
EXPLOITING SEMI-STRUCTURED

INFORMATION IN WIKIPEDIA

FOR KNOWLEDGE GRAPH CONSTRUCTION

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Nicolas Heist
aus Heidelberg

Mannheim, 2024

ii

Dekan: Prof. Dr. Claus Hertling, Universität Mannheim
Referent: Prof. Dr. Heiko Paulheim, Universität Mannheim
Korreferent: Prof. Dr. Harald Sack, Karlsruher Institut für Technologie

Tag der mündlichen Prüfung: 05.06.2024

Abstract

Knowledge graphs play an important role in today’s IT landscape as they serve
as a data foundation for a plethora of applications and natively support tasks
like question answering or recommendation. Hence, it is more important
than ever that the knowledge modelled by knowledge graphs is correct and
complete. While this is an elusive goal for many domains, techniques for
automated knowledge graph construction serve as a means to approach it.

In this thesis, we address three main challenges in the field of automated
knowledge graph construction using semi-structured data in Wikipedia as a
data source. To create an ontology with expressive and fine-grained types,
we present an approach that extracts a large-scale general-purpose taxonomy
from categories and list pages in Wikipedia. We enhance the taxonomy’s
classes with axioms explicating their semantics.

To increase the coverage of long-tail entities in knowledge graphs, we
describe a pipeline of approaches that identify entity mentions in Wikipedia
listings, integrate them into an existing knowledge graph, and enrich them
with additional facts derived from the extraction context.

As a result of applying the above approaches to semi-structured data in
Wikipedia, we present the knowledge graph CaLiGraph. The graph describes
more than 13 million entities with an ontology containing almost 1.3 million
classes. To judge the value of CaLiGraph for practical tasks, we introduce a
framework that compares knowledge graphs based on their performance on
downstream tasks. We find CaLiGraph to be a valuable addition to the field
of publicly available general-purpose knowledge graphs.

iii

iv

Zusammenfassung

Wissensgraphen spielen eine wichtige Rolle in der heutigen IT-Landschaft,
da sie als Datenbasis für eine Vielzahl von Anwendungen dienen und Aufga-
ben wie Fragebeantwortung oder Empfehlungen nativ unterstützen. Daher
ist es wichtiger denn je, dass das von Wissensgraphen modellierte Wissen
korrekt und vollständig ist. Obwohl dies für viele Bereiche ein schwer zu
erreichendes Ziel ist, dienen Techniken der automatisierten Konstruktion von
Wissensgraphen als Mittel, um sich diesem Ziel anzunähern.

In dieser Arbeit behandeln wir drei Hauptherausforderungen im Bereich
der automatisierten Konstruktion von Wissensgraphen unter Verwendung
semi-strukturierter Daten in Wikipedia als Datenquelle. Um eine Ontologie
mit ausdrucksstarken und feingranularen Typen zu erstellen, präsentieren wir
einen Ansatz, der eine groß angelegte, allgemeine Taxonomie aus Kategorien
und Listen-Seiten in Wikipedia extrahiert. Wir erweitern die Klassen der
Taxonomie um Axiome, die ihre Semantik erklären.

Um die Abdeckung von Entitäten mit geringer Häufigkeit in Wissensgra-
phen zu erhöhen, beschreiben wir eine Reihe von Ansätzen, die Nennungen
solcher Entitäten in Auflistungen in Wikipedia identifizieren, sie in einen
vorhandenen Wissensgraphen integrieren und mit zusätzlichen Fakten aus
dem Extraktionskontext anreichern.

Als Ergebnis der Anwendung der oben genannten Ansätze auf semi-
strukturierte Daten in Wikipedia präsentieren wir den Wissensgraphen Ca-
LiGraph. Der Graph beschreibt mehr als 13 Millionen Entitäten mit einer
Ontologie, die fast 1,3 Millionen Klassen umfasst. Um den Wert von CaLi-
Graph für praktische Aufgaben zu beurteilen, führen wir ein Framework
ein, das Wissensgraphen anhand ihrer Leistung bei tatsächlichen Aufgaben
vergleicht. Wir stellen fest, dass CaLiGraph eine wertvolle Ergänzung im
Bereich der öffentlich verfügbaren, allgemeinen Wissensgraphen ist.

v

vi

Acknowledgments

I want to extend my heartfelt thanks to my advisor, Professor Heiko Paulheim,
for his exceptional support throughout my PhD journey. His emphasis on
the human aspect of academic guidance ensured that personal well-being
always came first. The lighthearted atmosphere he fostered, along with
his prompt and detailed feedback, greatly enriched the research process. I
particularly appreciated our engaging discussions and his unconventional
ideas that significantly influenced my work.

I am very grateful to Professor Harald Sack for agreeing to be the second
examiner for my dissertation. His dedication to reviewing and thereby
improving my work is deeply appreciated.

A special thank you to my colleague, Sven Hertling, whose willingness
to listen and assist with any problem was invaluable. His consistent support
was crucial in overcoming the challenges encountered along the way.

I thank my co-authors and colleagues in the Data and Web Science Group
and beyond. Your collaboration and insights were instrumental to the success
of this research.

Finally, I want to express my deepest gratitude to my wonderful wife,
Isabell, for her unwavering support and understanding throughout this
academic journey. Her encouragement and patience were essential in making
this achievement possible.

vii

viii

Contents

List of Publications xv

List of Figures xvii

List of Tables xix

List of Acronyms xxi

I Introduction and Foundations 1

1 Introduction 3
1.1 Motivation . 4
1.2 Outline and Contributions . 5

2 Theoretical Background 11
2.1 The Semantic Web . 11

2.1.1 Semantic Web Stack 11
2.1.2 Linked Open Data . 15
2.1.3 Vocabularies . 17

2.2 Knowledge Graphs . 18
2.2.1 Components . 19
2.2.2 Construction and Extension 20
2.2.3 Paradigms . 22

2.3 Wikipedia . 25
2.3.1 Editions . 25
2.3.2 Wiki Markup . 25
2.3.3 Content Types . 26
2.3.4 Versions . 27

ix

x CONTENTS

3 Knowledge Graphs on the Web 29
3.1 Overview . 30

3.1.1 Manual Curation . 30
3.1.2 Creation from (Semi)-Structured Sources 30
3.1.3 Creation from Unstructured Sources 31

3.2 Comparison . 32
3.2.1 General Metrics . 32
3.2.2 Contents . 34
3.2.3 Looking into Details 35

3.3 Linkage and Overlap . 38
3.3.1 Method . 39
3.3.2 Findings . 42

3.4 Conclusion and Outlook . 43

4 Automated Knowledge Graph Construction 47
4.1 A Pipeline for Automated Knowledge Graph Construction . . . 47
4.2 Construction of General-Purpose Knowledge Graphs 49

4.2.1 DBpedia . 49
4.2.2 YAGO . 51
4.2.3 NELL . 51
4.2.4 BabelNet . 51
4.2.5 DBkWik . 52

4.3 Limitations and Challenges 52

II Ontology Construction 55

5 Deriving a Fine-Grained Ontology from Categories and Lists 57
5.1 Motivation . 58
5.2 Related Work . 59
5.3 Categories and List Pages in Wikipedia 59
5.4 Distantly Supervised Entity Extraction from List Pages 62

5.4.1 Training Data Generation 63
5.4.2 Entity Classification 67

5.5 Results and Discussion . 69
5.5.1 List Page Extraction 69
5.5.2 Evaluation . 70

5.6 Conclusion . 72

6 Learning Defining Axioms for Wikipedia Categories 73
6.1 Motivation . 74
6.2 Related Work . 75
6.3 Preliminaries . 76
6.4 Approach . 79

CONTENTS xi

6.4.1 Candidate Selection 79
6.4.2 Pattern Mining . 80
6.4.3 Pattern Application . 82
6.4.4 Axiom Application and Post-Filtering 83

6.5 Experiments . 84
6.5.1 Axiom Extraction using DBpedia 85
6.5.2 Comparison with Related Approaches 86

6.6 Conclusion . 88

III Knowledge Graph Population 91

7 Subject Entity Detection in Wikipedia Listings 93
7.1 Motivation . 94
7.2 Related Work . 95

7.2.1 Named Entity Recognition 95
7.2.2 Subject Entity Detection 96

7.3 Preliminaries . 97
7.3.1 Listings in Wikipedia 97
7.3.2 Training Data Generation for List Pages 97
7.3.3 Transformers for Token Classification 99

7.4 Subject Entity Detection with Transformers 99
7.4.1 Token-level Subject Entity Detection 100
7.4.2 Coarse-grained Entity Type Prediction 101
7.4.3 Negative Sampling through Shuffled Listings 101
7.4.4 Fine-Tuning on Noisy Page Labels 102

7.5 Experiments . 102
7.5.1 Metrics . 103
7.5.2 Datasets . 103
7.5.3 Evaluation on Wikipedia List Pages 103
7.5.4 Evaluation on Wikipedia Page Listings 105
7.5.5 Ablation Study . 105
7.5.6 Subject Entity Extraction over Wikipedia 106

7.6 Conclusion . 107

8 NASTyLinker: NIL-Aware Entity Linker 109
8.1 Motivation . 110
8.2 Related Work . 111
8.3 Task Formulation . 113
8.4 NASTyLinker: NIL-Aware and Scalable EL 113

8.4.1 Entity Linking Model 114
8.4.2 Cluster Initialization 115
8.4.3 Cluster Conflict Resolution 115

8.5 Experiments . 116

xii CONTENTS

8.5.1 Datasets . 117
8.5.2 Metrics . 118
8.5.3 Evaluated Approaches 119
8.5.4 Entity Linking Performance 120
8.5.5 Linking Entities in Wikipedia Listings 122

8.6 Conclusion . 124

9 Information Extraction from Co-Occurring Similar Entities 125
9.1 Motivation . 126
9.2 Related Work . 127

9.2.1 Knowledge Graph Completion from Listings 128
9.2.2 Exploiting the Context of Listings 128
9.2.3 Rule-based Knowledge Graph Completion 129

9.3 Information Extraction From Co-Occurrences 130
9.3.1 Task Formulation . 130
9.3.2 Learning Descriptive Rules for Listings 131
9.3.3 Quality Metrics for Rules 133

9.4 Exploiting Co-Occurrences in Wikipedia 134
9.4.1 Approach Overview . 135
9.4.2 Data Corpus . 135
9.4.3 Subject Entity Discovery 135
9.4.4 Descriptive Rule Mining 137
9.4.5 Assertion Generation and Filtering 140

9.5 Evaluation . 142
9.5.1 Evaluation Procedure 142
9.5.2 Type and Relation Extraction 143
9.5.3 Novel Entities . 144
9.5.4 Error Analysis . 144

9.6 Conclusion . 144

IV Knowledge Graph Evaluation and Usage 147

10 KGrEaT: Evaluating Knowledge Graphs via Downstream Tasks 149
10.1 Motivation . 150
10.2 Framework . 150

10.2.1 Purpose and Limitations 150
10.2.2 Design . 151
10.2.3 Preprocessing Stage 152
10.2.4 Mapping Stage . 152
10.2.5 Task Stage . 152

10.3 Experiments . 153
10.3.1 Experimental Setup 153
10.3.2 Results and Discussion 155

CONTENTS xiii

10.4 Conclusion . 157

11 CaLiGraph: Statistics, Evaluation and Usage 159
11.1 Description . 160

11.1.1 Purpose and Coverage 160
11.1.2 Vocabulary . 160

11.2 Extraction Procedure . 161
11.2.1 Data Sources . 161
11.2.2 Provenance . 161
11.2.3 Stability . 162
11.2.4 Sustainability . 162

11.3 Usage . 162
11.3.1 Access . 162
11.3.2 Use Cases . 163

11.4 Statistics . 163
11.4.1 General Metrics . 163
11.4.2 Contents . 165

11.5 Data Quality . 167
11.5.1 Metadata . 168
11.5.2 Five Star Rating . 168
11.5.3 Class and Instance Data 168

11.6 Evaluation via Downstream Tasks 170
11.6.1 Experimental Setup 170
11.6.2 Results and Discussion 170

11.7 Conclusion . 172

V Conclusion and Outlook 175

12 Summary 177

13 Limitations and Future Work 179
13.1 Limitations . 179
13.2 Future Work . 180

Bibliography 183

A Data Sources 209
A.1 Data Sources for Knowledge Graph Comparison 209

A.1.1 DBpedia . 209
A.1.2 YAGO . 209
A.1.3 Wikidata . 210
A.1.4 BabelNet . 210
A.1.5 NELL . 210
A.1.6 OpenCyc . 210

xiv CONTENTS

A.1.7 VoldemortKG . 210
A.2 Data Sources for KGrEaT . 210

A.2.1 DBpedia . 211
A.2.2 Wikidata . 211
A.2.3 DBkWik . 211
A.2.4 CaLiGraph . 211

B Experimental Details for KGrEaT 213
B.1 Results for General-Purpose Knowledge Graphs 213
B.2 Results for CaLiGraph . 213

List of Publications

Parts of the work presented in this thesis were previously published in inter-
national journals and proceedings of international conferences. We reference
the corresponding publications in the respective chapters and list them here
in inverse chronological order. Equal contributions are indicated with a †.

Nicolas Heist and Heiko Paulheim. CaLiGraph: A Knowledge Graph from
Wikipedia Categories and Lists. In Semantic Web Journal (SWJ), 2024. [un-
der review]

Nicolas Heist,† Sven Hertling† and Heiko Paulheim. KGrEaT: A Frame-
work to Evaluate Knowledge Graphs via Downstream Tasks. In Proceedings of
the 32nd ACM International Conference on Information and Knowledge Man-
agement (CIKM), pp. 3938-3942, Birmingham, UK, October 2023, ACM Press.

Nicolas Heist and Heiko Paulheim. NASTyLinker: NIL-Aware Scalable
Transformer-based Entity Linker. In The Semantic Web - ESWC 2023. Lecture
Notes in Computer Science, vol. 13870, pp. 174-191, Hersonissos, Greece,
May 2023, Springer, Cham.

Nicolas Heist and Heiko Paulheim. Transformer-based Subject Entity Detec-
tion in Wikipedia Listings. In Proceedings of the 6th International Workshop
on Deep Learning for Knowledge Graphs (DL4KG @ ISWC’22), vol. 3342,
October 2022, CEUR Workshop Proceedings.

Nicolas Heist and Heiko Paulheim. The CaLiGraph Ontology as a Challenge
for OWL Reasoners. In Proceedings of the 1st Semantic Reasoning Evaluation
Challenge (SemREC @ ISWC’21), vol. 3123, Virtual Event, October 2021,
CEUR Workshop Proceedings. Challenge Winner of Task 1.

Nicolas Heist and Heiko Paulheim. Information Extraction From Co-occurring
Similar Entities. In Proceedings of the Web Conference 2021 (WWW’21), pp.
3999-4009, Ljubljana, Slovenia, April 2021, ACM Press.

xv

xvi LIST OF PUBLICATIONS

Nicolas Heist, Sven Hertling, Daniel Ringler and Heiko Paulheim. Knowl-
edge Graphs on the Web – an Overview. In Knowledge Graphs for eXplainable
Artificial Intelligence: Foundations, Applications and Challenges, vol. 47, pp.
3-22, 2020, IOS Press.

Nicolas Heist and Heiko Paulheim. Entity Extraction from Wikipedia List
Pages. In The Semantic Web - ESWC 2020. Lecture Notes in Computer Science,
vol. 12123, pp. 327-342, Virtual Event, May 2020, Springer, Cham.

Nicolas Heist and Heiko Paulheim. Uncovering the Semantics of Wikipedia
Categories. In The Semantic Web – ISWC 2019. Lecture Notes in Computer
Science, vol. 11778, pp. 219–236, Auckland, New Zealand, October 2019,
Springer, Cham.

Nicolas Heist. Towards Knowledge Graph Construction from Entity Co-
occurrence. In Proceedings of the EKAW Doctoral Consortium 2018, vol. 2306,
Nancy, France, November 2018, CEUR Workshop Proceedings.

In addition to the publications listed before, which are directly related to the
content of this thesis, the author contributed to and published other research
work during his doctoral studies:

Jan Portisch, Nicolas Heist and Heiko Paulheim. Knowledge Graph Em-
bedding for Data Mining vs. Knowledge Graph Embedding for Link Predic-
tion–Two Sides of the Same Coin? In Semantic Web Journal (SWJ), vol. 13,
no. 3, pp. 399-422, 2022, IOS Press.

Russa Biswas, Radina Sofronova, Mehwish Alam, Nicolas Heist, Heiko
Paulheim and Harald Sack. Do judge an entity by its name! Entity typing
using language models. In The Semantic Web: ESWC 2021 Satellite Events,
Lecture Notes in Computer Science, vol. 12739, pp. 65-70, Virtual Event, May
2021, Springer, Cham.

Niklas Lüdemann, Ageda Shiba, Nikolaos Thymianis, Nicolas Heist, Christo-
pher Ludwig and Heiko Paulheim. A Knowledge Graph for Assessing Aggres-
sive Tax Planning Strategies. In The Semantic Web – ISWC 2020. Lecture
Notes in Computer Science, vol. 12507, pp. 395-410, Virtual Event, November
2020, Springer, Cham.

Florian Schrage, Nicolas Heist and Heiko Paulheim. Extracting Literal
Assertions for DBpedia from Wikipedia Abstracts. In Semantic Systems. The
Power of AI and Knowledge Graphs. Lecture Notes in Computer Science, vol.
11702, pp. 288-294, November 2019, Springer, Cham.

List of Figures

1.1 Overview of the thesis’ main content and chapter assignment. 6

2.1 The Semantic Web Language Stack according to Berners-Lee . 12
2.2 Example graph taken from Fig. 1.1 on page 6. 14
2.3 Linked Open Data Cloud from September 2023. 16
2.4 Ontology learning layer cake (adapted from [32]). 20
2.5 Excerpt of Gilby Clarke page taken from Fig. 1.1 on page 6. . . 22

3.1 Depiction of the size and linkage degree of open KGs 34
3.2 Instances in DBpedia . 35
3.3 Instances in YAGO . 36
3.4 Instances in Wikidata . 38
3.5 Instances in BabelNet . 39
3.6 Instances in OpenCyc . 40
3.7 Instances in NELL . 41
3.8 Instances in Voldemort . 42
3.9 Potential gain of combining KGs 44
3.10 Existing entities in two KGs in relation to the number of links. 45

4.1 A pipeline for AKGC (taken from Fig. 1.1 on page 6). 48
4.2 A timeline with major milestones of popular public KGs. . . . 50

5.1 Wikipedia list page in enumeration layout 58
5.2 Wikipedia list page in table layout 61
5.3 Pipeline of the approach . 63
5.4 Invalid nodes and edges in category and list graph 64
5.5 Examples of non-taxonomic nodes and edges 64
5.6 Possible connections between category and list graph 65
5.7 Extension of the category-list taxonomy with DBpedia mappings. 66

xvii

xviii LIST OF FIGURES

5.8 Distribution of entities new to DBpedia 70
5.9 The 15 most important features used by XG-Boost 70
5.10 Comparison of existing and additional statements for DBpedia 71

6.1 Excerpt of the WCG showing a category with subcategories . . 74
6.2 Overview of the Cat2Ax approach. 78
6.3 Pattern application performance for varying confidence intervals 86
6.4 Comparison of the extracted results. 88

7.1 Wikipedia page of Gilby Clarke 94
7.2 Examples of Wikipedia page listings 98

8.1 Listings in Wikipedia containing the mention James Lake . . . 110
8.2 Main phases of the NASTyLinker approach 114
8.3 Runtime of NASTyLinker components 121

9.1 Wikipedia page of Gilby Clarke 126
9.2 An overview of the approach with exemplary outputs 136
9.3 tagfit of assertions generated from rules 140

10.1 An overview of the KGrEaT framework. 151

11.1 A sunburst diagram of frequent entity types in CaLiGraph. . . 165
11.2 A sunburst diagram of frequent properties in CaLiGraph . . . 167

List of Tables

3.1 General metrics of open KGs. 33
3.2 Detail statistics for selected classes in open KGs. 37

4.1 Advantages and Limitations of public general-purpose KGs. . . 53

5.1 Features of the ML model grouped by list page and feature type 68
5.2 Performance measures for various classification models 69

6.1 Examples of discovered textual patterns and implications . . . 85
6.2 Total number of axioms/assertions and precision scores 87

7.1 Statistics of the datasets used for the experiments 104
7.2 Evaluation results for SE detection on Wikipedia list pages . . 104
7.3 Performance metrics on page listings for the best model . . . 105
7.4 Evaluation results for SE detection on Wikipedia page listings 106
7.5 Number of extracted mentions of SEs for Wikipedia listings . 107

8.1 Mention and entity occurrences in the partitions of the datasets117
8.2 Results for the test partition DN

test of the NILK dataset. 120
8.3 Results for the test partition DL

test of the LISTING dataset . . . 123
8.4 Results of the manual evaluation of 100 clusters and mentions 124

9.1 Exemplary vectors for a set of listings 132
9.2 Number of generated assertions before and after filtering . . . 142
9.3 Correctness of manually evaluated assertions. 142
9.4 Error types partitioned by cause 145

10.1 Tasks implemented in KGrEaT 154
10.2 Evaluation results of the KGs with average rank per task type 156

xix

xx LIST OF TABLES

11.1 Basic metrics of all CaLiGraph versions and other KGs 164
11.2 Comparison of counts and ranks among CaLiGraph versions . 166
11.3 Collection of evaluation results of CaLiGraph data. 169
11.4 Evaluation results of the KGs with average rank per task type 171
11.5 Dataset coverage of the KGs evaluated with KGrEaT 173

B.1 Dataset coverage of the KGs evaluated with KGrEaT 214
B.2 KGrEaT evaluation results for the PK scenario 215
B.3 KGrEaT evaluation results for the PA scenario 216
B.4 KGrEaT evaluation results for the RA scenario 217
B.5 KGrEaT evaluation results for the precision-oriented scenario 218
B.6 KGrEaT evaluation results for the recall-oriented scenario . . 219

List of Acronyms

AI Artificial Intelligence. 3, 20, 33–35, 43

AKGC Automated Knowledge Graph Construction. 4, 7, 47, 177, 179, 180,
182

ARI Adjusted Rand Index. 118

BERT Bidirectional Encoder Representations from Transformers. 24, 99, 182

CDC Cross-Document Coreference Resolution. 112

CLI Command Line Interface. 152

CSV Comma-Separated Values. 16

CWA Closed-World Assumption. 23

DistilBERT Distilled version of BERT. 24, 99

EL Entity Linking. 21, 22, 24, 94, 95, 109–114, 117, 119, 120, 122, 124

FOAF Friend Of A Friend. 17, 160, 168

HTTP HyperText Transfer Protocol. 15

IE Information Extraction. 4, 21, 22, 25, 59, 125, 144, 181, 182

ILP Inductive Logic Programming. 129

KB Knowledge Base. 19

xxi

xxii List of Acronyms

KG Knowledge Graph. 3–5, 7–9, 18–24, 29–35, 38–40, 42, 43, 46–49, 51,
52, 54, 58, 60, 73–76, 79, 88, 89, 94–96, 106, 107, 109, 110, 112,
113, 115–117, 119, 122–130, 132, 135, 143–145, 149–153, 155, 157,
159–161, 163, 168, 170–172, 177–182, 209, 210, 213

KGC Knowledge Graph Construction. 20, 22, 30

KGE Knowledge Graph Extension. 20, 94, 105, 127

KGP Knowledge Graph Population. 47, 49, 51, 52, 109, 111, 113, 116, 179,
180

LCWA Local Closed-World Assumption. 23, 118, 122, 131, 143

LLM Large Language Model. 182

LM Language Model. 24, 182

LOD Linked Open Data. 16, 17, 33, 168

ML Machine Learning. 23, 24, 47, 57, 72, 95

NED Named Entity Disambiguation. 21, 49

NEL Named Entity Linking. 21

NELL Never-Ending Language Learner. 31, 33, 34, 36, 43, 47, 51, 54

NER Named Entity Recognition. 21, 49, 95, 96, 99, 101, 103

NLP Natural Language Processing. 20, 24, 59, 99, 182

NMI Normalized Mutual Information. 118, 121

OC Ontology Construction. 4, 20, 47–49, 51, 52, 179, 180

OIE Open Information Extraction. 4

OWA Open-World Assumption. 23, 39, 76, 101, 126

OWL Web Ontology Language. 12, 13, 15, 18, 160, 161

PROV-O PROV Ontology. 18, 160, 161, 168

RDF Resource Description Framework. 12–17, 19, 152, 160, 178

RDFS Resource Description Framework Schema. 12–14

RIF Rules Interchange Format. 13

List of Acronyms xxiii

RML RDF Mapping Language. 47

RoBERTa Robustly Optimized BERT Pre-Training Approach. 24

SE Subject Entity. 58–62, 69, 93–97, 99–103, 105–107, 117, 125–128, 130,
131, 134, 135, 137–139, 141, 142, 144, 145, 181

SHACL Shapes Constraint Language. 13, 51

SKOS Simple Knowledge Organisation System. 17, 18, 160, 168

SPARQL SPARQL Protocol And RDF Query Language. 12, 16, 168

SQL Structured Query Language. 3

SW Semantic Web. 11–13, 15, 17, 23

URI Uniform Resource Identifier. 12, 13, 15, 16, 152, 161, 162

W3C World Wide Web Consortium. 11, 13–16

WCG Wikipedia Category Graph. 27, 51, 57, 59, 60, 62, 72, 73, 76, 79, 163

XML eXtensible Markup Language. 12, 161

YAGO Yet Another Great Ontology. 30, 31, 36, 39, 43, 46, 47, 51, 52, 54,
59, 74, 75, 153, 155, 157, 163, 165, 170, 171, 181

xxiv List of Acronyms

Part I

Introduction and Foundations

1

CHAPTER 1

Introduction

An essential property of a truly intelligent application is its ability to access all
the information necessary to solve the task it is designed for. With the advent
of Knowledge Graphs (KGs), this long-standing objective in the Artificial
Intelligence (AI) field of supplying machines with relevant information is
gradually becoming a reality [107, 201]. KGs are the key technology to
tie together data and knowledge [59]. Thereby, they diminish the effort
of combining data with other sources [156] or using it in applications of
various domains (e.g., agriculture [29], manufacturing [25], or tourism
[95]) and task types (e.g., advertising [62], question answering [85] or
recommendation [197]).

The core idea of KGs is to represent data as a labelled directed graph, with
nodes representing concepts or concrete instances and edges representing
their relations. Using graphs to represent data has several advantages over
relational or NoSQL alternatives, like the flexible definition and reuse of
schemas and the large variety of graph-based techniques for querying, search
or analytics [83].

As shown in Fig. 1.1, nodes in a KG may represent concepts (e.g., the type
Album or the relation artist) or entities (e.g., the album California Girl or the
artist Nancy Sinatra). Relations may exist between concepts (Guns N’ Roses
album is a subclass of Album), between a concept and an entity (California
Girl is an Album) or between entities (California Girl has the artist Nancy
Sinatra). All this information is stored in the form of (subject,predicate,object)
triples.

3

4 CHAPTER 1. INTRODUCTION

1.1 Motivation

The trend of entities added to publicly available KGs in recent years indicates
they are far from complete. The number of entities in Wikidata [195], for
example, grew by 26% in the time from October 2020 (85M) to October
2023 (107M) [206]. Wikidata describes the largest number of entities and
comprises – in terms of entities – other public KGs to a large extent [66].
Consequently, this challenge of incompleteness applies to all public KGs,
particularly when it comes to less popular entities [44].

The field of Automated Knowledge Graph Construction (AKGC) bundles
all efforts to create KGs with only minimal human involvement. This includes
approaches for automated Ontology Construction (OC) and Information
Extraction (IE). The latter can help mitigate the above problem if the ap-
proaches ensure that the extracted information is of high quality. While the
performance of Open Information Extraction (OIE) systems (i.e., systems
that extract information from general web text) has improved in recent years
[159, 97, 112], the quality of extracted information has not yet reached
a level where integration into public KGs like Wikidata or DBpedia [104]
should be done without further filtering.

The extraction of information from semi-structured data is generally less
error-prone and has already proven to yield high-quality results. DBpedia
is an example of an influential open KG extracted primarily from Wikipedia
infoboxes; further approaches use the category system of Wikipedia [120,
211] or focus on tables (in Wikipedia or the web) as a semi-structured data
source to extract entities and relations [215]. As highlighted by Weikum
[201], first "picking low-hanging fruit" by focusing on premium sources like
Wikipedia to build a high-quality KG is crucial as it can serve as a solid
foundation for approaches that target more challenging data sources. The
extracted information may then be used as an additional anchor to make
sense of less structured data.

In our review of automatically constructed, open KGs in Chapter 4, we
identify several challenges with high potential impact in AKGC. In this thesis,
we describe our efforts to address the following three challenges using semi-
structured data in Wikipedia as a data source:

(C1) creating an ontology with expressive, fine-grained types,
(C2) increasing coverage of long-tail entities, while
(C3) maintaining high data quality.

In particular, the data structures in Wikipedia that we use to extract
additional information are categories (example in the top part of Fig. 1.1)
and listings like enumerations and tables (example in the middle part of
Fig. 1.1).

1.2. OUTLINE AND CONTRIBUTIONS 5

(C1) Ontology with expressive, fine-grained types The ontology of a
KG contains the concepts that are described in the graph. Categories in
Wikipedia can serve as a large hierarchy of concepts with existing links to
articles in Wikipedia. The links can be used to assign articles to the concept
hierarchy. Vice versa, they may also be used to derive knowledge about the
concepts. For example, based on the articles in the category Guns N’ Roses
albums,1 we can derive that the category contains only articles with Guns N’
Roses as an artist.

Apart from categories, Wikipedia contains list pages, which may serve as
an additional source for concepts as they contain listings of related articles.
For example, the List of greatest hits albums2 contains compilation albums
from various bands. By connecting list pages to categories, the concept
hierarchy can be extended. Derived from the list page, Greatest hits album
could become another subclass of Album in the hierarchy.

(C2) Coverage of long-tail entities For long-tail entities, little information
is available, and their mentions in data sources are scarce. Listings (in list
pages or articles) often contain sets of related entities, which can be identified
easily through the semi-structured nature of listings. In the example in
Fig. 1.1, entities are always mentioned at the beginning of a listing item. In
some cases, the context of a listing provides additional information about the
mentioned entities, for example, the information that the album California
Girl has the artist Nancy Sinatra. This is especially useful when extracting
long-tail entities, as information about them is scarce.

(C3) Maintain high data quality When creating a KG or refining an exist-
ing KG with additional information, it is essential to ensure that data quality
criteria like a certain level of correctness or consistency are maintained. We
use semi-structured data in Wikipedia as a data source to be able to meet
such criteria. Nevertheless, we perform intrinsic and extrinsic evaluations in
this thesis to judge the quality of the extraction results.

1.2 Outline and Contributions

This thesis is structured into five parts. The remainder of Part I introduces
the necessary theoretical background and reviews open KGs. Chapter 2 gives
an introduction to key concepts of the Semantic Web, Knowledge Graphs, and
Wikipedia. Chapter 3 provides an overview and a comparison of publicly
available KGs and gives insights into their contents, size, coverage, and

1https://en.wikipedia.org/wiki/Category:Guns_N’_Roses_albums
2https://en.wikipedia.org/wiki/List_of_greatest_hits_albums

https://en.wikipedia.org/wiki/Category:Guns_N'_Roses_albums
https://en.wikipedia.org/wiki/List_of_greatest_hits_albums

6 CHAPTER 1. INTRODUCTION

O
N

TO
LO

G
Y

C
O

N
ST

R
U

C
TI

O
N

K
N

O
W

LE
D

G
E

G
R

A
PH

PO
PU

LA
TI

O
N

Class & Property
Definition

Taxonomy
Induction

Axiom
Learning

Information Extraction
.

Entity Linking
.Named Entity

Recognition
Named Entity

Disambiguation
Entity
Typing

Relation
Extraction

 Gilby Clarke
 --- -- ---- -- - ----
 Discography
 -- ---- - --- - ---
 Albums with Guns N' Roses
 - The Spaghetti Incident? (1993)
 - Greatest Hits (1999)
 Albums with Nancy Sinatra
 - California Girl
 Solo albums
 Name Year --
 Rubber 1998 ---
 Greatest Hits 2001 -
 ...

Albums

Albums
by artist

Metallica
albums

Guns N' Roses
albums

Nine Inch Nails
albums

...

Excerpt of the Wikipedia category graph

Excerpt of "Gilby Clarke" Wikipedia page

Album

rdfs:subClassOfGuns
N' Roses

album

rd
fs
:s
ub

C
la
ss
O
f

Nine
Inch Nails

album

Metallica
album artist

rdf:typeowl:onProperty

owl:hasValue

restriction1

owl:
Restriction

Guns N'
Roses

Gilby
Clarke

Rubber
The

Spaghetti
Incident?

Greatest
Hits

(GNR)
California

Girl

Greatest
Hits
(GC)

Nancy
Sinatra

artist artist artist

Tasks

Graph

Tasks

Graph

rdf:type

rdf:type

1 2 3

4 5 6 7

K
N

O
W

LE
D

G
E

G
R

A
PH

EV
A

LU
AT

IO
N

 &
 U

SA
G

E

Evaluating Knowledge Graphs
via Downstream Tasks

CaLiGraph:
Statistics, Evaluation and Usage

PA
R

T
II:

PA
R

T
III

:
PA

R
T

IV
:

Chapter 5 Chapter 6

Chapter 7 Chapter 8 Chapter 9

Chapter 10 Chapter 11

Figure 1.1: Overview of the thesis’ main content and chapter assignment.

1.2. OUTLINE AND CONTRIBUTIONS 7

overlap. In Chapter 4, we define a pipeline for AKGC, discuss the construc-
tion procedures of automatically generated public KGs, and identify open
challenges.

The main findings of this thesis are presented in Parts II to IV, as visualised
in Fig. 1.1. The approaches and findings presented in these three parts are
gradually integrated into CaLiGraph.3

Part II: Ontology Construction This part addresses challenge (C1) as it
describes how to compile Wikipedia categories and list pages into a large-
scale taxonomy that is enriched with descriptive semantic axioms.

Chapter 5: Deriving a Fine-Grained Ontology from Wikipedia Categories
and Lists This chapter presents the approach for combining Wikipedia
categories with list pages to form a large-scale taxonomy. The taxonomy has
the advantage of being deeply interlinked with categories, list pages and the
DBpedia ontology. These links bear the potential to enrich the taxonomy
with additional information derived from these sources at a later stage. To
demonstrate the potential of this taxonomy, we show in this chapter how it
can be used to derive a large number of new entities and assertions from
Wikipedia list pages.

The key contributions of this chapter are (1) an approach for generating
a taxonomy from categories and list pages and (2) an approach for extracting
entities from list pages using distant supervision.

Chapter 6: Learning Defining Axioms for Wikipedia Categories This
chapter introduces the Cat2Ax approach to enrich Wikipedia-based KGs by
explicating the semantics in category names. The approach combines the
category graph structure, lexical patterns in category names, and instance
information from a KG to learn patterns in category names and map these
patterns to type and relation axioms.

The key contributions of this chapter are (1) an approach that extracts
axioms for Wikipedia categories using features derived from the instances in a
category and their lexicalisations and (2) more than 700K axioms explicating
the semantics of Wikipedia categories.

Part III: Knowledge Graph Population This part addresses challenge
(C2) as it describes how to exploit semi-structured data in Wikipedia to
identify novel entities and derive assertions from page structure and entity
co-occurrence.

3A KG created from Wikipedia Categories and Lists: http://caligraph.org

http://caligraph.org

8 CHAPTER 1. INTRODUCTION

Chapter 7: Subject Entity Detection in Wikipedia Listings This chapter
describes an approach for detecting the subject entities of Wikipedia listings.
The approach uses a Transformer network to detect entities without requiring
mention boundaries.

The key contributions of this chapter are (1) a generic subject entity detection
approach applicable to arbitrary listings in Wikipedia and (2) a set of almost
20M mentions of unknown entities extracted from Wikipedia listings.

Chapter 8: NASTyLinker: NIL-Aware Scalable Transformer-based Entity
Linker This chapter addresses the task of disambiguating entity mentions by
mapping them to existing entities in the KG or creating new ones in case the
entity is missing. Our proposed approach, NASTyLinker, can handle missing
entities and produces corresponding mention clusters while maintaining high
linking performance for known entities. We apply NASTyLinker to the subject
entity mentions extracted in the previous chapter to create a set of properly
disambiguated entities.

The key contributions of this chapter are (1) the NASTyLinker approach for
effectively disambiguating entity mentions and (2) the disambiguated set of 7.6
million new entities extracted from Wikipedia listings.

Chapter 9: Information Extraction from Co-Occurring Similar Entities
In this chapter, we explore how information extracted from similar entities
that co-occur in structures like tables or enumerations can help to increase
the coverage of KGs. We propose a descriptive rule-mining approach that
uses distant supervision to derive rules for these relationships based on a
listing’s context.

The key contributions of this chapter are (1) an approach for learning
descriptive rules for listing characteristics based on the listing context and (2) a
set of 30.4M assertions extracted for subject entities in Wikipedia listings with
an overall correctness of over 90%.

Part IV: Knowledge Graph Evaluation and Usage In this part, we present
a framework for the extrinsic evaluation of KGs, comprehensively describe
and evaluate CaLiGraph, and so address the data quality challenge (C3).

Chapter 10: KGrEaT: Evaluating Knowledge Graphs via Downstream
Tasks This chapter presents KGrEaT – a framework to estimate the quality of
KGs through evaluation on downstream tasks like classification, clustering, or
recommendation. The evaluation results (e.g., the accuracy of a classification
model trained with the KG as background knowledge) can serve as extrinsic
task-based quality metrics for the KG.

1.2. OUTLINE AND CONTRIBUTIONS 9

The key contributions of this chapter are (1) KGrEaT, a framework to judge
the utility of KGs using extrinsic task-based metrics, and (2) a comparison of
several well-known cross-domain KGs w.r.t. these metrics.

Chapter 11: CaLiGraph: Statistics, Evaluation and Usage This chapter
gives an overview of CaLiGraph as a data source. We describe its versions,
purpose, and vocabulary structure. We detail the extraction procedure of
CaLiGraph, including sources, provenance, stability, and sustainability. We
explain how CaLiGraph can be accessed and how it is used already. We
present statistics of the KG, summarize evaluation results of the included
approaches, and apply KGrEaT to compare CaLiGraph to other general-
purpose KGs.

The key contributions of this chapter are (1) a comprehensive overview of
CaLiGraph as a data source, including general details, usage information, and
statistics, and (2) a comparison of the latest version of CaLiGraph with existing
general-purpose KGs.

We conclude this thesis in Part V with a summary of the presented findings
in Chapter 12, followed by existing limitations and potential future work in
Chapter 13. The acronyms used throughout this thesis are summarized in
the List of Acronyms starting on page xix.

10 CHAPTER 1. INTRODUCTION

CHAPTER 2

Theoretical Background

This chapter introduces the fundamental concepts of the Semantic Web and
Knowledge Graphs. Further, it describes the key elements of Wikipedia,
serving as the main data source for this thesis.

2.1 The Semantic Web

The Semantic Web (SW) is a field of research with the long-term goal of
enhancing the World Wide Web with machine-understandable information
[15]. Intelligent agents can consume this information to solve all kinds of
tasks. As a means to reach this goal, methods and tools are developed that
are oftentimes referred to as Semantic Web Technologies. More recently, these
technologies have not only been used to achieve the previously mentioned
goal but rather for general information management (i.e., data discovery,
sharing, integration, and use [80]).

The World Wide Web Consortium (W3C) develops standards (or, officially,
W3C Recommendations) to ensure seamless interaction and consistency be-
tween those technologies. In the following, we give an overview of the
standards and vocabularies relevant to this thesis.

2.1.1 Semantic Web Stack

Fig. 2.1 depicts the Semantic Web Language Stack as proposed by Berners-Lee
[14] in 2009. Since then, the W3C has updated existing recommendations
(e.g., OWL1) and published additional ones (e.g., SHACL2), but the core

1https://www.w3.org/TR/owl2-overview/
2https://www.w3.org/TR/shacl/

11

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/shacl/

12 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: The Semantic Web Language Stack according to Berners-Lee [14].

concepts have persisted.
From the bottom to the top, the layers address increasingly complex

topics in the SW field. Uniform Resource Identifiers (URIs)3 serve as identifiers
for the things to describe; encoding in Unicode ensures interoperability. The
eXtensible Markup Language (XML)4 is a serialization format to exchange
information. However, there are other formats like N-Triples5 or Turtle6

explicitly developed to serialize information in the SW field.
The Resource Description Framework (RDF)7 is a format to exchange

data using simple statements. The Resource Description Framework Schema
(RDFS)8 enhances RDF with additional language elements to express simple
ontologies; the Web Ontology Language (OWL)9 defines vocabulary to de-
scribe increasingly complex ontologies. The SPARQL Protocol And RDF Query
Language (SPARQL)10 is a query language to retrieve and manipulate data

3https://www.w3.org/Addressing/URL/4_URI_Recommentations.html
4https://www.w3.org/TR/xml/
5https://www.w3.org/TR/rdf11-n-triples/
6https://www.w3.org/TR/rdf11-turtle/
7https://www.w3.org/TR/rdf11-concepts/
8https://www.w3.org/TR/rdf11-schema/
9https://www.w3.org/TR/owl2-overview/

10https://www.w3.org/TR/sparql11-query/

https://www.w3.org/Addressing/URL/4_URI_Recommentations.html
https://www.w3.org/TR/xml/
https://www.w3.org/TR/rdf11-n-triples/
https://www.w3.org/TR/rdf11-turtle/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-schema/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/sparql11-query/

2.1. THE SEMANTIC WEB 13

stored in RDF. Rules addressing the data described in RDF can be formulated
in the Rules Interchange Format (RIF)11. The Shapes Constraint Language
(SHACL)12 is a recent addition that ensures the validity of RDF graphs by
formulating so-called shapes.

Logic and Proofs (e.g., in the form of reasoners like HermiT [54]) can
be used to extend and apply the information from ontologies and data. As
anybody can publish data about arbitrary topics, Trust in authoritative sources
is necessary to have confidence in information and the actions derived thereof
[73]. Interaction with information and execution of actions is performed
through applications built on SW standards.

A main contribution of this thesis concerns expressing and publishing
data with RDF, RDFS, and OWL, which is why we describe them in more
detail in the following.

Resource Description Framework (RDF)

RDF is recommended by the W3C in version 1.1; a draft for version 1.2 was
published in December 2023. RDF can be used to express simple statements
(also called assertions) about resources in the form of (subject, predicate,
object) triples. The subject is either a resource identified by a URI or
a blank node (i.e., a resource without URI); the predicate is a resource
identified by a URI that is defined as RDF property; the object can be a
resource identified by a URI, a blank node, or a literal (e.g., a string, number,
or date). A set of RDF assertions form a directed graph with subjects and
objects as nodes and predicates as edges.

Fig. 2.2 shows a graphical depiction of an RDF graph. We use simple
labels in the nodes to describe resources for better readability, although
their actual URIs may differ. To serialize statements like "The Spaghetti
Incident? has the artist Guns N’ Roses", we either use N-Triple notation (cf.
Example 2.1.1) or Turtle notation (cf. Example 2.1.2) in this work. The
@prefix notation defines namespaces (i.e., shortcuts for vocabularies), which
we will define once and omit afterwards.

Example 2.1.1. A statement in N-Triple notation

<http://example.org/The_Spaghetti_Incident?>
<http://example.org/artist>
<http://example.org/Guns_N’_Roses> .

Example 2.1.2. A statement in Turtle notation

@prefix ex: <http://example.org/> .
ex:The_Spaghetti_Incident? ex:artist ex:Guns_N’_Roses .

11https://www.w3.org/TR/rif-overview/
12https://www.w3.org/TR/shacl/

https://www.w3.org/TR/rif-overview/
https://www.w3.org/TR/shacl/

14 CHAPTER 2. THEORETICAL BACKGROUND

Album

rdfs:subClassOfGuns
N' Roses

album
rd
fs
:s
ub

C
la
ss
O
f

Nine
Inch Nails

album

Metallica
album artist

rdf:typeowl:onProperty

owl:hasValue

restriction1

owl:
Restriction

Guns N'
Roses

Gilby
Clarke

Rubber
The

Spaghetti
Incident?

Greatest
Hits

(GNR)
California

Girl

Greatest
Hits
(GC)

Nancy
Sinatra

artist artist artist

rdf:type

rdf:type

Figure 2.2: Example graph taken from Fig. 1.1 on page 6.

Resource Description Framework Schema (RDFS)

Similar to RDF, RDFS is recommended by the W3C in version 1.1, and a draft
for version 1.2 was published in December 2023. While the sole purpose of
RDF is to formulate information on a statement level, RDFS adds an object-
oriented view by introducing classes together with properties to describe
their relations. This enables us to define classes and their hierarchies, i.e., a
taxonomy (cf. Example 2.1.3). Further, we can make statements about the
type of resources using the taxonomy (cf. Example 2.1.4). While only the
first statement in this example is given in the graph, a reasoner can deduce
the second statement by exploiting the transitivity of the rdfs:subClassOf
property. Beyond defining taxonomies, RDFS provides additional vocabulary
to describe an ontology, like defining the possible subjects (the domain) and
objects (the range) of a property.

Example 2.1.3. The Album class and its subclasses

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
ex:Album rdf:type rdfs:Class .
ex:Metallica_album rdfs:subClassOf ex:Album .
ex:Nine_Inch_Nails_album rdfs:subClassOf ex:Album .
ex:Guns_N’_Roses_album rdfs:subClassOf ex:Album .

2.1. THE SEMANTIC WEB 15

Example 2.1.4. Types of the resource The Spaghetti Incident?

ex:The_Spaghetti_Incident? rdf:type ex:Guns_N’_Roses_album .
ex:The_Spaghetti_Incident? rdf:type ex:Album .

Web Ontology Language (OWL)

In the SW field, an ontology is defined as an "explicit specification of a
conceptualization" with the latter being an "abstract, simplified view of the
world" [57]. Hence, we use an ontology to describe a domain, including
its concepts, relations, and axioms. OWL is recommended by the W3C in
version 2 and can be used to express ontologies comprehensively. One can
choose between two variants (DL and Full) and three profiles (EL, QL, and RL)
restricting the language features by a certain extent for improved scalability
and decidability.

OWL can, for instance, be used to describe that two classes are disjoint. If
we knew that Metallica and Nine Inch Nails never recorded an album together,
we could express this fact as shown in Example 2.1.5.

Example 2.1.5. Disjointness between albums of Metallica and Nine Inch Nails

@prefix owl: <http://www.w3.org/2002/07/owl#> .
ex:Metallica_album owl:disjointWith ex:Nine_Inch_Nails_album .

Another feature is the definition of restrictions for classes. For instance,
with hasValue restrictions, one can define assertions between all instances
of a class and a specific individual. In Example 2.1.6, we express that all
instances of Guns N’ Roses albums have the artist Guns N’ Roses. The assertions
for the concrete instances don’t have to be contained in the RDF graph as a
reasoner can deduce them.

Example 2.1.6. hasValue restriction for Guns N’ Roses album

ex:restriction1 rdf:type owl:Restriction ;
owl:onProperty ex:artist ;
owl:hasValue ex:Guns_N’_Roses .

ex:Guns_N’_Roses_album rdfs:subClassOf ex:restriction1 .

2.1.2 Linked Open Data

Linked Data is structured data that is publicly accessible and interlinked with
other data. Tim Berners-Lee formulated four core principles for Linked Data
in 2006 [13]:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

16 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Linked Open Data Cloud from September 2023.

3. When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

4. Include links to other URIs, so that they can discover more things

Further, he defined Linked Open Data (LOD) as "Linked Data which is
released under an open licence, which does not impede its reuse for free."
Fig. 2.3 shows the LOD Cloud,13 a large collection of open and connected
datasets.

Five Star Linked Open Data

In 2010, Berners-Lee added a five-star rating for LOD to indicate how well a
dataset adheres to the principles mentioned above [13]. Higher ratings are
only awarded if all previous conditions are fulfilled.
⋆⋆⋆⋆⋆⋆⋆⋆⋆ Available on the web with an open license, to be Open Data
⋆⋆⋆⋆⋆⋆⋆⋆ Available as machine-readable structured data
⋆⋆⋆⋆⋆⋆⋆ Published in a non-proprietary format (e.g., CSV instead of Excel)
⋆⋆⋆⋆⋆⋆ Identify things using open standards from W3C (RDF and SPARQL)
⋆⋆⋆⋆⋆ Linked to other people’s data to provide context

13https://lod-cloud.net/

https://lod-cloud.net/

2.1. THE SEMANTIC WEB 17

Five Star Linked Data Vocabulary Use

Complementary to the Five Star rating for LOD, Janowicz et al. published
another Five Star rating in 2014 targeting the use of LOD vocabularies [91].
With their guidelines, they encourage users to publish their vocabulary with
rich metadata and interconnections to other vocabularies in order to provide
as much value to the community as possible.
⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆ Linked Data without any vocabulary
⋆⋆⋆⋆⋆⋆⋆⋆⋆ Vocabulary with dereferencable human-readable description
⋆⋆⋆⋆⋆⋆⋆⋆ Machine-readable explicit axiomatization of the vocabulary
⋆⋆⋆⋆⋆⋆⋆ The vocabulary is linked to other vocabularies
⋆⋆⋆⋆⋆⋆ Metadata about the vocabulary is available
⋆⋆⋆⋆⋆ The vocabulary is linked to by other vocabularies

2.1.3 Vocabularies

While some vocabularies describe topical domains (e.g., sports or cooking),
others enrich a dataset with meta-information (e.g., provenance). In the
following, we describe some of the established vocabularies in the SW field
used in this thesis.

Friend Of A Friend (FOAF)

FOAF is "a project devoted to linking people and information using the Web".14

It defines classes and properties in RDF to describe people, groups, organiza-
tions, and projects. Example 2.1.7 shows a basic description of the CaLiGraph
project with FOAF.

Example 2.1.7. Description of the CaLiGraph project with FOAF

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
ex:caligraph rdf:type foaf:Project ;

foaf:name "CaLiGraph" ;
foaf:homepage <http://caligraph.org> .

Simple Knowledge Organisation System (SKOS)

SKOS is an RDF vocabulary to express concept schemes like thesauri and
taxonomies.15 As shown in Example 2.1.8, it is oftentimes used to define
taxonomies in a simple way and to express a preference of which label to use
for an entity.

14http://xmlns.com/foaf/spec/
15https://www.w3.org/TR/swbp-skos-core-spec/

http://xmlns.com/foaf/spec/
https://www.w3.org/TR/swbp-skos-core-spec/

18 CHAPTER 2. THEORETICAL BACKGROUND

Example 2.1.8. Album hierarchy with SKOS

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
ex:Guns_N’_Roses_album skos:broader ex:Album ;

skos:prefLabel "Guns N’ Roses album" ;
skos:altLabel "GNR album" .

PROV Ontology (PROV-O)

PROV-O is an ontology defined in OWL that is used to enrich a dataset with
provenance information.16 As shown in Example 2.1.9, we use PROV-O in
this thesis to declare the source of new classes or entities. We assume in
this example that the class Guns N’ Roses album has been created from the
Wikipedia category Guns N’ Roses albums.

Example 2.1.9. Source of Guns N’ Roses album with PROV-O

@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix wikicat: <https://en.wikipedia.org/wiki/Category:> .
ex:Guns_N’_Roses_album

prov:wasDerivedFrom wikicat:Guns_N’_Roses_albums .

Schema.org

Schema.org is a collaborative effort to provide a schema for structured data
on the Web [58]. It was initially founded by Google, Microsoft, Yahoo, and
Yandex to serve as a shared schema for search engines. Since then, it has
been updated continuously and is used, for example, as a top-level schema
of large ontologies [152].

2.2 Knowledge Graphs

A KG is "a graph of data intended to accumulate and convey knowledge of the
real world, whose nodes represent entities of interest and whose edges represent
relations between these entities" [83]. Paulheim [147] formulated the key
characteristics of a KG as

1. mainly describing real-world entities and their interrelations, organized
in a graph,

2. defining possible classes and relations of entities in a schema,
3. allowing for potentially interrelating arbitrary entities with each other,

and
4. covering various topical domains.

16https://www.w3.org/TR/prov-o/

https://www.w3.org/TR/prov-o/

2.2. KNOWLEDGE GRAPHS 19

The phrase Knowledge Graph was used in the literature already decades
ago [175], but gained popularity with the announcement of the Google
Knowledge Graph in 2012 [180]. Given the definition and key characteristics
above, Weikum argues that the proper term for this construct is Knowledge
Base (KB) as plain entity graphs do usually not support higher-arity relations,
knowledge provenance, and consistency constraints [201]. In this work,
we use the term Knowledge Graph inclusively as it is the more common
terminology.

2.2.1 Components

A KG K with

K = (T ,P, E ,L,A) (2.1)

is a directed graph with types T , properties P, entities E and literals L
serving as nodes and assertions A as edges of the graph.17 Every assertion
a ∈ A is a triple (s, p, o) where s and o are nodes in the graph and p is a
property from a finite set of properties. With P, K may define some of the
properties in the form of nodes, but additional ones may be imported from
other KGs or vocabularies.

Terminology Component

The Terminology Component, or TBox, of K contains the ontology of the graph.
This includes the types T , the properties P, and the ontology-related triples
in A with a subject in T ∪ P (see Examples 2.1.3, 2.1.5 and 2.1.6).

Assertion Component

The Assertion Component, or ABox, of K contains the data of the graph. The
data is modelled using the concepts of the TBox. It describes entities E and
their interrelations. The entities described in a KG are representations of
real-world concepts or objects; through this anchoring, they are also called
named entities.

The ABox contains all assertions related to entities in the graph (i.e., the
subject of the assertion is always an element of E). The assertions are either
type assertions

TA = {(s, p, o) : (s, p, o) ∈ A, s ∈ E , p=rdf:type} (2.2)

as shown in Example 2.1.4, or relation assertions

RA = {(s, p, o) : (s, p, o) ∈ A, s ∈ E , p̸=rdf:type} (2.3)

17We use the term assertions instead of labelled edges as we are dealing with RDF graphs.

20 CHAPTER 2. THEORETICAL BACKGROUND

Synonyms

Concepts

Concept Hierarchy

Relations

Relation Hierarchy

Terms

Axiom Schemata

General Axioms

album, LP, song, band, musician, artist

{ Album, LP }

c := Album

Guns_N'_Roses_album Album Musical_work

artist(domain: Musical_work)

main_artist artist

disjoint(Album, Band)

Guns_N'_Roses_album artist.{Guns_N'_Roses}

Figure 2.4: Ontology learning layer cake (adapted from [32]).

as shown in Example 2.1.2. We refer to the types of an entity e with

Te = {o|(e, p, o) ∈ TA}. (2.4)

2.2.2 Construction and Extension

Knowledge Graph Construction (KGC), i.e., how to create a KG from scratch,
and Knowledge Graph Extension (KGE), i.e., extending a KG with additional
information, are broad research topics. In this section, we only introduce the
main concepts and refer the interested reader to the related work sections in
the dedicated chapters and respective surveys [83, 147, 163, 202, 222].

Ontology Learning

Ontology Learning is a field of research aiming at the automatic construction
and maintenance of ontologies [105]. The term was coined by Mädche and
Staab in 2001 [119] to describe a set of techniques supporting an ontology
engineer in the task of creating and maintaining an ontology using data
from structured, semi-structured, and unstructured sources. Due to the rapid
progress in AI and Natural Language Processing (NLP) in the last two decades,
techniques have been developed that try to minimize human involvement,
with the goal of a fully automatic OC process.

The ontology learning layer cake in Fig. 2.4 shows the subtasks of learning
an ontology. In this thesis, we focus on three of these layers in the context of
Wikipedia:

2.2. KNOWLEDGE GRAPHS 21

• Concepts: Discover concepts (also: classes, types) of the ontology,
i.e., create or extend T .

• Concept Hierarchy: Learn a hierarchy of concepts,
i.e., add subclass assertions to A.

• General Axioms: Derive axioms expressing the semantics of concepts,
i.e., add axioms describing discovered types or relations to A.

Entity Linking

Entity Linking (EL)18 is the process of detecting entity mentions in a given
data source and linking them to an entity in a KG [163]. Through this
semantic grounding, it is possible to (a) retrieve information about the entity
from the KG to enrich the source or (b) extract information about the entity
from the source to extend the KG. A mention that is mapped to an entity is
also called a surface form or a lexicalisation of the entity.

EL can be broken down into the subproblems Named Entity Recognition
(NER) and Named Entity Disambiguation (NED). The former is the task of
identifying mentions of named entities in the source and the latter is the task
of mapping the mention to an entity in the KG [111]. If there is no match for
a mention in the KG, we speak of NIL mentions and NIL entities.

Example 2.2.1. EL for the Gilby Clarke page shown in Fig. 2.5

The following entity mentions in Fig. 2.5 may be identified and linked to a
KG:
Guns N’ Roses, The Spaghetti Incident?, Greatest Hits, Nancy Sinatra, Cal-
ifornia Girl, Rubber, Greatest Hits.

Entities can be categorized as head or tail entities depending on their
popularity (e.g., how often a mention refers to one entity instead of other
entities with similar lexicalisations or how much information the KG contains
about an entity). Following Ilievski [87], we use the term long-tail entities for
entities where information is scarce and which may or may not be contained
in a KG (i.e., the union of tail and NIL entities). There is, however, no exact
definition of when an entity is a (long-)tail entity as it strongly depends
on the data source and KG at hand. For example, Chen et al. [28] define
long-tail entities for Wikidata as entities with fewer than 14 triples, as this is
the case for nearly 50% of entities in Wikidata.

Information Extraction

The goal of IE is to make the semantic structure of a data source explicit so
that we can make use of it [56]. As this is a very broad objective, it includes

18As with entities and named entities, we synonymously use Entity Linking and Named Entity
Linking (NEL) in the context of KGs.

22 CHAPTER 2. THEORETICAL BACKGROUND

 Gilby Clarke
 --- -- ---- -- - ----
 Discography
 -- ---- - --- - ---
 Albums with Guns N' Roses
 - The Spaghetti Incident? (1993)
 - Greatest Hits (1999)
 Albums with Nancy Sinatra
 - California Girl
 Solo albums
 Name Year --
 Rubber 1998 ---
 Greatest Hits 2001 -
 ...

Figure 2.5: Excerpt of Gilby Clarke page taken from Fig. 1.1 on page 6.

the previously described field of EL as well, as we need to identify an entity
in a text before extracting additional information about it. In this thesis,
however, we use the term to refer to the task of extracting information about
entities in a data source where the entities are already linked.

As described in Section 2.2.1, we can extend a given KG with additional
information by adding types (extending TA) or relations (extending RA). We
refer to the process of extracting types from a data source as Entity Typing and
to extracting relations as Relation Extraction. How exactly types and relations
are extracted relies strongly on the nature of the data source. Wikipedia
contains a lot of semi-structured data which can be exploited to extract types
and relations as shown in Example 2.2.2.

Example 2.2.2. IE for the Gilby Clarke page shown in Fig. 2.5

For the entities The Spaghetti Incident? and Greatest Hits, we derive that
they are both albums (from Albums with..), and we derive the artist Guns
N’ Roses (from ..with Guns N’ Roses).

2.2.3 Paradigms

In the following, we describe prevalent paradigms that are frequently applied
in KGC pipelines and approaches.

2.2. KNOWLEDGE GRAPHS 23

Local Closed-World Assumption

As KGs store information about the world and the world changes rapidly,
it is safe to say that the majority KGs are incomplete and may contain
incorrect information. Approaches that use assertions in KGs have to make
assumptions about these assertions (e.g., whether they are correct), but also
about assertions that are unavailable. Most KGs do not explicitly model
negative assertions, meaning that the absence of a fact either means that
it is incorrect or that the KG has no information about it. In the following,
we use the theoretical construct K∗ = (T ∗,P∗, E∗,L∗,A∗) representing the
complete version of K.

Adopting the Open-World Assumption (OWA), we don’t make any as-
sumptions about the absence of a fact, i.e., it either may be incorrect or
simply missing (K ⊂ K∗). Adopting the Closed-World Assumption (CWA),
in contrast, means that we assume that the KG is complete (K = K∗). The
Local Closed-World Assumption (LCWA)19 is a compromise between OWA
and CWA as it assumes only some parts of the graph to be complete where it
is most likely. If K makes some assertions with a predicate p for a subject s,
then we assume that K contains every p-related information about s. More
precisely, if (s, p, o) ∈ K then ∀o′ : (s, p, o′) ∈ K∗ =⇒ (s, p, o′) ∈ K. The
assumptions are applied in Example 2.2.3.

Example 2.2.3. OWA, CWA, and LCWA in a KG

Given A = {(The_Spaghetti_Incident?, artist,Gilby_Clarke)}, the asser-
tion (The_Spaghetti_Incident?, artist,Guns_N ′_Roses) is unknown ac-
cording to OWA, and false according to CWA and LCWA; the assertion
(Greatest_Hits, artist,Guns_N ′_Roses) is unknown according to OWA
and LCWA, and false according to CWA.

When considering assertions made in the SW field in general, where
everyone can publish information about everything, one has to assume
that any missing assumption may still be true, i.e., the OWA holds. When
considering a single KG, however, adopting the LCWA may be beneficial as
certain approaches (especially Machine Learning (ML) approaches) need
definitive negative statements.

Distant Supervision

Distant Supervision is a paradigm for automatically gathering large amounts
of training data with a low error rate using existing information in KGs or
from other structured resources (e.g., semantic annotations in HTML pages
[125]). In the original work, Mintz et al. [130] use Freebase as background
knowledge to extract information from Wikipedia. Aprosio et al. [7] extend

19The LCWA is also called Partial Completeness Assumption.

24 CHAPTER 2. THEORETICAL BACKGROUND

this approach using DBpedia as background knowledge. The basic idea is
to map entities in the KG to a data corpus to provide supervision signals for
training without the need for manual annotation. Example 2.2.4 applies this
process to a page in Wikipedia.

Example 2.2.4. Distant Supervision in Wikipedia

Given all entities and facts in Fig. 2.5 on page 22 are contained in K, we
would be able to learn several useful patterns, e.g.:

• all entities mentioned in listings of Discography are albums
• all albums have the artist Gilby Clarke
• albums mentioned in Solo albums have no other artist

Embeddings

KG embeddings are vector representations of entities and relationships in a KG,
designed to capture semantic relationships and similarities between entities.
Embeddings convert entities and relationships into continuous vector spaces,
allowing for efficient and effective representation in ML models. Embeddings
of a KG are static, i.e., they are fixed representations and change only if
the underlying KG changes. Examples of notable embedding techniques
focusing on link prediction (i.e., correctly predicting links in a KG) are
TransE [20], TransR [110], and DistMult [213]; a notable example of
techniques focusing on data mining (i.e., correctly modelling semantic entity
similarity) is RDF2vec [168].

Embeddings play a crucial role in NLP by assigning meaning to words and
phrases (as opposed to entities in KGs). As the meaning of words changes
with their context, recent approaches create contextual embeddings for words
based on how they are used. The currently most successful models creating
contextual embeddings are Language Models (LMs), which employ a Trans-
former architecture [192] and are trained without supervision on massive
amounts of data. Bidirectional Encoder Representations from Transformers
(BERT) [37] is a seminal model in this area, with adaptations tuned for more
robustness like Robustly Optimized BERT Pre-Training Approach (RoBERTa)
[115] or efficiency like Distilled version of BERT (DistilBERT) [173].

These models, originally designed to create embeddings for textual re-
sources, are also successfully applied to create embeddings in the KG context.
Instead of texts, entity descriptions generated from KGs are fed to the model
to create embeddings for entities. BLINK [210] is a seminal approach com-
bining embeddings of texts and entities for EL. Its core idea is to create
representations of mentions and entities with a Transformer model, retrieve
mention-entity candidates through nearest-neighbour search in the embed-
ding space, and identify matching pairs through binary classification.

2.3. WIKIPEDIA 25

2.3 Wikipedia

Wikipedia20 is a free, open encyclopedia written and maintained by a com-
munity of volunteers. The project was started in 2001 and has grown
continuously since then. In the last five years, around 200K articles have
been added to the English Wikipedia per year [205]. It serves as a tremen-
dously large and independent source of information for everyone. However,
most of the information in Wikipedia is provided in a semi-structured or
unstructured format. As this information can’t be processed by applica-
tions directly, Wikipedia has been a focus point of IE efforts for the last two
decades [9, 52, 81, 122, 182, 184, 208, 209]. In the following, we describe
the Wikipedia structures relevant for the IE efforts in this thesis.

2.3.1 Editions

A language edition of Wikipedia is a Wiki instance in a language with a valid
ISO 639 code that is "sufficiently unique" and has a "sufficient number of
fluent users" [204]. As of January 2024, Wikipedia has 326 active language
editions. With over 6.7M articles, the English Wikipedia is by far the largest
edition, generating approximately 50% of the overall page views [203].
Wikipedia uses interlanguage links to connect articles describing the same
topic across editions.

2.3.2 Wiki Markup

Wikipedia uses a markup language called Wiki markup for formatting and
structuring its articles. It is designed to be simple and easy to learn, allowing
users to contribute content without needing advanced technical knowledge.
Example 2.3.1 shows an excerpt of the Wikipedia page of Gilby Clarke in
Wiki markup.

Example 2.3.1. Gilby Clarke page shown in Fig. 2.5 in Wiki markup

==Discography==
===Albums with [[Guns N’ Roses]]===
* [[The Spaghetti Incident?]] (1993)
* [[Greatests Hits (Guns N’ Roses album)]] (1999)
===Albums with [[Nancy Sinatra]]===
* [[California Girl]]
===Solo albums===
{| class="wikitable"
|-
! Name

20https://www.wikipedia.org/

https://www.wikipedia.org/

26 CHAPTER 2. THEORETICAL BACKGROUND

! Year
|-
| [[Rubber]]
1998
[[Greatest Hits (Gilby Clarke album]]
2001
}

2.3.3 Content Types

Articles are the main source of information in Wikipedia, containing all the
knowledge about a dedicated topic and linking to relevant related articles.
Other page types like List Pages and Categories provide further information,
for example, by structuring and grouping articles to facilitate navigation and
exploration of specific topics.

Article

An article is a page or entry that provides information about a specific subject.
Articles are the fundamental units of content in Wikipedia and cover a wide
range of subjects, including people, places, events, concepts, or organizations.
Wikipedia has guidelines ensuring articles are only created for topics with a
certain notability.21 Articles about topics that are widely unknown or deemed
irrelevant are hence not published on Wikipedia.

Typically, an article begins with a short abstract about the subject, fol-
lowed by several sections describing the subject from different perspectives.
An article may have an infobox, a structured data box with a summary of key
information appearing in the upper-right corner. As shown in the example of
Fig. 2.5, an article may contain listings in the form of tables or enumerations
to present information in a structured way.

List Page

List pages in Wikipedia are dedicated pages that compile and organize infor-
mation about a set of related items. These pages serve as comprehensive lists,
giving readers an overview of various subjects. However, list pages are no
formal construct in Wikipedia but rather emerged through the community as
a special kind of article. For example, the page List of greatest hits albums22

contains an enumeration of compilation albums in alphabetical order. Con-
trary to listings in articles, the listings in list pages follow a consistent layout
and are only used for listing articles that share a common property.

21https://en.wikipedia.org/wiki/Wikipedia:Notability
22https://en.wikipedia.org/wiki/List_of_greatest_hits_albums

https://en.wikipedia.org/wiki/Wikipedia:Notability
https://en.wikipedia.org/wiki/List_of_greatest_hits_albums

2.3. WIKIPEDIA 27

Category

Contrary to list pages, categories are a formal construct in Wikipedia and serve
the purpose of categorizing pages in a hierarchical structure. This structure,
the Wikipedia Category Graph (WCG), is a directed but not acyclic graph. It
does not only contain categories used for categorising articles thematically
but also ones used for administrative purposes (e.g., the category Wikipedia
articles in need of updating23). The WCG has been used extensively for
taxonomy induction and has yielded highly accurate results [47, 120]. A
subgraph of the WCG contains list categories (i.e., categories starting with
the prefix Lists of), which organize many of the list pages in Wikipedia. For
example, the category Lists of albums24 contains the list page List of greatest
hits albums.

Other

Other content types include templates, which are reusable pieces of code or
markup that help maintain consistency across articles and simplify the editing
process. They are configured and referenced directly in the Wiki markup
of a page. For example, infoboxes are realized via templates. A dedicated
infobox template is implemented for every type of article (e.g., musicians).
Further content types are disambiguation pages for the disambiguation of
homonymous articles and redirects for linking synonymous articles.

2.3.4 Versions

Throughout this thesis, we use three different versions of Wikipedia, which
we denote as follows:

• Wikipedia2016: A dump of the English Wikipedia from October 2016.
• Wikipedia2020: A dump of the English Wikipedia from October 2020.
• Wikipedia2022: A dump of the English Wikipedia from August 2022.

Wikipedia dumps can be downloaded at https://dumps.wikimedia.org/.

23https://en.wikipedia.org/wiki/Category:Wikipedia_articles_in_need_of_up
dating

24https://en.wikipedia.org/wiki/Category:Lists_of_albums

https://dumps.wikimedia.org/
https://en.wikipedia.org/wiki/Category:Wikipedia_articles_in_need_of_updating
https://en.wikipedia.org/wiki/Category:Wikipedia_articles_in_need_of_updating
https://en.wikipedia.org/wiki/Category:Lists_of_albums

28 CHAPTER 2. THEORETICAL BACKGROUND

CHAPTER 3

Knowledge Graphs on the Web

KGs are an emerging form of knowledge representation. While Google placed
the term Knowledge Graph in the business domain and promoted it as a means
to improve their search results, they are used in many applications today.
While companies such as Google, Microsoft, and Facebook have their own
non-public KGs, there is also a larger body of publicly available KGs, such as
DBpedia or Wikidata. This chapter provides an overview and a comparison of
those publicly available KGs. We introduce them according to their extraction
techniques and give insights into their contents, size, coverage, and mutual
overlap.

The work presented in this chapter is based on the following publication:

Nicolas Heist, Sven Hertling, Daniel Ringler and Heiko Paulheim.
Knowledge Graphs on the Web – an Overview. In Knowledge Graphs
for eXplainable Artificial Intelligence: Foundations, Applications and
Challenges, vol. 47, pp. 3-22, 2020, IOS Press.1,2,3 [66]

1The contributions of the author to this publication are as follows: computation of KG
statistics, analysis of overlap and gain between KGs.

2The original publication includes an initial version of CaLiGraph in the comparison. We
omit it here as this thesis has a dedicated chapter with a detailed analysis of CaLiGraph.

3The original publication considers only assertions in the namespace of the KG and lacks
deduplication at some points; we reran the experiments to consider all assertions exactly
once for a more consistent comparison.

29

30 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

3.1 Overview

There are different techniques for creating KGs. The most common ones
are (1) manual curation, (2) creation from (semi-)structured sources, and
(3) creation from unstructured sources. Some KGs also use a mix of those
techniques.

3.1.1 Manual Curation

Cyc [108] is one of the oldest KGs; the Cyc project dates back to the 1990s.
Cyc was created along with its own language (CycL), which provides a large
degree of formalization.

While a comparatively small group of experts developed Cyc, the idea
of Freebase [185] was to establish a large community of volunteers, similar
to Wikipedia. To that end, the schema of Freebase was kept fairly simple to
lower the entrance barrier as much as possible. Freebase was acquired by
Google in 2010 and shut down in 2014.

Wikidata [195] also uses a crowd-editing approach. In contrast to Cyc and
Freebase, Wikidata also imports large datasets, such as several bibliographies
of national libraries. Porting the data from Freebase to Wikidata is also a
long standing goal [185].

Curating a KG manually can be a huge effort. The total cost of develop-
ment for Cyc has been estimated as 120 Million USD. This corresponds to a
total cost of 2-6 USD per single axiom in Cyc [148].

3.1.2 Creation from (Semi)-Structured Sources

A more efficient way of KGC is the use of structured or semi-structured
sources. Wikipedia is a commonly used starting point for KGs such as
DBpedia [104] and Yet Another Great Ontology (YAGO) [184].

DBpedia mainly uses infoboxes in Wikipedia. Those are manually mapped
to a pre-defined ontology; the mapping is crowd-sourced using a Wiki and
a community of volunteers. Given those mappings, the DBpedia Extraction
Framework creates a graph in which each page in Wikipedia becomes an
entity, and all values and links in an infobox become attributes and edges in
the graph.

YAGO is built on the idea of combining a small but well-crafted top-level
schema with a large but messy taxonomy, thereby creating a unified and
cleaned schema. YAGO uses a process similar to DBpedia but classifies
instances based on the category structure and WordNet [128] instead of
infoboxes. Further, other data sources from various domains are ingested.
For example, YAGO integrates various language editions of Wikipedia into a
single graph and represents temporal facts with meta-level statements, i.e.,

3.1. OVERVIEW 31

RDF reification. From version 4 on, YAGO uses Wikidata and Schema.org as
primary data sources [152].

A similar approach, i.e., the combination of information in Wikipedia and
WordNet, is used by BabelNet [138]. The main purpose of BabelNet is the
collection of synonyms and translations in various languages, so this KG is
particularly well suited for supporting multi-language applications. Similarly,
ConceptNet [181] collects synonyms and translations in various languages,
integrating multiple third-party KGs itself.

DBkWik [75] uses the same codebase as DBpedia but applies it to a
multitude of Wikis like Jedipedia4 or Music Hub.5 This leads to a graph with
larger coverage and level of detail for many long-tail entities and is highly
complementary to DBpedia. However, the absence of a central ontology and
mappings, as well as the existence of duplicates across Wikis, which might
not be trivial to detect, impose several challenges not present in DBpedia.

Another structured data source is contained in structured annotations
in Web pages using techniques such as RDFa, Microdata, and Microformats
[127]. While the pure collection of those could, in theory, already be con-
sidered a KG, that graph would be rather disconnected and consist of a
plethora of small, disconnected components [146]. It would require addi-
tional cleanup for compensating irregular use of the underlying schemas and
shortcomings in the extraction [126]. A consolidated version of this data
into a more connected KG has been published under the name VoldemortKG
[188].

3.1.3 Creation from Unstructured Sources

Extracting a KG from semi-structured sources is considered easier than
from unstructured sources. However, there is much more information in
unstructured sources (such as text). Therefore, extracting knowledge from
unstructured sources has also been proposed.

Never-Ending Language Learner (NELL) [27] is an example of extracting a
KG from free text. NELL was originally trained with a few seed examples and
continuously runs an iterative coupled learning process. In each iteration,
facts are used to learn textual patterns to detect those facts, and patterns
learned in previous iterations are used to extract new facts, which serve
as training examples in later iterations. NELL introduced a feedback loop
incorporating occasional human feedback to improve the quality.

WebIsA [177] also extracts facts from free text but focuses on creating a
large-scale taxonomy. For each extracted fact, rich metadata are collected,
including the sources, the original sentences, and the patterns used to extract
a particular fact. Those metadata are exploited to compute a confidence

4https://jedipedia.fandom.com/
5https://music.fandom.com/

https://jedipedia.fandom.com/
https://music.fandom.com/

32 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

score for each fact [74].

3.2 Comparison

Whenever a KG is to be used in an application, it is important to determine
which KG is best suitable for the application at hand. The KGs mentioned
above differ in their content, level of detail, etc. Hence, this chapter will dis-
cuss several characteristics of KGs and provide insights into their differences.

3.2.1 General Metrics

The most straightforward metrics consider the mere amount of information
contained in a KG. Measures that may be used include:

• The number of instances in a graph
• The number of assertions (or edges between entities)
• The average and median linkage degree (i.e., how many assertions per

entity does the graph contain?)

These metrics hint at the utility of a KG – the more information about the
domain at hand is present (i.e., the more instances are represented in the
KG and the more detailed that information is), the more can an application
benefit in providing better results or better interpretations.

Another set of metrics can be defined for the schema or ontology level of
a KG:

• The number of classes defined in the schema
• The number of relations defined in the schema
• The average depth and width (branching factor) of the class hierarchy6

• The complexity of the schema

While the instance-based metrics focus more on the coverage of a domain
in a KG, these schema-level metrics provide information about the richness
and formality of that knowledge. They determine which techniques to use –
e.g., while more formal, very complex ontologies will call for using ontology
reasoning, lightweight but large-scale ontologies will be better exploited by
statistical and distributional approaches.

Table 3.1 depicts those metrics for some of the KGs discussed above.
ConceptNet and WebIsA are omitted since they do not distinguish a schema
and instance level (i.e., there is no specific distinction between a class and an
instance), which does not allow for computing those metrics meaningfully.
For Cyc, which is only available as a commercial product today, we used the
free version OpenCyc, which has been available until 2017. Appendix A.1
holds a complete list of data sources used in this chapter.

6While this could also be done for the property hierarchy, extensive property hierarchies
are rather rare in common KGs.

3.2. COMPARISON 33

DBpedia YAGO Wikidata BabelNet
Instances 5,044,223 6,349,359 52,252,549 7,735,436
Assertions 71,630,413 263,433,941 1,763,622,910 178,982,397
Avg. linking degree 2.77 1.89 6.30 0.00
Median ingoing edges 0 0 1 0
Median outgoing edges 15 35 73 9
Classes 760 819,292 2,356,259 6,044,564
Relations 1355 77 6,236 22
Avg. depth of class tree 3.51 6.61 6.43 4.11
Avg. branching factor of class tree 4.53 8.48 36.48 71.0
Ontology complexity SHOFD SHOIF SOD SO

Cyc NELL Voldemort
Instances 122,441 5,120,688 55,861
Assertions 1,123,448 40,341,016 633,997
Avg. linking degree 3.34 4.20 0
Median ingoing edges 0 0 0
Median outgoing edges 3 3 5
Classes 116,821 1,187 621
Relations 148 440 294
Avg. depth of class tree 5.58 3.13 3.17
Avg. branching factor of class tree 5.62 6.37 5.40
Ontology complexity SHOIFD SROIF SH

Table 3.1: General metrics of open KGs.

From those metrics, it can be observed that the KGs differ in size by
several orders of magnitude. The sizes range from 50,000 instances (in
Voldemort) to 50 million instances (in Wikidata), so the latter is larger by a
factor of 1,000; the same holds for assertions. Concerning the linkage degree,
Wikidata is much more richly linked than the other graphs.

Fig. 3.1 shows an overview of the KGs considered. We follow the con-
ventions of the LOD cloud, which are used to depict linked datasets and
their connections (cf. Fig. 2.3 on page 16). The size of the circles is propor-
tional to the number of instances, and the strength of the connecting lines is
proportional to the number of links [174].

The KGs also differ strongly in the characteristics of their schema. DBpe-
dia and NELL have comparably small schemas, while Wikidata and BabelNet
build deep and detailed taxonomies. For example, while NELL does not
define detailed subclasses for Scientist,7 DBpedia defines four subclasses,8

and Wikidata has more than 600.9 Voldemort, on the other hand, reuses the
Schema.org ontology, which is comparably small [124].

Looking at the complexity, it is unsurprising that Cyc, originating in classic
AI research and strongly building on logical rules [24, 108], has the highest
complexity. Wikidata, BabelNet, and Voldemort have low complexity; the
other graphs are somewhere in between.

7http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:scientist
8http://dbpedia.org/ontology/Scientist
9https://www.wikidata.org/wiki/Q15976092

http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:scientist
http://dbpedia.org/ontology/Scientist
https://www.wikidata.org/wiki/Q15976092

34 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

DBpedia

YAGO

Wikidata

NELL

BabelNet

OpenCyc

CaLiGraph

Voldemort

Figure 3.1: Depiction of the size and linkage degree of open KGs. Although
NELL and DBpedia are not explicitly interlinked, NELL contains links to
Wikipedia, which can be trivially translated to DBpedia links.

3.2.2 Contents

The KGs do not only differ in their size and level of detail but also in their
contents. The most straightforward way to assess the content focus of a KG
is to look at the size of its classes. Figs. 3.2 to 3.8 show graphic depictions of
those class sizes. The diagrams were created starting from the most abstract
class and following the class hierarchy to the largest respective subclasses.

At first glance, the figures reveal differences in the development of the
taxonomies. While Cyc builds a formal ontology with very abstract top-level
categories such as partially intangible thing or thing that exists in time, the
more pragmatic classification in DBpedia and Voldemort (the latter using
Schema.org as an ontology) has top-level classes such as Place or Person. The
reason for these differences lies in the origins of the respective KGs: While
Cyc’s classification was created by AI researchers, the ontology in DBpedia is
the result of a crowdsourcing process [148]. The same holds for Schema.org,
which is a pragmatic effort of a consortium of search engine developers.

Moreover, the diagrams reveal some differences in the contents. The
main focus of DBpedia is on persons (and their careers), as well as places,
works, and species. Wikidata also strongly focuses on works (mainly due to
the import of entire bibliographic datasets), while Cyc, BabelNet and NELL
show a more diverse distribution.

3.2. COMPARISON 35

Figure 3.2: Instances in DBpedia

3.2.3 Looking into Details

To obtain deeper insights into which classes are more prominent in which
KGs, and, ultimately, which KGs are suitable for building AI systems in a
specific domain, it is useful to not only look at the number of instances but
also the level of detail in which those instances are represented (i.e., the
linkage degree and number of assertions per instance).

Table 3.2 depicts such a detailed view for ten prominent classes:

• Person
• Organization
• Populated place (city, country, etc.)
• Uninhabited place (mountain, lake, etc.)
• Species

36 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

Figure 3.3: Instances in YAGO

• Work (book, movie, etc.)
• Building
• Gene
• Protein
• Event

The global trend observed in this table is that Wikidata has the largest
number of instances and the largest detail level in most classes. However,
there are differences from class to class. While Wikidata contains a large
number of works, YAGO is a good source of events. NELL often has fewer
instances, but a larger level of detail, which can be explained by its focus on
more prominent instances.

The contrast between the average and the median degree reveals a few
differences. For example, BabelNet’s instance counts are similar to DBpedia’s

3.2. COMPARISON 37

D
B

pe
di

a
YA

G
O

W
ik

id
at

a
C

la
ss

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

Pe
rs

on
1,

24
3,

40
0

1.
55

0
19

2,
21

3,
43

1
0.

07
0

53
5,

25
0,

84
0

10
.1

4
2

44
O

rg
an

iz
at

io
n

28
6,

48
2

10
.3

0
21

49
8,

75
0

4.
38

0
33

1,
66

5,
31

9
41

.4
0

1
15

Po
pu

la
te

d
pl

ac
e

51
3,

64
2

7.
43

0
18

31
9,

21
0

4.
96

0
40

2,
35

5,
55

9
4.

57
1

25
U

ni
nh

ab
it

ed
pl

ac
e

67
,4

95
0.

93
0

17
16

0,
61

5
0.

65
0

26
1,

51
6,

89
0

1.
31

1
19

Sp
ec

ie
s

30
6,

10
4

2.
57

0
16

2,
55

3,
36

9
0.

06
0

50
11

0
22

.5
6

1
41

W
or

k
49

6,
07

0
0.

82
0

18
1,

17
5,

12
5

0.
92

0
27

34
,5

85
,8

28
2.

84
1

14
B

ui
ld

in
g

19
7,

83
1

0.
42

0
15

27
4,

60
6

0.
27

0
32

2,
29

1,
16

8
1.

60
1

15
G

en
e

4
0.

50
0.

5
14

.5
12

,3
51

0.
00

0
12

17
2,

12
8

2.
27

1
20

Pr
ot

ei
n

2,
74

7
0.

05
0

7
10

,9
35

0.
00

0
33

84
,1

63
2.

15
2

27
Ev

en
t

76
,0

29
1.

97
0

14
56

2,
58

3
1.

22
0

31
57

9,
55

9
2.

74
1

12
B

ab
el

N
et

C
yc

N
EL

L
C

la
ss

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

Pe
rs

on
2,

38
4,

06
5

0.
00

0
17

12
,7

84
0.

04
0

3
90

,6
01

8.
93

0
5

O
rg

an
iz

at
io

n
76

4,
66

2
0.

00
0

12
26

,2
76

5.
70

0
5

41
,6

46
6.

31
0

4
Po

pu
la

te
d

pl
ac

e
50

9,
25

7
0.

01
0

9
8,

59
6

20
.6

3
0

12
28

,3
59

39
.9

8
0

5
U

ni
nh

ab
it

ed
pl

ac
e

70
,2

09
0.

02
0

11
64

2.
05

1
12

15
8,

87
9

3.
83

0
3

Sp
ec

ie
s

6,
53

6
0.

01
0

17
0

-
-

-
3,

27
3

0.
87

0
4

W
or

k
49

1,
05

7
0.

00
0

12
19

,9
08

0.
91

0
2

27
,0

38
1.

09
0

4
B

ui
ld

in
g

52
0

0.
00

0
8

78
6

0.
14

0
4

50
,6

99
4.

51
0

4
G

en
e

52
2

0.
00

0
5

8
0

0
3

0
-

-
-

Pr
ot

ei
n

10
,3

99
0.

00
0

3
0

-
-

-
0

-
-

-
Ev

en
t

9,
90

4
0.

00
0

13
68

5
0.

86
0

2
37

,2
03

0.
65

0
4

Vo
ld

em
or

t
C

la
ss

In
st

an
ce

s
A

vg
.

D
eg

.
M

ed
-in

M
ed

-o
ut

Pe
rs

on
36

,3
70

0.
00

0
5

O
rg

an
iz

at
io

n
5,

98
4

0.
00

0
1

Po
pu

la
te

d
pl

ac
e

1,
27

8
0.

00
0

5
U

ni
nh

ab
it

ed
pl

ac
e

60
0.

00
0

4
Sp

ec
ie

s
0

-
-

-
W

or
k

6,
67

3
0.

00
0

3
B

ui
ld

in
g

10
8

0.
00

0
5

G
en

e
0

-
-

-
Pr

ot
ei

n
0

-
-

-
Ev

en
t

19
8

0.
00

0
4

Ta
bl

e
3.

2:
D

et
ai

ls
ta

ti
st

ic
s

fo
r

se
le

ct
ed

cl
as

se
s

in
op

en
K

G
s.

38 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

Figure 3.4: Instances in Wikidata

for some classes, e.g., uninhabited places or works. While the average
linkage degree is higher in DBpedia, the median is comparable to BabelNet.
This hints at a more uneven distribution of information in DBpedia, while
BabelNet has a more constant distribution of statements per instance.

3.3 Linkage and Overlap

Since KGs differ so strongly in size, coverage, and level of detail, combining
information from multiple KGs for implementing one application is often
beneficial. To estimate the value of such a combination, we determine the
overlap of the KGs.

As shown in Fig. 3.1, many KGs contain explicit interlinks. Those links,
usually in the form of owl:sameAs links, express that entities in two KGs are

3.3. LINKAGE AND OVERLAP 39

Figure 3.5: Instances in BabelNet

the same (or, more precisely, that they refer to the same real-world entity)
[60]. In other cases, such links can be generated indirectly, e.g., if a KG
contains links to Wikipedia pages, which can be easily mapped to entities in
DBpedia and YAGO.

Even if those links provide a first hint at the overlap of KGs, and further
links can be found by exploiting the transitivity of the owl:sameAs property
[12], they do not provide a complete picture. Due to the OWA, which holds
for KG interlinks as well, there might always be more links than the ones
which are explicitly or implicitly provided by the KGs.

3.3.1 Method

To estimate the actual number of interlinks, we use a method first discussed
in Ringler and Paulheim [165], which builds on a set of existing links and

40 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

Figure 3.6: Instances in OpenCyc

heuristic link discovery:

1. We use different heuristics to discover links between two KGs automati-
cally, e.g., different string similarity measures [45, 139].

2. Based on the existing, incomplete set of interlinks, we measure recall
and precision of the individual heuristics [170].

3. With the help of those recall and precision figures, we can estimate
the actual number of interlinks. After repeating the procedure with
multiple heuristics, we can use the average of those estimates.

Given that the actual number of links is C (which is unknown), the number
of links found by a heuristic is F , and that the number of correct links in F

3.3. LINKAGE AND OVERLAP 41

Figure 3.7: Instances in NELL

is F+, we define recall and precision as

R :=
|F+|
|C|

(3.1)

P :=
|F+|
|F |

(3.2)

Resolving by |F+| and combining the equations, we estimate |C| as

|C| = |F | · P · 1
R

(3.3)

Thus, we can estimate C given F , R, and P . A more intuitive interpretation
of the last equation is that P is a measure of how strongly the heuris-
tic overestimates the number of actual interlinks (thus, F is reduced by

42 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

Figure 3.8: Instances in Voldemort

multiplication with P), and R is a measure of how strongly the heuristic
underestimates the number of actual interlinks (thus, F is divided by R).

Ringler and Paulheim [165] have shown that although F varies greatly
across different heuristics, the estimate C is fairly stable. For producing
the estimates in this chapter, we have used the following heuristics: string
equality, scaled Levenshtein (thresholds 0.8, 0.9, and 1.0), Jaccard (0.6, 0.8,
and 1.0), Jaro (0.9, 0.95, and 1.0), JaroWinkler (0.9, 0.95, and 1.0), and
MongeElkan (0.9, 0.95, and 1.0). We report the estimated overlap as the
average of these 16 metrics.

3.3.2 Findings

To analyze the benefit of the combination of different KGs, we depict the
number of estimated links both in relation to (a) the entities existing in the
larger of the two KGs (Fig. 3.9) as well as (b) in relation to the links that
exist explicitly or implicitly (Fig. 3.10). From (a), we can estimate the gain

3.4. CONCLUSION AND OUTLOOK 43

in knowledge of combining two KGs (i.e., if only a small fraction of one KG
is also contained in the other and vice versa, such a combination adds a lot
of information). From (b), we can get insights into whether or not the set of
existing links is sufficient for such a combination.

Fig. 3.9 shows that in most cases, the larger of two KGs contains most
of the entities of the smaller one, i.e., the set of entities of a class in the
larger KG is usually a superset of that set in the smaller one. For example,
as depicted in Table 3.2, Wikidata contains about twice as many persons
as DBpedia and YAGO. A value close to zero for the overlap implies that
DBpedia and YAGO contain almost no persons which are not contained in
Wikidata. In conclusion, combining Wikidata with DBpedia or YAGO for
better coverage of the Person class would not be beneficial.

A notable exception is BabelNet, which often contains complementary
instances. For example, DBpedia and BabelNet contain 1.2M and 2.4M
instances of the class Person, respectively, while DBpedia and BabelNet
together are estimated to 2.9M instances of the class Person. The reasons for
the high complementarity of DBpedia/YAGO and BabelNet are their sources
(only English Wikipedia vs. multiple language editions) and extraction
mechanisms.

Fig. 3.10 shows that the linkage between DBpedia, YAGO and BabelNet
is mostly complete (i.e., most of the common instances are also explic-
itly linked). This is not very surprising since they are all generated from
Wikipedia with different means. On the other hand, NELL, OpenCyc, and
Voldemort have a much lower degree of linkage. This shows that links be-
tween KGs are only complete where they are trivial to create, and combining
different KGs otherwise requires improving the interlinking as a preliminary
step.

3.4 Conclusion and Outlook

This chapter provided an overview of publicly available, cross-domain KGs
on the Web. We have compared them according to different metrics, which
might be helpful to implement an AI application in a given domain.

Besides the metrics used for this comparison, there are quite a few more
which help in selecting and assessing a given KG. For example, data quality
in KGs has not been considered in this chapter since there are already quite
elaborate surveys covering this aspect [42, 214].

So far, we have measured the overlap of KGs only based on entities.
Another helpful metric would be the overlap on the statement level. Even
if two KGs cover the same entity, the information they contain about that
entity might still be complementary. For example, for the entity University of
Mannheim, DBpedia has the exact number of undergraduate students, PhD

44 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

OrganisationPerson

Architecural Structure Gene

Protein Event

Populated Place Natural Place

Species Work

Figure 3.9: Fraction of entities in a pair of KGs which is not contained in the
larger of the two graphs.

3.4. CONCLUSION AND OUTLOOK 45

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

D Y W B N O V D Y W B N O V
D 1 D
Y 0,8 Y
W 0,6 W
B 0,4 B
N 0,2 N
O 0 O
V V

Architecural Structure Gene

Protein Event

Person Organisation

Populated Place Natural Place

Species Work

Figure 3.10: Existing entities in two KGs in relation to the number of links.

46 CHAPTER 3. KNOWLEDGE GRAPHS ON THE WEB

students, and so on.10 Wikidata lists all faculties11 and contains a list of
researchers employed at the university.12 The density of information differs
as well: while YAGO lists 3 alumni of the University of Mannheim,13 DBpedia
lists 11 and Wikidata even 85 alumni.14 Even contradicting information
can be found [22]: for example, DBpedia and Wikidata provide a different
number of students, and Wikidata and YAGO provide different founding
dates of the University of Mannheim.

Developing cross-domain KGs is an active field of research, and new
developments emerge occasionally. They differ in the data they use and/or
the method of extraction:

• DBkWik [75, 76, 82] uses the extraction mechanism of DBpedia and
applies it to a multitude of Wikis. The intermediate result is a collec-
tion of a few thousand isolated KGs, which must be integrated into a
coherent joint KG [78].

• Chaudron [183] uses Wikipedia as a source and focuses on quantifiable
values (e.g., sizes, weights, etc.). Besides the mere extraction, Chau-
dron uses sophisticated methods for recognizing and converting units
of measurement.

• The Linked Hypernym Dataset (LHD) [96], like the aforementioned
WebIsALOD, focuses on the extraction of a hypernym graph. It uses a
deep linguistic analysis of the first paragraph in Wikipedia.

• ClaimsKG [186] extracts claims from fact-checking Web pages, such as
politifact, and interlinks them with other KGs, such as DBpedia, which
also allows for finding related claims.

The methods discussed in this chapter can be used to assess those emerging
KGs and discuss their added value over existing ones. So, for example, for
the above-mentioned DBkWik, we found that it is highly complimentary to
DBpedia: 95% of all entities in DBkWik are not contained in DBpedia and
vice versa.

10http://dbpedia.org/page/University_of_Mannheim
11https://www.wikidata.org/wiki/Q317070
12https://w.wiki/7UU
13https://bit.ly/2U4wL0A
14https://w.wiki/7UV

http://dbpedia.org/page/University_of_Mannheim
https://www.wikidata.org/wiki/Q317070
https://w.wiki/7UU
https://bit.ly/2U4wL0A
https://w.wiki/7UV

CHAPTER 4

Automated Knowledge Graph Construction

Having reviewed the content of all kinds of general-purpose open KGs in the
previous chapter, we focus on the construction mechanisms of these KGs in
this chapter. We are interested in AKGC, so we only consider automatically
extracted KGs. Apart from manually curated KGs, this excludes KGs relying
on human-in-the-loop mechanisms [157] or dataset-dependent mappings
(e.g., via RDF Mapping Language (RML) [8, 86]) to extract instance data.

We define a pipeline for AKGC, which we then use to compare the extrac-
tion mechanisms of the KGs DBpedia, YAGO, NELL, BabelNet, and DBkWik.
We formulate advantages and disadvantages to compile them into a list of
open challenges in AKGC.

The work presented in this chapter is based on the following submission:
Nicolas Heist and Heiko Paulheim. CaLiGraph: A Knowledge Graph

from Wikipedia Categories and Lists. In Semantic Web Journal (SWJ),
2024. [under review]

4.1 A Pipeline for Automated Knowledge Graph Con-
struction

AKGC is typically not an end-to-end ML task but consists of multiple steps,
each with unique requirements and challenges [201]. Fig. 4.1 lists the steps
in the order they will be addressed in the CaLiGraph extraction framework,
together with actual examples. The pipeline consists of the two high-level
blocks of Ontology Construction (OC) and Knowledge Graph Population (KGP),
with the former being responsible for the definition of the ontology necessary
to describe the domain (TBox) and the latter being responsible for populating

47

48 CHAPTER 4. AUTOMATED KG CONSTRUCTION

O
N

TO
LO

G
Y

C
O

N
ST

R
U

C
TI

O
N

K
N

O
W

LE
D

G
E

G
R

A
PH

PO
PU

LA
TI

O
N

Class & Property
Definition

Taxonomy
Induction

Axiom
Learning

Information Extraction
.

Entity Linking
.Named Entity

Recognition
Named Entity

Disambiguation
Entity
Typing

Relation
Extraction

 Gilby Clarke
 --- -- ---- -- - ----
 Discography
 -- ---- - --- - ---
 Albums with Guns N' Roses
 - The Spaghetti Incident? (1993)
 - Greatest Hits (1999)
 Albums with Nancy Sinatra
 - California Girl
 Solo albums
 Name Year --
 Rubber 1998 ---
 Greatest Hits 2001 -
 ...

Albums

Albums
by artist

Metallica
albums

Guns N' Roses
albums

Nine Inch Nails
albums

...

Excerpt of the Wikipedia category graph

Excerpt of "Gilby Clarke" Wikipedia page

Album

rdfs:subClassOfGuns
N' Roses

album

rd
fs
:s
ub

C
la
ss
O
f

Nine
Inch Nails

album

Metallica
album artist

rdf:typeowl:onProperty

owl:hasValue

restriction1

owl:
Restriction

Guns N'
Roses

Gilby
Clarke

Rubber
The

Spaghetti
Incident?

Greatest
Hits

(GNR)
California

Girl

Greatest
Hits
(GC)

Nancy
Sinatra

artist artist artist

Tasks

Graph

Tasks

Graph

rdf:type

rdf:type

1 2 3

4 5 6 7

Figure 4.1: A pipeline for AKGC (taken from Fig. 1.1 on page 6).

the graph with data using concepts of the ontology (ABox). Whether the
steps are executed once or iteratively, in this sequence or another, depends
on the KG to be extracted.
OC steps:

1. Class & Property Definition Define relevant classes and properties of
the domain

2. Taxonomy Induction Discover hierarchical relationships among classes
and properties

3. Axiom Learning Formulate constraints for classes (e.g., disjointnesses)
and properties (e.g., domains/ranges)

4.2. CONSTRUCTION OF GENERAL-PURPOSE KNOWLEDGE GRAPHS 49

Knowledge Graph Population (KGP) steps:

4. Named Entity Recognition Identify mentions of named entities in a
given data corpus

5. Named Entity Disambiguation Add the mentions to the KG by creating
new or updating existing entities

6. Entity Typing Discover type assertions for the entities in the KG using
the data corpus

7. Relation Extraction Discover relation assertions for the entities in the
KG using the data corpus

While the steps in the OC block may be conducted manually for a suf-
ficiently small domain, the steps in the KGP block are always automated
processes using a pre-defined data corpus.

4.2 Construction of General-Purpose Knowledge Graphs

Given the pipeline above, we discuss the construction processes of automati-
cally extracted general-purpose KGs. We only consider publicly accessible
KGs and disregard closed-source industry-created KGs like those from Mi-
crosoft, Facebook, Amazon or ebay [142]. Fig. 4.2 shows a timeline with
the major milestones and data sources of the public KGs discussed in the
following.

4.2.1 DBpedia

OC DBpedia provides a Mappings Wiki1 where the community defines
classes, properties, datatypes and restrictions. Further, they map infoboxes
to types in the schema and infobox keys to properties. The extraction is
conducted automatically based on these definitions.

KGP DBpedia mints one entity per article in Wikipedia. A disambiguation
of entities is unnecessary as they are annotated with links in the markup.
Type assertions are derived from infobox types, and relation assertions are
derived from infobox keys.

1https://mappings.dbpedia.org

https://mappings.dbpedia.org

50 CHAPTER 4. AUTOMATED KG CONSTRUCTION

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2022
2023

YEAR

N
ELL

Project
Start

V1
V2

V3
V3.2

V3.4
V3.6, Spotlight

V3.7,
M

ultilinguality

V3.9
V2014

V2015.04,
V2015.10,
⇔

W
ikidata

V2016.04,
V2016.10

D
atabus,

M
onthly R

elease C
ycle

V1,
W

ordN
et & W

ikipedia
V2,
Spatial & Tem

poral
V3,
M

ultilinguality
V4,
Schem

a.org & W
ikidata

V4.5

Learning started,
C

lueW
eb 2009

(500M
 w

eb pages)

10M
beliefs

20M
beliefs

70M
beliefs

100M
 beliefs,

+C
lueW

eb 2012
(1.2B w

eb pages)

120M
 beliefs,

D
iscontinued

V1,
6 langs.

V2, 50 langs.
V3,
> 200 langs. V3.5V3.6

V3.7
V4.0

V5.0,
500 langs.

PoC
 (248 w

ikis)
V1.0 (12.8K w

ikis)
V1.1, Initial Fusion & Schem

a Induction

V2.0
(40K w

ikis)

Figure
4.2:

A
tim

eline
w

ith
m

ajor
m

ilestones
ofpopular

public
K

G
s.

4.2. CONSTRUCTION OF GENERAL-PURPOSE KNOWLEDGE GRAPHS 51

4.2.2 YAGO

OC Up to version 3 [120], YAGO automatically combines WordNet [128]
with the WCG to create a large ontology. They add axioms for some classes
derived from the WCG using hand-crafted rules. In version 4 [152], they
fundamentally change the KG by combining the ontology from Schema.org
with the one from Wikidata to create a cleaned, “reason-able“ version of
Wikidata. They define manual mappings between Schema.org and Wikidata
classes to create the combined ontology and add simple SHACL constraints
to ensure data validity.

KGP Up to version 3, YAGO performs KGP similarly to DBpedia, using
articles as entities and extracting assertions from infoboxes. Additionally,
they define an enhancement process where additional entities may be added
from any external sources or tools. In version 2 [81], temporal and geospatial
data is integrated; in version 3 [120], multilingual data from other Wikipedia
language chapters is added. In version 4, entities and assertions are taken
from Wikidata.

4.2.3 NELL

OC NELL started with an initial ontology defining hundreds of concepts and
binary relations. During runtime, the ontology is extended with additional
concepts and relations. Extraction in NELL is based on two components:
Learning Tasks and Coupling Constraints [131]. The former are functions that
process inputs like text and images to generate an output (e.g., an embedding
of a concept). The latter couples multiple Learning Tasks to introduce logical
constraints (e.g., entities of a subclass are also entities of a superclass).

KGP NELL is bootstrapped with a dozen examples for each concept and
relation. New entities and assertions are added with each iteration through
outputs from the Learning Tasks. The content of the KG is refined through it-
erative application of these tasks and the feedback from Coupling Constraints
and occasional user input.

4.2.4 BabelNet

OC The ontology consists of concepts derived from senses in WordNet as
well as articles and categories in Wikipedia [47]. They connect the two
resources by mapping senses to articles automatically. In early versions, only
lexical properties are used. In the recent version, they integrate related KGs
like Wikidata and YAGO, taking over their semantic properties as well.

52 CHAPTER 4. AUTOMATED KG CONSTRUCTION

KGP Initially, the graph was populated with entities from Wikipedia articles.
From WordNet, lexical and semantic pointers between synsets are extracted
as relations. Relations between Wikipedia articles were initially extracted
as unlabeled relations. In the recent version, efforts have been made to
extract the semantics of the relations. Further, assertions from related KGs
like Wikidata and YAGO are included [137].

4.2.5 DBkWik

OC DBkWik uses a variation of the DBpedia extraction framework to extract
data from Wikis. Contrary to DBpedia, DBkWik has no community-defined
mappings. Instead, they generate a shallow schema from the infoboxes of
each Wiki and fuse these schemas afterwards. Then, they enrich the unified
schema with subclass relations and restrictions for domains and ranges [77].

KGP Entities are derived from articles in the Wikis, and assertions are
derived from infoboxes. Similar to the schema, entities must also be matched
to avoid duplicates from overlapping Wikis [78].

4.3 Limitations and Challenges

In Table 4.1, we list the advantages and limitations of the previously discussed
KGs. Following, we distil these into a (incomplete) list of challenges (mostly
complementary to challenges mentioned by Weikum [201]):
(C1) Ontology with expressive, fine-grained types. An expressive and
detailed ontology is a prerequisite for comprehensive data modelling. While
some KGs have very detailed taxonomies already, there is a lack of axioms
that explicitly describe the intent of their types.
(C2) Coverage of long-tail entities. Identifying and disambiguating long-tail
entities is difficult as the data source contains, by definition, only limited
information about them; most KGs choose to use a fixed set of entities like
the set of Wikipedia articles.
(C3) Maintain high data quality. The quality of automatically constructed
KGs will never be perfect, but KGs should have a certain quality to be useful
in downstream tasks (typically, a correctness of 95% is desired [201]). Apart
from the methods used, quality depends on the data sources targeted during
extraction.
(C4) Coverage of unknown properties. Many KGs use a fixed schema
with pre-defined properties to model knowledge. Extending this schema is a
challenging task; potential errors greatly impact the KG quality.

Without a doubt, there are many more challenges to address. Weikum
[201], for example, mentions additional challenges like the support of analyt-

4.3. LIMITATIONS AND CHALLENGES 53
K

G
A

dv
an

ta
ge

s
Li

m
it

at
io

ns

D
B

pe
di

a

Th
e

on
to

lo
gy

is
ha

nd
-c

ur
at

ed
an

d,
he

nc
e,

of
hi

gh
qu

al
it

y.
En

ti
ti

es
an

d
as

se
rt

io
ns

ar
e

ex
tr

ac
te

d
fr

om
hi

gh
ly

st
ru

ct
ur

ed
da

ta
an

d
ar

e
of

hi
gh

qu
al

it
y

as
w

el
l.

D
ue

to
it

s
pi

on
ee

ri
ng

ro
le

of
re

pr
es

en
ti

ng
W

ik
ip

ed
ia

an
d

it
s

go
od

ac
ce

ss
ib

ili
ty

,D
Bp

ed
ia

se
rv

es
as

a
ce

nt
ra

l
hu

b
of

th
e

lin
ke

d
da

ta
w

eb
(c

f.
Se

ct
io

n
2.

1.
2)

.

Th
e

m
an

ua
lly

-d
efi

ne
d

sc
he

m
a

ha
s

lim
it

ed
ex

pr
es

si
ve

ne
ss

an
d

fle
xi

bi
lit

y.
D

Bp
ed

ia
is

bi
as

ed
to

w
ar

ds
po

pu
la

r
en

ti
ti

es
as

W
ik

ip
ed

ia
al

lo
w

s
ar

ti
cl

es
on

ly
if

th
e

su
bj

ec
t

is
of

ce
rt

ai
n

no
ta

bi
lit

y
(c

f.
Se

ct
io

n
2.

3.
3)

.
Fu

rt
he

r,
th

e
in

fo
rm

at
io

n
in

th
e

K
G

is
lim

it
ed

to
th

e
co

nt
en

t
of

th
e

in
fo

bo
xe

s
in

W
ik

ip
ed

ia
.

YA
G

O

B
ot

h
YA

G
O

3
an

d
YA

G
O

4
ha

ve
ve

ry
ex

pr
es

si
ve

an
d

fin
e-

gr
ai

ne
d

on
to

lo
gi

es
.

D
ue

to
m

an
y

ex
te

rn
al

so
ur

ce
s

an
d

th
e

co
nn

ec
ti

on
to

W
ik

id
at

a,
YA

G
O

ha
s

a
hi

gh
de

ns
it

y
of

as
se

rt
io

ns
pe

r
en

ti
ty

.

YA
G

O
3

su
ff

er
s

fr
om

th
e

sa
m

e
pr

ob
le

m
of

re
pr

es
en

ti
ng

ta
il

en
ti

ti
es

as
D

B
pe

di
a.

In
YA

G
O

4,
m

an
y

m
or

e
en

ti
ti

es
ar

e
in

ge
st

ed
th

ro
ug

h
th

e
sw

it
ch

to
W

ik
id

at
a,

w
hi

ch
ag

ai
n

in
tr

od
uc

es
th

e
lim

it
at

io
n

of
m

an
ua

lc
ur

at
io

n.
W

ha
t

ha
pp

en
s

to
th

e
m

an
ua

lly
de

fin
ed

m
ap

pi
ng

s
if

Sc
he

m
a.

or
g

an
d/

or
th

e
W

ik
id

at
a

ta
xo

no
m

y
ch

an
ge

is
un

cl
ea

r.

N
EL

L
Th

e
co

ve
ra

ge
of

sc
he

m
a,

en
ti

ti
es

,a
nd

as
se

rt
io

ns
in

N
EL

L
is

lim
it

ed
on

ly
by

th
e

av
ai

la
bl

e
in

fo
rm

at
io

n
in

th
e

da
ta

so
ur

ce
,w

hi
ch

co
ns

is
ts

of
a

W
eb

cr
aw

l.

Th
e

qu
al

it
y

is
co

m
pa

ra
bl

y
lo

w
as

N
EL

L
in

it
ia

lly
st

ar
ts

w
it

h
ve

ry
lit

tl
e

kn
ow

le
dg

e
an

d
us

es
on

ly
w

eb
re

so
ur

ce
s

w
it

h
oc

ca
si

on
al

hu
m

an
fe

ed
ba

ck
du

ri
ng

kn
ow

le
dg

e
ac

qu
is

it
io

n.
In

a
lin

k
pr

ed
ic

ti
on

ev
al

ua
ti

on
,N

EL
L

sc
or

ed
a

M
A

P
of

0.
35

in
20

10
an

d
0.

55
in

20
17

[1
31

].
R

efi
ne

m
en

t
it

er
at

io
ns

ar
e

ru
n

on
a

fix
ed

W
eb

cr
aw

l,
i.e

.,
re

ce
nt

kn
ow

le
dg

e
is

no
t

co
ns

id
er

ed
.

B
ab

el
N

et
B

ab
el

N
et

em
ph

as
iz

es
th

e
le

xi
co

gr
ap

hi
c

pe
rs

pe
ct

iv
e,

de
sc

ri
bi

ng
en

ti
ti

es
an

d
th

e
se

ns
es

of
th

e
w

or
ds

th
at

en
ti

ti
es

ar
e

re
fe

re
nc

ed
w

it
h.

W
hi

le
a

la
rg

e
va

ri
et

y
of

re
so

ur
ce

s
is

in
cl

ud
ed

th
ro

ug
h

th
e

ex
pl

oi
ta

ti
on

of
m

ap
pi

ng
s

to
ot

he
r

K
G

s,
lo

ng
-t

ai
le

nt
it

ie
s

an
d

ne
w

pr
op

er
ti

es
ar

e
no

t
ex

pl
ic

it
ly

ad
dr

es
se

d.

D
B

kW
ik

D
B

kW
ik

ta
ps

in
to

ad
di

ti
on

al
da

ta
so

ur
ce

s
by

ta
rg

et
in

g
th

ou
sa

nd
s

of
W

ik
is

fr
om

a
W

ik
if

ar
m

an
d

ca
n

in
te

gr
at

e
sp

ec
ia

liz
ed

kn
ow

le
dg

e
fr

om
m

an
y

do
m

ai
ns

.

C
re

at
in

g
a

co
m

pr
eh

en
si

ve
sc

he
m

a
fr

om
th

ou
sa

nd
s

of
W

ik
is

is
di

ffi
cu

lt
,e

sp
ec

ia
lly

w
he

n
lit

tl
e

in
fo

rm
at

io
n

ab
ou

t
th

e
in

di
vi

du
al

co
nc

ep
ts

an
d

en
ti

ti
es

is
av

ai
la

bl
e.

D
B

kW
ik

is
re

st
ri

ct
ed

to
en

ti
ti

es
de

fin
ed

in
th

e
in

ge
st

ed
W

ik
is

.

Ta
bl

e
4.

1:
A

dv
an

ta
ge

s
an

d
Li

m
it

at
io

ns
of

pu
bl

ic
ge

ne
ra

l-
pu

rp
os

e
K

G
s.

54 CHAPTER 4. AUTOMATED KG CONSTRUCTION

ical tasks by focusing on adding quantitative facts for entities or the insertion
of common-sense knowledge into KGs.

There is a clear trade-off between challenges (C1) and (C2) on the one
side and challenge (C3) on the other side. The more expressive and fine-
grained an ontology, and the more entities covered, the likelier errors are
introduced into the graph. This is especially true when the information
used to extract concepts and entities is vague (as is the case for very specific
concepts and long-tail entities). By relying on a combination of Wikipedia
and Wikidata as data sources, YAGO and BabelNet find a good balance of all
three challenges with their most recent versions.

NELL and DBkWik, on the other hand, use data sources where information
is more difficult to extract. Naturally, the average quality is lower, but the
KGs may contain valuable information that goes beyond what is contained
in structured elements of Wikipedia and Wikidata. NELL is also the only KG
equipped with an approach that tackles challenge (C4) to some extent, as
additional properties can be derived from the data source continuously.

Part II

Ontology Construction

55

CHAPTER 5

Deriving a Fine-Grained Ontology
from Wikipedia Categories and Lists

The WCG is a large network of categories structuring the articles in Wikipedia.
Hence, it can serve as an excellent foundation for a general-purpose tax-
onomy. This chapter presents an approach that combines the WCG with
Wikipedia list pages to form a large-scale taxonomy. The taxonomy has the
advantage of being deeply interlinked with categories, list pages and the
DBpedia ontology. These links bear the potential to enrich the taxonomy
with additional information derived from these sources at a later stage. To
demonstrate the potential of this taxonomy, we show in this chapter how it
can be used to derive a large number of new entities and assertions from
Wikipedia. The contributions of this chapter are:

• an approach for constructing a combined taxonomy of Wikipedia cate-
gories, lists, and DBpedia types,

• a distantly supervised ML approach for extracting entities from Wikipedia
list pages, and

• an initial version of CaLiGraph with 800K classes and, beyond DBpedia,
700K entities, 7.5M type assertions, and 3.8M relation assertions.

The work presented in this chapter is based on the following publication:

Nicolas Heist and Heiko Paulheim. Entity Extraction from Wikipedia
List Pages. In The Semantic Web - ESWC 2020. Lecture Notes in Computer
Science, vol. 12123, pp. 327-342, Virtual Event, May 2020, Springer,
Cham. [68]

57

58 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

Figure 5.1: Excerpt of the Wikipedia page List of Japanese speculative fiction
writers displaying the subjects in an enumeration layout.

5.1 Motivation

While Wikipedia’s infoboxes and categories have been the subject of many
information extraction efforts of KGs, list pages have received very little
attention despite their apparent wealth of information. For entities of the
page List of Japanese speculative fiction writers (shown in Fig. 5.1), we can
derive several bits of information: (type, Writer), (nationality, Japan), and
(genre, Speculative Fiction). To include this information into a KG, we must
first construct a taxonomy containing the concepts we want to describe.

In contrast to finding entities of a category, finding such entities among
all the entities mentioned on a list page is a non-trivial problem. We will refer
to these entities, being instances of the concept expressed by the list page, as
Subject Entities (SEs). Unlike categories, list pages are an informal construct in
Wikipedia. Hence, the identification of their SEs brings up several challenges:
While list pages are usually formatted as enumerations or tables, they have
no convention of how the information in them is structured. For example,
SEs can be listed somewhere in the middle of a table (instead of in the first
column), and enumerations can have multiple levels. Furthermore, context
information may not be available (it is difficult to find Japanese speculative
fiction writers in a list if one doesn’t know to look for writers).

The rest of this chapter is structured as follows. Section 5.2 discusses exist-

5.2. RELATED WORK 59

ing approaches concerned with extracting knowledge from (semi-)structured
elements in Wikipedia. Section 5.3 introduces the idea of entity extraction
from list pages, followed by a description of our approach in Section 5.4. In
Section 5.5, we discuss results and present an empirical evaluation of our
approach.

5.2 Related Work

The extraction of knowledge from structured elements in Wikipedia is mostly
focused on two fields: Firstly, the field of taxonomy induction, where most
of the approaches use the WCG to derive a taxonomy, and secondly, the
application of IE methods to derive facts from various (semi-)structured
sources like infoboxes, tables, lists, or abstracts of Wikipedia pages.

The approach of Ponzetto and Navigli [153] was one of the first to derive
a large taxonomy from Wikipedia categories by focusing on a category’s
lexical head. They exploit the fact that almost exclusively categories with
plural lexical heads are useful taxonomy elements. Hence, they can clean
the WCG from non-taxonomic categories and relationships. Several other
approaches create a combined taxonomy of the WCG and additional resources
like WordNet (YAGO [120]) or Wikipedia pages (WiBi [47]).

As mentioned in Section 2.2.3, the distant supervision paradigm [130]
is used extensively for IE in Wikipedia as it provides an easy way to auto-
matically gather large amounts of training data with a low error rate. In the
original work, Mintz et al. use Freebase as background knowledge to extract
information from Wikipedia. Aprosio et al. [7] extend this approach using
DBpedia as background knowledge.

Regarding list pages, Paulheim and Ponzetto [150] frame their general
potential as a source of knowledge in Wikipedia. They propose to use a
combination of statistical and NLP methods to extract knowledge and show
that, by applying them to a single list page, they can extract a thousand
new statements. Kuhn et al. [100] infer types for entities on list pages and
are thus most closely related to our approach. To identify SEs of the list
pages, they rely on information from DBpedia (e.g., how many relations exist
between entities on the list page). Consequently, they can only infer new
types for existing DBpedia entities. They use a score inspired by TF-IDF to
find the type of a list page and can extract 303,934 types from 2,000 list
pages with an estimated precision of 86.19%.

5.3 Categories and List Pages in Wikipedia

As described in Section 2.3.3, the WCG has a subgraph consisting of list
categories organizing many of the list pages in Wikipedia. The List of Japanese

60 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

speculative fiction writers from Fig. 5.1, for example, is a member of the list
category Lists of Japanese writers, which in turn has the parent Lists of writers
by nationality, and so on.

As this subgraph is part of the WCG, we can use the list categories as a
natural extension of a taxonomy induced by the WCG (e.g., by linking Lists
of Japanese writers to the respective category Japanese writers). This comes
with the benefit of including list pages into the taxonomy (i.e., we can infer
that List of Japanese speculative fiction writers is a subconcept of the category
Japanese writers).

In each list page, some links point to entities in the category the list page
reflects, and others do not. In the list page List of Japanese speculative fiction
writers, for example, some links point to pages about such writers (i.e., to
its SEs), while others point to specific works by those writers. To distinguish
those two cases, the unifying taxonomy is of immense value. Through the
hierarchical relationships between categories and list pages, we can infer
that if an entity is mentioned in both a list page and a related category, it is
very likely a SE of the list page. Consequently, if an entity is mentioned in
the list page List of Japanese speculative fiction writers and is contained in the
category Japanese writers, it is almost certainly a Japanese speculative fiction
writer.

In the remainder of this section, we provide additional background infor-
mation and statistics for the resources used in our approach. The analyses and
experiments in this chapter are based on Wikipedia2016 (cf. Section 2.3.4).
Further, we use the compatible DBpedia version from October 2016, which
we employ as background KG K = (T ,P, E ,L,A).

The Wikipedia Category Graph

In the version from 2016, the WCG consists of 1,475,015 categories. Follow-
ing Ponzetto and Navigli [154], we use only transitive subcategories of the
category Main topic classifications while also getting rid of categories having
one of the following keywords in their name: wikipedia, lists, template, stub.

The resulting filtered set of categories CF contains 1,091,405 categories
connected by 2,635,718 subcategory edges. We denote the set of entities in
a category c ∈ CF with Ec ⊆ E .1

The Wikipedia List Graph

The set of list categories CL consists of 7,297 categories (e.g., Lists of People),
connected by 10,245 subcategory edges (e.g., Lists of Celebrities being a
subcategory of Lists of People). The set of list pages L contains 94,562 pages.
Out of those, 75,690 are contained in at least one category in CF (e.g., List of

1All articles in Wikipedia are DBpedia entities; hence, all articles in categories must be
contained in DBpedia.

5.3. CATEGORIES AND LIST PAGES IN WIKIPEDIA 61

Figure 5.2: Excerpt of the Wikipedia page List of Cuban-American writers
displaying the subjects in a table layout.

Internet Pioneers is contained in the category History of the Internet), 70,099
are contained in at least one category in CL (e.g., List of Internet Pioneers
is contained in the category Lists of Computer Scientists), and 90,430 are
contained in at least one of the two.2

The Anatomy of List Pages.

List pages can be categorised into one of three possible layout types [100]:
44,288 pages list entities in a bullet point-like enumeration. The list page List
of Japanese speculative fiction writers in Fig. 5.1 lists the SEs in an enumeration
layout. In this case, the SEs are mostly mentioned at the beginning of an
enumeration entry. However, as some exceptions on the page show, this is
not always the case.

46,160 pages list entities in a table layout. An example of this layout is
given in Fig. 5.2, where an excerpt of the page List of Cuban-American writers
is shown. The respective subjects of the rows are listed in the first column,
but this can also vary between list pages.

The remaining 4,114 pages do not have a consistent layout. They are
thus categorised as undefined.3 As our approach significantly relies on the
structured nature of a list page, we exclude list pages with an undefined
layout from our extraction pipeline.

For a list page l, we define the task of identifying its SEs El among all the

2Note that CF and CL are disjoint as we exclude categories with the word lists in CF .
3We heuristically label a list page as having one of the three layout types by looking for

the most frequent elements: enumeration entries, table rows, or none of them.

62 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

mentioned entities Êl in l as a binary classification problem.4 A mentioned
entity is classified as a SE of l or not. If not, it is usually mentioned in
the context of an entity in El or for organisational purposes (e.g., in a See
also section). In Figs. 5.1 and 5.2, mentioned entities are marked in blue
(indicating that they have their own Wikipedia page and are thus contained
in DBpedia) and in red (indicating that they do not have a Wikipedia page
and are consequently no entities in DBpedia). The case of entities that are
not tagged as such in Wikipedia (e.g., Jesús J. Barquet in the first column
of Fig. 5.2) is not considered here as it introduces additional complexity to
the task. Of the three types of possible entities, the latter two are the most
interesting as they would add the most information to DBpedia. But it is
also beneficial to identify entities already contained in DBpedia because we
can derive additional information about them through the list page they are
mentioned in.

Note that for both layout types, enumeration and table, we find at most
one SE per enumeration entry or table row. We inspected a subset of L and
found this pattern to occur in every one of them.

Learning Category Axioms with Cat2Ax

The approach presented in this chapter uses axioms over categories to derive
a taxonomy from the WCG. Cat2Ax [67] is an approach that derives two kinds
of axioms from Wikipedia categories: type axioms (e.g., for the category
Japanese writers it learns that all entities in this category are of the type
Writer), and relation axioms (e.g., for the same category it learns that all
entities have the relation (nationality, Japan)). The approach uses statistical
and linguistic signals to derive the axioms and achieves a correctness of 96%
for the derived axioms. Chapter 6 describes this approach in detail.

5.4 Distantly Supervised Entity Extraction from List
Pages

The processing pipeline for constructing a taxonomy from the WCG and
retrieving SEs from list pages in L is summarized in Fig. 5.3. The pipeline
consists of two main components: During Training Data Generation, we create
a unified taxonomy of categories, lists, and DBpedia types. With distant
supervision, we induce positive and negative labels from the taxonomy for
some of the mentioned list page entities.

The resulting training data is passed to the Entity Classification compo-
nent. We enrich it with features extracted from the list pages and learn
classification models to identify the SEs.

4Neither El nor Êl are necessarily a subset of E as some entities in l may have no corre-
sponding article in Wikipedia.

5.4. DISTANTLY SUPERVISED ENTITY EXTRACTION FROM LIST PAGES63

𝐹

Cleaning the Graphs

STEP 1

Combining
Categories and Lists

STEP 2
Deriving a Taxonomy

with DBpedia
as Backbone

STEP 3

Labeling the
Entity Mentions

STEP 4

Cleaned
Graphs

Category-List
Graph

𝐿

Taxonomy

Training Data
Generation

Entity
Classification

Partially Labeled
Entity Mentions

Generating
the Features

STEP 5

Learning the
Classification Model

STEP 6

Classification
Data

Labeled
Entity Mentions

Figure 5.3: Overview of the pipeline for constructing a taxonomy from the
WCG and retrieving SEs from list pages. Small cylindrical shapes next to a
step indicate the use of external data, and large cylindrical shapes contain
data passed between pipeline steps.

5.4.1 Training Data Generation

Step 1: Cleaning the Graphs

The initial category graph (CF as nodes, subcategory relations as edges) and
the initial list graph (CL and L as nodes, subcategory relations and category
membership as edges) both contain nodes and edges that have to be removed
to convert them into valid taxonomies. Potential problems are shown in an
abstract form in Fig. 5.4 and on an example in Fig. 5.5. In particular, we
have to remove nodes that do not represent proper taxonomic types (e.g.,
London in Fig. 5.5). Additionally, we have to remove edges that either do not
express a valid subtype relation (e.g., the edge from Songs to Song awards in
Fig. 5.5) or create cycles (e.g., the self-references in Fig. 5.4).

To remove non-taxonomic nodes, we rely on the observation made by
Ponzetto and Navigli [153] that a Wikipedia category is a valid type in a
taxonomy if its head noun is in the plural. Consequently, we identify the
head nouns of the nodes in the graph and remove all nodes with singular
head nouns.5

To remove invalid edges, we first apply a domain-specific heuristic to
eliminate non-taxonomic edges and subsequently apply a graph-based heuris-
tic that removes cycles in the graphs. An edge is removed if the head noun
of the parent is not a synonym or a hypernym of the child’s head noun [153].
In Fig. 5.5, the head nouns of nodes are underlined; for example, we remove
the edge from Songs to Song awards as the word songs is neither a synonym
nor a hypernym of awards.

5We use spaCy (http://spacy.io) for head noun tagging.

http://spacy.io

64 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Figure 5.4: Possible invalid nodes and edges (marked in red) in the category
graph (circles) and list graph (rectangles).

Capitals
in Europe London People from

London
Criminals

from London
Organised crime

gangs from London

Songs Song
awards

Songwriting
awards

Film awards
for Best Song

Best Original
Song Academy
Award winners

Figure 5.5: Examples of non-taxonomic nodes and edges (marked in red)
that must be removed from the respective category graph or list graph.

We base our decision of synonym and hypernym relationships on a ma-
jority vote from three sources: (1) We parse the corpus of Wikipedia for
Hearst patterns [63].6 (2) We extract them from WebIsALOD [74], a large
database of hypernyms crawled from the Web. (3) We extract them directly
from categories in Wikipedia. To that end, we apply the Cat2Ax approach
[67] to compute robust type and relation axioms for Wikipedia categories
from linguistic and statistical signals. For every edge in the category graph,
we extract a hypernym relationship between the head noun of the parent
and the head noun of the child if we find matching axioms for both parent
and child. For, if we find the axiom that every entity in the category People
from London has the DBpedia type Person and we find the same axiom for
Criminals from London, then we extract a hypernym relation between People
and Criminals.

As a graph-based heuristic to resolve cycles, we detect edges that are part
of a cycle and remove the ones pointing from a deeper node to a higher node

6Patterns that indicate a taxonomic relationship between two words like "X is a Y".

5.4. DISTANTLY SUPERVISED ENTITY EXTRACTION FROM LIST PAGES65

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Figure 5.6: Possible connections between the category graph and the list
graph

in the graph.7 If cycles can not be resolved because edges point between
nodes on the same depth level, those are removed as well.

Through the cleaning procedure, we reduce the size of the category graph
from 1,091,405 nodes and 2,635,718 edges to 738,011 nodes and 1,324,894
edges. We reduce the size of the list graph from 77,396 nodes and 105,761
edges to 77,396 nodes and 95,985 edges.

Step 2: Combining Categories and Lists

For a combined taxonomy of categories and lists, we find links between
them through linguistic similarity and existing connections in Wikipedia. As
Fig. 5.6 shows, we find two types of links: equivalence and hypernymy. We
identify the former by looking for category-list pairs that are either named
similar (e.g., Japanese writers and Lists of Japanese writers) or are synonyms
(e.g., Media in Kuwait and Lists of Kuwaiti media). With this method, we find
24,383 links.

We extract a hypernym link (similar to the method applied in Step 1)
if the head noun of a category is a synonym or hypernym of a list’s head
noun. However, to avoid false positives, we limit the candidate links to
existing edges in Wikipedia (i.e., the subcategory relation between a list
category and a category or the membership relation between a list page
and a category). With this method, we find 19,015 hypernym links. By
integrating the extracted links into the two graphs, we create a category-list
graph with 815,543 nodes (738,011 categories, 7,416 list categories, 70,116
list pages) and 1,463,423 edges.

7We define the depth of a node in the graph as the length of its shortest path to the root
node Main topic classifications.

66 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

dbo:Person

dbo:Writer dbo:Artist

Figure 5.7: Extension of the category-list taxonomy with DBpedia mappings.

Step 3: Deriving a Taxonomy with DBpedia Mappings

As a final step, we map the category-list graph to the DBpedia taxonomy (as
depicted in Fig. 5.7). To achieve that, we again apply the Cat2Ax approach to
our current graph to produce type axioms for the graph nodes. For example,
we discover the axiom that every entity in the category Japanese writers has
the DBpedia type Writer. Thus, we use the type as a parent of Japanese
writers. Taking the transitivity of the taxonomy into account, we find a
DBpedia supertype for 88% of the graph’s nodes.

Step 4: Labeling the Entity Mentions

We parse all entity mentions in list pages directly from the Wiki markup using
DBpedia dumps and WikiTextParser8 as markup parser.

We compute the training data for mentioned entities Êl of a list page l
directly from the taxonomy. To that end, we define two mapping functions:

related : L → P (CF) (5.1)

types : L → P (T) (5.2)

The function related(l) in Eq. (5.1) returns the subset of CF that contains
the taxonomically equivalent or most closely related categories for l. For ex-
ample, related(List of Japanese speculative fiction writers) returns the category

8https://github.com/5j9/wikitextparser

5.4. DISTANTLY SUPERVISED ENTITY EXTRACTION FROM LIST PAGES67

Japanese writers and all its transitive subcategories (e.g., Japanese women
writers). To find related(l) of a list page l, we traverse the taxonomy upwards
starting from l until we find a category c that is contained in CF . We return c
and all of its children.

With this mapping, we assign positive labels to entity mentions in l if they
are contained in a category in related(l):

Ê+
l =

{
e|e ∈ Êl ∧ ∃c ∈ related(l) : e ∈ Ec

}
(5.3)

In the case of List of Japanese speculative fiction writers, Ê+
l contains all

entities that are mentioned on the list page and are members of the category
Japanese writers or one of its subcategories.

The function types(l) from Eq. (5.2) returns the subset of the DBpedia
types T that best describes entities in l. For example, types(List of Japanese
speculative fiction writers) returns the DBpedia types Agent, Person, and Writer.
To find types(l), we retrieve all ancestors of l in the taxonomy and return
those contained in T .

With this mapping, we assign a negative label to an entity e mentioned in
l if there are types in Te that are disjoint with types in types(l):

Ê−
l =

{
e|e ∈ Êl ∧ ∃te ∈ Te, ∃tl ∈ types(l) : disjoint(te, tl)

}
(5.4)

To identify disjointnesses in Eq. (5.4), we use the disjointness axioms
provided by DBpedia as well as additional ones that are computed by the
methods described in Töpper et al. [189]. DBpedia declares, for example,
the types Person and Building as disjoint, and the type Person is contained in
types(List of Japanese speculative fiction writers). Consequently, we label any
mentions of buildings on the list page as negative examples.

In addition to the negative entity mentions that we retrieve via Eq. (5.4),
we label entities as negative using the observation we have made in Sec-
tion 5.3: As soon as we find a positive entity mention in an enumeration
entry or table row, we label all the remaining entity mentions in that entry
or row as negative.

For enumeration list pages, we find a total of 9.6M entity mentions. Of
those, we label 1.4M as positive and 1.4M as negative. For table list pages,
we find a total of 11M entity mentions. Of those, we label 850k as positive
and 3M as negative.

5.4.2 Entity Classification

Step 5: Generating the Features

For a single data point (i.e., the mention of an entity in a specific list page),
we generate a set of features that is shown in Table 5.1. Shared features are

68 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

Type Features

Sh
ar

ed
Page #sections

Positional Position of section in LP

Linguistic Section title, POS/NE tag of entity and its direct context

En
u

m

Page
#entries, Avg. entry indentation level, Avg.
entities/words/characters per entry, Avg. position of
first entity

Positional
Position of entry in enumeration, Indentation level of
entry, #sub-entries of entry, Position of entity in entry

Custom
#entities in current entry, #mentions of entity in
same/other enumeration of LP

Ta
bl

e

Page
#tables, #rows, #columns, Avg. rows/columns per
table, Avg. entities/words/characters per row/column,
Avg. first column with entity

Positional
Position of table in LP, Position of row/column in table,
Position of entity in row

Linguistic Column header is synonym/hyponym of word in LP title

Custom
#entities in current row, #mentions of current entity in
same/other table of LP

Table 5.1: Features of the ML model grouped by list page type and feature
type. Page features are computed for the complete list page (LP) and do not
vary between entity mentions. We include standard deviations as features in
addition to averages for page features.

created for entity mentions of enumeration and table list pages.
Features of the type Page encode the list page’s characteristics and are

similar for all entity mentions of the particular page. Features of the type
Positional, Linguistic, Custom describe the characteristics of a single entity
mention and its immediate context.

Step 6: Learning the Classification Model

To find a suitable classification model, we conduct an initial experiment on
six classifiers (shown in Table 5.2) and compare them with the apparent
baseline of always picking the first entity mention in an enumeration entry
or table row. We compute the performance using 10-fold cross-validation
while ensuring all entity mentions of a list page are in the same fold. In each
fold, we use 80% of the data for training and 20% for validation. We report
all the classifiers’ performances after tuning their most important parameters

5.5. RESULTS AND DISCUSSION 69

Enum Table
Algorithm P R F1 P R F1

Baseline (pick first entity) 74 96 84 64 53 58
Naive Bayes 80 90 84 34 91 50

Decision Tree 82 78 80 67 66 67
Random Forest 85 90 87 85 71 77

XG-Boost 90 83 86 90 53 67
Neural Network (MLP) 86 84 85 78 72 75

SVM 86 60 71 73 33 45

Table 5.2: Precision (P), Recall (R), and F-measure (F1) in per cent for the
positive class (i.e. true SEs in a list page) of various classification models.

with a coarse-grained grid search.
Table 5.2 shows that all applied approaches outperform the baseline

regarding precision. The XG-Boost algorithm scores the highest in terms of
precision while maintaining rather high levels of recall. Since we want to
identify entities in list pages with the highest possible precision, we use the
XG-Boost model. After fine-grained parameter tuning, we train models with a
precision of 91% and 90%, and a recall of 82% and 55% for enumeration and
table list pages, respectively.9 Here, we split the dataset into 60% training,
20% validation, and 20% test data.

5.5 Results and Discussion

5.5.1 List Page Extraction

Entities

We extracted 1,549,893 SEs that exist in DBpedia already. On average, an
entity is extracted from 1.86 different list pages. Furthermore, we extracted
754,115 SEs that are new to DBpedia (from 1.07 list pages on average).
Based on the list pages they have been extracted from, we assign them
DBpedia types (i.e., the supertypes of the list page in the derived taxonomy).
Fig. 5.8 shows the distribution of new entities over various high-level types.

Entity Types

Overall, we generated 7.5M new type assertions for DBpedia: 4.9M for en-
tities in DBpedia (we assign a type to 2M previously untyped entities) and
2.6M for new entities (we find an average of 3.5 types per new entity). This
is an increase of 51.15% in DBpedia’s total type statements. We especially

9The models are trained using the scikit-learn library: https://scikit-learn.org/.

https://scikit-learn.org/

70 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

Other
75k

(10%)

Work

65k
(9%)

Organisation

71k
(9%)

Person

131k
(17%)

Species

191k
(25%)

Place

222k
(29%)

Figure 5.8: Distribution of entities
that are new to DBpedia based on
high-level types.

Page Positional Linguistic Custom
0
2
4
6
8

10
12
14 Enum

Table

Figure 5.9: The 15 most important
features used by XG-Boost grouped
by respective feature type.

generate statements for rather specific types, i.e., types deep in the ontol-
ogy.10 Adding all the generated type statements to DBpedia, the average type
depth would increase from 2.9 to 2.93. For new entities, we have an average
type depth of 3.06. Fig. 5.10 shows the increase of type statements for the
subtypes of the DBpedia type Building. We would increase the number of
type statements by several orders of magnitude for almost all of them.

Entity Facts

Besides type assertions, we also infer relation assertions using the relation
axioms that we generated via Cat2Ax. We generated 3.8M relation assertions:
3.3M for existing entities in DBpedia and 0.5M for new entities. For some
previously unknown entities, we discovered large numbers of facts. For Dan
Stulbach,11 for example, we discover the type Person and information about
his birth place, occupation, and alma mater.

5.5.2 Evaluation

We evaluate the correctness of both the constructed taxonomy and the
inferred assertions.

10We define the depth of a type in DBpedia as the length of its shortest path to the root type
owl:Thing.

11http://caligraph.org/resource/Dan_Stulbach

http://caligraph.org/resource/Dan_Stulbach

5.5. RESULTS AND DISCUSSION 71

0 5k 10k 15k 20k 25k 30k 35k 40k

Casino
Restaurant
Skyscraper

Prison
Library

ShoppingMall
Hotel

Hospital
Castle

HistoricBuilding
ReligiousBuilding

Museum

+443%
+478%

+5%
+575%
+206%

+380%
+58%
+289%

+145%
+60760%
+145%

From new entities
From existing entities
Currently in DBpedia

Figure 5.10: Comparison of the number of type statements that are currently
in DBpedia with additional statements found by our approach for all subtypes
of the DBpedia type Building.

Taxonomy

To validate the taxonomy, we conducted an evaluation using the crowd-
sourcing platform Amazon MTurk.12 We randomly sampled 2,000 edges of
the taxonomy graph and asked three annotators each whether the edge is
taxonomically correct. The edges have been evaluated as correct in 96.25%
(±0.86%) of the cases using majority vote (with an inter-annotator agreement
of 0.66 according to Fleiss’ kappa [48]).

Assertions

The correctness of the inferred type and relation assertions strongly depends
on the Cat2Ax approach as we use its axioms to generate the assertions.
Cat2Ax has a correctness of 96.8% for type axioms and 95.6% for relation
axioms. For the resulting type and relation assertions (after applying the
axioms to the entities of the categories), Cat2Ax achieves a correctness of
90.8% and 87.2%, respectively. However, the original Cat2Ax approach does
not rely on a complete taxonomy of categories but computes axioms for
individual categories without considering hierarchical relationships between
them. In contrast, we include information about the subcategories of a given
category while generating the axioms. We inspected 1,000 assertions13 and
find a correctness of 99% (±1.2%) for existing and 98% (±1.7%) for new
type assertions and 95% (±2.7%) for existing and 97% (±2.1%) for new
relation assertions.

12https://mturk.com
13We inspect 250 type and relation assertions for both existing and new entities.

https://mturk.com

72 CHAPTER 5. DERIVING A FINE-GRAINED ONTOLOGY

Classification Models

With values of 91% and 90%, the precision of the classification models is
significantly lower than the correctness of the extracted type and relation
assertions. At first glance, this is a contradiction because, although the
models extract entities and not assertions, a statement is incorrect if it has
been created for the wrong entity. However, we must consider that the
training data used to train and evaluate the models has been created using
distant supervision. Hence, it will likely contain errors (e.g., due to wrong
inheritance relations in the taxonomy). The fact that the final output of the
processing pipeline has a higher correctness than the evaluation results of
the models indicates that the models can learn meaningful patterns from the
training data.

Fig. 5.9 shows the feature types of the 15 features with the highest
influence on the decision of the final XG-Boost models. Almost all of them
are features of the type Page, i.e., features that describe the general shape
of the list page the entities are extracted from. Features of the other types
describing the immediate context of an entity are used only very sparsely.
This indicates that, to bridge the gap in recall between the classification
models and the baseline, we have to develop models that can better use the
structure of a list page. Accordingly, we see the most significant potential in
an adapted ML approach that, instead of classifying every entity mention in
isolation, uses a holistic perspective and identifies the set of mentions that fit
the list page best, given its structure.

5.6 Conclusion

This chapter presented an approach for generating a large-scale taxonomy
from the WCG, list pages, and Wikipedia. We demonstrated the potential
of the taxonomy by extracting entities and assertions from Wikipedia that
go beyond what is contained in DBpedia. The implemented approach is
published as part of the CaLiGraph extraction framework.14 The taxonomy
and the extracted information are published as the first version of CaLiGraph.

In Chapters 7 and 8, we significantly extend the presented approach for
entity extraction from list pages by expanding it to all listings in Wikipedia
and considering unlinked mentions as well. However, the approaches pre-
sented there still rely on this chapter’s taxonomy and training data generation
approach.

14https://github.com/nheist/CaLiGraph

https://github.com/nheist/CaLiGraph

CHAPTER 6

Learning Defining Axioms for Wikipedia Categories

In the previous chapter, we have already mentioned the Cat2Ax approach as
it plays an important role in the construction of a taxonomy from the WCG.
This chapter formally introduces Cat2Ax, enriching Wikipedia-based KGs by
explicating the semantics in category names. We combine the category graph
structure, lexical patterns in category names, and instance information from
a KG to learn patterns in category names and map these patterns to type and
relation axioms. The approach’s potential has already been demonstrated
in the previous chapter, where the generated axioms were used to derive
hypernyms and assertions. The contributions of this chapter are as follows:

• We introduce an approach that extracts axioms for Wikipedia cate-
gories using features derived from the instances in a category and their
lexicalisations.

• We extract more than 700K axioms for explicating the semantics of
category names at a precision of more than 95%. The axioms are
integrated into the CaLiGraph ontology.

• Using those axioms, we generate more than 7.7M assertions unknown
to DBpedia at a precision of more than 87%.

The work presented in this chapter is based on the following publication:

Nicolas Heist and Heiko Paulheim. Uncovering the Semantics of
Wikipedia Categories. In The Semantic Web – ISWC 2019. Lecture Notes
in Computer Science, vol. 11778, pp. 219–236, Auckland, New Zealand,
October 2019, Springer, Cham. [67]

73

74 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

Albums

Albums
by genre

Albums
by artist

Nine Inch
Nails
albums

The Doors
albums

Rock
albums

Pop
albums

Reggae
albums

The
Beatles
albums

... ...

...

Figure 6.1: Excerpt of the WCG showing the category Albums and some of
its subcategories.

6.1 Motivation

Missing knowledge in Wikipedia-based KGs can be attributed to absent
information in Wikipedia, but also to the extraction procedures of KGs.
DBpedia uses infobox mappings to extract assertions for individual instances
but does not explicate any information implicitly encoded in categories.
YAGO uses manually defined patterns to derive assertions for entities of
matching categories. For example, they extract a person’s birth year by
exploiting categories ending with births. Consequently, all persons contained
in the category 1879 births are attributed with 1879 as year of birth [184].
Likewise, most existing works, like from Liu et al. [113] and Xu et al. [211],
leverage textual patterns in the category names.

There are some limitations to such approaches since, in many cases,
very specific patterns are necessary (e.g., (county,Chester County) for the
category Townships in Chester County, Pennsylvania), or the information is
only indirectly encoded in the category (e.g., (timeZone,Eastern_Time_Zone)
for the same category). To capture as much knowledge as possible from
categories, we propose an approach that learns patterns not only from the
category names but exploits the underlying KG as well.

While category names are plain strings, we aim at uncovering the seman-
tics of those category names. To that end, we want to extract both type and
relation information from categories. In the example in Fig. 6.1, we would,
e.g., learn type (Eq. (6.1)) as well as relation (Eqs. (6.2) and (6.3)) axioms.

∃category. {Reggae_albums} ⊑ Album
(6.1)

∃category. {Reggae_albums} ⊑ ∃genre. {Reggae}
(6.2)

∃category. {Nine_Inch_Nails_albums} ⊑ ∃artist. {Nine_Inch_Nails}
(6.3)

6.2. RELATED WORK 75

Once those axioms are defined, they can be used to fill in the missing type
and relation assertions for all instances for which those categories have been
assigned.

The rest of this chapter is structured as follows. Section 6.2 frames the
approach described in this chapter in related works. Section 6.3 lays out
the preliminaries of our work, followed by an introduction of our approach
in Section 6.4. In Section 6.5, we discuss an empirical evaluation of our
approach.

6.2 Related Work

With the wider adoption of general-purpose KGs such as DBpedia [104],
YAGO [120], or Wikidata [195], their quality has come into the focus of
recent research [42, 214]. The systematic analysis of KG quality has inspired
a lot of research around an automatic or semi-automatic improvement or
refinement [147].

Generally, KG refinements can be distinguished along various dimensions:
the goal (filling missing knowledge or identifying erroneous axioms), the
target (e.g., schema or instance level, type or relation assertions, etc.), and
the knowledge used (using only the KG as such or also external sources of
knowledge). The approach discussed in this chapter extracts axioms on the
schema level and assertions on the instance level using Wikipedia categories
as an external source of knowledge.

Two signals can be exploited to extract information from categories: (1)
lexical information from the category’s name and (2) statistical information
of the instances belonging to the category. YAGO, as discussed above, uses
the first signal. A similar approach is Catriple [113], which exploits manually
defined textual patterns (such as X by Y) to identify parent categories which
organize instances by objects of a given relation: for example, the category
Albums by genre has child categories whose instances share the same object
for the relation genre, and can thus be used to generate axioms such as the
one in Eq. (6.2) above. The Catriple approach does not explicitly extract
category axioms but finds 1.27M relation assertions. A similar approach is
taken in Nastase et al. [136], utilizing POS tagging to extract patterns from
category names without deriving any KG axioms.

In the area of taxonomy induction, many approaches make use of lexical
information when extracting hierarchies of terms. Using Hearst patterns
[63] is one of the most well-known methods to extract hypernymy relations
from text. It has been extended multiple times, e.g., by [99] who enhance
their precision by starting with pre-defined terms and post-filtering the final
results. [193] use an optimal branching algorithm to induce a taxonomy
from definitions and hypernym relations extracted from text.

The C-DF approach [211] is an approach of the second category, i.e., it

76 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

relies on statistical signals. It uses probabilistic methods on the category
entities to identify an initial set of axioms. From that, it mines the extraction
patterns for category names automatically. The authors find axioms for more
than 60K categories and extract around 700K relation assertions and 200K
type assertions.

Exploiting statistical information from category instances is a setting
similar to ontology learning [164]. For example, approaches such as DL-
Learner [103] find description logic patterns from a set of instances. These
approaches are very productive when there is enough training data, and they
provide exact results, especially when both positive and negative examples
are given. Both conditions are not trivially fulfilled for the problem setting in
this chapter: many categories are rather small (75% of categories have fewer
than ten members), and, due to the OWA, negative examples for category
membership are not given. Therefore, we postulate that both statistical and
lexical information must be combined to derive high-quality axioms from
categories.

With Catriple and C-DF, we compare our approach to the two closest
approaches in the literature. While Catriple relies solely on lexical informa-
tion in the category names, and C-DF relies solely on statistical information
from the instances assigned to categories, we propose a hybrid approach
combining the lexical and statistical signals. Moreover, despite exploiting
category names, we do not use language-specific techniques, so our approach
is language-agnostic.

6.3 Preliminaries

The Cat2Ax approach uses three kinds of sources: the WCG, background
knowledge from a KG, and lexicalisations of entities and types in the KG. In
this section, we provide relevant definitions and give background information
about the respective sources.

Like in the previous chapter, the analyses and experiments are based on
Wikipedia2016 (cf. Section 2.3.4). We use the compatible DBpedia version
from October 2016, which we employ as background KG K = (T ,P, E ,L,A).
Further, we reuse the filtered set of categories CF defined in Section 5.3 and
denote the set of entities in a category c ∈ CF with Ec ⊆ E .

Background Knowledge

To get an estimate of how likely the combination of a property p and a value
v occurs within the entities of a category c, we calculate their frequencies
using background knowledge from K:

freq(c, p, v) =
| {e|e ∈ Ec ∧ (e, p, v) ∈ A} |

|Ec|
(6.4)

6.3. PRELIMINARIES 77

As shown in Example 6.3.1, we compute type frequencies if the predicate
is rdf:type.

Example 6.3.1. Type frequency calculation

The category The Beatles albums has 24 entities, with 22 having the type
dbo:Album, resulting in a type frequency freq(The Beatles albums, rdf:type,
dbo:Album) of 0.92.1

For any other property, we compute relation frequencies:

Example 6.3.2. Relation frequency calculation

The Beatles albums has 24 entities, with 11 having dbr:Rock_and_roll as
dbo:genre. This results in a relation frequency freq(The Beatles albums,
dbo:genre, dbr:Rock_and_roll) of 0.46.

Resource and Type Lexicalisations

A lexicalisation is a word or phrase used in natural language text that refers
to an entity or type in K. For an entity e, lex(e) contains all its lexicalisations,
and lexCount(e,l) is the count of how often a lexicalisation l has been found
for e. When the count of a lexicalisation l is divided by the sum of all counts
of lexicalisations for an entity e, we have an estimate of how likely e will be
expressed by l.

We are, however, interested in the inverse problem: Given a lexicalisation
l, we want the probability of it expressing an entity e. We define lex−1(l)
as the set of entities having l as lexicalisation. The lexicalisation score, i.e.,
the probability of an entity e being expressed by the lexicalisation l, is then
computed by the fraction of how often l expresses e compared to all other
entities:

lexScore(e, l) :=
lexCount(e, l)∑

e′∈lex−1(l) lexCount(e
′, l)

(6.5)

Example 6.3.3. Entity lexicalisation score calculation

We encounter the word lennon in Wikipedia and want to find out how likely it
is that the word refers to the resource dbr:John_Lennon. We find 357 occur-
rences of the word for which we know the resource it refers to. 137 of them ac-
tually refer to dbr:John_Lennon, while others refer, e.g., to the soccer player
dbr:Aaron_Lennon (54 times) or dbr:Lennon,_Michigan (14 times). We use
the occurrence counts to compute a lexScore(dbr:John_Lennon, "lennon")
of 0.42.

1When referring to DBpedia in our examples and experiments, we use the prefix dbr: for
entities and dbo: for properties and types.

78 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

L

Background
Knowledge

B

Wikipedia
Categories

C

Resource/Type
Lexicalisations

L

Candidate Selection

STEP 1

Pattern Mining

STEP 2

Pattern Application

STEP 3

Axiom Application
& Post-Filtering

STEP 4

Candidate
Category Sets

Category
Patterns

Category
Axioms

Type/Relation
Assertions

C
B

BL
B
C

C

External
Inputs

Figure 6.2: Overview of the Cat2Ax approach.

DBpedia already provides the lexicalisations of entities [23]. They are
gathered from the anchor texts of links between Wikipedia articles. For types,
however, there is no such data set provided.

To gather type lexicalisations from Wikipedia, we apply the following
methodology: For every type t ∈ T , we crawl the articles of all entities having
type t and extract hypernymy relationships using Hearst patterns [63]. To
ensure that we only extract relationships for the correct type, we exclusively
use the ones with a lexicalisation of the article’s entity as their subject. To
increase the coverage of type lexicalisations, we intentionally count individual
words instead of complete phrases of the extracted lexicalisation. To calculate
the lexicalisation scores of a phrase, we sum up the counts of the phrase’s
words.

Example 6.3.4. Type lexicalisation score calculation

We are extracting type lexicalisations for the type dbo:Band. The entity
dbr:Nine_Inch_Nails has the appropriate type. We extract hypernymy rela-
tionships in its article text. In the sentence "Nine Inch Nails is an American
industrial rock band [..]", we find the subject Nine Inch Nails and the object
American industrial rock band. As the subject is in lex(dbr:Nine_Inch_Nails),
we accept the object as lexicalisation of dbo:Band. The lexicalisation count
of the words American, industrial, rock, band is incremented, and, for each
of those words encountered, the lexicalisation score for the class dbo:Band
increases.

6.4. APPROACH 79

6.4 Approach

The overall approach of Cat2Ax is shown in Fig. 6.2. The external inputs
have already been introduced in Section 6.3. The outputs of the approach
(marked in bold font) are twofold: A set of axioms defining restrictions for
entities in a category and a set of assertions which are novel facts about
resources in the graph.

The approach has four steps: The Candidate Selection uses hierarchical
relationships in the WCG to form sets of categories sharing a property that a
textual pattern can describe.

In the Pattern Mining step, we identify patterns in the names of cate-
gories that are characteristic of a property or type. To achieve that, we
use background knowledge about resources in the respective categories and
lexicalisations. We consider a pattern only if it applies to a majority of the
categories in a candidate category set.

In the Pattern Application step, we apply the extracted patterns to all
categories to find category axioms. Here, we again rely on background
knowledge and lexicalisations to decide whether a pattern applies to the
category.

Finally, we generate assertions by applying the axioms of a category to
its resources and subsequently use post-filtering to remove assertions that
would create contradictions in the KG.

6.4.1 Candidate Selection

In this first step, we extract sets of categories with names that indicate a
shared relation or type. We base the extraction of such candidate category
sets on two observations:

The first one is inspired by the Catriple approach [113]. They observed
that parents often organize their children according to a certain property in
a parent-child relationship of categories. Contrary to Catriple, we do not use
the parent category to identify this property, but we use the complete set of
children to find their similarities and differences.

As we now know from the first observation, the children of a category
can have certain similarities (which are the reason that they have the same
parent category) and differences (which are the reason that the parent was
split up into child categories). As a second observation, we discovered that
when a certain property organizes the children of a category, their names
have a shared part (i.e., a common prefix and/or postfix) and a part that
differs for each category. We found that the shared part is often an indicator
of the type of resources contained in the category, while the differing part
describes the value of the property by which the categories are organized.

Using these observations, we produce the candidate category sets by
looking at the children of each Wikipedia category and forming groups out

80 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

of children that share a prefix and/or postfix.

Example 6.4.1. Album candidate sets

In Fig. 6.1, we see parts of two candidate category sets with the postfix
albums. The first one contains 143 children of the category Albums by artist.
The second one contains 45 children of the category Albums by genre.

Note that we sometimes form multiple candidate category sets from the
category’s children as there might be more than one shared pre- or postfix.

Example 6.4.2. Reality TV candidate sets

The children of the category Reality TV participants yield three candidate
sets ending on participants, contestants, and members.

6.4.2 Pattern Mining

We want to discover each candidate category set’s characteristic property and
type. Therefore, we identify patterns to be used in the subsequent steps to
extract category axioms. Each pattern consists of a textual indicator (i.e., the
shared part in the names of categories) and the implication (i.e., the shared
property or type).

To determine the characteristic property, we inspect every category in
the candidate set and compute a score for every possible relation in the
category. As mentioned in Section 6.4.1, the value of a relation differs for the
categories in a set. We thus focus on finding the property with the highest
score and disregard relation values. To that end, we aggregate the scores
from all categories and choose the property that performs best over the
complete category set. We learn a pattern for the property that covers the
complete candidate category set.

The score of a relation (p, v) for a category c consists of two parts,
with one being based on background knowledge and the other on lexical
information. The latter uses the part cvar of a category’s name that differs
between categories in the set to estimate how likely cvar expresses the value
of the relation. The score is computed as follows:

scorerel(c, p, v) = freq(c, p, v) ∗ lexScore(v, cvar) (6.6)

Note that freq(c,p,v) is only greater than zero for relations of the resources in
resources(c), which drastically reduces the number of scores that have to be
computed.

Example 6.4.3. Relation score calculation

For the category c=The Beatles albums, we compute an individual relation

6.4. APPROACH 81

score for each property-value pair in A having an entity in Ec as their sub-
ject. To compute scorerel(c, dbo:artist, dbr:The_Beatles), we multiply the
frequency freq(c, dbo:artist, dbr:The_Beatles) with the lexicalisation score
lexScore(dbr:The_Beatles, "The Beatles").

As an aggregation function for the scores, we use the median. Heuristi-
cally, we found that the property with the highest median of scores is suited
to be the characteristic property for a category set. To avoid learning incor-
rect patterns, we discard the property if it cannot be found in at least half of
the categories in the set, i.e., if the median of scores is zero.

Example 6.4.4. Relation score aggregation

After computing all the relation scores for all categories in the category set
formed by the 143 children of Albums by artist, we aggregate the computed
scores by their property and find dbo:artist to have the highest median score.

The support of a pattern is the count of how often a pattern has been
learned for a category. If we discover a valid property for a category set,
the support of the respective property pattern is increased by the number of
categories in the set. We assume hereby that if this property is characteristic
for the majority of categories, then it is characteristic for all categories in the
set.

For the extraction of characteristic types, we apply the same methodology
except for the calculation of the score of a type. We compute the score of
a type t in the category c using its frequency in c and a lexicalisation score
derived from the shared part cfix in a category’s name:

scoretype(c, t) := freq(c, rdf:type, t) ∗ lexScore(t, cfix) (6.7)

Example 6.4.5. Property and type patterns

For the category sets formed by the children of Albums by artist and Album
by genre in Fig. 6.1, we find the following property patterns to have the
highest median scores:
PP1 = "<lex(dbr:res)> albums" ⊑ ∃dbo:artist.{dbr:res}
PP2 = "<lex(dbr:res)> albums" ⊑ ∃dbo:genre.{dbr:res}
We increase the support of PP1 by 143 and PP2 by 45. For both sets, we
extract the type pattern
TP1 = "<lex(dbr:res)> albums" ⊑ dbo:Album
and increase its support by 188 (respectively using the counts from Exam-
ple 6.4.1).

82 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

6.4.3 Pattern Application

Before we apply the patterns to the categories to identify axioms, we need to
define a measure for the confidence of a pattern. This is especially necessary
because we can find multiple implications for the same textual pattern as
shown in Example 6.4.5. We define the confidence conf(P) of a pattern P as
the quotient of the support of P and the sum of supports of all the patterns
matching the same textual pattern as P.

Example 6.4.6. Pattern confidence computation

Assuming PP1 and PP2 in Example 6.4.5 are the only property patterns we
found, we have a pattern confidence of 0.76 for PP1 and 0.24 for PP2.

Next, we apply all our patterns to the categories and compute the axiom
confidence by calculating the fit between the category and the pattern.
Therefore, we reuse the scores from Eqs. (6.6) and (6.7) and combine them
with the confidence of the pattern. As a relation pattern only specifies the
property of the axiom, we compute the axiom confidence for every possible
value of the axiom’s property to have a ranking criterion. For a category c, a
property pattern PP with property pPP and a possible value v, we define the
confidence as:

conf (c,PP , v) := conf (PP) ∗ scorerel(c, pPP , v). (6.8)

And similarly, we define the confidence for a type pattern TP with type tTP

as:

conf (c,TP) := conf (TP) ∗ scoretype(c, tTP). (6.9)

Using the confidence scores, we can control the quality of extracted
axioms by only accepting those with a confidence greater than a threshold τ .
We inspect and evaluate the generated axioms in our experiments to find a
reasonable threshold.

Example 6.4.7. Axiom confidence computation

Both patterns PP1 and PP2 from Example 6.4.5 match the category Reggae
albums. Using PP1, we can’t find an axiom for the category as there is no
evidence in K for the property dbo:artist together with any resources that
have the lexicalisation Reggae (i.e., scorerel is equal to 0). For PP2, however,
we find the axiom (Reggae albums, dbo:genre, dbr:Reggae) with a confidence
of 0.18.

Multiple property or type patterns can have a confidence greater than τ
for a single category. The most precise variant for property and type patterns
is to accept only the pattern with the highest confidence and discard all the

6.4. APPROACH 83

others. However, we found that multiple patterns can imply valid axioms for
a category and thus follow a more differentiated selection strategy.

For relation axioms, we accept multiple axioms as long as they have
different properties. We accept only the axiom with higher confidence when
the properties are equal.

Example 6.4.8. Accepting axioms with different properties

For the category Manufacturing companies established in 1912 (short: c1),
we find the relation axioms (c1, dbo:foundingYear, 1912) and (c1, dbo:industry,
dbr:Manufacturing). As they have different properties, we accept both.

Example 6.4.9. Discarding axioms with similar properties

For the category People from Nynäshamn Municipality (short: c2), we find
the relation axioms (c2, dbo:birthPlace, dbr:Nynäshamn_Municipality) and
(c2, dbo:birthPlace, dbr:Nynäshamn). As they have the same property, we
only accept the former as its confidence is higher.

For type axioms, we accept the axioms with the highest confidence and
any axioms with lower confidence that imply sub-types of the already ac-
cepted types.

Example 6.4.10. Accepting transitive type axioms

For the category Missouri State Bears baseball coaches (short: c3), we find
the axioms (c3, rdf:type, dbo:Person) and (c3, rdf:type, dbo:CollegeCoach).
Despite the latter having lower confidence than the former, we accept both
because dbo:CollegeCoach is a sub-type of dbo:Person.

6.4.4 Axiom Application and Post-Filtering

With the category axioms from the previous step, we generate new assertions
by applying the axiom to every category resource.

Example 6.4.11. Applying relation axioms

We apply the axiom (Reggae albums,dbo:genre,dbr:Reggae) to all resources
of Reggae albums and generate 50 relation assertions, 13 of which are not yet
present in K.

Categories can contain special resources that do not belong to the cat-
egory itself but, for example, describe the category’s topic. For example,
the category Landforms of India contains several actual landforms but also
the resource Landforms of India. To avoid generating wrong assertions for
such special resources, we filter all generated assertions using the existing
knowledge in the knowledge base.

84 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

For relation assertions, we use the functionality of its property to filter
invalid assertions. Accordingly, we remove a relation assertion (s, p, o) if
the property p is functional2 and there is an assertion (s, p, o’) with o ̸= o′

already in A.

Example 6.4.12. Accepting assertions for non-functional properties

Out of the 13 new dbo:genre assertions generated for the category Reggae
albums in the previous example, nine refer to resources which do not have a
dbo:genre at all. Four add a genre to a resource with one or more values for
dbo:genre. The latter is possible since dbo:genre is not functional.

Example 6.4.13. Discarding assertions for functional properties

The relation assertion (dbr:Bryan_Fisher, dbo:birthYear, 1982) is removed
because the assertion (dbr:Bryan_Fisher, dbo:birthYear, 1980) is contained
in A, and dbo:birthYear is functional.

To identify invalid type assertions, we use disjointness axioms in K and
remove any type assertion that, if added to A, would lead to a disjointness
violation.

Example 6.4.14. Discarding assertions for disjoint types

The assertion (dbr:Air_de_Paris, rdf:type, dbo:Person) is discarded because
the subject already has the type dbo:Place, which is disjoint with dbo:Person.

6.5 Experiments

In this section, we first provide details about applying the Cat2Ax approach
with DBpedia as background knowledge. Subsequently, we discuss the evalua-
tion of Cat2Ax and compare it to related approaches. For the implementation
of the approaches, we used the Python libraries spaCy3 and nltk4. The code
of Cat2Ax5 and all data6 of the experiments are openly available. The Cat2Ax
approach is also integrated in the CaLiGraph extraction framework.7

2Since the DBpedia ontology does not define any functional object properties, we use a
heuristic approach and treat all properties which are used with multiple objects on the same
subject in less than 5% of the subjects as functional. This heuristic marks 710 out of 1,355
object properties as functional.

3https://spacy.io/
4https://www.nltk.org/
5https://github.com/nheist/Cat2Ax
6http://data.dws.informatik.uni-mannheim.de/Cat2Ax
7https://github.com/nheist/CaLiGraph

https://spacy.io/
https://www.nltk.org/
https://github.com/nheist/Cat2Ax
http://data.dws.informatik.uni-mannheim.de/Cat2Ax
https://github.com/nheist/CaLiGraph

6.5. EXPERIMENTS 85

Textual pattern Implication Sup. Conf.

1
Films directed by
<lex(dbr:res)>

⊑ ∃dbo:director.{dbr:res} 7661 1.00

2
Films directed by
<lex(dbr:res)>

⊑ dbo:Film 7683 1.00

3 <lex(dbr:res)> albums
⊑ ∃dbo:artist.{dbr:res}
⊑ ∃dbo:genre.{dbr:res}

⊑ ∃dbo:recordLabel.{dbr:res}

31426
552
411

0.97
0.02
0.01

4 <lex(dbr:res)> albums ⊑ dbo:Album 33542 1.00

5
Populated places in

<lex(dbr:res)> district
⊑ ∃dbo:isPartOf.{dbr:res}
⊑ ∃dbo:district.{dbr:res}

269
51

0.84
0.16

6
Populated places in

<lex(dbr:res)> district
⊑ dbo:Settlement 362 1.0

Table 6.1: Examples of discovered textual patterns and possible implications

6.5.1 Axiom Extraction using DBpedia

Candidate Selection We find 176,785 candidate category sets with an aver-
age size of eight categories per set. From those sets, 60,092 have a shared
prefix, 76,791 a shared postfix, and 39,902 a shared prefix and postfix.

Pattern Mining We generate patterns matching 54,465 different textual
patterns. For 24,079 of them, we imply properties; for 54,096, we imply
types. On average, a property pattern implies 1.22 different properties, while
a type pattern implies 1.08 different types. Table 6.1 lists exemplary patterns
that match a prefix (rows 1-2), a postfix (rows 3-4), and both a prefix and a
postfix (rows 5-6).

Pattern Application We determine a threshold τ for the minimum confi-
dence of an accepted axiom. Therefore, we have sampled 50 generated ax-
ioms for ten confidence intervals each ([0.01, 0.02),[0.02, 0, 03), ..., [0.09, 0.10)
and [0.10, 1.00]), and manually evaluated their precision. The results are
shown in Fig. 6.3. We can observe that the precision considerably drops for
a threshold lower than τ = 0.05, i.e., for axioms with a confidence score
less than 5%. Hence, we choose τ = 0.05 for a reasonable balance of axiom
precision and category coverage.

With a confidence threshold τ of 0.05, we extract 272,707 relation axioms
and 430,405 type axioms. In total, they cover 501,951 distinct Wikipedia
categories.

Axiom Application and Post-Filtering Applying the extracted axioms
to all Wikipedia categories results in 4,424,785 relation assertions and
1,444,210 type assertions not yet contained in K. For the type assertions, we
also compute the transitive closure using the rdfs:subclassOf statements in
the ontology (e.g., also asserting dbo:MusicalWork and dbo:Work for a type
axiom learned for type dbo:Album), and thereby end up with 3,342,057 new

86 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
Confidence

94

95

96

97

98

99

100
Pr

ec
isi

on
 o

f a
xi

om
s [

%
] Precision (type)

Precision (relation)

250000

300000

350000

400000

450000

500000

550000

Am
ou

nt
 o

f a
xi

om
s

Amount (type)
Amount (relation)

Figure 6.3: Performance of the pattern application for varying confidence
intervals. We determined the precision values by manual evaluation of 50
examples per interval.

type assertions (excluding the trivial type owl:Thing).
Finally, we remove 72,485 relation assertions and 15,564 type assertions

with our post-filtering strategy. An inspection of a small sample of the
removed assertions shows that approximately half are incorrect.

6.5.2 Comparison with Related Approaches

We compare Cat2Ax with the two approaches that also use Wikipedia cat-
egories to learn axioms and/or assertions for DBpedia: Catriple [113] and
C-DF [211]. As both use earlier versions of DBpedia and no code is available,
we re-implemented both approaches and ran them with the current version
for a fair comparison. For the implementation, we followed the algorithm de-
scriptions in their publications and used the variant with the highest reported
precision (i.e., for Catriple, we do not materialize the category hierarchy, and
for C-DF, we do not apply patterns iteratively). Running Cat2Ax, Catriple,
and C-DF with DBpedia takes 7, 8, and 12 hours, respectively.

Table 6.2 shows the extraction and evaluation results of the three ap-
proaches. We evaluate 250 examples per approach for both axioms and
assertions. Since the Catriple approach does not produce type information,
this adds up to 2,500 examples (1,250 axioms and 1,250 assertions). Each
example is labelled by three annotators from the crowdsourcing platform
Amazon Mechanical Turk.8 For the labelling, the axioms and assertions are

8https://www.mturk.com/

https://www.mturk.com/

6.5. EXPERIMENTS 87

Approach Count Precision [%] Count Precision [%]
Relation axioms Type axioms

Cat2Ax 272,707 95.6 430,405 96.8
C-DF 143,850 83.6 28,247 92.0

Catriple 306,177 87.2 – –
Relation assertions Type assertions

Cat2Ax
4,424,785

(7,554,980)
87.2

(92.1)
3,342,057

(12,111,194)
90.8

(95.7)

C-DF
766,921

(2,856,592)
78.4

(93.4)
198,485

(2,352,474)
76.8

(97.1)

Catriple
6,260,972

(6,836,924)
74.4

(76.5)
– –

Table 6.2: Total number of axioms/assertions and precision scores, based
on the crowd-sourced evaluation. Numbers in parentheses denote the total
number of assertions generated (including those already existing in DBpedia)
and the precision estimation of those total numbers. The latter was derived as
a weighted average from the human annotations and the overall correctness
of existing assertions in DBpedia according to Färber et al. [42].

presented in natural language (using labels from DBpedia) and have to be an-
notated as being either correct or incorrect. The annotators evaluate batches
of 50 examples selected from the complete example pool and displayed
randomly. The inter-annotator agreement according to Fleiss’ kappa [48]
is 0.54 for axioms and 0.53 for assertions, indicating moderate agreement
[102].

Compared with existing approaches, Cat2Ax outperforms C-DF in the
quality and quantity of the created axioms. Catriple produces about 40%
more relation assertions but at considerably lower precision and cannot
generate type axioms and assertions.

Despite our efforts of post-filtering generated assertions, we observe a
large gap between the precision of axioms and assertions. This is more evi-
dent when looking at new assertions, while the overall precision considering
both kinds of assertions (in/out of A) is typically higher. Moreover, there is
a small number of axioms which are incorrect and, at the same time, very
productive, i.e., they contribute a lot of new incorrect assertions. To further
look into these issues, we manually inspected some of those axioms and
identified three major causes of errors:

Incorrect data in DBpedia We extract the axiom (Roads on the National
Register of Historic Places in Arizona, rdf:type, dbo:Building) because many
roads in DBpedia are typed as buildings.

Correlation instead of causation We extract the axiom (University of
Tabriz alumni, dbo:birthPlace, dbr:Tabriz) because people often study in the
vicinity of their birthplace.

88 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

(1) Categories (2) Resources (3) Properties
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
ac

tio
n

of
 it

em
s c

ov
er

ed
Cat2Ax
Catriple
C-DF

(a) Fraction of (1) categories with at
least one axiom, (2) resources with at
least one assertion, (3) properties with
at least 100 assertions.

(1) Relations (2) Types
0

200000

400000

600000

800000

1000000

Am
ou

nt
 o

f r
es

ou
rc

es

Cat2Ax
Catriple
C-DF

(b) Number of resources without asser-
tions in DBpedia for which (1) a relation
assertion or (2) type assertion has been
found.

Figure 6.4: Comparison of the extracted results.

Incorrect generalisation We extract the axiom (Education in Nashik
district, rdf:type, dbo:University), which holds for many instances in the
category but not for all of them. This kind of error is most often observed for
mixed categories – as in the example, the category contains both universities
and schools.

In Fig. 6.4, we compare the results of the three approaches regarding
their data source coverage. Fig. 6.4a shows the number of covered (1)
categories, (2) resources and (3) properties. For (1), Cat2Ax finds an axiom
for almost 40% of Wikipedia’s categories. However, the difference between
Cat2Ax and Catriple is no longer visible in (2). This can be traced back to
Catriple not using any background knowledge during their creation of results,
thus producing more productive axioms in terms of generated assertions.
(3) shows that all approaches find assertions for a comparable number of
properties.

Fig. 6.4b shows statistics for resources currently not described by any
relation or type in DBpedia. While Cat2Ax and Catriple find relations for
almost one million resources, Cat2Ax additionally finds types for more than
one million untyped resources.

6.6 Conclusion

This chapter presented an approach that extracts high-quality axioms for
Wikipedia categories. We used the axioms to mine new assertions for KGs.
For DBpedia, we added 4.4M relation assertions at a precision of 87.2% and
3.3M type assertions at a precision of 90.8%. Our evaluation showed that
our approach produces significantly better results than existing approaches.

Although we conducted experiments with DBpedia, the approach is not
limited to only this KG. Any KG linked to Wikipedia (or DBpedia) can be

6.6. CONCLUSION 89

extended with the approach. Moreover, Cat2Ax could also be applied to
KGs created from other Wikis, such as DBkWik [75], or used with different
hierarchies, such as WebIsALOD [74]. Hence, Cat2Ax has general potential
that goes beyond DBpedia and Wikipedia. The implemented approach is
published as stand-alone version9 and as part of the CaLiGraph extraction
framework.10

In the previous chapter, we applied Cat2Ax to produce additional asser-
tions that may be integrated into CaLiGraph. In addition to that, we enhance
the types in the CaLiGraph ontology with the generated axioms. Fig. 1.1 on
page 6 shows how such an axiom is integrated into the ontology of the KG.
The complete list of triples for the restriction on Guns N’ Roses album is given
in Example 2.1.6 on page 15.

9https://github.com/nheist/Cat2Ax
10https://github.com/nheist/CaLiGraph

https://github.com/nheist/Cat2Ax
https://github.com/nheist/CaLiGraph

90 CHAPTER 6. LEARNING DEFINING AXIOMS FOR CATEGORIES

Part III

Knowledge Graph Population

91

CHAPTER 7

Subject Entity Detection in Wikipedia Listings

In Chapter 5, we implemented an initial approach for the extraction of
entities from listings. This chapter presents an approach that addresses
the two main drawbacks of the former: the limitation to list pages and the
negligence of unlinked entity mentions. The approach uses a Transformer
network to identify SEs on the token level. Due to the flexible input format
of Transformers, it can be applied to any listing and is independent of entity
boundaries as input. The contributions of this chapter are as follows:

• We present an approach for SE detection in listings with the following
advantages:

– The input format of the Transformer allows the application to any
listing and considers dependencies between listing items.

– The approach detects SEs end-to-end without relying on mention
boundaries of the entities in the input sequence.

– A mechanism for generating negative samples of listings and a fine-
tuning with noisy listing labels lead to more accurate predictions.

• In our evaluation, we show that the performance of our approach is
superior to previous work and analyse its performance in the more
general scenario of arbitrary listings on Wikipedia pages.

• We run the extraction of SEs on the complete Wikipedia corpus and
incorporate the results in a new version of CaLiGraph.

The work presented in this chapter is based on the following publication:
Nicolas Heist and Heiko Paulheim. Transformer-based Subject Entity

Detection in Wikipedia Listings. In Proceedings of the 6th International
Workshop on Deep Learning for Knowledge Graphs (DL4KG @ ISWC’22),
vol. 3342, October 2022, CEUR Workshop Proceedings. [71]

93

94 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

 Gilby Clarke
 --- -- ---- -- - ----
 Discography
 -- ---- - --- - ---
 Albums with Guns N' Roses
 - The Spaghetti Incident? (1993)
 - Greatest Hits (1999)
 Albums with Nancy Sinatra
 - California Girl
 Solo albums
 Name Year --
 Rubber 1998 ---
 Greatest Hits 2001 -
 ...

Page Title

Top Section

Listing 1

Listing 2

Listing 3

Figure 7.1: Simplified view on the listings of the Wikipedia page of Gilby
Clarke. Entity mentions are highlighted in green.

7.1 Motivation

Background knowledge is essential in tasks like text summarisation or ques-
tion answering. With ready-to-use EL tools like Falcon [172], entities in a
text can be identified, and additional information can be drawn from back-
ground KGs like DBpedia or CaLiGraph. Of course, this is only possible if the
necessary information about the entity is included in the KG [191]. Hence, it
is important to equip KGs with as much entity knowledge as possible. While
this is easily possible for prominent, often-mentioned entities, retrieving
information about infrequently mentioned long-tail and emerging entities is
tedious [44].

In this chapter, we generalize over structures like enumerations (Listings
1 and 2) and tables (Listing 3 in Fig. 7.1) by simply viewing them as listings
with listing items (i.e., enumeration entries or table rows). Further, we
generalize the definition of SEs from Section 5.1 to arbitrary listings. We
define SEs as all entities in a listing appearing as instances to a common concept.
In the case of Fig. 7.1, the SEs are the mentioned albums (e.g., The Spaghetti
Incident? or California Girl). Here, the common concept is made explicit
through the section labels above the listings (Albums with..), but it may as
well only be implicitly defined through the respective SEs. As a listing item
typically mentions only one SE together with some context (in this case, the
publication year of the album), we assume that at most one SE per listing
item exists.

In the English Wikipedia alone, we find almost five million listings in
roughly two million articles. From our estimation, about 80% of the listings
are suitable for extracting SEs, bearing an immense potential for KGE (for
details, see Section 7.3.1). Upon extraction, they can easily be digested

7.2. RELATED WORK 95

by downstream applications. Due to the semi-structured nature of listings,
the extraction quality is higher than extraction from plain text, and SEs
are typically extracted in groups of instances sharing a common concept
(as given by the definition above). The latter point makes the subsequent
disambiguation step much easier, as the group of all extracted instances
provides context for every individual instance. Another example of the
downstream use of SEs will be demonstrated in Chapter 9 where we use
groups of SEs to learn lexical patterns that entail axioms. For example, if a
listing is in a section that starts with Albums with, we learn that the SEs are
of the type Album.

The combination of these two ideas, i.e., extracting novel SEs and learning
defining axioms for them, can bring a big benefit. In Fig. 7.1, instead of
simply discovering California Girl as a new entity, we additionally assign
the type Album. Thinking further, we can learn an axiom that all albums
mentioned in the discography of Gilby Clarke are albums that he authors. The
additional information can be used to refine the description of the extracted
entity in the KG.

The rest of this chapter is structured as follows. Section 7.2 frames the
presented approach in related works. Section 7.3 lays out the preliminaries
of our work, followed by an introduction of our approach in Section 7.4.
In Section 7.5, we evaluate our approach and discuss the results of its
application to the whole Wikipedia data corpus.

7.2 Related Work

With the presented approach, we detect SEs end-to-end directly from the
listing text. For a given listing, we identify mentions of named entities and
decide at the same time whether they are SEs of a listing or not. In the
following, we describe relevant NER approaches and discuss approaches that
detect SEs.

7.2.1 Named Entity Recognition

The NER task has been introduced in Section 2.2.2. Early NER systems are
based on hand-crafted rules and lexicons, followed by systems using feature
engineering and ML [135]. One of the first competitive NER systems that
used neural networks was presented by Collobert et al. in 2011 [33]. This
eventually led to more sophisticated architectures based on word embeddings
and LSTMs (e.g. from Lample et al. [101]).

With the rise of Transformer networks [192] like BERT [37] in 2018, they
also found their direct application in NER (e.g., by Liang et al. [109]), or as
part of an end-to-end EL system like the one from Broscheit [21]. The latter
uses a simple but effective prediction scheme, where entities are predicted

96 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

at the token level, and multiple subsequent tokens with the same predicted
entity are collapsed into the actual entity prediction. Our work uses a similar
token-level prediction scheme to detect SEs.

7.2.2 Subject Entity Detection

Although SE detection has not explicitly been addressed very frequently in the
literature, some approaches deal with its related problems or subproblems.
In table interpretation, an important task is the identification of the subject
column, i.e., the column containing the entity with outgoing relations to
all other columns. TAIPAN [40] is an approach that aims to recover the
semantics of tables and names subject column identification as the first major
task towards relation extraction in tables. To identify subject columns, they
choose the columns having entities with the most outgoing edges to entities
in other columns w.r.t. a background KG. While this is a viable approach for
tables already annotated with entities, it is not broadly applicable to general
listings that may not have many known (or even annotated) entities.

Another related approach is from Zhao et al. [219], who deal with a
problem they call key entity detection. Primarily, they do sentiment analysis
in financial texts and use the detection of key entities – which they define as
subjects of events related to financial information – to attribute the positive
or negative sentiment to a concrete entity. Similar to our proposed approach,
they use a Transformer to detect key entities. However, they only use it to
select the key entities from a predefined set of entities and ignore the NER
part.

As mentioned in the introduction, the most closely related approach is
the work presented in Chapter 5: using manually defined features and a
binary XGBoost classifier, entities on list pages are classified into subject or
non-subject entities. For the page List of Japanese speculative fiction writers,1

for example, all entities in the enumerations that are Japanese speculative
fiction writers are classified as SEs.

More concretely, the approach uses page features (e.g., the number of
sections or tables on a page), positional features (e.g., indentation level of an
entry in an enumeration), and linguistic features (e.g., whether the column
header is a synonym of the list page title). Overall, SEs are extracted with a
precision of 90% and a recall of 67%. The classifier is trained and evaluated
with a set of list pages annotated through distant supervision with DBpedia
as background knowledge. This part is discussed in detail in Section 7.3.2
as the approach presented here also relies on this training data generation
strategy.

1https://en.wikipedia.org/wiki/List_of_Japanese_speculative_fiction_write
rs

https://en.wikipedia.org/wiki/List_of_Japanese_speculative_fiction_writers
https://en.wikipedia.org/wiki/List_of_Japanese_speculative_fiction_writers

7.3. PRELIMINARIES 97

7.3 Preliminaries

7.3.1 Listings in Wikipedia

Overall, the English Wikipedia has more than five million articles. Roughly
two million contain at least one listing in the form of an enumeration or
a table. All these pages contain 3.5 million enumerations and 1.4 million
tables.2 The roughly 90K list pages in Wikipedia contain the most structured
and easily exploitable form of listings. Here, listings are almost exclusively
used to list several entities with some common property (e.g., all Japanese
speculative fiction writers).

Listings that appear on other Wikipedia pages are used for this purpose
as well, but not exclusively, making detecting SEs much more complex. From
a sample of Wikipedia listings, we estimate that our approach is applicable
to approximately 85% of enumerations and 67% of tables. Enumerations
are often used to structure content (e.g., to list the individual episodes in a
biography). But even if listings are used to describe entities, they may not be
usable due to various reasons:

• Entity description without explicit mention (example in Fig. 7.2a)
• Description of the properties of a single entity (example in Fig. 7.2b)
• Listing items contain groups of entities (example in Fig. 7.2c)

The first point renders many tables useless for our approach as an entity is
implicitly described through entities and literals mentioned in multiple table
columns (e.g., a sports match is described through date, player, opponent,
and result).

7.3.2 Distantly-Supervised Training Data Generation for List
Pages

We use the training data generation strategy we introduced in Section 5.4.1 to
train the models in our experiments. The strategy is based on the observation
that DBpedia types, Wikipedia categories, and Wikipedia list pages can be
transformed into an immense taxonomy through linguistic and statistical
methods. For example, the taxonomy contains the hierarchy Person > Writer
> Speculative fiction writer > Japanese speculative fiction writer. The first two
elements originate from DBpedia types, the third from a category, and the
last from a list page.

Consequently, we can use this hierarchy to infer the DBpedia classes of
SEs for many list pages. To label the list page List of Japanese speculative
fiction writers, we assign every entity with the DBpedia class Writer a positive
label and every entity with a class that is disjoint with Writer a negative label.

2These numbers exclude very small listings with less than three items, which we do not
consider.

98 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

(a) Listing containing no explicit mention of the entities
Source: https://en.wikipedia.org/wiki/Sunrisers_Hyderabad_in_2018

(b) Listing describing the properties of an entity
Source: https://en.wikipedia.org/wiki/Dynamic_HTML

(c) Listing containing groups of entities
Source: https://en.wikipedia.org/wiki/Ibiza_(Vino_de_la_Tierra)

Figure 7.2: Examples of Wikipedia page listings with layout or content
challenging for SE detection.

https://en.wikipedia.org/wiki/Sunrisers_Hyderabad_in_2018
https://en.wikipedia.org/wiki/Dynamic_HTML
https://en.wikipedia.org/wiki/Ibiza_(Vino_de_la_Tierra)

7.4. SUBJECT ENTITY DETECTION WITH TRANSFORMERS 99

Then, we include all listing items into our training set that either have an
entity with a positive label or only entities with negative labels. Other listing
items are ignored as we cannot be certain that they may contain SEs, which
we could not identify due to the incompleteness of DBpedia.

CaLiGraph uses this extended taxonomy of DBpedia types, categories,
and list pages as a type hierarchy, thereby enriching the original DBpedia
instances with additional, more fine-grained types. Furthermore, CaLiGraph
contains more instances than DBpedia as it contains the extracted SEs from
list pages.

7.3.3 Transformers for Token Classification

Pre-trained Transformer networks [192] like BERT [37] and DistilBERT [173]
produced new state-of-the-art results for various NLP tasks, including NER
and question answering. To a large extent, their ubiquitous application is due
to the fact that only a comparably small amount of fine-tuning is necessary
to fit them to various tasks. BERT, for instance, consists of 12 multi-head
attention layers followed by a simple linear layer as a classification head. It is
often sufficient to fine-tune the final classification head to apply a Transformer
model to a token classification problem.

The input for a Transformer model can consist of plain text and must be
tokenised before processing. Every word in the input sequence is transformed
into one or more tokens (if the word is not contained in the vocabulary,
multiple word-piece tokens are used). Further, the input sequence has to
contain special tokens that indicate, for example, the sequence’s start and
end. Using BERT for token classification, the input sequence has a fixed
length of 512 tokens, has to start with a [CLS] token and end with a [SEP]
token. Additional special tokens may be introduced to provide more context
information to the model.

7.4 Subject Entity Detection with Transformers

To detect SEs in listings, we phrase the problem as a token classification
problem where we, similar to the work of Broscheit [21], produce a label
for every token of the input sequence. In a subsequent step, we aggregate
the token labels to predictions of SE mentions. We use 13 different token
labels, such as Person or Organisation, to identify SEs and additionally make
a prediction of their types (refer to Table 7.5 for the full list of labels). In
Section 7.4.1, we explain how to create input sequences that preserve the
context and the structure of a listing. In Section 7.4.2, we show our choice
of labels for SE prediction, and in Section 7.4.3, we introduce a mechanism
to generate negative samples of listings. Finally, Section 7.4.4 explains how
to use noisy SE labels on page listings for further fine-tuning of our models.

100 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

7.4.1 Token-level Subject Entity Detection

To pass a listing for SE detection to the Transformer model, we use multiple
special tokens to encode context information (page, section, potential table
header) and structural information (entries, rows, columns) of the listing into
the input sequence. Every sequence consists of the listing context, followed
by the special token indicating the end of context [CXE], and one or more
listing items:

[CLS] <context> [CXE] <listing items> [SEP]

We use the special token [CXS] to separate context elements. Within
listing items, table rows and columns are indicated with [ROW] and [COL],
respectively. For enumerations, we use the tokens [E1] to [En] to indicate
the start of an entry with the indentation level 1 to n.

Ignoring that some words may be split into multiple tokens, the input for
the first listing item of Listing 1 in Fig. 7.1 is shown in Example 7.4.1.

Example 7.4.1. Single enumeration list item as input

[CLS] Gilby Clarke [CXS] Discography [CXS] Albums with Guns N’ Roses [CXE]
[E1] The Spaghetti Incident? (1993) [SEP]

We want the model to take dependencies between listing entities into
account. For example, if the SE in the first listing item is mentioned right in
the beginning, this is likely the case for the remaining listing items as well.
Instead of only one listing item per input sequence, we provide as many
as the maximum length permits. The model can take these dependencies
within the input sequence into account through the attention layers of the
Transformer architecture. As shown in Example 7.4.2, we put Listing 1 into
one input sequence.

Example 7.4.2. Multiple enumeration list items as input

[CLS] Gilby Clarke [CXS] Discography [CXS] Albums with Guns N’ Roses [CXE]
[E1] The Spaghetti Incident? (1993)
[E1] Greatest Hits (1999) [SEP]

Likewise, we encode Listing 3 as one input sequence in Example 7.4.3.

Example 7.4.3. Multiple table list items as input

[CLS] Gilby Clarke [CXS] Discography [CXS] Solo albums [CXS]
[ROW] Name [COL] Year [CXE]
[ROW] Rubber [COL] 1998
[ROW] Swag [COL] 2001 [SEP]

If the listing is too long to fit into one input sequence, we split the
listing items into chunks and process them one after another. Each chunk is
augmented with the same context information and a different set of listing

7.4. SUBJECT ENTITY DETECTION WITH TRANSFORMERS 101

items. Depending on the length of listing items, it is possible to fit 20 or
more items into one input sequence. In our ablation study in Section 7.5.5,
we show that this item chunking strategy has a strongly positive effect on
the recall of the model. We also immensely reduce the model’s run time for
training and prediction. The number of processed input sequences is reduced
by a factor roughly equivalent to the median number of items per listing.3

7.4.2 Coarse-grained Entity Type Prediction

The most common notation to tag tokens in NER is the BIO notation (Begin,
Inside, and Outside of an entity) together with an entity type (e.g., Person or
Organisation). We decided not to use the BIO notation as, per definition, there
is at most one SE per listing item. Instead of making the task even simpler
and getting rid of the entity type prediction in favour of a simple binary SE
prediction task as well, we decided to stick with the coarse-grained entity
type prediction. This comes with the advantage that the entity types can be
used as additional information in downstream tasks – most importantly in
a subsequent entity disambiguation step. We will see in our ablation study
in Section 7.5.5 that the more difficult task of entity type prediction even
slightly increases the precision of the model.

Context and special tokens are annotated with the IGN label (for IGNORE)
to indicate to the model that we need no prediction for these tokens. SEs
are annotated with the respective entity type; everything else is annotated
with NONE. Again ignoring word-piece tokenization, the labels for Listing 1
of Fig. 7.1 are shown in Example 7.4.4.

Example 7.4.4. Type labels as input

IGN IGN IGN IGN IGN IGN IGN IGN IGN IGN IGN IGN
IGN WORK_OF_ART WORK_OF_ART WORK_OF_ART NONE
IGN WORK_OF_ART WORK_OF_ART NONE IGN

7.4.3 Negative Sampling through Shuffled Listings

It is difficult to find negative examples of complete listings if the training
data is generated heuristically and with distant supervision as described in
Section 7.3.2. Positives can be found easily (i.e., there is an entity in the
listing item that has the correct type), but the inverse does not always hold.
If we do not find a positive, this may mean that the listing item does not
contain one, but it is also possible that the annotation is missing (cf. OWA).
From a logical standpoint, it is even unlikely that some items in a listing
contain SEs while others do not.

3We deliberately use the median and not the average of items per listing as large listings
will be split into multiple input sequences due to the size limitation.

102 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

To mitigate this problem, we equipped our approach with a sampling
mechanism for negatives that randomly assembles them from the contexts
and items of all positives in the training set. If the context and items are
assembled randomly, the differences between the individual items (and the
difference in the context) should be higher than in a real listing. The intention
behind the mechanism is that the model learns to identify the coherence
between SEs of listing items as well as between items and the context.

The mechanism is simple for enumeration listings as we pick the context
from one listing and a random number of items (between three and the
maximum number of items per chunk) from other listings. For table listings,
we must ensure that the number of columns of an assembled listing is
consistent. Hence, the positives from the training set are divided into groups
of the same column size, and listings are only assembled from within a single
group. A negative example produced from four different listings could look
as shown in Example 7.4.5.

Example 7.4.5. Negative listing example

[CLS] Gilby Clarke [CXS] Discography [CXS] Albums with Guns N’ Roses [CXE]
[E1] James Stewart as Billy Jim Hawkins
[E1] Curzon Mill Company, part of Ashton syndicate.
[E1] Brepholoxa Van Duzee, 1904 [SEP]

The mechanism has exactly one hyper-parameter: the proportion of
negative listings to generate. We experiment with values between 0.0 (no
negative samples) and 1.0 (as many negatives as we have positives).

7.4.4 Fine-Tuning on Noisy Page Labels

The training data generation strategy described in Section 7.3.2 lets us create
labels for listings of list pages that we use for the initial training of our
models. To train a model that works well on listings of any pages, additional
training data of listings that are not on list pages may be beneficial (the
differences in listings have been described in Section 7.3.1).

We gather this data by training a model using the heuristically labelled
list pages. We apply the model to listings of all pages for noisy labels of SEs.
We then filter them by discarding any listings where multiple types of SEs
have been predicted (e.g., if the first SE of a listing is labelled as PERSON
and the second is labelled as WORK_OF_ART).

7.5 Experiments

The goal of our experiments is to compare the performance of our approach
against previous work on SE detection in list pages (Section 7.5.3) and
evaluate its performance in the more general setting of Wikipedia page

7.5. EXPERIMENTS 103

listings (Section 7.5.4). Further, we analyze some of our design choices in
an ablation study (Section 7.5.5). Finally, we apply our best model to the
complete Wikipedia corpus and report our extraction results (Section 7.5.6).

7.5.1 Metrics

To evaluate our SE detection models, we stick to the common metrics for
NER introduced in SemEval-2013 [176]. We report precision, recall, and F1
scores for the following scenarios:
Partial: Prediction matches the boundary of the true entity at least partially
Exact: Prediction matches the true entity’s boundary exactly
Ent-Type: At least partial boundary match and entity type matches
Strict: Predicted boundary and type match the true entity exactly

7.5.2 Datasets

In the experiments, we primarily focus on Wikipedia as a data corpus due
to its encyclopedic structure and the convenient mapping of entities to
DBpedia and CaLiGraph. From the main dataset D, which consists of all
Wikipedia pages that contain listings, we create the subsets D-LPtrain and
D-LPtest (from list pages) as well as D-Ptrain and D-Ptest (from any pages
with listings). The statistics of the datasets are shown in Table 7.1. We use
Wikipedia2020 (cf. Section 2.3.4) together with version 1.1.0 of CaLiGraph,
which is extracted from this dump, to generate the datasets.

The datasets D-LPtrain and D-LPtest are created as explained in Sec-
tion 7.3.2. For the experiments, we use a part of D-LPtrain for validation
to have a distribution of 60% training, 20% validation, and 20% test set
(similar to the setting in Section 5.4.1).

The datasets D-Ptrain and D-Ptest consist of listings from arbitrary Wiki-
pedia pages. Hence, no type information is available to infer the SE labels
through distant supervision. For D-Ptrain , we retrieved the labels as described
in Section 7.4.4. For D-Ptest , we provided the type information by manually
annotating the roughly one thousand listings with coarse-grained entity types
(e.g., Person or Organisation). We mapped these types to their CaLiGraph
counterparts and used this information to infer the SE labels via distant
supervision. This substantially reduced the annotation effort from labelling
roughly 10K listing items with concrete SE labels to labelling 1K listings
with coarse-grained types. This implies that this dataset is also, in part,
heuristically created, and the results have to be taken with a grain of salt.

7.5.3 Evaluation on Wikipedia List Pages

The evaluation results for experiments on the dataset D-LPtest are given
in Table 7.2. We compare the existing approach from Chapter 5 (now

104 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

Dataset #Pages #Listings #Items (average) #Items (median)
Enums Tables Enums Tables Enums Tables

D 2.0M 3.5M 1.4M 10.57 14.43 6 8
D-LPtrain 69K 290K 117K 18.06 31.26 8 12
D-LPtest 17K 75K 29K 18.17 31.32 8 12
D-Ptrain 547K 664K 306K 18.72 24.53 12 13
D-Ptest 502 763 265 8.42 11.25 6 7

Table 7.1: Statistics of the datasets used for the experiments. The com-
plete corpus D contains all Wikipedia pages that have listings. D-LPtrain

and D-LPtest are extracted from all Wikipedia list pages and are labelled
through distant supervision; D-Ptrain contains listings from arbitrary pages
and contains noisy labels from a model trained on list pages while D-Ptest is
annotated manually.

Approach Enums Tables Overall
P R F1 P R F1 P R F1

Old 91 82 86 90 55 68 90 67 77
NewLP 93 94 94 89 87 88 92 91 92
NewP 92 93 93 88 86 87 91 90 91

Table 7.2: Evaluation results for SE detection on Wikipedia list pages (evalu-
ating on D-LPtest). Precision, recall and F1-score (in %) are given for the
Exact scenario. NewLP is the best configuration for D-LPtest while NewP is
the best configuration for D-Ptest using D-LPtrain as training data.

called Old) with our model in the two configurations NewLP
4 and NewP .5

Both configurations are trained with the training part of D-LPtrain and
tuned using the evaluation part. The former model configuration is best
w.r.t. performance on D-LPtest . The latter model configuration is best w.r.t.
performance on D-Ptest . To train our models, we use the Huggingface
Transformer library [207].

Both model configurations significantly outperform the Old approach,
especially regarding recall for both enumerations and tables. This shows that
our model can identify substantially more entities while maintaining high
precision. The precision increased slightly for enumerations, and the recall
is over 10% higher. While precision is kept almost constant for tables, the
recall increased by more than 30%.

4Config.: Model roberta-base trained for 3 epochs with batch size 64, learning rate 5e-5,
no warmup or weight decay, negative sample size 0.5

5Config.: Model roberta-base trained for 2 epochs with batch size 64, learning rate 5e-5,
no warmup or weight decay, negative sample size 0.3

7.5. EXPERIMENTS 105

Metric Enums Tables Overall
P R F1 P R F1 P R F1

Partial 76 78 77 68 82 74 73 79 76
Exact 73 76 75 67 81 73 71 77 74
Ent-Type 76 78 77 65 78 71 73 78 75
Strict 71 74 73 64 77 70 69 75 72
Baseline 23 85 36 21 90 34 23 86 36

Table 7.3: Precision, recall and F1-score (in %) for SE detection on page
listings (evaluated on D-Ptest) using our best model configuration Newfinal .

7.5.4 Evaluation on Wikipedia Page Listings

The evaluation results for the model Newfinal
6 on D-Ptest is given in Table 7.3.

Comparing the Exact scenario with the results on Wikipedia list pages, it
becomes clear that the performance on arbitrary listings is worse. The losses
in performance for tables are slightly higher than for enumerations. This
aligns with the observation that our approach applies to fewer tables than
enumerations. For tables, we have the advantage that mention boundaries
are often indicated through column separators, but this is not reflected in the
results. Training the models for over two to three epochs on D-LPtrain leads
to overfitting on list page data and hence reduced performance on D-Ptest .

Unfortunately, applying the Old approach to this dataset is impossible
as it contains several features specific to list pages. As an alternative, we
implemented the pick-first-entity baseline, which has already proven to be
a strong baseline for the Old approach. In this baseline, we label the first
mentioned entity in an item as SE. In Table 7.3, we see that this baseline has
a very high recall (as most SEs are mentioned in the beginning) while the
precision is far lower than the one of Newfinal . This shows that the model
can sort out many false positives (tripling precision) by sacrificing only some
correct SEs. In cases where coverage is not the only important criterion
(as is usually the case in KGE), the New model should be preferred. The
more important point, however, is that the New model does not depend on
mention boundaries as input (which might also account for some loss in
performance).

7.5.5 Ablation Study

To verify some assumptions we made during the design of the SE detection
approach, we conducted an ablation study using the page listings dataset
D-Ptest . We investigate how the item chunking in input sequences influences
the model’s performance. The results in Table 7.4 show a slightly positive
effect on precision (3% for enumerations, 4% for tables) and a roughly

6Config.: Similar to NewP with an additional fine-tuning step of one epoch on D-Ptrain.

106 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

Approach Enums Tables Overall
P R F1 P R F1 P R F1

Newfinal 73 76 75 67 81 73 71 77 74
.. without item chunks 70 35 47 63 40 49 68 37 48
.. without type prediction 69 78 73 54 84 66 64 79 71
.. without negative sampling 71 74 73 66 81 73 70 76 73
.. without fine-tuning on pages 65 48 55 67 64 66 66 52 58

Table 7.4: Evaluation results for SE detection on Wikipedia page listings
(evaluated on D-Ptest) for variations of our best model configuration Newfinal .
Precision, recall and F1-score (in %) are given for the Exact scenario.

doubling effect on recall. The results confirm that the model can improve its
predictions by considering the dependencies between the listing items.

Further, we investigate whether the additional prediction of entity types
influences the performance (as opposed to a binary prediction of SEs). The
results show a positive effect on precision and a slightly negative effect on
recall. As the F1 measure increases slightly and the predicted types provide
additional information for downstream tasks, we stick with type prediction
instead of binary SE prediction.

Additionally, we see from Table 7.4 that our negative sampling mechanism
slightly increases the precision and recall of our final model. Consequently,
the model seems to be able to learn whether there is some consistency
between the listing items in the input sequence.

Finally, the fine-tuning on pages has a very strong effect on recall as it
comes with an increase of 25% and the model’s precision is also increased
by 5%. This result confirms that additional fine-tuning on noisy labels still
yields a huge benefit.

7.5.6 Subject Entity Extraction over Wikipedia

Applying the model Newfinal to the complete dataset of Wikipedia listings
D took 13 hours on a single NVIDIA RTX A6000 GPU with 48GB of RAM.
We extracted 40M entity mentions from 2.7M enumerations and 1M tables
on 1.7M pages. Of the 40M entity mentions, 19.5M can be traced back to
3.8M known entities (i.e., the predicted mention boundary overlapped with
an existing link in Wikipedia, and hence, CaLiGraph), meaning each known
entity has, on average, 5.1 mentions. If we use that same factor of 5.1 to
estimate the number of entities for the remaining 20.5M entity mentions,
they describe 4M additional unknown entities that could be added to the KG.

In Table 7.5, we display the number of extracted entity mentions aggre-
gated by entity type. Unsurprisingly, the most frequently extracted entities
are of the types Person, Work of Art, Organisation, and Location. Apart from
that, the mention type distribution roughly resembles the distribution of

7.6. CONCLUSION 107

Entity Type #Mentions Entity Type #Mentions Entity Type #Mentions
PERSON 13,622,704 GPE 1,519,747 NORP 230,707
OTHER 9,398,003 PRODUCT 1,000,117 LANGUAGE 86,354
WORK_OF_ART 7,148,235 SPECIES 964,922 LAW 11,490
ORG 2,916,528 FAC 893,226
LOC 1,531,452 EVENT 370,440 Total 39,693,925

Table 7.5: Number of extracted mentions of SEs for the whole Wikipedia
dataset of listings D aggregated by entity type.

entities in DBpedia (cf. Chapter 3).

7.6 Conclusion

In this chapter, we have presented a Transformer-based SE detection ap-
proach that overcomes several limitations of prior work to make it appli-
cable to more general settings and, at the same time, improve extraction
performance. An evaluation of listings of Wikipedia pages shows that the
performance for such a more general setting is considerably worse than for
the scenario of Wikipedia list pages. While the inferior results can partly
be attributed to conceptual limitations of SE detection in arbitrary listings
(c.f. Section 7.3.1), further improvement is necessary so that downstream
applications can consume the results without extensive post-filtering.

The entities extracted here are integrated in CaLiGraph. The implemented
approach is published as part of the CaLiGraph extraction framework.7

However, a subsequent entity disambiguation step is necessary to match the
identified SE mentions with existing entities or create new entities in the KG.

7https://github.com/nheist/CaLiGraph

https://github.com/nheist/CaLiGraph

108 CHAPTER 7. SUBJECT ENTITY DETECTION IN LISTINGS

CHAPTER 8

NASTyLinker:
NIL-Aware Scalable Transformer-based Entity Linker

Most prevalent EL approaches assume that the reference KG with the entities
to link against is complete. In practice, however, it is necessary to deal
with the case of linking to an entity not contained in the KG, i.e., to a NIL
entity. In the previous chapter, we have identified a large number of entity
mentions in Wikipedia listings, ready to be integrated into a KG. This chapter
addresses the task of disambiguating such mentions by mapping them to
existing entities in the KG or creating new ones in the case of NIL entities.
Our proposed approach, NASTyLinker, is aware of NIL entities and produces
corresponding mention clusters while maintaining high linking performance
for known entities. The contributions of this chapter are as follows:

• We introduce the NASTyLinker approach, which extends existing EL
approaches by using a top-down clustering mechanism to link mentions
to known entities consistently and produce clusters for NIL mentions.

• In our experiments, we demonstrate the presented approach’s competi-
tive linking performance and scalability through an evaluation on the
NILK dataset.

• We use NASTyLinker for KGP by linking entities in Wikipedia listings.
We report on the linking statistics and provide a qualitative analysis of
the results.

The work presented in this chapter is based on the following publication:
Nicolas Heist and Heiko Paulheim. NASTyLinker: NIL-Aware Scalable

Transformer-based Entity Linker. In The Semantic Web - ESWC 2023.
Lecture Notes in Computer Science, vol. 13870, pp. 174-191, Hersonissos,
Greece, May 2023, Springer, Cham. [72]

109

110 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

(a) A lake in Ontario, CA.
Lakes of Temagami

(b) A lake in Montana, US.
List of lakes of Powell County, Montana

(c) A musician in the band Vinyl Williams.
Vinyl Williams

(d) A character in a soap opera.
List of The Young and Restless characters

Figure 8.1: Listings in Wikipedia containing the mention James Lake. All of
the mentions refer to distinct entities. A Wikipedia article exists only for the
entity of the mention in (a).

8.1 Motivation

EL is crucial for many downstream tasks like question answering [36, 200],
or KG population and completion [147]. One main challenge of EL is the
inherent ambiguity of entities mentioned in the text. Fig. 8.1 shows four
homonymous mentions of distinct entities with the name James Lake (a lake
in Canada, a lake in the US, a musician, and a fictional character). Correctly
linking the mentions in Figs. 8.1a and 8.1b is incredibly challenging as both
mentions point to geographically close lakes.

In a typical EL setting, we assume the training data mentions all entities
to be linked against. This assumption is dropped in Zero-Shot EL [117],
where a linking decision is made based on entity information in the reference
KG (e.g., textual descriptions, types, relations). In this setting, a seminal
approach has been introduced with BLINK [210] (cf. Section 2.2.3).

In a practical setting, we additionally encounter the problem of mentions
without a corresponding entity in the reference KG. The mention in Fig. 8.1a
is the only one with a counterpart in a reference KG where entities are based
on Wikipedia articles. For the other mentions, a correct prediction based on
the reference KG is impossible. Instead, NIL-aware approaches could either
(1) create an (intermediate) entity representation for the NIL entity to link or
(2) produce clusters of NIL mentions with all mentions in a cluster referring
to the same entity.

While this problem has been largely ignored by EL approaches for quite
some time, recent works demonstrate that reasonable predictions for NIL

8.2. RELATED WORK 111

mentions can be made by clustering mentions based on inter-mention affini-
ties [1, 94]. Both compute inter-mention and mention-entity affinities using
a bi-encoder architecture based on BLINK [210]. EDIN [94] is an approach
of category (1) that uses a dedicated adaptation dataset to create representa-
tions for NIL entities in an unsupervised fashion. Hence, the approach can
only link to a NIL entity if there is at least one mention in the adaptation
dataset.

For some EL tasks, especially as a prerequisite for KGP, creating an
adaptation dataset with good coverage is not trivial because an optimal
adaptation dataset has to contain mentions of all NIL entities. Agarwal et al.
[1] present an approach of category (2) that creates clusters of mentions and
entities in a bottom-up fashion by iteratively merging the two most similar
clusters, always under the constraint that a cluster must contain at most one
entity.

With NASTyLinker, we propose an EL approach that is NIL-aware in the
sense of category (2), hence avoiding the need for an adaptation dataset.
Like Agarwal et al., it produces clusters of mentions and entities based on
inter-mention and mention-entity affinities from a bi-encoder. NASTyLinker
relies on a top-down clustering approach that assigns mentions to the entity
with the highest transitive affinity in case of a conflict. Contrary to Agarwal
et al., who discard cross-encoders completely due to the quadratic growth
in complexity when evaluating inter-mention affinities, our experiments
show that applying a cross-encoder only for the refinement of mention-entity
affinities can result in a considerable increase of linking performance at a
reasonable computational cost.

The rest of this chapter is structured as follows. Section 8.2 gives an
overview of the state of the art in NIL-aware EL. Section 8.3 formally defines
the task, followed by a description of NASTyLinker in Section 8.4. We
evaluate our approach in Section 8.5 and discuss its performance in a KGP
task.

8.2 Related Work

Entity Linking

EL (introduced in Section 2.2.2) has been studied extensively in the last
two decades [161, 178]. Initially, approaches relied on word and entity
frequencies, alias tables, or neural networks for their linking decisions [34,
50, 129]. The introduction of pre-trained Transformer models [37] made it
possible to create representations of mentions and entities from text without
relying on other intermediate representations. Gillick et al. [53] shows how
to learn dense representations for mentions and entities; Logeswaran et al.
[117] extend this by introducing the zero-shot EL task and demonstrate that

112 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

reasonable entity embeddings can be derived solely from entity descriptions.
Wu et al. [210] introduce BLINK, the prevalent bi-encoder and cross-encoder
paradigm for zero-shot EL. Based on this paradigm, various improvements
for zero-shot EL have been proposed. KG-ZESHEL [167] adds auxiliary entity
information from KG embeddings into the linking process; Partalidou et al.
[145] propose alternative pooling functions for the bi-encoder to increase
the accuracy of the candidate generation step.

Cross-Document Coreference Resolution (CDC)

NIL-Aware EL is closely related to CDC, the task of identifying coreferent
entity mentions in documents without explicitly linking them to entities in a
KG [10]. Dutta and Weikum [39] explicitly tackle CDC in combination with
EL by applying clustering to bag-of-words representations of entity mentions.
More recently, Logan IV et al. [116] evaluate greedy nearest-neighbour
and hierarchical clustering strategies for CDC, however, without explicitly
evaluating them with respect to EL.

Entity Discovery and NIL-Aware EL

The majority of EL approaches may identify NIL mentions (for instance,
through a binary classifier or a ranking that explicitly includes NIL) but does
not process them in any way [178, 179]. In 2011, the TAC-KBP challenge
[92] introduced a task that includes NIL clustering; in the NEEL challenge
[171] based on microposts, NIL clustering was part of the task as well. Ap-
proaches that tackle these tasks typically apply clustering based on similarity
measures over the entity mentions in the text [18, 41, 55, 132, 160]. More
recently, Angell et al. [6] train two separate bi-encoders and cross-encoders
to compute inter-mention and mention-entity affinities. Subsequently, they
apply a bottom-up clustering for refined linking predictions within single
biomedical documents. Agarwal et al. [1] extend the approach to cross-
document linking through a clustering based on minimum spanning trees
for all mentions in the corpus. Clusters are formed by successively adding
edges to a graph as long as the constraint that a cluster can contain at most
one entity is not violated. Instead, they omit the cross-encoder and employ a
custom training procedure for the bi-encoder. They explicitly evaluate their
approach w.r.t. NIL entity discovery by removing some entities from zero-shot
EL benchmark datasets in the training set. Our approach employs a similar
method for computing affinities but with a top-down clustering approach to
better identify clusters of NIL mentions. The EDIN pipeline [94] also applies
clustering w.r.t. inter-mention and mention-entity affinities, but only to iden-
tify NIL mention clusters on a dedicated adaptation dataset. Subsequently,
the entity index is enhanced with pooled representations of these clusters
to predict NIL entities. In their clustering phase, they first produce groups

8.3. TASK FORMULATION 113

of mentions and then identify NIL mention clusters by checking whether
less than 70% of the mentions refer to the same entity. As we aim to apply
NIL-aware EL for KGP, relying on an adaptation dataset is impossible. Still,
we include the clustering method of the EDIN pipeline in our experiments to
compare how well the approaches detect NIL mention clusters.

8.3 Task Formulation

A document corpus D contains a set of textual entity mentions M. Each
mention m ∈ M refers to an entity e in the set of all entities E∗. Given a
KG K with known entities Ek,1 the task in standard EL is to assign an entity
ê ∈ Ek to every mention in M. In this setting, we assume that E∗ = Ek, i.e.,
all entities are contained in K.

In NIL-aware EL, we drop the assumption that every mention links to
an entity contained in K. Instead there is a set of NIL entities En with
Ek ∪ En = E∗ and Ek ∩ En = ∅. For mentions Mk that refer to entities in K,
the task is still to predict an entity ê ∈ Ek. For mentions Mn referring to
entities not contained in K, the task is to predict a cluster identifier c ∈ C so
that the clustering C resembles the distribution of mentions in Mn to entities
in En as closely as possible. We assume that we are additionally operating in
a zero-shot setting, i.e., the training portion Dtrain of the document corpus
may not contain mentions for all entities in E∗.

Similar to related works [1, 117], we assume that the textual entity
mentions are already given. Further, we only investigate the relevant steps
for KGP, i.e., detection and disambiguation of NIL entities. While we discard
the indexing aspect, an EL model, which includes the entities in En, can still
be created in a subsequent step by training a new model on the enhanced
KG.

8.4 NASTyLinker: An Approach for NIL-Aware and
Scalable Entity Linking

This section describes our proposed approach for making NIL-aware EL pre-
dictions. Fig. 8.2 depicts the three main phases of the NASTyLinker approach.
In the Linking Phase, we first retrieve inter-mention and mention-entity
affinities from an underlying EL model for the subsequent clustering. We
define constraints for such a model and describe the one used in our exper-
iments in Section 8.4.1. During the Clustering Phase, clusters of mentions
and entity candidates are created using greedy nearest-neighbour clustering
(Section 8.4.2). Finally, we retrieve entity candidates for every cluster. In

1In our original definition in Section 2.2, we use E for all entities in the KG. Here, we use
Ek to highlight the difference to En.

114 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

1

3
2

4 5
6

7
8

9

12 11

10

a

b

c

LINKING PHASE CLUSTERING PHASE CONFLICT RESOLUTION PHASE

1

3
2

4 5
6

7
8

9

12 11

10

a

b

c

1

3
2

4 5
6

7
8

9

12 11

10

a

b

c

MENTION

ENTITY
C3

C1

C2

C3

C1A

C1B

C2A

C2B

Figure 8.2: Main phases of the NASTyLinker approach. Dotted lines show
top-k affinity scores; solid lines indicate the highest transitive affinity scores.

the Conflict Resolution Phase, clusters are split based on transitive mention-
entity affinities to ensure that a cluster contains at most one known entity
(Section 8.4.3).

8.4.1 Entity Linking Model

In the Linking Phase, we compute the k most similar mentions and entities
for every mention in M (dotted lines in Fig. 8.2). The underlying EL model
has to provide a function ϕ with ϕ(m, e) ∈ [0; 1] for the similarity between
mention m and entity e as well as ϕ(m,m′) ∈ [0; 1] for the similarity between
mentions m and m′. In addition, efficiently retrieving the top k mention and
entity candidates for a given mention must be possible.

For our experiments with NASTyLinker, we choose the BLINK architec-
ture [210] as the underlying EL model as it provides the foundation for
many state-of-the-art EL models. Furthermore, as the bi-encoder creates
embeddings for mentions and entities alike, methods for an approximate
nearest-neighbour search like FAISS [93] can retrieve linking candidates effi-
ciently. As the application of the cross-encoder is the most time-consuming
part of this model, we explore in our experiments the trade-off between link-
ing performance and runtime when reranking only inter-mention affinities,
mention-entity affinities, or both.

Partalidou et al. [145] propose several layouts for structuring the input
sequence of mentions and entities for the Transformer model. We achieved
the best results with the mention layout

[CLS] [<type>] <mention label> [CTX] <mention context> [SEP]

and the entity layout

[CLS] [<type>] <entity title> [CTX] <entity description> [SEP]

8.4. NASTYLINKER: NIL-AWARE AND SCALABLE EL 115

where [CTX] is a special delimiter token and [<type>] is a placeholder for
a special token of the mention type (POS-tag) or entity type (top-level type
in the KG). We stick to Wu et al. [210] for optimisation and use in-batch
(hard) negatives for the bi-encoder and bi-encoder-generated negatives for
the cross-encoder.

8.4.2 Cluster Initialization

We follow Logan IV et al. [116] and use a greedy nearest-neighbour clustering
to produce an initial mention clustering. Given the mention affinity threshold
τm, the mentions M are grouped into clusters C so that two mentions
m,m′ ∈ M belong to the same cluster if ϕ(m,m′) > τm.

Further, we assign entity candidates to the clusters using a threshold for
entity affinity τe. For a cluster C ∈ C with mentions Mc, we select the known
entities with the highest affinity to each cluster mention:

Ekc =
⋃

m∈Mc

{argmax
e∈Ek

ϕ(m, e) : ϕ(m, e) > τe}. (8.1)

In Fig. 8.2, the dotted lines represent affinities greater than the thresholds
τm and τe, respectively. Cluster C1 contains four loosely connected mentions
with m1 and m2 directly connected to the entity candidate ea. Either all four
mentions refer to ea as they are transitively connected, or some mentions
refer to an entity in En (e.g., a situation like in Figs. 8.1a and 8.1b). Cluster
C2 contains several mentions with two known entity candidates eb and ec,
making a trivial assignment of mentions to entities impossible. Finally, cluster
C3 contains three connected mentions without assigned entity candidates,
most likely representing a NIL entity. Conflicts like the ones occurring in the
former two clusters are resolved in the subsequent resolution phase.

8.4.3 Cluster Conflict Resolution

The objectives of the Conflict Resolution Phase are twofold: For every cluster
C ∈ C we (1) find sub-clusters with |Ekc | = 1 (c.f. C1B, C2A, and C2B in
Fig. 8.2), and (2) identify mentions in Mc that do not refer to any entity
in Ekc . For these, we create one or more sub-clusters representing the NIL
entities Enc of C (c.f. C1A and C3 in Fig. 8.2).

For conflict resolution, we view a cluster C ∈ C as a graph Gc with
Mc∪Ekc as nodes and affinities above threshold as edges. To ensure objective
(1), we assign every mention in a cluster to the candidate entity with the
highest transitive affinity, defined as follows:

ϕ∗(m, e) = max
m∼e∈Gc

m∼e∏
u,v

ϕ(u, v) (8.2)

116 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

with m ∼ e denoting a path from a mention m to an entity e in Gc and (u, v)
a single edge. The rationale for this metric is to favour strong contextual
similarity between mentions over the mediocre similarity between a mention
and an entity. As the entity context comes from a different data corpus (i.e.,
information from a KG) than the mention context, it is more likely that the
contexts for a mention and its linked entity are dissimilar than the contexts
of two mentions linking to the same entity.

Example 8.4.1. Assignment of mentions to known entities

With affinities ϕ(m6, eb) = 0.9, ϕ(m6,m7) = 0.9, ϕ(m7, ec) = 0.8, and paths
m7 − m6 − eb, m7 − ec from Fig. 8.2, we find that ϕ∗(m7, eb) = 0.81 >
ϕ∗(m7, ec) = 0.8, resulting in the assignment of m7 to the cluster of eb in
spite of ec being the most likely entity for m7 w.r.t. ϕ.

To ensure objective (2), we introduce a threshold τa as a lower limit for
the transitive affinity between a mention and an entity. We label mentions
as NIL mentions if they do not have a transitive affinity higher than the
threshold to any entity in Ekc :

Mn
c = {m ∈Mc|∄e ∈ Ekc : ϕ∗(m, e) > τa} (8.3)

From Mn
c , we produce one or more mention clusters similar to the initializa-

tion step in Section 8.4.2.

Example 8.4.2. Mention clusters for NIL entities

With τa = 0.75, affinities ϕ(m1, ea) = 0.9, ϕ(m1,m3) = 0.8, ϕ(m3,m4) = 0.9,
and pathm4−m3−m1−ea from Fig. 8.2, we find that ϕ∗(m3, ea) = 0.72 < τa
and ϕ∗(m4, ea) = 0.648 < τa. m3 and m4 are labelled as NIL mentions and,
due to their direct connection, form the single cluster C1B.

The function ϕ∗ can be computed efficiently on a graph using Dijkstra’s
algorithm with −logϕ as a function for edge weights. Edges are only inserted
in the graph for ϕ > τa, avoiding undefined edge weights for ϕ = 0.

8.5 Experiments

We first describe the datasets and experimental setup used to evaluate
NASTyLinker. Then, we compare the performance of our approach with
related NIL-aware clustering approaches on the NILK dataset [89] and ana-
lyze its potential to scale. Finally, we report on the application of NASTyLinker
for KGP by linking entities in Wikipedia listings.

8.5. EXPERIMENTS 117

Dataset |Mk| |Mn| |Ek| |En|

N
IL

K

Training (DN
train) 85,052,764 1,327,039 3,382,497 282,210

Validation (DN
val) 10,525,107 162,948 422,812 35,276

Test (DN
test) 10,451,126 162,497 422,815 35,279

LI
ST

IN
G Training (DL

train) 11,690,019 6,760,273 3,073,238 ?
Validation (DL

val) 3,882,641 2,272,941 1,695,156 ?
Test (DL

test) 3,884,066 2,259,072 1,701,015 ?
Prediction (DL

pred) 18,658,271 ? ?

Table 8.1: Mention and entity occurrences in the partitions of the datasets.
NIL mention counts for DL are estimated w.r.t. LCWA. The number of NIL
entities En in the listings dataset is unknown. For DL

pred a single mention
count is displayed as we can’t know whether a mention in M links to an
entity in Ek or En.

8.5.1 Datasets

NILK

NILK is a dataset explicitly created to evaluate EL for known and NIL entities.
It uses Wikipedia as a text corpus and Wikidata [195] as reference KG. All
entities in Wikidata up to 2017 are labelled as known entities, and entities
added to Wikidata between 2017 and 2021 are labelled as NIL entities.
Mention and entity counts of NILK are displayed in Table 8.1. About 1% of
mentions in NILK are NIL mentions, and about 6% of entities are NIL entities.
NIL entities are potentially slightly biased towards more popular entities,
as the fact that they are present in Wikidata hints at a certain popularity,
which may be higher than the popularity of an average NIL entity. Hence, the
average number of mentions per NIL entity is quite high in this dataset: half
of the entities are mentioned more than once, and more than 15% are even
mentioned more than five times. Mention boundaries are already given, and
the authors define partitions for training, validation, and testing, which are
split in a zero-shot manner w.r.t. NIL entities. As mention context, the authors
provide 500 characters before and after the actual mention occurrence in a
Wikipedia page. As entity descriptions, we use Wikipedia abstracts.2

Wikipedia Listings

The LISTING dataset consists of the mentions of SEs extracted from enu-
merations and tables of Wikipedia as described in Chapter 7. Likewise, we
use CaLiGraph as reference KG. Mention and entity statistics are given in
Table 8.1. We partition the data into train, validation, and test while ensuring

2While there are entities in Wikidata which do not have a Wikipedia page, this case does
not occur in NILK by construction.

118 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

that listings on a page are all in the same split. Unlike NILK, the LISTING
dataset does not contain explicit labels for NIL entities. Instead, we define
NIL entities using the LCWA. Given a listing with multiple mentions, we only
incorporate them into training or test data if at least one mention is linked
to a known entity. Then, by LCWA, we assume that all mentions that can
be linked are linked. All other mentions are assigned a new unique entity
identifier. The prediction partition DL

pred, however, contains all mentions
without a linked entity (i.e., they may link to a known or a NIL entity). We
use the text of the listing item as mention context for the dataset, and we
use Wikipedia abstracts as entity descriptions.

We have considered further datasets that were used for evaluation of
NIL-aware approaches for evaluation (e.g., from challenges like TAC-KBP or
Microposts [35]) but discarded them due to their small size or not being free
to use.

8.5.2 Metrics

Classification Metrics

We compute precision, recall, and F1 score as well as aggregations of the
metrics on the instance level (micro average). As the evaluated approaches
are unaware of the true NIL entities, they assign cluster identifiers to (what
they assume to be) NIL mentions. To compute the classification metrics, it
is necessary to map the cluster identifiers to actual NIL entities. Kassner et
al. [94] allows the assignment of multiple cluster identifiers to the same NIL
entity. This assumption would yield overly optimistic results. Instead, we
only allow one-to-one mappings between cluster identifiers and NIL entities.
Finding an optimal assignment for this scenario is equivalent to solving the
linear sum assignment problem [3], for which efficient algorithms exist.

Clustering Metrics

Following related approaches [1, 94], we additionally provide Normalized
Mutual Information (NMI) and Adjusted Rand Index (ARI) as clustering
metrics for the comparison of the approaches to settings where no gold
labels of NIL entities may be available.3 For known entities, however, the
classification metrics will most likely be more expressive than the clustering
metrics as the latter treat multiple clusters with the same known entity as
their label still as separate clusters.

3We implement further clustering metrics (B-Cubed+, CEAF, MUC) but do not list them as
they are similar to or adaptations of the classification metrics.

8.5. EXPERIMENTS 119

8.5.3 Evaluated Approaches

EL Model

We compute inter-mention and mention-entity affinities with a bi-encoder
similar to BLINK [210]. As the reranking of bi-encoder results with a cross-
encoder is costly, we evaluate different scenarios where the cross-encoder
is omitted (No Reranking), applied to inter-mention affinities only (Mention
Reranking), applied to mention-entity affinities only (Entity Reranking), or
applied to both (Full Reranking). We use the Sentence-BERT implemen-
tation of the bi-encoder and cross-encoder [162] with all-MiniLM-L12-v2
and distilbert-base-cased as respective base models. The base models are
fine-tuned for at most one million steps on the training partitions of the
datasets. Longer fine-tuning did not yield substantial improvements. We use
a batch size of 256 for the bi-encoder and 128 for the cross-encoder. For
efficient retrieval of candidates from the bi-encoder, we apply approximate
nearest-neighbour search with hnswlib [121].

We use the plain bi-encoder and cross-encoder predictions of the EL
model as baselines. Additionally, we evaluate a trivial Exact Match approach,
where we link a mention to an entity if their textual representations match
exactly.4 The more popular entity (w.r.t. ingoing and outgoing links in the
KG) is selected in case of multiple matches. Naturally, this approach cannot
handle NIL entities.

Clustering Approaches

Apart from the NASTyLinker clustering as described in Section 8.4, we apply
the clustering approaches of Kassner et al. [94] and Agarwal et al. [1]
for comparison.5 The clustering approach of Kassner et al., which we call
Majority Clustering, applies a greedy clustering and assigns a known entity e
to a cluster if at least 70% of mentions in the cluster have the highest affinity
to e. Similarly to NASTyLinker, they use hyperparameters as thresholds for
minimum inter-mention and mention-entity affinities.

The clustering approach of Agarwal et al., which we call Bottom-Up
Clustering, starts with an empty graph and iteratively adds the edge with
the highest affinity, as long as it does not violate the constraint of a cluster
having at most one entity. They use a single hyperparameter as a threshold
for the minimum affinity of an edge, be it inter-mention or mention-entity.

4We apply simple preprocessing like lower-casing and removing special characters.
5We tried to compare with the full approach of Agarwal et al., but they do not provide any

code, and our efforts to re-implement it did not yield improved results.

120 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

Approach Known NIL Micro
F1 NMI ARI F1 NMI ARI F1 NMI ARI

No
Clustering

Exact Match 79.5 — — 0.0 — — 78.1 — —
Bi-Encoder 80.8 — — 0.0 — — 79.1 — —

Cross-Encoder 89.0 — — 0.0 — — 87.1 — —
Clustering

& No
Reranking

Bottom-Up 64.6 99.0 97.5 41.6 94.8 81.8 64.1 96.8 93.5
Majority 59.4 99.3 98.0 49.8 92.7 82.7 59.2 96.6 94.6

NASTyLinker 76.8 98.6 95.3 40.8 95.2 76.8 76.0 97.3 90.3
Clustering
& Mention
Reranking

Bottom-Up 65.7 97.1 98.9 41.5 94.6 10.0 65.1 96.0 66.0
Majority 66.6 92.4 74.8 44.0 94.4 73.2 66.1 92.4 70.4

NASTyLinker 74.2 99.0 96.6 39.2 85.6 16.5 73.5 95.5 81.6
Clustering
& Entity

Reranking

Bottom-Up 89.0 99.3 96.2 41.6 94.1 58.0 87.9 98.2 92.6
Majority 74.2 99.1 99.3 54.1 89.3 92.5 73.7 96.6 94.6

NASTyLinker 90.4 99.3 95.5 43.7 94.6 85.3 89.4 98.5 84.1
Clustering

& Full
Reranking

Bottom-Up 84.2 99.6 98.9 41.8 84.6 3.2 83.3 96.2 65.5
Majority 80.3 95.1 95.9 51.7 90.0 39.2 79.6 93.9 70.4

NASTyLinker 87.9 99.5 99.2 42.5 87.6 33.6 86.9 97.4 71.7

Table 8.2: Results for the test partition DN
test of the NILK dataset.

Hyperparameter Tuning

We select the hyperparameters of the EL model (k, learning rate, warmup
steps) and the thresholds of all three clustering approaches w.r.t. micro F1
score on the validation partition of the datasets. For a fair comparison, we
also test multiple values for the threshold for entity assignment of Majority
Clustering, which in the original paper was fixed at 0.7.

Our experiments run on a machine with 96 CPUs, 1TB of RAM, and an
NVIDIA RTX A6000 GPU with 48GB of RAM.

8.5.4 Entity Linking Performance

We tune hyperparameters by evaluating on DN
val. For the EL model, we use a

k of 4, a learning rate of 2e-5, and no warmup steps. For τm, a value between
0.8 and 0.9 works best for all approaches. For τe, the best values revolve
around 0.9 for NASTyLinker and Bottom-Up Clustering and around 0.8 for
Majority Clustering. We use an affinity threshold τa of 0.75 for NASTyLinker
and find that the 0.7 threshold of Majority Clustering produces the best
results.

NILK Results

As shown in Table 8.2, we evaluate all clustering approaches on DN
test in

different reranking scenarios. We find Exact Match already to be a strong
baseline for known entities with an F1 of 79.5%, which the Cross-Encoder
outperforms by approximately 10%. Even without reranking, the three
clustering approaches can achieve an F1-score between 40% and 50% for NIL
entities. Overall, Majority Clustering is best suited to identify NIL entities. It

8.5. EXPERIMENTS 121

Figure 8.3: Runtime of NASTyLinker components for predictions on samples
of DN

test.

0 20000 40000 60000 80000 100000 120000 140000 160000
Runtime (seconds)

10%

20%

50%

100%

Sa
m

pl
e

Si
ze

 (%
 o

f m
en

tio
ns

)

Embedding & Nearest Neighbor Search
Entity Reranking
Clustering

is the only one to substantially benefit from reranking, increasing the F1-score
by 10% when applying entity reranking. Especially for linking known entities,
applying only entity reranking is the most favourable scenario, leading even
to slight improvements over the baseline approaches that focus only on
known entities.

As the reranking of mentions tends to decrease results while considerably
increasing runtime, we omit mention reranking (and hence, full reranking) in
experiments with Wikipedia listings. In the remaining scenarios, NASTyLinker
finds the best balance between linking known entities and identifying NIL
entities w.r.t. F1 score and NMI.

Runtime and Scalability

The fine-tuning of the bi-encoder and cross-encoder models took 2 and 12
hours, respectively. For prediction with a k of 4 on DN

test, the bi-encoder
needed 6 hours. Reranking entity affinities with the cross-encoder took 38
hours. Clustering the results with any of the three approaches took 8 to 12
minutes.

In Fig. 8.3, we give an overview of the runtime of NASTyLinker com-
ponents, compared over various sample sizes of DN

test. Overall, we can see
that the total runtime scales linearly. With a smaller sample size, the com-
putation of embeddings and nearest-neighbour search with the bi-encoder
is responsible for a larger fraction of the total runtime. This is due to the
large overhead of creating the index for the approximate nearest-neighbour
search. Increasing sample size makes this factor less important for the overall
runtime. In general, entity reranking is responsible for most of the total
runtime.

The runtime of the clustering itself is responsible for approximately 1% of
total runtime, and we do not expect it to increase substantially, as Dijkstra’s
algorithm has log-linear complexity and the size of mention clusters can
be controlled by the threshold τm. Hence, the runtime of NASTyLinker is

122 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

expected to grow proportionally to the runtime of BLINK [210] for increasing
sizes of datasets. If runtime is important, one should consider skipping entity
reranking, as NASTyLinker still produces reasonable results when relying
only on bi-encoder affinities.

8.5.5 Linking Entities in Wikipedia Listings

As the average mention context length in the LISTING dataset is lower
than in NILK, fine-tuning the EL models took only 8 hours. Most of the
hyperparameters chosen for NILK are also a reasonable choice for this dataset.
For entity reranking, however, the approaches produce better results when
the thresholds τm and τa slightly increase to 0.9 and 0.85.

Results on Test Partition

Linking results for DL
test are provided in Table 8.3. As we rely on LCWA

to label NIL mentions, we only know whether a mention is a NIL mention
without knowing which ones refer to the same entity. Hence, we can only
compute results for known entities and overall predictions. We assume that
any prediction made for a NIL mention is incorrect for the latter. With this
assumption, we are unable to produce realistic performance estimates. Still,
we can see the impact of being NIL-aware (and, hence, make no prediction
for NIL mentions) on the overall linking performance.

Due to their majority mechanism, Majority Clustering identifies known
entities with high precision but at the cost of a reduced recall. Bottom-Up
Clustering and NASTyLinker scores are comparable when considering known
entities but diverge w.r.t. the micro average. NASTyLinker achieves the best
micro F1 score with 86.7% in the entity reranking scenario. However, this
has to be taken with a grain of salt as we do not know how many of the
heuristically labelled NIL mentions refer to NIL entities and how many refer
to known entities.

Knowledge Graph Population Statistics

The partition DL
pred of the LISTING dataset contains only mentions for which

we don’t know whether they link to a known or a NIL entity. To make
predictions for these mentions, we run the NASTyLinker approach on the
whole LISTING corpus, i.e., on a total of 38 million mentions, as we need
representations of all known entities for the clustering step. These mentions
were extracted from 2.9 million listings on 1.4 million Wikipedia pages. As
reference KG, we again use CaLiGraph so that the discovered entities can be
integrated into the KG.

The total runtime was 62 hours, with 14 hours for the bi-encoder, 47
hours for the cross-encoder, and 45 minutes for the clustering. We find 13.4

8.5. EXPERIMENTS 123

Approach Known Micro
P R F1 P R F1

No
Clustering

Exact Match 91.4 73.5 81.5 81.1 73.5 77.1
Bi-Encoder 88.6 88.6 88.6 62.6 88.6 73.4

Cross-Encoder 93.7 93.8 93.8 66.2 93.8 77.6
Clustering

& No
Reranking

Bottom-Up 89.7 84.9 87.2 63.9 84.9 72.9
Majority 95.2 67.9 79.2 78.1 67.9 72.6

NASTyLinker 90.6 78.5 84.1 70.7 78.5 74.4
Clustering
& Entity

Reranking

Bottom-Up 94.2 90.8 92.5 75.3 90.8 82.3
Majority 98.8 76.2 86.0 93.4 76.2 83.9

NASTyLinker 97.0 87.0 91.8 88.5 87.0 87.7

Table 8.3: Results for the test partition DL
test of the LISTING dataset. No

results for NIL are given because the real NIL entities En are unavailable in
this dataset. For the micro average, we label every prediction made for a
mention linked to an entity in En as incorrect.

million mentions (i.e., 70%) to be NIL mentions, which refer to 7.6 million
NIL entities. The remaining 5.2 million mentions refer to 1.4 million entities
already in CaLiGraph. Integrating the discovered NIL entities into CaLiGraph,
we increase its entity count by 130%. Further, the discovered mentions for
known entities can be used to enrich the representations of the entities in the
KG through various KG completion methods (addressed in the subsequent
chapter).

Qualitative Analysis

We manually inspected the results to evaluate the actual linking performance
on the set of unlabeled mentions DL

pred. We randomly picked 100 mentions
and 100 clusters6 and identified, if incorrect, the type of error.7 The results of
this evaluation are given in Table 8.4. Overall, we find the outcome to agree
with the results of NASTyLinker on DL

test. Hence, the approach produces
highly accurate results, which we observed even for difficult cases. For exam-
ple, the approach correctly created NIL entity clusters for the mention North
Course referring to a racing horse (in pages Appleton Stakes and Oceanport
Stakes), a golf course in Ontario, CA (in page Tournament Players Club), and
a golf course in Florida, US (in page Pete Dye).

While the linking performance is quite consistent for mentions, the cor-
rectness of clusters for known entities is significantly lower than for NIL

6The sampling of clusters was stratified w.r.t. cluster size.
7We evaluated the linking and clustering decision w.r.t. the top-4 mention and entity

candidates produced by the bi-encoder. Although recall@4 for the bi-encoder is 97%, some
relevant candidates might have been missed.

124 CHAPTER 8. NASTYLINKER: NIL-AWARE ENTITY LINKER

Prediction Mentions Clusters
Ek En E Ek En E

Correct 20 64 84 8 71 79
Incorrectly linked to NIL entity 3 — 3 1 — 1

Incorrectly linked to known entity — 7 7 — 3 3
Not all mentions of entity in cluster — — — 8 0 8

Mentions from multiple entities in cluster — — — 1 4 5

Ignored (mention extracted incorrectly) — — 6 — — 4
Total Count 23 71 94 18 78 96

Accuracy (%) 87.0 90.1 89.4 44.4 91.0 82.3

Table 8.4: Results of the manual evaluation of 100 clusters and 100 mentions.
Columns group the results by actual entity type (known, NIL, overall), and
rows group by prediction outcome. Accuracy values may deviate by ±9.6%
for mentions and by ±7.0% for clusters (95% confidence).

entities.8 This drop in performance is not due to NASTyLinker’s inability to
link to known entities correctly (as the accuracy of 87% on the mention-level
shows). Instead, it can be attributed to the fact that clusters of known entities
contain 3.8 mentions on average, while clusters of NIL entities contain 1.7
mentions on average. Hence, the likelihood of missing at least one mention
is much higher, which is also the main error for known clusters.

Compared to the results on NILK, the linking accuracy for NIL mentions
is much higher. We explain this with the different kinds of NIL entities in the
two datasets. While an average NIL entity is mentioned 4.6 times in NILK,
our results indicate that this number is approximately 1.7 for the LISTING
dataset. The latter dataset may, hence, contain a lot of easy-to-link mentions
by assigning them their own cluster.

8.6 Conclusion

With NASTyLinker, we introduced a NIL-aware EL approach capable of mak-
ing high-quality predictions for known and NIL entities. In the practical
setting of EL in Wikipedia listings, we show that our approach can populate
a KG with many additional entities and enrich representations of existing
entities. NASTyLinker is published as stand-alone version9 and as part of the
CaLiGraph extraction framework.10 CaLiGraph version 3 contains all entities
extracted from Wikipedia listings by NASTyLinker, increasing its entity count
to 13.7 million.

8For the evaluation to be significant, we treat all clusters referring to the same known
entity as a single cluster.

9https://github.com/nheist/eswc2023-nastylinker
10https://github.com/nheist/CaLiGraph

https://github.com/nheist/eswc2023-nastylinker
https://github.com/nheist/CaLiGraph

CHAPTER 9

Information Extraction from Co-Occurring Similar Entities

In this chapter, we explore how information extracted from similar entities
that co-occur in structures like tables or enumerations can help to increase
the coverage of KGs. In contrast to prevalent approaches, we do not focus on
relationships within a listing (e.g., between two entities in a table row) but
on the relationship between a listing’s SEs and the context of the listing. To
that end, we propose a descriptive rule-mining approach that uses distant
supervision to derive rules for these relationships based on a listing’s context.
Extracted from a suitable data corpus, the rules can be used to extend a KG
with novel entities and assertions. The contributions of this chapter are as
follows:

• We formulate the task of IE from co-occurring similar entities in listings
and show how to derive descriptive rules for listing characteristics
based on the listing context.

• We present an approach that learns descriptive rules for listings in
Wikipedia and is capable of extracting several millions of novel asser-
tions for Wikipedia-based KGs.

• In our evaluation, we demonstrate the high quality of the extracted
information and analyze the approach’s shortcomings.

The work presented in this chapter is based on the following publication:
Nicolas Heist and Heiko Paulheim. Information Extraction From

Co-Occurring Similar Entities. In Proceedings of the Web Conference 2021
(WWW’21), pp. 3999-4009, Ljubljana, Slovenia, April 2021, ACM Press.
[70]

125

126 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

 Gilby Clarke
 --- -- ---- -- - ----
 Discography
 -- ---- - --- - ---
 Albums with Guns N' Roses
 - The Spaghetti Incident? (1993)
 - Greatest Hits (1999)
 Albums with Nancy Sinatra
 - California Girl
 Solo albums
 Name Year --
 Rubber 1998 ---
 Greatest Hits 2001 -
 ...

Page Title

Top Section

Listing 1

Listing 2

Listing 3

Figure 9.1: Simplified view on the listings of the Wikipedia page of Gilby
Clarke. Entity mentions are highlighted in green.

9.1 Motivation

We again consider the example from Chapter 7, here shown in Fig. 9.1. The
table below the Solo albums section (Listing 3) may be used to discover
the publication years of albums (relation extraction) or discover additional
unknown albums that are listed in further rows below Rubber and Greatest
Hits (entity and type detection).

The focus of this chapter is broader with respect to two dimensions: First,
we extract information from any kind of structure where similar entities
co-occur. In Fig. 9.1, we would consider both tables and enumerations (e.g.,
Listings 1 and 2). Second, we consider only the SEs of listings. We aim to
exploit the relationship between the SEs of a listing and the listing context.
For Fig. 9.1, this means we extract that all SEs on the page’s listings are
albums with the artist Gilby Clarke, that The Spaghetti Incident? is an album
by Guns N’ Roses, and so on.

To that end, we propose to learn these characteristics of a listing with
respect to the types and contextual relations of its SEs. In an ideal setting,
we know the SEs of a listing, and we can retrieve all information about them
from a KG – the characteristics of a listing are simply the types and relations
that all SEs share. But uncertainty is introduced by several factors:

• SEs can only be determined heuristically. In Chapter 7, we achieved a
precision of 70% to 80% for recognising SEs in Wikipedia listings.

• Cross-domain KGs are incomplete. According to the OWA, the absence
of a fact in a KG does not imply its incorrectness.

• Web tables have a median of 6 rows,1 and Wikipedia listings have
1According to WDC Table Corpus 2015: http://webdatacommons.org/webtables/.

http://webdatacommons.org/webtables/

9.2. RELATED WORK 127

a median of 8 rows. Consequently, many listings only have a small
number of SEs from which the characteristics can be inferred.

As a result, considering each listing in isolation either leads to a substan-
tial loss of information (as listings with insufficient background information
are disregarded) or to a high generalization error (as decisions are made
based on insufficient background information).

We observe that the context of a listing is often a strong indicator of its
characteristics. In Fig. 9.1, the title of the top section Discography indicates
that its listings contain some musical works, and the section title Albums with
Guns N’ Roses provides more detailed information. Our second observation
is that these patterns repeat when looking at a coherent data corpus. The
Wikipedia page of Axl Rose,2 for example, contains the same constellation of
sections.

Considering listing characteristics with respect to their context can thus
yield more general insights than considering every listing in isolation. For
example, the musical works of many artists in Wikipedia are listed under the
top section Discography. Hence, we could learn the axioms

∃topSection.{"Discography"} ⊑ MusicalWork (9.1)

and

∃topSection.{"Discography"} ⊑ ∃artist.{<PageEntity>} (9.2)

which are then applicable to any listing with the top section Discography in
Wikipedia.

The rest of this chapter is structured as follows. Section 9.2 gives an
overview of the state of the art. Section 9.3 formally defines the task and
explains our rule-learning approach. In Section 9.4, we present a use case
for our approach by applying it to Wikipedia listings. Then, we evaluate
individual parts of our approach in Section 9.5.

9.2 Related Work

The work presented in this chapter is a flavour of KGE, more precisely, of
adding new assertions to a KG [147]. We use rules based on page context
to infer facts about co-occurring entities. In particular, we focus on the co-
occurrence of entities within document listings, where co-occurrence refers
to proximity in page layout. Hence, in this section, we discuss related works
w.r.t. KG completion from listings, exploitation of listing context, as well as
rule learning for KGs.

2https://en.wikipedia.org/wiki/Axl_Rose

https://en.wikipedia.org/wiki/Axl_Rose

128 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

9.2.1 Knowledge Graph Completion from Listings

KG completion using web table information has been an active research
area in the last several years. Muñoz et al. [133] described the potential
of Wikipedia’s tables in 2013 and presented an approach for extracting 8
million assertions from one million Wikipedia tables in 2014 [134]. In 2016,
Ritze et al. [169] profiled the potential of web tables in the WDC Web
Table Corpus. Using the T2K Match framework, they match web tables to
DBpedia and find that the best results for the extraction of new facts can
be achieved using knowledge-based trust [38] (i.e., judging the quality of
a set of extracted triples by their overlap with the KG). Zhang et al. [217]
present an approach for the detection of novel entities in tables. They first
exploit lexical and semantic similarity for entity linking and column heading
property matching. In the second step, they use the output to detect novel
entities in table columns. Oulabi and Bizer [143] tackle the same problem
for Wikipedia tables with a bootstrapping approach based on expert-defined
rules. Macdonald and Barbosa [118] extract new facts from Wikipedia tables
to extend Freebase. With an LSTM that uses contextual information from the
table, they extract new facts for 28 relations.

Lists have only very sparsely been used for KG completion. Paulheim
and Ponzetto [150] frame the general potential of list pages as a source of
knowledge in Wikipedia. They propose to use a combination of statistical
and NLP methods to extract knowledge and show that, by applying them to
a single list page, they are able to extract a thousand new statements.

Compared to all previously mentioned approaches, we take an abstract
view of listings by considering only their SEs. This provides the advantage
that rules can be learned from and applied to arbitrary listings. In addition to
that, we not only discover novel entities but also discover relations between
those entities and the page subject.

In Chapter 5, we have already presented an approach for retrieving novel
entities and extracting facts from Wikipedia list pages. Here, we reuse this
approach for identifying SEs and use it as a baseline in our experiments. As
it only works for list pages in Wikipedia, we extend it to arbitrary pages with
a simple frequency-based approach.3

9.2.2 Exploiting the Context of Listings

As tables are the more actively researched type of listings, we focus here
on the types of context used when working with tables. The most obvious
source of context is found directly on the page where the table is located.
This page context is, for example, used by InfoGather [212] to detect possible
synonyms in table headers for means of table matching.

3The approaches from Chapters 7 and 8 are not considered here as the original work
presented in this chapter was conducted earlier.

9.2. RELATED WORK 129

Zhang [218] distinguishes between "in-table" features like the table
header and "out-table" features like captions, page titles, and text of sur-
rounding paragraphs. With both kinds of features, they perform entity
disambiguation against Freebase.

The previously mentioned approach of Macdonald and Barbosa [118]
focuses on tables in Wikipedia and hence uses specific context features like
section titles, table headers and captions, and the text in the first paragraph of
the table’s section. Interestingly, they do not only discover relations between
entities in the table but also between a table entity and the page subject.

MENTOR [26] leverages patterns occurring in headers of Wikipedia tables
to consistently discover DBpedia relations. Lehmberg et al. [106] tackle the
problem of small web tables with table stitching, i.e., they combine several
small tables with a similar context (e.g., same page or domain and a matching
schema) into one large table, making it easier to extract facts from it.

Apart from page context, many approaches use the context of entities
in tables to improve extraction results. Zhang et al. [216] generate new
sub-classes to a taxonomy for a set of entities. Therefore, they find the
best-describing class using the context of the entities. In particular, they use
the categories of the entities as well as the immediate context around the
entities on the page. Another approach that uses entity categories as context
is TableNet [46]. They leverage the context to find schematically similar or
related tables for a given table in Wikipedia.

In our experiments with Wikipedia, we use section headers as page
context and types in the KG as entity context. However, the definition of
context in our approach is kept very generic on purpose. By doing that,
we can incorporate additional context sources like section text or entity
categories to improve extraction results. This, however, also comes with an
increase in rule complexity and, consequently, run time.

9.2.3 Rule-based Knowledge Graph Completion

Rule-based KG completion approaches typically generate rules on the instance
level (rules that add new assertions for individual instances) or on the schema
level (rules that add additional schematic constraints).

AMIE+ [49] and AnyBURL [123] are instance-level rule learners inspired
by Inductive Logic Programming (ILP). The former uses top-down, the latter
bottom-up rule learning to generate rules in the fashion of born(X,A) ∧
capital(A, Y) =⇒ citizen(X,Y).

DL-Learner [103] is an ILP-based approach at the schema level, finding
description logic patterns for a set of instances. A related approach [194]
uses statistical schema induction to derive additional schema constraints
(e.g., range restrictions for predicates).

The above-mentioned approaches are merely link prediction approaches,
i.e., they predict new relations between entities already contained in the

130 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

KG. The same holds for the omnipresent KG embedding approaches [196].
Such approaches are very productive when enough training data is available,
and they provide exact results, especially when both positive and negative
examples are given. In the setting of this chapter, we are working with (more
or less) noisy external data.

With regard to instance versus schema level, our approach can be re-
garded as a hybrid approach that generates rules for sets of entities, which
are, in turn, used to generate facts on an instance level. In this respect, our
approach is similar to C-DF [211], which uses Wikipedia categories as an
external data source to derive the characteristics of categories. To that end,
they derive lexical patterns from category names and contained entities.

In this chapter, we apply rule learning to co-occurring entities in Wikipedia.
While existing approaches have only considered explicit co-occurrence, i.e.,
categories or list pages, we go beyond the state of the art by learning rules
for arbitrary listings in Wikipedia.

9.3 Information Extraction From Co-Occurrences

Given a data corpus D containing structures with co-occurring entities (e.g.,
listings in Wikipedia or a collection of spreadsheets) and a KG K containing
a subset of these entities, the objective is to extract additional entities and
assertions.

9.3.1 Task Formulation

For the formulation of the task, we use the KG K = (T ,P, E ,L,A) and its
complete version K∗ as defined in Section 2.2. The data corpus D contains a
set of listings Φ, where each listing ϕ ∈ Φ contains a number of SEs Eϕ. Our
task is to identify assertions that hold for all entities in Eϕ. We distinguish
between taxonomic and relational information expressed in K.

The taxonomic information is a set of types that is shared by all SEs of a
listing:

Tϕ = {t|t ∈ T ,∀e ∈ Eϕ : (e, rdf:type, t) ∈ TA∗}, (9.3)

and the relational information is a set of relations to other entities shared
by all SEs of a listing:4

Rϕ = {(p, o)|p ∈ P ∪ P−1, o ∈ E , ∀e ∈ Eϕ : (e, p, o) ∈ RA∗}. (9.4)

4Here, the entities in Eϕ may occur both in the subject and the object position. But for a
more concise notation, we use only (p,o)-tuples and introduce the set of inverse predicates
P−1 to express that SEs may also occur in object position. Note that this is only a notation –
the inverse predicates do not have to exist in the schema.

9.3. INFORMATION EXTRACTION FROM CO-OCCURRENCES 131

From these characteristics of listings, we can derive all the additional type
assertions

TA+ =
⋃
ϕ∈Φ

{(e, rdf:type, t)|e ∈ Eϕ, t ∈ Tϕ} \ TA (9.5)

and additional relation assertions

RA+ =
⋃
ϕ∈Φ

{(e, p, o)|e ∈ Eϕ, (p, o) ∈ Rϕ} \RA (9.6)

that are encoded in Φ and missing in K. Furthermore, TA+ and RA+

can contain additional entities that are not yet contained in K, as there is no
restriction for SEs of Φ to be part of K.

For the sake of readability, we will only describe the case of Rϕ for the
remainder of this section as Tϕ is, notation-wise, a special case of Rϕ with
p = rdf:type and o ∈ T .

9.3.2 Learning Descriptive Rules for Listings

Due to the incompleteness of K, it is impossible to derive the exact set
of relations Rϕ for every listing in Φ. Hence, our goal is to derive an
approximate version R̂ϕ by using ϕ and the knowledge about Eϕ in K.

Similar to the rule learner AMIE+ [49], we use the LCWA to generate
negative evidence. Following the LCWA, we use the count of entities with a
specific predicate-object combination in a set of entities E

count(E, p, o) = |{e|e ∈ E,∃o : (e, p, o) ∈ A}| (9.7)

and the count of entities having predicate p with an arbitrary object

count(E, p) = |{e|e ∈ E,∃o′ : (e, p, o′) ∈ A}| (9.8)

to compute a maximum-likelihood-based frequency of a specific predicate-
object combination occurring in E:

freq(E, p, o) =
count(E, p, o)

count(E, p)
. (9.9)

From Eq. (9.9), we first derive a naive approximation of a listing’s rela-
tions by including all relations with a frequency above a defined threshold
τfreq:

R̂freq
ϕ = {(p, o)|(p, o) ∈ R, freq(Eϕ, p, o) > τfreq}. (9.10)

As argued in Section 9.1, we improve this naive frequency-based approxi-
mation by learning more general patterns that describe the characteristics

132 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

Listing ζ TF RF

ϕ1 (1 0 1 ... 1) (0.2 0.9 0.0 ... 0.1) (0.9 0.1 0.0 ... 0.1)
ϕ2 (0 1 1 ... 0) (0.0 0.2 0.0 ... 0.9) (0.0 0.0 0.0 ... 0.2)
ϕ3 (0 0 0 ... 0) (0.7 0.7 0.0 ... 0.0) (0.0 0.0 0.0 ... 0.4)

...
ϕn−1 (1 0 0 ... 1) (0.8 0.9 0.0 ... 0.0) (0.0 0.9 0.0 ... 0.0)
ϕn (1 0 0 ... 1) (0.7 1.0 0.0 ... 0.3) (0.0 0.0 0.8 ... 0.0)

Table 9.1: Exemplary context (ζ), type frequency (TF), and relation fre-
quency (RF) vectors for a set of listings extracted from D. While ζ is
extracted directly from D, TF and RF are retrieved via distant supervision
from K.

of listings using their context. The underlying hypothesis is as follows: The
context ζϕ of a listing ϕ in D contains such information about Rϕ that it can
be used to find subsets of Φ with similar R.

Let Table 9.1 contain the information about all listings in D. A listing ϕ is
defined by its context ζϕ (which can, in theory, contain any information about
ϕ, from the title of its section to an actual image of the listing), the type
frequencies (t1, t2, .., tx) ∈ TFϕ , and the relation frequencies (r1, r2, .., ry) ∈
RFϕ . Listings ϕ1, ϕn−1, and ϕn have overlapping context vectors. t2 has a
consistently high frequency over all three listings. It is thus a potential type
characteristic for this kind of listing context. Furthermore, r1 has a high
frequency in ϕ1, r2 in ϕn−1, and r3 in ϕn – if the three relations share the
same predicate, they may all express a similar relation to an entity in their
context (e.g., to the subject of the page).

In a concrete scenario, the context vector (1 0 0 ... 1) might indicate that
the listing is located on the page of a musician under the section Solo albums.
t2 holds the frequency of the type Album in this listing and r1 to r3 describe
the frequencies of the relations (artist, Gilby Clarke), (artist, Axl Rose), and
(artist, Slash).

We formulate the task of discovering frequent co-occurrences of context
elements and taxonomic and relational patterns as an association rule mining
task for all listings in D. Association rules, as introduced by Agrawal et
al. [2], are simple implication patterns originally developed for large and
sparse datasets like transaction databases of supermarket chains. To discover
items that are frequently bought together, rules of the form X =⇒ Y are
produced, with X and Y being itemsets. In the KG context, they have been
used, e.g., for enriching the schema of a KG [149, 194].

For our scenario, we need a mapping from a context vector ζ ∈ Z to a
predicate-object tuple. Hence, we define a rule r, its antecedent ra, and its

9.3. INFORMATION EXTRACTION FROM CO-OCCURRENCES 133

consequent rc as follows:

r : ra ∈ Z =⇒ rc ∈ (P ∪ P−1)× (T ∪ E ∪ X). (9.11)

As a rule should be able to imply relations to entities that vary with the
context of a listing (e.g., to Gilby Clarke as the page’s subject in Fig. 9.1), we
introduce X as the set of placeholders for context entities (instead of Gilby
Clarke, the object of the rule’s consequent would be <PageEntity>).

We say a rule antecedent ra matches a listing context ζϕ (short: ra ≃ ζϕ)
if the vector of ζϕ is 1 when the vector of ra is 1. In essence, ζϕ must comprise
ra. Accordingly, we need to find a set of rules R so that for every listing ϕ,
the set of approximate listing relations

R̂rule
ϕ =

⋃
r∈R

{rc|ra ≃ ζϕ} (9.12)

resembles the true relations Rϕ as closely as possible.
Considering all the listings in Fig. 9.1, their R̂rule

ϕ should, among others,
contain the rules5,6

topSection("Discography") =⇒ (type, MusicalWork) (9.13)

and

topSection("Discography") =⇒ (artist,<PageEntity>). (9.14)

It is important to note that these rules can be derived from listings with
differing context vectors. All listings only have to have in common that their
top section has the title Discography and that the contained entities are of
the type MusicalWork with the page entity as an artist. Still, the individual
listings may, for example, occur in sections with different titles.

9.3.3 Quality Metrics for Rules

In plain association rule mining, two metrics are typically considered for
judging the quality of a rule X =⇒ Y : the support of the rule antecedent
(how often does X occur in the dataset) and the confidence of the rule (how
often does X ∪ Y occur in relation to X).

Transferring the support metric to our task, we count the absolute fre-
quency of a particular context occurring in Φ. Let Φra = {ϕ|ϕ ∈ Φ, ra ≃ ζϕ},
then we define the support of the rule antecedent ra as

supp(ra) = |Φra |. (9.15)

5Note that Eqs. (9.1) and (9.2) are the axiom equivalents of Eqs. (9.13) and (9.14). For
better readability, we use the description logics notation of Eqs. (9.1) and (9.2) from here on.

6Instead of a binary vector, we use a more expressive notation for the listing context in
our examples. The notations are trivially convertible by one-hot-encoding.

134 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

Due to the incompleteness of K, the values of Y are, in our case, no
definitive items but maximum-likelihood estimates of types and relations.
With respect to these estimates, a good rule has to fulfil two criteria: it has to
be correct (i.e., frequent with respect to all SEs of the covered listings), and
it has to be consistent (i.e., consistently correct over all the covered listings).

We define the correctness, or confidence, of a rule as the frequency of the
rule consequent for all SEs of a rule’s covered listings:

conf (r) =

∑
ϕ∈Φra

count(Eϕ, prc , orc)∑
ϕ∈Φra

count(Eϕ, prc)
, (9.16)

and we define the consistency of a rule using the mean absolute deviation
of an individual listing’s confidence to the overall confidence of the rule:

cons(r) = 1−
∑

ϕ∈Φra
|freq(Eϕ, prc , orc)− conf (r)|

supp(ra)
. (9.17)

While a high confidence ensures that the overall assertions generated by
the rule are correct, a high consistency ensures that a few listings with many
SEs do not outvote the remaining covered listings.

To select an appropriate set of rules R from all the candidate rules R∗ in
the search space, we have to pick reasonable thresholds for the minimum sup-
port (τsupp), the minimum confidence (τconf), and the minimum consistency
(τcons). By applying these thresholds, we find our final set of descriptive rules

R = {r|r ∈ R∗, supp(ra) > τsupp ∧ conf (r) > τconf ∧ cons(r) > τcons}.
(9.18)

Typically, the choice of these thresholds is strongly influenced by the nature
of the dataset D and the extraction goal (correctness versus coverage).

9.4 Exploiting Co-Occurrences in Wikipedia

Wikipedia is a rich source of listings, both in dedicated list pages and in sec-
tions of article pages. Hence, we use it as a data corpus for our experiments.
In Section 9.6, we discuss other appropriate corpora for our approach.

Due to its structured and encyclopedic nature, Wikipedia is a perfect
application scenario for our approach. We can exploit the structure by
building very expressive context vectors. This positively influences the quality
of extraction results. Still, the definition of the context vector is kept abstract
to make the approach applicable to other web resources as well. However,
an empirical evaluation of the practicability or performance of the approach
for resources outside of the encyclopedic domain is out of the scope of this
chapter.

9.4. EXPLOITING CO-OCCURRENCES IN WIKIPEDIA 135

9.4.1 Approach Overview

Fig. 9.2 gives an overview of our extraction approach. The input of the
approach is a dump of Wikipedia together with an associated KG. In the
Subject Entity Discovery phase, listings and their context are extracted from
the Wikipedia dump and SEs are identified (Section 9.4.3). Subsequently,
the existing information in the KG is used to mine descriptive rules from
the extracted listings (Section 9.4.4). Finally, the rules are applied to all
the listings in Wikipedia in order to extract new type and relation assertions
(Section 9.4.5).

9.4.2 Data Corpus

The analyses and experiments in this chapter are based on Wikipedia2016
(cf. Section 2.3.4), and we use versions of DBpedia and CaLiGraph that are
based on this dump. In this version, Wikipedia contains 6.9M articles, 2.4M
of which contain listings with at least two rows.7 In total, there are 5.1M
listings with a row count median of 8, mean of 21.9, and standard deviation
of 76.8. Of these listings, 1.1M are tables, and 4.0M are enumerations.

9.4.3 Subject Entity Discovery

Entity Tagging

Apart from the already tagged entities via blue and red links, we have to
ensure that any other named entity in listings and their context is also
identified. This is done in two steps:8

In the first step, we expand an article’s blue and red links. If a piece of
text is linked to another article, we ensure that every occurrence of that piece
of text is linked to the other article. This is necessary as, by convention, other
articles are only linked at their first occurrence in the text.9

In the second step, we use a named entity tagger to identify additional
named entities in listings. To that end, we use a state-of-the-art entity tagger
from spaCy.10 This tagger is trained on the OntoNotes511 corpus, and thus
not specifically trained to identify named entities in short text snippets as
they occur in listings. Therefore, we specialize the tagger by providing it
with Wikipedia listings as additional training data with blue links as positive
examples. In detail, the tagger is specialized as follows:

7Markup is parsed with WikiTextParser: https://github.com/5j9/wikitextparser.
8As mentioned before, the work in this chapter has been conducted before Chapters 7

and 8. Hence, we use a comparably naive method to identify SEs here. However, the final
version of CaLiGraph presented in Chapter 11 uses the new approaches.

9https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking#Duplicat
e_and_repeat_links

10https://spacy.io
11https://catalog.ldc.upenn.edu/LDC2013T19

https://github.com/5j9/wikitextparser
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking#Duplicate_and_repeat_links
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking#Duplicate_and_repeat_links
https://spacy.io
https://catalog.ldc.upenn.edu/LDC2013T19

136 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

Subject Entity
D

iscovery
D

escriptive
R

ule M
ining

Assertion G
eneration

and Filtering

 Subject Entity

...

R
U
LES

W
ikipedia
D
um

p
Know

ledge
G
raph

......

--- (1)

---- (2)

--- (1)

---- (2)
 G

ilby C
larke

 --- -- ---- -- - ----
 D
iscography

 -- ---- - --- - ---
 A

lbum
s w

ith G
uns N

' R
oses

 - The Spaghetti Incident? (1993)
 - G

reatest H
its (1999)

 A
lbum

s w
ith N

ancy Sinatra
 - C

alifornia G
irl

 Solo album
s

 N
am

e Year --
 R

ubber 1998 ---
 G

reatest H
its 2001 -

 ...

 G
ilby C

larke
 --- -- ---- -- - ----
 D
iscography

 -- ---- - --- - ---
 A

lbum
s w

ith G
uns N

' R
oses

 - The Spaghetti Incident? (1993)
 - G

reatest H
its (1999)

 A
lbum

s w
ith N

ancy Sinatra
 - C

alifornia G
irl

 Solo album
s

 N
am

e Year --
 R

ubber 1998 ---
 G

reatest H
its 2001 -

 ...

Figure
9.2:

A
n

overview
ofthe

approach
w

ith
exem

plary
outputs

ofthe
individualphases.

9.4. EXPLOITING CO-OCCURRENCES IN WIKIPEDIA 137

• We retrieve all listings in Wikipedia list pages as training data.
• We apply the plain spaCy entity tagger to the listings to get named

entity tags for all mentioned entities.
• To make these tags more consistent, we use information from DBpedia

about the tagged entities: We look at the distribution of named entity
tags over entities with respect to their DBpedia types and take the
majority vote. For example, if 80% of entities with the DBpedia type
Person are annotated with the tag PERSON, we use PERSON as the
label for all these entities.

• Using these consistently named entity tags for blue-link entities, we
specialize the spaCy tagger.

Subject Entity Classification

We apply the approach from Chapter 5 for identifying SEs in listings. In
short, we use lexical, positional, and statistical features to classify entities as
subject or non-subject entities (see Section 9.2.1 for more details). Despite
being developed only for listings in list pages, the classifier is applicable to
any kind of listing in Wikipedia. A disadvantage of this broader application
is that the classifier is not trained to ignore listings used for organisational or
design purposes (e.g., summaries or timelines). These have to be filtered out
in the subsequent stages.

Results

After expanding all the blue and red links on the pages, the dataset contains
5.1M listings with 60.1M entity mentions. The named entity tagger identifies
51.6M additional entity mentions.

Of all the entity mentions, we classify 25.8M as SEs. Those occur in 2.5M
listings of 1.3M pages. This results in a mean of 10.5 and a median of 4 SEs
per listing with a standard deviation of 49.8.

9.4.4 Descriptive Rule Mining

Describing Listings

The listing context defines the search space for rule candidates. Thus, we
choose the context in such a way that it is expressive enough to be an
appropriate indicator for Tϕ and Rϕ and concise enough to explore the
complete search space without any additional heuristics.

We exploit the fact that Wikipedia articles of a certain type (e.g., musi-
cians) mostly follow naming conventions for the sections of their articles
(e.g., albums and songs are listed under the top section Discography). Further,
we exploit the fact that the objects of the SEs’ relations are usually either

138 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

the entity described by the article or an entity mentioned in a section title.
We call these typical places for objects the relation targets. In Fig. 9.1, Gilby
Clarke is an example of a PageEntity target, and Guns N’ Roses as well as
Nancy Sinatra are examples for SectionEntity targets. As a result, we use the
type of the page entity, the top section title, and the section title as listing
context.

Additionally, we use the type of entities mentioned in section titles. This
enables learning more abstract rules, e.g., to distinguish between albums
listed in a section describing a band:

∃pageEntityType.{Person} ⊓ ∃topSection.{"Discography"}
⊓∃sectionEntityType.{Band} ⊑ Album,

and songs listed in a section describing an album:

∃pageEntityType.{Person} ⊓ ∃topSection.{"Discography"}
⊓∃sectionEntityType.{Album} ⊑ Song.

Threshold Selection

We want to pick the thresholds in such a way that we tolerate some errors
and missing information in K but do not allow many over-generalized rules
that create incorrect assertions. Our idea for a sensible threshold selection is
based on two assumptions:

Assumption 1. Based on a maximum-likelihood estimation, rule confi-
dence and consistency roughly order rules by the degree of prior knowledge
we have about them.

Assumption 2. Assertions generated by over-generalized rules contain
substantially more random noise than assertions generated by good rules.

Assumption 1 implies that the number of over-generalized rules increases
with the decrease in confidence and consistency. As a consequence, assump-
tion 2 implies that the amount of random noise increases with decreased
confidence and consistency.

To measure the increase of noise in generated assertions, we implicitly
rely on existing knowledge in K by using the named entity tags of SEs as
a proxy. This works as follows: For a SE e that is contained in K, we have
its type information Te from K, and we have its named entity tag ψe from
our named entity tagger. Going over all SEs of listings in Φ, we compute the
probability of an entity with type t having the tag ψ by counting how often
they co-occur:

tagprob(t , ψ) =
|{e|∃ϕ ∈ Φ : e ∈ Eϕ ∧ t ∈ Te ∧ ψ = ψe}|

|{e|∃ϕ ∈ Φ : e ∈ Eϕ ∧ t ∈ Te}|
. (9.19)

9.4. EXPLOITING CO-OCCURRENCES IN WIKIPEDIA 139

Example 9.4.1. Tag probability computation

For the DBpedia type Album, we find the following tag probabilities:
WORK_OF_ART : 0.49, ORG : 0.14, PRODUCT : 0.13, PERSON : 0.07.
This shows that album titles are rather difficult to recognize. For the type
Person and the tag PERSON, we find a high probability of 0.86.

We compute the tag-based probability for a set of assertions A by av-
eraging over the tag probability produced by the individual assertions. To
compute this metric, we compare the tag of the assertion’s SE with some
kind of type information about it. The type information is either the asserted
type (in case of a type assertion) or the domain of the predicate12 (in case of
a relation assertion):

tagfit(A) =

∑

(s,p,o)∈A tagprob(o,ψs)

|A| if p = rdf:type∑
(s,p,o)∈A tagprob(domainp ,ψs)

|A| otherwise.
(9.20)

While we do not expect the named entity tags to be perfect, our approach
is based on the idea that the tags are consistent to a large extent. By
comparing the tagfit of assertions produced by rules with varying levels of
confidence and consistency, we expect to see a clear decline as soon as too
many noisy assertions are added.

Results

Fig. 9.3 shows the tagfit for type and relation assertions generated with
varying rule confidence and consistency levels. Our selection of thresholds
is indicated by blue bars, i.e., we set the thresholds to the points where the
tagfit has its steepest drop. The thresholds are picked conservatively to select
only high-quality rules by selecting points before an accelerated decrease of
cumulative tagfit. But more coverage-oriented selections are also possible.
In Fig. 9.3d, for example, a threshold of 0.75 is also a valid option.

An analysis of rules with different levels of confidence and consistency
has shown that minimum support for types is unnecessary. For relations, a
support threshold of 2 is helpful to discard over-generalized rules. Further,
we found that picking the thresholds independently from each other is
acceptable, as the turning points for a given metric don’t vary significantly
when varying the remaining metrics.

Applying these thresholds, we find 5,294,921 type rules with 369,139
distinct contexts and 244,642 distinct types. Further, we find 3,028 relation
rules with 2,602 distinct contexts and 516 distinct relations. 949 of the
relation rules have the page entity as a target, and 2,079 have a section entity
as a target.

12We use the domain of the predicate p as defined in K. In the case of p ∈ P−1, we use the
range of the original predicate.

140 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5
tagfit (cum.)
tagfit

(a) Type confidence

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5 tagfit (cum.)
tagfit

(b) Type consistency

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6 tagfit (cum.)
tagfit

(c) Relation confidence

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 tagfit (cum.)

tagfit

(d) Relation consistency

Figure 9.3: tagfit of assertions generated from rules in a specified confi-
dence or consistency interval. Bars show scores for a given interval (e.g.,
(0.75,0.80]); lines show cumulative scores (e.g., (0.75,1.00]); blue bars
indicate the selected threshold.

Among those rules are straightforward ones like

∃pageEntityType.{Person} ⊓ ∃topSection.{"Acting filmography"}
⊑ ∃actor.{<PageEntity>},

and more specific ones like

∃pageEntityType.{Location} ⊓ ∃topSection.{"Media"}
⊓∃section.{"Newspapers"} ⊑ Periodical_literature.

9.4.5 Assertion Generation and Filtering

Assertion Generation

We apply the rules selected in the previous section to the complete dataset of
listings to generate type and relation assertions. Subsequently, we remove
any duplicate assertions and assertions that already exist in K.

9.4. EXPLOITING CO-OCCURRENCES IN WIKIPEDIA 141

Tag-based Filtering

To get rid of errors introduced during the extraction process (e.g., due to
incorrectly extracted SEs or incorrect rules), we employ a final filtering step
for the generated assertions: every assertion producing a tagprob ≤ 1

3 is
discarded. The rationale behind the threshold is as follows: Types typically
have one and sometimes two corresponding named entity tags (e.g., the tag
PERSON for the DBpedia type Person, or the tags ORG and FAC for the type
School). As tag probabilities are relative frequencies, we make sure that,
with a threshold of 1

3 , at most two tags are accepted for any given type.

For the tag probabilities of type Album from Section 9.4.4, the only
valid tag is WORK_OF_ART. As a consequence, any assertions of the form
(s, rdf :type, Album) with s having a tag other than WORK_OF_ART are dis-
carded.

Results

Table 9.2 shows the number of generated type and relation assertions before
and after the tag-based filtering. The number of inferred types is listed
separately for DBpedia and CaLiGraph. For relations, we show two kinds: The
entry Relations lists the number of extracted assertions from rules. DBpedia
and CaLiGraph share the same predicates, so these assertions apply to both
graphs. Furthermore, as Relations (via CaLiGraph), we list the number
of relations that can be inferred from the extracted CaLiGraph types via
restrictions in the CaLiGraph ontology. CaLiGraph contains more than 300K
restrictions that imply a relation based on a certain type. For example, the
ontology contains the value restriction

Pop_rock_song ⊑ ∃genre.{Pop music}.

As we extract the type Pop_rock_song for the Beach Boys song At My Window,
we infer the fact (At My Window, genre,Pop music).

For CaLiGraph, we find assertions for 3.5M distinct SEs, with 3M not
contained in the graph. We find assertions for 3.1M distinct SEs for DBpedia,
with 2.9M of them not contained. To estimate the true number of novel
entities, we rely on our analysis in Chapter 5, where we analyzed the overlap
for red links in list pages. There, we estimate an overlap factor of 1.07,
which would reduce the number of actual novel entities to roughly 2.8M for
CaLiGraph and 2.7M for DBpedia when applied to our scenario. In relation
to the current size of those graphs, this would be an increase of up to 38%
and 54%, respectively.

142 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

Assertion Type Raw Filtered

Types (DBpedia) 11,459,047 7,721,039
Types (CaLiGraph) 47,249,624 29,128,677
Relations 732,820 542,018
Relations (via CaLiGraph) 1,381,075 796,910

Table 9.2: Number of generated assertions after removing existing assertions
(Raw), and after applying tag-based filtering (Filtered).

Assertion Type #Dataset #Samples Correct [%]

Types (DBpedia)
frequency-based 6,680,565 414 91.55 ± 2.68
rule-based 7,721,039 507 93.69 ± 2.12
Types (CaLiGraph)
frequency-based 26,676,191 2,000 89.40 ± 1.23
rule-based 29,128,677 2,000 91.95 ± 1.19
Relations
frequency-based 392,673 1,000 93.80 ± 1.49
rule-based 542,018 1,000 95.90 ± 1.23

Table 9.3: Correctness of manually evaluated assertions.

9.5 Evaluation

Our performance evaluation judges the quality of generated assertions from
our rule-based approach. As a baseline, we additionally evaluate assertions
generated by the frequency-based approach (see Eq. (9.10)). For the latter,
we use a threshold comparable to our rule-based approach (i.e., we set τfreq
to τconf and disregard listings with less than three SEs).

9.5.1 Evaluation Procedure

The evaluated assertions are created with a stratified random sampling
strategy. The assertions are thus distributed proportionally over all page
types (like Person or Place) and sampled randomly within these.

The authors perform the labelling of the assertions with the procedure as
follows: For a given assertion, first, the page of the listing is inspected, then –
if necessary and available – the page of the SE. If a decision cannot be made
based on this information, a search engine is used to evaluate the assertion.
Samples of the rule-based and frequency-based approaches are evaluated
together and in random order to ensure objectivity.

Table 9.3 shows the results of the performance evaluation. We evaluated
2,000 examples per approach for types and 1,000 examples per approach

9.5. EVALUATION 143

for relations. The taxonomy of CaLiGraph comprises the one of DBpedia.
Thus, we evaluated the full sample for CaLiGraph types and reported the
numbers for both graphs, which is why the sample size for DBpedia is lower.
For relations, we only evaluate the ones generated directly from rules and
not the ones inferred from CaLiGraph types, as the correctness of the inferred
relations directly depends on the correctness of CaLiGraph types.

9.5.2 Type and Relation Extraction

The evaluation results in Table 9.3 show that the information extracted from
listings in Wikipedia is of an overall high quality. The rule-based approach
yields a larger number of assertions with higher correctness for both types
and relations.

For both approaches, the correctness of the extracted assertions is substan-
tially higher for DBpedia. The reason for that lies in the differing granularity
of KG taxonomies. DBpedia has 764 different types, while CaLiGraph has
755,441, most of them being more specific extensions of DBpedia types. For
example, DBpedia might describe a person as Athlete, while CaLiGraph de-
scribes it as Olympic_field_hockey_player_of_South_Korea. The average
depth of predicted types is 2.06 for the former and 3.32 for the latter.

While the asserted types are very diverse (the most predicted type is
Agent with 7.5%), asserted relations are dominated by the predicate genus
with 69.8% followed by isPartOf (4.4%) and artist (3.2%). This divergence
cannot be explained with a different coverage: In DBpedia, 72% of entities
with type Species have a genus, and 69% of entities with type MusicalWork
have an artist. However, we identify two other influencing factors: Wikipedia
has very specific guidelines for editing species, especially with regard to
standardization and formatting rules.13 In addition to that, the genus relation
is functional and hence trivially fulfilling the LCWA. As our approach strongly
relies on this assumption and potentially inhibits the mining of practical
rules for non-functional predicates (like, for example, for artist), we plan to
investigate this relationship further.

The inferred relations from CaLiGraph types are not evaluated explic-
itly. However, based on the correctness of restrictions in CaLiGraph that we
evaluated to be 95.6% in Chapter 6 and from the correctness of type asser-
tions, we estimate the correctness of the resulting relation assertions to be
around 85.5% for the frequency-based and around 87.9% for the rule-based
approach.

13https://species.wikimedia.org/wiki/Help:General_Wikispecies

https://species.wikimedia.org/wiki/Help:General_Wikispecies

144 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

9.5.3 Novel Entities

For CaLiGraph, the frequency-based approach finds assertions for 2.5M
distinct SEs (2.1M of them, novel). While the rule-based approach finds 9%
more assertions, its assertions are distributed over 40% more entities (and
over 43% more novel entities). This demonstrates the capabilities of the
rule-based approach of applying contextual patterns to environments where
information about entities is sparse.

Further, we analyzed the portion of evaluated samples that applies to
novel entities and found that the correctness of these statements is slightly
better (between 0.1% and 0.6%) than the overall correctness. Including
CaLiGraph types, we find an average of 9.03 assertions per novel entity, with
a median of 7. This is, again, due to the very fine-grained type system of
CaLiGraph. For example, for the rapper Dizzle Don, which is a novel entity, we
find eight types (from Agent over Musician to American_rapper) and four
relations: (occupation, Singing), (occupation, Rapping), (birthPlace, United
States), and (genre, Hip hop music).

9.5.4 Error Analysis

With Table 9.4, we analyse error type frequencies for the rule-based approach
on the basis of the evaluated sample. (1) is caused by the entity linker, mostly
due to incorrect entity borders. For example, the tagger identifies only a part
of an album title. (2) is caused by errors in the SE identification approach,
e.g., when the approach identifies the wrong column of a table as the one
that holds SEs. (3) can have multiple reasons, but most often, the applied
rule is over-generalized (e.g., implying Football_player when the listing is
actually about athletes in general) or applied to the wrong listing (i.e., the
context described by the rule is not expressive enough). Finally, (4) happens,
for example, when a table holds the specifications of a camera, as this cannot
be expressed with the given set of predicates in DBpedia or CaLiGraph.

Overall, most of the errors are produced by incorrectly applied rules. This
is, however, unavoidable to a certain extent as KGs are not error-free, and the
data corpus is not perfect. A substantial portion of errors is also caused by
incorrectly parsed or identified SEs. Reducing these errors can also positively
impact the generated rules, as correct information about entities is required
for correct rules.

9.6 Conclusion

In this work, we demonstrated the potential of exploiting co-occurring similar
entities for IE, especially for discovering assertions for novel entities. We
show that it is possible to mine expressive, descriptive rules for listings in
Wikipedia, which can be used to extract information about millions of novel

9.6. CONCLUSION 145

Error type Type Relation
(1) Entity parsed incorrectly 2.6 0.2
(2) Wrong SE identified 1.4 1.6
(3) Rule applied incorrectly 3.7 2.3
(4) Semantics of listing too complex 0.3 0.0

Table 9.4: Error types partitioned by cause. The occurrence values are given
as their relative frequency (per 100) in the samples evaluated in Table 9.3.

entities. The implemented approach is published as part of the CaLiGraph
extraction framework.14

Besides Wikipedia, another potential data source for the approach is the
Fandom15 universe containing more than 380K wikis on various domains
(among them many interesting wikis for our approach, like for example
WikiLists16). For background knowledge, existing KGs in this domain, like
DBkWik [77] or TiFi [31], can be used. The approach could also be extended
towards arbitrary web pages, using Microdata and RDFa annotations [127]
as hooks for background knowledge.

14https://github.com/nheist/CaLiGraph
15https://www.fandom.com/
16https://list.fandom.com/wiki/Main_Page

https://github.com/nheist/CaLiGraph
https://www.fandom.com/
https://list.fandom.com/wiki/Main_Page

146 CHAPTER 9. IE FROM CO-OCCURRING SIMILAR ENTITIES

Part IV

Knowledge Graph Evaluation
and Usage

147

CHAPTER 10

KGrEaT: Evaluating Knowledge Graphs via Downstream Tasks

Countless research papers have addressed the topics of KG creation, exten-
sion, or completion to create KGs that are larger, more correct, or more
diverse. This research is typically motivated by the argument that using en-
hanced KGs to solve downstream tasks will improve performance. Nonethe-
less, this is hardly ever evaluated. To better judge how well KGs perform
on actual tasks, we present KGrEaT – a framework to estimate the quality
of KGs via actual downstream tasks like classification, clustering, or recom-
mendation. Instead of comparing different methods of processing KGs with
respect to a single task, the purpose of KGrEaT is to compare various KGs by
evaluating them on a fixed task setup. The contributions of this chapter are
as follows:

• With KGrEaT, we present a framework to judge the utility of KGs using
extrinsic task-based metrics.

• In our experiments, we demonstrate the framework’s capabilities by
evaluating and comparing several well-known cross-domain KGs.

The work presented in this chapter is based on the following publication:
Nicolas Heist,† Sven Hertling† and Heiko Paulheim. KGrEaT: A Frame-

work to Evaluate Knowledge Graphs via Downstream Tasks. In Pro-
ceedings of the 32nd ACM International Conference on Information and
Knowledge Management (CIKM), pp. 3938-3942, Birmingham, UK, Octo-
ber 2023, ACM Press.1 [65]

1The contributions of the author to this publication are as follows: design and implemen-
tation of the framework, KG evaluation experiments.

149

150 CHAPTER 10. KGREAT: EVALUATING KNOWLEDGE GRAPHS

10.1 Motivation

Efforts related to KG construction, extension, and completion are typically
motivated by the argument that leveraging enhanced KGs can lead to im-
proved performance in downstream tasks. However, comparative evaluations
of different KGs w.r.t. their utility for such tasks are rarely conducted.

In the literature, the vast majority of studies concerned with the evalu-
ation of KGs have focused on intrinsic metrics that work exclusively with
the triples of a graph. Several works introduce quality metrics like accuracy,
consistency, or trustworthiness and propose ways to determine them quanti-
tatively [198, 11, 51, 84, 214]. Färber et al. [43] compare KGs concerning
size, complexity, coverage, and overlap. Additionally, they provide guidelines
on which KG to select for a given problem.

Another line of work computes extrinsic task-based metrics to evaluate
KG embedding approaches. They use a fixed input KG with a fixed evalu-
ation setup while varying only the embedding approach. Frameworks like
GEval [151] or kgbench [19] use data mining tasks like classification or
regression for the evaluation. Others, like Ali et al. [4], evaluate primarily
on link prediction tasks.

10.2 Framework

To address the evaluation gap of extrinsic metrics for KGs, we propose a
framework called KGrEaT (Knowledge Graph Evaluation via Downstream
Tasks).2 KGrEaT aims to comprehensively assess KGs by evaluating them
on multiple kinds of tasks like classification, regression, or recommendation.
The evaluation results (e.g., the accuracy of a classification model trained
with the KG as background knowledge) serve as extrinsic task-based quality
metrics for the KG. By defining a fixed evaluation set up in the framework
and applying it to multiple KGs, it is possible to isolate the effect of every KG
and compare how useful they are for solving different kinds of tasks. KGrEaT
is built in a modular way to be open for extensions from the community, like
additional tasks or datasets.

10.2.1 Purpose and Limitations

KGrEaT is a framework built to evaluate the performance impact of KGs on
multiple downstream tasks. To that end, the framework implements various
algorithms to solve tasks like classification, regression, or recommendation
of entities. The impact of a given KG is measured by using its information as
background knowledge for solving the tasks. To compare the performance
of different KGs on downstream tasks, we use a fixed experimental setup

2https://github.com/dwslab/kgreat

https://github.com/dwslab/kgreat

10.2. FRAMEWORK 151

STAGES

MANAGER

ARTIFACTS

PREPROCESSING

MAPPING

TASK

RESULTSINPUTS INTERMEDIATES

PREPARE MANAGE & RUN COMPARE & VISUALIZE

DOCKER
CONTAINERS

PYTHON
CLI

KG FORMATS
NT, TTL, TSV

- KG TRIPLE FILES
- CONFIGURATION

- ENTITY MAPPINGS
- ENTITY EMBEDDINGS
- ANN SEARCH INDICES

- ACCURACY
- F1
- ...

- CLASSIFICATION
- RECOMMENDATION
- ...

- EMBEDDING GENERATION
- INDEXING

- SAME-AS
- LABELS

Figure 10.1: An overview of the KGrEaT framework.

with the KG as the only variable. The performance indicators may be used to
make an informed decision when picking a KG for a given task. Further, they
can be used to compare the performance of different versions of a single KG
(e.g., during construction or its life cycle).

The implemented algorithms are not necessarily state-of-the-art because
the primary objective is not to measure how well a task can be solved with
a given KG in absolute numbers but rather in comparison to other KGs or
different versions of the same KG. Hence, the absolute numbers of the results
only have limited expressive power. However, the framework tries to reduce
the bias in the results by averaging over multiple preprocessing methods,
datasets, and algorithms.

KGrEaT automatically maps the entities of the KG to the dataset’s entities
using a set of configurable mappers. Undoubtedly, the quality of this mapping
influences the results generated by the framework. But as the mapping proce-
dure is applied similarly to all evaluated KGs, the mapping quality is mainly
influenced by the accessibility of the graph (i.e., whether it provides sufficient
context information like labels or descriptions for its entities). To reduce
the influence of the mapping strategy on the overall results, the framework
provides a way to run experiments with multiple mapping approaches (and,
possibly, average over them).

10.2.2 Design

The framework is designed modularly (c.f. Fig. 10.1), making adding ad-
ditional preprocessing steps, mappers, or tasks easy. Every step of a stage
is implemented as an isolated docker container3 with its own environment
so that additions can be made without any constraints on the programming
language. Another advantage of the container-based architecture is the easy
distribution of containers via a container hub, eliminating the need for users
to build the framework on their own machines.

The manager is responsible for making necessary preparations (e.g.,
downloading the input data or gathering entities to be mapped), executing

3https://www.docker.com

https://www.docker.com

152 CHAPTER 10. KGREAT: EVALUATING KNOWLEDGE GRAPHS

the stages (fetching and running containers of the steps), and visualizing the
results (e.g., comparing KG performance on various aggregation levels). The
Preprocessing and Mapping stages can be executed in parallel; the results are
used to execute the Task stage. The process is steered via a Command Line
Interface (CLI).

The only input to the evaluation process is the KG in the form of RDF
files as well as a configuration. The latter defines how the stages should be
run (i.e., which steps to execute in which order). Further, every step can
be configured in depth to supply relevant hyperparameters. For example,
one can configure how the KG should be mapped to the datasets (e.g., via
matching labels) and define an acceptable similarity value for a match.

In the following, we provide details of the three main stages executed
when evaluating a KG.

10.2.3 Preprocessing Stage

The Preprocessing stage creates all pre-computable artefacts that are needed
in the subsequent Task stage (e.g., intermediate representations or statis-
tics of the KG). So far, this stage comprises the computation of embed-
dings (TransE [20], TransR [110], DistMult [213], RESCAL [140],
ComplEx [190] via the DGL-KE framework [221], and RDF2vec [168] via
the jRDF2vec framework [155]). Further, it supports the generation of
indices for Approximate Nearest-Neighbor (ANN) search (via the hnswlib
library [121]).

10.2.4 Mapping Stage

In the Mapping stage, the entities of the KG are automatically mapped to the
entities in the datasets. So far, a Same-As mapper and a Label mapper are
implemented. The former uses the same-as links of a KG to map its entities
to those of the datasets. A dataset may provide URIs for an entity (e.g., from
well-known KGs like DBpedia or Wikidata), but it has to provide at least
one label. This label is used by the Label mapper to find a corresponding
entity in the KG. It uses the RapidFuzz library4 to estimate the similarity
of labels via token-based edit distance. Mappers are composable, i.e., they
can be executed in sequence. For example, entities are first mapped via
same-as links where available, and the remaining entities are mapped via
label similarity.

10.2.5 Task Stage

In the Task stage, the task types are executed for all combinations of datasets
and algorithms. Table 10.1 gives an overview of all possible constellations.

4https://github.com/maxbachmann/RapidFuzz

https://github.com/maxbachmann/RapidFuzz

10.3. EXPERIMENTS 153

KGrEaT contains 26 tasks (i.e., combinations of task types and datasets)
that are run with one or more algorithms. Additionally, the algorithms are
executed with multiple hyperparameter settings. How the individual tasks
use the KG information depends on the task and the implemented algorithm.
Generally, the tasks Classification, Regression, and Clustering use embeddings
of the KG’s entities as features of the models, and the remaining tasks use
the distance between the entity embeddings to find related entities.

Several datasets are taken from Ristoski et al. [166] and from the GEval
framework [151]. The Recommendation datasets MovieLens [61], LastFm,5

and LibraryThing [220] are preprocessed as recommended by Di Noia et
al. [141] except for using all entities instead of only those for which a
mapping to DBpedia exists. The interested reader may refer to the respective
publications and the information in the framework for detailed statistics of
all datasets.

Every task type comes with suitable evaluation metrics computed for
every constellation. As some KGs might not contain matches for all entities
in the dataset, it would be unfair to compute metrics only over known
entities (and discard unknown entities) or only over all entities. Hence,
the framework reports metrics for both scenarios. Finally, the results can
be aggregated over various levels (e.g., over embeddings, algorithms, and
datasets) to produce metrics with a reduced bias.

10.3 Experiments

To show the capabilities of KGrEaT, we conduct experiments over multiple
general-purpose KGs and analyze how well they perform on the implemented
downstream tasks. We first give an overview of the evaluated KGs, define
the experimental setup, and discuss the results.

10.3.1 Experimental Setup

Knowledge Graphs

We use the following KGs in our experiments:6

• DBpedia: Dumps from 2016-10 (DBP16) and 2022-09 (DBP22)7

• YAGO: Version 3
• Wikidata (WD): Dump from 2023-06-07
• CaLiGraph (CLG): Version 3.1.1 (as described in Chapter 11)
• DBkWik: Version 28

5http://www.lastfm.com
6Links to the datasets are given in Appendix A.2.
7Using multiple versions allows us to compare not only between different KGs but also

between different versions (here: with respect to time) of the same KG.
8Combined with DBpedia to also include the well-known entities of Wikipedia.

http://www.lastfm.com

154 CHAPTER 10. KGREAT: EVALUATING KNOWLEDGE GRAPHS

Task
Type

D
atasets

A
lgorithm

s
Evalu

ation
M

etrics

C
lassification

A
A

U
P,C

ities,Forbes,M
illionSongD

ataset
M

etacriticA
lbum

s,M
etacriticM

ovies,C
om

icC
haracters

N
aive

B
ayes,K

N
N

,SV
M

A
ccuracy

↑

R
egression

A
A

U
P,C

ities,Forbes,M
etacriticA

lbum
s,

M
etacriticM

ovies
Linear

R
egression,K

N
N

,
D

ecision
Tree

R
M

SE
↓

C
lustering

C
ities2000A

ndC
ountries,C

itiesA
ndC

ountries,Team
s,

C
itiesM

oviesA
lbum

sC
om

paniesU
ni,C

om
icC

haracters
D

B
SC

A
N

,K
M

eans,
A

gglom
erative

C
lustering

A
R

I↑,N
M

I↑,A
ccuracy

↑

D
ocum

ent
Sim

ilarity
LP50

C
osine

Sim
ilarity

Spearm
an

↑,Pearson
↑

Entity
R

elatedness
KO

R
E

C
osine

Sim
ilarity

Kendall’s
Tau

↑

Sem
antic

A
nalogies

A
llC

apitalC
ountryEntities,C

apitalC
ountryEntities,

C
ityStateEntities,C

urrencyEntities
C

osine
Sim

ilarity
A

ccuracy
↑

R
ecom

m
endation

M
ovieLens,LastFm

,LibraryThing
Item

-Sim
ilarity

recom
m

ender
F1

↑

Table
10.1:

Im
plem

ented
tasks

w
ith

their
algorithm

s,datasets,and
evaluation

m
etrics.

10.3. EXPERIMENTS 155

Mapping

We first map the KGs with the Same-As mapper where applicable. Then,
we apply two variants of the Label mapper: One with a similarity threshold
of 1.0 for high-precision matches and one with a threshold of 0.7 for high
recall. For the former, we compute metrics for known entities (Precision
Known - PK) and for all entities (Precision All - PA); for the latter, being
recall-oriented, we report the metrics only for all entities (Recall All - RA).

Embeddings

All experiments are executed with four embedding types (TransE, DistMult,
ComplEx, and RDF2vec) to reduce the influence of the different embedding
approaches on the overall results. For Wikidata, we could not compute all
the embeddings due to the amount of computational resources necessary.
Instead, we use precomputed TransE embeddings9 with a comparable training
configuration.

Hardware

All experiments are executed on NVIDIA RTX 2080 Ti graphic cards and Intel
Xeon E5 processors (2.6GHz). On average, a full evaluation of a single KG
takes roughly 30 hours, with 20 hours of embedding computation, 4 hours
of mapping, and 6 hours of task execution.

10.3.2 Results and Discussion

Table 10.2 shows the final results of our evaluation for the three scenarios PK,
PA, and RA. The results are averaged after aggregating for all embeddings,
datasets, and algorithms. Detail results are given in Appendix B.1 and the
complete data of the experiments are publicly available.10

For Classification, DBpedia2016 shows the best results in the precision
setting, while CaLiGraph and YAGO achieve the best results in the recall
setting. For Regression, both DBpedia versions and Wikidata perform well
in the precision setup, while again, CaLiGraph and YAGO achieve the best
results in the recall setting. The Clustering task is solved best by YAGO
and DBpedia2016. For Document Similarity, version 2022 of DBpedia is the
clear winner. For the Entity Relatedness task, using Wikidata, DbkWik, or
DBpedia2022 as background knowledge produces the best results. Recom-
mendation is solved best using DBpedia or Wikidata, Semantic Analogies is
also solved best by DBpedia.

9https://torchbiggraph.readthedocs.io/en/latest/pretrained_embeddings.htm
l

10https://doi.org/10.5281/zenodo.8050446

https://torchbiggraph.readthedocs.io/en/latest/pretrained_embeddings.html
https://torchbiggraph.readthedocs.io/en/latest/pretrained_embeddings.html
https://doi.org/10.5281/zenodo.8050446

156 CHAPTER 10. KGREAT: EVALUATING KNOWLEDGE GRAPHS

Task Type DBP16 DBP22 YAGO WD CLG DBkWik
PK (precision-oriented, known entities)
Classification 2.3 3.0 4.0 2.3 4.8 4.0
Regression 3.0 3.6 3.6 2.8 3.0 5.0
Clustering 2.1 3.8 2.0 4.7 4.3 4.1
Document Similarity 2.0 1.0 5.0 5.3 3.0 4.7
Entity Relatedness 3.0 2.0 6.0 1.0 5.0 4.0
Semantic Analogies 2.0 2.0 3.2 6.0 4.0 3.8
Recommendation 2.7 2.7 5.3 2.3 3.3 4.7
PA (precision-oriented, all entities)
Classification 2.2 4.8 3.3 5.2 3.3 2.0
Regression 1.8 3.6 3.8 4.4 4.0 3.4
Clustering 2.0 3.8 2.8 4.9 4.5 3.0
Document Similarity 2.0 1.0 5.0 5.7 3.0 4.3
Entity Relatedness 3.0 2.0 6.0 4.0 5.0 1.0
Semantic Analogies 1.8 1.8 3.0 6.0 4.5 4.0
Recommendation 3.0 2.3 5.0 4.3 3.7 2.7
RA (recall-oriented, all entities)
Classification 3.4 5.6 2.6 4.9 1.9 2.7
Regression 4.0 4.4 1.6 5.2 1.4 4.4
Clustering 2.4 3.9 2.3 4.5 4.7 3.2
Document Similarity 2.3 1.0 4.0 6.0 5.0 2.7
Entity Relatedness 4.0 2.0 6.0 1.0 5.0 3.0
Semantic Analogies 1.2 2.5 3.8 6.0 3.2 4.2
Recommendation 1.7 3.7 5.7 4.0 3.3 2.7

Table 10.2: Evaluation results of the KGs given as average rank per task type.
The results of the KGs are given for the dimensions PK (precision-oriented,
known entities), PA (precision-oriented, all entities), and RA (recall-oriented,
all entities). The best results are in bold; second-best results are underlined.

10.4. CONCLUSION 157

In general, DBpedia dominates the results to a large extent, which may
be explained by the fact that some of the datasets used in the framework
have been derived from the 2015 version of DBpedia. This might also
explain why the 2022 version of DBpedia has no clear advantage over the
older 2016 version. However, both versions of DBpedia perform strongly on
the Recommendation task, which has no direct relation to DBpedia or even
Wikipedia.

Our assumption that the KGs with more entities (YAGO, Wikidata, CaLi-
Graph, and DBkWik) will have an advantage, especially in the Recommen-
dation tasks, did only partially prove to be true. However, they have shown
strong performances, especially in recall-oriented settings. This unsteady
performance may be due to the increased complexity of training expressive
embeddings for large KGs. In the future, we want to explore this further by
running evaluations not only with multiple types of embeddings but also
with multiple embedding configurations (e.g., number of trained epochs).
Another interesting direction to explore is whether combining two KGs (e.g.,
by concatenating their entity vectors) yields improved results [187].

10.4 Conclusion

We presented KGrEaT, a framework for evaluating the performance of KGs on
multiple downstream tasks. Our experiments found that, depending on the
task, the performance of the KGs varies enormously. To judge the quality of a
KG in its completeness, extrinsic evaluation metrics provided by KGrEaT can
serve as a valuable addition to the established intrinsic evaluation criteria.

158 CHAPTER 10. KGREAT: EVALUATING KNOWLEDGE GRAPHS

CHAPTER 11

CaLiGraph: Statistics, Evaluation and Usage

The approaches for extracting information from semi-structured sources
in Wikipedia presented in previous chapters have been largely integrated
into the CaLiGraph extraction framework. Since its first published version
in 2019, CaLiGraph has been refined and extended multiple times, where
changes have been introduced to the ontology, the covered entities, and
the underlying data source. This chapter aims to provide an overview of
CaLiGraph as a data source. We describe its versions, purpose, and vocabulary
structure. Then, we detail the extraction procedure of CaLiGraph, including
sources, provenance, stability, and sustainability. We explain how CaLiGraph
can be accessed and how it is used already. Finally, we present statistics
of the KG, summarize evaluation results of the included approaches, and
apply KGrEaT to compare CaLiGraph to other general-purpose KGs. The
contributions of this chapter are as follows:

• We give a comprehensive overview of CaLiGraph as a data source,
including general details, usage information, and statistics of the main
versions.

• We compare the latest version of CaLiGraph with existing general-
purpose KGs in terms of their performance on downstream tasks and
give insights into the strengths and weaknesses of these graphs.

The work presented in this chapter is based on the following publication:
Nicolas Heist and Heiko Paulheim. CaLiGraph: A Knowledge Graph

from Wikipedia Categories and Lists. In Semantic Web Journal (SWJ),
2024. [under review]

159

160 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

11.1 Description

CaLiGraph and all the associated information is accessible via http://cali
graph.org. The dataset is licensed under CC BY 4.0,1 giving everyone the
right to use, share and adapt all material with the only liability of giving
proper attribution.

The project to create CaLiGraph was initiated in 2018 [64] and, to date,
three major versions have been published. Here is an overview of the versions
that we use in the remainder of this chapter:2

• CLGv1 (version 1.1.0): contains the full class hierarchy and axioms as
described in Chapters 5 and 6.

• CLGv2 (version 2.1.1): adds additional entities extracted from all
listings in Wikipedia as described in Chapter 7 and additional facts
from associated rules as described in Chapter 9. However, this ver-
sion may contain duplicate entities not properly disambiguated during
extraction.

• CLGv3 (version 3.1.1): adds an entity disambiguation step as described
in Chapter 8.

11.1.1 Purpose and Coverage

The purpose of CaLiGraph is to serve as a large-scale general-purpose KG
covering all topics addressed in Wikipedia. In particular, CaLiGraph aims to
incorporate all information given in a semi-structured format in Wikipedia.
By exploiting the data structure, the extraction mechanisms of CaLiGraph
can extract information, especially about long-tail entities, more precisely
than from full text. Currently, the focus is on extracting information about
entities mentioned in tables and enumerations.

Another feature distinguishing CaLiGraph from most other public general-
purpose KGs is its large taxonomy containing expressive class descriptions.
An example is shown in the upper part of Fig. 1.1 on page 6 where restriction1
enforces that all entities in the class Guns N’ Roses album have the band Guns
N’ Roses as an artist. With such restrictions, we model the meaning of the
classes that is usually hidden behind their names.

11.1.2 Vocabulary

The CaLiGraph dataset builds on well-established vocabularies like RDF(S),
OWL, SKOS, FOAF and PROV-O to describe important concepts like classes,
hierarchies, restrictions, labels, and provenance. Overall, the complexity of
the CaLiGraph ontology can be categorised as SHOD. From an ontological

1https://creativecommons.org/licenses/by/4.0
2Refer to Appendix A.2.4 for version details.

http://caligraph.org
http://caligraph.org
https://creativecommons.org/licenses/by/4.0

11.2. EXTRACTION PROCEDURE 161

perspective, the feature distinguishing CaLiGraph most from other public
general-purpose KGs is its extensive modelling of class restrictions via OWL.
These has-value restrictions (an example is shown in Fig. 1.1) already justify
the SHO part of the ontology’s complexity. As CaLiGraph defines data types
for extracted values and contains axioms implying literals, it is classified as
SHOD.

11.2 Extraction Procedure

CaLiGraph is extracted using the CaLiGraph Extraction Framework.3 We
describe the extraction’s inputs, outputs, and organisation in the following.

11.2.1 Data Sources

The main inputs to the CaLiGraph extraction framework are an XML dump of
the English Wikipedia and the English chapter of DBpedia [104] in the form
of triples. Further, we use WebIsALOD [74] to gather additional hypernyms
during taxonomy construction (see Chapter 5).

11.2.2 Provenance

In CaLiGraph, we provide provenance information for new classes and enti-
ties using PROV-O vocabulary. For existing classes, properties and entities
taken from DBpedia, we add links via rdfs:subClassOf, owl:equivalentProperty
and owl:sameAs, respectively. Similar to DBpedia, we use the namespaces
http://caligraph.org/ontology/ or short clgo for the ontology and we use
http://caligraph.org/resource/ or short clgr for resources.

For additional classes, we point to the Wikipedia categories or list pages
used for extraction. For the additional entities, we include information
about the listings they have been extracted from. Example 11.2.1 shows the
provenance information generated when creating a new class from the list
page List of lakes of Powell County, Montana.

Example 11.2.1. Expression of provenance in CaLiGraph

@prefix wiki: <https://en.wikipedia.org/wiki/> .
clgo:Lake_of_Powell_County,_Montana prov:wasDerivedFrom

wiki:List_of_lakes_of_Powell_County,_Montana .

The example also shows that, when minting new classes or entities, we
again follow DBpedia and create a URI similar to its main label. We use the
source’s name as a prefix in case of name clashes.

3https://github.com/nheist/CaLiGraph

https://github.com/nheist/CaLiGraph

162 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

11.2.3 Stability

CaLiGraph is built on information from Wikipedia and DBpedia. New releases
are dependent on the information from these two resources. As we have no
control over the data sources, CaLiGraph gives no guarantees for the stability
of ontology and resources between major versions. The changes may affect
any information contained in CaLiGraph. For example, it is possible that a
page name in Wikipedia and, consequently, a resource in DBpedia changes.
This change would then be taken over in CaLiGraph as well. Further, if the
structure of the category graph in Wikipedia changes, this can influence the
extraction of the CaLiGraph taxonomy. Finally, any changes in listings in
Wikipedia may change how facts are extracted. This influences especially the
URIs of entities without dedicated Wikipedia articles, as we generate them
based on the listing context the entity is extracted from.

11.2.4 Sustainability

CaLiGraph is hosted and maintained by the Data and Web Science Group of
the University of Mannheim. The release cycle for CaLiGraph was mostly
irregular in the past, as new developments were integrated as quickly as
possible. There are ongoing efforts to align the release cycle to the one of
DBpedia and even to integrate the extraction of CaLiGraph into the DBpedia
extraction workflow. Still, it is planned to improve and extend CaLiGraph
further in various ways (see future work in Chapter 13).

11.3 Usage

The following section describes how to access and interact with CaLiGraph
best. Further, we give an overview of potential and existing use cases.

11.3.1 Access

The main web resources to view, use, and extend CaLiGraph are:

• http://caligraph.org: Main website with relevant resources, a data
explorer and a SPARQL endpoint.

• https://zenodo.org/record/3484511: Source files of all published
versions of CaLiGraph.

• https://databus.dbpedia.org/nheist/CaLiGraph: CaLiGraph on
the DBpedia Databus.

• https://github.com/nheist/CaLiGraph: Code of the extraction
framework, including an issue tracker.

http://caligraph.org
https://zenodo.org/record/3484511
https://databus.dbpedia.org/nheist/CaLiGraph
https://github.com/nheist/CaLiGraph

11.4. STATISTICS 163

11.3.2 Use Cases

In general, CaLiGraph is intended to be used as a KG for various domains
similar to DBpedia. Hence, it can be used in similar use cases, for example,
for information retrieval or question answering. CaLiGraph is already used
in several concrete scenarios:

• Qin and Iwaihara [158] use CaLiGraph as training data for a trans-
former model to annotate table columns with entity types.

• Biswas et al. [16] use CaLiGraph to evaluate models for entity typing
using only the surface forms of the entities.

• In 2021, we submitted CaLiGraph as a dataset for the Semantic Rea-
soning Evaluation Challenge [69]. It has been used in every challenge
edition to evaluate reasoning systems (for example, by Chowdhury et
al. [30]).

11.4 Statistics

In this section, we show statistics about CaLiGraph and compare it with
DBpedia and YAGO. We use the English chapters of DBpedia in the versions
from 2016 (DBP16) and 2022 (DBP22) as well as YAGO version 3.1 (YAGO3).
We select these KGs for comparison as they are, like CaLiGraph, mainly based
on the English Wikipedia.

11.4.1 General Metrics

We compare the KGs w.r.t. classes and entities in Table 11.1. Compared to
DBpedia, YAGO and CaLiGraph contain many more classes, largely retrieved
from the WCG. The increase in classes and relations in the major CaLiGraph
versions is caused by the Wikipedia version used for extraction (CLGv1 uses
a version from 2016, CLGv2 from 2020 and CLGv3 from 2022). YAGO3 uses
a Wikipedia version from 2017; an extraction on a recent version would
likely increase the number of classes. Regarding the class tree’s depth and
branching factor, DBpedia and CaLiGraph are comparable, while YAGO has
a denser and deeper taxonomy. With the increasing maturity of CaLiGraph,
the depth of the class tree decreases while its breadth increases. This may be
an effect of the changed Wikipedia version and our efforts to integrate the
isolated parts of the ontology better.

Regarding entities, CLGv2 and CLGv3 contain the highest number, almost
twice as many as the other KGs. While the entities in CLGv2 may not be
properly disambiguated, CLGv3 employs a disambiguation mechanism to
ensure that no duplicate entities exist (see Chapter 8). CLGv3 contains
the highest number of assertions about entities, but the average number of
assertions per entity is higher in YAGO3. This can be attributed mostly to

164 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

D
B

P16
D

B
P22

YA
G

O
3

C
LG

v1
C

LG
v2

C
LG

v3

#
C

lasses
760

1,245
819,292

755,440
1,061,597

1,285,484
#

R
elations

1,355
1,298

77
271

343
1,253

#
H

asValue
R

estrictions
–

–
–

110,180
128,016

145,631
A

vg.
depth

ofclass
tree

3.5
3.9

6.6
4.5

3.9
3.6

A
vg.

branching
factor

ofclass
tree

4.5
4.2

8.5
4.5

4.4
4.9

O
ntology

com
plexity

SH
O
F
D

SH
O
F
D

SH
O
IF

SH
O
D

SH
O
D

SH
O
D

#
Entities

5,044,223
7,495,054

6,349,359
6,516,892

15,230,974
†

13,736,724
#

A
ssertions

71,628,627
97,213,941

263,433,367
166,228,505

298,300,766
332,884,815

A
vg.

linking
degree

2.8
2.7

1.9
1.6

0.7
1.7

M
edian

ingoing
edges

0
1

0
0

0
0

M
edian

outgoing
edges

15
11

35
17

12
12

Table
11.1:

B
asic

m
etrics

of
all

C
aLiG

raph
versions

and
other

K
G

s
based

on
the

English
W

ikipedia.
†Entities

are
not

disam
biguated

properly.

11.4. STATISTICS 165

Thing

...

Specie

W
or

k

Place

The art

Birth

Agent

Architectural structure

Event
Visual arts m

edium
Establishm

ent
O

ccupation
Publication

Sports season
M

ean of transportation

Eukaryote

M
us

ic
al

 w
or

k

Fi
lm

Populated place
Place in Myanmar

Visual art
Art in North America

2nd-millennium birth

Organization

Building or structure

Build

Building in the Americas

Civil event
Societal event

M
ass m

edium

Entertainm
ent occupation

Book
Sports team

 season

Figure 11.1: A sunburst diagram of frequent entity types in CaLiGraph.

literal assertions of YAGO, as the median of outgoing edges is high, but the
average linking degree is comparably low. Compared to YAGO and CaLiGraph,
DBpedia is interlinked very strongly, indicated by the high average linking
degree. The lower linkage degree of CaLiGraph versions 2 and 3 is caused
by the large number of entities added for which only little information is
available (i.e., long-tail entities). We observe the same effect in the reduction
of median outgoing edges.

11.4.2 Contents

Like DBpedia and YAGO, CaLiGraph covers many domains. Fig. 11.1 shows
how the entities in CLGv3 are distributed over the type hierarchy. Most
entities describe Species, with a majority being Persons. Next in line are
Works, most importantly musical works and movies. Entities describing

166 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

CLGv1 CLGv2 CLGv3

Types Count Rank Count Rank Count Rank
Person 1,827,240 2 4,599,249 2 3,262,511 5
Organization 593,462 13 1,106,098 19 691,732 25
Populated_place 648,673 9 1,014,971 24 867,281 20
Natural_place 132,618 102 180,930 125 164,987 102
Species 353,680 26 790,287 30 3,691,343 1
Work 607,858 12 2,468,257 7 1,832,985 8
Building_or_structure 202,888 67 619,983 35 524,310 37
Gene 1,112 9,149 25,852 817 14,019 1,269
Protein 6,049 1,882 3,882 4,455 5,264 3,138
Event 141,582 90 309,674 67 1,178,248 14

Properties Count Rank Count Rank Count Rank
birthPlace 2,827,536 1 2,844,951 1 3,887,146 1
birthYear 1,128 133 1,175,897 4 1,576,909 2
location 877,066 3 1,485,013 2 1,567,334 3
team 521,660 5 748,147 6 1,338,344 4
country 963,588 2 1,265,201 3 1,315,784 5
subdivision - - 844,344 5 1,233,513 6
birthDate - - - - 976,431 7
type 284,581 8 390,191 8 716,693 8
genre 326,955 7 405,484 7 711,336 9
deathYear 111,273 15 11,916 78 706,773 10

Table 11.2: Comparison of counts and ranks of prominent types and proper-
ties among CaLiGraph versions. Prominent types are taken from Chapter 3,
and prominent properties are selected based on their frequency in CLGv3.

Places are mostly addressing Populated places. The large number of Places
in Myanmar can be traced back to an incorrect mapping in the taxonomy,
which will be fixed in the next release (see Chapter 13 for more details).

We compare the type and relation frequencies of the three CaLiGraph
versions in Table 11.2. We use the prominent types mentioned in Chapter 3
to compare types. Unfortunately, the ranks are not perfectly comparable as
DBpedia changed its taxonomy, taking effect in CLGv3. As a consequence,
Person is a descendant of Species instead of Agent. This explains why Species
is the most frequent type in CLGv3 and why Person descended to rank five
while almost doubling its numbers compared to CLGv1. While the coverage
of organizations and places has not increased much between versions 1
and 3, the counts of Work (+200%), Building_or_structure (+160%), Gene
(+1,160%) and Event (+700%) multiplied.

To compare properties, we take the most frequently used ones in CLGv3.
Again, some changes can be explained with the changes in DBpedia, like the
increased coverage of birthYear (about 1K in DBP16 and 260K in DBP22)
and the added support for subdivision and birthDate. The decline in rank

11.5. DATA QUALITY 167

Thin
g

Animal

Person

Pl
ac

e

...

Work

Populated place

Specie

Organization
Athlete

Military conflict
M

ovie
Broadcaster

Route of transportation
W

ritten work
M

ilitary person
Ship

Architectural structure
Television station

Agent
Television show

Com
pany

Software
Event

co
un

try

lo
ca

tio
n

typ
e

ge
nr

e
po

sit
ion

he
igh

t

ac
tiv

eY
ea

rsS
tar

tYe
ar

po
sta

lCod
e

rec
ord

La
be

l

originalName

battle

cla
ss

associatedBand

associatedMusicalArtist

activeYearsEndYear

city

language

weight

length

synonym
title

owner
imdbId

area
alias
status
league

openingYear
motto

successor
builder

predecessor
openingDate
foundingDate

alternativeName
background

affiliationstatedeveloperreligioncreatorformerNamebudgetoperatormanufacturerdaterelatedregionseriescapacityabbreviationwidthvoicecolourinfluencedBydivisionoriginpurposedissolutionYeardesignerjurisdictionproductionStartYearcountycoachactiveYearsStartDateclosingYearinfluencedactiveYearsEndDatechairmancostproductionEndYearcolourNamesportcategorydissolutionDateisPartOfterritorypictureuniversitynamedAfterclosingDatedepictionDescriptionpresidentmedlinePlusdiameterfoundervolumebedCountdescriptionclassificationnumberOfVisitorscuisinelogomeaningeventsimilarnamesloganrevenueYearlatinNamecasualtiesfuelTypenotesdiseaseratingsubtitlegenderaverageSpeedtotalLaunchesspecialistintroducedsuccessfulLaunchesretiredmassfailedLaunchesmanagementvicePresidentdensitypartialFailedLaunchescallSignpartfloodingDateproductionStartDateproductionEndDateviafIdlccnIdindividualisedGndisniIdbnfIdsudocIdmbaIdnlaId

birthPlace

birthDate

deathPlacedeathDate

award

race
honours

grandsire
sire

damsire

foalDate

breeder
dam

teambirthYear

alm
aM

ater

occupation

party
birthNam

e
nationality
deathYeared

uc
at

io
n

nu
m

be
r

kn
ow

nF
or

sp
ou

se
re

sid
en

ce
st

at
eO

fO
rig

in
ch

ild
pa

re
nt

in
st

itu
tio

n
re

st
in

gP
la

ce
re

la
tiv

e
al

le
gi

an
ce

re
la

tio
n

hi
gh

sc
ho

ol
co

lle
ge

pr
of

es
sio

n
em

pl
oy

er
no

ta
bl

eW
or

k
cit

ize
ns

hi
p

sc
ho

ol
sig

na
tu

re
se

x
ps

eu
do

ny
m

de
at

hC
au

se
ra

ce
Ho

rs
e

ha
irC

ol
or

ey
eC

ol
or

ph
ilo

so
ph

ica
lS

ch
oo

l
pa

rtn
er

bo
ar

d
no

ta
bl

eI
de

a
sig

ni
fic

an
tP

ro
je

ct
pl

ac
eO

fB
ur

ia
l

wi
ns

ag
en

cy
bo

dy
Di

sc
ov

er
ed

ac
tiv

eY
ea

rs
op

po
ne

nt
co

m
m

on
Na

m
e

ne
tw

or
th

sh
oe

Nu
m

be
r

el
ec

tio
nD

at
e

sh
oe

Si
ze

ut
cO

ffs
et

tim
eZ

on
e

po
pu

lat
ion

To
ta

l

ele
va

tio
n

are
aT

ota
l

are
aC

od
e

are
aL

an
d

ad
dre

ss

are
aW

ate
r

loc
ate

dIn
Area

ye
arO

fCon
str

uc
tio

n

max
im

um
Elev

ati
on

minim
um

Elev
ati

on

dis
tric

t

ne
are

stC
ity

gri
dR

efe
ren

ce

pro
vin

ce

na
tion

alT
op

og
rap

hic
Syst

em
Map

Num
be

r

go
ver

nin
gB

od
y

maxi
mum

Dep
th

ave
rag

eD
ep

th

mun
icip

alit
yC

od
e

rive
r

de
pth

qu
ote

sub
reg

ion

cou
ntr

yC
od

e

cur
ren

cyC
od

e

iso
31

66
1C

od
e

map

map
Cap

tion

low
est

Plac
e

starring

writer

runtime
producer

releaseDate
distributor
publisher

musicComposer
author

subsequentWork
previousWork

productionCompany

completionDate
format

executiveProducer
composer

licensedccnarrator
publicationDate

editor
coverArtist
translator
basedOn
fileSize

originalLanguage
chiefEditor

releaseLocation

subdivision

populationDensity

populationAsOf

governmentType

neighboringMunicipality

licenceNumber

percentageOfAreaWater

demonym
capital

ceremonialCounty

arrondissement

populationTotalRanking

populationUrban

largestCity

countySeat

councilArea

censusYear

populationMetro

principalArea

lieutenancyArea

saint

metropolitanBorough

areaUrban

leaderTitle

officialLanguage

areaMetro

ethnicGroup

anthem

leaderParty

legislature

populationRural

cityType
borough
mayor

unitaryAuthority

leaderName

humanDevelopmentIndex

populationMetroDensity

populationUrbanDensity

giniCoefficient

department

areaRural

regionalLanguage

largestSettlement

parish

gdpPerCapita

grossDomesticProduct

populationRuralDensity

family

order

phylum

kingdom

genus

binomialAuthority

domain

conservationStatus

conservationStatusSystem

species

binomial

foundingYear

headquarter

product

keyPerson

numberOfEmployees

regionServed

foundedBy

formationYear

formationDate

mascot

owningCompany

locationCity

revenue
service

locationCountry

leader

membership

parentOrganisation

numberOfLocations

staff
stadium

endowment

mergedW
ith

numberOfStaff

childOrganisation

numberOfVolunteers

ageRange

legalForm

chairperson

ranking

mainOrgan

secretaryGeneral

ceo

foundationPlace

superintendent

trustee
chaplain

administrator

leaderFunction

formerTeam

managerClub

draftYear

debutTeam

battingSide

bowlingSide

draftTeam
draft

trainer
club

nationalTeam

draftLeague

espnId

sportCountry

worldChampionTitleYear

supplementalDraftRound

commander

combatant
strength
place
result

causalties

isPartOfMilitaryConflict

director
cinem

atography
editing
gross

network
sisterStation

program
m

eForm
at

form
erCallsign

broadcastArea

broadcastStationClass

firstAirDate

heightAboveAverageTerrain

callsignM
eaning

broadcastNetwork

broadcastTranslator

effectiveRadiatedPower

broadcastRepeater

pictureForm
at

lastAirDate

digitalChannel

form
erBroadcastNetwork

analogChannel

routeJunction
routeStart
routeEnd

routeTypeAbbreviation

routeNum
ber

routeStartDirection

routeEndDirection

lineLength

num
berO

fStations

speedLim
it

railwayRollingStock

trackLength
isPartO

fNam
e

vehiclesPerDay

typeO
fElectrification

routeStartLocation

routeEndLocation

num
berO

fLanes
toll

railG
auge

voltageO
fElectrification

lengthReference

literaryG
enre

num
berO

fPages
isbn
oclc

m
ediaType

nonFictionSubject
lcc

num
berO

fVolum
es

circulation
firstPublicationDate

lccn
m

agazine
illustrator

lastPublicationDate
coden

m
ilitaryCom

m
and

m
ilitaryBranch

serviceStartYear
serviceEndYear

m
ilitaryUnit

serviceNum
ber

m
ilitaryRank

shipBeam
shipLaunch
topSpeed

com
m

issioningDate
layingDown
shipDraft

decom
m

issioningDate
shipDisplacem

ent
acquirem

entDate
orderDate
hom

eport
recom

m
issioningDate

m
aidenVoyage
captureDate

christeningDate
architecturalStyle

architect
tenant

buildingEndDate
buildingStartDate

visitorStatisticsAsO
f

buildingStartYear
rebuildingYear
m

aintainedBy
rebuildingDate

visitorsPercentageChange
constructionM

aterial
code

currentlyUsedFor
dateO

fAbandonm
ent

dem
olitionDate

reopeningDate
engineer

buildingEndYear
dem

olitionYear
servingRailwayLine
owningO

rganisation
railwayPlatform

s
stationStructure

agencyStationCode
fareZone

parkingInform
ation

otherServingLines
bicycleInform

ation
isHandicappedAccessible

yearO
fElectrification

num
berO

fPlatform
Levels

passengersUsedSystem
hom

etown
ideology
season

discipline
denom

ination
cham

pionships
num

berO
fEpisodes

num
berO

fSeasons
presenter
channel

openingThem
e

showJudge
endingThem

e
creativeDirector

industry
parentCom

pany
fate

subsidiary
netIncom

e
assets

operatingIncom
e

equity
production

assetUnderM
anagem

ent
tradingNam

e
currentStatus

com
putingPlatform

operatingSystem
latestReleaseVersion

program
m

ingLanguage
latestReleaseDate

latestPreviewVersion
latestPreviewDate
frequentlyUpdated

tim
e

startDate
previousEvent

participant
followingEvent

nextEvent
endDate
dam

age

Figure 11.2: A sunburst diagram of frequent properties in CaLiGraph. The
properties (outer ring) are grouped by their domain (inner ring).

for country aligns with the observations on types, indicating that locations
are already well covered in DBpedia. Fig. 11.2 shows the distribution of
properties in CLGv3 grouped by domain.

11.5 Data Quality

We provide information about the data quality in CaLiGraph concerning its
metadata (Section 11.5.1), the vocabulary use (Section 11.5.2), as well as
class and instance data (Section 11.5.3).

168 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

11.5.1 Metadata

As described in Section 11.1, CaLiGraph’s ontology builds on well-established
vocabularies like SKOS, FOAF, and PROV-O. Further, the KG is described
in various aspects (e.g., purpose, creators, version) with the vocabulary of
the Dublin Core. In 2023, Andersen et al. [5] conducted an experiment
evaluating the accountability of 670 KGs in the LOD Cloud. More concretely,
they evaluated how much information KGs provide about their data collection,
maintenance and usage (e.g., who created the KG and how was it created?).
They retrieve this information via SPARQL queries. Of the 670 KGs, only 29
responded to queries; of those, CaLiGraph was ranked fifth. Based on the
results of the experiments, we added more metadata so that, all else equal,
CaLiGraph would now be ranked first.

11.5.2 Five Star Rating

According to the five-star rating for linked data vocabulary use (cf. Sec-
tion 2.1.2), the CaLiGraph dataset can be categorized as a four-star dataset
and will be a five-star dataset soon:
⋆⋆⋆⋆⋆⋆⋆⋆⋆ There is dereferenceable human-readable information about the
used vocabulary on http://caligraph.org.
⋆⋆⋆⋆⋆⋆⋆⋆ The information is available as machine-readable explicit axioma-
tization of the vocabulary as the CaLiGraph ontology is published using RDFS
and OWL.
⋆⋆⋆⋆⋆⋆⋆ The vocabulary is linked to other vocabularies, e.g., DBpedia (see
Section 11.2.2).
⋆⋆⋆⋆⋆⋆ Metadata about the vocabulary is available (see Section 11.5.1).
⋆⋆⋆⋆⋆ The vocabulary is linked to by other vocabularies soon, as DBpe-
dia is preparing to provide backlinks to CaLiGraph similar to the ones from
CaLiGraph to DBpedia.4

11.5.3 Class and Instance Data

In Table 11.3, we collect all evaluation results of parts of CaLiGraph data
conducted using direct or indirect human supervision. CaLiGraph intends to
ingest as much of the semi-structured information in Wikipedia as possible.
The results show that most of the information is extracted with an accuracy
of over 90%, with entity linking approaches being the only exception.

The CaLiGraph extraction pipeline is a sequence of steps, with later
ones depending on the results of previous steps. It is, hence, unavoidable
that errors are propagated through the pipeline. The evaluations listed in
Table 11.3 identify such errors explicitly. In the results of NASTyLinker
(Chapter 8), the errors are not contained in the final accuracy of 89.4% for

4https://www.dbpedia.org/resources/latest-core/

http://caligraph.org
https://www.dbpedia.org/resources/latest-core/

11.5. DATA QUALITY 169

Ta
rg

et
M

et
ho

d
M

et
ri

c
#

Sa
m

pl
es

R
es

u
lt

So
u

rc
e

Ed
ge

s
in

th
e

ta
xo

no
m

y
(c

f.
C

ha
pt

er
5)

M
an

ua
le

va
lu

at
io

n
vi

a
A

m
az

on
M

Tu
rk

a

(m
aj

or
it

y
of

th
re

e
vo

te
s)

A
cc

ur
ac

y
2,

00
0

96
.2

5%
(±

0.
86

%
)

[6
8]

Ty
pe

re
st

ri
ct

io
ns

(c
f.

C
ha

pt
er

6
M

an
ua

le
va

lu
at

io
n

vi
a

A
m

az
on

M
Tu

rk
(m

aj
or

it
y

of
th

re
e

vo
te

s)
A

cc
ur

ac
y

25
0

96
.8

%
[6

7]

R
el

at
io

n
re

st
ri

ct
io

ns
(c

f.
C

ha
pt

er
6)

M
an

ua
le

va
lu

at
io

n
vi

a
A

m
az

on
M

Tu
rk

(m
aj

or
it

y
of

th
re

e
vo

te
s)

A
cc

ur
ac

y
25

0
95

.6
%

[6
7]

Su
bj

ec
t

en
ti

ti
es

in
ar

bi
tr

ar
y

lis
ti

ng
s

(c
f.

C
ha

pt
er

7)
Ev

al
ua

ti
on

on
m

an
ua

lly
la

be
lle

d
da

ta
se

t
F1

-s
co

re
(E

xa
ct

m
at

ch
)

9,
40

0
74

%
[7

1]

Si
ng

le
m

en
ti

on
as

si
gn

ed
to

an
en

ti
ty

(c
f.

C
ha

pt
er

8)
M

an
ua

le
va

lu
at

io
n

by
au

th
or

s
A

cc
ur

ac
y

10
0

89
.4

%
(±

9.
6%

)
[7

2]

A
ll

m
en

ti
on

s
as

si
gn

ed
to

an
en

ti
ty

(c
f.

C
ha

pt
er

8)
M

an
ua

le
va

lu
at

io
n

by
au

th
or

s
A

cc
ur

ac
y

10
0

82
.3

%
(±

7.
0%

)
[7

2]

En
ti

ty
ty

pe
s

de
ri

ve
d

fr
om

lis
ti

ng
s

(c
f.

C
ha

pt
er

9)
M

an
ua

le
va

lu
at

io
n

by
au

th
or

s
A

cc
ur

ac
y

2,
00

0
91

.9
5%

(±
1.

19
%

)
[7

0]

R
el

at
io

ns
de

ri
ve

d
fr

om
lis

ti
ng

s
(c

f.
C

ha
pt

er
9)

M
an

ua
le

va
lu

at
io

n
by

au
th

or
s

A
cc

ur
ac

y
1,

00
0

95
.9

0%
(±

1.
23

%
)

[7
0]

Ta
bl

e
11

.3
:

C
ol

le
ct

io
n

of
ev

al
ua

ti
on

re
su

lt
s

of
C

aL
iG

ra
ph

da
ta

.

a
ht

tp
s:

//
ww

w.
mt

ur
k.

co
m/

https://www.mturk.com/

170 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

single mentions and 82.3% for all mentions. Considering the SE labelling
errors (Chapter 7), the results for single mentions would decrease by 5.4%,
and the results for all mentions would decrease by 3.3%. The results for
extracting facts from listings (Chapter 9) include errors caused by incorrectly
parsed entities already. The errors are responsible for an accuracy decrease
of 2.6% for entity types and 0.2% for relations.

11.6 Evaluation via Downstream Tasks

In the following, we use KGrEaT to assess the utility of CaLiGraph and
compare it to related KGs.

11.6.1 Experimental Setup

We consider CaLiGraph (CLGv1, CLGv2, CLGv3), DBpedia (DBP16, DBP22)
and YAGO3 in our comparison. We run the evaluation for all seven tasks
in KGrEaT: Classification, Regression, Clustering, Document Similarity, En-
tity Relatedness, Semantic Analogies and Recommendation. The tasks are
evaluated on 20 datasets covering areas like geography, music, movies or
literature. MillionSongDataset, ComicCharacters, MovieLens, LibraryThing
and LastFm are datasets derived from independent sources; the remaining
datasets are created from DBpedia version 2015.

We report the results for two entity mapping scenarios: precision-oriented
mapping and recall-oriented mapping. Both scenarios link the task dataset’s
entities to KG entities using owl:sameAs links and labels. The former scenario
uses a precision-focused label mapper, while the latter uses a label mapper
focused on recall. In the precision-oriented scenario, we consider only
mapped entities in the evaluation, while in the recall-oriented scenario, we
consider all entities.

We compute the results using four embedding methods: TransE [20],
DistMult [213], ComplEx [190], and RDF2vec [168]. We run evaluations
with embeddings trained for one and two epochs, respectively. In total, we
compute results for eight configurations for every KG and scenario; we take
the best approach w.r.t. embedding and algorithm, and then we aggregate
the results by task, dataset and metric.

11.6.2 Results and Discussion

Table 11.4 shows the average rank of the KGs w.r.t. the datasets of a task.
In both scenarios, DBpedia shows superior performance in the Clustering,
Entity Relatedness, and Semantic Analogies tasks, YAGO works best for Docu-
ment Similarity, and CaLiGraph for Regression and Recommendation. While

11.6. EVALUATION VIA DOWNSTREAM TASKS 171

Task Type DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3
Precision-oriented mapping
Classification 1.8 2.2 3.5 5.0 5.3 3.2
Regression 3.0 3.2 3.6 4.0 5.6 1.6
Clustering 2.3 2.8 2.8 4.4 4.4 4.3
Document Similarity 4.0 6.0 1.3 3.0 1.7 5.0
Entity Relatedness 2.0 1.0 4.0 5.0 6.0 3.0
Semantic Analogies 1.8 3.5 4.0 3.8 6.0 2.0
Recommendation 2.7 3.3 4.3 3.0 5.3 2.3
Recall-oriented mapping
Classification 3.3 5.1 3.4 2.3 4.4 2.4
Regression 5.6 5.4 3.0 2.2 3.6 1.2
Clustering 2.5 4.5 3.0 3.5 3.9 3.7
Document Similarity 4.0 6.0 1.0 2.3 2.7 5.0
Entity Relatedness 1.0 3.0 4.0 5.0 6.0 2.0
Semantic Analogies 1.8 3.8 4.0 3.0 6.0 2.5
Recommendation 2.0 3.3 5.0 4.0 5.0 1.7

Table 11.4: Evaluation results of the KGs given as average rank per task
type. The results are computed for a precision-oriented mapping scenario
and a recall-oriented mapping scenario. The best results are bold, and the
second-best are underlined.

DBpedia tends to work better in the precision-oriented scenario, CaLiGraph
works better in the recall-oriented scenario.

On a dataset level (see Appendix B.2 for details), it becomes clear that
the choice of a KG for a given task is always dependent on the domain. As
expected, DBpedia performs well on DBpedia-based datasets. The superior
performance of DBP16 compared to DBP22 may be explained by the tem-
poral proximity of DBP16 to DBpedia version 2015, serving as the source
for many datasets. For almost all independent datasets, we find that CaLi-
Graph and YAGO have much higher coverage than DBpedia (see Table 11.5).
Especially CLGv3 shows the highest coverage for all these datasets in the
recall-oriented scenario. Consequently, using CaLiGraph for ComicCharacters
and MillionSongDataset (used in Classification and Clustering) as well as for
MovieLens and LibraryThing (used in Recommendation) produces superior
results. Against our expectations, however, DBpedia shows a competitive
performance for the independent datasets of the Recommendation task.

172 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

11.7 Conclusion

This chapter gave a comprehensive overview of CaLiGraph, a KG extracted
from Wikipedia categories and lists. We presented general details, usage
information, and statistics of the KG and compared it to other general-purpose
KGs w.r.t. its performance on downstream tasks. The chapter contains all
the information necessary to access and use CaLiGraph in a real-world
application. The evaluation painted a rather differentiated picture, where a
general recommendation for one or another KG is impossible. The right KG
for a given task has to be picked based on multiple factors of influence, but
our experiments showed that CaLiGraph could be an attractive option given
the right circumstances.

11.7. CONCLUSION 173
D

at
as

et
D

B
P1

6
D

B
P2

2
YA

G
O

3
C

LG
v1

C
LG

v2
C

LG
v3

P
R

P
R

P
R

P
R

P
R

P
R

C
it

ie
s

97
96

87
88

96
10

0
95

10
0

97
10

0
93

10
0

Fo
rb

es
87

87
81

81
99

10
0

92
10

0
97

10
0

91
10

0
A

A
U

P
99

98
88

88
99

10
0

95
10

0
99

10
0

94
99

M
et

ac
ri

ti
cM

ov
ie

s
98

98
95

94
90

10
0

10
0

10
0

10
0

10
0

98
10

0
M

et
ac

ri
ti

cA
lb

um
s

99
99

97
97

95
10

0
97

10
0

99
10

0
96

10
0

M
ill

io
nS

on
gD

at
as

et
†

6
22

6
21

11
51

10
51

20
60

20
64

Te
am

s
10

0
10

0
94

94
77

83
99

10
0

95
97

94
95

C
om

ic
C

ha
ra

ct
er

s†
0

22
0

17
0

59
0

53
0

57
0

62
C

it
ie

sA
nd

C
ou

nt
ri

es
10

0
10

0
95

95
96

10
0

10
0

10
0

97
10

0
96

10
0

C
it

ie
s2

00
0A

nd
C

ou
nt

ri
es

10
0

10
0

93
93

94
99

10
0

10
0

96
10

0
94

10
0

C
it

ie
sM

ov
ie

sA
lb

um
sC

om
pa

ni
es

U
ni

90
88

85
85

94
10

0
96

99
96

93
88

99
LP

50
90

90
88

88
83

99
92

10
0

89
10

0
92

10
0

KO
R

E
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
C

ur
re

nc
yE

nt
it

ie
s

10
0

10
0

93
93

10
0

10
0

10
0

10
0

97
10

0
97

10
0

C
it

yS
ta

te
En

ti
ti

es
96

97
97

97
99

10
0

98
10

0
97

10
0

82
10

0
C

ap
it

al
C

ou
nt

ry
En

ti
ti

es
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
A

llC
ap

it
al

C
ou

nt
ry

En
ti

ti
es

99
99

96
97

99
10

0
98

10
0

97
99

96
99

M
ov

ie
Le

ns
†

16
62

15
60

14
92

16
95

16
95

15
96

Li
br

ar
yT

hi
ng

†
18

42
18

41
21

84
22

86
27

91
28

92
La

st
Fm

†
94

94
91

92
94

99
94

99
94

99
93

99

Ta
bl

e
11

.5
:

D
at

as
et

co
ve

ra
ge

(p
er

ce
nt

)
of

th
e

K
G

s
ev

al
ua

te
d

w
it

h
K

G
rE

aT
fo

r
th

e
pr

ec
is

io
n-

an
d

re
ca

ll-
or

ie
nt

ed
m

ap
pi

ng
sc

en
ar

io
s.

D
at

as
et

s
m

ar
ke

d
w

it
h

a
da

gg
er

ar
e

in
de

pe
nd

en
t

of
D

B
pe

di
a.

174 CHAPTER 11. CALIGRAPH: STATISTICS, EVALUATION AND USAGE

Part V

Conclusion and Outlook

175

CHAPTER 12

Summary

In this thesis, we presented and applied various approaches for the automated
extraction of information from semi-structured data in Wikipedia. The main
focus of the extraction efforts was set on categories and listings, where
especially the co-occurrence of entities in specific contexts was exploited.
The extracted information, namely a fine-grained general-purpose ontology,
novel entities, and assertions, is published as a KG with the name CaLiGraph.
Our analyses and evaluations showed that CaLiGraph is a valuable addition
to the field of publicly accessible general-purpose KGs, especially due to its
rich ontology and coverage of long-tail entities.

With this thesis, we added contributions to the field of AKGC with respect
to the following challenges:

(C1) Ontology with expressive, fine-grained types In Part II of this thesis,
we developed an approach that forms an expressive taxonomy by combining
Wikipedia categories with list pages in Chapter 5. The taxonomy was refined
with axioms generated by the Cat2Ax approach from Chapter 6. The axioms
describe the semantics expressed by the categories and were integrated into
the ontology as has-value restrictions. The created ontology, containing in its
most recent version almost 1.3 million classes and 150 thousand restrictions,
forms the TBox of CaLiGraph.

(C2) Coverage of long-tail entities Part III targeted Wikipedia listings for
the identification and extraction of entities along with information derived
from context. In Chapter 7, we showed how to effectively identify mentions
of subject entities in listings using a Transformer model. To properly assign
the identified mentions to entities in a KG, we developed the NASTyLinker

177

178 CHAPTER 12. SUMMARY

approach in Chapter 8, which is capable of linking to existing and unknown
entities in a KG. We further presented an approach to derive additional
assertions from the context of listings in Chapter 9. The information extracted
from Wikipedia was included in the ABox of CaLiGraph, making the graph
describe almost 14 million entities. Most of the included entities are located
in the long tail, as they are not popular enough for a dedicated article in
Wikipedia.

(C3) Maintain high data quality In Part IV, we developed the KGrEaT
framework for evaluating KGs on real downstream tasks as most existing KG
evaluation frameworks use primarily intrinsic metrics. With the evaluation
on downstream tasks, we add an extrinsic perspective to the evaluation of
KGs. We further gave an overview of CaLiGraph as a dataset and showed its
competitiveness in terms of coverage and performance on downstream tasks.

While the approaches presented in this thesis were primarily applied
to extract information from Wikipedia, they are, with some exceptions,
formulated in a generic form to allow an application to other data sources
as well. In several chapters, we have already mentioned potential further
sources like wikis from the Fandom universe or websites annotated using
Microdata or RDFa.

CHAPTER 13

Limitations and Future Work

In this chapter, we discuss the limitations of CaLiGraph as a KG and reflect
on the individual approaches used for extracting the information. Finally, we
end this thesis by showing opportunities for future work in this field.

13.1 Limitations

While AKGC is a never-ending process as the world changes constantly, we
can still try to transform the information available on the Web in an implicit
format into structured knowledge as efficiently as possible. For CaLiGraph,
we identified several topics as the main limiting factors. However, many of
them currently apply to any AKGC system.

Error Accumulation. AKGC in CaLiGraph is executed as a pipeline of auto-
matic processing steps. Errors in early steps are propagated to subsequent
steps and may create distortions with a high impact on the outcome. Cur-
rently, the discussed approaches, which are integrated into the extraction
framework, act independently. Hence, later steps have to live with the errors
introduced in earlier steps.

For example, in the recent version of CaLiGraph, an extraction error made
Place in Myanmar a superclass of Village (explaining its large proportion in
Fig. 11.1 on page 165). This error occurred during OC, so it affects all steps
of KGP.

Entity Ambiguity. Ambiguity is one of the biggest challenges when identi-
fying and disambiguating mentions of entities in text. As information about

179

180 CHAPTER 13. LIMITATIONS AND FUTURE WORK

long-tail entities during extraction is sparse, the quality of such entities in
CaLiGraph is not satisfactory yet.

Data Source Limitation. Currently, the CaLiGraph extraction targets a
single version of Wikipedia only. Any information not contained in that
version can consequently not be part of the KG. Further, we have no direct
influence on the content of Wikipedia and hence have to deal with potential
problems only during extraction.

Background Knowledge Dependency. CaLiGraph builds on the ontology
of DBpedia, as the individual approaches apply distant supervision using
information from DBpedia. Hence, CaLiGraph is taking over all existing
types and properties. While types are extended, the set of properties remains
fixed, and knowledge can only be modelled within the bounds defined by
the DBpedia ontology.

13.2 Future Work

For future work in CaLiGraph, the focus should be divided between improving
the quality of the existing KG and extending its coverage to incorporate
more knowledge. However, it is also necessary to put more effort into the
evaluation of KGs to better judge the quality of AKGC approaches and be
able to pick the best KG for a given task.

Improving Extraction Quality. While error propagation is currently prob-
lematic in CaLiGraph, it is also a chance to improve the overall quality of the
graph by gradually improving the individual parts. Fixing errors in the early
stages of the extraction may positively influence the complete extraction
pipeline. To that end, it would be favourable to implement a rigorous error-
monitoring system in the extraction framework to capture errors early and
monitor all parts of the pipeline to identify opportunities for improvement.

A possible way to deal with errors would be to integrate the isolated parts
of the pipeline. By establishing feedback loops and mutual refinement, errors
could be identified earlier, and later steps would be enabled to influence the
extraction results of earlier steps.

A concrete improvement would be to replace or augment the taxonomy
induction step described in Chapter 5 with a Transformer model that is
tuned on identifying subclass relationships (e.g., from Hertling and Paulheim
[79]). This may improve the class hierarchy substantially as we currently
rely on manually combined hypernym information from multiple sources. As
parts of OC and KGP are then based on the same technical foundation (i.e.,

13.2. FUTURE WORK 181

Transformer models), an integration of these approaches with joint learning
would be possible.

Putting more emphasis on the dependency of SEs expressed through co-
occurrence might be particularly helpful when trying to disambiguate entities
in text. We are only implicitly using the context of an entity mention during
disambiguation. Explicitly providing information about related entities might
improve the disambiguation capabilities of NASTyLinker. Similarly, adding
more context, like substring patterns or section text, to the IE approach
from Chapter 9 may improve extraction results. Adding all this complexity,
however, comes at the cost of increased run time for the extraction procedure.

Extending KG Coverage. CaLiGraph could be extended in the three di-
mensions of ontology, assertions and data sources. To extend the ontology,
we can discover additional axioms by extending the Cat2Ax approach from
categories to list pages, as this is currently done only via the transitivity of
the axioms in the taxonomy.

Additionally, we may derive more axioms by relying on common sense
knowledge from another KG (e.g., CSKG [88]). New properties could be
discovered by using the existing data in CaLiGraph as a foundation to au-
tomatically exploit dependencies between co-occuring entities where the
relation underlying the co-occurrence pattern is not in the ontology yet.

Like YAGO, we can extend the coverage of CaLiGraph to more dimensions
like temporal or geospatial information. As the KG currently reflects only
the point in time when the Wikipedia dump was created, we may consider
incorporating edits in Wikipedia pages to reflect the temporal dimension.
Alternatively, one could explore the possibility of extracting CaLiGraph from
multiple dumps and merging the results to include a temporal perspective.

CaLiGraph currently targets only the English Wikipedia. An extension to
other languages would have the benefit of providing multilingual labels. Still,
all the automatic extraction mechanisms may be able to derive much more
complementary information from the diverse language chapters. The main
challenge here is to merge the information derived from all the language
chapters into a unified KG. Finally, we may extend the extraction to other data
sources. As most extraction methods in the pipeline are built for encyclopedic
content, a first step is to follow the example of DBkWik and target other
Wikis than Wikipedia.

Broadening Evaluation Capabilities. As argued in Chapter 10, evaluations
of KGs have to cover various aspects, including intrinsic and extrinsic metrics.
For a more reliable evaluation of the performance of a KG on downstream
tasks, KGrEaT would benefit strongly from additional datasets, mappers,
tasks, and algorithms. We purposefully designed the framework to be as easy
to extend as possible so that the user community can enhance the framework.

182 CHAPTER 13. LIMITATIONS AND FUTURE WORK

The framework could also be improved from the implementation perspective
by adding more capabilities for KG analytics and a graphical user interface to
explore the evaluations more comfortably.

Employing LMs for AKGC. With the advent of (large) LMs, the state of
the art in many NLP and IE tasks is dominated by approaches using or
extending such models. This is also the case for some of the approaches
presented in this thesis. SLHCat [199] maps Wikipedia categories and lists
to DBpedia, similar to our approaches presented in Chapters 5 and 6. Using
BERT with prompt-based fine-tuning, they manage to produce mappings from
CaLiGraph classes (i.e., categories and list pages) to DBpedia that are more
specific and correct than Cat2Ax. The Cat2Type approach [17] also relies on
BERT in combination with embeddings of Wikipedia categories to precisely
predict a category’s related type. Kouagou et al. [98] use embeddings of LMs
to generalize the task and learn class expressions from groups of examples
(e.g., members of a category).

More recently, Large Language Models (LLMs) have shown human-level
performance on a large variety of tasks. While there are still severe limi-
tations (like hallucinations and catastrophic forgetting) due to the implicit
representation of knowledge in LLMs, many opportunities may arise from
their combination with KGs [144]. Especially in AKGC, they can be applied to
enhance many of the tasks addressed in this thesis, like taxonomy induction
[90], entity linking, and information extraction [223]. Further, LLMs can
reduce the effort of evaluating extraction results [114].

Bibliography

[1] Dhruv Agarwal, Rico Angell, Nicholas Monath, and Andrew McCal-
lum. Entity linking and discovery via arborescence-based supervised
clustering. CoRR, abs/2109.01242, 2021.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining as-
sociation rules between sets of items in large databases. In 1993
ACM SIGMOD international conference on Management of data, pages
207–216, 1993.

[3] Carlos A Alfaro, Sergio L Perez, Carlos E Valencia, and Marcos C
Vargas. The assignment problem revisited. Optimization Letters,
16(5):1531–1548, 2022.

[4] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue,
Mikhail Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and
Jens Lehmann. Bringing light into the dark: A large-scale evaluation of
knowledge graph embedding models under a unified framework. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(12):8825–
8845, 2021.

[5] Jennie Andersen, Sylvie Cazalens, and Philippe Lamarre. Assessing
knowledge graphs accountability. In The Semantic Web: ESWC 2023
Satellite Events - Hersonissos, Crete, Greece, May 28 - June 1, 2023,
Proceedings, volume 13998 of Lecture Notes in Computer Science, pages
37–42. Springer, 2023.

[6] Rico Angell, Nicholas Monath, Sunil Mohan, Nishant Yadav, and An-
drew McCallum. Clustering-based inference for biomedical entity
linking. In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 2598–2608, 2021.

183

184 BIBLIOGRAPHY

[7] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli. Ex-
tending the coverage of DBpedia properties using distant supervision
over wikipedia. In Proceedings of the NLP & DBpedia workshop co-
located with the 12th International Semantic Web Conference (ISWC
2013), Sydney, Australia, October 22, 2013, volume 1064 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[8] Julián Arenas-Guerrero, Mario Scrocca, Ana Iglesias-Molina, Jhon
Toledo, Luis Pozo-Gilo, Daniel Doña, Óscar Corcho, and David Chaves-
Fraga. Knowledge graph construction with R2RML and RML: an ETL
system-based overview. In Proceedings of the 2nd International Work-
shop on Knowledge Graph Construction co-located with 18th Extended
Semantic Web Conference (ESWC 2021), Online, June 6, 2021, volume
2873 of CEUR Workshop Proceedings. CEUR-WS.org, 2021.

[9] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. DBpedia: A nucleus for a web of open
data. In International Semantic Web Conference, pages 722–735.
Springer, 2007.

[10] Amit Bagga and Breck Baldwin. Entity-based cross-document corefer-
encing using the vector space model. In 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Con-
ference on Computational Linguistics, COLING-ACL ’98, August 10-14,
1998, Université de Montréal, Montréal, Quebec, Canada. Proceedings
of the Conference, pages 79–85. Morgan Kaufmann Publishers / ACL,
1998.

[11] Taiyu Ban, Xiangyu Wang, Lyuzhou Chen, Xingyu Wu, Qiuju Chen,
and Huanhuan Chen. Quality evaluation of triples in knowledge graph
by incorporating internal with external consistency. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[12] Wouter Beek, Joe Raad, Jan Wielemaker, and Frank van Harmelen.
sameas.cc: The closure of 500m OWL: sameas statements. In The
Semantic Web - 15th International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, volume 10843 of Lecture
Notes in Computer Science, pages 65–80. Springer, 2018.

[13] Tim Berners-Lee. Linked data - design issues. https://www.w3.org
/DesignIssues/LinkedData.html, 2006 (accessed Dec 15, 2023).

[14] Tim Berners-Lee. Semantic web and linked data. https://www.w3
.org/2009/Talks/0120-campus-party-tbl/#(14), 2009 (accessed
Dec 15, 2023).

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/2009/Talks/0120-campus-party-tbl/#(14)
https://www.w3.org/2009/Talks/0120-campus-party-tbl/#(14)

BIBLIOGRAPHY 185

[15] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[16] Russa Biswas, Radina Sofronova, Mehwish Alam, Nicolas Heist, Heiko
Paulheim, and Harald Sack. Do judge an entity by its name! entity
typing using language models. In The Semantic Web: ESWC 2021
Satellite Events: Virtual Event, June 6–10, 2021, Revised Selected Papers
18, pages 65–70. Springer, 2021.

[17] Russa Biswas, Radina Sofronova, Harald Sack, and Mehwish Alam.
Cat2type: Wikipedia category embeddings for entity typing in knowl-
edge graphs. In K-CAP ’21: Knowledge Capture Conference, Virtual
Event, USA, December 2-3, 2021, pages 81–88. ACM, 2021.

[18] Kevin Blissett and Heng Ji. Cross-lingual NIL entity clustering for
low-resource languages. In Proceedings of the Second Workshop on
Computational Models of Reference, Anaphora and Coreference, pages
20–25, 2019.

[19] Peter Bloem, Xander Wilcke, Lucas van Berkel, and Victor de Boer.
kgbench: A collection of knowledge graph datasets for evaluating
relational and multimodal machine learning. In The Semantic Web:
18th International Conference, ESWC 2021, Virtual Event, June 6–10,
2021, Proceedings 18, pages 614–630. Springer, 2021.

[20] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. Advances in neural information processing systems, 26,
2013.

[21] Samuel Broscheit. Investigating entity knowledge in BERT with simple
neural end-to-end entity linking. In 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 677–685, 2019.

[22] Volha Bryl, Christian Bizer, Robert Isele, Mateja Verlic, Soon Gill Hong,
Sammy Jang, Mun Yong Yi, and Key-Sun Choi. Interlinking and
knowledge fusion. In Linked Open Data–Creating Knowledge Out of
Interlinked Data, pages 70–89. Springer, 2014.

[23] Volha Bryl, Christian Bizer, and Heiko Paulheim. Gathering alterna-
tive surface forms for dbpedia entities. In Proceedings of the Third
NLP&DBpedia Workshop (NLP & DBpedia 2015) co-located with the
14th International Semantic Web Conference 2015 (ISWC 2015), Beth-
lehem, Pennsylvania, USA, October 11, 2015, volume 1581 of CEUR
Workshop Proceedings, pages 13–24. CEUR-WS.org, 2015.

[24] Bruce G. Buchanan. A (very) brief history of artificial intelligence. AI
Mag., 26(4):53–60, 2005.

186 BIBLIOGRAPHY

[25] Georg Buchgeher, David Gabauer, Jorge Martinez-Gil, and Lisa
Ehrlinger. Knowledge graphs in manufacturing and production: A
systematic literature review. IEEE Access, 9:55537–55554, 2021.

[26] Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, and Paolo
Merialdo. Leveraging wikipedia table schemas for knowledge graph
augmentation. In Proceedings of the 21st International Workshop on the
Web and Databases, Houston, TX, USA, June 10, 2018, pages 5:1–5:6.
ACM, 2018.

[27] Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hr-
uschka Jr, and Tom M Mitchell. Coupled semi-supervised learning for
information extraction. In Proceedings of the third ACM international
conference on Web search and data mining, pages 101–110, 2010.

[28] Lihu Chen, Simon Razniewski, and Gerhard Weikum. Knowledge base
completion for long-tail entities. In Proceedings of the First Workshop on
Matching From Unstructured and Structured Data (MATCHING 2023),
pages 99–108, 2023.

[29] Yuanzhe Chen, Jun Kuang, Dawei Cheng, Jianbin Zheng, Ming Gao,
and Aoying Zhou. Agrikg: an agricultural knowledge graph and its
applications. In Database Systems for Advanced Applications: DASFAA
2019 International Workshops: BDMS, BDQM, and GDMA, Chiang Mai,
Thailand, April 22–25, 2019, Proceedings 24, pages 533–537. Springer,
2019.

[30] Sulogna Chowdhury, Monireh Ebrahimi, Aaron Eberhart, and Pascal
Hitzler. Memory networks for RDFS reasoning: Experiments. In
Joint Proceedings of SemREC 2022 and SMART 2022 co-located with
21st International Semantic Web Conference (ISWC 2022), Hybrid
event, Hangzhou, China, October 24-27, 2022, volume 3337 of CEUR
Workshop Proceedings, pages 28–32. CEUR-WS.org, 2022.

[31] Cuong Xuan Chu, Simon Razniewski, and Gerhard Weikum. Tifi:
Taxonomy induction for fictional domains. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019,
pages 2673–2679. ACM, 2019.

[32] Philipp Cimiano. Ontology learning and population from text: algo-
rithms, evaluation and applications, volume 27. Springer Science &
Business Media, 2006.

[33] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Ko-
ray Kavukcuoglu, and Pavel Kuksa. Natural language process-
ing (almost) from scratch. Journal of machine learning research,
12(ARTICLE):2493–2537, 2011.

BIBLIOGRAPHY 187

[34] Silviu Cucerzan. Large-scale named entity disambiguation based on
wikipedia data. In 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), 2007.

[35] Aba-Sah Dadzie, Daniel Preotiuc-Pietro, Danica Radovanovic, Amparo
Elizabeth Cano Basave, and Katrin Weller, editors. Proceedings of the
6th Workshop on ’Making Sense of Microposts’ co-located with the 25th
International World Wide Web Conference (WWW 2016), Montréal,
Canada, April 11, 2016, volume 1691 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[36] Rajarshi Das, Ameya Godbole, Dilip Kavarthapu, Zhiyu Gong, Ab-
hishek Singhal, Mo Yu, Xiaoxiao Guo, Tian Gao, Hamed Zamani,
Manzil Zaheer, and Andrew McCallum. Multi-step entity-centric in-
formation retrieval for multi-hop question answering. In Proceedings
of the 2nd Workshop on Machine Reading for Question Answering,
MRQA@EMNLP 2019, Hong Kong, China, November 4, 2019, pages
113–118. Association for Computational Linguistics, 2019.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
2019.

[38] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko
Horn, Camillo Lugaresi, Shaohua Sun, and Wei Zhang. Knowledge-
Based Trust: Estimating the trustworthiness of web sources. VLDB
Endowment, 8(9):938–949, 2015.

[39] Sourav Dutta and Gerhard Weikum. C3EL: A joint model for cross-
document co-reference resolution and entity linking. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
pages 846–856. The Association for Computational Linguistics, 2015.

[40] Ivan Ermilov and Axel-Cyrille Ngonga Ngomo. TAIPAN: automatic
property mapping for tabular data. In Knowledge Engineering and
Knowledge Management - 20th International Conference, EKAW 2016,
Bologna, Italy, November 19-23, 2016, Proceedings, volume 10024 of
Lecture Notes in Computer Science, pages 163–179, 2016.

[41] Angela Fahrni, Benjamin Heinzerling, Thierry Göckel, and Michael
Strube. HITS’ monolingual and cross-lingual entity linking system at

188 BIBLIOGRAPHY

TAC 2013. In Proceedings of the Sixth Text Analysis Conference, TAC
2013, Gaithersburg, Maryland, USA, November 18-19, 2013. NIST,
2013.

[42] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Ret-
tinger. Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata,
and YAGO. Semantic Web, 9(1):77–129, 2018.

[43] Michael Färber and Achim Rettinger. Which knowledge graph is best
for me? CoRR, abs/1809.11099, 2018.

[44] Michael Färber, Achim Rettinger, and Boulos El Asmar. On emerging
entity detection. In Knowledge Engineering and Knowledge Management
- 20th International Conference, EKAW 2016, Bologna, Italy, November
19-23, 2016, Proceedings, volume 10024 of Lecture Notes in Computer
Science, pages 223–238, 2016.

[45] Alfio Ferrara, Andriy Nikolov, and François Scharffe. Data linking
for the semantic web. International Journal on Semantic Web and
Information Systems (IJSWIS), 7(3):46–76, 2011.

[46] Besnik Fetahu, Avishek Anand, and Maria Koutraki. Tablenet: An
approach for determining fine-grained relations for wikipedia tables.
In The World Wide Web Conference, WWW 2019, San Francisco, CA,
USA, May 13-17, 2019, pages 2736–2742. ACM, 2019.

[47] Tiziano Flati, Daniele Vannella, et al. Two is bigger (and better) than
one: the wikipedia bitaxonomy project. In 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 945–955, 2014.

[48] Joseph L Fleiss. Measuring nominal scale agreement among many
raters. Psychological bulletin, 76(5):378, 1971.

[49] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M
Suchanek. Fast rule mining in ontological knowledge bases with
AMIE+. The VLDB Journal, 24(6):707–730, 2015.

[50] Octavian-Eugen Ganea and Thomas Hofmann. Deep joint entity
disambiguation with local neural attention. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages
2619–2629, 2017.

[51] Junyang Gao, Xian Li, Yifan Ethan Xu, Bunyamin Sisman, Xin Luna
Dong, and Jun Yang. Efficient knowledge graph accuracy evaluation.
Proceedings of the VLDB Endowment, 12(11):1679–1691, 2019.

BIBLIOGRAPHY 189

[52] Abhishek Gattani, Digvijay S Lamba, Nikesh Garera, Mitul Tiwari, Xi-
aoyong Chai, Sanjib Das, Sri Subramaniam, Anand Rajaraman, Venky
Harinarayan, and AnHai Doan. Entity extraction, linking, classifi-
cation, and tagging for social media: a wikipedia-based approach.
Proceedings of the VLDB Endowment, 6(11):1126–1137, 2013.

[53] Dan Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason
Baldridge, Eugene Ie, and Diego Garcia-Olano. Learning dense repre-
sentations for entity retrieval. In Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL), pages 528–537,
2019.

[54] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe
Wang. HermiT: An OWL 2 reasoner. J. Autom. Reason., 53(3):245–
269, 2014.

[55] Kara Greenfield, Rajmonda Sulo Caceres, Michael Coury, Kelly Geyer,
Youngjune Gwon, Jason Matterer, Alyssa C. Mensch, Cem Safak Sahin,
and Olga Simek. A reverse approach to named entity extraction
and linking in microposts. In Proceedings of the 6th Workshop on
’Making Sense of Microposts’ co-located with the 25th International
World Wide Web Conference (WWW 2016), Montréal, Canada, April
11, 2016, volume 1691 of CEUR Workshop Proceedings, pages 67–69.
CEUR-WS.org, 2016.

[56] Ralph Grishman. Information extraction. IEEE Intelligent Systems,
30(5):8–15, 2015.

[57] Thomas R Gruber. Toward principles for the design of ontologies
used for knowledge sharing? International journal of human-computer
studies, 43(5-6):907–928, 1995.

[58] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. Schema.org:
evolution of structured data on the web. Communications of the ACM,
59(2):44–51, 2016.

[59] Claudio Gutiérrez and Juan F Sequeda. Knowledge graphs. Communi-
cations of the ACM, 64(3):96–104, 2021.

[60] Harry Halpin, Patrick J. Hayes, Jamie P. McCusker, Deborah L. McGuin-
ness, and Henry S. Thompson. When owl:sameas isn’t the same: An
analysis of identity in linked data. In The Semantic Web - ISWC 2010
- 9th International Semantic Web Conference, ISWC 2010, Shanghai,
China, November 7-11, 2010, Revised Selected Papers, Part I, volume
6496 of Lecture Notes in Computer Science, pages 305–320. Springer,
2010.

190 BIBLIOGRAPHY

[61] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19,
2016.

[62] Qi He, Bee-Chung Chen, and Deepak Agarwal. Building The LinkedIn
Knowledge Graph. https://engineering.linkedin.com/blog/20
16/10/building-the-linkedin-knowledge-graph, 2016 (accessed
Nov 15, 2023).

[63] Marti A Hearst. Automatic acquisition of hyponyms from large text
corpora. In 14th conference on Computational linguistics-Volume 2,
pages 539–545, 1992.

[64] Nicolas Heist. Towards knowledge graph construction from entity co-
occurrence. In Proceedings of the EKAW Doctoral Consortium 2018 co-
located with the 21st International Conference on Knowledge Engineering
and Knowledge Management (EKAW 2018), Nancy, France, November
13, 2018, volume 2306 of CEUR Workshop Proceedings. CEUR-WS.org,
2018.

[65] Nicolas Heist, Sven Hertling, and Heiko Paulheim. KGrEaT: A frame-
work to evaluate knowledge graphs via downstream tasks. In Pro-
ceedings of the 32nd ACM International Conference on Information and
Knowledge Management, CIKM 2023, Birmingham, United Kingdom,
October 21-25, 2023, pages 3938–3942. ACM, 2023.

[66] Nicolas Heist, Sven Hertling, Daniel Ringler, and Heiko Paulheim.
Knowledge graphs on the web–an overview. Knowledge Graphs for
eXplainable Artificial Intelligence: Foundations, Applications and Chal-
lenges, pages 3–22, 2020.

[67] Nicolas Heist and Heiko Paulheim. Uncovering the semantics of
wikipedia categories. In The Semantic Web - ISWC 2019 - 18th Inter-
national Semantic Web Conference, Auckland, New Zealand, October
26-30, 2019, Proceedings, Part I, volume 11778 of Lecture Notes in
Computer Science, pages 219–236. Springer, 2019.

[68] Nicolas Heist and Heiko Paulheim. Entity extraction from wikipedia
list pages. In The Semantic Web - 17th International Conference, ESWC
2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings,
volume 12123 of Lecture Notes in Computer Science, pages 327–342.
Springer, 2020.

[69] Nicolas Heist and Heiko Paulheim. The caligraph ontology as a chal-
lenge for OWL reasoners. In Proceedings of the Semantic Reasoning
Evaluation Challenge (SemREC 2021) co-located with the 20th Interna-
tional Semantic Web Conference (ISWC 2021), Virtual Event, October

https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph

BIBLIOGRAPHY 191

27th, 2021, volume 3123 of CEUR Workshop Proceedings, pages 21–31.
CEUR-WS.org, 2021.

[70] Nicolas Heist and Heiko Paulheim. Information extraction from co-
occurring similar entities. In WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 3999–
4009. ACM / IW3C2, 2021.

[71] Nicolas Heist and Heiko Paulheim. Transformer-based subject entity
detection in Wikipedia listings. In Mehwish Alam and Michael Cochez,
editors, Proceedings of the Workshop on Deep Learning for Knowledge
Graphs (DL4KG 2022) co-located with the 21th International Semantic
Web Conference (ISWC 2022), Virtual Conference, online, October 24,
2022, volume 3342 of CEUR Workshop Proceedings. CEUR-WS.org,
2022.

[72] Nicolas Heist and Heiko Paulheim. Nastylinker: Nil-aware scalable
transformer-based entity linker. In The Semantic Web - 20th Interna-
tional Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28 -
June 1, 2023, Proceedings, volume 13870 of Lecture Notes in Computer
Science, pages 174–191. Springer, 2023.

[73] James Hendler, Fabien Gandon, and Dean Allemang. Semantic web for
the working ontologist: Effective modeling for linked data, RDFS, and
OWL. Morgan & Claypool, 2020.

[74] Sven Hertling and Heiko Paulheim. WebIsALOD: Providing hypernymy
relations extracted from the web as linked open data. In The Semantic
Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna,
Austria, October 21-25, 2017, Proceedings, Part II, volume 10588 of
Lecture Notes in Computer Science, pages 111–119. Springer, 2017.

[75] Sven Hertling and Heiko Paulheim. DBkWik: A consolidated knowl-
edge graph from thousands of wikis. In 2018 IEEE International
Conference on Big Knowledge, ICBK 2018, Singapore, November 17-18,
2018, pages 17–24. IEEE Computer Society, 2018.

[76] Sven Hertling and Heiko Paulheim. DBkWik: extracting and integrat-
ing knowledge from thousands of wikis. Knowl. Inf. Syst., 62(6):2169–
2190, 2020.

[77] Sven Hertling and Heiko Paulheim. DBkWik: extracting and integrat-
ing knowledge from thousands of wikis. Knowledge and Information
Systems, 62(6):2169–2190, 2020.

[78] Sven Hertling and Heiko Paulheim. DBkWik++- multi source match-
ing of knowledge graphs. In Knowledge Graphs and Semantic Web - 4th

192 BIBLIOGRAPHY

Iberoamerican Conference and third Indo-American Conference, KGSWC
2022, Madrid, Spain, November 21-23, 2022, Proceedings, volume
1686 of Communications in Computer and Information Science, pages
1–15. Springer, 2022.

[79] Sven Hertling and Heiko Paulheim. Transformer based semantic
relation typing for knowledge graph integration. In The Semantic Web
- 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece,
May 28 - June 1, 2023, Proceedings, volume 13870 of Lecture Notes in
Computer Science, pages 105–121. Springer, 2023.

[80] Pascal Hitzler. A review of the semantic web field. Communications of
the ACM, 64(2):76–83, 2021.

[81] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard
Weikum. YAGO2: A spatially and temporally enhanced knowledge
base from wikipedia. Artificial intelligence, 194:28–61, 2013.

[82] Alexandra Hofmann, Samresh Perchani, Jan Portisch, Sven Hertling,
and Heiko Paulheim. DBkWik: Towards knowledge graph creation
from thousands of wikis. In Proceedings of the ISWC 2017 Posters &
Demonstrations and Industry Tracks co-located with 16th International
Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd -
to - 25th, 2017, volume 1963 of CEUR Workshop Proceedings. CEUR-
WS.org, 2017.

[83] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Ger-
ard De Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra
Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowledge graphs.
ACM Computing Surveys (Csur), 54(4):1–37, 2021.

[84] Elwin Huaman, Amar Tauqeer, and Anna Fensel. Towards knowledge
graphs validation through weighted knowledge sources. In Knowledge
Graphs and Semantic Web: Third Iberoamerican Conference and Sec-
ond Indo-American Conference, KGSWC 2021, Kingsville, Texas, USA,
November 22–24, 2021, Proceedings 3, pages 47–60. Springer, 2021.

[85] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge
graph embedding based question answering. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining,
WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, pages
105–113. ACM, 2019.

[86] Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego
Collarana, and Maria-Esther Vidal. SDM-RDFizer: An RML interpreter
for the efficient creation of RDF knowledge graphs. In CIKM ’20:
The 29th ACM International Conference on Information and Knowledge

BIBLIOGRAPHY 193

Management, Virtual Event, Ireland, October 19-23, 2020, pages 3039–
3046. ACM, 2020.

[87] Filip Ilievski. Identity of Long-tail Entities in Text, volume 43 of Studies
on the Semantic Web. IOS Press, 2019.

[88] Filip Ilievski, Pedro A. Szekely, and Bin Zhang. CSKG: the common-
sense knowledge graph. In The Semantic Web - 18th International
Conference, ESWC 2021, Virtual Event, June 6-10, 2021, Proceedings,
volume 12731 of Lecture Notes in Computer Science, pages 680–696.
Springer, 2021.

[89] Anastasiia Iurshina, Jiaxin Pan, Rafika Boutalbi, and Steffen Staab.
Nilk: Entity linking dataset targeting NIL-linking cases. In Proceedings
of the 31st ACM International Conference on Information & Knowledge
Management, pages 4069–4073, 2022.

[90] Devansh Jain and Luis Espinosa Anke. Distilling hypernymy relations
from language models: On the effectiveness of zero-shot taxonomy
induction. In Proceedings of the 11th Joint Conference on Lexical and
Computational Semantics, *SEM@NAACL-HLT 2022, Seattle, WA, USA,
July 14-15, 2022, pages 151–156. Association for Computational
Linguistics, 2022.

[91] Krzysztof Janowicz, Pascal Hitzler, Benjamin Adams, Dave Kolas, and
Charles Vardeman II. Five stars of linked data vocabulary use. Semantic
Web, 5(3):173–176, 2014.

[92] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis.
Overview of the TAC 2010 knowledge base population track. In Third
text analysis conference (TAC 2010), volume 3, page 3, 2010.

[93] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[94] Nora Kassner, Fabio Petroni, Mikhail Plekhanov, Sebastian Riedel,
and Nicola Cancedda. EDIN: an end-to-end benchmark and pipeline
for unknown entity discovery and indexing. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022,
pages 8659–8673. Association for Computational Linguistics, 2022.

[95] Mayank Kejriwal. Knowledge graphs: Constructing, completing, and
effectively applying knowledge graphs in tourism. In Applied Data
Science in Tourism: Interdisciplinary Approaches, Methodologies, and
Applications, pages 423–449. Springer, 2022.

194 BIBLIOGRAPHY

[96] Tomáš Kliegr and Ondřej Zamazal. LHD 2.0: A text mining approach
to typing entities in knowledge graphs. Journal of Web Semantics,
39:47–61, 2016.

[97] Bhushan Kotnis, Kiril Gashteovski, Daniel Rubio, Ammar Shaker,
Vanesa Rodriguez-Tembras, Makoto Takamoto, Mathias Niepert, and
Carolin Lawrence. MILIE: Modular & iterative multilingual open in-
formation extraction. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
pages 6939–6950, 2022.

[98] N’Dah Jean Kouagou, Stefan Heindorf, Caglar Demir, and Axel-
Cyrille Ngonga Ngomo. Neural class expression synthesis. In The
Semantic Web - 20th International Conference, ESWC 2023, Hersonissos,
Crete, Greece, May 28 - June 1, 2023, Proceedings, volume 13870 of
Lecture Notes in Computer Science, pages 209–226. Springer, 2023.

[99] Zornitsa Kozareva and Eduard H. Hovy. Learning arguments and
supertypes of semantic relations using recursive patterns. In ACL
2010, Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages
1482–1491. The Association for Computer Linguistics, 2010.

[100] Patrick Kuhn, Sven Mischkewitz, Nico Ring, and Fabian Windheuser.
Type inference on wikipedia list pages. In Heinrich C. Mayr and Mar-
tin Pinzger, editors, 46. Jahrestagung der Gesellschaft für Informatik,
Informatik von Menschen für Menschen, INFORMATIK 2016, Klagen-
furt, Austria, September 26-30, 2016, volume P-259 of LNI, pages
2101–2111. GI, 2016.

[101] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity
recognition. In 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, pages 260–270, 2016.

[102] J Richard Landis and Gary G Koch. The measurement of observer
agreement for categorical data. biometrics, pages 159–174, 1977.

[103] Jens Lehmann. DL-Learner: learning concepts in description logics.
Journal of Machine Learning Research, 10(Nov):2639–2642, 2009.

[104] Jens Lehmann, Robert Isele, Max Jakob, et al. DBpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web,
6(2):167–195, 2015.

[105] Jens Lehmann and Johanna Voelker. An introduction to ontology
learning. Perspectives on Ontology Learning, 18, 2014.

BIBLIOGRAPHY 195

[106] Oliver Lehmberg and Christian Bizer. Stitching web tables for improv-
ing matching quality. VLDB Endowment, 10(11):1502–1513, 2017.

[107] Douglas Lenat and E Feigenbaum. On the thresholds of knowledge.
Artificial Intelligence: Critical Concepts, 2:298, 2000.

[108] Douglas B Lenat. Cyc: A large-scale investment in knowledge infras-
tructure. Communications of the ACM, 38(11):33–38, 1995.

[109] Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo
Zhao, and Chao Zhang. BOND: BERT-assisted open-domain named
entity recognition with distant supervision. In 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages
1054–1064, 2020.

[110] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learn-
ing entity and relation embeddings for knowledge graph completion.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, January 25-30, 2015, Austin, Texas, USA, pages 2181–2187.
AAAI Press, 2015.

[111] Xiao Ling, Sameer Singh, and Daniel S Weld. Design challenges for
entity linking. Transactions of the ACL, 3:315–328, 2015.

[112] Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, and Ping Li. Ex-
tracting knowledge from web text with monte carlo tree search. In
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020, pages 2585–2591. ACM / IW3C2, 2020.

[113] Qiaoling Liu, Kaifeng Xu, Lei Zhang, Haofen Wang, Yong Yu, and
Yue Pan. Catriple: Extracting triples from wikipedia categories. In
The Semantic Web, 3rd Asian Semantic Web Conference, ASWC 2008,
Bangkok, Thailand, December 8-11, 2008. Proceedings, volume 5367
of Lecture Notes in Computer Science, pages 330–344. Springer, 2008.

[114] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and
Chenguang Zhu. G-eval: NLG evaluation using gpt-4 with better
human alignment. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 2511–2522. Association for Computational
Linguistics, 2023.

[115] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

196 BIBLIOGRAPHY

[116] Robert L Logan IV, Andrew McCallum, Sameer Singh, and Dan Bikel.
Benchmarking scalable methods for streaming cross document entity
coreference. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4717–4731, 2021.

[117] Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina
Toutanova, Jacob Devlin, and Honglak Lee. Zero-shot entity link-
ing by reading entity descriptions. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 3449–
3460, 2019.

[118] Erin Macdonald and Denilson Barbosa. Neural relation extraction
on wikipedia tables for augmenting knowledge graphs. In 29th ACM
International Conference on Information & Knowledge Management,
pages 2133–2136, 2020.

[119] Alexander Maedche and Steffen Staab. Ontology learning for the
semantic web. IEEE Intelligent systems, 16(2):72–79, 2001.

[120] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek.
YAGO3: A knowledge base from multilingual wikipedias. In Sev-
enth Biennial Conference on Innovative Data Systems Research, CIDR
2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings.
www.cidrdb.org, 2015.

[121] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and machine intelligence,
42(4):824–836, 2018.

[122] Jose L Martinez-Rodriguez, Aidan Hogan, and Ivan Lopez-Arevalo.
Information extraction meets the semantic web: a survey. Semantic
Web, 11(2):255–335, 2020.

[123] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli,
and Heiner Stuckenschmidt. Anytime bottom-up rule learning for
knowledge graph completion. In 28th International Joint Conference
on Artificial Intelligence, pages 3137–3143, 2019.

[124] Robert Meusel, Christian Bizer, and Heiko Paulheim. A web-scale
study of the adoption and evolution of the schema.org vocabulary
over time. In Proceedings of the 5th International Conference on Web
Intelligence, Mining and Semantics, page 15. ACM, 2015.

BIBLIOGRAPHY 197

[125] Robert Meusel and Heiko Paulheim. Linked data for information ex-
traction challenge 2014 tasks and results. In Proceedings of the Second
International Conference on Linked Data for Information Extraction-
Volume 1267, pages 3–8, 2014.

[126] Robert Meusel and Heiko Paulheim. Heuristics for fixing common
errors in deployed schema.org microdata. In The Semantic Web. Latest
Advances and New Domains - 12th European Semantic Web Conference,
ESWC 2015, Portoroz, Slovenia, May 31 - June 4, 2015. Proceedings,
volume 9088 of Lecture Notes in Computer Science, pages 152–168.
Springer, 2015.

[127] Robert Meusel, Petar Petrovski, and Christian Bizer. The WebData-
Commons microdata, RDFa and microformat dataset series. In The
Semantic Web - ISWC 2014 - 13th International Semantic Web Confer-
ence, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I,
volume 8796 of Lecture Notes in Computer Science, pages 277–292.
Springer, 2014.

[128] George A. Miller. WordNet: A lexical database for english. Commun.
ACM, 38(11):39–41, 1995.

[129] David N. Milne and Ian H. Witten. Learning to link with wikipedia. In
Proceedings of the 17th ACM Conference on Information and Knowledge
Management, CIKM 2008, Napa Valley, California, USA, October 26-30,
2008, pages 509–518. ACM, 2008.

[130] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant
supervision for relation extraction without labeled data. In ACL 2009,
Proceedings of the 47th Annual Meeting of the Association for Computa-
tional Linguistics and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, 2-7 August 2009, Singapore, pages
1003–1011. The Association for Computer Linguistics, 2009.

[131] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr.,
Partha P. Talukdar, Bo Yang, Justin Betteridge, Andrew Carlson, Bha-
vana Dalvi Mishra, Matt Gardner, Bryan Kisiel, Jayant Krishnamurthy,
Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Ndapandula Nakashole,
Emmanouil A. Platanios, Alan Ritter, Mehdi Samadi, Burr Settles,
Richard C. Wang, Derry Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair
Saparov, Malcolm Greaves, and Joel Welling. Never-ending learning.
Commun. ACM, 61(5):103–115, 2018.

[132] Sean Monahan, John Lehmann, Timothy Nyberg, Jesse Plymale, and
Arnold Jung. Cross-lingual cross-document coreference with entity
linking. In Proceedings of the Fourth Text Analysis Conference, TAC

198 BIBLIOGRAPHY

2011, Gaithersburg, Maryland, USA, November 14-15, 2011. NIST,
2011.

[133] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Triplifying
wikipedia’s tables. In Proceedings of the First International Workshop
on Linked Data for Information Extraction (LD4IE 2013) co-located
with the 12th International Semantic Web Conference (ISWC 2013),
Sydney, Australia, October 21, 2013, volume 1057 of CEUR Workshop
Proceedings. CEUR-WS.org, 2013.

[134] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Using linked data
to mine RDF from wikipedia’s tables. In Seventh ACM International
Conference on Web Search and Data Mining, WSDM 2014, New York,
NY, USA, February 24-28, 2014, pages 533–542. ACM, 2014.

[135] David Nadeau and Satoshi Sekine. A survey of named entity recogni-
tion and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[136] Vivi Nastase and Michael Strube. Decoding wikipedia categories for
knowledge acquisition. In Dieter Fox and Carla P. Gomes, editors, Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 1219–1224.
AAAI Press, 2008.

[137] Roberto Navigli, Michele Bevilacqua, Simone Conia, Dario Montagnini,
and Francesco Cecconi. Ten years of BabelNet: A survey. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
pages 4559–4567. ijcai.org, 2021.

[138] Roberto Navigli and Simone Paolo Ponzetto. BabelNet: The auto-
matic construction, evaluation and application of a wide-coverage
multilingual semantic network. Artif. Intell., 193:217–250, 2012.

[139] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and
Erhard Rahm. A survey of current link discovery frameworks. Semantic
Web, 8(3):419–436, 2017.

[140] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Proceedings
of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, pages 809–816.
Omnipress, 2011.

[141] Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, and Eugenio Di
Sciascio. SPrank: Semantic path-based ranking for top-n recommenda-
tions using linked open data. ACM Transactions on Intelligent Systems
and Technology (TIST), 8(1):1–34, 2016.

BIBLIOGRAPHY 199

[142] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patter-
son, and Jamie Taylor. Industry-scale knowledge graphs: Lessons and
challenges. Communications of the ACM, 62(8):36–43, 2019.

[143] Yaser Oulabi and Christian Bizer. Using weak supervision to identify
long-tail entities for knowledge base completion. In Semantic Systems.
The Power of AI and Knowledge Graphs - 15th International Conference,
SEMANTiCS 2019, Karlsruhe, Germany, September 9-12, 2019, Pro-
ceedings, volume 11702 of Lecture Notes in Computer Science, pages
83–98. Springer, 2019.

[144] Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singha-
nia, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko,
Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela
Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large lan-
guage models and knowledge graphs: Opportunities and challenges.
TGDK, 1(1):2:1–2:38, 2023.

[145] Eleni Partalidou, Despina Christou, and Grigorios Tsoumakas. Improv-
ing zero-shot entity retrieval through effective dense representations.
In SETN 2022: 12th Hellenic Conference on Artificial Intelligence, Corfu
Greece, September 7 - 9, 2022, pages 30:1–30:5. ACM, 2022.

[146] Heiko Paulheim. What the adoption of schema.org tells about linked
open data. In Joint Proceedings of the 5th International Workshop
on Using the Web in the Age of Data (USEWOD ’15) and the 2nd
International Workshop on Dataset PROFIling and fEderated Search
for Linked Data (PROFILES ’15) co-located with the 12th European
Semantic Web Conference (ESWC 2015), Portorož, Slovenia, May 31
- June 1, 2015, volume 1362 of CEUR Workshop Proceedings, pages
85–90. CEUR-WS.org, 2015.

[147] Heiko Paulheim. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic Web, 8(3):489–508, 2017.

[148] Heiko Paulheim. How much is a triple? estimating the cost of knowl-
edge graph creation. In Proceedings of the ISWC 2018 Posters &
Demonstrations, Industry and Blue Sky Ideas Tracks co-located with
17th International Semantic Web Conference (ISWC 2018), Monterey,
USA, October 8th - to - 12th, 2018, volume 2180 of CEUR Workshop
Proceedings. CEUR-WS.org, 2018.

[149] Heiko Paulheim and Johannes Fürnkranz. Unsupervised generation of
data mining features from linked open data. In 2nd International Con-
ference on Web Intelligence, Mining and Semantics, WIMS ’12, Craiova,
Romania, June 6-8, 2012, pages 31:1–31:12. ACM, 2012.

200 BIBLIOGRAPHY

[150] Heiko Paulheim and Simone Paolo Ponzetto. Extending dbpedia with
wikipedia list pages. In Proceedings of the NLP & DBpedia workshop
co-located with the 12th International Semantic Web Conference (ISWC
2013), Sydney, Australia, October 22, 2013, volume 1064 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[151] Maria Angela Pellegrino, Abdulrahman Altabba, Martina Garofalo,
Petar Ristoski, and Michael Cochez. GEval: a modular and extensi-
ble evaluation framework for graph embedding techniques. In The
Semantic Web: 17th International Conference, ESWC 2020, Heraklion,
Crete, Greece, May 31–June 4, 2020, Proceedings 17, pages 565–582.
Springer, 2020.

[152] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek.
YAGO 4: A reason-able knowledge base. In The Semantic Web: 17th
International Conference, ESWC 2020, Heraklion, Crete, Greece, May
31–June 4, 2020, Proceedings 17, pages 583–596. Springer, 2020.

[153] Simone Paolo Ponzetto and Roberto Navigli. Large-scale taxonomy
mapping for restructuring and integrating wikipedia. In IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 2083–
2088, 2009.

[154] Simone Paolo Ponzetto and Michael Strube. Deriving a large-scale
taxonomy from wikipedia. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British
Columbia, Canada, pages 1440–1445. AAAI Press, 2007.

[155] Jan Portisch, Michael Hladik, and Heiko Paulheim. RDF2Vec Light - A
lightweight approach for knowledge graph embeddings. In Proceedings
of the ISWC 2020 Demos and Industry Tracks: From Novel Ideas to
Industrial Practice co-located with 19th International Semantic Web
Conference (ISWC 2020), Globally online, November 1-6, 2020 (UTC),
volume 2721 of CEUR Workshop Proceedings, pages 79–84. CEUR-
WS.org, 2020.

[156] Mina Abd Nikooie Pour et al. Results of the ontology alignment
evaluation initiative 2022. In Proceedings of the 17th International
Workshop on Ontology Matching (OM 2022) co-located with the 21th
International Semantic Web Conference (ISWC 2022), Hangzhou, China,
held as a virtual conference, October 23, 2022, volume 3324 of CEUR
Workshop Proceedings, pages 84–128. CEUR-WS.org, 2022.

[157] Abhishek Pradhan, Ketan Kumar Todi, Anbarasan Selvarasu, and Atish
Sanyal. Knowledge graph generation with deep active learning. In

BIBLIOGRAPHY 201

2020 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2020.

[158] Jiaxin Qin and Mizuho Iwaihara. Annotating column type utilizing
bert and knowledge graph over wikipedia categories and lists. In
DEIM Forum, 2022.

[159] Gorjan Radevski, Kiril Gashteovski, Chia-Chien Hung, Carolin
Lawrence, and Goran Glavaš. Linking surface facts to large-scale
knowledge graphs. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 7189–7207, 2023.

[160] Will Radford, Joel Nothman, James R. Curran, Ben Hachey, and
Matthew Honnibal. Naïve but effective NIL clustering baselines - CM-
CRC at TAC 2011. In Proceedings of the Fourth Text Analysis Conference,
TAC 2011, Gaithersburg, Maryland, USA, November 14-15, 2011. NIST,
2011.

[161] Delip Rao, Paul McNamee, and Mark Dredze. Entity linking: Finding
extracted entities in a knowledge base. In Multi-source, Multilingual
Information Extraction and Summarization, Theory and Applications
of Natural Language Processing, pages 93–115. Springer, 2013.

[162] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embed-
dings using siamese BERT-networks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3982–3992, 2019.

[163] Ridho Reinanda, Edgar Meij, Maarten de Rijke, et al. Knowledge
graphs: An information retrieval perspective. Foundations and Trends®
in Information Retrieval, 14(4):289–444, 2020.

[164] Achim Rettinger, Uta Lösch, Volker Tresp, Claudia d’Amato, and Nicola
Fanizzi. Mining the semantic web. Data Mining and Knowledge Discov-
ery, 24(3):613–662, 2012.

[165] Daniel Ringler and Heiko Paulheim. One knowledge graph to rule
them all? analyzing the differences between DBpedia, YAGO, Wikidata
& co. In Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), pages 366–372. Springer, 2017.

[166] Petar Ristoski, Gerben Klaas Dirk De Vries, and Heiko Paulheim. A col-
lection of benchmark datasets for systematic evaluations of machine
learning on the semantic web. In The Semantic Web–ISWC 2016: 15th
International Semantic Web Conference, Kobe, Japan, October 17–21,
2016, Proceedings, Part II 15, pages 186–194. Springer, 2016.

202 BIBLIOGRAPHY

[167] Petar Ristoski, Zhizhong Lin, and Qunzhi Zhou. KG-ZESHEL: knowl-
edge graph-enhanced zero-shot entity linking. In K-CAP ’21: Knowl-
edge Capture Conference, Virtual Event, USA, December 2-3, 2021,
pages 49–56. ACM, 2021.

[168] Petar Ristoski and Heiko Paulheim. RDF2vec: RDF graph embeddings
for data mining. In The Semantic Web - ISWC 2016 - 15th International
Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceed-
ings, Part I, volume 9981 of Lecture Notes in Computer Science, pages
498–514, 2016.

[169] Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and Christian Bizer.
Profiling the potential of web tables for augmenting cross-domain
knowledge bases. In Proceedings of the 25th International Conference
on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15,
2016, pages 251–261. ACM, 2016.

[170] Dominique Ritze and Heiko Paulheim. Towards an automatic parame-
terization of ontology matching tools based on example mappings. In
Proceedings of the 6th International Workshop on Ontology Matching,
Bonn, Germany, October 24, 2011, volume 814 of CEUR Workshop
Proceedings. CEUR-WS.org, 2011.

[171] Giuseppe Rizzo, Bianca Pereira, Andrea Varga, Marieke Van Erp, and
Amparo Elizabeth Cano Basave. Lessons learnt from the Named
Entity rEcognition and linking (NEEL) challenge series. Semantic Web,
8(5):667–700, 2017.

[172] Ahmad Sakor, Kuldeep Singh, Anery Patel, and Maria-Esther Vidal.
Falcon 2.0: An entity and relation linking tool over Wikidata. In 29th
ACM International Conference on Information & Knowledge Manage-
ment, pages 3141–3148, 2020.

[173] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108, 2019.

[174] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption
of the linked data best practices in different topical domains. In The
Semantic Web–ISWC 2014: 13th International Semantic Web Confer-
ence, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I 13,
pages 245–260. Springer, 2014.

[175] Edward W Schneider. Course modularization applied: The interface
system and its implications for sequence control and data analysis. In
Association for the Development of Instructional Systems. ERIC, 1973.

BIBLIOGRAPHY 203

[176] Isabel Segura-Bedmar, Paloma Martínez, and María Herrero-Zazo.
Semeval-2013 task 9 : Extraction of drug-drug interactions from
biomedical texts (ddiextraction 2013). In Proceedings of the 7th In-
ternational Workshop on Semantic Evaluation, SemEval@NAACL-HLT
2013, Atlanta, Georgia, USA, June 14-15, 2013, pages 341–350. The
Association for Computer Linguistics, 2013.

[177] Julian Seitner, Christian Bizer, Kai Eckert, Stefano Faralli, Robert
Meusel, Heiko Paulheim, and Simone Paolo Ponzetto. A large database
of hypernymy relations extracted from the web. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation
(LREC 2016), pages 360–367, 2016.

[178] Özge Sevgili, Artem Shelmanov, Mikhail Y. Arkhipov, Alexander
Panchenko, and Chris Biemann. Neural entity linking: A survey
of models based on deep learning. Semantic Web, 13(3):527–570,
2022.

[179] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a
knowledge base: Issues, techniques, and solutions. IEEE Transactions
on Knowledge and Data Engineering, 27(2):443–460, 2014.

[180] Amit Singhal. Introducing the knowledge graph: things, not strings.
https://www.blog.google/products/search/introducing-knowl
edge-graph-things-not/, 2012 (accessed Jan 09, 2024).

[181] Robyn Speer and Catherine Havasi. Representing general relational
knowledge in ConceptNet 5. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation, LREC 2012, Istanbul,
Turkey, May 23-25, 2012, pages 3679–3686. European Language
Resources Association (ELRA), 2012.

[182] Gabriel Stanovsky and Ido Dagan. Creating a large benchmark for
open information extraction. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2300–2305,
2016.

[183] Julien Subercaze. Chaudron: Extending DBpedia with measurement.
In The Semantic Web - 14th International Conference, ESWC 2017,
Portorož, Slovenia, May 28 - June 1, 2017, Proceedings, Part I, volume
10249 of Lecture Notes in Computer Science, pages 434–448, 2017.

[184] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: a
core of semantic knowledge. In Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007, pages 697–706. ACM, 2007.

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

204 BIBLIOGRAPHY

[185] Thomas Pellissier Tanon, Denny Vrandecic, Sebastian Schaffert,
Thomas Steiner, and Lydia Pintscher. From Freebase to Wikidata:
The great migration. In Proceedings of the 25th International Confer-
ence on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15,
2016, pages 1419–1428. ACM, 2016.

[186] Andon Tchechmedjiev, Pavlos Fafalios, Katarina Boland, Malo Gasquet,
Matthäus Zloch, Benjamin Zapilko, Stefan Dietze, and Konstantin
Todorov. ClaimsKG: A knowledge graph of fact-checked claims. In
The Semantic Web - ISWC 2019 - 18th International Semantic Web
Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings,
Part II, volume 11779 of Lecture Notes in Computer Science, pages
309–324. Springer, 2019.

[187] Steffen Thoma, Achim Rettinger, and Fabian Both. Towards holistic
concept representations: Embedding relational knowledge, visual
attributes, and distributional word semantics. In The Semantic Web
- ISWC 2017 - 16th International Semantic Web Conference, Vienna,
Austria, October 21-25, 2017, Proceedings, Part I, volume 10587 of
Lecture Notes in Computer Science, pages 694–710. Springer, 2017.

[188] Alberto Tonon, Victor Felder, Djellel Eddine Difallah, and Philippe
Cudré-Mauroux. VoldemortKG: Mapping schema.org and web entities
to linked open data. In The Semantic Web - ISWC 2016 - 15th Inter-
national Semantic Web Conference, Kobe, Japan, October 17-21, 2016,
Proceedings, Part II, volume 9982 of Lecture Notes in Computer Science,
pages 220–228, 2016.

[189] Gerald Töpper, Magnus Knuth, and Harald Sack. Dbpedia ontology
enrichment for inconsistency detection. In I-SEMANTICS 2012 - 8th
International Conference on Semantic Systems, I-SEMANTICS ’12, Graz,
Austria, September 5-7, 2012, pages 33–40. ACM, 2012.

[190] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction.
In Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48
of JMLR Workshop and Conference Proceedings, pages 2071–2080.
JMLR.org, 2016.

[191] Marieke Van Erp, Pablo Mendes, Heiko Paulheim, Filip Ilievski, Julien
Plu, Giuseppe Rizzo, and Jörg Waitelonis. Evaluating entity linking:
An analysis of current benchmark datasets and a roadmap for doing
a better job. In Tenth International Conference on Language Resources
and Evaluation (LREC’16), pages 4373–4379, 2016.

BIBLIOGRAPHY 205

[192] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[193] Paola Velardi, Stefano Faralli, and Roberto Navigli. OntoLearn
reloaded: A graph-based algorithm for taxonomy induction. Compu-
tational Linguistics, 39(3):665–707, 2013.

[194] Johanna Völker and Mathias Niepert. Statistical schema induction. In
The Semantic Web: Research and Applications - 8th Extended Semantic
Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-June 2,
2011, Proceedings, Part I, volume 6643 of Lecture Notes in Computer
Science, pages 124–138. Springer, 2011.

[195] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Commun. ACM, 57(10):78–85, 2014.

[196] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge
graph embedding: A survey of approaches and applications. IEEE
Transactions on Knowledge and Data Engineering, 29(12):2724–2743,
2017.

[197] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhen-
guang Liu, Xiangnan He, and Tat-Seng Chua. Learning intents behind
interactions with knowledge graph for recommendation. In WWW
’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, pages 878–887. ACM / IW3C2, 2021.

[198] Xiangyu Wang, Lyuzhou Chen, Taiyu Ban, Muhammad Usman, Yifeng
Guan, Shikang Liu, Tianhao Wu, and Huanhuan Chen. Knowledge
graph quality control: A survey. Fundamental Research, 1(5):607–626,
2021.

[199] Zhaoyi Wang, Zhenyang Zhang, Jiaxin Qin, and Mizuho Iwaihara.
SLHCat: Mapping wikipedia categories and lists to DBpedia by lever-
aging semantic, lexical, and hierarchical features. In Leveraging Gener-
ative Intelligence in Digital Libraries: Towards Human-Machine Collabo-
ration - 25th International Conference on Asia-Pacific Digital Libraries,
ICADL 2023, Taipei, Taiwan, December 4-7, 2023, Proceedings, Part I,
volume 14457 of Lecture Notes in Computer Science, pages 133–148.
Springer, 2023.

[200] Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing Xiang. Retrieval,
re-ranking and multi-task learning for knowledge-base question an-
swering. In Proceedings of the 16th Conference of the European Chapter

206 BIBLIOGRAPHY

of the Association for Computational Linguistics: Main Volume, pages
347–357, 2021.

[201] Gerhard Weikum. Knowledge graphs 2021: A data odyssey. Proc.
VLDB Endow., 14(12):3233–3238, 2021.

[202] Gerhard Weikum, Xin Luna Dong, Simon Razniewski, Fabian
Suchanek, et al. Machine knowledge: Creation and curation of com-
prehensive knowledge bases. Foundations and Trends® in Databases,
10(2-4):108–490, 2021.

[203] Wikimedia. List of wikipedia editions. https://en.wikipedia.org
/wiki/List_of_Wikipedias, accessed Jan 09, 2024.

[204] Wikimedia. Wikimedia language proposal policy. https://meta.w
ikimedia.org/wiki/Language_proposal_policy, accessed Jan 09,
2024.

[205] Wikimedia. Wikipedia size. https://en.wikipedia.org/wiki/Wiki
pedia:Size_of_Wikipedia, accessed Jan 09, 2024.

[206] Wikimedia. Wikidata statistics. https://wikidata-todo.toolforge.
org/stats.php, accessed Nov 02, 2023.

[207] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf,
Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, EMNLP 2020 - Demos,
Online, November 16-20, 2020, pages 38–45. Association for Compu-
tational Linguistics, 2020.

[208] Fei Wu and Daniel S. Weld. Autonomously semantifying wikipedia.
In Proceedings of the Sixteenth ACM Conference on Information and
Knowledge Management, CIKM 2007, Lisbon, Portugal, November 6-10,
2007, pages 41–50. ACM, 2007.

[209] Fei Wu and Daniel S. Weld. Open information extraction using
wikipedia. In ACL 2010, Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, July 11-16, 2010, Uppsala,
Sweden, pages 118–127. The Association for Computer Linguistics,
2010.

https://en.wikipedia.org/wiki/List_of_Wikipedias
https://en.wikipedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/Language_proposal_policy
https://meta.wikimedia.org/wiki/Language_proposal_policy
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://wikidata-todo.toolforge.org/stats.php
https://wikidata-todo.toolforge.org/stats.php

BIBLIOGRAPHY 207

[210] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and
Luke Zettlemoyer. Scalable zero-shot entity linking with dense entity
retrieval. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 6397–6407, 2020.

[211] Bo Xu, Chenhao Xie, Yi Zhang, Yanghua Xiao, Haixun Wang, and Wei
Wang. Learning defining features for categories. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 3924–3930.
IJCAI/AAAI Press, 2016.

[212] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit
Chaudhuri. InfoGather: entity augmentation and attribute discovery
by holistic matching with web tables. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 97–108. ACM,
2012.

[213] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowl-
edge bases. In 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[214] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon,
Jens Lehmann, and Sören Auer. Quality assessment for linked data: A
survey. Semantic Web, 7(1):63–93, 2016.

[215] Shuo Zhang and Krisztian Balog. Web table extraction, retrieval, and
augmentation: A survey. ACM Transactions on Intelligent Systems and
Technology (TIST), 11(2):1–35, 2020.

[216] Shuo Zhang, Krisztian Balog, and Jamie Callan. Generating cate-
gories for sets of entities. In 29th ACM International Conference on
Information & Knowledge Management, pages 1833–1842, 2020.

[217] Shuo Zhang, Edgar Meij, Krisztian Balog, and Ridho Reinanda. Novel
entity discovery from web tables. In WWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020, pages 1298–1308. ACM /
IW3C2, 2020.

[218] Ziqi Zhang. Towards efficient and effective semantic table interpreta-
tion. In The Semantic Web - ISWC 2014 - 13th International Semantic
Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceed-
ings, Part I, volume 8796 of Lecture Notes in Computer Science, pages
487–502. Springer, 2014.

208 BIBLIOGRAPHY

[219] Lingyun Zhao, Lin Li, Xinhao Zheng, and Jianwei Zhang. A BERT
based sentiment analysis and key entity detection approach for online
financial texts. In 2021 IEEE 24th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pages 1233–1238.
IEEE, 2021.

[220] Tong Zhao, Julian McAuley, and Irwin King. Improving latent factor
models via personalized feature projection for one class recommen-
dation. In Proceedings of the 24th ACM international on conference on
information and knowledge management, pages 821–830, 2015.

[221] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong,
Hao Xiong, Zheng Zhang, and George Karypis. DGL-KE: training
knowledge graph embeddings at scale. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30,
2020, pages 739–748. ACM, 2020.

[222] Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. A
comprehensive survey on automatic knowledge graph construction.
CoRR, abs/2302.05019, 2023.

[223] Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi
Yao, Shumin Deng, Huajun Chen, and Ningyu Zhang. Llms for knowl-
edge graph construction and reasoning: Recent capabilities and future
opportunities. CoRR, abs/2305.13168, 2023.

APPENDIX A

Data Sources

This chapter provides links to the data sources used in experiments that
compare KGs.

A.1 Data Sources for Knowledge Graph Comparison

For the comparison of KGs in Chapter 3, we used the following data sources:

A.1.1 DBpedia

Version 2016-10

• http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.owl
• http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.t

tl.bz2
• http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_tran

sitive_en.ttl.bz2
• http://downloads.dbpedia.org/2016-10/core-i18n/en/interlanguage_links

_en.ttl.bz2
• http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
• http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_litera

ls_en.ttl.bz2
• http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_object

s_en.ttl.bz2

A.1.2 YAGO

Version 3.1

• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTransitiveType.t
tl.7z

209

http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.owl
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_transitive_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_transitive_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/interlanguage_links_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/interlanguage_links_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_literals_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_literals_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.ttl.bz2
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTransitiveType.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTransitiveType.ttl.7z

210 APPENDIX A. DATA SOURCES

• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoSchema.ttl.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTypes.ttl.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.ttl.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLiteralFacts.ttl

.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLabels.ttl.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDateFacts.ttl.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoFacts.ttl.7z
• http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDBpediaInstances

.ttl.7z

A.1.3 Wikidata

Version 20190628
The original version is not available anymore, but the most recent dump can
be found here:

• https://dumps.wikimedia.org/wikidatawiki/entities/latest-truthy.nt.gz

A.1.4 BabelNet

Version 3.6
This version is not publicly available for download but has been provided by
the developers upon request.

A.1.5 NELL

Version 0.3#1100

• http://wdaqua-nell2rdf.univ-st-etienne.fr/archive/NELL2RDF_0.3_1100_on
tology.ttl.gz

• http://wdaqua-nell2rdf.univ-st-etienne.fr/archive/NELL2RDF_0.3_1100.nt
.gz

A.1.6 OpenCyc

Version 4.0

• https://github.com/asanchez75/opencyc/blob/master/opencyc-latest.owl.
gz

A.1.7 VoldemortKG

• http://voldemort.exascale.info

A.2 Data Sources for KGrEaT

For the comparison of KGs with KGrEaT in Chapters 10 and 11, we used the
following additional data sources:

http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoSchema.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTypes.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLiteralFacts.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLiteralFacts.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLabels.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDateFacts.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoFacts.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDBpediaInstances.ttl.7z
http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDBpediaInstances.ttl.7z
https://dumps.wikimedia.org/wikidatawiki/entities/latest-truthy.nt.gz
http://wdaqua-nell2rdf.univ-st-etienne.fr/archive/NELL2RDF_0.3_1100_ontology.ttl.gz
http://wdaqua-nell2rdf.univ-st-etienne.fr/archive/NELL2RDF_0.3_1100_ontology.ttl.gz
http://wdaqua-nell2rdf.univ-st-etienne.fr/archive/NELL2RDF_0.3_1100.nt.gz
http://wdaqua-nell2rdf.univ-st-etienne.fr/archive/NELL2RDF_0.3_1100.nt.gz
https://github.com/asanchez75/opencyc/blob/master/opencyc-latest.owl.gz
https://github.com/asanchez75/opencyc/blob/master/opencyc-latest.owl.gz
http://voldemort.exascale.info

A.2. DATA SOURCES FOR KGREAT 211

A.2.1 DBpedia

Version 2022-09

• http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.
org/ontology--DEV/2022.10.09-192003/ontology--DEV_type=parsed.nt

• https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/202
2.09.01/instance-types_lang=en_specific.ttl.bz2

• https://downloads.dbpedia.org/repo/dbpedia/generic/labels/2022.09.01/l
abels_lang=en.ttl.bz2

• https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-liter
als/2022.09.01/mappingbased-literals_lang=en.ttl.bz2

• https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objec
ts/2022.09.01/mappingbased-objects_lang=en.ttl.bz2

A.2.2 Wikidata

Version 20230607
The original version is not available anymore, but the most recent dump can
be found here:

• https://dumps.wikimedia.org/wikidatawiki/entities/latest-truthy.nt.gz

A.2.3 DBkWik

Version 2.0

• https://figshare.com/articles/dataset/DBkWik_Plus_Plus/20407864

A.2.4 CaLiGraph

Version 1.1.0 (extracted from Wikipedia2016)

• https://doi.org/10.5281/zenodo.4050308

Version 2.1.1 (extracted from Wikipedia2020)

• https://doi.org/10.5281/zenodo.5524052

Version 3.1.1 (extracted from Wikipedia2022)

• https://doi.org/10.5281/zenodo.8068322

http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2022.10.09-192003/ontology--DEV_type=parsed.nt
http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2022.10.09-192003/ontology--DEV_type=parsed.nt
https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/2022.09.01/instance-types_lang=en_specific.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/2022.09.01/instance-types_lang=en_specific.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/generic/labels/2022.09.01/labels_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/generic/labels/2022.09.01/labels_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-literals/2022.09.01/mappingbased-literals_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-literals/2022.09.01/mappingbased-literals_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objects/2022.09.01/mappingbased-objects_lang=en.ttl.bz2
https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objects/2022.09.01/mappingbased-objects_lang=en.ttl.bz2
https://dumps.wikimedia.org/wikidatawiki/entities/latest-truthy.nt.gz
https://figshare.com/articles/dataset/DBkWik_Plus_Plus/20407864
https://doi.org/10.5281/zenodo.4050308
https://doi.org/10.5281/zenodo.5524052
https://doi.org/10.5281/zenodo.8068322

212 APPENDIX A. DATA SOURCES

APPENDIX B

Experimental Details for KGrEaT

In this chapter, we provide the experiment details for evaluations with
KGrEaT. The results are given for individual tasks, datasets, and metrics.

B.1 Results for General-Purpose Knowledge Graphs

Table B.1 shows the coverage of the evaluated KGs for the task datasets.
Tables B.2 to B.4 hold the performance values for the evaluated tasks.

B.2 Results for CaLiGraph

Tables B.5 and B.6 show the results of the KGrEaT evaluation for the individ-
ual datasets in the precision- and recall-oriented scenarios.

213

214 APPENDIX B. EXPERIMENTAL DETAILS FOR KGREAT

D
ataset

D
B

P16
D

B
P22

YA
G

O
W

D
C

LG
D

B
kW

ik
PK

PA
R

A
PK

PA
R

A
PK

PA
R

A
PK

PA
R

A
PK

PA
R

A
PK

PA
R

A
C

ities
97

97
96

87
87

88
96

96
100

67
67

75
93

93
100

98
98

98
Forbes

87
87

87
81

81
81

99
99

100
85

85
92

91
91

100
93

93
92

A
A

U
P

99
99

98
88

88
88

99
99

100
65

65
88

94
94

99
99

99
99

M
etacriticM

ovies
98

98
98

95
95

94
90

90
100

87
87

85
98

98
100

99
99

99
M

etacriticA
lbum

s
99

99
99

97
97

97
95

95
100

70
70

91
96

96
100

99
99

99
M

illionSongD
ataset †

6
6

22
6

6
21

11
11

51
11

11
40

20
20

64
13

13
47

Team
s

100
100

100
94

94
94

77
77

83
94

94
96

94
94

95
100

100
100

C
om

icC
haracters †

0
0

22
0

0
17

0
0

59
0

0
31

0
0

62
92

92
96

C
itiesA

ndC
ountries

100
100

100
95

95
95

96
96

100
46

46
74

96
96

100
100

100
100

C
ities2000A

ndC
ountries

100
100

100
93

93
93

94
94

99
61

61
84

94
94

100
100

100
100

C
itiesM

oviesA
lbum

sC
om

paniesU
ni

90
90

88
85

85
85

94
94

100
72

72
81

88
88

99
97

97
97

LP50
90

90
90

88
88

88
83

83
99

55
55

71
92

92
100

93
93

93
KO

R
E

100
100

100
100

100
100

102
102

102
100

100
101

102
102

102
100

100
100

C
urrencyEntities

100
100

100
93

93
93

100
100

100
34

34
41

97
97

100
100

100
100

C
ityStateEntities

96
96

97
97

97
97

99
99

100
31

31
54

82
82

100
97

97
100

C
apitalC

ountryEntities
100

100
100

100
100

100
100

100
100

30
30

22
100

100
100

100
100

100
A

llC
apitalC

ountryEntities
99

99
99

96
96

97
99

99
100

44
44

54
96

96
99

100
100

100
M

ovieLens †
16

16
62

15
15

60
14

14
92

1
1

73
15

15
96

43
43

84
LibraryThing

†
18

18
42

18
18

41
21

21
84

12
12

63
28

28
92

25
25

75
LastFm

†
94

94
94

91
91

92
94

94
99

81
81

86
93

93
99

96
96

97

Table
B

.1:
D

ataset
coverage

(per
cent)

of
the

K
G

s
evaluated

w
ith

K
G

rEaT
for

the
PK

,PA
,and

R
A

scenarios.
D

atasets
m

arked
w

ith
a

dagger
are

independent
ofD

B
pedia.

B.2. RESULTS FOR CALIGRAPH 215

Task Type Dataset Metric DBP16 DBP22 YAGO WD CLG DBkWik
Classification Cities Accuracy ↑ 0.614 0.601 0.596 0.506 0.612 0.600

Forbes Accuracy ↑ 0.523 0.529 0.525 0.543 0.494 0.499
AAUP Accuracy ↑ 0.549 0.562 0.550 0.583 0.561 0.539
MetacriticMovies Accuracy ↑ 0.621 0.599 0.618 0.627 0.592 0.595
MetacriticAlbums Accuracy ↑ 0.627 0.571 0.562 0.578 0.561 0.584
ComicCharacters Accuracy ↑ – – – – – 0.462
MillionSongDataset Accuracy ↑ 0.524 0.505 0.502 0.518 0.480 0.492

Regression Cities RMSE ↓ 0.912 0.839 0.943 0.840 1.069 0.993
Forbes RMSE ↓ 0.707 0.700 0.697 0.679 0.699 0.707
AAUP RMSE ↓ 0.691 0.666 0.684 0.681 0.650 0.692
MetacriticMovies RMSE ↓ 0.574 0.596 0.575 0.591 0.574 0.598
MetacriticAlbums RMSE ↓ 0.581 0.636 0.631 0.630 0.617 0.599

Clustering Teams Accuracy ↑ 0.930 0.889 0.910 0.947 0.926 0.915
ARI ↑ 0.040 0.025 0.041 0.012 0.026 0.013
NMI ↑ 0.033 0.021 0.036 0.010 0.020 0.008

ComicCharacters Accuracy ↑ 0.667 0.667 0.648 0.500 0.672 0.409
ARI ↑ 0.000 0.000 0.021 0.000 0.099 0.002
NMI ↑ 0.389 0.389 0.208 0.258 0.171 0.002

CitiesAndCountries Accuracy ↑ 0.785 0.766 0.798 0.591 0.713 0.780
ARI ↑ 0.188 0.124 0.220 0.000 0.011 0.175
NMI ↑ 0.191 0.137 0.230 0.077 0.049 0.165

Cities2000AndCountries Accuracy ↑ 0.705 0.685 0.715 0.765 0.616 0.699
ARI ↑ 0.284 0.254 0.348 0.209 0.165 0.270
NMI ↑ 0.268 0.241 0.321 0.216 0.154 0.256

CitiesMoviesAlbums- Accuracy ↑ 0.725 0.692 0.701 0.589 0.654 0.652
CompaniesUni ARI ↑ 0.609 0.547 0.571 0.311 0.471 0.498

NMI ↑ 0.632 0.573 0.595 0.330 0.500 0.502
Doc. Sim. LP50 Spearman ↑ 0.207 0.226 0.165 0.131 0.204 0.200

Pearson ↑ 0.294 0.306 0.235 0.241 0.279 0.274
Harm. Mean ↑ 0.241 0.257 0.184 0.172 0.233 0.164

Ent. Rel. KORE Kendall’s Tau ↑ 0.135 0.179 0.012 0.203 0.096 0.134
Sem. Ana. CurrencyEnts Accuracy ↑ 0.156 0.142 0.142 0.000 0.072 0.093

CityStateEnts Accuracy ↑ 0.166 0.149 0.109 0.000 0.218 0.118
CapitalCountryEnts Accuracy ↑ 0.337 0.375 0.345 0.000 0.276 0.331
AllCapitalCountryEnts Accuracy ↑ 0.353 0.394 0.287 0.002 0.275 0.319

Recom. MovieLens F1-score ↑ 0.006 0.009 0.007 0.031 0.009 0.004
LibraryThing F1-score ↑ 0.017 0.013 0.007 0.018 0.007 0.012
LastFm F1-score ↑ 0.021 0.019 0.011 0.014 0.019 0.017

Table B.2: KGrEaT evaluation results of the KGs aggregated by task type,
dataset and metric for the PK scenario.

216 APPENDIX B. EXPERIMENTAL DETAILS FOR KGREAT

Task Type Dataset Metric DBP16 DBP22 YAGO WD CLG DBkWik
Classification Cities Accuracy ↑ 0.596 0.525 0.570 0.341 0.572 0.589

Forbes Accuracy ↑ 0.456 0.429 0.518 0.459 0.449 0.464
AAUP Accuracy ↑ 0.542 0.492 0.542 0.381 0.527 0.534
MetacriticMovies Accuracy ↑ 0.610 0.570 0.556 0.547 0.580 0.590
MetacriticAlbums Accuracy ↑ 0.619 0.552 0.533 0.406 0.538 0.579
ComicCharacters Accuracy ↑ – – – – – 0.434
MillionSongDataset Accuracy ↑ 0.035 0.033 0.066 0.063 0.109 0.077

Regression Cities RMSE ↓ 1.584 1.559 1.811 1.582 1.725 1.575
Forbes RMSE ↓ 1.262 1.269 1.280 1.310 1.301 1.237
AAUP RMSE ↓ 1.355 1.372 1.358 1.387 1.395 1.426
MetacriticMovies RMSE ↓ 1.074 1.097 1.075 1.091 1.074 1.098
MetacriticAlbums RMSE ↓ 1.080 1.137 1.131 1.131 1.118 1.099

Clustering Teams Accuracy ↑ 0.930 0.833 0.700 0.889 0.866 0.915
ARI ↑ 0.082 0.059 0.007 0.067 0.053 0.045
NMI ↑ 0.069 0.057 0.008 0.056 0.049 0.037

ComicCharacters Accuracy ↑ 0.000 0.000 0.000 0.000 0.000 0.383
ARI ↑ 0.000 0.000 0.000 0.000 0.000 0.004
NMI ↑ 0.183 0.183 0.183 0.183 0.183 0.062

CitiesAndCountries Accuracy ↑ 0.783 0.726 0.770 0.271 0.683 0.779
ARI ↑ 0.184 0.147 0.255 0.000 0.045 0.171
NMI ↑ 0.188 0.151 0.230 0.077 0.090 0.163

Cities2000AndCountries Accuracy ↑ 0.705 0.636 0.672 0.466 0.579 0.699
ARI ↑ 0.284 0.214 0.300 0.170 0.141 0.270
NMI ↑ 0.267 0.213 0.271 0.180 0.157 0.256

CitiesMoviesAlbums- Accuracy ↑ 0.652 0.586 0.657 0.426 0.575 0.631
CompaniesUni ARI ↑ 0.541 0.459 0.519 0.222 0.416 0.476

NMI ↑ 0.530 0.461 0.532 0.322 0.435 0.482
Doc. Sim. LP50 Spearman ↑ 0.207 0.226 0.165 0.165 0.204 0.200

Pearson ↑ 0.294 0.306 0.235 0.069 0.279 0.274
Harm. Mean ↑ 0.241 0.257 0.184 0.103 0.233 0.164

Ent. Rel. KORE Kendall’s Tau ↑ 0.104 0.108 0.015 0.071 0.068 0.119
Sem. Ana. CurrencyEnts Accuracy ↑ 0.156 0.123 0.142 0.000 0.067 0.093

CityStateEnts Accuracy ↑ 0.143 0.136 0.106 0.000 0.127 0.105
CapitalCountryEnts Accuracy ↑ 0.337 0.375 0.345 0.000 0.276 0.331
AllCapitalCountryEnts Accuracy ↑ 0.346 0.360 0.282 0.000 0.252 0.319

Recom. MovieLens F1-score ↑ 0.004 0.005 0.004 0.005 0.005 0.005
LibraryThing F1-score ↑ 0.006 0.006 0.003 0.002 0.006 0.006
LastFm F1-score ↑ 0.022 0.021 0.012 0.011 0.019 0.018

Table B.3: KGrEaT evaluation results of the KGs aggregated by task type,
dataset and metric for the PA scenario.

B.2. RESULTS FOR CALIGRAPH 217

Task Type Dataset Metric DBP16 DBP22 YAGO WD CLG DBkWik
Classification Cities Accuracy ↑ 0.579 0.524 0.599 0.402 0.599 0.590

Forbes Accuracy ↑ 0.456 0.429 0.514 0.474 0.491 0.463
AAUP Accuracy ↑ 0.535 0.494 0.534 0.503 0.555 0.535
MetacriticMovies Accuracy ↑ 0.610 0.568 0.590 0.517 0.591 0.573
MetacriticAlbums Accuracy ↑ 0.621 0.552 0.553 0.520 0.560 0.577
ComicCharacters Accuracy ↑ 0.112 0.074 0.443 0.185 0.447 0.463
MillionSongDataset Accuracy ↑ 0.129 0.115 0.457 0.249 0.447 0.305

Regression Cities RMSE ↓ 1.727 1.549 1.003 1.507 1.461 1.886
Forbes RMSE ↓ 1.261 1.269 0.699 1.312 0.708 1.240
AAUP RMSE ↓ 1.461 1.372 0.685 1.462 0.663 1.424
MetacriticMovies RMSE ↓ 1.073 1.092 0.583 1.105 0.578 1.101
MetacriticAlbums RMSE ↓ 1.080 1.138 0.628 1.121 0.618 1.098

Clustering Teams Accuracy ↑ 0.930 0.849 0.915 0.937 0.920 0.915
ARI ↑ 0.082 0.078 0.036 0.081 0.015 0.045
NMI ↑ 0.069 0.073 0.031 0.062 0.010 0.037

ComicCharacters Accuracy ↑ 0.104 0.067 0.411 0.170 0.428 0.408
ARI ↑ 0.000 0.000 0.003 0.002 0.004 0.002
NMI ↑ 0.168 0.172 0.004 0.163 0.003 0.002

CitiesAndCountries Accuracy ↑ 0.783 0.747 0.791 0.560 0.692 0.792
ARI ↑ 0.184 0.184 0.215 0.000 0.005 0.202
NMI ↑ 0.188 0.166 0.219 0.071 0.048 0.181

Cities2000AndCountries Accuracy ↑ 0.705 0.636 0.713 0.621 0.621 0.699
ARI ↑ 0.284 0.212 0.313 0.201 0.160 0.269
NMI ↑ 0.267 0.209 0.290 0.198 0.137 0.256

CitiesMoviesAlbums- Accuracy ↑ 0.643 0.587 0.667 0.456 0.618 0.632
CompaniesUni ARI ↑ 0.536 0.460 0.499 0.233 0.424 0.477

NMI ↑ 0.521 0.462 0.521 0.321 0.443 0.482
Doc. Sim. LP50 Spearman ↑ 0.207 0.226 0.160 0.102 0.154 0.214

Pearson ↑ 0.294 0.306 0.233 0.228 0.233 0.283
Harm. Mean ↑ 0.241 0.257 0.191 0.149 0.184 0.241

Ent. Rel. KORE Kendall’s Tau ↑ 0.109 0.119 0.008 0.130 0.084 0.117
Sem. Ana. CurrencyEnts Accuracy ↑ 0.154 0.133 0.133 0.000 0.090 0.083

CityStateEnts Accuracy ↑ 0.153 0.130 0.098 0.000 0.157 0.120
CapitalCountryEnts Accuracy ↑ 0.369 0.362 0.332 0.000 0.327 0.321
AllCapitalCountryEnts Accuracy ↑ 0.369 0.361 0.292 0.000 0.294 0.299

Recom. MovieLens F1-score ↑ 0.004 0.003 0.003 0.004 0.003 0.004
LibraryThing F1-score ↑ 0.006 0.005 0.003 0.005 0.005 0.006
LastFm F1-score ↑ 0.022 0.021 0.012 0.010 0.018 0.018

Table B.4: KGrEaT evaluation results of the KGs aggregated by task type,
dataset and metric for the RA scenario.

218 APPENDIX B. EXPERIMENTAL DETAILS FOR KGREAT

Task Type Dataset Metric DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3
Classification Cities Accuracy ↑ 0.801 0.806 0.768 0.764 0.656 0.787

Forbes Accuracy ↑ 0.617 0.599 0.604 0.580 0.556 0.584
AAUP Accuracy ↑ 0.633 0.668 0.630 0.587 0.554 0.644
MetacriticMovies Accuracy ↑ 0.739 0.746 0.764 0.720 0.712 0.723
MetacriticAlbums Accuracy ↑ 0.764 0.660 0.654 0.637 0.613 0.658
ComicCharacters Accuracy ↑ – – – – – –
MillionSongDataset Accuracy ↑ 0.635 0.616 0.606 0.614 0.629 0.617

Regression Cities RMSE ↓ 0.495 0.500 0.545 0.535 0.606 0.511
Forbes RMSE ↓ 0.582 0.587 0.582 0.596 0.605 0.576
AAUP RMSE ↓ 0.576 0.528 0.571 0.580 0.591 0.524
MetacriticMovies RMSE ↓ 0.469 0.467 0.465 0.460 0.466 0.459
MetacriticAlbums RMSE ↓ 0.462 0.533 0.538 0.534 0.549 0.514

Clustering Teams Accuracy ↑ 0.996 0.999 0.994 0.995 0.997 0.998
ARI ↑ 0.259 0.333 0.063 0.052 0.039 0.249
NMI ↑ 0.215 0.285 0.056 0.042 0.030 0.211

ComicCharacters Accuracy ↑ 0.667 0.667 0.875 0.800 0.800 0.875
ARI ↑ 0.000 0.000 0.495 0.231 0.000 0.505
NMI ↑ 0.734 0.734 0.562 0.380 0.101 0.529

CitiesAndCountries Accuracy ↑ 0.935 0.940 0.982 0.790 0.898 0.800
ARI ↑ 0.740 0.755 0.916 0.071 0.614 0.037
NMI ↑ 0.657 0.658 0.831 0.205 0.545 0.203

Cities2000AndCountries Accuracy ↑ 0.975 0.972 0.962 0.956 0.972 0.956
ARI ↑ 0.902 0.891 0.854 0.833 0.892 0.830
NMI ↑ 0.841 0.818 0.777 0.745 0.818 0.744

CitiesMoviesAlbums- Accuracy ↑ 0.994 0.970 0.990 0.982 0.932 0.959
CompaniesUni ARI ↑ 0.988 0.942 0.976 0.958 0.892 0.893

NMI ↑ 0.975 0.915 0.958 0.933 0.867 0.887
Doc. Sim. LP50 Spearman ↑ 0.412 0.342 0.447 0.433 0.440 0.384

Pearson ↑ 0.631 0.596 0.658 0.655 0.660 0.613
Harm. Mean ↑ 0.492 0.431 0.532 0.521 0.528 0.472

Ent. Rel. KORE Kendall’s Tau ↑ 0.440 0.441 0.299 0.225 0.197 0.389
Sem. Ana. CurrencyEnts Accuracy ↑ 0.368 0.356 0.465 0.037 0.031 0.182

CityStateEnts Accuracy ↑ 0.500 0.453 0.212 0.480 0.072 0.721
CapitalCountryEnts Accuracy ↑ 0.958 0.881 0.798 0.919 0.435 0.923
AllCapitalCountryEnts Accuracy ↑ 0.911 0.884 0.697 0.880 0.643 0.929

Recom. MovieLens F1-score ↑ 0.013 0.019 0.022 0.023 0.022 0.033
LibraryThing F1-score ↑ 0.047 0.031 0.016 0.021 0.012 0.019
LastFm F1-score ↑ 0.050 0.040 0.022 0.029 0.021 0.042

Table B.5: KGrEaT evaluation results of the KGs aggregated by task type,
dataset and metric for the precision-oriented mapping scenario.

B.2. RESULTS FOR CALIGRAPH 219

Task Type Dataset Metric DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3
Classification Cities Accuracy ↑ 0.751 0.698 0.760 0.807 0.656 0.760

Forbes Accuracy ↑ 0.537 0.486 0.590 0.586 0.546 0.556
AAUP Accuracy ↑ 0.612 0.584 0.588 0.595 0.557 0.634
MetacriticMovies Accuracy ↑ 0.725 0.709 0.691 0.719 0.710 0.718
MetacriticAlbums Accuracy ↑ 0.751 0.638 0.625 0.632 0.613 0.657
ComicCharacters Accuracy ↑ 0.119 0.081 0.478 0.484 0.476 0.475
MillionSongDataset Accuracy ↑ 0.156 0.139 0.584 0.584 0.588 0.589

Regression Cities RMSE ↓ 1.318 1.203 0.558 0.539 0.623 0.516
Forbes RMSE ↓ 1.137 1.156 0.595 0.596 0.607 0.595
AAUP RMSE ↓ 1.347 1.227 0.572 0.578 0.596 0.540
MetacriticMovies RMSE ↓ 0.969 0.965 0.482 0.461 0.468 0.462
MetacriticAlbums RMSE ↓ 0.962 1.035 0.547 0.534 0.546 0.518

Clustering Teams Accuracy ↑ 0.996 0.954 0.994 0.995 0.995 0.995
ARI ↑ 0.318 0.151 0.061 0.043 0.050 0.090
NMI ↑ 0.260 0.106 0.054 0.040 0.035 0.075

ComicCharacters Accuracy ↑ 0.115 0.076 0.473 0.460 0.465 0.474
ARI ↑ 0.000 0.000 0.016 0.016 0.014 0.018
NMI ↑ 0.171 0.174 0.008 0.008 0.006 0.006

CitiesAndCountries Accuracy ↑ 0.933 0.893 0.969 0.791 0.898 0.792
ARI ↑ 0.733 0.676 0.863 0.065 0.609 0.030
NMI ↑ 0.641 0.473 0.756 0.204 0.523 0.199

Cities2000And- Accuracy ↑ 0.974 0.903 0.934 0.951 0.965 0.936
Countries ARI ↑ 0.900 0.764 0.754 0.814 0.865 0.761

NMI ↑ 0.836 0.573 0.680 0.721 0.783 0.658
CitiesMoviesAlbums- Accuracy ↑ 0.880 0.823 0.941 0.963 0.877 0.916
CompaniesUni ARI ↑ 0.856 0.758 0.871 0.919 0.827 0.871

NMI ↑ 0.743 0.650 0.845 0.882 0.727 0.841
Doc. Sim. LP50 Spearman ↑ 0.412 0.342 0.451 0.443 0.444 0.386

Pearson ↑ 0.631 0.596 0.670 0.669 0.659 0.618
Harm. Mean ↑ 0.492 0.431 0.539 0.533 0.531 0.475

Ent. Rel. KORE Kendall’s Tau ↑ 0.386 0.333 0.278 0.221 0.208 0.372
Sem. Ana. CurrencyEnts Accuracy ↑ 0.355 0.322 0.436 0.038 0.027 0.202

CityStateEnts Accuracy ↑ 0.440 0.409 0.214 0.444 0.066 0.484
CapitalCountryEnts Accuracy ↑ 0.990 0.844 0.800 0.925 0.490 0.923
AllCapitalCountryEnts Accuracy ↑ 0.928 0.818 0.719 0.831 0.624 0.857

Recom. MovieLens F1-score ↑ 0.013 0.010 0.011 0.011 0.011 0.016
LibraryThing F1-score ↑ 0.013 0.013 0.006 0.009 0.007 0.014
LastFm F1-score ↑ 0.052 0.048 0.021 0.029 0.024 0.041

Table B.6: KGrEaT evaluation results of the KGs aggregated by task type,
dataset and metric for the recall-oriented mapping scenario.

220 APPENDIX B. EXPERIMENTAL DETAILS FOR KGREAT

	List of Publications
	List of Figures
	List of Tables
	List of Acronyms
	I Introduction and Foundations
	Introduction
	Motivation
	Outline and Contributions

	Theoretical Background
	The Semantic Web
	Semantic Web Stack
	Linked Open Data
	Vocabularies

	Knowledge Graphs
	Components
	Construction and Extension
	Paradigms

	Wikipedia
	Editions
	Wiki Markup
	Content Types
	Versions

	Knowledge Graphs on the Web
	Overview
	Manual Curation
	Creation from (Semi)-Structured Sources
	Creation from Unstructured Sources

	Comparison
	General Metrics
	Contents
	Looking into Details

	Linkage and Overlap
	Method
	Findings

	Conclusion and Outlook

	Automated Knowledge Graph Construction
	A Pipeline for Automated Knowledge Graph Construction
	Construction of General-Purpose Knowledge Graphs
	DBpedia
	YAGO
	NELL
	BabelNet
	DBkWik

	Limitations and Challenges

	II Ontology Construction
	Deriving a Fine-Grained Ontology from Categories and Lists
	Motivation
	Related Work
	Categories and List Pages in Wikipedia
	Distantly Supervised Entity Extraction from List Pages
	Training Data Generation
	Entity Classification

	Results and Discussion
	List Page Extraction
	Evaluation

	Conclusion

	Learning Defining Axioms for Wikipedia Categories
	Motivation
	Related Work
	Preliminaries
	Approach
	Candidate Selection
	Pattern Mining
	Pattern Application
	Axiom Application and Post-Filtering

	Experiments
	Axiom Extraction using DBpedia
	Comparison with Related Approaches

	Conclusion

	III Knowledge Graph Population
	Subject Entity Detection in Wikipedia Listings
	Motivation
	Related Work
	Named Entity Recognition
	Subject Entity Detection

	Preliminaries
	Listings in Wikipedia
	Training Data Generation for List Pages
	Transformers for Token Classification

	Subject Entity Detection with Transformers
	Token-level Subject Entity Detection
	Coarse-grained Entity Type Prediction
	Negative Sampling through Shuffled Listings
	Fine-Tuning on Noisy Page Labels

	Experiments
	Metrics
	Datasets
	Evaluation on Wikipedia List Pages
	Evaluation on Wikipedia Page Listings
	Ablation Study
	Subject Entity Extraction over Wikipedia

	Conclusion

	NASTyLinker: NIL-Aware Entity Linker
	Motivation
	Related Work
	Task Formulation
	NASTyLinker: NIL-Aware and Scalable EL
	Entity Linking Model
	Cluster Initialization
	Cluster Conflict Resolution

	Experiments
	Datasets
	Metrics
	Evaluated Approaches
	Entity Linking Performance
	Linking Entities in Wikipedia Listings

	Conclusion

	Information Extraction from Co-Occurring Similar Entities
	Motivation
	Related Work
	Knowledge Graph Completion from Listings
	Exploiting the Context of Listings
	Rule-based Knowledge Graph Completion

	Information Extraction From Co-Occurrences
	Task Formulation
	Learning Descriptive Rules for Listings
	Quality Metrics for Rules

	Exploiting Co-Occurrences in Wikipedia
	Approach Overview
	Data Corpus
	Subject Entity Discovery
	Descriptive Rule Mining
	Assertion Generation and Filtering

	Evaluation
	Evaluation Procedure
	Type and Relation Extraction
	Novel Entities
	Error Analysis

	Conclusion

	IV Knowledge Graph Evaluation and Usage
	KGrEaT: Evaluating Knowledge Graphs via Downstream Tasks
	Motivation
	Framework
	Purpose and Limitations
	Design
	Preprocessing Stage
	Mapping Stage
	Task Stage

	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion

	CaLiGraph: Statistics, Evaluation and Usage
	Description
	Purpose and Coverage
	Vocabulary

	Extraction Procedure
	Data Sources
	Provenance
	Stability
	Sustainability

	Usage
	Access
	Use Cases

	Statistics
	General Metrics
	Contents

	Data Quality
	Metadata
	Five Star Rating
	Class and Instance Data

	Evaluation via Downstream Tasks
	Experimental Setup
	Results and Discussion

	Conclusion

	V Conclusion and Outlook
	Summary
	Limitations and Future Work
	Limitations
	Future Work

	Bibliography
	Data Sources
	Data Sources for Knowledge Graph Comparison
	DBpedia
	YAGO
	Wikidata
	BabelNet
	NELL
	OpenCyc
	VoldemortKG

	Data Sources for KGrEaT
	DBpedia
	Wikidata
	DBkWik
	CaLiGraph

	Experimental Details for KGrEaT
	Results for General-Purpose Knowledge Graphs
	Results for CaLiGraph

