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Preface

This dissertation consists of three self-contained chapters studying questions in the fields of
environmental and labor economics.

Chapter 1, co-authored with Felix Holub, studies how air quality affects productivity and
work patterns among highly skilled knowledge workers. We use data from GitHub, the world’s
largest coding platform, to construct a panel including information on daily output, working
hours, and task complexity for a sample of 25,000 software developers across four continents
during the period 2014-2019. We combine this with information on concentrations of fine
particulate matter (PM2.5). To identify the causal effects of interest, we use an instrumental
variable strategy based on wind direction and carefully control for other weather characteris-
tics. We find that an increase in air pollution reduces output, measured by the number of total
actions performed on GitHub per day, and induces developers to adapt by working on easier
tasks and by ending work activity earlier. To compensate, they work more on weekends fol-
lowing high-pollution days, which suggests adverse impacts on their work-life-balance. The
decline in output arises even at concentrations in line with current regulatory standards in the
EU and US and is driven by a reduction in individual coding activity, while interactive activ-
ities are unaffected. Exposure to PM2.5 levels above the city-specific 75th percentile reduces
daily output quantity by 4%, which translates into a loss in output value by approximately $11
per developer compared to days with better air quality.

Chapter 2 provides causal evidence on the effect of in-utero exposure to air pollution on
noncognitive ability in childhood. Noncognitive skills are important predictors for life out-
comes like education, health and earnings. I exploit the meteorological phenomenon of ther-
mal inversions to address the endogeneity in exposure to air pollution. To measure noncog-
nitive abilities, I use data from a representative household survey in Germany on mother-
reported Big Five personality traits assessed at ages 2-10. Pairing this with data on particulate
matter (PM10) from outdoor monitors and reanalysis data on meteorological conditions, I find
that an increase in particulate matter concentration by 1 µg/m3 during the prenatal period
raises neuroticism at age 5-10 by 7% of a standard deviation. This implies that affected chil-
dren are less emotionally stable, more fearful and less self-confident. Back-of-the-envelope
computations indicate that a one standard deviation increase in particulate matter reduces
adult earnings by 0.24%-0.29% just through its impact on neuroticism.

vii



Chapter 3, co-authored with Felix Holub and Ingo Isphording, studies how a misalignment
between the circadian rhythm (the internal process that regulates the sleep–wake cycle) and
social schedules affects the performance of high skilled knowledge workers. Using data from
GitHub we measure hourly and daily output of roughly 40,000 software developers and clas-
sify them into morning- and evening-types based on their temporal activity profiles. We also
observe with whom they collaborate on shared projects. We find that morning-types outper-
form evening-types, and this performance gap is driven by working days but not detectable
on weekends or public holidays. Because prevailing social schedules are more aligned with
natural rhythms of morning-types, this result suggests that a circadian misalignment reduces
developer performance. Exploiting within-developer variation in composition of collabora-
tors, we further show that output falls when developers have incentives to deviate from their
natural rhythms in order to synchronize with collaborators in other time zones. Finally, we
use a regression discontinuity design to investigate the impact of the transitions into and out
of daylight saving time. We find that developer output drops after the spring transition, which
introduces a discrepancy between social clocks and solar time. Together, these findings im-
ply that a misalignment between circadian rhythm and social schedules impairs knowledge
worker performance.

H
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1. AirQuality, High-Skilled Worker
Productivity and Adaptation
Evidence from GitHub

Joint with Felix Holub

1.1. Introduction

Driven by technological innovation, the world of work is undergoing rapid changes. Over the
last decades, computerization has been causing an increase in the demand for workers per-
forming non-routine, analytical, and interpersonal tasks (Autor et al., 2003; Autor and Price,
2013). Skills that complement digital technologies have been growing in importance: In the
US, the share of jobs intensively requiring digital skills1 has more than quadrupled from 5% to
23% between 2002 and 2016 (Muro et al., 2017). In parallel, there have been major shifts in the
organization of work, complementing the growing role of IT. Teamwork, flexible schedules,
and discretion in task choice are common, replacing fixed 9-to-5 schedules and direct task as-
signments, especially among highly-educated workers (Bresnahan et al., 2002; Mas and Pallais,
2020; Menon et al., 2020). Because jobs characterized by these task profiles, skill requirements,
and organizational features form the backbone of the modern knowledge economy and are
expected to become even more important as digitization and automation proceed, it is critical
to understand what determines productivity in these settings.

In this paper, we study how environmental shocks impact performance and work patterns
among highly skilled knowledge workers in a flexible work environment. Vast populations are
exposed to environmental conditions such as heat and poor air quality, which have been shown
to reduce labor productivity in several settings. Existing research, however, has considered
routine jobs and/or inflexible work contexts (e.g. Chang et al., 2019; Somanathan et al., 2021).
In the settings described above, workers not only use different skills, they also have flexibility

1Examples of digital skills are the abilities to handle information and communication technology and to conduct
data analyses.
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and discretion in organizing their workday, which might allow them to adapt to productivity
shocks, thereby alleviating output effects. Moreover, in collaborative work settings, impacts
of environmental shocks might get dampened, e.g., if co-workers can help each other to focus,
or get amplified due to complementarities if co-workers depend on each others’ input.

We focus on the effects of air pollution as it is a ubiquitous public health threat in urban
areas across the globe.2 82% of the global population are exposed to levels of fine particulate
matter exceeding World Health Organization (WHO) guidelines. To implement optimal air
quality standards and policies to curb pollution, accurate estimates of the welfare costs of pol-
lution are fundamental. Recent research shows that air pollution not only causes premature
mortality and severe health damages, but also sub-clinical effects on labor market outcomes,
student performance, or decision-making (see Aguilar-Gomez et al., 2022, for a review). The
sub-clinical impacts play an important role for the total economic cost of air pollution as they
affect a broad population, while morbidity and mortality effects are concentrated among vul-
nerable groups, like infants and the elderly.

We study the causal effect of air pollution exposure on professional software developers, us-
ing data from GitHub to measure developer output and work patterns. Software development
is a STEM (science, technology, engineering, and math) occupation that requires analytical
and advanced digital skills and generates high value for consumers, other industries, gov-
ernments, and the research community.3 Adverse productivity effects of air pollution in this
occupation would thus have important implications for growth, innovation, and competitive-
ness. GitHub is the world’s largest online code hosting platform, used for storing and jointly
working on coding projects. It puts great emphasis on facilitating collaboration between de-
velopers. Moreover, software developers work in highly flexible settings that usually offer
discretion over working hours and the tasks a developer chooses to work on at a given point
in time. With these features, software development on GitHub is representative of the settings
that characterize modern knowledge work.4

The GitHub data allow us to address the challenge that output of knowledge workers is
often difficult to observe. We collect data on 25,000 users across four continents who work
on projects owned by tech companies, indicating that they are professional software devel-
opers. The data includes users’ locations as well as records of all actions they conduct in
public projects along with precise timestamps and some further characteristics of the under-
lying task. We construct a user-by-day panel including measures of work quantity and quality,

2In an extension, we also provide some evidence on the effects of extreme temperatures for comparison.
3Median annual pay of software developers in the US was $110,140 in 2020 (Bureau of Labor Statistics, 2021).
4We provide evidence that software development is representative of modern high-skilled work in Appendix

Figure 1.B.1 and Table 1.A.1: Required skills are similar (e.g., critical thinking and complex problem solving),
except for substantially stronger digital skills like programming. Both software developers and high-skilled
workers in general have a lot of flexibility in organizing their work and often work in teams.
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1.1. INTRODUCTION

working hours, and task choice for the period between January 2014 and May 2019. Based on
developers’ locations, we match these outcomes to city-level air quality monitor data on par-
ticulate matter smaller than 2.5 µm (PM2.5). To account for endogeneity in air quality when
estimating a model of developer activity, we follow Deryugina et al. (2019) by instrumenting
PM2.5 concentration with daily average wind direction. The 2SLS strategy exploits the effect
of plausibly exogenous regional air pollution transport on local pollution levels, controlling
for a wide range of other weather characteristics.

To measure daily output quantity, we count the total number of actions performed, includ-
ing commits (individual code changes), opening and closing of pull requests and issues, and
comments written in discussion fora.5 As we can classify the different GitHub actions into in-
dividual and interactive activities (e.g., commits vs. comments), we can analyze heterogeneity
in the effect of pollution exposure on performance in these two distinct types of work, which
are both widespread in modern high-skilled jobs. To assess output quality, we compute the
share of commits that get undone at a later point and the share of pull requests that get rejected
as measures of error frequency. We also derive monetary estimates of the value of GitHub ac-
tivities, exploiting additional data from an online marketplace where GitHub project owners
offer payments for contributions to their projects. This allows us to translate the effects of
pollution on output into monetary losses.

To study adaptation in flexible work arrangements, we investigate whether software devel-
opers exploit their discretion with respect to working hours and task choice in order to adjust
to changes in air pollution. Specifically, we exploit information on the complexity of tasks
addressed by developers’ actions and on action timestamps to study whether they focus on
easier tasks or adapt their working hours.

Our dataset covers 36 countries, including both developing and developed countries, with
large variation in pollution levels, income, and pollution awareness across sample cities. We
exploit this in heterogeneity analyses to explore how air pollution damages are distributed
and to study the mechanisms underlying the pollution impacts.

We present three main findings. First, developers produce less output on days with higher
levels of fine particulate matter. When PM2.5 concentration reaches unusually high levels –
exceeding the city-specific 75th percentile – the number of daily actions observed on GitHub
falls by 4%. This effect is mainly driven by a decline in individual coding activity: The number
of commits decreases by 6.2%. By contrast, collaborative or interactive work (e.g., commenting
on issues) is much less affected. Compared to other occupations studied in previous research,
including both physically- and cognitively-demanding jobs, the magnitude of the effects on
output is relatively small. Nonetheless, the pollution-induced output declines translate into

5Pull requests are a tool to suggest changes to the code base of a repository, for more details see Section 1.3.
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relevant monetary damages due to the high value generated by software developers. The loss
in output value per developer and day amounts to $4 for a standard deviation increase in PM2.5,
i.e., common fluctuations in pollution, and $11 for days with unusually high air pollution.

Second, output quality is unaffected by changes in air pollution. We find no evidence that
software developers commit more errors on days with high levels of PM2.5. A potential expla-
nation for the absence of quality effects, as well as the modest size of effects on quantity, is
worker adaptation to pollution-induced productivity shocks in this flexible work setting.

Our third main result provides evidence for this: We find that developers exploit their flex-
ibility in task choice by focusing on less complex tasks when air pollution increases. Among
activities related to issues6, the share that refers to issues labeled as relatively easy increases
by 5% on days with PM2.5 concentration above the city-specific 75th percentile compared to
low pollution days. Similarly, code submitted or reviewed by developers changes 4% fewer
files and contains 2% fewer new lines, indicating that the code addresses less complex tasks.
Among developers with stronger adjustment in task choice in response to PM2.5 exposure,
effects on output quantity are attenuated.

Software developers also adapt their working hours. They reallocate work activity from
high-pollution, low-productivity days to low-pollution, high-productivity weekends. In par-
ticular, developers end work activity earlier on days with unusually high PM2.5 concentration.
To compensate, they work more on weekends after a workweek with poor air quality, es-
pecially if pollution concentration on the weekend is moderate, i.e., below the city-specific
75th percentile. The increase in weekend work makes up for 33% of the reduction in coding
output on the day of exposure. These forms of adaptation likely explain why, compared to
other professions, we find moderate effects of particulate matter on output. At the same time,
compensation by working more on the weekend also implies an additional welfare cost due to
forgone leisure time and potential negative impacts on the work-life balance. Losses in output
value are thus likely a lower bound on the overall cost of air pollution in this setting.

The adverse effects of pollution on output quantity arise at concentrations below the reg-
ulatory standards in force in the European Union and the US. Indeed, effects are strongest
at low levels of PM2.5. The effect magnitude does not vary systematically with country-level
pollution awareness, indicating that the negative effects on output are not driven by avoid-
ance behavior. This is corroborated by the fact that we find relatively small extensive margin
effects. We also show that effects are substantially larger in locations with an older building
stock, suggesting that differences in effective indoor pollution exposure play an important
role. This points towards a physiological mechanism underlying our main results.

In a dynamic analysis, we show that pollution exposure on a given day reduces both con-

6This includes creating, closing, and commenting on an issue.
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temporaneous output and, to a lesser extent, output produced over the following two to three
days, but not thereafter. We repeat our main analysis at the monthly level, to assess the ef-
fect of pollution on output net of adjustment and accounting for dynamic impacts. We again
find negative effects on the number of actions performed, driven by less individual coding
activity. The impact of an increase in daily PM2.5 concentration by one unit is roughly 60%
larger according to these results compared to the results at the daily level, but still moderate
in comparison to other professions. A standard deviation increase in daily PM2.5 generates a
loss in monthly output value of approximately $6. In the monthly analysis, we also consider
the growth rate of a developer’s followers on GitHub as a summary measure of work quantity,
quality, and relevance. Air pollution exposure also reduces this outcome, indicating that it not
only reduces short-run performance but also slows down the build-up of reputation, which
could plausibly have long-run consequences for career paths.

Overall, our results imply that improvements in air quality generate economic benefits in
terms of productivity gains among highly skilled STEM workers. While flexible work arrange-
ments with respect to schedules and task choice allow workers to adapt to productivity shocks,
even in the very flexible setting we analyze here, air pollution generates economically relevant
costs. This is true even for locations with relatively low pollution levels in compliance with
existing regulatory standards.

Related Literature. This paper contributes to the research on the effect of environmental
factors on economic outcomes. Firstly, our paper directly links to the literature strand on air
pollution and worker productivity. Several studies document a negative impact of pollution on
productivity in manual and routine occupations, such as textile workers (Adhvaryu et al., 2022;
He et al., 2019), pear packers (Chang et al., 2016), call center agents (Chang et al., 2019), or fruit
pickers (Graff Zivin and Neidell, 2012). A small number of papers also demonstrate negative
effects of poor air quality on performance in more cognitively-demanding occupations. This
evidence comes from studies on error detection of baseball umpires in the US (Archsmith et al.,
2018), the speech quality of Canadian politicians (Heyes et al., 2019), and case handling time
by Chinese and Mexican judges (Kahn and Li, 2020; Sarmiento, 2022).

While these contexts allow to create precise measures of worker performance in a specific
domain, the settings analyzed do not reflect the typical features of work organization in most
modern high-skill jobs. As outlined above, frequent collaboration, multi-tasking, and flexi-
bility in work schedules are widespread in these jobs and each of these characteristics might
affect the severity of pollution-induced productivity shocks. Furthermore, the rather inflexible
settings studied so far do not allow to analyze worker adaptation to pollution. Related work
investigates performance in cognitively-demanding tasks, but outside of standard work set-
tings, e.g., among chess players (Künn et al., forthcoming), individual investors (Huang et al.,
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2020), or brain game players (La Nauze and Severnini, 2021; Krebs and Luechinger, 2021).
We contribute to this literature by expanding the analysis to a STEM profession that is rep-

resentative for a large group of high-skilled workers in flexible, modern work environments.
Thus, our analysis adds novel insights into the labor market cost of air pollution that will likely
still be relevant after future waves of digitalization. We present first evidence on productivity
effects separately for individual and collaborative activities, a distinction absent from previ-
ous work. In addition, while existing papers are based on data from a single country and often
only a single site, we work with a large sample of developers across multiple countries. This
allows to draw more general conclusions about the pollution-productivity relationship and to
explore effect heterogeneity, e.g., with respect to local income levels or pollution awareness.7

Secondly, we contribute to the literature on worker adaptation to environmental shocks
and connect it to research on the effect of flexible work arrangements on productivity. A
number of papers study how workers adjust working hours in response to temperature shocks
(Graff Zivin and Neidell, 2014; Neidell et al., 2021; LoPalo, forthcoming). With respect to air
pollution shocks, Adhvaryu et al. (2022) and Bassi et al. (2021) demonstrate an important role
of managers who can mitigate productivity losses, e.g., by reallocating workers to different
tasks. These studies, however, focus on rather low-skilled manufacturing workers. Our work
identifies a new margin of adjustment in a flexible high-skilled setting, namely task choice.
Moreover, we present new evidence on temporal reallocation of work activity towards the
weekend in response to pollution shocks.8 By showing that workers exploit discretion in
task choice and working hours to adapt to an environmental shock, and thereby alleviate
its impact on productivity, our work links to research on the causal effects of flexible work
arrangements and worker autonomy on productivity. Shepard et al. (1996), Beckmann et al.
(2017), and Angelici and Profeta (2020), for instance, find across different contexts in the US,
Germany, and Italy that working time autonomy increases employee productivity. Our results
suggest that the ability to adapt to idiosyncratic productivity shocks might contribute to the
positive relationship between flexible work arrangements and performance.

Our analysis of worker output and behavior also relates to a broader literature that stud-
ies drivers of worker productivity. For example, Lazear et al. (2015) show that productivity
increased during recessions because of higher worker effort. Pencavel (2015) and Shangguan

7Borgschulte et al. (forthcoming) and Fu et al. (2021) do not consider specific professions, but conduct broader
analyses of air pollution and labor earnings in the US and manufacturing sector productivity in China, re-
spectively. We add new evidence relative to these papers due to our international sample and our analysis of
worker adaptation which requires high-frequency microdata.

8In parallel work, Hoffmann and Rud (2022) also show evidence that workers reallocate labor supply across
days in response to changes in PM2.5. However, they study a different setting, namely formal and informal
workers in Mexico City, whereas we focus on a sample of highly-skilled STEM workers. Moreover, Hoffmann
and Rud (2022) interpret the temporal substitution as a strategy to avoid pollution exposure, whereas in our
setting it serves as compensation for reduced productivity.

6



1.2. BACKGROUND ON PARTICULATE MATTER

et al. (2021) examine how the output of workers is driven by their work hours. Kaur et al. (2021)
find that financial concerns reduce productivity via psychological channels. We complement
this literature with detailed evidence on how environmental shocks affect work patterns and
performance.

Lastly, another contribution of this paper is to demonstrate new ways to use publicly avail-
able data on GitHub activity. While we are not the first to use this data in economics,9 we
propose strategies to construct a sample of highly active users who are likely professional
software developers, to study task difficulty, and to estimate the monetary value of the output
observed on GitHub.

Outline. The remainder of the chapter is organized as follows: We begin in Section 1.2 with a
short explanation on how pollution affects the human body. Section 1.3 follows with a descrip-
tion of Github, the data and sample. We explain the research design and how we implement
the two-stages least squares strategy of Deryugina et al. (2019) in Section 1.4. Our main results
are presented in Section 1.5. Findings from heterogeneity analysis and extensions follow in
Section 1.6. Section 1.7 concludes.

1.2. Background on Particulate Matter

In our analysis, we focus on PM2.5 to measure air pollution, i.e., particulate matter with a di-
ameter of less than 2.5 µm. Particulate matter refers to all solid and liquid particles suspended
in the air. In most urban areas around the world, the majority of PM2.5 originates from an-
thropogenic sources, including traffic, industrial production and biomass burning (Karagulian
et al., 2015). While some PM2.5 is produced locally, for example by traffic, in most areas a sig-
nificant share of local pollution arises from distant sources via long-range transport. Power
plants and industrial facilities generate precursor emissions, e.g., sulphur dioxide (SO2), which
are transformed into secondary particulate matter, e.g., sulfate (SO2−

4 ) and can get transported
over long distances (Almeida et al., 2020).

A key reason to focus on PM2.5 in our study is the fact that these small particles can pen-
etrate indoors and are thus of major relevance for indoor office workers. Deng et al. (2017)
find indoor-outdoor ratios of PM2.5 between 0.4 and 1.2 for office and apartment buildings in
Beijing, which can only be reduced to a level near zero with high-quality indoor air cleaning
systems. In line with that, Xu et al. (2020) and Hoek et al. (2008) report significant and sizeable
correlations between indoor and outdoor fine particulate matter for other cities in China and
Europe.

9McDermott and Hansen (2021), e.g., use the data for an analysis of the impacts of the COVID-19 pandemic on
work patterns.
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Moreover, a large body of research documents that fine particulate matter plays a key role
for the adverse effects that air pollution exerts on various dimensions of human health. The
small particles can penetrate deeply into the lungs, causing damage to the respiratory system,
including reduced lung function, asthma, and chronic obstructive pulmonary disease. Simi-
larly, epidemiological and economic studies find evidence for cardiovascular health effects like
high blood pressure and heart diseases (Lederer et al., 2021). Medical research on humans and
animals points to systemic oxidative stress, inflammation and endothelial dysfunction (im-
paired functioning of the inner lining of blood vessels) as underlying biological mechanisms
(Anderson et al., 2011; Kelly and Fussell, 2015). While severe morbidity and mortality effects
are concentrated among vulnerable groups like the elderly and infants, even healthy indi-
viduals can experience mild, subclinical effects, including irritation in the nose and throat or
coughing (Pope, 2000). In response to the mounting evidence on adverse health effects, several
countries have introduced standards on annual ambient PM2.5 concentrations, and typically
tightened them over time. Currently, standards are in force e.g. in the US (12 µg/m3), Canada
(10 µg/m3) and the European Union (25 µg/m3). The WHO guidelines recommend a level of
no more than 5 µg/m3.

Recent clinical and epidemiological studies imply that exposure to fine particles also ex-
erts adverse effects on the central nervous system (Delgado-Saborit et al., 2021; Babadjouni
et al., 2017). Small particles have been found to reach the brain via the olfactory pathways and
the bloodstream. Animal and autopsy studies indicate that particulate matter causes neuro-
inflammation, which can lead to cognitive impairments and neuro-degenerative processes
(Calderón-Garcidueñas et al., 2007). Associations between pollution exposure and changes
in brain structure have been detected in neuroimaging studies. Consistent with this, La Nauze
and Severnini (2021) find that brain game players score 0.18 standard deviations lower when
PM2.5 concentration exceeds 25 µg/m3 as compared to days with better air quality. Similarly,
Ebenstein et al. (2016) find that short-run exposure to PM2.5 reduces student performance on
high-stake exams.

Overall, the research on particulate matter, health, and cognitive functioning implies that
PM2.5 exposure might plausibly reduce productivity both in physically- as well as cognitively-
demanding tasks. Growing evidence in economics on negative productivity effects in manual
occupations, and on reduced cognitive performance confirms this. We intend to quantify pro-
ductivity impacts in a high-skilled work environment, and investigate potential adaptation
responses that might occur in these settings.

8



1.3. SETTING AND DATA

1.3. Setting and Data

To analyze the effects of air pollution on productivity and work patterns in a high-skilled
profession, we pair information on GitHub activity for a global sample of software developers
with data on local air quality. This is complemented with data on meteorological conditions to
construct the instrumental variables and to control for local weather. This section starts with
a brief description of GitHub, followed by an overview of the GitHub data and how we use it
to measure developers’ productivity. After checking the validity of these outcome measures,
we end with a description of the environmental data.

1.3.1. Setting: GitHub

GitHub is built on Git, an open source version control system that records who changed which
part of a file at what point in time. GitHub is a web platform for hosting Git repositories10 and,
on top of the version control functionality, provides additional features to facilitate collabora-
tion. For each of their repositories (or repos for short), owners can choose whether to make
it public or private, i.e., whether the respective files are visible to everyone, or only to the
repository members. In 2019, more than 30 million accounts were registered on GitHub, who
together owned more than 120 million public repositories, making it the world’s largest host
of source code.

The core action in Git is a commit, which refers to saving the current version of the reposi-
tory after implementing a change to a file, or a set of files. As such, a commit represents that
some work on code files was conducted by the commit author. Only repository owners and
team members invited by them can modify files via commits.

The primary additional collaboration features offered on GitHub are pull requests and issues.
A pull request (PR) is a tool to propose code changes to a repository. To create a PR, a user
generates a copy of the repository in question, implements the changes in his copy via com-
mits, and then submits these to the original repo.11 Repo members then review the suggested
changes and decide whether to accept (i.e., merge) or reject them. Each PR includes a discus-
sion forum where users can comment directly on the proposed changes. Feedback provided
there can be implemented within the same PR. Due to these features, PRs facilitate collabora-
tive coding and are thus not only used to contribute to projects of which a user is no member
but also within project teams.

Issues are text messages, typically used to suggest improvements and organize tasks in a
given repo.12 Like PRs, issues contain a discussion forum where users can comment on the
10The term repository refers to the location where all files belonging to a project are stored.
11An example for a PR can be found at https://github.com/microsoft/vscode/pull/54244.
12For an example of an issue, see for instance https://github.com/microsoft/vscode/issues/39526.
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problem or question at hand. Repository members can assign labels to issues in order to high-
light their category (e.g., bug, feature request), priority, or difficulty. The platform provides
nine default labels, and repository teams can create additional ones specific to their repo.
Once an issue is resolved, it can be marked as closed.

On top of that, GitHub provides social network functions, e.g., options to follow other users
and subscribe to specific repositories and issues to receive notifications about new activities.

1.3.2. GitHub Data on Productivity and Work Patterns

GitHub actions related to commits, PRs, and issues reflect productive work aimed at building
or improving software products. Hence, we collect data on these activities to measure out-
put generated by highly skilled developers. The GHTorrent project provides information on
GitHub users and all actions they conduct in public repositories in the form of a relational SQL
database. We use the version of the database containing data up to June 1st, 2019. The user
table comprises a unique identifier, login name and registration date for all users registered on
the platform at this point. In addition, location and company information as stated on the user
profile on this date is reported. The projects table provides identifiers and names of all public
repositories as well as a reference to the user owning the repo. Data on activities is available
separately by type of action (e.g., commits, opening issues, PR comments, etc.) and includes
the exact timestamps and the identifiers of the acting user and the repository where the event
was conducted in. For specific actions, further information is reported, e.g., the labels attached
to issues.

We complement this with data from GHArchive, which also provides a record of actions
in public repositories, and contains additional information on some events, e.g., the title of a
commit (called commit message), and the number of lines of code added and deleted, as well
as the number of files changed within a PR. GHArchive and GHTorrent data can be linked via
users’ login names.

These data have multiple favorable features for our analysis. First, the precise records of
activities conducted on GitHub enable us to quantify daily output produced by software de-
velopers. In this way, we address the long-standing challenge that work conducted by high-
skilled workers during a given period is often difficult to measure. Second, the data cover all
GitHub users which gives us a much broader geographic coverage and thus a clear advantage
in terms of external validity compared to previous studies based on data from only one coun-
try, and often even just one sampling site. Moreover, the rich information included allows us
to investigate not only changes in output quantity, but also quality and work patterns, which
are of major relevance in high-skill professions.

The data also have clear limitations. In order to assign local air quality to users, we rely on
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self-reported locations. Some users might report wrong or outdated locations, giving rise to
measurement error. Under the assumption of classical measurement error which is not corre-
lated with pollution levels, this issue leads to attenuation bias such that any adverse effects we
find can be considered a lower bound on the true effect. Additionally, we have no information
on work conducted in private repositories or outside the platform. Many GitHub users con-
duct no or only little work in public repositories such that it would be impossible to identify
any productivity effects of air pollution exposure based on their activity data. Thus, when
constructing our analysis sample, we aim at capturing users who are professional software
developers and do a substantial part of their formal work in public GitHub repositories.

Sample Construction. We focus on non-organizational users who report a location at the
city level, which is the degree of geographic precision required to assign local air quality.
Among them, we keep only users who ever committed in a repository owned by a company,
i.e., users with the authority to change the source code of a company-owned project. This step
is intended to focus on professionals who are in some way affiliated with the companies. To
identify these users, we compile a list of repositories operated by companies13 and then use the
information on the repository where a commit was made from the GHTorrent data. To drop
bots, we discard a small number of users with extremely high activity levels, very regular
commit patterns, or suspicious login names.14 To focus on cases where we can observe a
substantial part of an individual’s total work, we only admit users into the sample once they
have at least 20 commits in public repos in a given month. They enter the sample in the month
after they have passed this threshold for the first time. Users stay in the sample until the end
of the observation period unless they conduct less than three unproductive actions in a given
month. In this case, we drop users from the sample for that month, assuming that they might
have moved to a different platform or work on projects in private repositories. Unproductive
actions are activities we do not use as outcome variables, based primarily on the social network
functions GitHub offers.15 Lastly, we restrict the sample to users living in cities with at least
15 relevant users that are covered by our data on air pollution. This yields a sample of 27,701
users in 220 cities across 47 countries during the sample period from February 2014 until May
13This is based on a publicly available list of firms active on GitHub, which can be accessed at https://github.c

om/d2s/companies/blob/master/src/index.md and on the lists of open-source projects operated by Google,
Microsoft and Facebook published on their web pages.

14Bots are computer programs typically used to automate specific tasks. On GitHub, some company-affiliated
projects for instance employ bots to comment on newly opened issues and PRs to ask users to provide specific
information on their issues or to sign a contributor license agreement. To make sure not to capture bots in
our sample, we drop users if the number of actions or commits conducted by them is in the top 0.1 percentile
of the distribution, if more than 20% of their commits occur at full hours (indicating automated commits) or
if their login name indicates that they are bots.

15The unproductive actions include following another user, watching a repository, (un)subscribing to an issue,
labeling an issue, and (un)assigning an issue to a user.
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2019.16 These locations are depicted in Figure 1.1. For the IV approach based on changes in
wind direction, we require multiple cities in close geographic proximity, as outlined further in
Section 1.4. Hence, in our main analysis, we focus on 193 cities across 36 countries depicted in
dark blue, comprising 24,534 users. All descriptives reported in this section refer to this main
analysis sample. In extensions, we also include the cities depicted in light blue.

Figure 1.1.: Sample Cities

Note: Each point represents one sample city. Circle size is based on the number of users observed in the city. Cities depicted
in dark blue are used in the main analysis and cities depicted in light blue are added in extensions.

OutcomeMeasures. For the analysis sample, we compile an unbalanced user-by-day panel
including measures of output quantity and quality, as well as work patterns. To measure over-
all daily work quantity, we count the total number of productive actions conducted per user
and day, after translating timestamps from UTC into local time. This is the sum of commits,
16During our sample period some users changed their location. Since the GHTorrent data on users is a snapshot

taken on June 1st, 2019, we use earlier versions of the database (one snapshot in each year between 2015 and
2018) to check for movements. In total, 6.3% of users reported more than one distinct location during this
period. We identify the city where they spend the biggest part of the sample period, and keep them in the
sample only while they resided in this city.
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comments written on PRs, issues or commits, creations of PRs and issues, closing of PRs and
issues, and reopening of issues. Furthermore, we separately count the number of commits
and comments because these two action categories are observed most frequently on GitHub
and reflect two distinct types of work. While the number of commits provides a measure of
individual coding activity, comments reflect participation in discussions about issues and code
changes, i.e., collaborative work. This allows us to conduct the first analysis of the productiv-
ity impacts of air pollution in a high-skill profession that takes potential effect heterogeneity
between individual and interactive work into account.17

To assess the quality of users’ output, we measure the share of all PRs opened on a given
day that are merged, i.e., accepted. PR rejection points to issues in the code or style. Secondly,
we compute the share of commits made by a user on a given day that were reverted at a later
point. Reverting a commit, i.e. removing all changes made in it, indicates severe problems that
cannot easily be fixed in follow-on commits.18

To analyze worker adaptation, we build measures of task choice and working hours. Firstly,
to explore whether users switch to easier tasks on high-pollution days, we leverage infor-
mation on the complexity of issues and PRs. In the case of PRs, we use the number of new
lines of code added, of lines of code deleted, and of code files changed as measures of their
complexity. We take the average value of these variables across all PRs a user worked on a
given day, either by creating, reviewing, or commenting on the respective PR. To assess the
difficulty of issues, we rely on the user-assigned issue labels. We exploit the fact that there are
several labels indicating that a given issue is relatively easy, e.g., the default labels good first
issue19 and documentation,20 or individual labels such as beginner friendly or low-hanging fruit.
The complete list of labels we use to identify easy tasks is depicted in Appendix Table 1.A.2.
We construct the share of all issue events conducted by the user (commenting, opening, clos-
ing, or reopening of issues) which refer to an easy issue. With this approach, we do not have
to evaluate issue complexity ourselves but can rely on the assessment by experts who know
the project in question very well. Furthermore, the label is visible to all users, i.e., workers

17The other action types occur less frequently and are thus considered as secondary outcomes. The number of
PRs created also reflects individual work on code, whereas the number of issues closed, opened, or reopened
provides additional measures of interactive work. The number of PRs closed reflects code review and decision-
making on whether to merge or reject the proposed changes.

18The act of reverting a commit is itself a commit, which has a specific, auto-generated commit message. The
messages are available in the GHArchive data and allow to identify both revert commits and the original
commit that is reverted.

19This issue was introduced by GitHub to encourage first-time contributions, but does not imply that the issue
cannot be addressed by more experienced developers.

20The documentation label is included because work on the documentation is typically easier than work on code
to fix bugs or build new features. This follows, e.g., from Tan et al. (2020) and from the fact that GitHub
also used the documentation label in their approach to construct the good first issue label (for details see
https://github.blog/2020-01-22-how-we-built-good-first-issues/).
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searching for easy tasks due to an adverse productivity shock can easily identify these issues
as suitable.

Secondly, we exploit the timestamps reported in the data to approximate users’ working
hours in order to investigate whether they try to make up for their reduced productivity by
working longer hours in the evening or on the weekend. Evening work is measured by the
minute of the day the last action of the day was performed and the share of actions conducted
after standard working hours, i.e., after 6 pm. To measure weekend work, we use the sum of
actions conducted on Saturday and Sunday of each week.

Finally, as a summary measure of the quantity, quality, and relevance of a user’s work,
we consider the monthly growth rate of the number of a user’s followers. This allows us to
investigate whether air pollution exerts only temporary effects on daily output, or whether it
also generates effects on users’ reputation and influence over a longer time horizon.21

Descriptives. Table 1.1 presents summary statistics on the outcome variables. On average,
users perform 2.77 actions per day, of which 1.29 are commits and 0.93 are comments. The
remaining productive GitHub actions—opening and closing issues and PRs—are observed less
often. Hence, the sample users are indeed highly active in public repos, as casual users who
work on GitHub only occasionally can hardly achieve such figures, especially given that we
average across all days, including weekends and holidays.22 On average, users are active on
37% of all days in the sample period. Conditional on being active at all, the mean number of
actions per day is 7.59. A commit reversal is a very rare event, indicating severe errors. It
happens among only 0.2% of all commits made in the sample. Rejection of a PR occurs more
frequently, in 33% of all cases. On average, 7% of all issue events refer to an easy issue. 29% of
actions are made after 6 pm. The mean time of the final action of the day is 5:45 pm.23

Figure 1.2 provides more detailed information on the distribution of activity across days of
the week and hours of the day. The solid lines depict the share of all activity that is conducted
during the respective hour of the day on weekdays (left) or weekends (right), respectively.
We present this share for commits, comments, and total actions. Activity levels are highest
during core working hours (marked in grey) and considerably lower in the evening and night
hours and on weekends. Notable activity during evening hours and on weekends is not un-
common among highly educated workers (Mas and Pallais, 2020). Overall, the distribution is
similar across all three variables. However, comments, i.e., interactive activities, are even more

21We provide a list of all outcomes and details on their construction in Appendix Table 1.A.3.
22Overall, our main sample comprises only 0.076% of all GitHub users but accounts for a disproportionally large

share of all activities in public repositories, e.g., 2.1% of issue creations, 7.6% of issue closings, 9.9% of com-
ments written and 6.6% of PR actions (opening and closing).

23To take into account that high-skill workers often work long hours in the evening, we define a work day to
last from 3 am on the calendar date to 3 am on the following day.
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concentrated during standard working hours as compared to commits, i.e., individual coding
activities. This is plausible given that the more collaborative tasks are more productive during
common working hours, when other users are working as well.

Table 1.1.: Summary Statistics for the Analysis Sample of GitHub Users
Mean SD SD (within) Min Max Observations

OutputQuantity
Actions 2.77 7.26 6.46 0 293 14,538,351
of which Commits 1.29 3.82 3.55 0 234 14,538,351

Comments 0.93 3.37 2.94 0 280 14,538,351
PRs opened 0.15 0.71 0.67 0 151 14,538,351
Issues opened 0.10 0.80 0.74 0 222 14,538,351
PRs closed 0.17 0.94 0.89 0 284 14,538,351
Issues closed 0.12 0.89 0.87 0 263 14,538,351

Any action 0.37 0.48 0.44 0 1 14,538,351
Actions | Actions > 0 7.59 10.39 9.22 1 293 5,310,794

OutputQuality
Share PRs merged 0.67 0.45 0.40 0 1.0 1,132,824
Share commits reverted 0.002 0.029 0.029 0 1 3,458,932

Task Complexity
Share easy issue events 0.07 0.21 0.20 0 1.0 3,203,772
Files changed per PR 9.37 60.15 60.00 0 9660 1,738,027
Lines added per PR 347.05 1660.15 1618.98 0 64425 1,738,027
Lines deleted per PR 125.56 700.38 686.17 0 25037 1,738,027

Working Hours
Share actions after 6 pm 0.29 0.39 0.36 0 1.0 5,296,035
Time last action 17:45 5.01 hours 4.63 hours 3:00 3:00 5,296,035

Note: This table describes the main analysis sample at the developer×date level. The first two panels provide summary statistics for outcome
variables we use to measure output quantity and quality. The bottom panels describe variables measuring task complexity and working
hours. The table displays the mean, standard deviation, within-developer standard deviation, minimum and maximum value of the variables
as well as the number of observations.

Finally, Figure 1.3 presents information about the work status of users in our sample. The
left plot depicts the most frequent terms used in the biographies (bios) on their GitHub profiles.
36% (9,507 users) of the sample provide such a self-description. The data was accessed via the
GitHub API. For each term, we measure in what share of all bios it occurs, after stemming
and removing stop words. Three terms clearly stand out: engineer/engineering, software, and
developer/development occur in 15% to 25% of all bios, much more often than any other words.
The right plot complements this with information on employers which users can report on
their GitHub profiles. In our sample, 61% (16,385 users) provide some information in this field
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Figure 1.2.: Distribution of Activity across Hours of the Day and Days of the Week

Note: Solid lines reflect the share of activities by sample users which is conducted during the respective hour of the day on
weekdays (left) or weekends (right), separately for total actions, commits and comments. Dashed lines mark 95%-confidence
intervals. Grey area reflects core working hours, 9 am to 6 pm on weekdays.

with Microsoft and Google being the most frequent employers, followed by Facebook and Red
Hat, i.e., big US-based tech companies strongly engaged in open-source. While we are unable
to assess whether the subsample of users who provide a bio or the company information is
representative, the clear peaks in the two plots at work-related terms and well-known tech
companies, together with the concentration of activity in core working hours, strongly suggest
that we do capture professional software developers who use GitHub as part of their formal
work. Thus, in the remainder of the paper, we use the term ‘developers’ when referring to the
users in our sample.

1.3.3. Gitcoin: Monetary Value of GitHub Activity

To assess the validity of the productivity metrics constructed from the GitHub data and to
translate the estimated effects of air pollution on these outcomes into monetary damages, we
draw on data from a platform called Gitcoin.24 Two types of agents interact on this platform:

24Gitcoin was founded in 2019 and is complementary to GitHub. At the end of 2021, about 300,000 GitHub users
were registered on the platform.
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Bios Companies

Figure 1.3.: Most Frequent Terms from User Self-Descriptions and Company Fields

Note: The left bar plot is based on data from 9,507 user bios, accessed in 2021 via the GitHub API. Words in the bios are
transferred to lowercase, stemmed, and stop words are removed. The total word count is divided by the number of bios.
The plot on the right is based on data from June 2019 on 16,385 users, collected from the company column in the GHTorrent
user table.

GitHub project teams aiming to incentivize external contributions to their projects post open
issues from their public repos on Gitcoin, along with information on issue characteristics and
a payment they offer for a solution. On the other side of the transaction, freelance developers
can apply to solve these issues and earn money for their contributions.

Work on the issues is submitted in the form of a PR in the respective GitHub repo. If the PR
is accepted by the issue funder, the PR author receives the payment, typically in cryptocur-
rencies. We collect data on 292 issues for which PRs were submitted and payments made by
March 2022 via the Gitcoin API, including the value of the payment in USD and the hours
worked on the PR as reported by the submitting user. We merge this with information on the
size of the respective pull request obtained via the GitHub API (number of commits, number
of lines of code added and deleted, and number of files changed). A detailed description of the
data is provided in Appendix 1.C.

In the data, we find mean payments of $354 per pull request and $112 per commit, one of our
primary outcome variables. On average, developers spend 1.8 hours on one commit. Hence,
their implied hourly wage amounts to $62, almost coinciding with the mean hourly wage of
$58 among software developers in the US in 2021 as reported by the Bureau of Labor Statistics
(2021). We will use the monetary values of commits and PRs, our measures of individual coding
activity, to translate the estimated effects of air pollution on these outcomes into monetary
damages.

Are the outcomes we consider valid measures of productivity and task complexity? In Ap-
pendix Tables 1.C.1 to 1.C.3 we use the Gitcoin data to test this. We find that both the payment
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awarded for the PR and the time spent on creating it are consistently positively correlated with
the number of commits the PR comprises. We view this as a confirmation that changes in the
number of commits reflect fluctuations in developer productivity. Holding the number of com-
mits constant, adding more lines of code and changing more files in a PR is associated with a
higher payment, suggesting that these variables indeed reflect task complexity. 12% of the Git-
coin issues are labeled as easy according to our definition. PRs addressing these issues are on
average rewarded $186, only half the amount among PRs addressing other issues. Even hold-
ing all aforementioned PR characteristics constant, these issue labels are negatively associated
with the value of a PR, supporting their validity as indicators for easy tasks.

1.3.4. Environmental Data

Air Quality. The pollutant of interest in our analysis is PM2.5. We collected data on PM2.5

concentration measured at outdoor monitors in and around the sample cities from several envi-
ronmental agencies. For a few cities, we could not obtain monitor-measured data but instead
used high-resolution reanalysis data from the Copernicus Atmosphere Monitoring Service
(CAMS). Reanalysis datasets are constructed by combining measurements taken at ground-
level monitors, satellite images, and atmospheric transport models. Appendix Table 1.A.4 pro-
vides a detailed list of the data sources. All data is provided at either the daily or the hourly
level. Where necessary, we transfer hourly data into local time and aggregate to the daily
level. Cities are assigned the simple average of all available monitor readings within a 40km
radius around the city centroid.25 Our data on PM2.5 covers 96% of all city×day observations.

We winsorize PM2.5 at the continent-specific 0.1𝑡ℎ percentile and the 99.9𝑡ℎ percentile to
ensure that our results are not driven by extreme outliers (e.g., extremely high concentration
of fine particulate matter due to heavy wildfire smoke). The population-weighted average
PM2.5 concentration in the sample is 12.4 µg/m3 (standard deviation: 14.5 µg/m3, within-city:
11.8 µg/m3), i.e., slightly above the annual standard of 12 µg/m3 set by the U.S. Environmental
Protection Agency (EPA) and clearly above the WHO guideline value for the annual mean con-
centration (5 µg/m3). Figure 1.4 displays the distribution of daily PM2.5 concentrations in our
sample, separated by seven large geographic regions, 𝑅 ∈ {Northern Europe, Southern Europe,
Western Europe, Eastern Europe, North America, Oceania, Asia}.26 Air quality exhibits sub-
stantial heterogeneity across regions: Cities in North America, Oceania, and Northern Europe
have relatively clean air, with concentrations above 20 µg/m3 rarely being observed. Loca-
tions in Southern and Eastern Europe by contrast experience this level of pollution on 28% of

25CAMS reanalysis data is reported on a 0.1° longitude×0.1° latitude grid. Given the large number of grid points,
we only use measurement points within 25km of the centroids for the relevant cities.

26We show the distribution of observations in our developer×date panel across these regions in Table 1.A.5
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Figure 1.4.: Distribution of Daily PM2.5 Concentrations by Geographic Region

Note: The plot shows densities of PM2.5 concentration based on 353,445 city×day observations, separately by geographic
region. Oceania: Australia, New Zealand. Northern Europe: Scandinavia, UK, Ireland, and the Baltic countries. Southern
Europe: Portugal, Spain, Italy, Croatia, Slovenia. Asia: China, India, Japan, Hong Kong. Northern America: US, Canada.
Western Europe: Switzerland, Austria, France, Germany, Belgium, and the Netherlands. Eastern Europe: Poland, Czech
Republic, Hungary, Belarus, Ukraine, Slovakia, Bulgaria, Romania.

all days, and Asian cities even 60% of the time.

Wind conditions. The instrumental variable approach is based on regional air pollution
transport driven by wind direction. We collect reanalysis data on wind conditions from the
Japan Meteorological Agency’s JRA-55 product. The u- and v-component of wind, i.e. the
eastward and northward wind vectors, are reported every six hours (in UTC) on a global
grid with a spatial resolution of 1.25° longitude×1.25° latitude, which corresponds to roughly
137.5km×137.5km at the equator.27 We translate timestamps into local time and aggregate to
the daily level. Each city is assigned the inverse distance weighted average of u- and v-vectors
at the four grid points located closest to its centroid (median distance = 92.3km). Finally, daily
average wind speed and direction are computed from the city-level u- and v-vectors.

Meteorological Conditions. To construct control variables for daily weather conditions
we use the ERA5-land product from the European Centre for Medium-Range Weather Fore-
casts (ECMWF). It provides hourly data on air temperature two meters above the surface, pre-
cipitation and dewpoint temperature on a fine grid with 0.1° longitude×0.1° latitude horizontal
27We deliberately use data reported on such a coarse spatial grid in order to capture broad wind patterns driving

regional air pollution transport instead of very local wind conditions which only affect air quality in a small
area. The choice of data follows a suggestion by Tatyana Deryugina which we gratefully acknowledge.
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resolution, corresponding to roughly 11km×11km. To construct city×day level variables, we
follow the same approach as taken with the wind data, the only difference being that sample
cities are assigned the inverse distance weighted average weather conditions from the eight,
instead of four, closest grid points (median distance = 10.9km). The variables constructed are
daily mean, minimum and maximum temperature, precipitation, and relative humidity.28

Wildfire Smoke. The North American west coast frequently experiences severe wildfires
generating heavy smoke that strongly increases the concentration of air pollution. Some of the
largest cities within our sample are located in this area (the tech clusters in the San Francisco
Bay Area and around Seattle). Given recent evidence that exposure to heavy wildfire smoke
can trigger avoidance behavior, especially among high-income individuals (Burke et al., 2022),
we construct control variables for heavy smoke to make sure the effects we estimate reflect
physiological impacts of PM2.5 exposure, not behavioral responses to wildfires. The required
data is derived from satellite images and provided by the National Oceanographic and At-
mospheric Administration’s Office of Satellite and Product Operations. It covers the North
American continent, is reported at the level of individual smoke plumes, and includes a mea-
sure of smoke intensity. We define a city as being affected by a smoke event if the smoke
plume overlaps with a 15km radius around its centroid. We aggregate the data to the daily
level by summing over the intensity measure of all smoke plumes covering a city on a given
day. We define a heavy smoke indicator which is one if the city was covered by a plume of the
maximum intensity or if the total daily smoke intensity exceeds a value of twice the maximum
intensity, and zero otherwise. This yields 0.3% of all city-by-day observations and 8.9% of all
observations with any smoke exposure as heavy smoke days.

Thermal Inversions. In extensions and robustness checks, we use temperature inversions
instead of wind direction as an instrument for PM2.5 concentration. The required data is ob-
tained from the ECMWF’s ERA5 products29. Hourly temperature at the surface level as well
as several pressure levels is reported on a 0.25° longitude×0.25° latitude grid. We compute
the difference between upper air temperature, at the pressure level 25 hPa above the surface,
and surface air temperature. Following several recent papers, e.g. Jans et al. (2018a), we then
calculate the average temperature difference during local nighttime hours (midnight to 6 am).
Cities are assigned the inverse distance weighted average from the four closest grid points.
We use the temperature difference as a measure of inversion strength, inv strength𝑐𝑑 = Δ𝑇𝑐𝑑 ,
to instrument for pollution.
28Relative humidity is inferred from mean daily air temperature and dewpoint temperature using the R package

weathermetrics which uses formulas provided by the US National Weather Service.
29We use the products ERA5 hourly data on single levels from 1979 to present and ERA5 hourly data on pressure

levels from 1979 to present
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1.4. Research Design

The first part of this section presents our baseline regression model and discusses why endo-
geneity issues are likely to arise. In the second part, we describe the instrumental variable
approach based on wind direction we adopt to address these issues.

Baseline Regression Model. To analyze how short-run variation in local particulate mat-
ter concentration affects output and work patterns of professional software developers, we
specify a model for outcome 𝑦 of developers living in city 𝑐 on day 𝑑 .

𝑦𝑐,𝑑 = 𝛽PM𝑐,𝑑 +w′
𝑐,𝑑
𝛾 + 𝛿𝑅(𝑐)ℎ𝑐,𝑑 + `𝑐 + `𝑅(𝑐),𝑑𝑜𝑤 (𝑑) + `𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) + Y𝑐,𝑑 (1.1)

Here, 𝑦𝑐,𝑑 denotes one of the measures of output quantity, quality, or work patterns described
in the previous section. We obtain this variable through an auxiliary regression that includes
the information available for each individual developer, i.e., her experience in using GitHub
and a developer fixed effect. This way we can reduce the computational burden without losing
variation in the regressor of interest which is observed at the city-day level. This procedure is
common in the literature (e.g. Currie et al., 2015) and asymptotically equivalent to estimating
the underlying individual-level regressions (Donald and Lang, 2007). Appendix 1.D provides
a more detailed description.

PM𝑐,𝑑 is a measure of particulate pollution and varies across cities 𝑐 and days 𝑑 . The fixed
effect `𝑐 controls for time-invariant unobserved factors at the city level. Region-year-month
fixed effects `𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) capture time-varying productivity shocks common to all developers
in a geographic region 𝑅. Region×day-of-week fixed effects `𝑅(𝑐),𝑑𝑜𝑤 (𝑑) and an indicator for
holidays, ℎ𝑐,𝑑 , control for fluctuations in work patterns and productivity across days of the
week and public holidays. These fluctuations are allowed to vary in intensity across different
world regions. w𝑐,𝑑 is a vector of weather variables that can be correlated with air quality and
at the same time affect work patterns. It includes a series of indicator variables for daily mean
temperature falling into bins defined based on the 5th, 10th, 20th, 35th, 65th, 80th, 90th, and
95th percentiles of the city-specific temperature distributions. The omitted category is temper-
ature falling between the 35th and the 65th percentile. The effects of temperature fluctuations
are also allowed to differ across regions 𝑅. The vector further contains cubic polynomials of
precipitation, relative humidity, and wind speed and a dummy indicating whether the city is
affected by heavy wildfire smoke on day 𝑑 . We weight all regressions by the number of un-
derlying developer observations in each city–day cell and cluster standard errors at the city
level.

The coefficient of interest 𝛽 is estimated from day-to-day variation in city-level pollution
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and developer output, conditional on average developer output and after netting out other
productivity determinants such as weather, seasonality, and region-wide business cycle dy-
namics.

Since air quality is not assigned randomly to the city-by-day observations, 𝑃𝑀𝑐,𝑑 may be en-
dogenous in Equation (1.1) due to unobservable factors which co-vary with particulate matter
and productivity. Variations in local economic conditions can for instance affect air pollution
and developers’ output at the same time. Similarly, local events like a football match or the
closing of a bridge may impact both traffic and work patterns. The OLS estimate of 𝛽 would
thus likely suffer from omitted variable bias. A second issue is measurement error in develop-
ers’ pollution exposure, which we cannot observe, but instead have to proxy for by city-level
averages. This generates attenuation bias in the OLS estimate. While our regression model
includes a wide range of controls to account for sorting into different cities or fluctuations in
economic conditions, we still require an exogenous source of variation in local air pollution
to address these two concerns.

IV estimation. We address endogeneity in Equation (1.1) by instrumenting local pollution
levels with wind direction. This approach was introduced by Deryugina et al. (2019) and is
based on the idea that wind direction affects local particulate matter concentration because it
is a key driver of pollution transport. Wind blowing from the ocean or less densely populated
areas, for instance, carries substantially lower amounts of pollution into the city than wind
blowing from more densely populated or industrial areas.

It is important to note that local weather conditions can also depend on wind. For example,
wind blowing from the ocean could reduce temperatures. These local conditions could affect
labor-leisure trade-offs (Graff Zivin and Neidell, 2014) and thereby the output of developers
via channels other than air quality. Therefore, it is important to control for the wide range
of weather conditions contained in w𝑐,𝑑 to ensure that the instrument does not violate the
exclusion restriction.

The effect of wind direction is certainly not uniform across all cities in our global sample
due to differences in geography. In some cases, more pollution might be transported into the
city by wind blowing from the east, in other cases, west wind might carry in most pollution.
To account for this, we allow the impact of wind on PM2.5 to vary. In principle, we could
estimate the effect of wind direction separately for each city. In that case, however, the first
stage might pick up effects of highly local transport that affects readings at local monitors due
to their location relative to the pollution source, but simply redistributes particulate matter
within the boundaries of a city. To ensure that the first stage only captures effects of regional
pollution transport that changes PM2.5 in the whole city, we restrict the effect of wind to vary
at a geographically more aggregate level. As suggested by Deryugina et al. (2019), we use a
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clustering algorithm to assign cities into groups 𝑔 based on their longitude and latitude. In
our baseline specification, we form 50 groups, using hierarchical clustering with a complete-
linkage criterion. They are illustrated in Appendix Figure 1.B.2.30

We parameterize the pollution-wind relationship by a trigonometric function.31 By specify-
ing wind direction \𝑐,𝑑 in radians instead of using many indicators for wind direction bins we
can substantially reduce the required number of variables to appropriately model the wind-
pollution relationship. The first stage of the IV estimation is as follows.

PM𝑐,𝑑 = 𝜌
𝑔

1 sin
(
\𝑐,𝑑

)
+ 𝜌

𝑔

2 sin
(
\𝑐,𝑑/2

)
+w′

𝑐,𝑑
𝛾 + 𝛿𝑅(𝑐)ℎ𝑐,𝑑

+ `𝑐 + `𝑅(𝑐),𝑑𝑜𝑤 (𝑑) + `𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) + Y𝑐,𝑑
(1.2)

The coefficients 𝜌𝑔1 and 𝜌
𝑔

2 are allowed to vary across city-groups 𝑔 ∈ {1, 2, ..., 50}.
Figure 1.5 illustrates how this trigonometric function can capture the effect of wind direction

on PM2.5 levels for the city groups represented by Frankfurt, New York City, and Bangalore.
The estimated relationships are depicted in blue. They strongly resemble the results we obtain
when we instead measure wind direction by eight indicators representing 45° sections of the
wind rose, i.e., (0°-45°], (45°-90°], etc. In Appendix Figure 1.B.3 we present the respective plots
for all 50 city groups.

We adopt this 2SLS approach for all analyses at the city×date level. In some parts of our
analysis, e.g. when exploring effect dynamics or impacts at the monthly level, we use modified
versions of this framework that will be presented in the respective sections.

Measures of pollution. Our primary measure of air pollution is daily PM2.5 concentra-
tion in µg/m3. As an alternative, we define a binary variable that indicates whether PM2.5

is unusually high relative to common levels in city 𝑐 . More formally, it takes the value one,
when the city-day level PM2.5 exceeds the city-specific seventy-fifth percentile, 1{PM𝑐,𝑑 >

𝑄 .75 (PM | 𝑐)}. The proposed measure, therefore, captures non-linear effects of pollution and
allows these to differ by location.

1.5. Main Results

In this section, we first present results on how PM2.5 exposure affects the quantity and quality
of output developers produce. Thereafter we show that they use two margins of adjustment,

30When using all 220 cities depicted in Figure 1.1 in the clustering algorithm, it forms singletons for some cities
which are very distant from their closest neighbor, e.g. Beijing or Salt Lake City. We drop these cities (depicted
in light blue) in the main analysis because whenever a city forms its own first-stage group, the first stage might
pick up local pollution transport.

31We are grateful to Tatyana Deryugina for this suggestion.
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Figure 1.5.: The effect of wind direction on PM2.5

Notes: This figure provides a graphical illustration of the first stage. Graphs present estimated coefficients from regressions
of PM2.5 measured in µg/m3 on wind direction. Solid black line: connects estimated coefficients on seven dummies for seven
45° bins of wind direction. The omitted direction is north-north-west, (315°, 360°]. Dashed lines: 95% confidence intervals.
Blue line: estimated relationship when wind direction is parameterized as the sine of wind direction in radians and wind
direction in radians divided by two. City groups comprise New York and Philadelphia (left), Frankfurt, Nuremberg, Munich,
Stuttgart, Karlsruhe, Walldorf, Heidelberg, Bern, Basel, Strasbourg (center), Bangalore, Chennai, Hyderabad (right).

task choice and working hours, to adapt to increases in pollution concentration.

1.5.1. WorkQuantity

Columns 1 to 3 of Table 1.2 display 2SLS estimates of the effect of PM2.5 exposure on the three
primary quantity outcomes—the number of total actions conducted, the number of commits
as a measure of individual coding activity, and the number of comments written in discussion
fora as a measure of collaborative work. In Panel A, we use PM2.5 concentration as regressor
and find that an increase by 1 µg/m3 causes developers’ output, measured by total actions, to
fall by 0.0032 or 0.12% of the sample mean. This decline is mainly driven by a reduction in
the number of commits, which decreases by 0.0026 or 0.20% of the sample mean. The number
of comments is much less affected by air pollution. The point estimate is close to zero and
not statistically significant. The first stage F-statistic on the excluded instruments exceeds
100, indicating that the IVs based on wind direction are sufficiently strong. For an increase in
ambient PM2.5 concentration by one within-city standard deviation (11.8 µg/m3), the estimates
imply reductions in the number of commits and total actions by 0.030 (2.3%) and 0.038, (1.4%)
respectively.

In Panel B, we repeat the analysis, now using the binary variable indicating that PM2.5

concentration exceeds the city-specific 75th percentile. The F-statistic is again well above the
common threshold for a sufficiently strong first-stage relationship. The 2SLS estimates imply
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that on a day with relatively high pollution, the number of total actions falls by 0.11 or 4% of
the mean value. The number of commits falls by 0.08 or 6.2%. Again, no significant effect on
the number of comments is found.

In sum, these results imply that fine particulate matter exposure exerts a negative effect on
developer output which is mostly driven by days with relatively poor air quality. The effect of a
high-pollution day in Panel B corresponds to an increase in PM2.5 concentration by more than
30 µg/m3 based on the coefficients in Panel A. A novel finding is the strong effect heterogeneity
across different types of work commonly conducted in high-skilled occupations: We observe
a highly significant negative impact on individual work on code, but no effect on interactive
work.

In Appendix Table 1.A.6, we investigate the effect of PM2.5 on further action types which
occur less frequently than commits and comments—the number of issues and PRs opened
and closed, respectively. Like a commit, opening a PR reflects individual coding work whereas
opening/closing issues generally starts/ends a discussion with other users and thus constitutes
interactive work. Closing a PR implies decision-making about whether to accept or reject the
proposed changes. Consistent with the results discussed above, the number of PRs opened
falls significantly in PM2.5 concentration, and the relative effect magnitude is similar to the
effect on commits. While we find marginally significant effects for closing of PRs, interactive
issue events are unaffected by air pollution. Overall, these results confirm the conclusions
drawn from Table 1.2.

In Column 4 of Table 1.2 we explore the contribution of the extensive margin to the over-
all reduction in work quantity. The dependent variable is an indicator for a positive activity
level, i.e., 1{actions𝑖𝑑 > 0}. For both measures of pollution, we find negative point estimates
whose magnitude implies that the extensive margin effect contributes approximately 11-17%
to the full reduction in actions. The estimate is statistically significant only for the dummy
indicating PM2.5 concentration above the 75th percentile. Hence, the extensive margin does
explain part of the effect on output, but the intensive margin response is quantitatively much
more important. This result is plausible given that our sample of GitHub users likely comprises
mostly young and middle-aged adults. They are unlikely to suffer severe health damages from
short-run pollution exposure which prevent them from working, especially at moderate levels
of concentration, but rather subtle effects on health and cognitive function.

Since we derived our main results by testing eight hypotheses, we also report significance
levels that correct for multiple hypothesis testing following the Benjamini-Hochberg proce-
dure in Table 1.2.

In Columns 1 to 3 of Table 1.A.7 we present results from estimating the model in Equa-
tion (1.1) by OLS for the three main measures of output quantity to assess the direction and
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Table 1.2.: Effect of PM2.5 on Work Quantity

Actions Commits Comments Any actions
(1) (2) (3) (4)

Panel A.
PM2.5 −0.0032∗∗∗ −0.0026∗∗∗ −0.0005 −0.00013

(0.0011) (0.0008) (0.0005) (0.00009)
[0.003] [0.001] [0.374] [0.155]
{0.006} {0.002} {0.374} {0.208}

First Stage F-Stat. 102.1 102.1 102.1 102.1
% change in Y -0.12 -0.20 -0.05 -0.04
% of full effect 11.2
Panel B.
1{PM2.5 > 𝑄0.75} −0.1104∗∗∗ −0.0801∗∗∗ −0.0169 −0.0068∗∗∗

(0.0302) (0.0159) (0.0170) (0.0025)
[0.0004] [0.000002] [0.323] [0.008]
{0.0014} {0.00002} {0.374} {0.013}

First Stage F-Stat. 80.5 80.5 80.5 80.5
% change in Y -4.0 -6.2 -1.8 -1.9
% of full effect 17.1
Observations 353,445 353,445 353,445 353,445
Mean Dep. Var. 2.77 1.29 0.93 0.37

Note: Table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Panel A, the regressor of interest is PM2.5 concentration
measured in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the
city-specific 75th percentile. The first stage specification is given in Equation (1.2). Covariates include eight bins for mean daily temperature,
third-order polynomials in wind speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays, as well as
city, day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects, and the temperature controls can vary
across world regions 𝑅. Regressions are weighted by the number of active workers in a city during the current month. Standard errors
clustered at the city level are reported in parentheses. Unadjusted p-values and p-values adjusted for multiple hypothesis testing according
to the Benjamini-Hochberg procedure are shown in squared and curly brackets, respectively. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

size of the bias. We obtain negative estimates for total actions and commits with both PM2.5 in
µg/m3 and the binary indicator for unusually high pollution levels, but they are significantly
different from zero only when using the binary regressor. The results replicate the pattern that
effects on commits are larger than on comments. Mirroring a common finding in the literature
on short-run impacts of air pollution exposure, all estimates are substantially smaller than the
2SLS results, pointing towards attenuation bias due to measurement error. The ratio of 2SLS-
to-OLS estimates ranges between 7 and 13 across specifications.32 In Table 1.A.8 we re-do the
OLS analysis on the extended sample of 220 cities. Results are almost identical for the binary

32This is in line with e.g. 2SLS-to-OLS ratios found by Deryugina et al. (2019).
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indicator, but the coefficients also attain statistical significance with the continuous regressor.

Effect Magnitude. We conduct three exercises to assess the magnitude and the economic
relevance of the estimates. Firstly, we compare the impact of PM2.5 concentration above the
75th percentile on developers’ output to the effect of another highly relevant environmental
shock, exposure to extreme outdoor temperatures.33 Secondly, we compute elasticities based
on the estimated effect of PM2.5 on commits and total actions and compare these to elasticities
found in previous studies on other occupations. Finally, we leverage the information from
Gitcoin to translate the effects into monetary damages.

Figure 1.6a reproduces the estimated effects of PM2.5 concentration exceeding the 75th per-
centile on actions, commits, and comments in graphical form (point estimates with 95% confi-
dence intervals displayed in black on the right). In addition, coefficients from OLS regressions
of the same outcomes on maximum daily temperature are presented. The regressors of interest
are eight dummy variables indicating whether maximum daily temperature falls into a specific
percentile range, as displayed on the x-axis. The reference category is a maximum temperature
value between the 35th and the 65th percentile. In addition, regressions control for minimum
daily temperature, measured in the same way, further weather controls and fixed effects as in
Equation (1.1). For all three outcomes, the effects of temperature follow the familiar inverse
u-shape: Both unusually cold and unusually hot temperatures have adverse effects, but only
the impact of heat is statistically significant.34 Even though the developers in our samples
might work in climate-controlled office buildings, exposure to heat during commuting times
or while running other errands might plausibly generate these negative effects. Importantly,
for both commits and total actions, the point estimate on the PM2.5 dummy is more than twice
as large as the point estimate for the highest temperature bin which reflects maximum daily
temperature above the 95th percentile.35 The IV estimates (PM2.5) are less precise than the
OLS estimates (temperature), but still, even the lower bounds of the 95% confidence intervals
on the pollution effects are as large as or even exceeding the point estimates for heat. Hence,
the adverse productivity effects of poor air quality exceed those of extreme temperatures, an
environmental shock of high relevance given climate change.

Next, we compute elasticities of total actions and commits w.r.t. PM2.5 based on the esti-
mates in Panel A of Table 1.2. We obtain elasticities of -.014 and -.025 for actions and commits,
33This is motivated by recent findings that, in the U.S., heat exposure exerts adverse effects, e.g., on student

performance on high stake exams (Park, 2020), on sentiment among Twitter users (Baylis, 2020), and on
mental health (Mullins and White, 2019). Please refer to these papers for more complete overviews of this
literature and potential mechanisms.

34This is unsurprising given that by analyzing the effects of maximum daily temperature, we can better capture
the impact of heat than the effect of cold, and, especially in Europe, not all office buildings are equipped with
air conditioning, while heating devices are omnipresent.

35Median maximum temperature in this bin is 30.5° C, while the median value in the omitted bin is 16.9° C.
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(a) Effects of PM2.5 and Heat on Work Quantity

(b) Effects of Air Pollution Across Occupations

Figure 1.6.: Effect Magnitude

Note: Figure 1.6a reproduces the estimated effects of a PM2.5 concentration exceeding the city-specific 75th percentile on actions, commits,
and comments from Panel B of Table 1.2 in graphical form (point estimates with 95% confidence interval displayed in black on the right). The
colored lines represent estimates from an OLS regression of the same outcomes on maximum daily temperature measured by eight dummy
variables indicating whether maximum daily temperature falls in a specific percentile range, as displayed on the x-axis. The reference category
is a maximum temperature value between the 35th and the 65th percentile. The shaded areas are 95% confidence bands. Control variables are
eight corresponding dummies for minimum daily temperature, third-order polynomials for precipitation, wind speed, and relative humidity,
indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed effects. Day-of-week and year-by-
month fixed effects can vary across world regions 𝑅. Standard errors are clustered at the city level and regressions are weighted by the
number of active workers in a city in the current month. Figure 1.6b shows the elasticities of commits and actions with respect to PM2.5,
based on the estimates in Columns 1 and 2 of Table 1.2. Besides, it presents elasticities of performance with respect to air pollution from
other studies, in particular: Künn et al. (forthcoming) (Chess players), Sarmiento (2022) (Judges), Kahn and Li (2020) (Judges (2)), Chang et al.
(2019) (Call center agents), He et al. (2019) (Textile Workers (2)), Adhvaryu et al. (2022) (Textile Workers), Chang et al. (2016) (Pear Packers),
and Graff Zivin and Neidell (2012) (Fruit pickers).
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respectively. These values, along with elasticities of productivity or performance found in
previous studies, are depicted in Figure 1.6b.36 Given that these estimates are derived from
very different settings and rely on different approaches (IV vs. OLS estimation, measurements
of indoor vs. outdoor pollution), we need to proceed with caution when drawing compar-
isons between them. However, it stands out very clearly that our estimates are at the lower
end of the range of effect sizes found so far. In particular, the effect on developers’ output is
much smaller than the estimates for judges and chess players, who are also engaged in cogni-
tively demanding tasks. As outlined above, a potential explanation is that chess players and
judges face more inflexible settings, namely chess tournaments and court hearings. These cir-
cumstances offer no possibility to adapt working hours or the choice of tasks to productivity
shocks. This is very different in our setting, and we provide evidence on worker adjustment
to an increase in PM2.5 in Section 1.5.3. This underscores the importance of our analysis: It
might be misleading to draw conclusions on the total economic cost of air pollution based on
the estimates for cognitively-demanding tasks in highly inflexible settings because in many
high-skilled occupations workers have at least some degree of flexibility in organizing their
work day.

Even though productivity effects are small in comparison to other contexts, they might
still be economically relevant, given that software development is a high-paying occupation
generating large economic value. We use the average monetary value of commits and PRs
opened (derived in Section 1.3.3) to translate the estimated negative effects of PM2.5 exposure
on these two outcomes into changes in output value.37 For a within-city standard deviation
increase in PM2.5 (11.8 µg/m3) the implied reduction in daily output value amounts to $4.06
per software developer. This is of the same order of magnitude as effects reported by Chang
et al. (2016) who find that a 10 µg/m3 increase in PM2.5 reduces hourly output among pear
packers by $0.41, which would imply a damage of $3.28 for a working day of eight hours. On
days when PM2.5 concentration exceeds the city-specific 75th percentile output value falls by
$11.0 relative to days with better air quality. Given that we ignore losses from reductions in
task complexity in the calculation (see below), these estimates can be interpreted as a lower
bound.

In summary, the impact of air pollution shocks on productivity exceeds the effect of heat.
In comparison to other professions, the effect of particulate matter is relatively small, pointing
towards an important role of worker adaption in flexible work environments. Economically,
the productivity effects are nevertheless relevant, given the high monetary value of software.
36Air pollution is measured by PM2.5 in all cases except for call center agents and fruit pickers.
37As stated in Section 1.3.3 we work with an average monetary value of $112 per commit. In the case of PRs, we

do not use the mean value of $354 found in the Gitcoin data because PRs in that sample are larger on average
than PRs created in our main analysis sample. Instead, we value PRs with 2.78 × $112 = $311 given that they
comprise, on average, 2.78 commits.
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Effect Dynamics. The existing literature on air pollution and worker productivity found
mixed results on the lagged impact of exposure. He et al. (2019) show evidence for lagged
effects of PM2.5 and SO2 on the productivity of textile workers in industrial towns in China,
while Künn et al. (forthcoming) find that chess players’ performance is unaffected by pollu-
tion exposure on the previous days. To explore effect dynamics in our setting, we regress the
three measures of output quantity on eleven dummies indicating whether wind was blow-
ing to city 𝑐 from the high-pollution direction on day 𝑑 and each of the previous ten days,
WDir highPM𝑐,𝑑−𝑘 , where 𝑘 ∈ {0, 1, . . . , 10} denotes the lag order. To identify this direction
for each city-group 𝑔, we run the first stage model with the level of PM2.5 concentration as
outcome and five dummies for average daily wind direction falling into a specific 60° bin as
instruments, interacted with the city-group indicators.

Appendix Table 1.A.9 shows estimated coefficients from the “reduced form” model for total
actions, commits, and comments, including just the indicator for the same day, WDir highPM𝑐,𝑑 .
The signs and significance of the estimated coefficients are in line with the 2SLS results. The
first stage effect, reported at the bottom of the table, implies that wind from a city’s high-
pollution direction raises PM2.5 concentration on average by 3.7 µg/m3 relative to days where
wind arrives from another direction. While this approach is much less flexible than our main
2SLS model, it captures the underlying idea in a single variable and thus allows us to easily
analyze effect dynamics by including lags. Since we are mostly interested in qualitative results
– does lagged exposure reduce productivity or does it induce developers to work more in order
to catch up – we opt for this approach.

The distributed lag model we use to explore effect dynamics includes the same covariates
as our main contemporaneous model plus ten lags of weather conditions and is given by:

𝑦𝑐,𝑑 =

10∑︁
𝑘=0

𝛽𝑘WDir highPM𝑐,𝑑−𝑘+
10∑︁
𝑘=0

w’𝑐,𝑑−𝑘𝛾𝑘+`𝑐+`𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑)+`𝑅(𝑐),𝑑𝑜𝑤 (𝑑)+𝛿𝑅ℎ𝑐,𝑑+Y𝑐,𝑑 (1.3)

From the corresponding estimates 𝛽𝑘 , we compute the cumulative effect of exposure to wind
from the high-pollution direction for 𝑠 consecutive days,

∑𝑠
𝑘=0 𝛽𝑘 for 𝑠 = 0, 1, . . . , 10, which we

plot in Figure 1.7.
For both total actions and commits, same-day exposure to pollution generates negative and

significant effects. The cumulative effect magnitude grows monotonically up to the third lag.
The current day effect of WDir highPM𝑐,𝑑 is estimated to be -.018 for total actions and -.007 for
commits. After four consecutive days of wind from the high-pollution direction, the cumu-
lative effect is -.037 and -.022, respectively. For more prolonged exposure the point estimate
of the cumulative effect remains rather constant but becomes noisier, likely due to serial cor-
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Figure 1.7.: Effect Dynamics: Work Quantity

Note: The plots depict estimates of the cumulative effect of wind blowing from the high-pollution direction on three measures of work
quantity. Effects are derived from a distributed lag model and given by

∑𝑠
𝑘=0 𝛽𝑘 for 𝑠 = 0, 1, . . . , 10. The x-axis denotes the number of days

over which the cumulative effect is computed. Shaded areas represent 95% confidence intervals. Regressions control for city, Region-by-day-
of-week, and Region-by-year-by-month fixed effects, a holiday indicator, and weather controls for the current day and ten lags (third-order
polynomials in mean daily temperature, precipitation, relative humidity, and wind speed). Regressions are weighted by the number of active
workers in a city during the current month and standard errors are clustered at the city level.

relation in the wind direction variable. For commits, there is no decline in the cumulative
effect magnitude at higher lags, i.e., no evidence that developers completely make up for the
output loss within the first ten days after exposure. After ten days, the point estimates for
commits and total actions are still negative and as large as or even larger than the point es-
timate for same-day exposure. For comments, the cumulative effect always remains close to
zero throughout the full time window.

In sum, pollution exposure generates an adverse effect on current-day output and, to a
smaller extent, also reduces productivity on the following three days. Compared to health
impacts, the productivity effects are rather immediate.38

1.5.2. WorkQuality

So far, we have shown that exposure to PM2.5 reduces the quantity of output developers pro-
duce per day. In high-skill jobs, output quality is of major relevance and might also be affected
by pollution shocks.

Table 1.3 displays 2SLS estimates of the effect of PM2.5 on two measures of work quality. The
first is the share of all PRs a user opened on a given day that is later merged, i.e., accepted. PR

38Barwick et al. (2018) for instance find that PM2.5 exposure raises medical expenditures up to 90 days post
exposure.
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rejections suggest issues with code quality or style, indicating low work quality. The second
is the share of commits made by a user on a given day that were later reverted. Commit
reversals point toward severe errors that cannot easily be corrected in follow-on commits,
i.e., major issues with the work quality. Sample sizes are reduced relative to the results on
output quantity, because the outcomes are only defined for city×day observations with any
PRs opened and any commits, respectively. Moreover, information on commit reversals is
from the GHArchive data which is only available from 2015 onward.

We find small, insignificant point estimates for both outcomes when using PM2.5 in µg/m3

as regressor. PRs opened on days when PM2.5 concentration exceeds the 75th percentile, are
0.8 p.p. more likely to get accepted. This represents an increase of 1.3% relative to the mean, i.e.,
a small improvement in work quality. Estimates remain insignificant for the share of commits
that are reverted, but the negative sign is also in line with minor reductions in error frequency.

Table 1.3.: Effect of PM2.5 on Work Quality

Share PRs merged Share Commits reverted
(1) (2)

Panel A.
PM2.5 0.00013 −0.0000004

(0.00019) (0.00001)

First Stage F-Stat. 56.0 78.8
% change in Y 0.19 - 0.02
Panel B.
1{PM2.5 > 𝑄0.75} 0.0083∗∗ −0.00015

(0.00399) (0.00022)

First Stage F-Stat. 42.9 61.1
% change in Y 1.3 -8.2
Observations 135,433 215,728
Mean Dep. Var. 0.665 0.002

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). The outcome in Column (1) is defined as the share of all PRs
opened by a developer on a given day that later gets accepted. The outcome in Column (2) is defined as the share of all commits made by
a developer on a given day that later get reverted, i.e., undone (see Section 1.3 for details). In Panel A, the regressor of interest is PM2.5
concentration measured in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration
exceeds the city-specific 75th percentile. The first stage specification is given in Equation (1.2). Covariates include eight bins for mean daily
temperature, third-order polynomials in wind speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays,
as well as city, day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls
can vary across world regions 𝑅. Regressions are weighted by the number of active workers in a city during the current month. Standard
errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The null effect on quality contrasts with findings by Archsmith et al. (2018) who show that
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baseball umpires conduct more errors when exposed to higher pollution levels. In the next
section, we present evidence that developers change their work patterns when exposed to
high levels of pollution. This form of adaptation might explain why effects on output quantity
are relatively modest and quality is unaffected in this flexible high-skilled setting.

1.5.3. Worker Adjustment

In this section, we investigate whether work patterns change in response to increases in par-
ticulate pollution. We consider two potential margins of adjustment, task choice and working
hours.

Switching to Easy Tasks. We analyze whether developers switch towards easier tasks
when exposed to higher levels of pollution, for both activities related to issues, i.e., interactive
tasks, and activities related to pull requests, i.e., coding and review tasks. Table 1.4 presents
estimates of the impact of pollution on the share of issue events completed that refer to an
easy issue (Column (1)). As this outcome is only defined for city×day observations with non-
zero issue events (issue opened, closed, or reopened, or a comment written on an issue), the
number of observations is reduced. We find that the share of events referring to easy issues
increases if PM2.5 concentration rises. In terms of magnitude, an increase in pollution by one
within-city standard deviation raises the share by 2.6%. On days when fine particulate matter
levels exceed the city-specific 75th percentile, the variable even increases by 4.9% of the mean,
or 0.32 percentage points.

In the second column, we analyze how the denominator of the share changes. Consistent
with earlier results on the impact of PM2.5 on interactive tasks, we find no statistically signif-
icant effect on the number of issue events. Thus, changes in the share of easy issue events
are not driven by changes in the denominator, but by a switch towards more easy issues
for a relatively constant activity level with respect to issue events. When hit by a pollution-
induced productivity shock, developers seem to exploit the fact that certain issue labels provide
a prominent signal of issue complexity to focus on easier tasks.

This finding is corroborated when we consider the complexity of PRs in Columns (3) to (5).
We consider three PR characteristics: lines of code added, lines of code deleted, and number of
files changed, averaged across all PRs a developer worked on a given day.39 While there can
be very difficult tasks that involve a lot of thinking but require only small changes in the code,
we believe that these variables provide reasonable proxies of PR complexity. Fixing a severe

39These variables are based on GHArchive data, whereas work quantity results used GHTorrent data. GHArchive
data is only available from 2015 onward. In Appendix Table 1.A.10 we show that using data on pull requests
from GHArchive we can replicate the results presented in Table 1.A.6 for PRs opened or closed measured in
the GHTorrent data.
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Table 1.4.: Effect of PM2.5 on Task Complexity

Share Easy Lines added Lines deleted Files changed
Issue Events Issue Events per PR per PR per PR

(1) (2) (3) (4) (5)
Panel A.

PM2.5 0.00015∗∗ −0.00046 −0.0013 −0.0013 −0.0010∗∗
(0.00007) (0.00041) (0.0008) (0.0010) (0.0004)
[0.036] [0.264] [0.112] [0.202] [0.017]

First Stage F-Stat. 86.3 102.1 62.1 62.1 62.1
% change in Y 0.2 -0.5 -0.1 -0.1 -0.1
Panel B.
1{PM2.5 > 𝑄0.75} 0.0032∗∗ −0.0219 −0.0404∗∗ −0.0196 −0.0244∗∗

(0.0015) (0.0134) (0.0181) (0.0214) (0.0098)
[0.028] [0.105] [0.027] [0.362] [0.014]

First Stage F-Stat. 66.1 80.5 45.6 45.6 45.6
% change in Y 4.9 -2.4 -4.0 -2.0 -2.4
Observations 250,376 353,445 164,883 164,883 164,883
Mean Dep. Var. 0.067 0.90

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). The outcome in Column (2) is defined as the sum of actions referring
to issues, i.e., the number of issues opened, closed, reopened, and the number of issue comments written. The outcome in Column (1) is defined
as the ratio of the number of these activities which refer to an issue classified as easy based on issue labels (see Section 1.3 for details) and
the total number of issue events. In Columns (3) to (5), outcomes are defined as the average number of lines of code files changed, number of
new lines of code added, and number of lines of code deleted across all PRs a developer opened, closed, or commented on. Inverse hyperbolic
sine transformations are applied to these outcomes. In Panel A, the regressor of interest is PM2.5 concentration measured in µg/m3. In Panel
B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the city- specific 75th percentile.
The first stage specification is given in Equation (1.2). Covariates include eight bins for mean daily temperature, third-order polynomials in
wind speed, precipitation, and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-
month fixed effects. Day-of-week and year-by-month fixed effects and temperature controls can vary across world regions 𝑅. Regressions
are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in
parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

bug for instance likely requires changes in different parts of the source code, which implies a
larger number of files changed. Results presented in Table 1.C.3 indicate that PRs with more
lines of code added and files changed are rewarded higher payments on Gitcoin, validating
the use of these variables as complexity metrics. Similarly, reviewing a PR is more demanding
when it contains large changes across different files. The characteristics we use to measure
complexity are prominently displayed when opening a PR on GitHub, such that reviewers can
easily assess them and jugde their difficulty level.

We apply the inverse hyperbolic sine transformation to the outcome variables such that
coefficients approximate percentage changes. The sample size is reduced relative to previous
tables because the outcomes are defined only for city×day observations with a positive num-
ber of PRs opened, closed, or commented on. Point estimates are negative across all three
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outcomes and the two distinct measures of air pollution. On days with unusually high PM2.5

levels, the number of files changed falls by 2.4%, while the number of lines added drops by 4%.
The effect on the number of lines deleted is also negative, but only half as large and not signif-
icantly different from zero. This pattern is plausible since tasks related to deleting code, e.g.,
cleaning or polishing a file or dropping a deprecated or redundant part, are often easier than
creating new code. The pattern is similar for the continuous regressor, but the effect on new
lines added is not significant at conventional levels, indicating that developers move towards
less complex tasks mostly in response to large productivity shocks on high-pollution days.

In sum, the results imply that, on top of the overall reduction in the number of actions
completed, developers switch towards less complex tasks when exposed to high levels of PM2.5.
Thus, the estimates of monetary effects of air pollution exposure presented above provide a
lower bound, given that we found in Section 1.3.3 that less complex pull requests and those
addressing issues labeled as easy are rewarded lower payments, even when holding the number
of commits constant.

This form of adjustment might also explain why the magnitude of effects on output quantity
is relatively small in comparison to results found for other occupations, and why work qual-
ity is not adversely affected. We next present some evidence that switching to easier tasks is
indeed an adaptation strategy to surges in particulate matter exposure that allows developers
to prevent large declines in work quantity. Table 1.5 presents results from a heterogeneity
analysis based on developer characteristics. Specifically, we combine tenure (time since regis-
tration on GitHub) and the number of followers at the point in time the developer enters our
sample into an index that represents their experience and popularity.40 We split the sample
developers into terciles based on experience and run the IV regression at the developer×day
level. Panels A and B present results estimated separately for the bottom and the top tercile,
respectively.41

The first three columns display estimated effects of PM2.5 on the three primary measures
of work quantity. Point estimates for total actions and commits are negative in both samples,
but larger in absolute terms as well as relative to the sample means for the most experienced
developers. Effects on comments are not significantly different from zero in either sample. For
the adaptation variables examined in the last three columns, the pattern is reversed: While the
direction of the effects is again the same in both samples, effects are now stronger among the
less experienced developers and not significantly different from zero in the upper tercile.

These results confirm that switching to easier tasks is a form of adjustment to pollution-
induced productivity shocks among highly-skilled workers. A potential reason why the least

40The index is computed as the average of tenure and the number of followers, after standardizing both variables.
41Median tenure (number of followers) is 1.4 years (11) in the bottom tercile and 5.7 years (31) in the upper

tercile.
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Table 1.5.: Effect Heterogeneity by Experience

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A: Bottom Tercile of Experience
PM2.5 −0.0033∗ −0.0026∗∗ −0.0008 0.00035∗∗ −0.0022 −0.0019∗∗

(0.0017) (0.0011) (0.0008) (0.00014) (0.0015) (0.0009)

First Stage F-Stat. 3187 3187 3187 586 211 211
% change in Y -0.12 -0.19 -0.10 0.47 -0.22 -0.19
Observations 4,774,247 4,774,247 4,774,247 900,318 327,297 327,297
Mean Dep. Var. 2.48 1.24 0.77 0.074

Panel B: Upper Tercile of Experience
PM2.5 −0.0062∗∗∗ −0.0044∗∗∗ −0.0009 0.0001 −0.0015 −0.0003

(0.0023) (0.0014) (0.0010) (0.0001) (0.0023) (0.0013)

First Stage F-Stat. 3010 3010 3010 756 222 222
% change in Y -0.18 -0.30 -0.06 0.17 -0.15 -0.03
Observations 4,387,377 4,387,377 4,387,377 1,105,410 324,527 324,527
Mean Dep. Var. 3.16 1.37 1.15 0.061

Note: The table presents IV estimates of the parameter 𝛽 in equation (1.1). Inverse hyperbolic sine transformations are applied to outcomes in
Columns 5 and 6. The regressor of interest is PM2.5 concentration measured in city-specific standard deviations. The first stage specification
is given in equation (1.2). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation,
and relative humidity, indicators for heavy wildfire smoke and holidays, as well as developer, day-of-week, and year-by-month fixed effects.
Day-of-week and year-by-month fixed effects and temperature controls can vary across world regions 𝑅. Standard errors clustered at the
city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

experienced developers show a stronger adjustment response might be that they have the
largest incentive to keep up a high activity level because the number of actions performed
per day in public repositories is visualized on a user’s GitHub profile and might be an impor-
tant signal to peers or potential employers. Work complexity on the other hand is less easily
observable.

Working Hours. A second potential adjustment margin available in flexible work environ-
ments is a change in working hours. We start by analyzing whether developers expand or
reduce activity in the evening in response to increasing pollution exposure. Table 1.6 presents
the estimated effects of PM2.5 on the timestamp of the last action performed by a developer on
a given day (in minutes) and on the share of total actions conducted after 6 pm.42

42These outcomes are only defined for developer×day observations with at least one action, which explains the
reduction in sample sizes.
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Table 1.6.: Working Hours

Time of Last Action (minutes) Share of Actions after 6 pm
(1) (2)

Panel A.
PM2.5 −0.226∗∗∗ −0.0001

(0.085) (0.0001)
[0.009] [.147]

First Stage F-Stat. 96.1 96.1

Panel B.
1{PM2.5 > 𝑄0.75} −4.162∗∗ −0.002

(2.061) (0.003)
[0.045] [.368]

First Stage F-Stat. 73.9 73.9

Observations 302,575 302,575

The table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Panel A, the regressor of interest is PM2.5 concentration measured
in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the city-specific
75th percentile. The outcome variables are the timestamp of the last action conducted by a developer on a given day in minutes in
Column (1), and the share of all activities conducted after 6 pm in Column (2). Estimates are based on all developer×date observations
with at least one recorded action in Column (1) and at least two recorded actions in Column (2). The first stage specification is given in
Equation (1.2). Covariates include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and relative
humidity, indicators for heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed effects. Day-of-week
and year-by-month fixed effects and the temperature controls can vary across world regions 𝑅. Regressions are weighted by the number
of active workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses. P-values are
reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We find that developers on average end the work day 0.23 minutes earlier in response to an
increase in PM2.5 concentration by 1 µg/m3. On days with PM2.5 levels above the city-specific
75th percentile, the work day ends 4.2 minutes earlier than on days with better air quality. To
put this into perspective, we approximate the average time spent per action as

1
𝑁

∑︁
𝑖

∑︁
𝑑

(
timestamp(last action𝑖,𝑑) − timestamp(first action𝑖,𝑑)

)
/
(
number of actions𝑖,𝑑 − 1

)
where 𝑁 denotes the number of developer×date observations with at least two actions. This
yields an average of 72.5 minutes spent per action.43 Point estimates for the share of actions
conducted in the evening are also negative, but small and not statistically significant. Subtle
effects of pollution might make developers feel unproductive, inducing them to end their work
activity earlier on high-pollution days due to reduced opportunity cost of leisure time. If PM2.5

43Importantly, this computation gives the time input including breaks, as we cannot disentangle time spent
working on activities and breaks.
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exposure, e.g., triggers headaches or fatigue, developers might experience this as an off day and
decide to reallocate work to days when they perform better. In many jobs, knowledge workers
are very flexible in when and where they want to work. Thus, shifting work intertemporally
from low productivity days to the weekend, a period with relatively low activity levels and
thus scope for compensation (see Figure 1.2), might be an important adjustment margin in
these settings. To investigate this, we estimate the effect of PM2.5 exposure during the first
half of the workweek on output produced on the weekend. This analysis is conducted at the
developer×week level, using the following, slightly modified, regression model.

𝑦weekend
𝑖,𝑐,𝑤 = 𝛽PMMo-We

𝑐,𝑤 + `𝑖 + x′𝑖,𝑡𝜋 +w′weekend
𝑐,𝑤 𝛾 +w′Mo-We

𝑐,𝑤 𝛼 +
𝛿𝑅(𝑐)ℎ𝑐,𝑤 + `𝑅(𝑐),𝑦𝑟 (𝑤),𝑞(𝑤) + z′𝑐,𝑤𝜑 + Y𝑖,𝑐,𝑤

(1.4)

𝑦weekend
𝑖,𝑐,𝑤 denotes the sum of actions conducted by developer 𝑖 living in city 𝑐 on the week-

end of week 𝑤 . 𝑃𝑀Mo-We
𝑐,𝑤 is a measure of PM2.5 concentration in city 𝑐 between Monday and

Wednesday of week𝑤 . Specifically, we consider average PM2.5 concentration or the number of
days with PM2.5 concentration exceeding the city-specific 75th percentile. Due to the finding
that exposure to pollution exerts negative effects on output not only on the same day, but also
over the next two to three days, we focus on PM2.5 during the first half of the workweek to
make sure that we pick up developers’ behavioral adjustment to a productivity shock during
the workweek, and do not confound it with physiological effects.

Pollution is instrumented by the same variables as described in Equation (1.2), with the only
difference that wind direction \𝑐,𝑤 is averaged between Monday and Wednesday. To account
for auto-correlation in the instruments, we add the vector z𝑐,𝑤 to the model, which includes the
instrumental variables measured on the weekend and on Thursday to Friday. This ensures that
we do not pick up the effects of wind direction-induced changes in pollution on the weekend
itself or the days immediately before. The model further includes a developer fixed effect `𝑖 ,
a region-by-year-by-quarter fixed effect, `𝑅(𝑐),𝑦𝑟 (𝑤),𝑞(𝑤) , the number of public holidays during
the workweek, ℎ𝑐,𝑤 , a vector x′𝑖,𝑡 of bin variables capturing the developer’s tenure on GitHub,
and two sets of weather controls, wMo-We

𝑐,𝑤 and wweekend
𝑐,𝑤 , covering the exposure period and the

weekend, respectively.44

Table 1.7 presents estimates of coefficient 𝛽 . Results in Columns (1), (3), and (5) indicate
that developers produce significantly more output on weekends if they were exposed to un-
usually high levels of PM2.5 between Monday to Wednesday of the same week (Panel B). In

44wMo-We
𝑐,𝑤 and wweekend

𝑐,𝑤 both comprise the number of days with heavy wildfire smoke exposure as well as third-
order polynomials in average precipitation, relative humidity, and wind speed during the respective period.
wMo-We

𝑐,𝑤 further includes eight variables counting the number of days on which daily mean temperature is
falling into the temperature bins described above. wweekend

𝑐,𝑤 includes a third-order polynomial in average
temperature.
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Table 1.7.: Effect of PM2.5 in the First Half of the Workweek on Weekend Work

Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 0.0043 0.0133∗∗ 0.0017 0.0062∗∗ 0.0016 0.0037∗∗

(0.0030) (0.0055) (0.0017) (0.0030) (0.0012) (0.0019)
[0.158] [0.016] [0.308] [0.041] [0.158] [0.048]

First Stage F-Stat. 1406 1147 1406 1147 1406 1147

Panel B.
High PM2.5 Days 0.0630∗∗∗ 0.1362∗∗∗ 0.0268∗ 0.0646∗∗∗ 0.0213∗∗ 0.0341∗∗∗

(0.0225) (0.0321) (0.0136) (0.0207) (0.0084) (0.0107)
[0.006] [.00004] [0.051] [0.002] [0.013] [0.002]

First Stage F-Stat. 1455 801 1455 801 1455 801

Observations 2,011,797 1,352,191 2,011,797 1,352,191 2,011,797 1,352,191
Weeks all only low PM all only low PM all only low PM

weekends weekends weekends

Note: The table presents IV estimates of the parameter 𝛽 in equation 1.4. Outcomes are the sum of all actions, commits, and comments made
on the weekend, respectively. In Panel A, the regressor of interest is average PM2.5 concentration between Monday and Wednesday. In
Panel B, the count of days on which the city×day PM2.5 concentration exceeds the city- specific 75th percentile during this period is used
instead. The first stage specification is given in equation 1.2. Regressions control for developer and region-by-year-by-quarter fixed effects,
the number of public holidays during the workweek, and the leads of the instrumental variables for both the weekend and the period from
Thursday to Friday. Further covariates are the number of days with heavy wildfire smoke, and third-order polynomials in average wind
speed, precipitation, and relative humidity during both the weekend and the period between Monday and Wednesday. Temperature controls
are included in the form of eight bin variables for the period Monday to Wednesday, and in the form of a third-order polynomial for the
weekend, and are allowed to vary across regions 𝑅. Standard errors clustered at the city level are reported in parentheses. P-values are
reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

terms of magnitude, one additional day with PM2.5 concentration exceeding the city-specific
75th percentile causes an increase in total actions on the weekend by 0.063 or 2.1% of the
mean. Effects are positive and significant for both commits and comments, amounting to 1.6%
and 2.8% of the mean values, respectively. When we consider average PM2.5 concentration
between Monday and Wednesday instead, we find positive point estimates, but these are not
significantly different from zero. The compensation thus seems to be most relevant after high-
pollution days, which is consistent with the finding that unusually high pollution levels result
in disproportionately large declines in output quantity on the day of exposure.

In Columns (2), (4), and (6), we repeat the same analysis, but using only developer×week
observations with low pollution levels on the weekend, i.e., levels below the city-specific 75th
percentile on both days. We find substantially larger coefficients, indicating that developers
reallocate work from low to high productivity periods, i.e., weekends without air pollution-
induced productivity shocks.
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To put these effects into perspective, we can compare the effect magnitudes with the esti-
mates in Table 1.2 depicting the reductions in daily output due to same-day PM2.5 exposure.
Additional work on the weekend makes up for 33% and 57% of the reduction in commits and
total actions due to PM2.5 exceeding the 75th percentile, respectively.45

To check that the estimates in Table 1.7 do not pick up any effects of unobservable con-
founders, but indeed reflect a behavioral response of developers to pollution-induced produc-
tivity shocks, we conduct a falsification test. We shift both the weekend and the exposure pe-
riod forward by four days. The placebo weekend comprises Wednesday and Thursday and the
placebo exposure period ranges from Friday to Sunday of the week before. Since activity lev-
els are low on weekends, productivity shocks on these days should not induce compensation
during the following week. Moreover, activity is already high on Wednesday and Thursday,
such that there is not much scope for additional work. Hence, we expect no significant effects
of PM2.5 exposure. Appendix Table 1.A.11 presents the results which confirm this hypothesis.
Effects are neither significant in the full sample, nor when considering only placebo weekends
with low pollution levels.

In summary, we find that developers work more on weekends to catch up on coding tasks
not completed due to pollution-induced productivity declines during the workweek.46 The
opportunity for compensation might allow them to end work early on high-pollution work
days. This reallocation option could thus also contribute to the absence of effects on work
quality in this setting. If developers can end work when their health or cognitive capacity
deteriorates and they face an increased risk to commit errors, this will mitigate impacts of
pollution on work quality. At the same time, sacrificing leisure time on the weekend, when it
is likely most valuable, implies a welfare cost and potentially adverse effects on the work-life-
balance.

Overall, worker adaptation likely plays an important role in explaining the modest effects
of PM2.5 on output. By focusing on easier tasks and reallocating work from high-pollution,
low-productivity to low-pollution, high-productivity periods, developers alleviate the impact
of the environmental shock.

45In the case of comments, we find positive effects on weekend activity, even though there are no significant
reductions in comments due to pollution exposure. When developers work on the weekend because they are
behind on coding tasks, they might decide to also conduct some interactive actions given that they are active
on GitHub anyways, even though there was no negative effect of pollution exposure in this domain. This
might explain the positive effect for comments and the large coefficient for total actions relative to the direct
effect.

46This result is similar to the finding by Hoffmann and Rud (2022) that workers in Mexico City reallocate labor
supply across days in response to changes in PM2.5. However, the authors find strong extensive margin
effects and show that reallocation likely serves as a strategy to avoid pollution exposure and its adverse
health impacts. In our setting focused on a global sample of high-skill tech workers reallocation is likely
rather a response to low productivity during high-pollution periods.
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1.6. Heterogeneity and Further Results

Our main results are based on a linear measure of PM2.5 concentration and an indicator for
unusually high levels. In this section, we exploit the large variation in air quality in our inter-
national sample to investigate whether effects on output arise across the full range of concen-
trations, and how they vary in intensity. Furthermore, we analyze effect heterogeneity based
on location characteristics, repeat our analysis at the monthly level, and conduct several ro-
bustness checks.

Non-Linearity. To analyze the shape of the dose-response function between PM2.5 and out-
put quantity, we replace PM𝑐,𝑑 in equation (1.1) with a series of dummy variables indicating
whether PM2.5 concentration falls into a specific bin.47 We estimate the model by OLS on
the extended sample of 220 cities. Since we cannot rely on exogenous variation in air qual-
ity due to wind direction in this analysis, we opt for a more conservative specification with
stricter fixed effects for region×date and city×month. These absorb (i) region-wide shocks
to developer output on a given date that might be correlated with PM2.5 concentration and
(ii) seasonal fluctuations in activity and air quality which are allowed to vary across cities.48

Given the finding that the OLS results underestimate the true effects, we need to bear in mind
that all results should be interpreted as reflecting lower bounds.

Figure 1.8 displays estimated effects of the PM2.5 bin variables on actions and commits.
Estimated coefficients reflect the impact of moving from a PM2.5 concentration between 16 and
22 µg/m3 to the respective bin. The x-axis measures the average concentration within the bins.
The baseline bin is chosen to ensure that for each city some observations fall into this range.
For perspective, it falls below the EU limit value for PM2.5 during the sample period (25 µg/m3),
but above the EPA annual standard (12 µg/m3). We find significant negative effects starting
at a concentration of approximately 75 µg/m3, but no significant differences in the outcomes
for concentrations between the reference bin and 60 µg/m3. Being exposed to a PM2.5 level
below 5 µg/m3 has a significant positive impact on both total actions (point estimate = 0.038,
p-value = 0.061) and commits (point estimate = 0.020, p-value = 0.031). This implies that even
in cities with low to moderate levels of PM2.5, further improvements in air quality will generate
positive effects on worker productivity.

For both outcomes, the average slope of the function is larger than the estimate found in
the linear OLS specification, especially at low PM2.5 concentrations. To zoom in on the differ-

47Bins are defined for ≤ 5, (5-6], (6-8], (8-10], (10-13], (13,16], (16,22], (22,25], (25,28], (28,31], (31,35], (35,40],
(40,50], (50,60], (60, 70], (70, 85], (85,100], (100, 160] and > 160, all in µg/m3, with (16-22] as reference bin.

48OLS results from this model with either PM2.5 in µg/m3, or the binary indicator for PM2.5 above the city-specific
75th percentile as regressors are presented Columns 4 to 6 of Tables 1.A.7 and 1.A.8 for the main sample and
the extended sample, respectively.
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Figure 1.8.: Non-linear effects of PM2.5 on Work Quantity (OLS estimates)

Note: Plot depicts point estimates on different bins of PM2.5 concentrations from an OLS regressions of total actions (left) and commits
(right), respectively, on indicators for each bin. Covariates: Weather and holiday controls as in Equation 1.1, region×date and city×month
fixed effects. X-axis: Average PM2.5 concentration in each bin in µ𝑔/𝑚3. Shaded areas indicate 95%- and 90%-confidence intervals.

ent parts of the function, we split the sample into terciles based on cities’ average pollution
concentration. For each subsample we define seven bin variables for PM2.5 such that each bin
includes the same number of city×date observations. The reference category is given by the
lowest bin. Figure 1.9 presents the results, focusing on total actions for the sake of exposition.

In the subsample of cities in the bottom tercile, mean PM2.5 concentration ranges between
5.1 µg/m3 and 8.6 µg/m3. Most of the distribution falls below current regulatory thresholds.49

Moving from the lowest bin to higher concentrations generates significant negative effects
on output. The implied slope is -0.0044, i.e., much steeper than the estimate from the linear
specification on the full sample, and even exceeds the size of the 2SLS estimate. In the middle
tercile, by contrast, the estimates imply a flat slope. Average PM2.5 concentration in this sample
ranges between 8.7 µg/m3 and 13.0 µg/m3, and it includes mostly cities in the European Union
and the US. Among the most polluted cities in the upper tercile we again find a negative slope,
but less steep than in the low pollution subsample. This subsample includes most Asian and
Eastern European cities, as well as some cities in Western Europe, with mean concentration
ranging between 13 µg/m3 and 133 µg/m3.

We are unable to pin down what drives the differences in the dose-response function across
samples. They might arise because of differences in the extent of measurement error or omit-
49This subsample includes most cities in Australia, New Zealand, Scandinavia, and Canada and more than half

the cities in the US.
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Figure 1.9.: Non-linear effects of PM2.5 on Work Quantity across subsamples based on average
PM2.5

Note: The Figure depicts point estimates on different bins of PM2.5 concentrations from OLS regressions of total actions on indicators for each
bin for three distinct samples. Cities are assigned into subsamples based on average PM2.5 concentration. Covariates: Weather and holiday
controls as in Equation 1.1, region×date and city×month fixed effects. X-axis: Average PM2.5 concentration in each bin in µg/m3. Shaded
areas indicate 95%- and 90%-confidence intervals.
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ted variable bias. Moreover, individuals in high-pollution cities might engage more strongly
in avoidance behavior and the use of protective devices such as air purifiers.50 An impor-
tant result, however, is that PM2.5 exposure exerts adverse effects on productivity even below
relatively strict current regulatory thresholds like those by the U.S. EPA. Given that the OLS
estimates likely underestimate the true effects of PM2.5 exposure, the results imply relevant
economic benefits from complying with the stricter WHO standard for PM2.5.

Effect Heterogeneity. Next, we analyze heterogeneity in the effect of fine particulate mat-
ter on work quantity by location characteristics in order to shed light on the distribution of
air pollution damages and on potential mechanisms driving the adverse productivity effects.

We start by analyzing how the effect of an increase in PM2.5 differs between places with low
vs. high average pollution levels. To this end, we compute the average PM2.5 concentration
for each first-stage city group 𝑔 and form two subsamples comprising city-groups with below
and above median average PM2.5 levels. We assign city-groups to the two subsamples instead
of single cities to ensure that the IV approach does not capture impacts of local pollution
transport such that we cleanly identify the causal effects of interest.

Average PM2.5 concentration is 7.9 and 18.6 µg/m3 in the two subsamples. Panel A of Ta-
ble 1.8 presents the estimated effects on total actions and commits. We find larger point esti-
mates in the low pollution sample. The impact on total actions, however, is not significant at
conventional levels, likely due to the reduced sample size. This confirms the result from the
OLS estimation of the dose-response function which also suggests stronger impacts at lower
pollution levels. As mentioned above, more frequent use of air purifiers and other protective
measures in high-pollution places might explain this result. Within the US, a similar pattern
has been found by Bishop et al. (forthcoming) who analyze the impact of PM2.5 on dementia.

Secondly, we investigate differences in effect magnitude between places with relatively high
vs. low income levels. We collect data on GDP per capita in 2014, the first year of our sample
period from the OECD, World Bank, and national statistical offices.51 As before, we compute
average values at the city-group level and assign groups into either the above or below median
subsample. Average GDP per capita amounts to $38,400 in the low-income sample, and $71,000
in the high-income sample. Results are reported in Panel B of Table 1.8. We find that the point

50There is anecdotal evidence that big (tech) companies equip their offices in highly polluted places with air
purifiers and filters, e.g., Microsoft, Google, SAP and Coca-Cola in Delhi or Nokia in Beijing.

51The main data source is the OECD’s database on metropolitan areas, available at stats.oecd.org/Index.asp
x?DataSetCode=CITIES. It provides GDP per capita for metropolitan areas, i.e., for some smaller cities
in our sample we do not have city-specific data, but instead assign the value for the respective metro area.
Small cities in Silicon Valley, e.g., Cupertino, Palo Alto, and Mountain View are assigned the GDP per capita
reported for Greater San Francisco. Data for cities outside OECD countries is collected from national statistical
agencies, the OECD regional statistics database, or the World Bank. Values are converted by the purchasing
power parity conversion factor to adjust for differences in local price levels.
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Table 1.8.: Effect Heterogeneity

Actions Commits Actions Commits
(1) (2) (3) (4)

Panel A. Below Median PM2.5 Above Median PM2.5

PM2.5 −0.0055 −0.0040∗∗ −0.0027∗∗ −0.0024∗∗
(0.0037) (0.0016) (0.0011) (0.0009)

Observations 179,220 179,220 174,225 174,225
First Stage F-Stat. 107.4 107.4 102.4 102.4
Mean Dep. Var. 2.96 1.31 2.54 1.28
Mean PM2.5 7.9 7.9 18.6 18.6
Panel B. Above Median GDP per capita Below Median GDP per capita

PM2.5 −0.0031 −0.0025∗∗ −0.0030∗∗∗ −0.0024∗∗
(0.0022) (0.0011) (0.0011) (0.0010)

Observations 173,371 173,371 180,074 180,074
First Stage F-Stat. 88.9 88.9 113.4 113.4
Mean Dep. Var. 2.99 1.33 2.43 1.23
GDP 71,008 71,008 38,409 38,409
Mean PM2.5 9.4 9.4 17.9 17.9

Note: Estimated coefficients reflect 2SLS estimates of the parameter 𝛽 in Equation (1.1) for four distinct samples. The two samples used in Panel
A are constructed by comparing average PM2.5 concentration in each first stage city group 𝑔 to the median value. The two samples used in
Panel B are constructed by comparing average GDP per capita in 2014 in each first-stage city-group 𝑔 to the median value. Data on per capita
GDP is collected from the OECD, World Bank, and national statistical offices. The first stage specification is given in Equation (1.2). Covariates
include eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and relative humidity, indicators for
heavy wildfire smoke and holidays, as well as city, day-of-week, and year-by-month fixed effects. Day-of-week, and year-by-month fixed
effects and the temperature controls can vary across world regions 𝑅. Regressions are weighted by the number of active workers in a city
during the current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

estimates for total actions and commits are of very similar magnitude in the two subsamples.
In relative terms, the effects are marginally stronger in the high-income subsample.

Since GDP and air quality are systematically correlated, the two heterogeneity analyses
cannot identify distinct drivers of effect magnitude.52 The main takeaway message from the
two heterogeneity analyses is that we find no evidence that the effects of air pollution on high-
skilled worker productivity are more severe in disadvantaged locations. If anything, effects are
stronger in places with better air quality. Health impacts of particulate pollution, on the other
hand, are typically found to be larger in lower income and high-pollution locations (Colmer
et al., 2021a; Hsiang et al., 2019). A potential explanation for why we do not find the same

52In Appendix Figure 1.B.4, we present the distribution of average PM2.5 concentration in the rich vs. poor city
groups and the distribution of GDP per capita in the clean vs. polluted city groups. Lower-income locations
on average have higher pollution levels.
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pattern could be that we consider only individuals in a high-paying occupation.
Next, we investigate whether effect magnitude differs between places with low vs. high

awareness of air pollution as an important issue. We use data from the Pew Research Cen-
ter International Science Survey which was conducted in early 2020 across 20 countries with
several thousand interviewees per country. Survey participants were asked whether they be-
lieve that air pollution is a big, a moderate, a small, or no problem at all in their country.
As a country-wide measure of awareness, we compute the share of respondents stating that
air pollution is a big problem. Appendix Figure 1.B.5 shows the distribution of this variable
across the 14 countries that are included in both our data and the survey and how it varies
with average PM2.5 concentration. 152 cities in our main sample are covered by the survey
data. We split these cities into three groups with low, intermediate, and high awareness.53

Table 1.9 presents 2SLS estimates for the effect of PM2.5 concentration on total actions for the
total sample covered by the survey data, and the three subsamples. Effects are negative and
significant across all samples, and importantly there is no clear gradient in awareness. In fact,
the point estimate is identical in the high and the low awareness samples. This suggests that
the reduction in output is not driven by avoidance behavior, e.g., working from home on high
pollution days which reduces productivity. In this case, we would expect to see larger effects
in the high awareness sample.

Lastly, we investigate effect heterogeneity based on the quality of the local building stock.
Effective exposure to particulate matter is likely lower for individuals inside modern buildings
with low penetration rates than for individuals in older, lower-quality buildings given the
same outdoor concentration. We use data on the construction period of residential dwellings
as a proxy for building stock quality. We collect data on building stock age from different
national statistical offices, covering 164 out of the 193 cities in our main sample.54 For each
first-stage cluster, we compute the average share of dwellings built before 1970, i.e., the share
of relatively old buildings which likely have high indoor penetration rates. As before, we
then assign groups into subsamples based on whether the group level share of old buildings
is above or below the median value. Panel B of Table 1.9 presents regression results for the
full sample covered by the building stock data, as well as the two subsamples with above and
below median share of old buildings. We find that the negative effect of PM2.5 on total actions is
driven by the sample with a relatively high share of old dwellings, whereas the point estimate

53US cities form the intermediate awareness sample. Among US respondents, 63.1% believe that air pollution is
a big problem. All countries where a larger (smaller) share of respondents holds this view, are assigned to the
high (low) awareness subsample.

54The data is collected from the American Community Survey for metropolitan areas in the US, the EU Build-
ing Stock Observatory for EU member states (country-level), the Federal Statistical Office of Switzerland
(canton-level), the Statistics Bureau of Japan (prefecture-level), Statistics Canada (province-level), and Statis-
tics Norway (municipality-level).
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Table 1.9.: Heterogeneity: Awareness and Building Stock Age

Actions

Panel A. Awareness
High Intermediate Low

Total Awareness Awareness Awareness

PM2.5 −0.0043∗∗∗ −0.0035∗∗ −0.0083∗ −0.0035∗
(0.0012) (0.0014) (0.0042) (0.0020)

Observations 280,297 80,963 120,521 78,813
First Stage F-Stat. 98 90 67 115
Share AP is Big Problem 67.4% 78.1% 63.1% 51.6%
Mean PM2.5 11.0 16.2 8.7 9.5
Mean Dep. Var. 2.9 2.6 2.9 3.1
Panel B. Building Stock Age

Above Median Below Median
Total Old Building Share Old Building Share

PM2.5 −0.0039∗∗ −0.0044∗∗∗ −0.0025
(0.0015) (0.0016) (0.0031)

Observations 300,844 167,307 133,537
First Stage F-Stat. 102 124 93
Share modern buildings 28% 19% 38%
Share old buildings 44% 55% 32%
Mean PM2.5 10.4 9.7 10.9
Mean Dep. Var. 2.92 2.98 2.90

Note: Estimated coefficients reflect 2SLS estimates of the parameter 𝛽 in Equation (1.1) where the outcome variable is the number of completed
actions. Each Column is estimated on a different sample. In Panel A, the sample used in Column (1) includes all 153 cities covered by the
Pew Research Center International Science Survey. Results in Columns (2) to (4) are estimated on subsamples formed based on country-level
awareness of air pollution, measured by the share of respondents stating that air pollution is a big problem in the Pew Survey. In Panel B,
the sample used in Column (1) includes all 169 cities covered by data on building stock age. Results in Columns (2) to (3) are estimated on
subsamples formed based on the city-group level share of dwellings built before 1970, which are defined as old buildings. Modern buildings
are those build after 1990. The first stage specification is given in Equation (1.2). Covariates are as described in Table 1.8. Regressions are
weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

is not statistically significant and less than 60% as large in the subsample with relatively few
old buildings. The fact that effects are larger in places where effective exposure is likely higher
suggests that the main results are driven by physiological effects of air pollution, rather than
by behavioral changes or avoidance behavior.
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Monthly Level. Next, we quantify the effect of PM2.5 on output at a more aggregate time
period, by estimating a model at the developer×month level. This is motivated by the findings
that pollution exposure has not only contemporaneous, but also some lagged effects on output,
and that developers partially compensate for the adverse productivity shocks by working more
on weekends. We analyze effects on the same output quantity measures used before (actions,
commits, and comments). In addition, we consider effects on the growth rate of the number
of developers’ followers. We view this as a proxy for the quantity, quality, and relevance of
a developer’s work on GitHub because all these dimensions likely affect the decision of other
GitHub users about whether to follow the developer or not.

To explore effects at the monthly level, we need to adapt the IV strategy. We use three
variables measuring the share of days in month 𝑚 with wind direction falling into a specific
90° bin, each interacted with indicators for the first-stage city-groups 𝑔, as instruments.

Table 1.10 presents the results. An increase in monthly PM2.5 concentration by 1 µg/m3

reduces the number of actions performed in that month by 0.17 or 0.21% of the mean. The
implied effect of an increase in PM2.5 by one µg/m3 on a single day is .0057, and thus slightly
larger than the effect found in the analysis at the daily level (.0032). Again, this effect is mostly
driven by a reduction in commits, which fall by 0.31% of the sample mean, while the reduction
in comments is small and insignificant. PM2.5 also negatively affects the growth rate of the
number of followers. The estimate implies a decrease of 1.5% relative to the mean rate. In sum,
exposure to air pollution has negative impacts on developers’ output also over a more aggre-
gate time period. It even slows down the process of gaining reputation in the tech community,
which might have adverse long-run consequences for developers’ career paths.55

Robustness Checks. In Appendix Tables 1.A.12 to 1.A.13 we show that our main results are
not sensitive to specific choices on how we set up the first and second stage models. We find
evidence for a reduction in output quantity—driven by fewer commits, but no or very small
changes in comments—and a switch towards easier issues and PRs in response to PM2.5 across
specifications.

First, we examine robustness to the specification of the wind direction instruments. Instead
of sin

(
\𝑐,𝑑

)
and sin

(
\𝑐,𝑑/2

)
, we use three indicator variables for average daily wind direction

falling into a specific 90° bin (south-west, south-east and north-east, with north-west as omit-
ted category), following Deryugina et al. (2019). The results are reported in Panels A and B
of Table 1.A.12. In Panels C and D, we report results from a specification where we used a k-
means clustering algorithm, instead of hierarchical clustering, to form the city-groups𝑔 across

55Inspecting GitHub pages of potential employees is a common practice in hiring decisions in the tech sector as
described in several tech blogs, see e.g., https://techbeacon.com/app-dev-testing/what-do-job-seeking-devel
opers-need-their-github or https://blog.boot.dev/jobs/build-github-profile/.
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1.6. HETEROGENEITY AND FURTHER RESULTS

Table 1.10.: Analysis at the Monthly Level

Actions Commits Comments Growth Rate(Followers)
(1) (2) (3) (4)

PM2.5 (monthly) −0.173∗∗ −0.125∗∗∗ −0.033 −0.00011∗∗∗
(0.076) (0.035) (0.045) (0.00003)
[0.024] [0.0005] [0.474] [0.0004]

F-Statistics 644 644 644 636
Observations 469,373 469,373 469,373 453,443
Mean Dep. Var. 84.3 39.3 28.3 .0072

Note: The table presents IV estimates of the effect of monthly PM2.5 concentration on the outcomes described at the top of the Table. The
excluded instruments are variables measuring the share of days in the month on which wind direction was blowing from one of three
90° angles, interacted with indicators for first-stage city groups 𝑔. Regressions control for developer and region-by-year-by-month fixed
effects, third-order polynomials in average monthly temperature, precipitation, relative humidity, and wind speed, the number of holidays
and days with heavy wildfire smoke at the city×month level. Temperature controls and effects of holidays are allowed to vary across re-
gions 𝑅. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

which the effects of wind direction are allowed to differ in the first stage. In both cases, results
on work quantity and task choice are very similar to the baseline results.

Second, we test robustness to the functional form chosen in the second stage model. Ta-
ble 1.A.13 shows the estimated effects of PM2.5 when work output is measured by the inverse
hyperbolic sine transformation of total actions, commits, and comments, respectively (Pan-
els A and B). Again, the direction and statistical significance of the baseline results persist,
but this specification implies somewhat smaller effect magnitudes. Panel C displays results
when PM2.5 in logs is used as regressor. This yields a high F-Statistic and the same pattern for
second-stage effects on work quantity and task complexity as the baseline model.

In Table 1.A.14 we show that the statistical significance of our results persists if we cluster
standard errors at the level of the city-groups 𝑔 across which the effects of wind direction are
allowed to differ in the first stage, instead of the city level.

Lastly, we demonstrate that the results are overall robust to changes in the included fixed
effects and weather conditions. Tables 1.A.15 to 1.A.18 show that across specifications with
different fixed effects absorbing common time shocks at different geographic and temporal
levels, and across specifications with more and less detailed weather controls, our main results
hold.

Extended Sample. In Table 1.A.19 we show that our core results also hold in the extended
sample including all 220 cities in our dataset and with instruments based on temperature in-
versions instead of wind direction. Specifically, we estimate the model in Equation 1.1, but use
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a variable measuring inversion strength (as specified in Section 1.3) interacted with indicator
variables for geographic regions 𝑟 as instruments. We allow effects of inversions to vary ge-
ographically because the strength of the first stage effect varies based on baseline emissions
(Krebs and Luechinger, 2021). We form 15 regions 𝑟 to make sure that each region comprises
multiple cities and forms a homogenous geographic area.56 In Appendix Table 1.A.19, we
present results for the outcomes measuring output quantity (Columns 1 to 3) and the out-
comes measuring whether developers switch to less complex tasks (Columns 4 to 6). Apart
from the effect on the share of issue events referring to an easy issue, which is small and in-
significant, results replicate the patterns we found in our main analysis and are of comparable
magnitude.

1.7. Conclusion

How do environmental conditions, like fluctuations in air pollution, affect workers in jobs that
form the backbone of the modern knowledge economy? These jobs are focused on interper-
sonal and analytic tasks, often require strong social and digital skills, and are organized in a
way that gives workers flexibility in schedules and task choices. As digitization and automa-
tion continue to change the world of work, these job characteristics are expected to become
even more widespread.

In this paper, we use detailed data from GitHub to study how particulate matter affects daily
output and work patterns in a global sample of software developers—a high-skilled occupation
that can be considered as representative of the jobs of interest.

We provide evidence that pollution exposure reduces developer output. On a day with
unusually high pollution (PM2.5 concentration above the city-specific 75th percentile) the total
number of actions conducted by software developers falls by 4% relative to days with better air
quality. This effect is mostly driven by a reduction in individual coding activity, while the level
of collaborative activity is unaffected. Our estimates are at the lower end of air pollution effects
found in other, less flexible and less collaborative occupations studied in previous research.
Moreover, we find no evidence of a deterioration in output quality. Due to the high value
generated by software developers, the implied monetary loss is nevertheless economically
relevant and comparable to findings for workers in manual occupations. Our estimates imply
that on a day with unusually high pollution, output value falls by $11 per developer.

Our second key result is that software developers exploit the flexibility of their work setting
to adapt to increases in air pollution. In particular, we find that they choose to work on less

56These groups are the four US census regions, Canada, China, India, South East Asia, Japan and South Korea,
Australia, New Zealand, Western, Eastern, Southern, and Northern Europe.
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1.7. CONCLUSION

complex tasks when PM2.5 increases. Among developers who respond with a stronger shift
towards easier tasks, effects on output quantity are alleviated. In addition, developers real-
locate work activity from high-pollution, low-productivity workdays to low-pollution, high-
productivity weekends. One additional day with unusually high PM2.5 concentration in the
first half of the week causes an increase in weekend work by 2.1%. These forms of adaptation
likely explain why the effects on output quantity and quality in our setting are small relative
to previous studies. At the same time, they suggest an additional welfare cost of air pollution
in this setting not captured by changes in output due to forgone leisure time on the weekend
and potential negative impacts on work-life balance.

While we use data on a sample of software developers who use GitHub as part of their
professional work, we believe that the findings are externally valid to workers in many other
high-paying occupations which offer flexible schedules and discretion in task choice, and re-
quire similar skills, e.g., problem-solving skills, attention to detail, programming, and team-
work. This applies to many high-skill workers, including business analysts or researchers.
Furthermore, the fact that our data comprises developers across more than 30 countries sug-
gests that the effects we identify and quantify in this study are not specific to a certain firm or
country context but apply more generally. Based on this, we can derive estimates of the mon-
etary benefits in terms of productivity gains among knowledge workers from reducing PM2.5

concentration permanently by one unit. Extrapolating to all U.S. workers in the occupation
group “Computer and Mathematical Workers” and to all ICT professionals in the EU suggests
annual benefits of $580m (US) and $980m (EU), respectively.57

Hence, our findings have important policy implications. When deciding about limit values
on air pollutants, regulators should take the growing evidence on the economic benefits of
pollution reductions in the form of productivity gains into account. Importantly, we find that
adverse effects of PM2.5 on output are large at concentrations below the regulatory standards
in force in the European Union and the US. Hence, even in areas with relatively good air
quality, further improvements will likely generate additional benefits. While we find slightly
smaller marginal effects in high pollution locations, the fact that PM2.5 concentration is often
an order of magnitude larger in developing countries like India and Bangladesh compared to
the US might be an important barrier to growth for the software industries in these countries.

Our findings on how software developers adjust work patterns also have interesting impli-

57Our 2SLS estimates for the effect of PM2.5 concentration on commits and PRs, paired with the estimates of the
monetary value of these outcomes, imply that a one unit decrease in PM2.5 increases daily output value by
$0.344 per developer. Employment in “Computer and Mathematical Workers” in the US in 2021 was 4,654,750
(Bureau of Labor Statistics, 2022). Per year the total estimated gain in output value in this group is thus
$0.344/worker and day × 4,654,750 workers × 365 days = $580m, if we assume that the effect of a permanent
reduction in PM2.5 is given by the sum of the daily effects. We compute the value for the EU analogously,
based on an employment figure of 7,843,000 ICT professionals in 2020 (Cedefop, 2022).
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cations for the organization of work within firms: Highlighting the difficulty of certain tasks,
as done by the use of issue labels on GitHub, and granting flexibility in working hours, might
help workers to better adapt to idiosyncratic productivity shocks and mitigate the total impact
on team or firm performance.
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Appendix to Chapter 1

1.A. Additional Tables

Table 1.A.1.: Characteristics of High-Skill Occupations and Software Development

Freedom to Make Structured versus Work With Work
Decisions Unstructured Work Group or Team

All high-skill Software All high-skill Software All high-skill Software
occupations developers occupations develop. occupations develop.

1 0.4 0 0.6 0 1.79 0
2 2.6 3.1 2.3 2.4 4.4 5.9
3 10.5 29.1 11.3 28.1 11.0 2.7
4 35.6 38.2 39.8 45.0 30.5 9.2
5 50.9 29.6 46.0 24.6 52.4 82.3

Note: Based on data from O*NET Database Version 25.0. Work Contexts Table. All high-skill occupations refers to occupations in Job
Zones 4 and 5. Software developers refers to occupation 15-1132.00 (“Software Developers, Applications”). Categories: 1 = not important at
all/no freedom; 2 = Fairly important/very little freedom; 3 = Important/Limited freedom; 4= Very Important/Some freedom; 5 = Extremely
important / A lot of freedom

Table 1.A.2.: Labels Indicating Easy Issues
good first issues good first bug good-first
documentation polish cleanup
simple easy small
trivial minor help wanted
junior job newcomer starter
beginner newbie novice
low hanging low-hanging

Note: If a label contains any of these terms, the issue is classified as “easy”. Bolt text indicates GitHub default labels.

53



Air Quality, High-Skilled Worker Productivity and Adaptation

Table 1.A.3.: Description of Outcome Variables

Domain Concept Variable Details
Output quantity Total output Actions Sum of number of commits,

quantity comments on issues, PRs and commits,
PRs opened, PRs closed, issues opened,
closed and reopened

Coding activity Commits Number of commits
Interactive activity Comments Sum of number of comments

written on issues, PRs and commits
Output Quality PR Success rate Share PRs merged PRs opened that got merged/all PRs opened

Deficient commits Share commits Commits that got reverted/all commits
reverted

Task choice Easy tasks among Share easy issue (#easy issues opened + #easy issues closed +
issue events events issues #comments written on easy issues)/(#issues

opened + #issues closed + #comments
written on issues)

Average PR complexity Lines added per PR Average number of lines of code added in
PRs opened, closed and commented on

Files changed per PR Average number of code files changed in
PRs opened, closed and commented on

Working hours Evening activity Time last action Minute of final action of the day
Share of actions Actions made after 6 pm/Total actions
after 6 pm

Note: The Table displays information on the outcome variables we use, how they are constructed, and what they measure.
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Table 1.A.4.: Sources of Air Quality Data

Geographic Area Data Source
United States U.S. Environmental Protection Agency (EPA)
Canada Canadian National Air Pollution Surveillance (NAPS) Program
Mexico City Gobierno de la Ciudad de México
Europe European Environment Agency (EEA)
Russia, Ukraine, Copernicus Atmosphere Monitoring Service (CAMS)
Belarus, Turkey,
Israel
China National Environmental Monitoring Centre
Mumbai US Embassies (AirNow.gov)
Hyderabad
Chennai
New Delhi
Dhaka
Bengaluru Central Pollution Control Board (CPCB)
Japan National Institute for Environmental Studies
Hong Kong Hong Kong Environmental Protection Department
Singapore National Environment Agency
South Korea Air Korea
Taiwan Environmental Protection Administration
Australia New South Wales Department of Planning and Environment

Victorian Government open data portal
Queensland Government open data portal
South Australian Government Data Directory

New Zealand Stats NZ Tatauranga Aotearoa

Note: Data sources for data on PM2.5. Airbase, the EEA’s database on air pollution, contains monitor data for 33 countries,
including all EU members, as well as further EEA member and cooperating countries, e.g., Switzerland, Norway and Serbia.
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Table 1.A.5.: Distribution of developer-by-date observations across geographic regions 𝑅

Region 𝑅 Observations Share
Oceania 273,246 1.9
Northern America 7,244,272 50.6
Northern Europe 1,809,844 12.6
Western Europe 2,312,377 16.1
Southern Europe 333,597 2.3
Eastern Europe 725,664 5.1
Asia 1,628,930 11.4

Note: The table shows the distribution of observations in the developer × date panel described in section 1.3.2 across
geographic regions 𝑅.

Table 1.A.6.: Effect of PM2.5 on Quantity of Issue and Pull Request Actions

PRs closed PRs opened Issues closed Issues opened
(1) (2) (3) (4)

Panel A.
PM2.5 −0.00011 −0.00018∗∗ 0.00004 0.00009

(0.00012) (0.00008) (0.00009) (0.00006)
First Stage F-Stat. 102.1 102.1 102.1 102.1
% change in Y -0.1 -1.2 0.03 0.1
Panel B.
1{PM2.5 > 𝑄0.75} −0.0049∗ −0.0064∗∗∗ 0.0005 −0.0023

(0.0029) (0.0023) (0.0029) (0.0024)
First Stage F-Stat. 80.5 80.5 80.5 80.5
% change in Y -2.9 -4.2 0.4 2.2
Mean Dep. Var. 0.17 0.15 0.12 0.11
Observations 353,445 353,445 353,445 353,445

Note: The table presents IV estimates of the parameter 𝛽 in equation (1.1). In Panel A, the regressor of interest is PM2.5 concentration
measured in µg/m3. In Panel B, a binary variable is used instead, which takes a value of one if city×day PM2.5 concentration exceeds the
city-specific 75th percentile. The first stage specification is given in equation (1.2). Covariates include eight bins for mean daily temperature,
third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city,
day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across
world regions 𝑅. Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at
the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.7.: OLS Results for Work Quantity (main sample)

Actions Commits Comments Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 −.00024 −.0002 −.00001 −.0006∗ −.0003 −.0002∗

(.0003) (.0002) (.0001) (.0003) (.0002) (.0001)

Panel B.
1{PM2.5 > 𝑄0.75} −.0158∗ −.0096∗∗ −.0026 −.0264∗∗ −.0131∗∗ −.0054

(.0084) (.0041) (.0036) (.0115) (.0051) (.0049)

Observations 353,445 353,445 353,445 353,445 353,445 353,445
City FE ✓ ✓ ✓
Region×Day-of-Week FE ✓ ✓ ✓
Region×Year-Month FE ✓ ✓ ✓
Region×Date FE ✓ ✓ ✓
City×Month FE ✓ ✓ ✓

Note: The table presents OLS estimates of the parameter 𝛽 in equation (1.1), where the dependent variables are displayed in the upper part
of the table. Parameters are estimated on the main sample including 193 cities. The regressor of interest is PM2.5 concentration in µ𝑔/𝑚3 in
Panel A, and an indicator for PM2.5 concentration exceeding the city-specific 75th percentile in Panel B. Covariates include eight bins for
mean daily temperature, third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke
and holidays. The temperature controls can vary across world regions 𝑅. Included fixed effects are displayed in the bottom part of the table.
Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.8.: OLS Results for Work Quantity (extended sample)

Actions Commits Comments Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 −.0004∗∗∗ −.0002∗∗ −.0002∗∗ −.0004∗∗ −.0002 −.0001∗∗∗

(.0001) (.0001) (.0001) (.0002) (.0001) (.00004)

Panel B.
1{PM2.5 > 𝑄0.75} −.0160∗∗ −.0087∗∗ −.0036 −.0234∗∗ −.0119∗∗ −.0049

(.0078) (.0039) (.0032) (0.0102) (.0046) (.0042)

Observations 398,687 398,687 398,687 398,687 398,687 398,687
City FE ✓ ✓ ✓
Region×Day-of-Week FE ✓ ✓ ✓
Region×Year-Month FE ✓ ✓ ✓
Region×Date FE ✓ ✓ ✓
City×Month FE ✓ ✓ ✓

Note: The table presents OLS estimates of the parameter 𝛽 in equation (1.1), where the dependent variables are displayed in the upper part of
the table. Parameters are estimated on the extended sample including 220 cities. The regressor of interest is PM2.5 concentration in µ𝑔/𝑚3

in Panel A, and an indicator for PM2.5 concentration exceeding the city-specific 75th percentile in Panel B. Covariates include eight bins for
mean daily temperature, third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke
and holidays. The temperature controls can vary across world regions 𝑅. Included fixed effects are displayed in the bottom part of the table.
Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.A.9.: Reduced Form

Actions Commits Comments
(1) (2) (3)

High-Pollution −0.0192∗∗ −0.0111∗∗∗ −0.0036
Wind Direction (0.0087) (0.0040) (0.0038)

[0.029] [0.006] [0.350]

Observations 367,472 367,472 367,472
First Stage Effect on PM2.5 3.683∗∗∗ (0.456)

Note: The Table displays OLS estimates of the outcomes displayed in the upper part of the table on an indicator variable for wind blowing
towards a city from the direction (60° angle) that has the largest positive effect on local PM2.5 concentration. Standard errors clustered at
the city level are reported in parentheses. P-values are presented in squared brackets. All regressions include covariates as described in
Table 1.2 and are weighted by the number of active workers in a city during the current month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.10.: Effect of PM2.5 on PRs opened and closed with GHArchive and GHTorrent data

PRs opened PRs closed PRs opened PRs closed
(GHA) (GHA) (GHT) (GHT)

(1) (2) (3) (4)
Panel A.

PM2.5 −0.00029∗∗ −0.00007 −0.00016∗ −0.00011
(0.00014) (0.00013) (0.00009) (0.00013)
[0.036] [0.581] [0.067] [0.378]

First Stage F-Stat. 89 89 89 89
Panel B.
1{PM2.5 > 𝑄0.75} −0.00668∗ −0.00458 −0.00701∗∗∗ −0.00586∗∗

(0.00377) (0.00297) (0.00239) (0.00297)
[0.078] [0.124] [0.004] [0.050]

First Stage F-Stat. 69 69 69 69
Observations 298,566 298,566 298,566 298,566

Note: The table presents IV estimates of the parameter 𝛽 in equation (1.1), where the outcome is the number of pull requests (PRs) opened
or closed, respectively. This is measured based on GHArchive data in columns (1) to (2) and GHTorrent data in column (3) to (4). The
regressor of interest is PM2.5 concentration in µ𝑔/𝑚3 in Panel A, and an indicator for PM2.5 concentration exceeding the city-specific 75th
percentile in Panel B. The first stage specification is given in equation (1.2). Covariates include eight bins for mean daily temperature,
third-order polynomials in wind speed, precipitation and relative humidity, indicators for heavy wildfire smoke and holidays, as well as city,
day-of-week, and year-by-month fixed effects. Day-of-week and year-by-month fixed effects and the temperature controls can vary across
world regions 𝑅. The sample period is 2015 to May 2019. Regressions are weighted by the number of active workers in a city during the
current month. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table 1.A.11.: Placebo Test: Effect of PM2.5 Friday to Sunday on Work Activity Wednesday to
Thursday

Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 0.0065 0.0055 0.0045 0.0028 0.0006 0.0017

(0.0092) (0.0086) (0.0039) (0.0041) (0.0035) (0.0034)

Panel B.
High PM2.5 Days 0.0401 −0.0082 0.0293 −0.0020 0.0034 −0.0007

(0.0888) (0.0795) (0.0364) (0.0352) (0.0346) (0.0316)

Observations 1,997,123 1,321,642 1,997,123 1,321,642 1,997,123 1,321,642
Weeks all only low PM all only low PM all only low PM

weekends weekends weekends

Note: The table presents IV estimates of the parameter 𝛽 in a placebo version of equation 1.4. Outcomes are the sum of all actions, commits
and comments made between Wednesday and Thursday, the placebo weekend. In Panel A, the regressor of interest is average PM2.5
concentration between Friday and Sunday of the week before. In Panel B, the count of of days on which the city×day PM2.5 concentration
exceeds the city-specific 75th percentile during this period is used instead. The first stage specification is given in equation 1.2. Regressions
control for developer and region-by-year-by-quarter fixed effects, the number of public holidays during the workweek, and the leads of
the instrumental variables for both the placebo weekend and the period from Monday to Tuesday. Further covariates are the number of
days with heavy wildfire smoke, and third-order polynomials in average wind speed, precipitation, and relative humidity during both the
placebo weekend and the exposure period between Friday and Sunday. Temperature controls are included in the form of eight bin variables
for the placebo exposure period, and in the form of a third order polynomial for the placebo weekend, and are allowed to vary across re-
gions 𝑅. Standard errors clustered at the city level are reported in parentheses. P-values are reported in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.12.: Robustness: First Stage Specification

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)
Panel A.

PM2.5 −0.0018∗ −0.0020∗∗∗ 0.0001 0.0001∗ −0.0019∗∗ −0.0012∗∗∗
(0.0010) (0.0007) (0.0005) (0.0001) (0.0009) (0.0004)

First Stage F-Stat. 62 62 62 52 38 38

Panel B.
1{PM2.5 > 𝑄0.75} −0.0629∗∗ −0.0661∗∗∗ 0.0059 0.0031∗∗ −0.0469∗∗ −0.0285∗∗∗

(0.0290) (0.0128) (0.0182) (0.0016) (0.0201) (0.0100)

First Stage F-Stat. 49 49 49 41 41 28
IV-Specification Three wind direction bins
Clustering Hierarchical Clustering Algorithm
Observations 353,445 353,445 353,445 250,376 164,883 164,883

Panel C.
PM2.5 −0.0030∗∗∗ −0.0024∗∗∗ −0.0005 0.0001∗∗ −0.0012 −0.0008∗∗

(0.0011) (0.0006) (0.0006) (0.0001) (0.0008) (0.0004)

First Stage F-Stat. 102 102 102 86 62 62

Panel D.
1{PM2.5 > 𝑄0.75} −0.1023∗∗∗ −0.0739∗∗∗ −0.0160 0.0029∗∗ −0.0347∗ −0.0201∗∗

(0.0268) (0.0144) (0.0178) (0.0014) (0.0177) (0.0095)

First Stage F-Stat. 81 81 81 66 46 46

IV-Specification sin(\ ), sin( \2 )
Clustering K-means Clustering Algorithm
Observations 353,445 353,445 353,445 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Panels A and C, the regressor of interest is PM2.5 concentration
in µg/𝑚3. In Panel B and D, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. Relative to
specifications underlying results in Table 1.2, the first stage model is changed: In Panels A and B, instruments are three indicators for wind
direction falling in specific bins, each covering 90° of the wind rose. In Panels C and D, the first stage specification is as in Equation (1.2),
but we form city-groups 𝑔 using k-means clustering instead of hierarchical clustering. Covariates as described in Table 1.2. Regressions are
weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level are reported in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.13.: Robustness: Second Stage Specification

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A. Inv. Hyperbolic Sine Transformation
PM2.5 −0.0005∗∗ −0.0005∗∗ −0.0001

(0.0002) (0.0002) (0.0001)

First Stage F-Stat. 102 102 102

Panel B. Inv. Hyperbolic Sine Transformation
1{PM2.5 > 𝑄0.75} −0.0206∗∗∗ −0.0159∗∗∗ −0.0082∗∗

(0.0060) (0.0043) (0.0039)

First Stage F-Stat. 80 80 80

Panel C. log(PM)
𝑙𝑜𝑔(PM2.5) −0.0656∗∗∗ −0.0444∗∗∗ −0.0141 0.0018∗∗ −0.0209∗∗ −0.0143∗∗∗

(0.0163) (0.0087) (0.0090) (0.0009) (0.0096) (0.0052)

First Stage F-Stat. 197 197 197 162 117 117

Observations 353,445 353,445 353,445 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Panel A, the regressor of interest is PM2.5 concentration
measured in µg/𝑚3. In Panel B, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. In Panel C,
the regressor is the logarithm of PM2.5 concentration. Inverse hyperbolic sine transformations are applied to outcomes in Panels A and B.
The first stage specification is given in Equation (1.2). Covariates as described in Table 1.2. Regressions are weighted by the number of active
workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.14.: Robustness: Clustering of Standard Errors

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 −0.0032∗∗∗ −0.0026∗∗∗ −0.0005 0.0001∗∗ −0.0013 −0.0010∗∗

(0.0012) (0.0007) (0.0006) (0.0001) (0.0008) (0.0004)
[0.009] [0.0003] [0.421] [0.031] [0.110] [0.031]

Panel B.
1{PM2.5 > 𝑄0.75} −0.1104∗∗∗ −0.0801∗∗∗ −0.0169 0.0032∗∗ −0.0403∗∗ −0.0244∗∗

(0.0301) (0.0154) (0.0189) (0.0013) (0.0171) (0.0092)
[0.001] [0.000004] [0.379] [0.017] [0.023] [0.011]

Observations 353,445 353,445 353,445 250,376 164,883 164,883

Note: The Table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Panels A, the regressor of interest is PM2.5 concentration
in µg/𝑚3. In Panel B, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. The first stage
specification is given in Equation (1.2). Standard errors clustered at the level of city-groups 𝑔 across which the effect of instruments in the
first stage are allowed to differ are reported in parentheses. P-values are presented in squared brackets. All regressions include covariates as
described in Table 1.2 and are weighted by the number of active workers in a city during the current month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.15.: Robustness to Changes in Weather controls (Output Quantity)

Actions Commits Comments Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
−0.0041∗∗∗ −0.0027∗∗∗ −0.0009∗∗ −0.1156∗∗∗ −0.0749∗∗∗ −0.0261∗∗

(0.0010) (0.0007) (0.0004) (0.0269) (0.0150) (0.0115)

First Stage F-Stat. 147 147 147 110 110 110

Weather Controls none

Panel B.
−0.0029∗∗∗ −0.0022∗∗∗ −0.0005 −0.1162∗∗∗ −0.0767∗∗∗ −0.0243

(0.0010) (0.0007) (0.0005) (0.0316) (0.0159) (0.0153)

First Stage F-Stat. 108 108 108 83 83 83

Weather Controls Quadratic functions of precipitation, wind speed, rel. humidity and cubic, continent-
specific function of mean temperature

Panel C.
−0.0018 −0.0021∗∗ 0.0001 −0.0539 −0.0601∗∗∗ 0.0069
(0.0012) (0.0009) (0.0006) (0.0345) (0.0190) (0.0190)

First Stage F-Stat. 87 87 87 67 67 67

Weather Controls Continent specific bins for precipitation, wind speed, rel. humidity, minimum and
maximum temperature

Observations 353,445 353,445 353,445 353,445 353,445 353,445

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). Dependent variables are denoted at the top of the table. In
Columns(1) to (3), the regressor of interest is PM2.5 concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5
concentration exceeding the city-specific 75th percentile is used instead. Relative to specifications underlying results in Table 1.2, we
change the included covariates to control for weather conditions. We state the included variables at the bottom of each Panel. The first stage
specification is given in Equation (1.2). All regressions include fixed effects as described in Table 1.2 and are weighted by the number of active
workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.16.: Robustness to Changes in Fixed Effects (Output Quantity)

Actions Commits Comments Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
−0.0044∗∗∗ −0.0031∗∗∗ −0.0009 −0.1438∗∗∗ −0.0954∗∗∗ −0.0288

(0.0013) (0.0009) (0.0006) (0.0337) (0.0169) (0.0189)

First Stage F-Stat. 82 66
Fixed Effects city, region × day-of-week, region × week

Panel B.
−0.0045∗∗∗ −0.0034∗∗∗ −0.0008 −0.1323∗∗∗ −0.0995∗∗∗ −0.0170

(0.0014) (0.0009) (0.0007) (0.0399) (0.0207) (0.0215)

First Stage F-Stat. 84 62
Fixed Effects city, region × date

Panel C.
−0.0032∗∗ −0.0021∗∗∗ −0.0007 −0.1018∗∗∗ −0.0603∗∗∗ −0.0279∗∗
(0.0013) (0.0008) (0.0006) (0.0257) (0.0142) (0.0127)

First Stage F-Stat. 101 76
Fixed Effects city × month, region × day-of-week, region × year × month

Panel D.
−0.0048∗∗ −0.0028∗∗ −0.0013∗ −0.1311∗∗∗ −0.0711∗∗∗ −0.0403∗∗∗
(0.0019) (0.0011) (0.0008) (0.0319) (0.0181) (0.0139)

First Stage F-Stat. 78 61
Fixed Effects city × month, region × day-of-week, region × week

−0.0023∗ −0.0012∗ −0.0008 −0.0762∗∗∗ −0.0369∗∗∗ −0.0283∗
(0.0013) (0.0006) (0.0007) (0.0289) (0.0138) (0.0160)

First Stage F-Stat. 114 86
Fixed Effects region × day-of-week, city × year, city × month

Observations 353,445 353,445 353,445 353,445 353,445 353,445

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). Dependent variables are denoted at the top of the table. In
Columns(1) to (3), the regressor of interest is PM2.5 concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5
concentration exceeding the city-specific 75th percentile is used instead. Relative to specifications underlying results in Table 1.2,
we change the included fixed effects. We state the included fixed effects at the bottom of each Panel. The first stage specification is
given in Equation (1.2). All regressions include control variables as described in Table 1.2 and are weighted by the number of active
workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.17.: Robustness to Changes in Weather Controls (Task Complexity)

Share Easy Lines added Files changed Share Easy Lines added Files changed
Issue Events per PR per PR Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)
Panel A.

0.0001∗ −0.0017∗∗ −0.0010∗∗∗ 0.0021∗ −0.0412∗∗ −0.0224∗∗∗
(.0001) (.0007) (.0003) (.0012) (.0170) (.0083)

First Stage F-Stat. 120 88 88 90 63 63

Weather Controls none

Panel B.
0.0001∗ −0.0014∗ −0.0010∗∗ 0.0027∗ −0.0374∗∗ −0.0244∗∗
(.0001) (.0008) (.0004) (.0014) (.0184) (.0096)

First Stage F-Stat. 90 66 66 68 47 47

Weather Controls Quadratic functions of precipitation, wind speed, rel. humidity and cubic, region-
specific function of mean temperature

Panel C.
0.0002∗∗ −0.0012 −0.0009∗ 0.0036∗∗ −0.0416∗ −0.0251∗
(.0001) (.0010) (.0005) (.0016) (.0222) (.0131)

First Stage F-Stat. 72 52 52 55 38 38

Weather Controls Continent specific bins for precipitation, wind speed, rel. humidity, minimum and
maximum temperature

Observations 250,376 164,883 164,883 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). Dependent variables are denoted at the top of the table. In
Columns(1) to (3), the regressor of interest is PM2.5 concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5
concentration exceeding the city-specific 75th percentile is used instead. Relative to specifications underlying results in Table 1.2, we
change the included covariates to control for weather conditions. We state the included variables at the bottom of each Panel. The first stage
specification is given in Equation (1.2). All regressions include fixed effects as described in Table 1.2 and are weighted by the number of active
workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.18.: Robustness to Changes in Fixed Effects (Task Complexity)

Share Easy Lines added Files changed Share Easy Lines added Files changed
Issue Events per PR per PR Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)
Panel A.

0.0002∗∗ −0.0011 −0.0009∗ 0.0039∗∗ −0.0368∗∗ −0.0231∗∗
(0.0001) (0.0009) (0.0004) (0.0016) (0.0185) (0.0112)

First Stage F-Stat. 70 50 50 54 38 38
Fixed Effects city, region × day-of-week, region × week

Panel B.
0.0002∗ −0.0007 −0.0006 0.0046∗∗∗ −0.0275 −0.0156
(0.0001) (0.0009) (0.0004) (0.0018) (0.0187) (0.0113)

First Stage F-Stat. 70 53 53 49 35 35
Fixed Effects city, region × date

Panel C.
0.0001∗∗ −0.0019∗∗ −0.0011∗∗ 0.0033∗∗ −0.0376∗∗ −0.0183∗∗
(0.0001) (0.0008) (0.0005) (0.0013) (0.0178) (0.0091)

First Stage F-Stat. 85 62 62 64 45 45
Fixed Effects city × month, region × day-of-week, region × year × month

Panel D.
0.0002∗∗ −0.0017∗∗ −0.0010∗ 0.0040∗∗∗ −0.0304∗ −0.0148
(0.0001) (0.0008) (0.0006) (0.0015) (0.0177) (0.0104)

First Stage F-Stat. 67 49 49 51 36 36
Fixed Effects city × month, region × day-of-week, region × week

Panel E.
0.0001∗∗ −0.0021∗∗ −0.0010∗ 0.0029∗∗ −0.0434∗∗ −0.0196∗
(0.0001) (0.0009) (0.0005) (0.0012) (0.0199) (0.0103)

First Stage F-Stat. 96 70 70 71 49 49
Fixed Effects region × day-of-week, city × year, city × month
Observations 250,376 164,883 164,883 250,376 164,883 164,883

Note: The table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Columns(1) to (3), the regressor of interest is PM2.5
concentration measured in µg/𝑚3. In Columns (4) to (6), an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is
used instead. Relative to specifications underlying results in Table 1.2, we change the fixed effects. We state the included fixed effects at
the bottom of each Panel. The first stage specification is given in Equation (1.2). All regressions include control variables as described in
Table 1.2 and are weighted by the number of active workers in a city during the current month. Standard errors clustered at the city level
are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.19.: Effects of PM2.5 in the Extended Sample using Inversions as IV

Share Easy Lines added Files changed
Actions Commits Comments Issue Events per PR per PR

(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 −0.0032∗∗∗ −0.0017∗∗∗ −0.0009∗∗∗ 0.00004 −0.0023∗∗∗ −0.0009∗∗∗

(0.0009) (0.0006) (0.0003) (0.00003) (0.0005) (0.0003)

First Stage F-Stat. 300 300 300 301 231 231

Panel B.
1{PM2.5 > 𝑄0.75} −0.1035∗∗ −0.0575∗∗∗ −0.0316 0.0001 −0.0383∗∗ −0.0199∗∗

(0.0470) (0.0196) (0.0217) (0.0012) (0.0173) (0.0092)

First Stage F-Stat. 440 440 440 385 292 292

Observations 398,687 398,687 398,687 281,985 187,935 187,935

Note: The Table presents IV estimates of the parameter 𝛽 in Equation (1.1). In Panels A, the regressor of interest is PM2.5 concentration in
µg/𝑚3. In Panel B, an indicator for PM2.5 concentration exceeding the city-specific 75th percentile is used instead. The excluded instruments
in the first stage are interactions between a measure of inversion strength as specified in 1.3 and dummies indicating the geographic region
a city is located in. Standard errors clustered at the city level are reported in parentheses. All regressions include covariates as described in
Table 1.2 and are weighted by the number of active workers in a city during the current month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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1.B. Additional Figures

Figure 1.B.1.: Skill Requirements in High-Skill Occupations and Software Development

Note: Based on data from O*NET Database Version 25.0. Skills Table. Light blue bars reflect average importance of the
respective skill across all high-skill occupations, i.e. occupations in Job Zones 4 and 5. Dark blue bars reflect importance
of the respective skill among software developers, i.e. occupation 15-1132.00 (“Software Developers, Applications”).
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Figure 1.B.2.: Illustration of first stage city groups 𝑔

Note: Maps show our sample cities. The color of and number on top of the city markers refers to the group 𝑔 we assign
a city to for the first stage estimation of the effect of wind direction on air pollution (see section 1.4, especially equation
(1.2)).

70



1.B. ADDITIONAL FIGURES

Figure 1.B.3.: First stage for all 50 city groups
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Figure 1.B.3.: First stage for all 50 city groups (continued)
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Notes: Plots present estimated coefficients from regressions of PM2.5 measured in µg/m3 on wind direction for each first
stage city group as depicted in 1.B.2. Solid blue line: connects estimated coefficients on seven dummies for seven 45° bins
of wind direction. The omitted direction is north-north-west, (315°, 360°]. Dashed lines: 95% confidence intervals. Red line:
estimated relationship when wind direction is parameterized as the sine of wind direction in radians and wind direction in
radians divided by two. Plot titles denote one city from the respective group.
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Figure 1.B.4.: GDP per capita and average PM2.5 concentration

Note: The left plot shows the distribution of 2014 GDP per capita across city-groups 𝑔 separately for the high and low
pollution subsample used in the heteorgeneity analysis in Section 1.5. Blue: low pollution, black: high pollution.The right
plot depicts the distribution of average PM2.5 concentration separately for low and high income city-groups. Blue: high
income, black: low income.

Figure 1.B.5.: PM2.5 and Awareness by Country

Note: Bars depict the share of respondents from the respective country stating that air pollution is a big problem in their
country, based on the Pew Research Center Science Survey (2020). Black dots reflect average PM2.5 concentration in the
cities within the respective country which are included in our data.
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1.C. Gitcoin

This section provides additional details regarding the data collected from Gitcoin to assess the
monetary value of output produced on GitHub and to validate some of our productivity and
task complexity outcomes.

We collect data on 292 Gitcoin transactions via the Gitcoin API, including the type of the
posted issue (bug, documentation, improvement, feature, or other), the expected issue diffi-
culty as assessed by the issue funders (beginner, intermediate, or advanced), the URL to the
PR solving the issue and awarded the payment, the value of the payment in USD, and the
number of hours worked on the PR as stated by the PR author. The number of issues is rela-
tively low compared to the volume of our GitHub data because Gitcoin is much younger than
GitHub and only used by a small share of GitHub users. Using the URL of the PR, we combine
this with information on pull request size obtained via the GitHub API, i.e. the number of
commits it comprises, the number of lines of code added and deleted, and the number of files
changed. This is possible because all Gitcoin issues and PRs are created in public GitHub repos
and thus visible to us. In this context, a pull request reflects the complete work on a certain
issue. Commits can be interpreted as single work steps in completing this task.

Combining the data on the amount of coding work done and on the payment made we can
estimate the monetary value of output produced in public GitHub repos. The average monetary
value per commit ranges from $32 in the subsample of issues of difficulty level beginner to $679
among issues marked as advanced. In the full sample, it amounts to $112. The mean time input
per commit also exhibits a steep gradient with respect to difficulty: It is 1 hour at the beginner
level, but 5.3 hours at the advanced level.

To validate the use of the number of commits per day as one of our core measures of devel-
oper productivity, we analyze how the number of commits in a PR correlates with the payment
awarded and the time spent on it in the Gitcoin sample.

Table 1.C.1 depicts results from regressions of the payment awarded for a PR, 𝑙𝑜𝑔(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖),
on the number of commits it comprises, 𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑖 (columns 1-3), or the logarithm thereof
(columns 4-6). We run specifications without any controls (columns 1 and 4), with controls for
issue difficulty, issue type and the year of PR creation (columns 2 and 5), and alternatively with
repository fixed effects (columns 3 and 6). The omitted difficulty category is advanced. Across
specifications we find statistically significant positive effects, indicating that a higher number
of commits is associated with higher payments. In terms of magnitude, the results from the
regressions without any controls imply that one additional commit is associated with a 5.4%
increase in payment (column 1), or that a 10% increase in the number of commits is correlated
with a 3.5% rise in payment (column 4). When adding controls for issue difficulty and type, the
magnitude of the effect is reduced. This reduction implies that part of the increase in payments
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in commits is driven by higher issue complexity. Even when using only variation across PRs
submitted to the same repo, i.e., work on the same project, the positive relationship persists.

In Table 1.C.2 we present results from models where the dependent variable isℎ𝑜𝑢𝑟𝑠𝑤𝑜𝑟𝑘𝑒𝑑𝑖 ,
the time input as reported by the PR author. We find that the time required to complete a task
increases in the number of commits, and more so for issues of higher difficulty.

To validate our proxies for PR complexity, we run the specifications from columns 4 to 6 of
Table 1.C.1 again, but add the number of files changed in the PR and the logarithm of lines of
code added as additional regressors. Results are presented in Table 1.C.3. Holding the number
of commits constant, adding more lines of code and changing more files is associated with a
higher payment, suggesting that these variables indeed reflect task complexity.

Table 1.C.1.: Validity Check: Number of Commits and Gitcoin Payments

Dependent variable: 𝑙𝑜𝑔(payment𝑖)
(1) (2) (3) (4) (5) (6)

commits𝑖 0.054∗∗∗ 0.039∗∗∗ 0.034∗∗∗
(.010) (.009) (.010)

log(commits𝑖) 0.348∗∗∗ 0.264∗∗∗ 0.192∗∗∗
(.071) (.068) (.059)

1{Difficulty𝑖 = Beginner} −2.399∗∗∗ −2.412∗∗∗
(.439) (.419)

1{Difficulty𝑖 = Intermediate} −1.878∗∗∗ −1.851∗∗∗
(.415) (.405)

Year dummies ✓ ✓ ✓ ✓
Issue difficulty ✓ ✓
Issue type ✓ ✓
Repository fixed effects ✓ ✓
Observations 292 274 292 292 274 292

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request
level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits
(columns 1 to 3) or the logarithm thereof (columns 4 to 6). Columns 2 and 5 add dummies for the year the pull request was created, dummies
for issue difficulty, and dummies for issue type. Column 3 and 6 instead add dummies for the year the pull request was created and fixed
effects for the repository. Robust standard errors are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.C.2.: Validity Check: Number of Commits and Hours Worked on a PR

hours worked𝑖

(1) (2) (3) (4)

commits𝑖 0.375∗∗∗ 0.939∗∗∗
(.132) (.341)

log(commits𝑖) 2.375∗∗∗ 10.346∗∗∗
(.648) (3.535)

× 1{Difficulty𝑖 = Beginner} −0.882∗∗ −9.748∗∗∗
(.354) (3.574)

× 1{Difficulty𝑖 = Intermediate} −0.667∗ −8.471∗∗
(.349) (3.560)

Observations 271 267 271 267

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull
request level. Dependent variable is the number of hours worked reported by the PR author. In colunm 1 the only explanatory variable is
the number of commits in the PR. Column 2 adds dummies for issue difficulty and interactions between the number of commits and the
difficulty dummies. The ommited difficulty category is advanced. In columns 3 and 4 report results from the same models except that the
number of commits is replaced by the logarithm thereof. Robust standard errors are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.C.3.: Validity check: PR complexity and Gitcoin payments

𝑙𝑜𝑔(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖 )
(1) (2) (3) (4)

𝑙𝑜𝑔(𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑖) 0.143∗∗ 0.136∗∗ 0.070 0.145∗∗
(0.067) (0.068) (0.058) (0.056)

𝑓 𝑖𝑙𝑒𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑖 0.005 0.007∗ 0.011∗∗∗ 0.004
(0.005) (0.004) (0.004) (0.004)

𝑙𝑜𝑔(𝑙𝑖𝑛𝑒𝑠 𝑎𝑑𝑑𝑒𝑑𝑖) 0.152∗∗∗ 0.112∗∗∗ 0.091∗∗∗ 0.150∗∗∗
(0.036) (0.035) (0.028) (0.033)

𝑒𝑎𝑠𝑦 𝑙𝑎𝑏𝑒𝑙𝑖 −0.348∗∗
(0.173)

Year dummies ✓ ✓ ✓ ✓
Issue difficulty dummies ✓
Issue type dummies ✓
Repository fixed effects ✓
Observations 292 274 292 270

Note The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request
level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits and
the number of lines of code added in the PR (both in logs), the number of code files changed and dummies for the year the pull request was
created. Column 2 adds dummies for issue difficulty and issue type. Column 3 instead adds fixed effects for the repository. Column 4 instead
adds a dummy variable taking a value of one if the issue addressed by the PR carries a label that we classify as indicating an easy issue. The
number of lines of code added and of files changed in the PR are winsorized at the 1st and the 99th percentile. Robust standard errors are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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1.D. Auxiliary Regressions

For estimating equation (1.1), measures of the output of each individual developer 𝑖 are aggre-
gated to the city-day level. Instead of forming simple averages, we take into account additional
information at the developer level. This is done by estimating auxiliary regression, a common
approach in this literature (e.g. Currie et al., 2015). In a first step, we estimate regressions for
outcome 𝑦 of developer 𝑖 living in city 𝑐 on day 𝑑 of the following kind.

𝑦𝑖,𝑐,𝑑 =`𝑖 + x′
𝑖,𝑑
𝜋 +𝜓𝑐,𝑑 + Y𝑖,𝑐,𝑑 (1.1)

Here, 𝑦𝑖,𝑐,𝑑 denotes one of the measures of developer output, task choice, or working hours.
The fixed effect `𝑖 captures time-invariant unobserved factors at the developer level. Including
these is important as the composition of developers changes over time. A developer’s expe-
rience is controlled for by x𝑖,𝑡 , a vector of indicators for time since registration on GitHub,
where each indicator represents a time span of three months. Additionally, equation (1.1) in-
cludes city-day fixed effects. Their estimates𝜓𝑐,𝑑 give the average outcome for a city-day after
controlling for experience and composition effects. These estimates replace the dependent
variable in equation (1.1).

This approach is computationally less costly and asymptotically equivalent to directly es-
timating the regressions at the individual developer level (Donald and Lang, 2007). We take
into account the sample variance by weighting all regressions by the number of underlying
developer observations in each city–day cell (cf. Currie and Neidell, 2005; Isen et al., 2017a).
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2. Prenatal Exposure to Air Pollution
and the Development of
Noncognitive Skills

2.1. Introduction

Air pollution imposes high costs on society since it adversely affects several dimensions of
human health and well-being. Poor air quality is also an obstacle to social mobility: Isen et al.
(2017b) find that exposure to air pollution while in utero and during the first year of life reduces
earnings and employment during adulthood. Voorheis (2017) confirms this result and finds
that educational outcomes are negatively affected as well, while recent evidence by Colmer
and Voorheis (2020) suggests that these adverse impacts even extend to the next generation.
Since low-income families and minorities often live in more polluted neighbourhoods than
more affluent groups (see e.g. Banzhaf et al., 2019; Currie et al., 2023; Glatter-Götz et al., 2019;
Rüttenauer, 2018, for evidence on the US and Europe), these long-run effects of gestational
pollution exposure not only impose a substantial economic cost on society, but also inhibit
equality of opportunity.

Optimal policy responses to this issue might depend on the mechanisms driving the ad-
verse long-run effects of early pollution exposure. Educational achievement and and labor
market success are functions of human capital, whose core components are cognitive and non-
cognitive skills.1 While the predictive power of the two types of skills for educational attain-
ment and labour market performance is comparable, they differ crucially in how they respond
to intervention programs and investments: There is growing evidence that non-cognitive skills
are malleable up until adulthood and can be improved by way of low-cost interventions im-
plemented in the classroom- or even work-environment (Adhvaryu et al., 2018; Alan et al.,
2019; Sorrenti et al., 2020), whereas cognition is less malleable, especially after school start

1While cognitive ability captures intelligence, the ability to reason and understand complex ideas, non-cognitive
skills - also known under names such as socio-emotional skills, soft skills, or personality traits - comprise
a variety of abilities that are weakly correlated with intelligence, such as social competencies, emotional
stability and persistence.
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age (e.g. Almlund et al., 2011; Cunha et al., 2010). Hence, understanding which mechanisms
drive adverse long-term effects of early-life pollution exposure, and how important the re-
spective channels are in quantitative terms, is paramount when deciding about feasible and
appropriate policy responses: If long-term effects were driven purely by reduced cognitive
skills, the only option to avoid them would be to reduce air pollution. If, on the other hand,
non-cognitive abilities play a relevant role as well, long-term effects can also be alleviated
ex-post via intervention programs or investments targeting these abilities. Given that it can
be extremely costly or even impossible to reduce pollution levels in some circumstances (e.g.
pollution arising from another jurisdiction via transboundary atmospheric transport or from
natural sources like wildfires), investigating whether alternative options exist to compensate
individuals ex-post for exposure to high levels of pollution while in utero, is highly policy-
relevant.

The existing evidence regarding these channels is incomplete. A number of studies find
that prenatal pollution exposure causes worse performance in standardized achievement tests
taken in primary and high school (Bharadwaj et al., 2017; Sanders, 2012), as well as tests of
fluid intelligence Molina (2021), pointing strongly towards cognitive ability as a relevant chan-
nel.2 Regarding the second main component of human capital, non-cognitive abilities, causal
evidence is missing. Therefore, the aim of this paper is to answer the question whether in-
utero exposure to air pollution has a causal impact on non-cognitive abilities, and to assess
how important this potential channel is, relative to the cognitive ability mechanism.

I employ data on non-cognitive abilities during childhood from the German Socio-Economic
Panel (Goebel et al., 2019). Specifically, the survey includes mother-reported Big Five per-
sonality traits (Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism)
assessed at ages 2-10 for children born between 2000 and 2015. I combine this with data on
particulate matter with a diameter of less than 10 µm (PM10) measured at outdoor monitors
and reanalysis data on meteorological conditions. To address the issues of endogeneity and
measurement error in particulate matter exposure, I exploit plausibly exogenous variation in
thermal inversions, a meteorological phenomenon that deteriorates air quality (following e.g.
Arceo et al., 2016; Jans et al., 2018b; Molina, 2021).

Results show that prenatal pollution exposure raises neuroticism, or put differently, reduces
emotional stability. A 1 unit increase in gestational PM10 exposure raises Neuroticism mea-
sured at ages 5 to 10 by approximately 7% of a standard deviation. The effect is mainly driven
by exposure during the second and third trimester of pregnancy, and by increases in Neuroti-

2In fact, while IQ and school achievement test scores are commonly considered as measures of cognitive ability,
certain personality traits, esp. Conscientiousness and Emotional Stability, were found to have predictive
power for these outcomes as well. However, cognitive skills can typically explain a larger part in the variation
of these outcomes. (e.g. Almlund et al., 2011; Borghans et al., 2008; Moutafi et al., 2006)
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cism at the upper part of the distribution. Other dimensions of the Big Five are not affected.
The effect on Neuroticism is of the same order of magnitude as the impact on measures of cog-
nitive ability found in earlier work. Since existing research established a negative correlation
between Neuroticism and labour market outcomes, it is a plausible channel underlying the
long-run adverse effects of early-life pollution exposure. Back-of-the envelope computations
imply that an increase of PM10 by one standard deviation could cause reductions in earnings
by roughly 0.24 – 0.29% via the increase in Neuroticism.

This study contributes to the literature on the long-run consequences of early-life expo-
sure to air pollution by providing causal evidence for a new relevant outcome, namely non-
cognitive abilities. Using data on cohorts born in Germany after 2000, I study a setting with
relatively low baseline pollution levels, similar to concentrations prevailing today in many
developed countries.3 I thus shed light on a different part of the dose-response function than
existing papers on the effects of gestational pollution exposure on skills, educational or labour
market outcomes which are based on data from developing countries (Bharadwaj et al., 2017;
Molina, 2021; Rosales-Rueda and Triyana, 2019) or cohorts born in the US during the 1970s-
1980s (Isen et al., 2017b; Sanders, 2012; Voorheis, 2017), i.e. settings with much higher air
pollution levels. Most closely related in terms of the analyzed outcome is a study that was
conducted independently of and in parallel to this dissertation by Ai et al. (2023) who find
adverse impacts of in-utero exposure to PM2.5 on mental health at age 10-15 using survey
data from China and average wind speed during the year of birth as instrumental variable. It
is unclear, however, whether wind speed satisfies the exclusion restriction because it might
be notable and trigger behavioral responses among pregnant mothers. Moreover, while men-
tal health is closely related to some components of non-cognitive ability, I analyze a broader
range of non-cognitive skills as outcomes and consider a very different context of a developed
country with relatively low pollution levels.

The paper also adds to the literature on the development of non-cognitive skills. Related
studies e.g. analyze the effects of family income (Akee et al., 2018), birth order (Black et al.,
2018), parents’ labor market incentives (Hufe, 2020) or child care arrangements (Datta Gupta
and Simonsen, 2010). Persson and Rossin-Slater (2018) and Adhvaryu et al. (2019) also investi-
gate the impact of prenatal conditions, specifically maternal stress and malnutrition, on later
life mental health and non-cognitive ability. Most closely related is work by Grönqvist et al.
(2020) who analyze how childhood exposure to lead affects adult human capital and crime,
and identify negative effects non-cognitive skills as an important mechanism. Relative to this
study, I focus on less toxic air pollutants, which - as an externality of economic production and
traffic - are omnipresent in both developing and developed countries. Thus, I complement the

3Mean gestational PM10 exposure in my sample is approximately 24 µg/m3.
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existing literature by analyzing the role of this pertinent environmental factor in the formation
of non-cognitive skills.

The remainder of the paper is structured as follows: The next section provides background
information on prenatal pollution exposure and non-cognitive abilities. Section 3 describes
the data used in the analysis. I present the empirical specification in section 4 and the results
in section 5. Section 6 concludes.

2.2. Background: Noncognitive Skills and Prenatal Air
Pollution Exposure

Noncognitive skills are important predictors of educational achievement and labor market
outcomes, even beyond their impact on education (Heckman et al., 2006; Lindqvist and Vest-
man, 2011), and over recent decades the returns to these skills increased relative to the returns
to cognitive ability (Deming, 2017; Edin et al., 2017). To capture the different dimensions of
noncognitive ability, I rely on the Big Five personality traits, assessed during childhood, as
outcome variables. The Big Five are a widely used taxonomy which was developed in per-
sonality psychology. Among the five traits, conscientiousness (the tendency to be organized,
responsible, and hard-working) and emotional stability (the opposite of neuroticism) show the
most robust positive correlations with labor market success (e.g. Almlund et al., 2011; Cubel
et al., 2016; Fletcher, 2013). Thus, these two traits in particular are potential mediators for the
documented long-run effects of pollution exposure. Focusing on noncognitive ability during
childhood is based on ample evidence in developmental psychology showing that by school
start age children already differ substantially in character traits and that these are predictive
of their adult personality (e.g. Almlund et al., 2011; De Pauw, 2017; Deal et al., 2005). More-
over, childhood noncognitive ability is a significant determinant of school performance and
educational outcomes (e.g. Carneiro et al., 2007; Currie and Stabile, 2006; Johnston et al., 2014).

Findings from brain lesion studies, neuroimaging and psychopharmacological research im-
ply that the source of all noncognitive abilities lies in the brain (e.g. Almlund et al., 2011).
Personality neuroscience uses neuroimaging techniques to identify how personality traits de-
pend on brain structure and function as well as levels of hormones and neurotransmitters.
While the field is relatively new and the high costs of neuroimaging often restrict sample
sizes, some findings already emerged as relatively robust, e.g. the association of Extraver-
sion with dopamine or the association of Neuroticism with cortisol and activity in the hip-
pocampus (Allen and DeYoung, 2017). As skills that depend on the functioning of the brain,
noncognitive abilities might plausibly be affected by exposure to air pollution, as the latter
not only causes respiratory and cardiovascular diseases, but can also induce damage to the
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central nervous system. The medical literature shows that very small particles reach the brain
tissue where they cause oxidative stress and neuroinflammation. Since brain formation and
growth proceed very rapidly during the prenatal period, air pollution exposure during this
critical time window might cause irreversible damages to the nervous system by disrupting
these processes (de Prado Bert et al., 2018). The pollutants that are most likely to cause perma-
nent reductions in cognitive and noncognitive ability in this way are carbon monoxide (CO)
and ultrafine particles, as both can cross the placenta, and thus pose most harm to the foetus.
Possible mechanisms are maternal systemic and placental oxidative stress and inflammation
and impaired transport of oxygen and nutrients to the fetus (Levy, 2015; Johnson et al., 2021).
Recent evidence from brain imaging indeed suggests that prenatal air pollution exposure is
associated with a reduction in white matter volume and changes to brain structure in hu-
mans (de Prado Bert et al., 2018; Beckwith et al., 2020), however given very small sample sizes
and non-random variation in pollution exposure, such associations cannot be interpreted as
reflecting causal effects.4

Given these premises, several epidemiological studies investigate the correlation between
in-utero or early childhood exposure to air pollution and mental health issues (e.g. ADHD
or Autism) or behavioral problems in childhood, i.e. outcomes related to noncognitive abil-
ity.5 Annavarapu and Kathi (2016), Myhre et al. (2018) and Xu et al. (2016) provide reviews
of this literature and point out common caveats: Most studies are based on cross-sectional
comparisons between individuals living in different places, and thus prone to omitted vari-
able bias. Hence, while suggestive of a relationship between early air pollution exposure and
noncognitive ability, the results of this literature do not reflect causal effects.

2.3. Data

2.3.1. Socio-economic Panel: Noncognitive skills

Estimating the impact of early life pollution exposure on the formation of noncognitive ability
requires data that not only includes information on individuals’ socioemotional skills but also
on their location and time of birth. Besides, the data must cover a sufficiently large number of
individuals from multiple birth cohorts, since only temporal variation in particulate matter and
inversions is used in the research design. Many surveys that contain extensive information
about noncognitive ability do not meet these requirements as they cover only single birth co-

4For complementary evidence from animal studies using random variation in pollution exposure see e.g. Wood-
ward et al. (2018) or Costa et al. (2014) for a review.

5Mental health issues are often interpreted as extreme realizations of personality traits (Almlund et al., 2011;
Widiger et al., 2017) and, especially at child age, frequently measured by the same concepts as noncognitive
ability (Currie and Almond, 2011; Johnston et al., 2014).
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horts, e.g. the British longitudinal cohort studies or the studies from the U.S. Early Childhood
Longitudinal Study program. Other data sets lack the necessary disaggregated geographical
information, such that individual pollution exposure cannot be determined. Lastly, frequently
used administrative data sources on cognitive and noncognitive skills, e.g. the Swedish mil-
itary enlistment data, cover individuals who were born in a place and at a time for which
accurate measurements of air pollution are unavailable.6

A data source that addresses most of these demands is the German Socio-Economic Panel
(SOEP), a large household panel survey started in 1984, which covers roughly 15,000 house-
holds and 30,000 individuals (SOEP, 2019). It includes mother-reported Big Five personality
traits for all children aged 2-10 in SOEP households which I use as measures of childhood
noncognitive abilities. The relevant information is based on the “Mother-and-child” question-
naires which were introduced in 2005 for 2- to 3-year-old children, in 2008 for 5- to 6-year-olds
and in 2012 for 9- to 10-year-olds. Mothers answer questions on their child’s behavior on a
scale from 0 to 10. Each question can be mapped into one of the Big Five domains. Mothers’
of 2-3 year old children are asked to answer only one question per trait and neuroticism is not
yet included. When children are in the older two age groups, two questions are included per
domain and all five traits are assessed. The questions are presented in Appendix Table 2.A.1.
One important thing to note about the questionnaires is that the items intended to measure
openness are likely to capture at least in part the child’s cognitive ability (e.g. ‘My child is quick
at learning new things vs. needs more time’). Thus, the main focus of my analysis will lie on
the other four traits which isolate non-cognitive skills. To construct the outcomes of interest I
collect the relevant information from the 2005-2018 mother-and-child questionnaires, I recode
items where necessary to ensure that high values reflect higher realizations of the respective
trait, add up values for items within each domain and standardize the resulting scores within
each age group (2-3, 5-6 and 9-10). For children observed at multiple ages, I keep only the most
recent observation, as personality differences become more pronounced with age and my main
interest is in long-run effects of pollution exposure. The relevant information is available for
individuals born between 2000 and 2012 for Neuroticism (Sample II ) and for those born 2000-
2015 for the other four traits (Sample I ), i.e. the included birth cohorts extend over more than
a decade.

To assign pollution exposure to individuals, I rely on information on year and month of
birth as well as county of residence. For the majority of children (71% in Sample I and 65%
in Sample II ), I can identify the county of birth, as the county of residence during the year

6The enlistment data offers a large sample size and high quality measures of noncognitive skills based on in-
terviews with a trained psychologist, but is not suitable for my analysis, because air quality data for Sweden
is not available at a large scale before 1980. Due to falling demand for conscripts, the share of a birth cohort
that was enlisted fell to roughly 70% for mid-1980 born cohorts, implying potential selection bias problems
when analyzing cohorts born after 1980. (Grönqvist et al., 2017)
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of birth. In the remaining cases, the households entered the panel after the child was already
born such that the place of birth is unknown. As a proxy for county of birth, I assign the
county of residence during the first wave the household was interviewed. Wrong assignments
can induce measurement error in early-life particulate matter exposure which is not addressed
by the instrumental variable strategy. Since measurement error causes attenuation bias, any
results would reflect a lower bound. I restrict the sample to children born in a county with at
least 20 observations in my sample since effects are identified from variation in environmental
conditions during early life between children born within the same county. This restriction
is intended to ensure that the comparison groups are large enough to avoid spurious results
generated by outliers. This yields 9,470 individuals across 192 counties in Sample I and 6,548
individuals across 155 counties in Sample II. Lastly, the SOEP provides a multitude of relevant
demographic and socioeconomic background variables, e.g. the child’s gender, age in month
and migration history, whether it lives in a single-parent household, parental education, and
the number of siblings.7 Basic sample characteristics are summarized in the middle part of
Table 2.1.

Table 2.1.: Summary Statistics

Sample I Sample II
(B5 \ Neuro) (Neuroticism)

Observations 9,470 6,548
Counties 192 155
Years of Birth 2000-2015 2000-2012
Age 6.9 (2.9) 8.2 (2.0)
Migration Background [%] 31.7 29.7
College-educated mothers [%] 26.8 26.7
Single-parent households [%] 15.6 17.6
PM10 in-utero [ `𝑔

𝑚3 ] 24.1 (5.0) 24.6 (5.1)
NO2 in-utero [ `𝑔

𝑚3 ] 28.8 (10.6) 29.0 (10.8)
CO in-utero [ `𝑔

𝑚3 ] 460.2 (193.3) 480.7 (203.5)
Inversions in-utero [%] 39.9 (7.1) 39.7 (7.0)

Note: Summary statistics based on data from the SOEP, version 35. The table reports mean values and standard deviations (in parentheses).

Given that the Five Factor Model is the most common taxonomy of personality and widely

7To measure parental education I construct dummy variables reflecting a low, medium or high level of education
for mothers and fathers. Low education is defined as less than high school (Abitur) or vocational training,
medium education is defined as having completed high school or vocational training, but no tertiary degree,
and high education is defined as having completed a tertiary degree. I also include children in the sample
when information on parental education is missing, and define separate dummies for these cases.
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employed in economics, using the Big Five personality traits as main outcomes allows to
benchmark my results against other studies and to conduct back-of-the-envelope calculations
translating effects on noncognitive abilities into effects on earnings. However, the fact that
these variables are based on maternal assessments and short scales with only one or two items
per domain might raise concerns about measurement error. Thus, in the following I present
some descriptive evidence to illustrate that these measures do contain substantial information
regarding the children’s non-cognitive skills.

2- to 3-year-olds

5- to 6- and 9- to 10-year-olds

Figure 2.1.: Distribution of Big Five personality traits by age group.

Note: The distributions are based on all available observations in the SOEP, i.e. including multiple observations for the same child and children
born in counties with less than 20 individuals. Distributions among 2- to 3-year-olds are based on 8,037 observations, distributions among
older children on 11,657 observations.
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Firstly, Figure 2.1 shows the distribution of the Big Five traits by age group (not standard-
ized). The upper four plots show distributions for the age range from 2-3 years. While there is
some clustering at high values for Openness and Extraversion which are picked by 20% to 25%
of all mothers, all potential values do occur with positive frequency across all four outcomes.
In the older age groups, the distributions exhibit even more variation as mothers answer two
instead of one question per domain (bottom five plots). One important thing to note is that the
distributions for all five traits exhibit a spike at the intermediate value of 10, with different in-
tensity across outcomes. A potential explanation for this is that some mothers have difficulties
when trying to assess their children’s noncognitive skills and thus opt for the middle values.
However, the vast majority of respondents do not follow that strategy, suggesting that their
answers are informative about the personality of their children. In Appendix Figure 2.B.1, the
distributions are depicted by maternal education. The variables exhibit strong variation in all
socio-economic groups, but less educated mothers tend to choose intermediate values slightly
more often than highly educated mothers. Given that I control for parental education in the
regressions and conduct falsification tests showing that the instrument is not significantly cor-
related with family characteristics, this should not affect the results. In the main analysis, I
thus use the data as it is, but in a robustness check, I drop observations where mothers opted
for the intermediate values across several items.

To further explore the validy of the outcome variables, I show correlations of the mother-
reported Big Five with father-, and self-reported personality traits in Figure 2.2.8 Correla-
tions are measured between the mother-reported Big Five assessed at ages 9-10 and (i) father-
reported Big Five assessed at the same age range, (ii) self-reported Big Five at ages 11-12 and
(iii) self-reported Big Five at ages 16-17. All variables are standardized to have mean zero
and standard deviation one within the respective age-by-respondent cell. All correlations are
positive and statistically significant, implying not only that mother-reports are in line with
reports by others for the same age range, but also predictive for noncognitive ability during
adolescence, at an age relatively close to transition into the labor market or higher education.

In Appendix Figure 2.B.2, I also show partial correlations between the mother-reported Big
Five and measures of the child’s school performance, well-being and preferences. In each
case I control for parental education, a single-parent household dummy, child gender and
migration background. Firstly, mother-reported Big Five when the child is aged 5-6 years are
relevant predictors of the mother-assessed probability that the child will graduate from the
academic track of the German school system when the child is 7 to 8 years old (i.e. before

8Father-reported Big Five are available only for a subsample of 1,144 children at age 9-10. Self-reported Big Five
are available from age 11-12 onward. Most of the adolescents observed at these ages live in households who
were not yet part of the SOEP during their year of birth. For these reasons, I rely solely on the mother-reported
Big Five in the main analysis.
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Figure 2.2.: Mother-, father- and self-reported Big Five

Note: The figure presents correlations between mother-assessed and either father- or self-reported Big Five personality traits. Father-reported
Big Five are measured with the same scales as mother-reported variables based on sample sizes ranging from 1,085 to 1,097 depending on the
domain. Self-reported Big Five at ages 11-12 and 16-17 are measured with three items per domain and available for 2,215 to 2,266 and 355 to
361 individuals, respectively who were also observed at age 9-10. 95%-confidence intervalls are based on heteroscedasticity robust standard
errors.

track choice is made). Openness is a strong positive predictor, which is unsurprising, given
that openness as measured in the SOEP likely reflects cognitive skills to some extent. More
importantly, conscientiousness and neuroticism are also relevant predictors, with positive and
negative sign, respectively. Child-reported life satisfaction and risk aversion at ages 11-12 are
both correlated with mother-assessed Big Five at age 9-10: Agreeableness, Extraversion and
Conscientiousness are positively associated with life satisfaction. All five traits are correlated
with risk aversion, with the strongest, positive association for Neuroticism. The signs of these
correlations are plausible, providing further support for the validity of the mother-reported
noncognitive skills.

2.3.2. Pollution, Weather and Inversions

I obtain data on daily PM10 concentration measured at outdoor monitors between 2001 and
2016 from the federal environmental agency (Umweltbundesamt [UBA]). I use data from 181
stations which were active throughout the full time period. A map of the monitor locations is
provided in Appendix Figure 2.B.3. To assign PM10 to counties, I use inverse distance weight-
ing, based on stations within a radius of 60km around the county centroid.9 The median dis-
tance between the county centroid and the assigned stations is 25.8 km. I aggregate daily

9I restrict the maximum number of stations per county to three since using more stations increases the number
of missing values. In a small number of large cities, which are also counties, there are more than three
monitors within the city boundaries. In these cases I assign all monitors within at most 20km distance.
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PM10 concentrations to trimesters (= 90 days) and in-utero periods (= 270 days). I keep only
observations with less than 115 missing daily values during the in-utero period and at most
40 missing values per trimester. Given that the European Union only introduced binding limit
values for PM10 in 2005, there were relatively few measurement stations in Germany during
the early 2000s, with the number of monitors rising sharply only in 2003. Hence, the dataset
does not cover the full sample period (the oldest individual in the sample were born in 2000)
and only 190 out of the 192 relevant counties. On top of that, there is a non-trivial number of
missing measurements in the data. In total, for 14.5% of the final sample, the in-utero period
PM10 concentration is missing. Hence, I will report both 2SLS and reduced form results, since
the first are informative about the quantitative effect of pollution on noncognitive abilities,
but the second are based on a larger sample. I also collect data on nitrogen dioxide (NO2) and
carbon monoxide (CO) concentration from UBA. They are common co-pollutants of PM10,
and CO can also cause damage to the unborn child.10 I proceed in the same way as described
above to transform monitor-by-day observations into county level concentrations during the
periods of interest.

To construct the instrumental variable based on thermal inversion periods, I employ re-
analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) on
surface level and upper air temperature for the years 1999-2016. During normal times, air tem-
perature decreases with altitude. A thermal inversion occurs when the relationship between
temperature at different altitude levels is reversed, i.e. temperature increases with altitude. The
data are available at an hourly level on a regular 0.25° latitude x 0.25° longitude grid.11 Upper
air temperature is measured as temperature at a pressure level 50 hPa below the surface level
pressure in the county, which corresponds to approximately 400-500m higher altitude. I then
assign data from grid points to counties, based on the inverse distance weighting method,
including all grid points within a 30km radius around a county centroid. To determine the
occurrence of night-time inversions, I average both surface level and upper air temperature
between 2 am and 6 am. If the difference between nightly upper air temperature and surface
level temperature is positive, the county experienced a night-time inversion on the particular
day. I aggregate the daily data to the time periods of interest (trimesters or in-utero period). I
define the instrument as the share of days with a night-time inversion during the time period
of interest.

Lastly, I collect reanalysis data on meteorological conditions for the time period 1999-2016

10NO2 concentrations are measured at 230 distinct stations over the relevant time period, with a median distance
of 21km between county centroids and monitors. The number of active CO monitors is 61. Data can be
assigned to a subsample of 122 counties, with a median distance of 32.3 km between county centroids and
CO monitors.

11Specifically the two data products I use are ERA5 hourly data on single levels from 1979 to present and ERA5
hourly data on pressure levels from 1979 to present
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from the ECMWF, to include as control variables. Monthly average temperature, precipitation
and wind speed are available on a 0.1° x 0.1° grid.12 I aggregate data to counties, using all
grid points falling into a county, or in case of small counties without a point on its territory, I
assign data from up to 10 closest points within 40km distance using inverse distance weighting.
I aggregate the weather data from the monthly level to the time periods of interest.

The pollution and inversion variables for the sample are summarized in the bottom part of
Table 2.1. I report concentrations of PM10, NO2 and CO as well as the frequency of inversions
for the in-utero period, which is defined as the 270 day or 9-month period ending with but
including the month of birth.

2.4. Empirical Strategy

To identify the effect of air pollution exposure on children’s socioemotional skills, I rely on an
approach based on thermal inversions, following e.g. Arceo et al. (2016); Colmer et al. (2021b);
Jans et al. (2018b) and Molina (2021).

The baseline model is given by:

𝑁𝐶𝑎
𝑖𝑐𝑦𝑚 = 𝛽𝑃𝑀𝑐𝑦𝑚 + 𝛾 ′X𝑖 + 𝛿′W𝑐𝑦𝑚 + \𝑐 + \𝑦 + \𝑚 + \𝑎 + 𝑢𝑖𝑐𝑦𝑚𝑎 , (2.1)

where 𝑁𝐶𝑎
𝑖𝑐𝑦𝑚 denotes a measure of non-cognitive ability of individual 𝑖 , born in county 𝑐

in month 𝑚 of year 𝑦. The age group at which the skills are assessed is represented by 𝑎.
𝑃𝑀𝑐𝑦𝑚 is local PM10 concentration during the gestational period. The model includes county
fixed effects \𝑐 to account for persistent difference in pollution and skill levels across locations,
month-of-birth fixed effects \𝑚 to control for seasonality in air quality, and year-of-birth fixed
effects \𝑦 to capture changes in cognitive skills over time which affect individuals in all coun-
ties equally. \𝑎 controls for age-specific trends in outcomes. The model further includes in-
dividual and family background characteristics X𝑖 (child gender, age in month and its square,
migration background and dummies for parental education levels) and meteorological condi-
tions, W𝑐𝑦𝑚 . These include third order polynomials in temperature, precipitation and wind
speed during the gestational period. Standard errors are clustered at the county level.

For the OLS estimate of 𝛽 to be consistent, the unobserved determinants of childhood non-
cognitive abilities summarized in 𝑢𝑖𝑐𝑦𝑚𝑎 must not be correlated with PM10 levels conditional
on fixed effects and control variables. This assumption is probably violated, e.g. due to region
specific economic shocks affecting both air quality as well as parental income which might
be spent on investments into the child’s skill development. Secondly, individual pollution

12Product: ERA5-Land monthly averaged data from 1981 to present
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exposure is measured with error which leads to attenuation bias. To address these issues, I
rely on the meteorological phenomenon of thermal inversions to extract exogenous variation
in air quality. Under normal conditions, air temperature decreases with altitude. Emissions
released at the ground level rise and disperse in the air. During an inversion, air temperature
increases with altitude, i.e. upper air layers are warmer than ground level air. The warm upper
air layer acts like a ceiling that prevents ground level pollution from rising and dispersing. As
pollutants are trapped beneath the warm air layer, their surface level concentration increases.

Thermal inversions are a meteorological phenomenon. They exhibit a seasonal pattern with
inversions occurring more frequently in the winter as compared to the summer. However, con-
ditional on month-of-birth fixed effects and weather controls, it is as good as random whether
the specific combination of meteorological conditions occurs that gives rise to a thermal in-
version. Importantly, the frequency of inversions should be plausibly uncorrelated with local
business cycles. At pollution levels that were common in Germany during my sample period,
inversions usually do not lead to visible smog events or extremely poor air quality, and are
thus unlikely to trigger avoidance behavior. Besides, following e.g. Jans et al. (2018b) and
Molina (2021), I exclusively consider nighttime inversions, which should be even less likely to
induce any behavioral responses.

Specifically, the first stage model is given by:

𝑃𝑀𝑖𝑐𝑦𝑚 = 𝛼𝐼𝑛𝑣𝑐𝑦𝑚 + 𝛾 ′X𝑖 + 𝛿′W𝑐𝑦𝑚 + \𝑐 + \𝑦 + \𝑚 + \𝑎 + 𝑢𝑖𝑐𝑦𝑚𝑎 (2.2)

where 𝐼𝑛𝑣𝑐𝑦𝑚 is the share of days on which a nighttime inversion occurred during the period
of interest. In addition to the variables mentioned above, I add one lead and one lag of the
instrument to W𝑐𝑦𝑚 in both the first and second stage model, to account for autocorrelation
in inversion frequency.

The first stage results in Table 2.2 replicate the finding from previous studies that thermal in-
versions are a strong instrument for PM10, thus satisfying the relevance condition. The effect
magnitude in columns 1 and 2 imply that mean PM10 concentration during a 9 month period
increases by 1.1 and 1.2 µg/m3, respectively, in the two analysis samples, for a standard devi-
ation increase in inversion frequency (.07).13 The associated F-Statistics are large. In columns
3 to 6, I show results when replacing PM10 by either NO2 or CO as outcome. Inversions have
a somewhat smaller, but highly significant effect on NO2, which is a common co-pollutant of
PM10. For CO, the effect is also positive, but less significant, such that the F-Statistic is clearly
below the common threshold for a sufficiently strong instrument. In sum, thermal inversions

13The coefficients in the table depict the effect for moving from no inversions at all to having an inversion each
night during the period of interest. In the data, however, none of these two extreme cases occurs, and the
actual variation in inversion frequency is substantially smaller.
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increase the concentration of all three pollutants considered in the table, and with only one
instrument, I cannot cleanly disentangle their distinct effects on noncognitive skills. How-
ever, the first stage results suggest that PM10 is most likely to drive any results in the second
stage, because (i) unlike CO and fine particles, NO2 is not commonly considered as a major
risk factor in the medical literature, and (ii) the first stage effect for CO is weak.

Table 2.2.: First Stage Results

PM10 PM10 NO2 NO2 CO CO
Share Inversions 15.86*** 17.82*** 10.85*** 9.87*** 122.12 187.93**
in utero (1.611) (1.985) (1.223) (1.535) (87.679) (90.747)

Observations 7,645 4,911 8,880 6,099 5,494 3,679
F-Statistic 98.68 81.36 73.63 41.47 1.91 3.91
Sample I II I II I II

Note: The table depicts estimates of the effects of inversion frequency during the nine-month in-utero period on pollution concentration
during that period from model 2.2. All outcomes are measured in µg/m3. Regressions include year-, month- and county-of-birth fixed effects,
age group fixed effects, weather controls and individual background characteristics as described in the text. Standard errors clustered at the
county level are reported in parentheses. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The key identifying assumption underlying the 2SLS and reduced form estimations is that,
conditional on the included covariates, the frequency of thermal inversions during the in-utero
period affects noncognitive skills in childhood only through their effect on air pollution. This
assumption will be violated if families of children exposed to more inversion periods during
early life differ systematically from families of children exposed to fewer inversions along
unobservable characteristics.

As a test of the identifying assumption, I check whether inversion frequency is systemat-
ically correlated with observed predetermined family background variables. The results of
these falsification checks are displayed in Table 2.3. The estimated coefficients reflect the
change in outcomes for a one standard deviation increase in inversion frequency (0.07) and
reveal that family characteristics show no consistent pattern with respect to inversion fre-
quency: For instance, fathers of children exposed to more inversions while in-utero tend to
be slightly less educated, but at the same time, on average, slightly fewer of these children
have a migration history. Importantly, none of the tested variables (maternal and paternal
education, maternal age at birth and migration background) are significantly correlated with
the instrument and the point estimates are generally small in magnitude.
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Table 2.3.: Falsification Tests

Maternal Tertiary Less than Tertiary Less than
Age Migration degree High School degree High School

at birth History (Mother) (Mother) (Father) (Father)

Panel A: Sample I
Share Inversions -.1691 -.0054 -.0177 .0080 -.0150 .0137
in utero (.1570) (.0117) (.0113) (.0098) (.0163) (.0128)

Observations 9,200 9,440 9,201 9,201 6,284 6,284

Panel B: Sample II
Share Inversions -.1861 -.0076 -.0042 -.0014 -.0064 .0130
in utero (.1963) (.0144) (.0136) (.0116) (.0184) (.0151)

Observations 6,326 6,548 6,380 6,380 4,157 4,157

Note: The table depicts coefficients from OLS regressions of family characteristics on the share of inversions during the child’s in-utero
period. Maternal age is measured in years. The other outcomes are dummy variables. Regressions control for cubic functions of precipitation,
temperature and wind speed. Standard errors clustered at the county level are reported in parentheses. Significance levels: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

2.5. Results

This sections starts by presenting the 2SLS and reduced form results for the effects of in-utero
exposure to air pollution on the Big Five personality traits. The main finding is that worse air
quality reduces emotional stability. Thereafter, I explore this result in terms of heterogeneity
and critical phases of exposure, and test its robustness to changes in sample construction, the
set of included covariates and the choice of the instrument.

2.5.1. Main results

Panel A of Table 2.4 displays 2SLS estimates of the effect of in-utero exposure to PM10 on
the Big Five personality traits. A large and significant impact is found for neuroticism which
increases by 7.1% of a standard deviation for an increase in mean PM10 concentration by one
µg/m3. This implies that individuals exposed to higher levels of air pollution during the pre-
natal period are less emotionally stable in childhood, i.e. more fearful and less self-confident.
The second largest point estimate emerges for openness. As mentioned earlier, openness as
measured in the SOEP most likely partially reflects cognitive skills. Thus, the negative esti-
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mate is in line with existing results on the negative impact of in-utero exposure to air pollution
on later life cognitive ability. The fact that the negative effect is not statistically significant is
unsurprising given that the questions asked to assess openness are only crude measures of
cognitive ability as compared to detailed tests used in previous studies. The remaining three
traits are not affected by gestational particulate matter levels. The point estimates are close to
zero (all below 1.7% of a standard deviation), and not statistically significant.

These results are confirmed by the estimates from the reduced form models, which are pre-
sented in panel B. As mentioned above, the reduced form can be estimated on larger samples.
Coefficients are multiplied by 0.07 to reflect the estimated effects for a one standard deviation
increase in inversion frequency. Based on the first stage results this corresponds to an increase
in PM10 by a bit more than one µg/m3. In line with the 2SLS estimates, the only significant
result emerges for neuroticism, which rises by 6.7% of a standard deviation in response to the
increase in in-utero inversion frequency. This is very similar in terms of magnitude to the
2SLS estimate, implying that the relationship holds in counties with and without PM10 mon-
itors. Regarding the other four traits, the reduced form confirms the absence of any effects.
Again, apart from the negative but insignificant coefficient for openness, the point estimates
are small in magnitude. A potential explanation for these null effects could be that these traits
are measured on a different sample than neuroticism, including younger children. Possibly,
personality differences in 2-3-year-olds are not yet pronounced enough or the measures used
in the SOEP for this age group are too crude to uncover the impact of prenatal pollution expo-
sure. Therefore, in Table 2.A.2, I repeat the estimation for these four outcomes on sample II, i.e.
the sample used for the analysis of neuroticism, including only children aged 5 or older. The
results are similar, again showing no significant effect on any of the four traits. The pattern
is also unchanged, showing the largest negative point estimates for openness and relatively
small estimates for the other three outcomes.

2.5.2. Additional Results

Having established that in-utero exposure to particulate matter increases neuroticism in child-
hood, this paragraph further examines this effect in terms of critical windows of exposure and
effect heterogeneity.

Effect Heterogeneity. I analyze effect heterogeneity with respect to child and family char-
acteristics, namely child gender, age at which neuroticism is assessed (5-6 vs. 9-10 years), and
current household income (above vs. below median). I do not find evidence for heterogene-
ity in the effect of inversions on neuroticism along any of the three dimensions. Results are
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Table 2.4.: Impact of prenatal PM10 exposure on the Big Five

Openness Consc.’ness Extraversion Agreeableness Neuroticism

Panel A: 2SLS
PM10 -.0361 .005 .0033 .0163 .0714**
in utero (.0288) (.0279) (.0258) (.0261) .0314

Observations 7,655 7,645 7,666 7,614 4,911
Counties 163 163 164 162 122
1st Stage F-Stat. 98. 96.9 98.7 95.1 80.5

Panel B: Reduced Form
Inversions -.0423 -.0182 -.0034 .0231 .0667**
in utero (.0279) (.0264) (.0261) (.0265) (.0323)

Observations 9,454 9,440 9,445 9,423 6,548
Counties 192 192 192 192 155

Note: Panel A displays 2SLS-estimates of the effect of a 1 µg/m3 increase in PM10 concentration during the in-utero period on Big Five
personality traits. PM10 is instrumented by inversion frequency. Panel B shows the OLS estimates of the effect of an increase in the share
of days with a nighttime inversion during the in-utero period by one standard deviation (+7%) on the outcomes. Outcomes are standardized
within age groups. All regressions include year-, month- and county-of-birth fixed effects, age group fixed effects, controls for parental
education, child gender, migration background, age in months and its square, cubic functions of temperature, wind speed and precipitation,
plus one lead and one lag of the instrument. Standard errors clustered at the county level are reported in parentheses. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

illustrated in Appendix Figure 2.B.4. In all three cases, the coefficient on the interaction term
is close to zero and insignificant, whereas the main effect remains statistically significant and
of similar magnitude as in the baseline model. In summary, the effects of prenatal air pol-
lution exposure emerge already by school start age, affect both genders equally and are not
dampened by parental resources.

Secondly, I examine heterogeneity in effect magnitude along the distribution of neuroticism.
I construct two indicator variables for the value of neuroticism falling below the first quartile
and above the third quartile, respectively. Figure 2.3 shows 2SLS and reduced form results.
While all point estimates have the expected sign, i.e. on average air pollution exposure reduces
the probability to fall below the lower quartile and increases the probability to fall above the
upper quartile, only the latter effect is statistically significant and also larger in magnitude (-
1.5 pp vs +3 pp). This result is noteworthy as it implies that prenatal air pollution might affect
child mental health: In modern personality psychology, mental disorders are conceptualized as
extreme realizations of the Big Five traits. High values of neuroticism show particularly robust
and consistent correlations with a range of mental health issues, e.g. depression and anxiety
disorders. (Almlund et al., 2011; Widiger et al., 2017) Hence, the fact that the main result
is mostly driven by increases in neuroticism in the upper part of the distribution suggests
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that prenatal particulate matter exposure might not just reduce an important noncognitive
skill within the range of ‘normal’ variations in personality, but could even give rise to mental
health issues. It should be stressed that this is only suggestive, and with the available data, I
am unable to explore this in more depth.14

Figure 2.3.: Effect Heterogeneity along the distribution of Neuroticism

Note: Red colored dots depict 2SLS estimates of the effect of a 1 µg/m3 increase in PM10 concentration during the in-utero period on indicator
variables taking the value one if age standardized neuroticism falls above the 75th percentile of the sample distribution (left) or below the 25th
percentile of the sample distribution (right), respectively. Blue colored dots depict OLS estimates of the effect of a one standard deviation
increase in the share of days with a nighttime inversion during the in-utero period on the same outcomes. All regressions include year-,
month- and county-of-birth fixed effects, age group fixed effects, controls for parental education, child gender, migration background, age
in months and its square, cubic functions of temperature, wind speed and precipitation, plus one lead and one lag of the instrument. Bars
represent 95%-confidence intervals, based on standard errors clustered at the county level.

Trimester level effects. To assess critical windows of exposure, I split the in-utero period
into three trimesters, and run the reduced form regression including variables measuring in-
version frequency separately for each trimester. Besides, to analyze whether postnatal air
pollution exposure also generates adverse long-run effects on neuroticism, the regression in-
cludes inversions during the first nine month after birth, broken down into three-month pe-
riods. Symmetrically, I include inversion frequency during three placebo trimesters, i.e. three-
month periods preceding conception. Assuming that air pollution affects childhood neuroti-
cism solely through physiological channels, the frequency of thermal inversions before con-
ception should not have a significant impact. Regressions include the same fixed effects, indi-

14The SOEP questionnaires do not include instruments measuring child mental health, and formal diagnosis of
mental disorders is a very rare outcome that cannot sensibly be analyzed given the sample size.
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vidual and family characteristics as before and trimester-specific, quadratic weather controls.
Table 2.5 presents the results. Significant positive effects are found for inversion frequency
during the second and third trimester of pregnancy. Inversions during the first trimester and
the first nine month after birth have no significant impact on neuroticism. This result resem-
bles the findings on the effect of air pollution on performance in school achievement tests in
Bharadwaj et al. (2017) (effects mainly in the third trimester) and cognitive ability in Molina
(2021) (significant effects only in the second trimester). Reassuringly, the coefficients on the
three placebo trimesters are insignificant and also of smaller magnitude than the effects of
in-utero exposure.

Table 2.5.: Neuroticism - Effects by Trimester

Neuroticism
Inversions -.0050
9-7 months before conception (.0165)
Inversions .0227
6-4 months before conception (.0167)
Inversions .0179
3-1 months before conception (.0163)

Inversions -.0079
1st trimester (.0187)
Inversions .0327**
2nd trimester (.0164)
Inversions .0384**
3rd trimester (.0169)

Inversions -.0231
1-3 months post birth (.0176)
Inversions .0171
4-6 months post birth (.0163)
Inversions -.0220
7-9 months post birth (.0169)

Observations 6,548

Note: The table shows OLS estimates of the effect of an increase in the share of days with a nighttime inversion during the in-utero period
by one standard deviation (+7%) on Neuroticism (age-standardized). Regressions include year-, month- and county-of-birth fixed effects,
age group fixed effects, as well as covariates for parental education, child gender, migration background, age in months and its square,
plus trimester-specific, quadratic functions of temperature, wind speed and precipitation. Standard errors clustered at the county level are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Postnatal exposure. The reduced form results just presented indicate that neuroticism is
not affected by postnatal exposure to air pollution. To corroborate this finding, I analyse the ef-
fects of air pollution during the first nine month after birth in the main 2SLS and reduced form
models, for neuroticism as well as the other noncognitive skills. Since early life is also a critical
period of development, I run these regressions to make sure not to miss any relevant effects.
2SLS and reduced form models are defined as before, with the only difference that weather
controls are included for both the pre- and postnatal period to control for any possible long-
run effects of early life weather conditions. I find no effects of postnatal PM10 exposure on any
of the five outcomes. As mentioned above, the finding that noncognitive ability, in particular
neuroticism, is only affected by prenatal pollution exposure is in line with results for cogni-
tive ability. The result is also plausible given the fact that both types of skills are governed by
brain structure and function which develops most rapidly in the gestational period. However,
adverse long-run effects on educational and labor market outcomes where found for exposure
during both the in-utero period and the first year of life (Isen et al., 2017b; Voorheis, 2017).
This implies that other components of human capital, e.g. physical health, might also mediate
a part of the adverse long-run effects. This is in line with results by Klauber et al. (2021) who
follow children from birth to age five and find that in-utero exposure to particulate matter
causes subtle but persistent damage to respiratory health.

Robustness Checks. The main finding from the preceding paragraphs is that in-utero ex-
posure to particulate matter increases neuroticism at ages 5-10. The similarity of the 2SLS and
reduced form results as well as the absence of an effect during the placebo trimesters provide
a first confirmation that the finding is not driven by correlated unobservables. However, given
the modest sample size and the large number of hypotheses tested, I subject this finding to a
number of additional robustness checks.

First, I test sensivity to changes in sample construction. Results are reported in Appendix
Table 2.A.4. Panel A shows 2SLS estimates, while panel B presents reduced form estimates.
Column 1 replicates the baseline result. In columns 2 and 3, I vary the minimum number of
observations for a county to be included in the sample to either 15 (column 2) or 25 (column 3)
instead of 20. While the number of included individuals and counties changes notably across
the three columns, the point estimates are positive and significant in all cases, with their size
varying slightly between 6.65% and 8.88%. The fact that the estimated coefficient gets larger
and more significant for the larger cut-off value is plausible as it is easier to precisely estimate
the effect of pollution exposure if the within-county comparison group is larger. In columns
4 and 5, I use all available observations in the SOEP, instead of keeping only one observation
per individual. If a child is observed at both 5-6 and 9-10 years of age, both observations are
included. Column 4 reports results from an unweighted regression. In column 5, I weight
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observations by the inverse of the number of observations per individual. All estimates are
similar in quantitative terms to the baseline result, implying that the finding is not driven by
the specific choice of the analysis sample.

Second, I analyze the robustness of the results to the set of included covariates. Results are
displayed in Appendix Table 2.A.5. The baseline result is replicated in column 1. Column 2
shows estimates from a specification that includes a more comprehensive set of background
controls. Specifically, I add an indicator for a single parent household, dummies for maternal
age at birth (in 5 year steps), and birth order dummies. Columns 4 and 5 depict results from
specifications including more and less leads and lags of the instrument, respectively. In all
three model versions, the estimated effects are similar in both magnitude and significance to
the baseline finding. This holds for both the 2SLS and reduced form results.

Next, I test whether the result could be just a statistical artifact, arising because certain
mothers have difficulties in assessing their children’s non-cognitive skills. This concern arises
from the fact that intermediate values are chosen ‘too often’ when mothers assess their chil-
dren’s personality traits, and more so by less-educated mothers (see Section 2.3.1). Column 2
of Table 2.A.6 presents results from estimation after dropping observations from the sample
where mothers picked the intermediate value of 5 for all items underlying conscientiousness
and neuroticism, the two outcomes that showed most excess mass for the middle value (see
Figure 2.1). The estimated effect remains statistically significant and drops by less than .2 per-
centage points relative to the baseline result in column 1 in both the 2SLS- and reduced form
specifications. Since this approach only drops a small number of observations from the sam-
ple, I also employ an alternative strategy: I compute the variance in responses across the ten
questions underlying the Big Five personality traits in the SOEP, after demeaning all items in
the full sample. I then drop the 5% (10%) of the sample with the lowest variance. This reflects
the idea that mothers who are good at assessing their children’s personality will deviate more
from the population mean. This approach is partly based on Falk et al. (2021).15 The results are
depicted in columns 3 and 4. The effect of exposure to air pollution during the in-utero period
remains statistically significant in both cases. Both in the reduced form and the 2SLS specifi-
cation, it increases slightly in magnitude relative to the baseline model. Overall, responses by
15In the paper, Falk et al. (2021) build a choice model of survey response behavior where respondents have

imperfect self-knowledge. They develop an estimator of self-knowledge and show that regressions using
self-reported risk-attitudes or non-cognitive skills on either the left or right side yield larger estimated co-
efficients and R2 in the subsample of individuals with higher self-knowledge. In my application, mothers
answer questions about their children’s personality. Hence, the term self-knowledge is not suitable here, but
the general issue is the same: mothers differ in their capability to memorize and recall relevant information
about child behavior, or in their knowledge about ’normal’ child behavior. Mothers with the lowest levels of
this type of knowledge will likely opt for intermediate values. As the proposed estimator of self-knowledge
requires panel data, which is not available for all individuals in my sample, I can only estimate the between-
variance, the numerator of the estimator for self-knowledge by Falk et al. (2021) which rises monotonically
in self-knowledge in their model.
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mothers who have difficulties in evaluating their child’s noncognitive ability seem not to bias
the results.

In a final robustness check, I re-run the 2SLS and reduced form models with a different
instrument, the inverse of the planetary boundary layer height (PBLH). This instrument was
recently used by Godzinski and Castillo (2021). The planetary boundary layer (PBL) is the low-
est part of the troposhere, i.e. the air layer directly above the surface. Pollution emitted at the
ground level disperses within this air layer. The higher the PBL, the larger the volume of air in
which emissions can dissipate, leading to lower ground level concentration of air pollutants.
Hence, for lower values of the PBLH, or higher values of the inverse of the PBLH, pollution
concentration near the surface increases. This implies that PBLH exploits the same physical
mechanism to extract exogenous variation in air pollution as thermal inversions and thus also
affects multiple air pollutants. However, while the main instrument only measures whether
on any given day a thermal inversion either occurs or does not occur, the inverse of the PBLH
is a continuous variable accounting for the strength of the meteorological phenomenon. To
construct the alternative instrument, I collect data on average monthly PBLH (in 1000 meters)
from the ECMWF, aggregate this to counties and the time period of interest as described in
Section 2.3.2, and then take the inverse of the resulting variable.16 The correlation of inversion
frequency and inverse PBLH is 0.266 in sample II. Table 2.A.7 shows 2SLS and reduced form
results based on the inverse PBLH. Estimated coefficients are very similar in magnitude to the
baseline results. The estimates are only significant at the 10% level, which likely follows from
the fact that the inverse PBLH is not as strong an instrument as the frequency of nighttime
inversions (F-Statistic of 18.5). Overall, I view this as a confirmation of the main results, indi-
cating that the effect on neuroticism is not driven by unobservable variables correlated with
inversion frequency.

Discussion. The main result of the analysis is that neuroticism increases by approximately
7% of a standard deviation for a one unit increase in prenatal PM10 concentration. Assessing
whether it is plausible from a medical perspective to find an effect of in-utero exposure to
particulate matter on neuroticism but not the other dimensions of non-cognitive ability, and
discussing potential channels for this effect, is difficult given that the research on neurobio-
logical origins of personality traits is still in a rather early stage (Allen and DeYoung, 2017).
However, the existing results suggest maternal cortisol levels as a potential pathway between
particulate matter exposure during pregnancy and the child’s level of neuroticism. Li et al.

16The mean value of the inverse PBLH in sample II is 1.76, with a standard deviation of 0.2. The effect of a one
unit increase in the inverse PBLH on PM10 concentration during the in-utero period is 4.48. Hence a one
standard deviation increase in the IV raises PM10 by 0.9 µg/m3.
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(2017) find in a randomized experiment with college students in Shanghai that acute exposure
to PM2.5 causes an increase in cortisol and other stress hormones, pointing to activation of
the hypothalamus-pituitary-adrenal axis. Cortisol and activity in the hypothalamus-pituitary-
adrenal axis in turn show relatively robust associations with neuroticism. (Allen and DeYoung,
2017) Cortisol as potential link between air pollution and neuroticism is also in line with the
result by Persson and Rossin-Slater (2018) that maternal stress during pregnancy has a causal
impact on the mental health of children, including adult anxiety and depression.

To assess the magnitude of the estimated effect, a comparison to related studies examining
the impact of gestational pollution exposure on later life cognitive ability is helpful. Results
by Molina (2021) imply that a one µg/m3 increase in PM10 concentration during the second
trimester reduces cognitive ability in adulthood, measured by the Raven’s test, by 2.4% of a
standard deviation.17 Sanders (2012) finds that among cohorts born during the early 1980s in
the US, a 10 µg/m3 increase in total suspended particulate (TSP, which includes both PM10 and
larger, less harmful particles) exposure during the students’ year of birth reduces their high
school math test scores by 6% of a standard deviation. Given an average PM10-to-TSP ratio
across North America of approximately 0.5 (Cicero-Fernandez et al., 1993; Van der Meulen
et al., 1987) , this implies that a 1 µg/m3 increase in PM10 concentration would reduce test
scores by approximately 1.2% of a standard deviation. To account for the fact that the mean
age of survey respondents studied in Molina (2021) is 17, and test takers considered in Sanders
(2012) are aged 15-18, whereas children in my sample are assessed between age 5 and 10, I re-
scale my main 2SLS estimate (Table 2.4, column 5) with the correlation between neuroticism in
childhood and at ages 16-17 (Figure 2.2). This implies that a 1 µg/m3 increase in prenatal PM10
concentration raises neuroticism at that age range by 7% x 0.137 = 1% of a standard deviation.
While my analysis is conducted in a very different setting with substantially lower baseline
pollution, the result is of the same order of magnitude as the effects found on cognitive skills.
Hence, non-cognitive ability is a plausible additional mechanism driving a part of the adverse
effects of in-utero exposure to air pollution on labor market outcomes.

To further assess the relevance of this channel, I conduct a back-of-the-envelope calculation
to approximate the earnings impact of poor air quality via the increase in neuroticism. Using
survey data and a sibling fixed effects approach, Fletcher (2013) finds that a one standard devi-
ation increase in neuroticism measured in young adulthood reduces annual earnings by 5-6%.
As mentioned above, my results imply that a 1 µg/m3 increase in gestational PM10 exposure
raises neuroticism during young adulthood by 1% of a standard deviation. Combining these

17This number is derived by combining quasi first stage- and reduced form results in Molina (2021). Hence,
it should be interpreted with caution. However, for the purpose of assessing whether my results are of a
comparable order of magnitude, I think computing this estimate is justified and helpful. PM10 levels during
the first and last trimester of pregnancy have no effect on the Raven’s test score.
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results indicates that a one standard deviation (5 µg/m3) increase in prenatal PM10 concentra-
tion reduces annual earnings by .24%-.29% through its adverse effect on emotional stability.
Isen et al. (2017b) exploit the US clean air act and find that a reduction in early life exposure
to TSP by 10 µg/m3 increases adult earnings by 1%. While a comparison of results derived
from different settings and time periods of course has limitations, it at least suggests that the
noncognitive ability channel is of relevant size. Given that my estimates are likely attenuated
due to some missing information on the place of birth, the channel could account for roughly
a third of the full effect.

2.6. Conclusion

This paper provides causal evidence on the effect of in-utero exposure to air pollution on
noncognitive ability in childhood. Using the meteorological phenomenon of thermal inver-
sions to address the endogeneity in exposure to particulate matter, I find that exposure to PM10
during the prenatal period reduces emotional stability at age 5-10 in a sample of children born
in Germany since the year 2000. In terms of magnitude, an increase in PM10 concentration by
1 µg/m3 raises neuroticism by 7% of a standard deviation. The result proves robust to changes
in the model specification, analysis sample and instrument. Back of the envelope computa-
tions imply that an increase in PM10 by 5 µg/m3, i.e. one standard deviation, reduces adult
earnings by .24%-.29% just through its impact on neuroticism.

The finding is important in light of recent evidence showing that the labour market returns
to noncognitive skills have increased, relative to the returns to cognitive skills (Edin et al.,
2017; Deming, 2017). This suggests that the magnitude of this channel might become even
larger over time.

The results are obtained from a setting with relatively low baseline pollution levels, espe-
cially in comparison to other studies on long-run effects of in-utero exposure. Hence even at
air quality levels below current limit values in developed countries, adverse long-run effects
on skills, and thus most likely also later life labor market outcomes, arise.

The finding has also important policy implications in light of the fact that noncognitive abil-
ity is malleable during childhood and adolescence. Investments targeted at emotional stability,
e.g. mentoring programs, might be a feasible strategy to alleviate the negative impacts of early
life exposure to air pollution on educational attainment and adult earnings. Individuals born
in places during periods of poor air quality, e.g. from natural sources such as wild fires, could
at least in part be compensated for these bad starting conditions by way of targeted inter-
ventions. This result might guide policy-makers in allocating scarce resources for programs
fostering skill development.
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Finding that the rise in neuroticism is mainly driven by increases at the upper end of the
distribution suggests that in-utero exposure to air pollution might not only reduce emotional
stability within the range of ‘normal’ variations in personality, but also induce mental health
problems. This suggestive relationship between in-utero exposure to air pollution and later
life mental health should be explored more in future research. Another interesting avenues
for future work would be to replicate this analysis in other settings, e.g. a developing country,
to investigate the external validity of the result, or using data on adults to examine how the
effect develops over the life-cycle. Lastly, one caveat of this analysis is that the instrument does
not allow to disentangle the effects of different pollutants, most importantly CO and PM10.
Repeating the analysis with a different instrument that overcomes this issue, e.g. changes in
relevant policies, can generate important insights for policy-makers deciding about regulation
of air pollutants.
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Appendix to Chapter 2

2.A. Additional Tables

Table 2.A.1.: Big Five in the SOEP Mother-and-child-questionnaires

How would you rank your child in comparison to other children of the same age?
My child is …

O quick at learning new things - needs more time
C focused - easily distracted

2-3 years E shy - outgoing
A obstinate - obedient
N -
O understands quickly – needs more time

not that interested – hungry for knowledge
C focused - easily distracted

tidy – untidy
5-6 years E talkative – quiet

9 -10 years withdrawn – sociable
A obstinate - compliant

good-natured – irritable
N self-confident – insecure

fearful – fearless
Note: Questions on child Big Five Personality Traits asked in the SOEP Mother-and-child-questionnaires.

105



Prenatal Exposure to Air Pollution and the Development of Noncognitive Skills

Table 2.A.2.: Impact of prenatal PM10 exposure on the Big Five: Outcomes on Sample II

Openness Conscien.’ness Extraversion Agreeableness
Panel A: 2SLS

PM10 -.0398 .0179 -.0228 .0337
in utero (.0274) (.0310) (.0280) (.0315)

Observations 4,887 4,902 4,879 4,853
Counties 121 122 121 120
First Stage F-Stat 79.6 80.4 80.5 78.0

Panel B: Reduced Form
Inversions -.0458 -.0257 -.0171 .0411
in utero (.0291) (.0316) (.0314) (.0355)

Observations 6,541 6,534 6,532 6,517
Counties 155 155 155 155

Note: Panel A displays 2SLS-estimates of a 1 µg/m3 increase in PM10 concentration during the in-utero period on Big Five personality traits,
estimated on sample II, i.e. children assessed at ages 5-6 or 9-10. PM10 is instrumented by inversion frequency Panel B shows the OLS
estimates of the effect of an increase in share of days with a nighttime inversion during the in-utero period by one standard deviation.
Outcomes are age-standardized. All regressions include year-, month- and county-of-birth fixed effects, age group fixed effects, controls for
parental education, child gender, migration background, age and age squared, cubic functions of temperature, wind speed and precipitation,
plus one lead and one lag of the instrument. Standard errors clustered at the county level are reported in parentheses. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table 2.A.3.: Impact of postnatal PM10 exposure on the Big Five

Openness Consc.’ness Extraversion Agreeableness Neuroticism

Panel A: 2SLS
PM10 .0256 .0017 .0096 .0202 -.0251
post birth (.0224) (.0242) (.0219) (.0263) (.0283)

Observations 8,081 8,070 8,074 8,016 5,354
Counties 169 169 169 167 131
1st Stage F-Stat. 108.2 107.7 108.4 106.8 87.6

Panel B: Reduced Form
Inversion Frequency .0397 -.00002 .0104 .0316 -.0181
post birth (.0263) (.0241) (.0240) (.0286) (.0346)

Observations 9,454 9,440 9,445 9,423 6,548
Counties 192 192 192 192 155

Note: Panel A displays 2SLS-estimates of the effect of a 1 µg/m3 increase in PM10 concentration during the nine-month period following the
month of birth on Big Five personality traits. PM10 is instrumented by inversion frequency. Panel B shows the OLS estimates of the effect
of an increase in the share of days with a nighttime inversion during the postnatal period by one standard deviation (+7%) on the outcomes.
Outcomes are age-standardized. All regressions include year-, month- and county-of-birth fixed effects, age group fixed effects, controls for
parental education, child gender, migration background, age and age squared, cubic functions of temperature, wind speed and precipitation
during both the postnatal and prenatal period, plus one lead and one lag of the instrument. Standard errors clustered at the county level are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.4.: Robustness - Sample Construction

Dependent Variable: Neuroticism

(1) (2) (3) (4) (5)

Panel A
PM10 .0714** .0665** .0888*** .0823*** .0725**
in utero (.0314) (.0281) (.0343) (.0289) (.0294)

Minimum obs. per county 20 15 25 20 20
Obs. per individual 1 1 1 all all
Weights x x x x ✓
Observations 4,911 5,600 4,293 6,572 6,572
Counties 122 163 94 122 122
1st Stage F-Stat. 80.7 106.9 63.2 89.0 81.0
Panel B
Inversions .0667** .0697** .0887*** .0768** .0632**
in utero (.0323) (.0307) (.0335) (.0300) (.0304)

Minimum obs. per county 20 15 25 20 20
Obs. per individual 1 1 1 all all
Weights x x x x ✓
Observations 6,548 7,230 5,747 8,497 8,497
Counties 155 196 118 155 155

Note: The table displays 2SLS-estimates of the effect of a 1 µg/m3 increase in in-utero PM10 exposure on Neuroticism (Panel A) and reduced
form results (Panel B). The outcome is standardized within age groups. Column 1 replicates the baseline results. Columns 2 and 3 vary the
minimum number of individuals required within a county. In columns 4 and 5 multiple observations for the same individual are included, if
available. In column 5 observations are weighted by the inverse of the number of observations per individual. All regressions include year-,
month- and county-of-birth fixed effects, age group fixed effects, controls for parental education, child gender, migration background, age in
months and its square, cubic functions of temperature, wind speed and precipitation, plus one lead and one lag of the instrument. Standard
errors clustered at the county level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.5.: Robustness - Alternative Specifications

Dependent Variable: Neuroticism

(1) (2) (3) (4)
Panel A
PM10 .0714** .0666** .0726** .0771**
in utero (.0314) (.0313) (.0330) (.0357)

Specification baseline extended controls no leads & lags 2 leads & lags
Observations 4,911 4,882 4,911 4,911
Counties 122 122 122 122
1st Stage F-Stat. 80.7 81.3 96.2 43.5
Panel B
Inversions .0667** .0640* .0674** .0841**
in utero (.0323) (.0324) (.0326) (.0352)

Specification baseline extended controls no leads & lags 2 leads & lags
Observations 6,548 6,496 6,548 6,415
Counties 155 154 155 152

Note: The table displays 2SLS-estimates of the effect of a 1 µg/m3 increase in in-utero PM10 exposure on Neuroticism (Panel A) and reduced
form results (Panel B). The outcome is standardized within age groups. Column 1 replicates the baseline results. Column 2 adds dummies for
single parent household, birth order and maternal age. Columns 3 and 4 vary the number of leads and lags of the instrument included in the
regression. All regressions include year-, month- and county-of-birth fixed effects, age group fixed effects, controls for parental education,
child gender, migration background, age in months and its square, cubic functions of temperature, wind speed and precipitation. Standard
errors clustered at the county level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.6.: Robustness - Uninformative Anwers

Dependent Variable: Neuroticism

(1) (2) (3) (4)

Panel A
PM10 .0714** .0698** .0717** .0811**
in utero (.0314) (.0309) (.0336) (.0348)

Sample baseline drop answers drop bottom 5% drop bottom 10%
with many “fives” (variance in answers) (variance in answers)

Observations 4,911 4,882 4,453 4,125
Counties 122 122 113 108
1st Stage F-Stat. 80.7 83.5 75.4 68.9

Panel B
Inversions .0667** .0657** .0696** .0687*
in utero (.0323) (.0325) (.0351) (.0383)

Sample baseline drop answers drop bottom 5% drop bottom 10%
with many “fives” (variance in answers) (variance in answers)

Observations 6,548 6,512 5,943 5,453
Counties 155 155 144 134

Note: The table displays 2SLS-estimates of the effect of a 1 µg/m3 increase in in-utero PM10 exposure on Neuroticism (Panel A) and reduced
form results (Panel B). The outcome is standardized within age groups. Column 1 replicates the baseline results. In column 2 observations
for which all items underlying Neuroticism and Conscientiousness have a value of 5 are dropped. In columns 3 and 4 the 5% or 10% of
observations with the lowest variance across items underlying the Big Five in the SOEP are dropped. All regressions include year-, month-
and county-of-birth fixed effects, age group fixed effects, controls for parental education, child gender, migration background, age in months
and its square, cubic functions of temperature, wind speed and precipitation, plus one lead and lag of the instrument. Standard errors clustered
at the county level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.7.: Robustness - Alternative IV

Dependent Variable: Neuroticism

(1) (2)

PM10 .0947*
in utero (.0552)

Inverse PBLH .0712*
in utero (.0403)

Observations 4,911 6,548
Counties 122 122
1st Stage F-Stat. 18.5
1st Stage Effect (𝛼) 4.48

Inverse PBLH Mean St Dev.
1.76 .20

Note: Column 1 displays results from 2SLS estimation of the effect of a 1 µg/m3 increase in in-utero PM10 exposure on Neuroticism, using the
inverse planetary boundary layer height as an instrumental variable. Column 2 reports results from the reduced form model, multiplied by
.2 to reflect the effect of a one standard deviation increase in the inverse PBLH. The outcome is age-standardized Neuroticism. Regressions
include year-, month- and county-of-birth fixed effects, age group fixed effects, controls for parental education, child gender, migration
background, age in months and its square, cubic functions of temperature, wind speed and precipitation, plus one lead and one lag of the
instrument. Standard errors clustered at the county level are reported in parentheses. The bottom part shows summary statistics for the
instrumental variable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.B. Additional Figures

2- to 3-year-olds

5- to 6- and 9- to 10-year-olds

Figure 2.B.1.: Distribution of Big Five personality traits by maternal education.

Note: The distributions are based on all available observations in the SOEP. Light blue [Dark blue] bars represent the distribution among
children whose mother holds a [holds no] tertiary degree. Top: 2,185 answers by highly-educated mothers, 5,803 by less-educated mothers.
Bottom 2,850 answers by highly-educated mothers, 8,518 by less-educated mothers.
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Figure 2.B.2.: Non-cognitive abilities and child outcomes

Note: The figures show partial correlations between mother-assessed Big Five and other child outcomes measured in the SOEP, after con-
trolling for parental education, a single-parent household dummy, child gender and migration background. Upper left plot: Correlations
between standardized mother-reported Big Five when the child is aged 5-6 years and the mother-assessed probability that the child will
graduate from the academic track of the German school system, measured on an 7-point scale when the child is 7 to 8 years old. Sample size:
3,842. Upper right and bottom plots depict correlations between standardized mother-reported Big Five when the child is aged 9-10 years
and child-reported life satisfaction and risk aversion at age 11-12, respectively. Both are measured on an 11-point scale. Sample Sizes: 2,210
and 2,190, respectively. 95%-Confidence Intervalls are based on robust standard errors. Based on data from SOEP, version 35.
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Figure 2.B.3.: Sample Counties and pollution monitors

Note: Grey shaded counties are those included in Sample I. Based on data from UBA and SOEP, version 35. Dots represent pollution monitors
which were active throughout the sample period and are used in the analysis. Blue dots on the left map represent PM10 monitors, dark blue
dots in the middle map represent NO2 monitors, light blue dots on the right map represent CO monitors.
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Figure 2.B.4.: Effect of thermal inversions on Neuroticism: Heterogeneity

Note: The figure depicts estimated coefficients from OLS regressions of Neuroticism on the share of days with a nighttime inversion during
the in-utero period and interactions between inversions and child characteristics. Colors represent different regression models. Green:
Baseline model (cf. table 4, Panel B, column 5). Red: Baseline model + interaction btw. inversions and dummy indicating age group 9-10.
Blue: Baseline model + interaction btw. inversions and dummy indicating female child. Purple: Baseline model + indicator for above median
income + interaction btw. inversions and high income indicator. All regressions include year-, month- and county-of-birth fixed effects, age
group fixed effects, controls for parental education, child gender, migration background, age and age squared, cubic functions of temperature,
wind speed and precipitation, plus one lead and one lag of the instrument. Bars represent 95%-confidence intervals, based on standard errors
clustered at the county level.
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3. Circadian Rhythms and Knowledge
Worker Performance

Joint with Felix Holub and Ingo E. Isphording

3.1. Introduction

Despite the many technological and societal advancements of modern times, humans remain
fundamentally governed by the circadian rhythm, the internal biological clock that regulates
various physiological processes. A misalignment of the internal circadian clock and the social
clock, often called social jetlag, causes sizeable economic and health costs (Giuntella and Maz-
zonna, 2019). Sleep deprivation, a widespread consequence, is estimated to generate costs of
1-3% of national GDP in OECD countries (Hafner et al., 2016). Increased levels of remote work
and collaboration between workers across countries and time zones, driven by improved com-
munication technologies and accelerated during the Covid19 pandemic, may further broaden
the detachments of work time from natural and solar cycles, thus exacerbating these issues
among affected workers. While an individual’s internal circadian clock is largely predeter-
mined, the social schedule is (to some degree) a policy choice: Policy-makers decide about
abolishing or introducing daylight saving time, i.e., changing social clock time by one hour
twice a year, or about later school start times, and firms decide about flexibility of work sched-
ules. Therefore, the productivity consequences associated with social jetlag are important to
quantify.

In this paper, we analyze how a misalignment of circadian clock and social clock affects the
performance of high skilled knowledge workers. Using data from GitHub, the world’s largest
coding platform, we first provide descriptive evidence on performance differences between
software developers based on their chronotype, i.e., their preferred sleep-wake cycles during
the 24-hour day. Second, we use variation in timezone differences to collaborators over time,
as well as DST transitions, to provide causal evidence on productivity effects of circadian
misalignments.
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We base our empirical analysis on data from GitHub, the world’s largest code hosting plat-
form, which provide time-varying proxies for performance of professional software develop-
ers. The data include precise timestamps of all activities conducted in public coding projects,
allowing us to classify developers into morning- and evening-types. We focus on a sample
of GitHub users who are highly active in company-backed coding projects since these users
are likely professional software developers. We construct a developer-by-date panel including
individuals on all continents and information on their total daily output quantity as well as
activity levels during each hour of the day.

We classify developers into groups based on their chronotypes. Developers who are most
active in the morning hours are classified as early chronotypes or larks, while developers who
are most active in the evening hours are classified as late chronotypes or owls. We validate
this classification by comparing variation in work quality and task complexity across hours
of the day by chronotype, as well as further plausibility checks. Larks seem to strongly out-
perform later chronotypes by 23-29%. The direction of this substantial gap is in line with
previous research on the productivity effects of chronotypes (Bonke, 2012; Conlin et al., 2022).
Morning-type individuals are likely more productive than evening-type individuals because
their natural rhythms are more aligned to prevailing social schedules (e.g., fixed work and
school start times). We present evidence consistent with this in a new, more flexible high-
skilled setting with global coverage. Yet, we cannot rule out that the chronotype classification
picks up further characteristics that contribute to the performance gap, e.g., differences in the
share of work in private GitHub repositories (and thus invisible to us).

While the evidence on performance differences by chronotype is descriptive and might be
affected by selection, we next investigate whether misalignment of circadian clock and social
schedules causally affect performance, using two complementary identification strategies.

First, we exploit within-user variation in time difference to collaborators which give rise to
deviations between the internal body clock and work schedules. The data allow us to iden-
tify the collaborators of the developers in our panel, i.e., users working on the same coding
projects during the same time period, as well as their time zones. We compute the average
time difference to the collaborators for each developer and quarter. We show that developers
work later in the day when they collaborate with users who are behind them on clock time,
and earlier in the day when they collaborate with users who are ahead of them on clock time.
This implies that there are incentives to synchronize work times within teams. We then show
that the performance of larks drops when they start to collaborate with users who are behind
on clock time (i.e., when they have the incentive to work late), while the performance of owls
declines when they start to collaborate with users who are ahead on clock time (i.e., when they
have the incentive to work early), relative to when the developers collaborate with users on
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similar clock time or a time shift in the more favorable direction for the respective chronotype.
When working with collaborators whose local time is on average at least 2.5 hours shifted into
the unfavorable direction, output declines by 5.7-6.3%.

Second, we exploit the natural experiment of transitions into and out of daylight saving time
(DST), which creates exogeneous variation in developers’ own social clock time independent
of their collaborators. Moving into DST, i.e., setting clocks forward by one hour in spring, is
equivalent to adopting the social clock time of the adjacent eastern timezone. It introduces a
discrepancy between clock time and solar time which is a major determinant of the circadian
clock. Using a regression discontinuity (RD) design, we find that the spring transition causes
developers to start and end work slightly later, by 14 and 9 minutes, respectively, and causes
output to drop by roughly 5.5%. By contrast, the fall transition, when clocks are set back by one
hour and the original relation of social and solar time is restored, causes developers to start and
end work earlier (13 and 10 minutes on average), and leads to an increase in output by 3.2%.
This shows that even in a high-skill setting with a certain flexibility in work schedules, the DST
policy generates declines in output and thus economic costs. When studying heterogeneity
by chronotype, we find that larks are most affected.

Overall, our results imply that circadian rhythm disruptions have adverse impacts on the
performance of knowledge workers. Individual workers and firms would likely benefit from
measures to better accommodate workers with different chronotypes, especially owls. In line
with previous research, we find that the widespread policy of DST generates relevant economic
costs in terms of productivity losses.

Related Literature. A growing literature studies the causal impact of circadian rhythm dis-
ruptions and sleep duration on human capital. Exploiting the transitions into and out of DST,
Smith (2016) and Jin and Ziebarth (2020), e.g., examine short-run impacts of sleep on fatal
traffic accidents and health. Regarding long-run effects, Gibson and Shrader (2018), Giuntella
et al. (2017), and Giuntella and Mazzonna (2019) exploit quasi-random differences in sunset
time within time zones and at timezone borders that translate into later bedtimes, while wake
up times are fixed due to social schedules. They find adverse impacts of shorter sleep dura-
tion on various health outcomes, cognitive performance and wages. Recently, using similar
approaches based on sunset time, Costa-i Font et al. (2022) and Jagnani (2022) have shown that
sleep affects wages in Germany and human capital accumulation among children in India. We
add to this literature strand by replicating the analysis based on transitions into and out of
DST in a different, highly relevant setting of high-skilled knowledge workers. Moreover, we
study heterogeneity in the effects of the clock changes by chronotype to investigate which
groups are most vulnerable to these disruptions in circadian rhythms.

A strongly related set of papers has studied the causes and consequences of the timing of ac-
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tivities. Hamermesh et al. (2008) for instance have found that the timing of sleep, TV watching,
and working is affected by TV schedules, timezone (social clock), and, especially for workers
in national industries, by a need to synchronize with others. Baylis et al. (2023) have recently
shown that the timing of tweeting, visiting businesses, and departing to work are affected by
local sunrise time, i.e., both the social clock and the solar clock are relevant in determining
the timing of activities. Most strongly related to us, Chauvin et al. (2021) exploit data from
a multinational enterprise and DST transitions to show that increases in temporal distance
to co-workers induce workers who mainly conduct non-routine and managerial tasks to shift
communication activities outside of standard business hours. Regarding the consequences of
time of day, Gaggero and Tommasi (2022) have found that university students’ performance
in high-stakes exams depends on the time of test-taking, with a peak in performance around
lunchtime, in line with the fact that young adults are typically not early chronotypes. By
contrast, Pope (2016) shows that high school math test scores improve if math classes are
scheduled earlier in the day. We contribute to this by providing direct evidence that coordina-
tion with co-workers in different time zones affects timing of work activity among software
developers, i.e., synchronization is a relevant determinant of timing of activity in this group.
Our main difference to Chauvin et al. (2021) is that we take into account how shifts in ac-
tivity times affect circadian misalignment based on a developer’s chronotype. We also show
descriptively that performance of developers varies across hours of the day in line with their
chronotype.

The comparison of output levels by chronotype also adds to a set of papers that investigate
how morning- or evening preferences affect wages (Bonke, 2012; Conlin et al., 2022) as well
as school performance (Goldin et al., 2020; Zerbini et al., 2017). In line with results from these
studies, we document that early chronotypes outperform later types. In our large, interna-
tional sample with high-frequency output measures, we have an advantage in external validity,
and we can measure the performance gap separately on working days and free days. In line
with the hypothesis that late chronotypes are disadvantaged because their natural rhythms
are not aligned with social schedules, we find that early chronotypes outperform them only
on working days.

3.2. Background

In this section, we provide background information on human chronotype, and why it might
affect worker performance. We also describe current DST policies, which we exploit as an
exogenous source of circadian disruptions.

Our internal biological clock synchronizes to the environmental 24-hour day, the light-dark
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cycle driven by the solar clock, in a process called entrainment. Individuals differ in how they
align their circadian clocks to the external 24-hour day, i.e., in their phase of entrainment
or chronotype. People with different chronotypes differ in preferred sleep times and in the
time of day when they reach peaks in physical and cognitive capacity. In the population,
chronotype approximately follows a normal distribution.1 Early chronotypes are often called
larks while late types are denoted as owls. Everyday life in most societies follows relatively
rigid social schedules, e.g., fixed work and school start times, which are often well aligned with
the natural rhythms of larks. Among late chronotypes, these schedules can give rise to social
jetlag, a misalignment between internal and social clocks (Roenneberg et al., 2019a). Thus,
worker performance and productivity might differ based on chronotype. Previous research
has shown negative correlations between “lateness” and performance in school and university
settings (e.g. Goldin et al., 2020; Zerbini et al., 2017; Zerbini and Merrow, 2017).

Chronotype is in part determined by genetic factors (e.g. Jones et al., 2016), but it also
responds to natural cues. To synchronize to the external 24-hour day, the biological clock
strongly relies on exposure to light and darkness, and the timing and strength of the light-
dark cycle influences chronotype. In locations with an earlier solar clock (earlier average
sunrise and sunset time), the chronotype distribution is earlier than in locations with later
solar clocks (Roenneberg et al., 2007; Papatsimpa et al., 2021). Lastly, chronotype varies sys-
tematically across age and sex. During adolescence, people shift towards later chronotypes,
with lateness peaking around age 20, and then continuously become earlier again. Before age
40-50, women are on average earlier types than men. Within periods of a few years and under
fixed natural cues, chronotype is highly stable due to its genetic component (Fischer et al.,
2017; Roenneberg et al., 2019a).

Objective biochemical measures like dim-light melatonin onset are the gold standard to
assess chronotype, but expensive and impractical for large samples (Burgess et al., 2018). Fre-
quently used alternatives are survey-based like the Morningness-Eveningness-Questionnaire
(Horne and Östberg, 1976) that asks for example about preferred times of the day to carry out
various activities, or the Munich ChronoType Questionnaire (Roenneberg et al., 2019a) that as-
sesses chronotype by the mid sleep point on non-working days using self-reported sleep data.
More recently, researchers have started to exploit data on online activities to study activity
profiles and assess chronotype (Roenneberg, 2017; Smarr and Schirmer, 2018).

Daylight Saving Time (usually called Summer Time in Europe) refers to the practice of
setting clocks forward by one hour in spring, and setting them back by one hour in autumn.
This policy, which changes the social clock time, is observed in many countries, including the
whole European Union, most of the US, large parts of Canada and Australia as well as other

1This refers to chronotype measured by the Munich ChronoType Questionnaire, a survey-based measure relying
on self-reported sleep times (Roenneberg et al., 2019a).

121



Circadian Rhythms and Knowledge Worker Performance

countries like New Zealand and Chile. The clock changes occur during the night, e.g., at 1 am
UTC in the European Union (i.e., at 1, 2, or 3 am local time) and at 2 am local time in the US.
The precise transition days vary across countries and years, but mostly occur on weekends. In
Europe, for instance, Summer Time lasts from the last Sunday in March to the last Sunday in
October, whereas in the US, the spring transition falls on the second Sunday of March and the
fall transition occurs on the first Sunday of November. In the Australian states that observe
DST, it begins on the first Sunday in October and ends on the first Sunday in April.

Evidence from time use and survey data implies that the shortened night on the spring tran-
sition date causes US-Americans to sleep less (Barnes and Wagner, 2009), while the longer fall
transition night leads to longer sleep duration (Jin and Ziebarth, 2020). Apart from changing
the duration of the transition days, entering DST also leads to a reallocation of daylight from
morning to evening, because social clocks are shifted forward relative to solar time. In fall,
sunlight is reallocated back from evening to morning, as social clocks are moved back. Since
circadian clocks entrain to sunlight this can also cause disruptions to circadian rhythms, e.g., if
in spring people wake up after sunrise before the transition, and then wake up before sunrise
again after the transition (Roenneberg et al., 2019b). In fact, Kantermann et al. (2007) show that
sleep time on free days tracks sunrise during standard time, but this relationship is interrupted
during daylight saving time.

Whether to maintain the biannual clock change or not, and in the case of stopping it, which
time to implement permanently is a controversial issue. The parliament of the European Union
voted to abolish DST in 2018, and the US Senate voted to permanently implement DST in 2022,
but both votes still await further legislative action.

3.3. Setting and Data

GitHub. GitHub is a website that was founded in 2008 and allows users to store, manage and
collaborate on coding projects. It is based on the version control system Git, a software that
records which modifications were made to a file by whom at what point in time. GitHub is a
web hosting service for Git projects, also called repositories (or repos for short). Repositories
hosted on GitHub can be either public or private. Public repos, along with all associated files
and the full history of activities, are visible to everyone, while private repos are only visible
to the project owner and invited members.2 In mid-2019, more than 120 million public repos-
itories were hosted on GitHub by more than 30 million users, making it the world’s largest
host of source code. There are no limitations regarding who can host what types of projects

2Before 2019, only users with paid accounts were able to create private repositories, while free accounts were
limited to using public repositories.
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on GitHub. The most active projects in terms of contributions and subscriptions, however, are
mostly owned or maintained by commercial tech companies.3

Users can conduct different types of activities on GitHub. The core action in Git is to take a
snapshot of the current stage of the repository after implementing a change to a file, or a set
of files, which is called a commit. Commits thus indicate that the commit author worked on
code files and is saving their updated version. In addition to this version control functionality,
GitHub provides features to facilitate collaboration between developers, most importantly pull
requests and issues. A pull request (PR) is a tool to propose code changes to a repository. After
a user has submitted a PR, it is reviewed by repository members who have to decide whether
to accept (i.e., merge) or reject the potential changes. They can also provide feedback on the
PR in an associated discussion forum. Issues are text messages, i.e., not directly related to
coding. Common reasons to open an issue in a repository are reporting a bug, requesting
a new feature, or organizing open tasks. As with PRs, it is possible to comment on issues
to discuss the problem or question at hand. Once an issue is resolved, it can be marked as
closed. While only repository owners and team members invited by them can modify files via
commits, every GitHub user can open issues or send PRs to a repository. As all the described
activities reflect work aimed at building software products, we collect data on them to measure
output generated by software developers.4

Data. Our main data source is a database generated by the GHTorrent project, which pro-
vides information on all GitHub users, public repositories, and records of all actions conducted
in these repos up to June 1st, 2019. Records of activities are available separately for different
types of actions (commits, creating issues, PR comments, etc.) and include identifiers for the
acting user and the repository the event was conducted in, as well as exact timestamps. In
addition, the data contain information on all GitHub users, including their registration date as
well as the location of residence and company affiliation, both of which users can optionally
report on their profiles. The data also provide the names of all public repositories and the user
id of the project owner (which can be individual or organizational users). Since the database
only provides a snapshot of user information as of June 1st, 2019, and users might change lo-
cations over time, we complement this with user data from previous versions of the database
providing one additional snapshot for each year from 2015 to 2018.

3Examples include Microsoft’s VSCode (an open-source code editor), Meta’s react (a JavaScript library for build-
ing user interfaces), or Google’s TensorFlow (a machine learning framework). Potential advantages that
companies can gain from engaging with the open source community are free labor provided by external con-
tributors (e.g., reporting bugs in the software) and discovering talented developers who they might want to
hire.

4GitHub also provides social network functions, e.g., options to follow other users and subscribe to specific
repositories and issues to receive notifications about new activities, which we exploit to assess whether a
user is still active on GitHub at all.
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We combine this with data from GHArchive, which also provides records of all activities
in public repositories. This data source contains additional information on PRs, namely the
number of new lines of code added, the number of lines of code deleted, and the number of
code files changed, which we use as proxies for PR complexity.5

An important caveat is that the data offers no information on activities in private reposi-
tories. Many GitHub users rarely or never work in public repos, such that the data we have
neither allows to approximate their daily work output nor to determine phases of peak pro-
ductivity during the day and thus the chronotype of these users. Keeping this limitation in
mind, we next describe how we construct our analysis sample, intending to focus only on
users who are professional software developers and do a substantial part of their formal work
in public GitHub repos.

Sample Construction. To capture a sample of GitHub users who are professional software
developers, we exploit the fact that many tech companies own public projects on GitHub. The
core development teams of these projects likely comprise mainly company employees. We
compile a list of company-backed repositories and identify users who are authorized to directly
modify their files, i.e., users who made a commit in any of these repos at any point in time.
From this sample, we drop users who do not provide information on their location of residence
on their profile which allows us to determine the timezone in which they reside. In most cases,
the country of residence is sufficient, but in a handful of large countries spanning multiple
time zones, e.g., the US, Canada, or Brazil, more detailed information at the subnational level
is required. The timezone information is needed to translate activity timestamps, which are
reported in coordinated universal time (UTC), into local time to study temporal work patterns.6

Additionally, we drop a small number of users who might be bots based on extremely high
activity levels, very regular commit patterns, or suspicious login names.

Finally, to ensure that we capture only users who conduct a substantial part of their total
work in public repositories, we impose an activity threshold they have to pass to be included
in the sample: Users enter the sample from the month after they first made at least 20 commits
in any given month. They remain in the sample until the end of the observation period unless
they conduct less than three unproductive actions in a given month. We define unproductive
actions as those that we do not include when measuring output. They are mostly based on the

5GHTorrent and GHArchive data can be linked based on users’ login names and characteristics of the PRs
(repository and number).

6We include users if we have suitable location information in any of the five snapshots covering the years 2015 to
2019. If no information is available during some of the years, we impute this with locations reported in earlier
or later years. If users report different locations over time, we assume that they move as the new calendar
year starts, i.e., in each calendar year, we include them with the location information from the respective
year.
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social network functionalities of GitHub like following other users or subscribing to reposito-
ries and issues. This way, we intend to remove users from the sample when they do not use
GitHub at all, e.g., during vacations or when working on projects outside the public GitHub
domain.

For the analysis at the individual user level, we get a final sample of 49,850 users across 154
countries, with the five most frequent countries being the US (18,200 users), the UK (3,200),
China (3,100), Germany (3,000), and India (2,000). We observe all actions that these users
conduct between January 2014 and May 2019, but, as explained above, the final user-by-date
panel is unbalanced as we intend to include users only when they are sufficiently active in
public repos. The user-by-date panel includes 31.1m observations, and on average, each user
appears for 624 days.

To measure temporal work patterns, we exploit the precise timestamps reported in the data.
We approximate the start, midpoint, and end of users’ work day by the minutes of the day the
first, average, and last action of the day were performed.7 In addition, we record how many
actions were conducted during each of the 24 hours of the day. We measure users’ overall daily
output by the total number of productive actions conducted, including commits, comments
written on PRs, issues or commits, creations of PRs and issues, closing of PRs and issues, and
reopening of issues. While output quantity is our primary outcome in most of the analysis, we
also construct measures of output quality and task complexity which we will use to validate
our chronotype classification. To assess the quality of users’ output, we exploit the specific
feature of pull requests: PRs are proposed code changes that can be accepted or rejected by
the repository team. PR rejection points to issues in the code or style. Thus, a straightforward
measure of output quality is the PR acceptance rate, defined as the share of all PRs opened on a
given day that are merged.8 For PRs, we are also able to assess task complexity by the lines of
code added and deleted, as well as the files changed in a PR. For all three measures, we take the
average across all PRs users worked on a given day, i.e., all PRs opened, closed, or commented
on (reflecting coding and reviewing code). To generate a single complexity measure, we apply
the inverse hyperbolic sine transformation to each of the three variables, standardize them,
and take their average.

Descriptives. Table 3.1 shows summary statistics for our user-by-date sample. On average,
users conduct 2.55 actions per day. The average user has a positive number of actions on 36%

7When creating these variables, we first shift all timestamps by four hours, such that we define a day as lasting
from 4am to 4am of the following day.

8A PR can either get merged, get rejected (closed without merging), or can be left open. Since the project teams
need some time to review a PR, we drop the final three months of the observation period when considering
the PR acceptance rate. PRs that are not merged, but still open after less than three months might just not
have been reviewed yet.
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of all days. Conditional on any activity, the mean number of actions is 7.16. The first and last
action of the day, on average occur at 13:21 and 17:49, respectively. Both measures show large
variation, which suggests that different chronotypes might be present in the sample. Thus, our
sample includes users who are highly active in public repositories, and for whom, conditional
on being active at all, activity on the platform is likely a major share of their overall daily work.
Hence, in this sample, the timing of GitHub activities throughout the day is likely informative
about chronotype. In the following, we refer to the users in our sample as developers.

Table 3.1.: Summary Statistics

Q0.25 Mean St. Dev Q0.75 Observations
Actions 0.0 2.55 6.7 2.00 31,123,125
1{Actions > 0} 0.0 0.36 0.48 1.00 31,123,125
Actions | Actions > 0 2.00 7.16 9.68 9.00 11,091,412

Time of First Action 9:37 13:21 5.04 h 16:34 11,091,412
Time of Last Action 14:08 17:49 5.16 h 22:01 11,091,412

PR Acceptance Rate 0 0.64 0.40 1 2,320,731

Notes: Table depicts summary statistics for the developer-by-date panel based on the sample of 49,850 GitHub users we include in our analysis
sample.

CollaborationAcross Timezones. To analyse how coordination with collaborators in other
timezones affects timing of work activities and performance, we measure for each developer
in our sample how strongly they are connected to users in other timezones. We first identify
their collaborators as users who work on the same projects during the same time period. We
define two users as collaborators in a given quarter if both made at least 20 actions in shared
repos. This way, we consider only important links that might plausibly induce coders to syn-
chronize the timing of their activities. A limitation is that not all users report their location.
We have to drop roughly 50% of those users that we identified as collaborators of our sample
users because of missing location information. Next, for each sample developer 𝑖 and quarter
𝑞, we compute the difference in local clock time to each collaborator 𝑗 , TimeDiff𝑖, 𝑗,𝑞 , where
positive values indicate that 𝑗 is ahead on clock time (or located in a timezone east of 𝑖) and
negative values indicate that 𝑗 is behind on clock time (or located in a timezone west of 𝑖).
Then we take a weighted average time difference across all connections 𝑗 ∈ 𝐶𝑖,𝑞 , where𝐶𝑖,𝑞 de-
notes the set of users matching our definition of collaborators of 𝑖 and providing valid location
information. Weights are given by the number of activities in shared repositories 𝑅(𝑖, 𝑗, 𝑞) by
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the focal developer 𝑖:

TimeDiff𝑖,𝑞 =

∑
𝑗∈𝐶𝑖,𝑞

actions𝑖,𝑅(𝑖, 𝑗,𝑞),𝑞TimeDiff𝑖, 𝑗,𝑞∑
𝑗∈𝐶𝑖,𝑞

actions𝑖,𝑅(𝑖, 𝑗,𝑞),𝑞

Due to missing location information and the fact that some developers conduct little work
in shared repos, we have information on time difference to collaborators for a subsample of
36,330 sample developers and 214,440 developer-by-quarter observations.9 In this sample we
know the timezone of 65% of all collaborators on average and the mean timezone difference
to the known co-workers is -9.2 minutes, i.e., sample developers are on average slightly ahead
of their collaborators.

3.4. Chronotype and Performance

This section starts with a description of how we classify users by chronotype. This is followed
by validation exercises to check that our classification is indeed driven by different circadian
rhythms and not other user characteristics. Then, we measure the performance gap between
different chronotypes.

3.4.1. Detecting Chronotype with k-Means Clustering

As mentioned above, chronotypes differ in their preferred sleep-wake rhythms and phases
of peak physical and cognitive performance. In our sample of highly active GitHub users,
times of the day of most intense GitHub use are a reasonable approximation to phases of peak
productivity. Thus, we exploit the exact timestamps in the GitHub data, to measure during
what parts of the day a user is most active to assess his chronotype.

We use a k-means clustering algorithm to classify users into different types, based on eight
variables that measure what share of a user’s total activity falls into each of eight three-hour
windows of the day, [0𝑎𝑚, 3𝑎𝑚), [3𝑎𝑚, 6𝑎𝑚), [6𝑎𝑚, 9𝑎𝑚), . . . . We choose 𝑘 = 3 to separate
users into early, intermediate and late chronotypes. Following previous work, we consider
only activities on free days (weekends and public holidays) in the classification because work
days are likely constrained by social schedules (e.g., work and school schedules) and thus less
informative about chronotype (Bonke, 2012; Smarr and Schirmer, 2018). Thus, we restrict this
analysis to users who are sufficiently active on free days (at least five free days with positive
activity levels).

9In this subsample, we focus on developer-by-quarter observations where we know the timezones of at least
20% of all collaborators.
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Figure 3.1 shows the output of the k-means clustering. The upper left plot displays activ-
ity patterns of the three types on work-free days. We detect three types with very distinct
activity profiles, with peaks in the morning (10-11am), afternoon (3-4pm), and late evening
(10-11pm), respectively. We denote these as larks, an intermediate type, and owls. The right
plot depicts the activity patterns for the three chronotypes on work days. They are much more
uniform and activity is strongly concentrated during standard working hours (8am-6pm) for
all three types, pointing towards binding social schedules.10 Nevertheless, we can see distinct
patterns by chronotype, e.g., higher activities of larks during the early morning, and a second
peak in activity in the evening/after a dinner break among owls. The bottom plot shows the
prevalence of the different types in our sample. The distribution is relatively balanced, with
the intermediate type appearing most frequent (38%) and larks being the least frequent type
(27%). This is in line with findings in other samples (Roenneberg et al., 2019a).

In the appendix, we show that the differences in hourly activity shares across chronotype
are statistically significant (Appendix Figure 3.A.1). We also repeat the k-means clustering
based on activity patterns for the full sample of 49,850 users, using activity shares during
the eight three-hour windows on all days, including working and work-free days (Appendix
Figure 3.A.2).11 In this extended sample, the share of different chronotypes as well as their
activity patterns are similar to the sample with higher activity on free days.

3.4.2. Validation

Next, we validate that our classification is indeed driven by different circadian rhythms and
not other user characteristics.

Alternative Explanations. We start by checking whether other developer characteristics
are systematically correlated with chronotype and might be the true reason for the classifica-
tion.

Early chronotypes might just be forced to get up early because of strict work schedules.
Possibly, all developers would prefer to sleep late and work in the afternoon and evening,
and some just appear like larks due to binding work schedules, whereas freelancers and self-
employed are able to follow their natural rhythms. Also, users classified as owls might just
work in public repos as a side or leisure project such that they mainly have time for this after
standard working hours. These concerns are already greatly mitigated as we classify develop-

10We view this as supporting evidence that the GitHub users we include in our sample are indeed professional
software developers.

11To take into account that temporal work patterns differ by type of day, we use 16 variables measuring the share
of total activities during eight three-hour windows of the day, separately for work days and free days in the
k-means clustering.
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Figure 3.1.: Chronotypes Resulting From k-Means Clustering

Notes: Top: Activity Patterns by three types resulting from k-means clustering algorithm, separately for weekends and public holidays (left)
and for working days (right). Bottom: Number of users and share of total user sample by k-means type.

ers based on activities on free days only. However, if employees maintain work day patterns
on the weekends due to habit formation, we might confound chronotype and employment
status. To check this, in Appendix Figure 3.A.3 we depict employment status by chronotype.
Larks are only slightly more likely to report to work at a company (as stated on user profiles
in June 2019), with 65% compared to 60% among owls. The left plot shows the top employers.
The share of larks working at these top tech companies is in most cases larger than the share
of owls and intermediate types, but the later types are also present at the companies. Larks are
also not substantially less likely to report to work as freelancers. This suggests that differences
in chronotype as measured in the data do not simply reflect differences in employment status.

Alternatively, all developers might have a preference to work late, but those with children
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are forced to get up early because small children typically are early chronotypes or they have
to be taken to childcare. Those larks might just reflect developers with children. The data
includes no information on any demographics or household characteristics. To conduct an
indirect test, we compare work patterns across standard working days and working days that
fall into school holidays, separately by chronotype (Appendix Figure 3.A.4). If one chronotype
would predominantly comprise parents, we would expect that school holidays affect this group
more than the other groups.12 This, however, seems not to be the case. During school holidays,
we see a slight reduction in average activity levels among all three chronotypes. The size of the
relative reduction is similar across groups, suggesting that parents are not over-represented
in any of them.

Lastly, we might be worried that the differences in work timing arise due to a need for co-
ordination in international teams spanning across multiple time zones rather than individual
preferences. We use the collected information on time difference to collaborators to check
this. We find that coordination in remote teams has a noticeable impact on the timing of ac-
tivities (see Section 3.5 for details). Developers who are behind (ahead of) their collaborators
on average work earlier (later) during the day. While the need for synchronization in teams

Figure 3.2.: Temporal Work Patterns by Time Difference to Collaborators

Notes: Left plot: Average activity patterns on weekends and public holidays, separately for three subsamples comprising developers and
quarters during which developers are on average at least 2.5 hours ahead of their collaborators on local clock time, at least 2.5 hours behind
them, or within 2.5 hours of their collaborators on local clock time. Right plot: Average activity patterns on working days for the same
subsamples.

spanning multiple time zones affects activity timing, it is not driving the different activity pat-
terns we detect by chronotype. First, most developers have co-workers who have the same
12The data on school holidays by country is obtained from Lai et al. (2022).
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or very similar clock time: For 57% of user-by-quarter observations for which we could de-
termine the timezone difference to collaborators, it is at most two hours. This share is very
similar across all three chronotypes (60%, 55%, and 54% for the intermediate type, larks, and
owls, respectively.).

Table 3.2.: Impact of Coordination with Co-Workers and Chronotype on Activity Timing

MeanActivityTime𝑖𝑡
(1) (2) (3)

TimeDiff𝑖,𝑞 (𝑡 ) −2.52∗∗∗ −0.95∗∗∗
(0.16) (0.18)

TimeDiff𝑖,𝑞 (𝑡 ) × WorkDay𝑖𝑡 −2.01∗∗∗
(0.19)

> 2.5 hours ahead 20.52∗∗∗
of collaborators (1.32)

> 2.5 hours behind −4.95∗∗∗
collaborators (1.31)

Lark𝑖 −77.20∗∗∗ −77.58∗∗∗ −113.76∗∗∗
(1.42) (1.42) (1.72)

Owl𝑖 63.45∗∗∗ 63.04∗∗∗ 76.96∗∗∗
(1.69) (1.69) (1.66)

Lark𝑖 × WorkDay𝑖𝑡 45.07∗∗∗
(1.55)

Owl𝑖 × WorkDay𝑖𝑡 −17.42∗∗∗
(1.84)

Observations 6,534,330 6,534,330 6,534,330
Adjusted R2 0.10 0.11 0.10

Note: Table displays estimated coefficients from Equation 3.1. Estimated at the developer-by-date level. Standard errors are clustered at the
developer level and reported in parentheses. The regressor 1{TimeDiff𝑖,𝑞 (𝑡 ) < −2.5} implies that the developer is > 2.5 hours ahead of
his collaborators, while 1{TimeDiff𝑖,𝑞 (𝑡 ) > 2.5} implies that he is > 2.5 hours behind his collaborators on clock time. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

Second, Figure 3.2 shows that when we classify developer-by-quarter observations into
three groups based on average time difference to co-workers (more than 2.5 hours ahead of
co-workers, within 2.5 hours of co-workers, or more than 2.5 hours behind co-workers), we
see some variation in their activity profiles, but it does not replicate the stark differences found
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between the three chronotypes. Third, Table 3.2 shows results from regressions of average ac-
tivity time on the time difference to co-workers and on chronotype. We run a simple regression
at the developer-by-date level:

MeanActivityTime𝑖𝑡 =𝛽TimeDiff𝑖,𝑞(𝑡) + 𝛾Lark𝑖 + 𝛿Owl𝑖 + 𝜌𝑅(𝑖)WorkDay𝑖𝑡+
\𝑅(𝑖),dow(𝑡) + \𝑅(𝑖),𝑦 (𝑡),𝑚(𝑡) + \country(𝑖) + 𝜖𝑖𝑡

(3.1)

The average time of day of activities conducted by developer 𝑖 on date 𝑡 in minutes is re-
gressed on the average time difference of developer 𝑖 to his collaborators in the current quarter
𝑞(𝑡) in hours, as well as the chronotype of 𝑖 (with the intermediate chronotype as reference
group). We controls for differences in activity time between working days and free days, as
well as region-by-day-of-week and region-by-year-by-month and country fixed effects. Even
when comparing users with the same time offset to co-workers, we see a strong impact of
chronotype on timing (Column (1)). When we replace the continuous measure TimeDiff𝑖,𝑞(𝑡)
with two indicators for developers being at least 2.5 hours behind or ahead of their collabora-
tors on clock time, respectively, we find that the difference in mean activity time between these
groups is only 25 minutes, whereas the difference between larks and owls exceeds two hours
(Column (2)). Moreover, when interacting the chronotype and time difference regressors with
a working day indicator, we find that chronotype has stronger impacts on activity timing on
free days whereas the time difference to collaborators has stronger effects on working days
(Column (3)), indicating that the first is about preferences while the second is about incentives
to synchronize work activities.

Work Complexity and Quality Across Hours of the Day. Next, we show that not only
output quantity varies across times of the day in a chronotype-dependent way, but also output
quality and the complexity of tasks developers work on, which we did not use as an input in
the k-means clustering algorithm.13 We run a simple regression:

𝑦𝑖𝜏 =𝛼TimeofDay𝜏 + 𝛽TimeofDay𝜏 × Lark𝑖 + 𝛾TimeofDay𝜏 × Owl𝑖+
\𝑖 + WorkDay𝜏 + 𝜖𝑖𝜏

(3.2)

For the regression, the data is collapsed to the developer × time of day × type of day level,
where time of day refers to three-hour windows, e.g., 0-3am (the same that were used to clas-
sify chronotypes), and type of day refers to working days vs. free days. 𝑦𝑖𝜏 denotes outcome
variables to capture complexity of tasks and quality of output. To measure output quality we
13Overall PR success rates vary between 63.6% and 65.1% for the three chronotypes.
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use PR Acceptance Rate𝑖𝜏 , which measures what share of all PRs opened by developer 𝑖 dur-
ing time period 𝜏 get accepted. To assess task complexity, we use the index built based on
the number of new lines of code added, lines of code deleted and distinct code files changed
in PRs 𝑖 worked on during time 𝜏 . TimeofDay𝜏 is a vector of seven dummies indicating the
three-hour windows, with 12pm-3pm as omitted category. \𝑖 is a developer fixed effect and
WorkDay𝜏 is a dummy indicating the type of day. The coefficients 𝛼 reflect how average PR
size or the likelihood of getting a PR merged varies across times of the day for the intermediate
chronotype. The coefficients in vectors 𝛽 and 𝛾 measure differences in these changes in out-
comes across the day between the intermediate chronotype and larks and owls, respectively.
The regressions are weighted by the number of PRs opened by developer 𝑖 during time of the
day 𝜏 and standard errors are clustered at the developer level.

Figure 3.3.: PR Complexity and Success Rate across Hours of the Day by Chronotype

Note: X-Axis: First hour of eight three-hour-intervalls of the day. Y-Axes: Magnitude of point estimates along with 95% confidence intervalls
of 𝛼 (left), 𝛽 (center), and 𝛾 (right) in Equation 3.2. Blue circles and solid lines: Outcomes is an index of PR complexity, summarising number
of new lines of code added, lines of code deleted, and code files changed (measured on the right y-axis). Red triangles and dashed lines:
Outcome is the share of PRs opened that get merged (measured on the left y-axis). Point size reflects number of PRs opened during the
respective hour by users of the respective chronotype.

Figure 3.3 shows that fluctuations in task complexity over the day for the different chrono-
types are in line with expectations. The blue line indicates that developers with the interme-
diate chronotype work on larger PRs during the late afternoon relative to the baseline period,
while they work on smaller PRs in the morning and evening (left plot). We also see large re-
ductions in complexity during the night, however, these periods comprise relatively few activ-
ities. Relative to the intermediate type, larks work on larger tasks in the morning and smaller
tasks in the evening (middle plot), whereas owls work on larger tasks in the late evening and
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night, between 9 pm - 2 am (right plot). The estimates depicted in red show similar patterns
for the PR success rate. This confirms that the k-means clustering algorithm picks up bio-
logical differences in chronotype, because if, e.g., developers classified as larks were in fact
forced to deviate from their natural rhythms and work early due to some external factors, we
might rather expect that they pick easier tasks and perform worse than the other groups in
the morning.

Response to Solar Time. Next, we show that our measures of chronotype depend on local
solar time, in line with previous studies which found that chronotypes are on average earlier
in locations with earlier average sunrise and sunset time (see Section 3.2).14 We estimate a
simple linear probability model at the level of developer 𝑖:

1{type = 𝑘}𝑖𝑙 = 𝛽sunrise𝑙 + 𝛾 tenure𝑖 + \𝐿(𝑙) + 𝛼pop𝑙 + 𝜖𝑖𝑙 (3.3)

The outcome of interest is a dummy variable taking value one if developer 𝑖 in location 𝑙

has chronotype 𝑘 ∈ {𝐿𝑎𝑟𝑘, 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒,𝑂𝑤𝑙}. The coefficent of interest, 𝛽 , measures how
the probability to be of type 𝑘 differs between developers in locations with different aver-
age sunrise times (measured in hours). We control for developers’ tenure on GitHub at the
point when they enter the sample, tenure𝑖 , the number of developers in location 𝑙 , pop𝑙 , and a
geographic fixed effect, \𝐿(𝑙) , defined as the interaction of country and latitude bin, or alter-
natively world region and latitude bin.15 We control for pop𝑙 as proxy of local population size
because chronotype is on average later in urban as compared to rural areas (Roenneberg et al.,
2019a). We exploit variation in average sunrise between locations in the same latitude range
and within the same country or region, respectively. This variation arises because social time
is fixed within time zones, but solar time varies based on longitude. Since we compute average
sunrise time based on the days the user appears in the sample, additional variation can arise
due to seasonal changes in sunrise time. Table 3.3 depicts the results. The number of observa-
tions in Panel A is reduced relative to the overall number of developers whose chronotype we
could determine, because we only include developers with location information at the level of
state or below to make sure that the measure of sunrise time is sufficiently accurate.16 In Panel
B we additionally drop developers who changed their location during the observation period.
As expected, a later sunset time reduces the prevalence of larks and increases the prevalence
of owls.

This serves as a further plausibility check, because it is unlikely that e.g., parents are system-

14We obtain data on sunrise time by longitude, latitude and date via the R package suncalc.
15World regions mostly follow the UN classification and comprise several countries, e.g. North America, South

America, Western Europe, Eastern Europe, Southern Asia, Eastern Asia, etc.
16Sunrise time is measured at the centroid of the city or state the developer reports as location.
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Table 3.3.: Effect of Local Sunrise Time on Chronotype

Lark Intermediate Owl

Panel A: full sample
sunrise (hours) −0.018∗∗ −0.022∗∗ 0.001 −0.001 0.017∗ 0.023∗∗∗

(0.009) (0.009) (0.008) (0.009) (0.009) (0.007)

Observations 33,049 33,049 33,049 33,049 33,049 33,049

Panel B: without movers
−0.015 −0.020∗∗ −0.002 −0.006 0.017 0.026∗∗∗
(0.009) (0.010) (0.009) (0.010) (0.010) (0.008)

Observations 27,222 27,222 27,222 27,222 27,222 27,222
\𝐿 (𝑙 ) Region Country Region Country Region Country

Notes: The table depicts coefficient estimates of 𝛽 in Equation 3.3. Standard errors clustered at the region x latitude bin level are reported in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

atically more likely to live in locations with later sunrise times than users without children.

3.4.3. Performance Differences by Chronotype

This section presents results on the overall gap in output quantity across chronotypes. Fig-
ure 3.4 shows the average number of daily actions by type in grey. Larks on average conduct
3.25 actions per day, whereas the intermediate chronotype and owls, respectively, only com-
plete 2.51 and 2.32 actions, respectively, or 77% and 71% of the level achieved by larks. The
red and blue bars assess the contributions of the intensive and extensive margin to this overall
gap, showing the average number of actions on active days (red), and the share of total days
during the sample period with positive activity levels (blue). We find that larks achieve higher
levels on both margins.

In addition to this raw gap in daily output, we also estimate conditional performance gaps,
using a simple regression of daily actions on chronotype indicators and several controls:

Actions𝑖𝑡 =𝛽𝐿Lark𝑖 + 𝛽𝑂Owl𝑖 + 𝛼𝑅(𝑖)ℎ𝑖𝑡 + \𝑅(𝑖),dow(𝑡)+
\𝑅(𝑖),𝑦 (𝑡),𝑚(𝑡) + \country(𝑖) + 𝛾 tenure𝑖𝑡 + 𝛿tenure2

𝑖𝑡 + 𝜖𝑖𝑡
(3.4)

The estimates 𝛽𝑂 and 𝛽𝐿 reflect the performance gap between the intermediate chronotype and
larks or owls, respectively, conditional on experience levels captured by tenure𝑖𝑡 and its square,
region-specific variations in productivity across days of the week, \𝑅(𝑖),dow(𝑡) , region-specific
time shocks, \𝑅(𝑖),𝑦 (𝑡),𝑚(𝑡) , and an indicator for public holidays, ℎ𝑖𝑡 . Moreover, by controlling

135



Circadian Rhythms and Knowledge Worker Performance

Figure 3.4.: Mean Activity Levels by Chronotype

Notes: X-axis: Chronotype. Grey: Average Daily Actions. Red: Average Daily Actions conditional on positive activity (both measured on the
left y-axis). Blue: Share of days with positive number of actions during the sample (measured on the right y-axis).

for country of residence fixed effects \country(𝑖) , we take into account that both productivity
and chronotype composition might vary between countries.

Results in Table 3.4 show that also conditional on these controls, larks clearly outperform
the other types (Column (1)). The gap in total actions implies an advantage of 26.3% relative
to average actions among the intermediate type and 30.5% relative to owls. In Appendix Ta-
ble 3.B.1 we repeat this regression on several subsamples. When restricting the analysis to
days with positive activity levels (intensive margin), developers with above median activity
levels, developers reporting a company on their profile in 2019, or only developers residing in
the US, 𝛽𝑂 and 𝛽𝐿 are of very similar magnitude.

The performance gap between larks and later chronotypes is in line with findings from pre-
vious studies (e.g. Bonke, 2012; Conlin et al., 2022; Zerbini et al., 2017).17 As mentioned in
Section 3.2, late chronotypes are likely to suffer from social jetlag because public schedules
force them to deviate from their natural rhythms. To assess whether this is the reason un-
derlying the performance gap, we exploit our multinational panel data to measure differences
in activity in subsamples with more or less binding social schedules. In Column (2) of Ta-
ble 3.4, we explore performance differences between chronotypes separately for working days
vs. work-free days. The column depicts estimates from the following regression:

17Bonke (2012) and Conlin et al. (2022) have found gaps of 5-8% in wages in the general population conditional
on several demographic controls.
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Table 3.4.: Chronotype and Daily Output Quantity

Actions𝑖𝑡
Lark𝑖 0.661∗∗∗ 0.916∗∗∗

(0.056) (0.069)

Owl𝑖 −0.048 −0.102∗
(0.045) (0.053)

Lark𝑖 × Free day𝑖𝑡 −0.823∗∗∗
(0.054)

Owl𝑖 × Free day𝑖𝑡 0.177∗∗∗
(0.037)

Free day𝑖𝑡 −1.016∗∗∗
(0.027)

Observations 29,436,857 29,436,857

Notes: Table displays estimated coefficients from Equation 3.4 in the left column, and from Equation 3.5 in the right column. Standard errors
clustered at the developer level are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Actions𝑖𝑡 =𝛽𝐿Lark𝑖 + 𝛽𝑂Owl𝑖 + [𝐿Lark𝑖 × FreeDay𝑖𝑡 + [𝑂Owl𝑖 × FreeDay𝑖𝑡+
FreeDay𝑖𝑡 + \𝑅(𝑖),dow(𝑡) + \𝑅(𝑖),𝑦 (𝑡),𝑚(𝑡) + \𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (𝑖) + 𝛾 tenure𝑖𝑡 + 𝛿tenure2

𝑖𝑡 + 𝜖𝑖𝑡
(3.5)

Free days, i.e., weekends and holidays, are less constrained by social schedules than standard
working days. The gap in activity levels between larks and the other types amounts to .92 and
1.02 on work days for the intermediate type and owls, respectively, which is even larger than
in the full sample, but it is small on free days.18 This suggests that the gap arises because social
schedules are well aligned with natural rhythms of larks, but disrupt the circadian rhythms of
later chronotypes.

Next, we exploit the fact that we have information on collaborators and their time zones.
We compare performance between chronotypes among developers with different timing in-
centives due to the composition of their collaborators. As shown in detail in the next section
(Table 3.5 and Figure 3.6), developers with collaborators who are, on average, ahead of them
on clock time tend to work earlier while developers with collaborators who are behind them

18To put this into perspective, the average number of actions on work days are 2.64, 2.93 and 3.95 for owls, the
intermediate type and larks respectively, and 1.60, 1.57 and 1.70 on free days.
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on clock time tend to work later. Hence, owls with collaborators who are behind them on
clock time might be able to work more in line with their natural rhythms because their nat-
ural activity time (late in their day) overlaps with standard work times in more western time
zones. Consequently, these owls are likely less prone to social jetlag.

Figure 3.5.: Activity Gap between Owls and other Types by Time Difference to Collaborators

Notes: Plot depicts conditional gaps in daily actions between owls and the other chronotypes, along with 95% confidence intervals, separately
for free days and work days. Performance gaps are estimated by estimating Model 3.5 on the sample of all developer-by-quarter observations
with information on time zones of collaborators or only the subsample where collaborators are on average at least 2.5 hours behind on local
clock time. Sample is indicated on the 𝑥-axis.

Figure 3.5 shows the performance gap between larks and owls (red) as well as between the
intermediate type and owls (blue). The gaps are depicted separately for the full sample of
developers with information on collaborators, and in the subsample of those whose collabora-
tors are on average in more western time zones (behind them on clock time), or more formally
the subsample with TimeDiff𝑖,𝑞(𝑡) < −2.5 (see x-axis).19 Developers in this subsample have an
incentive to work later to coordinate with their collaborators, i.e., more in line with natural
rhythms of owls. The performance gap between owls and the other two types on free days
is of very similar magnitude in the two samples. Owls conduct slightly more actions than
developers of the other chronotypes in both samples (left plot). On working days, by contrast,
the performance of owls relative to both other types is indeed better in the subsample of de-
velopers collaborating with users who are behind them on clock time than in the full sample
(right plot). In the subsample, the advantage of larks relative to owls is smaller (red bars) and
owls even outperform the intermediate type (blue bars). This suggests that misalignment of
standard work schedules and the circadian clock gives rise to the overall performance gap.
19These activity gaps are obtained by estimating Model 3.5 on the respective samples.
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3.5. Causal Impacts of Circadian Misalignment

The evidence presented so far suggests that deviations from natural rhythms due to social
schedules have detrimental effects on the performance of late chronotypes. However, the un-
derlying analysis is mostly descriptive as we exploit cross-sectional variation in chronotype
and we cannot fully rule out that it might pick up other unobservable differences, e.g., whether
work in public GitHub repos constitutes the main job or a side project. If social jetlag is indeed
the underlying mechanism for the performance gap, we would expect that other factors that
cause a mismatch between work time and the circadian clock also lead to a decline in out-
put, irrespective of chronotype. In this section, we investigate this using two complementary
identification strategies.

3.5.1. Impacts of Collaboration Across Time Zones

In our first approach, we exploit the fact that synchronization with collaborators in other time
zones provides incentives for developers to adjust their work times. Figure 3.6 depicts the re-
lationship between the time of day of the average action (in hours) and the average difference
in clock time between the developer and his collaborators, separately by chronotype and for
working and free days. Because both work schedules and average time differences to devel-
opers might differ across regions, we show binned scatterplots of residualized average daily
activity time after demeaning by region and chronotype.20 On work days, residualized average
activity time is later if developers collaborate with users who are on average behind them on
local clock time (negative time difference) and earlier if collaborators are on average ahead of
them on local clock time (positive time difference). This correlation holds for all three chrono-
types. On free days, by contrast, there is no systematic pattern in the relationship between
time difference and work time. This suggests that the relationship on work days is driven by a
need to synchronize work activities: If collaborators are ahead on clock time, a developer can
facilitate coordination with them by working earlier than usual in his timezone to ensure that
his work time overlaps with standard working hours at the collaborators’ timezone.

While Figure 3.6 uses both within- and across-developer differences in collaborator com-
position, Table 3.5 exploits only within-developer variation in time differences to co-workers
over time. It is based on a simple regression:

𝑦𝑖𝑡 = 𝛽TimeDiff𝑖,𝑞(𝑡) + \𝑖 + \𝑅(𝑖),𝑦 (𝑡),𝑚(𝑡) + \𝑅(𝑖),𝑑𝑜𝑤 (𝑡) + 𝜖𝑖𝑡 (3.6)

20Time difference to collaborators is very likely to differ across world regions. Developers in North America, for
instance, are likely to collaborate mostly with users who are ahead on clock time (e.g., in Europe) due to their
western location, while developers in Asia are more likely to collaborate with users who are behind them on
clock time.
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Figure 3.6.: Time Difference to Collaborators and Average Activity Time

Note: Binned scatter plot, based on developer × date observations with positive activity levels. Y-axis measures mean daily activity time, after
demeaning by region and chronotype. X-axis measures average difference in local clock time between the developer and their collaborators
in the current quarter. Positive (negative) timezone difference implies that collaborators are ahead (behind) on clock time. The relationship
is depicted separately for three chronotypes and for working and free days.

where 𝑦𝑖𝑡 represents three different outcomes measuring work timing of developer 𝑖 on
date 𝑡 , 𝑇𝑖𝑚𝑒𝑜 𝑓 𝐹𝑖𝑟𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑖𝑡 , 𝑇𝑖𝑚𝑒𝑜 𝑓 𝑀𝑒𝑎𝑛𝐴𝑐𝑡𝑖𝑜𝑛𝑖𝑡 , and 𝑇𝑖𝑚𝑒𝑜 𝑓 𝐿𝑎𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑖𝑡 , each measured
in minutes. For a one-hour increase in time difference, first, average, and final activity of the
day become earlier by roughly 1 minute on free day and 2 minutes on work days. When they
are more than 2.5 hours ahead of their collaborators on average, developers’ work time is on
average 10 minutes later than during periods when collaborators are on similar clock time.
Conversely, when they are more than 2.5 hours behind their collaborators, developers work
on average 8 minutes earlier. While these effects are moderate in size, we have to account
for the measurement error in the regressors due to missing location information which likely
attenuates the estimates.

Given these results, we can use within-developer variation in the composition of collabora-
tors over time to study how deviations in work time from natural cycles affect performance.
We expect that there will be an adverse impact on performance if larks collaborate with users
who are behind on clock time such that they have an incentive to work late to synchronize, i.e.,
to deviate from the natural circadian rhythm. We expect that owls’ performance, by contrast,
is adversely affected when they start to collaborate with users who are ahead on clock time
such that there is an incentive to work early to coordinate. To test this, we use the following
model for owls:
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Table 3.5.: Impact of Time Difference to Collaborators on Temporal Work Patterns

Time of First Action𝑖𝑡 Time of Mean Action𝑖𝑡 Time of Last Action𝑖𝑡
(1) (2) (3) (4) (5) (6) (7) (8) (9)

TimeDiff𝑖,𝑞 (𝑡 ) −1.82∗∗∗ −1.12∗∗∗ −1.79∗∗∗ −0.93∗∗∗ −1.49∗∗∗ −0.71∗∗∗
(0.15) (0.23) (0.13) (0.19) (0.15) (0.22)

TimeDiff𝑖,𝑞 (𝑡 )× −0.90∗∗∗ −1.10∗∗∗ −1.00∗∗∗
WorkDay𝑖𝑡 (0.24) (0.20) (0.21)

1{TimeDiff𝑖,𝑞 (𝑡 ) < −2.5} 9.46∗∗∗ 11.01∗∗∗ 10.75∗∗∗
(1.10) (0.90) (1.11)

1{TimeDiff𝑖,𝑞 (𝑡 ) > 2.5} −8.34∗∗∗ −7.95∗∗∗ −6.52∗∗∗
(1.07) (0.91) (1.17)

Observations 4,784,611
Unique Users 13,530
Adjusted R2 0.16 0.16 0.16 0.17 0.17 0.17 0.16 0.16 0.16

Note: Results from regressions of minute of day of first action (Columns (1) to (3)), average action (Columns (4) to (6)) or last action
(Columns (7) to (9)) of the day on measures of average difference in clock time between the developer and his collaborators (during relevant
quarter). Regressors of interest are either the time difference measured in hours, TimeDiff𝑖,𝑞 (𝑡 ) , (Columns (2), (5), (8)), the time difference
in hours and its interaction with an indicator for working day (Columns (3), (6), (9)), or two indicators for TimeDiff𝑖,𝑞 (𝑡 ) < −2.5 hours or
TimeDiff𝑖,𝑞 (𝑡 ) > 2.5 hours (Columns (1), (4), (7)). Negative time difference implies that collaborators are behind on clock time, positive
time difference implies that collaborators are ahead on clock time. All regressions control for user fixed effect, region-by-day-of-week fixed
effect, region-by-year-by-month fixed effect and an indicator for work-free days. Estimations are based on subsample of 13,530 developers
with variation in indicators used in Column (1) during the observation period. Standard errors clustered at the developer level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.

Actions𝑖𝑡 = 𝛽𝑂11{TimeDiff𝑖,𝑞(𝑡) > 2.5} + 𝛽𝑂21{TimeDiff𝑖,𝑞(𝑡) > 2.5} × WorkDay𝑖𝑡 +
𝛼WorkDay𝑖𝑡 + 𝛾 tenure𝑖𝑡 + 𝛿tenure2

𝑖𝑡 + \𝑖 + \𝑅,𝑑𝑜𝑤 (𝑡) + \𝑅,𝑦 (𝑡),𝑚(𝑡) + 𝜖𝑖𝑡
(3.7)

And a similar model for larks:

Actions𝑖𝑡 = 𝛽𝐿11{TimeDiff𝑖,𝑞(𝑡) < −2.5} + 𝛽𝐿21{TimeDiff𝑖,𝑞(𝑡) < −2.5} × WorkDay𝑖𝑡 +
𝛼WorkDay𝑖𝑡 + 𝛾 tenure𝑖𝑡 + 𝛿tenure2

𝑖𝑡 + \𝑖 + \𝑅,𝑑𝑜𝑤 (𝑡) + \𝑅,𝑦 (𝑡),𝑚(𝑡) + 𝜖𝑖𝑡
(3.8)

The dummy variable 1{TimeDiff𝑖,𝑞(𝑡) > 2.5} takes value one when the collaborators of 𝑖 during
the current quarter 𝑞(𝑡) are, on average, more than 2.5 hours ahead of 𝑖 on clock time, whereas
1{TimeDiff𝑖,𝑞(𝑡) < −2.5} indicates whether they are more than 2.5 hours behind on clock
time. Since collaborator composition can change over time, so do these regressors for a given
developer. Other covariates are as described above.

Table 3.6 depicts the results. When owls collaborate with users who are ahead of them in
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terms of clock time, they produce less output per day than when they collaborate with users
on similar or later clock time. Larks, by contrast, perform worse when they collaborate with
users who are behind on clock time as compared to when they work with users on similar
or earlier clock time. The reductions only occur on work days, consistent with the fact that
coordination with co-workers is less important on free days. Relative to the average activity
levels on work days, the work day reductions amount to 6.3% for owls and 5.7% for larks.
These results further suggest that deviations from preferred circadian cycles reduce knowledge
worker performance.

Table 3.6.: Impact of Time Difference to Collaborators on Daily Activity by Chronotype

𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑡

1{TimeDiff𝑖,𝑞 (𝑡 ) < −2.5} −0.061
(0.113)

1{TimeDiff𝑖,𝑞 (𝑡 ) < −2.5} × WorkDay𝑖𝑡 −0.326∗∗
(0.161)

1{TimeDiff𝑖,𝑞 (𝑡 ) > 2.5} 0.190∗
(0.106)

1{TimeDiff𝑖,𝑞 (𝑡 ) > 2.5} × WorkDay𝑖𝑡 −0.547∗∗∗
(0.108)

WorkDay𝑖𝑡 3.050∗∗∗ 2.098∗∗∗
(0.080) (0.077)

Sample Larks Owls
Observations 2,918,963 2,433,618
Mean Dep. Variable on work days 6.78 5.65

Notes: Table depicts OLS estimates of coefficients from Models 3.7 and 3.8. Standard errors clustered at the developer level are reported in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

3.5.2. Impacts of Daylight Saving Time Transitions

In our second approach to study whether there is a causal effect of circadian disruptions on
worker performance, we exploit a natural experiment, the transition into and out of DST,
following e.g. Smith (2016). Previous research indicates that especially the spring transition
causes a disruption to the circadian rhythm due to the one-hour loss during the night, which
translates at least partly into shorter sleep duration, and due to the deviation of social time
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from solar time.21 Evidence on the fall transition is mixed, Smith (2016) finds no effect on
traffic accidents, while Jin and Ziebarth (2020) find positive impacts on health outcomes and
reductions in daytime sleepiness. We investigate how the transitions affect performance of
knowledge workers who typically have quite a lot of flexibility in their jobs, for example re-
garding work schedules. We not only consider a very different setting as compared to previous
research, but we also have data on both daily output and proxies for daily work start and end
time, namely the minute of the day when the first action and last action were conducted.
We are thus able to investigate how strongly workers adapt to the clock change by changing
working hours (as shown on the clock in local time).

For the analysis, we reduce the sample to only those countries and states that observe DST.
Before estimating the transition effects, it is important to consider that the spring transition
day has only 23 hours and the fall transition day has 25 hours, so there could be mechanical
impacts on daily output just because developers have more/less time to work. Since we define
a day as lasting from 4am to 4am, we circumvent this problem because the clock changes
occur before 4 am in local time. This means that we assign the missing hour to the Saturday
before the spring transition and the additional hour to the Saturday before the fall transition.
This works against finding the hypothesized negative effect of the spring transition and the
possible positive effect of the fall transition. Thus, we make no further adjustments for the
differences in day length.

We residualize the outcomes of interest, number of total actions, minute of day of the first
action and minute of day of the last action, with respect to developer-, region-by-day of week-,
region-by-year- and region-by-month fixed effects as well as an indicator for public holidays.
For a first visual inspection, we plot the average residuals against the time relative to the
transition date (Figure 3.7). Regarding work times, we observe that both the time of the first
and last action tend to become earlier before and after the spring transition, indicating that
work time tracks sunrise.22 Right at the transition, there are clear upward jumps in the time
of first and last action, indicating that developers adjust to the clock change. However, the
adjustment is only partial, as the discontinuities are clearly smaller than 60 minutes. At and
around the fall transition, we see the opposite picture: Before and after the clock change,
work times gradually become later in line with delaying sunrise times in fall, while at the
transition there are clear negative jumps, i.e. work start and end are shifted earlier, but by
less than an hour. These results indicate that both the social clock and the solar clock are
relevant in determining working hours among knowledge workers.23 Looking at residualized
21Switching to DST is equivalent to adopting the clock time of the adjacent eastern timezone, but without the

corresponding change in solar time. Time zones are typically designed such that the clock time tracks solar
time. Under DST, clock time is ahead of solar time.

22We present direct evidence on this relationship in Appendix Figure 3.A.5.
23This is in line with recent findings by Baylis et al. (2023) who show that a one-hour shift in solar time un-
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Figure 3.7.: Residualized Daily Outcomes Plotted Against Time to DST Transition

Notes: Residuals are obtained by regressing the respective outcome on developer-, region-by-day of week-, region-by-year- and region-by-
month fixed effects as well as an indicator for public holidays. Points reflect averages of all residuals for a given date relative to the transition
date. Fitted lines with 95% confidence intervals are based on local linear regressions. Top: Spring Transition, bottom: Fall transition.

total actions, we find a downward jump at the spring transition, hinting at a decline in output.
For the fall transition, the picture is less clear.

We use the following model to estimate the size of the discontinuities:

𝑦𝑖𝑡 =𝛽0 + 𝛽11{Days Since Transition ≥ 0}𝑖𝑡 + 𝑓 (Days Since Transition𝑖𝑡 )+
𝑓 (Days Since Transition𝑖𝑡 ) × 1{Days Since Transition ≥ 0}𝑖𝑡 + 𝑢𝑖𝑡

(3.9)

where 𝑦𝑖𝑡 reflects the residualized outcomes mentioned above, measured at the level of de-
veloper 𝑖 by date 𝑡 . 𝐷𝑎𝑦𝑠𝑆𝑖𝑛𝑐𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑡 is the running variable, taking negative values
before the transition date and positive values thereafter. 𝛽1 measures the discontinuity at the
transition date, the immediate impact of entering or leaving, respectively. As our baseline, we
estimate 𝑓 (·) linearly around the cutoff within a bandwidth of 30 days and using a triangular
kernel.

Table 3.7 depicts the RD estimates. The estimated impacts on the time of the first and last
action confirm the graphical evidence. In spring, the first and last action are delayed by 14 and
9 minutes, respectively, implying a slightly shorter work time overall (approximated as time
of last action minus time of first action). By contrast, following the fall transition, the first
and last action are conducted 13 and 10 minutes earlier, respectively. At the spring transition,

der a fixed social clock time causes a shift of between 9 and 26 minutes in average times of Twitter usage,
commuting times and visits to businesses and other establishments in the US.
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we find a reduction of 0.16 or 5.5% in total actions, while in fall actions increase by 0.09 or
3.3% of the sample mean. Factors that could drive these impacts on output include direct
productivity effects of additional sleep (fall) or sleep loss (spring), and the changes in work
time input described above. Moreover, when social clock times get detached from solar time
in spring, circadian clocks can get disrupted giving rise to social jetlag (Kantermann et al.,
2007; Roenneberg et al., 2019b). This disruption ends at the fall transition.

Table 3.7.: RD Estimates of Discontinuities at Transitions into and out of DST

Outcome Full Sample Larks Intermed. Owls
Actions Fall 0.094 0.134 0.080 0.069

(0.030) (0.052) (0.033) (0.039)
[3,608,156] [1,077,285] [1,448,138] [1,082,733]

Spring -0.158 -0.253 -0.136 -0.091
(0.036) (0.050) (0.036) (0.038)

[4,056,246] [1,222,944] [1,613,855] [1,219,447]
arsinh(Actions) Fall 0.020 0.030 0.016 0.014

(0.008) (0.013) (0.007) (0.006)
[3,608,156] [1,077,285] [1,448,138] [1,082,733]

Spring -0.028 -0.044 -0.025 -0.015
(0.007) (0.008) (0.006) (0.006)

[4,056,246] [1,222,944] [1,613,855] [1,219,447]
Time of First Fall -13.39 -15.34 -12.80 -11.82
Action (minutes) (1.94) (2.05) (2.00) (2.81)

[1,368,770] [450,428] [531,757] [386,585]
Spring 14.29 18.76 12.86 10.92

(2.29) (3.22) (2.77) (2.20)
[1,586,690] [527,084] [612,150] [447,456]

Time of Last Fall -9.94 -8.47 -10.00 -11.43
Action (minutes) (1.63) (2.53) (2.03) (2.37)

[1,368,770] [450,428] [531,757] [386,585]
Spring 9.25 7.05 8.84 12.33

(2.72) (3.87) (2.13) (3.07)
[1,586,690] [527,084] [612,150] [447,456]

Note: Table depicts estimates of the discontinuity in the variables listed on the left that occur right after the transitions into DST (Spring)
and out of DST (Fall). All estimates are obtained from separate regressions, based on Equation 3.9. Discontinuities are estimated for the full
sample (left) and separately by chronotype. Bandwidth = 30. Robust standard errors clustered at the developer level in parentheses. Effective
observations in squared brackets.

We investigate effect heterogeneity by chronotype, and find that the changes in output at
both transitions are largest for larks, and gradually shrink for later chronotypes. This holds
both in absolute and relative terms. The shifts in work start time are also largest among larks
at both transitions, while the effects on the time of the last action are smallest, which implies
that total work time decreases most for larks after the spring transition (by approximately 9
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minutes), and increases most after the fall transition (by 7 minutes). Among owls, by contrast,
changes in time of first and last action are very similar both in fall and spring, implying min-
imal changes in workday length. Still, even in this group without changes in time input, we
find a marginally significant increase in output in fall, and a significant decrease at the spring
transition.

Figure 3.8.: RD Estimates for Different Times of the Day

Note: The plots depict estimates of the discontinuity in arsinh(actions) that occur right after the spring transitions into DST (blue) and the
fall transition out of DST (red), along with 95% confidence intervals. Different estimates within one plot refer to actions during different
three-hour windows of the day, as depicted on the x-axis. Discontinuities are estimated for the full sample and separately by chronotype.
Upper left: full sample; upper right: intermediate chronotype; bottom left: larks; bottom right: owls. Bandwidth = 30.

Following Smith (2016), we also investigate effect heterogeneity across times of day. Fig-
ure 3.8 depicts the RD estimates where the outcomes are the inverse hyperbolic sine transfor-
mation of the number of actions conducted during several three-hour-windows of the day, in
the full sample and separately by chronotype. At the fall transition (blue), we see increases
in output in the morning, point estimates close to zero around lunch time and afternoon, and
small decreases in the evening hours, consistent with the result that developers start and end
work earlier. At the spring transition (red), the overall negative effect is mostly driven by re-
ductions in activity in the morning, in line with later work start times, but effects also tend to
be negative in the afternoon and only attenuate in the evening. Even though we found that
the end of the work day is delayed, there are no positive effects in the evening, possibly due to
lower productivity because of sleep deprivation. These patterns across hours of the day likely
explain, why larks, who are particularly productive in the morning, are most affected. The
impacts of the transition are strongest during their most productive time of day. Owls, who
are less active and less productive during these hours are consequently less affected overall.
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Moreover, adjusting the circadian clock to the new social clock after the spring transition is
especially difficult for individuals who woke up before sunrise before the transition, and again
wake up during darkness after the clock change. This might also contribute to the strong
effects among larks who are most likely to be affected by this.

To check robustness of our main RD results, Appendix Figure 3.A.6 shows how the RD
estimates vary as we change the bandwidth, from 20 to 60 in steps of 10. Results are overall
robust to changing the bandwidth, but as the bandwidth is increased, they shrink somewhat in
magnitude. Only the results on the change in actions at the fall transition are not consistently
significant as the bandwidth is changed, but point estimates are mostly positive. Thus, we note
that, while the spring transition clearly causes a decline in output, the increase in actions due
to the fall transition is less clear. In Appendix Table 3.B.2 we conduct a placebo test. We repeat
the RD analysis, but we shift the transition dates by 3 weeks into the future. Estimated effects
are substantially smaller than at the true transition dates.

3.6. Conclusion

This paper provides evidence that a misalignment of the circadian clock and social schedules
adversely affects knowledge worker performance. We conduct a causal analysis exploiting the
transition into and out of daylight saving time as natural experiments. We find that the spring
transition, which shortens nighttime and likely also sleep duration and leads to a deviation of
social clocks from solar clocks, causes a reduction in daily output by 5.5%. We find positive
but smaller effects for the fall transition. We complement this by showing that developers’
performance also declines when they collaborate with users in other time zones and thus adapt
their work schedules to times that are not in line with their natural rhythms. We also present
a descriptive comparison of performance between developers with different time preferences,
or chronotypes. We show that larks outperform later chronotypes on working days.

The DST transitions allow us to estimate causal effects and show that disruptions to circa-
dian rhythms are indeed relevant in this setting. The overall economic costs of the short-run
impacts are, however, relatively small.24 The results on the impacts of collaboration across
time zones imply that there are additional, potentially much larger costs due to misalignments
among workers in remote teams, especially as remote work and cross-time zone collaboration
are becoming increasingly common among knowledge workers. Finally, the more descriptive
result on performance gaps between chronotypes suggests that, even in flexible and modern
work environments, later chronotypes suffer from social jetlag. Given that we find that owls

24This statement refers to cost through lost productivity analysed in this paper, not to results in other studies on
consequences such as adverse health impacts or fatal traffic accidents.
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make up 35% of our sample, this also hints at substantial costs and suggests that measures to
better accommodate workers with different time preferences might be beneficial for worker
and firm performance.
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Appendix to Chapter 3

3.A. Additional Figures

Figure 3.A.1.: Differences in Activity Patterns across Chronotypes

Notes: Plots show coefficients from regressions of hourly activity shares on 23 dummies for hours of the day (ommited hour is 0), and
interactions of the hour-dummies with indicators for chronotype (intermediate type is omitted), along with 95% confidence intervalls.

149



Circadian Rhythms and Knowledge Worker Performance

Figure 3.A.2.: Chronotype Classification for Full Developer Sample

Notes: Upper left plot: Activity Patterns on weekends and public holidays by three types resulting from k-means clustering algorithm using
the full developer sample. Upper right plot: Number of developers and share of total sample by k-means type. Bottom left plot: Activity
Patterns on working days by three types resulting from k-means clustering algorithm. K-means clustering based on 16 variables measuring
share of activities during eight three-hour windows of the day, separately for work days and free days.
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Figure 3.A.3.: Employment Status by Chronotype

Notes: Left plot: Share of users reporting a company affiliation on their profile at the end of the sample period, by chronotype. Right plot:
Share of users reporting to work at each of the 17 most frequent companies, by chronotype.

Figure 3.A.4.: School Holidays

Notes: Lines depict mean number of actions per hour and day, averaged across all working days for users of the respective chronotype. Red
line: Working day outside of school holidays. Blue line: Working days during school holidays.
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Figure 3.A.5.: Work Time and Sunrise Time

Notes: Binned scatter plots depicting relationship between four variables assessing work time (in minutes) and sunrise time (in hours).
Variables are minute of day of first action (upper left plots), minute of day of average action (upper right plots), minute of day of last action
(bottom left plots), and work day length, approximated as difference between time of last and time of first action (bottom right plots). All
four variables are residualized w.r.t. developer fixed effects. Relationship are depicted separately for working days (blue) and free days (red).
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Figure 3.A.6.: RD Estimates for Different Bandwidth Choices

Notes: Figure depicts RD estimates with 95% confidence interval analogues to Table 3.7. For each outcome and estimation sample, five
estimates are presented for five different bandwidth values, {20, 30, 40, 50, 60}. x-axis: bandwidth, color: estimation sample, shape: transition.
Different plots refer to different outcome variables (Total actions, arsinh of total actions, minute of day of first action and minute of day of
last action).
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3.B. Additional Tables

Table 3.B.1.: Activity Differences between Chronotypes

Actions

Lark 0.820∗∗∗ 0.725∗∗∗ 0.627∗∗∗ 0.776∗∗∗
(0.099) (0.091) (0.078) (0.071)

Owl −0.206∗∗ −0.326∗∗∗ −0.029 −0.045
(0.089) (0.088) (0.072) (0.060)

Sample Active Days US only Active Half Company
Observations 10,768,932 10,381,814 16,499,506 19,448,401

Notes: Table displays estimated coefficients from Equation 3.4 estimated on different subsamples, as described at the bottom. Standard errors
clustered at the developer level are reported in parentheses.

Table 3.B.2.: Placebo RD Estimates
Actions arsinh(Actions) Time of First Action Time of Last Action

Fall -0.030 -0.002 0.357 1.574
(.015) (.002) (.998) (1.050)

Spring -0.024 -0.006 -1.194 1.027
(.014) (.002) (.928) (.972)

Notes: Dates of fall and spring transition are shifted by 21 days into the future relative to the true transition dates. Bandwidth = 30. Robust
standard errors in parentheses.
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STATISTIQUE, 55–72.

Borghans, L., H. Meijers, and B. Ter Weel (2008): “The Role of Noncognitive Skills in Ex-
plaining Cognitive Test Scores,” Economic Inquiry, 46, 2–12.

Borgschulte, M., D. Molitor, and E. Zou (forthcoming): “Air Pollution and the Labor Mar-
ket: Evidence from Wildfire Smoke,” The Review of Economics and Statistics.

Bresnahan, T. F., E. Brynjolfsson, and L. M. Hitt (2002): “Information technology, work-
place organization, and the demand for skilled labor: Firm-level evidence,” The Quarterly
Journal of Economics, 117, 339–376.

Bureau of Labor Statistics (2021): “Software Developers, Quality Assurance Analysts, and
Testers,” in Occupational Outlook Handbook, U.S. Department of Labor.

——— (2022): “Occupational Employment and Wage Statistics,” https://www.bls.gov/oes/curr
ent/oes nat.htm, accessed: 2022-11-07.

Burgess, H. J., F. Kikyo, Z. Valdespino-Hayden, M. Rizvydeen, M. Kimura, M. H. Pollack,
S. E. Hobfoll, K. B. Rajan, A. K. Zalta, and J. W. Burns (2018): “Do the Morningness-
Eveningness questionnaire and Munich ChronoType questionnaire change after morning
light treatment?” Sleep science and practice, 2, 1–5.

Burke, M., S. Heft-Neal, J. Li, A. Driscoll, P. W. Baylis, M. Stigler, J. Weill, J. Burney,
J. Wen, M. Childs, and C. Gould (2022): “Exposures and Behavioral Responses to Wildfire
Smoke,” Nature Human Behavior.
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R. Villarreal-Calderón, and W. Reed (2007): “Pediatric Respiratory and Systemic Effects
of Chronic Air Pollution Exposure: Nose, Lung, Heart, and Brain Pathology,” Toxicologic
Pathology, 35, 154–162.

Carneiro, P., C. Crawford, and A. Goodman (2007): “The Impact of Early Cognitive and
Non-Cognitive Skills on Later Outcomes,” CEE DP 92.

157

https://www.bls.gov/oes/current/oes_nat.htm
https://www.bls.gov/oes/current/oes_nat.htm


Bibliography

Cedefop (2022): “Employed population by occupation and sector,” https://www.cedefop.euro
pa.eu/en/tools/skills-intelligence/employed-population-occupation-and-sector?year=202
0&country=EU&occupation=#1, accessed: 2022-11-07.

Chang, T., J. Graff Zivin, T. Gross, and M. Neidell (2016): “Particulate Pollution and the
Productivity of Pear Packers,” American Economic Journal: Economic Policy, 8, 141–169.

Chang, T. Y., J. Graff Zivin, T. Gross, and M. Neidell (2019): “The Effect of Pollution on
Worker Productivity: Evidence from Call Center Workers in China,” American Economic
Journal: Applied Economics, 11, 151–172.

Chauvin, J., P. Choudhury, and T. P. Fang (2021): “The effects of temporal distance on intra-
firm communication: Evidence from daylight savings time,” Harvard Business School Tech-
nology & Operations Mgt. Unit Working Paper.

Cicero-Fernandez, P., W. Thistlewaite, Y. Falcon, and I. Guzman (1993): “TSP, PM10 and
PM10/TSP ratios in the Mexico City Metropolitan area: a temporal and spatial approach.”
Journal of exposure analysis and environmental epidemiology, 3, 1–14.

Colmer, J., D. Lin, S. Liu, and J. Shimshack (2021a): “Why are pollution damages lower
in developed countries? Insights from high-Income, high-particulate matter Hong Kong,”
Journal of Health Economics, 79, 102511.

——— (2021b): “Why are Pollution Damages Lower in Developed Countries? Insights from
High-Income, High-Particulate Matter Hong Kong,” Journal of Health Economics, 102511.

Colmer, J. and J. Voorheis (2020): “The Grandkids aren’t alright: The Intergenerational Ef-
fects of Prenatal Pollution Exposure,” CEP Discussion Papers 1733, Centre for Economic
Performance, LSE.

Conlin, A., I. Nerg, L. Ala-Mursula, T. Räihä, and M. Korhonen (2022): “Chronotype and
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