
Deep Multi-Style, Multi-Pattern
Modeling with DOCL

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

ARNE LANGE

aus Halle (Saale)

Mannheim, 2023



ii

Dekan: Prof. Dr. Claus Hertling, Universität Mannheim
Referent: Prof. Dr. Colin Atkinson, Universität Mannheim
Korreferent: Prof. Dr. Uwe Aßmann, Technische Universität Dresden
Korreferent: Prof. Dr. Dirk Draheim, Tallinn University of Technology

Tag der mündlichen Prüfung: 15.03.2024



iii

“All models are wrong, but some are useful.”

George Box





v

Acknowledgements
I want to thank Prof. Dr. Colin Atkinson who guided me along my

journey to the Ph.D. He always gave me insightful feedback and challenged
me when necessary. The discussions with you were always worthwhile and
helped me to make advance my research. Thank you for being involved in
my Ph.D process.

I have to thank Prof. Dr. Aßmann and Prof. Dr. Draheim who decided
to become my second and third examiners after being presented with the
proposed topic of the thesis. Thank you for reading my thesis!

I would like to extend my gratitude to the team of collaborators who have
helped me to understand their ideas and approaches in the field of Multi-
level modeling. A special thanks to Thomas Kühne for sharing his expertise
with me. He brought a unique perspective that enriched every discussion we
had.

I thank my colleagues at the University of Mannheim. With them, I had
enlightening discussions and gained insight from very different perspectives.
In my work as a speaker of the doctoral convent of my faculty, I was able to
meet and connect with Ph.D. candidates from different faculties and discuss
the trials and tribulations of being a Ph.D. candidate. I also want to thank
all the members (also former members) of the doctoral convents for working
with me whilst organizing events or working on university political issues.

My parents, who supported me tremendously, are the main reason I even
could dream of getting into a PhD. They supported me in every decision
leading to this degree and encouraged me to pursue the highest possible ed-
ucation for myself. Thank you for believing in me and for your continuous
encouragement during all those years.

Last but not least I want to name a few friends and colleagues during this
endeavor that made it fun, these are: Anne, Kilian, Hanna, Valerie, Alisa,
Katha, Hannes, Julius, and Sabine.





vii

Abstract
Since the standardization of the UML in the 1990s, object-oriented mod-

eling has assumed growing importance, not only for information systems
development and software engineering but also for wider conceptual mod-
eling and ontology applications. The core challenge when modeling is to cre-
ate models that are sufficiently abstract to leave out detail that is superfluous
to the modeling goal, but sufficiently precise to avoid ambiguity about the
properties of the domain. For this reason, graphical notations like the UML,
which excel in the former, are usually complemented by textual “constraint”
languages, such as the OCL, which excel in the latter.

While such language partnerships have been, and still are, used with
great success to describe system architectures and designs, they have proven
less successful at supporting more challenging applications that require greater
flexibility and adaptability without sacrificing abstraction and precision. Ex-
amples include domain-specific language design and usage, models that cap-
ture complete system life cycles from inception to operation, and ontologi-
cally grounded models that have a sound conceptual foundation. Such ap-
plications usually require models to go beyond the traditional “two-level”
types/instance dichotomy underpinning the UML/OCL partnership and al-
low model elements to have classifications relationships over three or more
levels. However, while there has been significant research into making the
graphical component of the aforementioned language partnerships multi-
level adjuvant, their constraint language partners have been left behind.

This thesis addresses this problem by presenting a multi-level adjuvant
version of OCL to partner with an existing, multi-level-adjuvant dialect of
the UML class diagram notation (LML). By adding features to facilitate onto-
logical and linguistic reflection and make constraints multi-level aware, the
language supports much more flexible approaches to multi-level modeling,
whilst still retaining the precision and model soundness provided by OCL.
This is achieved through the notion of multi-level modeling styles and pat-
terns. After presenting DOCL, and showing how it can be used to define
a range of flexible deep modeling styles and patterns, the thesis shows the
advantage of the developed technology in four, benchmark multi-level mod-
eling challenges.





ix

Zusammenfassung

Seit der Standardisierung der UML in den 1990er Jahren hat die objek-
torientierte Modellierung, nicht nur für Informationssysteme und Softwa-
retechnik, sondern auch für breitere Anwendungen in der Konzeptmodel-
lierung und Ontologie, an Bedeutung gewonnen. Deren Hauptziel besteht
darin, Modelle zu schaffen, die abstrakt genug sind, um unnötige Details zu
vermeiden, aber gleichzeitig präzise genug, um Missverständnisse über die
Eigenschaften des betrachteten Objekts auszuschließen.

Sprachen mit grafischer Notationen, wie UML, sind in der Abstraktion
stark, während textuelle "Constraint"-Sprachen, wie OCL, die Präzision der
Modelle erhöhen. Obwohl diese Sprachpartnerschaften erfolgreich bei der
Beschreibung von Systemarchitekturen und -designs eingesetzt wurden, sto-
ßen sie an ihre Grenzen, wenn es um anspruchsvollere Anwendungen geht,
die größere Flexibilität und Anpassungsfähigkeit erfordern, ohne Abstrakti-
on und Präzision zu opfern. Solche Anwendungen erfordern Modelle, die
über die übliche 2-Level Verteilung von Typ-Objekt hinausgehen. Diese Mo-
delle beherbergen Konzepte die über 3 oder mehr Level instanziiert (Tiefe
Charakterisierung) werden können. Das bisherige Forschungsziel bestand
darin, das Multi-Level Paradigma in der grafischen Notation umzusetzen,
jedoch ist die verbundene Constraintsprache nicht im Fokus der Entwick-
lung.

Diese Arbeit adressiert dieses Problem, indem sie einen tiefen Dialekt von
OCL präsentiert, die mit einer tiefen Modellierungssprache zusammenarbei-
tet. Dieser Dialekt unterstützt flexible tiefe Modellierungsansätze, ohne die
Präzision und Modellstimmigkeit zu beeinträchtigen. Die Arbeit zeigt die
Vorteile dieser Technologie anhand von vier Benchmark Challenges zur tie-
fen Modellierung.





xi

Contents

Abstract vii

Zusammenfassung ix

List of Figures xvi

List of Tables xvii

List of Abbreviations xix

I Introduction 1

1 Motivation 5
1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II Background 13

2 Model-Driven Development 17
2.1 The Model-Driven Architecture . . . . . . . . . . . . . . . . . . 18
2.2 Object Constraint Language . . . . . . . . . . . . . . . . . . . . 21

3 Multi-Level Modeling 29
3.1 Deep Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The Level-agnostic Modeling Language . . . . . . . . . . . . . 32
3.3 Melanee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Formal Languages 43
4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . 48



xii

4.4 Parsing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 ANTLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

III DOCL 55

5 Reflective Constraints in Deep Modeling 59
5.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Reflection in Object-Oriented Modeling . . . . . . . . . . . . . 61
5.3 Reflection in Deep Modeling . . . . . . . . . . . . . . . . . . . . 64

6 DOCL Features 71
6.1 Linguistic Introspection . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Ontological Introspection . . . . . . . . . . . . . . . . . . . . . 73
6.3 Deep Classification Operations . . . . . . . . . . . . . . . . . . 74
6.4 Level-Aware Expressions . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Deprecated Features . . . . . . . . . . . . . . . . . . . . . . . . 78

7 DOCL Prototype Implementation 81
7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Meta-Model Definition . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5 Triggering Constraint Evaluation . . . . . . . . . . . . . . . . . 89

IV Use Cases 91

8 Deep Modeling Styles 95
8.1 What is a Modeling Style? . . . . . . . . . . . . . . . . . . . . . 96
8.2 The Core Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 The Melanee Default Style . . . . . . . . . . . . . . . . . . . . . 106

9 Multi-Style Modeling 111
9.1 Level Organization Styles . . . . . . . . . . . . . . . . . . . . . 111
9.2 Classification Styles . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3 Inheritance Styles . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.4 Vitality Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.5 Cross-Level, Well-Formedness Styles . . . . . . . . . . . . . . . 124



xiii

10 Multi-Pattern Modeling 129
10.1 Classification Patterns . . . . . . . . . . . . . . . . . . . . . . . 130
10.2 Inheritance Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.3 Categorization Patterns . . . . . . . . . . . . . . . . . . . . . . . 134

V Evaluation 139

11 The Bicycle Challenge 143
11.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.3 Fulfillment of the Requirements . . . . . . . . . . . . . . . . . . 149
11.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

12 The Process Challenge 155
12.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.3 Fulfillment of the Requirements . . . . . . . . . . . . . . . . . . 163
12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

13 The Collaboration Challenge 173
13.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
13.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.3 Fulfillment of the Requirements . . . . . . . . . . . . . . . . . . 177
13.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

14 The Warehouse Challenge 181
14.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
14.3 Fulfillment of the Requirements . . . . . . . . . . . . . . . . . . 188
14.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

VI Significance 195

15 Related Work 199
15.1 OCL Variants and Tools . . . . . . . . . . . . . . . . . . . . . . 199
15.2 Alternative Constraint Languages . . . . . . . . . . . . . . . . 202
15.3 Multi-level Modeling Approaches . . . . . . . . . . . . . . . . 204



xiv

16 Conclusion 209
16.1 Problems and Requirements . . . . . . . . . . . . . . . . . . . . 210
16.2 Validity of the Hypothesis . . . . . . . . . . . . . . . . . . . . . 212
16.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Bibliography 217

A DOCL Grammar in ANTLR 4 231

B PLM Operation Reference 243



xv

List of Figures

2.1 The 14 Unified Modeling Language (UML) diagram types . . 19
2.2 An example application of the four-layer meta-model hierar-

chy [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The Earning/Burning Transaction snippet of the Royal & Loyal

example [120] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Orthogonal Classification Architecture (OCA) [11] . . . . . . . 30
3.2 The Pan-Level Model (PLM) [72] . . . . . . . . . . . . . . . . . 33
3.3 Level O0 of the Process Challenge . . . . . . . . . . . . . . . . . 34
3.4 Powertype definition in Level O1 of the Procecss Challenge . . 35
3.5 Level O1 of the Process Challenge . . . . . . . . . . . . . . . . . 35
3.6 Level O2 of the Process Challenge . . . . . . . . . . . . . . . . . 36

4.1 Compilation Process . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The steps of a compilation . . . . . . . . . . . . . . . . . . . . . 44
4.3 Tree structure of a sentence in English [5] . . . . . . . . . . . . 49
4.4 Tree structure of an arithmetic expression [5] . . . . . . . . . . 49
4.5 Parse tree for position := initial + rate * 60 . . . . . . . . . . . . . 50
4.6 Example parse tree for non-, left- and right-recursion [33] . . . 51
4.7 The role of a parser in the compalitation process . . . . . . . . 51

5.1 Reflective programming terminology and its application to re-
flective constraint writing defined by [48] . . . . . . . . . . . . 60

5.2 Linguistic Introspection . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Ontologocigal introspection . . . . . . . . . . . . . . . . . . . . 68

7.1 The Melanee Architecture [53] . . . . . . . . . . . . . . . . . . . 82
7.2 Meta-Model for constraints in LML . . . . . . . . . . . . . . . . 83
7.3 Semantics for saving constraints in LML . . . . . . . . . . . . . 84
7.4 An example of a parsed OCL statement . . . . . . . . . . . . . 85
7.5 Example of a parse tree with a combined logical expression . . 88
7.6 Data flow when executing/evaluating a constraint in Deep

Object Constraint Language (DOCL) . . . . . . . . . . . . . . . 89



xvi

8.1 Non-Monatonic abstraction anti-pattern . . . . . . . . . . . . . 98
8.2 Circular Classification Relationship Anti-pattern . . . . . . . . 99
8.3 Circular Inheritance Relationship Anti-pattern . . . . . . . . . 99
8.4 Inheritance example with different potencies . . . . . . . . . . 102
8.5 Inheritance example with mutability 0 values . . . . . . . . . . 106
8.6 Example of strict multi-level modeling . . . . . . . . . . . . . . 107

9.1 Example for isonynimic and hypominic instantiation . . . . . 115
9.2 Forms of generalization sets (inspired by [77]) . . . . . . . . . 119
9.3 Untyped Abstract Types Style . . . . . . . . . . . . . . . . . . . 123
9.4 Harmonious Horizontal Superclasses example . . . . . . . . . 123
9.5 A Metacycle [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.6 A Metabomb [18] . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.7 Type-Supertype Anti-Pattern . . . . . . . . . . . . . . . . . . . 126

10.1 Powertype Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 137

11.1 Bicycle Challenge first level . . . . . . . . . . . . . . . . . . . . 146
11.2 Bicycle Challenge second level . . . . . . . . . . . . . . . . . . 147
11.3 Bicycle Challenge third level . . . . . . . . . . . . . . . . . . . . 148
11.4 Bicycle Challenge fourth level . . . . . . . . . . . . . . . . . . . 149

12.1 Process Challenge Level O0 . . . . . . . . . . . . . . . . . . . . 159
12.2 Strong Odell Powertype Patterns . . . . . . . . . . . . . . . . . 160
12.3 Task Type Flow in the ACME SE Process . . . . . . . . . . . . . 161
12.4 Process Challenge Level O2 . . . . . . . . . . . . . . . . . . . . 163

13.1 Level O0 of the solution to the collaboration challenge . . . . . 175
13.2 Level O1 of the solution to the collaboration challenge . . . . . 176
13.3 Level O2 of the solution to the collaboration challenge . . . . . 176

14.1 Foundational types at Level O0 . . . . . . . . . . . . . . . . . . 184
14.2 Product Specifications at the O1 level . . . . . . . . . . . . . . . 185
14.3 Products at the O2 level . . . . . . . . . . . . . . . . . . . . . . . 186
14.4 Product copy instances at the O3 level . . . . . . . . . . . . . . 188



xvii

List of Tables

6.1 Classification checking methods [53] . . . . . . . . . . . . . . . 75

8.1 Inheritance Potency rules [85] . . . . . . . . . . . . . . . . . . . 102
8.2 Inheritance Durability rules [85] . . . . . . . . . . . . . . . . . . 104
8.3 Mutability rules (Durability >0) [85] . . . . . . . . . . . . . . . 105





xix

List of Abbreviations

ASM Abstract State-Machine

DOCL Deep Object Constraint Language

DSL Domain-specific Language

EMF Eclipse Modeling Framework

EOL Epsilon Object Language

GLL Generalized LL

GLR Generalized LR

GMF Graphical Modeling Framework

LML Level-agnostic Modeling Language

MDA Model-Driven Architecture

MDD Model-Driven Development

MLM Multi-Level Modeling

MLT Multi Level Theory

MOF Meta-Object Facility

OCA Orthogonal Classification Architecture

OCL Object Constraint Language

OMG Object Management Group

PLM Pan-Level Model

UML Unified Modeling Language





1

Part I

Introduction





3

This first part of the thesis contains the introduction which outlines the
problems addressed by the research, enumerates the requirements that a so-
lution needs to fulfill, defines the hypothesis the thesis explores, and sum-
marises the contributions the thesis makes to the state-of-the-art.





5

Chapter 1

Motivation

Multi-Level Modeling (MLM) was first proposed over 20 years ago as a way
of reducing the accidental complexity involved in modeling domains in which
one classification level needs to restrict and characterize concepts in multiple
classification levels below, rather than just one level below as in traditional
“two-level” modeling approaches [19]. The promise of this approach is evi-
denced by the large number of MLM languages that have since been devel-
oped to support the different MLM approaches and the size of the research
community currently working on different aspects of the technology. At the
time of writing the number of published MLM approaches is well over 25,
with 14 being supported by their own tools [63].

The diversity of the growing collection of MLM languages and the num-
ber of active MLM research groups highlights both the strength and weak-
ness of the MLM discipline, however. It is a sign of strength because it
shows that MLM addresses a real and growing need inadequately met by
traditional “two-level” modeling approaches like the Unified Modeling Lan-
guage (UML), but it is also a sign of weakness because it shows that the MLM
community is struggling to coalesce around a set of common concepts and
principles that reduce accidental complexity in the majority of deep charac-
terization scenarios.

A tried and tested strategy for addressing such a language design chal-
lenge, where the richness of the proposed language features tends to “hide
the wood for the trees”, is to separate the modeling features available to users
into two mutually supportive and synergistic languages - a core modeling
language that focuses on the basic features needed to allow the desired con-
cepts and information to be represented, and an accompanying constraint
language that facilitates their application in a rich but controlled variety of
ways. The most famous example of such a synergy is the UML and the Object
Constraint Language (OCL) [26, 47, 55, 103], in which the latter is a carefully



6 Chapter 1. Motivation

designed constraint language for the former. However, there are many oth-
ers, such as the UML/Epsilon language family [115], OCL/MOF, OCL/QVT,
Schematron/XML [67], or XOCL/XML [102].

To date, most of the research in MLM has focused on core modeling lan-
guages, with little attention paid to the accompanying constraint languages.
However, to control the large variety of cases and features that evidently
needed to be supported in MLM without making the core modeling lan-
guages unduly complex, more sophisticated and usable constraint languages
are needed that are optimized for the needs of multi-level modeling. Such
generally applicable constraint languages are the key to addressing several
fundamental problems in current MLM approaches in a concise and straight-
forward way without making the core language unduly cumbersome.

1.1 Problems

Beyond the use cases of traditional “two-level” object constraint languages,
there are three key challenges that multi-level object constraint languages can
most effectively address.

P1: Rigid Modeling Styles

The original, motivational use case for MLM was to support the model-based
definition and use of domain-specific languages (DSLs) (i.e., to support meta-
modeling). This use case requires models to adhere to certain rules by which
the elements at one level are related to elements at other levels - that is, to
be governed by a certain modeling “style”. To express a model of a domain
of interest (i.e., a domain model) using a language that itself is defined as
a metamodel, the former model must be related to the latter model in the
following way -

1. instances of elements of the metamodel (which represent components
of the DSL’s abstract syntax), must exist in the level immediately below,

2. all model elements in a model expressed using the DSL must be an
instance of an element in the metamodel at the level above.

However, another common use case for MLM is creating domain mod-
els with the primary goal of describing the deep characterization relation-
ships that exist in the domain of interest. In this use case, the above rules



1.1. Problems 7

are not necessarily appropriate, and styles that allow linguistic extensions
[41] and/or leap potency [44] become more natural. The former essentially
allows lower levels to include model elements that are not instances of any
higher-level element, while the latter allows the instances of a model element
to be at any level below that model element, not necessarily the level imme-
diately below.

Evidently, there is a need to provide flexible support for multiple styles
of MLM, on top of a common core language, where a particular style de-
fines how the features of the core language should be used and applied in a
particular circumstance or to achieve a particular goal.

P2: Ambiguous Modeling Styles

Closely related to the problem of too rigid modeling styles is the problem of
ambiguous modeling styles. This is caused by a lack of clarity about what
combination of features and rules are appropriate and effective for a partic-
ular modeling scenario, rather than by an inability to customize and adapt
them. For example, the first of the two relationships identified in the pre-
vious subsection is a fundamental pillar of the strictness paradigm which
underpins many multi-level modeling approaches. However, the second re-
lationship is not so fundamental. Early MLM papers [19] that advocated the
so-called “strictness” doctrine strongly implied that the second relationship
was as important as the first, but did not formally require this relationship.

Another example that shows how modeling rules in MLM can evolve and
be domain-specific is the deep instantiation mechanism that underpins the
deep modeling variant of MLM [17]. This uses the notion of potency to char-
acterize the “type facet” of model elements and control over how many lower
levels they can have instances. The first published rules regarding potency
were very clear and unequivocal [17] – in every instantiation step (i.e., lead-
ing to an “instanceOf” relationship) the potency of the instance has to be
one lower than the potency of the type. However, there are certain circum-
stances when this rule is too rigid – namely when the elements appearing in
a generalization set with an abstract subclass are all direct instances of the
same model element at the level above. To cope with this special case, Kühne
introduced a “relaxed” version of the potency, called “characterization po-
tency” [77] which only requires the potency of a direct instance of a model
element to be lower than that elements potency, but not necessarily lower by
one. The underlying rule that potency cannot be negative is not changed.



8 Chapter 1. Motivation

These examples show that the underlying rules governing the use of MLM
features in a particular multi-level model not only need to be customizable,
but they also need to be clearly and precisely defined in a language that end
users can understand.

P3: Unenforced Modeling Patterns

Modeling styles apply to one or more entire levels of a MLM, and often to the
whole MLM. However, there are also often smaller groups of model elements
that need to be applied in a controlled and uniform way in MLM. While
they do not cover all the elements in a level or multiple levels, such so-called
“patterns” can potentially involve quite a large number of model elements.
A well-known example of an MLM pattern is the powertype pattern which
was one of the original motivating factors for MLM. A powertype pattern
exists when the instances of one class are subclasses of another class - the
former is then referred to as the powertype of the latter. Two main variants
are recognized in the MLM literature – the Cardelli variant [27], where the
base type is an instance of the powertype, as well as the subclasses of the
base type, and the Odell variant [95], where the base type is not an instance
of the powertype, only the subclasses of the base type are.

The occurrence of this pattern, in different variants, is often used to illus-
trate MLM’s ability to improve the quality of models by ensuring instances
of metamodel elements have the desired properties and relationships. How-
ever, the requirement that model elements must adhere to a powertype pat-
tern is rarely explicitly defined and enforced. Moreover, even if it is clear to
a modeler that a powertype pattern is appropriate in a particular situation, it
is often not clear which particular variant is intended.

The effective use of MLM modelling language therefore requires a clear
and enforceable definition of what the use of particular patterns entails. It is
possible to address this need by adding dedicated features to core language
features to specify pattern applications, such as Multi Level Theory (MLT)
[30], but this is then hard-coded into the modeling language and can make
it bloated and complex. To solve this, A more flexible and scalable approach
is to keep the core MLM language as small as possible and use supporting
constraints defined in a suitable MLM-aware constraint language.



1.2. Requirements 9

1.2 Requirements

To address the aforementioned problems, a deep (i.e., MLM-aware) object
constraint language should ideally meet the following requirements.

R1: Precise and Unambiguous

Like any constraint language, a deep constraint language needs to be precise
and unambiguous. This means that the language needs to be founded on set
theory and first-order logic (predicate calculus). Graphical models alone are
usually not precise enough to convey all the information that a well-formed
model of a domain needs to convey. A constraint language needs to support
and augment the graphical notation to keep models uncluttered and make
specifications more precise [120].

R2: Simple and User Friendly

In order to support the basic MLM goal of reducing accidental complexity,
a deep constraint language needs to be accessible to mainstream software
engineers and domain experts. In other words, it should be easy for them
to use, and programming language style syntax should be preferred over
mathematical notation.

R3: Conservative Extension of Two-Level Modeling

The language should be a conservative extension to “two-level” modeling
languages in the sense that two-level constraints should be a special case
of multi-level constraints, and should closely resemble constraints written
in established object constraint languages. This means that a constraint on
a two-level model written in a two-level constraint language (e.g., OCL)
should be directly representable in a deep constraint language with few if
any workarounds.

R4: Level Adjuvant

To be multi-level (i.e., deep), the language should not only be “aware” of
multiple classification levels, but it should also provide features to enable
and simplify constraints supporting deep characterization. This includes fea-
tures to express the range of levels at which constraints should apply within
a stack of classification levels.



10 Chapter 1. Motivation

R5: Reflective

Finally, as well as supporting the flexible definition of constraints that can
enhance the representational richness and subtlety of multi-level models,
multi-level constraint languages should also provide linguistic constructs to
allow their own features to be queried – that is, they should be reflective.
This requires the language definition to be fully modeled within the Orthog-
onal Classification Architecture (OCA), and the abstract syntax elements to
be fully accessible. Thus, making the language aware of the dimensions ex-
isting in the OCA. The reflective features of the deep constraint language can
access the linguistic dimension by just querying for type name in the linguis-
tic dimension.

1.3 Research Method

The premise underlying this thesis is that it is possible to define and imple-
ment a language, as an extension of the OCL, that fulfills requirements R1-R5
for models represented in the core language, in this case, the Level-agnostic
Modeling Language (LML). In other words, the research presented in this
thesis is based on the following hypothesis –

Hypothesis. “It is feasible to define and implement an OCL-based, deep con-
straint language to support reflective, level-adjuvant, and dimension-aware
constraints on deep (i.e., multi-level) models represented using the LML”.

Since the developed language enhances the deep modeling approach sup-
ported by the LML, we refer to it as the Deep Object Constraint Language
(DOCL).

The research approach used to explore the validity of this hypothesis is
the “design science” methodology. To this end, we, therefore, applied the
seven design science ingredients of Hevner et al. [60] in the following way –

• Problem Relevance: we identified the need for, and the relevance of, the
envisaged deep object constraint language.

• Design as an Artefact: we constructed a prototype implementation for
Melanee, the MLM tool, as a plug-in extension.

• Design Evaluation: we evaluated the utility, quality, and efficacy of the
developed technology by using it to (a) precisely define, and enforce
the use of, well-known multi-level modeling styles and (b) ensure the
consistent use of well-known patterns in multi-level modeling.



1.3. Research Method 11

• Research Contributions: we demonstrated the utility of the approach in a
range of recognized modeling scenarios (i.e., the various “Challenges”
defined in the MULTI workshop series).

• Research Rigor: we developed formal models of the syntax of the lan-
guage and informal descriptions of the semantics of the language’s fea-
tures.

• Design as a Search Process: we constructed and evaluated the prototype
implementation of the language environment in an agile manner using
the established benchmark models in the multi-level modeling commu-
nity.

• Communication of Research: we published key aspects of the language in
various international workshops, conferences, and journals.

1.3.1 Foundation Languages

In order to support a multi-level modeling approach that fulfills the afore-
mentioned requirements it is necessary to have (a) a mature multi-level mod-
eling language to serve as the core language upon which the constraint lan-
guage operates, and (b) a mature, underlying, “two level” constraint lan-
guage that has already successfully fulfilled the multi-level, agnostic require-
ments R1, R2, and R3.

Level-Agnostic Modeling Language: The language chosen for (a) is the
LML developed at the University of Mannheim because it is one of the rich-
est and most mature MLM languages. Since it is based on the “deep instan-
tiation” mechanism supported by most MLM languages, LML is sometimes
characterized as supporting a flavor of MLM known as “deep modeling”.

Object Constraint Language: The language chosen for (b) is the OCL, stan-
dardized by the Object Management Group (OMG), which is by far the most
widely used constraint language in graphical modeling. It was specifically
developed to support R1 and R2 and has a mature range of supporting im-
plementations. OCL was also designed to complement the UML as the core
language. This matches LML’s philosophy of providing features that support
UML’s “look and feel” wherever possible.



12 Chapter 1. Motivation

1.3.2 Research Communication

The research conducted as part of this thesis has been presented in vari-
ous international workshops and journals, including the MULTI workshop
at MODELS in 2018, 2019, 2021, 2022, and 2023, the Enterprise Modeling and
Information Systems Architectures Journal (EMISAJ), and the International
Conference of Systems Modelling and Management (ICSMM).

1.4 Outline

The thesis is split into six parts that group the chapters of this thesis themat-
ically together. The first part, called “Introduction”, contains this introduc-
tion. The second part, the “Background”, includes the foundational topics
where key technologies that are the basis of this thesis are introduced and ex-
plained. Part three, “DOCL”, presents a comprehensive overview of the con-
straint language developed for the multi-level modeling paradigm. The next
part, “Use Cases”, presents examples of the application of DOCL in the men-
tioned modeling environment. In particular, we show what reflective powers
the constraint language offers to users and how modeling styles and patterns
can be controlled using DOCL. Part five, “Evaluation”, contains chapters that
deal with solutions to challenges posed by the multi-level modeling commu-
nity and where DOCL was used extensively to fulfill all requirements. The
last part, “Significance”, contains the related work and conclusion chapters
to contextualize this work in the proper scientific field and to conclude this
thesis.



13

Part II

Background





15

The second part of the thesis provides an overview of the background
technologies upon which the presented solution is founded. The first chap-
ter provides an introduction to the general area of model-driven develop-
ment, as well as a detailed overview of the OCL which is enhanced in the
thesis. The second chapter provides an introduction to the field of multi-level
modeling, which is where the thesis makes its contribution, an overview of
the Level-agnostic Modeling Language (LML) which the developed technol-
ogy is designed to complement, and a summary of the Melanee multi-level
modeling tool which implements the language developed in the thesis. Fi-
nally, the third chapter provides an overview of the theory behind formal
languages as well as practical tools to realize them.





17

Chapter 2

Model-Driven Development

The modern form of model-driven development recognized today emerged
in the early 1990s when many of the disparate analysis and design languages
existing at the time were merged into the UML [4]. The goal was to raise the
level of abstraction at which properties of software systems could be repre-
sented, primarily using graphical languages, to increase the productivity of
developers [11] and expand the range of stakeholders able to understand the
system’s features [49]. Model-Driven Development (MDD) is a software de-
velopment paradigm in which models take center stage in the development
process. This contrasts with other development paradigms where models
serve primarily as documentation or as intermediate artifacts.

MDD can be described as a two-faceted paradigm [109], that combines
the concept of pre-standardised DSLs with transformation engines. The for-
mer offers the means to express concepts in customized languages that, in
contrast to general-purpose languages, are tailored to the needs of particular
domains, while the latter offers the means to transform information modeled
in the DSL to instances of other models (i.e., via model-to-model transforma-
tions) or to text (i.e., via model-to-text transformations).

The core tenet of MDD is, therefore, that every artifact of the software
development process is considered a model [24]. According to Stachowiak
[112], models –

1. are representations of natural or artificial originals, which can them-
selves be models (mapping),

2. do not capture all attributes of the original that they represent but are
reductions that only contain the attributes that are relevant to the creator
or user of the model (reduction),

3. always have a certain purpose (pragmatism).

This definition of model properties is an appropriate foundation for the
MDD method.



18 Chapter 2. Model-Driven Development

2.1 The Model-Driven Architecture

MDD covers the general idea of using models to drive the software engi-
neering process. However, there are numerous specific incarnations of MDD
that prescribe specific strategies and languages for applying it. One of the
most important and well-known is the so-called Model-Driven Architecture
(MDA) approach developed and maintained by the OMG – the organization
that owns the UML standard.

To cope with the myriad of implementation technologies available today,
the MDA emphasizes the separation of the specification of a system’s func-
tionality from the details of how it is implemented. This separation of con-
cerns facilitates the creation of platform-independent models (PIMs), which
describe the system’s functionality in a technology-independent way. The
information encoded in them is therefore not tailored to a specific execution
platform but instead can be deployed to various execution environments by
applying appropriate transformations. More specifically, PIMs can be trans-
formed semi-automatically into different platform-specific models (PSMs)
for different execution environments.

The two modeling standards at the core of the MDA are the Meta-Object
Facility (MOF) [3] and the UML. The MOF provides a common language
and framework for defining and managing models, while the UML provides
a graphical notation for creating models that describe software systems and
all other kinds of subjects. Platform-independent models are usually repre-
sented using the UML, and describe the system at a high level of abstrac-
tion, using concepts such as classes, objects, and relationships. The ultimate
goal of the MDA approach is to automate the process of creating code from
models, using model transformations. Model transformations are rules that
define how platform-independent models can be translated into platform-
specific models and eventually into code, largely automatically. This ap-
proach improves the quality of software artifacts, reduces development costs
and time, and enhances maintainability and scalability [74].

2.1.1 The Unified Modeling Language

UML, which lies at the heart of the MDA approach to MDD, was devel-
oped with the goal of describing software systems using graphical notations
[25]. The current version of UML [4] identifies 14 different types of diagrams,



2.1. The Model-Driven Architecture 19

Structure
Diagram

Profile
Diagram

Class
Diagram

Object
Diagram

Activity
Diagram

Sequence
Diagram

Timing
Diagram

Communication
Diagram

Use Case
Diagram

Component
Diagram

Package
Diagram

Deployment
Diagram

Composite
Structure
Diagram

Interaction
Overview
Diagram

Behaviour
Diagram

Diagram

Interaction
Diagram

State Machine
Diagram

FIGURE 2.1: The 14 UML diagram types

which are called language units. These different diagram types can be cate-
gorized into two basic types – structural and behavioral – as shown in Fig-
ure 2.1. Behavioral diagram types provide “dynamic” views of systems by
describing the step-by-step actions that occur in a software system. A sub-
category is interaction diagrams which describe how the flow of information
through a software system is controlled. The seven kinds of structure dia-
grams describe the “static” properties of systems, including their architec-
ture.

2.1.2 The Meta-Object Facility

The MOF is a meta-language for defining domain-specific languages, which
since 2005 has been closely aligned with, and integrated into the UML in-
frastructure. It is the most general meta-model within the MDA and is able
to support the definition of any conceivable language. The MOF is also self-
describing, i.e., it conforms to itself and serves as the meta-model for the
definition of the UML.

Figure 2.2 shows the four-layer meta-model hierarchy of the UML infras-
tructure [4]. This contains four model levels in which “each (except the top)
[is] characterized as an instance of the level above” [11]. The bottom level is
the so-called “M0” level and contains the data objects the software is meant
to manipulate. The level above is called “M1” and holds the user model,
which models the classes of objects (i.e., instances) that can occur at “M0”.
The next level is called “M2” which is where the UML is defined. Since this
level contains a model of the user model at "M1", it is traditionally referred
to as a meta-model. The top level is called “M3” and contains the MOF. The
MOF is the meta-model for all models at level "M2" [11].



20 Chapter 2. Model-Driven Development

Class

〈〈instanceOf〉〉

Attribute Class Instance

Video : Video

aVideo

〈〈instanceOf〉〉〈〈instanceOf〉〉

classifier

+ title: String title = ”2001: A Space Odyssey”

〈〈instanceOf〉〉

〈〈instanceOf〉〉 〈〈instanceOf〉〉 〈〈instanceOf〉〉

〈〈snapshot〉〉

〈〈instanceOf〉〉

M3 (MOF)

M2 (UML)

M1 (User Model)

M0 (Run-time instances)

FIGURE 2.2: An example application of the four-layer
meta-model hierarchy [4]

2.1.3 Auxiliary MDA Languages

The UML and MOF are augmented by a large suite of additional, auxiliary
languages to support the MDA approach. These include but are not limited
to the –

Object Constraint Language (OCL): OCL [96] is a textual language used
to express constraints and queries on UML models. It provides a way to spec-
ify additional rules and conditions that cannot be easily represented through
the graphical notations of UML and thus helps enhance the precision and
expressiveness of UML models. Since UML version 2, OCL has been an of-
ficial part of the UML specification and has become the de-facto standard
constraint language in MDD.

Query/View/Transformation (QVT): QVT [3] is a model transformation
language. It defines a set of transformation operations to manipulate and
convert models from one representation to another. QVT enables the auto-
matic generation of code or other artifacts from models. These models must
conform to the MOF so that the MOF can support three categories of trans-
forming operations (or use cases) in a modeling environment – transforma-
tion, query, and view operations.

XML Metadata Interchange (XMI) Standard: XMI [122] is a standard



2.2. Object Constraint Language 21

for exchanging metadata information in XML format. It provides a way to
serialize models represented in UML or other MOF-compliant languages and
transfer them between modeling tools or repositories.

Common Warehouse Metamodel (CWM): CWM [101] is a language for
modeling and exchanging metadata about data warehouses and business in-
telligence systems. It provides a standardized way to represent and manipu-
late metadata related to data integration, data transformation, and data min-
ing.

UML Profile Mechanims: UML profiles [7] allow the UML to be tailored
to particular specific domains, industries, or platforms. By using the profil-
ing mechanism, it is possible to define sets of UML elements, relationships,
and stereotypes tailored to the modeling needs of a particular problem do-
main or application. UML profiles provide a way to simulate the extension
of the UML’s metamodel and notation to accommodate domain-specific con-
cepts and modeling constructs. Key examples of standard profiles include
SysML [58] (for systems engineering), BPMN [32] (for business process mod-
eling), MARTE [116] (for modeling and analysis of real-time and embedded
systems), CCM [88] (for component-based programming), EDOC [51] (for
building PIMs of enterprise applications), EAI [51] (for application integra-
tion and building loosely-coupled systems), QoS [40] (for modeling quality
of service and fault tolerance requirements), and UTP [22] (for supporting
automated testing in MDA-based development environments).

2.2 Object Constraint Language

The focus of this thesis is the OCL, which is designed to be used in tandem
with an accompanying modeling language like the UML rather than in a
stand-alone setting. Every expression in the OCL is therefore made in the
context of a model element expressed in the accompanying modeling lan-
guage, usually a class specification, and constrains the values that can be
assigned to that model element, or related model elements, in instances of
the model [120]. OCL expressions are not allowed to alter the underlying
model in any way [120] and are thus “declarative”. The language is used to
make models more precise [110] and add information that would otherwise
be overwhelming when expressed in a visual notation.

Unfortunately, when reasoning about UML/OCL models, OCL expres-
sions are generally undecidable [23]. This means that the termination of rea-
soning algorithms or the delivery of correct output can not be ensured. The



22 Chapter 2. Model-Driven Development

root of the problem is that the expressiveness of OCL goes beyond first-order
logic [97]. However, under certain circumstances, OCL expressions can be
made decidable (see Section 15.1.6).

Models, in general, are an abstraction of the problem domain and, there-
fore, can be incomplete, informal, and imprecise [119]. This has the advan-
tage they are simple and easily understandable for most people, especially
when portrayed in graphical notations. However, it is also a reason why an
additional language (often textual) is needed to add precision to the mod-
els. The combination of the graphical (easily understandable) and the textual
(more complex) languages offers the best of both worlds to all the stakehold-
ers in a model [119].

OCL’s approach for specifying behavior is based on the “Design by Con-
tract” principle [91] which, in turn, is inspired by the legal notion of a con-
tract. According to this principle, software components should define their
expected behavior in the form of contracts that their operations (a.k.a. meth-
ods) enter into when invoked. An operation’s contract specifies the precondi-
tions, postconditions, and invariants that must be satisfied for it to be judged
as behaving correctly. Preconditions specify what must be true before a par-
ticular operation can be invoked, while postconditions specify what must be
true after the operation has been performed (assuming the precondition was
true). Invariants are conditions that must hold true at all times, whenever an
operation is not executing.

By using contracts to specify the behavior of software components, the
OCL helps to ensure that software is reliable, robust, and easy to maintain.
In addition, because contracts are expressed in a formal language, they can
be used to automatically generate test cases and verify the correctness of soft-
ware implementations.

The root of every OCL expression is the context (usually a class) it is de-
fined in. From the context, users can “navigate” over the model by, for exam-
ple, accessing attributes or traversing connections. When the user navigates
the model from the context to another connected class the result is a collec-
tion. Depending on the multiplicities of the navigated connections, the result
is either a Set or a Bag. A Set is a collection in which every member is unique
(i.e., has no duplicates), whereas a Bag is a collection that allows duplicates.
Given the nature of associations in the UML, the first navigation in a naviga-
tion chain always results in a Set. Further, navigation, in general, results in a
Bag. Since a set is a specific case of a bag, it is important to be clear whether
a resulting collection is truly a Set or a Bag. In total, there are four collection



2.2. Object Constraint Language 23

types in the OCL – Set, Bag, OrderedSet, and Sequence.
The basic building blocks of OCL expressions are objects and object fea-

tures. Each object has a particular type from which it was instantiated and
therefore offers the corresponding set of features. OCL recognizes two cate-
gories of types, user-defined model types and predefined types such as Inte-
ger, Real, String, and Boolean, as well as the aforementioned collection types.
User-defined types are the classes in the accompanying model. Every class
or interface the user introduces in the model is automatically an OCL type
that can be referenced in OCL expressions so that its attributes, operations,
and associations can be used for navigation.

As well as being either user-defined or predefined, OCL types are also
either object types or value types. An object type is a type that represents
a class of objects, while a value type is a type whose “instances” represent
specific values. In OCL, object types can be used to specify constraints on
the behavior of their instances, such as preconditions and postconditions of
operations or invariants that must be satisfied at all times. Object types can
also specify constraints on relationships between objects, such as associations
and aggregations.

A value type, on the other hand, is a type whose “instances” represent
specific values, such as a number or a specific string. Value types do not
have state or behavior, and they are typically used to specify constraints on
the values of attributes or parameters. Object types and value types are rep-
resented using the same syntax. However, their semantics are fundamentally
different, and it is important to understand the distinction when specifying
constraints in OCL.

As mentioned previously, the “Design by Contract” principle is the inspi-
ration for three kinds of constraints available to modelers in OCL, invariants,
pre- and postconditions. Overall, OCL supports seven distinct kinds of con-
straints -

• Invariant constraints

• Pre constraints

• Post constraints

• Body constraints

• Definition constraints

• Init constraints



24 Chapter 2. Model-Driven Development

• Derive constraints

A Body constraint has an operation as its context and defines the behavior
of that operation in terms of input parameters and return values. These can
either be individual OCL types or sets of types. A Definition constraint allows
new attributes and operations to be introduced into a model without using
the associated graphical language. The context of such a constraint is a class
or an interface. When adding a new attribute, a definition constraint can
also assign a value to it via an expression of the appropriate type. A new
operation can be added in basically the same way but the return type is not
restricted to OCL’s predefined types.

An Init constraint allows a modeler to assign initial values to an attribute.
The context is always the attribute that is assigned that initial value, which
is specified in the associated expression. Instead of assigning a value to an
attribute, values can also be derived and changed depending on the state of
the whole system. The Derive constraint is also defined in the context of an
attribute and derives the value of an attribute depending on an expression.

Every model type in OCL is regarded as a subtype of OclAny and an in-
stance of OclType. OclAny, defines a range of operations which are therefore
available on all object types in a model –

• object1 = object2 (equals)

• object1 <> object2 (unequals)

• object.oclIsUndefined()

• object.oclIsKindOf()

• object.oclIsTypeOf()

• object.oclIsNew()

• object.oclAsType(object2)

• object.oclInState(state)

• object.allInstance()

Every operation in this list, with the exception of oclAsType() and allInstances(),
has the return type “Boolean”. The oclAsType() operation returns a cast of the
object to another type (i.e., the return type is the type that was passed in the
parameter) as long as the object is castable into the desired type.



2.2. Object Constraint Language 25

Transaction

EarningTransaction BurningTransaction

FIGURE 2.3: The Earning/Burning Transaction snippet of the
Royal & Loyal example [120]

The allInstances() operation returns a set of instances of the class con-
cerned. This operation has to be handled with care because it is usually im-
possible to estimate how big the resulting set is going to be(i.e., how many
instances will exist when this operation is executed). If possible this opera-
tion should therefore be avoided.

The oclIsUndefined() operation checks if the object in question is defined(i.e.,
not null or of type oclVoid). This type is returned to indicate when an opera-
tion fails due to incorrect type casting or when an attempt is made to get an
element from an empty collection.

Finally, the oclIsTypeOf() and the oclIsKindOf() operations are used to check
what classes in an inheritance hierarchy an object is a direct or indirect in-
stance of. The oclIsTypeOf() operation takes a class as an input parameter and
returns true if the instance is a direct instance of this type. The oclIsKindOf()
operation is the same, except it returns true if the instance is a direct or indi-
rect instance of the parameter.
context BurningTransact ion

s e l f . oclIsKindOf ( Transact ion ) = t rue
s e l f . oclIsTypeOf ( Transact ion ) = f a l s e
s e l f . oclIsKindOf ( BurningTransact ion ) = t rue
s e l f . oclIsTypeOf ( BurningTransact ion ) = t rue
s e l f . oclIsKindOf ( EarningTransact ion ) = f a l s e
s e l f . oclIsTypeOf ( EarningTransact ion ) = f a l s e

CONSTRAINT 2.1: Truth values for the oclIsKindOf() and

oclIsTypeOf operations in the context of BurningTransaction

This difference is illustrated by the six different expressions shown in
Constraint 2.1 based on the small class diagram shown in Figure 2.3. All
six expressions are evaluated in the context of BurningTransaction, and check
whether the type passed as a parameter is a direct (OclIsTypeOf ) or indirect
(i.e., OclIsKindOf ) type of an instance of BurningTransaction. A direct type of
an instance is also regarded as being an indirect type of that instance, but not
vice versa.

The first expression returns true because Transaction is a direct type of
BurningTransaction, while the second is false because Transaction is not a direct



26 Chapter 2. Model-Driven Development

type of BurningTransaction. When the parameter is BurningTransaction both
OclIsTypeOf and OclIsKindOf return true because BurningTransaction is both
a direct and an indirect type of BurningTransaction. On the other hand, when
the parameter is EarningTransaction both OclIsTypeOf and OclIsKindOf return
false because EarningTransaction is neither a direct nor an indirect type of
BurningTransaction.

2.2.1 Collection Operations

As mentioned previously, in OCL there are four different collection types:
Set, Bag, Sequence, and OrderedSet. Each has a set of predefined standard
operations that can be used to manipulate and iterate over the elements in
the collection.

The standard collection operations in OCL are categorized into five groups
based on the type of operation they perform –

• Basic operations: These operations include "includes", "excludes", "union",
"intersection", and "difference" and allow elements to be added or re-
moved from a collection, or two collections to be combined into a single
collection.

• Comparison operations: These operations include "equals" and "notE-
quals" and allow two collections to be compared to see if they contain
the same elements.

• Set operations: These operations include "isSubsetOf", "isProperSubsetOf",
"symmetricDifference", and "flatten" and allow set operations to be per-
formed on collections, such as determining whether one collection is a
subset of another or computing the symmetric difference between two
collections.

• Ordering operations: These operations include "first", "last", "indexOf",
"at", and "subSequence" and allow elements to be retrieved from a col-
lection based on their position or index.

• Iteration operations: These operations include "forAll", "exists", "se-
lect", "reject", "collect", and "iterate" and make it possible to iterate over
the elements in a collection and perform various operations on them,
such as filtering them based on a condition or transforming them into a
new collection. The iterate operation is a special case because it can be
used to define the semantics of every other iteration operation. It is the



2.2. Object Constraint Language 27

most general iteration operation that is used for complex constraints
that are not expressible using the other standard iteration operations.

These are just a few examples of the standard collection operations avail-
able in OCL. By using these operations, it is possible to manipulate and query
collections in powerful and flexible ways, and to work with complex data
structures in OCL models.

All of the OCL features and operations presented in this chapter were de-
fined for, and only work in, a two-level setting. That means that constraints
only apply to the instances of the model elements that form the context of the
constraint - i.e., at the level immediately below. OCL constraints on a UML
class diagram are evaluated on instances of the classes specified in the class
diagram.





29

Chapter 3

Multi-Level Modeling

The MLM paradigm was developed to address the limitations caused by the
traditional assumption that models exist in the context of only two levels –
the “model” level, containing model elements that define the classes of ob-
jects that can exist, and the “instance” level, where those objects reside. The
objects at the instance level are thus “instances of” model elements at the
model level. Many aspects of the UML notation, such as the class naming no-
tation, the dichotomy between attributes and slots, the dichotomy between
associations and links, etc., make it difficult and awkward to represent mod-
els existing within a multi-level model stack (i.e., that are both models and
instances at the same time) [19].

Multi-level modeling languages were developed to address this problem
by offering level-agnostic modeling syntax (both abstract and concrete) that
recognizes the duality of many of the modeling concepts comprising (inter-
mediate levels of) multi-level models and by providing features that allow
types to characterize more than just their immediate instances [19].

Since the emergence of the MLM paradigm, many different language di-
alects and variants have emerged that occupy different niches in the MLM
community and specialize in different application fields. The thesis focuses
on an approach often characterized as “deep” multi-level modeling or “deep
modeling” for short.

3.1 Deep Modeling

As several authors have pointed out, traditional attempts to scale up classic
two-level modeling languages to accommodate multiple model levels have
fundamental problems. The most famous attempt is the venerable four-layer
“UML infrastructure” defined by the OMG to support the Model-Driven Ar-
chitecture (MDA) built around a "meta-modeling” approach to language de-
sign and extension [19, 41].



30 Chapter 3. Multi-Level Modeling

Clabject

Breed

Collie

Lassie
{ {L1 L2

O0

O1

O2

linguistic
instance-of

linguistic
instance-of

linguistic
instance-of

ontological
instance-of

ontological
instance-of

represents

represents

represents

L0 {{
FIGURE 3.1: Orthogonal Classification Architecture (OCA) [11]

When a language like the UML, fundamentally designed to support only
two classification levels, is used to model domains that naturally span more
than two levels, modelers are often forced to compress the representation of
multiple domain levels into just two model levels. This invariably requires
the use of so-called “workarounds” that make the resulting models overly
complex [41] and increase the accidental complexity they contain [19]. Deep
modeling was designed to address this problem.

3.1.1 Orthogonal Classification Architecture

One of the fundamental principles of deep modeling is to recognize two fun-
damentally different kinds of classification relationships and organize their
content along two orthogonal dimensions. This gives rise to the so-called
“Orthogonal Classification Architecture" (OCA) illustrated schematically in
Figure 3.1. The dominant dimension is the linguistic dimension, shown hori-
zontally in Figure 3.1, which captures how (i.e., in what form) concepts in the
domain of interest are modeled (e.g., classes/objects, attributes/slots, associ-
ation/links, etc.). The other dimension is the ontological dimension, shown
vertically in Figure 3.1, within which a single level of the linguistic dimen-
sion (i.e., L1) represents multiple, domain classification levels. The linguistic



3.1. Deep Modeling 31

meta-model is depicted on the right-hand side of Figure 3.1. Every model
element in L1 is a linguistic instance of Clabject.

In this example, the model has three ontological levels called O0, O1, and
O2. The first ontological level, O0, shown at the top contains the Breed entity,
a linguistic instance of Clabject. The second level accommodates the Collie
entity, which has two types, an ontological type, Breed, and a linguistic type,
Clabject. The third level contains the Lassie entity which also has two types,
an ontological type, Collie, and a linguistic type, Clabject. The model elements
in L1 represent the concepts and objects in the real world, which are stored in
L0. The relationships between L1 and L0 are thus “represents” relationships
rather than a classification relationship, just like the relationship between the
bottom two levels of the MDA infrastructure.

When expressed using a language that supports deep instantiation, mod-
els are more capable of capturing the complexity of domains, representing
diverse relationships, and accommodating hierarchies that extend beyond a
single level. This flexibility enhances the utility and power of models in many
application domains, such as knowledge representation, reasoning, and se-
mantic querying.

3.1.2 Deep Classification

Deep characterization refers to the description of relationships and constraints
between properties, attributes, and/or features of elements across multiple
classification levels [81]. In other words, it involves the capturing and rep-
resenting of domain characteristics that extend beyond a single level of ab-
straction or classification [19]. In multi-level modeling, deep characterization
facilitates a more nuanced and comprehensive representation of model ele-
ments by considering their attributes or properties in relation to higher-level
concepts and their associated instances. It goes beyond surface-level descrip-
tions and enables a richer understanding of the relationships and distinctions
between elements at different levels of classification and abstraction. Deep
characterization is therefore usually employed in situations where a complex
system or domain requires finer-grained distinctions and a more detailed
representation of the entities involved. Among other things, it allows spe-
cific characteristics that are relevant and applicable across multiple levels of
classification [81] to be represented concisely and precisely.



32 Chapter 3. Multi-Level Modeling

3.1.3 Deep Instantiation

Deep instantiation, as opposed to “shallow instantiation”, is one mechanism
for supporting deep characterization used by numerous multi-level model-
ing languages. It uses an additional concept, such as potency, to describe
the ability of a class to govern the form of its offspring over multiple classi-
fication levels [19]. Shallow instantiation, the classic two-level modeling ap-
proach, cannot accommodate classification hierarchies that are deeper than
one level.

With shallow instantiation, there is a clear separation between classes
(i.e., abstract concepts in a model) and their instances. Instances are di-
rectly related to classes, but there is no provision for creating instances of in-
stances of classes. This limitation severely limits model expressiveness when
representing classification hierarchies that naturally have multiple levels or
when there is a need to represent more complex relationships between in-
stances. Deep instantiation, on the other hand, enables the creation of in-
stances within a multi-level classification hierarchy, providing greater ex-
pressiveness and flexibility in representing the relationships and structures
naturally occurring in many real-world domains.

3.2 The Level-agnostic Modeling Language

The Level-agnostic Modeling Language (LML), developed by the Software
Engineering Group at the University of Mannheim [14], is an OCA-based
deep modeling language whose semantics and syntax (both abstract and con-
crete) were designed to be –

1. fully level-agnostic, so that there are no notational or representational
differences in the way a model element is represented just because of
the level it occupies. In other words, all concepts are represented in the
same way regardless of what level they occupy.

2. as UML-like as possible, consistent with the previous goal, so that LML
models have a look-and-feel that experienced UML modelers will be as
familiar with as possible.

Since it is defined in the context of the OCA, LML’s metamodel corre-
sponds to L2 of the linguistic dimension. In [72], where it was originally
defined, this is called the Pan-Level Model (PLM) since it defines the con-
cepts that span the ontological levels. The PLM, shown in Figure 3.2, is thus



3.2. The Level-agnostic Modeling Language 33

 

FIGURE 3.2: The Pan-Level Model (PLM) [72]

the metamodel for LML and defines the abstract syntax available for repre-
senting deep models. To give an example of LML’s use and provide a setting
to explain its main features, Figure 3.3, 3.4, 3.5 and 3.6 present an LML “solu-
tion” to the so-called “Process Challenge” that was published in the EMISAJ
special issue [83].

Element: The most abstract construct in the PLM level is the class Element,
from which every class inherits directly or indirectly, except Subtype, Super-
type and Package).

DeepModel: This class serves as the container for every model element the
user can create in a multi-level model. It directly contains the classes Level
and Enumeration. In a DeepModel, levels are connected via the content compo-
sition relationship. An example of a DeepModel is the collection of diagrams
in Figure 3.3 through 3.6.

Level: The Level concept is used to create ontological levels in a DeepModel
and can be instantiated an arbitrary number of times. It serves as the con-
tainer for Clabjects, Correlations, and Features. These can be accessed from a



34 Chapter 3. Multi-Level Modeling

ProcessElement0ProcessType2

StartEventType2

AndJoinType2

SplitEventType0

OrSplitType2 OrJoinType2

TaskType0

 expectedDuration2: Integer1
  beginDate2: String2

  endDate2:String2

NormalTaskType2 CriticalTaskType2

ArtifactType2

ArtifactKindType2

 kind2: String2

producedBy

ActorType0

performedBy

JuniorActorType2

SeniorActorType2

kind

followedBy

ValidationTaskType2

usedBy

target

source

Actor1

 name1: String1
createdBy

Element0

 lastUpdated2: String2
content

process

3..*

1

ControlEventType0

FinalEventType2

AndSplitType2

JoinEventType0

performer

task

task

task

task

1

1..*
creatorassociatedWith

referencedBy

FIGURE 3.3: Level O0 of the Process Challenge

level via the content relationship. For example, Figure 3.3 corresponds to one
level in the aforementioned deep model.

Clabject: The Clabject is the core concept of multi-level modeling. The name
is a composition of “Class” and “Object” (“Cla-bject”), to highlight the fact
that it is meant to capture the duality of these concepts. A clabject is both a
class (i.e., has a class facet) and an object (i.e., has an object facet) at the same
time. A clabject can serve as a type for other clabjects and be an instance of
another clabject. In the meta-model, the class Clabject contains Features which
are specialized into Attributes and Methods.

Entity: This class is one of the two concrete sub-classes of Clabject. This con-
cept is related to the Class and Object concepts in UML since it represents both
types and individuals. In Figure 3.3 the model element called ProcessType is
an instance of Element.

Connection: The Connection concept is the other concrete sub-class of Clab-
ject. It corresponds to association classes in UML and contains attributes
or methods. Connections are connected to entities via ConnectionEnds. At
least two connection ends must exist within a connection instance. Connec-
tion ends can also have different semantics. There are “normal” connection
ends that connect clabjects with each other without special semantics. The
connection between TaskType and ActorType in Figure 3.3 is an example. A
filled black diamond at the end of a connection represents a “composition”.



3.2. The Level-agnostic Modeling Language 35

ACMEActor0

 name1: String1 

Tester1:SeniorActorType

 lastUpdated1:String = '5.5.2021'1

Analyst1:JuniorActorType

 lastUpdated1:String = '5.5.2021'1

Developer1:JuniorActorType

 lastUpdated1:String = '5.5.2021'1

Reviewer1:SeniorActorType

 lastUpdated1:String = '5.5.2021'1

Tester&Analyst1:SeniorActorType

 lastUpdated1:String = '5.5.2021'1

(A) Actor powertype

ACMEArtifact0

 version1: String1 

Review1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

RequirementSpecification1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

TestCaseDesingReport1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

CodeModule1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

TestReport1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

(B) Artifact powertype

FIGURE 3.4: Powertype definition in Level O1 of the Procecss
Challenge

Design1:NormalTaksType

 expectedDuration1:Int = 40       beginDate1: String1

 endDate1:String1        lastUpdated1: String = '5.5.2021'1 

TestCaseDesign1:CriticalTaskType

  expectedDuration1:Int = 60          beginDate1: String1           endDate1:String1        lastUpdated1: String = '5.5.2021'1

Coding1:NormalTaksType

 expectedDuration1:Int = 30       beginDate1: String1       endDate1:String1       lastUpdated1: String = '5.5.2021'1     

TestCaseReview1:ValidationTaskType

  expectedDuration1:Int = 60        beginDate1: String1           endDate1:String1         lastUpdated1: String = '5.5.2021'1

CodeModule1:ArtifactType

 lastUpdated1: String = '5.5.2021'1

ProgrammingLanguage1:ArtefactKindType

 kind1:String1          lastUpdated1: String = '05.05.2021'1

Testing1:NormalTaskType

  expectedDuration1:Int = 90          beginDate1: String1

  endDate1:String1         lastUpdated1:String = '5.5.2021'1

TestReport1:ArtefactType

 lastUpdated1: String = '5.5.2021'1

ACMESoftwareEngineeringProcess1:ProcessType

RequirementAnalysis1:NormalTaskType

  expectedDuration1:Int = 60            beginDate1: String1

  endDate1:String1         lastUpdated1: String = '5.5.2021'1
RequirementSpecification1:ArtefactType

 lastUpdated1: String = '5.5.2021'1

TaskDesigner0:Actor

 name0: String = 'Bob Brown'0         lastUpdated1: String = '5.5.2021'1

TestCaseDesignReport1:ArtefactType

 lastUpdated1: String = '5.5.2021'1

Analyst1:JuniorActorType

 lastUpdated1:String = '05.05.2021'1

perfomedBy

followedBy

followedBy

followedByfollowedBy

followedByfollowedBy

followedBy followedBy

followedBy

followedBy

producedBy

producedBy

Tester1:SeniorActorType

 lastUpdated1: String = '5.5.2021'1 

perfomedBy

SeniorAnalyst1:SeniorActorType

 lastUpdated1: String = '5.5.2021'1
perfomedBy

Developer1:JuniorActorType

 lastUpdated1: String = '5.5.2021'1

perfomedBy

kind

producedBy

target

source

source

target

1

createdBy createdBy

createdBy

createdBy

createdBy createdBy

performer

performer

performer

performer

task

task

task

task

producedBy

1..*

1associatedWith

task

1

1

Designer1:JuniorActorType

 lastUpdated1:String = '5.5.2021'1

perfomedBy
performer

task1

1..*

1..*

1 1..*

usedBy1

1Reviewer1:JuniorActorType

 lastUpdated1: String = '5.5.2021'1

perfomedBy

1

1

FIGURE 3.5: Level O1 of the Process Challenge



36 Chapter 3. Multi-Level Modeling

SSDesign0:Design

 expectedDuration0:Int = 40        beginDate0: String = '1.1.21'0 
  endDate0:String = '5.01.21'0         lastUpdated0:String = '5.1.21'0

SSTestCases0:TestCaseDesign

  expectedDuration0:Int = 60         beginDate0: String = '2.1.21'0 
  endDate0:String = '8.1.21'0          lastUpdated0:String = '7.1.21'0

SSCoding1:Coding

 expectedDuration0:Int = 30        beginDate0: String = '8.1.21'0         endDate0:String = '11.01.21'0        lastUpdated0:String = '11.1.21'0

SSTestCaseReview0:TestCaseReview

  expectedDuration0:Int = 60           beginDate0: String = '8.1.21'0 
  endDate0:String = '16.01.21'0
                 lastUpdated0:String = '16.1.21'0

SSCodeModule0:CodeModule

 version0: String = '0.1.5'0        lastUpdated0:String = '27.1.21'0

Cobol0:ProgrammingLanguage

 kind0: String = 'COBOL'0        lastUpdated0:String = '27.1.21'0

SSTesting0:Testing

  expectedDuration0:Int = 90            beginDate0: String = '17.1.21'0 
   endDate0:String = '27.01.21'0
                   lastUpdated0:String = '27.1.21'0

SSTestReport0:TestReport

 version0: String = '0.1.5'0         lastUpdated0:String = '27.1.21'0

SimpleSystem0:ACMESoftwareEngineeringProcess SSRA0:RequirementAnalysis

  expectedDuration0:Int = 60         beginDate0: String = '7.12.20'0

  endDate0:String = '13.12.20'0          lastUpdated0:String = '13.12.21'0

SSRS0:RequirementSpecification

 version0: String = '0.1.5'0        lastUpdated0:String = '13.12.20'0

SSTesterAnalyst0:Tester&Analyst

 name0: String = 'Bob Brown'0        lastUpdated0:String = '1.1.21'0

SSDeveloper0:Developer

 name0: String = 'Ann Smith'         lastUpdated0:String = '1.1.21'0

performedBy

performedBy

performedBy

performedBy

performedBy

producedBy

producedBy

kind

producedBy

followedBy followedBy

followedBy followedBy

followedByfollowedBy

followedBy

followedBy

SSReviewer0:Reviewer

 name0: String = 'Chad Carter'0         lastUpdated0:String '1.1.21'0

followedBy

followedBy

SSAnalyst0:Analyst

 name0: String = 'Dan Dacosta'        lastUpdated0:String = '1.1.21'0

associatedWith

SSTCDR0:TestCaseDesignReport

 version0: String = '0.1.5'0        lastUpdated0:String = '7.1.21'0

producedBy

usedBy

performedBy

FIGURE 3.6: Level O2 of the Process Challenge

It implies a multiplicity value of 1 on that connection end. The connection
between Element and ProcessType shows this type of connection. A white di-
amond represents “aggregation” semantics.

ConnectionEnd: This class represents the endpoint of connection naviga-
tion. As well as being the link between Entity and Connection classes, it holds
the multiplicity information and also whether the connection is navigable
and has a role name. Additionally, there are three types of connection ends,
e.g., basic, composition, and aggregation. In Figure 3.3, the connection be-
tween Element and ProcessType has two endpoints. Each of the endpoints is
annotated with a moniker and the multiplicity values. The connection end
that points to ProcessType uses process as its moniker and a multiplicity value
of 1. The other connection end has a moniker called content and the multi-
plicity values are ‘3’ and ‘*’.

Attribute: This concept is a specialization of Feature and represents proper-
ties of a Clabject. Attributes are the key enabler of the “deep instantiation”



3.2. The Level-agnostic Modeling Language 37

mechanism, which means that an attribute can be part of a clabject’s inten-
sion over more than one instantiation step. Attributes have a name, a type,
and a value. A value can be assigned to attributes that can still be “instan-
tiated” (attributes do not participate in classification relationships, but are
regarded as being part of a clabject’s intension). The clabject TaskType in Fig-
ure 3.3 contains three attributes that are called expectedDuration, beginDate,
and endDate.

The UML uses the term “attribute” to refer to property types and the term
“slot” to refer to property values. To unify them, the original paper that intro-
duced potency suggested the term “field” to cover both attributes and slots
and the term “dual field” to refer to “deep attributes” (i.e. non-slot fields)
that have a value as well as a type [19]. However, simple fields (attributes
without values) and dual fields (attributes with values) were regarded as ex-
isting in separate instantiation chains. This means an instance of a simple
field could not be a dual field – a capability used quite frequently in prac-
tice [84]. For simplicity, therefore, LML removes this distinction and regards
all attributes and slots (i.e. all fields) as having the same general form (i.e. a
name, a type, and a value). However, the type and the value need not always
be shown1. The LML refers to this unified concept as a “deep attribute“, or
simply “attribute“ for short. In the rest of this work, we will use the term
“attribute” to mean “deep attribute“.

Method: The Method class is the other specialization of Feature. A method
consists of a method body and parameters. Methods are similar to Attributes
and are also contained by clabjects.

Classification: The only kind of relationship that can cross levels is the Clas-
sification relationship. This is a 1-to-1 relationship connecting a clabject repre-
senting an ontological instance to a clabject representing its direct ontological
type. Since no other concept in the meta-model is allowed to cross a level
boundary it is therefore essential to multi-level modeling. Classification re-
lationships can be represented graphically, as a dashed line, and textually
following the name of a clabject using the traditional UML “:” notation. For
example, in the O1 level of the process model (Figure 3.4), the Developer clab-
ject is declared as being of type JuniorActorType and therefore in a classifica-
tion relationship with it. The colon separates the name and the type of the
clabject.

1Just as the type of an attribute need not always be shown in the UML



38 Chapter 3. Multi-Level Modeling

Inheritance: LML supports generalization sets through the Inheritance con-
cept. As in UML, inheritance can be disjoint or overlapping, or complete or
incomplete. An inheritance model element contains a pointer to the super-
and sub-types participating in a generalization, which are Clabject instances.
Connections can also participate in inheritance relationships, therefore. In-
heritance declares a generalization/specialization relationship between clab-
jects, which means that all the instances of a subclass (or specialization) clab-
jects are also instances of the superclass (or generalization) clabjects.

In LML, inheritance relationships can only exist between elements at the
same ontological level. The basic semantics of specialization is captured by
the notion of substitutability, which is sometimes said to be motivated by
the Liskov Substitution principle [87]. This basically states that wherever an
instance of one class is expected, an instance of a subclass can be provided
in its place as long as it still fulfills the contract with the user. In terms of set
theory, this means that all possible instances of a subclass must satisfy the
intension of the superclass. so that the extension of the subclass is a subset of
the extension of the superclass [28]. This implies the intension of the subclass
must subsume the intension of the superclass in all possible worlds. It is not
sufficient for the intension of the subclass to allow some instances that satisfy
the intension of the superclass to be created, it must exclude all instances that
do not satisfy it.

This definition means that there is a natural distinction between the “di-
rect” type of a clabject and the “indirect types” of a clabject. For instance, the
clabject Developer in Figure 3.4a is a direct instance of JuniorActorType and an
indirect instance of ActorType and Element in Figure 3.3. The ActorType and
Element clabjects are indirect types for the Devloper clabject and both types
are abstract clabjects, so they can only have indirect instances and no direct
instances because they are impotent (i.e., have potency 0 values).

The distinction between direct and indirect instances should not be con-
fused with the distinction between instances and “offspring” of a clabject.
The offspring of a clabject are instances of the instances. For example, the
clabject SSAnalyst in Figure 3.6 is an instance of Analyst of the level directly
above but offspring of JuniorActorType. The offspring of a clabject can be both
direct and indirect.

In Figure 3.3 an example of an inheritance relationship is shown between
Element and ProcessType. In fact, all other clabjects are subclasses of Element.
In this level, the Element clabject is the root.



3.2. The Level-agnostic Modeling Language 39

3.2.1 Vitality Properties

In LML, the deep instantiation mechanism that supports deep characteri-
zation is governed by three so-called vitality properties. Two of these, po-
tency and mutability, are used in other multi-level modeling languages, al-
though sometimes in different forms. However, the combination of the three
is unique to LML.

Potency: Potency is a non-negative integer used to specify the degree to
which an entity is a type and/or an object in a level-agnostic way. It basically
indicates over how many levels a clabject can be instantiated and influence
direct instances [41]. Early rules for potency stated that when a clabject is
instantiated, the potency of the instance has to be exactly 1 less than the po-
tency of the type [19]. These rules were developed with constructive model-
ing in mind, where a model prescribes the types that will exist in the domain.
However, these rules are sometimes too strict and can lead to undesirable
anomalies in exploratory modeling scenarios, leading Kühne [77] to propose
more relaxed rules for potency reduction in instantiation. This revised form
of potency, called “characterization potency”, states that the potency of an in-
stance only has to be less than the potency of its type (as opposed to exactly
1 less). This relaxation of the potency rules is not optimal for all domains,
however, including the LML deep model for the Process challenge, and is
thus part of the justification for less rigid modeling styles and patterns high-
lighted in P1 and P2 in Chapter 1.

As can be seen in Figures 3.3, 3.4, 3.5 and 3.6, every clabject in a deep
model possesses a potency value. The postscript integer following the name
of a clabject is its potency value. For example, the Element clabject in Fig-
ure 3.3 has a potency value of 0, which means it is not potent enough to have
direct instances of its own. Direct instances of subclasses of Element such as
Actor or ArtifactType have to have a lastUpdated attribute, however, since these
subclasses inherit lastUpdated.

Durability: Durability is a property associated with attributes that charac-
terize when instances of a clabject need to have a corresponding attribute. In
other words, it characterizes the endurance of attributes over instantiation
steps. Like potency, it is represented by a non-negative integer. However, an
instance of an attribute must have a durability that is one less than the dura-
bility of that attribute. Thus, an instance of a clabject that has an attribute of
durability 0 need not have an instance of that attribute.



40 Chapter 3. Multi-Level Modeling

Because impotent clabjects can represent abstract classes as well as in-
dividuals, and the durability of attributes can be any value lower than their
clabject potency, it is not possible to formulate a general rule (for all clabjects)
governing the relationship between a clabject’s potency and durability.

Mutability: Mutability characterizes how the value of an attribute can be
changed relative to the value from which it was instantiated, in accordance
with the attribute’s durability. Like potency and durability, mutability is a
non-negative integer value that, with one exception, is always reduced by
one when a clabject is instantiated. The exception is when the mutability
is already 0, in which case it remains 0. It is an endurance property like
durability but measures the endurance of the attribute’s value rather than the
attribute itself. LML is the only multi-level modeling language that allows
the mutability of attribute values to be controlled in this way. If a clabject is an
instance of a type with a durable attribute of mutability 0, its corresponding
attribute must have exactly the same value. However, if the attribute of the
type has a mutability greater than 0, its corresponding attribute can have
any value. Therefore a fundamental relationship that must hold between an
attribute’s durability and its value’s mutability is that the mutability must be
less than or equal to the durability.

Because of their similarity, durability, and mutability have sometimes
been referred to as “forms of potency” in previous papers [84]. However,
this introduced an ambiguity about whether the term potency referred to all
three or just the original form of clabject potency. Therefore, we do not use
this terminology in this thesis, but rather refer to all three properties (po-
tency, durability, and mutability) as “vitalities”. The term “potency” there-
fore refers exclusively to the original form of potency between clabjects.

3.3 Melanee

Melanee is a multi-level modeling tool developed by the Software Engineer-
ing Group at the University of Mannheim [14] to support LML using the PLM
in a modeling infrastructure based on the OCA. The current prototype imple-
mentation is built on the Eclipse platform [114] and uses a plug-in develop-
ment mechanism allowing users to create their own Eclipse-based modeling
tools. This mechanism has allowed Melanee to be extended multiple times
since its creation with many different notations, languages, and services.



3.3. Melanee 41

Among the most noteworthy extensions are custom visualizers [53] that
let users define their own domain-specific languages. This includes form-
based, text-based, and table-based notations as well as traditional graphical
notations, which can be used interchangeably to render a model in different
ways for different stakeholders. This is facilitated by “weaving models” that
connect a model of the domain content with a model of its representation in
a particular concrete syntax. Another noteworthy extension is the so-called
“emendation service” which ensures that a Melanee model remains consis-
tent in the face of change [15]. This service checks every change in the model
and repairs the affected model elements to make the model consistent again.

The DOCL language presented in this thesis has also been implemented
using this plug-in infrastructure.





43

Chapter 4

Formal Languages

Due to the fact, that DOCL is implemented by using a grammar, to be more
precise an ANTLR grammar, to define the syntax of the language this chapter
provides a detailed description of the formal foundations of languages and
their relationship to grammars and how they can be processed by machines.

Much of the theory in the field of formal languages is based on the work of
Chomsky [34], who laid the theoretical foundations for language and gram-
mar classification, and later parsing theory. Any high-level programming
language, such as Java [66], has to be translated into machine code that the
target computer can execute. This translation process is called compilation
and has the inputs and outputs shown in Figure 4.1.

source program compiler

error message

target program

FIGURE 4.1: Compilation Process

If, instead of mapping the source program to a target program, the com-
piler performs the operations defined in the source directly, then the transla-
tion process is called interpreting, and the compiler is called an interpreter.

The overall compilation process is shown in Figure 4.2. First, the input is
divided into a stream of characters which are input to the lexical analyzer. The
lexical analyzer takes groups of characters and tries to classify them into cat-
egories called tokens. These are then input to the syntax-directed translation
process, which in this case is a parser. A parser takes the tokens and arranges
them into a hierarchical data structure according to the defined rules of the
language. The structure of this so-called intermediate representation can vary,
but in most cases, it is tree-like [111].



44 Chapter 4. Formal Languages

lexical

anayzer

character

stream

token

stream

synaxdirected

translator

intermediate

representation

FIGURE 4.2: The steps of a compilation

According to Aho and Ullman [5], three properties have to be specified to
create a high-level programming language:

1. the set of symbols that can be used in valid programs,

2. the set of valid programs,

3. the meaning of each valid program.

The first of these is relatively easy to achieve. The set of symbols in most
modern programming languages is a mixture of the English alphabet and
arithmetic operation symbols. However, it is much more difficult to define
the set of valid programs [5]. When specifying a programming language,
grammatical rules can be used to reduce the size of the set of valid programs.
However, they may evaluate statements such as the one in Listing 4.1 as valid
[5]. This kind of statement will either result in an endless loop or, if the
meaning of such a valid program is not defined, in some kind of error due to
the consequences of the third property.

L GOTO L

LISTING 4.1: Potentially valid FORTRAN statement

The third and final property states that a programming language has to
determine the semantics of a valid program. Listing 4.1 therefore should
ideally be rejected on the grounds that it is ambiguous because if executed it
will enter an infinite loop. Either way, the language specification has to be
able to determine the semantics of a valid expression [5].

The words λ, 01110,01,00010,0,1 are words over the alphabet Σ = {0, 1}
(λ being the empty word). The set of all words over an alphabet is denoted by
Σ∗ and by Σ+ for all non-empty words. These two sets are infinite for any Σ,
and they are the free monoids and free semigroup generated by Σ [108]. If a
language L is infinite it is not possible to enumerate all possible combinations
of words in order to translate the language into executable code. Thus, we
have to look for another representation of the translation. This specification
of a language has to be of finite size, but the language specified is not required
to be finite [5].



4.1. Theory 45

There are two well-known methods to fulfill this requirement. The first
method is to define a generative system, usually called a grammar. The sec-
ond method is to define a recognizer which when presented with a finite
string, answers “yes” if the string is part of the language and “no” if the
string is not part of the language [5]. The binary output of a recognizer is not
sufficient for this purpose. A grammar offers much more than just returning
a Boolean value, it can also generate statements in that language. Tools for
grammar systems support the automatic generation of parse trees and much
more. The following sections explain the first method in detail because this
approach was used to implement the DOCL language developed in this the-
sis.

4.1 Theory

The process of language engineering is defined in terms of alphabets, words,
languages, and their grammars. There are multiple kinds of grammars that
can be classified depending on their properties. These properties are also
transmitted to their respective languages.

This section defines all of the formal parts that are needed to create a
(programming) language.

Definition 4.1 (Alphabet). An alphabet is a finite nonempty set. The elements
of an alphabet Σ are called letters or symbols[108]

Definition 4.2 (Word). Let Σ = {a, b, c, ...} be a set of symbols, or alphabet,
then a word w over Σ is a string where each character from w is from Σ.
w = a0, a1, a2, ..., an where aiϵΣ. A special word is the “empty” word ε.

Definition 4.3 (Length of a word). The length of a word is displayed by |w|
where w = a1a2a3...an,|w| = n and |ε| = 0.

The concatenation of two words is defined as follows.

Definition 4.4 (Concatenation). Let w1 = a0a1a2...an and w2 = b0b1b2...bn two
different words where aibiϵΣ, then

w1 ◦ w2 = a0a1a2...anb0b1b2...bn

is the concatenation of w1 and w2.

Definition 4.5 (Language). Let Σ∗ be a set of words, then a language L is a
subset of Σ∗



46 Chapter 4. Formal Languages

L ⊆ Σ∗

Definition 4.6 (Grammar). A Grammar is a tuple G = (N, Σ, P, S) where
(1) N and Σ are alphabets, N ∩ Σ = ∅
(2) S ∈ N. (The elements of N are called nonterminals and those of Σ

terminals)
(3) S is called the start symbol.
(4) P is a finite subset of

(N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗

Definition 4.7 (Regular grammar). A grammar is called regular if each pro-
duction is of the form uξv → uyv, where ξ is in N − Σ, u and v are in
(N − Σ)∗, and y is in N∗ − {ε}. The language generated by a “regular gram-
mar” is called a “regular language”.

A regular grammar or regular language is also called context-sensitive
[54]. This means that the grammar is expressed using rules of the form uξv =

uyv where ξ can be rewritten to y. The equivalent automaton that accepts
regular grammars is called a finite automaton [61].

Definition 4.8 (Context-free grammar). A grammar is called context-free G =

(N, Σ, P, S) if each production in P is of the form ξ → n, where ξ is in N − Σ
and n is in N∗. L ⊆ Σ∗ is said to be a context-free language if and only if L is
generated by some context-free grammar.

In practice, the term context-free means that the results of the productions
are rewritten independently of the context in which each variable appears.
Every context-free grammar is also context-sensitive, but the converse is not
true [54].

Like regular grammars, the set of context-free grammars also has an equiv-
alent automaton which is called a pushdown automaton. This automaton ac-
cepts all context-free grammar definitions. A pushdown automaton is deter-
ministic if the following restrictions hold [61]

1. whenever δ(q, a, X) is nonempty for some a in Σ, then δ(q, ϵ, X) is empty,

2. for each q in Q, a in Σ ∪ {ϵ} and X in Γ, δ(q, a, X) contains at most one
element.

The first restriction prevents the pushdown automaton from choosing ei-
ther the next input or making an ϵ-move. The second restriction prevents a
choice on the same input [61].



4.1. Theory 47

Definition 4.9 (Pushdown automaton). A finite deterministic automaton can
be defined as a tuple M = (Q, Σ, Γ, δ, q0, Z0, F), where

• Q is a set of states,

• Σ is an alphabet called input alphabet,

• Γ is an alphabet called the stack alphabet,

• q0 in Q is the initial state,

• Z0 in Γ is a particular stack symbol called the start symbol,

• F ⊆ Q is the set of final states,

• δ is a mapping from Q× (Σ ∪ {ϵ})× Γ to finite subsets of Q× Γ∗.

To sum up these definitions, first, the alphabet of a language was defined,
which is a set of arbitrary symbols from which words can be formed. The def-
inition also provides a way to measure the length of a word and to concate-
nate two or more words into a new word. Second, grammars were defined
and how they relate to languages. A subset of grammars are context-free
grammars that generate context-free languages and are accepted by push-
down automatons. “Context-free grammars are a generalization of regular
grammars in that no restrictions are placed on the right-hand sides of rules.”
[111]

By definition, every context-free language is generated by a context-free
grammar [94]. An element (α, β) in P will be written ⟨α⟩ → ⟨β⟩ and is called
a production, where α is the left-hand side and β the right-hand side of the
production. In other words, a grammar is context-free if the finite set of rules
or productions has only non-terminals on the left-hand side of a production
and an arbitrary number of combinations of terminals and non-terminals on
the right-hand side of a production. The left-hand side of a production is also
called a syntactic category, and every category itself represents a language [61].
The deterministic version of the pushdown automaton accepts only a subset
of all context-free grammars. This subset includes the syntax description of
most programming languages [61].



48 Chapter 4. Formal Languages

4.2 Lexical Analysis

In a compiler or interpreter, the first step of processing an expression is the
“linear analysis”, also called the “lexical analysis”. This step aims to catego-
rize each token or a group of tokens. Usually, this is done from left to right.
Assume the following statement is input to the translation process:

p o s i t i o n := i n i t i a l + r a t e * 60

LISTING 4.2: Input for the lexical analysis

The lexical analysis would group the expression into the following token
categories:

1. the identifier position,

2. the assignment symbol :=,

3. the identifier initial,

4. the plus sign,

5. the identifier rate,

6. the multiplication sign,

7. the number 60.

The blanks between the tokens are usually eliminated during the lexical
analysis [6]. If the result of the parsing process is in fact a parse tree then ev-
ery token or classification is a leaf in the hierarchical parse tree. The following
sections show how these rules can be organized in such data structures.

4.3 Syntax and Semantics

Any language has some grammatical structure which consists of a set of rules
on how words form a sentence or how words in a sentence relate to each
other. For a natural language, e.g. English, every word of a sentence can be
labeled or classified into syntactic categories. The sentence -

The pig is in the pen.

can be represented as a labeled tree, as presented in Figure 4.3.
This representation helps clarify the overall structure of the English lan-

guage and how sentences are properly composed. The same principle can be



4.3. Syntax and Semantics 49

⟨sentence⟩

⟨verb phrase⟩

⟨phrase⟩

⟨phrase⟩

⟨noun⟩

pen

⟨adjective⟩

the

⟨preposition⟩

in

⟨verb⟩

is

⟨noun phrase⟩

⟨noun⟩

pig

⟨adjective⟩

the

FIGURE 4.3: Tree structure of a sentence in English [5]

applied to a programming language or any other language for that matter.
For example, the arithmetic expression

a + b ∗ c (4.1)

can be also represented as a labeled tree, just like a sentence from a nat-
ural language. The labels may differ, but the tree helps to understand the
relationship between the symbols in that particular language [5]. In figure
4.4, the labeled syntax tree is shown for an arithmetic expression. This exam-
ple shows a calculation order in which the multiplication is computed before
adding the left part of the tree to the result. So in fact this syntax tree ensures
the correct calculation of an arithmetic expression because the right term, the
multiplication, has to be resolved before the result is added to a.

⟨expression⟩

⟨term⟩

⟨ f actor⟩

⟨identi f ier⟩

c

*⟨term⟩

⟨ f actor⟩

⟨identi f ier⟩

b

+⟨expression⟩

⟨term⟩

⟨ f actor⟩

⟨identi f ier⟩

a

FIGURE 4.4: Tree structure of an arithmetic expression [5]

The example that was shown earlier in Listing 4.2 can also be represented
as a parse tree, which is shown in figure 4.5. This example also shows that



50 Chapter 4. Formal Languages

some logical or arithmetic expressions have to be resolved before other ex-
pressions. The phrase rate * 60 is a logical unit because arithmetic rules
say that multiplication is performed before addition. The rules that create
such a hierarchical structure might have the following form:

1. any identifier is an expression,

2. any number is an expression,

3. if expression1 and expression2 are expressions, then so are

expression1 + expression2

expression1 * expression2

(expression1)

.

⟨assignment− statement⟩

⟨identi f ier⟩

position

:= ⟨expression⟩

⟨expression⟩

⟨identi f ier⟩

initial

+ ⟨expression⟩

⟨expression⟩

⟨identi f ier⟩

rate

* ⟨expression⟩

⟨number⟩

60

FIGURE 4.5: Parse tree for position := initial + rate * 60

The first two rules are non-recursive rules whereas the third rule defines a
set of two expressions with different operators applied to the two expressions
[6]. Thus, as defined by the first rule, initial and rate are identifiers. The
number 60 is an expression, which is defined by the second rule. The third
rule first matches rate * 60, which is an expression, and then to initial +

rate * 60 which is also an expression itself.
Figure 4.6 shows three parse trees that are non-recursive (i), left-recursive

(ii), and right-recursive (iii). “We say that φ dominates ψ(φ → ψ) if there is
a derivation σ1, ..., σn such that σ1 = φ and σn = ψ (i.e., if ψ is a step of a
σ-derivation).” [33] With this definition by Chomsky, it can be shown that
A in (i) is nonrecursive for non-null φ, ψ, because of A ⇒ φAψ. A in (ii)



4.4. Parsing Strategies 51

A

A

A B

B

(i)

A

B A

B A

(ii)

A

B C

A

B C

A D

D

(iii)

FIGURE 4.6: Example parse tree for non-, left- and
right-recursion [33]

is left-recursive if there is a non-null φ such that A ⇒ Aφ and A in (iii) is
right-recursive if there is a non-null φ such that A⇒ φA [33].

4.4 Parsing Strategies

The parser obtains a stream of tokens from the lexical analyzer and checks
if the whole stream can be generated by the defined grammar for the source
language. The role of the parser in the compiling process is shown in figure
4.7.

FIGURE 4.7: The role of a parser in the compalitation process

There are two types of algorithms that can be used for the task of syntactic
analysis: top-down and bottom-up [65]. The top-down parser method builds
parse trees from the top (root) to the bottom (leaves). The bottom-up parser
method begins with the bottom (leaves) and works its way up to the top of
the tree (root). The input for both parser methods is the same and is scanned
from left to right one symbol at a time and is processed. These parsing strate-
gies only accept subclasses of grammars, such as LL and LR grammars [6].



52 Chapter 4. Formal Languages

The class of context-free grammars that can be parsed deterministically in a
top-down fashion is called LL(k), and the class of context-free grammar that
can be parsed deterministically in a bottom-up fashion is called LR(k) [107].

With the definition of a context-free grammar (cf. definition 4.8) in mind,
a grammar with LL(k) properties can be defined as follows.

Definition 4.10 (LL(k) grammar). A grammar G = (N, Σ, P, S) is said to be a
LL(k) grammar for some positive integer k if and only if given

1. a word w in N∗ such that |w| ≤ k,

2. a non-terminal A in Σ,

3. a word w1 in Σ∗ ,

there is at most one production p in P such that for some w2 and w3 in N

4. S⇒ w1Aw3,

5. A⇒ w2,

6. (w2w3)/k = w.

According to Rosenkrantz and Stearns [107], “LL(k) grammar is a context-
free grammar, such that for any words in its language, each production in its
derivation can be identified with certainty by inspecting the word from its be-
ginning (left end) to the k-th symbol beyond the beginning of the production.
Thus when a non-terminal is to be expanded during a top-down parse, the
portion of the input string that has been processed so far plus the next k input
symbols determine which production must be used for the non-terminal.”

Any context-free language that is generated by a LL(k) grammar can be
recognized by a deterministic push-down automaton [86]. Every LL(k) gram-
mar is also an LR(k) grammar [75].

In the past, when the resources in a computer were limited, programmers
had to write their grammars for deterministic parser generators. Today, how-
ever, programmers are able to use non-deterministic parsing strategies since
the processing resources in computers have grown [99]. These strategies are
called Generalized LR (GLR) and Generalized LL (GLL), and they are able to
handle nondeterministic ambiguous grammars. A grammar that is ambigu-
ous, returns multiple parse trees (forests) because they were intentionally
designed for natural languages [99].



4.5. ANTLR 53

4.5 ANTLR

One of the most popular and widely used tools for parsing structured text
or source code is ANTLR, which stands for “ANother Tool for Language
Recognition”. It is a language-agnostic parser generator that can generate
top-down parsers for multiple programming languages, including Java, C#,
Python, and others [99]. This section provides an overview of ANTLR’s
properties since this is the technology used in this thesis to realize the de-
veloped deep object constraint language.

The top-down strategy used by ANTLR is called ALL(*) [99]. This strat-
egy can also handle nondeterministic and ambiguous grammars but does
not return multiple parse trees, like GLL or GLR. The LL parsing style pauses
at each production until the prediction mechanism has chosen the correct
production to expand the tree and resumes the parsing process. The ALL(*)
strategy parses the whole expression dynamically. At each decision point in
the grammar, multiple sub-parsers are launched. For every possible decision
at a particular point in the grammar, one parser is created that tries to match
the input. If the path a sub-parser has been taking fails to match the input, it
dies off and is no longer considered a valid production.

ANTLR also generates lexers in combination with recursive decent parsers
from the grammar definition so that no other component has to be generated
to recognize expressions in that grammar. Listing 4.3 shows a grammar with
left-recursive rules such as expr. Such rules are unacceptable in ANTLR3
but ANTLR 4 can handle them by automatically rewriting the grammar into
a non-left-recursive and unambiguous grammar. Another reason why this
grammar cannot be accepted by ANTLR 3 is that the stat rule has alternative
productions that have a common prefix(i.e., expr). This rule is undecidable
for ANTLR 3 and for LL(*) style grammars [99].



54 Chapter 4. Formal Languages

grammar Ex ;
// a c t i o n def ines ExParser member : enum_is_keyword
@members { boolean enum_is_keyword = t rue ; }
s t a t : expr ’= ’ expr ’ ; ’ // production 1

| expr ’ ; ’ // production 2
;
expr : expr ’ * ’ expr

| expr ’+ ’ expr
| expr ’ ( ’ expr ’ ) ’ // f ( x )
| id

;
id : ID | { ! enum_is_keyword } ? ’enum ’ ;
ID : [A−Za−z ]+ ; // match id with upper , lowercase
WS : [ \ t \r\n]+ −> skip ; // ignore whitespace

LISTING 4.3: An example of a left-recursive grammar

from Parr et al.[99]

In theory, the ALL(*) parsing strategy has a runtime complexity of O(n4),
and the GLL parsing strategy has a runtime complexity of O(n3). Neverthe-
less, when using this strategy for expressions in common languages, Parr et
al. [99] showed that ALL(*) parsers exhibit a linear behavior and complete
the parsing process faster than implementations of GLL parsing strategies.

Before ANTLR4 generates the parser, it rewrites all direct left-recursion
rules.

The grammar for DOCL is a context-free left-recursive grammar that uses
the ALL(*) parsing technology.



55

Part III

DOCL





57

The third part of the thesis presents the DOCL language developed in
this thesis. The first chapter describes the idea behind reflective constraints,
which are one of the most novel features of the language, and explains how
the notion applies in the context of deep modeling. The second chapter
presents the concrete new features of the DOCL language. Finally, the third
chapter provides an overview of how the prototype implementation of the
language is realized as a plugin to the Melanee tool.





59

Chapter 5

Reflective Constraints in Deep
Modeling

Software engineering, and indeed IT in general, revolves around the creation
of descriptions of things expressed in formal languages. Formal languages
are important since they allow descriptions to be checked for adherence to
syntax rules and algorithmically processed. An important example is pro-
gramming languages which are designed to support the description of pro-
grams that, when transformed and executed, can instruct a computer to take
certain actions. Another example are database schema languages which are
designed to support the description of schemas that control how data about
a particular subject is stored in a database management system. The distinc-
tion between a language and a description of something represented in that
language also occurs when modeling languages are used to create descrip-
tions (i.e., models) of specific subjects.

In the case of programming languages, the nature of the language used
to represent a program is usually not of concern at execution time when that
program is actually deployed in its operation environment to direct the be-
havior of that environment, but it is important for the compilers and/or vir-
tual machines that make the execution of programs possible. However, for
applications where a high level of behavioral flexibility is required, it is often
advantageous to let a running program be “aware of” its description so that it
(the program) can reason about, and potentially manipulate, that description
(i.e., “itself”) at execution time. This capability is generally called reflection,
but there is no consensus on precisely what this term means. In this chap-
ter, we clarify the terminology used in this thesis in the specific context of
multi-level, object-oriented modeling.



60 Chapter 5. Reflective Constraints in Deep Modeling

Reflective
Programming,
Reflective Constraint
Writing,
Reflective Language

Reification
Reflection (in the
wide sense):
Exploitation of
Reified Data

Introspection
Reflection (in the narrow sense):
materialization (generation) of reified
data into code (constraints)

FIGURE 5.1: Reflective programming terminology and its
application to reflective constraint writing defined by [48]

5.1 Terminology

In the programming language domain, the term reflection is used in both a
narrow sense and a wide sense [48]. The wide sense covers any capability
or technology that allows a program to gain access to a description of itself
at application time (i.e., run time). For example, Java offers the Java reflec-
tion API. This “access” can take place at two basic levels, however. One form
of access, the more limited one, occurs when a program can view, and rea-
son about, a representation of itself but not change it. This is often called
introspection [90]. The other form of access, the more powerful one, occurs
when a program is not only able to view a representation of itself but also
to change that representation at run-time. In other words, it can change its
own description while it is being applied (i.e., executed) at run time. This is
sometimes called intercession [90].

Unfortunately, the term reflection is also often used to refer just to inter-
cession to provide a contrast to introspection, rather than, or in addition to,
the general notion of a program exploiting its description at run time. Dra-
heim refers to the use of reflection to mean intercession as reflection in the
narrow sense and the more general form of reflection as reflection in the wider
sense [48]. To avoid confusion, in this thesis, we use the term only in the re-
flection in the wider sense, and we use the term intercession when we want to
refer to reflection in the narrow sense.

As mentioned in Figure 5.1, a fundamental prerequisite for reflection is
that a program has access to a representation of itself at run time. This means
that a program needs to be able to access (for introspection) and change (for
intercession) a representation of its description at run time. Since run-time
information in object-oriented systems is, by definition, represented as ob-
jects (described by classes), this means that the aforementioned description
itself needs to be described and represented in an object-oriented way. This
process of turning a description into an object-oriented form is generally re-
ferred to as reification. Reification is, therefore, a prerequisite for reflection in



5.2. Reflection in Object-Oriented Modeling 61

object-oriented technologies, since it allows a program to access and manip-
ulate a description of itself in the form of objects.

In general, the features of a language are distinct from the features of
specific subjects that are described by that language. For example, a general-
purpose, object-modeling language, which offers description concepts such
as classes, attributes, and associations, can be used to describe unlimited
numbers of other languages such as use case diagrams, sequence diagrams,
activity diagrams, etc., or other subjects such as systems or physical ob-
jects, etc. However, unlike most languages, such a general-purpose object-
modeling language can also be used to describe “itself” – that is, a language
that offers concepts such as classes, attributes, and associations. The occur-
rence of overlaps between the constructs supported by a language and the
constructs described in a particular usage of that language is often referred
to as a meta-circularity. This can be exploited in the context of a program-
ming language to support reflection and the creation of environments for the
language that is self-bootstrapping [35].

5.2 Reflection in Object-Oriented Modeling

In object-oriented modeling, which is the subject of this thesis, subjects of in-
terest are conceptualized using objects along with their links and properties
and are described as object models in terms of concepts such as classes, as-
sociations, and attributes. Such object models are usually composed of two
parts – a core (often graphical) model, usually called a class diagram, which
describes the interlinked objects, and an auxiliary model which describes ad-
ditional properties of these objects, usually in a textual form. These two parts
are typically written in distinct languages that are members of a larger suite
of modeling languages. As explained in Chapter 2, in the case of the MDA
technology space supported by the OMG, the UML/MOF is usually used
to represent the core model, and the OCL is used to represent the auxiliary
model. In the Epsilon technology space, on the other hand, the UML is used
for the core model while the EOL is used use for the auxiliary model.

In a traditional two-level modeling context, the degree to which such lan-
guages support reflection varies depending on the extent to which the aux-
iliary language can be regarded as an action language – that is, a language
that can change as well as access objects, links and slots in the subject of the
model. The reification of descriptions (i.e., models), which is a fundamental



62 Chapter 5. Reflective Constraints in Deep Modeling

prerequisite for reification, is automatically satisfied by object-oriented mod-
els since they are inherently represented as objects and are thus amenable to
application-time manipulation. However, reification is only possible if the
auxiliary language supports the required features. More specifically, if the
auxiliary language provides features for accessing the (reified) representa-
tion of a model at application time, introspection is possible, and if further
features are available for changing the model, intercession is also possible.

5.2.1 Reflection in OCL in a Two-level Context

In the traditional two-level modeling setting for which it was developed, the
OCL provides limited support for reflection.

Introspection: Since it is intended to be a declarative language that does
not make changes to the modeled (i.e., described) objects at application time,
OCL’s reflection features are primarily focused on introspection. These are
summarised in Figure 5.1. The first category of operations allows properties
of objects, at the instance level, to be queried in terms of concepts in their
description (i.e., primarily their class/type and their associated state model).
The second category allows the properties of a type to be queried at the in-
stance level, as part of a constraint. For example, it is possible to determine
what features (attributes, associations), what supertypes, and what instances
a type has.

• Properties of all objects, i.e., objects o : OCLAny:

– o.oclIsTypeOf(t:OclType):Boolean – true iff o : t ∧ ∄ t′.t < t′

– o.o.oclIsKindOf(t:OclType):Boolean – true iff o : t

– o.oclIsInState(s:OclState):Boolean – test for machine state

– o.oclIsNew():Boolean – postcondition test for object creation

– o.oclClassType(t:OclType):instance of Classifier – type casting oper-
ation

• Properties of meta objects t: OclType representing user-defined types:

– t.name:String – the name of the type t

– t.attributes:Set(String) – the set of names of the attributes of t

– t.associationEnds:Set(String) – names of association ends navigable
from t



5.2. Reflection in Object-Oriented Modeling 63

– t.operations:Set(String) – the names of the operations of t

– t.supertypes:Set(OclType) – the set of all direct supertypes of t

– t.allSupertypes:Set(OclType) – the set of all supertypes of t

– t.allInstances:Set(type) – the set of all instances of type t

Using these operations, OCL expressions can access information about an
object model to influence the results they deliver at application time. When
used for the purpose of defining constraints, for which OCL was designed,
these “results” are the outcomes of conformance checks (of a set of objects
described by a model). However, OCL is often used as the navigation sub-
language of other languages. For example, the ATL transformation language
uses OCL to navigate to sets of objects in the input models and describe what
sets of objects they are mapped to in the output. In this context, the “results”
of the application of the OCL expressions are the generated transformation.

Intercession: To support intercession, a language needs to allow a system
to change its description at application time. OCL potentially supports a very
limited form of intercession in a two-level context by means of “definition”
constraints. An OCL definition constraint can declare that a class in a UML
model has a new attribute, with a specified value, or a new operation, with
a specified body. Thus, OCL constraints defined on a UML model can theo-
retically extend that model when applied in the context of instances of that
model. However, for two reasons this is extremely limited -

1. It is unclear what mechanism would trigger the application of these
constraints in a particular use of the model to control the structure of
a set of objects. Normal OCL constraints are usually triggered when
changes are made at the instance level (i.e., to objects, links, and slots
in the described model) to check their validity. However, since OCL
definition expressions change the model itself, when should they be
triggered?

2. Even when an OCL definition expression is executed in order to extend
a UML model, there is virtually no way for OCL constraints defined
on, and applied to, an instance of that model to exploit the new in-
formation. As shown in the figure above, there are no introspection
operations an OCL expression can use to access any new operations,
and while there is an operation to access new attributes, only the name
of the attribute is returned not the value. So the intercession features of
standard OCL, to the extent that they exist, are almost useless.



64 Chapter 5. Reflective Constraints in Deep Modeling

5.3 Reflection in Deep Modeling

As mentioned above, since object models can be the subject of other object
models, it is useful to create hierarchies in which more concrete and spe-
cific models are described by more abstract and general models. Such model
stacks can provide richer and more subtle opportunities for supporting reifi-
cation.

5.3.1 Linear Model Stacks

The most well-known example of the use of this “meta modeling” approach
is the veritable four-layer modeling hierarchy at the heart of the OMG’s MDA
technology space (see Figure 2.2). This pioneered the use of meta-models (at
level 2) and meta-meta-models (at level 3) to define languages which are then
used to model other subjects. Two of the most well-known and important
languages in model-driven development are defined and accommodated in
this stack - the UML, which is regarded as occupying, and being defined by,
level 2 of this hierarchy, and the MOF which is regarded as occupying and
being defined by level 3 of this hierarchy. In short, the UML is defined in
terms of the MOF.

An obvious question is how the hierarchy of descriptions is terminated.
In other words, in the context of the MDA infrastructure, what language is
used for defining the MOF? Since the MOF was optimized for describing
modeling languages, it is also optimized for, and capable of, defining itself.
This situation could easily be represented by adding another level, level 4,
above level 3, which has exactly the same contents (i.e., the MOF). But this
does not answer the termination question, it just shifts it up a level.

To avoid defining an infinite hierarchy of model levels, each defined by
the level above, it is convenient to exploit the aforementioned notion of meta-
circularity and regard the MOF as being defined in terms of itself. The OMG
infrastructure not only does this, but it also goes further, since one of the
sublanguages of the UML is a general-purpose modeling language which
is essentially the same as the MOF. When defining the 2.0 versions of the
UML and MOF, the OMG, therefore, exploited meta-circularity to remove
all residual differences between the two and merge them into a single uni-
fied modeling language. At the heart of MOF 2.0 and UML 2.0 is a unified
common core set of modeling features that they share through the so-called
“Infrastructure Library”. By means of meta-circularity, therefore, the UML
both contains (as a sublanguage) the common core and is defined in terms of



5.3. Reflection in Deep Modeling 65

(as a metalanguage) the common core. In other words, the UML is defined
in terms of a subset of itself, which is called the MOF.

As pointed out by Clarke, when constraints “[...] are associated with
meta-classes, the conditions apply to classes, this provides a way of express-
ing structural and behavioral semantics for a language” [35]. The OMG lan-
guage specifications make good use of this fact by extensively using OCL
constraints to define the precise rules governing the use of the language be-
ing specified. This includes the definition of the UML, which thanks to the
aforementioned meta-circularity can use OCL constraints defined in the con-
text of the common MOF core to govern the structure of the definition of the
UML itself, and also to govern the structure of the other sublanguages of the
UML.

Technically, the degree to which a standard constraint language, defined
for a two-level modeling context, supports reflection does not change when
it is used in a multi-level modeling context. However, for languages that
support intercession (i.e., action languages like EOL) the potential impact
of reflection is greatly amplified if there is a metacircularity at the top level
of the stack. This is because intercession expressions applied at the second
level can change the nature of the top level, and thus potentially change the
most fundamental aspects of the modeling approach used in the whole stack.
This is why tools like XModellerML[38] can provide such fundamental flex-
ibility and allow programs to change almost every aspect of the execution
environment while they are running. While this is extremely powerful, it
is also extremely dangerous. The value of introspection is not amplified in
the same way when a standard constraint language is used in a multi-level
model stack since expressions in the language can still only gain access to the
level above.

5.3.2 Orthogonal Classification Architecture

As explained in chapter 3.1.1, most modern multi-level modeling approaches
are based on the OCA rather than on a strictly linear model stack. This or-
ganizes classification relationships into two orthogonal dimensions in which
a single linguistic model classifies (and thus spans) multiple ontological di-
mensions arranged in a linear stack. This modeling architecture has a big
influence on the potential impact of introspective capabilities as well as in-
tercession capabilities when applied in the context of a two-level constraint
language. This is because the linguistic dimension is essentially composed of



66 Chapter 5. Reflective Constraints in Deep Modeling

two levels, the linguistic (meta) model and the stack of ontological levels, so
the reflection capabilities can affect the whole ontological stack even though
there are only two levels.

The OCA also means that a meta-circularity at the top of the linear onto-
logical model stack because (a) there are no questions about what language
the top level is defined using (it is the linguistic (meta)model) and (b) if inter-
cession features are available, the ability to use them to change fundamental
aspects of the modeling approach is already possible by modifying the lin-
guistic (meta)model. This allows the higher levels of the ontological stack to
focus on modeling abstract concepts in the domain of interest rather than on
defining general modeling language concepts. The only meta-circularity that
exists in an OCA-based model, therefore, is the meta-circularity at the top of
the linguistic model stack which explains what the linguistic (meta)model is
defined using (i.e., itself).

Introspection

As mentioned above, the OCA significantly boosts the power of constraint
languages because the full stack of ontological models lies within the con-
straining power of a constraint language. Thus, even a standard OCL con-
straint that is not multi-level aware can be used to significantly constrain the
nature of the modeling rules used to populate and relate the ontological lev-
els. This power is enhanced even further when a multi-level aware constraint
language with reflective capabilities, like DOCL, is used as explained in this
thesis.

The OCA’s separation of classification relationships into two orthogonal
dimensions naturally gives rise to linguistic and ontological forms of both
kinds of reflection.

Linguistic introspection: Introspection into the linguistic (meta)model sig-
nificantly increases the utility of even limited introspection capabilities like
those of standard OCL. This is because they allow information about the
whole ontological model stack to be queried, and thus allow reasoning and
decision-making on a multi-level basis. In principle, standard OCL could
be used to extract detailed information based on the structure of the onto-
logical model, but because it is not designed with multi-level modeling in
mind, quite complex expressions are usually required. A multi-level aware



5.3. Reflection in Deep Modeling 67

Linguistic
Dimension

Ontological
Dimension

ProductType2

Book:ProductType1

HarryPotter:Book0

Clabject

+ potency: Integer

+ getPotency(): Integer

#getPotency()#

Clabject

FIGURE 5.2: Linguistic Introspection

constraint language can provide multiple features that support linguistic in-
trospection over a multi-level model in a much simpler and intuitive way.
Figure 5.2 shows an example of linguistic introspection.

C l a b j e c t −> not ( e x i s t s ( c l a b j e c t | c l a b j e c t . # getPotency ( ) # = −1) )

CONSTRAINT 5.1: Linguistic Introspection Expression

Constraint 5.1 begins with a query to retrieve all clabjects in the model.
This constraint must therefore hold for all clabjects that are already in exis-
tence and for all clabjects that might come into existence in the future. For
this kind of query, we can use all classes that exist in the PLM meta-model of
Melanee. It is also possible to substitute Clabject with Level to get information
about a particular level.

Ontologial introspection: Introspection into an ontological (meta)model is,
in principle, completely symmetric to linguistic introspection since in the
OCA there is no asymmetry between ontological and linguistic types of a
clabject. However, if a language that is unaware of the multiple levels is used
to define expressions, like standard OCL, direct introspection of the kind
shown in Figure 5.2 is not possible. This is because standard OCL cannot
recognize ontological types of a clabject since an OCA environment imple-
mented in a traditional modeling infrastructure includes classification (i.e.,
instanceOf) relationships as normal associations. When using standard OCL
in an OCA context, the introspection operations defined in Figure 5.2 operate



68 Chapter 5. Reflective Constraints in Deep Modeling

CarType2

SUV:CarType1

TeslaModelY:SUV0

WheelType2

FrontWheel:WheelType1

RearWheel:WheelType1

LeftRearWheel:RearWheel0 RightRearWheel:RearWheel0

LeftFrontWheel:FrontWheel0 RightFrontWheel:FrontWheel0

wheel

frontWheel

rearWheel

leftFrontWheel rightFrontWheel

rightRearWheelleftRearWheel

FIGURE 5.3: Ontologocigal introspection

exclusively in the linguistic dimension and cannot be used to query informa-
tion from the ontological types of a model element.

One of the main roles of a multi-level aware constraint language in an
OCA context is therefore to support ontological as well as linguistic reflection
in a symmetric way, using symmetric sets of operations.

context TeslaModelY ( 2 , 2 )
inv : s e l f . $CarType$ . wheels −> includesAll ( Set { lef tFrontWheel , rightFrontWheel ,

leftRearWheel , rightRearWheel } )

CONSTRAINT 5.2: Ontological Introspection Constraint

In Figure 5.3, a deep model is shown where the TeslaModelY clabject is
at the lowest level and is connected to four wheels. The ontological intro-
spection feature of DOCL allows the constraint to navigate the classification
hierarchy in the upward direction. The “$” symbol represents this navigation
and searches for the type or, in this case, the deep type specified. The expres-
sion can then use navigations of that type or access attributes or methods. In
Constraint 5.2, the wheels navigation is used and when the expression ends
the wheel instances (from the level of the context) are returned.



5.3. Reflection in Deep Modeling 69

Intercession

Distinguishing between ontological and linguistic intercession in an OCA
context does not really extend the power of the intercession capabilities sup-
ported by constraint languages because intercession operations operating on
the (meta-circular) top-level of a linear model stack can, in principle, already
change almost all modeling mechanisms in that stack. However, their sepa-
ration can significantly reduce risks and ambiguities as mentioned below.

Linguistic intercession: Intercession into the linguistic (meta)model) oc-
curs when constraint language expressions executed in the ontological di-
mension of an OCA-based model make changes to the linguistic metamodel.
As mentioned previously, this is only possible with languages like EOL, that
offer action language capabilities. Since the linguistic metamodel defines
the fundamental concepts and rules by which information in the ontolog-
ical stack is modeled, this can have major consequences on the semantics
and structure of models and the modeled information (i.e., on the represen-
tation of the subject). However, because ontological information is strictly
separated from linguistic information, modelers who exploit linguistic inter-
cession should be (a) fully aware of the risks of manipulating the linguistic
metamodel at application time and (b) able to do so without the clutter of
ontological information.

Ontological intercession: Intercession into an ontological (meta)model) oc-
curs when constraint language expressions executed conceptually at one on-
tological level of an OCA-based model make changes to one or more classify-
ing levels above them in the ontological stack. Because the OCA allows onto-
logical models to focus on representing ontological concepts, usually without
the need for any kind of meta-circularity at the top of the stack, expressions
in a constraint language can exploit ontological intercession in a simpler and
lower-risk way since there is no danger of accidentally affecting fundamen-
tal, pan-level modeling features. This is important since most motivations
for, and uses of, intercession are for ontological purposes (i.e., to access and
manipulate concepts related to an application of the modeling infrastructure
to a particular subject) rather than linguistic (i.e., to access and manipulate
the fundamental concepts and rules use to construct models).





71

Chapter 6

DOCL Features

This chapter presents an overview of the features provided by DOCL to sup-
port the introspection mechanisms described in the previous chapter. Since
DOCL is a conservative extension to OCL, all but four esoteric features of
OCL are also supported by DOCL. Given the size of the language, the sup-
ported features of OCL are not described again here for space reasons – only
the four deprecated features are mentioned in the final subsection of this
chapter. The rest of the chapter presents the abstract syntax, concrete syntax,
and semantics of the new DOCL features that are not included in standard
OCL.

To illustrate the new features, we use the running example from the pro-
cess challenge introduced in Chapter 3. The linguistic and ontological navi-
gation feature builds on a master thesis that developed a forerunner of DOCL
[71].

6.1 Linguistic Introspection

Navigation over the linguistic dimension is one of the most important (and
frequently used) features in DOCL. It enables access to the linguistic meta-
level, thus facilitating the reflective capabilities described in the previous
chapter. For example, clabjects can be queried for their linguistic properties,
such as their vitality properties, or their place in the classification or inheri-
tance hierarchies. Not only clabjects can be queried, every kind of element in
a model can access its linguistic meta-model properties.

From a language usability perspective, the syntax and semantics of the
linguistic introspection features have to be unambiguous and clear.



72 Chapter 6. DOCL Features

context ProcessType ( 2 , 2 )
inv : s e l f . # getPotency ( ) # = 0

CONSTRAINT 6.1: Linguistic Introspection Expression in

DOCL

DOCL uses a special symbol to designate a switch to the linguistic dimen-
sion of a deep model element. This approach is as unambiguous as possible
and avoids collisions with the existing OCL syntax for identifying normal
attributes and methods. OCL solved the problem of avoiding name clashes
by prefixing the names of “special” operations providing some kind of intro-
spection capability with the string “ocl-”. A good example is the oclIsTypeOf()
operation whose name is highly unlikely to collide with user-defined method
names and is usable without needing any special symbols. DOCL supports
this form of introspection as well, but DOCL has to differentiate between the
two kinds of classification (ontological and linguistic) as well. It is possible
to create a Method in a clabject that is called “getPotency()”, which occupies
the ontological dimension, and despite the fact that there exists the linguistic
operation “getPotency()” as well. In DOCL, the ‘#’ symbol is used to enclose
linguistic navigation expressions. As shown in Constraint 6.1, this makes it
clear exactly where the linguistic navigation begins and where it ends. The
example DOCL constraint is an invariant which makes sure that every deep
direct instance of ProcessType at level O2 has a potency value of 0. After the
getPotency() operation, the context switches back to the ontological dimen-
sion.

DOCL performs just one dimension switch at a time and immediately
switches back to the ontological dimension after the linguistic navigation has
been resolved. That means if the user wants to navigate in the linguistic con-
text twice, each expression has to be enclosed by ‘#’. Constraint 6.2 shows an
example of such expressions applied to the O0 level of the running example
shown in Figure 3.3. After the linguistic navigation ends, the user can nav-
igate and perform collection operations again on the ontological level. This
syntax for linguistic navigation is precise and leaves no room for ambiguities.

context TaskType ( 1 , _ )
inv expectedDuration : s e l f . # getDirectSupertype ( ) # . # getSubtypes ( ) # −> r e j e c t (

s e l f ) −> f o r A l l ( t | t . expectedDuration < s e l f . expectedDuration )

CONSTRAINT 6.2: Linguistic Introspection in a

DeepModel

The second navigation in Constraint 6.2 is also a linguistic one and yields



6.2. Ontological Introspection 73

a collection of all sub-types of Employee, which include Manager, Clerk, Re-
ceptionist and Consultant. This collection is the input for the reject operation
with the parameter self, which means that every element of the collection
is collected and returned in a new collection except the Manager class. Then,
this collection is input to the forAll collection operation, which returns true if
the Manager is the highest-paid employee and false if any other Employee has
the same or a higher salary value. If, in fact, the forAll operation returns false,
then the invariant constraint evaluates to false and the model is, with regard
to the defined constraint in Constraint 6.2, invalid.

6.2 Ontological Introspection

In the context of DOCL, the primary focus is to support constraints that navi-
gate over lower ontological levels. This “downward” direction involves nav-
igating from more general concepts to more specific ones, allowing the def-
inition of constraints that should be valid for deep instances. However, the
“upward” form of ontological navigation, moving from specific instances to
more general concepts, can also be useful. There are scenarios where navi-
gating upward in the ontological dimension can be beneficial. By navigating
upwards, a constraint can access more abstract information about specific in-
stances from higher-level concepts, thereby supporting queries that retrieve
information from more abstract concepts and categories. This is the basis for
ontological introspection in DOCL. In addition, the upward navigation direc-
tion enables, in certain cases, reasoning based on specific instances that can
lead to conclusions about more general concepts or properties. Navigating
upward can help in identifying broader patterns or rules that apply to a set
of instances.

Once a navigation reaches a model element at a higher level, it can access
all information at that level by normal intra-level navigations, such as the
creator navigation in Constraint 6.3. The result of this kind of navigation is a
set that contains every entity that can be classified by Actor but is connected
to TaskType by the createdBy connection.

context Test ing
inv a l l C r e a t o r s : s e l f . $TaskType$ . c r e a t o r −> s i z e ( ) > 0

CONSTRAINT 6.3: The upward ontological dimension

navigation



74 Chapter 6. DOCL Features

DOCL expressions use ‘$’ symbols to enclose inter-level ontological nav-
igation, which like the use of the ‘#’ symbol for linguistic navigation, leaves
no room for ambiguity.

6.3 Deep Classification Operations

To check the classification relationship of model elements, OCL provides two
operations, oclIsKindOf(type) and oclIsTypeOf(type), and to retype or cast a
model to another type, OCL provides the oclAsType(type) operation. The op-
erations can be invoked on a source object and are then checked against the
type of the passed argument. The oclIsTypeOf(type) operation evaluates to
true, if and only if, the invoked object’s type is identical to the argument.
The oclIsKindOf(type) operation evaluates to true, if and only if, the invoked
object’s type is identical either to the argument or to any of the subtypes of
the argument. In our terminology, therefore, oclIsTypeOf(type) checks if the
invoked object is a direct instance of the argument, while oclIsKindOf(type)
checks if the invoked objects are an indirect instance of the argument.

The relationship between the O0 (Figure 3.3) and O1 (Figure 3.4) can be
used to illustrate the semantics of the oclIsKindOf and oclIsTypeOf operations.
DOCL supports both of these “shallow” operations from OCL, in addition to
oclIsTypeOf ) and oclIsKindOf it can query isDirectInstanceOf and isInstanceOf,
and also adds a new variant called isIndirectInstanceOf which returns true
if a clabject is an instance of another clabject but not a direct instance of it.
DOCL also generalizes the three new operations into a “deep” form which
operates over the offspring of a clabject, not just the immediate instance at
the level below. The semantics of these new operations are illustrated in 6.1.
Thus, for example, while the instanceOf operation just checks that the sup-
plied argument is an immediate instance of the invoked objects, at the level
immediately below (e.g.) SSDeveloper with the name “Ann Smith” is of type
Developer), the isOffsrpingOf checks whether the argument is a deep instance
of the invoked objects (e.g. whether the SSDeveloper clabject is a deep instance
of JuniorActorType).

The distinction between direct offspring and indirect offspring is that the
set of direct offspring consists of clabjects that are reachable through the di-
rect instances-of relationship. The indirect offspring consists of clabjects that
are indirect instances and their direct and indirect instances and so on.

The same generalization is also supported in the case of the “shallow”
allInstances() operation. When executed on a clabject, this operation returns



6.3. Deep Classification Operations 75

context SSDeveloper (Ann Smith) isInstanceOf(...)
Developer true
JuniorActorType false
ActorType false
ACMEActor true
context SSDeveloper (Ann Smith) isOffspringOf(...)
Developer true
JuniorActorType true
ActorType true
context SSDeveloper (Ann Smith) isDirectInstanceOf(...)
Developer true
JuniorActorType false
ActorType false
context SSDeveloper (Ann Smith) isDirectOffspringOf(...)
Developer true
JuniorActorType true
ActorType false
context SSDeveloper (Ann Smith) isIndirectInstanceOf(...)
Developer false
JuniorActorType false
ActorType false
context SSDeveloper (Ann Smith) isIndirectOffspringOf(...)
Developer false
JuniorActorType false
ActorType true

TABLE 6.1: Classification checking methods [53]



76 Chapter 6. DOCL Features

the set of all instances of the element (direct and indirect). DOCL also pro-
vides a “deep” version of this operation, allOffspring(), that returns all off-
spring (direct or indirect) of the invoked clabject, over multiple classification
levels.

It is also possible to define these operations as bodies of defined methods
in the Clabject context. Constraints 6.4 to 6.9 show the defined semantics of
each operation as a body constraint.

Constraint 6.4 queries for the supertypes of a clabject and adds itself to
the resulting collection. In that collection, there must be a clabject for which
it holds that the clabject c is a direct type of the clabject in question.

context C l a b j e c t : : i s I n s t a n c e O f ( c : C l a b j e c t ) : Boolean
body : s e l f . # getSuperTypes ( ) # −> inc luding ( s e l f ) −>

e x i s t s ( s|s . # getDirectType ( ) # = c )

CONSTRAINT 6.4: isInstanceOf operation semantics

Constraint 6.5 checks that the getDirectType operation returns the clabject
c, only then the clabject in question is a direct instance of c.

context C l a b j e c t : : i s D i r e c t I n s t a n c e O f ( c : C l a b j e c t ) : Boolean
body : s e l f . # getDirectType ( ) # = c

CONSTRAINT 6.5: isDirectInstanceOf operation semantics

Constraint 6.6 is very similar to the Constraint 6.4 but the clabject does
not add itself to the collection of supertypes. It must hold that one of the
supertypes has a direct type relationship to the clabject c.

context C l a b j e c t : : i s I n d i r e c t I n s t a n c e O f ( c : C l a b j e c t ) : Boolean
body : s e l f . # getSuperTypes ( ) # −> e x i s t s ( s|s . # getDirectType ( ) # = c )

CONSTRAINT 6.6: isIndirectInstanceOf operation

semantics

Constraint 6.7 uses the nonReflexiveClosure operation which does not add
the starting collection to the resulting collection. If the clabject in question is
an offspring of c it must hold that c is somewhere in the classification chain
of itself or any of the supertypes of itself.

context C l a b j e c t : : i sOf fspr ingOf ( c : C l a b j e c t ) : Boolean
body : s e l f . # getSuperTypes ( ) # −> inc luding ( s e l f ) −>
nonReflexiveClosure ( s|s . # getDirectType ( ) # ) −> includes ( c ) )

CONSTRAINT 6.7: isOffspringOf operation semantics

Constraint 6.8 uses the nonReflexiveClosure operation as well to determine
if c is somewhere in the classification chain.



6.4. Level-Aware Expressions 77

context C l a b j e c t : : i s D i r e c t O f f s p r i n g O f ( c : C l a b j e c t ) : Boolean
body : s e l f −> nonReflexiveClosure ( s|s . # getDirectType ( ) # ) −> includes ( c ) )

CONSTRAINT 6.8: isDirectOffspringOf operation

semantics

Constraint 6.9 only checks the supertypes of the clabject in question and
follows their classification chain to determine if c is in the resulting collection.

context C l a b j e c t : : i s I n d i r e c t O f f s p r i n g O f ( c : C l a b j e c t ) : Boolean
body : s e l f . # getSuperTypes ( ) # −> nonReflexiveClosure ( s|s . # getDirectType ( ) # )
−> includes ( c ) )

CONSTRAINT 6.9: isIndirectOffspringOf operation

semantics

6.4 Level-Aware Expressions

In standard OCL, the constraints are (usually) defined on classes and eval-
uated on their direct instances. There is no need to specify any level ranges
for evaluating the constraint. In the MLM paradigm, however, it is necessary
to have some kind of designation for which level, or over many instantiation
steps, the constraints should be evaluated. After the context definition of a
constraint, DOCL therefore allows the level range over which the constraint
should hold to be specified. The level range has to be contiguous and can
not jump over a level (i.e., leave one level out) or start at a higher level than
that containing the clabject that is the context of the constraint. The default,
if no explicit level range is defined, is the level immediately below the con-
text clabject. Just like in OCL where the defined constraint is meant to be
executed on instances of that element. It is also possible that the definition
context (i.e., the clabject or level the constraint is defined in) and the execu-
tion context (the level where the constraint has to hold) are the same.

Constraint 6.10 shows examples of the use of this range definition fea-
ture, illustrating how the range specification appears within parentheses af-
ter the context definition. The level scoping definition “(0,0)” means that the
constraint is only evaluated at the level with the index 0 which is the high-
est level of abstraction, i.e., the highest ontological level. The combination
“(0,_)” means that the constraint is valid at the level with the index 0 and all
levels beneath that level (i.e., this constraint has to hold at every level). The
combination “(2,2)” means that although the context of the constraint might
be defined at level 0, it only needs to hold (and thus be evaluated) on model
elements at the level with the index 2.



78 Chapter 6. DOCL Features

context JuniorActorType ( 0 , 0 )
inv : . . .
context JuniorActorType ( 0 , _ )
inv : . . .
context JuniorActorType ( 0 , 1 )
inv : . . .
context JuniorActorType ( 0 , 2 )
inv : . . .
context JuniorActorType ( 1 , 1 )
inv : . . .
context JuniorActorType ( 1 , 2 )
inv : . . .
context JuniorActorType ( 2 , 2 )
inv : . . .

CONSTRAINT 6.10: Examples of the level-scoping expression

DOCL does not allow a constraint to define a range that is higher than
the level of its context clabjects. If a model element resides at the level with
the index 1, the constraint cannot be evaluated for elements at level 0. The
constraint can start only at the level 1.

6.5 Deprecated Features

There are four features in OCL that are not supported in DOCL. This section
elaborates on these features and explains why they have not been included.

Definition constraints: As explained in Chapter 2, definition constraints al-
low new attributes and methods to be added to UML models and their prop-
erties to be defined. In the case of attributes, their type and default value can
be defined, and in the case of methods, their body can be defined. However,
this capability is superfluous since these features can obviously be added in
the usual way by a modeling tool, and their default values or bodies can be
defined by derive and body constraints respectively. In a MLM modeling con-
text, definition constraints would be problematic because they interfere with
the goal of having a declarative language since the distinction between ele-
ments in a model (i.e., classes, with their attributes and methods) and in an
instance of the model (i.e., objects with their slots and methods) is blurred.

This means definition constraints would either have to be repeatedly eval-
uated (or compiled) every time any other constraint is checked, or the tool
would have to check constantly for name definitions of those constrained
types.



6.5. Deprecated Features 79

oclIsNew() Operation: The oclIsNew() operation is used in body or post-
condition constraints to check whether an object came into existence during
the execution of the method they describe. If an object did come into exis-
tence during the method’s execution, oclIsNew() returns True, and if it existed
before the methods started executing, it returns False. The ability to detect
such information relies on the language having access to a concrete, running
implementation of the containing class (i.e., on the language being an action
language) which is beyond the scope of DOCL. Since, by design, DOCL is a
declaration language, it does not have the power of creation and thus cannot
determine when objects were created.

oclInState() Operation: The oclInState() operation can be used in OCL ex-
pressions to check whether an instance of a class, whose run-time behavior
is modeled in a UML state diagram, is in a particular abstract state defined
in that diagram. The ability to detect such information relies on the language
having access to even more elaborate run-time information about an execut-
ing system since it involves the detection of an abstract state that may not be
encoded in normal implementation code (e.g., whether a constellation of at-
tribute values of the object corresponds to a particular abstract state). While
it is theoretically possible to arrange for a declarative language like DOCL to
have access to such run-time information, and thereby to implement oclIn-
State(), and still remain declarative, doing so requires a run-time implemen-
tation equivalent to that needed for an action language. It is therefore out of
scope for DOCL.

Messages: The OCL has several features facilitating the description of mes-
sage exchanges between executing objects. These are particularly useful for
describing interaction protocols, for example. However, since their imple-
mentation would also require full access to the state of a running system, like
the implementation of oclInState(), they are also out of scope for DOCL.





81

Chapter 7

DOCL Prototype Implementation

This chapter presents the prototype implementation of DOCL developed as
part of this dissertation. As explained in Chapter 2, DOCL is a key part of
the Melanee MLM ecosystem. The chapter therefore explains how DOCL
is integrated via the tool’s plugin architecture and how all the parts work
together to deliver DOCL functionality.

7.1 Architecture

Figure 7.1 shows the overall architecture of Melanee, which is built on the
Eclipse platform. The graphical editor of Melanee is based on the Graphical
Modeling Framework (GMF) and all Melanee models, including the PLM,
are represented using the Eclipse Modeling Framework (EMF). These EMF-
based models are then transformed into Java code that is enhanced with OCL
expressions. The model well-formedness validation is performed using a
language from the Epsilon language family [76] called the Epsilon Validation
Language (EVL).

The Epsilon language family provides a model management infrastruc-
ture that allows interaction with all kinds of models [76]. More specifically,
it provides an interface through which languages that are not based on the
MOF can be connected to the languages in the Epsilon family. The authors
claim that, collectively, the Epsilon language family provides more power-
ful model management capabilities than OCL, such as the ability to express
intra-model constraints. OCL cannot serve as an Epsilon model management
language because it cannot create, update, or delete model elements or up-
date attribute values.

In addition to Melanee’s core functionality, there are multiple plug-ins
that can display and edit models in a plethora of different notations, such as
the Diagram, Textual, Table and Form plugins. The Designation plugin handles
the proper designation of clabjects and prepares them for use across multiple



82 Chapter 7. DOCL Prototype Implementation

Applications Built on Melanee
e.g. Naomi, Deep-Robot Modeling Framework, GeoWars

Deep-OCL Deep-ATL Diagram/Text/Table/Form DSL Designation Application DSL Reasoning

Melanee - The Deep, Domain-specific Language Workbench

EMFGMF Epsilon OCL

Eclipse Platform

Workbench
ManagementVisualization Search

Linguistic Model

Deep Model
Editor

Emendation

FIGURE 7.1: The Melanee Architecture [53]

models and platforms [13]. There is also the DOCL plug-in, which is the
subject of this thesis. The plug-ins are hooked into Melanee via extension
point interfaces that are defined in the Melanee core infrastructure. These
can be defined in such a way that each plug-in can appear anywhere in the
Eclipse application.

Data: element, constraintType
Result: constraintList
types← element;
classification : while (type← types.poll()) ̸= null) do

types← types ∪ type.getDirectTypes();
superTypes← types ∪ type.getDirectSuperTypes();
inheritance : while (clabject← supertypes.poll() ̸= null) do

constraintList.add(getConstraintFromElement(clabject,
constraintType);

end
end

Algorithm 1: The constraint search algorithm [53]

The operation shown in Algorithm 1, inspired by the visualizer search
algorithm of Gerbig [53], shows how the constraints are found for each ele-
ment of the model. It has two arguments – an element of the model (i.e., a
connection or an entity) and a constraint type defining the kind of constraint
currently being sought, (i.e., invariant, derive, or other types of constraints).
The algorithm searches up the classification hierarchy and subordinately, up
each inheritance hierarchy, for constraints of that type, and puts them into
the constraint list returned at the end of the execution.



7.2. Meta-Model Definition 83

InvariantConstraint

InitConstraint

Expression

Element AbstractConstraint

Constraint
message:EString
severity:Severity

name:String

Level
startLevel:Integer
endLevel:Level

Pointer
pointer:PLM:Element

Text
text:EString

BodyConstraint

PreConstraint

PostConstraint

DeriveConstraint

Severity
<<enumeration>>

ERROR
WARNING
INFO

1*

FIGURE 7.2: Meta-Model for constraints in LML

7.2 Meta-Model Definition

Figure 7.2 shows the meta-model of the constraint data structures introduced
into Melanee by the DOCL plug-in. These data structures essentially consti-
tute an extension to the PLM since they are related to the Element class at the
root of the PLM metamodel. This allows DOCL constraints to be automati-
cally persisted as part of an instance of a Melanee PLM model, unlike previ-
ous deep constraint languages implemented in Melanee such as [71] which
did not allow constraints to be saved within deep models.

As can be seen in Figure 7.2 instances of the class AbstractConstraint are
contained by the PLM class Element, which is therefore common to both
meta-models. The fact that AbstractConstraint instances are contained in the
Element instances means that every concrete subclass of Element can be en-
hanced with constraints, e.g., DeepModel, Level, Inheritance, Connection, Entity,
Attribute and Method.

The Constraint class has six subclasses corresponding to each kind of con-
straint supported by the OCL. It also has two attributes, message, which al-
lows users to define a message to be displayed if a constraint fails, and sever-
ity which allows users to define the importance of a failure to adhere to a
constraint in terms of three values of an enumeration type – ERROR, WARN-
ING and INFO. Each severity level is displayed with a different symbol if a
constraint is violated. If a constraint is not violated, the severity attribute has
no semantic effect on the model.

A constraint contains instances of two other classes, i.e., Level and Expres-
sion. The former encodes the execution level of the constraint (i.e., at which
levels or level range the constraint should be evaluated), while the latter, an
abstract class, defines how the contents of a constraint are stored. There are
two options, which are concrete subclasses of Expression, Pointer which stores



84 Chapter 7. DOCL Prototype Implementation

FIGURE 7.3: Semantics for saving constraints in LML

a reference to an Element instance in the model, and Text which contains a
string that is not a reference to anything in the model.

7.2.1 Saving DOCL Expressions

Figure 7.3 displays an example of a DOCL expression that constrains the class
Person. The constraint restricts the age attribute to be greater or equal to 18.
On the left-hand side, the expression is split into the two aforementioned
Expression classes, Pointer and Text. The saving algorithm scans the whole
statement from left to right and tries to find an element that it can point to in
the current navigation context. In this case, the age attribute of Person is an
element the algorithm can point to. The advantage of storing it as an instance
of Pointer instead of an instance of Text is that any change in the name of that
element in the model is automatically taken into account when the expression
is redisplayed. This saving mechanism avoids the problem of co-evolution
and saves time refactoring the model or constraint expressions.

7.3 Grammar

This section gives a detailed description of how the DOCL grammar is imple-
mented using ANTLR (version 4), and in particular how the grammar rules
are defined so that the lexing process can create appropriate abstract syntax
trees.

context Customer
inv ofAge : age >= 18

CONSTRAINT 7.1: Simple OCL expression

Constraint 7.1 shows a fairly simple constraint. The context is the class
Customer and the constraint states that the age attribute has to have a value
that is greater than, or equal to, 18. Figure 7.4 shows this constraint in the
form of an abstract syntax tree. The root of the tree is the contextDeclCS rule,



7.3. Grammar 85

⟨contextDeclCS⟩

⟨classsi f ierContextCS⟩

⟨invCS⟩

⟨speci f icationCS⟩

⟨in f ixedExpCS⟩

⟨in f ixedExpCS⟩

⟨pre f ixedExpCS⟩

⟨primaryExpCS⟩

⟨primativeLiteralExpCS⟩

18

>=⟨in f ixedExpCS⟩

⟨pre f ixedExpCS⟩

⟨primaryExp⟩

⟨navigationsExpCS⟩

⟨indexExpCS⟩

⟨nameExpCS⟩

age

:ofAgeinv

Customercontext

FIGURE 7.4: An example of a parsed OCL statement

which takes the context definition expression as input. The tree then fans out
to other reachable rules, such as the invCS rule, which matches the expres-
sion “inv” (i.e., an invariant constraint), and the specificationCS rule, which
captures the actual meaning of the whole OCL statement – namely, that the
age attribute value has to be greater than or equal to 18. This shows how
DOCL statements are processed by the parser generated by ANTLR.

Constraint 7.2 shows an OCL expression which is, in essence, a logic state-
ment comparing four Boolean attribute values a, b, c and d. This shows the
importance of grammar rule ordering to the accurate evaluation of DOCL
expressions. Constraint 7.3 shows the grammar rule that is responsible for
the correct ordering of the logical operators that can be used in DOCL.



86 Chapter 7. DOCL Prototype Implementation

context Person
inv l o g i c : a and b impl ies c and d

CONSTRAINT 7.2: DOCL logic operator expression

Figure 7.5 shows the parsed statement in the form of an abstract syntax
tree. According to the grammar rule infixedExpCS, which can be seen in List-
ing 7.3, the implies rule is at the bottom compared to the and, or or xor rules.
That means that the implies block is less binding to the surroundings than the
and blocks. It is similar to the arithmetic rules for ordering operations, like
addition/subtraction and multiplication/division where the multiplication
takes place before the addition. The same approach is applied here – the first
and block containing a and b is evaluated first before the implies block com-
bines the results of the first and second and blocks. In other words, the higher
up a matching rule is in the grammar rule (i.e., the earlier it can be matched),
the more closely bound it is to the surrounding expressions. Since the divi-
sion and multiplication rules are also defined higher than the addition and
subtraction rules, the operation ordering rules hold by default without hav-
ing to check the statement twice.



7.4. Interpreter 87

infixedExpCS
:

prefixedExpCS
| iteratorBarExpCS
| l e f t = infixedExpCS op =
(

’/ ’
| ’ * ’

) r i g h t = infixedExpCS
| l e f t = infixedExpCS op =
(

’+ ’
| ’− ’

) r i g h t = infixedExpCS
| l e f t = infixedExpCS op =
(

’<= ’
| ’>= ’
| ’<> ’
| ’< ’
| ’> ’
| ’= ’

) r i g h t = infixedExpCS
| l e f t = infixedExpCS op = ’^ ’ r i g h t = infixedExpCS
| l e f t = infixedExpCS op =
(

’ and ’
| ’ or ’
| ’ xor ’

) r i g h t = infixedExpCS
| l e f t = infixedExpCS op = ’ impl ies ’ r i g h t = infixedExpCS

;

LISTING 7.3: The infixedExpCS rule as defined in the

ANTLR grammar

7.4 Interpreter

The process of parsing DOCL expressions begins with the lexing of the editor
input. This happens, for example, when the user requests the validation of
invariant constraints or when something in the model changes to trigger the
evaluation of all derive constraints in the model. After the lexing process has
produced a token stream, the parser creates a parse tree that can be “walked
over” in order to interpret the expression. The RuleVisitor walks the parsed
tree of tokens and navigates the model with the help of the ClabjectWrapper
class. The RuleVisitor class also evaluates and interprets other parts of the
expression, like collection operations. Figure 7.6 displays the flow of data
in the DOCL application. The result of the expression is then returned to



88 Chapter 7. DOCL Prototype Implementation

⟨contextDeclCS⟩

⟨classsi f ierContextCS⟩

context Person ⟨invCS⟩

inv logic : ⟨speci f icationCS⟩

⟨in f ixedExpCS⟩

⟨in f ixedExpCS⟩

⟨in f ixedExpCS⟩

⟨pre f ixedExpCS⟩

⟨primaryExpCS⟩

⟨navigatingExpCS⟩

⟨indexExpCS⟩

⟨nameExpCS⟩

a

and ⟨in f ixedExpCS⟩

⟨pre f ixedExpCS⟩

⟨primaryExpCS⟩

⟨navigatingExpCS⟩

⟨indexExpCS⟩

⟨nameExpCS⟩

b

implies ⟨in f ixedExpCS⟩

⟨in f ixedExpCS⟩

⟨pre f ixedExpCS⟩

⟨primaryExpCS⟩

⟨navigatingExpCS⟩

⟨indexExpCS⟩

⟨nameExpCS⟩

c

and ⟨in f ixedExpCS⟩

⟨pre f ixedExpCS⟩

⟨primaryExpCS⟩

⟨navigatingExpCS⟩

⟨indexExpCS⟩

⟨nameExpCS⟩

d

FIGURE 7.5: Example of a parse tree with a combined logical
expression



7.5. Triggering Constraint Evaluation 89

FIGURE 7.6: Data flow when executing/evaluating a
constraint in DOCL

the OCL2Service which in turn either alters the value of derived attributes or
annotates failed invariant constraints in the appropriate clabjects.

7.5 Triggering Constraint Evaluation

There are six different constraint types in DOCL – invariant, derive, init,
body, pre, and post constraints – each type has a different scope with regard
to the evaluation context. This section explains how, and when, each type is
evaluated.

Invariant Constraint: Invariants are Boolean expressions that can be de-
fined for Clabjects in the ontological dimension, not for attributes or meth-
ods, and should be evaluated to true for all instances that exist in the level
range specification. It is possible to define an arbitrary number of invariant
constraints on one Clabject. This type of constraint is not evaluated every
time the model changes. The user has to proactively trigger the evaluation of
invariant constraints by pressing a button.

If an invariant constraint evaluates to false, the respective Clabject is marked
and the user is notified about the constraint violation. It is also possible to
define invariant constraints on every class in the linguistic meta-model (i.e.,
the PLM).



90 Chapter 7. DOCL Prototype Implementation

Init Constraint: The init constraint can only be defined on Attributes of
Clabjects. When a new instance of a Clabject with an associated init constraint
is created, the DOCL plug is notified by the underlying framework to eval-
uate the defined constraint and initialize the attribute with the result of the
computation. The execution is implicitly triggered when a user creates an
instance of a clabject with an init constraint. It is only possible to define one
init constraint on one Attribute.

Pre/Post Constraint: Both pre- and post-constraints are only applicable to
methods of a Clabject. Preconditions check the state of a model before a
method is executed, and if they are evaluated to false, the execution of the
method is canceled. Postconditions check the state of a model after a method
has been executed (assuming the precondition is true), and if they are evalu-
ated as false a flag is raised. Both types of constraint are triggered automati-
cally when a user-defined method of a model element is part of the execution
of another constraint. An arbitrary number of preconditions and postcondi-
tions can be defined on a given Method.

Derive Constraint: Derive constraints are only applicable to Attributes, and
a given Attribute can only have one such constraint. The evaluation of de-
rive constraints is triggered whenever a model is changed in any way. Even
changes totally unrelated to a derive constraint’s computation will trigger its
(re)evaluation. When the plug-in is notified about a change to a model ele-
ment, the whole deep model is searched for this constraint type.

Body Constraint: The last constraint type defines the body of a Method, so
there can only be one such constraint per Method. This constraint type is also
evaluated when the operation is called as part of the execution of another
constraint.

In summary, all but one type of DOCL constraint is implicitly evaluated –
invariant constraints. The execution of invariant constraints has to be explic-
itly requested by the user via the Melanee user interface. For all other types
of constraints, execution is triggered by some other modeling event. When
a new Clabject is instantiated, the derive and init constraints are triggered to
compute their respective results. Pre-, post-, and body constraints are trig-
gered on a method when it is invoked as part of the evaluation of another
DOCL expression.



91

Part IV

Use Cases





93

The fourth part of the thesis presents the main use case the DOCL lan-
guage and platform were developed to support. The first chapter defines the
basic notion of modeling styles that can be applied as needed, presents the
core style and the default style which provide the foundation for deep mod-
eling using the Melanee tool, and shows how DOCL supports their definition
in a highly precise, concise and easy-to-understand way. The second chapter
presents a series of optional modeling styles that allow modelers to control
the well-formedness of their models at the granularity of the whole level and
deep model. In contrast, the third chapter presents a series of modeling pat-
terns that apply at a smaller level of granularity to specific groups of model
elements.





95

Chapter 8

Deep Modeling Styles

Visual models of the kind popularized by the UML are constructed using a
long-established set of conventions and rules, many of which arise from the
classic, two-level way of categorizing objects. For example, when classify-
ing the objects that can exist in a universe of discourse it is usually assumed
that all objects in that universe of discourse are classified, and when classi-
fying the elements that can make up a model (i.e., when meta-modeling) it
is usually assumed that all such elements need to be classified. Similarly,
when a stack of model levels is created through meta-modeling, it is usually
assumed that classified model elements occupy the level below the elements
that classify them.

Because these conventions seem so natural and are ingrained into how
modelers think, they are usually left implicit. Indeed, when meta-models are
used to define the linguistic concepts needed in a modeling environment (i.e.,
to define the language used for modeling), as in MOF-based environments,
there is no option but to classify all the model elements that can be used at
the level below since model elements cannot be created other than by instan-
tiating their type. However, for modeling environments based on the OCA,
this assumption, and many other fundamental conventions of modeling, no
longer automatically apply in the ontological dimension. This is because, in
the OCA, the basic existence of clabjects in the ontological modeling space is
enabled by their linguistic type, so there is no longer an inexorable need for
them to have a direct ontological type, and if they have one, for it to be at a
particular level.

Although the linguistic dimension of the OCA is still constrained by the
traditional conventions of classic, two-level modeling, therefore, this is no
longer the case for the ontological dimension. The underlying rules govern-
ing the relationships between model elements in the ontological dimension
(including classification) can therefore be optimized for different modeling



96 Chapter 8. Deep Modeling Styles

goals. Moreover, since the ontological dimension is fully described by the lin-
guistic metamodel, including the basic notions of “deep model” and “level”,
a level-aware constraint language like DOCL can be used to influence and
enforce various sets of modeling rules on one, or more, of the ontological
levels - that is, can be used to enforce deep modeling “styles”. This section
provides a more concrete definition of the notion of “style” in deep model-
ing and shows how DOCL can be used to define and enforce a selection of
common modeling styles.

8.1 What is a Modeling Style?

The notion of modeling styles has not been widely used in the modeling com-
munity because the fundamental rules of classic, two-level modeling cannot
be circumvented when tool support is required. Regardless of how reflective
a language definition may be, a tool needs to know what fundamental, in-
built model elements have to be supported. The notion of modeling styles
has not yet gained acceptance in the MLM community because the flexibility
offered by the OCA is still being researched. In fact, the differences between
the many MLM tools and languages available today can often be understood
as differences in styles rather than in basic concepts, such as clabjects and po-
tency, which have become widely accepted. Rather than hard-wiring these
alternative styles in different fixed languages and tools, deep reflective con-
straint languages like DOCL make it possible for an OCA-based tool to sup-
port multiple styles in a flexible and interchangeable way.

To this end, we define a deep modeling style in the context of the OCA as
follows –

Definition 8.1 (Modeling Styles). A deep modeling style is a coherent en-
semble of rules that govern the structure and/or relationships between all
the model elements in at least one, and usually more, ontological levels of
a deep model. The coherent ensemble of rules that characterize a style is
referred to as a style definition.

To be regarded as a “style”, therefore, an ensemble of rules must apply
uniformly and fully to all model elements in at least one ontological level,
without exception. However, often the rules apply to most, if not all, onto-
logical levels in a deep model. The one common exception is the top (most
abstract) level, which is often exempt from the rules that apply to the other
models because it plays a special, foundational role.



8.2. The Core Style 97

Note that in principle, all the rules that govern MLM in an OCA model-
ing environment can be defined within style definitions, since at its core the
linguistic metamodel contains nothing more than the syntax of the model
elements that exist in the ontological dimension. However, in practice, it is
likely that OCA-based tools will define a “core style” that has to be adopted
and cannot be changed. The following subsections present some important
styles that are defined using DOCL constraints.

8.2 The Core Style

This section presents a core modeling style that defines the minimal, core
set of rules common to the majority of all deep modeling approaches. All
other styles can therefore be said to “subsume” the core style, and essentially
extend it with additional, stronger constraints.

8.2.1 Orderly Hierarchies

Many of the differences between MLM revolve around the properties of three
core hierarchies and how they can be related in models – ontological levels,
classification (i.e., instanceOf relationships), and inheritance (i.e., sub/super-
type relationships). This section identifies three underlying properties that
these hierarchies must have in all MLM approaches.

Absence of Non-monotonic Abstraction: One of the most fundamental as-
pects of any multi-level modeling approach is how classification relation-
ships relate to the definition of the levels. As mentioned, in Chapter 3, Mela-
nee enforces strict modeling, but this is not embedded in the PLM itself. In
fact, the PLM does not directly relate the notion of abstraction, bound up in
the relationship between a type and its instances, with a stack of ontological
levels whose ordering is characterized by their labels (i.e., O0, O1, O2, ...).
However, all MLM languages that use the type/instance relationship as the
basis for defining levels, also agree on a fundamental relationship between
them which here is called the principle of “Monotonic Abstraction”.

As shown in Figure 8.1, this is the basic idea that for all clabjects, the
ontological types of those clabjects (which by definition are more abstract),
must reside at a “higher” level. In other words, the types of clabjects can-
not occupy higher levels than those clabjects in some parts of a multi-level
model and lower levels in other parts. Such a structure can be thought of as



98 Chapter 8. Deep Modeling Styles

X

A B

Y

FIGURE 8.1: Non-Monatonic abstraction anti-pattern

an “anti-pattern” so that the corresponding style is essentially the rule that
this Non-monotonic Abstraction anti-pattern should be absent from (i.e., not
occur within) a deep model.

Constraint 8.1 shows a DOCL constraint that captures this basic rule gov-
erning the relationship between classification and levels in deep modeling.

context C l a b j e c t ( 0 , _ )
inv : s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

forAll ( i n s t | i n s t . # getLevelIndex ( ) # > s e l f . # getLevelIndex ( ) # )

CONSTRAINT 8.1: Absence of non-monotonic abstraction

style

Absence of Circular Classification: A fundamental property that all clas-
sification hierarchies should adhere to, regardless of their relationships to
levels, is that there should be no circular classification situations in which,
for example, C is an instance of B, B is an instance of A and A is an instance
of C, as illustrated in Figure 8.2. Such a circular instance of chain can also be
thought of as an “anti-pattern” so that the corresponding style is essentially
the rule that this Circular Classification Anti-pattern should be absent from
(i.e., not occur within) a deep model.

The most concise way of defining this style is to use a variant of the
OCL closure operation, which returns the transitive closure of transitive re-
lationships between clabjects including the clabject from which the closure
“search” was initiated. The DOCL constraint for defining this constraint,
Constraint 8.2, used the nonReflexiveClosure variant which returns the same
set as nonReflexiveClosure but without the starting clabject (i.e., the clabject re-
ferred to as self ). Only if the element that is referenced as “self” is not in the
collection returned by nonReflexiveClosure it is certain that there is no instance
cycle (i.e., the occurrence of the anti-pattern). If the “self” element is present



8.2. The Core Style 99

A

B

instanceOf

C

instanceOf

instanceOf

FIGURE 8.2: Circular Classification Relationship Anti-pattern

A

B

C

FIGURE 8.3: Circular Inheritance Relationship Anti-pattern

in the resulting collection a cycle is present and the Melanee tool will anno-
tate the clabject with an error marker and inform the user that this particular
clabject is part of an anti-pattern.

context C l a b j e c t ( 0 , _ )
inv : s e l f −> nonReflexiveClosure ( c l a b j e c t | c l a b j e c t . # getDirectTypes ( ) # ) −>

excludes ( s e l f )

CONSTRAINT 8.2: Absence of circular classification style

Absence of Circular Inheritance: The same basic problem of circularity can
exist in inheritance hierarchies, so another constraint is needed to prevent
the Circular Inheritance Relationship Anti-pattern. As shown in Figure 8.3,
this anti-pattern is very similar to the circular classification relationship but
instead of the classification relationship the clabjects involved are connected
via inheritance relationships. This anti-pattern can occur in MLM approaches
that use the level concept since all involved clabjects can exist at the same
level.



100 Chapter 8. Deep Modeling Styles

The following constraint in Constraint 8.3 can be used to detect the circu-
lar inheritance relationship anti-pattern. Instead of constraining the classifi-
cation hierarchy, the constraint rules out circular chains of inheritance.

context C l a b j e c t ( 0 , _ )
inv : s e l f −> nonReflexiveClosure ( c l a b j e c t | c l a b j e c t . # getSupertypes ( ) # )

−> excludes ( s e l f )

CONSTRAINT 8.3: Absence of circular inheritance style

8.2.2 Deep Characterization

MLM approaches like LML that support deep instantiation uses so-called
vitality properties to describe the relationship between types and their in-
stances, and also to indicate what roles clabjects play (i.e., type and/or in-
stance). The LML defines three vitality properties - potency, durability, and
mutability, but most deep-instantiation-based MLM languages support fewer.
For example, MetaDepth only uses potency, while DLM uses potency and
durability. However, whichever selection of properties they support, certain
core principles must always apply, not only related to the basic definition of
classification but also to the preservation of the Liskov Substitutability Prin-
ciple [87] in inheritance hierarchies. This section presents these principles for
each of the three vitality properties.

Potency: The original and most important vitality property is the “potency”
property, which is the basic mechanism by which deep-instantiation-based
MLM languages support deep characterization. Although such languages
sometimes have different rules for potency, the majority agree on a principle
that is sometimes referred to as “characterization potency” [77]. This is a re-
laxed version of the original potency rules first introduced in [12]. In simple
terms, the relaxed rules simply require the potency of a direct instance of a
clabject to be lower than the potency of that clabject. The DOCL constraint
showing this basic characterization rule for potency is shown in Constraint
8.4, where the potency of a clabject is a non-negative integer.

In order to preserve the Liskov Substance Principle for direct and indirect
instances of a clabject, there are also several fundamental rules governing the
relationship between the potencies of clabjects that are in an inheritance re-
lationship. These are summarized in Table 8.1, where the columns represent
the potency value of the super-clabject in a specialization relationship and
the rows represent the potency values of the sub-clabject.



8.2. The Core Style 101

The first row indicates that a sub-clabject can have a potency of 0 regard-
less of the potency of its super-clabject as long as it also has at least one de-
scendent with a potency greater than 0. However, if the super-clabject is po-
tent (columns 2 and 3) none of the descendants of the sub-clabject can have a
potency greater than the potency of the super-clabject. If the sub-class is im-
potent, none of the descendants of the sub-class can have a potency greater
than the potency of the super-clabject’s closest potent ancestor, if it has one.

context C l a b j e c t ( 0 , _ )
inv : s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

forAll ( p|p . # getPotency ( ) # < s e l f . # getPotency ( ) # )

CONSTRAINT 8.4: Characterization Potency Style: potency

of direct instances must be one lower

Any clabject in an inheritance chain other than the bottom one can be im-
potent (i.e. an abstract class). However, if one or more of the super-clabjects
of an abstract clabject is potent, to ensure that all instances of the abstract
clabject are also instances of its potent super-clabjects the potencies of the
abstract class’s descendants must not exceed the potencies of any of its po-
tent super-clabjects. In the two right-hand cells of the table, the abstract class
in question does have a potent super-clabject, so this requirement applies.
However, an abstract clabject is not always required to have potent super-
clabjects. Thus, in the top left-hand cell of the first row, the requirement only
applies if the abstract clabject has at least one potent super-clabject.

The second row indicates that if the potency of the sub-clabject is 1, the
super-clabjects can have any potency. For the left-hand cell of this row, when
the super-clabject is impotent, there are two situations. Either the super-
clabject has a potent ancestor or it has not. In the first case, the minimum
size of this potency must be 1, so the sub-clabject’s potency does not exceed
it. In the second case, there is no problem because a chain of abstract clabjects
can have potent sub-clabjects of any potency. For the other two cells in this
row, the potency of the sub-clabjects is guaranteed to be less than the poten-
cies of the super-clabjects, so the corresponding situation is always possible.

In the case of the third row, the bottom-right cell of Table 8.1 defines the
basic rule that applies when potent clabjects are involved in inheritance rela-
tionships – a sub-clabject’s potency must be less than or equal to the super-
clabjects potency. One consequence of this is that a super-class with potency
1 cannot have sub-clabjects of potency 2..*, so the middle cell of the bottom
row is not possible. As usual, the case when the super-clabject is impotent
is special (left-hand cell of the bottom row). Again, all sub-clabjects of the



102 Chapter 8. Deep Modeling Styles

B0

 

A2

 

C1

 

FIGURE 8.4: Inheritance example with different potencies

Sub
Super

0 1 2..*

0 the sub-clabject
must have at least

one descendant
with a potency >0

and no
descendants with a

potency greater
than the potency of
the super-clabject’s

closest potent
ancestor if there is

one

the sub-class must
have at least one

descendant with a
potency >0 and no
descendants with a

potency greater
than that of the
super-clabject

the sub-clabject
must have at least

one descendant
with a potency >0

and no
descendants with a

potency greater
than that of the
super-clabject

1 Possible Possible Possible
2..* the closet potent

ancestor of the
super-clabject, if

there is one, must
have a potency at

least as large as the
sub-clabject’s

potency

Not possible The sub-clabject’s
potency must be
less than or equal
to the potency of
the super-clabject

TABLE 8.1: Inheritance Potency rules [85]

abstract clabject must also be instances of all of its potent super-clabjects.
Thus, if the abstract clabject has any potent super-clabjects, the closest ances-
tor to it in the inheritance chain must have a potency that is greater than or
equal to that of the abstract clabject’s sub-clabject. This is sufficient because
any potent descendants further down the inheritance hierarchy are bound to
have equal or higher potencies. Similarly, it is sufficient for the closest an-
cestor’s potency to be no greater than the sub-clabject’s because any of its
super-clabjects must have equal or lower potencies.

Figure 8.4 clarifies the rationale behind the top right-hand cell of Table
8.1. A clabject with potency 2, A, can have a sub-clabject that has potency 0,B,
an abstract clabject, but only if B has a sub-clabject, C, which has a potency
higher than 0 but less than or equal to the potency of A (the closet potent
ancestor to B).

The DOCL constraint that defines these potency rules is shown in table



8.2. The Core Style 103

8.1. The getSubtypes() operation returns an ordered set so that the clabjects in
that collection are ordered in terms of their occurrence down the inheritance
chain.

context C l a b j e c t ( 0 , _ )
inv : i f s e l f . # getPotency ( ) # = 0

then ( s e l f . # getSubtypes ( ) # −> e x i s t s ( sub|sub . # getPotency ( ) # > 0) )
e lse ( s e l f . # getSubtypes ( ) # −> forAll ( sub|sub . # getPotency ( ) # <=

s e l f . # getPotency ( ) # ) )
endif

CONSTRAINT 8.5: Core Style: Potency rules of inheritance

Durability: As explained in Chapter 3, durability is an endurance property
of attributes that primarily governs when instances of a clabject must possess
an attribute and what that implies for its instances. The basic rule for dura-
bility is similar to that for potency – if a clabject I is an instance of another
clabject T which has an attribute named A with a durability greater than 0,
then I must also have an attribute named A of the same type, but with a
durability that is one lower. If, however, the durability of A is 0, I need not
have an attribute named A of the same type. Like potency, durability is a
non-negative integer value.

The DOCL constraints that define these basic rules for durability are de-
fined in Constraint 8.6.

context C l a b j e c t ( 0 , _ )
inv : i f s e l f . # getDirectType ( ) # −> s i z e ( ) = 1

then true
else s e l f . # getDirectType ( ) # . # ge tDef inedAt t r ibutes ( ) # −>
s e l e c t ( a t t r | a t t r . # g e t D u r a b i l i t y ( ) # > 0) −> c o l l e c t (#name#) −>
includesAll ( s e l f . # g e t A l l A t t r i b u t e s ( ) # −> c o l l e c t (#name#) )
endif

CONSTRAINT 8.6: Durabilty classification rules

Ensuring that the Liskov Substance Principle is adhered to also leads to
the following fundamental rules governing the relationship between the mu-
tabilities of attributes owned by clabjects which are in an inheritance rela-
tionship. These are summarised in Table 8.2. Importantly, this table remains
completely unaffected by the potency values of the clabjects that own the
attributes involved.

The columns represent the durability of an attribute of the super-clabject
(i.e. the super-attribute) in an inheritance relationship while the rows repre-
sent the durability of the corresponding (i.e. inherited) attribute of the sub-
clabject (i.e. the sub-attribute), where the label 2..* stands for all durability
values from 2 onward.



104 Chapter 8. Deep Modeling Styles

Sub
Super

0 1 2..*

0 Possible Not possible Not possible
1 Possible Possible Not possible

2..* Possible Not possible durabilities must
be the same

TABLE 8.2: Inheritance Durability rules [85]

The first column of table 8.2 indicates that if a sub-clabject inherits a non-
durable attribute (i.e. an attribute with zero durability), that attribute can
have any durability. This is because non-durable attributes have no effect on
the intension of a clabject and thus place no constraints on the sub-clabjects.
Indeed, a sub-clabject does not even need to inherit a non-durable attribute
since the intension of the super-clabject does not require the attribute’s pres-
ence in instances.

The rest of the table basically shows that if the durability of the super-
attribute is non-zero the sub-attribute must have the same durability. Dura-
bility rules are easy to summarize. The durability value has to stay the same
except in the case of 0. If the super-type attribute has a durability value of
0 the sub-type attribute’s durability value can be any positive integer value.
The following DOCL constraint defines these durability rules.

context C l a b j e c t ( 0 , _ )
inv : s e l f . # getDirec tSupertypes ( ) # . # g e t A l l A t t r i b u t e s ( ) # −>

r e j e c t ( a|a . # g e t D u r a b i l i t y ( ) # = 0) −>
forAll ( a| l e t name : String = a . # getName ( ) # in
s e l f . # getAttributeByName (name) # . # g e t D u r a b i l i t y ( ) # = a . # g e t D u r a b i l i t y ( ) # )

CONSTRAINT 8.7: Durability inheritance rules

Mutability: Chapter 3 also explains that mutability is another endurance
property of attributes that primarily governs how the values of an attribute
can vary over an instantiation chain. The basic rule for mutability is that if a
clabject I, which is an instance of another clabject T, has an attribute A with
the same name and type as an attribute A of T, according to the durability
rules, the mutability of I’s A attribute must be one less than the mutability of
T’s A attribute unless the mutability of T’s A attribute is 0, in which case the
mutability of I’s A attribute is also 0. Like potency and durability, mutability
is a non-negative integer value. The DOCL constraint defining these rules is
shown in Constraint 8.8.



8.2. The Core Style 105

Sub
Super

0 1 2..*

0 sub-attribute value
must be the same
as super-attribute

value

Possible (attribute
values can be

different)

Not possible

1 Not possible Possible (attribute
values can be

different)

Not possible

2..* Not possible Not possible mutability values
must be the same
(attribute values
can be different)

TABLE 8.3: Mutability rules (Durability >0) [85]

context A t t r i b u t e ( 0 , _ )
inv : s e l f . # g e t C l a b j e c t ( ) # . # getDirectType ( ) # . # ge tDef inedAt t r ibutes ( ) # −>

r e j e c t ( a|a . # g e t D u r a b i l i t y ( ) # = 0) −> forAll ( a|
i f a . # name# = s e l f . # name# and a . # g e t Mu tab i l i t y ( ) # > 0

then a . # g e t Mu ta b i l i t y ( ) # > s e l f . # g e t Mu ta b i l i t y ( ) #
e lse i f a . # name# = s e l f . # name# and a . # g e t Mu tab i l i t y ( ) # = 0

then s e l f . # g e t Mu ta b i l i t y ( ) # = 0
e lse true

endif
endif )

CONSTRAINT 8.8: Mutability classification rule

The rules governing the relationship between the mutabilities of attributes
owned by clabjects that are in an inheritance relationship are summarised in
Table 8.3.

As mentioned above, if the durability of the super-attribute is zero, the
sub-attribute can have any properties it likes because it is not of interest to
the intension of the super-clabject. If the super-attribute is durable, however,
the sub-attribute has to have the same durability as the super-attribute, oth-
erwise, mutability is irrelevant. Thus, the rules in Table 8.3 assume that the
sub- and super-attributes have non-zero durabilities of the same value.

The first column shows that if the super-attribute is immutable (i.e. has
mutability 0), the super-attribute must also be immutable. Moreover, it must
also have the same value as the super-attribute. Column 2 shows that if the
super-attribute has a mutability of 1, the sub-attribute can have a mutability
of 0 or 1. This is because attributes with mutability 1 and 0 both have in-
stances with mutability 0. However, in this case, the sub-attribute and super-
attribute do not need to have the same value since the super-clabject’s inten-
sion allows the value of a mutable attribute to be changed by its instances.



106 Chapter 8. Deep Modeling Styles

B1: A

 z1: Int = 70

C1

 z1:Int = 70

D0: C

 z0:Int = 70

A2

 z2: Int = 101 

FIGURE 8.5: Inheritance example with mutability 0 values

Finally, the third column shows that if the super-attribute has a mutability
greater than one, the sub-attribute has to have a mutability of the same value.
However, the value of the sub-attribute can again be different from the value
of the super-attribute.

Figure 8.5 clarifies the first column and first row of Table 8.3. Since the z
attribute of the clabject B has mutability zero, along with non-zero durability,
the z attribute of the clabject C, a sub-clabject of B, must have the same dura-
bility, the same mutability and the same value (i.e. 7). If the mutability of the
z attribute of the clabject B were greater than 0, the z attribute of C could have
a different value, although its mutability would have to be the same.

context A t t r i b u t e ( 0 , _ )
inv : l e t mu ta b i l i ty : Integer = s e l f . # g e t Mu ta b i l i t y ( ) # in
s e l f . # g e t C l a b j e c t ( ) # . # getDirec tSupertypes ( ) # . # g e t A l l A t t r i b u t e s ( ) # −>
s e l e c t ( a|a . # getName ( ) # = s e l f . # getName ( ) # and a . # g e t D u r a b i l i t y ( ) # > 0) −>
forAll ( a| i f a . # g e t Mu tab i l i t y ( ) # = 1 and m uta b i l i ty >= 1

then f a l s e
e lse i f mu ta b i l i ty <> a . # g e tM ut ab i l i ty ( ) #

then f a l s e
e lse true
endif

endif )

CONSTRAINT 8.9: Mutability inheritance rules

8.3 The Melanee Default Style

The core style described in the previous section captures the core principles
and rules that underpin any deep modeling approach using the modeling
concepts provided by the LML language, as defined in the PLM. These are
currently hardwired into the Melanee, which is currently the only tool that



8.3. The Melanee Default Style 107

ProductType2

Phone1:ProductType

Book1:ProductType

O0

O1

O2

PhoneCase1:ProductType

FIGURE 8.6: Example of strict multi-level modeling

supports LML-based deep modeling. However, Melanee also comes pre-
configured with other modeling choices which, although not in the core,
are also part of the out-of-the-box deep modeling approach users are of-
fered when using Melanee. In other words, Melanee is preconfigured with
a default style that extends the built-in rules with additional modeling rules.
These are described in this section.

Strict Modeling: The core Monotonic Abstraction Levels principle described
in subsection 8.2.1 only requires that an instance of a clabject reside at a lower
level than that clabject, but does not stipulate which lower level. Melanee
adopts a stricter style, the classic “strict (meta) modeling” style, which states
that the instances of a clabject must be at the level directly below that clabject
and that only classification relationships can cross level boundaries. Strict
modeling is therefore compatible with the monotonic abstraction principle
but strengthens it. Strict modeling therefore forms part of Melanee’s default
style, which subsumes the core style outlined in the previous section. Al-
though this strict style is currently hardwired in Melanee, in the following
we present the DOCL rules that define this style.

The strict deep modeling style adds two additional rules to the core style:

SR1 The only level-crossing relationship that can cross levels is the instance-
of relationship

SR2 Instances of a clabject have to exist at the level exactly below that clab-
ject

Figure 8.6 shows a few examples of what strict modeling looks like and
what models are invalid in the strict modeling style. The clabject ProductType
in the top level does not need to have an ontological type and has a potency of



108 Chapter 8. Deep Modeling Styles

2. The valid instances in this diagram are the Phone and PhoneCase clabjects,
which is an instance of ProductType. The Book clabject has the correct potency
value of 1 but is placed on a level too far below, and is thus not a valid clabject
in the strict modeling style.

context Connection ( 0 , _ )
inv : s e l f . # g e t P a r t i c i p a n t s ( ) # −> forAll ( p|p . # getLevelIndex ( ) # = s e l f . #

getLevelIndex ( ) # )

CONSTRAINT 8.10: Strict modelling style: only instance-of

relationships can cross levels

These two rules can easily be defined in DOCL using the following three
constraints. The Constraint 8.10 defines the context in Connection and ensures
that every connected entity is at the same level, i.e., that the connection does
not cross a level boundary. This is achieved by storing information about
which level contains a connection and then comparing that with the level
information of every participant of that connection.

Similarly, all clabjects in a generalization (inheritance) set have to be at
the same level as well. Constraint 8.11 checks that all subtypes of a clabject
must be at the same level as the supertype clabject.

Both these constraints deal with SR1 since these types of relationships
are the only things that can connect clabjects that must not cross any level
boundaries.

context I n h e r i t a n c e ( 0 , _ )
inv : s e l f . # getSupertypes # . # leve l Index # −> asSe t ( ) −> s i z e ( ) = 1

and s e l f . # getSubtypes # . # leve l Index # −> asSe t ( ) −> s i z e ( ) = 1
and s e l f . # getSupertypes # . # leve l Index # −> asSe t ( ) =
s e l f . # getSubtypes # . # leve l Index # −> asSe t ( )

CONSTRAINT 8.11: Strict modelling style: sub- and

supertypes have to be on the same level

Finally, Constraint 8.12 ensures that every clabject in a model only has
instances at the level directly below. The context here is Clabject and the con-
straint is evaluated for every linguistic instance of Clabject. For every clabject,
the index of the level occupied by its instances must be one higher than the
index of the level occupied by its direct type, meaning that it occupies the
level immediately below that type. This constraint deals with SR2.



8.3. The Melanee Default Style 109

context C l a b j e c t ( 0 , _ )
inv : l e t l eve l Index : Integer = s e l f . # getLevelIndex ( ) # in

i f s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e ( ) = 0
then true
else s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> forAll ( c|c . # getLevelIndex ( ) # =
leve l Index + 1)
endif

CONSTRAINT 8.12: Strict modeling style: instances of a

clabject have to be at the level immediately below





111

Chapter 9

Multi-Style Modeling

The core style described in the previous chapter is hardwired into Melanee
(i.e., encoded in Java) since DOCL was not available at the time it was con-
structed. However, with the availability of DOCL only the basic ability to
handle the PLM abstract syntax needs to be hardwired into the core. DOCL
makes it possible to define and apply different modeling styles, as long as
they are consistent with (i.e., subsume) the core style. This chapter presents
some of the most important and useful optional modeling styles that can be
defined using DOCL.

9.1 Level Organization Styles

The previous chapter presented DOCL encodings of two rules, SR1 and SR2,
that define and enforce the principle of strict modeling. By removing one, or
both, of these rules, whilst still retaining the core principle of monotonic ab-
straction, less strict deep modeling styles can be applied. These give model-
ers more flexibility when modeling but also increase the risk that malformed
models will be created.

Level-Leaping Deep Modeling: One less strict variant is to keep SR1 but
drop SR2. This falls back on the monotonic abstraction rule that an instance
of a clabject must occupy a lower level than that clabject, but not necessarily
the level immediately below, whilst retaining the rule that only classification
relationships can cross levels.

This style can be useful in some domains to reduce the number of redun-
dant clabjects at intermediate levels. It is a style supported by the Metadepth
deep modeling tool [41] where it is implemented by the “leap potency” mech-
anism.



112 Chapter 9. Multi-Style Modeling

Level-Crossing Deep Modeling: Another less strict variant is to keep SR2
but drop SR1. This retains the strict principle that instances of a clabject must
occupy the level immediately below that clabject, but allows other kinds of
relationships, beyond just the classification relationship, to cross level bound-
aries.

This style can help reduce the number of redundant clabjects when an
abstraction, as well as instances of that abstraction, needs to have connections
to a given clabject. A commonly used example is when Jony Ive, the famous
“designerOf” the iPhone, is also the “ownerOf” an iPhone instance. The strict
deep modeling style requires redundant representation of the same domain
entity to handle such cases [83]. The level-crossing deep modeling style is
supported by MLT [29] and DeepTelos [70].

Relaxed Deep Modeling: The most “relaxed” variant is to drop both SR1
and SR2 and retain only the core monotonic abstraction rule for deep mod-
eling. This still enforces a clear notion of levels, including restrictions on the
relative levels clabjects can occupy based on their classification relationships,
but allows some freedom as to the exact levels that clabjects occupy. It also
places no restrictions on what kinds of relationships can cross levels.

This style, which has been referred to as “loose multi-level modeling”
in previous papers [20], supports the most concise models of a domain but
increases the risk that modelers will create ill-formed models. Approaches
that support this style include FMMLx [36], and DLMA [117].

9.2 Classification Styles

The previous section discussed styles dealing with the relative location of
types and their instances within a stack of ontological levels, as well as the
nature of the relationships that can cross levels. However, these styles do
not address the issues that arise when classification relationships can, or are
required to, exist between clabjects and what such relationships entail when
they do exist. Note that the existence of a classification relationship between
a clabject I and a clabject T means that I is a direct instance of T and T is
a direct type of I. This section discusses several deep modeling styles that
address different aspects of these questions.



9.2. Classification Styles 113

9.2.1 Ontological Classification Mandation

The first set of classification styles deals with the question of whether clab-
jects should, or must, have ontological types (i.e., with classification manda-
tion). The original papers on strict modeling strongly implied, but did not
explicitly state, that all clabjects in a deep model, except that at the top (most
abstract) level, must have direct ontological types. In other words, ontologi-
cal classification was mandatory at all but the top level.

In traditional constructive modeling environments where instances are al-
ways created from types, this mandatory ontological classification approach
for all objects is unavoidable because objects are created according to the tem-
plate defined by their types. However, in OCA-based tools, ontological clas-
sification is not essential because objects are existentially created from their
linguistic type. The idea that there might be a practical benefit of allowing
clabjects in a model to not have an ontological direct type was first suggested
by De Lara, Guerra, and Cuadrado [43], under the term “linguistic exten-
sions”. There are three fundamental deep modeling styles providing differ-
ent approaches to the question of when clabjects must have an ontological
classifier (i.e., type).

Universal Ontological Classification: The style implied by the earliest lan-
guages and tools for deep modeling can be characterized as “Universal On-
tological Classification”. This basically makes it mandatory for all clabjects in
a deep model, except the clabjects at the top level, to have a direct ontological
type. More specifically, unless a clabject occupies the top level, it must have
one and only one direct ontological type, but can of course have multiple
indirect ontological types through inheritance.

context DeepModel ( 0 , _ )
inv : C l a b j e c t −> r e j e c t ( c|c . # getLevelIndex ( ) # = 0) −>

forAll ( c|c . # getDirectType ( ) # −> s i z e ( ) = 1)

CONSTRAINT 9.1: Universal Ontological Classification

Style

The DOCL constraint defining this style is Constraint 9.1. This style is
useful when using an ontological level to define a DSL since the goal in such
a use case is to make sure that only concepts in (the abstract syntax of) the
language are used in the level, or levels, below.

Selective Classification Mandation: For some applications, the universal
ontological classification style is too restrictive. When using the powertype



114 Chapter 9. Multi-Style Modeling

pattern, for example, the universal classification style can make it difficult to
apply this pattern in a clean and simple way. Often, it is sufficient to mandate
that only one of the two kinds of clabjects supported in the LML (i.e., Entities
or Connections) must have a direct ontological type. This is therefore referred
to as “Selective Classification Mandation”.

The DOCL Constraint 9.2 defines a modeling style where the mandation
of ontological classification is restricted to connections. In other words, it re-
quires all connection clabjects, except those occupying the top level, to have
a direct ontological type, but allows entity clabjects to be ontologically un-
typed. Of course, the opposite choice is also possible where only entity clab-
jects are mandated to have a direct ontological type.
context DeepModel ( 0 , _ )
inv : Connection −> r e j e c t ( c|c . # getLevelIndex ( ) # = 0) −>

forAll ( c|c . # getDirectType ( ) # −> s i z e ( ) = 1)

CONSTRAINT 9.2: Mandatory Classification for Connections

Style

This mandatory connection classification style is useful in deep models
that include powertypes because, as mentioned above, it is useful to allow
some of the participating entity clabjects to be ontologically untyped, but
not at the expense of allowing all connections to be ontologically untyped.
The mandatory connection classification style therefore allows the former but
forbids the latter.

9.2.2 Instantiation Form Mandation

The previous set of styles addressed the question of when clabjects must have
a direct ontological type but did not deal with the question of how fully a di-
rect type must characterize its direct instances. This relates to the issue of
whether a direct instance of a clabject must be an “isonym” of that clabject
or might be a “hyponym” of it. In both cases, the clabject must have the fea-
tures (i.e., attributes, methods, and mandatory connections) required by the
intension of its direct types, but in the former case, it has only those features,
while in the latter case, it has more.

Figure 9.1 shows an example of both isonynymic [72] and hyponynic in-
stantiation. The Phone clabject is an isonym of ProductType because it has the
features required by the intension of ProductType, but no more. The clab-
ject Book, however, has an additional feature, the attribute numberOfPages,
which is not part of the intension of the type ProductType. Therefore, Book is
a hyponym of ProductType. Note that the isonym/hyponym distinction only



9.2. Classification Styles 115

ProductType2

price2: Int2 

Phone1:ProductType

price1 : Int1 

Book1:ProductType

price1 : Int1

numberOfPages1: Int1 

Isonym Hyponym

FIGURE 9.1: Example for isonynimic and hypominic
instantiation

considers the potent features of a clabject’s direct type (i.e., features with a
potency greater than 0). This is because the impotent features (i.e., with po-
tency = 0) of a clabject are not part of its intension and therefore do not affect
its instances.

The isonym/hyponym distinction is closely related to the approach taken
to defining the classification relationships in a deep model - constructive
modeling or exploratory (a.k.a. explanatory) modeling [72]. When a model is
being developed for a constructive purpose (e.g., to create a software system
or a database), all the types are defined first, and then all the instances are
created by instantiating them. The resulting instances are therefore bound to
be isonyms of their direct types because they are created from the templates
they define. However, when a model is being developed for an exploratory
purpose, the instances exist first and the types are derived from them. In
such cases, the modeler is usually only interested in capturing the important
attributes of the existing instances in the type model and may leave some ac-
tual features unmodeled. Direct instances are by definition hyponyms when
they include additional features as compared to their direct type.

Universal Isonymic Instantiation: In constructive modeling scenarios where
all instantiation should be isonymic, it is useful to apply the “Universal Isonymic
Instantiation” style to ensure that all models are well-formed and that no hy-
ponymic instantiation occurs. This style basically states that all clabjects that
have an ontological direct type must be an isonym of that type. In other
words, all direct instances of a clabject must be isonyms of that clabject. This
style is defined and enforced by Constraints 9.3 and 9.4



116 Chapter 9. Multi-Style Modeling

context C l a b j e c t ( 0 , _ )
inv : i f s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e > 0

then l e t f e a t u r e S i z e : Integer = s e l f . # getFeature ( ) # −>
s e l e c t ( f | f . # g e t D u r a b i l i t y ( ) # > 0) −> s i z e ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> forAll ( i | i . # getFeature ( ) # −> s i z e ( ) =
f e a t u r e S i z e )
e lse true
endif

CONSTRAINT 9.3: Universal isonymic instantiation style:

instances have to have the same number of potent features

as their types

context C l a b j e c t ( 0 , _ )
inv : i f s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e > 0

then l e t featureNames : Set = s e l f . # getFeature ( ) # −>
s e l e c t ( f | f . # g e t D u r a b i l i t y ( ) # > 0) −> c o l l e c t (#name#) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> forAll ( i | i . # getFeature ( ) # −>
c o l l e c t (#name#) −> includesAll ( featureNames ) )
e lse true
endif

CONSTRAINT 9.4: Universal isonymic instantiation style:

instances have to have the same potent features as their

types

It is of course possible to define the opposite “Universal Hyponymic In-
stantiation” style in which only hyponymic classification relationships are
allowed in a model, but it is not clear whether there are any practical uses for
this style.

9.3 Inheritance Styles

The styles presented in the previous section focused on statements about the
relationship between clabjects and their direct types - that is, on the relation-
ship between a clabject and its direct type. They clarify which clabjects in
a model are mandated to have such relationships and what level of charac-
terization they should provide. However, the aforementioned styles do not
make any statements about, or define styles related to indirect classification.

Indirect classification is intimately tied to the notion of subtyping (a.k.a.
specialization) or supertyping (a.k.a. generalization), where the former is the
inverse of the latter. In fact, the very distinction between direct and indirect
types relies on the existence of such relationships between clabjects. Since the
relationship that captures the existence of supertype/subtype relationships
between clabjects is called the inheritance hierarchies, in this section we refer



9.3. Inheritance Styles 117

to hierarchies of such relationships as inheritance relationships and call the
styles that govern their form “inheritance styles”.

9.3.1 Inheritance Declaration

The classification styles defined in the previous section describe whether or
not direct typing relationships may exist between clabjects at different lev-
els, and if they do exist, what form they should have (i.e., isonymic or hy-
ponymic), but they do not prescribe whether particular pairs of clabjects
should have a direct typing relationship or not. There are two basic strategies
for allowing modelers to make this decision – so-called structural approaches
and nominal approaches.

Structural Typing: In languages like LML that only allow clabjects to have
a maximum of one direct type, structural typing approaches are based on
four basic premises –

ST1 If a clabject, I, satisfies the structural requirements needed to be an in-
stance of a clabject, T, (it is either a hyponym or isonym of T) I MUST
be regarded as an instance of T (or, alternatively, T must be regarded as
a type of I).

ST2 If the set of clabjects that must be regarded as instances of a clabject X
(according to criteria ST1) is a proper subset of the set of clabjects that
must be regarded as instances of clabject Y, then Y MUST be regarded
as a being a supertype of X, possibly with intermediate types. In other
words, X must be below Y in a chain of inheritance relationships,

ST3 If a clabject I must be an instance of T according to ST1, and there is no
subtype of T that I must be regarded as being an instance of according
to ST1, then T MUST be regarded as the direct type of I.

ST4 A clabject cannot have more than one direct type.

Note that to follow these rules, modelers often need to be creative. For
example, if rules ST1, ST2, and ST3 leave two or more existing classes as po-
tential direct types of a clabject, the modelers must introduce a new clabject
that inherits from these clabjects (multiple inheritance) so that it can serve as
the unique direct type.

Each of these rules can be defined using DOCL:



118 Chapter 9. Multi-Style Modeling

context C l a b j e c t ( 0 , _ )
inv : C l a b j e c t −> r e j e c t ( s e l f ) −>

e x i s t s ( c |( s e l f . doclIsHyponymOf ( c ) or s e l f . doclIsIsonymOf ( c ) )
implies s e l f . d o c l I s I n s t a n c e O f ( c ) )

CONSTRAINT 9.5: Structural Typing: constraint for the

ST1 rule

context C l a b j e c t ( 0 , _ )
inv : C l a b j e c t −> r e j e c t ( s e l f ) −>

s e l e c t ( c|c . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e ( ) > 0 and
c . doc lGet Ins tances ( ) −> includesAll ( s e l f . doc lGet Ins tances ( ) ) ) −>
forAll ( c| i f s e l f . # getSubtypes ( ) # −> s i z e ( ) = 0

then true
else s e l f . # getSubtypes ( ) # −> includes ( c )

endif )

CONSTRAINT 9.6: Structural typing: constraint for the ST2

rule

context C l a b j e c t ( 0 , _ )
inv : C l a b j e c t −> r e j e c t ( s e l f ) −>

s e l e c t ( c |( s e l f . doclIsHyponymOf ( c ) or s e l f . doclIsIsonymOf ( c ) ) and
c . # getSubtypes ( ) # −> s i z e ( ) = 0) −>
forAll ( c| s e l f . # getDirectType ( ) # = c )

CONSTRAINT 9.7: Structural typing: constraint for the ST3

rule

context C l a b j e c t ( 0 , _ )
inv : s e l f . # getDirectType ( ) # −> s i z e ( ) <= 1

CONSTRAINT 9.8: Structural typing: constraint for the ST4

rule

Nominal Typing: Norminal typing differs from structural typing in that it
gives the modeler the final say on whether a clabject that is an isonym or
hyponym of another clabject should actually be regarded as an instance of
that clabject, or whether two clabjects whose extensions satisfy ST2 should be
regarded as being in an inheritance relationship. In other words, in nominal
typing, ST1, ST2, and ST3 apply but with the capitalized word “MUST” in
the previous definitions replaced by “MAY”. Under the nominal modeling
style, therefore, modelers are not obliged to accept direct or indirect type
relationships that must be accepted under the structural style. In nominal
typing “candidate” direct and indirect typing relationships that are possible
according to structural typing have to be explicitly selected by the modeler
and declared to be extant by adding corresponding elements to the model.
In both cases, the modelers are responsible for introducing suitable clabjects



9.3. Inheritance Styles 119

Breed2

Dog1

Corgi1:Breed Collie1:Breed

PembrokeWelshCorgi1:Breed CardiganWelshCorgi1:Breed

{incomplete}

{incomplete}

(A) Potent non-abstract superclass

Breed2

Dog0

Corgi0:Breed Collie1:Breed

PembrokeWelshCorgi1:Breed CardiganWelshCorgi1:Breed

{complete}

{complete}

Mongrel1:Breed

(B) Abstract superclass

FIGURE 9.2: Forms of generalization sets (inspired by [77])

and relationships to ensure that the requirements of other styles are met, if
they have been selected (e.g., the Universal Classification Style).

9.3.2 Specialisation Set Form

Specialization sets1 play an important role in all forms of object-oriented
modeling since they show when subtyping relationships are related to one
another, and how the extensions of clabjects are split up into the extensions
of other clabjects. They have two concrete properties, disjointness, and com-
pleteness, which can interact in various with the supertype (whether or not
the supertype is abstract). This interaction naturally leads to two styles of
usage of both properties.

The interaction is illustrated in Figure 9.2 which shows two alternative
ways of representing the same domain scenario – namely, the situation where
a pet shop sells a certain set of pure Dog breeds as well as dogs that do not
belong to any breed. Figure 9.2a shows how this scenario can be modeled
using an incomplete generalization set in which the pure breeds are concrete
subtypes of a concrete supertype, Dog. Pure breed dogs (i.e., instances) are
thus direct instances of their respective breed clabjects, while non-pure breed
dogs (often called Mongrels in English) have Dog as their direct type. Fig-
ure 9.2b shows the same domain scenario but uses a complete specialization
set with an abstract supertype, Dog, and a new concrete subtype Mongrel.
The essential difference is that non-pure breed dogs now have Mongrel as
their direct type rather than Dog.

Hürsch [62] pointed out that these alternatives exist for all specialization
sets, in the context of object-oriented programming, and that it is possible
to systematically translate a program using concrete supertypes into another

1LML uses the term specialization set for the UML notion of a generalization set



120 Chapter 9. Multi-Style Modeling

program using only abstract supertypes without changing the behavior of
the resulting program. Based on this observation, they proposed the so-
called “Abstract Superclass Rule” which advocates that the style depicted
in Figure 9.2b be used. While the rule is not intended to be an indicator of
a good or bad program per se, it has certain advantages, such as reusabil-
ity and simplicity, which are considered beneficial for object-oriented frame-
works and libraries. when one of the two aforementioned approaches is or
should be, applied exclusively over one or more levels, they give rise to cor-
responding styles.

Exclusively Abstract Supertypes: The “Exclusively Abstract Supertypes”
style essentially exclusively applies the approach shown in Figure 9.2b through-
out one or more levels and prohibits the use of the approach shown in Fig-
ure 9.2b. The implication of having this style in place is that every specializa-
tion set has to be complete. In other words, concrete (non-abstract) subclasses
must be leaves of an inheritance hierarchy and partition the domain of the
generalization completely so that every object that needs an ontological type
can be characterized by one of the concrete subclasses.

context I n h e r i t a n c e ( 0 , _ )
inv : s e l f . # getSupertypes ( ) # −> forAll ( s|s . # getPotency ( ) # = 0 and

s . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e ( ) = 0) and
s e l f . # isComplete ( ) # = t rue

CONSTRAINT 9.9: Exclusively abstract supertypes style

Constraint 9.9 shows that this style can be enforced relatively simply us-
ing DOCL. The context here is the Inheritance class and, for all instances, it
must be true that the supertype has a potency of 0 (i.e., is an abstract clabject)
and the inheritance must have the property complete.

Exclusively Concrete Supertypes: This style is the opposite of the previous
style since it demands that every superclass in the specialization set must be
concrete (i.e., not abstract). This style offers more flexibility for classifying
objects.

context I n h e r i t a n c e ( 0 , _ )
inv : s e l f . # getSupertypes ( ) # −> forAll ( super|super . # getPotency ( ) # > 0) and

s e l f . # isComplete ( ) # = f a l s e

CONSTRAINT 9.10: Exclusively concrete supertypes style

Constraint 9.10 shows a very similar constraint to Constraint 9.9 that states
that every superclass in an inheritance structure has to have a potency value
greater than 0 and the generalization set has to be incomplete.



9.4. Vitality Styles 121

Universal Root Inheritance: This style requires all levels to have one clab-
ject that is the root of all other clabjects in that level except possibly the most
concrete level that contains the instances that model individuals in the do-
main. This obviously requires inheritance to be possible within a level, which
is not the case if the clabjects at the bottom exclusively represent individuals
in the real world. This style can be activated for all levels, a level range, or
just one level. The context of the constraint is Level which means that the
constraint has to be valid for every linguistic instance of the Level class.

context Level ( 0 , _ )
inv : i f s e l f . # i s L e a f L e v e l ( ) #

then true
else s e l f . # g e t C l a b j e c t s ( ) # −> s e l e c t ( c|c . # getSupertypes ( ) # −>
s i z e ( ) = 0) −> closure ( c|c . # getSubtypes ( ) # )
−> includesAll ( s e l f . # g e t C l a b j e c t s ( ) # )
endif

CONSTRAINT 9.11: Universal root inheritance style

9.4 Vitality Styles

A key element of the core style presented in Chapter 8 is the characteriza-
tion potency rule, defined in Constraint 8.4, which states that the potency of
a direct instance of a clabject must be lower than that clabject. This was in-
troduced to deal with situations like the one shown in Figure 9.2, where it
seems natural for abstract and concrete clabjects in an inheritance hierarchy
to be direct instances of the same clabjects.

However, this choice entails trade-offs that may not be optimal for all do-
mains and use cases. There are various alternative options for dealing with
the situation in Figure 9.2. The downside of classification potency is that it
leaves the modeler with the decision about what potency a direct instance
of a clabject should have. Although the potency of a direct instance is con-
strained to be lower, the modeler has to decide which of the allowed potency
values to choose, which can lead to errors.

Classic Potency Style: The classic potency style essentially reinstates the
original approach to deep instantiation defined in [19] by stating that the
potency of a direct instance of a clabject must be exactly one lower than the
potency of that clabject. Constraint 9.12 encodes this rule in DOCL.



122 Chapter 9. Multi-Style Modeling

context C l a b j e c t ( 0 , _ )
inv : s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

forAll ( c|c . # getPotency ( ) # = s e l f . # getPotency ( ) # − 1)

CONSTRAINT 9.12: Classis potency style

Note that this rule is compatible with the core style because it strengthens
the characterization potency rule. However, its application may in certain
circumstances force modelers to make other choices for the clabjects involved
in a generalization. For example, the domain scenario depicted in Figure 9.3,
which was the example used to motivate the deep potency variant in [77],
forces certain combinations of choices to be made if the classic potency style
is applied.

The key clabject that demonstrates the issues involved is the Corgi clab-
ject in the Dog generalization set. When the more relaxed, characterization
potency style is applied, Corgi can be a direct instance of Breed (like Mongrel
and Collie) whilst still being abstract. A potency value of 0 is acceptable in this
case but classic potency rules would demand Collie to have a potency value
of 1. If the subclasses PembrokeWelshCorgi and CardiganWelshCorgi were not
present in the model, this would certainly be the most natural direct type for
Corgi. However, when present, other choices are also justifiable. One option
is to make it a direct type of another clabject which “characterizes” Dog, us-
ing the approach of MLT [29] (see Section 10.3.1), and another, simpler option
is to not assign an ontological type to Corgi, as in Figure 9.3. This allows Corgi
to have any potency, suitable for representing its classification role (e.g., ab-
stract, concrete, etc.) whilst still adhering to the classic potency rule. In order
to ensure that these two options are adhered to throughout a deep model or
at least within a level, it is possible to define corresponding styles.

Untyped Abstract Types Style: As mentioned above, the easiest way to
make sure that all generalization sets in a deep model adhere to the clas-
sic potency rule, whilst accommodating nested complete generalization sets
such as that depicted in Figure 9.3, is to ensure that all abstract types are on-
tologically untyped. This makes it impossible for the situation captured by
Figure 9.3 to arise.

The constraint that defines this “Untyped Abstract Types” style is Con-
straint 9.13. A clabject is abstract when the potency value is 0 and it par-
ticipates in an inheritance relationship as a superclass. Note that this style
could be combined with the Exclusively Abstract Supertypes style, but does
not make sense in combination with the Exclusively Concrete Supertypes



9.4. Vitality Styles 123

Breed2

Dog0

Corgi0 Collie1:Breed

PembrokeWelshCorgi1:Breed CardiganWelshCorgi1:Breed

{complete}

{complete}

Mongrel1:Breed

FIGURE 9.3: Untyped Abstract Types Style

ProductType2 CerealType2

Product0

Phone1:
ProductType

PerishableProduct1:
ProductType

FrostedFlakes1:
CerialType

Chocolate1:
ProductType

FIGURE 9.4: Harmonious Horizontal Superclasses example

style (the two styles could be applied together, but then the Untyped Ab-
stract Types style would have no effect).

context C l a b j e c t ( 0 , _ )
inv : i f s e l f . # getPotency ( ) # = 0 and s e l f . # getSubtypes ( ) # −> s i z e ( ) > 0

then s e l f . # getDirectType ( ) # −> isEmpty ( )
e lse true
endif

CONSTRAINT 9.13: Untyped abstract types style

Harmonious Horizontal Supertypes: This style enforces the other approach
for accommodating nested complete generalization sets in combination with
the classic potency style mentioned above. It basically requires all direct in-
stances of a clabject to be on the same subclass level if they are taking part
in an inheritance relationship, and all the clabjects at the same subclass level
must have the same direct ontological type. In other words, clabjects that
participate in inheritance relationships involving generalization sets have to
be at the same depth of the inheritance structure.



124 Chapter 9. Multi-Style Modeling

Figure 9.4 shows an example of this style in play. The nested generaliza-
tion sets shown in the diagram are not allowed by the style because the clab-
ject ProductType has instances at two different levels in the inheritance hierar-
chy, Phone and PerishableProduct at the second inheritance level and Chocolate
at the third level.

context C l a b j e c t ( 0 , _ )
inv : l e t type : C l a b j e c t = s e l f . # getDirectType ( ) # in not ( s e l f . # getSupertypes ( ) #

−> e x i s t s ( s|s . doclIsDeepTypeOf ( type ) ) )

CONSTRAINT 9.14: Harminious horizontal supertypes

style: at a given level in a generalization set subtypes have

to have the same direct type

Constraint 9.14 shows the DOCL constraint to enforce the style in all in-
stances of Inheritance. In this constraint, we first set the type of the first sub-
class as the type to compare every other subclass with. It has to be true that
for all of the subclasses of this particular generalization set at the same level,
all subclasses must have the same type as the first subclass in the set.

context C l a b j e c t ( 0 , _ )
inv : l e t type : C l a b j e c t = s e l f . # getDirectType ( ) # in

not ( s e l f . # getDirec tSupertypes ( ) # −> e x i s t s ( s|s . doclIsDeepTypeOf ( type ) ) )

CONSTRAINT 9.15: Harminious horizontal superclass

style: types must be mutually exclusive at every supertype

level

Constraint 9.15 shows how the supertype of a clabject must be different
from the type of the clabject in question. There must not exist a clabject that
is a supertype of another clabject where both have the same ontological type.
The combination of both constraints ensures that all the clabjects at a given
subclass level in an inheritance hierarchy (a) have the same direct ontological
types and (b) have a different ontological type to the clabjects in all the other
levels in the same inheritance hierarchy.

9.5 Cross-Level, Well-Formedness Styles

The strict modeling style described in Section 8.3 was designed to rule out
numerous anti-patterns that can occur in multi-level modeling [18]. How-
ever, as pointed out by [78], for some modeling scenarios, it can be too strict,
leading to the need for additional redundant classes. This is the reason why
most MLM languages and tools do not apply the strict modeling style in its
extreme form. However, when the strict modeling style is not active, there is
no guarantee that modelers will not make errors. This is particularly the case



9.5. Cross-Level, Well-Formedness Styles 125

A

B

refers toinstanceOf

FIGURE 9.5: A Metacycle [18]

when there are no restrictions about how clabjects at one level can be related
to clabjects at another level.

Partly to motivate the strictness style, Atkinson and Kühne [18] intro-
duced three fundamental anti-patterns that should never occur in multi-level
models - the metacycle antipattern, the metabomb antipattern, and the type-
supertype anti-pattern. The strict modeling pattern rules these out with a few
simple, but “strict”, constraints. However, to gain the same benefits without
the downside of strict modeling constraints, it is possible to define separate,
dedicated styles focused on each pattern individually. As with the Orderly
Hierarchy styles in section 8.2.1, each of the separate styles essentially rules
out the occurrence of one of the anti-patterns. Modelers can then activate
the styles in the combination that best matches their particular modeling sce-
nario.

Absence of Metacycle Style: One of the three cross-level anti-patterns that
can occur if the strict modeling style is not active is the metacycle anti-pattern.
As shown in Figure 9.5, this occurs when a clabject A is the type of another
clabject B (i.e., B is a direct instance of A), whilst at the same time having a
connection to B. In this example, the “refers to” relationship between A and
B, where B is a direct instance of A is an occurrence of the Metacycle anti-
pattern.

context C l a b j e c t ( 0 , _ )
inv : s e l f . # g e t C l a s s i f i c a t i o n T r e e A s I n s t a n c e ( ) # −>

closure ( c|c . # getAl lNavigat ions ( ) # . # d e s t i n a t i o n #) −> excludes ( s e l f )

CONSTRAINT 9.16: Absence of Metacycle style

Occurrences of this anti-pattern can be ruled out by applying the Absence
of Metacycles style which is defined in DOCL by the Constraint 9.16. This is
a reflective constraint that queries for all offspring of a clabject (i.e., using clo-
sureWithoutSelf ), gets the direct type of the clabject, and unions the resulting
collection with all navigation destinations from that direct type. This opera-
tion continues until no new elements can be reached or if a circle is detected.



126 Chapter 9. Multi-Style Modeling

A

B

instanceOf refers to

FIGURE 9.6: A Metabomb [18]

ProductType2

Phone1:ProductType

O0

O1

FIGURE 9.7: Type-Supertype Anti-Pattern

Absence of Metabomb Style: The second cross-level, anti-pattern described
in [18] is the “Metabomb” anti-pattern depicted in Figure 9.6. The instance of
relationship is the same as in the previous example, but in this case the “refers
to” relationship is from the instance B to its direct type A. This anti-pattern
is characterized by the authors as being less problematic than the Metacycle
anti-pattern but it nevertheless should be avoided. Occurrences of this anti-
pattern can be ruled out by applying the Absence of Metabombs style which
is defined in DOCL by the Constraint 9.17.

context C l a b j e c t ( 0 , _ )
inv : s e l f . # g e t C l a s s i f i c a t i o n T r e e A s I n s t a n c e ( ) # −>

excludesAll ( s e l f . # getAl lNavigat ions ( ) # . # d e s t i n a t i o n #)

CONSTRAINT 9.17: Absence of Metabombs style

In this case, the same nonReflexiveClosure operation is used to traverse the
classification hierarchy in the upward direction, and none of the elements of
this collection must be in the collection that can be reached via any connec-
tion from the clabject itself.

Type-Supertype Anti-Pattern: The third anti-pattern identified by Atkin-
son and Kühne [18] is the Type-Supertype pattern depicted in Figure 9.7.
This pattern can emerge in MLM approaches that allow inheritance relation-
ships as well as connections to cross ontological levels. In this example, the
Phone clabject is a subclass of ProductType and also a direct instance of it.



9.5. Cross-Level, Well-Formedness Styles 127

Occurrences of this anti-pattern can be ruled out by applying the Absence
of Type-Supertype Anti-pattern style which is defined in DOCL by the Con-
straint 9.18. Due to the general nature of the anti-pattern, the context of the
constraint is the Clabject class of the linguistic meta-model. The set of super-
classes must not overlap with the set of types in the ontological classification
hierarchy. In other words, there must not be a superclass of any clabject that
is simultaneously a type of that clabject.

context C l a b j e c t ( 0 , _ )
inv : s e l f . # getDirectType ( ) # −> closure ( c|c . # getTypes ( ) # ) −>

excludesAll ( s e l f . # getSupertypes ( ) # )

CONSTRAINT 9.18: Absence of the Type-Supertype

Anti-Pattern





129

Chapter 10

Multi-Pattern Modeling

A key feature of the deep modeling styles described in the previous section is
that they cover all the model elements in at least one level, and usually more
levels, and they do so in an ontologically blind way. In other words, they are
defined exclusively in terms of the linguistic classifiers of the model elements
in the ontological dimensions.

Modeling patterns are different in two ways. First, they generally have a
smaller scope and involve a relatively small group of model elements. Sec-
ond, they relate the involved model elements based on both their ontological
and linguistic facets, rather than purely using their linguistic facet. The main
consequence of these differences is that declaring the presence of a pattern in-
volves identifying the domain model elements that are meant to be involved.

The classic example is the powertype pattern. This pattern relates model
elements in adjacent levels of a multi-level model and thus occurs between
a pair of levels. However, it usually only occurs selectively based on the do-
main concepts that are being modeled. To identify, and subsequently check,
the well-formedness of patterns it is necessary to identify the concepts in the
domain that are supposed to be in the pattern.

Note that patterns, anti-patterns, and styles are related. First, styles may
automatically prohibit certain patterns and anti-patterns from existing in a
model. For example, the strict modeling style rules out the circular classi-
fication and inheritance anti-patterns. Second, styles can be defined by the
universal application of patterns or the universal prohibition of anti-patterns.
For example, the exclusively abstract supertypes style can be defined by uni-
versally applying the complete discrimination pattern (see Section 10.2.1),
while the absence of a circular classification style can be defined by univer-
sally prohibiting the circular classification anti-pattern.



130 Chapter 10. Multi-Pattern Modeling

10.1 Classification Patterns

As explained in the previous chapter, the difference between styles and pat-
terns is that the former defines rules that apply across one or more levels and
are defined solely in terms of the linguistic types (i.e., in the PLM), while
the latter defines rules that apply to specific groups of clabjects and have to
be explicitly associated with the domain clabjects involved. The size of the
group of clabjects can range from very small, with a minimum size of two,
to much larger groups crossing multiple levels. This section starts with a
set of small, “fundamental” patterns that essentially define the meaning of
terms often used in conceptual modeling. Although they may seem some-
what trivial their main value is ensuring that the intended properties of the
domain element(s) involved are preserved as a model changes.

10.1.1 Impotent Clabject Patterns

The first two patterns formalize the two different interpretations of impotent
(i.e., potency 0) clabjects that can occur in LML models. As well as clarifying
the semantics of these interpretations, the defined constraints ensure that the
associated rules are preserved as a model evolves.

Abstract Clabject Pattern: The first role that impotent clabjects can play in
LML models is that of abstract classes. Although abstract classes can have
instances, by virtue of their subclasses, they can only have indirect instances.
Since the potency value of a clabject is defined in terms of its direct instances,
abstract classes have a potency value of 0. In order to qualify as an abstract
clabject, a clabject must (a) have no direct instances in any world and (b) have
at least one subclass. These rules are formalized in Constraint 10.1.

context AnAbstractClab ject ( 0 , 0 )
inv : s e l f . # getSubtypes ( ) # −> s i z e ( ) > 0 and s e l f . # getPotency ( ) # = 0

and s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e ( ) = 0

CONSTRAINT 10.1: Abstract clabject pattern

Individual Clabject Pattern: The second role that impotent clabjects play
in LML models is that of individuals. An individual is a clabject that does
not have and can never have (in any possible world), any instances, either
direct or indirect. It therefore follows that individuals cannot participate in
inheritance relationships. These rules are formalized in Constraint 10.2.



10.1. Classification Patterns 131

context AnIndividualClab jec t ( 0 , 0 )
inv : s e l f . # getSupertypes ( ) # −> s i z e ( ) = 0

and s e l f . # getSubtypes ( ) # −> s i z e ( ) = 0
and s e l f . # getPotency ( ) # = 0
and s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e ( ) = 0

CONSTRAINT 10.2: Individual Clabject Pattern

10.1.2 Instance Location and Occurrence Patterns

The previous pattern defines rules that completely rule out the presence of
instances. In contrast, the two patterns presented in this subsection deal with
the presence and/or location of instances when they do occur.

Singleton Clabject Pattern: This a well-known pattern from the Gang of
Four [52] which is not only commonly used in software engineering, but also
captures important domain concepts, such as the leader of an organization
(e.g., there must be, and can only be, one president of an organization). This
pattern applies when there is always, in all possible worlds, one and only
one instance of a clabject. Constraint 10.3 formulates this fact.

context ASingle tonClab jec t ( 0 , 0 )
inv : s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> s i z e ( ) = 1

CONSTRAINT 10.3: Singleton Clabject Pattern

Classic Potency Pattern: Section 9.4 of the previous chapter presented the
Classic Potency Style, in which the original rules of potency are applied. In
contrast to characterization potency, which only requires the direct instances
of a clabject to have a lower potency than their own potency, the classic po-
tency style requires the direct instances of a clabject to have a potency that
is exactly one lower than their own. Since potency cannot take a value less
than zero, this means that the offspring of a clabject occupy lower ontolog-
ical levels in an orderly manner – the clabjects whose potency is one lower
must occupy the level below, the clabjects whose potency is two lower must
occupy the second level below, and so on up to the impotent clabjects which
occupy the nth level below, if the potency of the clabject concerned is n.

When a model is being created using the characterization potency style it
may still be useful to define localized offspring hierarchies, originating from
a single clabject, that adheres to the rules of classic potency so that the off-
spring with the same potencies occupy the same levels. Constraint 10.4 de-
fines this pattern. Note that it is redundant (i.e., has no effect) if the classic



132 Chapter 10. Multi-Pattern Modeling

potency style is applied. Since classic potency is a special case of characteriz-
ing potency, it is acceptable for certain offspring hierarchies to conform to the
classic potency rules while the characterization style is in effect for the whole
level or model (e.g., as part of the default style).

context AClabject ( 0 , 0 )
inv : s e l f . doc lGetDirec tOffspr ing ( ) −>

i t e r a t e ( o f f s p r i n g ; currentPotency : Integer = s e l f . # getPotency ( ) #|
currentPotency − o f f s p r i n g . # getPotency ( ) # ) = 1

CONSTRAINT 10.4: Classic potency pattern

10.2 Inheritance Patterns

The previous section presented patterns focusing on the presence, absence, or
location of classification relationships. This section presents patterns whose
focus is on inheritance relationships, and more specifically, inheritance rela-
tionships which form part of what in the UML are called generalization sets.

10.2.1 Discrimination Patterns

In the UML, a generalization set combining one superclass (the generaliza-
tion) with multiple subclasses (the specializations) is said to “discriminate”
between the instances of the superclass according to some concern, which
is known as the “discriminator”. We, therefore, refer to patterns that apply
to generalization sets as discrimination patterns. Given the terms “general-
ization” and “specialization” refer to the same relationship, in this thesis, we
prefer to refer to generalization sets as “specialization sets” since it is the spe-
cialization of generalization sets that can form arbitrarily sized sets. There is
always exactly one generalization class involved in a set, and thus the gener-
alization (i.e., superclass) is always a single value set.

Note that in the LML, specialization sets are represented by a single in-
stance of the linguistic class Inheritance. According to the PLM, an instance of
this class can have links to multiple clabjects that play the role of superclasses
and multiple clabjects that play the role of subclasses. When representing a
specialization set, however, there must be exactly one clabject playing the
role of the superclass, and one or more classes playing the role of a subclass.

Basic Discrimination Pattern: A discrimination pattern divides the exten-
sion of a clabject into multiple subsets. This is modeled by means of a special-
ization set (represented as an instance of the class Inheritance from the PLM)



10.2. Inheritance Patterns 133

with one superclabject and multiple subclabjects. As a minimalist case, it is
possible for a specialization set to divide the extension of a clabject into two
groups even if it only contains one subclass as long as the superclabject is ab-
stract. Although one of the subsets is anonymous in such a scenario (i.e., the
group of instances that are direct instances of the superclabject), the member-
ship of that subset is nevertheless well-defined. The definition of this pattern
in Constraint 10.5 therefore takes both these cases into account.

context AnInheritance ( 0 , 0 )
inv : ( s e l f . # getSupertypes ( ) # −> s i z e ( ) = 1 and

s e l f . # getSupertypes ( ) # . # getPotency ( ) # > 0) or
s e l f . # getSubtypes ( ) # −> s i z e ( ) >= 2

CONSTRAINT 10.5: Basic Discrimination pattern

Complete Discrimination Pattern: Like UML generalization sets, LML spe-
cialization sets have two properties that define whether the subsets of the
extension of the superclabject are “complete” and/or “disjoint”. The basic
discrimination pattern defined above makes no statement about these prop-
erties and thus allows any combination of the two. In contrast, complete dis-
crimination strengthens the basic discrimination pattern defined above by
requiring the first of these properties to be true, without making a statement
about the second. Constraint 10.6 formalizes this.

context AnInheritance ( 0 , 0 )
inv : l e t type : C l a b j e c t = s e l f . # getSupertypes ( ) # −> f i r s t ( ) in

s e l f . # getSupertypes ( ) # −> s i z e ( ) = 1 and s e l f . # getSupertypes ( ) # −>
forAll ( s|s . # getPotency ( ) # = 0) and
s e l f . # getSubtypes ( ) # −> s i z e ( ) >= 2 and
s e l f . # getSubtypes ( ) # . doc lGet Ins tances ( ) −>
forAll ( i | i . d o c l I s I n s t a n c e O f ( type ) )

CONSTRAINT 10.6: Complete discrimination pattern

Disjoint Discrimination Pattern: The disjoint discrimination strengthens
the basic discrimination pattern by requiring the second of the above prop-
erties to be true, without making a statement about the first. In other words,
it requires the subsets of the extension of the superclabject (i.e., the discrimi-
nated clabject) to be disjoint but does not require them to be complete. Con-
straint 10.7 shows this.



134 Chapter 10. Multi-Pattern Modeling

context AnInheritance ( 0 , 0 )
inv : s e l f . # getSupertypes ( ) # −> s i z e ( ) = 1 and

s e l f . # getSupertypes ( ) # −> f i r s t ( ) . # getPotency ( ) # = 0 and
s e l f . # getSubtypes ( ) # −> s i z e ( ) >= 2 and
s e l f . # getSubtypes ( ) # −> forAll ( s|s . # g e t I n s t a n c e s ( ) # −>
excludesAll ( s e l f . # getSubtypes ( ) # −> excluding ( s ) . # g e t I n s t a n c e s ( ) # ) )

CONSTRAINT 10.7: Disjoint discrimination pattern

Partitioned Discrimination Pattern: The partitioned discrimination pattern
goes one step further by requiring a specialization set to be both complete
and disjoint. This is defined in Constraint 10.8.

context AnInheritance ( 0 , 0 )
inv : s e l f . # getSupertypes ( ) # −> s i z e ( ) = 1 and

s e l f . # getSupertypes ( ) # −> f i r s t ( ) . # getPotency ( ) # = 0 and
s e l f . # getSubtypes ( ) # −> s i z e ( ) >= 2 and s e l f . # getSubtypes ( ) # −>
forAll ( s|s . # g e t I n s t a n c e s ( ) # −> excludesAll ( s e l f . # getSubtypes ( ) # −>
excluding ( s ) . # g e t I n s t a n c e s ( ) # ) )

CONSTRAINT 10.8: Partitioned discrimination pattern

10.3 Categorization Patterns

The discrimination patterns defined in the previous section are all essentially
classic “two-level” patterns since they only consider the relations between
types and their immediate instances at the level below. However, an impor-
tant area of research in MLM are patterns that relate discrimination patterns
to the types of the types involved.

The most well-known and widely researched example is the so-called
powertype pattern which has been discussed in the literature for many years
and arguably has played a role in kicking off the field of MLM [20, 29, 56].
This section discusses several powertype-related patterns based on the ter-
minology and definitions supported by the MLT approach [29].

10.3.1 Weak Categorization Patterns

There are two groups of categorization patterns, weak categorization pat-
terns and strong categorization patterns. For each weak categorization pat-
tern, there is a corresponding strong categorization pattern. The stronger
versions all have the same extra rule that prohibits instances of clabjects
other than the powertype (or characterizing) clabject from participating as
subclasses in the respective specialization sets.



10.3. Categorization Patterns 135

The first MLM approach to propose a systematic set of weak categoriza-
tion patterns was MLT, but they use the term “characterization patterns”. For
consistency with the MLT terminology we, therefore, also refer to the various
weak categorization patterns as characterization patterns.

Basic Characterization Pattern: Just as four different forms of discrimina-
tion patterns were defined in Section 10.2.1 according to the combinations of
the disjoint and complete properties they require. In the same way, four dif-
ferent forms of characterization patterns can be defined based on the kind of
discrimination patterns they enforce.

The archetypal characterization pattern is the powertype pattern proposed
by Odell [95] which states that Power(A) is the powertype of A if the in-
stances of Power(A) are subtypes of A. This is referred to as the characteriza-
tion pattern in MLT. We refer to it as the basic discrimination pattern.

In terms of the discrimination patterns, defined in the previous section,
this basic characterization pattern essentially requires the instances of Power(A)
to be the subclabjects in a basic discrimination pattern where A is the discrim-
inated (i.e., super) clabject. When they are related by such a pattern, A is said
to be the base type, or the characterized type, while Power(A) is said to be
the powertype or the characterizing type. In DOCL, the basic characteriza-
tion pattern is defined by Constraint 10.9.

context Power (A) ( 0 , 0 )
inv : l e t i n h e r i t a n c e : I n h e r i t a n c e = s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

f i r s t ( ) . # get Inheri tancesAsSubtype ( ) # −> f i r s t ( ) in
l e t baseType : C l a b j e c t = i n h e r i t a n c e . # getSupertypes ( ) # −> f i r s t ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>
forAll ( i | i . # getInheri tancesAsSubtype ( ) # −> f i r s t ( ) = i n h e r i t a n c e )

CONSTRAINT 10.9: Basic Characterization pattern

It is common, although not mandatory, to give the discriminant in the
specialization set the same name as the powertype.

Complete Characterization Pattern: The complete characterization pattern
strengthens the basic characterization pattern by requiring the instances of
Power(A) to be subclabjects in an application of the complete discrimination
pattern to A. In DOCL this is represented by the Constraint 10.10.



136 Chapter 10. Multi-Pattern Modeling

context Power (A) ( 0 , 0 )
inv : l e t i n h e r i t a n c e : I n h e r i t a n c e = s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

f i r s t ( ) . # get Inheri tancesAsSubtype ( ) # −> f i r s t ( ) in
l e t baseType : C l a b j e c t = i n h e r i t a n c e . # getSupertypes ( ) # −> f i r s t ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −> forAll ( i n s t |
i n s t . # getInheri tancesAsSubtype ( ) # = i n h e r i t a n c e ) and
baseType . # getPotency ( ) # = 0 and
baseType . # getSubtypes ( ) # . d o c l G e t D i r e c t I n s t a n c e s ( ) −>
forAll ( i n s t | i n s t . d o c l I s I n d i r e c t I n s t a n c e O f ( baseType ) )

CONSTRAINT 10.10: Complete characterization pattern

Disjoint Characterization Pattern: The disjoint characterization pattern strength-
ens the basic characterization pattern by requiring the instances of Power(A)
to be subclabjects in an application of the disjoint discrimination pattern to
A. In DOCL this is represented by the Constraint 10.11.

context Power (A) ( 0 , 0 )
inv : l e t i n h e r i t a n c e : I n h e r i t a n c e = s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

f i r s t ( ) . # get Inheri tancesAsSubtype ( ) # −> f i r s t ( ) in
l e t baseType : C l a b j e c t = i n h e r i t a n c e . # getSupertypes ( ) # −> f i r s t ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>
forAll ( i n s t | i n s t . # getInheri tancesAsSubtype ( ) # −> f i r s t ( ) = i n h e r i t a n c e ) and
baseType . doc lGet Ins tances ( ) −>
forAll ( b a s e I n s t |baseType . # getSubtypes ( ) # −>
excluding ( b a s e I n s t . # getDirectType ( ) # ) −>
( not e x i s t s ( sub| b a s e I n s t . d o c l I s I n s t a n c e O f ( sub ) ) ) )

CONSTRAINT 10.11: Disjoint characterization pattern

Partitioned Characterization Pattern: The partitioned characterization pat-
tern strengthens the basic characterization pattern by requiring the instances
of Power(A) to be subclabjects in an application of the partitioned discrimi-
nation pattern to A. In DOCL this is represented by the Constraint 10.12.

context Power (A) ( 0 , 0 )
inv : l e t i n h e r i t a n c e : I n h e r i t a n c e = s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

f i r s t ( ) . # get Inheri tancesAsSubtype ( ) # −> f i r s t ( ) in
l e t baseType : C l a b j e c t = i n h e r i t a n c e . # getSupertypes ( ) # −> f i r s t ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>
forAll ( i n s t | i n s t . # getInheri tancesAsSubtype ( ) # −> f i r s t ( ) = i n h e r i t a n c e ) and
baseType . doc lGet Ins tances ( ) −>
forAll ( b a s e I n s t |baseType . # getSubtypes ( ) # −>
excluding ( b a s e I n s t . # getDirectType ( ) # ) −>
( not e x i s t s ( sub| b a s e I n s t . d o c l I s I n s t a n c e O f ( sub ) ) ) ) and
baseType . # getPotency ( ) # = 0

CONSTRAINT 10.12: Partitioned characterization pattern



10.3. Categorization Patterns 137

Power(A)

A

CB

(A) Cardelli powertype pattern

Power(A)

A

CB

(B) Odell powertype pattern

FIGURE 10.1: Powertype Patterns

10.3.2 Strong Categorization Patterns

The difference between strong and weak categorization patterns is that the
former strengthens the latter by ruling out instances of other clabjects from
being subclasses in the involved discrimination of the base clabject. It is pos-
sible to define a strong variant of each of the weak characterization pattern
variants defined in the previous section. However, for illustration purposes,
in this section only one variant is shown, the strong Odell Powertype Pattern.
This is a strong version of the standard Odell Powertype Pattern (a.k.a, the
basic characterisation pattern). The other four characterization patterns can
be strengthened in the same way.

Strong Odell Powertype Pattern: The reason why the characterization pat-
terns presented in the previous section are referred to as weak is that al-
though they require all the instances of the powertype, Power(A), to be sub-
clabjects in an application of a discrimination pattern to the base type A,
they do not prohibit instances of other clabjects, or non-ontologically typed
instances, from participating in that pattern as subclabjects. The strong ver-
sions of the characterization patterns prohibit such participation by strength-
ening the constraints. In the case of the strong Odell powertype pattern, the
Constraint 10.13 formalizes this.

context Power (A) ( 0 , 0 )
inv : l e t i n h e r i t a n c e : I n h e r i t a n c e = s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

f i r s t ( ) . # get Inheri tancesAsSubtype ( ) # −> f i r s t ( ) in
l e t baseType : C l a b j e c t = i n h e r i t a n c e . # getSupertypes ( ) # −> f i r s t ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>
forAll ( i n s t | i n s t . # getInheri tancesAsSubtype ( ) # −>
f i r s t ( ) = i n h e r i t a n c e ) and baseType . # getSubtypes ( ) # −>
forAll ( sub|sub . d o c l I s I n s t a n c e O f ( s e l f ) )

CONSTRAINT 10.13: Strong Odell powertype pattern



138 Chapter 10. Multi-Pattern Modeling

Cardelli Powertype Pattern: The first powertype pattern to actually in-
clude such a “strong” exclusion rule was the Cardelli Powertype, defined
a few years before the Odell powertype pattern [27]. However, it also differs
from the weak categorization patterns presented in Section 10.3.1 in another
important way, as illustrated in Figure 10.1a. According to Cardelli, for a
clabject Power(A) to be the powertype of another clabject A, the extension
of Power(A) not only includes the subclabjects of A, but also A itself, and
only instances of Power(A) can be subclabjects of A. This is why the Cardelli
Powertype pattern is not regarded as a characterization pattern by MLT. The
DOCL constraint defining this pattern is shown in the Constraint 10.14.

context Power (A) ( 0 , 0 )
inv : l e t i n h e r i t a n c e : I n h e r i t a n c e = s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>

r e j e c t ( i n s t | i n s t . # getSupertypes ( ) # −> s i z e ( ) = 0) −>
f i r s t ( ) . # get Inheri tancesAsSubtype ( ) # −> f i r s t ( ) in
l e t baseType : C l a b j e c t = i n h e r i t a n c e . # getSupertypes ( ) # −> f i r s t ( ) in
s e l f . d o c l G e t D i r e c t I n s t a n c e s ( ) −>
r e j e c t ( i n s t | i n s t . # getSupertypes ( ) # −> s i z e ( ) = 0) −>
forAll ( i n s t | i n s t . # getInheri tancesAsSubtype ( ) # −> f i r s t ( ) = i n h e r i t a n c e ) and
baseType . d o c l I s I n s t a n c e O f ( s e l f ) and
baseType . # getSubtypes ( ) # −> forAll ( sub|sub . d o c l I s I n s t a n c e O f ( s e l f ) )

CONSTRAINT 10.14: Cardelli powertype pattern



139

Part V

Evaluation





141

The fifth part of the thesis contains four chapters that evaluate the utility
of the styles and patterns presented in the previous part by showing how sev-
eral of them were used to solve the challenges defined by the Multi workshop
community over the last few years. These “are designed as benchmark mod-
eling scenarios that aim to support objective comparisons between multi-
level modeling approaches, allow technologies to demonstrate their abilities,
stress-test technologies in order to expose potential weaknesses, and deepen
the mutual understanding of approaches” [1].

1. The Bicycle Challenge: deals with the representation of different con-
figurations of bicycles based on their components (such as frame, han-
dlebar, and wheels) and attributes (such as serial number, purchase
price, and sale price [2]).

2. The Process Challenge: deals with the representation of universal prop-
erties of process types along with task types, artifact types, actor types,
and their various relations and attributes. It also involves an appli-
cation of this model in the scope of a particular software engineering
process [8].

3. The Collaborative Challenge: deals with the representation of compa-
nies, factories, produced devices, and owned artifacts, such as intellec-
tual property [92].

4. The Warehouse Challenge: deals with the representation of product
copies, product specifications, and product specification types with a
particular emphasis on how to guarantee certain properties at the prod-
uct level without fully determining them at higher levels [80].

Each chapter illuminates how DOCL was used to make the models more
precise and concise, including the use of modeling styles and patterns where
appropriate.





143

Chapter 11

The Bicycle Challenge

The MULTI 2018 Bicycle Challenge was the first of the challenges defined by
the MULTI community as a vehicle for evaluating and comparing multi-level
modeling approaches [2]. It deals with the representation of different config-
urations of bicycles based on their components (such as frame, handlebar,
and wheels) and attributes (such as serial number, purchase price, and sale
price). The solution has four levels and uses the Melanee default style de-
fined in Section 8.3, but overrides the characterization potency style with the
classic potency style (Constraint 9.12). This chapter is based on the solution
to the Bicycle Challenge that was published in [84].

11.1 Requirements

The requirements for this challenge are split into two categories, one manda-
tory category and one optional category part. The mandatory requirements
are here denoted with an “M” and the optional requirements with an “O”.

M1) A configuration is a physical artifact that is composed of components.
A component may be composed of other components or of basic parts.

M2) A component has properties such as weight, size, colour and unique
serial number.

M3) A bicycle is built of components like a frame, a fork, two wheels and
so forth, each of which is a component. The front wheel and rear wheel must
have the same size.



144 Chapter 11. The Bicycle Challenge

M4) There are different categories of bicycles, such as mountain bike, city
bike or racing bike, for different purposes such as mountain biking, city bik-
ing or racing. A racing bike is not suitable for tough terrain is suitable for
races. It can be used in cities, too.

M5) Each category is further associated with some constraints, for example:

1. Every category of bicycle except for racing bikes may be equipped with
an electric motor. Electric bikes need enforced brakes and a battery.

2. A mountain bike or a city bike may have a suspension.

3. A mountain bike may have a rear suspension. That is not the case for
city bikes.

4. A racing bike has a racing fork and racing frame.

5. A racing fork does not have a suspension. or mud mount.

6. A racing frame is specified by top tube length, down tube length, and
seat tube length.

7. A racing frame is made of steel, aluminum, or carbon.

8. A racing bike can be certified by the Union Cycliste Internationale (UCI).

9. A professional racing bike is a racing bike and certified by the UCI. A
professional racing bike has a professional race frame which is made of
aluminum or carbon and has a minimum weight of 5200 gr.

10. A carbon frame allows for carbon wheels or aluminum wheels only.

M6) Each category of bicycle is associated with a person acting as a cat-
egory manager. Peter Parker is the category manager for the racing bike
category.

M7) Challenger A2-XL is a professional racing bike model for tall cyclists.
A Challenger A2-XL bike is equipped with a Rocket-A1-XL which is a pro-
fessional racing frame. The Rocket-A1-XL has a weight of 920.0 g.

M8) Bike#134123, a physical instance of Challenger A2-XL, has Frame#134123,
a physical instance of Rocket-A1-XL with serial number s134123 as a compo-
nent.



11.2. Model 145

M9) Bicycles are sold to customers. A customer is a natural person or an
organization. The act of selling a bicycle requires the creation of an invoice.
An invoice is a read-only business document.

M10) Each bicycle model has a regular sales price. The regular sales price of
Challenger A2-XL is EUR 4999.00. The actual sales price of physical instances
of the bicycle model, i.e., the price given in an invoice, may be lower.

M11) Bike#134123 was sold on September 19th, 2017 for EUR 4299.00 to
customer Susan Storm.

O1) The average actual sales price for a bike model. For example: In 2017,
physical instances of Challenger A2-XL are sold, on average, for 4532.00.

O2) The average actual sales price for a bike category. For example: In 2017,
the average actual sales price of racing bikes was 2321.00.

O3) The average regular sales price of bike models for a bike category. For
example: In 2017, the average regular sales price of bike models of category
race bikes was 2834.00.

O4) The revenue, i.e., sum of actual sales price, per bicycle model. For
example: In 2017, the Challenger A2-XL generated a revenue of 78,232.00.

O5) The top-seller, i.e., the bike model with the highest revenue, per bicycle
category. For example: Challenger A2-XL is the top-seller of the racing bike
category.

11.2 Model

This section presents the complete solution to the challenge and is split up
into sections that correspond to the ontological levels in the model. As men-
tioned above, there is only one optional style used in this solution, the classic
potency style. This strengthens the characterization potency style in the de-
fault style.



146 Chapter 11. The Bicycle Challenge

Invoice3

price3:Real

date3:String

Product3

price3:Real = 2

date3:String = 2

averageActualSalesPrice2:Real
revenue2:Real
bestseller2:Real
averageRegularSalesPrice2:Real

Part0

Component3

height3:Real = 2 
size3:Real = 2 
usn3:String = 3

weight3:Real = 2

color3: String = 3 

BasicPart3
Customer0

Organisation2

HumanCustomer3
OrganisationCustomer3

Person0 CategoryManager1
Manages

readOnly3:Boolean

FIGURE 11.1: Bicycle Challenge first level

11.2.1 Pan-Level Constraints and Types

The model features one pan-level type, an enumeration type called Cyclist-
Size to account for different predefined categories of sizes of bicycles. The
definition, which is textual, has the following form: CyclistSize = [TALL-
CYCLIST, MEDIUMCYCLIST, SMALLCYCLIST]. The constraint for the one
optional style selected, the classic potency style is Constraint 9.12.

11.2.2 Top Level (O0): Product Types

Figure 11.1 shows the top, most abstract, ontological level of the deep model
which captures the domain of selling products to customers. A Product is
defined as a composite of Components and BasicParts. Products can be certified
by Organizations. An important feature of the deep model is that this top
ontological level is completely independent of the bicycle shop domain and
thus can be instantiated for other domains.

11.2.3 Second Level (O1): Bicycle Categories

Figure 11.2 shows the second level of the deep model, O1 where the ontolog-
ical instances of clabjects in O0 reside. This level describes the structures of
the different kinds of bicycle product categories as well as their different roles
and stakeholders. The strict modeling style requires all ontological instances
of O0 to reside at O1 but does not require all elements in O1 to have a direct
ontological type. For example, the clabject ProfessionaleRacingFrame has no
ontological type. This is because it needs more attributes than a “normal”
Component, so it inherits the normal component attributes from Frame (an
instance of Component) and adds its own attributes relevant to professional
racing frames. There are two connections needed between BicycleConfigura-
tion and Wheel, one for the front wheel and one for the rear wheel. Every



11.2. Model 147

BicycleConfiguration2:Product

price2:Real = 1 
date2:String = 1 
averageActualSalesPrice1:Real = 3699.5 
revenue1:Real = 93030
bestseller1:Boolean = false
averageRegularSalesPrice0:Real = 2499.66 

MountainBikeConfiguration2:Product

price2:Real = 1 
date2:String = 1 
averageActualSalesPrice1:Real =  
revenue1:Real = 11098.5
bestseller1:Boolean = false
averageRegularSalesPrice0:Real =  

RacingBikeConfiguration2:Product

price2:Real = 1 
date2:String = 1 
averageActualSalesPrice1:Real = 2321.00
revenue1:Real = 78232.00
bestseller1:Boolean = false
averageRegularSalesPrice0:Real = 2834.00 

ProfessionalRacingBikeConfiguration2:Product

price2:Real = 1 
date2:String = 1 
averageActualSalesPrice1:Real = 2321.00
revenue1:Real = 78232.00 
bestseller1:Boolean = true
averageRegularSalesPrice0:Real = 2834.00

Fork2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2

Frame2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1 
   colour2:String= 2

CarbonFrame2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2 

ProfessionalRaceFrame2

material2:Material
topTubeLenght2:Integer
downTubeLenght2:Integer
seatTubeLength2:Integer 

SuspensionFork2

RacingFork2

MudMount2:BasicPart

RearSuspension2:BasicPart
Wheel2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2

CarbonWheel2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2

AluminumWheel2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2

ElectricPart2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 1

EnforcedBrakes2:BasicPart

Motor2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2

Battery2:Component

height2:Real = 1 
size2:Real = 1 
usn2:String = 2

weight2:Real = 1

colour2:String= 2

HumanCustomer2:HumanCustomer

UCI1:Organisation

MountainBikingPurpose1

cyclistSize:CyclistSize 

CityBikingPurpose1

cyclistSize1:CyclistSize 

BikeRacingPurpose1

cyclistSize1:CyclistSize 

OrganisationCustomer2:OrganisationCustomer

PeterParker0:CategoryManagerCityBikeConfiguration2:Product

price2:Real = 1 
date2:String = 1 
averageActualSalesPrice1:Real = 3699.5 
revenue1:Real = 11098.5
bestseller1:Boolean = false
averageRegularSalesPrice0:Real = 2500.00

frontWheel

rearWheel

11

1
1

Invoice

Invoice

FIGURE 11.2: Bicycle Challenge second level



148 Chapter 11. The Bicycle Challenge

Invoice1:Invoice

price1:Real

date1:String

ChallengerA2XL1:ProfessionalRacingBikeConfiguration

price1:Real = 4999.00 0 
date1:String = 01.09.2017 0 
averageActualSalesPrice0:Real = 4532.00 
revenue0:Real = 78232.00
bestseller0:Boolean = true 

ProRaceBikeCustomer1:HumanCustomer Certification0:UCI

ProRaceFrontWheel1:CarbonWheel

height1:Real = 400 
size1:Real = 340 
usn1:String = 1

weight1:Real = 2000

colour1:String= 1

EndavorA3XL1:RacingFork

height1:Real = 300 
size1:Real = 300 
usn1:String = 1

weight1:Real = 300

colour1:String = 1 

RocketA1XL1:ProfessionalRaceFrame

height1:Real = 600 
size1:Real = 700

usn1:String = 1

weight1:Real = 920.00

material1:Material = CARBON 
topTubeLenght1:Integer
downTubeLenght1:Integer
seatTubeLength1:Integer
colour1:String= 1

frontWheel
rearWheel

ProRaceFrontWheel1:CarbonWheel

height1:Real = 400 
size1:Real = 340 
usn1:String = 1

weight1:Real = 2000

colour1:String= 1

Suitable0:BikeRacingPurpose 

for:CyclistSize=TALLCYCLIST 

readOnly1:Boolean

1 1

1

1

FIGURE 11.3: Bicycle Challenge third level

instance of Product is connected to a Purpose. Note that all the connections
are depicted in the collapsed form in Figure 11.2. Although this means their
attributes cannot be seen, it is still possible to display their names in the style
of UML associations. Multiple DOCL constraints are defined at this level
to ensure its compliance with the requirements, Constraints 11.1, 11.2, 11.3,
11.4, 11.5, 11.6, 11.7, 11.8. These are explained in Section 11.3.

11.2.4 Third Level (O2): Bicycle Configurations

Figure 11.3 shows the example bicycle configuration described in the Bicycle
Challenge. This configuration, called ChallengerA2XL is an instance of the
ProfessionalRacingBike category and has a regular sales price of 4999.00. The
averageActualSalesPrice is determined by the derive Constraint 11.9 to have
a value of 4349.25. The derived value for the revenue attribute (for 2017) is
78232.0 as described in the Challenge description. It is also the best-selling
configuration at this level. The connected components represent the mini-
mum configuration satisfying the constraints defined at the level above. For
instance, the connected wheels both have the same size and can be distin-
guished by the instanceOf connection. The front wheel is connected to the
front wheel connection instance and the rear wheel to the rear wheel connec-
tion.

11.2.5 Bottom Level (O3): Bicycle Configurations

Figure 11.4 shows the bicycle configuration instances described in the Chal-
lenge description at the lowest (most concrete) level of the deep model. These
model elements are individuals. The Invoice connection captures the sales



11.3. Fulfillment of the Requirements 149

Invoice0:Invoice

price0:Real = 4299.00
date0:String = 19.09.2017

1341230:ChallengerA2XL

price0:Real = 4999.00  
date0:String = 01.09.2017  

SusanStorm0:ProRaceBikeCustomer
1341230:RocketA1XL

height0:Real = 60 
size0:Real = 70 
usn0:String = s134123 
weight0:Real = 920 
material0:Material = CARBON 
topTubeLenght0:Integer 
downTubeLenght0:Integer
seatTubeLength0:Integer
colour0:String = 'Black' 

1341230:EndavorA3XL

height0:Real = 30 
size0:Real = 30 
usn0:String = 134123E 
weight0:Real = 30 
colour0: String = 'BLUE' 

1341230:ProRaceRearWheel

height0:Real = 40 
size0:Real = 34 
usn0:String = 134123RW
weight0:Real = 200
colour0: String = 'YELLOW' 

1341230:ProRaceFrontWheel

height0:Real = 40 
size0:Real = 34 
usn0:String = 134123FW
weight0:Real = 200
colour0: String = 'YELLOW'

frontW
heel

rearW
heel

readOnly0:Boolean = true

1

1

1

1

FIGURE 11.4: Bicycle Challenge fourth level

transaction and is the source of information for the derive constraints for
the attributes revenue, bestseller, and averageActualSalesPrice. The bicycle con-
cerned is an instance of ChallengerA2XL sold for a price of 4299.00 instead of
the regular price of 4999.00 as shown in the Invoice connection. The values of
the attribute of the clabjects derived from Component and Product cannot be
changed at this level because their mutability is set to zero at the level above,
except for the attributes colour and usn of the Component clabject.

11.3 Fulfillment of the Requirements

The model presented in the previous section fulfills all the requirements, as
explained in this section.

M1) The model at level O0 defines a Product, or bicycle configuration, as a
composition of BasicPart and Component.

M2) The Component clabject contains attributes, like height, size, weight, etc.

M3) The BicycleConfiguration clabject at O1 established contains relation-
ships to all of the mandatory bicycle parts (Wheel, Fork and Frame). The
constraint that the wheel sizes have to match is derived by the following
constraint:

context Bicyc leConf igura t ion
inv O11−wheelSize : s e l f . frontWheel . s i z e = s e l f . rearWheel . s i z e

CONSTRAINT 11.1: Front and rear wheel size have to

match



150 Chapter 11. The Bicycle Challenge

M4) The subclasses of BicycleConfiguration which are CityBikeConfiguration,
MountainBikeConfiguration, RacingBikeConfiguration, and RacingBikeConfigura-
tion are bicycles that are made for different purposes.

M5) The fulfillment of this requirements has three elements –

1. The ElectricPart as an instance of Component is connected to every sub-
class of BicycleConfiguration except the RacingBikeConfiguration.

2. The MountainBikeConfiguration and CityBikeConfiguration can be connected
to the suspension parts.

3. The constraint listed below states that the CityBikeConfiguration may not
have a rear suspension.

context CityBikeConf igurat ion
inv O11−rearSuspension : s e l f . frame . rearSupension −> s i z e ( ) = 0

CONSTRAINT 11.2: City bikes do not have a rear suspension

4. The constraint below restricts RacingBikeConfiguration to be connected
only to RacingFork and ProfessionalRacingFrame

context RacingBikeConfigurat ion
inv O12−racingForkFrame : s e l f . fork . isDeepKindOf ( RacingFork ) and
s e l f . frame . isDeepKindOf ( ProfessionalRacingFrame )

CONSTRAINT 11.3: Racing bikes have to have racing forks and

frames

5. The constraint below expresses that the RacingFork must not contain a
suspension and RacingBikeConfiguration is not allowed to contain a mud
mount

context RacingBikeConfigurat ion
inv O13−mudMount : not ( s e l f . fork . isDeepKindOf ( SupensionFork ) ) and
s e l f . mudMount −> s i z e ( ) = 0

CONSTRAINT 11.4: No mud mount and no suspension for

RacingBikeConfigurations

6. The ProfessionalRaceFrame has the appropriate attributes.

7. The ProfessionalRaceFrame contains an attribute called material that is
an enumeration type that specifies that the attribute can be of ALU-
MINUM, STEEL, or CARBON



11.3. Fulfillment of the Requirements 151

8. The RacingBikeConfiguration can be connected to the UCI clabject to get
certification.

9. Two constraints are in place to ensure the certification by the UCI and
that the frame is made from the appropriate material.

context Profess iona lRac ingBikeConf igurat ion
inv O14− c e r t i f i c a t i o n : s e l f . o r g a n i s a t i o n −> s i z e ( ) >= 1

CONSTRAINT 11.5: Mandatory certification for

ProfessionalRacingBikeConfigurations

context Profess iona lRac ingBikeConf igurat ion
inv O15−frameMaterial : s e l f . frame . m a t e r i a l . # g e t L i t e r a l ( ) # = "ALUMINUM" or
s e l f . frame . m a t e r i a l . # g e t L i t e r a l ( ) # = "CARBON"

CONSTRAINT 11.6: Frame material for professional racing

bikes

context Profess iona lRac ingBikeConf igurat ion
inv O16−minimumWeight : s e l f . frame . weight >= 5200

CONSTRAINT 11.7: The minimum weight of a certified racing

bike

10. The constraint below enforces carbon wheels for carbon frames
context Bicyc leConf igura t ion
inv O17−carbonFrame : s e l f . frame . isDeepKindOf ( CarbonFrame ) implies
( s e l f . frontWheel . isDeepKindOf ( CarbonWheel ) or
s e l f . frontWheel . isDeepKindOf ( AluminumWheel ) )

CONSTRAINT 11.8: Carbon frame implies carbon wheels of

aluminum wheels

M6) The PeterParker clabject (at level O1) is an instance of CategoryManager
(at level O0), which is a subclass of Person (an abstract clabject). CategoryMan-
ager can be connected to Product.

M7) The ChallengerA2-XL clabject at level O2 is an instance of the Profes-
sionalRacingBike clabject and is connected to the Suitable clabject which is an
instance of BikeRacingPurpose. The attribute for has the value TALLCYCLIST.
The RocketA1XL clabject is a ProfessionalRaceFrame which has a weight of 920
grams.



152 Chapter 11. The Bicycle Challenge

M8) The M7 requirement is instantiated at level O3.

M9) At level O0 Product is connected via the Invoice connection to Customer.
This clabject is further specialized into HumanCustomer and OrganisationCus-
tomer. The Invoice clabject contains an attribute of type Boolean which is
called readOnly.

M10) Each bicycle model has a regular sales price. The regular sales price of
Challenger A2-XL is EUR 4999.00. The actual sales price of physical instances
of the bicycle model (i.e., the price given in an invoice) may be lower.

M11) At the lowest level, O3, the clabject 134123 is sold via the Invoice con-
nection to SusanStorm.

O1) The values of averageActualSalesPrice are defined by the following “de-
rive” constraints that is applied at specifically defined levels. Constraint 11.9
derives the value of the averageActualSalesPrice for every instance of Product
at O1 and O2. The context of the derivation is iterated over every instance of
Product so that the value is derived for each individual instance.

context Product : : averageActua lSa lesPr i ce : Real
derive O01 : s e l f . a l l I n s t a n c e s ( ) −> s e l e c t ( c|c . # getPotency ( ) # = 0) −>
s e l e c t ( c|c . Invoice . date . subs t r ing ( 7 , 1 0 ) = " 2 0 1 7 " ) −> c o l l e c t N e s t e d ( Invoice .

p r i c e )
−> sum ( ) / s e l f . a l l I n s t a n c e s ( ) −> s e l e c t ( c|c . # getPotency ( ) # = 0) −> s i z e ( )

CONSTRAINT 11.9: The derive constraint for

averageActualSalesPrice

O2) This requirement is solved by the requirement above (O1).

O3) The average regular sales price of bike models is also calculated for
each bike category. For example: In 2017, the average regular sales price of
bike models of category race bikes was 2834.00.

context Product : : averageRegularSa lesPr ice : Real
derive O02 : s e l f . a l l I n s t a n c e s ( ) −> s e l e c t ( c|c . # getPotency ( ) # = 1)
−> s e l e c t ( date . subs t r ing ( 7 , 1 0 ) = " 2 0 1 7 " ) −> c o l l e c t ( p r i c e ) −> sum ( ) /
s e l f . a l l I n s t a n c e s ( ) −> s e l e c t ( c|c . # getPotency ( ) # = 0) −> s i z e ( )

CONSTRAINT 11.10: The average regular sales price

derived attribute



11.4. Discussion 153

O4) The revenue attribute is also a derived attribute and the constraint cal-
culates the value similarly.

context Product : : revenue : Real
derive O03 : s e l f . a l l I n s t a n c e s ( ) −> s e l e c t ( c|c . # getPotency ( ) # = 0) −>
s e l e c t ( c|c . Invoice . date . subs t r ing ( 7 , 1 0 ) = " 2 0 1 7 " ) −> c o l l e c t N e s t e d ( Invoice .

p r i c e ) −>sum ( )

CONSTRAINT 11.11: The revenue derived attribute

O5) The bestseller attribute is derived by a reflective query.

context Product : : b e s t s e l l e r : Boolean
derive O04 : l e t t o p S e l l e r : Boolean = f a l s e in
i f C l a b j e c t −> s e l e c t ( c|c . isDeepKindOf ( B icyc leConf igura t ion ) = t rue ) −>
s e l e c t ( date . subs t r ing ( 7 , 1 0 ) = " 2 0 1 7 " ) −> sortedBy ( revenue ) −> l a s t ( ) = s e l f
then t o p S e l l e r = t rue e lse t o p S e l l e r = f a l s e endif

CONSTRAINT 11.12: The bestseller derivation

11.4 Discussion

As explained in Chapter 3.2, LML connections can be depicted in two forms –
an exploded form using the hexagon symbol and an imploded form as a dot.
In this particular model, the connection between Product and Customer, called
Invoice, is depicted in expanded form in Figure 11.1 to show its two attributes,
while the connection between CategoryManager and Product, called Manages,
is shown in collapsed form because it has no attributes.

The attributes of Invoice document the essential properties of sales trans-
actions. The other kind of relationship appearing in Figure 11.1 is a special-
ization that is depicted using the UML unfilled-triangle notation. The figure
highlights the important point that the potencies of sub-clabjects need not be
the same as those of their super-clabjects because potency is based on direct
classification relationships (as opposed to indirect classification relationships
arising from inheritance hierarchies).

The derived attributes averageActualSalesPrice, averageRegularSalesPrice, rev-
enue and bestseller of the clabject Product are responsible for storing the op-
tional sales information described in Section 2.2 of the Challenge description
[2]. Constraint 11.10 defines the value of the averageRegularSalesPrice attribute
in a similar manner as Constraint 11.9. Constraint 11.11 defines the value of
the revenue attribute while Constraint 11.12 determines the top-seller of each
category and the top-selling category. UML-style multiplicity constraints are
used to indicate that a BicycleConfiguration must have exactly one Frame and



154 Chapter 11. The Bicycle Challenge

Fork. In addition, eight DOCL constraints are needed to fulfill the mandatory
requirements (requirements starting with M) of the Challenge.

Beyond the default style, the presented solution applies the classic po-
tency rule. In total 12 domain constraints were used to fulfill the require-
ments and help make the model more concise and precise.



155

Chapter 12

The Process Challenge

The second challenge defined by the MULTI Workshop community was the
Process Challenge. The first chance to present a solution to this challenge was
the MULTI 2019 workshop. After that, the EMISA journal created a special
issue for extended descriptions of solutions to this challenge. The solution
presented in this chapter is based on the one published in the EMISA journal
[83].

The aim of this particular challenge is to showcase the ability of differ-
ent MLM approaches to handle process languages. Although the challenge
describes two processes to be modeled, this chapter only shows the solution
for the “ACME Software Engineering (SE) Process”, which only has three
ontological levels. As well as the default Melanee style (see Section 8.3), it
applies four optional styles – the universal isonymic instantiation style (see
Section 9.2.2), the selective classification mandation style applied to connec-
tions (Constraint 9.2), and the universal root inheritance style for level O0

(Constraint 9.11). In terms of patterns, at level O1 the model uses the strong
Odell powertype pattern (Constraint 10.13).

12.1 Requirements

The requirements for this challenge are split into two groups. The first group,
whose identifiers start with P, defines requirements common to all process
domains, while the second group, whose identifiers start with S, is tailored to
a specific process in a specific domain (i.e., the so-called ACME SE Process).

P1) A process type (such as claim handling) is defined by the composition of
one or more task types (receive claim, assess claim, pay premium) and their
relations



156 Chapter 12. The Process Challenge

P2) Ordering constraints between task types of a process type are established
through gateways, which may be sequencing, and-split, or-split, and-join
and or-join

P3) A process type has one initial task type (with which all its executions be-
gin), and one or more final task types (with which all its executions end)

P4) Each task type is created by an actor, who will not necessarily perform
it. For example, Ben Boss created the task type assess claim

P5) For each task type, one may stipulate a set of actor types whose instances
are the only ones that may perform instances of that task type. For ex-
ample, in the XSure insurance company, only a claim handling manager
or a financial officer may authorize payments

P6) A task type may alternatively be assigned to a particular set of actors
who are authorized (e.g., John Smith and Paul Alter may be the only
actors who are allowed to assess claims)

P7) For each task type (such as authorize payment) one may stipulate the arti-
fact types which are used and produced. For example, assess claim uses a
claim and produces a claim payment decision

P8) Task types have an expected duration (which is not necessarily respected
in particular occurrences)

P9) Critical task types are those whose instances are critical tasks; each of the
latter must be performed by a senior actor and the artifacts they produce
must be associated with a validation task

P10) Each process type may be enacted multiple times

P11) Each process comprises one or more tasks

P12) Each task has a begin date and an end date. (e.g., Assessing Claim 123 has
begin date 01-Jan-19 and end date 02-Jan-19)

P13) Tasks are associated with artifacts used and produced, along with per-
forming actors

P14) Every artifact used or produced in a task must instantiate one of the
artifact types stipulated for the task type

P15) An actor may have more than one actor type (e.g., Senior Manager and
Project Leader)



12.1. Requirements 157

P16) Likewise, an artifact may have more than one artifact type

P17) An actor who performs a task must be authorized for that task. Typi-
cally, a class of actors is automatically authorized for certain classes of
tasks

P18) Actor types may specialize other actor types in which case all the rules
that apply to instances of the specialized actor type must apply to in-
stances of the specializing actor type. For example, if a manager is al-
lowed to perform tasks of a certain task type, so is a senior manager.

P19) All modeling elements, at all levels, must have a last updated value of
type timestamp. This feature should be defined as few times as pos-
sible, ideally only once. Respective definitions are exempt from the
requirement to have a last updated value

S1) A requirements analysis is performed by an analyst and produces a
requirements specification

S2) A test case design is performed by a developer or test designer and
produces test cases

S3) An occurrence of coding is performed by a developer and produces
code. It must furthermore reference one or more programming lan-
guages employed

S4) Code must reference the programming language(s) in which it was
written

S5) Coding in COBOL always produces COBOL code

S6) All COBOL code is written in COBOL

S7) Ann Smith is a developer; she is the only one allowed to perform coding
in COBOL

S8) Testing is performed by a tester and produces a test report

S9) Each tested artifact must be associated with its test report

S10) Software engineering artifacts have a responsible actor and a version
number. This applies to requirements specification, code, test case, test
report, but also to any future types of software engineering artifacts



158 Chapter 12. The Process Challenge

S11) Bob Brown is an analyst and tester. He has created all task types in this
software development process

S12) The expected duration of testing is 9 days

S13) Designing test cases is a critical task that must be performed by a senior
analyst. Test cases must be validated by a test design review

12.2 Model

This section presents the complete solution to the challenge and is split into
sections that correspond to the ontological levels.

12.2.1 Pan-Level Constraints and Types

As mentioned above, the model applies two pan-level styles beyond the de-
fault style – the universal isonymic instantiation style and the selective clas-
sification mandation style for connections. The constraints enforcing these
styles are Constraint 9.2 (selective classification mandation for connections
(an application of the mandatory connection classification style)) and Con-
straints 9.3 and 9.4 (universal isonymic instantiation).

12.2.2 Top Level (O0): Generic Process Metamodel

Figure 12.1 shows the top, most abstract, ontological level of the deep model
which defines the generic process metamodel called for in the requirements.
The most abstract concept in this model is the Element clabject which is the
superclass of all clabjects at this level. This level therefore applies the univer-
sal root inheritance style. Constraint 12.1 has its context at the top level.

context Level ( 0 , 0 )
inv : i f s e l f . # i s L e a f L e v e l ( ) #

then true
else s e l f . # g e t C l a b j e c t s ( ) # −> s e l e c t ( c|c . # getSupertypes ( ) # −>
s i z e ( ) = 0) −> closure ( c|c . # getSubtypes ( ) # )
−> includesAll ( s e l f . # g e t C l a b j e c t s ( ) # )
endif

CONSTRAINT 12.1: The Level 00 universal inheritance root

style

The potency value of ProcessType is 2 so that it can be instantiated over two
consecutive lower levels. Actor represents the human-played role responsible
for defining instances of a particular kind of Element, TaskType, at the O1 level



12.2. Model 159

ProcessElement0ProcessType2

StartEventType2

AndJoinType2

SplitEventType0

OrSplitType2 OrJoinType2

TaskType0

 expectedDuration2: Integer1
  beginDate2: String2

  endDate2:String2

NormalTaskType2 CriticalTaskType2

ArtifactType2

ArtifactKindType2

 kind2: String2

producedBy

ActorType0

performedBy

JuniorActorType2

SeniorActorType2

kind

followedBy

ValidationTaskType2

usedBy

target

source

Actor1

 name1: String1
createdBy

Element0

 lastUpdated2: String2
content

process

3..*

1

ControlEventType0

FinalEventType2

AndSplitType2

JoinEventType0

performer

task

task

task

task

1

1..*
creatorassociatedWith

referencedBy

FIGURE 12.1: Process Challenge Level O0

below. Since instances of Actor are therefore only needed at the O1 level, the
potency of Actor is 1. The Actor clabject is able to create tasks through the
createdBy relationship on the level directly below.

There are five basic kinds of elements that can be contained in a pro-
cess type, which are modeled as subclasses of Element – ControlEventType,
ActorType, TaskType, ArtefactType and ArtefactKindType. The first three are ab-
stract classes and therefore have a potency of 0 while the last two are con-
crete classes with a potency of 2. ControlEventType has four subclasses, two of
which are concrete. StartEventType and FinalEventType have a potency value
of 2 and the other two are abstract superclasses, i.e., SplitEventType and Join-
EventType with a potency of 0. The four concrete subclasses of the split and
join events are AndJoin, AndSplit, OrJoin and OrSplit. The StartEventType clab-
ject has to be present in every instance of a process type exactly once and the
FinalEventType has to be present at least once. The split and join events can
participate in the followedBy relationship that is defined on ProcessElement in
combination with any TaskType.

ActorTypes is specialized by two classes, i.e., JuniorActorType and SeniorAc-
torType, while TaskType has three subclasses – NormalTaskType, CriticalTaskType
and ValidationTaskType. All of the specialized clabjects have a potency value
of 2. TaskType itself is impotent and contains three attributes which are ex-
pectedDuration of type integer, beginDate of type string, and endDate of type
string. The durability value of all three attributes is 2, so they are present in
all instances of subclasses of this clabject. They also have mutability values
of 2 with the exception of expectedDuration. This attribute has a mutability



160 Chapter 12. The Process Challenge

ACMEActor0

 name1: String1 

Tester1:SeniorActorType

 lastUpdated1:String = '5.5.2021'1

Analyst1:JuniorActorType

 lastUpdated1:String = '5.5.2021'1

Developer1:JuniorActorType

 lastUpdated1:String = '5.5.2021'1

Reviewer1:SeniorActorType

 lastUpdated1:String = '5.5.2021'1

Tester&Analyst1:SeniorActorType

 lastUpdated1:String = '5.5.2021'1

(A) Actor powertype

ACMEArtifact0

 version1: String1 

Review1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

RequirementSpecification1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

TestCaseDesingReport1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

CodeModule1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

TestReport1:ArtifactType

 lastUpdated1:String = '05.05.2021'1

(B) Artifact powertype

FIGURE 12.2: Strong Odell Powertype Patterns

value of 1 which means its value can be changed at the level immediately
below but not at the levels below that. Every task can produce artifacts that
can be of any kind. This is represented by the clabjects ArtifactType and Ar-
tifactKindType which are connected to TaskType by the producedBy and usedBy
connections. It is the kind relationship that connects the artifact to the speci-
fication of what kind of artifact it is.

12.2.3 Second Level (O1): ACME SE Process

The second level of the deep model describes the ACME Software Engineer-
ing (SE) Process as an instance of the O0 level general process modeling lan-
guage. Although the O1 is a single, coherent model, for clarity we show it
using two separate views in Figures 12.2 and 12.3. Figure 12.2 highlights
the fact that the strong Odell powertype pattern is used at this level, while
Figure 12.3 highlights the flow of task types in the process as defined by
the requirements. The majority of clabjects appearing in the former also ap-
pear in the latter, but in both cases, classes with the same name represent
the same model element. This follows the well-established UML convention
that identically-named model elements, with the same direct type, represent
the same model element. It would be possible to show the information in
Figures 12.2 and 12.3 in one figure, but this would be much more cluttered.



12.2. Model 161

Design1:NormalTaksType

 expectedDuration1:Int = 40       beginDate1: String1

 endDate1:String1        lastUpdated1: String = '5.5.2021'1 

TestCaseDesign1:CriticalTaskType

  expectedDuration1:Int = 60          beginDate1: String1           endDate1:String1        lastUpdated1: String = '5.5.2021'1

Coding1:NormalTaksType

 expectedDuration1:Int = 30       beginDate1: String1       endDate1:String1       lastUpdated1: String = '5.5.2021'1     

TestCaseReview1:ValidationTaskType

  expectedDuration1:Int = 60        beginDate1: String1           endDate1:String1         lastUpdated1: String = '5.5.2021'1

CodeModule1:ArtifactType

 lastUpdated1: String = '5.5.2021'1

ProgrammingLanguage1:ArtefactKindType

 kind1:String1          lastUpdated1: String = '05.05.2021'1

Testing1:NormalTaskType

  expectedDuration1:Int = 90          beginDate1: String1

  endDate1:String1         lastUpdated1:String = '5.5.2021'1

TestReport1:ArtefactType

 lastUpdated1: String = '5.5.2021'1

ACMESoftwareEngineeringProcess1:ProcessType

RequirementAnalysis1:NormalTaskType

  expectedDuration1:Int = 60            beginDate1: String1

  endDate1:String1         lastUpdated1: String = '5.5.2021'1
RequirementSpecification1:ArtefactType

 lastUpdated1: String = '5.5.2021'1

TaskDesigner0:Actor

 name0: String = 'Bob Brown'0         lastUpdated1: String = '5.5.2021'1

TestCaseDesignReport1:ArtefactType

 lastUpdated1: String = '5.5.2021'1

Analyst1:JuniorActorType

 lastUpdated1:String = '05.05.2021'1

perfomedBy

followedBy

followedBy

followedByfollowedBy

followedByfollowedBy

followedBy followedBy

followedBy

followedBy

producedBy

producedBy

Tester1:SeniorActorType

 lastUpdated1: String = '5.5.2021'1 

perfomedBy

SeniorAnalyst1:SeniorActorType

 lastUpdated1: String = '5.5.2021'1
perfomedBy

Developer1:JuniorActorType

 lastUpdated1: String = '5.5.2021'1

perfomedBy

kind

producedBy

target

source

source

target

1

createdBy createdBy

createdBy

createdBy

createdBy createdBy

performer

performer

performer

performer

task

task

task

task

producedBy

1..*

1associatedWith

task

1

1

Designer1:JuniorActorType

 lastUpdated1:String = '5.5.2021'1

perfomedBy
performer

task1

1..*

1..*

1 1..*

usedBy1

1Reviewer1:JuniorActorType

 lastUpdated1: String = '5.5.2021'1

perfomedBy

1

1

FIGURE 12.3: Task Type Flow in the ACME SE Process

Figure 12.2 focuses on the specific ArtifactTypes and ActorTypes compris-
ing the ACME SE Process and describes their relationships in terms of gen-
eralization sets. The generalization set for ACMEActor shows that there are
five specific ActorTypes in the process, Developer, Reviewer, Analyst, Tester and
Tester&Analyst and that the latter is a specialization of both Analyst and Tester.
This means that an instance of Tester&Analyst can serve as (i.e., play the role
of) an instance of Analyst or Tester. The generalization set for ACMEArti-
fact, which shows that there are five specific Artifact Types in the process, Re-
view, RequirementSpecification, TestCaseDesignReport, CodeModule and TestRe-
port, plays two important roles.

To ensure that any ActorType added in the future have the same prop-
erties as the current ActorTypes represented in the model, the strong Odell
powertype pattern defined in Section 10.3.2 is applied to ACMEActor. More
specifically, ActorType is defined to be the string characterizer of ACMEActor.
The concrete applications of the generic Constraint 10.13 to ActorType and
ACMEActor are shown below in Section 12.3.

Figure 12.3 focuses on describing the structure of the ACME SE Process in
terms of the ordering constraints between the specific Task Types appearing in
the process, as well as their relationship to all specific Actor Types and Artifact



162 Chapter 12. The Process Challenge

Types shown in Figure 12.2. It also shows the specific Actor responsible for
their design. The process starts with the RequirementsAnaysis task type and
then splits up the enactment of the process with an instance of AndSplit. The
left-hand side of the separated flow takes care of the Design and the Coding
tasks of the process. One or more instances of Designer perform the Design
task and Coding is performed by one or more Developers. The right-hand side
introduces the TestCaseDesign as a CriticalTaskType which is performed by a
SeniorAnalyst which in turn is an instance of SeniorActorType. It also produces
a TestCaseDesignReport which is used in the TestCaseReview task which follows
the TestCaseDesign as an instance of ValidationTaskType. This task is performed
by a Reviewer. The AndJoin that re-connects the flow of the process is followed
by the Testing task which produces a TestReport artifact and is performed by
a Tester. The TestReport artifact is then associated with another artifact which
is CodeModule. Due to the fact that the Coding task can produce multiple
CodeModules, the multiplicity constraint on the associatedWith connection is 1
on the TestReport end and ‘1..*’ on the CodeModule end. Every CodeModule has
to reference the programming language it is written in which is captured by
the ArtifactKindType instance, ProgrammingLanguage, with the kind attribute.
All instances of TaskType are created by the TaskDesigner whose name is “Bob
Brown”. This is an instance of Actor at level O0.

12.2.4 Third Level (O2): An ACME SE Process Enactment

Figure 12.4 shows an example enactment of the ACME SE process at the O2

level to generate a software system called Simple System. Since the ACME
SE process has no or-splits nor or-joins, the basic content and layout of the
model are similar to the O1 level. Basically, every task type in the O1 level
has an instance at the O2 level with the corresponding followedBy connection.
The main difference is that this enactment model identifies the actual indirect
instances of ACMEActor that carried out each task. For example, Ann Smith
performed the Coding task called SSCoding. This also compels every instance
to have a name attribute. Every indirect ACMEArtifact instance also has to
have a version attribute due to the power type pattern enforced at the level
above (O1).



12.3. Fulfillment of the Requirements 163

SSDesign0:Design

 expectedDuration0:Int = 40        beginDate0: String = '1.1.21'0 
  endDate0:String = '5.01.21'0         lastUpdated0:String = '5.1.21'0

SSTestCases0:TestCaseDesign

  expectedDuration0:Int = 60         beginDate0: String = '2.1.21'0 
  endDate0:String = '8.1.21'0          lastUpdated0:String = '7.1.21'0

SSCoding1:Coding

 expectedDuration0:Int = 30        beginDate0: String = '8.1.21'0         endDate0:String = '11.01.21'0        lastUpdated0:String = '11.1.21'0

SSTestCaseReview0:TestCaseReview

  expectedDuration0:Int = 60           beginDate0: String = '8.1.21'0 
  endDate0:String = '16.01.21'0
                 lastUpdated0:String = '16.1.21'0

SSCodeModule0:CodeModule

 version0: String = '0.1.5'0        lastUpdated0:String = '27.1.21'0

Cobol0:ProgrammingLanguage

 kind0: String = 'COBOL'0        lastUpdated0:String = '27.1.21'0

SSTesting0:Testing

  expectedDuration0:Int = 90            beginDate0: String = '17.1.21'0 
   endDate0:String = '27.01.21'0
                   lastUpdated0:String = '27.1.21'0

SSTestReport0:TestReport

 version0: String = '0.1.5'0         lastUpdated0:String = '27.1.21'0

SimpleSystem0:ACMESoftwareEngineeringProcess SSRA0:RequirementAnalysis

  expectedDuration0:Int = 60         beginDate0: String = '7.12.20'0

  endDate0:String = '13.12.20'0          lastUpdated0:String = '13.12.21'0

SSRS0:RequirementSpecification

 version0: String = '0.1.5'0        lastUpdated0:String = '13.12.20'0

SSTesterAnalyst0:Tester&Analyst

 name0: String = 'Bob Brown'0        lastUpdated0:String = '1.1.21'0

SSDeveloper0:Developer

 name0: String = 'Ann Smith'         lastUpdated0:String = '1.1.21'0

performedBy

performedBy

performedBy

performedBy

performedBy

producedBy

producedBy

kind

producedBy

followedBy followedBy

followedBy followedBy

followedByfollowedBy

followedBy

followedBy

SSReviewer0:Reviewer

 name0: String = 'Chad Carter'0         lastUpdated0:String '1.1.21'0

followedBy

followedBy

SSAnalyst0:Analyst

 name0: String = 'Dan Dacosta'        lastUpdated0:String = '1.1.21'0

associatedWith

SSTCDR0:TestCaseDesignReport

 version0: String = '0.1.5'0        lastUpdated0:String = '7.1.21'0

producedBy

usedBy

performedBy

FIGURE 12.4: Process Challenge Level O2

12.3 Fulfillment of the Requirements

This subsection describes how each of the requirements, defined in the Chal-
lenge, are satisfied by the O0 level of our solution, with suitable DOCL con-
straints being introduced where necessary.

Fulfillment of the General Process Model Requirements

P1) This is supported by the composition relationship between Element and
ProcessType. Every instance of Element is contained in one instance of
ProcessType, and every instance of ProcessType contains at least three El-
ements. The following constraint ensures that at least one of these con-
tained elements is a TaskType.
context ProcessType ( 1 , 2 )
inv : s e l f . content −> e x i s t s ( element|element . deepOCLTypeOf ( TaskType ) )

P2) The sequencing relationships between task types are achieved by means
of the followedBy relationship between ProcessElements while the split



164 Chapter 12. The Process Challenge

and join gateways are realized by dedicated clabjects which are sub-
classes of ControlEventType.

Instances of TaskType must be involved in two followedBy connections.
One connection, in which it participates as the target, is to the Proces-
sElement that precedes it, and the other, in which it participates as the
source, is to the ProcessElement that follows it.
context TaskType ( 1 , 2 )
inv taskFollowedBy : s e l f . source −> s i z e ( ) = 1 and s e l f . t a r g e t −> s i z e ( ) = 1

The instances of StartEventType are not allowed to participate in a fol-
lowedBy relationship as the target, and must therefore be the beginning
of a process. It must reach exactly one element through the followedBy
connection, where it is the source of the connection.
context StartEventType ( 1 , 2 )
inv s t a r t : s e l f . source −> s i z e ( ) = 0 and s e l f . t a r g e t −> s i z e ( ) = 1

The instances of FinalEventType are not allowed to have a follower, and
must therefore be the end of a process.
context EndEventType ( 1 , 2 )
inv end : s e l f . source −> s i z e ( ) = 1 and s e l f . t a r g e t −> s i z e ( ) = 0

No instance of SplitEventType is allowed to have only one incoming con-
nection but has to have at least two outgoing connections.
context Spli tEventType ( 1 , 2 )
inv s p l i t : s e l f . source −> s i z e ( ) = 1 and s e l f . t a r g e t −> s i z e ( ) => 2

For the instances of JoinEventType the rule on how many outgoing and
incoming connections they can have is exactly the reverse of split events.
context JoinEventType ( 1 , 2 )
inv j o i n : s e l f . source −> s i z e ( ) => 2 and s e l f . t a r g e t −> s i z e ( ) = 1

P3) To simplify the definition of these well-formedness rules, we avoid the
introduction of dedicated clabjects for initial task types and final task
types since these would also need to be distinguished as being normal,
critical, and validation tasks, and instead we identify initial and final
tasks by their connection to start and finish control event types respec-
tively (i.e., StartEventType and FinalEventType). A task type is, there-
fore, an initial task type if it is the target in a followedBy connection with
an instance of StartEventType, and is a final task type if it is the source
in a followedBy connection with an instance of FinalEventType. The fol-
lowing constraint ensures that a ProcessType has the correct number of
StartEventTypes and FinalEventTypes.



12.3. Fulfillment of the Requirements 165

context ProcessType ( 1 , 2 )
inv : s e l f . content −> one ( element|element . deepOCLTypeOf ( StartEventType ) ) and

s e l f . content −> e x i s t s ( element|element . deepOCLTypeOf ( FinalEventType ) )

P4) This requirement is supported by the mandatory createdBy relationship
between TaskType and Actor which has a multiplicity constraint with a
lower bound of 1 at the Actor end.

P5) This feature is enabled by the performedBy relationship between Task-
Type and ActorType which has 0..* multiplicity and thus is optional. The
specific authorizations that are applicable in a particular scenario are
established by the instances of these clabjects.

P6) Our approach supports this capability by allowing constraints to be de-
fined at the O1 level that control which instances of specific ActorTypes
can enter into performedBy relationships with specific TaskTypes at the O2

level. Such constraints therefore effectively declare which individuals
(identified by their names) are authorized to perform which tasks. The
constraint used to meet requirement S7 is an example.

P7) This requirement is supported by the usedBy and producedBy relation-
ships between TaskType and ArtifactType.

P8) This is modeled by the expectedDuration feature which all offspring of
TaskType receive by virtue of the fact that it has durability 2. The mu-
tability of the expectedDuration is set to 1 so that specific instances of
TaskType for a particular scenario at the O1 level can change it to the
appropriate value for that TaskType. However, because the mutability
of the expectedDuration attributes at O1 then become 0, instances of a
specific TaskType at the O2 level cannot assign a new value to expected-
Duration, they must retain the value set at O1. The expectedDuration of
TaskType at the O0 level is set to “undefined”.

P9) The concepts of critical task types and senior actor types are modeled
by the CriticalTaskType and SeniorActorType sub-clabjects of TaskType and
ActorType, respectively. The fact that critical task types can only be per-
formed by senior actor types is captured by the following constraint on
the performedBy relationship between task types and actor types.
context Cri t i ca lTaskType ( 1 , 2 )
inv : s e l f . performer −> forAll ( p|p . deepOCLKindOf ( SeniorActorType ) ) and s e l f .

t a r g e t . isDeepOCLTypeOf ( ValidationTaskType )



166 Chapter 12. The Process Challenge

P10) This is supported by the basic mechanics of the deep modeling ap-
proach which allows the instances of the O0 level metamodel, at O1,
to be instantiated again at O2. The enactment of a process type is cap-
tured by the enactment of the specific task types it contains, which in
turn is captured by their instantiation at the O2 level.

P11) The containment relationship multiplicities define that an instance of
ProcessType must contain at least one indirect instance of Element. But in
order to ensure that at least one indirect instance of TaskType is present
in the containment the following DOCL constraint is needed.
context ProcessType ( 1 , 2 )
inv : s e l f . content −> s e l e c t ( c|c . isDeepKindOf ( TaskType ) ) −> s i z e ( ) > 0

P12) This requirement is realized by means of the beginDate and endDate at-
tributes of TaskType which capture the start and end time of TaskType
instances and their instances, in turn. The durability and mutability
values of these attributes are set to 2 so that their values can be changed
at any ontological level.

P13) This requirement is supported by the usedBy and producedBy connec-
tions between TaskType and ArtifactType as well as the producedBy con-
nection between TaskType and ActorType

P14) The ability to stipulate artifact types used and produced by a specific
task type is supported by the usedBy and peformedBy relationships men-
tioned above. The actual stipulation for a particular scenario takes
place at the O1 level.

P15) The ability to declare that there are specific actor types that can perform
multiple roles is supported by the multiple inheritance capability at the
O1 level.

P16) The ability to declare that a specific artifact can be regarded as being
instances of multiple artifact types is supported by the multiple inheri-
tance capability at the O1 level.

P17) The strategy for supporting authorization is described in the discus-
sion for P6 above. This requirement does not stipulate at which point
(i.e., in which characterization context) the authorization takes place.
The authorization is, therefore, declared at process enactment time (i.e.,
in the process enactment characterization content) and uses an actor’s



12.3. Fulfillment of the Requirements 167

instanceOf relationship to an actor type to designate authorization to
perform instances of the task type performed by that actor type.

P18) This is naturally supported by the use of the specialization relationship
at the O1 level.

P19) The existence of this value for modeling elements is captured by the
lastUpdated String attribute of the Element class at the root of the inheri-
tance hierarchy, which has durability and mutability of 2. This, in turn,
means every model element in the deep model has this attribute and
can set it to any value. The actual mechanism for arranging for this at-
tribute to obtain the correct value, automatically, when an update event
occurs is the oclGetCurrentDate operation of DOCL which returns the
current date as a String. Melanee can be configured to trigger such an
update whenever a model element is edited which automatically sets
the correct timestamp as the value of this attribute.

Fulfillment of the ACME Specific Requirements

The authors of the challenge formulated 13 domain-specific requirements for
the ACME software engineering process. However, one requirement, S2, is
explicitly flagged as being overridden by another requirement, S13, leav-
ing only 12 active requirements. In this section, we explain how these re-
quirements have been fulfilled and introduce the required DOCL constraints
where necessary.

In order to enforce the powertype pattern for any future instances of Ar-
tifactType and ActorType we have made use of the DOCL capability to define
constraints on any level of a deep model. Constraint powerArtifact ensures
that every instance of ArtifactType at the level O1 of the ACME SE Process
application has to be connected via an inheritance relationship to ACMEArti-
fact as a subclass. In combination with the invariant constraint called power-
ACMEArtifact, where ACMEArtifact is used as the context to make sure that
every subclass has to be of type ArtifactType, this prevents any untyped or
wrongly typed clabject participating as a subclass in this generalization set.



168 Chapter 12. The Process Challenge

context Atr i fac tType ( 0 , 0 )
inv : l e t i n h e r i t a c e = s e l f . # g e t D i r e c t I n s t a n c e s ( ) # −> f i r s t ( ) . #

getInheri tanceAsSubtype ( ) # in
i n h e r i t a n c e . # supertype # . # supertype # −> s i z e ( ) = 1
l e t baseType = i n h e r i t a n c e . # supertype # . # supertype # −> f i r s t ( ) in
s e l f . # g e t D i r e c t I n s t a n c e s ( ) # −> forAll ( i n s t | i n s t . #

getInheri tanceAsSubtype ( ) # = i n h e r i t a n c e ) and
baseType . # getSubtypes ( ) # −> forAll ( sub|sub . i s I n s t a n c e O f ( s e l f ) )

CONSTRAINT 12.2: Strong Odell Powertype pattern for

the Artifact generalization set

The invariant constraints powerActor and powerACMEActor deal with the
same problem as the constraints introduced for the ActorType power type
pattern but instead of using the oclIsTypeOf operation, these constraints use
the oclIsKindOf operation since ActorType is an impotent clabject and is not
able to produce direct offspring.

context ActorType ( 0 , 0 )
inv : l e t i n h e r i t a c e = s e l f . # g e t D i r e c t I n s t a n c e s ( ) # −> f i r s t ( ) . #

getInheri tanceAsSubtype ( ) # in
i n h e r i t a n c e . # supertype # . # supertype # −> s i z e ( ) = 1
l e t baseType = i n h e r i t a n c e . # supertype # . # supertype # −> f i r s t ( ) in
s e l f . # g e t D i r e c t I n s t a n c e s ( ) # −> forAll ( i n s t | i n s t . #

getInheri tanceAsSubtype ( ) # = i n h e r i t a n c e ) and
baseType . # getSubtypes ( ) # −> forAll ( sub|sub . i s I n s t a n c e O f ( s e l f ) )

CONSTRAINT 12.3: Strong Odell Powertype pattern for

the Actor generalization set

S1) This requirement is captured by the performedBy connection between
RequirementsAnalysis and Analyst as well as the producedBy relationship
between RequirementsAnalysis and RequirementsSpecification. The multi-
plicity constraint on the connection ensures that a RequirementAnalysis
is only performed by one or more Analysts.

S2) Overridden.

S3) The first part of this requirement is fulfilled by the performedBy con-
nection between Coding and Developer as well as the producedBy rela-
tionship between CodeModule and Coding. The second part is fulfilled
by the kind relationship between CodeModule and ProgrammingLanguage
with a multiplicity constraint of 1 on both connection ends.

S4) This is fulfilled by the kind connection between CodeModule and Pro-
grammingLanguage.



12.3. Fulfillment of the Requirements 169

S5) This requirement only makes sense for a coding task that only involves
one programming language. If the CodeModule is connected to a Pro-
grammingLanguage via the kind relationship and it references COBOL
then the language of the CodeModule is COBOL.

S6) This requirement is again fulfilled by the kind connection between Code-
Module and ProgrammingLanguage. By reifying the notion of program-
ming language, and representing the language in which a program-
ming language is written by means of a connection to a programming
language object rather than by a String attribute, this requirement is
automatically fulfilled by the creation of the connection.

S7) The first part of this constraint says that Ann Smith is a Developer which
means that at level O2 an instance of Developer has to exist with the
name Ann Smith. This is captured by the following constraint
context Developer ( 1 , 1 )
inv AnnSmith : s e l f . a l l I n s t a n c e s ( ) −> e x i s t s ( d|d . name = ’Ann Smith ’ )

The second part of this statement says that if a coding task exists that
uses ‘COBOL’ as the programming language the only actor that can
perform this task is Ann Smith which has to be a Developer. The fact
that Ann Smith, as a Devloper, can only be connected with tasks that are
instances of Coding tasks is ensured by the performedBy connection.
context ProgrammingLanguage ( 2 , 2 )
inv : s e l f . kind = ’COBOL ’ implies s e l f . CodingModule . Coding . performer = ’Ann

Smith ’

The constraint defined in ProgrammingLanguage is only evaluated at
level O2.

S8) This requirement is again fulfilled by the performedBy connection be-
tween Testing and Tester and between Testing and TestReport.

S9) This requirement is fulfilled by the associatedWith connection between
CodeModule and TestReport.

S10) The first part of this requirement is fulfilled by assigning actors to the
respective tasks they can perform. Due to the general typing restric-
tions on connections, it is impossible to introduce new connections that
connect a Developer to TestCaseDesign, for example. From the produced
artifact that is connected to the task that, in turn, is connected to the
actor that performs the task, we can determine the responsible actor
implicitly.



170 Chapter 12. The Process Challenge

The second part of this requirement is fulfilled by including the gen-
eralization sets for ACMEActor and ACMEArtifact and using these to
indicate, through inheritance, that all specific ArtifactTypes have a ver-
sion attribute and all ACMEActors have a name.

The third part of this requirement, stipulating that new artifact types
added to future versions of the ACME SE Process must also satisfy
the first part of the requirement, is fulfilled by declaring the clabject
TaskType at the O0 level to be the powertype of ACMEArtifact at the O1

level. This ensures that every future instance of TaskType is a subclass
of ACMEArtifact and thus has the required version attribute and con-
nection to ACMEActor. The constraints that enforce these powertype
patterns were defined in Constraints 12.2 and 12.3.

S11) The first part of this requirement is fulfilled by the following constraint.
context T e s t e r&Analyst ( 1 , 1 )
inv BobBrown : s e l f . a l l I n s t a n c e s ( ) −> e x i s t s ( d|d . name = ’ Bob Brown ’ )

The second part is fulfilled by the createdBy relationship between TaskDe-
signer and all the instances of TaskType in the model.

S12) This requirement is fulfilled by the fact that the value of the attribute
expectedDuration in Testing at level O1 is set to 9 (which means 9 days)
and the fact that the vitality property Mutability is set to the value 0.
This means that the expectedDuration attribute of instances of Testing
must have that same value.

S13) This requirement is captured by the fact that the clabject TestCaseDesign
is an instance of CriticalTaskType, and by the performedBy connection be-
tween TestCaseDesign and SeniorAnalyst which is an instance of Senio-
rActorType.

12.4 Discussion

Overall, the solution to this challenge applied four optional styles, in addi-
tion to the core style, and two patterns. Two of the optional styles apply to
the whole deep model (i.e., to all ontological levels) by adding the respec-
tive constraints in the pan-level part of the model. The selective classification
mandation style was applied to restrain the types of connections that can
be used in the lower levels to those defined at level O0. All connections in
level O1 and O2 have to be offspring of the connections defined in O0. The



12.4. Discussion 171

universal isonymic instantiation style was applied to ensure that modelers
could not add further features (i.e., attributes and methods) to all ontologi-
cally typed clabjects by applying the universal isonymic instantiation style.

In addition, two styles were applied at specific levels. The universal root
inheritance style was applied at level O1, while the strong Odell powertype
pattern was applied at level O2.

In terms of patterns, the presented solution applies one pattern - the strong
Odell powertype pattern. The former is used at the O0 to enable the arbitrary
nesting of process elements, while the latter is applied in order to prevent the
user from falsely characterizing new types of Actors and Artifacts.





173

Chapter 13

The Collaboration Challenge

The third challenge defined by the MULTI Workshop community was the so-
called MULTI 2022 Collaboration Challenge to encourage different groups to
compare and contrast their approaches in a single paper. The focus of the
challenges was on describing the relationships between companies, factories,
and the products they own and manufacture, respectively. The first LML so-
lution to this challenge was published at MULTI 2021 when it was compared
to DLMA [21], however, in this chapter we present an updated version that
was published in [79] when it was compared to DLM.

Like the solution to the previous challenge, the solution to the Collabora-
tion Challenge only has three ontological levels. Moreover, no optional styles
are deployed beyond the default Melanee style (see Section 8.3). The solution
does not employ any of the patterns defined in Chapter 10 either.

13.1 Requirements

This challenge defines thirteen requirements.

P1) A company has (a) a name, (b) owns factories, (c) owns device models

P2) Huawei is a (a) company that (b) owns Factory124 and (c) owns mobile
phone models S400 and S500

P3) A factory (a) produces devices, (b) supports a list of device models, (c)
can only produce devices that conform to (are of) supported device models

P4) A device conforms to a device model

P5) A device model captures what is universal about the devices it de-
scribes



174 Chapter 13. The Collaboration Challenge

P6) A mobile phone model (a) allows specific RAM size options and (b) is
a device model

P7) A mobile phone device (a) conforms to a mobile phone model, (b) has
an IMEI, and (c) has a RAM size

P8) A mobile phone factory supports mobile phone models only

P9) A Huawei mobile factory (a) supports Huawei mobile phone models
only, (b) keeps track of mobile phone devices it produces, and (c) constrains
the IMEI of the mobile phone devices produced by the factory to start with
‘001’

P10) Factory124 (a) is a factory, (b) supports Huawei S400 and S500 mobile
phone models, and (c) produced two S400 devices (S400_001, S400_002)

P11) S400 (a) is a mobile phone model and (b) has either 4GB or 8GB of
RAM

P12) S400_001 (a) is a mobile phone device, (b) conforms to the S400 model,
(c) has 4GBs of RAM, and (d) has ‘001468723648726’ as its IMEI

P13) S400_002 (a) is a mobile phone device, (b) conforms to the S400 model,
(c) has 8GBs of RAM, and (d) has ‘0018768768475638’ as its IMEI

13.2 Model

The model consists of three levels with no optional styles or patterns in play.

13.2.1 Pan-Level Constraints and Types

Since only the default style is applied, there are no explicit pan-level con-
straints. The model also does not need any pan-level data type definitions.

13.2.2 Top Level (O0): Types of Factories, Devices, and Com-

panies

Figure 13.1 shows the top level that contains FactoryAsModelSupporter, Com-
panyAsOwner, and DeviceModel. The first two clabjects have a potency value



13.2. Model 175

supports

owns ownsCompanyAsOwner1FactoryAsModelSupporter1 DeviceModel210..*

owner ownerfactory

supportedModelfactory

deviceModel

MobilePhoneModel2

  RAM2: Integer
MobilePhoneFactoryAsModelSupporter1

supportsfactory

supportedModel

O0

HuaweiMPFactoryAsModelSupporter1

 IMEIPrefix1: String = '001'0 HuaweiMPModel2supports

factory

supportedModel

Currency = [USD,EUR]

FIGURE 13.1: Level O0 of the solution to the collaboration
challenge

of 1, which specifies that instances of these clabjects are only present exactly
one level below. The DeviceModel clabject has a potency value of 2 and there-
fore has direct instances in the middle level which in turn have instances at
the bottom level. The top three clabjects in the middle level are Factory, Com-
pany, and Device, which are not ontologically typed (i.e. are not instances
of a clabject at the level directly above). Clabjects Factory and Device are
abstract (i.e. must not have any direct instances) which is represented by
the fact that their potencies are 0. Factory is a superclass of MP_Factory and
HuaweiMP_Factory, which is the only potent clabject in this inheritance hi-
erarchy. Device is the superclass of MP_Device, which is an instance of De-
viceModel. Every instance of MP_Device has to have an IMEI slot to identify
the mobile hardware and a RAM slot. MP_Device is also an abstract clabject,
as well as HuaweiMP. The abstract produces connection between the abstract
clabjects Factory and Device is specialized via two inheritance relationships
to reflect that only certain types of factories can produce certain types of
devices. In this case, only HuaweiMP_Factory can produce devices of type
HuaweiMP_Device.

13.2.3 Second Level (O1): Concrete Device Models

Figure 13.2 shows the second level, O1, of the solution to the collaboration
challenge. Clabjects S400 and S500, which represent device models, can be in-
stantiated and are both connected to an instance of FactoryAsModelSupporter
named Factory124 and an instance of CompanyAsOwner named Huawei. Fac-
tory124 and Huawei have the same linguistic names (i.e. the one appearing
in the name compartment of clabject renderings) as respective individuals of



176 Chapter 13. The Collaboration Challenge

Company1

 name1: String1

Factory0
Device0

MP_Device0:MobilePhoneModel

 IMEI1: String 
 RAM1: Integer

HuaweiMPDevice0:HuaweiMPModel

 RAM1: Integer

owns

owns

owns

owns

supports

supports

10..*

MP_Factory0

HuaweiMP_Factory1

producer
device

ownerfactory

owner

deviceModel

deviceModel

owner

owner

factory

Factory1240:HuaweiMPFactoryAsModelSupporter

 

Huawei0:CompanyAsOwner

supportedModel

supportedModel

factory

S4001:HuaweiMPModel

  RAM1: Integer

S5001:HuaweiMPModel

  RAM1: Integer

factory

O1

produces

producesproducer device

FIGURE 13.2: Level O1 of the solution to the collaboration
challenge

S400_0010:S400

  IMEI0: String = '001468723648726'
  RAM0: Integer = 4

S400_0020:S400

  IMEI0: String = '0018768768475638'
  RAM0: Integer = 8

owns

device

device

produces

factory

factory

produces

owner
Huawei0:Company

 name: String = 'Huawei'

Factory1240:HuaweiMP_Factory
factory

O2

FIGURE 13.3: Level O2 of the solution to the collaboration
challenge

the clabjects Factory and Company. This models the fact that they represent
the same real-world objects respectively, but at different levels of abstrac-
tion. In other words, the CompanyAsOwner and Company instances repre-
sent the same real-world object called “Huawei”, while the instances of Fac-
toryAsModelSupporter and HuaweiMP_Factory represent the same real-world
object called “Factory124”. This dual-level representation is designed to com-
prehensively cover the challenge specification while adhering to Melanee’s
strictness requirements that prohibit cross-level connections.



13.3. Fulfillment of the Requirements 177

13.2.4 Third Level (O2): Concrete Devices

Figure 13.3 shows the most concrete level of the solution to the collaboration
challenge where the actual devices that are produced by Factory124, as an
instance of HuaweiMP_Factory, are located.

13.3 Fulfillment of the Requirements

To ensure that the model is well-formed with respect to the dual-level repre-
sentation of “Huawei” and “Factory124”, two DOCL constraints are needed.
These constraints, Constraint 13.1 and 13.2, not only ensure that a Compa-
nyAsOwner instance is linked with a FactoryAsModelSupporter instance and a
Company instance is linked with a Factory instance but also that they have to
be connected to corresponding instances on their respective levels (via the
owns connection). They are very similar in nature, the only difference is the
context which points to a different starting point of the constraint to check
the symmetry of the existence of the clabjects involved in the dual-level rep-
resentation.

context Company(2 _2 )
inv : l e t companyName = s e l f . # name# in C l a b j e c t −> s e l e c t ( c l a b j e c t | c l a b j e c t .

isDeepOclTypeOf (CompanyAsOwner) ) −> s e l e c t ( companyAsOwner|companyAsOwner . #
getPotency ( ) # = 0) −> s e l e c t ( companyAsOwner|companyAsOwner . # name# =
companyName) . f a c t o r y −> c o l l e c t (#name#) −> includesAll ( s e l f . f a c t o r y −>
c o l l e c t (#name#) )

CONSTRAINT 13.1: Matching name and associations from

Company to CompanyAsOwner

context CompanyAsOwner(1 _1 )
inv : l e t companyAsOwnerName = s e l f . # name# in C l a b j e c t −> s e l e c t ( c l a b j e c t |

c l a b j e c t . isDeepOclTypeOf (Company) ) −> s e l e c t ( company|company . # getPotency ( ) #
= 0) −> s e l e c t ( company|company . # name# = companyAsOwnerName) . f a c t o r y −>

c o l l e c t (#name#) −> includesAll ( s e l f . f a c t o r y −> c o l l e c t (#name#) )

CONSTRAINT 13.2: Matching name and associations from

CompanyAsOwner to Company

P1) Company (O1) has (a) a name attribute and (b) connects to Factory via
owns. (c) CompanyAsOwner (O0) is connected to DeviceModel via owns

P2) Huawei is represented twice, once (a) as an instance of Company owning
Factory124, and once (b) as an instance of CompanyAsOwner owning the S400
and S500 device models



178 Chapter 13. The Collaboration Challenge

P3) (a) Factory is connected to Device via produces, (b) FactoryAsModelSup-
porter is connected to DeviceModel via supports, (c) Constraint 13.3 ensures
that a Factory only produces devices that are supported by the correspond-
ing FactoryAsModelSupporter.

Constraint 13.3 ensures that every factory only produces the devices that
conform to device models that it supports. For every device produced by
a certain O2-level factory, its type must be among the models that are sup-
ported by the O1-level representation (FactoryAsModelSupporter instance) of
that factory (with which it shares the same name).

context Factory (2 _2 )
inv : l e t factoryName : String = s e l f . # name# in

l e t factoryTypeRole = C l a b j e c t −> s e l e c t ( c l a b j e c t | c l a b j e c t .
isDeepOclTypeOf ( FactoryAsModelSupporter ) −> s e l e c t ( c l a b j e c t | c l a b j e c t . #
getPotency ( ) # = 0) −> s e l e c t ( c l a b j e c t | c l a b j e c t . # name# = factoryName ) in

s e l f . device −> forAll ( device | factoryTypeRole . supportedModel −>
includes ( device . # getDirectTypes ( ) # −> f i r s t ( ) ) )

CONSTRAINT 13.3: Factory supported devices

P4) Devices are instances of device models

P5) Device models describe devices by being the types of the latter

P6) (a) Constraint 13.4 specifies the RAM options for a mobile phone model,
(b) MobilePhoneModel inherits from DeviceModel. The constraint in Constraint 13.4
limits the values of RAM slots of S400 instances to either ‘4’ or ‘8’.

context S400 (2 _2 )
inv : s e l f .RAM = 4 or s e l f .RAM = 8

CONSTRAINT 13.4: S400 RAM constraint

P7) (a) Mobile phone devices are instances of mobile phone models and the
latter define (b) IMEI via inheriting from MP_Device, and (c) receive a RAM
attribute from MobilePhoneModel

P8) Association supports between MobilePhoneFactoryAsModelSupporter and
MobilePhoneModel is a specialization of the more general supports association,
which restricts the supporting devices.

P9) (a) In level O0 the supports association is specialized to restrict support
between HuaweiMPFactoryAsModelSupporter and HuaweiMPModel instances
(b) HuaweiMP_Factory inherits a produces association from MP_Factory (c)



13.4. Discussion 179

Constraint 13.5 ensures that the IMEI starts with “001” This is guaranteed
by the constraint in Constraint 13.5. From the context HuaweiMP_Factory this
navigates to the produced devices and requires that the first three numbers
of the IMEI have to be ‘001’.

context HuaweiMP_Factory (2 _2 )
inv : s e l f . device −> forAll ( IMEI . subs t r ing ( 1 , 3 ) = ’ 001 ’ )

CONSTRAINT 13.5: IMEI constraint

P10) (a) Factory124 at O2 is an indirect instance of Factory, (b) at O1, it sup-
ports the S400 and S500 mobile phone models, (c) and at O2 it entertains pro-
duces links with S400_001 and S400_002.

Constraint 13.6 ensures that every factory only produces the devices that
conform to device models that it supports. For every device produced by
a certain (bottom-level) factory, its type must be among the models that are
supported by the middle-level representation (FactoryAsModelSupporter in-
stance) of that factory (with which it shares the same name).

context Factory (2 _2 )
inv : l e t factoryName : String = s e l f . # name# in

l e t factoryTypeRole = C l a b j e c t −> s e l e c t ( c l a b j e c t | c l a b j e c t .
isDeepOclTypeOf ( FactoryAsModelSupporter ) −> s e l e c t ( c l a b j e c t | c l a b j e c t . #
getPotency ( ) # = 0) −> s e l e c t ( c l a b j e c t | c l a b j e c t . # name# = factoryName ) in

s e l f . device −> forAll ( device | factoryTypeRole . supportedModel −>
includes ( device . # getDirectTypes ( ) # −> f i r s t ( ) ) )

CONSTRAINT 13.6: Factory supported devices constraint

P11) (a) S400 is of type HuaweiMPModel, which specializes MobilePhoneModel,
(b) the RAM choices are enforced via Constraint 13.4

P12) S400_001, (a) is an indirect instance of MP_Device, (b) is typed by S400,
(c) has 4GB of RAM, and (d) the IMEI attribute has the specified value

P13) Analogously to P 12), S400_002 (a) is an indirect instance of MP_Device
(b) is typed by S400, (c) has 8GB of RAM, and (d) the IMEI attribute has the
specified value

13.4 Discussion

The solution to this challenge is not particularly interesting from the point
of view of applying optional styles or patterns. No such optional styles or



180 Chapter 13. The Collaboration Challenge

patterns are deployed meaning the modeling rules are governed by the strict
modeling and characterization potency rules that come with the default style.

The most interesting aspect of the presented model is that it demonstrates
how strict modeling may sometimes be too restrictive. To fulfill all the re-
quirements the model had to deploy a “trick” to overcome the fact that the
strict modeling style prohibits connections between clabjects at different lev-
els, as essentially called for by the requirements. This trick is to represent
each of the concepts Factory and Company by two clabjects, each representing
a different perspective on the concept (i.e., from a different level). The use of
this trick adds accidental complexity to the model, but also demonstrates the
versatility of DOCL without which it could not be applied.



181

Chapter 14

The Warehouse Challenge

The most recent challenge from the MULTI community was the MULTI 2023
Warehouse Challenge, which focuses on the representation of product copies,
product specifications, and product specification types with a particular em-
phasis on how to guarantee certain properties at the product level without
fully determining them at higher levels. The solution has four levels and ap-
plies the universal ontological classification style (Constraint 9.1) as well as
the Melanee default style (see Section 8.3). No patterns are used.

14.1 Requirements

This section summarizes the requirements of the Warehouse Challenge, de-
fined in full in [80]. In contrast to previous challenges, the Warehouse Chal-
lenge is very specific about the particular properties that entities in the do-
main should possess and what values these properties should have. For ex-
ample, product specification types must have taxRate, currency, and introduc-
tionDate properties.

Instances of product specification types are product specifications that
specify the currency they are sold in. This currency should not be changed
once the attribute has been set to a value, like “EUR”, “SEK” or “USD”. In-
stances of that product specification (i.e., that conform to it) are sold in that
specified currency. Some products are not sold individually but rather sold
in bulk, and have to be categorized as such. Although bulk product indi-
viduals should not be represented in the warehouse, information about the
total number of individuals sold should be stored by bulk product specifi-
cations. Bulk products are sold as packages containing specified numbers of
individuals.

For each product specification, the warehouse sets a standard sales price
and a reduced sales price that must be lower than the standard sales price.
The warehouse needs to keep track of the products sold, each product copy,



182 Chapter 14. The Warehouse Challenge

and each product specification. The final price of a product is computed from
the standard sales price, the reduced price (if one is present), and the tax rate.
Each product should be able to report this final price.

Some product types are recommended by other product types. If a cus-
tomer is in the process of buying a product of a specific type the warehouse
system should be able to recommend a related product of another product
type. For instance, mobile phones should recommend mobile phone cases
but not other kinds of products.

R1) A Product Specification Type (a) has a tax rate, (b) specifies a currency,
(c) has an introduction date, (d) describes copy specifications or bulk repre-
sentations

R2) Book Spec (a) is a Product Specification Type, (b) has a tax rate of 7%,
(c) specifies the currency EUR, (d) was introduced on 1 February 2003, (e)
describes copy specifications

R3) Moby Dick (a) is a Book Spec, (b) has an SSP of EUR 9.95

R4) MB Copy 1 (a) is a copy of Moby Dick, (b) has an SSP of EUR 9.95

R5) MB Copy 2 (a) is a copy of Moby Dick, (b) has an SSP of EUR 9.95, (c)
has been returned on 23 March 2023, (d) has a reduced price of EUR 1.95

R6) DVD Spec (a) is a Product Specification Type, (b) has a tax rate of 15%,
(c) specifies the currency USD, (d) was introduced on 2 March 2004, (e) de-
scribes copy specifications

R7) 2001: A Space Odyssey (a) is a DVD Spec, (b) has an SSP of USD 19.95,
(c) recommends haChi779

R8) DVD Player Spec (a) is a Product Specification Type, (b) has a tax rate
of 15%, (c) specifies the currency USD, (d) was introduced on 3 April 2005,
(e) describes copy specifications

R9) haChi779 (a) is a DVD Player Spec, (b) has an SSP of USD 99.99, (c)
describes copies which have serial numbers



14.2. Model 183

R10) Mobile Phone Spec (a) is a Product Specification Type, (b) has a tax
rate of 15%, (c) specifies the currency SEK, (d) was introduced on 4 May 2006,
(e) describes copy specifications

R11) Mate0815 (a) is a Mobile Phone Spec, (b) has an SSP of SEK 599.15, (c)
recommends Matey

R12) MP Case Spec (a) is a Product Specification Type, (b) has a tax rate of
15%, (c) specifies the currency SEK, (d) was introduced on 5 June 2007, (e)
describes copy specifications

R13) Matey (a) is a MP Case Spec, (b) has an SSP of SEK 17.95

R14) AA Battery Cell Spec (a) is a Product Specification Type, (b) has a tax
rate of 15%, (c) specifies the currency NZD, (d) was introduced on 6 July 2008,
(e) describes bulk product representations

R15) Energetic Plus (a) is an AA Battery Cell Spec, (b) has an SSP of SEK
1.50, (c) represents 271820 batteries which are sold as part of 10-packs

14.2 Model

This section presents our solution to the challenge. The deep model, which
fulfills all the requirements, has four ontological levels, shown in Figures 14.1
through 14.4.

14.2.1 Level-Spanning Constraints

Like the solutions to all the other challenges, this challenge applies con-
straints to ensure that all clabjects in the levels derived from O0 adhere to
its rules. As mentioned above, the model applies one optional style – the
universal ontological classification style defined in Chapter 9.2.1. The con-
straints that enforce these styles are therefore pan-level styles for this model.
No pan-level datatypes are defined.

14.2.2 Top Level (O0): Foundational Types

Figure 14.1 shows the top, most abstract, level which defines the founda-
tional types in the domain. The most stable abstractions in the LML model



184 Chapter 14. The Warehouse Challenge

ProductType0

+ introDate1: String

+ description3: String

CopyProductType3

+ serialNumber: Integer2

BulkProductPackageType3

+ quantity: Integer2

recommends
Recommendation2

BulkProductType2

+ /totalSold: Integer

Package2

bulkProduct

package

SellableProductType0

+ /inStock2: Integer

+ currency3: Currency1

+ taxRate3: Integer1

+ reducedPrice3: Integer

+ standardSalesPrice3: Integer

+ /nbSold2: Integer

+ sold3: Boolean

+ finalPrice()3: Integer
1

1..*

FIGURE 14.1: Foundational types at Level O0

are the types that set up the context for other types and/or objects (i.e., clab-
jects) to represent a running incarnation of the warehouse that fulfills all the
specified requirements. They therefore have two main jobs - (a) to character-
ize the model elements whose existence can change over time so that they
can represent the appropriate domain properties and relationships, and (b)
to ensure that only appropriate model elements can be added to the model
that correctly represent a snapshot of the warehouse system at a particular
point in time.

As shown in Figure 14.1, the solution has seven foundational types (i.e.,
clabjects), all contained in the top ontological level (O0) – ProductType, which
is an abstract class, SellableProductType, which is a subclass of ProductType and
also abstract, CopyProductType and BulkProductPackageType, which are con-
crete subclasses of SellableProductType, BulkProductType, which is a subclass
of ProductType, Recommendation, which is a connection clabject with Product-
Type as both its source and the target, and Package which is a connection clab-
ject between BulkProductType and BulkProductPackageType. All seven founda-
tional clabjects are highly stable components of the model that only need to
be changed if the requirements of the warehouse system change.

ProductType is disjointly and completely specialized by SellableProductType
and BulkProductType to reflect the fact that although bulk products are prod-
ucts they cannot be sold directly, they can only be sold indirectly via bulk



14.2. Model 185

BookSpec2:CopyProductType

+ currency: Currency = EUR0

+ introDate0: String = '01.02.2003'

+ taxRate: Integer = 70

+ standardSalesPrice: Integer

+ sold: Boolean

+ description: String

+ serialNumber: Integer

+ /inStock1: Integer

+ /nbSold1: Integer

+ reducedPrice: Integer

+ finalPrice(): Integer

DVDSpec2:CopyProductType

+ currency: Currency = USD0

+ introDate0: String

+ taxRate: Integer = 150

+ standardSalesPrice: Integer

+ sold: Boolean

+ description: String

+ /inStock1: Integer

+ serialNumber: Integer

+ /nbSold1: Integer

+ reducedPrice: Integer

+ finalPrice(): Integer

DVDPlayerSpec2:CopyProductType

+ currency2: Currency = USD0

+ introDate0: String

+ taxRate2: Integer = 150

+ standardSalesPrice: Integer

+ sold: Boolean

+ description: String

+ serialNumber: Integer

+ /inStock1: Integer

+ /nbSold1: Integer

+ reducedPrice: Integer

+ finalPrice(): Integer

MobilePhoneSpec2:CopyProductType

+ currency: Currency = SEK0

+ introDate0: String = '04.05.2006'

+ taxRate: Integer = 150

+ standardSalesPrice: Integer

+ sold: Boolean

+ description: String

+ serialNumber: Integer

+ /inStock1: Integer

+ /nbSold1: Integer

+ reducedPrice: Integer

+ finalPrice(): Integer

MPCaseSpec2:CopyProductType

+ currency: Currency = SEK0

+ introDate0: String = '01.04.2023'

+ taxRate: Integer = 150

+ standardSalesPrice: Integer

+ sold: Boolean

+ serialNumber: Integer

+ description: String

+ /inStock1: Integer

+ /nbSold1: Integer

+ reducedPrice: Integer

+ finalPrice(): Integer

recommendsrecommends

AABatteryCellPackage2:BulkProductPackageType

+ currency: Currency = NZD0

+ introDate0: String

+ taxRate: Integer = 150

+ standardSalesPrice: Integer

+ description: String

+ packageQuantity: Integer1

+ /inStock1: Integer

+ /nbSold1: Integer

+ reducedPrice: Integer

+ finalPrice(): Integer

AABatteryCellSpec1:BulkProductType

+ /totalSold: Integer

+ description: String

+ introDate0: String

package

bulkProduct

1..*

1

FIGURE 14.2: Product Specifications at the O1 level

product packages. This is captured by creating Package connections between
offspring of BulkProductPackageType and offspring of BulkProductType. Note,
however, that because the potencies of BulkProductType and Package are lower
than the potency of BulkProductPackageType (i.e., ‘2’ rather than ‘3’), offspring
of BulkProductType and Package cannot exist at the bottom level of the model,
reflecting the fact that specific bulk product instances should not be stored in
the warehouse.

Both connections in Figure 14.1 are shown in an exploded form. However,
all of their instances at lower levels are shown in the imploded form as a dot.
Melanee allows modelers to toggle between the two forms at any level as
desired. Since the multiplicities of the Recommendation connection are the
default (i.e., 1..*) they are not explicitly shown.

14.2.3 Second Level (O1): Product Specifications

Figure 14.2 shows the second level of the deep model, where the next most
stable abstractions in the model, product kinds, are defined. These represent
major product categories like books, mobile phones, etc., that are not likely to
change for many years. These reside at level O1 of the model and, as shown in
Figure 14.2, are instances of either CopyProductType, BulkProductPackageType
or BulkProductType. All specified product kinds mentioned in the specific



186 Chapter 14. The Warehouse Challenge

MobyDick1:BookSpec

+ currency: Currency = EUR0

+ taxRate: Integer = 70

+ standardSalesPrice: Integer = 995

+ sold: Boolean

+ description: String

+ /inStock0: Integer = 1

+ reducedPrice: Integer

+ /nbSold0: Integer = 1

+ serialNumber: Integer

+ finalPrice(): Integer

2001ASpaceOdyssey1:DVDSpec

+ currency: Currency = USD0

+ taxRate: Integer = 150

+ standardSalesPrice: Integer = 1995

+ sold: Boolean

+ description: String

+ /inStock0: Integer

+ reducedPrice: Integer

+ /nbSold0: Integer

+ serialNumber: Integer

+ finalPrice(): Integer

haChi7991:DVDPlayerSpec

+ currency: Currency = USD0

+ taxRate: Integer = 150

+ standardSalesPrice: Integer = 9999

+ sold: Boolean

+ description: String

+ /inStock0: Integer

+ reducedPrice: Integer

+ serialNumber: Integer

+ /nbSold0: Integer

+ finalPrice(): Integer

recommends

Mate08151:MobilePhoneSpec

+ currency: Currency = SEK0

+ taxRate: Integer = 150

+ standardSalesPrice: Integer = 59915

+ sold: Boolean

+ description: String

+ /inStock0: Integer

+ reducedPrice: Integer

+ /nbSold0: Integer

+ serialNumber: Integer

+ finalPrice(): Integer

Matey1:MPCaseSpec

+ currency: Currency = SEK0

+ taxRate: Integer = 150

+ standardSalesPrice: Integer = 1795

+ sold: Boolean

+ description: String

+ /inStock0: Integer = 0

+ reducedPrice: Integer

+ /nbSold0: Integer = 0

+ serialNumber: Integer

+ finalPrice(): Integer

EnergeticPlus10Pack1:AABatteryCellPackage

+ currency: Currency = NZD0

+ taxRate: Integer = 150

+ standardSalesPrice: Integer = 500

+ description: String

+ /inStock0: Integer

+ reducedPrice: Integer

+ packageQuantity: Integer = 100

+ /nbSold0: Integer

+ finalPrice(): Integer

recommends

EnergeticPlus0:AABatteryCellSpec

+ /totalSold: Integer = 271820

+ introDate0: String

+ description: String

package

bulkProduct 1

1..*

FIGURE 14.3: Products at the O2 level

scenario outlined in the Warehouse Challenge description are included, with
the prescribed attributes and associations.

In LML, connections are modeled as clabjects which can have all the usual
features and relationships. In Figure 14.2, these connections are represented
in collapsed form as a dot in the middle of the line between MobilePhoneSpec
and MPCaseSpec, as well as between DVDSpec and DVDPlayerSpec. Connec-
tions can also be represented in expanded form using a hexagon symbol as
shown in Figure 14.1.

Note that at this level, it is possible to choose what recommendation re-
lationships can exist between sellable product specifications and what pack-
age relationships can exist between bulk products and bulk product package
products. Once these connections have been selected at this level, the “Uni-
versal Ontological Classification” style ensures that all recommendation and
package connections at the level below can only be between offspring of the
appropriate kinds, as specified in the requirements.



14.2. Model 187

14.2.4 Third Level (O2): Products

Figure 14.3 shows the third level of the deep model, where the third most
stable group of abstractions in the model, products, are defined. These are
instances of the product specifications defined at the O1 level. These are
therefore defined at the O2 level. The clabjects at this level represent specific
products like specific books or specific mobile phone models. These change
more frequently than the general product kinds of which they are instances.

The O2 level contains all specified product kinds mentioned in the spe-
cific scenario outlined in the Warehouse Challenge description with the pre-
scribed attributes and associations, namely – MobyDick (an instance of Book-
Spec), 2001ASpaceOdysey (an instance of DVDSpec), haChi799 (an instance of
DVDPlayerSpec), Mate0815 (an instance of MobilePhoneSpec), Matey (an in-
stance of MPCaseSpec), EnergeticPlus (an instance of AABatteryCellSpec), and
EnergeticPlus10Pack (an instance of AABatteryCellPackage). All of these clab-
jects have a common set of attributes as specified in ProductType. These in-
stances have to possess these attributes due to LML’s deep instantiation/-
classification mechanism [19]. With the exception of EnergeticPlus, which is
an offspring of BulkProductType and thus not directly offered for sale, all of
the items are sellable. Note that the potency of EnergeticPlus is zero to ensure
that it has no instances at the bottom level (O2) as stated in the requirements.

14.2.5 Fourth Level (O3): Product Instances

Finally, Figure 14.4 shows the fourth level of the deep model where the least
stable group of objects in the model, specific product instances (i.e., individ-
uals), are defined. These model elements are the actual items purchased by
customers.

All specified product instances mentioned in the specific scenario out-
lined in the Warehouse Challenge description are included, with the pre-
scribed attributes and associations, namely – MBCopy1 and MBCopy2 which
are instances (i.e., copies) of the MobyDick book specification.

The attributes of MBCopy2 indicate that it was returned on 23rd of April
2023 (i.e., is currently not sold) and has a reducedPrice of “1.95”. Both books
are sold in the “EUR” currency. The attributes of the other book, MBCopy1,
indicate that it has been sold and is not currently in the warehouse (physi-
cally).



188 Chapter 14. The Warehouse Challenge

MBCopy10:MobyDick

+ currency: Currency = EUR

+ taxRate: Integer = 7

+ standardSalesPrice: Integer = 995

+ sold: Boolean = true

+ description: String

+ serialNumber: Integer = 010101010101

+ reducedPrice: Integer

+ finalPrice(): Integer

MBCopy20:MobyDick

+ currency: Currency = EUR

+ taxRate: Integer = 7

+ standardSalesPrice: Integer = 995

+ sold: Boolean = false

+ serialNumber: Integer = 010101010102

+ description: String = "returned on 23.04.2023"

+ reducedPrice: Integer = 195

+ finalPrice(): Integer

FIGURE 14.4: Product copy instances at the O3 level

14.3 Fulfillment of the Requirements

R1) Figure 14.1 shows the level that contains the clabject ProductType that
has an (c) introductionDate attribute and a subclass SellableProductType that
(a) contains the attributes taxRate and (b) currency. The clabject CopyPro-
ductType, BulkProductType, and BulkProductPackageType (d) describe copy and
bulk specification respectively.

R2) The BookSpec clabject on level 1 (Figure 14.2) (e) is of type CopyProduct-
Type and an indirect (a) instance of ProductType. The taxRate attribute (b) is set
to 7% and to able to change in the lower levels due to the mutability value
‘0’. The (c) currency is EUR and the (d) introductionDate attribute is set to
“01.02.2003”.

R3) The MobyDick clabject at level 2 is (a) an instance of BookSpec and (b)
the standardSalesPrice attribute has a value of ‘995’, which is the price in cents
(or the smallest unit in a currency).

R4) The MBCopy1 clabject at level 3 (a) is an instance of MobyDick and (b)
the standardSalesPrice is ‘995’.

R5) The MBCopy2 clabject at level 3 (a) is an instance of MobyDick and (b)
the standardSalesPrice is ‘995’. The description attribute (c) states that the book
was returned on 23 March 2023 and the (d) reducedPrice attribute is set to
‘195’.

R6 The DVDSpec clabject at level 1 (e) is a direct instance of CopyProductType
and (a) an indirect instance of ProductType. The taxRate (b) attribute is set to



14.3. Fulfillment of the Requirements 189

15% and the currency (c) attribute is of type USD. The introductionDate (d)
attribute is set to “02.03.2004”.

R7) The 2001ASpaceOdyssey clabject at level 2 (a) is an instance of DVDSpec
and the standardSalePrice (b) attribute is set to ‘1995’. This clabject is (c) con-
nected to the haChi779 clabject which it recommends via the Recommendation
connection.

R8) The DVDPlayerSpec is (e) a direct instance of CopyProdcutType and (a)
an indirect instance of ProductType. The taxRate (b) attribute is set to 15% and
the currency (c) is set to USD. The introductionDate (d) is set to “03.04.2005”.

R9) The haChi779 clabject at level 2 is (a) an instance of DVDPlayerSpec and
the standardSalesPrice (b) attribute is set to ‘9999’. The serialNumber attribute
(c) is present in the clabject.

R10) The MobilePhoneSpec clabject at level 1 (e) is a direct instance of Copy-
ProductType and (a) an indirect instance of ProductType. The taxRate (b) at-
tribute is set to 15% and (c) the currency attribute is of type SEK. The introduc-
tionDate (d) attribute is set to “04.05.2006”.

R11) The clabject Mate0185 at level 2 is (a) an instance of MobilePhonSpec
and (b) the standardSalesPrice is set to ‘59915’. This clabject is (c) connected to
the Matey clabject via the Recommends relationship.

R12) The clabject MPCaseSpec at level 1 (e) is a direct instance of CopyPro-
ductType and (a) an indirect instance of ProductType. The taxRate (b) attribute
is set to 15% and (c) the currency is of type SEK. The introductionDate (d) is set
to “05.06.2007”.

R13) The Matey clabject is (a) an instance MPCaseSpec and (b) the standard-
SalesPrice is set to ‘1795’ and the currency is of type SEK.

R14) The clabject AABatteryCellSpec at level 1 is (e) a direct instance of BulkPro-
ductType and (a) an indirect instance of ProductType. The taxRate (b) attribute
is set to 15% and the (c) currency attribute is of type NZD. The introduction-
Date (d) attribute is set to “06.07.2008”.



190 Chapter 14. The Warehouse Challenge

R15) The EnergeticPlus clabject at level 2 is (a) an instance of AABatteryCell-
Spec. The standardSalesPrice attribute is not present in this clabject but rather
in the EnergeticPlus10Pack which is an instance of AABatteryCellPackage, which,
in turn, is an instance of BulkProductPackageType and thus an indirect descen-
dant of SellableProduct that has the standardSalesPrice attribute. In the pack-
age representation, the standardSalesPrice is (b) set to ‘150’ and the currency
attribute is set to SEK. The derived attribute totalSold (c) computes the total
number of sold batteries (through packages).

14.3.1 Attributes

The attributes we have not yet discussed in the previous list of the fulfillment
of the requirements are discussed in this section.

The SellableProductType clabject specifies attributes and methods that are
specific to all sellable products. Specifically, these are:

• inStock of type Integer. This attribute is a derived attribute that stores
the number of product instances of a given product specification (e.g.,
Book) or a given product (e.g., MobyDick) that are currently in stock, at
the O1 and O2 levels respectively. Its durability and mutability values
are ‘2’. The DOCL expression defining how the values of this attribute
are calculated can be seen in Constraint 14.1.

• sold of type Boolean. This attribute has a value of ‘true’ if the individual
product is sold and no longer physically in the warehouse. The dura-
bility and mutability values equal the potency value.

• nbSold of type Integer. This attribute is a derived attribute that stores
the number of sold product instances of a given product specification
or a given product, at the O1 and O2 levels respectively. Its durability
and mutability values are ‘2’. The DOCL expression defining how the
values of this attribute are calculated can be seen in Constraint 14.2.

• finalPrice() is an Integer valued method that computes the price the cus-
tomer has to pay for a product from the standard sales price, reduced
sales price, and the tax rate. Its durability and mutability values are
‘3’. The DOCL expression defining how the output of this method is
calculated can be seen in Constraint 14.4.

Only three other attributes are defined at the (O0) level – serialNumber,
quantity and totalSold which belong to CopyProductType, BulkProductPackageType
and BulkProductType respectively.



14.3. Fulfillment of the Requirements 191

• serialNumber of type Integer. With a durability of ‘3’ and mutability of
‘2’, this attribute stores the serial number of CopyProductType offspring.

• quantity of type Integer. With a durability of ‘3’ and mutability of ‘2’,
this attribute stores the number of items of the connected BulkProduct-
Type that an offspring of BulkProductPackageType contains.

• totalSold of type Integer. With a durability of ‘2’ and mutability of
‘2’, this attribute indicates the number of items of a given bulk prod-
uct type (e.g., AABatteryCellSpec) and bulk product (e.g., EnergeticPlus)
have been sold, at the O1 at the O2 levels respectively. Since BulkPro-
ductType items cannot be sold individually, but only through BulkPro-
ductPackageType offspring, this is a derived attribute that is calculated
from the number of corresponding BulkProductPackageType offspring
sold. The DOCL expression for deriving this value is shown in Con-
straint 14.3.

The complete specialization of ProductType by CopyProductType, BulkPro-
ductPackageType and BulkProductType reflects the fundamental categorization
of all products as being either bulk products, bulk product packages or copy
products.

Derive Constraints

The O0 level defines three derived attributes – the inStock and nbSold at-
tributes of SellableProductType and the totalSold attribute of BulkProductType.
To ensure that all offspring of SellableProductType and BulkProductType at the
O1 and O2 levels have the appropriate values for these attributes three deep
derive constraints are needed.

The first derive constraint, Constraint 14.1, for the inStock attribute has
SellableProductType as its context. For any offspring, s, of SellableProductType
for which the attribute exists (i.e., offspring at the O1 and O2 levels, but not
the O3 level), the constraint starts by collecting all clabjects of potency 0 that
are also offspring of s, and then selects the subset whose sold attribute has the
value false.

context Sel lableProductType : : inStock : Integer ( 0 , 2 )
derive : C l a b j e c t −> s e l e c t ( c l a b j e c t | c l a b j e c t . # getPotency ( ) # = 0 and c l a b j e c t .

isDeepInstanceOf ( s e l f ) ) −> s e l e c t ( i n s t a n c e | i n s t a n c e . sold = f a l s e ) −> s i z e ( )

CONSTRAINT 14.1: value of the InStock derived attribute

of sellable products



192 Chapter 14. The Warehouse Challenge

The second derive constraint, Constraint 14.2, for the nbSold attribute also
has SellableProductType as its context. It is essentially the inverse of Con-
straint 14.1 in that it calculates the number of sold product instances of off-
spring of SellableProductType at the O1 and O2 levels, rather than the number
in stock. The constraint has essentially the same structure as Constraint 14.1,
except that it selects the subset whose sold attribute has the value true rather
than false.

context Sel lableProductType : : nbSold : Integer ( 0 , 2 )
derive : C l a b j e c t −> s e l e c t ( c l a b j e c t | c l a b j e c t . isDeepInstanceOf ( s e l f ) and

c l a b j e c t . # getPotency ( ) # = 0) −> s e l e c t ( i n s t a n c e | i n s t a n c e . sold = t rue ) −>
s i z e ( )

CONSTRAINT 14.2: Value of the nbSold derived attribute

of sellable products

The third derive constraint, Constraint 14.3, for the totalSold attribute has
BulkProductType as its context. Since BulkProductType can only have offspring
at the O1 and O2 levels, this constraint calculates appropriate values of the to-
talSold attribute for all offspring of the BulkProductType. For any offspring, b,
of BulkProductType the constraint starts by collecting all clabjects of potency
zero that are also offspring of b and then uses an “iterate” operation to ac-
cumulate the number of items sold via all BulkProductPackageType offspring
at level O2 connected to b by an offspring of the Package connection. Essen-
tially, the constraint sums up all the items sold via the related bulk product
packages.

context BulkProductType : : t o t a l S o l d : Integer ( 0 , 2 )
derive : C l a b j e c t −> s e l e c t ( c l a b j e c t | c l a b j e c t . isDeepInstanceOf ( s e l f ) and

c l a b j e c t . # getPotency ( ) # = 0) −> i t e r a t e ( p ; acc = 0 | acc = acc + ( p . package
. quant i ty * p . package . nbSold ) )

CONSTRAINT 14.3: Value of the totalSold derived

attribute of bulk products

Body Constraints

The method finalPrice calculates the price of a sellable product depending on
the value of the reducedPrice attribute, or the lack thereof. The following body
constraint, Constraint 14.4, specifies how this value is calculated. If the value
of the reducedPrice is undefined, the standardSalesPrice is the basis of the tax
calculation that gives rise to the final price that customers have to pay.



14.4. Discussion 193

context Sel lableProductType : : f i n a l P r i c e ( ) : Integer ( 3 , 3 )
body : l e t value : Integer = 0 in

i f s e l f . reducedPrice . ocl IsUndefined ( )
then value = s e l f . s t a n d a r d S a l e s P r i c e +

s e l f . s t a n d a r d S a l e s P r i c e * ( taxRate / 100)
e lse value = s e l f . reducedPrice + s e l f . reducedPrice * ( taxRate / 100)
endif

CONSTRAINT 14.4: Body constraint specification for the

final price

14.4 Discussion

Although the solution to this challenge does not apply many optional styles
or patterns, it nevertheless possesses some interesting aspects. The first is
that, in contrast to the previous challenge, Melanee’s default styles appear to
provide an optimal amount of rigor for the needs of the domain. In particular,
the strict modeling and characterization potency combination allows all the
requirements to be concisely modeled with no accidental complexity (such as
double representations of concept), whilst still ensuring that unwanted con-
structs are prohibited. The default style was complemented with the optional
universal ontological classification style to prevent modelers from introduc-
ing ontologically untyped clabjects at lower levels.

The second interesting aspect of the model is the use of three derive con-
straints and one body constraint to deal with unusually demanding require-
ments. The derive constraints were used to ensure that all offspring of Sell-
ableProductType and BulkProductType at the O1 and O2 levels have the appro-
priate values, while the body constraint was used to model the functionality
of the finalPrice method which calculates the price of a sellable product de-
pending on the value of the reducedPrice attribute, if present. All these differ-
ent use cases demonstrate the versatility of the DOCL constraint language.





195

Part VI

Significance





197

The final part contains two chapters that place the technology developed
in this thesis in the context of related work and summarise its relevance. The
first chapter describes various kinds of related work, including other vari-
ants of, and tools supporting, the OCL, alternative constraint languages, and
the main multi-level modeling languages beyond the Melanee tool used in
the thesis. The second chapter summarizes the achievements of the thesis in
terms of how well it fulfills the defined requirements and solves the identi-
fied challenges, examines the degree to which the presented work validates
the hypothesis, and identifies significant potential lines of future work.





199

Chapter 15

Related Work

This chapter summarizes academic work related to this thesis. The first sec-
tion deals with other constraint languages and their respective implementa-
tions. The second section presents other multi-level tools and how they han-
dle constraints in their languages. The third section gives a brief overview of
other approaches to view-based modeling.

15.1 OCL Variants and Tools

There are different implementations of the OCL standard and different tools
supporting them. This section presents an overview of the tools that are dis-
cussed and used in the literature and also the most important open-source
implementations of the OCL.

15.1.1 Eclipse OCL TM

The Eclipse OCLTM [121] implements standard OCL for EMF-based models.
This version of OCL works on Ecore models and UML models in Eclipse.
Queries and OCL expressions on those models are made accessible through
an API while being defined in Ecore as an OCL abstract syntax model. Ex-
pressions are parsed with the help of an LARL parser generator that accepts
(E)BNF (extended Backus-Naur Form) rules.

15.1.2 DresdenOCL

DresdenOCL is an open-source framework for OCL development and anal-
ysis. It provides a range of tools and libraries for working with OCL, includ-
ing an OCL parser and interpreter, a model-driven testing framework, and a
constraint analyzer [45, 46]. The goal of DresdenOCL is to provide a compre-
hensive and user-friendly platform for OCL development and analysis, with



200 Chapter 15. Related Work

a focus on model-driven engineering and software testing. It is designed to
be extensible and customizable, allowing users to add their own plugins and
tools as needed.

One of the key features of DresdenOCL is its support for OCL testing and
validation. The framework includes a model-driven testing framework that
enables users to generate test cases automatically from OCL constraints and
test their models against these constraints [73, 104]. It also includes a con-
straint analyzer that can be used to analyze OCL constraints and detect er-
rors and inconsistencies. The interpretative approach is used when the model
has to be simulated (or animated). This can only be done when the model is
“stateful” (in terms of activity diagrams or state charts) or the constraints
describe the behavior of the execution semantics.

DresdenOCL is written in Java and is compatible with a range of model-
ing tools and frameworks, including Eclipse, EMF, and UML.

15.1.3 XOCL im FMMLx

This constraint language represents OCL expressions in an XML-based for-
mat. The meta-model for XOCL is based on a UML class diagram with OCL
constraints that define rules on how the constraints can interact with the rest
of the class diagram [102]. The XML schema for XOCL is defined in XMLS,
which allows the designer to specify the structural composition of the XML
document.

XOCL is a language that is defined “in itself” (i.e., is self-descriptive and
self-contained [35]). It is also a language that can be characterized as being
meta-circular [39]. The mechanism that allows for a language to be defined
in itself is called “bootstrapping” [100] and offers extension points to extend
or alter the syntax and semantics of the language. XOCL also offers reflective
features [59] that allow for access to the meta-level.

In multi-level modeling, the FMMLx tool uses this language to express
constraints [50] based on XModelerML [38].

15.1.4 OCLR

Chapter 5 relies heavily on the work of Draheim [48] which extends OCL
with reification (which we refer to as introspection or reflection in the narrow
sense) and reflection (which we refer to as intercession or reflection in the
wider sense). Constraints defined in Draheim’s OCL dialect, called OCLR,
are defined at the M1 level and can navigate up and down the classification



15.1. OCL Variants and Tools 201

hierarchy of the UML 4-layer infrastructure (see Figure 2.2). The abstract
syntax of OCLR is defined at level M2.

The goal of OCLR is to make models robust against changes/updates
at the M1 level (i.e., to provide quality assurance for system design). The
supporting techniques are called “Subtype Externalization” and “Powertype
Externalization”. The former relates to the style definitions we defined in
Chapter 10.2.1, where the inheritance patterns are defined, whereas the lat-
ter relates to Chapter 10.3 where the categorization patterns that lead to the
application of the powertype pattern are defined.

In OCLR, the context of an expression is essentially irrelevant because the
set of desired model elements a constraint applies to can be established by
querying for a certain type or a certain property of a type. The language uses
a practical reification approach and leverages the four-level infrastructure to
achieve well-formedness. In contrast, DOCL is implemented by reusing the
OCL syntax and most of its semantics. Because DOCL is defined in its own
grammar and interpreter, therefore, there are no restrictions on the kinds of
changes and additions that can be made.

15.1.5 OCL#

More recently, Steimann, Clarisó, and Gogolla [113] have proposed a new
interpretation of collection types in OCL. They present a core calculus that
solves four key issues they have identified in the OCL specification.

The first issue is the impedence mismatch that stems from the difference
in navigation semantics in UML and OCL. The UML uses multiplicities and
OCL collections which makes the navigation, depending on the multiplicity
values of the connections, not null-safe. The semantics dealing with collec-
tion operations on null values and OclInvalid() types are not well-defined.
That leads to the second issue that null itself is an object in OCL that should
denote the absence of any value, but instead, it can be an element of collec-
tions.

The third issue deals with the self-referentiality of OCL, which means that
OCL is defined in terms of itself. The fourth and last issue describes the typ-
ing problems with the collections library in the current OCL specification.
They argue that Collection as the common supertype for Set and Bag has very
little semantic meaning and aim to redefine the OCL type system in that re-
gard so that collection types are accurately defined. They realized a new
OCL specification, called OCL#, by introducing what they call ctype which



202 Chapter 15. Related Work

is a newly implemented type system for collections, that supports not only
Set, OrderedSet, Bag, and Sequence but also nested collections. They made the
navigation type safe in the sense that “everything is a collection”, removed
the self-referentiality from the specification, and reified the null object to “no
object”.

15.1.6 OCLUNIV

This version of OCL [97, 98] is motivated by the fact that the UML/OCL
schemas are undecidable [23] in terms of reasoning on them. Therefore, the
authors propose to build a subset of OCL that conserves the decidability of
first-order logic expressions. By avoiding the exists operation and negation
OCLUNIV was designed to be checkable by means of SQL queries in finite
time. OCLUNIV also preserves decidability even when reasoning in weakly
acyclic UML class diagrams. DOCL has the same decidability problems as
regular OCL.

15.2 Alternative Constraint Languages

Given the central role of the UML in visual modeling, its associated con-
straint language, OCL, is by far the most widely used language for increas-
ing the precision of models. However, various other constraint languages are
also important. This section summarises these different languages.

15.2.1 The Epsilon Language Family

One particular language in the Epsilon language family, the Epsilon Object
Language (EOL) [76], is used for similar purposes as OCL. In particular, us-
ing EOL it is possible to access and modify multiple models and verify their
integrity. Individual model elements, as well as complete models, can be cre-
ated, updated, and deleted. All languages in the Epsilon family use a com-
mon core for their expressions, which makes switching between languages
in the family (e.g., to define transformations) very easy.

Although the Epsilon languages have strong support for the EMF built
in, they can be used with other modeling platforms. They are meta-model
independent and offer interfaces to tool builders to facilitate seamless inte-
gration [76]. Also, unlike OCL, the languages of the Epsilon family can also
be used stand-alone, i.e., without being tied to another modeling language



15.2. Alternative Constraint Languages 203

[115]. The MetaDepth tool [41] uses the EOL, the ETL (Epsilon Transforma-
tion Language) for in-place transformations, and the EGL (Epsilon Genera-
tion Language) to express constraints, transformations, and generation rules.
At the time of writing, there are no papers published about the reflective
capabilities of MetaDepth.

15.2.2 Datalog

Datalog [57] is a declarative logic programming language used for querying
and manipulating relational databases. It is based on the concept of first-
order logic and allows users to express queries and rules using a syntax sim-
ilar to that of the Prolog [64] programming language.

Datalog programs consist of a set of rules that define relationships be-
tween data items, and queries that retrieve information from the database
based on these rules. The language is particularly useful in applications that
involve complex data processing and analysis, such as data mining, machine
learning, and knowledge representation. One of the key features of Datalog
is that it supports recursive queries, which enable users to define rules that
refer to themselves. This allows for the efficient processing of complex data
structures and the identification of patterns and relationships that might not
be apparent using other programming languages or database systems.

Datalog and OCL are both declarative languages used for expressing con-
straints and rules on data. However, there are some important differences be-
tween the two languages. For example, Datalog is primarily used for query-
ing and manipulating relational databases, whereas OCL is a modeling lan-
guage used in software engineering to specify constraints and conditions on
object-oriented models. Also, Datalog is based on the concept of first-order
logic and uses a syntax similar to Prolog, whereas OCL is based on the UML
and has a syntax that is similar to a programming language. In terms of
functionality, Datalog is designed to support recursive queries, while OCL
supports operations on collections and set-valued attributes.

Despite these differences, both Datalog and OCL are useful for expressing
complex constraints and rules on data. They can be used together in certain
contexts, such as in data-intensive software systems where both modeling
and querying of large datasets are required.



204 Chapter 15. Related Work

15.3 Multi-level Modeling Approaches

This section presents alternative multi-level modeling to the Melanee/LML
approach described in this thesis. Some of the approaches use the OCA while
others do not. Similarly, some are level-adjuvant while others are level-blind.

15.3.1 MetaDepth

MetaDepth, developed by de Lara and Guerra [41], is a deep-modeling tool
that supports textual modeling over an arbitrary number of ontological levels
and the dual instantiation of Clabjects [41]. The tool utilizes EOL [76], which
is partly built on OCL, to define constraints. As explained in the previous
section, EOL is part constraint language and part action language.

MetaDepth’s version of EOL has two main changes to support multi-level
modeling. The first is to be able to assign a potency to a constraint which
shows the level at which the constraint should be evaluated. If the potency
is 1 then the constraint is evaluated one level below the level at which the
constraint is defined. The second enhancement is that the constraints can
access methods and attributes of the linguistic dimension. Properties of the
linguistic dimensions are accessed like properties from the ontological di-
mension. If there is a name collision between attributes or methods from the
linguistic and ontological dimensions and the user wants to access the prop-
erty from the linguistic dimension the prefix “ˆ” can be used to indicate the
dimension switch [42]. DOCL has a similar dimension switch to the linguis-
tic dimension, but the user has to indicate that switch explicitly in contrast
to the MetaDepth approach, where constraints access the properties of the
linguistic dimension by default.

The idea of defining potencies on constraints to indicate the level the con-
straint should be evaluated on is to some extent consistent with the idea of
potency in general in the deep-modeling context. However, it would be more
useful to indicate a range of levels over which the constraint should be valid
because the potency defined on a Clabject indicates how many levels below it
can have instances.

15.3.2 MultEcore

MultEcore is a tool based on EMF that aims to combine the best of the fixed-
level and multi-level metamodeling approaches [89]. Like Melanee, Mul-
tEcore utilizes the Eclipse ecosystem built around the EMF, but instead of



15.3. Multi-level Modeling Approaches 205

using GMF as the editor, MultEcore employs Sirius. The MultEcore approach
to the linguistic metamodel is “loose”. Every class in a MultEcore model has
to have an ontological type but not necessarily a linguistic type.

In recent publications, the MultEcore tool support has been extended with
a branching mechanism that can be used when multiple instance levels share
the same meta-levels and a behavior description, as well as a constraint lan-
guage for static and dynamic semantics [105]. MultEcore also provides tool-
ing for the composition of domain-specific languages inside the multi-level
modeling framework and applies it to the example of executable colored
Petri-Nets [106].

15.3.3 DLMA

Dynamic Multi-Layer Algebra (DLMA) [117, 118] aims to support a top-
down refinement approach to MLM. DLMA consists of the core, where the
formal definitions and model management functions reside, and the boot-
strap, which contains a set of reusable entities. In theory, the bootstrap can
be changed and altered to a modeler’s needs in order to satisfy the domain
specifications. The core is interpreted by an Abstract State-Machine (ASM).
The DLMA approach does not use levels to group entities into an (onto-)
logical union – in other words, it is essentially “level-blind”. However, the
notion of levels could be integrated as a concept into the bootstrap so that
the approach becomes “level-adjuvant” [16]. In terms of constraints, DLMA
has a built-in language called DLMAScript to validate models, which is not
based on OCL. Users can create custom validation formulae to make precise
statements about the domain [21].

15.3.4 FMMLx

The FMMLx tool has its foundation in the XModelerML execution environ-
ment, which in turn, is based on the reflective “golden braid” metamodel of
XCore [36, 37]. In XCore, every class that is instantiated is also at the same
time a subclass of the meta-class Class. Since FMMLx is a monotonic exten-
sion of XCore, the meta-class Class inherits also from Object. In this way,
everything that is created in a model is essentially an object. Properties of
classes can be defined as intrinsic, which means they have to receive a spe-
cific value somewhere in the instantiation chain. The modeler can also spec-
ify where, and on which level, the attribute value has to be specified [50].



206 Chapter 15. Related Work

Connections, called associations in FMMLx, can connect classes from differ-
ent levels but also classes from the same level. FMMLx does not use potency
to control the instance-of relationships but uses the “order” concept which
indicates at which level the class is located. Because they are founded on the
XModelerML, every model of FMMLx is executable and can be manipulated
by the user through XModelerML’s GUI.

15.3.5 Nivel

Nivel is another deep modeling framework that was created by Asikainen
and Männistö [9]. The framework enables the user to define cardinality con-
straints that affect instances of associations holding values for cardinality and
potency. Nivel models have formal semantics by translation to the WCRL, a
general-purpose knowledge representation language.

Asikainen and Männistö state that “Nivel defines no constraint language
of its own” [9] and the cardinality constraint construct is the only possibility
to define constraints on the model or elements of the model. According to the
authors, adopting WCRL as the constraint language (without the translation
of the model) for Nivel would cause a number of problems and is not desired.
They claim that any user who is familiar with Nivel is assumed to be familiar
with the WCRL and able to write constraints in it.

15.3.6 Nivel 2

The multi-level modeling web environment called nivel2 [10], is built on top
of a relational database management system and supports the creation, ma-
nipulation, and visualization of models at different levels of abstraction. The
authors argue that existing multi-level modeling tools often suffer from lim-
itations such as a lack of support for multiple views, difficulties in manag-
ing large models, and limited collaboration and version control capabilities.
Nivel2 addresses these limitations by providing a web-based interface that
allows for the creation and management of multi-level models in a collab-
orative and distributed environment. The authors describe the architecture
and implementation of nivel2 and present a case study of its application to
a large-scale modeling project in the field of energy management. Overall,
nivel2 provides a tool for MLM that can support complex modeling scenar-
ios and enable collaboration and version control among modelers and stake-
holders.



15.3. Multi-level Modeling Approaches 207

15.3.7 DLM

Kühne [78] introduced the idea of supporting multiple ontological dimen-
sions in a multi-level model, rather than just the usual two. These dimensions
are intended to be orthogonal to each other and can overlap so that clabjects
can be part of multiple dimensions. The downside is that the language has
to allow clabjects to have multiple direct types as well as multiple potency
values depending on the context of the dimension they are in. The rules of
potency have to apply in each dimension. The main advantage of DLM is
that it can allow cross level connections without losing all the built-in error
avoidance provided by strictness. Since DLM is otherwise based on the same
core ideas as LML, DOCL can easily be used to add precision to DLM mod-
els. However, full support for multiple dimensions would require DOCL to
be equipped with further features.

15.3.8 DeepTelos

Jeusfeld and Neumayr [70] developed DeepTelos as an extension to Telos
[93]. Telos in turn is implemented in Conceptbase [69] by means of 30 axioms
defined on top of the base predicate [68]. These axioms govern the rules
of instantiation, attributes, associations, and specializations. Deep Telos is
defined by 6 more deductive rules and constraints that are specified on top
of the 30 axioms that are needed to define Telos [68].

Deep Telos is a so-called level-blind approach to multi-level modeling be-
cause it does not have a unique concept of “level” to organize the clabjects
or other model elements. Since levels “emerge” in their models as part of
the classification hierarchy, Deep Telos can be characterized as a “loose” ap-
proach to MLM.

Deep Telos has built-in support for constraints (as in DLMA). This allows
users to define constraints in predicate logic [68].

15.3.9 MLT

Many approaches to multi-level modeling have been proposed to date. How-
ever, some approaches are ad-hoc and lack a formal grounding, which limits
their effectiveness in capturing the complexity of real-world systems. MLT
(Multi-level theory) [29] stands for a well-founded theory that is based on the
principles of ontology, formal semantics, and logic, and aims to provide a for-
mal and rigorous framework for multi-level modeling. MLT defines a set of



208 Chapter 15. Related Work

concepts, relations, and axioms that allow for the representation, integration,
and reasoning of models at different levels of abstraction.

15.3.10 UFO-MLT

UFO-MLT is a combination of the Unified Foundational Ontology and the
aforementioned MLT multi-level modeling approach [31]. MLT is a concep-
tual modeling theory that is based on the notion of “classes” and “types” and
also includes the notions of “type” and “ individual” [30] from the ontology
domain. In comparison to UFO or OntoUML, MLT can support the MLM
principle that “types” also can have “types” and are instances of those more
abstract types.



209

Chapter 16

Conclusion

The range of MLM languages and tools summarized in the previous chap-
ter demonstrates the high level of activity and interest in the MLM research
community but also reveals symptoms of two significant weaknesses in the
current state-of-the-art –

1. The large number and high heterogeneity of the core MLM languages
and tools currently available, and the diverse range of modeling ap-
proaches and concepts they offer. This heterogeneity spreads the re-
sources of the MLM community thinly, diluting the quality of individ-
ual tools and making it difficult for users to select which approach to
use. Moreover, users who have learned the syntax and semantics of
a particular language and its associated tooling have a high learning
curve to use an alternative MLM approach that may better match the
needs of a particular application.

2. The much smaller and limited range of constraint languages that have
been developed to partner the core, graphical MLM languages. More-
over, the partner languages that do exist usually only have limited sup-
port for MLM concepts (i.e., minimal multi-level awareness) and/or are
highly technical languages that are difficult for mainstream developers
to learn and apply.

Together these weaknesses reduce the usability of MLM technology and
the precision of multi-level models. The technology developed by this thesis
helps overcome both problems by (a) enhancing OCL, the most user-friendly
and widely-used constraint language for the UML, to be a fully multi-level
adjuvant partner of the LML, and by (b) including reflection capabilities that
allow many of the variations and idiosyncrasies of different MLM languages
to be captured as styles and/or patterns of usage of a common underlying
core MLM approach.



210 Chapter 16. Conclusion

16.1 Problems and Requirements

The significance of the aforementioned weaknesses, and the nature of the re-
quired advances needed to address them, were outlined in Chapter 1. This
section summarizes how the DOCL technology presented in this thesis ful-
fills these requirements.

16.1.1 Requirements

R1 and R2: The first two requirements basically describe the core function-
ality and usability properties the language is required to have. The first re-
quirement calls for a constraint language, founded on set theory and first-
order logic, that facilitates the definition and checking of precise constraints
on the concepts expressed in a model, while the second requirement calls for
a language that does this in a way that is easy for mainstream software engi-
neers and domain experts to use. DOCL fulfills these requirements as it is an
extension of OCL which was expressly designed to have these features.

R3: The third requirement calls for a language in which multi-level con-
straints are written as a conservative extension of two-level constraints. This
means that traditional two-level constraints are a special case of multi-level
constraints. DOCL has been carefully designed to fulfill this requirement
by defining the absence of an explicit multi-level aware expression in a con-
straint, such as level-range specifications or meta-level introspection expres-
sions, to have the classic, two-level meaning. Thus, for example, when no
level-range specification is present in a constraint, the range of the affected
levels defaults to the level immediately below, as in classic OCL.

R4: The fourth requirement calls for a language that is not just multi-level
aware, but also multi-level adjuvant. This means it should actively support
the definition of deep constraints in a level-agnostic way. DOCL fulfills this
requirement by using level-agnostic concrete syntax and providing a large
selection of new operators that provide ontological introspection information
in a uniform and seamless way, regardless of where (i.e., from what level) the
introspection is taking place.

R5: The fifth requirement calls for a language that supports reflection in a
way that is not only compatible with the OCA but also supports seamless in-
trospection in both dimensions. DOCL fulfills this requirement by explicitly



16.1. Problems and Requirements 211

supporting two orthogonal introspection capabilities - ontological introspec-
tion, which allows a constraint to access information from higher ontolog-
ical levels, and linguistic introspection which allows a constraint to access
information from the linguistic metamodel (i.e., the PLM). The concrete syn-
tax used to express these dimension “switches” is level-agnostic and can be
nested in arbitrary ways.

16.1.2 Problems

By fulfilling all the aforementioned requirements, DOCL provides a concise
and user-friendly solution to the three basic problems outlined in Chapter 1.

P1: The first problem of rigid modeling styles is a symptom of the fact
that the majority of MLM languages and tools available today offer only one
hardwired style which cannot be adapted for different domains and circum-
stances. For example, Melanee and MetaDepth enforce rather strict model-
ing styles out-of-the-box, with no opportunity to change to alternative styles,
while DMLA and MultiEcore offer more relaxed, but still fixed, default styles.
On the other hand, although languages like DeepTelos and FMMLx, which
are based on a small, meta-circular core, have default styles that can theoret-
ically be changed, doing so is a highly technical task that requires expertise
about the inner works of the supporting tools. By supporting full introspec-
tion capabilities, in both the linguistic and ontological dimensions, through
a small and intuitive set of extensions to OCL, DOCL is one of the first deep
constraint languages providing a simple and concise approach to adapting
the applied MLM modeling style.

P2: The second problem of ambiguous modeling styles is a symptom of the
fact that the (usually fixed) modeling styles supported by existing MLM lan-
guages and tools are either vaguely defined in natural language, or defined
in a highly formal way using mathematical notations. As a result, the seman-
tics and rules of the modeling style in place are often ambiguous and poorly
understood by mainstream modelers. By supporting the definition of level
spanning and introspecting constraints in a user-friendly, conservative ex-
tension of the OCL, DOCL facilitates the documentation of styles in a widely
understandable and unambiguous way. This applies not only to optional
styles of the kind described in Chapter 9, but also to the core and default
styles described in Chapter 8. The descriptions of the core and default styles



212 Chapter 16. Conclusion

presented in those chapters provide the clearest definitions of those styles
available to date.

P3: The third problem of unenforced modeling patterns is similar to the
previous problem, but at a smaller level of granularity. While styles apply
to one or more complete levels, patterns apply to small groups of clabjects.
The most iconic pattern in MLM is the “powertype” pattern, since MLM’s at-
tempts to model this pattern in a cleaner and more intuitive way arguably
stimulating the original development of MLM approaches. However, al-
though languages like LML allow occurrences of the powertype pattern to
be modeled in a much more natural way than traditional two-level modeling
languages, the correct application of the involved relationships has to date
been left to the modelers. Even if modelers are aware of the semantics of the
pattern, and know how to apply it, the Melanee tool does not check that the
rules of the pattern are actually adhered to as a model evolves. The level-
scoping and introspection features of DOCL help address this problem by
supporting precise and user-friendly definitions of patterns, in the context
of specific groups of clabjects in a model, and by allowing adherence to the
pattern’s rules to be checked whenever the model is changed.

16.2 Validity of the Hypothesis

As described in Chapter 1, the hypothesis this thesis set out to validate is the
following –

Hypothesis. “It is feasible to define and implement an OCL-based, deep con-
straint language to support reflective, level-adjuvant, and dimension-aware
constraints on deep (i.e., multi-level) models represented using the LML”.

Since DOCL, and its supporting prototype implementation, fulfill all the
defined requirements, the hypothesis formulated at the beginning of this the-
sis is true. Its validity was confirmed systematically using the design science
methodology in the following way -

• Problem Relevance: The relevance of a deep object constraint language
with the specified features of multi-level awareness and introspection
was confirmed by reviewing the literature as well as by modeling four
high-profile “Challenges” defined by the Multi workshop community.



16.3. Future Work 213

• Design as an Artefact: The proposed solution to the problem was rei-
fied through two main artifacts – (a) the DOCL language specification,
including formal definitions of its syntax and semantics, and (b), the
prototype DOCL implementation as a plugin to the Melanee MLM plat-
form.

• Design Evaluation: We evaluated the utility, quality, and efficacy of the
developed technology by using it to (a) precisely define, and enforce
the use of, well-known multi-level modeling styles and (b) ensure the
consistent use of well-known patterns in multi-level modeling.

• Research Contributions: The efficacy and utility of the developed arti-
facts were demonstrated and evaluated by using them in solutions to
the four high-profile modeling challenges mentioned above. These are
intended to provide ”benchmark” modeling problems, for a range of
domains, to exercise the full range of MLM capabilities. The LML solu-
tions to these challenges include multiple DOCL constraints and could
not have been modeled without DOCL’s deep modeling features.

• Research Rigor: The properties of the developed artifacts, including the
syntax and semantics, were defined formally using a grammar and
first-order logic expressions, using OCL and DOCL itself.

• Design as a Search Process: The features of DOCL were refined in a
feedback-oriented manner by exploring their utility in numerous sce-
narios, including the four benchmark challenges, and adapting them
according to the lessons learned.

• Communication of Research: The work related to this thesis has been pub-
lished in six workshop papers (in the MULTI workshop series), one
conference paper, and one journal paper.

16.3 Future Work

There are many ways the artifacts developed in this (i.e., DOCL and its im-
plementation) could be improved and further exploited. Three of the most
interesting and potentially useful are described below.



214 Chapter 16. Conclusion

16.3.1 Multiple Dimension Awareness

The current features of DOCL are optimized for the “classic” version of the
OCA, which recognizes only two dimensions - a linguistic one and an on-
tological one. However, MLM languages that allow multiple ontological di-
mensions have already been proposed in the literature [79]. If these prove
useful, they would benefit from enhanced versions of DOCL that provide
a unified navigation and designation approach to all possible dimensions
(i.e., multiple ontological and/or linguistic or meta-dimensions). This ver-
sion would be “aware” of the existence of multiple classification levels and
would provide features to support their exploitation. Generalizing the OCA
to multiple dimensions, with appropriate multi-dimensional constraint sup-
port, could help further unify the many heterogeneous MLM languages cur-
rently available.

16.3.2 Smell Detection in MLM

In the context of modeling, “smells” refer to certain patterns or configura-
tions within the model that might indicate design issues, inconsistencies, or
potential problems. However, unlike anti-patterns, specific occurrences of
them may be acceptable or even beneficial. These smells can be expressed as
rules and constraints in DOCL, allowing modelers to define what constitutes
a smell in the context of their specific domain.

The DOCL platform can therefore also provide a platform to detect model
smells (like code smells). DOCL’s ability to navigate the models completely
(even instances) and to access both linguistic and ontological meta-information
make it particularly powerful for this purpose. Dedicated tools for detecting
model smells already exist (e.g., checkstyle, decor, etc.), but these are not
aware of MLM smells. DOCL could be fairly easily enhanced to character-
ize MLM smells and then to check for their presence through a deep model
while evaluating the involved constraints at all levels.

16.3.3 Constraint Language of a Common Core

Ultimately, DOCL has the right mix of properties to serve as the constraint
language for a common core language for MLM which builds on the core
style defined in Section 8.2. As a conservative extension of the most well-
known and widely-used constraint language in mainstream models (OCL)
and a level-agnostic language founded on a minimalistic metamodel for deep



16.3. Future Work 215

modeling (LML), DOCL can easily be used to support a wide range of future
styles and patterns. For example, DOCL was recently used as the constraint
language in a paper [82] that explored field (i.e., attribute/slots) designs in
MLM languages.





217

Bibliography

[1] 10th International Workshop on Multi-Level Modelling. MULTI 2023. URL:
https://jku-win-dke.github.io/MULTI2023/.

[2] 5th International Workshop on Multi-Level Modelling. MULTI 2018. URL:
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/index.

html.

[3] About the MOF Query/View/Transformation Specification Version 1.3. URL:
https://www.omg.org/spec/QVT/About-QVT/.

[4] About the Unified Modeling Language Specification Version 2.5.1. URL:
https://www.omg.org/spec/UML/2.5.1/About-UML/.

[5] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling. USA: Prentice-Hall, Inc., 1972. ISBN: 978-0-13-914556-8.

[6] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd
Edition). USA: Addison-Wesley Longman Publishing Co., Inc., 2006.
ISBN: 978-0-321-48681-3.

[7] Sinan Si Alhir. Guide to Applying the UML. Springer Science & Business
Media, 2006.

[8] Joao Paulo A. Almeida et al. “The MULTI Process Challenge”. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). Munich, Germany:
IEEE, Sept. 2019, pp. 164–167. ISBN: 978-1-72815-125-0. DOI: 10.1109/
MODELS-C.2019.00027.

[9] Timo Asikainen and Tomi Männistö. “Nivel: A Metamodelling Lan-
guage with a Formal Semantics”. In: Software & Systems Modeling 8.4
(Sept. 2009), pp. 521–549. ISSN: 1619-1374. DOI: 10.1007/s10270-008-
0103-2.

[10] Timo Asikainen, Tomi Männistö, and Eetu Huovila. nivel2: A web-
based multi-level modelling environment built on a relational database. 2023.
DOI: 10.48550/arXiv.2303.12171.

https://jku-win-dke.github.io/MULTI2023/
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/index.html
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/index.html
https://www.omg.org/spec/QVT/About-QVT/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://doi.org/10.1109/MODELS-C.2019.00027
https://doi.org/10.1109/MODELS-C.2019.00027
https://doi.org/10.1007/s10270-008-0103-2
https://doi.org/10.1007/s10270-008-0103-2
https://doi.org/10.48550/arXiv.2303.12171


218 Bibliography

[11] C. Atkinson and T. Kühne. “Model-Driven Development: A Meta-
modeling Foundation”. In: IEEE Software 20.5 (Sept. 2003), pp. 36–41.
ISSN: 1937-4194. DOI: 10.1109/MS.2003.1231149.

[12] Colin Atkinson. “Meta-modelling for distributed object environments”.
In: Proceedings First International Enterprise Distributed Object Comput-
ing Workshop. IEEE. 1997, pp. 90–101.

[13] Colin Atkinson and Ralph Gerbig. “Level-Agnostic Designation of
Model Elements”. In: Modelling Foundations and Applications. Ed. by
David Hutchison et al. Vol. 8569. Cham: Springer International Pub-
lishing, 2014, pp. 18–34. ISBN: 978-3-319-09194-5 978-3-319-09195-2.
DOI: 10.1007/978-3-319-09195-2_2.

[14] Colin Atkinson and Ralph Gerbig. “Melanie: Multi-Level Modeling
and Ontology Engineering Environment”. In: Proceedings of the 2nd In-
ternational Master Class on Model-Driven Engineering: Modeling Wizards.
MW ’12. Innsbruck, Austria: Association for Computing Machinery,
Sept. 2012, pp. 1–2. ISBN: 978-1-4503-1853-2.

[15] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. “On-the-Fly Emen-
dation of Multi-level Models”. In: Modelling Foundations and Applica-
tions. Lecture Notes in Computer Science. Springer, Berlin, Heidel-
berg, July 2012, pp. 194–209. ISBN: 978-3-642-31490-2 978-3-642-31491-
9. DOI: 10.1007/978-3-642-31491-9_16.

[16] Colin Atkinson, Ralph Gerbig, and Thomas Kühne. “Comparing Multi-
Level Modeling Approaches”. In: CEUR Workshop Proceedings. Ed. by
Colin Atkinson. Vol. 1286. Aachen, Germany: RWTH Aachen, 2014,
pp. 53–61.

[17] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. “A Flexible In-
frastructure for Multilevel Language Engineering”. In: IEEE Transac-
tions on Software Engineering 35.6 (Nov. 2009), pp. 742–755. ISSN: 1939-
3520. DOI: 10.1109/TSE.2009.31.

[18] Colin Atkinson and Thomas Kühne. “Processes and Products in a
Multi-Level Metamodeling Architecture”. In: International Journal of
Software Engineering and Knowledge Engineering 11.06 (Dec. 2001), pp. 761–
783. ISSN: 0218-1940, 1793-6403. DOI: 10.1142/S0218194001000724.

[19] Colin Atkinson and Thomas Kühne. “The Essence of Multilevel Meta-
modeling”. In: UML 2001 — The Unified Modeling Language. Modeling
Languages, Concepts, and Tools. Ed. by Martin Gogolla and Cris Kobryn.

https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1007/978-3-319-09195-2_2
https://doi.org/10.1007/978-3-642-31491-9_16
https://doi.org/10.1109/TSE.2009.31
https://doi.org/10.1142/S0218194001000724


Bibliography 219

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001,
pp. 19–33. ISBN: 978-3-540-45441-0.

[20] Colin Atkinson and Thomas Kühne. “In Defence of Deep Modelling”.
In: Information and Software Technology 64 (Aug. 1, 2015), pp. 36–51.
ISSN: 0950-5849. DOI: 10.1016/j.infsof.2015.03.010. URL: https://
www.sciencedirect.com/science/article/pii/S0950584915000671.

[21] Sándor Bácsi et al. “Melanee and DMLA – A Contribution to the MULTI
2021 Collaborative Comparison Challenge”. In: 2021 ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). Oct. 2021, pp. 556–565. DOI: 10.1109/
MODELS-C53483.2021.00086.

[22] Paul Baker et al. Model-Driven Testing: Using the UML Testing Profile.
Springer Science & Business Media, 2007.

[23] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. “Rea-
soning on UML Class Diagrams”. In: Artificial Intelligence 168.1-2 (Oct.
2005), pp. 70–118. ISSN: 00043702. DOI: 10.1016/j.artint.2005.05.
003.

[24] Jean Bézivin. “On the Unification Power of Models”. In: Software &
Systems Modeling 4.2 (May 2005), pp. 171–188. ISSN: 1619-1374. DOI:
10.1007/s10270-005-0079-0.

[25] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Model-
ing Language User Guide. Addison-Wesley, 2005. ISBN: 978-0-321-26797-
9.

[26] Jordi Cabot and Martin Gogolla. “Object Constraint Language (OCL):
A Definitive Guide”. In: Formal Methods for Model-Driven Engineering:
12th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012, Bertinoro, Italy, June
18-23, 2012. Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortel-
lessa, and Alfonso Pierantonio. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2012, pp. 58–90. ISBN: 978-3-642-30982-
3. DOI: 10.1007/978-3-642-30982-3_3.

[27] Luca Cardelli. “Structural subtyping and the notion of power type”.
In: POPL ’88 (1988), 70–79. DOI: 10.1145/73560.73566.

[28] Rudolf Carnap. Meaning and Necessity: A Study in Semantics and Modal
Logic. Ed. by 2d edition. Chicago, IL: University of Chicago Press, Feb.
1988. ISBN: 978-0-226-09347-5.

https://doi.org/10.1016/j.infsof.2015.03.010
https://www.sciencedirect.com/science/article/pii/S0950584915000671
https://www.sciencedirect.com/science/article/pii/S0950584915000671
https://doi.org/10.1109/MODELS-C53483.2021.00086
https://doi.org/10.1109/MODELS-C53483.2021.00086
https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1145/73560.73566


220 Bibliography

[29] Victorio A. Carvalho, João Paulo A. Almeida, and Giancarlo Guiz-
zardi. “Using a Well-Founded Multi-level Theory to Support the Anal-
ysis and Representation of the Powertype Pattern in Conceptual Mod-
eling”. In: Advanced Information Systems Engineering. Ed. by Selmin
Nurcan et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 309–324. ISBN: 978-3-319-39696-5.
DOI: 10.1007/978-3-319-39696-5_19.

[30] Victorio A. Carvalho and João Paulo A. Almeida. “Toward a Well-
Founded Theory for Multi-Level Conceptual Modeling”. In: Software
& Systems Modeling 17.1 (Feb. 1, 2018), pp. 205–231. ISSN: 1619-1374.
DOI: 10.1007/s10270-016-0538-9.

[31] Victorio A. Carvalho et al. “Extending the Foundations of Ontology-
Based Conceptual Modeling with a Multi-level Theory”. In: Concep-
tual Modeling. Ed. by Paul Johannesson et al. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2015, pp. 119–
133. ISBN: 978-3-319-25264-3. DOI: 10.1007/978-3-319-25264-3_9.

[32] Michele Chinosi and Alberto Trombetta. “BPMN: An Introduction to
the Standard”. In: Computer Standards & Interfaces 34.1 (2012), pp. 124–
134.

[33] Noam Chomsky. “On the Notion “Rule of Grammar””. In: Proceedings
of Symposia in Applied Mathematics. Ed. by Roman Jakobson. Vol. 12.
Providence, Rhode Island: American Mathematical Society, 1961, pp. 6–
24. ISBN: 978-0-8218-1312-6 978-0-8218-9227-5. DOI: 10.1090/psapm/
012/9985.

[34] Noam Chomsky. Syntactic Structures. De Gruyter Mouton, Sept. 2009.
ISBN: 978-3-11-021832-9. DOI: 10.1515/9783110218329.

[35] Tony Clark. “A Meta-Circular Basis for Model-Based Language En-
gineering.” In: The Journal of Object Technology 19.3 (2020), 3:1. ISSN:
1660-1769. DOI: 10.5381/jot.2020.19.3.a11.

[36] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling:
A Foundation for Language Driven Development (Third Edition). 2015.

[37] Tony Clark, Paul Sammut, and James Willans. Superlanguages: Devel-
oping Languages and Applications with XMF. Jan. 1, 2008.

https://doi.org/10.1007/978-3-319-39696-5_19
https://doi.org/10.1007/s10270-016-0538-9
https://doi.org/10.1007/978-3-319-25264-3_9
https://doi.org/10.1090/psapm/012/9985
https://doi.org/10.1090/psapm/012/9985
https://doi.org/10.1515/9783110218329
https://doi.org/10.5381/jot.2020.19.3.a11


Bibliography 221

[38] Tony Clark and James S. Willans. “Software Language Engineering
with XMF and XModeler”. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments. 2013, p. 30. ISBN: 978-1-4666-
2092-6.

[39] Pierre Cointe. “Metaclasses Are First Class: The ObjVlisp Model”. In:
SIGPLAN Not. 22.12 (1987), 156–162. ISSN: 0362-1340. DOI: 10.1145/
38807.38822.

[40] Vittorio Cortellessa and Antonio Pompei. “Towards a UML Profile for
QoS: A Contribution in the Reliability Domain”. In: ACM SIGSOFT
Software Engineering Notes 29.1 (2004), pp. 197–206.

[41] Juan De Lara and Esther Guerra. “Deep Meta-modelling with MetaDepth”.
In: Objects, Models, Components, Patterns. Ed. by Jan Vitek. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 1–20. ISBN: 978-3-642-
13953-6.

[42] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. “Model-
Driven Engineering with Domain-Specific Meta-Modelling Languages”.
In: Software & Systems Modeling 14.1 (Feb. 2015), pp. 429–459. ISSN:
1619-1374. DOI: 10.1007/s10270-013-0367-z.

[43] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. “When
and How to Use Multilevel Modelling”. In: ACM Transactions on Soft-
ware Engineering and Methodology 24.2 (Dec. 2014), pp. 1–46. ISSN: 1049331X.
DOI: 10.1145/2685615.

[44] Juan de Lara et al. “Extending Deep Meta-Modelling for Practical
Model-Driven Engineering”. In: The Computer Journal 57.1 (Jan. 2014),
pp. 36–58. ISSN: 0010-4620, 1460-2067. DOI: 10.1093/comjnl/bxs144.

[45] Birgit Demuth. “The Dresden OCL toolkit and its role in Information
Systems development”. In: Proc. of the 13th International Conference on
Information Systems Development (ISD’2004). Vol. 7. 2004.

[46] Birgit Demuth and Claas Wilke. “Model and Object Verification by
Using Dresden OCL”. In: Proceedings of the Russian-German Workshop
Innovation Information Technologies: Theory and Practice, Ufa, Russia. 2009,
pp. 687–690.

[47] Khanh-Hoang Doan and Martin Gogolla. “Extending a UML and OCL
Tool for Meta-Modeling: Applications towards Model Quality Assess-
ment”. In: Modellierung 2018. Gesellschaft für Informatik e.V., 2018.

https://doi.org/10.1145/38807.38822
https://doi.org/10.1145/38807.38822
https://doi.org/10.1007/s10270-013-0367-z
https://doi.org/10.1145/2685615
https://doi.org/10.1093/comjnl/bxs144


222 Bibliography

[48] Dirk Draheim. “Reflective Constraint Writing”. In: Transactions on Large-
Scale Data- and Knowledge-Centered Systems XXIV. Ed. by Abdelka-
der Hameurlain et al. Vol. 9510. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 1–60. ISBN: 978-3-662-49213-0 978-3-662-49214-
7. DOI: 10.1007/978-3-662-49214-7_1.

[49] Robert France and Bernhard Rumpe. “Model-Driven Development of
Complex Software: A Research Roadmap”. In: Future of Software Engi-
neering (FOSE ’07). May 2007, pp. 37–54. DOI: 10.1109/FOSE.2007.14.

[50] Ulrich Frank. “Multilevel Modeling. Toward a New Paradigm of Con-
ceptual Modeling and Information Systems Design”. In: Business &
Information Systems Engineering 6 (Dec. 2014), pp. 319–337. DOI: 10.
1007/s12599-014-0350-4.

[51] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. “An Intro-
duction to UML Profiles”. In: UML and Model Engineering 2.6-13 (2004),
p. 72.

[52] Erich Gamma et al. “Design Patterns: Abstraction and Reuse of Object-
Oriented Design”. In: ECOOP’ 93 — Object-Oriented Programming. Ed.
by Oscar M. Nierstrasz. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1993, pp. 406–431. ISBN: 978-3-540-47910-9. DOI:
10.1007/3-540-47910-4_21.

[53] Ralph Gerbig. “Deep, Seamless, Multi-format, Multi-notation Defini-
tion and Use of Domain-specific Languages”. PhD thesis. Mannheim:
University Mannheim, 2017.

[54] Seymour Ginsburg. The Mathematical Theory of Context Free Languages.
McGraw-Hill, 1966. ISBN: 978-0-07-023280-8.

[55] Martin Gogolla and Antonio Vallecillo. “On Softening OCL Invari-
ants.” In: The Journal of Object Technology 18.2 (2019), 6:1. ISSN: 1660-
1769. DOI: 10.5381/jot.2019.18.2.a6.

[56] Cesar Gonzalez-Perez and Brian Henderson-Sellers. “A Powertype-
Based Metamodelling Framework”. In: Software & Systems Modeling
5.1 (Apr. 1, 2006), pp. 72–90. ISSN: 1619-1374. DOI: 10.1007/s10270-
005-0099-9.

[57] Georg Gottlob. “Adventures with Datalog: Walking the Thin Line Be-
tween Theory and Practice”. In: AIxIA 2022 – Advances in Artificial
Intelligence. Ed. by Agostino Dovier, Angelo Montanari, and Andrea

https://doi.org/10.1007/978-3-662-49214-7_1
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1007/s12599-014-0350-4
https://doi.org/10.1007/s12599-014-0350-4
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.5381/jot.2019.18.2.a6
https://doi.org/10.1007/s10270-005-0099-9
https://doi.org/10.1007/s10270-005-0099-9


Bibliography 223

Orlandini. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2023, pp. 489–500. DOI: 10.1007/978-3- 031-
27181-6_34.

[58] Matthew Hause et al. “The SysML Modelling Language”. In: Fifteenth
European Systems Engineering Conference. Vol. 9. 2006, pp. 1–12.

[59] Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. “Reflection
for the Masses”. In: Self-Sustaining Systems. Ed. by Robert Hirschfeld
and Kim Rose. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2008, pp. 87–122. ISBN: 978-3-540-89275-5. DOI: 10 .
1007/978-3-540-89275-5_6.

[60] Alan R. Hevner et al. “Design Science in Information Systems Re-
search”. In: MIS Quarterly 28.1 (2004), pp. 75–105. ISSN: 0276-7783.
DOI: 10.2307/25148625.

[61] John E. Hopcroft. Introduction to Automata Theory, Languages, and Com-
putation. Pearson Education, Sept. 2008. ISBN: 978-81-317-2047-9.

[62] Walter L. Hürsch. “Should Superclasses Be Abstract?” In: Proceedings
of the 8th European Conference on Object-Oriented Programming. ECOOP
’94. London, UK, UK: Springer-Verlag, 1994, pp. 12–31. ISBN: 978-3-
540-58202-1.

[63] Muzaffar Igamberdiev, Georg Grossmann, and Markus Stumptner.
“A Feature-Based Categorization of Multi-Level Modeling Approaches
and Tools”. In: CEUR Workshop Proceedings. Vol. 1722. School of In-
formation Technology and Mathematical Sciences. Germany Ruzica
Piskac, 2016, pp. 35–44.

[64] Information technology – Programming languages – Prolog. Standard. 1995.
URL: https://www.iso.org/standard/21413.html.

[65] Stanislaw Jarzabek and Tomasz Krawczyk. “LL-regular Grammars”.
In: Information Processing Letters 4.2 (Nov. 1975), pp. 31–37. ISSN: 0020-
0190. DOI: 10.1016/0020-0190(75)90009-5.

[66] Java Software. Nov. 29, 2022. URL: https://www.oracle.com/java/.

[67] Rick Jelliffe. “The Schematron: An XML Structure Validation Language
Using Patterns in Trees”. In: 57 (2001).

[68] Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi. “DeepTelos and
DMLA – A Contribution to the MULTI 2022 Collaborative Compari-
son Challenge”. In: (2022), p. 11.

https://doi.org/10.1007/978-3-031-27181-6_34
https://doi.org/10.1007/978-3-031-27181-6_34
https://doi.org/10.1007/978-3-540-89275-5_6
https://doi.org/10.1007/978-3-540-89275-5_6
https://doi.org/10.2307/25148625
https://www.iso.org/standard/21413.html
https://doi.org/10.1016/0020-0190(75)90009-5
https://www.oracle.com/java/


224 Bibliography

[69] Manfred A. Jeusfeld. ConceptBase.Cc User Manual - Version 8.2. URL:
https://conceptbase.sourceforge.net/userManual82/CB-Manual.

pdf.

[70] Manfred A. Jeusfeld and Bernd Neumayr. “DeepTelos: Multi-level Mod-
eling with Most General Instances”. In: Conceptual Modeling. Ed. by
Isabelle Comyn-Wattiau et al. Lecture Notes in Computer Science.
Springer International Publishing, 2016, pp. 198–211. ISBN: 978-3-319-
46397-1.

[71] Dominik Kantner. “Specification and Implementation of a Deep OCL
Dialect”. MA thesis. Mannheim, 2014.

[72] Bastian Kennel. “A Unified Framework for Multi-Level Modeling”.
PhD thesis. Mannheim: University Mannheim, 2012.

[73] Andrei Kirshin, Dolev Dotan, and Alan Hartman. “A UML Simulator
Based on a Generic Model Execution Engine”. In: Models in Software
Engineering. Ed. by Thomas Kühne. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2007, pp. 324–326. ISBN: 978-3-540-
69489-2. DOI: 10.1007/978-3-540-69489-2_40.

[74] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture: Practice and Promise. USA: Addison-Wesley
Longman Publishing Co., Inc., 2003. ISBN: 0-321-19442-X.

[75] Donald E. Knuth. “On the Translation of Languages from Left to Right”.
In: Information and Control 8.6 (Dec. 1965), pp. 607–639. ISSN: 0019-
9958. DOI: 10.1016/S0019-9958(65)90426-2.

[76] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. “The
Epsilon Object Language (EOL)”. In: Model Driven Architecture – Foun-
dations and Applications. Ed. by Arend Rensink and Jos Warmer. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006,
pp. 128–142. ISBN: 978-3-540-35910-4. DOI: 10.1007/11787044_11.

[77] Thomas Kühne. “Exploring Potency”. In: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-
tems. MODELS ’18. New York, NY, USA: ACM, 2018, pp. 2–12. ISBN:
978-1-4503-4949-9. DOI: 10.1145/3239372.3239411.

[78] Thomas Kühne. “Multi-Dimensional Multi-Level Modeling”. In: Soft-
ware and Systems Modeling (Jan. 2022). ISSN: 1619-1374. DOI: 10.1007/
s10270-021-00951-5.

https://conceptbase.sourceforge.net/userManual82/CB-Manual.pdf
https://conceptbase.sourceforge.net/userManual82/CB-Manual.pdf
https://doi.org/10.1007/978-3-540-69489-2_40
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1007/11787044_11
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1007/s10270-021-00951-5
https://doi.org/10.1007/s10270-021-00951-5


Bibliography 225

[79] Thomas Kühne and Arne Lange. “Melanee and DLM – A Contribu-
tion to the MULTI Collaborative Comparison Challenge”. In: Proceed-
ings of the 25th International Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings. MODELS ’22. Montreal,
Quebec, Canada: Association for Computing Machinery, Oct. 2022,
pp. 434–443. DOI: 10.1145/3550356.3561571.

[80] Thomas Kühne and Manfred Jeusfeld. MULTI Warehouse Challenge.
2023.

[81] Thomas Kühne and Friedrich Steimann. “Tiefe Charakterisierung”.
In: Modellierung 2004. Bonn: Gesellschaft für Informatik e.V., 2004, pp. 109–
119. ISBN: 3-88579-374-1.

[82] Thomas Kühne et al. “Field Types for Deep Characterization in Multi-
Level Modeling”. In: 2023 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). 2023,
pp. 639–648. DOI: 10.1109/MODELS-C59198.2023.00105.

[83] Arne Lange and Colin Atkinson. “Multi-Level Modeling with LML:
A Contribution to the Multi-Level Process Challenge”. In: Enterprise
Modelling and Information Systems Architectures (EMISAJ) 17 (June 2022),
6:1–36. ISSN: 1866-3621. DOI: 10.18417/emisa.17.6.

[84] Arne Lange and Colin Atkinson. “Multi-Level Modeling with MELA-
NEE”. In: CEUR Workshop Proceedings. Aachen: RWTH, 2018, pp. 653–
662.

[85] Arne Lange and Colin Atkinson. “On the Rules for Inheritance in
LML”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). Sept. 2019,
pp. 113–118. DOI: 10.1109/MODELS-C.2019.00021.

[86] P. M. Lewis and R. E. Stearns. “Syntax-Directed Transduction”. In:
Journal of the ACM 15.3 (July 1968), pp. 465–488. ISSN: 0004-5411. DOI:
10.1145/321466.321477.

[87] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion of
Subtyping”. In: ACM Transactions on Programming Languages and Sys-
tems 16.6 (Nov. 1994), pp. 1811–1841. ISSN: 0164-0925. DOI: 10.1145/
197320.197383.

https://doi.org/10.1145/3550356.3561571
https://doi.org/10.1109/MODELS-C59198.2023.00105
https://doi.org/10.18417/emisa.17.6
https://doi.org/10.1109/MODELS-C.2019.00021
https://doi.org/10.1145/321466.321477
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383


226 Bibliography

[88] Shourong Lu, Wolfgang A Halang, and Lichen Zhang. “A Component-
Based UML Profile to Model Embedded Real-Time Systems Designed
by the MDA Approach”. In: 11th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA’05).
IEEE, 2005, pp. 563–566.

[89] Fernando Macias Gomez de Villar, Adrian Rutle, and Volker Stolz.
“MultEcore: Combining the Best of Fixed-Level and Multilevel Meta-
modelling”. In: (2016). ISSN: 1613-0073.

[90] Pattie Maes. “Concepts and Experiments in Computational Reflec-
tion”. In: ACM SIGPLAN Notices 22.12 (Dec. 1, 1987), pp. 147–155.
ISSN: 0362-1340. DOI: 10.1145/38807.38821.

[91] Bertrand Meyer. “Applying’design by Contract’”. In: Computer 25.10
(1992), pp. 40–51.

[92] Gergely Mezei et al. “The MULTI Collaborative Comparison Chal-
lenge”. In: 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). Fukuoka,
Japan: IEEE, Oct. 2021, pp. 495–496. ISBN: 978-1-66542-484-4. DOI: 10.
1109/MODELS-C53483.2021.00077.

[93] John Mylopoulos. “Conceptual Modelling and Telos”. In: Conceptual
modelling, databases, and CASE: An integrated view of information system
development (1992).

[94] Anton Nijholt. Context-Free Grammars: Covers, Normal Forms, and Pars-
ing. Springer, 1980. ISBN: 978-0-387-10245-0. DOI: 10.1007/3- 540-
10245-0.

[95] James Odell. “Power Types”. In: Journal of Object-Oriented Program-
ming 7.2 (1994), pp. 8–12.

[96] OMG. About the Object Constraint Language Specification Version 2.4.
https://www.omg.org/spec/OCL/2.4/PDF.

[97] Xavier Oriol and Ernest Teniente. “OCL$$_\textsf {UNIV}$$: Expres-
sive UML/OCL Conceptual Schemas for Finite Reasoning”. In: Con-
ceptual Modeling. Ed. by Heinrich C. Mayr et al. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2017, pp. 354–
369. ISBN: 978-3-319-69904-2. DOI: 10.1007/978-3-319-69904-2_28.

https://doi.org/10.1145/38807.38821
https://doi.org/10.1109/MODELS-C53483.2021.00077
https://doi.org/10.1109/MODELS-C53483.2021.00077
https://doi.org/10.1007/3-540-10245-0
https://doi.org/10.1007/3-540-10245-0
https://doi.org/10.1007/978-3-319-69904-2_28


Bibliography 227

[98] Xavier Oriol, Ernest Teniente, and Albert Tort. “Computing Repairs
for Constraint Violations in UML/OCL Conceptual Schemas”. In: Data
& Knowledge Engineering. Selected Papers from the 33rd International
Conference on Conceptual Modeling (ER 2014) 99 (Sept. 1, 2015), pp. 39–
58. ISSN: 0169-023X. DOI: 10.1016/j.datak.2015.06.006.

[99] Terence Parr, Sam Harwell, and Kathleen Fisher. “Adaptive LL(*) Pars-
ing: The Power of Dynamic Analysis”. In: ACM SIGPLAN Notices 49.10
(Oct. 2014), pp. 579–598. ISSN: 0362-1340. DOI: 10 . 1145 / 2714064 .
2660202.

[100] Guillermo Polito et al. “A Bootstrapping Infrastructure to Build and
Extend Pharo-like Languages”. In: 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward!) Onward! 2015. New York, NY, USA: Association for
Computing Machinery, Oct. 2015, pp. 183–196. ISBN: 978-1-4503-3688-
8. DOI: 10.1145/2814228.2814236.

[101] John Poole et al. Common Warehouse Metamodel. John Wiley & Sons,
2002.

[102] Franklin Ramalho, Jacques Robin, and Roberto Barros. “XOCL - an
XML Language for Specifying Logical Constraints in Object Oriented
Models”. In: JUCS - Journal of Universal Computer Science 9.8 (Aug.
2003), pp. 956–969. ISSN: 0948-6968. DOI: 10.3217/jucs-009-08-0956.

[103] Mark Richters and Martin Gogolla. “On Formalizing the UML Object
Constraint Language OCL”. In: Conceptual Modeling – ER ’98. Ed. by
Tok-Wang Ling, Sudha Ram, and Mong Li Lee. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 1998, pp. 449–464. ISBN:
978-3-540-49524-6. DOI: 10.1007/978-3-540-49524-6_35.

[104] Mark Richters and Martin Gogolla. “Validating UML Models and OCL
Constraints”. In: UML 2000 — The Unified Modeling Language. Ed. by
Gerhard Goos et al. Vol. 1939. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2000, pp. 265–277. ISBN: 978-3-540-41133-8 978-3-540-40011-0.
DOI: 10.1007/3-540-40011-7_19.

[105] Alejandro Rodríguez and Fernando Macías. “Multilevel Modelling
with MultEcore: A Contribution to the MULTI Process Challenge”.
In: 2019 ACM/IEEE 22nd International Conference on Model Driven En-
gineering Languages and Systems Companion (MODELS-C). Sept. 2019,
pp. 152–163. DOI: 10.1109/MODELS-C.2019.00026.

https://doi.org/10.1016/j.datak.2015.06.006
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/2814228.2814236
https://doi.org/10.3217/jucs-009-08-0956
https://doi.org/10.1007/978-3-540-49524-6_35
https://doi.org/10.1007/3-540-40011-7_19
https://doi.org/10.1109/MODELS-C.2019.00026


228 Bibliography

[106] Alejandro Rodríguez et al. “A Foundation for the Composition of
Multilevel Domain-Specific Languages”. In: 2019 ACM/IEEE 22nd In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). Sept. 2019, pp. 88–97.

[107] D. J. Rosenkrantz and R. E. Stearns. “Properties of Deterministic Top
down Grammars”. In: Proceedings of the First Annual ACM Symposium
on Theory of Computing. STOC ’69. New York, NY, USA: Association
for Computing Machinery, May 1969, pp. 165–180. ISBN: 978-1-4503-
7478-1. DOI: 10.1145/800169.805431.

[108] Arto Salomaa. Jewels of Formal Language Theory. Computer Science Press,
1981. ISBN: 978-0-914894-69-8.

[109] D.C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineer-
ing”. In: Computer 39.2 (Feb. 2006), pp. 25–31. ISSN: 1558-0814. DOI:
10.1109/MC.2006.58.

[110] Brian Selic. “Introduction”. In: Object Modeling with the OCL: The Ra-
tionale behind the Object Constraint Language. Ed. by Tony Clark and
Jos Warmer. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2002, pp. 1–3. ISBN: 978-3-540-45669-8. DOI: 10.1007/3-540-
45669-4_1.

[111] Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory: Languages
and Parsing. Springer-Verlag, 1988. ISBN: 978-0-387-13720-9.

[112] Herbert Stachowiak. Allgemeine Modelltheorie. Wien, New York: Springer
Verlag, 1973.

[113] Friedrich Steimann, Robert Clarisó, and Martin Gogolla. “OCL Re-
built, From the Ground Up”. In: ACM/IEEE 26th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS).
Västerås, Oct. 2023.

[114] The Community for Open Innovation and Collaboration | The Eclipse Foun-
dation. URL: https://www.eclipse.org/.

[115] The Epsilon Book. https://www.eclipse.org/epsilon/doc/book/.

[116] Frédéric Thomas et al. “MARTE : le futur standard OMG pour le
développement dirigé par les modèles des systèmes embarqués temps
réel”. In: 2007. URL: https://api.semanticscholar.org/CorpusID:
192877475.

https://doi.org/10.1145/800169.805431
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1007/3-540-45669-4_1
https://doi.org/10.1007/3-540-45669-4_1
https://www.eclipse.org/
https://api.semanticscholar.org/CorpusID:192877475
https://api.semanticscholar.org/CorpusID:192877475


Bibliography 229

[117] Dániel Urbán, Gergely Mezei, and Zoltán Theisz. “Formalism for Static
Aspects of Dynamic Metamodeling”. In: Periodica Polytechnica Electri-
cal Engineering and Computer Science 61.1 (2017), pp. 34–47. ISSN: 2064-
5279. DOI: 10.3311/PPee.9547.

[118] Dániel Urbán, Zoltán Theisz, and Gergely Mezei. “Self-Describing Op-
erations for Multi-level Meta-modeling”. In: Proceedings of the 6th In-
ternational Conference on Model-Driven Engineering and Software Devel-
opment. MODELSWARD 2018. Setubal, PRT: SCITEPRESS - Science
and Technology Publications, Lda, Jan. 2018, pp. 519–527. ISBN: 978-
989-758-283-7. DOI: 10/jqpf.

[119] Jos B. Warmer. The Object Constraint Language: Getting Your Models
Ready for MDA. 2nd edition. Boston, MA: Addison-Wesley, 2003. ISBN:
978-0-321-17936-4.

[120] Jos B. Warmer. The Object Constraint Language: Precise Modeling with
UML. Object Techology Series. Reading, Mass. ; Bonn [u.a.]: Addison
Wesley, 1999. ISBN: 978-0-201-37940-2.

[121] Eclipse Web. Eclipse OCL™ (Object Constraint Language). Oct. 14, 2023.
URL: https://projects.eclipse.org/projects/modeling.mdt.ocl.

[122] XMI. URL: http://www.omg.org/spec/XMI/.

https://doi.org/10.3311/PPee.9547
https://doi.org/10/jqpf
https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www.omg.org/spec/XMI/




231

Appendix A

DOCL Grammar in ANTLR 4

grammar DeepOcl ;

contextDeclCS
:

(
propertyContextDeclCS
| c l a s s i f i e r C o n t e x t C S
| operationContextCS

) +
;

operationContextCS
:

CONTEXT l e v e l S p e c i f i c a t i o n C S ?
(

ID ’ : ’
) ?
(

ID ’ : : ’
(

ID ’ : : ’
) * ID
| ID

) ’ ( ’
(

parameterCS
(

’ , ’ parameterCS
) *

) ? ’ ) ’
(

’ : ’ typeExpCS
) ?
(

preCS
| postCS
| bodyCS

) *
;

l e v e l S p e c i f i c a t i o n C S
:

’ ( ’ NumberLiteralExpCS
(



232 Appendix A. DOCL Grammar in ANTLR 4

’ , ’
(

’ _ ’
| NumberLiteralExpCS

)
) ? ’ ) ’

;

CONTEXT
:

’ contex t ’
;

bodyCS
:

’ body ’ ID? ’ : ’ s p e c i f i c a t i o n C S
;

postCS
:

’ post ’ ID? ’ : ’ s p e c i f i c a t i o n C S
;

preCS
:

’ pre ’ ID? ’ : ’ s p e c i f i c a t i o n C S
;

defCS
:

’ def ’ ID? ’ : ’ ID
(

(
’ ( ’ parameterCS ?
(

’ , ’ parameterCS
) * ’ ) ’

) ? ’ : ’ typeExpCS ? ’= ’ s p e c i f i c a t i o n C S
)

;

f i l t e r C S
:

’ f i l t e r ’ ID? ’ : ’ s p e c i f i c a t i o n C S
;

typeExpCS
:

typeNameExpCS
| typeLi tera lCS

;

typeLi tera lCS
:

primitiveTypeCS
| col lect ionTypeCS
| tupleTypeCS

;



Appendix A. DOCL Grammar in ANTLR 4 233

tupleTypeCS
:

’ Tuple ’
(

’ ( ’ tuplePartCS
(

’ , ’ tuplePartCS
) * ’ ) ’
| ’< ’ tuplePartCS
(

’ , ’ tuplePartCS
) * ’> ’

) ?
;

tuplePartCS
:

ID ’ : ’ typeExpCS
;

col lect ionTypeCS
:

c o l l e c t i o n T y p e I D e n t i f i e r
(

’ ( ’ typeExpCS ’ ) ’
| ’< ’ typeExpCS ’> ’

) ?
;

c o l l e c t i o n T y p e I D e n t i f i e r
:

’ C o l l e c t i o n ’
| ’ Bag ’
| ’ OrderedSet ’
| ’ Sequence ’
| ’ Set ’

;

primitiveTypeCS
:

’ Boolean ’
| ’ I n t e g e r ’
| ’ Real ’
| ’ ID ’
| ’ UnlimitedNatural ’
| ’ OclAny ’
| ’ OclInvalID ’
| ’ OclVoID ’

;

typeNameExpCS
:

ID ’ : : ’
(

ID ’ : : ’
) * ID
| ID



234 Appendix A. DOCL Grammar in ANTLR 4

;

s p e c i f i c a t i o n C S
:

infixedExpCS *
;

expCS
:

infixedExpCS
;

infixedExpCS
:

prefixedExpCS # prefixedExp
| iteratorBarExpCS # i t e r a t o r B a r
| l e f t = infixedExpCS op = ’^ ’ r i g h t = infixedExpCS # Message
| l e f t = infixedExpCS op = ’ impl ies ’ r i g h t = infixedExpCS # implies
| l e f t = infixedExpCS op =
(

’ xor ’
| ’ or ’
| ’ and ’

) r i g h t = infixedExpCS # andOrXor
| l e f t = infixedExpCS op =
(

’= ’
| ’<> ’
| ’<= ’
| ’>= ’
| ’< ’
| ’> ’

) r i g h t = infixedExpCS # equalOperations
| l e f t = infixedExpCS op =
(

’+ ’
| ’− ’

) r i g h t = infixedExpCS # plusMinus
| l e f t = infixedExpCS op =
(

’ * ’
| ’/ ’

) r i g h t = infixedExpCS # timesDivide
;

i teratorBarExpCS
:

’| ’
;

navigationOperatorCS
:

’ . ’ # dot
| ’−> ’ # arrow

;

prefixedExpCS
:



Appendix A. DOCL Grammar in ANTLR 4 235

UnaryOperatorCS+ primaryExpCS
| primaryExpCS
(

navigationOperatorCS primaryExpCS
) *
| primaryExpCS

;

UnaryOperatorCS
:

’− ’
| ’ not ’

;

primaryExpCS
:

letExpCS
| ifExpCS
| navigatingExpCS
| selfExpCS
| pr imi t iveLi tera lExpCS
| tupleLi tera lExpCS
| c o l l e c t i o n L i t e r a l E x p C S
| typeLiteralExpCS
| nestedExpCS

;

nestedExpCS
:

’ ( ’ expCS+ ’ ) ’
;

ifExpCS
:

’ i f ’ i f e x p = expCS+ ’ then ’ thenexp = expCS+ ’ e l s e ’ e l seexp = expCS+ ’ endi f ’
;

letExpCS
:

’ l e t ’ l e tVar iab leCS
(

’ , ’ l e tVar iab leCS
) * ’ in ’ in = expCS+

;

le tVar iab leCS
:

name = ID ’ : ’ type = typeExpCS ’= ’ exp = expCS+
;

typeLiteralExpCS
:

typeLi tera lCS
;

c o l l e c t i o n L i t e r a l E x p C S
:

col lect ionTypeCS ’ { ’



236 Appendix A. DOCL Grammar in ANTLR 4

(
c o l l e c t i o n L i t e r a l P a r t C S
(

’ , ’ c o l l e c t i o n L i t e r a l P a r t C S
) *

) ? ’ } ’
;

c o l l e c t i o n L i t e r a l P a r t C S
:

expCS
(

’ . . ’ expCS
) ?

;

tupleLi tera lExpCS
:

’ Tuple ’ ’ { ’ t u p l e L i t e r a l P a r t C S
(

’ , ’ t u p l e L i t e r a l P a r t C S
) * ’ } ’

;

t u p l e L i t e r a l P a r t C S
:

ID
(

’ : ’ typeExpCS
) ? ’= ’ expCS

;

selfExpCS
:

’ s e l f ’
;

pr imi t iveLi tera lExpCS
:

NumberLiteralExpCS # number
| STRING # s t r i n g
| BooleanLiteralExpCS # boolean
| InvalIDLiteralExpCS # i n v a l i d
| NullLiteralExpCS # n u l l

;

InvalIDLiteralExpCS
:

’ i n v a l i d ’
;

NumberLiteralExpCS
:

INT
(

’ . ’ INT
) ?
(



Appendix A. DOCL Grammar in ANTLR 4 237

(
’ e ’
| ’E ’

)
(

’+ ’
| ’− ’

) ? INT
) ?

;

fragment
DIGIT
:

[0 −9]
;

INT
:

DIGIT+
;

BooleanLiteralExpCS
:

’ t rue ’
| ’ f a l s e ’

;

NullLiteralExpCS
:

’ n u l l ’
;

navigatingExpCS
:

opName = indexExpCS
(

’@ ’ ’ pre ’
) ?
(

’ ( ’ ’ " ’ ? onespace ? arg = navigatingArgCS * commaArg = navigatingCommaArgCS *
barArg = navigatingBarAgrsCS * semiArg = navigatingSemiAgrsCS * ’ " ’ ? ’ ) ’

) *
;

navigatingSemiAgrsCS
:

’ ; ’ navigatingArgExpCS
(

’ : ’ typeExpCS
) ?
(

’= ’ expCS+
) ?

;

navigatingCommaArgCS
:



238 Appendix A. DOCL Grammar in ANTLR 4

’ , ’ navigatingArgExpCS
(

’ : ’ typeExpCS
) ?
(

’= ’ expCS+
) ?

;

navigatingArgExpCS
:

i t e r a t o r V a r i a b l e = infixedExpCS iteratorBarExpCS nameExpCS
navigationOperatorCS body = infixedExpCS *
| infixedExpCS+

;

navigatingBarAgrsCS
:

’| ’ navigatingArgExpCS
(

’ : ’ typeExpCS
) ?
(

’= ’ expCS+
) ?

;

navigatingArgCS
:

navigatingArgExpCS
(

’ : ’ typeExpCS
) ?
(

’= ’ expCS+
) ?

;

indexExpCS
:

nameExpCS
(

’ [ ’ expCS
(

’ , ’ expCS
) * ’ ] ’

) ?
;

nameExpCS
:

(
(

ID ’ : : ’
(

ID ’ : : ’
) * ID

)



Appendix A. DOCL Grammar in ANTLR 4 239

| ID
| STRING

) # name
| ’ $ ’ c lab = ID ’ $ ’ # ontologicalName
| ’ # ’ aspect = ID
(

’ ( ’
(

NumberLiteralExpCS
| ID

) ?
(

’ , ’
(

NumberLiteralExpCS
| ID

)
) * ’ ) ’

) ? ’ # ’ # l inguis t i ca lName
;

parameterCS
:

(
ID ’ : ’

) ? typeExpCS
;

invCS
:

’ inv ’
(

ID
(

’ ( ’ s p e c i f i c a t i o n C S ’ ) ’
) ?

) ? ’ : ’ s p e c i f i c a t i o n C S
;

c l a s s i f i e r C o n t e x t C S
:

CONTEXT l e v e l S p e c i f i c a t i o n C S ?
(

ID ’ : ’
) ?
(

(
ID ’ : : ’
(

ID ’ : : ’
) * ID

)
| ID

)
(

invCS
| defCS

) *



240 Appendix A. DOCL Grammar in ANTLR 4

;

propertyContextDeclCS
:

CONTEXT l e v e l S p e c i f i c a t i o n C S ?
(

(
ID ’ : : ’
(

ID ’ : : ’
) * ID

)
| ID

) ’ : ’ typeExpCS
(

(
in i t CS derCS?

) ?
| derCS in i tCS ?

)
;

derCS
:

’ der ive ’ ’ : ’ s p e c i f i c a t i o n C S
;

in i t CS
:

’ i n i t ’ ’ : ’ s p e c i f i c a t i o n C S
;

ID
:

[ a−zA−Z] [ a−zA−Z0 −9]*
;

WS
:

[ \ t \n\r ]+ −> skip
;

onespace
:

ONESPACE
;

ONESPACE
:

’ ’
;

STRING
:

’ " ’
(

~[\ r\n " ]
| ’ " " ’



Appendix A. DOCL Grammar in ANTLR 4 241

) * ’ " ’
;

COMMENT
:

’−− ’ . * ? ’\n ’ −> skip
;





243

Appendix B

PLM Operation Reference

For the DeepModel meta-model the following methods and references are de-
fined:

• getContent() – returns all containing elements; in this case all levels
that are defined within the DeepModel instance

• enumeration – returns all the defined enumerations

• getLevelAtIndex(int level) – returns the level that is identified by
the parameter

• getPrimitiveDatatypes() – returns all primitive data types

• getAllDatatypes() – returns all primitive data types and enumera-
tions

The reference navigation can be identified by the missing parentheses at the
end. For the Level meta-model the following operations and reference navi-
gations are defined:

• getContent() – returns all containing elements of the Level instance.

• getAllInheritances() – returns all the generalizations that are present
at the level

• getClabjects() –returns all elements that are of the type Clabject of the
Level

• getEntities – returns all entities which are a subset of all Clabjects of
the Level

• getConnections() – returns all Connections that are present at this Level

• getClassifications() – returns all classifications if the instance is present
at this Level



244 Appendix B. PLM Operation Reference

• getDeepModel – returns the DeepModel that contains this Level

• isRootLevel() – returns true if the Level is the topmost level in the
DeepModel, else false

• isLeafLevel() – returns true if the Level is the bottom level in the Deep-
Model, else false

Here the content navigation as well is referring to references of the meta-
model.

The next list will display a selection of Connection operations and refer-
ence navigations, which are supposed to be useful for writing statements in
the DeepOCL dialect efficiently.

• getDomain() – returns all destinations of the navigable connection ends
of this Connection

• getNotDomain() –returns all Clabjects that participate in this Connection
but are not navigable

• getHumanReadableName() – returns a human-readable name of this Con-
nection

• getParticipants() – returns all participants, i.e. destinations of the
connection ends, of this Connection

• getMoniker() – returns the moniker for this Connection

• getMonikerForParticipant(Clabject) – returns the moniker of this
Connection for the parameter Clabject if it is reachable through this Con-
nection

• getOrder() – returns the number of connection ends in the Connection

• getParticipantForMoniker(String) – returns the Clabject reachable through
the Connection via the parameter moniker

• getAllConnectionEnd – returns the connection ends that the connec-
tion inherits from its supertypes

The operation getAllConnectionEnd() could also be replaced by the connectionEnd
reference navigation.

Even though the Clabject meta-model contains many methods and refer-
ences that can be invoked by any OCL statement, the following will only
display a few operations and references which have a higher chance of being
used when writing DeepOCL expressions.



Appendix B. PLM Operation Reference 245

• getPotency() – returns the potency of the Clabject

• getContent() – returns all the elements that are contained by the Clab-
ject

• getAllFeatures() – returns all attached Feature entities, which could
be from type Attribute or Method

• getTypes() – returns a collection of all Clabjects that are of the type of
the source Clabject

• getInstances – returns all the Clabjects that are an instance of the source
Clabject based on classification elements.

• getAllAttributes() – returns all Attributes of the source Clabject

• getAllMethods() – returns all the methods that are contained by the
source Clabject

• getDefinedNavigations() – returns all defined navigation of the source
Clabject

• getDirectTypes() – returns the direct types of the source Clabject based
on the classification hierarchy

• getDirectType() – returns the direct type of a clabject

• getDefinedInstances() – returns the instances and their subtypes of
the Clabject only

• getSubtypes() – returns all entities that inherit from the source Clabject

• getSupertypes() – returns the Clabjects this Clabject inherits properties
from

• getConnections() – returns all connections from the source Clabject

• getLevelIndex() – returns the level index the source Clabject is located
on

• detDeepModel() – returns the DeepModel the Clabject is contained in

• isTypeOf(Clabject) – returns true if the Clabject is in the classification
tree of the Clabject that was passed in the parameter

For Features, attributes, and methods, we offer the following linguistic
operations.



246 Appendix B. PLM Operation Reference

• getClabject() – return the clabject the feature is contained in

• getDurability() – returns the integer value of the durability of the
feature

The linguistic operations that are specific to attributes are presented in the
following (the Attributes class is a subclass of the Feature class)

• getMutability() – returns the mutability value of the attribute

• getPossibleDataTypes() – returns a list of all possible data types which
are comprised of the primitive data types hard coded into Melanee and
the user-defined enumeration types.

• getPrimitiveDataTypes() – returns a list of all hard-coded data types
in Melanee

• isEnumeration() – returns true if the type of the attribute is defined by
an enumeration

• getEnumeration() – returns a list of all user-defined enumerations in
the model

• getLiterals() – returns a list of literals that are used in the enumera-
tion

The linguistic operations that are specific to methods are presented in the
following (the Method class is a subclass of the Feature class). As the param-
eters of each method have to be typed, like in JAVA, we can get the type
information out of these parameters.

• getInput() – returns the list of input parameters of that method

• getOutput – returns the output parameter of that function

• getBody() – returns the string of the method body

For the Inheritance class, we offer the following linguistic dimension op-
erations.

• isDisjoint() – returns true if the generalization set is disjoint and false
if it is overlapping

• isComplete() – returns true if the generalization set is complete, i.e., is
fully described, and false for incomplete



Appendix B. PLM Operation Reference 247

• isIntersection() – returns true if the generalization set is an intersec-
tion

• getSuperTypes() – returns a list of all the super clabjects of the inheri-
tance.

• getSubTypes() – returns a list of all sub-clabjects in the inheritance.

These linguistic navigations are a vital part of navigating the deep model
and keeping the model valid with respect to the constraints. Combined with
the ontological navigation it shows the capabilities of the DeepOCL dialect.


	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Abbreviations
	I Introduction
	Motivation
	Problems
	Requirements
	Research Method
	Outline


	II Background
	Model-Driven Development
	The Model-Driven Architecture
	Object Constraint Language

	Multi-Level Modeling
	Deep Modeling
	The Level-agnostic Modeling Language
	Melanee

	Formal Languages
	Theory
	Lexical Analysis
	Syntax and Semantics
	Parsing Strategies
	ANTLR


	III DOCL
	Reflective Constraints in Deep Modeling
	Terminology
	Reflection in Object-Oriented Modeling
	Reflection in Deep Modeling

	DOCL Features
	Linguistic Introspection
	Ontological Introspection
	Deep Classification Operations
	Level-Aware Expressions
	Deprecated Features

	DOCL Prototype Implementation
	Architecture
	Meta-Model Definition
	Grammar
	Interpreter
	Triggering Constraint Evaluation


	IV Use Cases
	Deep Modeling Styles
	What is a Modeling Style?
	The Core Style
	The Melanee Default Style

	Multi-Style Modeling
	Level Organization Styles
	Classification Styles
	Inheritance Styles
	Vitality Styles
	Cross-Level, Well-Formedness Styles

	Multi-Pattern Modeling
	Classification Patterns
	Inheritance Patterns
	Categorization Patterns


	V Evaluation
	The Bicycle Challenge
	Requirements
	Model
	Fulfillment of the Requirements
	Discussion

	The Process Challenge
	Requirements
	Model
	Fulfillment of the Requirements
	Discussion

	The Collaboration Challenge
	Requirements
	Model
	Fulfillment of the Requirements
	Discussion

	The Warehouse Challenge
	Requirements
	Model
	Fulfillment of the Requirements
	Discussion


	VI Significance
	Related Work
	OCL Variants and Tools
	Alternative Constraint Languages
	Multi-level Modeling Approaches

	Conclusion
	Problems and Requirements
	Validity of the Hypothesis
	Future Work

	Bibliography
	DOCL Grammar in ANTLR 4
	PLM Operation Reference


