5-8250U processor
and 16 GB RAM. The GUI was projected onto the laptop display (1920x1080
pixels). We ensured that a stable WiFi connection persisted throughout all
experimental trials to prevent network induced performance issues of the speech
recognition. In compliance with existing COVID-19 regulations, participants were
wearing face masks while interacting with the smart home display. To compensate
for muffled voice input, a Jabra Evolve 40 headset was connected to the laptop.

3.3.2. Participants

We recruited 41 campus residents and their personal contacts (23 female, mean
age: 26.1 ± 3.4) for the experiment. Of the participants, 11 were enrolled in an
undergraduate program at our university, and 27 were currently pursuing or had
already completed a graduate degree. The participants were from 14 different
nationalities (22 South or East Asian, 19 European), with none speaking English
as their first language. No participant had any sensory impairment that could
affect the usability of an interaction modality. Participation was voluntarily, and
no monetary or equivalent incentive was given.

3.3.3. Procedure

Before starting the experiment, the subjects were informed that they were par-
ticipating in a research study in which they would interact with a smart home
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display. They were told that all mouse and speech input was recorded. After
completing the experiment, they were given a detailed explanation of its purpose.

Before using the system, the participants were given the login credentials. Since
the experiment consisted of a single session and no individual user accounts were
created, the same PIN was used for all participants. The experimenter then left
the room so that the participants would not be disturbed. Upon starting the
application, the following instructions were displayed on the computer screen:

“Thank you for trying out Smart Home Display. You can log in using
spoken commands or the mouse. After logging in, please feel free to
browse through the menus and explore Smart Home Display."

Once the participants had finished exploring the system, they were presented a
questionnaire to rate their perceived workload for the authentication task and the
usability of speech input and output.

3.3.4. Metrics

We evaluated the usability of the interaction along three constructs that measure
the workload of authentication, usability of speech input, as well as usability of text
and audio output. Table 3.1 lists the items that were used to collect subjective
user ratings. All items were measured on a seven-point Likert scale.

Perceived workload of authentication (A) was used as a control variable to test
whether the modality choice was biased by the intrinsic cognitive load of the task
itself. The construct was measured with six items from the NASA Task Load
Index (TLX) (Hart & Staveland, 1988).

Usability of speech input (U) was used to measure the users’ attitude towards
speech interaction. It was collected with effort and performance expectancy
measures adapted from the UTAUT model on user acceptance of information
technology (Venkatesh et al., 2003).
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TABLE 3.1: Items used to measure usability of input and output modalities. The items
measuring perceived workload of authentication were collected with the NASA TLX (Hart & Staveland,
1988). Usability of speech input as well as usability of text and audio output were measured with UTAUT
items (Venkatesh et al., 2003). All items were measured on a seven-point Likert scale.

Item Construct

A-1 How mentally demanding was the login? Workload of
authenticationA-2 How physically demanding was the login?

A-3 How hurried or rushed was the pace of the login?
A-4 How successful were you in accomplishing the login?
A-5 How hard did you have to work (mentally and physically) to accom-

plish the login?
A-6 How insecure, discouraged, irritated, stressed and annoyed did you

feel during the login?

U-1 Using speech interaction enables me to accomplish tasks more quickly
than with traditional mouse interaction.

Ease of use of
speech input

U-2 Using speech makes it easier to interact with the smart home appli-
cation than using the mouse.

U-3 Using speech to interact with the system is cumbersome.

U-4 My interaction with the smart home application is clear and under-
standable.

Confidence with
speech input

U-5 Using speech gives me greater control over the system than using
mouse-based inputs.

U-6 The smart home application responded to my speech input in a timely
manner.

Perceived success
with speech input

U-7 I wished that the system better recognized my speech.

O-1 I find it useful to receive spoken instructions. Audio usability
O-2 Receiving spoken instructions enables me to accomplish tasks more

quickly than with text instructions.
O-3 Spoken instructions make using the system more interesting.
O-4 It scares me to think that I could miss important information if the

instructions were only displayed as spoken messages.

O-5 I would have wished to receive more spoken audio instructions. Audio deficiency

O-6 I would have wished to receive more text instructions. Text deficiency

Additionally, the logged interaction behavior served as an objective measure of
the users’ attitude towards speech input. All user input was logged along with the
corresponding timestamp. For speech input, additional parameters were logged in
order to assess the quality of the speech recognition. More precisely, we recorded
all predicted speech alternatives and their confidence values. Confidence scores
(ranging from 0 to 1) indicate how reliable the STT conversion is (Jiang, 2005).
From the raw log data, we extracted three metrics related to the users’ modality
choice, and three additional indicators for the speech recognition quality. The
metrics and their calculation are summarized in Table 3.2.
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TABLE 3.2: Interaction metrics extracted from log data. The metrics were used as objective
measures to evaluate the usability of speech and touch input.

Metric Definition Construct

clickCount Total number of clicks during the interaction Modality
choicespeechCount Total number of recognized speech inputs from the entire

interaction

speechRatio
Ratio of speech input to total input:

speechCount
speechCount + clickCount

modalitySwitches Number of times the user changed from speech to touch,
or from touch to speech input

speechConfidence Mean speech recognition confidence for a user, calcu-
lated from the confidence value of the most likely speech
alternative

Speech
recognition
quality

executableCommands Number of speech inputs that resulted in the successful
execution of the associated command (excluding input
where some spoken input was recognized, but could
not be associated with a command, either because a
wrong keyword was used, or because the words were not
recognized correctly)

commandRatio
Ratio of executable to total speech input:
executableCommandCount

speechCount

Subjective preferences for output modalities were measured with six additional
UTAUT items. The items were adapted to assess the usability of text and audio
output (O) of the smart home display.

3.4. Results: Usability of modality alignment

Participants spent on average 3.61 minutes (σ = 2.72 minutes) exploring the
smart home application. After excluding one sample due to missing data in the
log file, we retained 40 valid data records.

The participants’ modality choice for authentication was fairly evenly distributed.
16 subjects used speech to authenticate themselves, and 24 subjects opted for
touch input (cf. Table 3.3).
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TABLE 3.3: Descriptive statistics of authentication modalities. Depicted is the number of
subjects who chose the specified input modality for the specified authentication task.

Authentication task Touch input Speech input TOTAL

Login 1 (PIN) 17 4 21
Login 2 (phrase/ pattern) 7 12 19
TOTAL 24 16 40

3.4.1. Task validation

We first assessed whether the modality choice was influenced by dissimilar effort
for authentication with speech versus touch. We analyzed whether participants
logging into the system with speech perceived the cognitive workload for the task
different from those using touch. A two-sided t-test showed that cognitive workload
does not significantly differ between the two input modalities (p-value = .351). An
additional analysis in which we assessed each authentication task separately did
not reveal a significant modality effect either, neither for Login 1 (p-value = .481)
nor for Login 2 (p-value = .187). The tasks can therefore be assumed to evoke
similar cognitive workload, independent of whether they are executed using speech
or touch. We concluded that the authentication procedures that were used in the
study did not bias the participants’ selection of an input modality.

3.4.2. H 1A: Voice authenticators are more inclined to use speech
input in non-critical tasks

In our quest to answer H 1A, we investigated the link between the participants’
selection of a login modality and their attitude towards voice input as a control
mechanism for the smart home display. We tested the relationship for each of
the two constructs measuring the usability of voice input. Responses from the
follow-up questionnaire were used as a subjective measure of the users’ attitude
towards speech input. Additionally, we used the logged interaction behavior as an
objective measure.

Correlation with perceived usability. To determine whether the modality
that a user chooses for authentication is related to the perceived usability of speech
input during later interactions, we summarized the usability metrics of speech
input into three constructs representing Ease of Use (U-1, U-2, U-3), Confidence
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(U-4, U-5), and Perceived Success (U-6, U-7) of speech input. Table 3.4 shows
that speech authenticators assign slightly higher usability scores to Ease of Use and
Confidence, while evaluating Perceived Success lower than touch authenticators.
However, two-sided t-tests revealed that the effect is not significant for any of the
usability constructs. Two-sided t-test applied to each of the individual usability
metrics separately reported no significant effect either. Therefore, we conclude
that speech authenticators do not ascribe a higher usability to speech input than
touch authenticators.

TABLE 3.4: Subjective usability ratings of speech input per chosen authentication modality.
Significance of group differences is calculated with two-sided t-tests.

Touch input Speech input t-test

Speech usability construct µ (σ) µ (σ) t sig.

Ease of Use (U-1, U-2, U-3) 3.26 (1.58) 3.73 (1.07) -1.083 .285
Confidence (U-4, U-5) 3.77 (.135) 4.06 (1.06) -0.742 .463
Perceived Success (U-6, U-7) 2.29 (1.39) 2.06 (1.39) 0.468 .642

Correlation with interaction behavior during routine tasks. We analyzed
whether the participants’ selection of an input modality for authentication is
representative for their later input behavior. Table 3.5 summarizes the average
values of the interaction metrics for the two experimental groups (i.e., touch versus
speech authentication).

TABLE 3.5: Usage of input modalities from interaction metrics per chosen authentication
modality. Significance of group differences is calculated with two-sided t-tests.

Touch input Speech input t-test

Metric µ (σ) µ (σ) t sig.

clickCount 43.17 (44.08) 32.06 (16.08) 1.092 .283
speechCount 5.08 (5.13) 5.56 (2.83) -0.370 .714
speechRatio .1285 (.1426) .1656 (.0911) -0.979 .334
modalitySwitches 8.75 (5.76) 8.25 (4.02) 0.315 .755

The box plot in Figure 3.1a shows that the median speechRatio of voice
authenticators is higher than for participants who used touch input to log into
the system. Yet, a two-sided t-test shows that the use of an input modality
after authentication does not significantly differ between the experimental groups
(t = 0.900, p-value = .374). The line graph of the modality usage over time in
Figure 3.1b reveals that for voice authenticators, the proportion of speech input
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does not gradually decline. Rather, directly after authentication, the majority of
the users switch to touch interaction. Touch input is the overall dominant input
modality, irrespective of whether touch or speech is chosen for authentication.
Yet, most users frequently revert to speech input multiple times throughout the
interaction, with on average 8.6 modality switches.
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(b) Sequential development of the number of participants using
speech and click input during the first 50 interactions.

FIGURE 3.1: Frequency of touch and speech input after authentication by experimental
group. Significance of group differences was assessed with a two-sided t-test.

Interaction effects. Given that the complexity of the task remained constant
throughout the entire interaction, there is no evidence for a causal relationship
between the participants’ frequent switching behavior and intrinsic (i.e., task
induced) load. We therefore explored whether other factors related to the task
caused the observed modality switches. Contrary to observations that have
been reported in the literature (Aldridge & Lansdown, 1999; Bierschwale et al.,
1989; Buisine & Martin, 2003b), the participants in our study used speech input
more often for directional commands like “up"/“down" (56.6%) than for heavily
semantic commands such as selecting the ‘Weather Forecast’ control panel. For
touch input, we observed the reverse: 57.4% of all clicks were attributed to
semantic commands. To understand the motivations behind the inconsistencies in
the empirical evidence, we took a differentiated look at the contexts in which each
type of control command was used. A preference for touch input has typically been
related to directional commands for controlling continuous functions (Bierschwale
et al., 1989), whereas the directional commands of our smart home display are used
for singular adjustments (e.g., switching on the light). Observations that speech
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input is preferred for semantic commands are based on input that is considerably
longer (Aldridge & Lansdown, 1999) or not clearly defined (Buisine & Martin,
2003b). In contrast, we used very short commands throughout the experiment.

With the experimental setup of our user study and the configurations of the smart
home display, we did not find clear modality preferences for a specific command
type that would explain the switching behavior. We therefore verified whether
the quality of the speech recognition had an effect on the selection of an input
modality. Studies have shown that users tend to choose the modality that they
expect to be the least prone to errors and subsequently switch to another modality
when an error occurs (Oviatt et al., 1998). The logged speech input data shows
that the speech recognition quality is highly dispersed across the participants, with
a commandRatio ranging from 0.2 to 1.0 executable speech input commands
(mean = .687, stdv. = .265). The commandRatio indicates the number of speech
inputs that resulted in the successful execution of the associated command in
relation to the total number of registered speech inputs. Its observed mean value
translates into an average recognition error of 31.3%. The speechConfidence
ranges from 0.538 to 0.933 (mean = .847, stdv. = .070). However, Pearson’s
correlation coefficient provides no evidence that a higher speech recognition quality
increases the use of speech input. As can be seen in Figure 3.2, a higher ratio
of successfully executed speech commands is even negatively correlated with
speechRatio (corr. = -.11, p-value = .52).
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FIGURE 3.2: Correlation between the number of speech commands and their successful
execution. Significance is calculated for the combined data from both experimental groups. No positive
relationship exists between the ratio of successfully executed commands and the use of speech input.
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However, the distribution of the usability ratings in Figure 3.3 demonstrates
that perceived usability correlates with the quality of the speech recognition.
Both Confidence (corr. = .27, p-value = .09) and Perceived Success (corr. = .32,
p-value = .04) are positively correlated with the number of successfully executed
speech commands, measured by the commandRatio. The relationship is signifi-
cant at 95% confidence. It thus appears that, while speech recognition quality
does not influence the users’ actual use of speech input, it does have an effect on
their perceived usability of speech as an input modality.
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FIGURE 3.3: Correlation between speech input usability ratings and recognition quality.
Speech recognition quality is measured by commandRatio, i.e., the proportion of speech commands
that resulted in the correct execution of an event.

Based on the evidence from the statistical analyses, we reject the hypothesis that
the chosen mode of authentication reveals a stronger inclination to use speech
input in non-critical tasks (H 1A). Instead, attitudes towards voice control are
formed gradually as the users perform the routine task and are mainly driven by
the quality of the speech recognition.

3.4.3. H 1B: Users prefer system output in the same sensory modality
they use for input commands

The previous analyses reveal that users do not necessarily continue using the
communication channel through which they authenticate themselves. We therefore
first test H 1B for the chosen authentication modality, and then repeat the analysis
for the dominant input modality during subsequent non-critical tasks.
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Correlation of authentication input with usability of speech output.
We test whether participants of the treatment group (i.e., system outputs match
the authentication modality) evaluate the usability of the smart home display
different than participants of the control group (i.e., system outputs do not match
the authentication modality).

The box plots in Figure 3.4 show how strongly the participants felt that output
in one modality was missing, i.e., to what degree they experienced an Audio
deficiency (O-5) or Text deficiency (O-6). Additionally, their ratings for Audio
usability (O-1, O-2, O-3, O-4) are depicted.
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FIGURE 3.4: Usability ratings for text and audio output by authentication modality.
Significance was tested with a two-sided t-test (significance level: *p < .1%, **p < .05, ***p < .01).

The distributions in Figures 3.4a and 3.4b demonstrate that voice authenticators
feel more strongly than touch authenticators that they should have received more
audio output when presented exclusively with text, and wish they had received
less text. Touch authenticators are generally satisfied with the output they receive,
independent of whether it is presented in text or audio format. However, a two-
sided t-test reveals that, for both O-5 (audio output: t = 0.983, p-value = .381,
text output: t = -1.058, p-value = .348) and O-6 (audio output: t = -0.502,
p-value = .642, text output: t = 1.224, p-value = .468), the difference between
the experimental groups is not statistically significant.

Paradoxically, Audio usability was evaluated slightly higher by the control group,
where the output did not match the chosen authentication modality (cf. Fig-
ure 3.4c). However, the effect is not significant (audio output: t = 1.444, p-
value = .201, text output: t = -0.231, p-value = .829). A fine-grained analysis of
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each usability measure (O-1, O-2, O-3, O-4) reveals that, even when examined
in isolation, the difference between the experimental groups is not significant for
any of the measures. Table 3.6 presents the complete descriptive statistics.

TABLE 3.6: Usability evaluation of audio output by authentication and activated output
modality. Mean values (µ) were calculated from the subjective ratings of all participants. Standard
deviations (σ) are given in parenthesis.

Text output Audio output

touch
authentication

(N = 20)

speech
authentication

(N = 4)
t-test

touch
authentication

(N = 4)

speech
authentication

(N = 12)
t-test

Item µ (σ) µ (σ) t sig. µ (σ) µ (σ) t sig.

O-1 4.60 (1.91) 5.50 (1.66) -0.855 .437 6.00 (0.00) 5.00 (1.78) 1.864 .089
O-2 3.75 (1.97) 4.25 (1.92) -0.418 .697 5.25 (1.48) 4.50 (2.06) 0.710 .501
O-3 4.80 (1.97) 5.25 (1.48) -0.569 .595 6.00 (1.00) 4.67 (1.93) 1.627 .135
O-4 4.35 (1.74) 5.50 (0.78) -1.797 .112 4.00 (1.41) 4.58 (1.75) -0.600 .571

O-5 3.40 (1.77) 4.50 (1.66) -1.058 .348 4.25 (1.64) 3.25 (1.23) 0.983 .381

O-6 3.55 (1.60) 2.50 (0.87) 1.694 .135 3.50 (1.66) 4.00 (0.91) -0.502 .642

Correlation of routine task input with usability of speech output. Given
that the statistical tests provide no support for a link between the authentication
modality and the frequency of speech interactions in subsequent non-critical tasks,
we additionally investigated the role of subsequent interactions. Specifically, we
tested whether users who more frequently use speech input throughout the entire
interaction have a more positive perception of the usability of speech output.
While a small positive correlation between the logged speechRatio and Audio
usability exists (cf. Figure 3.5), it is not significant (corr. = .11, p-value = .52).
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FIGURE 3.5: Correlation between Audio usability and speechRatio. The interaction metric
speechRatio serves as an indicator for the frequency of speech interactions during non-critical tasks.
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Based on the statistical evidence from the experimental investigation, we find
no support for the hypothesis that users prefer system output in a modality
that is compatible with their input (H 1B). This finding is consistent across all
evaluated task types, and thus applies to security sensitive authentication as well
as non-critical routine tasks.

3.5. Discussion & limitations of modality alignment

The data from the 40 participants of our experimental investigation who interacted
with the smart home display reveals that users who authenticate themselves with
speech do not necessarily perceive speech input and output as more usable.
What is more, they do not use speech interaction more frequently during non-
critical tasks than touch authenticators. Therefore, the experimental investigation
provides no support for the hypothesis that the interaction behavior during login
is representative for a user’s inclination to use speech input in non-critical tasks
(H 1A). The finding is robust to the quality of the speech recognition engine: A
high number of recognition errors does not prevent the users from issuing spoken
commands, although it does negatively impact the perception of their usability.
Similar behaviors have been observed in a study by Rebman et al. (2001), where
users of a meeting support application were dissatisfied with the speech recognition
quality, but would still use the technology for future interactions. In contrast,
Schaffer et al. (2015) report opposing results from a study in which the users of
a restaurant booking system for mobile phones were less likely to choose speech
over touch input if the speech recognition quality was poor.

We further found that users who more frequently favor speech input over touch
do not evaluate speech output more positively than those who have a general
preference for touch input (H 1B).

The study was conducted in a private space where security threats are minimized.
Yet even in this protected environment, we did not find a correlation between
voice authentication and the users’ attitude towards voice-based interaction in
non-critical tasks. While we anticipated concerns about speaking a PIN aloud, the
participants’ answers to A6 (“How insecure, discouraged, irritated, stressed and
annoyed did you feel during the login task?") indicate that the participants who
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used the PIN based speech authentication felt the most secure, even compared to
touch authenticators. Thus, we observed no influence on the users’ trust in the
system. It is therefore safe to assume that the authentication modality will also
not correlate with inputs for non-critical tasks in other contexts, including public
spaces.

These findings have two important implications for the design of multimodal
systems that adapt the output format to the user’s interaction behavior. First,
the sensory modality that the user chooses for the first few inputs does not
necessarily match their preferred output modality. This is independent of whether
the input is used for authentication or for the execution of non-critical routine
tasks. Instead, preferences are formed gradually. We therefore anticipate that a
static one-time adaptation of the output format to the user’s input during the first
few interactions would not be beneficial to the user. Thus, both output modalities
should be provided until a clear preference is discernible. Second, multimodal
interfaces should listen to all input channels throughout the interaction. Since we
observed many modality switches, it would be detrimental to the usability if the
system stopped listening to one input channel. Instead, input fusion techniques
(Dumas et al., 2009) should be considered.

The study that we present in this paper concludes the exploratory phase of a
long-term project. The insights we gained from this study will allow us to further
improve the prototype application and remove technical barriers to using speech
interaction. The current version of the application requires the users to say the
exact words that are written on the actionable element. A detailed analysis of
the log files showed that 63% of input recognition errors were caused not by poor
performance of the speech recognition engine, but the use of an incorrect keyword.
This is consistent with the findings from previous studies which suggest that some
users prefer to activate a button by saying the command written on the element,
while others refer to its order position on the screen (Coelho et al., 2011; Morris,
2012). In the next iteration, we will therefore allow for more flexible commands.

We will build on the findings from this study in order to conduct a field experiment
with a large and heterogeneous sample. Observing interactions over a larger time
span and in the users’ natural environment will reduce experimental effects which
might bias the users’ choice of an interaction modality (Morris, 2012). This will
allow us to see whether the input modality that dominates over a prolonged
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usage allows to draw conclusions about the user’s preferred output format in
specific situations. If such a relationship exists, the output format could be
dynamically adapted to the user’s situational preferences. In addition to the
chosen communication channel, situational preferences take into account the
concomitant contextual factors such as ambient noise and the current location.

3.6. Conclusion: Summary of Essay 1

We conducted a study with 41 participants to assess whether the use of touch
or speech input during authentication with a smart home application reveals
the user’s attitude towards speech interaction during non-critical routine tasks.
We found that, even in the secure environment of a private home, users do not
necessarily authenticate themselves with the modality they prefer for subsequent
system inputs. The users’ authentication behavior is therefore no reliable indicator
for inputs during non-critical routine tasks. We further found that matching
the output presentation (i.e., text versus audio) to the communication channel
that was used to issue the first few commands (i.e., touch versus speech) does
not increase the system usability. This finding is consistent for all task types,
including both security sensitive authentication and non-critical routine tasks.

Building on these findings, we will extend the study in a long-term field experiment
to observe interaction patterns over an extended period of time. We hope that
this will allow us to conclude whether contextual input preferences from prolonged
interactions can be used for dynamic adaptation of multimodal systems.
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4. Essay 2: Evaluating the Potential of Caption
Activation to Mitigate Confusion Inferred
from Facial Gestures in Virtual Meetings

During the COVID-19 pandemic, virtual meetings have evolved into an indis-
pensable tool for collaboration in industry, academia, and other parts of society.
As a substitute for face-to-face meetings (Shockley et al., 2021), they should
approximate the quality of physical encounters, especially in complex situations
like contract negotiation or technical discussions. Yet, with the new technology,
new challenges surfaced in the form of inefficient communication, low attention,
and fatigue (Karl et al., 2022). Often, the result is incomprehension and confusion.

Online lectures suffer particularly from the loss of direct communication. In
the classroom, teachers directly notice from the students’ facial expressions and
body response when they have difficulties following a lecture. In virtual lectures,
the subtle reactions are easy to overlook (Chung et al., 2020) and students are
often embarrassed to admit confusion (Kiyota, 2022). Innovative approaches like
‘Mudslide’ ask students to revise the lecture slides and mark those that they found
confusing (Glassman et al., 2015). Needless to say, this relies on the students’
willingness to provide feedback. Yang et al. (2015) infer confusion of online course
students from forum discussions. While this requires no additional action, it only
captures the feedback of learners who actively engage in the discussions.

Outside of learning, there is a striking lack of strategies to enhance mutual
understanding in virtual meetings. Attendants of business meetings or conferences
may suffer from the same comprehension issues as students, but in professional
settings even more than in education, barely anyone is willing to admit them
(Wilding, 2016). Especially when teams with diverse cultural backgrounds meet,
incomprehension often remains undetected. For example, while Indians tend to
say “yes" out of respect, Europeans will understand this as a sign of comprehension
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(Klitmøller & Lauring, 2013). It is therefore imperative to address unexpressed
confusion without exposing anyone to the judgment of others.

Research has demonstrated a beneficial effect of multimedia presentation, where
auditory material is supported by text and graphic elements (Brett, 1997; Chun
& Plass, 1997; Subaidi bin Abdul Samat & Aziz, 2020). One example are movie
captions. What started as an assistive technology has evolved into a mainstream
feature that is used by many to better understand dialogues (Jacobs, 1999).

In this work, we propose to make use of the functionality to improve comprehension
in virtual meetings. Most video conferencing tools provide auto-generated captions.
However, they are typically not activated by default, partly because they can
distract from visual content (Jiménez et al., 2011; Winke et al., 2010). In
movies, dynamic subtitle placement can mitigate these effects (Brown et al., 2015).
However, determining a suitable position for captions in virtual meetings with a
shared screen can be challenging or even impossible if the entire screen is covered
with text. Moreover, auto-generated captions – unlike in movies – may not be
perfectly accurate and timed (Dialpad, 2021). Therefore, while it has been firmly
established that captioned movies improve comprehension (Zheng et al., 2022), the
same may not hold true for virtual meetings. Consequently, displaying captions
at all times may not be desirable, especially if they occlude important content or
the speaker’s face (Oviatt, 2006; Sueyoshi & Hardison, 2005). Adaptive interfaces
offer an alternative solution which entails dynamically activating captions when
needed. Thus, users are not distracted by captions unnecessarily, but also do not
have to search for a functionality they might not even be aware of or consider as
a solution. However, this requires a mechanism that is able to identify situations
in which captions can be beneficial.

To research how captions can be used effectively in virtual meetings, we conducted
a user study with two objectives in mind: First, to test whether auto-generated
captions can mitigate confusion; second, to understand whether it is possible to
detect confusion in virtual meetings without prompting for active feedback. Since
the tools already have camera access if the required permission is granted, we
tested if facial gestures extracted from video frames contain hints of confusion.

58



4.1. RELATED WORK: AUDIO-VISUAL PRESENTATION & CONFUSION

The contributions of this work are as follows:

1. We provide empirical evidence for the usefulness of auto-generated captions
as a tool to mitigate confusion.

2. Facial gestures are identified that reveal confusion in virtual meetings, both
during purely auditory presentation and when the visual component of a
caption is added.

4.1. Related work: Audio-visual presentation & confusion

Confusion is the result of a cognitive disequilibrium caused by inconsistencies or
missing knowledge that is required to understand presented information (Arguel
et al., 2017). In videos, audio captions have evolved into a popular strategy to
overcome knowledge gaps that can occur when a user misses parts of an auditory
transmission by transcribing it into text. The first part of this section therefore
reviews the use of audio-visual presentation – with a special focus on captions –
as a strategy to improve the understanding of videos.

While captions may improve comprehension, they can also distract from visual
content (Jiménez et al., 2011; Winke et al., 2010). Therefore, detecting confusion
has been of particular interest in digital learning research to identify concrete events
that require corrective actions (Brusilovskiy, 1994). Traditionally, confusion
is inferred from interaction data or conversations with intelligent tutors. Yet,
the data is only available if students actively engage in discussions (D’Mello
et al., 2008). Recently, physiological measures have been explored, including
electroencephalography (EEG), heart rate variability, electrodermal activity, facial
electromyography, and eye movements (Arguel et al., 2017). An alternative to
physiological indicators – which require that all users have access to and wear the
necessary sensors – are vision-based cues which can be extracted from video frames
recorded with an ordinary web camera. As, typically, only the face is recorded,
facial expressions and cues from eye activity – in particular pupil dilation and
blink rate – are rich sources of information. While empirical evidence relates pupil
dilation to a person’s cognitive state, it is highly sensitive to luminance (Charles
& Nixon, 2019). Facial expressions and blinks are more robust in uncontrolled
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settings. The second part of this section thus reviews recent advances in confusion
detection from blink rate and facial expressions.

4.1.1. Audio-visual presentation

The beneficial effect of augmenting speech output with a visual representation
has received ample empirical support. In the following, we discuss two distinct
forms of visualizations: (1) Visual speech in the form of lip movements, and (2)
video captions.

Visual speech. McGurk and MacDonald (1976) showed that accompanying an
auditory presentation with a video recording of the speaker affects perception.
The concomitant faster processing of the stimulus – commonly known under
the term McGurk effect – has been validated in a number of empirical studies
(Munhall et al., 1996; Sekiyama, 1997; Sekiyama & Tohkura, 1991; van Wassen-
hove et al., 2005). The effect is particularly strong when auditory comprehension
is compromised by background noise, unclear articulation, or fast speech (Munhall
et al., 1996; Sekiyama & Tohkura, 1991). Van Wassenhove et al. (2005) found
that lip movements reduce the processing time substantially when they are easy
to distinguish and match the auditory speech exactly. Due to their phonetic par-
ticularities, Asian languages including Japanese (Sekiyama & Tohkura, 1991) and
Chinese (Sekiyama, 1997) produce a weaker effect than the clearly distinguishable
sounds of the English language.
However, displaying a video of the speaker is not always possible or desirable. For
example, speakers often present important visual content on a shared screen, or
do not wish to turn on their camera due to privacy concerns (Bennett et al., 2021).
In such situations, an alternative visual augmentation strategy is to provide a
written transcription of the speech output.

Video captions. Video captions transcribe speech and sounds to overlay a syn-
chronized textual representation on the video (Spina, 2021). While, in the United
States, ‘subtitle’ typically refers to the written translation of auditory output into
another language, we use the terms ‘caption’ and ‘subtitle’ interchangeably. In
contrast to open captions, which are burned into the video and are always visible,
closed captions can be activated and deactivated as needed. Captions for movies

60



4.1. RELATED WORK: AUDIO-VISUAL PRESENTATION & CONFUSION

are typically manually created, time-coded transcriptions, so that the correct text
appears at the right time (Dialpad, 2021).

While originally developed to make videos accessible to people with hearing im-
pairments (Kulkarni, 2019), a positive effect of captions on language learners
has been demonstrated repeatedly. Learners of English are better able to un-
derstand captioned movies (Etemadi, 2012; Perego et al., 2010; Zareian et al.,
2015) and recall their content (Hayati & Mohmedi, 2011). Recent studies suggest
that captions are equally beneficial for native speakers. In a study with native
Mandarin speakers, Zheng et al. (2022) observed better comprehension of audio
lectures when a caption was provided. Morris et al. (2016) report a positive effect
of captured lecture videos. Qualitative student feedback revealed that the subtitle
was particularly helpful for clarifying segments where the audio was unclear or
background noise complicated audio comprehension.
Virtual meeting platforms like Zoom (Larkin, 2021), Microsoft Teams (Microsoft,
2022), and Google Meet (Google, 2022) allow their users to activate live caption-
ing. However, the auto-generated captions are error-prone. Depending on the
platform and quality of the audio, accuracy ranges from 82% to 97% (Graham &
Choo, 2022). Therefore, we conducted an experimental investigation to research
whether auto-generated captions in virtual meetings are sufficiently good to foster
comprehension.

4.1.2. Confusion detection from facial gestures

While research on the response of facial gestures to confusion is scarce, the effects
of cognitive load – which is tightly related to confusion – have been investigated
in a number of empirical studies. Cognitive load is defined as the amount of effort
imposed on the working memory (Sweller et al., 1998). Confusion – while not a
synonym – produces mental effort (Poehnl & Bogner, 2013). Given the transitive
relation between the concepts, we extend our review of the literature to the effects
of high cognitive load.

Blink rate. There is a consensus that blink inhibition occurs at moments of
active task execution (Fairclough et al., 2005; Gao et al., 2013; Siegle et al., 2008).
Observations of blink reactions to high cognitive load over longer periods are
inconsistent and appear to depend primarily on whether the load increasing
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activity requires constant visual attention. Blink inhibition occurs when the
complexity of vision-based tasks increases. In a presumably subconscious attempt
to minimize eye occlusion, the blink rate is reduced. The effect has been observed
during control tasks including strategic games (Chen et al., 2011; Fowler et al.,
2019; Mallick et al., 2016; Orden et al., 2001), driving (Borghini et al., 2012; Faure
et al., 2016), flight control (Brookings et al., 1996; Ryu & Myung, 2005; Veltman
& Gaillard, 1996), or the performance of parallel monitoring and tracking in a
Mulit-Attribute Task Battery (MATB) (Fairclough et al., 2005; Fournier et al.,
1999). It has also been found during text analysis (Ahmad et al., 2020; Bafna
et al., 2020; Peitek et al., 2018) and visual search (Zagermann et al., 2018).
Primarily mental activities that require only sporadic visual checks have the
opposite effect. For example, car drivers solving mental arithmetic problems
as a secondary task had higher blink rates compared to a drive-only scenario
(Faure et al., 2016; Tsai et al., 2007). The same effect has been observed on
computer administered arithmetic tasks of increasing difficulty (Chen & Epps,
2013; Jyotsna & Amudha, 2018). Jyotsna and Amudha (2018) used a sequence of
five equations to evoke spikes of cognitive load. Chen and Epps (2013) displayed
addends sequentially, so that mental load was high at the onset of each number.
The stepwise execution of a complex emergency procedure in a nuclear power
plant led to higher blink rates than a simplified procedure (Chen et al., 2019;
Gao et al., 2013). The findings from these studies imply that blinks are placed
routinely at strategic points, e.g., after the visual display of an operand. Blinking
whenever it is not imperative to have a clear visual focus – even if the biological
state of the eye does not require it – leads to the observed acceleration of the blink
rate. In line with these observations, Cho (2021) reports a lower blink entropy –
implying less random blink sequences – during mental calculations as the difficulty
of arithmetic problems increases. Similar blink synchronization mechanisms have
been observed with movies, where blinks accumulate during scenes that require
less visual attention (Nakano et al., 2009).
In summary, cognitive load causes blink inhibition when visual attention is essential.
If visual focus is not permanently required, an overcompensation effect after load
peaks may lead to an overall higher blink rate. Whether the compensation effect
dominates blink inhibition during peaks depends on the extent to which visual
focus is required. An example for the two conflicting effects was reported by Siegle

62



4.1. RELATED WORK: AUDIO-VISUAL PRESENTATION & CONFUSION

et al. (2008). Using a Stroop task – which requires to select the color in which
a color word is written – they found no difference between incongruent stimuli
where color words are written in a mismatched color and congruent stimuli.
Given that confusion occurs at moments of high cognitive load, we postulate
that the same effects manifest whenever a user feels confused. Therefore, we
expect confusion to produce a lower blink rate in captioned virtual meetings and –
assuming that the overcompensation effect dominates – a higher blink rate when
only auditory output is transmitted.

Facial expressions. Teachers and students alike consider facial expressions as
the most relevant nonverbal indicator of comprehension in the classroom (Sathik &
Jonathan, 2013). They agree that students display positive expressions when they
have a good understanding of the lecture, and negative when they are confused.
Shi et al. (2019) demonstrated that neural networks (NNs) can recognize relevant
changes in the facial expressions of students participating in online courses. The
authors used a convolutional neural network (CNN) to extract high-level features
from images of the students’ faces. A support vector machine (SVM) trained on
the extracted features detected confusion with 90% precision and 78% recall.
Emotion databases with annotated images typically only differentiate between
the six basic emotions happiness, anger, sadness, disgust, surprise, and fear (Li
& Deng, 2020) which Ekman and Friesen (1971) identified as being universally
recognized across cultures. Since there is a deficiency of training data for other
emotions, research has taken an interest in determining which facial muscles are
particularly active during confusion. Using electromyography, Durso et al. (2012)
were able to detect confusion from electrical signals of muscular movements, but
observed that the signals from some facial muscles such as the zygomaticus major
add noise to the data, rather than providing helpful cues of confusion.
The Facial Action Coding System (FACS) categorizes these muscular movements
into action units (AUs) (Ekman & Friesen, 1978). Early research relied on human
judges to code AUs (D’Mello et al., 2009; Grafsgaard et al., 2011). In a study with
AutoTutor, D’Mello et al. (2009) observed a correlation of confusion with AU4
(Brow Lowerer) and AU7 (Lid Tightener). The experienced affect was reported
verbally by the students in 10-second intervals. In a follow-up study, two trained
judges, a peer participant, and the students themselves assigned affect labels to a
recording of the session in intervals of 20 seconds, or whenever they observed an
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affect change. While AU4 and AU7 remained sensitive to confusion, the study did
not corroborate the marginally significant effect on AU12 (Lip Corner Puller).
Grafsgaard et al. (2011) conducted a study in which students exchanged chat
messages with a human tutor during a coding task. Assuming that AU4 is related
to confusion, the authors identified behavior that indicates confusion. AU4 was
activated whenever a student gave a shallow answer, or when the tutor pointed
out a mistake without providing further explanations.
Recent advances in computer vision have fostered the emergence of software
for automatic AU extraction. Borges et al. (2019) trained a long short-term
memory (LSTM) with 20 AUs extracted with FaceReader (Loijens & Krips, 2021).
Confusion in a navigation task that was designed to induce miscommunication
between the navigator and follower was identified by three independent coders
based on facial expression changes or delayed answers. Through lesioning, where
some features are successively excluded from the model, the authors identified
AU4 (Brow Lowerer), AU15 (Lip Corner Depressor), AU25 (Lip Part), AU26 (Jaw
Drop), and AU27 (Mouth Stretch) as primary indicators of confusion.
Yasser et al. (2021) implemented a system that recognizes 18 AUs, seven of which
were more frequently activated during confusion: AU4 (Brow Lowerer), AU5
(Upper Lid Raiser), AU6 (Cheek Raiser), AU7 (Lid Tightener), AU10 (Upper Lip
Raiser), AU12 (Lip Corner Puller), and AU23 (Lip Tightener). Logistic regression
and quadratic discriminant classifiers trained on the seven AUs distinguished
‘confused’ from ‘not confused’ interview responses to personal social questions with
96% accuracy, although the authors do not disclose how confusion was labeled.
From the combined empirical evidence, a consensus forms that AU4 and AU7
imply confusion. The role of other AUs is more controversial – presumably, at least
in part, a result of individual differences. Whitehill et al. (2008) report substantial
inter-subject variability in the correlations of perceived lecture difficulty – which
is linked to confusion – with action units. Difficulty self-reports were obtained
by replaying the lectures on a frame-by-frame level and asking the participants
to assign a difficulty rating on an eleven-point scale. While no clear pattern of
AU activation emerged, AU2 (Outer Brow Raiser), AU15 (Lip Corner Depressor),
and AU17 (Chin Raiser) were most frequently activated in the difficult lectures.

Clearly, uncertainties persist about the influence of the task and personal factors
on the usefulness of facial gestures for predicting confusion. We seek to close
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this gap by researching the effect of confusion on blink frequency, expressions
of positive or negative emotional valence, and action units during two types of
activities: a purely auditory listening task, and a captioned listening task which
adds a visual component.

4.2. Study design: Confusion in audio-visual presentation

We conducted a user study with two objectives: First, to assess whether auto-
generated captions improve the comprehension of an auditory report. Grounded on
the beneficial effect of movie captions (cf. Section 4.1.1), we wanted to understand
whether the – not always correct or appropriate – auto-generated captions have
similar positive effects. We tested the following hypothesis:

H 2A. Auto-generated captions improve comprehension in virtual meetings.

Instances of confusion were caused by orally relating news articles in which some
words were replaced by phrases that are similar in sound, but out of context. Using
a between-subjects experimental design, we counted how often participants who
activated the captions reported confusion and verified whether sessions without
captions produced fewer confusion reports.

Captioning virtual meetings by default may not be desirable for all users, especially
if it covers parts of a shared screen, or occludes the speaker’s face and obscures
visual cues from lip movements which often foster listening comprehension (Brown
et al., 2015; Sueyoshi & Hardison, 2005). The second goal was therefore to
determine whether it is possible to identify concrete moments in which the benefits
of captions are particularly promising. Specifically, we investigated whether facial
gestures can detect confusion. We formulated the following hypothesis:

H 2B. Facial gestures reveal confusion of virtual meeting participants.

A within-subjects experimental design was adopted. In an offline analysis, we
assessed the effect of confusion on three types of facial gestures: (1) blinks, (2)
expressions emotion, and (3) facial action units.
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Assuming that the non-understanding issues are not a transient state, but instead
are likely to persist for the rest of the meeting, we propose to implement a
proactive adaptation to improve comprehension of the following spoken discourse.

Our analyses seek to raise awareness and help to understand the relevance of
captions in virtual meetings (H 2A). By identifying facial gestures that are
affected by confusion (H 2B), we supply software developers with a tool for
recognizing – and, through the ad hoc activation of captions, counteracting –
confusion in virtual meetings.

4.2.1. Auditory material

The study was designed to induce confusion as defined by the epistemic affective
state which occurs when an individual attempts to process contradictory or
incongruent information (D’Mello & Graesser, 2012; Vogl et al., 2020). Similar to
the study by Durso et al. (2012), confusion was triggered by sentences in an article
that appear incongruent. While the earlier study used written sentences, we read
out loud two articles written in English. In order to account for mediating effects
of their affective value, one sad and one funny article were chosen. The funny
article relates an online interview with a professor which is rather inopportunely
interrupted by his children. The sad article tells the story of a girl who lost
her mother to the war in Ukraine. In each article, three sentences were altered
so that they appear out of context. Unintended causes of confusion such as
complicated names of people and places were removed to minimize the risk that
the participants felt confused throughout the entire session. The presentation of
each article took approximately 90 seconds. They were presented as follows, with
underlined confusion triggers:
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Article 1 (funny):

Political expert Robert Kelly has given an update on his kids, five years after they
caused him to go viral on the internet becoming better known as “BBC Dad". In the
viral clip, unbeknownst to Robert, a small guest decided to join his interview halfway
through, and viewers watched in shock as a cute child in a yellow jumper entered
the room. The BBC News predator [presenter] said: “I think one of your
chickens [children] has just walked in" as Robert tried to move his daughter out of
the view of the camera, while still trying to maintain professionalism and talking about
the subject at hand. But, another child comes whizzing into the room in a baby walker,
meaning both his kids were now stealing the focus of the interview. He apologized as he
said: “Pardon me, my apologies" before the wolf was climbing and growling in
[his wife also came bursting into] the room to try and bustle the kids back out
of the study. However her presence only managed to cause even more chaos as the
child in the yellow jumper fell off the bed and the baby in the walker crashed into the
door. Once she finally got the children out, the lady crawls back in to shut the door.
Later Dr. Kelly said he feared the ghost that was [incident would] mean that
he’d never be invited to do a TV interview again, but now, years after the incident,
he is able to laugh about the memorable moment.

[adapted from Jones, Liverpool Echo, 1 March 2022]

Article 2 (sad):

A letter written by a little girl reveals the heartbreaking toll of the war in Ukraine.
Nine-year-old Galia penned the note inside what appears to be a day planner to her
mother, who died in one city of Ukraine. A photo of the note was shared on Twitter
by a reporter from urine’s missing smells and fairs [Ukraine’s minister of
internal affairs]. Galia wrote the letter on March 8, less than two weeks after
Russian President Vladimir Putin launched the deadly attack. This is a part of what
she wrote. “Mum, this letter is your present. If you think that you nurtured me for no
reason, you are not right. Thank you for the 9 years of my life. Thank you so much
for my childhood. You are the best mother in the world! I will never forget you!"
The reporter said that the little girl’s mother died in a Japanese [Ukrainian]*
city that has been making terrific dishes [facing horrific conditions] since
Russian troops invaded. Ukrainian President Volodymyr Zelenskyy said last week
that the situation there is even worse than those in its neighboring city, where horrific
images have surfaced of slaughtered civilians. On Wednesday, Zelenskyy said that
“tens of thousands of people have already been killed" in Ukraine. “Russian army uses
all types of artists [artilleries], all types of muscles [missiles], aerial bombs,
including phosphorus bombs and other tradition [ammunition]* banned by
the interpersonal [international] law."

[adapted from Cohen, CBS News, 13 April 2022]
* Incongruities marked with an asterisk went unnoticed by most participants.
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4.2.2. Pilot study

A pilot study was conducted with 14 participants to verify that the selected
articles trigger discrete instances of confusion. In the pilot study, the articles were
presented as an audio recording read by a native American English speaker. We
observed that almost none of the participants experienced confusion at the onset
of a trigger. Multiple subjects stated that the audio recording felt monotonous,
which made it difficult for them to pay attention. In the main study, the articles
were therefore read out loud by the experimenter – a second language English
speaker of Asian background.

4.2.3. Participants

The study was performed remotely through Google Meet. Only subjects were
selected that met the technical requirements: (1) The meeting should be joined
from a laptop or personal computer with a webcam functionality. Participation
from mobile devices was not possible. (2) A quiet environment with stable internet
connection should be ensured. (3) If using visual aids, the participants were asked
to wear contact lenses or take off glasses for the experiment. This was imposed
after blink detection in the pilot study failed with glasses.

Through convenience sampling, we were able to recruit 45 university students
from multiple departments and personal associates who met the requirements
for participation (21 male, mean age = 28.4 ± 7.9). Most were undergraduate
(N = 20) or graduate (N = 17) students. Participants with diverse cultural
backgrounds were selected (29 European, 10 South East Asia, 4 South Asia, 1
Central Asia, 1 Africa). All were non-native English speakers with self-reported
proficiency levels ranging from A2 to C2 (42 at least C1). The participants
volunteered with no monetary or equivalent incentive. They were informed that
the meeting was recorded and that the anonymized audio and video material
would be used for research. Written consent was obtained prior to data collection.

4.2.4. Study design

We used a mixed design with between-subject variation of subtitle (captions, no
caption) and two within-subject affect conditions for the articles (funny, sad).
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Following a balanced design, participants were randomly assigned to the treatment
group with captions (N = 23) or the control group (N = 22). Each group listened
to both articles whose order was randomized to ensure that increased familiarity
with the procedure did not affect the confusion reports.

4.2.5. Setup and procedure

The participants joined the one-on-one meetings through a Google Meet invitation
link. The experimenter’s camera was turned off during the experiment. This
setup was chosen to ensure that only the effect of captions on comprehension
was measured, and not the effect of visual speech (McGurk & MacDonald, 1976).
In order to minimize participation barriers, the session was recorded on the
experimenter’s device. The Google Meet window with the participant’s video
stream and chat was recorded in full-screen mode at 30 fps with a resolution of
1920x1080 pixels (cf. Figure 4.1).

[Auto-generated captions for audio input from all participants]

1

3

2

FIGURE 4.1: Exemplary Google Meet session recording, captured from the experimenter’s
view. The application settings were adjusted so that (1) the participant’s video stream, (2) the captions
(if available), and (3) the chat window were clearly visible.

Before the recording started, the participants were informed that the objective
of the study was to collect data for developing a context-aware meeting tool.
They then submitted demographic information in an online questionnaire. The
treatment group was asked to turn on the captions and consult them whenever
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they appeared helpful to them. All participants were instructed to open the chat
window and enter ‘x’ whenever they felt confused or had troubles understanding
the audio material that they would be presented. In order to avoid behavioral
changes when pressing the keys, they were instructed to maintain one finger on
each the ‘x’ and ‘enter’ key at all times. Research investigating gesture input
in related contexts suggests that two-handed input is faster and preferred over
one-handed operations (Rickel et al., 2022). Therefore, we chose a two-handed
key sequence to minimize the cognitive effort of the key press. To simulate the
context of a short presentation given during a video conference, no additional task
apart from the confusion reports was given.

Subsequently, one of the two articles was read out loud by the experimenter.
After listening to the first article, the recording stopped, and the participants
completed a questionnaire to rate their understanding of the text and recall any
passages that appeared out of context. The treatment group additionally rated
the usability of the captions. The procedure was repeated for the second article.
Overall, the experiment took about 15 minutes for each participant.

4.2.6. Data analysis

Confusion. The articles were manipulated to trigger confusion resulting from
incongruent information, independent of English skills. However, since all sub-
jects were non-native English speakers and the audio quality further challenged
comprehensibility, multiple reported additional unintended confusion (i.e., non-
understanding of spoken words), and others did not recognize the intentional
incongruities. From the incongruent text passages that the participants recalled
in the questionnaire it appeared that subtle alterations (“phosphorus bombs and
other tradition", “banned by the interpersonal law") remained mostly unnoticed.
In previous studies, confusion was often defined by the participants (Shi et al.,
2019; Whitehill et al., 2008) and/or independent raters (Afzal & Robinson, 2010;
Borges et al., 2019; D’Mello et al., 2009) by reviewing a video recording of the
experimental session. The reliability of this method has seen mixed results (Conati
et al., 2013), as it risks capturing only very obvious displays of confusion, while
missing subtle expressions. Therefore, we chose an adapted version of the real-time
self-reports proposed by Lallé et al. (2016) and used the chat entries as ground

70



4.2. STUDY DESIGN: CONFUSION IN AUDIO-VISUAL PRESENTATION

truth. On average, subjects reported 3.29 (stdv = 2.53) confusing sentences in
Article 1. Article 2 triggered 2.82 (stdv = 2.54) confusion reports. The reports
were extracted on a per frame basis. A Python script was developed using motion
analysis and template matching to identify the entry of an ‘x’. The frames were
manually revised to ensure that all timestamps were correctly exported.

Subtitle effectiveness. To appraise H 2A, we performed a series of statistical
tests in which we compared the Confusion Reports – i.e., the number of times
‘x’ was typed into the chat – of the treatment group with captions to the control
group. Table 4.1 summarizes the tested dependent and independent variables.

TABLE 4.1: Effect variables and fixed factors for testing subtitle effectiveness. Separate
analyses for the confusion concepts Non-Understanding and Incongruity Confusion were performed to
test whether captions have a different effect depending on the cause of the experienced confusion.

Variable Description

D
E

P
E

N
D

E
N

T

Confusion Reports Number of times a participant reported confusion by typing ‘x’ in
the chat window.

Incongruity Confusion Confusion from contradictory information. Measured by Confusion
Reports submitted within 10 seconds after confusion trigger.

Non-Understanding Confusion from poor audio quality or language deficiencies. Mea-
sured by Confusion Reports that were submitted outside of the 10
second window after a confusion trigger.

IN
D

E
P

E
N

D
E

N
T Subtitle Availability of subtitles

(0: no caption, 1: captions)

Subtitle Usability Reported usability of the auto-generated captions
(1: not at all, 2: sometimes, 3: absolutely)

Subtitle: The effect of a Subtitle on Confusion Reports was tested with a two-sided
t-test. To assess whether captions have a different effect depending on the cause
of the experienced confusion, we additionally performed separate analyses for each
of the two concepts of confusion that the experiment may trigger: (1) Incongruity
Confusion resulting from contradictory information was defined as the number of
Confusion Reports that occurred within 10 seconds following the display of an
intentional confusion trigger; (2) Non-Understanding includes Confusion Reports
that were submitted outside of this time window, and are thus attributed to poor
audio quality or language deficiencies.
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Subtitle Usability: We additionally wanted to understand the role of incorrect
or inappropriate captions. We therefore performed a one-way between-subjects
ANOVA to examine how the perceived Subtitle Usability affects the Confusion
Reports. To measure Subtitle Usability, we administered an adapted version of
Lewis’ Computer System Usability Questionnaire (Lewis, 1995, Item 11) to the
treatment group, asking whether they found the captions helpful for understanding
the speech (1: not at all, 2: sometimes, 3: absolutely). The analysis of Subtitle
Usability was again repeated for both confusion concepts.

Comprehension intervals. To research the effect of confusion on facial gestures
(H 2B), we defined Comprehension intervals for a baseline, confusion, and recon-
ciliation phase. Windows of equal size, each corresponding to five seconds, were
chosen. Previous work has attempted to detect whether confusion occurs within
intervals of 10 seconds (D’Mello et al., 2009) or 20 seconds (Afzal & Robinson,
2010; D’Mello et al., 2009). However, in order to determine whether a change in
confusion is effectively the result of an interface adaptation (i.e., the activation
of captions), it must be detected with minimal latency. We therefore tested
whether changes in facial gestures manifest between any two five-second intervals
coinciding with, following, or preceding a confusion trigger.
An inspection of the confusion reports showed that a reaction typically occurred
with a delay of approximately 5 seconds (Article 1: median = 154 frames, Article
2: median = 162 frames). Figure 4.2 shows the timed onset of the confusion
triggers and the subsequent confusion report for each participant.

 confusion trigger  confusion report

FIGURE 4.2: Reaction time from onset of a confusion trigger to report. Participants
reported confusion with a median delay of approximately 5 seconds (Article 1: 154 frames, Article 2:
162 frames) after the onset of the trigger.

A ‘confusion’ interval thus started 5 seconds before the participant reported
confusion, which typically coincided with the onset of the confusion trigger. It
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always ended with the confusion report. Since the participants were explicitly
instructed to report confusion, we presume that the report allowed them to
attribute the perceived incongruities to the experimental manipulation. Knowing
about their intentionality would allow them to overcome confusion in the following
‘reconciliation’ interval. The ‘baseline’ interval was defined as the 5 seconds
preceding a confusion interval. Figure 4.3 illustrates the temporal sequence of the
Comprehension intervals.

confusion trigger 

[estimated moment of onset]

5 sec 5 sec

confusionconfidence reconciliation

5 sec

confusion report

FIGURE 4.3: Comprehension intervals. Facial gestures during the baseline, confusion, and
reconciliation were calculated for 5 second windows.

Facial gestures. Blinks, expressions of emotion, and AUs were extracted for
each Comprehension interval. Table 4.2 summarizes the facial gestures that were
considered as confusion indicators.

Blinks: We used facial landmark detectors from the dlib library1 to extract eye
contours for calculating the Eye Aspect Ratio (EAR) as proposed by Čech and
Soukupová (2016). While a high EAR indicates widely opened eyes, a low EAR
does not necessarily imply that a blink occurred. It may also capture other facial
expressions such as yawning. Since blink detection using fixed EAR thresholds
therefore typically perform poorly, we used the detection algorithm proposed by
Genchi et al. (2019)2, which implements a pre-trained SVM. Blinks were extracted
on a per-frame basis, using the first frame in which the eyelid was completely closed
as a reference. The extracted blinks were revised manually by two independent
researchers by inspecting the recorded videos and comparing observable blinks
with the model output. On average, 42.98 (stdv = 24.03) blinks were observed for
each participant, and the model identified 40.67 (stdv = 16.56) blinks. Blinks that
were not identified by the model were mostly a result of the low image resolution
which prevented successful eye contour detection. Applications that extract facial

1Dlib C++ library: http://dlib.net/ (King, 2009).
2Blink detection model: https://github.com/rmenoli/Eye-blinking-SVM.
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TABLE 4.2: Facial gestures considered as confusion indicators. Extraction of the metrics was
automated using computer vision techniques.

Metric Description Construct

blinkRate Number of blinks per second. Blinks

positive
negative
neutral

 Emotion
Percentage of frames with recognized
expression of {positive, negative, neutral}
emotion.

Emotion

emotionFluctuation Number of times the expression switches
to neutral, positive, or negative emotions.
Normalized over the number of frames.

AU1 Inner Brow Raiser Action units
AU2 Outer Brow Raiser
AU4 Brow Lowerer
AU5 Upper Lid Raiser
AU6 Cheek Raiser
AU7 Lid Tightener
AU9 Nose Wrinkler
AU10 Upper Lip Raiser
AU12 Lip Corner Puller
AU14 Dimpler
AU15 Lip Corner Depressor
AU17 Chin Raiser
AU20 Lip Stretcher
AU23 Lip Tightener
AU25 Lip Part
AU26 Jaw Drop
AU28 Lip Suck
AU45 Blink

gestures on the user’s device or forward the original camera images directly to a
remote server for further processing can easily overcome quality issues. Therefore,
we corrected the model output for unidentified blinks to ensure that the blink
activity is accurately represented. To measure blinkRate, the number of blinks
per second was calculated.

Emotion: Based on the observation that confusion shows in negative facial expres-
sions (Sathik & Jonathan, 2013), we wanted to understand whether automatic
facial expression recognition (FER) can be used to detect confusion. Facial expres-
sions were extracted with the open source Python model developed by Shenk et al.
(2021). The software implements a pre-trained CNN and is able to distinguish
between the six basic and neutral emotions. We applied the model to each frame
and extracted the most intense emotion.
Even though the use of neural networks has considerably improved the iden-
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tification of facial expressions, distinguishing between similar emotions is still
challenging, especially when low image resolution introduces noise (Zhang et al.,
2022). In the classifications that we obtained, the participants only rarely demon-
strated disgust (0.3%), anger (3.4%), fear (4.4%), and surprise (0.9%). Therefore,
we distinguish between positive, negative, and neutral emotions on an aggregated
level. Discrete emotions were classified as positive (happy, surprise) or negative
(anger, disgust, fear, sadness) according to the classification scheme proposed by
Plutchik (1991) (cf. Figure 4.4). It is based on the Circumplex Model of Affect
(Posner et al., 2005) which defines emotions as a linear combination of arousal (i.e.,
emotion intensity) and valence (i.e., positive/ negative emotion). To measure the
intensity of each class, we counted the number of frames with positiveEmotion,
negativeEmotion, and neutralEmotion. As confusion is a fleeting state, we
expected that it would cause frequent changes between expressions of different
emotions. Therefore, we additionally calculated EmotionFluctuation as the
number of times the valence of the recognized expression changes.

HIGH 
AROUSAL

sadness

anger

fear

disgust

HIGH 
VALENCE

happy

surprise

neutral

POSITIVEEMOTION happy

surprise

NEGATIVEEMOTION anger

disgust

fear

sadness

NEUTRALEMOTION neutral

LOW 
AROUSAL

LOW 
VALENCE

FIGURE 4.4: Circumplex Model of Affect (Posner et al., 2005). Emotions were assigned to
the valence of their quadrant (adapted from Plutchik (1991)).

Action units: While empirical evidence acknowledges that confusion shows in
expressions of emotional valence (Sathik & Jonathan, 2013), we expected that the
fine-granular changes in AUs deliver more robust predictions. We used OpenFace3

3OpenFace: https://cmusatyalab.github.io/openface/ (Amos et al., 2016).
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for automatic AU extraction. As a measure of their activation, we extracted
the intensity for each of the 18 AUs that are recognized by OpenFace. AU45
(Blink) was included in addition to the EAR based blinkRate, as it considers
all activations in the muscles that are associated with blinking, including small
twitches of the lid. In contrast, the EAR model only extracts blinks if the lid is
closed for a defined number of frames which is determined by the SVM.

Interaction effects. We tested whether the effect of confusion on facial gestures
(H 2B) is conditional on the Article Topic or the Subtitle. Table 4.3 summarizes
the main and interaction effect variables.

TABLE 4.3: Main and interaction effect variables of Comprehension. Subtitle and Article
Topic were included to test whether they interact with the main effect of Comprehension.

Variable Description

M
A

IN
E

FF
E

C
T Comprehension Five second interval of subjects’ comprehension state, identified by a

confusion report.
• confusion: interval starting four seconds before, and ending one second

after a confusion report
• recovery: interval directly following a confusion interval
• confidence: interval directly preceding a confusion interval

IN
T

E
R

A
C

T
IO

N Subtitle Availability of subtitles
(0: no caption, 1: captions)

Article Topic Experimental trial identified by the topic of the presented article
(Article 1: funny, Article 2: sad)

Article Topic: While the influence of emotions on facial expressions is undisputed,
empirical evidence suggests that positive emotions also reduce the blinkRate
(Lange et al., 2022). Therefore, we wanted to understand whether the affective
value of the Article Topic (funny, sad) determines whether confusion manifests
itself in facial gestures.

Subtitle: Reading has been associated with a reduced blink rate (Bentivoglio et al.,
1997; Lenskiy & Paprocki, 2016) and multiple AUs – particularly those related to
eyebrow movements – change during attentive reading (Li et al., 2016). Therefore,
we included the Subtitle (captions, no caption) as an additional control variable.
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4.3. Results: The role of confusion in audio-visual
presentation

The meetings with all 45 participants were successfully recorded and could be
used for the analysis. Between 2426 and 2774 frames (mean = 2616 ± 77) were
recorded from the presentation of one article. The analyses were performed on
the aggregated data from both articles.

4.3.1. Effectiveness of auto-generated captions (H 2A)

In the treatment group, where captions were displayed, 74% indicated that they
consulted the captions when feeling confused. We used a two-sample t-test to
compare the Confusion Reports from the treatment group (1: captions) to the
control group (0: no caption). The role of perceived usability of the captions
was tested with a one-way between-subjects ANOVA on Confusion Reports,
using Subtitle Usability (with an additional ‘no caption’ group) as fixed factor.
The test measures whether the subjective feeling that captions are helpful for
understanding the spoken reports affects how often a user experiences confusion.
Post-hoc comparisons were performed with Šidák corrected pairwise t-tests.

Experimental manipulation check. To appraise the validity of Confusion
Reports as an indicator for comprehension of the articles, we tested its correlation
with the participants’ ratings of whether the content was understandable (1: barely,
2: moderately, 3: completely). Subjects who indicated a good understanding tended
to issue fewer Confusion Reports. Pearson’s product-moment correlation confirmed
a significant negative relation (corr. = -.262, p-value = .013).

Effect of Subtitle on Confusion Reports. A two-sided t-test showed no
significant effect of Subtitle on Confusion Reports (t = 0.792, p-value = .431).
Additional t-tests performed on each of the two confusion concepts separately
confirmed that auto-generated captions have no significant effect on Incongruity
Confusion (t = 0.570, p-value = .570). However, the effect was marginally
significant for Non-Understanding (t = 1.735, p-value = .086). This implies
that captions that replicate the information of an incongruent auditory report
cannot alleviate confusion caused by the contentual contradiction. In contrast, the
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cognitive disequilibrium resulting from poor audio quality or language deficiencies
can be mitigated.

Effect of Subtitle Usability on Confusion Reports. The one-way ANOVA
on Confusion Reports revealed a significant effect of Subtitle Usability (F = 4.327,
p-value = .007, η2 = .131). Participants who found the captions ‘absolutely’
helpful submitted less Confusion Reports than the control group with no captions
(t = 2.995, p-value = .024, η2 = .089). Differences between other groups were not
significant.
Differentiated analyses of the two confusion concepts confirmed that Subtitle
Usability has a significant effect on Non-Understanding (F = 4.636, p-value = .005,
η2 = .139). Compared to the control group with no captions, subjects of the treat-
ment group reported less instances of Non-Understanding if they found the captions
‘absolutely’ (t = 3.034, p-value = .021, η2 = .090) or ‘sometimes’ (t = 3.258,
p-value = .011, η2 = .096) useful. The ANOVA on Incongruity Confusion reported
a significant effect of Subtitle Usability (F = 3.413, p-value = .021, η2 = .106).
However, post-hoc pairwise comparisons showed no significant differences between
any of the groups.

H 2A Summary: A comparison of the experimental groups revealed that auto-
generated captions reduce confusion if they are perceived as useful. In particular,
participants who found the captions ‘absolutely’ or ‘sometimes’ helpful reported
significantly less Non-Understanding caused by poor audio quality or language
deficiencies than the control group with no captions. In contrast, auto-generated
captions do not mitigate Incongruity Confusion resulting from contradictory auditory
reports – independent of whether they are perceived as useful.

4.3.2. Confusion in facial gestures (H 2B)

To research the effects of confusion on facial gestures in the presence or absence
of captions, a two-way mixed ANOVA with Comprehension and Subtitle as fixed
factors was performed for each facial gesture. Influences of the affective value of
the article were tested in additional two-way repeated-measures ANOVAs with
Comprehension and Article Topic as fixed factors. Since the interaction between
Article Topic and Subtitle is immaterial to the research question, each confounding
factor was evaluated in a separate ANOVA. Mauchly’s test of sphericity was
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applied to all facial gestures to test whether the assumption of equal variances
of group differences was met. The p-values of groups with unequal variances in
repeated-measures ANOVAs were Greenhouse-Geisser corrected by adjusting the
degrees of freedom for F-value calculations by their sphericity. Post-hoc analyses
of significant group effects were performed using pairwise t-tests with Šidák
correction. Table 4.4 summarizes the statistics of significant pairwise comparisons.
For better readability, we only report significant interaction and main effects of
Comprehension. The complete statistical output is included in Appendix A.

TABLE 4.4: Significant effects of Comprehension on facial gestures. Group differences were
tested for the baseline, confusion, and reconciliation intervals. Significance was determined with two-way
mixed ANOVAs using Comprehension (C) and Subtitle (S), and two-way repeated-measures ANOVAs
with Comprehension and Article Topic (T) as fixed factors. For the interaction effects C*S and C*T,
group differences are reported if they are significant within the specified interaction group. Pairwise
t-tests with Šidák correction were used for post-hoc comparisons.

ANOVA groups pairwise t-test

Factor F sig. η2 interaction A B [A] µ (σ) [B] µ (σ) t sig. η2

bl
in

k
R

at
e

C 5.285 .007 .107 baseline – confusion .401 (.272) .333 (.255) 2.952 .015 .016
confusion – reconcile .333 (.255) .404 (.282) 2.753 .025 .017

C*S 2.778 .068 .008 [caption]: baseline – confusion .411 (.296) .288 (.227) 3.832 .005 .052
[caption]: confusion – reconcile .288 (.227) .387 (.309) 2.586 .097 .032

ne
ut

ra
l

E
m

ot
io

n C*S 5.559 .005 .002 [caption]: baseline – reconcile .581 (.359) .540 (.363) 2.641 .086 .003

AU4 C 3.083 .066 .065 baseline – reconcile .519 (.520) .563 (.542) 2.195 .097 .002
AU6 C 3.041 .058 .065 baseline – reconcile .246 (.336) .278 (.346) 2.201 .096 .002
AU7 C 3.830 .033 .080 baseline – reconcile .628 (.696) .684 (.712) 2.354 .068 .002
AU10 C 3.914 .034 .784 baseline – reconcile .298 (.396) .333 (.388) 2.327 .072 .002
AU17 C 5.094 .020 .104 baseline – confusion .291 (.329) .333 (.357) 3.899 .001 .004

baseline – reconcile .291 (.329) .356 (.439) 2.590 .038 .007
C*T 3.370 .039 .017 [sad]: baseline – confusion .283 (.361) .344 (.459) 2.799 .045 .006

confusion – reconcile .274 (.339) .399 (.589) 2.510 .091 .016
AU23 C 6.983 .002 .137 baseline – confusion .063 (.074) .096 (.121) 3.335 .005 .026

baseline – reconcile .063 (.074) .118 (.184) 2.945 .015 .037
C*T 2.959 .057 .033 [funny]: baseline – confusion .077 (.123) .106 (.144) 2.758 .050 .012

Blinks. The blinkRate showed substantial variations across participants. In-
tervals between blinks lasted between 27 frames (∼ 1 second) and 446 frames
(∼ 15 seconds).
The main effect of Comprehension (F = 5.285, p-value = .007, η2 = .107) and the
interaction with Subtitle (F = 2.778, p-value = .068, η2 = .007) were significant.
Pairwise comparisons revealed a lower blinkRate during confusion compared to
the baseline (t = 2.952, p-value = .015, η2 = .016) and reconciliation (t = 2.753,
p-value = .025, η2 = .017). The interaction effect indicated that only subjects
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with captions blinked less during confusion compared to the baseline (t = 3.832,
p-value = .005, η2 = .052) and reconciliation (t = 2.586, p-value = .097, η2 = .032).

Emotion. The FER model failed to detect facial landmarks for one participant
due to the low contrast of skin against background. Since the model failed even
after applying multiple filters, the sample was dropped for the emotion analysis.
The main effect of Comprehension was not significant for any emotion class or
emotionFluctuation. ANOVA tests reported a significant interaction with
Subtitle for negativeEmotion (F = 4.090, p-value = .020, η2 = .002) and neu-
tralEmotion (F = 5.559, p-value = .005, η2 = .002). Post-hoc tests confirmed
the effect for neutralEmotion (t = 2.641, p-value = .086, η2 = .003). Expres-
sions of neutralEmotion were more frequent during the baseline compared to
the reconciliation phase if captions are supplied.

Action units. ANOVA tests reported a significant main effect of Comprehension
on AU4 (F = 3.083, p-value = .066, η2 = .065), AU6 (F = 3.041, p-value = .058,
η2 = .065), AU7 (F = 3.830, p-value = .033, η2 = .080), AU9 (F = 3.397,
p-value = .038, η2 = .071), AU10 (F = 3.914, p-value = .034, η2 = .784), AU17
(F = 5.094, p-value = .020, η2 = .104), AU23 (F = 6.983, p-value = .002,
η2 = .137), and AU45 (F = 2.796, p-value = .067, η2 = .060). The interaction
effect with Article Topic was significant for AU17 (F = 3.370, p-value = .039,
η2 = .017) and AU23 (F = 2.959, p-value = .057, η2 = .033).
Post-hoc comparisons revealed a more intense activation during reconciliation
compared to the baseline for AU4 (t = 2.195, p-value = .097, η2 = .002), AU6
(t = 2.201, p-value = .096, η2 = .002), AU7 (t = 2.354, p-value = .068, η2 = .002),
AU10 (t = 2.327, p-value = .072, η2 = .002), AU17 (t = 2.690, p-value = .038,
η2 = .007), and AU23 (t = 2.945, p-value = .015, η2 = .037).
A higher activation during confusion compared to the baseline was observed for
AU17 (t = 3.899, p-value = .001, η2 = .004) and AU23 (t = 3.335, p-value = .005,
η2 = .026). The analysis of Article Topic interaction showed that only the sad
article triggers the effect on AU17 (t = 2.799, p-value = .045, η2 = .006). The
effect on AU23 was limited to the funny article (t = 2.758, p-value = .050,
η2 = .012). For the sad article, we additionally observed a lower activation of
AU17 during confusion than reconciliation (t = 2.510, p-value = .091, η2 = .016).
In summary, the results of the statistical analyses imply that confusion shows in
multiple action units, but typically only after a confusion report.
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H 2B Summary: Confusion activates AU4 (Brow Lowerer), AU6 (Cheek Raiser),
AU7 (Lid Tightener), AU10 (Upper Lip Raiser), AU17 (Chin Raiser), and AU23
(Lip Tightener). With captions, it additionally reduces the blinkRate and expres-
sions of neutralEmotion. For most features, the effect surfaces in the interval five
seconds after confusion is reported. AU17 and AU23 are additionally activated
– albeit not as strongly – directly at the onset of a confusion trigger. Yet, the
immediate effect is confined to sad topics in AU17, and funny topics in AU23. In
contrast, the blinkRate drops immediately after the onset of a trigger, and then
quickly returns to its original frequency.

4.4. Discussion & implications of multimodal redundancy

The analysis of auto-generated captions (H 2A) revealed their potential for
reducing non-understanding (i.e., confusion from poor audio quality or language
deficiencies) in virtual meetings, but only if perceived as useful. Perceived useful-
ness may stem either from individual preferences for uni- or multimodal interaction
(Oviatt et al., 2003, 2005; Xiao et al., 2002), or from the quality of the captions.
This shows an important limitation of auto-generated captions compared to videos
with verified captions (Hayati & Mohmedi, 2011; Winke et al., 2010). Confusion
caused by contradictory auditory reports, in contrast, is unfazed by auto-generated
captions which merely replicate the incongruities of the auditory presentation.

The examination of facial gestures (H 2B) identified them as a promising contender
for detecting confusion in virtual meetings. It is reflected in action units AU4
(Brow Lowerer), AU6 (Cheek Raiser), AU7 (Lid Tightener), AU10 (Upper Lip
Raiser), AU17 (Chin Raiser), and AU23 (Lip Tightener). Inferred confusion can
thus be used as a trigger to activate captions in moments of need. The summary
of findings from related studies in Table 4.5 shows that, previously, only AU4 and
AU7 were unanimously associated with confusion (Borges et al., 2019; D’Mello
et al., 2009; Yasser et al., 2021). While Yasser et al. (2021) also report signs of
confusion in AU6, AU10, and AU23, our findings for AU17 are unprecedented. In
captioned meetings, confusion additionally led to a lower blinkRate and less
expressions of neutralEmotion. Findings from previous studies in which high
cognitive load was associated with blink inhibition during reading (Ahmad et al.,
2020; Bafna et al., 2020; Peitek et al., 2018) can thus be relayed to confusion.
This identifies the blinkRate as an important – and so far mostly overlooked –
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confusion indicator. Blinks are subtle and may identify confusion even if strong
emotions or concentration reduce the predictive power of other features. Yet, the
confinement to vision-based tasks has important implications for its application
in practice. Moreover, blinks occur at intervals, whereas changes in action units
can be identified on the granularity of single frames. Therefore, the combination
of different facial gestures is another promising research direction.

TABLE 4.5: Comparison of facial gestures identified as relevant for confusion prediction
in related research. Only related work that studies confusion (excluding cognitive load studies) and
performs an analysis of relevant facial gestures is compared.
Research Study & task Ground truth

collection
Analysis
method

Relevant features

Yasser
et al. (2021)

120 participants are
interviewed on personal
social issues

Segmentation into
‘confused’ and ‘not
confused’ response

n/d AU4, AU5, AU6, AU7,
AU10, AU12, AU23

D’Mello
et al. (2009)

Study 1:
7 students study a
computer literacy topic in
AutoTutor for 90 minutes

Students verbally
report when they
experience emotions

Correlation
with AUs
extracted
3 seconds
prior to
ground truth
emotion

AU7, AU4, AU12

Study 2:
28 students study a
computer literacy topic in
AutoTutor for 35 minutes

Students and three
judges code emotions
in 20 second intervals

AU7, AU4

Borges
et al. (2019)

13 subjects receive map
navigation instructions
designed to cause
misunderstandings

Three judges identify
confusion based on
changes in facial
expression or delayed
answers

Lesioning
with LSTM
prediction

AU4, AU15, AU25, AU26,
AU27

Our work 45 subjects listen to article
readings, half of the sample
with captions

Participants enter ‘x’
when they are
confused

ANOVA All sessions: AU4, AU6,
AU7, AU10, AU17, AU23

Captioned sessions only:
blinkRate, neutralEmotion

The observed changes in AUs and neutralEmotion occurred in the interval
after confusion was reported. An immediate response to an emotion trigger was
only visible in AU17 if a sad, and AU23 if a funny topic was presented. In contrast,
D’Mello et al. (2009) detected effects on AU4, AU7, and AU12 three seconds
before an oral emotion report. It thus appears that the ground truth collection
procedure determines its temporal relation to changes in facial gestures and should
receive careful consideration in future studies.

Since facial gestures do not reveal the cause of confusion – in particular, incongru-
ent information versus non-understanding from poor audio quality or language
deficiencies – a static activation of captions in response to a one-time detection of
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confusion may not be desirable. In fact, it can even be detrimental to users who
are only confused by contentual incongruities if the captions divert their attention
away from – potentially clarifying – information on a shared screen (Jiménez
et al., 2011; Winke et al., 2010). We thus propose that confusion levels should
be monitored continuously in the background. If the captions do not reduce
confusion, they should again be deactivated.

4.4.1. Threats to validity

Conclusion validity: Are there issues that might affect the relation between
experimental treatment and outcome? The one-on-one meetings of the study may
not represent a typical meeting setup. However, we expect users to behave similarly
in meetings with multiple participants. Moreover, since confusion detection and
adaptive responses are performed for each user independently, the number of
meeting participants should not interfere with the adaptation component.
While offline extraction of AUs and emotions similar to the procedure that was
used in the study would limit their suitability for consumer applications, real-time
extraction is possible with open-source tools such as CERT4 and OpenFace5.

Construct validity: Do measurement errors or variable definitions compromise
the relation between theory and observation? Even though they were instructed to
face the screen, some subjects turned their head during the experiment. While this
may have reduced the quality of the recordings, it provides a realistic benchmark
and promises the features to be robust in unconstrained settings.
Similarly, low image resolution prevented the blink detection model from correctly
extracting all blinks. Applications that extract facial gestures on the user’s
device or a remote server can have access to high-quality images. The reported
results, which are based on manually corrected blinks, are therefore subject to
the assumption that the user’s camera produces images of sufficient quality to
accurately detect blinks.
A controversial issue is the definition of confusion labels. We noted that not all
subjects reported confusion after the onset of intentional triggers. Psychology
research has shown that humans are capable of understanding incomplete sentences

4CERT: https://inc.ucsd.edu/mplab/users/marni/Projects/CERT.htm (Littlewort et al., 2011).
5OpenFace: https://cmusatyalab.github.io/openface/ (Amos et al., 2016).
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by filling in missing words (Cohen & Faulkner, 1983). Since the manipulated
sentences remained phonetically close to the original text, some subjects may
have subconsciously disentangled the correct meaning and thus did not report
confusion. Since recognizing incomplete sentences is mentally demanding (Cohen
& Faulkner, 1983), the effort may nevertheless be reflected in some facial gestures.
To understand the implications of such an effect, we repeated the analysis using
the intentional triggers as ground truth. Given that this resulted in a substantially
reduced effect on facial gestures we presume that, even if a cognitive process takes
place, its effect on facial gestures is sufficiently disjunct from confusion.

Internal validity: Are there any moderating effects? The physical effort from
pressing a key to report confusion may have caused unintended effects on facial
gestures. While less noticeable than mental effort, physical exertion changes the
facial expression (Tian et al., 2005). However, in the interval following a confusion
report – where we observed changes in facial gestures – the effects of physical
exertion should already have subsided.

External validity: Can the results be generalized to other target groups? Age,
gender, and cultural background influence the success of face detection (Abdur-
rahim et al., 2018) and the intensity of facial expressions (Sohail et al., 2022).
While we did not test for differences between demographic subgroups, we care-
fully selected a diverse sample to identify facial gestures that are independent of
demographic characteristics.
Since we only tested English captions and all participants were advanced non-
native speakers, it is difficult to estimate whether captions have the same effect
on native speakers or users with lower language skills. However, empirical support
for a beneficial effect on native speakers with English (Morris et al., 2016) and
Mandarin (Zheng et al., 2022) captions suggests a broad generalizability.

4.4.2. Relevance for research

The findings from the experimental investigation confirm that activating captions
at all times may not be desirable if personal preferences lean towards unimodal
presentation, or the quality of the auto-generated captions is unsatisfactory. It
may even be detrimental if captions occlude visualizations on a shared screen
or the speaker’s face (Brown et al., 2015; Oviatt, 2006; Sueyoshi & Hardison,
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2005). Dynamic caption activation may thus be one measure that adaptive
multimodal interfaces can implement to improve comprehension, but should be
used in conjunction with additional steps. This is especially crucial if challenging
speech input (e.g., from a non-native presenter) results in incorrect captions.
Since inadequate captioning may even increase confusion, special care must be
taken to ensure that the captions have no negative effects. As a countermeasure,
confusion should be continued to be monitored after activating the captions. The
real-time feedback on the user’s level of confusion can then be used to evaluate
the effect of the multimodal presentation, and the application should revert to
unimodal output if there is no improvement in comprehension after the captions
are activated. Another option – in line with the trend towards more human
control (Shneiderman, 2020) – is to recommend the captions to the user, but
leave the final decision to them. As the quality of the captions depends on the
enunciation of the speaker (Benzeghiba et al., 2007), it is advisable to re-evaluate
its usefulness for each speaker separately.

4.4.3. Relevance for practice

The dynamic activation of captions (H 2A) can be beneficial in multiple use cases
outside of the virtual meeting scenario that we studied – most notably in online
learning and captioned movies.
Moreover, the ability to detect confusion in virtual meetings (H 2B) enables
not only dynamic caption activation, but also additional functionalities such as
feedback for presenters.

Online learning. Timestamped confusion detection in video tutorials enables
innovative features, including interactive subtitles such as SubMe which uses eye
tracking to infer English skills (Fujii & Rekimoto, 2019). Captioning only difficult
words proved to be not enough to understand a movie. However, captions of
the entire audio with additional definitions for difficult words received positive
evaluations. Alternatively, Schneegass et al. (2019) propose creating personalized
vocabulary lists with words from audio-visual material that cause incomprehension.

Captioned movies. Netflix reports that 80% of its subscribers use subtitles or
captions at least once a month (Robison, 2019). Some sporadically use captions
to better understand quickly spoken or poorly enunciated dialogues (Office of
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Communications, 2006). Since their need for captions depends on the movie –
and may even change with the speaker within one movie – they would benefit
from automatic caption activation whenever comprehension issues are detected.

Feedback for presenters. Emotional reactions in online meetings are often hard
to read, and presenters lament the lack of direct feedback (Frisch & Greene, 2020).
The only options are usually polling tools, but actively providing input interrupts
the presentation. Alternative polling techniques with hand gestures (Koh et al.,
2022) or attention tracking through body posture (Revadekar et al., 2020) are less
intrusive. Meeting platform providers are therefore working on innovative features
such as the Microsoft Teams AffectiveSpotlight which tracks facial expressions
and movements to highlight emotional responses to the presenter (Murali et al.,
2021; Stokel-Walker, 2021).
Moreover, receiving feedback about the current mood in the audience may not
only benefit the presenter, but other meeting participants as well (Fessl et al.,
2012). Knowing that others feel equally confused might lower the barriers to
express comprehension issues.

4.5. Conclusion: Summary of Essay 2

Many attendants of virtual meetings experience confusion, but are hesitant to
express their doubts. In movies, captions are an established tool to improve
comprehension. In contrast, the quality of auto-generated captions in virtual
meetings is often poor and their benefit unclear. To research how captions can be
used effectively in virtual meetings, we conducted a user study with 45 Google
Meet users. The study revealed two major insights:

1. Captions: Auto-generated captions are only moderately helpful for alleviat-
ing confusion, as they are only effective if perceived as useful – which varies
according to individual differences in information processing. Moreover,
their beneficial effect is limited to confusion caused by poor audio quality or
language deficiencies. In contrast, they have no effect on confusion resulting
from contentual incongruities.
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To mitigate negative side effects such as occlusion or distraction from important
visual information when captions are not strictly needed, we posit that their
activation should be confined to situations in which the user experiences confusion.

2. Confusion detection: Facial gestures are able to identify confusion in
virtual meetings within a time window as short as five seconds. During
non-visual tasks, confusion is reflected in AU4 (Brow Lowerer), AU6 (Cheek
Raiser), AU7 (Lid Tightener), AU10 (Upper Lip Raiser), AU17 (Chin
Raiser), and AU23 (Lip Tightener). When captions demand visual focus, a
lower blinkRate and less expressions of neutralEmotion are additional
indicators of confusion.

By extracting facial features, confusion can be monitored continuously in order
to determine whether activating captions is effective. If comprehension does
not improve, the application may revert to auditory-only presentation. The
findings further highlight the importance of selecting appropriate features for the
detection of confusion depending on whether the presentation is purely auditory
or supported by visual material – text in particular. More research is needed to
investigate whether complementary measures can further mitigate confusion.
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5. Essay 3: EyeDirect: A Gaze Contingent
System for Personalized Video Display

Imagine coming home from a long day at work and eventually finding
the time to watch a movie. Having been truly captivated by the crime
story, you tell your co-worker about it and urge her to watch it. The
next day, she thanks you for the recommendation. You are surprised
to hear that she was intrigued by the victim’s construction of an escape
plan, but seems to have missed the part where the villain prepared a
lethal coup. As you continue discussing the movie, you notice that
your co-worker’s elaborations on some scenes do not reflect how you
remember the plot.

What happened in this scenario is no coincidence. It is the making of the movie
which allows the spectators to direct it themselves as they are watching the film.
Without deliberately taking an action, they subconsciously decide about each
turn in the plot while the movie evolves. This futuristic vision that changes the
way we watch videos and movies could soon become reality. In 2018, Netflix
launched the interactive movie ‘Black Mirror: Bandersnatch’, where viewers make
choices about subsequent scenes (Netflix, 2018). As the movie branches out into
alternative continuations, viewers may arrive at five different endings, depending
on their choices. The movie ‘You vs. Wild’ and its sequel ‘Animals on the Loose:
A You vs. Wild Movie’, in which the viewer’s choices determine protagonist Bear
Grylls’ survival in nature, were released soon afterwards (Netflix, 2021a, 2021b).
Interactive documentaries such as iOtok encourage viewers to interact by clicking
on supplementary material or discussing the topic with others (Ducasse et al.,
2020). While this allows viewers to control what they see, having them actively
select their preferred plot or content contradicts the purpose of movies, which is
to provide leisurely entertainment. We thus propose twisting the storyline to the
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viewers’ taste without them becoming actively engaged – turning the viewer into
the subconscious director of the movie.

We developed eyeDirect, a system for creating videos with an adaptive storyline
based on gaze data. An eye tracker records the viewer’s gaze while watching a
video. Making use of the relation between gaze distribution and preference for
fixated objects, eyeDirect selects a variant of the subsequent scene in which the
viewer’s preferred object takes the lead (cf. Figure 5.1).

eye tracker

gaze fixations

possible scene 

sequences

FIGURE 5.1: Illustration of a gaze-informed adaptive movie. The next scene is dynamically
selected based on the viewer’s distribution of gaze to the objects in the current scene.

We make the following contributions:

• We present eyeDirect, a gaze-informed system for adaptive video delivery.
The system uses commercial products, and can thus be implemented using
readily available technology.

• We conduct a user study (N = 175) to analyze the effect of different per-
sonalization strategies on the user engagement attributes focused attention,
involvement, and novelty.

The eyeDirect system may serve as a reference architecture for designing adaptive
videos based on eye tracking data.

5.1. Related work: Gaze-based content adaptation

Gaze-contingent systems presuppose that preferences can be inferred from gaze.
Evidence for a correlation between visual attention and preference for elements
was already found in the 1960s. Mackworth and Morandi (1967) report that
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important aspects of pictures receive more fixations. Engelke and Le Callet (2015)
identified a strong correlation between the two concepts. Yet, attention does
not necessarily imply preference for an element. While top-down attention is
goal-driven, i.e., it is controlled by the person (Burke & Leykin, 2014), bottom-up
attention responds to salient elements (e.g., bright colors). Nevertheless, citing the
results of several psychological studies, Bednarik (2005) asserts that a link between
cognitive processes and eye movements can be assumed. Market research has long
made use of this link to analyze the determinants of consumers’ decision-making
process (Chang & Chen, 2017; Clement et al., 2013; Duchowski, 2002; Hwang
& Lee, 2018; Muñoz-Leiva et al., 2019; Otterbring et al., 2014; Wedel & Pieters,
2006). While market research traditionally analyzes gaze data offline, eyeDirect
seeks to infer preferences dynamically to adapt the content.

In the following, we provide an overview of personalized content retrieval and
augmentation with attentive user interfaces in general, before reviewing approaches
for video personalization. Table 5.1 summarizes the related literature.

5.1.1. Personalized content retrieval

Personalization requires feedback from users to determine their preferences. Ex-
plicit feedback is proactively submitted by the user, for example in the form
of product ratings. This potentially alters the natural system usage (Claypool
et al., 2001), and preference predictions are only as good as the users’ ability to
express their preferences (Franke et al., 2009). Implicit feedback therefore extracts
information from natural interactions with the system. For instance, online stores
use transaction data to recommend relevant products (Bigornia, 2015; Kim et al.,
2001; Linden et al., 2003). At Amazon, customers are recommended products that
others usually buy together with the items in their shopping cart (Linden et al.,
2003). Facebook enables brands to issue advertisements to the accounts of users
who show interest in a product on their website, as well as to other Facebook
users with similar profiles (Bigornia, 2015).

Since past user data becomes obsolete at a fast pace and often does not ad-
equately represent immediate preferences, dynamic approaches determine the
user’s psychological state at the moment of the interaction (Matz & Netzer, 2017).
Browsing data such as search queries (Lai & Hwang, 2010; Langheinrich et al.,
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TABLE 5.1: Overview of related literature on gaze-contingent systems
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Meißner et al. (2019) • • • • • •
Starker and Bolt (1990) • • • • • •
Qvarfordt and Zhai (2005) • • • • • •
Cheng and Liu (2012) • • • • • •
Kozma et al. (2009) • • • • •
Salojärvi et al. (2004) • • • •
Hardoon et al. (2007) • • • •
Xu et al. (2008) • • • • • •
Netflix (2018, 2021a, 2021b) • • •
Ducasse et al. (2020) • • •
Gifreu (2013) • • •
Peng et al. (2018) • • •
Bolt (1981) • • • • •
Vertegaal et al. (2003) • • • • •
Kandemir et al. (2010) • • • •
Hansen et al. (1995) • • • •
Vesterby et al. (2005) • • • • • •
eyeDirect • • • • • • •

1999; Shatnawi & Mohamed, 2012; Trusov et al., 2016) or click data (Claypool et
al., 2001; Hauser et al., 2009) have been identified as reliable preference predictors
in interactive web applications.

In applications with little user interaction such as video streaming, feedback
from browsing data is scarce. Gaze-informed recommender systems thus analyze
eye movements to extract relevant images (Cheng & Liu, 2012; Kozma et al.,
2009), or predict document relevance from the users’ gaze patterns while reading
text (Hardoon et al., 2007; Salojärvi et al., 2004). Xu et al. (2008) additionally
personalize recommendations for videos. They measure attention to key frames of
a scene and then predict attention to other videos with similar key frames. In
contrast to eyeDirect, attention is measured on the granularity of entire videos,
instead of individual elements in a scene.
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5.1.2. Attentive user interfaces

Users’ visual focus, usually captured by an eye tracking device, has been exploited
to augment elements that attract their attention. Starker and Bolt (1990) designed
a graphics world inspired by Saint-Exupéry’s ‘The Little Prince’ in which items
that the user looks at are augmented. The interactive map iTourist uses gaze
data to dynamically create auditory reports for landmarks of interest (Qvarfordt
& Zhai, 2005). Meißner et al. (2019) display information for products that users
in a virtual reality shopping scenario are looking at.

Using eye tracking to augment dynamic elements that a user looks at was first
proposed by Bolt (1981) in a multimedia environment with multiple muted video
streams displayed simultaneously on a large screen. Looking at a stream for
multiple seconds triggered an adaptation to enlarge the window and play its
soundtrack. The video communication system developed by Vertegaal et al. (2003)
replays only the speech of whoever the user is currently looking at. Kandemir
et al. (2010) display information tags over relevant elements in a video frame.

5.1.3. Personalized videos

Netflix started launching interactive movies in 2017. Throughout the movie, the
viewer has to make choices that determine how the plot evolves (Netflix, 2017).
Originally targeting children, the multimedia company subsequently launched
the interactive movies ‘Black Mirror: Bandersnatch’ (Netflix, 2018) and ‘You vs.
Wild’ (Netflix, 2021a, 2021b) to cater for a broader audience.
Interactive documentaries display supplementary content if viewers click on an
element (Ducasse et al., 2020). They may even become co-authors by entering
additional audiovisual or text content while watching the video (Gifreu, 2013).
While such interactive approaches are adaptable and thus offer each user a
personalized experience with videos, they are not adaptive. Instead, they require
an explicit selection intervention by the user while consuming the video.

The self-reflective animated movie ‘A Trip to the Moon’ narrates the adventures
of a dog traveling to the moon (Peng et al., 2018). The obstacles and social
interactions that the dog encounters on the journey vary with the mood and
events that the user reports to have experienced throughout the past week. The
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user’s mood is reflected in the dog’s behavior and expressions, as well as in visual
and acoustic parameters of the environment. The adaptation does not require any
user input at consumption time, but is still dependent on user reported emotions.

Hansen et al. (1995) were the first to suggest using eye tracking for movies with
an adaptive storyline. They describe a scene in which two people leave a room
in opposite directions. The person to whom the viewer pays more attention is
shown in the next scene. The conceptual framework for gaze-informed interactive
movies was implemented in later work by Vesterby et al. (2005).

While the reviewed systems demonstrate that it is feasible to create gaze-informed
adaptive movies, none of them has been both implemented and evaluated with
regard to its usability. In the following, we thus present eyeDirect, a system for
dynamic video adaptation. The system was implemented and used to assess the
effect of different preference inference strategies on user engagement.

5.2. The eyeDirect system

EyeDirect is a system for creating adaptive movies with standard eye tracking
equipment and classification algorithms. The system analyzes gaze data collected
at runtime and selects the next scene based on the viewer’s preferences for the
objects in the current scene (cf. Figure 5.2). It may serve as a reference architecture
for creating gaze-informed adaptive videos.

FEATURE EXTRACTION

AOI COORDINATOR AOI-TO-BRANCH MAPPER

BRANCH SELECTOR

3

7

6

GAZECOUNT

FIXCOUNT

MEANFIXDUR
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FIGURE 5.2: The eyeDirect system architecture for personalized videos. The system
analyzes real time gaze data to predict user preferences for elements in a video. The next scene for the
video is selected based on the predicted preference.
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5.2.1. Gaze data collection

Gaze data is recorded during preference indicative sequences in which all 1 areas
of interest (AOIs) are visible. An AOI is a rectangular region containing an
element about which the system makes an inference. It may encompass one video
of a tiled screen, or a single object like a person. For moving objects, the definition
of AOIs can be automated with object tracking (Wang & Yeung, 2013).
A screen-based eye tracker starts recording the viewer’s gaze at the beginning of
a scene and continuously forwards the gaze data to the 2 gaze data buffer. The
buffer stores the raw gaze data for the entire scene. Gaze recording stops two
seconds before the scene ends to ensure that data processing does not delay the
display of the next scene.

5.2.2. Feature extraction

At the end of each scene, the 3 feature extraction module processes the raw
data accumulated in the gaze data buffer into a standard set of gaze features.
Applying the strict average method (Olsen, 2012), invalid gaze recordings are
discarded, and the gaze coordinates of the left and right eye are averaged. The
gaze points are then processed into fixations and saccades. During fixations, the
viewer focuses on a specific point on the screen. Using the values recommended by
the manufacturer of the Tobii eye tracker (Olsen, 2012), we defined fixations as eye
movements with a velocity below a visual angle of 30° per second. Appendix B.1
contains the pseudocode of the algorithm that was used to extract fixations. As
they are typically associated with the acquisition of information, fixations can be
leveraged for preference predictions (Cheng & Liu, 2012; Jacob, 1991; Majaranta
& Bulling, 2014). During the saccadic jumps between fixations, in contrast, only
little information is absorbed (Joachims et al., 2017b). We therefore discard
saccades and only further process the extracted fixations. The set of included
features comprises one sequential, four duration, and four frequency features
that are commonly used in gaze-contingent systems. Frequency and duration
features ignore the chronological order of the recorded gaze data. In contrast,
sequential features take into account changes in the gaze patterns over time.
Table 5.2 describes the features. The methods for their calculation in pseudocode
are included in Appendix B.2.
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TABLE 5.2: Frequency, duration, and sequential gaze features. Frequency and duration
features are time invariant. Sequential features take into account changes in the gaze patterns over time.

Frequency Features Description

gazeCount Total number of valid gaze points
fixCount Total number of fixations
longFix Number of fixations longer than 400ms (threshold from Tobii (Olsen, 2012))
maxContFix Maximum number of continuous fixations on one AOI

Duration Features

meanFixDur Mean duration of a fixation (in ms)
maxDwell Maximum time that the gaze dwells on one AOI (in ms)
meanDwell Mean time that the gaze dwells on one AOI (in ms)
maxFix Duration of the longest fixation (in ms)

Sequential Features

endCount Number of gaze points from the last 400ms

The feature extraction module then examines the distribution of gaze across the
AOIs. Information about the screen coordinates of the AOIs is retrieved from the
4 AOI coordinator. Since the coordinates of a moving target may change within

a scene, this module associates each AOI with its corresponding time window
(defined in terms of milliseconds from scene start). An example of a video with
dynamically changing AOI coordinates is illustrated in Figure 5.3.

[00:00:00; 00:00:02]

(0.3504,0.5349)

(0.4934,0.1721)

(0.87,0.5349)

(0.7270,0.8977)

(a) AOIs for t00 − t02

[00:00:02; 00:00:09]

(0.2296,0.6108)

(0.4827,0.9)

(0.6915,0.2568)

(0.9447,0.5460)

(b) AOIs for t02 − t09

[00:00:09; 00:00:33]

(0.2438,0.3796)

(0.5549,0.8967)

(0.5992,0.1721)

(0.9103,0.6892)

(c) AOIs for t09 − t33

FIGURE 5.3: Example of a video with dynamic areas of interest. AOI coordinates are stored
along with their time intervals (defined in milliseconds from scene start).

5.2.3. Preference prediction

The extracted gaze features are forwarded to the 5 preference prediction module
which determines the user’s preferred AOI.
We integrate and test two prediction strategies. The first strategy uses majority
voting to analyze the distribution of a single feature over the AOIs. The viewer’s
preferred object is defined by the AOI with the highest value for the gaze feature.
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Past research has shown that several properties of images including size, color,
and placement of visual elements bias gaze distribution (Buscher et al., 2009;
Engel, 1974; Mackworth & Morandi, 1967). The second strategy therefore tests
whether training machine learning models with gaze data from subjects who have
previously watched the same scenes improves the effectiveness of the system.

5.2.4. Branch selection

Different rationales can be applied to map visual objects to alternative sequences of
the plot. One possibility is to manipulate the chronology so that scenes that have
a high correlation with the viewer’s preferences are displayed first (Verma et al.,
2021). This may prove beneficial for longer movies and videos with cognitively
demanding content, where concentration tends to dwindle over time.
In contrast, eyeDirect implements alternative branching. Initially, all users watch
the same segment. Depending on the recorded gaze, the storyline then unfolds
into one out of multiple alternative narratives so that, for each user, their most
appreciated object takes the center stage (Hansen et al., 1995; Vesterby et al.,
2005). The corresponding variant of the scene is retrieved by the 6 branch
selector. It issues a query to the 7 AOI-to-branch mapper. This module holds a
tree-based record of all AOIs with a link to the next scene branch. The mapping
of AOIs to branches is a priori specified by the movie director. When the scene
ends, the retrieved branch is displayed to the user.

While alternative branching may result in a complex movie structure, interactive
movies like ‘Black Mirror: Bandersnatch’ (Netflix, 2018) and the ‘You vs. Wild’
series (Netflix, 2021a, 2021b) have demonstrated that broadcasters possess both
the resources and the capabilities to create such films. Vesterby et al. (2005)
suggest to maintain the complexity of the video manageable by defining basing
points at which alternative branches converge.
To implement such a structure, the adaptive movie should contain two types of
8 video scenes. Scenes on the main branch are preference indicative. During these

scenes, gaze is recorded to determine the viewer’s preferences for the displayed
objects. Scenes on alternative branches are retrieved in response to the viewer’s
gaze behavior. Alternative scenes that branch out from the same basing point
should be substantially different and be logically connected to the preceding and
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subsequent scene. Audio cross-fading or volume adjustment can therefore only be
applied within the margins of a scene. A branch switch is always accompanied
by a change of the camera angle in order for the shift to appear natural. Each
alternative branch should be perceived as the natural continuation of the preceding
scene. From a technical viewpoint, alternative branches are self-contained units
that are independent of all previous and subsequent scenes.

In case no clear preference is detected, the movie director should specify a behavior
for exception handling. The viewer may, for instance, be directed to a generic
scene on the main branch in which all elements appear. Alternatively, one of the
scenes on alternative branches can be defined as the default. Extending eyeDirect
with additional sensor input such as bio-signals or facial expressions offers further
possibilities. By making use of the additional feedback, the viewer’s contentment
with a scene can be detected even if gaze predictions are inconclusive.

5.3. Study design: Content filtering with eyeDirect

To research how content filtering in cinematographic applications influences
engagement, we designed three adaptive videos and implemented them in eyeDirect.
We tested two adaptation strategies that are based on a causal model in which
the relationship between gaze-informed preference predictions and engagement is
mediated by the degree of personalization (cf. Figure 5.4).

user engagement

naïve preference 

prediction using 

individual features

machine learning 

based preference 

prediction

degree of 
preference-based 
personalization

(generic content, positive adaptation, 

negative adaptation)

α1

α2



Demographic 
subgroups:

gender (1), age (2)

H1

H2



FIGURE 5.4: Conceptual framework of preference-based personalization. Causal model
showing the hypothesized relationships between preference predictions and engagement.
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Empirical evidence from web applications suggests that users prefer personalized
content and services (Ho, 2006; Tam & Ho, 2005; Tran, 2017). We expect that a
similar positive effect on engagement can be achieved by personalizing videos (β).

A second fundamental assumption of the system is that recording and processing
the gaze data of a person watching a video allows to predict which objects in the
visual scene they prefer. Based on this assumption, the vision paper by Hansen
et al. (1995) suggests a rule-based adaptation. Personalized branching is initiated
whenever attention to an object relative to other visible objects – measured
by the distribution of gaze data – exceeds a certain threshold. Vesterby et al.
(2005) implemented two rule-based adaptation strategies: The ‘winner-takes-it-all’
strategy selects the object that correlates with the highest number of recorded
gaze points. The ‘weight-decaying-interest’ strategy assigns higher importance
to gaze points that are recorded later in a scene. All these strategies are based
on majority voting. Yet, their effect on engagement has not been evaluated so
far. In a first step, we therefore test the effectiveness of adapting videos based
on a ‘winner-takes-it-all’ majority voting (α1). Since demographic variables often
influence cognitive processes, we additionally test whether the effectiveness of the
strategy differs between individuals depending on their gender (γ1) and age (γ2).

State-of-the-art adaptive systems mostly use machine learning to predict user
preferences (Hardoon et al., 2007; Kandemir et al., 2010; Kozma et al., 2009;
Salojärvi et al., 2004; Schweikert et al., 2018). While these models require prior
scene-specific data collection, they are able to filter out saliency bias. Such a bias
occurs when attention to objects is steered by visually striking properties such
as colors and shapes, instead of preferences (Buscher et al., 2009; Engel, 1974;
Mackworth & Morandi, 1967). We thus test whether adaptation to preferences
predicted by machine learning is more effective than the majority voting that has
been proposed in previous research (α2).

When showing participants a video continuation in which only one of the objects
is present, any subsequent preference statements are likely to be biased. There is
a good chance that subjects will indicate a preference for the continued object
simply as a result of the prolonged exposure to it. Therefore, we cannot simul-
taneously evaluate whether an adaptation strategy leads to accurate preference
predictions (β) and whether it indeed has an effect on engagement (α). Instead,
we evaluate how adapting a video based on to the predicted preference affects en-
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gagement. We make no claims regarding the effectiveness of video personalization
based on the viewer’s true preferences. We formulate the following hypotheses:

H 3A. Personalizing videos by applying majority voting to gaze features
(naïve prediction) increases engagement.

H 3B. Personalizing videos by applying machine learning to gaze features
increases engagement.

To test the hypotheses, we conducted a user study in which we recorded the
participants’ gaze while they were watching three videos from the genres Music,
Tutorial, and Documentary. An experimental between-subjects design with one
treatment group and one control group was adopted. In the treatment group, one
out of two possible continuations of the video was chosen at random. Thus, some
participants experienced positive adaptation (P). They were shown a continuation
in which their preferred object was the central figure. Others experienced negative
adaptation (N) and continued watching a scene of their least preferred object. In
the control group, no branching was initiated. Instead, the subjects were shown a
generic (G) continuation featuring both video elements. We then compared the
engagement ratings of participants watching a video with positive adaptation to
(1) negative adaptation, and (2) a non-adaptive generic video.

5.3.1. Participants

In total, 175 members and visitors of our research institution (93 male, mean age:
25.35 ± 8.39) participated in the user study. The experiment took about five
minutes for each participant. The subjects were assigned quasi-randomly to an
experimental group according to the date of their arrival. They were informed that
their gaze was being monitored, but they were not aware of its use for dynamic
video adaptation.

5.3.2. Apparatus

The software ran on a 2.5GHz Intel Core i7-6500 HP PC. The PC drove a 23.6
inch iiyama touch monitor (1920 x 1080 pixels) on which the videos were displayed.
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Gaze data was collected with a Tobii Pro X3-120 eye tracker that was mounted
to the display. The experiment was performed in our research lab. Participants
were seated in front of the display, maintaining a distance between their eyes and
the eye tracker of 20-30 inches.

5.3.3. Video material

The experiment consisted of three videos from the genres Music, Tutorial, and
Documentary. The categories were chosen to reflect the content that is commonly
available on video streaming platforms (cf. Figure 5.5).

Original key frames

Binarized saliency maps

(I) Music. Live perfor-
mance of the song ‘2002’ by
Ed Sheeran (AOI1) and Anne
Marie (AOI2).

(II) Tutorial. Tiled screen
with two parallel cooking tuto-
rials for a dessert (AOI1) and
a burger (AOI2).

(III) Documentary. Film-
ing of a snake (AOI1) attack-
ing a wildcat mother and her
offspring (AOI2).

FIGURE 5.5: Video material for evaluating gaze-informed content adaptation. Three videos
were used from the genres Music (Nicholson & Ed Sheeran, 2018), Tutorial (Tasty, 2016, 2019), and
Documentary (Best Of Wildlife, 2019). The binarized saliency maps confirm that the visual saliency
factor is comparable for the two AOIs in all three videos.

Each video features two main elements which were defined as AOIs. We used
two fullscreen videos (I, III) and one tiled video (II). The latter shows two video
streams in parallel. Such a design allows, for instance, to simultaneously present
multiple trailer previews on television or on online video streaming platforms.
An adaptive system may subsequently display a teaser scene of the movie that
received the most attention.
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In order for a video to produce gaze patterns that are indicative of the viewer’s
preferences, it should have clearly differentiated objects with similar visual saliency
factors. This ensures that attention to an element is effectively a result of the
viewer’s interest, and is not biased by the properties of the visual material. We
therefore analyzed multiple key sequences in the three videos using a Python
implementation of visual saliency maps following the design by Itti et al. (1988)6.
From the exemplary binarized saliency maps in Figure 5.5 it can be seen that the
two main objects have similar saliency factors in all three videos.

5.3.4. Procedure

At the beginning of the experiment, an eye tracker calibration with five calibration
points was performed. The participants were asked to fixate five red circles that
successively appeared on the screen. Completing the procedure required successful
eye detection. If the eye tracker did not detect the subject’s eyes, its orientation
was adjusted. This ensured that gaze data was collected for all participants.

The participants were instructed to sit in a comfortable position and watch the
three video sequences. By not constraining the subjects’ freedom of movement,
we obtain more realistic estimates of the system’s performance in an uncontrolled
setting. The order in which the sequences were displayed was identical for all
participants. This experimental setup was chosen to maximize the uniformity of
conditions between the experimental groups.

Gaze was recorded during the first part of the video, which was identical for all
groups. In the first sequence, the subjects were shown a live performance of the
song ‘2002’ by Ed Sheeran and Anne-Marie (2018). After 39 seconds, the video
branched out into alternative scenes. The treatment group was shown a solo
performance of one of the two singers. The control group continued watching the
duet. The second sequence displayed two video streams of cooking tutorials in
parallel, one for a dessert (Tasty, 2019) and one for a burger (Tasty, 2016). After
28 seconds, the treatment group was shown a video of another recipe for either
one of the food categories. The control group was again shown two streams in
parallel. The third sequence showed a snake attacking a wildcat family (Best Of
Wildlife, 2019). The video halted after 33 seconds, when the wildcat was just

6pySaliencyMap: https://github.com/akisatok/pySaliencyMap/ (Kimura, 2020)
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about to launch a counterattack on the snake. The treatment group was shown
the fate of one opponent. Participants assigned to the control group watched the
outcome of the fight and followed the paths of both animals.

Directly after watching each video, the participants were presented an on-screen
questionnaire to rate their degree of engagement when watching the respective
video. At the end of the experiment, the accuracy of the gaze recordings was
validated. Each subject was asked to fixate five circles that appeared in each corner
and in the center of the display while their gaze was recorded. For validation, the
gaze data was compared to the screen coordinates of the visual stimuli. Afterwards,
they were presented with an additional on-screen questionnaire in which they
were asked to recall their preferred element for each of the three videos.

5.3.5. Metrics

We adapted the User Engagement Scale by O’Brien and Toms (2010) to measure
engagement with videos. All items were measured on a six-point Likert scale.

TABLE 5.3: List of items used to measure engagement. The items measuring novelty, focused
attention, and involvement were adapted from the User Engagement Scale by O’Brien and Toms (2010).

Item Construct

Q-1 I would have liked to watch the video for another minute. Novelty
Q-2 I found the video interesting.
Q-3 I was very attentive. Focused attention
Q-4 I found the video enjoyable. Involvement

The first two items (Q-1, Q-2) measure the construct novelty, which O’Brien
and Toms (2010) define as a “variety of sudden and unexpected changes [...] that
cause excitement and joy or alarm". The third item (Q-3) is a measure of focused
attention, which implies “concentrating on one stimulus only and ignoring all
others" (O’Brien & Toms, 2010). Item Q-4 measures involvement, defined as a
“need-based [...] psychological identification with some object" (O’Brien & Toms,
2010). Table 5.3 lists the survey items.

5.3.6. Data analysis

In an offline evaluation, we simulated two adaptation strategies and assessed their
effect on engagement.
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Strategy A (naive prediction). The viewer’s preferred object in a video
is predicted by applying majority voting to individual gaze features. Based on
this prediction, we categorized the samples into two groups. Subjects assigned
to the positive adaptation group had watched the video continuation that
matches their predicted preference. Subjects of the negative adaptation group
had watched the continuation that does not match their predicted preference.
Finally, we compared the engagement ratings resulting from positive adaptation
to those from negative adaptation and to the generic control group.

Strategy B (machine learning). Machine learning might be able to
capture interdependencies between objects in a video and the systematic saliency
bias. We thus examined whether adaptation with machine learning has a
stronger effect on engagement than the naïve approach. To test this strategy,
we predicted the viewer’s preferred element in the video using machine learning
classifiers. This can result in a different assignment of a subject to the positive
or negative adaptation group. We assessed the effectiveness of personalization
with machine learning by again comparing the engagement ratings from the
three experimental groups.

Figure 5.6 illustrates how the participants were assigned to an experimental group.

OFFLINE ANALYSISEXPERIMENT

displayed continuation

p
red

icted
 p

referen
ce

generic 

(G)

positive 

adaptation

(P)

negative 

adaptation 

(N)

negative 

adaptation 

(N)

positive 

adaptation

(P)

PREFERENCE PREDICTION 

ALGORITHM

Strategy B: 

machine learning

CONTROL TREATMENT

Strategy A:

naïve prediction

FIGURE 5.6: Procedure for dividing samples into experimental groups. Samples where the
predicted preference matches (does not match) the displayed continuation were assigned to the positive
(negative) adaptation group.
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5.4. Results: Usability & efficacy of content filtering

After excluding 29 samples due to insufficient quality of the gaze data, we retained
valid recordings from 146 participants. The gaze accuracy of the retained samples
was sufficient for assigning the data to an AOI (mean error < .9° visual angle).
51 participants pertained to the control group that watched a generic scene. The
other 95 participants had been exposed to either positive or negative adaptation.

Using the aggregated data from all three videos, we collected on average 10,120
valid gaze points from each participant. An average of 2,641 data points did not
contain valid gaze coordinates. Figure 5.7 shows the statistical distributions of the
total number of gaze points and additional descriptive measures of the recorded
gaze data. The number of transitions from one AOI to another while watching
one of the three videos ranges from 4 (Video III) to 83 (Video II), with a mean
value of 27.24 across all videos and participants.

 Tutorial  Documentary  Music

(

FIGURE 5.7: Descriptive measures of the collected gaze samples per video. The videos
produce distinct patterns with regard to the number of valid and invalid gaze points, transitions, as
well as the number and duration of extracted fixations. Mean values are visualized as white circles.

From the raw gaze data recorded while the participants were watching all three
videos, we extracted an aggregated number of on average 86 fixations per partici-
pant with a mean duration of 300 milliseconds. This number is slightly above the
average fixation duration of about 200 milliseconds which is usually cited in eye
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tracking experiments (Salthouse & Ellis, 1980). The deviation is a direct result
of our rigorous data preprocessing, where all fixations with a duration below 60
milliseconds were dropped. We implemented this filter in order to remove very
short fixations during which no information is processed (Galley et al., 2015).

5.4.1. Strategy A (naïve prediction)

In a first step, we predicted the viewers’ preferences based on individual gaze
features. This strategy selects the AOI for which the feature returns the highest
value, computed for a participant. Figure 5.8 depicts two exemplary visualizations
of the scanpath (i.e., the sequential gaze distribution) of participants who reported
that they preferred the object in the left (Figure 5.8a) or the right (Figure 5.8b)
part of the screen, respectively. Additionally, the gaze features extracted from the
raw gaze data are visualized for each participant. In both cases, more gaze points
were recorded on the preferred object.

MAXFIX MEANDWELL MEANFIXDUR

LONGFIX MAXCONTFIX MAXDWELL

ENDCOUNT FIXCOUNT GAZECOUNT

SCANPATH

(a) reported preference: Dessert

MAXFIX MEANDWELL MEANFIXDUR

LONGFIX MAXCONTFIX MAXDWELL

ENDCOUNT FIXCOUNT GAZECOUNT

SCANPATH

(b) reported preference: Burger

FIGURE 5.8: Visualization of gaze features extracted from two exemplary samples. Circle
sizes indicate the duration of a fixation at the corresponding screen coordinates. Early fixations appear
faded to visualize sequential gaze distribution.
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The main advantage of the naïve prediction is that no further information is
needed to make the decision (in contrast to machine learning which requires prior
data collection). To evaluate the effectiveness of the strategy, the participants
were assigned to either the positive or the negative adaptation group depending on
whether, based on the prediction, they had watched a scene with their preferred
object or not. We then calculated the average engagement Q for each group
(including the generic control group) as the mean rating from all engagement
items (Q-1, Q-2, Q-3, Q-4).
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GAZECOUNT FIXCOUNT MEANFIXDUR MAXDWELL MEANDWELL MAXFIX LONGFIX MAXCONTFIX ENDCOUNT

N 4.132 4.206 4.161 4.112 4.248 4.156 4.268 4.293 4.195

G 4.098 4.098 4.098 4.098 4.098 4.098 4.098 4.098 4.098

P 4.188 4.137 4.179 4.230 4.071 4.183 4.075 4.050 4.153

FIGURE 5.9: Effect of majority voting personalization on engagement. Illustrated is the
reported engagement for gaze-assigned experimental groups. Groups were determined through majority
voting based on the values of the specified feature (N: negative adaptation, G: generic, P: positive
adaptation). Comparisons are based on mean scores from all engagement items (Q-1, Q-2, Q-3, Q-4).

The distribution of the engagement ratings in Figure 5.9 suggests that the effect of
the adaptation differs depending on the gaze feature. Six features (gazeCount,
fixCount, meanFixDur, maxDwell, endCount, maxFix) make predictions
that result in higher engagement for the positive adaptation group compared to
the generic control group. The effect is reversed when predicting preferences with
the remaining three features. Compared to the negative adaptation group, only
personalization with four features (gazeCount, meanFixDur, maxDwell,
maxFix) results in higher engagement. However, a one-sided t-test revealed that
the naïve prediction strategy has no significant positive effect on engagement at
any common level of confidence, independent of the applied gaze feature. Table 5.4
summarizes the engagement ratings from all three experimental groups by group
determination with each of the extracted gaze features.

Effect within demographic subgroups. Since the gaze behavior varies across
people of different age and gender (Slessor et al., 2010; Sullivan et al., 2015), we
investigated whether naïve predictions are effective at least for some demographic

107



5. ESSAY 3

TABLE 5.4: Impact of gaze-based video adaptation from majority voting on engagement.
Experimental groups were determined through majority voting based on the values of the specified
feature (P: positive adaptation, N: negative adaptation, G: generic). Engagement Q is calculated as
the mean value from all reported engagement items (Q-1, Q-2, Q-3, Q-4). Statistical significance of the
differences between the experimental groups is determined with one-sided t-tests.

engagement Q (µ) P-N P-G

Gaze feature P N G ∆ Q t sig. ∆ Q t sig.

gazeCount 4.188 4.132 4.098 .057 0.354 .361 .090 0.640 .261
fixCount 4.137 4.206 4.098 -.069 -0.466 .679 .039 0.255 .399
meanFixDur 4.179 4.161 4.098 .018 0.123 .451 .081 0.533 .297
maxDwell 4.230 4.112 4.098 .118 0.796 .213 .132 0.861 .195
meanDwell 4.071 4.248 4.098 -.177 -1.173 .880 -.027 -0.165 .566
maxFix 4.183 4.156 4.098 .027 0.185 .427 .085 0.562 .287
longFix 4.075 4.268 4.098 -.193 -1.307 .904 -.023 -0.152 .561
maxContFix 4.050 4.293 4.098 -.243 -1.643 .950 -.048 -0.310 .622
endCount 4.153 4.195 4.098 -.042 -0.281 .611 .055 0.374 .354

subgroups. The participants were divided into three age groups of approximately
equal size: 17-22 (N = 66), 23-25 (N = 63), and 26-64 (N = 46). Participants who
identified not as female (N = 79) or male (N = 93) were excluded from the gender
analysis due to their small number in the sample. Differences in engagement
ratings between the experimental groups were analyzed with a one-sided t-test.

A two-sided t-test revealed that, for females, positive adaptation leads to higher
engagement than negative adaptation when majority voting is applied to gaze-
Count (t = 1.981, p-value = .051). Male participants, in contrast, experience
marginally lower engagement when positive (versus negative) adaptation is ap-
plied to gazeCount (t = 1.699, p-value = .093). In the overall population,
the two opposing effects offset each other. T-tests performed on the remaining
features revealed no significant effect. Figure 5.10a summarizes the descriptive
statistics. The subgroup analysis implies that, by taking into account the viewer’s
gender, it may be possible to effectively personalize videos by applying simple
majority voting to gazeCount. Since, however, only one gaze feature resulted
in higher engagement when applying the naïve prediction strategy, the effect may
be conditional on the video material. Additional tests with a variety of videos are
necessary to validate the moderating effect of gender.

The analysis of age groups gave no indication for a beneficial effect of the strategy
in a subpart of the population (cf. Figure 5.10b). A two-sided t-test revealed no
significant improvement in engagement at any common level of significance.
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(b) engagement by age

FIGURE 5.10: Demographic subgroup analysis of the effect of personalization. Illustrated
is the reported engagement for the three gaze-assigned experimental groups by demographic variables.
Groups were determined through majority voting based on the values of the specified feature (N: negative
adaptation, G: generic, P: positive adaptation). Comparisons are based on mean scores from all
engagement items (Q-1, Q-2, Q-3, Q-4).

Validity of preference predictions. Based on the findings from the unmoder-
ated hypothesis testing, we reject H 3A. Two possible factors could be the cause
for this outcome: (1) The preference predictions from the naïve strategy (α1) may
be inaccurate; (2) video personalization may have no effect on engagement (β).

To determine whether inaccurate preference predictions are the primary cause, we
verified the accuracy of the naïve predictions. The predicted preferences for the
treatment group cannot be objectively verified, because the personalized video
delivery may result in biased a posteriori preference statements. Subjects of the
control group, in contrast, were exposed to all objects in the video to the same
degree. Their reported preferences from the follow-up questionnaire are therefore
not corrupted by varying exposure times. We thus applied majority voting to
the gaze features extracted from the control group (N = 51) and predicted the
participants’ preferred object in each video. We then compared the prediction to
the reported preference.
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Table 5.5 summarizes the distribution of gaze points in videos I - III by reported
preference. The distributions indicate how dominant (in percent) a feature was on
the left AOI. The values are calculated as the sample mean from all participants
of the generic control group who stated a preference for the left (AOI1) or right
(AOI2) object, respectively. A two-sided t-test was used to identify whether the
gaze distribution differs significantly between the two groups.

TABLE 5.5: Gaze distribution from the generic control group. Gaze allocation (in %) is the
average value of a feature that is attributed to the left object (AOI1), calculated from all subjects.
Numbers in italic indicate inverse preferences, i.e., the feature is more dominant on AOI1 in the group
that reported a preference for the other object (AOI2). Accuracy is calculated as the percentage of
correct predictions from applying majority voting to the indicated gaze feature. Groups are based on
reported preferences. Significant group differences were identified with a one-sided t-test (significance
level: *p < .1%, **p < .05, ***p < .01).
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% gaze: prefer AOI1 (N=32) 53.9 64.7 59.8 44.8 43.6 64.6 58.3 65.8 58.9
% gaze: prefer AOI2 (N=19) 44.3 53.0 54.1 54.4 52.4 54.2 43.5 49.4 42.2

t-test 2.58 2.71 1.24 -1.69 -1.67 1.60 1.40 2.32 1.78
(**) (**) (*) (**) (*)

accuracy (in %) 52.9 64.7 66.7 43.1 39.2 54.9 68.6 62.7 60.8

T
ut
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ia

l

% gaze: prefer AOI1 (N=30) 59.2 63.1 53.3 41.3 40.3 57.3 41.7 68.1 74.3
% gaze: prefer AOI2 (N=21) 49.7 60.2 55.2 46.4 49.1 60.5 48.2 63.1 51.8

t-test 2.76 0.63 -0.62 -0.95 -1.84 -0.64 -0.58 0.69 3.37
(***) (*) (***)

accuracy (in %) 62.7 62.7 54.9 45.1 35.3 51.0 56.9 58.8 70.6

D
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um
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ry % gaze: prefer AOI1 (N=12) 50.4 53.6 44.9 52.4 48.3 45.6 25.0 8.3 44.2

% gaze: prefer AOI2 (N=39) 41.0 50.5 38.2 46.6 41.4 41.9 25.0 12.3 34.8

t-test 1.16 0.27 0.62 2.11 1.85 0.33 0.00 -0.41 1.17
(*)

accuracy (in %) 64.7 52.9 62.7 64.7 60.8 60.8 39.2 23.5 68.6

T
O

T
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accuracy (in %) 60.1 60.1 61.4 51.0 45.1 55.6 54.9 48.4 66.7

In order for a gaze feature to be a valid preference indicator, its dominance
on AOI1 should be higher for participants who also selected this element as
their preferred object, compared to the other group. In some videos, we found
deviations from this rationale for the duration features meanFixDur, maxDwell,
meanDwell, maxFix, longFix, and maxContFix. In contrast, the frequency
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features gazeCount and fixCount, and the sequential feature endCount were
consistently more dominant on AOI1 in the group that also favored the object.
This suggests that viewers look more often at their preferred object, especially
towards the end of a scene when they have established their preference. The
duration of individual dwells, in contrast, is not linked to preferences.
However, a one-sided t-test revealed that only the Music video produced a
significant effect on gazeCount (t = 2.58, p-value = .014), endCount (t = 1.78,
p-value = .084), and fixCount (t = 2.71, p-value = .010). For the Tutorial, the
differences in gazeCount (t = 2.76, p-value = .008) and endCount (t = 3.37,
p-value = .002) were significant. The Documentary produced no significant effect.

The insights from the statistical tests are mirrored in the accuracy of the predic-
tions. The mean accuracy across all videos ranges from 45.10% (meanDwell) to
66.67% (endCount), and is even below the random baseline of 50% for some
features. This confirms that the ineffectiveness of the naïve strategy can – at least
in part – be attributed to inaccurate preference predictions. Consequently, the
assumption α1 which stipulates that majority voting allows to predict preferences
cannot be sustained. We therefore proceeded to investigate whether machine
learning is more effective than the naïve strategy with majority voting.

5.4.2. Strategy B (machine learning)

We evaluated whether machine learning can effectively adapt a video to the
viewer’s preferences. The classifiers were trained exclusively with data from the
control group where no bias was induced by prolonged exposure to an object. We
tested five classifiers from the scikit-learn7 Python library which are commonly
used to infer preferences: Logistic regression (e.g., Kandemir et al., 2010; Kozma
et al., 2009; Slanzi et al., 2017), passive aggressive (e.g., Slanzi et al., 2017),
k-nearest neighbor (k-NN) (Kazienko & Adamski, 2007; Ribeiro-Neto et al., 2005;
Rothrock et al., 2002), decision tree (e.g., Kim et al., 2001; Rothrock et al.,
2002), and SVM (e.g., Hardoon et al., 2007; Horvitz, 1999; Joachims et al., 2017a;
Radlinski & Joachims, 2005; Salojärvi et al., 2004; Slanzi et al., 2017). The models
were trained for each video individually. This allows them to take into account
that some objects draw attention due to salient properties, and not as a result of

7scikit-learn: https://scikit-learn.org/stable/modules/classes.html (Pedregosa et al., 2011).
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the viewer’s preference.
We identified the best feature subset by training each classifier with all possible
combinations of gaze features on a randomly selected subset of 80% of the training
data. Table 5.6 reports the classification accuracy (A), precision (P), recall (R),
and F1-score (F1) resulting from 5-fold cross-validation. A training set was
randomly drawn in each fold, consisting of a subset of 80% of the samples from
the video. Class predictions were made on the remaining 20% of the samples.

TABLE 5.6: Best feature subsets and performance evaluation of preference prediction
with machine learning. We report accuracy (A), precision (P), recall (R), and F1 scores (F1). Total
performance is calculated as the mean value of the individually trained classifiers for each video. The
best feature subset therefore includes all features that are included in one of the models.

best feature subset performance (in %)

Video Classifier ga
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M
us

ic

logistic regression • • • • 72.36 83.33 44.00 53.33
passive aggressive • 72.36 67.62 41.67 46.10
k-NN • • 74.55 90.00 43.00 54.19
decision tree • • • 62.55 20.00 14.00 15.71
SVM • • 74.18 90.00 39.00 52.67

T
ut

or
ia

l logistic regression • • 74.55 77.67 57.00 62.55
passive aggressive • • • 68.73 65.33 45.00 46.33
k-NN • • • 74.73 73.33 67.00 68.10
decision tree • • • • • 64.55 56.51 90.00 67.32
SVM • • • 74.73 68.67 73.67 70.81

D
oc

um
en

ta
ry logistic regression • 76.36 76.36 100.0 86.36

passive aggressive • 76.36 76.36 100.0 86.36
k-NN • • • 78.18 81.29 91.43 85.70
decision tree • 76.36 76.36 100.0 86.36
SVM • 76.36 76.36 100.0 86.36

T
O

T
A

L

logistic regression • • • • • 74.42 79.12 67.00 67.41
passive aggressive • • • • 72.48 69.77 62.22 59.60
k-NN • • • • • 75.82 81.54 67.14 69.66
decision tree • • • • • • • 67.82 50.96 68.00 56.46
SVM • • • 75.09 78.34 70.89 69.95

The models predicted preferences with an accuracy between 68.73% and 78.18%.
The F1 scores reveal substantial performance differences between the classifiers
when applied to the fairly balanced dataset from the Music video, with values
ranging from 15.71% (decision tree) to 54.19% (k-NN). In the less balanced
datasets from the other two videos, performance differences are less pronounced
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and the F1 scores are considerably higher. SVM classification produced the highest
F1 score of 70.81% for the Tutorial, and 86.36% for the Documentary.

Although a prediction error of about 25% persists, all classifiers deliver significantly
better predictions than both the random baseline and majority voting. We thus
proceeded to investigate whether, allowing for the remaining prediction error,
eyeDirect is capable of increasing engagement. All predictions were performed
with the best feature subset for the respective classifier.

Effect on engagement Q. We predicted the preferences of participants from the
treatment group by using the models that we had previously trained on the gaze
data from the generic control group. The groups (positive adaptation, negative
adaptation) were again formed based on whether the video had continued for a
participant with their preferred element or not. The preference predictions and
subsequent group assignments were repeated with each classifier. We determined
the average engagement rating for each group and analyzed whether significant
differences exist between the experimental groups. In order to derive generalizable
conclusions, we report the aggregated results from all videos (cf. Figure 5.11).
Adaptation based on decision tree classification produced the largest effect on
engagement. Compared to negative adaptation, engagement ratings increased
by 3.55% when positive adaptation was applied. The effect is significant at 90%
confidence (t = 1.402, p-value = .080). Compared to the generic video display,
engagement with positive adaptation was on average 2.9% higher, although the
effect is not significant (t = 1.160, p-value = .123).

We proceeded to analyze each item that we used to measure engagement sepa-
rately to verify whether video personalization has a positive effect on any of the
engagement constructs novelty, focused attention, or involvement.
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Q-2: I found the video interesting.

FIGURE 5.11: Effect of machine learning personalization on engagement. Illustrated is
the reported engagement for the three gaze-assigned experimental groups. Groups were determined
through machine learning classification (N: negative adaptation, G: generic, P: positive adaptation).
In addition to the mean scores from all engagement items (Q-1, Q-2, Q-3, Q-4), the experimental
groups are compared on each of the items separately.

Effect on novelty, focused attention, and involvement. To investigate
whether the observed effect on engagement stems from a particular construct
related to novelty, focused attention, or involvement, we compared the average
ratings from the experimental groups for each of the four engagement measures
Q-1, Q-2, Q-3, and Q-4 individually (cf. Figure 5.11). The comparison was again
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performed for the different group assignments resulting from each of the classifiers.
Table 5.7 contrasts the average ratings resulting from positive adaptation to the
ratings from each of the remaining experimental groups.

TABLE 5.7: Impact of gaze-based video personalization from machine learning on en-
gagement. Experimental groups were determined through machine learning classification (P: positive
personalization, N: negative personalization, G: generic). The total engagement rating Q is calculated
as the mean value from all reported engagement items (Q-1, Q-2, Q-3, Q-4). Statistical significance of
the differences between the experimental groups is determined with one-sided t-tests.

engagement (µ) P-N P-G

Item Classifier P N G ∆ Qi t sig. ∆ Qi t sig.

T
O

T
A

L
Q logistic regression 4.21 4.10 4.10 .131 0.884 .188 .133 0.896 .185

passive aggressive 4.24 4.09 4.10 .150 1.010 .156 .145 0.975 .165
k-NN 4.24 4.09 4.10 .147 0.998 .159 .144 0.949 .171
decision tree 4.27 4.06 4.10 .207 1.402 .080 .174 1.160 .123
SVM 4.21 4.12 4.10 .094 0.631 .264 .115 0.775 .219

Q
-1

logistic regression 3.83 3.83 3.72 .006 0.033 .487 .109 0.589 .278
passive aggressive 3.91 3.74 3.72 .170 0.901 .184 .187 1.011 .156
k-NN 3.80 3.87 3.72 -.067 -0.353 .638 .075 0.398 .345
decision tree 3.92 3.74 3.72 .179 0.951 .171 .193 1.033 .151
SVM 3.86 3.80 3.72 .059 0.308 .379 .132 0.722 .235

Q
-2

logistic regression 4.20 4.26 4.20 -.054 -0.310 .622 .008 0.046 .482
passive aggressive 4.23 4.23 4.20 .000 0.001 .499 .032 0.188 .425
k-NN 4.26 4.19 4.20 .067 0.388 .349 .064 0.369 .356
decision tree 4.26 4.20 4.20 .063 0.360 .359 .062 0.364 .358
SVM 4.19 4.28 4.20 -.096 -0.550 .709 -.010 -0.058 .523

Q
-3

logistic regression 4.59 4.27 4.31 .320 1.908 .028 .272 1.655 .049
passive aggressive 4.52 4.35 4.31 .171 1.018 .154 .210 1.255 .105
k-NN 4.63 4.23 4.31 .404 2.434 .007 .320 1.901 .029
decision tree 4.60 4.27 4.31 .323 1.938 .026 .285 1.716 .043
SVM 4.52 4.34 4.31 .183 1.089 .138 .208 1.255 .105

Q
-4

logistic regression 4.30 4.05 4.16 .252 1.407 .080 .143 0.847 .198
passive aggressive 4.31 4.05 4.16 .257 1.434 .076 .152 0.902 .184
k-NN 4.27 4.09 4.16 .184 1.031 .151 .116 0.675 .250
decision tree 4.31 4.05 4.16 .262 1.464 .072 .156 0.919 .179
SVM 4.29 4.06 4.16 .229 1.273 .102 .129 0.772 .220

With almost all classifiers, positive adaptation visibly improved focused attention
(Q-3) and involvement (Q-4). The improvement in involvement is significant
compared to negative adaptation when applying logistic regression (t = 1.407,
p-value = .080), passive aggressive (t = 1.434, p-value = .076), or decision tree
classification (t = 1.464, p-value = .072). Focused attention increased compared
to both negative adaptation and generic videos. The effect is significant with
logistic regression (P: t = 1.908, p-value = .028; G: t = 1.655, p-value = .049),
k-NN (P: t = 2.434, p-value = .007; G: t = 1.901, p-value = .029), and decision
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tree (P: t = 1.938, p-value = .026; G: t = 1.716, p-value = .043).
The effect on novelty (Q-1, Q-2) is less poignant and is even negative in some of
the evaluated scenarios. A one-sided t-test revealed that none of the classifiers
adapts the videos in a way that has a significant positive impact on novelty.

Consequently, we confirm H 3B for the engagement constructs focused attention
and involvement, but reject the hypothesis for novelty. In view of the underlying
principle of eyeDirect, these results are not surprising: Videos are personalized by
turning the object that the viewer predominantly looks at into the protagonist.
When applying negative adaptation, in contrast, viewers are shown an object
to which they previously did not pay much attention. It may therefore hold
more novelty than an object to which the viewer has already paid close attention.
Focused attention and involvement, on the other hand, are more pronounced for
objects to which the viewer has an emotional connection. Displaying a preferred
object thus results in higher scores for these constructs.

5.5. Discussion & implications of content filtering

The study demonstrates that eyeDirect is able to increase engagement with a
video by spontaneously tailoring the plot to the viewer’s predicted preferences.
In the following, we outline how the insights from the study can help to choose
a suitable adaptation strategy for videos and discuss issues that require further
research in order for the system to be used in consumer applications.

5.5.1. Defining an adaptation strategy

Depending on the application, eyeDirect can have a variety of benefits for the
user. Compared to watching a scene of a video that is not aligned with their
preferences, viewers with positive adaptation experience higher involvement. Our
observation of a significant positive effect even for short videos reveals the potential
of personalization for fully fledged movies. This finding is particularly relevant
for situations in which a generic scene is not appropriate, and thus branching
cannot be avoided. Instead of centering the plot around an object that seeks to
address the broadest possible target group, the director may offer multiple variants
of a scene. One example are commercial breaks on streaming platforms such
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as YouTube. In order to increase the relevance of advertisements, the platform
currently uses – provided that permission is granted by the user – information
from their Google Account including age, gender, interactions with an advertiser,
and Google search queries (YouTube, 2023). Consequently, the commercials are
more likely to target the users’ general profiles, but may be irrelevant to them
in their current situation. With eyeDirect, it is possible to identify momentary
preferences and needs. Instead of showing context irrelevant commercials that
the user will skip if possible, the advertisement can be chosen based on the gaze
distribution to the content of previously watched videos or scenes of a movie.

The positive effect on focused attention when videos are aligned with the users’
preferences has two important implications. First, in addition to providing a
higher entertainment factor, presenting an object that the viewer is drawn towards
instead of something they may not find interesting is relevant when sustaining the
audience’s attention is crucial. Second, attention to personalized videos is also
higher compared to a generic display. Among other things, this can be used to
make educational videos more effective. One example are safety instruction videos
on airplanes. Airlines tend to spend large amount of money on making flight
safety videos more appealing. Air New Zealand (2014), for instance, recreated
the universe of ‘The Hobbit’: In ‘The most epic safety video ever made’, safety
instructions are delivered by the inhabitants of Middle Earth. And yet, many
passengers are not attentive to these videos. Given that most large aircrafts are
equipped with an individual screen for each passenger, flight safety videos can
easily be personalized. With eyeDirect, a brief overture into the video is sufficient
to determine a frame story that is aligned with the passenger’s interests, making
them more likely to pay attention to the potentially life preserving instructions.

We found no evidence for higher novelty perception if the content of a video
reflects a viewer’s preferences. We do, however, expect long-term effects for users
who watch a video multiple times. In particular, when a movie with several
branches is watched repeatedly, the plot may change, leading to a completely new
user experience. The plot thereby deliberately turns towards elements that were
previously overlooked (Vesterby et al., 2005). Analyzing the long term effects of
such movies is a promising direction for future research.
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5.5.2. Considerations for consumer app design

While the adaptive videos created with eyeDirect were effective in the controlled
experimental setting, special care must be taken with regard to both technical and
ethical issues when using the system in consumer applications. Even though eye
tracking is a mature technique that has been used in academic and non-academic
contexts, some work is still needed to make it accessible to a greater audience.
The high-quality Tobii Pro X3-120 eye tracker with which the experiment was
performed requires special hardware which is impractical and too expensive for
the common user. Less sophisticated devices produce gaze recordings of lower
quality, thus making the preference predictions less accurate. In real-world
settings, additional challenges such as poor ambient lighting or users frequently
diverting their gaze away from the screen make the gaze data even more unreliable.
However, open-source solutions like OpenFace8, GazeML9, and MPIIFaceGaze10

that use built-in device cameras are catching up in their performance and are
becoming more resilient to varying environmental conditions. While their accuracy
is lower compared to specialized hardware, it is sufficient for assigning the gaze
coordinates to an AOI (Zhang et al., 2019).

A related issue is the need for user-specific calibration – a primary prerequisite
of state-of-the-art eye trackers to deliver accurate gaze estimates (Majaranta &
Bulling, 2014). Especially when used on short videos, the traditional five-point
calibration ruins a seamless viewing experience. Deep learning might help to
create a calibration-free system, but the quality of the gaze estimates is still
considerably higher after calibration (Krafka et al., 2016).

The ineffectiveness of the naïve preference predictions suggests that salient prop-
erties of the visual material bias the viewers’ gaze. Consequently, the raw gaze
distributions do not adequately represent preferences. Machine learning filters out
saliency effects, but requires prior collection of scene-specific training data. In
order to avoid repeating the time-consuming data collection for each new scene,
Qvarfordt and Zhai (2005) define a set of visual properties that seek to capture
the saliency bias and quantify their effect. Unbiased attention to an object is
calculated by removing the effect of the visual properties as a function of their

8OpenFace: https://cmusatyalab.github.io/openface/ (Amos et al., 2016).
9GazeML: https://github.com/swook/GazeML (Park et al., 2018).

10MPIIFaceGaze: https://perceptualui.org/research/datasets/MPIIFaceGaze/ (Zhang et al., 2017).
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saliency factor in the visual display. Cheng et al. (2010) compare new scenes to a
video database on which machine learning models have been trained. The fitted
model from a comparable video is used to predict preferences for a new scene.

From an ethical viewpoint, the confidentiality and responsible handling of the
collected data has to be safeguarded. The effectiveness of the gaze to detect
human preferences – while beneficial in many situations – implies that gaze
data carries a wealth of information and might even reveal political, religious, or
sexual tendencies. Users may therefore be reluctant to have their eye movements
monitored. Among Internet of Things (IoT) applications, eye tracking provokes
the strongest resistance, especially for preference detection tasks (Lee & Kobsa,
2017; Steil et al., 2018). However, users are less concerned when their data is
not forwarded to others (Steil et al., 2018). They are more likely to accept an
adaptive system such as eyeDirect where gaze data can be processed locally and
discarded after preferences for an object have been determined. It is, however, the
duty of the system designer to ensure responsible handling of the collected data.

5.6. Conclusion: Summary of Essay 3

This essay presents eyeDirect, a system for creating personalized videos based on
gaze data. While simple majority voting applied to individual gaze features is not
capable of adapting videos in a way that is meaningful to the user, personalization
based on machine learning does have the desired impact on engagement.
The results of a comprehensive user study (N = 175) reveal that videos that are
aligned with the viewer’s preferences induce more focused attention compared to
both adversely adapted content and videos with a generic storyline. They also
lead to higher involvement compared to videos with adversely adapted content.
Novelty perception, in contrast, does not increase. Videos created with eyeDirect
can thus increase involvement and attention if the viewer’s preferred object takes
the center stage. In contrast, alternating the plot of a movie when played multiple
times or prioritizing unattended elements may affect the perception of novelty.

Studying the long-term effects of full-fledged adaptive movies and plot variations
when a movie is watched repeatedly are promising directions for future research.
Possible extensions to the system include using additional physiological sensors to
infer the viewer’s preferences even if only a single object is displayed at a time.
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6. General discussion and conclusion

The three research essays of this thesis formulate and evaluate adaptation rules
that define how multimodal interfaces should change the presented content or
modality in response to the user’s dynamic state. Their potential for improving
the effectiveness and/or satisfaction with multimodal interfaces is grounded in
cognitive theories with a solid empirical foundation (Giles et al., 1987; Sweller
et al., 1998; Wertheimer, 1938). Essay 1 and Essay 2 focus on modality adapta-
tion, whereas Essay 3 pursues an adaptation strategy that modifies the content
itself. Unlike traditional recommender systems, such as those used in online shops
or social media, the content adaptation is specifically tailored towards multi-
modal interfaces that have the capability to detect preferences from non-invasive,
dynamically collected gaze data.

In addition to shedding light on the effectiveness of different forms of adaptation,
this thesis contributes to HCI research – and adaptive multimodal interfaces in
particular – by identifying sensor input that reveals insightful information about
the user. This information, in turn, can be used to identify whether the adaptation
condition of a rule is met. The rule tested in Essay 1 relies on speech and manual
cursor input from natural interactions with the application. Essay 2 and Essay 3
use vision-based data. Essay 2 extracts facial gestures from images captured
with the integrated camera of a laptop. In Essay 3, gaze data is recorded with a
commercial eye tracker, but could also be calculated from video frames recorded
with a consumer-grade camera (Papoutsaki et al., 2016; Zhang et al., 2019). The
key findings and contributions of each essay are summarized in Table 6.1.

Essay 1 shows that matching system output to the modality that the user chooses
for the first inputs does not improve usability. The initial input is followed by a
high number of modality switches, which is a clear indicator that input preferences
at the beginning are unstable. Therefore, the typically short interaction for
authentication is not a valid indicator for input preferences in later routine tasks.
Whether modality preferences for authentication and routine tasks differ in general
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TABLE 6.1: Summary of key findings and contributions of the three research essays. The
insights from the essays have two major contributions: (1) They have practical implications for the
design of multimodal systems; (2) they extend existing knowledge on cognitive theories.

Key findings Key contributions

E
SS

A
Y

1

• Output modality alignment to initial
input does not improve usability

• A major cause of the ineffectiveness of
the adaptation is the gradual forma-
tion of modality preferences:
1. The first input does not indicate a

general modality preference
2. Frequent modality switches

• Preferences should be inferred from
longer interactions
▷ Violates robustness (RNF 3)

Systems design:
• Formulation of an adaptation rule for modality

alignment
• Recommendation that user models should not

update modality preferences based on a one-time
snapshot of the first user input

• Demonstration that modality alignment is no
valid adaptation when user input is sparse

Theory: Limited applicability of Communication
Accommodation and Gestalt Theory in HCI when
a person’s own use of communication channels is
volatile

E
SS

A
Y

2

• Multimodal presentation improves
comprehension only for some users,
and only if confusion is caused by
poor audio or language deficiencies
(versus contentual incongruity)
▷ Violates universality (RNF 2)

• The effect of multimodal presenta-
tion on the user cannot be predicted
from observable factors, but instead
depends on subjective perceptions of
its usefulness

• Confusion can be detected from auto-
matically extracted facial gestures:
1. Unimodal (audio only) presenta-

tion: action units
2. Multimodal (audio & text) presen-

tation: action units, emotions, and
blink frequency

Systems design:
• Formulation of an adaptation rule for multimodal

redundancy
• Demonstration of conditional effectiveness of

multimodal redundancy
1. Specification of an additional requirement:

Verification of adaptation effectiveness through
continuous user state monitoring

2. Recommendation to reinstate the unimodal
state if multimodal presentation does not
improve comprehension

• Identification of facial cues that reveal confusion
during each unimodal (audio only) and multi-
modal (audio & text) presentation

Theory: Interpersonal differences determine how
strongly a user is affected by each of the two prin-
ciples of Cognitive Load Theory (i.e., modality and
redundancy)

E
SS

A
Y

3

• Content filtering in videos based on
gaze-informed preferences improves
attentiveness and involvement

• Preference detection from gaze data is
reliable and robust even in situations
in which little or no active user input
is available

• The effect is universally observed
across diverse gender and age groups

Systems design:
• Formulation of an adaptation rule for content

filtering
• Demonstration that content filtering can be im-

plemented in a way that improves usability, while
also meeting the requirements of robustness and
universality

• Identification of gaze features that reliably predict
preferences for elements in videos

Theory: Engagement (mediated by intrinsic load)
decreases with the number of visual elements when
performing a purely observational task
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is a topic that merits further investigation in future research. Moreover, Essay 1
does not make any claims about the effectiveness of modality alignment to the
user’s input once a solid preference has been established. Rather, the evidence from
the experiment implies that, in order to accurately detect modality preferences, the
user’s behavior needs to be monitored throughout an extended interaction. Since
this violates the robustness requirement RNF 3, Essay 2 evaluates the effectiveness
of non-adaptive multimodal presentation, which can be applied without having
any data about the user. The results of the experimental investigation imply
that, compared to a purely auditory presentation, bimodal audio-visual output
reduces confusion caused by poor audio quality or language deficiencies – but
not confusion from contextual incongruity – for some users. Assuming that the
detected confusion is not just a transient state, but instead is likely to persist,
Essay 2 proposes to dynamically activate bimodal output when a user is confused
in order to proactively improve upcoming interactions. Since, however, bimodal
presentation is only beneficial to those who effectively perceive it as useful,
the effectiveness of bimodal presentation should be continuously monitored. If
confusion levels do not decrease, the interface should revert to unimodal output
to avoid negative side effects of redundant content presentation. Yet again, a
selective application of the rule violates the requirement for universality RNF 2.
Essay 3 therefore tests the effectiveness of content filtering based on gaze-informed
preferences. The gaze data is collected during a passive task (i.e., the users watch
a video without providing any active input), thus making the adaptation robust
to situations with no or little user interaction. A demographic subgroup analysis
attests universal applicability of the rule across users of diverse age and gender.

6.1. Major contributions of this thesis

In the following, two major contributions of this thesis are outlined: (1) the
practical implications for future designs of multimodal interfaces; (2) the theo-
retical contributions to the understanding of the cognitive effects that different
adaptations have on the user.
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6.1.1. Practical implications

This section seeks to outline to what extent each of the three adaptation rules
meets the requirements formulated in Section 1.2 and discusses relevant design
considerations that should be addressed when planning to implement an adaptation
rule that violates a requirement.

The rules for modality alignment (Rule 1) and content filtering (Rule 3) were
defined with a particular emphasis on meeting all five functional requirements.
Yet, as it turned out, the one-time snapshot of the user’s input – whether from
authentication or from the first few interactions in subsequent routine tasks – in
Rule 1 was not sufficiently dynamic (RF 3) for an accurate and comprehensive
characterization of the user. The snapshot may capture the user’s preferred
modality for the specific input at the precise moment of the interaction. However,
it is not a valid indicator of the user’s preferences for subsequent inputs, even
if the external conditions remain unchanged. Even though empirical evidence
suggests that modality preferences can be detected almost immediately (Ovi-
att et al., 2005), a longer monitoring phase might allow for a more accurate
characterization of the user. In order to additionally capture state changes, the
interface should continuously monitor the user’s interaction behavior. Such a
change can, for instance, happen when other people entering the room render
auditory communication inconvenient.
In the multimodal redundancy strategy (Rule 2), the functional requirements
for adaptation based on user-centric dynamic states (RF 1 - RF 3) were relaxed.
This adjustment to the objectives was made to test an approach that, by not
depending on the collection of user data, guarantees robustness.

From the summary of the requirements verification in Table 6.2 it becomes obvious
that any relaxation of functional requirements has detrimental spill-over effects
on the non-functional requirements. Whenever one of the functional requirements
is not or only partly fulfilled, the adaptation rule does not meet the complete
set of non-functional requirements either. Specifically, the one-time snapshots of
the users’ modality choices in Rule 1 turned out not to be an accurate reflection
of their preferences. Consequently, the adaptation is not robust to situations
where user input is sparse (RNF 3) and leads to no improvement in usability
(RNF 1). Abandoning RF 1 - RF 3 in Rule 2 resulted in a non-adaptive approach
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that does not take into account individual differences between users. While the
rule does not improve overall usability (RNF 1), we observed a beneficial effect
for a subgroup of the users. Yet again, this violates the universality requirement
(RNF 2). Ultimately, only content filtering based on gaze-informed preference
predictions meets all functional and non-functional requirements. Usability across
all users of the adaptive interface was higher, irrespective of their demographic
characteristics. Given that the movie streaming application receives no active
input from the user, we expect a robust beneficial effect on usability for any
application and context of use – provided that the ambient conditions deliver
accurate gaze data (O’Brien, 2009; Zhang et al., 2019).

TABLE 6.2: Verification of requirements. Circles indicate that a rule fulfills (•) or partly fulfills
(◦) a requirement. Violated requirements are marked with a blue cross (✘). Compliance of suggested
rule modifications in italic with non-functional requirements is based on statistical subgroup analyses of
the original adaptation rule.

REQUIREMENTS
functional non-functional

Adaptation rule RF 1 RF 2 RF 3 RF 4 RF 5 RNF 1 RNF 2 RNF 3
Rule 1: Modality alignment • • ◦ • • ✘ • ✘

Rule 2-1: Multimodal redundancy ✘ ✘ ✘ • • ✘ ✘ •
Rule 2-2: Selective multimodal redundancy • • • • • • ✘ •
Rule 3: Content filtering • • • • • • • •

RF : RF 1 – adaptive presentation; RF 2 – user-centricity; RF 3 – dynamic states; RF 4 – non-invasiveness;
RF 5 – ubiquitous deployment;

RNF : RNF 1 – usability; RNF 2 – universality; RNF 3 – robustness

While the non-compliance of Rule 1 and Rule 2 with some of the requirements
compromises their unconditional applicability, they may still be beneficial to a
subset of the target group, or in certain contexts of use. In particular, based on
the insights from Essay 2, multimodal redundancy (Rule 2) promises to increase
comprehension for some users if their confusion stems from poor audio quality
or language deficiencies. Therefore, interfaces that are able to detect confusion
by, for instance, analyzing facial expressions (Borges et al., 2019; D’Mello et
al., 2009; Yasser et al., 2021) or gaze data (Kunze et al., 2013; Lallé et al.,
2016), can apply the modified Rule 2-2. By activating bimodal presentation
only when the continuously collected data suggests that it reduces confusion,
users that are receptive to the adaptation are supported. At the same time,
the selective adaptation rule avoids negative side effects that can occur from
redundant presentation (Kalyuga, 2012). In addition to the virtual meeting
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application evaluated in Essay 2, examples of applications where it is particularly
desirable to minimize confusion are educational systems (Calvi et al., 2008) or
videos (Fujii & Rekimoto, 2019).
Similarly, the findings from Essay 1 indicate that modality alignment is not a
viable option when active input from the user is sparse. This is typically the
case for applications that are only used for short interactions such as public
self-service terminals (Gupta & Sharma, 2021) or provide little active input
from the user. Examples of the latter are narrative applications like movies or
digital books (Gilroy et al., 2012; Vesterby et al., 2005). Yet, a positive effect of
modality alignment has been reported repeatedly (Schaeffner et al., 2016; Stelzel
& Schubert, 2011; Stephan & Koch, 2011). We thus presume that insufficient
data from the one-time snapshot of the user’s interaction behavior accounts for
the ineffectiveness of Rule 1. We further expect that the users’ preferences for a
modality will become clear after interacting with the interface for an extended
period of time. Prior research has shown that users tend to switch modalities
mostly to overcome issues related to performance and usability, or simply out of
curiosity to try out other available communication channels (Gürkök et al., 2011).
Matching the presentation during this initial phase to every modality change
would undoubtedly induce high switching costs (Schaeffner et al., 2016; Stephan
& Koch, 2010). However, since issues with a modality typically surge at the very
beginning when using a new system, we expect modality preferences to stabilize
after the first few interactions. Provided that the empirical evidence on the
positive effect of modality alignment holds and that preferences can be accurately
detected if sufficient interaction data is collected, applications that engage the
user over an extended time may indeed benefit from the adaptation rule. Typical
examples are search engines, communication tools, and entertainment applications
such as games, comics, or social media (Kim et al., 2019; Tian et al., 2021).

6.1.2. Theoretical contributions

Each essay of this thesis discusses the implications of its theoretical contributions
for future research. This section extends the discussions with a broader view on
the theoretical insights by relating them to the cognitive theories that underlie the
adaptation rules. The insights from the essays are once more evaluated through
the lens of cognitive processes that are involved in the perception and processing
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of information. Existing knowledge about the cognitive theories is extended by
considering their implications for human-computer interaction and, in particular,
assessing their applicability in multi-modal systems.

Essay 1 suggests that Communication Accommodation (Giles et al., 1987) does
not immediately extrapolate to information systems. While humans perceive a
communication partner who mimics their behavior as empathetic (Iacoboni, 2009),
it appears that they do not expect the same behavior from a smart interface – at
least not at the beginning of the interactions, when they have not yet established
a dominant communication pattern. Rather, the frequent modality switches
during the initial phase imply that the perceptual system is primed equally for
all available modalities. Consequently, modality alignment does not make the
communication more efficient.

The insights from Essay 1 furthermore have implications for the application of
Gestalt Theory across different modalities (Giles et al., 1987). The usability gains
from combining compatible input and output channels (Oviatt et al., 2003) do
not emerge when the use of modalities within the same communication direction
(i.e., input) is in itself inconsistent. This corroborates empirical evidence of the
transition costs that arise when commands are issued by alternating manual and
auditory input – even if the output is presented in a modality that is compatible
with the most recent input (Schaeffner et al., 2016). The observations from
Essay 1 imply that an alignment of the presentation to the user’s initial input is
not perceived as symmetrical if they afterwards use a different modality. Instead,
the subsequent modality change offsets any previous perception of symmetry.

Essay 2 reveals interpersonal differences regarding the effectiveness of bimodal
presentation. Given that the auditory material of the user study was presented by
the same person using the same equipment throughout all experimental sessions,
external factors such as the quality of the audio transcription provide no satisfac-
tory explanation for the observed differences. Instead, Essay 2 implies that users
differ in how strongly they are affected by each of the two conflicting principles
(i.e., modality and redundancy) of Cognitive Load Theory. Some users – those for
whom the expansion of the working memory (modality principle) outweighs the
negative effects of redundancy – benefit from multimodal output. For others, the
activation of multiple subsystems of the brain through the different modalities
cannot compensate for the additional load from redundant presentation. Previous
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work has attributed such individual differences in the susceptibility to redundancy
and modality effects to working memory capacity (Batka & Peterson, 2005) and
prior knowledge (Adesope & Nesbit, 2012).
Essay 3 adds to the understanding of how the amount of individual elements in a
video that, while logically connected, are clearly separable affects engagement. Re-
ducing the number of elements that users must simultaneously attend to increases
their focus – even if no cognitive task is given. While the subjective evaluations of
engagement are not synonymous to cognitive load, a causal relationship between
the two cognitive constructs can be assumed (Bueno-Vesga et al., 2021) and has
been validated on educational videos (Altinpulluk et al., 2020). Consequently,
Essay 3 implies that intrinsic load during a purely observational task increases
with the number of visual elements.

6.2. Limitations & future research

The specific limitations of each essay were discussed in detail in Chapters 3 - 5.
In the following, we extend the individual discussions by outlining the overall
limitations of this thesis and the implied potential for future research.

6.2.1. Experimental design

For the evaluations of Rule 1 and Rule 3, user models were created with sensor data
from the user studies. We used this experimental approach to learn how effective
the adaptation can realistically be, taking into account that it relies on imperfect
information about the user. Essay 3 applies a simulation-based evaluation to assess
different user modeling algorithms and determine how effective the adaptation can
be at most, when the best performing algorithm is implemented. Alternatively,
we could have used questionnaires to determine the users’ true preferences and
create perfect user models. This would have allowed us to isolate the effect of
the interface change itself. However, it is unreasonable to assume the existence
of a perfect sensor-informed user model (Chen et al., 2021). In contrast, our
observations draw a more accurate picture of the effectiveness of the adaptation
when the multimodal interface is used for real-world applications.
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Nevertheless, it should be noted that all three adaptation rules are evaluated on
experimental prototypes with simplified functions and limited adaptive behavior.
The effectiveness of the adaptation when integrated into a full-fledged multimodal
interface and deployed in the field may differ. Our main motivation for following
a rapid prototyping approach (Tripp & Bichelmeyer, 1990) rests on the design
process itself. Whenever an evaluation does not meet the specified objectives, the
artifact needs to be refined (Peffers et al., 2007). Since the development of a full-
fledged system is very time-consuming, prototypes have become an indispensable
evaluation method for many software design projects (Tripp & Bichelmeyer, 1990).
Having established the effectiveness of content filtering based on gaze-informed
preferences, one of the major missions for future research is now to validate the
adaptation rule with different applications and when deployed in the field.

6.2.2. Application specificity

This thesis follows a problem-centered design process (Peffers et al., 2007). Thus,
we formulated generic rules with the aim to serve a broad range of applications
and contexts. To evaluate their effectiveness, each rule was integrated into an
exemplary application from a domain where the proposed adaptation promises
to be particularly beneficial. While Essay 3 showcases the advantages of content
filtering in the context of movie streaming, the potential of the adaptation to
decrease cognitive load (van Merriënboer & Sweller, 2010) identifies it as a
promising strategy for other applications as well. Yet, the specifics of the filtering
approach need to be defined for each application individually. For instance,
smart home displays should always provide easy access to all rooms in the house,
independent of whether the user has previously adjusted its ambient conditions.
Nevertheless, a leaner interface might, for example, group infrequently visited
rooms in a submenu which the user can then expand if needed (Brusilovsky, 2012;
Shneiderman, 2020).

In this sense, it should be a key concern of developers who wish to integrate
the adaptation rules into their multimodal interface to identify an appropriate
filtering mechanism that meets the particular requirements of their application.
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6.2.3. Design process

The rules were evaluated using throw-away prototypes. After each iteration of
the design process, a fundamentally different adaptation rule was defined. We
applied this procedure after detecting violations of the non-functional requirements
that cannot be removed with simple modifications. In particular, in order for
modality alignment (Rule 1) to be robust (RNF 3), interaction data must be
collected throughout the entire interaction (instead of using only initial input)
and the adaptation should be executed only after the user has formed a clear
preference for one modality (Gürkök et al., 2011). This, in turn, requires defining
a suitable adaptation trigger (Feigh et al., 2012). Moreover, interactions with a
smart home display tend to be short, often even below 10 seconds (Castelli et al.,
2017). Manipulating the experimental instructions in a way that produces the
required amount of data would result in a highly unrealistic scenario. Therefore,
while potentially meeting the usability requirement (RNF 1), a modification of the
adaptation rule to collect more interaction data violates the objective of defining
a robust rule that can be applied to any use case (RNF 3).
Multimodal redundancy (Rule 2), in turn, is only beneficial to a subgroup of users.
We propose an extension to the rule so that multimodal presentation improves the
usability for those who are susceptible to the modality principle (Gellevij et al.,
2002; Mousavi et al., 1995), while not deteriorating the experience for users who
are immune to its benefits (Adesope & Nesbit, 2012; Batka & Peterson, 2005).
While this again complies with the usability requirement (RNF 1), no modification
can resolve the issues of universal applicability (RNF 2).

Against this backdrop, the throw-away prototyping strategy allowed us to keep
close track of our objectives. Then again, discarding an adaptation rule entirely
entails that the effectiveness of the proposed modifications needs to be verified in
future research.

6.2.4. Theoretical perspectives

The adaptation rules were formulated with the objective to improve information
processing in the working memory by presenting content in a way that cognitive
theories suggest will be beneficial (Giles et al., 1987; Sweller, 1988; Wertheimer,
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1938). Multimodal redundancy and content filtering have the potential to re-
duce cognitive workload (Cognitive Load Theory). Modality alignment, in turn,
promises synergy effects through modality priming (Communication Accommoda-
tion Theory) or emergent properties of symmetry (Gestalt Theory). The selected
theories were chosen because of their conceptual fit with the configuration space
of possible output adjustments as it applies to most multimodal interfaces – i.e.,
the manipulation of its content or modality (Jameson, 2007; Kong et al., 2011;
Maybury & Wahlster, 1999). Alternative theoretical perspectives may lead to
different adaptation rules that pursue other optimization goals and, thus, provide
opportunities for future research.

One alternative perspective is provided by Affect Theory (Tomkins, 1984). Affec-
tive computing has a longstanding history of investigating the role of emotions
and affect in HCI (Picard, 2000). For example, affective agents can improve
trust through human-like qualities such as displaying emotions (Pelau et al.,
2021). Cinematographic applications can use affect to shape the development of a
narrative (Gilroy et al., 2012; Peng et al., 2018).

Accessible interfaces offer another perspective by striving to serve all users, inde-
pendent of their physical or cognitive abilities (Peissner et al., 2012). For instance,
adapting the presentation speed or complexity of visual elements can support
users with motor or vision impairments (Stephanidis et al., 1998).

Future research can refer to these additional theoretical perspectives to develop
adaptation rules that address the quality of interactions with multimodal interfaces
on yet another dimension. Through a holistic consideration of the interaction
quality on multiple dimensions, adaptive multimodal interfaces have the potential
to improve usability on all three levels of effectiveness, efficiency, and satisfaction.
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ESSAY 2: EFFECTS ON FACIAL GESTURES

A. Essay 2: Main and interaction effects on facial gestures

Two-way ANOVA tests with Comprehension and Article Topic or Subtitle as fixed
factors, respectively, were performed for all facial gestures. Post-hoc pairwise
comparisons were performed using paired t-tests with Šidák correction for all
factors with significant group differences form the ANOVAs. Tables A.1-A.4
present the complete results.

TABLE A.1: ANOVA and post-hoc pairwise comparisons for blinkRate. Group differences
were tested for the baseline, confusion, and reconciliation intervals. Significance was determined with
two-way mixed ANOVAs using Comprehension (C) and Subtitle (S), and two-way repeated-measures
ANOVAs with Comprehension and Article Topic (T) as fixed factors. For the interaction effects C*S
and C*T, group differences are reported if they are significant within the specified interaction group.
Pairwise t-tests with Šidák correction were used for post-hoc comparisons.

ANOVA groups pairwise t-test

Factor F sig. η2 interaction A B [A] µ (σ) [B] µ (σ) t sig. η2

C 5.285 .007 .107 baseline – confusion .401 (.272) .333 (.255) 2.952 .015 .016
baseline – reconcile .401 (.171) .404 (.282) 0.121 .999 .000
confusion – reconcile .333 (.255) .404 (.282) 2.753 .025 .017

S 0.220 .642 .004
C * S 2.778 .068 .008 [captions]: baseline – confusion .411 (.296) .288 (.227) 3.832 .005 .052

[captions]: baseline – reconcile .411 (.296) .387 (.309) 0.598 .993 .002
[captions]: confusion – reconcile .288 (.227) .387 (.309) 2.586 .097 .032
[no caption]: baseline – confusion .390 (.251) .380 (.279) 0.332 1.00 .000
[no caption]: baseline – reconcile .390 (.251) .422 (.256) 1.178 .825 .004
[no caption]: confusion – reconcile .380 (.279) .422 (.256) 1.221 .236 .006

T 0.040 .842 .000
C * T 0.583 .534 .003
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TABLE A.2: ANOVA and post-hoc pairwise comparisons for Emotion. Group differences
were tested for the baseline, confusion, and reconciliation intervals. Significance was determined with
two-way mixed ANOVAs using Comprehension (C) and Subtitle (S), and two-way repeated-measures
ANOVAs with Comprehension and Article Topic (T) as fixed factors. For the interaction effects C*S
and C*T, group differences are reported if they are significant within the specified interaction group.
Pairwise t-tests with Šidák correction were used for post-hoc comparisons.

ANOVA groups pairwise t-test

Factor F sig. η2 interaction A B [A] µ (σ) [B] µ (σ) t sig. η2

po
si

ti
ve

E
m

ot
io

n C 0.673 .513 .015
S 0.228 .636 .005
C * S 0.475 .623 .000
T 6.378 .015 .114 funny – sad .107 (.231) .033 (.147) 2.526 .015 .036
C * T 0.376 .631 .001

ne
ga

ti
ve

E
m

ot
io

n

C 0.156 .813 .004
S 1.810 .186 .040
C * S 4.090 .020 .002 [captions]: baseline – confusion .305 (.340) .316 (.362) 0.751 .975 .000

[captions]: baseline – reconcile .305 (.340) .347 (.362) 2.323 .166 .004
[captions]: confusion – reconcile .316 (.362) .347 (.362) 2.342 .160 .002
[no caption]: baseline – confusion .209 (.294) .196 (.275) 0.936 .932 .001
[no caption]: baseline – reconcile .209 (.294) .177 (.266) 1.282 .765 .003
[no caption]: confusion – reconcile .196 (.275) .177 (.266) 0.779 .971 .001

T 4.307 .044 .072 funny – sad .220 (.324) .302 (.366) 2.075 .044 .014
C * T 0.586 .493 .001

ne
ut

ra
lE

m
ot

io
n

C 0.176 .813 .004
S 0.072 .790 .002
C * S 5.559 .005 .002 [captions]: baseline – confusion .581 (.359) .570 (.377) 0.741 .977 .000

[captions]: baseline – reconcile .581 (.359) .540 (.363) 2.641 .086 .003
[captions]: confusion – reconcile .570 (.377) .540 (.363) 2.263 .187 .002
[no caption]: baseline – confusion .509 (.395) .535 (.399) 1.620 .538 .001
[no caption]: baseline – reconcile .509 (.395) .554 (.413) 1.853 .388 .003
[no caption]: confusion – reconcile .535 (.399) .554 (.413) 0.768 .973 .001

T 0.234 .631 .004
C * T 0.755 .436 .002

em
ot

io
nF

lu
ct

ua
ti

on C .628 .514 .014
S 1.088 .303 .023
C * S 0.057 .945 .000
T 0.004 .947 .000
C * T 0.934 .378 .004
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TABLE A.3: ANOVA results on activation intensity of each action unit. Activation intensities
are calculated as the average intensity across all frames as identified by OpenFace. Fixed factors were
Comprehension (C) in combination with Article Topic (T) and Subtitle (S), respectively. P-values for
groups with unequal variance are Greenhouse-Geisser corrected.

C S C * S T C * T

AU F sig. η2 F sig. η2 F sig. η2 F sig. η2 F sig. η2

1 0.159 .739 .004 0.031 .864 .001 0.516 .599 .003 0.012 .914 .000 0.048 .953 .000
2 0.703 .498 .016 0.043 .836 .001 2.031 .137 .019 1.788 .188 .013 1.409 .250 .008
4 3.083 .066 .065 0.187 .667 .004 1.590 .210 .001 0.853 .361 .017 1.325 .271 .002
5 1.209 .303 .027 0.291 .593 .004 0.074 .929 .001 2.466 .123 .014 0.664 .520 .005
6 3.041 .058 .065 0.514 .477 .012 0.710 .494 .000 1.951 .169 .037 1.510 .227 .002
7 3.830 .033 .080 0.154 .697 .004 1.014 .367 .000 0.207 .651 .004 0.427 .654 .001
9 3.397 .038 .071 0.791 .379 .014 0.136 .873 .001 0.041 .840 .000 1.677 .193 .012
10 3.914 .034 .784 0.260 .613 .006 0.105 .900 .000 0.586 .448 .012 0.716 .491 .001
12 1.627 .208 .036 1.196 .280 .026 0.353 .704 .000 8.696 .005 .150 0.428 .653 .000
14 0.155 .827 .003 0.349 .558 .008 0.746 .477 .000 9.065 .004 .155 0.052 .949 .000
15 0.878 .419 .020 3.302 .076 .060 1.621 .204 .006 0.000 .983 .000 0.363 .697 .001
17 5.094 .020 .104 1.586 .215 .034 1.571 .214 .002 0.103 .750 .001 3.370 .039 .017
20 1.950 .148 .042 0.011 .916 .000 0.671 .514 .004 2.092 .155 .027 0.334 .717 .002
23 6.983 .002 .137 1.994 .165 .035 0.956 .388 .004 0.154 .696 .001 2.959 .057 .033
25 0.792 .411 .018 3.105 .085 .058 0.577 .564 .002 3.441 .070 .050 0.905 .408 .002
26 1.090 .317 .024 0.298 .588 .006 0.056 .946 .000 0.358 .552 .005 1.090 .341 .003
28 0.912 .405 .020 1.456 .234 .016 0.351 .705 .004 1.767 .191 .013 0.289 .749 .002
45 2.796 .067 .060 0.500 .483 .008 0.049 .952 .000 0.004 .950 .000 2.115 .127 .007
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TABLE A.4: Post-hoc pairwise comparisons for action units. Pairwise t-tests with Šidák
correction were used for significance testing. Group differences in Comprehension (C) were tested for
the baseline, confusion, and reconciliation intervals. Additionally, the effect of Article Topic (T) was
assessed on the funny and sad article. The effect of Subtitle (S) was tested for sessions with either
auto-generated captions, or no caption. For the interaction effects C*S and C*T, group differences are
reported if they are significant within the specified interaction group.

groups pairwise t-test

AU Factor interaction A B [A] µ (σ) [B] µ (σ) t sig. η2

4 C baseline – confusion .519 (.520) .533 (.531) 1.200 .555 .000
baseline – reconcile .519 (.520) .563 (.542) 2.195 .097 .002
confusion – reconcile .533 (.531) .563 (.542) 1.422 .412 .001

6 C baseline – confusion .246 (.336) .263 (.344) 1.246 .524 .001
baseline – reconcile .246 (.336) .278 (.346) 2.201 .096 .002
confusion – reconcile .263 (.344) .278 (.346) 1.425 .410 .001

7 C baseline – confusion .628 (.696) .639 (.681) 0.696 .868 .000
baseline – reconcile .628 (.696) .684 (.712) 2.354 .068 .002
confusion – reconcile .636 (.681) .684 (.712) 1.909 .177 .001

9 C baseline – confusion .042 (.057) .045 (.057) 1.046 .659 .001
baseline – reconcile .042 (.057) .057 (.039) 2.075 .126 .025
confusion – reconcile .045 (.057) .057 (.039) 1.689 .267 .015

10 C baseline – confusion .298 (.396) .312 (.391) 1.528 .350 .000
baseline – reconcile .298 (.396) .333 (.388) 2.327 .072 .002
confusion – reconcile .312 (.391) .333 (.388) 1.632 .295 .001

12 T funny – sad .420 (.512) .227 (.319) 2.949 .005 .059

14 T funny – sad .597 (.666) .386 (.533) 3.011 .004 .030

15 S funny – sad .151 (.164) .085 (.051) 1.851 .075 .068

17 C baseline – confusion .291 (.329) .333 (.357) 3.899 .001 .004
baseline – reconcile .291 (.329) .356 (.439) 2.590 .038 .007
confusion – reconcile .333 (.357) .356 (.439) 1.019 .677 .001

C * T [sad]: baseline – confusion .283 (.361) .344 (.459) 2.799 .045 .006
baseline – reconcile .274 (.339) .328 (.440) 2.281 .154 .005
confusion – reconcile .274 (.339) .399 (.589) 2.510 .091 .016

[funny]: baseline – confusion .328 (.440) .399 (.589) 1.648 .491 .005
baseline – reconcile .307 (.375) .337 (.356) 1.629 .505 .002
confusion – reconcile .307 (.375) .314 (.336) 0.290 1.00 .000

23 C baseline – confusion .063 (.074) .096 (.121) 3.335 .005 .026
baseline – reconcile .063 (.074) .118 (.184) 2.945 .015 .037
confusion – reconcile .096 (.121) .118 (.184) 1.515 .357 .005

C * T [sad]: baseline – confusion .049 (.059) .086 (.152) 1.878 .341 .025
baseline – reconcile .049 (.059) .086 (.152) 2.308 .145 .050
confusion – reconcile .086 (.152) .151 (.307) 1.866 .348 .018

C * T [funny]: baseline – confusion .077 (.123) .106 (.144) 2.758 .050 .012
baseline – reconcile .077 (.123) .085 (.093) 0.643 .988 .001
confusion – reconcile .106 (.144) .085 (.093) 1.401 .669 .007

25 S funny – sad .241 (.198) .159 (.098) 1.787 .083 .065
T funny – sad .233 (.245) .168 (.140) 1.855 .070 .026

45 C baseline – confusion .220 (.119) .197 (.116) 1.679 .272 .011
baseline – reconcile .222 (.232) .232 (.124) 0.740 .463 .002
confusion – reconcile .197 (.116) .232 (.124) 2.083 .124 .022
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B. Essay 3: Gaze feature extraction

B.1. Fixation calculation

The calculation of fixations is based on the algorithms employed by the eye tracker
manufacturer Tobii (Olsen, 2012). Applying a strict average methodology, gaze
points are set to the mean value of the left and right eye. In case only one eye has
been detected by the eye tracker, both values are discarded. All thresholds are set
to the Tobii Studio default values. These have been found to produce the most
robust results in experiments with a similar setup to the one used in the study
that is presented in Essay 3 (Olsen, 2012). The pseudocode in Algorithm A.1
describes a simplified version of the implementation for extracting fixations.

ALGORITHM A.1: Fixation extraction.
1 Input : gazeList
2 Output : fixationList
3

4 /**
5 Group consecutive samples based on their velocity
6 */
7 for all g in gazeList do
8 /** Calculate visual angle per second between two gaze points (Note 1) */
9 call visualAngle (eye , g.previous , g.next)

10 velocity ← visualAngle / (g.next.time - g. previous .time)
11

12 /** Classify samples as gap , fixation , or saccade */
13 if g. validity = false then
14 gazeType ← gap
15 else if velocity < 30 then
16 gazeType ← fixation
17 else
18 gazeType ← saccade
19 end if
20

21 /** Check if the sample has the same type as the previous */
22 if g. previous . gazeType = gazeType then
23 /** Put into a temporary clusterList */
24 append gaze to clusterList
25 /** If type changes , create a new fixation , saccade or gap object */
26 else
27 init Feature
28 Feature .type ← gazeType
29 Feature . coordinates ← call mean( clusterlist )
30 Feature . firstSample ← clusterList [0] /** first cluster sample */
31 Feature . lastSample ← clusterList [-1] /** last cluster sample */
32 Feature .start ← clusterList [0]. time /** start with first cluster sample */
33 Feature .stop ← clusterList [ -1]. time /** stop with last cluster sample */
34
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35 /** If the feature is a fixation , put into fixationList */
36 if Feature .type = fixation then
37 append fixation to fixationList
38 end if
39

40 /** Clear clusterList and initialize with next sample from gazeList */
41 clusterList ← g
42 end if
43 end for
44

45 /**
46 Merge adjacent fixations that were split due to noise
47 */
48 for all f in fixationList do
49 /** Check if the gap between two adjacent fixations is less than 75 ms */
50 if f.next.start - f.stop < 75 then
51 g1 ← f. lastSample
52 g2 ← f.next. firstSample
53 call visualAngle (mean(g1.eye , g2.eye), g1. coordinates , g2. coordinates )
54 /** Merge fixations with visual angle below .5 degrees / second */
55 if visualAngle < 0.5 then
56 f. coordinates ← call mean(f.next. coordinates , f. coordinates )
57 f.stop ← f.next.stop
58 /** Delete appended fixation from fixationList */
59 call delete (f.next)
60 end if
61 end if
62 end for
63

64 /**
65 Discard short fixations below 60 ms (not relevant for information absorption )
66 */
67 for all f in fixationList do
68 if f. duration < 60 then
69 call delete (f)
70 end if
71 end for

Note 1: The recommended window for velocity calculation is 20 milliseconds.
The Tobii Pro X3-120 eye tracker has a sampling rate of 120 Hz (i.e., samples
are recorded in intervals of 8.33 milliseconds). To approximate the recommended
window size, the visual angle is calculated for the movement Mg1,g2 between two
gaze samples g1 at time t − 1 and g2 at t + 1 with respect to their tangential
distance De,g1g2 from the eye e at time t:

2 ∗ atan( Mg1,g2

2 ∗ De,g1g2
) (1)
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Figure B.1 shows the spacial relations between the coordinates of the eye and the
two gaze samples that are used for the calculation.

et, xyz

g1t-1, xyz

g2t+1, xyz



FIGURE B.1: Visual angle calculation. The visual angle is calculated from the movement M of
the gaze between two samples gt,xyz from time t − 1 and t + 1 with respect to the distance S of the eye
exyz to the screen at time t.

B.2. Feature definition

Using raw gaze data (A.2 - A.5), or the extracted fixations (A.6 - A.10) as input, the
gaze feature extractor produces eight duration, frequency, and sequential features.
The procedure for their calculation is summarized in Algorithms A.2 - A.10.

ALGORITHM A.2: Calculate gazeCount.
1 Input : gazeList , aoiList
2 Output : endGazeList
3

4 /** Initialize a list with a separate fixation counter for each AOI */
5 for all a in aoiList do
6 init counter
7 append counter to endGazeList
8 end for
9

10 for all g in gazeList do
11 /** If gaze is in AOI , increment its counter */
12 for all a in aoiList do
13 inAoi ← call checkCoordinates (a, g)
14 if inAoi = true then
15 call increment ( endGazeList [a])
16 end if
17 end for
18 end for
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ALGORITHM A.3: Calculate endCount.
1 Input : gazeList , aoiList
2 Output : endGazeList
3

4 /** Filter gaze points from last 400 ms */
5 gazeList → gazeList [ -400:]
6

7 /** Initialize a list with a separate fixation counter for each AOI */
8 for all a in aoiList do
9 init counter

10 append counter to endGazeList
11 end for
12

13 for all g in gazeList do
14 /** If gaze is in AOI , increment its counter */
15 for all a in aoiList do
16 inAoi ← call checkCoordinates (a, g)
17 if inAoi = true then
18 call increment ( endGazeList [a])
19 end if
20 end for
21 end for

ALGORITHM A.4: Calculate maxDwell.
1 Input : gazeList , aoiList
2 Output : maxDwellList
3

4 /** Initialize a list with the current longest dwell on each AOI */
5 for all a in aoiList do
6 init maximum
7 append maximum to maxDwellList
8 end for
9

10 /** Initialize a list with a separate fixation counter for each AOI */
11 init Focus: aoi , start
12

13 for all g in gazeList do
14 for all a in aoiList do
15 inAoi ← call checkCoordinates (a, g)
16 if inAoi = true then
17 /** If a new AOI is fixated , calculate dwell on the last AOI */
18 if Focus.aoi not a then
19 dwell ← g.time - Focus.start
20 /** If dwell is longer than current maximum , update value for AOI */
21 if dwell > maxDwellList [a] then
22 maxDwellList [a] ← dwell
23 end if
24 /** Update start of next dwell with time of current gaze sample */
25 Focus.start ← g.time
26 Focus.aoi ← a
27 end if
28 end if
29 end for
30 end for
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ALGORITHM A.5: Calculate meanDwell.
1 Input : gazeList , aoiList
2 Output : meanDwellList
3

4 /** Initialize list of dwell objects with number + total duration for each AOI */
5 for all a in aoiList do
6 init Dwell: count , duration
7 append Dwell to dwellList
8 end for
9

10 /** Initialize a list with a separate fixation counter for each AOI */
11 init Focus: aoi , start
12

13 for all g in gazeList do
14 for all a in aoiList do
15 inAoi ← call checkCoordinates (a, g)
16 if inAoi = true then
17 /** If new AOI is fixated , update dwell count and duration on last AOI */
18 if Focus.aoi not a then
19 dwell ← g.time - Focus.start
20 add dwell to dwellList [a]. duration
21 call increment ( dwellList [a]. count)
22

23 /** Update start of next dwell with time of current gaze sample */
24 Focus.start ← g.time
25 Focus.aoi ← a
26 end if
27 end if
28 end for
29 end for
30

31 for all a in aoiList do
32 meanDwell ← dwellList [a]. duration / dwellList [a]. count
33 append meanDwell to meanDwellList
34 end for
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ALGORITHM A.6: Calculate fixCount.
1 Input : fixationList , aoiList
2 Output : fixCountList
3

4 /** Initialize a list with a separate fixation counter for each AOI */
5 for all a in aoiList do
6 init counter
7 append counter to fixCountList
8 end for
9

10 for all f in fixationList do
11 /** If fixation is in AOI , increment its counter */
12 for all a in aoiList do
13 inAoi ← call checkCoordinates (a, f)
14 if inAoi = true then
15 call increment ( fixCountList [a])
16 end if
17 end for
18 end for

ALGORITHM A.7: Calculate meanFixDur.
1 Input : fixationList , aoiList , fixCountList
2 Output : meanDurationList
3

4 /** Initialize a list with a separate duration counter for each AOI */
5 for all a in aoiList do
6 init duration
7 append duration to meanDurationList
8 end for
9

10 for all f in fixationList do
11 for all a in aoiList do
12 inAoi ← call checkCoordinates (a, f)
13 /** If fixation is in AOI , update its total duration */
14 if inAoi = true then
15 add duration to meanDurationList [a]
16 end if
17 end for
18 end for
19

20 /** Divide the total duration of each AOI by its fixation number */
21 for all d in meanDurationList do
22 d ← d / fixCountList [a]
23 end for
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B. ESSAY 3: GAZE FEATURE EXTRACTION

ALGORITHM A.8: Calculate maxFix.
1 Input : fixationList , aoiList
2 Output : maxFixList
3

4 /** Initialize list with the current longest fixation on each AOI */
5 for all a in aoiList do
6 init maximum
7 append maximum to maxFixList
8 end for
9

10 for all f in fixationList do
11 for all a in aoiList do
12 inAoi ← call checkCoordinates (a, f)
13 if inAoi = true then
14 /** If fixation is longer than current maximum , update the value */
15 if f. duration > maxFixList [a] then
16 maxFixList [a] ← f. duration
17 end if
18 end if
19 end for
20 end for

ALGORITHM A.9: Calculate longFix.
1 Input : fixationList , aoiList
2 Output : longFixList
3

4 /** Initialize a list with a separate fixation counter for each AOI */
5 for all a in aoiList do
6 init counter
7 init counter in longFixList
8 end for
9

10 for all f in fixationList do
11 /** If fixation is longer 400 ms , increment the counter of its AOI */
12 if f > 400 do
13 for all a in aoiList do
14 inAoi ← call checkCoordinates (a, f)
15 if inAoi = true then
16 call increment ( fixCountList [a])
17 end if
18 end for
19 end if
20 end for
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ALGORITHM A.10: Calculate maxContFix.
1 Input : fixationList , aoiList
2 Output : contFixList
3

4 /** Initialize a list with the current longest dwell on each AOI */
5 for all a in aoiList do
6 init maximum
7 append maximum to contFixList
8 end for
9

10 /** Initialize a list with a separate fixation counter for each AOI */
11 init Focus: aoi , count
12

13 for all f in fixationList do
14 for all a in aoiList do
15 inAoi ← call checkCoordinates (a, f)
16 if inAoi = true then
17 if Focus.aoi = a then
18 call increment (f.count)
19 /** If a new AOI is fixated , calculate number of fixations on the last AOI */
20 else
21 count ← f.start - Focus.start
22 /** If count is longer than current maximum , update value for AOI */
23 if count > contFixList [a] then
24 contFixList [a] ← count
25 end if
26

27 /** Reset counter for next AOI dwell */
28 Focus.count ← 0
29 Focus.aoi ← a
30 end if
31 end if
32 end for
33 end for
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