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Abstract
The TBRS*C computational model provides a mathematical implementation of the cognitive processes involved in complex 
span tasks. The logic of the core processes, i.e., encoding, refreshing/time-based decay, and chunking, is based on Hebbian 
learning, synaptic facilitation, and long-term neural plasticity, respectively. The modeling, however, takes place on a cogni-
tive rather than a physiological level. Chunking is implemented as a process of searching for sequences of memoranda in 
long-term memory and recoding them as a single unit which increases the efficacy of memory maintenance. Using TBRS*C 
simulations, the present study investigated how chunking and central working memory processes change with expertise. 
Hobby musicians and music students completed a complex span task in which sequences of twelve note symbols were pre-
sented for serial recall of pitch. After the presentation of each memorandum, participants performed an unknown, notated 
melody on an electric piano. To manipulate the potential for chunking, we varied whether sequences of memoranda formed 
meaningful tonal structures (major triads) or arbitrary trichords. Hobby musicians and music students were each split up 
in a higher-expertise and a lower-expertise group and TBRS*C simulations were performed for each group individually. In 
the simulations, higher-expertise hobby musicians encoded memoranda more rapidly, invested less time in chunk search, 
and recognized chunks with a higher chance than lower-expertise hobby musicians. Parameter estimates for music students 
showed only marginal expertise differences. We conclude that expertise in the TBRS model can be conceptualized by a 
rapid access to long-term memory and by chunking, which leads to an increase in the opportunity and efficacy of refreshing.
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Introduction

Working memory (WM) is generally defined as a set 
of memory processes that enable the maintenance of 
information during concurrent processing of other 
information [1]. The Time-Based Resource Sharing 
(TBRS) theory [2] assumes that this is achieved by a rapid 
switching between processing new stimuli and refreshing 
already encoded information. According to the theory, 
any information that is not in the focus of attention suffers 
from time-based decay. Hence, there is a need for frequent 

refreshing of to-be-maintained information. Due to the 
central attentional bottleneck [3], though, attention can 
be devoted to only one central process at a time. Thus, the 
sharing of attentional resources between processing and 
refreshing needs to be time-based [2].

Being a general theory of WM, TBRS is not concerned 
with expertise. However, other theories of WM such as 
template theory [4] or long-term WM theory (LT-WM) [5] 
have conceptualized WM as being inherently influenced by 
expertise. Experts’ WM has been repeatedly found to be 
better [6] and this advantage is commonly explained with 
both the concept of chunking [7–9] and the rapid access 
to long-term memory (LTM) [10, 11]. The main idea of 
chunking is that experts’ memory system detects known 
structures in processed stimuli and recodes them as single, 
meaningful units [12].

Besides these theoretical explanations, there is biological 
evidence for expertise differences in WM. James and 
colleagues [13] compared gray matter density between 
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participants of three levels of musical expertise. Their analysis 
revealed that a higher level of expertise is associated with an 
increase in gray matter density in areas involved in higher-
order cognitive processing, including the left inferior frontal 
gyrus which is involved in working memory processes.

In the context of the TBRS theory, an account of how 
central WM processes and chunking change with expertise is 
lacking. The present work addressed this issue by analyzing 
expertise differences in WM and chunking in the processing 
of musical note symbols. To this end, we created a musi-
cal complex span task. In complex span tasks, memoranda 
have to be maintained while a secondary distractor task is 
performed [14]. In the most classical example, the reading 
span task, numerous sentences have to be read aloud and 
the last word of each sentence has to be memorized [15]. 
Analogously, in the present task, single note symbols were 
presented for later serial recall. In between the presentation 
of each of these to-be-remembered notes, participants had 
to perform a short, unknown, notated melody on an electric 
piano. Hobby musicians and music students completed this 
task and its procedure was slightly adapted to match the skill 
level of the two sub-samples.

To manipulate the possibility for chunking, we varied 
the meaningfulness of the tonal structure of the sequences 
of to-be-remembered notes. In meaningful sequences, the 
to-be-remembered notes formed major triads, which can 
be considered meaningful units in tonal music. In stimuli 
that were not meaningful, to-be-remembered notes formed 
arbitrary trichords, i.e., tonal structures that were at odds with 
the common rules of tonal music. We generally expected 
that more musically experienced participants would gain an 
additional benefit in recalling sequences of major triads.

In addition to identifying the interplay of expertise groups 
and tonal structure conditions, our goal was to uncover the 
underlying cognitive mechanisms. One method to pursue this 
goal was to design a computational model that can perform 
the same experiment as the participants by expressing 
the involved cognitive processes within a computational 
framework. This framework was the TBRS*C computational 
model [16], which is a model of WM supplemented with 
a chunking mechanism. The TBRS*C model performed 
the experimental task and it was analyzed which parameter 
estimates best reflected expertise differences in the human 
data. This provided insights how WM processes and 
chunking might change with expertise.

The TBRS*C Computational Model

TBRS*C [16] uses the same functional core as TBRS*, 
which was developed by Oberauer and Lewandowsky [17] 
as a computational implementation of the TBRS verbal the-
ory. TBRS* simulates serial recall in complex span tasks. 
Because recall is serial in such tasks, associations between 

items and their position in the sequence have to be built 
and maintained. For instance, if participants are presented 
with the items A, B, and C, it is supposed that they have to 
create associations between item A and position 1, item B 
and position 2, etc. This is described in TBRS* by a Heb-
bian learning mechanism which has both a cognitive and a 
computational modeling basis. The Hebbian learning rule 
[18] describes the modification of neural network connec-
tions as a result of the firing of output neurons [19]. More 
specifically, if cell assemblies, i.e., networks of intercon-
nected neurons that form a functional unit [20], are activated 
simultaneously, they become associated. The unsupervised 
learning in neural networks has been described based on 
this rule [21, 22].

The specific decay/refresh mechanisms in TBRS also 
have a neural equivalent. Although WM is generally 
assumed to be biologically implemented by persistent spik-
ing activity, another line of research considers that WM can 
be explained by short-term synaptic plasticity mediated 
by increased residual calcium levels [23]. In this kind of 
model, memory maintenance is directly achieved through 
short-term synaptic facilitation. However, this facilitation 
decays over time [24].

In line with these explanations, TBRS* stores 
associations between items and positions in a network with 
two fully interconnected layers, i.e., a position layer and an 
item layer. Each item is represented by a node in the item 
layer that is connected with a set of position markers in the 
position layer. Adjacent positions share a certain proportion 
P (30% by default) of these markers in order to represent 
the fact that people are more likely to confound a position 
with the previous or the next one, but less likely with others. 
TBRS* reproduces the basic operations of a complex span 
task, namely encoding, refreshing, distractor processing, and 
recall. Following the assumptions of the underlying TBRS 
model, only one of these processes can be performed at a 
time and all items that are not in the focus of attention suffer 
from time-based decay. Figure 1 presents the architecture 
that is the basis of TBRS*.

Table  1 provides an overview of the parameters of 
the computational model. These parameters will now be 
explained in detail. Encoding of items is performed by 
a Hebbian mechanism that strengthens the association 
between the item node and the markers representing its 
position. Basically, each connection weight wip between an 
item i and a position unit p is increased by ∆wip = η.(L-wip) 
where L is an asymptotic value set to 1/9 because there are 
9 position markers coding each position. This way, the total 
strength of the item-position association that can be reached 
during encoding is bound to 1. The rate of increase of the 
association strength is defined as η = 1—e−Rt, i.e., it follows 
an exponential curve. It is influenced by the time during 
which the association is strengthened (t) and the parameter 
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R. With increasing R, the association strength increases 
faster and hence, the maximum is reached more rapidly. So, 
R affects the time that is needed to encode a memorandum. 
For example, with the default value R = 6 and a duration of 
t = 0.5 s, the strength of the association between an item 

being encoded and its position is η = 0.95 which represents 
95% of the maximum value. Actually, to model some vari-
ability, it is not the value R which is used but rather the out-
come of a random draw from a normal distribution centered 
at R, with a standard deviation of s (1 by default).

Fig. 1  Model architecture of TBRS*. Upper panel: Simulated time 
course of a complex span task in which items J, N, H, and F are 
encoded (light gray areas). Two distractors are processed in between 
each encoded item (dark gray areas). Free time (white areas) is used 
to refresh items. Curves represent the total activation value of each 
item with respect to its position. Lower panel: Connections between 
position and item units. Each item is represented by a single unit. 
Each position is represented by several units. Black and white squares 
represent position coding. For instance, position 1 is coded by units 3, 

6, 8, 12, and 13. Positions 1 and 2 share units 3 and 8. Examples of 
specific processes: (i) item J is encoded and associated with all units 
of position 1; (ii) item N is encoded and associated with all units of 
position 2; (iii) all activation values decay during distracting tasks; 
(iv) during free time, items are retrieved and refreshed for each posi-
tion in turn; (v) during free time following the second distractor after 
item H was presented, item H was erroneously retrieved at position 
2, instead of N. Then, H was associated with all units of position 2. 
Figure reproduced from Lemaire and Portrat [25]

Table 1  Parameters of the TBRS*C computational model

Parameter Meaning Value Description

P Position marker overlap .3 Same value as all simulations in Oberauer and Lewandowsky [17] and 
all our previous simulations

L Item-position weight asymptote 1/9 Same value as all simulations in Oberauer and Lewandowsky [17] and 
all our previous simulations

R Speed of encoding, refreshing and recall Free parameter
Tr Time to refresh an item 80 ms Same value as all simulations in Oberauer and Lewandowsky [17] and 

all our previous simulations
s Standard deviation of R 1 Same value as all simulations in Oberauer and Lewandowsky [17] and 

all our previous simulations
σ Standard deviation of the Gaussian noise .02 Same value as most simulations Oberauer and Lewandowsky [17] and 

all our previous simulations
θ Retrieval threshold .05 Same value as one simulation in Oberauer and Lewandowsky [17] and 

all our previous simulations
Ta Duration of attentional capture by distractors in ms Free parameter
D Decay parameter .5 Same value as in Oberauer and Lewandowsky [17] and all our previous 

simulations
cSD Chunk search duration in ms Free parameter
PCR Probability of chunk recognition Free parameter
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Refreshing in TBRS* occurs during any free time, usually 
right after encoding items or processing distractors. During 
refreshing, previous positions are considered in turn and for 
each one, an item is retrieved and the association with its 
position markers is strengthened, using the same mecha-
nism as during the initial encoding of an item, presented 
previously, except that the duration is much shorter. As the 
duration of refreshing Tr is fixed (80 ms by default), though, 
a larger R does not result in more rapid refreshing, but in a 
larger activation reached during refreshing.

Retrieval at a given position is performed by selecting the 
item whose sum of association strengths to the respective 
position markers is maximal. To mimic retrieval errors, zero-
centered Gaussian noise with standard deviation σ (0.02 
by default) is added to each sum of activation strengths. 
More precisely, the selected item is defined by  argmaxi(∑p 
wip + noise) where noise ~ N(0, σ) and wip is the association 
weight between item i and position p. However, if that best 
value is lower than a retrieval threshold ϴ (0.05 by default), 
no item is recalled as if it was forgotten.

Distractor processing is not simulated per se, but its effect 
is reproduced by applying a decay function to the item-posi-
tion associations during processing of distractors. The Ta 
parameter indicates the time used for the attentional cap-
ture of a distractor. During that time, all association weights 
w decay and become wnew = w.e−D.Ta, where D is a decay 
parameter usually set to 0.5.

Recall in the model involves the retrieval and output of 
the most activated item associated with the markers rep-
resenting a given position, following the mechanism pre-
sented previously. Once an item i is recalled, its associa-
tions with the current position p are suppressed by Hebbian 
anti-learning (∆wip =  − ηL) in order to minimize repetition 
of the same item at a subsequent position. Further details 
of TBRS* mechanisms and parameters are described in the 
seminal article [17] or in derived models [26].

TBRS*C [16] extended TBRS* with a chunking mecha-
nism which accounts for the fact that humans may recode 
known sequences of items as single units to increase recall 
performance. TBRS*C assumes that there is a period right 
after encoding an item during which long-term memory 
is searched for the previous sequence of items. If a chunk 
is successfully recognized, the items are chained and the 
known group is associated with the position of the first item 
in the sequence. This is advantageous, as fewer elements 
need to be refreshed. So, chunking in TBRS*C denotes a 
process of searching LTM for sequences of encoded items 
and recoding them; a chunk denotes a known sequence of 
items in LTM.

For instance, if the letter sequence X-P-D would be pre-
sented, the model would search for XPD in LTM and would 
not recognize a chunk. However, if the next letter would be 
F, the model would recognize the chunk PDF and would 

associate it with the position of the first letter of the acronym. 
Consequently, only one unit (PDF) would have to be refreshed 
in position two instead of three letters in positions two, three, 
and four. To search a known sequence in LTM, all its consti-
tutive elements need to be simultaneously present within the 
focus of attention. Thus, as opposed to TBRS*, TBRS*C has 
an attentional focus size of up to four elements [27] mean-
ing that up to four items are refreshed in parallel during each 
refreshing period. The duration Tr is not modified, but the 
strength is divided by the number of items N that is consid-
ered: ∆wip = η.(L-wip)/N. Items are thus refreshed in groups 
of 4 instead of individually, but the strength of refreshing is 4 
times weaker. Actually, N is not always 4 because at the begin-
ning of the task, there are less than 4 items to be refreshed.

Chunking is implemented in the model by two param-
eters, namely the time invested in searching for known 
sequences (chunk search duration, cSD) and the likelihood 
of recognizing an item as a chunk, given it exists in LTM 
(probability of chunk retrieval, PCR). Both parameters are 
separate and independent. With reference to the architecture 
presented previously, cSD represents an additional amount 
of time right after encoding an item, during which there is 
no refresh and all association weights decay, exactly like 
during the attentional capture of a distractor. PCR, however, 
does not change the time course of processes in the model as 
it only controls the probability of recognizing the previous 
sequence of encoded items as a chunk.

In the initial study on TBRS*C, Portrat and colleagues 
[16] employed a complex span task in which seven letters 
were presented as memoranda. Between the presentation 
of memoranda, participants had to complete spatial judg-
ment tasks. Known letter sequences, namely French three-
letter acronyms, were either absent or present, starting at 
the first, third, or fifth serial position. Participants’ recall 
data was simulated with TBRS*C leading to the conclusion 
that chunking is “an attentional time-based mechanism that 
certainly enhances WM performance but also competes with 
other processes at hand in WM” [16, p. 430].

Expertise Differences in Working Memory 
Functioning

In the present work, we assumed two expert advantages in 
WM functioning, namely chunking and rapid access to LTM. 
These advantages are assumed by other theories of WM, 
such as LT-WM [5] and template theory [4]. In addition, 
they are biologically founded on long-term neural plastic-
ity. When someone practices to become an expert, Hebbian 
learning takes place [20]. As a consequence, functional 
units of neurons (so-called cell assemblies) form new asso-
ciations, thereby creating chunks. For example, if the notes 
C-E-G are repeatedly activated together with the verbal label 
“C major,” the notes and the label form a functional unit 
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through Hebbian learning. Rapid access to LTM, however, 
is based on another mechanism: nerve myelination. Myelin 
is found in the brain’s white matter. It is a white, fatty tis-
sue that encloses axons and increases the speed of the pass-
ing nerve impulses [28]. Myelination is a process that per-
sists for the first three decades of human development and 
is affected by experience [29]. Specifically, piano practice 
in certain critical developmental periods was found to be 
associated with plasticity in myelinating tracts [30]. As a 
consequence of musical training, myelin cells around nerve 
fibers have been found to increase in size, contributing to the 
velocity of electrical impulses [13].

Based on these biological mechanisms, the present 
study sought to unravel expertise differences in WM 
functioning in greater detail. To this end, we collected data 
from a complex span task with musical notation. To ensure 
variation in musical expertise, the task was completed 
by two sub-samples, namely music students and hobby 
musicians. The complex span task required the performance 
of notated melodies at first sight, which is highly demanding 
for hobby musicians. Thus, the task procedure was slightly 
adapted to match hobby musicians’ skill level. Using a 
median split on the general musical sophistication scale 
of the Gold Musical Sophistication Index [31], both sub-
samples were split up in a higher-expertise and a lower-
expertise group (threshold for hobby musicians: 69.5; 
threshold for music students: 85.5).

The complex span task was additionally performed by 
the TBRS*C computational model. Separately for both sub-
samples, we analyzed which parameter values best reflected 
the differences in task performance between the higher-
expertise and the lower-expertise group. The parameters for 
this analysis were chosen based on the expected expertise 
differences in WM: the parameters cSD and R were chosen to 
investigate experts’ rapid access to LTM; the parameter PCR 
was chosen to investigate experts’ chunking processes. In 
addition, we were interested if changes in WM and chunking 
processes would be associated with changes in the way 
resources were shared between the two task components. 
We wondered if the same amount of time would be used 
for the processing of distractors despite changes in the 
timing of encoding and chunking. Thus, we explored 
expertise differences in the parameter that represents the 
time used for the processing of distractors (Ta). In the 
analysis, we checked which combination of values for these 
four parameters (cSD, R, PCR, Ta) would provide the best 
fit to expertise differences in the human data. Due to the 
difference in the experimental procedure, music students and 
hobby musicians were not directly contrasted, but higher-
expertise hobby musicians were compared to lower-expertise 
hobby musicians and higher-expertise music students were 
compared to lower-expertise music students.

Hobby Musicians

Method

Sample

The hobby musician sub-sample (n = 80) was recruited 
at the University of Mannheim. It contained 53 female 
and 25 male students with two participants not providing 
information on their sex. Participation was restricted 
to students of any subject except music that considered 
themselves able to perform musical notes on an instrument. 
Hobby musicians’ mean age was 21.36 years (SD = 2.55; 
Min = 18; Max = 31) and most of them studied psychology 
(27) or teacher education (43). All participants either 
received 5 € or course credit for their participation.

The general musical sophistication scale of the Gold 
Musical Sophistication Index (Gold-MSI) [31] revealed 
that the level of musical expertise of hobby musicians was 
comparable to the Gold-MSI norm sample (norm sam-
ple: M = 70.41; SD = 19.94; hobby musicians: M = 69.75; 
SD = 13.37). From single items of the Gold-MSI, it 
became apparent that the average hobby musician in the 
present study had practiced an instrument regularly and 
daily for 4 to 5 years (Item 32: M = 4.86; SD = 1.81, means 
and standard deviations refer to the answering scale of 
the Gold-MSI), had practiced for one hour daily at the 
height of musical interest (Item 33: M = 3.24; SD = 1.37), 
and was able to play two musical instruments (Item 37: 
M = 2.76; SD = 1.05). For all analyses, we created a group 
of higher-expertise hobby musicians and a group of lower-
expertise hobby musicians by performing a median split 
on the Gold-MSI score with the threshold of 69.5.

Procedure

The general procedure of one trial of the complex span task 
is presented in Fig. 2. In the task, twelve single quarter 
note symbols were presented as memoranda. The pitch of 
these notes had to be recalled at the correct serial position. 
Between the presentation of these to-be-remembered notes, 
participants had to perform an unknown, notated melody on 
an electric piano. In other words, participants saw a single 
note they had to memorize, then had to perform a notated 
melody, saw another note they had to memorize, performed 
another melody, and so on. After the performance of the 
twelfth melody, the recall task followed. Participants com-
pleted four of these trials, i.e., had to complete four recall 
tasks. The reason for using such a small number of trials 
was that one trial took about 6 min and the whole experi-
ment in its present form already took about 1 h. Using a 
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larger number of trials probably might have led to fatigue 
and hence invalid data. Eye tracking and Midi data were 
recorded during the musical performance. They were used 
to analyze the association of the number and duration of 
fixation with the accuracy of performing the melodies [32]. 
These analyses, however, were unrelated to the present work 
and hence will not be reported in any further detail.

The complex span task started after participants gave 
informed consent and received instructions. Each of the 
four experimental trials began with a preparatory phase with 
three steps: (1) positioning the hand on the piano keyboard, 
(2) performing a preparatory melody, (3) calibrating the eye 
tracker. The tones of the melodies that had to be performed 
were drawn from a set of five adjacent tones. Participants 
were informed which tones they would have to play in a given 
trial and how to position their hand on the keyboard to play 
them. Thus, participants did not have to move their hands 
on the piano during one trial. Then, a preparatory melody 
was provided prior to the experimental task. Participants 
were allowed to play it for as long as they wanted in order to 
practice the mapping between note symbols and piano keys. 
The tones of this melody were drawn from the five tones of 
the given trial, but apart from that, the preparatory melodies 
did not resemble the experimental melodies in any further 
aspect. Subsequently, the eye tracker was calibrated and the 
complex span task started.

The complex span task consisted of two alternating phases: 
(1) the presentation of memoranda and (2) the performance 
of melodies (see Table 2, the mapping to TBRS*C processes 
will be explained below). The former phase comprised the 
presentation of a fixation cross (2000 ms) and of a single 
quarter note symbol in treble clef (2500 ms). The latter com-
prised a two-bar count-in (6856 ms), the musical performance 

(13,714 ms), and the saving of eye tracking data. During 
count-in and performance, a digital metronome provided the 
tempo of 70 beats per minute via speakers. During the count-
in, a preview of the first bar of the melody was provided. The 
whole melody appeared on the screen when the performance 
started. After each musical performance, the eye tracking data 
which had been collected during this performance was saved. 
Saving times varied marginally (M = 6124 ms; SD = 390 ms). 
In one trial of the task, the procedure depicted in Table 2 was 
repeated twelve times until participants had to recall all mem-
oranda and write them in the correct serial order on a sheet of 
paper with an empty staff.

Prior to the first experimental trial, participants performed 
a warm-up trial. It was similar to the experimental trials. 
However, only three instead of twelve notes had to be recalled 
and there were some additional instructions (“memorize the 
following note,” “play the following melody”) prior to each 
stimulus. The purpose of this warm-up was that participants 
could get used to the experimental procedure and that any 
misunderstandings could be clarified prior to data collection.

In the end of the experiment, participants completed the 
global scale of the Gold-MSI [31] termed general musical 
sophistication and answered questions on demographics. 
The experimental procedure was in full agreement with 
APA’s Ethical Principles of Psychologists and Code of 
Conduct [33] and with German data privacy regulations. 1

Fig. 2  Procedure of one trial of 
the complex span task

1 Federal Data Protection Act BDSG, retrieved 2022 May 5 from 
https:// www. geset ze- im- inter net. de/ bdsg_ 2018/ index. html# BJNR2 
09710 017BJ NE000 101116

https://www.gesetze-im-internet.de/bdsg_2018/index.html#BJNR209710017BJNE000101116
https://www.gesetze-im-internet.de/bdsg_2018/index.html#BJNR209710017BJNE000101116
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Design and Material

The design of the experiment was defined by the between-
participants factor expertise group (higher-expertise vs. 
lower-expertise hobby musicians) and the within-par-
ticipants factor tonal structure (major triads vs. arbitrary 
trichords). Sequences of memoranda consisted of four three-
note melodic cells. Depending on the level of the factor tonal 
structure, these cells were either major triads or arbitrary 
trichords. Major triads can be considered meaningful tonal 
structures in western music. They consist of a base note 
called root (e.g., C) and two further notes that have a fixed 
distance of four and seven semitones to the root (e.g., E 
and G). The name of a specific major triad is defined by its 
root (e.g., C major triad). Arbitrary trichords in the present 
study were defined as consisting of a root note followed by 
two notes that had a distance of eight and nine semitones to 
it (e.g., C, G#, A). We assumed that major triads would be 
beneficial for chunking processes. Participants performed 
two trials in each condition and were not informed about 
the regularities within the sequences of notes. The order of 
trials was randomized. Table 3 shows the twelve memoranda 
of the four trials.

To select the memoranda, the roots of each triad, i.e., 
the notes at positions one, four, seven, and ten, were ran-
domly selected from the notes between C4 and Eb5. As the 
three-note cells in both conditions had a fixed structure, the 
remaining notes were derived based on the root notes and 
experimental conditions. The melodies that had to be per-
formed between the presentation of the memoranda each 
consisted of four bars, with three notes in each bar (see 
Fig. 3). They contained only eighth and quarter notes and 
rests. They were created by arranging four one-bar rhythmic 
phrases in a random order and assigning a pitch to each note 
that was randomly drawn from a set of five adjacent pitches 
from the C major scale. All melodies had a similar structure, 
which guaranteed that the amount and rate of information 
that had to be processed was constant across all melodies. 
Simultaneously, as the order of rhythmic phrases and pitches 
was varied randomly, it was impossible for participants to 
anticipate how the melody would progress. Thus, they were 
forced to process the notes.

Note images were created with the program Forte 7 
Basic (https:// www. forte notat ion. com/ en/) and then 
altered with the graphic-editing software Gimp (https:// 
www. gimp. org/). To create the images containing the 

Table 2.  The phases of the 
musical complex span task 
and how they were mapped on 
TBRS*C processes

Duration Phase Exemplary stimulus image TBRS*C

2,000 ms Fixation cross Refreshing

2,500 ms Memorandum Encoding;

(Chunking); 

Refreshing

6,856 ms Count-in & 

preview

Processing 

distractors;

Refreshing

13,714 ms Musical 

Performance

Processing 

distractors;

Refreshing

6,124 ms Saving eye 

tracking data

Refreshing

For music students, the count-in phase was split up in a getting ready (3428 ms) and a preview phase 
(3428 ms) and the eye tracking data saving took 4425 ms

Table 3.  Each staff shows the 
twelve to-be-remembered notes 
that were presented successively in 
one trial of the complex span task

Major triads Arbitrary trichords

https://www.fortenotation.com/en/
https://www.gimp.org/
https://www.gimp.org/
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to-be-remembered notes, the indication of meter was 
removed, and a single quarter note symbol (0.3 × 1.2 cm) 
was positioned in the center of a short staff (6.0 × 1.3 cm) 
with a treble clef symbol. To-be-remembered notes as well 
as distractor melodies (24.0 × 0.6 cm) were positioned in 
the center of a white image (49.92 × 28.08 cm, 1920 × 1080 
pixels, 60 cm viewing distance). The experiment was pro-
grammed with the software ePrime (https:// pstnet. com/ 
produ cts/e- prime/); responses for the recall task and for 
the questionnaires were indicated on a sheet of paper.

Analyses

To obtain a measure of recall accuracy, the names of the 
note symbols that participants wrote as their response were 
transferred manually to a spreadsheet and then recoded 
as correct (1) or wrong (0) for each serial position. Only 
notes that were recalled at the correct serial position were 
judged as correctly recalled. In addition, a melodic cell 
(i.e., a major triad or an arbitrary trichord) was defined 
as being recalled correctly if its three notes were recalled 
correctly. The Midi data of the musical performance was 
analyzed with the algorithm MidiAnalyze [32] to derive 
how accurately the distractor melodies were performed.

In the following, we will first present descriptive plots 
and then results of a Bayesian mixed logistic regres-
sion model in which recall accuracy (0/1) was predicted 
by serial position and an interaction of expertise group 
(higher-expertise vs. lower-expertise) and tonal structure 
(major triads vs. arbitrary trichords). This inferential anal-
ysis provided insights into the data structure that was the 
basis for the TBRS*C simulations. Generally, TBRS*C 
simulations provide serial position accuracies, i.e., mean 
recall accuracies per serial position. In the present study, 
simulations were performed separately for expertise 
groups and experimental conditions. Thus, to interpret 
the simulations correctly, it is important to understand 
how recall accuracy varied with serial position, expertise 
group, and tonal structure.

Prior to analysis, six hobby musicians were excluded as 
they either had a very low recall accuracy of below 5% or 
did not adhere to experimental instructions. Experimental 
materials, data sets, and analysis code of this study can be 
accessed via https:// doi. org/ 10. 17605/ OSF. IO/ 6UKEV.

Results

Figure 4 shows mean values by group and condition for the 
proportion of correctly recalled notes, of correctly recalled 
melodic cells, and of correctly performed distractor notes. 
The left plot shows that recall was more accurate in the 
higher-expertise group and in the major triads condition; 
the advantage in the major triads condition was larger in the 
higher-expertise group.

To test this pattern statistically, we performed a Bayesian 
mixed logistic regression. The model was created in Stan 
(http:// mc- stan. org/), accessed via the R package brms [34]. 
Recall accuracy (0/1) was predicted by serial position and 
by an interaction of expertise group (higher-expertise vs. 
lower-expertise) and tonal structure (major triads vs. arbi-
trary trichords). We implemented a full random structure, 
i.e., the effect of all predictors as well as the intercept var-
ied across participants. This controlled for any differences 
between participants that were not accounted for by the pre-
dictors, such as domain-general WM capacity. The predictor 
serial position was an integer variable with values from zero 
to eleven. Thus, the intercept in the model represented the 
expected log-odds of the recall accuracy of a lower-exper-
tise hobby musician in the major triads condition at the first 
serial position. Leave-one-out (loo) analyses were performed 
but revealed no influential data points.

We used highly informative priors, which were defined 
a priori based on the expected pattern of results using the 
conditional means prior approach [35]. Table 4 shows pri-
ors and posterior distributions of the regression coefficients. 
The main effect of tonal structure (posterior mean regres-
sion coefficient: 0.71; 95% credibility interval: [0.35, 1.09]) 
and the interaction of expertise group and tonal structure 
(posterior mean regression coefficient: 0.63; 95% credibility 
interval: [0.09, 1.17]) were most pronounced; the main effect 
of expertise group was of marginal extent (posterior mean 
regression coefficient: 0.41; 95% credibility interval: [−0.09, 
0.91]). To clarify the pattern of interaction, Fig. 5 provides a 
conditional effects plot. It shows the predicted interaction of 
expertise group and tonal structure on the accuracy scale for 
the recall of the sixth note. The sixth note was chosen as it 
is in the center of the sequence of memoranda, i.e., it might 
neither be affected by recency nor by primacy effects [36]. 
The pattern of interaction was as expected: the difference 
in recall accuracy between sequences of major triads and 

Fig. 3  Two examples of the notated melodies which participants had to perform between the presentation of to-be-remembered notes

https://pstnet.com/products/e-prime/
https://pstnet.com/products/e-prime/
https://doi.org/10.17605/OSF.IO/6UKEV
http://mc-stan.org/
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sequences of arbitrary trichords was larger in the higher-
expertise group. This pattern of effects did not change using 
weakly informative priors.

Moreover, another regression analysis revealed that the 
accuracy of performing distractor notes (right panel of 
Fig. 4) did not differ by group, condition, or their interac-
tion. Using these predictors in a mixed linear model with the 
package lme4 [37] did not increase the fit to the data com-
pared to a null model without any predictors (χ2 (3) = 4.38; 
p = 0.22).

TBRS*C Simulations

Serial recall in the musical complex span task was then sim-
ulated with TBRS*C to investigate expertise differences in 
WM and in chunking processes. Table 2 depicts how the 
different phases of the experimental task were mapped on 
TBRS*C processes. The number of memoranda was set to 

twelve, as participants had to recall twelve notes in each of 
the four trials. From the second repetition onwards, the pres-
entation of the fixation cross was simulated as being used for 
refreshing already encoded notes. The time span in which 
the to-be-remembered note was presented was modeled as 
being used first for the encoding of the currently presented 
note, then for chunking, and for the refreshing of already 
encoded notes. However, during the encoding of the first 
two notes, chunking was not initiated, as chunks consisted 
of three notes. The duration of encoding the currently pre-
sented note depended on the value of the R parameter (6 at 
default, which corresponds to 500 ms). During chunking, 
the simulation searched in long-term memory for a chunk 
consisting of the last three notes. Long-term memory was 
defined to contain major triads, i.e., it was only possible that 
the simulation recognizes a chunk in sequences of major 
triads. Refreshing took place during any free time prior to 
the distractor task.

Fig. 4  Descriptive data (means and standard errors) of hobby musicians’ proportion of correctly recalled notes, correctly recalled melodic cells, 
and correctly performed distractor notes by expertise group and condition

Table 4  Priors and posterior 
distribution of regression 
coefficients of the Bayesian 
mixed logistic regression for the 
hobby musician sub-sample

A leave-one-out analysis was performed but revealed no influential data points

Parameter Prior Posterior mean Lower 95% CI Upper 95% CI

Intercept Normal (0, 0.01) − 0.04 − 0.35 0.27
Major triad Normal (0.4, 0.4) 0.71 0.35 1.09
Higher-expertise Normal (0.41, 0.39) 0.41 − 0.09 0.91
Higher-expertise by 

major triad
Normal (0.43, 0.47) 0.63 0.09 1.17

Serial position Normal (− 0.04, 0.03) − 0.12 − 0.17 − 0.08
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The distractor task, i.e., the performance of the notated 
melodies, started with a two-bar count-in. During this 
count-in, the first bar of the melody was presented. After 
the count-in, the four-bar musical performance started. 
Figure 6 shows how the distractor task was modeled in 
TBRS*C. Both the preview and the performance were 
modeled as alternating processing distractor notes and 
refreshing to-be-remembered notes. Ta indicated the time 
used to process a distractor note. Any free between the 
processing of subsequent distractor notes was modeled as 
being used for refreshing. This means that the preview and 
the musical performance were identical in the simulations. 
This approach was based on the assumption that, to prepare 
the performance, participants would process the distractor 
notes during the preview in a comparable manner as while 
playing them. In summary, as each bar contained three 
distractor notes and as participants read six bars (two-bar 
preview, four-bar performance), the musical performance 
was modeled as processing eighteen distractor notes inter-
spersed with refreshing the to-be-remembered notes. In the 
end of the distractor task, there was a short time interval 

in which the eye tracking data had to be saved. This time 
interval was modeled as being used for refreshing.

TBRS*C simulations were performed on higher-expertise 
and lower-expertise hobby musicians independently. Moreo-
ver, the simulation of the data was performed in two steps: 
First, only the data of the arbitrary trichords condition was 
simulated to obtain a baseline of the parameters Ta, R, and 
cSD. Second, using these initial parameter estimates, the 
data of the major triads condition was used to estimate PCR.

This two-step procedure was based on the assumption that 
the memory system cannot know beforehand if it would rec-
ognize a chunk in a certain sequence of memoranda. Hence, 
chunking is initiated in the arbitrary trichords condition as 
well. This means that all parameters except for the probability 
of chunk retrieval (PCR) are the same in both conditions. The 
PCR parameter, however, can only be estimated if it is pos-
sible to recognize chunks, i.e., in the major triads condition.

Table 5 shows the details of this two-step analysis as well as 
the results. The column “Values” indicates the parameter val-
ues that were considered in the analysis. If initial simulations 
showed that the best-fitting value was one of the extremes of the 

Fig. 5  Prediction of the Bayes-
ian regression model regarding 
the interacting effect of tonal 
structure and expertise group on 
hobby musicians’ recall accu-
racy at the sixth serial position

Fig. 6  Schematic representation 
of the way in which the perfor-
mance of the distractor melody 
was simulated in TBRS*C

Processing 
distractor 

Processing 
distractor 

Processing 
distractor 

Processing 
distractor 

Refreshing 
memoranda 

Refreshing 
memoranda 

Refreshing 
memoranda ... 

Preview Performance 
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tested values, additional smaller or larger values were included. 
We performed a 3000-run simulation with each combination of 
these values and computed the root mean square error (RMSE) 
to investigate the fit between the simulated and the human data 
for each serial position. The TBRS* basic parameters were set to 
the default values reported in Oberauer and Lewandowsky [17]: 
P = 0.3; τE = 0.95; s = 1; D = 0.5; Tr = 0.08; θ = 0.1; σ = 0.02. The 
column “Optimum” in Table 5 indicates the combination of 
parameter values for which the best fit was obtained.

In the simulation of the arbitrary trichords condition, the 
best fit was obtained with parameters that characterized higher-
expertise hobby musicians by a shorter chunk search dura-
tion (cSD = 800 ms), a stronger encoding (R = 8), and a longer 
time of attentional capture of distractor notes (Ta = 600 ms; 
RMSE = 0.070) compared to lower-expertise hobby musi-
cians (cSD = 1,200 ms; R = 6; Ta = 400 ms; RMSE = 0.091). 
Using these values, the simulation of the major triads con-
dition suggested that the probability of recognizing a chunk 
was larger for higher-expertise hobby musicians (PCR = 50%; 
RMSE = 0.061) than for lower-expertise hobby musicians 
(PCR = 30%; RMSE = 0.076).

Following these analyses, we were interested if chunking in 
the simulations was beneficial for recall even though chunks 
were recognized only with 30 to 50% chance. Thus, we per-
formed a “no chunking” simulation in which cSD and PCR were 
set to zero and all other parameters were kept constant. Figure 7 
shows serial position curves of human and simulated data, sepa-
rately for expertise groups and tonal structure conditions. The 
curves of the “no chunking” simulation in the top plots suggest 
that chunking indeed was beneficial for both expertise groups.

Music Students

Method

Sample

Music students (n = 75) were recruited at the Mannheim 
University of Music and Performing Arts. Thirty-four 

participants indicated to be male, 37 indicated to be 
female, and 4 did not make an indication concerning their 
sex. The mean age was 23.15 years (Min = 18; Max = 54; 
SD = 4.67; 3 missing). The prevalent study subjects were 
Bachelor of Music Education (27) and Bachelor (23) or 
Master (6) of Music. The mean Gold-MSI musical sophis-
tication score was 84.61 (SD = 7.04), which is nearly one 
standard deviation above the norm sample reported by 
Schaal and colleagues [31]. The typical music student had 
practiced an instrument regularly and daily for 10 years 
(Item 32: M = 6.8; SD = 0.46), had practiced for four hours 
daily at the height of musical interest (Item 33: M = 5.85; 
SD = 1.15), and was able to perform three different musical 
instruments (Item 37: M = 4.08; SD = 1.17). The sample 
was divided in a higher-expertise and a lower-expertise 
group based on a median split of the Gold-MSI score with 
the threshold of 85.5.

Procedure

The procedure used for the music student sub-sample dif-
fered in three aspects from the procedure used for hobby 
musicians. First, for music students, the preparatory phase 
prior to each trial did not involve a preparatory melody 
as it was assumed that they would know the mapping of 
piano keys to musical notes. Second, and most impor-
tantly, the count-in of the musical performance during 
the complex span task differed. For music students, the 
first bar of the notated melody was only visible during 
the second half of the count-in. Third, as this shorter 
preview resulted in a shorter time of eye tracking, eye 
tracking data saving took less time for the music students 
(M = 4,425.09 ms; SD = 143.12). So, in this experiment, 
the “count-in” phase in Table 2 consisted of a “getting 
ready” phase (3428 ms) in which the metronome provided 
the beat and an empty staff was visible, and a “preview” 
phase (3428 ms) in which the first bar of the melody was 
presented. This shorter preview made the task more dif-
ficult for the music students.

Table 5  Results of TBRS*C 
simulations for hobby 
musicians. A 3000-run 
simulation was performed for 
each combination of parameter 
values. The optimum was the 
combination of parameter 
values with the best fit to the 
experimental data

Ta and cSD values are in seconds. Model fit is indicated as RMSE

Exploratory analysis Results

Lower-expertise Higher-expertise

Condition Parameter Values Optimum Model fit Optimum Model fit

Arbitrary Trichord Ta 0.2; 0.4; 0.6; 0.8; 1 0.4 .091 0.6 .070
cSD 0; 0.2; 0.4; 0.6;

0.8; 1; 1.2; 1.4
1.2 0.8

R 4; 6; 8; 10 6 8
Major triad PCR 0.1; 0.3; 0.5;

0.7; 0.9; 1
0.3 .076 0.5 .061
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Design, Material, and Analyses

Design, material, and analyses were identical to the ones 
used for the hobby musician sub-sample. No music students 
were excluded prior to analyses.

Results

Figure  8 shows means and standard errors of the pro-
portion of correctly recalled notes, of correctly recalled 
melodic cells, and of correctly performed distractor notes. 

Fig. 7  Mean recall accuracy per serial position for simulated and human data of hobby musicians. noChunking denotes a simulation with 
cSD = 0 and PCR = 0
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The accuracy of the recall of notes and melodic cells varied 
strongly with tonal structure. The proportion of correctly 
recalled melodic cells was nearly twice as large in the major 
triads condition compared to the arbitrary trichord condition.

While there was an advantage in the major triads con-
dition compared to the arbitrary trichords condition, this 
advantage apparently did not vary between higher-expertise 
and lower-expertise music students. In addition, the plot 
shows a tendency for an unexpected main effect of expertise 
group, with the recall accuracy in the higher-expertise group 
being slightly lower.

To test the significance of this pattern of effects, we cal-
culated a mixed Bayesian regression model in the same man-
ner as for the hobby musician sub-sample. Table 6 shows 
priors and posterior distributions of the regression coeffi-
cients for this model. These results indicate a pronounced 
positive effect of tonal structure (posterior mean regression 
coefficient: 0.96; 95% credibility interval: [0.26, 1.64]) with 

more accurate recall in the major triads than in the arbitrary 
trichords condition, and a less pronounced negative effect of 
serial position (posterior mean regression coefficient: −0.16; 
95% credibility interval: [−0.20, −0.12]). The model pro-
vided no evidence of a main effect of expertise group (poste-
rior mean regression coefficient: 0.23; 95% credibility inter-
val: [−0.44, 0.89]) or of an interaction of expertise group 
and tonal structure (posterior mean regression coefficient: 
0.48; 95% credibility interval: [−0.51, 1.47]). Parameter 
estimates changed when using uninformative priors, but the 
overall pattern of effects stayed the same.

TBRS*C Simulations

TBRS*C simulations for music students were adapted to the 
experimental procedure. As explained above, when count-
in started, music students heard the metronome and saw 

Fig. 8  Descriptive data (means and standard errors) of music students’ proportion of correctly recalled notes, correctly recalled melodic cells, 
and correctly performed distractor notes by group and condition

Table 6  Priors and posterior 
distribution of regression 
coefficients of the Bayesian 
mixed logistic regression model 
for the music student sub-
sample

A leave-one-out analysis was performed but revealed no influential data points

Parameter Prior Posterior mean Lower 95% CI Upper 95% CI

Intercept Normal (0.37, 0.04) 0.57 0.10 1.05
Major triad Normal (0.43, 0.46) 0.96 0.26 1.64
Higher-expertise Normal (0.45, 0.45) 0.23 −0.44 0.89
Higher-expertise by 

major triad
Normal (0.54, 0.69) 0.48 −0.51 1.47

Serial position Normal (−0.04, 0.04) −0.16 −0.20 −0.12
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an empty staff. This phase was simulated as being used for 
refreshing to-be-remembered notes. Then, there was a pre-
view of the first bar of the melody and the four-bar musical 
performance. As each bar contained three notes, the preview 
(1 bar) and the musical performance (4 bars) were modeled 
as the processing of 15 distractor notes interspersed with 
refreshing (cf. Figure 6). In addition, the eye tracking data 
saving, which was modeled as being used for refreshing 
to-be-remembered notes, was implemented with a duration 
of 4425 ms. All other aspects of the TBRS*C simulations 
were identical to the experiment involving hobby musicians.

Table 7 shows the results of the simulations for these 
two groups. Overall, parameter estimates that provided 
the best fit characterized music students as encoding 
memoranda strongly (R = 8), recognizing chunks with a 
100% probability (PCR = 1), and requiring only 100 ms 
to process distractor notes (Ta = 100 ms). It should be 
noted that 100 ms is the smallest possible value for the Ta 
parameter and 1 is the largest possible value for the PCR 
parameter. Hence, no smaller Ta values and no larger PCR 
values were included in the exploratory analysis.

The only difference in parameter estimates between 
the expertise groups was that higher-expertise music 
students invested more time to search for chunks 
(cSD = 800  ms) than lower-expertise music students 
(cSD = 600 ms;  RMSEarbitrary trichords/lower-expertise = 0.087; 
 R M S E a r b i t r a r y  t r i c h o r d s / h i g h e r - e x p e r t i s e  =  0 . 0 8 1 ;       
R M S E m a j o r  t r i a d s / l o w e r - e x p e r t i s e  =  0 . 1 1 2 ; 
RMSEmajor tr iads/higher-expertise = 0.090). Figure  9 shows 
serial position curves of human and simulated data.

Discussion

The present study aimed to provide insights into expertise 
differences in WM and chunking processes in the context of 
the Time-Based Resource Sharing model [2]. These insights 
were provided by simulating the basic cognitive processes 
necessary for hobby musicians and music students to per-
form a serial recall task with the TBRS*C computational 
model [16]. It was analyzed which parameter values would 

best reflect differences between the higher-expertise and 
the lower-expertise group within both sub-samples.

The experiment involved a musical complex span task in 
which twelve single note symbols were presented succes-
sively for serial recall of pitch. The presentation of these 
to-be-remembered notes was interspersed with a distrac-
tor task, namely the performance of an unknown, notated 
melody on an electric piano. We varied within-participants if 
sequences of to-be-remembered notes formed major triads or 
arbitrary trichords. We expected that major triads would sup-
port chunking, as they can be considered meaningful tonal 
structures in western music. Accordingly, we expected that 
sequences of major triads would be recalled more accurately 
than sequences of arbitrary trichords and that this advantage 
would be more pronounced in higher-expertise groups.

Analysis of the human data with regression models pro-
vided two main insights. First, as expected, hobby musi-
cians’ recall was more accurate in the major triads condition 
than in the arbitrary trichords condition and this effect was 
more pronounced in the higher-expertise group. Second, 
music students’ recall was more accurate in the major triads 
condition than in the arbitrary trichords condition but did 
not differ between expertise groups. To go one step further 
and highlight differences in the underlying cognitive pro-
cesses, the serial recall task was performed by the TBRS*C 
computational model [16]. Based on theories of expert 
memory, such as template theory [4] or LT-WM theory [5] 
and based on biological findings on long-term chunk forma-
tion by Hebbian learning [21] and nerve myelination [13], 
we assumed that experts’ cognitive advantages result from 
chunking as well as from their ability to rapidly access infor-
mation in LTM. Accordingly, the TBRS*C parameters that 
represent the probability of chunk recognition (PCR) and 
the speed of accessing LTM (R, cSD) were fit to the human 
data of the higher-expertise and lower-expertise groups sepa-
rately for the hobby musician and the music student sub-
sample. In addition, we explored if the expertise differences 
in the timing of encoding and chunking processes would 
be associated with differences in the sharing of resources 
between the two task components. Hence, the parameter that 
represents the time used for the processing of distractors (Ta) 

Table 7  TBRS*C results for music students. A 3000-run simulation was performed for each combination of parameter values. The optimum was 
the combination of parameter values with the best fit to the experimental data

Ta and cSD values are in seconds. Model fit is indicated as RMSE

Exploratory analysis Results

Lower-expertise Higher-expertise
Condition Parameter Values Optimum Model fit Optimum Model fit
Arbitrary Trichord Ta 0.1; 0.2; 0.4; 0.6 0.1 .087 0.1 .081

cSD 0.2; 0.4; 0.6; 0.8; 1 0.6 0.8
R 4; 6; 8; 10 8 8

Major triad PCR 0.1; 0.3; 0.5; 0.7; 0.9; 1 1 .112 1 .090
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was also fit to the human data of the higher-expertise and 
lower-expertise groups.

In the simulations, hobby musicians searched chunks 
for 800 to 1200 ms, recognized chunks with a 30 to 50% 
chance, encoded to-be-remembered notes for 375 to 
500 ms, and processed distractor notes for 400 to 600 ms. 
With respect to expertise differences, simulations indi-
cated that higher-expertise hobby musicians might have 
encoded to-be-remembered notes more rapidly, might 
have invested less time in chunk search, and might have 

been more likely to recognize chunks compared to lower-
expertise hobby musicians. This is in line with the notion 
that expertise supports both chunking [7-9] and the rapid 
access of information in LTM [10, 11]. Moreover, the 
present simulations suggested that lower-expertise hobby 
musicians might have used less time to process distractor 
notes than higher-expertise hobby musicians. This might 
have provided them with additional time for refreshing to-
be-remembered notes, compensating inefficient encoding 
and chunking.

Fig. 9  Mean recall accuracy per serial position for simulated and human data of music students
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Music students in the present simulations were character-
ized by searching chunks for 600 to 800 ms, by recognizing 
chunks with a 100% chance, by encoding to-be-remembered 
notes for 375 ms, and by processing distractor notes for 100 ms. 
Expertise differences in parameter estimates for music students 
only concerned the chunk search duration: higher-expertise 
music students were estimated to have invested 200 ms more 
in chunk search than lower-expertise music students. How-
ever, the regression analysis showed no evidence for an effect 
of expertise group on music students’ recall accuracy. Thus, 
the difference in the chunk search duration between expertise 
groups in the simulations might reflect random variation in 
recall accuracy across the expertise groups.

Expertise in the Context of the Time‑Based Resource 
Sharing Model

The present simulations suggested that in the context of the 
Time-Based Resource Sharing model [2], expertise can be 
conceptualized by (1) a faster encoding of memoranda, (2) 
a shorter duration of chunk search, and (3) a more reliable 
recognition of chunks. This can be concluded from differ-
ences between higher-expertise and lower-expertise hobby 
musicians in the parameters R (strength of encoding memo-
randa), cSD (chunk search duration), and PCR (probability 
of chunk retrieval), respectively. As such, this finding is in 
line with theories of expert memory [4, 10] that also assume 
that experts’ advantage is based both on chunking and the 
rapid access to information in LTM. However, the present 
study provided novel insights on the way in which chunk-
ing and rapid LTM access are beneficial. The rapid LTM 
access leads to an increase in the time available to refresh 
memoranda. The larger chance of recognizing chunks leads 
to an increase in the efficacy of refreshing. If a chunk is rec-
ognized successfully, multiple memoranda can subsequently 
be refreshed as a single unit. This saves time that can be 
used for refreshing other chunks or single memoranda. So, 
if chunking is successful, the association of items and posi-
tion markers after a period of refreshing is stronger than if 
chunking fails.

Moreover, in the hobby musician sub-sample, expertise 
differences in WM and chunking processes apparently were 
associated with changes in the way in which resources were 
shared between the tasks. The estimates for the Ta parameter 
suggest that lower-expertise hobby musicians might have 
used less time for the processing of distractors. Framed 
differently, they might have used more time for refresh-
ing during the distractor task. This might be interpreted as 
compensation for less efficient WM processes. If, due to 
unsuccessful chunking, items are rather weakly associated 
with position markers, participants might devote less time 
to distractor processing to gain additional opportunities to 
refresh memoranda.

There are, however, two issues that limit the scope of this 
finding. First, our distractor task and our way of estimating 
Ta were rather original. Commonly, very simple distractor 
tasks are used for TBRS*C simulations and Ta is estimated 
based on measured reaction times. Thus, the validity of 
estimating Ta by fitting simulated data to human data first 
needs to be established by additional research. Second, the 
accuracy in the distractor task is commonly restricted to a 
rather high level by excluding inaccurate trials. Due to the 
demanding nature of the distractor task in the present study, 
we refrained from applying a strict criterion on the accuracy 
of distractor processing, as this would have led to a large loss 
of data. Consequently, one might argue that expertise differ-
ences in the Ta parameter might indeed result from differ-
ences in the accuracy of performing distractor notes. How-
ever, our analyses showed that hobby musicians’ accuracy 
of performing distractor notes was constant across expertise 
groups. In addition, it is unclear how the time used to pro-
cess distractor notes and the accuracy of their performance 
was related. Intuitively, it might be assumed that a longer 
processing time is associated with a more accurate perfor-
mance. As musical performance is strictly timed, though, the 
opposite might be true. A short processing might be associ-
ated with a more accurate performance as it facilitates the 
maintenance of the musical timing. Thus, it is unclear if the 
accuracy of performing distractor notes is actually relevant 
for the Ta estimate.

Despite these limitations, it is an empirical fact that the 
model fit was optimal when Ta differed between expertise 
groups in such a way that lower-expertise hobby musicians 
used less time for distractor processing than higher-expertise 
hobby musicians. To test the assumption that the time used 
for distractor processing is related to the strength of item-
position associations, future studies might experimentally 
vary the length of refresh episodes prior to the distractor 
task. If the distractor task starts right after a memorandum 
is encoded, the association of the previous memoranda with 
their respective position markers should be weaker than if 
there is time to refresh prior to the distractor task.

In contrast to the results of hobby musicians, the theo-
retical implications for music students’ results were less 
clear. Two aspects need to be discussed in greater detail, 
namely (1) why simulations suggested that higher-expertise 
music students invested more time in chunk search than 
lower-expertise music students and (2) why there were no 
expertise differences in other parameters.

Concerning the former, we argue that the difference in 
chunk search duration between higher-expertise and lower-
expertise music students was not meaningful as it probably 
reflected random variation of recall accuracy across exper-
tise groups. The regression analysis showed that the differ-
ence in recall accuracy between higher-expertise and lower-
expertise music students was not statistically significant. 
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The simulations, though, cannot differentiate between dif-
ferences that are statistically significant and those that are 
not. It adapts to any difference between groups.

But why was the marginal difference in recall accuracy 
between the expertise groups reflected in the cSD parameter 
and not in some other parameter? The chance of recognizing 
chunks (PCR) and the time used for processing distractor 
notes (Ta) were at maximally efficient values for all music 
students. So, R and cSD were the only possible candidates 
for creating differences within the music student sub-sam-
ple. As R affects both encoding and refreshing, even small 
changes in R might lead to rather pronounced changes in the 
recall accuracy. Thus, this parameter might not have been 
suited to account for the rather small difference in recall 
accuracy between higher-expertise and lower-expertise 
music students.

It becomes clear that one drawback of TBRS*C is that it 
simulates the mean serial position accuracy across groups. 
When groups are compared, the simulation might indicate 
differences between groups that merely reflect random vari-
ation. As described by Farrell and Lewandowsky [38], one 
way of handling this problem is by simulating individual 
participants instead of groups. This leads to distributions of 
model parameters that can be inferentially tested for differ-
ences between groups. Another way of handling this prob-
lem is to complement TBRS*C simulations with regres-
sion models that analyze the data structure that underlies 
the simulations, as in the present study. This helps with the 
interpretation of simulation results as it allows identifying 
cases in which the simulation reflects group differences that 
are not statistically significant.

Concerning the finding that there were no differences in 
other parameters between expertise groups, we argue that 
there are three potential reasons for this: a ceiling effect, 
the homogeneity of the music student sub-sample, and the 
lacking selectivity of the Gold-MSI for extreme values. In 
the major triads condition, more than 50% of the music stu-
dents had a recall accuracy of 100%. These participants were 
equally distributed across the expertise groups, i.e., half of 
the higher-expertise and half of the lower-expertise music 
students recalled all sequences of major triads perfectly. 
This ceiling effect might have obscured the true difference 
between expertise groups [39], resulting in marginal group 
differences in recall accuracy and, in turn, similar TBRS*C 
parameter estimates.

Moreover, the standard deviation of the Gold-MSI score 
suggests that the music student sub-sample lacked varia-
tion in musical expertise. Overall, participants in this sub-
sample were on a similar level of musical expertise. Lastly, 
the selectivity of the Gold-MSI score might decrease for 
extreme values. The questionnaire might not be suited to 
differentiate between a highly experienced and a very highly 
experienced person. Therefore, the categorization of music 

students as either lower-expertise or higher-expertise might 
not have been meaningful.

Future studies might avoid ceiling effects in two ways. 
First, different tonal structures might be used. As reflected 
in the likelihood of chunk recognition of 100%, major triads 
might have been too easy to recognize for music students. 
Other tonal structures that are more complex and less com-
mon might be recognized only by highly experienced music 
students. Second, future studies might employ computerized 
adaptive testing [40]. This method gradually adapts the dif-
ficulty of a task to the participant’s ability level. The diffi-
culty of the next trial in an experiment is selected based on 
the accuracy in the recently completed trials. In a complex 
span task, this would mean that the list length of a trial is 
adapted based on the recall accuracy of the previous trials. 
When a trial is completed with perfect accuracy, the num-
ber of memoranda in the following trials would increase up 
until a point where the recall accuracy is no longer perfect. 
This method avoids ceiling effects and thereby allows to 
accurately measure differences between participants even 
in groups that are very experienced.

Lastly, it might appear as if interference between the to-
be-remembered notes and the to-be-performed notes might 
pose a problem for our findings. The level of interference 
was constant across expertise groups and tonal structure 
conditions, though. Hence, interference cannot explain the 
differences we found between these factors. Nevertheless, 
the present findings should be replicated by future studies 
with a distractor task that is not domain specific.

Implications for Chunking

In addition to the conceptualization of expertise within the 
Time-Based Resource Sharing model, the present results pro-
vided insights into chunking mechanisms. It became appar-
ent that chunking is a universal process that is not restricted 
to experts. The simulation of hobby musicians suggests that 
they might have invested a considerable amount of time in 
chunk search. Moreover, the “no chunking” simulation sug-
gests that chunking was advantageous for recall despite the 
rather low probability of chunk retrieval. This is in line with 
previous claims that chunking is a general information-pro-
cessing mechanism. Gobet and colleagues claimed that there 
is “substantial evidence for a unifying information-processing 
mechanism, known as ‘chunking’” [41, p. 236]. Moreover, 
Mathy and Feldman stated that “memory involves a kind of 
reflexive data compression, whereby material to be encoded 
is automatically analyzed for structure and redundancy” [12, 
p. 357]. Chunking, i.e., the search for known structures in pro-
cessed information, seems to be initiated whenever information 
is processed. The initiation does not depend on knowledge or 
expertise. Even if no chunk is recognized in most cases, chunk-
ing appears to be sustained.
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To provide further proof for the universal nature of 
chunking, future studies could conduct the present experi-
ment with a sample of non-musicians. This would reveal if 
chunking is initiated even if participants have absolutely no 
knowledge on major triads. In addition, it would be interest-
ing to analyze chunking in a multi-media context, in which 
sound is presented together with note symbols [42].

Advancing TBRS*C

Guida and colleagues [43] provided evidence from neu-
roimaging experiments that expertise acquisition might 
progress in two stages. At the first stage, chunks start to 
become available in LTM which means that they do not 
have to be built during processing by binding elements in 
WM. Thus, the focus shifts from chunk creation to chunk 
retrieval. Physiologically, this is associated with a decrease 
of the cerebral activation in WM areas. At the second stage, 
more comprehensive knowledge structures such as templates 
[4] or retrieval structures [5] are developed that allow using 
parts of LTM as WM. This is associated with an increased 
involvement of LTM brain areas in WM tasks.

Currently, TBRS*C only represents the former stage. 
Simple, non-hierarchical chunks are available in LTM and 
can be retrieved after encoding new stimuli. To account 
for the second stage of expertise acquisition and thereby 
advance TBRS*C as a model of expert memory, knowledge 
structures could be implemented in the simulations.

Templates have meaningful structures as a fixed core and 
slots that allow extending this core with variable informa-
tion [4]. In the case of tonal music, two-note pairs (such as 
C-E) might denote a fixed core. Complemented with a third 
note, this two-note core can form different meaningful tonal 
structures such as a major triad (C-E–G) or an augmented 
triad (C-E–G#). In TBRS*C, this could be implemented by 
adding two-note pairs as well as triads to LTM and by pro-
gramming the simulation to search for chunks after the sec-
ond note and to extend encoded chunks to form three-note 
templates. For example, the simulation might first encode 
C-E as a chunk and then, if the following note is G, might 
extend this chunk to form a C-E-G major triad template.

Retrieval structures are based on a different logic than 
templates. They could rather be described as hierarchical 
structures in which multiple chunks can be encoded within 
supergroups [5]. In the musical domain, multiple major triads 
(such as C-E-G and F-G-C) belong to the same scale (such 
as C major) and hence are more closely associated with each 
other than with major triads from other scales (such as D-F#-
A). This concept of supergroups could again be implemented 
by adapting the LTM of TBRS*C. If the LTM would not only 

contain major triads but also groups of multiple major triads, 
the simulation could encode not only three but even six notes 
as a single unit. Future studies might implement these two 
kinds of knowledge structures in TBRS*C and then compare 
which simulation provides a better fit to human data.

Conclusion

In conclusion, we assumed that during a complex span task, 
the main cognitive processes would be encoding, i.e., the 
association of items and positions through Hebbian learning 
[18], refreshing/decay, i.e., the increase or decrease of the 
strength of item-position-associations due to short-term neu-
ral plasticity [23, 24], and chunking, i.e., the recognition and 
encoding of known units in novel stimuli, with the knowl-
edge of these units being acquired through long-term Heb-
bian learning [21]. These biologically plausible cognitive 
processes were mathematically implemented in the TBRS*C 
model. This model was then applied to human data from a 
complex span task with musical notes to reveal details about 
expertise differences in WM functioning. This provided evi-
dence that experts’ WM is characterized by faster encoding 
and chunk search, and more reliable recognition of chunks. 
Both contribute to the better performance of experts’ WM, 
as the former leads to an increase in refresh times and the 
latter renders refreshing more effective. TBRS*C has proven 
a useful tool for the research on expert cognition. We hope 
that future studies make use of this tool and thereby achieve 
further insights how expertise can be conceptualized in the 
Time-Based Resource Sharing model.
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