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Preface

Good walkers leave no track.
Good talkers don’t stammer.
Good counters don’t use their fingers.
The best door’s unlocked and
unopened.
The best knot’s not in a rope and
can’t be untied.

Tao Te Ching, Book I, Verse 27
Lao Tzu

(Adapted by Ursula K. Le Guin)

This dissertation collects three works developed on the broad topic of time series analysis, with a
specific focus on machine learning, non- and semi-parametric methods, and regularization. In par-
ticular, the discussion will take an econometric perspective with respect to the three key problems
of estimation, forecasting and inference.

A quite important thing to note is the fact that until the mid-2010s there was somewhat of a
chasm between machine (statistical) learning1 (ML) and econometrics (Stapleford, 2021). This is
somewhat natural: most economic data has historically been (and still often is) costly to obtain,2

therefore a practical desire or need to sieve through Big Data has emerged only relatively recently.
Moreover, theoretical analysis of many ML techniques simply lags behind empirical implementation
due to how comparably cheaper and easier it is for most researchers to gain access to ever-improving
computer hardware and software. However, in the past few years there has been a growing push
towards marrying empirically successful learning techniques with the theoretical rigor of economet-
ric and statistical analysis. Early reticence and subsequent enthusiasm can thus be read as normal
tides within a field (economics) which – as many others in the social and natural sciences alike –
may come across as quite conservative in its methods, yet also rather intent in keeping up with
broader trends. Indeed, what economists and econometricians most often demand are specific con-
ceptual, statistical, and empirical guarantees, which ensure that a given methodological approach is
able to effectively and correctly inform policy-making. In the vast majority of interesting settings,
such guarantees are not trivial to derive. The contents of this dissertation fall within this context
and attempt to bridge the gap between learning ideas and econometric theory and practice, with
a specific focus on data that has a prominent time structure.

Chapter 1 develops a new ML approach to forecast economic time series – focusing on US GDP

1Intended here as a subject with specific and often rather distinct characteristics within the broader fields of both
computer science and statistics.

2Macroeconomic data is, in fact, the prime example of “expensive” economic data to collect, since by definition
it is a byproduct of the massive accounting, financial and actuarial work done by private and public institutions.

xi



xii PREFACE

growth – within an environment consisting on many series with observations sampled at different
frequencies. We introduce a method that is based on a reservoir computing approach, which,
broadly speaking, leverages the universal approximation properties of nonlinear state-space models
with random coefficients matrices. Our proposed scheme is computationally efficient, empirically
effective – reaching or surpassing state-of-the-art forecasting performance – and straightforward to
implement even when there are many different data frequencies.

Chapter 2 deals instead with the important question of regularization in the estimation of linear
time series. Vector autoregressive models (VARs) are a fundamental benchmark and foundational
analytical tool of modern econometrics. Yet, even in moderate data environments with a few
dozen series, estimation of VARs can be severely impacted by efficiency issues – that is, too many
parameters need to be recovered compared to the sample size. This is true even in settings that do
not fall within the category of high-dimensional processes. Drawing a comparison with Bayesian
methods, I propose to apply anisotropic ridge regression as an estimation procedure in order to
effectively exploit prior information or beliefs on the structure of the VAR model. The theory for
inference on impulse responses functions and cross-validation is developed, and in simulations I find
that the trade-off of ridge penalization can be positive whenever one is correctly informed about
the nature of the underlying data generating process.

Finally, in Chapter 3 I provide a semi-nonparametric approach for the estimation of impulse
responses og nonlinear autoregressive models. Impulse response functions (IRFs) are widely stud-
ied objects in macroeconometrics, because they quantify the response of a model economy to an
unforeseen shock. For example, central banks are often interested in studying the potential effects
of credibly exogenous changes in monetary policy over short and long horizons. If one also wants
to incorporate nonlinear relationships in a model, I prove that estimating the linear and nonlinear
(functional) autoregressive coefficients with a semi-nonparametric series approach is a uniformly
consistent strategy. In turn, this allows the constructions asymptotically consistent nonlinear IRF
estimates – meaning that IRFs can be correctly recovered in large samples. The empirical appli-
cations I provide showcase the potential impact of nonlinear IRFs on policy: comparing pointwise
linear and nonlinear estimates suggest that linear models can underestimate to varying degrees the
negative effects of contractionary monetary policy. This, in turn, provides evidence that proper
estimation of nonlinear interactions may lead to better quantitative analysis of macroeconomic
dynamics.



Chapter 1

Reservoir Computing for Macroeconomic
Forecasting with Mixed Frequency Data

Joint with Petros Dellaportas, Lyudmila Grigoryeva, Marcel Hirt, Sophie van Huellen,
and Juan-Pablo Ortega.

1.1 Introduction

The availability of timely and accurate forecasts of key macroeconomic variables is of crucial impor-
tance to economic policymakers, businesses, and the banking sector alike. Fundamental macroeco-
nomic figures, such as GDP growth, become available at low frequency with a considerable time lag
and are subject to various rounds of revisions after their release. This is particularly problematic
in a fast-changing and uncertain economic environment, as experienced during the Great Recession
of 2007-2008 (Hindrayanto et al. 2016) and the recent pandemic (Buell et al. 2021, Huber et al.
2021). However, a large number of the potentially predictive financial market (and other macroe-
conomic) indicators are available at a daily or even higher frequency (Andreou et al. 2013). The
desire to utilize such high-frequency data for macroeconomic forecasting has led to the exploration
of techniques that can deal with large-scale datasets and series with unequal release periods (see
Borio 2011, 2013, Morley 2015; we also refer the reader to Fuleky 2020a for more details regard-
ing high-dimensional data and to Armesto et al. 2010 and Bańbura et al. 2013 for a review on
mixed-frequency data).

We contribute to the existing literature by proposing a new macroeconomic forecasting frame-
work that utilizes high-dimensional and mixed-frequency input data, the Multi-Frequency Echo
State Network (MFESN). The MFESN originates from a machine learning paradigm called Reser-
voir Computing (RC). RC is a family of learning models that take advantage of the information
processing capabilities of complex dynamical systems (see Maass et al. 2002, Legenstein and Maass
2007, Crutchfield et al. 2010, and Lukoševičius and Jaeger 2009, Tanaka et al. 2019 for reviews).
Generally speaking, RC is a versatile class of recurrent neural network (RNN) models (see Salehine-
jad et al. (2017) for a detailed survey). Although conventional RNNs are well-suited for handling
sequence data and dynamic problems, estimating their weights during the training phase is inher-
ently difficult (Pascanu et al. 2013, Doya 1992). Reservoir networks stand out due to the fact that
their inner weights can be randomly generated and fixed, and only the output (readout) layer weights
are subject to estimation (supervised training). Echo State Network (ESN) is one of the most pop-
ular instances of RC models with provable universality, generalization properties (see Grigoryeva

1



2 CHAPTER 1. RESERVOIR MACROECONOMIC FORECASTING

and Ortega 2018b,a, 2019, Gonon et al. 2020b, 2023a, Gonon and Ortega 2021, and references
therein for more details), and excellent performance in forecasting, classification, and learning of
dynamical systems (see Hart et al. 2021, Grigoryeva et al. 2021). While conventional RNNs have
been adopted for macroeconomic forecasting in a few instances (see, for example, Paranhos 2021),
to the best of our knowledge, we are the first to explore easily-trainable reservoir models in this
context.

Our main contribution is three-fold. First, inspired by the remarkable empirical success of
ESNs in prediction tasks, we propose the so-called Multi-Frequency Echo State Network (MFESN)
framework, which allows multistep forecasting of the target variable at lower or the same frequencies
as those of the input series. Second, we introduce two different approaches to predicting within the
MFESN framework, namely Single-Reservoir MFESN (S-MFESN) and Multi-Reservoir MFESN
(M-MFESN). S-MFESN is determined by modifying the ESN architecture to accommodate input
and target variables of mixed frequencies. In M-MFESN, several Echo State Networks are adopted
to handle input time series, each ESN corresponding to a group of input variables quoted at
one given frequency. Finally, our third contribution consists of an extensive empirical comparative
analysis of the forecasting capability of the proposed approaches in a concrete task of predicting the
quarterly U.S. output growth. We inspect the forecasting capabilities of the MFESN framework
compared to two well-established benchmarks widely used in the macroeconomic literature and
among practitioners and show its empirical superiority in several thoroughly conducted forecasting
exercises. Moreover, as a bi-product, we propose a new data aggregation scheme that allows
bridging these two standard forecasting approaches, which is not available in the literature.

In our empirical study, we evaluate the multistep forecasting performance of the MFESN frame-
work targeting quarterly U.S. output growth – Gross Domestic Product (GDP) growth – and uti-
lizing a small- and medium-sized set of monthly and daily financial and macroeconomic variables.
We compare the MFESN approach against two state-of-the-art methods, MIDAS and DFM, known
for their ability to incorporate data of heterogeneous frequencies and utilize high-dimensional data
inputs. The MIxed DAta Sampling (MIDAS) model developed in Ghysels et al. (2004, 2007) has
been adopted widely for macroeconomic forecasting with mixed-frequency data (see for instance
Clements and Galvão 2008, 2009, Ghysels and Wright 2009, Francis et al. 2011, Monteforte and
Moretti 2012, Galvão and Marcellino 2010, Galvão 2013, Andreou et al. 2013, Ghysels 2016, Jardet
and Meunier 2022). However, MIDAS is prone to curse-of-dimensionality problems and performs
poorly when the set of predictors is of even moderate size (Clements and Galvão 2009, Kostrov
2021) due to optimization-related issues. Recently, some attempts have been made in the literature
to overcome these issues by employing variable selection techniques under some additional assump-
tions. For instance, Babii et al. (2022) proposes the MIDAS projection approach, which is more
amenable to high-dimensional data environments under the assumption of sparsity. Even with these
improvements, practical high-dimensional implementations of MIDAS remain challenging. This is
in part caused by the ragged edges of the “raw” macroeconomic data, incomplete observations,
and uneven sampling frequencies. The relative inflexibility of MIDAS regression lag specifications
makes integrating daily and weekly data at true calendar frequencies (that is, without interpolation
or aggregation) very complex. State-space models effectively mitigate these issues.

A strong state-of-the-art state-space competitor for our MFESN framework is the Dynamic
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Factor Model (DFM), which has been first introduced in Geweke (1977) and Sargent et al. (1977).
DFMs have become the standard workhorse for macroeconomic nowcasting and prediction (for more
details, we refer the reader to Stock and Watson 1996, 2002, 2016, Giannone et al. 2008, Bańbura
and Rünstler 2011, Chauvet et al. 2015, Hindrayanto et al. 2016). Conventional DFMs for data
of multiple sampling frequencies are linear state-space models with a latent low-frequency process
of interest and high-dimensional input time series. Although their linear structure lends itself to
inference with likelihood-based methods and Kalman filtering, using DFMs in the high-dimensional
setting is limited by the associated computational effort. For Gaussian state-space models, some
of these issues are proposed to be handled with a more compact matrix representation as in Delle
Monache and Petrella (2019). Still, in the particular settings of nowcasting and forecasting of GDP
growth, the computational complexity is one of the main reasons why DFMs are rarely used with
daily input series, see Bańbura et al. (2013) for a detailed review and Aruoba et al. (2009) for a
mixed-frequency DFM wherein the latent factor process is updated daily, with the highest input
frequency being weekly. We address these numerical difficulties using novel Python libraries for
auto-differentiation and using GPUs for parallel computing, which allow the estimation of DFMs
even in instances of high-frequency input observations. Further, to adapt the DFM to mixed
frequency tasks, we propose a new DFM aggregation scheme with Almon polynomial structure
that bridges MIDAS and the DFM for our forecasting comparison. To our knowledge, we are
the first to present this aggregation scheme which reduces the number of parameters subject to
estimation. In contrast, previous DFM – such as in Mariano and Murasawa (2003), Bańbura and
Rünstler (2011), Camacho and Pérez-Quirós (2010), Frale et al. (2011) – commonly assume a fixed
aggregation scheme a-priori depending on whether the macroeconomic variable is a flow or stock
variable.

To carry out a fair comparison of our MFESN framework with the state-of-the-art MIDAS and
DFM models, we designed two model evaluation settings that differ regarding whether the financial
crisis of 2007-2008 is included in the estimation period or not. In the first forecasting setting, all
the competing models are estimated using the data from January 1st, 1990, until December 31st,
2007. Their performance in the forecasting into and after the financial crisis period is assessed.
In the second evaluation setting, fitting is done with data largely encompassing the crisis period,
again from January 1st, 1990 but now up to December 31st, 2011. In both cases, the forecasting
(testing) period spans time up to the COVID-19 pandemic events, namely the fourth quarter of
2019. Along with the two state-of-the-art DFM and MIDAS models, we use the unconditional mean
of the sample as a baseline benchmark against the reservoir models. We find that our ESN-inspired
models attain comparable or much better performance than DFMs at a much lower computational
cost, even for a relatively long forecasting horizon of four quarters. Additionally, ESNs do not
suffer from curse-of-dimensionality problems, which are known to be pervasive for MIDAS models
and hence consistently outperform them in a number of forecasting exercises.

The remainder of the paper is structured as follows. Section 1.2 presents reservoir models
and discusses their advantages, as well as estimation, hyperparameter tuning, penalization and
nonlinear multistep forecasting. In Section 1.3, we introduce the Multi-Frequency Echo State
Network (MFESN) framework, propose the single-reservoir and multi-reservoir MFESN models,
and spell out their defining features. Section 1.4 contains the empirical study of the comparative
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GDP forecasting performance of MFESNs with respect to the set of benchmark models. We assess
one-step and multistep forecasting results in several setups, with a small and a medium-sized set of
regressors. We fit models with data before and after the 2007-08 financial crisis, and with different
estimation windows. Section 1.5 concludes and discusses future research avenues and applications.
Finally, the Appendix contains information regarding data sources, forecasting figures and formal
details regarding our forecasting setups. Finally, the appendices give detailed information on the
implementation of all models, robustness checks and provide additional figures.

1.1.1 Notation

We use the symbol N (respectively, N+) to denote the set of natural numbers with the zero element
included (respectively, excluded). Z denotes the set of all integers. We use R (respectively, R+)
to denote the set of all (respectively, positive excluding zero element) reals. We abbreviate the set
[n] = {1, . . . , n}, with n ∈ N+.

Vector notation. A column vector is denoted by a bold lowercase symbol like r and r⊤ in-
dicates its transpose. Given a vector v ∈ Rn, we denote its entries by vi, with i ∈ {1, . . . , n}; we
also write v = (vi)i∈{1,...,n}. The symbols in,0n ∈ Rn stand for the vectors of length n consisting
of ones and of zeros, respectively. Additionally, given n ∈ N+, e(i)

n ∈ Rn, i ∈ {1, . . . , n} denotes the
canonical unit vector of length n determined by e(i)

n = (δij)j∈{1,...,n}. For any v ∈ Rn, ∥v∥ denotes
its Euclidean norm.

Matrix notation. We denote by Mn,m the space of real n×m matrices with m,n ∈ N+. When
n = m, we use the symbols Mn and Dn to refer to the space of square and diagonal matrices of
order n, respectively. Given a matrix A ∈ Mn,m, we denote its components by Aij and we write
A = (Aij), with i ∈ {1, . . . , n}, j ∈ {1, . . .m}. The symbol In ∈ Dn denotes the identity matrix,
and the symbol On stands for the zero matrix of dimension n. For any A ∈Mn,m, ∥A∥2 denotes its
matrix norm induced by the Euclidean norms in Rm and Rn, and ∥A∥2 = σmax(A), with σmax(A)
the largest singular value of A.

Input and target stochastic processes. We fix a probability space (Ω,A,P) on which all
random variables are defined. The input and target signals are modeled by discrete-time stochastic
processes z = (zt)t∈Z and y = (yt)t∈Z taking values in RK and RJ , respectively. Moreover, we
write z(ω) = (zt(ω))t∈Z and y(ω) = (yt(ω))t∈Z for each outcome ω ∈ Ω to denote the realizations
or sample paths of z and y, respectively. Since z can be seen as a random sequence in RK , we
write interchangeably z : Z× Ω −→ RK and z : Ω −→ (RK)Z. The same applies to the analogous
assignments involving y.

Temporal notation. Let (ut)t∈I , ut ∈ R be a (scalar) time series with I some index set (in this
paper it will always be discrete). Time series (ut)t∈I will be denoted just as (ut) when the index set
I is specified by the context. We write us1:s2 = (ut)t∈{s1,...,s2} for integers s1 < s2 and time series
(ut). To define the concept of the sampling frequency, we must introduce an additional series, call
it (vs)s∈J . The time index J is not the same as I. We assume that ut is sampled at the coarsest
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rate; equivalently, it has the lowest sampling frequency, which we call in what follows the reference
frequency. In practice, this means that in the same window of time, ut will be observed at most as
frequently as vs. The case when the sampling frequency of vs is strictly higher than that of ut is of
primary interest.

We assume that all sampling happens in instants that are evenly spaced in time. Series other
than the reference one and with higher sampling frequencies are given an additional time index, the
tempo index, written t, ∗|κ , where κ is the frequency multiplier. Our tempo notation assumes that
low- and high-frequency series are sampled with temporal alignment: this means that the reference
time index t and the tempo index ∗|κ have the following properties.

Definition 1.1.1. A reference time index t ∈ N and a tempo index ∗|κ for a given high-frequency
κ ∈ N+ are such that the following relations hold

(i) t, 0|κ ≡ t

(ii) t, κ|κ ≡ t+ 1

(iii) t, s|κ ≡ t+ ⌊s/κ⌋, (smodκ)|κ for ∀s ∈ N

(iv) t,−s|κ ≡ (t− 1)− ⌊s/κ⌋, κ− (smodκ)|κ for ∀s ∈ N,

where mod is the modulo operation and for any x ∈ R the floor operator ⌊x⌋ outputs the greatest
z ∈ N such that z ≤ x.

Since we can exchange “frequency” and “frequency multiplier” in the tempo notation, we will
make no distinction between the two terms in what follows.

Forecasting schemes. The theoretical setup and design of the forecasting exercises conducted
in this paper are carefully discussed in Appendix 1.B. There, we formally distinguish between
the so-called high-frequency and low-frequecy forecasting in the presence of mixed-frequency data.
For more details regarding time series forecasting with economic data, we also refer the reader
to Clements and Galvão (2008, 2009), Chen and Ghysels (2010), Jardet and Meunier (2022) and
references therein.

1.2 Reservoir Models

In this section, we introduce reservoir computing models (Jaeger and Haas, 2004) for forecasting of
stochastic time series of a single frequency. We focus on a family of RC systems called Echo State
Networks (ESNs), which have been successfully applied to forecasting of deterministic dynamical
systems (Pathak et al., 2017, 2018, Wikner et al., 2021, Arcomano et al., 2022). In the following,
we discuss the linear estimation of ESN model parameters, the hyperparameters tuning, the loss
penalty selection, and how to carry out nonlinear forecasting.
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1.2.1 Reservoir Models

Reservoir computing (RC) models are nonlinear state-space systems that, in the forecasting setting,
are defined by the following equations:

xt = F (xt−1, zt), (1.1)

yt+1 = hθ(xt) + ϵt, (1.2)

for all t ∈ Z, where the state map F : RN ×RK → RN , N,K ∈ N+ is called also the reservoir map,
and the observation map hθ : RN → RJ , J ∈ N+ is referred to as the readout layer, parametrized
by θ ∈ Θ. Sequences (zt)t∈Z, zt ∈ RK , and (yt)t∈Z, yt ∈ RJ , stand for the input and the output
(target) of the system, respectively, and (xt)t∈Z, xt ∈ RN , are the associated reservoir states. In
(1.2), (ϵt)t∈Z are J-dimensional independent zero-mean innovations with variance σ2

ϵ IJ that are
also independent of xt across all t. Importantly, many families of RC systems have been proven to
have universal approximation properties for Lp-integrable stochastic processes (Gonon and Ortega,
2020), and estimation and generalization error bounds have been established in Gonon et al. (2020b,
2023a).

In the case of an ESN model, the state and observation equations (1.1)-(1.2) are given by

xt = αxt−1 + (1− α)σ(Axt−1 + Czt + ζ) (1.3)

yt+1 = a+W⊤xt + ϵt, (1.4)

where A ∈ MN is the reservoir matrix, C ∈ MN,K is the input matrix, ζ ∈ RN is the input shift,
α ∈ [0, 1) is the leak rate and W ∈ MN,J are the readout coefficients. The map σ : R → R
is an activation function applied elementwise, which in what follows we take to be the hyperbolic
tangent. We refer to A, C, ζ as state parameters that are randomly generated. Notice that if A = 0
and α = 0 the state equation reduces to a nonlinear regression model with random coefficients (or
a feedforward neural network with random weights) which is usually referred to as an Extreme
Learning Machine (Cao et al., 2018, Gonon et al., 2023a).

Properties of ESN models. We focus on ESNs with the so-called echo state property (ESP),
that is, when for any z ∈ (RK)Z there exists a unique y ∈ (RJ)Z such that (1.3)-(1.4) hold (see
Grigoryeva and Ortega (2018b,a, 2019) and references therein). One can require that the ESP
holds only on the level of the state equation, that is for any input sequence z ∈ (RK)Z there
exists a unique state sequence x ∈ (RN )Z such that (1.3) holds. The result in Corollary 3.2 in
Grigoryeva and Ortega (2018a), which is also valid for the case of ESNs with the leak rate, shows
that the sufficient condition of the ESP associated with (1.3) to hold is ∥A∥2 Lσ < 1 where Lσ

is the Lipschitz constant of the activation function σ (in our setting, Ltanh = 1). This sufficient
ESP condition has been extensively studied in the ESN literature; see Jaeger (2010), Jaeger and
Haas (2004), Buehner and Young (2006), Bai Zhang et al. (2012), Yildiz et al. (2012), Wainrib
and Galtier (2016), Manjunath and Jaeger (2013) for more details. The result in Corollary 3.2 in
Grigoryeva and Ortega (2018a) also shows that this condition implies the so-called fading memory
property (Boyd and Chua, 1985), which from the practical point of view means that the impact of
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initial x0 is negligible for sufficiently long samples.
In the stochastic setting, part (i) of Proposition 4.2 in Grigoryeva and Ortega (2021) proves

that the condition ∥A∥2 < 1 guarantees variance stationarity of the states associated with variance
stationary inputs. Moreover, Manjunath and Ortega (2023) show that this condition implies the
so-called stochastic state contractivity ensuring a stochastic analog of the ESP. Notably, violations
of ∥A∥2 < 1 do not have detrimental implications for the performance of ESNs in various learning
tasks, as reported in multiple empirical studies.

Computational advantages of ESNs. We emphasize that the core computational advantage
of ESNs is that state parameters A, C, and ζ are randomly sampled and need not be estimated.
Additionally, since observation equation (1.4) is linear in xt, coefficients W can be estimated
via (penalized) least squares regression, as we explain in the following subsection. The choice of
properties of state parameters determines memory properties and forecasting performance of linear
(Ballarin et al., 2023) and nonlinear ESNs (Gonon et al., 2020a) as we discuss in Section 1.2.2.

1.2.2 Estimation

We now discuss in detail the estimation of coefficients W in (1.4). Let a sample (zt,yt)T
t=1 of

input and target pairs be available. Given an initial state x0, the reservoir states can be computed
iteratively according to state equation (1.3) as:

x1 = αx0 + (1− α)σ(Ax0 + Cz1 + ζ), . . . , xT = αxT −1 + (1− α)σ(AxT −1 + CzT + ζ).

Collect the states and the targets into the state and the observation matrices, respectively, as

X = (x1,x2, . . . ,xT −1)⊤ ∈MT −1,N , Y = (y2,y3, . . . ,yT )⊤ ∈MT −1,J .

Consider the ridge regression estimator for W given by

Ŵλ := arg min
W ∈RN

T −1∑
t=1

∥∥∥yt+1 −W⊤xt

∥∥∥2

2
+ λ∥W∥22 =

(
X⊤X + λ((T − 1) IN )

)−1
X⊤Y, (1.5)

where λ ∈ R+ is the ridge penalty strength. When λ → 0, the estimator Ŵλ converges to the
minimum-norm least squares solution (Ishwaran and Rao, 2014). In applications, ridge regression
is the most commonly used estimation method applied to ESNs, as it provides a straightforward
regularization scheme both when N < T and N ≥ T . This is especially important since in practice
the ESN state dimension is often chosen to be 103–104 (see for example Pathak et al. (2017)).
Additionally, a virtue of the ridge regression problem is the fact that the associated objective
function is convex and, hence, it can be efficiently solved using stochastic gradient descent even when
min{N,T} is large and one decides against the closed-form solution (1.5). Finally, as mentioned in
the properties of reservoir systems in Subsection 1.2.1, we notice that in the presence of the fading
memory property, the estimation does not depend significantly on the choice of x0 as sample size
T increases.

We refer to (1.5) as the fixed-parameter estimator. In our empirical analyses, we also implement
expanding and rolling window estimation strategies which update Ŵλ as new observations become
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available (we refer the reader to Appendix 1.C.1 for details). In the rest of the paper, for brevity,
we use Ŵ to denote the ridge estimator of coefficients W assuming that the appropriate choice of
the penalty strength λ is made for each concrete situation.

Hyperparameter Tuning

As discussed in Subsection 1.2.1, the performance of ESNs depends on the choice of randomly
drawn state parameters A, C, ζ. Much work has been put into determining optimal specifications
(see for example Rodan and Tino 2011, Goudarzi et al. 2016, Farkas et al. 2016, Grigoryeva et al.
2015, 2016, Gonon et al. 2020a). We construct these parameters by first sampling Ã, C̃ and ζ̃ from
appropriately chosen laws. Then, we normalize each element of the tuple such that

A = Ã/ρ(Ã), C = C̃/
∥∥∥C̃∥∥∥, ζ = ζ̃/

∥∥∥ζ̃∥∥∥, (1.6)

where ρ(Ã) denotes the spectral radius of Ã. As discussed in the properties of reservoir systems
in Subsection 1.2.1, the sufficient condition of the ESP is ∥A∥2 < 1. By this normalizing choice,
we allow for some more flexibility in terms of marginal violations of the non-sharp ESP constraint.
Finally, defining A = ρA, C = γC, and ζ = ωζ, we can rewrite state equation (1.3) as

xt = αxt−1 + (1− α)σ(ρAxt−1 + γCzt + ωζ). (1.7)

We refer to tuple φ := (α, ρ, γ, ω) as the hyperparameters of the ESN. Specifically, α ∈ [0, 1) is
the leak rate and ρ ∈ R+ is called the spectral radius of the reservoir matrix, γ ∈ R+ is the
input scaling, and ω ∈ R+ is the shift scaling. The choice of the hyperparameters determines
the properties of the state map. For simplicity, in Section 1.4, we choose the hyperparameters
based on the empirical ESN literature. In Appendix 1.C.2, we also propose a general though more
computationally intensive procedure to select hyperparameters in a data-driven way that could be
interesting to practitioners.

Penalty Selection

To apply ridge estimator (1.5), it is necessary to first select a penalty λ. Cross-validation (CV)
is a common selection procedure for regularization strength in penalized methods such as ridge,
LASSO, and Elastic Net. CV techniques have also been applied in the time series context (Kock
et al., 2020, Ballarin, 2023) with their validity established in Bergmeir et al. (2018a).

In our empirical study, to account for temporal dependence, we use a sequential CV strategy
with ten validation folds. More precisely, we reserve the last 50 observations for validation and all
other previous data points for training. The first fold consists of the first five observations out of
the validation set, and the model is fitted using all training data. The following validation fold
comprises the next five subsequent validation observations while the training set is expanded by
five data points (from the previous fold). This procedure is repeated ten times and the CV loss
is the average of the one-step-ahead forecast MSE on each fold. In expanding or rolling window
setups, we rerun the CV penalty selection to ensure that estimated ESN coefficients do not induce
oversmoothing. We refer the reader to Appendix 1.C.3 for additional details.
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1.2.3 Relation to Nonparametric Regression

Together with hyperparameters and penalty strength selection, the choice of the state dimension
N is a key ingredient of an ESN model. A large state space generally implies better approximation
bounds (Gonon et al., 2023a,b). Although it is customary in the empirical literature to take N
as large as possible (Lukoševičius, 2012), some recent literature discusses both the statistical risk
bounds and the approximation-risk trade-off bounds for various RC families (see Gonon et al. 2020b
and Gonon et al. 2023b for details). Under simplified assumptions that α = 0 and ρ = 0 in (1.7),
ESNs have a natural connection to random-weights neural networks (Cao et al., 2018) and random
projection regression (Maillard and Munos, 2012), and are thus comparable to nonparametric sieve
methods. If the data were independently sampled, known results on sieve estimation would require
that at most N/T = o(1) up to logarithmic factors for consistency (Belloni et al., 2015a). Chen
and Christensen (2015) have extended this result to β-mixing data with B-spline and wavelet
sieves. Sieve rates appear to suggest that choosing N = O(T ) in echo state networks could lead to
nontrivial forecasting bias owing to poor approximation properties. Unfortunately, this comparison
relies on neglecting the dynamic component of the ESN model, and as such it is only qualitative.
It is, therefore, an important topic for future research.

A different but related problem is the potential degradation of forecasting performance when a
model is at the interpolation threshold in the overparametrized regime, N ≥ T . Ridge regression is
also commonly applied to address generalization concerns in statistical learning (see Hastie et al.
(2009)). Recent work has studied more in-depth the link between regularization and generaliza-
tion: Hastie et al. (2022a) show that “ridgeless", that is interpolation, solutions can be optimal in
some scenarios. However, in our empirical evaluations in Section 1.4, cross-validation consistently
selects non-zero ridge penalties, confirming that ridge penalization plays an important role in ESN
forecasting performance.

1.2.4 ESN Forecasting

We are primarily interested in using ESN models to construct conditional forecasts of target vari-
ables. Given that the conditional mean is the best mean square error estimator for h-step-ahead
target yt+h, h ≥ 1, our main focus is approximating

ŷt+h|t := E [yt+h|x0:t, z0:t] .

The case h = 1 is trivial, since the ESN model is estimated by regressing yt+1 on state xt, and
thus we can set ỹt+1|t = Ŵ⊤xt. However, when h > 1 the nonlinear state dynamics precludes a
direct computation of the conditional mean. This is in contrast to linear models like VARMAs or
DFMs, where the assumption of linearity implies that conditional expectations reduce to simple
matrix-vector operations. In particular, linear models are such that the variance (and any other
higher-order moments) of the noise term do not impact the conditional mean forecast.

Let pθ(xt|xt−1, zt) and gθ(yt+1|xt) be the state transition and observation densities, respec-
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tively. Then, for h > 1,

ŷt+h|t =
∫
yt+h gθ(yt+h|xt+h−1)

h−1∏
j=1

pθ(xt+j |xt+j−1, zt+j)ν(zt+j |xt+j−1)dzt+jdxt+jdyt+h, (1.8)

where ν(zt+j |xt+j−1) is the conditional density of inputs. Here, we introduce the additional as-
sumption that xt+j−1 is sufficient to condition on past states and inputs, that is

ν(zt+j |xt+j−1) ≡ ν(zt+j |x0:t+j−1, z0:t+j−1). (1.9)

Some elements in the expectation integral are not directly available. Specifically, while an ESN
explicitly models both pθ(xt|xt−1, zt) and gθ(yt+1|xt), the density ν(zt+j |xt+j−1) is unavailable.

In the remaining part of this subsection, we present a novel ESN-based approach to forecasting
the target variable. Our idea is to enrich the ESN model with an auxiliary observation equation
for the input covariates. As we demonstrate in Section 1.4, our proposed method shows superior
performance with respect to the standard state-of-the-art benchmarks.

Multi-step Forecasting of Targets via Iterative Forecasting of Inputs

In general, we are interested in constructing forecasts of target variables that are not the same as
the model inputs. To do so, we resolve the issue of the intractability of (1.8) while simultaneously
capitalizing on the available results using ESNs in the forecasting of dynamical systems. More
explicitly, we add to the ESN specification (1.3)-(1.4) an equation that allows sidestepping modeling
the density ν directly, thus making the computation of ŷt+h|t feasible even when h > 1.

Consider the ESN where the reservoir states (xt)t∈Z follow (1.3), while the target sequence is
the same as the input sequence (zt)t∈Z,

xt = αxt−1 + (1− α)σ(Axt−1 + Czt + ζ) (1.10)

zt+1 =W⊤xt + ut+1. (1.11)

Here, we use symbol W for the output coefficients to separate this case from the general ESN
equations (1.3)-(1.4). In (1.11), (ut)t∈Z are K-dimensional independent zero-mean innovations
with variance σ2

uIK that are also independent of xt across all t.
In this case, the reservoir map F (xt−1, zt) in (1.1) is determined by (1.10), and it is possible

to re-feed the forecasted variables back into the state equation as inputs. This yields the following
state recursion:

xt = F (xt−1,W⊤xt−1 + ut) =: Gθ(xt−1,ut),

where the subscript θ denotes the dependence on the model coefficients. In the reservoir computing
literature, regimes, where the ESN state equation is iteratively fed with the model outputs, are
called “autonomous” (Gonon et al., 2020a). They are widely and successfully utilized for the
prediction of deterministic dynamical systems. Indeed, in those instances, provided that the ridge
estimate Ŵ is available from data according to Subsection 1.2.2, the h > 1 steps autonomous state
iteration is given by

F ∗
θ (xt) := αxt + (1− α)σ((A+ CŴ⊤)xt + ζ)
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and
xt+h = F ∗

θ ◦ F ∗
θ ◦ · · · ◦ F ∗

θ︸ ︷︷ ︸
h times

(xt).

Hence one can directly obtain the h-steps ahead predictions of the input time series as zt+h =
Ŵ⊤xt+h−1.

In the case of stochastic target variables, assuming (1.9), we notice that for the conditional
forecast of the states, it holds that

x̂t+1|t = E [xt+1|x0:t, z0:t] =
∫
xt pθ(xt|xt−1, zt)ν(zt|xt−1)dzt =

∫
Gθ(xt−1,ut)ϕ(ut)dut, (1.12)

where density ϕ of ut is, again, unavailable. Note that, even under the assumption ut ∼ N (0,Σu),
which is standard in the filtering literature, the presence of nonlinear map Gθ makes the computa-
tion of the forecasts of zt+h a non-straightforward exercise. Nevertheless, this forecast construction
can be readily used when one is interested exclusively in predicting the time series zt.

Whenever the final goal of the exercise is forecasting some other explained variable yt+h h-steps
ahead, additional issues arise. In this case, one needs to compute the conditional expectation in
(1.8) which is intractable even under Gaussian assumptions on the innovations. One option is to
apply particle filtering techniques such as bootstrap sampling or sequential importance sampling
(SIS) to evaluate the expectation (Doucet et al., 2001). We emphasize that the state dimension is
usually chosen to be large, and hence implementing filtering techniques requires some care.

Our approach is to avoid dealing with the nonlinear densities involved in (1.8) with the help of
(1.12) and, instead, to reduce the computation of the conditional expectation ŷt+h|t to a composition
of functions. By the linearity of observation equation (1.4) and the assumption of independence in
the zero-mean noise ϵt+h, we write

ŷt+h|t = W⊤x̂t+h−1|t =
∫
W⊤xt+h−1

h−1∏
j=1

pθ(xt+j |xt+j−1, zt+j)ν(zt+j |xt+j−1)dxt+jdzt+j

and use the approximation

ŷt+h|t ≈ ỹt+h = W⊤ F ∗
θ ◦ F ∗

θ ◦ · · · ◦ F ∗
θ︸ ︷︷ ︸

h−1 times

(xt), (1.13)

which originates from

x̂t|t−1 =
∫
Gθ(xt−1,ut)ϕ(ut)dut ≈ Gθ(xt−1,E[ut]) = F (xt−1,W⊤xt−1) ≡ F ∗

θ (xt−1), (1.14)

where ut is assumed to be zero-mean. The validity of (1.14) itself requires implicit assumptions on
the nature of the distribution of ut, but here we want to keep the analysis of ŷt+h|t to a minimum,
and just use the insights from the dynamical systems ESN literature. We are hence not delving
deeper into alternative approaches to estimate forecasts or, more generally, to compute conditional
expectations of ESN models with stochastic inputs.
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1.3 Multi-Frequency Echo State Models

In this subsection, we construct a broad class of ESN models that can accommodate input and
target time series sampled at distinct sampling frequencies. We call this family of reservoir models
the Multi-Frequency Echo State Networks (MFESNs). The state-space structure of MFESNs is
naturally amenable to the setting of time series with mixed frequencies. Additionally, the prediction
strategy discussed in Section 1.2.4 is straightforward to extend to MFESNs.

We present two groups of MFESN architectures. The first family is based on a single echo
state network architecture and we call these models Single-Reservoir Multi-Frequency Echo State
Networks (S-MFESNs). The second group, referred to as Multi-Reservoir Multi-Frequency Echo
State Networks (M-MFESNs), allows for as many state equations as the number of distinct sampling
frequencies present in the input data.

1.3.1 Single-Reservoir MFESN

Recall that, in the temporal notation of Definition 1.1.1, we reserve t to be the reference time index,
which is also used for the target variable, and all other frequencies will be measured with respect
to the reference frequency.

Consider L collections of different time series. We assume that the lth collection, l ∈ [L],
consists of nl time series that are sampled at a common frequency κl and contain observations
(z(l)

t,s|κl
)t,s with z(l)

t,s|κl
∈ Rnl for all t ∈ Z and s ∈ {0, . . . , κl− 1}. Let κmax = maxl κl be the highest

sampling frequency among the L time series groups and let ql := κmax/κl indicate how low each κl

sampling frequency is with respect to κmax. We can now stack together and repeat the observations
in a way that is consistent with the high-frequency index by defining

zt,s|κmax :=
(
z

(1) ⊤
t,⌊s/q1⌋|κ1

, z
(2) ⊤
t,⌊s/q2⌋|κ2

, . . . , z
(L) ⊤
t,⌊s/qL⌋|κL

)⊤
∈ R

∑L

l=1 nl , s ∈ {0, . . . , κmax − 1},

where for all l ∈ [L], z(l)
0,0|κl

= 0nl
. Thus, it is possible to write a single high-frequency ESN as

xt,s|κmax = αxt,s−1|κmax + (1− α)σ(Axt,s−1|κmax + Czt,s|κmax + ζ), (1.15)

zt,s+1|κmax =W⊤xt,s|κmax + ut,s+1|κmax , (1.16)

where W ∈ M
N,
∑L

l=1 nl
and s > 0. We term this class of MFESN models the Single-Reservoir

Multi-Frequency ESNs (S-MFESNs).
Notice that equations (1.15)-(1.16) of the S-MFESN model prescribe the dynamics at the highest

frequency, κmax. In order to forecast a lower frequency target, we map high-frequency states
xt,s|κmax to low-frequency targets yt+1 ∈ RJ by introducing a state alignment scheme. An aligned
S-MFESN uses the most recent state with respect to the reference time index t to construct the
forecast. More precisely, the state equation of an S-MFESN is iterated κmax times until the state
xt−1,κmax|κmax = xt,0|κmax is obtained and then target yt+1 is forecast with observation equation

yt+1 = W⊤xt,0|κmax + ϵt+1, W ∈MN,J . (1.17)
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Estimation of aligned S-MFESN. Both coefficient matrices W and W can be estimated as
explained in Subsection 1.2.2 under appropriate choices of corresponding penalty strengths. In
particular, in order to obtain Ŵ, the state and the observation matrices in (1.5) are given by

Xκmax = (x1,0|κmax , . . . ,x1,κmax−1|κmax , . . . ,xT −1,0|κmax , . . . ,xT −1,κmax−1|κmax)⊤ ∈M(T −1)κmax−1,N ,

Yκmax = (z1,1|κmax , . . . ,z1,κmax|κmax , . . . ,zT −1,1|κmax , . . . ,zT −1,κmax|κmax)⊤ ∈M(T −1)κmax−1,
∑L

l=1 nl
,

while

X =
(
x1,0|κmax ,x2,0|κmax , . . . ,xT −1,0|κmax

)⊤
∈MT −1,N ,

Y = (y2, . . . ,yT )⊤ ∈MT −1,J ,

are used for the estimation of Ŵ . We note that the state equation (1.15) of S-MFESN can be
initialized by x0,0|κmax , which under the fading memory property is inconsequential for long enough
samples (see the discussion in Subsection 1.2).

Forecasting with aligned S-MFESN. Let Ŵ and Ŵ be the sample estimates of the readout
matrices as explained above. The fitted high-frequency autonomous state transition map associated
with (1.15) is given by

Fκmax(xt,s−1|κmax) := αxt,s−1|κmax + (1− α)σ
(
(A+ CŴ⊤)xt,s−1|κmax + ζ

)
, (1.18)

which, composed with itself exactly κmax times, yields the target-frequency-aligned autonomous
state transition map

F (xt,0|κmax) := Fκmax ◦ Fκmax ◦ · · · ◦ Fκmax︸ ︷︷ ︸
κmax times

(xt,0|κmax). (1.19)

Finally, from (1.13) the h-steps ahead low-frequency forecasts, h ∈ N, can be computed as

ỹT +h|T = Ŵ⊤(F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
h−1 times

(xT,0|κmax)
)
. (1.20)

Figure 1.1 gives a graphical diagram of the 1-step forecasting procedure for an S-MFESN.
Additionally, Figure 1.12 in Appendix 1.J provides a similar diagram for the case of multistep
forecasts.

The following example illustrates this proposed forecasting strategy for the case of quarterly
GDP forecasting using monthly and daily series inputs.

Example 1.3.1. Suppose that we wish to use an aligned S-MFESN model to forecast a quarterly
one-dimensional target (yt) using n(m) monthly and n(d) daily series, (z(m)

t,s|κ1
) and (z(d)

t,s|κ2
), respec-

tively. We adopt the assumption that daily data is released 24 days over each calendar month and
hence κ1 = 3, κ2 = 72 and κmax = 72, while q1 = 24 and q2 = 1. Let t, ∗|72 be the temporal index
with a quarterly reference frequency. The input vector for the S-MFESN state equation consistent
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Figure 1.1: Scheme of a Single-Reservoir MFESN (S-MFESN) model combining input data sampled
at two frequencies with state alignment and estimation for one-step ahead forecasting of the target
series.

with the daily frequency is given by

z
(m,d)
t,s|72 := (z(m)

t,⌊s/24⌋|3
⊤
, z

(d)
t,s|72

⊤
)⊤ ∈ Rn(m)+n(d) with z

(d)
0,0|3 = 0n(d) and z

(m)
0,0|24 = 0n(m) .

The complete S-MFESN model with the state space dimension N can be written as:

x
(m,d)
t,s|72 = αx

(m,d)
t,s−1|72 + (1− α)σ(Ax(m,d)

t,s−1|72 + Cz
(m,d)
t,s|72 + ζ), (1.21)

z
(m,d)
t,s+1|72 =W⊤x

(m,d)
t,s|72 + ut,s+1|72, (1.22)

yt+1 = W⊤x
(m,d)
t,0|κmax

+ ϵt+1, (1.23)

where the state equations (1.21)-(1.22) are run in their own maximum frequency temporal index
s > 0, and only the states xt−1,κmax|κmax = xt,0|κmax are used in the observation equation (1.23).
Provided the input-target pairs sample of length T , the coefficient matrices W ∈ MN,n(m)+n(d) in
(1.22) and W ∈ RN in (1.23) can be estimated via ridge regression as explained above.

From (1.18) the high-frequency autonomous state transition map is given by

F
(m,d)
72 (x(m,d)

t,s−1|72) := αx
(m,d)
t,s−1|72 + (1− α)σ

(
(A+ CŴ⊤)x(m,d)

t,s−1|72 + ζ
)
,

which, composed with itself exactly 72 times, by (1.19) yields the target-frequency-aligned au-
tonomous state transition map

F (m,d)(x(m,d)
t,0|72) := F

(m,d)
72 ◦ F (m,d)

72 · · · ◦ F (m,d)
72︸ ︷︷ ︸

72 times

(x(m,d)
t,0|72).

By applying F (m,d) to state x(m,d)
t,0|72 we iterate the S-MFESN forward in time to provide an estimate

for x(m,d)
t+1,0|72, which can then be linearly projected using Ŵ to yield a forecast for yt+2. For the

target variable, as well as forecasts, we do not use our temporal notation for the sake of compactness
and clarity of exposition. Finally, the quarterly forecasts for h ∈ N can be computed using (1.20)
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as

ỹT +h|T = Ŵ⊤(F (m,d) ◦ F (m,d) ◦ · · · ◦ F (m,d)︸ ︷︷ ︸
h−1 times

(x(m,d)
T,0|72)

)
.

1.3.2 Multi-Reservoir MFESN

Constructing an MFESN with a single reservoir is not necessarily the most effective modeling
strategy. Having more than one reservoir allows more flexible modeling of state dynamics for
different subsets of input variables sampled at common frequencies. For example, suppose quarterly
and monthly data are used as regressors. Our presentation is general enough to accommodate other
types of partitioning of series into the corresponding reservoir models. We leave it to future research
to test other approaches based, for instance, on markets or data types as done in van Huellen et al.
(2020).

Assume again L groups of series with input observations (z(l)
t,s|κl

)t,s with z(l)
t,s|κl

∈ Rnl , l ∈ [L],
for all t ∈ Z and s ∈ {0, . . . , κl− 1} sampled at common frequencies {κ1, . . . , κL}, respectively. For
each of the L groups of input series we define the corresponding ESN model as

x
(l)
t,s|κl

= αlx
(l)
t,s−1|κl

+ (1− αl)σ(Alx
(l)
t,s−1|κl

+ Clz
(l)
t,s|κl

+ ζl), (1.24)

z
(l)
t,s+1|κl

=W⊤
l x

(l)
t,s|κl

+ u(l)
t,s+1|κl

, l ∈ [L], (1.25)

with s > 0, Wl ∈ MNl,nl
with Nl the dimension of the state space. Notice that the time index s

is different for each l according to our temporal notation introduced in Definition 1.1.1 and each
state equation runs at its own frequency κl. The dimensions {N1, N2, . . . , NL} of the state spaces
can be chosen for the L reservoir models individually. Additionally, multiple reservoirs have the
associated hyperparameter tuples {φ1, . . . ,φL} to be tuned. This requires some care whenever one
wants to optimize all hyperparameters jointly. Since there are L reservoir state equations, we call
this class of MFESN models Multi-Reservoir Multi-Frequency ESN (M-MFESN).

Similar to S-MFESN, all L state equations are iterated each κl times respectively until the
states x(l)

t−1,κl|κl
= x

(l)
t,0|κl

are obtained. The aligned M-MFESN observation equation is given by

yt+1 = W⊤xt,L + ϵt+1, with xt,L =


x

(1)
t,0|κ1
...

x
(L)
t,0|κL

 ∈ R
∑L

l=1 Nl , W ∈M∑L

l=1 Nl,J
. (1.26)

Estimation of aligned M-MFESN. The coefficient matrices Wl, l ∈ [L], and W can be
estimated similarly to the case of S-MFESN. The state and observation matrices for the estimation
of Ŵl, l ∈ [L], in (1.5) are constructed as

X(l) = (x(l)
1,0|κl

, . . . ,x
(l)
1,κl−1|κl

, . . . ,x
(l)
T −1,0|κl

, . . . ,x
(l)
T −1,κl−1|κl

)⊤ ∈M(T −1)κl−1,Nl
,

Y (l) = (z(l)
1,1|κl

, . . . ,z
(l)
1,κl|κl

, . . . ,z
(l)
T −1,1|κl

, . . . ,z
(l)
T −1,κl|κl

)⊤ ∈M(T −1)κl−1,nl
,
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while with the notation as in (1.26)

X = (x1,L,x2,L, . . . ,xT −1,L)⊤ ∈M
T −1,

∑L

l=1 Nl
,

Y = (y2, . . . ,yT )⊤ ∈MT −1,J ,

are used for the estimation of Ŵ . Again, the state equations (1.24) of M-MFESN can be started
with x(l)

0,0|κl
= 0Nl

(see Subsection 1.2 for more details).

Forecasting with aligned M-MFESN. Let Ŵ and Ŵl, l ∈ [L], be the sample estimates of
the readout matrices. For any l ∈ [L] the κl-frequency autonomous state transition map is given
by

F (l)
κl

(x(l)
t,s−1|κl

) := αlx
(l)
t,s−1|κl

+ (1− αl)σ
(
(Al + ClŴ⊤

l )x(l)
t,s−1|κl

+ ζl

)
. (1.27)

The target-frequency-aligned autonomous state transition map associated with each frequency l is
hence defined as

F (l)(xt,0|κl
) := F (l)

κl
◦ F (l)

κl
◦ · · · ◦ F (l)

κl︸ ︷︷ ︸
κl times

(x(l)
t,0|κl

). (1.28)

Finally, from (1.13) the h-steps ahead forecasts can be computed as

ỹT +h|T = Ŵ⊤


F (1) ◦ F (1) ◦ · · · ◦ F (1)︸ ︷︷ ︸

h−1 times

(x(1)
T,0|κ1

)

...
F (L) ◦ F (L) ◦ · · · ◦ F (L)︸ ︷︷ ︸

h−1 times

(x(L)
T,0|κL

)

 . (1.29)

In Figure 1.2 we provide a diagram for the case of 1-step ahead forecasting with an aligned
M-MFESN involving regressors of only two frequencies. Figure 1.13 in Appendix 1.J provides a
similar diagram for the case of multistep forecasting.

Example 1.3.2. Similar to Example 1.3.1, we aim to forecast a quarterly target with monthly
and daily series, but this time we use an M-MFESN model. We have to define two independent
state equations, one for monthly and one for daily series; in the observation equations, two states
must be aligned temporally and stacked to form the full set of regressors. The data consists again
of quarterly (yt), n(m) monthly series (z(m)

t,s|3) and n(d) daily series (z(d)
t,s|72).

The aligned M-MFESN model with two reservoirs of dimensions N(m) and N(d), respectively, is
given by

x
(m)
t,s|3 = α1x

(m)
t,s−1|3 + (1− α1)σ(A1x

(m)
t,s−1|3 + C1z

(m)
t,s|3 + ζ1), (1.30)

z
(m)
t,s+1|3 =W⊤

(m)x
(m)
t,s|3 + u(m)

t,s+1|3, (1.31)

x
(d)
t,s|72 = α2x

(d)
t,s−1|72 + (1− α2)σ(A2x

(d)
t,s−1|72 + C2z

(d)
t,s|72 + ζ2), (1.32)

z
(d)
t,s+1|72 =W⊤

(d)x
(d)
t,s|72 + u(d)

t,s+1|72, (1.33)

yt+1 = W⊤

 x
(m)
t,0|3

x
(d)
t,0|72

+ ϵt+1, (1.34)
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Figure 1.2: Scheme of a Multi-Reservoir MFESN (M-MFESN) model combining input data sampled
at two frequencies with state alignment and estimation for one-step ahead forecasting of the target
series.

where s > 0, W(m) ∈ MN(m),n(m) , W(d) ∈ MN(d),n(d) and W ∈ RN(m)+N(d) . Here, the monthly reservoir
(x(m)

t,s|3) has the temporal index of frequency 3, while the daily reservoir (x(d)
t,s|72) of 72; the high-

frequency index s is different for the two models. Notice that in an M-MFESN model it is necessary
to introduce 2 additional observation equations for the states, that is (1.31) and (1.33). Notice that
the state equations are iterated each κl times to collect the states to be aligned in the observation
equation (1.34). Again, the sample-based estimates of coefficient matrices Ŵ(m), Ŵ(d) and Ŵ in
(1.31), (1.32), and in (1.34), respectively, can be obtained via the ridge regression as discussed
above.

Exactly as in Example 1.3.1, using (1.27) we can introduce high-frequency autonomous state
maps F (m)

3 and F
(d)
72 as

F
(m)
3 (x(m)

t,s−1|3) := α1x
(m)
t,s−1|3 + (1− α1)σ

(
(A1 + C1Ŵ⊤

(m))x
(m)
t,s−1|3 + ζ1

)
,

F
(d)
72 (x(d)

t,s−1|72) := α2x
(d)
t,s−1|72 + (1− α2)σ

(
(A2 + C2Ŵ⊤

(d))x
(d)
t,s−1|72 + ζ2

)
,

as well as their target-frequency aligned counterparts F (m) and F (d), by (1.28), as

F (m)(x(m)
t,0|3) := F

(m)
3 ◦ F (m)

3 ◦ F (m)
3︸ ︷︷ ︸

3 times

(x(m)
t,0|3),

F (d)(x(d)
t,0|72) := F

(d)
72 ◦ F

(d)
72 ◦ · · · ◦ F

(d)
72︸ ︷︷ ︸

72 times

(x(d)
t,0|72).

The h-step ahead forecasts can be computed using the approximation in (1.29) as

ỹT +h|T = Ŵ⊤


F (m) ◦ F (m) ◦ · · · ◦ F (m)︸ ︷︷ ︸

h−1 times

(x(m)
T,0|3)

F (d) ◦ F (d) ◦ · · · ◦ F (d)︸ ︷︷ ︸
h−1 times

(x(d)
T,0|72)

 .
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In this case, it is important to note that while both F (m) and F (d) are composed h − 1 times at
step h, the underlying number of autonomous reservoir iterations is different for the monthly and
daily reservoirs, namely 3 and 72, and depends on their own frequencies. This also suggests that
one should take into account the different time dynamics when, for example, tuning M-MFESN
hyperparameters φ(m) and φ(d), as proposed in Appendix 1.C.2.

1.4 Empirical Study

In this section, we compare the forecasting performance of our proposed MFESN to state-of-the-
art benchmarks. We use a combination of macroeconomic and financial data sampled at low and
high-frequency intervals, respectively. Our empirical exercises encompass several setups, with a
small and a medium-sized set of regressors, fitting models with data before and after the 2007-08
crisis, and with fixed, rolling, and expanding estimation windows.

1.4.1 Data

Two sets of predictors of different sizes are compiled: Small-MD with 9 predictors and Medium-MD
with 33 predictors in monthly and daily frequency. The reference frequency is quarterly: this is the
frequency at which the target variable, US GDP growth, is available. Seasonally adjusted quarterly
and monthly data is obtained from the Federal Reserve Bank of St. Louis Monthly (FRED-MD)
and Quarterly (FRED-QD) Databases for Macroeconomic Research (see McCracken and Ng 2016,
2020 for detail). Daily data is obtained from Refinitiv Datastream, a subscription-based data
service. All data is the last revised vintage data. The macroeconomic target and predictors, their
transformations, and availability are provided in full detail in Table 1.9 in Appendix 1.A.

The selection of predictors follows the seminal work by Stock and Watson (1996, 2006) in which
the FRED-MD and FRED-QD data are proposed. Variations of their dataset have been used
profusely in the literature (for example, see Boivin and Ng 2005, Marcellino et al. 2006, Hatzius
et al. 2010). Indicators from ten macroeconomic and financial categories are considered: (1) output
and income, (2) labor market, (3) housing, (4) orders and inventories, (5) price indices, (6) money
and credit, (7) interest rates, (8) exchange rates, (9) equity, and (10) derivatives. The latter five
categories represent financial market conditions and are sourced at daily frequency. The exception
is interest rates, which move relatively slowly and enter as monthly aggregates, available in the
FRED-MD data. We refer to this dataset as Medium-MD. A subset of predictors is selected for
the Small-MD dataset by choosing variables that have been identified as leading indicators in
the empirical literature (Ingenito and Trehan, 1996, Clements and Galvão, 2008, Andreou et al.,
2013, Marsilli, 2014, Ferrara et al., 2014, Carriero et al., 2019, Jardet and Meunier, 2022). Data
availability is an additional criterion, and predictors unavailable before 1990 are not considered.
This excludes the VIX volatility index, which has been identified as a leading indicator in some
studies, for example in Andreou et al. (2013), Jardet and Meunier (2022).

We follow instructions by McCracken and Ng (2016, 2020) on pre-processing macroeconomic
predictors before they are used as input for forecasting. These are mainly differenced for detrend-
ing. We further transform financial predictors to capture market disequilibrium and volatility.
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Disequilibrium indicators, such as interest rate spreads, have been found to be more relevant for
macroeconomic prediction than routine changes captured by differencing (see Borio and Lowe 2002,
Gramlich et al. 2010, Qin et al. 2022). In addition to disequilibrium indicators, realized stock mar-
ket volatility has been found to improve macroeconomic predictions (Chauvet et al., 2015). In the
absence of intraday trading data from the 1990s onward, which prevents us from utilizing con-
ventional daily realized volatility indicators, we extract volatility indicators from daily price series
by fitting a GARCH(1,1) by Bollerslev (1986).1 In addition to volatility of stock and commodity
prices, term structure indicators are used. The term structure is forward-looking, capturing infor-
mation about future demand and supply, and has been found to be a leading predictor of GDP
growth (see for example Hong and Yogo 2012, Kang and Kwon 2020).

The data spans the period January 1st, 1990 to December 31st, 2019.2 We are interested in
evaluating model performance under two stylized settings. First, a researcher fits all models up
until the Great Recession, including data from Q1 1990 to Q4 2007. Second, fitting is done with
data largely encompassing the crisis period, again from Q1 1990 but now up to Q4 2011. In both
cases, the testing sample ranges from the next GDP growth observation after fitting up to Q4 2019.
All exercises exclude the global COVID-19 economic depression, as we consider it as an extreme,
unpredictable event that induces significant structural changes in the underlying macroeconomic
dynamics.3

To avoid having to handle the many edge cases that daily data in its “raw” calendar releases
involves, we use an interpolation approach. We set ex ante the number of working days in any month
to be exactly 24: given that in forecasting the most recent information sets are more relevant, when
interpolating daily data over months with less than calendar 24 observations, we linearly interpolate
the “missing” data starting from a months’ beginning (using the previous months’ last observation).
The choice of 24 as a daily frequency is transparent by noting that this is the closest number to
actual commonly observed data releases, whilst also being a multiple of both 4 (approximate number
of weeks per month) and 6 (upper bound on the number of working days per week).

1.4.2 Models

In this section, we present the set of models that we use throughout our empirical exercises. For
a general overview, Table 1.1 summarizes all models, including hyperparameters. In our analysis,
we compare the competing models based on several performance measures, which we introduce in
Appendix 1.D.

1We include a control scale = 1 to ensure convergence of the optimization algorithm and only include a constant
mean term in the return process for simplicity.

2In the Small-MD dataset experiments we make a small variation and instead include data starting from 1st
January 1975, but only for the initial CV selection of ridge penalties for MFESN models. Our aim is to make sure
that at least for the fixed window estimation strategy – where λ is cross-validated once and only one Ŵ is estimated
– the ridge estimator is robust. In practice, when we compare to expanding and rolling window estimators, where λ
is re-selected at each window, we find that extending the initial CV data window has little impact on out-of-sample
performance.

3In the macroeconomic literature this falls under the category of “natural disaster” events, and should not be
naïvely modeled together with previous observations. In this section, we therefore avoid dealing with post-COVID-19
macroeconomic data altogether.
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Model Name Description Specification

Mean Unconditional mean of target series over es-
timation sample. None

AR(1) Autoregressive model of target series esti-
mated using OLS. None

MIDAS Almon-weighted MIDAS regression, linear
(unconstrained) autoregressive component.

Autoregressive lags: 3
Monthly freq. lags: 9
Daily freq. lags: 30

DFM [A] Stock aggregation, VAR(1) factor process.
Factors: 5 for Small-MD

10 for Medium-MD

DFM [B] Almon aggregation, VAR(1) factor process
Factors: 5 for Small-MD

10 for Medium-MD

singleESN [A]

S-MFESN model:
Sparse-normal Ã,
sparse-uniform C̃, ζ̃ = 0.
Isotropic ridge regression fit.

Reservoir dim: 30
Sparsity: 33.3%
ρ = 0.5, γ = 1, α = 0.1

singleESN [B]

S-MFESN model:
Sparse-normal Ã,
sparse-uniform C̃, ζ̃ = 0.
Isotropic ridge regression fit.

Reservoir dim: 120
Sparsity: 8.3%
ρ = 0.5, γ = 1, α = 0.1

multiESN [A]

M-MFESN model:
Monthly and daily frequency reservoirs.
Sparse-normal Ã1, Ã2,
sparse-uniform C̃1, C̃2, ζ̃1 = 0, ζ̃2 = 0.
Isotropic ridge regression fit.

Reservoir dims: M=100, D=20
Sparsity: M=10%, D=50%
M: ρ = 0.5, γ = 1.5, α = 0
D: ρ = 0.5, γ = 0.5, α = 0.1

multiESN [B]

M-MFESN model:
Monthly and daily frequency reservoirs.
Sparse-normal Ã1, Ã2,
sparse-uniform C̃1, C̃2, ζ̃1 = 0, ζ̃2 = 0.
Isotropic ridge regression fit.

Reservoir dims: M=100, D=20
Sparsity: M=10%, D=50%
M: ρ = 0.08, γ = 0.25, α = 0.3
D: ρ = 0.01, γ = 0.01, α = 0.99

Table 1.1: Table of models used in applied forecasting exercises. MFESN hyperparameters are
defined with respect to normalized state parameters c.f. (1.6).

Benchmarks

Unconditional mean. We use the unconditional mean of the sample used for fitting as a baseline
benchmark. For GDP growth forecasting, there is evidence that the unconditional mean produces
forecasts that are competitive with linear models such as VARs in terms of mean square forecasting
errors (MSFE), even at relatively short horizons (Arora et al., 2013). It is therefore an important
reference for the performance of all other models and we report relative MSFE with respect to the
unconditional mean in the tables below.
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AR(1) model. A simple autoregressive process of order one on the target variable is included
as a benchmark model.4 This is also a common benchmark in the literature, as AR(1) models are
often able to capture key dynamics and produce meaningful forecasts for macroeconomic variables
(Stock and Watson, 2002, Bai and Ng, 2008). We emphasize that since AR(1) model is fit to
the series of quarterly GDP targets and does not use any additional information, its forecasts are
identical for both the Small-MD and Medium-MD samples.

MIxed DAta Sampling (MIDAS). The first mixed-frequency model benchmark is given by a
MIDAS model (Ghysels et al., 2004, 2007). Our dynamic MIDAS specification includes autoregres-
sive lags of the target series and uses an Almon weighting scheme. As shown in Bai et al. (2013),
exponential Almon MIDAS regressions are related to dynamic factor models, which we also con-
sider as benchmarks. The MIDAS model includes three lags of quarterly GDP target variable, and
30 daily and 9 monthly lags for all daily and monthly series, respectively. This model prescription
allows for some parsimony as the Almon polynomial weighing reduces the number of daily and
monthly lag coefficients.

A thorough description of our MIDAS implementation can be found in Appendix 1.F. To make
optimization more efficient, we use explicit expressions for MIDAS loss gradients as in Kostrov
(2021). The MIDAS estimation can be hard to perform in practice due to the complexity of
nonlinear optimization. First, exponential weighting schemes might require computing floating-
point numbers that exceed numerical precision. Therefore, it is a better choice to start the gradient
descent close to the origin of the parameter space. Second, even with this choice of starting points,
one may encounter issues with optimization results since the Almon-scheme MIDAS loss can have
a large number of distinct local minima. In Appendix 1.I.1 we document, using a simple replication
experiment, that even small changes in the initial conditions can result in different local minima
picked by the numerical optimization algorithm.5 These important robustness issues are present
even when using closed-form gradients and multi-start optimization routines for the MIDAS models.
The computational issues become more pronounced as the number of MIDAS parameters increases
unless a careful model/variable selection step is performed. We, therefore, do not include any
MIDAS model specifications in the Medium-MD setup.

Dynamic Factor Model (DFM). The dynamic factor model framework has been extensively
applied in macroeconometrics, starting with Geweke (1977) and Sargent et al. (1977). A DFM
specification assumes that predictable dynamics of a large set of time series can be explained by a
small number of factors with an autoregressive dependence (see for example Forni et al. (2005), Doz
et al. (2011), Stock and Watson (2016)). We generalize the standard two-frequency DFM modeling
setup (Mariano and Murasawa, 2003, Bańbura and Modugno, 2014) to a flexible mixed-frequency
DFM that encompasses any number of data frequencies. Moreover, we derive a novel weighting
scheme that effectively links the MIDAS and DFM approaches. For a detailed discussion of our
factor model setup, we refer the reader to Appendix 1.G. Two distinct DFM specifications are
used. The first one termed DFM [A] uses the standard linear aggregation scheme, as provided

4Suggested by an anonymous referee.
5We set the initial coefficient values to zero in all empirical exercises.
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in Example 1.G.1, while the second is a variation that implements an Almon weighting scheme
as presented in Example 1.G.2 (we name it DFM [B]). The latter is similar to a MIDAS-type
aggregation scheme (Marcellino and Schumacher, 2010): the factor structure effectively mitigates
the parameter proliferation.

A key choice for a DFM model is the dimension of the factor process. While a number of methods
have been developed over the years to systematically derive the number of factors (see, for example,
the review of Stock and Watson 2016), commonly used macroeconomic panels feature a number
of challenges, such as weak factors (Onatski, 2012). Moreover, as mentioned in Appendix 1.G.1,
factor number selection in the mixed-frequency setting has not been sufficiently addressed in the
literature. To sidestep these issues, we construct both DFM models with 5 unobserved factors for
Small-MD and 10 for Medium-MD, respectively, and assume that they follow a VAR(1) process.

One extant issue with integrating daily data is its very high release frequency compared to
monthly and especially quarterly releases: computationally this can be extremely taxing, which
might be one of the reasons why to our knowledge we are the first to provide DFM forecasts that
include daily data. Our solution is to reduce aggregate daily data every 6 days by averaging, thus
leaving 4 observations per month. This eases the computational burden to estimate coefficients
and latent states considerably (12 versus 72 daily observations per quarter).

Multi-Frequency ESNs

The first set of ESNs we propose is given by two S-MFESN models, based on Example 1.3.1. One
model uses a reservoir of 30 neurons (we call it singleESN [A]); the other has a larger reservoir of
dimension 120 (named singleESN [B]). The sparsity degree of state parameters for both models is
set to be 10/N , where N is the reservoir size. Both MFESNs share the same hyperparameters,
ρ = 0.5, γ = 1, α = 0.1 (see (1.7)). These values have not been tuned but are presumed credible
given other ESN implementations in the literature. To make a fair comparison with DFMs, we
fit the S-MFESN models using 6-day-averaged daily data. Note here that for MFESN models
the computational gains of averaging are negligible, and are most apparent when tuning the ridge
penalty via cross-validation.

Our second set of proposed models consists of two M-MFESNs according to Example 1.3.2.
Both models have two reservoirs, one for each data frequency – monthly and daily – with 100
and 20 neurons, respectively; sparsity degrees are again adjusted to be 10/N , where N is the
reservoir state dimension. The first M-MFESN has hyperparameters that are hand-selected among
reasonable values: we note that the monthly-frequency reservoir has no state leak and a larger input
scaling, while the daily frequency reservoir features smaller scaling than usual (to avoid compressing
high volatility events with the activation function) and the same leak rate as in S-MFESN models
(we call this specification multiESN [A]). For the second M-MFESN, we change hyperparameters
more radically: we aim to set up a model that has a very high input memory (Ballarin et al., 2023),
and that also features long-term smoothing of states. Note that here input scaling values are small,
spectral radii are an order of magnitude smaller than in previous models, and leak rates are large
(we term this model multiESN [B]).
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Execution Time (Seconds) for Model Estimation

DFM singleESN multiESN
Dataset Mean AR(1) MIDAS [A] [B] [A] [B] [A] [B]

Small-MD 0.1 0.7 1.3 40.5 85.5 2.6 4.5 15.3 14.6
Medium-MD 0.1 0.8 − 48.0 226.5 2.5 5.7 17.7 14.7

Table 1.2: Execution time in seconds for model estimation measured over a single run on a quad-core
computer. MFESN models timing includes ridge penalty cross-validation. MIDAS estimation time refers to
optimization from a single initial value. DFM models were estimated on a single-core server and times are
adjusted by a factor of 1/4 for comparison.

1.4.3 Results

We start by commenting on the computational efficiency of competing models and report execution
times in seconds in Table 1.2. Firstly, DFM models appear to be the most computationally effortful
models among all specifications. For the Small-MD dataset, the simplest MFESN models, that is,
singleESN [A] and [B], have execution times which are at most 3.5 times higher than the MIDAS
model, while still being at least 15.6 times computationally cheaper than any of the DFM models.
The more resource-demanding models MFESN, multiESN [A] and [B], are nevertheless at least 2.6
times faster to run than the best DFM model (DFM [A]). When moving to the Medium-MD dataset,
where the MIDAS model is not, as explained earlier, a feasible choice, the most inefficient MFESN
model (singleESN [B]) still outperforms the best DFM model, DFM [A], by 8.4 times, while the
same holds for multiESN [A] model versus DFM [A] model by 2.7 times. We can conclude that our
proposed MFESN architectures provide an attractive and computationally efficient framework for
GDP forecasting in the multifrequency framework which is feasible for computations on low-cost
machine configurations available to practitioners.

Competing forecasts are compared using the Model Confidence Set (MCS) test derived in
Hansen et al. (2011). One should note that due to the intrinsic nature of data availability of
macroeconomic time series and panels, our sample sizes are modest. This implies that the small
sample sensitivities of the MCS test need to be taken into account when evaluating our compar-
isons. Recent analyses of the finite sample properties of the MCS methodology have shown that it
requires signal-to-noise ratios which are unattainable in most empirical settings, an issue that un-
dermines its applicability (Aparicio and de Prado, 2018). Given this fact, we also conduct pairwise
model comparison tests with the Modified Diebold-Mariano (MDM) test for predictive accuracy
(Diebold and Mariano, 2002, Harvey et al., 1997).

As we also provide multiple-steps-ahead forecasts, we test for the best subset of models uniformly
across all horizons using the Uniform Multi-Horizon MCS (uMCS) test proposed by Quaedvlieg
(2021). Since there is relatively little systematic knowledge regarding the power properties of the
uMCS test in small samples, our inclusion of this procedure is meant as a statistical counterpoint
to simple relative forecasting error comparisons, which provide limited information about the sig-
nificance of performance differences. We provide more details on our implementation of the test in
Appendix 1.E. Finally, we do not report uMCS test outcomes for the expanding window setup, as
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1-Step-ahead GDP Forecasting - Small-MD Dataset

Fixed Parameters Expanding Window Rolling Window
Model 2007 2011 2007 2011 2007 2011

MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS

Mean 1.000 * 1.000 ** 1.000 ** 1.000 ** 1.000 ** 1.000 **
AR(1) 0.758 * 1.230 ** 0.789 ** 1.226 ** 0.824 ** 1.196 **
MIDAS 0.533 ** 1.300 0.596 ** 1.129 * 0.709 ** 1.170 *

DFM [A] 0.799 * 1.337 0.980 * 1.320 0.919 * 1.226
DFM [B] 0.885 1.221 ** 0.982 * 1.022 ** 0.948 1.028 **

singleESN [A] 0.721 ** 1.015 ** 0.597 ** 0.867 ** 0.529 ** 0.863 **
singleESN [B] 0.758 * 0.921 ** 0.602 ** 0.844 ** 0.561 ** 0.930 **
multiESN [A] 0.802 * 1.250 0.635 ** 0.874 ** 0.621 ** 0.859 **
multiESN [B] 0.590 ** 0.969 ** 0.552 ** 0.895 ** 0.530 ** 0.921 **

Table 1.3: Relative MSFE and Model Confidence Set (MCS) comparison between models in 1-step-ahead
forecasting exercises. Unconditional mean MSFE is used as a reference. MCS columns show inclusion among
best models: ∗ indicates inclusion at 90%, ∗∗ indicates inclusion at 75% confidence.

Quaedvlieg (2021) argues that in such context the test is invalid.

Small Dataset

We begin our discussion of the Small-MD forecasting results by reviewing Table 1.3. For both
sample setups (2007 and 2011) and all three estimation strategies (fixed, expanding, and rolling
windows) we provide relative MSFE metrics, with the unconditional mean being used as a reference.
Plots of each of the model’s forecasts are given in Figures 1.3 and 1.4; additional plots for cumulative
SFE, cumulative RMSFEs and other metrics can be found in Appendix 1.J.

The overall finding is that MFESN models perform excellent, and, when we exclude the 2007
fixed parameters setup, they perform the best. It is easy to see from Figure 1.3 (a) why the 2007
fixed window estimation case is different from other cases: the 2008 Financial Crisis induced a deep
drop in quarter-to-quarter GDP growth that was in stark contrast with previous business cycle
fluctuations. By keeping model parameters fixed, and using only information from 1990 to 2007
– periods where systematic fluctuations are small – DFM and MFESN models are fit to produce
smooth, low-volatility forecasts. MIDAS, on the other hand, yields an exponential smoothing which
can be more responsive to changes in monthly and daily series. From Figure 1.3 (b) and (c) it is
possible to see that expanding and rolling window estimation resolves this weakness of state-space
models. At the same time, the AR(1) model outperforms the unconditional mean only in the 2007
sample with fixed parameters, losing to the MIDAS model in all but one scenario.

Table 1.3 shows that MFESN models always perform better than the mean in terms of MSFE,
something which no other model class achieves across all setups. In both expanding and rolling
window setups they also always outperform the AR(1) model. Furthermore, at least one MFESN
model for each subclass (single or multi-reservoir) is always included in the model confidence set
at the highest confidence level. We remind again that the MCS test of Hansen et al. (2011) might
be distorted due to the modest sample sizes considered, even more so in the 2011 test sample. To
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complement the MCS, we provide graphical tables for pairwise Modified Diebold-Mariano (MDM)
tests, with 10% level rejections highlighted in Figure 1.14, Appendix 1.J. The MDM tests broadly
agree with the results of Table 1.3, although they do not account for multiple testing, and therefore
cannot be interpreted as yielding subsets of the most accurate forecasting models in a statistical
sense.

For multiple-steps-ahead forecasts, relative RMSFE and uMCS are reported in Tables 1.4 and
1.5: we constrain our exercise to h ∈ {1, . . . , 8} steps, since we are interested in GDP growth
forecasts within 2 years. Note that for h = 1 our results are similar, but do not reduce to the
one-step-ahead results. To make correct multistep RMSFE evaluations and execute the uMCS
procedure one must select h different vectors of residuals of the same length: this implies that
residuals at the end of the forecasting sample must be trimmed off to compute short-term multistep
RMSFEs that are comparable to the long-term ones. Generally, we notice that MIDAS, as well as S-
MFESNs, provide the worst-performing multistep forecasts, with RMSFEs considerably exceeding
the unconditional mean baseline after horizon 1. Figures 1.5 and 1.6 reproduce the RMSFE numbers
of the aforementioned tables graphically.

For MIDAS, we have already discussed how the existence of multiple loss minima can generate
numerical instabilities. Model re-fitting at each horizon can amplify this problem, as the loss
landscape itself changes as new observations are added to the fitting sample. We provide more
discussions in Appendix 1.I.1. In the case of S-MFESN models, the reason is structural: we have
discussed how in our framework multistep MFESN forecasting entails iterating the state map,
which can have multiple attraction (stable) points. If the hyperparameters and estimated full
model Ŵ s jointly do not define a contraction, the limit of the multistep forecast does not have to
be the estimated MFSEN model intercept. However, Figures 1.5 and 1.6 show that our M-MFESN
models, multiESN [A] and multiESN [B], both perform on par or better than DFM models even
after horizon h = 4. For example, in the 2007 expanding and rolling window experiments, multiESN
[B] is able to outperform both DFMs and an unconditional mean forecast by meaningful margins
for forecasts up to a year into the future.

Medium Dataset

We now present the results for the Medium-MD dataset, which includes more than 30 regressors
and many high-frequency daily series. The same metrics as in the previous subsection are used for
this dataset to evaluate the relative performance of different methods.

The main difference in our empirical exercises is that now we a priori exclude MIDAS from
the set of forecasting methods as explained in detail in Subsection 1.4.2. Table 1.6 showcases the
relative performance of DFM and MFESN models in the Medium-MD forecast setup. We find that
the MFESN model multiESN [B] performs best in all setups, particularly under fixed parameters,
where MCS testing reveals that it is the only model included at a 75% confidence level. Of course,
for the MCS results we must again take into account the relatively small sample size, which could
distort the selection of best model subsets. MDM tests of Figure 1.16 in Appendix 1.J largely agree
with the MCS results: in the fixed parameter setup any pairwise comparison of an alternative model
against MFESN multiESN [B] is rejected in favor of the latter. A visual inspection of one-step-
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Multistep-ahead GDP Forecasting - Small-MD Dataset - 2007 Sample

Setup Model Horizon uMCS
1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FIX AR(1) 0.870 0.950 0.982 0.991 0.992 0.991 0.992 0.992 **
FIX MIDAS 0.823 1.672 2.737 1.816 2.213 2.791 1.888 1.921
FIX DFM [A] 0.890 0.969 1.014 1.077 1.341 1.701 2.001 2.180 *
FIX DFM [B] 0.937 1.069 1.202 1.344 1.799 2.310 2.638 2.801
FIX singleESN [A] 0.852 0.994 0.995 0.995 0.993 0.991 0.991 0.991 *
FIX singleESN [B] 0.871 0.986 0.989 0.989 0.985 0.981 0.981 0.981 **
FIX multiESN [A] 0.898 0.980 0.990 0.991 0.988 0.985 0.985 0.985 **
FIX multiESN [B] 0.767 0.954 0.983 0.991 0.991 0.990 0.991 0.991 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
EW AR(1) 0.887 0.922 0.951 0.962 0.957 0.981 1.001 1.008 -
EW MIDAS 0.814 1.283 1.518 1.596 1.697 1.391 1.951 1.800 -
EW DFM [A] 0.985 1.109 1.123 1.114 1.217 1.226 1.241 1.539 -
EW DFM [B] 0.989 1.082 1.149 1.199 1.315 1.412 1.373 1.425 -
EW singleESN [A] 0.771 1.260 1.485 1.564 2.070 2.728 2.550 2.834 -
EW singleESN [B] 0.772 1.031 1.135 1.319 1.831 2.279 2.449 2.556 -
EW multiESN [A] 0.792 0.897 0.941 0.976 1.015 1.240 1.377 1.227 -
EW multiESN [B] 0.740 0.853 0.894 0.911 0.873 0.993 1.020 1.020 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
RW AR(1) 0.898 0.943 0.968 0.974 0.963 0.968 0.970 0.962 **
RW MIDAS 0.933 1.438 1.642 1.993 1.794 1.661 1.816 1.973 *
RW DFM [A] 0.931 1.017 1.033 1.020 1.024 1.003 0.918 1.062 *
RW DFM [B] 0.942 0.973 0.970 1.045 1.059 1.203 1.225 1.263 *
RW singleESN [A] 0.714 1.320 1.693 1.972 2.733 3.669 3.391 3.719 *
RW singleESN [B] 0.737 1.100 1.248 1.667 2.327 2.765 2.842 2.792 *
RW multiESN [A] 0.773 0.972 1.053 1.111 1.187 1.293 1.505 1.131 *
RW multiESN [B] 0.716 0.895 0.916 0.926 0.890 1.041 1.102 1.105 **

Table 1.4: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used
as reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS
columns show inclusion among best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates
inclusion at 75% confidence.
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Multistep-ahead GDP Forecasting - Small-MD Dataset - 2011 Sample

Setup Model Horizon uMCS
1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 **
FIX AR(1) 1.119 1.031 1.008 1.001 1.001 0.999 0.999 0.998 *
FIX MIDAS 1.090 1.721 1.793 2.203 2.363 1.997 2.846 2.328
FIX DFM [A] 1.112 1.051 0.999 1.079 1.084 1.025 1.020 1.061 *
FIX DFM [B] 1.058 0.945 0.916 1.003 1.012 0.970 1.038 1.033 **
FIX singleESN [A] 0.978 1.705 2.561 2.704 3.314 3.151 2.999 3.316
FIX singleESN [B] 0.930 1.095 1.885 2.356 2.650 2.704 2.880 2.844 **
FIX multiESN [A] 1.059 1.148 1.262 1.312 1.339 1.409 1.424 1.162
FIX multiESN [B] 0.981 1.007 0.985 0.994 1.008 0.999 0.999 0.998 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
EW AR(1) 1.117 1.033 1.011 1.002 1.007 1.003 1.004 1.003 -
EW MIDAS 1.005 1.382 1.339 1.354 1.609 1.444 1.803 1.263 -
EW DFM [A] 1.144 1.132 1.057 1.093 1.076 1.067 1.038 1.016 -
EW DFM [B] 0.985 0.940 0.918 0.995 1.010 0.980 1.050 0.971 -
EW singleESN [A] 0.935 1.645 2.184 1.929 2.388 1.959 1.810 2.266 -
EW singleESN [B] 0.911 1.092 1.101 1.529 2.195 1.843 1.847 2.060 -
EW multiESN [A] 0.922 0.965 1.089 0.978 0.977 1.043 1.278 0.995 -
EW multiESN [B] 0.944 0.992 0.978 0.977 0.991 0.985 0.990 0.996 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RW AR(1) 1.080 1.000 0.984 0.989 0.982 0.976 0.963 0.968
RW MIDAS 1.051 1.303 1.310 1.674 1.762 1.467 1.643 1.463
RW DFM [A] 1.061 1.033 1.012 1.088 1.077 1.015 1.040 1.069
RW DFM [B] 0.947 0.893 0.901 1.009 1.040 0.966 1.030 0.949 **
RW singleESN [A] 0.919 1.788 2.359 2.483 2.981 2.401 2.234 2.690
RW singleESN [B] 0.944 1.132 1.214 1.762 2.608 2.552 2.517 2.541
RW multiESN [A] 0.896 1.047 1.222 1.124 1.122 1.410 1.666 1.316
RW multiESN [B] 0.940 1.003 0.969 0.989 0.979 0.972 0.967 0.961 **

Table 1.5: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used
as reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS
columns show inclusion among best models: ∗ indicates inclusion at 90%, ∗∗ indicates inclusion at
75% confidence.
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1-Step-ahead GDP Forecasting - Medium-MD Dataset

Fixed Parameters Expanding Window Rolling Window
Model 2007 2011 2007 2011 2007 2011

MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS

Mean 1.000 1.000 ** 1.000 ** 1.000 ** 1.000 ** 1.000 **
AR(1) 0.758 * 1.230 ** 0.789 ** 1.226 ** 0.824 * 1.196 **

DFM [A] 0.841 * 1.325 * 0.682 ** 1.272 ** 0.747 * 1.517 **
DFM [B] 1.118 * 1.408 ** 0.821 * 1.117 ** 0.926 1.186 **

singleESN [A] 0.967 * 1.717 * 0.775 ** 1.072 ** 0.791 * 1.493 *
singleESN [B] 0.826 * 1.278 ** 0.655 ** 1.028 ** 0.561 ** 0.944 **
multiESN [A] 0.901 * 1.080 ** 0.618 ** 0.913 ** 0.556 ** 0.884 **
multiESN [B] 0.682 ** 0.748 ** 0.587 ** 0.774 ** 0.547 ** 0.728 **

Table 1.6: Relative MSFE and Model Confidence Set (MCS) comparison between models in 1-step-ahead
forecasting exercises. Unconditional mean MSFE is used as a reference. MCS columns show inclusion among
best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates inclusion at 75% confidence.

ahead forecasts in Figures 1.7 and 1.8 also shows that DFM models estimated over the Medium-MD
datasets produce forecasts with larger variability than MFESN methods, which is likely the key
driver of the difference in performance.

The multistep-ahead experiments are run as for the Small-MD dataset, with a maximum horizon
of 8 quarters. Tables 1.7 and 1.8 present the relative RMSFE performance of multistep forecasts
for all models, and we use Figures 1.9 and 1.10 of RMSFEs as references for our discussion. What
can be seen visually – and is also reproduced in the Tables – is that multi-reservoir MFESN models
and DFM model [A] have the best performance up to 4 quarters ahead; overall, taking into account
also the longer term, expanding or rolling window estimation of model multiESN [B] yields the best
forecasting results in the 2007 sample setup. The post-crisis 2011 sample setup makes comparison
harder, as DFM and M-MFESN models largely produce results in line with the unconditional
sample mean. This evaluation is confirmed by uMCS tests, consistently with the multistep results
obtained with the Small-MD dataset.

1.5 Conclusions

Macroeconomic forecasting – especially long-term forecasting of macroeconomic aggregates – is
a topic of crucial importance for institutional policymakers, private companies, and economic re-
searchers. Given the modern-day availability of “big data” resources, methods capable of integrating
heterogeneous data sources are increasingly sought to provide more precise and robust forecasts.

This paper presents a new methodological framework inspired by the Reservoir Computing
literature to deal with data sampled at multiple frequencies and with multiple-step-ahead forecasts.
We have then taken Echo State Networks – a type of RC models – and formally extended them to
allow the modeling of data with multiple release frequencies. Our discussion encompasses model
fitting, hyperparameter tuning, and forecast computation. As a result, we provide two classes
of models, single- and multiple reservoir multi-frequency ESNs, that can be effectively applied
to our empirical setup: forecasting US GDP growth using monthly and daily data series. Along
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Multistep-ahead GDP Forecasting - Medium-MD Dataset - 2007 Sample

Setup Model Horizon uMCS
1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
FIX AR(1) 0.870 0.950 0.982 0.991 0.992 0.991 0.992 0.992
FIX DFM [A] 0.914 0.947 0.955 0.988 1.015 1.027 1.034 0.995 **
FIX DFM [B] 1.046 1.204 1.293 1.341 1.649 1.984 2.101 2.070 *
FIX singleESN [A] 0.985 0.995 0.995 0.995 0.994 0.992 0.992 0.992 *
FIX singleESN [B] 0.912 0.985 0.985 0.985 0.980 0.976 0.976 0.976 *
FIX multiESN [A] 0.950 0.993 0.994 0.994 0.992 0.990 0.990 0.990 *
FIX multiESN [B] 0.826 0.972 0.988 0.990 0.989 0.986 0.985 0.985 *

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
EW AR(1) 0.887 0.922 0.951 0.962 0.957 0.981 1.001 1.008 -
EW DFM [A] 0.805 0.916 0.978 1.038 1.077 1.126 1.077 1.073 -
EW DFM [B] 0.893 1.134 1.418 1.567 2.238 2.964 3.375 3.629 -
EW singleESN [A] 0.879 1.125 1.305 1.442 1.860 2.166 2.361 2.443 -
EW singleESN [B] 0.802 1.174 1.439 1.744 2.305 2.869 2.935 3.167 -
EW multiESN [A] 0.780 0.935 1.012 1.005 1.093 1.337 1.328 1.313 -
EW multiESN [B] 0.760 0.874 0.911 0.891 0.863 0.971 1.030 1.051 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RW AR(1) 0.898 0.943 0.968 0.974 0.963 0.968 0.970 0.962
RW DFM [A] 0.837 0.913 0.924 0.954 1.012 0.997 1.018 1.005
RW DFM [B] 0.932 1.116 1.232 1.414 1.952 2.704 3.183 3.294
RW singleESN [A] 0.873 1.274 1.530 1.652 2.095 2.575 2.786 3.014
RW singleESN [B] 0.732 1.190 1.490 1.712 2.218 2.861 2.967 3.094
RW multiESN [A] 0.732 0.914 0.960 1.011 1.202 1.618 1.683 1.572
RW multiESN [B] 0.731 0.871 0.875 0.844 0.771 0.971 1.014 1.014 **

Table 1.7: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used
as reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS
columns show inclusion among best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates
inclusion at 75% confidence.
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Multistep-ahead GDP Forecasting - Medium-MD Dataset - 2011 Sample

Setup Model Horizon uMCS
1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
FIX AR(1) 1.119 1.031 1.008 1.001 1.001 0.999 0.999 0.998 **
FIX DFM [A] 1.126 0.987 0.962 1.054 1.031 0.988 1.001 1.002 **
FIX DFM [B] 1.149 0.987 0.885 1.064 1.142 1.134 1.273 1.296
FIX singleESN [A] 1.283 1.921 2.527 3.038 3.285 3.154 3.193 3.655
FIX singleESN [B] 1.059 1.523 1.918 2.417 2.812 2.683 2.703 2.970
FIX multiESN [A] 1.011 1.061 1.434 1.477 1.748 2.030 2.023 1.994
FIX multiESN [B] 0.841 0.945 0.997 0.978 1.004 1.015 1.013 1.014 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
EW AR(1) 1.117 1.033 1.011 1.002 1.007 1.003 1.004 1.003 -
EW DFM [A] 1.092 0.942 0.944 1.049 1.026 0.994 0.996 0.999 -
EW DFM [B] 0.971 1.046 1.031 1.114 1.238 1.116 1.223 1.310 -
EW singleESN [A] 1.039 1.451 1.980 2.385 2.699 2.353 2.506 2.608 -
EW singleESN [B] 0.992 1.828 2.465 3.072 3.547 3.357 3.368 3.610 -
EW multiESN [A] 0.934 1.014 1.391 1.252 1.371 1.369 1.228 1.279 -
EW multiESN [B] 0.857 0.931 1.003 0.973 1.002 1.009 1.025 1.029 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 **
RW AR(1) 1.080 1.000 0.984 0.989 0.982 0.976 0.963 0.968 **
RW DFM [A] 1.113 0.982 0.927 1.038 1.030 0.997 1.016 1.028 *
RW DFM [B] 0.881 0.996 1.021 1.098 1.150 1.114 1.114 1.212 **
RW singleESN [A] 1.193 2.267 3.265 3.580 4.090 3.790 4.015 4.562
RW singleESN [B] 0.927 1.933 2.612 3.265 3.753 3.567 3.556 3.792
RW multiESN [A] 0.900 1.049 1.500 1.465 1.789 1.707 1.505 1.462
RW multiESN [B] 0.816 0.916 0.977 1.009 0.982 0.988 0.974 0.981 **

Table 1.8: Relative RMSFE and Uniform Multi-Horizon Model Confidence Set (uMCS) comparison
between models in multiple-steps-ahead forecasting exercises. Unconditional mean RMSFE used
as reference. FIX: Fixed parameters, EW: Expanding window, and RW: Rolling window. uMCS
columns show inclusion among best models: ∗ indicates inclusion at 90% confidence, ∗∗ indicates
inclusion at 75% confidence.
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with the unconditional mean and AR(1) model, we considered two well-known methods, MIDAS
and DFMs, as the current benchmarks available in the literature. In our applications, we find
that MFESN models are computationally more efficient and easier to implement than DFMs and
MIDAS, respectively, and perform better than or as well as benchmarks in terms of MSFE. These
improvements are statistically significant in a number of setups, as shown by our MCS and MDM
tests. Thus, we argue that our machine learning-based methodology can be a useful addition to
the toolbox of contemporary macroeconomic forecasters.

Lastly, we wish to highlight the many potential areas of research that we believe would be
interesting to explore in the future. We have not discussed the role of the distribution from which
we sample the entries of the reservoir matrices. While it is known that these can have significant
effects on the forecasting capacity of an ESN model, the literature lacks definitive theoretical
results (even for dynamical systems applications) or systematic studies with stochastic inputs and
targets. The hyperparameter tuning routine we have developed neither allows separating individual
hyperparameters nor does it tackle the identification problem. Moreover, we assume that the ridge
regression penalty strength, λ, is tuned ex ante: it would be interesting and desirable to understand
if it is possible to jointly tune λ and φ, or rather if one can fully separate their selection. In our
preliminary experiments, we have noticed that the roles of the ridge penalty and the input scaling,
for example, cannot be trivially disentangled – thus prompting the ψ-form normalization. Model
selection for the dimension of MFESN models is another question that would be key to exploring and
designing more efficient and effective ESN models, especially when dealing with multiple frequencies
and reservoirs. Finally, practitioners may be interested in identifying the combination of frequencies
in the regressor series that would lead to the most accurate GDP forecasts produced by MFESN
models.
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Figure 1.3: 1-Step-ahead GDP Forecasting – 2007 Sample – Small-MD Dataset
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Figure 1.4: 1-Step-ahead GDP Forecasting – 2011 Sample – Small-MD Dataset
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Figure 1.5: Multistep-ahead GDP Forecasting, RMSFE – 2007 Sample – Small-MD Dataset
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Figure 1.6: Multistep-ahead GDP Forecasting, RMSFE – 2011 Sample – Small-MD Dataset
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Figure 1.7: 1-Step-ahead GDP Forecasting – 2007 Sample – Medium-MD Dataset
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Figure 1.8: 1-Step-ahead GDP Forecasting – 2011 Sample – Medium-MD Dataset
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Figure 1.9: Multistep-ahead GDP Forecasting, RMSFE – 2007 Sample – Medium-MD Dataset
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Figure 1.10: Multistep-ahead GDP Forecasting, RMSFE – 2011 Sample – Medium-MD Dataset
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Appendix

1.A Data Table

Table 1.9: Variables, Frequencies and Transformations for Small and Medium

S M Start Date T Code Name Description
Quarterly
XX 31/03/1959 5 GDPC1 Y Real Gross Domestic Product
Monthly
XX 30/01/1959 5 INDPRO XM1 Industrial Production Index
XX 30/01/1959 5 PAYEMS XM4 Payroll All Employees: Total nonfarm
XX 30/01/1959 4 HOUST XM5 Housing Starts: Total New Privately Owned
XX 30/01/1959 5 RETAILx XM7 Retail and Food Services Sales
XX 31/01/1973 5 TWEXMMTH XM11 Nominal effective exchange rate US
XX 30/01/1959 2 FEDFUNDS XM12 Effective Federal Funds Rate
XX 30/01/1959 1 BAAFFM XM14 Moody’s Baa Corporate Bond Minus FEDFUNDS
XX 30/01/1959 1 COMPAPFFx XM15 3-Month Commercial Paper Minus FEDFUNDS

X 30/01/1959 2 CUMFNS XM2 Capacity Utilization: Manufacturing
X 30/01/1959 2 UNRATE XM3 Civilian Unemployment Rate
X 30/01/1959 5 DPCERA3M086SBEA XM6 Real personal consumption expenditures
X 30/01/1959 5 AMDMNOx XM8 New Orders for Durable Goods
X 31/01/1978 2 UMCSENTx XM9 Consumer Sentiment Index
X 30/01/1959 6 WPSFD49207 XM10 PPI: Finished Goods
X 30/01/1959 1 AAAFFM XM13 Moody’s Aaa Corporate Bond Minus FEDFUNDS
X 30/01/1959 1 TB3SMFFM XM16 3-Month Treasury C Minus FEDFUNDS
X 30/01/1959 1 T10YFFM XM17 10-Year Treasury C Minus FEDFUNDS
X 30/01/1959 2 GS1 XM18 1-Year Treasury Rate
X 30/01/1959 2 GS10 XM19 10-Year Treasury Rate
X 30/01/1959 1 GS10-TB3MS XM20 10-Year Treasury Rate - 3-Month Treasury Bill

Daily
XX 30/01/1959 8 DJINDUS XD3 DJ Industrial price index

X 31/12/1963 8 S&PCOMP XD1 S&P500 price index
X 01/05/1982 1 ISPCS00-S&PCOMP† XD2 S&P500 basis spread
X 11/09/1989 8 SP5EIND XD4 S&P Industrial price index
X 31/12/1969 8 GSCITOT XD5 Spot commodity price index
X 10/01/1983 8 CRUDOIL XD6 Spot price oil
X 02/01/1979 8 GOLDHAR XD7 Spot price gold
X 30/03/1982 8 WHEATSF XD8 Spot price wheat
X 01/11/1983 8 COCOAIC,COCINUS‡ XD9 Spot price cocoa
X 30/03/1983 1 NCLC.03-NCLC.01 XD10 Futures price oil term structure
X 30/10/1978 1 NGCC.03-NGCC.01 XD11 Futures price gold term structure
X 02/01/1975 1 CWFC.03-CWFC.01 XD12 Futures price wheat term structure
X 02/01/1973 1 NCCC.03-NCCC.01 XD13 Futures price cocoa term structure

Notes: S and M stand for small and medium datasets, respectively. An ‘X’ indicates selection into the
dataset. ‘Start Date’ is the date for which the series is first available (before data transformations). Follow-
ing McCracken and Ng (2016, 2020), the transformation codes in column ‘T’ indicate with D for difference
and log for natural logarithm 1: none, 2: D, 3: DD, 4: Log, 5: Dlog, 6: DDlog, 7: percentage change,
8: GARCH volatility. ‘Codes’ are the codes in the FRED-QD and FRED-MD datasets for quarterly and
monthly data and Datastream mnemonic for the remaining frequencies. Missing values due to public holi-
days are interpolated by averaging over the previous five observations. ‡Available until 20/09/2021. ‡Average
before 29/12/2017, COCINUS mean adjusted thereafter.
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1.B Forecasting Schemes

To clarify the design of the forecasting experiments conducted in this paper, we present two different
types of prediction illustrated in Figure 1.11.

Let t denote time in the reference frequency of the target series (yt) and suppose a regressor
(zr) of frequency κ is included in the forecasting model. The notation can be readily extended to
include multiple regressors. Let h ≥ 0 be a low-frequency prediction horizon counted from the last
available observation of (yt). Let l ≥ 0 be a high-frequency horizon with respect to frequency κ.

Low-frequency forecasting. We call an h-steps ahead forecast low-frequency when predictions
for the target variable are constructed only at the end of the low-frequency periods. The information
set which is used at the time of h-steps ahead low-frequency forecasting at t is the σ-algebra defined
as

Ft = σ
({
yt, yt−1, yt−2, . . . , zt,0|κ, zt,−1|κ, zt,−2|κ, . . .

})
(1.35)

and, when using the mean square error as a loss, the optimal forecast is given by

ŷt+h = E [yt+h|Ft] . (1.36)

High-frequency forecasting. In this forecasting scheme, one may also use high-frequency re-
gressors to produce additional high-frequency forecasts of the low-frequency target variable. For
example, in the case of a target released at the end of each year and having monthly quoted covari-
ates, the low-frequency forecasting scheme would correspond to constructing forecasts always at the
end of the last month of the year (December). At the same time, with all the information collected
up to the end of December, there are other possibilities to construct forecasts. In particular, the
forecaster could consider placing herself at the end of any other month of the year instead and
construct predictions for the monthly proxy of the yearly variable for the next hth year.

In this scheme, one often artificially reduces the information set. Although not all the available
information is exploited, this procedure has its benefits: first, it renders high-frequency forecast
instances; second, it allows taking into account misspecification due to a seasonal response of (yt) to
(zr). This is especially important whenever multiple time series with different sampling frequencies
are combined in one model and seasonality effects are either difficult to detect or impossible to avoid.
In the context of macroeconomic forecasting, we again refer the reader to Clements and Galvão
(2008, 2009), Chen and Ghysels (2010) and Jardet and Meunier (2022), where these questions are
carefully discussed.

Let the forecaster place herself at time t: she wishes to construct a high-frequency forecast for
some t, l|κ with l ∈ N. The maximal information set available at t is Ft as in (1.35). However,
if she uses Ft then the forecast for t, l|κ coincides with the low-frequency forecast and is given by
(1.36) for any l. Notice that the forecasts can be constructed using the reduced information sets
instead. Let h = ⌈l/κ⌉, ℓ = lmodκ, and m = h− ⌊l/κ⌋, and define

Ft−m,ℓ = σ
({
yt−m, yt−1−m, . . . , zt−m,ℓ|κ, zt−m,(ℓ−1)|κ, zt−m,(ℓ−2)|κ, . . .

})
= σ

({
yt−m, yt−1−m, . . . , zt+1−m,−(κ−ℓ)|κ, zt+1−m,−(κ−ℓ)+1|κ, zt+1−m,−(κ−ℓ+2)|κ, . . .

})
.
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Figure 1.11: Diagram of the low-/high-frequency forecasting and nowcasting schemes in tempo
notation. Arrows point to time indices of the forecast target, solid dots indicate the high-frequency
time placeholder for the constructed high-frequency forecasts.

The high-frequency forecast information sets nest the low-frequency forecasting setup since Ft−m,ℓ ≡
Ft if l = κh for h ∈ N and the forecast for the high-frequency proxy constructed for the moments
t, l|κ for the low-frequency variable is provided by the conditional expectation

ŷH
t+h,ℓ|κ = E [yt+h|Ft−m,ℓ] .

It is easy to see that if the forecaster is interested in nowcasting, it can be readily obtained by
taking m = 0 and writing for all 0 < ℓ ≤ κ− 1:

ŷN
t+1,ℓ|κ = E [yt+1|Ft,ℓ] .

Nowcasting. We call nowcasting the setup in which one constructs a high-frequency proxy for
a yet-unobserved target which will be available at the end of the current low-frequency period.
As such, we construct a nowcast only for horizons 0 < l ≤ κ − 1; notice that l = κ yields a
contemporaneous regression at t+1, while l = 0 falls into the category of low-frequency forecasting
considered in Section 1.B, hence both these two cases are excluded. The σ-algebras that are used
in order to construct nowcasts ŷt+1,ℓ|κ are given by

Ft,ℓ|κ = σ
({
yt, yt−1, . . . , zt,ℓ|κ, zt,(ℓ−1)|κ, zt,(ℓ−2)|κ, . . .

})
= σ

({
yt, yt−1, . . . , zt+1,−(κ−ℓ)|κ, zt+1,−(κ−ℓ)+1|κ, zt+1,−(κ−ℓ+2)|κ, . . .

})
.

The l-steps nowcast for the high-frequency proxy constructed at moments t, ℓ|κ of the current
period for the low-frequency variable which becomes available at t + 1, 0|κ ≡ t + 1 is provided by
the conditional expectation

ŷN
t+1,ℓ|κ = E [yt+1|Ft,ℓ] .
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Multicasting. One always aims to construct one-step and multistep forecasts by using all the
available information at a given point in time. It is, therefore, natural to compare models by
constructing high-frequency nowcasts for the target variable to be released at the end of the current
period and its high-frequency proxy forecasts for the next periods. To avoid confusion, we refer
to this situation as multicasting. More explicitly, provided that the forecaster finds herself at time
index t, s|κ and is interested in all the forecasts up to some maximal low-frequency horizon H ≥ 1,
for each 1 ≤ l ≤ Hκ the multicasting scheme yields the following combination:

(a) Nowcasting when 0 < l ≤ κ− 1 and ℓ = l: ŷN
t+1,ℓ|κ = E [yt+1|Ft,ℓ].

(b) Forecasting when l > κ− 1:

• Low-frequency forecasting if l satisfies lmodκ = 0: ŷt+h = E [yt+h|Ft].

• High-frequency forecasting if lmodκ ̸= 0: Ft,ℓ: ŷH
t+h,ℓ|κ = E [yt+h|Ft,ℓ].

1.C ESN Implementation

1.C.1 Fixed, Expanding and Rolling Window Estimation

Model parameter stability is an important and well-studied question in linear time series analysis.
Indeed, identifying and explaining structural breaks play a key role in macroeconomic modeling.
To account for this possibility, we compare multiple estimation setups which may reflect possible
changes in model parameters.

Suppose again that a sample Y = (y2,y3, . . . ,yT )⊤ ∈ MT −1,J of targets is available, an initial
state x0 is given and regressors Z = (z1, z2, . . . ,zT −1)⊤ ∈ MT −1,K are observed. Additionally,
the researcher has available an out-of-sample dataset, Y † = (yT +1,yT +2, . . . ,yT +S)⊤ ∈ MS,J ,
Z† = (zT , zT +1, . . . ,zT +S−1)⊤ ∈ MS,K for S ≥ 1. We now define the estimation setups which
can be used for subsequent forecasting for h ∈ N+ steps ahead and can be adjusted for the multi-
frequency setup. We consider the following estimation strategies:

(i) Fixed parameters: An estimator Ŵ is computed strictly over sample observations Y

and Z with some penalty λ chosen with data available up to time T . Model parameters
are kept fixed when the estimated model is applied to construct out-of-sample forecasts
ŷT +1, ŷT +2, . . . , ŷT +S as out-of-sample regressors zT , zT +1, . . . ,zT +S−1 are added to the in-
formation set.

(ii) Expanding window: For each out-of-sample time step s = 0, . . . , S, define ŴEW
s as

the estimate computed by “expanding” the sample window up to time T + s, given by
Y EW

s := (y2,y3, . . . ,yT ,yT +1, . . . ,yT +s)⊤ and ZEW
s := (z1, z2, . . . ,zT −1, zT , . . . ,zT +s−1)⊤.

Coefficients ŴEW
s are re-estimated and penalty strength λ is re-validated over windows Y EW

s ,
ZEW

s .

(iii) Rolling window: In this setup the within-window sample size is kept fixed across windows
– that is, the sample window “rolls” over the data – by defining ŴRW

s as the estimate over
Y RW

s := (y2+s,y3+s, . . . ,yT +s−1,yT +s)⊤ and ZRW
s := (z1+s, z2+s, . . . ,zT +s−2, zT +s−1)⊤ for
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s = 0, . . . , S. Coefficients ŴRW
s are re-estimated and penalty strength λ is re-validated over

windows Y RW
s , ZRW

s .

In all three strategies, hyperparameters φ := (α, ρ, γ, ω) could also be re-tuned on corresponding
windows as in Appendix 1.C.2. The fixed-parameter setup is the most rigid one. It builds upon
the idea that the initial sample contains sufficient information for correct model estimation and
forecasting and that the model parameters are constant. Its theoretical analysis is relatively easy
as there is no need to discuss the stability of the penalty and the hyperparameters across sample
windows. An expanding window setup is based on the belief that newly available data contains key
information to produce forecasts and, therefore, must be continuously incorporated. In essence,
forecasters do this when they re-estimate a model at each data release cycle. In the case of a
rolling window estimation strategy, one can theoretically handle model changes. Although proper
structural break modeling would require a consistent identification of breakpoints, rolling window
estimation can potentially accommodate slow drifts in model parameters over time by directly
discarding old data, unlike with an expanding window. We do not explore the selection of an
optimal window size, which in rolling window estimation has been shown to improve forecasting
performance (Inoue et al. (2017)).

1.C.2 Hyperparameter Tuning

We now propose a general scheme for selection of hyperparameters φ := (α, ρ, γ, ω) in (1.7) for a
model of the form (1.3)-(1.4). Our approach builds on the idea of leave-one-out cross-validation
for time series models. Using a fixed, expanding, or rolling window over the training data, one
can always compute the one-step forecasting errors committed by the ESN, given fixed normalized
model matrices (A,C, ζ) and a hyperparameter vector φ. By choosing an appropriate loss function
ℓ : RJ × RJ → R+, J ∈ N+, we can thus compute the empirical ESN forecasting error

LT (φ) :=
T −1∑
t=T0

ℓ(yt+1, Ŵt(φ)⊤xt),

where Ŵt(φ) is the readout coefficients estimator involving data available up to time t and 1 < T0 <

T − 1 is the minimum number of observations used for fitting. Notice that if ℓ(u,v) = ∥u− v∥22,
u,v ∈ RJ , then LT (φ) is the cumulative squared error that is minimized in training (modulo a
ridge penalty term). Here, however, the interest is not in estimating W , which minimizes LT , but
rather finding the optimal hyperparameter vector

φ∗ ∈ arg min
φ∈[0,1)×[0,ρ]×[0,γ]×[0,ω]

LT (φ),

where upper bounds ρ, γ, and ω can be appropriately chosen (in our empirical exercises we use 10
and verify that solutions are never on the boundary). We highlight that to tune φ one may choose
ℓ that is different from the one used in the estimation of the readout coefficients W .

We present the entire hyperparameter optimization routine in Algorithm 1. Note that step
(i) might entail re-normalizing inputs and targets at each window t. This setup is general and
allows applying any global optimization routine to minimize LT (φ). We construct the loss LT (φj)
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Algorithm 1: Hyperparameter tuning
Data: Sample y2:T = {y2,y3, . . . ,yT }, z1:T −1 = {z1, z2, . . . ,zT −1}, initial state x0, initial

guess φ0, convergence criterion Crit, maximal algorithm iterations MaxIter. If
ridge regression is used to estimate W , fixed regularization strength λ > 0.

Result: φ∗

Fix T and determine the model fit windows for t = T0, . . . , T − 1. Choose whether the ESN
model is estimated with a fixed or rolling window;
j = 0;
while (not Crit) and (j < MaxIter) do

(i) Given φj , estimate coefficient matrices(
Ŵt(φj)

)
T0:T −1

,

where possibly Ŵt(φj) does not depend on t, e.g. in the fixed estimation setup;
(ii) Compute

LT (φj) :=
T −1∑
t=T0

ℓ(yt+1, Ŵt(φj)⊤xt),

the cumulative one-step-ahead forecasting loss;
(iii) Update φj+1 ← φj with an appropriate rule (for example, the gradient descent of
LT in the direction of φj ; in our applications, we use variants L-BFGS-B and pattern
search);

(iv) j ← j + 1, update Crit;

sequentially, that is by summing squared residuals of the model estimated in step (i) of Algorithm
1 when ℓ is a quadratic loss. One can program LT (φj) via TensorFlow so that the gradient can be
evaluated by backpropagation in Algorithm 1 (iii). Since there is no guarantee that the objective
function is convex or even everywhere smooth, we suggest applying optimizers known to explore
the parameter space efficiently. We emphasize that the lack of convexity guarantees is much more
consequential for the other benchmarks, in particular for the MIDAS model (see Appendix 1.I.1
for more details).

One issue with the state formulation in (1.3) and thus with the hyperparameter optimization
routine in Algorithm 1, is that φ can not always be point identified. For example, if one considers
identity activation σ and lets α = ω = 0, it is obvious that the ESN model is system isomorphic
Grigoryeva and Ortega (2021) to x∗

t = dρAx∗
t−1 + dγCzt, yt = d−1Wx∗

t + ϵt for all d ̸= 0. This
issue also arises in nonlinear models, for example when σ is taken as a hyperbolic tangent and
γ is sufficiently small. Parameter identification in nonlinear models has been extensively studied
in semi- and nonparametric cross-sectional regressions. For instance, it is known that in certain
setups, point identification requires a proper normalization to be imposed. The interested reader
can refer to Section 6.3 of Horowitz (2009) for a discussion in a similar vein regarding nonparametric
transformation models. Since often ω = 0 is used, hyperparameter identification can be a significant
issue when attempting model tuning. Whenever ω = 0 we propose a helpful reparametrization given
by

xt = αxt−1 + (1− α)σ
(
ψAxt−1 + Czt

)
,
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where ψ = ρ/γ. This prescription allows decoupling ρ and γ at the cost of the constant input scaling,
which may be undesirable whenever one wants to attenuate the nonlinearity induced by the sigmoid
map without also reducing the spectral radius.6 It is immediate to modify the optimization scheme
to deal with the case φ̃ = (α,ψ). In the sequel, we assume that the ESN models are estimated
using the approaches proposed in this subsection and use the conventional ESN specification as in
(1.3)-(1.4) to discuss the forecasting strategy.

1.C.3 Cross-validation

Because the initial cross-validation of λ uses an extended sample to try and improve generalization –
specifically, our concern is for the fixed estimation setups – we use two slightly different approaches:

• In all setups – fixed, expanding, rolling – the initial ridge penalty cross-validation is done on
the extended sample (starting January 1st, 1975 instead of January 1st, 1990). We construct
10 folds with 5 out-of-sample observations starting from the end of the sample. Each fold
and out-of-sample observation set is re-normalized.

• Only in the expanding and rolling setups, for each subsequent window (the ones that now
include at least one testing observation), we use the true sample (starting January 1st, 1990)
and construct 5 folds, again with 5 out-of-sample observations. This is done to keep cross-
validation computational complexity low and avoid making some folds too small, which could
hurt larger MFESN models.

In practice, simple experiments show that there is not much difference between using 5 or 10 folds
in the initial cross-validation.

1.D Performance measures

In this section we define the performance measures used throughout the paper to quantify the
quality of forecasts produced by competing models. Suppose that a given model is used to produce
a collection of forecasts {ŷs}s∈S , ŷs ∈ RJ . The ordered index set S = {s1, . . . , s|S|}, where |S| is
the number of indices in S, can change depending on the setup. For example, in the case of 1-step
ahead forecasting, S = {T + 1, T + 2, . . . , T + T} where the 1-step ahead forecasts are constructed
using the data up to T, T + 1, . . . , T + T − 1, respectively. For h-step ahead forecasts, we set
S = {T + h, T + h + 1, . . . , T + T − H + h} where H is the maximal forecasting horizon. This
ensures that the same number of forecasts are produced at each horizon and can be compared, for
example, using the uniform Model Confidence Set (MCS) test described in Appendix 1.E.

MSFE and RMSFE. The root mean squared forecasting error is given by

MSFE(S) := 1
|S|

∑
s∈S

∥ys − ŷs∥22,

6One can fix C to have a different scaling before optimizing the hyperparameter ψ. However, this amounts to
one more ex ante model tuning step.
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while the root mean squared forecasting error is

RMSFE(S) :=
√

MSFE(S) .

Cumulative SFE and Cumulative RMSFE. The cumulative squared forecasting error is given
by the cumulative sum of squared errors. We define for any forecasting index τ ∈ S,

CSFE(τ) :=
∑
s∈S
s≤τ

∥ys − ŷs∥22.

To define the cumulative RMSFE for any τ ∈ S we first define Tl(τ) := {s ∈ S : s ≤ τ} and then
write

CRMSFE(τ) :=
√√√√ 1
|Tl(τ)|

∑
s∈Tl(τ)

∥ys − ŷs∥22.

Ahead RMSFE and 1-Year-Ahead RMSFE. If one wants to the evaluate performance ahead
of a certain point of time, it is also possible to define the ahead RMSFE,

AheadRMSFE(τ) :=
√√√√ 1
|Tu(τ)|

∑
s∈Tu(τ)

∥ys − ŷs∥22,

where we introduce Tu(τ) := {s ∈ S : s ≥ τ}.
In the special case where the indices of S are associated to dates, one may also compare

performance after a given amount of time has passed from the current time index. For example,
one may evaluate how performance degrades after model estimation when parameters are fixed and
not updated. In our empirical exercises where {yt}t∈Z, yt ∈ R, is a quarterly GDP series, we can
define the 1-year-ahead RMSFE as

1YAheadRMSFE(τ) :=
√√√√ 1
|Tu(τ + 4)|

∑
s∈Tu(τ+4)

(ys − ŷs)2.

1.E Uniform Multi-Horizon MCS

We now give details on the implementation of the Uniform Multi-Horizon MCS test for the multi-
horizon forecast comparisons in our empirical analysis. Our procedure follows closely the one
originally provided by Quaedvlieg (2021): we provide R code for our functions, while the author’s
code was originally developed in the Ox programming language.

A main difference is that we prefer to use a Bartlett kernel to compute the sample uSPA
statistic, whereas Quaedvlieg (2021) uses the quadratic spectral (QS) kernel of Andrews (1991).
Our main reason for this choice is that the QS kernel features non-zero weights for all lags, while the
Bartlett kernel has finite support. This is especially important since we only have a few forecasts
in our case; thus, higher lag autocovariances between model losses can only be poorly estimated.
It means our uMCS procedure implements the standard Newey-West HAC estimator. We use
B = 100 replications for the outer and inner bootstraps. Finally, the inner bootstrap critical value



48 CHAPTER 1. RESERVOIR MACROECONOMIC FORECASTING

is set at α = 0.1.

1.F MIDAS

A state-of-the-art methodology for incorporating data of heterogeneous frequencies into one model
is the MIDAS framework developed in Ghysels et al. (2004, 2007). Here we present MIDAS in its
dynamic form, which allows the inclusion of target series autoregressive lags. We use our temporal
notation given in Definition 1.1.1 throughout.

If the MIDAS model contains only one explanatory variable (zr) with frequency multiplier κ,
then it can be written as

yt = α0 +
p∑

i=1
αiyt−i + β

K∑
k=0

φ(θ, k)zt,−k|κ + ϵt, (1.37)

where α0 is a constant term, {αi}pi=1 are the autoregressive parameters, β is a scaling parameter,
{φ(θ, k)}Kk=0 are the MIDAS weights given as a parametric function of lag k and underlying pa-
rameter vector θ ∈ Rq, and (ϵt) is a martingale difference process relative to the filtration {Ft}
generated by {yt−1−j , xt−j , . . . , xt−j,−K|κ, ϵt−1−j | j ≥ 0} and such that E[ϵ2t ] = σ2

ϵ <∞.
The MIDAS weighting scheme is the core innovation of the model. It borrows parsimony from

distributed lag models in the sense that, even if K is large, the vector θ ∈ Rq is usually restricted
to contain only a handful of parameters. This greatly reduces the number of coefficients that need
to be estimated, and a nonlinear least-squares estimator θ̂ can be readily implemented. There are
alternative formulations of the MIDAS framework where φ(θ, k) = θk so that the above reduces to
a full linear model, the so-called unrestricted MIDAS or U-MIDAS (Foroni and Marcellino, 2011).

We follow the literature and use the most commonly applied weighting scheme that is based
on the exponential Almon weighting polynomial map φ : Rq × N+ −→ R+ (see Almon (1965) for
more details). In particular, for the case of q = 2, the two-parameter Almon weighting polynomial
is given by

φ(θ, k) = φ((θ1, θ2), k) = exp(θ1k + θ2k
2), k ∈ N+.

Since Almon weights need not sum up to a given constant for different values of θ1 and θ2, it is
often common to consider the normalized Almon scheme

φ(θ, k) = exp(θ1k + θ2k
2)∑K

k=0 exp(θ1k + θ2k2)
, (1.38)

which together with (1.37) allows to treat β as a rescaling constant.
Let us now consider a more general model suitable for situations where time series of different

frequencies are available and must be integrated into the MIDAS equation. Consider the case of L
regressor time series. We assume that the lth time series is sampled at a frequency κl and contains
observations (z(l)

t,s|κl
)t,s with z(l)

t,s|κl
∈ R for all t ∈ Z and s ∈ {0, . . . , κl−1}. It happens frequently in

practice that κl, l ∈ [L] takes values from a small set of integers. For example, in the case of yearly,
quarterly, and monthly data κl ∈ {1, 4, 12} even though L could be very large (often, hundreds
or thousands of series might be of interest). The MIDAS model explaining low-frequency target
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variable yt with L regressors (z(l)
t,s|κl

)t,s, l ∈ [L] can be written as follows

yt = α0 +
p∑

i=1
αiyt−i +

L∑
l=1

βl

Kl∑
k=0

φ(θl, k)z(l)
t,−k|κl

+ ϵt, (1.39)

where the martingale difference process (ϵt) is relative to the filtration generated by sets as in
(1.37), modified to include all the considered L regressors.

The MIDAS framework produces forecasts of the chosen target variable at the low frequency of
the target. Yet, due to the MIDAS multi-frequency structure, nowcasting is also a straightforward
exercise: if, for example, the high-frequency regressor is a single series (zr) with frequency multiplier
κ, one can construct exactly κ regression equations – one for each high-frequency release within a
low-frequency period – and use these to produce high-frequency nowcasts of the target. In fact, due
to the convenience of the MIDAS model, it is easy to define high-frequency regression specifications
to study high-frequency forecasts and multicasts (see Section 1.B and Appendix 1.B).

In practice, implementing (1.39) demands some care. From a computational point of view, as
long as the relevant regression matrices can be constructed, estimation amounts to a nonlinear least-
squares problem, which can be readily solved. In Appendix 1.F.1 and Appendix 1.I.1 we discuss
the technical aspects of our MIDAS implementation in more detail. One of the important issues
of the MIDAS estimation is the non-convexity of the nonlinear least squares loss as a function of
parameters. Often, a practitioner may obtain different estimation results depending on initialization
and, more importantly, those that lead to a different quality of forecasts. Other weighting schemes
that allow for convex estimation problems can be used. For example, one may adopt the Almon lag
polynomial parametrization (Ghysels, 2016, Pettenuzzo et al., 2016) using a discrete polynomial
basis for the transformation of high-frequency regressors. This specification allows for standard
OLS estimation but requires careful choice of the polynomial order hyperparameter.

Another crucial disadvantage of the MIDAS specification is that practical implementations can
be very challenging. This is caused mainly by the ragged edges of the “raw” macroeconomic data,
incomplete observations, and uneven sampling frequencies. The relative inflexibility of MIDAS
regression lag specifications makes integrating daily and weekly data at true calendar frequencies
(i.e. without interpolation or aggregation) very complex.7 State-space models effectively mitigate
these issues.

Finally, as shown in Bai et al. (2013), exponential Almon MIDAS regressions have inherent
connections to dynamic factor models, which we discuss in the next section. When the factor
structure is not trivial, MIDAS can, however, only yield a finite-order approximation to a DFM
data-generating process. Furthermore, Bai et al. (2013) prove that in well-identified setups the
mapping between exponential Almon and factor model coefficients is highly nonlinear. Given the
robustness evaluations in Appendix 1.I.1, in practice, it appears hard to formally relate MIDAS
and DFM forecasting performance.

7One could set up a MIDAS regression with the full yearly calendar of weeks and working days as lags. However,
ragged edges arising from holidays, leap years, etc. would still be non-trivial to handle coherently without resorting
to downsampling, data re-alignment, or interpolation.
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1.F.1 MIDAS Implementation

While the MIDAS regression framework is straightforward to discuss in terms of equations, some
care must be taken when implementing it computationally. A key assumption that can be imposed
is that the integer frequencies κ := {κ1, . . . , κL} of L regressors are such that κmax := max(κ) is
a multiple of each of the κl, l ∈ [L]. In this case, MIDAS parameter estimation can be written
in matrix form, which allows for efficient numerical implementation, which we spell out in the
following paragraphs.

Let ql = κmax/κl, l ∈ [L] denote the frequency ratios and define y := (y1, y2, . . . , yT )⊤ the
vector of target observations, where T is the sample length in reference time scale. Additionally,
let z(l) := (z(l)

1 , z
(l)
2 , . . . , z

(l)
Tl

)⊤ be Tl = T · κl long vector which consists of observations of the lth
covariate z(l) released with frequency κl. For the parameters of the MIDAS model in (1.39) to be
identifiable, we assume that

T > 1 + p+
L∑

l=1

⌈
Kl

κl

⌉
.

Since κmax is a multiple of each of the L frequencies, for each series we introduce

Y = y ⊗ iκmax , Z(l) = z(l) ⊗ iql
,

where iql
and iκmax are vectors of ones of lengths ql and κmax, respectively. In the absence of missing

observations, we have that Y,Z(l) ∈ RTmax with Tmax = T · κmax observations. We now construct
preliminary regression matrices such that their maximal rows number is Tmax without accounting
for the lags structure of both the target (autoregressive lags) and regressors (MIDAS lags) and we
introduce zeros where no observations are available.8 Define for p ≥ 1 and for Kl ≥ 0

Yp =



0 0 · · · 0
y1 0 · · · 0
y2 y1 · · · 0
...

...
...

...
yT −2 yT −3 · · · yT −p−1

yT −1 yT −2 · · · yT −p


⊗ iκmax and ZKl

=



z
(l)
1 0 · · · 0
z

(l)
2 z

(l)
1 · · · 0

z
(l)
3 z

(l)
2 · · · 0

...
...

...
...

z
(l)
Tl−1 z

(l)
Tl−2 · · · z

(l)
Tl−Kl−1

z
(l)
Tl

z
(l)
Tl−1 · · · z

(l)
Tl−Kl


⊗ iql

.

In the special case p = 0 (the MIDAS model, in this case, is called static, since it does not contain
an autoregressive term) we take Yp as empty. We now follow by noticing that one should not use
Yp ∈ MTmax,p and ZKl

∈ MTmax,Kl+1 as autoregressive and mixed-frequency regression matrices,
respectively, since some observations are missing. To overcome this we introduce

n := max
{
p,

⌈
K1
q1

⌉
, . . . ,

⌈
KL

qL

⌉}
· κmax (1.40)

and the so-called upper truncation (selection) matrix

U =
(

OTmax−n+1,n−1 ITmax−n+1,Tmax−n+1
)

8At the time of implementation of this procedure in any convenient coding environment it is more natural to
introduce placeholders instead and to perform the subsequently discussed truncation via matrix manipulation rather
than by using matrix multiplication.
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with which we obtain the following required response vector and regression matrices

Yresp = UY ∈ RTmax−n+1,

Y reg
p = UYp ∈MTmax−n+1,p,

Zreg
Kl

= UZKl
∈MTmax−n+1,Kl+1,

Zreg =
(
Y reg

p Zreg
K1

· · · Zreg
KL

)
∈M

Tmax−n+1,
∑L

l=1 Kl+L
,

where Y reg
p is empty whenever p = 0.

We can now observe that Yresp and Zreg are sufficient to construct all MIDAS forecasting
and nowcasting regressions. In practice, some care needs to be taken to make sure that data is
correctly aligned: for example, in the case of nowcasting exercise regressors in Zreg and targets in
Yresp have to be aligned differently than in the case of forecasting exercises. Provided the aligned
data is executed correctly, the estimation of MIDAS parameters can be carried out efficiently. An
important thing to mention is that the truncation with the help of s in (1.40) may be too restrictive,
as it may lead to excluding up to Kmax − 1 rows from Zreg that could be used for estimation. This
can be avoided at the time of implementation. In our repository available at [the address removed
for anonymous submission] we consider this detail and exclude from the final regression matrices
only those rows which cannot be used due to the lag requirements in the model. We warn the
reader that this comes at a cost, namely the codes are lengthier and less elegant.

1.G Mixed-frequency DFM

Macroeconomic modeling based on dynamic factor models has been popular since their introduction
in Geweke (1977) and Sargent et al. (1977). The proposition of DFMs is that a low-dimensional
latent factor (ft)t∈Z, ft ∈ Rd, drives a high-dimensional observable stochastic process (yt)t∈Z,
yt ∈ Rn. We consider a time-inhomogeneous state-space model with dynamics

ft+1|f1:t,y1:t ∼ ht+1,θ(·|ft) (1.41)

yt+1|f1:t+1,y0:t ∼ gt+1,θ(·|ft+1) (1.42)

for some time-dependent state transition kernels ht,θ and observation densities gt,θ and some pa-
rameter vector θ in a parameter space Θ. A common example in the literature (see Watson and
Engle (1983) for more details) is linear Gaussian factor models with time-inhomogeneous state
transitions that can be represented as

ft+1 = Aθft +Rθut (1.43)

yt+1 = Λt+1,θft+1 + St+1,θwt+1 (1.44)

with state transition matrix Aθ ∈ Md, time-dependent factor loading matrices Λt ∈ Mn,d, and
where ut and wt are independent Gaussian vectors with zero mean and identity covariance matrix
of dimension p and n, respectively, and Rθ and St,θ re matrices of appropriate dimensions. It is
often assumed that the dimension p of the state noise vector ut is smaller than the latent state
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space dimension d, which implies that RθR⊤
θ is rank deficient, such as for AR(p) factor dynamics

(Stock and Watson, 2016, Forni et al., 2005, Doz et al., 2011). In this case, d = kp for some k ∈ N+,

Aθ =



A
(1)
θ A

(2)
θ · · · A

(p−1)
θ A

(p)
θ

Ik Ok · · · Ok Ok

Ok Ik · · · Ok Ok

... . . . ...
Ok Ok · · · Ik Ok


, Λt,θ =

(
Λ(1)

t,θ Λ(2)
t,θ · · · Λ(p)

t,θ

)
(1.45)

with A
(j)
θ ∈ Mk and Λ(j)

t,θ ∈ Mn,k. Setting ft = (v⊤
t ,v

⊤
t−1, . . . ,v

⊤
t−p+1)⊤ implies that (vt)t∈Z is a

k-dimensional AR(p) process and it is commonly assumed that Λ(j)
t,θ = On,k for j > 1. Let the initial

state f0 be distributed according to ν. The joint density of the latent path f0:T and observations
y0:T is then

pθ,ν(f0:T ,y0:T ) = ν(f0)g0,θ(y0|f0)
T∏

t=1
ht,θ(ft|ft−1)gt,θ(yt|ft),

while the marginal likelihood of y0:T is pθ,ν(y0:T ) =
∫
pθ,ν(f0:T ,y0:T )df0:T . Popular procedures for

learning the static parameters θ ∈ Θ are based on gradient descent of the negative log-likelihood
function ℓT : Θ → R,θ 7→ − log pθ,ν(y0:T ) or on the Expectation Maximization (EM) algorithm
introduced in Dempster et al. (1977). We consider here gradient descent algorithmsbased on a
sequence of step sizes γk > 0, that update the model parameters based on iterations of the form

θk+1 = θk − γk+1∇θℓT (θ)|θ=θk
,

for k ∈ N+.9

Assuming a linear Gaussian setting where the transition density of the latent factor process
is given by (1.45) to yield an AR(p) process (vt)t∈Z, vt = (v1,t, . . . , vk,t)⊤, there remains some
flexibility as to how the linear mappings

Aggθ,L : Mk,p → R, (vt−p+1 . . . ,vt) 7→ (Λt,θft)i = (Λt,θ)i,·


vt

vt−1
...

vt−p+1


for some lag parameter L ≤ p are chosen for each dimension i ∈ [n].10 We call this linear mapping
Aggθ,L an aggregation function and consider specific examples below that yield different models
for the factor loadings matrices Λt,θ. Notice that our aggregation functions are linear with respect

9Consistency of the maximum log-likelihood estimate for the dynamics (1.43)-(1.44) in the time-homogeneous
case has been established for instance in Douc et al. (2011) under regularity assumptions, including, for instance, the
full-rank of the noise covariance matrix Sθ, of the controllability matrix Cθ =

(
Rθ|AθRθ| · · · |Ad−1

θ Rθ

)
, and of the

observability matrix Oθ =
(
Λ⊤

θ |(ΛθAθ)⊤| · · · |(ΛθA
d−1
θ )⊤)⊤. It is also possible to consider an online learning setting

using a recursive decomposition of the score function as in LeGland and Mevel (1997). For general latent state
dynamics (1.41) and observation densities (1.42) that can be non-linear with non-Gaussian noise, particle filtering
algorithms are often utilized that make use of particle approximations in gradient-descent or EM learning approaches,
see for instance Kantas et al. (2015).

10The Markovian representation (1.41)-(1.42), that is, the companion form, is based on the autoregressive order
p, however, one can set A(ℓ)

θ = Ok for ℓ > p.
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to the latent factors in contrast to the non-linear approaches introduced in Proietti and Moauro
(2006) that require approximations, such as resorting to extended Kalman filtering techniques.

Example 1.G.1 (Stock aggregation). For i ∈ [n], let βi = (βi1, . . . , βik) ∈ Rk and consider

AggS
θ,1(vt−p+1 . . . ,vt)i =

k∑
m=1

βimvm,t,

with θ = βi.

Example 1.G.2 (Almon-Lag aggregation). For i ∈ [n], let βi ∈ Rk, ψi ∈ R2k and consider

AggAL
θ,L(vt−p+1 . . . ,vt)i =

k∑
m=1

βim

L−1∑
ℓ=0

φ(ψim, ℓ)vm,t−ℓ,

with θ = (βi,ψi,βi,ψi) and Almon-Lag weights φ given in (1.38).

Example 1.G.3 (Trigonometric aggregation). For i ∈ [n], let βi ∈ Rk, and for K ∈ N, let λ ∈ RK
+ ,

ω ∈ [0, 1]K , γ ∈ [−π, π]K and τ ∈ R+. Define

Aggsin
θ,L(vt−p+1 . . . ,vt)i =

k∑
m=1

βim

L−1∑
ℓ=0

ap(λ,ω,γ, τ, ℓ)vm,t−ℓ,

with θ = (βi,λ,ω,γ, τ) and

ap(λ,ω,γ, τ, ℓ) =
exp

(
1
τ

∑K
j=1 λ

2
j cos(2πωjℓ+ γj)

)
∑p−1

ℓ′=0 exp
(

1
τ

∑K
j=1 λ

2
j cos(2πωjℓ′ + γj)

) .
This aggregation scheme is motivated by self-attention models (we refer the reader to Bahdanau
et al. (2014), Vaswani et al. (2017) for more details), but to retain linearity only considers a relative
positional encoding with a Toeplitz structure. Observe that the aggregation parameters are shared
across all n dimensions in contrast to the Almon lag scheme in Example 1.G.2.

Some authors (see for example Mariano and Murasawa (2003), Bańbura and Modugno (2014))
have imposed different restrictions on the form of the factor loadings matrices or aggregation
function, particularly for one-dimensional mixed-frequency factor models of quarterly GDP growth
rates and monthly covariates, which are motivated by approximations of growth rates. We do not
pursue this additional restriction in this work.

Kalman filtering techniques have been used routinely for handling missing observations in multi-
frequency DFMs, see Harvey et al. (1998). In this work, we leverage modern auto-differentiation
libraries (Abadi et al., 2016, Dillon et al., 2017) to compute the gradient of the log-likelihood based
on Kalman filtering formulae and estimate the static parameters θ by gradient ascent of the log-
likelihood. For alternative estimation approaches using EM that could be extended to this setting,
we refer the reader to Bańbura and Modugno (2014). Nonlinear or non-Gaussian dynamic factor
models in a mixed frequency setting have been considered in Gagliardini et al. (2017), Leippold
and Yang (2019) that rely on particle filtering methods in conjunction with backward simulation
algorithms as in Godsill et al. (2004), while Schorfheide et al. (2018) consider a Bayesian approach
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using particle MCMC (see Andrieu et al. (2010)). Such approaches can become computationally
expensive and are not considered for benchmarking purposes.

While previous mixed-frequency DFMs (see Mariano and Murasawa (2003), Bańbura and Mod-
ugno (2014) for a more thorough discussion) often consider time series which are sampled at two
frequencies, we introduce here a flexible mixed-frequency DFM that describes L ∈ N+ collections of
distinct time series sampled at frequencies {κ1, . . . , κL} and each consisting of {n1, . . . , nL} series,
respectively. In the same setting as in Section 1.3, each group of nl, l ∈ [L], time series sampled at
frequency κl contains observations (y(l)

t,s|κl
) with y(l)

t,s|κl
∈ Rnl for all t ∈ Z and s ∈ {0, . . . , κl − 1}.

Let κmax = maxl κl. Suppose that the latent factor dynamics are updated at the highest sampling
frequency based on the linear transition

ft,s+1|κmax = Aθft,s|κmax +Rθut,s+1|κmax , (1.46)

where
ft,s|κmax =

(
v⊤

t,s|κmax , . . . ,v
⊤
t,s−p+1|κmax

)⊤
,

with Aθ given in (1.45) for the special case where A(ℓ)
θ = Ok for ℓ ≥ 2, p = κmax and

A
(1)
θ = Ā

ρ

max
{
ρ, |λ1(Ā)|

}
with parameters ρ ∈ (0, 1), Ā ∈ Mk and with λ1(Ā) denoting the largest eigenvalue of Ā. In
the simplified scenario of first-order autoregressive dynamics, we parameterize Rθ ∈ Mk to be
positive definite and diagonal and ut,s+1|κmax are a sequence of IID k-dimensional standard Gaussian
variables.

Notice that Kalman filtering formulas yield the first moment

f̂t,s|κmax = E
[
ft,s|κ

∣∣y1,0|κmax , . . . ,yt,s|κmax

]
recursively online, see for example Appendix 1.G.1 for details in the general time-inhomogeneous
case. Due to the linearity in (1.46), for any h ∈ N,

f̂t,s+h|κmax = E
[
ft,s+h|κmax

∣∣y1,0|κmax , . . . ,yt,s|κmax

]
= Ah

θf̂t,s|κmax .

Furthermore, from the linearity of the aggregation scheme, we obtain the forecasts for any s, h ∈ N,

E
[
y

(l)
t,s+h|κl

∣∣y1,0|κl
, . . . ,yt,s|κl

]
= Aggθ(l)

(
f̂t,(s+h)ql|κmax

)
, (1.47)

where ql = κmax/κl (c.f. Section 1.3.1) and Aggθ(l) is the aggregation scheme for frequency l. We
observe that there is a single latent factor process that describes the observations at all frequencies,
in contrast, for instance, to hierarchical Hidden Markov Models (HMM) (Hihi and Bengio, 1995)
where the latent variables evolve a priori at different time-scales. This time evolution of states is
similar to the SMFESN models also developed in this paper.

It is possible to write the following mixed-frequency DFM model in Example 1.G.4 as a general
time-inhomogeneous state-space system (1.41)-(1.42) by suitably parameterizing the time depen-
dencies in the aggregation matrices. We provide more details on implementing our mixed frequency
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DFM in Appendix 1.G.1 below. The standard Kalman filtering recursions utilized therein for pa-
rameter estimation have a cubic complexity in the dimension d or n of the Markovian factor process
f or the observation process y, respectively, at every time step. The marginal log-likelihood is op-
timized based on stochastic gradient methods with adaptive step sizes (Kingma and Ba, 2014) and
is generally not a concave function of the parameter values.11

Example 1.G.4 (Quarterly-Monthly-Daily DFM Model). We consider n(6d) time series that result
from averaging daily time series over 6 days, yieling 12 observations per quarter that are denoted
as y(6d). Furthermore, we consider n(m) monthly y(m) as well as n(q) quarterly time series y(q). We
let κmax = 72/6 = 12 and update the k-dimensional latent factor process every 6 days in sync with
y(6d). We aggregate 6 days to significantly decrease the computational cost of the factor model.
The latent factors are assumed to have the VAR(1) dynamics,12

vt,s+1|12 = A(1)vt,s|12 +Rut,s+1|12,

for any s, t ∈ N, A(1) ∈ Mk,k R ∈ Mk and IID k-dimensional standard Gaussian variables ut,s|12.
The averaged daily data is described by

y
(6d)
t,s|12 = β(6d)vt,s|12 + S(6d)w

(6d)
t,s|12

for any s, t ∈ N, β(6d) ∈ Mn(6d),k, S(6d) ∈ Mn(6d) and IID n(6d)-dimensional standard Gaussian
variables w(6d)

t,s|12. The monthly data in the stock aggregation scheme is modeled as

y
(m)
t,s|3 = β(m)vt,4s|12 + S(m)w

(m)
t,s|3,

with β(m) ∈ Mn(m),k, S(m) ∈ Mn(m) and IID n(m)-dimensional standard Gaussian variables w(m)
t,s|3.

Alternatively, an Almon aggregation scheme yields the model

y
(m)
t,s|3 = β(m)

3∑
ℓ=0
φ(ψ(m), ℓ)⊙ vt,(4s−ℓ)|12 + S(m)w

(m)
t,s|3,

with β(m) ∈ Mn(m),k, S(m) ∈ Mn(m) , IID n(m)-dimensional standard Gaussian variables w(m)
t,s|3 and

φ(ψ(m), ℓ) =
(
φ(ψ(m)

1, ℓ), . . . , φ(ψ(m)
k, ℓ)

)⊤
∈ Rk. The symbol ⊙ stands for the Hadamard or

componentwise matrix product.
The quarterly components can be analogously described as

y
(q)
t = β(q)vt,0|12 + S(q)w

(q)
t

for a stock aggregation scheme, while the Almon scheme writes as

y
(q)
t = β(q)

11∑
ℓ=0
φ(ψ(q), ℓ)⊙ vt,−ℓ|12 + S(q)w

(q)
t ,

11We compute gradients of the marginal log-likelihood using a Kalman filter implementation for a time-
inhomogeneous linear Gaussian state space model in TensorFlow Probability (Dillon et al., 2017).

12Because of the AR(1) dynamics, we do not write it in the companion form of the latent factor. However, unless
one uses the stock aggregation scheme, one still needs to keep track of the past factor values for modeling monthly
or quarterly observables.
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with β(q) ∈ Mn(q),k, S(m) ∈ Mn(q) , IID n(q)-dimensional standard Gaussian variables w(m)
t and

φ(ψ(q), ℓ) =
(
φ(ψ(q)

1, ℓ), . . . , φ(ψ(q)
k, ℓ)

)⊤
∈ Rk.

1.G.1 Mixed-frequency DFM Implementation

This section gives additional details on implementing non-homogeneous dynamic factor models,
such as the mixed frequency model introduced in the main text. We notice that the conditioning
notation in this section should not be confused with our temporal notation in Definition 1.1.1.

Kalman filtering and computational complexity. The sufficient statistics of the posterior
distribution of the latent factor ft|y0:t can be updated recursively by the Kalman filter updates in
the linear Gaussian setting. First, propagate the prior

f̂t+1|t,θ = Aθf̂t|t,θ

Σ̂t+1|t,θ = AθΣ̂t+1|t,θA
⊤
θ + St+1,θS

⊤
t+1,θ.

Compute the innovation covariance

Γt+1,θ = Λt+1Σ̂t+1|t,θΛ⊤
t+1 +RθR

⊤
θ

and the Kalman gain
Kt+1,θ = Σ̂t+1|t,θΛ⊤

t+1,θΓ−1
t+1,θ.

Then, update the statistics with the new information yt+1,

f̂t+1|t+1,θ = f̂t+1|t,θ −Kt+1,θ

(
yt+1 − Λt+1,θf̂t+1|t,θ

)
Σ̂t+1|t+1,θ = (I−Kt+1,θΛt+1,θ) Σ̂t+1|t,θ.

Notice that the inverse of the log-determinant of the innovation matrices Γt,θ are required
for computing the Kalman gains and the marginal log-likelihood, respectively, which yield a cubic
computational complexity in the dimension of the observation process. Alternatively, one can apply
matrix inversion or determinant lemmas to obtain a computational complexity that is cubic in the
dimension of the Markovian factor process ft. For an alternative approach in high-dimensions that
imposes a dynamic factor structure after a projection of the observations onto a low-dimensional
space, see Jungbacker and Koopman (2015), and Bräuning and Koopman (2014) for a collapsed
mixed-frequency DFM.

Model selection. The model parameters θ are learned to jointly maximize the log-likelihood of
the observed data for all frequencies. This is in contrast to the parameter estimation approach for
MIDAS, which minimizes the MSE of low-frequency predictions conditional on observing the high-
frequency series. We remark that a different log-likelihood weighting for the different frequencies
in DFMs has been suggested in Blasques et al. (2016), but requires cross-validation to optimize
such weightings. Nevertheless, the introduced DFM contains several hyperparameters that need to
be chosen, such as the latent state space dimension k or the order p of the latent Markov process.
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One possibility is to select such hyperparameters by evaluating the low-frequency predictions on
a validation set. Approaches for choosing the dimensions of the latent factor process have been
under-explored in the mixed-frequency setting, but see Bai and Ng (2007), Hallin and Liška (2007)
for possible criteria in general dynamic factor models. In our implementation, we choose p = 1,
as this allows for a differentiable model parametrization with stationary factor dynamics. We set
k = 5 for the small dataset and k = 10 for the medium dataset.

Parameter estimation and forecasting. Based on the results from the Kalman filtering
recursions, the model parameters θ are learned by maximizing the marginal log-likelihood us-
ing ℓt(θ) = − log pθ(y0:t) = −∑t

s=0 log pθ(ys|y0:s−1) where pθ(ys|y0:s−1) is Gaussian with mean
Λs,θf̂s|s−1,θ and covariance Γs,θ. Gradients of ℓt(θ) can be computed using algorithmic differentia-
tion.

For fixed θ ∈ Θ and h ∈ N, let

µt+h|t,θ(yt+h|y0:t) =
∫
gt+h,θ(yt+h|ft+h)

h∏
ℓ=1

ht+ℓ,θ(ft+ℓ|ft+ℓ−1)dft+ℓπt|t,θ(ft|y0:t)dft

be the h-step predictive distribution of the data, while πt|t,θ(ft|y0:t) is the filtering distribution of
the latent state ft|y0:t. The mean of µt+h|t,θ(·|y0:t) is ŷt+h|t,θ = Eθ [yt+h|y0:t]. For some t, τ ≥ 0,
let us write f̂t+τ |t,θ = Eθ[ft+τ |y0:t] and Σt+τ |t,θ = Covθ[ft+τ − f̂t+τ |t,θ|y0:t] for the mean and
covariance of the latent process, respectively. For linear Gaussian dynamics, Kalman filtering
allows for computing the filtered mean f̂t|t,θ and covariance matrices Σ̂t|t,θ analytically.

For fixed θ, the τ -step ahead prediction function Hτ
t,θ(y0:t) = ŷt+τ |t,θ = Λt+τ,θf̂t+τ |t,θ is lin-

ear due to the Kalman filtering recursion. For s ≤ t, consider also the prediction H⋆τ
s,t(y0:t) =

Eθ⋆(y0:s)[yt+τ |y0:t] that is based on the sample y0:t, but where θ⋆(y0:s) = arg minθ ℓs(θ) maximizes
the marginal likelihood of data y0:s only. This setting allows to implement different parameter
estimation setups from Section 1.C.1. For instance, the fixed parameter setup corresponds to fixing
s, which yields a fixed training set y0:s to estimate θ. In the expanding window setup, both s and
t are expanded, while a rolling window setting updates the dataset y0:s by rolling over the data.

1.H High-Frequency Forecasts

To better understand how the use of high-frequency data impacts forecasting, as an additional
empirical experiment we investigate high-frequency (HF) forecasts of all models in the Small-MD
dataset. We restrict our analysis to this dataset because the computational burden to construct
HF forecasts can be high: when using daily data and using our suggested 24 days-per-month
interpolation, one quarter amounts to 72 daily frequency observations, which means HF forecasts
can involve thousands of data points, and for DFM and M-MFESN models this setup can be quite
computationally onerous.

Constructing HF forecasts with MIDAS is trivial once the aggregation weights have been es-
timated, even though a practical implementation requires care in constructing the appropriate
lag matrices. Recall for Section 1.F that the MIDAS equation with L regressors (z(l)

t,s|κl
)t,s with
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z
(l)
t,s|κl

∈ R, l ∈ [L] for all t ∈ Z and s ∈ {0, . . . , κl − 1} can be written as

yt = α0 +
p∑

i=1
αiyt−i +

L∑
l=1

βl

Kl∑
k=0

φ(θl, k)z(l)
t,−k|κl

+ ϵt.

For clarity, we suppress the dynamic autoregressive component, as it has the same frequency as the
target. Now assume that we include n(m) monthly and n(d) daily frequency regressors in the model
that are sampled κ(m) = 3 and κ(d) = 72 times per quarter and hence κmax = 72. Therefore we can
partition the regression above in the following way

yt = α0 +
p∑

i=1
αiyt−i +

n(m)∑
l=1

βl

Kl∑
k=0

φ(θl, k)z(l)
t,−k|3 +

L∑
l=n(m)+1

βl

Kl∑
k=0

φ(θl, k)z(l)
t,−k|72 + ϵt

with L = n(m) + n(d).
Assuming parameter estimates α̂0, α̂1, . . . , α̂p and {(β̂l, θ̂l)}Ll=1 are available, the HF forecast

ŷt+1,s|72 is given by

ŷt+1,s|72 = α̂0 +
p∑

i=1
α̂iyt−i +

n(m)∑
l=1

β̂l

Kl∑
k=0

φ(θ̂l, k)z(l)
t,⌊s/24⌋−k|3 +

L∑
l=n(m)+1

β̂l

Kl∑
k=0

φ(θ̂l, k)z(l)
t,s−k|72.

For DFMs, high-frequency forecasts can be constructed using (1.46) and (1.47) to iterate factors
forward in time and then aggregate them according to estimated loadings or a weighting scheme.

Multi-frequency ESN models are also able to yield high-frequency forecasts in a straightforward
manner. For simplicity, let us consider the case as in Example 1.3.1 of an aligned S-MFESN model
that has been fit to a quarterly target with monthly and daily input data. The reservoir is run in
high-frequency, κmax steps per quarter, according to state equation

x
(m,d)
t,s|72 = αx

(m,d)
t,s−1|72 + (1− α)σ(Ax(m,d)

t,s−1|72 + Cz
(m,d)
t,s|72 + ζ).

Suppose a coefficient matrix Ŵ has been estimated. Then, as states between low-frequency periods
t and t+1 are collected, we can immediately construct the high-frequency one-step-ahead forecasts

ỹt+1,s|72 = Ŵ⊤x
(m,d)
t,s|72.

For M-MFESN models HF forecasts require slightly more care. For example, when dealing with
the multi-reservoir MFESN model of Example 1.3.2, we must repeat the most recent monthly state
at daily frequency correctly.

1.I Robustness Analysis

1.I.1 MIDAS

As we discuss briefly in the main text, parameter optimization is a principal problem in imple-
menting any MIDAS model. Even though explicit formulas exist for both gradient and Hessian of
the MIDAS loss objective when an Almon weighting scheme is used (see Kostrov (2021)), there is
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no known guarantee that the loss itself is convex or even locally convex. In practice, for a given
starting point (or point set) a numerical optimizer might only converge to a local minimum.

We observe this in practice, and we explore its effects on the robustness of MIDAS forecasts.
We report summary results for our simulations in Figure 1.20. Our proposal is, given a MIDAS
model specification and a set of starting points for evaluating the loss, to run an optimizer (for
example, L-BFGS-B with explicit gradient) and select the smallest local minimum. By repeating
this procedure multiple times, we collect a set of MIDAS parameters and study both the variation
between the parameter vectors and the implied one-step ahead forecasts.

To be precise, our procedure is as follows:

1. For a total of B repetitions:

(a) ChooseM initialization points for the optimizer. We draw 64 points inside the hypercube
of edge length 0.025 using a low-discrepancy Sobol sequence. The choice of a down-
scaled hypercube as a domain comes from the empirical fact that the Almon exponential
scheme may produce extremely large values even for relatively small coefficients. A
straightforward way to see this is to notice that given any arbitrary small value for θ1 and
θ2 in (1.38), for lag index k sufficiently large weight exp(θ1k+ θ2k

2) will overflow at any
given numerical precision. This means that one should adjust the MIDAS optimization
domain based on the number of lags in the model.

(b) For each initialization point, run the optimizer of choice.

(c) Among the resulting M (local) loss minimizers, select and store the one with the lowest
loss value.

2. With the resulting B stored minimizer:

• Construct a low-dimensional projection of the high-dimensional minima to see their
relative location in the parameter space and to compare their gradient and loss values,
see Figure 1.20 (a)-(b).

• Use each minimizer to produce MIDAS one-step ahead forecasts and plot quantile fre-
quency plots of the forecast variation due to initialization; see Figure 1.20 (c).

Figure 1.20 shows that the best minimizers among initial Sobol sets are clustered together. To
construct this 2D projection of the high-dimensional Almon coefficient space (including autore-
gressive lags and intercept), we use the well-known t-SNE procedure developed in van der Maaten
(2009), which is an unsupervised dimensionality reduction algorithm capable of preserving the la-
tent high-dimensional structure. This approach naturally implies that the Euclidean distances in
the plot are suggestive of “clustering" rather than the actual latent distance between points. In
Figures 1.20 (a)-(b), we see that the L-BFGS-B optimizer with explicit gradient achieves good
convergence in terms of gradient norm and also that the resulting cluster of minimizers has close
loss values. However, one can see that there is no single loss minimum: Figure 1.20 instead suggests
that the local structure of the MIDAS loss function is very uneven, and therefore many distinct
local minima can be achieved even when choosing a large number of initialization values for the
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optimizer. This means that the “multi-start" strategy suggested in Kostrov (2021) to alleviate
issues in MIDAS model estimation is insufficient.

The effects of non-negligible variation in parameter values on forecasts appear to be significant.
Looking at Figure 1.20 (c), we can see wide frequency bands for the one-step ahead forecasts
constructed using the Small-MD dataset and fixed parameter values. In particular, the Financial
Crisis period seems to induce larger deviations in forecasts, consistent with the intuition that data
with larger variation causes stronger model sensitivity when making forecasts.

1.I.2 MFESN

Since ESN models, and thus MFESN models, require random sampling of parameter matrices,
the size of which is often large, there is inherent variability in any ESN model forecast. In theory,
because all MFESN state parameters (Ã, C̃, ζ̃) are drawn independently of each other, one could try
to decompose the variance of any MFESN into the share due to parameter sampling and the share
due to data sampling. Unfortunately, in practice, such decomposition is hard to derive. Cross-
validation of ridge penalties and rolling and expanding window estimation are non-trivial data-
dependent operations that complicate inference. In this work, we limit ourselves to numerically
evaluating the effect of reservoir coefficient sampling on MFESN forecast variance.

Our approach is straightforward: given an MFESN model specification, c.f. Table 1.1, and
a forecasting setup (fixed parameters, expanding or rolling window), we resample the reservoir
state matrix parameters, perform cross-validation and possibly train-test sample windowing, and
finally construct pointwise forecasts. Once a sufficiently large set of resampling forecasts has been
computed, we plot frequency intervals in Figures 1.22 and 1.24. From Figure 1.22, we can see
that the single-reservoir MFESN model with reservoir size 30 produces forecasts with a meaningful
amount of variability induced by parameter resampling. Forecasts exhibit more variation when
using an expanding or rolling window estimation strategy, even though the overall forecasts align
with the GDP realizations. A similar discussion to that of MIDAS applies here: forecast sensitivity
increases with underlying data variation, exacerbated in periods of systemic economic crisis.

Figure 1.24 suggests that larger MFESN models produce significantly more stable forecasts
regarding model resampling. Note that the M-MFESN model [A] has a monthly frequency reservoir
that is approximately 3 times the size of the S-MFESN model [A]. This stability is preserved even
in expanding or rolling window settings, even though a slightly higher variation is apparent at
the height of the 2008 Financial Crisis. We hypothesize that this reduction in variance due to
model parameter sampling is due to the concentration of measure phenomena that prevail in high-
dimensional spaces. Figure 1.24 suggests that larger MFESN models produce significantly more
stable forecasts regarding model resampling. Note that the M-MFESN model [A] has a monthly
frequency reservoir that is approximately 3 times the size of the S-MFESN model [A]. This stability
is preserved even in expanding or rolling window settings, even though a slightly higher variation is
apparent at the height of the 2008 Financial Crisis. We hypothesize that this reduction in variance
due to model parameter sampling is due to the concentration of measure phenomena that prevail
in high-dimensional spaces.
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1.J Additional Figures

Figure 1.12

Figure 1.13
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Figure 1.14: 1-Step-ahead GDP Forecasting – Modified Diebold-Mariano – Small-MD Dataset

(a) Fixed 2007 (b) Fixed 2011

(c) Expanding 2007 (d) Expanding 2011

(e) Rolling 2007 (f) Rolling 2011

Figure 1.15: p-values of the pairwise Modified Diebold-Mariano tests between models of Table 1.3.
Tests are one-sided and carried out row-wise: the null hypothesis for row i and column j reads as
“the ith-row model forecasts more accurately than the jth-column model”. Rejections at the 10%
level are highlighted in red.
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Figure 1.16: 1-Step-ahead GDP Forecasting – Modified Diebold-Mariano – Medium-MD Dataset

(a) Fixed 2007 (b) Fixed 2011

(c) Expanding 2007 (d) Expanding 2011

(e) Rolling 2007 (f) Rolling 2011

Figure 1.17: p-values of pairwise Modified Diebold-Mariano tests between models of Table 1.3.
Tests are one-sided and carried out row-wise: the null hypothesis for row i and column j reads as
“the ith-row model forecasts more accurately than the jth-column model”. Rejections at the 10%
level are highlighted in red.
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Figure 1.18: 1-Step-ahead High-Frequency GDP Forecasting – 2007 Sample – Small-MD Dataset
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(c) Rolling
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Note: Forecasts for the 2007 sample are presented up to Q4 2013 to better display the high-frequency
behavior of models during the Financial Crisis period.
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Figure 1.19: 1-Step-ahead High-Frequency GDP Forecasting – 2011 Sample – Small-MD Dataset
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Figure 1.20: MIDAS Robustness Plots – 2007 Sample – Small-MD Dataset

(a) MIDAS Loss t-SNE Embedding: Gradient Norm

(b) MIDAS Loss t-SNE Embedding: Loss Norm
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Figure 1.21: MIDAS Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 1.22: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 1.23: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 1.24: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 1.25: ESN Robustness Plots – 2007 Sample – Small-MD Dataset

(a) Fixed Parameters
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Figure 1.26: 1-Step-ahead GDP Forecasting, Fixed Parameters - Small-MD Dataset
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(b) Post-crisis model
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Figure 1.27: 1-Step-ahead GDP Forecasting, Expanding Window - Small-MD Dataset

(a) Pre-crisis model
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(b) Post-crisis model
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Figure 1.28: 1-Step-ahead GDP Forecasting, Rolling Window - Small-MD Dataset
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(b) Post-crisis model
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Chapter 2

Ridge Regularized Estimation of VAR
Models for Inference

2.1 Introduction

While the idea of using ridge regression for vector autoregressive model estimation dates back to
Hamilton (1994b), there seems to be no complete analysis of its properties and asymptotic theory in
the literature. This paper fills this gap by analyzing the geometric and distributional properties of
ridge in a VAR estimation framework, discussing its comparison to well-known Bayesian approaches
and deriving the validity of cross-validation as a selection procedure for the ridge penalty.

First, I show that the shrinkage induced by the ridge estimator, while intuitive in the setting of
an isotropic penalty, produces complex effects when estimating a VAR model with a more flexible
penalization scheme. This implies that the benefits of the bias-variance trade-off (Hastie, 2020)
may be hard to gauge a priori. I provide a tractable example where ridge can yield estimates that
have higher autoregressive dependence than the least squares solution. To better understand how
different ridge penalization strategies can be designed, I also make a comparison with Bayesian
VAR estimators commonly used in macroeconometric practice.

Second, I generalize the analysis of Fu and Knight (2000) and prove the consistency and asymp-
totic normality of the ridge estimator, a result that seems to be missing in the literature. For
standard inference, the ridge penalty should either be negligible in the limit or its centering con-
verge in probability to the true parameter vector. In both these cases, there is no asymptotic bias
and no reduction in variance. Alternatively, in settings where a researcher is willing to assume
that a subset of the VAR parameters features small coefficients, one can achieve an asymptotic
reduction of variance by correctly tuning the ridge penalty matrix. I further derive the properties
of cross-validation, which is a popular approach in practical applications to tune penalized estima-
tors (Hastie et al., 2009, Bergmeir et al., 2018b). More specifically, I show that cross-validation is
able to select penalties that are asymptotically valid for inference. In passing, I also prove that,
in an autoregressive setup, the time dependence of regressors has an exponentially small effect on
in-sample prediction error evaluation.

Lastly, I use Monte Carlo simulations to study the performance of the different ridge approaches
discussed, focusing on impulse response inference. I consider two exercises: one is based on a three-
variable VARMA(1,1) data generating process from Kilian and Kim (2011); the other is a VAR(5)
model estimated in levels from a set of seven macroeconomic series, following Giannone et al.
(2015). The finding is that ridge can lead to improvements over unregularized methods in impulse
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response confidence interval length, while Bayesian estimators show the best overall performance
due to the underlying flexibility of their priors.

Related Literature. This paper does not discuss the high-dimensional setting, where the
number of regressors grows together with the sample size. Some important work has been done in
this direction already. Dobriban and Wager (2018) derive an explicit expression for the predictive
risk of ridge regression assuming a high-dimensional random effects model. Other works in this
vein are Liu and Dobriban (2020), Patil et al. (2021) and Hastie et al. (2022b), which are mostly
focused on penalty selection by cross-validation, as well as structural features of ridge. Generally
speaking, the complexity of analyzing ridge regression in high dimensions is a challenge to precisely
understanding its practical implications. As I show below, in the context of finite-dimensional
VARs, asymptotic inference demands that the ridge penalty becomes asymptotically negligible at
appropriate rates. Thus, a challenge is understanding in what way high-dimensional time series
problems would benefit from the use of ridge. This question is beyond the scope of this paper.

In the time series forecasting literature, ridge regression is commonly used for prediction. I pro-
vide a partial list of contributions in this direction. Inoue and Kilian (2008) use ridge regularization
for forecasting U.S. consumer price inflation and argue that it compares favorably with bagging
techniques; De Mol et al. (2008) use a Bayesian VAR with posterior mean equivalent to a ridge
regression in forecasting; Ghosh et al. (2019) again study the Bayesian ridge, this time however in
the high-dimensional context; Goulet Coulombe et al. (2022), Fuleky (2020a), Babii et al. (2021),
and Medeiros et al. (2021) compare LASSO, ridge and other machine learning techniques for fore-
casting with large economic datasets. Fuleky (2020a) gives a textbook treatment of penalized time
series estimation, including ridge, but does not discuss inference. The ridge penalty is considered
within a more general mixed ℓ1-ℓ2 penalization setting in Smeekes and Wijler (2018), who study
the performance and robustness of penalized estimates for constructing forecasts.

Regarding inference, Li et al. (2023) provided a general exploration of shrinkage procedures in
the context of structural impulse response estimation. Very recently, Cavaliere et al. (2022) sug-
gested a methodology for inference on ridge-type estimators that relies on bootstrapping. Finally,
shrinkage of autoregressive models to constrained sub-models was discussed by Hansen (2016b) in
a more general setting.

Finally, various estimation problems can either be cast as or augmented with ridge-type regres-
sions. Goulet Coulombe (2023) shows that the estimation of VARs with time-varying parameters
can be written as ridge regression. Plagborg-Møller (2016) and Barnichon and Brownlees (2019)
both use ridge to derive smoothed local projection impulse response functions.

Outline. Section 2.2 provides a discussion of the ridge penalty and the ridge VAR estimator. In
Section 2.3 I deal with the properties of ridge-induced shrinkage in the autoregressive coefficients.
I discuss the connections between frequentist and Bayesian ridge for VAR models within Section
2.4. Section 2.5 develops the asymptotic theory and inference result in the case where there is no
asymptotic shrinkage. This includes studying the property of cross-validation under dependence.
Section 2.6 provides inference and CV results in a setting where some shrinkage of a subset of
parameters is possible. Section 2.7 presents Monte Carlo simulations focused on impulse response
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estimation. Section 2.8 concludes. Finally, the appendices contain more detailed derivations, as
well as all proofs, additional tables and further information on simulations.

Notation. Define R+ to be the set of strictly positive real numbers. Vectors v ∈ RN and matrices
A ∈ RN×M are always denoted with lower and upper-case letters, respectively. Throughout, I will
use IM to represent the identity matrix of dimension M . For any vector v ∈ RN , ∥v∥ is the
Euclidean norm. For any matrix A ∈ RN×M , ∥A∥ is the spectral norm unless stated otherwise;
∥A∥max = maxi,j |aij | is the maximal entry norm; ∥A∥F = (tr{A′A})−1/2 is the Frobenius norm;
vec(·) is the vectorization operator and ⊗ is the Kronecker product (Lütkepohl, 2005). If a vector
represents a vectorized matrix, then it will be written in bold, that is, for A ∈ RN×M I write
vec(A) = a ∈ RNM . Let Λ = diag{λ1, . . . , λK2p}, λi > 0 for all i = 1, . . . ,K2p. To give the
partial ordering of diagonal positive semi-definite penalization matrices, let Λ1 = diag{λ1,j}K

2p
j=1

and Λ2 = diag{λ2,j}K
2p

j=1 . I write Λ1 ≺ Λ2 if λ1,i < λ2,i for all i = 1, . . . ,K2p; Λ1 ⪯ Λ2 if λ1,i ≤ λ2,i

for all i and ∃ j ∈ 1, . . . ,K2p such that λ1,j < λ2,j . Symbols P→ and d→ are used to indicate
convergence in probability and convergence in distribution, respectively.

2.2 Ridge Regularized VAR Estimation

Let yt = (y1t, . . . , yKt)′ be a K-dimensional vector autoregressive process with lag length p ≥ 1 and
parametrization

yt = νt +A1yt−1 +A2yt−2 + . . .+Apyt−p + ut, (2.1)

where ut = (u1t, . . . , uKt)′ is additive noise such that ut are identically, independently distributed
with E[uit] = 0 and Var[ut] = Σu, and νt is a deterministic trend. For simplicity, in the remainder
I shall assume that νt = 0 so that yt has no trend component – equivalently, yt is a de-trended
series.

For a given sample size T define Y = (y1, . . . , yT ) ∈ RK×T , zt = (y′
t, y

′
t−1, . . . , y

′
t−p+1)′ ∈

RKp, Z = (z0, . . . , zT −1) ∈ RKp×T , B = (A1, . . . , Ap) ∈ RK×Kp, U = (u1, . . . , uT ) ∈ RK×T , and
vectorized counterparts y = vec(Y ), β = vec(B) and u = vec(U). Accordingly, Y = BZ + U and
y = (Z ′ ⊗ IK)β + u, where Σu = IK ⊗ Σu. Importantly, throughout this work, I will assume that
the cross-sectional dimension K remains fixed.

Ridge regularization is a modification of the least squares objective by the addition of a term
dependent on the Euclidean norm of the coefficient vector. The isotropic Ridge-regularized Least
Squares (RLS) estimator is therefore defined as

β̂R(λ) := arg minβ 1
T

∥∥y − (Z ′ ⊗ IK)β
∥∥2 + λ ∥β∥2 ,

where λ > 0 is the scalar regularization parameter or regularizer. When λ ∥β∥2 is replaced with
quadratic form β′Λβ for a positive definite matrix Λ the above is often termed Tikhonov regular-
ization. To avoid confusion, I shall also refer to it as “ridge”, since in what follows Λ will always
be assumed diagonal. As Λ does not, in general, penalize all coefficients equally, it can be used to
construct an anisotropic ridge estimator. By solving the normal equations (see Appendix 2.A.1),



78 CHAPTER 2. RIDGE REGRESSION FOR TIME SERIES

the RLS estimator with positive semi-definite regularization matrix Λ ∈ RK2p×K2p is shown to be

β̂R(Λ) =
(
ZZ ′

T
⊗ IK + Λ

)−1 (Z ⊗ IK)y
T

.

When a centering vector β0 ̸= 0 is included in penalty (β − β0)′Λ(β − β0), the RLS estimator
becomes

β̂R(Λ,β0) =
(
ZZ ′

T
⊗ IK + Λ

)−1 ((Z ⊗ IK)y
T

+ Λβ0

)
. (2.2)

In the context of multivariate estimation, one has to make a further distinction between two
related types of ridge estimators. I let B̂R(Λ,β0) be the de-vectorized coefficient estimator obtained
from reshaping β̂R(Λ,β0) to a K×Kp matrix. But one can also consider the matrix RLS estimator
B̂R

mat(ΛKp, B0) given by

B̂R
mat(ΛKp, B0) = T−1(Y +B0 ΛKp)Z ′

(
T−1ZZ ′ + ΛKp

)−1
,

where ΛKp = diag{λ1, . . . , λKp} and B0 is a centering matrix. The distinction is important be-
cause the vectorized and matrix RLS estimators in general need not coincide. As discussed in
Supplementary Appendix 2.A.2, B̂R(Λ,β0) allows for more general penalty structures compared to
B̂R

mat(ΛKp, B0). I, therefore, focus on the former rather than the latter.

Remark 2.2.1. Equation (2.2) implies that β̂R(Λ,β0) and, therefore, β̂R(Λ) provide simultaneous
estimation of all the coefficients in β. However, by analogy with ordinary least squares VAR
estimation, one may also consider an equation-by-equation ridge regression (ebe-RLS) scheme. For
k = 1, . . . ,K, let yk = (Z ′ ⊗ IK)βk + uk be the autoregressive equation for the kth series of yt.
Then, we can define the kth equation RLS estimator to be

β̂R
k (Λ,β0) =

(
ZZ ′

T
⊗ IK + Λk

)−1 ((Z ⊗ IK)yk

T
+ Λβ0k

)
,

where 0 ⪯ Λk and β0k are the kth equation regularizer and centering, respectively. Notice that the
ebe-RLS approach allows, by construction, to penalize the estimates for one component differently
than for another, and the two can be independently chosen. This provides a higher degree of freedom
than the one afforded by, for example, the anisotropic lag-adapted scheme proposed in Section 2.3.2
or the Bayesian schemes of Section 2.4. However, implementing ebe-RLS in applications inherently
implies that data-driven tuning of Λk will be significantly more computationally intensive – with
costs growing linearly in K. Due to this higher complexity, in both theoretical derivation and
simulations below, I will focus on studying the properties of the simultaneous RLS estimator.

Remark 2.2.2. Further regarding ebe-RLS, another way to approach estimation is through the
recursive form of the VAR model. Let Σu = P−1DP−1′, where P−1 is an unitriangular matrix and
D a diagonal matrix, so that we may write

Y = GZ − P̃ Y +D−1/2E,

where G = PB, P̃ = P − IK and noise term E has identity covariance matrix. Estimation can now
be performed in ebe-RLS fashion, and matrices P , B and D are recovered (Hausman, 1983). Notice,
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however, that in this framework the ordering of variables plays a role, since it also determines the
decomposition of Σu. Indeed, even if a penalization scheme is fixed, permuting the entries may
yield different penalized estimates for P , B and D, so that both slope and covariance parameter
estimates are different, implying (structural) IRF estimates will also differ. However, note that
this issue is somewhat mirrored in a recursive shock identification approach: after estimation, Σ̂u

is Cholesky decomposed to identify the shocks’ rotation, and the ordering of variables is key and
must be economically justified.

2.3 Shrinkage

In this section, I discuss both the isotropic ridge penalty, i.e. the “standard” ridge approach, and
an anisotropic penalty that is better adapted to the VAR setting. An important result is that,
even in simple setups with only two variables, the shrinkage induced by ridge can either increase
or reduce bias, as well as the stability of autoregressive estimates.

Throughout this section, I consider fixed design matrices and the focus will be on the geometric
properties of ridge.

2.3.1 Isotropic Penalty

The most common way to perform a ridge regression is through isotropic regularization, that is,
Λ = λI for some scalar λ ≥ 0. Isotropic ridge has been extensively studied, see for example the
comprehensive review of Hastie (2020). With regard to shrinkage, an isotropic ridge penalty can
be readily studied.

Proposition 2.3.1. Let Z ∈ RM×T , Y ∈ RT for T > M be regression matrices. For λ• > λ > 0
and isotropic RLS estimator β̂R(λ) := (T−1ZZ ′ + λIM )−1(T−1ZY ) it holds∥∥∥β̂R(λ•)

∥∥∥ < ∥∥∥β̂R(λ)
∥∥∥ .

Proof. Using the full singular-value decomposition (SVD), decompose T−1/2Z = UDV ′ ∈ RM×T

where U is M ×M orthogonal, D is M × T diagonal and V is T × T orthogonal. Write

β̂R(λ•) = (T−1ZZ ′ + λ•IM )−1(T−1ZY )

= (UDV ′V DU ′ + λ•IM )−1UDV ′(T−1/2Y )

= U(D2 + λ•IM )−1DV ′(T−1/2Y )

= U(D2 + λ•IM )−1(D2 + λIM )(D2 + λIM )−1DV ′(T−1/2Y )

=
[
U(D2 + λ•IM )−1(D2 + λIM )U ′

]
β̂R(λ).

Since D2 = diag{σ2
j }Mj=1, the term within brackets is U diag{(σ2

j + λ)/(σ2
j + λ•)}Mj=1 U

′. Moreover,
because the spectral norm is unitary invariant and λ1 > λ2, it follows that∥∥∥U(D2 + λ•IM )−1(D2 + λIM )U ′

∥∥∥ =
∥∥∥diag{(σ2

j + λ)/(σ2
j + λ•)}Mj=1

∥∥∥ < 1.
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Finally, by the sub-multiplicative property it holds∥∥∥β̂R(λ•)
∥∥∥ ≤ ∥∥∥U(D2 + λ1IM )−1(D2 + λIM )U ′

∥∥∥ · ∥∥∥β̂R(λ)
∥∥∥ < ∥∥∥β̂R(λ)

∥∥∥
as claimed.

Proposition 2.3.1 and its proof expose the main ingredients of ridge regression. From the SVD
of T−1/2Z used above, it is clear that ridge regularization acts uniformly along the orthogonal
directions that are the columns of V . The improvement in the conditioning of the inverse comes
from all diagonal factors [(D2 + λ•IM )−1D]j = σj/(σ2

j + λ•) being well-defined, even when σj = 0
(as is the case in systems with collinear regressors).

However, directly applying isotropic ridge to vector autoregressive models is not necessarily
the most effective estimation approach. Stable VAR models show decay in the absolute size of
coefficients over lags. Thus, it is reasonable to choose a more general ridge penalty that can
accommodate lag decay.

2.3.2 Lag-Adapted Penalty

I now consider a different form for Λ that is of interest when applying ridge specifically to a VAR
model. Define family F (p) of lag-adapted ridge penalty matrices as

F (p) = {diag{λ1, . . . , λp} ⊗ IK2 | λi ∈ R+, i = 1, . . . , p},

where each λi intuitively implies a different penalty for the elements of each coefficient matrix
Ai, i = 1, . . . , p.1 The family F (p) allows imposing a ridge penalty that is coherent with the lag
dimension of an autoregressive model. It is parametrized by p distinct penalty factors, meaning
that the penalization is anisotropic.

Proposition 2.3.2. Let Z ∈ RKp×T , y ∈ RKT for T > Kp be multivariate VAR regression
matrices. Given subset S ⊆ {1, . . . , p} of cardinality s = |S|, for Λ(p) ∈ F (p) define β̂R(Λ(p))[S] as
the vector of sK2 coefficient estimates located at indexes 1 + K2(j − 1), . . . ,K2j for j ∈ S. Let
Sc = {1, . . . , p} \ S be the complement of S.

(a) If λ1 ≥ λ2, then
∥∥∥β̂R(λ1IK2p)[U ]

∥∥∥ ≤ ∥∥∥β̂R(λ2IK2p)[U ]

∥∥∥ for any U ⊂ {1, . . . ,K2p}. The inequal-
ity is strict when λ1 > λ2.

(b) Let β̂LS
[S] be the least squares estimator of the autoregressive model with only the lags indexed

by S included and zeros as coefficients for the lags indexed by Sc. Similarly, let Λ(p)
[S] be the

1Note that with a lag-adapted penalty it is also possible to directly use the matrix ridge estimator since the penalty
for β̂R is given by diag{λ1, . . . , λp} ⊗ IK2 = (diag{λ1, . . . , λp} ⊗ IK) ⊗ IK , see Supplementary Appendix 2.A.2.
Importantly, this kind of structure is minimal in terms of modeling the relative size of coefficients within each
coefficient matrix Ai. If economic theory or intuition provides information about the effects of one specific variable
and lag on another – say, the contemporaneous effect of the first series on the second series is zero – more structure
can be integrated into the ridge penalty matrix. This would mean, however, that different ridge estimator forms are
not equivalent.
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subset of diagonal elements in Λ(p) penalizing the lags in S. Then

lim
Λ(p)

[S]→0

Λ(p)
[Sc]→∞

β̂R(Λ(p)) = β̂LS
[S] ,

where Λ(p)
[S] → 0 and Λ(p)

[Sc] →∞ are to be intended as the element-wise convergence.

Proposition 2.3.2 shows that the limiting geometry of a lag-adapted ridge estimator is thus
identical to that of a least squares regression run on the subset specified by S. By controlling the
size of coefficients {λ1, . . . , λp} it is therefore possible to obtain pseudo-model-selection. However,
in the next section, I show that anisotropic penalization produces complex effects on the model’s
coefficient estimates.

2.3.3 Illustration of Anisotropic Penalization

In this section, I aim to illustrate the effects of a lag-adapted ridge penalty on VAR coefficients
estimates using a particular example. This further helps motivate and contextualize the results of
the simulation exercises provided in Section 2.7. More generally, before moving on to the discussion
of more sophisticated forms of ridge regression, it is important to gain some intuition regrading the
properties of anisotropic penalization, which I highlight with the help of a simple bivariate VAR(2)
model.

Note that, since ridge operates along principal components, there is no immediate relationship
between a specific subset of the estimated coefficients and a given diagonal block of Λ(p). With
regard to autoregressive modeling, three effects are of interest: the shrinkage of coefficient matrices
Ai relative to the choice of λi; the entity of the bias introduced by shrinkage, and the impact of
shrinkage on the persistence of the estimated model.

In order to showcase these effects, I consider the VAR(2) model

yt = A1yt−1 +A2yt−2 + ut, ut ∼ i.i.d. N (0,Σu),

where

A1 =
[

0.8 0.1
−0.1 0.7

]
, A2 =

[
0.1 −0.2
−0.1 0.1

]
, Σu =

[
0.3 0
0 5

]
.

A single sample of length T = 200 is drawn, demeaned and used to estimate coefficients A1 and
A2. The VAR(2) model is fitted using the lag-adapted ridge estimator B̂R(Λ(2)), where Λ(2) =
diag{λ1, λ2}⊗ I2. Note that B̂R(Λ(2)) can be partitioned into estimates ÂR

1 (Λ(2)) and ÂR
2 (Λ(2)) for

the respective parameter matrices.

Shrinkage. To illustrate shrinkage, I consider the restricted case of λ1 ∈ [10−2, 106] and λ2 = 0.
The ridge estimator is computed for varying λ1 over a logarithmically spaced grid. Figure 2.1a
shows that

∥∥∥B̂R(Λ(2))
∥∥∥

F
≈
∥∥∥B̂LS

∥∥∥
F

for λ1 ≈ 0, but as the penalty increases
∥∥∥ÂR

1 (Λ(2))
∥∥∥

F
decreases

while
∥∥∥ÂR

2 (Λ(2))
∥∥∥

F
grows. The resulting behavior of

∥∥∥B̂R(Λ(2))
∥∥∥

F
is non-monotonic in λ1, although

indeed
∥∥∥B̂R(Λ(2))

∥∥∥
F
<
∥∥∥B̂LS

∥∥∥
F

in the limit λ1 → ∞. This effect is due to the model selection
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Figure 2.1: Shrinkage of coefficients estimate in Frobenius norm (a); bias induced by shrinkage
(b); change in stability of estimated VAR model at different levels of penalization, measured by
the absolute value of the largest companion form eigenvalue (c).

properties of lag-adapted ridge, and the resulting omitted variable bias. Therefore, in practice, it
is not generally true that anisotropic ridge induces monotonic shrinkage of estimates.

Bias. Since ridge bias is hard to study theoretically, I use a simulation with the same setup of
Figure 2.1a, this time with λ1, λ2 ∈ [10−2, 104]. The grid is logarithmic with 150 points. Figure
2.1b presents a level plot of the sup-norm ridge bias

∥∥∥B̂R(Λ(2))−B
∥∥∥

∞
given multiple combinations

of λ1 and λ2. While there can be gains compared to the least squares estimator B̂LS , they are
modest. Moreover, level curves of the bias surface show that gains concentrate in a very thin
region of the parameter space. Consequently, one may imagine that, in practice, any (data-driven)
ridge penalty selection criterion is unlikely to yield bias improvement over least squares. Yet, in
large VAR models with many lags, the reduction in variance of the ridge estimator often yields
improvements over un-regularized procedures (Li et al., 2023). However, the bias-variance trade-off
in ridge is not a free-lunch when performing inference. Pratt (1961) showed that it is not possible
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to produce a test (equivalently, a CI procedure) which is valid uniformly over the parameter space
and yields meaningfully smaller confidence intervals than any other valid method.

Stability. To study the stability of ridge VAR estimates, I reuse the results of the bias simulation
above. Let A be the companion matrix of [A1, A2], and ÂR the companion matrix of estimates
[ÂR

1 (Λ(2)), ÂR
2 (Λ(2))]. For all combinations (λ1, λ2), I compute the largest eigenvalue ω1(ÂR) of

ÂR. Note that if |ω1(Â)| < 1, then the estimated VAR(2) is stable (Lütkepohl, 2005). Figure 2.1c
presents the level sets for the surface of maximal eigenvalue moduli, and for comparison |ω1(B̂LS)|
is shown at the origin.2 While along the main diagonal there is a clear decrease in |ω1(ÂR)| as
isotropic penalization increases, when λ1 is large and λ2 ≪ 1 (or vice versa) the maximal eigenvalue
increases instead. Therefore, an estimate of a VAR model obtained with anisotropic ridge may be
closer to unit root than the least squares estimate.

2.4 Bayesian and Frequentist Ridge

So far, I have discussed standard ridge penalization schemes. In this section, I study the posterior
mean of Bayesian VAR (BVAR) priors commonly applied in the macroeconometrics literature.
I show that such posteriors are in fact specific GLS formulations of the ridge estimator. This
comparison highlights that ridge can be seen as a way to embed prior knowledge into the least
squares estimation procedure by means of centering and rescaling coefficient estimates.

2.4.1 Litterman-Minnesota Priors

In Bayesian time series modeling, the so-called Minnesota or Litterman prior has found great
success (Litterman, 1986). For stationary processes which one believes to have reasonably small
dependence, a zero-mean normal prior can be put on the VAR parameters, with non-zero prior
variance. Assuming that the covariance matrix of errors Σu is known, the Litterman-Minnesota
has posterior mean

β | Σu =
[
V −1
β + (ZZ ′ ⊗ Σ−1

u )
]−1

(Z ⊗ Σ−1
u )y, (2.3)

where V β ≻ 0 is the prior covariance matrix of β (Lütkepohl, 2005). It is common to let V β be
diagonal, and often the entries follow a simple pattern which depends on lag, individual components
variances, and prior hyperparameters. For example, Bańbura et al. (2010) suggest the following
structure for the diagonal

vi,jk =


λ2

i2
if j = k,

θ
λ2

i2
σ2

j

σ2
k

if j ̸= k,
(2.4)

where vi,jk is the prior variance for coefficients (Ai)jk for i = 1, . . . , p and j, k = 1, . . . ,K. Here,
σj is the j-th diagonal element of Σu, θ ∈ (0, 1) specifies beliefs on the explanatory importance of
own lags relative to other variables’ lags, while λ ∈ [0,∞] controls the overall tightness of the prior.
The extreme λ = 0 yields a degenerate prior centered at β = 0, while λ =∞ reduces the posterior

2If Λ(2) → 0, then by continuity of eigenvalues it follows that |ω1(ÂR)| → |ω1(ÂLS)|, see Supplementary Ap-
pendix 2.A.3.
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mean to the OLS estimate β̂LS . Factor 1/i2, which explicitly shrinks variance at higher lags, was
originally introduced by De Mol et al. (2008), who formally developed the idea that coefficients at
deeper lags should be coupled with more penalizing priors. Note that, in (2.4), assuming σ2

j = σ2
k

for all j, k = 1, . . . ,K and setting θ = 1, produces a V β that has a lag-adapted structure with
quadratic lag decay.3

Equation (2.3) more generally demonstrates that the Minnesota posterior mean is equivalent
to a ridge procedure. It is important to notice that, while with least squares the OLS and GLS
estimators of VAR coefficients coincide, this is not the case with ridge regression. Regularizing a
GLS regression will yield

β̂RGLS(Λ) :=
[
Λ + (ZZ ′ ⊗ Σ−1

u )
]−1

(Z ⊗ Σ−1
u )y (2.5)

instead of β̂R, which is equivalent to (2.3) under an appropriate choice of Λ. While I develop the
asymptotic results for β̂R assuming a centering parameter β0 ̸= 0 in general, I do not directly
study the properties β̂RGLS . The generalization to GLS ridge employing the least squares error
covariance estimator Σ̂LS

T should follow from straightforward arguments. In Section 2.7, I focus on
providing evidence on the application β̂RGLS in terms of its pointwise impulse response estimation
mean-squared error.

Remark 2.4.1. In principle, ridge penalties can be designed to implement shrinkage towards
nonstationary or long memory priors, too. Very recently, for example, Bauwens et al. (2023) have
suggested a ridge type strategy to estimate a one-lag long memory model: their penalization scheme
follows naturally from the assumption that an observed AR(1) series originates from an infinite-
dimensional VAR(1) with an appropriate off-diagonal structure. One may also think of applying a
unit-root-centered matrix RLS estimator B̂R

mat(ΛKp, B
†
0), where B†

0 := (IK , 0K , . . . , 0K) ∈ RK×Kp.
This is, in fact, exactly the centering of the Litterman-Minnesota prior (Bańbura et al., 2010).
Notice, however, that this type of prior imposes very strict assumptions on the form of the unit-
root – namely, each component is unaffected by any of the others.4 Finally, shrinkage to subspaces
associated with a factor model specification has also been explored (Huber and Koop, 2023).

2.4.2 Hierarchical Priors

Recent research on Bayesian vector autoregressions exploit more sophisticated priors compared to
the Litterman-Minnesota design. Giannone et al. (2015) develop an advanced BVAR model by
setting up hierarchical priors which entail not only model parameters, but also hyperparameters.
They impose

Σu ∼ IW(Ψ, d),

3Bańbura et al. (2010) also assume θ = 1 in their BVAR estimation. They wish to relax the Litterman-Minnesota
assumption that Σu is a fixed, diagonal matrix and implement estimation directly by augmenting their data with
appropriately constructed dummy variables (Kadiyala and Karlsson, 1997). This approach, however, is selected
primarily for computation reasons due to the size of their Bayesian model.

4While stationarity of autoregressive estimates can be easily enforced using the Yule-Walker estimator (Brockwell
and Davis, 1991), exact unit-root behavior is inherently hard to encode via penalization due to the complex geometry
of the stationary region, see the discussion by Heaps (2023).
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β | Σu ∼ N
(
β, λ(Σu ⊗ Ω)

)
,

for hyperparameters β, Ω, Ψ and d, where IW is the Inverse-Wishart distribution. Here, too, scalar
λ ∈ [0,∞] controls prior tightness. Let B be the matrix form of the VAR coefficient prior mean,
so that vec(B) = β. The resulting (conditional) posterior mean B is given by

B | Σu =
[
(λΩ)−1 + ZZ ′

]−1 [
ZY + (λΩ)−1B

]
. (2.6)

Observe that equation (2.6) is effectively equivalent to a centered ridge estimator, c.f. (2.2).
The introduction of a hierarchical prior leaves space to add informative hyperpriors on the model

hyperparameters, allowing for a more flexible fit. Indeed, removing the zero centering constraint
from the prior on β can improve estimation. It is often the case that economic time series show a
high degree of correlation and temporal dependence, therefore imposing β = 0 as in the Minnesota
prior is inadequate. In fact, Giannone et al. (2015) show that their approach yields substantial
improvements in forecasting exercises, even when hyperparameter priors are relatively flat and
uninformative.

2.5 Standard Inference

In this section, I state the main asymptotic results for the RLS estimator β̂R(Λ,β0) with general
regularization matrix Λ. I shall allow Λ and non-zero centering coefficient β0 to be, under ap-
propriate assumptions, random variables dependent on sample size T . In particular, β0 may be a
consistent estimator of β.

I will impose the following assumptions.

Assumptions
A. {ut}Tt=1 is a sequence of i.i.d. random variables with E[uit] = 0, covariance E[utu

′
t] = Σu

non-singular positive definite and E |uitujtumtunt| <∞, i, j,m, n = 1, . . . ,K.

B. There exists ρ > 1 such that det(IK −
∑p

i=1Aiz
i) ̸= 0 for all complex z, |z| ≤ ρ.

C. There exist 0 < m ≤ m < ∞ such that m ≤ ωK(Γ) ≤ ω1(Γ) ≤ m, where Γ = E[ztz
′
t] is

the autocovariance matrix of zt and ω1(Γ), ωK(Γ) are its largest and smallest eigenvalues,
respectively.

Assumption A is standard and allows proving the main asymptotic results with well-known
theoretical devices. Assuming ut is white noise or assuming yt respects strong mixing conditions
(Davidson, 1994) would require more careful consideration in asymptotic arguments but is otherwise
a simple generalization, although more involved in terms of notation, see e.g. Boubacar Mainassara
and Francq (2011). Assumption B guarantees that yt has no unit roots and is stable. Of course,
many setups of interest do not satisfy this assumption, the most significant ones being unit roots,
cointegrated VARs, and local-to-unity settings. Incorrect identification of unit roots does not
invalidate the use of LS or ML estimators (Phillips, 1988, Park and Phillips, 1988, 1989, Sims
et al., 1990), however inference is significantly impacted as a result (Pesavento and Rossi, 2006,
Mikusheva, 2007, 2012). Assumption C is standard in the literature regarding penalized estimation
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and does not imply significant additional constraints on the process yt, c.f. Assumption A. It is
sufficient to ensure that for large enough T the plug-in sample autocovariance estimator is invertible
even under vanishing Λ.

Before stating the main theorems, let

Γ̂ = T−1ZZ ′,

Û = Y − B̂RZ,

Σ̂R
u = T−1Û Û ′,

be the regression covariance matrix, regression residuals and sample innovation covariance estima-
tor, respectively.

Theorem 2.5.1. Let Assumptions A-C hold and define β̂R(Λ,β0) be the centered RLS estimator
as in (2.2). If

√
TΛ P→ Λ0 and β0

P→ β0, where Λ0 is a positive semi-definite diagonal matrix and
β0 is a constant vector, then

(a) Γ̂ P→ Γ,

(b) β̂R(Λ,β0) P→ β,

(c) Σ̂R
u

P→ Σu,

(d)
√
T
(
β̂R(Λ,β0)− β

)
d→ N

(
Γ−1Λ0(β0 − β),Γ−1 ⊗ Σu

)
.

Theorem 2.5.1 considers the most general case, and, as previously mentioned, gives the asymp-
totic distribution of β̂R under rather weak conditions for the regularizer Λ. The resulting normal
limit distribution is clearly dependent on the unknown model parameters β, complicating inference.

However, it is possible – under strengthened assumptions for Λ or β0 – for β̂R to have a zero-
mean Gaussian limit distribution.

Theorem 2.5.2. In the setting of Theorem 2.5.1, results (a)-(c) hold and (d) simplifies to

(d′)
√
T
(
β̂R(Λ,β0)− β

)
d→ N

(
0,Γ−1 ⊗ Σu

)
if either

(i) Λ = oP

(
T−1/2

)
,

(ii) Λ = OP

(
T−1/2

)
and β0 − β = op(1).

The following corollary is immediate.

Corollary 2.5.3. Let β̂0 be a consistent and asymptotically normal estimator of β. Then, under
condition (i) or (ii) of Theorem 2.5.2 results (a)-(d′) hold.
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2.5.1 Joint Inference

To handle smooth transformations of VAR coefficients, such as impulse responses (Lütkepohl, 1990),
I also derive a standard joint limit result for both β̂R and the variance estimator Σ̂R

u .

Theorem 2.5.4. Let σ̂R = vec(Σ̂R
u ) and σ = vec(Σu). Under the assumptions of Theorem 2.5.1,

√
T

[
β̂R − β
σ̂R − σ

]
d→ N

([
Γ−1Λ0(β0 − β)

0

]
,

[
Γ−1 ⊗ Σu 0

0 Ω

])
.

Under assumption (1) or (2) of Theorem 2.5.2,

√
T

[
β̂R − β
σ̂R − σ

]
d→ N

(
0,
[
Γ−1 ⊗ Σu 0

0 Ω

])
,

where Ω = E
[
vec(utu

′
t) vec(utu

′
t)′]− σσ′.

This result is key as it allows, under the stated assumptions on the penalizer, to construct valid
asymptotic confidence intervals and, specifically, perform impulse response inference, as done in
the simulations of Section 2.7 using the Delta Method (Lütkepohl, 2005).

2.5.2 Cross-validation

In practice, the choice of ridge penalty is often data-driven, and cross-validation is a very popular
approach to select Λ. I now turn to the properties of CV as applied to the RLS estimator β̂R(Λ).

For simplicity, assume that yt is an AR(p) process, that is, K = 1. In this setting,

β̂R(Λ) =
(
ZZ ′

T
+ Λ

)−1 Zy

T
,

where Λ = diag{λ1, . . . , λp}. Following Patil et al. (2021), the prediction error of ridge estimator
β̂R(Λ) given penalty Λ is

Err
(
β̂R(Λ)

)
:= E ỹ,z̃

[(
ỹ − z̃′β̂R(Λ)

)2 ∣∣Z,y] ,
where ỹ and z̃ are random variables from an independent copy of yt. In particular, z̃ is the vector
of p lags of ỹ. Moreover, the error curve for Λ is given by

err(Λ) := Err
(
β̂R(Λ)

)
.

The prediction error is crucial because it allows to determine the oracle optimal penalization,

Λ∗ := arg min
Λ⪰0

err(Λ).

Clearly, err(Λ) is unavailable in practice and Λ∗ must be substituted with a feasible alternative.
Cross-validation proposes to construct a collection of paired, non-overlapping subsets of the sample
data such that the first subset of the pair (estimation set) is used to estimate the model, while the
second (validation set) is used to provide an empirical estimate of the prediction error. The CV
penalty is then selected to minimize the total error over validation sets. A very popular approach to
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build cross-validation subsets is k-fold CV, wherein the sample is split into k blocks, so-called folds,
of sequential observations (possibly after shuffling the data). Each fold determines a validation set,
and is paired with its complement, which gives the estimation set. For more details, see e.g. Hastie
et al. (2009).

Again with the intent of keeping complexity low – as this work is not focused on cross-validation
– I will make the additional simplifying assumption that CV is implemented with two folds and
one pair. Specifically, the first fold is the estimation set, where Z and y are constructed and
β̂R(Λ) is estimated. The second fold is the validation set and yields Z̃, ỹ, where Z̃ ∈ Rp×T̃

and ỹ ∈ RT̃ . To account for dependence, a buffer of m observations between validation and
estimation folds is introduced. The last observation of yt in the estimation set is yT , while the first
observation in the validation set is ỹ1 := yT +m+1, that is, the total number of available observations
is T +m+ T̃ +2p+1. This is a stylized version of the CV setup of Burman et al. (1994) – also called
m-block or non-dependent cross-validation in Bergmeir et al. (2018b) – and is effectively equivalent
to an out-of-sample (OOS) validation scheme. Thus, the 2-fold m-buffered CV error curve is

cv2m(Λ) := 1
T̃

T̃∑
s=1

(
ỹs − z̃′

sβ̂
R(Λ)

)2
. (2.7)

Theorem 2.5.5. Under Assumptions A-C, for every Λ in the cone of diagonal positive definite
penalty matrices with diagonal entries in (λmin,∞), λmin ≥ 0, it holds that

cv2m(Λ)− err(Λ) a.s.−→ 0

as T, T̃ → ∞. Furthermore, the convergence is uniform in Λ over compact subsets of penalty
matrices.

In the current setup, the joint limit T, T̃ → ∞ should be thought as T̃ /T → γ ∈ (0, 1), where
aspect ratio γ determines the balance of the cross-validation split.

Remark 2.5.1. Under Assumption C, ωK(Γ̂) > 0 for T large. Therefore, the bounds derived in
the proof of Theorem 2.5.5 are finite even if Λ = 0. In fact, it is easily seen that the behavior
of err(Λ) and cv2m(Λ) is consistent at the endpoints Λ = 0 and Λ → ∞, see Patil et al. (2021).
Observe that

cv2m(Λ)→ Σu and err(Λ)→ Σu

as Λ→ 0, while
cv2m(Λ)→ Γ and err(Λ)→ Γ

as Λ→∞, as needed.

Theorem 2.5.5 thus shows that cv2m(Λ) gives an asymptotically valid way to evaluate the
prediction error curve, and thus tune Λ, over any compact set of diagonal positive semi-definite
penalization matrices. Moreover, in Theorem C.2.1, Supplementary Appendix 2.C.2, I show that
the impact of dependence due to the VAR data generating process is exponentially small for m
sufficiently large. This property of cv2m(Λ) is desirable because it lets one choose m small also in
applications with moderate sample sizes, and it theoretically justifies the prescription of Burman
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et al. (1994).

2.5.3 Asymptotically Valid CV

So far, I have shown that a simple 2-fold CV – or, equivalently, out-of-sample validation – correctly
estimates the predictive error of the ridge estimator, even under dependence. I turn now to the
question of selecting an asymptotically valid penalty, that is, a Λ such that condition (1) of Theorem
2.5.2 is fulfilled. This enables inference, since one is in a setting where the bias is asymptotically
negligible.

The idea is to scale the ridge penalty used at the estimation step of CV by a factor
√
T , so that

the validated penalty converges to zero at an appropriate rate as both T and T̃ grow. In other
words, an over-smoothed ridge regression turns out to be key when studying cross-validation. To
derive this result, first let

β̂R
♦ (Λ) :=

(
ZZ ′

T
+
√
TΛ
)−1 Zy

T

be the over-smoothed ridge estimator.

Theorem 2.5.6. Under Assumptions A-C, let Iλ be the compact set of diagonal positive semidef-
inite penalization matrices Λ such that ∥Λ∥max ≤ λ <∞. It holds

Λ∗
♦ := arg min

Λ∈Iλ

Err
(
β̂R
♦ (Λ)

)
= op(T−1/2).

Remark 2.5.2. The previous theorem is stated in terms of the oracle predictive error Err
(
β̂R
♦

(
Λ̃
))

,
which equals the 2-fold CV error curve up to a factor of order OP (T̃−1/2). Therefore, assuming that
the CV aspect ratio γ is strictly between zero and one, the result of Theorem 2.5.6 also directly
generalizes to an empirically cross-validated penalty.

2.6 Inference with Shrinkage

Fu and Knight (2000) have argued that results such as Theorems 2.5.1 and 2.5.2 portray penalized
estimators in a somewhat unfair light, because they result in asymptotic distributions showing no
bias-variance trade-off. Indeed, they show that ridge shrinkage yields estimates with asymptotic
variance no different from that of least squares. Of course, in finite samples shrinkage has an effect
on Γ−1⊗Σu since Σ̂R

T is used in place of Σ̂LS
T to estimate the error term variance matrix. To better

understand the value of ridge penalization in practice, one should therefore consider the situation
where shrinkage is not asymptotically negligible for at least a subset of coefficients. A motivating
example would be that of a VAR(∞) model derived by inverting a stable VARMA(p, q) process:
for i sufficiently large, coefficient matrices Ai decay exponentially to zero.5 One should thus be
able to exploit such structural information about the autoregressive coefficients to asymptotically
improve on the bias-variance trade-off. Following this intuition and the discussion of lag-adapted
penalty matrices in Section 2.3.2, I shall now consider the empirically relevant regression setup

5This result follows from a straightforward generalization of Lemma 2.C.1 in Supplementary Appendix 2.C. The
choice of norm to measure such decay is not fundamental, as they are equivalent given that dimension K is fixed.
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where one assumes that a subset of VAR coefficients are small (with respect to sample size), but
not necessarily zero. Thus, to have inference reflect this type of shrinkage, an asymptotic framework
with non-negligible penalization of higher-order lag coefficients is in fact more appropriate than that
of Theorem 2.5.1.6

Formally, assume that for some 0 < n ≤ p one can partition the VAR coefficients as β =
(β′

1,β
′
2)′, where β1 ∈ RK2(p−n) and β2 ∈ RK2n, and assume that β2 = T−(1/2+δ) b2 for δ > 0 and

b2 ∈ RK2n is fixed. Such ordered partitioning of β is without loss of generality.7 In this setup,
it is clearly desirable to penalize β1 and β2 differently when constructing the ridge penalty. Let
Λ = diag{(L′

1, L
′
2)′} ⊗ IK where L1 ∈ RK2(p−n)

+ and L2 ∈ RK2n
+ . Assume that

L1 = oP (T−1/2) and L2
P→ L2

for a fixed vector L2 ∈ RK2n
+ . In particular, letting Λ1 = diag{L1} and Λ2 = diag{L2},

Λ =
[
Λ1 0
0 Λ2

]
⊗ IK

P→ Λ⊗ IK where Λ =
[
0 0
0 Λ2

]
, Λ2 ≻ 0. (2.8)

One can now develop an asymptotic result which shows non-negligible shrinkage in the limit distri-
bution of the ridge estimator. For simplicity of exposition, here I will assume that ridge centering
β0 is chosen to be zero.

Theorem 2.6.1. In the setting of Theorem 2.5.1, assume that, for 0 < n ≤ p,

(i) β = (β′
1,β

′
2)′ where β1 ∈ RK2(p−n) and β2 = T−(1/2+δ) b2 for δ > 0, b2 ∈ RK2n fixed.

(ii) Λ = diag{(L′
1, L

′
2)′} where L1 ∈ RK2(p−n)

+ and L2 ∈ RK2n
+ .

(iii) L1 = oP (T−1/2) and L2
P→ L2 as T →∞.

(iv) β0 = 0.

Let ΓΛ = Γ + Λ where Λ ⪰ 0 is given by (2.8). Then, results (a)-(c) hold and

(d ′′)
√
T
(
β̂R(Λ,β0)− β

)
d→ N

(
0,Γ−1

Λ
Γ Γ−1

Λ
⊗ Σu

)
It is easy to see that indeed the term Γ−1

Λ
Γ Γ−1

Λ
in Theorem 2.6.1 is weakly smaller than Γ−1

in the positive-definite sense. Note that

Γ−1
Λ

Γ Γ−1
Λ
⪯ Γ−1 ⇐⇒ (Γ + Λ)−1Γ ⪯ Γ−1(Γ + Λ)

⇐⇒ IK2p − (Γ + Λ)−1Λ ⪯ IK2p + Γ−1Λ

⇐⇒ 0 ⪯ ((Γ + Λ)−1 + Γ−1)Λ

The last inequality is true by definition of Λ. Shrinkage gains are concentrated at the components
that have non-zero asymptotic shrinkage, i.e. those penalized by L2.

6Such an approach to inference also follows De Mol et al. (2008), who argue for explicit lag penalization within
BVAR priors on similar theoretical grounds. In the context of maximum-likelihood estimation, the use of appropriate
and plausible model restrictions to improve efficiency by shrinkage, rather than perform hypothesis testing, has also
been discussed by Hansen (2016a).

7The dimensions of β1 and β2 are chosen to be multiples of K2 to better conform to the lag-adapted setting.
This choice is also without loss of generality and simplifies exposition.
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Remark 2.6.1. A key point in the application of Theorem 2.6.1 is identification of β1 and β2.
In practice, one may then proceed in two ways. As discussed in Section 2.4, one can see the
ridge approach as a frequentist “counterpart” to implementing a Bayesian prior. Therefore, the
researcher may split β into subsets of small and large parameters based on economic intuition,
domain knowledge or preliminary information. Alternatively, in the following section, I show that
cross-validation is able to automatically tune Λ appropriately.

Finally, it is immediate to generalize the argument of Theorem 2.6.1 to the case where β is not
split into subsets based on the relative size of coefficients, but rather a non-zero, partially consistent
centering sequence β0 is used.

Corollary 2.6.2. Consider the setup of Theorem 2.6.1, where now assumptions (i) and (iv) are
replaced by

(i ′) β = (β′
1,β

′
2)′ where β1 ∈ RK2(p−n) and β2 ∈ RK2n are fixed.

(iv ′) β0 = (β′
01,β

′
02)′ where β01 ∈ RK2(p−n) is such that β01 ̸= β1, and β02 = β2 +T−(1/2+δ)b2 for

δ > 0, b2 ∈ RK2n fixed.

Then, results (a)-(c) and (d ′′) still hold.

2.6.1 Cross-validation with Partitioned Coefficients

One can use the same approach applied to derive Theorem 2.5.6 to show that cross-validating the
RLS estimator with Err(β̂R

♦ (Λ)) is also asymptotically valid under partitioning.

Corollary 2.6.3. Consider the setup of Theorem 2.6.1 and assume that the assumptions of Theo-
rem 2.5.6 are met. It holds[

Λ1,♦ 0
0 Λ2,♦

]
:= arg min

Λ∈Iλ

Err
(
β̂R
♦ (Λ)

)
=
[
op(T−1/2) 0

0 oP (1)

]

Moreover, any Λ2,♦ such that 0 ⪯ Λ2,♦ ⪯ λI is asymptotically valid.

In theory, one would like to be able to quantify the gains obtained in the asymptotic shrinkage
setup of Theorem 2.6.1 compared to the standard setting of Theorems 2.5.1 and 2.5.2, particularly
when using cross-validation. Unfortunately, it is in general hard to study the cross-validation error
loss even in setups without dependence. Stephenson et al. (2021), in fact, show that the ridge
leave-one-out CV loss is not generally convex. This suggests that studying the behavior of CV
when penalizing with a diagonal anisotropic Λ can be a very complex task in a finite sample setup.

2.7 Simulations

To study the performance of ridge-regularized estimators, I now perform simulation exercises fo-
cused on impulse response functions (IRFs). Throughout the experiments I will consider structural
impulse responses, and I assume that identification can be obtained in a recursive way (Kilian and
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Table 2.1: List of Estimation Methods

Type Name Description

Frequentist LS Least squares estimator
RIDGE Ridge estimator, CV penalty

RIDGE-GLS GLS ridge estimator, CV penalty
RIDGE-AS Ridge estimator with asymptotic shrinkage, CV penalty

LP Local projections with Newey-West covariance estimate

Bayesian BVAR-CV Litterman-Minnesota Bayesian VAR, CV tightness prior
H-BVAR Hierarchical Bayesian VAR of Giannone et al. (2015)

Lütkepohl, 2017a), which is a widely used approach for structural shock identification in macroe-
conometrics.

I consider two setups:

1. The three-variable VARMA(1,1) design of Kilian and Kim (2011), representing a small-scale
macro model. I term this setup “A”.

2. A VAR(5) model in levels, using the model specification of Giannone et al. (2015) with the
dataset of Hansen (2016b) consisting of K = 7 variables in levels.8 I term this setup “B”. For
the ease of exposition, in the discussion I will tabulate results only for three variables – real
GDP, investment and federal funds rate – but complete tables can be found in Supplementary
Appendix 2.D.5.

The specification of Kilian and Kim (2011) has already been extensively used in the literature as a
benchmark to gauge the basic properties of inference methods. On the other hand, the estimation
task of Giannone et al. (2015) involves more variables and a higher degree of persistence. This
setting is useful to evaluate the effects of ridge shrinkage when applied to realistic macroeconomic
questions. It is also a suitable test bench to compare Bayesian methods with frequentist ridge.

Estimators. For frequentist methods, I include both β̂R and β̂RGLS ridge estimators as well
as the local projection estimator of Jordà (2005). For Bayesian methods, I implement both the
Minnesota prior approach of Bańbura et al. (2010) with stationary prior and the hierarchical prior
BVAR of Giannone et al. (2015).9 The full list of method I consider is given in Table 2.1. To make
methods comparable, I have extended the ridge estimators to include an intercept in the regression.
A precise discussion regarding the tuning of penalties and hyperparameters of all methods can be
found in Appendix 2.D.

8The dataset is supplied by the author at https://users.ssc.wisc.edu/~bhansen/progs/var.html. While the
data provided by Hansen (2016b) includes releases until 2016, I do not include more recent quarterly data since this
is a simulation exercise. Moreover, due to the effects of the COVID-19 global pandemic, an extended sample would
likely only add data released until Q4 2019 due to overwhelming concerns of a break point.

9To estimate hierarchical prior BVARs I rely on the original MATLAB implementation provided by Giannone
et al. (2015) on the authors’ website at http://faculty.wcas.northwestern.edu/gep575/GLPreplicationWeb.zip.

https://users.ssc.wisc.edu/~bhansen/progs/var.html
http://faculty.wcas.northwestern.edu/gep575/GLPreplicationWeb.zip
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2.7.1 Pointwise MSE

The first two simulation designs explore the MSE performance of ridge-type estimators versus
alternatives. Let θkm(h) be the horizon h structural IRF for variable k given a unit shock from
variable m. To compute the MSE for each k, define

MSEk(h) :=
K∑

m=1
E
[(
θ̂km(h)− θkm(h)

)2
]
,

which is the total MSE for the kth variable over all possible structural shocks. In simulations, I use
B replications to estimate the expectation. All MSEs are normalized by the mean squared error of
the least squares estimator.

Setup A. A time series of length T = 200 is generated a number B = 10 000 of times for
replication. All VAR estimators are computed using p = 10 lags, while LPs include q = 10
regression lags. Table 2.2 shows relative MSEs for this design. It is important to notice that, in
this situation, GLS ridge has remarkably low performance at horizon h = 1 compared to other
methods. The primary issue is that Σu features strong correlation between components, and thus
the diagonal lag-adapted structure does not shrink along the appropriate directions. This is much
less prominent as the horizon increases due to the fact that impulse responses eventually decay
to zero, since the underlying VARMA DGP is stationary. While there is no clear ranking, the
MSE of the baseline ridge VAR estimator is in between those of the BVAR and hierarchical BVAR
approaches. The degrading quality of local projection estimates are mainly due to the smaller
samples available in regressions at each increasing horizon (Kilian and Kim, 2011). This behavior
is one of the prime reasons behind the development of LP shrinkage estimators, like that proposed
in Plagborg-Møller (2016) or the SLP estimator of Barnichon and Brownlees (2019).

Setup B. Using the data of Hansen (2016b), I estimate and simulate a stationary but highly
persistent VAR(5) model using the same sample size and number of replications as Setup A. For
all methods, p = 5 lags are used, so that VAR estimators are correctly specified. The results can
be found in Table 2.3. In this setup, unlike in the previous experiment, one can clearly notice that
impulse responses computed via cross-validated ridge show increasing MSE as horizon h grows.
There are two main reasons behind this behavior. First, the chosen setup features a very persistent
data generating process, as the largest root of the underlying VAR model is 0.9945. This means
that the true IRFs revert to zero only over long horizons, while lag-adapted ridge estimates yields
models with lower persistence and thus flatter impulse responses. Secondly, the dataset from
Hansen (2016b) is not normalized, and the included series have markedly heterogenous variances.
Since GLS ridge shrinks along covariance-rotated data, shrinkage is adjusted according to each
series variance, unlike that baseline ridge estimator β̂R. The MSE for the Fed Fund Rate impulse
responses shows that the pointwise difference between baseline and GLS ridge can be severe for long
horizon IRFs when the DGP is highly persistent. On short horizons, Bayesian estimators perform
on par or better than baseline least squares estimates, while at longer horizons differences are less
stark. It is, however, clear that the hierarchical prior BVAR of Giannone et al. (2015) shows the
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Table 2.2: MSE Relative to OLS – Setup A

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

RIDGE 0.97 0.74 0.64 0.64 0.65 0.63 0.60
Investment RIDGE-GLS 5.16 0.89 0.55 0.47 0.44 0.41 0.38

Growth LP 1.00 1.05 1.13 1.52 2.15 3.20 4.87
BVAR-CV 1.55 0.84 0.70 0.70 0.71 0.70 0.66
H-BVAR 1.80 0.66 0.53 0.52 0.54 0.53 0.50

RIDGE 0.93 0.78 0.69 0.68 0.67 0.64 0.59
Deflator RIDGE-GLS 2.43 0.83 0.59 0.52 0.48 0.44 0.40

LP 1.00 1.05 1.13 1.44 1.99 2.90 4.47
BVAR-CV 1.03 0.89 0.74 0.73 0.73 0.70 0.66
H-BVAR 1.01 0.70 0.58 0.56 0.55 0.53 0.50

RIDGE 0.94 0.76 0.66 0.66 0.66 0.64 0.60
Paper Rate RIDGE-GLS 1.80 0.87 0.59 0.52 0.47 0.43 0.39

LP 1.00 1.05 1.13 1.46 1.99 2.86 4.31
BVAR-CV 0.87 0.87 0.74 0.73 0.73 0.71 0.66
H-BVAR 0.81 0.69 0.57 0.55 0.56 0.54 0.51

Table 2.3: MSE Relative to OLS – Setup B

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

RIDGE 1.11 1.08 1.16 1.06 0.90 0.89 0.94
RIDGE-GLS 1.16 1.00 0.99 1.00 0.93 0.93 0.95

Real GDP LP 1.00 1.14 1.37 1.52 1.72 1.98 2.24
BVAR-CV 0.90 0.87 1.04 1.01 0.92 0.92 0.98
H-BVAR 0.83 0.62 0.78 0.73 0.62 0.62 0.68

RIDGE 1.49 1.27 1.17 0.99 0.70 0.73 1.61
RIDGE-GLS 1.34 1.14 1.02 1.02 0.86 0.82 0.86

Investment LP 1.00 1.15 1.40 1.63 2.03 2.76 3.59
BVAR-CV 1.51 1.01 0.97 0.97 0.93 1.08 1.24
H-BVAR 1.06 0.68 0.69 0.66 0.63 0.87 1.14

RIDGE 2.17 1.21 0.96 0.93 1.03 4.00 53.18
RIDGE-GLS 1.21 1.04 0.90 0.93 0.90 0.88 0.91

Fed Funds LP 1.00 1.18 1.51 1.71 1.97 2.44 2.99
Rate BVAR-CV 0.92 0.94 0.91 0.90 0.86 0.87 0.92

H-BVAR 0.75 0.77 1.32 1.38 1.25 1.15 1.20

overall best results. As in the previous setup, local projections show degrading performance at
larger horizons.

Remark 2.7.1. The comparison between methods in both Setup A and Setup B is largely consis-
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Table 2.4: Impulse Response Inference – Setup A – CI Coverage

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
LS 0.88 0.88 0.87 0.88 0.91 0.93 0.94

RIDGE 0.90 0.92 0.94 0.93 0.94 0.95 0.95
Investment RIDGE-AS 0.90 0.92 0.88 0.88 0.88 0.89 0.89

Growth LP 0.88 0.97 0.99 0.99 0.99 0.99 0.99
BVAR-CV 0.77 0.88 0.88 0.90 0.92 0.94 0.96
H-BVAR 0.72 0.89 0.89 0.92 0.93 0.95 0.96

LS 0.88 0.87 0.86 0.88 0.91 0.92 0.94
RIDGE 0.91 0.92 0.93 0.92 0.93 0.94 0.95

Deflator RIDGE-AS 0.91 0.91 0.88 0.88 0.87 0.87 0.88
LP 0.88 0.97 0.99 0.99 0.99 0.99 1.00

BVAR-CV 0.80 0.86 0.88 0.91 0.93 0.94 0.96
H-BVAR 0.84 0.88 0.90 0.92 0.94 0.95 0.97

LS 0.87 0.86 0.86 0.88 0.90 0.92 0.94
RIDGE 0.90 0.91 0.93 0.93 0.93 0.94 0.95

Paper Rate RIDGE-AS 0.89 0.90 0.89 0.88 0.88 0.88 0.88
LP 0.87 0.97 0.99 0.99 0.99 0.99 0.99

BVAR-CV 0.82 0.84 0.87 0.90 0.92 0.93 0.95
H-BVAR 0.88 0.88 0.90 0.92 0.93 0.95 0.96

tent with the findings of Li et al. (2023), who make extensive computational simulations by sim-
ulating from synthetic DGPs. They provide a comprehensive treatment of the question of which
model – VAR or LP – is best suited for IRF inference in a given scenario in terms of bias-variance
trade-off. They show that a key balance of bias versus variance exists between LP and VAR esti-
mates of impulse responses: LPs tend to have low bias, due to their flexibility, but they also feature
large variance at higher horizons. Their results allow one to better understand the trade-offs at
play in Table 2.2 and Table 2.3. In particular, it is clear that ridge shrinkage is beneficial at short
horizons only if the penalization scheme is well-adapted to the DGP at hand. Otherwise, as is the
case for RIDGE and RIDGE-GLS methods, the induced bias can be such that ridge MSEs surpass
that of OLS estimates. One also finds that the medium and long horizons MSE gains over LPs are
more pronounced in cases of moderate dependence, but in the case of the Federal Funds Rate IRFs
in Setup B zero-centered RIDGE estimates thoroughly mistake long-term behavior.

2.7.2 Confidence Intervals

I now try and evaluate whether ridge shrinkage has a negative impact on inference. There have
also been recent contributions directly aimed at studying shrinkage effects. Using the same simu-
lation setups as in the previous section, I investigate coverage and size properties of pointwise CIs
constructed using the methods in Table 2.1. All confidence intervals are constructed with nominal
90% level coverage.

In this set of simulations, I swap GLS ridge for the asymptotic shrinkage ridge estimator, β̂R
as,

see Section 2.6, since the latter allows for a partially non-negligible penalization in the limit. To
implement β̂R

as, one needs to choose a partition of β which identifies asymptotically negligible
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Table 2.5: Impulse Response Inference – Setup A – CI Length

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
LS 2.99 5.11 5.78 5.35 4.79 4.17 3.56

RIDGE 3.13 5.20 5.82 5.17 4.48 3.78 3.09
Investment RIDGE-AS 3.11 5.15 4.84 4.33 3.70 3.06 2.48

Growth LP 2.99 7.50 10.97 12.89 13.99 14.55 14.70
BVAR-CV 2.84 4.48 4.70 4.38 3.99 3.56 3.11
H-BVAR 2.71 4.20 4.50 4.29 3.96 3.56 3.13

LS 1.19 1.92 2.23 2.14 1.94 1.71 1.46
RIDGE 1.24 1.97 2.25 2.09 1.84 1.54 1.26

Deflator RIDGE-AS 1.24 1.95 1.95 1.78 1.52 1.25 1.01
LP 1.19 3.03 4.56 5.42 5.90 6.14 6.21

BVAR-CV 1.03 1.69 1.87 1.80 1.67 1.50 1.31
H-BVAR 1.01 1.64 1.83 1.79 1.67 1.51 1.33

LS 0.97 1.42 1.64 1.57 1.44 1.27 1.09
RIDGE 1.01 1.44 1.65 1.53 1.36 1.16 0.95

Paper Rate RIDGE-AS 1.01 1.43 1.42 1.31 1.13 0.94 0.77
LP 0.97 2.19 3.28 3.90 4.26 4.43 4.48

BVAR-CV 0.84 1.22 1.35 1.30 1.21 1.09 0.96
H-BVAR 0.85 1.21 1.34 1.31 1.22 1.10 0.97

coefficient. To do this, I split β by lag and penalize all coefficients with lag orders greater than a
given threshold p, such that 1 < p < p. In setup A, I choose p = 6, while in setup B I set p = 3.
In Bayesian methods, including the cross-validated Minnesota BVAR, I construct high-probability
intervals by drawing from the posterior. Comparison between frequentist CIs and Bayesian posterior
densities is not generally valid, because they are not analogous concepts. Therefore, the discussion
below is intended to highlight differences in structure between ridge approaches.

Setup A. Simulations with the DGP of Kilian and Kim (2011), presented in Tables 2.4 and
2.5, highlight some of the advantages of applying ridge when performing inference. Focusing on
estimator β̂R, it is clear that CI coverage is in fact higher than the intervals obtained by least
squares estimation in all situations. At impact, ridge CIs are larger than the LS baseline, but they
shrink as horizons increase. Thus, is IRFs revert relatively quickly to zero, ridge can effectively
reduce length while preserving coverage. As discussed in Section 2.3, these gains are inherently
local to the DGP – shrinkage to zero at deep lags embodies correct prior knowledge of a weakly
persistent process. For Bayesian estimators, one can note that quantile intervals at small horizons
tend to be shorter compared to least squares and ridge methods.

Setup B. The effects of ridge shrinkage on a DGP with high persistence are much more severe,
as shown in Tables 2.6 and 2.7. Focusing on frequentist ridge, one can observe that close to impact
(h = 1) ridge has similar or even higher coverage than other methods for real GDP10 However, as
the IRF horizon grows, shrinkage often leads to severe undercoverage, with asymptotic shrinkage

10This also is the case with consumption and compensation, see also Tables 9 and 10 in Supplementary Ap-
pendix 2.D.5.
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Table 2.6: Impulse Response Inference – Setup B: CI Coverage

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
LS 0.87 0.81 0.75 0.72 0.71 0.72 0.73

RIDGE 0.90 0.79 0.66 0.62 0.65 0.68 0.68
Real GDP RIDGE-AS 0.89 0.72 0.61 0.58 0.61 0.65 0.65

LP 0.87 0.93 0.94 0.94 0.93 0.93 0.91
BVAR-CV 0.70 0.71 0.63 0.64 0.71 0.75 0.76
H-BVAR 0.84 0.86 0.76 0.76 0.83 0.88 0.88

LS 0.87 0.82 0.76 0.73 0.75 0.82 0.87
RIDGE 0.85 0.79 0.65 0.62 0.73 0.80 0.81

Investment RIDGE-AS 0.82 0.69 0.59 0.57 0.68 0.77 0.77
LP 0.87 0.94 0.94 0.95 0.94 0.94 0.94

BVAR-CV 0.70 0.73 0.67 0.71 0.77 0.81 0.83
H-BVAR 0.80 0.86 0.81 0.82 0.87 0.88 0.88

LS 0.85 0.83 0.80 0.78 0.77 0.79 0.80
RIDGE 0.79 0.77 0.74 0.68 0.68 0.72 0.72

Fed Funds RIDGE-AS 0.78 0.66 0.68 0.64 0.64 0.68 0.69
Rate LP 0.85 0.94 0.96 0.96 0.95 0.94 0.93

BVAR-CV 0.76 0.72 0.76 0.77 0.77 0.81 0.83
H-BVAR 0.87 0.86 0.74 0.73 0.78 0.84 0.87

Table 2.7: Impulse Response Inference – Setup B: CI Length (rescaled ×100)

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
LS 0.71 1.56 2.07 2.31 2.32 2.24 2.15

RIDGE 0.79 1.56 1.85 1.95 1.92 1.85 1.77
Real GDP RIDGE-AS 0.74 1.31 1.65 1.76 1.75 1.70 1.64

LP 0.71 2.42 4.21 5.40 5.90 5.91 5.70
BVAR-CV 0.53 1.23 1.74 2.00 2.10 2.13 2.15
H-BVAR 0.58 1.36 1.87 2.16 2.32 2.44 2.55

LS 3.38 6.65 7.89 7.89 7.31 6.69 6.18
RIDGE 3.79 6.81 6.93 6.46 5.79 5.19 4.73

Investment RIDGE-AS 3.59 5.57 6.11 5.77 5.21 4.72 4.34
LP 3.37 10.16 16.00 18.85 19.06 18.22 17.23

BVAR-CV 2.64 5.26 6.59 6.91 6.78 6.57 6.38
H-BVAR 2.89 5.74 7.08 7.54 7.63 7.60 7.58

LS 0.25 0.39 0.43 0.43 0.41 0.38 0.35
RIDGE 0.29 0.39 0.37 0.36 0.33 0.30 0.29

Fed Funds RIDGE-AS 0.27 0.31 0.33 0.32 0.30 0.28 0.27
Rate LP 0.25 0.59 0.88 1.01 1.05 1.03 0.98

BVAR-CV 0.21 0.31 0.36 0.37 0.36 0.35 0.34
H-BVAR 0.23 0.36 0.42 0.44 0.45 0.45 0.46

estimator β̂R
as giving the worst results. In comparison, Bayesian methods are much more reliable at

all horizons, although the only estimator that can consistently improve upon the benchmark least
squares VAR CIs is the hierarchical prior BVAR of Giannone et al. (2015). The reason behind this
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is simple enough: the implementation of the Minnesota-prior BVAR I have used here has a white
noise prior on all variables, which in this case is far from the truth. Indeed, Bańbura et al. (2010)
implement the same BVAR by tuning the prior to a random walk for very persistent variables in
their applications. In this sense, the cross-validated BVAR considered – which is assumed centered
at zero – is really the flip-side of ridge estimators. Therefore, the addition of a prior on the mean
of the autoregressive parameters as done by Giannone et al. (2015) is a key element to perform
shrinkage in high persistence setups in a way that does not systematically undermine asymptotic
inference on impulse responses.

2.8 Conclusion

In this paper, I have studied ridge regression and its application to vector autoregressive model
estimation in detail. This appears to be the first work that provides a thorough analysis of ridge
penalization in the context of time series data, including geometric as well as asymptotic properties.
I have also derived results on the validity of cross-validation as a method to select the penalty
intensity in practice, and I have shown that CV produces asymptotically valid penalization rates.
Finally, I have compared both frequentist and Bayesian ridge formulation in simulations aimed at
quantifying the applicability of ridge for impulse response inference.

The key takeaway of this work is that ridge penalization is a useful approach to VAR estimation
as long as the chosen penalty structure is well-adapted to the model’s structure. Bayesian ridge
posteriors are especially flexible, with hierarchical priors also allowing shrinkage towards non-zero
coefficient vectors. However, it is important to note that the Bayesian approach also permits the
researcher to specify uninformative priors, so that the influence of the priors’ hyperparameters
is less pronounced. This is not the case in frequentist ridge, c.f. including an explicit non-zero
centering vector. However, prior knowledge or a pre-estimation procedure may be available to the
researcher, so that ridge can be effectively implemented without the need to implement a BVAR.

To conclude, there are still avenues of research regarding ridge which would be interesting to
develop. First and foremost, the high-dimensional setup, for which, however, it seems non-trivial to
find a domain of applicability, as discussed in the introduction. Secondly, a more in-depth analysis
of cross-validation, especially in the multivariate case, would be extremely valuable. Moreover,
both the latter and former topics should be jointly addressed in the context of mild cross-sectional
dimension growth, i.e. K → ∞ such that K/T → ρ ∈ (0, 1), which is comparable to factor model
setups.
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Appendix

2.A Basic Ridge Properties

2.A.1 LS and RLS Estimators.

Lütkepohl (2005), Chapter 3, shows that the multivariate least squares and GLS estimator of
parameter vector β is given by

β̂ = ((Z ′Z)−1Z ⊗ IK)y

as the minimizer of S(β) = T−1tr[(Y −BZ)′Σu(Y −BZ)]. The multivariate Ridge-regularized Least
Squares (RLS) estimator considered in this paper is defined to be the minimizer of the regularized
problem,

SR(β; Λ) = T−1tr[(Y −BZ)′(Y −BZ)] + tr[B′ΛB]

= y′y

T
+ β′

(
ZZ ′

T
⊗ IK

)
β − 2β′ (Z ⊗ IK)y

T
+ β′Λβ

The first partial derivative,

∂SR(β; Λ)
∂β

= 2
(
ZZ ′

T
⊗ IK

)
β − 2(Z ⊗ IK)y

T
+ 2Λβ,

yields the normal equations (T−1ZZ ′ ⊗ IK + Λ)β = T−1(Z ⊗ IK)y. The Hessian ∂2SR(β)/∂2β =
2(T−1ZZ ′ ⊗ IK + Λ)β is positive definite when Λ > 0, thus indeed the minimum is achieved by

β̂R(Λ) =
(
ZZ ′

T
⊗ IK + Λ

)−1 (Z ⊗ IK)y
T

.

Identical derivations prove that re-centering the ridge penalty at β0 ∈ RK2p produces the estimator

β̂R(Λ,β0) =
(
ZZ ′

T
⊗ IK + Λ

)−1 ((Z ⊗ IK)y
T

+ Λβ0

)
.

2.A.2 Structure of the Regularization Matrix

The vectorized RLS estimator β̂R(Λ) has maximal flexibility in terms of the regularization structure
that matrix Λ = diag{λ1,1, . . . , λK,p} (K2p×K2p) imposes. Since β contains all the coefficients of
(A1, . . . , Ap) it is indeed possible to individually penalize each lag of each series differently. In fact,
by relaxing the assumption that Λ be a diagonal matrix, even more general penalization structures
are possible, although I do not consider them in this paper.

An interesting special case arises if the RLS estimator is instead written in its matrix form11,

B̂R
mat(ΛKp) = Y Z ′

T

(
ZZ ′

T
+ ΛKp

)−1

where here it is of note that ΛKp > 0 has size (Kp×Kp). The regularization structure imposed is
11For details in the least squares case, see again Lütkepohl (2005), Chapter 3. The derivations for the ridge

estimator are identical.
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different in general than that in β̂R(Λ): ΛKp induces column-wise ridge regularization, which pe-
nalizes coefficient estimates uniformly over each of the Kp columns of B. The associated vectorized
estimator then simplifies:

β̂R(ΛKp) =
((

ZZ ′

T
+ ΛKp

)
⊗ IK

)−1
(Z ⊗ IK)y

=
((

ZZ ′

T
+ ΛKp

)−1 Z ⊗ IK

T

)
y

On the other hand, the devectorized RLS estimator is given by

B̂R(ΛK2p) = reshape(βR(Λ),K,Kp)

that is, B̂R is simply a restructuring of the vectorized estimator into a matrix with identical
dimensions to B. Importantly then, B̂R(ΛK2p) is equivalent to B̂R(ΛKp) if ΛK2p = ΛKp ⊗ IK .
Because βR(ΛK2p) and B̂R(ΛK2p) allow for the most generality in penalization structure, I will
consider them to be the reference RLS estimators, so the dimension subscript to Λ will be dropped
unless explicitly required.

2.A.3 Autocovariance and Asymptotic Conditioning

The conditioning of the autocovariance Σy = E[yty
′
t] is an important measure for the role that the

regularization in the RLS estimator should be playing. This in turn depends on the eigenvalues
of Σ̂y with respect to those of Σy. Hoerl and Kennard (1970) showed in the linear regression
setting that, when the sample covariance matrix deviates significantly from the identity matrix,
its small eigenvalues excessively inflate the variance of least squares estimates, even though the
regression problem itself is well-posed. This fragility is inherently a byproduct of finite sampling,
and partially due to numerical procedures. Nowadays, numerical precision is virtually not a concern
anymore, as robust linear algebra procedures are implicitly implemented in most scientific languages
and toolboxes. Yet estimation issues tied to small or unfavorable data samples remain extremely
relevant from both theoretical and practical viewpoints.

In the spirit of ridge as a regularization procedure, the following Lemma establishes convergence
in probability of the ordered eigenvalues of the sample autocovariance matrix.

Lemma 2.A.1. If Σ̂y = T−1∑T −1
t=1 yty

′
t

P→ Σy where Γ ∈ RK×K is positive definite, then

ωj

(
Σ̂y

)
P→ ωj(Σy)

where ωj(A) is the j largest eigenvalue of A.

Proof. First, recall that for all matrices A ∈ RK×K , the determinant det(A) is clearly a continuous
mapping12. Furthermore, for any polynomial g(z) = zn + a1z

n−1 + . . . + an, ai ∈ C factored as
g(z) = (z − w1) · · · (z − wn), wi ∈ C, where the ordering of roots wi is arbitrary, it holds that for
any ϵ > 0 there exists δ > 0 such that for every polynomial h(z) = zn + b1z

n−1 + . . . + bn with
|ai − bi| < δ decomposed as g(z) = (z − w1) · · · (z − wn), |wi − wi| < ϵ, i = 1, . . . , n, see Whitney

12This follows from det(Ai,j) =
∑

ς
sign(ς)

∏K

i=1 Aς(i),i for permutation ς over {1, . . . ,K}
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(1972), Appendix V.4. This in particular implies that the roots of the characteristic polynomial of
matrix A are continuous functions of its coefficients.

Let ϱΣ̂y
(z) = zK +a1z

K−1+. . .+aK = (z−ω̂1) · · · (z−ω̂K) and ϱΣy (z) = zK +b1z
K−1+. . .+bK =

(z−ω1) · · · (z−ωK) be the (real) characteristic polynomials of Σ̂y and Σy respectively. Because of
the continuity arguments above, for every ϵ > 0 there exist δ1, δ2 > 0 such that

P(|ω̂i − ωi| > ϵ) ≤ P(|ai − bi| > δ1)

≤ P(
∥∥∥Σ̂y − Σy

∥∥∥ > δ2)

for i ∈ {1, . . . ,K}. Since by assumption Σ̂y
P→ Σy, the RHS of the above converges to zero as

T →∞, thus ω̂i
P→ ωi.

2.B Proofs

2.B.1 Shrinkage

Proof of Proposition 2.3.2

Proof. Notice that, by introducing Λp := diag{λ1, . . . , λp}, any lag-adapted regularization matrix
can be written as Λ(p) = Λp ⊗ IK2 = (Λp ⊗ IK)⊗ IK , so that

β̂R(Λ(p)
i ) =

[
(ZZ ′ + Λp,i ⊗ IK)⊗ IK

]−1 (Z ⊗ IK)y

=
[
(ZZ ′ + Λp,i ⊗ IK)−1 ⊗ IK

]
(Z ⊗ IK)y

by the properties of Kronecker product. It is now possible to derive the statements of the proposition
as follows:

(a) The result regarding isotropic regularizer Λ(p) = λIK2p is trivial given Proposition 2.3.1.

(b) Without loss of generality due to the ordering of lags in Z, one may write the Gram matrix
ZZ ′ in a block fashion,

ZZ ′ + Λp =
[
(ZZ ′)[S] + Λ[S] D

D′ (ZZ ′)[Sc] + Λ[Sc]

]

where (ZZ ′)[Sc] is the sub-matrix containing all the components not indexed by subset S,
and the subscript has been dropped from Λp for ease of notation.
Define A[S] = (ZZ ′)[S] + Λ[S], B[Sc] = (ZZ ′)[Sc] + Λ[Sc] and ∆ = (B[Sc] − D′A−1

[S]D). The
matrix block-inversion formula yields

(ZZ ′ + Λp)−1 =

A−1
[S] +A−1

[S]D∆
−1D′A−1

[S] A−1
[S]D∆

−1

−∆−1D′A−1
[S] ∆−1

 .
If Λ[S] → 0 and Λ[Sc] → ∞, then A[S] → (ZZ ′)[S], B[Sc] → ∞. Therefore ∆−1 → 0, since
for Λ[Sc] sufficiently large

∥∥∥B−1
[Sc]D

′A−1
[S]D

∥∥∥ < 1 and thus the Sherman-Morrison-Woodbury
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formula implies ∥∥∥(B[Sc] −D′A−1
[S]D)−1

∥∥∥ ≤
∥∥∥B−1

[S]

∥∥∥
1−

∥∥∥B−1
[Sc]D

′A−1
[S]D

∥∥∥ → 0.

The above results finally yield

[
(ZZ ′ + Λp)−1Z ⊗ IK

]
y →

[
(ZZ ′)[S] 0

0 0

]
(Z ⊗ IK)y = β̂LS

[S]

as required.

2.B.2 Ridge Asymptotic Theory

Proof of Theorem 2.5.1

Proof. (a) Assumptions A-B imply directly that Γ̂T is a consistent estimator for Γ: in particular,
yt is a stationary, stable and ergodic VAR process.

(b) Rewriting β̂R(Λ,β0) yields

β̂R(Λ,β0) =
(
ZZ ′

T
⊗ IK + Λ

)−1 [
T−1(Z ⊗ IK)((Z ′ ⊗ IK)β + u) + Λβ0

]
=
(
ZZ ′

T
⊗ IK + Λ

)−1 [(ZZ ′

T
⊗ IK

)
β + (Z ⊗ IK)u

T
+ Λβ0

]
=
(
ZZ ′

T
⊗ IK + Λ

)−1 [(ZZ ′

T
⊗ IK + Λ

)
β + (Z ⊗ IK)u

T
+ Λ(β0 − β)

]
= β +

(
ZZ ′

T
⊗ IK + Λ

)−1
Λ(β0 − β) +

(
ZZ ′

T
⊗ IK + Λ

)−1 (Z ⊗ IK)u
T

.

I study the last two terms of the last equality separately. The first term is op(1),
((

ZZ ′

T

)
⊗ IK + Λ

)−1
Λ(β0 − β) =

((
ZZ ′

T

)
⊗ IK + op(1)

)−1
op(1)(β0 − β) P→ 0

since (β − β0) = (β − β0) + (β0 − β0) = (β − β0) + op(1). Considering the matrix sequence

ζT =
[
T−1(ZZ ′), T−1Λ

]
,

which under Assumptions B and D.(ii) converges in probability to [Γ, 0], by the continuous
mapping theorem (Davidson, 1994) the second term gives((

ZZ ′

T

)
⊗ IK + op(1)

)−1 ( 1
T

(Z ⊗ IK)u
)

P→ Γ−1 E[(Z ⊗ IK)u] = 0

under Assumption A.

(c) The residuals Û can be written as

Û = Y − B̂RZ = BZ + U − B̂RZ = U + (B − B̂R)Z
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Thus

Û Û ′

T
= UU ′

T
+ (B − B̂R)

(
ZZ ′

T

)
(B − B̂R)′ + (B − B̂R)

(
ZU ′

T

)
+
(
UZ ′

T

)
(B − B̂R)′ (2.9)

From (a) one finds that vec(B) − vec(B̂R) = β − β̂R = op(1), so (B − B̂R) P→ 0, while
T−1(ZZ ′) P→ E[ZZ ′] and T−1(ZU ′) P→ E[ZU ′] = 0: the terms involving these quantities then
vanish asymptotically. Lastly, the first term of the sum gives

UU ′

T
= 1
T

T∑
t=1

utu
′
t

P→ E[utu
′
t] = Σu

for T →∞ under Assumptions A and B.

(d) With the same expansion used in (b),

√
T (β̂R(Λ,β0)− β) = Q−1

T

(√
TΛ
)

(β0 − β) +Q−1
T

( 1√
T

(Z ⊗ IK)u
)

where QT = (T−1ZZ ′ + Λ) P→ Γ. Following the arguments above, the first term in the sum
converges in probability,

Q−1
T

(√
TΛ
) (
β0 − β + op(1)

)
P→ Γ−1Λ0(β − β0)

The second term has normal limiting distribution,

Q−1
T

( 1√
T

(Z ⊗ IK)u
)

d→ N (0,Γ−1 ⊗ Σu)

see Lütkepohl (2005), Proposition 3.1. By Slutky’s theorem claim (d) follows.

Proof of Theorem 2.5.2

Proof. (1) Since condition (i) implies that
√
TΛ P→ 0, results (a)-(c) are unchanged, while (d)

now involves the limit

Q−1
T

(√
TΛ
)

(β0 − β) = Q−1
T · oP (1) ·

(
β0 − β + oP (1)

)
P→ 0

yielding (d′).

(2) Assuming β0
P→ β simplifies the terms in the proof of Theorem 2.5.1 since now β−β0 = oP (1).

The weaker rate imposed on Λ does not influence results (a)-(c). Moreover,

Q−1
T · (

√
TΛ) · (β0 − β) = Q−1

T ·OP (1) · oP (1) P→ 0

so that (d′) follows.

Proof of Theorem 2.5.4
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Proof. I make a straightforward adaptation of the proof found in Hamilton (1994b), Proposition
11.2. Define Σ̂∗

u = T−1(UU ′), which is expanded to

Σ̂∗
u = 1

T
(Y −BZ)(Y −BZ)′

= 1
T

(
Y − B̂RZ + (B̂R −B)Z

) (
Y − B̂RZ + (B̂R −B)Z

)′

= Σ̂R
u + (B̂R −B)

(
ZZ ′

T

)
(B̂R −B)′+

+ 1
T

(
(Y − B̂RZ)Z ′(B̂R −B)′ + (B̂R −B)Z(Y − B̂RZ)′

)
Contrary to the least squares estimator, cross-terms do not cancel out since for Λ ⪰ 0 the residuals
(Y − B̂RZ) are not in the orthogonal space of Z. From the consistency results of Theorem 2.5.1,

(B̂R −B)
(
ZZ ′

T

)
(B̂R −B)′ = op(1)

(
ZZ ′

T

)
op(1) P→ 0

and √
T (B̂R −B)

(
ZZ ′

T

)
(B̂R −B)′ = Op(1)

(
ZZ ′

T

)
op(1) P→ 0

Further,
√
T

[ 1
T

(Y − B̂RZ)Z ′(B̂R −B)′
]

=
(
ÛZ ′

T

)
√
T (B̂R −B)′ P→ 0

since again
√
TB̂R is asymptotically normal, and T−1(ÛZ ′) = T−1(UZ ′) + (B− B̂R) ·T−1(ZZ ′) =

T−1(UZ ′) + op(1) P→ E[UZ ′] = 0. The same holds for the remaining transpose term, too.

It is thus proven that
√
T (Σ̂∗

u − Σ̂R
u ) P→ 0, meaning

√
T (Σ̂∗

u − Σu) P→
√
T (Σ̂R

u − Σu) so that
the two terms may be exchanged in computing the joint asymptotic distribution. Theorem 2.5.1
accordingly yields [

β̂R
0 − β

vec(Σ̂R
u )− vec(Σu)

]
P→

Q−1
T

(√
TΛ
)

(β0 − β) +Q−1
T

1√
T
ξ

1√
T
η


where ξ = (Z ⊗ IK)u and η = vec(UU ′ −Σu). As in Hamilton (1994b), Proof of Proposition 11.2,
(ξ′,η)′ is a martingale difference sequence, thus the claim

√
T

[
β̂R

0 − β
vec(Σ̂R

u )− vec(Σu)

]
d→ N

([
Γ−1Λ0(β0 − β)

0

]
,

[
Γ−1 ⊗ Σu 0

0 Ω

])

as T → ∞ follows. When the strengthened assumptions (1) or (2) of Theorem 2.5.2 are used
instead, the non-zero limiting mean vanishes

Q−1
T · Λ ·

√
T (β0 − β) P→ 0

proving that the joint asymptotic distribution is mean-zero Gaussian.

Finally, to compute the explicit expression of the asymptotic variance Ω, one must take care
and note that ut is not assumed to be normally distributed, contrary to the remainder of the proof
in Hamilton (1994b), pp. 342-343. A correct expression for i.i.d. non-Gaussian ut can be found in
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Remark 2.1, Brüggemann et al. (2016), yielding

Ω = Var[vec(utu
′
t)] = E

[
vec(utu

′
t) vec(utu

′
t)′]− σσ′

where σ = vec(Σu).

Proof of Theorem 2.6.1

Proof. The stated results reduce to studying the behavior of two components used in the proof of
Theorem 2.5.1 and Theorem 2.5.2, under the additional simplification of β0 = 0.

(a) Identical to result (a) in Theorem 2.5.1.

(b) Consistency follows immediately by the fact that Λβ P→ 0.

(c) Follows from (c), Theorem 2.5.1 and (b) above.

(d ′′) The bias term in the expression of
√
T (β̂R − β) is driven by

√
TΛβ =

[ √
TΛ1 · β1√

TΛ2 · T−(1/2+δ)b2

]
=
[
oP (1) · β1

Λ2 · T−δb2

]
P→ 0

meaning there is no asymptotic bias. On the other hand,((
T−1ZZ ′

)
⊗ IK + Λ

)−1 P→ (Γ + Λ)−1 ⊗ IK .

Setting (Γ + Λ) = ΓΛ yields the claim since there are no further simplifications in the asymp-
totic variance formula, cf. proof of (d), Theorem 2.5.1.

Proof of Corollary 2.6.2

Proof. For (a)-(c), it is again the case that Theorem 2.5.1 and Theorem 2.5.2 provide the needed
results without need of adaptation. To prove that (d ′′) still holds, one just needs to notice that
the asymptotic bias now involves the term

√
TΛ (β − β0) =

[√
TΛ1 · (β1 − β01)√
TΛ2 · (β2 − β02)

]
=
[
oP (1) · (β1 − β01)
−Λ2 · T−δb2

]
,

since, by assumption, have that β2−β02 = −T−(1/2+δ)b2. Thus, as before,
√
TΛ (β−β0) P→ 0.

2.C Cross-validation

Later in this section, the following lemma will be useful.

Lemma 2.C.1. Let yt a stationary and stable mean-zero AR(p) process with companion form
matrix A ∈ Rp×p. Then, the associated MA(∞) coefficients, {ϑk}k∈N0, decay exponentially for k
sufficiently large, that is,

|ϑk| = O
(

exp(−CA k)
)
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for some constant CA > 0.

Proof. Recall from e.g. Lütkepohl (2005) that if A is the companion matrix of the AR(p) model,
then ϑk = ιAjι′, where ι := (1, 0, . . . , 0)′ ∈ Rp. Note that ∥ι∥ = 1 by construction and that the
spectral radius of A is less than one under the assumption of stability. Let A = V DV −1 be the
Jordan canonical form of the companion matrix and ω1 the dominant eigenvalue: stability thus
implies that |ω1| < 1. Now observe that, supposing D has l ≤ p diagonal blocks, for k ≥ 0

∣∣∣ιAkι′
∣∣∣∣∣ωk

1
∣∣ =

∣∣∣∣∣ιV
(
Dk

ωk
1

)
V −1ι′

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ιV



[1] [
1

ωk
1
Dk

2

]
. . . [

1
ωk

1
Dk

l

]


V −1ι′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where [1] is the dominant Jordan block, while D2, . . . , Dl are the non-dominant blocks. Then,
letting k →∞, one gets

∣∣∣ιAkι′
∣∣∣∣∣ωk

1
∣∣ →

∣∣∣∣∣∣∣∣∣∣∣
ιV


[1]

0
. . .

0

V −1ι′

∣∣∣∣∣∣∣∣∣∣∣
= CD

for some constant CD < ∞, as for ℓ ∈ {2, . . . , l} one can see that Dk
ℓ /ω

k
1 → 0. Since for complex

ω1 it holds
∣∣∣ωk

1

∣∣∣ = |ω1|k, by letting CA = − log(|ω1|) the proof is complete.

2.C.1 Two-fold CV

Proof of Theorem 2.5.5

Proof. Write cv2m(Λ) as

cv2m(Λ) = T̃−1
(
ỹ − Z̃ ′β̂R(Λ)

)′ (
ỹ − Z̃ ′β̂R(Λ)

)
= T̃−1

[
ũ+ Z̃ ′

(
β − β̂R(Λ)

)]′ [
ũ+ Z̃ ′

(
β − β̂R(Λ)

)]
=
(
β − β̂R(Λ)

)′
(
Z̃Z̃ ′

T̃

)(
β − β̂R(Λ)

)
+ 2

(
β − β̂R(Λ)

)′
(
Z̃ũ

T̃

)
+ ũ′ũ

T̃
.

By a strong LLN for weakly dependent processes (see, for example, Rio 2017), it holds that
T̃−1Z̃Z̃ ′ a.s.−→ Γz, T̃−1Z̃ũ

a.s.−→ 0 and T̃−1ũ′ũ
a.s.−→ Σu. Since, by a similar decomposition, it holds

that
err(Λ) =

(
β − β̂R(Λ)

)′
Γ
(
β − β̂R(Λ)

)
+ Σu,

where Γ = E[ztz
′
t] is positive definite, almost sure convergence is proven.

To prove uniform convergence over compact subsets, I follow the proof of Patil et al. (2021),
Theorem 4.1, which relies on verifying the conditions of the Arzelà-Ascoli theorem. That is, one
must prove that function cv2m(Λ) as well as its first derivatives are bounded over compact sets. As



2.C. CROSS-VALIDATION 107

the Arzelà-Ascoli theorem readily generalizes to Euclidean spaces of arbitrary (fixed) dimension, I
will directly consider the matrix derivative when checking boundedness.

Assume that Λ ∈ I, where I is a compact set of positive semidefinite penalization matrices Λ
such that ∥Λ∥max < ∞ and Λ ≻ λminI. Note β − β̂R(Λ) = (Γ̂ + Λ)−1Λβ − (Γ̂ + Λ)−1(T−1Zu)
where Γ̂ = T−1ZZ ′. Using this decomposition, one gets first

|err(Λ)| ≤ Σu + ∥Γ∥2
∥∥∥β − β̂R(Λ)

∥∥∥2

2

≤ Σu + ∥Γ∥2
[∥∥∥(Γ̂ + Λ)−1Λ

∥∥∥2

2
∥β∥22 +

∥∥∥(Γ̂ + Λ)−1
∥∥∥2

2

∥∥∥T−1Zu
∥∥∥2

2

+2
∥∥∥(Γ̂ + Λ)−1

∥∥∥2

2

∥∥∥T−1Zu
∥∥∥

2
∥Λβ∥2

]
a.s.
≤ Σu + ∥Γ∥2

ωmax(Λ)2 ∥β∥22 + C2
zu + 2Czu ωmax(Λ) ∥β∥2

(ωmin(Γ̂) + ωmin(Λ))2

where the last line follows from applying Weil’s eigenvalue inequalities (Bhatia, 1997) to (Γ̂ + Λ)−1

and the fact that T−1Zu
a.s.−→ 0 by a strong LLN, so that there exists a constant Czu > 0 bounding∥∥T−1Zu

∥∥
2 for T large enough.

Additionally, the matrix derivative of β − β̂R(Λ) with respect to Λ is

∂(β − β̂R(Λ))
∂Λ = (Γ̂ + Λ)−1β − (Γ̂ + Λ)−2Λβ − (Γ̂ + Λ)−2(T−1Zu),

so that, by using similar argument as the one used above, one gets∣∣∣∣∂ err(Λ)
∂Λ

∣∣∣∣ a.s.
≤ Σu + ∥Γ∥2

[
∥β∥22

(ωmin(Γ̂) + ωmin(Λ))2
+ 2ωmax(Λ) ∥β∥22 + 2Czu ∥β∥2

(ωmin(Γ̂) + ωmin(Λ))3

+ωmax(Λ)2 ∥β∥22 + C2
zu + 2Czu ωmax(Λ) ∥β∥2

(ωmin(Γ̂) + ωmin(Λ))4

]
.

The almost sure bound in the last display is also clearly finite for any Λ ∈ Iλ, as required.

One can easily bound cv2m(Λ) and its first derivative as err(Λ), with only addition of an
extra term depending on (β − β̂R(Λ))′(T̃−1Z̃ũ). This means that err(Λ) − cv2m(Λ) forms an
equicontinuous family of functions with respect to Λ over any Iλ. Therefore, Arzelà-Ascoli yields
uniform convergence of a subsequence, and since the difference converges to zero pointwise, too,
the entire sequence converges uniformly.

2.C.2 Cross-validation under Dependence

The result of Theorem 2.5.5 may be only partially informative in practice, as it does not give
information on how dependence, in terms of the buffer block of size m, impacts cv2m(Λ). Indeed,
due to averaging, the effects of time dependence between the estimation and evaluation folds are
washed out in the limit T̃ → ∞ even when m is fixed. Therefore, Theorem 2.5.5 is not useful in
finite samples, where one would preferably set m to be as small as possible.

To address dependence, in the same setup as above, consider an alternative predictive error
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measure, the m-dependence prediction error,

Errm

(
β̂R(Λ)

)
:= E yT +m+1,zT +m+1

[(
yT +m+1 − z′

T +m+1 β̂
R(Λ)

)2 ∣∣Z,y] ,
and the associated error curve, errm(Λ) := Errm

(
β̂R(Λ)

)
. The empirical counterpart to this

quantity is given by cv2m(Λ) for T̃ = 1. The next theorem shows that in the case of a purely
autoregressive data generating process, the error one commits by choosing a finite buffer size is
exponentially small for sufficiently large m.

Theorem 2.C.2. Under Assumptions A-C, for every Λ in the cone of diagonal positive definite
penalty matrices with diagonal entries in (λmin,∞), for m→∞ it holds that

errm(Λ)− err(Λ) = O(exp(−Cβm))

where Cβ is a constant that does not depend on Λ.

Proof. In line with the definition of cv2m(Λ), I set ỹ1 = yT +m+1, z̃ = zT +m+1 and ũ1 = yT +m+1 −
z′

T +m+1β. With the same approach as in the proof of Theorem 2.5.5, here one finds

errm(Λ) =
(
β − β̂R(Λ)

)′
E
[
z̃1z̃

′
1
∣∣Z,y] (β − β̂R(Λ)

)
+ 2

(
β − β̂R(Λ)

)′
E
[
z̃1ũ1

∣∣Z,y]+ E
[
ũ2

1
∣∣Z,y] ,

where I have removed the subscript from expectation E to make notation clearer. Since ũ1 is
independent of z̃1, the cross term reduces to zero, while E

[
ũ2

1
∣∣Z,y] = Σu . Thus, it is the first term

in the last display that is effected by dependence.

To see this, let z̃i1 for 1 ≤ i ≤ p be the ith entry of z̃1. Then, using the MA(∞) decomposition
of yt, i.e. yt = ∑∞

ℓ=0 ϕℓut−ℓ, one can write

z̃i1 = zT +m+1−i =
m−i∑
ℓ=0

ϕℓuT +m+1−i−ℓ +
∞∑

ℓ=M+1−i

ϕℓuT +m+1−i−ℓ

=
m−i∑
ℓ=0

ϕℓuT +m+1−i−ℓ +
∞∑

s=0
ϕm+1−i+suT −s

= ηi + ζi.

Note that ηi is independent of ζi, and ζi is belongs with the σ-algebra generated by Z and y.
Therefore,

E
[
z̃1z̃

′
1
∣∣Z,y] = E

[
(ηi + ζi)(ηi + ζi)′∣∣Z,y]

= Γη + ζiζ
′
i,

as E
[
ηiζ

′
i

∣∣Z,y] = E
[
ηi

∣∣Z,y] ζ ′
i = 0.



2.C. CROSS-VALIDATION 109

Now, I prove that Γη → Γz and ζiζ
′
i → 0 at an exponential rate. First, let

Hϕ :=


∑∞

s=0 ϕ
2
m+1+s

∑∞
s=0 ϕm+1+sϕm+1+s−1∑∞

s=0 ϕm+1+s−1ϕm+1+s
∑∞

s=1 ϕ
2
m+1+s

. . . ∑∞
s=p ϕ

2
m+1+s


and observe that

∥Γη − Γz∥2 ≤ Σu p ∥Hϕ∥max ≤ C exp(−Cη m),

since Γη = Σu ⊗Hϕ, lag order p is fixed and the maximal entry of Hϕ decays exponentially for m
sufficiently large following Lemma 2.C.1. Secondly, much in the same vein

∥∥ζiζ
′
i

∥∥
2 = ζ ′

iζi ≤ p
( ∞∑

s=0
ϕm+1−i+suT −s

)2

≤ C ′ exp(−Cζ m).

The proof concludes by setting Cβ = max(Cη, Cζ).

Remark 2.C.1. Theorem 2.C.2 is reassuring because it suggests that, in practice, if the AR(p)
model is correctly specified, one may keep m small and still get a valid prediction error estimate
in sense of Theorem 2.5.5. In simulations, I set m = 0, which is a common simplification to
more effectively exploit the entire sample and does not, as discussed above, effect consistency
(Bergmeir et al., 2018b). Moreover, note that Theorem 2.C.2 intuitively gives a worst-case rate:
the dependence of between z̃t and data in the estimation set gets milder, on average, as T̃ grows.
Thus, if CV aspect ratio T̃ /T is balanced, dependence only plays a negligible role.

2.C.3 Asymptotically Valid CV

Proof of Theorem 2.5.6

Proof. First, recall that

β̂R
♦ (Λ) =

(
ZZ ′

T
+
√
TΛ
)−1 Zy

T

= β −
(
ZZ ′

T
+
√
TΛ
)−1 (√

TΛ
)
β +

(
ZZ ′

T
+
√
TΛ
)−1 Zu

T
.

It also holds Err
(
β̂R
♦ (Λ)

)
=
(
β − β̂R

♦ (Λ)
)′

Γ
(
β − β̂R

♦ (Λ)
)

+ Σu. Now, notice that

(
T−1ZZ ′ +

√
TΛ
)−1

= OP (1) and
(
T−1ZZ ′ +

√
TΛ
)−1 (√

TΛ
)

= OP (1),

since Λ ∈ Iλ. It follows

Err
(
β̂R
♦ (Λ)

)
= β′

(√
TΛ
)(ZZ ′

T
+
√
TΛ
)−1

Γ
(
ZZ ′

T
+
√
TΛ
)−1 (√

TΛ
)
β + Σu +OP (

√
T ).

One can now consider a sequence Λ̃ = Op(T−1/2) of regularizers in Iλ. By taking the limit, one
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gets that

lim
T →∞

Err
(
β̂R
♦

(
Λ̃
))

= β′ ·Op(1) · (Γ +Op(1))−1 Γ (Γ +Op(1))−1 ·Op(1) · β + Σu

≥ Σu = lim
T →∞

Err
(
β̂R
♦ (0)

)
,

meaning that Λ̃ can not be optimal asymptotically, since the least squares solution at Λ = 0
achieves a lower predictive error. Additionally, any sequence with lower convergence order is also
asymptotically invalid. Therefore, by contradiction, it must hold that Λ♦ = op(T−1/2).

Proof of Corollary 2.6.3

Proof. The first results follows directly from Theorem 2.5.6. Further, the fact that Λ2,♦ = OP (1)
is trivial because it is assumed that Λ ∈ Iλ.

To prove the second part of the theorem, one can simply notice that, given the assumption on
the coefficients β in Theorem 2.6.1,

(
ZZ ′

T
+
√
TΛ
)−1 (√

TΛ
)
β =

(
ZZ ′

T
+
√
TΛ
)−1 [√TΛ1 · β1

Λ2 · T−δb2

]
P→ 0,

where Λ was partitioned into two diagonal blocks, Λ1 and Λ2, as done previously. Block Λ1 must
be OP (T−1/2) following the proof of Theorem 2.5.6. Finally, the fact that T−δb2 → 0 as T → ∞
means that, in the limit, a nonzero Λ2 does not yield a sub-optimal cross-validation loss value.

2.D Monte Carlo Simulations

2.D.1 Cross-validation Details

To select the ridge penalty, I implement the lag-adapted structure and choose the relevant λi’s using
block non-dependent cross-validation (Burman et al., 1994, Bergmeir et al., 2018b). I constraint
the optimization domain of λi to be [0, 102], without discretization. An issue with cross-validation
regards the GLS ridge estimator: the matrices involved can quickly become prohibitively large due
to Kronecker products, making CV optimization impractical. To avoid this, I set the penalty for
lag-adapted β̂RGLS(Λ) to be the same as that obtained for β̂R via CV, which means the regularizer
is tuned sub-optimally. Nonetheless, an identical choice of Λ for both methods can help shed light
on the difference in structure between the two estimators.

In contrast to Bańbura et al. (2010), I do not tune the shrinkage parameter of the Minnesota
BVAR using a mean squared forecasting error (MSFE) criterion: instead, I again use block CV.
Since a Minnesota prior can be easily implemented with the use of augmented regression matrices,
cross-validation can be much more efficiently implemented than for β̂RGLS . The resulting choice of
prior tightness λ2 is reasonable because CV, too, estimates the (one step ahead) forecasting risk.
Since in this context only the mean of the posterior is used to compute pointwise impulse responses,
one can even directly interpret the cross-validated Minnesota BVAR estimator as a refinement of
GLS ridge.
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(b) Distribution of 10-fold CV penalties.

Figure 2.2: Comparison of penalty selection methods in Setup A, 1000 replications.

2.D.2 Penalty Selection in Simulations

In the simulations of Section 2.7, an interesting aspect to study is how data-driven penalty selection
methods behave. Both average and individual behavior are important, because the former generally
gives intuition for the kind of regularization structure that is selected for the model, while the latter
is relevant for empirical modeling where estimation can be done only on one sample.

I use Setup A from the Monte Carlo experiments (with 1000 replications) and instead just focus
on the behavior of a number of penalty validation techniques. The rational behind the choice is
straightforward: Setup A involves models with more lags. Figure 2.2a shows the mean selected
penalty parameter λi for i ∈ {1, . . . , 10}. The methods I compare are: out-of-sample validation
(OOS) with a split of 80% of sample for estimation and 20% for testing; block cross-validation
with 5 (CV 5) or 10 (CV 10) folds; block non-dependent cross validation with 10 folds (BND CV
10). The differences between 5 and 10-fold block CV methods are small, and both largely agree
with BND cross-validation apart at lag 2. In contrast, out-of-sample validation appears to select
on average much higher penalties at early lags and slightly lower ones at higher lags.

Regarding the distribution of selected λi over all replications, one can notice from Figure 2.2b
that there is indeed important variation in the individual penalty choices. The evidence is for the
specific case of 10-fold block CV, but it appears as a common pattern with other techniques, too.
The implications of such variability in lag-adapted penalties are hard to gauge because in any given
sample it is not possible to say whether the choice of {λi} is good or bad outside of speculation. A
guiding principle might be to compare CV with any "hyperpriors" one might have on Λ itself – like
in Bayesian paradigm – but then parameteric penalty matrices like the one used with the Minnesota
prior should be preferred. Indeed, the question of whether a more robust but still general method
other than cross–validation can be applied to the time series context is highly relevant.



112 CHAPTER 2. RIDGE REGRESSION FOR TIME SERIES

2.D.3 Penalty Selection with Many Lags

The minimization problem involved in OOS and CV penalty selection in its most general form
suffers from the curse of dimensionality. This is somehow mitigated when using a lag-adapted
regularizer since the loss with Λℓ depends only on p non-negative parameters, rather then K2p

with non-block-diagonal Λ. But whenever p is chosen large (e.g. p > 20) the problem resurfaces.
I suggest a basic shortcut to make computation easier. Such simplification stems from the

following observation. If one is willing to believe the assumptions of Section 2.6, then, because
deep lag coefficients are small, after the first few lags penalization can be equally strong on all
remaining lags with negligible additional bias. The shortcut, then, is to estimate only {λ1, . . . , λr}
for r < p, then extrapolate and use {λ1, . . . , λr−1, λr, . . . , λr}, where λr is repeated p − r times,
as lag-adapted penalty parameters. The idea is supported by the results in Figure 2.2a. However,
this strategy is not generally appropriate, because it could be that even at relatively deep lags
some coefficients are large, while on the other hand the early coefficients are small. Therefore, in
applications where the ridge penalty needs to be estimated only once or a handful of times I would
suggest to avoid this shortcut altogether.

2.D.4 Numerical Optimization

For a VAR(p) and a lag-adapted Λℓ, a collection {λ1, . . . , λp} must be chosen. To implement OS
and CV for the ridge estimators, I rely on MATLAB optimization routines, in both cases using the
optimization function patternsearch from the MATLAB Optimization Toolbox. The domain of
optimization is chosen to be the hypercube [0, 102]p, where T is the sample size. The choice of a
bounded domain is asymptotically valid, cf. Theorem 2.5.6 and Corollary 2.6.3.

In applications, since the CV loss needs not be convex (Stephenson et al., 2021), it appro-
priate to employ advanced optimization routines, e.g. genetic or pattern-based optimizers like
patternsearch, if possible. When one only requires to estimate the VAR model once, then the
selection of Λ is a one-time cost. The gains of better optimization solutions therefore are often
superior to the higher computational costs one incurs in when using more sophisticated routines.
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2.D.5 Additional Tables

Table 2.8: MSE Relative to OLS – Setup B

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
RIDGE 1.11 1.08 1.16 1.06 0.90 0.89 0.94

RIDGE-GLS 1.16 1.00 0.99 1.00 0.93 0.93 0.95
Real GDP LP 1.00 1.14 1.37 1.52 1.72 1.98 2.24

BVAR-CV 0.90 0.87 1.04 1.01 0.92 0.92 0.98
H-BVAR 0.83 0.62 0.78 0.73 0.62 0.62 0.68
RIDGE 2.25 2.10 1.81 1.54 1.39 1.47 3.37

RIDGE-GLS 1.17 1.09 1.10 1.10 1.08 1.05 1.04
GDP Deflator LP 1.00 1.13 1.25 1.33 1.40 1.47 1.54

BVAR-CV 1.06 1.03 1.00 0.95 0.92 0.92 0.93
H-BVAR 0.81 0.91 1.10 1.11 1.04 0.98 0.94
RIDGE 0.99 1.29 1.31 1.08 0.96 1.05 2.31

RIDGE-GLS 0.94 0.96 1.04 0.99 0.95 0.96 0.99
Consumption LP 1.00 1.13 1.32 1.44 1.63 1.83 2.03

BVAR-CV 1.04 1.07 1.15 1.00 0.92 0.94 0.99
H-BVAR 0.94 0.83 0.98 0.83 0.78 0.83 0.91
RIDGE 1.49 1.27 1.17 0.99 0.70 0.73 1.61

RIDGE-GLS 1.34 1.14 1.02 1.02 0.86 0.82 0.86
Investment LP 1.00 1.15 1.40 1.63 2.03 2.76 3.59

BVAR-CV 1.51 1.01 0.97 0.97 0.93 1.08 1.24
H-BVAR 1.06 0.68 0.69 0.66 0.63 0.87 1.14
RIDGE 1.22 1.24 1.18 1.03 0.77 0.76 1.27

RIDGE-GLS 1.07 1.05 1.01 1.03 0.90 0.85 0.90
Hours LP 1.00 1.14 1.33 1.53 1.81 2.35 2.92

BVAR-CV 0.89 0.88 1.03 1.02 0.91 0.95 1.05
H-BVAR 0.77 0.71 0.97 0.96 0.81 0.85 0.98
RIDGE 0.85 0.99 0.85 0.94 1.13 1.40 4.70

RIDGE-GLS 0.93 0.97 0.89 0.94 1.04 1.04 1.00
Compensation LP 1.00 1.18 1.52 1.78 1.90 1.93 1.99

BVAR-CV 1.07 0.92 0.94 0.93 0.99 1.01 0.98
H-BVAR 0.86 0.80 1.12 1.31 1.35 1.27 1.22
RIDGE 2.17 1.21 0.96 0.93 1.03 4.00 53.18

RIDGE-GLS 1.21 1.04 0.90 0.93 0.90 0.88 0.91
Fed Funds LP 1.00 1.18 1.51 1.71 1.97 2.44 2.99
Rate BVAR-CV 0.92 0.94 0.91 0.90 0.86 0.87 0.92

H-BVAR 0.75 0.77 1.32 1.38 1.25 1.15 1.20
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Table 2.9: Impulse Response Inference – Setup B: CI Coverage

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
LS 0.87 0.81 0.75 0.72 0.71 0.72 0.73

RIDGE 0.90 0.79 0.66 0.62 0.65 0.68 0.68
Real GDP RIDGE-AS 0.89 0.72 0.61 0.58 0.61 0.65 0.65

LP 0.87 0.93 0.94 0.94 0.93 0.93 0.91
BVAR-CV 0.70 0.71 0.63 0.64 0.71 0.75 0.76
H-BVAR 0.84 0.86 0.76 0.76 0.83 0.88 0.88

LS 0.86 0.83 0.80 0.76 0.73 0.72 0.70
RIDGE 0.85 0.76 0.66 0.62 0.61 0.60 0.58

GDP Deflator RIDGE-AS 0.83 0.70 0.61 0.58 0.57 0.57 0.55
LP 0.86 0.93 0.94 0.94 0.93 0.91 0.89

BVAR-CV 0.76 0.72 0.70 0.72 0.72 0.71 0.70
H-BVAR 0.84 0.83 0.79 0.78 0.78 0.78 0.77

LS 0.87 0.80 0.75 0.72 0.70 0.70 0.70
RIDGE 0.90 0.74 0.60 0.60 0.64 0.66 0.65

Consumption RIDGE-AS 0.89 0.67 0.55 0.55 0.60 0.62 0.62
LP 0.86 0.93 0.94 0.94 0.94 0.92 0.90

BVAR-CV 0.73 0.66 0.60 0.63 0.70 0.73 0.74
H-BVAR 0.84 0.79 0.70 0.74 0.79 0.82 0.84

LS 0.87 0.82 0.76 0.73 0.75 0.82 0.87
RIDGE 0.85 0.79 0.65 0.62 0.73 0.80 0.81

Investment RIDGE-AS 0.82 0.69 0.59 0.57 0.68 0.77 0.77
LP 0.87 0.94 0.94 0.95 0.94 0.94 0.94

BVAR-CV 0.70 0.73 0.67 0.71 0.77 0.81 0.83
H-BVAR 0.80 0.86 0.81 0.82 0.87 0.88 0.88

LS 0.86 0.81 0.76 0.74 0.74 0.79 0.81
RIDGE 0.88 0.80 0.68 0.64 0.70 0.72 0.66

Hours RIDGE-AS 0.87 0.74 0.62 0.59 0.65 0.67 0.62
LP 0.86 0.93 0.94 0.94 0.94 0.94 0.93

BVAR-CV 0.73 0.72 0.64 0.66 0.74 0.78 0.77
H-BVAR 0.88 0.86 0.73 0.72 0.80 0.85 0.86

LS 0.86 0.82 0.76 0.75 0.72 0.68 0.67
RIDGE 0.93 0.82 0.75 0.72 0.66 0.60 0.58

Compensation RIDGE-AS 0.91 0.71 0.69 0.67 0.61 0.56 0.55
LP 0.86 0.93 0.95 0.95 0.94 0.92 0.90

BVAR-CV 0.78 0.71 0.69 0.71 0.69 0.67 0.69
H-BVAR 0.85 0.83 0.80 0.81 0.82 0.82 0.83

LS 0.85 0.83 0.80 0.78 0.77 0.79 0.80
RIDGE 0.79 0.77 0.74 0.68 0.68 0.72 0.72

Fed Funds RIDGE-AS 0.78 0.66 0.68 0.64 0.64 0.68 0.69
Rate LP 0.85 0.94 0.96 0.96 0.95 0.94 0.93

BVAR-CV 0.76 0.72 0.76 0.77 0.77 0.81 0.83
H-BVAR 0.87 0.86 0.74 0.73 0.78 0.84 0.87
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Table 2.10: Impulse Response Inference – Setup B: CI Length (rescaled ×100)

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24
LS 0.71 1.56 2.07 2.31 2.32 2.24 2.15

RIDGE 0.79 1.56 1.85 1.95 1.92 1.85 1.77
Real GDP RIDGE-AS 0.74 1.31 1.65 1.76 1.75 1.70 1.64

LP 0.71 2.42 4.21 5.40 5.90 5.91 5.70
BVAR-CV 0.53 1.23 1.74 2.00 2.10 2.13 2.15
H-BVAR 0.58 1.36 1.87 2.16 2.32 2.44 2.55

LS 0.26 0.74 1.47 2.14 2.69 3.12 3.46
RIDGE 0.32 0.81 1.41 1.96 2.43 2.82 3.13

GDP Deflator RIDGE-AS 0.31 0.71 1.28 1.79 2.23 2.59 2.88
LP 0.26 1.09 2.68 4.39 5.95 7.23 8.13

BVAR-CV 0.21 0.61 1.26 1.88 2.43 2.91 3.32
H-BVAR 0.23 0.71 1.42 2.09 2.71 3.27 3.80

LS 0.63 1.35 1.97 2.29 2.34 2.30 2.24
RIDGE 0.71 1.35 1.74 1.93 1.96 1.93 1.88

Consumption RIDGE-AS 0.67 1.15 1.57 1.75 1.79 1.77 1.74
LP 0.63 2.04 3.92 5.27 5.89 6.00 5.88

BVAR-CV 0.49 1.09 1.65 1.97 2.12 2.20 2.24
H-BVAR 0.53 1.21 1.79 2.16 2.41 2.60 2.77

LS 3.38 6.65 7.89 7.89 7.31 6.69 6.18
RIDGE 3.79 6.81 6.93 6.46 5.79 5.19 4.73

Investment RIDGE-AS 3.59 5.57 6.11 5.77 5.21 4.72 4.34
LP 3.37 10.16 16.00 18.85 19.06 18.22 17.23

BVAR-CV 2.64 5.26 6.59 6.91 6.78 6.57 6.38
H-BVAR 2.89 5.74 7.08 7.54 7.63 7.60 7.58

LS 0.70 1.64 2.27 2.42 2.29 2.11 1.99
RIDGE 0.82 1.73 2.10 2.06 1.86 1.66 1.52

Hours RIDGE-AS 0.79 1.49 1.87 1.85 1.68 1.51 1.40
LP 0.70 2.49 4.52 5.62 5.83 5.57 5.26

BVAR-CV 0.57 1.30 1.90 2.07 2.03 1.94 1.88
H-BVAR 0.62 1.49 2.15 2.35 2.38 2.37 2.37

LS 0.86 1.17 1.18 1.18 1.21 1.24 1.25
RIDGE 0.97 1.21 1.07 1.05 1.06 1.06 1.06

Compensation RIDGE-AS 0.93 0.95 0.95 0.96 0.97 0.98 0.98
LP 0.86 1.80 2.53 2.87 3.11 3.26 3.32

BVAR-CV 0.69 0.94 1.00 1.05 1.11 1.18 1.23
H-BVAR 0.78 1.10 1.26 1.40 1.54 1.67 1.78

LS 0.25 0.39 0.43 0.43 0.41 0.38 0.35
RIDGE 0.29 0.39 0.37 0.36 0.33 0.30 0.29

Fed Funds RIDGE-AS 0.27 0.31 0.33 0.32 0.30 0.28 0.27
Rate LP 0.25 0.59 0.88 1.01 1.05 1.03 0.98

BVAR-CV 0.21 0.31 0.36 0.37 0.36 0.35 0.34
H-BVAR 0.23 0.36 0.42 0.44 0.45 0.45 0.46
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Chapter 3

Impulse Response Analysis of Structural
Nonlinear Time Series Models

3.1 Introduction

This paper presents a semi-nonparametric method to study the structural dynamic effects of un-
predictable shocks in a class of nonlinear time series models.

Linear models are the foundation of economic structural time series modeling. The nature
of linear models makes them especially tractable and apt at describing fundamental interactions
and processes. For example, large classes of macroeconomic models in modern New Keynesian
theory can be reduced to linear VARMA form via linearization techniques. This often justifies the
application of the linear time series toolbox from a theoretical point of view. Concurrently, the work
of Sims (1980) on VARs reinvigorated the strain of macroeconometric literature that seeks to study
dynamic economic relationships. Brockwell and Davis (1991), Hamilton (1994b) and Lütkepohl
(2005) provide detailed overviews of linear time series modeling and its developments. When the
objects of interest are solely dynamic effects, the local projection (LP) approach of Jordà (2005) has
also gained popularity as an alternative thanks to its flexibility and ease of implementation. LPs
do not directly impose a linear model on the conditional distribution of the time series, but rather
consist of linear lag regressions. Throughout this paper, the key dynamic effect under discussion
will be the impulse response function (IRF), which is the common inference object of both linear
VARMA and LP analyses.

Nonlinear methods seek to flexibly study the dependence structure between variables of interest
by accommodating a potentially complex model structure. In recent years, research in nonlinear
and asymmetric effects has grown, partly due to the increasing availability of data, making it
feasible to estimate more elaborate models (Fuleky, 2020b). From a macroeconomic perspective,
one can imagine at least three broad categories of nonlinearities that may be important to study.
Sign-dependence of impulse responses is a potential key factor in the evaluation of monetary policy,
as the specific effects of an interest rate change might be mitigated if the central bank implements a
rate drop rather than a rate hike, while some others might be enhanced (Debortoli et al., 2020). If
impulse responses are size-sensitive, large shocks and small shocks can have vastly different economic
impacts, meaning that the policymaker must account for nonlinear scaling in the intensity of an
intervention (Tenreyro and Thwaites, 2016). Finally, if the researcher’s objective lies in studying
exogenous changes impacting a variable that is nonlinear by definition, such as volatility indexes,
any valid structural model should account for this feature.

117
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The main contribution of this work is the development of an approach that allows estimating
structural IRFs which can account for general nonlinear effects. This goal entails solving two related
issues: first, structural identification of shocks, so that it is possible to give a valid economic
interpretation to impulse responses; second, estimation of nonlinear functions in the setting of
dependent data. In a linear setup, identification and estimation can be considered as distinct
problems, but when working with nonlinear models these questions become intertwined. Without
specific assumptions, nonlinear model classes are much too vast in terms of complexity: there are
too many channels for any variable to affect any other. Disentangling such channels thus becomes
impossible, and one cannot structurally interpret IRFs and dynamic effects such as multipliers. This
problem can be solved by being more precise about the classes of models one is willing to entertain.
I consider the structural nonlinear framework originally proposed by Gonçalves et al. (2021), which
involves selecting one variable to identify the structural shocks of interest, Xt, and treating it
separately from all other series, a vector Yt, included in the model. By imposing a few additional
assumptions on the dependence structure of innovations, one is able to include general nonlinear
effects of Xt and its lags onto Yt. By further allowing the lags of Yt to influence Xt, this setup
permits nonlinear dynamics to propagate to all variables over time. The significant upside of this
paradigm is that structural identification is built-in, instead of being treated as a separate step. The
latter path is most often taken in the literature by implementing the generalized impulse response
function (GIRF) proposed by Koop et al. (1996). Kilian and Lütkepohl (2017b) have, however,
highlighted that common linear identification strategies such as long-term and sign restrictions are
generally impossible to impose in general nonlinear models, since closed-form expressions are not
available but in a handful of special cases.

A weakness of the framework in Gonçalves et al. (2021) is that it requires choosing a specific
functional form for the nonlinear components of the model, such as the negative-censoring map or a
cubic map. These are used to tease out the sign and size effects of shocks.1 Yet, correct prior knowl-
edge of such terms is often unreasonable, especially in multivariate, multi-lag models. The natural
way to avoid selecting a parametric nonlinear specification is to resort to semi-nonparametric tech-
niques. Nonparametric time series methods have a long history in econometrics (Härdle et al.,
1997), but until recently not much progress has been made in applying them to studying dynamic
effects. Impulse response functions are objects that depend on the global properties of the model
and, to be more precise, defining an IRF requires iterating shock perturbations over time. In a
nonlinear model, the perturbation depends on the variables’ state, so that one must consider the
shock’s effects across possible states. That is, different features of the nonlinear model such as level,
slope, curvature must be evaluated over a range of values. Therefore, in this setting, an econome-
trician must provide error guarantees that are uniform over the variables’ domain. In this work,
I combine the uniform inference framework of Chen and Christensen (2015) with the structural
nonlinear time series scheme discussed above. The general idea is to resort to semi-nonparametric
series estimation and work in a physical dependence setup (Wu, 2005). On the one hand, I argue
that physical dependence is a natural way of imposing assumptions that lead to estimable models,
being more transparent than standard mixing conditions. On the other hand, the series approach

1The negative-censoring map applied to variable a is a 7→ max(a, 0).
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makes it easy to estimate models with linear and nonlinear components of the type considered in
this paper. It also provides well-developed theoretical results to study uncertainty. Under appropri-
ate regularity assumptions, I show that a two-step semi-nonparametric series estimation procedure
is able to consistently recover the structural model in a uniform sense. This result encompasses the
generated regressors’ problem, which arises in the second step due to the structural identification
strategy. Lastly, I prove that the nonlinear impulse response function estimates obtained are them-
selves asymptotically consistent and, thanks to an iterative algorithm, straightforward to compute
in practice.

To validate the proposed methodology, I provide simulation evidence. The first set of results
shows that, with realistic sample sizes, the efficiency costs of the semi-nonparametric procedure are
small compared to correctly-specified parametric estimates. A second set of simulations demon-
strates that whenever the nonlinear parametric model is mildly misspecified the large-sample bias
is large, while for semi-nonparametric estimates it is negligible. Finally, I study how the IRFs
computed with the new method compare with the ones from two previous empirical exercises. In a
small, quarterly model of the US macroeconomy, I find that the parametric nonlinear and nonlinear
appear to underestimate by intensity the GDP responses by 13% and 16%, respectively, after a
large exogenous monetary policy shock. Moreover, sieve responses achieve maximum impact a year
before their linear counterparts. Then, I evaluate the effects of interest rate uncertainty on US out-
put, prices, and unemployment following Istrefi and Mouabbi (2018). In this exercise, the impact
on industrial production of a one-deviation increase in uncertainty is approximately 54% stronger
according to semi-nonparametric IRFs than the comparable linear specification. These findings
suggest that structural impulse responses predicated on linear specifications might be appreciably
underestimating shock effects.

Related Literature. Nonlinear models for dependent data have been extensively developed
with the aim of analyzing diverse types of series, see e.g. the monographs of Tong (1990), Fan
and Yao (2003), Gao (2007), Tsay and Chen (2018). Teräsvirta et al. (2010) provide a thorough
discussion of nonlinear economic time series modeling, but, by only presenting the generalized IRF
(GIRF) approach proposed by Koop et al. (1996), Potter (2000) and Gourieroux and Jasiak (2005),
they do not explicitly address structural analysis.

Parametric nonlinear specifications are common prescriptions, for example, in time-varying
models (Auerbach and Gorodnichenko, 2012, Caggiano et al., 2015) and state-depend models
(Ramey and Zubairy, 2018). They have been and are commonly used in time-homogeneous mod-
els. Kilian and Vega (2011) provide a structural analysis of the effects of GDP on oil price shocks
and, in contrast to previous literature, find that asymmetries play a negligible role: they do this by
including a negative-censoring transformation of the structural variable and testing for significance.
Caggiano et al. (2017), Pellegrino (2021) and Caggiano et al. (2021) use interacted VAR models
to estimate effects of uncertainty and monetary policy shocks. From a finance perspective, Forni
et al. (2023a,b) study the economic effects of financial shocks. Their generalized VMA specification,
which is based on that of Debortoli et al. (2020), sets that innovations be transformed with the
quadratic map.2 Gambetti et al. (2022) study news shocks asymmetries by imposing that news

2I will discuss how their nonlinear model setup compares to the one I consider below.
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changes enter their autoregressive model with a pre-specified threshold function.
Extension of nonparametric methods to nonlinear time series have already been discussed in

the recent literature. For example, Kanazawa (2020) proposed to use radial basis function neural
networks to estimate a nonlinear time series model of the US macroeconomy. This work focuses
on estimating the GIRF of Koop et al. (1996), with its structural limitations: productivity is
assumed to be a fully exogenous variable. Gourieroux and Lee (2023) provide a framework for
nonparametric kernel estimation and inference of IRFs via local projections. Yet, they primarily
work in the one-dimensional case and only mention economic identification in multivariate setups
from the perspective of linear VARs. The work possibly closest to the present paper seems to be
that of Lanne and Nyberg (2023), who develop a nearest-neighbor approach to impulse responses
estimation that builds on the local projection idea and the GIRF concept. These papers, save for
Gourieroux and Lee (2023), do not fully develop an asymptotic theory for their estimators, which
makes it hard to judge the econometric assumptions under which they are applicable.

Outline. The remainder of this paper is organized as follows. Section 3.2 provides the general
framework for the structural model. Section 3.3 describes the two-step semi-nonparametric esti-
mation strategy, provides a thorough treatment of physical dependence assumptions and reports
the key uniform consistency guarantees. Section 3.4 is devoted to the discussion of nonlinear im-
pulse response function computation, validity and consistency. In Section 3.5, I report simulation
results that show the performance of the proposed method, while in Section 3.6 I discuss empirical
applications. Finally, Section 3.7 concludes. All proofs and additional technical results, as well as
secondary plots, can be found in Appendices 3.A and 3.B, respectively.

Notation. A (vector) random variable will be denoted in capital or Greek letters, e.g. Yt or ϵt,
while its realization will be in lowercase Latin letters, that is yt. For a process {Yt}t∈Z, we write
Yt:s = (Yt, Yt+1, . . . , Ys−1, Ys), as well as Y∗:t = (. . . , Yt−2, Yt−1, Yt) for the left-infinite history and
Yt:∗ = (Yt, Yt+1, Yt+2, . . .) for its right-infinite history. The same notation is also used for random
variable realizations. For a matrix A ∈ Rd×d where d ≥ 1, ∥A∥ is the spectral norm, ∥A∥∞ is the
supremum norm and ∥A∥r for 0 < r <∞ is the r-operator norm. For a random vector or matrix,
I will use ∥ · ∥Lr to denote the associated Lr norm.

3.2 Model Framework

In this section, I introduce the nonlinear time series model that will be considered throughout the
paper. This model setup will be a generalization of the one developed in Gonçalves et al. (2021) by
letting the form of nonlinear components to remain unspecified until estimation. The idea behind
the partial structural identification scheme is simple: if Zt is the full vector of time series of interest,
one must choose one series, call it Xt, as the structural variable, and add specific assumption on
its dynamic effects on the remaining series, vector Yt. The central goal will be the estimation of
the impulse responses of Yt due to a shock in Xt.
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3.2.1 A Simple Nonlinear Monetary Policy Model

To begin with, it is useful to present a basic modeling setup with a straightforward economic
interpretation, which may also serve as a concrete empirical example for the setting I will develop.
To this end, I consider first a simple nonlinear monetary policy (MP) model which, however,
captures all of the key ingredients of the general framework discussed in the next subsection.
Consider the following hypothetical model of US macroeconomic time series:

Xt = ρXt−1 + ϵ1t,

FFRt = α11FFRt−1 + α12Xt−1 + β1
0ϵ1t + ϵ21t,

GDPt = α21GDPt−1 + α22FFRt−1 +G(Xt) + β2
0ϵ1t + ϵ22t,

where Xt is a structural monetary policy variable (for example, a credibility exogenous sequence of
autocorrelated MP shocks), FFRt is the Federal Funds Rate and GDPt is the US Gross Domestic
Product. Moreover, ϵ1t and ϵ2t := (ϵ21t, ϵ22t)′ are reciprocally independent sequences of shocks.
Coefficients α11, α12, α21 and α22 induce a linear autoregressive structure for the endogenous
variables FFRt and GDPt, while β1

0 and β2
0 determine the structural effects of ϵ1t on FFR and GDP.

Moreover, notice that the (sufficiently smooth) nonlinear function G : R→ R implies that shocks ϵ1t

not only effect GDP contemporaneously in a linear fashion, but also nonlinearly through the level
of Xt. To first aid conceptualization, one could think of setting G to be a known transformation
which can tease out a specific effect of interest. For example, G(Xt) = max(0, Xt) to incorporate
an asymmetry which depends on the sign of Xt.3 Yet, a choice of G that is made a priori is hard
to justify in general, and so the objective is rather to estimate G jointly with all other parameters.
This will be the core issue at hand in the remainder of this paper.

To formally and effectively analyze this simple MP model and discuss its estimation, I separate
the linear, nonlinear and structural parts. In vector form,

Xt

FFRt

GDPt

 =


ρ 0 0
α12 α11 0
0 α21 α22




Xt−1

FFRt−1

GDPt−1

+


0
0

G(Xt)

+


1 0 0
β1

0 1 0
β2

0 0 1



ϵ1t

ϵ21t

ϵ22t


Now, by setting Yt := (FFRt,GDPt)′ and Zt := (Xt,FFRt,GDPt)′ ≡ (Xt, Y

′
t )′, we obtain the

equation
Zt = A1Zt−1 +G1(Xt) +B−1

0 ϵt,

where A1 is a matix function of (ρ, α11, α12, α21, α22), B−1
0 is a matrix function of (β1

0 , β
2
0) and

G1(Xt) = (0, 0, G(Xt))′. Throughout this paper, I will call the form in the above display the semi-
reduced form, for reasons that will be made clear when presenting the general model. Finally, a
key insight is that one can, with a mild abuse of notation, write G1 too in a “functional matrix”

3See also the wider class of threshold autoregressive models (TAR) discussed by Fan and Yao (2003) and Teräsvirta
et al. (2010).
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form, that is

G1(Xt) =


0
0

G(Xt)

Xt ≡


0
0
G

Xt = G1Xt.

Below, this will formalism will prove very useful in terms of streamlining notation.

3.2.2 General Model

Let Zt := (Xt, Y
′

t )′ where Xt ∈ X ⊆ R and Yt ∈ Y ⊆ RdY , and let d = 1 + dY be the dimension of
Zt. I assume that the structural nonlinear data generating process has the form

B0Zt = b+B(L)Zt−1 + F (L)Xt + ϵt, (3.1)

where b = (b1, b
′
2)′ ∈ Rd and ϵt = (ϵ1, ϵ′2)′ ∈ E ⊆ Rd are partitioned accordingly. Moreover, I assume

that model (3.1) imposes a linear dependence of observables on Yt and its lags, while series Xt can
enter nonlinearly. That is, B(L) = B1 + B2L + . . . + BpL

p−1 and F (L) = F0 + F1L + . . . + FpL
p

are linear and functional lag polynomials, respectively.4

Matrices (F0, . . . , Fp) are functional in the sense that their entries consist of real univariate
functions, and the product between F (L) and Xt is to be interpreted as functional evaluation, c.f.
the example discussed above. That is,

F (L)Xt =


f0,1(Xt)

...
f0,d(Xt)

+


f1,1(Xt−1)

...
f1,d(Xt−1)

+ . . .+


fp,1(Xt−p)

...
fp,d(Xt−p)

 ,
where {fj,l} ∈ Λ for j = 0, . . . , p, l = 1, . . . , d, and Λ is a sufficiently regular function class.5 The
modeling choice to remain within the autoregressive time series class with additive lag structure
has two core advantages. First, it yields a straightforward generalization to classical linear models
(Lütkepohl, 2005, Kilian and Lütkepohl, 2017b). Second, it keeps semi-nonparametric estimation of
nonlinear components feasible. Additivity in variables and lags means that the curse of dimension-
ality involved with multivariate nonparametric estimation is effectively mitigated (Fan and Yao,
2003).

Let the lag polynomials be given by

B(L) =
[
B11(L) B12(L)
B21(L) B22(L)

]
, F (L) =

[
0

F21(L)

]
.

This structural formulation means that the model equation for Xt is restricted to be linear in all
regressors. It also implies that Xt does not depend contemporaneously on itself. Note that as long

4This is a minor abuse of notation compared to e.g. Lütkepohl (2005). The choice to use a matrix notation is
due to the ease and clarity of writing a (multivariate) additive nonlinear model such as (3.1) in a manner consistent
with standard linear VAR models. In cases where a real matrix A ∈ Rd×d is multiplied with a conformable functional
matrix F , I simply assume the natural product of a scalar times a function, e.g. AijFkℓ, where Fkℓ is a function,
returning a new real function.

5To fix ideas, one may think of Λq(M), the Hölder function class of smoothness q > 0 and domain M ⊆ R. We
shall make more precise assumptions regarding Λ in Section 3.3 when discussing model estimation.
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as B12(L) ̸= 0, Xt still depends upon nonlinear functions of its own lags, which enter via lags of
Yt. Next, I impose that B0 ∈ RdY ×dY has the form

B0 =
[

1 0
−B0,12 B0,22

]
,

where B0,22 is non-singular and normalized to have unit diagonal. The structural model is thus
given by

Xt = b1 +B12(L)Yt−1 +B11(L)Xt−1 + ϵ1t,

B0,22 Yt = b2 +B22(L)Yt−1 +B21(L)Xt−1 +B0,12Xt + F21(L)Xt + ϵ2t.

Moreover, it follows that B−1
0 exists and has form

B−1
0 =

[
1 0
B21

0 B22
0

]
.

The constraints on B0 yield a structural identification assumption and require that Xt be pre-
determined with respect to Yt (Gonçalves et al., 2021). By introducing

µ := B−1
0 b, A(L) := B−1

0 B(L) and G(L) := B−1
0 F (L),

one thus obtains

Xt = µ1 +A12(L)Yt−1 +A11(L)Xt−1 + ϵ1t,

Yt = µ2 +A22(L)Yt−1 +A21(L)Xt−1 +G21(L)Xt +B21
0 ϵ1t +B22

0 ϵ2t,
(3.2)

or, equivalently,
Zt = µ+A(L)Yt−1 +G(L)Xt + ut, (3.3)

where ut = [u1t, u2t]′, u1t ≡ ϵ1t and u2t := B21
0 ϵ1t +B22

0 ϵ2t. Given the structure of B−1
0 , one can see

that A12(L) ≡ B12(L), A11(L) ≡ B11(L) and G11(L) = 0. Importantly, one must also notice that
A12(L) and G21(L) = B22

0 F21(L) might now be not properly identified without further assumptions.
Since A21(L) is not necessarily zero, linear effects of lags of Xt on Yt can enter by means of both
lag polynomials. To resolve this issue, I therefore assume that the functional polynomial G21(L)
contains, at lags greater than zero, only nonlinear components.6

Example 3.2.1. (Bivariate Model with Exogenous Shocks). To give a concrete example of (3.2),
assume that one wants to model the effects of monetary policy shocks on U.S. GDP growth following
Romer and Romer (2004). Then, let

Xt = ϵ1t,

Yt = µ2 +A2Yt−1 +G(Xt) +B21
0 ϵ1t + ϵ2t,

where Xt are the policy shocks, which are assumed to be i.i.d., while Yt is a macroeconomic
6When using a semi-nonparametric estimation strategy with B-splines, this will be feasible to implement numer-

ically. When using wavelets, this also is a natural approach. In practice, however, some care must be taken to avoid
constructing collinear regression matrices.
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variable whose responses the researcher is interested in, e.g. GDP growth or PCE inflation. This
setup is very minimal, and I assume here, for the sake of simplicity, that endogeneity of ϵ2t does
not pose a problem. Then, the term G(Xt) +B21

0 ϵ1t ≡ G(ϵ1t) +B21
0 ϵ1t =: H(ϵ1t) fully captures any

contemporaneous effect of monetary policy shocks on Yt. When G(ϵ1t) = 0, H(ϵ1t) and the model
are linear. If G(ϵ1t) = β0 max(0, ϵ1t) for some β0 ̸= 0, function H is piece-wise linear: contractionary
and expansionary shocks have, in general, different effects on Yt, but shocks with the same sign
have proportional impact. As a final example, if G(ϵ1t) = β0 ϵ

3
1t then H(ϵ1t) is a third-degree

polynomial, so that both sign and size of monetary policy shocks are fundamental determinants of
Yt’s impulse response function. In principle, to correctly quantify the repercussions of a specific
monetary intervention a researcher must model all of these effects, unless they have a strong prior
belief that either or both can be safely ignored. More complex nonlinear and asymmetric relations
are also possible. A more robust strategy - as proposed in the present work - is to avoid choosing
G (or H) as part of the model’s specification, but rather to empirically estimate it jointly with all
other coefficients.

Remark 3.2.1. (Constrained Models). The general approach of leaving F (L) unconstrained is
appealing when no precise economic intuition or information is available. However, there might be
cases where the functional form of the nonlinear component is either partially known, or can be
restricted. A simple restriction is that of a uniform functional over lags,

F (L) = F + FL+ FL2 + . . .+ FLp.

This is a constraint effectively imposed by e.g. Gonçalves et al. (2021), Kilian and Vega (2011)
and other references. They do this by fully specifying F , but nonparametric constraints may be
desired, e.g. monotonicity. Constrained estimation of F (L) is addressed in Remark 3.3.2 below.

The system of equations in (3.2) provides the so-called pseudo-reduced form model. By design,
one does not need to identify the model fully, meaning that fewer assumptions on Zt and ϵt are
needed to estimate the structural effects of ϵ1t on Yt. This comes at the cost of not being able
to simultaneously study structural effects with respect to ϵ2t. An associated problem is that,
in general, G21(L)Xt is correlated with innovation u2t through B21

0 ϵ1t. The main challenge to
structural shock identification of ϵ1t thus lies in the fact that if B21

0 ̸= 0 and G21(0) ̸= 0, there
is endogeneity in the equations for Yt since Xt depends linearly on ϵ1t. Gonçalves et al. (2021)
address the issue by proposing a two-step estimation procedure wherein one explicitly controls for
ϵ1t by using regression residuals ϵ̂t. In Section 3.3 below, I show that this approach also allows for
consistent semi-nonparametric estimation of structural impulse responses.

Remark 3.2.2. (Identification Schemes). Forni et al. (2023a,b) provide an alternative nonlinear
structural identification framework to that of Gonçalves et al. (2021). Their approach was originally
introduced in Debortoli et al. (2020) and is based on the VMA form of the time series. Using the
current notation, suppose that the structural representation of Zt is given by

Zt = b+Q(L)F (ϵ1t) +B(L)ϵt

where ϵt are independent structural shocks with zero mean and identity covariance, while ϵ1t iden-
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tifies, e.g., financial innovations and shocks. Q(L) and B(L) are both linear lag polynomials and
F is a nonlinear function to be specified by the researcher. Imposing some additional assumptions,
the reduced-form assumed by Forni et al. (2023a) is

Zt = µ+A(L)Zt +Q0F (ϵ1t) +B0ϵt, (3.4)

where F (x) = x2 in their baseline specification. Forni et al. (2023b) use an analogous model,
while Debortoli et al. (2020) also consider more general setups where Q0 is replaced by a general
lag polynomial D(L). These kinds of structural assumptions are similar but not identical to the
ones imposed in Gonçalves et al. (2021) and this paper. For (3.4) to overlap with (3.2), one must
assume that Xt is exogenous and independently distributed, so that its level does not affect the
mapping of ϵ1t through F . That is, (3.4) requires that only the shocks have nonlinear effects, not
the structural variable itself. The upside of this approach is that one can directly and explicitly
model asymmetry in the innovation process. The drawbacks are that, without a clear identification
of a structural variable, one must fully identify B0. Moreover, function F remains to be specified
a priori. Note, however, that if innovation sequence ϵ1t is observable, a generalization of the semi-
nonparametric estimation results of this paper to the framework of Debortoli et al. (2020) would
be straightforward.

I now state some preliminary assumptions for the model.

Assumption 1. {ϵ1t}t∈Z and {ϵ2t}t∈Z are mutually independent time series such that[
ϵ1t

ϵ2t

]
i.i.d.∼

(
0,
[
σ2

1 0
0 Σ2

])

where Σ2 is a diagonal positive definite matrix.

Assumption 2. {Zt}t∈Z is strictly stationary, ergodic and such that supt E[|Zt|] <∞.

Assumption 3. The roots of equation det(Id −A(L)L) = 0 are outside the complex unit circle.

Assumption 1 follows Gonçalves et al. (2021). Assumption 2 is a high-level assumption on the
properties of process {Zt}t∈Z and is common in the analysis of structural time series. Assumption 3
ensures that it is possible to invert lag polynomial (I−A(L)L) in order to define impulse responses,
as done below. However, Assumption 2 and 3 will not be sufficient to make sure that (3.2) is
estimable from data, and in Section 3.3 additional constraints on A(L) and G(L) will be required in
order to apply semi-nonparametric estimation. Moreover, Assumption 2 is not easily interpretable:
functional lag polynomial G(L) makes it impossible to reduce semi-structural equations (3.2) to an
explicit infinite moving average form.

I will resolve both the former (sufficiency) and latter (interpretability) issue by using the non-
linear dynamic model framework outlined by Pötscher and Prucha (1997). It will allow introducing
regularity assumptions on the dependence of Zt which enable the derivation of consistency of im-
pulse response estimates.
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3.2.3 Structural Nonlinear Impulse Responses

Starting from pseudo-reduced equations (3.2), by letting Ψ(L) = (Id − A(L)L)−1 one can further
derive that

Zt = η + Θ(L)ϵt + Γ(L)Xt, (3.5)

where

µ := Ψ(1)
[
µ1

µ2

]
, Θ(L) := Ψ(L)B−1

0 , and Γ(L) := Ψ(L)
[

0
G21(L)

]
.

To formally define impulse responses, it is useful to partition the polynomial Θ(L) according to

Θ(L) :=
[
Θ·1(L) Θ·2(L)

]
,

where Θ·1(L) represents the first column of matrices in Θ(L), and Θ·2(L) the remaining dY columns.
Given impulse δ ∈ R at time t, define the shocked innovation process as ϵ1s(δ) = ϵs for s ̸= t

and ϵ1t(δ) = ϵt + δ, as well as the shocked structural variable as Xs(δ) = Xt for s < t and
Xs(δ) = Xs(Zt−1, ϵt + δ, ϵt+1 . . . , ϵs) for s ≥ t. Further, let

Zt+h := η + Θ·1(L)ϵ1t+h + Θ·2(L)ϵ2t+h + Γ(L)Xt,

Zt+h(δ) := η + Θ·1(L)ϵ1t+h(δ) + Θ·2(L)ϵ2t+h + Γ(L)Xt(δ),

be the time-t baseline and shocked series, respectively. The unconditional impulse response is given
by

IRFh(δ) = E [Zt+h(δ)− Zt+h] . (3.6)

The difference between shock and baseline is clearly

Zt+h(δ)− Zt+h = Θh,·1δ + Γ(L)Xt(δ)− Γ(L)Xt

= Θh,·1δ + (Γ0Xt+h(δ)− Γ0Xt+h) + . . .+ (ΓhXt(δ)− ΓhXt) ,

therefore the unconditional IRF reduces to

IRFh(δ) = Θh,·1δ + E [Γ0Xt+h(δ)− Γ0Xt+h] + . . .+ E [ΓhXt(δ)− ΓhXt] . (3.7)

Notice that, in (3.7), while one can linearly separate expectations in the impulse response for-
mula, terms E [ΓjXt+j(δ)− ΓjXt+j ] for 0 ≤ j ≤ h cannot be meaningfully simplified. Coefficients
Γj are functional, therefore it is not possible to collect them across Xt+j(δ) and Xt+j . Moreover,
these expectations involve nonlinear functions of lags of Xt and cannot be computed explicitly. To
address this issue, Section 3.4 provides an iterative procedure that makes computation of nonlinear
impulse responses in (3.7) straightforward.

Remark 3.2.3. (Local Projection Approaches). As mentioned in the introduction, in recent years
there has been growing interest in nonlinear IRF estimation procedures, and, accordingly, ways to
generalize the LP framework. Jordà (2005) already suggested that nonlinear impulse responses can,
in principle, be directly estimated with local projections via the so-called flexible local projection
approach. The flexible LP method relies on the Volterra expansion of time series to account for
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nonlinearities. There are multiple issues with this method. First, Jordà (2005) does not directly
state how the validity of Volterra series implies the autoregressive form used in the LP regression.
Second, the flexible LP proposal is fundamentally equivalent to adding polynomial factors to the
linear regression specification. Thus, it is effectively a semi-nonparametric method, yet Jordà (2005)
does not provide a theoretical analysis from this viewpoint. Moreover, no criterion or empirical
rule-of-thumb for selecting the truncation order of the Volterra expansion are suggested, which
becomes a key issue in practice. Due to these concerns, application of flexible LPs seems hard to
justify from an econometric perspective.7 Lanne and Nyberg (2023) propose to nonparametrically
recover the conditional mean function with a nearest-neighbor (k-NN) regression estimator. Their
method is very flexible, but requires appropriately choosing the neighborhood size k and a distance
measure for histories of realizations, and the authors do not theoretically address these issues.
Very recently, Gourieroux and Lee (2023) have considered nonlinear IRF estimation with kernel-
based methods by means of a novel conditional quantile representation of the process. They prove
kernel LP estimators based on such representation are consistent, and that the direct estimator is
asymptotically normal. The theory is developed only for the univariate case, with an autoregressive
structure of lag order one, limiting the applicability of their procedure.

3.3 Estimation

Pseudo-reduced form model (3.2) can be compactly rewritten as

Xt = Π′
1W1t + ϵ1t,

Yt = Π′
2W2t + u2t,

(3.8)

where

Π1 :=
(
η1, A1,11, · · · , Ap,11, A

′
1,12, · · · , A′

p,12

)′
∈ R1+pd,

Π2 :=
[
η2 G1,21 · · · Gp,21 A1,22 · · · Ap,22 B21

0

]′
,

Zt−1:t−p :=
(
Xt−1, . . . , Xt−p, Y

′
t−1, . . . , Y

′
t−p

)′
∈ Rpd,

W1t :=
(
1, Z ′

t−1:t−p

)′
∈ R1+pd,

W2t :=
(
1, Xt, Z

′
t−1:t−p, ϵ1t

)′
∈ R3+pd.

Additionally, let W1 = (W11, . . . ,W1n)′ and W2 = (W21, . . . ,W2n)′ be the design matrices for Xt

and Yt, respectively.

Two-step Estimation Procedure. Since W2t is an infeasible vector of regressors, to estimate
Π2 one can use Ŵ2t = (1, Xt, Z

′
t−1:t−p, ϵ̂1t)′, which now contains generated regressors in the form

of residual ϵ̂1t. This approach is an adaptation of the two-step procedure put forth by Gonçalves
et al. (2021), where I allow for semi-nonparametric estimation:

7Moreover, the complexity of estimating Volterra kernels grows exponentially with the kernel order, and thus
more sophisticated approaches have been proposed to make estimation feasible, see e.g. Sirotko-Sibirskaya et al.
(2020) and Movahedifar and Dickhaus (2023).
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1. Regress Xt onto W1t to get estimate Π̂1 and compute residuals ϵ̂1t = Xt − Π̂′
1W1t.

2. Fit Yt using Ŵ2t to get estimate Π̂2. Since G1,21, . . . , Gp,21 contain functional parameters, a
semi-nonparametric estimation method is required.

3. Compute coefficients in Θ̂(L) and Γ̂(L) from Π̂1 and Π̂2.

4. Consider the two paths with time t shocks ϵt+δ versus ϵt: to construct the unconditional IRF,
average over histories as well as future shocks by using the algorithm detailed in Proposition
3.4.1 or Proposition 3.4.2.

Gonçalves et al. (2021) only allow for pre-determined nonlinear transforms of Xt. The core
contribution of this paper is allowing G1,21, . . . , Gp,21 to be estimated in a nonparametric way.
I focus on series estimation in order to build on the extensive theory available in the setting of
dependent data (Chen, 2013, Chen and Christensen, 2015). This further adds to the framework
of Gonçalves et al. (2021), as their regularity assumptions are stated only as preconditions for a
uniform LLN to hold and are not easy to interpret.

Remark 3.3.1. (Alternative Estimation Approaches). One does not need to limit estimation
of the nonlinear functional parameters G1,21, . . . , Gp,21 to series-type estimators. The literature
on nonparametric regression is mature, and thus kernel (Tsybakov, 2009), nearest-neighbor (Li
and Racine, 2009), partitioning (Cattaneo et al., 2020) and deep neural network (Farrell et al.,
2021) estimators are all potentially valid alternatives. For example, Huang et al. (2014) use kernel
regression to perform density estimation and regression under physical dependence. However,
thanks to both availability of uniform inference results (see also Belloni et al. 2015b) and ease of
implementation, series methods stand out as a choice for semi-nonparametric time series estimation
and nonlinear impulse response computation.

In the reminder of this section, I first introduce the semi-nonparametric series estimation strat-
egy in detail. Then, I outline the core assumptions of the sieve setup. Special focus is put on the
dependence structure of the data: rather than directly assuming β-mixing as in Chen and Chris-
tensen (2015), I shall consider physical dependence assumptions (Wu, 2005). to provide transparent
conditions on the model itself that, if satisfied, ensure consistency. I prove that the proposed two-
step semi-nonparametric procedure is uniformly consistent under physical dependence assumptions.
These assumptions can be imposed directly on the model, and, as such, may be empirically checked,
if necessary. The uniform asymptotic guarantees are first stated for the infeasible estimator involv-
ing true innovations ϵ1t and later extended to encompass feasible estimator Π̂2.

3.3.1 Semi-nonparametric Series Estimation

Starting from (3.8), one can introduce the ith-row coefficient matrices

G21
i = [G1,21 · · · Gp,21]i ,

A22
i = [A1,22 · · · Ap,22]i ,
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and B21
0i accordingly. Consider now the regression problem for each individual component of Yt,

Yit = G21
i Xt:t−p +A22

i Yt−1:t−p +B21
0i ϵ1t + u2it,

where Xt:t−p := (Xt, . . . , Xt−p)′ and i = 1, . . . , dY . For simplicity of notation, I suppress intercept
η2i, but this is without loss of generality. Since G21

i consists of 1 + p functional coefficients and A22
i

can be segmented into p row vectors of length dY , it is possible to rewrite the above as

Yit =
p∑

j=0
g21

ij (Xt−j) +
p∑

j=1
A22

ij Yt−j +B21
0i ϵ1t + u2it. (3.9)

I will use π2,i := [G21
i A22

i B21
0i ]′ to identify the vector of coefficients in the equation for the ith

component of Yt. From (3.9), Π′
2 can be decomposed in dY rows of coefficients, i.e.

Y1t

...
YdY t

 =


π2,1

...
π2,dY

W2t + u2t

and one can treat each equation separately.
A semi-nonparametric series estimator for (3.9) is built on the idea that, if functions g21

ij belong
to an appropriate functional space, one can construct a growing collection of sets of basis functions
– called a sieve – which, linearly combined, progressively approximate g21

ij . That is, one can reduce
the infinite dimensional problem of estimating the functional coefficients in π2,i to a linear regression
problem. Although (3.9) features a sum of possibly nonlinear functions in {Xt−j}pj=0, as well as
linear functions of {Yt−j}pj=1 and ϵ1t, constructing a sieve is straightforward.8

Assume that g21
ij ∈ Λ, where Λ is a sufficiently regular function class to be specified in the

following, and let BΛ be a sieve for Λ. Let b1κ, . . . , bκκ be the collection of κ ≥ 1 sieve basis
functions from BΛ and define

bκ(x) := (b1κ(x), . . . , bκκ(x))′ ,

Bκ := (bκ(X1:1−p), . . . , bκ(Xn:n−p))′ .

The sieve space for π2,i is B1+p
Λ × R1+pdY , where here R identifies the space of linear functions.

Since the nonparametric components of Π2 are linearly separable in the lag dimension, I take B1+p
Λ

to be a direct product of sieve spaces.9 Importantly, the same sieve can be used for all components
of Yt, as I assume the specification of the model does not change across i.

Let bπ,1K , . . . , bπ,KK be the sieve basis in B1+p
Λ ×R1+pdY which, for κ ≥ 1 and K = pκ+(1+pdY ),

is given by

bπ,1K(W2t) = b1κ(Xt),

8See Chen (2007) for a comprehensive exposition of sieve estimation. Chen and Shen (1998) and Chen (2013)
also provide additional examples of partially linear semi-nonparametric models under dependence.

9It is not necessary to consider the more general case of tensor products of 1D sieve functions, as it would be
the case for a general (1 + dY )-dimensional function G21

i (Xt, Xt−1, . . . , Xt−p). As previously discussed, the additive
structure avoids the curse of dimensionality which in nonlinear time series modeling if often a primary concern when
working with moderate sample sizes (Fan and Yao, 2003).
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...

bπ,(pκ)K(W2t) = bκκ(Xt−p),

bπ,(pκ+1)K(W2t) = Yt−1,1,

...

bπ,(K−1)K(W2t) = Yt−p,dY
,

bπ,KK(W2t) = ϵ1t,

where κ fixes the size of the nonparametric component of the sieve. Note that K, the overall size
of the sieve, grows linearly in κ, which itself controls the effective dimension of the nonparametric
component of the sieve, bπ,1κ, . . . , bπ,κκ. In all theoretical results, I will focus on the growth rate of
K rather than κ, as asymptotically they differ at most by a constant multiplicative factor.

The regression equation for π2,i is

Yi = π′
2,iW2 + u2i,

where Yi = (Yi1, . . . , Yin)′ and u2i = (u2i1, . . . , u2in)′. The estimation target is the conditional
expectation π2,i(w) = E[Yit |W2t = w] under the assumption E[u2it |W2t] = 0. By introducing

bK
π (w) := (bπ,1K(w), . . . , bπ,KK(w))′ ,

Bπ :=
(
bK

π (W21), . . . , bK
π (W2n)

)′
,

the infeasible least squares series estimator π̂∗
2,i(w) is given by

π̂∗
2,i(w) = bK

π (w)′(B′
πBπ)−1B′

KYi.

Similarly, consider the feasible series regression matrices

bK
π (w) := (bπ,1K(w), . . . , bπ,KK(w))′ ,

B̂π :=
(
bK

π (Ŵ21), . . . , bK
π (Ŵ2n)

)′
.

Thus, the feasible least squares series estimator is

π̂2,i(w) = bK
π (w)′(B̂′

πB̂π)−1B̂′
KYi.

Given that the semi-nonparametric estimation problem is the same across i, to further stream-
line notation, where it does not lead to confusion I will let π2 be a generic coefficient vector belonging
to {π2,i}pi=1, as well as define π̂2, Y and u2 accordingly.

Remark 3.3.2. (Constrained Sieve Estimation). The idea of constrained estimation was only
briefly touched upon in Remark 3.2.1. In fully parametric nonlinear models, constraints are often
imposed out of necessity or simplicity. If, say, G1,21 is constituted only of the negative-censoring
map, it is unclear why G2,21 would be constituted instead of quadratic or cubic functions, for
example. That is, specific parametric assumptions can be either unreasonable or hard to justify in
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practice.10 Yet, constrained semi-nonparametric estimation might be desirable at times.
If the shape of the regression function is to be constrained to ensure e.g. non-negativity,

monotonicity or convexity, Chen (2007) gives examples of shape-preserving sieves, like cardinal
B-spline wavelets. Constraints on a generic sieve can also be imposed at estimation time. For
example, for simplicity suppose dY = 1 and p = 2, and that one wants to impose G1,21 = G2,21.
The constrained sieve estimator then solves

min
β

n∑
t=p+1

(
Yt − β′bK

π (W2t)
)2

subject to
[
Iκ,−Iκ, 0κ×(1+pdY )

]
β = 0.

Analysis of restricted or constrained estimators, however, is still a challenging problem in non-
parametric theory, c.f. Horowitz and Lee (2017), Freyberger and Reeves (2018), Chetverikov et al.
(2018). Misspecification in particular is complex to address. Accordingly, I will not be imposing any
specific restrictions on the nonlinear functions in Π2 outside the ones necessary to derive uniform
asymptotic theory.

Spline Sieve. The B-spline sieve BSpl(κ, [0, 1]dY , r) of degree r ≥ 1 over [0, 1]dY can be con-
structed using the Cox-de Boor recursion formula. Alternatively, an equivalent way of constructing
the spline sieve is as follows. For simplicity, let dY = 1 and let 0 < m1 < . . . < mκ−r−1 < 1 be a
set of knots. Then

bκ
spline(x) :=

(
1, x, x2, . . . , xr,max(x−m1, 0)r, . . . ,max(x−mκ−r−1, 0)r

)′
.

The resulting spline sieve is piece-wise polynomial of degree r. Moreover, notice that in practice the
spline sieve already contains a linear and constant term, so care must be taken to avoid collinearity
(for example, by not including an additional intercept and linear term in Xt in the series regression).

3.3.2 Distributional and Sieve Assumptions

To develop the asymptotic uniform consistency theory, I rely on the general theoretical framework
established by Chen and Christensen (2015). Basic distributional and sieve assumptions can be
carried over from their setup mostly unchanged.

Assumption 4. (i) {ϵt}t∈Z are such that ϵt i.i.d.∼ (0,Σ), (ii) {ϵ1t}t∈Z and {ϵ2t}t∈Z are mutually
independent, (iii) ϵt ∈ E for all t ∈ Z where E ⊂ RdY is compact, convex and has nonempty
interior.

Assumption 5. (i) {Zt}t∈Z is a strictly stationary and ergodic time series, (ii) Xt ∈ X for all
t ∈ Z where X ⊂ R is compact, convex and has nonempty interior, (iii) Yt ∈ Y for all t ∈ Z where
Y ⊂ RdY is compact, convex and has nonempty interior.

Assumptions 4(i)-(ii) are a repetition of Assumption 1. As W2t depends only on Xt:t−p, Yt−1:t−p,
and ϵ1t, Assumption 1 also implies that entries of u2t are independent of W2t, so that E[u2it |W2t] =
0.11 Assumption 5(i) also follows from Assumption 2. However, thanks to the results derived in

10For more precise examples and a more in-depth discussion, see Section 2.1 of Chen (2013).
11Moreover, for any given i, the sequence {u2it}t∈Z is i.i.d. over time index t.
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Section 3.3.3, below I will impose more primitive conditions on the model for Zt that allow to
recover 5(i). Assumption 4(iii) and Assumptions 5(ii)-(iii) imply that Xt, Yt, as well as ϵt are
bounded random variables. In (semi-)nonparametric estimation, imposing that Xt be bounded
almost surely is a standard assumption. Since lags of Yt and innovations ϵt contribute linearly to
all components of Zt, it follows that they too must be bounded. Unbounded regressors are more
complex to handle when working in the nonparametric setting. Generalization from bounded to
unbounded domains under dependence has already been discussed by e.g. Fan and Yao (2003).
Chen and Christensen (2015) also allow for an expanding support by using weighted sieves. I leave
this extension for future work.

It is, however, important to highlight that bounded support assumptions are relatively uncom-
mon in time series econometrics. This is clear when considering the extensive literature available
on linear models such as, e.g., state-space, VARIMA and dynamic factor models (Hamilton, 1994a,
Lütkepohl, 2005, Kilian and Lütkepohl, 2017b, Stock and Watson, 2016). Avoiding Assumptions
4(iii) and 5(iii) can possibly be achieved with a change in the model’s equations – so that, for
example, lags of Yt only effect Xt either via bounded functions or not at all – so I do not discuss
this approach here. In practice, Assumptions 4(ii) and 5(ii)-(iii) are not excessively restrictive, as
most credibly stationary economic series often have reasonable implicit (e.g. inflation) or explicit
bounds (e.g. employment rate).12

Let Ft = σ(. . . , ϵ1t−1, u2t−1, Yt−1, ϵ1t, u2t, Yt) be the natural filtration defined up to time t.
Thanks to Assumptions 4 and 5 the following moment requirements hold trivially.

Assumption 6. (i) E[u2
2it|Ft−1] is uniformly bounded for all t ∈ Z almost surely, (ii) E[|u2it|2+δ] <

∞ for some δ > 0, (iii) E[|Yit|2+δ] is uniformly bounded for all t ∈ Z almost surely, and (iv)
E[Y 2

it |Ft−1] <∞ for any δ > 0.

Now let W2 ⊂ Rd be the domain of W2t. By assumption, W2 is compact and convex and is
given by the direct product

W2 = X 1+p × Y p × E1,

where E1 is the domain of structural innovations ϵ1t i.e. E ≡ E1 × E2.

Assumption 7. Define ζK,n := supw∈W2∥b
K
π (w)∥ and

λK,n := [λmin(E[ bK
π (W2t)bK

π (W2t)′ ])]−1/2.

It holds:
(i) There exist ω1, ω2 ≥ 0 s.t. supw∈W2∥∇b

K
π (w)∥ ≲ nω1Kω2 .

(ii) There exist ω1 ≥ 0, ω2 > 0 s.t. ζK,n ≲ nω1Kω2 .

(iii) λmin(E[ bK(W2t)bK(W2t)′ ]) > 0 for all K and n.

Assumption 7 provides mild regularity conditions on the families of sieves that can be used for
the series estimator. More generally, letting W2 be compact and rectangular makes Assumption 7

12This is not true, of course, when modeling extreme events like natural disasters, wars or financial crises. To
study these types of series, however, researchers often apply specialized models. Thinking in this direction, a future
development could be to extend the framework presented here to allow for innovations with unbounded support.
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hold for commonly used basis functions (Chen and Christensen, 2015).13 In particular, Assumption
7(i) holds with ω1 = 0 since the domain is fixed over the sample size.

In the proofs, it is useful to consider the orthonormalized sieve basis. Let

b̃K
π (w) := E

[
bK

π (W2t)bK
π (W2t)′

]−1/2
bK

π (w),

B̃π :=
(
b̃K

π (W21), . . . , b̃K
π (W2n)

)′

be the orthonormalized vector of basis functions and the orthonormalized regression matrix, re-
spectively.

Assumption 8. It holds that ∥(B̃′
πB̃π/n)− IK∥ = oP (1).

Assumption 8 is the key assumption imposed by Chen and Christensen (2015) to derive uniform
converges rates under dependence. They prove that if {W2t}t∈Z is strictly stationary and β-mixing –
with either geometric or algebraic decay, depending on the sieve family of interest – then Assumption
8 holds. Let (Ω,Q,P) be the underlying probability space and define

β(A,B) := 1
2 sup

∑
(i,j)∈I×J

|P(Ai ∩Bi)− P(Ai)P(Bi)|

where A,B are two σ-algebras, {Ai}i∈I ⊂ A, {Bj}j∈J ⊂ B and the supremum is taken over all
finite partitions of Ω. The h-th β-mixing coefficient of process {W2t}t∈Z is defined as

β(h) = sup
t
β (σ(. . . ,W2t−1,W2t), , σ(W2t+h,W2t+h+1, . . .)) ,

and W2t is said to be geometric or exponential β-mixing if β(h) ≤ γ1 exp(−γ2h) for some γ1 > 0 and
γ2 > 0. The main issue with mixing assumptions is that they are, in general, hard to compute and
evaluate. Therefore, especially in nonlinear systems, assuming that β(h) decays exponentially over
h imposes very high-level assumptions on the model. There are, however, many setups in which it
is known that β-mixing holds under primitive assumptions (see Chen (2013) for examples).

In the next subsection, I will argue that using a different concept of dependence - one rooted
in a physical understanding of the underlying stochastic process - leads to imposing transparent
assumptions on the model’s structure.

3.3.3 Physical Dependence Conditions

Consider now a non-structural model of the form

Zt = G(Zt−1, ϵt). (3.10)

This is a generalization of semi-reduced model (3.3) where linear and nonlinear components are
absorbed into one functional term and B0 is the identity matrix.14 Indeed, note that models of
the form Zt = G(Zt−1, . . . , Zt−p, ϵt) can be rewritten as (3.10) using a companion formulation. If
ϵt is stochastic, (3.10) defines a causal nonlinear stochastic process. More generally, it defines a

13See Chen (2007), Belloni et al. (2015b) for additional discussion and examples of sieve families.
14In this specific subsection, shock identification does not play a role and, as such, one can safely ignore B0.
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nonlinear difference equation and an associated dynamical system driven by ϵt. Throughout this
subsection, I shall assume that Zt ∈ Z ⊆ RdZ as well as ϵt ∈ E ⊆ RdZ .

Relying on the framework of Pötscher and Prucha (1997), I now introduce explicit conditions
that allow to control dependence in nonlinear models by using the toolbox of physical dependence
measures developed by Wu (2005, 2011). The aim is to use a dynamical system perspective to
address the question of imposing meaningful assumptions on nonlinear dynamic models. This
makes it possible to give more primitive conditions under which one can actually estimate (3.8) in
a semi-nonparametric way.

Stability. An important concept for dynamical system theory is that of stability. Stability turns
out to play a key role in constructing valid asymptotic theory, as it is well understood in linear
models. It is also fundamental in developing the approximation theory of nonlinear stochastic
systems.

Example 3.3.1. (Linear System). As a motivating example, first consider the linear system

Zt = BZt−1 + ϵt

where we may assume that {ϵt}t∈Z, ϵt ∈ RdZ , is a sequence of i.i.d. innovations.15 It is well-known
that this system is stable if and only if the largest eigenvalue of B is strictly less than one in
absolute value (Lütkepohl, 2005). For a higher order linear system, Zt = B(L)Zt−1 + ϵt where
B(L) = B1 +B2L+ . . .+BpL

p−1, stability holds if and only if |λmax(B)| < 1 where

B :=



B1 B2 · · · Bp

IdZ
0 · · · 0

0 IdZ
· · · 0

...
... · · ·

...
0 · · · IdZ

0


is the companion matrix.

Extending the notion of stability from linear to nonlinear systems requires some care. Pötscher
and Prucha (1997) derived generic conditions allowing to formally extend stability to nonlinear
models by first analyzing contractive systems.

Definition 3.3.1 (Contractive System). Let Zt ∈ Z ⊆ RdZ , ϵt ∈ E ⊆ RdZ , where {Zt}t∈Z is
generated according to

Zt = G(Zt−1, ϵt).

The system is contractive if for all (z, z′) ∈ Z × Z and (e, e′) ∈ E × E

∥G(z, ϵ)−G(z′, ϵ′)∥ ≤ CZ∥z − z′∥+ Cϵ∥e− e′∥

holds with Lipschitz constants 0 ≤ CZ < 1 and 0 ≤ Cϵ <∞.
15One could alternatively think of the case of a deterministic input, setting ϵt ∼ Pt(at) where Pt(at) is a Dirac

density on the deterministic sequence {at}t∈Z.



3.3. ESTIMATION 135

Sufficient conditions to establish contractivity are

sup
{∥∥∥∥ stackdZ

i=1

[
∂G

∂Z
(zi, ei)

]
i

∥∥∥∥ ∣∣∣∣ zi ∈ Z, ei ∈ E
}
< 1 (3.11)

and ∥∥∥∥∂G∂ϵ
∥∥∥∥ <∞, (3.12)

where the stacking operator stackdZ
i=1[ · ]i progressively stacks the rows, indexed by i, of its argument

(which can be changing with i) into a matrix. Values (zi, ei) ∈ Z × E change with index i as the
above condition is derived using the mean value theorem, therefore it is necessary to consider a
different set of values for each component of Zt.

It is easy to see, as Pötscher and Prucha (1997) point out, that contractivity is often a too
strong condition to be imposed. Indeed, even in the simple case of a scalar AR(2) model Zt =
b1Zt−1 + b2Zt−2 + ϵt, regardless of the values of b1, b2 ∈ R contractivity is violated. This is due
to the fact that in a linear AR(2) model studying contractivity reduces to checking ∥B∥ < 1
instead of |λmax(B)| < 1, and the former is a stronger condition than the latter.16 One can
weaken contractivity – which must hold for G as a map from Zt−1 to Zt – to the idea of eventual
contractivity. That is, intuitively, one can impose conditions on the dependence of Zt+h on Zt for
h > 1 sufficiently large. To do this formally, I first introduce the definition of system map iterates.

Definition 3.3.2 (System Map Iterates). Let Zt ∈ Z ⊆ RdZ , ϵt ∈ E ⊆ RdZ where {Zt}t∈Z is
generated from a sequence {ϵt}t∈Z according to

Zt = G(Zt−1, ϵt).

The h-order system map iterate is defined to be

G(h)(Zt, ϵt+1, ϵt+2, . . . , ϵt+h) := G(G(· · ·G(Zt, ϵt+1) · · · , ϵt+h−1), ϵt+h)

= G(·, ϵt+h) ◦G(·, ϵt+h−1) ◦ · · · ◦G(Zt, ϵt+1),

where ◦ signifies function composition and G(0)(Zt) = Zt.

To shorten notation, in place of G(h)(Zt, ϵt+1, ϵt+2, . . . , ϵt+h) I shall use G(h)(Zt, ϵt+1:t+h). Ad-
ditionally, for 1 ≤ j ≤ h, the partial derivative

∂G(h∗)

∂ϵj

for some fixed h∗ is to be intended with respect to ϵt+j , the j-th entry of the input sequence. This
derivative does not dependent on the time index since by assumption G is time-invariant and so is
G(h).

Taking again the linear autoregressive model as an example,

Zt+h = G(h)(Zt, ϵt+1:t+h) = Bh
1Zt +

h−1∑
i=0

Bi
1ϵt+h−i

16See Pötscher and Prucha (1997), pp.68-69.
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since G(z, ϵ) = B1z + ϵ. If B1 determines a stable system, then ∥Bh
1 ∥ → 0 as h → ∞ since Gh

converges to zero, and therefore ∥Bh
1 ∥ ≤ CZ < 1 for h sufficiently large. It is thus possible to use

system map iterates to define stability for higher-order nonlinear systems.

Definition 3.3.3 (Stable System). Let Zt ∈ Z ⊆ RdZ , ϵt ∈ E ⊆ RdZ , where {Zt}t∈Z is generated
according to the system

Zt = G(Zt−1, ϵt).

The system is stable if there exists h∗ ≥ 1 such that for all (z, z′) ∈ Z × Z and (e1, e2, . . . eh∗ ,

e′
1, e

′
2, . . . , e

′
h∗) ∈×2h∗

i=1 E

∥G(h∗)(z, e1:h∗)−G(h∗)(z′, e′
1:h∗)∥ ≤ CZ∥z − z′∥+ Cϵ∥e1:h∗ − e′

1:h∗∥

holds with Lipschitz constants 0 ≤ CZ < 1 and 0 ≤ Cϵ <∞.

It is important to remember that this definition encompasses systems with an arbitrary finite
autoregressive structure, i.e., Zt = G(Zt−p+1, . . . , Zt−1, ϵt) for p ≥ 1, thanks to the companion
formulation of the process. An explicit stability condition, similar to that discussed above for
contractivity, can be derived by means of the mean value theorem. Indeed, for a system to be
stable it is sufficient that, at iterate h∗,

sup
{∥∥∥∥∥ stackdZ

i=1

[
∂G(h∗)

∂Z
(zi, ei

1:h∗)
]

i

∥∥∥∥∥
∣∣∣∣ zi ∈ Z, ei

1:h∗ ∈
h∗

×
i=1
E
}
< 1 (3.13)

and
sup

{∥∥∥∥∥ ∂G(h∗)

∂ϵj
(z, e1:h∗)

∥∥∥∥∥
∣∣∣∣ z ∈ Z, e1:h∗ ∈

h∗

×
i=1
E
}
<∞, j = 1, . . . , h∗. (3.14)

Pötscher and Prucha (1997) have used conditions (3.11)-(3.12) and (3.13)-(3.14) as basis for
uniform laws of large numbers and central limit theorems for Lr-approximable and near epoch
dependent processes.

Physical Dependence. Wu (2005) first proposed alternatives to mixing concepts by proposing
dependence measures rooted in a dynamical system view of a stochastic process. Much work has
been done to use such measures to derive approximation results and estimator properties, see for
example Wu et al. (2010), Wu (2011), Chen et al. (2016), and references within.

Definition 3.3.4. If for all t ∈ Z, Zt has finite rth moment, where r ≥ 1, the functional physical
dependence measure ∆r is defined as

∆r(h) := sup
t

∥∥∥Zt+h −G(h)(Z ′
t, ϵt+1:t+h)

∥∥∥
Lr

where ∥ · ∥Lr = (E[∥ · ∥rr])1/r, Z ′
t is due to F ′

t = (. . . , ϵ′t−1, ϵ
′
t) and {ϵ′t}t∈Z is an independent copy of

{ϵt}t∈Z.

Chen et al. (2016), among others, show how one may replace the geometric β-mixing assumption
with a physical dependence assumption.17 They show that the key sufficient condition is for ∆r(h)

17I adapt the definitions of Chen et al. (2016) to work with a system of the form Zt = G(Zt−1, ϵt).
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to decay sufficiently fast as h grows.

Definition 3.3.5 (Geometric Moment Contracting Process). {Zt}t∈Z is geometric moment con-
tracting (GMC) in Lr norm if there exists a1 > 0, a2 > 0 and τ ∈ (0, 1] such that

∆r(h) ≤ a1 exp(−a2 h
τ ).

GMC conditions can be considered more general than β-mixing, as they encompass well-known
counterexamples, e.g., the known counterexample provided by Zt = (Zt−1 + ϵt)/2 for ϵt i.i.d.
Bernoulli r.v.s (Chen et al., 2016). In the following proposition I prove that if contractivity or
stability conditions as defined by Pötscher and Prucha (1997) hold for G and {ϵt}t∈Z is an i.i.d.
sequence, then process {Zt}t∈Z is GMC under weak moment assumptions.

Proposition 3.3.6. Assume that {ϵt}t∈Z, ϵt ∈ E ⊆ RdZ are i.i.d. and {Zt}t∈Z is generated
according to

Zt = G(Zt−1, ϵt),

where Zt ∈ Z ⊆ RdZ and G is a measurable function.

(a) If contractivity conditions (3.11)-(3.12) hold, supt∈Z∥ϵt∥Lr <∞ for r ≥ 2 and ∥G(z, ϵ)∥ <∞
for some (z, ϵ) ∈ Z × E, then {Zt}t∈Z is GMC with

∆r(k) ≤ a exp(−γh)

where γ = − log(CZ) and a = 2∥Zt∥Lr <∞.

(b) If stability conditions (3.13)-(3.14) hold, supt∈Z∥ϵt∥Lr <∞ for r ≥ 2 and ∥∂G/∂Z∥ ≤MZ <

∞, then {Zt}t∈Z is GMC with
∆r(k) ≤ ā exp(−γh∗ h)

where γh∗ = − log(CZ)/h∗ and ā = 2∥Zt∥Lr max{Mh−1
Z , 1}/CZ <∞.

Proposition 3.3.6 is important in that it links the GMC property to transparent conditions on
the structure of the nonlinear model. It also immediately allows handling multivariate systems,
while previous work has focused on scalar systems (c.f. Wu (2011) and Chen et al. (2016)).

Finally, it is now possible to show that if {W2t}t∈Z satisfies physical dependence assumptions,
then Assumption 8 is fulfilled, c.f. Lemma 2.2 in Chen and Christensen (2015) for β-mixing
assumptions.

Lemma 3.3.7. If Assumption 7(iii) holds and {W2t}t∈Z is strictly stationary and GMC then
one may choose an integer sequence q = q(n) ≤ n/2 with (n/q)r+1qKρ∆r(q) = o(1) for ρ =
5/2− (r/2 + 2/r) + ω2 and r > 2 such that

∥(B̃′
πB̃π/n)− IK∥ = OP

ζK,nλK,n

√
q logK
n

 = oP (1)

provided ζK,nλK,n

√
(q logK)/n = o(1).
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It can be seen that Lemma 3.3.7 holds by setting
√
K(log(n))2/n = o(1) and choosing q(n) =

γ−1 log(Kρnr+1), where γ is the GMC factor introduced in Proposition 3.3.6. Therefore, the rate is
the same as the one derived by Chen and Christensen (2015) for exponentially β-mixing regressors.
As shown in Proposition 3.3.6, system contractivity and stability conditions both imply geometric
moment contractivity, meaning that in place of Assumption 8 one may require the following.

Assumption 9. For r > 2 it holds either:

(i) {Zt}t∈Z is GMC in Lr norm,

(ii) {Zt}t∈Z is generated according to Zt = Φ(Zt−1, . . . , Zt−p; ϵt) where supt∈Z∥ϵt∥Lr <∞ and Φ
is either contractive according to Definition 3.3.1 or stable according to Definition 3.3.3.

It is straightforward to prove that if GMC conditions are imposed on {Zt}t∈Z, this implies that
{W2t}t∈Z is also GMC.18 Therefore, Lemma 3.3.7 applies and Assumption 8 as well as Assumption
5(i) are verified.

3.3.4 Uniform Convergence and Consistency

Since the key asymptotic condition of Chen and Christensen (2015) is upheld under GMC assump-
tions, their uniform convergence bound on the approximation error of the series estimator can be
applied. In order to do so, one must also impose some regularity conditions on π2.

Without loss of generality, let X = [0, 1] and let ∥π2∥∞ := supw∈Y |π2(w)| be the sup-norm of
the conditional mean function π2(w).

Assumption 10. The unconditional density of Xt is uniformly bounded away from zero and
infinity over X .

Assumption 11. For all 1 ≤ i ≤ dY and 0 ≤ j ≤ p, the restriction of g21
ij to [0, 1] belongs to the

Hölder class Λs([0, 1]) of smoothness s ≥ 1.

Assumptions 10 and 11 are standard in the nonparametric regression literature. One only needs
to restrict the complexity of functions g21

ij since, for any i, the remainder of π2,i consists of linear
functions. More precisely, what is really needed is that the nonparametric components of the sieve
given by bπ,1K , . . . , bπ,KK are able to approximate g21

ij well enough.

Assumption 12. Sieve Bκ belongs to BSpl(κ, [0, 1]dY , r), the B-spline sieve of degree r over [0, 1]dY ,
or Wav(κ, [0, 1]dY , r), the wavelet sieve of regularity r over [0, 1]dY , with r > max{s, 1}.

In the remainder of the paper, I will consider the cubic spline sieve (r = 3), but theoretical
results are stated in the more general setting. Moreover, d will be the effective dimension of the
joint estimation domain for G21

i .

Theorem 3.3.8 (Chen and Christensen (2015)). Let Assumptions 4, 5, 6, 7, 9, 10, 11 and 12
hold. If

K ≍ (n/ log(n))d/(2s+d),

18A formal argument can be found in Appendix 3.A.
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then
∥π̂∗

2 − π2∥∞ = OP

(
(n/ log(n)−s/(2s+d)

)
provided that δ ≥ 2/s (in Assumption 6) and d < 2s.

In Theorem 3.3.8 the sup-norm consistency rate generally depends on the dimension d and
thus, in principle, the curse of dimensionality slows down convergence compared to parametric
estimation. Fortunately, under the current strctural model assumptions, the nonlinear functional
components in π2 are linearly separable in the lag dimension, and thus one may take d = 1 as
effective dimension. This also means that condition d < 2s is trivially satisfied.

Two-step Consistency. The following theorem ensures that the two-step estimation procedure
produces consistent estimates. Since for impulse response functions one needs to study the iteration
of the entire structural model, this results is stated in terms of the full coefficient matrices.

Theorem 3.3.9. Let {Zt}t∈Z be determined by structural model (3.1). Under Assumptions 1, 4, 5,
6, 7, 9, 10, 11 and 12, let Π̂1 and Π̂2 be the least squares and semi-nonparametric series estimators
for Π1 and Π2, respectively, based on the two-step procedure. Then,

∥Π̂1 −Π1∥∞ = OP (n−1/2 )

and
∥Π̂2 −Π2∥∞ ≤ OP

(
ζK,nλK,n

K√
n

)
+ ∥Π̂∗

2 −Π2∥∞,

where Π̂∗
2 is the infeasible series estimator involving ϵ1t.

Sup-norm bounds for ∥Π̂∗
2 − Π2∥∞ follow immediately from Lemma 2.3 and Lemma 2.4 in

Chen and Christensen (2015). In particular, choosing the optimal nonparametric rate K ≍
(n/ log(n))d/(2s+d) for the infeasible estimator would yield

∥Π̂∗
2 −Π2∥∞ = OP

(
(n/ log(n))−s/(2s+d)

)
as per Theorem 3.3.8. The condition for consistency in Theorem 3.3.9 reduces to

K3/2
√
n

= o(1),

since for B-spline and wavelet sieves λK,n ≲ 1 and ζK,n ≲
√
K. It simple to show that if for the

feasible estimator Π̂2 the same rate (n/ log(n))d/(2s+d) is chosen for K, the consistency condition
in the above display is fulfilled assuming s ≥ 1 and d = 1.19

Remark 3.3.3. (Hyperparameter Selection). An important practical question when applying any
series or kernel-type methods is the selection of hyperparameters. For the former, this entails the
choice of the sieve’s size K. Although theory provides only asymptotic rates, a number of methods
can be used to select K, such as cross-validation, generalized cross-validation and Mallow’s criterion

19The rate for K may be optimized by balancing the uniform (infeasible) rate with the error due to residuals.
Since this paper is not concerned with finding the optimal rate, I do not perform this exercise here.
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(Li and Racine, 2009). In the case of piece-wise splines, once size is selected, knots can be chosen
to be the K uniform quantiles of the data. This ensures knots are not located in regions of the
domain with very few observations. In simulations and applications, for simplicity, I select sieve sizes
manually and locate knots approximately following empirical quantiles. In unreported numerical
experiments, I check that results are robust to moderate changes in the number and approximate
locations of spline knots.

3.4 Impulse Response Analysis

Once the model’s linear, functional and structural coefficient are consistently estimated, compu-
tation of nonlinear impulse responses must be addressed. As discussed in Section 3.2, nonlinear
IRFs are generally hard to lay hands on, since the functional MA(∞) form of the process is highly
non-trivial. In this section, I will provide an explicit, iterative algorithm to compute responses that
is numerically straightforward and does not require the construction of moving average functional
coefficients. Moreover, since to derive uniform bounds it is assumed that the data has compact
support, I will introduce a novel yet familiar IRF definition, called the relaxed impulse response
function, which is compatible with boundedness. Lastly, I prove that semi-nonparametric IRF
estimates are consistent with respect to their population counterparts.

3.4.1 Computation

Recall from equation (3.7) in Section 3.2.2 that impulse responses involve two moving average
lag polynomials, Θ(L) for the linear model component and Γ(L) for the nonlinear component,
respectively. As a first step, one can derive a semi-explicit recursive algorithm for computing
IRFh(δ) in a manner that does not involve simulations of the innovations process.

Proposition 3.4.1 (Gonçalves et al. (2021), Proposition 3.1). Under Assumptions 1, 2 and 3, for
any h = 0, 1, . . . ,H, let

Vj(δ) := E[ΓjXt+j(δ)]− E[ΓjXt+j ].

To compute

IRFh(δ) = Θh,·1δ +
h∑

j=0
Vj(δ),

the following steps can be used:

(i) For j = 0, set Xt(δ) = Xt + δ and V0(δ) = E[Γ0Xt(δ)]− E[Γ0Xt].

(ii) For j = 1, . . . , h, let

Xt+j(δ) = Xt+j + Θj,11δ +
j∑

k=1
(Γk,11Xt+j−k(δ)− Γj,11Xt+j−k)

= γj(Xt+j:t; δ),

where γj are implicitly defined and depend on Θ(L) and Γ(L).
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(iii) For j = 1, . . . , h, compute

Vj(δ) = E[Γjγj(Xt+j:t; δ)]− E[ΓjXt+j ].

The proof of Proposition 3.4.1 is identical to that in Gonçalves et al. (2021), with the only
variation being that in the current setup it is not possible to collect the nonlinear function across
Xt+j−k(δ) and Xt+j−k. Computation of Xt+j(δ) in step (ii) involves recursive evaluations of non-
linear functions, which is why the algorithm is semi-explicit. For each horizon h, one needs to
evaluate h+ 1 iterations of Xt(δ). Importantly, however, this approach dispenses from the need to
simulate innovations {ϵt+j}h−1

j=1 as the joint distribution of {Xt+h−1, Xt+j−1, . . . , Xt} already con-
tains all relevant information. Gonçalves et al. (2021) naturally argue that the algorithm outlined
in Proposition 3.4.1 is significantly more efficient than schemes involving Monte Carlo simulations
like e.g. the one used by Kilian and Vigfusson (2011).

However, {Γj}hj=1 are combinations of real and functional matrices and closed-form derivation
is numerically impractical. Note that, by the definition of IRFs, the following explicit iterative
algorithm is also valid.

Proposition 3.4.2. In the same setup of Proposition 3.4.1, to compute IRFh(δ) the following steps
can be used:

(i ′) For j = 0, let Xt(δ) = Xt + δ and

IRF0(δ) =
[

δ

B21
0 δ

]
+ E

[
0

G21,0Xt(δ)

]
− E

[
0

G21,0Xt

]
.

(ii ′) For j = 1, . . . , h, let

Xt+j(δ) = µ1 +A12(L)Yt+j−1(δ) +A11(L)Xt+j−1(δ) + ϵ1t+j ,

Yt+j(δ) = µ2 +A22(L)Yt+j−1(δ) +H21(L)Xt+j(δ) +B21
0 ϵ1t+j + u2t+j ,

where H21(L) := A21(L)L+G21(L) and u2t+j := B22
0 ϵ2t+j. Setting Zt+j(δ) = (Xt(δ), Yt(δ))′

it holds
IRFh(δ) = E[Zt+j(δ)]− E[Zt+j ].

Proposition 3.4.2 follows directly from the definition of the unconditional impulse response
(3.6) combined with explicit iteration of the semi-reduced form (3.2) and sidesteps the MA(∞)
formulation in (3.7). Step (i′) is trivial in nature. Step (ii′) may not seem useful when compared
to (ii), since, in practice, innovations ϵ1t and u2t are not available. However, let

µ̂, Â11(L), Â12(L), Â21(L), Ĥ11(L), B̂21
0

be estimates of the model’s coefficients derived, for example, from series estimator Π̂1 and Π̂2. In
sample, one can compute residuals ϵ̂1t and û2t, and by definition it holds

Xt = µ̂1 + Â12(L)Yt−1 + Â11(L)Xt−1 + ϵ̂1t,

Yt = µ̂2 + Â22(L)Yt−1 + Ĥ21(L)Xt + B̂21
0 ϵ̂1t + û2t.
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This means that one can readily construct the shocked sequence recursively as

X̂t+j(δ) = µ̂1 + Â12(L)Ŷt+j−1(δ) + Â11(L)X̂t+j−1(δ) + ϵ̂1t+j ,

Ŷt+j(δ) = µ̂2 + Â22(L)Ŷt+j−1(δ) + Ĥ21(L)X̂t+j(δ) + B̂21
0 ϵ̂1t+j + û2t+j ,

for j = 1, . . . , h where X̂t(δ) = Xt + δ, X̂t−s = Xt−s for all s ≥ 1 and similarly for Ŷt(δ). To
evaluate a structural IRF, over a sample of size n one can compute

ÎRFh(δ) = 1
n− j

n−j∑
t=1

[
Ŷt+j(δ)− Yt

]
,

which is still considerably less demanding than Monte Carlo simulations. Additionally, the advan-
tage in implementing steps (i′)-(ii′) over the procedure in Proposition 3.4.1 is that, when Ĥ21(L) is a
semi-nonparametric estimate, iterating model equations is numerically much more straightforward
than handling functional MA matrices {Γ̂j}hj=1.

3.4.2 Nonlinear Responses with Relaxed Shocks

Following Proposition 3.4.1, the sample impulse response would be

ÎRFh(δ) := Θ̂h,·1δ +
h∑

j=0
V̄j(δ), (3.15)

where

V̄j(δ) := 1
n− j

n−j∑
t=1

[
Γ̂j γ̂j(Xt+j:t; δ)− Γ̂jXt+j

]
and Θ̂, Γ̂ and γ̂j are plug-in estimates of the respective quantities based on Π̂1 and Π̂2. However,
under Assumptions 4 and 5, the construction of impulse response (3.15) is improper. This can be
immediately seen by noticing that, at impact,

Xt(δ) = γj(Xt; δ) = Xt + δ,

meaning that P(Xt(δ) ̸∈ X ) > 0 since there is a translation of size δ in the support of Xt. The
problem is rooted in the fact that the standard definition of IRF involves a translation of the
distribution of time t structural innovations, which is incompatible with the assumptions imposed
in Section 3.3 to derive semi-nonparametric consistency.

There are multiple ways to address this issue. One option, which would require substantial
technical work, is to extend Theorem 3.3.9 to encompass regressors with unbounded or expanding
domains. A potential direction could be coupling the weighted sieves of Chen and Christensen
(2015) with appropriately defined shocks. Instead, I propose to take a more direct approach by
changing the type of structural shock one studies in a way consistent with bounded domains for all
variables.

Definition 3.4.3. A mean-shift structural shock ϵ1t(δ) is a transformation of ϵ1t such that

P(ϵ1t(δ) ∈ E1) = 1 and E[ϵ1t(δ)] = δ.
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Figure 3.1: Example of symmetric shock relaxation. Unperturbed (left, blue) versus shocked (right,
orange) densities of innovations ϵ1t. The shock relaxation function (right, gray) and δ together
determine the form of the relaxed shock used to compute the IRF.

A mean-shift shock is such that the distribution of time t innovations is shifted to have mean
δ, while retaining support E almost surely. This definition is natural in that it makes evaluating
the effect of the MA(∞) component of the unconditional IRF straightforward. With a mean-shift
shock, at impact it holds

Xt(δ) = Xt + ϵ1t(δ)− ϵ1t,

yet ϵ1t(δ)− ϵ1t is not known unless the transformation for the mean-shock is itself known. Unfor-
tunately, the assumption that the mean of ϵ1t(δ) is exactly equal to δ requires that the distribution
of ϵ1t be known to properly choose a mean-shift transform. If instead one is willing to assume
only that E[ϵ1t(δ)] ≈ δ, it is possible to sidestep this requirement by introducing a shock relaxation
function.

Definition 3.4.4 (Shock Relaxation Function). A shock relaxation function is a map ρ : E1 → [0, 1]
such that ρ(z) = 0 for all z ∈ R \ E1, ρ(z) ≥ 0 for all z ∈ E1 and there exists z0 ∈ E1 for which
ρ(z0) = 1.

In general, choosing a shock relaxation function without taking into account the shape of domain
E1 does not necessarily imply that the relaxed shocks will not push the structural variable out-of-
bounds. Therefore, I also introduce the notion of compatibility.

Definition 3.4.5 (Compatible Relaxation). Consider a shock δ ∈ R and let E1 = [a, b].

(i) If δ > 0, ρ is said to be right-compatible with δ if

ρ(z) ≤ b− z
|δ|

for all z ∈ E .

(ii) If δ < 0, ρ is said to be left-compatible with δ if

ρ(z) ≤ a+ z

|δ|
for all z ∈ E .

(iii) Given shock size |δ| > 0, ρ is said to be compatible if it is both right- and left-compatible.
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By setting
ϵ1t(δ) = ϵ1t + δρ(ϵ1t)

where ρ is compatible with δ, it follows that Xt(δ) = Xt + δρ(ϵ1t) and |E[ϵ1t(δ)]| = |δE[ρ(ϵ1t)]| ≤ |δ|
since E[ρ(ϵ1t)] ∈ [0, 1) by definition of ρ. If ρ is a bump function, a relaxed shock is a structural
shock that has been mitigated proportionally to the density of innovations at the edges of E1 and the
squareness of ρ. For better intuition, Figure 3.1 provides a graphical rendition of shock relaxation
of a symmetric error distribution with a bump function.

Remark 3.4.1. The definition of compatible relaxation function is static, as it considers only the
impact effect of a shock. Nonetheless, the assumption that Xt ∈ X for all t must also hold for
Xt(δ), the shocked structural variable. In theory, given δ, one can always either expand X or
strengthen ρ so that compatibility is enforced at all horizons 1 ≤ h ≤ H. For simulations, where
one has access to the data generating process, the choice of domains and relaxation functions can be
done transparently. In practice, some care is required. When working with empirical data, unless
one is willing to assume Xt is wholly exogenous – as in Section 3.6.1 with monetary policy shocks
– or strictly autoregressive, some scenarios are more amenable to analysis with the framework
presented here than other. In Section 3.6.2, following Istrefi and Mouabbi (2018), I will let Xt be a
non-negative uncertainty measure, so that negative shocks are harder to study without producing
sequences that contain negative uncertainty values. Thus, I will focus on positive, contractionary
shocks.

For a given Xt, transformation Xt + δρ(ϵ1t) is not directly applicable since ϵ1t is not observed.
In practice, therefore, I will consider

X̂t(δ) := Xt + δρ(ϵ̂1t).

For simplicity of notation, let δ̃t := δρ(ϵ1t). Similarly to Step (ii) of Proposition 3.4.1, given a path
Xt+j:t one finds

Xt+j(δ̃t) = Xt+j + Θj,11δ̃t +
j∑

k=1
(Γk,11Xt+j−k(δ̃t)− Γk,11Xt+j−k)

= γj(Xt+j:t; δ̃t),

The relaxed-shock impulse response is thus given by

ĨRFh(δ) := E[Zt+j(δ̃t)− Zt+j ] = Θh,·1δ E [ρ(ϵ1t)] +
j∑

k=1
E
[
ΓkXt+j−k(δ̃t)− ΓkXt+j−k

]
.

In what follows, I show that by replacing δ̃t with ̂̃δt = δρ(ϵ̂1t) it is possible to consistently estimate
unconditional expectations involving Xt+j(δ̃t) as well as Xt+j , and thus ĨRFh(δ), by averaging over
sample realizations.
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3.4.3 Relaxed Impulse Response Consistency

For a given δ ∈ R and compatible shock relaxation function ρ, vector Vj(δ) is the nonlinear com-
ponent of impulse responses. One can focus on a specific variable’s response by introducing, for
1 ≤ ℓ ≤ d,

Vj,ℓ(δ) := 1
n− j

n−j∑
t=1

[
Γj,ℓγj(Xt+j:t; δ̃t)− Γj,ℓXt+j

]
,

where Vj,ℓ(δ) is the horizon j nonlinear effect on the ℓth variable and Γj,ℓ is the ℓth component of
functional vector Γj . For the sake of notation I also define

vj,ℓ(Xt+j:t; δ̃t) := Γj,ℓγj(Xt+j:t; δ̃t)− Γj,ℓXt+j .

Let v̂j,ℓ(Xt+j:t;
̂̃
δt) be its sample equivalent, so that

v̂j,ℓ(Xt+j:t;
̂̃
δt) = Γ̂j,ℓγ̂j(Xt+j:t;

̂̃
δt)− Γ̂j,ℓXt+j ,

V̂j,ℓ(δ) = 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t;

̂̃
δt
)

and ̂̃IRFh,ℓ(δ) = Θh,·1δ n
−1

n∑
t=1

ρ(ϵ̂1t) +
h∑

j=0
V̂j,ℓ(δ)

for 1 ≤ ℓ ≤ d.

Theorem 3.4.6. Let ̂̃IRFh,ℓ(δ) be a semi-nonparametric estimate for the horizon h relaxed shock
IRF of variable ℓ. Under the same assumptions as in Theorem 3.3.9

̂̃IRFh,ℓ(δ)
P→ ĨRFh,ℓ(δ)

for any fixed integers 0 ≤ h <∞ and 1 ≤ ℓ ≤ d.

3.5 Simulations

This section is devoted to analyzing the empirical performance of the two-step semi-nonparametric
estimation strategy discussed above. I will consider the two simulation setups employed by Gonçalves
et al. (2021), with focus on bias and MSE of the estimated relaxed shocked impulse response func-
tions. Additionally, I provide simulations under a modified design which highlight how in larger
samples the non-parametric sieve estimator consistently recovers impulse responses, while a least-
squares estimator constructed with a pre-specified nonlinear transform does not. In all simulations,
I use a B-spline sieve of order 1.

3.5.1 Benchmark Bivariate Design

The first simulation setup involves a bivariate DGP where the structural shock does not directly
affect other observables. This is a simple environment to check that indeed the two-step estimator
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recover the nonlinear component of the model and impulse responses are consistently estimated,
and that the MSE does not worsen excessively.

I consider three bivariate data generation processes. DGP 1 sets Xt to be a fully exogenous
innovation process,

Xt = ϵ1t,

Yt = 0.5Yt−1 + 0.5Xt + 0.3Xt−1 − 0.4 max(0, Xt) + 0.3 max(0, Xt−1) + ϵ2t.
(3.16)

DGP 2 adds an autoregressive component to Xt, but maintains exogeneity,

Xt = 0.5Xt−1 + ϵ1t,

Yt = 0.5Yt−1 + 0.5Xt + 0.3Xt−1 − 0.4 max(0, Xt) + 0.3 max(0, Xt−1) + ϵ2t.
(3.17)

Finally, DGP 3 add an endogenous effect of Yt−1 on the structural variable by setting

Xt = 0.5Xt−1 + 0.2Yt−1 + ϵ1t,

Yt = 0.5Yt−1 + 0.5Xt + 0.3Xt−1 − 0.4 max(0, Xt) + 0.3 max(0, Xt−1) + ϵ2t.
(3.18)

Following Assumption 1, innovations are mutually independent. To accommodate Assumptions 4
and 5, both ϵ1t and ϵ2t are drawn from a truncated standard Gaussian distribution over [−3, 3].20

All DGPs are centered to have zero intercept in population.
I evaluate bias and MSE plots using 1000 Monte Carlo simulation. For a chosen horizon H, the

impact of a relaxed shock on ϵ1t is evaluated on Yt+h for h = 1, . . . ,H. To compute the population
IRF, I employ a direct simulation strategy that replicates the shock’s propagation through the
model and I use 10 000 replications. To evaluate the estimated IRF, the two-step procedure is
implemented: a sample of length n is drawn, the linear least squares and the semi-nonparametric
series estimators of the model are used to estimate the model and the relaxed IRF is computed
following Proposition 3.4.2. For the sake of brevity, I discuss the case of δ = 1 and I set the shock
relaxation function to be

ρ(z) = exp

1 +
[∣∣∣∣z3

∣∣∣∣4 − 1
]−1


over interval [−3, 3] and zero everywhere else.21 Choices of δ = −1 and δ = ±0.5 yield similar
results in simulations, so I do not discuss them here.

Figure 3.2 contains the results for sample size n = 240. This choice is motivated by considering
the average sample sizes found in most macroeconometric settings: it is equivalent to 20 years of
monthly data or 60 yearly of quarterly data (Gonçalves et al., 2021). The benchmark method is
an OLS regression that relies on a priori knowledge of the underlying DGP specification. Given
the moderate sample size, to construct the cubic spline sieve estimator of the nonlinear component
of the model I use a single knot, located at 0. The simulations in Figure 3.2 show that while the
MSE is slighlty higher for the sieve model, the bias is comparable across methods. Note that for

20Let eit ∼ N (0, 1) for i = 1, 2, then the truncated Gaussian innovations used in simulation are set to be ϵit =
min(max(−3, eit), 3). The resulting r.v.s have a non-continuous density with two mass points at -3 and 3. However,
in practice, since these masses are negligible, for the moderate sample sizes used this choice does not create issues.

21It can be easily checked that this choice of ρ is compatible with shocks of size 0 ≤ |δ| ≤ 1.
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Figure 3.2: Simulations results for DGPs 1-3.
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DGP 3, due to the dependence of the structural variable on non-structural series lags, the MSE
and bias increase significantly, and there is no meaningful difference in performance between the
two estimation approaches.

3.5.2 Structural Partial Identification Design

To showcase the validity of the proposed sieve estimator under the type of partial structural iden-
tification discussed in the paper, I again rely on the simulation design proposed by Gonçalves et al.
(2021). All specifications are block-recursive, and require estimating the contemporaneous effects
of a structural shock on non-structural variables, unlike in the previous section.

The form of the DGPs is

B0Zt = B1Zt−1 + C0f(Xt) + C1f(Xt−1) + ϵt,

where in all variations of the model

B0 =


1 0 0

−0.45 1 −0.3
−0.05 0.1 1

 , C0 =


0
−0.2
0.08

 , and C1 =


0
−0.1
0.2

 .
I focus on the case f(x) = max(0, x), since this type of nonlinearity is simpler to study. DGP 4
treats Xt as an exogenous shock by setting

B1 =


0 0 0

0.15 0.17 −0.18
−0.08 0.03 0.6

 ;

DGP 5 add serial correlation to Xt,

B1 =


−0.13 0 0
0.15 0.17 −0.18
−0.08 0.03 0.6

 ;

and DGP 6 includes dependence on Yt−1,

B1 =


−0.13 0.05 −0.01
0.15 0.17 −0.18
−0.08 0.03 0.6

 .
For these data generating processes, I employ the same setup of simulations with DGPs 1-3, in-
cluding the number of replications as well as the type of relaxed shock. as well as the sieve grid.
Here too I evaluate MSE and bias of both the sieve and the correct specification OLS estimators
with as sample size of n = 240 observations. The results in Figure 3.3 show again that there
is little difference in terms of performance between the semi-nonparametric sieve approach and a
correctly-specified OLS regression.
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Figure 3.3: Simulations results for DGPs 4-6.
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Figure 3.4: Plot of nonlinear function φ(x) used in DGP 7.

3.5.3 Model Misspecification

The previous sections report results that support the use of the sieve IRF estimator in a sample
of moderate size, since it performs comparably to a regression performed with a priori knowledge
of the underlying DGP. I now show that the semi-nonparametric approach is also robust to model
misspecification compared to simpler specifications involving fixed choices for nonlinear transfor-
mations.

To this end, I modify DGP 2 to use a smooth nonlinear transformation to define the effect of
structural variable Xt on Yt. That is, there is no compounding of linear and nonlinear effects. The
autoregressive coefficient in the equation for Xt is also increased to make the shock more persistent.
The new data generating process, DGP 2′, is, thus, given by

Xt = 0.8Xt−1 + ϵ1t,

Yt = 0.5Yt−1 + 0.9φ(Xt) + 0.5φ(Xt−1) + ϵ2t.
(3.19)

where φ(x) := (x− 1)(0.5 + tanh(x− 1)/2), which is plotted in Figure 3.4.
To emphasize the difference in estimated IRFs, in this setup I focus on δ = ±2, which requires

adapting the choice of innovations and shock relaxation function. In simulations of DGP 2′, ϵ1t

and ϵ2t are both drawn from a truncated standard Gaussian distribution over [−5, 5]. The shock
relaxation function of this setup is given by

ρ(z) = exp

1 +
[∣∣∣∣z5

∣∣∣∣3.9
− 1

]−1


over interval [−5, 5] and zero everywhere else. This form of ρ is adapted to choices of δ such that
0 < |δ| ≤ 2. The sieve grid now consists of 4 equidistant knots within (−5, 5). I use the same
numbers of replications as in the previous simulations. Finally, the regression design is identical to
that used for DGP 2 under correct specification.

The results obtained with sample size n = 2400 are collected in Figure 3.5. I choose this larger
sample size to clearly showcase the inconsistency of impulse responses under misspecification: as
it can be observed, the simple OLS estimator involving the negative-censoring transform produces
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Figure 3.5: Simulations results for DGP 7.
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IRF estimates with consistently worse MSE and bias than those of the sieve estimator at almost all
horizons. Similar results are also obtained for more moderate shocks δ = ±1, but the differences
are less pronounced. These simulations suggest that the semi-nonparametric sieve estimator can
produce substantially better IRF estimates in large samples than methods involving nonlinear
transformations selected a priori.

In this setup, it is also important to highlight the fact that the poor performance of OLS
IRF estimates does not come from φ(x) being “complex”, and, thus, hard to approximate by
combinations of simple functions. In fact, if in DGP 2′ function φ is replaced by φ̃(x) := φ(x+ 1),
the differences between sieve and OLS impulse response estimates become minimal in simulations,
with the bias of the latter decreasing by approximately an order of magnitude (see Figure 3.8 in
Appendix 3.B). This is simply due the fact that φ̃(x) is well approximated by max(0, x) directly.
However, one then requires either prior knowledge or sheer luck when constructing the nonlinear
transforms of Xt for an OLS regression. The proposed series estimator, instead, just requires an
appropriate choice of sieve. Many data-driven procedures to select sieves in applications have been
proposed, see for example the discussion in Kang (2021).

3.6 Empirical Applications

In this section, I showcase the practical utility of the proposed semi-nonparametric sieve estimator
by considering two applied exercises. First, I revisit the empirical analysis of Gonçalves et al.
(2021), which is itself based on the work of Tenreyro and Thwaites (2016). This provides both
linear and nonlinear benchmarks for the monetary policy responses within a compact econometric
model. I find that, although the differences between approaches are mild, nonparametric IRFs
in fact provide counter-evidence to the conclusions reported by Gonçalves et al. (2021). In the
second application, I compare the linear and nonlinear impulse responses that are produced by
uncertainty shocks in the setup studied by Istrefi and Mouabbi (2018). Here, sieve-estimated IRFs
show differences in shape, timing and intensity, chiefly when the sign of the shock changes.

3.6.1 Monetary Policy Shocks

The objective of the empirical analysis in Gonçalves et al. (2021) is to analyze the effects of a
monetary policy shock on a model of the US macroeconomy. Structural identification is achieved
via a narrative approach, following the seminal work of Romer and Romer (2004).

The four-variable model is set up identically to the one of Gonçalves et al. (2021), Section
7. Let Zt = (Xt,FFRt,GDPt,PCEt)′, where Xt is the series of narrative U.S. monetary policy
shocks, FFRt is the federal funds rate, GDPt is log real GDP and PCEt is PCE inflation.22 As
a pre-processing step, GDP is transformed to log GDP and then linearly detrended. The data is
available quarterly and spans from 1969:Q1 to 2007:Q4. As in Tenreyro and Thwaites (2016), I

22In Gonçalves et al. (2021) p. 122, it is mentioned that CPI inflation is included in the model, but both in the
replication package made available by one the authors (https://sites.google.com/site/lkilian2019/research
/code) from which I source the data, and Tenreyro and Thwaites (2016), PCE inflation is used instead. Moreover,
the authors say that both the FFR and PCE enter the model in first differences, yet in their code these variables are
kept in levels. I keep their original formulation to allow for a proper comparison between estimation methods.

https://sites.google.com/site/lkilian2019/research/code
https://sites.google.com/site/lkilian2019/research/code
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use a model with one lag, p = 1. Narrative shock Xt is considered to be an i.i.d. sequence, i.e.
Xt = ϵ1t, therefore I assume no dependence on lagged variables when implementing pseudo-reduced
form (3.2). Like in Gonçalves et al. (2021), I consider positive and negative shocks of size |δ| = 1.
As such, I choose

ρ(z) = I{|z| ≤ 4} exp

1 +
[∣∣∣∣z4

∣∣∣∣6 − 1
]−1


to be the shock relaxation functions. Figure 3.10 in Appendix 3.B provides a check for the validity
of ρ given the sample distribution of Xt. Knots for sieve estimation are located at {−1, 0, 1}. The
model is block-recursive, and the structural formulation of Section 3.2.2 allows identifying the U.S.
monetary policy shocks without the need to impose additional assumptions on the remaining shocks.
Gonçalves et al. (2021), following Tenreyro and Thwaites (2016), use two nonlinear transformations,
F (x) = max(0, x) and F (x) = x3, to try to gauge how negative versus positive and large versus
small shocks, respectively, affect the U.S. macroeconomy. For clarity, below I refer to this approach
as “parametric nonlinear method”. Since the authors find that the inclusion of a cubic term does not
meaningfully change impulse responses, I focus on comparing the IRFs estimated via sieve regression
with the ones obtained by setting F (x) = max(0, x), as well as by not including nonlinear terms
(i.e. linear IRFs).

Figure 3.6 shows the estimated impulse response to both a positive and negative unforeseen
monetary policy shock. The impact on the federal funds rate is consistent across all three proce-
dures, but there are important differences in GDP and inflation responses. In case of an exogenous
monetary tightening change, the parametric nonlinear response for GDP, unlike in the case of lin-
ear and parametric nonlinear IRFs, is nearly zero at impact and has a monotonic decrease until
around 10 quarters ahead. The change is shape is meaningful, as the procedure of Gonçalves et al.
(2021) still yields a small short-term upward jump in GDP when a monetary tightening shock
hits. Moreover, after the positive shock, the sieve GDP responses reaches its lowest value 4 and 2
quarters before the linear and parametric nonlinear responses, while its size is 13% and 16% larger,
respectively.23 Finally, the sieve PCE response is positive for a shorter interval, but looks to be
more persistent once it turns negative also 10 months after impact.

When the shock is expansionary, sieve IRFs show a pronounced asymmetry, even more than
that of parametric nonlinear responses. One can observe that semi-nonparametric federal funds
rate IRF is marginally mitigated compared to the alternative estimates. An important puzzle is
due to the clearly negative impact on GDP. Indeed, both types of nonlinear responses show a drop
in output in the first 5 quarters. Also note that the PCE inflation has a positive spike the first
couple of quarters after impact. Such a quick change seems unrealistic, as one does not expect
inflation to suddenly reverse sign, but, as Gonçalves et al. (2021) also remark, the overall impact
on inflation of both shocks is small when compared to the change in federal funds rate.

This comparison between methods, and specifically the nature of nonparametric impulse re-
sponses, provides evidence that a small econometric model, such as the one studied by Tenreyro
and Thwaites (2016), may be inadequate to fully capture the dynamic effects of monetary policy

23The strength of this effect changes across different shocks sizes, as Figure 3.12 in Appendix 3.B proves. As
shocks sizes get smaller, nonlinear IRFs, both parametric and sieve, show decreasing negative effects.
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Figure 3.6: Effect of an unexpected U.S. monetary policy shock on federal funds rate, GDP and
inflation. Linear (gray, dashed), parametric nonlinear with F (x) = max(0, x) (red, point-dashed)
and sieve (blue, solid) structural impulse responses. For δ = +1, the lowest point of the GDP
response is marked with a dot.

shocks. In both setups, however, impulse response interpretation is only suggestive, as confidence
bands are missing and only pointwise IRFs are available. Whether the puzzles highlighted above
would persist after accounting for estimation uncertainty is an important research question that I
leave for future analysis.

3.6.2 Uncertainty Shocks

Uncertainty in interest rates appears to be a significant factor in recent economic history. Starting
with the fundamental changes brought forth by the unprecedented measures of unconventional
monetary policy after the 2007-2008 financial crisis, to the powerful economic stimuli during the
COVID-19 pandemic, and finally the subsequent interest rate tightening and inflation phenomenon
of 2022, central banks and institutional agents are often very concerned about uncertainty. Since
traditional central bank policymaking is heavily guided by the principle that the central bank can
and should influence expectations, controlling the (perceived) level of ambiguity in current and
future commitments is key.
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Istrefi and Mouabbi (2018) provide an analysis of the impact of unforeseen changes in the
level of subjective interest rate uncertainty on the macroeconomy. They derive a collection of new
indices based on short- and long-term profession forecasts. Their empirical study goes in depth
into studying the different components that play a role in transmitting uncertainty shocks, but
here I will focus on re-evaluating their structural impulse response estimates under the light of
potentially-missing nonlinear effects. For the sake of simplicity, my evaluation will focus only on
the 3-months-ahead uncertainty measure for short-term interest rate maturities (3M3M) and the
US economy.24

Like in Istrefi and Mouabbi (2018), let Zt = (Xt, IPt,CPIt,PPIt,RTt,URt)′ be a vector where
Xt is the chosen uncertainty measure, IPt is the (log) industrial production index, CPIt is the CPI
inflation rate, PPIt is the producer price inflation rate, RTt is (log) retail sales and URt is the
unemployment rate. The nonlinear model specification is given by

Zt = µ+A1Zt−1 +A2Zt−1 + F1(Xt−1) + F2(Xt−2) +DWt + ut,

where Wt includes a linear time trend and oil price OILt.25 The data has monthly frequency and
spans the period between May 1993 and July 2015.26 Note here that, following the identification
strategy of Gonçalves et al. (2021), nonlinear functions F1 and F2 are to be understood as not
effecting Xt, which is the structural variable. The linear VAR specification of Istrefi and Mouabbi
(2018) is recovered by simply assuming F1 = F2 = 0 prior to estimation. Since they use recursive
identification and order the uncertainty measure first, this model too is block-recursive.

I consider a positive shock with intensity δ = σϵ,1, where σϵ,1 is the standard deviation of
structural innovations. In this empirical exercise, the relaxation function is given by

ρ(z) = I
{
|z| ≤ 1

4

}
exp

(
1 +

[
|4x|8 − 1

]−1
)

and I set {0.1, 0.3} to be the cubic spline knots. As 3M3M is a non-negative measure of uncertainty,
some care must be taken to make sure that the shocked paths for Xt do not reach negative values.
Figure 3.14 in Appendix 3.B shows that the relaxation function is compatible, and also that the
shocked nonlinear paths of Xt with impulse δ and δ′ all do not cross below zero.

Figure 3.7 presents both the linear and nonlinear structural impulse responses obtained. Impor-
tantly, even though Istrefi and Mouabbi (2018) estimate a Bayesian VAR model and here I consider
a frequentist vector autoregressive benchmark, the shape of the IRFs is retained, c.f. the median
response in the top row of their Figure 4. When uncertainty increases, industrial production drops,
and the size and extent of this decrease is intensified in the nonlinear responses. In fact, the sieve
IP response reaches a value that is 54% lower than that of the respective linear IRF.27 A similar

24Istrefi and Mouabbi (2018) also provide comparisons with results obtained with the other uncertainty measures,
which they comment are all very similar to the ones obtained with 3M3M. Their paper additionally evaluates a
number of other highly developed countries.

25Inclusion of linear exogenous variables in the semi-nonparametric theoretical framework detail in Section 3.3 is
straightforward as long as one can assume that they are stationary and weakly dependent. The choice of using p = 2
is identical to that of the original authors, based on BIC.

26I reuse the original data employed by the authors, who kindly shared it upon request, but rescale retail sales
(RTt) so that the level on January 2000 equals 100.

27Figure 3.15 in Appendix 3.B confirms that this difference is consistent over a range of shock sizes, too.
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Figure 3.7: Effect of an unexpected, one-standard-deviation uncertainty shock to US macroeco-
nomic variables. Linear (gray, dashed) and sieve (blue, solid) structural impulse responses. The
extreme points of the responses are marked with a dot.

behavior holds true for retail sales (38% lower) and unemployment (23% higher), proving that
this shock is more profoundly contractionary than suggested by the linear VAR model. Further,
CPI and PP inflation both show short-term fluctuations which strengthen the short- and medium-
term impact of the shock. CPI and PP nonlinear inflation responses are 76% and 41% stronger
than their linear counterpart, respectively. These differences suggest that linear IRFs might be
both under-estimating the short-term intensity and misrepresenting long-term persistence of in-
flation reactions. From another perspective, Nowzohour and Stracca (2020) presented evidence
that consumer consumption growth, credit growth and unemployment do not co-move with the
policy uncertainty index (EPU) of Baker et al. (2016), but are negatively correlated with financial
volatility. Given the strength of nonlinear IRFs, this discrepancy may also suggest that the 3M3M
uncertainty measure partially captures the financial channel, too.

The introduction of nonlinear terms in the structural VAR of Istrefi and Mouabbi (2018) thus
provides evidence that fundamental impulse response features might otherwise be missed. Indeed,
Figure 3.13 in Appendix 3.B - which plots regression functions of endogenous variables with respect
to Xt - proves that high and low uncertainty levels may have significantly different effects on
endogenous economic variables. In particular, at the second lag, tail effects appear to be milder,
while at low levels changes in uncertainty have more pronounced impact.
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3.7 Conclusion

This paper studies the application of semi-nonparametric series estimation to the problem of struc-
tural impulse response analysis for time series. After first discussing the partial identification model
setup, I have used the conditions of system contractivity and stability to derive physical measures
of the dependence for nonlinear systems. In turn, these allow to derive primitive conditions under
which series estimation can be employed and structural IRFs are consistently estimated. The sim-
ulation results prove that this approach is valid in moderate samples and has the added benefit of
being robust to misspecification of the nonlinear model components. Finally, two empirical appli-
cations showcase the utility in departing from both linear and parametric nonlinear specifications
when estimating structural responses.

There are many possible avenues for extending the results I have presented here. A key aspect
that I have not touched upon is inference in the form of confidence intervals: the theory of Chen
and Christensen (2015) does not encompass uniform inference, and, as such, additional results
have to be developed. Indeed, (uniform) confidence bands are necessary to properly quantify the
uncertainty of IRF estimates. Belloni et al. (2015b) give a uniform asymptotic inference theory,
but their derivations are limited to non-dependent data. Li and Liao (2020) and Cattaneo et al.
(2022) provide theoretical coupling results that could be exploited in order to handle time series
data. Chen and Christensen (2018) give a theory of uniform inference for panel IV setups, which
could possibly be generalized to handle nonlinear IRFs. In the spirit of Kang (2021), it would be
also important to derive inference results that are uniform in the selection of series terms, as, in
practice, a data-driven procedure for selecting K should be used. Studying other sieve spaces, such
as neural networks or shape-preserving sieves (Chen, 2007), would also be highly desirable. The
latter can be especially useful in contexts where economic knowledge suggests that the nonlinear
components of the model are e.g. strictly monotonic increasing or convex. Finally, sharpening of
convergence rates used in the main proofs is of independent interest.
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Appendix

Matrix Norms. Let
∥A∥r := max

{
∥Ax∥r

∣∣ ∥x∥r ≤ 1
}

be the r-operator norm of matrix A ∈ Cd1×d2 . The following Theorem establishes the equivalence
between different operator norms as well as the compatibility constants.

Theorem 3..1 (Feng (2003)). Let 1 ≤ p, q ≤ ∞. Then for all A ∈ Cd1×d2,

∥A∥p ≤ λp,q(d1)λq,p(d2)∥A∥q,

where

λa,b(d) :=

1 if a ≥ b,

d1/a−1/b if a < b.

This norm inequality is sharp.

In particular, if p > q then it holds

1
(d2)1/q−1/p

∥A∥p ≤ ∥A∥q ≤ (d1)1/q−1/p∥A∥p.

3.A Proofs

3.A.1 GMC Conditions and Proposition 3.3.6

Lemma 3.A.1. Assume that {ϵt}t∈Z, ϵt ∈ E ⊆ RdZ are i.i.d., and {Zt}t∈Z is generated according
to

Zt = G(Zt−1, ϵt),

where Zt ∈ Z ⊆ RdZ and G is a measurable function. If either

(a) Contractivity conditions (3.11)-(3.12) hold, supt∈Z∥ϵt∥Lr < ∞ and ∥G(z, ϵ)∥ < ∞ for some
(z, ϵ) ∈ Z × E;

(b) Stability conditions (3.13)-(3.14) hold, supt∈Z∥ϵt∥Lr <∞ and ∥∂G/∂Z∥ ≤MZ <∞;

then
sup

t
∥Zt∥Lr <∞ w.p.1.

Proof.

(a) In a first step, we show that, given event ω ∈ Ω, realization Zt(ω) is unique with probability
one. To do this, introduce initial condition z◦ for ℓ > 1 such that z◦ ∈ Z and ∥z◦∥ < ∞.
Define

Z
(−ℓ)
t (ω) = G(ℓ)(y◦, ϵt−ℓ+1:t(ω)).
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Further, let Z ′(−ℓ)
t be the realization with initial condition z′

◦ ̸= z◦ and innovation realizations
ϵt−ℓ+1:t(ω). Note that ∥∥∥Z(−ℓ)

t (ω)− Z ′(−ℓ)
t (ω)

∥∥∥ ≤ Cℓ
Z

∥∥z◦ − z′
◦
∥∥ ,

which goes to zero as ℓ→∞. Therefore, if we set Zt(ω) := limℓ→∞ Z
(−ℓ)
t (ω), Zt(ω) is unique

with respect to the choice of z◦ w.p.1. A similar recursion shows that

∥∥∥Z(−ℓ)
t (ω)

∥∥∥ ≤ Cℓ
Z ∥z◦∥+

ℓ−1∑
k=0

Ck
ZCϵ ∥ϵt−k(ω)∥ .

By norm equivalence, this implies

∥∥∥Z(−ℓ)
t

∥∥∥
Lr
≤ Cℓ

Z ∥z◦∥r +
ℓ−1∑
k=0

Ck
ZCϵ ∥ϵt−k∥Lr

≤ Cℓ
Z ∥z◦∥r + (1− CZ)−1Cϵ sup

t∈Z
∥ϵt∥Lr <∞,

and taking the limit ℓ→∞ proves the claim.

(b) Consider again distinct initial conditions z′
◦ ̸= z◦ and innovation realizations ϵt−ℓ+1:t(ω),

yielding Z ′(−ℓ)
t (ω) and Z

(−ℓ)
t (ω), respectively. We may use the contraction bound derived in

the proof of Proposition 3.3.6 (b) below, that is,∥∥∥Z(−ℓ)
t (ω)− Z ′(−ℓ)

t (ω)
∥∥∥

r
≤ Cℓ

ZC2∥z◦ − z′
◦∥r,

where C2 > 0 is a constant. With trivial adjustments, the uniqueness and limit arguments
used for (a) above apply here too.

Proof of Proposition 3.3.6.

(a) By assumption it holds that for all (z, z′) ∈ Z × Z and (e, e′) ∈ E × E

∥G(z, ϵ)−G(z′, ϵ′)∥ ≤ CZ∥z − z′∥+ Cϵ∥e− e′∥

holds, where 0 ≤ CZ < 1 and 0 ≤ Cϵ <∞. The equivalence of norms directly generalizes this
inequality to any r-norm for r > 2. We study ∥Zt+h−Z ′

t+h∥r where Z ′
t+h is constructed with

a time-t perturbation of the history of Zt+h. Therefore, for any given t and h ≤ 1 it holds
that∥∥∥Zt+h −G(h)(Z ′

t, ϵt+1:t+h)
∥∥∥

r
≤ CZ∥G(h−1)(Zt, ϵt+1:t+h−1)−G(h−1)(Z ′

t, ϵt+1:t+h−1)∥r

≤ Ch
Z∥Zt − Z ′

t∥r,

since sequence ϵt+1:t+h is common between Zt+h and Z ′
t+h. Clearly then∥∥∥Zt+h −G(h)(Z ′

t, ϵt+1:t+h)
∥∥∥

r
≤ 2∥Zt∥r exp(−γh)
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for γ = − log(CZ). Letting a = 2∥Zt∥r and shifting time index t backward by h, since
supt∥Zt∥Lr <∞ w.p.1 from Lemma 3.A.1 the result for Lr follows with τ = 1.

(b) Proceed similar to (a), but notice that now we must handle cases of steps 1 ≤ h < h∗.
Consider iterate h∗ + 1, for which∥∥∥Zt+h+1 −G(h+1)(Z ′

t, ϵt+1:t+h+1)
∥∥∥

r
≤ CZ∥G(h)(G(Zt, ϵt+1), ϵt+2:t+h)−G(h)(G(Z ′

t, ϵt+1), ϵt+2:t+h)∥r

≤ Ch
Z∥G(Zt, ϵt+1)−G(Z ′

t, ϵt+1)∥r
≤ Ch

ZMZ∥Zt − Z ′
t∥r

by the mean value theorem. Here we may assume that MZ ≥ 1 otherwise we would fall under
case (a), so that MZ ≤M2

Z ≤ . . . ≤M
h∗−1
Z . More generally,∥∥∥Zt+h+1 −G(h+1)(Z ′

t, ϵt+1:t+h+1)
∥∥∥

r
≤ Cj(h)

Z max{Mh∗−1
Z , 1}∥Zt − Z ′

t∥r

for j(h) := ⌊h/h∗⌋. Result (b) then follows by noting that j(h) ≥ h/h∗−1 and then proceeding
as in (a) to derive GMC coefficients.

Companion and Lagged Vectors. The assumption of GMC for a process translates naturally
to vectors that are composed of stacked lags of realizations. This, for example, is important in
the discussion of Section 3.3 when imposing Assumption 9, since one needs that series regressors
{W2t}t∈Z be GMC.

Recall that W2t = (Xt, Xt−1, . . . , Xt−p, Yt−1, . . . , Yt−p, ϵ1t). Here we shall reorder this vector
slightly to be

W2t = (Xt, Xt−1, Yt−1, . . . , Xt−p, Yt−p, ϵ1t).

For h > 0 and 1 ≤ l ≤ h, let Z ′
t+j := Φ(l)(Z ′

t, . . . , Z
′
t−p; ϵt+1:t+j) be the a perturbed version of Zt,

where Z ′
t, . . . , Z

′
t−p are taken from an independent copy of {Zt}t∈Z. Define

W ′
2t = (X ′

t, X
′
t−1, Y

′
t−1, . . . , X

′
t−p, Y

′
t−p, ϵ1t).

Using Minkowski’s inequality

∥W2t+h −W ′
2t+h∥Lr ≤ ∥Xt+h −X ′

t+h∥Lr +
p∑

j=1
∥Zt+h−j − Z ′

t+h−j∥Lr

≤
p∑

j=0
∥Zt+h−j − Z ′

t+h−j∥Lr ,

thus, since p > 0 is fixed finite,

sup
t
∥W2t+h −W ′

2t+h∥Lr ≤
p∑

j=0
∆r(h− j) ≤ (p+ 1) a1Z exp(−a2Zh).

Above, a1Z and a2Z are the GMC coefficients of {Zt}t∈Z.
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3.A.2 Lemma 3.3.7 and Matrix Inequalities under Dependence

In order to prove Lemma 3.3.7, the idea is to modify the approach of Chen and Christensen (2015),
which relies on Berbee’s Lemma and an interlaced coupling, to handle variables with physical
dependence. Chen et al. (2016) provide an example on how to achieve this when working with self-
normalized sums. In what follows I modify their ideas to work with random dependent matrices.

First of all, I recall below a Bernstein-type inequality for independent random matrices of Tropp
(2012).

Theorem 3.A.2. Let {Ξi}ni=1 be a finite sequence of independent random matrices with dimensions
d1 × d2. Assume E[Ξi] = 0 for each i and max1≤i≤n∥Ξi∥ ≤ Rn and define

ς2
n := max

{∥∥∥∥∥
n∑

i=1
E
[
Ξi,nΞ′

j,n

]∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E
[
Ξ′

i,nΞj,n

]∥∥∥∥∥
}
.

Then for all z ≥ 0,

P

(∥∥∥∥∥
n∑

i=1
Ξi

∥∥∥∥∥ ≥ z
)
≤ (d1 + d2) exp

(
−z2/2

nqς2
n + qRnz/3

)
.

The main exponential matrix inequality due to Chen and Christensen (2015), Theorem 4.2 is
as follows.

Theorem 3.A.3. Let {Xi}i∈Z where Xi ∈ X be a β-mixing sequence and let Ξi,n = Ξn(Xi) for
each i where Ξn : X 7→ Rd1×d2 be a sequence of measurable d1×d2 matrix-valued functions. Assume
that E[Ξi,n] = 0 and ∥Ξi,n∥ ≤ Rn for each i and define

S2
n := max

{
E
[
∥Ξi,nΞ′

j,n∥
]
,E
[
∥Ξ′

i,nΞj,n∥
]}
.

Let 1 ≤ q ≤ n/2 be an integer and let I• = q⌊n/q⌋, . . . , n when q⌊n/q⌋ < n and I• = ∅ otherwise.
Then, for all z ≥ 0,

P

(∥∥∥∥∥
n∑

i=1
Ξi,n

∥∥∥∥∥ ≥ 6z
)
≤ n

q
β(q) + P

∥∥∥∥∥∥
∑
i∈I•

Ξi,n

∥∥∥∥∥∥ ≥ z
+ 2(d1 + d2) exp

(
−z2/2

nqS2
n + qRnz/3

)
,

where ∥
∑

i∈I• Ξi,n∥ := 0 whenever I• = ∅.

To fully extend Theorem 3.A.3 to physical dependence, I will proceed in steps. First, I derive a
similar matrix inequality by directly assuming that random matrices Ξi,n have physical dependence
coefficient ∆Ξ

r (h). In the derivations I will use that

1
(d2)1/2−1/r

∥A∥r ≤ ∥A∥2 ≤ (d1)1/2−1/r∥A∥r.

for r ≥ 2.

Theorem 3.A.4. Let {ϵj}j∈Z be a sequence of i.i.d. variables and let {Ξi,n}ni=1,

Ξi,n = GΞ
n(. . . , ϵi−1, ϵi)
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for each i, where Ξn : X 7→ Rd1×d2, be a sequence of measurable d1 × d2 matrix-valued functions.
Assume that E[Ξi,n] = 0 and ∥Ξi,n∥ ≤ Rn for each i and define

S2
n := max

{
E
[
∥Ξi,nΞ′

j,n∥
]
,E
[
∥Ξ′

i,nΞj,n∥
]}
.

Additionally assume that ∥Ξi,n∥Lr <∞ for r > 2 and define the matrix physical dependence measure
∆Ξ

r (h) as
∆Ξ

r (h) := max
1≤i≤n

∥∥∥Ξi,n − Ξh∗
i,n

∥∥∥
Lr
,

where Ξh∗
i,n := GΞ

n(. . . , ϵ∗i−h−1, ϵ
∗
i−h, ϵi−h+1, . . . , ϵi−1, ϵi) for independent copy {ϵ∗j}j∈Z. Let 1 ≤ q ≤

n/2 be an integer and let I• = q⌊n/q⌋, . . . , n when q⌊n/q⌋ < n and I• = ∅ otherwise. Then, for all
z ≥ 0,

P

(∥∥∥∥∥
n∑

i=1
Ξi,n

∥∥∥∥∥ ≥ 6z
)
≤ nr+1

qr(d2)r/2−1zr
∆Ξ

r (q)+P

∥∥∥∥∥∥
∑
i∈I•

Ξi,n

∥∥∥∥∥∥ ≥ z
+2(d1+d2) exp

(
−z2/2

nqS2
n + qRnz/3

)
,

where ∥
∑

i∈I• Ξi,n∥ := 0 whenever I• = ∅.

Proof. To control dependence, we can adapt the interlacing block approach outlined by Chen et al.
(2016). To interlace the sum, split it into

n∑
i=1

Ξi,n =
∑

j∈Ke

Jk +
∑
j∈Jo

Wk +
∑
i∈I•

Ξi,n,

where Wj := ∑qj
i=q(j−1)+1 Ξi,n for j = 1, . . . , ⌊n/q⌋ are the blocks, I• := {q⌊n/q⌋ + 1, . . . , n} if

q⌊n/q⌋ < n and Je and Jo are the subsets of even and odd numbers of {1, . . . , ⌊n/q⌋}, respectively.
For simplicity define J = Je ∪ Jo as the set of block indices and let

W †
j := E

[
Wj | ϵℓ, q(j − 2) + 1 ≤ ℓ ≤ qj

]
.

Note that by construction {W †
j }j∈Je are independent and also {W †

j }j∈Jo are independent. Using
the triangle inequality we find

P

(∥∥∥∥∥
n∑

i=1
Ξi,n

∥∥∥∥∥ ≥ 6z
)
≤ P

∥∥∥∥∥∥
∑
j∈J

(Wj −W †
j )

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

W †
j

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
i∈I•

Ξi,n

∥∥∥∥∥∥ ≥ 6z


≤ P

∥∥∥∥∥∥
∑
j∈J

(Wj −W †
j )

∥∥∥∥∥∥ ≥ z
+ P

∥∥∥∥∥∥
∑
j∈Je

W †
j

∥∥∥∥∥∥ ≥ z


+ P

∥∥∥∥∥∥
∑
j∈Jo

W †
j

∥∥∥∥∥∥ ≥ z
+ P

∥∥∥∥∥∥
∑
i∈I•

Ξi,n

∥∥∥∥∥∥ ≥ z


= I + II + III + IV.

We keep term IV as is. As in the proof of Chen and Christensen (2015), terms II and III consist
of sums of independent matrices, where each W †

j satisfies ∥W †
j ∥ ≤ qRn and

max
{
E
[
∥W †

j W
†′
j ∥
]
,E
[
∥W †′

j W †
j ∥
]}
≤ qS2

n.
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Then, using the exponential matrix inequality of Tropp (2012),

P

∥∥∥∥∥∥
∑
j∈Je

W †
k

∥∥∥∥∥∥ ≥ z
 ≤ (d1 + d2) exp

(
−z2/2

nqS2
n + qRnz/3

)
.

The same holds for the sum over Jo. Finally, we use the physical dependence measure ∆Ξ
r to bound

I. Start with the union bound to find

P

∥∥∥∥∥∥
∑
j∈J

(Wj −W †
j )

∥∥∥∥∥∥ ≥ z
 ≤ P

∑
j∈J

∥∥∥Wj −W †
j

∥∥∥ ≥ z


≤ n

q
P

(∥∥∥Wj −W †
j

∥∥∥ ≥ q

n
z

)
,

where we have used that ⌊n/q⌋ ≤ n/q. Since Wj and W †
j differ only over a σ-algebra that is q steps

in the past, by assumption ∥∥∥Wj −W †
j

∥∥∥
Lr
≤ q∆Ξ

r (q),

which implies, by means of the rth moment inequality,

P

(∥∥∥Wj −W †
j

∥∥∥ ≥ q

n
z

)
≤ P

(
(d2)1/r−1/2

∥∥∥Wj −W †
j

∥∥∥
r
≥ q

n
z

)
≤ nr

qr−1(d2)r/2−1zr
∆Ξ

r (q).

where (d2)1/r−1/2 is the operator norm equivalence constant such that ∥·∥ ≥ (d2)1/r−1/2∥·∥r (Feng,
2003). Therefore,

P

∥∥∥∥∥∥
∑
j∈J

(Wj −W †
j )

∥∥∥∥∥∥ ≥ z
 ≤ nr+1

qr(d2)r/2−1zr
∆Ξ

r (q)

as claimed.

Notice that the first term in the bound is weaker than that derived by Chen and Christensen
(2015). The β-mixing assumption and Berbee’s Lemma give strong control over the probability
P(∥∑j∈J(Wj −W †

j )∥ ≥ z). In contrast, assuming physical dependence means we have to explicitly
handle a moment condition. One might think of sharpening Theorem 3.A.4 by sidestepping the
rth moment inequality (c.f. avoiding Chebyshev’s inequality in concentration results), but I do not
explore this approach here.

The second step is to map the physical dependence of a generic vector time series {Xi}i∈Z to
matrix functions.

Proposition 3.A.5. Let {Xi}i∈Z where Xi = G(. . . , ϵi−1, ϵi) ∈ X for {ϵj}j∈Z i.i.d. be a sequence
with finite rth moment, where r > 0, and functional physical dependence coefficients

∆r(h) = sup
i

∥∥∥Xi+h −G(h)(X∗
i , ϵi+1:i+h)

∥∥∥
Lr

for h ≥ 1. Let Ξi,n = Ξn(Xi) for each i where Ξn : X 7→ Rd1×d2 be a sequence of measurable d1×d2

matrix-valued functions such that Ξn = (v1, . . . , vd2) for vℓ ∈ Rd1. If ∥Ξi,n∥Lr <∞ and

CΞ,ℓ := sup
x∈X
∥∇vℓ(x)∥ ≤ CΞ <∞,
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then matrices Ξi,n have physical dependence coefficients

∆Ξ
r (h) = sup

i

∥∥∥Ξi,n − Ξh∗
i,n

∥∥∥
Lr
≤
√
d1

(
d2
d1

)1/r

CΞ ∆r(h),

where Ξh∗
i,n = Ξn(G(h)(X ′

i, ϵi+1:i+h)).

Proof. To derive the bound, we use Ξn(Xi) and Ξn(Xh∗
i ) in place of Ξi,n and Ξh∗

i,n, respectively,
where Xh∗

i = G(h)(X∗
i , ϵi+1:i+h). First we move from studying the operator r-norm (recall, r > 2)

to the Frobenius norm,∥∥∥Ξn(Xi)− Ξn(Xh∗
i )
∥∥∥

r
≤ (d2)1/2−1/r

∥∥∥Ξn(Xi)− Ξn(Xh∗
i )
∥∥∥

F
.

where as intermediate step we use the 2-norm. Let Ξn = (v1, . . . , vd2) for vℓ ∈ Rd1 and ℓ ∈ 1, . . . , d2,
so that

∥Ξn∥F =

√√√√ d2∑
ℓ=1
∥vℓ∥2

where vℓ = (vℓ1, . . . , vℓd1)′. Since vℓ : X 7→ Rd1 are vector functions, the mean value theorem gives
that ∥∥∥Ξn(Xi)− Ξn(Xh∗

i )
∥∥∥

F
≤

√√√√ d2∑
ℓ=1

C2
Ξ,ℓ ∥Xi −Xh∗

i ∥2 ≤
√
d2CΞ ∥Xi −Xh∗

i ∥.

Combining results and moving from the vector r-norm to the 2-norm yields∥∥∥Ξn(Xi)− Ξn(Xh∗
i )
∥∥∥

r
≤ (d2)1−1/r(d1)1/2−1/r CΞ ∥Xi −Xh∗

i ∥r.

The claim involving the Lr norm follows immediately.

The following Corollary, which specifically handles matrix functions defined as outer products
of vector functions, is immediate and covers the setups of series estimation.

Corollary 3.A.6. Under the conditions of Proposition 3.A.5, if

Ξn(Xi) = ξn(Xi)ξn(Xi)′ +Qn

where ξn : X 7→ Rd is a vector function and Qn ∈ Rd×d is nonrandom matrix, then

∆Ξ
r (h) ≤ d 3/2−2/r Cξ ∆r(h),

where Cξ := supx∈X ∥∇ξn(x)∥ <∞.

Proof. Matrix Qn cancels out since it is nonrandom and appears in both Ξn(Xi) and Ξn(Xh∗
i ).

Since Ξn(Xi) is square, the ratio of row to column dimensions simplifies.

The following Corollaries to Theorem 3.A.4 can now be derived in a straightforward manner.

Corollary 3.A.7. Under the conditions of Theorem 3.A.4 and Proposition 3.A.5, for all z ≥ 0

P

(∥∥∥∥∥
n∑

i=1
Ξi,n

∥∥∥∥∥ ≥ 6z
)
≤ nr+1

qrzr
(d2)2−(r/2+1/r)(d1)1/2−1/rCΞ ∆r(q) + P

∥∥∥∥∥∥
∑
i∈I•

Ξi,n

∥∥∥∥∥∥ ≥ z
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+ 2(d1 + d2) exp
(

−z2/2
nqS2

n + qRnz/3

)
.

where ∆r(·) if the functional physical dependence coefficient of Xi.

Corollary 3.A.8. Under the conditions of Theorem 3.A.4 and Proposition 3.A.5, if q = q(n) is
chosen such that

nr+1

qr
(d2)2−(r/2+1/r)(d1)1/2−1/rCΞ ∆r(q) = o(1)

and Rn

√
q log(d1 + d2) = o(Sn

√
n) then∥∥∥∥∥

n∑
i=1

Ξi,n

∥∥∥∥∥ = OP

(
Sn

√
nq log(d1 + d2)

)
.

This result is almost identical to Corollary 4.2 in Chen and Christensen (2015), with the only
adaptation of using Theorem 3.A.4 as a starting point. Condition Rn

√
q log(d1 + d2) = o(Sn

√
n)

is simple to verify by assuming, e.g., q = o(n/ log(n)) since log(d1 + d2) ≲ log(K) and K = o(n).

Note that when d1 = d2 ≡ K, which is the case of interest in the series regression setup, the first
condition in Corollary 3.A.8 reduces to

K5/2−(r/2+2/r)CΞ ∆r(q) = o(1),

which also agrees with the rate of Corollary 3.A.6. Assumption 7(i) and a compact domain further
allow to explicitly bound factor CΞ by

CΞ ≲ Kω2 ,

so that the required rate becomes

Kρ ∆r(q) = o(1), where ρ := 3
2 −

r

2 + ω2.

Proof of Lemma 3.3.7. The proof follows from Corollary 3.A.8 by the same steps of the proof of
Lemma 2.2 in Chen and Christensen (2015). Simply take Ξi,n = n−1(̃(b)K

π (Xi)̃(b)K
π (Xi)′− IK) and

note that Rn ≤ n−1(1 + ζ2
K,nλ

2
K,n) and Sn ≤ n−2(1 + ζ2

K,nλ
2
K,n).

For Lemma 3.3.7 to hold under GMC assumptions a valid choice for q(n) is

q(n) = γ−1 log(Kρnr+1)

where γ as in Proposition 3.3.6. This is due to(
n

q

)r+1
qKρ∆r(q) ≲ nr+1

qr
Kρ exp(−γq)

≲
nr+1Kρ

log(Kρnr+1)r
(Kρnr+1)−1

= 1
log(Kρnr+1)r

= o(1).
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Note then that, if λK,n ≲ 1 and ζK,n ≲
√
K, since

ζK,nλK,n

√
q logK
n

≲

√
K log(Kρnr+1) log(K)

n
≲

√
K log(nρ+r+2) log(n)

n
≲

√
K log(n)2

n
,

to satisfy Assumption 8 we may assume
√
K log(n)2/n = o(1) as in Remark 2.3 of Chen and

Christensen (2015) for the case of exponential β-mixing regressors.

3.A.3 Theorem 3.3.9

Before delving into the proof of Theorem 3.3.9, note that we can decompose Π̂2 −Π2 as

Π̂2 −Π2 = (Π̂2 − Π̂∗
2) + (Π̂∗

2 − Π̃2) + (Π̃2 −Π2),

where Π̃2 is the projection of Π2 onto the linear space spanned by the sieve. The last two terms can
be handled directly with the theory developed by Chen and Christensen (2015). Specifically, their
Lemma 2.3 controls the second term (variance term), while Lemma 2.4 handles the third term (bias
term). This means here we can focus on the first term, which is due to using generated regressors
ϵ̂1t in the second step.

Since Π̂2 can be decomposed in dY rows of semi-nonparametric coefficients, i.e.,

Yt =


π2,1

...
π2,dY

W2t + ũ2t,

we further reduce to the scalar case. Let π2 be any row of Π2 and, with a slight abuse of notation,
Y the vector of observations of the component of Yt of the same row, so that one may write

π̂2(x)− π̂∗
2(x) = b̃K

π (x)
( ̂̃
B

′
π
̂̃
Bπ
)−( ̂̃

Bπ − B̃π
)′
Y + b̃K

π (x)
[( ̂̃
B

′
π
̂̃
Bπ
)− − (B̃′

πB̃π
)−]

B̃′
πY

= I + II

where b̃K
π (x) = Γ−1/2

B,2 bK
π (x) is the orthonormalized sieve according to ΓB,2 := E[bK

π (W2t)bK
π (W2t)′],

B̃π is the infeasible orthonormalized design matrix (involving ϵ1t) and ̂̃Bπ is feasible orthonormalized
design matrix (involving ϵ̂1t). In particular, note that

B̂π = Bπ +Rn, where Rn :=


0 0 ϵ̂11 − ϵ11
... · · ·

...
...

0 0 ϵ̂1n − ϵ1n

 ∈ Rn×K ,

which implies ̂̃Bπ − B̃π = Rn Γ−1/2
B,2 =: R̃n.

The next Lemma provides a bound for the difference ( ̂̃B′
π
̂̃
Bπ/n)− (B̃′

πB̃π/n) that will be useful
in the proof of Theorem 3.3.7 below.
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Lemma 3.A.9. Under the setup of Theorem 3.3.8, it holds

∥∥( ̂̃B′
π
̂̃
Bπ/n)− (B̃′

πB̃π/n)
∥∥ = OP (

√
K/n).

Proof. Using the expansion ̂̃
B

′
π
̂̃
Bπ = B̃′

πB̃π + (B̃′
πR̃n + R̃′

nB̃π) + R̃′
nR̃n, one immediately finds that

∥∥( ̂̃B′
π
̂̃
Bπ/n)− (B̃′

πB̃π/n)
∥∥ ≤ 2

∥∥B̃′
πR̃n/n

∥∥+
∥∥R̃′

nR̃n/n
∥∥.

The second right-hand side factor satisfies
∥∥R̃′

nR̃n/n
∥∥ ≤ λ2

K,n

∥∥R′
nRn/n

∥∥. Moreover,

∥∥R′
nRn/n

∥∥ =
∥∥∥∥∥ 1
n

n∑
t=1

(ϵ̂1t − ϵ1t)2
∥∥∥∥∥

=
∥∥∥∥∥ 1
n

n∑
t=1

(Π1 − Π̂1)′W1tW
′
1t(Π1 − Π̂1)

∥∥∥∥∥
≤
∥∥Π1 − Π̂1

∥∥2 ∥∥W ′
1W1/n

∥∥
= OP (n−1),

since ∥W ′
1W1/n∥ = OP (1). Under Assumption 12, λ2

K,n/n = oP (
√
K/n) since B-splines and

wavelets satisfy λK,n ≲ 1. Consequently,
∥∥R̃′

nR̃n/n
∥∥ = oP (

√
K/n).

Factor ∥B̃′
πRn/n∥ is also straightforward, but depends on sieve dimension K,

∥∥B̃′
πRn/n

∥∥ ≤ ∥∥∥∥∥ 1
n

n∑
t=1

b̃K
π (W2t)(ϵ̂1t − ϵ1t)

∥∥∥∥∥
=
∥∥∥∥∥ 1
n

n∑
t=1

b̃K
π (W2t)W ′

1t(Π1 − Π̂1)
∥∥∥∥∥

≤
∥∥Π1 − Π̂1

∥∥ ∥∥B̃′
πW1/n

∥∥
= OP (

√
K/n),

since ∥B̃′
πW1/n∥ = OP (

√
K) as the column dimension of W1 is fixed. The claim then follows by

noting OP (
√
K/n) is the dominating order of convergence.

Proof of Theorem 3.3.9. Since Π̂1 the least squares estimator of a linear equation, the rate of
convergence is the parametric rate n−1/2. The first result is therefore immediate.

For the second step, we consider
∥∥Π̂2 −Π2

∥∥
∞ ≤

∥∥Π̂2 − Π̂∗
2
∥∥

∞ +
∥∥Π̂∗

2 −Π2
∥∥

∞,

and bound explicitly the first right-hand side term. For a given component of the regression
function,

|π̂2(x)− π̂∗
2(x)| ≤ |I|+ |II|.

We now control each term on the right side.

(1) It holds

|I| ≤ ∥b̃K
π (x)∥

∥∥( ̂̃B′
π
̂̃
Bπ/n

)−∥∥ ∥∥( ̂̃Bπ − B̃π
)′
Y/n

∥∥
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≤ sup
x∈W2

∥b̃K
π (x)∥

∥∥( ̂̃B′
π
̂̃
Bπ/n

)−∥∥ ∥∥( ̂̃Bπ − B̃π
)′
Y/n

∥∥
≤ ζK,nλK,n

∥∥( ̂̃B′
π
̂̃
Bπ/n

)−∥∥ ∥∥( ̂̃Bπ − B̃π
)′
Y/n

∥∥.
Let An denote the event on which

∥∥ ̂̃B′
π
̂̃
Bπ/n − IK

∥∥ ≤ 1/2, so that
∥∥( ̂̃B′

π
̂̃
Bπ/n

)−∥∥ ≤ 2 on

An. Notice that since ∥( ̂̃B′
π
̂̃
Bπ/n)− (B̃′

πB̃π/n)∥ = oP (1) (Lemma 3.A.9) and, by assumption,
∥B̃′

πB̃π/n− IK∥ = oP (1), then P(Ac
n) = o(1). On An then

|I| ≲ ζK,nλ
2
K,n

∥∥(B̂π −Bπ
)′
Y/n

∥∥ = ζK,nλ
2
K,n

∥∥R′
nY/n

∥∥.
From R′

nY = ∑n
t=1 b

K
π (W2t)(ϵ̂1t − ϵ1t)Yt = (Π1 − Π̂1)′W ′

1Y it follows that
∥∥R′

nY/n
∥∥ ≤ ∥∥Π1 − Π̂1

∥∥ ∥∥W ′
1Y/n

∥∥
on An, meaning

|I| = OP

(
ζK,nλ

2
K,n/
√
n
)

as ∥W ′
1Y/n∥ = OP (1) and P(Ac

n) = o(1).

(2) Again we proceed by uniformly bounding II according to

|II| ≤ ζK,nλK,n

∥∥( ̂̃B′
π
̂̃
Bπ/n

)− − (B̃′
πB̃π/n

)−∥∥ ∥∥B̃′
πY/n

∥∥.
The last factor has order ∥B̃′

πY/n∥ = OP (
√
K) since B̃π is growing in row dimension with

K. For the middle term, introduce

∆B := ̂̃
B

′
π
̂̃
Bπ/n− B̃′

πB̃π/n

and event
Bn :=

{∥∥(B̃′
πB̃π/n

)− ∆B

∥∥ ≤ 1/2
}
∩
{∥∥B̃′

πB̃π/n− IK

∥∥ ≤ 1/2
}
.

On Bn, we can apply the bound (Horn and Johnson, 2012)

∥∥( ̂̃B′
π
̂̃
Bπ/n

)− − (B̃′
πB̃π/n

)−∥∥ ≤ ∥(B̃′
πB̃π/n)−∥2 ∥∆B∥

1− ∥(B̃′
πB̃π/n)− ∆B∥

≲
∥∥ ̂̃B′

π
̂̃
Bπ/n− B̃′

πB̃π/n
∥∥.

Since
∥∥ ̂̃B′

π
̂̃
Bπ/n− B̃′

πB̃π/n
∥∥ = OP (

√
K/n) by Lemma 3.A.9, we get

|II| = OP

(
ζK,nλK,n

K√
n

)
on Bn. Finally, using P((A ∩ B)c) ≤ P(Ac) + P(Bc) we note that P(Bc

n) = o(1) so that the
bound asymptotically holds irrespective of event Bn.

Thus, we have shown that

|π̂2(x)− π̂∗
2(x)| ≤ OP

(
ζK,nλ

2
K,n

1√
n

)
+OP

(
ζK,nλK,n

K√
n

)
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= OP

(
ζK,nλK,n

K√
n

)

as clearly
√
n

−1 = o(K/
√
n) and, as discussed in the proof of Lemma 3.A.9, λ2

K,n/n = oP (
√
K/n).

This bound is uniform in x and holds for each of the (finite number of) components of Π̂2, therefore
the proof is complete.

3.A.4 Theorem 3.4.6

Before proving impulse response consistency, I show that compositions of the model’s autoregressive
nonlinear maps are also consistently estimated at any fixed horizon. This means that the “functional
moving average" coefficient matrices Γj involved in Proposition 3.4.1 can be consistently estimated
with Π̂1 and Π̂2.

Lemma 3.A.10. Under the assumptions of Theorem 3.3.9 and for any fixed integer j ≥ 0 it holds

∥Γ̂j − Γj∥∞ = oP (1).

Proof. By definition, recall that Γ(L) = Ψ(L)G(L) where Ψ = (Id − A(L)L)−1. Since Ψ(L) is an
MA(∞) lag polynomial, we have that

Γ(L) =
( ∞∑

k=0
ΨkL

k

)
(G0 +G1L+ . . .+GpL

p) ,

where Ψ0 = Id, {Ψk}∞k=1 are purely real matrices and G0 is a functional vector that may also
contain linear components (i.e. allow linear functions of Xt). This means that Γj is a convolution
of real and functional matrices,

Γj =
min{j, p}∑

k=1
Ψj−kGk.

The linear coefficients of A(L) can be consistently estimated by Π̂1 and Π̂2, and thus plug-in
estimate Ψ̂j is consistent for Ψj (Lütkepohl, 2005). Therefore,

∥Γ̂j − Γj∥∞ ≤
min{j, p}∑

k=1

∥∥∥Ψj−kGk − Ψ̂j−kĜk

∥∥∥
∞

≤
min{j, p}∑

k=1

∥∥∥Ψj−k − Ψ̂j−k

∥∥∥
∞
∥Gk∥∞ +

∥∥∥Ψ̂j−k

∥∥∥
∞

∥∥∥Gk − Ĝk

∥∥∥
∞

≤
min{j, p}∑

k=1
op(1)CG,k +OP (1)op(1)

= op(1),

where CG,k is a constant and ∥Gk− Ĝk∥∞ = op(1) as a direct consequence of Proposition 3.3.9.

Note. Since we assume that the model respects either contractivity or stability conditions, the im-
pulse responses must decay (eventually) exponentially fast to zero. This means that by “stitching”
bounds appropriately, one should also be able to achieve convergence uniformly over h = 0, 1, . . . ,∞.
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Recall now that the sample estimate for the relaxed-shock impulse response is

̂̃IRFh,ℓ(δ) = Θh,·1δ n
−1

n∑
t=1

ρ(ϵ̂1t) +
h∑

j=0
V̂j,ℓ(δ)

where

V̂j,ℓ(δ) = 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t;

̂̃
δt
)

= 1
n− j

n−j∑
t=1

[
Γ̂j γ̂j(Xt+j:t;

̂̃
δt)− Γ̂jXt+j

]
.

Therefore, the estimated horizon h impulse response of the ℓth variable is

̂̃IRFh,ℓ(δ) := Θ̂h,ℓ1δ n
−1

n∑
t=1

ρ(ϵ̂1t) +
h∑

j=0

 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t;

̂̃
δt
) .

Lemma 3.A.11. Under the assumptions of Theorem 3.4.6 , let xj:0 = (xj , . . . , x0) ∈ X j and ε ∈ E1

be nonrandom quantities. Let δ̃ be the relaxed shock determined by δ, ρ and ε. Then

(i) supxj:0,ε|γ̂j(xj:0; δ̃)− γj(xj:0; δ̃)| = oP (1) ,

(ii) supxj:0,ε|v̂j,ℓ

(
xj:0; δ̃

)
− vj,ℓ

(
xj:0; δ̃

)
|= oP (1) ,

for any fixed integers j ≥ 0 and ℓ ∈ {1, . . . , d}.

Proof.

(i) From Proposition 3.4.1, we have that

γ̂j(xj:0; δ) = xj + Θj,11δρ(ε) +
j∑

k=1
(Γk,11xj−k(δ̃)− Γk,11xj−k),

thus

|γ̂j(xj:0; δ)− γj(xj:0; δ)| =

∣∣∣∣∣∣
j∑

k=1

[
(Γ̂k,11xj−k(δ̃)− Γ̂k,11xj−k)− (Γk,11xj−k(δ̃)− Γk,11xj−k)

]∣∣∣∣∣∣
≤

j∑
k=1

∣∣∣Γ̂k,11xj−k(δ̃)− Γk,11xj−k(δ̃)
∣∣∣+ j∑

k=1

∣∣∣Γ̂k,11xj−k − Γk,11xj−k

∣∣∣ .
This yields

sup
xj:0,ε

|γ̂j(xj:0; δ̃)− γj(xj:0; δ̃)| ≤ 2j sup
x∈X

∣∣∣Γ̂k,11x− Γk,11x
∣∣∣ .

Since j is finite and fixed and the uniform consistency bound of Lemma 3.A.10 holds, a fortiori
supx∈X

∣∣∣Γ̂k,11x− Γk,11x
∣∣∣ = oP (1).

(ii) Similarly to above,

|v̂j,ℓ

(
xj:0; δ̃

)
− vj,ℓ

(
xj:0; δ̃

)
| =

∣∣∣(Γ̂j,ℓγ̂j(xj:0; δ̃)− Γj,ℓγj(xj:0; δ̃)
)
−
(
Γ̂j,ℓxj − Γj,ℓxj

)∣∣∣
≤ ∥Γ̂j,ℓ − Γj,ℓ∥∞ + ∥Γj,ℓ∥∞|γ̂j(xj:0; δ)− γj(xj:0; δ)|

+ |Γ̂j,ℓxj − Γj,ℓxj |

≤ 2∥Γ̂j,ℓ − Γj,ℓ∥∞ + CΓ,j,l |γ̂j(xj:0; δ)− γj(xj:0; δ)|,
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where we have used that γj(xj:0; δ̃) ∈ X to derive the first term in the second line. In the last
line, CΓ,j,l is a constant such that

∥Γj,ℓ∥∞ ≤
min{j, p}∑

k=1
∥Ψj−k∥∞∥Gk∥∞ ≤ CΓ,j,l.

The claim then follows thanks to Lemma 3.A.10 and (i).

In what follows, define v̂j,ℓ

(
Xt+j:t; δ̃t

)
to be a version of vj,ℓ that is constructed using coefficient

estimates from {Π̂1, Π̂2} but evaluated on the true innovations ϵt.

Proof of Theorem 3.4.6. If we introduce

ĨRFh,ℓ(δ)∗ := Θ̂h,ℓ1δ n
−1

n∑
t=1

ρ(ϵ1t) +
h∑

j=0

 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t; δ̃t

) ,
then clearly ∣∣∣∣ ̂̃IRFh,ℓ(δ)− ĨRFh,ℓ(δ)

∣∣∣∣ ≤ ∣∣∣∣ ̂̃IRFh,ℓ(δ)− ĨRF∗
h,ℓ(δ)

∣∣∣∣+ ∣∣∣ĨRF∗
h,ℓ(δ)− ĨRFh,ℓ(δ)

∣∣∣
= I + II.

To control II, we can observe

II ≤
∣∣∣∣∣Θ̂h,ℓ1δ n

−1
n∑

t=1
ρ(ϵ1t)−Θh,ℓ1δE[ρ(ϵ1t)]

∣∣∣∣∣
+

h∑
j=0

∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t; δ̃t

)
− E[vj,ℓ

(
Xt+j:t; δ̃

)
]

∣∣∣∣∣∣
≤ δ

∣∣∣Θ̂h,ℓ1 −Θh,ℓ1
∣∣∣ ∣∣∣∣∣n−1

n∑
t=1

ρ(ϵ1t)
∣∣∣∣∣+ δ

∣∣∣Θ̂h,ℓ1
∣∣∣ ∣∣∣∣∣n−1

n∑
t=1

ρ(ϵ1t)− E[ρ(ϵ1t)]
∣∣∣∣∣

+
h∑

j=0

∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t; δ̃t

)
− E[vj,ℓ

(
Xt+j:t; δ̃

)
]

∣∣∣∣∣∣
≤ δ

∣∣∣Θ̂h,ℓ1 −Θh,ℓ1
∣∣∣ ∣∣∣∣∣n−1

n∑
t=1

ρ(ϵ1t)
∣∣∣∣∣+ δ

∣∣∣Θ̂h,ℓ1
∣∣∣ ∣∣∣∣∣n−1

n∑
t=1

ρ(ϵ1t)− E[ρ(ϵ1t)]
∣∣∣∣∣

+
h∑

j=0

∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t; δ̃t

)
− vj,ℓ

(
Xt+j:t; δ̃t

)∣∣∣∣∣∣
+

h∑
j=0

∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

vj,ℓ

(
Xt+j:t; δ̃t

)
− E[vj,ℓ

(
Xt+j:t; δ̃

)
]

∣∣∣∣∣∣ .
The first two terms in the last bound are oP (1) since

∣∣∣Θ̂h,ℓ1 −Θh,ℓ1
∣∣∣ = oP (1), as discussed in Lemma

3.A.10, and n−1∑n
t=1 ρ(ϵ1t)

p→ E[ρ(ϵ1t)] by a WLLN. For the other terms in the last sum above,
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we similarly note that ∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t; δ̃t

)
− vj,ℓ

(
Xt+j:t; δ̃t

)∣∣∣∣∣∣ = oP (1)

from Lemma 3.A.11, while thanks again to a WLLN it holds∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

vj,ℓ

(
Xt+j:t; δ̃t

)
− E[vj,ℓ

(
Xt+j:t; δ̃

)
]

∣∣∣∣∣∣ = oP (1).

Since h is fixed finite, this implies that II = oP (1).
Considering now I, we can write

I ≤ δ
∣∣∣Θ̂h,ℓ1

∣∣∣ ∣∣∣∣∣n−1
n∑

t=1
ρ(ϵ̂1t)− ρ(ϵ1t)

∣∣∣∣∣+
h∑

j=0

∣∣∣∣∣∣ 1
n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t;

̂̃
δt
)
− v̂j,ℓ

(
Xt+j:t; δ̃t

)∣∣∣∣∣∣
= I ′ + I ′′.

Since by assumption ρ is a bump function, thus continuously differentiable over the range of ϵt, by
the mean value theorem ∣∣∣∣∣n−1

n∑
t=1

ρ(ϵ̂1t)− ρ(ϵ1t)
∣∣∣∣∣ ≤ n−1

n∑
t=1
|ρ′

t|
∣∣ϵ̂1t − ϵ1t

∣∣
for a sequence {ρ′

t}nt=1 of evaluations of first-order derivative ρ′ at values ϵt in the interval with
endpoint ϵt and ϵ̂t. One can use |ρ′

t| ≤ Cρ′ with a finite positive constant Cρ′ , and by recalling that
ϵ̂1t − ϵ1t = (Π1 − Π̂1)′W1t one thus gets∣∣∣∣∣n−1

n∑
t=1

ρ(ϵ̂1t)− ρ(ϵ1t)
∣∣∣∣∣ ≤ Cρ′

1
n

n∑
t=1

∣∣∣(Π1 − Π̂1)′W1t

∣∣∣ ≤ Cρ′∥Π1 − Π̂1∥2
1
n

n∑
t=1
∥W1t∥2 = oP (1).

This proves that term I ′ is itself oP (1). Finally, to control I ′′, we use that by construction estimator
Π̂2 is composed of sufficiently regular functional elements i.e. B-spline estimates of order 1 or
greater. Thanks again to the mean value theorem∣∣∣∣∣∣ 1

n− j

n−j∑
t=1

v̂j,ℓ

(
Xt+j:t;

̂̃
δt
)
− v̂j,ℓ

(
Xt+j:t; δ̃t

)∣∣∣∣∣∣ ≤ 1
n− j

n−j∑
t=1

∣∣∣∣v̂j,ℓ

(
Xt+j:t;

̂̃
δt
)
− v̂j,ℓ

(
Xt+j:t; δ̃t

)∣∣∣∣
≤ Cv̂′,j,ℓ

1
n− j

n−j∑
t=1

∣∣ϵ̂1t − ϵ1t

∣∣
for any fixed j and some Cv̂′,j,ℓ > 0. This holds since v̂j,ℓ is uniformly continuous by construction.
Note that we have assumed that the nonlinear part of Π2 belongs to a Hölder class with smoothness
s > 1 (for simplicity, assume here that s is integer, otherwise a similar argument can be made).
Then, even though Cv̂′,j,ℓ depends on the sample, it is bounded above in probability for n sufficiently
large. Following the discussion of term I ′, we deduce that the last line in the display above is op(1).
As h is finite and independent of n, it follows that also I ′′ is of order oP (1).
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3.B Additional Plots
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Figure 3.8: Simulation results for DGP 2′ when considering φ̃ in place of φ.
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Figure 3.9: Estimated nonlinear regression functions for the narrative U.S. monetary policy variable.
Contemporaneous (left side) and one-period lag (right side) effects are shown, linear and nonlinear
functions. For comparison, linear VAR coefficients (dark gray) and the identity map (light gray,
dashed) are shown as lines.
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Figure 3.10: Comparison of histograms and shock relaxation function for a positive (left) and
negative (right) shock in monetary policy. Original (blue) versus shocked (orange) distribution of
the sample realization of ϵ1t. The dashed vertical line is the mean of the original distribution, while
the solid vertical line is the mean after the shock.
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Figure 3.11: Robustness plots for U.S. monetary policy shock when changing knots compared to
those used in Figure 3.6. Note that linear and parametric nonlinear responses do not change.
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Figure 3.12: Relative changes in the GDP impulse responses function when the size of the shock is
reduced from that used in Figure 3.6. The standard deviation of Xt ≡ ϵ1t is σϵ,1 ≈ 0.5972. Linear
IRFs are re-scaled such that for all values of δ the linear response at h = 0 is one in absolute value.
Nonlinear IRFs are re-scaled by δ times the linear response scaling factor.
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Figure 3.13: Estimated nonlinear regression functions for the 3M3M subjective interest rate uncer-
tainty measure. One-period (left side) and two-period lag (right side) effects are shown, combining
linear and nonlinear functions. For comparison, linear VAR coefficients (dark gray) and the identity
map (light gray, dashed) are shown as lines.
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Figure 3.14: [Top] Histograms and shock relaxation function for a one-standard-deviation shock
in interest rate uncertainty. Original (blue) versus shocked (orange) distribution of the sample
realization of ϵ1t. The dashed vertical line is the mean of the original distribution, while the solid
vertical line is the mean after the shock. [Bottom] Envelope (min-max) of shocked paths for
one-standard-deviation impulse response.
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Figure 3.15: Relative changes in the industrial production impulse responses function when the
size of the shock is reduced from that used in Figure 3.7. The standard deviation of ≡ ϵ1t is
σϵ,1 ≈ 0.0389. Linear IRFs are re-scaled such that for all values of δ the linear response at h = 0 is
one in absolute value. Nonlinear IRFs are re-scaled by δ times the linear response scaling factor.
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Figure 3.16: Relative changes in the CPI impulse responses function when the size of the shock is
reduced from that used in Figure 3.7. The standard deviation of ≡ ϵ1t is σϵ,1 ≈ 0.0389. Linear
IRFs are re-scaled such that for all values of δ the linear response at h = 0 is one in absolute value.
Nonlinear IRFs are re-scaled by δ times the linear response scaling factor.
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