On the Compilation of Consistency Constraints
(Extended Abstract)

Guido Moerkotte
Karl Rosch

Fakultat fiir Informatik

Universitat Karlsruhe
D-7500 Karlsruhe 1

Abstract

We introduce a compilation technique for efficient consistency checking in de-
ductive databases. Whereas most approaches to efficient consistency checking rely
on the interpretation of the (simplified) consistency constraints we will discuss a
compilation technique. In the presented approach the consistency constraints are
translated into an algebra. The basic compilation procedure exhibits two main ad-
vantages. It is able to avoid the division operator in all cases and preserves the
advantages of a tuple-at-a-time strategy while allowing for set-oriented processing.
The basic compilation technique is then extended to capture the idea of Nicolas
where the inserted or deleted facts are used to derive simplified constraints, and
to check those for validity. Rather then deriving simplified constraints for each in-
serted or deleted fact at run time (i.e., when the consistency constraint is checked)

the expressions resulting from the translation of the constraints reflect this simpli-
fications.

1 Introduction

A database is intended to be a truthful model of a given universe of di.course (UoD)
which corresponds either to a restricted part of the real world or to a mini-world. This
property of being a truthful model of the UoD is referred to as integrity. As the database
usually has no access to the UoD to verify its current state but instead depends on
the input of human interlocutors which are bound to err a weaker notion of integrity
had to be introduced: consistency. The laws and regularities observed in the UoD are
modeled via consistency constraints which in general are closed first-order formulas. Then
a database is called consistent if it obeys these constraints. There are two approaches to
define when a database obeys the consistency constraints. Either, the constraints are a
logical consequence of the database or the union of the database contents with the set of
constraints is free of any contradiction.

Hypothetically any transaction may violate the consistency of a database. Thus, a
consistency check has to be introduced at commit time. Efficiency is a critical feature to

174

these checks. Since the amount of data to be inspected during a test may be enormous the
design of efficient consistency checking procedures is a major challenge. The most common
approach to cut down the time needed to perform a consistency check is to decrease the
amount of data visited by incorporating the idea of Nicolas ([14]) and extending it to
deductive databases ([12, 11, 8, 13]). In this paper we argue that performance can be
further increased by compiling the consistency constraints into an algebra. For query
answering in relational databases compilation into an algebra is not only quite common
but 1s often thought of as a prerequisite for efficiency.

Since the introduction of relational database systems in [4] many approaches to the
compilation of the relational calculus (or SQL) into the relational algebra have been
published (e.g. [3, 5, 6]). Recently Bry ([2]) proposed a new approach with an emphasis
on the efficient treatment of quantifiers and disjunctions. His proposal shows several
advantages. Mainly efficiency is gained due to the introduction of set-oriented processing
while preserving the advantages of a tuple-at-a-time pipelining procedure pointed out in
[15]. Further sources of efficiency are the avoidance of the division operator in many
cases, and the technique of moving quantifiers inwards as far as possible. However, as we
will see in section 2 this method can still be improved in several respects. The improved
compilation process developed in this section will serve as a basis for the compilation and
optimization of consistency constraints in the subsequent sections.

Nicolas proposal allows a major reduction of the part of the database to be inspected
during the consistency check. The main idea is to utilize the difference of the original
database and the database updated by the transaction. Each tuple — or fact — in this
difference is then used to derive for each update relevant constraint a simplified consis-
tency constraint. Whereas in the case of relational databases the difference can easily
be computed this becomes a more severe problem in the context of deductive databases.
Thus, many recent works discuss the efficient computation of this difference or of sets of
literals which cover the difference (e.g. [12, 11, 13]). The difference is then used to derive
the simplified constraints. Then to check the simplified constraints mostly a specializa-
tion of resolution is used (for an exception see [9]). Thus an interpretative approach to
consistency checking is taken which additionally obeys the tuple-at-a-time strategy.

The paper is an extended abstract of a full paper by the authors. It does not contain
the whole set of rewrite rules of the compilation procedure, proofs, the algorithm for
efficiently computing the difference between two databases, and further improvements
on quantifier treatment as introduced in [7]. The remainder of the paper is organized
as follows. Section 2 will present our basic compilation procedure. We will define the
operators needed in our algebra and the manner in which a constraint can be compiled
into the algebra. Chapter 3 will give a hint how one can compile the idea of Nicolas.
Section 4 concludes the paper.

2 The Basic Compilation Procedure

Before stating the basic compilation procedure we give some preliminaries and notational
conventions used throughout the paper.

175

2.1 Preliminaries

We need the following sets of symbols: the set V of variable symbols, the set C of constant
symbols, and the set P of predicate symbols. Variables are denoted by z,y, z, ... possibly
with an index. Constants are denoted by a, b, c, Predicates are denoted by p,q,r,s,
There is an arity associated with every predicate symbol. For a predicate symbol p with
arity n and constants ¢,...,c, p(c1,...,cn) is a fact. A term is either a variable or a
constant. Note that we do not allow function symbols. For a predicate symbol p and
terms ty,...,tn p(t1,...,ts) is a positive literal, or atom. If [is a positive literal then —{
is a negative literal. A rule has the form ,...,l, => l,41 for positive literals ;. All
the variables occurring in a rule are assumed to be V-quantified. We define formulas in
the usual way. Every literal is a formula, if f; and f, are formulas then fi A fa, fi V fa,
fi = fa, and —f; are formulas, and for a variable symbol z Vz f; and dzf, are also
formulas. Be [a positive literal. Then ! occurs positively in I. It occurs negatively in —l.
If it occurs positively (negatively) in f; then it also occurs positively (negatively) in fiA fa,
fiV f2, and f, => fi. If | occurs positively (negatively) in f; then it occurs negatively
(positively) in —f;, and f; = f,. The set of free variables of a formula f is denoted by
free(f). For a formula of the form Vz;...Vz, f' (3z,...3z, ') we write Vzy,...,2, f!
(3z1, ...,z f"). If f'is quantified we assume the first quantifier to be 3 (V). For a formula
f we denote by cn f(f) (dnf(f)) its Prenexed conjunctive (disjunctive) normal form. By
~ f we denote the formula which results from —f by moving the negation inwards as far
as possible. Note that quantifiers are reversed by this process, i.e., ¥ becomes 3 and vice
versa.
We use the notion of range-restrictedness as presented in [14].

Definition 2.1 (range-restrictedness) A formula in Prenez conjunctive normal form
is called range restricted iff

o each Y-quantified variable appears in at least one negative literal (called restriction
literal) in each disjunction where the variable occurs, and

o for each 3-quantified variable occurring in a negative literal there is a disjunction
consisting only of positive literals (called restriction literals), each of them containing
z.

A database DB consists of a set of facts DB®, a set of rules DB?, and a set of consistency
constraints D B¢, where the rules have to be range-restricted, and a consistency constraint
is a closed range-restricted formula. Let [denote a fact then we define M(DB) :=
{{|{DB* U DB? |= 1}, and C(DB) := M(DB) U {~I|DB* U DB* }£ 1}. "C(DB) " is
abbreviated by ”DB |=". A database DB is called consistent iff DB |= c for all c € DB°®.

A substitution ox is a mapping of a set of variables X into the set of constants. The
application of a substitution to a formula replaces every occurrence of a free variable
x € X by its image under ox. For a formula f the application of ox to f is denoted by
fox. All variables not in X are left untouched. The empty substitution (og) is denoted
by €. Since we will deal with sets of substitutions extensively note the difference between
{€¢} and @ which often represents the distinction between true and false.

To emphasize that f is a formula in free variables X := {z1,...,z.} we will write
f(z1,...,2,). Thisis of course unnecessary for a literal. Further the expression flzi, .- xn)

176

is defined to evaluate to the set of substitutions {ox|DB E fox}. If X = XU X (U
denotes the disjunctive union) then f[X] := {o;|303 DB = foyoz}. For a literal
I = p(z1,...,2s) we write p[z1, ..., z,] instead of p(z1,...,%a)[21,. - , Tn)-

2.2 Compilation

Our compilation procedure is based on proposition 4 of [2] where five example formulas are
translated. We agree with the translation of all the examples but the one stated in point
5 of proposition 4. There are two arguments against the suggested translation. First it is
not correct, especially it does not work if one of the relations (T') is the empty relation,
i.e., its extension does not contain any tuples. Second the division operator is used at
this place despite the fact that it could be avoided here. Further no general method to
compile any range-restricted formula is presented but instead a possible translation for
six examples is given. For the treatment of disjunctions the use of an outer-join operator
is suggested. We will avoid this and use the more efficient union brackets (see below)
instead.

We now introduce the compilation process. An arbitrary formula is translated via
the compilation mapping & into an expression mainly consisting of a sequence of literals
connected by operators. The mapping £ has three parameters guiding the compilation
process: a set of input variables, the formula to be compiled, and a set of output variables.
The compilation can be interpreted as follows. Given a set of substitutions binding the
variables of the input set the result of the compilation process is an expression which
evaluates to a set of bindings for the output variables s.t. the image of the formula under
these substitutions is derivable from the database. More formally, if a set of variables

X =XUX, a set of substitutions S[X], and a formula f with free variables in X are given
then

the expression S[X]E(X, f, X) evaluates to {o 4|00z € S(X),DB k= fo,03}.

The operators possibly occurring in the expression resulting from the compilation process
£ are a generalized join, union, and intersection. The generalized join operator will
optionally have two output sets. The first output consists of the join of the two arguments,
and the second output consists of their complement-join ([2]). For each output a set of
variables specifies the kind of substitutions to be passed to the subsequent operator(s).
The first output is directed to the subsequent operator whereas the second is collected
by a union bracket (see below). Since we stick to a linear notation of the expressions
it is sometimes necessary to exchange the two output streams, i.e., the second output is
directed to the subsequent operator whereas the first one is gathered by the enclosing
union bracket. Note that we allow two outputs to be specified only within an enclosing
union bracket. Within a union bracket (denoted by [...]) we allow several operators
which compute two output streams. All the outputs of these operators are collected and
unioned by the union operator and after the end of the bracket (denoted by the symbol
]) feed into the pipeline again.

We recast the definition of a join into substitution terms. Additionally we allow the
join to have two outputs denoted by first output and second output respectively.

Definition 2.2 (M) Define the following sets of variables X = {z1,...,z.}, Y =
{y1,-- - Ym}, X, X, Y and Y such that XUX=X,YCY\X, Y=(Y\X\ Y. Fur-

177

ther let e be an expression evaluating in a set of bindings for the variables X and g an
expression in free variables Y. Then we define the first output of the join operator in the

expression e[xy, ..., T,) M. 9(y1y .- Ym) as

{oyo,lFogo05 €efzr,...,za] AJoy DB |= 940 40530,07}
The second output of the join operator is defined as:

{01305 0,05 € e[zr,...,z] A-Toy, > DB = 994050y 7}

The second output of the join operator is only computed inside the union brackets. Some-
times it will be usefull to interchange the two outputs. This is indicated by overlining the
M operator, i.e., the first output of W, . is the second output of X o and vice versa.

Note that if Y= 0 the join operator can be implen.ented more efficiently using the semi-
join, and that the second output of the join is the complement-join ([2]) of its inputs which
always can as efficiently be computed as a semi-join, and can additionally be computed
during the computation of the join without further computational costs. Besides the
union operator (U), and the intersection operator (N) we add the union-brackets to our
algebra.

Definition 2.3 ([]) Let s be a sequence of join operators and their arguments. Then the
output of [s] is the union of all second outputs of the operators of s.

Example 2.4 Consider a database with
DB® = {r(a),r(b),r(c),r(d), p(b, f), p(d, k), q(c, 9),q(d, h)},
and the following expression

7‘[2,‘] [N{z}.{y}p(xa y)m{z}.{y}q(xa y)]] .
then the subexpressions evaluate as follows:

rlz] =

{{z «a},{z < b}, {z < c},{z — d}}
r[z]¥a), o2, y) =

1. output: {{z « a},{z « c}}

2. output: {{z — b,y — f},{z «— d,y « h}}
r[2]®2},103P(2, Y) R} 39(2, y) =

1. output: {{z « a}}

2. output: {{z — ¢,y — g}}
r[z] [}, P(2, ¥Rz, (@, ¥)] =

{{z « b}, {z —c}, {z — d}}

(projected on z)

We are prepared to state the compilation procedure. Since it is indeterministic the
possible alternatives should be evaluated by a cost model (whose development is beyond
the scope of the paper), and then the best alternative should be chosen. We state the
indeterministic compilation procedure in terms of rewrite rules. The definition of & is
distributed over two definitions. The first definition contains the start and the end of
the compilation process, the second definition deals with quantified formulas. Several
examples are given after the two definitions.

178

Definition 2.5 Let f be a formula in free variables T1,...,Tn. We then define:

g(@,v.l'l,---,l'nf,w) - 8((0,~ f')X)
g(m’a‘rl’"'amnfam) - g(wafaX)
E(Viny Ay Vous) = A

where XC {zy,...,%.}, and A denotes the empty word.

Definition 2.6 Let f be a formula and Iy, ..., 1 literals. Then we define the compilation
of E(Vin, f,Vour) according to the structure of f:

(We do not give the definitions on X; and Y; which merely state to keep exactly those bindings
at every operator occurrence which are needed for future operators, or the output. All the other
conditions reflect the notion of range-restrictedness. Further explanations on the conditions as
well as further rewrite rules are given in the full paper.)

1. &(vin,3T1,. .., ZnQf', Vout) —

op1 liv .. opr Iy E(Vln, ITiyy -+ s i@ ", Vout)
where:

(a) the literals [; (1 <5 < [) occur in every conjunction of f’ and can be both
positive and negative

(b) if Iy is a positive literal then op; is My o
(c) if Iy is a negative literal then op; is N)'(.-.Y.-

(d) f” results from f' by deleting the i (1 € j <) and subsequent simplification

2. EWin, 321, ;b ALLOA I, Vout) — 0p1 L+ --opy L
where:

(a) lisy...,ly are a permutation of lh,..., 10
(b) if I is a positive literal then op; is My ;.
(c) if Iy is a negative literal then op; 1s iny‘

3. E(Vin, IT1,.. ., TV ...V 1, Vout) — lop1 Lo~ op Iv]
where:

(a) ly,..., 1y are a permutation of Iy,..., 1
(b) if Iy is a positive literal then op; is ™, .

(c) if Iy is a negative literal then op; is M, .

4. E(Vin, V1, Tt Ao ANl Voue) — 0P li---op Iy
If the following conditions hold:

(a) l,...,ln is a permutation of 1,..., L.
(b) If I is a positive literal then opi is M o

(¢) If Iy is a negative literal then opis is Wy .

179

5. EWin,VT1, ...y Ty Vo oV L Vout) — [opy L+ - opr]
If the following conditions hold:
(a) lyr,..., 1y is a permutation of 1,...,1[.
(b) If Iy is a positive literal then opy is /Wy ;
(c¢) If I,/ is a negative literal then opy is Nx v

If vi, = 0 then op, is missing, and Iy = py/(z1,...,2,) is replaced by lj, = prlz1y - .oy 20).
This only holds for the exist quantified cases.

In a similar manner one can define the compilation for general formulas. The complete
definitions are given in the full paper.

Using € the examples of proposition 4 of [2] can be compiled as follows:

Example 2.7 We now compile the examples of Bry. Recognize especially the last one
which in Bry’s paper needs the division operator and is, thus, incorrect for t being empty.
Assume the existence of a set of bindings S for the variable x then

. f[E]E({w},Hﬂzr(x,y) s(z,y,2) A g(z,y,2),{z})
ef2.6(2
f—'(: S[l‘] N{z}.{y} T(:l: y) Dd{.‘!:,y} {z} S(SD Y, Z) Dq{:r:} 9 g(x Y, 2)
> dS[x]S({x},Hszr(x) A s(z,y,2) A ~g(z,y,2), {z})
ef2.6(2
f_'() S[l‘] N{z}.{y} T(‘T y) N{x vy} {z} 3(23 Y,z)m{z}.ﬂg(xaya Z)
o S[z]€({z}, FyTzr(z,y) A t(y, 2) A ~g(,y,2), {z})
def2.6(2
T23%) Sla) M2y 4o} T(Z, Y) Mz} ie} 1Y 2)N(z)09(2, Y, 2)
o S[z]E({z}, IyVar(z,y) A (—s(z,y,2) V ~g(z,y,2)), {z})
T2 2] My 1 (@ 9)E{E, ¥}, Y2 (-s(2, 9, 2) V —g(2, 9, 2), {z})
2 Sle] My 0y (@, ¥) Mz 5(2,Y,2) Moy 9(2, 9, 2)]
o S[z]€({x}, IyVzr(z,y) A (=s(z,y,2) V 9(z,¥,2)), {z})
def&f(l) S[:l:] N{z}.{y} T‘(.’E, y)g({ma y},Vz(ﬁs(a:, Y, Z) \4 g(-’lJ, Y, Z)a {:L‘})
defi?(s) S[.’B] D(]{:t:},{y} 7‘(.’1:, y)[N{z,y},{z} S(.’L‘, Y, Z)W{r}.ﬂg(z’ Y, Z)]]
o S[zl€({z}, IyVzr(z,y) A (-t(y, 2) V 9(z,y,2)), {z})
20 S(2) Wiy 1) (2, 9)E{, 9}, Va(-t(y, 2) V 9,9, 2), {2})
1e/250) S[z] My 3 7@, Y [M¥4z 0y 123 1Y 2) Ry 09(2, Y, 2)]

We now state the basic propositions for the compilation process:

Proposition 2.8 For a set S of substitutions with domain {zi,...,%.}, and a range-
restricted formula f in free variables z,,...,z, the evaluation of S[X|E(X, f, X) results
mn

{oylF0z 0,05 € SIX]IANDB | fo,03}

180

Proposition 2.9 For a closed range-restricted formula f = 3zy,...,z,f' the evaluation

of (0, f,{z1,...,xa}) resulls in
{021 zal DB | [0z, zn}

For a closed range-restricted formula f = Vy,...,z,f' the evaluation of

EB,~ f,{z1,...,zn}) results in
{021,za| DB I [0z, o0}
Theorem 2.10 shows how one can deal with consistency constraints in a naive manner.
Proposition 2.10 For a closed range-restricted formula f = 3z,, ...,z f'
DB = f iff £(0, f,0) evaluates to a non-empty set.
For a range-restricted formula f =Vz,,...,z,f

DB = fiff £(0, f,0) evaluates to the emptyset.

3 Compiling the Idea of Nicolas

For the rest of the paper we assume the existence of a consistent database D B,;q whose fact
base DBY%, is modified by a user via a transaction resulting in the possibly inconsistent
database DB,.,. Thus we do not allow to update the rule set or the set of consistency
constraints. We define the two parts of the A operator to capture the (possibly implicitly)
added facts by AT, and the (possibly implicitly) deleted facts by A~ respectively.

Definition 3.1 Given two databases DB,y and DB,., an n-ary predicate p, and sets
XUX= {21,...,Zn} of variables we define the A-operator as follows:

A;(p(ml, ey 2n)) := {04 |Fo g DBoa = p(z1,. .., Tn)0 405 and
DBﬂew |= p(‘rls cee ,Il,‘n)O'/",J)?}

A;((p(xl,...,a:,,)) i= {01305 DBoa | p(z1,...,24)0 4,05 and
D Brew ¥ p(21,...,20)0 05}

All the approaches cited in the introduction rely on the computation of the A operators or
some approximation which captures the A operations, i.e., they compute a set of literals
subsuming each literal in A%, In the full paper we show how the A operator can be
computed efficiently.

From now on we assume £ to result in a single expression. We define the compilation
process as derived by incorporating Nicolas’ idea as follows. We only give the definition
for literals occurring negatively in the considered consistency constraints. The other half
of the definition is given in the full paper.

Definition 3.2 Let f = Vzy,...,z,Qf" be a consistency constraint. We define the fol-
lowing set N'(f) of expressions:

o For each negatively occurring literal l in f s.t.

X:={a},...,z0.} = free() N {zy,...,z,} #0

181

AY(DE(X,Val, ..., znQf \ 1, X) € N(f)

where if free(l) C {z1,...,z.} then f'\ results from f' by replacing [by true and
subsequent simplification else f'\1:= f'.

o For each negatively occurring literal | in f s.t. free()N{z1,...,2,} =0
AF(DED, £,0) € N(f)
We give N (f) for example 6 of [14].

Example 3.3 Let f be the formula YaVyVzsubord(z, z) A subord(z,y) = subord(z,y).
Then

N(f) = { AII'I}(subord(:c,z))E({s:,z},Vysubord(z,y) = subord(z,y), {z,y}),
AL, gy (subord(z,y))E({z, y}, Vasubord(z, z) = subord(z,y),{z,y})}
= { A, .y (subord(z, 2))[M(z) (v} subord(z,y)Ry gsubord(z,y)],
AT, yy(subord(z,y))[M. 4} (=) subord(z, z)W gsubord(z, y)] }.

Note in the above example that the A* operator should be factored out in order to avoid
duplicate computation.

Proposition 3.4 Let DB,y be a consistent database and DBy, an updated database.
For each consistency constraint f the following holds: DBy, |= f only if each expression
in N(f) evaluates to a nonempty set of substitutions.

The if part of the proposition comes with the other half of the definition of A treating
literals occurring positively in the considered consistency constraints. This is discussed
in the full paper.

For consistency constraints beginning with an 3-quantifier there is no simplification
possible. But analogous pretests to those given in the last point of definition 3.2 can be
easily stated for 3-quantified constraints. More powerful pretests and quantifier treat-
ments are presented in the full paper. There, the ideas of 7] are incorporated.

4 Conclusion

We have presented a technique to compile consistency constraints into an algebra. The
domain of the algebra is the set of sets of substitutions rather than the set of relations.
Besides the union and intersection operator this algebra consists of the generalized join
operator which has two outputs, and the union bracket which gathers for a sequence of
join operators their second outputs. The basic compilation technique exhibits two main
advantages. It avoids the division operator in all cases, and allows set oriented processing
in a pipelining manner while preserving the advantages of a tuple-at-a-time strategy. For
efficient treatment of consistency constraints we enhanced this algebra by the A operator
for which an efficient implementation is given in the full paper. The compilation technique
was then applied to capture Nicolas’ idea.

There are two main directions for further research. Potentially, after each transaction
the whole set of consistency constraints has to be checked. Further, our compilation

182

technique generates more than one expression for each constraint. Thus, it is worthwhile to
check for common subexpressions. Since the expressions in our algebra represent roughly
a pipeline techniques like factorization (see e.g. [10]) should be applied to factor out
common starting sequences. Most critical to the efficiency still are existentially quantified
constraints when they have to be checked, e.g., if the pretests fail, since no simplifications
are possible without any further information. Thus, redundant data should be used to
allow for faster checking (see e.g [1]).

Acknowledgment. We thank Alfons Kemper for fruitful comments.

References

[1] P. Bernstein, B. Blaustein, and E. Clarke. Fast maintenance of semantic integrity

2]

8]

(4]

[6]

[7]
(8]

[9]

[10]

(11]

[12]

assertions using redundant aggregate data. In Proc. 6th Int. Conf. VLDB, pages
126-136, 1980.

F. Bry. Towards an efficient evaluation of general queries: Quantifiers and disjunction
processing revisited. In Proc. of the 18nth ACM SIGMOD, pages 193-204, 1989.

S. Ceri and G. Gottlob. Translating SQL in relational algebra: Optimization, seman-
tics, and equivalence of SQL queries. IEEE Trans. on Software Engineering, 11(4),
1985.

E. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377-3817, 1970.

U. Dayal. Processing queries with quantifiers: A horticultural approach. In ACM
Symp. on Principles of Database Systems, pages 125-136, 1983.

U. Dayal. Of nests and trees: A unified approach to processing queries that contain
nested subqueries, aggregates, and quantifiers. In VLDB, pages 197-208, 1987.

I. Kobayashi. Validating database updates. Information Systems, 9(1):1-17, 1984.

R. Kowalski, F. Sadri, and P. Soper. Integrity checking in deductive databases. In
Proc. 13th Int. Conf. VLDB, pages 61-69, 1987.

C. Kung. A tableaux approach for consistency checking. in: A. Sernadas, J. Bubenko,
A. Olive (eds.), Information Systems: Theoretical and Formal Aspects, North Hol-
land, pages 191-207, 1985.

A. Lefebre and L. Vieille. On deductive query evaluation in the dedgin® system. In
Proc. 1st. Int. Conf. on Deductive and Object-Oriented Databases, pages 225-246,
1989.

J.W. Lloyd, Sonenberg, and R.W. E.A.Topor. Integrity constraint checking in strat-
ified databases. J. Logic Programming, 4:331-343, 1987.

J.W. Lloyd and R.W. Topor. A basis for deductive database systems. J. Logic
Programming, 2:93-109, 1985.

183

[13] G. Moerkotte and S. Karl. Efficient consistency checking in deductive databases. In
2nd. Int. Conf. On Database Theory, 1988. 118-128.

[14] J.-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta
Informatica, 18, 1982. 227-253.

[15] S.B. Yao. Optimization of query evaluation algorithms. ACM Trans. on Database
Systems, 4(2):133-155, 1979.

184

