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Painlevé II I d i f ferent ia l equat ions

Claus Her t l ing

The Painlevé equations are second order differential
equations, which were first studied more than 100
years ago. Nowadays they arise in many areas in
mathematics and mathematical physics. This snap-
shot discusses the solutions of one of the Painlevé
equations and presents old results on the asymptotics
at two singular points and new results on the global
behavior.

1 The Painlevé equat ions

Asking for functions f : R → R, probably first the polynomials in R[x] like
f(x) = x2 + x− 1 come into mind. The next examples might be quotients of
polynomials like g(x) = x3−2x−1

x2+1 . However, many important functions cannot
be defined by a polynomial relation. These are the so-called transcendental
functions, such as the sine function, cosine, logarithms, and so on.

The most prominent one of the transcendental functions is the exponential
function f : R→ R with f(x) = ex. It can be characterized as follows: It is the
unique solution of the first order differential equation f ′(x) = f(x) with the
initial value f(0) = 1.

At the end of the 19th century, the exponential function and a number of
other transcendental functions were well known, and their importance in many
applications was obvious. They can be called classical transcendental functions.
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The French mathematician Paul Painlevé (1863–1933) then undertook a
search for new transcendental functions. To find them he looked at second
order differential equations and their solutions. His work [10] was continued
by Bertrand Gambier (1879–1954) in [2]. They obtained a list of 50 families of
second order differential equations which are distinguished (within all second
order differential equations) by the following property, which is nowadays called
the Painlevé property:

Painlevé property. In C or C − {0} or C − {0; 1} (depending on the
differential equation) any local solution (which is defined near a point x0)
extends near any path (which starts at x0) to a function which is almost complex
analytic, the bad points being only poles.

Recall that a function is real analytic in a point x0 if it can be written locally
around x0 (such that it is defined near the point x0) in the form of a convergent
power series

∑∞
k=0 ak(x− x0)k. That means that the value at a point x near x0

of such a function is the limit for n→∞ of the sequence of numbers which are
given by the finite sums

∑n
k=0 ak(x− x0)k. Functions that are real analytic in

any point are called real analytic functions. This notion extends to complex
valued functions in an open subset of the set C of complex numbers. Then
those functions are called complex analytic or holomorphic.

A pole is a point x0 such that near x0 the function can be written as a
convergent series

∑∞
k=p ak(x − x0)k for some p ∈ Z<0 and some ap 6= 0. So

in contrast to before, we allow finitely many terms of the form a−k
1

(x−x0)k in
the sum. The number p is the order of the pole. A pole of order 1 is called a
simple pole.

The Painlevé property contains two non-trivial properties, first that solutions
extend arbitrarily far, that is, along arbitrary paths, and second, that they have
at most poles and no essential singularities.

Painlevé listed correctly all functions that satisfy the Painlevé property but
his proof that they fulfill this property turned out to be incomplete. However,
nowadays there are several proofs, see for example [3]. Also the property that
most (not all) of the solutions of the Painlevé equations are new transcendental
functions, was made precise and was proved only much later (by Nishioka and
Umemura and others in the 1980s).

It turned out that the list of the 50 families can be simplified to a list of
six out of the 50 families, which are called the Painlevé equations of types
I, II, III, IV, V and VI. The other families can be reduced either to one of the
equations in these six families, to other well-understood differential equations,
or to classical transcendental functions. The families of types I, II, III, IV, V
and VI have 0, 1, 2, 2, 3, and 4 parameters, respectively. We will see what the
two parameters are for the Painlevé III equations in the next section.
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In the second half of the 20th century, physicists became interested in
the Painlevé equations because many applications in mathematical physics
emerged. Mathematicians became intrigued by the Painlevé equations because
of relations to many areas in mathematics. Some expositions with lots of
references are [1, 3, 6, 11].

2 One of the Painlevé II I equat ions

In this snapshot, one of the Painlevé III equations will be considered in detail.
It is the equation

f ′′(x) = (f ′(x))2

f(x) − 1
x
f ′(x) + 4(f(x))3 − 4 1

f(x) . (1)

Because 1
x appears, the equation is defined on C−{0}. Though in this snapshot,

we will look only at real valued solutions on R>0. Of all the Painlevé III
equations, this is the most important one in mathematical physics, and in this
application the real solutions on R>0 are used. And it is the one with the most
symmetries. The symmetries will be explained in this snapshot.

Equation (1) does not look appealing at all. A prettier equation is obtained if
one chooses locally a function g(x) with f(x) = eg(x)/2. Then a short calculation
shows that g(x) satisfies the differential equation

(x∂x)2g(x) = 16x2 · sinh(g(x))
[

= 8x2(eg(x) − e−g(x))
]
. (2)

Here we use ∂x = d/dx. By looking at equation (2) one finds: If g is a
solution of equation (2), then also g + 2πi,−g, and −g + 2πi are solutions of
equation (2). By plugging these three terms into f(x) = eg(x)/2, we see that
if f is a solution of equation (1), then also −f , f−1 = 1

f , and −f
−1 = − 1

f are
solutions of equation (1). The Painlevé property above means the following
for real solutions on an open subset of R>0: If a solution tends to infinity
approaching one point x0 from the left or the right, then it has a pole of some
order p at this point. This implies especially that the solution extends uniquely
to a function on the other side of x0. More generally, any solution on an open
subset of R>0 extends to a function on all of R>0 which might have poles at
some points and which is everywhere else real analytic.

If f has a pole at x0 then f−1 = 1
f is also a solution of equation (1), and f−1

has a zero at x0. Let
∑∞
k=1 ak(x− x0)k be the power series representation of

f−1 at a zero x0. Note that we do not need a summand of the form a0(x−x0)0

if x0 is a zero. One can plug this power series into the equation (1), using
(f−1)′(x) =

∑∞
k=1 kak(x−x0)k−1 and (f−1)′′(x) =

∑∞
k=2 k(k−1)ak(x−x0)k−2,
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and compare the coefficients of the different powers of (x− x0) on both sides of
the equation. With a bit of computation, one finds the following:

a1 = ±2, a2 = 2a1

x0
, a3 is arbitrary in R,

ak for k ≥ 4 are determined by a1 and a3.

(3)

Therefore we always have a1 6= 0 and so the zero of f−1 at x0 is a simple zero
and the pole of f at x0 is a simple pole.

Therefore all solutions of equation (1) have at most simple zeros and/or
simple poles, and both of them come in two types: A simple zero x0 of a
solution f is called of type [0+] if f ′(x0) = 2 which corresponds to a1 = 2. It
is called of type [0−] if f ′(x0) = −2 which corresponds to a1 = −2. A simple
pole x0 of f is called of type [∞+] respectively [∞−], if x0 is a simple zero of
f−1 of type [0+] respectively [0−]. The zeros and poles have to be considered
on the same footing and have to be treated with equal care. In fact, already
the appearance of 1

f in equation (1) indicates that the zeros of solutions have
also to be treated with special care, not only the poles of solutions. Points
x0 ∈ R>0 at which a solution has a simple zero or pole are called singular, the
other points are called regular.

Consider a point x0 ∈ R>0. We denote by R∗ the set R− {0}. Then for any
two numbers a0 ∈ R∗ and a1 ∈ R, there is a unique solution f of equation (1)
with f(x0) = a0 and f ′(x0) = a1. Both, uniqueness and local existence, are
elementary facts from the theory of ordinary differential equations. The global
existence follows with the Painlevé property. For such a solution f , x0 is a
regular point. The values (a0, a1) ∈ R∗ × R are called initial values of the
solution f . Thus, for any initial values and any x0 ∈ R>0, there is a unique
solution of equation (1) with these initial values at x0.

A variant of this holds also at singular points: For any pair (a1, a3) ∈
{±2} × R, there is a unique solution f of equation (1) with a simple zero at x0
and with power series representation at x0 with coefficients as in equation (3).
This fact builds on equation (3). The pair (a1, a3) ∈ {±2} × R gives the initial
values of a solution at a zero of it. By passing to f−1, one can interpret (a1, a3)
also as the initial values of a solution at a pole of it. As before, uniqueness and
local existence follow from the theory of ordinary differential equations, and
the global existence follows with the Painlevé property.

We now see that all solutions to equation (1) can be constructed by choosing
two parameters, as indicated at the end of Section 1.

It turns out that one can glue the sets R∗ × R of initial values for regular
points and the sets {±2} ×R and {±2} ×R of initial values for zeros and poles
to one set Mini(x0). Here “gluing” means that the set Mini(x0) is a geometric
object such that each point of it corresponds to one of the possible initial values.
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In fact, Mini(x0) is a “real algebraic surface” and can be described by four open
pieces (four charts) glued along R∗ × R. Each of the charts is isomorphic to
R × R (that means, there is a 1 − 1 correspondence) and contains the set of
regular initial values and one of the four components (isomorphic to R) of the
set of singular initial values. The real algebraic surface Mini(x0) is constructed
in [4, Chapter 1]. Spaces of initial values for most Painlevé equations had been
constructed in [9].

Denote by Msol the set of all real valued solutions of equation (1) on R>0
(poles are allowed).

Then there is a natural bijection, that is, a 1− 1 correspondence, between
Mini(x0) and Msol which sends any initial values to the corresponding unique
solution. As this is a bijection for every chosen x0, also all the spaces Mini(x0)
look the same for different x0. The next section explains how the sets look
like roughly.

3 Asymptot ics near 0 and∞

The set Msol is given in a very abstract way so it is hard to work with it. As
we have said before, within the sets Mini(x0), there is no best one. But it turns
out that there is a best possible reference set, a surface which is in a natural
bijection to Msol and which can be described concretely. We will construct it as
a set of initial values at the limit point x = 0. These initial values will describe
the asymptotics at x = 0 of solutions of equation (1).

A more conceptual way would be to construct it as “monodromy data” of
certain associated “meromorphic connections” [5, 1, 12, 4], but explaining that
is beyond the scope of this snapshot.

It is a major question for many differential equations how the solutions look
like asymptotically (= roughly) at certain singular points. In our case, the
singular points are 0 and ∞. The asymptotics of the solutions at 0 and ∞ have
been studied in many publications, especially in [7, 5, 8, 4]. We will now first
give the equations for the surface Mini(0) which will serve as set of initial values
at 0 and afterwards describe the results.

Mini(0) :=
{

(s, b1, b2) ∈ R3 | b2
1 +

(
s2

4 − 1
)
· b2

2 − 1 = 0
}
. (4)

For a fixed s ∈]−2, 2[, the solution set of pairs (b1, b2) for the describing equation
consists of the two components of a hyperbola in the plane. For s ∈ {±2},
it consists of two lines, for s ∈ R − [−2, 2] it is an ellipse. These curves glue
together to a surface which is sketched in the left picture in Figure 1. It is
roughly (= topologically) a sphere minus four holes. The right picture is given
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for later use. There the four holes are shifted to the front of the sphere, the
back of the sphere is not visible.

Figure 1: Two images of the surface Mini(0).

We claim that there is a natural bijection Mini(0)→Msol, which we denote
by (s, b1, b2) 7→ f(s,b1,b2). To describe this bijection, we write down the leading
term 1 of f(s,b1,b2) for x near 0. It is in any case a simpler function, which
approximates f(s,b1,b2) near 0 very well. In the following, we describe five
different cases for the leading term, depending on the value of s.

1st case, s ∈]− 2, 2[
The leading term of f(s,b1,b2) is

Γ( 1
2 − α−)

Γ( 1
2 + α−)

· b− ·
(x

2

)α−
, (5)

where α− ∈]− 1
2 ,

1
2 [ and b− ∈ R∗ are defined by

sin(πα−) = s

2 , (6)

b− = b1 +
√

1− s2

4 · b2. (7)

1 Note that the notion of a leading term here is different from the more common notion of
the leading term of a polynomial.
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Note that in this case, we have s
2 ∈ ] − 1, 1[ and

√
1− s2

4 ∈ R>0, so the
equations (6) and (7) always have solutions. The expression Γ(y) in equation (5)
is the value at y ∈ R of the Gamma function, another classical transcendental
function. 2 It can be calculated that near 0 the solution has no zeros or poles.
The solution is either positive near 0 (⇐⇒ b− > 0 ⇐⇒ b1 > 1) or negative
near 0 (⇐⇒ b− < 0 ⇐⇒ b1 < −1).

2nd case, s = 2
The leading term of f(s,b1,b2) is

2b1 · x ·
(
− log x2 + π

2 · b1 · b2 − γEuler
)
, (8)

here γEuler = 0, 5772 . . . is Euler’s constant. 3 The solution has no zeros or
poles near 0, it is either positive ( ⇐⇒ b1 = 1) or negative ( ⇐⇒ b1 = −1)
there.

3rd case, s > 2
The leading term of f(s,b1,b2) is

− x

tNI
· sin

(
2tNI log x2 − 2 arg Γ(1 +

√
−1 · tNI) + δNI

)
, (9)

here tNI ∈ R>0 and δNI ∈ [0, 2π[ are determined by

cosh(πtNI) = s

2 , (10)

cos(δNI) = b1, (11)

and Γ denotes the Gamma function as before.

4th and 5th case, s = −2 and s < −2
The leading term of f(s,b1,b2) is the inverse of the leading term of f(−s,b1,−b2).

In all five cases, the formulas show that the initial value (s, b1, b2) ∈Mini(0)
determines the leading term. And it is not so hard to recover the initial value
(s, b1, b2) from the leading term and from the relation between s, b1 and b2 in
equation (4). A hard fact is that the leading term determines the solution.

2 We do not need the precise definition of the Gamma function here. If you are interested,
you can find it on Wikipedia: https://en.wikipedia.org/wiki/Gamma_function.
3 If you are interested, you can find the definition of Euler’s constant on Wikipedia:
https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant.
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Therefore the initial values also determine the solution which gives a natural
bijection Mini(0)→Msol.

Roughly, the behavior of the asymptotics can be summarized as follows:
There is a number xA = xA(s, b1, b2) ∈ R>0 such that f(s,b1,b2)(xA) 6= 0 and
such that the following holds.

1st, 2nd and 4th case: The solutions with s ∈ [−2, 2] have no zeros or
poles in ]0, xA], they are either positive or negative in the whole interval.

3rd and 5th case: The solutions with s > 2 do not have poles in ]0, xA],
but countably many zeros, alternatingly of types [0+] and [0−]. See Figure 2a
for a simple picture depicting this case.

The solutions with s < −2 do not have zeros in ]0, xA], but countably many
poles, alternatingly of types [∞+] and [∞−]. See Figure 2b for a picture.

(a) s > 2 (b) s < −2

Figure 2: Sketches of the graphs of solutions for |s| > 2.

The important fact here is that the solution f(s,b1,b2) behaves in a determined
way on the interval ]0, xA]. We can say that the interval ]0, xA] is a zone on
which the solution is controlled. Also note that this rough classification of the
asymptotic behavior near 0 into three types uses only the parameter s, not the
parameter (b1, b2).

On the contrary, the types which turn up in the classification of the asymp-
totics near ∞ use the parameter (b1, b2), but not the parameter s. Here we
refrain from presenting precise formulas for leading terms and restrict the
discussion to the rough behavior of the solutions near ∞: There is a num-
ber xB = xB(s, b1, b2) ∈ R>0 such that f(s,b1,b2)(xB) 6= 0 and such that the
following holds.

1st case, (b1, b2) = (±1, 0): Then f(s,b1,b2) has no zeros or poles in [xB ,∞[.
In this interval the solution is positive for b1 = 1 and negative for b1 = −1.

2nd case, (b1, b2) 6= (±1, 0): If b2 > 0 then f(s,b1,b2) has alternatingly zeros
and poles of types [0+] and [∞−]. Figure 3a is a picture for this case.

If b2 < 0 then f(s,b1,b2) has alternatingly zeros and poles of types [0−] and
[∞+]. Figure 3b is a picture for this case.
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(a) b2 > 0 (b) b2 < 0

Figure 3: Sketches of the graphs of solutions for b2 6= 0.

As before, the important fact is that the solution f(s,b1,b2) behaves in a
determined way on the interval [xB ,∞[. Our discussion so far allows us to
define two zones (these are the intervals ]0, xA] and [xB ,∞[) such that we can
qualitatively describe f(s,b1,b2) very well on each of the two zones. We will
discuss the remaining interval [xA, xB ] in Section 4.

Table 1 summarizes the rough asymptotic behavior near 0 and ∞ of the
solutions f = f(s,b1,b2) of equation (1) for all (s, b1, b2) ∈Mini(0).

behavior on ]0, xA]
|s| ≤ 2, b1 ≥ 1 f(x) > 0
|s| ≤ 2, b1 ≤ −1 f(x) < 0

s > 2 . . . [0+][0−] . . .
s < −2 . . . [∞+][∞−] . . .

behavior on [xB ,∞[
(b1, b2) = (1, 0) f(x) > 0

(b1, b2) = (−1, 0) f(x) < 0
b2 > 0 . . . [0+][∞−] . . .
b2 < 0 . . . [0−][∞+] . . .

Table 1: Qualitative behavior of solutions depending on initial parameters.

The type of the zero or pole which is closest to xA respectively xB depends
on whether f(xA) respectively f(xB) is positive or negative.

4 Global geometry

The precise equations (5), (8), and (9) look hard, but Table 1 with the qualitative
behavior is easy to grasp. The precise formulas are important in applications
in mathematical physics, and their proofs use a lot of hard analysis. But
Table 1 together with the qualitative behavior of the spaces Mini(x0) allows the
following stunning conclusion, and the proof of it uses just a good imagination
and no calculations at all.
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The conclusion is: in Table 1 one can choose xA = xB! That is, for every
solution of equation (1), there is an xA ∈ R>0 and an xB ∈ R>0 such that we
know the behavior of the solution in the zones ]0, xA] and [xB ,∞[. And now
these xA and xB can be equal. This is surprising because a priori xA might be
very small, and xB might be very large, and there might be a large intermediate
zone where the sequence of zeros and/or poles is unknown and uncontrollable.
The conclusion says that there is no intermediate zone.

Looking more carefully at Table 1, one finds: The combinations of the four
subsets ofMini(0) in the first table and the four subsets ofMini(0) in the second
table form altogether 14 sets (only the two combinations |s| ≤ 2, b1 ≥ 1 and
(b1, b2) = (−1, 0), on the one hand, and |s| ≤ 2, b1 ≤ −1 and (b1, b2) = (1, 0), on
the other hand, are impossible). So, there are 14 types of solutions. In one type
the solutions are everywhere positive, in another they are everywhere negative,
and the others are distinguished by the different global sequences of the four
types of zeros and poles.

The stunning conclusion above follows from the Table 1 and the fact that
the surfaces Mini(x0) of initial values consist each of two open components of
regular initial values and four lines of singular initial values. The part of the
regular initial values in Mini(x0) is isomorphic to R∗ × R, which consists of
the two components R>0 × R and R<0 × R. The four lines of singular initial
values are the line of zeros of type [0+], the line of zeros of type [0−], the line
of poles of type [∞+] and the line of poles of type [∞−]. The details of the
proof can be found in [4, Chapter 18]. But an idea can be obtained from the
following pictures.

Figure 4 shows (like the right half of Figure 1) the front of the surface
Mini(0), where the four holes are shifted to the front. There is a natural
bijection Mini(x0)→Mini(0) for any x0 ∈ R>0. The images in Mini(0) of the
four lines of singular initial values in Mini(x0) for some x0 ∈ R>0 are also shown
in Figure 4.

Now we want to glue together all these surfaces Mini(x0) for all possible
x0 > 0. Figure 5 shall give an idea of the resulting object

⋃
x0>0 Mini(x0) ∼=

R>0×Mini(0). The vertical lines R×{point in Mini(x0)} represent the solutions
f(s,b1,b2) of equation (1). In white regions they are positive, in gray regions they
are negative. The four lines of singular initial values move, when x0 moves, and
Figure 5 tells how they move. Gluing all lines of one type gives four smooth
surfaces which intersect the vertical lines transversally.

The three final pictures in Figure 6 shall give an idea of the solutions f(s,b1,b2)
for some subfamilies of Mini(0) with fixed parameter s. We consider the three
1-parameter families with s = s0 > 2, s = s1 ∈]− 2, 2[, and s = s2 = −s0 < −2.
The families for s = s0 and s = s2 are ellipses, in Figure 6 these ellipses are cut
at (b1, b2) = (0,−

√
s2

0/2/4− 1). The family for s = s1 consists of two lines.

10



s = 2

s = −2

(b1, b2) = (−1, 0)

(b1, b2) = (−1, 0)

(b1, b2)
= (1, 0)

b2 = −∞
b2 = ∞

s = ∞

s = −∞

[0−]

[0−]

[0+]

[0+]
[∞−]

[∞−]

[∞+]

[∞+]

f < 0

f > 0

Figure 4: Mini(0) ∼= Mini(x0) with the four lines in Mini(x0).

x0 large:
small spirals around s = ±∞
large spirals around b2 = ±∞

x0 small:
large spirals around s = ±∞
small spirals around b2 = ±∞

Figure 5: How the four lines of singular initial values move when x0 moves.

11



Let us have a closer look at how the three pictures in Figure 6 relate to each
other. The symmetries in Figure 6 (the horizontal shift exchanges white and
gray regions in the second picture, and the third picture is the mirror of the
first) follow from the symmetries of the solutions,

f(s,b1,b2) = −f(s,−b1,−b2) = f−1
(−s,b1,−b2). (12)

In the first and third picture, if s0 or s2 approach 2 or −2, the lines below the
central regions (which contain open parts of the lines above (1, 0) and (−1, 0))
approach the 0-line.

It is fun to try to see that the white regions in the three pictures glue
together to a single white region in R>0 ×Mini(0) ∼=

⋃
x0>0 Mini(x0). This

exercise (together with Table 1) is also the key to the proof that the pictures in
Figure 6 look as they look and that one can choose xA = xB in Table 1.

For x→ 0 one stays in the first or third picture and has to wind around the
hole s =∞ or the hole s = −∞ (for that, one has to go again and again from
the left to the right respectively the right to the left). For x→∞ one has to
wind around the hole b2 =∞ or the hole b2 = −∞. This requires going up and
down through all three pictures.

0 −1 0 1 0

−1√
s2

0
4 −1

0 1√
s2

0
4 −1

0 −1√
s2

0
4 −1

[0−]

[0+]

[∞−]

[0−]

[∞+]

[0+]

[0−]

[∞+]

[0−]

[0+]

[0−]
[0+]

b1

b2

X

0

glue

(a) R>0 ×Mini(0)|s=s0 for some s0 > 2.

Figure 6: The families of solutions for s ∈ {s0, s1, s2}.
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−∞ −1 −∞

−∞ 0 ∞

[∞+]

[0−]

[∞+]

[0+]

[∞−]

[0+]

∞ 1 ∞

∞ 0 −∞

[∞−]

[0+]

[∞−]

[0−]

[∞+]

[0−]

b1

b2

X

0

(b) R>0 ×Mini(0)|s=s1 for some s1 ∈]− 2, 2[.

0 −1 0 1 0

−1√
s2

2
4 −1

0 1√
s2

2
4 −1

0 −1√
s2

2
4 −1

[∞+]

[∞−]

[0+]

[∞+]

[0−]

[∞−]

[∞+]

[0−]

[∞+]

[∞−]

[∞+]

[∞−]

b1

b2

X

0

glue

(c) R>0 ×Mini(0)|s=s2 for s2 = −s0 < −2.

Figure 6: The families of solutions for s ∈ {s0, s1, s2} (continued).
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