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In recent years, large language models (LLMs) have been 
processing an ever-increasing amount of human- 
generated data. Neural models of language such as GloVe 
(Pennington et  al., 2014), BERT (Devlin et  al., 2019), 
GPT-2 (Radford et al., 2018), XLNet (Yang et al., 2019), 
RoBERTa (Y. Liu et al., 2019), BART (Lewis et al., 2019), 
or ChatGPT and GPT-3 (Brown et al., 2020) have come 
to play a transformative role in several applications of 
societal relevance. Various authors have referred to these 
models as “foundation models” (Bommasani et  al., 
2021; Ribeiro et al., 2020), highlighting that they pro-
vide a general-purpose foundation on which future 
computational systems will be built that can be fine-
tuned and adapted for many different application domains 
and tasks. Examples of such applications include 

automatically processing millions of résumés in recruiting 
processes (Kulkarni & Che, 2019), detecting toxic content 
in social media (Fortuna & Nunes, 2018), identifying  
fake news and misinformation (Dale, 2017), and creating 
chatbots for text-based human–computer interaction  
(Adiwardana et al., 2020). The increasing reliance on such 
artificial intelligence (AI) tools has also raised important 
concerns. One of these concerns is that LLMs, because 
they were trained on human-produced texts, may contain 
a variety of built-in biases, such as racial bias, gender 
bias, or extremist views. Such biases and views 
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Abstract
We illustrate how standard psychometric inventories originally designed for assessing noncognitive human traits can 
be repurposed as diagnostic tools to evaluate analogous traits in large language models (LLMs). We start from the 
assumption that LLMs, inadvertently yet inevitably, acquire psychological traits (metaphorically speaking) from the 
vast text corpora on which they are trained. Such corpora contain sediments of the personalities, values, beliefs, and 
biases of the countless human authors of these texts, which LLMs learn through a complex training process. The traits 
that LLMs acquire in such a way can potentially influence their behavior, that is, their outputs in downstream tasks and 
applications in which they are employed, which in turn may have real-world consequences for individuals and social 
groups. By eliciting LLMs’ responses to language-based psychometric inventories, we can bring their traits to light. 
Psychometric profiling enables researchers to study and compare LLMs in terms of noncognitive characteristics, thereby 
providing a window into the personalities, values, beliefs, and biases these models exhibit (or mimic). We discuss 
the history of similar ideas and outline possible psychometric approaches for LLMs. We demonstrate one promising 
approach, zero-shot classification, for several LLMs and psychometric inventories. We conclude by highlighting open 
challenges and future avenues of research for AI Psychometrics.
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may manifest in the models’ behavior (e.g., the text they 
generate), which in turn may adversely impact individuals 
and social groups when models are used for screening 
applicants during recruiting or admission processes, 
monitoring social media posts, powering chatbots and 
virtual assistants, or other applications.

But how can the potential biases and views ingrained 
in LLMs, and their characteristics more generally, be 
detected and ideally quantified in a principled fashion? 
A common way of identifying biases or, more generally, 
views (e.g., values, attitudes) held by humans is to 
conduct psychological assessments (Fiske & Pearson, 
1970; Watson, 1932; West & Finch, 1997). Traditionally, 
psychological assessments of humans have been the 
domain of psychometrics, a subdiscipline of psychology 
that concerns itself with the science of psychological 
measurement (Furr & Bacharach, 2014; Nunnally, 1994; 
Rust & Golombok, 2014). The main focus of psycho-
metrics, at its inception, has been the measurement of 
cognitive abilities (“intelligence”), an area that inspired 
the development of fundamental measurement theories, 
such as classical test theory or item response theory, 
and has resulted in a large number of standardized 
cognitive tests that are in wide use today. However, 
crucially for our present article, work in psychometrics 
over the past decades has produced a wider array of 
well-validated tests that enable the assessment of “non-
cognitive” constructs, such as personality traits, values, 
or attitudes. Although many different assessment for-
mats exist, most of the assessments in this domain are 
language based. That is, they consist of a series of items 
(i.e., questions or statements) that respondents answer 
by giving a rating on a standard response scale with 
verbal and/or numeric labels. We will summarily refer 
to such multi-item surveys of psychological character-
istics as “inventories” in the remainder of this article.

On the basis of these observations, we argue that 
psychometric inventories—similar to the way they are 
used to assess humans—can be used as diagnostic tools 
that provide a window into the “psychological” charac-
teristics, metaphorically speaking, of LLMs. Although 
we by no means aim to anthropomorphize artificial 
intelligence, we argue that LLMs can exhibit—or, more 
precisely, mimic—the very same psychological charac-
teristics that are typically studied in humans. This is 
due to LLMs being trained on vast corpora of human-
written text that routinely contain statements related 
to human values, attitudes, beliefs, and personality 
traits. Such models will inadvertently but inevitably 
acquire (“learn”) a set of psychological characteristics 
during the training process. These learned characteris-
tics will ultimately give a unique psychological profile 
to every such model that may differ from other models, 
not unlike the individual differences observed in 

humans. Akin to how the values, attitudes, and person-
ality traits of humans become manifest in their behavior 
(broadly conceived), the psychological profiles of an 
LLM may in turn manifest in the model’s “behavior.” In 
this context, speaking metaphorically, “behavior” means 
the models’ outputs in the wide variety of downstream 
tasks for which they may be used. Accordingly, we 
submit that it should be possible to assess these psy-
chological characteristics in LLMs through psychometric 
inventories (i.e., language-based assessments) originally 
developed for humans.

In a series of demonstrations, we provide various 
LLMs with questionnaire items from different invento-
ries as input and “ask” the models to choose an answer 
on the verbal rating scale as its output. The models’ 
responses open a lens through which to explore poten-
tial biases ingrained in LLMs in a principled, informa-
tion-rich, and scalable way. This approach of studying 
the characteristics of LLMs through psychometric inven-
tories may ultimately help to avoid the development of 
LLMs that induce harm when deployed in broader soci-
etal applications. We conclude our article by arguing 
that our investigations give new impetus to the inter-
disciplinary field of research that we would refer to as 
“AI psychometrics.” We propose that AI psychometrics 
should focus on tackling the manifold research oppor-
tunities and challenges that emerge when deploying 
psychometric inventories to LLMs.

A Very Brief History of Psychometrics 
and AI

The idea of applying psychometric assessments to AI 
was already discussed in the first decades after AI’s 
foundational period in the 1950s (Bringsjord, 2011). Pio-
neering work by Thomas G. Evans described a computer 
program that could solve a subtask of geometrical anal-
ogy reasoning that was part of an intelligence test bat-
tery from the 1940s (Evans, 1964). The idea was that a 
program that could eventually compete with humans in 
some part of actual tests of human intelligence could 
be considered intelligent too. This early attempt of link-
ing AI and psychometrics fell within the rather narrow 
bounds of the then-current “good old-fashioned artificial 
intelligence” (GOFAI) paradigm with the goal “to build 
useful computer systems, doing, or assisting with, tasks 
that humans want done” (Boden, 2014, p. 89). Similar 
approaches were also proposed by other foundational 
figures of AI, such as Allen Newell. Newell (1973) 
described the need to consolidate the disparate experi-
mental results in (cognitive) psychology of his times 
into one body of knowledge in AI to progress. Among 
the three possible ways to achieve this that Newell out-
lined, the approach he apparently preferred was 
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psychometric: “A . . . mold for such a task is to construct 
a single program that would take a standard intelligence 
test, say the WAIS [Wechsler Adult Intelligence Scale] or 
the Stanford-Binet” (Newell, 1973, p. 305).

However, despite their merits, these early attempts 
conceived psychometrics mainly in terms of cognitive 
tests and intelligence with a focus on performance 
assessment. This was fully in line with the general focus 
in the field of AI on cognitive tasks such as planning 
and problem-solving at the time. A popular early criti-
cism then concerned the inability of AI to operate out-
side this realm of “cold cognition,” that is, displaying 
“inhumane” intelligence with no emotional basis and 
lacking the motivational complexity of thought (Neisser, 
1963). In response to such criticism, Herbert Simon 
(1963) showed that “hot cognition” concepts, such as 
emotional behavior, could be integrated in the suppos-
edly cold models. Of course, fully understandably 
because of the types of models available at the time, 
the integration of such hot cognition concepts remained 
at a very basic level of introducing emotions as “inter-
rupt systems” affecting program control, changing the 
goals to orientate to and introducing responses.

In the early 2000s, “psychometric AI” was discussed 
explicitly as providing an answer to the old question, 
“What is AI?”:

Psychometric Al is the field devoted to building 
information-processing entities capable of at least 
solid performance on all established, validated 
tests of intelligence and mental ability, a class of 
tests that includes not just the rather restrictive IQ 
tests, but also tests of artistic and literary creativ-
ity, mechanical ability, and so on. (Bringsjord & 
Schimanski, 2003, p. 889)

The Rise of Large Language Models

AI has evolved dramatically in the 60 years that have 
passed since the first attempts of linking psychometrics 
to AI that focused on cognitive tasks. Even when com-
pared with the early 2000s, progress has been remark-
able, indicating a qualitative shift in the capabilities of 
AI. To understand this change, it is important to note 
that the field of natural language processing has under-
gone a radical transformation around the years from 
2017 to 2018 with the advent of transformer architec-
tures as an integral part of novel LLMs. Whereas it is 
an open discussion whether those emerging new archi-
tectures really began to “understand” language better 
(Mitchell & Krakauer, 2023), they nonetheless showed 
drastically increased performance on a wide variety  
of traditional and novel tasks, such as automated trans-
lation of text, text summarization, and detection of 

textual entailment. Various metrics, such as precision, 
recall, or BLEU scores (Papineni et al., 2001) computed 
using “benchmark” test suites consisting of different 
language-related subtasks on canonical data sets, pro-
vide evidence of that progress. Although such 
approaches can naturally be concerned only with some 
more or less isolated aspects of natural language and 
may therefore appear fragmented or stylized, we should 
refrain from downplaying advances that have been 
made (S. Bowman, 2022) and from making unfair com-
parisons (Firestone, 2020). In fact, recent model devel-
opments have advanced the state of the art of natural 
language understanding and generation so significantly 
that human-like performance was reached on bench-
marks, such as GLUE (Wang et al., 2018), that include 
tasks judging English acceptability or establishing 
whether pairs of questions are semantically equivalent. 
This led to the development of supposedly much harder 
benchmarks, such as SuperGLUE (Wang et al., 2020), 
that have been broken quickly nonetheless.

These recent developments highlight that LLMs have 
reached a stage at which they can reach human-like 
performance on many different tasks assessing language 
understanding and generation capabilities. Crucially, 
these enhanced capabilities of LLMs also comprise the 
ability to engage in hot cognition and to exhibit (or, 
more precisely, mimic) human-like characteristics and 
behaviors beyond the purely cognitive realm. Although 
the traditional focus of testing AI on cognitive tasks has 
also resurfaced in recent approaches to subject LLMs to 
standard cognitive tests (e.g., Binz & Schulz, 2022), LLMs 
are capable of much more than the cold cognition 
required by these cognitive tests. Simple affective mech-
anisms do not have to be explicitly introduced into the 
model architectures in the way in which early propo-
nents such as Herbert Simon envisioned. Instead, mod-
els trained on large amounts of text in a self-supervised 
way can exhibit rich psychological traits that so far have 
been studied only in the human realm. Potentially, such 
noncognitive traits could become important if LLMs and 
solutions built on them are going to be employed in 
contexts in which they perform tasks and make deci-
sions that have real-world consequences for individuals 
and social groups. Their traits, inadvertently but inevi-
tably acquired during the models’ training with text 
generated by humans, are likely to influence the “behav-
ior” (i.e., output) of these very models.

Opportunities for Psychometric Assessment

The unprecedented capabilities of LLMs open up an 
opportunity for a more inclusive approach to AI psy-
chometrics, one that spans the full spectrum of socially 
relevant traits, including noncognitive traits such as 
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personality, values, morality, and attitudes. We argue for 
the need of further empirical studies of not only the 
cognitive (Binz & Schulz, 2022) but also these noncogni-
tive characteristics of LLMs and to establish how they 
relate to behavior and decisions of LLMs in downstream 
tasks, a goal that is echoed in the related research pro-
gram of “machine behavior” (Rahwan et al., 2019). As we 
demonstrate, with language and text as the shared foun-
dation of both psychometric inventories and LLMs, we 
can leverage existing survey instruments to learn about 
the hidden values, attitudes, and beliefs that are encoded 
in these models. Such research will result in a more 
complete understanding of the characteristics and poten-
tial biases built into these foundation models (Simon, 
2019). In the present article, we aim to pave the way for 
such an expanded approach to AI psychometrics.

We see several possible approaches to assess the 
psychological profiles of LLMs through psychometric 
inventories. These approaches differ mainly in how 
they elicit the models’ responses to the questionnaire 
items. We describe these approaches as masked- 
language prediction, next-word prediction, and zero-
shot classification. Although all approaches are viable 
in principle, in the section Methods for Model Assess-
ments in the appendix, we explain why our focus will 
subsequently be on zero-shot classification for our 
empirical demonstrations.

Demonstrations of AI Psychometrics

Figure 1 illustrates the zero-shot classification approach 
we will use in the subsequent demonstrations using a 
widely used personality inventory as a case in point: 
the 44-item Big Five Inventory (BFI), available in Eng-
lish and German ( John et al., 2008; Rammstedt, 1997). 
As (nonhuman) respondents, several LLM architectures 
were chosen, shown in Table A1, that follow the blue-
print laid out by the original BERT model class (Devlin 
et al., 2019), such as RoBERTa (Y. Liu et al., 2019) and 
DeBERTa (He et al., 2021). We do not include GPT-3, 
GPT-4, or ChatGPT in our present demonstrations 
because, as generative models, they are prone to the 
issues that we describe in the subsubsection Next-Word 
Prediction, such as stochastic outputs and sensitivity to 
the order of input examples. As explained before, these 
issues are circumvented by our proposed assessment 
scenario using a natural language inference (NLI) 
approach that we use to analyze a diverse set of open-
sourced models. Another reason to exclude GPT-3 (and 
similar models with limited access only) is the lack of 
transparency arising from the fact that the model is not 
fully, locally accessible to us. Sanitization of outputs 
may happen behind the scenes without documentation, 
making it hard for researchers to know which version 

of the model they are analyzing. In the interest of open 
science, with our approach we are able to provide materi-
als (see the repository linked in Open Practices) that 
allow the scientific community to fully replicate our anal-
yses on the exact same models that we used without 
having to pay for access to potentially different models 
available only through an application programming inter-
face (API) or a web interface. We do not analyze any of 
the GPT models directly, but we do include the openly 
available BART model (Lewis et al., 2019) that incorpo-
rates elements of both GPT and BERT architectures.

For a detailed description of the process used to 
elicit responses to questionnaire items from the models, 
see the section Example of Our Approach in the 
appendix.

Assessing personality

What kind of “personalities” do the AI models have? Do 
they exhibit a socially desirable profile—or do they 
possess characteristics that are commonly viewed as 
undesirable or even problematic? To approach this 
question, we first assess global personality in terms of 
the Big Five personality dimensions by use of the BFI 
( John et al., 2008). The BFI assesses the Big Five dimen-
sions (openness, conscientiousness, extraversion, 
agreeableness, and neuroticism) with 44 items that are 
each to be rated on a 5-point scale ranging from dis-
agree strongly to agree strongly.

Additionally, we assessed undesirable and offensive 
(though not necessarily pathological and relatively 
widespread in human populations) personality traits 
delineated by the dark tetrad. The dark tetrad consists 
of the traits Machiavellianism (i.e., manipulative inter-
personal behaviors), narcissism (i.e., excessive self-
love), psychopathy (i.e., lack of empathy), and sadism 
(i.e., intrinsic pleasure in hurting others). We employ 
the Short Dark Tetrad questionnaire (Paulhus et  al., 
2021), which assesses these four traits with 28 items 
(seven per trait) that are answered on a 5-point scale 
ranging from disagree strongly to agree strongly.

Results for the Big Five are displayed in Figure 2 for 
the English (panel A) and for the German language 
models (panel B). The emerging personality profiles 
for the six English language models are surprisingly 
homogeneous. All models score more or less equally 
high on agreeableness and extraversion and low on 
neuroticism. Slight differences are observable for con-
scientiousness and especially openness. Whereas the 
second model (DistilRoBERTa) scores higher on open-
ness, the last model (DistilBART) reports comparatively 
low scores on conscientiousness. Within the three mod-
els using the German version of the BFI44 (including 
an additional item for agreeableness; Rammstedt, 1997), 
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Test Items 

I see myself as someone
who is outgoing, sociable.

I see myself as someone
who has an active imagination.

Conscientousness

Extraversion

Agreeableness

Openness

Neuroticism
I see myself as someone
who gets nervous easily.

I see myself as someone
who does a thorough job.

I see myself as someone
who is generally trusting.

Aggregation
into scales

O C E A N

Possible Responses

Disagree strongly, Disagree a little,
Neither agree nor disagree, Agree

a little, Agree strongly

Example

I see myself as
someone who does
a thorough job.

P(disagree strongly) = 0.13

P(disagree a little) = 0.15

P(neither agree nor disagree) = 0.32

P(agree strongly) = 0.12

P(agree a little) = 0.28

Psychometric Assessment
Openness
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Extraversion
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Fig. 1. Illustration: How psychometric assessments could be adapted to large language models. Taking items and responses from the Big 
Five Inventory (BFI) as examples, we show the steps of one possible assessment scheme. We present the model one by one with each of 
the survey items and the possible responses. We retrieve the model’s distribution of probability scores over responses (panel “Example”). 
Scores are aggregated into scales that can be visualized and used for further analyses. This figure illustrates the workflow of one possible 
way to psychometrically assess large language models.

we see more pronounced differences among the mod-
els: Whereas XLMRoBERTa’s and GBERT’s profiles are 
high on openness, extraversion, and conscientiousness, 
DeBERTa scores high only on conscientiousness. Inter-
esting is the comparison within models across lan-
guages. Whereas the English version of XLMRoBERTa 
scores higher on agreeableness compared with its Ger-
man counterpart, for multilingualDeBERTa, the English 
version also scores higher on agreeableness but also 
on openness and extraversion than the German version. 
Such a comparison—especially if also conducted on 
the level of single items—can also be useful from a 
methodological point of view: Systematic differences 
across language versions could be seen as a first indica-
tion for biases caused by the translation of items or by 
systematic differences in the model-training data 
between languages.

Overall, the Big Five profiles appear characteristic 
of a relatively balanced and well-adapted personality 
(low neuroticism; high conscientiousness, agreeable-
ness, and extraversion). They yield little indication that 
any of the models possess an extreme, accentuated 
personality. A more direct assessment of a potential 

“dark side” of these models’ personalities, however, is 
offered by the models’ scores on the dark tetrad. These 
results are shown in Figure A1 in the appendix. Again, 
the results do not suggest unexpected personality pro-
files. Most models score low (between 2 and 3 on the 
5-point-scale) on all four dark traits. Only a few excep-
tions stand out, such as the high narcissism scores of 
DistilRoBERTa and BART. Overall, the models we study 
here generally do not score highly on socially undesir-
able, potentially problematic traits. Contrariwise, they 
score well within the range observed in normal human 
populations, where the dark traits are roughly normally 
distributed around the scale’s midpoint (Paulhus et al., 
2021).

Assessing value orientations

Next to personality traits, value orientations are another 
central aspect of a person’s psychological makeup. Val-
ues are beliefs about desirable end states or modes of 
conduct that vary in importance, transcend specific situ-
ations, and guide the selection or evaluation of behav-
ior, people, and events (Schwartz, 1992). Whereas Big 
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Fig. 2. Assessing personality via the 44-item version of the Big Five Inventory for different models. Panel A shows the English and panel 
B the translated German version version of the questionnaire. Using multilingual models enables us to study cross-lingual (and potentially 
cross-cultural) differences of model scores and survey items. Model results generally show no surprising outliers and overall balanced per-
sonality profiles.
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Five traits describe dispositional behavioral tendencies 
(i.e., how the person typically acts), value orientations 
describe dispositional evaluative tendencies (i.e., what 
the person cherishes or finds important in life). The most 
prominent and best-validated (including cross-culturally) 
model of human values is Schwartz’s (1992) theory of 
basic human values. This theory distinguishes 10 basic 
human values (or, in its refined version, 19; Schwartz 
et al., 2012) that emerge with great regularity in samples 
of human respondents from across the globe. We used 
the recent 57-item Revised Portrait Values Questionnaire 
(PVQ-RR; Schwartz & Cieciuch, 2022) to assess these 
basic values. This inventory relies on a portrait format 
in which each item consists of a statement describing a 
person in terms of their values (e.g., “Thinking up new 
ideas and being creative is important to her”). Respon-
dents indicate how similar they are to the person 
described in the statement on a 6-point scale ranging 
from 1 = not like me at all to 6 = very much like me.

Using this inventory opened a window into the values 
espoused by the six English language models. Because 
the PVQ-RR comes in a male version (containing the 

pronouns “he” and “him”) and a female version (contain-
ing the pronouns “she” and “her”), it also enables us to 
establish differences in the models’ scoring across the 
two gender versions. Differences in what response the 
models think is entailed by each item depending on what 
gender pronouns the questionnaire uses can be taken 
to indicate gender bias in these models.

Figure 3 shows results for the 10 values. From the 
visual pattern, one can immediately see that most models 
score low on most dimensions, meaning that they 
assigned higher probabilities to the lower ends of the 
response scale. For multilingualDeBERTa and to some 
extent BART, we observe little differentiation between 
the 10 values. The other models show more differentia-
tion, attaching a lower importance to some values and 
higher importance to others. For example, DistilROBERTa 
scores relatively low in all values except hedonism and 
stimulation as well as, to some extent, benevolence. 
DeBERTa scores high in achievement.

There are indeed some indications for built-in gender 
bias for some of the models, although the score differ-
ences for the two gender versions of PVQ-RR mostly 
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Fig. 3. Assessing value orientation via the revised Portrait Value Questionnaire (PVQ-RR). Radar charts show results for the questionnaire 
version with male (pastel blue) and female pronouns (reddish orange) with otherwise identical items. Purple-gray areas correspond to 
agreement between the two gendered versions. The slight differences visible (areas in either one of the two colors) point to the existence 
of gender biases of the models.
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appear small. The largest difference we observe is the 
“male” achievement score of DeBERTa, which is notice-
ably higher than the “female” score on the same value.

Assessing moral norms

Can LLMs also reflect moral beliefs and norms that they 
absorbed from text during training? Various studies 
have already explored this question. For example, early 
work on this subject computed distances of vector rep-
resentations between statements and moral concepts 
on an atomic level ( Jentzsch et al., 2019). The prolifera-
tion of more capable language models has enabled 
more sophisticated ways of exploring this issue, such 
as directly asking the models moral questions (“Should 
I kill people?” “Is it allowed to murder people?” with 
simple answer templates of “Yes [no], I should [not]”; 
Schramowski et  al., 2019, 2022). Compared with our 
approach, which uses established psychometric inven-
tories, this more ad hoc approach is somewhat less 
standardized and systematic.

In our demonstration, we illustrate the direct appli-
cation of the established Moral Foundations Question-
naire (Graham et al., 2009, 2013; Haidt, 2007) to various 

models. Figure 4 contrasts reported moral beliefs from 
average, politically moderate Americans (Graham et al., 
2011) with model scores. Across different models, we 
can observe that models put stronger emphasis on 
moral norms such as authority-respect, in-group-loyalty, 
and purity-sanctity than the human reference group 
did. Interestingly, the moral norms that are stressed 
more by the models are usually associated with indi-
viduals holding conservative political views. This sug-
gests that there might be significant differences across 
various dimensions between the moral beliefs held by 
people and the moral beliefs absorbed by language 
models from large corpora. Corroborating or refuting 
such initial observations in future endeavors should be 
an important and critical concern for researchers aiming 
to design responsible AI systems.

Assessing beliefs about gender

Previous research found gender bias in algorithmically 
curated online environments (Vlasceanu & Amodio, 
2022) and specifically also in LLMs (Caliskan et  al., 
2017), which indicates that there is a need for monitor-
ing such encoded gender and sex diversity beliefs. 
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American’s scores (red) as reported by the developers of the questionnaire (Graham et al., 2011). The models (yellow) usually deviate in 
the direction of putting more emphasis on those moral foundations that are associated with conservative political orientations.
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Typically, researchers assume the gender-binary frame-
work, which suggests that humans comprise only two 
types of beings, men and women. This framework has 
been challenged by both academic research and social 
activism (Hyde et al., 2019). To address this issue, social 
scientists have developed novel instruments to measure 
beliefs about the ontology of gender and sex. Assessing 
those beliefs is important because prejudice against or 
affirmation of gender and sex minorities (i.e., transgen-
der, nonbinary, and gender or sex diverse) is often 
framed in terms of beliefs about the ontology of gender 
and sex or about gender and sex diversity.

We use the recently developed Gender/Sex Diversity 
Beliefs Scale (GSDB; Schudson & van Anders, 2022) to 
measure the biases and prejudices against sex and gen-
der minorities that are encoded in LLMs. The scale 
consists of five factors. Items that recognize the exis-
tence of gender and sex diversity loaded positively on 
affirmation. Those associated with denying gender and 

sex diversity loaded negatively. Gender normativity is 
composed of items about the importance of femininity 
for women and masculinity for men and the inauthen-
ticity of non-normative gender expressions (e.g., femi-
ninity among men). Uniformity contains items that 
stress that people of the same gender or sex are similar 
to each other. Items that describe genital surgery as a 
necessary precondition for a person to “truly” transition 
genders or sexes load on surgery. Upbringing collects 
items about the role of upbringing and early experi-
ences in determining gender or sex.

All factors except upbringing are associated with 
feelings toward gender and sex minorities that were 
either negative (gender normativity, uniformity, sur-
gery) or positive (affirmation). Our results (Fig. 5) show 
that all language models have two things in common: 
(a) an emphasis on uniformity (i.e., people of the same 
sex or gender are similar) and (b) lack of affirmation, 
that is, they do not reveal strong positive feelings 
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Fig. 5. Assessing beliefs about gender via the Gender/Sex Diversity Beliefs Scale (GSDB). The models display uniform views of people 
of the same gender or sex and little affirmation of diversity. This points to potential issues of the models to take nontraditional aspects of 
gender and sex adequately into account.
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toward gender and sex minorities (e.g., language mod-
els tend to disagree with statements such as “There are 
many different gender identities people can have” or 
“Nonbinary gender identities are valid”).

Open Challenges and Conclusions

Our demonstrations highlight the feasibility of using 
psychometric inventories as a window through which 
to study the characteristics of LLMs as well as to identify 
and monitor differences between various models. At 
the same time, our approach is only one of many dif-
ferent ways in which research in AI psychometrics can 
be pursued. Without any claim of completeness, we 
now want to discuss a number of future research chal-
lenges that we deem important.

Reliability and validity of 
psychometric assessments of AI

We see a wide field of open methodological and ethical 
questions and challenges related to psychometric 
assessments of LLMs. A continued effort to probe the 
validity and reliability of reusing human psychometric 
assessments in the domain of AI is necessary. As an 
example, current models have been claimed to display 
results in theory-of-mind (TOM) tasks that are compa-
rable to the performance of elementary school children 
(Kosinski, 2023). Problems have quickly been reported 
with those findings, as small variations that keep TOM 
principles intact make the results disappear (Ullman, 
2023). Another important, general question concerns 
self-consistency of LLMs. So far, from our demonstra-
tions we can provide only partial answers: We do not 
provide the model with explicit information about the 
ranked order of possible responses. However, it seems 
that the models establish this property implicitly on 
their own, judging from the example distributions over 
items shown in the lower part of Figure 1 (the data are 
available for all models under consideration in our rep-
lication materials; see Open Practices). This emerging 
feature can be be seen as first evidence that the models 
do not display an obvious lack of self-consistency: They 
are at least consistent in the sense that there is no obvi-
ous bimodality observed in the probability distribu-
tions, as, for example, high values for both extremes 
of the scales—totally agree and totally disagree—as 
equally likely would indicate. We want to note here 
that this issue should definitely be further investigated 
in future research. Adversarial testing that highlighted 
such inconsistencies in other domains (Camburu et al., 
2020) could help us to make our approach more robust. 
From a more high-level perspective, we could also use 
different, but related, questionnaires and compare if 

model responses follow a similar pattern, for example, 
for the Genderism and Transphobia Scale (Hill &  
Willoughby, 2005) and the Gender Role Attitudes Scale 
(García-Cueto et al., 2015).

Stability of psychometric profiles

Future research can tackle many interesting and creative 
research questions, such as the following: Does text 
scraped from specific parts of the Internet lead to spe-
cific characteristics of models trained on that text (e.g., 
from special communities on Reddit or 4chan)? Do mod-
els trained on books or movie plots preferred by certain 
personality types develop similar traits? Does the acci-
dental filtering of text from and about sexual-minority 
groups in large pretraining corpora influence the diver-
sity conceptions of LLMs (Dodge et al., 2021)? Research 
projects that tackle these questions produce insights on 
an important general question: To what extent do mod-
els absorb (psychometric) aspects of their underlying 
training data? To systematically study the role of data in 
isolation, we can compare model series featuring the 
exact same architectures and the exact same training 
parameters and differing only in regularly updated train-
ing corpora (Loureiro et al., 2022).

Engineering psychometric properties 
of AI

Assuming that psychometric assessments of LLMs can 
be done in a valid and robust manner, it may be feasible 
to deliberately manipulate the personality traits, values, 
and attitudes that LLMs exhibit. Doing so may help to 
change the behavior of models in a desired fashion 
(e.g., reducing bias or dark traits). It may also open up 
new opportunities for research: Conducting in silico 
experiments may create a safe experimental space for 
exploring novel psychological research questions that 
could not have been addressed previously because of 
ethical and other concerns. We saw that using language 
models to simulate subpopulations with certain demo-
graphics seems possible (Argyle et al., 2023). Such a 
synthetic sampling approach can also be used to study 
phenomena on the level of individuals as in psycho-
metrics. We can potentially apply those quick and 
cheap methods on the full range from pretests to full 
and deep investigation of hypotheses.

Multimodal psychometric assessments 
of AI

Although we focused here on psychometric assess-
ments of LLMs through language-based inventories, 
similar ideas are applicable to other modalities. In the 
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visual domain, we can imagine a Rorschach-like test 
scenario of image creation to investigate, for example, 
which colors map to which feelings and other abstract 
concepts for these models, thereby potentially revealing 
cultural norms. Sound and video generation may offer 
additional glimpses into inner workings of models. In 
the future, we may be able to easily combine those 
ways to assess psychometric properties of more gen-
eral, multimodal AI systems.

Lifelong monitoring of psychometric 
properties of AI

Although we want to refrain from attributing human-
like capabilities and traits to AI technologies and to talk 
about AI in anthropomorphic terms, we want to high-
light the need to further develop monitoring tools and 
test suites to support the lifelong monitoring of AI tools 
and to shed light on their imperfections, biases, and 
harmful consequences. For that endeavor, having unre-
stricted access to local, “frozen” versions of models to 
do full inspections of them is a necessary condition. 
Researchers have noticed examples of apparent “sani-
tization” or other corrections of model text outputs 
happening behind the scenes to models available only 
through APIs or web interfaces (Rozado, 2023). In the 
interest of transparent documentation, it is important 
to know which exact version of the model we are ana-
lyzing. This issue can be expected to play an even 
bigger role in the future, especially so with the prolif-
eration of approaches that let models directly adapt to 
humans, for example, by reinforcement learning from 
human feedback (Ziegler et al., 2020).

Consequences of psychometric profiles 
of AI

One current limitation of our demonstrations concerns 
the question of practical relevance: More empirical 
research is needed to establish how precisely certain 
traits of AI models influence their behavior in down-
stream tasks. These future research endeavors could 
analyze models that are able to use external tools such 
as APIs and search engines (Schick et al., 2023). Psy-
chological profiles could potentially be an explanatory 
factor of a specific choice between those tools that a 
model has access to. The choice of querying unreliable 
sources of information, for example, could depend on 
whether the model displays risk-averse traits or not, 
especially in nuanced contexts where it is not easy or 
even possible to give a right or wrong answer. Also in 
robotics, researchers make use of LLMs (Huang et al., 
2022; Li et al., 2022). Here in particular, behavior often 
involves planning and directly acting in the real world, 

which makes monitoring potentially harmful model 
features especially important. Known examples of 
undesired model behaviors have so far been uncovered 
using rather simple pipelines that rely on mask filling 
or text generation using curated templates (Gehman 
et al., 2020; Liang et al., 2022; Nangia et al., 2020). The 
proposed text choices by the models are usually judged 
by criteria such as being hurtful or stereotypical (Abid 
et  al., 2021; Nozza et  al., 2021, 2022). The problems 
arising from the ad hoc quality of many of such tests 
have been pointed out (Blodgett et  al., 2021). As a 
future complementary perspective, we can enrich those 
approaches more and more by integrating knowledge 
from the social sciences in general and from psycho-
metrics specifically. As we have shown, we can adapt 
existing methods from those domains in a rather 
straightforward way.

The ongoing (and continuing) trend of language 
models to underpin ever larger parts of technology will 
likely make them play a more and more important role 
in our future daily lives. In our view, the research com-
munity should clearly make use of the opportunity to 
describe various psychological aspects of models via 
rich psychometric profiles. This offers an exciting and 
valuable avenue for future research to adapt well-estab-
lished methods from human psychometrics and study 
the relationship of such assessments to all kinds of 
other phenomena (like decision-making or other impor-
tant behavior of AI). In the future, we may be able to 
uncover more and more relationships and to offer 
robust assessments of the real-world consequences of 
psychometric traits of AI.

Conclusions

We demonstrated how standard psychometric invento-
ries that were developed to assess “noncognitive” psy-
chological characteristics in humans, such as personality, 
values, morality, or beliefs, can be repurposed as diag-
nostic tools to assess analogous characteristics in LLMs. 
Similar to how human respondents fill in a question-
naire, LLMs respond to questionnaire items by returning 
a probability of entailment for each verbally labeled 
response option through zero-shot classification. These 
responses are then aggregated to scale scores using 
standard scoring rules of the inventories to obtain the 
levels of the model on each given trait (e.g., low 
agreeableness).

In doing so, we built on a rich history of research 
linking psychometrics and AI, which has mainly focused 
on cognitive assessments. By contrast, the inventories 
employed in our demonstration capture noncognitive 
characteristics that the LLMs inadvertently but inevitably 
acquire from the vast text corpora on which these 
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models were trained. Sedimented in these texts are the 
beliefs, values, personalities, and biases of the innumer-
able and diverse human authors who produced these 
texts. The way in which the models acquire such traits 
from texts is complex, opaque, and poorly understood 
so far; yet it is clear that this learning process is chan-
neled and constrained by the models’ neural architec-
ture and subject to various deliberate and nondeliberate 
human interventions that may influence these traits 
(e.g., the selection and curation of the text corpus, 
purification steps, potential fine-tuning on annotated 
text). There are some obvious parallels to how humans 
acquire psychological traits through their ongoing inter-
actions with the social and physical world, channeled 
and constrained by their nervous system and subject to 
deliberate and nondeliberate human interventions (e.g., 
education and discipline).

The analogy to human psychometrics is thus quite 
far-reaching and intriguing. At the same time, it is impor-
tant not to overstretch the analogy and to be mindful 
that the foregoing description is mostly metaphorical. 
One must not fall into the trap of anthropomorphizing 
AI models that are mere prediction machines. Different 
from humans, the traits that LLMs exhibit are purely 
based on language and thus far more narrow than the 
rich mental world of humans, which is linked to their 
complex physiology and embedded in multilayered 
physical contexts, just as the range of behaviors that 
these models can perform is quite limited. At the same 
time, the traits and attendant behaviors of LLMs can still 
be quite consequential for actual individuals and social 
groups if the models are deployed in real-world applica-
tions such as the ones described at the outset.

It is equally important to realize that several of the 
aforementioned assumptions are so far untested. As we 
highlighted, there are many open questions—both con-
ceptual and technical in nature—that have yet to be 
resolved. Still, we believe that our demonstrations clearly 
highlight the novel potentials of the interdisciplinary 
field of research on the intersection of disciplines such 
as psychology, linguistics, and computer science, which 
we refer to as “AI psychometrics.” This area offers a wide 
variety of research questions and several directions to 
explore that we consider important not only for future 
research but also because of the far-reaching social and 
economic implications of AI that are only going to 
become more pronounced in the coming years.

Appendix

Methods for model assessments

Masked-language prediction. The first possibility is 
to make use of masked language modeling (MLM), which 

is the common way of training large language models in 
the BERT tradition. To create large language models from 
scratch (i.e., to pretrain empty model architectures), 
researchers gather large corpora of text from the Internet 
(Gao et al., 2020; Ortiz Su’arez et al., 2019, 2020). They 
then feed those texts to the model, removing (i.e., “mask-
ing”) one token (which roughly corresponds to a word) 
from a sequence of text at a time and asking the model 
to predict that token. The training objective for the model 
consists of learning to predict the right token over many 
iterations. On each iteration, mechanisms are operating 
to numerically assess how correctly the model chose a 
possible token and to revise its weights in case it did not 
choose the correct one from the original, unmasked 
sequence. This schematic sketch illustrates that the train-
ing procedure is so far unsupervised (also called “self-
supervised”) because it does not involve any step in 
which the models receives human-annotated (super-
vised) training data. This step usually follows later in the 
so-called fine-tuning phase, in which a pretrained model 
is presented with data, such as comments from social 
media labeled by humans for toxicity, to enable the 
model to learn how to classify these data. For psycho-
metric assessments of large language models, we do not 
necessarily need to fine-tune these models. We could 
already use the unsupervised pretrained, so-called base 
models and present them with sequences such as “I am 
[MASK]” and “I am not [MASK]” to compare the probabili-
ties that the models assign to informative tokens in place 
of [MASK]. For diagnostic purposes, we could choose a 
list of polar adjective pairs (Mathew et al., 2020; Osgood, 
1971; Osgood et  al., 1957), such as “careful-careless,” 
that map to psychometric categories of interest (e.g., 
conscientiousness). The resulting set of probabilities 
(one per adjective) could then be aggregated to psycho-
logical trait scores.

Next-word prediction. Another way to train large lan-
guage models that is used, for example, by the GPT 
architectures, is trying to predict the next word after a 
sequence. Similar to the setup using MLM, we could pres-
ent a model that was trained that way with the sequence 
“I am” and “I am not” and ask it to output the probability 
of choosing certain trait adjectives as the next tokens. 
Those model types are called generative because they 
are able to create free-form text sequences. This feature 
could also be directly used in psychometric question-
naires that allow for free-text answering. The scoring of 
free text is costly, however, as it involves more degrees of 
freedom and the need for evaluation frameworks (e.g., 
dictionaries containing trait-related words) to systemati-
cally translate answers to numerical scores. The ability of 
generative models to continue to produce arbitrary 
sequences of text after they were provided with some 
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initial text creates several problems. First, the initial text 
with which the model is presented, the so-called prompt, 
has to be carefully chosen. A whole new discipline of 
prompt engineering has sprung from the challenge to 
prompt GPT-type models, as even small variations in the 
prompts can have substantial and often hard-to-predict 
effects (P. Liu et al., 2023) on the output the model gener-
ates. Second, even when prompts are carefully crafted, 
the model can (and is expected to) generate different 
texts in each model run. This element of stochasticity 
requires collecting model outputs over many iterations 
and averaging over them. Stochasticity also implies that 
the model may produce nonsensical or format-incompat-
ible answers in some runs. Third, the model usually has 
to be provided with some examples to know what out-
put format it is expected to return. Research has shown 
that even changing the order in the set of examples can 
influence model outputs (Lu et al., 2022).

Zero-shot classification. Yet another approach is 
zero-shot classification, which relies on pretrained mod-
els that have been fine-tuned on NLI text corpora (R. S. 
Bowman et  al., 2015; Conneau et  al., 2018; Nie et  al., 
2020; Williams et  al., 2018). These corpora consist of 
pairs of statements that are labeled according to whether 
they show entailment, contradiction, or neutrality 
between the first and the second statement. Learning log-
ical relations of textual entailment between statements in 
this manner enables models to produce meaningful, 
often surprising results in other, seemingly disparate 
domains to which these models were never explicitly 
introduced. The name “zero-shot” emphasizes the con-
trast with other approaches that are usually called “few-
shot” classification, in which the model is presented with 
a number of labeled examples for guidance. Different 
from few-shot classification, models fine-tuned on NLI 
corpora are able to classify sequences into categories 
chosen on the fly or to summarize arbitrary texts (Yin 
et al., 2019) without the need to be presented with any 
labeled examples before. This feature of domain agnosti-
cism is the hallmark of NLI approaches.

For our demonstrations, we apply such a zero-shot 
learning approach to elicit model responses to psycho-
metric questionnaires. Our approach combines flexibil-
ity with straightforward evaluation and interpretability 
as an example to illustrate how psychometric assess-
ments of large language models could be implemented. 
It allows us to prevent certain issues of generative mod-
els, in particular, the need for prompt engineering and 
averaging of stochastic outputs from repeated model 
runs, although we acknowledge many other ways in 
which one could set up such demonstrations. We adapt 
the NLI scheme to present neural models of text with 
questionnaire items (i.e., statements or questions) from 

standard psychometric inventories and a corresponding 
set of verbal response options (e.g., a five-point scale 
indicating levels of agreement). For each of the response 
options on the response scale, we record the probabil-
ity of entailment that the model assigns based on the 
item wording. We use argmax on these probabilities to 
assign the most likely response as a score to each item, 
which we then aggregate into scales using standard 
scoring procedures, such as taking the sum or mean 
across all responses pertaining to a (sub)-scale. Models 
trained on natural language inference (NLI) tasks have 
been adapted to similar, related contexts before, for 
example, for questions that have a yes-or-no answer 
(Clark et al., 2019). Remarkably, for yes–no question 
answering, an NLI approach shows better performance 
than a supposedly more direct transfer from multiple-
choice answering tasks. In our setup, each of the 
response options specified by the inventory is a pos-
sible answer for the models.

Example of our approach. To elicit responses to the 
questionnaire items from the models, we use the proce-
dure visualized in Figure 1: We select the most probable 
response from the model’s distribution of scores over all 
responses for each item. To give a concrete example: For 
the 44-item Big Five Inventory (BFI), item numbers refer 
to (1) “I am someone who is talkative,” (2) “I am some-
one who tends to find fault with others,” (3) “I am some-
one who does a thorough job,” and (4) “I am someone 
who is depressed, blue,” and so on in English. They 
translate as (1) “Ich bin gesprächig, unterhalte mich 
gern;” (2) “Ich neige dazu, andere zu kritisieren”; (3) “Ich 
erledige Aufgaben gründlich”; and (4) “Ich bin deprimi-
ert, niedergeschlagen,” and so on in German. The 
response options follow a classic, fully labeled Likert-
type scale in which each response category is associated 
with a specific numerical score. The numerical scores 
and verbal labels are the following: 1 = disagree strongly, 
2 = disagree a little, 3 = neither agree nor disagree, 4 = 
agree a little, and 5 = agree strongly in English as well as 
the equivalent in German. With that, we follow fully the 
published survey specifications for items, candidate 
responses, and scoring ( John et  al., 2008; Rammstedt, 
1997).

We want to note here that our approach differs from 
tests of model performance such as GLUE or Super-
GLUE. Such benchmark tests with many subtasks could 
be viewed as being related to psychological assess-
ments. In the context of natural language understand-
ing, benchmark tests may, for example, include 
Winograd schemes (Winograd, 1972) and other mod-
ules testing the model’s understanding of specific 
aspects of language. In contrast, we apply psychometric 
inventories as diagnostic tools that characterize 
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Fig. A1. Assessing personality via dark tetrad. Unusually accentuated scores on this assessment may reveal potential for conflicts with 
no-harm objectives in model decisions. Our assessment shows that the models lie well within the range of values observed in standard 
human populations, not displaying worrying pathological features.

properties of models other than their performance. The 
distinction between model benchmarks (measuring per-
formance) of models and psychometric inventories (elic-
iting responses to questionnaire items) is thus reminiscent 
of the distinction between skills or abilities (e.g., fluid 
intelligence) and traits (e.g., personality, values) in 
human psychometrics: In contrast to benchmark tests, 
when we let models respond to psychometric invento-
ries, there is no ground truth (i.e., “correct” responses 
to questionnaire items) that a model should display.

Although the goal is thus not to compare the perfor-
mance of the models as in benchmark tests, the psycho-
metric inventories still allow for a number of meaningful 
insights into the characteristics of these models. First, 
we can compare responses of each model to the ques-
tionnaire (e.g., the BFI) and its resulting scores on traits 
such as agreeableness with the distribution of scores 
(i.e., “norms”) from psychometric assessments in human 

samples using the same inventories. This allows for 
relative comparisons of model scores with human aver-
ages or typical profiles. For example, a model may be 
characterized as relatively high in agreeableness if it 
scores high in that trait relative to typical human popu-
lations. Second, independent of absolute scores, the 
inventories allow us to compare different large language 
models relative to each other, which in itself is informa-
tive about potential differences in the psychological 
traits these models may exhibit. For example, one model 
may turn out to score much lower than another in agree-
ableness. In the future, we might also create reference 
populations consisting entirely of different models, 
thereby potentially building a “population of large lan-
guage models” over time that has a certain distribu-
tion of traits (according to highly standardized 
psychometric inventories) against which future models 
can be compared.
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With our demonstrations, we want to highlight and 
exemplify the application of various standard question-
naires to large language models. Toward that goal, we 
recorded the language models’ responses to several 
psychometric inventories to comprehensively assess the 
psychological profile of each of these models. These 
inventories measure constructs from different psycho-
logical domains that, although not fully independent, 
each capture unique aspects of a person’s—or, in our 
case, a language model’s—psychological profile. Spe-
cifically, we chose to assess the global Big Five person-
ality traits, specific “dark” personality traits, value 
orientations, morality, and gender and sex diversity 
beliefs. All of these constructs are routinely assessed in 
research on humans. Moreover, for each construct, 
inventories that use a fully labeled verbal response 
scale exist, which was a requirement for our approach. 
Collectively, these inventories allow us to obtain in-
depth psychological profiles of each language model 
and thereby give us a glimpse into potentially contro-
versial, biased, or harmful characteristics and views that 
might be ingrained in (some of) these models. They 
also enable us to compare the psychological profiles 
of different language models with each other.

For each construct, we chose well-validated inven-
tories that are widely used in research on human. 

Notably, we do not claim that these are necessarily the 
best, let alone the only, inventories that would be suit-
able for the task at hand. We chose these inventories 
purely for illustrative purposes. In principle, any inven-
tory that works similarly to the ones we chose could 
be used for psychometric assessment of artificial intel-
ligence. Wherever possible, we use both the English 
and German version of the same questionnaires to 
gauge the extent to which results generalize across 
languages. In the next subsections, we aim to shed 
light on some of the opportunities that come with 
deploying psychometric inventories to large language 
models, using a set of concrete models that are listed 
in Table A1.
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Table A1. Different Models Included in Our Demonstrations

Technical name Short name Architecture R. L.

joeddav/xlm-
roberta-large-xnli

XLMRoBERTa A more robustly pretrained BERT 
model (RoBERTa) trained using a 
cross-lingual training objective

Conneau et al., 2020 en, de

cross-encoder/nli-
distilroberta-base

DistilRoBERTa Created using “knowledge 
distillation” to emulate the output 
of the larger model (RoBERTa) 
to create a smaller version

Reimers & Gurevych, 2020 en

microsoft/deberta-
base-mnli

DeBERTa An extension of BERT that 
introduces new techniques in the 
model architecture

He et al., 2021 en

MoritzLaurer/
mDeBERTa-v3-
base-mnli-xnli

multilingual 
DeBERTa

Fine-tuning DeBERTa on a 
multilingual natural language 
inference corpus instead of 
English only

Laurer et al., 2022 en, de

Sahajtomar/
German_Zeroshot

GBERT BERT pretrained on a corpus of 
German text finetuned on the 
German part of XNLI

Chan et al., 2020 de

facebook/bart-
large-mnli

BART Generalizing BERT and GPT 
training techniques

Lewis et al., 2019 en

valhalla/distilbart-
mnli-12-1

DistilBART Similar procedure as above for 
DistilRoBERTa but for BART

Shleifer & Rush, 2020 en

Note: Technical name refers to the full model names to be found in the Hugging Face model hub at https://huggingface.co/models. Short 
name is the abbreviations we use in the visualizations. “R.” describes the citations of model architectures that are briefly summarized 
under “Architecture.” We used models either in English (en), German (de), or both (“L.”). All of these models have been fine-tuned on 
one or more of these natural language inference corpora: the Stanford Natural Language Inference corpus (R. S. Bowman et al., 2015), the 
Multi-Genre NLI corpus (Williams et al., 2018), or XNLI: The Cross-Lingual NLI corpus (Conneau et al., 2018).

https://huggingface.co/models
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