
Marcel Neunhoeffer

Generative Adversarial Nets for Social
Scientists

Mannheim, 2023

Marcel Neunhoeffer

Generative Adversarial Nets for Social
Scientists

Inaugural dissertation submitted in partial fulfillment of
the requirements for the degree Doctor of Social

Sciences
in the Graduate School of Economic and Social Sciences

at the University of Mannheim

written by
Marcel Neunhoeffer

Mannheim, 2023

Dean: Prof. Dr. Michael Diehl
First Supervisor: Prof. Thomas Gschwend, Ph.D.
Second Supervisor: Prof. Dr. Frauke Kreuter
First Examiner: Prof. Thomas Gschwend, Ph.D.
Second Examiner: Prof. Dr. Frauke Kreuter
Third Examiner: Prof. Dr. Richard Traunmüller

Date of oral examination: 31st March, 2023

Contents

1 Introduction 1
1.1 GANs in computer science, media, and politics 4
1.2 GANs for Social Scientists . 7
1.3 Contributions of this Dissertation 8
1.4 Future Research . 10

2 An Introduction to Generative Adversarial Nets in R -
The RGAN package 15

3 Private Post-GAN Boosting 35

4 A Common Benchmark to Evaluate Multiple Imputation
Algorithms 53

v

1
Introduction

On July 28, 2016, Yann LeCun—Deep Learning pioneer and Chief Artificial
Intelligence Scientist at Facebook—was asked, “What are some recent and po-
tentially upcoming breakthroughs in deep learning?” in a Public Quora Q&A
session.1 He answered: “The most important one, in my opinion, is adversarial
training (also called GAN for Generative Adversarial Networks). This is an idea
that was originally proposed by Ian Goodfellow when he was a student with
Yoshua Bengio at the University of Montreal […].

This, and the variations that are now being proposed is the most interesting
idea in the last 10 years in ML [machine learning, the author], in my opinion.”

So what is a Generative Adversarial Net? As indicated in the quote above,
1As of February 26, 2023, you can find the session here: https://quorasessionwithyannlecu

n.quora.com.

1

https://quorasessionwithyannlecun.quora.com
https://quorasessionwithyannlecun.quora.com

GANs were first introduced by Goodfellow et al. (2014). In short, a GAN is
a likelihood-free method that tries to learn an arbitrary joint distribution by
comparison. It samples data from a proposal distribution and compares them
to samples from the true distribution. Comparing the difference between the
two samples—samples from the proposal distribution and samples from the
true distribution—it improves the model for the proposal distribution such
that it generates more and more realistic samples. The basic idea of a GAN
is surprisingly intuitive. At its core, a GAN is a minimax game with two
competing actors—a discriminator trying to tell real from synthetic samples and
a generator to produce realistic synthetic samples from random noise.

Goodfellow et al. (2014) illustrate the idea with the following example: “The
generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discrim-
inative model is analogous to the police, trying to detect the counterfeit cur-
rency. Competition in this game drives both teams to improve their methods
until the counterfeits are indistinguishable from the genuine articles” (p. 1).

In GANs, the team of counterfeiters, the generator, is a neural network trained
to produce realistic synthetic data examples from random noise. And the po-
lice, the discriminator, is a neural network to classify fake and real data. The
generator network is trained to fool the discriminator network and uses the feed-
back of the discriminator to generate increasingly realistic simulated data that
should eventually be indistinguishable from the real data. At the same time,
the discriminator is constantly adapting to the improving generator. Thus, the
threshold where the discriminator is fooled increases along with the faking capa-
bilities of the generator. This goes on until (in theory) an equilibrium is reached.
At the equilibrium, the discriminator can no longer distinguish between real and

2

fake samples. The generator can achieve this goal if it samples from the underly-
ing distribution of the real data.

The promise of drawing additional and new samples from an underlying data
distribution without explicitly modeling it makes GANs so appealing. Computer
scientists achieved impressive results generating images with GANs, but the
idea is also very interesting for data beyond images. In this dissertation, I fo-
cus on the introduction of Generative Adversarial Nets (GANs) for Social Scien-
tists and explore the potential of GANs in social science applications. The main
goal of this work is to make GANs more accessible for researchers in the social
sciences by providing them with user-friendly tools and showing applications of
GANs to social science problems like data sharing with privacy-preserving syn-
thetic data and multiple imputation of missing values.

In chapter 2, I present an R-package RGAN that facilitates the implementation of
GANs and allows researchers to quickly generate synthetic data for their studies.
In chapter 3, I address the issue of privacy and confidentiality by exploring how
GANs can be used to create synthetic data that preserves the privacy of study
participants with formal privacy guarantees. Finally, in chapter 4, I evaluate the
use of GANs for multiple imputation, a method commonly used in social science
research to handle missing data. While GANs might be a promising approach to
impute missing data, current implementations do not meet the current state of
the art in multiple imputation. I also show that the translation from computer
science to social science applications requires care and that only some things
that are hyped in one field are indeed an improvement over existing methods in
another. However, a good understanding of GANs is necessary to assess these
shortcomings.

3

1.1 GANs in computer science, media, and politics

GANs became a hot topic at the leading computer science conferences since
they first were proposed by Goodfellow et al. (2014).2 Panel (A) in Figure 1.1
shows this impressive volume of GAN-related research in computer science. In
total 659 papers with the acronym “GAN” or the term “Generative Adversarial”
in the title have been published at these conferences.3 Of these papers, the vast
majority use GANs to generate image or video data. This can also be seen from
the sheer volume of GAN-related papers (299 out of 659) at the computer vision
focused conferences CVPR and ICCV.

Unsurprisingly, this also means that the citations of the original GAN paper
(Goodfellow et al., 2014) skyrocketed. As of February 26, 2023, the article was
cited 55,641 times according to Google Scholar.4 Panel (B) in Figure 1.1 shows
the yearly citations of Goodfellow et al. (2014). As a comparison, the most cited
paper in a political science journal also published in 2014 (as an online first ar-
ticle) is “Comparative Politics and the Synthetic Control Method” by Abadie
et al. (2015), which was cited 2,208 times.

The current main application of GANs in academia is the generation of realistic-
looking images. I show examples of a generated face and a generated cat from a
StyleGAN2 implementation (Karras et al., 2020) in Figure 1.2.

GANs have also received significant media attention mainly due to their use
2According to the h5 index by Google Scholar accessed on February 26, 2023, on

https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng, the top
five peer-reviewed conferences are the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), the International Conference on Learning Representations (ICLR),
Neural Information Processing Systems (NeurIPS), the IEEE/CVF International Conference
on Computer Vision (ICCV, bi-annual), and the International Conference on Machine Learn-
ing (ICML).

3In total 24,095 papers have been published at these conferences since 2014. This means
that about 2.7% of all papers were directly GAN related.

4I obtained all citation data using the R package scholar (Yu et al., 2022).

4

https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng

2014 2017 2020

0

10

20

30

40

50

ICML

ICLR

NeurIPS

CVPRICCV

Year

N
um

be
r o

f A
rti

cl
es

(A)

2016 2018 2020 2022

0

2000

4000

6000

8000

10000

12000

14000

Year

N
um

be
r o

f C
ita

tio
ns

337

1775

4927

8490

10935

13231

13922

2024

(B)

Figure 1.1: Panel (A): Number of Papers with the term “GAN” or “Generative Adversarial” in
the title at leading computer science conferences. Panel (B): Number of Citations per year of
“Generative Adversarial Networks” by Goodfellow et al. (2014).

Figure 1.2: Images produced by a StyleGAN2 (Karras et al., 2020).

5

in creating realistic-looking fake images. These images are sometimes called
deepfakes. Deepfakes are realistic videos or images that are manipulated using
GANs to swap the face of one person onto the body of another.5 While these
applications have raised concerns about the potential misuse of GANs for dis-
information and propaganda, there have also been positive uses of GANs that
received widespread media coverage. For example, in 2018, the French artist
collective obvious6 created a GAN-generated portrait of a fictional character
called Edmond de Belamy. The print sold for $432,500 at Christie’s auction
house, making it the first AI-generated artwork to be sold at a major auction
house.7 This demonstrates the growing interest and recognition of GANs in var-
ious fields and their potential for creative applications beyond computer science.
However, it also highlights the need for ethical considerations and responsible
use of GANs to prevent misuse and potential harm.

Figure 1.3: GAN-generated portrait of Edmond de Belamy. Image from
https://commons.wikimedia.org/wiki/File:Edmond_de_Belamy.png.

5See, for example, https://www.vox.com/2018/4/18/17252410/jordan-peele-obama-deepfa
ke-buzzfeed (last accessed February 26, 2023) or https://www.tagesschau.de/investigativ/wdr
/deep-fakes-103.html (last accessed February 26, 2023).

6https://obvious-art.com/portfolio/edmond-de-belamy/
7See, for example, https://www.sueddeutsche.de/kultur/kunst-kunst-per-algorithmus-

christie-s-versteigert-ki-gemaelde-dpa.urn-newsml-dpa-com-20090101-181025-99-518993 (last
accessed February 26, 2023).

6

https://commons.wikimedia.org/wiki/File:Edmond_de_Belamy.png
https://www.vox.com/2018/4/18/17252410/jordan-peele-obama-deepfake-buzzfeed
https://www.vox.com/2018/4/18/17252410/jordan-peele-obama-deepfake-buzzfeed
https://www.tagesschau.de/investigativ/wdr/deep-fakes-103.html
https://www.tagesschau.de/investigativ/wdr/deep-fakes-103.html
https://obvious-art.com/portfolio/edmond-de-belamy/
https://www.sueddeutsche.de/kultur/kunst-kunst-per-algorithmus-christie-s-versteigert-ki-gemaelde-dpa.urn-newsml-dpa-com-20090101-181025-99-518993
https://www.sueddeutsche.de/kultur/kunst-kunst-per-algorithmus-christie-s-versteigert-ki-gemaelde-dpa.urn-newsml-dpa-com-20090101-181025-99-518993

The so-called deepfakes and the responsible use of GANs are also of interest to
policymakers. For example, the 116th U.S. Congress passed the “IOGAN Act”8

in 2020. This act aims to support research to identify the output of GANs. In
particular concerning fake images. Similarly, the final report of the Enquete
commission on artificial intelligence of the 19th German Bundestag9, also pub-
lished in 2020, explicitly mentions Generative Adversarial Nets in the context of
deepfakes.

1.2 GANs for Social Scientists

Despite their popularity in computer science, media, and attention from poli-
tics, there is still much to be explored regarding applying GANs in social science
research. In fact, as of February 26, 2023, a search for publications in leading
political science journals10 returned no results.

Therefore, it is a natural question: Why should Social Scientists learn about
GANs? First, I am convinced that it is valuable in itself to understand new
technology and make it accessible to a broader audience. Second, while GANs
have gained popularity for their ability to generate realistic images and videos,
they also have great potential for generating synthetic data beyond visual
content. For example, GANs can be used to create synthetic data sets that
mimic real-world data with the promise to preserve privacy and confidentiality
(Beaulieu-Jones et al., 2019; Yoon et al., 2019; Xie et al., 2018) or to generate

8Available at https://www.congress.gov/bill/116th-congress/senate-bill/2904/text (last
accessed February 26, 2023).

9The report is available in German at https://dserver.bundestag.de/btd/19/237/1923700.
pdf (last accessed February 26, 2023).

10According to the h5 index by Google Scholar accessed on February 26, 2023, on
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=soc_politicalscience,
the top five peer-reviewed political science journals are the American Journal of Political Sci-
ence (AJPS), the American Political Science Review (APSR), the Journal of European Public
Policy, the Journal of Politics (JoP) and the British Journal of Political Science (BJPS).

7

https://www.congress.gov/bill/116th-congress/senate-bill/2904/text
https://dserver.bundestag.de/btd/19/237/1923700.pdf
https://dserver.bundestag.de/btd/19/237/1923700.pdf
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=soc_politicalscience

more realistic synthetic data for Monte Carlo studies (Athey et al., 2021).
Additionally, GANs can be used for multiple imputation (Yoon et al., 2018;
Yoon and Sull, 2020), a statistical technique commonly used in social science
research to handle missing data. Overall, GANs have significant potential for
generating synthetic data in various domains beyond visual content, which can
contribute to advancing social science research and innovation.

1.3 Contributions of this Dissertation

This dissertation contains three papers. In the first paper, “An Introduction
to Generative Adversarial Nets in R—The RGAN package,” I introduce GANs to
Social Scientists and make the technology accessible to a broader audience by
providing an accompanying R-package RGAN. I hope that this facilitates the de-
velopment of new applications. At the same time, it helps social scientists to
form an informed opinion on these new technologies. The RGAN package runs on
top of the torch library in R, offering an easy entry point to many quantitive
social scientists who are comfortable programming in R. The RGAN package is
available on the Comprehensive R Archive Network (CRAN). As of February
26, 2023, the RGAN package has already been downloaded 2,41511. This shows an
interest in applying GAN by scientists who work mainly in R. The package fa-
cilitates experimentation with different design choices for GANs—such as value
functions, other network architectures, different noise distributions, the choice of
optimization algorithms and update schemes, dropout during data generation,
and the post-processing of generated GAN samples. Furthermore, advanced
users can provide customized functions for each design choice.

In the second paper, “Private Post-GAN Boosting” (co-authored with Zhiwei
11An up-to-date number of downloads is available at https://cranlogs.r-pkg.org/badges/gra

nd-total/RGAN.

8

https://cranlogs.r-pkg.org/badges/grand-total/RGAN
https://cranlogs.r-pkg.org/badges/grand-total/RGAN

Steven Wu and Cynthia Dwork) (Neunhoeffer et al., 2021), we show how to
enhance the synthetic data generated from GANs while protecting the privacy
of individuals in the original data with formal privacy guarantees12. The pa-
per was published at the International Conference on Learning Representations
(ICLR) 2021. Differentially private GANs have proven to be a promising ap-
proach for generating realistic synthetic data without compromising the privacy
of individuals. Due to the privacy-protective noise introduced in training, the
convergence of GANs becomes even more elusive, often leading to poor utility
in the output generator at the end of training. We propose Private post-GAN
boosting (Private PGB), a differentially private method that combines samples
produced by the sequence of generators obtained during GAN training to create
a high-quality synthetic data set. We evaluate Private PGB on two-dimensional
toy data, MNIST images, US Census data, and a standard machine learning
prediction task. Our experiments show that Private PGB improves upon a com-
mon private GAN approach across quality measures. We also provide a non-
private variant of PGB that improves the data quality of traditional GAN train-
ing.

In the third paper, “A Common Benchmark to Evaluate Multiple Imputation
Algorithms,” I provide a novel benchmark for evaluating multiple imputation
algorithms and explore the current potential and limitations of a GAN-based ap-
proach to multiple imputation. Multiple imputation (MI) of missing data is an
essential tool for quantitative research in the social sciences. Many different MI
models are available, and new MI models—e.g., GAN-based models—are intro-
duced to the literature. However, how to evaluate new MI models or compare
existing ones needs to be clarified. The R-package MIBench accompanying this

12Recent research by Carlini et al. (2023) on synthetic data highlights the importance of
formal privacy guarantees. Synthetic data without formal privacy guarantees can directly leak
training data.

9

paper makes applying the benchmark and comparing existing imputation mod-
els easy. I also provide benchmark results and show that no one-fits-all solution
to handle missing data exists. It is striking that seemingly more flexible impu-
tation methods, particularly the GAN-based method GAIN (Yoon et al., 2018),
could perform better. The results highlight a need to carefully evaluate MI mod-
els before using them in applied research. This also shows that the translation
of computer science models to social science applications is more complex than
it sometimes might seem. Collaboration between the fields has the potential for
new innovative solutions.

All three papers included in this dissertation present novel methods for using
GANs in social science research but also come with open-source software that
allows for easy implementation of the proposed methods and replication of the
presented results. By providing open-source software, the papers ensure that
the methods are accessible to a broader audience and that the findings are
transparent and replicable. The software packages I provide include the RGAN

R-package for easy access to GANs13, replication code for privacy-preserving
synthetic data methods14, and GAN-based multiple imputation methods15. This
allows researchers to quickly adopt and apply the proposed GAN-based methods
in their research, contributing to the advancement of the field.

1.4 Future Research

I agree with Yann LeCun that GANs are an exciting idea. This dissertation is
just the beginning of many exciting applications of GANs in social science re-

13RGAN available at https://cran.r-project.org/web/packages/RGAN/index.html (last ac-
cessed on February 26, 2023).

14The replication code for Private Post-GAN Boosting (Neunhoeffer et al., 2021) is available
at https://github.com/mneunhoe/post-gan-boosting (last accessed on February 26, 2023).

15The multiple imputation benchmark including code for GAN-based multiple imputation is
available at https://github.com/mneunhoe/MIBench (last accessed on February 26, 2023).

10

https://cran.r-project.org/web/packages/RGAN/index.html
https://github.com/mneunhoe/post-gan-boosting
https://github.com/mneunhoe/MIBench

search. In the future, there are several directions that research on GANs in so-
cial science could take. One area of interest is to evaluate the statistical proper-
ties of synthetic data generated by GANs. Similar to the Multiple Imputation
Benchmark, there is a need for methods to evaluate the utility of fully synthetic
data. Additionally, improving privacy-preserving training of GANs is an im-
portant area of research, as it would enhance the confidentiality and utility of
privacy-protected synthetic data. Moreover, exploring the potential of GANs for
generating synthetic counterfactuals for statistical inference is a promising direc-
tion that can contribute to causal inference. Finally, there is a need for identify-
ing and fingerprinting the output of GANs to ensure that synthetic data is used
ethically and responsibly. Overall, the potential applications of GANs in social
science research are vast, and further research in this area can lead to significant
advancements in the field.

11

References

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2015. “Comparative
Politics and the Synthetic Control Method.” American Journal of Political
Science 59 (2): 495–510. https://doi.org/10.1111/ajps.12116.

Athey, Susan, Guido W. Imbens, Jonas Metzger, and Evan Munro. 2021. “Us-
ing Wasserstein Generative Adversarial Networks for the Design of Monte
Carlo Simulations.” Journal of Econometrics. https://doi.org/10.1016/j.jeco
nom.2020.09.013.

Beaulieu-Jones, Brett K., Zhiwei Steven Wu, Chris Williams, Ran Lee, San-
jeev P. Bhavnani, James Brian Byrd, and Casey S. Greene. 2019. “Privacy-
Preserving Generative Deep Neural Networks Support Clinical Data Shar-
ing.” Circulation: Cardiovascular Quality and Outcomes 12 (7): e005122.
https://doi.org/10.1161/CIRCOUTCOMES.118.005122.

Carlini, Nicholas, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,
Florian Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace. 2023. “Ex-
tracting Training Data from Diffusion Models.” arXiv. https://doi.org/10.4
8550/ARXIV.2301.13188.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. “Genera-
tive Adversarial Nets.” Advances in Neural Information Processing Systems
27, 2672–80. https://doi.org/10.1017/CBO9781139058452.

Karras, Tero, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. 2020. “Analyzing and Improving the Image Quality of Style-
GAN.” In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Neunhoeffer, Marcel, Steven Wu, and Cynthia Dwork. 2021. “Private Post-

12

https://doi.org/10.1111/ajps.12116
https://doi.org/10.1016/j.jeconom.2020.09.013
https://doi.org/10.1016/j.jeconom.2020.09.013
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://doi.org/10.48550/ARXIV.2301.13188
https://doi.org/10.48550/ARXIV.2301.13188
https://doi.org/10.1017/CBO9781139058452

GAN Boosting.” In International Conference on Learning Representations.
https://openreview.net/forum?id=6isfR3JCbi.

Xie, Liyang, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. “Dif-
ferentially Private Generative Adversarial Network.” CoRR abs/1802.06739.
http://arxiv.org/abs/1802.06739.

Yoon, Jinsung, James Jordon, and Mihaela van der Schaar. 2018. “GAIN: Miss-
ing Data Imputation Using Generative Adversarial Nets.” In Proceedings of
the 35th International Conference on Machine Learning, edited by Jennifer
Dy and Andreas Krause, 80:5689–98. Proceedings of Machine Learning Re-
search. PMLR. https://proceedings.mlr.press/v80/yoon18a.html.

———. 2019. “PATE-GAN: Generating Synthetic Data with Differential Privacy
Guarantees.” In International Conference on Learning Representations. http
s://openreview.net/forum?id=S1zk9iRqF7.

Yoon, Seongwook, and Sanghoon Sull. 2020. “GAMIN: Generative Adversarial
Multiple Imputation Network for Highly Missing Data.” In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Yu, Guangchuang, James Keirstead, and Gregory Jefferis. 2022. Scholar: Anal-
yse Citation Data from Google Scholar. https://github.com/YuLab-
SMU/scholar.

13

https://openreview.net/forum?id=6isfR3JCbi
http://arxiv.org/abs/1802.06739
https://proceedings.mlr.press/v80/yoon18a.html
https://openreview.net/forum?id=S1zk9iRqF7
https://openreview.net/forum?id=S1zk9iRqF7
https://github.com/YuLab-SMU/scholar
https://github.com/YuLab-SMU/scholar

2
An Introduction to Generative

Adversarial Nets in R - The RGAN

package

15

An Introduction to Generative Adversarial Nets in
R—The RGAN package

Marcel Neunhoeffer
LMU München and Boston University

Abstract
This article introduces Generative Adversarial Nets, a powerful neural net architec-

ture, and presents the RGAN package. RGAN makes it easy to implement Genera-
tive Adversarial Nets in R: It facilitates experimentation with different design choices for
GANs—such as value functions, different network architectures, the choice of different
noise distributions, the choice of optimization algorithms and update schemes, dropout
during data generation and the post-processing of generated GAN samples. Furthermore,
advanced users can provide customized functions for each design choice. RGAN is a
lightweight package and runs on top of the torch library in R.

Keywords: Generative Adversarial Network, neural nets, R.

1. Introduction
On July 28 2016 Yann LeCun—Deep Learning pioneer and Chief Artificial Intelligence Scien-
tist at Facebook—was asked “What are some recent and potentially upcoming breakthroughs
in deep learning?” in a Public Quora Q&A session.1 He answered: “The most important one,
in my opinion, is adversarial training (also called GAN for Generative Adversarial Networks).
This is an idea that was originally proposed by Ian Goodfellow when he was a student with
Yoshua Bengio at the University of Montreal [...]).
This, and the variations that are now being proposed is the most interesting idea in the last
10 years in ML [machine learning, the author], in my opinion.”
So what is a Generative Adversarial Network (GAN)? As indicated in the quote above,
GANs were first introduced by Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair,
Courville, and Bengio (2014). They illustrate the idea with the following example: “The gen-
erative model can be thought of as analogous to a team of counterfeiters, trying to produce
fake currency and use it without detection, while the discriminative model is analogous to
the police, trying to detect the counterfeit currency. Competition in this game drives both
teams to improve their methods until the counterfeits are indistinguishable from the genuine
articles” (Goodfellow et al. 2014, p. 1).
In short, a GAN is a model that tries to learn an arbitrary joint distribution by compari-
son. It samples data from a proposal distribution and compares them to samples from the
true distribution. Comparing the two samples—samples from the proposal distribution and

1As of March 30 2022 you can find the session here: https://www.quora.com/q/quorasessionwithyannlecun.

16

2 Generative Adversarial Nets in R with RGAN

samples from the true distribution— improves the model for the proposal distribution such
that it generates more and more realistic samples. The basic idea of a GAN is surprisingly
intuitive. At its core, a GAN is a minimax game with two competing actors—a generator to
produce realistic synthetic samples from random noise and a discriminator (or critic)2 trying
to tell real from synthetic samples.
In GANs, the team of counterfeiters, the generator, is a neural network that is trained to pro-
duce realistic synthetic data examples from random noise. And the police, the discriminator,
is a neural network to classify fake and real data. The generator network is trained to fool
the discriminator network and uses the feedback of the discriminator to generate increasingly
realistic fake data that should eventually be indistinguishable from the real data. At the
same time, the discriminator is constantly adapting to the improving generator. Thus, the
threshold where the discriminator is fooled increases along with the faking capabilities of the
generator. This goes on until (in theory) an equilibrium is reached. At the equilibrium, the
discriminator cannot tell anymore what the real and the fake samples are. The generator can
achieve this goal by sampling from the underlying distribution of the real data.3

With the RGAN package, I bring these neural networks to R. The goal of the package is
to facilitate experimentation with GANs for an audience mostly working with R. This way,
GANs can be included in existing workflows, for example for data synthesising.
RGAN is a lightweight package that only relies on torch (Falbel and Luraschi 2022). This
makes RGAN fast since there is no reliance on calling python through e.g., reticulate (Ushey,
Allaire, and Tang 2022). For applications, the focus of RGAN is on tabular data, yet it is
easy to implement GANs for image data. Both use cases are demonstrated in section 4.
In python, software libraries in like CTGAN (Xu, Skoularidou, Cuesta-Infante, and Veera-
machaneni 2019), TF-GAN that is part of tensorflow (Abadi, Agarwal, Barham, Brevdo,
Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia,
Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens,
Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wat-
tenberg, Wicke, Yu, and Zheng 2015), torchgan (Pal and Das 2021) or mimicry (Lee and
Town 2020) can serve a similar purpose as RGAN. Most of these libraries focus on image
data.
In R, ganGenerativeData (Müller 2022) makes it possible to synthesize tabular data with a
GAN through reticulate and tensorflow. The focus of ganGenerativeData is on producing
synthetic data with one specific GAN architecture. This contrasts to RGAN that makes it
easy to customize GANs for experimentation.
The rest of the paper is organized as follows: In section 2, I give a more detailed introduction
to GANs. In section 3, I introduce the different design decisions a researcher faces when
developing a GAN and show how RGAN facilitates experimentation with these design choices.
Section 4 offers two working examples with code: The example in section 4.1 shows how to
quickly get started with the synthesization of tabular data. The example in section 4.2
generates fake images with a customized neural network architecture in RGAN. Section 5
provides an outlook on potential extensions of RGAN.

2More on the difference between a discriminator and a critic can be found in section 3.
3A GAN is, therefore, a dynamic system where the optimization process is seeking not a minimum (or

maximum) but an equilibrium.

17

Marcel Neunhoeffer 3

2. A Brief Introduction to GANs
A GAN is a model that tries to learn an arbitrary joint distribution by comparison. It samples
data from a proposal distribution and compares them to samples from the true distribution.
Comparing the difference between the two samples it improves the model for the proposal
distribution such that it generates more realistic samples.
In GANs the proposal distribution (fake data) is typically generated by a deep neural network—
the generator (G). The comparison of fake and real data is done by a second deep neural
network—the discriminator (D). The generator is trained to produce realistic synthetic data
examples from random noise. At the same time, the discriminator has the goal to correctly
distinguish fake from real data4.
The generator is trained to be able to fool the discriminator network and uses the feedback of
the discriminator to generate increasingly realistic fake data that should eventually be indis-
tinguishable from the real data. At the same time, the discriminator is constantly adapting
to the improving generating abilities of the generator. Thus, the threshold where the dis-
criminator is fooled increases along with the faking capabilities of the generator. This goes
on until (in theory) an equilibrium is reached. In the classical GAN, described by the value
function V in equation 1, an optimal discriminator at the equilibrium would be assigning 0.5
probability to both real and fake samples. This is the point where the discriminator cannot
distinguish between real and fake samples anymore.
GANs turn a typical unsupervised learning task—learning a joint density—into a supervised
learning problem—learning to distinguish between fake and real data. Using the observation
that it is easier to sample from p than to explicitly learn the distribution.
Formally, this two-player minimax game can be written as:

min
G

max
D

V (D, G) = Ex∼pdata(x)
[

log D(x)
]

+ Ez∼pz(z)
[

log(1 − D(G(z)))
]

(1)

where pdata(x) is the joint distribution of the real data, x is a sample from pdata(x). The
generator network G(z) takes as an input z from pz(z), where z is a random sample from
a probability distribution pz(z). This sample is also called a noise sample. Usually, GANs
are set up to either sample z from uniform or Gaussian distributions.5 Passing the noise
sample z through G then generates a sample of synthetic data which is then fed into the
discriminator D. The discriminator takes as input a set of labeled data, either real examples
from pdata(x) or generated examples from G(z), and is trained to distinguish between real
data and fake data. In the original GAN setup (Goodfellow et al. 2014) this is a standard
binary classification problem.6

D is trained to maximize the probability of assigning the correct label to training examples
and samples from G(z). G is trained to minimize log(1 − D(G(z))). Thus, the goal of the
discriminator is to maximize function V , whereas the goal of the generator is to minimize it.

4It wants to discriminate between fake and real data, hence the name. However, novel architectures don’t
necessarily use classifiers to compare fake and real data. In these GANs the second network is usually named
a critic network.

5Recent research suggests that depending on the application other prior distributions might be preferable.
Huster, Cohen, Lin, Chan, Kamhoua, Leslie, Chiang, and Sekar (2021) show that for skewed and heavy-tailed
real data, a Pareto distribution performs better than a normal distribution.

6Thus, the output layer of the discriminator uses a sigmoid function as the activation function and the
standard binary cross-entropy loss can be used.

18

4 Generative Adversarial Nets in R with RGAN

In practice, this is achieved by iteratively updating the two networks, holding the weights of
the other network constant.
The equilibrium point for a GAN is achieved when G achieves to produce samples that come
from the true underlying data distribution pdata(x) and D is uncertain about the origin of
the samples.

3. Designing a GAN
So far many different GAN architectures have been proposed. Many of these GAN models are
named—e.g. WGAN (Arjovsky, Chintala, and Bottou 2017), WGAN-GP (Gulrajani, Ahmed,
Arjovsky, Dumoulin, and Courville 2017), KL-WGAN (Song and Ermon 2020), DCGAN
(Radford, Metz, and Chintala 2016), CGAN (Mirza and Osindero 2014), CTGAN (Xu et al.
2019), StyleGAN (Karras, Laine, and Aila 2019), CycleGAN (Zhu, Park, Isola, and Efros
2017) or DiscoGAN (Kim, Cha, Kim, Lee, and Kim 2017) to name a few. Typically, these
new GAN models address some weaknesses in prior models, where most of the development
focuses on generating more and more realistic images.
In this section, I give a brief overview of some of these design decisions researchers face when
developing a GAN for their own application. Some of these design decisions are very similar
to those when designing neural network models (or other machine learning models).7

Other decisions are unique to the set up of GAN models.8 In general, the interaction of all
these design choices is not yet well understood and is an area of active research.
In the following, I provide a brief description of the design choices to be made, how RGAN
implements default options, and how RGAN can be used to customize all these design choices
to facilitate experimentation.

3.1. Choosing a value function

Description of the design choices. An important design decision is the choice of the
value function V . In the original GAN by Goodfellow et al. (2014) and described by the
value function in equation 1, the value function was motivated by turning the unsupervised
learning task into a binary classification problem. After all the original GAN value function
is just binary-cross entropy loss9.
While this is an intuitive formulation it turned out that if the discriminator is very good at
distinguishing between real and fake data it is very hard to learn (i.e. update the weights in
the networks) due to vanishing gradients. This means that the gradient values are close to 0
and therefore cannot provide meaningful information to update the weights during backprop-
agation.
To address this weakness Arjovsky et al. (2017) proposed an alternative value function based
on the Wasserstein distance. They use the observation that the original GAN value function
essentially minimizes the Jensen-Shannon divergence between encoded fake and real data and

7For example, data pre-processing, the choice of the network architecture(s), or the choice of an optimizer
with its related hyperparameters.

8For example, the choice of the noise distribution p(z) or the GAN value function.
9Note that this is the same as the negative log-likelihood of the Bernoulli distribution.

19

Marcel Neunhoeffer 5

note that using the Wasserstein distance instead has some desirable properties. This leads to
the following value function:

min
G

max
D

V (D, G)||D||L≤1 = Ex∼pdata(x)
[
D(x)

]
+ Ez∼pz(z)

[
(1 − D(G(z)))

]
(2)

This is the value function for the so-called Wasserstein GAN or short WGAN as defined
in (Arjovsky et al. 2017). Note that for the Wasserstein value function, the discriminator
needs to be a Lipschitz continuous function with a Lipschitz constant ≤ 1. In practice, this is
achieved by clipping the weights of the discriminator to a pre-specified range e.g. [−0.01, 0.01].
More recent work by Song and Ermon (2020) shows that f-divergences and Wasserstein GANs
can be bridged. They propose a novel GAN value function that leads to better empirical
results on many tasks.
A more general formulation for the value function is therefore given by

min
G

max
D

V (D, G) = Ex∼pdata(x)
[
f1(D(x))

]
+ Ez∼pz(z)

[
f2(1 − D(G(z)))

]
(3)

Where in the original GAN f1(a) = f2(a) = log(a), in the Wasserstein GAN f1(a) = f2(a) =
a and for the GAN value function proposed by Song and Ermon (2020) f1(a) = a and
f2(a) = wa, where w is a weight for the discriminator scores on fake examples, calculated as
w = ea/E

[
ea

]
.

Implementation of default design choices RGAN. In RGAN these three value func-
tions are readily implemented (original, wasserstein and f-wgan) and can be chosen as
an option e.g. gan_trainer(..., value_function = "wasserstein"), the default value
function is "original".

Further customization with RGAN. Users can also provide custom value functions to
work with the RGAN gan_trainer() function. The only requirements are that the value
function takes as inputs the discriminator scores of real and fake data, works on and with
torch data types and outputs a named list with the entries d_loss and g_loss. For example,
this is what the original GAN value function looks like in code:

GAN_value_fct <- function(real_scores, fake_scores) {
d_loss <-

torch::torch_log(real_scores) + torch::torch_log(1 - fake_scores)
d_loss <- -d_loss$mean()

g_loss <- torch::torch_log(1 - fake_scores)

g_loss <- g_loss$mean()

return(list(d_loss = d_loss,
g_loss = g_loss))

}

20

6 Generative Adversarial Nets in R with RGAN

3.2. Choosing and customizing network architectures

Description of the design choices. Parts of the network architecture, specifically the
architecture of the discriminator (or critic) network, depend on the chosen value function.
For the original GAN value function the output layer of the neural network should return
values between 0 and 1, thus, the activation function for the output layer is typically the
sigmoid function10. For WGAN the output does not need to be restricted, therefore, a linear
output layer can be used.11

In general, it is important that the discriminator has enough capacity. Where the meaning
of enough capacity is dependent on the application. For image synthesization convolutional
neural network architectures achieve the best results, for time series recurrent neural net-
work architectures are sensible choices, for tabular data, simpler fully connected network
architectures are usually sufficient.

Implementation of default design choices RGAN. In RGAN some commonly used
architectures are already implemented e.g. DCGAN12 (Radford et al. 2016) for image data
and a GAN with fully connected neural networks for tabular data. If no networks are specified
in a call to gan_trainer RGAN defaults to fully connected networks for both the generator
and discriminator, with two hidden layers, 128 neurons in each layer, and a dropout rate of
0.5.

Further customization with RGAN. The included fully connected network architecture
can easily be customized. For example, if users want to customize the number of layers
and neurons per layer they can create custom neural networks with a call to generator <-
Generator(noise_dim = 2, data_dim = 2, hidden_units = list(256, 128, 64)) and
discriminator <- Discriminator(data_dim = 2, hidden_units = list(256, 128, 64),
sigmoid = TRUE) respectively. These networks can then be fed to gan_trainer(..., generator
= generator, discriminator = discriminator). Where data_dim needs to match the
number of columns in the input dataset and noise_dim needs to match the dimensions of
the noise distribution (more in 3.3. The list passed to hidden_units specifies both the depth
of the neural network and the width of each layer. list(256, 128, 64) means that the
network will have three hidden layers (determined by the length of the list), where the first
hidden layer will contain 256 neurons, the second hidden layer 128, and the third hidden layer
64. For the discriminator network, users can also specify whether the output layer should
have a sigmoid activation function or be a linear output layer. This choice depends on the
value function chosen for a specific GAN (see section 3.1).
If users want to synthesize images and use the DCGAN architecture included in RGAN they
can achieve this by setting up the DCGAN networks by calling generator <- DCGAN_Generator()
and DCGAN_Discriminator()13. Again, these networks can be included in the call to gan_trainer(...,

10Which is one of the reasons for the vanishing gradients.
11For WGAN to work, however, restrictions on the weights of the discriminator need to be imposed. Either

by weight clipping or a gradient penalty (e.g. in the WGAN-GP implementation (Gulrajani et al. 2017)).
12Short for Deep Convolutional GAN.
13If no options are specified this will initialize the default DCGAN architecture with a noise_dim = 100

and a linear output layer for the discriminator.

21

Marcel Neunhoeffer 7

generator = generator, discriminator = discriminator). I describe a full working ex-
ample with the DCGAN architecture and loading images from a user-specified folder in section
4.
Furthermore, users can provide their custom network architectures for both the discriminator
and generator networks by passing a suitable torch::nn_module object to the gan_trainer
function. For the generator that means the input to the torch::nn_module needs to match
the dimensions of the chosen noise distribution and the output needs to line up with the
dimensions of the real data. For the discriminator, the input needs to match the dimensions
of the real data and the output needs to be just a 1-dimensional vector with the discriminator
scores.
The number of hidden layers, the depth and width of these layers, and their activation func-
tions are hyperparameters that should be optimized for a particular application. In RGAN it
is easy to experiment with these hyperparameters and tailor them for a specific application.

3.3. Choosing the noise distribution

Description of the design choices. In most GAN applications the noise distribution for
the generator p(z) is typically a standard normal distribution or a uniform distribution on
the interval (−1, 1).
However, Huster et al. (2021) show that the choice of the noise distribution influences the
behavior of GAN training. For example, it is hard to learn skewed distributions14 with the
standard noise distributions. And other noise distributions such as sampling from a Pareto
distribution could have preferable properties for different applications.

Implementation of default design choices RGAN. This is an active area of research
and RGAN makes it easy to implement custom prior distributions. Users can easily choose
between a normal distribution and a uniform distribution when specifying the options of
gan_trainer.

Further customization with RGAN. On top of these default options, users can also
provide their own functions. For example, this is how sampling from the normal distribution
is implemented:

normal_noise <- torch::torch_randn

and this function would be used as follows gan_trainer(..., noise_distribution = normal_noise)
for training a GAN.

3.4. Choosing optimization algorithms

Description of the design choices. The optimization of GANs is notoriously hard. Re-
cent research shows (see e.g. Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter 2017;

14A typical social science example for such skewed distributions could be the distribution of income.

22

8 Generative Adversarial Nets in R with RGAN

Schaefer and Anandkumar 2019) that gradient ascent descent—i.e. iteratively training the
generator and discriminator with the same optimizer—might not be the best option.
In particular, Heusel et al. (2017) have shown that using two different learning rates for
the optimization of the discriminator and generator—they call this scheme “two time-scale
update rule”—improves GAN training. Additional to the learning rate, the concrete choice
of an optimizer can also influence GAN training. The batch size, how many examples are
sampled from the training data per iteration, and potentially further hyperparameters of
common optimizers (typically momentum hyperparameters) can also influence how quickly a
GAN can learn.

Implementation of default design choices RGAN. In RGAN it is easy to put the
optimizers for the generator and discriminator on two separate time scales by setting the
ttur_factor in gan_trainer(). The ttur_factor is a multiplier for the provided base_lr,
such that the generator will be updated with the base_lr and the discriminator with ttur_factor*base_lr.
By default RGAN uses the Adam optimizer (Kingma and Ba 2014) as implemented in
torch::optim_adam and the default minibatch size is set to 50 examples per iteration.

Further customization with RGAN. RGAN facilitates experimentation with different
optimizers and hyperparameter settings. Users can directly pass any torch optimizer with any
self-chosen hyperparameter settings to gan_trainer e.g. gan_trainer(..., generator_optimizer
= torch::optim_sgd(g_net$parameters, lr = 0.1)).

3.5. Choosing dropout during training and data generation

Description of the design choices. In neural network architectures so-called dropout
layers (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov 2014) can be used to
regularize network training and prevent overfitting. In each training iteration, a dropout
layer randomly sets a pre-specified percentage of all neurons to 0. A helpful side effect of such
dropout layers in classical neural networks is that dropout can also be used to estimate the
model uncertainty of neural networks (Gal and Ghahramani 2016).
Anecdotal evidence shows that dropout layers might help training GANs as well15. Fur-
thermore, Isola, Zhu, Zhou, and Efros (2016) argue that dropout in the generator during
data generation provides stochasticity for the synthetic data that promotes diversity of the
generated data.
Yet, a systematic evaluation of the effect of dropout in GANs on the produced synthetic data—
especially on the statistical utility of tabular synthetic data—is still missing and warrants more
research.

Implementation of default design choices RGAN. By making it easy to experiment
with dropout layers in both the discriminator and generator networks, RGAN can facilitate
such research. When working with the default networks in gan_trainer the dropout rate is

15For example this https://github.com/soumith/ganhacks list of tips for GAN training by some of the
authors of influential GAN papers (Arjovsky et al. 2017; Radford et al. 2016; Denton, Gross, and Fergus 2016;
Zhao, Mathieu, and LeCun 2016) mentions dropout in the generator as a means to stabilize GAN training.

23

Marcel Neunhoeffer 9

set to 0.5 in both the discriminator and generator networks. By default, dropout is disabled
during the generation of synthetic data but can be enabled by setting gan_trainer(...,
eval_dropout = TRUE).

Further customization with RGAN. By providing custom networks, the dropout rate
during training can be adjusted. In section 4 I provide a simple example of an experiment of
synthetic data generated with and without dropout during data generation.

3.6. Post-Processing GAN samples

Description of the design choices. Since convergence to equilibrium cannot be guar-
anteed the samples produced after the last update need not be the best. However, several
methods have been proposed to boost the fidelity of the samples by sampling from multiple
generators.16 These post-processing methods leverage two empirical observations. First, that
the learned discriminator can be used to assess the quality of generated examples (Azadi,
Olsson, Darrell, Goodfellow, and Odena 2019). And second, while an arbitrary generator (for
example the last generator) can produce a bad representation of the underlying data distri-
bution, a mixture distribution of samples from multiple generators can improve the quality
of generated examples (see e.g. Beaulieu-Jones, Wu, Williams, Lee, Bhavnani, Byrd, and
Greene 2019; Neunhoeffer, Wu, and Dwork 2021). Methods include Discriminator Rejection
Sampling (DRS) (Azadi et al. 2019), Metropolis-Hastings GAN (MH) (Turner, Hung, Frank,
Saatchi, and Yosinski 2019) or Post-GAN Boosting (PGB) (Neunhoeffer et al. 2021).

Implementation of default design choices RGAN. Currently, DRS and PGB are im-
plemented as part of RGAN.

4. Illustrations
In this section, I provide two illustrations of how RGAN can be used. The first example
shows how to quickly train a first GAN on tabular data with the default settings of RGAN,
including a simple experiment of what dropout during synthetic data generation does. The
second example shows that RGAN can also be used to synthesize image data and along the
way serves as a tutorial on how to provide custom neural network architectures and optimizers
to gan_trainer.

4.1. Synthesizing tabular data with default settings
As a simple illustration to get started with RGAN I show how to generate synthetic copies
of a simple tabular data set. First, I generate some toy data17 and transform it—for numeric

16There are many to sample from multiple generators. E.g. each update step during training produces a
slightly different generator, so the sequence of generators can be thought of as a distribution of generators.
Or when using dropout in the generator during the generation of synthetic examples and repeating this step
multiple times, this will also produce a distribution of generators. Furthermore, methods that train multiple
generators in parallel exist as well (e.g. Arora, Ge, Liang, Ma, and Zhang 2017; Hoang, Nguyen, Le, and Phung
2018).

17The default in sample_toydata is N = 1000.

24

10 Generative Adversarial Nets in R with RGAN

Figure 1: The real data before training the GAN. Panel (A) shows the data on the original
scale and panel (B) shows the data after applying the data_transformer.

data which means standardizing the data to facilitate training.

R> data <- sample_toydata()
R> transformer <- data_transformer$new()
R> transformer$fit(data)
R> transformed_data <- transformer$transform(data)

The real data for this example is displayed in panel (A) of figure 1. x on the x-axis is drawn
from a standard normal distribution and y on the y-axis is x2+N (0, 0.3). Panel (B) of figure 1
shows the data after transformation.
Now the gan_trainer() can be used to train a GAN to generate synthetic data from
transformed_data.18 By default, gan_trainer shows a simple progress bar to monitor
training and get an estimate for how long training will take.19

R> trained_gan <- gan_trainer(transformed_data)

Training the GAN 26% | ETA: 42s

This will set up the necessary generator and discriminator as well as the respective optimizers.
The default value function is set to the original GAN value function described in equation 1.
Then, the gan_trainer trains the GAN for 150 epochs using mini-batches of 50 real examples
(m = 50) at each update step.20

18Similarily, data could be used directly. A first experiment could be to assess the convergence of the GAN
when using the original data instead of the transformed data.

19The gan_trainer also has the option to observe the intermediary output of the generator during training.
If users set the option plot_progress = TRUE a plot of real and synthetic data will be produced after each
epoch. For cases where an epoch might take too long or it is sufficient to look at the intermediary output in a
longer interval, users can input the number of steps after which a new plot should be produced to the option
plot_interval.

20This means that the GAN is trained for a total of N
m · epochs = 1000

50 · 150 = 3000 update steps.

25

Marcel Neunhoeffer 11

Figure 2: The synthetic data after training the GAN. Panel (A) shows the generated data
without dropout during generation on the original scale. Panel (B) shows the generated data
with dropout during data generation.

With the trained networks—which will be collected as part of the output of class trained_RGAN
in the object trained_gan—it is then easy to sample synthetic data from the last generator
using the function sample_synthetic_data. Note that to transform the synthetic data back
to the original scale of the data I pass the transformer to the sample_synthetic_data func-
tion. To see the data alongside the synthetic data, both can be passed to the GAN_update_plot
function. This produces the plot in panel (A) of figure 2.

R> synthetic_data <- sample_synthetic_data(trained_gan, transformer)

R> GAN_update_plot(
+ data = data,
+ synth_data = synthetic_data,
+ main = "(A)"
+)

Looking at the generated examples in panel (A) of figure 2 shows that while the GAN seems
to approximate the functional form of the underlying data well, the produced examples have
a smaller variance than the original data.
As a simple experiment, I also produce synthetic data from the same generator but with
dropout during data generation. I do this by setting the eval_dropout setting of trained_gan
to TRUE. This produces the plot in panel (B) of figure 2.

R> trained_gan$settings$eval_dropout <- TRUE

R> synthetic_data <- sample_synthetic_data(trained_gan, transformer)

26

12 Generative Adversarial Nets in R with RGAN

R> GAN_update_plot(
+ data = data,
+ synth_data = synthetic_data,
+ main = "(B)"
+)

Now the generated synthetic data in yellow seems to look more like the underlying real data
in purple. How good the data is could now be assessed by using several utility metrics for
synthetic data (see e.g. Snoke, Raab, Nowok, Dibben, and Slavkovic 2016).

4.2. Synthesizing images with a DCGAN architecture
To showcase the RGAN customization options this illustration generates synthetic images
using a DCGAN (Radford et al. 2016) architecture. The training data for this example is
the CelebA dataset (Liu, Luo, Wang, and Tang 2015)21 that contains 202, 599 images22 of
celebrities’ faces.23

First, I use torchvision to make images in a folder on my hard drive available for training the
networks with torch. Furthermore, the DCGAN architecture expects input images to be of
size 64 × 64 pixels. To ensure that the loaded images have the expected format, I apply some
standard transformations to the raw images.

R> dataset <- torchvision::image_folder_dataset(root = "path/to/celeba",
+ transform = function(x) {
+ x = torchvision::transform_to_tensor(x)
+ x = torchvision::transform_resize(x, size = c(64, 64))
+ x = torchvision::transform_center_crop(x, c(64, 64))
+ x = torchvision::transform_normalize(x, c(0.5, 0.5, 0.5), c(0.5, 0.5, 0.5))
+ return(x)
+ })

Next, I load the DCGAN_Generator and DCGAN_Discriminator and make them available on
the GPU by passing them to the "cuda" device.24 The noise_dim—the number of input
features for the generator network—is set to 100.

R> device <- "cuda"
R> g_net <- DCGAN_Generator(dropout_rate = 0, noise_dim = 100)$to(device = device)
R> d_net <- DCGAN_Discriminator(dropout_rate = 0, sigmoid = FALSE)$to(device = device)

Next, the optimizers for both networks can be set up. I use the same optimizers and hyper-
parameters as Radford et al. (2016) in the original DCGAN paper.

21The images can be obtained from the authors’ website: https://mmlab.ie.cuhk.edu.hk/projects/
CelebA.html. Last accessed: March 31, 2022.

22With a batch size of 128, as in the DCGAN paper, this means the GAN is updated for 1, 582 steps per
epoch.

23Training this model on a machine with a GPU (here a GeForce RTX 2070) takes about 17 minutes per
epoch. On a notebook without a GPU one epoch takes about 7 hours.)

24If no GPU is available, the device should be set to "cpu".

27

Marcel Neunhoeffer 13

R> g_optim <- torch::optim_adam(g_net$parameters, lr = 0.0002, betas = c(0.5, 0.999))

R> d_optim <- torch::optim_adam(d_net$parameters, lr = 0.0002, betas = c(0.5, 0.999))

Now, these objects along with a couple of additional options can be passed to gan_trainer.
Note that the DCGAN architecture expects the noise samples to be in a three-dimensional
tensor (noise_dim = c(100, 1, 1), even though the second and third dimensions are only
of length 1. Another important option is to set data_type = "image", to make sure the
gan_trainer produces the output in the right format.

R> trained_gan <- gan_trainer(
+ data = dataset,
+ noise_dim = c(100, 1, 1),
+ noise_distribution = "uniform",
+ data_type = "image",
+ value_function = "wasserstein",
+ generator = g_net,
+ generator_optimizer = g_optim,
+ discriminator = d_net,
+ discriminator_optimizer = d_optim,
+ plot_progress = TRUE,
+ plot_interval = 10,
+ batch_size = 128,
+ synthetic_examples = 16,
+ device = device,
+ eval_dropout = FALSE,
+ epochs = 1
+)

To observe the progress of training I set plot_progress = TRUE and the plot_interval =
10 this means that 16 images25 will be shown after every tenth update step.
In figure 3, I show 16 examples of generated faces after just one epoch of training the DCGAN
with the settings as in the code above. Note, that I do not expect to generate state-of-the-
art fake images after training just for one epoch with a relatively small and simple DCGAN
architecture. However, even after a few update steps with the settings described above it
should be possible to make out the outlines of faces in the generated images.
With RGAN more elaborate network architectures could be provided and training could be
optimized.26

2516 is an arbitrary number but it is easy to show these images in a 4 × 4 grid.
26Yet, achieving state-of-the-art performance can be prohibitively expensive. For example, the developers of

StyleGAN2 (Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila 2020)—a GAN that produces high definition
real looking images—transparently state the computing resources that went into the project: “The entire
project, including all exploration, consumed 132 MWh of electricity, of which 0.68 MWh went into training
the final FFHQ model. In total, we used about 51 single-GPU years of computation (Volta class GPU)” (8).
A large amount of computing time, especially from the perspective of a statistician or social scientist. At the
time of writing, the price for such a GPU e.g. an Nvidia Tesla V100 GPU is around $9000, i.e. to get all the
experiments done in one year you would need at least $459000 just to buy the GPUs. Using cloud computing
e.g. through Amazon Web Services (AWS) you can access a computer with eight such GPUs for $12.24 per

28

14 Generative Adversarial Nets in R with RGAN

Figure 3: Generated faces after one epoch of training the DCGAN with the parameters
specified in the main text.

5. Summary and outlook
With RGAN I introduce a package to facilitate the training of and experimentation with
GANs in R. The goal is to open up this powerful neural net framework to users that primarily
work in R—especially to facilitate experimentation with synthetic data from GANs from a
statistical perspective.
I provide two illustrations of how RGAN can be used. The first illustration shows the basic
functionality of RGAN and how to quickly synthesize tabular data. The second illustration
shows that training GANs with RGAN is easy to customize and synthesize images with a
DCGAN architecture.
Future iterations of RGAN will include additional network architectures, for example, a
CTGAN (Xu et al. 2019) inspired architecture to make the generation of mixed tabular data
(i.e. data with real-valued and categorical columns) easier. Another area of development will
focus on making the opacus (Yousefpour, Shilov, Sablayrolles, Testuggine, Prasad, Malek,

hour. To run all the experiments that (Karras et al. 2020) did, you would need 55845 hours of such a server,
totaling ≈ $685000.

29

Marcel Neunhoeffer 15

Nguyen, Ghosh, Bharadwaj, Zhao, Cormode, and Mironov 2021) python library available in
RGAN to train GANs with formal privacy guarantees.
The latest stable version of RGAN is available from CRAN and development versions can be
found on https://github.com/mneunhoe/RGAN.

Computational details
The results in this paper were obtained using R 4.1.3 with the RGAN 0.1.1 package, the
torch 0.8.0 package, and the torchvision 0.4.1 (Falbel 2022) package to load images into
torch. For the color palettes in the visualizations, I used the viridis 0.6.2 (Garnier, Ross,
Rudis, Camargo, Pedro, Sciaini, and Scherer 2021) package. R itself and all packages used are
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/.

Acknowledgments

I am grateful to Thomas Gschwend, Christian Arnold, Pia Kürzdörfer, Guido Ropers,
Oliver Rittmann and Oke Bahnsen for feedback on earlier versions of this manuscript.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,
Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser
L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M,
Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015). “TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems.” Software available from tensorflow.org,
URL https://www.tensorflow.org/.

Arjovsky M, Chintala S, Bottou L (2017). “Wasserstein Generative Adversarial Networks.”
In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, p. 214223. JMLR.org.

Arora S, Ge R, Liang Y, Ma T, Zhang Y (2017). “Generalization and Equilibrium in
Generative Adversarial Nets (GANs).” doi:10.48550/ARXIV.1703.00573. URL https:
//arxiv.org/abs/1703.00573.

Azadi S, Olsson C, Darrell T, Goodfellow I, Odena A (2019). “Discriminator Rejection
Sampling.” In International Conference on Learning Representations. URL https:
//openreview.net/forum?id=S1GkToR5tm.

Beaulieu-Jones BK, Wu ZS, Williams C, Lee R, Bhavnani SP, Byrd JB, Greene CS
(2019). “Privacy-Preserving Generative Deep Neural Networks Support Clinical Data
Sharing.” Circulation: Cardiovascular Quality and Outcomes, 12(7), e005122. doi:10.

30

16 Generative Adversarial Nets in R with RGAN

1161/CIRCOUTCOMES.118.005122. https://www.ahajournals.org/doi/pdf/10.1161/
CIRCOUTCOMES.118.005122.

Denton E, Gross S, Fergus R (2016). “Semi-Supervised Learning with Context-Conditional
Generative Adversarial Networks.” doi:10.48550/ARXIV.1611.06430. URL https://
arxiv.org/abs/1611.06430.

Falbel D (2022). torchvision: Models, Datasets and Transformations for Images. R package
version 0.4.1, URL https://CRAN.R-project.org/package=torchvision.

Falbel D, Luraschi J (2022). torch: Tensors and Neural Networks with ’GPU’ Acceleration.
R package version 0.7.2, URL https://CRAN.R-project.org/package=torch.

Gal Y, Ghahramani Z (2016). “Dropout as a bayesian approximation: Representing model
uncertainty in deep learning.” In international conference on machine learning, pp. 1050–
1059. PMLR.

Garnier S, Ross N, Rudis R, Camargo AP, Pedro A, Sciaini M, Scherer C (2021). viridis -
Colorblind-Friendly Color Maps for R. doi:10.5281/zenodo.4679424. R package version
0.6.2, URL https://sjmgarnier.github.io/viridis/.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014). “Generative Adversarial Nets.” Advances in Neural Information Processing Sys-
tems 27, pp. 2672–2680. ISSN 10495258. doi:10.1017/CBO9781139058452. arXiv:1406.
2661v1, URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.
pdf.

Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017). “Improved Training
of Wasserstein GANs.” In I Guyon, UV Luxburg, S Bengio, H Wallach, R Fergus, S Vish-
wanathan, R Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper/2017/
file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf.

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017). “GANs
Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilib-
rium.” In I Guyon, UV Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan,
R Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc. URL https://proceedings.neurips.cc/paper/2017/file/
8a1d694707eb0fefe65871369074926d-Paper.pdf.

Hoang Q, Nguyen TD, Le T, Phung D (2018). “MGAN: Training Generative Adversarial
Nets with Multiple Generators.” In International Conference on Learning Representations.
URL https://openreview.net/forum?id=rkmu5b0a-.

Huster T, Cohen J, Lin Z, Chan K, Kamhoua C, Leslie NO, Chiang CYJ, Sekar V (2021).
“Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distribu-
tions.” In M Meila, T Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 4523–
4532. PMLR. URL https://proceedings.mlr.press/v139/huster21a.html.

31

Marcel Neunhoeffer 17

Isola P, Zhu JY, Zhou T, Efros AA (2016). “Image-to-Image Translation with Conditional
Adversarial Networks.” doi:10.48550/ARXIV.1611.07004. URL https://arxiv.org/
abs/1611.07004.

Karras T, Laine S, Aila T (2019). “A Style-Based Generator Architecture for Generative
Adversarial Networks.” In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2020). “Analyzing and Improving
the Image Quality of StyleGAN.” In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Kim T, Cha M, Kim H, Lee JK, Kim J (2017). “Learning to Discover Cross-Domain Relations
with Generative Adversarial Networks.” In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, p. 18571865. JMLR.org.

Kingma DP, Ba J (2014). “Adam: A Method for Stochastic Optimization.” doi:10.48550/
ARXIV.1412.6980. URL https://arxiv.org/abs/1412.6980.

Lee KS, Town C (2020). “Mimicry: Towards the Reproducibility of GAN Research.” doi:
10.48550/ARXIV.2005.02494. URL https://arxiv.org/abs/2005.02494.

Liu Z, Luo P, Wang X, Tang X (2015). “Deep Learning Face Attributes in the Wild.” In
Proceedings of International Conference on Computer Vision (ICCV).

Mirza M, Osindero S (2014). “Conditional Generative Adversarial Nets.” 1411.1784.

Müller W (2022). ganGenerativeData. R package version 1.3.3, URL https://cran.
r-project.org/package=ganGenerativeData.

Neunhoeffer M, Wu S, Dwork C (2021). “Private Post-{GAN} Boosting.” In Interna-
tional Conference on Learning Representations. URL https://openreview.net/forum?
id=6isfR3JCbi.

Pal A, Das A (2021). “TorchGAN: A Flexible Framework for GAN Training and Evaluation.”
Journal of Open Source Software, 6(66), 2606. doi:10.21105/joss.02606. URL https:
//doi.org/10.21105/joss.02606.

Radford A, Metz L, Chintala S (2016). “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks.” In Y Bengio, Y LeCun (eds.), 4th In-
ternational Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings. URL http://arxiv.org/abs/1511.06434.

Schaefer F, Anandkumar A (2019). “Competitive Gradient Descent.” In H Wal-
lach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox, R Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc. URL https://proceedings.neurips.cc/paper/2019/file/
56c51a39a7c77d8084838cc920585bd0-Paper.pdf.

Snoke J, Raab G, Nowok B, Dibben C, Slavkovic A (2016). “General and specific utility
measures for synthetic data.” doi:10.48550/ARXIV.1604.06651. URL https://arxiv.
org/abs/1604.06651.

32

18 Generative Adversarial Nets in R with RGAN

Song J, Ermon S (2020). “Bridging the gap between f-gans and wasserstein gans.” In Inter-
national Conference on Machine Learning, pp. 9078–9087. PMLR.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014). “Dropout: a
simple way to prevent neural networks from overfitting.” The journal of machine learning
research, 15(1), 1929–1958.

Turner R, Hung J, Frank E, Saatchi Y, Yosinski J (2019). “Metropolis-Hastings Genera-
tive Adversarial Networks.” In K Chaudhuri, R Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 6345–6353. PMLR. URL https://proceedings.mlr.press/v97/
turner19a.html.

Ushey K, Allaire J, Tang Y (2022). reticulate: Interface to ’Python’. R package version 1.24,
URL https://CRAN.R-project.org/package=reticulate.

Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K (2019). “Modeling Tabular
data using Conditional GAN.” In H Wallach, H Larochelle, A Beygelzimer, F d'Alché-
Buc, E Fox, R Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper/2019/
file/254ed7d2de3b23ab10936522dd547b78-Paper.pdf.

Yousefpour A, Shilov I, Sablayrolles A, Testuggine D, Prasad K, Malek M, Nguyen J, Ghosh S,
Bharadwaj A, Zhao J, Cormode G, Mironov I (2021). “Opacus: User-Friendly Differential
Privacy Library in PyTorch.” arXiv preprint arXiv:2109.12298.

Zhao J, Mathieu M, LeCun Y (2016). “Energy-based Generative Adversarial Network.” doi:
10.48550/ARXIV.1609.03126. URL https://arxiv.org/abs/1609.03126.

Zhu JY, Park T, Isola P, Efros AA (2017). “Unpaired Image-To-Image Translation Using
Cycle-Consistent Adversarial Networks.” In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV).

33

3
Private Post-GAN Boosting

35

Published as a conference paper at ICLR 2021

PRIVATE POST-GAN BOOSTING

Marcel Neunhoeffer
University of Mannheim
mneunhoe@mail.uni-mannheim.de

Zhiwei Steven Wu
Carnegie Mellon University
zstevenwu@cmu.edu

Cynthia Dwork
Harvard University
dwork@seas.harvard.edu

ABSTRACT

Differentially private GANs have proven to be a promising approach for gener-
ating realistic synthetic data without compromising the privacy of individuals.
Due to the privacy-protective noise introduced in the training, the convergence
of GANs becomes even more elusive, which often leads to poor utility in the
output generator at the end of training. We propose Private post-GAN boosting

(Private PGB), a differentially private method that combines samples produced by
the sequence of generators obtained during GAN training to create a high-quality
synthetic dataset. To that end, our method leverages the Private Multiplicative
Weights method (Hardt and Rothblum, 2010) to reweight generated samples. We
evaluate Private PGB on two dimensional toy data, MNIST images, US Census
data and a standard machine learning prediction task. Our experiments show that
Private PGB improves upon a standard private GAN approach across a collection
of quality measures. We also provide a non-private variant of PGB that improves
the data quality of standard GAN training.

1 INTRODUCTION

The vast collection of detailed personal data, including everything from medical history to voting
records, to GPS traces, to online behavior, promises to enable researchers from many disciplines
to conduct insightful data analyses. However, many of these datasets contain sensitive personal
information, and there is a growing tension between data analyses and data privacy. To protect
the privacy of individual citizens, many organizations, including Google (Erlingsson et al., 2014),
Microsoft (Ding et al., 2017), Apple (Differential Privacy Team, Apple, 2017), and more recently
the 2020 US Census (Abowd, 2018), have adopted differential privacy (Dwork et al., 2006) as a
mathematically rigorous privacy measure. However, working with noisy statistics released under
differential privacy requires training.

A natural and promising approach to tackle this challenge is to release differentially private synthetic

data—a privatized version of the dataset that consists of fake data records and that approximates the
real dataset on important statistical properties of interest. Since they already satisfy differential
privacy, synthetic data enable researchers to interact with the data freely and to perform the same
analyses even without expertise in differential privacy. A recent line of work (Beaulieu-Jones et al.,
2019; Xie et al., 2018; Yoon et al., 2019) studies how one can generate synthetic data by incorpo-
rating differential privacy into generative adversarial networks (GANs) (Goodfellow et al., 2014).
Although GANs provide a powerful framework for synthetic data, they are also notoriously hard
to train and privacy constraint imposes even more difficulty. Due to the added noise in the private
gradient updates, it is often difficult to reach convergence with private training.

In this paper, we study how to improve the quality of the synthetic data produced by private GANs.
Unlike much of the prior work that focuses on fine-tuning of network architectures and training
techniques, we propose Private post-GAN boosting (Private PGB)—a differentially private method
that boosts the quality of the generated samples after the training of a GAN. Our method can be
viewed as a simple and practical amplification scheme that improves the distribution from any ex-

1

36

Published as a conference paper at ICLR 2021

isting black-box GAN training method – private or not. We take inspiration from an empirical
observation in Beaulieu-Jones et al. (2019) that even though the generator distribution at the end of
the private training may be a poor approximation to the data distribution (due to e.g. mode collapse),
there may exist a high-quality mixture distribution that is given by several generators over different
training epochs. PGB is a principled method for finding such a mixture at a moderate privacy cost
and without any modification of the GAN training procedure.

To derive PGB, we first formulate a two-player zero-sum game, called post-GAN zero-sum game,
between a synthetic data player, who chooses a distribution over generated samples over training
epochs to emulate the real dataset, and a distinguisher player, who tries to distinguish generated
samples from real samples with the set of discriminators over training epochs. We show that under
a “support coverage” assumption the synthetic data player’s mixed strategy (given by a distribution
over the generated samples) at an equilibrium can successfully “fool” the distinguisher–that is, no
mixture of discriminators can distinguish the real versus fake examples better than random guessing.
While the strict assumption does not always hold in practice, we demonstrate empirically that the
synthetic data player’s equilibrium mixture consistently improves the GAN distribution.

The Private PGB method then privately computes an approximate equilibrium in the game. The
algorithm can be viewed as a computationally efficient variant of MWEM (Hardt & Rothblum,
2010; Hardt et al., 2012), which is an inefficient query release algorithm with near-optimal sample
complexity. Since MWEM maintains a distribution over exponentially many “experts” (the set of
all possible records in the data domain), it runs in time exponential in the dimension of the data. In
contrast, we rely on private GAN to reduce the support to only contain the set of privately generated
samples, which makes PGB tractable even for high-dimensional data.

We also provide an extension of the PGB method by incorporating the technique of discriminator

rejection sampling (Azadi et al., 2019; Turner et al., 2019). We leverage the fact that the distin-
guisher’s equilibrium strategy, which is a mixture of discriminators, can often accurately predict
which samples are unlikely and thus can be used as a rejection sampler. This allows us to further
improve the PGB distribution with rejection sampling without any additional privacy cost since dif-
ferential privacy is preserved under post-processing. Our Private PGB method also has a natural
non-private variant, which we show improves the GAN training without privacy constraints.

We empirically evaluate both the Private and Non-Private PGB methods on several tasks. To vi-
sualize the effects of our methods, we first evaluate our methods on a two-dimensional toy dataset
with samples drawn from a mixture of 25 Gaussian distributions. We define a relevant quality score
function and show that the both Private and Non-Private PGB methods improve the score of the
samples generated from GAN. We then show that the Non-Private PGB method can also be used to
improve the quality of images generated by GANs using the MNIST dataset. Finally, we focus on
applications with high relevance for privacy-protection. First we synthesize US Census datasets and
demonstrate that the PGB method can improve the generator distribution on several statistical mea-
sures, including 3-way marginal distributions and pMSE. Secondly, we evaluate the PGB methods
on a dataset with a natural classification task. We train predictive models on samples from Private
PGB and samples from a private GAN (without PGB), and show that PGB consistently improves
the model accuracy on real out-of-sample test data.

Related work. Our PGB method can be viewed as a modular boosting method that can improve
on a growing line of work on differentially private GANs (Beaulieu-Jones et al., 2019; Xie et al.,
2018; Frigerio et al., 2019; Torkzadehmahani et al., 2020). To obtain formal privacy guarantees,
these algorithms optimize the discriminators in GAN under differential privacy, by using private
SGD, RMSprop, or Adam methods, and track the privacy cost using moments accounting Abadi
et al. (2016); Mironov (2017). Yoon et al. (2019) give a private GAN training method by adapting
ideas from the PATE framework (Papernot et al., 2018).

Our PGB method is inspired by the Private Multiplicative Weigths method (Hardt & Rothblum,
2010) and its more practical variant MWEM (Hardt et al., 2012), which answer a large collection
of statistical queries by releasing a synthetic dataset. Our work also draws upon two recent tech-
niques (Turner et al. (2019) and Azadi et al. (2019)) that use the discriminator as a rejection sampler
to improve the generator distribution. We apply their technique by using the mixture discriminator
computed in PGB as the rejection sampler. There has also been work that applies the idea of boosting
to (non-private) GANs. For example, Arora et al. (2017) and Hoang et al. (2018) propose methods

2

37

Published as a conference paper at ICLR 2021

that directly train a mixture of generators and discriminators, and Tolstikhin et al. (2017) proposes
AdaGAN that reweighes the real examples during training similarly to what is done in AdaBoost
(Freund & Schapire, 1997). Both of these methods may be hard to make differentially private: they
either require substantially more privacy budget to train a collection of discriminators or increase the
weights on a subset of examples, which requires more adding more noise when computing private
gradients. In contrast, our PGB method boosts the generated samples post training and does not
make modifications to the GAN training procedure.

2 PRELIMINARIES

Let X denote the data domain of all possible observations in a given context. Let pd be a distribution
over X . We say that two datasets X,X

0 2 Xn are adjacent, denoted by X ⇠ X
0, if they differ by at

most one observation. We will write pX to denote the empirical distribution over X .
Definition 1 (Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm A : Xn !
R with output domain R (e.g. all generative models) is (", �)-differentially private (DP) if for all

adjacent datasets X,X
0 2 Xn

and for all S ✓ R: P (A(X) 2 S) e
"
P (A(X 0) 2 S) + �.

A very nice property of differential privacy is that it is preserved under post-processing.
Lemma 1 (Post-processing). Let M be an (", �)-differentially private algorithm with output range

R and f : R ! R
0

be any mapping, the composition f �M is (", �)-differentially private.

As a result, any subsequent analyses conducted on DP synthetic data also satisfy DP.

The exponential mechanism (McSherry & Talwar, 2007) is a private mechanism for selecting among
the best of a discrete set of alternatives R, where “best” is defined by a quality function q : Xn⇥R !
R that measures the quality of the result r for the dataset X . The sensitivity of the quality score q is
defined as �(q) = maxr2R maxX⇠X0 |q(X, r)�q(X 0

, r)|. Then given a quality score q and privacy
parameter ", the exponential mechanism ME(q, ", X) simply samples a random alternative from the
range R such that the probability of selecting each r is proportional to exp("q(X, r)/(2�(q))).

2.1 DIFFERENTIALLY PRIVATE GAN

The framework of generative adversarial networks (GANs) (Goodfellow et al., 2014) consists of
two types of neural networks: generators and discriminators. A generator G is a function that maps
random vectors z 2 Z drawn from a prior distribution pz to a sample G(z) 2 X . A discriminator D
takes an observation x 2 X as input and computes a probability D(x) that the observation is real.
Each observation is either drawn from the underlying distribution pd or the induced distribution pg

from a generator. The training of GAN involves solving the following joint optimization over the
discriminator and generator:

min
G

max
D

Ex⇠pX [f(D(x))] + Ez⇠pz [f(1�D(G(z)))]

where f : [0, 1] ! R is a monotone function. For example, in standard GAN, f(a) = log a,
and in Wasserstein GAN (Arjovsky et al., 2017), f(a) = a. The standard (non-private) algorithm
iterates between optimizing the parameters of the discriminator and the generator based on the loss
functions:

LD = �Ex⇠pX [f(D(x))]� Ez⇠pz [f(1�D(G(z)))], LG = Ez⇠pz [f(1�D(G(z)))]

The private algorithm for training GAN also performs the same alternating optimization, but it
optimizes the discriminator under differential privacy while keeping the generator optimization the
same. In general, the training proceeds over epochs ⌧ = 1, . . . , N , and at the end of each epoch
⌧ the algorithm obtains a discriminator D⌧ and a generator G⌧ by optimizing the loss functions
respectively. In Beaulieu-Jones et al. (2019); Xie et al. (2018), the private optimization on the
discriminators is done by running the private SGD method Abadi et al. (2016) or its variants. Yoon
et al. (2019) performs the private optimization by incorporating the PATE framework Papernot et al.
(2018). For all of these private GAN methods, the entire sequence of discriminators {D1, . . . , DN}
satisfies privacy, and thus the sequence of generators {G1, . . . , GN} is also private since they can
be viewed as post-processing of the discriminators. Our PGB method is agnostic to the exact private
GAN training methods.

3

38

Published as a conference paper at ICLR 2021

3 PRIVATE POST-GAN BOOSTING

The noisy gradient updates impede convergence of the differentially private GAN training algo-
rithm, and the generator obtained in the final epoch of the training procedure may not yield a good
approximation to the data distribution. Nonetheless, empirical evidence has shown that a mixture
over the set of generators can be a realistic distribution (Beaulieu-Jones et al., 2019). We now
provide a principled and practical scheme for computing such a mixture subject to a moderate pri-
vacy budget. Recall that during private GAN training method produces a sequence of generators
G = {G1, . . . , GN} and discriminators D = {D1, . . . , DN}. Our boosting method computes a
weighted mixture of the Gj’s and a weighted mixture of the Dj’s that improve upon any individual
generator and discriminator. We do that by computing an equilibrium of the following post-GAN

(training) zero-sum game.

3.1 POST-GAN ZERO-SUM GAME.

We will first draw r independent samples from each generator Gj , and let B be the collection of the
rN examples drawn from the set of generators. Consider the following post-GAN zero-sum game
between a synthetic data player, who maintains a distribution � over the data in B to imitate the
true data distribution pX , and a distinguisher player, who uses a mixture of discriminators to tell
the two distributions � and pX apart. This zero-sum game is aligned with the minimax game in the
original GAN formulation, but is much more tractable since each player has a finite set of strategies.
To define the payoff in the game, we will adapt from the Wasserstein GAN objective since it is less
sensitive than the standard GAN objective to the change of any single observation (changing any
single real example changes the payoff by at most 1/n), rendering it more compatible with privacy
tools. Formally, for any x 2 B and any discriminator Dj , define the payoff as

U(x,Dj) = Ex0⇠pX [Dj(x
0)] + (1�Dj(x))

For any distribution � over B, let U(�, ·) = Ex⇠�[U(x, ·)], and similarly for any distribution
over {D1, . . . , DN}, we will write U(·,) = ED⇠ [U(·, D)]. Intuitively, the payoff function U

measures the predictive accuracy of the distinguisher in classifying whether the examples are drawn
from the synthetic data player’s distribution � or the private dataset X . Thus, the synthetic data
player aims to minimize U while the distinguisher player aims to maximize U .
Definition 2. The pair (D,�) is an ↵-approximate equilibrium of the post-GAN game if

max
Dj2D

U(�, Dj) U(�, D) + ↵, and min
�2�(B)

U(�, D) � U(�, D)� ↵ (1)

By von Neumann’s minimax theorem, there exists a value V – called the game value – such that
V = min

�2�(B)
max
j2[N]

U(�, Dj) = max
 2�(D)

min
x2B

U(x,)

The game value corresponds to the payoff value at an exact equilibrium of the game (that is ↵ = 0).
When the set of discriminators cannot predict the real versus fake examples better than random
guessing, the game value V = 1. We now show that under the assumption that the generated
samples in B approximately cover the support of the dataset X , the distinguisher player cannot
distinguish the real and fake distributions much better than by random guessing.
Theorem 1. Fix a private dataset X 2 (Rd)n. Suppose that for every x 2 X , there exists xb 2 B

such that kx � xbk2 �. Suppose D includes a discriminator network D
1/2

that outputs 1/2
for all inputs, and assume that all networks in D are L-Lipschitz. Then there exists a distribution

� 2 �(B) such that (�, D1/2) is a L�-approximate equilibrium, and so 1 V 1 + L �.

We defer the proof to the appendix. While the support coverage assumption is strong, we show
empirically the synthetic data player’s mixture distribution in an approximate equilibrium improves
on the distribution given by the last generator GN even when the assumption does not hold. We now
provide a method for computing an approximate equilibrium of the game.

3.2 BOOSTING VIA EQUILIBRIUM COMPUTATION.

Our post-GAN boosting (PGB) method computes an approximate equilibrium of the post-GAN
zero-sum game by simulating the so-called no-regret dynamics. Over T rounds the synthetic data

4

39

Published as a conference paper at ICLR 2021

player maintains a sequence of distributions �1, . . . ,�T over the set B, and the distinguisher plays a
sequence of discriminators D1

, . . . , D
T . At each round t, the distinguisher first selects a discrimina-

tor D using the exponential mechanism ME with the payoff U(�t, ·) as the score function. This will
find an accurate discriminator Dt against the current synthetic distribution �t, so that the synthetic
data player can improve the distribution. Then the synthetic data player updates its distribution to �t
based on an online no-regret learning algorithm–the multiplicative weights (MW) method Kivinen
& Warmuth (1997). We can view the set of generated examples in B as a set of “experts”, and
the algorithm maintains a distribution over these experts and, over time, places more weight on the
examples that can better “fool” the distinguisher player. To do so, MW updates the weight for each
x 2 B with

�
t+1(x) / �

t exp
�
�⌘U(x,Dt)

�
/ exp

�
⌘D

t(x)
�

(2)

where ⌘ is the learning rate. At the end, the algorithm outputs the average plays (D,�) for both
players. We will show these form an approximate equilibrium of the post-GAN zero-sum game
(Freund & Schapire, 1997).

Algorithm 1 Differentially Private Post-GAN Boosting
Require: a private dataset X 2 Xn, a synthetic dataset B generated by the set of generators G, a

collection of discriminators {D1, . . . , DN}, number of iterations T , per-round privacy budget ✏0,
learning rate parameter ⌘.
Initialize �1 to be the uniform distribution over B
for t = 1, . . . , T do

Distinguisher player: Run exponential mechanism ME to select a discriminator D
t using

quality score q(X,Dj) = U(�t, Dj) and privacy parameter ✏0.
Synthetic data player: Multiplicative weights update on the distribution over B: for each
example b 2 B:

�
t+1(b) / �

t(b) exp(⌘Dt(b))

Let D be the discriminator defined by the uniform average over the set {D1
, . . . , D

T }, and � be
the distribution defined by the average over the set {�1, . . . ,�T }

Note that the synthetic data player’s MW update rule does not involve the private dataset, and hence
is just a post-processing step of the selected discriminator Dt. Thus, the privacy guarantee follows
from applying the advacned composition of T runs of the exponential mechanism.1

Theorem 2 (Privacy Guarantee). For any � 2 (0, 1), the private MW post-amplification algorithm

satisfies (✏, �)-DP with ✏ =
p
2 log(1/�)T ✏0 + T ✏0(exp(✏0)� 1).

Note that if the private GAN training algorithm satisfies (✏1, �1)-DP and the Private PGB method
satisfies (✏2, �2)-DP, then the entire procedure is (✏1 + ✏2, �1 + �2)-DP.

We now show that the pair of average plays form an approximate equilibrium of the game.

Theorem 3 (Approximate Equilibrium). With probability 1��, the pair (D,�) is an ↵-approximate

equilibrium of the post-GAN zero-sum game with ↵ = 4⌘ + log |B|
⌘T + 2 log(NT/�)

n✏0
. If T � n

2
and

⌘ = 1
2

p
log(|B|)/T , then

↵ = O

✓
log(nN |B|/�)

n✏0

◆

We provide a proof sketch here and defer the full proof to the appendix. By the result of Fre-
und & Schapire (1997), if the two players have low regret in the dynamics, then their average
plays form an approximate equilibrium, where the regret of the two players is defined as Rsyn =PT

t=1 U(�t, Dt)�minb2B
PT

t=1 U(b,Dt) and Rdis = maxDj

PT
t=1 U(�t, Dj)�

PT
t=1 U(�t, Dt).

Then the approximate equilibrium guarantee directly follows from bounding Rsyn with the regret
bound of MW and Rdis with the approximate optimality of the exponential mechanism.

1Note that since the quality scores from the GAN Discriminators are assumed to be probabilities and the
score function takes an average over n probabilities (one for each private example), the sensitivity is �(q) = 1

n .

5

40

Published as a conference paper at ICLR 2021

Non-Private PGB. The Private PGB method has a natural non-private variant: in each round, in-
stead of drawing from the exponential mechanism, the distinguisher player will simply compute the
exact best response: Dt = argmaxDj U(�t, Dj). Then if we set learning rate ⌘ = 1

2

p
log(|B|)/T

and run for T = log(|B|)/↵2 rounds, the pair (D,�) returned is an ↵-approximate equilibrium.

Extension with Discriminator Rejection Sampling. The mixture discriminator D at the equi-
librium provides an accurate predictor on which samples are unlikely. As a result, we can use
D to further improve the data distribution � by the discriminator rejection sampling (DRS) tech-
nique of Azadi et al. (2019). The DRS scheme in our setting generates a single example as fol-
lows: first draw an example x from � (the proposal distribution), and then accept x with probabil-
ity proportional to D(x)/(1 � D(x)). Note that the optimal discriminator D⇤ that distinguishes
the distribution � from true data distribution pd will accept x with probability proportional to
pd(x)/p�(x) = D

⇤(x)/(1�D
⇤(x)). Our scheme aims to approximate this ideal rejection sampling

by approxinating D
⇤ with the equilibrium strategy D, whereas prior work uses the last discriminator

DN as an approximation.

4 EMPIRICAL EVALUATION

We empirically evaluate how both the Private and Non-Private PGB methods affect the utility of
the generated synthetic data from GANs. We show two appealing advantages of our approach: 1)
non-private PGB outperforms the last Generator of GANs, and 2) our approach can significantly
improve the synthetic examples generated by a GAN under differential privacy.

Datasets. We assess our method with a toy dataset drawn from a mixture of 25 Gaussians, which is
commonly used to evaluate the quality of GAN (Srivastava et al., 2017; Azadi et al., 2019; Turner
et al., 2019) and synthesize MNIST images. We then turn to real datasets from the American Census,
and a standard machine learning dataset (Titanic).

Privacy budget. For the tasks with privacy, we set the privacy budget to be the same across all
algorithms. Since Private PGB requires additional privacy budget this means that the differentially
private GAN training has to be stopped earlier as compared to running only a GAN to achieve the
same privacy guarantee. Our principle is to allocate the majority of the privacy budget to the GAN
training, and a much smaller budget for our Private PGB method. Throughout we used 80% to 90%
of the final privacy budget on DP GAN training.2

Utility measures. Utility of synthetic data can be assessed along two dimensions; general utility
and specific utility (Snoke et al., 2018; Arnold & Neunhoeffer, 2020). General utility describes the
overall distributional similarity between the real data and synthetic datasets, but does not capture
specific use cases of synthetic data. To assess general utility, we use the propensity score mean
squared error (pMSE) measure (Snoke et al., 2018) (detailed in the Appendix). Specific utility of a
synthetic dataset depends on the specific use an analyst has in mind. In general, specific utility can
be defined as the similarity of results for analyses using synthetic data instead of real data. For each
of the experiments we define specific utility measures that are sensible for the respective example.
For the toy dataset of 25 gaussians we look at the number of high quality samples. For the American
Census data we compare marginal distributions of the synthetic data to marginal distributions of the
true data and look at the similarity of regression results.

4.1 EVALUATION OF NON-PRIVATE PGB

Mixture of 25 Gaussians. We first examine the performance of our approach on a two dimensional
dataset with a mixture of 25 multivariate Gaussian distributions, each with a covariance matrix of
0.0025I . The left column in Figure 1 displays the training data. Each of the 25 clusters consists

2Our observation is that the DP GAN training is doing the “heavy lifting”. Providing a good “basis” for
PGB requires a substantial privacy expenditure in training DP GAN. The privacy budget allocation is a hy-
perparameter for PGB that could be tuned. In general, the problem of differentially private hyperparameter
selection is extremely important and the literature is thin (Liu & Talwar, 2019; Chaudhuri & Vinterbo, 2013).

6

41

Published as a conference paper at ICLR 2021

of 1, 000 observations. The architecture of the GAN is the same across all results.3 To compare
the utility of the synthetic datasets with the real data, we inspect the visual quality of the resultsand
calculate the proportion of high quality synthetic examples similar to Azadi et al. (2019),Turner et al.
(2019) and Srivastava et al. (2017).4

Visual inspection of the results without privacy (in the top row of Figure 1) shows that our proposed
method outperforms the synthetic examples generated by the last Generator of the GAN, as well as
the last Generator enhanced with DRS. PGB over the last 100 stored Generators and Discriminators
trained for T = 1, 000 update steps, and the combination of PGB and DRS, visibly improves the
results. The visual impression is confirmed by the proportion of high quality samples. The data from
the last GAN generator have a proportion of 0.904 high quality samples. The synthetic data after
PGB achieves a higher score of 0.918. The DRS samples have a proportion of 0.826 high quality
samples, and the combination of PGB and DRS a higher proportion of 0.874 high quality samples.5

MNIST Data. We further evaluate the performance of our method on an image generation task
with the MNIST dataset. Our results are based on the DCGAN GAN architecture (Radford et al.,
2015) with the KL-WGAN loss (Song & Ermon, 2020). To evaluate the quality of the generated
images we use a metric that is based on the Inception score (IS) (Salimans et al., 2016), where
instead of the Inception Net we use a MNIST Classifier that achieves 99.65% test accuracy. The
theoretical best score of the MNIST IS is 10, and the real test images achieve a score of 9.93.
Without privacy the last GAN Generator achieves a score of 8.41, using DRS on the last Generator
slightly decreases the score to 8.21, samples with PGB achieve a score of 8.76, samples with the
combination of PGB and DRS achieve a similar score of 8.77 (all inception scores are calculated on
5,000 samples). Uncurated samples for all methods are included in the Appendix.

4.2 EVALUATION OF PRIVATE PGB

Mixture of 25 Gaussians. To show how the differentially private version of PGB improves the
samples generated from GANs that were trained under differential privacy, we first re-run the ex-
periment with the two-dimensional toy data.6 Our final value of ✏ is 1 and � is 1

2N . For the results
with PGB, the GAN training contributes ✏1 = 0.9 to the overall ✏ and the Private PGB algorithm
✏2 = 0.1. Again a first visual inspection of the results in Figure 1 (in the bottom row) shows that
post-processing the results of the last GAN Generator with Private PGB is worthwhile. Private PGB
over the last 100 stored Generators and Discriminators trained for T = 1, 000 update steps, again,
visibly improves the results. Again, our visual impression is confirmed by the proportion of high
quality samples. The last Generator of the differentially private GAN achieves a proportion of 0.031
high quality samples. With DRS on top of the last Generator, the samples achieve a quality score of
0.035. The GAN enhanced with Private PGB achieves a proportion of 0.044 high quality samples,
the combination of Private PGB and DRS achieves a quality score of 0.053.

MNIST Data. On the MNIST data, with differential privacy (✏ = 10, � = 1
2N) the last DP GAN

Generator achieves an inception score of 8.07, using DRS on the last Generator the IS improves to
8.18. With Private PGB the samples achieve an IS of 8.58, samples with the combination of Private
PGB and DRS achieve the highest IS of 8.66.7 Uncurated samples for all methods are included in
the Appendix.

Private Synthetic 1940 American Census Samples. While the results on the toy dataset are en-
couraging, the ultimate goal of private synthetic data is to protect the privacy of actual persons in

3A description of the architecture is in the Appendix. The code for the GANs and the PGB algorithm will
be made available on GitHub.

4Note that the scores in Azadi et al. (2019) and Turner et al. (2019) do not account for the synthetic data
distribution across the 25 modes. We detail our evaluation of high quality examples in the Appendix.

5The lower scores for the DRS samples are due to the capping penalty in the quality metric. Without the
capping penalty the scores are 0.906 for the last Generator, 0.951 for PGB , 0.946 for DRS and 0.972 for the
combination of PGB and DRS.

6To achieve DP, we trained the Discriminator with a DP optimizer as implemented in
tensorflow privacy or the opacus library. We keep track of the values of ✏ and � by using the
moments accountant (Abadi et al., 2016; Mironov, 2017).

7All inception scores are calculated on 5, 000 samples.

7

42

Published as a conference paper at ICLR 2021

Figure 1: Real samples from 25 multivariate normal distributions, synthetic examples without pri-
vacy from a GAN, DRS, Non-Private PGB and the combination of PGB and DRS (top row). Syn-
thetic examples from a GAN with differential privacy, DP DRS, Private PGB and the combination
of Private PGB and DRS (bottom row).

data collections, and to provide useful data to interested analysts. In this section we report the results
of synthesizing data from the 1940 American Census. We rely on the public use micro data samples
(PUMS) as provided in Ruggles et al. (2019).8 For 1940 we synthesize an excerpt of the 1% sample
of all Californians that were at least 18 years old.9 Our training sample consists of 39,660 observa-
tions and 8 attributes (sex, age, educational attainment, income, race, Hispanic origin, marital status
and county). The test set contains another 9,915 observations. Our final value of ✏ is 1 and � is
1

2N ⇡ 6.3⇥10�6 (after DP GAN training with ✏1 = 0.8 and PGB with ✏2 = 0.2, �1 = 1
2N , �2 = 0).

The general utility scores as measured by the pMSE ratio score are 2.357 (DP GAN), 2.313 (DP
DRS), 2.253 (DP PGB), and 2.445 (DP PGB+DRS). This indicates that PGB achieves the best
general utility. To assess the specific utility of our synthetic census samples we compare one-way
marginal distributions to the same marginal distributions in the original data. In panel (A) of Figure
2 we show the distribution of race membership. Comparing the synthetic data distributions to the
true distribution (in gray), we conclude that PGB, improves upon the last Generator. To underpin
the visual impression we calculate the total variation distance between each of the synthetic distri-
butions and the real distribution, the data from the last GAN Generator has a total variation distance
of 0.58, DP DRS of 0.44, DP PGB of 0.22 and DP PGB+DRS of 0.13. Furthermore, we evaluate
whether more complex analysis models, such as regression models, trained on synthetic samples
could be used to make sensible out-of-sample predictions. Panel (B) of Figure 2 shows a parallel
coordinate plot to compare the out-of-sample root mean squared error of regression models trained
on real data and trained on synthetic data. The lines show the RMSE for predicted income for all
linear regression models trained with three independent variables from the set of on the synthetic
data generated with Private PGB as compared to the last GAN generator and other post processing
methods like DRS.

8Further experiments using data from the 2010 American Census can be found in the appendix.
9A 1% sample means that the micro data contains 1% of the total American (here Californian) population.

8

43

Published as a conference paper at ICLR 2021

Figure 2: Specific Utility of Synthetic 1940 American Census Data. Panel (A): Distribution of Race
Membership in Synthetic Samples. Panel (B): Regression RMSE with Synthetic Samples.

Machine Learning Prediction with Synthetic Data. In a final set of experiments we evaluate the
performance of machine learning models trained on synthetic data (with and without privacy) and
tested on real out-of-sample data. We synthesize the Kaggle Titanic10 training set (891 observations
of Titanic passengers on 8 attributes) and train three machine learning models (Logistic Regression,
Random Forests (RF) (Breiman, 2001) and XGBoost (Chen & Guestrin, 2016)) on the synthetic
datasets to predict whether someone survived the Titanic catastrophe. We then evaluate the perfor-
mance on the test set with 418 observations. To address missing values in both the training set and
the test set we independently impute values using the MissForest (Stekhoven & Bühlmann, 2012)
algorithm. For the private synthetic data our final value of ✏ is 2 and � is 1

2N (for PGB this implies
DP GAN training with ✏1 = 1.6 and PGB ✏2 = 0.4). The models trained on synthetic data gener-
ated with our approaches (PGB and PGB+DRS) consistently perform better than models trained on
synthetic data from the last generator or DRS – with or without privacy.11

ACKNOWLEDGMENTS

This work began when the authors were at the Simons Institute participating in the “Data Privacy:
Foundations and Applications” program. We thank Thomas Steinke, Adam Smith, Salil Vadhan,
and the participants of the DP Tools meeting at Harvard for helpful comments. Marcel Neunhoeffer
is supported by the University of Mannheim’s Graduate School of Economic and Social Sciences
funded by the German Research Foundation. Zhiwei Steven Wu is supported in part by an NSF
S&CC grant 1952085, a Google Faculty Research Award, and a Mozilla research grant. Cynthia
Dwork is supported by the Alfred P. Sloan Foundation, “Towards Practicing Privacy” and NSF
CCF-1763665.

10
https://www.kaggle.com/c/titanic/data

11Table 1 in the appendix summarizes the results in more detail. We present the accuracy, ROC AUC and PR
AUC to evaluate the performance.

9

44

Published as a conference paper at ICLR 2021

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’16, pp. 308–318, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978318. URL http:

//doi.acm.org/10.1145/2976749.2978318.

John M. Abowd. The U.S. census bureau adopts differential privacy. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London,

UK, August 19-23, 2018, pp. 2867, 2018. doi: 10.1145/3219819.3226070. URL https://

doi.org/10.1145/3219819.3226070.

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. CoRR, abs/1701.07875,
2017. URL http://arxiv.org/abs/1701.07875.

Christian Arnold and Marcel Neunhoeffer. Really useful synthetic data–a framework to evaluate the
quality of differentially private synthetic data. arXiv preprint arXiv:2004.07740, 2020.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(6):121–164, 2012. doi: 10.4086/toc.2012.
v008a006. URL http://www.theoryofcomputing.org/articles/v008a006.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). In Doina Precup and Yee Whye Teh (eds.), Proceedings of

the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pp. 224–232, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.press/v70/arora17a.html.

Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian J. Goodfellow, and Augustus Odena. Dis-
criminator rejection sampling. In 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.

net/forum?id=S1GkToR5tm.

Brett K. Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P. Bhavnani,
James Brian Byrd, and Casey S. Greene. Privacy-preserving generative deep neural networks sup-
port clinical data sharing. Circulation: Cardiovascular Quality and Outcomes, 12(7):e005122,
2019. doi: 10.1161/CIRCOUTCOMES.118.005122.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Kamalika Chaudhuri and Staal A Vinterbo. A stability-based validation procedure for differentially
private machine learning. In Advances in Neural Information Processing Systems, pp. 2652–2660,
2013.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Differential Privacy Team, Apple. Learning with privacy at scale. https://

machinelearning.apple.com/docs/learning-with-privacy-at-scale/

appledifferentialprivacysystem.pdf, December 2017.

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. In
Advances in Neural Information Processing Systems 30, NIPS ’17, pp. 3571–3580. Curran Asso-
ciates, Inc., 2017.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the 3rd Theory of Cryptography Conference, volume
3876, pp. 265–284, 2006.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM Conference on Computer

and Communications Security, CCS ’14, pp. 1054–1067, New York, NY, USA, 2014. ACM.

10

45

Published as a conference paper at ICLR 2021

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119 – 139,
1997. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL http://www.

sciencedirect.com/science/article/pii/S002200009791504X.

Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick Duverger. Differen-
tially private generative adversarial networks for time series, continuous, and discrete open data.
In ICT Systems Security and Privacy Protection - 34th IFIP TC 11 International Conference,

SEC 2019, Lisbon, Portugal, June 25-27, 2019, Proceedings, pp. 151–164, 2019. doi: 10.1007/
978-3-030-22312-0\ 11. URL https://doi.org/10.1007/978-3-030-22312-0_

11.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the

27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
pp. 2672–2680, Cambridge, MA, USA, 2014. MIT Press. URL http://dl.acm.org/

citation.cfm?id=2969033.2969125.

Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

October 23-26, 2010, Las Vegas, Nevada, USA, pp. 61–70, 2010. doi: 10.1109/FOCS.2010.85.
URL https://doi.org/10.1109/FOCS.2010.85.

Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for differ-
entially private data release. In Advances in Neural Information Processing Systems 25: 26th

Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting

held December 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 2348–2356, 2012.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. MGAN: Training generative adversarial
nets with multiple generators. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rkmu5b0a-.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv

preprint arXiv:1611.01144, 2016.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1 – 63, 1997. ISSN 0890-5401. doi: https:
//doi.org/10.1006/inco.1996.2612. URL http://www.sciencedirect.com/science/

article/pii/S0890540196926127.

Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the

51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 298–309, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceedings of

the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pp. 94–103,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3010-9. doi: 10.1109/
FOCS.2007.41. URL http://dx.doi.org/10.1109/FOCS.2007.41.

Ilya Mironov. Rényi differential privacy. In 30th IEEE Computer Security Foundations Symposium,

CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pp. 263–275, 2017. doi: 10.1109/CSF.
2017.11. URL https://doi.org/10.1109/CSF.2017.11.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Er-
lingsson. Scalable private learning with PATE. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings, 2018. URL https://openreview.net/forum?id=rkZB1XbRZ.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

11

46

Published as a conference paper at ICLR 2021

Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas, and Matthew
Sobek. Ipums usa: Version 9.0 [dataset]. Minneapolis, MN: IPUMS, 10:D010, 2019. doi:
10.18128/D010.V9.0.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pp. 2234–2242, 2016.

Joshua Snoke, Gillian M. Raab, Beata Nowok, Chris Dibben, and Aleksandra Slavkovic. General
and specific utility measures for synthetic data. Journal of the Royal Statistical Society: Series A

(Statistics in Society), 181(3):663–688, 2018. doi: 10.1111/rssa.12358. URL https://rss.

onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12358.

Jiaming Song and Stefano Ermon. Bridging the gap between f -gans and wasserstein gans, 2020.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Advances in Neural Infor-

mation Processing Systems, pp. 3308–3318, 2017.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. In Proceedings of the 31st International Con-

ference on Neural Information Processing Systems, NIPS’17, pp. 5430–5439, USA, 2017. Curran
Associates Inc. ISBN 978-1-5108-6096-4. URL http://dl.acm.org/citation.cfm?

id=3295222.3295294.

Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. DP-CGAN: differentially private
synthetic data and label generation. CoRR, abs/2001.09700, 2020. URL https://arxiv.

org/abs/2001.09700.

Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. Metropolis-Hastings gener-
ative adversarial networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings

of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pp. 6345–6353, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/turner19a.html.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative
adversarial network. CoRR, abs/1802.06739, 2018. URL http://arxiv.org/abs/1802.

06739.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1zk9iRqF7.

12

47

Published as a conference paper at ICLR 2021

A PROOFS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. Note that if the synthetic data player plays the distribution over X , then
U(pX , D) = Ex⇠pX [D(x0)] + Ex⇠�[1 � D(x)] = 1 for any discriminator D 2 D. Now let
us replace each element in X with its �-approximation in B and obtain a new dataset XB , and
let pXB denote the empirical distribution over XB . By the Lipschitz conditions, we then have
|U(pX , D)� U(pXB , D)| L �. This means U(pXB , D) 2 [1� L�, 1 + L�] for all D. Also, for
all � 2 �(B), we have U(�, D1/2) = 1. Thus, (pXb , D

1/2) satisfies equation 1 with ↵ = L�.

A.2 PROOF OF THE APPROXIMATE EQUILIBRIUM

Proof. We will use the seminal result of Freund & Schapire (1997), which shows that if the two
players have low regret in the dynamics, then their average plays form an approximate equilibrium.
First, we will bound the regret from the data player. The regret guarantee of the multiplicative
weights algorithm (see e.g. Theorem 2.3 of Arora et al. (2012)) gives

TX

t=1

U(�t, Dt)�min
b2B

TX

t=1

U(b,Dt) 4⌘T +
log |B|
⌘

(3)

Next, we bound the regret of the distinguisher using the accuracy guarantee of the exponential
mechanism (McSherry & Talwar, 2007). For each t, we know with probability (1� �/T),

max
Dj

U(�t, Dj)� U(�t, Dt) 2 log(NT/�)

n✏0

Taking a union bound, we have this accuracy guarantee holds for all t, and so

max
Dj

TX

t=1

U(�t, Dj)�
TX

t=1

U(�t, Dt) 2T log(NT/�)

n✏0
(4)

Then following the result of Freund & Schapire (1997), their average plays (D,�) is an ↵-
approximate equilibrium with

↵ = 4⌘ +
log |B|
⌘T

+
2 log(NT/�)

n✏0

Plugging in the choices of T and ⌘ gives the stated bound.

B ADDITIONAL DETAILS ON THE QUALITY EVALUATION

B.1 ON THE CALCULATION OF THE PMSE.

To calculate the pMSE one trains a discriminator to distinguish between real and synthetic examples.
The predicted probability of being classified as real or synthetic is the propensity score. Taking
all propensity scores into account the mean squared error between the propensity scores and the
proportion of real data examples is calculated. A synthetic dataset has high general utility, if the
model can at best predict probabilities of 0.5 for both real and synthetic examples, then the pMSE
would be 0.

B.2 SPECIFIC UTILITY MEASURE FOR THE 25 GAUSSIANS.

In the real data, given the data generating process outlined in section 4.1, at each of the 25 modes
99% of the observations lie within a circle with radius r =

p
0.0025 · 9.21034 around the mode

centroids, where 9.21034 is the critical value at p = 0.99 of a �2 distribution with 2 degrees of
freedom, and 0.0025 is the variance of the spherical gaussian.

13

48

Published as a conference paper at ICLR 2021

To calculate the quality score we count the number of observations within each of these 25 circles.
If one of the modes contains more points than we would expect given the true distribution the count
is capped accordingly. Our quality score for the toy dataset of 25 gaussians can be expressed as
Q =

P25
i (min(pireal ·Nsyn, N

i
syn)/Nsyn), where i indexes the clusters, preal is the true distribution

of points per cluster, N i
syn the number of observations at a cluster within radius r, and Nsyn the total

number of synthetic examples.

C GAN ARCHITECTURES

C.1 DETAILS ON THE EXPERIMENTS WITH THE 25 GAUSSIANS.

The generator and discriminator are neural nets with two fully connected hidden layers (Discrimi-
nator: 128, 256; Generator: 512, 256) with Leaky ReLu activations. The latent noise vector Z is of
dimension 2 and independently sampled from a gaussian distribution with mean 0 and standard de-
viation of 1. For GAN training we use the KL-WGAN loss (Song & Ermon, 2020). Before passing
the Discriminator scores to PGB we transform them to probabilities using a sigmoid activation.

C.2 GAN ARCHITECTURE FOR THE 1940 AMERICAN CENSUS DATA.

The GAN networks consist of two fully connected hidden layers (256, 128) with Leaky ReLu activa-
tion functions. To sample from categorical attributes we apply the Gumbel-Softmax trick (Maddison
et al., 2016; Jang et al., 2016) to the output layer of the Generator. We run our PGB algorithm over
the last 150 stored Generators and Discriminators and train it for T = 400 update steps.

D PRIVATE SYNTHETIC 2010 AMERICAN DECENNIAL CENSUS SAMPLES.

We conducted further experiments on more recent Census files. The 2010 data is similar to the
data that the American Census is collecting for the 2020 decennial Census. For this experiment,
we synthesize a 10% sample for California with 3,723,669 observations of 5 attributes (gender,
age, Hispanic origin, race and puma district membership). Our final value of ✏ is 0.795 and �

is 1
2N ⇡ 1.34 ⇥ 10�7 (for PGB the GAN training contributes ✏ = 0.786 and PGB ✏ = 0.09).

The pMSE ratio scores are 1.934 (DP GAN), 1.889 (DP DRS), 1.609 (DP PGB) and 1.485 (DP
PGB+DRS), here PGB achieves the best general utility. For specific utility, we compare the accuracy
of three-way marginals on the synthetic data to the proportions in the true data.12 We tabulate race
(11 answer categories in the 2010 Census) by Hispanic origin (25 answer categories in the 2010
Census) by gender (2 answer categories in the 2010 Census) giving us a total of 550 cells. To assess
the specific utility for these three-way marginals we calculate the average accuracy across all 550
cells. Compared to the true data DP GAN achieves 99.82%, DP DRS 99.89%, DP PGB 99.89%
and the combination of DP PGB and DRS 99.93%. Besides the average accuracy across all 550
cells another interesting metric of specific utility is the number of cells in which each synthesizer
achieves the highest accuracy compared to the other methods, this is the case 43 times for DP GAN,
30 times for DP DRS, 90 times for DP PGB and 387 times for DP PGB+DRS. Again, this shows
that our proposed approach can improve the utility of private synthetic data.

E DETAILED RESULTS OF MACHINE LEARNING PREDICTION WITH
SYNTHETIC DATA

Table 1 summarizes the results for the machine learning prediction experiment with the Titanic data.
We present the accuracy, ROC AUC and PR AUC to evaluate the performance. It can be seen that
the models trained on synthetic data generated with our approach consistently perform better than
models trained on synthetic data from the last generator or DRS – with or without privacy. To put
these values into perspective, the models trained on the real training data and tested on the same
out-of-sample data achieve the scores in table 2.

12A task that is similar to the tables released by the Census.

14

49

Published as a conference paper at ICLR 2021

Table 1: Predicting Titanic Survivors with Machine Learning Models trained on synthetic data and
tested on real out-of-sample data. Median scores of 20 repetitions with independently generated
synthetic data. With differential privacy ✏ is 2 and � is 1

2N ⇡ 5.6⇥ 10�4.

GAN DRS PGB PGB
+ DRS

Logit Accuracy 0.626 0.746 0.701 0.765
Logit ROC AUC 0.591 0.760 0.726 0.792
Logit PR AUC 0.483 0.686 0.655 0.748
RF Accuracy 0.594 0.724 0.719 0.742
RF ROC AUC 0.531 0.744 0.741 0.771
RF PR AUC 0.425 0.701 0.706 0.743
XGBoost Accuracy 0.547 0.724 0.683 0.740
XGBoost ROC AUC 0.503 0.732 0.681 0.772
XGBoost PR AUC 0.400 0.689 0.611 0.732

DP DP DP DP PGB
GAN DRS PGB +DRS

Logit Accuracy 0.566 0.577 0.640 0.649
Logit ROC AUC 0.477 0.568 0.621 0.624
Logit PR AUC 0.407 0.482 0.532 0.547
RF Accuracy 0.487 0.459 0.481 0.628
RF ROC AUC ROC AUC 0.512 0.553 0.558 0.652
RF PR AUC PR AUC 0.407 0.442 0.425 0.535
XGBoost Accuracy 0.577 0.589 0.609 0.641
XGBoost ROC AUC 0.530 0.586 0.619 0.596
XGBoost PR AUC 0.398 0.479 0.488 0.526

Table 2: Predicting Titanic Survivors with Machine Learning Models trained on real data and tested
on real out-of-sample data.

Model Score

Logit Accuracy 0.764
Logit ROC AUC 0.813
Logit PR AUC 0.785

RF Accuracy 0.768
RF ROC AUC 0.809
RF PR AUC 0.767

XGBoost Accuracy 0.768
XGBoost ROC AUC 0.773
XGBoost PR AUC 0.718

F SYNTHETIC MNIST SAMPLES

Figure 3 shows uncurated samples from the last Generator after 30 epochs of training without dif-
ferential privacy in Panel 3a and with differential privacy (✏ =, � =) in Panel 3b. Figure 4 shows
uncurated samples with DRS on the last Generator. Figure 5 shows uncurated samples after PGB
and Figure 6 shows uncurated samples after the combination of PGB and DRS. In Figure 7 we show
the 100 samples with the highest PGB probabilities.

15

50

Published as a conference paper at ICLR 2021

(a) Without Differential Privacy. (b) With Differential Privacy (✏ = 10, � = 1
2N)

Figure 3: Uncurated MNIST samples from last GAN Generator after 30 epochs.

(a) Without Differential Privacy. (b) With Differential Privacy (✏ = 10, � = 1
2N)

Figure 4: Uncurated MNIST samples with DRS on last Generator after 30 epochs.

(a) Without Differential Privacy. (b) With Differential Privacy (✏ = 10, � = 1
2N)

Figure 5: Uncurated MNIST samples with PGB after 30 epochs (without DP) and 25 epochs (with
DP).

16

51

Published as a conference paper at ICLR 2021

(a) Without Differential Privacy. (b) With Differential Privacy (✏ = 10, � = 1
2N)

Figure 6: Uncurated MNIST samples with PGB and DRS after 30 epochs (without DP) and 25
epochs (with DP).

(a) Without Differential Privacy. (b) With Differential Privacy (✏ = 10, � = 1
2N)

Figure 7: Top 100 MNIST samples after PGB after 30 epochs (without DP) and 25 epochs (with
DP).

17

52

4
A Common Benchmark to Evaluate

Multiple Imputation Algorithms

53

A Common Benchmark to Evaluate Multiple
Imputation Algorithms

Marcel Neunhoeffer

LMU Munich & Boston University

Abstract

Multiple imputation (MI) of missing data is an essential tool for quantitative research in po-

litical science. Many di�erent MI models are available, and new MI models are introduced

to the political science literature. However, it needs to be clarified how to evaluate new

MI models or compare existing ones. This, in turn, means for applied researchers that, it

is hard to choose between imputation models. This letter presents a new benchmark for

evaluating multiple imputation (MI) models. The R-package MIBench accompanying this

letter makes applying the benchmark and comparing existing imputation models easy. I

also provide benchmark results and show that no one-fits-all solution to handle missing

data exists. It is striking that seemingly more flexible imputation methods, e.g., based

on neural nets, do not perform well. Furthermore, I show that comparing results from

MI to other methods, like complete case analysis on the same data set, can only be

conclusive with further assumptions. The results highlight a need for careful evaluation

of MI models before using them in applied research. I conclude with practical advice for

applied researchers and developers of new imputation algorithms.

Abstract: 187 words
Manuscript: 2959 words

1
54

Multiple imputation (MI) of missing data is an essential tool for quantitative research in

political science. Many different MI models are available and new MI models are introduced.

However, it needs to be clarified how to evaluate new MI models or compare existing ones. This,

in turn, means for applied researchers that, it is hard to choose between imputation models. In

this letter, I propose a new benchmark for MI models. I also show the results of the benchmark

with established imputation models. These results highlight that developing new MI models and

choosing imputation models for applied research needs to be done more carefully. In particular,

seemingly more flexible imputation methods (e.g., based on neural nets) fail to achieve the

goal of statistically valid inferences in almost all benchmark tasks. Furthermore, I show that

comparing results from MI to other methods, like complete case analysis on the same data

set, can only be conclusive with further assumptions. The benchmark is accompanied by the

R-package MIBench which makes it easy to apply.

1 Background on Multiple Imputation

MI of missing data is a well-established (Rubin, 1978, 1996, 2004) and popular general-

purpose framework to handle missing values. The appeal of MI comes from the fact that the

analysis model (e.g., a regression model) does not need any modification. It just needs to be

run repeatedly on multiple completed data sets. Then the results can be combined according

to Rubin’s rules (Rubin, 1987). MI is easy to implement, as different software packages are

available.However, it is important to remember the central goal of MI; uncertainty propagation for

proper inference (Rubin, 1996). To achieve statistically valid inference with MI two assumptions

need to hold. First, missing data needs to be at least missing at random (MAR)1 meaning that

the missingness is random conditional on observed values of the data2. Otherwise, if missing

1Definitions of the different missingness mechanisms can be found in the supporting informa-

tion SI.2.
2Note that it is also possible that even with MAR missingness of some variables, the statistic of

interest can be recovered without multiple imputation (Arel-Bundock and Pelc, 2018; Mohan

and Pearl, 2021; Pepinsky, 2018).

2
55

values depend on unobserved values, no statistical or machine learning model based on observed

values can generate reasonable imputations. Second, the relationship between the imputation

and analysis models is important (Xie and Meng, 2017). For valid inference, the analysis model

needs to be congenial to the imputation model, i.e., the imputation model should contain the

analysis model as a sub-model and potentially be more general than the analysis model to allow

for more analyses (Bartlett et al., 2015; Meng, 1994; van Buuren, 2018). Suppose the analysis

model assumes more than the imputation model. For example, if it includes an interaction term

that was not included in the imputation model, the results can be seriously biased (Bartlett et al.,

2015).

1.1 Multiple Imputation in Political Science

The importance of MI in quantitative political science research can be seen both in

applications as well as in methodological contributions. I reviewed 57 papers with the term

“multiple imputation” anywhere in the text published in some of the top journals of the discipline3

between 2017 and 20224. Of these 57 papers, 38 are applications that used MI as part of their

analyses. Of these 38 applied papers, 18 used the amelia (Honaker et al., 2011) R-package, nine

used the Stata mi (see, e.g., Royston, 2004) functions, five used the mice (van Buuren and

Groothuis-Oudshoorn, 2011) R-package, three the mi (Su et al., 2011) R-package, and the authors

of one paper wrote their own custom MI model.5 Four papers are methodological contributions

(Arel-Bundock and Pelc, 2018; Lall and Robinson, 2022; Marbach, 2022; Pepinsky, 2018)6.

In addition to the methodological contributions above, several new MI models have been

introduced in and to the political science literature over the past two decades. Starting with

3For this study, I include the American Political Science Review, the American Journal of Political

Science, the Journal of Politics and Political Analysis.
4The search query and table SI.1 with all papers included in this analysis can be found in the

Supporting Information SI.1.
5For two out of the 36 applied papers, I could not determine the MI model the authors used.
6The remaining 15 papers showed up in the search because they have the term “multiple imputation”

somewhere in the full text but do not use MI in their analyses.

3
56

Amelia in the seminal paper by King et al. (2001), several multiple imputation models like

hotdeck (Cranmer and Gill, 2013), and mi (Kropko et al., 2014) have been introduced in

political science journals. Furthermore, other MI models like in Hollenbach et al. (2021) have

been co-developed by political scientists.

Recent advances in imputation models in and outside of political science focus on non-

parametric and modern machine learning model based imputation models (see, e.g., Hollenbach

et al., 2021; Lall and Robinson, 2022; Stekhoven and Bühlmann, 2012; Yoon et al., 2018).

The goals and hopes of these novel models are to offer more flexible ways to learn the joint

distribution and, in turn, reduce the burden on the imputer of correctly specifying the imputation

model.

With so many different MI models available, it is hard for developers of new imputation

models and for applied researchers to compare them directly.Without good comparisons of

different imputation models, there is also no clear guidance for applied researchers who want to

choose an MI model for their analyses.

2 The Multiple Imputation Benchmark

My main contribution is a MI benchmark to standardize the Monte Carlo experiments to

evaluate competing MI models on common tasks. As “there is essentially only one scientific

way to evaluate and compare statistical procedures — show how they work when applied

repeatedly, in reality, via simulation or in thought experiments” (Xie and Meng, 2017, 1491).

By using a common benchmark, the results of new methods can be directly compared with

existing methods without the need to rerun all Monte Carlo experiments on all combinations

of data-generating processes and missingness mechanisms. For the initial version of MIBench,

I focus on combinations of data-generating processes and missingness mechanisms used in

previous MI papers, with the addition of one new data-generating process.

4
57

2.1 Data-Generating Processes and Missingness Mechanisms

I include four different data-generating processes that highlight different aspects of challenges

that applied political scientists might encounter when they want to use MI models to handle

missing data.

The Amelia experiments. The first set of experiments reruns the experiments from the

first Amelia paper King et al. (2001). The complete data is drawn from a multivariate normal

distribution, and missingness is induced according to five missingness mechanisms (two MAR

mechanisms, two MCAR mechanisms, and one NI mechanism). The goal is to recover the

coefficients of a linear regression model.

The Hot Deck experiments. The second set of experiments was first introduced by (Cranmer

and Gill, 2013). Here the focus is on binary variables with three different MAR missingness

mechanisms, which essentially differ by the amount of missing data. The goal is to recover the

coefficients of a logistic regression model.

The Marbach experiments. The third data-generating process was first introduced by

Marbach (2022). It combines continuous and binary variables with the added difficulty of an

interaction effect in the data-generating process and one MAR missingness mechanism. The

goal is to recover the regression coefficients of a linear model.

The Mixed experiments. The setup of the fourth and novel data-generating process is similar

to the one introduced by Marbach (2022). It also combines continuous and binary variables

with the added difficulty of an interaction effect in the data-generating process. However, the

interaction effect is more influential, and MCAR and MAR missingness mechanisms induce

missingness. The goal is to recover the regression coefficients of a linear model.

These four data-generating processes, with their respective missingness mechanisms, make

up a set of eleven different experiments. I describe the data-generating processes, missingness

mechanisms, and the analysis models in further detail in the Supporting Information SI.3.

2.2 Measures to Evaluate Inferential Quality

Two quality measures of inferential quality that also facilitate a direct comparison of

different MI models are empirical coverage and the width of confidence intervals of regression

5
58

coefficients (see also van Buuren, 2018). If ⇠�B; and ⇠�BD are the lower and upper limit of the

confidence interval for a parameter of interest \, for a particular run of the procedure B, with

(total Monte Carlo simulation repetitions, then the empirical coverage can be defined as the

proportion of confidence intervals that cover the true value 1
(

P(
B=1 I(⇠�B; \ ⇠�BD), where I

is the indicator function. The width of a confidence interval is the difference between the upper

and the lower limit of the confidence interval, ⇠�BD �⇠�B; of a given repetition of the Monte Carlo

simulation B.

The best MI model for a particular task achieves empirical coverage of at least the nominal

significance level with the shortest confidence interval among the competing models.

3 Results

Table 1 summarizes the coverage rate and width of confidence intervals of 1000 repeated

runs of nine different MI models on each of the eleven combinations of data-generating processes

and missingness mechanisms. For each run, I sample a new data set from the data-generating

process, induce missingness according to the respective missingness mechanism and then run

each imputation model on the same data sets with missing data to generate < = 10 completed

data sets with each method. I then analyze each completed data set with the respective analysis

model and combine the results according to Rubin’s rules (Rubin, 1987) (assuming that the

imputation model and analysis model are congenial, indicated with a ⇠ in table 1) and according

to the combining rules by Xie and Meng (2017) (assuming that the imputation model and analysis

model are uncongenial, indicated with a * in table 1).7

In each cell of table 1, I report the proportion of the shortest confidence intervals with valid

inference (i.e., coverage of at least the nominal level) of a MI model compared against all other

MI models for that experiment. Empty cells mean that a given MI model did not provide valid

inference.

For example, in the Amelia experiment with MAR-1 missingness, the MI model Amelia

II with Rubin’s rules to combine the results produced the shortest intervals in 41% of the

7Both combining rules are included in SI.2.

6
59

Table 1: Proportion of shortest confidence intervals with valid inference. Results of running MIBench for
eleven different combinations of data-generating processes and missingness mechanisms with nine popular
MI models. The results from each MI model are combined according to Rubin’s rules for congenial
models (⇠) (Rubin, 1987) and the combining rules for uncongenial models (*) suggested by Xie and
Meng (2017). Each column presents the results for one combination of a data-generating process and a
missingness mechanism. If a cell for a MI model in a column is empty, the MI model did not produce valid
inferences (the confidence intervals did not cover the true parameters in at least 0.938—accounting for
Monte Carlo error with 1000 repetitions—of all confidence intervals for a nominal 0.95 confidence level).
A 0 in a cell means that the MI model produced valid confidence intervals, but compared to other MI
models or complete case analyses (on the same data), they were never the shortest. The cell highlighted in
bold had the highest proportion of valid shortest intervals for that combination of data-generating process
and missingness mechanism.

Amelia Hot Deck Marbach Mixed
MAR-1 MAR-2 MCAR-1 MCAR-2 NI MAR-1 MAR-2 MAR-3 MAR MAR MCAR

Joint MVN

Amelia II⇠ 0.41 0.18 0.15
Amelia II* 0 0 0 0 0

Conditional

hotdeck⇠ 0.14 0.2 0.03 0.99
hotdeck* 0 0 0 0 0 0

mi⇠ 0.1 0.54 0.15 0.12 0.03 0.92
mi* 0 0 0 0 0 0 0

mice hd⇠ 0.12 0.45 0.21 0.18 0 0.51
mice hd* 0 0 0 0 0 0 0 0

mice pmm⇠ 0.36 0.18 0.14 0 0.01 0.08
mice pmm* 0 0 0 0 0 0 0

mice rf⇠ 0.15 0.2 0.04
mice rf* 0 0 0 0 0 0

Neural Net

rMIDAS 1⇠
rMIDAS 1* 0 0

rMIDAS 2⇠ 0.89
rMIDAS 2* 0 0 0

GAIN⇠

GAIN* 0 0

Complete case 0 0 0.49 1

7
60

simulations.For the Amelia MAR-1 experiment, none of the neural net based imputation models

provided valid inference. Furthermore, unsurprisingly, none of the methods provide valid

inference in the Amelia setting with non-ignorable (NI) missingness.

I want to highlight two main results. First, applying the benchmark to established MI

models shows that currently, no single best solution to handle missing values exists. The bold

cells are scattered throughout the table. This means that for most experiments, a different MI

model produces the shortest valid confidence intervals.

Second, novel neural net based MI models failed to produce valid inferences under almost

all combinations of missingness mechanisms and data-generating processes. With the default

values of rMIDAS (rMIDAS 1 in table 1) and Rubin’s congenial combining rules as suggested by

Lall and Robinson (2022), the method did not produce valid inference for any of the experiments.

The same is true for GAIN with the default values suggested by Yoon et al. (2018) and Rubin’s

rules to combine the results.

For further analysis of the results, I include figures for each of the eleven runs combinations

of data-generating processes and missingness mechanisms in the Supporting Information SI.6.

3.1 What can I conclude when the results from MI and complete case

analysis are (not) different?

The answer depends on the data-generating process, the missingness process, and the

interplay of the imputation and analysis model. The results from the Monte Carlo simulations

illustrate all five cases.

Case 1: The results of both MI and complete case analysis are similar, and both provide

valid inferences. This can be the case when the data is MCAR, and both the imputation and

analysis models are correctly specified. An example is the Amelia MCAR-1 experiment. In this

case, the question is, which method is using your available data more efficiently? As the results

in table 1 show, several imputation models, provide shorter confidence intervals than complete

case analysis. Almost all methods provide valid inferences.

Case 2: The results of both MI and complete case analysis are similar, and both provide

invalid inferences. An example is an MCAR missingness mechanism, where the imputation and

8
61

analysis models are congenial but wrongly specified (i.e., both the imputer and the analyst forget

important interaction terms). This happens, for example, in the Mixed MCAR experiment if the

analyst also forgets the interaction term in the analysis model.

Case 3: The results of MI and complete case analysis are different, and both provide invalid

inferences. This happens, for example, in the Amelia NI experiment when the missingness

mechanism is non-ignorable.

Case 4: The results of MI and complete case analysis are different, and MI provides valid

inferences. A good example is the Amelia MAR-1 experiment, with MAR missingness and

correctly specified imputation and analysis models. This is one of the original example cases for

MI. When the data is MAR, results from complete case analysis provide invalid inferences, as

they are biased. A correctly specified imputation model combined with a congenial analysis

model recovers unbiased valid inferences.

Case 5: The results of MI and complete case analysis are different, and complete case

analysis provides valid inferences. The Mixed MCAR experiment is an excellent example for

this case. If the data are MCAR but the imputation model is wrongly specified, complete case

analysis recovers unbiased valid inferences, whereas, most MI models fail.

In applied settings, understanding similarities and differences between results from complete

case analysis and MI only makes sense with further reasoning about the data-generating process

and the missingness mechanism. Observing similarities or differences between estimates of MI

and complete case analysis is not enough to decide which results are trustworthy.

4 Conclusion

In this letter, I present a novel benchmark to evaluate MI models. Applying the benchmark to

established MI models shows that currently, no single best solution to handle missing values exists.

Novel neural net based MI models—like MIDAS (Lall and Robinson, 2022) and GAIN (Yoon

et al., 2018)—failed to produce valid inferences under almost all combinations of missingness

mechanisms and data-generating processes. The results also highlight that (no) differences

between results from MI models and complete case analysis should be interpreted with caution.

9
62

This leads me to offer concrete advice for applied political scientists, where answers to the

following questions could go a long way in improving empirical practice:

• Do you need MI to recover your statistic of interest?

• If so, what assumptions about the data-generating process and missingness mechanism do

you need to make for a particular MI model?

• Are the MI model and the analysis model compatible/congenial?

Furthermore, showing a difference (or no difference) between the results of complete case

analysis in comparison to MI is neither a necessary nor sufficient condition to conclude that

results with either method are better. An interesting future research direction to guide researchers

to reason about missingness in the context of their analyses could be graphical models as

proposed by Mohan and Pearl (2021).

Researchers developing new algorithms should have answers to the following questions:

• Under what conditions does your proposed MI model improve on established MI models?

• What are the failure cases of your new model?

The benchmark can be a useful tool to evaluate new MI models against existing methods

and facilitate the development of new MI models that are useful for applied researchers.

Software

A software implementation of the proposed method is available as an open-source R package,

MIBench, at https://github.com/mneunhoe/MIBench.

References

Arel-Bundock, V. and K. J. Pelc (2018). When can multiple imputation improve regression

estimates? Political Analysis 26(2), 240–245.

Bartlett, J. W., S. R. Seaman, I. R. White, and J. R. Carpenter (2015, Aug). Multiple imputation

of covariates by fully conditional specification: Accommodating the substantive model.

Statistical Methods in Medical Research 24(4), 462–487.

10
63

Cranmer, S. J. and J. Gill (2013). We have to be discrete about this: A non-parametric imputation

technique for missing categorical data. British Journal of Political Science 43(2), 425–449.

Hollenbach, F. M., I. Bojinov, S. Minhas, N. W. Metternich, M. D. Ward, and A. Volfovsky

(2021). Multiple imputation using gaussian copulas. Sociological Methods & Research 50(3),

1259–1283.

Honaker, J., G. King, and M. Blackwell (2011). Amelia II: A program for missing data. Journal

of Statistical Software 45(7), 1–47.

King, G., J. Honaker, A. Joseph, and K. Scheve (2001). Analyzing Incomplete Political

Science Data: An Alternative Algorithm for Multiple Imputation. American Political Science

Review 95(1), 49–69.

Kropko, J., B. Goodrich, A. Gelman, and J. Hill (2014). Multiple imputation for continuous and

categorical data: Comparing joint multivariate normal and conditional approaches. Political

Analysis 22(4), 497–519.

Lall, R. and T. Robinson (2022). The midas touch: Accurate and scalable missing-data imputation

with deep learning. Political Analysis 30(2), 179–196.

Marbach, M. (2022). Choosing imputation models. Political Analysis 30(4), 597–605.

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical

Science 9(4), 538–558.

Mohan, K. and J. Pearl (2021). Graphical models for processing missing data. Journal of the

American Statistical Association 116(534), 1023–1037.

Pepinsky, T. B. (2018). A note on listwise deletion versus multiple imputation. Political

Analysis 26(4), 480–488.

Royston, P. (2004). Multiple imputation of missing values. The Stata Journal 4(3), 227–241.

Rubin, D. B. (1978). Multiple imputations in sample surveys-a phenomenological bayesian

approach to nonresponse. In Proceedings of the survey research methods section of the

American Statistical Association, Volume 1, pp. 20–34. American Statistical Association

Alexandria, VA, USA.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American statistical

11
64

Association 91(434), 473–489.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys, Volume 81. John Wiley &

Sons.

Stekhoven, D. J. and P. Bühlmann (2012). Missforest-Non-parametric missing value imputation

for mixed-type data. Bioinformatics 28(1), 112–118.

Su, Y.-S., A. Gelman, J. Hill, and M. Yajima (2011). Multiple imputation with diagnostics (mi)

in r: Opening windows into the black box. Journal of Statistical Software 45(2), 1–31.

van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Boca Raton, FL.:

CRC Press.

van Buuren, S. and K. Groothuis-Oudshoorn (2011). mice: Multivariate imputation by chained

equations in r. Journal of Statistical Software 45(3), 1–67.

Xie, X. and X. L. Meng (2017). Dissecting multiple imput a tion from a multi-phase inference

perspective: What happens when god’s, imputer’s and anal Yst’s models are uncongenial?

Statistica Sinica 27(4), 1485–1545.

Yoon, J., J. Jordon, and M. van der Schaar (2018, 10–15 Jul). Gain: Missing data imputation

using generative adversarial nets. In J. Dy and A. Krause (Eds.), Proceedings of the 35th

International Conference on Machine Learning, Volume 80 of Proceedings of Machine

Learning Research, pp. 5689–5698. PMLR.

12
65

Supporting Information:

A Common Benchmark to Evaluate Multiple Imputation Algorithms

Marcel Neunhoeffer1,2.

1
LMU Munich.

2
Boston University.

Abstract

This is the Supporting Information for the letter “A Common Benchmark to Evaluate

Multiple Imputation Algorithms”.

Multiple imputation (MI) of missing data is an essential tool for quantitative research in po-

litical science. Many di�erent MI models are available, and new MI models are introduced

to the political science literature. However, it needs to be clarified how to evaluate new

MI models or compare existing ones. This, in turn, means for applied researchers that, it

is hard to choose between imputation models. This letter presents a new benchmark for

evaluating multiple imputation (MI) models. The R-package MIBench accompanying this

letter makes applying the benchmark and comparing existing imputation models easy. I

also provide benchmark results and show that no one-fits-all solution to handle missing

data exists. It is striking that seemingly more flexible imputation methods, e.g., based

on neural nets, do not perform well. Furthermore, I show that comparing results from

MI to other methods, like complete case analysis on the same data set, can only be

conclusive with further assumptions. The results highlight a need for careful evaluation

of MI models before using them in applied research. I conclude with practical advice for

applied researchers and developers of new imputation algorithms.

1
66

SI.1 Overview of “multiple imputation” in Political Science

To get an overview of the use of MI in political science research, I searched for the term

“multiple imputation” in articles published in some of the top political science journals (in

particular, the American Journal of Political Science, the American Political Science Review,

the Journal of Politics, and Political Analysis) between 2017 and 2022.

The following Google Scholar search query reproduces my search:

https://scholar.google.com/scholar?start=0&q=%22multiple+imputation%22+

source:%22Political+Analysis%22+OR+source:%22American+Political+Science+Review%

22+OR+source:%22American+Journal+of+Political+Science%22+OR+source:%22Journal+

of+Politics%22&hl=en&as_sdt=0,22&as_ylo=2017&as_yhi=2022.

The search returned the 57 articles I present in table SI.1. I then coded each paper on

whether the authors use MI for their main analyses, additional analyses, or whether it is an MI

methods paper or has nothing to do with MI. To get an overview of what MI methods are popular

in the field, I also coded which imputation model/software package the authors used (in some

cases, I could not determine the MI model).

38 of the 57 papers are applied studies, of which 24 use MI for their main analysis, and 14

are applications where MI was used for additional analyses (i.e., robustness checks or additional

results in an Appendix). Four papers are MI methods papers (all published in Political Analysis),

and 15 papers did neither apply MI for their analyses nor are MI methods papers.

As for MI models (as indicated by the use of statistical software packages) used in applied

studies, I could determine the used model for 36 of the 38 studies. 18 used the amelia (Honaker

et al., 2011) package, nine used the Stata mi (see, e.g., Royston, 2004) functions, five used the

mice (van Buuren and Groothuis-Oudshoorn, 2011) R-package, three the mi (Su et al., 2011)

R-package and one paper wrote their own custom MI model.

2
67

Table SI.1: Overview of the 57 “multiple imputation” papers.
Article MI for main analyses MI for additional analyses MI methods paper Other (no direct use of MI) MI model
Bonica and Sen (2017) 3 amelia
Busby et al. (2017) 3 Stata mi
Coppock et al. (2017) 3
Grossman et al. (2017) 3 Stata mi
Hemker and Rink (2017) 3 Stata mi
De Kadt (2017) 3 amelia
Osgood et al. (2017) 3 amelia
Pietryka and DeBats (2017) 3 amelia
Rueda (2017) 3 amelia
Smidt (2017) 3 amelia
Solt et al. (2017) 3 mi
Arel-Bundock and Pelc (2018) 3
Beazer and Blake (2018) 3 amelia
Margolis (2018) 3
Pan and Xu (2018) 3 amelia
Pepinsky (2018) 3
Rueda (2018) 3 Stata mi
Slapin et al. (2018) 3
Alvarez et al. (2019) 3
Carroll and Kenkel (2019) 3 amelia
Caughey and Warshaw (2019) 3
Dorsch and Maarek (2019) 3 Stata mi
Hangartner et al. (2019) 3 mice
Harris and Posner (2019) 3 custom
Pardos-Prado and Sagarzazu (2019) 3 Stata mi
Schultz and Mankin (2019) 3
Wing (2019) 3
Beckman and Schleiter (2020) 3 amelia
Lachapelle (2020) 3 mice
Lyall et al. (2020) 3 mi
Rivera (2020) 3 amelia
Simpser (2020) 3
Alizade et al. (2021) 3
Clark and Dolan (2021) 3 mice
Evans et al. (2021) 3
Fong and Tyler (2021) 3
Harden and Kirkland (2021) 3 amelia
Ketchley and El-Rayyes (2021) 3 Stata mi
Todd et al. (2021) 3 amelia
Bjarnegård et al. (2022) 3 Stata mi
Clark (2022) 3 mice
Eggers et al. (2022) 3 amelia
Erlich et al. (2022) 3
Eubank and Fresh (2022) 3 amelia
Fukumoto (2022) 3
Tai et al. (2022) 3 mi
Lall and Robinson (2022) 3 rMIDAS
Levy (2022) 3 amelia
López-Moctezuma et al. (2022) 3 amelia
Marbach (2022) 3
Mullin and Hansen (2022) 3 mice
Park and Yamauchi (2022) 3
Redeker (2022) 3 amelia
Wang (2022) 3 Stata mi
Zhirkov (2022) 3
Slough (2023) 3
Wang and Aronow (2023) 3

Note that the papers published in 2023 were already available as online first versions before 2023, and fell under the search query.

SI.2 Definitions

Useful notation: Following King et al. (2001), I use the following notation to describe

missing and complete data. The data matrix that contains # observations (both complete and

incomplete) in rows and : variables in columns is denoted by ⇡. Now, a missingness matrix

", with the same dimensions as ⇡, can be defined such that "8 9 = 18⇡8 9 = NA and "8 9 = 0

3
68

elsewhere8. This means the entries in matrix " indicate whether a particular value is missing.

Now, we can partition the matrix ⇡ into two disjoint subsets, ⇡>1B and ⇡<8B. ⇡>1B is the part of

⇡ which contains all entries for which the row sum of " = 0, and ⇡<8B contains all entries for

which the row sum of " � 1.

Complete case analysis: The standard procedure in most software packages only considers

cases that are fully observed for all variables in a model. That means that the number of

observations can differ between models that use different subsets of variables.

SI.2.1 Missingness Mechanisms

What determines whether a value is observed or missing? It is essential to distinguish

between the three following missingness mechanisms:

Missing completely at random (MCAR): Whether or not a particular value is observed is

determined by a purely random mechanism. In formal notation, this is when " is independent

of ⇡, %(" |⇡) = %("). This is typically not problematic, as this implies that the complete

cases are just an i.i.d subsample of the data with missingness. In these cases, complete case

analysis would generate unbiased results, yet with fewer available cases. In high-dimensional

applications, the combination of MCAR and complete case analysis can still be a severe problem

when hardly any cases are left for complete case analysis (see, e.g, Wang and Aronow, 2023).

Typical multiple imputation algorithms can handle MCAR missingness.

Missing at random (MAR): Whether or not a particular value is observed depends on

other observed values only. I.e., conditional on observed values, the missingness mechanism is

random. Formally, %(" |⇡) = %(" |⇡>1B). In these cases, an imputation model can be learned

based on the observed values. Complete case analysis will typically be biased.

Non-ingorable missingnes (NI) or Not missing at random (NMAR): The missingness

depends on values that are not observed. These might, e.g., be the missing values themselves or

some variable that is not part of the data set. This is when %(" |⇡) cannot be simplified, and

missingness depends on ⇡<8B as well. In these cases, neither complete case analysis nor multiple

8Note that King et al. (2001) define " the other way round, but this does not affect any subsequent

arguments.

4
69

imputation models can give any guarantees. The missing values can not be reasonably filled in

based on the observed values only, complete case analysis will also be biased.

SI.2.2 Combining Results from Multiple Completed Data Sets.

For valid inference, the results from the multiple completed data sets need to be combined

such that the variance within each of the completed data sets, as well as variance across the

completed data sets are accounted for.

Rubin’s rules (Rubin, 1987): Suppose you run your complete data analysis on < completed

(by the MI model) data sets. Then, the point estimate(s) are the average of the < results on each

completed data set. Using the notation from Xie and Meng (2017): \̄< = 1
<

P<
8=1 \̂

(8) , where \̂ (8)

is a vector, e.g., of regression coefficients, or a single point estimate, of the statistic of interest

calculated on the i-th completed data set.

The variance)< of \̄< is a sum of two terms:)< = *̄< + (1 + 1
<)⌫<, where *̄< is

the estimated within-imputation variance and ⌫< the estimated between-imputation variance.

*̄< = 1
<

P<
8=1*

(8) , i.e., * (8) is the variance estimate of the complete data analysis calculated on

the i-th completed data set. ⌫< = 1
<�1

P<
8=1(\̂ (8) � \̄<) (\̂ (8) � \̄<)) is the variance across the <

complete data estimates \̂ (8) .

Uncongenial rules (Xie and Meng, 2017): As Xie and Meng (2017) point out: “In general,

uncongenality should be regarded as the rule rather than the exception, and a simple confidence

valid procedure to combat any degree of uncongenality is to double Rubin’s MI variance estimate”

(1494). This means, the more conservative combining rule for the variance of \̄< is to take 2)<

after applying Rubin’s rules.

5
70

SI.3 Data Generating Processes in the Benchmark

SI.3.1 The Amelia Experiments

These Monte Carlo experiments were first presented in King et al. (2001). The multivariate

normal data-generating process makes this the home turf case for multivariate normal imputation

models like Amelia II.

The Data-Generating Process. The complete data ⇡ is drawn from a multivariate normal

distribution with the mean vector ` = (0, 0, 0, 0, 0), and the variance-covariance matrix ⌃ =

©≠≠≠≠≠≠≠≠≠≠≠≠
´

1.00 �0.12 �0.10 0.50 0.10

�0.12 1.00 0.10 �0.60 0.10

�0.10 0.10 1.00 �0.50 0.10

0.50 �0.60 �0.50 1.00 0.10

0.10 0.10 0.10 0.10 1.00

™ÆÆÆÆÆÆÆÆÆÆÆÆ
¨

.

= 500 for all experiments presented in this letter, but can be set to different values.

The Missingness Mechanisms. There are five missingness mechanisms for the Amelia

experiments. For all missingness mechanisms, first, an auxiliary matrix *, with the same

dimensions as ⇡ and " , is initialized with i.i.d. draws from a uniform distribution on the interval

(0, 1). " is initialized with 0 everywhere (essentially starting with a fully observed data set).

MAR-1: For MAR-1 missingness, the values of the missingness matrix " are updated in

the following way:

• The fourth column of ⇡, ⇡84, is set to always observed, i.e., "84 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18*81 < 0.06.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18⇡84 <

�1 ^*82 < 0.9.

• The missingness of the third column of ⇡, ⇡83, is determined by: "83 = 18⇡84 <

�1 ^*83 < 0.9.

• The missingness of the fifth column of ⇡, ⇡85, is determined by: "85 = 18*85 < 0.06.

This missingness mechanism is MAR, as the missingness of values in the second and third

6
71

columns depends on the observed values of the data.

MAR-2: For MAR-2 missingness, the values of the missingness matrix " are updated in

the following way:

• The fourth column of ⇡, ⇡84, is set to always observed, i.e., "84 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18*81 < 0.12.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18⇡84 <

�0.4 ^*82 < 0.9.

• The missingness of the third column of ⇡, ⇡83, is determined by: "83 = 18⇡84 <

�0.4 ^*83 < 0.9.

• The missingness of the fifth column of ⇡, ⇡85, is determined by: "85 = 18*85 < 0.12.

This missingness mechanism is MAR, as the missingness of values in the second and third

columns depends on the observed values of the data. In comparison to MAR-1, MAR-2 has a

higher number of expected missing values.

MCAR-1: For MCAR-1 missingness, the values of the missingness matrix " are updated

in the following way:

• The fourth column of ⇡, ⇡84, is set to always observed, i.e., "84 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18*81 < 0.06.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18*82 < 0.06.

• The missingness of the third column of ⇡, ⇡83, is determined by: "83 = 18*83 < 0.06.

• The missingness of the fifth column of ⇡, ⇡85, is determined by:"85 = 18*85 < 0.06.

This missingness mechanism is MCAR, as the missingness of values is only determined by

the values of * independent of the data ⇡.

MCAR-2: For MCAR-2 missingness, the values of the missingness matrix " are updated

in the following way:

• The fourth column of ⇡, ⇡84, is set to always observed, i.e., "84 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18*81 < 0.19.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18*82 < 0.19.

• The missingness of the third column of ⇡, ⇡83, is determined by: "83 = 18*83 < 0.19.

• The missingness of the fifth column of ⇡, ⇡85, is determined by:"85 = 18*85 < 0.19.

7
72

This missingness mechanism is MCAR, as the missingness of values is only determined

by the values of * independent of the data ⇡. Compared to MCAR-1, MCAR-2 has a higher

proportion of missing values.

NI: For NI missingness, the values of the missingness matrix " are updated in the following

way:

• The fourth column of ⇡, ⇡84, is set to always observed, i.e., "84 = 0 for all observations.

• The fifth column of ⇡, ⇡85, is set to always observed, i.e., "85 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18⇡81 < �0.95.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18⇡84 < �0.52.

• The missingness of the third column of ⇡, ⇡83, is determined by: "83 = 18⇡3 > 0.48.

As the missingness for values in the first and third columns depends on unobserved values

of the data, this missingness mechanism is non-ignorable.

The Analysis Model and Statistics of Interest. For all of the Amelia experiments, the analysis

model of interest is the following linear regression model: -81 = V0 + V1-82 + V2-83 + n8, with

n ⇠ N(0,f). The true coefficients of interest are V0 = 0, V1 = �0.11, and V3 = �0.089.

SI.3.2 The Hot Deck Experiments

These Monte Carlo experiments were first presented in Cranmer and Gill (2013).

The Data-Generating Process. The complete data ⇡ is drawn from a multivariate normal

distribution with the mean vector ` = (0, 0, 0, 0, 0), and the variance-covariance matrix ⌃ =

©≠≠≠≠≠≠≠≠≠≠≠≠
´

1.00 0.80 0.80 0.80 0.80

0.80 1.00 0.80 0.80 0.80

0.80 0.80 1.00 0.80 0.80

0.80 0.80 0.80 1.00 0.80

0.80 0.80 0.80 0.80 1.00

™ÆÆÆÆÆÆÆÆÆÆÆÆ
¨

.

All values of ⇡ 0 are then set to 0, and all values of ⇡ > 0 are set to 1. The number of

observations is # = 500.

8
73

The Missingness Mechanisms. There are three missingness mechanisms for the Hot Deck

experiments. The three mechanisms differ by the amount of missingness.

For all missingness mechanisms, first, an auxiliary matrix *, with the same dimensions as

⇡ and " , is initialized with i.i.d. draws from a uniform distribution on the interval (0, 1). Then,

* is updated such that * = 1 for all rows in which ⇡ holds at least one 1 in the third, fourth,

or fifth column. Furthermore, * = 1 for columns three, four, and five (this will make sure that

these values are observed). " is initialized with 0 everywhere (essentially starting with a fully

observed data set).

MAR-1: For MAR-1 missingness, the values of the missingness matrix " are updated in

the following way:

"8 9 = 18*8 9 < 0.2

As* is updated before, columns three, four, and five are always fully observed. Missingness,

furthermore, depends on values in these three columns, making this a MAR mechanism.

MAR-2 For MAR-2 missingness, the values of the missingness matrix " are updated in the

following way:

"8 9 = 18*8 9 < 0.5

As* is updated before, columns three, four, and five are always fully observed. Missingness,

furthermore, depends on values in these three columns, making this a MAR mechanism.

MAR-3: For MAR-3 missingness, the values of the missingness matrix " are updated in

the following way:

"8 9 = 18*8 9 < 0.8

As* is updated before, columns three, four, and five are always fully observed. Missingness,

furthermore, depends on values in these three columns, making this a MAR mechanism.

The Analysis Model and Statistics of Interest. For all of the Hot Deck experiments, the

analysis model of interest is the logistic regression model -81 ⇠ B(c8), with c8 = 1
1+4� (V0+V1-83+V2-84) .

The true regression coefficients for the fully observed data-generating process are V0 = �1.912,

V1 = 1.912, and V3 = 1.912.

9
74

SI.3.3 The Marbach Experiments

These Monte Carlo experiments were first presented in Marbach (2022).

The Data-Generating Process. To generate the data for the fully observed mixed data, I first

draw ⇡82 ⇠ U(�5, 5), i.e., ⇡82 is drawn from a uniform distribution. Then, ⇡83 ⇠ B(0.5).

Finally, ⇡81 = ⇡82⇡83 + n8, with n8 = N(` = 0,f = 1). The number of observations is # = 1000.

The Missingness Mechanism. There is one MAR missingness mechanism, MAR-1. " is

initialized with 0 everywhere (essentially starting with a fully observed data set). ⇡82 and ⇡83

are always fully observed. The proportion of missing values in ⇡81 depends on values of ⇡83.

First, two proportions are drawn from U(0.1, 0.5). The larger proportion ?; is the amount

of missingness for ⇡81, where ⇡83 = 1, and the smaller proportion ?B governs the amount of

missingness for ⇡81, where ⇡83 = 0, such that ?8 = ?;8⇡83 = 1 and ?8 = ?B8⇡83 = 0. The

proportions in ? are used to draw an auxiliary variable *8 ⇠ B(?8). Formally, "81 = 18*8 = 1.

This mechanism is MAR, as the missingness depends on observed values of ⇡83.

The Analysis Model and Statistics of Interest. For the Marbach experiment, the analysis

model of interest is the linear regression model -81 = V0 + V1-82 + V2-83 + V4-82-83. The true

coefficients of interest are V0 = 0, V1 = 0, V3 = 0 and V4 = 1.

SI.3.4 The Mixed Experiments

The Data-Generating Process. To generate the data for the fully observed mixed data, I first

draw ⇡81 ⇠ N(0, 1), i.e., ⇡81 is drawn from a standard normal distribution. Then, ⇡82 ⇠ B(0.5).

Finally, ⇡83 = ⇡81 � 2⇡81⇡82 + n8, with n8 = N(` = 0,f = 0.2). The number of observations is

= 1000.

The Missingness Mechanisms. There are two missingness mechanisms for the Mixed

experiments. For all missingness mechanisms, first, an auxiliary matrix *, with the same

dimensions as ⇡ and " , is initialized with i.i.d. draws from a uniform distribution on the interval

(0, 1). " is initialized with 0 everywhere (essentially starting with a fully observed data set).

10
75

MAR-1: For MAR-1 missingness, the values of the missingness matrix " are updated in

the following way:

• The third column of ⇡, ⇡83, is set to always observed, i.e., "84 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18⇡83 <

�1 ^*81 < 0.19.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18⇡83 <

�1 ^*82 < 0.19.

MCAR-1: For MCAR-1 missingness, the values of the missingness matrix " are updated

in the following way:

• The third column of ⇡, ⇡83, is set to always observed, i.e., "84 = 0 for all observations.

• The missingness of the first column of ⇡, ⇡81, is determined by: "81 = 18*81 < 0.19.

• The missingness of the second column of ⇡, ⇡82, is determined by: "82 = 18*82 < 0.19.

The Analysis Model and Statistics of Interest. For all of the Mixed experiments, the statistics

of interest are the coefficients of the following linear model: -83 = V0 + V1-81 + V2-82 + V4-81-82.

The true coefficients of interest are V0 = 0, V1 = 1, V3 = 0 and V4 = �2.

11
76

SI.4 The MIBench R-package

The MIBench R-package makes it easy to run the experiments I suggest in this letter.

Running the Monte Carlo experiments for a MI model9 with all the eleven experiments

from this letter is as simple as:

MIBench_results <-

run_MIBench_all_dgps(

MIalgorithm ,

store_runs = TRUE ,

store_results = TRUE ,

n_repetitions = 1000,

seed = 221208

)

Furthermore, as re-running all eleven combinations of data-generating processes and

missingness mechanisms with all MI models can be resource intensive, I include the results from

my runs (that I present in table 1) directly into the package. This means that when running the

benchmark with a new model and the same random seeds, the results are directly comparable to

the results presented in this letter.

9In the Supporting Information I describe how to wrap any MI model into a function that works

with MIBench.

12
77

SI.5 Imputation Models included in the Benchmark

In general, I used the default values provided in the respective packages. In the following, I

document the function calls to reproduce the MI models I present in table1.

SI.5.1 Wrapping MI models for MIBench

The MIBench package can work with any MI model as long as the call to it is wrapped in

the following function, which takes the data matrix as, and the number of completed data sets <

as input, and returns a named list with a list of the < imputations in the slot ‘ìmputations” and

the name of the procedure in the slot “MI_name”. If a MI model, for example, requires that the

data is preprocessed in a particular way this should happen within the function.

MIalgorithm <- function(data = NULL , m = 10) {

In case the data is not in the format needed for the

MI model , you can pre -process it here.

if (!is.null(data)) {

mi_obj <- my_favorite_MI_model(data , m = m)

} else {

mi_obj <- NULL

}

In case mi_obj is not the list of m completed data sets ,

you can post -process them here.

return(list(imputations = mi_obj ,

MI_name = "favorite"))

}

SI.5.2 Amelia II

This uses the amelia function provided by the Amelia R-package (Honaker et al., 2011).

The data is pre-processed, such that nominal and ordered factors are imputed correctly.

13
78

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

is_binary <- function(x) {

x0 <- na.omit(x)

is.numeric(x) && length(unique(x0)) %in% 1:2 && all(x0

%in% 0:1)

}

ok <- sapply(data.frame(data), is_binary)

data <-

replace(data.frame(data),

ok ,

lapply(data.frame(data)[ok], factor , levels =

0:1))

classes <- sapply(data.frame(data), class)

ords <- which(sapply(classes , function(x)

"ordered" %in% x))

if (length(ords) == 0)

ords <- NULL

noms <-

which(sapply(classes , function(x)

"factor" %in% x & length(x) == 1))

if (length(noms) == 0)

14
79

noms <- NULL

mi_obj <-

Amelia :: amelia(

data ,

m = m,

noms = noms ,

ords = ords ,

emburn = c(1, 75)

)

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj$imputations ,

MI_name = "amelia"))

}

SI.5.3 hot.deck

This MI model uses the hot.deck function provided by the hot.deck R-package (Cranmer

and Gill, 2013).

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

mi_obj <- hot.deck::hot.deck(data.frame(data), m = m)$

data

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

15
80

MI_name = "hotdeck"))

}

SI.5.4 mi

This MI model uses the mi functions provided by the mi R-package (Su et al., 2011). The

data is pre- and post-processed according to the mi workflow.

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

mi_obj <- mi:: missing_data.frame(data)

mi_obj <- mi::mi(mi_obj)

mi_obj <- mi:: complete(mi_obj , m = m)

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "mi"))

}

SI.5.5 mice

The mice R-package (van Buuren and Groothuis-Oudshoorn, 2011) comes with various

potential MI models. Furthermore, separate models could be specified for each column of a data

set.

SI.5.5.1 Predictive mean matching (pmm)

If the user does not specify which MI model to use, mice defaults to predictive mean

matching (pmm).

MIalgorithm <- function(data = NULL , m = 10) {

16
81

if (!is.null(data)) {

imp <- mice::mice(data , m = m)

mi_obj <- mice:: complete(imp , action = "all")

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "mice_pmm"))

}

SI.5.5.2 Hot Deck (hd)

The mice R-package also has an implementation of MI with the hot deck technique.

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

imp <- mice::mice(data , method = "hotDeck", m = m)

mi_obj <- mice:: complete(imp , action = "all")

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "mice_hd"))

}

SI.5.5.3 Random Forests (rf)

The mice R-package also includes an implementation of MI with the random forests for

each column.

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

17
82

imp <- mice::mice(data , method = "rf", m = m)

mi_obj <- mice:: complete(imp , action = "all")

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "mice_rf"))

}

SI.5.6 rMIDAS

MI with denoising autoencoders was introduced to the political science literature by Lall

and Robinson (2022). As the default values in the R-package rMIDAS differed from the default

values suggested in Lall and Robinson (2022), I evaluate two instances of rMIDAS. The results

between the two settings are pretty different. This leads to a natural question that goes beyond the

scope of this letter, how can one choose the optimal hyperparameters for such machine learning

based MI models?

The data is pre-processed similarly to the pre-processing necessary for Amelia (i.e., defining

nominal and ordered factors). To get the results in the same format as from other MI packages,

the data is post-processed (rMIDAS, for example, re-orders the columns).

SI.5.6.1 rMIDAS package defaults (rMIDAS 1)

The first set of experiments uses the default values provided in the rMIDAS package, i.e., no

parameters in the function call to rMIDAS are adjusted.

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

if (is.null(colnames(data))) {

colnames(data) <- paste0("X", 1:ncol(data))

}

18
83

is_binary <- function(x) {

x0 <- na.omit(x)

is.numeric(x) &&

length(unique(x0)) %in% 1:2 && all(x0 %in% 0:1)

}

ok <- sapply(data.frame(data), is_binary)

data <-

replace(data.frame(data),

ok ,

lapply(data.frame(data)[ok], factor , levels =

0:1))

classes <- sapply(data.frame(data), class)

ords <- which(sapply(classes , function(x)

"ordered" %in% x))

if (length(ords) == 0)

ords <- NULL

noms <-

which(sapply(classes , function(x)

"factor" %in% x & length(x) == 1))

if (length(noms) == 0)

noms <- NULL

imp <-

rMIDAS :: train(rMIDAS :: convert(

19
84

data.frame(data),

cat_cols = colnames(data)[noms],

minmax_scale = TRUE

))

mi_obj <- rMIDAS :: complete(imp , m = m)

mi_obj <- lapply(mi_obj , function(x)

x[, colnames(data)])

mi_obj <- lapply(mi_obj , function(x)

sapply(x, as.numeric))

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "rmidas"))

}

SI.5.6.2 rMIDAS paper defaults (rMIDAS 2)

As Lall and Robinson (2022) describe different default values in their experiments with

rMIDAS than implemented in the R-package, I rerun the experiments with this second set of

hyperparameters. The number of training epochs and the learning rate are adapted accordingly.

MIalgorithm <- function(data = NULL , m = 10) {

if (!is.null(data)) {

if (is.null(colnames(data))) {

colnames(data) <- paste0("X", 1:ncol(data))

}

is_binary <- function(x) {

20
85

x0 <- na.omit(x)

is.numeric(x) &&

length(unique(x0)) %in% 1:2 && all(x0 %in% 0:1)

}

ok <- sapply(data.frame(data), is_binary)

data <-

replace(data.frame(data),

ok ,

lapply(data.frame(data)[ok], factor , levels =

0:1))

classes <- sapply(data.frame(data), class)

ords <- which(sapply(classes , function(x)

"ordered" %in% x))

if (length(ords) == 0)

ords <- NULL

noms <-

which(sapply(classes , function(x)

"factor" %in% x & length(x) == 1))

if (length(noms) == 0)

noms <- NULL

imp <-

rMIDAS :: train(

rMIDAS :: convert(

21
86

data.frame(data),

cat_cols = colnames(data)[noms],

minmax_scale = TRUE

),

training_epochs = 5L,

learn_rate = 1e-4

)

mi_obj <- rMIDAS :: complete(imp , m = m)

mi_obj <- lapply(mi_obj , function(x)

x[, colnames(data)])

mi_obj <- lapply(mi_obj , function(x)

sapply(x, as.numeric))

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "rmidas"))

}

SI.5.7 GAIN

GAIN produces multiple imputations based on Generative Adversarial Nets (GANs) (GAIN

is the acronym for Generative Adversarial Imputation Nets) and was first introduced by Yoon

et al. (2018).

Changes to the GAIN implementation: When implementing GAIN I made a couple of

adjustments to the original code. First, although the authors state that GAIN can be used for MI,

they do not provide an implementation of drawing multiple completed data sets from a learned

22
87

Generator. The second change is fixing a bug in a pre-processing step within the GAIN model.

In the paper Yoon et al. (2018) state that the data should be normalized to the interval [0, 1]

as they use a sigmoid activation function in their Generator. Unfortunately, the normalization

function the authors provide in their code repository does not normalize data to this interval (the

sigmoid activation function is used nevertheless). I implemented normalization to the [0, 1]

range. Third, I fixed another minor bug that led the original GAIN implementation to fail in cases

where the first row of a data set contained missing values (based on how the python package

numpy handles missing values).

The updated gain.py script is part of the replication materials of this letter.

reticulate :: source_python("gain.py")

MIalgorithm <- function(data = NULL , m = 10L) {

if (!is.null(data)) {

mi_obj <-

gain(

data_x = data ,

gain_parameters = list(

batch_size = 64L,

hint_rate = 0.9,

alpha = 100,

iterations = 10000L

),

m = as.integer(m)

)

} else {

mi_obj <- NULL

}

return(list(imputations = mi_obj ,

MI_name = "gain"))

}

23
88

SI.6 Additional Results

SI.6.1 Additional Results for the Amelia Experiments

Figure SI.1: Confidence interval width plotted against the empirical coverage of confidence intervals for
the regression coefficients in the Amelia experiments.

24
89

SI.6.2 Additional Results for the Hot Deck Experiments

Figure SI.2: Confidence interval width plotted against the empirical coverage of confidence intervals for
the regression coefficients in the Hot Deck experiments.

SI.6.3 Additional Results for the Marbach Experiments

Figure SI.3: Confidence interval width plotted against the empirical coverage of confidence intervals for
the regression coefficients in the Marbach experiments.

SI.6.4 Additional Results for the Mixed Experiments

25
90

Figure SI.4: Confidence interval width plotted against the empirical coverage of confidence intervals for
the regression coefficients in the Mixed experiments.

26
91

References

Alizade, J., R. Dancygier, and R. K. Ditlmann (2021). National penalties reversed: The

local politics of citizenship and politician responsiveness to immigrants. The Journal of

Politics 83(3), 867–883.

Alvarez, R. M., L. R. Atkeson, I. Levin, and Y. Li (2019). Paying attention to inattentive survey

respondents. Political Analysis 27(2), 145–162.

Arel-Bundock, V. and K. J. Pelc (2018). When can multiple imputation improve regression

estimates? Political Analysis 26(2), 240–245.

Beazer, Q. H. and D. J. Blake (2018). The conditional nature of political risk: How home

institutions influence the location of foreign direct investment. American Journal of Political

Science 62(2), 470–485.

Beckman, T. and P. Schleiter (2020). Opportunistic election timing, a complement or substitute

for economic manipulation? The Journal of Politics 82(3), 1127–1141.

Bjarnegård, E., A. Engvall, S. Jitpiromsri, and E. Melander (2022). Armed violence and

patriarchal values: A survey of young men in thailand and their military experiences.

American Political Science Review, 1–15.

Bonica, A. and M. Sen (2017). A common-space scaling of the american judiciary and legal

profession. Political Analysis 25(1), 114–121.

Busby, E. C., J. N. Druckman, and A. Fredendall (2017). The political relevance of irrelevant

events. The Journal of Politics 79(1), 346–350.

Carroll, R. J. and B. Kenkel (2019). Prediction, proxies, and power. American Journal of

Political Science 63(3), 577–593.

Caughey, D. and C. Warshaw (2019). Public opinion in subnational politics.

Clark, R. (2022). Bargain down or shop around? outside options and imf conditionality. The

Journal of Politics 84(3), 000–000.

Clark, R. and L. R. Dolan (2021). Pleasing the principal: Us influence in world bank policymaking.

American Journal of Political Science 65(1), 36–51.

Coppock, A., A. S. Gerber, D. P. Green, and H. L. Kern (2017). Combining double sampling

and bounds to address nonignorable missing outcomes in randomized experiments. Political

27
92

Analysis 25(2), 188–206.

Cranmer, S. J. and J. Gill (2013). We have to be discrete about this: A non-parametric imputation

technique for missing categorical data. British Journal of Political Science 43(2), 425–449.

De Kadt, D. (2017). Voting then, voting now: The long-term consequences of participation in

south africa’s first democratic election. The Journal of Politics 79(2), 670–687.

Dorsch, M. T. and P. Maarek (2019). Democratization and the conditional dynamics of income

distribution. American Political Science Review 113(2), 385–404.

Eggers, A. C., D. Rubenson, and P. J. Loewen (2022). Who votes more strategically? evidence

from canada. The Journal of Politics 84(3), 000–000.

Erlich, A., S. G. Dantas, B. E. Bagozzi, D. Berliner, and B. Palmer-Rubin (2022). Multi-label

prediction for political text-as-data. Political analysis 30(4), 463–480.

Eubank, N. and A. Fresh (2022). Enfranchisement and incarceration after the 1965 voting rights

act. American Political Science Review, 1–16.

Evans, G., G. King, G. Evans, G. King, M. Schwenzfeier, A. Thakurta, J. Katz, G. King,

E. Rosenblatt, G. Evans, et al. (2021). Statistically valid inferences from differentially

private data releases, ii: Extensions to nonlinear transformations. Political Analysis 26(B2),

1161–1165.

Fong, C. and M. Tyler (2021). Machine learning predictions as regression covariates. Political

Analysis 29(4), 467–484.

Fukumoto, K. (2022). Nonignorable attrition in pairwise randomized experiments. Political

Analysis 30(1), 132–141.

Grossman, G., J. H. Pierskalla, and E. Boswell Dean (2017). Government fragmentation and

public goods provision. The Journal of Politics 79(3), 823–840.

Hangartner, D., E. Dinas, M. Marbach, K. Matakos, and D. Xefteris (2019). Does exposure

to the refugee crisis make natives more hostile? American political science review 113(2),

442–455.

Harden, J. J. and J. H. Kirkland (2021). does transparency inhibit political compromise?

American Journal of Political Science 65(2), 493–509.

Harris, J. A. and D. N. Posner (2019). (under what conditions) do politicians reward their

28
93

supporters? evidence from kenya’s constituencies development fund. American Political

Science Review 113(1), 123–139.

Hemker, J. and A. Rink (2017). Multiple dimensions of bureaucratic discrimination: Evidence

from german welfare offices. American Journal of Political Science 61(4), 786–803.

Honaker, J., G. King, and M. Blackwell (2011). Amelia II: A program for missing data. Journal

of Statistical Software 45(7), 1–47.

Ketchley, N. and T. El-Rayyes (2021). Unpopular protest: Mass mobilization and attitudes to

democracy in post-mubarak egypt. The Journal of Politics 83(1), 291–305.

King, G., J. Honaker, A. Joseph, and K. Scheve (2001). Analyzing Incomplete Political

Science Data: An Alternative Algorithm for Multiple Imputation. American Political Science

Review 95(1), 49–69.

Lachapelle, J. (2020). No easy way out: The effect of military coups on state repression. The

Journal of Politics 82(4), 1354–1372.

Lall, R. and T. Robinson (2022). The midas touch: Accurate and scalable missing-data imputation

with deep learning. Political Analysis 30(2), 179–196.

Levy, G. (2022). Evaluations of violence at the polls: Civilian victimization and support for

perpetrators after war. The Journal of Politics 84(2), 783–797.

López-Moctezuma, G., L. Wantchekon, D. Rubenson, T. Fujiwara, and C. Pe Lero (2022). Policy

deliberation and voter persuasion: Experimental evidence from an election in the philippines.

American Journal of Political Science 66(1), 59–74.

Lyall, J., Y.-Y. Zhou, and K. Imai (2020). Can economic assistance shape combatant support in

wartime? experimental evidence from afghanistan. American Political Science Review 114(1),

126–143.

Marbach, M. (2022). Choosing imputation models. Political Analysis 30(4), 597–605.

Margolis, M. F. (2018). How politics affects religion: Partisanship, socialization, and religiosity

in america. The Journal of Politics 80(1), 30–43.

Mullin, M. and K. Hansen (2022). Local news and the electoral incentive to invest in infrastructure.

American Political Science Review, 1–6.

Osgood, I., D. Tingley, T. Bernauer, I. S. Kim, H. V. Milner, and G. Spilker (2017). The

29
94

charmed life of superstar exporters: Survey evidence on firms and trade policy. The Journal

of Politics 79(1), 133–152.

Pan, J. and Y. Xu (2018). China’s ideological spectrum. The Journal of Politics 80(1), 254–273.

Pardos-Prado, S. and I. Sagarzazu (2019). Economic responsiveness and the political conditioning

of the electoral cycle. The Journal of Politics 81(2), 441–455.

Park, J. H. and S. Yamauchi (2022). Change-point detection and regularization in time series

cross-sectional data analysis. Political Analysis, 1–21.

Pepinsky, T. B. (2018). A note on listwise deletion versus multiple imputation. Political

Analysis 26(4), 480–488.

Pietryka, M. T. and D. A. DeBats (2017). It’s not just what you have, but who you know:

Networks, social proximity to elites, and voting in state and local elections. American Political

Science Review 111(2), 360–378.

Redeker, N. (2022). The politics of stashing wealth: The decline of labor power and the global

rise in corporate savings. The Journal of Politics 84(2), 975–991.

Rivera, C. V. (2020). Loyalty or incentives? how party alignment affects bureaucratic performance.

The Journal of Politics 82(4), 1287–1304.

Royston, P. (2004). Multiple imputation of missing values. The Stata Journal 4(3), 227–241.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Rueda, D. (2018). Food comes first, then morals: Redistribution preferences, parochial altruism,

and immigration in western europe. The Journal of Politics 80(1), 225–239.

Rueda, M. R. (2017). Small aggregates, big manipulation: Vote buying enforcement and

collective monitoring. American Journal of Political Science 61(1), 163–177.

Schultz, K. A. and J. S. Mankin (2019). Is temperature exogenous? the impact of civil conflict

on the instrumental climate record in sub-saharan africa. American Journal of Political

Science 63(4), 723–739.

Simpser, A. (2020). The culture of corruption across generations: An empirical study of bribery

attitudes and behavior. The Journal of Politics 82(4), 1373–1389.

Slapin, J. B., J. H. Kirkland, J. A. Lazzaro, P. A. Leslie, and T. O’grady (2018). Ideology,

grandstanding, and strategic party disloyalty in the british parliament. American Political

30
95

Science Review 112(1), 15–30.

Slough, T. (2023). Phantom counterfactuals. American Journal of Political Science 67(1),

137–153.

Smidt, C. D. (2017). Polarization and the decline of the american floating voter. American

Journal of Political Science 61(2), 365–381.

Solt, F., Y. Hu, K. Hudson, J. Song, and D. E. Yu (2017). Economic inequality and class

consciousness. The Journal of Politics 79(3), 1079–1083.

Su, Y.-S., A. Gelman, J. Hill, and M. Yajima (2011). Multiple imputation with diagnostics (mi)

in r: Opening windows into the black box. Journal of Statistical Software 45(2), 1–31.

Tai, Y. C., Y. Hu, and F. Solt (2022). Democracy, public support, and measurement uncertainty.

American Political Science Review, 1–7.

Todd, J. D., E. J. Malesky, A. Tran, and Q. A. Le (2021). Testing legislator responsiveness to

citizens and firms in single-party regimes: A field experiment in the vietnamese national

assembly. The Journal of Politics 83(4), 1573–1588.

van Buuren, S. and K. Groothuis-Oudshoorn (2011). mice: Multivariate imputation by chained

equations in r. Journal of Statistical Software 45(3), 1–67.

Wang, J. S. and P. M. Aronow (2023). Listwise deletion in high dimensions. Political Analysis,

1–7.

Wang, Y. (2022). Blood is thicker than water: Elite kinship networks and state building in

imperial china. American Political Science Review, 1–15.

Wing, C. (2019). What can instrumental variables tell us about nonresponse in household surveys

and political polls? Political Analysis 27(3), 320–338.

Xie, X. and X. L. Meng (2017). Dissecting multiple imput a tion from a multi-phase inference

perspective: What happens when god’s, imputer’s and anal Yst’s models are uncongenial?

Statistica Sinica 27(4), 1485–1545.

Yoon, J., J. Jordon, and M. van der Schaar (2018, 10–15 Jul). Gain: Missing data imputation

using generative adversarial nets. In J. Dy and A. Krause (Eds.), Proceedings of the 35th

International Conference on Machine Learning, Volume 80 of Proceedings of Machine

Learning Research, pp. 5689–5698. PMLR.

31
96

Zhirkov, K. (2022). Estimating and using individual marginal component effects from conjoint

experiments. Political Analysis 30(2), 236–249.

32
97

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K.,
and Zhang, L. (2016). Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’16, pages 308–318, New York, NY, USA. ACM.

Abadie, A., Diamond, A., and Hainmueller, J. (2015). Comparative politics
and the synthetic control method. American Journal of Political Science,
59(2):495–510.

Abowd, J. M. (2018). The U.S. census bureau adopts differential privacy. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, page
2867.

Alizade, J., Dancygier, R., and Ditlmann, R. K. (2021). National penalties

99

reversed: The local politics of citizenship and politician responsiveness to immi-
grants. The Journal of Politics, 83(3):867–883.

Alvarez, R. M., Atkeson, L. R., Levin, I., and Li, Y. (2019). Paying attention
to inattentive survey respondents. Political Analysis, 27(2):145–162.

Arel-Bundock, V. and Pelc, K. J. (2018). When can multiple imputation im-
prove regression estimates? Political Analysis, 26(2):240–245.

Arjovsky, M., Chintala, S., and Bottou, L. (2017a). Wasserstein GAN. CoRR,
abs/1701.07875.

Arjovsky, M., Chintala, S., and Bottou, L. (2017b). Wasserstein generative
adversarial networks. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pages 214–223. JMLR.org.

Arnold, C. and Neunhoeffer, M. (2020). Really useful synthetic data–a frame-
work to evaluate the quality of differentially private synthetic data. arXiv
preprint arXiv:2004.07740.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. (2017). Generalization
and equilibrium in generative adversarial nets (GANs). In Precup, D. and Teh,
Y. W., editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 224–
232, International Convention Centre, Sydney, Australia. PMLR.

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(6):121–
164.

Athey, S., Imbens, G. W., Metzger, J., and Munro, E. (2021). Using wasser-
stein generative adversarial networks for the design of monte carlo simulations.

100

Journal of Econometrics.

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I., and Odena, A. (2019a). Dis-
criminator rejection sampling. In International Conference on Learning Repre-
sentations.

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I. J., and Odena, A. (2019b).
Discriminator rejection sampling. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Bartlett, J. W., Seaman, S. R., White, I. R., and Carpenter, J. R. (2015). Mul-
tiple imputation of covariates by fully conditional specification: Accommodat-
ing the substantive model. Statistical Methods in Medical Research, 24(4):462–
487.

Beaulieu-Jones, B. K., Wu, Z. S., Williams, C., Lee, R., Bhavnani, S. P., Byrd,
J. B., and Greene, C. S. (2019). Privacy-preserving generative deep neural
networks support clinical data sharing. Circulation: Cardiovascular Quality
and Outcomes, 12(7):e005122.

Beazer, Q. H. and Blake, D. J. (2018). The conditional nature of political
risk: How home institutions influence the location of foreign direct investment.
American Journal of Political Science, 62(2):470–485.

Beckman, T. and Schleiter, P. (2020). Opportunistic election timing, a com-
plement or substitute for economic manipulation? The Journal of Politics,
82(3):1127–1141.

Bjarnegård, E., Engvall, A., Jitpiromsri, S., and Melander, E. (2022). Armed
violence and patriarchal values: A survey of young men in thailand and their
military experiences. American Political Science Review, pages 1–15.

101

Bonica, A. and Sen, M. (2017). A common-space scaling of the american judi-
ciary and legal profession. Political Analysis, 25(1):114–121.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Busby, E. C., Druckman, J. N., and Fredendall, A. (2017). The political rele-
vance of irrelevant events. The Journal of Politics, 79(1):346–350.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag, V., Tramèr, F., Balle,
B., Ippolito, D., and Wallace, E. (2023). Extracting training data from diffu-
sion models.

Carroll, R. J. and Kenkel, B. (2019). Prediction, proxies, and power. American
Journal of Political Science, 63(3):577–593.

Caughey, D. and Warshaw, C. (2019). Public opinion in subnational politics.

Chaudhuri, K. and Vinterbo, S. A. (2013). A stability-based validation proce-
dure for differentially private machine learning. In Advances in Neural Infor-
mation Processing Systems, pages 2652–2660.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794.

Clark, R. (2022). Bargain down or shop around? outside options and imf con-
ditionality. The Journal of Politics, 84(3):000–000.

Clark, R. and Dolan, L. R. (2021). Pleasing the principal: Us influence in
world bank policymaking. American Journal of Political Science, 65(1):36–51.

Coppock, A., Gerber, A. S., Green, D. P., and Kern, H. L. (2017). Combin-
ing double sampling and bounds to address nonignorable missing outcomes in
randomized experiments. Political Analysis, 25(2):188–206.

102

Cranmer, S. J. and Gill, J. (2013). We have to be discrete about this: A non-
parametric imputation technique for missing categorical data. British Journal
of Political Science, 43(2):425–449.

De Kadt, D. (2017). Voting then, voting now: The long-term consequences of
participation in south africa’s first democratic election. The Journal of Politics,
79(2):670–687.

Denton, E., Gross, S., and Fergus, R. (2016). Semi-supervised learning with
context-conditional generative adversarial networks.

Differential Privacy Team, Apple (2017). Learning with privacy at scale. https:
//machinelearning.apple.com/docs/learning-with-privacy-at-scale/applediffere
ntialprivacysystem.pdf.

Ding, B., Kulkarni, J., and Yekhanin, S. (2017). Collecting telemetry data
privately. In Advances in Neural Information Processing Systems 30, NIPS ’17,
pages 3571–3580. Curran Associates, Inc.

Dorsch, M. T. and Maarek, P. (2019). Democratization and the conditional dy-
namics of income distribution. American Political Science Review, 113(2):385–
404.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise
to sensitivity in private data analysis. In Proceedings of the 3rd Theory of
Cryptography Conference, volume 3876, pages 265–284.

Eggers, A. C., Rubenson, D., and Loewen, P. J. (2022). Who votes more
strategically? evidence from canada. The Journal of Politics, 84(3):000–000.

Erlich, A., Dantas, S. G., Bagozzi, B. E., Berliner, D., and Palmer-Rubin, B.
(2022). Multi-label prediction for political text-as-data. Political analysis,

103

https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf

30(4):463–480.

Erlingsson, Ú., Pihur, V., and Korolova, A. (2014). RAPPOR: Randomized
aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM Conference on Computer and Communications Security, CCS ’14, pages
1054–1067, New York, NY, USA. ACM.

Eubank, N. and Fresh, A. (2022). Enfranchisement and incarceration after the
1965 voting rights act. American Political Science Review, pages 1–16.

Evans, G., King, G., Evans, G., King, G., Schwenzfeier, M., Thakurta, A.,
Katz, J., King, G., Rosenblatt, E., Evans, G., et al. (2021). Statistically valid
inferences from differentially private data releases, ii: Extensions to nonlinear
transformations. Political Analysis, 26(B2):1161–1165.

Falbel, D. (2022). torchvision: Models, Datasets and Transformations for Im-
ages. R package version 0.4.1.

Falbel, D. and Luraschi, J. (2022). torch: Tensors and Neural Networks with
’GPU’ Acceleration. R package version 0.7.2.

Fong, C. and Tyler, M. (2021). Machine learning predictions as regression co-
variates. Political Analysis, 29(4):467–484.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119 – 139.

Frigerio, L., de Oliveira, A. S., Gomez, L., and Duverger, P. (2019). Differen-
tially private generative adversarial networks for time series, continuous, and
discrete open data. In ICT Systems Security and Privacy Protection - 34th

104

IFIP TC 11 International Conference, SEC 2019, Lisbon, Portugal, June 25-
27, 2019, Proceedings, pages 151–164.

Fukumoto, K. (2022). Nonignorable attrition in pairwise randomized experi-
ments. Political Analysis, 30(1):132–141.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Garnier, S., Ross, N., Rudis, R., Camargo, A. P., Pedro, A., Sciaini, M., and
Scherer, C. (2021). viridis - Colorblind-Friendly Color Maps for R. R package
version 0.6.2.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. Ad-
vances in Neural Information Processing Systems 27, pages 2672–2680.

Grossman, G., Pierskalla, J. H., and Boswell Dean, E. (2017). Government
fragmentation and public goods provision. The Journal of Politics, 79(3):823–
840.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.
(2017). Improved training of wasserstein gans. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc.

Hangartner, D., Dinas, E., Marbach, M., Matakos, K., and Xefteris, D. (2019).
Does exposure to the refugee crisis make natives more hostile? American politi-
cal science review, 113(2):442–455.

105

Harden, J. J. and Kirkland, J. H. (2021). does transparency inhibit political
compromise? American Journal of Political Science, 65(2):493–509.

Hardt, M., Ligett, K., and McSherry, F. (2012). A simple and practical algo-
rithm for differentially private data release. In Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., pages 2348–2356.

Hardt, M. and Rothblum, G. N. (2010). A multiplicative weights mechanism
for privacy-preserving data analysis. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Ve-
gas, Nevada, USA, pages 61–70.

Harris, J. A. and Posner, D. N. (2019). (under what conditions) do politicians
reward their supporters? evidence from kenya’s constituencies development
fund. American Political Science Review, 113(1):123–139.

Hemker, J. and Rink, A. (2017). Multiple dimensions of bureaucratic discrim-
ination: Evidence from german welfare offices. American Journal of Political
Science, 61(4):786–803.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S.
(2017). Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Hoang, Q., Nguyen, T. D., Le, T., and Phung, D. (2018a). MGAN: Training
generative adversarial nets with multiple generators. In International Confer-
ence on Learning Representations.

106

Hoang, Q., Nguyen, T. D., Le, T., and Phung, D. (2018b). MGAN: Training
generative adversarial nets with multiple generators. In International Confer-
ence on Learning Representations.

Hollenbach, F. M., Bojinov, I., Minhas, S., Metternich, N. W., Ward, M. D.,
and Volfovsky, A. (2021). Multiple imputation using gaussian copulas. Socio-
logical Methods & Research, 50(3):1259–1283.

Honaker, J., King, G., and Blackwell, M. (2011). Amelia II: A program for
missing data. Journal of Statistical Software, 45(7):1–47.

Huster, T., Cohen, J., Lin, Z., Chan, K., Kamhoua, C., Leslie, N. O., Chiang,
C.-Y. J., and Sekar, V. (2021). Pareto gan: Extending the representational
power of gans to heavy-tailed distributions. In Meila, M. and Zhang, T., ed-
itors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 4523–4532.
PMLR.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2016). Image-to-image trans-
lation with conditional adversarial networks.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144.

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T.
(2020). Analyzing and improving the image quality of stylegan. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

107

Ketchley, N. and El-Rayyes, T. (2021). Unpopular protest: Mass mobilization
and attitudes to democracy in post-mubarak egypt. The Journal of Politics,
83(1):291–305.

Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017). Learning to dis-
cover cross-domain relations with generative adversarial networks. In Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pages 1857–1865. JMLR.org.

King, G., Honaker, J., Joseph, A., and Scheve, K. (2001). Analyzing Incom-
plete Political Science Data: An Alternative Algorithm for Multiple Imputa-
tion. American Political Science Review, 95(1):49–69.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimiza-
tion.

Kivinen, J. and Warmuth, M. K. (1997). Exponentiated gradient versus gra-
dient descent for linear predictors. Information and Computation, 132(1):1 –
63.

Kropko, J., Goodrich, B., Gelman, A., and Hill, J. (2014). Multiple imputation
for continuous and categorical data: Comparing joint multivariate normal and
conditional approaches. Political Analysis, 22(4):497–519.

Lachapelle, J. (2020). No easy way out: The effect of military coups on state
repression. The Journal of Politics, 82(4):1354–1372.

Lall, R. and Robinson, T. (2022). The midas touch: Accurate and scalable
missing-data imputation with deep learning. Political Analysis, 30(2):179–196.

Lee, K. S. and Town, C. (2020). Mimicry: Towards the reproducibility of gan
research.

108

Levy, G. (2022). Evaluations of violence at the polls: Civilian victimization
and support for perpetrators after war. The Journal of Politics, 84(2):783–797.

Liu, J. and Talwar, K. (2019). Private selection from private candidates. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 298–309.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision
(ICCV).

López-Moctezuma, G., Wantchekon, L., Rubenson, D., Fujiwara, T., and
Pe Lero, C. (2022). Policy deliberation and voter persuasion: Experimental
evidence from an election in the philippines. American Journal of Political
Science, 66(1):59–74.

Lyall, J., Zhou, Y.-Y., and Imai, K. (2020). Can economic assistance shape
combatant support in wartime? experimental evidence from afghanistan.
American Political Science Review, 114(1):126–143.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribu-
tion: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712.

Marbach, M. (2022). Choosing imputation models. Political Analysis,
30(4):597–605.

Margolis, M. F. (2018). How politics affects religion: Partisanship, socializa-
tion, and religiosity in america. The Journal of Politics, 80(1):30–43.

McSherry, F. and Talwar, K. (2007). Mechanism design via differential pri-
vacy. In Proceedings of the 48th Annual IEEE Symposium on Foundations

109

of Computer Science, FOCS ’07, pages 94–103, Washington, DC, USA. IEEE
Computer Society.

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources
of input. Statistical Science, 9(4):538–558.

Mironov, I. (2017). Rényi differential privacy. In 30th IEEE Computer Security
Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25,
2017, pages 263–275.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets.

Mohan, K. and Pearl, J. (2021). Graphical models for processing missing data.
Journal of the American Statistical Association, 116(534):1023–1037.

Müller, W. (2022). ganGenerativeData. R package version 1.3.3.

Mullin, M. and Hansen, K. (2022). Local news and the electoral incentive to
invest in infrastructure. American Political Science Review, pages 1–6.

Neunhoeffer, M., Wu, S., and Dwork, C. (2021). Private post-gan boosting. In
International Conference on Learning Representations.

Osgood, I., Tingley, D., Bernauer, T., Kim, I. S., Milner, H. V., and Spilker, G.
(2017). The charmed life of superstar exporters: Survey evidence on firms and
trade policy. The Journal of Politics, 79(1):133–152.

Pal, A. and Das, A. (2021). Torchgan: A flexible framework for gan training
and evaluation. Journal of Open Source Software, 6(66):2606.

Pan, J. and Xu, Y. (2018). China’s ideological spectrum. The Journal of Poli-
tics, 80(1):254–273.

110

Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., and Erlings-
son, Ú. (2018). Scalable private learning with PATE. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.

Pardos-Prado, S. and Sagarzazu, I. (2019). Economic responsiveness and the
political conditioning of the electoral cycle. The Journal of Politics, 81(2):441–
455.

Park, J. H. and Yamauchi, S. (2022). Change-point detection and regulariza-
tion in time series cross-sectional data analysis. Political Analysis, pages 1–21.

Pepinsky, T. B. (2018). A note on listwise deletion versus multiple imputation.
Political Analysis, 26(4):480–488.

Pietryka, M. T. and DeBats, D. A. (2017). It’s not just what you have, but
who you know: Networks, social proximity to elites, and voting in state and
local elections. American Political Science Review, 111(2):360–378.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation
learning with deep convolutional generative adversarial networks. In Bengio,
Y. and LeCun, Y., editors, 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

Redeker, N. (2022). The politics of stashing wealth: The decline of labor power
and the global rise in corporate savings. The Journal of Politics, 84(2):975–
991.

111

Rivera, C. V. (2020). Loyalty or incentives? how party alignment affects bu-
reaucratic performance. The Journal of Politics, 82(4):1287–1304.

Royston, P. (2004). Multiple imputation of missing values. The Stata Journal,
4(3):227–241.

Rubin, D. B. (1978). Multiple imputations in sample surveys-a phenomenolog-
ical bayesian approach to nonresponse. In Proceedings of the survey research
methods section of the American Statistical Association, volume 1, pages 20–34.
American Statistical Association Alexandria, VA, USA.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley,
New York.

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the
American statistical Association, 91(434):473–489.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys, vol-
ume 81. John Wiley & Sons.

Rueda, D. (2018). Food comes first, then morals: Redistribution preferences,
parochial altruism, and immigration in western europe. The Journal of Politics,
80(1):225–239.

Rueda, M. R. (2017). Small aggregates, big manipulation: Vote buying en-
forcement and collective monitoring. American Journal of Political Science,
61(1):163–177.

Ruggles, S., Flood, S., Goeken, R., Grover, J., Meyer, E., Pacas, J., and Sobek,
M. (2019). Ipums usa: Version 9.0 [dataset]. Minneapolis, MN: IPUMS,
10:D010.

112

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and
Chen, X. (2016). Improved techniques for training gans. In Advances in neural
information processing systems, pages 2234–2242.

Schaefer, F. and Anandkumar, A. (2019). Competitive gradient descent. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc.

Schultz, K. A. and Mankin, J. S. (2019). Is temperature exogenous? the im-
pact of civil conflict on the instrumental climate record in sub-saharan africa.
American Journal of Political Science, 63(4):723–739.

Simpser, A. (2020). The culture of corruption across generations: An empirical
study of bribery attitudes and behavior. The Journal of Politics, 82(4):1373–
1389.

Slapin, J. B., Kirkland, J. H., Lazzaro, J. A., Leslie, P. A., and O’grady, T.
(2018). Ideology, grandstanding, and strategic party disloyalty in the british
parliament. American Political Science Review, 112(1):15–30.

Slough, T. (2023). Phantom counterfactuals. American Journal of Political
Science, 67(1):137–153.

Smidt, C. D. (2017). Polarization and the decline of the american floating
voter. American Journal of Political Science, 61(2):365–381.

Snoke, J., Raab, G., Nowok, B., Dibben, C., and Slavkovic, A. (2016). General
and specific utility measures for synthetic data.

Snoke, J., Raab, G. M., Nowok, B., Dibben, C., and Slavkovic, A. (2018). Gen-
eral and specific utility measures for synthetic data. Journal of the Royal Sta-

113

tistical Society: Series A (Statistics in Society), 181(3):663–688.

Solt, F., Hu, Y., Hudson, K., Song, J., and Yu, D. E. (2017). Economic in-
equality and class consciousness. The Journal of Politics, 79(3):1079–1083.

Song, J. and Ermon, S. (2020). Bridging the gap between f-gans and wasser-
stein gans. In International Conference on Machine Learning, pages 9078–9087.
PMLR.

Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., and Sutton, C. (2017).
Veegan: Reducing mode collapse in gans using implicit variational learning. In
Advances in Neural Information Processing Systems, pages 3308–3318.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. (2014). Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958.

Stekhoven, D. J. and Bühlmann, P. (2012). Missforest—non-parametric miss-
ing value imputation for mixed-type data. Bioinformatics, 28(1):112–118.

Su, Y.-S., Gelman, A., Hill, J., and Yajima, M. (2011). Multiple imputation
with diagnostics (mi) in r: Opening windows into the black box. Journal of
Statistical Software, 45(2):1–31.

Tai, Y. C., Hu, Y., and Solt, F. (2022). Democracy, public support, and mea-
surement uncertainty. American Political Science Review, pages 1–7.

Todd, J. D., Malesky, E. J., Tran, A., and Le, Q. A. (2021). Testing legislator
responsiveness to citizens and firms in single-party regimes: A field experiment
in the vietnamese national assembly. The Journal of Politics, 83(4):1573–1588.

Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C.-J., and Schölkopf, B.
(2017). Adagan: Boosting generative models. In Proceedings of the 31st In-

114

ternational Conference on Neural Information Processing Systems, NIPS’17,
pages 5430–5439, USA. Curran Associates Inc.

Torkzadehmahani, R., Kairouz, P., and Paten, B. (2020). DP-CGAN: differen-
tially private synthetic data and label generation. CoRR, abs/2001.09700.

Turner, R., Hung, J., Frank, E., Saatchi, Y., and Yosinski, J. (2019a).
Metropolis-Hastings generative adversarial networks. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 6345–6353. PMLR.

Turner, R., Hung, J., Frank, E., Saatchi, Y., and Yosinski, J. (2019b).
Metropolis-Hastings generative adversarial networks. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 6345–6353, Long Beach, California, USA. PMLR.

Ushey, K., Allaire, J., and Tang, Y. (2022). reticulate: Interface to ’Python’. R
package version 1.24.

van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition.
CRC Press, Boca Raton, FL.

van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate impu-
tation by chained equations in r. Journal of Statistical Software, 45(3):1–67.

Wang, J. S. and Aronow, P. M. (2023). Listwise deletion in high dimensions.
Political Analysis, pages 1–7.

Wang, Y. (2022). Blood is thicker than water: Elite kinship networks and state
building in imperial china. American Political Science Review, pages 1–15.

115

Wing, C. (2019). What can instrumental variables tell us about nonresponse in
household surveys and political polls? Political Analysis, 27(3):320–338.

Xie, L., Lin, K., Wang, S., Wang, F., and Zhou, J. (2018). Differentially pri-
vate generative adversarial network. CoRR, abs/1802.06739.

Xie, X. and Meng, X. L. (2017). Dissecting multiple imput a tion from a multi-
phase inference perspective: What happens when god’s, imputer’s and anal
Yst’s models are uncongenial? Statistica Sinica, 27(4):1485–1545.

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veeramachaneni, K. (2019).
Modeling tabular data using conditional gan. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Yoon, J., Jordon, J., and van der Schaar, M. (2018). Gain: Missing data impu-
tation using generative adversarial nets. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 5689–5698. PMLR.

Yoon, J., Jordon, J., and van der Schaar, M. (2019). PATE-GAN: Generating
synthetic data with differential privacy guarantees. In International Conference
on Learning Representations.

Yoon, S. and Sull, S. (2020). Gamin: Generative adversarial multiple imputa-
tion network for highly missing data. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D., Prasad, K., Malek,
M., Nguyen, J., Ghosh, S., Bharadwaj, A., Zhao, J., Cormode, G., and
Mironov, I. (2021). Opacus: User-friendly differential privacy library in Py-
Torch. arXiv preprint arXiv:2109.12298.

116

Yu, G., Keirstead, J., and Jefferis, G. (2022). scholar: Analyse Citation Data
from Google Scholar. R package version 0.2.4.

Zhao, J., Mathieu, M., and LeCun, Y. (2016). Energy-based generative adver-
sarial network.

Zhirkov, K. (2022). Estimating and using individual marginal component ef-
fects from conjoint experiments. Political Analysis, 30(2):236–249.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV).

117

	Introduction
	GANs in computer science, media, and politics
	GANs for Social Scientists
	Contributions of this Dissertation
	Future Research

	An Introduction to Generative Adversarial Nets in R - The RGAN package
	Private Post-GAN Boosting
	A Common Benchmark to Evaluate Multiple Imputation Algorithms

