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Abstract

To improve the validity of self-report measures, researchers should control for
response style (RS) effects, which can be achieved with IRTree models. A traditional
IRTree model considers a response as a combination of distinct decision-making pro-
cesses, where the substantive trait affects the decision on response direction, while
decisions about choosing the middle category or extreme categories are largely
determined by midpoint RS (MRS) and extreme RS (ERS). One limitation of tradi-
tional IRTree models is the assumption that all respondents utilize the same set of RS
in their response strategies, whereas it can be assumed that the nature and the
strength of RS effects can differ between individuals. To address this limitation, we
propose a mixture multidimensional IRTree (MM-IRTree) model that detects hetero-
geneity in response strategies. The MM-IRTree model comprises four latent classes of
respondents, each associated with a different set of RS traits in addition to the sub-
stantive trait. More specifically, the class-specific response strategies involve (1) only
ERS in the ‘‘ERS only’’ class, (2) only MRS in the ‘‘MRS only’’ class, (3) both ERS and
MRS in the ‘‘2RS’’ class, and (4) neither ERS nor MRS in the ‘‘0RS’’ class. In a simula-
tion study, we showed that the MM-IRTree model performed well in recovering
model parameters and class memberships, whereas the traditional IRTree approach
showed poor performance if the population includes a mixture of response strate-
gies. In an application to empirical data, the MM-IRTree model revealed distinct
classes with noticeable class sizes, suggesting that respondents indeed utilize different
response strategies.
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Introduction

Questionnaires are common tools in psychological and educational research to mea-

sure unobservable constructs (e.g., personality traits; Caprara et al., 1993) in large

samples efficiently and inexpensively. However, many factors can damage the quality

of questionnaire data, such as item wording effects (Nye et al., 2010), item position

effects (Gehlbach & Barge, 2012; Tourangeau & Rasinski, 1988), socially desirable

responding (Ones et al., 1996), and response styles (RS). RS are defined as tendencies

to choose specific response categories regardless of the item content (Baumgartner &

Steenkamp, 2001; Paulhus, 1991). Two commonly reported kinds of RS are extreme

RS (ERS) and midpoint RS (MRS). ERS is defined as the tendency to choose the

extreme response categories, whereas MRS is defined as the tendency to choose the

middle response category.

Respondents can make use of RS as a way of heuristic responding, thereby they

aim to reduce the cognitive and time cost of responding to questionnaire items

(Krosnick, 1991; Krosnick et al., 1996; Podsakoff et al., 2012). If not controlled for,

RS can bias trait estimates (Bolt & Johnson, 2009), score correlations and structural

relationships between traits (Böckenholt & Meiser, 2017; Tutz et al., 2018), and psy-

chometric properties of the questionnaire (Ashton et al., 2017; Kreitchmann et al.,

2019; Plieninger, 2017). Moreover, there is a substantial amount of research that

found between-group differences in RS as a source for measurement non-invariance

(D’Urso et al., 2022; Eid & Rauber, 2000; Liu et al., 2017).

Item Response Theory (IRT) models are popular tools for dealing with RS. IRT-

based approaches model RS either with person-specific threshold shifts (Falk & Cai,

2016; Jin & Wang, 2014) or additional traits influencing respondents’ category

choices, for instance, in the multidimensional nominal response model (MNRM; Bolt

& Johnson, 2009; for an overview, see Henninger & Meiser, 2020a). If researchers

opt for the additional traits approach, they can either model a priori specified RS with

fixed scoring weights (e.g., a trait that makes respondents favor the extreme cate-

gories) or estimate these scoring weights and interpret the meaning of RS traits post

hoc.

A more recent approach, item response tree (IRTree) models, can also be used to

control for a priori specified RS (Böckenholt & Meiser, 2017). IRTrees capture the

cognitive processes underlying responding by modeling an observed response as a

product of several decision-making processes. There are many different uses of

IRTree models depending on the theoretical assumptions and the number of response

categories (for an overview, see Böckenholt, 2012; De Boeck & Partchev, 2012;

Jeon & De Boeck, 2016). When the aim is to separate the substantive trait from RS

traits, researchers usually model the following three decisions for a 5-point rating

scale item: (1) whether to choose the middle category (i.e., judgment), (2) whether to
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agree with the item content (i.e., direction), and (3) whether to choose an extreme

category (i.e., intensity). RS are defined a priori in a way that the outcomes of the

judgment, direction, and intensity decisions are determined by the MRS, the substan-

tive, and the ERS traits, respectively. Therefore, only the response direction is deter-

mined by the substantive trait, whereas choosing a middle or extreme category is

largely determined by RS traits.

Regardless of an exploratory approach or a priori specification of RS, the models

being used imply that all respondents use the same set of RS while responding. For

example, the MNRM assumes that the same RS traits and their scoring weights influ-

ence the category choices of all respondents in the same way, and IRTree models

assume that MRS and ERS traits influence the judgment and extremity decisions of

all respondents. However, respondents might differ in their response strategies, such

that some respondents might use only the substantive trait, some might use only one

type of RS, and some might use all possible RS while responding to an item. These

between-person differences in response strategies cause between-person differences

in measurement models and, thus, measurement non-invariance. Ignoring measure-

ment non-invariance and fitting only one measurement model for all respondents is

likely to yield biased estimates and threaten the validity of our inferences about per-

sons, groups, and test characteristics (Vandenberg & Lance, 2000; Wicherts, 2016).

There can be several reasons for differential use of RS among respondents. First,

respondents with better cognitive skills, stronger motivation, or better knowledge

about the research topic may spend their resources on deciding on the response option

that describes them best. Therefore, their responses will be less affected by RS and

will mainly determined by the substantive trait instead. Indeed, Khorramdel and col-

leagues (2019) found that respondents with higher cognitive literacy and numeracy

scores used ERS to a lesser extent. Second, if respondents lack the motivation to par-

ticipate in a study or lack related cognitive skills, they can incorporate RS in their

response strategies to minimize their cognitive efforts (i.e., heuristic responding,

Galesic et al., 2008; Krosnick, 1991). However, it does not necessarily mean that

respondents use all types of RS at once or randomly choose one type of RS and make

use of it. There can be situational (Shulman, 1973), demographic (Krosnick et al.,

1996; Meisenberg & Williams, 2008), or individual covariates (e.g., personality

traits) that determine which specific RS are employed by respondents to achieve

effort minimization.

Approaches to Detect Heterogeneity in Response Strategies

If there are latent subpopulations of respondents following different response strate-

gies, we do not know which respondents belong to which subpopulation in advance.

In other words, there is not an observed grouping variable that indicates which

response strategy a respondent uses. For such problems, the most suitable approach

is to make use of mixture models (Lindsay, 1995; McLachlan & Basford, 1988).

Mixture models assume that the data contains multiple subpopulations of
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respondents (i.e., latent classes), each of which follows a different type of distribu-

tion or a common type of distribution with different parameter values.

For modeling heterogeneity in response behaviors, earlier studies used mixture

Rasch models (Rost, 1990; Wetzel et al., 2016), mixture (generalized) partial credit

models (gPCM, Huang, 2016; Rost, 1991), HYBRID models (von Davier &

Yamamoto, 2004; Yamamoto, 1982; Yamamoto & Everson, 1995), and mixture

IRTree models (Khorramdel et al., 2019; Kim & Bolt, 2021; Tijmstra et al., 2018).

Mixture Rasch and PCM models capture subpopulations of respondents who differ

in threshold parameters. Therefore, these models detect respondents who merely dif-

fer in what part of the response scale they tend to use (Henninger & Meiser, 2020a).

However, we are interested in detecting respondents who differ in their response stra-

tegies that stem from different underlying cognitive processes. Therefore, mixture

Rasch and PCM models are not considered in this study. Two other model families,

HYBRID and confirmatory mixture IRTrees, handle responding as a cognitive pro-

cess and investigate heterogeneity in these processes with some assumptions about

the response strategies used in their mixture components.

HYBRID Model

The HYBRID model proposed by Yamamoto (1982) is specified to have two classes:

an IRT class and an independence class. In the first class, an IRT model holds. In the

second class, an independence model holds that corresponds to traditional latent class

analysis (von Davier & Rost, 2006; von Davier & Yamamoto, 2004, 2007).

Responses are determined by a substantive trait in the IRT class, whereas respon-

dents randomly choose their responses in the independence class. Although this line

of research accounts for heterogeneity in cognitive processes underlying response

behavior, it still assumes homogeneity of response strategies in the IRT class.

General Mixture Item Response Models

Tijmstra and colleagues (2018) proposed a confirmatory mixture item response

model for 5-point rating items to identify respondents who use the middle category

to reflect a nonresponse choice (IRTree class) and those who use it to indicate their

endorsement level (gPCM; generalized partial credit model class). In the IRTree

class, respondents first make a binary decision on whether to choose the middle cate-

gory, which is affected by an MRS trait. If the middle category is not chosen, then

they decide which of the other four reflects their endorsement level, which is deter-

mined by the substantive trait through a gPCM in compliance with categories’ ordi-

nal interpretation. In the gPCM class, the middle category is also interpreted as part

of the ordinal scale of item endorsement. Therefore, responses in this class are mod-

eled with a unidimensional gPCM, where a substantive trait affects the probability of

all five categories. Tijmstra and colleagues (2018) found that around 30% of the
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respondents interpret the middle category as a nonresponse, whereas the rest consider

it as part of the ordinal scale.

There are some drawbacks to the mixture model of Tijmstra and colleagues

(2018). In their model, an extreme response can occur only because of a high or low

substantive trait score, as extreme categories are part of a unidimensional gPCM in

both classes. However, earlier studies reported that ERS can have a significant

impact on choosing extreme categories. To account for that, one can extend their

model to accommodate an ERS trait in gPCM parts. Nevertheless, even if ERS is

incorporated in their mode, there can be heterogeneity in the source of extreme cate-

gory choices just like for the middle category choices, and one must further account

for it.

In this study, we propose a new mixture model that is fully in the IRTree frame-

work, detects heterogeneity in the use of middle category and extreme categories, and

can be extended to any number of categories.

Stepwise Mixture IRTree Approach

Khorramdel and colleagues (2019) proposed a stepwise mixture multidimensional

IRTree model to differentiate respondents who use only the substantive trait and

those who use the substantive trait and ERS trait. It is a three-step approach involving

the following steps: (1) testing whether RS exists in the data via IRTree models, (2)

testing whether heterogeneity in RS exists via a mixture 2PL model on IRTree data,

(3) fitting IRTree models in each class to see if and which RS exist in that class.

With this approach, the first step can yield erroneous results if there is heterogeneity

in RS use that is yet to be detected in the second step; therefore, the first step can be

skipped, as the authors also suggest. Furthermore, their approach rules out an effect

of the substantive trait on response intensity, while an extreme response can actually

indicate an extreme opinion.

A Mixture IRTree Model for Extreme RS

Recently, Kim and Bolt (2021) proposed a 2-class confirmatory mixture IRTree

model that can distinguish respondents, who use the substantive trait for the response

direction and ERS for the response intensity, from those who use the substantive trait

for both the response direction and intensity. Their model is well suited for detecting

heterogeneity in the use of ERS with 4-point rating items. However, when we have

five or a higher number of categories, then we also need to model the MRS effects

and heterogeneity in the use of MRS. For 5-point rating items, we can extend their

model to have an additional decision node for the middle category choices affected

by an MRS factor (see Figure 1 and Böckenholt & Meiser, 2017). Then, it becomes

cumbersome to model the heterogeneity in the use of MRS because this traditional

IRTree structure does not include the middle category in the ordinal response pro-

cess. In other words, we cannot specify an alternative class where the middle
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category is chosen due to moderate level of substantive trait (see the next section for

further details). To simultaneously model heterogeneity in the sources of middle and

extreme category choices, a different IRTree structure that does not separate the mid-

dle category from the response process is needed. The present study proposes a new

IRTree structure for 5-point rating items, including MRS effects, incorporating the

middle category into the ordinal endorsement scale, and modeling the heterogeneity

in the sources of both extreme and middle categories simultaneously.

In the present study, we propose a confirmatory mixture multidimensional IRTree

(MM-IRTree) model. The MM-IRTree model detects respondent subpopulations that

differ in what kinds of RS they use in their response strategies in addition to the sub-

stantive trait that is to be measured. More specifically, the proposed MM-IRTree

model consists of four classes that are defined as the following: (1) respondents who

use only ERS, (2) respondents who use only MRS, (3) respondents who use both

ERS and MRS, (4) respondents who use neither ERS nor MRS. The MM-IRTree

framework offers at least three advantages to researchers. First, it functions on 5-

point rating items that are commonly used in psychological and educational measure-

ment. Second, it accounts for the heterogeneity in the sources of middle-category

and extreme-category responses simultaneously. Third, it purifies the substantive

trait estimates from the effects of stylistic responding by acknowledging that each

respondent can be contaminated by a different set of RS.

The next section introduces the new multidimensional IRTree model for 5-point

rating items and its mixture extension. Then, we describe the model estimation, simu-

lation settings, and simulation results. Next, we illustrate the proposed model by ana-

lyzing an empirical data set. We end the paper with a conclusion and discussion.

IRTree Models

We present an example IRTree model for 5-point rating items from Böckenholt

(2012) in Figure 1(A). In the example IRTree model, respondents make up to three

decisions until they reach a response. At the first node, they decide whether they give

a judgment about the item content or pick a neutral middle category. If they give a

judgment, then, they decide whether to agree or disagree with the item content at the

second node. Finally, they decide whether to choose an extreme or intermediate cate-

gory at the third node. By relating the MRS trait to the first, the substantive trait to

the second, and the ERS trait to the third nodes, the effects of RS on the measure-

ment of the substantive trait are accommodated (for further technical details, we refer

readers to Böckenholt, 2012; Böckenholt & Meiser, 2017).

There are two limitations to this example IRTree model. First, the middle cate-

gory is treated as a non-informative neutral response and separated from the response

process. However, respondents can choose the middle category not only because they

have a high MRS score but also because of a medium substantive trait value

(Tijmstra et al., 2018). Second, the IRTree model in Figure 1(A) assumes that the

substantive trait only affects the binary decision between agreement and
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disagreement. This assumption disregards the possible information about the substan-

tive trait that would come from the middle and extreme categories. Indeed, previous

research showed that the substantive trait also plays a role in the fine-grained selec-

tion among relative disagreement and agreement categories for 6-point rating items

(Meiser et al., 2019). Therefore, we introduce a multidimensional nodes IRTree (M-

IRTree) model for 5-point rating items that allow the substantive trait to affect mid-

dle category choices and fine-grained selection among the agreement and disagree-

ment categories.

Multidimensional Nodes IRTree Model

As a first step to introduce the M-IRTree model for 5-point rating items, we describe

the decisions involved in the response process. According to the M-IRTree, respon-

dents make up to three judgments, as depicted in Figure 1(B). At the first node,

respondents decide whether to disagree with the item content or not. If the decision

is disagreement, respondents go to the extremity node to decide whether they choose

the extreme disagreement category. If the decision is against disagreement, respon-

dents proceed to the neutrality node to decide whether they stay neutral or agree with

the item content. If they decide to stay neutral, they choose the middle category. If

they decide to agree, in contrast, they go to the extremity node, where they decide

whether to choose the extreme agreement category. It is important to note that the

first two nodes are actually a sequential IRT model, where disagreement, neutrality,

and agreement are modeled as ordinal outcomes (Tutz, 1990). Therefore, we

addressed the first limitation of the IRTree model in Figure 1(A) by allowing the

substantive trait to play a role at the neutrality node.1

The second step of model specification is to decompose items into pseudo-items.

According to the M-IRTree structure presented in Figure 1(B), an observed rating

response is decomposed into three pseudo-items that represent the disagreement node

(i.e., Y �0 ), the neutrality node (i.e., Y �1 ), and the extremity node (i.e., Y �2 ). In the left-

hand side of Table 1, we present these pseudo-items and which values they are

assigned for a given original response category. For instance, to give a response of

‘‘3,’’ respondents do not endorse the disagreement node but only endorse the neutral-

ity node. So, the first pseudo-item is coded ‘‘0,’’ the second pseudo-item is coded

‘‘1,’’ and the third pseudo-item is missing by design since the extremity node is not

involved.

The third step is to relate latent variables to these three nodes with a 2PL item

response model. The decision about which latent variables should be involved at

which nodes depends on what we aim to model. Assume that we aim to model both

ERS and MRS while also allowing the substantive trait to affect the middle and

extreme categories. Then, we can relate the substantive trait, ERS trait, and MRS

trait to the M-IRTree nodes as follows:

� Disagreement Node: Higher values of the substantive trait and of the MRS

trait increase the probability of response categories ‘‘3,’’ ‘‘4,’’ and ‘‘5,’’ and
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decrease the probability of disagreement categories ‘‘1’’ and ’’2.’’ Therefore,

the substantive trait and the MRS trait have negative factor loadings at the first

node.
� Neutrality Node: Higher values of the substantive trait increase the probabil-

ity of agreement categories ‘‘4’’ and ‘‘5’’ and decrease the probability of mid-

dle category ‘‘3.’’ In contrast, higher values of the MRS trait increase the

probability of the middle category ‘‘3’’ and decrease the probability of agree-

ment categories ‘‘4’’ and ‘‘5.’’ Therefore, the substantive trait has negative

factor loadings, and the MRS has positive factor loadings at the second node.

Here, at the end of the first two nodes, we can see that higher MRS values

increase the probability of the middle category and decrease the probability of

both the disagreement and agreement categories. Meanwhile, higher substan-

tive trait values consistently favor the higher categories.
� Extremity Nodes: Higher values of the substantive trait increase the prob-

ability of extreme agreement category ‘‘5’’ but decrease the probability of

extreme disagreement category ‘‘1,’’ while higher values of the ERS trait

increase the probability of both extreme agreement and disagreement cate-

gories ‘‘5’’ and ‘‘1.’’ Therefore, the substantive trait has negative factor load-

ings at the disagreement side and positive factor loadings at the agreement

side of the third node. The ERS trait has positive factor loadings at both sides

of the third node. At this node, we address the second limitation of the IRTree

model in Figure 1(A) by allowing the substantive trait to affect extremity

decisions.

The fourth and the last step is to formally express the item response model for the

original response categories. Let Ypj 2 1, 2, 3, 4, 5f g denote the original response

category for subject p and item j. Then, let up, h ers
p , and h mrs

p denote the values of

the substantive trait, the ERS trait, and the MRS trait for subject p. Next, let a u
j ,

Table 1. Pseudo-Items, Value Assignments for Original Response Categories, and Response
Probabilities of Each Pseudo-Item.

Pseudo-items Original Response Categories Pr(Y�pkj = y�pkj)

1 2 3 4 5

y�p0j(Disagreement) 1 1 0 0 0 g�1 y�p0j �a u
j up�a mrs

j h mrs
p �b0j

h i� �
y�p1j (Neutrality) - - 1 0 0 g�1 y�p1j �a u

j up +amrs
j h mrs

p �b1j

h i� �
y�p2j(Extremity) 1 0 - 0 1 g�1 y�p2j 6va u

j up + a ers
j h ers

p �b2j

h i� �

Note. A cell with‘‘-’’ represents missing by design. The sign of the factor loadings of u at the extremity

node changes depending on the outcome of the disagreement pseudo-item.
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a ers
j , and a mrs

j denote factor loadings of the substantive trait, the ERS trait, and the

MRS trait for item j. Finally, let v be a proportionality constant of the substantive

trait at the extremity node.2 Then, the v parameter implies that the substantive trait

is involved in the extremity nodes, but its effect is proportional to its effect on the

first two nodes. Naturally, v\1 (v . 1) means that the substantive trait has a smaller

(larger) effect at the third node than at the first two nodes. Next, b0j, b1j, and b2j are

the difficulty-related parameters at the first, second, and third nodes. Note that we

simply refer to them as difficulty parameters, but they are not interpreted as in the

unidimensional IRT models.3 Finally, g�1 denotes a logistic function but can be

replaced with a probit if preferred (e.g., Böckenholt, 2019). On the right-hand side of

Table 1, we provide the node-specific response probabilities. Since the probability of

observing an original response category is the product of node probabilities leading

to that response in the tree structure, the item response model defining the probabil-

ities of the original response categories is:

Pr ypjjup, h ers
p , h mrs

p , a u
j , a ers

j , a mrs
j , v, b0j, b1j, b2j

� �

= g�1 y�p0j �a u
j up � a mrs

j h mrs
p � b0j

h i� �

3g�1 y�p1j �a u
j up + a mrs

j h mrs
p � b1j

h i� �I ypj�3ð Þ

3g�1 y�p2j 6a u
j vup + a ers

j h ers
p � b2j

h i� �I ypj 6¼3ð Þ

ð1Þ

The M-IRTree model assumes that all respondents make use of both ERS and

MRS traits in their response strategy. However, if there are subpopulations of respon-

dents who use only ERS, only MRS, or neither of them, M-IRTree would yield biased

estimates as it assumes all respondents make use of both types of RS to the same

extent.

Mixture Multidimensional Nodes IRTree Model

The proposed MM-IRTree model is a confirmatory mixture model with four latent

classes. In all classes, the substantive trait is involved in the disagreement, neutrality,

and extremity nodes in the way that the higher the substantive trait score, the higher

the probability of choosing higher categories (see Table 1). However, the four classes

differ in what RS respondents use as part of their response strategy. In the ‘‘ERS

only’’ class, respondents use the ERS trait at the extremity nodes. In the ‘‘MRS only’’

class, respondents use the MRS trait at the disagreement and neutrality nodes. In the

‘‘2RS’’ class, respondents use the ERS trait at the extremity node and the MRS trait

at the disagreement and neutrality nodes, while respondents use neither the ERS trait

nor MRS trait as part of their response strategy in the ‘‘0RS’’ class.

We transcribe these four class definitions into our model by fixing the factor load-

ings of ERS and MRS traits at zero when they are not used in the response strategy
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of a class. Formally, the following factor loadings are fixed to zero: (1) MRS factor

loadings in the ‘‘ERS only’’ class, (2) ERS factor loadings in the ‘‘MRS only’’ class,

(3) both ERS and MRS factor loadings in the ‘‘0RS’’ class. Factor loadings of ERS

and MRS traits in the ‘‘2RS’’ class are freely estimated because its members use both

RS as part of their response strategy. An important aspect of this transcription is that

we do not imply that some respondents do not have ERS or MRS per se. In contrast,

we imply that, even though all respondents may have any values on ERS and MRS

traits, some of them might not use them on certain occasions due to the reasons men-

tioned in the introduction. Fixing the factor loadings of an RS to zero means that the

RS does not affect the observed rating responses or, more formally, that no variance

is explained by the underlying RS factor in the model.

For the further description of the MM-IRTree model, we will first introduce the

response model for each class separately. The response models assume that respon-

dents are homogeneous in their response strategy within a given class. Using the same

notation as in M-IRTree (see Equation 1), Equation 2 presents the response model for

the ‘‘ERS only’’ class, where respondents use the substantive trait and ERS as part of

their response strategy. This model will be referred to as ‘‘ERS IRTree’’ since it only

models ERS:

Pr
ERS

ypjjup, h ers
p , a u

j , a ers
j , v, b0j, b1j, b2j

� �

= g�1 y�p0j �a u
j up � b0j

h i� �

3g�1 y�p1j �a u
j up � b1j

h i� �I ypj�3ð Þ

3g�1 y�p2j 6a u
j vup + a ers

j h ers
p � b2j

h i� �I ypj 6¼3ð Þ

ð2Þ

Equation 3 presents the response model for the ‘‘MRS only’’ class, where respon-

dents use the substantive trait and MRS trait as part of their response strategy. This

model will be referred to as ‘‘MRS IRTree’’ since it only models MRS:

Pr
MRS

ypjjup, h mrs
p , a u

j , a mrs
j , v, b0j, b1j, b2j

� �

= g�1 y�p0j �a u
j up � a mrs

j h mrs
p � b0j

h i� �

3g�1 y�p1j �a u
j up + a mrs

j h mrs
p � b1j

h i� �I ypj�3ð Þ

3g�1 y�p2j 6au
j vup � b2j

h i� �I ypj 6¼3ð Þ

ð3Þ

Equation 4 presents the response model for the ‘‘2RS’’ class, where respondents

use the substantive trait, ERS, and MRS as part of their response strategy. It is the

same model as the one presented in the M-IRTree section, but from now on, we will

refer to it as ‘‘2RS IRTree’’ for consistency.
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Pr
2RS

ypjjup, h ers
p , h mrs

p , a u
j , a mrs

j , a ers
j , v, b0j, b1j, b2j

� �

= g�1 y�p0j �a u
j up � a mrs

j h mrs
p � b0j

h i� �

3g�1 y�p1j �a u
j up + a mrs

j h mrs
p � b1j

h i� �I ypj�3ð Þ

3g�1 y�p2j 6a u
j vup + a ers

j h ers
p � b2j

h i� �I ypj 6¼3ð Þ

ð4Þ

Finally, Equation 5 presents the response model for the ‘‘0RS’’ class, where

respondents use the substantive trait but neither ERS nor MRS as part of their

response strategy. This model will be referred to as ‘‘0RS IRTree’’ since it does not

model any RS.

Pr
0RS

ypjjup, a u
j , v, b0j, b1j, b2j

� �

= g�1 y�p0j �a u
j up � b0j

h i� �

3g�1 y�p1j �a u
j up � b1j

h i� �I ypj�3ð Þ

3g�1 y�p2j 6a u
j vup � b2j

h i� �I ypj 6¼3ð Þ

ð5Þ

For the MM-IRTree model, let zp 2 {1: ‘‘ERS only,’’ 2: ‘‘MRS only,’’ 3: ‘‘2RS,’’

4: ‘‘0RS’’} denote the class membership of respondent p, and let I() be the indicator

function that yields ‘‘1’’ if its argument is true, ‘‘0’’ otherwise. Using the same tree

structure and pseudo-item decomposition as used previously, the response model

under the MM-IRTree model is the following:

Pr
MIX

ypjjzp, up, h ers
p , h mrs

p , a u
j , a ers

jz , a mrs
jz , v, b0jz, b1jz, b2jz

� �

= Pr
ERS

ypjjup, h ers
p , a u

j , a ers
j1 , v, b0j1, b1j1, b2j1

� �
3I zp = 1
� �� �

+ Pr
MRS

ypjjup, h mrs
p , a u

j , a mrs
j2 , v, b0j2, b1j2, b2j2

� �
3I zp = 2
� �� �

+ Pr
2RS

ypjjup, h ers
p , h mrs

p , a u
j , a mrs

j3 , a ers
j3 , v, b0j3, b1j3, b2j3

� �
3I zp = 3
� �� �

+ Pr
0RS

ypjjup, a u
j , v, b0j4, b1j4, b2j4

� �
3I zp = 4
� �� �

ð6Þ

The MM-IRTree consists of four response models (i.e., four IRTree models) in

Equations 2 to 5.4 Depending on the class membership of a respondent zp, one of

these IRTree models is activated, and the rest are deactivated by the indicator
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function because
P4

c = 1 I zp = c
� �

= 1. Therefore, depending on their class member-

ship, the MM-IRTree allows respondents to follow a different response model.

Before going into details of the model estimation, we explain why we made some

parameters class-invariant and others class-specific. First, we made factor loadings of

the substantive trait (a u
j and v) class-invariant. Our main reason for assuming class-

invariant factor loadings for the substantive trait is to ensure that we measure the

same substantive trait in all classes, and classes differ from each other only due to

differences in RS factor loadings. We believe that specifying class-specific au
j is

empirically testable and can make sense when researchers do not aim to obtain trait

estimates that are comparable across classes but merely aim to examine response pro-

cesses. However, in this study, our aims include: (1) to find classes that differ only

due to the different use of RS, (2) to have u estimates that are comparable between

latent classes and corrected for the actively used response styles in each class.

Second, we set factor loadings of RS traits (a ers
jz and a mrs

jz ) to be class-specific.

That is, for instance, even though respondents in both the ‘‘ERS only’’ class and the

‘‘2RS’’ class use ERS as part of their response strategy, we allow them to use it to

different extents. The reason for class-specific RS factor loadings is that the MM-

IRTree is about capturing different uses of RS, which includes (1) qualitative differ-

ences regarding which RS are engaged in response strategies as implemented by fixa-

tions of RS factor loadings to zero, and (2) quantitative differences regarding how

much a given RS affects the responses if it is engaged in response strategies as imple-

mented by class-specific RS factor loadings. Nevertheless, depending on the research

question, one can set the factor loadings of a RS equal across classes where this RS

is used and test the feasibility of this equality constraint.

Third, we assume node difficulties to be class-specific for two reasons. The first

reason is we find it unrealistic to have different numbers of traits yet the same node

difficulties in different classes, and the second reason is to allow for an increase in

the class separation (i.e., how easy it is to distinguish classes from each other).

Finally, we assume trait scores to be multivariate normally distributed, where their

expectations are fixed at zero and variances are fixed at one for identification.

However, correlations between traits are freely estimated and made class-invariant.

The reason for a class-invariant correlation matrix is that we do not expect relation-

ships between the latent variables in our model to change between classes since we

ensure that the same substantive trait is measured in all classes via class-invariant au
j .

Moreover, a common correlation matrix also keeps the model more parsimonious.

In summary, with the MM-IRTree model, we assume that all respondents have

values on the substantive trait u, the ERS trait hers, and the MRS trait hmrs, but

respondents differ in how they use these latent processes. That is, each of the four

latent classes is associated with a different combination of RS traits to represent a

distinct cognitive process, while a probabilistic IRTree model with individual person

parameters and class-specific item parameters is estimated for each latent class. The

latent classes thus represent theory-driven cognitive processes of response behavior

that are characterized by combinations of person parameters underlying the choice of
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response categories, and each latent class forms a probabilistic component model in

the mixture distribution framework.

In other words, the proposed MM-IRTree can be considered as a confirmatory

mixture approach that combines the specification of hypothesized response processes

with probabilistic component models and probabilistic assignment of respondents to

latent subpopulations.

Estimation

In the simulation study and empirical example, we also fit single-class IRTree mod-

els specified in Equations 2 to 5 in addition to the MM-IRTree as benchmarks for

model selection and parameter recovery. For all models estimated in this paper, we

use a Bayesian MCMC algorithm. We implemented the estimation in ‘‘Just Another

Gibbs Sampler’’ (JAGS; Plummer, 2017). We used JAGS via the ‘‘runjags’’ package

(Denwood, 2016) in the ‘‘R’’ software (R Core Team, 2021). For processing the

MCMC outputs, we used the ‘‘MCMCvis’’ package (Youngflesh, 2018) in the R

software. All of our model syntaxes, generated data sets, and the R syntax for the

analysis of the empirical data set are provided on Open Science Framework and can

be accessed via https://osf.io/jq36d/.

Here, we summarize our choices for prior distributions for parameter estimation.

First, for the single-class 0RS IRTree model, where there is only the substantive trait

as a person parameter, we specified a standard normal distribution. For the other

single-class IRTree models and the MM-IRTree, we specified a multivariate normal

distribution where means were fixed at zero, variances were fixed at one, and corre-

lations between the modeled traits were freely estimated. For any correlation para-

meter, we specified a non-informative uniform prior U(21,1). For any factor loading

in all models, we specified a slightly informative normal prior truncated to be posi-

tive N(0, 2)T(0,). For any node difficulty, we specified a slightly informative normal

prior N(0,2). For the proportionality constant v, we specified a uniform prior U(0,

2). The choice for this prior distribution is based on empirical findings (Meiser et al.,

2019; Merhof & Meiser, 2023). Also, different distribution types (e.g., lognormal,

normal, and uniform) and ranges were tried, and there were no remarkable differ-

ences in both point estimates and posterior standard deviations (see Table S3 in

Supplementary Materials). For class memberships, we specified a hierarchical prior.

First, class proportions (p) are drawn from a Dirichlet distribution that is uniform in

four-dimensional space. Then, the class membership of each respondent is drawn

from a categorical distribution that takes the class proportions as parameters. This

way, we ensure that most respondents are assigned to the classes with higher class

proportions, whereas only a small number of respondents are assigned to the classes

with smaller proportions. Moreover, when a class is absent in the population (i.e.,

pc = 0), this type of prior forces the non-existent class to stay empty in the estimation

(Gelman et al., 2013; Tijmstra et al., 2018).
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Simulation Study

Simulation Design

In this section, we describe the settings of our simulation study, which we conducted

to investigate how well we can recover item and trait parameters, trait correlations,

class proportions, and class memberships. In the simulation study, we manipulated

the class proportions of the population model pERS , pMRS , p2RS , p0RSf g. and obtained

nine conditions. The population model in the first five conditions is a mixture of four

latent classes with the following proportions: (1) Equal {.25, .25, .25, .25}, (2) ‘‘ERS

onl dominated {.70, .10, .10, .10}, (3) ‘‘MRS only’’ dominated {.10, .70, .10, .10},

(4) ‘‘2RS’’ dominated {.10, .10, .70, .10}, (5) ‘‘0RS’’ dominated {.10, .10, .10, .70}.

In the rest of the conditions, population models are non-mixture; in other words, only

one of the classes exists in the population. We included such non-mixture conditions

to examine (1) whether simpler one-class IRTree models are selected over MM-

IRTree when the population is a non-mixture and (2) whether applying MM-IRTree

to a non-mixture population yields satisfactory parameter estimates. The non-mixture

population conditions are: (6) Single ‘‘ERS only’’ Class {1,0,0,0}, (7) Single ‘‘MRS

only’’ Class {0,1,0,0}, (8) Single ‘‘2RS’’ Class {0,0,1,0}, (9) Single ‘‘0RS’’ Class

{0,0,0,1} (see Table S2 in Supplementary Materials).

For each of the nine conditions, we created 10 data sets containing responses from

2,000 respondents on 20 items with a 5-point rating scale. The data sets were gener-

ated in the following steps:

1. We drew u, hers, and hmrs scores from MVN 0,

1 :20 0

1 �:40

1

2
4

3
5

0
@

1
A5 for

2,000 respondents.

2. We drew the factor loadings of the substantive trait (a u
j ) from U 0:75, 1:75ð Þ

and set its proportionality constant v to 0.506 for all 20 items. The factor

loadings of the ERS trait in both ‘‘ERS only’’ a ers
j1

� �
and ‘‘2RS’’ a ers

j3

� �
classes were drawn from U 0:75, 1:25ð Þ, whereas the factor loadings of the

MRS trait in both ‘‘MRS only’’ a mrs
j2

� �
and ‘‘2RS’’ a mrs

j3

� �
classes were

drawn from U 0:50, 0:75ð Þ:7 Regardless of the class, all item difficulties

bjkz

� �
were drawn from U �2, 2ð Þ.

3. Class memberships were generated according to the class proportion condi-

tion. The first 2, 0003pERS respondents were assigned to the ‘‘ERS only’’

class. Then, the following 2, 0003pMRS respondents were assigned to the

‘‘MRS only’’ class. The next 2, 0003p2RS were assigned to the ‘‘2RS’’ class,

while the rest were assigned to the ‘‘0RS’’ class.8

4. Depending on the class membership of a respondent, category probabilities

were calculated by plugging the generated parameter values into Equations 2,

3, 4, or 5. Therefore, for each respondent, we obtained five probabilities cor-

responding to five response categories per item.
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5. We generated multinomial responses by using the probabilities in the previ-

ous step. This step yielded a 2, 000320 matrix, where each cell takes a value

between one and five.

6. The responses we generated in the previous step were decomposed into

pseudo-items, as depicted in Table 1. Therefore, our final data set had 2,000

rows representing respondents and 2033 = 60 columns representing pseudo-

items, where each cell is zero, one, or missing, depending on the pseudo-item

coding.

7. We repeated Step 5 and Step 6 to generate 10 data sets.

8. We repeated Step 4 to Step 7 for each class proportion condition.

In total, we generated 9 (conditions) 310 (replications) = 90 data sets.9 For each

data set, we fit the MM-IRTree, ERS IRTree, MRS IRTree, 2RS IRTree, and 0RS

IRTree. For the estimation of the MM-IRTree, we run ten parallel MCMC chains,

each with 3,000 iterations. We discarded the first 1,000 iterations of each chain as the

burn-in period, which left 20,000 iterations per data set. For the estimation of each

single-class IRTree model, we run five parallel chains, each with 3,000 iterations. We

discarded the first 1,000 iterations per chain as the burn-in period, which left 10,000

iterations per data set. We checked the model convergence with Rhat values for all

parameters and additionally by visual inspection of the trace plots for item and class

proportion parameters. The MCMC settings we used yielded Rhat values lower than

1.05 and well-mixed trace plots. We used the expectations of univariate posterior dis-

tributions as parameter estimates except for the class memberships. We explain below

how we assigned respondents to classes.

Simulation Results
Model Selection. It is essential to demonstrate the accuracy of model selection for the

MM-IRTree model when there exists a mixture population model underlying the data.

However, due to its complexity, the MM-IRTree model may overfit and incorrectly

be chosen over a simpler single-class IRTree model when the data originate from a

non-mixture model. Therefore, it is crucial to verify that a single-class IRTree model

is accurately selected when the population model is composed of only one class. To

achieve this objective, we employed the Deviance Information Criterion (DIC). The

DIC is a relative fit index that assesses the model fit while also considering the mod-

el’s complexity. There are various methods of calculating the DIC, depending on the

model’s characteristics (Celeux et al., 2006; Spiegelhalter et al., 2002). Our calcula-

tion of the model fit term involves the expectation of deviance across MCMC itera-

tions (�D), while the model complexity term is calculated as half of the variance of the

deviance across MCMC iterations (pV). The sum of �D and pV yields the DIC. It

should be noted that DIC is only meaningful when comparing multiple models, and

the model with the smallest DIC is chosen as the model with the best balance of fit

and parsimony.
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In our simulation study, we found that across all replications of the five mixture

class proportion conditions, DIC consistently selected the MM-IRTree model as the

best-fitting model, and across all replications of four non-mixture conditions, DIC

favored the single-class IRTree model matching with the population model (see

Table 2). This highlights the utility of DIC as a reliable method for selecting the

appropriate IRTree model, whether it be the MM-IRTree model for mixtures or the

single-class IRTree model for non-mixture data.10

Recovery of Classifications. Class proportions pð Þ are critical for accurate classifica-

tion, as biased estimates can lead to biased class memberships. In our study, we found

that the MM-IRTree successfully recovered class proportions in both mixture and

non-mixture populations, with mean biases and RMSE values smaller than 0.005 (see

Table S4 in Supplementary Materials for specific values).

Our approach for assigning respondents to their classes is based on using posterior

class probabilities instead of the expectation of posterior distributions. This is done

through the calculation of the posterior class probability for each respondent based

on their response vectors, which is then used to assign the respondent to the class for

which their probability is highest. This procedure is known as modal assignment

(Dias & Vermunt, 2008). The posterior class probability of a respondent is calculated

as the proportion of MCMC iterations in which this respondent is assigned to a given

class. Then, respondents are assigned to the class for which they have the highest

posterior class probability (i.e., the mode of the posterior class membership draws).

To investigate the performance of MM-IRTree in class assignments, we calculated

the proportion of respondents who are correctly assigned to their true classes (i.e., hit

rate). In Figure 2, we provide the average hit rates per class averaged across the 10

replications of each condition. Overall, the MM-IRTree has very high hit rates while

classifying respondents regardless of true class proportions. Hit rates were between

0.93 and 0.96 for a class proportion of 10%, 0.96 and 0.98 for 25%, and above 0.99

for 70%. Even when applied to a non-mixture population, 99.9% of respondents were

assigned to their true class. Overall, MM-IRTree’s classification accuracy is very

high, even for small class proportions.

Recovery of Item Parameters. For class-specific RS factor loadings and difficulty

parameters, we compared the MM-IRTree model with the single-class IRTree models

consisting of those specific RS factor loadings and difficulty parameters (see Figure 3).

For a u
j , we discuss the findings here and in Table 3, but the findings regarding the pro-

portionality constraint v is discussed here only in text and the table with specific values

are presented in the Supplementary Materials Table S5. We averaged the bias and

RMSE of all parameters across the 20 items. In addition, we averaged the bias and

RMSE of difficulty parameters across the three nodes.

Class-Specific Factor Loadings of RS. In the presence of a mixture population, the

MM-IRTree slightly overestimated class-specific factor loadings of RS traits but still

yielded accurate parameter estimates as evidenced by mean bias and RMSE. In
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contrast, single-class IRTree models led to remarkable underestimation and inaccu-

rate parameter estimates, which were then mitigated as the proportion of classes

where RS factor loadings are freely estimated increased. However, even with the

largest class proportion in the mixture condition (i.e., 70%), single-class IRTree

models yielded twice as large RMSE values as the MM-IRTree model, highlighting

the need for using MM-IRTree when the data come from a mixture population.

Figure 2. Hit Rates (Proportion of Respondents Correctly Classified Into Their True
Classes) for Each Class as a Function of Class Proportions. Values Are Averaged Across
Replications of a Condition.

Table 3. Bias (RMSE) of the Factor Loadings of the Substantive Trait au
j

� �
. Both Bias and

RMSE Are Averaged Across Items.

Class Proportions Estimated Model

Mixtures MM-IRTree ERS IRTree MRS IRTree 2RS IRTree 0RS IRTree

{.25, .25, .25, .25} 0.06(0.09) 20.17(0.20) 20.15(0.20) 20.15(0.20) 20.17(0.20)
{.70, .10, .10, .10} 0.05(0.08) 20.10(0.16) 20.08(0.19) 20.07(0.18) 20.11(0.17)
{.10, .70, .10, .10} 0.06(0.09) 20.09(0.13) 20.09(0.13) 20.08(0.13) 20.09(0.13)
{.10, .10, .70, .10} 0.06(0.09) 20.08(0.15) 20.12(0.15) 20.11(0.14) 20.09(0.15)
{.10, .10, .10, .70} 0.06(0.09) 20.12(0.15) 20.13(0.16) 20.14(0.16) 20.12(0.15)

Non-mixtures

{1, 0, 0, 0} 0.05(0.08) 0.05(0.08) 0.04(0.08) 0.05(0.08) 0.04(0.08)
{0, 1, 0, 0} 0.06(0.09) 0.05(0.08) 0.05(0.08) 0.05(0.08) 0.05(0.08)
{0, 0, 1, 0} 0.05(0.09) 0.07(0.10) 0.03(0.08) 0.05(0.09) 0.06(0.11)
{0, 0, 0, 1} 0.05(0.08) 0.04(0.08) 0.05(0.08) 0.05(0.08) 0.04(0.08)
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When the data were not generated from a mixture population (100% condition in

Figure 3), both MM-IRTree and single-class IRTrees perform comparably and yield

unbiased and accurate parameter estimates.

Class-Specific Node Difficulties. When the data came from a mixture population

model, the difficulty parameters were estimated accurately and with no systematic

bias by the MM-IRTree. In contrast, single-class IRTree models yielded mixed

results, tending to over- or under-estimate the difficulty parameters in addition to the

inaccuracy evidenced by high RMSE values. Nevertheless, even when the largest

class proportion in the mixture condition was considered (i.e., 70%), single-class

IRTree models produced RMSE values that were twice as high as those obtained

with the MM-IRTree model, emphasizing the need for using MM-IRTree when the

data originate from a mixture population.

Figure 3. Bias and RMSE of Class-Specific Factor Loadings of Response Style Traits and
Class-Specific Node Difficulties. Both Bias and RMSE are Averaged Across Replications and
Items (and Nodes for Difficulties).
Note. aers

j1 and aers
j3 are the factor loadings of ERS trait in ERS only and 2RS classes, respectively. amrs

j2 and

amrs
j3 are the factor loadings of MRS trait in MRS only and 2RS classes, respectively. bjk1, bjk2, bjk3, and bjk4

are the difficulty parameters (averaged across nodes and replications) in ERS only, MRS only, 2RS and 0RS

classes, respectively.
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When the data came from a non-mixture population (100% condition in Figure 3),

both the MM-IRTree and single-class IRTree models performed equivalently, provid-

ing accurate and unbiased difficulty estimates.

Results from both class-specific RS factor loadings and node difficulties show

that in the presence of a mixture population, it was only the MM-IRTree that yielded

accurate and unbiased parameter estimates, while single-class IRTrees provided

highly unreliable estimates. In the non-mixture conditions, both MM-IRTree and

single-class IRTrees performed comparably.

Class-Invariant Factor Loadings of the Substantive Trait. In the mixture population

conditions, the MM-IRTree model tended to slightly overestimate a u
j parameters in

all conditions, but still with an excellent accuracy as evidenced by RMSE values

(See Table 3). In contrast, fitting any of the single-class IRTree models incorrectly to

the mixture data resulted in inaccurate underestimated a u
j parameters. However, in

the non-mixture population model conditions, both the MM-IRTree and single-class

IRTree models exhibited similar bias, with a slight tendency toward overestimation.

For the proportionality constant v, bias and RMSE results show that MM-IRTree

provides accurate estimates with almost no systematic bias in both mixture and non-

mixture population models. More specifically, in all conditions, mean bias and

RMSE values were equal or smaller than 0.02. Similarly, single-class IRTree models

provide accurate estimates despite a slight under- or overestimation in mixture popu-

lation conditions. Specifically, mean biases and RMSE values were smaller than

0.10. In the non-mixture population conditions, all single-class IRTrees provide

accurate estimates with very small RMSE values and almost no systematic bias

(�0.06) (see Table S5 in Supplementary Materials).

Recovery of Person Parameters
Recovery of u. To illustrate the recovery of u scores in the presence of a mixture

population model, we used the equal class proportions condition as a representative

case. For the non-mixture conditions, we compared the MM-IRTree model with the

single-class IRTree model that matches with the population class. For instance, for

the single ‘‘ERS only’’ class condition, we compared the recovery of u scores

between MM-IRTree and ERS IRTree. Wprovide the plots for only one condition

because if we had included plots for nine conditions and five IRTree models, it

would yield 23935 = 90. plots. Therefore, here, we provide results for only the

equal class proportions condition and discuss the results for non-mixture conditions.

Figure 4 presents the recovery statistics for the u parameter in the mixture equal

class proportions condition. The MM-IRTree model demonstrated minimal bias in

estimating u for parameter values between 61 and shrunk the extreme values toward

zero. In contrast, any of the single-class IRTree models produced substantially greater

biases across the entire range of u scores when applied incorrectly to a mixture of

population data.11 Similar results were observed for the RMSE values. The MM-

IRTree model yielded large RMSE only for extreme negative or positive parameter

values, while the single-class IRTree models produced large RMSE across the entire

range of parameter values. However, in non-mixture populations, the MM-IRTree
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performed comparably to the single-class IRTree model that matches to the existing

class in the population.

To provide a summary of the recovery of u scores in other mixture conditions, we

can state that the MM-IRTree model consistently outperformed other models in terms

of bias and RMSE across all mixture population conditions. More specifically, the

single-class IRTree model corresponding to the dominating class in the population

was the closest competitor to the MM-IRTree in most conditions, but their perfor-

mance was always inferior to the performance of the MM-IRTree. Interested readers

can refer to the supplementary materials for more detailed figures. (Figure S6 to S13)

Recovery of hersand hmrs. Regarding the recovery of RS traits, we present the

results of the equal class proportions condition as a representative case of mixture

population conditions. In Figure 5, we display the bias and RMSE of hers for respon-

dents belonging to either the ‘‘ERS only’’ class or the ‘‘2RS’’ class. From the

Figure 5. Bias and RMSE of ERS Trait Scores hersð Þ Obtained With MM-IRTree (Left), ERS
IRTree (Middle), and 2RS IRTree (Right) Models in the Equal Class Proportions Condition.
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leftmost column to the rightmost column, plots show the results for the MM-IRTree,

ERS IRTree, and 2RS IRTree, consecutively. In Figure 6, we present the bias and

RMSE of hmrs for respondents belonging to either the ‘‘MRS only’’ class or the

‘‘2RS’’ class. From the leftmost column to the rightmost column, plots show the

results for the MM-IRTree, MRS IRTree, and 2RS IRTree, respectively.

An important result is that the MM-IRTree model yielded smaller bias and RMSE

for the whole range of hers and hmrs than single-class IRTree models in the equal

class proportions condition, these findings support the reliability of the MM-IRTree

in recovering RS trait scores. On the other hand, traditional single-class IRTree mod-

els performed worse than the MM-IRTree model. More specifically, they recovered

RS trait scores relatively well for respondents using both ERS and MRS (Figures 5

and 6; gray dots), but they yielded biased RS trait estimates for respondents using

only one type of RS (Figures 5 and 6; black dots). One might expect that the ERS

Figure 6. Bias and RMSE of MRS Trait Scores hmrsð Þ Obtained With MM-IRTree (Left), MRS
IRTree (Middle), and 2RS IRTree (Right) Models in the Equal Class Proportions Condition.
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scores of individuals in the ‘‘ERS only’’ class would be accurately recovered by the

ERS IRTree model, as it is the true model for them. However, the ERS IRTree was

fitted to the entire sample, which includes individuals from all four classes, rather

than solely the ‘‘ERS only’’ subset. Therefore, the item estimates were influenced by

information from individuals using MRS in the ‘‘MRS only’’ and ‘‘2RS’’ classes,

resulting in more biased hers estimates for the ‘‘ERS only’’ class. This very same

issue is also applicable to the recovery of MRS scores in the ‘‘MRS only’’ class using

the MRS IRTree model, leading to poorer recovery due to bias introduced by the

effects of the ERS users.

The poor performance of single-class IRTrees are, of course, not surprising since

they were obtained from the equal class proportion condition. We expect a single-

class IRTree to perform better as its matching class contains a larger proportion of

respondents. Indeed, a single-class IRTree model showed better recovery when its

matching class has 70% of respondents. Yet, MM-IRTree still outperformed single-

class models in all mixture-class proportions conditions. In non-mixture conditions,

MM-IRTree and the single-class IRTree model corresponding to the population class

recovered RS traits equally well (see Supplementary Materials Figure S13 and S15).

In summary, neglecting the heterogeneity in response strategies and applying tra-

ditional single-class IRTree models to a mixture of population data resulted in biased

item and trait parameters. However, the MM-IRTree model, regardless of a mixture

or non-mixture population model underlying the data, provided reliable parameter

estimates.

Empirical Example

Data Set

In this section, we illustrate the MM-IRTree model by analyzing an empirical data set

from the Experiences in Close Relationships (ECR) Scale developed by Brennan and

colleagues (1998). The ECR scale measures the attachment orientations of adoles-

cents and adults. In the original study, with 36 items, authors extracted two factors

named attachment anxiety (18 items, Cronbach’s alpha = 0.94) and attachment avoid-

ance (18 items, Cronbach’s alpha = 0.91). The first factor, attachment anxiety, is

characterized by the intense fear of interpersonal rejection and distress when a partner

is unresponsive. A typical question measuring this factor is, ‘‘I worry a fair amount

about losing my partner.’’ The second factor, attachment avoidance, is defined as an

intense fear of interpersonal dependence and the need for self-reliance. An example

item measuring this factor is, ‘‘Just when my partner starts to get close to me, I find

myself pulling away.’’ All items in the questionnaire are rated on a 5-point scale,

where categories are labeled as ‘‘Strongly disagree,’’ ‘‘Disagree,’’ ‘‘Neither agree

nor disagree,’’ ‘‘Agree,’’ and ‘‘Strongly agree.’’

For our empirical illustration, we use 18 items measuring attachment anxiety. The

sample size of our data set is 2,000, and respondents are sampled from a larger pool

with a sample size of 51,492. For choosing this subset, we first listwise excluded the
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respondents with at least one missing response (N = 4,887) and then randomly

sampled 2.000 respondents. The full data set can be found online at www.openpsy-

chometrics.org/_rawdata.

For the analysis of the data set with the MM-IRTree model, we used MCMC esti-

mation with the Gibbs sampler implemented in JAGS. We run 20 parallel MCMC

chains, each with 10,000 iterations.12 We discarded the first 5,000 iterations in each

chain as the burn-in phase. We also estimated four single-class IRTree models for

model selection purposes. For each single-class IRTree model, we run ten parallel

MCMC chains, each with 10,000 iterations. The first 5,000 iterations in each chain

are discarded as the burn-in phase. In total, we obtained 100,000 iterations for the

estimation of MM-IRTree and 50,000 iterations per single-class IRTree model. The

MCMC settings we used yielded Rhat values lower than 1.01 and well-mixed trace

plots.

Model Selection

We provide DIC values obtained for each IRTree model in Table 4.13 Accordingly,

we chose the MM-IRTree model over single-class IRTree models as it has the smal-

lest DIC value, in other words, the best balance of model fit (�D) and complexity

(pV ). Also, in the supplementary materials (Figures S4 and S5), we provide two cases

of posterior predictive check indicating a good fit of MM-IRTree to the observed

data.

Classifications

As the next step, we examined the estimated class proportions and classifications. As

is seen in Table 5, the posterior class proportions suggest that 25% of respondents

used only ERS, 15% of respondents used only MRS, 48% of respondents used both

ERS and MRS, and 12% of respondents used neither ERS nor MRS as part of their

response strategy in addition to the substantive trait. Regarding the classifications of

respondents, 501 respondents were assigned to the ‘‘ERS only’’ class, 291

Table 4. DIC (Leftmost), pV (Middle), �D (Rightmost) for Single-Class IRTree Models and
MM-IRTree Model in the Empirical Example. The Row With the Smallest DIC is Given in Bold
Face.

Estimated Model DIC pV �D

ERS IRTree 91,699 4,407 87,292
MRS IRTree 96,375 4,827 91,548
2RS IRTree 92,116 6,882 85,234
0RS IRTree 96,070 2,349 93,720
MM-IRTree 87,919 8,250 79,668
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respondents were assigned to the ‘‘MRS only’’ class, 973 respondents were assigned

to the ‘‘2RS’’ class, and 235 respondents were assigned to the ‘‘0RS’’ class.

We also calculated the classification certainty, which is the average posterior class

probability across the members of a class. Overall, respondents were assigned to the

larger classes (‘‘ERS only,’’ ‘‘2RS’’) with a higher certainty than those who belong

to the smaller classes (‘‘MRS only,’’ ‘‘0RS’’). The observed difference in certainty

between larger and smaller classes can be attributed to the availability of information

for each class. Specifically, larger classes have more data points and provide greater

information about the characteristics of component members, which then results in

better recovery of structural parameters of a class and higher distinguishability of its

members from other classes.

Person Parameters

We were further interested in the extent to which the MM-IRTree and single-class

IRTrees differ in the estimated substantive trait scores. Therefore, we calculated

udifference as trait scores obtained by a single-class IRTree subtracted from the ones

obtained by MM-IRTree. Figure 7 shows that, compared to the MM-IRTree, all

single-class IRTree models estimated attachment anxiety scores larger for respon-

dents belonging to the ERS only, MRS only or 0RS classes and smaller for those who

belong to 2RS class. A possible reason for this finding is that in single-class IRTrees,

a single set of parameters was estimated with information from all classes as if they

were coming from a single class. In all single-class IRTrees, the difficulties of the dis-

agreement node for ERS only, MRS only, and 0RS classes are underestimated due to

the effects of the 2RS class (2RS class has the smallest bj0, see Figure S3). This

underestimation yields larger substantive trait scores estimated for these three classes,

resulting in negative udifference. For the 2RS class, the other three classes lead to over-

estimation of disagreement node’s difficulty, resulting in positive udifference.

Regarding the correlations between traits, we found a positive weak correlation

between attachment anxiety and ERS s12 = 0:12, 95% Credibility Intervalsð
(CI) 0:04, 0:20½ �Þ, a moderate positive correlation between attachment anxiety and

MRS s13 = 0:28, 95% CI 0:18, 0:38½ �ð Þ, and a strong negative correlation between

Table 5. Estimated Class Proportions (Posterior Standard Deviations), the Number of
Respondents Assigned to Each Class, and the Mean Posterior Standard Deviation of
Assignments in Each Class.

Classes p (PSD) Nz Certainty

ERS only 0.25 (0.01) 506 0.81
MRS only 0.17 (0.01) 333 0.74
2RS 0.48 (0.01) 986 0.86
0RS 0.10 (0.01) 175 0.75
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ERS and MRS s23 = � 0:46, 95% CI �0:55, � 0:37½ �ð Þ. Although there is no theory

or study that can explain the relationship between attachment styles and RSs, we can

speculate on a broad level. First, the weak to moderate correlations between the substan-

tive trait and RS provide suggestive evidence of discriminant validity and content irrele-

vancy of RS. Second, the correlation of MRS trait with attachment anxiety is stronger

than of the ERS trait. This could be explained by the fact that people with a higher level

of attachment anxiety tend to have lower self-esteem, and a lower self-esteem is related

with having low clarity in self-concepts (Campbell, 1990). Hence, respondents with

lower self-esteem might be using the middle category to provide an ambivalent

response. Third, as in the earlier studies (Khorramdel et al., 2017; Nestler et al., 2021;

Wetzel & Carstensen, 2017), the strong and negative correlation between ERS and

MRS in our study supports that ERS and MRS are distinct but correlated dimensions

rather than two ends of a single dimension.

Conclusion and Discussion

Respondents can use RS in their response strategies as a way of heuristic responding,

and thus alleviate the cost of responding (Krosnick, 1991; Krosnick et al., 1996;

Podsakoff et al., 2012). Applied or methodological studies dealing with RS usually

assume that respondents use all available RS (most commonly, ERS and MRS) in

their response strategy. However, respondents can exhibit both ERS and MRS when

there are at least five response options. Furthermore, they might choose between

ERS and MRS to incorporate them into their response strategy. They can use both

ERS and MRS at once, use only one of them, and use only the substantive trait to

respond. Such a decision can be determined by personality attributes, cognitive skills,

education level, motivation to participate, or situational factors.

Indeed, recent studies found evidence that respondents differ in what factors play

a role in their response strategies. However, these studies were limited in their scope,

such that the model suggested by Kim and Bolt (2021) can only be applied to 4-point

rating items and neither models MRS nor the heterogeneity regarding its use, and the

model suggested by Tijmstra and colleagues (2018) can be applied to only 5-point

rating items and neither models ERS nor the heterogeneity in its use. The mixture

IRTree model from Khorramdel and colleagues (2019) models both RS and hetero-

geneity in their use, but it does not allow the substantive trait to affect middle or

extreme categories along with the RS. Finally, although not a mixture model, Meiser

and colleagues’ (2019) model allows both the substantive trait and RS to play in

response strategies (i.e., 2RS IRTree). Nevertheless, it still assumes homogeneity of

response processes and may yield biased results in a population with heterogeneous

response processes (e.g., poor performance of 2RS IRTree in our simulation study).

Therefore, in this study, we proposed a mixture multidimensional IRTree model

that builds on and extends earlier models. The MM-IRTree approach allows us to

investigate whether there are subpopulations of respondents who use (1) only ERS,

(2) only MRS, (3) both ERS and MRS, and (4) no RS while the substantive trait
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consistently affects judgments of disagreement versus agreement, middle and

extreme categories for all respondents. The benefits that the MM-IRTree framework

offers are: first, it can work with 5-point items and can be extended to any number of

categories. Second, it examines the simultaneous heterogeneity in the sources of mid-

dle and extreme-category responses. Third, it offers RS-corrected substantive trait

scores, which incorporate individualized corrections depending on the RS set that

has affected the responses. Fourth, the trait estimates can be interpreted accurately

under any scale identification constraints. Fifth, the MM-IRTree provides reliable

estimates of item and person parameters for researchers interested in RS research,

research on the substantive trait, or scale development. Finally, the latent classes in

the MM-IRTree model represent theory-guided response processes as combinations

of person parameters in terms of probabilistic component models in a mixture distri-

bution framework. Therefore, the MM-IRTree framework can also be considered as

a hypothesis testing approach that tests whether all respondents indeed follow one

common cognitive process involving ERS and MRS as assumed by earlier IRT mod-

els (see ‘‘Introduction’’ section).

Our simulation study showed that DIC can be used for model selection since it

consistently favored the MM-IRTree model in the presence of a mixture population

and the correct single-class IRTree in the presence of a non-mixture population.

Regarding the recovery of parameters, the MM-IRTree model recovered class pro-

portions and class memberships almost perfectly and outperformed all single-class

IRTrees in the recovery of person and item parameters in the presence of a mixture

population model. When the population model was a non-mixture, then MM-IRTree

and single-class IRTrees performed equivalently. In summary, the MM-IRTree

model was proved to be sensitive to detect true heterogeneity in response strategies

and to be superior (or comparable when there is no heterogeneity) to traditional

single-class IRTree approaches in estimating latent traits and item parameters.

An empirical analysis revealed that the MM-IRTree fits the best to the ECR data

set, where 48% of respondents were estimated to belong to the ‘‘2RS’’ class, 25% to

belong to ‘‘ERS only,’’ 15% to belong to ‘‘MRS only,’’ and only 12% to belong to

‘‘0RS’’ classes. First, these results show that the majority of respondents (88%) use

at least one type of RS in their response strategy; therefore, ignoring the response

style effects at all (0RS IRTree) would be the worst route to take. However, even if

we were to fit a typical IRTree model containing both ERS and MRS traits (i.e., 2RS

IRTree) to correct for RS effects, we would neglect 52% of respondents who follow

different response strategies and, thus, obtain biased parameter estimates.

Previous studies investigating heterogeneity in RS reported that around 30% of

respondents used only the substantive trait for their responses (Kim & Bolt, 2021;

Tijmstra et al., 2018). A direct comparison of class proportions between different

studies is not appropriate as these studies involve different populations and tests.

However, we can still argue that the counterpart of ‘‘0RS’’ class in the earlier models

may absorb respondents from the unmodelled classes and overreport the proportion

who do not use any RS. Yet, a common conclusion from the current and earlier
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studies is that ignoring heterogeneity in response strategies has negative conse-

quences for our inferences about the substantive trait.

We are also aware that our study has some limitations. Our simulation design is

limited to one sample size (2,000) and one test length (20) condition. It would be

interesting to see if the MM-IRTree performs adequately with a smaller sample size

and fewer items, but given the complexity of the mixture model, we recommend

using sufficiently large samples and item sets. Because the MM-IRTree performed

well with 2,000 observations and 20 items, we are confident that it also works fine

with larger designs.

Another limitation is that we have only nine class proportions conditions. We

could have investigated even more specific cases, for example, where two out of four

classes were empty and other two classes each had 50% of respondents. However,

given that the MM-IRTree recovered class proportions with almost no bias in all

present conditions, we are confident that it performs well with different class propor-

tions that were not included in our study.

The last limitation to mention is that we have only ten replications per condition.

The reason for keeping the number of replications small is the duration of estimation

of our models. That is, even with a powerful computer, one replication that includes

the estimation of the MM-IRTree model and four single-class IRTrees plus post-

processing of results took around 10 hours. The computation time itself may be a

limiting factor for applied fields at present, but with the increasing accessibility of

high-speed computers, this limitation will diminish in the future.

In addition to accounting for our limitations, future research can further investigate

the heterogeneity in response strategies in several ways. First, it would be interesting

to examine predictors of class memberships. If researchers can show that class mem-

berships are predicted by some personality attributes or cognitive skills, we can better

understand the grounds of individual differences in RS compared to some existing

correlational studies.

Second, future research can investigate the consistency of response strategies over

time and item content. Earlier studies showed that the response strategies that people

use dynamically change throughout the questionnaire (Merhof & Meiser, 2023) and

across different psychological constructs (Wetzel et al., 2013). It would be interesting

to investigate with the MM-IRTree whether respondents differ in their response stra-

tegies across constructs (with a second-level latent class analysis as in Wetzel et al.,

2013) or over time (with an item-level mixture model as in Plieninger & Heck, 2018;

Tijmstra et al., in press).

Finally, we used respondents who have a complete response vector. However, it is

possible that some classes have different tendencies to skip items. For instance, the

‘‘2RS’’ class might be more inclined to skip items and alleviate the cognitive burden

to the extent that they have stronger heuristic tendencies (i.e., satisficing, Krosnick,

1991). This would create a missing not-at-random mechanism in full-information

maximum likelihood estimation (i.e., one-step estimation) or its Bayesian equiva-

lents, resulting in biased parameter estimates (Alagöz & Vermunt, 2022). Therefore,
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further research can investigate whether the tendency to provide missing responses

can be explained by class memberships.

In conclusion, our simulation study and empirical analysis showed that the MM-

IRTree model is a valuable extension of psychometric toolbox to analyze sources of

heterogeneity in response processes and to adjust trait measurements for biasing RS

effects after taking the heterogeneity into account. The MM-IRTree model’s capabil-

ities and benefits open new avenues for research and have the potential to contribute

to a wide range of disciplines and applications in the social sciences.
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Notes

1. The M-IRTree model can be set up in different ways. For instance, decisions can be spec-

ified as: ‘‘Agreement,’’ ‘‘Neutrality,’’ and ‘‘Extremity.’’ Then, the ‘‘Neutrality’’ node

would be nested in the ‘‘Agreement’’ node, and the ‘‘Extremity’’ node would remain dis-

tinct at the end. Such modifications would alter the node specifications. Therefore, com-

pared to the current tree structure, some parameters may have different estimates (e.g.,

inverted signs of the node difficulties). However, the meaning of the model as a whole

would remain identical.

2. v serves as a means of achieving parsimony and facilitating the interpretation of results.

This concept was first introduced by Meiser et al. (2019). They found that the impact of u

on the decision between relative (dis)agreement categories was weaker (around one-third)

than that on the disagreement vs. agreement decision.

3. In multidimensional 2PL models, having multiple discrimination parameters prevents us

from interpreting b parameters as difficulty parameters as in unidimensional 2PL IRT

models. In our model, these terms represent intercepts as in factor analysis models but

with a negative sign.

4. One can think that the 2RS IRTree model would adequately account for this kind of het-

erogeneity in response strategies by estimating RS trait scores as zero for those who do

not use it. However, such approximation to zero is only possible when a score of zero is

included in the scale identification constraints such as N(0,1). But then, a score of zero

would imply an average RS behavior, not a non-use of it. In fact, simulation results fur-

ther showed that 2RS IRTree did not estimate RS trait scores close to zero for those who

do not use them but rather systematically under- or overestimated them. Readers are

referred to supplementary materials for a thorough discussion.
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5. Our choices of correlations between traits are based on previous empirical findings.

Namely, ERS and MRS are negatively correlated with each other, whereas they can have

weak correlations with substantive traits (Khorramdel et al., 2017; Nestler et al., 2021;

Wetzel & Carstensen, 2017).

6. This choice is based on an empirical finding (Meiser et al., 2019).

7. There is a consistent finding across several studies that ERS has a large variance com-

pared to the MRS trait (Ames & Myers, 2021; Böckenholt & Meiser, 2017; Henninger &

Meiser, 2020b; Meiser et al., 2019). We aimed to imitate those findings, but since we

fixed the trait variances at one, we generated ERS factor loadings to be larger than MRS

factor loadings.

8. By generating class memberships in a deterministic way, we did not allow sampling var-

iation for them since there is only a small number of replications per condition.

9. The reason for limiting our simulation study to a fixed sample size and number of items

as well as generating 10 data sets per condition, is the estimation time of one condition.

The MM-IRTree model (~4 hours) and four single-class IRTree models (~6 hours),

including post-processing, took around 10 hours with a computer with the following

specifications: AMD Ryzen Threadripper 3970X 32-Core 64-threads Processor, 3.7 GHz

base clock, and 66 GiB System memory.

10. The fact that 2RS was never chosen over MM-IRTree even in the condition where the

‘‘2RS’’ was dominating yields another evidence that they are not equivalent models, and

that 2RS IRTree cannot account for this type of heterogeneity in response strategies.

11. Referring to footnote 5, this was another evidence proving that 2RS IRTree cannot ade-

quately account for heterogeneity in response strategies, as it fails to recover u scores

reliably.

12. The reason for using such a high number of MCMC chains is to deal with the between-

chains label-switching problem. The procedure we follow to deal with this problem is

explained in the Supplementary Materials.

13. In response to an anonymous reviewer, we also estimated a modified version of the MM-

IRTree, where none of the RS factor loadings were fixed at zero. Rather, we freely esti-

mated RS factor loadings in all classes and decided on the number of classes via model

selection. Results showed that, up to three classes, this modified MM-IRTree showed a

worse fit than confirmatory MM-IRTree, and with four and five classes, it had a compa-

rable fit with confirmatory MM-IRTree. Given the difficulties in interpretations, the con-

firmatory MM-IRTree was much more favorable. We do not discuss this modified model

further as it is not in the scope of this study.
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Alagöz, Ö. E. C., & Vermunt, J. K. (2022). Stepwise latent class analysis in the presence of

missing values on the class indicators. Structural Equation Modeling: A Multidisciplinary

Journal, 29(5), 784–790.

Ames, A. J., & Myers, A. J. (2021). Explaining variability in response style traits: A covariate-

adjusted IRTree. Educational and Psychological Measurement, 81(4), 756–780. https://doi.

org/10.1177/0013164420969780

Ashton, M. C., de Vries, R. E., & Lee, K. (2017). Trait variance and response style variance in

the scales of the personality inventory for DSM–5 (PID–5). Journal of Personality

Assessment, 99(2), 192–203. https://doi.org/10.1080/00223891.2016.1208210
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