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Abstract

Research on processes of multiple-cue judgments usually uses artificial stimuli with predefined cue structures, such as artificial
bugs with four binary features like back color, belly color, gland size, and spot shape. One reason for using artifical stimuli
is that the cognitive models used in this area need known cues and cue values. This limitation makes it difficult to apply
the models to research questions with complex naturalistic stimuli with unknown cue structure. In two studies, building on
early categorization research, we demonstrate how cues and cue values of complex naturalistic stimuli can be extracted from
pairwise similarity ratings with a multidimensional scaling analysis. These extracted cues can then be used in a state-of-the-art
hierarchical Bayesian model of numerical judgments. In the first study, we show that predefined cue structures of artificial
stimuli are well recovered by an MDS analysis of similarity judgments and that using these MDS-based attributes as cues
in a cognitive model of judgment data from an existing experiment leads to the same inferences as when the original cue
values were used. In the second study, we use the same procedure to replicate previous findings from multiple-cue judgment
literature using complex naturalistic stimuli.
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Introduction estimates or judgments are not exclusive to natural domains,
such as birds, but are an integral cognitive activity which
guides and informs our behavior in all areas of our life.

For many years, researchers investigated the cognitive
processes underlying numerical judgments, developed for-
malized computational models which capture these pro-
cesses and tested what influence the environment, the
learning history, different cognitive systems or abilities
have on these processes (e.g., Brehmer, 1994; Broder &
Grif, 2018; Brunswik, 1955; Hoffmann, von Helversen, &

Bedevere: “How do you know so much about swal-
lows?”

Arthur: “Well, you have to know these things when
you’re a king, you know.”

in Monty Python and the Holy Grail (Jones & Gilliam,
1975)

Imagine yourself in the of role of Arthur, King of the

Britons in the movie Monty Python and the Holy Grail (Jones
& Gilliam, 1975). Wanting to cross the Bridge of Death you
have to answer the evil bridgekeeper’s question: “What is the
airspeed velocity of an unladen swallow?”. Assuming you
are unaware of the difference between African and Euro-
pean swallows and don’t know the actual airspeed velocity
of around 50 km/h (Park, Rosén, & Hedenstrom, 2001), you
would have to give a numerical estimate. Such numerical
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Rieskamp, 2013; Juslin, Olsson, & Olsson, 2003; Mata, von
Helversen, Karlsson, & Ciipper, 2012; Pachur &
Olsson, 2012; Persson & Rieskamp, 2009; von Helversen &
Rieskamp, 2009). Two of the most prominent cognitive pro-
cess models describing multiple-cue judgment processes are
rule and exemplar models. In exemplar models, the judg-
ment of a given object is generated by retrieving similar
objects from long-term memory and by forming a similarity-
weighted average of their criterion values (e.g., [zydorczyk,
& Broder, 2021; Juslin, Olsson, & Olsson, 2003; Medin &
Schaffer, 1978; Nosofsky, 1984). In rule-based models, the
judgments rely on abstract knowledge about cue-criterion
relations, such as a linear combination of cues (e.g., Brehmer,
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1994; Einhorn, Kleinmuntz & Kleinmuntz, 1979; Juslin, Ols-
son, & Olsson, 2003). Based on empirical findings, more
recent models, such as the RulEx-J model (Broder, Grif,
& Kieslich, 2017) or the CX-COM Model (Albrecht, Hoff-
mann, Pleskac, Rieskamp, & von Helversen, 2019), assume
some form of mixture between both types of processes (see
also, Herzog, & von Helversen, 2018; Hoffmann, von Hel-
versen, & Rieskamp, 2014; Wirebring, Stillesjo, Eriksson,
Juslin, & Nyberg, 2018).

However, these cognitive models have only been tested
in experiments which use artificial stimuli varying along a
small number of dimensions. For instance, fictitious bugs
varying on four binary cues (e.g., Juslin, Karlsson, & Ols-
son, 2008; Trippas & Pachur, 2019), patients suffering from a
fictitious tropical disease with four distinct symptoms as cues
(e.g., Persson & Rieskamp, 2009; Platzer & Broder, 2013),
comic figures with four possible binary cues (e.g., Hoffmann,
von Helversen, & Rieskamp, 2014), or fictitious job candi-
dates with different binary skills (e.g., knowledge of French
or Italian, Scholz, Helversen, von, & Rieskamp, 2015;
von Helversen, Herzog, & Rieskamp, 2014). The reason
for this, beside experimental control, is that all computa-
tional models rely on identifiable cues or attributes of the
judgment objects that form the basis of the computations.
In exemplar-based models, the cues are needed to compute
the similarity between exemplars, which are the basis of the
resulting judgment (Juslin, Olsson, & Olsson, 2003). In rule-
based models, the cues are combined directly to produce a
judgment (Brehmer, 1994; Einhorn, Kleinmuntz & Klein-
muntz, 1979; Juslin, Olsson, & Olsson, 2003). However, for
complex, natural, real-world objects the cues or features peo-
ple use to represent these stimuli in memory and base their
judgment on, are rarely known. This makes it difficult to
apply the cognitive models and corresponding findings to
real-world domains.

Building on the early classification and categorization
literature, in this article we demonstrate in two studies
how to combine multidimensional scaling analysis (MDS,
Hout, Papesh, & Goldinger, 2013; Kruskal, 1964; Shepard,
1962) with a current state-of-the-art model for quantitative
judgments to investigate the underlying processes of judg-
ments of complex, natural stimuli where the cues are not
known beforehand. We will use the cues extracted by a MDS
to model data with the RulEx-J model (Broder, Grif, &
Kieslich, 2017; Izydorczyk, & Broder, 2022) which mea-
sures the relative contribution of rule- and exemplar-based
processes. We will use different kinds of stimuli (simple arti-
ficial vs. complex and naturalistic) and manipulate different
learning regimes (different information during judgment task
vs. different tasks during learning) to affect the kind of pro-
cessing people predominantly use.

Related research on extracting and generating cues

The procedure we present here originates from early research
using the generalized context model (GCM, Nosofsky, 1984;
Nosofsky, 2011) to describe exemplar-based categorization
processes. According to the GCM, classification decisions
are based on the summed similarity of a to-be-judged item
(i.e., the probe) to the exemplars of one category relative
to the exemplars of alternative categories. The GCM uses a
similar approach like MDS to model the similarity exemplars
and the probe, where exemplars are represented as points in
a multidimensional psychological space, and the similarity
between each exemplar and the probe is a decreasing function
of their distance in this space (Nosofsky, 1986, 1992, 2011,
Shepard, 1957, 1962, 1987). In order to apply the GCM,
the cues and cue values, which define the location of the
exemplars in space, where often derived by using a MDS
study beforehand (Nosofsky, 1992). For instance, Shin and
Nosofsky (1992) derived an MDS solution for different dot
patterns based on similarity ratings between these dot patters.
The MDS solution was then used as basis in mathematical
prototype and exemplar models for predicting classification
and recognition data. A similar approach was taken in a
recent series of studies by Nosofsky and colleagues, where
they used similarity judgments of different minerals to derive
MDS-based cue dimensions which then served as a basis for
the cognitive modeling of people’s subsequent categoriza-
tions (Nosofsky, Sanders, Meagher, & Douglas, 2018, 2020;
Nosofsky, Sanders, & McDaniel, 2018; Nosofsky, Sanders,
Zhu, & McDaniel, 2019). This differs from the approach
taken in multiple-cue judgment studies, where the cues and
cue values of exemplars and stimuli are predefined by the
experimenters (e.g., Hoffmann, von Helversen, & Rieskamp,
2014; Trippas & Pachur, 2019). For instance, Juslin, Olsson,
and Olsson (2003) presented participants with bugs differing
in four binary visual cues (e.g., length of legs, color of the
back). Since the cues were binary, they could take values of
1 or 0. Each fictitious bug was then represented by a four
dimensional 0/1 vector (e.g., [0, 1, 0, 1]). This approach,
however, would be not feasible if the to-be-judged stimuli
were not designed by the experimenter or the cues and cue
values were unknown. This makes it difficult to transfer and
test important experimental findings of multiple-cue judg-
ment experiments to situations with more realistic stimuli or
with an applied focus (Goldstein & Hogarth, 1997).

Instead of using MDS analysis to generate (low) dimen-
sional representations of stimuli based on similarity ratings,
recent studies used deep neural networks (DNN) to gener-
ate high-dimensional representations of natural images or
words (e.g., Giinther, Rinaldi, & Marelli, 2019; Roads &
Mozer, 2021; Zou & Bhatia, 2021; for an overview see
Bhatia & Aka, 2022). In these studies, researchers extracted
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feature representations from pre-trained DNN for classifying
images or predicting word coocurrences. For instance, Peter-
son, Abbott and Griffiths (2018) extracted 4,096-dimensional
vectors from the final hidden layer of a highly popular image
classifying DNN (VGG, Simonyan & Zisserman, 2014),
to get numerical representations of given images. Several
studies with similar procedures have shown that these high-
dimensional representations can be used in categorization
models (Battleday, Peterson, & Griffiths, 2020), to predict
human similarity ratings (e.g., Peterson, Abbott, & Griffiths,
2018; Roads & Mozer, 2021), or other continuous judgments,
such as masculinity or femininity of words (Richie, White,
Bhatia, & Hout, 2020), or the calory content of different
foods (Zou & Bhatia, 2021). Although, DNNs are becoming
increasingly popular for extracting feature representations,
in this study we will rely on the traditional (and in our opin-
ion better) approach of collecting pairwise similarity ratings
and subsequently conducting MDS analysis.!

However, so far, none of these works combined these
methods for generating cues for complex real-world stimuli
with state-of-the-art models of the multiple-cue judgment lit-
erature and none investigated whether classic findings from
the laboratory can be replicated with non-artificial, natural-
istic stimuli. In this article, we want to close this gap in the
literature.

Aims and outline of this article

In this work, we present two studies. Still using artificially
created simple stimuli, the validation study serves as a proof-
of-concept demonstrating that (a) existing (and known) cue
structures are well recovered by an MDS analysis of simi-
larity judgments and (b) that using the MDS-based attributes
as cues in a cognitive model of judgment data from an exist-
ing experiment leads to similar predictions and inferences as
when the original cue values were used. The second study
extends the general workflow from the validation study to
natural stimuli, in which case no cues are known beforehand,
and tries to replicate classic multiple-cue judgment findings
using complex, real-world stimuli, namely bird species. Each
step of this workflow and how they relate is shown in Fig. 1.
All analysis were conducted using R Version 4.2.2 (R Core

! For amore detailed account of the reasons why we favour the “classic”
MDS approach over the DNN approach and additional materials (e.g.,
correlation of participants’ similarity ratings the predicted similarities
based on features extracted from a neural network) can be found in the
supplement on the OSF.

2 Please note that when we refer to “generating cues,” we are not nec-
essarily referring to the creation of objective features that completely
define an object (although this might be possible with simple stimuli
as used in Study 1), but rather identifying cues which are psychologi-
cal dimensions (not necessarily objective or nameable features) used to
represent these objects in psychological space.
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Team, 2022). The Bayesian models were implemented with
JAGS Version 4.3.0 (Plummer, 2003). All experiments were
run online using lab.js (Henninger, Shevchenko, Mertens,
Kieslich & Hilbig, 2022).

Study 1: Validation

The goal of the first study was to validate the general
procedure shown in Fig. I by investigating whether the exper-
imentally created attribute structure of artificial stimuli would
be recovered by an MDS analysis (e.g., Nosofsky, 1989)
and more importantly, whether the cues extracted from the
MDS analysis could be used to model empirical judgment
data. The judgment data we used for this purpose are data
from the validation experiment reported in Izydorczyk and
Broder (2022),3 where n = 238 participants judged the sell-
ing price of 16 fictitious flowers that varied on four binary
attributes (see Fig. 1 for some examples). Participants got dif-
ferent aiding information and instructions to solve the task,
which, depending on the condition, should lead to either
more rule- or more exemplar-based processing. By using
data and artificial stimuli with an experimentally created
attribute structure of an existing experiment, the first study
was designed to test the general idea of this paper (i.e., using
MDS-based attributes as a basis for cognitive modeling of
quantitative judgments), as well as the different steps of our
analysis pipeline (i.e., procedure for determining the num-
ber of MDS dimensions, etc.). For reasons of brevity, we
will only summarize the main results of the validation study
here. A detailed description of the experiments, analysis and
results can be found in the supplementary materials on the
OSFE.

Results summary

The findings indicated that the MDS analysis accurately
captured the attribute structure of the simple artificially cre-
ated stimuli based on the pairwise similarity ratings of N
= 40 participants, consistent with several prior studies (e.g.,
Nosofsky, 1989; Nosofsky, 1991). By employing a cross-
validation procedure, we determined that a four-dimensional
MDS-space best described the pairwise similarity ratings,
and that these dimensions corresponded perfectly to the four
actual attributes of the stimuli, as indicated also by the very
high correlation between the predicted and empirical pair-
wise distances (r(118) = .99, p < .001).

Furthermore, using the derived MDS attributes as cues
in the hierarchical Bayesian RulEx-J model (see the next
section for details) yielded the same conclusion as when
the experimentally created attributes were used as cues: The

3 The data are publicly available on the OSF (https://osf.io/yaudb/)
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(1) Pairwise similarity ratings

(4) Multidimensional Scaling

(5) Judgment Data
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Fig. 1 This figure depicts the general procedure used in Studies 1 and
2. Pairwise similarity ratings from a norming sample are collected as
data (1) which are transformed to pairwise distances (2). From these,
an MDS (4) extracts dimensions, the number of which is determined by

model indicated more rule-based processing in the condition
supposedly inducing this kind of process and more exemplar-
based processing in the exemplar condition.

Thus, the validation study demonstrated the general appli-
cability of our procedure to model judgments of stimuli with
unknown cue-structure.

Study 2: Application to naturalistic stimuli

The validation study showed that the cue structure of artificial
stimuli can be recovered by an MDS analysis based on pair-
wise similarity ratings (see also, Nosofsky, 1989; Nosofsky,
1991), which, in turn, allowed to model the numerical judg-
ments of participants. In this second study, we test whether
this result extends to non-artificial stimuli with an unknown
cue structure. For this purpose, using images of birds, we
plan to replicate the robust finding from the multiple-cue
judgment literature that the type of learning task and feed-
back impacts the strategy selection in subsequent judgment
tasks (Pachur & Olsson, 2012; Trippas & Pachur, 2019). In
these studies, participants who had to compare two stimuli

input \

- (3) Determine number of
0w dimensions with Cross-
Validation/BIC

fololio,

G
o

BIC or cross-validation (3). Finally, a computational model (6) can be
applied to judgment data (5), using the MDS dimensions as cues. The
flowers are examples of stimuli used in Izydorczyk and Broder (2022)

in the trials of the training phase and only received feedback
whether their choice was correct (learning by comparison)
showed more rule-based processing and overall better gener-
alization ability (i.e., higher accuracy when estimating new
stimuli), than participants who were presented with only one
stimulus at a time but who received feedback about the actual
criterion value (direct criterion learning). Based on the results
of three experiments, Trippas and Pachur (2019) suggest that
the greater reliance of rule-based strategies in the learning by
comparison condition is mainly due to the relative feedback
provided during trials and also due to the missing continuous
criterion information, which is needed for exemplar-based
judgment processes.

The overall procedure in this second study was the same
as in the validation study and as shown in Fig. 1. We first
generated cues for each stimulus, based on pairwise similar-
ity ratings and a subsequent MDS analysis (Steps 1 to 4 in
Fig. 1). We then used the generated cues in the hierarchical
Bayesian RulEx-J model to analyze the data from a preregis-
tered experiment whose procedure was based on Pachur and
Olsson (2012) and Trippas and Pachur (2019) (Steps 5 and 6
in Fig. 1).

@ Springer
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Fig.2 Example of stimuli used
in Study 2. A House sparrow
(lat. Passer domesticus). B Great
tit (lat. Parus major). Images are
available under a CC BY-SA 4.0
license on the OSF

Similarity ratings & MDS analysis (Steps 1to 4 in
Fig. 1)

Method

Materials The stimuli were 32 images from different com-
mon and generally known birds. The selection of birds was
based on a quartets card game. For each bird, we selected a
high-quality image based on a Google image search, showing
the bird in a sitting position. We used photo-editing proce-
dures to remove the background and to rescale the images to
a size of 250px by 250px. Figure2 shows two examples of
the final stimuli. The complete list of stimuli as well as the
corresponding images can be found at the OSF.#

Design and procedure After giving informed consent, partic-
ipants were instructed that we were interested in how people
judge the similarity of birds. To reduce the burden on par-
ticipants, a balanced incomplete block design was used in
which each participant rated only a sample of k = 124 bird
pairs out of a total all possible K = 496 stimulus pairs. To
ensure that each bird pair received a sufficient number of
ratings, every group of four participants rated all 496 pairs,
but the assignment of which bird pairs each participant rated
was randomized. Similarity ratings were provided on a scale
ranging from 1 (not similar) to 7 (very similar). With this
procedure, each bird pair was rated on average by 24.25 (SD
= 2.15) participants. In every trial, a randomly selected pair
of birds was shown to the participants in the center of the
screen (Step 1 in Fig. 1). The order of the stimulus pairs, as
well as the location of the individual birds of each pair on the
screen (e.g., left or right side) was randomized. At the end
of the experiment, participants answered demographic ques-
tions and were asked to indicate if their data should be used
for data analysis or if it should be excluded (Aust, Dieden-
hofen, Ullrich, & Musch, 2013).

4 Because of licencing issues, the images of nine birds on the OSF are
different from the original images used in the experiment. However, the
new pictures are almost identical to the original images as we selected
the new pictures to match the original pictures in posture, lighting, and
other factors as closely as possible. All images are now published under
a CC BY-SA 4.0 license on the OSF.

@ Springer

Participants In total, we collected data from N = 110 par-
ticipants through Prolific Academic. We excluded n = 3
participants because they indicated that their data should not
be used for analysis and n = 10 participants because they fin-
ished the complete survey in less than three minutes.> Thus,
the final sample consisted of N = 97 participants (64.95 %
female) with an average age of 35.37 (SD = 12.85).

Data analysis For the multidimensional scaling analysis, we
averaged the similarity judgments for each stimulus pair
across participants. We then normalized the average simi-
larity judgments for each pair, so that they ranged from 0
to 1 and then subtracted these normalized similarities from
one to yield dissimilarities® (Step 2 in Fig. 1). The resulting
normalized average dissimilarity matrix was then subjected
to a non-metric multidimensional scaling analysis using the
smacoef package (Mair, Groenen, & de Leeuw, 2022) in
R (Step 4 in Fig. 1).

In order to perform an MDS analysis, one has to spec-
ify the number of dimensions the MDS solution should have
(Step 3 in Fig. 1). Based on the results of the validation study,
we decided to use a cross-validation approach (Hastie, Tib-
shirani, & Friedman, 2009; Richie, White, Bhatia, & Hout,
2020; Steyvers, 2000) to determine the number of dimen-
sions of the resulting MDS solution. In one iteration of the
cross-validation, for one specific number of dimensions, we
randomly removed 20% of the entries from the aggregated
normalized pairwise distance matrix. We then fitted an MDS
solution to this reduced matrix. Next, we predicted the pair-
wise distances for the hold-out cells based on the resulting
MDS solution. The cross-validation criterion was then the
average correlation between the predicted and the true pair-
wise distances over 500 repetitions.’

5 The subsequent reported results do not change, when these partici-
pants were included.

6 For instance, the average similarity of Pair 1 was 2.38. The normal-
ized value then is (2‘378:]_1) = .23 and the corresponding normalized
dissimilarity 1 — .23 = .77. The normalization was used in order to
calculate the BIC for determining the dimensionality of the MDS space
as proposed by Lee (2001). The reported results do not change substan-
tially if the normalization step is skipped.

7 The R code to run the cross-validation is available in the MDShelper
package on Github https://github.com/dizyd/MDShelper
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Table 1 Indices to determine the number of dimensions of the MDS
solution

Dim Stress CV RSS P R?

1 0.36 70 (.04) 65.92 32 0.55
2 0.16 .86 (.02) 12.14 64 0.79
3 0.11 .88 (.02) 6.36 96 0.86
4 0.09 .88 (.02) 4.10 128 0.90
5 0.07 .87 (.03) 2.66 160 0.93

Note. CV: average correlation (and standard deviation) between the
predicted and the true pairwise distances over 500 repetitions of the
cross-validation. RSS: Residual-sum-of-squares. P: Number of parame-
ters of the MDS model. R?: Explained variance of the empirical pairwise
distances by the corresponding MDS model

Results

The results of the cross-validation procedure are shown in
Table 1. According to the cross-validation procedure, the best
number of dimensions to use for the MDS analysis was three
(7 =.88). The correlation between the observed and predicted
pairwise distances was again very high, r(494) = .93, p <
.001. The resulting configuration of all 32 birds based on the
MDS solution with three dimensions is shown in Fig. 3.

Cognitive modeling of judgment data (Steps 5 & 6 in
Fig. 1)

Method

Materials The stimuli were the same as in the similarity rat-
ing task. We used the maximum horizontal flight speed as the
to-be-judged criterion, because it has a reasonable range of
different values, people do not have much previous knowl-
edge about the flight speeds of birds, and there are many
different features of bird species which predict their flight
speed (Alerstam, Rosén, Backman, Ericson, & Hellgren,

2007; Greenewalt, 1975; Hall & Heesy, 2011). For instance,
the flight speed is related to size and mass of birds, but also
phylogenetic effects play an important role, where species of
the same group tend to fly at similar speeds (e.g., swans, geese
& ducks fly faster than falcons, crows & songbirds, Alerstam,
Rosén, Biackman, Ericson, & Hellgren (2007)). We extracted
the maximum flight speed values from scientific articles if
possible (e.g., Johnson, Booms, DeCicco, & Douglas, 2017),
or otherwise used the values from the original quartets game.
Thus, participants judged the actual maximum flight speed of
birds (as accurately as it could be determined), which in our
sample of birds ranged from 24km/h (great spotted wood-
pecker) to 125km/h (mallard).

Before the experiment, we selected 12 from 32 possible
birds as exemplars based on the MDS analysis. For different
sets of 12 exemplar birds, we computed the prediction of a
rule-only model and an exemplar-only model. We selected
one exemplar set where the predictions of both models were
different (as indicated by a high RMSE between the predic-
tions of the rule-only model and the exemplar-only model),
but still correlated highly with the external criterion value
(i.e., the true maximum flight speed), and where the criterion
values of the exemplar birds captured a high range of possible
criterion values (the R script for this procedure can be found
on the OSF). This procedure ensured that the RulEx-J model
is able to separate rule-based and exemplar-based processes
based on the responses of participants.

Design and procedure The general design and procedure of
this experiment was based on Pachur and Olsson (2012) and
Trippas and Pachur (2019), where the experiments consisted
of two main phases, a training phase and a testing phase.
Depending on the condition, the task and the feedback dur-
ing the training phase of the experiment were different for the
participants. In the learning by comparison condition partic-
ipants had to compare two stimuli in a trial and received only
relative feedback but no feedback about the exact criterion
values. In the direct criterion learning condition, participants

0.5 . ,,;“:( 7\) &
g %\ 03 A L 4 £ 03 L 4 -‘ﬁ
=t A “?\
5 00 ey 5 % 5 PN
D - B 00| =¥ 1 % 00| 4 5
5 I U BRI o of
E B P’
= 05 = S " = -
(=) 5 (=]
5 - 03 g W& S ;@
g AN W s
10 » »
05 0.0 0.5 1.0 0655 0.0 05 1.0 0630 05 0.0 0.5
Dimension 1 Dimension 1 Dimension 2
Fig. 3 Results of the three-dimensional solution from the 2 separates between water and ’land’ birds (except the dove). Dimen-

multidimensional-scaling analysis of the pairwise similarity ratings of
32 bird images. However, interpreting the dimension is not straightfor-
ward. Dimension 1 might correspond to the size of the birds. Dimension

sion 3 might be related to shape (round vs. slim) of the birds. Axis
scales sometimes differ in order to allow better visualization of the bird
pictures.
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had to classify one stimulus at a time and received feedback
about the exact criterion values. The results of Pachur and
Olsson (2012) and Trippas and Pachur (2019) showed that
the direct criterion learning procedure elicited predominantly
exemplar-based processing whereas learning by comparison
lead to more rule-based judgments.

Using the same conditions, in our experiment participants
in the learning by comparison condition were presented with
pictures of two exemplar birds in each trial during the train-
ing phase. Participants were then asked to decide which of
the two birds is the faster bird (i.e., has the higher maximum
horizontal flight speed in km/h). After their choice, partici-
pants got feedback about the correct answer, as indicated by
a blue border around the faster bird. One block in the training
phase consisted of 65 trials, comprising all possible pairwise
combinations of the 12 exemplar birds, except for one pair
where the two birds had the same criterion value. Participants
had to complete at least three training blocks, up to a max-
imum of seven training blocks. Participants could finish the
training phase earlier if they meet a criterion of at least 85%
correct responses after the third training block.

In the direct criterion learning condition, participants were
presented with the picture of one out of the 12 exemplar
birds in each trial of the training phase. They were asked
to decide whether this bird is a fast bird (i.e., flight speed
above 43 km/h, which is the median flight speed of the exem-
plar birds), or a slow bird (i.e., flight speed below 43 km/h).
After each response, participants got feedback whether their
answer was correct or not and what the exact maximum flight
speed of the bird was. As in Trippas and Pachur (2019), par-
ticipants were instructed before the start of the training phase
to pay attention to this flight speed as it would be relevant in
the testing phase. One training block consisted of all 12 exem-
plar birds. Participants had to complete at least ten training
blocks, up to a maximum of 30 training blocks. Again, par-
ticipants could finish the training phase earlier if they meet
a criterion of at least 85% correct responses after the tenth
training block.

The testing phase was the same for all participants. Par-
ticipants were asked to judge the maximum flight speed of
all 32 birds (12 old and 20 new birds). Before the start of
the testing phase, we informed participants that the flight
speeds can range from 24 km/h up to 125 km/h. In addition,
we presented the Latin names of each bird below its picture
throughout the experiment, so that participants could better
remember and distinguish the birds.

At the end of the experiment, participants again answered
demographic questions and were asked about their general
knowledge of and interest in birds, rated on a scale from 1
(not much) to 5 (very much). They were also asked to indicate
if their data should be used for data analysis or if it should
be excluded (Aust, Diedenhofen, Ullrich, & Musch, 2013).

@ Springer

Hypothesis Based on the original results of Pachur and Ols-
son (2012) and Trippas and Pachur (2019), we expected to
find more rule-based processing in the learning by com-
parison condition, relative to the direct criterion learning
condition.

Data analysis As preregistered and as in the validation study,
the judgment data were analyzed using the hierarchical
Bayesian version of the RulEx-J model (Broder, Grif, &
Kieslich, 2017; Izydorczyk, & Broder, 2022) extended for
continuous cues. The RulEx-J model proposes a continuous
mixture between rule-based and exemplar-based processes
in quantitative judgments. The model allows to measure the
relative contribution of each type of process by using a mix-
ing parameter o, which measures the relative proportion of
each process in the final judgment. According to the RulEx-J
model, the actual final judgment J is a weighted combination
of both interim judgments, Jr and Jg, from the respective
rule- or exemplar-based processes:

J=axJp+ {1 —-0a)xJg, H

where the o parameter can range from 0 to 1, with larger val-
ues indicating more rule-based processing and smaller values
indicating more exemplar-based processing. The rule-based
process was modeled using the cue abstraction model (Juslin,
Olsson, & Olsson, 2003) and the exemplar-based process by a
simplified version of the generalized context model (Nosof-
sky, 1986) assuming equal cue weights (more information
about the model and its implementation can be found in the
Appendix. Based on our hypothesis that there will be more
rule-based processing in the learning by comparison condi-
tion, we expect to find higher « values in the learning by
comparison condition than in the direct criterion learning
condition on average.

The hierarchical Bayesian implementation of the RulEx-J
model proposed in Izydorczyk and Broder (2022) directly
incorporates the difference in the o parameter between two
conditions via the parameter § which reflects the differences
of o between both conditions on a standardized scale. Hence,
it reflects the effect size of the fixed effect between exper-
imental conditions. For statistical inferences about group
differences in o, we can compute the Bayes factor based on
the Savage-Dickey density ratio (SDDR, Vandekerckhove,
Matzke, & Wagenmakers, 2015; Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010) by computing the ratio of the
prior density p(§ = O|H;) and posterior density p(§ =
0|D, Hy) at point § = 0.8 Since we expected to find, on aver-
age, larger o values in the rule condition (i.e., § > 0), we used

8 The density of the posterior distribution was computed with the
dlogspline function in the polspline package in R (Kooper-
berg, 2020).
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only those MCMC samples that obeyed this order-restriction
to calculate the densities, which corresponds to a one-sided
test (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).
The resulting Bayes factor of this ratio B Fjg = [f;ia—%
indicates the relative evidence for H; (i.e., § > 0, average «
is higher in the learning by comparison condition) compared
to Ho (i.e., § = 0, no difference between conditions, Kass &
Raftery, 1995; Morey, Romeijn, & Rouder, 2016; Vandek-
erckhove, Matzke, & Wagenmakers, 2015). We used JAGS
(Plummer, 2003) interfaced with R using the runjags
package (Denwood, 2016) to fit the model.

We ran 4 chains of 150,000 samples each, collected after
30,000 burn-in samples were discarded, 30,000 adaptive iter-
ations, and thinning by recording every 30th sample. The
convergence of the chains was checked by visual inspection
and the standard R statistic (ﬁ < 1.01, Gelman & Rubin
1992). The R script, the JAGS model with the prior specifi-
cations, the MCMC traces, and the results files can be found
in the OSF of this project.

Participants In total, we collected data from N = 80 par-
ticipants through Prolific Academic. We excluded n = 1
participant because he indicated that his data should not be
used for analysis and n = 1 participant who was not fluent in
English.? The final sample consisted of N = 78 participants
(56.41 % female) with an average age of 41.08 (SD = 14.17).
Out of these N =78 participants, n = 39 were in the leaning
by comparison condition and n = 39 in the direct criterion
learning condition.

Results

First, we examine the performance of the participants during
the test phase, and subsequently, we shift our focus towards
the cognitive modeling results. As preregistered, our main
analysis will focus on the difference in rule- and exemplar-
based processing between the two conditions. In addition, we
will report results of a formal model comparison between the
RulEx-J model and a pure rule-based and a pure exemplar-
based model, as well as some posterior predictive checks.
The analysis of the performance during the training phase is
available in the supplementary material provided online on
the OSF.

Performance Fig.4 shows the mean estimates for old and
new stimuli, separately for the two training conditions. The
accuracy in the testing phase was defined as the root-mean-
square error (RMSE, smaller values indicate less error or
higher accuracy) between birds’ estimated and actual flight
speed. Accuracy was higher (i.e., RMSE was lower) in the
direct criterion learning condition (M = 22.54, SD = 8.04)

9 This exclusion step was not preregistered, but the subsequent reported
results do not change, when this participant is included.

compared to the learning by comparison condition (M =
30.38, SD =6.90), F(1,76) = 40.31, p < .001, ﬁzc =.272.
In addition, participants had a higher accuracy for old (M =
23.17, SD = 10.01) than for new birds (M = 29.75, SD =
4.61), F(1,76) = 67.18, p < .001, ﬁZG = .208. Further-
more, the difference in performance between old-new items
was also different between the conditions, as indicated by
the significant interaction (F(1,76) = 21.06, p < .001,
ﬁé = .076) where the difference in accuracy between old
and new items was smaller in the learning by comparison
condition (M = 2.89) than in the direct criterion learning
condition (M = 10.25). These pattern of results are similar
to the performance patterns found in Experiment 3 of Pachur
and Olsson (2012), which included the same manipulations
of the learning task and a non-linear environment.

Cognitive modeling

Difference in processing between conditions As predicted, the
SDDR Bayes Factor indicated extreme evidence for our
hypothesis that there is more rule-based processing for par-
ticipants in the learning by comparison condition compared
to the direct criterion learning condition (B Fjg > 1000).!°
The corresponding posterior distribution of the effect size
parameter § had a mean of 2.31 (§D =0.55) with a 95%-HDI
ranging from 1.31 to 3.49. Correspondingly, the o parameter
of the RulEx-J model was higher in the learning by com-
parison condition (M =.25, 95%-HDI [.20,.31]) compared
to the direct criterion learning condition (M =.15, 95%-HDI
[.12,.19]), as indicated by the probit transformed group-level
parameters [y, j={1,2) (see the Appendix).

Model comparison Based on the relative strength of evi-
dence as indicated by the log(Bayes Factors) shown in
Table 2, the RulEx-J model did better account for people’s
judgments than the corresponding sub-modules (i.e., pure
rule-based processing or pure exemplar-based processing,
see Appendix). In addition, the exemplar-based model did
also better account for the data than the rule-based model,
even in the learning by comparison condition. The Bayes
Factors were calculated with bridge sampling (Gronau et al.,
2017; Gronau, Singmann, & Wagenmakers, 2018).

Posterior predictive checks As indicated by the RMSE and
correlation, the means of the posterior predictive distributions
per trial reasonably well reflected participants’ actual judg-
ments on average, but not for each participant, in the learning

10 The results do not substantially change when only the responses
to the new stimuli in the testing phase are used as data or when the
learning and direct recall of exemplars criterion values is incorporated
in the model using a latent-mixture extension (Izydorczyk, & Broder,
2021; Zeigenfuse & Lee, 2010) For details see the online supplement.
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Fig.4 Mean judgments for each

Direct criterion learning

Learning by comparison

of the K = 32 bird, separately
.. .. © 125 , 71
for the two training conditions o} Item type . .
O % o
% new i .
= 100 0 old 7t At
D . o .o
5 75 o I
go] R ;
% o // o o //o
3o, 9 T ° o
= 50 . 2@00"
c 2 000 -
g |
= 25|/ -

25

by comparison (RMSE: M =13.96, SD =5.75, range: 2.21
-29.14;r: M =.66, SD =.23, range: -.25 -.95) and the direct
criterion learning condition (RMSE: M =11.58, SD =5.85,
range: 2.75 - 35.05; r: M =.72, SD =.19, range:.06 -.96).

General discussion

In two studies we demonstrated how multidimensional scal-
ing can be used to generate cues and cue values of naturalistic
stimuli, which then can be used in cognitive models of numer-
ical judgments. The procedure presented in this work is based
on the recent work about classification learning in high-
dimensional natural-science category domains of Nosofsky
and colleagues (Nosofsky, Sanders, Meagher, & Douglas,
2018, 2020; Nosofsky, Sanders, & McDaniel, 2018; Nosof-
sky, Sanders, Zhu, & McDaniel, 2019), but extended to
continuous judgments. In a validation study, we showed that
the reconstructed dimensions based on pairwise similarity
ratings and the results of a subsequent analysis of judgment
data were virtually identical to the original results using pre-
defined cues. In a second study, we were able to replicated
the results of previous experiments reported in Pachur and
Olsson (2012) and Trippas and Pachur (2019) using com-
plex naturalistic images with an unknown cue structure. In

Table 2 Model comparison using log(BF)

50 75 100 12525 50 75 100 125
Actual flight speed

the following, we discuss some important implications and
limitations of our work.

Comparison to results of laboratory studies

There are several differences between the original studies
of Pachur and Olsson (2012) and Trippas and Pachur (2019)
and our replication study using complex stimuli. For instance,
the differences in the learning environment’s complexity, the
number of stimuli, and the scale and distribution of criterion
values. Nevertheless, our computational modeling results
reproduce the general finding that there is more rule-based
processing in the learning by comparison condition than in
the direct criterion learning condition. Furthermore, the per-
formance of participants in the testing phase and the general
observed judgment patterns shown in Fig. 4 are also in line
with previous findings. As in Experiment 3 in Pachur and
Olsson (2012), which included the same manipulations of
the learning task and a non-linear environment (as is case for
the flight speed of birds), participants trained with learning
by comparison provided less accurate judgments than those
trained with direct criterion learning. However, it should be
noted that in our study participants seemed to be less able to
transfer their learned knowledge to new stimuli than in the
original studies of Pachur and Olsson (2012) and Trippas and
Pachur (2019). Furthermore, the model comparison results
and the general low levels of « suggest that even though there
was more rule-based processing in the learning by compari-
son condition than in the direct criterion learning condition,

Condition M: RulEx-J M : Exemplar vs. Mo
participants in both conditions predominantly relied on an
DCL 118.96 Exemplar  exemplar-based strategy to make their judgments. This is in
314.72 195.76 Rule line with an abundance of empirical findings showing that
LBC 289.82 Exemplar  participants rely more on exemplar-based processing in a
307.10 17.29 Rule non-linear environment or in general when it is difficult to

Note. Positive values of log(Bayes Factor) indicating evidence in favor
of M and negative values indicating evidence in favor of M. DCL =
direct criterion learning, LBC = learning by comparison

@ Springer

abstract a linear additive rule (e.g., Hoffmann, von Helversen,
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2013). Although participants in the learning by comparison
condition never got feedback about the actual criterion values
needed for exemplar-processing, they probably developed
some (erroneous) representation of the criterion values based
on the scale of the criterion and the learned rank order.

Quality of extracted cues

In order to model participants’ judgments with the assumed
rule- and exemplar-based models we used MDS analysis
based on similarity ratings to extract the necessary cues.
However, the MDS-based cues people use to make their
similarity ratings do not necessarily have to correspond to
the features which are actually important for predicting or
describing the criterion in the environment. In our case how-
ever, the extracted cues seem to be actually good predictors
of the flight speed of birds. According to Alerstam, Rosén,
Bickman, Ericson and Hellgren (2007), important predic-
tors for the flight speed of birds are phylogenetic group (e.g.,
Swans/geese/ducks vs. falcons/ crows/songbirds), wing load-
ing, the aspect ratio of wingspan and wing area, and the body
mass, which is highly correlated with wing load. The phy-
logenetic group and wing loading are the most important
predictors. In our study, the first and second dimension in
the the MDS space shown in Fig. 3 might correspond to
size/mass and some form of crude phylogenetic categoriza-
tion. Using all three dimensions in a linear model they explain
55.32 of the variance (as indicated by the adjusted R?) in
flight speed when no interactions are allowed (i.e., a linear
additive model as assumed by the rule-based process). More
details can be found in the supplement. Nevertheless, there
might be cases where the extracted cues are not predictive of
the actual criterion or that people might base their similarity
judgments on different cues than when making judgments
about a some other criterion. Thus, better cues for modeling
people’s judgments might be obtained by asking for simi-
larity ratings regarding specific criteria, rather than asking
for a general similarity rating between stimuli. For instance,
when asked about the general similarity between sports peo-
ple might rely on cues such as individual vs. team sport, ball
vs. no ball, or on land vs. on water. But when asked about the
similarity between sports regarding players’ income poten-
tial, people might use cues such as screen time on TV or
number of fans. In addition, one limitation of our procedure
was to use average similarity ratings to extract the cues, since
every participant only rated a manageable subset (25%) of
all possible 496 stimulus pairs. While the resulting multi-
dimensional space adequately describes this averaged data,
it may not capture individual participants’ representations
(Ashby, Maddox, & Lee, 1994; Estes, 1956). Thus, comput-
ing individual-level MDS solutions could also lead to more

individually valid cues overall and may increase the model’s
ability to account for individual participants’ judgments.

Modeling

So far, we used the RulEx-J model to model participants’
judgments which assumes a continuous blending between a
rule-based process and an exemplar-based process (Broder,
Grif, & Kieslich, 2017; Izydorczyk, & Broder, 2022), which
we modelled using the cue abstraction model (Juslin, Olsson,
& Olsson, 2003) and a simplified version of the generalized
context model (Nosofsky, 1986) assuming equal cue weights.
Like all models, the RulEx-J model is so far intended as a
pragmatic tool to measure the mixture between rule- and
exemplar-based processes (which was the main focus of our
hypothesis) and thus might not describe the actual cogni-
tive processes that lead to a judgment. As of yet, we did
not test whether other models, such as the CX-COM model
(Albrecht, Hoffmann, Pleskac, Rieskamp, & von Helversen,
2019) or the mapping model (von Helversen & Rieskamp,
2008), are better able to capture participants’ judgments in
these tasks, or if using different sub-models as characteriza-
tion of the rule- and exemplar-based processes in the RulEx-J
model would lead to different results. Finally, although our
model checks indicate a reasonably good correspondence
between model predictions and actual judgments for most
participants, there are some individuals for whom this cor-
respondence is not observed. Consistent with the original
experiments by Trippas and Pachur (2019) and Pachur and
Olsson (2012), we did not use any performance-based inclu-
sion criteria, such as accuracy in the training phase or in the
final testing phase. Given the higher difficulty of our task,
excluding participants who did not perform well in either the
training or the testing phase may improve model fit and might
be useful to consider for future studies.

Conclusion

Building on earlier and recent categorization research
(Nosofsky, 1992; Nosofsky, Sanders, Meagher, & Douglas,
2018; Nosofsky, Sanders, & McDaniel, 2018; Shin & Nosof-
sky, 1992) we present a method which makes it possible to
apply well tested and established models of numerical judg-
ment processes to realistic rather than artificial stimuli. In the
future, this may be useful in order to use computational cogni-
tive models, which were so far only used inside the laboratory,
to investigate real life estimation or judgment problems, for
instance, how people estimate the amounts of sugar in food
items or carbon footprints of consumer goods.
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Appendix
RulEx-J Model for continuous cues

The graphical model of the hierarchical Bayesian RulEx-
J model is depicted in Fig. 5. We use the notation of
Lee (2008), in which observed variables (i.e., the data)
are shown as shaded nodes and unobserved variables (i.e.,
model parameters to be inferred) are shown as unshaded
nodes. Discrete variables are indicated by square nodes and
continuous variables are indicated by circular nodes. Unob-
served stochastic variables are indicated by single-bordered
nodes, and unobserved deterministic variables are indicated
by double-bordered nodes.

The RulEx-J model assumes that rule-based and exemplar-
based processes work in parallel and that a judgment y of a
person i in a trial ¢ is a mixture of both distinct processes
(Broder, Grif, & Kieslich, 2017; Izydorczyk, & Broder,
2022). When a probe (i.e., a stimulus which has to be judged)
is presented to a person, it will be processes by an exem-
plar module E and a rule module R, each making their own
distinct judgments (Jg and Jg). According to the RulEx-J
model, the final judgment is then a mixture of the judgments
of both modules:
y=axJp+ {1 —-a)xJg (A1)
where « is the mixture parameter, which measures the relative
contribution of subprocess. We will first describe how the
rule and exemplar modules are defined and then how the
difference between conditions in « is implemented in the
model.

The rule module

Rule-based process models assume that people combine and
integrate cue information according to some abstracted rule
to make a judgment (Juslin, Olsson, & Olsson, 2003). The
rule, according to which the information of multiple cues is
integrated, is often assumed to be a linear additive function
(Einhorn, Kleinmuntz & Kleinmuntz, 1979; Hoffmann, von
Helversen, & Rieskamp, 2019; Juslin, Karlsson, & Olsson,
2008). Thus, the judgment Jg of the rule module is generated
by:

n
Jr = wo—i-Zcuek X Wy
k=1

(A2)

where Jp is the judged criterion of an object p (the probe)
based on the intercept wo and the cue weights wy for the
corresponding ny cues. This rule-based model, sometimes
referred to as cue abstraction model (Juslin, Olsson, & Ols-
son, 2003), is quite flexible and does not necessarily imply
a compensatory processing of all cues, but can also mimic
simpler strategies or heuristics focusing on one or only few
cues by choosing appropriate (zero) cue weights (see Broder,
2000). Each cue weight wy comes from a normal distribution
with mean 43 and a common standard deviation o, with the
following hyperpriors:

wy ~ Normal(ug, o) (A3)
i ~ Normal(0, 5) (A4)
0w ~ Exp(0.5) (A5)

t trials |

i persons

Fig.5 Graphical model of the RulEx-J model for continuous cues with between condition difference in «
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The exemplar module

The exemplar module is defined based on the generalized
context model (GCM, Nosofsky, 1986; 2011) extended to
numerical judgments. The GCM as well as related mod-
els used in the multiple-cue judgment literature, implicitly
assume an integrative retrieval of exemplars where all pre-
viously encountered exemplars and their criterion values are
retrieved from memory and then integrated into the final judg-
ment (cf., Albrecht, Hoffmann, Pleskac, Rieskamp, & von
Helversen, 2019; Nosofsky & Palmeri, 1997). The similarity
of the probe to each of the exemplars acts as a weight in the
integration of all exemplar criterion values into the final judg-
ment. More similar exemplars receive more weight and thus
their criterion values have a higher impact on the final judg-
ment (Medin & Schaffer, 1978); (Estes, 1994)). Formally, in
the GCM the distance between the probe p in a given trial
and a given exemplars e is computed as:

ng
dpe = | D> wi x (pr — ex)?
k=1

(A6)

which is the root of the summed squared difference between
the cue values of the probe and the exemplar on each cue k.
The weights wy are assumed to sum to 1 and weigh how much
attention each cue or dimension receives. However, based on
previous results (Hoffmann, von Helversen, & Rieskamp,
2013, 2014, 2016; von Helversen & Rieskamp, 2008) we
omitted the wy parameters and thus the distance of each
exemplar to the probe is computed as:

(AT)

The distance gets converted into a similarity according to:

~hdpe (A8)

Spe =€
where £ is the sensitivity parameter, which reflects the rate
at which similarity declines with distance. Smaller sensi-
tivity parameters indicate that similarity declines less with
distance. The sensitivity parameters of all participants are
assumed to follow truncated normal distribution with mean
n, standard deviation o, and a lower bound of 0, with the
following hyperpriors:

h ~ Normaljo j(mup, op) (A9)
1y ~ Normal(0, 2) (A10)
o, ~ Exp(1) (A1)

The final judgment Jg of the probe is then computed by
weighting the criterion value c of each exemplar by the sim-
ilarity of the exemplar to the probe, summing everything
together, and dividing everything with the summed similar-
ity to get the scale correct (Elliott & Anderson, 1995; Juslin,
Olsson, & Olsson, 2003; Juslin & Persson, 2002).

>0 | Spe X criterion
e=15pe e

JE = an
e=15pe

(A12)

Note, that the formulation of the exemplar module of the
RulEx-J model here is different from the original formula-
tions in Broder, Grif, and Kieslich (2017) and Izydorczyk
and Broder (2022), which used the Context Model (Medin &
Schaffer, 1978) instead of the GCM. However, since the cues
extracted by the multidimensional scaling analysis are con-
tinuous rather than binary as in Broder, Grif, and Kieslich
(2017), we used the GCM here.

The blending

The predictions of both modules are then weighted according
to the mixture parameter « as stated in Eq. 1. The o parameter
of each person i comes from one of two potentially different
overarching Gaussian distributions for the /bc and the dcl
condition. The means of these distributions are expressed in
terms of a parameter representing the overall mean (10) and
a parameter representing the difference between the means
for the two conditions (§):

1
Mo j=1 = po + 5(8 X 0) (A13)

1
Ha,j=2 = M0 — 5(8 X 0g) (Al4)

2

where parameter 1 reflects the overall « mean on the real
scale. The parameter § reflects the differences between both
conditions on a standardized scale and hence, it reflects the
effect size of the fixed effect between experimental condi-
tions. The « value of each person i on the real scale ranging
from —00 to 00 (&eqr;) is then drawn from a normal distri-
bution with a mean depending on the condition of the person
with gy, j=1 for the learning by comparison condition and
Ma, j=2 for the direct criterion learning condition. To get a,
the ayeq); is then probit transformed to make sure the values
are on the scale from O to 1.

Qreal; ™~ Normal(ﬂa‘j» Oa) (A1)

o = q)(areal,') (Al6)
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We used the following hyperpriors:

o ~ Normal(0, 1) (A17)
& ~ Normal(0, 1) (A18)
oy ~ Exp(0.5) (A19)
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