Knowledge Graph Embeddings:
Link Prediction and Beyond

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitdt Mannheim

vorgelegt von
Daniel Ruffinelli
aus Asuncion, Paraguay

Mannheim, 2023

Dekan Prof. Dr. Claus Hertling, Universitit Mannheim

Referent Prof. Dr. Rainer Gemulla, Universitit Mannheim
Korreferent Prof. Dr. Simone Paolo Ponzetto, Universitit Mannheim
Korreferent Prof. Dr. Fabian Suchanek, Institut Polytechnique de Paris

Tag der miindlichen Priifung: 22.11.2023

ABSTRACT

Knowledge graph embeddings, or KGEs, are models that learn vector repre-
sentations of knowledge graphs. These representations have been used for
tasks such as predicting missing links in the graph, or as pre-trained repre-
sentations that encode structured data for downstream applications, such as
question answering or recommender systems. Despite the large amount of
models developed for this purpose, the variety in experimental settings has
made it difficult to compare results across different studies. Models are often
learned using different training and hyperparameter optimization strategies.
In addition, most of the literature has focused on a specific form of predicting
missing links, known as link prediction. Almost no attention was given to
predicting other types of structures in a knowledge graph, and despite their
use in downstream applications, there are virtually no studies on the usability
of KGE models as pre-trained representations of knowledge graphs.

In this thesis, we propose new training and evaluation methods and
conduct several large scale empirical studies, all aimed at studying KGE
models as a form of knowledge representation. First, we compare model
performance in a fair experimental setting that allows us to separate between
contributions from new models and those from new training strategies. We
find that differences in training approaches, and not necessarily in model
architectures, may account for much of the previously reported progress
in link prediction. Second, we study some potential limitations that may
result from focusing almost exclusively on the link prediction task for KGE
research. We find that good link prediction models are not necessarily able
to successfully predict missing links in a knowledge graph, and that link
prediction performance is not an indication that models generally capture
information in the graph. This contradicts the common argument that KGE
models are able to generally preserve the structure in a knowledge graph.

1ii

iv

Finally, we look beyond the link prediction task and study different
training objectives aimed at capturing more information in the graph, and the
impact that the resulting representations have on downstream applications.
We find that models trained with the standard approach based on link
prediction do not capture as much information about the graph as possible,
and that link prediction performance is also not a good indicator for good
downstream performance. These results suggest that the relation between pre-
training objectives and downstream performance is not as clear as suggested
in the literature, and that more research is needed to better understand how
to learn generally useful representations of knowledge graphs.

ZUSAMMENFASSUNG

Wissensgrapheneinbettungen (Knowledge Graph Embeddings, KGEs) sind

Modelle, die Vektordarstellungen von Wissensgraphen lernen. Diese Reprasen-
tationen wurden fiir Aufgaben wie die Vorhersage fehlender Links im

Graphen oder als vortrainierte Reprdsentationen verwendet, die strukturi-
erte Daten fiir nachgelagerte Anwendungen wie Fragebeantwortungs- oder

Empfehlungssysteme kodieren. Trotz der grofsen Anzahl von Modellen,

die fuir diesen Zweck entwickelt wurden, ist es aufgrund der Vielfalt der

Versuchsbedingungen schwierig, die Ergebnisse verschiedener Studien zu

vergleichen. Die Modelle werden oft mit unterschiedlichen Trainings- und

Hyperparameter-Optimierungsstrategien erlernt. Dartiiber hinaus konzentri-
erte sich der Grofiteil der Literatur auf eine spezielle Form der Vorhersage

fehlender Verbindungen, die so genannte Link-Prediction. Der Vorhersage

anderer Arten von Strukturen in einem Wissensgraphen wurde fast keine

Aufmerksamkeit geschenkt, und trotz ihrer Verwendung in nachgelagerten

Anwendungen gibt es praktisch keine Studien tiber die Verwendbarkeit von

KGE-Modellen als vortrainierte Reprasentationen von Wissensgraphen.

In dieser Arbeit schlagen wir neue Trainings- und Bewertungsmetho-
den vor und fithren mehrere grofs angelegte empirische Studien durch, die
alle darauf abzielen, KGE-Modelle als eine Form der Wissensrepréasenta-
tion zu untersuchen. Zunichst vergleichen wir die Leistung der Modelle in
einem fairen experimentellen Rahmen, der es uns erméglicht, zwischen den
Beitragen der neuen Modelle und denen der neuen Trainingsstrategien zu
unterscheiden. Wir stellen fest, dass Unterschiede in den Trainingsansédtzen
und nicht notwendigerweise in den Modellarchitekturen fiir einen Grofiteil
der zuvor berichteten Fortschritte in der Linkvorhersage verantwortlich sein
konnten. Zweitens untersuchen wir einige potenzielle Einschrankungen,
die sich aus der fast ausschliefslichen Konzentration auf die Aufgabe der

Vi

Link-Vorhersage in der KGE-Forschung ergeben konnen. Wir stellen fest,
dass gute Linkvorhersagemodelle nicht unbedingt in der Lage sind fehlende
Links in einem Wissensgraphen erfolgreich vorhersagen kénnen, und dass
die Leistung der Linkvorhersage kein Hinweis darauf ist, dass die Mod-
elle generell Informationen im Graphen erfassen. Dies widerspricht dem
gangigen Argument, dass KGE-Modelle in der Lage sind, die Struktur eines
Wissensgraphen im Allgemeinen zu erhalten.

Schliefllich gehen wir tiber die Aufgabe der Linkvorhersage hinaus und
untersuchen verschiedene Trainingsziele, die darauf abzielen, mehr Infor-
mationen im Graphen zu erfassen, sowie die Auswirkungen, die die re-
sultierenden Darstellungen auf nachgelagerte Anwendungen haben. Wir
stellen fest, dass Modelle, die mit dem Standardansatz der Linkvorhersage
trainiert werden, nicht so viele Informationen tiber den Graphen erfassen
wie moglich, und dass die Vorhersageleistung auch kein guter Indikator fiir
eine gute nachgelagerte Leistung ist. Diese Ergebnisse deuten darauf hin,
dass die Beziehung zwischen den vor dem Training gesetzten Zielen und der
nachgelagerten Leistung nicht so klar ist, wie in der Literatur angenommen
wird, und dass weitere Forschung erforderlich ist, um besser zu verstehen,
wie man allgemein niitzliche Reprédsentationen von Wissensgraphen erlernen
kann.

ACKNOWLEDGEMENTS

In the early years of studying for my engineering degree, I was introduced to,
and subsequently became fascinated with, the history and philosophy of sci-
ence. Through the works of Karl Popper and Thomas Kuhn, I learned about
the scientific method which, based on observation, rigor and reproducible ev-
idence, brought about long term improvement to our lives. It is my belief that
the general focus on obtaining a high number of (often speedy) publications
has resulted in a process that often neglects those core principles that made
the scientific method the revolution that it was. I say this, so the reader may
appreciate how much I am thankful for having had Rainer Gemulla as my
adviser throughout my PhD. Instead of focusing on publications, Rainer’s
primary interest has always been in deriving meaningful insights that build
understanding on top of the latest related work. This process was often
tough, but it is exactly what I was looking for in a PhD. Far from a stricter
alternative, I belief this is a better reflection of the scientific method, and
should thus be the norm. Thank you, Rainer!

In addition to my adviser, there are many people to whom I owe my
gratitude. I was fortunate enough to have had colleagues that acted as
mentors to me early in my PhD. When I most needed it, Christian Meilicke,
Yanjie Wang and Samuel Broscheit patiently shared their wisdom with me,
and I am happy to have had the opportunity to collaborate with them.
Through one way or another, I have also worked with many professors at the
Data and Web Science Group: Heiner (without whom I would not be here),
Simone, Heiko, Chris and Goran. I am thankful for all of their useful advice.
I have also learned a lot from other PhD students throughout these years,
many of whom I am happy to call friends today. Thank you all for the very
important debates about food, music, and other ways to enjoy life. Jungbusch
would not be the same without you!

vii

viii

I am fortunate enough to have too many friends to name, but I do want
to mention one person by name. My best friend and wife Helga, the best
partner I could have ever hoped for. I am incredibly grateful for her constant
support throughout these years, be it through listening, giving advice, or
simply talking for hours about anything and everything while listening to
music over a weekend breakfast. I love you! Thank you for coming with me
on this adventure!

Finally, I would like to thank Hidetaka Miyazaki for the amazing experi-
ences I have been able to enjoy through his creations.

Introduction

Background

21 Knowledge Graphs
2.1.1 Properties
212 Construction Methods
213 Applications
214 Open Knowledge Graphs
215 Challenges.

2.2 Knowledge Graph Embeddings
221 Mathematical Notation
2.2.2 Distributed Representations
2.2.3 Representations of Knowledge Graphs
224 Link Prediction and other Applications
225 Models oL
226 Evaluation
227 Training
2.2.8 Limitations and Relevance of KGEs . .

23 Related Models
23.1 Link Prediction Models
2.3.2 Feature-Based Models
233 Rule-Based Models
234 Graph Convolutional Neural Networks

24 Benchmark Datasets

iX

CONTENTS

CONTENTS

Link Prediction 43
3.1 Training Components. 45
3.2 Experimental Study 49
3.2.1 Experimental Settings 49
3.22 Model Performance 52
3.2.3 Impact of Hyperparameters 56
3.24 Impact of Variations in Evaluation 61
33 Related Work 65
34 Summary 66
Knowledge Base Completion 67
41 Predicting Missing Links 70
4.2 Entity-Pair Ranking Protocol 71
43 ExperimentalStudy 74
43.1 Experimental Settings 74
43.2 Model Performance 76
43.3 Underestimation and Type Filtering 81
434 Reproduction with LibKGE 83
44 Related Work o L. 84
45 Summary 85
Graph-Structure Prediction 87
51 Graph-Structure Tasks 88
5.2 Multi-Task Ranking Protocol 90
53 Multi-Task Training 91
54 Experimental Study 94
54.1 Experimental Settings 94
54.2 Model Performance 97
543 Discussion 000000 100
5.4.4 Impact of Training Task Selection 102
55 Related Worko o L. 102
56 Summary 103
Downstream Applications 105
6.1 Pre-Trained Knowledge Graph Representations 106
6.2 Experimental Study 108

CONTENTS xi
6.2.1 Experimental Settings 109

6.2.2 Model Performance 113

6.2.3 Impact of Model Selection 116

6.2.4 Impact of Pre-Training Task Selection 119

6.2.5 Data Efficiency Tests 120

6.3 Related Work 122
64 Summary 123

7 Conclusions 125
Bibliography 129
List of Algorithms 147
List of Figures 149
List of Tables 153
Appendices 161

A Additional Material for Chapter3 161

B Additional Material for Chapter4 173

C Additional Material for Chapter5 174

D Additional Material for Chapter6 176

CHAPTER
ONE

INTRODUCTION

"Reality is frequently inaccurate.”

Douglas Adams

Knowledge graphs encode real-world information in the form of directed
labeled multigraphs. Their use is prevalent in many application scenarios
where there is a need to integrate and extract value from data at large
scale (Hogan et al., 2021). Some examples of such applications are web
search (Shrivastava, 2017; Singhal, 2012), social networks (Noy et al., 2019;
He et al., 2016) and recommender systems (Chang, 2018; Hamad et al,,
2018). In such scenarios, knowledge graphs can grow to the size of billions of
edges (Pellissier Tanon et al., 2016), presenting challenges to their construction,
maintenance and use (Noy et al., 2019).

Over the past decade, the study and development of methods for learn-
ing vector representations, or embeddings, of knowledge graphs has been
a very active research area (Nickel et al., 2015; Wang et al., 2017; Ji et al.,
2021). This follows from the success of using learned representations in
areas such as natural language processing (Kamath et al., 2019) or computer
vision (Szeliski, 2022). A knowledge graph embedding model, or KGE, learns vec-
tor representations of the entities and relations in a knowledge graph. These
representations capture the general patterns and structure in the knowledge
graph (Trouillon et al., 2016; Bordes et al., 2013b), which makes them useful

2 CHAPTER 1. INTRODUCTION

for various purposes, such as predicting missing facts in the knowledge
graph (Balazevic et al., 2019; Sun et al., 2019), or to enhance performance in
knowledge-intensive applications such as question answering (Ilyas et al.,
2022) or recommender systems (El-Kishky et al., 2022).

Despite the large amount of works that have proposed new KGE models (Ji
et al., 2021), it is often difficult to compare model performance across different
studies due to the variety in experimental settings. Models are often learned
using different training and hyperparameter optimization strategies, and
performance is often compared across different implementations of these
training scenarios. In addition, most of the literature on KGE models has
centered around a specific form of predicting missing links in a knowledge
graph, known as link prediction. Almost no attention was given to predicting
other types of structures in a knowledge graph, such as predicting the
neighborhood of an entity or the domain of a relation, and despite their use
in downstream applications, there are virtually no studies on embedding
quality. That is, on the usability of the representations from KGE models as
pre-trained representations of knowledge graphs.

In this thesis, we propose new training and evaluation methods and
conduct several large scale empirical studies, all aimed at studying KGE
models as a form of knowledge representation. First, we compare model
performance in a fair experimental setting that allows us to separate between
contributions from new models and those from new training strategies. We
find that differences in training approaches, and not necessarily in model
architectures, may account for much of the previously reported progress
in link prediction. Second, we study some potential limitations that may
result from focusing almost exclusively on the link prediction task for KGE
research. We find that good link prediction models are not necessarily able
to successfully predict missing links in a knowledge graph, and that link
prediction performance is not an indication that models generally capture
information in the graph. This contradicts the common argument that KGE
models generally preserve the structure in a knowledge graph.

Finally, we look beyond the link prediction task and study different
training objectives aimed at capturing more information in the graph, and the
impact that the resulting representations have on downstream applications.
We find that models do not capture as much information about the graph
as possible with the standard training approach, and that link prediction
performance is also not a good indicator for good downstream performance.

CHAPTER 1. INTRODUCTION 3

These results suggest that the relation between pre-training objectives and
downstream performance is not as clear as suggested in the literature, and
that more research is needed to better understand how to learn generally
useful representations of knowledge graphs.

Contributions
The main contributions in this thesis are:

1. We conduct a large experimental study to compare the link prediction
performance of several popular KGE models all under the same training
conditions. We find that KGE models are very sensitive to training
settings as well as to hyperparameter optimization, and that given
more recent training methods, models that underperform in prior work
become competitive with, or even outperform, state-of-the-art models.
This suggests that observations made in studies that compare published
results across different experimental settings may need to be revised,
and that future work should provide the same resources to all models
to ensure a fair assessment.

2. We design a task we call knowledge base completion, which is a gen-
eralization of the link prediction task, and propose a new evaluation
method based on this new task to assess whether KGE models can
more generally predict missing links in a knowledge graph. With
this approach, we illustrate that the standard form of evaluating link
prediction performance is limited in that models that fail to capture
large areas of a knowledge graph still perform well in standard link
prediction. In contrast, our experimental result show that our proposed
evaluation method makes a clear distinction between more and less
expressive KGE models.

3. We propose a generalization of the standard evaluation method for
link prediction, so that it may be used to evaluate model performance
on any number of prediction tasks. Using this evaluation approach in
combination with a new set of tasks for predicting different structures in
a graph, we assess the extent to which KGE models can make different
types of predictions about the graph they encode. We find that models
with strong link prediction performance are often not those that are best

4 CHAPTER 1. INTRODUCTION

at making predictions about the graph more generally. These results
challenge the intuition that KGE models preserve the general structure
of a knowledge graph.

4. We propose a generalization of the standard training method based on
link prediction to an approach for simultaneously training models on
multiple tasks beyond link prediction. Further, we extend the ability of
KGE models to efficiently answer new types of queries. We compare
the performance of models that are trained with the standard link
prediction approach and our proposed multi-task training approach.
We find that KGE models can indeed learn to simultaneously capture
more information about a graph when trained on multiple tasks.

5. We conduct a large experimental study to assess the impact that dif-
ferent pre-training methods have on the resulting embeddings when
used in downstream applications. We collect and create 35 different
datasets for downstream tasks and compare performance of several
downstream models that use knowledge graph embeddings trained
with the standard approach and our proposed multi-task approach. We
find that link prediction performance is not a good indicator for good
downstream performance, and that multi-task pre-training provides
benefits in downstream tasks most of the time. However, including
more tasks during training does not often lead to improved downstream
tasks, suggesting that more research is needed to better understand the
relation between pre-training KGE models and their usability in down-
stream applications. To assist with future research in this direction, we
provide our collection of downstream datasets to assess embedding
quality, as well as code for all of our proposed methods and empirical
studies, implemented as part of the open source framework LibKGE.

Publications
The work presented in this thesis is based on the following publications:

* Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and
Christian Meilicke. On Evaluating Embedding Models for Knowledge
Base Completion. In 4th Workshop on Representation Learning for NLP
(Rep4NLP@ACL), 2019. Received Outstanding Paper Award

CHAPTER 1. INTRODUCTION 5

e Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You CAN
Teach an Old Dog New Tricks! On Training Knowledge Graph Em-
beddings. In International Conference on Learning Representations (ICLR),
2020

¢ Daniel Ruffinelli and Rainer Gemulla. Beyond Link Prediction: On
Pre-Training Knowledge Graph Embeddings. 2023. Under Submission

We also contributed to, and draw insights from, the following works:

¢ Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer
Gemulla, and Heiner Stuckenschmidt. Fine-Grained Evaluation of Rule-
and Embedding-based Systems for Knowledge Graph Completion. In
International Semantic Web Conference (ISWC), 2018

¢ Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and
Heiner Stuckenschmidt. Anytime Bottom-Up Rule Learning for Knowl-

edge Graph Completion. In International Joint Conference on Artificial
Intelligence (IJCAI), 2019

* Haris Widjaja, Kiril Gashteovski, Wiem Ben Rim, Pengfei Liu, Christo-
pher Malon, Daniel Ruffinelli, Carolin Lawrence, and Graham Neubig.
KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models. In Empirical Methods in Natural
Language Processing: System Demonstrations (EMINLP), 2022

Outline

We introduce relevant background concepts and methods in Chapter 2. In
Chapter 3 we discuss the large-scale study where we compare the link
prediction performance of various models all under the same training con-
ditions. We introduce our proposed knowledge base completion task and
the evaluation method we designed based on this task in Chapter 4. We
propose a generalization of the standard training and evaluation approaches
in Chapter 5 and present the corresponding experimental results. In Chap-
ter 6 we discuss our experimental study comparing the effect that different
pre-training approaches have when KGE models are used in downstream
applications. We conclude our thesis in Chapter 7, where we also briefly
discuss opportunities for future work.

CHAPTER 1. INTRODUCTION

CHAPTER
TWO

BACKGROUND

In this chapter, we introduce the fundamental concepts and methods that
underpin the work in this thesis. We start with knowledge graphs, and then
introduce knowledge graph embeddings, which are the main focus of this
work. We follow with a brief discussion on other families of related models,
and finish with a description of the relevant datasets used in this work.

2.1 Knowledge Graphs

Many of the properties of knowledge graph embeddings, both observed and
desired, come from the objects these models aim to represent: knowledge
graphs. Consequently, discussing relevant concepts about knowledge graphs
is important to understand the motivation behind most of our proposed
methods and experimental studies. In this section, we give a brief introduc-
tion to knowledge graphs as they are used in this work. For a comprehensive
introduction, see Hogan et al. (2021).

A knowledge graph (KG) encodes real-world information in the form of
a directed labeled multigraph, where nodes correspond to any type of real-
world entities, such as cities or famous persons, and edges represent relations
between two entities. Figure 2.1 shows an example of a small knowledge
graph that represents basic geographical facts about a few cities and states in
the United States of America (USA).

8 CHAPTER 2. BACKGROUND

North America
Arkansas

Texas

locatedI
ocatedIn B USA
S8
C}\\b\' 0&0

0 N7

C(/
\O

Dallas

Austin

Figure 2.1: Example of a small knowledge graph

Following the standard data model for KGs, the Resource Description
Framework (RDF) (W3C, 2014), we represent a knowledge graph as a set
of (subject, predicate, object) or (s,p,0) triples. For example, the triple (Austin,
capitalOf, Texas) represents the fact that the city of Austin is the capital of the
state of Texas in the USA. Table 2.1 shows the set of triples that correspond
to the KG in Figure 2.1. We formally define a KG as follows.

Definition 2.1.1 (Knowledge Graph). Given a finite set £ of entities and a
finite set R of relations, a knowledge graph L C £ x R x £ is a set of (subject,
predicate, object) triples, each representing a fact in K.

Although generally not required, some KGs follow to a pre-defined
schema, i.e. a set of rules that describe the constraints that the entities and
relations in a KG must adhere to. For example, the KG in Figure 2.1 may
describe that each entity is an instantiation of a more general class, such
as (Texas, instanceOf, city), where city is a node that represents the concept
of a city. Similarly, relations in the KG may have constrained domain and
range, e.g. (capitalOf, hasDomain, city) and (capitalOf, hasRange, state). It is
worth noting that, even in the absence of an explicit schema, the triples that
make up a KG typically follow some set of implicit rules, e.g. relations have
a specific domain and range, or some relations have certain properties, such
as transitivity or symmetry.

CHAPTER 2. BACKGROUND 9

Subject Predicate Object

Dallas locatedIn Texas
Austin capitalOf Texas
Austin locatedIn Texas
Arkansas borders Texas
USA locatedIn North America

Austin locatedIn USA

Table 2.1: Knowledge graph from Figure 2.1 as a set of triples

In this work follow, we follow the open world assumption (OWA) when
working with KGs. That is, we assume that any fact missing from the KG
is unknown, i.e. either true or false. In contrast, the closed world assumption
(CWA) states that missing facts are assumed to be false, such as in traditional
relational database systems.

Knowledge graphs may also contain literals, i.e. nodes that do not repre-
sent a real-world entity, but instead hold information about an entity node in
the form of strings, integers or dates. For example, the triple (USA, founded,
04/07/2023) may be used to represent the date when the USA was founded.
In this work, we focus on KGs that do not contain literals.

2.1.1 Properties

The quality of the data in a KG may be described by several properties (Hogan
et al., 2021). For example, timeliness refers to the relevance of the data across
time, and provenance refers to the process by which the data was obtained.
Two arguably more fundamental properties of KGs, and the two that are
relevant in this work, are accuracy and completeness.

Definition 2.1.2 (KG Syntactic Accuracy). A KG is more syntactically accurate
the more its facts are accurate w.r.t. the rules established by the data model,
e.g. domain and range restrictions in relations.

Definition 2.1.3 (KG Semantic Accuracy). A KG is more semantically accurate
the more its edges correctly represent real-world facts.

Definition 2.1.4 (KG Completeness). A KG is more complete the higher the
percentage of relevant real-world facts are represented within it.

10 CHAPTER 2. BACKGROUND

Note that completeness implies an ideal set of facts that a KG should
have. In practice, completeness can be (at least partially assessed) by using a
larger set of known facts (Darari et al., 2018).

2.1.2 Construction Methods

Knowledge graphs can be constructed in various ways, each of which has
an impact on its completeness and accuracy. Methods for constructing KGs
can be divided into automated or non-automated and structured or unstruc-
tured (Nickel et al., 2015).

An automated approach is one that automatically extracts facts from
various sources, whereas a non-automated approach typically means having
a group of experts manually create a set of triples. While the latter implies
higher quality, its cost may be prohibitively large depending on the size of
the KG and the field of knowledge it represents. Further, there may not
be agreement among experts w.r.t. what some of the facts are. Automated
approaches are more cost effective, but the quality of the resulting KG
may suffer, both in terms of accuracy and completeness, depending on the
extraction method and sources of information.

Structured approaches are those whose source of information is structured
data, e.g. web tables (Luzuriaga et al., 2021) or Wikipedia infoboxes (Peng
et al., 2019). Conversely, unstructured methods extract information from
unstructured sources, such as publicly available text (Gashteovski et al., 2017).
We discuss how the KGs that are relevant for this thesis were constructed in
Section 2.4.

2.1.3 Applications

The main purpose of KGs is to provide structured data that can be inter-
preted by automated systems in a semantically meaningful way across various
application scenarios, such as social network analysis or recommender sys-
tems (Nickel et al., 2015). A common mechanism by which users can extract
information from KGs is logical reasoning. For example, given the KG in
Figure 2.1, the facts (Texas, locatedIn, USA) and (USA, locatedIn, North America)
could lead us to infer the fact (Texas, locatedIn, North America). KGs are usually
consulted via a given query language, such as SPARQL, which was designed
for RDF graphs (W3C, 2013). The cost of extracting information from a KG

CHAPTER 2. BACKGROUND 11

typically depends on the size of the KG and the expressivity of the query
language. We discuss in Section 2.1.5) how this can become a challenge when
using KGs in real-world scenarios.

Depending on their intended purpose, KGs may vary in size and scope.
Some KGs are limited in scope, such as the Gene Ontology, which provides
information about the relations between genes and the biochemical materi-
als that result from the expression of these genes (GOC, 2021). The Gene
Ontology contains data about 27942 biological processes, 11263 molecular
functions and 4043 cellular components (GOC, 2023). Conversely, the Google
Knowledge Graph (Singhal, 2012) is a general purpose graph that contains
billions of facts about the world. It was designed to enhance the company’s
search engine with semantically meaningful results. The actual size of this
KG is unknown, as this is not an open graph, but the private property of
a company. Other companies in the industry have also created knowledge
graphs for internal use, such as Amazon (Krishnan, 2018), Facebook (Noy
et al., 2019) or Microsoft (Shrivastava, 2017).

2.1.4 Open Knowledge Graphs

An open KG is one that is publicly available to query, download and use for
any purpose (Hogan et al., 2021). In Section 2.4, we discuss the benchmark
datasets used in this work, all of which are subsets of the following KGs.

Freebase (Bollacker et al., 2007) was a KG with the purpose of encod-
ing general human knowledge. At launch, it was made up of more than
125000000 triples (Bollacker et al., 2008) and it was designed to provide
integrated support for the semantic web (Hitzler, 2021). Its construction was
based on collaborative contributions from human editors and it was possible
to extend it via a web user interface. Freebase was deprecated when it was
acquired by Google and became an important part in the creation of the
Google Knowledge Graph (Singhal, 2012).

WordNet (Miller, 1995) is a domain-specific KG. It was designed as a
lexical database that could be easily processed with machines and thus pro-
vide support for automated natural language tasks. WordNet was manually
constructed by experts and contains more than 118 000 word forms and more
than 90000 different word meanings.

YAGO (Suchanek et al., 2007) is another general-purpose KG, constructed

12 CHAPTER 2. BACKGROUND

by automatically extracting information from structured data in Wikipedia
and using WordNet to integrate and disambiguate facts and concepts. At
launch, it contained about 5 million facts. YAGO was designed to provide sup-
port for various tasks, such as machine translation or document classification,
among others.

Wikidata (Vrandeci¢ and Krotzsch, 2014) was designed as a centralized
database that stores all of the structured information contained in Wikipedia,
with the aim of providing easier access to such structured data. At launch,
it contained over 43 million statements. As with Wikipedia, collaborative
editing is allowed and providing references to claims is encouraged.

2.1.5 Challenges

Despite their wide applicability, KGs have known limitations. Those most
relevant for this work are their incompleteness and their cost of inference.

Due to their construction methods, KGs are often incomplete. For exam-
ple, KGs that are constructed based on information in Wikipedia would only
include facts contained in Wikipedia, such as the high amount of data about
American actors and actresses and the lack of corresponding information
about Indian or Nigerian actors or actresses, despite the latter two being
larger film industries (Nickel et al., 2015). Similarly, the place of birth of 71%
of the people included in Freebase was reportedly missing (West et al., 2014).

As mentioned in Section 2.1.3, the cost of deductive reasoning used to
infer missing or new data in a KG depends on the language bias of the query
language, i.e. what types of queries are supported, and on the size of the
KG. In general, query answering can be undecidable given languages that
are expressive enough (Hitzler et al., 2010). For this reason, a multitude of
less expressive languages, i.e. languages that only support restricted types of
queries, have been developed to allow for efficient reasoning. These range
from IF-THEN rules, such as Datalog for databases (Ceri et al., 1989), to the
various forms of Description Logics designed for the semantic web (Baader
et al., 2017).

Challenges such as the ones described above have been important mo-
tivations for the design of knowledge graph embedding models, which we
introduce in the next section.

CHAPTER 2. BACKGROUND 13

Numbers, Arrays, and Sets

a A scalar
a A column vector
A A matrix
ajj Element at position 7, j of matrix A
a; or a;. Column vector of row i of matrix A
a; Column vector of column j of matrix A
A A set
R The set of real numbers
C The set of complex numbers
ae A a is an element of set A
AcCB Set A is a subset of set B
AUB Union of sets A and B
ANB Intersection of sets A and B
Linear Algebra Operations
al Transpose of vector a
AT Transpose of matrix A
a’b Dot product between a and b
aob Element-wise (Hadamard) product between a and b
aA Matrix-vector product between a and A
diag (a) Diagonal matrix with vector a in main diagonal

Table 2.2: Mathematical notation used throughout this thesis.

2.2 Knowledge Graph Embeddings

In this section, we introduce the main focus of this thesis: knowledge graph
embedding (KGE) models. KGEs are dense vector representations of the
entities and relations in a KG. Therefore, we give a brief introduction into
dense representations before discussing KGEs in general.

2.2.1 Mathematical Notation

Table 2.2 introduces the mathematical notation used throughout this thesis.

14 CHAPTER 2. BACKGROUND

2.2.2 Distributed Representations

Most of the recent progress in some areas of machine learning, such as natural
language processing and computer vision, is based on models that rely on
dense representations instead of local, or sparse, representations (Kamath
et al., 2019; Szeliski, 2022). Local representations refer to the mapping of a
single representational element to a single concept from a set of concepts to
be represented. For example, a sequence of text could be represented using
one-hot encoding vectors, i.e. vectors with binary indicator features, where
each feature indicates whether a specific word is present in the sequence.
Thus, each feature is mapped to a single word and a sequence of text is
represented by a sparse vector with dimension equal to the size of the
available vocabulary.

In contrast, dense (or distributed) representations rely on a many-to-
many relation between representational components and the concepts or
entities that are to be represented (Hinton, 1984). That is, a single element
may be used to represent multiple concepts, and multiple concepts may be
represented by multiple elements. Note that representational elements need
not be binary as in a one-hot encoding vector. This results in dense, i.e. non-
sparse, vector representations, which allow for the size of the representation
vector to be much smaller than when relying on sparse representations.
Much of the success in machine learning in recent years has been driven by
models that learn such dense representations, which are in turn useful as
input representations for downstream tasks (Bengio et al., 2000; Bengio, 2008;
LeCun et al.,, 2015; Zhuang et al., 2021). Such dense representations are often
referred to as embeddings.

Dense representations are also related to latent feature models (Orbanz
and Teh, 2010). These models represent concepts as a set of latent features,
i.e. features not directly present in the data, but fundamentally underlying it.
Such models were widely applied in recommender systems based on matrix
factorization techniques (Koren et al., 2009) and have also been successfully
applied to graphs (Orbanz and Roy, 2014).

2.2.3 Representations of Knowledge Graphs

Methods that provide vector representations of knowledge graphs have
been proposed and developed with different purposes in mind. Paccanaro

CHAPTER 2. BACKGROUND 15

and Hinton (2001) focused on the task of inferring new instances of binary
relations between entities in a KG. Three components of their work are still
commonly used today by models that focus on that same task. First, they
modeled this task as predicting a missing element of a triple, e.g. (Alberto,
hasFather, ?). We call this task link prediction and discuss it more formally
in Section 2.2.4. Second, inspired by Hinton (1984), their method was based
on learning distributed vector representations of each entity by embedding
them into a multidimensional Euclidean space. They modeled the relations
between entities in the KG as relation-dependent transformations that, when
applied to the embedding of the subject of a triple, should result in an
approximation of the embedding of the object in that triple. Finally, they
represented the plausibility that a triple is true with a real value given by a
function that takes a triple as input. We call such functions score functions.
This score function was parameterized by the entity and relation embeddings,
and their training approach was based on increasing the scores of known
edges in the graph w.r.t. to all other possible edges.

Inspired by the success of collaborative filtering in recommender systems,
a different set of methods was proposed to solve the same task (but referred
to as relational learning in this line of work) using methods based on matrix
factorization. Singh and Gordon (2008) proposed collective matrix factoriza-
tion, where they followed a collaborative filtering approach to simultaneously
learn relations between different sets of entities, e.g. users and movies in a
recommendation system. Similarly, Nickel et al. (2011) proposed a tensor
factorization approach that, as in collaborative filtering, results in dense
representations of the entities in the data. We discuss this last model further
in Section 2.2.5.

With perhaps a more general purpose in mind, Bordes et al. (2011) pro-
posed a neural network architecture designed to embed a knowledge graph
into a continuous vector space in order to gain flexibility while preserving
its knowledge. Such representations of a KG would allow the injection of
the knowledge represented in the KG into machine learning methods that
commonly rely on feature vectors. They learned vector representations for
each entity and a pair of matrices that acted as linear transformations for
each relation. During training, their model learned to rank the scores of
known triples lower than that of negative triples. The latter were generated
by replacing the subject or object of a triple by a randomly chosen entity from
the set of entities, a process that is still used by models (see Section 2.2.7).

16 CHAPTER 2. BACKGROUND

Thus, their approach was also based on the link prediction task as in the
work of Paccanaro and Hinton (2001).

The works described above from Paccanaro and Hinton (2001), Bordes
et al. (2011) and Nickel et al. (2011) were some of the first to introduce
the motivation and methods that became the starting point of research into
knowledge graph embeddings (KGE). With a clearer picture of such earlier
works, we define KGE models as follows:

Definition 2.2.1 (Knowledge Graph Embedding Model). Given a knowledge
graph K € £ x R x £, a KGE model associates each entity i € £ and relation
k € R with an embedding e; € R and r, € R¥*" in a low-dimensional
vector space, respectively. These embeddings act as parameters for a score
function s : £ x R x £ — R that represents the plausibility of any triple (i, k, j)
with a real number. The score function takes the form s(i, k, j) = f(e;, 1y, e;),
i.e., it depends on i, k, and j only through their respective embeddings.

Typically, models are trained to associate higher scores to positive triples,
i.e. those known to be correct, and lower scores to negative or pseudo-
negative triples, which are obtained via some protocol for generating negative
examples. We describe the training process of KGEs in detail in Section 2.2.7.

Since the earliest proposals described above, dozens of KGE models
have been proposed, most of which share the same motivation as the works
described above. For a comprehensive list of these proposed models, see the
surveys from Ji et al. (2021) and Wang et al. (2017). In the following sections,
we first discuss the tasks that motivated the design of KGE models in general,
and then formally introduce the specific KGE models that are relevant for
this work.

2.24 Link Prediction and other Applications

As we will see in the following sections, link prediction has been a funda-
mental task for KGE models, not only as a goal, but also when designing
approaches for training and evaluating models. This focus on link prediction
has in fact motivated the work we present in Chapters 4 to 6. In this section,
we formally introduce the link prediction task. We also briefly discuss other
types of tasks that KGEs are useful for, such as predicting other types of
graph structure and downstream applications.

CHAPTER 2. BACKGROUND 17

Link prediction. Generally, link prediction relates to a model’s ability to
predict missing edges in a KG. More specifically, the link prediction task has
been commonly defined in the literature as follows.

Definition 2.2.2 (Link Prediction). Given a knowledge graph K € £ x R x &,
link prediction is the task of predicting a missing entity in a given triple
(i,k,j) € K, i.e. answering queries (i,k,?) or subject prediction, and (?,k,j) or
object prediction, with j and i, respectively.

The development of KGE models was partially motivated by some ad-
vantages that such models could have on the link prediction task compared
to other types of approaches, e.g. rule-based models (Nickel et al., 2015).
First, KGES are significantly more efficient at inference time, because com-
pared to rule-based reasoning, models need to compute the score of a given
triple, which is often a single operation using the corresponding embeddings.
Second, they should in principle be more robust to noise, since noisy data
should have less of an impact on a learned vector space than on the learning
of a set of discrete rules. However, we are not aware of any formal study
into KGE’s ability to handle noise in comparison to rule-based models. We
discuss rule-based models in more detail, including their advantages com-
pared to KGE models, in Section 2.3.3, and compare their performance on
link prediction and other tasks in Chapters 3 and 4.

In addition, distributed representations of entities and relations in a
KG can be very useful for tasks like entity clustering, entity linking across
different KGs, or even identifying errors in the KG by checking the scores of
existing edges.

Other graph structure tasks. KGEs can also perform predictions about
other types of structure in a KG. For example, some works also refer to the
task of predicting the missing relation in a triple, i.e. (s,?,0) as link prediction.
We follow Chang et al. (2020) and Chen et al. (2021c) and refer to this task as
relation prediction.

In addition to relation prediction, some works study the triple classifi-
cation task (Socher et al., 2013; Safavi and Koutra, 2020), i.e. given a triple
t, predict whether t € K or t ¢ K. Although we do not study the triple
classification task in this thesis, we discuss it further in Section 2.2.6. For a
discussion on other graph-structure tasks, see Wang et al. (2017).

Downstream applications. In addition to tasks that aim at predicting
structure in the KG, the learned embeddings provided by KGE models may

18 CHAPTER 2. BACKGROUND

be used as features in downstream applications that may benefit from the
information in the corresponding KG. In this sense, it is crucial that models
actually preserve the information in the KG, which is indeed the goal of
many proposed KGE models (Bordes et al., 2011, 2013b; Trouillon et al., 2016).
There are several different types of downstream models that make use of pre-
trained KGE models, such as recommender systems (El-Kishky et al., 2022;
Wang et al., 2018a), language models (He et al., 2020; Zhang et al., 2019b),
visual models (Baier et al., 2017), and question answering systems (Ilyas et al.,
2022). Different models use the learned representations from KGEs differ-
ently depending on the downstream application. We discuss downstream
applications in more detail in Chapter 6. For more comprehensive discussions
on the use of KGE models in downstream applications, see Wang et al. (2017)
and Ji et al. (2021).

2.2.5 Models

KGE models are mostly differentiated by the assumptions they make, which
are best summarized by their score functions. In this section, we introduce
the models that are part of our experiments in later chapters, based on the
type of score function they use. We focus on what makes models distinct
from one another and leave the discussion of hyperparameters that apply to
all models for Section 2.2.7. In addition, we comment on the more theoretical
aspects of these models, such as model expressivity, at the end of this section.
Later, in Section 2.3, we briefly discuss related families of models, including
more recent link prediction models that do not necessarily learn vector
representations of the components of a KG. For all models discussed below,
let d be a hyperparameter, N = |£| and K = |R|, where £, R are the sets of
entities and relations in some knowledge graph K, respectively.

Bilinear Models

Often referred to as factorization-based models (Ji et al., 2021), bilinear models
are those with the following score function:

s(i,k,j) = el Ree;, (2.1)

where e;, e; and Ry are embeddings of entities i,j € £ and relation k € R,
respectively.

CHAPTER 2. BACKGROUND 19

RESCAL. Proposed by (Nickel et al., 2011), RESCAL is parameterized by
an entity matrix E € RN*? and K relation matrices Ry, Ry, ..., Rx € R4*4,
RESCAL uses the standard bilinear score function described by Equation 2.1.

Given that RESCAL learns a d x d matrix for each relation in a KG, it
has a considerably higher number of parameters compared to other KGE
models proposed in subsequent years, some of which we describe below. This
makes the process of training RESCAL more expensive than other models,
and some authors report that this model may be overparameterized due to
its tendency to overfit (Kotnis and Nastase, 2017). Perhaps for these reasons,
RESCAL fell out of use in KGE research compared to other models. But as we
show empirically in Chapter 3, RESCAL is still a very competitive model for
link prediction when trained appropriately, and can even outperform many
models that were more recently proposed.

DistMult. This model can be seen as a constrained variant of RESCAL.
DistMult (Yang et al., 2015) is parameterized by entity matrix E € RN and
relation matrix R € RX*4 and it uses the following score function:

s(i,k,j) = el diag () e;. (2.2)

Due to the use of a diagonal matrix as the transformation applied to entity
embeddings, all symmetric pairs of triples (i,k,j) and (j, k, i) all assigned the
same score. This means that DistMult essentially treats all relations in a KG as
symmetric, a strong assumption that does not accurately describe real-world
KGs. Despite this limitation, our empirical results in Chapter 3 show that
DistMult is competitive with more expressive link prediction models and can
even outperform them on some datasets. We discuss the implications of this
observation further in Chapter 4.

ComplEx. Another constrained bilinear model, ComplEx (Trouillon et al.,
2016) is parameterized by entity matrix E € CV*¢ and relation matrix R €
CX*4. Complex has the following score function:

s(i,k,j) = Re(e] diag (ry) €)), (2.3)

where Re(x) is the real part of x € C.

ComplEx was designed to be more expressive than previous models like
DistMult and TransE (discussed below), while retaining the same number of
parameters as these models. Despite its simplicity, ComplEx has shown to be

20 CHAPTER 2. BACKGROUND

competitive with more involved link prediction models when trained with
considerably larger embedding sizes (Lacroix et al., 2018) or when trained
with additional training objectives (Chen et al., 2021c).

Analogy. This model is similar to RESCAL but with additional con-
straints on the relation embeddings. Like RESCAL, Analogy (Liu et al,,
2017) is parameterized by entity matrix E € RN*? and K relation matrices
Ry, Ry, ...,Rx € R4 and also uses the standard bilinear score function
described by Equation 2.1. However, it introduces the constraints that relation
matrices be normal, i.e. RkRZ = RZRk, and commutative, i.e. RyRy = Ry Ry,
for every k, k' € R.

Liu et al. (2017) show that despite using matrices for relation embeddings,
the constraints imposed on the model result in block-diagonal relation ma-
trices that are almost diagonal. Further, the authors show that ComplEX,
DistMult and HolE (Nickel et al., 2016) can all be seen as restricted forms of
the Analogy model.

Translational Models

Translational models are those that use distance-based score functions. That
is, they assume that the embedding of the subject entity, after applying the
corresponding relation-specific transformation, should be in close proximity
to the object embedding according to some distance metric in the embedding
space.

TransE. TransE (Bordes et al., 2013b) is parameterized by entity matrix
E € RN*“ and relation matrix R € RX*?, Inspired by translational properties
of word embeddings (Mikolov et al., 2013a), TransE uses the following score
function:

S(i/k/j) = _"el+rk_e]’|p/ (2‘4)

where p € {1,2} is the p-norm of the resulting vector.

TransE'’s score function suggests that, except for the case of 1-to-1 relations,
the model might have a tendency to cluster many entities in embedding space
despite them not necessarily being similar (Wang et al., 2014; Yang et al., 2015).
For example, the relation city_of should map several different cities to the
same country. To increase the plausibility of observed triples for that relation,
TransE may give similar representations to each of those cities. Similarly, to

CHAPTER 2. BACKGROUND 21

better represent symmetric relations, TransE may have a tendency to reduce
the size of the embedding of a symmetric relation, so that the scores of triples
with that relation are indeed symmetric. We observe this last phenomenon
empirically in Chapter 4.

The limitations discussed above inspired several variations of TransE,
such as TransH (Wang et al., 2014) and TransR (Lin et al., 2015). We refer
to Wang et al. (2017) and Ji et al. (2021) for a more detailed discussion of
variations of the TransE model.

Our experimental results from later chapters show that, perhaps due to
its limitations, TransE underperforms in the link prediction task compared to
other models. However, we show in Chapter 6 that despite its relatively low
link prediction performance, the representations learned by TransE are often
more useful in downstream applications than models that perform better on
the link prediction task.

RotatE. RotatE (Sun et al., 2019) is parameterized by entity matrix E €
CN*4 and relation matrix R € CX*4, RotatE’s score function is the following;:

S(i,k,j) = —Heiork—ejHl, (25)

where o is the Hadamard product. This model defines each relation as a
rotation in complex vector space. Note that, as with TransE, we negate the
scores so that larger scores rank higher.

RotatE is a more recent translational model that showed state-of-the-art
performance on some benchmark datasets when released. In addition, it is
not constrained by the limitations in the TransE model, which make it a more
capable representative of translation-based KGE models.

Neural Models

While bilinear models can be represented as neural network models, the
design of several models has been based on neural networks more gener-
ally (Socher et al., 2013; Chen et al., 2021a; Zhu et al., 2021). In the following,
we discuss the most relevant neural model in this thesis.

ConvE. Dettmers et al. (2018) proposed ConvE, a model that applies a
two-dimensional convolutional layer to the concatenation of the subject and
relation embeddings of a triple, after reshaping each into a two-dimensional
embedding. It then projects the resulting feature vector into a desired dimen-

22 CHAPTER 2. BACKGROUND

sionality using a linear layer. ConvE’s score function is as follows:
S(i,k,) = f(vec(f([E; Re] % w))W)ej, 6)

where f is a non-linear function (originally set to ReLU), vec(x) transforms
x € R? into a uni-dimensional vector, [x;y] is the horizontal concatenation
of inputs x and y, E; and Ry are the embeddings of entity i and relation k
reshaped into two dimensions, * is the convolution operation, w is the filter
used in the convolutional layer and W the weight matrix of the linear layer.

The parameters of the convolutional and linear layers in ConvE are
relation-independent, meaning that the model learns a parameterized func-
tion that predicts the object of a triple given its subject and relation. This
is different from the previously described models in that score functions
are usually able to predict either the missing subject or object of a triple,
given the other to components. To address this limitation, ConvE represents
the object prediction task with the query (j,k~1,?) and learns two different
embeddings for each relation k, one for k and one for k~1. Thus, the model
is parameterized by the filter w of its two-dimensional convolutional layer,
weight matrix W of the linear layer, entity matrix E ¢ RN*4 and relation
matrix R € RK*?, where K’ = K x 2. Note that its dependency on the use of
reciprocal relations means it is unclear how to use ConvE for tasks where the
direction of the relation is not specified, e.g. triple classification. We discuss
this limitation further in Chapter 3.

Theoretical Expressivity of KGE Models

Several studies have looked into the theoretical expressivity and limitations
of different KGE models (Liu et al., 2017; Wang et al., 2018b; Abboud et al.,,
2020). In fact, the design of new KGE models is often inspired by the
theoretical limitations of previous models (Wang et al., 2014; Lin et al., 2015;
Liu et al., 2017; Sun et al., 2019; Abboud et al., 2020). However, we note that
despite being designed to overcome the theoretical limitations of previous
models, most such studies test their proposed models on generally the same
experimental settings. That is, on the same link prediction task and using the
same benchmark datasets. Thus, except for a few studies (Trouillon et al,,
2016, 2019), the impact of the theoretical modeling abilities of most models is
often not tested in practice.

CHAPTER 2. BACKGROUND 23

In addition, as we see in later chapters, the theoretical differences between
some models are often not apparent when looking at their empirical perfor-
mance, especially when comparing different models on fair experimental
settings. For example, we see in Chapters 3 and 4 that DistMult, a theoret-
ically restricted model, is competitive with the more expressive ComplEx
model on link prediction in most datasets, even outperforming it at times.
Similarly, and as mentioned before, we see in Chapter 6 that the representa-
tions learned by TransE are often more useful in downstream applications
compared to those of less restricted models, such as ComplEx or RotatE.

For the reasons stated above, in this thesis we focus on the empirical
performance of models on benchmark datasets, and do not discuss the
theoretical differences between KGE models further, except where relevant
for discussing experimental results.

KGE Model Extensions

In this thesis, we propose new training and evaluation methods that gener-
ally apply to KGE models. Therefore, as a first step, the empirical studies
presented in later chapters focus exclusively on pure KGE models, i.e. those
that only make use of known facts in a KG to learn representations about
its entities and relations. However, we note that in addition to pure KGE
models, several models have been designed to use additional information
about entities and relation during training and/or at inference time. While
the results presented in later chapters are insightful for pure KGE models,
future studies may extend the work in this thesis to include KGE models
that use additional information. In principle, all of our proposed methods
are model agnostic, but some models may require some adaptations for
these methods to work. For reference, we cite a few of those models in the
following.

Entity types. Some models make use of information about entity types,
e.g. as constrains in the embedding space (Guo et al., 2015) or to generate
negative samples during training (Kotnis and Nastase, 2018).

Entity descriptions. Other models make use of the textual descriptions
often available for entities in a KG. Such information may be used, for
example, by learning KG and word embeddings simultaneously and aligning
both embedding spaces with corresponding anchors (Wang et al., 2014), or as
additional training objectives (Xiao et al., 2017).

24 CHAPTER 2. BACKGROUND

Schema restrictions. Several properties of relations in a KG can be
expressed as logical rules, e.g. Vx,y : hasWife(x,y) == hasSpouse(x,y).
Such information can be used, e.g. as additional constraints in the embedding
space (Guo et al., 2016; Rocktédschel et al., 2015).

Temporal information. Several studies have focused on the temporal
nature of facts in a KG, e.g. a country’s president changes every few years.
Such information has been used in previous studies to learn temporally-aware
models (Dasgupta et al., 2018; Garcia-Duréan et al., 2018; Goel et al., 2020).

2.2.6 Evaluation

We introduce in this section the triple classification task and its corresponding
form of evaluation. We then discuss in detail the most common form of KGE
evaluation, called entity ranking. In Chapters 4 and 5, we propose two
alternative methods of evaluation, including a generalization of the entity
ranking protocol introduced below.

Triple classification (TC). The goal of triple classification is to test the
model’s ability to discriminate between true and false triples (Socher et al.,
2013). We define the task as follows:

Definition 2.2.3 (Triple Classification). Given a knowledge graph K € £ x
R x &, triple classification is the task of predicting whether a given triple
(i,k,j) is true or false, i.e. answering the query (i, k, j)?.

To evaluate a model on this task, a held-out set of evaluation triples T
is used. Since only true triples are available in practice, |7 | negative triples
are generated by randomly replacing either the subject or the object of each
evaluation triple by a randomly sampled entity (we discuss the generation
of negative examples in more detail below). All triples are then classified as
positive or negative according to the KGE scores. Model performance is then
typically assessed by classification accuracy. A triple (i, k, j) is classified as
positive if its score s(i, k, j) exceeds a relation-specific decision threshold T
that is learned by maximizing classification accuracy on a different held-out
set of triples created with the same procedure.

Model performance on triple classification suggests that the task is gener-
ally easy, with results that can be overly optimistic and misleading (Safavi
and Koutra, 2020). This is likely because for each evaluation triple, a single

CHAPTER 2. BACKGROUND 25

negative example is created, and because uniform sampling is used to gen-
erate these negatives from a high number of possible candidates, it is more
likely that we obtain a low scored triple, rendering most classification queries
“easy”. To address this issue, Safavi and Koutra (2020) proposed a dataset
with manually labeled negatives constructed to be “hard” (we discuss the
creation of this dataset in Section 2.4). They found that triple classification
with hard negatives is indeed a relatively more difficult task. But despite
these efforts, and perhaps due to the generally optimistic results of this
evaluation, triple classification is not nearly as commonly used as the entity
ranking evaluation protocol. We thus do not consider it in the studies in this
thesis.

Entity Ranking. Most of the studies in the KGE literature have measured
KGE performance using the entity ranking evaluation protocol (Ji et al., 2021;
Wang et al., 2017), described by Algorithm 2.1. This protocol is based on
the link prediction task, as it evaluates a model’s ability to answer questions
(i,k,?) and (?,k,j) given a held-out set of (i,k, j) evaluation triples. Specif-
ically, given query (i,k,?), models score all triples (i, k, j') where j’ is every
possible entity in £. The resulting |£| candidate triples are ranked based on
their score, with the expectation that the known correct answer to the query,
i.e. triple (7,k, j), would rank high on the list of candidates. This process is
performed for every evaluation triple to obtain as many rankings as there
are evaluation triples. The same approach is followed for query (?,k, j), after
which all obtained rankings for both types of queries are aggregated via
the micro-average of some metric, such as mean reciprocal rank or Hits@10,
which we formally define below.

Local-closed world assumption. The evaluation process described above
implies that there is a single correct answer to every evaluation query. While
this is true for functional relations, such as livesIn, it is not true for relations
with more than one possibly correct answer, such as livedIn. This is known
as the local-closed world assumption (LCWA) (Galarraga et al., 2013), which
in contrast to the closed world assumption (see Section 2.1), states that for
every observed triple (i,k,j), every unobserved triple (i, k,j') is assumed
to be false. This assumption is often violated in different ways. First, and
as mentioned before, a known correct answer may be one of many correct
answers, all of which a good model should rank high. Second, unless the KG
is complete, there are unknown true triples that a model that generalized well
should be able to rank high. This assumption penalizes such a model. Finally,

26 CHAPTER 2. BACKGROUND

Algorithm 2.1: Entity Ranking (ER) Evaluation Protocol

Require: 7: set of evaluation triples,
E: set of entities in knowledge graph K
Ensure: Aggregated metric m,) over all evaluation triples
Ran + H // ranks of target answers
foreach (i, k,j) € T do
// object prediction
N, < construct |€]| — 1 candidates (i, k,j') with every j #j € &
So + CompuTE_Scores(N, U {(i,k,j)})
to < COMPUTE_RANKS(S,, f)
R APPEND(RaH, 7’0) // add rank of j
// subject prediction
7 | N; + construct |€| — 1 candidates (i',k,j) with every i’ #i € £
8 | Ss< Compure_Scores(N;U{(i,k,j)})
9 | rs + CoMPUTE_RANKS(Ss, 1)
10 R+ APPEND(RaH, 7’5) // add rank of i

N =

N U1 e W

11 Mgy < COMPUTE_METRICS(R,)))

this process may generate triples that are known to be true, e.g. because
they are in the training, validation or test sets. This last factor is partially
addressed by the use of filtered metrics, described below. In addition, we
show in Chapter 4 that it is possible to use known schema constraints to check
whether a candidate triple is actually negative. In general, however, reliance
on LCWA may result in negative examples that are unknown positive triples,
For this reason, we often refer to such generated triples as pseudo-negatives.

Evaluation metrics. We define the evaluation metrics used throughout
this thesis, which are the two most commonly used metrics in the literature:
mean reciprocal rank (MRR) and Hits@K. Given a triple (i,k,j), denote
by rank(j|i, k) the rank of object j given subject and relation tuple (i, k),
i.e., the rank of model score s(i, k, j) among the scores of a set of pseudo-
negative triples. The set of pseudo-negatives used to compute evaluation
metrics determines whether the metrics are raw or filtered. For raw metrics,
this set is defined as {s(i,k,j') : j/ € €A} # j}, as in Algorithm 2.1. To
avoid underestimation of a model that ranks training triples higher than the
expected answer, filtered metrics further add the condition that all candidate
triples do not occur in the training, validation or test splits. We follow
common practice in the recent literature and only report filtered metrics in

CHAPTER 2. BACKGROUND 27

this thesis.

If there are ties, we take the mean rank of all triples with score s(i, k, j).
Define rank(ilk, j) likewise. Denote by K¢ the set of evaluation triples.
Then

1 1 1
MRR = ———— —— + —) (2.7)
gl (ot * e
Hits@K = oo Y. (rank(ilk,j) < K) + L(rank(jli k) < K)),
2 ’ ’Ceval ‘ (i,k,]') E]Ceval

(2.8)

where indicator 1(C) is 1 if condition C is true, else 0.

Mean rank (MR) is another metric that is sometimes used in the literature.
It is defined as the average rank of the expected answer in all evaluation
triples. This metric has seldom been used in recent work, as its sensitivity to
outliers is what inspired the widespread use of MRR.

As part of our extensive study on link prediction performance in Chap-
ter 3, we discuss and provide empirical results about variations of the entity
ranking protocol, such as using other forms of handling ties and the impact
that using entities not seen during training has on reported metrics. In
addition, we discuss limitations of this protocol at length in Chapter 4.

2.2.7 Training

In this section, we introduce the most commonly used training method for
KGE models in the literature, including the standard approach for generating
negative examples. We discuss more details about this training method,
such as commonly used loss functions, different regularization approaches
and other related training approaches, in Chapter 3 as part of our large
comparative study on link prediction performance. In addition, we introduce
in Chapter 5 a generalization of this training method.

All methods for training KGE models require negative examples to avoid
solutions that do not generalize well (Nickel et al., 2015). However, knowledge
graphs are almost always constructed using only positive examples, i.e.
observed triples. Thus, there is a need to generate negative examples during
training. There are different types of training methods for KGE models,

28 CHAPTER 2. BACKGROUND

Algorithm 2.2: Negative Sampling Training

Require: 7: set of training triples,

E: set of entities in knowledge graph K

8: model parameters,

n: number of negatives per positive (hyperparameter)
Ensure: Updated model parameters 6
Tan <= T
foreach (i, k,j) € T do
// object prediction
C, + SAMPLE(S,H) // sample n entities
N, < construct negatives (i, k, j') with every j/ € C, // corrupt j
// subject prediction
5 | Cs < SampLE(E,n)
6 N; < construct negatives (i',k, j) with every i’ € Cs // corrupt i
7 | Tan < Tan U N, U Ng

San < CoMPUTE_SCORES(Ty)
L.y < Comrute_Loss(S.n, Tan)
10 0 <— UPDATE_PARAMETERS (6, L)

NoR

© o

which mostly differ in their use of negative examples. We describe the most
common training type in the following.

Negative Sampling. The most common approach for training KGE
models is called negative sampling (NegSamp) (Bordes et al., 2013b) and it is
described by Algorithm 2.2. For every training triple (i, k, j), n negative triples
are generated by corrupting the object of that triple. That is, by replacing
it with a randomly selected entity j/ € £ n times to form n triples (i, k,j').
These generated negatives are used as additional training triples. Similarly,
the subject of every training triple is corrupted n times to create n additional
negative triples. These generated triples are labeled as negatives and added to
the training set. In this type of training, the number 7 of negatives generated
from each training triple is a hyperparameter.

In general, an approach that relies on corrupting either the subject or
object of a given positive triple can generate at most |£| distinct negative
examples per corrupted slot. This choice of the number of distinct negative
examples that are generated for each positive triple is what partially distin-
guishes NegSamp from other training types that have been proposed to train

CHAPTER 2. BACKGROUND 29

KGE models. We discuss those in detail in Chapter 3.

Note that the standard approach for generating negatives follows the
LCWA, and consequently suffers from the same issues discussed in the
context of the entity ranking protocol in Section 2.2.6. Namely, that a training
triple may have more than one correct answer, and that this process may
produce false negatives. The former motivated the design of the KvsAll
training approach discussed in Section 3.1, while the effect of the latter can
be mildened by checking whether the generated negatives are part of a set
of known positives, e.g. the training set. This set membership operation has
a significant cost in the training process, so it is often not used in practice.
Another approach to minimizing the probability of generating false negatives
relies on using additional information, such as schema constraints, to generate
negatives that are less likely to be positives (Kotnis and Nastase, 2018). In
general, the process of generating negatives for KGE training is known to have
an impact on model performance, and thus has been the focus of previous
studies, e.g. Kotnis and Nastase (2018). We also study this to an extent in
Chapter 3, where we look at the impact on model performance that results
from the choice of different training approaches, as well the choice of n when
training with NegSamp.

Finally, note that the generation of negative examples by corrupting the
subject of a triple is related to the query (?, p,0), as we are training models
to identify correct and incorrect answers to that question. Similarly, when
corrupting the object of a triple, we train models to answer the question
(s,p,?). Thus, the standard method for training KGE models is designed
to train a model to perform link prediction. We discuss the implications of
this in Chapters 5 and 6, where we propose a generalized form to train KGE
models on multiple tasks simultaneously, and check the impact that using
different training approaches have in downstream applications, respectively.

2.2.8 Limitations and Relevance of KGEs

KGE models are limited in many respects compared to other families of
models. In this section, we briefly discuss some of these limitations. We then
briefly argue why research into KGEs is nevertheless relevant.

Transductivity. One of the most important limitations of KGE models is
their inability to perform inductive predictions, i.e. predictions about unseen
KG components. Pure KGE models are transductive, meaning that they can

30 CHAPTER 2. BACKGROUND

only make predictions about entities and relations they have seen during
training. Whenever a KG is expanded with new entities and/or relations,
one alternative for an existing KGE model that was trained on this KG is to
be retrained on the entire graph. This is a severe limitation, as retraining a
model from scratch is especially limiting when considering that KGEs are
often intended for large-scale real-world knowledge graphs, where training
costs are significantly high (Zheng et al., 2020; Lerer et al., 2019).

Another alternative is for either the model or the training process to
incorporate a mechanism that allows for the addition of new components
of the KG to an existing model. Indeed, some extensions of KGE models
have such mechanisms. For example, Wang et al. (2021) developed a KGE
model that uses a text encoder to embed entities based on textual descriptions.
This model can thus make predictions about unseen entities given a textual
description of them. This limitation of KGEs is well-known and has been the
focus of several studies in the past, e.g. Jambor et al. (2021); Albooyeh et al.
(2020); Zhao et al. (2017); Xie et al. (2016).

Complex query answering. Pure KGE models are designed to provide
scores for given triples. Thus, they are commonly used for simple 1-hop
predictions over a graph, e.g. the link prediction task. While we show in
Chapter 5 that KGEs can be extended and trained to make a wider type of
predictions, these too are not as complex compared to other models that can
answer, e.g. conjunctive queries with missing entities (Kotnis et al., 2021).
Rule-based models can also perform predictions about complex queries, so
long as these are supported by their language bias (see Section 2.3.3).

Several studies in the past have focused on extending KGEs or using them
in combination with other models to make complex predictions over KGs.
For example, Li et al. (2022) focus on multi-hop question answering, and Jia
et al. (2021) focus on complex predictions over temporal knowledge graphs.

Training runtime. KGE models have a considerably higher training cost
compared to some types of models. For example, some rule-based models
can provide competitive results in link prediction after only training for a
few seconds (Meilicke et al., 2019) (more in Section 2.3.3). The high cost of
training KGE models, in combination with the large scale of real-world KGs,
has inspired several engineering efforts to make these costs manageable, e.g.
the works of Mohoney et al. (2021) and Lerer et al. (2019).

The high cost of training is not a problem that is exclusive to KGEs, with

CHAPTER 2. BACKGROUND 31

more recent link prediction models based on transformers (Chen et al., 2021a)
or on graph convolutional neural networks (Zhu et al., 2021) being even
more costly to train. While some of these models do provide some benefits
compared to KGE models, they also come with some disadvantages. We
discuss some of these models further in Section 2.3.1.

Interpretability. KGE models, like many models based on learning
representations, are not interpretable in the sense that in the best case, there
is no straightforward way to derive explanations for the predictions they
make. It is often the case that nothing can be said about what determines
the decisions made by a model. This is in contrast with rule-based models,
which can provide explanations for their predictions (Galdrraga et al., 2013;
Meilicke et al., 2019).

A few studies in the past have focused on interpretability of KGE models,
e.g. Zhang et al. (2019a) and Xie et al. (2017), but this research area is not as
active as the ones described above, as there is less relevant work in recent
years.

Relevance of KGE models. We argue that, despite the limitations de-
scribed above, KGE models are a relevant family of models for the following
reason. KGEs are learned representations of KGs, which in turn are a form
of encoding structured data. As such, KGs have various uses both in in-
dustry and academia (see Section 2.1.3). In addition, and as discussed in
Section 2.2.4, KGEs have potential advantages over KGs, such as a reduced
cost of inference or the ability to be used as distributed representations of
knowledge in downstream applications. Thus, so long as KGs are useful,
KGEs can too be useful, as long as they are faithful representations of KGs
(an important question in this thesis).

Recently, a long line of research into language modeling (Mikolov et al.,
2013a; Devlin et al., 2019; Radford et al., 2018) has produced models referred
to as large language models (LLMs) (Touvron et al., 2023; Ouyang et al., 2022).
These models, which are based on distributed representations, have shown
strong performance on several types of tasks that require various forms of
reasoning (Wei et al., 2022). Thus, these models have challenged the intuition
that structured data is needed to encode knowledge that can be reasoned over.
We maintain that while this may be true in the long term, this is at the moment
not the case. LLMs are currently very unreliable sources of knowledge (Sun
et al., 2023). In addition, they are very expensive to train, so that incorporating
new knowledge into these models remains a significant challenge (Bubeck

32 CHAPTER 2. BACKGROUND

et al., 2023). Finally, it may be possible to combine the knowledge in KGs
by either combining them, or their distributed representations, with LLMs.
Previous works have already studied the incorporation of KGE models into
language modeling (Wang et al., 2021; He et al., 2020; Zhang et al., 2019b).

2.3 Related Models

There are other families of models that relate to KGE models because they
can perform link prediction, but either do not learn representations of the
entities and relations in a KG, or because they learn such representations but
are not designed to make use of a score function to make fact predictions. We
use some of these models as baselines in later chapters, such as rule-based
models or models based on graph neural networks, so we discuss these
two families of models in detail in Sections 2.3.3 and 2.3.4, respectively. For
reference, we discuss other related models in the following sections.

2.3.1 Link Prediction Models

Some models are designed exclusively for the link prediction task in KGs.
Such models are often more involved than pure KGE models, which results
in more costly training and/or inference times. In addition, these models
often do not provide representations of the entities or relations in a KG, at
least not in a straightforward manner.

An example of a link prediction model is the HittEr model (Chen et al.,
2021a). It is based on the transformer architecture and is designed to use
contextual representations of entities to perform link prediction. At the time
of its publication, it achieved state-of-the-art results in some link prediction
benchmarks, but it has since been shown that ComplEx achieves similar
results with larger embedding sizes and additional training objectives (Chen
et al., 2021c).

A more recent link prediction model is the NBFNet model (Zhu et al.,
2021). This model is based on graph convolutional networks (GCN) and
achieved state-of-the-art results in some benchmark datasets. However, it
does not directly learn representations of entities in a KG, so that it is unclear
how it can be used as a model that learns representations of a KG. It addition,
its training cost is much higher than that of pure KGEs, so that it is unclear

CHAPTER 2. BACKGROUND 33
to what extent it can scale to real-world KGs.

2.3.2 Feature-Based Models

In contrast to embedding models, which exploit latent features in a graph,
some models exploit observed features in the graph to either learn representa-
tions of the graph, or perform some task such as link prediction. For example,
the path-ranking algorithm or PRA (Lao and Cohen, 2010; Gardner et al.,,
2014) was designed for predicting missing links in knowledge graphs from
features constructed by performing random walks on the graph. Another
example is the RDF2Vec model (Ristoski and Paulheim, 2016). It performs
random walks to extract paths from a KG, which are then embedded with
the word2vec approach (Mikolov et al., 2013a) to obtain vector representations
of entities in a KG.

While the RDF2Vec model is more closely related to KGEs in that it
provides representations that can be used in downstream applications, the
performance of such feature-based models is seldom compared with KGEs
models. An exception are rule-based models, which have been shown to
perform competitively with KGEs on link prediction (Meilicke et al., 2018,
2019). In addition, several models based on graph neural networks have
been recently developed that achieve state-of-the-art performance on link
prediction and other tasks that can also be performed with KGE models (Yu
et al., 2021a; Zhu et al., 2021). Thus, we use these two types of models as
baselines in later chapters, and introduce them in more detail in the following
sections.

2.3.3 Rule-Based Models

In this section, we introduce rule-based models in a way that describes
the models that are relevant for this thesis. For a more comprehensive
introduction, see De Raedt (2008).

We refer to rule-based models as models that learn logical rules that explic-
itly encode patterns in a knowledge graph (Lao and Cohen, 2010; Galarraga
et al., 2013; Meilicke et al., 2018, 2019). For example, given knowledge graph
K, such a model might learn the rule capitalOf(X,Y) — locatedIn(X,Y).
Thus, rule-based models learn to represent a KG as a set of logical rules. The
types of rules that a model can learn is referred to as the language bias of the

34 CHAPTER 2. BACKGROUND

model. For example, models may learn path rules of the form
P1 (X, Z) <— pz(X, Yl) A p3(Yl,Y2) FANAY pn(Yn—lr Z), (29)

where p; € R is a (binary) predicate, X, Y;, Z are variables, p1(...) is the head
of the rule, and pa(...) A... A pu(...) is the body of the rule. Entities in a
KG are constants that may ground rules, resulting in new predicted triples
in the KG. For example, given the rule locatedIn(X,Y) <« capitalOf(X,Y),
the grounding X = Austin and Y = Texas would result in the prediction of
the triple locatedIn(Austin, Texas). Note that a triple always corresponds to
a grounded binary predicate.

Rules are often learned along with a confidence score that reflects, based
on the patterns observed about K during learning, how likely is a rule to
make a correct prediction. These confidence scores are used to perform link
prediction as follows. Given an incomplete query p(a,?), we select all rules
with predicate p in the head. For each rule, we look for groundings of their
body in K where constant a replaces the corresponding variable in the body.
Each rule with a matching body then predicts a candidate for the missing
slot, which we associate with the confidence score of the rule that made
this prediction. All predictions are then ranked by their scores to produce
a final ranking of candidates, as done with KGE models. Then, the same
evaluation protocols for link prediction may be used, e.g. entity ranking (see
Section 2.2.6). In practice, the process is more involved, as a single candidate
is often predicted by more than one rule, and given that there are often
dependencies between different rules, e.g. if one rule fires, a more general
form of the same rule also fires, it is not trivial to determine how to aggregate
scores from different rules to assign a single score to each candidate.

In the following, we describe two rule-based models in more detail:
RuleN (Meilicke et al., 2018), which is used as baseline in Chapter 4, and
AnyBURL (Meilicke et al., 2019), which is used as baseline in Chapter 3.

RuleN. Proposed by Meilicke et al. (2018), RuleN was designed to be a
simple model for link prediction on knowledge graphs. When released, it
achieved competitive results on benchmark datasets.

In addition to path rules, such as those described above, RuleN learns
constant rules. Concretely, let X; and Y refer to variables that are quantified
over &, k, p; € R and let a be a constant entity. RuleN learns path rules (P,)

CHAPTER 2. BACKGROUND 35

and constant rules (C) defined as follows:

k(Xl, Xn—i—l) < pl(Xl,Xz) /\.../\pn(Xn, Xn+l) (Pn)
k(X,a) < Y k(X, Y). ©)

The rule practicesSport(X, football) <— 3Y practicesSport(X,Y) is an example
of a type C rule that might be learned in a KG where a considerable number
of people practice football.

In the original work, the maximum allowed length n of path rules is set
to be small for simplicity and efficiency. To further reduce costs, RuleN does
not use the entire training set when searching for groundings of the body of
a rule. Instead, it samples triples during this process. For details about the
learning and application of rules, as well as confidence scores used for link
prediction, see Meilicke et al. (2018).

AnyBURL. In contrast to RuleN, AnyBURL (Meilicke et al., 2019) learns
rules in a bottom-up approach. Specifically, it samples paths from the graph
and treats them as “bottom” path rules, i.e. specific path rules that can be
generalized to represent a more commonly observed pattern in the graph.
The authors propose that any useful generalization of a path rule of length n
can be described by the following rules:

k(X,Y) < p1(X, A2) Ao o A pu(An,Y) (Py)
k(co, X) <= p1(X, A2) Ao o A pn(An, cuti) (ACy)
k(COI X) <~ pl(X/ AZ) ARERWA Pn (Al’lr An+1>/ (ACZ)

where ¢; € £ are constants and X, Y, A; are variables. Thus, AnyBURL focuses
exclusively on learning path rules.

Similar to RuleN, AnyBURL learns P, rules, but extends its language
bias by learning AC; rules, which generalize the C rules learned by RuleN
by allowing: (i) paths of increasing length and (ii) the use of predicates
in the body that are not present in the head. During training, AnyBURL
samples paths of increasing length iteratively up to a user-specified time
limit. At the time of publication, AnyBURL achieved competitive results on
benchmark datasets for link prediction, sometimes even when training for
only 10 seconds. This highlights one of the main advantages of rule-based
models over KGE models, which we discuss in the following.

Advantages over KGEs. As mentioned in Section 2.2.4, KGEs are faster

36 CHAPTER 2. BACKGROUND

than rule-based models at inference time, as seen by the runtimes reported
by Meilicke et al. (2019). However, compared to KGEs, rule-based models
have some advantages as link prediction models. First, they require a consid-
erably shorter training time, mostly due to the hyperparameter optimization
required by KGE models. In addition, rule-based models can provide expla-
nations for the predictions they make (Meilicke et al., 2019), which makes
them interpretable.

Due to the advantages of rule-based models described in this section,
and the advantages of KGE models described in Section 2.2.4, some works
have studied methods to combine the predictions of both types of models to
improve performance on link prediction. For example, Meilicke et al. (2018)
used standard ensembling approaches on the predictions of both types of
models, while Meilicke et al. (2021) proposed a heuristic to combine the
predictions of AnyBURL with those of KGE models, based on observations
about which types of models are better at which types of relations in the
graph.

In this thesis, we show in Chapter 3 that AnyBURL performs competitively
with KGE models on link prediction, sometimes after learning rules for only
a small fraction of the time it takes to train a single KGE model during
hyperparameter optimization. In addition, we show in Chapter 4 that RuleN
considerably outperforms KGE models on knowledge base completion, a task
we introduce as a more general form of link prediction. All of this makes
rule-based approaches a viable alternative to link-prediction and similar
applications on knowledge graphs.

234 Graph Convolutional Neural Networks

In Chapter 6, we conduct a large experimental study on the usability of KGE
models in node-level downstream applications, such as classification (e.g.
predicting a person’s profession) or regression (e.g. predicting a person’s age).
Since graph convolutional neural networks (GCNs) are a different family of
models aimed at addressing such tasks, we use a state-of-the-art GCN as
baseline in our experiments on downstream applications. In this section, we
briefly introduce spatial-based GCNs from the perspective of how they model
graph data. We then describe the baseline model we use in Chapter 6. For a
comprehensive introduction to graph neural networks, see Wu et al. (2020).

Graph convolutional neural networks. These models were developed

CHAPTER 2. BACKGROUND 37

as generalizations of convolutional neural networks that can be applied to
graph data. Their main purpose is to address graph-related tasks, such as
node classification, graph classification or link prediction. As such, their
applications sometimes overlap with the goal of KGE models. However,
while there are some similarities between the two families of models, there
are also some important differences in the way they model graph data to
solve a given task.

GCNs are designed to learn node (and sometimes edge) representations
by iteratively applying a function that updates the representation of each

node based on the transformed and aggregated representations of the nodes

in its 1-hop neighborhood. Specifically, let hl(t)

1 in iteration t. We have:

be the representation of node

(B _ gyt (t=1) 4 (t—1)
) =u® | Y MO (k] NERORP (2.10)
jEN(i)

where N(i) is the 1-hop neighborhood of node i, M*) is a parameterized
message passing function for layer t and U") is a (possibly) parameterized
update function for layer (t). M is described as a message passing function
because it combines the representation of a given node with each of its
immediate neighbors. It also often includes node features x;, x; and edge
features xel.’].) in its computation, which we omit for brevity. The update
function U transforms the aggregated computations from function M. While
U can be a parameterized transformation, it is often used as an activation
function, e.g. ReLU. Note that the aggregation function in Equation 2.10 is the
sum, but this can be generalized to any (possibly parameterized) aggregation
function. Different choices of M, U and the aggregation function result in
different types of GCNs.

Layers that apply over all nodes in a graph, such as the one described
in Equation 2.10, can be stacked to increase the size of the neighborhood
over which information is passed from node to node. This is known as the
propagation step. Once all GCN layers have been applied, the resulting node
representations can be projected down to a desired size and used as input
features for node-level tasks, or passed to a function that aggregates them to
get a representation of the entire graph for graph-level tasks. These represen-
tations can also be used as input for KGE models to perform link prediction.
This was first tested experimentally when relational graph convolutional

38 CHAPTER 2. BACKGROUND

neural networks were proposed, which we introduce in the following.

Relational GCNs. Schlichtkrull et al. (2018) proposed a generalization of
GCNi s that applied to knowledge graphs called relational graph convolutional
neural networks (R-GCNs). To this end, they proposed the use of relation-
specific message passing functions, as well as relation specific aggregation
functions. Specifically, using a sum as aggregation function, we have:

m = u® (Z)y M,E”(hft”,h}”))), (2.11)

kER jENK(i)

where Ni(i) is the 1-hop neighborhood of all nodes connected to node i
via relation k, and M is the message passing function for relation k. Note
that before aggregating over all types of relations in the KG, we aggregate
the output of My over Ni(i). While different choices of the aggregation
function, the M function, and the U function, lead to different relational
GCN:s, the authors proposed a specific instance where M,Et) = AW,Et)h](tfl),
with A acting as a normalization constant set to 1/|N(i)|. As part of the
overall aggregation, they also included a transformation Wy applied between

hl(t) and hftil), i.e. between a node and its representation in the previous

layer.

In addition to R-GCNs, Schlichtkrull et al. (2018) proposed an encoder-
decoder architecture for link prediction, where any R-GCN model could act
as an encoder that learns entity representations, and any KGE score function
could act as a decoder that uses the representations provided by the encoder.
In their experiments, they combined their proposed R-GCN model with Dist-
Mult’s score function and showed that their proposed architecture provided
improved performance compared to standard DistMult. However, it has since
been shown with more rigorous experiments that using such encoders in
combinations with KGEs for link prediction provides little benefit, and that
any observed improvement comes from the additional transformations that
the encoder applies to node representations, and not from its modeling of
the structure of the graph (Zhang et al., 2022).

KE-GCN. Under the name of KE-GCN, Yu et al. (2021a) proposed a
general framework for relational GCNs that uses score functions for given
triples as part of the relation-specific message passing functions. Specifically,

CHAPTER 2. BACKGROUND 39

they proposed the following propagation function:

1

-1)
y ¥ owl (]’)]”)er”h(-V, (2.12)
kER JEN(i) oh!
where 5“1 (i, k, j) is a score function that uses embeddings hft_l), h](-t_l)

r,((t_l). Note their use of relation embeddings. Indeed, they also propagate
information to iteratively update the relation embeddings as follows:

(t-1)(; 1
P = ul [wﬁzl ”(y k) (Z’k’])+r,(f”)], (2.13)
(i)

JEN(h) arl((f 1)

and

where N(k) is the set of entity tuples that interact with relation k and W, is
a transformation applied exclusively to relation embeddings.

Yu et al. (2021a) showed that their framework subsumes existing GCNs,
such as CompGCN (Vashishth et al., 2020) and W-GCN (Shang et al., 2019).
For example, the model from Schlichtkrull et al. (2018) described above can
be obtained with score function s(i,k, j) = h; hj and ry = 0, i.e. setting all
relation embeddings to zero. In their experiments, they used KGE score
functions such as TransE’s or RotatE'’s.

In Chapter 6, we compare the performance of the KE-GCN model pro-
posed by Yu et al. (2021a) with simple downstream models that take represen-
tations from pre-trained KGE models as input to perform node classification
or node regression tasks. We find that, despite extensive hyperparameter
optimization for both families of models, KGE models outperform KE-GCN
most of the time, despite the latter training directly on the downstream task.

Comparison to KGE models. There are two aspects of GCNs worth
discussing in the context of KGE models. First, GCN-based models are often
designed for specific tasks, e.g. node classification tasks (Yu et al., 2021a;
Vashishth et al., 2020), node regression tasks (Huang et al., 2021), or graph-
level tasks (Yu et al., 2021a). In contrast, while KGEs have more recently been
studied as link prediction models, they are not only motivated by, but also
used as, learned representations of KGs (El-Kishky et al., 2022; Ilyas et al.,
2022). In contrast, we are unaware of GCN-based models that are used as
pre-trained representations of KGs in downstream application scenarios.

40 CHAPTER 2. BACKGROUND

The fact that GCN-based models are not used as pre-trained representa-
tions of KGs may relate to the second important difference between KGEs
and GCNs: the cost of training. The propagation step in GCNs can be pro-
hibitively expensive with large graphs and deep networks. Thus, it is known
that, at least compared to KGE models, GCNs are much more expensive to
train (Zhang et al., 2022). Despite this cost, GCN-based models can outper-
form KGE models on some tasks. For example, the NBFNet model (Zhu et al.,
2021) outperforms KGE models in link prediction on some commonly used
benchmark datasets. In addition, this model is designed to perform inductive
predictions, which is something that pure KGEs cannot do (see Section 2.2.8).

2.4 Benchmark Datasets

In this section, we introduce the benchmark datasets used in the experiments
presented in later chapters. These have been the most commonly used
benchmarks datasets in KGE research for many years. In addition, we
briefly discuss other KGE datasets that are used in the literature for different
purposes. The statistics of all benchmark datasets introduced in this section
are described in Table 2.3.

FB15K. Introduced by Bordes et al. (2013b), FB15K is a subset of the
Freebase knowledge graph introduced in Section 2.1.4. It was constructed by
selecting the subset of entities that had at least 100 mentions in the entire KG,
and whose corresponding Wikipedia page was linked by at least one website
in Google’s web index at the time of creation. This information was available
in the Wikilinks database, which is no longer active.! For the set of relations,
they chose those that interacted with this subset of entities, so long as they
too had at least 100 mentions in Freebase. From the resulting set of relations,
they removed those that were explicitly marked as being inverse relations of
other ones present in this set.

WN18. This dataset was created by Bordes et al. (2013a). It is a subset of
the WordNet knowledge graph introduced in Section 2.1.4. Without specified
criteria, they selected 18 relations from the WordNet KG as relations for this
dataset, and used all entities that interacted at least 15 times with this set of
relations.

FB15K-237. Toutanova and Chen (2015) developed a link prediction

Ihttps://code.google.com/archive/p/wiki-1inks/downloads

https://code.google.com/archive/p/wiki-links/downloads

CHAPTER 2. BACKGROUND 41

Dataset Entities Relations Training Validation Test
FB15K 14951 1345 483142 50000 59071
WN18 40943 18 141442 5000 5000
FB15K-237 14505 237 272115 17535 20466
WNRR 40559 11 86835 3034 3134
YAGO3-10 123182 37 1079040 5000 5000
WIKIDATASM 4818679 828 21343681 5357 5321

Table 2.3: Statistics of benchmark datasets used throughout this thesis.

model designed to exploit observed features in a KG, in contrast to the latent
features learned by KGE models. This model was based on binary features
that indicated the existence of simple patterns in the graph, such as different
relations that interacted with the same pairs of entities, or the existence
of inverse or near-inverse relations based on the entities they interacted
with. Their proposed model significantly outperformed KGE models in
their experiments, especially on the FB15K dataset (introduced above). They
found that this difference in performance was explained by the fact that
the majority of the test triples were closely related to existing triples in the
training set. Specifically, given test triple (i, k, j), they found that almost 81%
of the time, either triple (i,k’,j) or (j,k’,i) was present in the training set,
where k # k. This motivated them to create the FB15K-237 dataset (originally
called FB15KSelected).

The FB15K-237 dataset was created by first selecting the 401 most frequent
relations in the dataset and then filtering out relations that were either
duplicates or inverse of other existing relations. They determined that two
relations were the same (or inverse) if at least 97% of the entity pairs (or
inverse entity pairs) they interacted with were the same. In addition, they
removed from the validation and test splits any triple (i, k, j) if a triple (i, k', j)
was present in the training split, where k # k. This step was done to further
increase the difficulty of the task, despite understanding that such a scenario
could be present in real-world applications.

WNRR. Dettmers et al. (2018) found that the same issues that motivated
the creation of the FB15K-237 dataset were also present in the WN18 dataset
(introduced above). They thus created the WNRR dataset (originally called
WN18RR) by applying the same procedure to WN18 that Toutanova and

42 CHAPTER 2. BACKGROUND

Chen (2015) applied to FB15K to create the FB15K-237 dataset.

YAGO3-10. Dettmers et al. (2018) introduced this dataset as a subset of
YAGO3 (Mahdisoltani et al., 2014), itself a multilingual extension of the YAGO
KG introduced in Section 2.1.4. YAGO3-10 was constructed by selecting
entities in YAGO3 that interacted with at least 10 different relations. This
resulted in a considerably larger benchmark dataset than other commonly
used ones at the time of its publication.

WIKIDATA5M. Wang et al. (2021) proposed to jointly learn a language
model and a KGE model with the purpose of producing both a more factually
accurate language model and a text-enhanced KGE model that can make
inductive predictions (see Section 2.2.8) by creating representations of unseen
entities based on their textual descriptions. To train their proposed model,
Wang et al. (2021) constructed WIKIDATAS5M, a large dataset that included
textual descriptions of its entities and relations, and an additional data split
to test a KGE model’s ability to make inductive predictions. The authors
constructed this dataset based on the Wikidata knowledge graph introduced
in Section 2.1.4. Specifically, for each entity in the KG with a corresponding
Wikipedia page, they extracted the first section of its Wikipedia page as its
textual description, so long as this description was at least 5 words long.
They then obtained all relational facts from Wikidata for this entity, where a
fact was valid if it involved another entity from this set. The resulting dataset
is much larger than all other datasets introduced in this section. In this thesis,
we do not use the textual descriptions of entities provided in this dataset,
and we do not test models on inductive link prediction.

Other datasets. Some benchmark datasets used in the KGE literature are
designed for link prediction in specific domain areas. For example, with the
purpose of fostering reproducible research in biological systems, Walsh et al.
(2020) created the BioKG dataset, a KG that unifies and standardizes data
from several open biological databases.

Other datasets in the literature include additional data aside from the
commonly provided set of triples. For example, the CoDEx dataset (Safavi
and Koutra, 2020) includes additional information about its entities and
relations, such as their types, as well as textual descriptions from Wikidata
and Wikipedia. CoDEx also includes manually annotated negative triples, i.e.
true negatives, in the validation and test splits, with the goal of improving the
quality of evaluation in some tasks like triple classification (see Section 2.2.6).
The set of negatives that was manually annotated was constructed from

CHAPTER 2. BACKGROUND 43

unobserved but type-accurate triples predicted by trained KGE models given
known positive triples. Thus, they were intended to be non-trivial, e.g. type-
inconsistent, negatives. Finally, datasets like ILPC2022 introduced by Galkin
et al. (2022) were designed for inductive link prediction, i.e. performing
inference over a graph with entities unseen during training.

44

CHAPTER 2. BACKGROUND

CHAPTER
THREE

LINK PREDICTION

A vast number of different KGE models for multi-relational link prediction
have been proposed in the literature; e.g.,, RESCAL (Nickel et al., 2011),
TransE (Bordes et al., 2013b), DistMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016), ConvE (Dettmers et al., 2018), RotatE (Sun et al., 2019), Hit-
tEr (Chen et al., 2021a), MQuadE (Yu et al., 2021b) and many others covered
in recent surveys (Ji et al., 2021; Wang et al., 2017). As discussed in Chap-
ter 2, model architectures generally differ in the way the entity and relation
embeddings are combined to model the presence or absence of an edge in
a KG, typically represented as a subject-predicate-object triple. The types
of models include factorization models (e.g., RESCAL, DistMult, ComplEX,
TuckER), translational models (TransE, RotatE), and more advanced models
such as those based on convolutional neural networks (ConvE) or attention-
based models (HittEr). In many cases, the introduction of new models also
came with new approaches for training these models—e.g., new training
types (such as negative sampling or 1vsAll scoring), new loss functions (such
as pairwise margin ranking or binary cross entropy), new forms of regu-
larization (such as unweighted and weighted L2), or the use of reciprocal
relations (Kazemi and Poole, 2018; Lacroix et al., 2018)—and ablation studies
were not always performed. Table 3.1 shows an overview of selected models
along with some training techniques they introduced.

The diversity in model training makes it difficult to compare performance
results for various model architectures, especially when results are repro-

45

46 CHAPTER 3. LINK PREDICTION

Publication Model Loss Training Regularizer Optimizer

Nickel et al. (2011) RESCAL MSE Full L2 ALS
Bordes et al. (2013b) TransE MR NegSamp Emb. Norm. SGD
Yang et al. (2015) DistMult MR NegSamp Weighted L2 Adagrad
Trouillon et al. (2016) ComplEx BCE NegSamp Weighted L2 Adagrad
Kadlec et al. (2017) DistMult CE NegSamp Weighted L2 Adam
Dettmers et al. (2018) ConvE BCE KvsAll Dropout Adam
Lacroix et al. (2018) ComplEx CE 1vsAll Weighted L3 Adagrad

MSE = mean squared error, MR = margin ranking, BCE = binary cross entropy, CE = cross
entropy, Emb. Norm. = embedding normalization

Table 3.1: Selected KGE models and training strategies from the literature.
Entries marked in bold were introduced (or first used) in the context of KGE
in the corresponding publication.

duced from prior studies that used a different experimental setup. Model
hyperparameters are commonly tuned using grid search on a small grid
involving hand-crafted parameter ranges or settings known to “work well”
from prior studies. However, a grid suitable for one model may be subopti-
mal for another. Indeed, it has been observed that newer training strategies
can considerably improve model performance (Kadlec et al., 2017; Lacroix
et al., 2018; Salehi et al., 2018).

In this chapter, we look at the empirical study we conducted with the goal
of summarizing and quantifying the impact of different model architectures
and different training strategies on model performance on the link prediction
task (Ruffinelli et al., 2020). For this thesis, we extended this study by
including more datasets and KGE models in our experiments, as well as
extending the discussion of our results. We performed an extensive set of
experiments using popular model architectures and training strategies in a
common experimental setup. In contrast to most prior work, we considered
many training strategies as well as a large hyperparameter space, and we
performed model selection using quasi-random search (instead of grid search)
followed by Bayesian optimization. We found that this approach was able
to find good (and often superior to prior studies) model configurations with
relatively low effort.

Through this study, we found that:

CHAPTER 3. LINK PREDICTION 47

1. When trained appropriately, the performance of a particular model
architecture can by far exceed the performance observed in older studies.
For example, RESCAL (Nickel et al., 2011), which constitutes one of the
tirst KGE models but is rarely considered in newer work, showed very
strong performance in our study: it was competitive to or outperformed
more recent architectures such as ConvE (Dettmers et al., 2018) and
TuckER (Balazevic et al., 2019).

2. More generally, we found that the relative performance differences
between various model architectures often shrunk and sometimes even
reversed when compared to prior results. This suggests that training
strategies have a significant impact on model performance and may
account for a substantial fraction of the progress made in recent years.

3. We also found that suitable training strategies and hyperparameter
settings vary significantly across models and datasets, indicating that a
small grid search may bias results on model performance. Fortunately,
as indicated above, large hyperparameter spaces can be (and should be)
used with little additional training effort.

This study focused solely on pure KGE models, which do not exploit
auxiliary information such as textual data or logical rules (Ji et al., 2021; Wang
et al., 2017). Since many of the studies on these non-pure models did not
(and, to be fair, could not) use current training strategies and consequently
underestimated the performance of pure KGE models, their results and
conclusions need to be revisited.

As part of this study and to promote robust experimental settings in
future work by the research community, we developed and provided imple-
mentations of relevant training strategies, models, and evaluation methods
as an open source framework called LibKGE (Broscheit et al., 2020), which
emphasizes reproducibility and extensibility.

We begin this chapter by discussing the various training methods for KGE
models in Section 3.1. We present and discuss our experiments in Section 3.2.
We discuss related work in Section 3.3 and summarize our contributions in
Section 3.4.

48 CHAPTER 3. LINK PREDICTION

Algorithm 3.1: 1vsAll Training
Require: 7: set of training triples,
E: set of entities in knowledge graph K
8: model parameters
Ensure: Updated model parameters 0
Tan < T
foreach (i,k,j) € T do
// object prediction
3 | N, « construct || — 1 negatives (i, k,j') with every j/ #j € &
// subject prediction
N; < construct |£] — 1 negatives (7, k,j) with every i’ #i € &
Tan <= Tan U No U Ns
Sal < COMPUTE_SCORES(Ty)

L,y < Comrute_Loss(Say, Tan)
8 0 < UPDATE_PARAMETERS (6, L,))

N =

(52 B

N S

3.1 Training Components

In Chapter 2, we discussed the general approach to training KGE models. In
this section, and as part of our study to assess their impact on performance,
we discuss some of the most important training components applied in the
literature. Many, but not all, of the methods introduced in the following, are
part of this comparative study. We describe the scope of our experiments in
detail in Section 3.2.1.

Training types. There are three commonly used approaches to train KGE
models, which differ mainly in the way negative examples are used. First, as
explained in Section 2.2.7, training with negative sampling (NegSamp) (Bor-
des et al., 2013b) means obtaining for each positive triple t = (i, k, j) from
the training data a set of (pseudo-)negative triples by randomly perturbing
the subject, relation, or object position in ¢ (and optionally verifying that the
so-obtained triples do not exist in the KG).

An alternative approach (Lacroix et al., 2018), which we term 1vsAll, is
to omit sampling and take all triples that can be obtained by perturbing the
subject and object positions as negative examples for t (even if these tuples
exist in the KG). 1vsAll is generally more expensive than NegSamp, but it is
feasible (and even surprisingly fast in practice) if the number of entities is

CHAPTER 3. LINK PREDICTION 49

Algorithm 3.2: KvsAll Training
Require: 7: set of training triples,
E: set of entities in knowledge graph K
8: model parameters
Ensure: Updated model parameters 0
7;11 — € // empty collection
foreach unique (i, k) in triples (i,k,j) € T do
// object prediction
Oy < get all entities j' € £ such that (i,k,j') €
P < construct p051tlve triples (i,k, ') with every j €0,
O, < get all entities j' € £ such that (i,k,j') ¢
N, < construct negative triples (i, k, j') with every j €0,
| Tan < TanU P UN,

foreach unique (k,) in triples (i,k,j) € T do

// subject prediction

9 | S, ¢« getall entities i’ € £ such that (i',k,j)eT

10 P < construct p051tlve triples (i',k, j) with every i’ € Sp
11 S, < get all entities i’ € £ such that (i',k,j) &T

12 | Nj < construct negative triples (7, k, j) with every i’ € S,
13 | Tan < TanU Ps U Ng

N =

N SN kW

¢

14 S, < CoMPUTE_SCORES(Tyy)
15 L, < COMPUTE_LOSS(SaH, 7;11)
16 0 <— UPDATE_PARAMETERS (6, L)

not excessively large. The 1vsAll training type is described by Algorithm 3.1.

Finally, Dettmers et al. (2018) proposed a training type that we term
KusAll (originally called 1-N scoring by the authors), and is described by
Algorithm 3.2. This approach (i) constructs batches from non-empty rows
(i,k,) or (*,k,j) instead of from individual triples, and (ii) labels all such
triples as either positive (occurs in training data) or negative (otherwise).
This results in a training set whose size is not proportional to the number of
unique triples, but the number of unique (i, k, *) and (*,k, j) tuples.

By training with either NegSamp or 1vsAll, we treat the link prediction
task as a multi-class problem, as for every triple there is a single correct
answer from a set of possible predictions (True or False for NegSamp and the
single correct entity for 1vsAll. However, by training with KvsAll we treat the
task as a multi-label problem, as there are potentially many possible correct

50 CHAPTER 3. LINK PREDICTION

answers for a given tuple (i,k, *) or (x,k,j) as seen in the training set.

Loss functions. Several loss functions for training KGEs have been
introduced so far. RESCAL (Nickel et al., 2011) originally used squared error
between the score of each triple and its label (positive or negative). Thus,
the authors modeled the task as reconstructing the binary 3-way tensor that
corresponds to a given training set.

TransE (Bordes et al., 2013b) used pairwise margin ranking with hinge
loss (MR), where each pair consists of a positive triple and one of its negative
triples (only applicable to NegSamp and 1vsAll) and the margin 7 is a
hyperparameter. Trouillon et al. (2016) proposed to use binary cross entropy
(BCE) loss: it applies a sigmoid to the score of each (positive or negative)
triple and uses the cross entropy between the resulting probability and that
triple’s label as loss.

Finally, Kadlec et al. (2017) used cross entropy (CE) between the model
distribution (softmax distribution over scores) and the data distribution
(labels of corresponding triples, normalized to sum to 1). CE has been used
for multi-class classification (as in NegSamp and 1vsAll), but also in the
multi-label setting (KvsAll).

Mohamed et al. (2019) found that the choice of loss function can have a
significant impact on model performance, and that the best choice is data
and model dependent. Our experimental study provides additional evidence
for this finding.

Regularization. Several forms of regularization have been used when
training KGEs. The most popular form of regularization in the literature is L2
regularization on the embedding vectors, either unweighted or weighted by
the frequency of the corresponding entity or relation in the training set (Yang
et al., 2015). Lacroix et al. (2018) proposed to use L3 regularization. TransE
normalized the embeddings to unit norm after each update. ConvE used
dropout (Srivastava et al., 2014) in its hidden layers (and only in those),
and Balazevic et al. (2019) used dropout in the embedding layer. Wang et al.
(2022a) proposed the use of constraints on the embedding space to encourage
embedding similarity between semantically similar entities.

Reciprocal relations. A particular hyperparameter that is exclusive to
KGE training is the technique of reciprocal relations, introduced by Kazemi
and Poole (2018) and Lacroix et al. (2018). Observe that during evaluation
and also most training methods discussed above, the