
Applying Reconfiguration Cost and Control Pattern Modeling to
Self-Adaptive Systems

Michael Matthé
Chair of Information Systems II, University of Mannheim, Germany

michael.matthe@uni-mannheim.de

ABSTRACT

Self-adaptive systems have become a popular research topic to

overcome challenges of developing highly complex, interconnected,

and heterogeneous systems and networks. These systems aim to

autonomously adapt to a changing environment by adapting sys-

tem behavior or composition to improve performance. Many self-

adaptive systems are designed in a purely reactive way and without

considering costs that may be incurred by performing adaptation.

This thesis therefore aims to develop an approach for proactive

self-adaptive systems and evaluate the impact of reconfiguration

cost and proactive adaptation in an edge computing system. Addi-

tionally the autonomous adaptation of different control patterns for

centralized or decentralized control will be explored and evaluated.

This thesis proposes to extend feature models, as used in dynamic

software product lines, with modeling for reconfiguration cost and

of uncertainty in the system’s environment.

CCS CONCEPTS

• Software and its engineering → Abstraction, modeling and

modularity;

KEYWORDS

self-adaptive systems, context-aware systems, edge computing

ACM Reference Format:

Michael Matthé. 2022. Applying Reconfiguration Cost and Control Pattern

Modeling to Self-Adaptive Systems. In 44th International Conference on

Software Engineering Companion (ICSE ’22 Companion), May 21–29, 2022,

Pittsburgh, PA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3510454.3517056

1 INTRODUCTION

Manymodern information systems are composed of interconnected,

distributed, and heterogeneous devices operating in an environ-

ment with fluctuating network resources and availability [11]. Users

expect high quality of service from these devices with potentially

varying performance goals over time. The process of manually

adapting systems in order to achieve these performance goals is

often error prone and time consuming [20]. Therefore, self-adaptive

systems aim to alleviate these challenges by allowing systems to

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3517056

perform adaptations autonomously. The system monitors its envi-

ronment and system state in order to analyze the need for adapta-

tions, which are either necessary to keep the system functioning

properly or are able to improve system performance in regard to

a certain performance goal [3]. The managed resource itself is ex-

tended by a managing subsystem (adaptation logic) which performs

the monitoring of the environment, as well as the decision making

about necessary adaptations [11].

Coordination between different systems in a distributed network

is an important task in order to support global optimization effi-

ciently. In distributed and mobile systems the utilization of a central

entity for controlling and coordinating all adaptations of the partic-

ipating systems is not always feasible [21]. A network of systems

without central control where each system strives for, potentially

greedy, optimization of local goals may not lead to a globally op-

timized system. A variety of decentralized control patterns have

been proposed by Weyns et al. [21]. The control patterns range

from fully centralized control, where one adaptation logic manages

all resources, to fully decentralized control, where each managed

resource has its own adaptation logic. Additionally, the adaptation

logic may be constructed in a hierarchical hybrid pattern.

The traditional method of implementing self-adaptive systems is

a reactive approach, adapting to changes based on event triggers in

the monitored environment [11]. Each adaptation, however, may

come at some cost, e.g. an energy cost on a battery powered device

or a delay in communication.

Proactive systems on the other hand are equipped to anticipate

or predict changes in the system’s environment. By predicting the

future environment and state of the system over a longer time

horizon, a proactive self-adaptive system is able to reduce the num-

ber of non-optimal adaptations performed and thereby reduce the

incurred cost of a potential reconfiguration. Additionally, the adap-

tation of one system may have an influence on the performance of

another system operating in the same network. Therefore, coordi-

nating the adaptations of a network of systems cooperatively and

proactively increases the global utility and its stability.

2 RESEARCH PROBLEM AND EXPECTED

CONTRIBUTIONS

Self-adaptive system are typically realized with closed loop control,

e.g., with the well established MAPE-K loop [10]. The MAPE-K

loop consists of four phases: (i) monitoring of the system and its

environment, (ii) analyzing the collected information and the need

for adaptation, (iii) planning the adaptation if it is needed, and (iv)

executing the adaptation. Additionally, the knowledge component

(K) contains a model of the system’s state and properties, as well

as its environment (context). Feature models [8] are one method of

modeling the configuration space of a system. Additionally, feature

248

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510454.3517056&domain=pdf&date_stamp=2022-10-19


ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Michael Matthé

models may be extended by a context branch which includes the

modeling of the systems environment [17]. The resulting context

feature model of a self-adaptive system may then consist of manda-

tory and optional system and context features as well as constraints

between features from different branches of the model.

Context feature models may be used to express the currently

selected configuration of the system and environment or the con-

figuration space of all valid configurations. Therefore, they provide

a useful method for evaluating the validity of configurations but

lack expressiveness for future environment behavior and the cost of

adaptation between two valid configurations. This thesis therefore

proposes to extend these feature models to model a future time

horizon of the system’s environment as well as the incurred costs

when switching between different configurations. When a high re-

configuration cost results from adapting the system, a more stable

configuration that regards the future development of the system’s

environment may perform better over a longer time interval.

Firstly, this thesis aims to utilize Markov decision processes to

model the uncertainty in the system’s environment over a longer

time horizon, as previously proposed in [13]. This enables proactive

adaptations to be performed by the system. RQ1 - How can we

extend feature model based self-adaptive systems to allow proactive

system adaptation?

Secondly, this thesis aims to extend feature models by anno-

tating them with the reconfiguration cost from one configuration

to another. In some applications frequent switching between con-

figurations without regarding the incurred cost of the adaptation

may not lead to optimal performance. RQ2 - How can we extend

feature models to express the costs of switching between different

configurations?

Finally, we aim to incorporate the adaptation of control patterns

into the approach. In the edge computing application we aim to use

for the evaluation the choice of control pattern has a significant

impact on the performance, such as the latency of task execution.

Therefore, an adaptive approach of the control pattern, depending

on system load and application requirements, is able to perform

better.

3 RELATEDWORK

In [19] we developed an approachmodeling the system and environ-

ment state with context feature models, in addition to performance

goals and performance-influence models, as part of the knowledge

component to find optimal system configurations for a wireless

sensor network. Pfannemüller et al. [16] propose a model-based

runtime environment for implementing self-adaptive capabilities

in communication systems by using Clafer models for modeling

adaptation options and using a target system specification for defin-

ing the solution space of the system. The system does not take

into account cost for a reconfiguration of the system and performs

adaptations reactively.

Moreno et al. [14] propose proactive latency-aware adaptation

based on Markov decision processes for probabilistic modeling of

the uncertainty in the system and its environment. There are a

large variety of application specific proactive approaches, e.g. in

auto-scaling for cloud computing [7], [1], [9], that employ Markov

decision processes and reinforcement learning for enabling proac-

tive system behavior.

Van der Donckt et al. [4] propose a cost-benefit analysis at run-

time for self-adaptive systems in an Internet of Things application.

The approach uses weighted utilities for modeling benefits and

domain-specific properties for defining costs of adaptation deci-

sions. The authors note that a further analysis of different types of

potential costs that may apply in self-adaptive systems is required

as well as methods for modeling different types of costs.

The authors of [15] estimate the volatility of tactics for adapting

a system by using time series forecasting. In [12] a MAPE spec-

ification language is extended with annotations to allow for the

evaluation of adaptation costs such as latency. Additionally, Filieri

[6] proposes an approach for run-time efficient verification of non-

functional properties and gives outlook of future improvements

by mentioning the addition of reward models for supporting cost

metrics. This thesis proposes to use annotated feature models to

allow the modelling of different systems and potential costs during

a reconfiguration in a consistent and reproducible manner.

4 EVALUATION OF RESULTS

We plan to initially evaluate the results of the developed model

enhancements in an edge computing system, namely the Tasklet

system [18]. The system consists of a network of resource providers,

providing their computational resources to other participants, and

resource consumers, offloading computational tasks to providers for

remote calculation. The system can operate using a central broker

for task scheduling, or using a decentralized approach [5], allowing

consumers to chose a producer for performing the task calculation

themselves. Different applications offloading tasks can have dif-

fering non-functional requirements such as latency or reliability.

We aim to evaluate our extension to the DSPL based self-adaptive

approach by employing it in the autonomous selection of decen-

tralization mechanism, taking into account reconfiguration costs of

switching between different centralized or decentralized scheduling

strategies.

Another aspect of task offloading in the Tasklet system is data

placement for certain applications, such as image rendering or face

recognition, which require additional data, such as a learned model,

in order to perform the offloaded computation. When offloading

a task to a resource provider, it first needs to obtain the required

data before starting the calculation and returning the result. By

proactively placing the required data set on one or multiple re-

source providers, the round-trip time from offloading a task to

receiving the result can be significantly reduced [2]. Currently this

is data-placement is not performed adaptively. We aim to evaluate

the proactive capabilities of our approach by using it to add proac-

tive self-adaptation in the computational offloading application.

The participating systems should be able to adapt their specific

data-placement mechanisms depending on the current and future

predicted system load, performance, and composition.

ACKNOWLEDGMENTS

This work has been funded by the German Research Foundation

(DFG) as part of project A4 within the Collaborative Research Cen-

ter (CRC) 1053 - MAKI.

249



Applying Reconfiguration Cost and Control Pattern Modeling to Self-Adaptive Systems ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] JV Bibal Benifa and D Dejey. 2019. Rlpas: Reinforcement learning-based proactive

auto-scaler for resource provisioning in cloud environment. Mobile Networks
and Applications 24, 4 (2019), 1348–1363.

[2] Martin Breitbach, Dominik Schäfer, Janick Edinger, and Christian Becker. 2019.
Context-aware data and task placement in edge computing environments. In
2019 IEEE International Conference on Pervasive Computing and Communications
(PerCom. IEEE, 1–10.

[3] Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw et al. 2010.
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In
Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers (Lecture
Notes in Computer Science, Vol. 7475). Springer, 1–32. https://doi.org/10.1007/978-
3-642-35813-5_1

[4] M. Jeroen Van Der Donckt, Danny Weyns, M. Usman Iftikhar, and Ritesh Kumar
Singh. 2018. Cost-Benefit Analysis at Runtime for Self-adaptive Systems Applied
to an Internet of Things Application. In Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering, ENASE
2018, Funchal, Madeira, Portugal, March 23-24, 2018, Ernesto Damiani, George
Spanoudakis, and Leszek A. Maciaszek (Eds.). SciTePress, 478–490. https://doi.
org/10.5220/0006815404780490

[5] Janick Edinger, Mamn Breitbach, Niklas Gabrisch, Dominik Schäfer, Christian
Becker, and Amr Rizk. 2021. Decentralized low-latency task scheduling for ad-
hoc computing. In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 776–785.

[6] Antonio Filieri. 2011. QoS verification and model tuning @ runtime. In SIG-
SOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (FSE-19) and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011, Tibor Gyimóthy and Andreas
Zeller (Eds.). ACM, 408–411. https://doi.org/10.1145/2025113.2025176

[7] Indu John, Aiswarya Sreekantan, and Shalabh Bhatnagar. 2019. Auto-scaling
Resources for Cloud Applications using Reinforcement learning. In 2019 Grace
Hopper Celebration India (GHCI). IEEE, 1–5.

[8] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[9] Sara Kardani-Moghaddam, Rajkumar Buyya, and Kotagiri Ramamohanarao. 2020.
ADRL: A Hybrid Anomaly-Aware Deep Reinforcement Learning-Based Resource
Scaling in Clouds. IEEE Transactions on Parallel and Distributed Systems 32, 3
(2020), 514–526.

[10] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing.
Computer 36, 1 (2003), 41–50.

[11] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive Mob. Comput. 17 (2015), 184–206. https://doi.org/10.1016/j.
pmcj.2014.09.009

[12] Raffaela Mirandola, Elvinia Riccobene, and Patrizia Scandurra. 2019. Self-
accounting in architecture-based self-adaptation. In Proceedings of the 13th Eu-
ropean Conference on Software Architecture, ECSA 2019, Paris, France, September
9-13, 2019, Companion Proceedings (Proceedings Volume 2),, Laurence Duchien,
Anne Koziolek, Raffaela Mirandola, Elena Maria Navarro Martínez, Clément
Quinton, Riccardo Scandariato, Patrizia Scandurra, Catia Trubiani, and Danny
Weyns (Eds.). ACM, 14–17. https://doi.org/10.1145/3344948.3344957

[13] P Read Montague. 1999. Reinforcement learning: an introduction, by Sutton, RS
and Barto, AG. Trends in cognitive sciences 3, 9 (1999), 360.

[14] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R. Schmerl.
2018. Flexible and Efficient Decision-Making for Proactive Latency-Aware
Self-Adaptation. ACM Trans. Auton. Adapt. Syst. 13, 1 (2018), 3:1–3:36. https:
//doi.org/10.1145/3149180

[15] Jeffrey Palmerino, Qi Yu, Travis Desell, and Daniel E. Krutz. 2019. Improving
the Decision-Making Process of Self-Adaptive Systems by Accounting for Tactic
Volatility. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 949–961.
https://doi.org/10.1109/ASE.2019.00092

[16] Martin Pfannemüller, Martin Breitbach, Christian Krupitzer, Markus Weckesser,
Christian Becker, Bradley R. Schmerl, and Andy Schürr. 2020. REACT: A Model-
Based Runtime Environment for Adapting Communication Systems. In IEEE
International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2020, Washington, DC, USA, August 17-21, 2020. IEEE, 65–74. https:
//doi.org/10.1109/ACSOS49614.2020.00027

[17] Karsten Saller, Malte Lochau, and Ingo Reimund. 2013. Context-aware DSPLs:
model-based runtime adaptation for resource-constrained systems. In Proceedings
of the 17th International Software Product Line Conference co-located workshops.
106–113.

[18] Dominik Schafer, Janick Edinger, Justin Mazzola Paluska, Sebastian VanSyckel,
and Christian Becker. 2016. Tasklets:" better than best-effort" computing. In 2016
25th International Conference on Computer Communication and Networks (ICCCN).

IEEE, 1–11.
[19] Markus Weckesser, Roland Kluge, Martin Pfannemüller, Michael Matthé, Andy

Schürr, and Christian Becker. 2018. Optimal reconfiguration of dynamic software
product lines based on performance-influence models. In Proceeedings of the
22nd International Systems and Software Product Line Conference - Volume 1,
SPLC 2018, Gothenburg, Sweden, September 10-14, 2018. ACM, 98–109. https:
//doi.org/10.1145/3233027.3233030

[20] DannyWeyns. 2017. Software engineering of self-adaptive systems: an organised
tour and future challenges. Chapter in Handbook of Software Engineering (2017).

[21] Danny Weyns, Bradley R. Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mi-
randola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese,
and Karl M. Göschka. 2010. On Patterns for Decentralized Control in Self-
Adaptive Systems. In Software Engineering for Self-Adaptive Systems II - In-
ternational Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Se-
lected and Invited Papers (Lecture Notes in Computer Science, Vol. 7475), Rogério
de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw (Eds.). Springer, 76–107.
https://doi.org/10.1007/978-3-642-35813-5_4

250


